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PREFACE 

If a physical system has only internal interactions and if space is isotropic, then in- 
trinsic properties of the system must be independent of its orientation and must be 
indistinguishable in all directions. From this fundamental rotational symmetry con- 
cept the theory of angular momentum has been developed into a sophisticated analy- 
tical and computational technique, especially when applied to quantum mechanics. I 
aim in this book to develop angular momentum theory in a pedagogically consistent 
way, starting from the geometrical concept of rotational invariance rather than from 
the dynamical idea of orbital angular momentum and its quantization. The latter ap- 
proach, though hallowed by tradition, needlessly confuses quantum mechanics with 
geometry. 

Topics are presented in an order so that new concepts are introduced and relevant 
formulas are derived in ways arising naturally in the treatment rather than by appeal- 
ing to unfamiliar concepts or ud hoc methods. Modern notation and terminology are 
used in a geometric and algebraic approach. Some concepts of group theory are in- 
troduced and are related to this approach, but knowledge of group theory is not re- 
quired. Those who plan to use continuous groups that are more abstract than the 
rotation group may thereby develop their insight and skills by practicing with rota- 
tions. I try to distinguish carefully results that depend only on rotational symmetry 
and are generally valid from those having their most fruitful interpretation from the 
viewpoint of quantum mechanics. Applications to quantum mechanics therefore 
usually appear toward the end of sections and chapters. 

Although Angular Momentum is intended to be pedagogically self-contained, 
the treatment is not encyclopedic, since broad-ranging surveys of angular momen- 
tum theory and extensive tabulations of formulas are now available. There is also a 
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x i i  PREFACE 

large research literature for further study, to which I direct you. Indeed, the field of 
angular momentum theory has become a mecca for algebraists. In this book, I pre- 
fer to emphasize concepts rather than techniques, because imagination is usually 
more important than knowledge, even in the sciences. 

Visualization of objects and quantities being rotated is important for insightful 
and practical use of the concepts and methods of rotational symmetry. I therefore 
provide nearly 130 illustrations to help you understand what the mathematics is de- 
scribing. If you have access to a computer software system combining mathematics 
and graphics, such as Mathernatica or Maple, you too may explore such visualiza- 
tions. There are 26 program notebooks-used to generate indicated figures in the 
text and for parts of the problem section at the end of each chapter-provided in Ap- 
pendix I. Although written for Mathernatica on an Apple Macintosh computer, 
they are readily adaptable to Maple. 

Practical aspects are not neglected. For example, we discuss how to compute 
coupling coefficients efficiently, while computer programs for numerical evaluation 
of reduced rotation matrix elements and for 3-j, 6-j, and 9-j coefficients are given in 
Appendix 11. These programs are written in the C language and are designed to be 
readily adaptable to Fortran and Pascal. Tables of formulas for practical reference 
are collected in Appendix 111. 

For use as a textbook, Angular Momentum assumes knowledge of mathematics 
through matrix algebra and differential equations, plus understanding of quantum 
mechanics usually acquired in one year of course work. Thus, I hope to make the 
subject of rotational symmetry accessible to advanced undergraduates in chemistry, 
physics, and mathematics. From several years experience of teaching courses using 
the materials in Angular Momentum, I have found that the book can readily be com- 
prehended in less than a half year of course work, even when supplemented by de- 
tailed examples from the specific discipline in which it is taught. Emphasis is placed 
throughout on appropriate interpretation and use of derived results. To help with 
self-study and to test comprehension, 135 problems at the end of the chapters can be 
used to reinforce concepts and to improve skills. 

Angular Momentum should provide suitable preparation for applications to re- 
search in the physical sciences-especially in physics, chemistry, and related areas 
of mathematical physics, such as group theory. Extensive references are given to 
material that is more advanced in concepts and techniques, as well as to applications 
of rotational symmetry aspects in research on physical systems. 

Although a book may be the offspring of a single author, it has many midwives. 
A generation of students has helped me to refine my ideas on the subject, the U.S. 
Department of Energy unwittingly provided some financial support, while Ms. 
Word and Mac Intosh patiently retyped many drafts of the text and helped prepare 
the illustrations. Professors Louise Dolan and Charles Poole reviewed the manu- 
script and gave many suggestions for improvements. Greg Franklin and Bob 
Hilbert at Wiley-Interscience helped expedite the publication, 

WILLIAM J. THOMPSON 

Chapel Hill, February 1994 



THE COMPUTER INTERFACE 

The interface between angular momentum theory and computers occurs at two 
levels; conceptual and technical. At the conceptual level, computers are useful to 
visualize functions describing rotational symmetries and to produce algebraic formu- 
las correctly and rapidly. At the technical lcvel, we need algebraic and numerical 
results for functions describing these symmetries, and these results are obtained 
most efficiently by using computers. 

Conceptual aspects of angular momentum that are helped by the interface to com- 
puters include illustration of angular momentum eigenstates (Section 4. I ) ,  of par- 
tial-wave expansions (Section 5.4), of rotation matrix elements and their classical 
limits (Sections 6.3 and 6.4), and of spin precession in magnetic fields (Sec- 
tion 8.4). Such visualizations are best produced interactively so that you can vary 
viewpoints and parameters in real time. These visualizations usually require 
computing algebraic (symbolic) expressions before numerical and graphical results 
are obtained. 

The Mathematica Interface. The computer system we use for conceptual as- 
pects of our treatment is Mathemutica, a general-purpose system for doing mathe- 
matics by computer. It has convenient visualization capabilities and is available on 
many computers. In Appendix I we provide Mathemafica programs in “notebook” 
€orm that are immediately usable on several small computers and on workstations. 
Mathemutica is described in several books, such as Maeder’s [Mae911 and Wolf- 
ram’s [Wo191]. The programs are written to make them easy to translate to other 
programming environments, such as the Maple system for symbolic, numerical, 
and graphical computation. Introductions to Maple are provided in the book by 
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Char et al. [Cha92] and in Heck’s book [Hec92]. Both Maple and Mathematica 
provide facilities for translating their symbolic output into C or Fortran code. 

Technical aspects of rotational symmetries for physical systems typically require 
algebraic or numerical evaluation of functions describing eigenstates (Chapter 4), 
partial-wave expansions (Section 5.4), rotation matrices (Chapter 6), and coupling 
coefficients (Chapters 7 and 9). For exploratory use, the 26 Mathernatica pro- 
grams in Appendix I are suitable. 

Problems at the end of each chapter that suggest using one of the Mathematica 
notebooks are indicated by a superscript M, such as 1.2M. 

The C Interface. For numerical computations, Appendix I1 has four programs 
of moderate efficiency for reduced rotation matrix elements and for 3-j, 6-j, and 9-j 
coefficients. These are coded in the C programming language, which is available on 
many computers. The C functions are intended to be incorporated into programs, so 
we provide just a small driver program that enables the functions to be checked for 
numerical correctness. If high efficiency is needed for computing coupling coeffi- 
cients, then the discussions in Sections 7.4.2 (for 3-j coefficients), 9.3.3 (for 6-j 
coefficients), and 9.5.1 (for 9-j coefficients) will guide you to the technical litera- 
ture. 

The Program Diskette. All the Mathematica and C programs in Appendices I 
and I1 are provided on the diskette accompanying this book. The 3.5-inch double- 
density diskette can be read by Apple Macintosh computers, as well as by several 
other computers with appropriate hardware and software. A general-purpose way of 
translating from this diskette to diskettes for other computers is suggested in the 
following diagram. 

r 
El 

Macintosh 
diskette 

Macintosh Translate to 
ASCII (text) 

Modem to 

In1 

Diskettes for other computer 
other computer 1 

First, read the Macintosh diskette provided, by using any Macintosh computer 
that is connected by modem to the other computer, then use the Macintosh to trans- 
late all the files on the diskette to ASCII text files. Next, transfer the files over a 
network to the other computer. Then, in this computer do any editing of the files 
that is needed to produce the correct format for Mathematica or C on that machine. 
Finally, make copies of the diskette for this computer system. 
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Chapter 1 

SYMMETRY IN PHYSICAL SYSTEMS 

The major topic of this book is the study of rotational symmetry applied to physical 
systems. The five sections in this chapter emphasize the relation between symme- 
tries and invariances in dynamical systems (Section l . l) ,  the nature of spatial sym- 
metries (Section 1.2), and particularly rotational symmetries (Section 1.3). In Sec- 
tion I .4 we review the discrete symmetry operations-parity ( P ) ,  charge conjuga- 
tion (C),  and time reversal (T)--all important in quantum mechanics. Here we also 
introduce the main ideas of the Pauli and Luder PCT theorem, illustrating it with 
Maxwell’s equations. The Pauli exclusion principle is also involved in these dis- 
cussions, so we review what is known about the limits of its validity. Finally in this 
chapter, Section 1.5 is an excursion to look at symmetry and broken symmetries 
from cosmetology to cosmology. 

After completing this chapter, especially if you work the problems at the end, 
you should have a good idea of the importance of symmetry properties for studying 
physical systems. In subsequent chapters we expand the concepts of this chapter, 
using the mathematics summarized in Chapter 2. We try throughout to distinguish 
considerations which are general and primarily geometrical from those which have 
their most fruitful applications in quantum mechanics and are primarily dynamical. 

1 . 1  SYMMETRIES AND INVARIANCES 

We begin by illustrating the relation of symmetry properties to invariances 
(conservation laws) of dynamical systems-using in Section 1.1.1 examples from 
nonrelativistic classical mechanics: linear momentum, total energy, and angular mo- 
mentum. In Section 1.1.2 we discuss the generalization of these continuous sym- 
metries to Noether’s theorem, and we also discuss Curie’s symmetry principle. 

1 



2 SYMMETRY IN PHYSICAL SYSTEMS 

1.1 .1  Symmetries and Conservation Laws 

We present here examples of the relation between symmetries and conservation laws 
in the context of classical mechanics. In the following subsection these are general- 
ized to Noether’s theorem, which holds for a very wide range of continuous symme- 
tries. What are the relations between symmetry properties of a physical system and 
conservation laws? To answer this, we consider the time dependence of integrals of 
the motion [Go1801 for several simple examples from nonrelativistic mechanics. 

You should understand that the following examples are interesting because of 
relationships they illustrate between symmetries and conservation laws rather than 
because of any manipulative techniques their derivations require or because of the 
formal results. Indeed, you know the formulas already; it’s the spin we put on them 
that matters. Therefore, most of the details are suggested as problems. 

Momentum Conservation. Consider first the one-dimensional case of a single 
particle having momentum P in the x direction and moving in an external potential 
V(x). Suppose that when we move the particle the potential is unchanged. The time 
rate of change of its momentum, P ,  is then given by 

(1.1) 
. dV p=--=o =$ Pconserved 

dx 

This is fairly obvious, being an example of Newton’s law of inertia. 
Now consider-again in one dimension for simplicity-two particles interacting 

only through a mutual potential, V(xl-x2), that depends only on their separation 
x12 = xI-x2, independent of the choice of origin, as shown in Figure 1.1. The total 

FIGURE 1.1 If two particles interact through a mutual potential depending only on their separa- 
tion x12, independent of the choice of origin 0, then the total momentum is conserved. 

momentum of the two-particle system changes with time according to 

-0 * Pconserved (1 4 . dV dV p=------ 
&I 2 dx2 1 

This is just an example of Newton’s law of action and reaction. If this system is 
moved as a unit through a displacement X so that 

x;  = XI + x x; = x2 + x x;2 = x,2 (1.3) 

then (1.2) will still hold and symmetry under spatial translation will also result in 
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conservation of momentum. The general case-three dimensions and a many- 
particle system interacting through two-body potentials satisfying the action-reaction 
condition-requires only technical competence with vector calculus, so we relegate it 
to Problem 1.1. 

Total Energy Conservation. We again start with a simple example-motion of 
a single particle in one dimension. To consider the time evolution of the system we 
must assume that the particle is moving in a time-independent external potential, V, 
but now V may depend upon position x. For example, as hinted in Figure 1.2, the 
external potential may be gravity. 

FIGURE 1.2 If a particle moves in an external time-independent potential that may depend on  
position x ,  such as gravity, its total energy is conserved. 

The total energy of the particle, E, may be expressed as 

Its energy therefore depends on time as 

di dV 
dt dx 

E = mx- i- -x 

(1.4) 

(1.5) 

By using Newton’s force law, we can convert the first term into the negative of the 
second term, producing 

E = O  3 E conserved (1.6) 

Thus, invariance of the potential energy under continuous time displacements pro- 
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duces conservation of total energy. To prove the general case in three dimensions 
with a many-particle system interacting through time-independent potentials is sug- 
gested in Problem 1.1. 

Angular Momentum Conservation. We now turn to the topic of this book, con- 
sidering the simplest case of mechanical angular momentum-a particle moving in 
an x - y plane under a central potential with no explicit time dependence. This sit- 
uation has V(x, y ,  t) = V(r), where r=.((x2 + y 2 ) .  An example is that of a planet 
moving under the sun’s gravitational attraction, as sketched in Figure 1.3. 

FIGURE 1.3 A planet moves under the sun’s gravitational attraction, a central potential, so its 
angular momentum is conserved. 

Note that the choice of the origin is  important in this example, because the 

To calculate the time rate of change of the classical angular momentum, L,, we 
angular momentum depends upon the location of this reference point. 

need the derivatives 

dV d V d r  x d V  
dx  dr dx r dr 
-=-- = _- 

dV d V d r  y d V  
dy dr dy r dr 
-=--=-- 

From the angular momentum of a particle moving in the x -  y plane, 

L, = m(xy - y i )  

we can readily calculate its time derivative as 

(1.9) 

(1.10) 
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In the second step of (1.10) we used Newton’s force law, then we used (1.7) and 
(1 3) for the potential derivatives. We have found a conservation condition-the 
conservation of angular momentum. What is the symmetry condition? 

If you look at the steps in the derivation of (1.10) you will see that the depen- 
dence of V on x and y-with these coordinates having equal footing, for example as 
they determine r-is the essential step leading to the zero in (1.10). Technically, we 
have assumed a Euclidean metric for the plane of the motion. Equivalently, if we 
performed a rotation of the plane about the same axis as the particle angular momen- 
tum, then the potential would be unaltered, since distance r rather than vector r is the 
variable in V. Thus, the symmetry of rotational invariance of the potential leads to 
conservation of angular momentum of the particle. Generalization of this result for a 
particle in two dimensions to the result in three dimensions is suggested in Prob- 
lem I .  1 and is discussed in Section 2.6 of [Go180]. 

1 .1  .2 Noether’s Theorem and Curie’s Principle 

We now consider two results that help organize one’s thinking about symmetry in 
physical systems. The first, Noether’s theorem, relating symmetries to conservation 
conditions, generalizes our examples in Section 1.1.1. It can be proved for a wide 
variety of systems, including classical mechanics, Maxwell’s formulation of electro- 
dynamics, and many systems (both discrete and continuous) that can be described 
by Lagrangians. The second result, Curie’s principle-relating symmetry in causes 
to symmetry in effects-is just a principle, not a formal theorem. 

Noether in u Nutshell. The examples in Section 1.1.1 of symmetries and their 
conservation laws illustrate Noether’s theorem, which can be stated in nontechnical 
form as follows: 

Noether’s theorem. If a system has a continuous symmetry 
property, then there are corresponding quantities 

whose values are conserved in time. 

Table 1.1 summarizes our examples of Noether’s theorem on continuous symme- 
tries and conservation laws. The examples given here can be generalized to classical 
mechanical systems described by Lagrangians expressed in terms of generalized 
coordinates. Our three examples in Table 1.1 thereby essentially collapse to a single 
example with different “coordinates.” A proof of Noether’s theorem that uses varia- 
tional principles is provided in Section 2.6 of Goldstein’s text on classical mechan- 
ics [Go180]. Section 12.7 of the same text provides a more formal discussion of 
Noether’s theorem for continuous systems and fields. Wigner [Wig27a] made simi- 
lar derivations for quantum mechanics, which are more fully developed in Sec- 
tion IV.l of Roman’s text on elementary particles [Rom611. 
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TABLE 1.1 Examples of continuous symmetries of classical mechanical sys- 
tems and their corresponding conservation laws, illustrating Noether’s theorem. 

Is there a converse to Noether’s theorem? Is it true that if we observe conserved 
quantities in physical systems that there must be a related symmetry? One can con- 
struct counterexamples for special systems, but nowadays the persistent and wide- 
spread observation of conserved quantities, especially in subatomic systems, is 
usually taken to be a signal that there exists an underlying symmetry condition, if 
only we are able to find it. 

Emmy Noether (1882- 1935) was a leading mathematician of the early twentieth 
century, best known for her contributions to mathematics. Like the work of her 
mentor, Paul Gordan (known to physical scientists through the Clebsch-Gordan 
coefficients that we introduce in Section 7.2.1), Noether’s work provided mathe- 
matical substance and depth to the concepts and techniques of physics. One trib- 
ute to her life and work is the biography edited by Brewer and Smith [Bre81], 
while another (written by her nephew) is in Grinstein and Campbell’s collection 
of biographies of women of mathematics [Gri87]. 

In his essays on symmetry, Wigner-one of the founders of the use of symme- 
try principles in quantum mechanics and its applicationsaiscusses [Wig67, Chap- 
ters 2 and 41 the historical development of ideas about symmetry and conservation 
laws. We take up this thread again in Section 5.5 when we trace the conceptual de- 
velopment of angular momentum. 

Curie ’s Principle. In the pioneering investigations of piezoelectricity and pyro- 
electricity that he made with his brother Jacques, Pierre Curie enunciated [Cur941 the 
following guiding principle related to symmetry: 

Curie’s principle. The symmetry of an isolated system 
cannot decrease as the system evolves with time. 

In the solid-state physics of crystals this is called Neumann’s principle: Every 
point-group symmetry (Section 2.5.4) of a crystal is exhibited by every physical 
property of that crystal. Indeed, this is the context in which Curie first applied the 
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principle. Curie’s principle has been generalized by Renaud [Ren35] and is discuss- 
ed extensively in Section 6.2 of Rosen’s primer on symmetries [Ros83]. 

There is no formal proof of the correctness of this principle, the major reason 
being that there is no quantifiable definition of the degree of symmetry of a system. 
However, Curie’s principle is a very useful guide when investigating symmetries 
and their consequences. 

Pierre Curie (1859- 1906) made fundamental discoveries in three areas of physics: 
piezoelectricity, magnetism (the Curie temperature), and radioactivity. With his 
wife Marie (1867- 1934), he discovered the elements polonium (named after her 
native Poland) and radium, both in 1898. They were awarded a Nobel Prize in 
1903 for this work. 

1.2  SPATIAL SYMMETRIES 

In the following two sections we discuss spatial symmetries, beginning with general 
considerations in this section, then specializing to rotational symmetries-the subject 
of this book-in Section 1.3. These discussions and methods prepare us for the 
treatment of discrete symmetries, emphasizing quantum systems, in Section 1.4. 

Geometry and Symmetries. Almost as soon as we encounter geometry, we are 
drawn to considering geometric symmetry. An overview of the relations between 
geometry in three dimensions and its symmetries is given in Figure 1.4. 

FIGURE 1.4 Overview relating geometric symmetries of three types-reflections, rotations, and 
translations--to abstract geometry and its origins in the practical geometry used in ancient Egypt. 

As an example of the geometry-symmetry connection, in plane geometry equilat- 
eral triangles and squares are often visually more appealing than arbitrary triangles 
and quadrilaterals, while in three dimensions regular polyhedra such as a regular 
tetrahedron or a cube are usually perceived as more interesting than polyhedra with 
unbalanced sides. As shown in Section 1.2.2, one reason for this is that such fig- 
ures can fill space (in two and three dimensions) without leaving voids. 
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Albert Einstein-who did so much to change concepts about space and time- 
provides [Ein54] an interesting discussion about the relation between practical geo- 
metry (as used for building the Egyptian pyramids), experience, and the abstraction 
of geometry to Euclid’s system and its extensions that Einstein used in his general 
theory of relativity. 

1.2.1 Reflection Symmetry in Nature 

In the world around us we observe many examples of reflection symmetry, or close 
approximations to it. On the other hand, as one zooms into the microscopic scale 
from macroscopic through mesoscopic scales, a lack of reflection symmetry often 
becomes evident. We now introduce some terminology used when discussing re- 
flection symmetry, then we discuss reflection symmetry in nature at the mesoscopic 
level. 

Handedness, Chirality, Helicity. Several terms are used to denote that there is 
a distinction between left and right. One term is just handedness, with an obvious 
meaning, at least for humans when translated from English into an intelligible lang- 
uage. Figure 1.5 reminds you how mirror reflection is related to handedness. 

FIGURE 1.5 Hands reflected in mirrors interchange left and right if the mirror is vertical or if 
the mirror is horizontal. Note that reflection in two mirrors that are at right angles to each other re- 
stores the handedness, since diagonally opposite hands are either both left (top left and bottom right) 
or both right (top right and bottom left). 

The term chirality (from the Greek for hand, cheir) is used in technical con- 
texts, as in stereochemistry and in some areas of subatomic physics. The root word 
chiro also occurs in chiropractor-a physician who uses hands to manipulate (Latin 
manus, hand, as in manuscript, a handwritten document). Practitioners of angular 
momentum theory often use their hands to describe rotations; hence, their 
handwaving (nonrigorous) discussions. Molecules that have opposite handedness 
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are called enantiomers, and a mixture having the same proportion of the two enan- 
tiomers is called rucemic. 

The term helicity (from the same Greek root as helix, a spiral) is most often 
used by physicists when describing the projection of intrinsic spins along the direc- 
tion of motion, especially in relativistic situations such as for photons. The usual 
definition of the helicity, h, is 

(1.1 1) 

where J is the angular momentum of the particle and p is a unit vector along the di- 
rection of motion. Sometimes h/J is used instead. 

The problcm of communicating with extraterrestrial life having an intelligence 
compatible with that of humans an indication of which side is to be labelcd Left 
and which Right, but without sending pictures (which might accidentally be 
reconstructed in reverse) has been called by Martin Gardner the Ozma problem. It 
is posed in Chapter 18 of his book [Ga190], and a solution in terms of a weak- 
interaction experiment is given in Chaptcr 22. 

Handedness in Nature. One of the first scientists to recognize the significance 
of handedness in nature-especially at the microscopic level-was Louis Pasteur 
(1822-1895), who in 1848 discovered the handedness of tartaric-acid molecules, as 
sketched in Figure 1.6. His discovery is vividly recounted in the biography of Pas- 
teur written by Dubos [Dub76]. 

FIGURE 1.6 Handcdness of the two enantiomers of tartaric acid discovered by Pasteur, and the 
right-handed helix of DNA discovered by Crick and Watson. 

The culmination of discoveries of handedness in biological systems is that by 
Crick and Watson, who demonstrated the helical structure of DNA molecules in 
1953. In Chapter 12 of his book on ambidexterity in the universe, Gardner [Gar901 
gives an interesting presentation of Pasteur’s discovery, and in later chapters he dis- 
cusses asymmetry in biological molecules. An unexplained puzzle, to which we re- 
turn in Section 1.5, is why creatures on Earth have proteins that are almost exclu- 
sively left-handed, whereas DNA molecules contain only right-handed sugars. 
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At the subatomic level, the weak interaction exhibits violation of parity symme- 
try, for example in nuclear beta decay. This possibility was first suggested by Yang 
and Lee [Yan56] and verified experimentally by Wu et al. [Wu57]. 

Throughout this book, as motifs at the head of chapters, we have drawings of 
helical shells in both left- and right-handed varieties, just as they occur in nature. 
These shells characterize some aspect of the rotational symmetry and angular mo- 
mentum topics in the chapter. If you look carefully at the pictures, such as Fig- 
ure 1.7, you will notice that in addition to the handedness of the shell, there is also 
another reflection symmetry between pictures. To train yourself to recognize such 
kinds of symmetry, find out what it is. (Discovery favors the prepared mind.) To 
understand the geometry of these helices and their symmetries, do Problem 1.2. 

FIGURE 1.7 Helical shells of the left- and right-handed variety (left side) and their spatial reflec- 
tions (right side). (Adapted from Muthernntica notebook She1 1 .) 

1.2.2 Translation Symmetries; Mosaics and Crystals 

Before introducing rotational symmetries, we summarize some essential properties 
of geometrical symmetries resulting from translations in a plane and in three dimen- 
sions. Translations are much simpler than rotations, because (unlike the latter in 
three dimensions) they commute-that is, their order of application is unimportant. 
We consider figures whose edges are all the same size and that cover a region of the 
plane (regular polygons) or of three-dimensional space (regular polyhedra) without 
leaving space between them. They therefore have translational symmetry for dis- 
crete translations by the length of a side. 

Mosaics. The regular polygons are those that can cover a plane so that no space 
is left unfilled, thereby forming a mosaic of tiles. Problem 1.3 leads to the proof 
that the only regular polygons that tile the plane are the triangle, square, and 
hexagon, as shown in Figure 1.8. 

It is interesting to note that each of these figures has a center of reflection sym- 
metry, whereas the pentagon, intermediate between square and hexagon, does not 
have such a center. An extensive discussion of fivefold symmetry is given in the 
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monograph edited by Hargittai [Har92], and discussions of mathematical puzzles 
and problems in tiling are given in Martin’s book on polyominoes [ M d l ] .  

E= 3 E= 4 €= 6 

FIGURE 1.8 The three regular polygons that can tile the plane. The number of edges of each 
polygon is E. 

Crystals. Now consider the situation in three dimensions. Suppose that we 
have a regular polyhedron with F faces as shown in Figure 1.9. (A polyhedron is 
regular if all its faces are the same shape and size.) 

tetrahedron [4] hexahedron (cube) [6] octahedron [8] 

dodecahedron [12] icosahedron [20] 

FIGURE 1.9 The five regular solids that can fill space without leaving voids. For each solid 
the number in brackets is the number of polyhedron faces, F. (Adapted from Mathemarica 
notebook Polyhedra, which results in irregular edges.) 

The appearance of a regular polyhedron will be unchanged by any rotation about 
the center through a discrete angle 8 = 2 n  n/F. Such a polyhedron might describe 
the filling of a region of space without voids by a crystalline material. The regular 
solids were described by Plat0 of Athens (427 - 347 B.C.), so they are often called 
the Platonic solids. Problem 1.4 leads to the proof that the only regular polyhedra 
have F = 4,6, 8, 12, and 20, as shown in Figure 1.9 and summarized in Table 1.2. 
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TABLE 1.2 Geometric properties of the regular polyhedra (Platonic solids). 

N ,  edges at S, edges at 
Polyhedron F ,  faces v, vertices E,  edges each vertex each face 

Tetrahedron 4 4 6 3 3 
Hexahedron (cube) 6 8 12 3 4 
Octahedron 8 6 12 4 3 
Dodecahedron 12 20 30 3 5 
Icosahedron 20 12 30 5 3 

A truncated icosahedron-with the same geometry as a soccer ball (in America) or 
football (in Europe)-has a particular interest, since it describes the molecule C60, 
called buckminsterfullerene or the “buckyball.” The mathematics of the buckyball is 
described in a Scientific American article by Chung and Sternberg [Chu93]. 

Now that we have discussed symmetries and conservation laws for physical 
systems in Section 1.1, as well as reflection and translation symmetries in this sec- 
tion, we turn to the main topic of this book-rotational symmetries. 

1 . 3  ROTATIONAL SYMMETRIES 

In this section we introduce the main geometric ideas and formulas relating to rota- 
tional symmetries. One of the most important topics is the distinction between active 
and passive rotations, which we emphasize and clarify in Section 1.3.1. Here we 
also introduce Euler’s scheme for describing rotations in three dimensions and we 
derive the matrices that describe active rotations of the coordinates of an object. In 
Section 1.3.2 we develop our understanding of coordinate systems for rotations by 
considering rotations of the Earth as seen from a fixed point in space. Finally in this 
section, we provide in Section 1.3.3 a cameo portrait illustrating connections be- 
tween different topics in this book. 

Is Space Isotropic ? To modern ways of thinking about the physical sciences, 
this is probably a meaningless question. I believe it to be assumed that space is iso- 
tropic, and you will agree with me upon reflection. In an experiment, if we observe 
that a phenomenon depends on orientation, we attribute this to the presence of inter- 
actions. That is, interactions are those things that give rise to a dependence on di- 
rection in space. 

This viewpoint is consistent with ideas in general relativity, where “curvature” in 
space-time is attributed to gravitational interactions in the macroworld. Further, in 
experiments on fundamental symmetries in the microworld-such as breaking of re- 
flection symmetry measured in parity-violation experiments-space is assumed to be 
isotropic, so the system may be rotated without changing its intrinsic properties. 

When you do experiments, a constant problem is to shield the complete appara- 
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tus of the measurement from so-called “external” influences. Electromagnetic fields 
are particularly troublesome in this regard. Indeed, if the results depend on the ori- 
entation of the apparatus as a whole, this is taken as a signal that the equipment is 
not sufficiently shielded, rather than as a sign that space is anisotropic. 

Given the assumption of the isotropy of space, the subject of rotation symmetry 
and angular momentum is about how our description of phenomena change when 
we break this symmetry by choosing a reference frame with a particular orientation. 
This idea is sketched in Figure 1.10. 

FIGURE 1.10 Space i s  intrinsically isotropic (left), hut this symmetry is broken upon choos- 
ing a reference axis (middle) or a reference frame (right). 

The subject of angular momentum is about how our description of a system 
changes when we rotate the system relative to a reference frame in space. By ana- 
lyzing these changes of description we may learn about the interactions within the 
system. It is to the study of these rotations that we now turn our attention. 

1.3 .1  

A rotation can be considered from one of two viewpoints, active or passive. We 
now discuss this idea and develop some technical vocabulary and mathematics. 

Active and Passive Rotations; Euler Angles 

Active Rotations. The first point of view for rotations is called an active 
rotation. Here the observer is in a fixed reference frame while the object-a body 
in classical mechanics, a field component (E, B, or A) in electromagnetism, or an 
operator in quantum mechanics-rotates with respect to this reference frame. Such 
dynamical rotations of objects and transformations of operators are the same as those 
in classical mechanics. An alternative name for an active rotation is alibi (from the 
Latin for “elsewhere”). In quantum mechanics active rotations are analogous to the 
Heisenberg viewpoint for time dependence, in which operators are changed by 
transformations while state vectors (wave functions) are unchanged thereby. 

Tn Figure 1.1 1 the top half shows active rotation of an ellipsoid, with the ob- 
server’s eye being kept fixed. Active rotations can be specified by describing the 
relation between coordinates of a representative point of the object before rotation, 
r = (x, y ,  z), and after rotation, r: = (x’, y’, 2 ’ ) .  Geometrically, such rotations 
are described as indicated in Figure 1.12. 
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FIGURE 1.11 Active and passive rotations compared. In the top half of the figure an active ro- 
tation of the ellipsoid has been made, with the observer's eye fixed. In the bottom half of the figure 
the ellipsoid is fixed (passive) while the observer's eye rotates around it. Note that the two rota- 
tions are the inverse of each other. 

Z z, z' ZI 

A 

Y'YY" k' $ 4 
X " 

FIGURE 1.12 Active rotations in terms of the successive rotations through Euler angles a, fl ,  
then 5 with thc rotations being applied in this order. 

An alternative way of describing an active rotation is depicted in Figure 1.13. 

Algebra of Active Rotations. Having examined rotations from the geometric 
viewpoint, it is now time to make an algebraic formulation. Algebraically, in order 
to describe the active rotation of a representative point on the object, write 
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FIGURE 1.13 Alternative description of active rotations in terms of the successive rotations 
through Euler angles y, p, then a. The rotations are applied in this order. They are referred to the 
original axes. 

in which r and r; are column-vector representations of the coordinates and A is the 
product of three matrices: 

where the subscripts specify the axis about which the rotation is made. Thus, for 
the z-axis rotation 

(1.14) 

specifies a rotation through the z axis by an angle @, taken as positive for a rotation 
in a right-hand screw sense. In (1.13) Cp has the value y for the first z-axis rotation, 
while @ = a for the final rotation about the z axis. The second rotation is about the 
space-fixed y axis, namely 

(1.15) 

The angles a, p, and y are thus the Euler angles that occur in classical mechanics, 
as depicted in Figure 1.12. 

Throughout this book, unless explicitly mentioned 
otherwise, we use only active rotations. 
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Passive Rotations. There is a second viewpoint for describing rotations, called 
a passive rotation. Here the object sits passively in a fixed frame while the obser- 
ver rotates around it, as illustrated in the bottom half of Figure 1.1 1. Passive rota- 
tions are alternatively called alias transformations, from the Latin for otherwise- 
called. In quantum mechanics they are analogous to Schrodinger representations, in 
which state vectors and wave functions are time-dependent, whereas operators are 
time-independent. 

For the coordinate transformation induced by a passive rotation we write 

The passive-rotation matrix P is given in terms of active-rotation matrices by 

If the same angles are used in (1.16) and (1.17), then in both viewpoints the rotated 
vectors are in the same relation to the original vectors. The proof of this is suggest- 
ed as Problem 1.5. The relation between P and A-l is illustrated in Figure 1.13, 
and a summary of the two viewpoints is given in Table 1.3. 

TABLE 1.3 Active and passive viewpoints for rotations. In this book we use 
the act ive  viewpoint.  

Euler-angle 
Viewpoint representation Interpretation 

Active A(a,P,y) = A,(a)A,(P)A,(y) Dynamical rotations of 
(alibi) objects and operators 

Passive P(a,P,y) = A-l(a,P,y) Coordinate-frame 
(alias) rotations 

There is considerable confusion in the literature of quantum mechanics and angu- 
lar momentum concerning the use of active and passive viewpoints. Occasionally, 
the two conventions appear mixed, resulting in errors in phases of wave functions 
and in the choice of rotation angles. Clarification is provided in articles by Bouten 
[Bou69] and by Wolf [Wo169]. For uniformity, in this book we use the active 
viewpoint when discussing rotations, unless explicitly mentioned otherwise. This 
usage is also consistent with most recent books on angular momentum [Biegla, 
Bie8 1 b, Zar87, Bri941. 

In the group theory of rotations (Section 2.5) active rotations about axes in a 
space-fixed frame form a group, but passive rotations about different axes d o  not 
form a group. This distinction, which is important if group-theory methods are 
used to derive rotation-matrix elements, is clearly discussed by Bouten [Bou69]. 
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Active and passive viewpoints also occur in field theories, for example for a 
quantum-mechanical particle in a classical electromagnetic field. In this context the 
symmetry of gauge invariance can be viewed either as active (transforming opera- 
tors and potentials) or as passive (transforming momenta). Such gauge transforma- 
tions may be considered as rotations in a gauge space. Alternatively, rotations in 
three dimensions may be considered as particular types of gauge transformations. A 
clear discussion of gauge invariance and electromagnetic fields is provided in the 
article by Kobe [KobS6]. 

Rotations Do Not Commute. The order of rotations about axes in three dimen- 
sions is significant; that is, in three dimensions rotations about two different 
axes do not commute. Therefore, correct specification of a rotation by the scheme 
( 1.13) is necessary, although not necessarily unique. Note that if the successive 
rotations are about the same axis, then their order of application is unimportant. For 
example, 

(1.18) 

By contrast with rotations, translations along axes always commute, so that the or- 
der of specifying three (for example) translations of axes is unimportant. Thus, if 

r ’ = r + R  (1.19) 

then the order in which the components are displaced does not matter. This distinc- 
tion between rotations and translations arises from the fact that rotations, such as 
(1.14), are nonlinear functions of the angle parameters, whereas translations are lin- 
ear in  the displacement parameters, which are the components of R in (1.19). The 
importance of this distinction is explored further in Problem 1.6. 

1 .3 .2  Coordinate Systems for Rotations 

The purpose of this subsection is to introduce in an informal way the description of 
rotations and coordinates to describe them. We do this by looking at rotations of the 
Earth. Thus, chained to your desk by study, your mind may wander to foreign 
lands. Consider rotations of a sphere, such as Earth, relative to a fixed coordinate 
system (active rotations, Section 1.3.1) as shown in Figure 1.14. 

Longitude and Latitude. Consider in Figure 1.14 a rotation that does not 
change the polar axis of the system, so that the North pole is in the same position in 
the two lower views. Geographically speaking, this is a change of longitude, which 
does not essentially change the description of the system. For example, one lower 
figure could be transformed into the other just by rotating it on the page, and both 
views contain essentially the same information. Clearly, rotating the page as a 
whole does not achieve this. 
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FIGURE 1.14 Rotation of a sphere in terms of latitude and longitude. All three axes pass 
through the center of Earth and are defined in the top view where the x axis is out of the page, pass- 
ing through the prime meridian and equator. (Views beyond both poles are artifacts of Mathernat- 
ica.) In the lower left view Earth is rotated counterclockwise about the y axis through d 2 .  In the 
lower right view Earth is rotated counterclockwise about the new polar axis by 7d2. (Adapted from 
Mathernatica notebook Wor ldView.) 

The difficulties in the early days of global navigation of determining longitude- 
and thus the present-day confusion between Indians in India and Indians in the 
Americas-are connected to this property. The simplicity of rotations about the po- 
lar axis has its counterpart in the finite rotations of angular momentum eigenstates 
(Chapter 6), for which azimuthal-angle rotations Cp that change longitude introduce 
only phase changes in state vectors. 

On the other hand, the top view in Figure 1.14-in which the rotation about the 
y axis has changed the polar axis-describes an essentially different geography from 
those in the lower two views. Under this change of latitude (a change of the polar 
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angle, 0) there is new information because Antarctica and much of the southern 
hemisphere of Earth are now discovered by such a rotation. Note that the polar an- 
gle is 8 = 0 at the North pole and 8 = n at the South pole, whereas latitude is zero at 
the equator ( 6  = d 2 )  and has to be specified as North or South. For angular mo- 
mentum eigenstates such polar-angle rotations produce mixing of state vectors and 
changes in their magnitudes. 

In the top view in Figure I .  14 the globe is shown in its conventional orienta- 
tion, with North toward the top of the page. This prejudice of mapmakers (whose 
craft began in the Northern hemisphere) is not always appreciated by the inhabi- 
tants of Down Under, especially in Australia and New Zealand. In these countries 
one can purchase maps with the opposite orientation. 

Notice-as emphasized in Section 1.3.1 and Problem 1.6-that the order of 
applying rotations to a three-dimensional object usually has significance. For ex- 
ample, if you take the top view of Earth in Figure 1.14 and rotate it about the z axis 
as the world turns, then rotate about the new y axis, you will not end up with the 
lower-right view. 

The noncommuting of rotations about different axes is the quintessential prop- 
erty underlying the complexity and richness of angular momentum. In classical me- 
chanics this complexity is mostly a nuisance, whereas in quantum mechanics the 
essential connection between noncommuting operators and the interpretation of 
quantum measurements (for example, the Heisenberg uncertainty relations) makes 
angular momentum conceptually and technically very important. We emphasize this 
quantum connection in Chapter 5. 

This concludes our initial discussion of coordinate systems for rotations. 
Schemes for describing rotations and the operators for angular momentum are con- 
sidered more completely in Section 3.1.1. 

1 .3 .3  Angular Momentum and Rotations: A Cameo Portrait 

At this stage, having discussed in a preliminary way the symmetries that belong to 
the study of angular momentum, it is worthwhile to pause to make an overview of 
the subjects in this book and their relationships. 

The most prominent members of the family of topics to be studied are shown in 
the portraits in Figure 1.15. In the first two chapters our concern (and, we hope, 
our interest) is with the geometry of space, techniques from linear algebra that help 
describe rotational transformations, spinors, and a little group theory and quantum 
mechanics. In Chapter 3 we develop operators describing infinitesimal rotations, 
which are the angular momentum operators, including orbital operators for functions 
of only the spatial coordinates, as well as matrix and spinor representations. 

From the infinitesimal rotations studied in Chapters 3 and 4 we can proceed in 
several directions. One of these (Chapter 5) investigates the role of angular mo- 
mentum in quantum systems, where Planck’s constant ( h )  makes its appearance. 
There we emphasize the distinction between geometrical and dynamical angular mo- 
mentum, and show the connection-through Ehrenfest theorems and Larmor pre- 
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cession-to classical angular momentum. We also derive carefully the uncertainty 
relations for quantum angular momentum, introduce the semiclassical vector model, 
and discuss the relevance of angular momentum to solutions of wave equations, in- 
cluding the Schrodinger equation in quantum mechanics. The historical and concep- 
tual development of ideas about angular momentum, especially in the realm of 
quantum physics, is discussed in Section 5.5. 

FIGURE 1.15 Portrait of relationships between topics in angular momentum, rotational 
symmetry applied to physical systems, and topics in this book. Cameos in the family portrait are 
arranged with physical systems on the left, symmetries in the middle, and geometric aspects on the 
right. Arrows indicate the strongest family ties and lines of descent. Numbers in braces indicate 
chapters with emphasis on a topic. 

Chapters 6 through 9 have a more technical emphasis than in the first half of the 
book, although gems of physical insight will dazzle the dedicated explorer. In 
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Chapter 6 we develop properties of angular momentum eigenstates under finite ro- 
tations, deriving formulas, properties, and interpretations, while providing several 
opportunities for visualizing rotation functions with help from Mathematica. The 
combining of angular momentum states is introduced in Chapter 7. In Chapter 8 
we consider the powerful irreducible tensors and the Wigner-Eckart theorem, which 
greatly simplify calculations in angular momentum. We also develop polarization 
tensors for spin and calculate the transport of spins through magnetic field gradients. 
Chapter 9-the technical summit of the book-emphasizes algebraic techniques for 
recombining several angular momentum eigenstates. 

1 . 4  DISCRETE SYMMETRIES AND QUANTUM SYSTEMS 

We now introduce three discrete symmetries that are especially interesting for quan- 
tum systems-parity, charge conjugation, and time reversal. The first of these, re- 
flection of the coordinates or parity (Section 1.4.1), is intimately related to rotations 
of an object about the coordinate frame. The symmetry of time reversal becomes in- 
volved with parity because many observables are changed in similar ways by these 
two discrete symmetries. For example, classical linear momentum reverses sign 
either if its corresponding coordinate is reflected in the origin (the parity operator, P )  
or if the direction of time is reversed (time reversal, T), as indicated in Figure 1.16. 

FIGURE 1.16 Parity (P) and time reversal (T)  have the same effect for linear momentum, p, 
but different effects for classical angular momentum, Lc. 
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On the other hand, classical angular momentum L, = r x p is invariant under parity 
(since both r and p reverse directions), but L, reverses under time reversal, as 
shown in Figure 1.16. 

Where does charge conjugation (sign change of all electric charges), denoted C, 
fit into discrete symmetries? As we show in Sections 1.4.3 and 1.4.4, any field 
theory (such as Maxwell’s equations) is expected to have invariance under the com- 
bination PCT (applied in any order). We therefore discuss C along with P and T. 

A popular exposition of symmetry aspects-from everyday life, through the sci- 
ences, to cosmology-is provided in the collection of essays by Martin Gardner 
[Ga190]. Another introductory-level presentation of symmetries, primarily of the 
geometric variety, is provided in the book by Bunch [Bun89]. 

1.4.1 Parity Symmetry 

To relate parity to rotations, consider turning the pages of this book, as sketched in 
Figure 1.17. 

FIGURE 1.17 In two dimensions a parity inversion (flipping this page) is the same as a 
rotation of the back edge of the page about the spine of the book (turning the page). 

If you are skimming to look over (which is not the same as to overlook) interest- 
ing topics, you are eitherflipping the pages or turning them. If you are flipping, 
then you are making an interchange between left and right sides of a leaf of the 
book, that is, a parity operation-just try it. What was the right edge on the previ- 
ous page is now the left edge on this page, as you can see from the figure. 
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Reflections and Rotations. The example in Figure 1.17 is in two dimensions. 
If, however, you try to invert all coordinates in three dimensions by combining 
rotations about the axes, it will not work. For example, as shown in Figure 1.18, 
you can invert the x and y axes by rotating through K about the z axis, but if you 
then try to invert the z axis, you will destroy the inversion of one of the other axes. 

Z Z 

FIGURE 1.18 In three dimensions, two axes can be inverted by rotating about the axes, but the 
third cannot. 

In order to make a formal proof of this claim, consider the determinants for rota- 
tions and for reflections in three dimensions. For rotations, from (1.14) we have 

det Ai = 1 i = x, y,z ( I  .20) 

Reflections can be expressed in matrix form by 

(1.21) 

For reflections in three dimensions we therefore have 

det P = -1 (1.22) 

Since determinants characterize the transformation, no combination of rotations can 
reproduce the parity operation. Problem 1.7 suggests that you generalize our 
method of proof to show that in an odd number of dimensions (such as three in the 
example in Figure 1.18) reflections cannot be produced by combining rotations. 

Parity in Classical Mechanics. Reflection symmetry is used in classical me- 
chanics mainly in an intuitive way. In the text of Goldstein [Go1801 the term parity 
does not occur in the index, and reflection is not referenced extensively. As an 
example of intuitive use of parity symmetry, if the mass density of an extended ob- 
ject is symmetric about the origin of the coordinate system, then the center of mass 
coincides with the coordinate origin. 
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Parity in Quantum Mechanics. Symmetry operators such as parity and rota- 
tions have a special role in quantum mechanics because of the superposition 
principle for wave functions (state vectors). For example, suppose that we have a 
state of a given energy described by a wave function. Applying rotation or reflection 
operations to this state produces new states of the same energy. By contrast with 
classical mechanics, superposition of these wave functions produces states with 
quite different properties. Thus, the possibility of constructive and destructive 
interference of combined states depending on their relative phases adds a richness to 
quantum mechanics that is missing from classical mechanics. 

To give a concrete example of superposition in quantum mechanics in the context 
of the parity operator, consider the wave function 

y ( x )  = cos x + ( x / 2  + 1) sin x (1.23) 

We can superpose solutions to obtain combinations with properties as follows: 

vl+(x) = 44.P- W ( - X )  

P y + ( x ) =  y+(x) = 2cos x +xsin x 

P v - ( x )  = - y - ( x )  = -2sin x 

1 5  ll 0 :  

-3 -2 -1 

( I  .24) 

X 
1 2 3  

FIGURE 1.19 The wave function (1.23) and superpositions of i t  when acted upon by the parity 
operator. Wave functions are shown by dashed curves and their squares are shown by solid curves. 
(Adapted from Mathematica notebook P p s  i.) 
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As illustrated in Figure 1.19, such superpositions produce wave functions and 
probability densities that differ from each other and from the addition of probabilities 
given by ly(x]* +(w(-x)12. From your experience with quantum mechanics, you 
may be surprised at the different functional forms shown, but recall that you usually 
deal with energy eigenstates of systems having parity-invariant Hamiltonians, so that 
solutions such as ty+ or ty- are most usual. Problem 1.8 suggests using the Math- 
ernatica notebook P p s i  to explore parity and wave functions. 

Extensive discussions of the role of symmetries, invariances, and conservation 
laws are given in Part I of the reprint volume of essays hy Wigner [Wig67]. 
These emphasize the difference between symmetry principles in classical and 
quantum physics. An extensive discussion is given in the review article by 
Houtappel, van Dam, and Wigner [Hou65], and it  is summarized in Chapter I of 
Biedenharn and Louck [Bie8la]. 

1.4 .2  Charge Conjugation and Time Reversal 

We now introduce two discrete symmetries, one of which (charge conjugation) is 
fairly easily comprehended, while the other (time reversal) is conceptually and tech- 
nically much more difficult. 

Charge Conjugation. The symmetry operation of charge conjugation, C, con- 
sists of reversing the signs of all electric charges in dynamical formulas, such as in 
Hamiltonians or the equations of electromagnetism. When one does this, it is usual 
to assume that a “test charge” does not have its sign reversed. With this understand- 
ing, electric and magnetic fields reverse sign under C. In Section 1.4.3 we show 
(Table 1.4) the symmetry properties of quantities in the Maxwell equations under C. 

Charge conjugation is particularly interesting from the viewpoint of antiparticles, 
such as electrons and positrons, particularly in regard to dynamical equations such 
as the Dirac equation. An introductory-level overview is given in Chapter 21 of 
Gardner’s book [Gargo], the Dirac equation is covered extensively in Chapters 14 
and 15 of Landau’s text [Lan90], while Sections IV.4 and IV.5 of Roman’s text on 
elementary particles [Rom6 11 has a more advanced treatment for quantum fields. 
Note that even electrically neutral particles-such as neutrons and neutrinos-have 
antiparticles. Like the test for genuine pearls (which dissolve in vinegar), you know 
when you had two antiparticles, since they annihilate each other. 

Time Reversal: A Simple Definition for a Subtle Subject. The operational de- 
finition of time reversal, T, is quite simple: Reverse the direction of time in all func- 
tions and operators that have a time dependence. For example, consider Newton’s 
equation for a particle whose mass m is constant with time: ma = F. Under time re- 
versal we have 

dTr(t)  dTv(z) 
Tr(t)  = r(-z) Tv(t)  = - = -v(-t) Ta(t) = - = a(-t) (1.25) 

4 - t )  4 - t )  
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The form of Newton's equation is therefore invariant under T-that is, we have a 
covariant equation-since 

ma(t) = F(t) ma(-t) = F(-t) (1.26) 

In classical mechanics, therefore, this equation of motion does not single out a 
preferred direction of time. 

The Arrow of Time in the Macroworld. According to our perception, time 
marches on inexorably-dropping more grains of sand in the hourglass and sound- 
ing more ticks of the clock. Most of us would believe that in the macroscopic 
world, at about the level of human perception, there is not symmetry with respect to 
time reversal. 

One way to explain this is to assume that the behavior of macroscopic systems is 
dominated by thermodynamic principles for which an arrow of time is imposed by 
the tendency of such systems to increase their disorder with time, as sketched in 
Figure 1.20. 

@ 

FIGURE 1.20 The arrow of time can be related to the increase of disorder in a thermodynamic 
system. The rearrangement of gas molecules after a partition is removed, as shown at top, is very 
likely. The bottom rearrangement with no partition is very unlikely. 



I .4 DISCRETE SYMMETRIES AND QUANTUM SYSTEMS 2 7 

Discussions of the arrow of time have been given by several authors. For ex- 
ample, at an introductory level in Chapters 28-3 I of Gardner’s book on symmetries 
[Gar901 and at a more advanced level with a physics approach in books by Davies, 
such as [Dav74]. 

Observables and Time Reversal. As a preliminary to investigating the conse- 
quences of time reversal in quantum mechanics, it is worthwhile to summarize the 
behavior of observables in classical mechanics under time reversal, as shown in 
Table 1.4. 

TABLE 1.4 
in nonrelativistic classical mechanics. 

Time-reversal properties of some observables for a single particle 

Basic Behavior under 
Observable relation time reversal 

Time, t 

Position, r 

Velocity, v 

t+-t 

r(r) -) r(-t) 

1 K = -mv2 
2 

K(t)  + K(-t) Kinetic energy, K 

Angle, 8 e(r) -+ e(-t) 

Angular velocity, w a = r x v  O(t) + -a(-t) 

1 
2 

Rotational energy, K K = - 102 K(t)  -+ K(-t) 

Most of these properties are straightforward to understand, and they agree with 
our observation of movies showing these observables being played in reverse order. 
It is in the context of quantum mechanics-the Schrodinger equation, for example- 
that the behavior is more complicated and subtle, as we now derive. 

Time Reversal and the Schrodinger Equation. We discuss here the mathemat- 
ics of time reversal for a Schrodinger equation. The symbol used for the time rever- 
sal operator in quantum mechanics is 0, rather than the T used in most other con- 
texts. This usually does not cause confusion with the polar angle 8. 

Suppose that we have a Schrodinger equation for a Hamiltonian H ,  given as 

(1.27) 
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Under t + -t this becomes 

(1.28) 

whose solutions generally have no simple relation to those of (1.27) because of the 
time dependence of the Hamiltonian. The restriction to a time-independent Hamil- 
tonian-thus, by Noether’s theorem in Section 1.1.2, total energy conservation- 
allows a solution, as follows. Apply 0 to both sides of (1.27), to obtain 

( 1.29) 

in which the negative sign on the left-hand side comes from replacing d /d(-r) by 
-d / d t  . By taking the complex conjugate of (1.27) we see that 

- i h B  = H*(t)Ki,u(t) 
d t  

(1.30) 

in which K denotes the complex-conjugation operator : 

Kl/ fGW* (1.31) 

for any function w .  Thus, for example, K i  =-i, which was used to derive (1.30). 
To relate the time-reversal operator 0 for a time-independent Hamiltonian H to 

the complex-conjugation operator K, let U be any operator for which 

UH*U-’ = H (1.32) 

If we operate on both sides of (1.30) with U ,  insert U-’U between the H* and K ,  
use condition (1.32), then compare the result with (1.29), we see immediately that 

O = U K  ( 1.33) 

gives the general form of the time-reversal operator for the Schrodinger equation 
with time-independent Hamiltonian. In many cases it is sufficient to choose U = I ,  
the unit operator, as we illustrate in the following. 

Examples of Quanta1 Time Reversal. To show that care is needed when con- 
sidering time reversal for the Schrodinger equation, consider the simplest example, a 
unit-amplitude plane wave with momentum expectation value k. This is given by 

( I  .34) 
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Clearly, since H is just the kinetic-energy operator, (1.32) is satisfied with I/ = I .  
As Problem 1.9 suggests that you verify, we have that 

(1.35) 

Thus, observables that are time related, such as the wave vector k, may have to be 
reversed if the correspondence (1.35) is to be used. This is physically reasonable, 
since under time reversal a particle would move in the opposite direction. Therefore, 
a wave packet constructed from a superposition of wave functions of the type (1.34) 
and peaked around some momentum p = Ak should reverse momentum under time 
reversal. 

What is to be done with quantum operators under time reversal? In general, for 
operator 0 under time reversal we have 0 4 @OW’ = UKOKU-’, in which we 
have used the fact that complex conjugation satisfies K = K- l ,  since K2 = 1. For 
example, in the r-space (coordinate) representation r - b  r, whereas the momen- 
tum operator p = -iAV has the property (due to the factor i) that p& - p. On 
the other hand, in momentum representation the Hamiltonian and coordinate opera- 
tors are of the form 

r = ihV P 2  H = - + V (  i AV) 
2m 

(1.36) 

so that U in (1.33) must be chosen so as to undo the effect of the reversal of momen- 
tum. Then P A - p  and r&r, just as in the coordinate representation. 

Angulur Momentum and Time Reversal. Consider the angular momentum en- 
try in Table I .4 summarizing time-reversal properties for a particle in classical me- 
chanics. Clearly, classical angular momentum reverses sign under time reversal. In 
quantum mechanics, consider the orbital angular momentum operator L = r x p ,  
whose properties we develop in Section 3.2 and whose eigenstates we examine ex- 
haustively in Section 4.1. As is clear by inspection, in both the r and p representa- 
tions L A - L ,  in agreement with classical mechanics. The presence of the 
complex-conjugation requirement for the eigenstates may lead to additional com- 
plexity, as discussed in Sections 4.1.3 and 5.4.1. The behavior of intrinsic-spin 
states under time reversal is very important, as well as being significantly compli- 
cated. We therefore defer its analysis until Section 4.3.4. 

In Chapter 3 we develop the operators for angular momentum in terms of in- 
finitesimal rotations. Like the linear-momentum operator, these J operators have no 
intrinsic time dependence. Their expectation values-which are the observable 
quantities-may, however, be time dependent. For example, in Section 5.1.2 we 
derive the Ehrenfest theorem for the time evolution of angular momentum in terms of 
torques, while in Section 5.1.3 we derive the time dependence of Larmor preces- 
sion of magnetic moments. 
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Time Reversal and the Dirac Equation. In relativistic quantum mechanics- 
such as the Dirac equation for electrons and positrons-the considerations of time 
reversal become much more complicated because of the constraint of relativistic co- 
variance. A detailed discussion is given in Section IV.3 of Roman’s text on ele- 
mentary particles [Rom61], while an extensive treatment emphasizing use of group 
theory is provided in Chapter 15 of Elliott and Dawber [E1179]. 

The Microworld of Quantum Mechanics and Time Reversal. We seem to 
have painted ourselves into a logical corner, with the microworld being essentially 
time-reversal invariant and the macroworld showing an arrow of time, as indicated 
in Figure 1.21. 

Microworld 
A quantum system 

(Usually time-reversal 
invariant) - t 

___) 
(Collapse of the 
wave function) 

Macroworld 
Observe a quantum system 

by a macrosystem 

(Increase of entropy 
with time) 

FIGURE 1.21 The microworld of a quantum system is usually time-reversal invariant. When a 
quantum system is observed by a macrosystem the wave function collapses. In the macroworld the 
general increase of entropy provides an arrow of time (Figure 1.20). 

The usual way this problem is resolved is to declare that-since the probability 
wave function collapses when an observation is made by a macrosystem (such as a 
particle detector)-the time-reversal properties of the macrosystem then come into 
play. The discussion of this issue is part of an extensive literature on the subject of 
the arrow of time, such as several essays in the book edited by Flood and Lockwood 
[Flo86]. Landsberg [La11821 has compiled a reprint collection of papers from 1930 
to 1980, and the book by Zeh [Zeh89] has a more technical discussion on several 
aspects of the direction of time. 

1.4 .3  Maxwell’s Equations and PCT 

Now that we understand the definition and interpretation of the discrete symmetries 
of P ,  C,  and T, it is interesting to apply them to equations describing a field. We 
now do this for the electromagnetic field described by Maxwell’s equations. In Sec- 
tion 1.4.4 we summarize results for quantum-mechanical wave function iy fields. 

The Maxwell equations may be written (in Gaussian units) as 
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v* E = 4zp 1 dB 
C d t  

VxE+---=O 
(1.37) 

We write the equations in terms of E and B, rather than the more symmetric poten- 
tials 4 and A, because our intuition about the symmetry properties of E and B is 
probably better. (Problem 1.10 suggests that you also write the Maxwell equations 
in the potential form, then carry out an analysis similar to that made for E and B.) 

To analyze the action of P, C, and Ton each quantity appearing in (1.37), con- 
sider first their effects on the source terms, the charge density p and the current 
density j. By making sketches, as we show in Table 1.5, you can readily check the 
symmetry properties of the source terms. (Under P, volume elements do not change 
sign.) Note that only C affects p ,  but that j is reversed by each of P, C, and T. In 
neither case does PCT applied sequentially return p or j to its original sign. 

The divergence and curl operators-which involve only spatial coordinates-are 
affected only by P. By considering their expression in Cartesian coordinates (for 
example), it is easy to see that they change sign under P .  Finally, for the discrete- 
symmetry properties of the fields E and B, just consider a simple experimental setup 
and think through what happens under each symmetry operation. This will lead you 
to the results in Table 1.5. The actions of the parity ( P ) ,  charge-conjugation (C) ,  
and time-reversal ( r )  operations on the dynamical quantities appearing in the Max- 
well equations are summarized in Table 1.5. 

TABLE 1.5 P, C, and T symmetries of electromagnetic sources and fields. 

Symmetry 
operator Effect of the symmetry operator on the source or field 

C -P V. VX -E - B  

+ + +  
T V. Vx E -B 

_ -  
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Now put the pieces together and consider the effects of P, C, and T acting on 
each of the four Maxwell equations (1.37) in turn. What is remarkable (as Prob- 
lem 1.10 suggests that you verify) is that each Maxwell equation is unchanged un- 
der these discrete symmetries. That is, neither the action of P ,  or of C, or of T 
changes these equations-each is invariant even though the sources and fields in 
them may change sign under P ,  C, or T. Although this may have seemed obvious to 
scientists in Maxwell’s time, the demonstrated violation of parity in the weak interac- 
tion does not make parity invariance an obvious requirement for fields other than the 
electromagnetic field. 

In Table I .5 we assume that electric charges are unaffected by P and T. Further, 
in considering the action of C, the “test charges” that are thought of as being used 
to measure the fields are assumed nor to change sign under C .  Rosen [Ros73] 
discusses alternative valid scenarios for the action of P, C, and T. 

We note further that the Maxwell equations are not the whole story on electrody- 
namics, since they do not describe the quantized nature of electromagnetic radiation 
or the consequences of the identity of photons (Bose statistics). For quantized fields 
what are the discrete-symmetry properties? In the next subsection we sketch an an- 
swer to this question. 

1.4.4 PCT and the Pauli Principle: Liider’s Theorem 

The example of Maxwell’s equations and its invariance under each of P ,  C, and T 
separately might suggest to us that this is a property of any field that describes 
nature. However, this cannot be true, since experiment shows that the weak interac- 
tion giving rise to /3 decay violates parity symmetry. Is there any constraint on the 
symmetries of field equations under the joint action of PCT? 

Liider’s Theorem. Pauli discussed this question [PauSS] and Luders provided a 
definitive answer [Liid57]. Liiders proved by explicit examination of the actions of 
P ,  C, and Ton the fields (as we do for the Maxwell equations in Section 1.4.3) that 
in quantum field theory-the Klein-Gordon equations for spin 0 and spin 1 and the 
Dirac equation for spin 1/2-the equations have the following symmetry properties: 

Luder’s theorem. The Klein-Gordon and Dirac equations are 
invariant under the joint action of PCT if the following condi- 
tions are satisfied: 
(1) The interactions are local and Lorentz covariant. 
(2) Kinematically-independent fields anticommute for fennions 
and commute for bosons. 

Now to explain the terminology in the theorem. To call an interaction “local” is, in 
non-technical terms, to say that the interaction at a given space-time point satisfies 
causality, as discussed in Section IL4b in [Rom61]. “Kinematically-independent 
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fields” are discussed in the context of two subsystems (kinematically independent), 
such as the electrons in two well-separated atoms. If the Pauli principle holds-the 
total system wave function changes sign under exchange of two electrons with all 
quantum numbers the same-then we have anticommuting fields. Similarly, if there 
are two boson systems (such as the pions in two atoms where electrons are replaced 
by pions), exchange of two bosons should leave the wave function unchanged. 

There are three significant remarks to be made about Luder’s theorem: 
The theorem does not claim that PCT (or any rearrangement of them) is the unit 
(identity) operator. As Table 1.5 shows, this does not hold even for electro- 
magnetism. 
Liider’s theorem establishes an intimate relation between P ,  C, and T and the 
spin-statistics of particles. For this reason it is often called the “spin-statistics 
theorem.” In work preceding that of Pauli and Liiders, Schwinger [SchS 1, 
Sch531 assumed the validity of the theorem and derived the spin-statistics con- 
nection. 
Although the proof is given explicitly only for the Klein-Gordon and Dirac 
equations, these empirically verified equations constitute paradigms for the con- 
struction of other quantum fields. Thus, Luder’s theorem is almost always used 
to constrain any field equations that may be devised. 

A derivation of the theorem is given in Section IV.5 of Roman’s text [Rom61], 
where consequences of the theorem for elementary particle physics are discussed. 
For example, in the so-called T violation for the kaon system, what is measured is a 
violation of PC, from which (by using Liider’s theorem) one infers that there is T 
violation. Extensive references to experimental tests of the discrete space-time 
symmetries are given in Commins’ resource letter [Com93]. 

How Valid Is the Pauli Principle? Since the Pauli principle is so intimately 
related to the generalized reflection invariances of P, C, and T,  it is worthwhile to 
place limits on the validity of this principle. Its approximate validity is assured by 
the successive filling of shells that is required in atomic-structure or nuclear shell 
model calculations, and by the success of Fermi-Dirac statistics in describing the 
density of states of electrons in many situations-from conductivity of metals, 
through the balance between electron degeneracy and gravitational pressure in stars, 
to the equation of state of a neutron star. 

The most common test of the limits of validity of the principle is to seek lower 
limits on the relative abundance of anomalous atoms or nuclei, having more fermi- 
ons in a shell with angular momentumj than is allowed by the exclusion principle, 
namely, more than 2(2j+ 1). By using accelerator mass spectrometry for precision 
detection of anomalous atoms and nuclei, Nolte and coworkers [No1911 showed that 
the relative abundance of anomalous to normal 2oNe atoms is < 2 x for 36Ar 
atoms the limit is < 4 x 10-17, while for anomalous nuclei of 5Li in 6Li the limit is 
< 1 x 10-17. 

The Pauli Principle in Scattering. A dramatic demonstration of the effects of 
coherence, interference, and the Pauli principle is shown in low-energy nuclear 
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physics experiments of Coulomb scattering of the isotopes 12C and 13C from each 
other, as described by Plattner and Sick [Plagl] and shown schematically in Fig- 
ure 1.22 for energies of relative motion well below the Coulomb barrier. At such 
energies the nuclei interact entirely by their mutual Coulomb repulsions, so the quan- 
tum mechanics of the problem is straightforward. 

w . .  
I I I I I 

d 4  7d2 3?d4 n/4 d 2  3 d b  XI4 i d 2  3 z / h  
8’ 8’ 8‘ 

FIGURE 1.22 Identical particles scatter differently, depending on whether both are bosons (two 
12C nuclei), whether they are distinguishable (13C-12C), or whether both are fermions (two l3C 
nuclei). Scattering intensity as a function of laboratory scattering angle 0’ = 0 /2 is shown for 
each pair of nuclei for Sommerfeid parameter (Problem 1.11) 77 = 15, corresponding to incident en- 
ergy about 4 MeV in the laboratory frame. (Adapted from Marhematica notebook P a u l  icc.) 

In the scattering experiments described in [Plat311 the nuclei of I2C have spin 
zero, so they act like bosons, whereas I3C nuclei have spin 1/2 and act like fermions 
under exchange. Thus, in **C-l*C scattering the scattering wave function should 
be symmetric under exchange of the two nuclei. For 12C-13C scattering no sym- 
metry requirements are imposed. For l3C-I3C a combination of scattering with 
spins antiparallel (3/4 of the time) for an antisymmetric wave function and scatter- 
ing with spins parallel (1/4 of the time) for a symmetric wave function is required. 
The data reported in their article are in very good agreement with predictions shown 
in Figure 1.22. Problem 1.11 suggests how to make the appropriate calculations 
for discrete symmetries. 

1 . 5  BROKEN SYMMETRIES FROM 
COSMETOLOGY TO COSMOLOGY 

Now that we have reviewed several aspects of symmetry in physical systems, it is 
worthwhile to pause and reflect on the observation that it is mostly asymmetry 
(sometimes called “broken symmetry”) that we observe in the world around us. 

Symmetry and Humans. In human creations we seem to favor a high degree of 
geometrical symmetry, especially reflection and rotational symmetries. Examples 
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are found in the logos of businesses and the hubcaps of automobiles, as discussed 
by Gallian [Gal901 in the context of groups of symmetries (our Section 2.5). 
Although the human skeleton has a high degree of reflection symmetry, the internal 
organs are asymmetrically placed, and if a person’s features (particularly the face 
and head) are either very regular or somewhat more irregular than the norm, we 
often find this unappealing. Thus, very few men will part their hair down the cen- 
terline, and people sometimes resort to cosmetology to change their facial appear- 
ance. 

Juxtaposition of cosmetology and cosmology in this excursion may seem un- 
usual. Both words, however, are immediately derived from the Greek kosmos, 
meaning order or arrangement. The first term refers to human beauty, especially 
of the face, whereas cosmology is the study of the general structure and evolution 
of the universe, with the presumption (common to all sciences) that the universe 
is ordered and is able to be explained rationally. 

Asymmetry in Biological Systems. Broken symmetry is manifest in biological 
systems at several levels. As described in Section 1.2.1, chirality in biology is of- 
ten manifested through a preferred direction of spiraling. The direction of such spi- 
raling may depend upon environmental conditions. For example, the pinhead-sized 
sea creature Neogloboquadrina pachyderma, a foraminifer, forms an envelope that 
spirals in opposite directions depending on whether the water temperature is above 
or below 7°C. This property is unexplained. Figure 1.23 shows a drawing of the 
two chiralities observed. 

FIGURE 1.23 The foraminifer Neogloboquadrina pachyderma develops with its four lobes in 
either a left-handed spiral (left sketch) or a right-handed spiral (right sketch), depending on the water 
temperature. 

Geoscientists use the temperature dependence of the chirality of this foraminifer 
when examining cores of fossil sediments from the deep ocean floor in order to infer 
temperature variations of the oceans over geological epochs, and thereby to find 
clues to the presence of petroleum reservoirs. For example, in the article by Dup- 
lessy et al. [DupBl], the chirality of Neogloboquadrina pachyderma is used to infer 
the surface salinity of the North Atlantic Ocean during the last glacial maximum. 
The classical masterpiece on growth and form by Thompson [Tho431 provides many 
examples of chirality in biological systems and relates them to geometrical and 
physical phenomena. The polarization of sky light (thus a definite helicity) is used 
by bees [Fri49] and by fishes [Haw921 for orientation and navigation. It is probable 
that many creatures have adapted their vision to detect such polarization but that we 
do not yet know how to verify this. 
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At the molecular level, broken symmetry appears in the occurrence of only left- 
handed proteins and right-handed DNA in living things (Section 1.2.1). The rela- 
tions between handedness, the origins of life, and evolution have been reviewed at 
an introductory level in an article by Avetisov, Goldanskii, and Kuz’min [Ave91]. 
They estimate the probabilities for simple biological systems-starting with a 
racemic mixture of molecules-to evolve into a chiral system over the span of sev- 
eral billion years since Earth was formed. They also describe a variety of physical 
advantage factors-such as circular polarization of scattered sunlight, geomagnetic 
fields plus the Coriolis force and static electric or gravitational fields-that might ini- 
tiate such evolution. Even though p decay produces electrons or positrons with a 
definite helicity, it is now believed that this is unlikely to have a significant effect on 
biological evolution, as has also been summarized by Meiring [Mei87]. 

PROBLEMS ON SYMMETRY IN PHYSICAL SYSTEMS 

1 . 1  The examples of Noether’s theorem in Section 1.1.2 were worked out only 
for the simplest feasible systems exhibiting continuous symmetries-single particles 
in one or two dimensions. Generalize her theorem, but still use classical Newtonian 
mechanics, to prove the following for systems of particles in three dimensions: 
(a)  A system of particles that interact by two-body, time-independent potentials that 
are translationally invariant (depend only on differences of particle coordinates) has a 
fixed total linear momentum. 
(b) The total energy of a system of particles subject to time-independent potentials is 
conserved. 
(c )  An assembly of particles that are acted upon by time-independent central forces 
referred to the same force center has an angular momentum that is invariant under 
rotations about that force center. 
1.2M The shell motifs at the beginning of this and subsequent chapters visualize 
both angular momentum (rotations) and chirality (spiral sense). In order to 
understand the geometry of such rotations and to learn how such a shell can be 
described parametrically, consider the following. 
(a )  Show that parametric equations generating such a shape in three dimensions are 

x = ~ c o s t c o s 4  
y=@cost  sin4 
z = 4 sint + hi$ 

(1.38) 

in which 0 2 t 2 2n generates the circular cross section of a spiral arm at a given 4, 
while 4 generates the twist of the spiral about the central axis. For a spiral of r revo- 
lutions one has 0 I 4 S 2nr. Also in this equation show that the helicity h = +1 for 
a right-handed spiral (as shown) and h = -1 for a left-handed spiral. 
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(6) By using Mathematica, or other system for doing mathematics by computer, 
generate and graph the three-dimensional spiral described by (1.38). The Math- 
ematica notebook She1 1 in Appendix I may be used for this. 
1 . 3  Suppose that N polygons lying in a plane and each having E edges of equal 
length (“regular” polygons) are to meet at a point, with no intervening space, that is, 
they tile the plane. 
(a)  By considering the angles within each polygon and the addition of angles where 
the polygons meet, show that 

2 N  or E = -  
E - 2  N - 2  
2 E  N=- (1.39) 

(b) Why is this relation symmetric under interchange of N and E? 
(c )  By using this relation, prove that the only regular polygons that tile the plane 
have E = 3,4,  or 6 (triangles, squares, and hexagons). These regular polygons are 
shown in Figure 1.8. 
1.4 Consider a regular polyhedron, a three-dimensional convex solid with all F 
of its faces being the same. Use the result of Euler that F is related to the number of 
vertices, V ,  and the number of edges, E, by 

V + F = 2 + E  (1.40) 

Suppose that N edges meet at each vertex, then show that E = NVl2. Show also 
that if the number of edges on each face is S, then E = FS J2. Thus show that 

(1.41) 

Use this result to verify Table 1.2, identifying all the regular polyhedra as shown in 
Figure 1.9. 
1 .5 Derive explicitly by using the rotation matrices the formula (1.17) for passive 
rotations in terms of active rotations. 
1 . 6  Show that rotations about different axes do not commute. To do this, con- 
sider the sequences Ay(P)Az(y) and Az(y)Ay(P), where the matrices are given by 
(1.4) and (1.5). 
( a )  Give examples which show that for arbitrary a and /3, the results depend upon 
the order of rotation. 
(6) Show that if Maclaurin expansions of the matrix products are made and if only 
terms containing a single angle (a or p )  are kept, the rotations do commute. 
(c)  Interpret the quantum-mechanical commutation rules for momentum-operator 
components, bi, p j ]  = 0 (where i and j refer to x ,  y ,  or z ) ,  from the viewpoint of 
commutation of translations. (Recall that the momentum operator generates in- 
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finitesimal displacements.) From this result, are the operators that generate infinites- 
imal rotations (they are called Ji, i = x ,  y, or z) likely to commute? 
1.7 Generalize the proof in terms of determinants for rotations and reflections, 
(1.20) and (1.2 I), to show that in a coordinate space with an odd number of dimen- 
sions-such as three-reflections cannot be produced by combining rotations. 
1.W Explore parity and wave functions by using the Mathernatica notebook 
P p s i .  The notebook is programmed with the function definition p s i  correspond- 
ing to (1.23). Modify this definition to a function of interest to you, but not neces- 
sarily of a definite parity, and run the program to produce graphics for you to inter- 
pret. Note that the program makes the various functions using the definitions in 
(1.23) without algebraic simplifications. 
1.9 For the time-reversal (complex conjugation) of the plane wave (1.34), show 
the steps leading to (1.35). 
1.10 The discrete-symmetry properties ( P ,  C, and 7') of Maxwell's equations 
(1.37) are discussed in Section 1.4.4 in terms of E and B fields. Check these 
properties by the following means. 
(a) Express the divergence, V., and the curl, v X, in spherical polar coordinates, 
Verify that under P they have the symmetry properties indicated in Table 1.5. 
(b) Verify the correctness of the entries in Table 1.5 for the sources and fields by 
considering simple configurations of the sources p and j. 
(c) Write down Maxwell's equations in terms of the scalar potential 4 and the vector 
potential A, then make a similar table similar to Table 1.5 to check the symmetries 
of these fields under P ,  C, and T. 
1.111" Consider the Coulomb scattering of isotopes of the same element with 
boson character (spin zero) or fermion character (spin 1/2), as for 12C or 13C in Fig- 
ure 1.22. For distinguishable particles (such as 13C scattering from 12C) the 
Coulomb-scattering amplitude, f,(e), depends upon 0, the scattering angle in the 
center-of-mass frame, as [Lan90, Sections 4.C and 1O.C] 

,2iqln[s in(~/  2)] 

&Ye) = sin2(8,2) (1.42) 

in which q is the Sommerfeld Coulomb parameter, proportional to the product of the 
nuclear charges and inversely proportional to their relative speed. For distinguish- 
able particles the angular dependence of the scattering intensity as a function of angle 

(a)  Show that for scattering between indistinguishable bosons (such as l2C-I2C) 
the requirement that wave functions be symmetric under exchange leads to 

is I , @ )  =I f,'(e) 1 2 .  

(1.43) 



PROBLEMS ON SYMMETRY IN PHYSICAL SYSTEMS 3 9 

(b) Argue that for spin-1/2 particles (such as 13C-13C) there is a total of four rela- 
tive orientations of the spins, in only one of which the particles have all their quan- 
tum numbers equal, and it is for this that the wavefunction must be antisymmetric 
under exchange (Pauli principle). Show thereby that the observed intensity should 
be given by 

3 1 z,(e) =4 I &ye)+ $(E - e) i 2  +4 I &ye) - f , ’ ( ~  - e) i 2  ( 1.44) 

(c )  Use either the Mathernatica notebook PauliCC in Appendix I or a program 
of your own devising to cakulate the angle dependences of the intensities Ib, Id,  and 
If Compare your results with the corresponding curves shown in Figure 1.22 for 
Coulomb parameter 7 = 15. Note that the laboratory scattering angle, e’, is related 
to the center-of-mass scattering angle, 8, by 8 = 20’, since the masses of the two 
reactants are either equal or nearly equal. 
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Chapter 2 

MATHEMATICAL AND 
QUANTAL PRELIMINARIES 

Our purpose in this chapter is to review materials from mathematics and quantum 
mechanics relevant to our later treatment of angular momentum techniques and con- 
cepts. Generally speaking, mathematics provides the engines for spinning the 
merry-go-round of concepts and interpretation comprising quantum mechanics. Be- 
fore starting this chapter, you should be familiar with standard matrix algebra, since 
our main emphasis in Section 2.1 is those unusual definitions and properties needed 
in the following chapters. Useful sources for review are Wong’s introduction to 
mathematical physics [Won91], in which many of the matrix examples relate to rota- 
tions, and the texts by Arfken [Arf85] and by Butkov [But68]. In this chapter we 
review the mathematics and hint how it is applied in subsequent chapters. 

In Section 2.2, on transformations and operators, the emphasis moves to appli- 
cations that are particularly important in quantum mechanics. We review similarity 
and symmetry transformations, unitarity, the operator relations of exponentiation 
and commutation, and the raising and lowering (ladder) operators. Wong’s book 
[Won911 provides introductory material on these topics. In Section 2.3 we review 
eigenvalues and eigenstates, with emphasis on their quantum-mechanical interpreta- 
tion. The quantum-mechanics texts by Cohen-Tannoudji et al. [Coh77], by Shankar 
[ShaSO], and by Sakurai [Sak94] provide (in order of increasing sophistication and 
decreasing vintage) suitable introductions to these topics. 

Spinors and their properties are our topic in Section 2.4. The subject has a long 
and confusing history, since many ways of representing spinors have been devised. 
We summarize the essential ideas and uses of spinors for developing topics in angu- 
lar momentum, then we show how spinors can be visualized to clarify their applica- 
tions in this field. The penultimate section of this chapter (Section 2.5) is a primer 
on groups, with several examples and preliminary ideas. It would be helpful if you 
have been introduced to groups (including examples from geometry and the sci- 
ences) in a mathematics review course. For example, Wong’s text [Won911 pro- 
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vides appropriate background. Our second excursion in this book, Section 2.6, is a 
philosophical digression on the relations between mathematics, group theory, and 
the physical sciences. It is intended to give you pause to wonder at the unreasonable 
effectiveness of mathematics in the sciences. 

Finally in this chapter, in order to check that such mathematics have become em- 
bedded in your consciousness, there are problems on the preliminary mathematics 
and its applications. By the end of this chapter, we will have the basic mathematical 
and conceptual apparatus needed to develop our study of rotational symmetries for 
physical systems. 

2 . 1  MATRIX DEFINITIONS AND MANIPULATIONS 

We review highlights of matrix definitions and manipulations that are needed subse- 
quently. We cast many of these in the language of quantum mechanics, particularly 
by using bra, ( I, and ket, 1 ), state vectors. The primary purpose of this is to pro- 
vide examples, since the matrix properties are generally valid. We begin by recalling 
definitions from the algebra of linear spaces, including generalization of vectors in 
coordinate space to “vectors” described by kets in Hilbert spaces. Then we discuss 
relations between scalar (inner) products, matrices, and operators. Next, we review 
matrix inner products (conventional matrix products) and describe the less familiar 
matrix direct products that are so necessary for studying combinations of symme- 
tries. Then we discuss operations on matrices and the resulting special properties, 
such as Hermiticity and orthogonality, and we establish the notation used for these 
operations. Finally at the end of this section, it is convenient to discuss rules for 
manipulating the phase factors that occur so frequently in the technology of angular 
momentum. 

The relations between transformations, matrices, and linear operators are dis- 
cussed more extensively in Chapter 2 of Wong’s mathematical physics text 
[Won91]. Linear operators in quantum mechanics are emphasized in Chapters 1 
and 2 of Jordan’s treatment [Jor69], in Chapter 1 of Sakurai’s text [Sak94], and in 
De Lange and Raab’s book on operator methods in quantum mechanics [DeL91]. 

2 . 1 . 1  Linear Spaces and Operator Matrix Elements 

Our purpose here is to establish the notation used in subsequent developments and to 
provide examples appropriate for investigating rotational symmetries. The refer- 
ences just cited provide detail, including proofs of results. 

Linear Spaces. In a linear space one has a set of elements, called vectors (a 
generalization of vectors in coordinate space), together with two operations, one 
being addition (a generalization of addition in arithmetic and of vector addition) and 
the other being scalar multiplication. We distinguish the vectors (the kets, 1 ) ) in 
a given space by labels, such as those for coordinate directions (Ix) , 1 y ) ,  lz) ) or the 
labels for angular momentum eigenvalues (l!m) for orbital angular momentum L 
and its projection m). 
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Let us denote two representative vectors in a given space by Is) and It), and de- 
note by a and b two complex numbers. In a linear space one requires the following 
properties: 

I.) + It) = I4 + Is) 

Is) + (It) + 1.)) = (Is) + It)) + Iu) 

Is> +- 10) = Is> 

commutation 

association 

null vector 10) 

a(ls>+It>)=als>+alf> 

(a+b) ls )= als)+bls) n(bls))=abls) 

11s) =Is> 01s) = 0 

These properties are satisfied by conventionai vectors in coordinate space, which we 
write as Ir) for a displacement vector and as Ip) for a momentum vector. Prob- 
lem 2.1 (a) suggests that you demonstrate these properties. If we are concerned 
only with angles, rather than also with the magnitude of the vector, we sometimes 
use a notation such as I(&))). Because our subject is angular momentum, we will 
often encounter such a state vector notation. 

It is common to introduce a bra space, with elements (31, (ti, (&I, and so on. 
This is often called the dual space to the ket space, as discussed in Sections 1.2 and 
1.3 of Sakurai’s text [Sak94]. Analogously to the required ket-space properties 
(2. I), we have the following requirements for a linear bra space: 

(4 + (t l = (4 + (4 
(sI + (( tJ  + (u) )  = (( s) + (tl) + (&I 

commutation 

association 

(4 + (01 = (01 null bra vector (01 

.((sl+(4)=4sl+a(4 

l (s l=  (4 O(sl= 0 

(u + b)(sl= a(sl+ b(s( a(b(s()  = ab(s1 

Exam les of bra spaces are those whose elements are (rl or whose elements are c c e d  
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Scalar Products. In a linear ket or bra space such as we have just discussed, we 
consider the generalization of scalar products of vectors in coordinate space. Scalar 
products are sometimes called inner products, a nomenclature that establishes a rela- 
tion to inner products of matrices (Section 2.1.2). In a scalar product one forms 
bra-kets such as (sl t )  . 

As with the requirement (2.1) for a set of vectors to form a linear space, the defi- 
nition of the scalar product of two vectors in such a space is implicit, because any 
bilinear combination for the sets that has the following properties is sufficient to 
serve as a scalar product. If Is), It), and Iu) are any three vectors in the space, then 
scalar products involving them must have the following properties: 

(si t  +u) =(stt)+(slu) 

( 4 s )  = (s ld  * 
(slat) = a(slf> 

(2.3) 

The last property is often called the property of having a positive-definite norm, 
satisfied (for example) by conventional coordinate vectors. The quantity is 
usually called the norm of Is), corresponding to the magnitude of a conventional 
vector. State vectors labeled by s and t are said to be orthogonal if the scalar prod- 
uct (sit) = 0. Again, this is the terminology used for conventional vectors. 

The scalar-product properties (2.3) are satisfied in quantum mechanics by both 
the general kets and by the wave functions, as Problem 2.1 (b) suggests that you 
show. The wave functions are the kets in a given representation, such as in configu- 
ration, r, or momentum, p, spaces. The connection is 

The third property in (2.3) is familiar from the properties of wave functions. Thus 

Particularly for our developments in angular momentum, and independent of 
detailed considerations of quantum mechanics, we have the scalar product of a state 
vector Ijm),  where j and m are angular momentum numbers, with an angle ket I(@$)), expressed as 

The interpretation of such a scalar product is that it describes the angular momentum 
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state in terms of 0 and 4. For example, when j = P (an integer) this scalar product 
is proportional to a spherical harmonic, as shown in Sections 4.1, 6.3, and 6.4. 

Linear Operators. Along with linear vector spaces, it is also useful to introduce 
linear operators. For an operator 0 that is linear 

A clear discussion of linear operators and their matrix representations is given by 
Jordan in Chapter 2 of his book on linear operators for quantum mechanics [Jor69]. 

