
Differential Coll is ions in SHA-0

Florent Chabaud and Antoine Joux

Centre d'l~lectronique de l'Armement
CASSI/SCY/EC

F-35998 Rennes Armies, France
{chabaud, j oux}@celar, fr

Abst rac t . In this paper we present a method for finding collisions in
SHA-O which is related to differential cryptanalysis of block ciphers. Using
this method, we obtain a theoretical attack on the compression function
SHA-0 with complexity 2 sl, which is thus better than the birthday para-
dox attack. In the case of SHA-1, this method is unable to find collisions
faster than the birthday paradox. This is a strong evidence that the
transition to version 1 indeed raised the level of security of SHA.

1 D e s c r i p t i o n o f SHA

1.1 H i s t o r i c a l O v e r v i e w

The Secure Hash Standard (SHS) [7] was issued by the National Institute of
Standards and Technology in 1993. It was largely inspired from Rivest's MD4 [5].
However, a certain number of basic blocks of this function were different from
MD4 ones, but no explanation was given for the choices. Two years later, an
addendum was made to the standard, slightly altering the function [8]. This
change was claimed to correct a technical weakness in SHA but no justification
was given. Yet, it was reported that a collision attack bet ter than the birthday
paradox had been found by the NSA.

Independantly, several attacks on the original MD4 function, and its MD5
improvement [6] have been published [2, 4]. However, these attacks couldn't be
applied to the Secure Hash Algorithm (neither in the first nor in the second
version) because of the expansion used.

1.2 Nota t ion

The symbols we use in this paper are defined Table 1. Besides, we denote by
capital letters 32-bits words, and X (i) stand for the value of X used at i- th round
of SHA.

1.3 Descript ion o f SHA

D e s c r i p t i o n o f t h e H a s h F u n c t i o n . The hash functions in the SHA family
deal with 512 bits message blocks and output a 160 hash value. This hash value
is formed by concatenating 5 registers of 32 bits each. In order to hash a message,
several steps are performed:

57

Table 1. Notations

Notation
F q

(x, Y,..., z)

Definition
Finite field with q elements.
Concatenation of 32-bits words.
Addition on 32-bits words modulo 2 ~'. +

(9 Exclusive or on bits or 32-bits words.
V Inclusive or on bits or 32-bits words.
A Logical and on bits or 32-bits words.

ROLt (X) Rotation by ! bits of a 32-bits word.
Xi The ith bit of 32-bits word X, from the least signif-

icant 0 to the most significant 31.

1. Pad the message to be hashed by adding a 1, aa appropriate number of 0 and
the 64 bits integer representing the length of the message. After this padding
operation, the message is formed of a integral number of 512 blocks.

2. Initialize 5 registers of 32 bits A, B, C, D and E with fixed constants:
- A = 0x67452301
- B = 0xEFCDhB89
- C = 0x98BADCFE
- D = 0xi0325476
- E = 0xC3D2EIF0

3. For each message block, copy A, B, C, D and E respectively in AA, BB,
CC, DD and EE. Apply the compression function to AA, BB, CC, DD,
EE and the message block. This yields AA', BB', CO', DD' and EE'. These
5 values are then added respectively to A, B, C, D and E.

4. Output the concatenation of A, B, C, D and E.

In the remaining of this paper, we try to find collisions on the compression
function, from which collision on the hash function are trivial.

D e s c r i p t i o n o f t h e C o m p r e s s i o n F u n c t i o n . Following [7], we denote by
<W(~ W (15)> the 512 bits input of SHA, constituted by 16 words of 32 bits.
The first step of SHA-0 is to perform an expansion on these 512 bits. The result
of this expansion is given by the following relation:

W (i) :w(i -3)~W(i -8)~W(i -14)~W(i -16) , Vi, 1 6 < i < 8 0 . (1)

These 80 words of 32 bits are used to alter the five 32-bits words state denoted
by A (i), B (~), C (i), D (~), E (1). The initial state is the input of the compression
function. We now denote it <A (~ B(~ , C (~ D(~ , E(~ >.

The modification of (A (i), B (i), C (~) , D (i) , E (i) > state is performed by the fol-
lowing transformation, where the function f(~) and the constant K (i) are set
according to Table 2, and ADD(U, V, W, X , Y) = U + V + W + X + Y (mod 2n):

58

for i = 0 to 79
A (i+l) = ADD (W(O,ROL5 (A(O),.f(O (B(O,C(O,D(O) ,E (0 ,K(0)
B(i+l) = A (i)
C (i+l) = ROLzo (B(0)
D(i+ 1) = C(i)
E (i + 1) = D (i)

Table 2. SHA definition of function .f(0(X,Y, Z), and constant K (0.