Antilinear Operators. Not all operators that are interesting for the physical sci- 
ences are linear. For example, as discussed in Section 1.4.2, the time-reversal op- 
erator ( r )  is antilinear (introduces at least a complex conjugate) rather than being 
linear. For any operator OA that is antilinear 

Now that we have defined linear spaces, scalar products, and operators, it is ap- 
propriate to combine the three to form operator matrix elements. 

Matrix Elements of Operators. Recall that the scalar product of two kets, say 
Is) and I t ) ,  is written as ( s l t ) .  The state described by It) may have been obtained 
by the effect of an operator, say 0, on a state described by 1.). Then 

in which the last equal sign indicates an abbreviation for the matrix element of 0 
between states s and u. This subscript notation resembles that of conventional ma- 
trix algebra, but there may a difference-the “row” label s and the “column” label u 
may be sets of labels rather than single indices. The resemblance is close, as dis- 
cussed in the following subsection. 

In angular momentum, the operator 0 is often that describing rotation of a physi- 
cal system through specified angles, such as the Euler angles (Section 1.3. l), while 
the bra and ket states are eigenstates of the angular momentum operators. 

2.1.2 Inner and Direct Products of Matrices 

Following on the discussion of matrix elements of operators just presented, we re- 
view the inner-product rule for matrix multiplication, then we proceed to the less 
familiar, but very important, direct product. 

Matrix Inner Products. Recall the conventional (inner) product of two matrices 
and why it is so useful. Suppose that we make a succession of linear transforma- 
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tions, the first described by a matrix S acting on a column vector v, so that 

vs = s v  

If we follow this by a linear transformation of vs by matrix T, we have 

vT =Tv, = T S V = U V  

in which the elements of matrix U are given by the inner-product rule 

(2.10) 

(2.11) 

(2.12) 

in which the sum over j is over the columns of T and over the rows of S, which 
must therefore be of the same dimension. Given this rule, one may either apply each 
transformation in succession in the order given (S first then T), or one can evaluate 
the matrix U by rule (2.12), then apply this matrix to v. The latter method is usually 
much simpler computationally, and it is sometimes simpler conceptually. 

What is the connection between these rules of matrix algebra and the matrix rep- 
resentations of operators in Section 2.1. l?  Suppose that we have sets of matrix ele- 
ments OSt and Pt, of the operators 0 and P in three spaces whose representative 
vectors are Is), It), and 1.). (These vectors may be, and often are, in the same 
space.) By writing out in scalar-product language by using (2.12) the requirement 

we find immediately the condition, often called the unit-operator expansion, 

(2.13) 

(2.14) 

in which the sum is over all the elements in the set and the 1 is a unit operator. In- 
deed, we subsequently take this requirement for granted and often use it to replace a 
unit operator by the expression on the left-hand side of (2.14). For example, in 
quantum mechanics this is often called “summing over intermediate states.” The 
property (2.14) is not a consequence of quantum dynamics, but just expresses the 
properties of the linear vector spaces used in quantum mechanics. 

Shirt-and-Tie Theorem. Suppose that we have matrices, S and T, whose inner 
product represents successive operations, S followed by T .  For example, S might 
be the operation of putting on a shirt, and T might be putting on a tie. Conventional 
dress calls for U =  T S ,  in which the rightmost operation is done first. By direct 
multiplication of the corresponding matrices, we see that the result for U-1 satisfies 
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U = T S  =$ U-'=S-'T-' (2.15) 

Operationally, we can recall this relation by interpreting the right-hand-side expres- 
sion for U-l. Namely, one takes off the tie (PI), then takes off the shirt (S-1). 
The order of inversion usually matters, unless the original operations (S and r )  
commute. For example, if S is putting on shoes and T is putting on a tie, then it 
probably doesn't matter in what order you put them on or take them off, so S T = T S  
and the corresponding matrices satisfy ST = TS . 

In these examples the commutation property depends upon the topology of the 
human body and of clothing. (The shirt and tie operations for giraffes probably 
commute.) In quantum mechanics the successive operations usually refer to suc- 
cessive measurements, and noncommutation of S and T indicates that measurement 
of operator S affects the outcome of measuring T. As we discuss in detail for angu- 
lar momentum in Section 5.2, this leads to uncertainty relations between noncom- 
muting observables. 

Direct Products. To introduce the direct product (sometimes called the Kro- 
necker product), consider a 2 x 2 matrix M and a 3 x 2 matrix N. From these two 
matrices one cannot form the inner product MN, since there is no matching of num- 
ber of rows with number of columns. One can, however, form a direct product, as 
follows. Take any element of M and associate it multiplicatively with any element 
of N to obtain an element of their direct product M 63 N: 

The subscript notation on the left-hand side is that i j  labels the super row and kl 
labels the super column. The dimension of a direct-product matrix is therefore the 
product of the dimensions of its constituent matrices, and it is therefore at least as 
large as either of them. For example, with the above matrices their direct product is 
of dimension 6 x 4. Let us write out M 63 N explicitly, as displayed in Figure 2.1. 

FIGURE 2.1 Direct product of a 2 x 2 matrix M with a 3 x '2 matrix N. The dashed lines 
separate parts of the matrix that contain different elements of M. 
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Although the most common notation for direct products of matrices is the sym- 
bol 6, as in M 6 N, the notation M x N is also used, although this is easily con- 
fused with multiplication or with the vector cross product, since it may be unclear in 
some contexts whether M and N are matrices or vectors. Direct products also occur 
in group theory (Section 2.5), where the x notation is more common than 8. 

Direct Products and Spin. An example of the direct product that is particularly 
relevant to the treatment of spin in quantum mechanics is the following. Consider 
the 2 x 1 column matrices 

These might represent the state of a spin-1/2 system a, with probability amplitude 
a + for spin up and probability amplitude a- for spin down, with a similar interpre- 
tation for system p. The direct product of the two matrices, a 6 p. is also a column 
matrix, given by 

In this direct product, following the interpretation of (2.17) for spin 1/2, the col- 
umn matrices with either a one or a zero in each position may be interpreted as fol- 
lows. The leftmost matrix is associated with a total spin projection of 
(+1/2) + (+1/2) = 1, the next two matrices belong to spin projection zero, and the 
rightmost matrix belongs to spin projection -1. From rules that you probably know 
already (and which we derive in Section 3.4), the projections of magnitude 1 can 
belong only to a spin- 1 system, while the projections of zero can belong to spin- 1 or 
to spin-0 systems. Therefore, the direct-product matrix does not represent a state 
with unique total angular momentum or unique projection. One of our tasks in 
Chapter 7 is to find the coefficients of a unitary transformation to produce unique 
values from the direct product of two angular momentum states. 

These coefficients are called Clebsch-Gordan coefficients or Wigner 3-j coeffi- 
cients. The attribution to Clebsch [Cle72] and Gordan [Gor75] relates to their 
work on binary algebraic forms and direct products (as described here) in the nine- 
teenth century, 50 years before Wigner’s use of similar coefficients in quantum 
mechanics. 

Notice that the operation of taking the direct product, like the familiar inner 
product of matrices, is a noncommuting operation, as can be seen in the example 
(2.18), where p 6 a # a 8 p. Notice that the noncommutation is rather simple, 
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because the same coefficients occur, but their ordering depends on the order of mul- 
tiplication. This ordering dependence needs to be taken into account, for example, 
when combining two angular momenta, where it gives rise to phase differences, as 
derived in Section 7.2. The same property holds for M @ N in (2.16). On the 
other hand, the matrix elements in the inner product NM are usually quite different 
from those of MN. 

Direct Products und Separable Humiltonians. In quantum mechanics direct- 
product representations occur when treating the evolution of a system with a sepa- 
rable Hamiltonian, H ,  in which H = H I  + H2, with the sub-Hamiltonians HI and 
H 2  having no (generalized) coordinates in common. The equation of evolution of 
the state function y, namely 

can then be solved by y= t y l y . 2 ,  where 

(2.19) 

(2.20) 

Those parts of tyrepresented by matrices (typically, intrinsic-spin states) will appear 
as direct products of the spin matrices for parts 1 and 2.  Even if one subsystem has 
no spin, a representation by a direct product is still possible if the part without spin 
is represented by the 1 x 1 unit matrix, since 

[1]@ M = M@[1] = M (2.2 1) 

Inner Products and Direct Products. Having shown properties and some uses 
of direct-product matrices, it is worthwhile to summarize schematically the differ- 
ences between inner products and direct products, as shown in Figure 2.2. 

FIGURE 2.2 Schematic summary of the difference between the action of the conventional inner 
product MN, converting state 0 to state 1 then to state 2, and the direct product MBN, converting 
state 0 to state 1 and, independently, state 2 to state 3. 
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Problem 2.2 suggests that you prove several other interesting and useful proper- 
ties of direct products of matrices. After this introduction to direct products, their 
potential applications, and their distinction from inner products, we review matrices 
with special properties that are often needed in angular momentum. 

2 .1 .3  Operations on Matrices, and Special Properties 

We now summarize the nomenclature and some properties of matrices that are rele- 
vant to symmetry investigations. First, we review operations on matrices, then 
symmetry properties that matrices may have under these operations, then we discuss 
block-diagonal matrices. A survey of the algebra of matrices, with emphasis on 
mathematical physics, is given in Chapter 2 of Wong’s text [Won91]. 

Operations on Matrices. We first establish our notation for common opera- 
tions, since the notation is quite variant between mathematics and the sciences. Our 
notation is summarized in Table 2.1. 

TABLE 2.1 Operations on matrices. 

Symbol and Matrix-element 
Operation its name relation 

Transpose - tilde 

Complex conjugate * asterisk, “star” (M”), = M;k 

Hermitian conjugate t “dagger” (M’), =Mkj 

J k  

I k  

Note that it is common in mathematics to use a bar ( - ) for our star ( * ), and a star 
to denote the Hermitian conjugate ( i- ), which is also called the “adjoint.” 

Operations on Matrix Products. Particular care needs to be taken when making 
the above operations on products of matrices, because the ordering of the matrices 
becomes inverted under transposition, inversion (“shirt-and-tie’’ theorem in Sec- 
tion 2.1.2), and Hermitian conjugation, but not under complex conjugation. Thus, 
we have 

transpose(M,M, . . .) = . . .M2Ml 

(M,M 2 . . . ) - ’  =...M;,M;’ 

(M,M, ...)+ =...M;M/ 

(2.22) 

in which the ellipsis ( . . . ) denotes continuation to an arbitrary number of matrices. 
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They are written out by inverted order on the right-hand sides. The basic results 
are readily demonstrated using just two matrices, then the result for an arbitrary 
number of matrices can be obtained by mathematical induction, as Problem 2.3 
suggests that you show. 

Symmetry Properties. Matrices with special symmetries that are used exten- 
sively, especially in quantum mechanics, are summarized in Table 2.2. 

TABLE 2.2 Matrices with special properties frequently used for symmetries and 
quantum mechanics. 

If matrix M then it 
has property of satisfies for which a typical application is 

M . = M .  .a. Matrix in the principal-axis system Diagonal Jk JJ Jk 

Symmetric hf jk  = h f k j  Moment of inertia 
M = M  

Real M .  ,k = M .  ;k Bound states in quantum mechanics 

Hermitian M l j  = Mjk A quantum-mechanical observable 

(self-adjoint) M~ = M  

Real orthogonal M = M-' , M*= M-' Spatial rotation 

Unitary Mt = M-' Transformation by M preserves 
the norm of a Hermitian matrix 

Block-Diagonal Matrices. Especially important for simplifying much of the 
following mathematics and quantum mechanics is the property of a matrix to be 
block diagonal. An example of such a matrix is given in Figure 2.3. 

M =  

FIGURE 2.3 Block-diagonal matrix M is composed of submatrices M I ,  M2. and M,, which 
may be of different sizcs. Large zeros indicate submatrix blocks where all matrix elements are zero. 

Note that in a block-diagonal matrix there are no common elements between the 
different blocks. Therefore, if N is another matrix, the product M N  contains Mi 
as a common matrix in the top positions, M2 as a common matrix in the middle 
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position, and M3 is common in the bottom positions. In particular, if N is also 
block diagonal, then MN = NM is block diagonal. Thus, block-diagonal matri- 
ces have many properties of diagonal matrices if the blocks are treated as if they 
were matrix elements rather than submatrices. 

Irreducible Form. If the matrix in Figure 2.3 is in the form such that each di- 
agonal block has been reduced to its smallest possible size, the matrix M is said to 
be in a form that is irreducible. In Section 2.5.5 we discuss this in the context of 
matrix representations of groups. The property of irreducibility is very important for 
irreducible spherical tensors in Chapter 8. 

As you see from Figures 2.1 and 2.3, the complexity of matrices in direct-prod- 
uct and irreducible forms grows very quickly with the number of elements in them. 
Therefore, it is not usual to exhibit the matrices in pictorial form. It is, however, 
conceptually and technically useful to have such pictures in your mind's eye when 
manipulating the elements of such matrices. 

2 .1 .4  Phase Manipulation Rules 

Although the following material on phase manipulation rules may seem trivial, you 
are almost sure to break the rules, especially if you don't understand the following. 
It is important that phase manipulation rules be applied correctly, since many sym- 
metry effects of the kinds discussed in Chapter l-especially those in quantum 
systems (Section 1.4)-are very sensitive to relative phases in formulas describing 
the symmetries. 

Phase factors that we use multiply other expressions and are either +I or -1. 
Thus, they are of the form (-l)n, where n is an integer. This property will be en- 
sured by choosing phases of angular momentum eigenstates appropriately whenever 
a choice must be made. Given this property, we summarize the rules for manipu- 
lating phases arising from integer exponents nl  and n2 by 

As you are probably already aware, the total angular momentum number J can 
take on only half-integer values such as 0, 112, and 1, while the corresponding pro- 
jection number m may range from -j t o j  by integer steps. Therefore, the combina- 
tion j +  m is always an integer, to which the phase rules (2.24) may be applied. 
Even if j is a half integer, then m is a half integer and the following manipulations 
are allowed: 

(2.25) 

in which the equalities hold because (-1)4j= (-1)4" = 1. 

therefore also an integer. Then we can mimic (2.24) and write 
If the total angular momentum number j = .f, an integer, its projection m is 
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(2.26) 

The final rule about phase manipulations relates to combinations of total angular 
momenta. Suppose that j1, j 2 ,  and j 3  form a triangle4enoted by AUlj2  &)-then 
we have the following phase rule: 

Ji 

(2.27) 

Given the triangle condition, any combination of the signs in (2.27) is allowed. 

tational work, one can often simplify angular momentum formulas significantly. 
By appropriate application of phase manipulation rules in analytical and compu- 

2.2  TRANSFORMATIONS AND OPERATORS 

In this section we review the mathematics of transformations and operators, particu- 
larly in the contexts used in quantum mechanics, in which we discuss matrix ele- 
ments of quanta1 operators between state vectors (“wave functions”). Because there 
are both active and passive viewpoints of symmetry operations (Sections 1.2.1, 
1.3. I ) ,  and-since the operation may be considered as applied to dynamical opera- 
tors, to state vectors, or to both-it is important to describe carefully what type of 
transformation one is making. 

We discuss the possible transformations and their matrix elements in Sec- 
tions 2.2.1 (similarity transformations) and 2.2.2 (unitary transformations). From 
unitary operators we are led in Section 2.2.3 to their relation to exponentials of 
Hermitian operators, since such operators often represent observables in quantum 
mechanics. The question of whether or not operators commute is especially impor- 
tant in quantum mechanics, since in this mechanics noncommutativity implies uncer- 
tainty relations in measurements (Section 5.2). Therefore, in Section 2.2.3 we also 
discuss commutators of operators. Finally, in Section 2.2.4 we develop techniques 
for the so-called raising and lowering (ladder) operators. 

2 . 2 . 1  Similarity and Symmetry Transformations 

We first discuss the interpretation of three types of symmetry transformations, then 
present the matrix algebra of similarity transformations. Similar material is pre- 
sented in Chapter 14 of Lipkin’s lecture notes on quantum mechanics [Lip731 and, 
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with more mathematical detail, in Jordan's text on linear operators for quantum me- 
chanics [Jor69]. 

When considering state vectors and matrix elements of operators between these 
state vectors, there are three types of transformations. We assume that a physical 
system is described by its state vectors and by operators on them. The quantities 
that undergo transformations are therefore typically wave functions or operators. 
However, to maintain generality-at the expense of concreteness-we use state 
vectors, bras and kets such as ( j l  and Ik ) .  General operators will be denoted by P, 
and they are typically dynamical operators such as Hamiltonians. Operators related 
to symmetries (such as rotations) will be denoted by S, or by U if they are unitary. 
In referring to coordinates in the following, we intend the same notion as that of 
generalized coordinates in classical mechanics [GolSO], rather than only spatial 
coordinates. We now describe and distinguish three types of transformations. 

Active Transformation. As discussed in Section 1.2.1 generically and illus- 
trated in Section 1.3.1 for rotations, an active transformation by operator SA 
changes the physical system but leaves the coordinates unchanged. Thus, in the ac- 
tive viewpoint 

(2.28) 

in which Ik,) is a changed state. The operators, being expressed in terms of coor- 
dinates, are unchanged by an active transformation. What happens to matrix ele- 
ments of operators? They are usually changed, since 

(2.29) 

Compare the active viewpoint with the second viewpoint. 

Passive Transformation. A passive transformation by S p  leaves the system un- 
changed but changes the coordinate system. Thus, in the passive viewpoint 

(2.30) 

in which pS is the changed operator. Matrix elements are usually changed under a 
passive transformation, according to 

(2.31) 

In the earlier presentations (Sections 1.2.1 and 1.3.1) this is where the discussion 
ended. For calculating matrix elements, there is a third type of transformation. 
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Canonical Transformation. What happens if we change both the physical sys- 
tem and the coordinates? Let us assume that the transformations-call them S,  - 
are unitary, Sc = U ,  with the matrix representations of U being unitary (Sec- 
tion 2.1.3) so that U t  = U-’ . Then we may write 

That is, for unitary transformations the matrix elements are invariant under a 
canonical transformation, thus defined. This behavior is analogous to the invariance 
in classical mechanics of observables to the choice of coordinate systems. For ex- 
ample, a calculation (if done exactly) must give the same value in Cartesian as in 
spherical-polar coordinates. Notice that in (2.32) we use the transformed operator in 
the form UPU-1, as we justify below when discussing similarity transformations. 

Comparing Transformation Rules. A simple example showing the behavior of 
the three types of transformations clarifies the differences between them and sug- 
gests an appropriate choice for use with symmetries. 

Consider a one-dimensional and time-independent system whose wave function 
to which a transformation is applied is Hx), and let the operator be P = x ,  often 
referred to as a component of the electric dipole operator, although the electric charge 
is divided out. For the symmetry operator use parity, which reflects the x coor- 
dinate. Table 2.3 summarizes the effects of the transformations considered from 
each of the three viewpoints. 

TABLE 2.3 Effects of the three types of symmetry transformations for the ex- 
ample of the parity operator, on wave functions in one spatial dimension, on 
the x component of the electric dipole operator Gust x), and on matrix elements 
between states with wave functions y and y‘. 

Type of Effect on Effect on Effect on matrix 
transformation H x )  or ~ ’ ( x )  operator x element (w’IxIv/) 

Active w ( - x ) ,  w (-XI X -(w’Ixlw> 

Passive w(x>, w (4 -X - ( w’kl w> 
canonical w (-XI, v/  (-x) -X (w’lxl w >  

The transformation of matrix elements given in Table 2.3 requires discussion. 
Consider, for example, transformation of the matrix element in the active viewpoint, 
for which we have 
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(2.33) 

It might appear that a sign has been missed between the third and fourth lines, but it 
is accounted for by reversing the limits of integration, assuming that the integration 
is over all x .  Similar transformations of variables of integration are required to ob- 
tain the results in Table 2.3 for transformation of matrix elements in the passive and 
canonical viewpoints, as Problem 2.4 suggests that you verify. 

Note that we do not assume that the wave functions y' and y have a definite 
parity symmetry (Section 1.4.1). If this were so, the matrix elements in the active 
and passive viewpoints would be required to be zero if IJ and y had the same par- 
ity. Notice that according to the canonical-transformation viewpoint, since its matrix 
elements are invariant, one cannot use matrix elements to test symmetries-a very 
strange viewpoint! Now that we have discussed the types of transformations in the 
context of quantum mechanics, we revert to emphasizing the mathematics. 

Similarity Transformations. Suppose that we have a vector Ik) and that we 
transform it by an operator S, typically a symmetry operator such as a rotation. 
What is an appropriate transformation of a related operator P ? Assume that S has an 
inverse (for example, appropriate counter-rotations), and consider the similarity 
transformation of P by S, defined by 

ps =SPY' Ps =sps-' (2.34) 

in which the first of these expressions is an operator relation and the second is a cor- 
responding matrix relation. (We discuss such correspondences between operators 
and matrices further in Section 2.5.3 under representations of groups.) 

Although the similarity transformation rule looks complicated, and is indeed if 
individual matrix elements are evaluated, it has the following desirable properties: 

If P is unchanged by the symmetry operation, then P and S commute, so we 
have Ps = P ,  since S S 1  = I, the unit operator. 
Consider the sequence of operators QP = R and the transformation of each by 
the same operator S using rule (2.34). Then we have QsPs = Rs, so the form 
of the relation between Q, P ,  and R is left unchanged by application of S. Thus 
their relation is covariant, in the sense used in relativity. Clearly, this property 
can be generalized to the products and sums of an arbitrary number of operators 
and to their corresponding matrices. 
The matrix representation of P and its transform counterpart, Ps, have the same 
trace (sum of diagonal elements), because the trace of a matrix product is inde- 
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pendent of the order of its factors. In quantum mechanics a matrix trace mea- 
sures an expectation value, swspec ia l ly  if S is a symmetry operation-this is a 
desirable property. 
In the canonical-transformation viewpoint discussed in relation to (2.32), if 
S = U and U is unitary, then the similarity transformation rule (2.34) produces 
invariant matrix elements. 

Similarity transformations are related in the theory of groups (which we introduce 
in Section 2.5) to conjugate elements and classes. For a readable discussion with 
examples from rotations, see Sections 2.6-2.8 of Elliott and Dawber [E1179]. 

We have several reasons for applying similarity transformations to operators, the 
last one leading us to unitary transformations, as we now discuss. 

2.2.2 Unitarity: Its Interpretation in Quantum Mechanics 

The term unitary trun.$ormation refers to a similarity transformation (2.34) by a 
unitary operator, that is, by an operator U described by a unitary matrix. Thus 

P A P ,  = UPUt Ut = u-‘ (2.35) 

The most important property of unitary transformations for the study of symmetries 
is that they leave scalar products unchanged: 

(Uj lUk)  = ( j lUtUlk)  = ( j l k )  (2.36) 

When U is a quantum-mechanical symmetry operator, we interpret this property as 
invariance of the scalar products of the Hilbert-space state vectors. 

If the matrix elements of U are all real, then U is said to be an orthogonal truns- 
formation. For example, the transformation of coordinates r = (x ,y ,  z )  by rota- 
tion through angle yabout the z axis is the first Euler-angle rotation, as discussed in 
Section 1.3. I .  The transformed coordinates are r’ = (x’, y‘, z’), given by 

(2.37) 

You can verify by inspection that r’ar’ = r-r , so that A,(@) describes an orthogonal 
transformation that leaves invariant the scalar product in configuration space. 

Unitarity is a transitive property, in that the product of unitary transformations is 
unitary. Therefore, if each of two symmetry operations is unitary, then their combi- 
nation is unitary. For example, rotations about successive axes describe a unitary 
(or orthogonal) transformation because each rotation is unitary (or orthogonal), as 
just shown. 
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2.2.3 Operator Exponentials and Commutators 

We now show that there is a direct relationship of the unitary operators and matrices 
to the Hermitian operators and matrices described in Section 2.1.3. To do this we 
need to summarize properties of the exponentials of operators. 

Operator Exponentials. You are sure to be familiar with the exponential func- 
tion through the definition 

E ( P )  = e p  = C- P" 
n! 

fl=O 

(2.38) 

Suppose that we now identify P as an operator rather than a number. The notation 
Pn will then mean the operator applied n times, with Po = 1, the unit operator. The 
object E(P) is then also an operator. A similar interpretation is to be given to matri- 
ces based on operators, in which Pn is to mean the inner product of the matrix P 
taken n times, with = 1, a unit matrix of appropriate dimension. 

It is easy to see, by following the proof used when P is a number, that the in- 
verse of the exponential operator, E-1, is obtained by 

E-'(P)  = E ( - P )  (2.39) 

and that the Hermitian conjugate, a, is given by 

E t ( P )  = E ( P t )  (2.40) 

Suppose that Et = E-l; then P t  = -P, as Problem 2.5 suggests you prove in detail. 
Writing P = iH then shows that H must be Hermitian, H t  = H. The converse also 
holds, so we have the theorem 

I U = e i H  U unitary rn H Hermitian 1 (2.41) 

This result would be of interest mostly for the mathematics of our subject if it 
were not for the intimate connection in quantum mechanics between Hermitian op- 
erators as observables and unitary operators as transformations that leave scalar 
products invariant. We see from (2.41) the necessary connection between these two 
types of operators. So far we have discussed only the exponential of a single opera- 
tor, such as P or H. In order to handle exponentials of more than one operator we 
have to investigate operator commutation properties. 

Commutators and Exponentials of Operators. Consider two operators, P and 
Q, and corresponding exponentials of these operators, E(P) = e@ and E(Q) = eaQ, 
where a is a real variable. Generally, there is no simple relation between these ex- 
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ponentials and E(P + Q),  since the defining series cannot be rearranged if P and Q 
do not commute. For most of our needs, and for much of quantum mechanics, it is 
sufficient to consider commutation relations for which the commutator is proportion- 
al to the unit operator. We then have the relation, for A a number, 

The proof of this relation is suggested as Problem 2.6. Note that this relation re- 
quires that P and Q be dimensionless operators, as we will ensure in our use of it. 
The converse of the result (2.42) does not hold in general, since if the additional ex- 
ponential ea1'2 happens to produce the unit operator, then one cannot infer that 
A = 0. Examples of this behavior are given in the article by Levy-Leblond [L&82]. 

I f  P and Q commute, then A = 0, so that 

When the commutator of P with Q is proportional to the unit operator, as in (2.42), 
then it can be shown directly from (2.42), as Problem 2.6 suggests you do, that 

[ P , Q ]  = W a eQeP = ePeQe'l (2.44) 

A final result that we need for commutators relates Hermitian conjugates: 

(2.45) 

These results for operators and their exponentials are used extensively in Chap- 
ter 3 with angular momentum operators. 

2.2.4 Raising and Lowering Operators 

You will have noticed in beginning quantum mechanics that eigenvalues of interest- 
ing operators, such as Hamiltonians, often differ by equal steps. For example, the 
harmonic oscillator energy eigenvalues go by equal steps of A 61, where w is the 
oscillator angular frequency. To avoid repetitive algebra in later sections and to pro- 
vide a unity of treatment, we now consider special operators that either raise or 
lower eigenstates. 

Collectively, such operators are called shift operators or ladder operators, be- 
cause you can use a ladder to raise or to lower something. We derive here some 
general properties of ladder operators, following the treatment given by de la Peiia 
and Montemayor [Pen80]. In Section 3.4 we apply these properties to the angular 
momentum operators. 
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Algebra of Ladder Operators. Suppose that we have a Hermitian operator P in 
a linear space having a discrete spectrum, with pn the eigenvalue belonging to eigen- 
state In). Thus, we have 

Consider operators of the form 

in which the C,, are arbitrary complex numbers. These form ladder operators in the 
sense that 

so that q+ raises the kth eigenstate to the ( k  + 1)th at each application, and q- simi- 
larly lowers the eigenstate. 

The joint application of the two operators must leave the eigenvalue unchanged. 
Indeed, you can easily show (as Problem 2.7 suggests you do) that 

Because of this property, successive applications of q g T  do not move the eigen- 
state, so one might as well just use the lowest powers, as in (2.49). The flexibility 
of choice of the Ck will be exploited to make ladders for various uses. We can write 

P = a + bq-q+ + CV+T. (2.50) 

from which, by comparison with (2.49), we can deduce immediately that the eigen- 
values of P ,  the p,, in (2.46), must be related to the C, by 

(2.51) 

We now assume that the spectrum of P has a lower bound, which we label (but 
only for convenience) by n = 0. We must therefore have 

q J O ) = O  * c-, = o  (2.52) 

An upper bound, at say n = N ,  is also a possibility. If so, we must have 

q + l N ) = O  * C N = O  (2.53) 

In some applications the result (2.53) will lead to inconsistencies, showing that there 
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is not an upper bound. Figure 2.4 summarizes definitions and properties of ladder 
operators that we have discussed so far. 

?N - 
I I 

E" I 
I 
I 
I 

n=  3 

n= 2 

n =  i 

n= 0 

FIGURE 2.4 Laddcr opcrators Q+ (raising) and 17- (lowering), having a lower bound labeled by 
n = 0 and perhaps an upper bound n = N. If the operators are applied in succession, one returns to 
the same state. The right side shows an example-the quantum harmonic oscillator. whose 
energies, En, are quantized by equal steps but which have no upper bound. 

If the spectrum of ladder states is finite, then there are N unknown moduli of the 
Cn in addition to a, b, and c in (2.51), for a total of N +  3 unknowns. There are 
N + 1 conditions from (2.48), plus an overall normalization and a choice of origin, 
for a total of just N + 3 knowns. Therefore, representation (2.5 1) may be used for 
the spectrum of operator P .  

The bilinear form (2.50) suggests alternative expressions for this operator. 
First, write the ladder operators in terms of new operators a and p as 

1 q =-(a'$) (2.54) * - A  

By solving for a and p in terms of q+ and q-, then constructing matrix elements of 
operators a and p, it is straightforward to show (as Problem 2.7 suggests doing) 
that a and p are Hermitian. They may thus be useful for representing observables in 
quantum mechanics. Further, we can express the bilinear combinations in (2.50) in 
terms of their antisymmetric and symmetric combinations 

(2.55) 
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respectively. In terms of these operators we readily find that 

A = -i[a,p] s = a2 + p2 (2.56) 

so that the original operator 

P = a + b A  +cS = a - i b [ a , P ] + c ( a 2  + 0’) (2 .57)  

The second form may be convenient for identifying a: and P, and thereby the other 
operators. 

In order to calculate a spectrum of states and their eigenvalues, we need to de- 
velop relations between the eigenvalues of the various operators. Let us begin with 
A and S, having corresponding eigenvalues ak and S k ,  related by 

(2.58) 

in which the second steps of each equation follow from (2.49). We can now derive 
relations for the sk and ak by exploiting the non-negative nature of the moduli of the 
ck. Namely 

Sk +a, = Sk-, + Uk-1 = 2)Ck l 2  2 0 (2.59) 

whence comes the iteration relation 

’ k i l  - ‘k = + ‘k (2.60) 

and, using the bounds on the nonzero ck from (2.52) and (2.53), 

s, =a, s, =-a, (2.61) 

These relations determination the structure and eigenvalues of the spectrum of opera- 
tor P,  as we now show by a simple example. 

One-Dimensional Harmonic Oscillator. Having developed some formalism, 
we can now see how readily eigenvalue problems of special interest in symmetry 
and quantum mechanics can be solved. For example, the Hamiltonian of the har- 
monic oscillator in one dimension, H, may be written in terms of the momentum op- 
erator p ,  the particle mass m, the oscillator angular frequency w, and the coordinate 
x (in classical mechanics the “displacement from equilibrium”) as 

H = - p  1 2 1  + - m d x 2  
2m 2 (2 .62)  
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where we have taken 

(2.63) 

so that the antisymmetric operator 

1 A = -i[a,D] = - ( ~ w / ~ ) [ x , P ]  = -Am 2 (2.64) 

is actually an energy. By comparison of (2.64) with (2.57), we identify 

a = b = O  c = l  (2.65) 

and the eigenvalues of H ,  Ek say, are just the eigenvalues of S, namely 

(2.66) Ek = s, a, =-ha 

From (2.61) the lowest energy eigenvalue is Eo = Ww/2, while from (2.60) we see 
that the energies are equally spaced by W o. Thus, the energy spectrum of the one- 
dimensional oscillator is given by Ek = ( k  + I I 2 ) h ~ ,  as shown on the right-hand 
side of Figure 2.4. This spectrum has no upper limit, which is why the harmonic 
oscillator potential is eventually unrealistic-something has to give When you stretch 
a spring too far. To see that there is no N ,  note that (2.61) says that the correspond- 
ing energy would have to satisfy the contradictory requirement E N =  -h-o/2 < Eo. 

We return to the ladder operators in Section 3.4 to find quickly the eigenvalues 
of the angular momentum operators. The technique that we have developed is of 
quite general applicability for determining discrete spectra. 

1 
2 

2 . 3  EIGENVALUES AND EIGENSTATES 

Our purpose in this section is to summarize the definitions, properties, and uses of 
eigenvalues and eigenstates in the context of rotational symmetries. After introduc- 
ing eigenvalues of systems (Section 2.3. I) ,  we discuss the role of eigenvectors as 
basis states (Section 2.3.2), including the interpretation of eigenstates in quantum 
mechanics. Since a matrix in diagonal form exhibits the eigenvalues as its diagonal 
elements, it is important to know about diagonalizing matrices. We therefore state in 
Section 2.3.3 some theorems about diagonalization, we provide examples, and we 
derive consequences relevant to our applications. 

2.3.1 Eigenvalues of Operators and Matrices 

Suppose that we have an operator, 0, that acts on a ket Is), where the s is just a la- 
bel. For example, 0 may be the differential operator for rotation about the z axis in 
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terms of the angle @, 0 = - id /d@,  and ((@)Is) = &(@) is a function of @ that may 
depend upon the label s. For an arbitrary function, the action of 0 on f is just to give 
a result proportional to its first derivative with respect to @. For the particular choice 

where s is arbitrary but independent of @, we have 

(2.67) 

(2.68) 

Thus, the operator reproduces the function on which it operates just multiplied by a 
constant, here s. The function satisfying (2.68) is an example of an eigenfunction, 
and the numbers is an eigenvalue. 

The etymologies of eigenvalue and eigenfunction are from the German 
Eigenwerte and Eigenfunction, with eigen being German for English 
characteristic. Therefore, on crossing the seas, one also encounters the term- 
nology characteristic value and characteristic function. On crossing the land 
border into France, one may speak of proper value and proper function, from the 
French propre for one's own, which is the root of English properly. Although 
international in its spirit, science is often nationalistic i n  its letters. 

Why are eigenfunctions so interesting and useful? To answer this, consider the 
matrix elements of an operator which has state vectors It) that (in a particular repre- 
sentation, such as that with 4 above) are eigenfunctions with eigenvalue t. Consider 
the matrix elements O,t, which are given by 

o,, = (SlUlt) = t(slt) (2.69) 

Thus, the matrix elements are simply related to the eigenvalues, t ,  and to the scalar 
products (sl t) .  If these scalar products are those of orthogonal states, then the ma- 
trix of 0 will be a diagonal matrix, which can be handled very easily. 

This discussion leads us to study diagonalization of matrices in more detail. 

2.3.2 Diagonalizing Matrices 

If a matrix is in diagonal form (Section 2.1.31, then its eigenvalues are just the, di- 
agonal elements, which clearly satisfy the eigenvalue requirement (2.68). It is there- 
fore useful to be aware of four theorems that are derived in linear algebra. 

All Unitary and Hermitian Matrices Can Be Diagonalized. The first theorem 
relates to the existence of unitary similarity transforms (Sections 2.2.1, 2.2.2) that 
diagonalize certain matrices: 
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For each matrix that is unitary or Hermitian there exists a unitary 
similarity transformation that diagonalizes it. (2.70) 

A proof of this theorem is given, for example, in Wigner’s book [Wig31]. Since 
real orthogonal matrices are special cases of unitary matrices and real symmetric ma- 
trices are special cases of Hermitian matrices, the result (2.70) holds also for orthog- 
onal and symmetric real matrices. 

Notice that (2.70) claims that such a transformation exists, but it does not pro- 
vide a prescription by which the required matrix can be constructed. Indeed, both 
analytically and numerically, the construction of such a matrix is usually very diffi- 
cult, especially if the dimension of the matrix is large. 

Principal-Axis Transformation. Theorem (2.70) is sometimes called the rule 
of the principal-axis transformation. This is the guise in which it often appears in 
the classical mechanics of rotating rigid bodies, as discussed (for example) in Sec- 
tion 5.4 of Goldstein’s textbook of mechanics [Go180], where a detailed proof of 
(2.70) for real matrices is given in this context. In mechanics, the inertia tensor, I, 
is represented by a real, symmetric, 3 x 3 matrix. By a special choice of coordinate 
axes, called the principal axes, I can be rotated into diagonal form. Its three eigen- 
values are then called the principal moments of inertia. 

As a simple example of a rotation about a principal axis, consider two point 
masses m kept apart by a rigid rod of negligible mass that is rotated with angular 
speed w about a z axis passing through its midpoint 0, as shown in Figure 2.5. 

FIGURE 2.5 A rotating dumbbell has three principal axes of inertia. For one of these, the axis 
of rotation is parallel to the axis of the dumbbell joining the two masses m, while for the other two 
principal axes the axes of rotation are perpendicular to the axis of the dumbbell. 

We encounter, again in the mechanics context, the principal axis transformation 
in Section 6.5 when investigating rigid-body rotations in quantum mechanics. 
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Eigenvectors and Diagonalizing Matrices. Our second theorem on matrix di- 
agonalization states that: 

The columns of the inverse of a unitary matrix that: diagonalizes a 
unitary or Hermitian matrix form eigenvectors of the diagonalized 
matrix. 

(2.7 1) 

From this result, we see that once the eigenvalues of unitary or Hermitian matrices 
have been found, so that the matrix is in diagonal form, the matrix that produces this 
diagonal form by a similarity transformation exhibits all the eigenvectors. We use 
theorem (2.7 1) extensively throughout this book. 

Diagonalization and Commutation. Our third theorem relates to the conditions 
for diagonalizing matrices: 

A series of Hermitian matrices can be diagonalized by the same 
unitary transformation if, and only if, the Hermitian matrices com- 
mute with each other. 

(2.72) 

This theorem has many consequences for the discussion of the eigenfunctions of 
rotations (Chapters 4,6). In particular, in quantum mechanics the Hermitian matri- 
ces represent dynamical observables, as discussed in Section 2.1.3. Moreover, 
aIso in the realm of quantum mechanics, the noncommuting of such matrices de- 
scribing infinitesimal rotations gives rise to the Heisenberg uncertainty relations for 
angular momentum, as we derive in Section 5.2. 

Normal Modes. A related context in which theorem (2.72) has an important 
role is in the study of the normal modes of a vibrating system, as worked out in 
great detail in Sections 6-2 and 6-3 of Goldstein’s classical mechanics text [Go180]. 
The frequency eigenvalues (“eigenfrequencies”) are just the frequencies of the 
normal modes of vibration. 

2.3.3 Eigenvectors as Basis States 

The fourth and final theorem about matrix diagonalization and eigenvectors that 
we will need subsequently is: 

. The eigenvectors of a set of commuting Hermitian matrices form a 
complete set of functions for the set of matrices. 

(2.73) 

A major consequence of this theorem is that once we have eigenvectors for Hermi- 
tian operators, we have a set of basis states in terms of which other functions can be 
expanded. For rotational symmetries, once we have found eigenvectors for the an- 
gular momentum operators (Chapter 4), which are Hermitian operators describing 
infinitesimal rotations, we immediately have a basis for finite rotations (Chapter 6). 

Sturm-Liouville Differential Equations. In the theory of second-order linear 
differential equations, as often encountered in mathematical physics, one shows that 
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with the appropriate choice of boundary conditions the Sturm-Liouville differential 
operators have eigenfunctions that form a complete set in terms of which any func- 
tion that is piecewise continuous and in the same domain can be expanded. This re- 
sult, which is discussed in more detail in Section 5.8 of Wong’s mathematical 
physics text [Won9 11, is analogous to theorem (2.73). 

An example connecting differential equations and Hermitian matrices with the 
completeness of eigenfunctions is provided by the eigenfunctions of the differential 
operator L, = -id Id@, which has eigenfunctions eim@. For m and m‘ both inte- 
gers, the matrix elements (m’lm) vanish if they are defined by integration over the 
region 0 5 @ 5 2n and if m and m’ are either both integers or both half integers. 
(Without this restriction, 4 must range up to 4n.) The completeness result is just 
Fourier’s theorem on the expansion of functions of @ in terms of the complex expo- 
nential function. 

A discussion of diagonalization of linear operators that is both more general and 
more abstract than presented here is given in Chapter 3 of Jordan’s text [Jor69]. 
The topic appears in many disguises in a wide variety of applied mathematics. Once 
the commonality of these ideas is recognized, the underlying concepts can be 
grasped directly. 

2 . 4  SPINORS AND THEIR PROPERTIES 

Spinors are mathematical entities that are useful when describing half-integer spins 
in the context of rotations of physical systems, We discuss them only in this context 
because there is a bewildering literature on spinors and their description. 

We begin this section by defining spinors in a way appropriate for rotations, 
which is in terms of a sign change under a 2n rotation, then we summarize the ex- 
perimental demonstrations of the spinor behavior of wave functions for neutrons. 
Next, we give a very simple geometrical example of a spinor and derive its proper- 
ties under rotation, then we discuss other examples of spinors. Finally in this sec- 
tion, we give examples of physical objects that distinguish between turns through 2~ 
and 4n. 

2 . 4 . 1  Definitions of Spinors 

The definition of a spinor we use is that a mathematical entity S is a spinor if it satis- 
fies the requirement that it change sign under a 2nrotation: 

(2.74) 

Part of this requirement is the assumption that S can have a sign associated with it. 
For example, a geometric figure (such as a polygon) does not have a sign, SO could 
not be a spinor. Matrices, however, may be signed; so might be candidates for 
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spinors. From (2.74) it follows that a spinor returns to its original value after a 47r 
rotation. 

Notice that this definition of a spinor is implicit; that is, you can use it only to 
test whether you have a spinor, since it doesn’t provide a way to construct a spinor. 
You will be familiar with such implicit definitions from the example of a prime num- 
ber-a positive integer divisible only by unity and itself-and, as you know, the 
task of discovering primes (rather than constructing them) is formidable. 

The reason spinors are so interesting in the physical sciences is that we find in 
nature objects whose description by quantum mechanics requires the sign-reversal 
property (2.74). Although this property is assumed when discussing, for example, 
electron wave functions in atoms, its first direct demonstrations were provided in 
1975 in experiments with neutrons [Rau75, Wer751, as we now describe. 

Spinor Rotation of Wave Functions. The principle of the experimental method 
used to demonstrate the spinor nature of the wave functions of free spin-1/2 particles 
is as follows. As shown in Figure 2.6, thermal-energy neutrons strike a device at S 
that splits the wave front so that part is directed through a magnetic field, B, trans- 
verse to the beam. This field couples to the neutron magnetic moment and rotates its 
spin, causing a phase difference between the parts of the neutron wave function that 
have gone the different routes. When the wave fronts recombine at R there will be a 
phase difference between them, and thus interference. Therefore, as in experiments 
with photons, when the count rates between detectors C1 and Cz are compared, 
there will (in principle) be maxima when the wave fronts are in phase and minima 
when they are out of phase. 

The important question is, what is the periodicity of the interference pattern? If 
one converts magnetic-field changes into phase differences, the data (as sketched in 
Figure 2.6) show that a 47c periodicity (rather than 27r) is appropriate for neutrons. 

0 \ 
0 \ 

/ \ 
\ 0 

0 

0 

0 

0 
0 / 

0 / 
0 / o 2n 4a 6n an  

/ 
phase difference 

FIGURE 2.6 Schematic of experiment used to demonstrate the sign change of a fermion wave 
function under a 2nrotation. The setup sketched corresponds to that used by Werner et al. [Wer75]. 

Corresponding experiments with electrons do not seem to have been performed. 
We can, however, rely on the validity of calculations of atomic structure, which 
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assume the spinor nature of electrons, to convince us that an electron also shows the 
sign-reversal property of its wave function under a 277 rotation. 

2.4 .2  Representing Spinors; Rotations 

In our general treatment of rotations of angular momentum eigenstates (Chapter 6 )  
we will show that spin- 1/2 objects (primarily electrons and subatomic particles) have 
wave functions that change sign if the object is rotated through 2n. At the macro- 
scopic level of physical systems we are accustomed to an object returning to its 
original state upon rotation through only 27r. It is therefore instructive and interest- 
ing to seek examples of things that change sign under 27r rotations, that is, they are 
spinors according to our definition. 

Representing Spinors. A novel way to visualize spinors that requires under- 
standing only elementary properties of plane trigonometry is shown in Figure 2.7. 

FIGURE 2.7 Geometric visualization of a spinor associated with C, described by the line seg- 
ments 0.9 and PS, including signs. As C moves through angle B from the 2 axis, S rotates on the 
inner circle through 0/2.  Both signed quantities OS and PS are of opposite signs in 2 n  I 8 I 411 
compared with their signs in 0 I 8 I 2n. To keep track of the signs, OS and PS lie on  the sheet 
with the appropriate sign, + or - . 

Draw, as shown, the unit circle in the x-z plane centered on the origin, 0, and 
intercepting the positive z axis at the pole P .  Consider a ray OC making an angle 6 
with the z axis, so 6 is the usual polar angle. Now, bisect the angle, so that the 
point S then bisects PC because OP = OC. Thus 

asp) = cos(e / 2 )  PS(e)=sin(8/2) (2.75) 
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Notice that OS and PS are taken to be signed quantities, although this is not obvious 
in Figure 2.7. To remind us that 0s is negative for n < 8 < 2n, as is PS for 
2n  < 8 < 4n, we mark two “Riemann sheets” for the signed values of 0 s  and PS. 
As the control point C goes once around the unit circle, the point S goes from P to 0. 
A second revolution of C brings S back to P. It is straightforward to show that the 
path of S is a circle of radius 1/2. This path is traced out in a period of 4n of 8. 
Also, from (2.75), 0s  and PS change sign when 8 -+ 8+ n. Therefore, taking 
our sign rule into account, the pair (OS, PS) forms a spinor associated with C. 

In the two-dimensional representation shown in Figure 2.7 we may view C as 
marking the head of vector OC, which has unity for its magnitude and 8 for its di- 
rection. Then 0s and PS form the components of the spinor associated with OC. 
The vector OC could also be described by giving the angle that is supplementary to 
8, namely n-0, which is the angle from the south pole, P: to C. The point S’ that 
bisects P’C then defines the coordinates 0s’ and P‘S‘ of a spinor orthogonal to the 
spinor in the upper half plane, and having 0s’ = PS and P’S’ = 0s. One could 
therefore use OS’and 0s to represent this spinor, but there does not seem to be any 
particular advantage to this. 

The process of halving angles used to construct our diagram can, clearly, be re- 
peated. Thereby an object with a period of 8nrather than 4n will be obtained. Such 
an object, although mathematically well-defined, does not appear to be of interest for 
understanding angular momentum. 

Rotations of Spinors. The properties under rotations of the spinor (OS, PS) as- 
sociated with C can be worked out simply. If C is rotated through angle p from its 
position at 8, then we have the following transformations: 

e-+e+p 
OS -+ OSp = C O S ( ~ / ~ ) O S -  sin(p/2) PS 

PS -+ PSs = sin(p/z) os + cos(p/2) PS 

(2.76) 

which follow simply from the trigonometric identities for expanding the cosine and 
sign of the sum of two angles. We may write (2.76) concisely in matrix form as 

cos@ / 2) -sin@ / 2) 

sin(P/2) 
(2.77) 

Now we may consider the two-row column matrix on the right side of (2.77) as rep- 
resenting the spinor constructed geometrically in Figure 2.7. Let us name this ma- 
trix s(@). The matrix on the left side of (2.77) then represents the spinor after rota- 
tion through angle p, S(8 + p) . 
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In this matrix representation it is clear that we satisfy the basic spinor property 
S(O + 2n) = - S ( 0 ) .  Section 6.2.3 identifies the 2 x 2 matrix in (2.77) as the ma- 
trix that transforms m y  spin- 1/2 angular momentum eigenstate under rotation by p 
about the y axis, d”’(fl). Although we drew the diagram in Figure 2.7 for the x z 
plane, it is clear that in three dimensions we could have the y coordinate perpendicu- 
lar to the plane of the figure with positive direction upward. We would then be 
prepared to consider rotations in three dimensions. 

What is an appropriate spinor in a spherical-polar coordinate system? Consider 
rotations about the z axis, using an angle a from the x axis as in Figure 2.8 in order 
to be consistent with one of the schemes for describing rotations in Section 3.1.1. 

Y 

FIGURE 2.8 Rotation around the z axis (perpendicular to the figure and upward) through angle 
a, considered as positive for the anticlockwise direction. 

What is an appropriate rotation matrix corresponding to the 2 x 2 matrix in 
(2.77)? Obviously, we may just replace 0 by @, say. In Sections 3.3 and 3.4 we, 
however, require that spinors appropriate for rotations about the z axis, S?, be 
eigenfunctions of the angular momentum operator component for this axis, so that 

(2.78) 

The linear combinations of spinors that satisfy this equation are complex, namely 
OS(4) f ips(@) = e*i@’2. It is straightforward to show, as Problem 2.8 suggests, 
that for a z-axis rotation which also satisfies (2.78), the appropriate relations are 

(2.79) 

The price paid for gaining this property is the invention of a spinor that is complex- 
valued. Thus, the analog of the x-z plane spinor becomes the spinor in the complex 
y-z plane. Extensive applications of these results to angular momentum are made in 
Sections 3.3, 4.3, and 6.2. 
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Other Treatments of Spinors. There is a large and confusing variety of treat- 
ments of spinors. We categorize here some treatments most relevant to the study of 
rotations (especially for quantum systems) and at a level accessible to readers of this 
book. Geometric treatments and interpretations are provided in the articles by Payne 
[Pay521 and by Frescura and Hiley [Fre81]. The connection to relativity is made in 
Sections 41.5-41.9 of the book on gravitation by Misner, Thorne, and Wheeler 
[Mis73]. Spinors from the algebraic viewpoint are discussed extensively at a more 
advanced level in the monographs by Cartan [Car661 and also by Altmann [Alt86], 
who emphasizes their relations to quaternions and group theory. 

Spinors are also often presented in the context of objects that distinguish be- 
tween turns through 2n and 47r, as we now summarize. 

2 .4 .3  Objects That Distinguish Turns through 2n and 4n 

Discussions of spinors, the mathematical entities that we introduced in the two pre- 
ceding subsections, usually go hand-in-hand with presentations of objects that dis- 
tinguish turns through 2n from turns through 4n. What I mean here by “object” is 
something concrete (but not necessarily made from this construction material) that 
looks different after a 2nrotation but which can be restored to its original appearance 
after a 4n rotation. This is to be distinguished from spinors-mathematical entities 
such as wave functions which change sign after a 2nrotation. 

The major purpose of inventing such objects, one of which is patented [Ada71], 
is to show their analogy to spinors. They are often known collectively as “Dirac’s 
strings.” Since their connection with spinors is by analogy rather than explanatory, 
I will only catalog some presentations of them. A clear discussion of Dirac’s con- 
struction is provided in Section 2.3 of Biedenharn and Louck’s treatise on angular 
momentum [Biegla]. Several mechanical devices and a light prism that exhibit the 
4n property are discussed by Rieflin [Rie79], whereas Bolker [Bo173] has analyzed 
the string entanglement and disentanglement by using topology. 

2 . 5  A PRIMER ON GROUPS 

The purpose of this section is very modest: It introduces key concepts of groups as 
they are used to analyze symmetry properties of physical systems, but does not 
prove any theorems. This is done so you can appreciate the connection between 
abstract group theory and the rotation group-the essential group for angular 
momentum. Having understood the connection for this group whose examples are 
concrete and intuitive, you will be better prepared to understand and use groups for 
systems that are more abstract. 

We begin with examples of properties of physical systems that might be de- 
scribed by the same mathematics. For various discrete transformations we can make 
tables showing the effects of the transformations, and from these examples we are 
led to consider the mathematical definition of a group. Key terminology of group 
theory is introduced in Section 2.5.2, followed by the idea of a group representation 
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(Section 2.5.3). Interesting groups and their applications in the physical sciences 
are described in Section 2.5.4. Finally in this primer we introduce the notion of ir- 
reducible representations (Section 2.5.5) ,  which is related to the block-diagonal 
matrices discussed in Section 2.1.3. 

Our brief treatment is sufficient for this book, since we develop angular momen- 
tum by using preferentially algebraic rather than group theoretical methods. For 
these there are several introductory-level books, such as Armstrong's text on groups 
and symmetry [Arm88],  the programmed-learning text by Vincent [Vin77] empha- 
sizing group theory applied to molecular symmetry, plus two books on group theory 
applied to molecular structure and chemical systems by Ferraro and Ziomek [Fer75] 
and by Bernal et al. [Ber72]. The latter book has many stereoscopic views of 
molecules that illustrate symmetry groups. 

At a more technical level, the text by Hamermesh [Ham621 applies group theory 
to crystals, atoms, and nuclei, that by Tinkham [Tin641 emphasizes applications to 
condensed-matter physics, while space groups applied to solids are described in de- 
tail by Burns and Glazer [Bur90]. Extensive treatments of group theory for physical 
systems are given in the text by Elliott and Dawber [El1791 and, with more emphasis 
on formalism, in the two books by Cornwell [Cor84]. 

2 .5 .1  Group Examples and Definitions 

We begin by considering simple examples of symmetry transformations and discov- 
ering their common features. This will suggest the appropriateness of the definition 
of an abstract group. 

Symmetry of NH3. The symmetry transformation we use as our working ex- 
ample is from geometry, namely, an equilateral triangle with an object out of plane 
along its symmetry axis. This example has a physical realization in the geometry of 
the ammonia molecule, NH3, as sketched in Figure 2.9. 

FIGURE 2.9 Geometry of ammonia molecules, NH3. Each nitrogen atom, N, lies above or be- 
low the center of the equilateral triangle formed by three equivalent hydrogen atoms, H. Between 
the left- and right-hand views H atoms have been interchanged. 
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In this example, as soon as we believe that all H atoms are equivalent (in spite of 
the labels on them) it necessarily follows that they form an equilateral triangle and 
that the position of the N atom must be along a line passing though the center of this 
triangle and perpendicular to the plane of the H atoms. Symmetry alone cannot tell 
us the spacing between the atoms, since this depends upon the dynamics of their 
average attraction. 

A ball-and-stick picture such as Figure 2.9 is based on two assumptions: that 
each atom is treated as a particle, and that it is at rest. According to quantum me- 
chanics, neither assumption is strictly valid. Thereby, the rigid geometric struc- 
ture shown in Figure 2.9 is interpreted as describing the time-average positions 
of the centers of mass of the atoms. With this interpretation the equivalence of 
the H atoms again demands equality of the lengths of the sides of the triangle. 
Note that the lines joining atoms are drawn only to indicate schematically the di- 
rections of the predominant attraction between them. 

The following four examples of symmetry transformations evolve from the equi- 
valence of the vertices or the sides of an equilateral triangle. We do not invoke fur- 
ther symmetries in the NH3 molecule that are implied by the position of the N atom, 

Example 1 (Rotations). Discrete rotations of an equilateral triangle about the 
perpendicular axes through the center of the triangle are shown in Figure 2.10. 
Labels have been put at the vertices so you can follow the transformations the 
triangle has undergone. 

FIGURE 2.10 Discrete in-plane rotations of an equilateral triangle about its center. 

The discrete rotations considered are 

E = no rotation 
Rl = rotation by 2 d 3  
R2 = rotation by 4x13 

(2.80) 

For purposes of checking this figure, it is helpful to notice that R2 is the same as ro- 
tation in the opposite sense by 2d3,  since 4 d 3  = 2n- 2x13, 

To summarize the resuits of these rotations, we can make a table, with each 
element in the table giving the result of choosing a rotation from the rows and a 
rotation from the columns, as shown in Table 2.4. 
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TABLE 2.4 Effects of consecutive discrete rotations on the equilateral triangle 
in Figure 2.10. 

E R1 R2 

The table is to be interpreted as follows. Choose a row, say R2, then a column, 
say RI.  The order of choosing is usually important, but not so here. The element in 
the matrix gives the result of R2R1, with the rightmost element applied first. Here, 
as shown in Figure 2.10, the result is identical to no change at all, namely E. (We 
use an E that stands for the German Einheit, identity.) Notice the following prop- 
erties in this example: 
(1) In each row of the table each element appears once and only once. 
(2) When three elements are combined in sequence it doesn't matter which combi- 
nation is made first. For example, (RrR2)Rl = R I ( R ~ R I ) ,  so that the operations 
are associative. 
(3) Combining E with any other element just gives that element. 
(4) For each element there is another element that just reverses its'effect to produce 
no change, E. 

Example 2 (Permutations). We present Example 1 (Figure 2.10) as if we are 
rotating the triangle. Alternatively, we could keep the triangle fixed but permute the 
vertex labels 1, 2, 3. (Actually, this is how the figure was drawn; who can tell 
otherwise?) For the NH3 molecule in Figure 2.9 the permutations correspond to 
exchanging the positions of two H atoms. The permutations considered are 

E = no permutation 
R1 = the cyclic permutation 1+3+2+1 
R2 = the cyclic permutation 1+2+3+1 

(2.8 I )  

Clearly, Table 2.4 would be unchanged, since only the interpretation is different. 
Examples 1 and 2 are therefore essentially the same, in the sense that if we under- 
stood the transformation properties for one we would immediately have the proper- 
ties for the other after making the translations given in (2.80) or (2.8 1). 

Example 3 (Mirror Reflections Plus Rotations). Consider mirror reflections 
of the triangle as shown in Figure 2.1 1. In NH3 each reflection is equivalent to a 
parity symmetry (Sections 1.2.1, 1.4.1) between two H atoms, as shown in the 
left- and right-hand views. Let Mi denote a reflection in a mirror perpendicular to 
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E 

MI 

M2 

M3 

the plane of the triangle, passing through vertex i = 1, 2, or 3 and through the bi- 
sector of the opposite side. The effects of such reflections are summarized in 
Table 2.5. 

E MI M2 M3 
MI E ? ? 

M2 ? E ? 

M3 ? ? E 

FIGURE 2.11 Reflections of an equilateral triangle in mirrors lying along the bisectors, which 
are shown dashed. 

When a given reflection is repeated it produces thereby just the identity, that is, 
Mi M i = M? = E. But any other combination of reflections does not give another 
reflection. Therefore, the properties (1)-(4) that we noticed for rotations are not 
satisfied, because elements other than the Mi occur in Table 2.5. 

TABLE 2.5 Effects of consecutive mirror reflections on the equilateral triangle 
shown in Figure 2.11. 

What are the elements indicated by question marks in Table 2.5? If we look at 
M2M1 in Figure 2.1 1, we see that it produces the same effect as the 21d3 rotation, 
namely R1. Indeed, all the elements in Table 2.5 with a ? are either Rl  or R2. 
Thus, by considering the combined set of elements of these two rotations and tlie 
three reflections we obtain a matrix of combinations, as in Table 2.6, satisfying all 
the properties (1)-(4) above. Problem 2.9 suggests that you verify this table for 
yourself. 

In Table 2.6 we see a repetition of Table 2.4 embedded in the upper left corner 
and marked off by lines. If we comprehend the properties of the whole table we will 
also have found out the properties of this subtable. 
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TABLE 2.6 Effects of consecutive discrete rotations and reflections on an equi- 
lateral triangle. 

I E  RI  R2 Mi M2 M3 

1 

Example 4 (Continuous Rotations). In Examples 1 through 3 we consider a 
finite number of discrete actions that transform an equilateral triangle into itself. In 
particular, the rotations in Example 1 were through definite angles (multiples of 
2d3). What properties arise if rotations about the center through arbitrary angles 
are considered, as shown in Figure 2.12? 

FIGURE 2.12 Continuous rotations of an equilateral triangle about its center. 

For continuous rotations we note in Figure 2.12 that rotation through an arbi- 
trary angle reproduces the shape of the triangle but does not reproduce its orientation 
in space. Exceptions to this occur for no rotation (top left), rotation through an inte- 
ger multiple of 27c (as at top right), or for an integer multiple of 2 d 3  (as at bottom 
right). To what extent do the properties of the other examples apply to this continu- 
ous transformation? 
(1) One cannot make a table of element combinations, if we assume that different el- 
ements are described by different angles of rotation, because there are indefinitely 
many such angles. Imagine, however, that you had angles that were just very 
closely spaced, then the combination of two rotations would still be a rotation. 
(2) The operations of continuous rotations are associative, as for the other exam- 
ples. (The formal proof of this is suggested as Problem 2.10.) For rotations about 
the same axis, the rotations also commute. 
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(3) The identity element (no rotation) combined with another rotation is just that ro- 
tation element. 
(4) Every rotation can be inverted (by rotating through the negative of its angle) to 
produce the identity, E. 

Thus, apart from the fact that one cannot make a finite table, continuous rotations 
behave similarly to the previous examples of discrete rotations, permutations, and 
reflections. This commonality of properties leads us to the definition of a group. 

Formal Definition of a Group. We formalize the preceding examples by writ- 
ing down the conditions that a set, G ,  of elements GI ,  G2, . . . and a relation be- 
tween them (conventionally called “multiplication”) must satisfy in order that G form 
a group. The result of the relation between two elements is called the “product.” 
(Note that the set of elements, the group, G, is written using italics, whereas the 
elements are in Roman type, Gi.) The conditions that must be satisfied to form a 
group are summarized in Table 2.7. 

TABLE 2.7 Requirements for a set of elements and an operation between them 
(“product”) to form a group. 

11 (1) The product of any two elements is also an element in G. II 
(2) Products are associative; (GjGj)Gk = Gi(GjGk) for every Gi, Gj, Gk 11 inG. 
(3) There is an identity element, E, whose product with any other element just 

(4) For each element Gj there is an element, called the inverse of Gj and written 
gives that element; EGj = Gi for every Gj in G .  

as GY1, such that GiG;’ = E. 

Looking back at our four examples, we see that each set indeed forms a group, 
as we summarize in Table 2.8. 

TABLE 2.8 Elements and relations for the examples of groups. 