Round i Function f(O Constant K C0
Name Definition

0-19 IF (X A Y) V (X A Z) 0x5A827999
20-39 XOl:t (X ~ Y $ Z) 0x6ED9EBA1
40-59 MAJ (XAY) V (X A Z) V (Y A Z) Ox8F1BBCDC
60-79 XOK (X ~ Y ~ Z) 0xCAS2etD6

The output of the compression function is the 160 bits word obtained in the fi-
nal state (A (s~ , B (s~ C (s~ , D (s~ E (s~ By collision, we understand the stan-
dard meaning of finding two input words (W(~ W (15)) and (W'(~ W '(is))
that gives the same 160-bits output (A (s~ , B (s~ , C (s~ , D (s~ , E (s~ using the
same initial value (A (~ B (~ , C (~ , D (~ , E (~

The basic architecture of SHA can be illustrated by Fig. 1. The expansion box
512 2560 can be considered as a linear application from (IF2) to (F2) , that maps

(W(~ .. . W (15)) to {W(~ W (rg)). This linear mapping is the only difference
between first and second version of SHA. More precisely, the extension of SHA-1
is obtained by replacing (1) by the following equation, which differs from (1) by
the one bit rotation to the left:

W (0 = ROLx (W (i-3) * W (i-s) $ W (I-14) ~ W(i-15)) , Vi, 16 < i < 8 0 . (2)

We will denote Eo the initial expansion described by (1), and Ei the modified
expansion described by (2). This generic architecture defines a family of hash
functions that could be derived by changing the expansion box.

2 P r o p a g a t i o n o f L o c a l P e r t u r b a t i o n s in SHA-Like H a s h
F u n c t i o n s

2.1 W e a k e n e d SHA Varia t ions

The Bare Arch i t ec tu re of SHA. We first want to study the propagation of local
perturbations in a fully linear variation of SHA, in order to discriminate between

59

input (512 bits)

expansion E

2560 bits

~- - - - K

Fig. 1. SHA architecture

60

the roles of the bare architecture of the hash functions on one side and of the
elementary building blocks on the other side. Within the compression function
of a hash function in the SHA family, there are two sources of non-linearity, the
f(i) functions and the addition function ADD.

Thus, the first hash function we consider is SHI11 the compression function
in the SHA family built by starting from SHA-0 (thus using expansion E0) and by
replacing the ADD function by an exclusive-or on 5 variables, and all the f(0
by X O R functions.

We denote as usual by W (1) the ith word of the expansion (0 < i < 80), and
the 32 bits of this word are numbered W(i),. ~1(4)

�9 " , " 3 1 �9

We now relax the constraints on the W vector and temporary forget that it
results from an expansion process�9 Thus, we can apply any local perturbation
on any bit of W. For example, we can negate the value of W10). This change
will modify bit 1 of A (i+a), bit 1 of B (i+2), bit 31 of C '(i+3), bit 31 of D (i+4)
and finally bit 31 of E (i+5). If we want to prevent further changes, we need to

�9 (i+l) (4+2) (i+S) (4+4) - ---(i+5) These new negate the values of bits W~ , W~ , W~t , W~ and w~1 .
modifications prevent the change on bit 1 of A (4+I) to change bit 6 of A (i+2),
the change on bit 1 of B (4+2) to change bit 1 of A (i+s), the change on bit 31 of
C (i+3) to change bit 31 of A (i+4), the change on bit 31 of D (i+4) to change bit
31 of A (i+5) and the change on bit 31 of E (i+5) to change bit 31 of A (i+6). Thus

..... (i) rrr(i+l) rrr(i+2) rrr(i+3) rr,(i+4) (i+5)
negating vv i , vv d , vv I , vv31 , vvst aria vv31 gives two different
paths from A (1), B (1), C (i), D(0 and E(0 to A (4+6), B (i+6), C(i+6), D (i+6) and
E (i+o), and yields a local collision. This is summarized in Fig. 2.

Note I. It is clear that what we say for bit 1, can be generalized for any other
bit from 0 to 31. However, it will become clear in the following (see Sect. 2.1),
that this choice is the best one for our purpose. Hence, we focus on this value
through the rest of this paper.