Example: 1 2 3 4 
~~~ ~~ 

Discrete Permutations Reflections Continuous Elements 
rotations of vertices and rotations rotations 

“Multiplication” Successive Successive Successive Successive 
relation rotations permutations rotations rotations 

Finite Finite Finite Continuous 
Abelian Abelian non-Abelian Abelian 

Type of group 
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Now that we have formally defined a group, we can establish some often-used 
terminology and apply it to our examples. 

2 .5 .2  Group Theory Terminology 

Here we define some terms used in group theory that are encountered in subsequent 
discussions. 

Group Multiplication Table. For finite groups this is a table, such as 
Tables 2.4-2.6, showing the products of every pair of elements. Recall that 
“multiplication” is usually not arithmetic multiplication, as Table 2.8 shows. 

Order of a Group. This is the number of elements in the group, including E. 
For example, the group in Table 2.4 is of order 3, while Table 2.6 is the group- 
multiplication table for a group of order 6.  

The smallest group has only a single element, E by itself. The largest finite 
group that is simple (cannot be decomposed into smaller entities of the same kind) is 
the “monster group,” also called the “friendly-giant group.” It is a group of order 
246320597611213317~19123129~31~41~471591711 = 8 x 1053. Its discovery and 
elucidation are discussed in an introductory-level article by Gorenstein [Gor85]. 

Subgroup. This is a subset of elements in the group that themselves form a 
group. For example, the elements in the top left corner of Table 2.6 form a sub- 
group of discrete rotations in the rotation-plus-reflection group. Note that a sub- 
group must contain the identity element, E. 

Abelian Group. A group is Abelian if GiGj = GjGi for every pair of elements 
in the group, that is, all its elements comrnure (produce a result independent of their 
order). Otherwise, a group is called non-Abelian. For example, the groups in Ex- 
amples 1, 2, and 4 above are Abelian, but rotations and reflections don’t usually 
commute, as you can see in Table 2.6 and can verify for yourself using a mirror and 
rotating a small object near it. 

In two dimensions, successive rotations about the same point commute, whereas 
in three dimensions rotations about different axes do not commute, as discussed in 
Section 1.3. Therein originates the complexity and fascination of angular momen- 
tum. 

Homomorphism and Isomorphism. Suppose that two groups, G and G‘, are re- 
lated as shown schematically in Figure 2.13. Here two or more elements in G are 
mapped onto each element of G’. In the homomorphism shown in the upper part of 
the figure, elements of G map into elements of G’, with the following correspon- 
dence between elements: 
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G homomorphic to G” 

I G isomorphic to G” 

FIGURE 2.13 Homomorphism of group G onto group G’, and isomorphism of G to G”. 

Thus, the relation between G and G’ is a many-to-one relation. On the other hand, if 
the relation of group elements between G and G“ is one-to-one, as shown in the 
lower part of Figure 2.13, then the two groups are said to be isomorphic. They are 
then essentially the same group, differing only by the naming of the elements, their 
ordering, and the operations. The ideas of homomorphism and isomorphism are 
important in discussion of representations of groups, introduced in Section 2.5.3. 

Direct-Product Groups. In Section 2.1.2 we discuss direct products of matri- 
ces and their use in quantum mechanics to characterize independent subsystems of a 
total system. Further, one may often apply two or more symmetry operators inde- 
pendently, so their group elements commute. Thus, if one group is G = { G I ,  G2, 
...} and the other is G’={G;, G;, ...}, then their direct product is 
G 0 Gf = {G,G;, G,G;, . . ., G,GI, . . .}. Which group appears first does not matter 
because of their independence. The groups must have in common the identity ele- 
ment E, then the set of direct-product elements indeed forms a group, according to 
the requirements given in Section 2.5.1. 

2 .5 .3  Representations of Groups 

Many of the properties of a group of symmetry operations can be understood just by 
knowing the abstract group to which they belong. For applications to physical sys- 
tems, however, groups are used mainly to deduce algebraic and numerical properties 
associated with symmetry operations. For example, when investigating symmetries 
of the Hamiltonian of NH3 one will probably want to estimate the eigenenergies of 
its vibrational modes and the transition rates between various vibrational states. 
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To relate abstract groups to algebraic and arithmetic properties one therefore 
makes homomorphisms of groups onto matrices, since the latter are well under- 
stood and are very well suited to numerical calculations. More specifically, the 
product, or “multiplication,” of group elements required by the first condition for a 
group is associated with conventional inner-product matrix multiplication discussed 
in Section 2.1.2. 

Although representations may be made in terms of any set of linear operators, the 
use of matrices is most common in practice because of their well-understood 
properties. The definition that is more general is discussed, for example, in 
Sections 3.3 and 4.1 in Elliott and Dawber [Ell791. 

The relations between a group G and its representations (there may be several) 
are summarized in Figure 2.14. 

FIGURE 2.14 Correspondence between the elements of a group and matrices M(Gi) that form a 
representation of the group. There is always more than one representation of a group, so there are 
several layers in the right-hand panel, as indicated. 

We see that the set of matrices in the figure forms a group (as you are invited to 
prove in detail in Problem 2.1 l), according to the requirements summarized in 
Table 2.7. First, associated with one or more group elements Gi is a single non- 
singular square matrix M(GJ of dimension d x d, where d is called the dimension 
of the representation. Second, the product of two elements in G maps into the 
product of their corresponding matrices. Third, the identity element E is represented 
by the unit matrix of dimension d. Fourth, the inverse of a group element Gi is rep- 
resented by M-l(G& 

A detailed proof of the third relation that M(E) = l d  requircs familiarity with 
matrix eigenvalues and determinants. The method of proof is indicated by, for 
example, Cornwell [Cor84, Section 4. I]. The relation between inverses in the 
group and its representation then follows directly upon using G, = G,:’ in the 
second relation. 

Note that Abelian groups have representations in which the matrices commute, as 
you can convince yourself from the second property in Figure 2.14. If the relation 
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between a group and one of its representtiltions is an isomorphism (as discussed in 
Section 2.5.2), then the representation is said to be a faithful representation. 

Examples of Representations. We now consider three simple examples of rep- 
resentations that involve the groups discovered in Section 2.5.1. The first example 
is common to all groups-the identity representation, in which every element of a 
group maps into the 1 x 1 matrix consisting of the single element unity. This trivial 
one-dimensional representation is often useful to know. 

The second example is for the discrete rotations of an equilateral triangle, as in- 
troduced in Section 2.5.1. The name of this symmetry group is C3 (cyclic group of 
order 3). 

Note that a group of order 3 is the smallest possible group except for the group of 
order 1 containing only the identity, since one cannot satisfy the group conditions 
with only two elements of which one is E. Try it and see for yourself! 

As the group-multiplication table (Table 2.4) shows, this is an Abelian group, so its 
representations must be commuting matrices. Since these form a group, they are ei- 
ther of order 1 (the identity representation) or of order 3, since order 2 is not allowed 
and the order of the representation cannot exceed that of the original group because 
the homorphism from G goes onto the representation. (See Figures 2.13 and 2.14 
to clarify this.) 

One way to discover a representation of C3 is to note that if we had a vector 
( x ,  y) attached to the triangle, then it would rotate through 2 d 3  under R1 and under 
4x13 under R2. Thus, one matrix representation is of dimension 2 and has M(E), 
M(R1), and M(R2) given by 

M(E)=[l 0 1  O] 

cos2nI3 -sin 2x1 3 45 

sin2nl3 cos2nI3 _- 
2 

M(R, 1 = (2.83) 

It is straightforward to verify, as Problem 2.12 suggests you do, that these three 
matrices have the same properties under inner-production multiplication as the group 
multiplication table given in Table 2.4. Thus, we have discovered a representation 
of C3 that is of order 2. 

Next, consider the reflections shown in Figure 2.1 1. By themselves the three 
reflections do not form a group, as seen by Table 2.5. However, as Table 2.6 
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shows, if we can find a 2 x 2 matrix representation of the Mi (i = 1, 2, 3) such 
that their products produce the matrices for R1 and R2, then we have a representation 
of the group C3”. Consider Figure 2.15, which is a more detailed view of the re- 
flection M3, which was not shown in Figure 2.1 1. 

FIGURE 2.15 The reflection M3 for a mirror (shown dashed) through vertex 3 and the center of 
the triangle, which is the origin of the x-y coordinate system shown. Here 4 = d 6 .  

There are several ways to describe the reflections, but we need to choose a ma- 
trix description that is consistent with the group multiplication, Table 2.5. Since the 
rotations therein are about the center of the triangle, it is clear that the origin of a 
Cartesian coordinate system must also be at the center. Then, to be conventional, 
we place the x and y axes as shown in Figure 2.15, which forces us to the foIlow- 
ing choice of 2 x 2 matrix for the reflections: 

(2.84) 

with the angles for the three reflections chosen as $1 = -?rl6, $2 = nJ2, and 
$3 = z/6. You may readily verify (as Problem 2.12 suggests you do) that the 
group multiplication table, Table 2.6, coincides with that for the representation ma- 
trices (2.83) and (2.84). We have therefore found a faithful representation of C3,,. 

After these exercises in geometry, reconsider the physical example of the am- 
monia molecule, as sketched in Figure 2.9. We have not yet described the full 
symmetry of this object, since we looked only at the symmetry in the plane of the 
three H atoms, that is, the symmetry of (hypothetical) H3. With the N atom either 
above or below this plane we move into three dimensions and the reflection symme- 
try of the N atom in the plane of the H atoms. The extended group thereby obtained 
is discussed in the book and articles by Wolbarst [Wo177, W01791. 

Extensive discussions of group representation theory at a level suitable for the 
physical sciences are given in Chapters 3-5 of [Ham62], in Chapter 3 of [Tin64], 
and in Chapters 4 and 5 of [Cor84]. We introduce only one more topic (irreducible 
representations, Section 2.5.5), but postpone this until we have discussed several 
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interesting groups and have glimpsed the power of this mathematics for elucidating 
the dynamical consequences of symmetries in physical systems. 

2.5.4 Interesting Groups and Their Uses 

We now make a brief tour to view groups commonly used when describing symme- 
tries of physical systems. The first examples are geometric, beginning with discrete 
rotations in two dimensions (regular polygons) and advancing to three dimensions 
(regular polyhedra). Collectively, these are called symmefry groups. 

We then move on to the basic continuous groups. Composite groups-common 
combinations of the basic groups-are then surveyed. Finally, we give examples of 
groups used extensively in physics, especially in quantum mechanics and relativity. 
Rather than characterizing each group and its applications in detail, we reference 
texts whose main emphasis is group theory and its applications to physical systems. 
Thereby you can explore in more detail those groups that you find interesting, while 
still having some acquaintance with most of the frequently used groups. 

Point Groups. These groups describe symmetries under rotation through a def- 
inite angle about an axis and mirror reflection in a plane that leave at least one point 
in the body fixed. Together with translation symmetries in two and three dimen- 
sions, discussed in Section 1.2.2, they make up the symmetry group of a body. In 
two dimensions we have the regular polygons with E edges ( E  = 3,4 ,  or 6) ,  shown 
in Figure 1.8. Every rotation through a discrete angle 8 = 2 a  n/E leaves the ap- 
pearance of such a polygon unchanged. Therefore, the group of order n that 
consists of such successive rotations, called Cn (the cyclic group), is a symmetry 
group of the regular polygons. If an object, such as a molecule, also has n C2 axes 
of symmetry at right angles to the principal Cn axis then the symmetry group is 
called Dn, the dihedral group. 

Now consider the extension to three dimensions. Suppose that we have a regu- 
lar polyhedron with F faces ( F  = 4, 6, 8, 12, or 20), as shown in Figure 1.9 and 
summarized in Table 1.2. The appearance of a regular polyhedron will be un- 
changed by any rotation about the center through a discrete angle 19 = 2m/F. The 
point groups describing the symmetries of the Platonic solids are the tetrahedral, 
octahedral, and icosahedral groups, T, 0, and Y, respectively, since the symmetry 
groups of the cube and tetrahedron are isomorphic. 

To the point groups may be added other discrete groups, such as reflections with 
an n-fold symmetry axis, S2n, and the permutation of n identical objects, P,. These 
discrete groups are summarized in Table 2.9 together with references to extensive 
treatments of them. 

Continuous Groups. As discovered from the examples in Section 2.5.1, one 
may have groups in which the parameters (such as the angles in the above examples) 
are continuous rather than discrete. All that one loses thereby is the ability to make a 
group table and the finiteness of the number of group elements, so that the group 
does not have an order. Such groups are said to be continuous. 
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TABLE 2,9 Basic groups common in the physical sciences. The abbreviation 
and usual name of each group are in given the first and second columns (name 
in italics), then we note typical areas in physical sciences where the group is 
used. The rightmost column gives references with extensive discussions of the 
group. Chapter numbers are in parentheses. 

Basic group Name Typical applications References 

Discrete groups 

Cn 9 Cyclic rotation of 
n = 1,2,3,4,6 order n 

Dn, Dihedral; Cn plus 2- 
n = 2,3,4,6 fold perpendicular 

axis 

T Tetrahedral 

0 Octahedral 

Y Icosahedral 

S2n3 Reflection with 

P ,  or& Permutation of 

n =  1,2,3 n-fold axis 

n objects 

Ham62 (2), 
El179 (9) 

Bur90 
Crystals and 
molecules 

Fer75 1 )  

Pauli principle El179 (17) 
(n= 2) 

Continuous groups 

I N 9  

RN, Rotation in Angular El179 (7) 

L Lorentz invariance Relativity El179 (15>, 
Cor84 (17) 

Translation in Solids and El179 (15), 
N= 1,2,3 N dimensions relativity Cor84 (17) 

N =  1,2,3 N dimensions momentum 

Two geometric examples of continuous groups are IN for translations in N di- 
mensions and Q for rotations, as summarized in Table 2.9. In the physics of spe- 
cial relativity, Lorentz transformations of space-time coordinates leave the length of 
the space-time four-vector invariant and form a group, called the Lorentz group L. 

Matrix Groups. Groups whose elements are matrices with some of the special 
properties discussed in Section 2.1.3 are of very general use in the physical sci- 
ences, especially in quantum mechanics for the subatomic physics of nuclei and ele- 
mentary particles. We therefore summarize in Table 2.10 the nomenclature for 
matrix groups. 
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TABLE 2.10 Matrix groups of general use in quantum mechanics. 

Matrix group Matrix name Property Example 

(N) or subscript N Dimension of square 
matrices 

O(N) Real orthogonal 6 o = l ,  O(4) 

WN) Unitary u+u= 1, U(2) 

sx Special of type x dets= 1 SO(3) 

For each matrix group in Table 2.10 the number of elements (matrices) is not 
specified, but each matrix must be square and of the same dimension, N .  As N 
changes, the properties of the group change in significant ways. For example, with 
N given, the set of all orthogonal matrices forms a group, as does the set of all uni- 
tary matrices. If one chooses subsets with determinant +1, rather than -1 (which is 
also allowed for orthogonal matrices) or exp(i 0) with 0 a real phase (which is al- 
lowed for unitary matrices), then the matrix groups SO(N) and SU(N) are obtained, 
as subgroups of O(N) and U(N),  respectively. The proof of these claims is sug- 
gested as Problem 2.13. 

Group theory in quantum mechanics and elementary particle physics is domi- 
nated by groups represented by unitary and orthogonal matrices, such as those in 
Table 2.10. Of course, to understand nature requires both the grammar of mathe- 
matics and the poetry of discovery and interpretation. 

Composite Groups. If one combines two symmetry operations, such as rota- 
tions and reflections, one usually obtains a larger group, called a product group or 
composite group. For example, the cyclic group C3 and reflections in a vertical 
plane (v) produce the group C3,,, investigated for the equilateral triangle or NH3 
molecule in Sections 2.5.1 and 2.5.3. Similarly, reflections across the plane of the 
triangle viewed as horizontal (h )  would produce the group C3h for NH3 because of 
the reflection symmetry of the position of the N atom. Table 2.11 shows several 
composite groups similarly formed, both for the point groups and for some continu- 
ous groups used to describe symmetries in physical systems. 

Groups in Physics. We now specialize our examples of groups to some used 
extensively in physics, especially those closely related to angular momentum and its 
analogs in spaces other than three dimensions. These continuous groups are sum- 
marized in Table 2.1 1. 

and G, have matrix 
representations that are discussed in Section 1.3 and are already familiar. They are 
listed in Table 2.12 with other examples of symmetry groups used in subatomic and 
relativistic physics. The Lorentz group, f,, is of importance in special relativity, and 
Problem 2.14 suggests a simple example which shows the nature of the Lorentz 
group and its isomorphism to Q. 

The groups describing rotations in 2 and 3 dimensions, 
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TABLE 2.11 Composite groups used in the physical sciences. The abhrevia- 
tion and usual name of each group are given in the first and second columns 
(name in italics), then we note typical applications in which the group is used. 
The rightmost column gives a textbook where the group is discussed exten- 
sively, with chapter numbers in parentheses. 

Composite group Name Typical applications References 

Continuous groups 

E N 9  

N =  1, 2, 3 

T 

X plus horizontal 

X plus vertical 

X plus diagonal 

reflection 

reflection 

reflection 

Euclidean in 
N dimensions 
(translation plus 
rotation) 

Poincare' group 
(Lorentz plus 
translation) 

Tin64 (4), 
El179 (9), 

Bur90 
CQ'StdlS Lud88 (lo), 

Ell79 (lS), 
Cor84 (17), 
Bur90 

Solids 

El179 (15), 
Relativity Cor84 (17) 

The special unitary group in two dimensions, SU(2), and the special orthogonal 
group in three dimensions, S0(3) ,  are groups that form the mathematical foundations 
of angular momentum. For example, the degeneracy of the energy levels in a llr 
potential (such as in the hydrogen atom) are related to symmetries of the Schrodinger 
equation with this potential in a four-dimensional orthogonal space, 0(4), as we dis- 
cuss in Section 7.1.4 and as Englefield [Eng72] describes very completely. 

Subatomic Physics. Symmetry investigations in subatomic physics (nuclei and 
elementary particles) that assume charge independence also use the SU(2) group. 
The model of the electromagnetic-plus-weak interaction involves this group in a di- 
rect product with the one-dimensional group of unitary transformations, U( I), that 
is, SU(2)  x V( 1). Finally in Table 2.12 are the groups SU(3)  and SU(6)  which are 
used in the quark model of mesons and hadrons to describe the observed symmetry 
properties. A collection of reprints on symmetries in elementary-particle physics is 
provided by Froggatt and Nielsen [Fro9 11. 
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TABLE 2.12 Symmetry groups used in subatomic and relativistic physics. 
The rightmost column gives references (chapter numbers in parentheses) that 
have extensive technical discussions of the group. 

Group Applications References 

Rotation of vector and tensor operators 
in 2 and 3 dimensions 

Lorentz transformations in 
special relativity 

Angular momentum 

Degenerate energies of H atom 

Isospin and charge independence 

Electromagnetic plus weak interactions 
(electroweak interaction) 

Spectroscopy of hadrons, 
Quantum Chromo Dynamics 

Quark-model symmetries 

El179 (7) 

El179 (1 5) ,  
Cor84 (17) 

El179 (18.13), 
Alt86 (6) 
Eng72, Jud75 (3), 
El179 (18) 

El179 (lo), (201-84 (10) 

Cor84 (19) 

Gib76 (lo), El179 (1 1), 
Cor84 (lo), Lud88 (14) 

Gib76 (1 1), El179 (12) 

2 .5 .5  Irreducibility of a Representation 

In Section 2.5.3 we introduce the ideas of groups being mapped onto matrices, as 
schematized in Figure 2.14. We now further the connection by introducing the 
topic of irreducible representations and relating them to the properties of block-diag- 
onal matrices considered in Section 2.1.3. 

Suppose that the matrices forming a given representation can be expressed in a 
block-diagonal form in which each of the submatrices is square and of dimensions 
s1 x sl, s2 x s2, and s3 x s3, with s1 + s2 + s3 = d ,  the dimension of this representa- 
tion. There should be at least two such matrices, but there may be three or more, as 
shown in (2.85). 

Further, the dimensions of the representation matrices must be the same for all 
elements Gi in the group G. It is straightforward to verify that each submatrix, Mi, 
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forms a representation of the group according to the requirements summarized in 
Figure 2.14. Thus, the matrices of the group products satisfy 

M,((;~G~)=M,(G,)M,(G~) r=1,2 ,  ... (2.86) 

so that other representations of G that are smaller (of lower dimension) have been 
obtained. The original representation matrices M of G are therefore said to form a 
reducible representation of the group G. 

To be technically more correct, in order to be a reducible representation the upper 
off-diagonal submatrices in M need not be zero, and the representation needs only 
to be able to be converted to such a form by a similarity transformation. See, for 
example, the discussion in Section 4.4 of Cornwell [Cor84]. 

If the representation has been divided into block-diagonal matrices so that there are 
no smaller such matrices, then the representations are said to comprise irreducible 
representations of G.  

Why are irreducible representations so useful for investigating symmetries of 
physical systems? When discussing block-diagonal matrices in Section 2.1.3 we 
show that for many purposes the matrix blocks (irreducible components) can be 
treated as matrix elements with all the simplifications inherent in diagonal matrices. 
This should not confuse one into thinking that the matrix blocks are themselves nec- 
essarily diagonal, since they generally are not so. This is made particularly clear in 
the example of the irreducible representations of the angular-momentum operator 
components, Jx, J y ,  J,, in Section 3.4.3. Another reason to find and use irreducible 
representations is that the matrices M, are smaller than those of the original represen- 
tation M, so manipulating them is usually less complicated. Irreducible representa- 
tions are especially important for spherical tensor operators, which we introduce in 
Chapter 8. 

Technical aspects of identifying and classifying irreducible representations are 
well described in Sections 4.5-4.21 of Elliott and Dawber [El1791 and in Chap- 
ters 4 and 5 of Cornwell [Cor84]. 

2 . 6  MATHEMATICS, GROUPS, 
AND THE PHYSICAL SCIENCES 

If you riffle through the pages of an unfamiliar book on your science library shelves, 
without looking at the book title, you can usually tell the discipline area just by esti- 
mating the ratio of words to figures. In a mathematics book, it usually considered 
an intellectual weakness on the part of the author to provide a figure. On the other 
hand, from physics to chemistry to the life sciences one finds increasing use of fig- 
ures. When you began to specialize your studies, you probably had to decide 
whether to concentrate on mathematics or on the physical sciences. Such a bifurca- 
tion of interests was probably conditioned by your predisposition toward an abstract 
or a visual mindset, respectively. For example, this book on rotational symmetries, 
written by a physicist for those in the physical sciences, has many figures because 
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visualizations help us to think clearly about symmetries. 
Most of the mathematics you have used so far is related to quantitative measure 

of relative size, of rules (functions) for calculating numerical relations, and of tech- 
niques for calculating rates of change (differential calculus) or for estimating total 
effects (integral calculus). By contrast, much of group theory is not about nurneri- 
cal properties, but rather about common symmetry properties, for example, trans- 
formations under reflections or rotations. Thus, numbers measure size, whereas 
groups measure symmetry. 

We conclude this excursion with remarks made in 1959 by Wigner (a pioneer in 
the use of symmetry principles and group theory in the physical sciences) on the un- 
reasonable effectiveness of mathematics in natural sciences Wig67, Chapter 171: 

The miracle of the appropriateness of the language of mathematics for the formu- 
lation of the laws of physics is a wonderful gift which we neither understand or 
deserve. We should be grateful for it and hope that it will remain valid in future 
research and that i t  will extend, for better or for worse, to our pleasure, even 
though perhaps to our bafflement, to wide branches of learning. 

Since these ideas were expressed, an even broader range of mathematics has been 
adapted to and developed by physical scientists. 

PROBLEMS ON MATHEMATICAL 
AND QUANTAL PRELIMINARIES 

2 .1  
linear vector space. Show that all these requirements are satisfied by: 
(a) Vectors of the conventional kind in three-dimensional coordinate space. 
(b) The wave functions that are solutions of a Schrodinger equation with a given 
Hamiltonian. 
2.2  Direct products of matrices have several interesting and relevant properties. 
Prove the following results: 
(a> 

Consider the requirements (2.1) that must be satisfied by the elements in a 

( M 8  N ) ( P @  Q) = M P  @ N Q  (2.87) 

in which it assumed that the dimensions of the matrices are appropriate for taking in- 
ner products on the left- and right-hand sides. 
(b) The direct product of two diagonal matrices is diagonal. 
(c)  The direct product of two unit matrices is a unit matrix. 
(d) If the direct product of a unit matrix of dimension n with matrix M is formed, 
then a block-diagonal matrix consisting of n replications of M is obtained. 
( e )  The direct product of unitary matrices is unitary. 
(f) The adjoint of a direct product of two matrices is the direct product of the ad- 
joints, without reversal of the matrices: 

(M @ N)* = M" 8 N.' (2.88) 
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2 . 3  Prove, in general, the inversion property for the operations on matrices de- 
scribed in Section 2.1.3. To do this, first prove the results for the inner products of 
two matrices, then show that if the result is true for n matrices it must be true for 
n + 1 matrices. Since the result holds for n = 2, it must therefore hold for n = 3, etc. 
Thus, you have used proof by induction. 
2.4  For the passive and canonicaI transformations in Table 2.3 show in detail 
the steps in the transformation of the matrix elements, analogously to those in 
(2.33). Do not assume that the wave functions v/ and yhave a definite parity. 
2 .5  
(a )  Prove, by substituting directly in the definition the correctness of (2.40). 
(b) Show that if P = iH and His Hermitian, then U = eiH is unitary. 
(c )  Prove the converse of this result. A simple way to do this is to write U = e im,  
in which a is a real parameter. Then differentiate both sides once with respect to a 
and use the relations (2.38) and (2.40). From this show that H = H1’. 
2 . 6  Consider relations between commutators of operators and their exponentials. 
(a) To prove relation (2.43), consider operators E(R) = eaR. Show that E(P + Q) 
satisfies thc same first-order differential equation with respect to a as does 
E(P)E(Q)E(aW/2) and that their values coincide at a = 0. 
(b) Prove (2.44) by using (2.42) twice, first asis, then with P and Q interchanged. 
Note that exponentials of multiples of the unit operator commute with exponentials. 
2 . 7  For the ladder operators in Section 2.2.4, work up the following steps in the 
derivations: 
(a )  Verify that expression (2.48) correctly gives raising and lowering of n by unity. 
(b) Derive (2.49) for the result of successive applications of q+ and q-. 
(c) Calculate matrix elements of the operators a and /3, as defined by (2.54), be- 
tween states n and k in order to show that these operators are Hermitian. 
(6) Derive relation (2.56) between the antisymmetric and symmetric operators A and 
S and the Hermitian operators a and p. 
2 .8  Derive the relation (2.79) for z-axis rotations of a complex-valued spinor. 
2 . 9  Verify the entries in Table 2.6 for combining rotations and reflections. 
2.10 Prove that continuous rotations in a plane are associative by considering the 
coordinate transformations x(8) = xo cos I3 - yo sin 8, y (0 )  = xo sin 0 +yo cos 0 .  
(a) Show that if there are three angles of rotation 133, 02, 81, then one can combine 
the third rotation after the first two or combine the last two angles first, which is the 
associative property. 
(b) Show that for these rotations about the same axis the order of applying them 
does not matter (commutative property). 
2.1  1 Prove in detail that (as stated in Section 2.5.3) any representation of a group 
G is itself a group in which the elements are the matrices M(Gi), the operation is 
(inner-product) multiplication, and the size of the matrix group can be no larger than 
the size of G. (If the representation is faithful, then the two groups are of the same 

Consider the exponential of an operator, given by (2.38). 



9 2 MATHEMATICAL AND QUANTAL PRELIMINARIES 

size.) Note that there is no necessary relation between the size of a representation 
matrix, d x d ,  and the size of their group. 
2.1  2 Verify the correctness of the group multiplication tables for: 
(a) The representation (2.83) of the discrete rotation group in Table 2.4. 
(b) The representations by (2.83) and (2.84) of the rotation-reflection group, C3”, 
in Table 2.6. 
2 .13  Check that the matrices in Table 2.10--0(N), Lr(N), SO(N), and SU(N)- 
satisfy the conditions to form a group if the group operation is inner-product 
multiplication. In particular, show that each matrix has an inverse and that the 
identity of each group is 1 ~ .  
2.14 Consider the Lorentz transformation for a single space dimension plus time 
that holds for relative motion of two reference frames having velocity p (with 
lp I < 1) in the same space dimension: 

x’ = y ( x  - p.t) ct’ = y(+ + Ct)  y = 1/J1-p” (2.89) 

(a) Show that a continuous group is represented by the matrices 

Lip)=[ -PY -7 Y 

acting on the space-time column vector as 

(2.90) 

(2.91) 

The parameter of the group is p, while the group operation is that of making suc- 
cessive Lorentz transformations with parameters pi and pi, say. 
(b) Show that the rule for combining Lorentz transformations is 

and therefore, since pd = pji, that the Lorentz group is Abelian. 
(c) Check that the identity of the group has p = 0. 
(d) Show that inverse transformations are obtained by p + -p. 
(e)  Consider the transformation in “Minkowski space” 

(2.92) 

(2.93) 

in which 8 is purely imaginary in order that y 2  1. Show that this also describes 
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the Lorentz transformation and that the composition rule (2.92) is equivalent to that 
for obtaining the tangent of the sum of two angles. Thus, in Minkowski space the 
Lorentz transformation is isomorphic to q 2. 
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Chapter 3 

ROTATIONAL INVARIANCE 
AND ANGULAR MOMENTUM 

Our approach in this chapter is to develop the properties of the angular momentum 
operator, J, whose three components are defined in Section 3.1 through infinitesi- 
mal rotations. Specific operators satisfying the commutation relations of J operators 
are devised in Section 3.2 (orbital angular momentum) and in Section 3.3 (Pauli 
matrices and other representations). The general problem of angular momentum 
eigenvalues and matrix elements is then addressed in Section 3.4, in which we use 
the technology of ladder operators developed in Section 2.2.4 to solve the eigen- 
value problem. 

By the end of this chapter, technical and algebraic aspects of angular momentum 
will be well in hand, but interpretation of these results will be undeveloped. Sec- 
tion 3.5 will help by our discussion of the importance of reference frames, leading 
to the distinction between spin and orbital angular momentum. In Chapter 4 we de- 
velop the interpretive aspects further by determining and illustrating angular momen- 
tum eigenstates. 

3 . 1  INFINITESIMAL ROTATIONS; THE J OPERATORS 

A rotation about a given axis may be visualized as being built up from successive 
small rotations about that axis. Our aim in this section is therefore to understand the 
properties of infinitesimal rotations, particularly the operators describing such rota- 
tions-the angular momentum, or J, operators. 

To achieve this, we first present two schemes for describing rotations (Sec- 
tion 3.1.1), then we derive in Section 3.1.2 commutation relations between com- 
ponents of J. Finally, in Section 3.1.3 we introduce ladder operators for angular 
momentum to simplify calculating eigenvalues and matrix elements in Section 3.4. 

9 5  
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3.1.1 Schemes for Describing Rotations 

There are two useful schemes for describing rotations. The first is simpler looking, 
as sketched in Figure 3.1. 

FIGURE 3.1 Scheme for describing the rotation of a system in terms of an axis of rotation, G, 
and the angle of rotation about this axis, 0. 

Since rotation is a unitary operation, as discussed in Sections 2.2.2 and 2.2.3, 
we can write it as U, given in terms of some Hermitian operator, J, as 

-ieii.J u(e,ii) = e (3.1) 

Here 8 is the angle of rotation about the axis fi. The orientation of this unit vector 
must usually also be specified by two angles. The operator J = (Ix,  Jy,  J,) is called 
the angular momentum operator. It is mostly related to angles and very little to 
momentum, as we discuss in detail in Chapter 5. The dimensions of J, and there- 
fore the dimensions of its components, are those of pure number. 

FIGURE 3.2 Euler-angle scheme for successive active rotations, with the leftmost operation 
applied first. 
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y rotation then 
x rotation 

The second rotation scheme builds on (3. I )  by describing rotations about each of 
the coordinate axes in turn. It is the Euler-angle scheme introduced in Section I .3.1 
and visualized in Figure 1.12. According to this scheme, and using active rotu- 
tions with the same set of axes for successive rotations, we have the sequence of 
rotations shown in Figure 3.2. 

Given the relation between rotations and angular momentum, our next task is to 
discover the properties of J operators. 

3 .1 .2  Commutation Relations of J Operators 

The angular momentum operator components, J,, J y ,  J z  are the building blocks for 
calculating properties of rotational symmetry. It is therefore important to acquire a 
clear understanding of their properties. Commutation relations among Jx. Jy,  J, can 
be derived by considering any convenient example, such as small rotations of an in- 
terval of unit length and initially along the x axis, as sketched in Figure 3.3. 

z 

x. x’ 

z 

FIGURE 3.3 Effects of small rotations depend upon their order. Left, the rotation of a point 
initially along the x axis is first through E, about the x axis (no effect), then through &? about they  
axis. Right, the same initial point is first rotated through &? about the y axis, then through Ex 

about the x axis. 

Consider a sequence of two small-angle rotations applied in two different orders: 
(a)  The first rotation is made through E~ about the x axis to the same point on the 
coincident x’ axis, then this point is rotated about the y axis through E~ to produce a 
point on the x” axis, as shown at the left side of Figure 3.3. Alternatively: 
(b)  The first rotation is made through angle cy about the y axis to produce a point on 
the x’ axis [different from that in (a) ] ,  then this point is rotated about the x axis 
through E~ to give a point on a different x“ axis, as on the right side of Figure 3.3. 
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As you can see by looking at Figure 3.3, the difference between the two orders 
of rotation, (b) minus (a), is to produce a displacement equivalent to a rotation about 
the z axis through angle E ~ E ~ .  Write this out in terms of the rotation operators ex- 
panded through second order in the angles: 

2 2  U(E,,?) = e-iexJr = 1 - i ~ ,  J ,  - E, J ,  I 2  +. . . 
u(cY,j)  = e- - 1 - ie, J y  - .sy J y  I 2  + ... (3 .2)  ie J ,  - 2 2  

U(& & ,i =(?- i&&Jz  =1-i& & J +... 
X Y )  X Y  z 

in which omitted terms have at least the product of three small angles. Through this 
order of approximation we have that 

If we now substitute (3.2) into this expression and simplify both sides (as Problem 
3.1 suggests you do) we find that 

E ~ E ~ ( J ~ J ~ -  J , J ~ ) +  ...= ~ E , E ~ J Z +  ... (3.4) 

where omitted terms are of higher order in the angles. We may now divide both 
sides by E ~ E ~ ,  then take the limit as each angle tends to zero separately. The higher- 
order angle terms then vanish. Thereby we obtain the commutation relation among 
angular momentum operator components 

J ,  J ,  - J y  J ,  = i J ,  (3.5) 

Because all the axes are equivalent in a Cartesian coordinate system, by cyclic 
substitution of the axes labels we can summarize the commutation relations as 

J,Js - J ,  J ,  = iErSl  Jl E 
Here we have used the permutation symbol, E,~, which has the properties 

0 

+I 
-1 

if any two of r, s, t are the same (e.g., I ,  1,3) 

(3.7) if r, s, t are in cyclic order ( e g ,  3,1,2) 
if r, s, t are in odd order (e.g., 3,2,1) 

We have also assumed in (3.6) the Einstein summation convention, in which a re- 
peated index (here the t )  is to be summed over. Actually, only one term survives in 



3.1 INFINITESIMAL ROTATIONS; THE J OPERATORS 9 9 

the sum-the J component that doesn’t match the two on the left-hand side. After 
you have sorted out all this notation, you will recognize the familiar vector products, 
which are discussed in the context of permutation symbols and Einstein summations 
in Section 1.3 of Wong’s text on mathematical physics [Won9 11. 

To summarize the results in vector form: The fundamental commutation rela- 
tions among angular momentum operators are 

(3.8) 

These relations are the starting point for developments in this book that relate to ro- 
tational properties of systems. It is very important to note that the commutation rela- 
tions (3.8) are completely geometrical, as the preceding derivation makes quite 
clear. They may therefore be used in (3.1) to describe any rotation, whether it be 
applied to a scalar function, to a vector in classical mechanics, or to a wave function 
in quantum mechanics. 

Now that we have derived the fundamental formula of angular momentum, we 
can develop its consequences, both in terms of concepts and in terms of techniques. 

3 .1 .3  The Spherical-Basis Operators J+1, Jo, J-1 

We define the angular momentum spherical-basis (ladder) operators as 

Jkl =(Jx f i J y )  J O  J ,  (3.9) 

If a factor of 1/42 were included in this definition, it would give a more consistent 
treatment of ladder (raising and lowering) operators, as presented in Section 2.2.4. 
However, we bow to convention, especially to provide consistency with use of 
the spherical-basis operators in Chapter 8 for irreducible tensors. 

Since the Cartesian-coordinate operators, Jx,  J,, and Jz ,  are Hermitian, the 
spherical-basis operators satisfy 

Jf, = J,, J i  = JO (3.10) 

Justification for the terminology “spherical basis” is given in Section 3.4. The 
commutation relations in this basis can be obtained directly from those in the 
Cartesian basis, (3.6), as 

and the square of the total angular momentum operator becomes 
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(3.12) 

Problem 3.2 invites you to derive these two formulas. We use the spherical-basis 
operators extensively in Section 3.4.1 to find operator eigenvalues. 

3 . 2  ORBITAL ANGULAR MOMENTUM OPERATORS 

In this section we derive operators to describe infinitesimal rotations of functions of 
coordinates only, that is, of scalars. These so-called orbital angular momentum op- 
erators, L, are examples of the J operators whose commutation relations (3.8) are 
derived in Section 3.1. 

Traditionally, as in the survey by Biedenharn and Louck [Bie8 la], it is common 
to start the discussion of angular momentum by introducing the quantum-mechanical 
operator L, = r xp,, in which p4 = -iAV is the linear-momentum operator. One 
then verifies that L, satisfies the commutation relations (3.8), but with an extra fac- 
tor of A on the right-hand side. Eventually, one seeks solutions for J that are more 
general than L,. Such an approach unnecessarily confuses the geometrical proper- 
ties of rotations with the quantum-mechanical properties of operators in which A 
appears. We discuss extensively in Chapter 5 the connections between angular mo- 
mentum and quantum mechanics. 

Meanwhile, we continue our logical development of the subject by deriving the 
form that L must have (Section 3.2. l), expressing the result in spherical polar co- 
ordinates (Section 3.2.21, and emphasizing in Section 3.2.3 the special role of the 
operator Lz. 

3.2.1 Infinitesimal Rotations Applied to Spatial Functions 

Consider a continuous function of the spatial coordinates only,f(x, y ,  z). How 
doesfchange when the system it describes is rotated through a small angle? Be- 
cause we have restricted the space in which J acts, we will find only a limited repre- 
sentation of J. Let us denote this restricted J by L = (Lx, L,, L J ,  called the orbital 
angular momentum operator, for reasons that will become clear below. We first 
derive the general form of the operator, then we discuss some of its properties. 

Deriving the Orbital Angular Momentum Operator. To obtain the expression 
for the components of L, say for L,, consider rotation around the z axis by a small 
angle, E, of the system described by$ For example, in a geophysical studyfmight 
describe the density of a fluid as a function of position near the Earth’s surface. 
Suppose that (active) rotation of the system moves a representative point P from 
r = (x, y ,  z) to r E  = ( x E ,  y E ,  zE),  as shown in Figure 3.4. 
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FIGURE 3.4 Rotation of a system through angle E about the z, axis carries a point from r to rE 
and a function describing P fromffr) tof&&). 

Such a rotation serves only to relabel the function, that is, 

If we wish to find the effect of the rotation on f specified at a given point in space, 
we must undo the effect of transforming the coordinates. Therefore, we calculate 
the changed function as 

To relate this to angular momentum operators, we now consider that E is small 
enough that terms in €2 and higher can be ignored in calculations, and eventually we 
take the limit E + 0. We can use (1.14) to relate r+ to r according to 

From the operator equation we have 

1 E O  

= - - E  1 0  I 0 0 1  

(3.15) :I z 

(3.16) 

We now have expressions (3.14)-(3.16), which enable fdr) to be calculated two 
different ways-either in terms of small changes of coordinates or in terms of the 
operator L,. By assuming that f is a continuous function that can be expanded in a 
Taylor series about r, it is straightforward to show (as Problem 3.3 suggests you 
try) that for such functions the operator component must be expressed as 

(3.17) 
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Thus, we have obtained a general expression for the z component of the operator J 
whenever it acts on a function that depends only upon the spatial coordinates. 

Because the three Cartesian coordinates are equivalent, it is clear that merely by 
cycling through the coordinates we immediately obtain the expressions for L, and 
Ly. Expressed in vectorial form the orbital angular momentum operators are thus 

r-7 L = -ir x V  (3.18) 

This is the most general form the angular momentum operator J can assume when it 
is applied to any continuous function that depends only upon the spatial coordinates. 

The formula for L does not depend in any way upon quantum mechanics. Indeed, 
all of the formulas were available to Taylor and Euler in  the eighteenth century, 
long before the invention of quantum mechanics in the twentieth century. The 
result (3.18) was often used implicitly in developments in classical analysis and 
mechanics in the nineteenth century. 

Notice that L has the dimensions of a pure number, just as for J. Further, any 
overall length scale is irrelevant and L is purely a function of angles-genuine angu- 
lar momentum-as also holds for J. 

The Mechanics Connection. For those readers in the physical sciences who 
crave some contact with reality, we discuss briefly the relation of formula (3.1t9-a 
purely geometrical construct-to angular momentum in physical systems, which we 
call in Sections 3.4.5 and 5.1 dynamical angular momentum. We define quantum- 
mechanical orbital angular momentum, L,, by 

L, = AL (3.19) 

The dimensions of L, are those of A ,  so its dimensions are those of mechanical 
angular momentum. Indeed, we may rewrite (3.19) as 

L, =rxp, p, =-iAV (3.20) 

in which p, is the momentum operator in configuration space (r coordinates). Al- 
ternatively, we have in momentum space 

Ls=rq x p  r, = - i A V ,  (3.21) 

where V, is the position operator in momentum space (p coordinates) and p is a 
regular vector rather than a differential operator. 

The operator L, induces the same type of rotational transformation as does L, 
but with the added complication that one must write the rotation operator (3.1) when 
acting upon a function of only x , y ,  z as 

(3.22) 

This form gives one pause to wonder what would happen to rotations if the value of 
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Planck’s constant were to change. Actually, A may have any nonzero value and 
(3.22) is exactly the same. We do not presently know any connection between the 
isotropy of space discussed at the beginning of Section 1.3 and the value of 
Planck’s constant, so it does not seem worthwhile to burden rotations with extra 
factors of A .  

The major justification for using the operator L, given by (3.19) is that it has the 
same appearance (but a different interpretation) as angular momentum in classical 
mechanics. When expectation values of L, are taken and when the angular momen- 
tum quantum number j = t is suitably large, one obtains the same results as in 
classical mechanics. Angular momentum in quantum systems is developed in Chap- 
ter 5 ,  with emphasis on its conceptual development in Section 5.5. 

3 .2 .2  Components of L in Spherical Polar Coordinates 

Although the form of the orbital angular momentum operators given by (3.18) is 
adequate for a definition, it is not very practical because the dependence on angles is 
not made explicit. A suitable angle-dependent coordinate system in which to express 
the components of L is spherical polar coordinates, where angles are explicit and for 
which there are many useful results from trigonometry and vector calculus. 

Spherical Polar Coordinate System. To remind you of this coordinate system, 
we sketch it in Figure 3.5. 

spherical polar coordinates 

Z 

FIGURE 3.5 Spherical polar coordinate system, showing the polar angle 8, the azimuthal angle 
4, and their ranges. 

Spherical polar coordinates are related to Cartesian coordinates by 

x = r sin8cos$ y = r sin8sin$ z = r cos8 (3.23) 
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as can be shown easily from Figure 3.5. Given these relations, it is straightforward 
but tedious (so delegated to Problem 3.4) to express the components of the L 
operator in polar coordinates as 

(3.24) 

This expression holds except at 6 = 0 or 8 = n, where the polar coordinate system 
is singular. From (3.24), and from Figure 3.5 geometrically, we see that 

In the polar coordinate expressions (3.24) there is no longer a distance scale, since r 
is absent. Therefore, we truly have angular momentum that characterizes rotations. 
By contrast, classical angular momentum depends both upon angles and upon dis- 
tance scales, an important distinction that is emphasized in Section 5.1. 

Orbital Angular Momentum in Spherical Basis. We may complete the transi- 
tion to the spherical basis by casting the components into the spherical basis intro- 
duced in Section 3.1.4. By combining Lx and 4 from (3.24) we obtain directly 

(3.26) 

Notice that operators are simpler in this basis than in the Cartesian basis, (3.24). 
The L, or LO components are especially simple, as we investigate further in 
Section 3.2.3. 

The expression (3.26) is useful for expressing the square of the orbital operator, 
Lz, in polar coordinate form as 

L2 =z(L+lL-, 1 +L-,L+,)+L; 

(3.27) 
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As usual for spherical-polar coordinates, and as the last form of L2 in (3.27) empha- 
sizes, these expressions are undefined at the poles, 8 = 0 and 8 = r. This form also 
shows that the basic variables for orbital angular momentum are cos8 and Cp rather 
than 6, and Cp, as the discussion of orbital eigenstates in Section 4.1 makes clear. 

3.2.3 The Special Role of the Operator L, 

It is no coincidence that the z component of the angular momentum operator acting 
upon a function of angles, that is Lz, has an especially simple form in spherical polar 
coordinates. For this reason, in Section 3.4.1 we choose the axis with respect to 
which a component of the angular momentum operator has eigenvalues as the z axis. 
Then, the operator, its eigenvalues, and its eigenvectors will all be simple. 

As a particular example of the simplicity of L,, consider any function of the form 
ei@. For any choice of a, this function is an eigenfunction of L,, since 

(3.28) 

If a is real, then L, will be Hermitian for matrix elements taken with respect to this 
function. Further, it is straightforward to show that for different values of a these 
functions are orthogonal for integration over the range 0 to 2n in Cp only if a is an 
integer. These results obtained for L, anticipate some of those for general angular 
momentum that are obtained in Section 3.4.1. 

3 . 3  OTHER REPRESENTATIONS OF J OPERATORS 

The properties of the angular momentum operators derived in Section 3.1 are-to 
use mathematical terminology-prescriptive rather than constructive. That is, we 
derived properties that must be satisfied by any operators that claim to describe J, 
but we did not give any way to form such operators, Because of this, new represen- 
tations of angular momentum operators are constantly being discovered. Many of 
them provide fresh insight into rotational symmetries, others facilitate derivations 
and calculations, while others serve mainly to impress readers with the genius of 
their discoverer. 

We begin by defining the Pauli matrices and determining properties relevant to 
rotational symmetries. In particular, we find their eigenvectors and show how the 
Pauli matrices may be used to describe finite rotations. We then summarize other 
useful representations. 

3 .3 .1  

We introduce the Pauli matrices through their algebraic properties. In Section 4.3 
we show that they describe the simplest nontrivial-spin systems, namely those with 
intrinsic spin of 1/2. Since so many subatomic particles (such as electrons, protons, 

The 2 x 2 Matrix Representation: Pauli Matrices 
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neutrons) are observed to have spin 112, the Pauli matrices are also of very general 
use in quantum mechanics. Further, just as one can visualize a complicated atom as 
being composed of many electrons, mathematically one can use Pauli matrices and 
other spin-1/2 descriptions to build up angular momentum and describe rotations of 
systems with larger angular momentum numbers. 

Pauli Matrices as Angular Momentum Operator Components. In Cartesian 
coordinates the Pauli matrices are given by 

0 1  0 -i 1 0  
(3.29) 

Collectively, these three matrices are denoted by G = (ox, D ~ ,  oZ), although we 
have yet to prove that the subscripts are appropriate for x, y ,  and z coordinates. De- 
fine in terms of the Pauli matrices the “spin” matrices, s, as 

I 
2 

5s:-0 (3.30) 

It is straightforward to show that the components of s satisfy the angular momentum 
commutation relations (3.8). 

Properties of Pauli Matrices. In terms of calculations, it is often easier to use 
the Pauli matrices (3.29) rather than the spin matrices (3.30) because each Pauli 
matrix has the property 

0; = 12 j =x,y,z (3.31) 

in which 12 is the unit 2 x 2 matrix. 
To explain (3.30) from a physical viewpoint, you have to know already that 

these 2 x  2 matrices describe spin-1/2 systems, as is clear if you notice that sz has 
eigenvalues +1/2 and -112, usually called “spin-up’’ and “spin-down’’ states, 
respectively. These are the only possible angular momentum states for a spin-1/2 
system. A repeated measurement of oZ, corresponding to cr:, must therefore give 
unity for either spin up or spin down, in agreement with (3.31). Since there is 
nothing intrinsically special about the z direction (as discussed in Section 1.3.2), the 
same result must hold for the x and y directions. 

Another property of the Pauli matrices is their anticommutation property 

Ojck  +okoj = o  j # k  (3.32) 

where j or k stands for one of the coordinates x ,  y ,  and z. Both properties (3.31) 
and (3.32) are particular among angular momentum matrices and result because the 
angular momentum is the simplest possible (except for complete isotropy, spin 
zero). Levinger and Lichtenstein [Lev791 provide an explanation of (3.32) that also 
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improves understanding spin, as follows. Consider a new axis relative to which the 
spin value is measured, say x' midway between the x and y axes, as sketched in 
Figure 3.6. 

Y 

FIGURE 3.6 When the quantization axis is chosen at m'4 to the x or y axis, along x', the x and 
y spin components contribute equally. 

By equivalence of axes, the x and y components of spin contribute equally, so we 
must have 

in which the factors before the matrices ensure that the total probability is unity. Al- 
gebraically, we can square this matrix, taking care to keep the operators in order, to 
obtain 

02, ="o: 2 +a; + o 4 ]  (3.34) 

Now, since (3.31) shows that the square of a Pauli matrix along any direction is a 
unit matrix, the cross terms in (3.34) must contribute zero, just as (3.32) claims. 

Pauli Matrices in the Spherical Basis. The general spherical-basis angular 
momentum operators are presented in Section 3.1.3. It is interesting to discuss 
them for the case in which they are represented by the Pauli matrices. From defini- 
tion (3.9), by letting 

(3.35) J+1-o*1 =(ox * q ) 
and recalling that Jo = J,  -+ 00 = o,, we obtain directly 

0 0  

which have the properties that 

021 = 0 2  0; = 1, (3.37) 
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where 02 denotes the 2x  2 matrix with all elements zero. Higher powers of these 
spherical-basis matrices, which represent raising and lowering operators (Sec- 
tion 2.2.4) must similarly be zero matrices. How do we explain this property, apart 
from its algebraic correctness? The effect of o+ on a spin-down state is to raise it to 
a spin-up state, but if we apply 0+1 to this state there is not (for spin 1/2) another 
state for it to be raised to, so a:1 = 0. Similar arguments apply for 0-1. 

3 .3 .2  Eigenvectors of the Pauli Matrices 

Because of the commutation condition (3.8), for a given choice of axes we can make 
a diagonal representation in only one direction. From definition (3.29) of the Pauli 
matrices, it is clear that we have chosen the z axis as this direction. Indeed, when 
discussing angular momentum if one refers to “the z axis” one usually means “the 
direction in which the representation is diagonal.” 

What are the eigenvectors (Section 2.3) of the Pauli matrix o,? Clearly, to en- 
able inner products to be formed they must be 2x 1 (column) matrices. Write them 
with elements at and a_.  Thus, as eigenvectors they must satisfy 

[A -1 ”][“]=..[:j a- (3.38) 

where M k  are the two eigenvalues. By multiplying out the left-hand sides, as 
Problem 3.5 suggests you do, it is easy to show that two eigenvectors are 

x+ -[A] x- -[;I (3.39) 

with corresponding eigenvalues M+ = +1, M- = -1. Because (3.38) is linear in 
the amplitudes uk, any multiples of x& are also eigenvectors. The choices in (3.39) 
make the eigenvectors orthonormal, that is, 

The second of these relations illustrates the orthogonality of the eigenvectors of 
Hermitian operators (Section 2.3). 

The eigenvectors x& are clearly also appropriate for the angular momentum ma- 
trix sz = 0,/2. The eigenvalues of sz, which are just the diagonal elements of this 
matrix, are lt1/2. It is therefore appropriate to call x+ and x- the matrices represent- 
ing “spin-up” and “spin-down’’ states, respectively. The generalization from the 
simplest spin system, discussed here, to matrix eigenvectors for arbitrary spin is de- 
rived and illustrated in Sections 3.4.4 and 4.3. 
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3.3 .3  Finite Rotations and Pauli Matrices 

So far in this chapter we have discussed only infinitesimal rotations, which are de- 
scribed by the operator J introduced in Section 3.1. Although you will surely agree 
that the algebra of such operators is fascinating, it is not of much direct practical use, 
since in reality we want to calculate how systems change underfinite rotations. 
This can be done simply for spin-1/2 systems, because the matrices required are 
small Gust 2 x  2) and have simple properties, as shown in Section 3.3.1. There- 
fore, by considering spin 1/2 we now illustrate one way of deriving rotation matrices 
for angular momentum eigenstates. Methods that are more general, as well as more 
abstract, are given in Section 6.2. 

Finite-rotation operators are defined in terms of infinitesimal operators by (3.1). 
For spin-1/2 states, the rotation operator has a representation (in the group theory 
sense, Section 2.5.3) written as the spin- 1/2 rotation matrix 

(3.41) iacrz,12 -iyoZi2 D i r 2 ( a  f l y )  = e- e e 

Here we have used the full description of an active rotation in terms of Euler angles, 
as described in Sections 1.3.1 and 3.1.1. We have also substituted for matrices 
representing the angular momentum operators the spin matrices in terms of the Pauli 
matrices, according to (3.30). 

As you see in (3.41), there are just two distinct kinds of rotations in the Euler- 
angle scheme-rotations about z or rotations about y .  Because the z axis has been 
chosen for the eigenvalues, its rotation is easier to handle, so we consider it first. 

Rotations About the z Axis. We have to work out the exponential of a matrix, 
which is not as formidable as it may seem, since the exponential is a shorthand for 
the series (2.38). If we plug in the exponent -iya,/2 there will be two distinct 
terms-those in which n is even, n = 2m and 0:" =12, and those with n odd, 
n = 2m + 1 and a:m+' = 0,. As Problem 3.6 suggests that you work out i n  detail, 
the unit matrix and (s, then factor out of the series of even and odd terms, resulting 
in the spin-1/2 matrix for rotation by y about the z axis 

By substituting for a, from (3.29), we have explicitly 

(3.42) 

(3.43) 

The matrix elements of this z-axis rotation are thus e-imy6mr,m. In Section 6.2.1 
this is shown to be the result for any value of the spin, not just for the spin- 112 case 
we have just derived. 
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Notice that in (3.43) the transformation under rotation is unitary (Sec- 
tion 2.2.2), not changing total probabilities. In particular, all that the z-axis rotation 
does is to change the phase of a state vector component by eTiyI2, without chang- 
ing its magnitude. Although this is a simple change, it often has profound conse- 
quences in quantum mechanics. 

Rotations About the y Axis. For rotation about an axis orthogonal to the quan- 
tization axis, such as they axis chosen in the Euler-angle scheme, the rotation matri- 
ces are not quite as simple as for z-axis rotations, since the Pauli y-axis matrix is not 
diagonal. The method of derivation is similar, however, so the details are relegated 
to Problem 3.6. The spin-l/2 matrix for rotation by p about the y axis is given by 

The matrix dl/2(p) is called the reduced rotation matrix for spin 1/2, since it is re- 
duced in the sense that the rotation is about a single axis ( y) rather than about three 
axes. Its generalization to arbitrary spin is presented in Section 6.2. 

As with the z-axis rotation, we notice that-consistently with the general relation 
(2.41) between Hermitian and unitary operators-the matrix in (3.44) is unitary. 
One proof of this (Problem 3.6) is by forming the Hermitian conjugate of d1/2 ex- 
plicitly and multiplying out the two matrices. Alternatively, we see by inspection 
that the transpose of (3.44) gives the same result as the inverse rotation p + -p. 

If we have two successive rotations about the y axis, it is straightforward to 
show that 

in which the first equality is obtained by multiplication of the matrices, the second 
equality comes from commutativity of arithmetic addition, and the third equality 
arises from a relabeling of the angles in the first equality. We have thus verified that 
successive rotations about the same axis commute. 

Spinor Nature of Spin- 112 Rotations, A striking property of both the z- and y- 
axis rotations is the property of the matrices in (3.43) and (3.44) that they change 
sign when their defining angles change by 2n. Thus 

d1I2(P+ 2 ~ ) = - d ’ / * ( p )  (3.46) e+i(a+2n)/2 - - -e+ia/2 

Rotation matrices for spin-112 states are thus spinors, according to the definition in 
Section 2.4, so one says that spin-112 state vectors are spinors because of this 
transformation property. 
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The consequences of such a sign change have been observed quite directly for 
neutrons (Figure 2.6) and implicitly for electrons through the sign-change require- 
ment (3.46) for electron wave functions in atomic-structure calculations. This is 
consistent with an assignment of 112 for the intrinsic spin (Section 3.5) of these 
particles. 

General Euler-Angle Rotations for Spin 1/2. We can now combine the results 
of our calculations for rotations about a single axis to obtain the general Euler-angle 
rotation matrices for spin 112. From (3.43) used twice and from (3.44), we obtain 
the full rotation matrix 

This matrix has the unitary and spinor properties of its component matrices, provid- 
ing a complete expression for rotations of a spin- 112 system in terms of the Euler 
angles. Note that since rotations about diflerent axes do not generally commute, the 
ordering of the matrices in (3.47) is important. This is in contrast to the commu- 
tation property for rotations about the same axis, exemplified in (3.45). 

The treatment of finite rotations for arbitrary spin is taken up in Chapter 6, 
where we learn that most of the properties derived here for spin-1/2 systems also 
hold for arbitrary angular momentum number. 

3 .3 .4  Spinor Space and Its Operators 

The eigenvectors of the Pauli matrices determined in Section 3.3.2 provide exam- 
ples of spinors, according to the definition (2.74) of changing sign under rotations 
by 27~.  This behavior of the 2 x 1 column matrices x+ is apparent from the behavior 
of the full rotation matrix for spin 1/2, D1/2(afiy), as given by (3.47). 

It is useful in later developments to use the spin-l/2 description as a building 
block when constructing states and their representations for larger angular mo- 
mentum numbers. For this purpose, we now introduce the spinor space and angular 
momentum operators in this space. At this stage it is worthwhile for you to review 
spinors and their propcrties in Section 2.4. 

Spinor Space and Its Matrix Representation. Suppose that we have an ab- 
stract space whose “coordinates” are described in terms of quantities x+ and x- 
which act as unit vectors in the space. Technically, this is a Hilbert space, as dis- 
cussed in Jordan’s introductory monograph [Jor69]. You may visualize this spinor 
space as shown in Figure 3.7. 

We want this space to describe rotations for spin-1/2 systems, so the 
“coordinates” of points in this space, a+ and a_, are allowed to be complex and are 
required to satisfy 
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FIGURE 3.7 Spinor space for rotations, with unit vectors along the axis being x+ and x- . A 
representative point in the space undergoes a rotation through (32 when the system it describes is 
rotated by 8. 

2 2 l a+ l  + l a - l  =1 

The points describing rotations therefore lie on a circle in spinor space, as shown in 
Figure 3.7. 

The correspondence between rotation of a spin- 1/2 system in configuration space 
and the trajectory of its coordinates in spinor space is to be such that a representative 
point in the space undergoes a rotation through 8/2 when the system it describes is 
rotated by 8. In particular, the spinor-space coordinates change sign when 0 = 2n 
and return to their origin values only under a double-angle rotation of 8 = 4n. 
Given this mapping from configuration space to spinor space, we are now ready to 
discuss angular momentum properties. 

Angular Momentum Operators in Spinor Representation. We define partial 
differential operators in spinor space (x+, x-) just as we would for conventional 
variables such as (x, y ) .  Namely, we write 

d d- G- 
JX+ ax- 

d a =- + -  (3.48) 

and these operators have the usual differentiation properties. For spherical basis an- 
gular momentum operators we make the association 

1 
J+, =x+a- J ,  =T(x+a+-x-h) J-,  =x-d+ (3.49) 

It is readily shown (as Problem 3.7 suggests you try) that these are indeed 
angular momentum operators because they satisfy the commutation rules (3.6). 
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They also have appropriate behavior with respect to ,y+ and x-, namely 

Note that a linear combination of x+ and x-, as shown in Figure 3.7, is usually not 
an eigenstate of J,. 

The above developments provide the starting point for the derivations in Sec- 
tion 4.3.3 (spinor-space representations of angular momentum eigenstates), Sec- 
tion 6.2.3 (constructing rotation matrices), and Section 7.3.1 (angular momentum 
coupling coefficients). 

3 . 4  ANGULAR MOMENTUM EIGENVALUES 
AND MATRIX ELEMENTS 

Thus far in this chapter we have derived the angular momentum operators and their 
commutation properties (Section 3.1 ), and we have found representations of these 
operators in terms of orbital angular momentum (Section 3.2) ,  Pauli matrices 
(Sections 3.3.1, 3.3.2), and spinors (Section 3.3.4). Our goal in this section is to 
find general expressions for the eigenvalues and matrix elements of these operators. 

Since we aim to provide general results, the derivations are elegant, making use 
of raising and lower operators (Section 2.2.4). Once the algebra is well under con- 
trol, we show in Section 3.4.4 the operator matrices for j = 1/2, 1, and 312. Fi- 
nally in this section, we introduce in Section 3.4.5 the distinction between two de- 
scriptions of angular momentum, one as a geometrical quantity related to rotational 
symmetry and the other as a dynamical quantity related to mechanical motion. 

3 .4 .1  Eigenvalues of 52 and Jz ;  Irreducibility 

Given the commutator relations (3.6), our task is now to find appropriate eigenval- 
ues. We have nearly seventy years of hindsight to guide us, since the first quantum 
mechanics paper on angular momentum by Bohr, Heisenberg, and Jordan [Bor26] 
derives the general result. We take, however, a slightly different track, using the 
ladder-operator technology built up in Section 2.2.4. 

Eigenvalues of J2 and Jz. We begin by determining eigenvalues. Consider as 
the Hermitian operator P = 1,. Thus, analogously to (2.46), we have 

where n -+ kp, anticipating that we will have two labels for each eigenstate. (It is 
conventional, if there is no ambiguity, nor to separate the labels by a comma.) Since 
we have the commutator relation Jz = -i[J,, Jy 1, it is natural to make the identifica- 
tions a: = Jx,  and = J y ,  so that the analogue of (2.50) has a = 0, b = -1, c = 0. 
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We then have the following translations from general ladder operators to angular 
momentum ladder operators: 

(3.52) 

where the antisymmetric and symmetric combinations become 

respectively. We know from (2.59)- (2.61) the general relations satisfied by the 
eigenvalues of A and B, which are the ak and sk. We have therefore, through (3.5 1) 
and the first equation in (3.53), the eigenvalue equation for p. 

Rather than seeking the analogue of the eigenvalue equation for S ,  we seek that 
of S2 + A2, namely 52. Write this as 

(3.54) 

Thus, the eigenvalue translation is ak = -pk, sk = A - p i .  Here the subscript k 
serves to distinguish eigenvectors that are degenerate with respect to p, for example, 
by being associated with different values of A. By inserting these results into condi- 
tion (2.59), we have that A 2 piUk2, A 2,uk(pk k l), while the compatibility condition 
(2.60) requires that A - p:t, - ( A  -pup) = -&+, - pk. The uninteresting solution of 
this is pk+, = -pk, which corresponds merely to an opposite choice of sign of the A 
operator. The alternative solution, p,,, = pk + 1, shows that the eigenvalues of J ,  
go by unit steps, just as for the energy of the harmonic oscillator in Section 2.2.4. 
By iterating this solution, we obtain 

pk = po + k k = 0,1,2,. . . (3.55) 

From the limit conditions (2.61) we must have A = po(p,, - l), A = &(pN - I), in 
which pg and p N  are related by (3.55) with k = N. Putting this all together and 
solving for A and po (as Problem 3.9 suggests you do), we find that 

A =  j ( j + I )  (3.56) 

where j = N/2 is a non-negative half integer, such as 0, 1f2, 1 ,  . . . . Since giving j 
gives A, we might as well label the eigenstate by j as by A. Now, solving for po 
and pp, in terms of A, we find that 

p0 = - j  p N  = j  (3.57) 

so that there are 2j+ 1 values of p for each j ,  so p is conventionally relabeled as m, 
standing for magnetic substate. 
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m 

Let us summarize the eigenvalue properties that we have determined. Expressed 
algebraically, we have the eigenvalue equations for J2 and J,: 

I I 
~ ~ ~~- 

The general ladder operators from Section 2.2.4 now can be displayed for the 
angular momentum operators, as in Figure 3.8. 

i 
I 

I I 

j fixed j varying 

FIGURE 3.8 Angular momentum ladder operators, J+I (raising) and 1-1 (lowering), having a 
lower bound for given j of m = -j and an upper bound of m = j .  When the operators are applied in 
succession, one returns to the same state. The right side shows how the spectrum of 111 values 
changes as j increases. The value of j has no upper bound unless rn is restricted. 

For a given value o f j  there are 2j+ 1 equally spaced rungs on the ladder, as shown 
on the left-hand side of Figure 3.8. On the other hand, if we choose a given value 
of m, there is an indefinite number of j values with which it is associated, as the 
right-hand side of Figure 3.8 shows. This explains why an extra label, k ,  was 
made for p below (3.54). 

Irreducibility. We introduce the idea of irreducibility in Section 2.5.5 in the 
context of block-diagonal matrix representations of groups. The operator eigenval- 
ues we have just determined for 52 and J ,  immediately produce irreducible represen- 
tations of infinitesimal rotations if the matrix elements are taken between angular 
momentum eigenstates, I j m ) .  To see this, note that neither J2 nor J ,  changes the 
value ofj, so the matrices will be block diagonal in j ,  as sketched in Figure 3.9. 
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j l j ' l  o 1 I2 1 312 ... 

FIGURE 3.Y Schematic of the block-diagonal (irreducible) representations for angular momen- 
tum, analogous to (2.85) for arbitrary group representations. The notation [O] denotes matrices of 
varying dimensions in which all the elements are zero. 

Given the irreducibility property, we can handle each j separately when dis- 
cussing eigenstates, providing a great simplification that we exploit in the following. 

3.4.2 Matrix Elements in the Spherical Basis 

We first obtain matrix elements of the remaining angular momentum operator com- 
ponents in the spherical basis, J+1, then convert these to the Cartesian basis in the 
next subsection. By using the identity that follows from definition (3.9) of the 
ladder operators in terms of Jx and Jy, namely 

J+1J71 =(J2 - J :  + J , )  (3.59) 

The matrix of the product of these ladder operators is diagonal in both m and j ,  since 
one operator changes the m value by unity and the other changes the rn value in the 
other direction by unity. Let us write 

in which the r+ values are to be found. We then have 

(3.61) 

If we assume that the I-+ values are positive, which amounts to choosing a conven- 
tion for the relative phases of eigenvectors differing by unity in their m values, we 
can readily show that consistent solutions for the r+ values are 
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(3.62) 
= J ( j  T m)( j  m+ 1) 

The matrix elements of the angular momentum ladder operators can therefore 
be expressed as 

(3.63) 

One way to check that the signs in (3.63) are correct-and to recall the formulas-is 
to note that the matrix elements of J+I must be zero if m‘ 2 j  and those of J-1 must 
vanish if m‘ I -j, which checks out the third equality sign in (3.63). Similar con- 
siderations hold for 1-1 and J+1 in relation to m, according to the last equality. 

3.4.3 Matrix Elements in the Cartesian Basis 

Although the ladder-operator approach has just provided a quick derivation of 
angular momentum matrix elements in the spherical basis, we would often like to 
obtain the matrix elements of the Cartesian components of J .  This is 
straightforward, since we can immediately use (3.9). Because both Jx and Jy  are 
linear combinations of J+1 and J-1, we get matrix elements which contain both 
raising and lowering of the m values by unity. Thus, we have for the matrix ele- 
ments in the Cartesian basis the n-component elements 

which are explicitly real. For the y components the values are purely imaginary: 

Finally, because of our choice of quantization axis-along the z direction-we have 
the especially simple, diagonal, representation for the z component, namely 
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It is straightforward to verify that the angular momentum representation matrices are 
Hermitian. 

Interpreting Matrix Elements. It is important to note that these formulas for 
matrix elements arise only from the commutator properties of the J operators, (3.6), 
and therefore hold for any system described by the same Lie algebra of operators. 
For example, in nuclear and particle physics when considering charge-independent 
interactions one introduces isospin operators with the same operator algebra as the 
rotation operators. Such isospin operators must therefore have the same matrix ele- 
ments (3.64)-(3.66). What will differ for different operators (such as charge or 
rotations) is the space in which the operators act and the interpretation of the 
eigenvalues j and m. 

For example, isospin operators act in a “charge space” in which the ‘‘z axis” 
eigenvalue m is used to indicate the electric charge of the system. In the quark 
model of subatomic physics, charge itself is generalized to other quantum numbers, 
which, like total electric charge, are conserved in interactions. Similarities and dif- 
ferences are summarized in Figure 3.10. 

I chargespace I 

JO JO Jz 

n ]I P 

P i: n 

nuclear physics high-energy 
J+, Ip>= In> physics 

J+, In>= Ip> 

rotations 
4 1  ljm>= l jm +1> 

FIGURE 3.10 Charge space (isospin) and angle space (rotations) both use the same commutator 
algebra, hut the interpretation of quantum numbers is different. 

Within a given space, such as the charge or angle space in Figure 3.10, there 
may be differences of interpretation. For example, in nuclear physics, where nuclei 
generally have an excess of neutrons, the isospin quantum number m is interpreted 
as +1/2 for neutrons, -112 for protons. In high-energy physics, which often uses 
hydrogen targets, the opposite convention is used. Another difference of interpreta- 
tion between the two spaces is the following. In angle space one can rotate the sys- 
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tem and one gets a superposition of m projections, as we calculate in detail in 
Chaper 6. In charge space the analogue of an angle, which could give superposi- 
tion of charges, is not used. Thus, although there is a common mathematics 
(commutator algebra), there is a distinct physical application. 

3.4.4 Operator Matrices for j =  112, 1, and 312 

Many physical systems that we investigate have a high degree of symmetry-which 
is perhaps why we select them for investigation. Therefore, associated with their 
properties are small values of the total angular momentum number j ,  and therefore 
small values of the projection number m. 

Operator Matrices. We write out in Table 3.1 the explicit operator matrices for 
j = 1/2, 1, and 3/2, which are the angular momentum matrices most commonly 
required in direct manipulations. Notice that each matrix is Hermitian, so in 
quantum mechanics it may represent an observable, as we discuss in Chapter 5. 

TABLE 3.1 Operator matrices for j = 1/2, 1, and 3/2 in the Cartesian basis. 

j Jx JY J z  

1 I2 

1 

3J2 

0 1 0  
L[l J5 0 1 

0 1 0  

0 -i 0 k[i 0 :] 
O i  

r'b' - ; 2 ]  

1: :] 
0 0 -1 

1 312 0 0 0 

0 112 0 0 

0 0 -112 0 

0 0 0 -3 i2  

Angular Momentum Eigenvectors. Matrix eigenvectors of J ,  that satisfy 
Jam = r n X m  are readily written down analogously to the treatment for j = 112 in 
Section 3.3.2. First, in order to be multiplied by a matrix having (2j+I)  columns, 
they must have (2j+l) rows and there is no need to have more than one column. 
This is shown in Table 3.2. 

In the column-vector form of the J, eigenvectors shown in Table 3.2, note the 
alternation of the matrices according as 2j is an even or an odd integer. The two sets 
of representations appear distinct, so they are in different columns. 
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T A B L E  3 .2  Matrix eigenvectors x m  for spins j = 0, 1/2, 1, and 3/2, having m 
projections as indicated in the columns. 

rn 312 I 1 I2 0 -112 -1 -312 
; 
0 

1 I2 

1 [il 

Once an rn value is chosen, its matching eigenvector must have a nonzero ele- 
ment only in row rn, in order to satisfy the above eigenvalue equation. Therefore, 
(x,),, = a,,,,, , in which we have chosen that the norm of the eigenvector be unity. 
An alternative choice of normalization, which is more cumbersome than helpful, is 
to apply a factor 11 Jm, producing a scalar product of unity over all the rn val- 
ues belonging to a given;. 

3.4.5 

As has become apparent thoughout the previous chapters, the meaning of “angular 
momentum” depends upon the context in which it is used, since the term may refer 
either to the rotational symmetry properties of a system or to its dynamical 
(mechanical) angular momentum. This dual meaning gives rise to ambiguity-for 
example in the title and subtitle of this book. We give a preliminary discussion here, 
with a more complete treatment in Section 5.1 after we study angular momentum 
eigenstates in Chapter 4. 

Angular Momentum: Geometrical and Dynamical 

Geometrical Angular Momentum. Consider the rotational symmetry of an ob- 
ject, defined for simplicity of example in terms of a polar angle 8 as the radius of its 
surface: 

(3.67) 
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in which is the average value of the radius, and nonzero values of the shape pa- 
rameters & for !! > l describe deviations from a circular cross section when 
weighted by the Legendre polynomials P,(cosO). (Problem 3.10 invites you to 
prove these assertions, to explain why we choose 01 = 0, and to draw some of these 
surfaces.) Throughout the cosmos, from atoms to galaxies, the value of C in (3.67) 
takes on only small values, typically only ! = 0 , 2 ,  3 , 4 ,  for many systems of inter- 
est. The I values that appear in such descriptions and their associated functions, 
such as P,(cosO), we call geometrical angular momentum. 

FIGURE 3.11 Geometrical and dynamical angular momenta for various systems. Although the 
angular momentum Ic (in h units) ranges over many orders of magnitude, the degree of rotational 
symmetry (geometrical angular momentum) is about the same in each system. 
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Dynamical Angular Momentum. Consider now angular momentum defined as 
in classical mechanics, L, = r x p, and write for its magnitude Lc = 1, A , in which 
1, is a pure number because A has units of angular momentum. We call L, dynam- 
ical angular momentum. Throughout the cosmos, from atoms to galaxies, !, has a 
very large (even astronomical) range of values. This contrast between the values of 
tC for dynamical angular momentum and of ! for geometrical angular momentum is 
what leads to ambiguity and confusion. 

Notice in Figure 3.1 1 that only for the example of electrons in an atom do the 
values of t and 2, approximately coincide for geometrical and dynamical angular 
momentum. A similar coincidence occurs for atomic nuclei. Historically, the use of 
rotational symmetry techniques was developed extensively in the 1920s and applied 
to the new quantum mechanics, especially to atomic and nuclear physics, as sum- 
marized in Section 5.5. Therefore, as discussed in more detail in Chapter 5, there 
is still a tendency to confuse methods of analysis of physical systems based on rota- 
tional symmetry with quantum-mechanical properties of these systems. Fortunately, 
the truth is otherwise, and almost all of the developments in this book are applicable 
to any physical system, whether it be large or small. This is emphasized by the 
agreement between the values of 2 in the center column of Figure 3.1 1. 

3 .5  REFERENCE FRAMES: SPIN AND 
ORBITAL ANGULAR MOMENTA 

The purpose of this section is to show that the distinction between total angular 
momentum, spin, and orbital angular momentum depends upon the choice of refer- 
ence frames. 

Small Rotations and Internal Degrees of Freedom. Consider what happens 
when we rotate a system through a small angle E about the axis i = x, y ,  or z. The 
center of the system is initially at r with respect to the point about which the rotation 
is made and a representative point in the system has an internal degree of freedom e, 
which may be-but need not be-a spatial coordinate. Suppose that the system is 
described by a functionflr, 5). We now extend the analysis made for orbital angu- 
lar momentum in Section 3.2.1. For a small rotation under the action of the total 
angular momentum operator Jj this function is changed intof&&, gE),  given by 

(3.68) 

The orbital angular momentum operator Li also changesf, as in (3.16), so that it 
becomes 

(3.69) 

We can now subtract this expression from (3.68) to find the difference between the 
actions of operators Ji and Li, namely 
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(3.70) 

in which the last relation defines the spin operator component Si. Considering each 
of the three equivalent components i = x, y ,  z ,  we can write for the definition of the 
spin operator S 

S e J - L  (3.71) 

The effect of the spin operator S, also called the intrinsic angular momentum or 
intrinsic spin, is just the difference between the effect of the total, J, and the orbital 
component, L. One calls the corresponding total angular momentum number the in- 
trinsic spin (or sometimes just spin), usually denoted by s. According to (3.70), if 
the internal degrees of freedom are unaltered by the rotation, then tE = I$, so that 
each component of the S operator when acting on f produces zero. Then the total 
angular momentum number associated with S will be zero. An example of this is 
for 5 to be internal spatial coordinates of a spherically symmetric object. 

Planetary Rings and Intrinsic Spin. To make the discussion more concrete, 
consider the description of a planet with a ring system, such as Saturn, as sketched 
in Figure 3.12. The motion of the center of mass of the planet about the sun is de- 
scribed by a scalar function and therefore, according to the discussion in Sec- 
tion 3.2, it is described in terms of the orbital angular momentum operator L. If, 
however, the planet is rotated about some internal axis, then the ring system will 
also be rotated. The total effect of rotating the system of planet-plus-rings is there- 
fore described by operator J. If it were convenient, we might first describe rotation 
of the planet center of mass, then make a separate calculation for the effect of rota- 
tion of the rings. 

FIGURE 3.12 The difference between total angular momcntum and orbital angular momentum 
is demonstrated by the differing effects of rotation through a small angle €of a functionfdescribing 
a system that has some internal degrees of freedom, such as the rings around a planet. The planet 
orbital angular momentum will have 4 > 0 if the orbit is elliptical, as shown. 

For the ring system of a planet, the 4 will probably be coordinates of the ring 
elements and points on the planet surface (such as latitude and longitude). The in- 
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trinsic angular momentum will then be a composite of orbital angular momenta from 
bodies in the rings, plus any rotation of the planet about its poles. A planet with 
rings (or moons, if they are considered intrinsic to the planet) will therefore usually 
have nonzero intrinsic spin. 

Angular Momentum Coupling. The division of the total angular momentum into 
orbital and spin components is not very useful-either conceptually or technicdly- 
unless r and the “coordinates” 5 are independent. If this can be assured, usually as 
part of a dynamical model of the system, then the S and L operators will commute. 

Under the assumption of commuting operators, one can develop an algebra in 
which the behavior of the subsystems under S and L separately is calculated, then 
the effect of J = L + S is derived. This “angular momentum coupling,” calculated 
by using Clebsch-Gordan and Racah algebra, preoccupies us in Chapters 7 and 9. 

Spin in Quantal Systems. In systems described by quantum mechanics, such as 
atoms, nuclei, nucleons, and nucleon constituents, a complete dynamical description 
of the origin of the spin degrees of freedom has not yet been achieved. That is, we 
do not usually know the appropriate internal degrees of freedom 5. By experiments 
that involve rotations, however, one can determine the quantum numbers appropriate 
to such internal degrees of freedom. For examples, electrons are found by experi- 
ment to have s = 1/2. 

For subatomic systems, understanding of the dynamics is hindered by the need 
to describe quantal systems in a relativistically covariant framework. The extension 
of our analysis to a covariant analysis is given in Section I.3k of Roman’s book on 
elementary particles [Rom6 11. Dirac’s equation for electrons and positrons is the 
most successful covariant quantum-mechanical equation, as described, for example, 
in Chapter 15 of Landau’s text [Lan90]. The problem of finding a covariant quantal 
description of particles of arbitrary spin was tackled by Lubanski [Lub42]. If one 
uses helicity (Section 1.2.1) to characterize spin states, the formalism of Jacob and 
Wick [Jac59] is straightforward to apply. A summary of density-matrix methods for 
relativistic particles is given in Section 7.7d of Biedenharn and Louck [Bie8la]. 

In Section 4.2 we derive in detail the unit spin associated with any vector field, 
and in Section 4.3 we revisit the interpretation of spin when constructing spin 
eigenstates. 

PROBLEMS ON ROTATIONAL INVARIANCE 
AND ANGULAR MOMENTUM 

3 . 1  To obtain the commutation relations of the J operators, carry out the substi- 
tutions for the small-angle expansions (3.2) in (3.3). 
(a)  Show that if the expansions are carried out only through terms linear in the an- 
gles, then the rotations commute. 
(b) Carry the expansions through terms bilinear in angles in order to verify (3.4). 
(c) Take the limit process as described in the text. Check in detail that higher terms 
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in angles do not contribute. 
3 .2  and Jo, de- 
rive the commutation relations (3.1 1) and expression (3.12) for the square of the to- 
tal angular momentum operator. 
3.3  To derive the orbital angular momentum operator component L,, equate ex- 
pressions (3.14) and (3.16), then use (3.15) to relate the two sets of coordinates. 
Now assume that E is small enough that only terms linear in E in the Taylor expan- 
sion of f ( x - & ,  y-&, z-&) about r = (x, y ,  z )  need be maintained. Thus show that in 
the limit E + 0, one obtains (3.17) for L,. 
3.4  Verify the correctness of the spherical-polar coordinate expression for the 
components of the orbital angular momentum operator L as given by (3.24). The 
easiest way to do this is to take the given expressions and to express the angle partial 
derivatives in terms of Cartesian-coordinate partial derivatives. In doing so you will 
notice that this can be done except when x = 0 = y ,  that is, when 8 = 0 or 8 = 7c, 
the angles at which the polar coordinate system has a singularity. 
3.5 
(a)  Multiply out the left-hand side of (3.38), then equate it to the right-hand side. 
Thereby show that the eigenvectors are as given by (3.39). 
(b) Check the orthonormality relations of the Pauli matrix eigenvectors, as given by 
(3.40). 
3 . 6  
(a) For the z direction, o,, carry out the series expansion in detail, use the proper- 
ties for even and odd powers to simplify the expansion, then identify the two re- 
maining series of even and odd powers of 7-12 as power-series expansions of their 
cosine and sine. Thus verify (3.42) for the spin-1/2 rotation matrix. 
(b) Make a similar analysis for or in order to verify (3.44). To do this, show that 

For the angular momentum operators in the spherical basis, 

Consider determination of the eigenvectors of the Pauli matrices. 

Consider the exponential power series of the Pauli matrices. 

(-i)“[ 0 1  ] 
OY -1 0 

0;” = (-1)?2 (3.72) 

then rearrange the series and collapse them to the cosine and sine functions given in 
(3.44). 
(c) By calculating the product d”*d show that the reduced. rotation matrix d”*(P), 
(3.44), is unitary. 
3 .7  
(a) Use the definitions (3.49) for the angular momentum operators in this space to 
show that they satisfy the basic commutation relations (3.6). 
(b) Verify the properties of these operators with respect to the states x+ and x-, as 
given in (3.50). 
3.8  Verify that the angular momentum matrices in the Cartesian basis are Hermi- 
tian by considering the symmetry of the matrix-element formulas (3.52)-(3.58). 

Consider the spinor-space representation of angular momentum. 
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3 . 9  In the algebra of the ladder operators for angular momentum verify all steps 
between (3.52) and (3.58) that are used to determine the eigenvalue spectrum. 
3.10M Given the expansion of a surface in terms of the shape parameters fl, in 
(3.67), use elementary properties of Legendre polynomials to prove the correctness 
of the following assertions: 
(a)  The average value of R( 0) when integrated over 0 from 0 to IC with weight fac- 
tor sinOdOis K. 
(b) The l = 1 shape parameter describes only a translation of the whole surface, not 
a change in its intrinsic shape. Recall that t (cos8)  = cos0. 
(c)  Calculate and sketch some surfaces described by (3.67) for various values of the 
shape parameters; magnitudes of about 0.2 and parameters of both signs provide in- 
teresting results. Mathematicu may be useful for this. 
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Chapter 4 

ANGULAR MOMENTUM EIGENSTATES 

In Chapter 3 we studied angular momentum operators, their eigenvalues, and their 
matrix elements, but we ignored the eigenstates that also characterize physical sys- 
tems having different rotational symmetry. In this chapter we replace ignorance by 
enlightenment. 

Orbital angular momentum eigenstates-legendre polynomials, Legendre func- 
tions, and spherical harmonics-are the topics of Section 4.1. We discuss not only 
their analytical properties but also provide many visualizations, including polar dia- 
grams for Legendre functions and three-dimensional views for spherical harmonics. 
If you have access to Muthemuticu, you can produce such graphics by running the 
notebooks given in Appendix I. Section 4.2 has a treatment of spherical-basis 
vectors, then uses these to discuss the angular momentum intrinsic to a vector field 
such as in electromagnetism. 

Section 4.3 is devoted to spin eigenstates, their interpretation, and various rep- 
resentations, including spinor-space representations used to determine rotation matri- 
ces (Section 6.2) and the coefficients for combining two angular momentum eigen- 
states (Section 7.2). The relation between the time-reversal operator and spin are 
also considered in Section 4.3. 

4 . 1  ORBITAL EIGENSTATES AND SPHERICAL HARMONICS 

We begin this section by considering the solution of a problem that might not seem 
immediately relevant to rotational symmetry, namely, the solutions of the Laplace 
differential equation V2u(r) = 0. If this equation is expressed in spherical polar 
coordinates (Section 3.2.2), we can solve it to obtain solid harmonics and spherical 
harmonics. The Legendre polynomials are the simplest type of solution in this 
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coordinate system. The connections between the functions for orbital eigenstates 
that are discussed in this section are indicated schematically in Figure 4.1. 

Laplace equation: v2u(r) = o 

spherical polar coordinates other curvilinear coordinates 

expansion in eigenfunctions of L2 and L, 

solid harmonics spherical harmonics 

associated Legendre functions 

Legendre polynomials 

FIGURE 4.1 Connections between functions for orbital eigenstates. Separation of the Laplace 
equation in spherical polar coordinates and expansion in eigenfunctions of L2 and L, leads to the 
spherical harmonics, associated Legendre functions, and Legendre polynomials. The abbreviation 
c = cose is used in each equation. Shown at right in polar-diagram views are the modulus of a 
spherical harmonic and an associated Legendre function. 

We see that expansion in spherical polar coordinates leads to spherical harmon- 
ics, whereas other curvilinear coordinate systems-as in Table 1.2 of Wong 
[Won9 11, for example-lead to generalizations such as the ellipsoidal harmonics 
mentioned in Section 4.1.4. On the unit sphere, r = 1, the eigenfunctions of L2 
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(whose equation is shown) and of L, are spherical harmonics. Solid harmonics 
(Section 4.1.4) are similar to spherical harmonics but are evaluated at any r. 

Our development proceeds in inverse order to the scheme shown in Figure 4.1, 
from the simplest functions of the single parameter 6' (Legendre functions), through 
the functions of 6' and Q on the unit sphere that are angular momentum eigenfunc- 
tions (spherical harmonics), to variants that are solutions of the Laplace equation in 
spherical polar coordinates (solid harmonics) and other generalizations. We go in 
this order, under the assumption that you are most familiar with the simplest func- 
tions-Pf (cos 6') and eim@-with just one parameter and one argument. Your ex- 
perience with a function that is more complicated-such as 5,(6'4) with two pa- 
rameters and two arguments-is likely to have been more limited and less agreeable. 

Books on mathematical physics usually contain extensive treatments of the solu- 
tion of the Laplace equation, such as in Section 4.12 of Wong's introductory text 
[Won91]. Older mathematics books, such as Hobson's classic [Hob3 11, usually 
contain extensive material. You should refer to such books for the analysis details 
of the following. 

4.1.1 Legendre Functions and Their Properties 

Here we summarize algebraic properties of the Legendre functions that are relevant 
to studying rotational symmetries, while in Section 4.1.2 we show various ways to 
visualize these functions. 

Legendre Polynomials. The Legendre polynomial of order 1, Pe(COS 6'), is 
most often defined as the solution that is regular at the poles 6' = 0, n of the 
differential equation for t 2.0 written as 

where, as conventional in spherical polar coordinates, the range of 6' is 0 to n. The 
function P,(cos 6) is a polynomial in cos 6' of order ! and its normalization is 

Pf (1) = 1 (4.2) 

Consequently, these polynomials are not orthonormal, but satisfy the orthogonality 
condition 

The parity property (Sections 1.2, 1.4.1) of Legendre polynomials is expressed by 
their symmetry under 6' 4 n- 8, so that cos6 + -cos6, namely 

(4.4) e P , ( - c o ~ ~ )  = (-1) P,(cose) 
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Further discussion of analytical properties of Legendre polynomials is given in Sec- 
tion 5.2 of [Won91]. 

Associated Legendre Functions. The associated function, PF(cos O), can be 
defined as the solution that is regular at the poles 8 = 0, z of the differential equation 
for C20, I m I I  e: 

By comparing (4.1) and (4.3, we see that Pe(cos8) is just P;(cosO), since they 
satisfy the same differential equations and their normalizations are suitably chosen. 
The function &m(cos8) is a polynomial in cos8 only when m is even, because when 
m is odd P'(cos8) contains a factor sin8 =d(1 -cos2 8). In spite of this fact, 
many authors mistakenly use the term "associated Legendre polynomial." 

The orthogonality property of associated Legendre functions is 

(4.6) 

of which (4.3) for Pt(cos8) is a special case. Note that there is no orthogonality 
property for two associated Legendre functions whose m values differ. Therefore, 
em with m # 0 does not belong to the classical orthogonal polynomials. 

At 8 = 0 (cos8 = c = 1) the function values are 

which is consistent with (4.2) for m = 0. The parity property of Legendre func- 
tions, of which (4.4) is a special case with m = 0, is 

Analytical properties of associated Legendre functions are discussed further in Sec- 
tion 5.6 of [Won91]. 

Formulas for Legendre Functions. In this and subsequent chapters we use the 
low-order Legendre functions for analytical and graphical examples. Therefore, it is 
useful to have a table of them at hand. As Problem 4.1 suggests, calculating the 
analytical expressions given in Table 4.1 is conveniently done by using built-in 
functions in Mathernatica. 

The first row of the table gives the Legendre polynomials for ! = 0...4. The 
formulas illustrate properties (4.7) and (4.8), as well as showing that only for the 



4.1 ORBITAL EIGENSTATES AND SPHERICAL HARMONICS I 3  1 

f 3  

+4 

odd m values, 1 and 3, do the Legendre functions contain the overall factors = sine, 
since even powers of s can be expressed as polynomials in c = cos8 by s2 = I - c2. 

<-Ini-'"'( cos e)  = (-1)" cml(C~~ e) +15s3 +105cs3 

4 y - C )  = (-1) Pe (c) 105s4 
e-m m 

TABLE 4.1 Legendre functions, P,"(cosfl), in terms of c = cosfl and s =sine. 

~~ ~ 

m\! 0 1 2 3 4 

1 1 
2 2 

0 1  C --(1- 3c2)  --c(3 - 5c2)  :(3 - 30cz + 35c4) 

f l  IfrS f 3  cs T 2  s(1- 5c2) TScs(3 - 7c2) 

i 2  3s2 15 cs2 -- 2 s2 (1 - 7 c 2 )  

2 2 

15 

For stretched m = !, it is straightforward to show that the Legendre function is 

a property that is important for deriving spherical harmonics and that also boIds for 
! = 0. The entries on the diagonal of Table 4. I show these stretched-m values. 

4 .1 .2  Displaying Legendre Functions; Polar Diagrams 

We now show various ways to visualize angular momentum eigenstates as functions 
of angles, typically 8 or (8, $). There are several possibilities for displays, ranging 
from simple x-y plots of P,(cose) against 8 for fixed C to plots in three dimensions 
of qrn(8,q5) shown in polar coordinate form for various C and corresponding 
allowed m values. 

Conventional x-y plots are of limited usefulness in angular momentum studies, 
being convenient for examining purely analytical or numerical properties of func- 
tions. We therefore introduce polar diagram displays, in which angles appear in 
their actual positions and lengths of radius vectors indicate magnitudes of functions. 
Thus, there is a direct correspondence between angular location and function value. 
Our first visualizations are the simplest, then we gradually increase the complexity of 
functions and their representations. 
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Displaying Legendre Polynomials. Legendre polynomials are functions of two 
quantities-for our purposes the angle 8 (which is continuous and appears only as 
cos8) and the order of the polynomial, L, which is most often required at the integer 
values, L = 0, 1, . , . . It is therefore convenient to show the surface PL(cos8) with 8 
and L as two axes, as in Figure 4.2. Because of the text-handling limitations in 
Muthematica, we temporarily use L instead of &. 

FIGURE 4.2 Legendre polynomials as a function of f3 from 0 to n and for L = 0, 1 ,  ..., 6. 
(Adapted from Murhernatica notebook PL.) 

Note in Figure 4.2 that the standardization of the Legendre polynomial, (4.2), 
gives all Legendre polynomials the value unity at 8 = 0, as we see at the left edge of 
the surface. Also, since PL(-l) = (-l)L because of the parity property (4.4), at 
8 = z, the values alternate between + I  and -1 for even and odd (integer) L. As 8 
tends to IT, the surface displayed in Figure 4.2 becomes less realistic because of this 
property. For L = 0, the isotropic function, a constant value of unity is obtained, as 
is seen along the front edge of the surface. 

By taking cross sections through the surface in Figure 4.2, we may view PL as 
a function of 8 for fixed L (left panel in Figure 4.3) or as a function of L for fixed 8 
(right panel). The left panel shows the three zeros of P1, while the right panel 
illustrates the parity property of PL, since the odd-parity functions (odd L)  must 
vanish at the reflection-symmetry angle 8 = d2.  
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angle shows rapid , , 
change of intensity, I 
with angle f 

I 
I 
\ 
\ 

'.-,/ 

FIGURE 4.3 Legendre polynomials: The left-hand side shows P3(cos0) and the right-hand side 
shows P ~ ( c o s d 2 )  = P~c(0)  for L = 0 to 6. In most applications the boundary conditions require that 
only the values at integer L be used. (Adapted from Mathematics notebook PL.) 

\ 
I 
I P3 has odd reflection 

symmetry in x - y 
I I  
I 

I plane 
/ 

9=7C 

FIGURE 4.4 A polar diagram and its interpretation, displayed for the Legendre polynomial 
P3(cos0). (Adapted from Mathernarica notebook PLM.) 
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FIGURE 4.3 Legendre polynomials: The left-hand side shows P3(cos0) and the right-hand side 
shows P ~ ( c o s d 2 )  = P~c(0)  for L = 0 to 6. In most applications the boundary conditions require that 
only the values at integer L be used. (Adapted from Mathematics notebook PL.) 

Polar Diagrams. Having comprehended analytical properties of the Legendre 
polynomial, it is instructive to use polar diagram representations, which are useful 
for describing angular dependences. With functions that are more complicated- 
such as associated Legendre functions and spherical harmonics-polar diagrams 
greatly simplify their visualization. Polar diagram is the mathematical term, radia- 
tion pattern is the term used in physics, and antenna pattern is a common name in 
electrical engineering. 

FIGURE 4.4 A polar diagram and its interpretation, displayed for the Legendre polynomial 
P3(cos0). (Adapted from Mathernarica notebook PLM.) 
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The polar diagram for Ps(cos8) shown with annotations in Figure 4.4 has its x- 
y plot representation the left-hand side of Figure 4.3. Throughout this book, polar 
diagrams are presented consistently in the style of Figure 4.4. Positive values are 
shown by solid curves, whereas negative values are shown by dashed curves. 

Displaying Associated Legendre Functions. With inclusion of the z-projection 
number m, the variety, complexity, and interest of Legendre functions increase 
rapidly. Interpretation of m is clearest if polar diagrams are used, since the proba- 
bility density as a function of 8 should be consistent with that of a system having 
angular momentum projection m along z. We make a preliminary and qualitative 
study of this idea now, with a definitive and quantitative study being deferred to 
Section 6.3. 

For a given !, there are ! distinct functions, PT(cosO), in addition to the poly- 
nomial Pe (case), of which examples and their formulas are given in Table 4.1. 

s odd these are not polynomials in c = cose, because of the factor 
Note s = sin that 8 = wY 1 - c2 . For comparison with Figure 4.4, we show in Figure 4.5 polar 
diagrams for I = 3, for which there are three associated Legendre functions. 

Z 

FIGURE 4.5 Polar diagrams of the three distinct associated Legendre functions for .!! = 3 .  
Functions for negative m are related by the phase (-l)m to those for positive rn shown here. The 
Legendre polynomial (rn = 0) is shown in Figure 4.4. (Adapted from Mathematica notebook 
PLM.) 

A Quantum Connection. What is the physical interpretation of the polar dia- 
grams in Figure 4.5? From the viewpoint of quantum mechanics, we note that the 
square of each function indicates the probability density at 8 for a system that is in 
angular momentum eigenstate (3, m).  Starting with the simplest diagram in Fig- 
ure 4.5 on the right-hand side, we see that the state with projection m = 3 units has 
its probability density maximum at right angles to the axis (z) along which the pro- 
jection is measured. This makes sense, since a classical particle with ! = m would 
move with its angular momentum L perpendicular to the plane, since L = rx  p in 
terms of its radius vector r and linear momentum p. 
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For angular momentum projections m = 2 and m = I (center and left-hand dia- 
grams in Figure 4.5) the smaller projections require motion that is more nearly in a 
plane containing the z axis. Finally, for m = 0 (Figure 4.4) the probability density 
and motion are predominantly in a plane containing the z axis, making the angular 
momentum projection as small as possible. Thus, physical insight arises from ab- 
struse mathematics. Problem 4.2 suggests that you make calculations for 1 = 2 
similar to those for I = 3 in order to see how closely the classical correspondence 
holds as 1 decreases. 

It may surprise you that a close correspondence with an interpretation in terms of 
classical mechanics is obtained for such a small value of t ,  namely 1 = 2 or 3. As 
discussed in detail in Sections 5.1, 5.5, and 6.4.3, this is readily understood, and it 
is the main reason why we use small values of l to illustrate the formalism. For 
1 > 4 the qualitative aspects of probability densities in quantum mechanics are es- 
sentially those from classical mechanics. 

4 . 1 . 3  Calculating and Visualizing Spherical Harmonics 

Having summarized in Section 4.1.2 relevant properties of Legendre functions, we 
now turn to the problem of understanding the spherical harmonics, yP,(6$), the 
next step up the scale of functions in Figure 4.1. We emphasize the derivation and 
interpretation from an angular momentum viewpoint, that is, Ytm(64) as an eigen- 
function of the orbital angular momentum operators in spherical polar coordinates in 
Section 3.2.2. 

We derive formulas for the spherical harmonics, qm(6$), from the rotational 
symmetry viewpoint, using raising and lowering operators (Sections 2.2.4, 3.1.2) 
in an approach similar to those of Andrews [And79], of Biedenharn and Louck 
[Bie8la, Section 3.101, and of Rose [Ros57, Appendix 1111. 

First, we derive formulas for the Yem(@@) functions by using the ladder-operator 
techniques introduced in Section 2.2.4. Next, we derive properties of the Yam, in- 
cluding the addition theorem and sum rules. Then we summarize ways of calculat- 
ing spherical harmonics and we give a table of formulas for those of order I 5 4. 
Then we show how to visualize and interpret these functions. Finally in this sub- 
section, we discuss zonal, tesseral, and sectorial harmonics. 

Azimuthal Dependence of Spherical Harmonics. For given m we have the 
eigenvalue equation 

which is solved by inspection, to give the 4 dependence 

(4.10) 
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The first partial derivative of Yfrn(6G) with respect to 4 can therefore be replaced by 
imY,,(O@). For given t ,  the simplest Yern(&)) is that with m = !, namely Yp,(O@), 
as you might guess by looking at Pee(cos0) in Table 4.1. We therefore derive U,! 
first, then we obtain the functions for smaller m by using the lowering operator L-1. 

The Spherical Harmonic Yee . Since m = ! is the largest m value on the ladder 
(Figure 3.8) with 2! + 1 rungs starting at m = -!, L+1 must destroy the state: 

(4.12) 

in which (3.26) has been used for the raising operator L+1. If you now use the 
partial-derivative rule for @with m = ! to convert this into an ordinary differential 
equation in terms of the variable sine, as Problem 4.3 suggests doing, then it is 
straightforward to show that the 0 dependence of Yee is sine 0.  

Spherical harmonics are defined to be normalized to unity integral over the unit 
sphere. (We know that they are orthogonal, since they are eigenfunctions of Hermi- 
tian operators in the spherical-polar space.) It is straightforward to show (for ex- 
ample, by working Problem 4.4 or by using the Mathematica function 1 n t e - 
grate) that 

It -~nsin2eOsinOd0 = 22e+1e! I !  
0 (2! + l)! (4.13) 

Since the @ dependence of U,, contributes a factor 2~ to the normalization integral, 
we obtain for stretched m = I the orthonormal spherical harmonic 

(4.14) 

The phase (-1)' is that chosen by Condon and Shortley [Con351 in their treatise on 
atomic spectra and is conventional. 

The General Spherical Harmonic qm. Having obtained Yee ,  the general 
spherical harmonic can be found by lowering the m value by unit steps, using opera- 
tor 15-1. If this is applied ! - m times, starting with (4.14) for Yee , and noting the 
relations (3.26), we obtain 

(4.15) 
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The summation index x is over the range of integers such that none of the factorials 
have negative arguments. For m 2 0 the range is zero to [( C - m ) / 2 ] ,  where [el  de- 
notes the integer part of variable e. Note that the sum of the exponents of the sine 
and cosine terms in (4.15) is C ,  independent of x. The significance of this result be- 
comes apparent in Section 4.1.4. 

Properties of Spherical Harmonics. We now derive several general properties 
of spherical harmonics that arise from their being eigenfunctions of angular momen- 
tum operators. The mathematics of eigenstates in Section 2.3 and the angular mo- 
mentum properties in Sections 3.2 and 3.4 are relevant here. 

A spherical harmonic is guaranteed to have a definite parity because the parity 
operator P (Section 1.4.1) commutes with the angular momentum operators. The 
parity of Ytm can be obtained directly from (4.15), giving 

I I 

Recall that Y,, is an eigenfunction of L2, satisfying the relations 

The conscientious reader may verify that (4.15) satisfies this differential equation. 
Because of the connection between this equation for Yp, and (4.5) for Pp , the two 
functions are proportional. By comparing their orthogonality properties, for 
example, it is straightforward to show that 

~~ ~ 

with the definition for negative m values 

When m = 0 (4.18) simplifies to a value independent of the 
namely 

I I 

(4.19) 

azimuthal angle 4, 

(4.20) 
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At the poles 8 = 0 and 8 = n the azimuthal angles Q are indistinguishable, so 
Gm(8Q) cannot depend on Q at these angles. Therefore, the only nonzero spherical 
harmonic has m = 0. Thus 

The first of these results is needed for the next development. 

Spherical Harmonic Addition Theorem and Sum Rule. The properties just de- 
rived hold for a single q,,, . There are two interesting related results arising from 
spherical harmonics with the same arguments but different angle pairs (8’Q’) and 
(OQ), as shown in Figure 4.6. 

FIGURE 4.6 Unit vectors for the angle pairs f’ = (8’4‘) and f = (@) for the spherical har- 
monic addition theorem (4.23). The angle between the two vectors is w. In the right panel the 
system has been rotated so that B = 0. 

Consider the scalar product (Section 2.1) given by ((8’@’)/(8@)). This cannot 
depend upon the absolute orientation of the unit vectors i’ and ? that have these 
angles, but only upon the angle w between the two unit vectors. To connect this to 
spherical harmonics, insert a unit operator between the bra and ket states, as follows: 

m (4.22) 

m 

Since the absolute orientation relative to the reference frame is unimportant, we can 
(for example) swing f’ to lie along the z axis, so that 8 = 0 and 8 -+ 0, as shown 
in the right-hand panel of Figure 4.6. The first Yp, collapses to a delta function, 
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according to (4.21), from which you can discover (especially if you work Prob- 
lem 4.5) the spherical harmonic addition theorem 

(4.23) 

Here the summation is over the m range - e to 11, and cosw = i‘. ? on the right-hand 
side. Note that each term in the sum is real, although the factors on the left-hand 
side are complex. 

By setting the angles in each spherical harmonic equal, thus w = 0, and using 
(4.2) for the Legendre polynomial, we obtain the sum rule for spherical harmonics 

(4.24) 

In both (4.23) and (4.24) the complex conjugates can be replaced-through use of 
(4.24)-by the spherical harmonics with -m times a phase, which requires more 
mental baggage. Both results are useful, especially in our developments in Chap- 
ters 8 and 9. We have derived most of these results on spherical harmonics without 
recourse to detailed expressions for Y,, . Now we turn to more practical concrete 
results. 

TABLE 4.2 
tries Yjm(6,0), an extra factor of exp(imq3) is needed and c = cose,  s = sine. 

Spherical harmonics, Ye,(@,@), for 0 5 e 5 4 .  In terms of table en- 

m\11 0 1 2 3 4 

256n 
0 

16n 

f 2  

T E  C S 3  

E s4 
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Formulas for Spherical Harmonics. With general expression (4.15) at hand, 
we can write down analytic expressions for &,,, , as shown in Table 4.2 for k' 4 4. 
It is convenient to use the built-in Mathematica function SphericalHarmonicY 
with arguments [ L , m, theta, phi ] to obtain analytical expressions for the corre- 
sponding YLm(8@). This function is used in notebook YLMabs in Appendix I. 

By using Table 4.2, several of the general properties of spherical harmonics can 
be verified explicitly. For example, entries on the diagonal-which have m = P- 
illustrate formula (4.14), while (4.21) can be checked by setting c = +1.  By inspec- 
tion, the parity symmetry of the Ye,,,, given by (4.16), is also seen to be satisfied. 

Visualizing and Interpreting Spherical Harmonics. In Section 4.1.2 we dis- 
play Legendre functions as polar diagrams, so it might appear unnecessary to show 
spherical harmonics, whose 8 dependence is that of Legendre functions, according 
to (4.18). There is, however, the extra azimuthal angle degree of freedom 9, which 
modulates the functions as ei@, The absolute values of the Y, are not affected by 
this, but any superposition of waves involving more than one Yp, is modified by 
this complex factor, unless m = 0. 

The display method in Figure 4.7 provides easily understood figures. To in- 
clude the hi1 complexity of a spherical harmonic, imagine the right-hand surface be- 
ing modulated in azimuthal angle by e2@ = cos(24) + i sin(2@). The left-hand sur- 
face has m = 0, thus no azimuthal dependence, but note that the bulge around 
13 = ;rd2 is negative in sign. One way to visualize azimuthal dependence is to plot a 
torus centered on the z axis, shown in Figure 4.8. It shows how a simple object, a 
torus, is modulated by the dependence on azimuthal angle, eim@, in the spherical 
harmonic &,n (8, @). For m = 0 the minor radius is independent of @, while for other 
m values the radius goes as cos(mq5) or sin(m@), depending on whether we are 
looking at the real or imaginary part of 5, (8, q5) . 

FIGURE 4.7 Absolute values of two spherical harmonics of order 2. In the azimuthal direction 
parts of the surfaces have been cut away from @ = 15n/8 to @ = ld4 to reveal the hacks of the sur- 
faces. (Adapted from Mathematica notebook YLMabs.) 
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FIGURE 4.8 Aids to visualizing the azimuthal (9) dependencc of spherical harmonics. The 
torus on the left has m = 0, hence no Q dependence; the center torus has m = 1; the torus on the right 
has m = 2, so it depends on Cp as Icos(2$)l or Isin(2@)1. (Adapted from Murhemarica notebook 
EXPimPHI.) 

The same picture (center and right panels in Figure 4.8) serves both cosine and 
sine functions, since the magnitudes of these two functions differ only by a rotation 
through 4 by angle d ( 2 m ) .  Problem 4.6 suggests how to construct such a figure 
using spherical-polar coordinates. Indeed, it is quite common to define the real and 
imaginary parts of the spherical harmonic (4.15), having cos@ and sin@ factors. 
The symmetries of the real harmonics are generally lower than those of the complex 
harmonics used here. 

Zonal, Tesseral, and Sectorial Harmonics. You will occasionally encounter 
these three terms in discussions of spherical harmonics. By understanding the ori- 
gin of the terms, you will realize another visualization of the Y,, ---one emphasizing 
that their signs change as one navigates over the unit sphere. The terminology is 
best understood through formulas and diagrams on a sphere, as shown in Table 4.3. 

A zonal harmonic is a spherical harmonic with m = 0. It is therefore propor- 
tional to a Legendre polynomial (Sections 4.1,1,4. I .2) and has no dependence on 
the azimuthal angle (longitude) @. The nodes (zeros) of a zonal Yem(8@) therefore 
divide the unit sphere into zones along circles of constant latitude. If t is odd (such 
as l! = 3 in Table 4.2), the central nodal line coincides with the equator (latitude 
zero, colatitude 8 = 7d2). Nodal circles are symmetrically arranged about the equa- 
tor, because of the parity symmetry (4.16) and their number is l!, just the order of 
the zonal harmonic. Recall that in geography the region of Earth between the tropics 
of Cancer and Capricorn is called the “tropic zone.” 
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TABLE 4.3 Zonal, tesseral, and sectorial harmonics, illustrated for e = 3 for 
each harmonic, with m = 2 for the tesseral harmonic Y 3 2 ( 8 @ ) .  The sign of 
I m q ,  is shown for the hemisphere ff I 4 I 2n. 

Type of harmonic: 

A tesseral harmonic is the general spherical harmonic Yem(8@). Sometimes the 
term is restricted to the real and imaginary parts separately. Consider, for example, 
the imaginary part of this function, such as ImG2(6@). The sign changes of the as- 
sociated Legendre function in the 8 variable and of cosq or sin@ in the # variable 
divide the unit sphere into angular regions of alternating sign, as indicated in 
Table 4.3. These regions “tessellate” (tile) the sphere, although the tiles (tesserae) 
must be curved. Except at the poles, nodal circles intersect at right angles. In the 
middle figure in Table 4.3 we show the signs of the spherical harmonic, with the 
sign of e2(cose) being obtained from the center polar diagram in Figure 4.5. 

A sectorial harmonic is a spherical harmonic for which there are no zonal cir- 
cles. Thus, m = t as given in (4.14) and Table 4.2. The azimuthal dependence of 
the real or imaginary part of the sectorial harmonic Ge(8Cp) divides the sphere into 
sectors, like wedges of an orange, of which there are 2 t in 0 5 Cp I 2 ~ .  For exam- 
ple, if we look at sin (34) in the range E 5 @ I 2 ~ ,  we see in the rightmost panel of 
Table 4.3 three sectors of alternating sign. 

Is all this nomenclature just to enlarge our vocabulary of Latin words? Partly, 
but there is also an interpretation in terms of deformations or vibrations of a figure 
about spherical equilibrium, for example the departure of a nucleus or the Edrth’s 
shape from sphericity or the pulsation modes of the surface of the sun. The tesserae 
indicate the regions of the surface with the same sign of the deviation from spheric- 
ity, either larger radius (+) or smaller radius (-). For deformations, these differ- 
ences are constant in time, whereas for vibrations they are time-dependent and the 
figures correspond to snapshots. For example, compare (as Problem 4.7 suggests 
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YOU do in detail) the spherical harmonics Y32(04) (left in Figure 4.9) and Y63(&b) 
(right in Figure 4.9). 

FIGURE 4.9 Signs of the imaginary part of the tesseral harmonics Y32(84)  (left) and y63(84) 
(right) over the half of thc unit sphere 0 I 8 I n, x I @ I 2n, which is the visible half if you look 
along the y axis with your eye at y < - 1 .  

The two spherical harmonics in Figure 4.9 have different zonal structure, with 
two zones for ! - m = 1 but four zones for P - m = 3.  They also have different sec- 
torial structure, with 2 sectors visible on the hemisphere for m = 2 but 3 sectors 
visible form = 3. For a vibrating system (whether the sun, a molecule, or a nuc- 
leus), the amplitudes Y63(64) would almost certainly correspond to much higher 
vibrational frequencies than for y32 (0). 

4.1.4 Solid Harmonics and Other Variants 

The spherical harmonics in Section 4.1.3, Ypm(@b), are defined in terms of the 
spherical polar coordinates 6 and 4, which locate points on the surface of the unit 
sphere. It is also useful-particularly €or applications to the quantum mechanics of 
molecules, to solid-state physics, and to geophysics-to be given point r = (x, y , z) 
in Cartesian coordinates, then to calculate a corresponding harmonic function, a so- 
lution of the Laplace equation directly in terms of x,  y, and z, or simple combina- 
tions of them. The appropriate function, the solid harmonic Ye,(r)= Yem(x,y,z), is 
then a solution of the Laplace equation. 

Other variants of spherical harmonics can be obtained by associating vectors or 
tensors with points on the unit sphere. Thus, one obtains tensor harmonics. Other 
generalizations are to functions solving Laplace’s equation on ellipsoids (ellipsoidal 
harmonics) and to functions defined in spaces of dimension higher than three 
(hyperspherical harmonics). We discuss first the solid harmonics in some detail, 
providing general formulas, then giving them for the same range of ! values as the 
spherical harmonics in Section 4.1.3. Then we summarize the references on the 
other harmonics. 

Deriving the Solid Harmonics. By examining the Laplacian in spherical polar 
coordinates, it is easy to show-as in Section 4.12 of Wong [Won91]-that for 
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given 6 and m there are two radial dependences that satisfy the equation, namely re 
(which is regular as r + 0) and r-(!+’) (which is irregular as r + 0). In spherical 
polar coordinates the general solution of the Laplace equation that heads Figure 4.1 
is therefore of the form 

(4.25) 

in which the A, and B, depend on the choice of boundary conditions. Because the 
regular solution is more commonly used, one introduces the solid harmonic, 
yPm(r), defined by 

5 * ( r ) = r e 5 m ( w )  (4.26) 

If left in this form, this is a complication rather than a simplification. We can, 
however, incorporate the r dependence within this expression by noting that 

,e (sine)2*’+m(COSe)e-2x’-m e imp 

= (r sin Be‘@ ),.,, (r sin Be-’# r ‘ ( r  cose)e-Zx’-m 

= ( x  + iy),‘+, ( x  - iy) z 

(4.27) 

x’ [-2x’-m 

in which we use as summation variable x’ rather than x,  to avoid confusion with 
coordinate x. Thus we obtain the formula for the solid harmonic 

(4.28) 

With this form one can use the Cartesian coordinates for r =(x,y,z), yet still have 
eigenfunctions of L2 and Lz. 

Spherical Harmonics in the Spherical Basis. The combinations of x ,  y, and z 
in (4.28) suggest another form of this result. Consider spherical-basis unit coordi- 
nate vectors, similar to the spherical-basis angular momentum operators in Sec- 
tion 3.1.3, namely 

(4.29) 
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in terms of unit vectors in the Cartesian basis. Note the extra T1/& factor between 
(3.9) and this equation. If we now define the spherical-basis coordinates by 

x + i y  L* (4.30) 

then the length of this complex vector is unity; I (+, l2  +I (N l 2  +I  1 2 =  1, analo- 
gously to the unit sphere in spherical polar coordinates. As you can see immediately 
by substituting (4.30) into (4.28), the spherical hamzonic in the spherical basis is 
given by 

(2! + I)(! +m)! (l- m)! 
Qm (04) = 4 4 ,  

n'+m 1?-2n'-m X' t+, t o  t-1 xx 2X'+'"'2 (m +x')! x'! (! -m -2x')! 
X' 

(4.3 1) 

which is remarkably symmetric in the three complex coordinates. Being solutions of 
a partial differential equation that is symmetric in the three variables, Euler's theorem 
demands that each term be of the same order, namely a ,  which is clear from inspec- 
tion of (4.28) and (4.31). 

Now that we have developed the analytical properties of harmonics in the solid 
form and in the spherical basis, it is time to see some examples and applications. 

Examples of Solid Harmonics. From the general formula (4.28) for C m ( r )  we 
can give the solid harmonics corresponding to the spherical harmonics in Table 4.2. 
Noting that the isotropic function &o(e@)= I/& is the same for both kinds of 
harmonics, we give in Table 4.4 the solid harmonics for ! = 1 and 2. 

TABLE 4.4 Solid harmonics for f! = 1 ,  2 with w+_ = x f i y ,  r 2  = x 2  + y 2  + z 2 ,  

m\! 1 2 

_+2 
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The forms used in this table are the same as in Table 4.2 for the spherical har- 
monics, in the sense that Ytm(r)/rt has the same dependence on cose (which is 
just z / r )  as does &,(@). This provides a simple check between corresponding 
spherical and solid harmonics. Another check is that solid harmonics have the same 
parity symmetry (4.16) as spherical harmonics, since r (being a length) is invariant 
under parity. Moreover, any polynomials that form factors in Yp,(r) must be ho- 
mogeneous, in that the degree of the terms must be the same; otherwise, the form of 
the polynomial would depend upon the unit of length used. 

Solid harmonics for L = 3 and 4 are given in Table 4.5. Note the correspon- 
dence with the spherical harmonics in Table 4.2. In Tables 4.4 and 4.5 the signs 
and square-root factors before the expressions for solid harmonics agree with those 
for the matching spherical harmonics, and the order of factors is the same. 

TABLE 4.5 Solid harmonics for e = 3, 4 with w +  = x ? iy, r2  = x2 + y + z 2 .  

m\ e 3 4 
- - 

0 -d-' 2(3r2 - 5 z 2 )  /z (3r4 - 30r2z2 +35z4)  
16n 256n 

f 2  

f 3  

+4 

-F w: (r' - 7 z 2 )  
128n 

T p  64n zw: 

W f  

The rule of homogeneous polynomials given above is seen in &,(r), for exam- 
ple, which has the sum of the exponents of each term equal to 4. For practical appli- 
cations it might be desirable to substitute for r2 in Tables 4.4 and 4.5 its expression 
in terms of x, y ,  and z, so that Ytm(r) = Yem(x,y ,z)  explicitly. 

Real Forms of Harmonics. Although the complex-number forms of spherical 
and solid harmonics, (4.15) and (4.28), are suitable for formal work, it is often 
more useful to have them expressed as real quantities, especially in problems involv- 
ing electrostatic potentials. As is clear from the expression in terms of Legendre 
functions, replacement of the complex exponential in m@ by corresponding cosines 
and sines would solve the problem. We therefore introduce the real forms of the 
spherical harmonics through the definitions 
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Thus, the conventional spherical harmonics are given by 

(4.32) 

(4.33) 

The presence of i factors reminds us that the $m are complex, whereas the Z,, are 
real. Therefore, if the latter are expressed in terms of the former, a factor of i must 
appear in the definition of Zi, . For m < 0 formula (4.19) can be used for qm. As 
Problem 4.8 suggests verifying, the addition theorem (4.23) can be written 

I I 

L t J b  I r=~ ,c , s  m=O 

(4.34) 

where each quantity is explicitly real. Figure 4.6 relates the angles on the two sides 
of this formula. 

For the real solid harmonics, similar definitions and results hold, since they dif- 
fer only by a real factor, re,  from the spherical harmonics. Tables of such solid 
harmonics are given, for example, in [P0087, Section 10-71. 

A Worked Example: Crystal-Field Potentials. To illustrate practical applica- 
tion of the real form of solid harmonics and the addition theorem (4.34), consider 
the problem of calculating the electrostatic potential at a point within a crystal lattice, 
the so-called crystal-jield potential. A typical setup is shown in Figure 4.10. 

Suppose that at point P one wants to estimate the potential V(r) due to N charges 
(q1,42, . . . , q ~ )  each of which can be approximated as a point charge, so that it has a 
definite position Ri. The replacement of finite distributions of charge (indicated by 
the spherical clouds in Figure 4.10) by point charges is called the point-charge 
model. The potential is then given by 
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FIGURE 4.10 The electrostatic potential at point P in a crystal is to be calculated in terms of 
the charges qi and their positions Ri, here shown for cubic symmetry C4. 

(4.35) 

in the second step of which we used the Legendre expansion, assuming that r/Ri < I 
for the potentials of interest. Now the addition theorem (4.10) can be used in 
reverse to expand the Legendre polynomials into functions of the angles (ei 4) for 
the charges and the angles (04) for the field point. By using the solid form of the 
real harmonics, one obtains immediately 

(4.36) 
4=0 m=O K=O,C,S 

in which the coefficients A:,, depend only on the arrangement of the charges. They 
are defined by 

(4.37) 

Expansion (4.36) is particularly convenient for calculating potentials because, 
once a given model determining the A:m has been chosen, the field point r = ( r ,  O,$) 
can be changed and only the sums in (4.36) need to be repeated. Poole and Farach 
[Po0871 provide in Sections 10-7 and 10-8 expressions for A& in various charge 
configurations. 
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Other Variunts of’Harmonic Functions. We begin our listing of other variants 
of harmonic functions by referring to the Laplace equation, which we use in Fig- 
ure 4.1 to characterize the connections between functions for orbital eigenstates. If 
the Laplacian is expressed in a curvilinear coordinate system other than the spherical 
polar coordinates that lead to eigenfunctions of Lz and Lz, one obtains functions ex- 
pressing the angular dependencies in this system. For example, in ellipsoidal coor- 
dinates one obtains the ellipsoidal harmonics that are described extensively in Hob- 
son’s book [Hob31]. 

In Chapters 5 and 10 of the mathematical physics treatise by Morse and Fesh- 
bach [Mor53a] there is a complete treatment of the separability of the Laplacian in 
three dimensions and of solutions of the Laplace equation. Extension of the Laplace 
equation to the Helmholtz equation for waves is discussed in our Section 5.4 in 
connection with partial-wave expansions of plane waves into Legendre and Bessel 
functions. Spherical harmonics as rotation matrix elements are considered in Sec- 
tion 6.4.4, while the Gaunt integrals over three spherical harmonics are derived in 
Section 7.5.3 and applied in Section 7.5.4. 

By combining the properties of a particular symmetry group (Section 2.5) with 
solid harmonics, new types of harmonics are produced. For example, the octahedral 
group Oh (the point group of the cube including inversion) gives rise to Kubic 
harmonics, also called lattice harmonics, discussed (for example) in Bell [Be154]. 

If one combines unit vectors or unit tensors (of various ranks) with spherical 
harmonics, one obtains vector harmonics or tensor harmonics. An extensive treat- 
ment of tensor harmonics is provided in the monograph by Jones [Jon85]. Al- 
though he emphasizes applications to geophysics and fluid dynamics, many of the 
results are directly applicable to electrodynamics and to quantum mechanics. We de- 
scribe vector harmonics in Section 8.2. 

All the above variants of the harmonic functions involve only three dimensions. 
In an N-body system, especially in quantum mechanics, extension to as many as 3N 
dimensions will be needed. Such an extension introduces the hyperspherical har- 
monics. The monograph by Avery [Ave89] emphasizes their applications in quan- 
tum chemistry and also provides extensive references to their use in molecular and 
nuclear physics. 

4 . 2  SPHERICAL-BASIS VECTORS AND 
ANGULAR MOMENTUM IN A FIELD 

A major purpose of this section is to develop the concept of spin, showing (as in 
Section 3.5) that spin is that part of the angular momentum (rotational symmetry) 
remaining after orbital angular momentum effects have been taken into account. 

We introduce the complex spherical-basis vectors, we show how they can be 
used to construct representations of angular momentum operators, and we demon- 
strate in Section 4.2.2 that any vector field has intrinsic angular momentum of 
unity. We then discuss briefly the angular momentum of the electromagnetic field 
and the spin of photons. 
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4 .2 .1  Vectors in the Spherical Basis 

The spherical-basis operators for angular momentum, J+1 and Jo in Section 3.1.3, 
are useful for determining eigenvalues and matrix elements (Section 3.4.2). Here 
we make a similar generalization for vectors that is also useful and provides insight. 

Spherical-Basis Unit Vectors. The unit vectors in the spherical basis are de- 
fined by 

(4.38) II - 1  * n I I  e,, =+- ex rt i i , )  eo =e2 
- a( 

and are used in Section 4.1.4 to enable discussion of spherical harmonics in the 
spherical basis. We now show that they are of more general interest. The relations 
in (4.38) can also be written in matrix form as 

-1 -i 
(4.39) 

1 -i 

The matrix UV is unitary, so (according to Section 2.2.2) the vectors have the same 
length in both bases. The complex unit vectors defined in (4.38) have the properties 

i; = (-l)'i-o d = +1,0 (4.40) 

which is analogous to property (4.16) for spherical harmonics, and they satisfy the 
scalar-product orthonormality conditions 

i; 6,. = 6,,,, 

as well as the vector-product relations 

(4.4 1 )  

i, x 2, = 0 xi,, = f i i ,  i,, x io =kii,l (4.42) 

Therefore, if A is any vector, we have 

1 

A =  CA& A, =A*$,  (4.43) 
a=-1 

so the spherical-basis components of A are related to its Cartesian components by 

A , & ~ A , )  4 = A ,  (4.44) 

Cartesian components are therefore related to spherical-basis components as 
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1 2 
A, =-(A-l -AI) Ay =-(A1 +A_,)  A, =A,, (4.45) 45 47 

These definitions and properties are particularly useful in Section 4.2.2 and when 
discussing irreducible tensors in Section 8.1. 

The Angular Momentum Basis. Spherical-basis unit vectors are, perhaps sur- 
prisingly, useful for constructing angular momentum operators. Define the opera- 
tors s + ~  and SO by 

in which x denotes the conventional cross product. As you may show in Prob- 
lem 4.9, these operators satisfy the fundamental angular momentum commutation 
relations (3.6). Further, when acting on the unit vectors they produce 

0 = f l  
S, , i ,=  .JzG,, o = T 1  so 6o = rTiu (4.47) 

o=o 

as you may also choose to verify. These results are just those obtained in Sec- 
tion 3.4.2 for the ladder operators acting on eigenstates having eigenvalues j = 1 
and m = 0. The 6 ,  are therefore spin-1 eigenstates. 

Angular Momentum for the Displacement Vector. By now you may believe 
that any vector has angular momentumj = 1. This claim must, however, be made 
with caution. Consider, for example, the displacement vector r = x i ,  + y 6 ,  +z&,. 
Take the z component of J = L +S,  where L, is from the Cartesian-coordinate ex- 
pression (3.17) and S, = SO is from (4.46). In detail, we have 

(4.48) 

We see that for the vector r the orbital and ‘‘spin” contributions to its angular mo- 
mentum exactly cancel, giving a total angular momentum component of zero. Since 
we made the analysis in Cartesian coordinates, which are equivalent to each other, a 
similar zero will hold for Jn and Jy.  This result for r should not be too surprising, 
since the field r is spherically symmetric, so that a rotation leaves it unchanged. We 
should therefore look at rotations of vectors more closely, as we do in the following. 
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4 .2 .2  Infinitesimal Rotations of Vectors 

We now tackle head-on the problem of the angular momentum of a vector field. We 
do this by finding the effect of small rotations on components of a vector. Since- 
according to the fundamental definitions in Section 3.1-operator Ji generates in- 
finitesimal rotations about axis i (x, y, or z) ,  we will then have determined the angu- 
lar momentum properties of vectors. The results may be difficult to recognize, since 
they are obtained in a spherical basis, requiring a unitary transformation to recover 
the Cartesian basis. We therefore derive the connection between the two bases. 

Transforming a Vector by Small Rotations. Suppose that we have a field of 
vectors. That is, at each point in space r = (x ,y ,  z )  there is defined a vector 
V(r) = V(x,y,  z )  = [V, ( x , y ,  z ) ,  Vr (x,y, z), Vz (x,y, 41. We assume that eachof 
the functions Vx, Vy, and Vz is differentiable everywhere. Under a small rotation 
about an axis the behavior of V will be quite complicated, since each spatial function 
V,y, Vy, and V, will change under an orbital angular momentum operator, as proved 
in Section 3.2.1. Moreover, as vector components, these three functions will be- 
come mixed; this will be the spin of the vector field. Before becoming involved in 
the algebra of this problem, envision the situation, which is sketched in Figure 4.1 1 
for rotation about the z axis. 

FIGURE 4.11 A vector field, with V 
about the z axis to r'. After rotation the 

through (small) angle E 

Under rotation the vector r is transformed into r' and V at r is transformed into 
v' at r'. Although the lengths Y and r' are equal, the three components of V and of 
V' are not so simply related, as suggested in Figure 4.1 1. It is our task to find the 
relations. 
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Recalling that angular momentum operators perform infinitesimal rotations 
(Section 3.1.2), it is sufficient to carry all calculations to only first order in the rota- 
tion angle E, and eventually to let E + 0. In terms of the 1, operator, we can then 
use (3.1) to write 

U(&,2)  = 1 - i&Jz  (4.49) 

The matrix transforming the components of a vector when it is actively rotated 
through a small angle E about the z axis is given approximately by 

0 -& 0 
A,(~ )= l i . [ .  0 01 (4.50) 

0 0 0  

where we begin with (1.14) for the matrix and expand to first order in E. In (4.50) 
13 denotes the 3 x 3 unit matrix. If we arrange the elements of V in a 3-row column 
matrix we can write the rotated vectors for small E as 

V'(r') = A, (E)V(r) r' = A, (E)r (4.5 1) 

which can be simplified to 

V'(r') = A, V(A;{ r') (4.52) 

for any value of r'. In particular, since we want the change of the vector itself under 
the small rotation (intrinsic spin), we can replace r'by r. The result may be equated 
to the action on V of U from (4.49) in a matrix representation, to obtain 

(13 - i~ Jzl)V(r) = A, V(A;l r) (4.53) 

where Jzv is a 3 x 3 matrix representation of J,  applied to a vector field. 
We can find the matrix representation by first making a Taylor expansion of each 

component of V about r, then using A,'(&) = A,(-&). As Problem 4.10 suggests 
that you work out, one obtains directly 

Thus, the action of A, on the components of V is given from (4.50) as 

y-v, -&I$ V;=q + E X  v,'= v, (4.55) 
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Finally, we combine this with (4.54) and equate the result to (4.53) in the limit 
E + 0, to obtain an expression for the representation of Jz  applied to a vector field, 
namely 

(4.56) 

We recognize the first part as the z component of the orbital angular momentum op- 
erator L, derived in Section 3.2, which takes care of the change of each component, 
as in (4.55). What is the remaining matrix S,V? To answer this, consider its eigen- 
vectors and eigenvalues, as follows. 

Eigenvectors and Eigenvalues of the Vector Spin. Suppose that V, written as 
a column vector with three elements V,, V,, V z ,  is an eigenvector of SZv with 
eigenvalue p. By setting det (SZv - p 13) = 0 we find that the eigenvalues are p = 0 
and p = f l .  The elements of the eigenvectors are then obtained by writing out the 
elements of the matrix equation SZv V = p V ,  to find that 

pLV, =-ivy pV Y = - i V ,  puy = 0  (4.57) 

Substituting each eigenvalue in turn gives the eigenvectors of S,V as 

p = f l :  

p = M :  v=v,e, 
v = v$, kGY)  

(4.58) 

in which the normalizations V+ and VO are arbitrary. One might as well choose them 
so that the eigenvectors coincide with the spherical-basis unit vectors (4.38), that is, 
V, = TI/& and V ,  = 1. Thus, in the representation (4.56) for Szv the eigenvectors 
are spherical-basis vectors, while the eigenvalues p are those of a spin-1 system. 

So, one operator down and two to go. Our preceding development does not use 
any special property of the z axis. By cyclic substitution among x ,  y ,  and z ,  there- 
fore we obtain the corresponding x- and y-axis matrices. The eager reader will ver- 
ify (Problem 4.10) that the triplet of matrices forms a representation (in the group- 
theory sense, Section 2.5.3) of the angular momentum operators, in that they sat- 
isfy the fundamental relations (3.6). Further, S; = S$ + S;v + S$ has eigenvalue 
2 = I (  1 + l), showing (together with the eigenvalues p = f l ,  0) that we have a sys- 
tem with a spin of 1. 

Our interpretation of (4.56) plus corresponding x and y formulas is now almost 
complete. The first part is orbital angular momentum L, describing transformation 
of each component of the vector under small rotations. The second part, SV, is 
intrinsic to every vector; it describes mixing of components among themselves under 
small rotations. Following the discussion in Section 3.5 of reference frames in 
relation to spin and orbital angular momenta, it is appropriate to call SV the intrinsic 
spin operator for a vector field. 
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Diagonalizing the Spin Matrix. The remaining part of our analysis of angular 
momentum of vectors is to tidy up the spin matrices, in particular to diagonalize S,V. 
This should produce the j  = 1 matrices in the Cartesian basis, as given in (3.64)- 
(3.66). By noting that matrix UV in (4.39) transforms from Cartesian to spherical- 

basis unit vectors, and that a vector is expanded in terms of the complex conjugates 
of the latter, according to (4.43), the appropriate matrix is seen to be U t  . Thus, as 
you can verify by working Problem 4.10, we obtain the diagonal form 

uys,,[u:l]'=~ ; 41 (4.59) 

which leaves the eigenvalues unchanged, as required. The same similarity transfor- 
mation applied to SXv and S,v produces the otherj = 1 matrices, (3.64) and (3.65), 
respectively. This transformation applied to the orbital part of (4.56fiand corre- 
sponding x and y expressions-leaves them unchanged, since they are proportional 
to the unit matrix. 

To summarize our results for the angular momentum operators appropriate to de- 
scribe small-angle rotations of vectors; the operator for any vector is JV given by 

Jv =L+Sv  (4.60) 

in which Sv is a spin-1 operator acting on the components of the vector. 
The peculiar case of the displacement vector r, which we show in (4.48) is iso- 

tropic (thus j = 0), is such that the transformation of each coordinate by L is just 
canceled by the transformation among its components that is made by SV. The con- 
verse to our result-that all spin-1 fields are described by vector fields-is not valid. 
For example, deuterons and 14N nuclei have j = 1, but they are composite objects 
whose constituents combine to produce this angular momentum. 

4.2 .3  The Electromagnetic Field and Photons 

The derivations made above show that any field described by vectors necessarily has 
intrinsic spin of unity associated with it. In particular, Maxwell's equations for 
electromagnetism (Section 1.4.3) are vector equations (for example, those describ- 
ing E and B or the vector potential A). The electromagnetic field must therefore be a 
spin-1 field. In this context, the vectors for circular polarization correspond to the 
spherical-basis vectors in Section 4.2.1, as described in Chapters 3 and 14 of 
Dodd's text on atoms and light [Dod91]. 

Angular Momentum and Light, In both classical and quantized electromagnetic 
field theory there is angular momentum associated with the field. A clear description 
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of spin in the electromagnetic field, requiring only straightforward use of Maxwell’s 
equations, is given in an article by Ohanian [Oha86]. He shows that the ratio of in- 
trinsic spin to energy is l/m, where m is the angular frequency of an approximately 
monochromatic wave representing the electromagnetic field. Thus, if the energy is 
quantized in units of Am, the spin will be quantized in units of A .  

Light also imparts mechanical angular momentum, the observable quantity being 
the helicity (Section 1.2.1). This was first demonstrated in an experiment by Beth 
[Bet36]. The details of angular momentum for the quantized electromagnetic field 
and its multipole decomposition are subtle. They have been elucidated by Morette- 
de Witt and Jensen [Mor53b] and are summarized in Section 7.6 of Biedenharn and 
Louck [BieSla]. 

4 . 3  SPIN EIGENSTATES AND THEIR REPRESENTATIONS 

Our purpose in this section is twofold. First, we aim to give a more refined discus- 
sion of the concept of spin than provided in Section 3.5, where the treatment is 
formal and discussion of spin in quanta1 systems is cursory. In Section 4.3.1 we 
survey how properties of dynamical systems are discovered and described. Then, 
as in the original treatment by Pauli [Pau27], we show how spin can be introduced 
in the Schrodinger equation. 

Second, we aim to describe eigenstates of intrinsic spin, both through the com- 
mon representation in terms of column matrices (Section 4.3.2) and through spinor- 
space representations (Section 4.3.3). A preliminary treatment of the algebra of 
spin-1/2 operators and eigenvectors-in terms of Pauli matrices and 2x 1 column 
vectors, as well as spinor space-is given in Section 3.3. Finally, in Section 4.3.4, 
we show how spin modifies the time-reversal operator (Section 1.4.2) applied to the 
Schrodinger equation. 

4 .3 .1  What Is Spin? 

In Section 3.5 we discuss spin and orbital angular momenta from the viewpoint of 
the effect of an infinitesimal rotation of the system. If the system has internal de- 
grees of freedom, collectively denoted by <, then the spin operator S describes the 
effect of rotation on these internal degrees of freedom. This is to be contrasted with 
the orbital operator, L, which describes behavior under small rotations of the coor- 
dinates of the center of mass of the system or some other representative point in it. 

It probably surprises students, and shocks pedagogues, that we characterize 
(Figure 3.12) the ring system of the planet Saturn as an intrinsic spin. This is, 
however, consistent with our definition of spin. Thus, spin is just that part of the 
total angular momentum which is not described in detail. A constraint on the use of 
the term is that (as discussed in Section 3.5) the spin operator S and the orbital 
operator L are assumed to commute. For example, it is probably a very good 
approximation to assume that the spin operator for the rings of Saturn is independent 
of the orbital operator that describes rotation of Saturn about the sun. A coupling 
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between S and L that is conceivable in principle but negligible in practice is the 
differential effect of solar gravity (a tidal effect) on elements of the rings. 

From the present viewpoint of spin, as 
one gradually discovers more of the in- 
ternal dynamics and describes in more 
detail the inner workings of a system, 
its “spin” gradually fades away. Even- 
tually-like the Cheshire cat of Lewis 
Carroll’s Alice’s Adventures in Won- 
derland [Car65]-no more than its 
smile remains. 

To clarify ideas about spin, we summarize in Table 4.6 the typical progress of 
discovery for physical systems. 

TABLE 4.6 The progress of discovery for five types of systems, with examples 
of such systems given in the second row. Properties are often discovered in 
about the order given hy the four categories in the leftmost column. 

~ 

System: Mechanical Electro- Atomic Nuclear Particle 
magnetic 

Earth Electro- Electron Deuteron Proton 
Category: magnerisrn states 

Observations and Sun-centered 
symmetries orbits; daily 

rotation of 
Earth 

Phenomenology Figure and 
structure of 
Earth; mag- 
netism 

Dynamics Equilibrium 
of cooling 
liquid; dyna- 
mics of core 

Gencralizations Structure of 
planets; for- 
mation of 
solar system 

Coulomb, Spectroscopy; Spin, parity, Charge, 
Ampere, and spins and mass, binding mass, spin, 
Faraday laws parities energy parity 

Maxwell Schrodinger Quadruple Charge and 
equations; cquation plus and dipole magnetism 
radiation spin-orbit moments; distributions 
fields coupling RMS radius 

Quantized Dirac Neutron- Quark models 
fields and equation; spin proton of the proton 
photons and effects of interaction and neutron 

relativity 

Electroweak Quantum Meson and Quark models 
interaction; electro- quark models of the strong 
parity dynamics of nucleon- interaction 
violation nucleon force 
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From Observations and Symmetries to Dynamics. Table 4.6 shows steps 
commonly followed in the physical sciences when discovering properties, especially 
those at the microscopic and quantum levels. To make the generality of the approach 
clear, however, we give a macroscopic example similar to that for the rings of Sat- 
urn in Section 3.5, namely the dynamics of the spinning Earth. We also include the 
electromagnetic field, following Sections 1.4.3 and 4.2.2. 

To follow the successive refinement of understanding properties of a physical 
system, consider in Table 4.6 the “Atomic” column. Historically and conceptually, 
the understanding of electron states in atoms (atomic structure) usually begins with 
observations (atomic spectroscopy experiments) on light emission from excited 
states of atoms and the use of symmetries (rotation and parity) to obtain “quantum 
numbers,” which we recognize as the eigenvalues of the symmetry operators. 

The next step is to combine refined experiments with model equations, in which 
some components are ad hoc. In such phenomenology the states of an atom may be 
described by a Schrodinger equation in which electrons have a spin-orbit interaction, 
which produces the fine structure of the energies of atomic states. (We discuss the 
algebra of this in Section 7.1.3.) At this phenomenological stage, hyperfine cou- 
pling will be described in terms of the magnetic moments of the nucleus and elec- 
tron. A more-detailed description of the dynamics-such as the Dirac equation- 
includes the effects of relativity and the relation between spin-orbit coupling and the 
spin-independent central Coulomb potential. A generalization of this description- 
quantum electrodynamics-includes consistently the interaction between electrons 
and photons, as well as the self-energy of electrons. 

The refinement of comprehension that progresses from observations and discov- 
ery of symmetries, through phenomenology and dynamics, to generalizations, can 
also be traced for the other system examples in Table 4.6. The progress of discov- 
ery is neither uniform nor as clearly divided as these examples suggest. You can 
check this by tracing through an example yourself, as suggested in Problem 4.1 1. 

Note that the level of detailed explanation one provides, and therefore the ques- 
tion of what part of the system is the spin, depends upon the task at hand. For ex- 
ample, in nuclear magnetic resonance (NMR) studies, where a nucleus as a whole 
participates in electromagnetic interactions predominantly through its magnetic dipole 
moment (as we describe in Sections 5.1.3 and 8.4.3), it is sufficient to know the 
spin and gyromagnetic ratio values of the nucleus. On the other hand, the nuclear 
structure physicist seeks a more detailed understanding, trying to explain the spin of 
the nucleus in terms of orbital motions and intrinsic spins of neutrons and protons. 
At a deeper level, a nuclear or particle physicist models these nucleon spins in terms 
of constituent quarks and gluons. Interestingly, particles that by present understand- 
ing appear to be elementary have spins between 0 and 2 [Geo82]. 

With this introduction to the concept of spin, let us work through a concrete ex- 
ample in quantum mechanics, showing how spin arises in a nonrelativistic context, 
namely in the Schrodinger equation. 

Spin in the Schrodinger Equation. We adapt a discussion by Halprin [Ha1781 
that is very similar to the procedure first used by Dirac [Dir28] to introduce spin in 
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the relativistic Klein-Gordon equation. Consider a free particle with mass m and 
energy E that is described by a time-independent Schrodinger equation: 

( P V 2  +2mE)y  = o  (4.61) 

Introduce an operator, 0, which is independent of space and time, and which has 
three components labeled by the Cartesian coordinates; a =(a, ,oy ,oz), then fac- 
torize (4.61) according to 

in which j and k each run over the x, y. and z coordinates. It is straightforward to 
show, as in Problem 4.12, that if 

CTj = I j = x, y, z (4.63) 

in which I denotes the unit operator, and if also 

then the Schrodinger equation is recovered. If we now consult matrix representa- 
tions for various spins, j ,  as given in Section 3.3.1 for the Pauli matrices and in 
Table 3.1, we see that requirements (4.63) and (4.64) are satisfied by the Pauli ma- 
trices characterizingj = 1/2. Indeed, a very similar procedure to that described here 
was used in nonrelativistic quantum mechanics by Pauli [Pau27] to describe an elec- 
tron in a constant magnetic field and in a Coulomb field. Thus, by writing the 
Schrodinger equation in form (4.62), we have included the degrees of freedom of a 
spin-1/2 system. Note that it is common not to distinguish between the operators 
appearing in the preceding three equations and their representations by matrices. 

The relation between spin and nonrelativistic quantum mechanics has been exam- 
ined in terms of the Galilei group and Galilean invariance by LCvy-Leblond [LCv71]. 
He and others point out that the prediction of an electron g-factor of 2 does not re- 
quire a relativistic wave equation such as Dirac’s, although it is consistent with such. 
L&vy-Leblond discusses derivation of the Pauli equation-a nonrelativistic limit of 
the Dirac equation-using an extension of the method we use. In spite of the long 
history of such developments, textbooks of quantum mechanics usually claim that 
spin is a mysterious relativistic effect. An exception is the text by Bialynicki-Birula 
et al. [Bia92], where a clear derivation of the Pauli equation is given in Chapter 10. 
It was probably the outstanding success of Dirac’s discovery [Dir28], especially its 
prediction of positrons, that eclipsed other descriptions of spin. 

A comprehensive treatment of the Dirac equation is given in Landau’s text 
[LanBO]. In Chapter 15 he describes the reduction to nonrelativistic approxima- 
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tions, such as the Schrodinger equation. A derivation of spin as circulation of en- 
ergy in the wave field is given for the Dirac equation in the article by Ohanian 
[Oha86]. His treatment parallels the one he provides for the electromagnetic field, 
mentioned at the end of Section 4.2.3. 

Spin and the Conservation of Angular Momentum. As a further development 
of spin that is relevant to the Schrodinger equation, consider the effect of a spin-orbit 
interaction on the rotational symmetry of the Hamiltonian. Write the Hamiltonian for 
a spin-half particle as 

H = Ho + H,, L-S (4.65) 

where L is the orbital angular momentum operator, which commutes with the space- 
independent spin operator, S = d 2 .  The Hamiltonian component HO is assumed to 
be of the form 

A 2  2 HO =--V + V ~ ( Y )  
2m 

(4.66) 

which commutes with both L and S. The spin-orbit component H,, is also assumed 
to be rotationally invariant; for example, it can depend on the distance r or on the 
magnitude of the momentum, but not on angles. 

Consider a component of L, say L,. As Problem 4.13 invites you to show, 
there are two nonzero commutators: 

(4.67) 

so that H commutes with L,+ S,. Because the choice of the x component is arbi- 
trary, the total angular momentum operator 

J = L + S  (4.68) 

commutes with the spin-orbit Hamiltonian (4.65). Therefore, the eigenstates con- 
structed from components of J (but not those of L or S separately) are constants of 
the motion. 

We develop the topic of spin-orbit coupling further in Section 7.1.3, where we 
consider the energy splitting under spin-orbit coupling, while in Section 7.3.1 we 
devise wave functions SUitdbk for describing eigenstates of such Hamiltonians. 

4.3.2 Intrinsic Spin Eigenstates 

Now that we understand what spin is, we can specify intrinsic spin eigenstates. We 
discuss first the column-matrix representations, then (Section 4.3.3) we describe 
the spinor-space representations. In general, there will be no “coordinates” such as 
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r or (64) in these eigenstates. Thus, you notice that there are many illustrations in 
Section 4.1 (orbital eigenstates and spherical harmonics), but there are very few in 
this and the preceding sections. Eigenstates may be labeled either with a symbol- 
such as 5-to indicate that there are internal degrees of freedom, or sometimes this is 
indicated by using different symbols for different spin eigenstates. 

Matrix Representations of Spin Eigenstates. It is often convenient to use 
matrix representations of spin eigenstates, especially since spin operators are usually 
expressed in matrix form (Sections 3.3, 3.4). In the former section we have a pre- 
liminary treatment of the algebra of spin- 1/2 operators and eigenvectors, both in 
terms of Pauli matrices and 2x 1 column vectors, as well as in terms of spinor 
space. We now generalize to the column-vector representation for arbitrary spin. 

For the j = 1/2 case, the derivation in Section 3.3.2 shows that 

x+ =[A] x- =[;I (4.69) 

are orthonormal eigenvectors of the Pauli matrix ( zz ,  and therefore of the spin-1/2 
matrix for z ,  since the spin matrices are just one half the Pauli matrices, according to 
(3.30). The spin projections in (4.69) are rn = +1/2 for x k ,  respectively. In Sec- 
tion 3.4.4 we have the operator matrices for j = 1/2, 1, and 3/2 (Table 3. I) ,  with 
the corresponding eigenvectors xm of the J, matrices in Table 3.2. 

As is clear from these examples, the column-matrix representation for the eigen- 
vector of J2 having eigenvalue j ( j  + 1) and of J ,  having eigenvalue m is xjm given 
by 

Detailed proof of this and related results is suggested as Problem 4.14. In (4.70) 
the conventional labeling of angular momentum matrices-largest rn values at the 
top-is followed. There is no reference to any spatial coordinates in these matrix 
representations. This makes them ideally suited for describing the rotational proper- 
ties of systems whose internal workings we either do not wish to describe or do not 
know how to describe. as discussed in Sections 3.5 and 4.3.1. 

Combining Orbital and Spin States. When combining orbital and spin states 
there are mathematical niceties that we should acknowledge, then put to rest. The 
orbital eigenstates covered in Section 4.1 are scalar functions of 8 and @, such as 
Y,, (@), whereas the spin eigenstates are matrices. Therefore, whereas we often 
write J = L + S for combining the operators, mathematically more correct is 

J =LO1,  +I, O S  (4.7 1) 
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in which 1s is a unit operator in the spin space, 1~ is a unit operator in the orbital 
space, and C3 denotes the direct product described in Section 2.1.2. The space in 
which J acts is therefore the direct-product space of those of L and S. For example, 
the vector field equation (4.60) could be rewritten more completely in this way. 

What happens to the eigenstates in such a direct-product space? As discussed in 
Section 2.1.2, every element in the spin space can be multiplied by any element in 
the orbital space. We follow up on this idea in Chapter 7 when constructing appro- 
priate eigenstates of the combined system. 

4.3.3 Spinor-Space Representations 

In Section 2.4 we introduce spinors and their properties, particularly the spinorial 
nature of fermion wave functions in quantum mechanics, while angular momentum 
operators in spinor representation are introduced in Section 3.3.4. We now show 
how such representations can be used to describe spin eigenstates. As a relief from 
the mathematics of the preceding sections, we introduce the spinor representation 
with a pictorial view, shown in Figure 4.12. 

FIGURE 4.12 Semiclassical vector model view of the spinor-space representation of a state 
with total angular momentum number j = 4 and projection number m = 1; thus there are j +  ni= 5 
spin-up spinors and j - m  = 3 spin-down spinors. For the spinor vectors their lengths are in the 
appropriate proportion, 43, to their projections. 
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In the figure each arrow and disk represent a spin- 1/2 angular momentum vector 
precessing uniformly about the z axis so that the diagonal elements (expectation 
values) of the x and y components of the angular momentum are zero, while the 2- 

component values are either +1/2 (spin-up) or -1/2 (spin-down). This picture-the 
semiclassical vector model-we develop extensively in Section 5.3. 

The mathematics corresponding to Figure 4.12 is as follows. Represent each of 
the j +  m spin-up states by spinor x+ and each of the j - m  states by x- .  It is 
straightforward to show, as Problem 4.15 suggests trying, that the spinor-space 
representations given by 

I I 

(4.72) 

are orthonormal and behave under the angular momentum operators as eigenfunc- 
tions of J2 and J, with eigenvalues jG+ 1) and m, respectively. These are the states 
labeled as (j, m ) .  

These spinor-space representations are very useful. Spin- 112 operators and 
eigenfunctions can be used to generate those for arbitrary spin, as shown originally 
by Majorana [Maj32], as we describe in Section 5.1.3. They enable clear and con- 
cise determination of rotation matrices (Section 6.2.3) and of coupling coefficients 
(Section 7.2.3). They have the further advantage of being easy to visualize (as in 
Figure 4.12), especially when used in quantum mechanics with the semiclassical 
vector model (Section 5.3). Note that actual states of spin-1/2 particles (such as 
electrons and nucleons) must additionally include the effects of the Pauli principle 
(Section 1.4.4). 

4.3 .4  Time Reversal and Spin 

In Section 1.4.2 the effect of time reversal ( t  -+ - 1 )  on systems in classical and 
quantum mechanics is introduced. There we discuss some consequences of time re- 
versal for angular momentum, but discussion of time-reversal properties of angular 
momentum states is deferred. We now consider this topic, which has important 
consequences for systems of spin-l/2 particles-particularly the Kramers degener- 
acy for electron states in atoms. 

We adapt a treatment by Brink and Satchler [Bri94, Section 4.91, which is suf- 
ficient for our needs. The original treatment by Wigner [Wig31, Chapter 261 is 
much more detailed, while the analysis in Elliott and Dawber's text [E1179, Sec- 
tions 15.7.4, 15.7.51 uses group theory methods in a relativistically covariant de- 
scription. 

Time Reversal und Angular Momentum Eigenstates. We assume that the 
time-reversal property that is appropriate for the angular momentum operator J is the 
same as for classical angular velocity (Table 1.4) and angular momentum. This be- 
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havior is not obvious, since we define (Section 3.1) J in terms of infinitesimal rota- 
tions, with no explicit reference to time. We therefore write 

@J@-'=-J (4.73) 

The angular momentum operators in the spherical basis (Sections 3.1.3, 3.4.2) 
therefore have the following action on the time-reversed states 01 jm): 

in which the sign reversal between the ladder operators arises from complex conju- 
gation in (3.10). 

Suppose that a system has a time-reversal-invariant Hamiltonian, H ;  then we can 
choose eigenstates of H, J2, and J, such that 

0 l j m )  = (-l)P-m I j ,  -m) (4.75) 

since then (4.74) is satisfied for any p. This unspecified exponent is usually chosen 
asp  = j ,  which makes combined angular momenta (Chapter 7) satisfy (4.75) if the 
component angular momenta have this time-reversal property. Thus, we write time- 
reversed angular momentum eigenstates as 

ol jm)  =(- l ) j -ml j , -m)  (4.76) 

If the time-reversal operator is applied twice, we then obtain 

021jm) = (-1)2"1jm) = (-l)2jljm) 

j an integer : 0, 1, ... (4.77) 
j a half integer: 1/2, ... 

in which the second equality in the top line follows from the phase manipulation 
rules in Section 2.1.4. Notice that introduction of the negative sign in (4.77) does 
not contradict intuition that scalar products of time-reversed states should be invar- 
iant. The sign has an immediate consequence for a many-particle system. 

Systems of Particles: Krumers Degeneracy. Suppose that we have a system 
of N particles, each of spin s. The state vector of the system can be written in terms 
of direct products (Section 2.1.2) of one-particle states of the type (4.77); then these 
can be further decomposed (Chapter 7) into products of orbital and intrinsic-spin 
states. Under O2 each orbital state gives a positive sign in (4.77), whereas each 
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spin state gives a factor of (-1)2”, thus a positive sign for integer spins (such as 
deuterons) and a negative sign for half-integer spins (such as electrons). For N such 
particles the system state \ s N , M )  therefore has the time-reversal property 

0 2 1 s N , M )  =( -1 )2SNIsN,M)  (4.78) 

Therefore, for a time-reversal-invariant Hamiltonian the system will have two states 
of the same energy if SN is a half integer, that is, if s is a half integer and N is odd. 

For example, an electron system with an odd number of electrons has (assuming 
time-reversal invariance of its Hamiltonian) a double degeneracy of its energy eigen- 
values. This result is called Kramers’ theorem or Kramers’ degeneracy, after its 
discoverer [Kra30]. Notice that-and this applies particularly to atomic nuclei-at- 
tempting to hide the degeneracy by clustering the particles into higher-spin subsys- 
tems will not succeed, since only the product s N  = ( s n ) ( N / n ) ,  where n is the num- 
ber of particles in a cluster (assumed to be a factor of N), is operative in (4.78). 

Our mention of angular momentum in a quantized field in Section 4.2.3 and our 
discussion of spin-1/2 states in this section lead us to inquire further into the role of 
angular momentum in quantum systems. We have been remarkably silent on this 
subject, except for discussing discrete symmetries and quantum systems in Sec- 
tion 1.4 and introducing the distinction between geometrical and dynamical angular 
momentum in Section 3.4.5. Now that we have covered the basic material on rota- 
tional symmetries in Chapter 3 and this chapter, we should be ready, willing, and 
able to consider angular momentum in quantum systems, which is the main topic of 
Chapter 5. 

PROBLEMS ON ANGULAR MOMENTUM EIGENSTATES 

4 . 1 M  Evaluate analytically the Legendre functions for 0 I C I 4 and all relevant m, 
as in Table 4.1, by using the built-in Mathernatica functions Legendrep [ P I  cl 
for the polynomials, or Legendrep [ l , m, c ] , which can be used for both the 
polynomials (m = 0) and the ‘ated functions (m f 0). To obtain the forms in 
Table 4.1, the substitution lr““ 1-c2 = s  will need to be made, since c=cosO and 
s =sine.  

4 . 2 M  Work out the analytical and numerical properties of the Legendre functions 
for 4 = 2,  similarly to the examples in Figures 4.4 and 4.5 for l = 3. If you have 
access to Mathematica, use the notebook PLM in Appendix I to derive the formulas 
and present visualizations of the three distinct functions P;”(cosO) for m = 0, 1, 2. 
Interpret your results from the viewpoint of classical angular momentum. 

4 . 3  To determine the 0 dependence for the stretched-rn spherical harmonic func- 
tion qt(&$), replace the $dependence in (4.12) by it, then transform the variable 
to sine. Show that you have a separable differential equation in this variable, which 
for C > 0 can be integrated directly to produce the sinlo dependence of Ye, on 8. 
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4 . 4  Calculate the integral for the normalization of the m-stretched spherical har- 
monic, 1, given by (4.13), as follows. 
(a)  Integrate 1, by parts, integrating on the sin0 factor and differentiating on the 2 I 
power of sine. Thus derive the recurrence relation 

I > O  21 
1, =- 

21+ I 4 - 1  
(4.79) 

(b) Show by direct integration that l o  = 2, then use upward recurrence on 4 repeat- 
edly in (4.753, inserting factors in the numerator and denominator until suitable 
factorials are obtained. Thus obtain (4.13). 
4.5 Consider the spherical harmonic addition theorem (4.24). 
(a)  Show the steps between (4.22) and (4.23). 
(b) Starting with the addition theorem (4.23), derive the sum rule (4.24). 
( c )  Verify the sum rule (4.24) for 4 = 2 by using the spherical harmonics in 
Table 4.2. The symmetry (4.19) shows that it is sufficient to add the m = 0 term to 
twice the sum over the m > 0 terms. 
4 . 6 M  Figure 4.8 displays three tori illustrating the m and 4 dependences in the ex- 
ponential factor &@ of the spherical harmonic q,,, (0, @). 
(a)  Show that in cylindrical coordinates in which @ is the azimuthal angle, the minor 
radius of the torus, r, is given by 

if we assume unit radius at @ = 0. Thence show that the Cartesian coordinates of a 
point on the torus are given by 

x = [ R  + r(@) COS~]COS 4 y = [ R  + r(qi)cost]sin 9 z = r(4)sin t (4.8 1) 

in which R is the major radius of the torus and the angle t parametrizes the circular 
cross section of the torus, 0 I t 521~.  
(6)  Show that the real and imaginary parts in eim4 are described by tori that differ in 
magnitude merely by rotation about the z axis through A(2m). 
( c )  Sketch the torus for various values of rn. If you have access to Mathematica 
the notebook ExP~~PHI is useful for this. 
4.7M Consider the spherical harmonics in Figure 4.9, G2(6q5) and Y63(0@), and 
the way in which they tessellate the unit sphere. 
( a )  Use Mathematica notebooki PLM to derive the formulas for Q2(cos0) and 
@(cosO), and to make a two-dimensional plot of each function so that you can lo- 
cate its zeros approximately. Determine the signs of the 8 (zone) dependence of 
these qm. 
(6) In Figure 4.9 we consider the imaginary parts of the two spherical harmonics, 
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thus a @dependence sin (m@, and we view the hemisphere with 7c 2 @ I 27c. De- 
termine the signs of the @ (sector) dependence of the &, . 
(c )  Combine the signs of the 8 and @ dependences to verify the signs of the two 
tesseral harmonics in Figure 4.9. 
4.8 The spherical harmonics are related to those in real form by (4.33). Use 
these relations in the spherical harmonic addition theorem (4.23) to derive the real 
form of the addition theorem, (4.34). Show that the symmetry properties between 
m and -m of the terms that depend on qb result in no cross terms between the differ- 
ent Kterms. 
4 . 9  Prove the following properties of matrices, vectors, and operators for the 
spherical basis: 
(u) Verify the unitarity of the matrix UV in (4.39). 
(b) Prove the scalar-product relation (4.41) for the three projections of _tl and 0. 
(c) Check the vector-product relations (4.42) for the three projections. 
(6, Verify that the angular momentum results (4.47) agree with (3.60) for j  = I and 
m = O, with CT= +1 or 0. 
4.10 Consider the algebra of deriving the infinitesimal rotations of vectors. 
(u) Show in detail the steps leading from (4.53) to (4.56). 
(b )  Use the determinant equation given in the text to show that the eigenvalue 
equation is p(p2 - 1)  = 0, so that the eigenvalues are p = 0, ,u = +1. 
(c) Obtain the spin matrices for x and y by cyclic substitution on the z matrix. 
(6, Show that S’, is diagonal with eigenvalue 2.  
( e )  Cany out the similarity transformation indicated by (4.57) on S,V to show that it 
comes to the standard diagonal form. Do the same for the x and y matrices from (d) 
to verify agreement with the j = 1 entry in Table 3.1. 
4.1 1 The progress of discovery-from symmetries to dynamics-is indicated for 
five examples in Table 4.6. Consider a column for a system of interest to you 
(other than “Atomic,” which is discussed in the text) and trace through in some detail 
the refinement of understanding that is indicated in successive rows. Feel free to 
disagree with my characterizations, but justify your arguments. 
4.12  For the inclusion of spin in the Schrodinger equation, show in detail the 
steps leading from (4.61) to the requirements (4.63) and (4.64) on the o-operator 
components. 
4 .13  Show that the commutators of the orbital and spin operator x components 
with the Hamiltonian (4.65) are nonzero, as given in (4.67). 
4.14  Derive the following properties of the column vectors (4.70) to show that 
they form an orthonormal basis for angular momentum states of a given j .  
(a )  Show that when acted upon by the J,  matrix with elements (3.66), the column 
matrix whose elements are the second entry in (4.70) produces eigenvalue m. 
(b) By considering the matrix elements of the scalar product of Xjm and zm‘, prove 
formally that their scalar product lj,, xjm. = that is, they are orthonormal. 
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(c) Show that the set of matrices xjm forms a basis (complete set) for column matri- 
ces with the same value of j ,  in agreement with the completeness theorem (2.73) for 
Hermitian operators. To do this, show an arbitrary column matrix with 2j + 1 rows 
as a linear combination of the Xjm. 

4.15 Prove the following properties of the spinor representation u(j, rn) given by 
(4.72). 
( a )  Show by using the angular momentum operators 52 and J, that the u(j, rn) are 
eigenfunctions with eigenvalues j ( j  + 1) and rn, respectively. 
(b) Show that with the factors in the denominator of (4.72) the functions are ortho- 
normal. 
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Chapter 5 

ANGULAR MOMENTUM IN 
OUANTUM SYSTEMS 

In this chapter we emphasize interpreting angular momentum in quantum systems, 
with less emphasis on rotational-symmetry aspects than in the previous chapters. 
The distinction between geometrical and dynamical angular momentum is explained 
in Section 3.4.5, and we show in this chapter its implications for quantum mechan- 
ics. The mathematics-physics relationship is summarized in Figure 5.1. 

FIGURE 5.1 Schematic of the relationship between mathematics and physics. 

The preceding four chapters and later chapters relate primarily to geometry, with 
connection to the physical world requiring mainly the assumption of isotropy of 
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space, which is at least partially validated by the consistency of observations. By 
contrast, this chapter relies heavily on ideas of physics (particularly quantum me- 
chanics) and agreement with physical observations (experiments). 

We use the term “physics” to encompass any of the physical sciences, such as 
physics, chemistry, and engineering. Our usage is justified historically by the fact 
that a majority of the concepts described in this chapter originated in physics, al- 
though they have often been developed extensively in other physical sciences, espe- 
cially in chemistry. 

Physics uses several kinds of language: natural language (such as English), 
graphical language (schematics such as Figure 5.1, diagrams, and graphs), and 
mathematics. When mathematics is used in physics it must be both appropriate and 
correct. Section 5.3.1 emphasizes that paradoxical results can be obtained if physi- 
cal concepts are not expressed appropriately and manipulated by the mathematics. 
As summarized in Figure 5.1, physics involves a loop of four themes: concepts, 
language, mathematics, and observations. 

We begin the chapter by discussing in Section 5.1 rotational symmetry and dy- 
namical angular momentum, especially the role of Planck‘s constant. In Section 5.2 
we progress to the uncertainty relations for angular momentum as interpreted in 
quantum mechanics. We show that the semiclassical vector model (Section 5.3) is 
useful for visualizing angular momentum. The model also helps when considering 
how to combine two angular momenta (Section 7.1). Waves, particularly Schro- 
dinger wave mechanics, and their relation to angular momentum are discussed 
extensively in Section 5.4, where we also derive and present visualizations of par- 
tial-wave expansions involving Bessel functions. Section 5.5 summarizes the con- 
ceptual development of angular momentum from a historical perspective. The in- 
evitable problems round out the chapter. 

5 . 1  ROTATIONAL SYMMETRY AND DYNAMICAL 
ANGULAR MOMENTUM 

Our aim in this section is to develop the connection between rotational symmetry 
(geometry) and dynamical angular momentum (physics). We begin by showing in 
Section 5.1.1 the correspondence between geometrical, quantal, and classical 
angular momentum. Then we consider in Section 5.1.2 the particular case of orbital 
angular momentum and the quantum-classical correspondence through an Ehrenfest 
theorem for orbital angular momentum, analogous to that often derived for the 
quantum analogue of Newton’s force equation. Finally, in Section 5.1.3 we 
consider magnetic moments in magnetic fields, deriving by quantum mechanics the 
equations for Larmor precession in a uniform magnetic field and also using the 
Majorana construction to relate systems of arbitrary spin to those for spin 1/2. 

5 . 1 . 1  

Having studied angular momentum operators and their eigenstates (Chapters 3 and 
4), we are ready to summarize the relations between geometrical and dynamical an- 

Angular Momentum and the Role of Planck’s Constant 
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gular momenta (introduced in Section 3.4.5) and to explicate the relations between 
quantal and classical aspects. 

The Role of Planck's Constant. Especially relevant to understanding connec- 
tions is the role of Planck's constant h ,  as f i  = h / 2 ~ ,  which distinguishes ge- 
ometrical and dynamical angular momenta. Further, if in dynamical angular momen- 
tum we replace quantal angular momentum operators by their expectation values and 
let A -+ 0 in such a way that its product with 1 remains finite, say Lc, then we have 
classical angular momentum values. Of course, since h is not under our control, 
this limiting process is merely a formal device to show the quantal-classical corre- 
spondence. Relevant relations and connections are summarized in Table 5.1. 

T A B L E  5.1 Connections between geometrical, quantal, and classical angular 
momenta. 

~~ 

Geometrical Dynamical angular momentum 
angular momentum 

(rotational symmetry) Quantum mechanics Classical mechanics 

Operators 
J 

[Jr 7 ~ s ]  = i ~ r s l  J ,  

( 4 )  = m  
m = -j ,  -j+l ,..., j 

( ~ ' ) = j ( j + l )  

Expectation values 

Orbital angular momentum 
L =- i rxV 

j -+ 1, integer 

( J 9 z )  = mfi 
m = -j, -j+ 1, ..., j 

L9 =-ifir xV  = r xp9 L, = r x p  
for a single particle j + l ,  integer 

lim @ti) = L, e+-, 
h+O 

Two interpretative remarks need to be made about Table 5.1. The first, which 
is a preoccupation of physicists, concerns the dimensions (units) of the quantities- 
geometrical angular momenta are dimensionless, but dynamical angular momenta 
(quantal or classical) have the same dimensions as A ,  namely mass x (1ength)Uime. 
It is common in quantum mechanics and in subatomic physics to state that one is 
using units such that f i  = 1 ,  a confusing practice which makes expressions in geo- 
metrical and dynamical quantal angular momenta algebraically the same, but physi- 
cally quite different, as Figure 3.11 emphasizes. 
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The second remark about Table 5.1 is that the classical limit of the quantum 
commutator is obtained by taking expectation values, then letting tZ + 0, which re- 
sults in a vanishing commutator. Thus, as examined in more detail in Section 5.2, 
in the transition from quantum to classical mechanics, expectation values replace 
eigenvalues and the order of measuring classical angular momentum components be- 
comes unimportant. 

5.1.2 Classical Angular Momentum: Ehrenfest Theorems 

We now concentrate on understanding orbital angular momentum, which derives in 
the geometric viewpoint from infinitesimal rotations of spatial functions, as shown 
in Section 3.2. We refine the discussion of operators given below Table 5.1 by 
quantifying the relation between quantal and classical orbital angular momentum as 
an Ehrenfest theorem for quantum expectation values. 

Quantum Analogues of Classical Equations of Motion. We summarize here 
results from quantum mechanics that demonstrate the origin of classical equations of 
motion in terms of expectation values of quantum operators. Such results are gen- 
erally known as Ehrenfest theorems, from the analysis published by Ehrenfest in 
1927 of the quantum analogue of Newton’s force equation [Ehr27]. 

As you will recall from wave mechanics, if the wave function of a state, ty, 
evolves according to the time-dependent Schrodinger equation of potion 

where H i s  the Hamiltonian operator (assumed to be Hermitian), then the expectation 
value of an operator 0 taken in the state tyevolves in time according to 

@=($)+-!-([O,H]) dt (5.2) 

in which [O, H ]  is the commutator of 0 with H. 
The most common example of this relation in describing the quantal-classical 

connection is to consider the time evolution of the expectation value of the momen- 
tum operator for a single particle moving nonrelativistically. In configuration space 
we then have 0 = pq = -ihV. Since this operator has no intrinsic time dependence, 
the first term on the right-hand side is zero. For the Hamiltonian 

P2 H = A + V  
2m 

(5.3) 

in which V is the potential acting on the particle, it is easy to show that the required 
commutator is [ O , H ] = [ p , , H ] = - i A W .  We thus obtain by substitution in (5.2) 
the usual Ehrenfest theorem for momentum: 
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where we introduce the relation between potential and force. This is the quantum 
expression corresponding to Newton’s force equation. No particular assumption is 
made about the state y, except for the convergence of the expectation-value inte- 
grals. Neither is there any A + 0 limit required-(5.4) is a quantal equation. 

An Ehrenfest Theorem for  Orbital Angular Momentum. Now that we under- 
stand the goals and methods for establishing quantal-classical connections, let us 
choose in (5.2) for a single particle 0 =L, = r xp,  =-iAr x V .  With the Hamil- 
tonian (5.3) and considering a representative component of L,, it is straightforward 
to show (as Problem 5.1 suggests you do) that 

-- T = r x F = -r xVV 
dt (5.5)  

in which T is the torque operator. This Ehrenfest relation for angular momentum 
corresponds to the torque equation in classical mechanics. The conservation equa- 
tion for each component ( L + ) ,  with i = x, y ,  z ,  is that this component is conserved 
in time (a constant of the motion) if the expectation value of zi is zero. Note that 
(T) # (r) x(F)  and that no particular assumption is made about the state y. Again 
we have a completely quantum-mechanical result, with no A -+ 0 limit required. 

These results are not in conflict with the orbital angular momentum eigenvalue 
properties derived in Section 4.1 without reference to quantum mechanics and using 
only the geometry of rotations. There we choose the ket state, of which y i s  an ex- 
ample, to be an eigenstate of L, and we develop the consequences. 

Central Forces and Constants of the Motion. We discuss this topic in Sec- 
tions I .  I .  1 and I .  1.2 in the context of symmetries, conservation laws, and Noe- 
ther’s theorem for classical mechanics. Now suppose that also in quantum mechan- 
ics we define a central force as one in which the potential acting on a particle is only 
a function of the distance from the center of rotation, r, and is independent of angle. 
Thus V(r) = V(r) only, which is the same definition as in classical mechanics, for 
example, Newtonian gravitation and Coulomb’s law of electrostatic interaction. It is 
quite direct to show- Problem 5.2 indicates the steps-that r xw=O, so that, 
from (53, (I,,) is independent of time. That is, the expectation value of the quan’ 
tal orbital angular momentum operator of a particle is a constant of the motion for a 
central force operator. This is the same result as in classical mechanics if operator 
expectation values are equated to the corresponding classical observables. 

From the above considerations, we can summarize the correspondences between 
geometrical angular momentum and dynamical quantal or classical angular momen- 
tum, as shown in Figure 5.2. 
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FIGURE 5.2 Correspondence between the three types of angular momentum-geometrical, 
quantum-dynamical, and classical. See also Table 5.1. 

We now switch our attention from the dynamical operators, such as force and 
torque, to the state y with respect to which the expectation values are taken. 

Choice of the Quantum State. So far we have assumed only that y is mathe- 
matically appropriate for calculating expectation values. Suppose, however, that y 
is an eigenstate of one of the angular momentum components, conventionally chosen 
as L,. (We are assured from the purely geometric properties of rotations derived in 
Section 3.1.2 that only one component can be in an eigenstate.) From Sec- 
tion 3.2.3 we have that L q z y  = hLzy  = m A y ,  with ythe normalized eigenfunction 

w ==eirn$ 1 

By a direct calculation, with the scalar product that is needed for the 
value being integration over @ from 0 to 2a, it is easy to show that 
which is time-independent, so the expectation value of this component 
is a constant of the motion. This relation is also summarized in Figure 5.2. 

For the L ,  and L,  expectation values taken in this eigenstate, the integration 
over 8 from 0 to a in calculating with the expressions in (3.24 automatically ives 
zero, since the eigenfunction does not depend upon 6. Thus, (!Lq,.) = 0 = ( Lqyf. A 
more general proof of this result is in Section 5.2.2. 
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5.1.3 Larmor Precession in Magnetic Fields 

We can understand the quantal-classical correspondence more compIetely by consid- 
ering the behavior of a magnetic dipole with moment M in a magnetic field, B, with 
all other effects on the motion of the particle being ignored. We emphasize here the 
quantal-classical connection, with quantal aspects that are more applied being de- 
ferred to Section 8.4. 

The interaction Hamiltonian for a quantal system is assumed to be just that used 
in classical mechanics, namely 

0 J.B (5.7) H = -M.B = -gp 

in which J is the angular momentum operator, g is called the g-factor, and 
unit for the magnetic moment: 

is the 

eh 
PO =; (5 .8 )  

where e is the magnitude of the electron charge. For atoms and electrons the appro- 
priate value for the mass m is the electron mass, so po = p ~ ,  the Bohr magneton. 
For nuclei and nucIeons one uses the proton mass, so that po = p ~ ,  the nuclear 
magneton. Numerical values of ,UO and representative g values are given in 
Table 5.2. 

T A B L E  5.2 Units and values for magnetic moments of electrons (e), protons 
@), neutrons (n), and deuterons ( d ) .  

Electron / Atom Nucleus 

Unit for Bohr magneton: Nuclear magneton: 
magnetic moment PB = 9.2740 x J T-I pN = 5.0508 x 10-27 J T-I 

g-factors: 
ge -2.0023 
SP 5.5857 
gt1 -3.826 1 
gd 0.8574 

For electrons or atoms the sign of the Bohr magneton unit is often given as 
negative to account for the negative charge of the electron. The electron g-factor is 
then positive. Although the magnetic dipole moment may arise from complicated 
internal dynamics (which is often of intrinsic interest), we treat it as an internal de- 
gree of freedom. Thus, J is a spin, in the sense discussed in Section 3.5.  In con- 
formity with common usage, we use J rather than S in this section. 

Larmor precession of spins in magnetic fields has a very broad range of applica- 
tions. Nuclear magnetic resonance (NMR) techniques are used in physics and 
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chemistry to probe magnetic fields in condensed-matter systems, while in medical 
diagnosis the technique of magnetic resonance imaging (MRI) is now widely used. 
Introductions to magnetic resonance in the physical sciences are provided in books 
by Poole and Farach [Po0871 and by SLichter [Sli89]. 

We use two methods for deriving spin-precession quantities. The first uses the 
time-evolution equation for expectation values, (5.2), and therefore has a direct cor- 
respondence to classical mechanics, whereas the second (Majorana's formulation) 
evolves the wave function in time. 