Since everything is linear, we can apply simultaneously as many local colli-
sions as we want and get two different paths from A (~ B (~ C (~ D (~ and E (~
to A (s~ B (s~ C (8~ D (s~ and E (s~ the first path using the original W and
the second one using the modified one which we denote by W ~. The question
that now arises is "How to choose the local collisions to come back under the
condition that both W and W ~ result from an expansion process ?"

Choosing the local collisions simply means to build an error vector mo of 80

bits (numbered from 0 to 79) with a 1 in position i if we want to negate W (i).

However, we can't choose to negate W (1) for i > 75, since a perturbation in
round i is never corrected before round i + 6, and since all perturbations must
be corrected by round 80.

Let (m(0~ zg)) be one of these error vectors. We deduce from it the
/

w, -- perturbative

Vi, - 5 < i < - 1 , Mo (~)=0

1 sltI 1 is a French pun involving cats and dogs.

61

Perturbation

Initial state

A(O

B(O

G 0)

D (i)

E 0)

Corrections on bits
on lilt 1

WI(') W('+O W2('+2) uz(,+a, u,-(,+4) wt,+5,
"'31 "'31 "'31

~ t t t

A~t)~ �9 A(t+t) A(t+3) A(i+2) A(i+4) A(I+6)

"& Dli+3) 31 / E D 1~+5)

Subscripts denote the perturbed bit of the state.

Fig. 2. SHII propagation of perturbation

Vi, 0 < i < 7 9 , a z (i) = 0 i f k # l ; ""0,k

Vi, 0 < i < 79, a,r(0 = m(o ~) ""0,1

This mask is completed by 5 zero-blocks, because the corrective masks are now
deduced from this perturbative mask by translation and rotation.

The first corrective mask M1 is deduced from M0 by a translation by one
round, and a rotation of 5 bits to left. This rotation comes from the description
of the SHA transformation (see Sect. 1.3 and Fig. 2). Hence, it applies on bits
numbered k = 6. We have:

< (3)

The second corrective mask M2 is deduced from Mo by a translation by two
rounds and no rotation (see Fig. 2).

Vi, - 3 < i < 79, M~ ') = M(o i-2) (4)

Similarly, M3 (resp. M4, Ms) are deduced from Mo by translation by three (resp.
four, five) rounds, and apply on bits numbered k = 31.

Vi, - 2 < i < 79, M~i)= ROL3o (M(o i-3))

Vi, - 1 < i < 79, M(i)= ROL3o (M0 (i-4))

Vi, 0 < i < 79, M(si)= ROL3o (Mo (i-5))

; (5)

; (6)

; (7)

62

Now, what we need is that the global differential mask M defined by

Vi, 0 < i < 79, M (i) = M(o i) (9 M~ i) (9 M (i) (9 M~ i) (9 M(4 i) (9 M(5 i) , (8)

must be an output of Eo.
This condition holds if all masks Mk satisfy (1), which is ensured if the initial

perturbative mask satisfies the following equation:

M(o i) = M(o i-3) (9 M(o i-s) (9 M0 (i-14) (9 Mo (i-16), Vi, 11 <_ i < 80 . (9)

Moreover, since Eo does not interleave bits (see (1)), we can split the expan-
sion in 32 identical boxes e0 expanding 16 bits to 80 bits, and defined by (1)
considered upon bits. The box eo is small enough to be exhaustively enumerated.
The number of possible masks is in fact relatively small, as there are only 128 of
the 216 = 65536 possible inputs, that satisfy (9), and the constraint of 5 zeroes
on rounds 75 to 79, and thus give a mask m0.

Given such a mask, one can obtain M, and, by reversing the linear application
Eo, one can compute the corresponding 512 bits input mask # such that M =
Eo (#). As the expansion boxes of the SHA functions are coded in a systematic
way, it is clear that # = (M(~ M(tS)). For all input W = (W(~ W(lS)),
W' = W (9 # has same output by the linear compression function SHI1.

Introducing Non Linear Functions.

From a Determinist ic to a Probabilistic Method. We now want to study the
impact of non-linear functions f(i) in the security of hash function from the SHA
family. We consider a second function SHI2, the compression function in the SHA
family built by starting from SHA-0 (thus using expansion Eo) and by replacing
the A D D function by an exclusive-or on 5 variables. This can also be seen as
SHI1 with added non-linear functions f(1). It can easily be seen that in some
cases the f(i) behaves like a X O R . Thus, the previous attack may work. The
questions that arise are "When does it work?" and "What is the probability of
success?"

In order to compute the probability we need to make a detailed analysis of
the I F and M A J functions. Since these functions work in parallel on 32 bits,
we need only study what happens on a single bit. Assuming that we study the
behavior of the transition from f(i) (B(i), C(i), D(i)) to f(i) (Bl(i), Cl(i), D,(i)), by
looking carefully at the rotations and at our perturbation model one can see
that different cases can occur:

1. There is no change at all in the inputs, i.e. B (i) = B '(i), C (i) = C '(i) and
D (i) = D t(i) . In that case the output f (B '(i) , C '(1) , D '(i)) = f (B (i) , C (i) , D (i))
does not change and f(i) behaves as X O R .

2. There is a single difference in the entries on bit 1 of B (i), i.e. B '(i) = B(i)(921.
In that case, f(1) behaves as a X O R , if and only if f (i)(B,(i) , C,(0, D,(i)) =
f(i)(B(i) , C(i), D(1)) (9 21.

63

3. There is a single difference in the entries on bit 31 of C (~) or D(0 (exclusive
or). In that case, f(i) behaves as & XOR, if and only if f(i) (B', C '(i), D '(i)) =
](i) (B(i), C(i), D(i)) (9 23t.

4. There are two differences in the entries on bits 31 of C (i) and D (i), that is
to say C '(i) = C (i) $231 and D '(1) = D (i) (9231. In that case, f(i) behaves as a
XOR, if and only if the output of f(i) does not change f(i) (B,(i), C,(i), D,(i)) =
f(i) (B(i), C(i), D(i)).

We can now look at the three last cases for the M A J and I F function. For
the M A J function, Cases 2 and 3 behave identically, the change in the output
occurs if and only if the two bits of input that do not change are opposite. This
occur with probability 1/2. In Case 4, the output does not change if and only
if the two bits C ~) and D ~ change in opposite directions. This occurs with
probability 1/2.

For the IF function, in Case 2 the output changes if and only if bits C ~ ~ and
D ~) are opposite. This occurs with probability 1/2. In Case 3, the output changes
if and only if bit S ~) points on the changing bit (i.e. B ~) = 1 if C '(0 = C (i) (9231

changes and B ~) = 0 if D '(i) = D (i) (9 2 ~1 changes), this occurs with probability
1/2. In Case 4, the output will always change, so the probability of good behavior
is 0. This implies, that we need to choose a perturbation pat tern with no two
adjacent perturbations in the IF rounds. More precisely, as the I F rounds occur
from round 0 to 19 (see Table 2), and Case 4 involves states C (i) and D (i), no
two adjacent perturbations can appear before round 16, but there may be two
adjacent perturbations on rounds 16 and 17, because the propagation of the
error will occur for C (i) and D (i) on round 20 (see Fig. 2).

Under all our constraints, we were able to find & pattern with a global prob-
ability of success of about 1/224 . We represent hereafter the corresponding 80
bits output of the eo box. The 5 preceding zeroes are just there to recall that
this pattern satisfies the constraints developed in Sect. 2.1:

00000 00100010000000101111
01100011100000010100
01000100100100111011
00110000111110000000

This pattern mo is ended and preceded by 5 zeroes, and has no two adjacent
bits in the 16 first rounds.

By the same construction as described in Sect. 2.1, we obtain a differential
mask that can be applied on input word, and gives a collision with non negligible
probability. We reference this mask by J~.

Evaluating the probability of success is quite tricky, because the 16 first
rounds must not be included in this evaluation. The reason for this appears
when implementing the collision search.

Implementing the Collision Search. We now have the differential mask 2~4 that
we can try to apply on any input word (W (~ . . .W(tS)>. In order to check

64

whether we have a collision or not, one has to verify for every perturbation,
if the correction is done well, that is to say, if the function f(~) behaves like a
X O R . Since each perturbation appears in 3 different (successive) f(~), we need to
consider many elementary probabilities. In our example, there are perturbations
in positions 2, 6, 14, 16, 17, 18, 19, 21, 22, 26, 27, 28, 35, 37, 41, 45, 48, 51,
54, 55, 56, 58, 59, 62, 63, 68, 69, 70, 71 and 72. Table 3 shows which case each
perturbation is related to, for the three f(i) involved.