Spin Precession in a Magnetic Field. To find the time evolution of expecta- 
tion values of the spin operator J we can use (5.2), which requires the commutator 
[ J ,  H] ,  where H for a single particle is given by (5.3). It is straightforward to show 
(Problem 5.3 suggests the steps) that 

[J, J-B] = -iJ x B (5.9) 

In the equation of motion (5.2) we therefore need the expectation value of the opera- 
tor on the right-hand side. Since B is assumed to be an external field whose 
components are established independently of the behavior of the spins, it can be 
factored out of expectation values, which are usually taken over volumes of atomic 
dimensions or smaller, within which B may be considered constant. By combining 
(5.2), (5.7), and (5.9), we obtain the Larrnor precession equation 

rn 
(5.10) 

The second form shows the immediate correspondence between the quanta1 and 
classical expressions, since there is no h in (5.10). 

This correspondence may be more apparent than real, because quantum mechanics 
is required in order to understand why particles (such as nuclei) have a particular g- 
factor, and quantum physics is usually needed to explain the mechanism for pro- 
viding an appropriately large B field, especially if superconducting magnets are 
involved. Thus-as for the classical physics of dielectric constants, magnetic 
moments, refractive indexes, and other properties of matter-there is a more fun- 
damental underlying description whose elucidation requires quantum mechanics 
applied to atoms and nuclei. Such layers of explanation are discussed in relation 
to Table 4.6. 

It is shown in classical mechanics texts, as in Section 5-9 of Goldstein [G0180], 
that if B in (5.10) is constant in time, then (J) makes a uniform precession about the 
direction of B at the Larmor precession angular frequency, oL, given by 

(5.11) 



5.1 ROTATIONAL SYMMETRY AND DYNAMICAL ANGULAR MOMENTUM 177 

To visualize Larmor precession, look at Figure 5.3, in which we see that at any in- 
stant the rate of change of (J), proportional to (J) XB according to (5.10), is per- 
pendicular to both (J) and to B(t). 

FIGURE 5.3 Classical picture of l a m o r  precession of spin J about the direction of the mag- 
netic field B at precession frequency OL. 

In  the semiclassical vector model for angular momentum in Section 5.3 we re- 
place the expectation value (J) in Figure 5.3 by the operator J. Although the sim- 
ple precession pictured here is correct for a time-independent magnetic field, if B 
changes slowly compared with the instantaneous precession frequency, then (J) 
will precess about this time-dependent field. In Section 8.4 we show that (J) 
changes in magnitude as well as in direction if the time dependence of the magnetic 
field is not relatively negligible. 

We have derived the Larmor formula for precession of spins in magnetic fields, 
having obtained (5.10) for expectation values of spin operators. It is also instructive 
to consider evolution of spin wave functions for the same Hamiltonian, as we do in 
the following. 

The Majorana Formulation. In 1932, Majorana [Maj32] provided the concep- 
tual basis for reducing the problem of the behavior of a spin-j system to that of the 
superposition of 2j  subsystems each of spin 1/2. Although we discuss his ideas in 
the context of magnetic moments in B fields, it is significant as the basis for spinor- 
space representations (Section 4.3.3), for describing rotations in general (Sec- 
tion 6.2.3), and for determining coefficients for combining two angular momentum 
eigenstates (Section 7.2.3). 

Consider an assembly of 2 j  spin- 1/2 particles each precessing about the field B, 
as shown in Figure 5.4, where there are eight such particles, five with spin up and 
three with spin down. The maximum angular momentum they could represent is 
8 x (1/2) = 4, and the net projection is 5 x (+1/2) + 3 x (-1/2) = 1, as indicated to 
scale on the right-hand side of the figure. Although consideration of spin projec- 
tions is not important at this stage, it is significant for the developments in Chap- 
ters 6 and 7. 
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B 

t 
B 

1 ,,,, 

I ,’ 

FIGURE 5.4 In Majorana’s formulation, a system with spin j (right-hand side) can be repre- 
sented as 2j subsystems each of spin 112 (left-hand side). See also Figure 4.12. 

Let the time-dependent wave function of the spin-j system be denoted by 8, so 
for a spin-1/2 subsystem the wave function is ~ 1 1 2 .  It is nor assumed that the sys- 
tem has a definite m value. Also, let us call the angular momentum operator for the 
kth spin-l/2 subsystem Sk,  with k = 1,2,  . . . , 2j. The Schrodinger equation is then 

(5.12) 

Imagine the state Xj evolving with time by the action of a unitary time-evolution 
operator, U(t),  on the state at t = 0. Thus 

(5.13) 

Our visualization in Figure 5.4 suggests writing the angular momentum operator as 

so that U(t) evolves in time according to 

(5.14) 

(5.15) 

Suppose that we now write the time-evolution operator U in product form: 
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(5.16) 

in which each of the operators Uk acts only on the kth subsystem. It is then straight- 
forward to show (as Problem 5.4 suggests you verify) that 

(5.17) 

for each of the 2j spin-1/2 subsystems. We have thus obtained Majorana's result 
that the magnetic-dipole interaction between a spin-j system and a magnetic field is 
for calculation purposes equivalent to that of 2j  subsystems each having spin-1/2 
and the same magnetic moment as the spin-j system. 

From the viewpoint of angular momentum and rotational symmetries, the Majo- 
rana formulation establishes the following relationships. In Section 2.2.3 we dis- 
cuss operator exponentials and commutators, and in Section 3.1. I we relate U as a 
rotation operator to J the angular momentum operator. We may therefore write 

By using (5.14), we obtain directly the relation between system operator J and sub- 
system operators Sk given by (5.14). 

Majorana's construction enables us to describe the angular momentum operator 
for a complicated spin-j system in terms of much simpler spin-l/2 systems. The 
form (5.14) also justifies one aspect of Figure 5.4, namely that only the sum of the 
2j spin components on the left-hand side has to match up to a spin component on the 
right-hand side, so the spin-half vectors are drawn with various x and y components 
and with z components consistent with an eigenvalue of J,. 

We return to the interesting physical problem of precessing spins in Section 8.4, 
where we derive the rotating-frame transformation and solve the equations for spin 
transport of a polarized beam passing through a magnetic field gradient. 

5 . 2  UNCERTAINTY RELATIONS FOR ANGULAR MOMENTUM 

Our purpose in this section is to derive and interpret uncertainty relations for angular 
momentum in the context of quantum mechanics. Thus, unlike most other material 
in this book, the operators are Jq rather than J, and there are factors of R appearing 
in expressions for commutators. Further, the bra-ket states are those satisfying 
quantal equations of motion, so they are denoted by ( ~ 1  - I w )  and various modifi- 
cations. As emphasized in Figure 5.1, the relevance of these results to physical sys- 
tems depends upon the correctness of quantum mechanics formalism, observations, 
and interpretation, in addition to the presumed isotropy of space (discussed in rela- 
tion to Figure 1.10) that leads to geometrical angular momentum. 

In Section 5.2.1 we derive generally the Heisenberg uncertainty relations be- 
tween noncornmuting quantal operators and the equation for the state that produces 



180 ANGULAR MOMENTUM IN QUANTUM SYSTEMS 

minimum uncertainty. We apply these relations and equations in Section 5.2.2 to 
situations in which both operators are angular momentum operators; then in Sec- 
tion 5.2.3 one operator is a quanta1 angular momentum and the other is constructed 
from angles. 

5.2.1 

We establish the Heisenberg uncertainty relations between any two noncommuting 
operators in quantum systems by deriving the relation between the product of the 
operator standard deviations in an arbitrary (but normalized) quantum state, I y). 
Then we derive the equation that a state must satisfy if the product is as small as 
possible; this is state I y, ) . As examples of these uncertainty products and minimal 
states, we consider linear momentum and position operators. 

Heisenberg Uncertainty Relations for Quantum Systems 

Noncommuting Operators Imply Uncertainties. We summarize the derivation 
of the relation between noncommuting operators and uncertainties in their measure- 
ments. Suppose that we have two Hermitian operators, P and Q, and that their 
commutator satisfies 

[ P, Q ]  = i AR (5.19) 

Consider their expectation values taken in a particular normalized state y and the 
difference operators, 6P and @, defined by 

61' P - ( ~ I P l y / ) l  SQ E Q - (YlQ[ v/)i (5.20) 

in which 1 is the unit operator. The expectation values of these difference operators 
in state y are both zero; (y16P( y) = 0 = (v/lSQI v/) . The real numbers 

thus measure standard deviations (in the sense of statistics) when P and Q are mea- 
sured in the same quantum state I,K 

In order to relate these two standard deviations, we use the Schwarz inequality 
for inner products in linear spaces (Section 2.1.1): 

(4s>(tlO +lt>I2 (5.22) 

in which equality holds only if Is) and It) are linearly dependent. A concise proof 
of the inequality is given, for example, in Section 2 of [Jor69]. Setting s = 6Py 
and t = 6Q y , we have 

(W2 (AQ)* 2 1(6pw.1@w)12 
1 

= ,I(W (6PSel W)12 = $(v l[P9 Q ]  + (PQ + Qp]w>12 (5.23) 
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Thus, since standard deviations are positive, we obtain the general Heisenberg 
uncertainty relations 

(5.24) 

in which P, Q, and R are related through (5.19). 
As a familiar application of this relation, choose P = px,  the momentum operator 

component, and Q = x ,  the position operator component in the same direction. Since 
the commutator [px , x ]  = - i A l ,  we have R = - I ,  the negative of the unit operator. 
The Heisenberg momentum-position uncertainty relation is then obtained directly 
from (5.24) as 

(5.25) A p X d x 2 Z  A 

In Sections 5.2.2 and 5.2.3 we apply (5.24) to uncertainty relations among angular 
momentum components and between angular momentum components and functions 
of angles. 

States with Minimum Uncertainties. So far in this section we have not speci- 
fied the state y with respect to which uncertainties are calculated. We now find 
equations that ymust satisfy if the uncertainty products are to be minimized. To ob- 
tain a minimum product, we must have equality in the first line of (5.23); thereby we 
require that the minimum state ym satisfies the linear-dependence condition 

in which A is a constant. Also, we can write the condition that the second inequality 
in (5.23) becomes an equality, as 

By combining these two relations and reordering the operators in the second 
equation by using the commutator relation [6P,6Q]= ihR,  which follows from 
(5.21), it is simple to show (as Problem 5.5 suggests doing) that 

(5.28) 

in which subscripts denote minimum-uncertainty values. If R is Hermitian-for 
example, if P and Q are Hermitian-then its expectation value is real, so A must be 
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purely imaginary: 

il =-iy sgn(y) = sgn((R)) 

Clearly, the product of the two uncertainties satisfies (5.24) with equality: 

(5.29) 

(5.30) 

The quotient of the minimum uncertainties satisfies, according to (5.28), 

For the state producing the minimum uncertainty product, substitute for il in 
(5.28) from (5.29) and (5.31), then use (5.20) to recover the original operators, 
thus yielding the equation for the minimum-uncertainty state Iy,): 

(5 .32 )  

This equation is quite general and can be applied to any quantum system. 
As an example of a minimum-uncertainty state, choose (as above) P = p x  and 

Q = x,  and work out the wave function in configuration space, ym ( x )  = ( ( x ) l v m )  . 
In x space p,  = -iAd /& and its commutator with x gives R = - I .  The differential 
equation for ym ( x )  is then obtained from (5.32) as 

[-iA$ - ( px ) - i- ( x  - ( x ) )  ym ( x )  = 0 
Apx Ax 1 (5.33) 

which has the well-known solution with envelope a Gaussian centered on uc> and 
spatially modulated at a frequency determined by ( px ) / A ,  namely 

(5.34) 
2A Ax A Vm = 

In this expression Ap, , Ax, ( p x ) ,  and ( x )  are to be interpreted as parameters, with 
the two standard deviations being related by (5.30). 

We have now derived for Hermitian operators P and Q the general Heisenberg 
uncertainty relations given by (5.24), and we have derived equation (5.32), which 
must be satisfied by the state I I V , ) ,  giving the minimum uncertainty product. The 
relationships between mathematics and physics that are given as a general paradigm 
in Figure 5.1 can be exemplified for the Heisenberg uncertainty relations that we 
have derived, as shown in Figure 5.5. 
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FIGURE 5.5 The Heisenberg uncertainty relations in quantum mechanics are examples of the 
general paradigm relating mathematics and physics. The topics in the four bubhles match those at 
corresponding positions in Figure 5.1. 

Having illustrated using the results with familiar momentum and position opera- 
tors, we turn to the objects of our desire, the quantum angular momentum operators. 

5 .2 .2  Angular Momentum Uncertainties 

We now discuss Heisenberg uncertainty relations when operators P and Q in the 
general uncertainty relation (5.24) are angular momenta, either measured in arbitrary 
states or measured in eigenstates of angular momentum with eigenvalues jA and 
mh . Following this development, we then consider minimum uncertainty states for 
measuring the orbital angular momenta Lqx and Lqy. 

The commutation relations for quanta1 angular momentum operator components 
can be written in terms of the permutation symbol erst as 

(5.35) 

so that the operator R = .Iqrst, (Note that the subscript q is for “quantd,” while r, s, 
and t are choices of x ,  y, and z . )  Therefore, for any state v/ the uncertainty relations 
for angular momentum become 

(5.36) 

We now consider examples of this relation. 



184 ANGULAR MOMENTUM IN QUANTUM SYSTEMS 

Uncertainties in Jqz with .Iqx or Jqy.  By choosing in (5.36) r = z ,  s = x, and 
t = y ,  we have r, s, and t in cyclic order, so Erst = 1; therefore, 

If y is an arbitrary quantum-mechanical state, this is all one can say. Suppose, 
however, that y is an eigenstate of J2 and J, with eigenvalues j(i + 1) and m ,  re- 
spectively, which we write as ly) =Ijm). The developments in Section 3.4.3 then 
show that 

(5.38) 

in which (im) indicates that the uncertainties are calculated in the eigenstates with 
these quantum numbers. Therefore, at least one of the uncertainties on the left-hand 
side may be zero. For such an angular momentum eigenstate 

On the other hand, use of (3.64) and (3.65) in the defining equations (5.20) and 
(5 .21)  for uncertainties shows (as Problem 5.6 suggests you try) that in such a state 

so that, except for the usually uninteresting case thatj = 0, these uncertainties are not 
zero even if that for Jgz is zero. A s j  increases, the uncertainties in these two com- 
ponents relative to that in JmA range from 1 / d m  for Im( = j to 1 / d  
for m = 0. These ratios are independent of A .  

Although (5.40) gives the uncertainties in x and y components in any state om), 
there are new aspects when they are measured simultaneously, as we now discover. 

Simultaneous Measurement of Jqx and Jqy. If we set in (5.36) r = x, s = y ,  
t = z ,  again erst = 1, so for simultaneous measurements of x and y components, 

For a ( jm) eigenstate the left-hand side of this relation is, according to (5.40), 
f i2[ j( j  + l ) - m 2 p  2 f i 2 j / 2  2Fz2)m1/2, thus verifying (5.41) whose right-hand side 
is just Fz21m(/2. he sum of x and y mean-square uncertainties in a (inl) eigenstate is 
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(5.42) 

which is just the contribution from + J i y .  Such relations among the uncertain- 
ties in the components of J, are useful for devising the semiclassical vector model of 
angular momentum in Section 5.3. 

Minimum-Uncertainty States for L,, and L,. In Section 5.2.1 we derive the 
Gaussian minimum-uncertainty states (5.24) for linear momentum. It is interesting 
to discover the states ym for which the orbital angular momentum components LYx 
and L, have a minimum uncertainty product. As shown in Section 3.2, these op- 
erators are realizations for spatial functions of the operators Jqx and JYy, whose un- 
certainties we investigate immediately above. 

Consider a state for which the z component has the well-defined value m A .  
Then, even if there is a superposition of l states making up ym, (5.40) shows that 
the uncertainties in x and y components of L, will be equal and the component ex- 
pectation values will be zero. The expressions for L,  and Lq in spherical polar co- 
ordinates are given from (3.24). Thus, the general equation for the state with mini- 
mum uncertainty, (5.32), can be simplified to 

(5.43) 

in which y,,, (6,@) = ((O@)lvl, (m)) is the minimum-uncertainty state of definite m 
expressed in polar coordinates. As such, it must contain exp(im@) for its depen- 
dence on 4, so that (5.43) simplifies to 

(5.44) 

This can be integrated readily (as suggested in Problem 5.7) to produce the wave 
function for the minimum-uncertainty quantum state associated with z projection 
m A ,  given by 

(5.45) 

It is instructive to visualize the probability density corresponding to the wave 
function (5.44) in a polar diagram (Section 4.1.2). According to (5.44), this den- 
sity is just proportional to sin2"6 and is independent of the azimuthal angle @, 
since we have a state with definite angular momentum z projection, m A .  Figure 5.6 
shows the density for two representative values of m. 
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L 

A 

f l y  

/ 
FIGURE 5.6 Probability densities corresponding to the minimum-uncertainty state (5.45) for x 
and y components of orbital angular momentum, given an eigenstate of Lqz with rn = 1 or rn = 16. 
The densities are normalized to unity at 8= d 2 .  

To interpret the behavior of the minimum-uncertainty state shown in Figure 5.6, 
note that as m increases, the distribution becomes more concentrated into the x-y 
plane, just as for a classical particle whose angular momentum is primarily along the 
z axis. Section 6.4.3 continues the discussion of such classical limits in the context 
of rotation matrices. 

Now that we understand the uncertainty relations between noncommuting angu- 
lar momentum operators, it would seem to be merely a swing through the park to 
treat uncertainty relations between operators and angles. In reality-which is where 
we dwell-the treatment is fraught with technical difficulties. 

5 .2 .3  Uncertainties between Angular Momentum and Angles 

We begin our study of uncertainties between angular momentum and angles by  
making an obvious translation from a linear momentum component to an orbital an- 
gular momentum component and from displacement x to angle @. Puzzling results 
from this will suggest replacing @ by functions of $, such as cos @ and sin @. 
Finally, we discuss (but do not resolve) the problem of several angular momentum 
components and angles. 

Uncertainties for Azimuthal Orbital Angular Momentum and Angle. We first 
consider the special case of rotations generated by the quanta1 orbital rotation opera- 
tor L,. The geometrical version of this operator, L,, is considered in detail in Sec- 
tion 3.2. The quantum-mechanical operator is 

(5.46) 

What is the variable conjugate to L,,, the Q in the commutator (5.19)? If one 
chooses Q = @, then one has 

(5.47) 
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Superficially, this is satisfactory, except perhaps that q3 is a number, not the usual 
kind of operator. Disaster strikes if you attempt to calculate the matrix elements of 
the relation (5.47) in an ( e m )  state; namely 

(m‘- m)(!m’(qi(tm) = amem (5.48) 

which, when m’ = m, claims that 0 = 1. The origin of this problem is mathemati- 
cally quite sophisticated, for which Biedenharn and Louck [Bietilb, pp. 314-3 161 
provide a complete discussion. 

One possible solution is to deny that it is appropriate to calculate with an (em) 
state and initially to leave the state unspecified. We can then merely relabel the x 
variable in the momentum-position example worked out above as the variable 4, 
then the momentum component px -+ L,. Since the commutator R = - I ,  as pre- 
viously, the analogue of (5.25) is 

(5.49) A L 4 , A $ 2  - 
2 

and the minimum-uncertainty state is obtained by relabeling (5.34) to obtain 

Such relations have no mathematical problems and are intuitively satisfying. 

Uncertainties for  Angular Momentum and Functions of Angle. Another way 
around the problem presented by (5.48) is to use a different angle operator, such as 
the real or imaginary parts of ei$, as cos $ or sin 4, respectively. The commutation 
relation corresponding to (5.49) is 

to be interpreted as the pair of relations for Hermitian operators 

(5.5 1) 

(5.52) 

Uncertainty relations for P = L,, with Q = cos 4 or Q = sin @ are then given from 
(5.24) as 

A A a,, A(cosq3) 2 ?I( v/(sin q3Iv)( 4, 4) 2 $WIco~4(  V>l (5.53) 

for suitable states y. Consider the minimum-uncertainty state, ym, for the first of 
these relations. By substituting in (5.32), you can obtain the equation for the wave 
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function in azimuthal angle variable @, wcm (4) = (($)lym): 

ANGULAR MOMENTUM IN QUANTUM SYSTEMS 

(5.54) 

By inspection, it is verified easily that a solution for ycm(@) is 

in which Nc is the normalization constant. A similar expression obtains for the 
minimum state corresponding to the second solution in (5.53), namely 

Y 

(5.56) 

FIGURE 5.7 Probability distribution for the 4 distribution of the function with minimum un- 
certainty product given by (5.57). The distributions are shown for p = 1/2 and for ,U = 2. 

Let us develop the interpretation of this state. Remarking that ySm describes a 
spatial function, we can insist that ysm (4 -t 27r) = ySm (4). By making the abbrevia- 
tion p = AL,/A(sin$) > 0, we then obtain 

iySm (9) = N ,  exp[p cos 4 +in241 m = 0, + 1, + 2 ,  ... (5.57) 

Because of the cos @ factor in the exponent, this state is not an eigenstate of L,,, 
thus avoiding the problems with the first attempt to develop an uncertainty relation 
between L and 4 rather than sin $. It is, however, straightforward to show (as 
suggested in Problem 5.8) that P Z  
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(Lqz) =mil (sin4) = O (5.58) 

To visualize the interpretation, make a polar diagram (Section 4.1.2) of the 
probability density from ysm($) given by (5.57), as shown in Figure 5.7. These 
densities have the same normalization when integrated over the angle 9 rather than 
over Cartesian coordinates. As p increases, the probability distribution becomes 
peaked in the 4 = 0 direction and the expectation value of cos 4 tends toward unity. 
On the contrary, as p decreases the distribution becomes more uniform with angle 
(p = 1/2 diagram in Figure 5.7), so the average value of cos @ over 0 to 2n de- 
creases. These graphical results can be verified by analytical evaluation (Prob- 
lem 5.8 suggests how), which produces the limiting behaviors of relevant expecta- 
tion values shown in Table 5.3. 

TABLE 5.3 Expectation values and uncertainties for minimum-uncertainty 
states of the operators Lqz and sin 9. 

Having analyzed the uncertainty relations for azimuthal-angle rotations, it might 
seem simple to generalize to rotations about all three axes. 

Uncertuinties between Operators and Angles in Three Dimensions. For ro- 
tations in three dimensions, appropriate choice of angle variables, analogous to the 
cos q5 and sin 4 used above, is much more difficult to justify. The discussion occu- 
pies 26 pages in Biedenharn and Louck’s treatise [Bie8lb, pp. 323-3491 and re- 
quires much mathematics and physics wrangling. We refer the interested reader to 
their treatment and to references therein. 

5 . 3  THE SEMICLASSICAL VECTOR MODEL 

In this section we combine ideas from the geometry of small rotations (especially 
Section 3.4), Larmor precession in quantum mechanics (Section 5.1.3), and pre- 
cession of tops in classical mechanics-for example, [Go180, Chapter 51-to pro- 
duce the semiclassical vector model for angular momentum. We set up the model in 
Section 5.3.1, then we discuss its uses and limitations in Section 5.3.2. Our 
discussion will show that the model is mostly a mnemonic device for recalling some 
of the properties of the operators for small rotations. 
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5 .3 .1  Constructing the Vector Model of Angular Momentum 

Historically, the vector model of angular momentum was introduced in quantum me- 
chanics by Sommerfeld [Som16], a master of the theory of tops, with his assump- 
tion of the spatial quantization of angular momentum. In 1919, Land6 [Lanl9] de- 
veloped this idea to include addition of angular momentum vectors. Because these 
ideas were produced before the full development of quantum mechanics from 1926 
onward and ignored the geometric aspects of rotations that we develop in Chap- 
ters 3 and 4, they were mostly heuristics for guiding the interpretation of atomic 
spectra. Their role in the conceptual development of angular momentum is dis- 
cussed in Section 5.5.  

Analogies in the Vector Model. Let us relate quantities from the geometry of 
rotations to angular momentum precession in quantum and classical mechanics, as 
summarized in Figure 5.8. 

Rotations 

Operator eigenvalues 
2 

c jm I J, I j m >  = 0 

< jm I J, I j m >  = 0 
< j m l  J , I jm>=m 
c jm I J 2 I jm > = j ( j  + I  ) 

Quantum mechanics 

Larmor precession 

B 

Classical mechanics 

Uniform precession 
Z 

X 

Time averages 
Jcx = 0 J,= 0 

FIGURE 5.8 Related quantities from the geometry of rotations (left), Larmor precession in 
quantum mechanics (center), and uniform precession in classical mechanics (right). 

From a first glance at the figure we see that there is close correspondence be- 
tween operator expectation values in (im) eigenstates for geometric rotations, expec- 
tation values of these operators in Larmor precession around a constant magnetic 
field, and uniform precession of a top in classical mechanics. In proceeding from 
left to right-from geometry through quantum mechanics to classical mechanics- 
we make correspondences between expectation values in a urn) state, expectation 
values in an arbitrary state (as derived in Section 5.1.3), and time averages, respec- 
tively. 
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The uniform-precession viewpoint can help us to understand the j(j + I )  expec- 
tation value of 52, using an argument due to Feynman [Fey63]. Assume it is known 
that m lies between -j and j and that an avera e over all values of rn is equivalent to 
an average over all spatial directions, so that 6;) = ( J ; )  = ( J : ) .  Thus 

(5.59) 
= 3 j ( j  + 1)(2j +1)/3(2j + 1) = j ( j  + 1) 

There is therefore no mystery to the expectation value being j ( j +  1). Indeed, as 
Problem 5.9 suggests that you verify, if the expectation value is constructed by in- 
tegrating over m rather than summing over it, then (J’) + j 2 .  As j increases, the 
discreteness of the m values therefore becomes relatively less significant. 

Analogy with a Precessing Top. The requirement that the average J, value 
should be nonzero in general, but that the time-average values of Jx and Jy should 
both be zero, suggests an analogy with a uniformly precessing top, as indicated in 
Figure 5.9. Notice that only the two mechanics examples have time as a parameter, 
since rotation (geometrical angular momentum) does not necessarily refer to time 
evolution. It is interesting-and it will amuse some readers-to use Muthematica 
to visualize the analogy with the precessing top, as shown. 

FIGURE 5.9 Precession of a top or helical shell about the z axis. In the vector model preces- 
sion is uniform, so that the x and y components of angular momentum both have average value 
zero. (Adapted from Mathernarica notcbook Precess, which can animate the precession.) 

To prepare the graphics to display such a precession requires using the matrices 
for rotations of coordinates, as described in Section 1.3.2. Problem 5.10 suggests 
how to derive the formulas in Mathemutica notebook Precess, which can also 
animate the graphics. 
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5.3.2 Uses and Limitations of the Vector Model 

The vector model nowadays serves mostly as a visual mnemonic for recalling the 
selection rules of angular momentum expectation values, but not for the off-diagonal 
matrix elements given in Section 3.4. Note also that the rotation operators depicted 
in Figure 5.8 act only on spatial functions and are therefore (according to Sec- 
tion 3.2) only orbital angular momentum operators. The vector model is particu- 
larly helpful in developing ideas about combining two angular momenta (Sec- 
tion 7.1). Again, it is limited because it fails to predict the phase rules for different 
orderings of coupling (Section 7.3). 

Another limitation of the vector model is that it describes only expectation val- 
ues, but not (for example) the mean-square fluctuations about these values. There- 
fore, most of our discussion in Section 5.2 on uncertainty relations for angular mo- 
mentum is ignored in the vector model. Several other aspects that emphasize the 
limitations of the vector model are most easily made by comparison of the three 
sketches in Figure 5.8. 

Connection of Rotations to Quantum Mechanics. In Figure 5.8 the left-hand 
and center sketches show the relation of operators and expectation values for in- 
finitesimal rotations to Larmor precession in quantum mechanics. The major differ- 
ences are the following. 

For rotations the vector J is an operator, as are its components such as J,. For 
example, when acting an spatial functions J, = L, =-id i d# . Therefore, it is not 
strictly correct to display J and J ,  as vectors, so quotation marks have been put 
around them in the figure. The expectation values of the operators in a state ofdef- 
inite j and nz are as shown. Note that according to the derivations in Section 3.4, 
there are also off-diagonal elements of Jx and Jy,  which are not included in this vec- 
tor model. 

Connection of Quantum Mechanics to Classical Mechanics. The center and 
right-hand sketches in Figure 5.8 show the following quantum-classical correspon- 
dences. The quanta1 expectation-value equation is correct for J4 (and indeed for the 
geometrical J), for an expectation value taken in any state and for any time depen- 
dence of B, including directional changes with time. Only if B is constant in direc- 
tion and magnitude is the quantal-classical correspondence appropriate. An interest- 
ing example of a time-dependent B is given in Section 8.4. 

How Large Is  j for the Classical Limit? By considering the relative spacing of 
operator eigenvalues, we can get a preliminary idea of what values of J are appro- 
priate for assuming that numerical values computed in one of the three types of sys- 
tems shown in Figure 5.8 agree closely enough for practical purposes. Since suc- 
cessive m values differ by unity, the cosine of the “angle” 0, between the J “vector” 
and the z axis is quantized in equal steps of 

(5.60) 
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The smallest angle that “J” makes with the z axis is about l/& radian. Similarly, 
the expectation value of J2 exceeds j 2  by the fraction 14. Note that these estimates 
are completely independent of the value of Planck’s constant, since they are com- 
pletely geometrical in origin. 

We refine our discussion of the classical limits of angular momentum when dis- 
cussing the classical limits of rotation matrices in Section 6.4.3 and of 3-j coeffi- 
cients in Section 7.3.3. Especially for the rotation matrices, very small values o f j  
(less than 10) are shown to effectively describe the classical limits. 

5.4  ANGULAR MOMENTUM AND WAVE MECHANICS 

In this section we develop the connection between angular momentum and waves, 
emphasizing the partial-wave expansion of plane waves in two and three dimen- 
sions. We make extensive analyses, both analytical and pictorial, of these expan- 
sions, including the radial functions appropriate for plane waves, which are the 
cylindrical and spherical Bessel functions. The results in Section 5.4.1 are appro- 
priate for any plane scalar wave, be it a sound wave or a quantum scattering wave. 
For example, the centripetal barrier discussed there has its most useful interpretation 
in quantum mechanics, but it is not limited to this context. 

Visualizing plane waves helps us to understand the relation between partial-wave 
components, angular momentum functions, and Bessel functions, which are com- 
bined to construct the wave. In Section 5.4.2 we therefore show several examples, 
and discuss the Muthematica notebooks in Appendix I that you can use to display 
the partial-wave expansions. 

5.4 .1  Plane Waves and Centripetal Barriers; Bessel Functions 

The formulas for expansion of the spatial dependence of plane waves into partial 
waves are indispensable for wave descriptions of both quanta1 and classical scatter- 
ing whenever the range of the interaction is comparable to the wavelength. The ex- 
pansion is usually derived in a complicated way involving unfamiliar integrals 
[But68 p. 403; Wat441. In the following we derive the basic formula concisely by 
using a simple method based on differentiation properties of Bessel functions, which 
I have given elsewhere [Tho92a] but with a different emphasis. This also brings in 
interesting analytical and numerical properties of Bessel functions that can be related 
to centripetal barriers. 

Derivations are presented for waves in both three dimensions and two dimen- 
sions. After the derivations, the expansions are cast into various forms whose inter- 
pretation we then discuss, especially from the viewpoint of the centripetal barrier. 
These set the stage for the visualizations in Section 5.4.2. 

Plane Waves in Three Dimensions. The form of the partial-wave expansion of 
a plane wave in three dimensions expressed in spherical polar coordinates is 
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(5.61) 

for a wave whose planes of constant phase are perpendicular to the z axis. Here k 
is the wavenumber, r the distance from the point about which the expansion is made, 
8 the angle between the wavevector and the radius vector, j ,  the spherical Bessel 
functions, and P, the familiar Legendre polynomial discussed and displayed in Sec- 
tion 4.1.2. The cylindrical symmetry about the z axis (thus m = 0) shows that Leg- 
endre polynomials, rather than spherical harmonics, are the appropriate angle func- 
tions. Our aim is to show that ce = i (21 + 1). 

Expansion (5.61) is often called the Rayleigh expansion [Ra172] because of its 
extensive use by Baron Rayleigh (beginning in 1872) to describe scattering of 
sound waves, although the formula originated with the German mathematician 
Bauer in 1859 [Bau59]. Its extensive use in quantum scattering is of more recent 
origin, beginning with Faxen and Holtsmark LFax271. 

Spherical Bessel functions as functions of p = kr and I are shown in Fig- 
ure 5.10. You may make similar graphics by using Muthernaticu notebook BesL, 
as Problem 5.1 1 suggests. 

FIGURE 5.10 Spherical Bessel functions jL(p) in terms of rho  = p from 0 to 10 for 
L = 0, i ,  ..., 5 are shown as a surface at the left. The top right shows a section through this surface 
at L = 2. The bottom right shows a section at p = 5;  for our purposes values at integer L are used, 
(Mathematica notebook B e  s L.) 

The existence of a partial-wave expansion of the form (5.61) can easily be de- 
rived if the Legendre polynomials have been identified [But68, Won911 as solutions 
of the 6 part of the Helmholtz wave equation 

(v2 + k2)y(r )  = 0 (5.62) 
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and if the spherical Bessel functions have been shown [But681 to solve the radial 
part of the wave equation for the same value of C .  In order to specify the cy we re- 
call the standardization of the Legendre polynomials from Section 4.1.1, namely 

P,(1) = 1 (5.63) 

and also the standardization (normalization) of the j p  [But68]: 

L 
(5.64) 

where the double factorial of n is n!!  = n(n - 2 ) ( n  -4).... The conventional deriva- 
tion of the formula for c, involves multiplying both sides of (5.61) by Pp, then inte- 
grating over 8. This method requires knowing integrals of exponentials with Leg- 
endre polynomials as well as the integral definition of j , ,  which are hidden within 
Watson's treatise on Bessel functions [Wat44]. A much neater method is to use 
only the dependence of the expansion on p = kr, as follows. Since the cp are inde- 
pendent of 8, we may evaluate them at any convenient angle, such as 0 = 0, for 
which (5.63) allows (5.61) to be rewritten as 

(5.65) 

By invoking the parity symmetry of the Legendre polynomials from (4.4), 
P?(-l) = (-)' Pf(l) ,  we can show quickly that c; = (-1) c,. Therefore, c, must be 
of the form 

e 

ce = itat (5.66) 

where the a, are real amplitudes. This first step in the derivation is not essential but 
it simplifies the next step because it identifies the complex-number part of the ex- 
pression. 

To determine the a,, differentiate both sides of (5.65) with respect top and use 
substitution (5.66) for cy.  The resulting left-hand side is just i times the expansion 
(5.65), while the right-hand-side derivative can be expanded by using 

(5.67) 

which follows readily from derivative and recurrence formulas for Bessel functions 
[But68, p.3591. If the partial-wave expansion is then rearranged to equate coeffic- 
ients of the linearly-independent function j , (p)  on both sides of the derivative rela- 
tion, we find immediately the requirement that 

a, = ( C + l ) & + & a " . l -  
2 & + 3  2 C - 1  

(5.68) 
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This is a set of linear recurrence relations and may be rewritten to express successive 
coefficients in terms of the coefficients for the two previous partial waves. By ex- 
panding both sides of (5.65) through terms linear in p and using (5.64) for the 
lowest-order spherical Bessel functions, one readily finds that a0 = 1 and a1 = 3. 
Successive terms that satisfy (5.68) are then seen to be given by 

a,> = 2! + 1 (5.69) 

Finally, by combining (5.69) and (5.66) and inserting into (5.61), we have de- 
rived simply the partial-wave expansion of a plane wave in three dimensions: 

I m 1 eikrcose = ~iE(21+l ) jo(kr )P , (cos8)  
e=o 

(5.70) 

As a mnemonic, recall that 2 ! + 1 is the number of angular momentum substates as- 
sociated with partial wave !. Visualization of this expansion is made in Sec- 
tion 5.4.2. 

Plane Waves in Two Dimensions. The spatial part of a plane wave in two di- 
mensions can be expanded in plane-polar coordinates, (I, $), with x = r cos $, 
y = r sin q5. The expansion analogous to (5.70) in terms of cylindrical Bessel func- 
tions and complex exponentials of the angle 4 is 

(5.71) 

for a wave in which the lines of constant phase are perpendicular to the x axis. No- 
tice that for two dimensions the complex-exponential functions are the analogues of 
the Legendre functions in three dimensions. This equation can alternatively be writ- 
ten in terms of cosines with non-negative m values. 

In (5.71) Jm is the cylindrical Bessel function of order m, the analogue for two 
dimensions of the spherical Bessel functions required in three dimensions. The be- 
havior of Jm as a function of p = kr and of m is shown in Figure 5. l l .  Prob- 
lem 5.12 invites you to examine relations between spherical and cylindrical Bessel 
functions and to visualize these by using Mathematica notebook BesM. 

The derivation of the partial-wave expansion for two dimensions, (5.71), is sug- 
gested in Problem 5.12. The result is more than a curiosity for students of angular 
momentum, since steps analogous to those for three dimensions show that the 
operator 

(5.72) 
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has eigenvalues m. Therefore, Lo in two dimensions is the analogue of L, in three 
dimensions, while the quantum numbers rn take on the same values in both dimen- 
sions, namely the integers. Wave scattering in two dimensions is described with 
several examples in the articles by Adhikari [Adh86] and by Lapidus [Lap82]. 

J2 v rho 

rho 

Jm(5) v rn 

FIGURE 5.11 Cylindrical Bessel functions .Im@) displayed as functions of rho = p from 0 to 10 
for m = 0, I , .  .., 5 are shown as a surface at the left. Top right shows a section through this surface 
at m = 2. Bottom right shows a section at p = 5 ;  for our purposes the values at integer m are used. 
(Mathernatica notebook BesM.) 

Expansion (5.71) may also be considered as a Fourier series expansion of the 
complex exponential on the left-hand side into its Fourier components eim@ with m 
an integer. The Fourier coefficients are then i"J,,l(cos@), which depend on p be- 
cause the left-hand side is a function of p as well as of $. Techniques of Fourier ex- 
pansions are covered-both analytically and numerically-in Thompson's text on 
computing [Tho92b]. 

One Dimension. For the spatial part of a wave in one dimension, say x, one 
has merely the two-term Euler formuIa 

(5.73) i k x  - - cos(kx) + isin(kx) 

in which the rotational symmetries occurring in two and three dimensions are re- 
placed by the even and odd reflection symmetries under x + -x of the cosine and 
sine functions, respectively. A discussion of scattering and phase shifts in one di- 
mension has been given by Forminek [For76]. Notice that in (5.70), (5.71), and 
(5.73) the j ,  ( k r ) ,  Jm(kr),  and cos(kx) or sin(kx), respectively, are basis functions 
for the distance-dependent parts of the separated Helmholtz equation. 
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Convergence of Expansions. Convergence properties of plane-wave expan- 
sions such as (5.70) and (5.71), both analytical and numerical, are of interest. For 
example, analytical convergence of (5.70) can be examined by considering, for fixed 
kr, a partial wave which is large enough that (5.64) is a good approximation to the 
Bessel function. The ratio of the magnitude of successive partial-wave terms is then 
no larger than pl(21+1) (recall that Legendre functions are bounded by +I). 
Thus, by comparison with successive terms in the exponential series, the expansion 
(5.70) is convergent. 

Numerical convergence of the expansions can be visualized as follows. A 
spherical Bessel function of order C satisfies the differential equation 

which has as solutions that are standardized according to (5.64): 

sin p sinp cosp 
P P P 

j d p ) = -  j , (p)  = 2 - - 

from which higher-order functions can be generated by the recurrence formula 

(5.74) 

(5.75) 

(5.76) 

To check correct analytical application of (5.76), using (5.75) produces for 1 = 2 

(5.77) 

which you will find to be correct. 
The recurrence formula (5.76) is suitable for analytical work, but it does not pro- 
vide a numerically stable way to generate the higher-order functions. Numeri- 
cally, if one wants values of j, over a wide range of partial waves for p fixed one 
can use approximation (5.64) for a partial wave somewhat higher than one needs, 
then rewrite (5.76) to generate lower partial wave values by downward recurrence. 
Thereby the function values are increasing as ! decreases, so roundoff errors are 
relatively decreasing. 

The so-called Riccati-Bessel function, p j,(p) , corresponds to the radial wave 
functions that are most commonly used for solutions of wave equations of the 
Helmholtz and Schrodinger type in spherical-polar coordinates. 

The convergence of partial-wave expansions of plane waves is to be contrasted 
with difficulties that arise in a similar expansion for wave scattering in a l/r 
potential, typically the Coulomb-scattering problem. The expansion analogous 
to (5.61) with replacement of the spherical Bessel functions by the regular partial- 
wave Coulomb functions produces a nonconvergent expansion, as is carefully dis- 
cussed hy Marquez [Mar72], both analytically and numerically. In spite of these 
problems, a correct treatment of scattering by Coulomb plus short-range 
potentials is still possible. A clear discussion is provided in Landau’s quantum 
mechanics text [Lan90]. 
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Centripetal Barriers. Effects of the “centripetal barrier,” P(P + 1) / p 2 ,  in the 
radial Schrodinger equation in three dimensions can be seen in the spherical Bessel 
functions, analytically and numerically. According to (5.64), a partial-wave ampli- 
tude for P > 0 increases as p increases from zero. Using (5.74), we see that p j , ( p )  
has a point of inflection (its slope starts to decrease) at p = p ,  = d m ,  which is 
within I / ( 2 4  of t .  Therefore the point of inflection of the wave function marks 
the classical value of p = kr at which the particle would most probably be found if it 
had P units of orbital angular momentum. For t = 0 the maximum of the spherical 
Bessel function [sin(p)/p] is at the origin (a classical particle and no lever arm) and 
the point of inflection of the zero-order Riccati-Bessel function is also there. 

The factor p in (5.74) changes a cumbersome expression for the radial part of the 
v2 operator, having both first and second radial derivatives, into a simple second 
derivative in p. as shown, so that the equation resembles that for Cartesian coordi- 
nates. A geometric interpretation of this simplification is that when thc squares 
of the functions are used to construct probability densities (quantum mechanics) 
or energy densities (classical waves), the factor of p multiplying the function 
gives a density per unit dp rather than per unit p’dp, which is proportional to the 
volume clement in spherical-polar coordinates. Similar considerations hold for 
plane-polar coordinates, as you may derive in Problem 5.13. 

In two dimensions we can identify the centripetal-barrier term in the radial 
Schrodinger or Helmholtz equations-here just the equation for the cylindrical 
Bessel function 

(5.78) 

which can be compared with (5.74). Its solutions cannot be written in simple forms 
such as (5.75). Thus, m2/p2 is the analogue in two dimensions of P(P+ l)/p2 in 
three dimensions. This again provides a correspondence between the eigenvalue m 
in two dimensions and P in three dimensions. By comparing Figures 5.10 and 
5.1 1 we also see a similar behavior with increasing quantum number of the appro- 
priate Bessel functions. This suggests, as the displays of partial-wave expansions in 
Section 5.4.2 show, that for the same number of partial waves in the expansions, 
the two- and three-dimensional expansions are remarkably similar. 

5 .4 .2  Displaying Partial-Wave Expansions 

Now that we understand the analysis behind partial-wave expansions in two and 
three dimensions, it is interesting to visualize the expansions carried out with a 
varying upper limit to the expansions. Such truncated partial-wave expansions are 
usually considered as purely mathematical results to be used in scattering theory. 
However, by displaying them we appreciate the angular momentum components 
contained within a plane wave. 

Three Dimensions. For the three-dimensional wave we indicate the analytical 
and numerical steps; then the two-dimensional example may be done by analogy. 
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Re { P a r t i e l  Wave Expansion 1 
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Im ( Pa r t i a l  W a v e  Expansion 1 

FIGURE 5.12 Partial-wave expansions in spherical-polar coordinates, with the origin of the co- 
ordinate system in the leftmost corner of each frame. Left-side panels show the real parts and right- 
side panels show the corresponding imaginary parts. Top panels show the complex exponential 
exp(ipcosO), with p ranging from 0 to 10. Middle panels have summation upper limit L = I (thus 
f = 0, I), and bottom panels have t = 5 .  (Adapted from Mathernatica notebook PW3D.f 
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For purposes of display, the expansion (5.70) to a finite upper limit L can be ex- 
pressed in real and imaginary parts, with the real part describing the sum over even 
partial waves and the imaginary part the sum over odd partial waves, since this is 
just how i f  (which is the only complex-number part of the expansion) alternates 
between even and odd !. The steps for doing this are suggested as Problem 5.14, 
where the expressions are also given. One can compute these sums for a given L 
and range of p ,  then compare them with corresponding parts of the complex expo- 
nential, namely cos(pcos8) and sin(pcos8). This is done-using Mathematica 
to compute the spherical Bessel functions, Legendre polynomials, and graphics-in 
Figure 5.12. Problem 5.14 suggests that you use Mathernatica notebook PW3D 
to explore the partial-wave expansion. 

Since the wave is propagating in the z direction, there is no x dependence of the 
full waves (top two frames in Figure 5.12). In the partial-wave expansion, how- 
ever, if we truncate the expansion at ! = L, then higher angular momentum compo- 
nents are ignored, which produces an angle dependence (lower four frames in Fig- 
ure 5.12) and an incorrect z dependence because the spherical Bessel functions 
(which carry the p dependence) are also omitted. 

For L = 1 (middle two frames), ! = 0 is the only contribution to the real part 
(note its independence of O), while only ! = 1 contributes to the imaginary part, 
which varies as Pl(cos 8) = cos 8. If the expansion is carried out to L = 5 (bottom 
two frames), the agreement with the exact result is good for small p but deteriorates 
as p increases because the contributions from higher-order terms then become more 
significant. By varying L and the maximum p value in Mathematica notebook 
PW3 D, you can substantiate these claims. 

Plane Waves in Two Dimensions. In two dimensions the partial-wave expan- 
sion in cylindrical coordinates, (5.71), can be developed similarly to that for three 
dimensions, but more simply. We consider a wave propagating in the x direction, 
with y as the other dimension, so the angle 4 is measured from x toward y. A sep- 
aration into even and odd m values again produces the real and imaginary parts of 
the expansion, as suggested in Problem 5.16, which gives the formulas when the 
upper limit on m is M .  The resulting partial-wave surfaces, computed using Math- 
ematica, are shown in Figure 5.13. You can produce such visualizations of 
partial-wave expansions by using Mathematica notebook PW2 D, as Problem 5.15 
suggests. 

The expansions in two dimensions, Figure 5.13, are overall remarkably similar 
to those in three dimensions, Figure 5.12, because of the similarities of the Bessel 
functions describing the radial dependences, as discussed for the centripetal barriers 
in Section 5.4.1. The angular dependences, described by cos(m$) and P , ( c o s ~ )  
for two or three dimensions, are substantially different, so as one moves away from 
Q, = 0 or 0 = 0 the discrepancies between the two figures increase. For the same 
upper limits in the partial-wave summations ( L  = 1 or M = 1 in middle panels, L = 5 
or M = 5 in bottom panels), the reconstructions of the full waves are also similar. 

Consider also the Fourier-expansion viewpoint, discussed for two dimensions in 
Section 5.4.1. The surfaces in the lowest four panels of Figure 5.13 are best-fit re- 
constructions of the surfaces in the top two panels for the given number of terms in 
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Re ( Partisl %ve Expansion ) 

Pe ( Partis1 Wave Expansion } 

In ( Partla1 Wave Expansion ) 

In ( Partiel Wave Expansion 1 

FIGURE 5.13 Partial-wave expansions in cylindrical coordinates, with the origin of the coordi- 
nate system in the leftmost corner of each frame. Left-side panels show the real parts, right-side 
panels show the imaginary parts. Top panels show the complex exponential exp(ipcos$~), with p 
ranging from 0 to 10. Middle panels have upper limit on the summation M = 1 (thus rn = 0, I ) ,  and 
bottom panels have M = 5. (Adapted from Mathematica notebook PW2D.) 
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the expansion (M = 1 in middle panels, M = 5 in bottom panels). In this context 
“best-fit’’ means the least-squares fitting criterion, which is what Fourier expansion 
coefficients provide, as described in Chapters 6 and 9 of Thompson [Tho92b]. 

5 . 5  THE CONCEPTUAL DEVELOPMENT 
OF ANGULAR MOMENTUM 

We have now completed the foundations for understanding angular momentum and 
rotational symmetries for physical systems, comprising the first half of the book. In 
the second half we develop techniques and applications, which increase our exper- 
tise and reinforce our understanding, but contribute much less to conceptual devel- 
opment than do the topics in the first half. 

At this juncture it is interesting to make an excursion to view the foundations of 
ideas about angular momentum, especially to show how the geometrical and dynam- 
ical aspects of the subject are bonded together. These two aspects are also discussed 
in Section 3.4.5, where we give examples clarifying the distinction between them, 
and in Section 5,1, where we characterize various distinctions between geometrical 
(rotational-symmetry) and dynamical (mechanical) viewpoints of angular momen- 
tum, emphasizing the role of Planck’s constant. We now summarize the conceptual 
development of angular momentum from a historical perspective. 

A Brief History of Angular Momentum, The historical development of con- 
cepts in angular momentum and use of symmetry in the physical sciences, emphasiz- 
ing rotational symmetry, is summarized in Figure 5.14. Scientists and their publi- 
cations are selected under the criterion that in these works the key ideas are clearly 
expressed for the first time. 

The earliest recognition of a conservation condition for rotational motion was 
probably by Kepler in 1609, with his empirical law of constant areal velocities for 
the motions of planets about the sun. Newton in Principia Mathematica ( 1  686) 
showed that this law is a consequence of the central-force nature of gravitational at- 
traction. Together with the fact that the orbits lie in a plane, we would nowadays 
call this the constancy of angular momentum for two-body central-force motion. 
Progress was from an essentially geometrical property (areal velocity) to a dynamical 
property (central forces). Such a progression is also discussed in Section 4.3.1. 

Two centuries passed while the followers of Newton piled up layer upon layer 
of the consequences of his new mechanics, just as hosts of physicists and chemists 
in the second half of the twentieth century burden the libraries of the world with in- 
ferences from quantum mechanics. In 1848, Pasteur announced his discovery of a 
handedness in organic crystals, as discussed in Section 1.2.1. In two critical works 
in 1883 and 190 1, Emst Mach examined the foundations of mechanics and the rela- 
tions between space and geometry. This work had significant influence on Ein- 
stein’s ideas about relativity of motion. About the same time, Pierre Curie presented 
his principles relating symmetries in causes and effects, as we discuss in Sec- 
tion 1.1.2. In 1918, Emmy Noether showed the necessary connections between 
continuous symmetries and conservation laws. Although (as discussed in Sec- 



204 ANGULAR MOMENTUM IN QUANTUM SYSTEMS 

tion 1.1.2) this was interpreted in the context of classical mechanics, her theorem 
foreshadowed the extensive applications of group theory (Section 2.5) to physical 
systems. 

Conceptual Development of Angular Momentum 

1942 Racah: Complex spectra; angular momentum coupling [Rac42] 

1935 Condon and Shortley: Theory of atomic spectra [Con351 

1930 Eckart, 1931 Wigner: Irreducible tensors [Eck30, Wig311 

1927 Wigner: Rotation group applied to quantum mechanics [Wig27a,b] 

1926 Heisenberg and Jordan: Spin-1/2 angular momentum [Hei26] 

1926 Bom et al.: Quantum angular momentum operators [Bor26] 

1919 LandC: Vector-addition model of angular momentum [Lan 191 

19 18 Noether: Continuous symmetries and conservation laws [Noel 81 

1916 Sommerfeld: Spatial quantization of angular momentum [Soml6] 

1913 Bohr: Quantized angular momentum for hydrogen atom [Bohl3] 

191 1 Nemst: Quantization of rotational motion [Nerl I] 

1901 Mach: Space and geometry [MacOl] 

1894 Curie: Symmetry, causes and effects [Cur941 

1883 Mach: Critique of classical mechanics [Mac831 

1848 Pasteur: Discovery of handedness of organic molecules [Pas481 

1686 Newton: Constancy of areal velocity for central forces [New861 

1609 Kepler: Constancy of areal velocity for planetary orbits [Kep09] 

FIGURE 5.14 Historical view of the foundations and conceptual development of angular mo- 
mentum in its dynamical and rotational-symmetry aspects. As with geological strata, the vertical 
time scale is not uniform. In the text we summarize the significance of each publication. 

Angular Momentum and the Development of Quantum Mechanics. While 
various symmetry topics were being developed in classical physics, the physicists 
were trying to complete the edifice of classical mechanics and electrodynamics. 
However, when Planck introduced the quantization of energy in 1900, cracks in the 
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foundation began to show. Twenty-five years passed as the scientists patched up 
the classical mechanics of atoms and their spectra by inventing various quantization 
conditions. In particular, the suggestion that rotational motion should be quantized 
was made by Nernst in 191 1 and was used by Bohr in 1913 in his theory of the 
structure of the hydrogen atom. Sommerfeld suggested in 1916 that angular mo- 
menta should be quantized not only in their values but also spatially, which led to 
Landk’s extensive use in 1919 of a vector-addition model for angular momentum 
(our Section 5.3). 

The birth of modern quantum mechanics is usually dated to 1926, from several 
papers which appeared in that year. They are available in English translation in Van 
der Waerden’s sourcebook [Van67]. Of particular importance to angular momentum 
are the papers by Born, Heisenberg, and Jordan [Bor26] and by Heisenberg and 
Jordan [Hei26]. They used the prescription for quantizing classical angular momen- 
tum, p + -iAV, to obtain an operator for dynamical angular momentum. Because 
they used the commutation relations to define angular momentum, they obtained 
half-integer as well as integer multiples of A for the eigenvalues. Their use of A 
(dynamical angular momentum in Figure 3.1 1 )  predisposed researchers and text- 
book authors to the dynamical viewpoint for the remainder of the twentieth century, 
as contrasted with the geometrical viewpoint we emphasize here. 

This confluence of ideas in classical mechanics, symmetries, and quantum me- 
chanics that underlie angular momentum and rotational symmetries is schematized in 
Figure 5.15. 

FIGURE 5.15 Ideas from classical mechanics, geometric symmetries, and quantum mechanics 
form the concepts underlying angular momentum and rotational symmetries. 

Rotational Symmetry and Group Theory. The rotational-symmetry viewpoint 
and the use of group theory (Section 2.5) were emphasized by Wigner in a 1927 
paper [Wig27b] and in his 1931 book [Wig31]. Eckart’s 1930 paper foreshadowed 
Wigner’s theory of irreducible tensor operators, particularly the Wigner-Eckart theo- 
rem on the magnetic-substate dependence of their matrix elements, which we derive 
in Section 8.3. The compendium on the theory of atomic spectra by Condon and 
Shortley (1935) and a series of papers by Racah beginning in 1942 presented many 
of the techniques of angular momentum by using algebraic methods rather than 
group theory techniques. Since then, the subject of angular momentum and its gen- 
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eralizations to other groups of continuous symmetries have grown in complexity and 
completeness, but their conceptual basis has not changed significantly. 

An extensive history of the conceptual development of quantum mechanics in the 
first half of the twentieth century is given in the book by Jammer [Jam89], which 
also provides complete references. Several sources provide translated papers and re- 
prints of obscure material on the development of angular momentum. Van der 
Waerden's book of sources in quantum mechanics [Van671 has a historical introduc- 
tion and 17 key papers from 1917 through 1926, all of them in English. Biedenharn 
and Van Dam [Bie65] provide a historical survey in their collection of reprints and 
original papers. The two volumes on angular momentum theory by Biedenharn and 
Louck [BieS la, Bie8 1 b] are also mines of historical and technical information. 

PROBLEMS ON ANGULAR MOMENTUM IN QUANTUM SYSTEMS 

5 . 1  To derive the Ehrenfest theorem for orbital angular momentum, (5.5),  con- 
sider a single component of L, say L,, and write this in Cartesian coordinates. Then 
consider the commutator [L,, H1-5 wheref is any well-behaved function of the co- 
ordinates. Show that 

(5.79) 

and thereby establish the correctness of (5.5). 
5 .2  To show the constancy of the quanta1 orbital angular momentum expectation 
values, (4) with i = x ,  y ,  z ,  for a particle experiencing a central force, V(r) = V(r) ,  
write out the derivative expression for a component (say the one in the x direction) 
of r x V V .  By showing that 

show that (r x V V ), = 0,  and therefore that (L,) is constant in time. 
5 . 3  Derive formula (5.9) for the commutator of J with J-B by considering a 
single component of the first appearance of J, then using its commutator relations 
(3.6) with each of the J components in J.B. Because of the equivalence of the three 
components of J, once you have the relation for one component you essentially have 
it for all three components. 
5.4  In order to verify the Majorana formula (5.14), make the substitution of the 
expansion (5.16) of V(?) in terms of the independent Uk(t) in (5.17). 
5 . 5  Derive the minimum-uncertainty equations for the state ym by combining 
(5.23) and (5.27), reordering the Q and P in the latter by using the commutator in 
the text, then substituting the proportionality relation (5.26), to obtain (5.28). 
5 . 6  Use (3.64) and (3.65) in the definitions (5.20) and (5.21) for uncertainties, 
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then multiply out the matrices for 1,’ and Jy” to derive (5.40). 
5 . 7  Carry out the derivation for the minimum-uncertainty states for Lqx and Lqy 
as follows. 
(a )  Substitute for the general operators P and Q in (5.32) the specific forms of L,, 
and L,, from (3.24), and note that their expectation values are zero for states of 
definite L,. 
(b) Carry out the steps from (5.43) to (5.45) in order to verify the indicated 6 and @ 
dependence of the wave function. 
(c) Derive the normalization given in (5.45) by carrying out the integration over @ 
(0 to 2 n )  and over 8 (0 to n). A method for the 8 integration is indicated in Prob- 
lem 4.4. 
5 . 8  Consider the minimum-uncertainty states of Lqz with sin @ as angle variable. 
(a) Show that the requirement of periodic behavior of ySm(@) with period 2n re- 
duces (5.56) to (5.57). 
(b) Show by direct integration that the expectation value of Lqz in this state is mA. 
(c) Use symmetry arguments to show that the expectation value of sin # is zero in 
this state. 
(6) Consider the behavior of the expectation values given in Table 5.3 for large p 
and for small p. For computing the matrix elements and state normalization for 
large p, make a new variable of integration that is p cos @ rather than @. Thus pro- 
duce the limiting cases for p + m in the table. For small p, expand the exponential 
in the square of the wave function by a Maclaurin series, then evaluate integrals ap- 
proximately, thus producing the p -+ 0 cases in the table. 
5.9 Show that if the expectation value (J’) is estimated by integrating m2 from 
-j toj ,  with an average m estimated by its range, 2j, then (J’) -+ j 2 .  
5.1OM The vector model of angular momentum is illustrated in Figure 5.9 by 
showing a helical shell spinning on its tip about a central axis while this axis pre- 
cesses uniformly on a cone about the z axis. To understand Mathernatica notebook 
Precess, carry out the following geometry of rotations. 
(a) If you have not worked Problem 1.2, show that a helical spiral centered verti- 
cally on the z axis can be generated by the equations 

x = @ C O S ~ C O S @  y = @cost sin@ z = qsint + h @  (5.81) 

where 0 I t I 2 n  generates the circular cross section of a spiral arm for given @, 
and @ generates the twist about the central axis. For a spiral with r revolutions, 
0 I @ I 2nr. The helicity h = +1 for a right-handed spiral (as shown) and h = -1 
for a left-handed spiral. In the notebook @ is denoted by ph. 
(b) Show that to tilt the spiral at an angle 6, to the z axis, one can rotate it around 
the space-fixed y axis, using the matrix Ay(Qs) given by (1.15) to transform the co- 
ordinates obtained in (a). In the notebook 6, is denoted by thS. 
(c) Show that to produce uniform precession of the tilted shell about the space-fixed 
z axis, the coordinates obtained in (b) should be rotated by using matrix AZ(@J 
given by (1.14). In Precess @.T is called ps, and it is varied in 8 uniform incre- 



2 0 8 ANGULAR MOMENTUM IN QUANTUM SYSTEMS 

ments of 7d4, { i , 0,7,1} to make the object Shells. Note that in steps (b) and 
(c) you use Euler angles p = 0, and y= q&. 
(6) Run the notebook Precess to generate 8 views of the shell, then animate these 
views to show the uniform precession in time. The smoothness of this “movie” will 
depend upon the speed of your computer system, so you may need to adjust the 
number of views to get a smooth display, assuming that you do not have a way to 
adjust your own persistence of vision. 
5.11M Use Mathematica notebook B e s L  to visualize the spherical Bessel func- 
tions j e ( p )  as shown in Figure 5.10. 
5.12M Consider the plane wave in two dimensions, as discussed in Section 5.4.1. 
(a) Derive the partial-wave expansion (5.71) by using a similar method to that for 
three dimensions. 
(b) Use Mathematica notebook BesM to visualize the cylindrical Bessel functions 
J,(p), as shown in Figure 5.1 1. 
5 .13M Consider the spherical Bessel function. 
( a )  Show that the analogue of the differential equation (5.74) is 

(5.82) 

and that therefore that the point of inflection of & J, (p)  is at p, = .L/m2-1/4 
(b) Following the arguments made for spherical-polar coordinates, show that the 
factor & in (5.82) takes care of the factor p in the surface element p dp for plane- 
polar coordinates. 
(c) Prepare graphics of the modified cylindrical Bessel functions, &J,(p) ,  simi- 
lar to those for p j , ( p )  shown in Figure 5.10, then compare them with their ana- 
logues in three dimensions. The Mathematica notebook BesM that is used for Fig- 
ure 5.1 1 may be modified for this. 
5.14111 Consider the plane-wave expansion in spherical-polar coordinates, (5.70). 
(a) Show that the real part of this expansion may be written as 

and that the imaginary part can be expressed as 

in both of which [el means “the integer part of expression e.” 
(b) Use these two formulas in Mathematica notebook PW3D to visualize the real 
and imaginary parts of the partial-wave expansions shown in Figure 5.12. 



PROBLEMS ON ANGULAR MOMENTUM IN QUANTUM SYSTEMS 2 0 9 

5.1SM Consider the expansion of a plane wave in two-dimensional cylindrical 
coordinates given by (5.71). 
(a) Derive the expressions analogous to those in three dimensions for the real and 
imaginary parts, namely for the real part 

(5.85) 
m’=l 

and for the imaginary part in cylindrical coordinates 

[(M-1)12] 

2 c (-l)’n’J2m’+l (p)cos[(2m’+ 1)$] (5.86) 
m’=O 

(b)  Use these formulas in Muthemutica notebook PW2D to compute the real and 
imaginary parts of the partial-wave expansions shown in Figure 5.13. 
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Chapter 6 

FINITE ROTATIONS OF 
ANGULAR MOMENTUM EIGENSTATES 

In Chapters 3, 4, and 5 we describe the behavior of systems under small rotations, 
and thus derive properties of angular momentum operators and their eigenstates 
Ijm). Our main purpose in this chapter is more realistic-to understand the trans- 
formation of Ijm) underfinite rotations. The main topics covered are: 

The geometry of rotations is reviewed in Section 6.1, including the definition of 
the rotation matrices Di in terms of the Euler angles ( a P y  ). 
Determination of the rotation matrices is covered in Section 6.2, directly for 
spin-1 systems, then in more generality for a rb i t rq j .  
Interpreting rotated states and visualization of the matrix elements of the reduced 
rotation matrix, the d;,,,,, are the main topics in Section 6.3. 
General properties of the rotation matrices, including symmetries and orthogo- 
nality properties, are derived in Section 6.4. Classical limits of rotation matrices 
are also considered in this section. 
Rigid-body rotations in quantum mechanics provide important connections be- 
tween classical and quantum phenomena. We show in Section 6.5 how the ro- 
tation matrices are the eigenfunctions of the Hamiltonian of a rotator, then give 
examples of rotational spectra for molecular and nuclear systems. 

The chapter concludes with problems to check your comprehension of the material 
on finite rotations of angular momentum eigenstates. 

6 . 1  INTRODUCTION TO ROTATION MATRICES 

As you begin this section you should review (Section 1.3.1) the confusing relations 
between active and passive rotations, as well as the definition of Euler angles for the 
active rotations that we use. It is very important to understand the conceptual and 
technical distinction between active and passive rotations. The main source of con- 
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fusion and error manifests itself as phase errors in algebraic expressions. Since, as 
discussed when presenting phase manipulation rules in Section 2.1.4, phases of f l  
are often crucial to the interpretation of results in angular momentum+specially in 
its applications to quantum mechanics-it is necessary to distinguish phases that are 
consequences of rotational and other geometric symmetries of the system from 
phases arising from dynamical effects. 

6 . 1 . 1  Review of Rotations and Angle Schemes 

Chapter 3 begins by considering full rotations described by the unitary transforma- 
tion operator, U,  transforming states according to 

in which n is the unit normal to the direction of rotation and 8 is the angle of rota- 
tion about this normal, as shown in Figure 3.1. In the remainder of Chapter 3 and 
in Chapter 4 we considered mainly infinitesimal rotations; that is, the properties of 
the operator J and related eigenstates. Only for j = 112, where we could use the 
Pauli matrices directly in definition (6.1) to represent J, did we make (Section 3.3.3) 
a matrix representation of U ,  given by (3.47). Our task in the present chapter is to 
construct such matrices for arbitrary j ,  with their elements labeled by the projection 
numbers. 

The Euler Angles. To recall the scheme of Euler angles that we use to describe 
successive rotations of a system about space-fixed axes, look at Figure 6.1. We 
also show the detailed expression for the operator U ,  which is just the product of 
three U operators in (6.1) applied about the z axis (angle fi, then about the y axis 
(angle ma>, and finally about the z axis again (angle a). In Section 6.2 this angle 
scheme is used to construct matrix representations of U. 

FIGURE 6.1 In the Euler-angle scheme for successive active rotations of a system about spacc- 
fixed axes, as shown, the rightmost rotation is applied first. 
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6 .1 .2  Group and Factorization Properties of Rotations 

In Section 2.5 we provide an introduction to the key properties of groups, empha- 
sizing their use for analyzing symmetry properties. We now summarize group pro- 
perties of continuous rotations. Their representation matrices satisfy the same prop- 
erties, since representations have the same group properties as the groups they rep- 
resent, as explained in Section 2.5.3 and illustrated in Figure 2.14. The require- 
ments that a set of elements and an operation between them must satisfy to form a 
group are summarized in Table 2.7. 

Continuous Rotations Form a Group. In Example 4 in Section 2.5.1 we con- 
sider continuous rotations of an equilateral triangle about its center (Figure 2.12). 
In order to check that we have a group for our extended rotations in three dimen- 
sions, we must select group elements and a group “product.” The group elements 
are to consist of rotation operations U through sets of Euler angles Ri = (aj, pj, yi) . 
Denote these elements by U(Ri), U(Rj), and so on. We are therefore dealing with a 
continuous group in the sense discussed in Section 2.5.4. The “multiplication” op- 
eration between elements is “successive rotations.” The notation U(Rj)U(Ri) means 
“first rotate through angle set Rj, then rotate through angle set Rj. It is important to 
specify the order, since the rotations do not usually commute. Therefore, the three- 
dimension rotation group is non-Abelian (Section 2.5.2). 

It is straightforward to verify that the group requirements given in Table 2.7 are 
satisfied for the above group elements and product rule. The identity element, E, is 
just a rotation with all angles zero, and the inverse of V(a, p,y) is U(-y,  -p, -a), 
that is, rotations through the negative angles applied in the inverse order. 

Representations of Continuous Rotations. Initial ideas on representing groups 
by mapping elements of groups onto matrices are described in Section 2.5.3. There 
the example of discrete rotations in a plane for the group C3 is examined in detail and 
a matrix representation is described. Clearly, such rotations can be generalized to 
continuously variable angles and to three dimensions, with a corresponding general- 
ization of the representation matrices. Such representations are described by the 
matrix groups (Table 2.12) identified by S0(3), being Special because their determi- 
nant is + 1 ,  being Orthogonal, and being of dimension N = 3. 

Another representation of rotations is based on spinors (Section 2.4), and in- 
volves 2 x 2  Unitary matrices with determinant +1, thus (in the nomenclature of 
Table 2.12) the matrix group is SU(2). This representation is iritroduced in Sec- 
tion 3.3 in the context of the Pauli matrix representations of the J operators. Most of 
our analysis in this chapter is based on SU(2) representations. 

6 . 2  DETERMINING ROTATION MATRICES 

We determine the rotation matrices in a scheme where the total angular momentumj 
is fixed and the matrices are labeled by the projection number m. In Section 3.3.3 
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this is done explicitly for j  = 1/2. We now do this more generally. First, we con- 
sider in Section 6.2.1 rotations about the z axis, the single axis chosen as the one 
with respect to which a component of J has an eigenstate. (Recall that the funda- 
mental commutation relations derived in Section 3.1.2 do not allow more than one 
component of J to have eigenstates in a given representation.) This generalization of 
z-axis rotations to arbitrary j is straightforward and results in matrices that do not 
mix m values, that is, they are diagonal in m. 

Rotation matrices for the y axis are more difficult to determine than for the z 
axis, since y-axis rotations mix m values; that is, they have off-diagonal elements. 
Although in Section 6.2.2 we use the direct matrix method of Section 3.3.3 for 
j = 1, such a method rapidly becomes cumbersome as j increases. For arbitrary j 
we therefore turn in Section 6.2.3 to the spinor representations introduced in Sec- 
tion 4.3.3, allowing a quick and intuitive derivation of the y-axis rotation matrices. 
Such matrices are called reduced rotation matrices, dj. 

In Section 6.2.4 we show that when one of the m values labeling an element of 
d j  is zero (which can happen only for j  an integer), the matrix elements are simply 
related to Legendre functions. Finally in this section, we discuss practical ways to 
compute reduced rotation matrix elements. 

6 .2 .1  Rotation of Eigenstates about z Axes 

We begin by deriving the general formula for the matrix describing rotation of 
eigenstates 0, m) about the z axis, then we determine properties of this matrix. 

Deriving the Rotation Matrix. We derive the matrix for z-axis rotations simi- 
larly to the derivation for spin 1/2 made in Section 3.3.3. The main difference is 
that there the Pauli matrix 0, is used directly, whereas here we use the elements of 
the matrix. Consider a rotation about the z axis, with matrix elements computed 
between states (j’m’l and l jm),  as 

The first equality follows from the definition (2.38) of the exponential operator, the 
second equality arises because every application of J,  to a state with eigenvalue m 
produces just a factor m, and the third equality is from the definition of the exponen- 
tial function, The final equality arises from the orthogonality relations for angular 
momentum eigenstates. Result (6.2) can be shown in matrix form as 
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Here the labeling scheme has, as usual, the largest values of m’ and m, namelyj, in 
the top left-hand comer of the matrix, while the smallest values, namely -j, are in 
the lower right-hand comer. The particular case o f j  = I is shown on the right-hand 
side of (6.3). Note that we display a single block of a block-diagonal matrix (Sec- 
tion 2.1.3), with the value of j fixed. The block-diagonal property is required by 
the 43 in (6.2). In the example on the right-hand side of (6.3) the z-axis rotation 
matrix for j = 1 is 3 x 3 because there are 2j+ 1 = 3 values of each of m’ and m. 
The form (6.3) is also exemplified by (3.43), derived explicitly for j  = 1/2 by using 
the Pauli matrices. 

Properties of z-axis Rotations. The general transformation matrices for z-axis 
rotations, (6.2), are explicitly unitary (as Problem 6.1 suggests you prove di- 
rectly)-just as expected for a rotation, as discussed in Section 2.2.2. More partic- 
ularly, z-axis rotations change only the phase of a state vector to which they are app- 
lied, without changing their magnitude. The consequences of such phase changes 
are usually nontrivial in quantum mechanics if there is more than one j or m value in 
a problem. 

In the semiclassical vector model presented in Section 5.3, for a state of fixedj 
and m the angular momentum vector precesses uniformly around the z axis with a 
constant probability density along its orbit, as illustrated in Figure 6.2. 

FIGURE 6.2 In the semiclassical vector model the angular momentum vector precesses uni- 
formly around the z axis. The probability density is therefore not affected by a rotation through 
angle a about this axis. 
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The vector model is consistent with our algebraic result that z-axis rotations pro- 
duce only phase changes, and thereby no change in probability density for each m 
value. We also see a limitation of the model; it is not able to depict such phase 
changes. The matrices (6.3) also show the property (to be derived in detail in Prob- 
lem 6.1) that successive rotations about a z axis (without intermediate rotation about 
another axis) commute. Although such a property holds for any axis of rotation, its 
demonstration is particularly simple for z-axis rotations because the rotation matrices 
are diagonal. 

Spinor Nature of z-Axis Rotations for  Hay-Integer Spins. We see immedi- 
ately from (6.2) that when j is a half integer ( j  = 1/2, 3/2, . ..) every m value for this 
j is also half-integer, so a change of angle by 2 a  produces a sign change in every 
matrix element associated with that j .  Therefore, we have a spinor nature for half- 
integer spins, according to the discussions in Sections 2.4 and 3.3.3. 

Although experimentally, the spinor property is observed directly only for 
j = 112, namely with neutrons (Section 2.4), the correctness of the prediction that 
the property holds for any half-integerj is assured from consistency of calculations 
and measurements based on result (6.2), such as the properties of atoms and nuclei. 

6.2.2 Rotations about the y Axis for j = 1 

Rotations about the y axis are-as seen in Section 3.3.3 for j = 1/2-more compli- 
cated to derive than are those for the z axis, but they are more interesting to under- 
stand and to apply. In this subsection we continue to use the direct matrix method 
used with the Pauli matrix ay for spin 1/2 in Section 3.3.3. 

Deriving the y-axis Rotation fo r  j = 1. The calculation for j = 1 requires ex- 
tension of the j = 1/2 treatment, but with the slight increase in complexity that the 
corresponding 3x  3 J y  matrix in Table 3.1 returns to Jy  only after cubing, rather 
than after squaring. The details of the calculation of the operator exponential (3.1) 
using (2.38) are suggested as Problem 6.2. The result of this tedious calculation is 

s2 1 c2 -&cs 
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Properties of the Spin- 1 Matrix. It is quite clear to see that y-axis rotations for 
spin 1 do not have the simple phase relation that obtains for z-axis rotations. More- 
over, incrementing p by any multiple of 2n leaves the matrix unchanged, so we do 
not have a spinor for this integer spin. However, as we know must hold for any ro- 
tation, dl is a unitary matrix, as Problem 6.3 suggests that you verify. Indeed, 
since it is a real matrix, it is orthogonal. 

A Worked Example for j = 1. As an example of y-axis rotation, consider a 
spin-1 system which is initially in state m = 1. What mixture of m values does it 
have after rotating it through angle p about the y axis? Following Table 3.2 or  
(4.70), the initial state can be described by the column matrix with 1 in the first po- 
sition and 0 in the other two positions. After rotation we have the state vector 

which is just the first column of the rotation matrix. Consider p = n/2, for which 
(6.5) produces amplitudes for rn = f l  projections both equal to 1/2, while that for 
rn = 0 is I / a .  If you make a sketch, as in Figure 6.3, you see that in the vector 
model (Section 5.3) the spin vector will be predominantly along the -x axis, so 
m = 0 should have the largest amplitude, in agreement with (6.5). The m = 0 pro- 
jection is twice as probable (1/2 rather than 1/4) as the m = k1 projections. 

FIGURE 6.3 Semiclassical vcctor model viewpoint of rotation of an angular momentum vector 
through p = rd2 when the initial projection is m = j .  The most probable projection is then m’ = 0. 
The vector is drawn to scale f o r j  = 1. 

Also in Figure 6.3, +z and -z axes should be equivalent when p = d 2 ,  and we 
see that they have equal amplitudes of 1/2. Since cos2[(n - p ) / 2 ]  = s in2(p /2) ,  we 
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see more generally from (6.5) that for j = 1 the m = +1 and m = -1 states in- 
terchange roles as /3 + n- /3. The sum over m of squares of amplitudes is unity 
before and after rotation, consistent with unitarity. 

The matrix-expansion technique for deriving dj  for j =1/2 and 1 can be extended 
to arbitraryj, as shown by Lehrer-Ilamed [Leh64]. Although correct, the method is 
complicated and does not lead to insight, so we switch to another representation. 

6 .2 .3  Constructing d from Spinor Representations 

We now turn to the challenge of deriving y-axis rotations for arbitraryj. For this we 
use the spinor-space representation introduced in Section 4.3.3. We show in Fig- 
ure 6.4 how this representation can be visualized in the Majorana representation 
(Section 5.1.3) and in the semiclassical vector model (Section 5.3). 

FIGURE 6.4 Semiclassical vector model view of the spinor-space representation (6.6), before 
the system is rotated (left-hand side) and after the system is rotated through p about the y axis 
(right-hand side). There are 5 spin-up spin-1/2 subsystems and 3 spin-down spin-1/2 subsystems. 
Therefore, the left-hand view represents a system with m = ( 5 -  3)/2 = 1 and j = (5+ 3)/2 = 4. In the 
right-hand view there is a range of rn values but stillj  = 4. 

In the spinor-space representation, to describe a system with total angular mo- 
mentum number j and projection number m-labeled as (j, m)-we combine j + m 
spin-up spinors and j -  m spin-down spinors. For example, in Figure 6.4 there are 
5 spin-up and 3 spin-down subsystems. As justified in detail in Section 4.3.3, we 
have a state representation given by 
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2x+m-m' 
[sin (P /2)] 

2 j+m'-m-2x 

( j  + m'- x)!( j  - m - x)! x! (x + rn - m')! 
X 

in which the rotated spin-1/2 spinors are obtained from the rotation matrix for a spin- 
1/2 system, (3.44), by 

X + ( P )  = COS(P/2)X+(O)- sin(P/2)X-(O) 

X - ( P )  = sin(P/2)X+(O)+cos(P/2)X-(0) 
(6.7) 

(6.9) 

in which the arguments of the ,& indicate the angle of rotation of the system from 
the z axis (Figure 6.4). By using the definition of a rotated state and the reduced 
rotation matrix elements d;,,(P), we may also write (6.6) as 

Thus, by substituting (6.7) into (6.6), expanding each power by the binomial theo- 
rem, then rearranging terms to identify the unrotated states that appear in (6.8), the 
resulting coefficients of these terms are just the required matrix elements. To carry 
out this procedure is straightforward but tedious, so it is relegated to Problem 6.4. 

Finally, we have the reduced rotation matrix elements given by 

Here the summation is over all values of x for which the arguments of the factorials 
in the denominator are non-negative. Because there is an x !  in this formula, x = 0 is 
the smallest possible value, while the other factorial arguments impose the restric- 
tions that x 2 rn'- m ,  and x I min(j - m ,  j + m' ). The last two restrictions also 
guarantee that the cosine and sine powers are non-negative. 

As we found for j = 1/2 (Section 3.3.3) and j = 1 (Section 6.2.2), the matrix 
elements for y-axis rotations are explicitly real. It is indeed worthwhile to verify 
agreement between (6.9) with these values o f j  and the independently derived ex- 
pressions (3.44) and (6.4), as Problem 6.5 suggests that you do. 

Formula (6.9) is the starting point for all our subsequent analyses of the reduced 
rotation matrix elements, which are related to the full rotation matrices in Sec- 
tions 6.3 and 6.4. 
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dL.,(p+zn)= ( - l )2jd; jm(p)  (6.10) 

Therefore, y-axis rotations describe spinors whenever j is a half-integer, such as 
j = 1/2, 3/2, or 49/2. The same property is shown at the end of Section 6.2.1 for z- 
axis rotations. Thus, the spinor property-sign reversal under change of any Euler 
angle by 2z-holds for any system having half-integer total angular momentum 
number j .  

6 .2 .4  Relation of di Elements to Other Functions 

The full expression for the reduced rotation matrix elements describing y-axis rota- 
tions through angle p, given by (6.9), is quite complicated. It is therefore worth- 
while, both for insight and for calculations, to simplify this expression whenever 
possible. We consider first the case when both projections, m' and m ,  are zero, 
which can occur only whenj = C, an integer. This will show that d& is just a Leg- 
endre polynomial. Then we show that even if only one projection number is zero 
(still requiring j = !), then we get a Legendre function. Finally, the relation of the 
general reduced matrix element to Jacobi polynomials is derived, which is of interest 
for computing the rotation matrix elements. At this stage it would be worthwhile for 
you to review properties of Legendre functions, as in Sections 4.1.1 and 4.1.2. 

The dAjm for Both Projections Zero. If in (6.9) we set j = l and m' = m = 0, 
we certainly obtain an expression that looks simpler than the original, but the 
summation may not be immediately identified as a well-known function. However, 
by substituting C = 0, I = 1, and I = 2 into this expression, we find in terms of the 
Legendre polynomials P,(cosp), that 

d&(P) = 1 = P,(COSP) dA,(P) = cosp = r ; (COSP)  

(6.11) 

Spinor Property of Rotations for Half-Integer j .  In Section 3.3.3 the spinor 
nature of y-axis rotations for j = 112, namely sign reversal according to (2.74) for 
change of angle by 2n, was demonstrated explicitly by inspection of the rotation 
matrix (3.44). This property can be generalized to arbitraryj by considering the re- 
lation between the functions d;,, (p) and di,m (p  + 2n). Since both cos(P/2) and 
sin(p/2) change sign under p + p+ 2n, we see from (6.9) that each term in the 
summation undergoes a phase change which has as its exponent the term given by 
( 2 j  + m' - rn + 2x )  + (2x + m - m') = 2 j + 4n. Because x is an integer, the phase 
change is just that from 2j, and this phase can be factored out of the sum. Thus 
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in which the last conjecture is yet to be proven. To check this, note that Legendre 
polynomials satisfy the recurrence relation between three adjacent C values given by 
[Won91, (5.8)] 

(e+ l ) p p + ~ ( x ) - ( 2 1 + l ) x P , ( x ) + & P ~ ~ l ( x ) = o  (6.12) 

Therefore, if d& satisfies this same relation with x = cosp, then it must coincide 
with Pe(COSp), since it coincides for two adjacent l values. The rather messy alge- 
braic details of this method of proof are relegated to Problem 6.6. An alternative 
derivation is to verify that d&, and Pp(cosp) satisfy the same linear second-order 
differential equation as functions of fi, and that they coincide at two values of p, 
such as at p = kn. They must therefore be identical. This derivation is also sug- 
gested in Problem 6.6. The final result of such manipulations is the identity satis- 
fied by reduced rotation matrices with both projection numbers zero: 

(6.13) 

The physical interpretation of this result is given in Section 6.3.1. 

The dL,m for One Projection Zero. You may suspect, indeed correctly, that if 
one of the projection numbers is zero (which again requires j = !, an integer) that 
the reduced rotation matrix elements are related to Legendre functions. As Prob- 
lem 6.6 suggests that you prove by similar methods to those for both m values zero, 
the relation is 

in which ppm‘ is the associated Legendre function. Indeed, (6.13) and its method of 
derivation are just special cases form‘= 0 of (6.14). The cases in which the zero 
occurs as the left-hand projection number or in which m’ < 0 are handled by the 
symmetries of reduced rotation matrices derived in Section 6.4.1. 

Relation of d;,,,, to Jacobi Polynomials. The general reduced rotation matrix 
element given by (6.9) can be related to Jacobi polynomials, which are discussed in 
the treatise on mathematical functions by Erd6lyi et al. [Erd53]. Our main reason for 
doing this is to connect with the method used in the Mathematicu notebook Djm’m 
used for computing rotation matrix elements in Section 6.2.5 and visualizing them 
in Section 6.3.3. Also, at a more advanced level, the connections between the two 
functions are discussed in several contexts in the angular momentum encyclopedia of 
Biedenharn and Louck [BieSla]. 
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The Jacobi polynomial may be defined (for integer n,  a, and p )  by 

By identifying x = cosp, n = j -  m, a = m - m‘, p = m + m’, and using trigonomet- 
ric identities, we can match expansions (6.9) and (6.15) to show that 

( j  + m’)! ( j  - m’)! d;Sm ( P )  = 
(6.16) 

This formula is used in notebook Djm’m in Appendix I to compute d; ,m(p)  in 
terms of Mathematica function Jacobi P. In Maple the Jacobi polynomial can be 
computed symbolically or numerically by the function Orthopoly [PI  . 

By setting m’ = m = 0 in (6.16) and comparing this with (6.13), you will be led 
to conclude that a special case of the Jacobi polynomial is 

Pg’o)(cosp) = P,(COSP) (6.17) 

This may be useful when checking formulas for Legendre polynomials. Now that 
we have related reduced rotation matrix elements to other functions, we are ready to 
consider how to compute the dA,m(p).  

6.2 .5  Computing Reduced Rotation Matrix Elements 

Although (6.9) gives the general formula for the reduced rotation matrix elements 
d,$, (p), it is interesting and useful to obtain explicit results and visualizations for 
small values ofj .  We discuss first analytical expressions, then summarize methods 
for numerical evaluation. 

Analytical Expressions for Reduced Rotation Matrix Elements. Analytical 
expressions are easily derived by using on a computer the Mathematica notebook 
Djm’m in Appendix I, but it is not too painful to do the calculations by hand and 
brain for small values of j .  The exercise is suggested as Problem 6.7. We give the 
matrices for j I 2  in Tables 6.1-6.3, with Table 6.2 showing a polar diagram of 
&&,,(p). This kind of diagram is discussed in detail in Sections 4.1.2 and 
6.3.3. The notation used in the tables is c = cos(P/2), s = sin(p/2). In these tables 
the matrices demonstrate the symmetries that are derived generally in Section 6.4.1. 
Since rotation is a unitary transformation (Section 2 . 2 3 ,  for any value of P the 
sum of squares of the elements in a given row or column is unity. Try it and see! 
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TABLE 6.1 Reduced rotation matrices, d'(p), as a function of polar rotation 
angle p for angular momenta j = 0, 1/2, and 1. The matrices are displayed in 
irreducible form, as discussed in Section 2.1. The sketch shows the relation 
between projections for an active rotation through (positive) angle p. The nota- 
tion is c = c o s ( p / 2 ) ,  s = sin(PI2). 

0 

112 

1 

- 

0 1 I2 1 

m'\m 0 

0 1 

m'\m j 112 - 1 / 2  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

112 c --s 

-112 S c 

m ' \ m  1 0 -1 

1 c2 -J7cs s 2 

2 -1 s2 c 

TABLE 6.2 Reduced rotation matrix d3"(p) as a function of polar angle p. 
The notation is c = c o s ( p l 2 ) ,  s = s i n ( p l 2 ) .  The sketch is a polar diagram 
(Section 4.1.2) of d;;l,,,z, with positive values drawn with a solid curves and 
negative values drawn with dashed curves. Note that d, ,2 , , ,2 (2n)  = -d,,,,,,,(O) < 0 ,  
which is correct for this half-integer spin, according to (6.10). 

3 1 2  3 / 2  

j = 312 

m'\m i 3 1 2  112 -112 -312 

3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

312  ; c3 -432s  &c s2 --s 

3 -312 1 3  ; s &c s2 &C2S c 
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TABLE 6.3 Reduced rotation matrix dZ@) as a function of the polar rotation 
angle p.  The notation is c = c o s ( p / 2 ) ,  s = sin(pl2). 

j = 2  

m’\m 2 1 0 -1 -2 

4 
S 

3 2 C 4 -2c 3 s 8 sin2 p -cs 

1 ~ ~ 3 . ~  -2c 2 s 2 - 8 s i n p c o s p  c2(2cosp+1) -cs 3 

0 i &c2s2 g s i n p  cosp -(3cos2 I p - 1) -{sinp cosp &c2s2 
2 

4 -2 . s 3 CS sin2 p 4 
C 

The size of the reduced rotation matrices increases rapidly with j ,  since there are 
(2j + 1)* elements in dj. By using phase relations under sign changes of m’ or m 
and under interchanges of m’ and m (as derived in Section 6.4.1), the number of ele- 
ments with essentially different dependences on p is substantially reduced, as is 
clear by inspection. For example, if j = 2, among the 25 matrix elements there are 
just nine independent functions. By exploiting symmetries under p + n- p, the 
number of functions can be further reduced. Such simplifications are also useful in 
discussing symmetry properties of expressions involving the dLtm (p). 

Numerical Values of Reduced Rotation Matrix Elements. Although algebraic 
expressions for reduced rotation matrix elements are provided in Tables 6.1-6.3, 
numerical values are also needed. If you need such values for j 5 2 ,  just use the 
tables and program the algebraic expressions. 

If you need a broad range of j ,  m’, m,  and p values, then ditPm(p)  can be ob- 