N o t e 2. In Table 3, Case 4 in M A J case is counted for a probability 1/x/~ for
each of the two perturbations involved. In this way, the global overall probability
of 1/2 seen above is obtained.

Table 3. Probability of success of mask .A4 in SHI2 model

Perturbation f(~+2) case f(~+3) case f(~+4) case
in round i

2
6
14
16
17

18, 19, 21
22, 26, 27

28, 35
37
41
45
48
51
54
55
56

58, 59, 62
63, 68, 69
70, 71, 72

overall probability
probability logarithm

I F 2 I F 3 I F 3 1/8
I F 2 I F 3 I F 3 1/8
I F 2 I F 3 I F 3 1/8
I F 2 I F 3 X O R - 1/4
I F 2 X O R - X O R - 1/2

X O R - X O R - X O ~ - 1

X O R - M A J 3 M A J 3 1/4
M A J 2 M A J 3 M A J 3 1/8
M A J 2 M A J 3 M A J 3 1/8
M A J 2 M A J 3 M A J 3 1/8
M A J 2 M A J 3 M A J 3 1/8
M A J 2 M A J 3 M A J 4 1/4V~
M A J 2 M A J 4 M A J 4 1/4
M A J 2 M A J 4 X O ~ - 1/2V~

X O R - X O R - X O R - 1

3
3

3 = 2 + 1 (see Note 3)
2
1

2
3
3
3
3

2.5
2

1.5

As the input word is transmitted with no modification through the expansion,
it is possible to split the search in two. First, we search W (~ . . . W (14) such that
the function f(i) behaves like a X O R when the mask is applied. This occurs
with probability 1/28, as the two perturbations involved are in positions 2 and
6.

Then, W (~ . . . W (14) being fixed, we try many values of W (15) (of course we
must t ry less than 232, in practice any large number such as 10000 is satisfactory).
Such a W (15) can lead to a collision after 80 rounds if all the other rounds behave

65

nicely. As can be seen on Table 3, this happen with probability 1/226. Since the
first part of the construction is done once for many W (15), the second probability
gives the real cost of the enumeration.

Note 3. This first evaluation gives an overall probability of 1/226 in place of
the claimed probability. But we can further refine this approach and get rid of
some of the probability coming from perturbation of round 14. The first function
related to this perturbation is the IF function seen in round 16. This function
behaves nicely if bits C~ 16) and D~ 16) differs. These bits are known in round 14,
since they are copies of A~ 14) and A~ 13) . This allows us to transfer a probability
of 1/2 from the second part of the enumeration to the first one. This reduces the
probability to 1/225 .

The second function related to perturbation of round 14 is the I F function
seen in round 17. This function behaves nicely if bit B~117) is a 1. Since this bit

is a copy of A~ 6) , one can check its correctness just after choosing W (15), and,
if necessary, change bit 31 of W (~5) before starting the testing process. This
reduces the probability to the announced 1/224 .

Note 4. In the case of SHI2, the collision search is very fast and can be performed
in less than a half minute. Here is a sample collision:

la6191b0 3c4a331c 1f228ea2 403b7609
062ec496 48611ca8 583401bc 399879d0
2270fdbd 2a8090f0 4b12fd98 473cc7al
002831a9 50fe1535 61ac0d3d f26700ec

and

la6191b0 3c4a331c lf228ea0 403b7649
062ec494 c8611ca8 d83401be b9987990
2270fdbf aa8090f0 cb12fd98 c73cc7al
002831a9 50fe1535 61ac0d3f f26700ac

both give

1334f224 21a3efc9 b667d2b2 2890013b 56013ca9

after the 80 rounds of the SHI2 function.

I n t roduc ing Addi t ion . Eventually, before dealing with SHA-0 and SHA-1 we
want to study the influence of the addition ADD on our scheme of attack. We
consider a third function SHI3, the compression function in the SHA family built
by starting from SHA-0 (thus using expansion E0) and by replacing the non-
linear functions I F and M A J by the function XOR. This can also be seen as
SHI1 with the addition ADD put back.

The new point here is that a perturbation may lead to carries. If we can
prevent this from happening, everything will behave nicely as before. At first, it
seems that each perturbation bit and each correction bit may lead to carry. This

66

would imply an elementary probability of 1/26 per perturbation, and therefore
give no usable attack. However, remember that we choose to apply perturbation
on bit 1 of W(0 thus getting three corrections on bits in position 31 (Ws(~ +s),

W(~ +4), W(~+s)). Since there is no possible carry from bit 31, this halves the
logarithm of the elementary probability, and this explains our above choice.