tained by using C-language program C 1 in Appendix 11. It implements efficiently 
formula (6.9). Muthematica notebook Djm’m in Appendix I can be modified to 
produce numerical values in addition to formulas and graphics of d,$, (p) .  In terms 
of computer effort-as contrasted to human effort-this is less efficient than using a 
compiled C function by several orders of magnitude. 

6 . 3  INTERPRETING ROTATED STATES 

In Sections 6.1 and 6.2 we emphasize determining matrix elements of operators for 
finite rotations of angular momentum eigenstates, the DA,, (spy), whereas in this 
section our attention is on combining and interpreting such rotated states. To begin, 
we use the formalism of linear spaces, summarized in Section 2.1.1, writing the 
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rotated state as ( jm,aPy) ,  defined to be the state obtained by rotating through Euler 
angles (a ,  b, y )  the system that was in a state with angular momentum numbers 
(j, m). The effect of rotating the state through these angles is to produce the ket 
Ijmapy}, given by 

l.im,apr) = U(aPrJ. im)  

(6.18) 

In the second line we use expansion (2.14) for the unit operator, in the third line we 
insert the definition of rotation matrix elements and use their irreducibility (Sections 
2.5.5, 6.1.2), and in the fourth line we have the simplest form for the rotated state. 
The transformed state (the left-hand side) is a linear superposition of unrotated states 
having the same j value as on the right-hand side. 

To summarize this key formula, the rotated state is given by 

-7 - ~~- 
I 

(6.19) 

The rotated state usually does not have a unique projection, since the labeling in the 
ket on the left-hand side means “the projection before rotation is m.” After rotation, 
the amplitude with which the unrotated kets (Euler angles denoted 000) appear in the 
rotated ket is obtained from the right-hand side of (6.19) as DL,m(@Py). 

In matrix form (6.19) appears in the form of row-matrix representations for the 
kets on the left- and right-hand sides and a square matrix for the rotation matrix D. 
One way to remember this rule is that if one used instead a column-matrix form, the 
elements of D would be on the left of the kets under the sum in (6.19), so that they 
might appear (erroneously) to be operators. Although you probably believe the al- 
gebra of the above arguments and discussion, we gain more insight by considering 
special examples of (6.19). 

6 .3 .1  Orbital Angular Momentum States 

To understand rotation formula (6.19) for angular momentum kets more concretely, 
consider the orbital angular momentum states introduced in Section 4.1. We divide 
the discussion into z-axis rotations and y-axis rotations. 
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Rotutions about the z Axis. For the azimuthal part of a spherical harmonic- 
the operative factor for rotations about the z axis-we have 

(6.20) 

with m an integer, a formula that holds far any I .  Now rotate the system through 
angle y about the z axis, as in Section 6.2.1. This is an active rotation, as dis- 
cussed in Sections 1.3.1, and 3.1.1. For a z-axis rotation, (6.2) gives 

On projecting (6.18) into the space of angles qand using (6.21), we have 

(6.21) 

(6.22) 

How should we interpret this result? The most instructive way is to draw a polar 
plot (Section 4. I .2) of the azimuthal part of the spherical harmonic, given by (6.20) 
for m = 1, say. It is sufficient to look at the real part, cos $I, because the imaginary 
part (sin $ ) is just the same shape rotated through d 2 .  The left- and right-hand- 
side views in Figure 6.5 help you visualize the left- and right-hand sides of (6.22). 

FIGURE 6.5 Effect of an active rotation through Euler angle yof the function C O S ~ ,  shown in a 
polar plot. The value of the function at point P is unchanged by the rotation, in accord with (6.22). 

In this example the interpretation is particularly simple because z-axis rotations 
do not change m values. The situation is immediately more complicated for y-axis 
rotations. 
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Rotations about the y Axis. For rotation of spherical harmonic ye, (0,$) about 
y-axis through Euler angle p ,  the D-matrix elements required in (6.18) are just 
reduced rotation matrix elements dLtm (p) ,  as described in Sections 6.2.2- 

.5. The rotated spherical harmonic becomes 

(6.23) 

This is usually not a single spherical harmonic, but rather, an expansion in terms of 
the complete set of functions in the space (0, $), with the completeness being a con- 
sequence of the fact that the spherical harmonics on the right-hand side are 
eigenfunctions of the angular momentum operators, which are Hermitian. 

To illustrate the result (6.23), consider the simplest nontrivial spherical har- 
monic, that for e = 1, m = 0, given explicitly in Table 4.2. The required dAto(p) 
are given by the third column of Table 6.1. After some simple manipulations that 
Problem 6.8 suggests you try, we obtain 

( ( ~ ~ ) ~ ~ o , o ~ o )  = F ( s i n s s i n p c o s @ +  4n cos0cosp) (6.24) 

This rotated function is not usually a spherical harmonic because its dependence on 
@ is not of the form eim4 required for such functions. For the case of no rotation, 
p = 0, we recover );o(O,$), while for p = z, (6.24) produces the negative of this, in 
agreement with the negative parity of spherical harmonics having C odd, as derived 
in Section 4.1. 

When $ = 0 the spherical harmonics collapse to functions proportional to asso- 
ciated Legendre functions and our particular example in (6.24) for e = 1, m = 0 
simplifies to 

(6.25) 

This result has a similar interpretation to that for z-axis rotation, as illustrated in 
Figure 6.5. 

6 .3 .2  Transformation Amplitudes for Arbitrary j 

Now that we understand how to interpret rotated states described in terms of orbital 
angular momentum, let us turn our attention to other descriptions of angular 
momentum states. We first review spin- 1/2 states, then we consider transformation 
amplitudes for arbitrary j .  
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Interpreting Rotated States for  j = 1/2. Rotations about the z and y axes for 
spin-1/2 states are derived in Section 3.3.3. There we show that the states denoted 
by x+(P) ={ 1/2,+1/2,0pO) transform undery-axis rotations according to 

Consider the transformation of amplitudes for spin-up and spin-down states, x+(O) 
and ~ - ( 0 ) ,  written as 

(6.27) 

The amplitudes (0) can be summarized in matrix form as 

where, according to (3.44), the rotation matrix is 

cos(p / 2) -sin@ / 2) 

sin(p/2) cos(p/2) 
d"*(p) = 

and the unrotated amplitudes are given by 

a+m=[;] 

(6.29) 

(6.30) 

for spin-up and spin-down states, respectively. 
To visualize the spin-l/2 rotations, look at the two polar diagrams in Figure 6.6, 

in which the left panel shows $&/2(b)= d!{j2 -,,,(p)=cos(P/2) while the right 
panel shows ~ ~ ~ ~ , - , / 2 ( p ) = - ~ , / * , - , / * ( p ) =  -sin@/2). Notice that in Figure 6.6, 
plotted for p in the range 0 to 2n, there is a sign switch at the apex of the polar plot 
on the left-hand side. This is correct, since half-integerj values (such as j = 1/2) are 
described by spinor functions (Section 2.4), which change sign under rotation 
through 2n. 

Having understood interpretation of rotated states for spin j = 1/2, we now gen- 
eralize these formulas for rotation of amplitudes to arbitrary spin. 

Interpreting Rotated States for  Arbitrary j .  The rotational transformation of 
amplitudes just examined for spin-112 states cab be generalized readily. Consider a 
system which before rotation has a unique j value but is in a superposition of mag- 
netic substates; thus 
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FIGURE 6.6 Polar plots of the reduced rotation matrix elements for transforming spin-1/2 
states and amplitudes. Positive values arc shown by solid curves and negative values are shown by 
dashed curves. (Adapted from Mathemarim notebook D jm’m.) 

in which the a, are the amplitudes whose rotational transformation we seek to de- 
termine. If the system is rotated through Euler angles (a, b , ~ ) ,  then the state de- 
scribed by (6.31) is transformed to I j ,apy) ,  given by 

in which the transformed amplitudes after rotation are given by 

(6.32) 

(6.33) 

This result can be derived by following the steps used for j = 112, as Problem 6.9 
suggests that you do. 

If we consider the amplitudes in (6.33) to form the elements of a column matrix 
a ( a p  y) having 2j+ 1 elements, as with the two-component matrices for spin-1/2 in 
(6.30), then (6.30) can be summarized as 

Notice that D premultiplies the amplitudes, whereas the rotated kets in (6.18) are 
postmultiplied by D. 
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Technically, a transformation of the kind (6.18), in which the transformation ma- 
trices posrmultiply a quantity, is called a cogredient transformation, whereas the 
amplitude transformation rule (6.34) is called a contragredient transformation, al- 
though this term is often used if D* rather than D appears in  (6.33). 

The Case of Unique Initial Amplitudes. As an example of using (6.33), 
suppose that before rotation the system was in a unique substate rno, so that 

then, using (6.33), each amplitude after rotation is given simply by 

The probability for this amplitude, P,.(aPy), is therefore 

(6.37) 

There is no effect on probabilities from z-axis rotations involving the angles a and 
y which contribute only phases to the amplitudes, as derived in Section 6.2.1. In- 
terpreting a reduced rotation matrix element as a probability amplitude describing 
transformation under rotation is the main idea underlying angular-distribution 
schemes for determiningj for a system, as discussed at the end of Section 7.5.2. 

6 .3 .3  Visualizing Rotation Matrix Elements 

How should we visualize the dependence of dAfm (p)  on projection numbers rn’ and 
rn ? We can figure this out by starting with examples in which m’ is fixed and rn 
varies. Consider j = rn‘ = 3 for two values of rn, namely rn = 3 and m = 0. Their 
formulas are 

and the corresponding polar diagrams are shown in Figure 6.7. For rn’ = rn = 3 
(left-hand side) we see that as p varies, the function varies slowly for small angles, 
then collapses for p > d 2 ,  whereas if rn = 0 (right-hand side), the function is small 
at angles away from P = d 2 .  Each behavior is as we should expect under the inter- 
pretation, derived in Section 6.3.2, that rn gives the projection on the z axis before 
rotating the system, while rn’, here equal to 3, gives the projection after rotation. 

We display in Figure 6.8 as a function of polar angle p the reduced rotation ma- 
trix elements for j = 3 and positive values of rn’ and m. As derived in Sec- 
tion 6.4.1, the functions for negative projections are related by phases to those with 
positive projections. 



6.3 INTERPRETING ROTATED STATES 2 3 1 

Z 

FIGURE 6.7 Reduced rotation functions for rn values that are quite different, namely m = 3 in 
the left panel and m = 0 in the right panel. (Adapted from Mathematica notebook Djrn‘rn.) 
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FIGURE 6.8 Reduced rotation matrix element functions for j = 3 and positive projections as a 
function of angle p from the z axis. Formulas for these functions are given rn (6.39). (Adapted 
from Mathernatica notebook D jrn’m.) 
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Formulas for the rotation functions in Figure 6.8 are in terms of c = cos(p/2) 
and s = sin@ / 2) by 

do ( p )  = 4&6(2c2 - 1)c2s2 &, (p) = m c 3 ( 1  - 6cs') 
(6.39) 

d23'(/3) = c4(6c2 - 5) & ( P )  = &c5s 

as can be verified by running Mathenzatica notebook Dj m ' m, as suggested in 
Problem 6.10. The visualizations (also obtained from Djm'xn)  are in accord with 
the interpretation in terms of rotation of amplitudes that is derived in Section 6.3.2. 
Problem 6.10 also suggests that you describe fully the correspondence between the 
graphics in Figure 6.8 and this interpretation. From figures in this subsection we 
see that as functions of p the reduced rotation functions have many symmetry prop- 
erties. The relation between m and m' being projection values before and after rota- 
tions implies symmetries relating the functions for /3 and -0 with those having inter- 
changed m and m' values. Our examples thus far have not considered negative pro- 
jections, which lead to further symmetries. It therefore behooves us to consider 
properties of rotation matrices in a systematic way. 

6 . 4  PROPERTIES OF ROTATION MATRICES 

In this section we emphasize algebraic and symmetry properties of rotation matrices. 
Having derived these properties, the graphic examples in Section 6.3.3 verify the 
properties explicitly. Algebraic expressions for j = 0-2 are given in Tables 6.1- 
6.3, while Figures 6.6-6.8 show the reduced rotation matrices in polar diagrams. 

We derive in Section 6.4.1 symmetry properties of d and Di matrix elements, 
then in Section 6.4.2 we show their unitarity and orthogonality properties. In Sec- 
tion 6.4.3 we discuss classical limits of rotation matrices, where we learn-perhaps 
with surprise-that even for angular momentum numbers as small a s j  = 6, their be- 
havior is semiclassical. Finally, in Section 6.4.4 we derive relations between 
spherical harmonics (Section 4.1) and rotation matrix elements. 

6 . 4 . 1  

We first derive symmetry properties of elements of the reduced rotation matrix, d, 
then we derive symmetries of elements of the full rotation matrix, W'. 

Symmetry Properties of di and W' 

Symmetries of Reduced Rotation Matrix Elements. The formula for the ma- 
trix elements d;,,,, (p)  is (6.9). The symmetries under sign changes of the projec- 
tions m and m' and of the Euler angle p can be derived by writing out the expansions 
of the left- and right-hand sides in the following expressions in order to verify the 
phase relations given below. Since this is straightforward but tedious, we assign it 
to Problem 6.1 1. The diligent reader will verify the following symmetries: 
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DA’m (-a, -p, -y ) = D;,. (x p, a) = pi,, (-x -p, -a)]* 

D;,.(a, p, y )  = (- 1 y - m ‘  DAsn (x p, a )  

D;,(. - p)= ( - l~+m’~A, , - , (a ,p , -Y)  

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.46) 

(6.47) 

(6.48) 

These symmetry relations are consistent with the semiclassical vector model, 
which predicts that each of the combinations of m’, m, and p should have the same 
probability distribution; that is, they should be related through a phase, which indeed 
they are. F o r j  = 1 this connection is illustrated explicitly in Figure 6.3, while re- 
duced rotation matrices for j = 1/2, 1, 3/2, and 2-given in Tables 6.1-6.3-also 
provide many examples of these symmetry properties. 

Relations (6.40) and (6.41) also connect active and passive rotations, since rota- 
tion through p in our active viewpoint (Sections I .3.1, 3.1 .l, and 6.1.1) is equiva- 
lent to -p in the passive viewpoint. Symmetry (6.41) arises from the interpretation 
(Section 6.3.2) of m and m’ labels as projection values before and after rotation. 
The last symmetry, (6.43), relates parity symmetry and reversal of the z axis. 

Symmetries of Full Rotation Matrix Elements. The full rotation matrix ele- 
ments, DL,, (spy), are related to reduced rotation matrix elements, di,m (p) ,  by 

(6.44) 

The symmetries of the full rotation ( a , p , y )  can therefore be related to those of the 
reduced rotation (0) by using symmetries (6.40)-(6.43) of the latter. By this 
means, working out the details in Problem 6.12, we obtain 

These relations by no means exhaust symmetries of the Di, ,  (upy),  but they 
follow directly from those for dLtm (p) .  By restricting the parameters m or m‘ and 
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the Euler angles, we can obtain further symmetries. Their consideration is 
postponed to Section 6.4.4, where we relate spherical harmonics to rotation matrix 
elements. 

6 .4 .2  Unitarity and Orthogonality Properties 

The unitarity and orthogonality properties of rotation matrix elements are useful for 
simplifying sums and integrals of these functions. We consider first summation 
properties involving matrix elements of D' and di. 

Unitarity and Orthogonality Sums. The unitarity of DJ matrix elements is read- 
ily derived, as follows. From the discussion of unitarity in Section 2.2.2, we can 
write for the rotation operator U ( a p  y) , 

m" 

Here, the second line follows from the unitarity of rotations, in the third line we in- 
sert a complete set of states (Section 2.1.1), then in the fourth line we use (6.18) for 
the operator matrix elements. We therefore have the unitarity sum of the full rotation 
matrix elements 

(6.50) 

By setting a = 0 and p = 0 we obtain a special case of this unitarity sum, namely the 
orthogonality sum of the (real) reduced rotation matrix elements 

(6.5 1) 

Unitarity and Orthogonality Integrals. Rotation matrix elements are angular 
momentum eigenfunctions, as is clear from the discussion in Section 6.3 and is 
shown in detail in Section 6.5.1. Since eigenfunctions of Hermitian operators such 
as J are orthogonal with respect to integration over their range of definition, here 
(a, p, y), the D;,,(aPy) and di .m ( p )  must also be orthogonal under such inte- 
gration. Our task here is to determine the orthogonality integrals. 
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Consider the integral, I ,  given by 

(6.52) 

in which the region of integration, R ,  is yet to be specified. We ciin separate this 
into the product of three integrals, to obtain 

(6.53) 

If we now choose the range of integration over angles appropriately, the integrals 
will vanish when the labels on the matrix elements are different. Consider integra- 
tion over a. If the magnetic projections are both half integers or both integers (thus 
j l  andj2 have this property), the smallest interval over which the aintegral vanishes 
is 0 to 2 ~ .  If, however, one projection is a half integer and the other is an integer, 
then the range of a integration cannot be smaller than 0 to 4n. For example, 
consider (6.53) for j l  = 1/2, mi =ml = 1/2,  and j 2  = 0, so that mi =m2 = O .  
Then for an a-integration range of 0 to 2nn with n an integer, a y integration range 
of 0 to 211, and a p range of 0 to n, we obtain, as Problem 6.13 suggests that you 
verify, I = 64[cos(nn) - I]/3. If n = 1 (0 < a < 2 ~ ) ,  then I # 0, but if n = 2 
(0 5 a I 4n), then I = 0, as hoped for. Clearly, it is sufficient that only one of a or 
yhas the doubled range, and a is usually chosen. 

These considerations have been ignored in most previous treatments of the rota- 
tion matrix elements, resulting in errors when half-integer and integer angular 
momentum orthogonality relations were used. The problem, its resolution, and 
its relation to the theory of the groups SU(2) and SO(3) introduced in Sec- 
tion 2.5.4 were pointed out by Jonkers and De Vries in 1967 [Jon67]. 

The orthogonality integral can now be expressed as 

(6.54) 

in which our choice or regions of integration has been made explicit. Notice that the 
choice of z-axis rotation angles, CI and 3: has produced orthogonali1.y in projection 
numbers. It remains to prove the orthogonality in total quantum nunibers,jl and j2.  

The orthogonality of the dLfm (p)  in integral (6.54) with weight factor sinp and 
range of integration 0 to Z, as is usual for polar angles, is most simply obtained by 
relating these functions to Jacobi polynomials, as in Section 6.2.4. By consulting 
the treatise by Erdtlyi et al. [Erd53], we are lead quite directly to 

(6.55) 
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Putting all the pieces together, we obtain the orthogonality relation for rotation 
matrix elements: 

FINITE ROTATIONS OF ANGULAR MOMENTUM EIGENSTATES 

(6.56) 

Ifjl andj2 are both half integers (such as 1/2 and 5/2) or both integers, then orthog- 
onality holds if the range of a integration is halved (0 to 2n). With the halved range 
of integration, the value of the integral is halved. 

Orthogonality relations of the D,$m (apy) and di tm (p) with respect to summa- 
tion and integration are of great utility in practical applications. Some of these are 
covered in Section 7.5, where we relate rotations and coupling coefficients. 

6 .4 .3  Classical Limits of Rotation Matrices 

Interpretation of rotated states in terms of probability amplitudes for projections be- 
fore rotation (m) and after rotation (m'), as derived in Section 6.3, suggests that it is 
interesting to study the behavior of rotation matrices as j increases, the so-called 
classical limits. We should expect-and indeed find even for small j values-that 
the behavior predicted by the semiclassical vector model (Section 5.3) is realized. 

Although a general treatment of the classical limits of rotation matrices has been 
given by Bmssaard and Tolhoek [Bru57], it is most instructive to consider two spe- 
cial cases. The first case has, classically, the angular momentum of the system 
parallel to z ,  namely m' = j .  This was first considered by Wigner in his classic trea- 
tise on group theory and its applications to quantum mechanics [Wig31]. The 
second case has a further restriction to m = 0. 

Rotations with m' = j .  We begin by simplifying the general expression for the 
reduced rotation function, (6.9), to that for m' = j ,  namely 

djm(p) = (-l)j-m IT [cos(p/2)f+'" [ ~ i n ( p / 2 ) r - ~  (6.57) 
( j+m)!( j -m)!  

From this we can calculate the probability density P,(p)  =I d!,(p) I* relative to the 
value P,, (p )  , which is expected to peak at the classically-unique value m, = j cosp. 
This has problems, in principle, because m, can take on any value depending on the 
choice of angle p. A better way of considering this is to ask at what angle, &., the 
density is predicted to peak. This angle is just the solution of cos pc = m/j, which 
always has a solution for pc because Iml 5 j .  
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FIGURE 6.9 Reduccd rotation functions for j = m’ = 6 and three values of m as functions of rota- 
tion angle p. Indicated angles satisfy approximately the classical relation cosp,, = d j .  Recall our 
convention for polar diagrams (Figure 4.4) that positive values are shown by solid curves and nega- 
tive values are shown dashed. (Adapted from Mathernatica notebook Djm’m.) 

The semiclassical situation in Figure 6.9 can be analyzed in more detail by con- 
sidering the probability density P&) that is the square of the rotation function 
(6.57). By following the steps indicated in Problem 6.14, you can readily show 
that at a fixed angle p , the m dependence of the density that satisfies m, = j cosp  is 
given approximately by 

(6.58) 

Thus, for j >>m, this distribution is Gaussian (normal) with standard deviation of 
about m. This value may seem inappropriate until we realize that the more 
relevant variable is m/j rather than m alone. By rewriting (6.58) in terms of this 
ratio,we see that the corresponding distribution has a standard deviation of about 
1 I f i  , which indeed decreases with j .  

These probability distributions from (6.57) and its approximation (6.58) can be 
visualized by plotting Pm against m for a given choice of j and m,, as shown in Fig- 
ure 6.10. As seen, there is very close agreement between the m dependences from 
the exact values-which are the squares from (6.57)-and approximation Prn from 
(6.58), even for as small a value as j = 3, which would not usually be considered 
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“classical.” For those who have access to Mathematica, further exploration of this 
topic is suggested as Problem 6.15. 

U j = 3 ,  m,=i 

/ 

-3 -2 -I m I 2 3 -6 -4  -2 m 2 4 6  

FIGURE 6.10 Probability densities corresponding to the square of the rotation matrix with final 
projection m’ = j ,  (6.57), evaluated at the classical angle p such that cosp = mc/j. The densities are 
plotted as a function of the initial projection m .  Bars show probabilities from (6.57) and curves 
show the approximation (6.58). Probabilities are normalized to have the same height at m = m,. 
(Adapted from Matfiematicu notebook D j  jncpr.) 

Rotations with m = 0. Another view of the classical limits of rotation matrices 
is obtained by considering projection m’ = j ,  as above, but initial projection m = 0. 
Classically, if after rotating the system through pits projection on the z axis is m’ = j  
and it had rn = 0 before rotation, then it must have been moving initially with its 
motion restricted to a plane perpendicular to the z axis. Is this prediction satisfied 
for small values o f j  ? Figure 6.1 1 helps to answer this question. 

z 

FIGURE 6.11 Probability densities for m’ = j and m = 0 as a function of polar angle p for three 
values of j ,  namely j = 3, 12,48, which differ by factors of 4, so the angular widths of the distribu- 
tions are predicted to differ by factors of 2, consistent with the figure. (Adapted from Mathemmica 
notebook Dj j 0.) 
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We can analyze the behavior of the probability densities in Figure 6.1 1 
analytically by simplifying the general expression for a reduced rotation function, 
(6.9), to m = 0 and m' = j ,  in order to obtain 

(6.59) 

which clearly has its maximum value for any j > 0 at p = d 2 ,  as in classical dy- 
namics. Problem 6.16 suggests the steps by which you can show that when j in- 
creases, then the resulting probability distribution-the square of the amplitude in 
(6.59)-tends to a full width at half maximum (FWHM) of 2 4 m .  This prop- 
erty is indicated in Figure 6.1 1 for values of j that successively increase by factors 
of 4. 

How Small Is j for the Classical Limit? From the preceding visualizations and 
analyses, we see clearly that the semiclassical limits of the rotation matrices meet all 
our expectations from classical mechanics. What you probably find very surprising 
is that the key elements of classical angular momentum are exhibited for small values 
of j ,  even as low as j = 3 or 6, as shown in Figures 6.10 and 6.1 1. 

The classical-limit behavior is not at all conditional on the value of Planck's 
constant, but is, rather, a consequence of the fact that angular momentum is much 
more about angles and rotations than about momentum. This discovery notwith- 
standing, most texts on quantum mechanics lead one to believe that the classical limit 
of angular momentum is attained only for very large total angular momentum num- 
bers, probably in the rangej >> 100, rather than j 2 10. 

6.4.4 Spherical Harmonics as Rotation Matrix Elements 

As a final topic in the properties of rotation matrices, we discuss the relation between 
spherical harmonics, Y,, , and rotation matrix elements ~ & ~ ( p ) .  Spherical har- 
monics are related to Legendre functions, p', through (4.18) in Section 4.1.3, 
while P y  connects to dAo by (6.14) in Section 6.2.4. The required connection is 
therefore 

(6.60) 

We summarize in Table 6.4 the relations of rotation functions to spherical har- 
monics and Legendre functions under various conditions. 
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TABLE 6.4 Rotation matrix elements for special values of their parameters. 

Under 0 L . m  ( ~ P Y )  
condition becomes 

dLh (PI 
becomes 

y =  0,  m = 0 e- ia" 'd~t , (p)  
(:. j =  t )  

m'20  

a=0,  m'=O e-j y"d& (p) 

6 . 5  RIGID-BODY ROTATIONS IN QUANTUM MECHANICS 

In this section we use our newly acquired understanding of finite rotations of angu- 
lar momentum eigenstates to investigate the rotations of rigid bodies in quantum me- 
chanics. We begin by characterizing rigid rotators, then in Section 6.5.1 discuss 
how rotation matrix elements serve as angular momentum eigenfunctions. Then we 
introduce the rotator Hamiltonian in Section 6.5.2 and show how to calculate its 
matrix elements between such eigenfunctions. Finally in this section, we discuss 
rotational states of molecules and nuclei. 

What Is a Rigid Rotator.? In classical mechanics, rigid rotators are introduced 
in the context of gyroscopes and tops. These spinning toys of delight and wonder in 
childhood become instruments of torture in advanced mechanics courses in early 
adulthood. Nevertheless, they are of such practical importance that their laborious 
study is worthwhile. 

To summarize the essential ideas for describing a rigid rotator, look at Fig- 
ure 6.12. One uses two sets of axes to describe a rigid rotator. One set, called the 
body-fixed frame, is locked into the body and completely characterizes rotations of 
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the body because of its rigidity. The second set of axes, the spaeelfixed frame, has 
an origin that coincides with the body-fixed frame, but which rotates as seen from 
this frame. The space-fixed axes are usually those in which observations are made. 

FIGURE 6.12 A rigid rotator is characterized primarily by angle p, the orientation of its z' 
(body-fixed) axis with respect to the z (space-fixed) axis. 

For both classical macroscopic rotators (such as tops, gyroscopes, and space 
platforms) and quantum microscopic rotators (such as molecules and nuclei) the Eu- 
ler angles (a, b , y ) ,  defined in Section 1.3.1 and reviewed in Section 6.1.1, are 
used to describe the orientation angles between the two frames. The y-axis rotation 
angle, p, is of major importance. Therefore, properties of the reduced rotation ma- 
trix elements derived in Sections 6.2-6.4 are often needed for rotational states. 

To choose an appropriate body-fixed frame for molecules and nuclei in order to 
give the best approximation to a rigid rotator is far from straightforward, both 
conceptually and technically. It is discussed in great detail, and with much sub- 
tlety of reasoning, in Section 7.10 of Biedenharn and Louck's compendium on 
angular momentum [Bie8 I a]. 

6 . 5 . 1  The D' as Angular Momentum Eigenfunctions 

For discussing the quantized rigid rotator we need to involve the matrix elements of 
finite rotations. Consider the scalar products that are the projection of angular 
momentum kets onto the Euler-angle space, defined by 

(6.61) 

For integer values of j  = L, say, we note that 
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Thus, from (6.44), the complex conjugates of the rotation matrix elements with 
j = L are eigenfunctions of the z components of the angular momentum operators in 
both the space-fixed and body-fixed frames, having eigenvalues M and K, respec- 
tively, as shown in Figure 6.13. 

Z 

;pace-fixed 
frame 

M 
2' 

body-fixed 
frame 

FIGURE 6.13 Rigid rotator projection numbers are M on the space-fixed axis, z ,  and K on the 
body-fixed axis, z'. 

Therefore the visualizations of the rotation matrix elements in Section 6.3.3 are 
appropriate for the eigenfunctions that we have just determined. Our next task is to 
relate these functions to the eigenfunctions of a rigid rotator. 

6 .5 .2  The Hamiltonian of a Rigid Rotator 

The preceding developments provide the angular momentum states with respect to 
which we now calculate matrix elements of the Hamiltonian of the rigid rotator. We 
introduce the latter as follows. 

The Classical Rotator. In classical mechanics one studies the rotational motions 
of rigid bodies in great detail, including the spinning of tops. It is shown in many 
mechanics texts, such as Sections 5-6 and 5-7 of Goldstein [Go180], that the kinet- 
ic energy, T, is related to components of the angular momentum L = (Lx~,Ly,,Lz~) in 
the principal-axes frame by 
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(6.63) 

The principal moments of inertia in this frame are I,, ly, Iz (primes are convention- 
ally omitted) and these are constants for each rotator. In most classical mechanics 
examples there are external torques, such as that due to gravity on a top. However, 
in the absence of such torques the Hamiltonian and the kinetic energy coincide. It is 
to the quantum mechanics version of this situation that we now turn our attention. 

The Quantum-Mechanical Rotator. Consider the Hamiltonian operator, HR, 
defined for a rigid rotator by 

(6.64) 

in which the quantum-mechanical angular momentum operator components in the 
body-fixed frame, (x‘, y‘, z’) are Jqi = h J j ,  i = x’,y’,z’. One calls H R  the rigid 
rotator Hamiltonian, for reasons that will become clear immediately. Notice that 
between the classical mechanics (6.63) and the quantum mechanics (6.64) we have 
replaced angular momentum values by angular momentum operators. 

What are the energy eigenvalues of the quantum-mechanical rigid rotator in terms 
of the principal moments of inertia and the angular momentum numbers J ,  M ,  and 
K? To answer this, consider the matrix elements of HR between the states described 
by (6.61). We then need to calculate the matrix elements of the squares of the angu- 
lar momentum operators. Section 3.4.3 provides the matrix elements of the opera- 
tors themselves, and for the squares we can use matrix multiplication rules, as Prob- 
lem 6.17 suggests that you do. We thus obtain 

(6.65) 
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The nonzero matrix elements of the rigid rotator Hamiltonian are thus the ele- 
ments that are diagonal in K,  namely 

(JMKJHRI JMK) = ”} (6.66) 
4 

and those that are two steps removed from the diagonal in K. Such elements are 
given by 

(6.67) 

xJ(J & K)(J  F K + l)(J + K - 1XJ T K +2) 

Note that the matrix elements are diagonal in the projection number M onto the 
space-fixed frame (Figure 6.13) and are independent of M (except that IMI S J as 
usual). This property demonstrates that the rotator Hamiltonian is intrinsic to the 
body-fixed frame. 

With the Hamiltonian matrix elements in hand, the energy eigenvalues are 
obtained by diagonalizing the matrix of HR, as we now discuss. 

Energy Eigenstates of the Symmetric Rigid Rotator. If the two principal mo- 
ments of inertia I ,  and I, are equal, as in Figure 6.12, then one has a symmetric ro- 
tator. The off-diagonal matrix elements given by (6.67) become zero, so the matrix 
elements in (6.66) are just the energy eigenvalues, namely 

E y )  = A2 [ r+ J ( J + 1 )  (t - -)-I 1 K 2  

Ix 2 
(6.68) 

Therefore, these energy eigenvalues, E p ) ,  increase with 1% for a fixed value of J 
if Iz < I,, This is called a prolate rotor (or rotator), since a mechanical object of 
uniform mass density would have a prolate shape, like an American football or 
British rugby ball, as shown in Figure 6.14. 

A symmetric rigid rotator for which I ,  > I ,  is called an oblate rotor (or rotator), 
as shown on the right-hand side of Figure 6.14. The energy eigenvalues, EP), 
decrease with @ for a fixed value of J .  Since K is a projection of J ,  for any rigid 
rotator one must have J 2 K and there is also an energy degeneracy between 
values, so one normally considers only the situation K 2 0. A sequence of rotational 
energy levels for which K is fixed and J is varying is called a rotational band. The 
state of lowest energy for a given value of K ,  thus J = K, is termed the bandhead. 

Asymmetric Rotators. If no two of the principal moments of inertia that appear 
in the rigid rotator Hamiltonian (6.64) are equal, then one has an asymmetric rotator, 
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FIGURE 6.14 Symmetric rigid rotators of prolate shape (left) and ohlate shape (right). The me- 
chanical angular momentum J is shown for the case K = 0, that is, for zero projection on the body- 
fixed axis, 2’. 

whose Hamiltonian matrix elements are given by (6.66). The most direct way to 
obtain the energy eigenvalues is to diagonalize the matrix numerically for a given 
choice of the three moments of inertia. The energy eigenfunctions of the asymmetric 
rotator can be expanded in terms of the basis states D,& (spy). Because these are 
the eigenfunctions of the Hermitian angular momentum operators, they form a basis, 
according to the discussion in Section 2.3.3. Such an approach may be useful if the 
deviations from symmetry are relatively small, thus making perturbation methods 
appropriate. 

6.5 .3  Rotational States of Molecules and Nuclei 

We now discuss examples of rotational bands in molecules and nuclei. These 
examples approximate those of symmetric rigid rotators. Since their bandheads are 
at J = 0, the rotational bands have K = 0, according to Figure 6.13. 

Molecular Rotational States. The example from molecular spectra is LiF, for 
which the energy spacings between the lowest-lying levels are in the electromagnetic 
microwave spectrum. In the approximation that relevant properties of the constituent 
atoms are unaffected in different rotational states, 1, the only question is the rigidity 
(constant length) of the interatomic spacing. Because the two atoms are distinct, the 
tumbling of the diatomic system about their center of mass can have both even and 
odd values of J .  Thus J = 0, I ,  2, . . . , as seen in Figure 6.15. The 6LiF molecule 
(the Li atom is the mass-6 isotope) is apparently very rigid under rotations, since its 
rotational energy levels coincide with those of the rigid rotator up to J =  6, for which 
the microwave-absorption measurements reported by Gordy and Cook [Gor70] 
were made. 
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FIGURE 6.15 Energy spectra for rotators. The left-hand panel shows the idealized spectrum for 
a rigid symmetric rotator, EJ = J ( J +  l), for J = 0, 1, 2, .. .. The center panel shows part of the 
spectrum of the LIF molecule [Gor70], and the right-hand panel is the spectrum of low-lying states 
in the reflection-symmetric nucleus 170Hf [Won90], having J =  0, 2, 4, .... The energy scales of 
the latter two spectra have been chosen to coincide with the ideal spectrum at J = 2, as shown by the 
dashed lines. 

Nuclear Rotational States. Many nuclei have energy levels that exhibit the 
characteristics of rigid rotators. For example, the nucleus of isotope l7OHf has low- 
lying energy levels as shown in Figure 6.15. The energy levels now have spacing 
corresponding to the y-ray region of the electromagnetic spectrum. 

Since the l70Hf nucleus is a many-body swarm of nucleons and the nuclear 
forces involved are parity invariant to a high degree of accuracy, the wave functions 
must have a definite parity, determined (as derived in Section 6.4.1) by (-1)’. 
Therefore, given a ground-state spin of J = 0, the rotational band can consist only of 
even J values, J = 0, 2, 4, . . . , as shown in Figure 6.15. 

The agreement for 170Hf is actually better than the energy levels given in Sec- 
tion 6.3 of Wong’s nuclear physics text [Won901 suggest, since the energy for 
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the J = 6 level reported there is misprinted. The accepted value, as given in 
"~~871,  produces the good agreement shown in Figure 6.15. To spot such a 
misprint requires belief in the simplicity of such rotational spectra, 

Notice that the nuclear energy levels observed gradually drop below those of a 
rigid rotator as J increases. One interpretation of this decrease is that the moments of 
inertia are gradually increasing as the mechanical angular momentum, J A ,  increases. 
A moment of inertia can increase if nucleons are pulled apart because of centripetal 
forces. At this level of interpretation, we are making a correspondence between ge- 
ometrical and dynamical angular momentum, in the senses discussed in Sec- 
tion 3.4.5. Such a correspondence is not unreasonable for J > 4, as justified in 
Section 6.4.3. 

The examples of rotational spectra given here are for symmetric rotators having 
the projection quantum number K in Figure 6.13 equal to zero. For K # 0,  as re- 
quired when the principal moments of inertia are all different, the calculation of en- 
ergy eigenvalues and the identification of the rotational spectra are more difficult, 
both for molecules and for nuclei. Introductory-level discussions are provided in 
[Gor7O] and in [Won90]. 

Transition Energies Between Rotational States. As a final topic in our dis- 
cussion of rigid rotators, consider the photon transition energies between rigid rota- 
tor energy eigenstates. For a given rotational band ( K  fixed), (6.68) shows that the 
photon transition energies, AEj, form a uniformly spaced sequence. Considering 
the unit-step case, as for LiF above, we have 

(6.69) 

with a similar result for J changing by steps of two, as for '70Hf nuclei. Therefore, 
in a rotational band the photon energy spectrum will exhibit constant spacing be- 
tween photon energies in emission or absorption. Transitions that break this pattern 
signal either new K bands, intruder energy levels, or artifacts of the experimental 
procedure. 

PROBLEMS ON FINITE ROTATIONS OF 
ANGULAR MOMENTUM EIGENSTATES 

6.1 Consider the matrices describing z-axis rotations in the (j, nz) representation, 
given by (6.2). 
(a) Show algebraically, by forming the product of the matrix with its Hermitian 
conjugate to produce the unit matrix of dimension (2j+ l), that this rotation matrix 
is unitary. 
(b) To prove that successive rotations about the z axis commute, write down the 
product of two such rotation matrices for angles and K. Show that the order of 
writing down these angles, and thereby the order of the matrices, is not important. 
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6 . 2  
Table 3.1. 
(a) Show that for this matrix J; = J,. 
(b) Use this result in the exponential expansion (6.1) of the unitary matrix for y-axis 
rotation through angle p, then simplify the series that occur for each of the nine ele- 
ments of the matrix in order to obtain (6.4). 
6 . 3  Verify by direct multiplication of dl with its transpose (equivalent to its 
Hermitian conjugate, since it is real) that dl is a unitary matrix. 
6.4  To derive formula (6.9) for the reduced rotation matrix elements, substitute 
(6.7) into (6.6), expand each power by using the binomial theorem, then rearrange 
terms to identify the unrotated states appearing in (6.8). The resulting coefficients of 
these terms are just the required matrix elements. 
6.5  In order to check application of the general formula (6.9) for reduced rotation 
matrix elements, consider the following examples. 
(a) Verify that for j  = 0 there is a single y-axis rotation matrix element whose value 
is unity. 
(b) Show that for j = 112 the y-axis rotation matrix agrees with (3.44). 
(c) Repeat the calculation, but with j = 1, and verify agreement with (6.4). Notice 
that these nine calculations also show the symmetry properties of reduced matrix el- 
ements, there being only four independent expressions. 
6 . 6  If a reduced rotation function d;,,,, has a projection number equal to zero 
(thus j = I ,  an integer), then we can relate it to Legendre functions, using the 
following methods of proof. 
(a) Consider the recurrence relation satisfied by the Legendre polynomials, (6.12). 
By substituting series (6.9) for the reduced rotation matrix elements when 
m' = m = 0, show that doo satisfies the same recurrence relation. Since the func- 
tions coincide for I = 0 and for I = 1, they must agree for all values of l .  
(b) Repeat this analysis (or do it first) for only m = 0, in order to derive (6.13). 
(c)  As an alternative proof of (6.13), show that dLT0(p) and P,',(cosp) satisfy the 
same second-order differential equations in p, and that within the normalization fac- 
tor and phase in (6.14), they coincide at two values of p, say at p = +n. 
6.7M Verify the formulas for the reduced rotation functions in Tables 6.1-6.3. 
This can be done longhand from (6.9) in terms of Jacobi polynomials, (6.16), or 
expeditiously by using Mathernatica notebook D j m  ' m in Appendix I. 
6 . 8  Consider rotation of a spherical harmonic with I = 1 about the y axis, as 
given by (6.23). By using the explicit expressions for Ylm(S,#) from Table 4.2 
and for dkjm (p)  from the third column of the matrix in Table 6.1, derive expres- 
sion (6.24) for the rotated function. 
6 . 9  Derive formula (6.33) for the transformation properties of magnetic substate 
amplitudes under rotations by following the steps for thej  = 1/2 case. 
6.10M Consider interpretation of the reduced rotation matrices for j  = 3. 

For y-axis rotations of j = 1 states, consider the matrix for J y  given in 

.? 
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(a) Use Mathematica notebook D j m ’ m in Appendix I, or hand calculation from 
the general expression (6.9), to verify the formulas in (6.39). 
(b) Use the polar-plot option in D j m ’ m ,  or a simple calculator program, for each of 
the four functions in (6.39) to draw their polar diagrams, as in Figure 6.8. 
(c) Check the amplitude-rotation interpretation (6.36) for each value of initial pro- 
jection, m = 0, 1, 2, 3, and the projection after rotation of the system, m’ = 2. To 
do this, discuss how the amplitude changes with p for the four choices of m. 
6.1 1 Verify the symmetry properties of the reduced rotation matrix elements 
d,$, (p)  given in (6.40)-(6.43) by expressing both sides in the expansion (6.9). 
Rearrange the summations in order to verify the phase relations given. 
6.12 Verify symmetries (6.45)-(6.48) of the full rotation matrix elements 
Di,,(apy) by using the symmetries of the d;,, (p )  given in (6.40)-(6.43) with 
the symmetries of the complex-exponential factors in (6.44). 
6.13 For the orthogonality of the rotation matrix elements, consider (6.53) for 
j ,  = 1/2, mi = m, = 1/2,  and j 2  = 0 so that mi = m2 = 0 ,  with an a-integration 
range 0 to 2nn with n an integer, a yintegration range 0 to 2r, and a p range 0 to x, 
Show that I = 64[cos(nn)-1]/3. 
6.14 The classical limits of the reduced rotation matrix elements given in (6.58) 
may be approached as follows. 
(a) Use the square of the function in (6.57) to eliminate the angular variables in 
favor of the variable rn, = j cosp by using the relations 

Thereby derive the dependence of probability on the m value: 

m-m, -1 

Next use the result that 

(6.70) 

(6.71) 

(6.72) 

when M << n’, in order to produce (6.58). 
6.1!jM Follow up the analysis in Problem 6.14 with visualization, as follows. 
(a) Use Mathematica notebook Dj j m C p r  in Appendix I to calculate and display 
the squares of the reduced rotation matrix elements (6.57) and the approximation 
P,, as shown in Figure 6.10. For computational convenience (avoidance of inde- 
terminate forms) the notebook should not be run with Im, I = j .  
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(b) Use (6.58) to explain this last remark. 

( c )  Show by running Dj jmcpr for several values o f j  that if rn, is not too close to 
j ,  then the FWHM of the probability distribution scales approximately as dj, as dis- 
cussed in the text. 
6 .16  The semiclassical limits of the reduced rotation functions for rn = 0 and 
rn’ = j ,  given by (6.59), can be used to estimate the FWHM in angle of the corre- 
sponding probability distribution 
(a) Use (6.59) to show that 

( p )  =I di0 (a) 1 2 .  

(p> = 9 (z/2)[sinp12’ (6.73) 

(b) Write down the condition on the angle by which must be displaced from 7d2 
for Pj to decrease by a factor 1/2, then use the approximation that ln(cos0) = d 2 / 2  
for 0 << 1 to show that the FWHM of the Pj distribution is approximately 

6 .17  Derive the rigid-rotator angular momentum matrix elements (6.66)-(6.67) in 
two ways: 
(a) Use (3.64)-(3.66) for the matrix elements of the Cartesian components of the 
angular momentum operators. Then use the rules of matrix (inner product) multipli- 
cation, as in Section 2.1.2, to construct the formulas for the squares of the compo- 
nents. 
(b) First show that the Cartesian operators can be expressed in terms of the ladder 
operators (3.9) by 

2 J m - j .  

(6.74) 

Use the matrix elements of J k l ,  given by (3.63), to derive the matrix elements of 
their squares, then use (6.74) for the Cartesian components. 
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Chapter 7 

COMBINJNG TWO 
ANGULAR MOMENTUM EIGENSTATES 

Suppose that we have two subsystems, each characterized by angular momentum 
eigenvalues and eigenstates. In the preceding chapters, especially Chapters 3, 4, 
and 6,  we developed the mathematics and interpretation appropriate to describing ro- 
tational properties of the subsystems. Now, however, let us look at the larger pic- 
ture and ask about rotational properties of the total system. 

In most of this chapter, we assume that the two subsystems are dynamically in- 
dependent, in the sense that rotations of subsystem 1 could be made independently 
of rotations of subsystem 2. Analytically, this means that their rotation operators 
commute-a property that simplifies the operator algebra. For example, in Sec- 
tion 3.5 we stress the distinc-tion between spin (subsystem 1) and orbital angular 
momentum (subsystem 2), so these would be appropriate to combine by using the 
algebra that follows. The idea of combining is sketched in Figure '7.1. 

FIGURE 7.1 Subsystems 1 and 2 have their rotational properties, as indicated at the left. On 
the right the rotational properties of the whole system are to be considered. 

2 5 1  
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An inappropriate application of the techniques derived here for combining two 
angular momentum eigenstates, if used directly, would be to combine the orbital an- 
gular momenta of two objects joined by a rigid rod-an idealized device constraining 
their angles of rotation to be identical. How to handle such a situation is derived in 
Section 7.5. 

In spite of this warning about operators that may be combined using the follow- 
ing scheme, it is almost universal practice to use the term couplirrg rather than 
combining, which is the term used more often in this book. The conventional 
terminology is sometimes confusing in contexts such as spin-orbit c o u p h g ,  as 
discussed in Section 7.1.3 and Chapter 9. 

The outline of this chapter is as follows. In Section 7.1 we introduce the vector 
model for addition, we consider spin-orbit coupling as an example of coupling, and 
we use the operator algebra to investigate the degeneracy of energy states in the 
Coulomb potential. The angular momentum coupling of states is derived in Sec- 
tion 7.2, which introduces Clebsch-Gordan and 3-j coefficients. Formulas for the 
latter are derived in Section 7.3 and their properties are discussed. In Section 7.4 
efficient methods for computing 3- j  coefficients are presented. In Section 7.5 we 
bring together our expertise on rotation matrices from Chapter 6 with our newly ac- 
quired understanding of coupling. For example, we show how to evaluate readily 
complicated integrals involving spherical harmonics, whether they describe heavenly 
bodies or molecules. Problems to test your comprehension of combining angular 
momentum states round out the chapter. 

7 . 1  THE SEMICLASSICAL VECTOR MODEL FOR ADDITION 

The semiclassical vector model introduced in Section 5.3 helps one visualize the an- 
gular momentum operators J, Jz and their eigenvalues, and it is of some help for cal- 
culations, especially as j becomes large. For combining two angular momenta, the 
so-called “vector addition” summarized in Section 7.1.1, the semiclassical model is 
of similar usefulness and limitation, being particularly useful as a mnemonic for the 
triangle and projection selection rules that we derive in Section 7.1.2. How to in- 
terpret angular momentum coupling, as introduced at the beginning of this chapter, 
is the topic in Section 7.1.3. In the final subsection we use our experience with 
combining angular momenta to derive in Section 7.1.4 the degeneracy of energy 
states in the Coulomb potential. 

7 .1 .1  Vector-Addition Construction 

The vector-addition construction for combining two angular momenta follows the 
vector model for a single angular momentum, as introduced in Section 5.3. Sup- 
pose that for system 1 the angular momentum “vector” (strictly speaking, a vector 
operator) is j~ and that the projection on the z axis (an eigenvalue of J,) is ml, and 
similarly for system 2 the vector is j 2  and its projection is m2. Figure 7.2 shows 
the vector-addition diagram for the vectors j l  andj2 combined to a resultant J, with 
projection M .  We are assuming that the vectors combine as in classical mechanics. 
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FIGURE 7.2 In classical mechanics two angular momenta j, and j z  are combined to a resultant 
J. Their projections on the axis z are m,, m2, and M ,  respectively. In the semiclassical model each 
vector precesses around the z axis. 

Suppose, as in Figure 7.2, that the vector J, its magnitude J ,  and its projection 
M ,  are given, and that the magnitudesj, and j 2  are also fixed. We write such a state 
as Ij, j 2 J M ) .  Even with these restrictions, the subsystem vectors (which both pre- 
cess around the z axis) can have a range of projections consistent with conservation 
of the total projection, M = ml + m2. There is therefore a range of subsystem kets 
Ijlml) and ( j ,m2)  that can be combined to give the ket l j l j 2 J M ) .  Classically, the 
range of projections may be interpreted as the two component vectors being in dif- 
ferent phases of their precession cycles, but chosen in such a way that the projec- 
tion, M ,  of their resultant, J, is constant. 

This vector-model description will also immediately suggest to you selection 
rules for the range of J ,  as we now derive in the full algebraic treatment of combin- 
ing the two angular momenta. 

7.1 .2  Triangle and Projection Selection Rules 

We now formalize the treatment of combining angular momenta introduced above in 
the vector model. First, we remark that subsystems 1 and 2 must describe sepurute 
systems. That is, 

in which a and p are labels distinguishing the vector spaces to which the kets be- 
long. Provided that this separateness is clear, we will usually drop the a and p la- 
bels. For example, for a single object a might label the spin space (internal degrees 
of freedom, according to Sections 3.5 and 4.3.1) and f l  might label the orbital angu- 
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lar momentum space, thus p = (0, @). As another example, a and p might refer to 
different objects-such as two electrons-r a nucleus and an electron orbiting it. 

At the macroscopic level, the first angular momentum may describe the shape of 
Earth’s orbit around the sun (mostly PI = 0 because of the nearly circular orbit), 
while the second angular momentum may be the shape of the Moon’s orbit around 
Earth (also mostly P 2  = 0). In this example, the coupled angular momentum would 
describe the shape of the Moon’s orbit as viewed from the sun, which will be slight- 
ly less symmetric (larger maximum angular momentum from combining el and 1,) 
than either orbit separately. If this example bothers you, because of the obviously 
huge dynamical angular momenta of the Earth and Moon in their orbits, review the 
discussion in Section 3.4.5, where we distinguish definitively between geometrical 
and dynamical angular momentum. Here we are discussing the geometry of orbits, 
so using small angular momentum numbers is appropriate. 

Combining the Angular Momentum Operators. We now introduce the formal- 
ism for the addition of angular momenta. Consider the operator 

J = J l + J 2  (7.2) 

If subsystems 1 and 2 are independent, then operators J1 and J2 commute. It is thus 
easy to see that if the basic commutation rule of angular momentum, (3.8), is sat- 
isfied by each operator separately, then it is satisfied by their sum: 

J1 x J 1  =iJl  J2 xJ2 =iJ2 * J x J = i J  (7.3) 

Conceptually, infinitesimal rotations of the whoie system (J) are compounded of in- 
finitesimal rotations of the independent subsystems (J1 and J2), as sketched in Fig- 
ure 7.1. 

The space in which J acts is a direct-product Hilbert space. Such direct products 
are introduced in the context of direct-product matrices in Section 2.1.2. 
Appropriate kets for components of J, Ji, are therefore to be formed from products 
of the subsystem kets, as follows: 

(7.4) 

where i denotes a component of an operator, such as i = x ,  y,  z (Cartesian basis) or 
i = +1, 0, -1 (spherical basis). The ket from the subsystem to which the operator 
does not belong therefore acts like a multiplicative factor in the product space. 

We determine the allowed range of eigenvalues of J2 by counting the range of 
independent combinations of rnl and m2 that give rise to each such eigenvalue. The 
upper limit to J ,  call it J>, is readily obtained by noting that the biggest value of 
M = ml + m2 i s j l  t j 2 ,  so that J> = j ,  + j z .  This so-called stretched state is very 
interesting in studying angular momenta of systems because it has a unique product- 
space representation, namely ~j,jl)~j2j2). 

The next smaller value of M is j l  + j 2  - I ,  with one direct product state being 
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I j ,  + j,, j ,  + j ,  - 1) and the other 1 j ,  + j ,  - 1, j ,  + j ,  - 1). The pattern is now clear: 
Each time M is reduced by unity, one of the coupled states belongs to a J value re- 
duced by unity in which M = J ,  while one more product state is added to the grow- 
ing list of product states associated with higher J values. The lower limit to this 
counting procedure is reached at J< when the number of product states is matched 
against the totality of uncombined states. Then we have 

J ,  c (2J + 1) = (2j ,  + 1)(2j2 + 1 )  (7.5) 
J =  J ,  

By following the steps suggested in Problem 7.1, it is straightforward to show that 
the lower limit J< = Ij, - j21. This is called the jackknife state. It does not have 
the simplicity inherent in the stretched state. 

In summary, the eigenvalues of the combined angular momenta are a total angu- 
lar momentum J ,  given by the so-called triangle condition 

together with the M-conservation condition m M=m,+m2 (7.7) 

These results, obtained after several detailed arguments, would seem obvious 
from the semiclassical vector model. Recall, however, that the model sketched in 
Figure 7.2 is of limited applicability overall, as stressed in Section 5.3. Although 
the model may suggest results such as the triangle condition (7.6), it cannot prove 
their correctness. 

7.1.3 Interpreting Coupling: Spin-Orbit Interaction 

We discussed in the introduction to this chapter the confusing use of the term 
“coupling” for combining of angular momentum as just described. Now we try to 
understand the reason for this term, we discuss spin-orbit interactions, and we sum- 
marize spectroscopic notation for coupled states. 

Hamiltonians with Coupling. Angular momentum coupling is often used when 
calculating with Hamiltonians constructed from subsystem angular momentum oper- 
ators. Suppose that the Hamiltonian is given-as discussed at the end of Sec- 
tion 4.3.1-by 
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in which the spin-independent term is Ho and the term with the factor H,, is called 
the spin-orbit part of the Hamiltonian. Both terms may be functions of position or 
momentum. For electrons, such a term was suggested as early as 1927 [Cou27]. 
The independent spaces are orbital angular momentum for operator L and intrinsic 
spin for S. Since the two operators commute, we may write either L-S or S-L.  
Notice that-at least classically-if the projection of spin onto the “direction” of the 
orbital angular momentum is reversed, then the spin-orbit interaction effect changes 
sign. 

Suppose that we combine the angular momentum operators by writing 

J = L + S  (7.9) 

Note that according to the discussion in Section 4.3.1 about the nature of spin, this 
is an implicit definition of the spin operator. This “total” angular momentum opera- 
tor is very useful for finding energy eigenvalues of H in (7.8), for the following rea- 
son. Form the operator combinations 

J2 = (L +S)2 = L2 + S2 + 2L-S (7.10) 

By solving for the scalar product and inserting the result in (7.8), we obtain 

H=Ho+H,,(J2-L2-S2)/2 (7.11) 

We see that by forming combined angular momentum states-eigenfunctions of 52 
and J, as well as of L2 and S2-H has become diagonal in these angular momenta, 
so we can read off the energies directly: 

E J ,  =(IsJIHIIsJ) 
(7.12) 

= (H,)  +(H,)[J(J + 1)- e(e + 1) - s(3 + 1)]/2 

Here we assume that s and P are fixed and that J is variable. The expectation values 
of HO and Hso are taken with respect to the other degrees of freedom in the problem, 
such as radial coordinates. Note that (7.12) holds only for J in the range satisfying 
the triangle condition (7.6), namely I! - sI I J I I + s. In (7.12) there is no depen- 
dence of the energy on the projection quantum numbers, just as we expect, since the 
energy is a scalar quantity-independent of the orientation of axes. 

Does the semiclassical prediction-that the effect of the spin-orbit interaction 
changes sign with reversal of spin projection-hold up? Consider the energy 
difference between the stretched case, J = l + s, and the jackknife case J = lI - sI. 
Directly from (7.12) we obtain (as Problem 7.2 suggests you verify) the ratio of the 
spin-orbit contributions to the energy: 

(7.13) 
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me, E Ee+,,e - Ele-si ,e = 

where max ( I ,  s) means “the larger of P and s.” Therefore, except in the uninterest- 
ing case that one of I or s is zero, there is indeed a sign reversal, but there is a 
complete reversal only in the limit that the larger of the two values (usually I )  
greatly exceeds unity. We can also calculate the spin-orbit splitting, given by 

(H,,)(28+I)s 42s 

(GfO )(2s +l)t 
(7.14) 

P I s 

Spin-Orbit Energy Splitting in Atoms and Nuclei. The spin-orbit interaction in 
the Hamiltonian (7.8) is of major importance in the spectroscopy of atoms and 
nuclei. For a system with an odd number of electrons or of nucleons, a good 
approximation (called the shell model) is to assume that the angular momentum of 
the system, J ,  is that of the odd particle, and that the major spin-dependent term is of 
the form (7.8). Consider, for example, an electron or nucleon with orbital angular 
momentum number I = 2, a so-called D state. Since s = 1/2, the triangle condition 
(7.6) allows J = 3/2 or 5/2, Figure 7.3 shows schematically the spin-orbit splitting 
of the energy spectrum of an atom or nucleus with such quantum numbers. 

J = 312 -- 1 
J = 512 

J =  312 
<H0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

sodium 
atom 

I 
Energy 

J =  512 
sodium 
nucleus 

FIGURE 7.3 Schematic of spin-orbit splitting in atoms and nuclei. The D-line doublet in the 
visible spectrum of sodium (Na) arises from spin-orbit splitting of an P = 2 state into J = 312 and 
512 states, ordered as shown. In nuclei, the splitting is much larger in magnitude and of opposite 
sign, as indicated. 

Notice in Figure 7.3 that the spin-orbit splitting relative to the unperturbed en- 
ergy &@ is asymmetric about this energy. For I = 2, s = 1/2 the splitting is in the 
ratio 2:3, according to (7.13). The energy scales are quite different for the two sys- 
tems, with the splitting being of order meV in sodium atoms and 01‘ order MeV ( lo9 
times larger) in nuclei. Since typical energies of valence electrons in atoms are in the 
10-eV range, while typical valence nucleon energies in nuclei are about 10 MeV, the 
fractional effect of the nuclear spin-orbit splitting is about an order of magnitude 
larger than in atoms. Note, however, that a,,> in Figure 7.3 is indicated as being 
positive in the Na atom, whereas it is shown as negative for the Na nucleus. 
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The explanation of the dominant features of the energy spectra of many nuclei in 
terms of a shell model with a large spin-orbit coupling that is reversed in sign 
from that in atoms was realized by Maria Goeppert-Mayer (1906-1972), a nuclear 
scientist with extensive training in atomic spectroscopy. She was awarded a 
Nobel Prize in physics in 1963 for this discovery, and an award for outstanding 
young women in physics is named in  her honor. For readable biographies, see 
the two books by Joan Dash [Das73, Das911. 

A discussion of spectra in alkali atoms, including the sodium D lines and spin- 
orbit coupling, is given in Section 10-2 of Eisberg and Resnick’s text on quantum 
physics [Eis85]. The origins of electron spin-orbit coupling in terms of the Dirac 
equation are derived in Section 15.E of Landau’s text [Lan90]. At the end of Sec- 
tion 7.3.1 we show how to construct appropriate wave functions for Hamiltonians 
with spin-orbit coupling. 

Spectroscopic Notation. We can extend the nomenclature for values of I as s, 
p ,  d,f, etc. for C = 0, 1, 2, 3, etc. to include the total angular momentum number J 
of an electron or nucleon (s = 1/2) as a subscript on the orbital letter, thus [I],. For 
example, d312 and d5/2 are spectroscopic notation for the two angular momentum 
states that can be formed when combining C = 2 with s = 1/2. When we equate the 
total angular momentum number J of a system with the angular momentum of the 
odd particle, a model is assumed, since we are assuming-often with empirical 
evidence that is convincing enough for a Nobel Prize committee-that the remaining 
particles interact to produce complete rotational invariance, that is, zero angular 
momentum. 

Elaborations of this spectroscopic notation abound in the various spectroscopies 
of molecules, atoms, nuclei, and fundamental particles. Indeed, it is one of the trials 
of initiation into these scientific subfields to be able to recite the appropriate spectro- 
scopic notation rapidly and without error. 

7 .1 .4  

Now that we have experience with combining angular momentum operators, our aim 
is to show how combining two angular momenta can be used to prove the degener- 
acy of energy states in a Coulomb potential. We carry the development far enough 
to show that the energy is degenerate, but we do not investigate the nature of the de- 
generacy or properties of the energy eigenstates, which are much more complicated 
but fascinating in their own ways. Rather, we direct you to the extensive literature. 

The main technical interest here is to show the correspondence between a classi- 
cal mechanics problem and its quantum analog. Since our insight into classical me- 
chanics is often well developed through everyday experience, it is helpful to set up 
quantum mechanics problems as analogues or extensions of classical problems. We 
have seen for angular momentum how fruitful this can be for the semiclassical vector 
model. Now we adapt this to Coulomb potentials. Many examples of classical- 
quanta1 analogues are given in the book by Park [Par90]. 

To develop the problem and its solution, we show that for inverse-square forces 
(as in Kepler’s gravitational problem or Coulomb’s electrical problem) there is an 

Degeneracy of Energy States in the Coulomb Potential 
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additional conserved quantity, the Runge-Lenz (or eccentricity) vector. The exis- 
tence of such a constant of the motion, in addition to the constancy of orbital angular 
momentum for any central force, suggests that there should be additional symmetry 
in the inverse-square problem, therefore additional degeneracies of quantities such as 
energy. We know from our discussion of Noether’s theorem (Section 1.1.2) that a 
continuous symmetry implies a conservation law. The converse demonstrated 
here-conserved quantities in dynamical systems often imply symrnetry relations- 
is a trustworthy guide to discovering new symmetry properties. 

Classical Eccentricity Vector. We begin by using considerations from classical 
mechanics [Go1801 to establish the constancy of the eccentricity vector. Then we 
convert classical vectors into quantum operators to formulate the problem for one- 
electron, hydrogen-like atoms. For a central force between two particles with 
relative displacement r, Newton’s law for the time rate of change of their relative 
momentum p may be written as 

p =  f ( r ) ?  (7.15) 

wheref(r) gives the dependence of the force on separation r. For any central force 
the time rate of change of the angular momentum L = r x p  is zero, that is, L = 0 .  
Consider now the vector L x p  and its time rate of change: 

2 d? -- - L x p = m f ( r ) r  - d L  x p  
dt dt 

(7.16) 

To obtain the second equality we use (as Problem 7.3 suggests you try) simple 
manipulation of vector cross products and express the result in terms of the unit 
vector ? describing the angle between them with respect to a reference frame and 
their reduced mass m. Equation (7.16) is true, but usually uninteresting. In the 
special case that the force law is inverse-square, namely 

k 
r2 

f ( r )  = -- (7.17) 

where k = GMm for gravity and k = Ze2 for a one-electron atom with nuclear charge 
Ze, the factor in (7.16) preceding the time derivative is a constant. The vector 
defined by 

A, r L x p + m k ?  (7.18) 

is then a constant of the motion. We refer to A, as the eccentricity vector, for rea- 
sons that will become clear immediately. 

To understand the properties of Ac, apart from its constancy with time, we first 
find its orientation by noting that 

A,.L=O (7.19) 
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Since L is perpendicular to the plane of the orbit, the eccentricity vector must lie in 
the plane of the orbit, but just where does it point in this plane? Consider the pro- 
jection of r onto 4: 

A,.r = A,rcos8 = L x p.r + rnkr = -L2 -+ rnkr (7 .20)  

This is of maximum magnitude when r is smallest, that is, at perihelion for a plane- 
tary system. Therefore, the eccentricity vector lies along the line joining aphelion to 
perihelion. Equation (7.20) can be written as 

(7.21) 

By comparing this with the standard orbit equation-for example, equation (3-5 1) in 
[Gol80]-we see that the magnitude of the eccentricity vector is 

A, = mke (7 .22)  

where E is the eccentricity of the orbit. For a bound orbit, the eccentricity is the frac- 
tional difference between major and minor axes of the orbit ellipse. Because A, is 
proportional to e for a given pair of particles and force relation (choice of k) ,  it is 
appropriate to call it the eccentricity vector. Note that if the elliptical orbit degener- 
ates into a circle (equal major and minor axes), then A, collapses to a null vector. 

The properties of the eccentricity vector are summarized in Figure 7 . 4 .  

FIGURE 7.4 The eccentricity vector, A,, which is a constant of the motion for an inverse- 
square law of force. Examples of bound orbits of large eccentricity (left view) and of small eccen- 
tricity (right view) are shown in the center-of-mass frame. 

To relate the eccentricity vector to the energy, E, from (7.20), one derives, as in 
[Go180], the relation 

A,' = ( m k ) 2 e 2  = (mk)2  + 2mL2E ( 7 . 2 3 )  

which was published by Laplace in 1799 [Lap99]. By using this result we may take 
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a quantum leap into the twentieth century and write down the classical formula for 
the energy of a one-electron (hydrogenic) atom, namely 

rnz2e4 mE2 

2L2 2L2 
E = - - + -  (7.24) 

This shows that for a fixed angular momentum, L, the energy decreases as the mag- 
nitude of the orbital eccentricity, &, increases. Therefore, if the energy is the same 
for different values of L (as we are about to prove) the corresponding classical orbits 
must have different eccentricities. 

The eccentricity vector, A,, has a long history in  classical mechanics that has 
been traced back [Go1761 to J. Hermann in 1710. Laplace described it in his 1799 
treatise on celestial mechanics [Lap99], and it became widely known through a 
19 19 text on vector analysis by Runge. It was used in the “old” (semiclassical) 
quantum theory by Lenz (1924) and in the ‘hew” Heisenberg formulation of quan- 
tum mechanics by Pauli [Pau26] to prove the degeneracy of the energy states of 
the hydrogen spectrum. Although A, (or its negative) is often referred to as the 
“Runge-Lenz” vector, such attribution is not justified by its history, many details 
of which are provided in two articles by Goldstein [Go175, Go1761. 

Now that we understand the classical eccentricity vector, consider the situation 
for quantum mechanics. 

Quanta1 Eccentricity Operator. The classical vectors in the preceding analysis 
are directly measurable quantities. In quantum mechanics one constructs corre- 
sponding Hermitean operators whose expectation values are measurable. Following 
the original treatment by Pauli [Pau26], we make the following correspondence: 

A, = L x p + m k i  + A, =-(L4 1 x p ,  -p, xL,)+inki (7.25) 
2 

in which L, and p, are the quantum orbital angular momentum and linear momen- 
tum operators, respectively, and both contain factors of A in their definitions. The 
more complicated form in the second line of (7.25) is necessary if the quantal ec- 
centricity operator, A,, is to be Hermitean, and is thereby (Section 2.3) suitable to 
represent an observable. 

Our goal is to relate properties of the operator A, to those of the Hamiltonian H. 
We will find representations in which combinations of A,,,L,, and Hare all diago- 
nal. Thereby we relate energy (the expectation value of H in a diagonal representa- 
tion) to angular momentum observables. To simplify the operator algebra, it is prac- 
tical to introduce the dimensionless variables given in Table 7.1 which are com- 
monly used in the quantum mechanics of one-electron atoms. 

By using the system of units in Table 7.1, we can readily show (as Problem 7.3 
suggests you try) that 

A: =A,.A, = H(L: +i)+i (7.26) 
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TABLE 7.1 Dimensionless variables for the quantum one-electron atom. The 
quantity a. is the Bohr radius for hydrogen (Z = I ) .  

Quantity Unit 

Length adz 
Dynamical angular momentum A 

Momentum A uao  

Energy z2e2 /2ao 

It is straightforward to show by analogy with the classical result that the eccentricity 
operator A, commutes with L,. Therefore, by diagonalizing At and simulta- 
neously we will have diagonalized H ,  that is, we will have the energy eigenvalues 
E. We consider only bound states, analogous to the closed classical orbits depicted 
in Figure 7.4. The more general case including scattering states is analyzed similarly 
but with some sign changes, as discussed on page 338 of [Bie8la]. 

To expedite the diagonalization, consider the operator A defined so that 
A2 H = -A:, which allows (7.26) to be written simply as 

(e9 +A2 + l)H = -1 (7.27) 

To express this in terms of quantities that are more familiar, consider the operators 

J, = $ ( L 9 + A )  J2 -$(L9 -A)  (7.28) 

Problem 7.3 (b) suggests that you show that these quantities behave just like two 
independent angular momentum operators, namely 

[Jl, J2]= O (7.29) Jk XJk =iJk k=1,2 

Further, it is interesting and relevant to show that 

J: = Jf =(C9+A2) /4  (7.30) 

We therefore know from Section 3.4.1 that diagonal representations of J: and J; 
have expectation values given by 

( J ; ) = ( J $ = ~ ( ~ + I )  j=0,1/2,1, ... (7.31) 

By using this first in (7.27), then in the expectation values calculated using (7.3 l),  
we can write immediately (recalling that we are in a diagonal representation) 
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[4 j (  j + I) + I](H) = -1 

Therefore, the energies in dimensionless units are given by 

j=0,1/2,1, ... 1 ( H )  = -~ 
(2j+1)' 

(7.32) 

(7.33) 

Finally, replacing 2j+ 1 by positive integers IE and reverting to actual energy units 
by using the conversion from Table 7.1, we have the eigenenergies of the hydro- 
genlike, one-electron, atom 

n = 1,2, ... z2e4rn 
282n 

E,, = ( H ) = - -  (7.34) 

which is the standard quantum-mechanical formula. We have obtained this result 
using only the conservation properties of the operators A, and L,, without requiring 
wave functions. Notice that eigenvalues of the orbital angular momentum operator 
L, do not appear in this formula, so we can say that the energy has degeneracy with 
respect to orbital angular momentum. From our discussion of ('7.22), we would 
suspect that in the quantum-mechanical analysis for given En the most probable 
orbits become more eccentric as the total angular momentum number e increases. 

The quantum eccentricity operator, A,, can be used to develop hydrogenic-atom 
wave functions, as discussed in Section 7.4 of [Bie8 la]. Englefield's monograph 
[Eng72]--especially Chapters 3 and 4-emphasizes group theoretical analysis. 
Both references describe how the wave functions in three-dimensional momentum 
space and the energy degeneracy can be viewed as arising from a symmetry in a 
four-dimensional space involving the group O(4) introduced in Table 2.12. 

In this section we have shown how to combine operators for angular momenta to 
obtain selection rules on eigenvalues, how to interpret such coupling, and how to 
apply operator properties to calculate spin-orbit and Coulomb energies. In the next 
two sections we emphasize properties of combined angular momentum eigenstates. 

7 . 2  COUPLING COEFFICIENTS: 
DEFINITIONS AND GENERAL PROPERTIES 

Our goal for this section is to construct eigenstates of J2 and Jz  in terms of the direct- 
product states introduced at the beginning of Section 7.1.2. There we argue that if 
the angular momentum kets come from different Hilbert spaces, then we can com- 
bine their products to make coupled eigenstates. Clebsch-Gordan coefficients are 
introduced in Section 7.2.1, and in Section 7.2.2 their unitarity properties are de- 
termined. An explicit formula for the coefficients is derived in Section 7.2.3 by 
using the spinor representations developed in Section 4.3.3. 
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7 . 2 . 1  Combining Two Angular Momenta: 
Clebsch-Gordan Coefficients 

To introduce the coupling coefficients, we begin at a formal level in terms of the kets 
(Sections 2.1, 2.3) that are eigenstates of the angular momentum operators. We 
write the unitary transformation connecting coupled and direct-product representa- 
tions as 

in which, technically, all we have done is to use the unit-operator expansion (2.14) 
in Section 2.1.2. The ket states are given in direct-product form as 

in which the middle form reminds us that the states forming the direct product must 
be from different Hilbert spaces, as discussed in Section 7.1.2, while the last form 
is used whenever there is no ambiguity. Note that, at least for this reason, there is a 
difference between state I jlml)lj2m2) and state ljpz2)(jlq). 

The coefficients (jlj2mlm2 [ j 1 j 2 J M )  in (7.35) that give the amplitude for each 
product state in the combined state are called Clebsch-Gordan or vector-coupling 
coefficients. The first name is from use of similar coefficients in h e a r  algebra in the 
nineteenth century by Clebsch [Cle72] and by Gordan [Gor75]. The second name is 
from association with the vector model (Section 7. I), 

Direct-Product Expansions. In working with angular momentum, you will en- 
counter the expansion (7.35) in various forms, in terms of the summation ranges 
and the notation for the coefficients. The range of summation over ml and m2 
depends somewhat on the properties one decides the coefficients must have. 
Especially in formal work, one sometimes wants the greatest possible freedom in the 
summations; then (7.35) can be written explicitly as 

Sometimes the delta function is explicit, or it may be incorporated into the coupling 
coefficient. Note that M is fixed, as is explicit on the left-hand side. 

7 .2 .2  Unitarity of Clebsch-Gordan Coefficients 

We now derive from formal considerations, similar to those discussed for linear 
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vector spaces in Section 2.1, the unitarity of the Clebsch-Gordan coefficients for 
angular momentum coupling. 

Unitarity J Sum. We know from the Hermitian property of angular momentum 
operators that the eigenfunctions are orthogonal, and may therefore be chosen to be 
orthonormal. Since this is true for both subsystem 1 and subsystem 2, it is true for 
their direct product. Therefore, 

Most of the time this is applied, you just get the true but interesting result 0 = 0. 
However, by matching the j components and then inserting a unit operator ex- 
pressed in terms of the ( J , M )  states, we obtain the J-sum unitarity relation for 
Clebsch-Gordan coeflcients, 

In this there should be a sum over M ,  but such a sum contributes only 
namely the term for which 

(7.39) 

one term, 

(7.40) 

As shown in Section 7.2.3, the coupling coefficients can be (and are) chosen to be 
real, so the second bra-ket in (7.39) can be flipped; then it becomes just a coupling 
coefficient. This relation therefore also expresses the orthonormality of Clebsch- 
Gordan coefficients. 

Unitarity m-Component Sum. Another unitarity property of Clebsch-Gordan 
coefficients can be derived by considering the orthogonality of the coupled states 
I J M )  . By expanding these in bra and ket states and computing their scalar products 
in terms of the direct-product states, we obtain similarly to the preceding derivation 
(as Problem 7.4 suggests you verify) the m-sum unitarity relation for Clebsch- 
Gordan coefficients 

Again, this is a relation that is not of the uninteresting form 0 = 0. With the use of 
real coupling coefficients, the first coefficient can be flipped, so we get an orthonor- 
mality m sum. 
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The results in this subsection are about as far as one can get from general con- 
siderations. We now derive explicit formulas for the coupling coefficients that en- 
able us to put them to practical use and to find more of their properties. 

7 . 2 . 3  Determining Coefficients from Spinor Representations 

In order to derive formulas for the Clebsch-Gordan coefficients, we use the spinor- 
space representations of angular momentum states introduced in Section 4.3.3 and 
used in Section 6.2.3 to construct reduced rotation matrix elements. Our derivation 
therefore has a conceptual unity between the elementary spin-half states, x+, in Sec- 
tions 2.4 and 3.3, the finite rotations of a single substate (Chapter 6), and the in- 
finitesimal rotations of coupled states in this chapter. Our final triumph of reason 
over ignorance (at least for rotational symmetry) will be finite rotations and coupled 
states (Section 7.5). 

Deriving the Coefficients by Using Spinors. We use a method based on that of 
Sharp [Sha60]. Recall from Section 4.3.3 that a spinor-space representation of an- 
gular momentum u, m) is given by uu m), where 

(7.42) 

This can be visualized (Figure 6.4) as j + m spin-up states of a spin- 1/2 system 
combined with j -  m spin-down states. Since in the present application angular de- 
pendence is not of immediate interest, we omit the label pin the spinors. 

Our goal is to find the Clebsch-Gordan coefficients ( j l j2m,m2 I j l j 2 J M )  such that 

in which each u is of the form (7.42). We first find the stretched44 eigenfunction 
u(JJ)  and its corresponding coefficient directly; then we make repeated applications 
of the lowering operator J-1 to get successively smaller M values. This is the same 
method as that used for spherical harmonics in Section 4.1.3. Spinor representa- 
tions of angular momentum operators are discussed in Section 3.3.4. We extend 
the notation slightly to include the two subsystem spinors, which we denote by X I +  

and x2+.  Thereby the ladder operators for the combined system are 

Jkl = (XI*& + x 2 + J 2 7 )  (7.44) 

If we apply the raising operator to the stretched state we must get zero, so that 

(x1,4, + xz+dzr)u(JJ)  = 0 (7.45) 
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The solution of this equation is 

4JJ) = Cp(x1-x2+ - xz-x1+~x1+~Xz+)  (7.46) 

where Cp is any function of the indicated variables. However, u(JJ)  is homogeneous 
and of degree 2jl in xI+xI- and of degree 2j2 in x2+x2- ,  so it must be expressible 
in the form 

u ( J J )  = C ( X I - X 2 +  - X 2 - X I + )  k x1+ 2J, -k x2+2i ,  -k ck (7.47) 
k 

in which the Ck are coefficients. By applying J,, J l , ,  J2z, in each space, and noting 
that J ,  commutes with the quantity in parentheses in (7.47), we see that Ck = 0 
unless k = j ,  + j 2  - J .  Thus, there is only one term in the sum in (7.47), which is 
therefore given by 

u ( J J )  = (X I -X2+ - x2-xl+)il+j+l+ J+il-i, xz:-;l+i2 c (7.48) 

in terms a single coefficient, C, determined as follows. Expand the right-hand side 
of (7.47) and collect together terms corresponding to the subsystem eigenfunctions, 
of the form (7.42). You will then find (especially if you work Problem 7.5) the 
following expansion: 

(7.49) 

By staring at this, we recognize that the coefficients of the subsystem states are just 
the required Clebsch-Gordan coefficients, according to (7.43). They are orthonor- 
mal, which enables C and the stretched44 coupling coefficient to be determined. 

At this point we introduce the Condon and Shortley phase convention, namely 
that C in (7.49) is chosen to be real and positive. Thereby, all angular momentum 
coupling coefficients will be real and unitarity relations will become orthonormality 
relations. With this convention, whose use is worldwide (and probably universal), 
we find-working out the details in Problem 7.5-that C is given by 

By factoring this into (7.49) we can identify the Clebsch-Gordan coefficients appro- 
priate for J = M. But, let's dash on and derive the general coefficient. 
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The General Clebsch-Gordan Coefficient. Now that we essentially have the 
J = M coefficients, we can produce the others by examining the effect of the lower- 
ing operator J-1 from (7.44) on u(JJ). Applying the operator J -  M times produces 
the state u(JM) ,  whose expression in terms of the desired coupling coefficients is 
(7.43). After some algebraic sleight of hand that we suggest in Problem 7.5, one 
obtains the standard Clebsch-Gordan coeficient given by 

(7.51) 

The summation over k is over all integers for which the factorials are non-negative. 
We need immediately two special values for this coupling coefficient. 

Clehsch-Gordan CoefJicient for j ,  = 0. As one would hope, when the second 
angular momentum is zero, the triangle rule (7.6) and the vector-addition model 
(Section 7.1.1) both require that J = j l  only, thence M = ml. On substituting these 
values in the general formula (7.5 I), we obtain 

(jlOmlO]jlOJml) = 1 (7.52) 

a result consistent with the orthonormality condition (7.41), since there is only one 
term in the sum. 

Clebsch-Gordan Coefficient for J = 0. Suppose that J = 0, which is possible, 
according to both the triangle rule (7.6) and the vector-addition model Figure 7.2, 
only if j ,  = j l  and mz = -ml. By substitution in the general formula (7.51), we find 
that only the k = 0 term survives in the sum, and we have 

(7.53) 

This gives a probability for this “antiparallel” coupling arrangement as just the recip- 
rocal of the number of magnetic substates, 2 j l +  1, in the state with total angular 
momentum numberjl. 

Although use of the Clebsch-Gordan coefficients is quite common, a much more 
symmetrical form of the coupling coefficient is the 3-j coefficient, to which we now 
turn our attention. 
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7 . 3  THE 3-j COEFFICIENTS AND THEIR PROPERTIES 

In our considerations of combining two angular momentum eigenstates, we have so 
far treated in a special way the third angular momentum, ( J , M ) .  A more symmetric 
treatment in terms of 3-j coefficients considers the three angular momenta on equal 
terms. In Section 7.3.1 we derive the origin of the 3-j coefficients, we express 
them in terms of Clebsch-Gordan coefficients, and we write out analogous proper- 
ties. Various ways of visualizing symmetry properties are presented in Sec- 
tion 7.3.2. As a diversion from heavy algebra and to help with interpretation, we 
discuss in Section 7.3.3 the classical limits of the coefficients. When one of the an- 
gular momenta in a coefficient is small, there are convenient algebraic expressions, a 
sampling of which is given in Section 7.3.4. 

A Note on Symbols. So far, we have used the label j with various subscripts to 
refer to total angular momentum numbers and m with subscripts to indicate projec- 
tion numbers. We continue this practice whenever angular momentum and rotational 
properties are being emphasized. On the other hand, for algebraic properties of co- 
efficients, it is easier (for typesetters as well as readers) to use unsubscripted vari- 
ables, such as a, b, c. Their projection quantum numbers are the corresponding 
Greek letters, such as a, f l , 7 

7 . 3 . 1  Three Angular Momenta Coupled to Zero; 3-j Coefficients 

Suppose that we combine two angular momentum states, j ,  and jz ,  to form a third, 
G 3 ,  -m3), then we combine this state with one of the same j 3  but opposite z projec- 
tion, mg, so that now the total projection is zero. Let us also couple to the jack-knife 
state with total j = 0. We now have an isotropic quantity-a scalar-formed by 
coupling three angular momenta to zero. The corresponding coupling coefficient 
was invented by Wigner and is called a 3-j coefficient. Its symmetries under permu- 
tation of arguments are simpler than those of the Clebsch-Gordan coefficient. 

Deriving the 3-j Coefficient. To derive the 3-j coefficient, let us perform the 
algebra of the angular momentum coupling described in the preceding paragraph. 
The first combination is 

The second combination, which produces state (0, 0), is 
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The needed coefficient is obtained from (7.53) as ( - l ) j3-m3 /dm. If we now 
use this in (7.55) and combine with (7.54), we obtain the expression for three 
angular momenta coupled to zero, namely 

in which the proportionality constant is just a phase. We have introduced the coef- 
ficient describing the combining of three angular momenta to zero, called Wiper’s 
3-j coefficient 

The 3-j coefficient is zero unless 

m l + m 2 + m 3 = 0  (7.58) 

and the triangle conditions (7.6) must also be satisfied. 

obtain immediately a formula for the 3-j coefficient: 
By inserting formula (7.5 1) for the Clebsch-Gordan coefficient into (7.57), we 

From this formula we can derive various properties of the 3-j coefficient. 

(7.59) 

Basic Formulas in 3-j Notation. We now write down the basic formulas for 
combining two angular momenta using 3-j notation, since subsequent formulas will 
usually be given in this form. In 3-j notation the basic direct-product expansion 
(7.35) is expressed by 
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(7.60) 

Although this expression is initially more cumbersome than the Clebsch-Gordan ex- 
pression (7.33, the greater symmetry of the 3-j coefficient makes it eventually more 
convenient. 

The unitarity J sum is obtained by combining (7.39) and (7.57) as 

~~ 

The unitarity m sum corresponding to (7.41) is 

Thus, in both J sum and m sum, the 3-j coefficient orthogonality conditions require 
weight factors of 2j3 + 1. 

When one of the angular momenta in a 3-j coefficient is zero, say the first one, 
then we have the analogue of (7.53), which is 

Again, this is more complicated than the Clebsch-Gordan coefficient relation, but is 
simpler under exchange of j1 and j 3 .  

Comparing 3-j and Clebsch-Gordan Coeflicients. To visualize the differences 
between the two coupling coefficients, apart from the algebraic relation (7.57), it is 
helpful to draw the semiclassical vector model (Section 7.1) for the respective 
combinations of angular momenta, as shown in Figure 7.5. 

Given the claim that coupling to zero total angular momentum produces the 3-j 
coefficient that is more symmetric than the Clebsch-Gordan coefficient, we should 
derive symmetry properties of the 3-j coefficient. 
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FIGURE 7.5 Visualizing the distinction between a Clebsch-Gordan coefficient (left) and a 3-j 
coefficient (right). Note particularly thc reversed directions of the j 3  and m3 arrows between left and 
right and that the m-sum rules are different between the twa coefficients. 

Symmetries Under J Permutation and Projection Sign Change. Four symme- 
try properties of the 3-j coefficients that we now derive provide the greatest advan- 
tage of these coefficients over Clebsch-Gordan coefficients. First, by substituting in 
formula (7.59) for the 3-j coefficient k’ = k - j ,  + j 2  + ml + m2,  then rearranging the 
summation, it can be seen directly (as Problem 7.6 suggests you verify) that 

(7.64) 

The second symmetry property that can be derived similarly is 

(7.65) 1 
Third, by substituting in (7.59) k’ = j 2  + j 3  - j ,  - k and rearranging the sum, 

the diligent reader will verify that 

Besides being useful for manipulating expressions containing 3-j coefficients, this 
result will be used for coupling coefficients with all projections zero. 
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The fourth symmetry relation is obtained by combining (7.65) and (7.66). It is 

This symmetry and (7.66) give the general symmetry condition for permutation of 
columns of a 3-j Coefficient: 

Even permutations of columns of a 3-j coefficient leave it 

Odd permutations of columns of a 3-j coefficient produce a phase 
change of (-1) I J 2  j 3  . 

(7.68) 
j + ’ + ’  

The Order of Combining Angular Momenta is Significant. YOU might expect 
that the order of coupling, whether l(jl j 2 ) J M )  or I ( j 2 j l ) J M ) ,  should be unimpor- 
tant, There is, however, often a difference. Problem 7.7 suggests that you use the 
permutation property (7.67) to show that 

Therefbre, the order of combining two angular momenta is significant, since in- 
terchanging the coupling order may produce a change of phase, dependent upon 
both the uncoupled and coupled total angular momenta. For example, suppose that 
we combine orbital ( l )  and spin (s) eigenkets to form a total angular momentum (I). 
For the stretched and jackknife cases, respectively, we have 

J(sB)J=P+s, M)=J(Ps)J=P+s, M) 

1 (sc) J= JP - SJ, M) = (- 1) 1 (cs) J= Jc - S], M> 2min(!,s) 
(7.70) 

Therefore, for s = 1/2 (nucleons or electrons) the jackknife state does not change 
sign under interchanging the coupling order if l = 0, but it changes sign for all 
higher t values. 

Matrix elements of operators are also sensitive to the order of combining two 
angular momenta. For example, consider an operator 0 between states of the same 
1, but possibly different orbital angular momenta el and e2. By using (7.69), we 
see immediately that 

The effect of such a change of phase can be particularly confusing, since a similar 
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phase change in the matrix elements, namely (-l)el-ez a, with a. the parity of op- 
erator 0, occurs under the parity operation. Changes of phase arising from reorder- 
ing the coupling are no problem if one has a consistent order of coupling through- 
out a calculation. In big calculations, however, different parts of it may be done by 
different scientists without maintaining such consistency, especially within large 
computer programs. Thereby, spurious effects mimicking parity operations are eas- 
ily introduced, When combining two angular momenta, the recoupling phase is 
mostly a nuisance. With three or more angular momenta, recoupling is a much more 
challenging problem, to which we devote Chapter 9. 

Couplings with Ail Projections Zero. If a 3-j coefficient has all its magnetic 
substate projections (the bottom line) equal to zero then the general expression 
(7.59) collapses to a particularly simple form. First, the rule for change of sign of 
all m values, (7.66), produces the identical coupling coefficient if the m values are 
zero. Therefore, it must be that 

I (tt : ;)=o a + b + c  odd (7.72) 

This restriction on the nonzero coefficients reduces their number for given a and b 
from the usual 2 min(a, b )  + I to min ( a ,  b)  + 1, a result which Problem 7.8 sug- 
gests you prove. Included with the nonzero values are the jackknife case c = Ib- a I 
and the stretched case c = a + b. 

Condition (7.72) on the coupling coefficient arguments leads to the term “parity- 
conservation” coupling coefficient, because this coefficient often appears as a fac- 
tor in an amplitude related to parity conservation in a system. However, it is 
connected more with rotational symmetry than with reflection symmetry (Sec- 
tions 1.2.1, 1.4.3). The connection of this coefficient with parity is that under 
z 4 -z we have rn + -rn, so if rn = 0 the coefficient is unchanged. One conse- 
quence of this condition is that rotational symmetry supersedes parity symmetry. 
Thereby, the simplest designs of experiments that aim to test parity conservation 
may often just be expensive ways of verifying the correctness of (7.72). 

For the nonzero coefficients, by simplifying (7.59) for a + b + c even, we have 

g! 1 (; : ;)=(-lr (g-a)!(g-b)!(g-c)! 

(2g - 2 ~ ) ! ( 2 g  - 2b)!(2g - 2 ~ ) !  .d (2g+1)! 

(7.73) 

in which g = ( a  + b + c ) / 2  is an integer. These 3-j coefficients with all projections 
zero occur so commonly in practical applications that it is worthwhile to tabulate 
their values for low values of angular momentum, as in Table 7.2. 
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TABLE 7.2 Squares of the nonzero 3-j coefficients 6 b) for which the two 
smallest angular momenta do not exceed 3. An asterisk indicates that the coef- 
ficient is negative. These can be computed by using Mathernatica notebooks 
N u m 3  j or 3 3  000. 

a b c  a b c  

0 1 1 * 113 2 2 2  * 2/35 
0 2 2  1 /5 2 2 4  213 5 
0 3 3 * 117 2 3 3  41105 

1 1 2 2/15 2 3 5 * 101231 
1 2 3 * 3/35 3 3 4  * 2/77 
1 3 4 4/63 3 3 6 100/3083 

As an example of using Table 7.2, we find (i i=-m =-0.292770. Any 
permutation of a,  b, c, will produce the same coef icient. In Section 7.3.2 we pre- 
sent visualizations of these coefficients. 

A Worked Example: Combining Spin and Orbital States. In Section 7.1.3 we 
discuss spin-orbit terms in a Hamiltonian and consequent spin-orbit splitting of 
energy levels in atoms and nuclei. Now that we have the techniques for combining 
two angular momentum states, it is interesting to combine spin and orbital states. 
We do this for the simplest case, s = 112, which is the most common case for atoms 
and nuclei. Introduce combined spin and orbital srates as 

with the understanding that spin states are expressed as x?, as in Section 3.3.4. By 
calculating the appropriate coupling coefficients from (7.59), or looking ahead to 
Table 7.3, it is then straightforward to derive (as Problem 7.9 suggests you do) the 
expressions for combined states: 

Here it is assumed that the spherical harmonic q,(e@) vanishes if Im I > P. 
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For d = 0 the combined states are particularly simple, as one expects: 

yo,112,-1/2 = x- yo,112,1/2 = x+ (7.76) 

and jackknife states vanish. For any 1, the substates with M = d + 1/2 similarly 
contain only x+ and states with M = - C  - 112 contain only the x- . In accord with 
the vector-addition construction (Section 7.1 . l) ,  for M > 0 the x+ state has the 
larger amplitude for J = d + 1/2, as does the x- state for J = C - 112. Notice the 
orthonormal nature of the combination of angular momenta in (7.75); if we set 
sin 5 = d(C - M + 1 / 2) /( 2d+  1) , we have a 2 x 2 matrix of rotation through 5. 

By construction, the combined "spin-orbit-coupled" states (7.75) are eigenfunc- 
tions of the Hamiltonian with spin-orbit coupling given by (7.8). Consequently, 
they are very useful for constructing wave functions with maximum rotational syrn- 
metry. We may use such combined states with or without a spin-orbit interaction. 

7.3 .2  Visualizing Symmetry Properties 

Combination of angular momenta is often presented completely algebraically-a 
torment to tyros and a delight to experts. Interpreting the coupling in geometric and 
graphic terms can, however, often improve understanding of it. To visualize 
properties of 3-j coefficients, including the parity andj-permutation symmetries, it is 
appropriate to make two-dimensional graphics for various quantum numbers. 

The simplest example is for the coupling j + j = J, with each j having the same 
projection rn, so that J has projection 2m. This would be the combination for two 
equivalent electrons or nucleons in the same atomic or nuclear shell. A special case 
of the vector-addition construction Figure 7.2 is sketched in Figure 7.6. 

FIGURE 7.6 Vector-addition model for the coupling scheme j + j = J with both j vectors hav- 
ing projection m. Their resultant is J with projection 2m. 
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The corresponding probability density for such a coupling is 

p(J ,m)  = (2J + 1) (L L - ~ m ) 2 = ( ( j ~ ~ m , ~ ~ J 2 ~ ~ ) 2  (7.77) 

which we may consider as a function of the coupled angular momentum J,  with 
0 I J I  2j, and of rn, with -jI m I j  and-J I  2m I J .  

Figure 7.7 shows p(J, m) on a gray-scale density plot for three values of j ,  two 
of which are small (312 and 2)  and the third is semiclassical in the sense discussed in 
Section 6.4.3, namely j = 6 .  Clearly-as shown by the reflection symmetry about 
the midline of m-the probability density is independent of the sign of m. Because 
of the permutation symmetry (7.67) for the identical j values in (7.77), the coeffi- 
cients and the densities are zero for 2j + J odd. To understand the pattern of increas- 
ing probability density in Figure 7.7 as m tends to 512, note that this is the most fa- 
vorable arrangement according to the vector-addition model sketched in Figure 7.6 .  

FIGURE 7.7 Density distributions p(J, rn) as a function of coupled angular momentum J and 
component 0') projection rn, for j = 3/2, 2, and 6. Zero density is shown white, unity density is 
black, and intermediate densities are shades of gray. (Adapted from the Muthernuticu notebook 
VccDnsty.) 
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Coupling with All Projections Zero. It is interesting to plot the vector-addition 
diagrams for the special coupling coefficients with all projections on the z axis being 
zero. Formulas for these coefficients are derived in Section 7.3.1. 

Since each angular momentum projection is zero, the diagrams correspond to the 
vectors lying in the x-y plane. The example shown in Figure 7.8 has a = 2, b = 4. 
The vector-addition triangles are drawn to scale for the nonzero 3-j coefficients, 
whose values are given to the right of the triangles. There are 3 = min(2,4) + 1 
nonzero values, and two zero values-for c = 3 and c = 5 .  Both for c = 2 (the jack- 
knife case) and for c = 4 (the stretched case) the triangles have collapsed to lines. In 
the vector-addition model (Section 7.1.1) there is no explanation of why the coeffi- 
cients for c = 3 and c = 5 vanish. Further exploration of these “parity conservation” 
3-j coefficients is suggested as Problem 7.8. 

FIGURE 7.8 Coupling coefficients when all rn values are zero. Here a = 2, b = 4, so the co- 
efficients vanish when c = 3 or 5, according to (7.72). (Coefficients evaluated using Mathemntica 
notebook 3 j 000.) 

7.3.3 Classical Limits of 3-j Coefficients 

Classical limits of rotation matrix elements (Section 6.4.3) provide further insight 
into their properties. Similarly, by considering the classical limits of 3-j coeffi- 
cients, we understand more about combining angular momenta. We combine the 
vector-addition construction (Section 7.1) with three angular momenta coupled to 
zero to discuss the behavior of 3-j coefficients as their component angular momenta 
increase. Figure 7.9 repeats the construction shown in Figure 7.2, but it has more 
labeling because we want a quantitative interpretation. 
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FIGURE 7.9 Vector-addition diagram for classical limits of 3-j coefficients. The projection of 
j 3  onto the quantization axis, m3. is fixed, but the projections of jl and j 2  are variable, 
corresponding to different tilts and radii of their precession circles about j3. 

To quantify the discussion of the 3-j coefficients described by Figure 7.9, 
consider the interpretation of the quantity P(m1) given by 

which is the probability that the angular momentum projection on the z axis is ml, 
given that j 3  has projection m3, with the condition ml + m2 + m3 = 0 assumed. In 
the vector-addition model j 3  has a uniform distribution around z ,  so this does not af- 
fect P(ml). We can therefore take the j3-z plane in Figure 7.9 as the plane of the 
page. The plane j 1 4 3  then makes an angle @ with this plane, and (corresponding to 
uniform precession) @ will have a uniform probability distribution P $ .  Since we 
may write by a change of variables IP(ml)dmll= IPgd@ I, we have 

(7.79) 

From the trigonometry of the triangles in Figure 7.9 we can write 

m, =J, cosel, =jl(cos813cose32 +sin8,,sin8,,cos~) (7.80) 

thence we have 
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The numerator in the last equality is just the area of the triangle formed by the three 
vectors projected onto the x-y plane, A ( j , j 2 j 3 ) .  By inserting this result in (7.81), 
we have 

(7.82) j1 j 2  J3 =~ P(m1) oE Jm 1 
I(m1 m2 m3)I ( 2 j 3  +I) ( 2 j 3  + l ) ~ ( . i l . i 2 j 3 )  2~( . i l . i2 . i3)  

in which the approximation holds with increasing accuracy as j, increases. Thus, 
we see that the semiclassical limit of the 3-j coefficient is a coupling invariant that 
depends upon the area of the coupling triangle-and is independent of the order of 
coupling. 

In other presentations of this topic, for example Topic 9 in [BieSlb], the time 
variable is introduced in order to reinforce the analogy with the dynamical angular 
momentum aspect. In the development, however, this variable plays no role, as 
our treatment makes clear. The present treatment emphasizes the geometric 
(rotational symmetry) aspects of angular momentum. The distinction between 
geometrical and dynamical angular momentum is emphasized in Section 3.4.5. 

The discussion given here for the 3-j coefficients can be extended to that for re- 
couplings among three angular momenta (the 6-j coefficients, Chapter 9). Results 
with a similar interpretation can then be derived, as described in [Bie8 1 b 1. 

7 . 3 . 4  Expressions for One Angular Momentum Small 

In Section 7.3.1 symmetry properties of the 3-j coefficient are derived. They may 
be used to put the smallest angular momentum into the first position. If this angular 
momentum is small, say less than 2, an algebraic expression for the coefficient may 
be practicable. Table 7.3 lists 3-j coefficients for this angular momentum 2 1. It is 
much faster to evaluate particular algebraic expressions, as in Table 7.3, than to use 
general formula (7.59) for the coefficient. 

7.4 COMPUTING COUPLING COEFFICIENTS 

During the first 40 years of applied quantum mechanics-the major field in which 
coupling coefficients are used-it was usual to do as much as possible of a calcula- 
tion analytically with pencil and paper, and only then to use numerical calculations. 
With the burgeoning availability of powerful, convenient, and modest-sized com- 
puters, the emphasis switched to performing more of the calculations by computer. 
We therefore describe methods of computing coupling coefficients by computer, 
either analytically (symbolic expressions) or numerically. 

We begin by mentioning tabulations of coupling coefficients, whose main use 
nowadays is for pilot calculations and-in conjunction with the algebraic expres- 
sions given in Section 7.3.4-for checking computer programs. Regge symmetries 
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TABLE 7.3 The 3-j coefficients with the smallest angular momentum, s, less 
than or equal to 1. Related coefficients can be obtained by permutation of 
columns and sign changes of row elements. Note that a must be non-negative 
and tat I a ;  otherwise, the formulas do not apply. Coefficients are calculated 
by using the Mathematica notebook A l g 3  j .  

-(s + a) D 
(a - a)(l +a +a) (! ; -l-a a )-I- - 2a(l+a)(l+2a) 

a 
a(1 + a)(l + 2a) 

1 a a + l  -(-l)-a+a 
(0 a - a ) -  

presented in Section 7.4.2 often greatly speed up practical numerical calculations. 
Also in this section, we discuss methods for computing 3-j coefficients efficiently, 
including the use of rational fractions and prime factor representations in addition to 
conventional decimal representations. 

7 . 4 . 1  Tabulations of Coupling Coefficients 

The 3-j and Clebsch-Gordan coefficients have five arguments-the three angular 
momenta and the two independent projections. By using the triangle and rn-selec- 
tion rules (Section 7.1.2), it is straightforward to show (as Problem 7.10 suggests 
you verify) that for givenjl and j 2  the number of coefficients for combining two an- 
gular momenta is N3(jl,j2) =(2jl  +1)(2j2 +1)[2min(jl,j2)+1]. For example, 
when j l  = j 2  this number is N3(jl,jl) =(2jl  +1)3, which is 343 even for j l  = 3. 
Although permutation and parity symmetries derived in Section 7.13.1 can be used to 



2 8 2 COMBINING TWO ANGULAR MOMENTUM EIGENSTATES 

reduce N3 by nearly a factor of four, the number of table entries is still often 
formidable. There are two types of tables, algebraic and numerical. 

Algebraic Tables. For algebraic tabulations of coupling coefficients, in addition 
to Table 7.3 for the smallest angular momentum less than or equal to unity, exten- 
sive tables of algebraic expressions for Clebsch-Gordan coefficients are available in 
[Bie8 1 a] and in the angular momentum handbook by Varshalovich and coworkers 
[Var88]. 

Numerical Tables. The most widely available numerical tables of 3-j coeffi- 
cients are those by Rotenberg et al. [Rot59]. Their use requires that the arguments 
of the coefficient be permuted to a specific order, then the coefficient is given in a 
prime-exponent notation described in Section 7.4.2. An advantage of this notation 
is that the squares of the coefficients are exact rational fractions For all m values 
equal to zero, the tabulation has a largest j value of 16. For other m values the 
largestj value is 8. These tables were calculated by computer and their typesetting 
was done directly from the computer output. Therefore, the chance of errors in the 
Rotenberg tables is miniscule, unlike other published tables produced by hand calcu- 
lation and manual typesetting. 

Since the number of table entries for combining two angular momenta scales as 
the cube of the angular momenta, such printed tabulations rapidly become impracti- 
cable. Also, even for modest angular momentum values, in a computer program 
which uses angular momentum coupling as part of a much larger calculation, such 
table lookup (in either algebraic or numerical form) is often inefficient of program- 
ming effort, although it may be efficient in terms of computer time. 

7.4 .2  Computing 3-j Coefficients Efficiently 

We discuss computing 3-j coefficients efficiently in some detail because many of the 
ideas are applicable to computing 6-j coefficients (Section 9.3.3) and 9-j coeffi- 
cients (Section 9.5.1). In numerical work one may need either exact numerical ex- 
pressions or decimal approximations. The former are most useful in theoretical 
analyses, while the latter are sufficient for analyzing experiments because the coeffi- 
cients are usually combined with data of varying reliability. Programming of formu- 
las for coupling coefficients is usually quite intricate, so we outline various possi- 
bilities, then direct you to references and sources of programs, such as our C-lan- 
guage program in Appendix 11. 

Regge Symmetries and 3-j Coefficients. In 1958, Regge [Reg581 discovered 
an unexpected type of symmetry of 3-j coefficients. There are 12 symmetries that 
we derive in Section 7.3.1, arising from 6 permutations among the three angular 
momenta and the sign change of the projections. Regge found a total of 72 symme- 
tries of the coefficients, as we now summarize. Make the following correspondence 
between a 3-j coefficient and its “Regge symbol” R, given by 
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I! Ilb+c-a c+a-b a+b-c 

Regge showed-and Bargmann later gave a more elegant proof [I3ar62]-that the 
symmetries of R are similar to those of a determinant, in the sense that interchange 
of two rows or two columns produces a phase change (-l)!+b+c Further, rows 
and columns may be interchanged. The Regge symmetries may be used to combine 
angular momenta in the 3-j coefficients to obtain parameters that are as small as 
possible, then permutation symmetries of the 3-j coefficients (Section 7.3.1) allow 
the smallest parameter to be moved to a specific location within the coefficient in or- 
der to minimize the number of terms in the sum (7.59). 

Coupling Coefficients by Computer Algebra. If the smallest angular momen- 
tum exceeds unity, so that Table 7.3 is not applicable, a symbolic-manipulation pro- 
gram-such as in the Mathematica notebook A l g 3  j in Appendix I - c a n  be used 
to compute 3-j (or Clebsch-Gordan) coefficients in either algebraic or exact rational 
fraction forms, as suggested in Problem 7. I I .  This is a general procedure, limited 
only by computer memory and computation time. 

Algebraic forms are especially useful for generating expressions to be coded in a 
programming language such as C or Fortran, because conversion to coding state- 
ments may be done directly by using Mathematica functions C F o r m  or Fortran-  
F o r m .  Algebraic expressions for coupling coefficients are also useful for identify- 
ing errors in published algebraic or numerical tables, such as those described in Sec- 
tion 7.4.1. 

Rational-Fraction and Prime-Factor Methods. Sometimes we need exact 
coupling coefficients. For example, when designing symmetry-violation experi- 
ments the symmetry-violating interactions lead to differences on the order of parts 
per million in observables, since the latter are dominated by symmetry-conserving 
interactions. One needs to be sure that roundoff in computing coupling coefficients 
does not simulate a symmetry-violation effect. The disadvantages of requiring exact 
coefficients are programming that is more complicated, and longer c:omputing time. 

Angular momentum coupling coefficients can be expressed exactly, since the 
square of each coefficient is rational, as (7.59) shows explicitly. Further, since any 
rational number can be specified by two integers and every positive integer has a 
unique factorization into primes, one can express a coupling coefficient in terms of 
prime factors and a phase of 51. Computationally, this approach can be implemen- 
ted by using primes and representing the coefficient by an array containing its phase 
and exponents of its prime factors. For example, consider the 3-j coefficient 

2 2  2 
(1 1 - 2 ) = - E  

(7.84) 
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Given that 3/35 = 3l5-'7-', this coupling coefficient can be represented by an array 
(-1, 0, 1, -1, -1, ...), in which the initial -1 indicates the sign of the coefficient, the 
next four elements are the prime exponents in the square of the coefficient, and all 
elements in the ellipsis are zero. A similar representation is used in the computer- 
generated tables of Rotenberg et al. [Rot59]. 

Programming rational-fraction expressions requires defining arrays of primes for 
the rational-fraction variables and needs arithmetic on prime factors of numbers to be 
performed. A reasonable approach is to include the smallest primes in each array but 
to allow storage for including more primes if needed. An upper bound on the 
number of primes required, hence on array sizes, can be obtained from Legendre's 
result [Leg981 that the number of primes less than N is not more than 
P = N/[(logloN) + 11 rounded upward to the nearest integer. If angular momenta 
a, b, and c are coupled, then the largest number that can occur in the coupling coeffi- 
cient (7.59) is the factorial (a + b + c +  l)!, which has a maximum factor of 
N = a + b + c + 1. For example, if a = b = 5, then c I 10 and the prime array length 
does not exceed P = 9, but if a = b = 50, then c I 100 so an array of about 60 ele- 
ments is needed. 

For arithmetic using prime-exponent representation, multiplication or division in 
rational-fraction form is accomplished easily and efficiently by adding or subtracting 
the elements of their prime factor arrays-just the exponents in their prime represen- 
tations. Such simplicity arises for the same reason that logarithms are used for effi- 
cient multiplication or division of numbers. Addition and subtraction of rational 
fractions are more difficult, just as when working with logarithms. One way around 
this difficulty is to convert prime factors to integer numerators and denominators, 
then to find the lowest common denominator, perform the standard combination to a 
single fraction, then convert the resulting numerator and denominator back to prime 
factors. Fang and Shriner [Fan921 discuss in detail implementing these ideas. 

Decimal Approximations. Computer solutions are usually expressed as deci- 
mal approximations, so the finite number of bits in a computer word generally leads 
to roundoff errors. The impact of such errors can often be mitigated-up to some 
machine- or compiler-dependent limit-by choosing higher-precision arithmetic, al- 
beit at the expense of more computation time. Our program for 3-j coefficients, 
given in Appendix 11, uses double-precision decimal representation, and results are 
printed to six decimals. 

Factorials and Computing ESficiency. When calculating coupling coefficients, 
no matter what numerical representation is used, the program must evaluate factori- 
als of integers, as (7.59) shows. The sum over k in this formula includes all values 
such that none of the factorial arguments is negative. There are at least 16 factorials 
to be evaluated and the number needed may be much larger if several values of k are 
allowed. In example (7.84), in which all angular momentum numbers are small, 
k = 1 only. By contrast, for a = b = 17, a = 2, p = -2, and c = 15, the k sum 
ranges over 0 5 k I 15. 

Many of the factorial arguments occur repeatedly, so one can decrease computa- 
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tion time by precomputing and storing factorials in a table. For this to be efficient, 
one needs to ensure that the table is large enough to store most of the factorials that 
will be needed. For coupled angular momenta a, b, and c with b = a the largest 
possible factorial is (4a + l)!, so the factorial table is of length 4a + 2, which is 
I 200 for u < 50. In the rational-fraction representation, each table entry is a prime 
array, so from our discussion of Legendre’s formula we see that about 200 x 60 
integer elements are needed in the factorial table for this limit on a. 

If factorials are represented by integers and are used directly, computer words 
will overflow very quickly . For example, 13! overflows a 32-bit word. If decimal 
representations are used, a maximum exponent of 100 is overflowed by about 70!; 
that is, for angular momenta about a = b = 17 in our example above. Therefore, for 
decimal approximations logarithms of factorials are used to avoid overflow problems 
and to speed up multiplication and division. A table of log factorials can be com- 
puted efficiently using recurrence; ln(n + l)!= ln(n + l)+lnn!, with In O! = 0. This 
method for factorials is useful in any problem involving combinatorials. 

Programs for 3-j Coefficients. Apart from the entry-level program in the C 
language that is given in Appendix 11, you should probably not write your own 
program from scratch because there are now several published programs using vari- 
ous of the techniques outlined above. These programs are summarized in Table 7.4. 

TABLE 7.4 Programs for the 34 coefficients. 

Source Method Remarks 

Mathemutica Symbolic Algebraic or numerical values 

[Rao78] Decimal Clebsch-Gordan coefficients 

[LaiQO] Prime and decimal Prime for j  S 30 

[Fan921 Prime Workstation version available 

Programs using the rational-fraction (prime) form include those by Lai and Chiu 
[Lai90] and by Fang and Shriner [Fan92], although Lai and Chiu’s program 
switches to decimal approximations for large angular momenta in the 3-j coefficient. 
In Table 7.4, except for the Muthemutica choice, these programs are written in 
Fortran. Details are given in the references. 

Once you have a program installed in a computer, a practical way to check that it 
is correct and numerical accurate is to use the orthogonality relations for different 
total angular momenta, (7.61), and for different m values, (7.62). Initial checks can 
be made by verifying orthogonality for the squares of coefficients, and if this is suc- 
cessful, you can check the correctness of relative phases by choosing one of the ar- 
guments to be different, which should give zero for the sum of products. Prob- 
lem 7.12 offers such a programming exercise for 3-j coefficients. 
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7.5 ROTATION MATRICES AND COUPLING COEFFICIENTS 

In Chapter 4 we consider the eigenstates (j, m) of infinitesimal rotations-the angu- 
lar momentum eigenstates. In Chapter 6 finite rotations of these eigenstates are, de- 
rived, leading to the D’ matrices and to the reduced rotation matrix elements dArm . 
Now that we have learned in the preceding sections of this chapter how to combine 
pairs of angular momentum eigenstates, we can round out our understanding of this 
subject by relating rotation matrices and coupling coefficients. 

We first derive the important Clebsch-Gordan series for combining rotation ma- 
trix elements that have the same angles and which therefore do nof satisfy our pre- 
vious condition of coming from separate state spaces. In Section 7.5.2 we present 
special cases of the Clebsch-Gordan series, then in Section 7.5.3 we use the series 
to perform integrals over rotation functions and spherical harmonics. Integration ex- 
amples from celestial mechanics and from quantum-mechanical rotators (Sec- 
tion 6.5) are given in Section 7.5.4. 

7.5.1 Clebsch-Gordan Series for Combining DJ’ Elements 

By considering the relations for combining two angular momenta to form a third for 
systems each of which undergoes the Same rotation, we derive two very useful rela- 
tions between rotation matrix elements, as follows. 

Inverse Clebsch-Gordan Series. Consider the combination of angular momenta 
given by (7.60), written as 

This relation is valid for any orientation of the system relative to the reference frame. 
Suppose that the system is rotated through Euler angles (a, p , y )  in the active view- 
point discussed in Sections 1.3.1 and 6.1.1. Each angular momentum state is 
transformed-according to (6.19) -as 

If (7.85) is written for the rotated system, so that (00 0) + (ap.i), and three sub- 
stitutions of the kind (7.86) are made, then orthonomality of the angular momentum 
eigenkets can be used (as Problem 7.13 suggests you show) to derive a relation be- 
tween rotation matrix elements, called the inverse Clebsch-Gordan series : 
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Note that in the summation there are only two independent summation variables be- 
cause of the requirements in the 3-j coefficients that 

m ; + m ; + m j = O = m l + m 2 + m 3  (7.88) 

in which m; and m3 are fixed, since they are parameters on the left-hand side of 
(7.87). Similarly, the three total angular momenta must be constrained by the 
triangle rule (7.6) in order that the orthonormality relations of the angular momentum 
eigenkets can be used. 

The inverse Clebsch-Gordan series may be used as a starting point to derive an- 
gular momentum coupling coefficients. The coefficients are then the matrix elements 
of the unitary transformation (7.85) that transforms the direct product of two D 
matrices into a form diagonal in J and M. If one has good command of direct- 
product groups, then this provides an effective way to derive the coupling coeffi- 
cients, as shown in Wigner’s book [Wig31]. 

One use of the inverse series (7.87) is to build up rotation matrix elements from 
the spin-l/2 elements by choosingjl = 1/2, thenj2= 1/2, 1, ..., a.nd the stretched 
value j3 = j2 + 1/2. The required 3-j coefficients are given by (7.59). For example, 
the elements of D* can be obtained from those of D1l2, then D3’2 can be obtained 
from D1/2 and D1, and so on. 

The Clebsch-Gordan Series. A very useful formula relating products of rotation 
matrix elements to sums over single matrix elements is obtained by starting with the 
direct-product formula (7.85) for the rotated and unrotated states, then applying or- 
thogonality relations as used in deriving (7.87). By relegating the details to Prob- 
lem 7.13, we obtain quickly the Clebsch-Gordan series : 

The summation is over all j3 consistent with the triangle rule (7.6). 
Note that in both this series and in the inverse series (7.87) there are two 3-j 

coefficients in each term rather than a single coefficient that you might expect. After 
all-as derived in Section 6.5.1-the Dm,m are angular momentum eigenfunctions, 
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so why is a single coupling coefficient not sufficient? The answer is that the rotation 
matrix elements in both (7.87) and (7.89) have the same arguments (a, p, y) and 
therefore refer to the same Hilbert space. However, the combination formulas for 
angular momenta derived in Section 7.1.2 require that the two subsystems be from 
separate Hilbert spaces. For the particular case of the Lym,nt it is sufficient to insert 
an extra coupling coefficient to overcome this problem, as we have just proved. 

7.5.2 Special Cases of Clebsch-Gordan Series 

Both forms of Clebsch-Gordan series have interesting special cases. The first is ob- 
tained by setting 01 = 0 = yin (7.89), when-according to Table 6.4-the D-matrix 
elements become d-matrix elements, so that for the product of two reduced matrix 
elements evaluated at the same angle p, we have 

(7.90) 
j 1  j 2  j 3  

ml m2 m3 

From this we derive, by setting the rn values to zero, the following case. 

Legendre Polynomials and the Clebsch-Gordan Series. The Clebsch-Gordan 
series (7.89) provides a convenient way to collapse products of pairs of Legendre 
polynomials into a series of single polynomials. To do this, set the m values on the 
left-hand side of (7.89) all to zero, so the j values must be integers (relabeled as 1 
values) and the di,, collapse to Legendre polynomials, according to Table 6.4. 
The series (7.89) then gives immediately 

I I 

Parity considerations are relevant here. From Section 4.1 we have under parity 
/I -+ n- p. Thereby, according to (4.8), the parity of any Pp(cosp) is (-1)'. The 
parity of the left-hand side of (7.91) is therefore ( -1)4+p2,  also the parity of'the 
right-hand side, as guaranteed by vanishing of the 3-j coefficient unless C, + C, i t3 
is even. Thus, in the expansion there are only even terms or only odd terms. 

= 2 and 1 2  = 3. We can look 
up the appropriate 3-j coefficients in Table 7.2 to obtain 

As a worked example, suppose that in (7.91) 
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To visualize this relationship, look at Figure 7.10, where we show polar diagrams 
of the polynomials, and the product on the left-hand side of (7.92). As is clear from 
the figure, the odd parity of the product P2P3 (solid and dashed curves interchange 
across the horizontal at p = fl2 and 3d2) produces an expansion in terms of odd- 
order polynomials only. 

By exploring with the Mathematica notebook LegProd, you can draw all the 
functions appearing in (7.92) and can determine decimal approximations to the 
Clebsch-Gordan series coefficients on its right-hand side. Such exercises are 
suggested in Problem 7.14. As a check on the correctness of the coefficients, note 
that they must sum to unity because of unitarity condition (7.61). Indeed, the 
coefficients in example 17.92) satisfy this condition if computed exactly by using the 
rational-fraction values obtained from Table 7.2. 

I 
I 
I 

\ 
\ 
1 

I 
\ 

I 
I 

I \  
I I 
I 1 
I I 
I I 
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FIGURE 7.10 Visualizing the Clebsch-Gordan series, (7.91), using polar diagrams (Sec- 
tion 4.1.2) for P2 and P3,  for their product, and for the expansion in terms of PI, P3 and P, on the 
right-hand side. Positive values are shown as solid curves and negative values are dashed. (Adapted 
from Mathematica notebook LegProd.) 
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Scattering Cross Sections and the Clebsch-Gordan Series. A practical use of 
the result (7.91)-providing a simple example of selection rules in scattering that are 
imposed by angular momentum conservation-is in fitting scattering differential 
cross sections, a(@, as a function of the scattering angle, 0, when the scattering 
amplitude has been expanded into partial waves (Section 5.4). For example, in 
nonrelativistic quantum mechanics with spin-independent interactions, o( 6) is given 
in terms of (complex) partial-wave scattering amplitudes ap by 

(7.93) 

as derived, for example, in Landau ILan90, Section 3.B]. The upper limit to the 
summation, L,  is the highest partial wave for which a~ is significantly different 
from zero. By expanding out the absolute-value squared and using (7.91), you will 
find readily (as suggested in Problem 7.15) the Legendre polynomial expansion for 
the differential cross section 

in which there are (2L+ 1) expansion coefficients At*?, given by 

(7.94) 

(7.95) 

The result that the complexity of the differential cross section goes up to terms of 
order k”’ = 2 L  if the partial wave expansion goes up to partial wave 1 = L is an ex- 
ample of Yang’s theorem on the complexity of angular distributions in quantum 
scattering [Yan48]. 

C. N. Yang-who wrote his Ph.D. thesis on this topic-also investigated with 
T. D. Lee the evidence for parity conservation in fl  decay (Section 1.4.1). They 
published their conclusions in 1956 [Yan56]; parity violation in fl  decay was ob- 
served by Wu et al. in 1957 (Wu571. Lee and Yang were awarded the 1957 Nobel 
Prize in physics for their analysis. 

An elementary way to convince yourself of the correctness of Yang’s theorem is 
to recall that the Legendre polynomial Pe(cosO) has a highest power case 0 .  Upon 
squaring a sum of such polynomials going up to = L,  the highest power of cos0 
that appears is ZL, which is the highest power in P2L(cos0), as (7.94) indicates. 

Yang’s theorem is most often used in reverse, as follows. Suppose that we fit 
an experimental angular distribution in terms of Legendre polynomials, according to 
(7.94). If we find (within the uncertainties of fitting imprecise data) that the At,, are 
insignificant after some value P’ = K ,  then the amplitudes of physical relevance, the 
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ap , are negligible for I 2 Kl2. A detailed example of a fitting procedure using the 
least-squares criterion and the Legendre expansion (7.94) is given in Section 7.3 of 
Bevington and Robinson's book on data analysis techniques for the physical sci- 
ences [Bev92]. Of course, as we continually emphasize throughout this book, these 
formulas in no way rely for their validity on the correctness of quantum mechanics. 
They are applicable to most phenomena described by waves, such as the scattering 
of sound. 

To visualize and verify the equality of relations (7.93) and (7.94), consider Fig- 
ure 7.1 1, in which the partial wave amplitudes and their squares are shown. The 
Mathernatica notebook YngThm in Appendix I allows both expressions (7.93) and 
(7.94) to be computed, visualized in polar plots, and compared. Within the accuracy 
of drawing, they are identical, as you will find if you work Problem 7.16. 
Amazingly, even though both the amplitudes At,, and the Legendre polynomials 
P,,,(cose) may be of either sign, the equivalence of (7.93) and ('7.94) shows that 
analytically the sum (7.94) must be non-negative. Within roundoff errors in the 
various computations, this must also hold for the numerical sum. c P, 1 

# 

FIGURE 7.11 Partial-wave-sum amplitude (7.93) for L = 2, with a0 = 1 ,  (YI = -1, a2 = 6, 
shown in the left-side polar diagram (positive values solid, negative values dashed). Its square 
shown in the right-side diagram agrees with the result calculated using the Legendre polynomial 
expansion (7.94), as can be verified by running Muthematica notcbook YngThm. (Adapted from 
notebook YngThm.) 

Now that we have seen the usefulness of Clebsch-Gordan series for simplifying 
summations, it is interesting to apply them to help perform integrations. 
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7 . 5 . 3  Integrals of Rotation Functions 

The Clebsch-Gordan series (7.89) provides quick methods of evaluating integrals 
involving D-matrix and d-matrix elements, as we now derive and illustrate by exam- 
ples. We consider first general integrals, then we specialize to integrals over three 
spherical harmonics-the so-called Gaunt integrals. Then follow two examples; the 
first relates to the figures of equilibrium of celestial bodies, while the second comes 
from the theory of wave scattering by rigid rotators. 

Orthogonality of D-matrix Elements. The Clebsch-Gordan series allows direct 
proof of the orthogonality of the product of two rotation matrix elements over a suit- 
able range of Euler angles, as derived in Section 6.4.2. In (7.89) the symmetry 
(6.45) may be used to produce a complex conjugate for the first function. On the 
right-hand side of (7.89) there is a sum over integrals over a single matrix element. 
As in Section 6.4.2, the integral over a requires mi = 0 and gives 4n, while j 3  and 
rn3 must also be integers. The integral over ymust therefore also be zero unless 
m3 = 0, when it becomes 2z. The remaining integral, over p, is just that over the 
Legendre polynomial I$ (cosp), which is just 26j3,0. Finally, (7.63) can be used 
for the 3-j coefficients. By carrying through these steps, as Problem 7.17 suggests, 
it is straightforward to show that 

(7.96) 

in agreement with (6.56). The technique used here can readily be extended to inte- 
grals over several matrix elements, as we now show. 

Integrals of the Product of Several D-matrix Elements. A powerful applica- 
tion of the Clebsch-Gordan series (7.89) is to reduce the integral over the product of 
several D-matrix elements to sums of products of 3-j coefficients. Every pair of ele- 
ments produces a sum over two coefficients. We indicate this schematically as 

in which (1 2)' and (1 2) represent the coupling coefficients, with appropriate m val- 
ues assumed throughout, andjlz,,,,, is the resultant of all the couplings. 

The simplest example of this procedure is for integrals over the product of three 
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j:Gl (cos P)Pt2 (cos p)P,, (cos P)sin p d p  = 2 (a: t:)2 

D-matrix elements, which requires use of (7.89) only once, followed by the 
orthogonality (7.96) of the matrix elements. Thus, the integral is given by 

(7.100) 

(7.98) 

The range of a integration may be reduced to 27r and the integral halved if the con- 
ditions on half-integer properties of j l , j 2 ,  and j3 (Section 6.4.2) are satisfied. 

Note that relation (7.90) for reduced rotation matrix elements does not always 
simplify the integration over p of products of such matrix elements. To understand 
why, note that the a and yintegrals produce most of the simplification after the 
Clebsch-Gordan series has been used. If, however, both the m' and m sums are 
zero, then the integral over a in (7.98) gives 4a and the integral over ygives an- 
other factor of 2n. We can therefore write an analogous result for the integral of the 
product of three d-matrix elements: 

Whenever this does not lead to the result 0 = 0, it is useful for evaluating the inte- 
gral. In particular, since Table 6.4 shows that a reduced rotation matrix element 
collapses to a Legendre polynomial when both its m values are zero, we have im- 
mediately from (7.99) the integral 

The same result may be deduced from (7.91) by using the orthogonality of Legendre 
polynomials. Note that the 3-j coefficient is given simply by (7.73) and that it is 
zero unless el + l2 + t3  is even. This requirement is consistent with the parity sym- 
metry of P,(COS e), namely (-1)'. 

A Worked Example for Three Reduced Rotation Matrix Elements. Suppose 
that j1 = j2 = j3  = 2,  and that one wishes to perform an integral of the kind (7.99). 
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A ( B , P ~ L )  el +e2 + L  even m, +m2 = M  

If mi = mi = I and m; = -2, then the first Kronecker 6 is satisfied. If ml = 2 and 
m2 = m3 = -1, then the second Kronecker 6 is also satisfied. We therefore have 
nonzero values on both sides of (7.99), so the integral is given by 

(7.103) 

2 2 2 2 2 2  6 
=2(1 1 -2)(2 -1 -1)=55 

(7.101) 

in which the 3-j coefficients are equal because of the permutation symmetry (7.64), 
and their value is given by (7.84). The alternative method of evaluating the 
integral-by substituting from Table 6.3 the expressions for the three functions, 
multiplying out the factors, and integrating termbyterm-is both tedious and error- 
prone. If one can obtain readily the 3-j coefficients, as described in Sections 7.3.4 
and 7.4, then such integrals are performed most easily by using (7.99) . 

Integrals over Three Spherical Harmonics; Gaunt Integrals. The integral over 
the product of three D-matrix elements given by (7.98) can be specialized to a case 
that is frequently required, namely when the j  values are integers and one of the m 
values in each element is zero. Then-according to Table 6.4-we have an integral 
over quantities proportional to spherical harmonics. It is then straightforward to 
show that the integral over the unit sphere, R', of the product of three spherical har- 
monics is given by 

(7.102) 

Here it is appropriate to halve the range of integration over cx = 4, since the total an- 
gular momentum numbers are integers. Note the three conditions that are necessary 
for the integral to be nonzero: 

The result (7.102) is usually called the Gaunt integral [Gau29]. The integral over 
the product of three Legendre polynomials, (7. IOO), being a special case of this 
formula. 
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7.5.4 Examples: Celestial Bodies and Rotator Matrix Elements 

We now develop two examples-from celestial mechanics and from molecular and 
nuclear scattering-that illustrate using the Gaunt integrals. 

Figures of Equilibrium of Celestial Bodies. A long-term problem in celestial 
mechanics is to determine the dynamics of planetary and binary-star systems. In- 
deed, many of the techniques developed in applied mathematics from the eighteenth 
century onward-by such luminaries as Laplace, Legendre, Gauss, and Poincari- 
have been motivated by such problems. In the second half of the twentieth century 
the deployment of artificial satellites around Earth and the other planets has enabled 
precise determination of their mass distributions from measurements of perturbations 
of satellite orbits because of departures of the gravitational potentiid from spherical 
symmetry. 

In the following we illustrate how a complicated angular integral over Legendre 
functions that appears in the theory of interactions between planetary or stellar 
rotations and the tides induced by a nearby celestial body can be performed simply 
by using the techniques developed in this chapter and Chapter 6. It is traditional in 
celestial mechanics to use tedious brute-force methods for almost all analyses. The 
details of setting up the integral are described by Kopal in a monograph on the 
figures of equilibrium of celestial bodies [Kop60, Section IV- 11. Introductory 
material on celestial mechanics is given in the text by Danby [Dan62], while a more 
advanced presentation for practical calculations is given by Taff [Taf85]. 

The geometry of the problem is shown in Figure 7.12, in which the larger body 
is the one whose shape (including surface fluids such as water and atmosphere) is 
affected by the body centered at r" = (r", O", @"). 

FIGURE 7.12 A rotating celestial body, shown by the ellipsoid at left, contains representative 
mass elements at points r'. It interacts gravitationally with another body at r" that causes tidal 
forces on it. To calculate the gravitational potential at a point r outside the first body requires the 
angular integral (7.104). 
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In Figure 7.12, vector r =(r,8,$) is drawn from the center of the coordinate 
system (x ,  y ,  z) to a point at which the gravitational potential is required. Typically, 
r is the instantaneous position of an artificial satellite. The positions of the mass 
points exerting the gravitational pull are denoted by r' = (r',O',$') and are to be inte- 
grated over, including the following integration over angles: 

2n+1 
4n p,")(;, ;") - j pj (?-t")Pn (t. ?)Pi (cos e') sin 8' d8' d#' (7.104) 

Herej and n (in the notation used by Kopal) are non-negative integers. 
The strategy for performing such integrals over Legendre functions of angles be- 

tween two vectors (@' and y ,  respectively, in Figure 7.12) is to use the spherical 
harmonic addition theorem (4.23) to expand into spherical harmonics of the compo- 
nent angles, then to use the Gaunt integral (7.102) to integrate over three spherical 
harmonics after writing the P; in terms of y2, by using (4.18). By carrying out the 
details of this in Problem 7.18, you will discover easily that 

(7.105) 

Kopal [Kop6O, page 911 tabulates the integrals (evaluated "after a considerable 
amount of algebra") for 0 5 j  5.4 and 0 5 n 5.7 and suggests a general relation: 

As you may verify in Problem 7.18, this result follows rather directly by using the 
Clebsch-Gordan series (7.89). The symmetry 

follows directly from (7.105) by using symmetries of the 3-j coefficients. 
Now that we know how to apply rotational-symmetry techniques to simplify an- 

gular integrals in macroscopic systems such as binary stars or artificial satellites, let 
us focus on an example of what is often a microscopic system-wave scattering by a 
rigid rotator, as occurs in molecular and nuclear physics. The method is, in essence, 
also applicable to scattering of sound waves by a spheroidal object. 

An Integral from the Theory of Scattering by a Rigid Rotator. In Section 6.5 
we discuss rigid-body rotations in quantum mechanics and find that the complex 
conjugates of rotation-matrix elements describe angular momentum eigenstates. 
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Those developments emphasize the energy states, whereas now we discuss the 
matrix elements for scattering by such a rotator. We follow an article by Arthurs and 
Dalgarno [Art601 on scattering of a quantum wave by a molecule approximated as a 
rigid rotator, using their notation. Although described in this context, the angular 
integrals are also applicable to scattering of waves by any object whose Hamiltonian 
approximates that of a rigid rotator. Since our emphasis is on showing how to do 
angular integrals, whenever clarity and simplicity are served we drop overall 
proportionality factors. 

Suppose that a rigid rotator, such as the diatomic molecule sketched in Fig- 
ure 7.13, interacts with a wave with representative point r = (r,O,@). Our aim is to 
calculate for given angular momentum states the effective potential at r averaged over 
all points of the rotator. This requires wave functions, interaction potentials, then 
matrix elements. We develop the angle-dependent parts of each of these in turn. 

FIGURE 7.13 A rigid rotator interacts with a wave, of which a representative point is r. The 
matrix elements of the rnultipole elements of the potential, (7.1 IO), are to be evaluated. Integration 
is over all points r’ of the molecule that contribute to the potential at r. 

Coupled Wave Functions. First, we make appropriately coupled wave func- 
tions. For the scattered wave, as discussed in Section 5.4, a given partial wave 4 
has an angular dependence proportional to P‘(cos8) if it is a plane wave directed 
along the z axis. More generally, for a wave at an arbitrary orientation the angular 
dependence is qm(@). For the rotator wave function, suppose that it is symmetric 
( K  = 0 on the body-fixed symmetry axis, Figure 7.13), with angular momentum 
number j and projection on the space-fixed z axis of m,. Table 6.4. shows that the 
complex-conjugated D-matrix element is just proportional to Y,nt, (O‘@’), where 
r’=(r’,O’,@‘) is a representative point of the rotator. The combined system in the 
state (1, M) is then given by sums of products with 3-j coefficients and is propor- 
tional to YE(f,t’) defined by 
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y;(i.,i.’) E ((e8+’)(e+)l j c ;  J M )  
(7.108) j l J  =z( 

in which the summation is over those m, and m values whose sum is the given M .  

Multipole Expansion of the Interaction. We assume that the interaction 
V(r,r’) of the scattered wave with the scatterer is spin-independent, depending only 
on position. Because we calculate the effective potential at r, without regard to the 
orientation of the rotator, it is convenient to make a multipole expansion, as follows: 

IV(r,r8)r82 dr’= z vP(r)PP(cos y) (7.109) 
P 

in terms of the angle y between r and r‘ shown in Figure 7.13. This expansion 
separates out the distance dependence ( r )  from the angle dependence(y), which is 
especially convenient for doing subsequently angle integrations. The multipole 
moment of order y, vp(r), is given by inverting (7.109), using the orthogonality 
relation (4.3) for the Legendre polynomials. Thus 

2 y + l  
vP(r)=-/ 2 [rV(r,r8)r82 dr’]P,(cosy)sin ydy (7.110) 

for y = 0, 1,  2,. . . until the expansion when inserted in the subsequent matrix ele- 
ments is sufficiently accurately converged. 

As an example of the multipole expansion, suppose that the interaction is purely 
electrostatic, that the scattered object has a spherically symmetric charge distribution 
with total charge Z e ,  and that the two scatterers do not interpenetrate ( r >  r’). 
Starting from Coulomb’s law, we have that an element of charge in a small volume 
element dr’ at r’ in the scatterer where the density is p(r’) contributes to the poten- 
tial at r an amount of dV, given by 

Zep(r’)dr’ 
lr --’I dV(r, r’) = 

(7.111) 

In the second line we used the familiar Legendre expansion Won91, Section 5.21 
for the inverse of the separation. By comparing the last two equations, we have im- 
mediately for electrostatic interactions the multipole expansion coefficients given by 

2 Q P  vJr )  = - 
P+’ 

(7.112) 
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in which the Qp are the charge multipole moments of the rotator, given by 

(7.1 13) Q, = Jp(r ' ) ( r  I ) ,+2 dr' 

For other forms of the interaction-for example, a nucleon-nucleon potential if the 
rotator describes an atomic nucleus such as 170Hf (Section 6.5.3)--the multipole 
moments are usually computed numerically in terms of the definition (7.110). 

Matrix Elements in the Multipole Expansion. Now that we have the ingredi- 
ents for calculating the angular integrals for interaction matrix elements, we have to 
sandwich the interaction V between the bread and butter of the wave functions 
(7.108). Since V is scalar, the matrix elements are diagonal in the total angular 
momentum J and its projection M on a chosen z axis, so it is sufficient to calculate 
the matrix elements given by 

in which the first summation is over projections that sum to M ,  and the second sum 
is over p values consistent with these for the matrix elements Ip.  As Problem 7.19 
suggests you verify, these matrix elements are given by 

4n 
I ,  =- c I Y ~ W m - ( i ) r ; m ( i ) Y , r , r ( i . )  di. 

x JTWm,. ( i ' )Ypn(i ' )qm,,  (i')di 

- c 42e"+1)(2p+1)(2!'+1)(2j"+l)(2p +1)(2j'+l) 

2P+l  m 

(7.115) 

-- 
2 P + 1  m 

The matrix element (7.1 14) therefore reduces to 

(j"l";JMlV)j'l';JM) = 41c~(2P"+1)(21'+1)(2jN+1)(2j'+1) 
(7.1 16) 

P 

in which the sum over magnetic-substate projections is 
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The sum is over all m values except M. Thus, we have reduced the problem of inte- 
gration over angles to summations over products of 3-j coefficients. The geometric 
(rotational symmetry) aspects in the coupling coefficients have also been clearly sep- 
arated from the dynamical aspects, the vp(r). In formula (7.117) the rn-value sum- 
mation is tedious to perform directly, but in Section 9.4.2 we show how it can be 
simplified in terms of 6-j coefficients. 

A major advantage of formulas (7.116) and (7.117) over other methods of 
simplifying the calculation of matrix elements is that angular momentum selection 
rules are immediately evident in the 3-j coefficients. For example, suppose that the 
scatterer is a diatomic homonuclear molecule-such as N2-approximated as a rigid 
rotator. Then the reflection symmetry of this system about its center allows only 
even angular momentum states j" and j'. From the parity conservation 3-j coeffi- 
cients in (7.1 16) that contain j" and j', we therefore have that p must be even; that 
is, only even multipole moments contribute to the scattering. Thence, from the par- 
ity conservation 3-j coefficient with !" and !', the difference between the incident 
partial wave L' and outgoing partial wave C" must be even. For example, scattering 
from p wave to f wave, but not p wave to d wave. 

In both examples of the use of Gaunt integrals, the rotational symmetry aspect of 
angular momentum is paramount. Thus, we use geometrical angular momentum 
rather than dynamical angular momentum-making the distinction established in 
Section 3.4.5 and developed in Section 5.1. 

PROBLEMS ON COMBINING TWO 
ANGULAR MOMENTUM EIGENSTATES 

7 . 1  In combining angular momenta, we have formula (7.5), which determines 
the lower limit on the coupled angular momentum, J<. Use the formula for the sum 

(7.118) 

which is valid for integer or half-integer j values, together with the upper limit 
P = .I> = j ,  +j2, in order to derive the lower limit .I< = lj, - j2\ .  
7.2 Verify the spin-orbit energy formulas (7.13) and (7.14), starting with 
relation (7.12). 
7 . 3  For the Coulomb problem in Section 7.1.4 derive in detail the following: 
(a) Demonstrate that for an inverse-square force the classical eccentricity vector, 
A,, is a constant of the motion; that is, show in detail the steps between equations 
(7.15) through (7.18). 
(b) Derive the quanta1 operator properties (7.26) through (7.29) by starting with the 
definitions and commutation properties of the operators for orbital angular momen- 
tum and linear momentum. 
7.4 Derive the m-sum unitarity property of Clebsch-Gordan coefficients, (7.41), 
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by following through steps similar to those used for J-sum unitarity, 
7.5 
Gordan coefficients, as follows. 
(a) Apply the binomial expansion to (7.48) and collect terms to obtain (7.49). 
(b)  Use the orthogonality condition (7.39) to obtain the C coefficient given by 
(7.50). To collapse the sum, use the combinatorial identities 

Carry out the algebraic steps leading to formula (7.51) for the Clebsch- 

:(‘I( k c - k  )=(‘Ib) ( ~ ) = ( - l ) v ( v - ~ - ’ )  (7.119) 

where the combinatorial 

(7.120) 

(c )  To obtain the general coefficient, apply J-1 operator J -  M times to (7.49), ex- 
pand terms by using the binomial theorem and the analogue of the Leibnitz theorem 
for the action of a+. Then identify the coefficient of the product of each subsystem 
eigenstate, as in (7.43), to obtain (7.51). 
7.6 Verify the symmetry properties of the 3-j coefficients, (7.64) and (7.65), by 
making the substitutions indicated in the general formula (7.59). 
7.7 Verify the phase relation (7.69) for interchanging the order of combining two 
angular momenta. To do this, use the combination rule (7.60), the symmetry 
relation (7.67), and the phase-manipulation rules in Section 2.1.4. 
7 . 8 M  The 3-j coefficients with all magnetic substate values zero have several 
simplifications over the general coefficients. 
(a) Show that the number of such coefficients for a and b fixed is min(a, b)+ I .  
(b) Show that the jackknife case, c = Ib- a I, and the stretched case, c = a + 6 ,  have 
nonzero coefficients. 
( c )  Derive formula (7.43) for the “parity-conservation” coupling coefficients by 
specializing (7.59) to the case with each m value zero. 
(d) Prove that the signs of the nonzero coefficients alternate for successive allowed 
values of c with a and b fixed. 
( e )  Use Mathemafica notebook 3 j 0 0 0 in Appendix I to verily the numerical 
values of the coefficients in Figure 7.2. Check the orthogonality condition (7.61) 
using these values. 
7 . 9  Derive the combined spin and orbital states for s = 1/2, as given by (7.75), 
by substituting the orbital spherical harmonics and the spin states >;* for the compo- 
nent angular momentum states, then using the general expression (7.59) or 
Table 7.3 for spin 1/2 for the coupling coefficients. 
7 .10  Show that for given j l  and j z  the number of coefficients for combining two 
angular momenta is N3(j l , j2)=(2j l  +1)(2j,+1)[2min(jl , j2)+l].  To do this, 
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count the number of ml and m2 values, as well as the number of combined angular 
momenta by using the triangle and projection selection rules in Section 7.1.2. 
7.11M Algebraic expressions for 3-j coefficients can be obtained by using Math- 
ematica notebook Alg3 j in Appendix I. (Note that function ThreeJSymbol 
checks the triangle and m-sum selection rules only if numerical arguments are 
given.) 
(a) Enter and check Alg3j by computing a few of the values given in Table 7.3. 
(b) Generate the four independent algebraic 3-j coefficients corresponding to the 
smallest angular momentum being 3/2. Check the column-permutation symmetries 
and orthogonality of the resulting coefficients. 
(c) For a small angular momentum of your choice, say 112, modify the notebook so 
that it applies the function CForm or FortranForm to the algebraic 3-j coefficient 
generated by Mathematica. Then use this code as part of a small C or Fortran pro- 
gram that computes the coefficient numerically. Check its results against the pro- 
gram for 3-j coefficients given in Appendix 11. 
(4 Time the special-purpose program from (c)  and the general-purpose program 
from Appendix 11, measuring only the execution times of the coefficients, not the 
times for input and output. What is the speedup factor in your computing system? 
Would this produce significant savings in typical calculations where you use these 
coefficients? 
7 .12  With a computer program for 3-j coefficients that you have chosen (for ex- 
ample, C2 in Appendix 11), modify the program to verify orthogonality condition 
(7.61). Note that-unless you compute the coefficients symbolically or with exact 
rational-fraction arithmetic-the orthogonality will be satisfied only within the 
roundoff errors of your computation. 
7.13  Consider the two types of Clebsch-Gordan series. 
(a)  Derive the inverse Clebsch-Gordan series (7.87) by following along the steps 
indicated in the text. 
(b) Make a similar derivation of the Clebsch-Gordan series (7.89). 
7.14M Use Mathematica notebook Legprod with various choices of a1 and t 2  
in (7.9 1) to explore the Clebsch-Gordan series expansion for products of Legendre 
polynomials. LegProd draws the functions appearing in (7.91) and displays deci- 
mal approximations to the Clebsch-Gordan series coefficients on its right-hand side. 
7.15 Use the Clebsch-Gordan series (7.89) and the steps indicated in the text to 
derive the angular distribution formulas (7.94) and (7.95). 

7.16M Use Mathematica notebook YngThm in Appendix I to verify graphically 
the equivalence of expressions (7.93) and (7.94) for several choices of real values of 
the amplitudes a,. The choice of real amplitudes is for simplification only. 
7.17  To derive the orthogonality relation for D-matrix elements (7.96), show the 
details of the steps indicated in Section 7.5.3. 
7.18 Investigate the celestial-mechanics integral (7.104) as follows. 
(a) Use the spherical harmonic addition theorem (4.23) to expand the first two Leg- 
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endre polynomials into spherical harmonics of the component angles, then use the 
Gaunt integral (7.102) to integrate over three spherical harmonics of the angles 
(6'@') after writing the p22 in terms of q2 by using (4.18). 
(b) By using the Clebsch-Gordan series (7.89) applied to the special case of rotation 
matrix elements as spherical harmonics, then using the spherical harmonic addition 
theorem (4.23), derive the sum rule (7.106). 
(c) Derive the symmetry relation (7.107) by using the permutation symmetries of 
the 3-j coefficients. 
7.19 Calculate expression (7.115) for the rigid rotator multipole matrix elements by 
using the spherical-harmonic addition theorem (4.23) in (7.1 lo), then use the Gaunt 
integral formula (7.102) to obtain the second equality in (7.115). 
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Chapter 8 

IRREDUCIBLE SPHERICAL 
TENSORS AND SPIN 

In the preceding chapters we have developed rotational properties of angular mo- 
mentum eigenstates, both under infinitesimal rotations (J operators, Chapters 3 
and 4) and under finite rotations (D-matrix elements, Chapter 6).  Our emphasis in 
this chapter is on constructing operators whose properties under rotations are simi- 
lar to those of such eigenstates. Figure 8.1 summarizes correspondences that we 
derive between angular momentum and spherical tensors. 

ANGULAR MOMENTUM AND SPHERICAL TENSORS 

Angular momentum operators, Ji, 
and eigenstates I jm)  

Spherical-basis operators, Jo, u= f1,O 
Commutation relations; [3.1.2, 3.1.31 

Angular momentum eigenvalues (j, m )  
and matrix elements; [3.4] 

Angular momentum eigenstates, 
Ijm); 141 
Rotationsof Ijm) by DAht; [61 

Combining angular momenta; [7,9] 

Spin angular momentum; [3.5,4.3] 

Irreducible spherical tensor 
operator compont?nts Tkq 

Commutation relations of Jo 
with Tkq; [8.1.2] 

Tensor ( k ,  q)  and matrix elements; 
Wigner-Eckart theorem; t8.31 

Tensor components, Tkq; [8.1, 8.21 

Rotations of Tkq by D$,; IS. 11 

Combining tensors; [8.2,9.4, 9.51 

Spin tensors; [8.4] 

FIGURE 8.1 Correspondences between angular momentum and irreducible spherical tensors. 
Relevant sections are indicated in brackets. 
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Before studying this chapter, it would be worthwhile for you to review the sections 
on angular momentum in Chapters 2-7 that are indicated in Figure 8.1. 

We begin the chapter by defining irreducible tensor operators and explaining 
their power (Section 8. I), then we show in Section 8.2 how tensors may be com- 
bined, either to produce tensors of higher rank or to produce scalars (zero-rank 
tensors). The Wigner-Eckart theorem for irreducible spherical tensors-surely the 
most powerful and useful result in this field-separates dynamics from geometry. 
We derive it in Section 8.3, where we also show how to determine and interpret re- 
duced matrix elements. Tensors for spin polarization are related to density matri- 
ces in Section 8.4, which also has a treatment of spin transport through magnetic 
field gradients that illustrates using various angular momentum techniques. 

In Chapter 9, after developing the 6-j and 9-j coefficients for combining three 
and four angular momentum eigenstates, we return to irreducible tensors, devising 
formulas for their scalar products (Section 9.4) and for their matrix elements in 
coupled schemes (Section 9.5). 

Tensors in the Physical Sciences. Tensors appear in a variety of contexts and 
terminologies in the physical sciences. Probably familiar to you are the stress- 
energy tensor in classical mechanics [Go180, Section 12-31 and the field tensor in 
electromagnetism [Go180, Section 12-61. Both of these are second-rank tensors, 
which are often just called “tensors.” Surely even more familiar are rank-zero ten- 
sors, called scalars, and rank-one tensors, called vectors. Tensor nomenclature is 
summarized in Table 8.1. 

TABLE 8.1 Notation for tensors and examples of tensors. 

Tensor rank, k Type of tensor Example 

0 Scalar Hamiltonian, V,,(r)L.S 
1 Vector Angular momentum, J 

2 “Tensor” Inertia tensor, I 

k 2 3 kth-Rank tensor Tk 

Tensors of rank higher than two occur frequently in areas such as piezoelec- 
tricity, the Hail effect, and the characterization of electro-optical devices such as 
Pockels and Kerr cells. The physical properties of the materials used in such de- 
vices are highly anisotropic, so corresponding high-order tensors are needed to de- 
scribe them. An introduction to Cartesian tensors in  this context is given in 
Lovett’s book [Lov89], while a more advanced treatment using group theory 
methods (Section 2.5) is given in the monograph by Wooster [Woo73]. 

Note some ambiguity in the examples of tensors in Table 8.1. In classical me- 
chanics (as well as in electromagnetism) quantities such as angular momentum (L, 
in Section 3.4.5) and the inertia tensor are directly observable. On the other hand, 
in quantum mechanics J, = AJ is an operator whose expectation values follow 
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(according to the Ehrenfest’s theorems, Section 5.1) classical equations of motion. 
One generalization made in the following when developing irreducible tensors is 
that such tensors may be composed of operators as well as of numtiers. 

Rotations of Scalars and Vectors. If we rotate something (an object, a function 
that depends on coordinates, or an operator) and find that it is invariant under ro- 
tations, then-by definition-we have a scalar, S. On the other hand, for a vector, 
V, under rotation its components transform according to 

v; = c vq. q8=1,2,3=x,y,z 
4‘ 

for 4 = 1,2,3 or x, y, z. The unconventional labeling in (8.1) facilitates comparison 
with formulas for irreducible spherical tensors. For rotations the form the ele- 
ments of an orthogonal 3 x 3 matrix, as shown for coordinate rotations in Sec- 
tion 1.3. More generally, if the elements of V are allowed to be complex, then the 
matrix is unitary. 

We may cast the rotational invariance of a scalar trivially into a form analo- 
gous to (8.1) by writing 

so the “transformation” element a0 is automatically a 1 x 1 unitary matrix. 

Second-Rank Tensors and Rotations. Consider the inertia tensor I in classical 
mechanics, or the analogous quadrupole-moment tensor in electrostatics. For a 
system of mass points ma at ra =(ral,ra2,ra3) the elements of the inertia tensor 
are given by 

in which the sum is over all mass points in the system. The inertia tensor is said to 
be of second rank because the coordinate components appear bilinearly for each 
mass point. Generally, there are nine combinations of i andj, but since this tensor 
is symmetric, I j i  = I j i  , there are six linearly independent components of I. Under 
rotations, the inertia tensor transforms as 

I’ = c zpt4# aPsP aqsq p’, q’ = 1,2,3 P 4  
P’4’ 

(8.4) 

which is the transformation property for any second-rank tensor T constructed 
from coordinates. 

in the terminology of groups (Section 2.5), the rotational-transformation coef- 
ficients for a second-rank tensor form a 9 x 9 matrix that is a 9-dimensional repre- 
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sentation (Section 2.5.3) of the rotation group, just as the vector transformation 
produces a 3-dimensional representation and the invariant scalar is a l-dimen- 
sional representation. The nine components of a general second-rank tensor can be 
expressed in terms of one scalar, T(O),  given by 

plus three antisymmetric tensor components 

plus a symmetric tensor with five independent components and zero trace 

Under rotations, each set of components transforms within the same set, thus form- 
ing an irreducible representation (Section 2.5.5) of the rotation group. 

These considerations of familiar scalars, vectors, and second-rank tensors- 
especially their properties under rotations-lead us to irreducible tensor operators. 

8.1 DEFINITION OF IRREDUCIBLE TENSOR OPERATORS 

There are two primary definitions of irreducible spherical tensor operators. The 
first is in terms of properties under finite rotations, while the second-due to 
Racah-is in terms of infinitesimal rotations through the commutation properties 
of the tensor elements with angular momentum operators. We examine both of 
these in turn. 

One impediment to developing irreducible tensors is that both definitions are 
implicit rather than constructive. That is, they specify what properties the tensor 
must have, rather than providing a prescription for generating the elements of the 
tensor. An exception to this is in Racah’s definition, which requires one element 
to initiate the construction, as shown in Section 8.1.2. 

8.1.1 Defining Irreducible Spherical Tensors 

The nomenclature commonly used for the tensor operators is that each quantity Tkq 
(q  = -k, -k+ 1, ..., k-  1, k) is one of 2k+ 1 elements of the rank-k tensor Tk,just as 
Vi is one of three elements of the vector V. (Note that-rather than wrestling with 
the Greco-Roman convention-we use q rather than KfOr the projection of k.) The 
components of the irreducible spherical tensor operator T k  (often just called a 
“tensor operator”) transform under rotation through the Euler angles (Sec- 
tion 1.3. I )  of ( a p  7) according to 
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where the are the rotation matrix elements (Chapter 6) associated with total 
angular momentum k .  Note that even though the Tk,# often involve differential 
operators, they do not act on the D-matrix elements. The correspondence between 
this relation and the transformation of angular momentum eigenstates 0, m) under 
rotations is k - j and q - m. 

The irreducibility in relation (8.8) is that rotations maintain the rank of the ten- 
sor (same unique k on both sides), just as for the irreducibility of a group represen- 
tation (Section 2.5.5) and the j representations of angular momentum operators 
(Section 3.4.1). A matrix representation (in the group sense discussed in Sec- 
tion 2.5.3) will therefore be block-diagonal in k, and each block will be of size 
(2k+ 1) x ( 2 k +  I), corresponding to the allowed range of q values. Thus, as shown 
by the examples in the introduction to this chapter, there are 1-, 3-, and 5-dimen- 
sional representations for scalars, vectors, and (second-rank) tensors, respectively. 

The overall normalization of the tensor, including complex phases that are in- 
dependent of q, does not affect its rotation properties, since relation (8.8) is linear. 
Indeed, confusion as to normalization of tensors whose properties are otherwise 
similar is a constant problem. 

8.1.2 Racah’s Definition and Its Applications 

In his pioneering work on rotational symmetry in atomic spectroscopy, Racah 
[Rac42] introduced alternative requirements that a set of 2k+ 1 quantities, Tks with 
q = -k, -k + 1,  . . . , k - 1, k, must satisfy to qualify as a rank-k irreducible spherical 
tensor. Racah’s requirements are that the commutators 

and that with the ladder operators for angular momentum the cominutators 

in which the J+I  are also the angular momentum operator components in the 
spherical basis (Sections 3.1.3, 3.4.2). Note the similarity of requirements (8.9) 
and (8.10) to the properties of angular momentum eigenstates in Section 3.4, again 
suggesting the close correspondence between spherical tensor operators and state 
vectors. 
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Proof of Equivalence. To show that the original definition, (8.8), is equivalent 
to Racah's rules, consider first an infinitesimal rotation about the z axis through 
angle 6,. The Euler angles describing the rotation are thus 01 = a,, p = 0 = y The 
right-hand side of (8.8) is then 

in which the single zero in the tensor abbreviates (0 0 0) for the Euler angles. The 
left-hand side of (8.8) becomes the rotated operator 

If we now expand these last two equations through first order in a,, we find that 
they are equal provided that (8.9) is satisfied. 

Having seen the method of proof for the easiest rotation axis, namely the 
eigenvalue axis z, we can extend it for x and y axis rotations, as follows. Let A de- 
note either x or y; then the operator for an infinitesimal rotation about the A axis 
through angle & can be approximated by 1 - iSAJL and its Hermitian conjugate 
requires just a sign change of the second term. The operator matrix elements are 
approximated by 

By inserting the operators and matrix elements in the definition, then simplifying 
and taking the limit 61 4 0, it is straightforward to show (as Problem 8.1 suggests 
doing) that 

(8.14) 
4' 

The Racah definition (8.10) follows upon combining J x  and J,, to give J+1 and 
substituting for the matrix elements. The two conditions (8.9) and (8.10) can be 
summarized as 

As a mnemonic for the 3-j coefficient, note that Ja is a vector (rank l), that there is 
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rank-k Tkq on the left-hand side, and that they combine to Tk,q+o on the right-hand 
side. Spherical tensors can be either generated or tested by using the Racah defini- 
tion, as we now show for several practical examples. 

Vectors as Spherical Tensors by the Racah Definition. Since rhe z component 
of a vector V commutes with J,, (8.9) shows that V, = Vo, the q = 0 component of 
a k = 1 tensor. The other two tensor components, V.1, can therefore be generated 
by using (8.10). From the commutation relations of V,  with the angular momen- 
tum operators, it is straightforward to show that 

v,, =T(v% * i v y )  (8.16) 

in agreement with (4.44), apart from a different choice of normalization. The set 
of angular momentum operators when expressed in the spherical basis, as in Sec- 
tion 3.1.3, provide an example of vector operators. 

Spherical Harmonics and Irreducible Tensors. Spherical and solid harmonics 
(Sections 4.1.3 and 4.1.4, respectively) are examples of irreducible tensors, in the 
following sense. The spherical harmonic Ykq (k a non-negative integer) satisfies 
transformation property (8 .Q being an angular momentum eigenstate. Therefore, 
the set [ Ykq, q = -k, . . ., k } gives the components of a rank-k tensor. The Racah 
definition is just the way we generate the spherical harmonics in Section 4.1.3. 
Here the “operators” are just number operators in an angle space. 

Angular Momentum Operators as Tensors. As an example of testing a set of 
operators to see whether they compose a spherical tensor, consider the angular mo- 
mentum operators in the spherical basis, Jq with q = 41,0, themselves. As Prob- 
lem 8.2 suggests that you show in detail, these form the components of a rank-1 
tensor operator. The spherical-basis unit vectors 6, given by (4.38) and the 
angular momentum basis vectors So defined by (4.46), where CI‘ = k 1, 0, can be 
tested similarly to show that they are rank-1 tensor operators. 

Gradient Operator in Spherical Basis as a Rank-1 Spherical Tensor. Suppose 
that we construct the gradient operator, V, with its components V, given in the 
spherical basis. Since we have a function only of coordinates, the: general consid- 
erations in Section 3.2 show that .Io+ Lo. It is Straightforward but tedious (SO de- 
ferred to Problem 8.3) to show that the components of the gradient satisfy 

(8.17) 

This result is particularly useful for electromagnetic multipoli: fields [ R o s ~ ~ ,  
Section 251. 
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Adjoint of u Tensor Operator. To find the adjoint (Hermitian conjugate) of a 
tensor operator, consider the Racah definitions (8.9) and @.lo), then take the Her- 
mitian conjugate (t) on both sides. By using (2.45) to relate commutators and ad- 
joints, then (3.10) for the adjoint of the spherical-basis angular momentum opera- 
tors, we find the requirement that 

which is satisfied by - 
(8.18) 

(8.19) 

for any exponent p ,  For example, the choice p = 0 is appropriate for the angular 
momentum operators and the spherical harmonics. 

Matrix elements of tensor operators and their adjoints that are related by (8.19) 
are connected by 

(8.20) 

So a consistent choice of p is required when matrix elements are calculated and 
combined. We usually Leave p as a variable. 

8.2 COMBINING IRREDUCIBLE TENSORS 

In Chapter 7 we develop techniques for combining the eigenstates of angular mo- 
mentum operators. Now that we have devised spherical tensor operators, which 
transform under rotations just like wave functions, we develop combinations of 
these operators. We first discover a general procedure (Section 8.2. l), then we 
specialize in Section 8.2.2 to the case of building a scalar ( k  = 0 tensor) from two 
tensors of the same rank, analogous to the scalar product of two vectors. In both 
sections we develop several applications of coupled tensors. 

8.2.1 Building Up Irreducible Spherical Tensors 

The correspondence between irreducible tensor operators and angular momentum 
eigenstates exhibited in Figure 8.1 becomes even more apparent when coupling of 
tensors is considered. Let Tktq, ( A , )  and TkZqZ (A, )  be elements of irreducible ten- 
sor operators of ranks kl and k2 ,respectively. It does not need to be assumed-un- 
like in Section 7.1.2 for combining two angular momentum eigenstates-that la- 
bels A [ and A2 indicate distinct systems, When no ambiguity is likely, we omit the 
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k,+k,+K-2QT 
TKQ (A2 1 A1 ) = (- 1) K Q  9 

if component tensors commute 

labels. Ordering of the operators q,y, ( A 1 )  and TkZyI ( A 2 )  is significant, however. 

The Building-Up Formula. Consider the direct-product combination of tensor 
operators formed in exact analogy to the combination of independent angular mo- 
menta given by (7.60), namely: 

(8.22) 

(8.21) 

in which the sum over 41 and 42 is constrained to values for which 41 + 42 = Q. To 
prove that the left-hand side really is a tensor operator of rank K and projection Q, 
consider a rotation of each of the component tensors through the same Euler an- 
gles, just as for the rotation matrices in Section 7.5. Each component tensor is 
transformed according to (8.8). By following through the algebraic steps sug- 
gested in Problem 8.4, you can show directly that the expression on the right-hand 
side of (8.21) transforms under rotations with D i n Q ,  so it is (by definition) a tensor 
of rank K with components Q. Since only a single value of K is required for this 
rotation, (8.21) really does define a component of an irreducible tensor. 

Thus, merely by using the machinery of angular momentum coupling devel- 
oped in Chapter 7 and extended in Chapter 9, we can take two tensors of ranks kl 
and k2 then use them to build up tensors of all ranks K between Ikl -k21 and kl + k2. 
Although we use the term “building up,” a useful special case of (8.21) is to con- 
tract two tensors of the same rank to a scalar, rank K = 0. This calse we develop in 
detail in Section 8.2.2. 

Note that there is generally no simple relationship between T K Q ( A ~ , A ~ )  and 
T K Q ( A ~ , A ~ ) ,  unless the component operators commute. In this case we have 

We now give several examples of using the tensor coupling formula (8.21) to 
construct tensors of rank higher than zero that are interesting for the physical sci- 
ences. The rank of the irreducible tensors formed generally increases from exarn- 
ple to example. 

Vector Cross Products in Spherical Tensor Representation. Suppose that we 
have two conventional vectors, A and B. Convert them first to their rank-1 com- 
plex spherical basis components, as derived in Section 4.2.1. Then combine them 
to form another rank-1 tensor ( K  = 0) by using (8.21). After some tedious algebra, 
deferred to Problem 8.5, you may find that 
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(8.23) 

Note that X reverses sign if A and B are interchanged, as we expect for a cross 
product and as agrees with (8.22) for kl = k2 = K = 1 and Q = 0 an integer. Gen- 
erally, X is complex even if the components of A and B in the Cartesian basis are 
real. 

Rank-2 Tensors from Vectors. Suppose that we follow a similar procedure as 
when deriving (8.23), but now combine the vectors to form a K = 2 tensor. Thus 

After a little busywork, one finds the second-rank tensor components 

(8.25) 

only the last of which is simple in terms of Cartesian-coordinate components of A 
and B. Notice that T2q is symmetric with respect to interchange of A and B. As 
you can see by inspection of T20, it will transform under rotations by the Legendre 
polynomial P2, as the primary definition (8.8) requires. The advantage of casting 
familiar vector relations into the unfamiliar spherical tensor forms is that the ten- 
sors so formed have the simple rotation property (8.8). 

Bipolar Harmonics. As pointed out in Section 8.1.1, spherical harmonics of a 
given k with q varying form components of a rank-k spherical tensor. We can 
therefore combine products of spherical harmonics with angles that may differ. 
Let R = (OG) and R' = (O'G'), then we construct the bipolar harmonic BLM as 

As an example of using bipolar harmonics, suppose that two particles are in orbital 
angular momentum states 1, and .t2. The two-particle system state constructed 
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using (8.26) is then in a definite orbital state L. Most commonly, the particles will 
be quarks, nucleons, or electrons in atoms, but (heaven forbid!) they may also be 
astronomical objects with small values for their geometrical angular momentum, 
as in the example in Section 7.5.4. 

Vector Spherical Harmonics. When considering a scalar field equation-such 
as the Schrodinger equation for the probability amplitude ty in Chapter 5-it is 
sufficient to use the orbital angular momentum eigenfunctions Gm(@) (Sec- 
tion 4.1). However, with vector field equations-such as the Maxwell equations 
for the electromagnetic field (Sections 1.4.3,4.2.3)-the spherical harmonics have 
to be combined with vectors to indicate directions. This is the purpose of the 
vector spherical harmonics, defined by 

in which 6, with CT= f 1 , O  is a spherical-basis unit vector (Section 4.2.1). Note 
that the factors after the unit vector comprise the Clebsch-Gordan coefficient for 
combining angular momenta i! and unity to make L. The so-called muftipolarity 
of the vector field, L, is thus L = I e - 1 I ,  1, or 1 + 1, having three values if 1 > 0. 

Notations for vector spherical harmonics are quite variable. That used in 
(8.27) indicates their essential character, namely that YL,,M(8q3) is a vector de- 
pending on angles (64) with respect to the unit vectors and that it is a component 
of a rank-l tensor of 2L+ 1 components having projection number M. 

Vector spherical harmonics are used extensively to discuss the electromagnetic 
field-as in Rose's monograph [Ros55], in Section 7.6 of Biedenham and Louck 
[Bie8la], and in Section 6.1 of the handbook by Brink and Satchler [Bri94]. 
These harmonics-and generalizations of them to higher-rank tensor harmonics- 
are also useful in geophysics and fluid dynamics, as developed in Jones' mono- 
graph on spherical harmonics and tensors for classical field theory [Jon85]. 

8.2.2 Contraction of Irreducible Tensors to Scalars 

In the physical sciences, interactions within a system are almost always described 
in terms of scalars, since it is assumed that the system is isolated and that space is 
isotropic. A primary construction involving spherical tensors is therefore contrac- 
tion to a scalar tensor, K = 0. The general building-up formula therefore requires 
that kl = k2 = k ,  say. From (8.21) and the 3-j coefficient with K = 0 it is easy to 
show (as Problem 8.6 suggests doing) that 

(8.28) 
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Note that Too is rotationally invariant. In practical examples of tensors k (and 
therefore 4 )  is an integer, as seen in Section 8.2.1. Then, by the phase manipula- 
tion rules (Section 2.1.4), we can factor (-l)k out of the sum. This leads to the 
definition of the scalar product Tk(A1)*Tk(A2) of two irreducible tensors: 

Unlike general rule (8.2 1 )  for combining tensors, the scalar product is independent 
of the order of the two tensors if they commute. In terms of Hermitian conjugates 
of tensors, the scalar product may be rewritten by using (8.19) as 

(8.30) 

The equivalence of these two forms does not require commutation of operators. 

Examples of Scalar Products. The first example of scalar products is from 
Section 4.2.1, where we form the scalar product of two spherical-basis vectors as 
(4.40) and (4.41), which involves the complex conjugate of one of them. We now 
see that this illustrates the property (8.30) with k = 1 andp chosen to be zero. 

The second example is to choose the two Tkq as spherical harmonics with dif- 
ferent angles A1 = 0, A2 = 0. Their scalar product is proportional to the Legendre 
polynomial, Pk, of the angle between Al and A2, as shown in Figure 4.6 and deriv- 
ed as the spherical harmonic addition theorem (4.23). 

What is the rotational invariance of this scalar product? It is that the value de- 
pends only upon w, the angle between A 1 and A2 and is therefore independent of 
orientation of the coordinate system. Indeed, we anticipated this property in order 
to derive the theorem. It is perhaps puzzling-yet still true-that Pk (cos w) is a 
scalar (rank of zero) but also has angular momentum numbers j = k and m = 0, as 
discussed in Section 4.1. The latter properties, however, assume that the orbital 
angular momentum operators are expressed in terms of w rather than (O’qY) and 
(64). Notice that-within proportionality factors-the bipolar harmonic of rank 
zero in Section 8.2.1 also just expresses the spherical harmonic addition theorem. 

8.3 WIGNER-ECKART THEOREM; REDUCED MATRIX ELEMENTS 

We now come to one of the most remarkable results in rotational symmetries for 
physical systems: the Wigner-Eckart theorem. For an operator given in irreducible 
spherical tensor form, the theorem allows separation between geometrical and dy- 
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namical aspects of matrix elements of the operator taken between angular momen- 
tum eigenstates. The truth of the theorem (like most results in angular momentum) 
does not depend upon quantum mechanics, although the Wigner-Eckart theorem 
finds very fruitful application in that discipline. 

The Wigner-Eckart theorem-like many a beautiful flower-was born to blush 
unseen. Wigner anticipated it  in a remark made in a 1927 paper on atomic spec- 
troscopy [Wig27h, below equation (16e)l. In his 1930 article (Eck301 ilckart ob- 
tained the result in Section 24 by using group theory methods, but did not em- 
phasize its importance. Wigner in his 1931 book [Wig311 mentioned the theorem 
in  passing, below equation (21,19), and attributed it  to Eckart. 

In Section 8.3.1 we derive the theorem and discuss its interpretation, then in 
Section 8.3.2 we discuss conventions used for the reduced matrix elements which 
appear in its statement. Finally in this section, several examples of determining 
and using reduced matrix elements are worked out in Section 8.3.3.  

8.3.1 Geometry and Dynamics: The Wigner-Eckart Theorem 

Deriving the Wigner-Eckart Theorem. A simple way to derive the theorem is 
to use rotational invariance of matrix elements with both states arid operators ro- 
tated. We can write 

in which U is the unitary rotation operator (UtU = I )  for Euler angles (a  p y) ,  as 
shown in Figure 6.1. By applying the rotations to each of the three quantities- 
bra, operator, and ket-using (6.19) or (8.8), one obtains (as you may show in 
Problem 8.7)  a complicated expansion into products of three D-matrix elements, 
valid for all Euler angles. By integrating over these angles through the range R 
given in (7.98), a factor of 16x2 is obtained on both the left- and right-hand sides. 
The resulting expression is an identity only if the tensor matrix elements satisfy 
the Wigner-Eckart theorem 

(jmITik,Ij’m8) = ( -1P (j’km’qIj‘kjm)(jllTk 1 1 ~ )  (8.32) 
I 

Here (jll Tk Ilj‘) is called the reduced matrix element of operator Tk. It is conven- 
tional to state the theorem in terms of a Clebsch-Gordan coefficient rather than a 
3-j coefficient, an unfortunate practice to which we defer. 

Irreducible spherical tensor operators therefore have matrix elements in the an- 
gular momentum basis in which the dependence on projection numbers is com- 
pletely contained in a coupling coefficient. Thus, if the quantization axis is 
changed by rotating the system, then only this coefficient changes, but the reduced 
matrix element is unchanged. The Wigner-Eckart theorem factors matrix elements 
of spherical tensors into a geometrical part (the coupling coefficient) and a dynam- 
ical part (the reduced matrix element). We make a similar distinction between 
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geometry and dynamics in Section 3.4.5 when discussing the interpretation of 
angular momentum. 

Another way to derive the Wigner-Eckart theorem is to show the proportional- 
ity of the matrix elements in an angular momentum basis to the Clebsch-Gordan 
coefficient by showing that they satisfy the same selection rules and recurrence 
relations. The Racah rules (8.9) and (8.10) are convenient for this. Consider the 
matrix elements of the commutation of Tkq with Jo, given as 

(jmlJo q,]j’m’) - (jmITk, JolYm‘) = q ( j m l ~ ~ l j ’ ~ ~ ’ )  (8.33) 

Operating with JO = Jz  to the left and right in the two matrix elements produces 

(m-q-m’)(jmITkqlj’m‘)=O (8.34) 

so the nonzero matrix elements satisfy the same m-selection rule as the Clebsch- 
Gordan coefficient with 4 + m‘ = m . Next, by considering similarly the matrix el- 
ements of the second commutator (8.10) it is straightforward to show (as you may 
do in Problem 8.8) that the Tkq satisfy the same recurrence relations for kfixed and 
q varying as the Clebsch-Gordan coefficient with the same total and projection 
numbers, thus proving the theorem. 

The Wigner-Eckart theorem can also be derived by using methods of group 
theory (Section 2.5), as in Eckart’s [Eck30] and Wigner’s [Wig3 I] original treat- 
ments, and in Sections 4.20 and 7.4 of Elliott and Dawber [El1791 or in Sec- 
tions 6.2 and 11.3 of Ludwig and Falter [Lud88]. 

A Simple Example of the Theorem. Before continuing with generalities, con- 
sider a concrete example of (8.32). As discussed in Section 8.1.2, the set of 
spherical harmonics Yk (a) = ( Ykq(a), q = -k, , . ., k } is a rank-k irreducible spher- 
ical tensor having multiplication as its operation. The Gaunt integral formula 
(7.102) gives the integral over the product of three spherical harmonic functions. 
We identify the outer functions as the orthonormal eigenstates for orbital angular 
momentum (Section 4.1) and the middle function as an element of the Yk tensor. 
From (7.102) we make the transcriptions L M  + C m, el ml + kq, and 82 m2 + 
P’ m’. After some manipulations from 3-j to Clebsch-Gordan coefficients (as sug- 
gested in Problem 8.9), we identify by inspection the reduced matrix element for 
the spherical harmonic tensor Yk as 

(8.35) 

Notice that because of the occurrence of the parity-conservation coefficient with 
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all projections zero (discussed in Sections 7.3.1,7.3.2), the reduced matrix element 
is zero unless ! + k + l' is even. The nonzero matrix elements can be obtained in 
terms of expression (7.73) for a 3-j coefficient with all projections zero. 

Selection Rules for  Irreducible Tensor Matrix Elements. Immediately from the 
Wigner-Eckart theorem (8.32) we see selection rules on matrix elements of an 
operator Tkq between angular momentum eigenstates. Namely: 

m#q+m' + (jmlTkqlj'm')=O 

k c l j - j ' l  or k > j + j '  3 (jmlTkqlj'rn')==O 
(8.36) 

The first necessary condition is just conservation of projections, since we can con- 
sider that Tkq acts on the state with projection m' to give projection q + m', which 
must match the m in the bra state. For the second condition, it ca.n be considered 
that, for example, k and j' combine to form total angular momentum states of 
which the one with a total angular momentumj must be a member, so the three an- 
gular momenta must comprise the sides of a triangle. 

The rules in (8.36) are necessary for nonzero matrix elements, but are far from 
sufficient, since other symmetries-such as "parity conservation" discussed below 
(8.35)-may require zero matrix elements. 

Using the Wigner-Eckart Theorem. We now summarize in womrds and pictures 
(Figure 8.2) general procedures for using the Wigner-Eckart theorem. Three major 
steps are involved in applying the theorem. First, the state vectors of the system 
under investigation (wave functions in quantum mechanics) must be expanded into 
angular momentum bases, such as the partial-wave expansion in scattering 
(Section 5.4). Second, one must discover the irreducible tensor expansion of the 
operators, as we do for some common operators in Sections 8.1.2 and 8.2.1. 

FIGURE 8.2 Schematic of the process of reducing calculation of a matrix element to use of the 
Wigner-Eckart theorem. 
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The third step in using the Wigner-Eckart theorem is to identify the reduced matrix 
elements of the operators, as for the spherical harmonics in (8.35). 

In Section 8.3.3 we continue this procedure for basic operators in simple angu- 
lar momentum states, then we develop formulas for combined states in Sec- 
tions 9.4 and 9.5. Given this overview of using the Wigner-Eckart theorem, it is 
necessary to be aware of conventions for reduced matrix elements. 

8.3.2 Conventions for Reduced Matrix Elements 

The reduced matrix elements (jll Tk llj’) appearing in the Wigner-Eckart theorem, 
(8.32), are subject to considerable ambiguity, arising from three sources. First, for 
a given type of operator and rank k,  linearity of the definitions (8.15), or (8.9) and 
(8. lo), allows an overall normalization factor for the operator. This factor may de- 
pend on k but it must be independent of q for this k. 

Second, the normalization of the bra and ket states needs to be specified 
through the representation space used and (in configuration space, for example) 
the range of integrations. For example, the states may be normalized to unity. 

Third, in the reduced matrix element factorization on the right-hand side of 
(8.32) the factoring between the matrix elements, the phases, and the normaliza- 
tion differences that arise from rearranging arguments in the Clebsch-Gordan co- 
efficient is not always uniform. A definition using 3-j coefficients is awkward be- 
cause in (8.32) it introduces a phase that depends upon the projection number q. 

The convention that we adopt for reduced matrix elements is the same as that 
of Brink and Satchler [Bri94], which explains the phase of (-1)Zk inserted in the 
defining (8.32) and the order of the arguments in the Clebsch-Gordan coefficient. 
The phase is significant only for the unusual case that k is not an integer. 

8.3.3 Determining and Using Reduced Matrix Elements 

We now determine and show how to use reduced matrix elements for several in- 
teresting operators occurring in the physical sciences. Then we derive some gen- 
eral formulas for reduced matrix elements. To give you practice, our first example 
is worked in detail. 

A Worked Example: Quadrupole Moments. The electric quadrupole moment 
of an assembly of charges with charge density p ( r )  is given classically by 

(8.37) 

in which the integral is over all space, or effectively that region in which the 
charge density is nonzero. The situation is sketched in Figure 8.3. 

In the quantum mechanics version of (8.37) one writes the factor before the 
density as the quadrupole operutor, @j2), defined by 
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(8.38) 

FIGURE 8.3 Charge distributions for prolate and oblate spheroids, having quadrupole moments 
(forj  > 1/2) of Q > 0 and Q < 0, respectivcly. 

In (8.38) we have expressed z in terms of polar-coordinate angles in a reference 
frame as yet undefined. The density becomes 

(8.39) 

in which vm is the wave function of the state for which the quadrupole moment is 
to be measured. This state is assumed to have unique total angular momentum j 
and projection M onto the space-fixed axis z in Figure 8.3. If the object is a rigid 
body then, as in Section 6.5, we can associate with it a body-fixed axis, z’ in Fig- 
ure 8.3. We now calculate how the expectation value of d2’ in the space-fixed 
frame depends on m and j .  

From (8.38) we see that d2) is the q = 0 element of a rank k = 2 irreducible 
tensor. Using the Wigner-Eckart theorem, (8.32), we write 

Immediately, from the triangle condition in (8.40) we see that this space-fixed- 