We can reduce this even further, suppose that W (i) is a 0 and that it changes
to a 1 in W~ (i), if no carry occurs (probability 1/2) then Ai i+I) is a 0 (and A~ (i+1)

is a 1). Following this change in the computation of A (i+2), we see that W (i+D

should be a 1 (and W~ (~+1) should be a 0), otherwise the correction would lead
to a carry. If this condition holds then the correction always occur without carry.
The most difficult point is to correct the change in the computation of A (~+a).
As before, we choose to fix W1 (i+2) to 1 (and W~ (i+2) to 0). Then the correction

behaves nicely if the first bit of the result of the X O R function is equal to B~ i+2)

(i.e A~i+l)). This is true whenever C~ i+2) = D~ i+2) (with probability 1/2).

The very same arguments show that the probabilities are the same when W (i)

is a i (and changes to a 2 in W~(i)). In fact, the important issue is that a change
from 0 to 1 (an incrementation) must be corrected by a change from 1 to 0 (a
decrementation) and that a change from 1 to 0 must be corrected by a change
from 0 to 1. The elementary probability to consider is formed from a factor 1/2
to ensure that the initial perturbation engenders no carry, and another 1/2 to
ensure that the X O R keeps the change in the same direction.

Two technical complications arise in this case, the first one is that we need
to build W in such a way that W (i), W (i+1) and W (i+2) will satisfy the above
(non-linear) constraints. Since Eo does not interleave bits, we build W1 and We
at the very beginning and keep them fixed for the rest of the attack. The second
complication comes from the fact that nothing prevents us from getting a change
in W (i), and another in W1 (I+2), in that case we get different conditions on W1
and W6 but the elementary probability of 1/4 still holds.

In practice, we were able to find a pattern with probability of 1/244 (com-
puted as in the SHI2 case) 2. This pattern is:

00000 01000010100100011110
01011000001110000000
00001100000011011000
00011000101101100000

and we will denote A4' its associated differential mask.

Note 5. In this second pattern, we have no condition on adjacent perturbations,
since we consider f(i) to always be the X O R function. Thus, one can note that
this pattern has two adjacent perturbative bits on rounds 15 and 16.

2 One can refine the enumeration process to force the perturbations of round 16 and
17 and their associated corrections to be successful. The details are too tricky to be
explained here, but will appear in the journal version of this paper. This leads to a
240 running time, which was confirmed by our implementation.

67

Associated to this pattern, the cond~ions on b~s 1 and 6 o f W a n d the
expansion E 0 m a d e us choosethefol lowing values for these bits:

Bitl: 01110010000000011000
10101101011110000110
11010101111101101010
00001001111101010111

Bit6:00010000000110100000
10110001101001110011
01101101011111000010
00001011101101110111

Note 6. After a ~ w daysofcomputa t ion , w e w e r e a b l e t o f i n d a n e x p l i c ~ colfision
for SHI3:

53c29e14 44fe051b 4a8ce882 576e1943
0c0abc30 3806260d 76cbeb2f lb8379a8
0da433ac 6337b011 1041e2a9 20b44364
l a3 f8b70 0e7a4620 25e81245 289acb2b

and

53c29e14 44fe0519 4a8ce8c2 576e1941
8cOabc30 bSO6260d f6cbeb2d lb8379e8
Oda433ac e337b051 9041e2ab 20b44366
9a3fSb30 8eTa4622 a5e81245 a89acb29

both give

9 8 3 d l f 8 e e619f190 2e94fa09 0b0d479c 4c536e3e

after the 80 rounds o f t h e SHI3function.

2.2 T r u e SHA-0 Case

Having studied SHI1, SHI2, and SHI3, we now come back to the SHA-0 case. In
this case, all perturbations have to be inserted without any carry, as in SHI3
case. Moreover, we need to probe deeper into the analysis of the I F and M A J
functions, tha t we carried out to deal with SHI2.

Let us start with the IF function. As in SHI2, we must consider Cases 2, 3
and 4. Case 4 is always unacceptable in a pat tern of attack. In case 3, everything
remains the same: the change must go through the I F function, and it happens
with probability 1/2. In case 2, the change must go through the function. More-
over, as in SHI3 case, its direction must be preserved. These two conditions are
satisfied with probability 1/4.

For the M A J function, we can remark that M A J never reverses the direction
of a change, so that cases 2 and 3 are left unchanged, and each one leads to an
elementary probability of 1/2. However, case 4 undergoes an interesting change.

68

The new fact, as compared to SHI2, is that as in SHI3, we have the following
additional properties:

c5 § Ai '§ = w(.').
= a i . + .) = w(.+l)

This means that in case 4, M A J behaves as a X O R as soon as the following
equation holds,

W (0 ~ W ('+1) , (10)

because the result of M A J does not change if and only ff C~ +a) and D(~ +a)
change in opposite directions. Thus, when there are perturbations in round i
and i + 1 with 36 < i < 55, if we add the additional constraints (10) on W1,
then the elementary probability of case 4 for the M A J function is 1. These
conditions are added to the previous ones described for SHI3, when building W1
and W6.

Taking in account all these constraints, we were able to find two good pat-
terns, with probability of success 1/268 (resp. 1/269). These patterns are:

00000 00010000000100100000
00100001101101111110
11010010000101010010
10100010111001100000 c=68

00000 00100010000000101111
01100011100000010100
01000100100100111011
00110000111110000000 c=69

We can now build the differential masks deduced from each pattern by the
construction of Sect. 2.1. The second pattern was denoted A4 in Sect. 2.1. We
denote the first one by 2%4".

Note Z The computation of the probabilities can be done from Tables 5 and 4.
As explained in Note 3, the perturbation in round 14 is on the boundary between
the two enumerations. It contributes to the overall probability of success by a
single 1/2.

Note 8. Given a pattern .A4" (resp..s once W1 and Ws are chosen according
to the constraints, the collision search by itself remains unchanged (see Sect. 2.1).
The expected running complexity is thus 268 (resp. 269). However, being more
careful when implementing the collision search, we can get rid of the remaining
probability implied by the perturbation in round 14. We hence obtain a running
complexity of 28~ (resp. 268). Moreover, in case of A4, one can also suppress
the probabilities implied by the perturbations in round 16 and 17. This further
decreases the probability of success of A4 to the claimed value of 261.

This ultimate trick can also be used in SHI2 model. Thus, instead of the
probability 1/224 obtained in Note 3, we can obtain a probability of 1/22~

69

Table 4. Probability of success of mask .~t for Sl~-0

Perturbation f(i+2)case fC~+s) case f(i+4) case
in round i

2 I F 2 ' I F 3 I F 3
6 I F 2 I F 3 I F 3

14 I F 2 I F 3 I F 3
16 I F 2 I F 3 X O R -

17 I F 2 X O R - X O R -
18, 19, 21
22, 26, 27 X O R - X O R - X O R -

28, 35
37 X O R - M A J 3 M A J 3
41 M A J 2 M A J 3 M A J 3
45 M A J 2 M A J 3 M A J 3

48 M A J 2 M A J 3 M A J 3
51 M A J 2 M A J 3 M A J 3

54 M A J 2 M A J 3 M A J 4
55 M A J 2 M A J 4 M A J 4

56 M A J 2 M A J 4 X O R -

58, 59, 62
63, 68, 69 X O R - X O R - X O R -

70, 71, 72

overall iprobabifity
probabi~ty logarithm

1/32 5
1/32 5
1/32 4 + 1
1/16 4
1IS 3

1/4 2

1/16 4
1/16 4
II16 4
1/16 4
1/16 4
1/8 3
1/4 2
1/4 2

1/4 2

N o t e 9. In the middle of the second 20-rounds block of pattern ~ with proba-
bility 1/269 (basic search) or 1/261 (improved search), we were lucky to find a
group of 5 zeroes (in fact 6 but 5 is sufficient for our purpose). This allows us
to stop the attack after this group, with a partial collision on 35 rounds of SItA.
Here is such a partial collision:

78fb1285 77a2dc84 4035a90b b61f0b39
4a4dlc83 186e8429 74326988 7f220f79
a08e7920 16a3e469 2ed4213d 4a75b904
38bef788 2274a40c 4c14e934 cee l2cec

and

78fb1285 77a2dc84 4035a909 b61f0b79
4a4dlc81 986e8429 f432698a f f220f39
a08e7922 96a3e469 aed4213d ca75bg04
38bef788 2274a40c 4c14e936 cee l2cac

both yield after 35 rounds of SHA-0:

7b907fb9 d050108b 88d6e6d6 5c70d4a3 7e06a692

The probability to find such a collision is 1/222, using the basic collision
search, or 1/2 la, using the improved collision search.

70

Table 5. Probability of success of mask f14" for SItA-0

Perturbation f(i+2) c a s e .f(i+3) c a s e f(~+4) case
in round i

3 I F 2 I F 3 I F 3
11 I F 2 I F 3 I F 3
14 I F 2 I F 3 I F 3

22, 27, 28
30, 31, 33 X O R - X O R - X O R -

34, 35
36 X O R - X O R - M A J 4
37 X O R - M A J 4 M A J 4
38 X O R - M A J 4 ! M A J 3
40 M A J 2 M A J 3 M A J 4
41 M A J 2 M A J 4 ~ M A J 3
43 M A J 2 M A J 3 M A J 3
46 M A J 2 M A J 3 M A J 3
51 M A J 2 M A J 3 M A J 3
53 M A J 2 M A J 3 M A J 3
55 M A J 2 M A J 3 M A J 3

58, 60, 62
66, 68, 69 X O R - X O R - X O R -
70, 73, 74

overall probability
probability logarithm

1/32 5
1/32 5
1/32 4+1

1/4 2

1/4 2
1/4 2
1/8 3
1/8 3
1/s 3
1/16 4
1116 4
1/16 4
1/ls 4
1/16 4

1/4 2

3 SHA-I C a s e

In the SHA-1 case, the bits are interleaved and therefore it is no more possible to
split the expansion in 32 little expansions. However, the invariance by translation
is still true. Hence, it is still feasible to deduce the 5 corrective masks from a
perturbative one, using the construction of Sect. 2.1.

More precisely, given a perturbative mask M0 that is an output of E1, Equ.
(3) to (7) still hold, and the constructed mask M defined by (8) is again an
output of El .

Finding the perturbative mask M0 can be done using coding theory tools [3],
because the mask can be considered as a low-weight codeword of the extension.
Performing such a search on E1 leads to some very short codewords as compared
to the dimensions of the code. However, with very high probability, no codeword
of weight less than 100 exists in El , tha t satisfies the constraints (see Sect. 2.1),
whereas there exists 27 weighted codewords in E0.

As every bit of the perturbative mask Mo implies at least a factor 1/4 in the
overall probability of success, our attack will therefore be totally inefficient on
SHA- 1.

However, it remains an open problem to see if differential masks exist in the
SHA-1 case, because our attack builds very specific masks.

71

4 Conclus ion

We have developed a new kind of at tack on SHA functions that yields bet ter re-
sults than the classical bir thday-paradox attack on SHA-0. This a t tack is related
to the well known differential cryptanalysis [1] in tha t it looks for some kind of
characteristic masks that can be added to input word with non trivial proba-
bility of unchanging the output of the compression function. The expansion of
SHA-1 seems to be designed to counter this kind of attack, which should increase
the level of confidence in this standard.

5 Acknowledgments

We wish to thank Matthew Robshaw and the referees for their valuable remarks
and improvements to this paper.

References

1. E. Biham, and A. Shamir. Cryptanalysis of the Full 16-Round DES, CRYPTO'9$
LNCS 740, pp 487-496, 1993.

2. B. den Boer, and A. Bosselaers. Collisions for the compression function of MD5,
EUROCRYPT'93 LNCS 773, pp 293-304, 1994.

3. A. Canteaut, and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to primitive narrow-sense BCH codes of length 511,
IEEE Trans. Inform. Theory, IT-44(1), pp 367-378, Jan. 1998.

4. H. Dobbertin. Cryptanalysis of MD4, Fast So, ware Bncryption LNCS 1039, pp
53-69, 1996.

5. R. Rivest. The MD4 Message-Digest Algorithm, CRYPTO'90 LNCS 537, pp 303-
311, 1991.

6. R. Rivest. The MD5 Message-Digest Algorithm, Net-
work Working Group Request for Comments: 13~1, April 1992.
h t t p : / / t h e o r y , los .mit. edu/ 'r ivest/Rivest-MD5, t x t

7. Secure Hash Standard. Federal Information Processing Standard Publication # 180,
U.S. Department of Commerce, National Institute of Standards and Technology,
1993.

8. Secure Hash Standard. Federal Information Processing Standard Publication # 180-
1, U.S. Department of Commerce, National Institute of Standards and Technology,
1995 (addendum to [7]).