frame quadrupole moment is zero unless j 21. In the semiclassical model of 
angular momentum (Section 5.3) this would be explained as saying that for states 
withj  = 0 and j = 1/2 the “precession” of the angular momentum ‘vector about the z 
axis averages to zero the quadrupole moment observed from this frame. 

There is no denying that the quadrupole moment in the body-fixed frame may 
be nonzero. Indeed, if we replace charge density by mass density, then we are cal- 
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culating components of the inertia tensor in this frame, as discussed for the rigid 
rotator in Section 6.5. The result analogous to (8.40) is the vanishing of the inertia 
tensor in the space-fixed frame if j c 1. 

Given that the triangle condition is satisfied 02 l), there is no case for 
-j I m 5 j when (8.40) predicts a zero result, since when m = 0 we have the parity- 
conservation 3-j coefficient (7.73) and j must be an integer with the sum of the 
total angular momenta in the coefficient-just 2j+ 2-sure to be even. Indeed, the 
coupling coefficients in (8.40) can be evaluated as suggested in Problem 8.10 to 
produce 

The (atomic) spectroscopic quadrupole moment, Q, is defined as (jjld2’1 j j ) ,  so 
from (8.41) we deduce that 

(8.42) 

which is consistent with vanishing matrix elements in the space-fixed frame for 
j = 0 and j = 1/2. The m dependence in (8.41) can then be simplified to 

where 8, is a quantized angle given by 

(8.44) 

as sketched. The range of the cosine is *,/m c 1, so that it is never quite 
aligned with the z axis, but approaches it as j increases. Thus, for j  = 6 ,  8j is about 
0.4 rad (25 degree). Noting that the angle factor in (8.43) varies proportionally to 
p2(costJrn), we could in a semiclassical model interpret this as the conversion 
factor between the reference frames. 
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Now that we see how simple reduced matrix elements can be calculated and in- 
terpreted, there are several more matrix elements that are interesting and useful. 

Position Operator Reduced Matrix Elements. The position operator r = r f  , 
where i. is the unit vector. Since the matrix elements in an orbital angular mo- 
mentum basis involve only angles, r is just an overall factor in the matrix ele- 
ments, so we set it to unity. Then (as you may verify in Problem 8.1 1) we have 
the following chain of equalities: 

(ell 2 Ile’) = (ell ro 110 = (4 case lit') 

(8.45) 

By using the algebraic expressions in Table 7.2 for the 3-j coefficients, we  obtain 

- J4fl 
2e+1 

0 

e’=e+i 

e l  = e 

!‘=!-l 

(8.46) 

Is it surprising that the reduced matrix element of r-and therefore all its ma- 
trix elements-vanish for t‘= !? Notice that (8.45) contains the parity conserva- 
tion coupling coefficient discussed below (7.72), which vanishes for P’ = e. To 
see why, note that in this case the product of angular momentum functions in the 
bra-ket is proportional to the absolute square of Yern, which has even parity 
because Yem has a definite parity, whereas f = cos 0 has odd parity (Section 1.4.1, 
P8 = 7c - 0 ). The integral over 8 is therefore zero. 

Angular Momentum Operator Reduced Matrix Elements. To find the reduced 
matrix elements of J it  is easiest to consider its q = 0 component, namely JO = Jz,  
since this operator is diagonal in both j and m. Thus 

= (j’l m’01 j’l j O ) (  jll J Ilj’) 
(8.47) 

0 m -m 
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To obtain this result, we use the Wigner-Eckart theorem in the second line and 
assume that only j ’=  j is required for the third line. By looking up in Table 7.3 
the 3-j coefficient then solving for the reduced matrix element, one readily finds 

(8.48) 

The selection rule on j is reasonable-since rotations conserve j ,  therefore cer- 
tainly an infinitesimal rotation generated by J leaves it unchanged. Note that this 
formula holds for any type of angular momentum, whether orbital (L, Sections 3.2, 
4.1) or spin (S, Sections 3.5,4.3).  

More formulas for explicit reduced matrix elements are given in Table 8 of the 
appendix to [Bie8la]. 

General Formulas for Reduced Matrix Elements. There are three general for- 
mulas for reduced matrix elements, of which our examples above use only the 
first. The first general formula is 

(8.49) (jII Tk llj’) = (jmlT&lj’m’) / (j’km‘ql j’k j m )  

for any matrix element with nonzero Clebsch-Gordan coefficient 

This is useful if one of the matrix elements is easy to calculate, as in our deriva- 
tions of formulas (8.46) and (8.48). 

The second general formula obtains the reduced matrix element from the sum 
rule for irreducible tensor matrix elements 

while a similar formula that is less informative is 

(8.5 1) 

Although this expression cannot produce the phase of the reduced matrix element, 
it corresponds to a common experimental situation in which one averages uniform- 
ly over all magnetic substates when making a measurement. Thus, magnitudes of 
reduced matrix elements can be obtained. Problem 8.12 suggests that you derive 
formulas (8.50) and (8.51). 

Reduced Matrix Elements for  Hermitian Irreducible Tensors. Relation (8.20) 
can be used to relate reduced matrix elements for the usual case that the spherical 
tensor operator is Hermitian. By applying the Wigner-Eckart theorem to each side 



8.4 DENSITY MATRICES AND POLARIZATION TENSORS 325 

of (8.20), then relating the coupling coefficients, it is easy to show (for example, 
by doing Problem 8.13) that 

(8.52) 

1 for Tk Hermitian 

in which p is often chosen as zero, as discussed below (8.20). Indeed, p must be 
zero if the operator has nonzero diagonal matrix elements. Examples satisfying 
(8.52) with p = 0 are the spherical harmonic tensor, Yk in (8.35), and the unit 
vector, f in (8.46). 

8.4 DENSITY MATRICES AND POLARIZATION TENSORS 

Our goals in this section are twofold. First, in Section 8.4.1 we develop and apply 
some of the technology of density matrices in the context of intrinsic spins and re- 
late this to irreducible spherical tensors for spin, such as polarization tensors. Sec- 
ond, as a relief from formalism, in Sections 8.4.2 and 8.4.3 we show how spin 
wave functions in quantum mechanics evolve in time, how the rotating-frame 
transformation can simplify the description of spin evolution, and how the problem 
of the transport of beam of spin-polarized particles through a magnetic field gradi- 
ent can be solved using angular momentum techniques that we have developed. 

8.4.1 Spin Density Matrices and Spin Tensors 

In this section we review relevant properties of describing quanta1 systems by 
density matrices and we give examples of how such density matrices transform 
under rotations of a system relative to the reference frame. We then introduce spin 
tensors, which are irreducible spherical tensors used to describe ensembles of par- 
ticles with spin. This leads to the concept of spin-polarization tensors, of which 
we give several examples. 

An extensive treatment of angular momentum techniques using density matri- 
ces is given in Section 7.7 of [BieSla]. Applications to polarized light and to po- 
larization of ensembles of spin- 1/2 or spin- l particles (including relativistic treat- 
ment) are given in the monograph by Robson [Rob74]. A general treatment relat- 
ing Cartesian and spherical components of tensors for spin polarization has been 
given by Normand and Raynal “01-821. 

The Density Matrix for Spin. In our descriptions of quantum-mechanical sys- 
tems in previous chapters, particularly in Chapter 5, we use a wave function to 
characterize a state. According to the standard interpretation of quantum mechan- 
ics, this provides the maximum information that can be obtained about the system, 
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which is said to be in a pure state. Note that for such a state, there are still uncer- 
tainties for noncommuting variables measured in the same state, as we show for 
angular momentum in Section 5.2. Therefore, maximal information should not be 
equated with complete information. 

Consider an ensemble, in the sense used in statistical mechanics. For a pure 
state, all components of the ensemble are described by the same wave function, 
usually expanded in terms of an appropriate basis. For present purposes, the 
ensemble is assumed to consist of particles all of which have the same spin, s, but 
a variety of projections, 0, consistent with this, namely -s I o I s. A basis of spin 
states-which is complete, according to (2.73)-can be used to describe this en- 
semble of spins. Thus, the spin wave function for such a pure state is 

(8.53) 

in which the label v describes other properties of the system. 
Pure states are the playgrounds of theorists, a nirvana devoutly to be wished. 

The reality of experiments in the physical sciences is that information about an en- 
semble is seldom maximal in the quantum-mechanical sense, but there is an aver- 
aging over at least some of the variables V .  The ensemble is then said to be in a 
mixed state (or general state), and it is characterized by a density matrix p, whose 
elements are defined by 

(8.54) 

where the sum (or an integral) is over all unobserved variables v. This may be, for 
example, a distribution of temperatures or velocities-in which case summation in 
(8.54) would be replaced by integration. It is usual for the amplitudes u p )  to be 
normalized-to describe a probability distribution, for example. 

Density matrices are Hermitian (Section 2.1.3): 

Po& = P:*O (8.55) 

as can readily be seen by inspection of the definition (8.54). Thus, according to 
theorem (2.70), there is a unitary transformation that diagonalizes it. In our con- 
text, in which rows and columns are labeled by spin projections, this transforma- 
tion is a rotation. In the diagonal representation, the nonzero elements are propor- 
tional to the populations in each magnetic substate: 

Po =la,12 in diagonal representation (8.56) 

For example, for a spin s = 1 system, we have P+ = P+, and Po as the populations 
of the three possible magnetic substates. It is usual to choose normalizations such 
that these populations are actually fractions with a sum of unity. 
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Operator Expectation Values. The expectation value of an operator, P ,  in an 
ensemble characterized by density matrix p is given by 

(P)= p,,.P,,, =Tr(pP)=Tr(Pp)  (8.57) 

where, from the discussion below (2.34), recall that the order of the matrices in the 
trace does not matter and that the expectation value is invariant under symmetry 
transformations, such as rotations. Note also that the expectation value, ( ), has a 
different meaning from our previous usage in this book, since it is taken in a mixed 
state rather than the pure angular momentum states, such as 0, m), used elsewhere. 

In the following developments we introduce the use of density matrix and irre- 
ducible spherical tensor methods to characterize ensembles of spins. 

Spin Polarizations and Density Matrices. For a typical system that is close to 
thermal equilibrium, the distribution of spin substates is very close to equality, 
P, = 142s  + 1). What are convenient ways to describe departures from such 
equality? This is typically required if one devises a polarized beam or a polarized 
target in order to study interactions that depend sensitively on the spin s. 

Consider vector polarization, defined-for spins zero and one--by 

p. = & I 2  -p-112 s=112  

pz = P+, - P-, s = l  
(8.58) 

which is just the fractional difference between spin populations parallel (+) and 
antiparallel [-) to the quantization axis. Spins s = 1/2 (electrons and nucleons) and 
s = 1 (deuterons) are most common. For higher spins there is no convention for 
specifying vector polarization. To visualize vector polarization, look at the motif 
at the beginning of this chapter, then work Problem 8.14. 

The vector polarization takes no significant account of population of the 0 = 0 
state, which occurs for any integer spin. For example, in a spin-1 system if spin- 
plus and spin-minus populations are equal, there will be zero vector polarization 
according to (8.58),  but the fraction of spins with zero projection can be different 
than 113. The simplest component that takes account of this is the tensor polar- 
ization z component P,, defined by 

P,, ~ 1 - 3 P o  (8.59) 

If all spin substates are equally populated, then P, = 0, which is sensible. As PO 
ranges over 0 to 1, P, ranges from 1 to -2, a rather asymmetric quantity. As we 
show below, P,, transforms under rotations like the q = 0 component of a rank 
k = 2 spherical tensor. 

Transforming the Density Matrix. Consider how the density matrix transforms 
under rotation of the spin ensemble by polar angle 8. The case of spin-1 particles 
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is sufficiently complicated-but not algebraically overwhelming-to show the 
features. The s = 1/2 case is much simpler and can be done by analogy, as sug- 
gested in Problem 8.15. Suppose that an ensemble of spin-1 particles, such as a 
beam of deuterium atoms, is initially polarized with density matrix 

(8.60) 

in which the populations of the magnetic substates, P+, Po, and P-, satisfy 

Trpo= P+ +Po +P- = 1 (8.61) 

Rotation of an ensemble of spin-s particles is described by the matrix with ele- 
ments di, ,m(f3),  where 8 is the usual polar angle. The reduced rotation matrix for 
s = 1 is (Table 6.1) 

2 c2 -&cs s 

dye)= &cs cz - 4 c s  (8.62) i.. &cs c 2 ]  

which uses the abbreviations 

c = c o s ( ~ / ~ )  s=sin(8/2) C, = c o d  

Several identities used extensively to simplify expressions are: 

c 2 2  + s  = 1  c 2 2  - s  =2c 2 -1=1-2s2=c2=cos8 
c 4 4  - S  =c, p 2 ( C 2 ) = ( 3 C 2 2 - 1 ) / 2  

in which P2 is a Legendre polynomial, as discussed in Section 4.1.2. 

zation axis. The spin density matrix transforms into p( 0) given by 
Suppose that the ensemble is rotated through polar angle 8. about the quanti- 

(8.63) 

(8.64) 

After some tedious algebra, we find that 

in which the first matrix is a 3 x 3 unit matrix representing an unpolarized beam 
and the density matrix describing the polarization components is 



8.4 DENSITY MATRICES AND POLARIZATION TENSORS 329 

(8.67) 

where omitted off-diagonal elements can be inferred from symmeby of the matrix. 
(Generally, a density matrix is Hermitian, but these density matrices are also real.) 
The primed quantities in (8.67) are the excess populations above the unpolarized- 
beam populations: 

P ' = P  -1 P:+P;+P:=o (8.68) m 3  

Diagonal elements of p' are the populations of magnetic substates observed in 
simple measurements, while off-diagonal elements describe other spin properties 
of the ensemble. 

( 1 )  For an unpolarized initial beam, PA = 0,  so p' = 0 and the beam remains unpo- 
larized after rotation. Although this may not be obvious from the active view- 
point, consider it from the passive viewpoint, as follows. If merely rotating refer- 
ence frames could alter the relative populations, then an ensemble could be polar- 
ized merely by walking around it! 
( 2 )  Under 8 -+ n - 0 the c2 and s2 terms interchange, as do the rn = + I  and m = - 
1 states. This symmetry, which is equivalent (in the passive viewpoint) to flipping 
the direction of the quantization axis, can be verified directly in (8.67) and serves 
to check the off-diagonal elements. 
(3) Since a rotation is a unitary transformation, not changing tola1 probabilities, 
the trace of the density matrix must be independent of 6. By summing the diago- 
nal elements in (8.67) we find-after extensive use of (8.64)-that 

Several intuitive checks of the correctness of (8.67) can be made: 

Tr p'(B) = P i +  po'+ p' = Tr p; = 0 (8.69) 

where the difference between the polarized and unpolarized situations is 

(8.70) 

From the diagonal elements in (8.67), after a little algebra and use of (8.58), we 
find that the vector polarization after rotation is P,(B), given by 

p, (el = P:(q - eye) = r; (CoS 0)pz (0) 

& = & - - 1 3  1 

(8.71) 
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Thus, vector polarization transforms under rotations as a rank- I tensor. 
The rotational transformation of the spin- 1 second-rank tensor component P,, 

given by (8.59), can be obtained by following steps similar to those for the vector 
polarization. Thus, we obtain the angular dependence of this tensor component as 

(8.72) 

In the last step of this equation the central element of (8.62) is used with the iden- 
tities in (8.64). Now we can see why the term tensor is appropriate, since P ,  
transforms under 8 rotations with k = 2;  that is, the tensor is irreducible and of 
second rank. 

In Figure 8.4 we use polar diagrams (in the convention of Section 4.1.2) to 
compare the dependences of vector (first-rank tensor) and (second-rank) tensor 
polarizations on polar angle 8 for rotation of the z axis. 

P, (COSO) P2 (cos 0) 

FIGURE 8.4 As the system is rotated through polar angle 8, the vector polarization changes pro- 
portionally to Pl(cos8) (left-hand panel) and the simplest second-rank tensor polarization changes 
as P2(cosO) (right-hand panel). Positive values are indicated by solid lines and negative values are 
shown dashed. (Adapted from Mathernatica notebook PL.) 

So far we have discussed rotations of an initially diagonal density matrix 
through Euler angle p = 8. What about the rotations through angles cy or y, which 
leave the z axis unchanged? As you might guess, they leave a diagonal density 
matrix unchanged, that is, they do not mix magnetic substate populations because 
m values do not change under such simple rotations. 

8.4.2 Spin Precession in Magnetic Fields: Rotating Frames 

In this subsection and the next we study the behavior of particle spins when their 
magnetic moment interacts with simple magnetic-field configurations-first, a 
constant field (producing Larmor precession), then a field changing uniformly 
with time, which produces interesting spin effects. In Section 5.1.3 we also 
develop spin precession, but emphasize correspondences between rotational 
symmetry and dynamical angular momentum as well as between quanta1 and 
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classical mechanics aspects of the latter. Here we emphasize the development of 
wave functions and spin for polarized ensembles. We first set up the Schrodinger 
equation for a magnetic-field Hamiltonian and use this to show Larmor precession 
described by quantum mechanics. Then we derive the rotating-frame 
transformation, which is especially useful in NMR studies. 

Magnetic-Field Hamiltonian. We revisit the problem of evolution of the spin 
state of a particle having spin s and magnetic moment p in a magnetic field B. In 
NMR the nuclei are usually stationary in the laboratory frame (except for thermal 
vibrations) while time-dependent but spatially homogeneous magnetic fields are 
used to induce resonant transitions between magnetic substates. An alternative 
scenario, which is important for beams of particles, is that particles move through 
a spatially-dependent magnetic field. As a function of distance moved through the 
field, the magnetic-substate populations will change, since in the rest frame of the 
particles the field is time-dependent. We calculate this case in detail. 

The time-dependent Schrodinger equation for the spin state vector x of a parti- 
cle interacting with magnetic field B is 

(8.73) 

in which g is the g-factor of the particle and is the appropriate magnetic mo- 
ment unit. Some relevant values are given in Table 5.2. In (8.73) S denotes the 
spin operator for the particle. For electrons in atoms the electron angular momen- 
tum operator is usually denoted by J, whereas for nuclei it is usually denoted I. 
The Hamiltonian used for modeling atomic hyperfine structure contains contribu- 
tions from both electron and nuclear spins, as discussed in Woodgate’s text on 
atomic structure [WOO~O]. Measurement of magnetic moments and g-factors for 
nuclei is described in detail in Krane’s text [Kra88]. 

The basic method of solving (8.73) is to expand S*B into spherical-basis com- 
ponents (Section 3.1.3), as 

S*B = S+IB- + S-, B+ +SOB, (8.74) 

Note that spin quantities are operators on the x in (8.73), whereas magnetic-field 
components are conventional numbers. Spherical-basis components are given in 
terms of Cartesian components by 

B,=~(B ,+~B, , )  1 (8.75) 

Assume that the z axis can be chosen so that B has cylindrical symmetry about 
this axis. For example, in a conventional NMR apparatus the static (and usually 
homogeneous) field determines an appropriate z axis and a time-dependent probe 
field is arranged to have cylindrical symmetry about this direction. For a beam of 
particles the beam direction (assumed locally uniform) usually coincides with the 
direction of the largest magnetic field component, called B,. If  this field is 
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provided by a solenoid, with the beam flow centered on the solenoid axis, then 
transverse fields are purely radial, of magnitude B ,  say, as sketched in Figure 8.5. 

Y 

FIGURE 8.5 Arrangement of magnetic-field components B,  and B,  for cylindrically-symmetric 
fields. A particle trajectory is assumed to be parallel to the axis at representative radius r. 

From the condition of cylindrical symmetry for the magnetic field we obtain 

By = B,sinq5 (8.76) B, * i @  B, = B, cosq5 B+ = - e 
2 

The Hamiltonian thus becomes 

(8.77) 

where “h.c.” is the Hermitian conjugate of the immediately preceding expression. 

Larmor Precession. If the particle is in a uniform field, Bo, directed along the z 
axis, the solution of (8.73) is 

(8.78) 

where WL is the Larmor precession frequency introduced in Section 5.1.3. From 
the magnetic moments in Table 5.2,  using tZ = 1.054 x 10-34 J s and the field 
strength, Bo, the precession frequency may be calculated. Solution (8.78) for the 
spin state gives the wave function for Larmor precession, as we now demonstrate. 
Consider the expansion of x( t )  into the complete set of time-independent magnetic 
substates lo) by 

(8.79) 

Noting that S, in (8.78) produces a each time it is applied to lo) and that these 
states are orthogonal, we can immediately write down the solution for the time de- 
pendence of the amplitude for a given a, namely 
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In the semiclassical picture of angular momentum in Section 5.1.3 the spin vector, 
< s >, precesses about the z axis with a selected projection CT and corresponding 
angular frequency OLD, as sketched in Figure 8.6. The probability of this 
arrangement is time-independent because l ~ , ( t ) ( ~  = ~ u , ( O ] ~  according to (8.80). 

FIGURE 8.6 Semiclassical picture of the spin-amplitude relation (8.80) for uniform Larmor pre- 
cession at angular frequency q r n  about the z axis. The opening angle of the precession cone is that 
for s =1/2, c= 1/2, namely 55". 

There are 2s + 1 such pictures, one for each CT. For an arbitrary state, pure or 
mixed, there is a superposition of such precessions, with weights depending on the 
uo(0). Note that positive and negative CT substates "rotate" in opposite directions. 
In particular, if CT= 0 (only for s an integer!) there is a constant vector standing 
perpendicular to the z axis. In this situation, both classically and quantally the 
magnetic dipole is perpendicular to B, so p-B = 0. 

Rotating-Frame Transformation. The precession phase in (8.80) often domi- 
nates the time dependence of the amplitude, so it is practical to hide it by making a 
unitary transformation, as we now describe. To undo the rotation factors in (8.79), 
consider the operator for the rotating-frame transformation 

which is unitary because (Section 2.2.3) S, is Hermitian. Its action on spin state 
x ( t )  produces the spin state in the rotating frame, xR( t ) ,  given by 

For uniform precession at angular frequency w, this transformation completely un- 
does the precession, producing 
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This result holds for any mixture of amplitudes in state X. The time-independent 
state is, however, produced only if the precession frequency is constant. Equation 
(8.83) states that if we can transform our (passive) viewpoint to a frame precessing 
about the z axis at wL, then the state will be time-independent, consistent with the 
semiclassical picture in Figure 8.6. 

To emphasize the simplicity often gained by using the rotating-frame view - 
point, we display in Figure 8.7 precessional motions from this frame and from the 
laboratory frame for two different Larmor frequencies. 

Laboratory frame, w =  20, 

FIGURE 8.7 Precession as a function of time, t ,  viewed in the rotating frame at any frequency 
(lower panel), and as viewed in the laboratory frame for two frequencies odiffering by a factor of 
2 (upper two panels). 

Spin Equation in Rotating Frame. How does the spin transform under the 
rotating-frame transformation (8.8 I)?  We begin with a general Hamiltonian, H, 
and general unitary transformation, U, then gradually specialize to operators of in- 
terest. Given 

the transformed state vector satisfies the rotating-frame equation 

(8.84) 

(8.85) 

in which the Hamiltonian after transformation is 

H R  = UHU-’ (8.86) 

Now, specializing U to the rotating-frame transformation, we find that 

(8.87) 
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Since this U involves only the S,  operator, 

usp-‘ = s, (8.88) 

The equation of motion in the rotating frame is therefore 

I I 

(8.89) 

If we choose a particular arrangement of magnetic fields, and thereby a spin Ham- 
iltonian, we can compute HR and thence the spin motion in the rotating frame. The 
solution in the original, “laboratory,” frame is obtained from the inverse of (8.82). 

A common application of the rotating-frame transformation is to describe the 
effects of time-dependent magnetic fields applied transversely to the z-axis field 
Bo. Such use in NMR for research and applications is described in detail in several 
monographs on magnetic resonance, such as Slichter’s [Sli89]. Here we explore 
an application to a beam of particles moving through a magnetic field gradient and 
show how this effects spin polarization. Other techniques for polarization, relying 
on NMR effects in stationary samples, are described in Chapter 15 of Poole and 
Farach [Poo87]. 

8.4.3 Spin Transport through Magnetic Field Gradients 

Our goal now is to apply the general rotating-frame equation (8.89) to a simple but 
realistic system, particles moving at constant speed through magnetic fields with 
uniform gradient. We derive the coupled differential equations describing the pre- 
cession and mixing of substates, we introduce the precession length, then we show 
how the motion of the spin vectors can be visualized. A summary of the following 
is given elsewhere [Tho931 in a description of depolarization effects in atomic- 
beam polarized-ion sources. 

Equations for a Uniform Gradient. Suppose that the magnetic field along the 
direction of flow of a beam of particles all having spin s is constant up to a certain 
point, then changes linearly with z, that is, 

BO 250 

B, - B’z z 2 0 
(8.90) 

in which B‘is constant. In many situations of experimental interest the field de- 
creases as z increases (as in emerging from a solenoid); then B‘ > 0 in the conven- 
tion of (8.90). If the field arrangement is more complicated, a good approximation 
is to divide the 2 axis into segments within each of which the field gradient is 
nearly constant, then to patch together solutions for each segment. Now we set up 
and solve the equation of motion for spin transport in such a field gradient. 
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Equation of Motion. We use the conservation equation for magnetic fields, 
V.B = 0, and the expression for divergence in cylindrical coordinates to obtain 

r 
r 2  

B =--B' (8.91) 

which is independent of z for our model magnetic field. The equation of motion in 
the rotating frame, (8.89), now simplifies to 

(8.92) 

in which the energy term corresponding to Larmor precession does not appear. 
Therefore only if the field gradient B' is nonzero does the state X R  change with 
time when viewed in this frame. 

In (8.92) the only complicated-looking term is the one involving the raising 
operator, S+l, and in the Hermitian conjugate S-1. Instead of spinning our wheels, 
let us develop this directly as 

(8.93) 

in which 2 n  times the number of precessions in Bo within time t is the dimension- 
less time variable z given by 

Z S 6 I L t  (8.94) 

Relating the ladder operators (Sections 2.2.4, 3.1.3) in the rotating frame, SR+, to 
spin operators in the original frame is slightly tricky. Take the derivative of SR+ in 
(8.93) and use the commutator of S+l with S,, (3.1 l),  to obtain 

By repeating this step we obtain easily 

(8.95) 

(8.96) 

which is just the harmonic oscillator differential equation, with general solution 

SR,(z) = A cos z + B sin z (8.97) 

By choosing SR+ to coincide with S+I at z = t = 0, and using (8.95) for the deriva- 
tive, we find that 

(8.98) 
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Thus, rotating-frame raising and lowering operators rotate at the Larmor preces- 
sion frequency relative to laboratory-frame operators-a result that is expected. 

Returning to our rotating-frame equation of motion, (8.92), it now becomes 

(8.99) at 

in which all operators are in the laboratory frame, and the spin-state vector in this 
frame is obtained by inverting (8.82): 

(8.100) im t S  
x( t )=.  . X K ( t )  

To continue our study of the effects of a uniformly changing field, (8.90), it is 
simplest to use as variable the distance along the axis, z ,  so that (8.92) is trans- 
formed to the spin equation in the rotating frame: 

Magnetic Substates. To make progress toward solving (8. lOl), expand xR into 
the complete set of time-independent laboratory-frame magnetic substates: 

(8.102) 

By substituting this into (8.101) then taking the scalar product with a representa- 
tive state having projection o, we obtain the time evolution of the amplitude UR,: 

in which the matrix elements of the ladder operators are, from (3.62), 

T,(o) = Jis + O X S  T d +1) (8.104), 

Amplitudes in the laboratory frame are obtained by applying (8. loo), thus produc- 
ing the expansion of the spin state in the laboratory frame 

S x =  &TI4 (8.105) 
a=-$ 
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where the time-dependent amplitudes in this frame are 

(8.106) 

Notice that stationary- and rotating-frame amplitudes differ only by time-depen- 
dent phases, so probabilities for a given magnetic substate are the same in both 
frames. In general, (8.103) can be written as a matrix first-order differential equa- 
tion in which the amplitudes are the elements of a column matrix and the coupling 
matrix formed from elements on the right-hand side is tridiagonal, having nonzero 
elements only on the diagonal and one removed from it. This property is indepen- 
dent of the particle spin s. 

Precession Length. Equation (8.103) may be written in another form, empha- 
sizing the dependence of amplitudes on distance for a beam of particles. Define in 
terms of speed, v ,  and precession frequency, wL, theprecession length, L,,, by 

(8.107) 

This is the distance along the axis in which the spin would precess 1 radian in a 
constant magnetic field of strength Bo. Now define distances and field gradients in 
terms of Lp and Bo by 

z, ,=zJLp r,, = r /  Lp B; = LpB' / Bo (8.108) 

Indeed, zp = T, connects space and time dimensionless variables. The equation of 
motion for the spin amplitude evolution in a linear field gradient is then 

(8.109) 

In the precession-length system of units two parameters control the spin evolution 
and coupling-the rate of decrease of the axial magnetic field relative to the origi- 
nal field Bo, which is B i ,  and a radial coupling strength proportional to B;5.  On 
the z axis rp = 0, so there is no coupling of spins but only precession whose rate 
varies with time because the magnetic field is changing steadily. 

Broken Symmetry. It is instructive to examine in detail the effects of a broken 
symmetry (Section 1.5) of a geometric kind on coupling between magnetic sub- 
states. Particles moving along the axis of cylindrical symmetry of the field (r,, = 0) 
do not break this symmetry of the physical system (left panel in Figure 8.8). 
Therefore their spin projections are constants of the motion for each particle. 
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cylindrical broken broken 
s mmet s mmet symmetry 
[part icier [particlz (beam) 

FIGURE 8.8 Cylindrical and broken symmetries for particles moving in a magnetic field having 
cylindrical symmetry about the z axis. For an on-axis particle (left panel) the symmetry is con- 
served so magnetic substates do not mix. For off-axis particles (center panel) the symmetry is bro- 
ken, so substates mix. Thus, even for a beam of particles with overall cylindrical symmetry (right 
panel), substates become mixed. 

Particles moving off-axis (center panel of Figure 8.8) break the symmetry of 
the overall system of particle plus field, so 0 is not a constant of their motion. 
Thus, even if a beam has cylindrical symmetry about the magnetic-field axis (right 
panel of Figure 829, the magnetic substates of particles in the beam are mixed. 
This is an example of an ensemble (Section 8.4.1) which has macroscopic geomet- 
ric symmetry but whose underlying states have broken dynamical symmetry. 

Spin-lf2 Systems. The general result (8.109) for spin transport in a uniformly 
changing magnetic field is most easily studied for s = 1/2, since there are only two 
substates. Denoting, as usual, a+ = UR,1/2 and a- = UR,-1/2. (8.109) simplifies to a 
pair of equations written concisely as 

(8.110) 

Although these equations are for the rotating frame, the probabilities may be used 
in the laboratory frame because of (8.106). There are several ways that equations 
(8.1 10) may be explored. Here we visualize results from numerical direct compu- 
tation of the amplitudes, as Problem 8.16 suggests you do by using Mathernatica. 

It is interesting to use the numerical solutions to calculate spin-component ex- 
pectation values and then to display the spin vectors. Problem 8.17 outlines the 
steps needed to derive the following results, which are valid for any spin: 

(sx)=: i a,: [r+(o)a,-, + C(0)au+,] (8.111) 
u=-s 
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(8.1 13) 

in which the T,(o) are given by (8.104) For the simplest case, s = 1/2, after trans- 
forming the amplitudes to the laboratory frame by using (8.106), these become our 
working equations 

With the amplitudes aRa in the form of numerical tables as a function of zp and r,, 
for a chosen field gradient Bi , we are able to calculate and display these spin ex- 
pectation values. They are shown in Figure 8.9 for a scaled field gradient that has 
a large effect on the polarization (proportional to <S,>), namely Bi = -0.5 (field 
strength increasing as z increases) for a range of scaled radii rp = 0, 1,2, 3. 

0 4 - - D - b - b - - - + - - - + -  

0 1 2 3 4 5 

FIGURE 8.9 Spin expectation value in the rotating frame projected onto the x-z plane for spin-1/2 
particles at four scaled radii, r,,. and distance along the symmetry axis of the magnetic field, zp ,  
calculated for an increasing magnetic field with Bi = -0.5.  At left a particle enters the field 
gradient with 0 = 1/2. For rp = 0 it experiences no coupling between substates. For r,, z 0 the 
radial component of the magnetic field couples the substates according to (8.1 10). 

The consequences of spin substate mixing for practical devices producing spin- 
polarized beams of protons and deuterons are described in [Tho93]. 
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8.1 
(8.10), check out the following: 
(a) Work through the steps from (8.13) to (8.14) for arbitrary rotation axis A. 
(b) Substitute in (8.14) the matrix elements for J, to verify (8.9). 
(c) Combine the x and y-axis rotations, then use the matrix elements of the ladder 
operators given by (3.63) to derive (8.10). 
8.2 Consider the Racah conditions-(8.9) and (8.10)-as tests for the angular 
momentum operators in the spherical basis to be irreducible spherical tensors with 
k = 1. There are three checks to be made for each of the three components. 
(a) Verify the conditions for each of the spherical basis operators J+1, Jo, J-1, by 
using the commutation relations (3.6). 
(b) Check the conditions for the three components of the unit coordinate vectors 
defined by (4.38). 
(c)  Show that the three angular momentum basis vectors defined by (4.46) satisfy 
the Racah conditions. 
8.3 To show that the gradient operator in the spherical basis is a rank-1 spheri- 
cal tensor, construct the commutators Lo,Vq for c ~ =  +1,0 and q = +1,0, then 

from Table 7.3) to show that the commutators satisfy (8.17). 
8.4 To prove that (8.21) defines the components of an irreducible tensor of 
rank K and projection Q, carry out the following steps: 
(a) Rotate each tensor on the right-hand side of (8.21) through the same Euler 
angles (ap y), using the appropriate D-matrix elements. 
(b) Use the Clebsch-Gordan series (7.89) to replace the product of D-matrix ele- 
ments by a sum over single elements. 
(c) Invoke the orthogonality of the 3-j coefficients, (7.61), so that only a sum over 
single 3-j coefficients appears. Identify the result as a rotated tensor defined ac- 
cording to (8.21). 
8.5 For the combination of the spherical-basis components of vectors A and B 
to form a third rank- 1 vector, show as follows that they form a cross-product vec- 
tor in the spherical basis, as given by (8.23). 
(a) First show that spherical-basis components are related as 

In the derivation of the Racah definition of an irreducible tensor, (8.9) and 

use the explicit formula for coupling t b '  ree angular momenta of unity (obtained 

(8.1 15) 

(b)  In the tensor-combination relation (8.21) set k, = k2 = K = 1, and let the com- 
ponent tensors be A and B in the spherical basis. Use from Table 7.3 the 3-j coef- 
ficients for the first argument unity and write out each of three expansions in 
(8.21) for Q = +1,0. Thus verify (8.23). 
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8.6 
(a) Carry out the reduction from the general coupling form (8.21) to the scalar- 
product form (8.28), assuming that k is an integer. 
(b) Show that if two tensor operators commute then their scalar product is inde- 
pendent of their ordering. 
(c) Use expression (8.19) for the adjoint of a tensor to derive (8.30). Show the 
equivalence of the two forms in this expression. 
8.7 To derive the Wigner-Eckart theorem, rotate each of bra, operator, and ket 
by using (6.19) or (8.8) to obtain an expansion into products of three D-matrix ele- 
ments. Integrate over these angles through range R given in (7.98). Show that the 
resulting expression is an identity if the tensor matrix elements satisfy the Wigner- 
Eckart theorem (8.32). 
8.8 For an alternative proof of the Wigner-Eckart theorem, evaluate the matrix 
elements of the commutator (8.10) as done in the text for (8.9), then show that the 
recurrence relation obtained is the same as that for the coupling coefficient. 
8.9 Obtain the reduced matrix elements for the spherical harmonic tensor Yk 
by starting with (7.102) and making the identifications and transcriptions suggest- 
ed in the text. Convert from 3-j to Clebsch-Gordan coefficients by using (7.57), 
then identify the reduced matrix element in the general expression (8.32) to get 
(8.35). 
8.10M To obtain the quadrupole moment formulas (8.41) - (8.43), produce an al- 
gebraic expression for the coupling coefficients either by plugging into (7.59) and 
simplifying or by using Muthematica notebook A l g 3  j in Appendix I. Manipulate 
these to produce the given relations between Q and the reduced matrix element as 
well as that between Q and the rn-dependence of the quadrupole matrix element. 
8.11 
(a) Trace through the chain of equalities in (8.45), justifying each step. 
(b) Substitute the 3-j coefficients to obtain the final result, (8.46). 
8.12 Derive the sum-rule relations (8.50) and (8.51) for reduced matrix elements 
by using orthogonality of the Clebsch-Gordan coefficients in conjunction with the 
Wigner-Eckart theorem (8.32). 
8.13 Consider the reduced matrix elements of Hermitian spherical tensors that 
satisfy (8.20). 
(a) Use the Wigner-Eckart theorem to write down the relation between the matrix 
elements of Tkq and its Hermitian conjugate. Transform the Clebsch-Gordan co- 
efficients to 3-j coefficients and use the symmetry properties of the latter, plus 
some phase manipulations, to verify (8.20). 
(b)  Show that the reduced matrix elements of both the spherical harmonic tensor, 
Yk in (8.35), and of the unit vector, i. in (8.46), satisfy (8.52). 
8.14 The motif of shells at the beginning of this chapter may be interpreted as an 
ensemble of spin- 1/2 particles with spins up and down. 
(a) What is the polarization of this ensemble for a vertical quantization axis? 

Derive the following results for spherical-tensor scalar products: 

Consider the reduced matrix elements of r. 
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(b) If the polarization were 80%, what would be the smallest possible number of 
spins in the ensemble? 
(c)  What is the minimum number of shells you would have to collect before you 
could have a polarization of 90%? 

8.15 Consider a polarized ensemble of spin-l/2 particles, such as a beam or tar- 
get of hydrogen atoms. Investigate its properties under polar-angle rotations as 
follows. 
(a) By analogy with the development for spin-1 ensembles, and using the reduced 
rotation matrix for s = 112 given in Table 6.1, show that after rotation by polar 
angle 8 the density matrix that is initially 

is transformed into 

I [ cs(P+ - P-) s2P+ + c 2 e  

c2P+ + s2P- cs(P+ - P-) 
do) = 

(8.116) 

(8.1 17) 

in which the half-angle function abbreviations in (8.63) have been made. 
(b )  Show that if the ensemble is initially unpolarized, P +  = P -  = 112, so that 
po = (112) 12, then it is unpolarized after the rotation, thus p(8) = po. 
(c) Show that under 8 -+ n - 8 the c2 and s2 terms interchange, as do the roles of 
the CT= +1/2 and 6= -I/2 states. Explain this in physical terms. 
(4 A unitary transformation, such as a rotation, cannot change total probabilities. 
Verify this general result by showing that the trace of the density matrix (8.1 17) is 
independent of 8. 
(e )  Consider the vector polarization for a spin-1/2 ensemble given by (8.58). 
Using p(8) from (8.1 17), show that after rotation the polarization becomes 

Explain from the viewpoint of irreducible spherical tensors why this result is the 
same as for the vector polarization of a spin-1 ensemble, as given by (8.71). 
8.16" Consider the numerical solution of the pair of coupled differential equa- 
tions for the spin amplitudes a+ and a-, as given by (8.1 10). 
(u) Use the Mathernatica function NDSolve with initial conditions a+ = 1, a- = 0, 
to solve for the evolution of the spin amplitudes as a function of z,. 
(b) By using the formulas in (8.1 14) for the spin expectation values, make a table 
of the x and z components of the spin as a function of 2,. 

(c)  In Mathernatica package Graphics' P l o t F i e l d '  use function PlotVec- 
t o r F i e l d  to visualize the spin mixing, as in the graphics for a given value of 
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scaled radius rp in Figure 8.9. 
8.17 Show that spin expectation values of a spin-s system can be calculated in 
terms of magnetic-substate amplitudes in the expansion (8.102) by inserting opera- 
tors s, and s + ~  between such bra-ket expansion states, then using relation (3.63) 
for the ladder operators and the orthonormality of (r eigenstates to simplify the 
double magnetic-substate sums. Finally, convert to x and y components to verify 

8.18 The evolution of the vector polarization for a spin-1/2 beam, P,, in a uni- 
form magnetic field gradient satisfies a differential equation that can be construct- 
ed by taking the following steps. 
( a )  Note that the populations of the spin-parallel and spin-antiparallel substates 
are given by Pc =lu,l2 = u;ac, and use this to construct from the differential 
equation for u* the first derivatives of P+ with respect to z,. 
(b) Show that the derivative of P++ P- with respect to zp is zero, so the effects of 
the transverse coupling do not change the total substate projection for each particle 
as a function of time, with time being proportional to z, because the speed is con- 
stant. 
(c) Now take second and third derivatives of P+, say, in order to derive a third- 
order differential equation for P+ containing only the magnetic-field parameters 
and zp. In particular, the reference-frame angle @ no longer appears. 
(4 By using (b) to argue that P- satisfies the same equation as P+, write down the 
third-order equation satisfied by their difference, which is P,, namely 

(8.1 I l)-(8.113). 

(1 - u)pz"'+ p," + (1 - u) [ ',2 + ____ ('g;2i2]e'+$-e = O  B; z 0  (8.119) 

where u = 4'q, and derivatives are with respect to this variable. This equation, 
with appropriate initial conditions, gives the same numerical values for Pz as do 
the amplitude equations, and it is independent of the azimuthal angle 4. 
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Chapter 9 

RECOMBINING SEVERAL 
ANGULAR MOMENTUM EIGENSTATES 

As a grand finale to this book, we present the algebraically quite formidable problem 
of recombining several angular momentum eigenstates. At this level we provide just 
the overture. A complete treatment-as of a decade ag-ccupies 500 pages in the 
work on the Racah-Wigner algebra by Biedenham and Louck [Bieglb]. 

We begin by introducing in Sections 9.1 and 9.2 the Racah and 6-j coefficients, 
which describe recouplings of three angular momenta to form a fourth. In Sec- 
tion 9.3 we emphasize the unitarity and symmetry properties of the 6-j coefficients, 
and discuss how to use them and compute them efficiently. The relation of the 
coupling coefficients to the irreducible tensors introduced in Chapter 8 is the topic 
of Section 9.4. In the final section of this chapter we derive properties and applica- 
tions of 9-j coefficients, which describe recouplings among four angular momenta. 

9.1 RECOUPLING THREE ANGULAR MOMENTA 

We now discuss the various coupling schemes by which three angular momenta can 
be combined to form a fourth. Clearly, understanding the relation between such 
coupling schemes is important in practical calculations, since otherwise the whole 
calculation has to be redone if the order of coupling is altered. Our initial approach 
in Section 9.1.1 is algebraic and formal, whereas in Section 9.1.2 we provide a 
geometric and informal viewpoint. 

9 .1 .1  

Here we set up the problem of describing recouplings among three angular momenta 
to form a fourth. Since the distinction between components and resultants soon be- 

3 4 5  

Racah and 6-j Coefficients for Three Angular Momenta 
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comes irrelevant, we do not use the j labels and subscripts used in some of Chap- 
ter 7, but rather just the letters of the Roman alphabet (a ,  b, c ,  d, . . .) for total angu- 
lar momenta and their Greek counterparts (a, p, 3: 6, .. .) for projections. 

Recoupling Two Angular Momenta. When deriving the coupling of two angu- 
lar momenta, a and b, we show in Section 7.3 that interchanging a and b changes 
the phase of the coupled state, c by according to (7.69). This phase, al- 
though simple, should not be neglected. It is also implicit in the following discus- 
sion, in which it is understood that, for example, the coupling scheme J, + Jb need 
not give an identical state to that from Jb + J,. 

Recoupling Three Angular Momenta. Consider the combination of three angu- 
lar momentum operators: 

in which it is assumed-as when combining two angular momenta using 3-j coeffi- 
cients-that all three operators act in different Hilbert spaces, such as spin and or- 
bital angular momentum or independent orbital angular momenta. Clearly, J, is an 
angular momentum operator. To see this, consider 

with eigenstates constructed using (7.60) for coupling in terms of 3-j coefficients: 

in which the summation is over a and p such that a + p = E .  Next consider the an- 
gular momentum operator constructed as 

J, = J, + Jd (9.4) 

This has eigenstates 

Why do we not choose a different combination of operators and eigenstates? There 
is no particular reason, and we could choose 

with eigenstates constructed as 

(9.6) 
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with the sum over 
operator is 

and 6 such that p +8 = Q,. Then the total angular momentum 

(9.8) J, = J, + J, 

with eigenstates 

Definition of Racah and 6-j Coefficients. What is the relation between eigen- 
kets I(ed)cy) and I (af)cr)  in (9.5) and (9.9)? Since each coupling is described by 
a unitary transformation, there must be a unitary transformation between the two 
coupling schemes. Following Racah, we write the relation in terms of Racah coef- 
ficients, W ,  as 

I 1 

I f I 
In terms of Racah coefficients, the Wigner 6-j coefficients are defined as 

{ f.' i} = (-I)'W(abcd;ef) (9.1 1) 

in which the phase exponent Z is given by 

Z=a+b+c+d (9.12) 

Thus, the unitary relation between the two recouplings with intermediaries e andfis 

Although this second expansion is slightly more complicated to write down (but the 
phase can be factored out of the sum), the 6-j coefficient is more symmetric than the 
W coefficient, as shown in Section 9.3.2. 

The treatment so far is heavily algebraic, so let us step back and look at geome- 
tric views of recoupling transformations. 
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9.1.2 Recoupling Tetrahedra, Quadrilaterals, and Trees 

When combining two angular momenta to form a third (Clebsch-Gordan coeffi- 
cients) or combining three angular momenta to zero (3-j coefficients) in Section 7.1 
we show how representation in terms of triangles summarizes the properties, espe- 
cially the symmetries of these coefficients. We now use similar geometrical repre- 
sentations to visualize and suggest properties for recouplings among three angular 
momenta. This involves a total of six angular momenta because there are also two 
intermediaries and a resultant. 

Recouplings of a ,  b, and d through intermediaries e orf to form a resultant an- 
gular momentum c, as given in (9.12) - (9.13), involve four coupling triangles, as 
shown in Figure 9.1. 

a 

FIGURE 9.1 The four coupling triangles corresponding to coupling three angular momenta a,  
b, d to form a resultant c, with intermediary angular momenta e orf. 

The four triangles are labeled in the order 1,2, 3 , 4  in which the coupling is per- 
formed in (9.2) - (9.8). 

Tetrahedron and Quadrilateral Representations. For Racah or 6-j coefficients 
there are two visualizations of the recoupling coefficients. One is a three-dimen- 
sional tetrahedron and its projection onto a plane, while the other is a quadrilateral 
with diagonals. Both contain six interconnected lines and can be used to represent 
the 6-j coefficients and to summarize their symmetry properties. They are formed 
by glueing together the four triangles in Figure 9.1, as shown in Figure 9.2. 

FIGURE 9.2 Geometric representations of Racah and 6-j coefficients, either as a tetrahedral solid 
(left) or a quadrilateral and its diagonals (right). 
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In  Figure 9.2 the figures may represent the Racah coefficient W(abcd;ef) with 
its triangles A(u b e ) ,  A(e  d c), A(b d f ) ,  A ( u f c ) .  Equivalently, they represent the 6-j 
coefficient { a  b e ,  d cfl, where for typographical convenience we have separated the 
second row of the coefficient from the first by a comma. The beauty and utility 
(since these may coexist) of the tetrahedron representation are that all rotations of 
this solid that interchange vertices represent the same coupling coefficient, except 
possibly for phase differences. If you need to manipulate these coupling coefficients 
frequently, it is worthwhile to construct a wire-frame tetrahedron with its edges la- 
beled as shown in Figure 9.2, then to use this tetrahedron to relate recoupling co- 
efficients. We develop this geometrical relationship in Section 9.3.2 when dis- 
cussing symmetries of the recoupling coefficients. 

Tree Representation. Another graphical representation of recoupling coeffi- 
cients is in terms of a tree structure, as used in mathematics and computer science. 
An example is shown in Figure 9.3. 

a b d 

C 

FIGURE 9.3 Tree representation for coupling of six angular momenta corresponding to Racah 
and 6-j coefficients. The tree with solid branches corresponds to the ket on the left-hand side of 
(9.10), while the tree with dashed branches corresponds to a ket on the right-hand side. 

Although the tree representation has no particular advantage in this context, it is 
very useful for visualizing the coupling of nine angular momenta (Section 9.5). 

The Triangle Conditions. Four triangle-closure conditions have to be satisfied 
for each nonzero Racah or 6-j coefficient, as sketched for the latter in Figure 9.4. 
Each of the four triplets of A values in this figure must form a closed triangle for the 
coefficient to be nonzero, as also shown geometrically in Figure 9.2. 

1 (" A '} { A  A " }  {A A A} {" A A }  

FIGURE 9.4 The four triangle conditions for a 6-j coefficient. 
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9 . 2  FORMULAS FOR 6-j COEFFICIENTS 

In this section we first derive (Section 9.2.1) relations between 6-j and 3-j coeffi- 
cients by using the defining relation (9.13). These relations may be used to simplify 
sums over products of 3-j coefficients, as we do for the matrix element expansion 
(7.1 17) for scattering by a rigid rotator. In Section 9.2.2 we give a useful algebraic 
expression for 6-j coefficients, and in Section 9.2.3 we summarize tabulations. 

9 . 2 . 1  Expansion in Terms of 3-j Coefficients 

We now derive in progression several expansions over products of 3-j and 6-j coef- 
ficients that progressively isolate the latter. The intermediate results are interesting, 
however, because they can be used to simplify such expansions, as we subsequently 
demonstrate. 

Basic Expansion Formulas. The primary expansion begins with defining rela- 
tion (9.13). We expand each state into the original states, laa), Ibp), and Id&), 
which involves a pair of 3-j coefficients on each side. Since each state is drawn 
from a different Hilbert space and in each space the angular momentum eigenstates 
are orthogonal, we can equate the coefficients of their products on both sides and 
manipulate the phases (as suggested in Problem 9.1). We thus obtain the first rule: 

(9.14) 

In this formula the projections a, /3, and yare given, whereas (I, and E are de- 
rived from them by means of the m-sum condition for 3-j coefficients, (7.58). Note 
that the phase multiplying the 6-j coefficient is just that needed to convert it into the 
W coefficient, following (9.12). In the following formulas the m-sum conditions 
and this connection between 6-j and W coefficients are maintained. 

The second expansion formula removes one 3-j coefficient and thef sum from 
the left-hand side of (9.14) and produces a sum over 3-j coefficients on the right- 
hand side through use of the m-orthogonality condition (7.62). Thus, we obtain the 
second rule: 

(9.15) 
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This is sometimes convenient for summing over products of three 3-j coefficients. 
Our final sum rule is an explicit expression for the 6-j coefficient: 

(9.16) 

in which the summation over a, p, and 6is  constrained by the requirement of a fix- 
ed sum, y. As you can see by inspection of the original definition (9.13) and can 
verify by working Problem 9.2, this is the same result as obtained by taking the 
bra-ket of the two coupled states expanded into their component states. As you can 
see by this method, the 6-j coefficient is independent of magnetic substates; that is, it 
does not depend what direction is chosen for the z axis. 

There are many other sum rules satisfied by 6-j coefficients. Many of these are 
given in the two-volume work of Biedenharn and Louck [Bie8la., Bie81b1, in the 
compendium by Varshalovich et al. [Var88], and in the angular momentum hand- 
book of Brink and Satchler [Bri94]. 

Example: Matrix Elements for Rigid-Rotator Scattering. In Section 7.5.4 
we derive matrix elements in the partial-wave expansion for scattering by a rigid ro- 
tator. Although we have the formally correct expression, (7.117), it is given as the 
rather complicated function 

s~ =c( e" p P)[ j y  p j ' ) [  .i: 1'' J ) [  j' e' J') 
m" m m' m." m mi, m." m" M mi' 1'71' 

(9.17) 
(3) (4) (2 1 (1 1 

with a sum over all the m values except M .  We now show how this summation can 
be written in terms of a 6-j coefficient. 

To see whether this is plausible by sketching the triangles of angular momentum 
numbers for the 3-j coefficients, similarly to Figure 9.1, as shown in Figure 9.5. 
Having convinced ourselves that we really have something proportional to a 6-j co- 
efficient, it requires merely some permuting of arguments in (9.17') to get the same 
order as in (9.16), so this chore is relegated to Problem 9.3. The resuIt is the very 
compact expression 

(.-if"'!' { j' !' i} (9.18) s, = 2j"+1 !" j" 
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FIGURE 9.5 Coupling triangles corresponding to the four 3-j coefficients in (9.17). 

This nice result is not useful unless compact expressions can be found for 6-j coef- 
ficients. This can be done, as we now describe. 

9.2.2 

Although the expansion of a 6-j coefficient as a sum over products of four 3-j coef- 
ficients is desirable in formal manipulations, such as the sum (9.16), it is not 
efficient for numerical work. In his pioneering work on angular momentum in 
atomic spectroscopy discussed in Section 5.5, Racah [Rac42] succeeded in 
reducing the equivalent relation between Clebsch-Gordan and Racah coefficients to a 
single algebraic sum. This can be written in terms of the A function defined by 

Algebraic Expressions for 6-j Coefficients 

(u +b -c)!(u +c -b)! (b + c -  a)! 1 A (ubc) = 
(u + b +c + l)! (9.19) 

In this and the following expression it is assumed that the six arguments of the coef- 
ficient satisfy the triangle relations in Section 9.1.2. For example, in the C program 
- 6 j in Appendix I1 these conditions are checked before the 6-j function is called. 
The 6-j coefficient is then expressed as 

(9.20) 
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l+b+c+d 

1 

The range of summation over k in  (9.20) is to be chosen so that no factorial 
argument in the sum is negative. If the initial phase factor in (9.20) is omitted, one 
has an expression for the Racah coefficient W(abcd;ef). 

(1 + b + C  -d)(l +b - C  +d)(-b + C  -I- d)(2 + b + C  +d)  
( 1  +2b)(2+2b)(3+2b)c(l+2~)(2 +2c) 

T A B L E  9.1 The 6-j coefficients with the smallest angular momentum a = 0 ,  
1/2, or 1. Related coefficients are obtained by permuting columns and by pair- 
wise row and column interchanges. Variables in the coefficients must be 
chosen to satisfy the triangle rules and must be non-negative; otherwise, the 
formulas given do not apply. (Coefficients calculated by using Mathernat ica 
notebook Alg6 j.) 

1 b b+l  
c c-I z 

= (-1) 

(b + C  - d)(l + b -c  +d)(-b + C  +d)( l  +b + c  + d )  
2b(l+2b)(2+2b) c(-I+2c)(l+2c) 

+ 2b)(2 + 2b)2c(l+ 2c)  

112 b bi-112 
d c C-112 

1 b b+l l+b+c+d (b-c  +d)( l  +b - C  +d)(-b + C  + d ) ( l -  b + C  + d )  { d c c+l }=(-') / (1+2b)(2+2b)(3+2b)( l+2~)(2+2~)(3+2~)  

l b b  I+b+c+d b(1 +b)+c(l + c ) - d ( l + d )  
d c c  db(1+2b)(2+2b)c( l+2~)(2+2~) 
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Expressions for One Angular Momentum Small. Although these expressions 
look formidable, if one of the angular momenta in the 6-j  coefficient is very small 
(such as 0, 1/2, or 1), then simple algebraic expressions for the coefficient are prac- 
ticable, Such coefficients are given in Table 9.1. By applying exchange symme- 
tries of 6-j coefficients derived in Section 9.3.2, you can produce from the entries 
in Table 9.1 all the 6-j coefficients that have 0, 112, or 1 in at least one position. 

The Mathematica system can be used to compute 6-j coefficients in algebraic 
form, as suggested in Problem 9.4. The algebraic forms obtained by using note- 
book Alg6j in Appendix I may be converted to the programming languages C or 
Fortran by using functions CForm or FortranForm in Mathematica. We dis- 
cuss this further in Section 9.3.3. 

9 . 2 . 3  Tabulations of 6-j Coefficients 

It is useful to have available tabulations of Racah or 6-j coefficients, both algebraic 
(as in Table 9.1) and numerical. We postpone discussion of computing 6-j coeffi- 
cients efficiently until Section 9.3.3. By then we have developed their symmetry 
properties, which greatly reduce the range of tables needed. In the meantime, here is 
a catalog of tables that are generally accurate and that are not in specialized technical 
reports and research journals. 

Algebraic Expressions. Extensive tables of aigebraic expressions for Clebsch- 
Gordan and Racah coefficients are available in Biedenharn and Louck [Bie8la] and 
in the recent tome by Varshalovich et al. [Var88]. Such tables were developed by 
hand calculation and the formulas were typeset by hand. Because both procedures 
have possibilities for errors in the relatively complicated expressions involved, it is 
advisable to check their correctness against computer-generated expressions, such as 
we describe in Section 9.2.2 and Problem 9.4. 

Numerical tables. Extensive numerical tables of 6-j  coefficients as exact ratio- 
nal fractions (Section 7.4.2) were computer-generated and typeset for the publica- 
tion of Rotenberg et al. [Rot59]. Within the limitations of the tabulation (largest an- 
gular momentum equal to 8), these are the most useful numerical tables. 

Biedenharn and Louck [BieS la] provide a bibliography of tables produced 
through about 1975. Given the widespread availability of portable computer pro- 
grams for coupling coefficients (recent programs are summarized in Section 9.3.3), 
the earlier work is now most useful for checking the correctness of programs. 

9 . 3  PROPERTIES OF RECOUPLING COEFFICIENTS 

Although we have derived expressions for the 6-j coefficients, the large number of 
arguments in the coefficients makes their use very unwieldy unless some simplifica- 
tions can be introduced, for example through use of orthogonality and symmetry re- 
lations. These are the topics of the following two subsections. 
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9 .3 .1  

In Section 7.2.2 we derive j-sum orthogonality relation of 3-j coefficients, (7.61), 
by considering orthogonality of coupled states. By a similar analysis of the coupled 
state Icy) with states (ec) making the unit operator, then-as Problem 9.5 suggests 
showing in detail-one gets an orthogonality relation between 6-j coefficients: 

Orthogonality Relations of 6-j Coefficients 

If each 6-j coefficient is replaced by its corresponding Racah coefficient then the 
same sum rule results, since W and 6-j coefficients differ only by the phase (9.12), 
which is the same in both factors in (9.21). By using various intermediate states for 
the summation, one can obtain a multitude of sum rules for products of 6-j and 
Racah coefficients. Many of these are in Brink and Satchler’s handbook [Bri94]. 

9 .3 .2  Symmetries and Special Values of 6-j Coefficients 

Very few functions that you encounter have six arguments that (for nonzero function 
values) are constrained by complicated relations, such as the triangle rules Fig- 
ure 9.4. It is therefore important for simplifying calculations to understand symme- 
try relations under changes of arguments of the 6-j coefficients. As mentioned in 
Section 9.2.3, such symmetries reduce the number of independent coefficients to be 
tabulated. Finally, we give a simple numerical example of using explicit 6-j coeffi- 
cients to relate wave functions in different coupling schemes. 

FIGURE 9.6 Quadrilaterals related by rotations in the plane of the page. Each describes the 
same recoupling associated with the 6-j coefficients labeling the quadrilaterals. 
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Symmetries from Geometry. To explain the symmetry relations, we make a 
geometrical analysis of the recoupling quadrilateral in Section 9.1.2. From a geo- 
metric perspective, it is the same coupling coefficient no matter what its orientation 
in  the plane. Four such orientations are shown in Figure 9.6. By rotating the 
coupling quadrilaterals, each outer edge, a ,  b, c,  or d, is chosen to occupy the low- 
est horizontal position. By comparing the new labels with those on the original 
quadrilateral at top left, we see that the four 6-j coefficients given must describe an 
equivalent recoupling. Indeed, the four coefficients in Figure 9.6 are equal to each 
other, rather than being just proportional. This can be verified by substitution in the 
expansion formula (9.16) for 6-j coefficients in terms of 3-j coefficients, as sug- 
gested in Problem 9.6. 

In the quadrilateral diagrams for 6-j coefficients (Figures 9.2 and 9.6) the diag- 
onals e and f represent the intermediate angular momenta. Symmetries involving 
two of the other four angular momenta can be visualized by rotating the coupling 
tetrahedron in three dimensions so that when projected onto a quadrilateral there are 
different diagonals. Figures analogous to Figure 9.6 can then be drawn and the 
symmetries deduced. There are six choices of diagonals and four figures for each 
choice, thus generating 24 symmetries of the 6-j coefficient. By this means one can 
deduce the following symmetry rule: 

A 6-j coefficient is invariant under interchange of any 
two columns and under interchange of the upper and 
lower arguments in each of any two columns. 

(9.22) 

Relations between the geometry of tetrahedra and their projected quadrilaterals 
have been developed by several authors, as summarized in Topics 8 and 9 in Bie- 
denharn and Louck [Bie8 lb]. 

Examples of the Permutation Symmetries. For 6-j coefficients there are 24 
symmetries of the kind depicted in Figure 9.6. For example, corresponding to the 
crossed quadrilateral in that figure which has e andfas diagonals, we have that 

(9.23) a f  d c e  b d f  {l fr ;I={: d e } = { a  b f } = { c  a e }  

Note that the phase factor between the Racah coefficient, W, and the 6-j coefficient, 
as given by (9.12), makes the Racah coefficient less symmetric, because phase 
factors appear when its arguments are permuted. 

Besides the mathematical beauty of these symmetries, what is their usefulness? 
Their most practical use is for reducing the range of tabulations of 6-j coefficients. 
For example, the tables of Rotenberg et al. [Rot591 assume "odometer" ordering of 
the arguments. That is, like the odometer (distance meter) of an automobile, the 
smallest arguments are put in the top row and in leftmost positions as much as 
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possible consistent with maintaining the triangle conditions. An example of such a 
reordering is shown in Figure 9.7. 

FIGURE 9.7 The process of permuting arguments of a 6-j coefficients into odometer order. The 
left-pointing arrows in the middle 6-j coefficient indicate cyclic substitution. 

As you may verify by running Mathematica notebook Num6 j ., all three forms 
give identical results when the arithmetic is done exactly. In the Mathernatica sys- 
tem the running time for each coefficient is about the same. (The first call of 
SixJSymbol in a Mathernatica session involves some setup time, so the 6-j co- 
efficient that is computed first will take longest.) 

A Numerical Example of Using 6-j Coeflicienfs. Suppose that a proton (spin, 
a = 1/2) interacts with a deuteron (spin, d = l), and that the relative orbital angular 
momentum in their center of mass is l .  We might be describing a configuration in 
the 3He nucleus (for negative total energy), or in p-d scattering (for positive total en- 
ergy). The situation is sketched in Figure 9.8. 

FIGURE 9.8 In the p-d interaction with relative orbital angular momentum l one can either 
couple the spin of p to 1, then couple this to the spin of d, or the d spin may be coupled to l! 
first. The lower part of the figure indicates the coupling schemes in (9.24) with ! = 1, J = 112. 
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The relative orbital angular momentum, I, is common to both particles; there- 
fore, it should make no real difference whether proton spin is coupled to l, then this 
is coupled to deuteron spin, or whether k‘ is coupled to deuteron spin then this cou- 
pled to proton spin. That is, wave functions from the two coupling schemes should 
be related by a unitary transformation. To express the states of angular momentum J 
and projection M formed in the first coupling scheme in terms of those in the second 
scheme, we go directly to the definition (9.10). Choose a = 1/2, b = f ,  e = jp as 
the proton total angular momentum. With the deuteron spin as d = 1 ,  thenf=jd as 
the deuteron total angular momentum, with c = J being the system angular momen- 
tum. Thus, by direct substitution, we have 

j ,  =1P-11 
(9.24) 

For clarity, we expand the labels identifying intermediate states e =jp andf=jd. 
Consider the simplest nontrivial case, I = 1 and jp = 1/2, so the proton spin is 

“antiparallel” in the semiclassical vector model (Sections 5.3,7.1). Further, choose 
the case J = 1/2, corresponding in the vector model to proton spin antiparallel to the 
orbital angular momentum. These arrangements are shown schematically in the 
lower part of Figure 9.8. We do not show any tilt to the coupling vectors; that is, 
we approximate their values by their projections. Given the angular momentum 
values, there are no free quantities in (9.24). It reduces to 

I{ [(112,1)112] 1}1/ 2 4  

112 1 112 
=- c } (9.25) 

jd=0.12 

= -1 1{1/ 2[(1,1)0] }I / 2, M )  + 8 1{1/2[(1,1)1] }1/ 2, M) 43 

in which either Table 9.1 or Mathernatica notebook Num6 j in Appendix I can be 
used to find the two 6-j coefficients required. Note that jd  = 2 does not contribute 
for the given coupling states, as you can see by sketching the coupling vectors. 

Is result (9.25) reasonable? It claims that the second contribution ( j d  = 1) is 
twice as probable (2/3) as the first contribution (jd = 0), which has just 1/3. If you 
sketch the coupling vectors more carefully than in Figure 9.8, you will see that this 
is plausible. The relative negative sign is just a requirement of unitarity for a system 
with two components. Starting from (9.24), you can make other choices of angular 
momenta to investigate various recoupling schemes, as suggested in Problem 9.7. 
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Although these analyses are tedious as well as error-prone, such direct expan- 
sions seldom have to be done by hand. There are two alternatives: either the mani- 
pulations are done algebraically and a final compact expression for matrix elements 
or other observables is produced, or steps corresponding to the expansion (9.24) are 
coded in computer programs that crunch out the numbers without human interven- 
tion. Whatever way one uses, there is a premium on efficient computation of 6-j co- 
efficients, a topic to which we now turn. 

9 .3 .3  Computing 6-j Coefficients Efficiently 

In Section 7.4.3 we discussed efficient computation of numerical values of 3-j co- 
efficients. Our purpose here is to extend the discussion to 6-j  coefficients. Again, 
because of the complexity of writing such programs (beyond the entry-level program 
in Appendix 11) we outline the options, then direct you to references and sources of 
improved programs. 

Algebraic Expressions. If one angular momenta in the 6-j coefficient is small 
(say, 2 or less), then an algebraic expression for the coefficient may be practicable. 
We give such expressions in Section 9.2.2. Using these expressions for numerical 
work is much faster than using the general formula for the coefficient, (9.20), no 
matter in what form-rational-fraction or decimal-the coefficient is expressed. The 
Mathematica system can compute 6-j coefficients in algebraic form, for example, 
by using notebook A 1  g 6  j in Appendix I. Mathematica can then generate expres- 
sions coded in C or Fortran by using functions CForm or Fort r-anForm. Such 
computer-generated algebraic forms are also useful for identifying errors in pub- 
lished tables of algebraic expressions, as discussed in Sections 9.2.2 and 9.2.3. 

Numerical Expression for  6-j Coefficients. We show two general formulas 
for the 6-j coefficient, namely the expansion as sums of products of 3-j coefficients, 
(9.16), and the direct summation in terms of factorials, (9.20). Experience shows 
that the latter is more practicable and efficient for numerical work. 

Just as discussed for the 3-j coefficient in Section 7.4.2, for 6-j coefficients 
there is a choice between exact rational-fraction (prime-exponent) expressions and 
decimal approximations. Similarly, the disadvantages of requiring exact coefficients 
are programming that is more complicated and longer computing time. An array of 
primes must be used for each rational fraction, and factorials should be precomputed 
and stored in tables. Such a prime-exponent representation (Secti.on 7.4.2) is used 
in the computer-generated tables of Rotenberg et al. [Rot59]. 

Computer Programs for 6-j Coefjcicients. The Mathematica notebook Num6 j 
in Appendix I may be used to compute exact rational-fraction expressions for 6-j 
coefficients. We also give in C 3  of Appendix I1 an entry-level program for 6-j  co- 
efficients, coded in the C language. This program, -6 j , uses expression (9.20) to 
calculate decimal values in double-precision arithmetic and it outputs the values to 
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six decimal digits. The Mathematica program is about two orders of magnitude 
slower than the C program when run on the same workstation. Although these two 
programs are suitable for exploratory work, they use none of the methods discussed 
in Section 7.4.2 for improving efficiency or accuracy. If you plan to do extensive 
calculations requiring 6-j coefficients, you should read on. 

There are Regge symmetries for 6-j coefficients depending upon linear combina- 
tions of the arguments, similar to the Regge symmetries for 3-j coefficients given in 
Section 7.4.2. These symmetries for 6-j coefficients are discussed, for example, in 
Section 3.18 of [BieSla]. Regge symmetries may be used to combine angular mo- 
menta in a 6-j coefficient to obtain parameters that are as small as possible, then the 
permutation symmetries (9.22) allow the smallest angular momentum to be moved to 
a specific location within the coefficient. Thus, one can express a coefficient in its 
computationally simplest form. The complicated programming logic required is jus- 
tified only if many 6-j coefficients with large arguments are to be calculated. 

Several authors have published programs for 6-j coefficients, including Lai and 
Chiu [Lai90] and Fang and Shriner [Fan92]. Both programs yield exact rational- 
fraction values, although Lai and Chiu’s program switches to decimal approxi- 
mations when the angular momenta in the coefficient exceed 20. Programs by Rao 
and Venkatesh [Rao78] compute Racah coefficients in decimal approximation. The 
programs summarized in Table 9.2 are in Fortran, except for the Mathematica op- 
tion. Program details are given in the references. 

TABLE 9.2 Published programs for 6-j coefficients. 

Source Method Remarks 

Muthematica Symbolic Algebraic or numerical values 

[Rao78] 

[Lai90] 

Decimal Racah coefficients 

Prime and decimal Prime for j 5 20 

[Fan921 Prime Workstation version available 

A practical way to check program correctness and numerical accuracy for 6-j co- 
efficients is to use the orthogonality relation (9.21). Initial checks can be made by 
verifying orthogonality for the squares of coefficients, then you can check the cor- 
rectness of relative phases by choosing one argument to be different, which should 
give zero for the sum of products of 6-j coefficients appropriately weighted. Such 
checks are suggested as Problem 9.8. 

As shown in Section 9.5.1, the 9-j coefficients are usually computed as a sum 
over products of three 6-j coefficients, so efficiency in calculating the latter is impor- 
tant for this purpose. 
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9.4  SCALAR PRODUCTS OF IRREDUCIBLE TENSORS 

In Chapter 8 we introduce irreducible spherical tensors, particularly how to combine 
them to form scalars (Section 8.2.2). We also show the power of the Wigner- 
Eckart theorem (Section 8.3) and the related reduced matrix elements. Our purpose 
in this section is to apply our newfound skills in techniques of recoupling three an- 
gular momenta (Sections 9.1-9.3) with results from Sections 8.1-8.3 in order to 
obtain formulas that are especially suitable for describing scalar quantities such as 
Hamiltonians in quantum mechanics. 

We begin by deriving in Section 9.4.1 factorization and projection theorems for 
tensors, which is especially useful for calculating matrix elements of scalar products 
of a system in terms of reduced matrix elements of its constituents. We then use the 
factorization theorem in Section 9.4.2 to derive formulas for matrix elements of 
multipole expansions, which is a generalization of the Gaunt-integral formulas for 
three spherical harmonics in Section 7.5.3 and of the example of yuadrupole-mo- 
ment reduced matrix elements in Section 8.3.3. The last topic in this section-but 
not the least-is a discussion of tensor matrix elements in L-S and j-j coupling 
schemes. This topic sets the scene for consideration of recouplings among four an- 
gular momenta in Section 9.5. 

9 .4 .1  Factorization and Projection Theorems for Tensors 

In the following we derive two theorems that can greatly simplify calculations in- 
volving irreducible tensors. 

Factorization Theorem. In Section 8.2.2 we learn how to contract irreducible 
tensors to form scalars, with the scalar product of two irreducible tensors, Tk(A1) 
and Tk(A2), being given by 

r- I 

(9.26) 

Note that the k on the left-hand side of this definition indicates the rank of the two 
components rather than the rank of their scalar product, which i s -o f  course-zero. 

Matrix elements of the scalar product, which is typically an operator, are most 
readily determined in an angular momentum representation in which the systems 
characterized by the labels A1 and A2 are combined-in the sense described in Chap- 
ter 7. The tensors on the right-hand side of (9.26) are, however, most likely to be 
evaluated in the uncoupled representation. We therefore calculate the matrix ele- 
ments ((jlj2)JMITk(A1) *Tk(A2)l(j;j$)J'M') in terms of those of the states before 
combining, namely ( j jmi  ITk(Ai)lj(m:) with i = 1,2. To do this, the coupled states 
are expanded in terms of Clebsch-Gordan coefficients by using the basic formula 
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(7.35). Since we are dealing with irreducible tensors, m dependences of corre- 
sponding matrix elements can be expressed in terms of Clebsch-Gordan coefficients 
by using the Wigner-Eckart theorem, (8.32). Since this is easier to do than to type- 
set, we defer details to Problem 9.9. The result is the factorization theorem in the 
coupled representation : 

In the factorization theorem formula there are two delta functions, as expected, 
since the scalar operator cannot change the total angular momentum J or its projec- 
tion M. The 6-j coefficient gives the probability amplitude for coupling among the 
angular momenta involved, of which we show a simple example immediately below. 
Finally, in (9.27), we have the reduced matrix elements of the two rank-k operators 
composing the scalar product. 

A Simple Example of the Factorization Theorem. To illustrate use of (9.27), 
consider the scalar product L*S, which is the spin-orbit operator discussed in Sec- 
tions 4.3.1 and 7.1.3. It is composed of two rank-I operators, L and S, whose re- 
duced matrix elements are obtained from (8.48). These matrix elements are diagonal 
in the corresponding total angular momenta, P and s, respectively. If (8.48) is used 
twice on the right-hand side of (9.27), if the 6-j coefficient is manipulated by using 
the symmetry rule (9.22) to the form given as the last equation in Table 9.1, then 
(as Problem 9.10 suggests that you show) we obtain 

This result is just as expected from the simple derivation in Section 7.1.3. If (7.12) 
is taken as given, then use of (9.27) provides a heavy-handed way of deriving the 
simple expression in Table 9.1 for the 6-j coefficient ( 1 b b, d c c } . 

Projection Theorem for  Rank-1 Operators. Suppose that we have a rank-1 
(vector) operator TI.  In the semiclassical vector model of angular momentum (Sec- 
tion 5.3), and ignoring for the moment the distinction between a classical vector and 
a vector operator such as TI, we would expect the situation sketched in Figure 9.9. 

According to this picture, which relates to expectation values in angular 
momentum eigenstates (j, m), the precession of TI about J averages its transverse 
component about J to zero. The projection theorem that we derive is 
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(9.29) 

FIGURE 9.9 A vector operator T I ,  treated as a classical vector, precesses about the angular 
momentum J, also treated classically. The z component of T, is determined by its projection along 
J and by the direction of J .  

Our proof of (9.29) proceeds as follows. Consider a representative component 
of J on the right-hand side of (9.29), say Ja with d = +1,0 for the spherical basis. 
We can write the matrix element as 

in which we use definition (8.29) for the scalar product. By writing 

=q-, J ,  + [ J q 7 T , - q ]  (9.3 1) J ,  T,-q 

we can split each matrix element in the sum in (9.30) into one contribution from the 
first term in (9.3 1) and one from the commutator term. As you can verify by work- 
ing Problem 9.1 I, the commutator matrix elements are zero, corresponding (in the 
semiclassical viewpoint Figure 9.9) to vanishing of the averaged components of T1 
that are orthogonal to J. There remains the matrix elements 
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This can be simplified by inserting a unit operator between Jo and  TI,-^ with a sec- 
ond unit operator between  TI,.^ and Jq, according to (2.14), with the complete set of 
states being (j,rn") and (j,rn") states, respectively. It is sufficient to keep the 
same label j throughout, since angular momentum operators do not change this 
eigenvalue. Matrix elements of the angular momentum components can be ex- 
pressed by using the Wigner-Eckart theorem (8.32) with k = 1 and the reduced ma- 
trix element (8.48). The resulting sum over products of two Clebsch-Gordan coef- 
ficients can be collapsed by using orthogonality relation (7.41). Finally, the 
Wigner-Eckart theorem is used again to produce (9.29) for a given choice of 0. 
Since this choice is arbitrary, the relation holds for the vectors TI and J, as written. 

Continuing our excursion in abstraction in order to produce practical formulas, 
consider the matrix elements on the right-hand side of (9.29) for a representative an- 
gular momentum component o. Using the trick of inserting a complete set of states, 
we have 

( jmlJ,  (J*T,)lj'm') = ( jmlJ,  ijm")(jm"l J*Tl I j'm') 
m" (9.33) 

=(jmlJa(jm')(jll JOT, 1li) ' j j .  

in which the second line follows by noticing that the second operator is a scalar, 
k = 0, so by (8.32) its matrix elements cannot change the projection and must be 
identical to its reduced matrix elements, as written. Expressing (9.33) in vector 
form gives a factorization theorem in uncoupled representation : 

Finally, by combining (9.29) and (9.34) we have for any rank-1 tensor operator 
the decomposition theorem 

I I 

which can be written for its reduced matrix elements as 

I I 

(9.36) 

These results can be applied immediately to a practical example, 
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The Land& g-factor Formula. Suppose that we have a single particle (typically 
an electron, a nucleon, or a quark) in a state of well-defined L ,  s, and j .  We want to 
calculate matrix elements of the magnetic moment operator 

in which & is the appropriate magnetic moment unit (Table 5.2), gL is the g-factor 
for orbital motion, and g, is the spin g-factor. In the decomposition theorem (9.35) 
we set TI = p, a vector operator because of (9.37). The scalar product p-J = J e p  
can be manipulated simply into 

(9.38) 

in which we have used J = L + S and, as in the step between (7.10) and (7.1 l), we 
have expressed L-S = S*L in terms of operators for which the bra-kets are eigen- 
states. This completes the operator algebra. 

Matrix elements in a state of definite L ,  s, and j are now simply obtained by us- 
ing (9.38) in (9.35). If we require the expectation value of p, then m'= m and the 
first matrix element on the right-hand side is nonzero only for CT =: 0 (the z compo- 
nent) and its value is m. Thus we have the Landi g-factor formula : 

in which the g-factor is given by 

(9.39) 

(9.40) 

Note that-given the assumption of definite C , s, and j values-only rotational sym- 
metry (geometrical angular momentum, Section 3.4.5) is used to derive these for- 
mulas. The dynamics (primarily as quantum mechanics) is manifested in the origin 
of the primary g-factors ( g L  and gs) and in comparison with experiments to check the 
assumption and then to assign the total angular momenta C andj. 

9.4 .2  Matrix Elements of Multipole Expansions 

In this section we illustrate using the factorization theorem in the coupled representa- 
tion, (9.27), to calculate two-particle central interactions V12 when the two particles 
are characterized by their orbital angular momenta L ,  and f 2 ,  which are combined to 
give total angular momentum number L. Our methods and results are essentially 
generalizations of those in Section 7.5.4 for rotator matrix elements. 
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Suppose that we have two particles with coordinates rl and r2, as shown in 
Figure 9.10, with an interaction Y2(q2) that depends upon their separation r12. 

FIGURE 9.10 Matrix elements of the two-particle central interaction V12 are to be calculated in 
the coupled representation, with the two particles having definite orbital angular momenta, as 
shown. 

We make a multipole expansion of V12 analogously to (7.109), namely: 

(9.41) 

in terms of the angle y between rl and 1-2, as shown in Figure 9.10. In (9.41) the 
p th multipole moment v,, is given from the orthogonality relation of Legendre poly- 
nomials, (4.3), by 

For example, as in the discussion below (7.11 1), for the Coulomb interaction 
Y 2 ( q 2 ) = e 2 / q 2  we have 

Notice that this decreases at least as fast as the Coulomb potential that would be 
experienced by the particle that is more distant from the center (r,) if there were a 
charge e at the origin. For any interaction, (9.42) can be evaluated by numerical 
integration if necessary. 
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The states between which the multipole matrix elements are taker1 are the coupled 
orbital states with representative kets projected into configuration space given by 

The Legendre polynomials in (9.41) can be expanded by using the spherical- 
harmonic addition theorem (4.23), which the discussion at the end of Section 8.2.2 
identifies as an example of a scalar product. Therefore, the factorization theorem in 
the coupled representation, (9.27), can be used immediately to obtain 

4xd(2!, + 1)(21, + 1) (-1)';+'~+~ 
- - (9.45) 

2 p + l  

By using expression (8.35) for the two reduced matrix elements then simplifying 
and using phase-manipulation rules (Section 2.1,4), we obtain a very compact ex- 
pression for the reduced matrix element 

From (9.41) it follows that the angular momentum dependence of the reduced matrix 
elements of interaction Vlz is a sum over p of reduced matrix elements of the form 
(9.46), weighted by the multipole moments v p  

Selection rules for reduced matrix elements of V12 follow immediately from 
those inferred from (9.46). From the two "parity-conservation" 3-j coefficients we 
see that not only must the "orbital angular momentum transfer," p, conserve relative 
parity between primed and unprimed states, but if !, + t2 is even (odd), then 1; + P; 
must be even (odd) or else the matrix elements vanish. In this example-in the ab- 
sence of spins-many matrix elements will vanish because of rotational symmetry 
requirements and will enforce parity conservation, even if V12 is not a parity-con- 
serving interaction. This exemplifies the remarks made below (7.72) relative to tests 
of parity conservation. 

9 .4 .3  

Suppose that we have systems 1 and 2, for example-when investigating the atomic 
hyperfine interaction-an electron and a nucleus. The description of each has some 
symmetry relative to rotation of its center of mass about some point in space, thus 

The L-S and j - j  Coupling Schemes 
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orbital angular momentum numbers !; , i = 1, 2, as introduced in Sections 3.2 and 
4.1, Each system may have internal rotational symmetries, thus a spin-as dis- 
cussed in Sections 3.5 and 4.3.1-with values s j ,  i = 1, 2, such as s1 = 1/2 for an 
electron and s2 = 1 for a deuteron. With four angular momenta being involved, 
there are at least two ways of combining operators and eigenstates. 

In the L-S coupling scheme one combines the operators as: 

L = L , + L , ;  s=sI +s,; J = L + S  

whereas in the j-j scheme the order of combining operators is 

j, =Ll  +S,;  j2 =L2 +S2; J = j, +j2 

(9.47) 

(9.48) 

These two schemes for combining angular momentum operators are illustrated in 
Figure 9.1 1, which uses the tree representation (Section 9.1.2). 

FIGURE 9.11 The G S  coupling scheme (left) and j-j coupling (right) in tree representations. 

Why should one prefer one coupling scheme over the other? From a mathemati- 
cal viewpoint-given enough brain power and computer power-it makes abso- 
lutely no difference which scheme is used if the calculation is made without approx- 
imation. From a physical viewpoint, calculations and model approximations will 
often be easier and more realistic if one of the schemes is used. 

For example, suppose that the Hamiltonian of the system is modeled by central 
interactions plus a spin-orbit interaction for each particle, proportional to the (scalar) 
spin-orbit operator Li Si , i = 1, 2. As derived in Section 7.1.3, the system ener- 
gies-the eigenvalues of the Hamiltonian-are given immediately from the angular 
momentum numbers !,, sj, and j j ,  provided that the j-j scheme is used, since the 
spin-orbit operators are diagonal in this representation, On the other hand, if the 
Hamiltonian has a spin-orbit interaction proportional to L.S, where the two opera- 
tors are as in (9.47), then the G S  scheme is preferred. Notice that a Hamiltonian 
containing both types of spin-orbit interaction-so-called intermediate coupling- 
will be computationally rather messy. In either scheme, after appropriate relabeling, 
reduced matrix elements of the spin-orbit operator are given by (9.28). 

In the following, we specify angular momentum eigenstates in the two coupling 
schemes, thus preparing for Section 9.5, which emphasizes how to convert matrix 
elements between the two representations. 
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The G S  Coupling Scheme. We can visualize this coupling scheme by using the 
tree representation (Section 9.1.2) shown as the left-hand tree in Figure 9.11. 
Angular momentum eigenkets corresponding to the operators in (9.47) are formed 
following the combination rule (7.60). For the combined orbital states we have 

while for the combined spin states 

Finally, we have the total angular momentum state 

(9.49) 

(9.50) 

(9.5 1) 

in which-let it be clearly understood-the resulting ket depends upon the compo- 
nents making up L and S, and also-according to (7.69)-on the ordering 
( 1 , 2  # 2, 1, and L ,  S # S, L )  of the pairwise combinations. This coupling scheme 
is most applicable for small and medium-sized atoms. 

The j-j Coupling Scheme. This coupling scheme can be visualized using the 
right-hand tree in Figure 9.11. For the combined orbital-spin states we have, by 
using (7.60), the eigenkets 

j = l , 2  

The consequences of reversing the coupling order to s followed by t are detailed in 
(7.70) and (7.71). The total angular momentum state is now formed as 

This coupling scheme is most applicable for large atoms and for nuclei. 
Clearly, it would be tedious and therefore prone to considerable error if each 

time we decided to use a different coupling scheme among four angular momenta we 
had to go through the algebra of angular momentum eigenstates. Just as for recom- 
bining three angular momenta (Sections 9.1-9.3), an algebra for recombining four 
angular momenta can also be devised, as we do in the following section. 
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9 . 5  RECOUPLING FOUR ANGULAR MOMENTA 

Now that we have met the challenge of understanding recouplings among three an- 
gular momenta, we confront the problem of recoupling four angular momenta. This 
is more complicated because there are nine arguments rather than six. However, the 
9-j coefficient is algebraically more symmetric than the 6-j coefficient, which 
partially compensates for the increased number of arguments. 

We begin this section by defining 9-j coefficients and describing how to com- 
pute them conveniently and efficiently, then in Section 9.5.2 we discuss their sym- 
metries and special values. We return in Section 9.5.3 to discuss tensor matrix el- 
ements in coupled schemes, a topic introduced in Section 9.4.3. In Section 9.5.4 
we show how to make transformations between L-S and j-j coupling schemes, 
which is an important part of the technology of atomic and nuclear spectroscopy. 
Finally in this section, we give references to graphical and automated methods for 
performing the algebra of the functions considered in this section. 

9 .5 .1  Definition and Computation of 9 9  Coefficients 

Suppose that we have four angular momentum operators summed to a total, J, as 

Ji =J, + J b  + Jd +J, (9.54) 

in which the operators act in different Hilbert spaces, so that the operators on the 
left-hand side commute with each other. For example, we may have the orbital an- 
gular momentum and the spin operators both for two particles, as in Section 9.4.3. 
Two distinct coupling schemes are 

J, = J, + J b  J, = J d  + J, Ji = J, + J, 
J, =J ,  + J d  J h  ‘Jb +J,  Ji =J ,  + J h  

(9.55) 

We can represent this scheme by a tree representation, as shown in Figure 9.12. 

a b d e 

i 

FIGURE 9.12 Six couplings among nine angular momenta in the tree representation. Solid 
lines indicate couplings across rows and dashed lines indicate couplings down columns in the 9-j 
coefficient. 



9.5 RECOUPLING FOUR ANGULAR MOMENTA 3 7 1 

Defining the 9-j Coefficient. The unitary transformation between the angular 
momentum eigenkets in the two coupling schemes depicted in Figure 9.12 is writ- 
ten, similarly to (9.13) for 6-j coefficients, as 

I(ad)g,(be)h;im) = ((ab)c,(de)f;im) 
cf 

xJ(2c + 1)(2 f + 1)(2g + 1)(2h + 1) 
(9.56) 

which introduces the 9-j coefficient as the transformation coefficient in the braces 
{ . . . ) . Giving no iota for our Greco-Roman convention between projections and 
total angular momenta, we use the symbol m in this equation for the projection of i 
on the quantization axis. For typographical convenience the 9-j coefficient is often 
written as the identical coefficient X(a b c, d e f, g h i ) .  

The complete symmetry of the coupling scheme (9.56) and its graphical repre- 
sentation (Figure 9.12) upon interchange of elements between rows and columns of 
the 9-j coefficient, indicate that the coefficient is completely symmetric under such 
interchange. 

Formula (9.56) is useful for obtaining one set of coupled states in terms of the 
other, provided that one knows the 9-j coefficients. However, like much fine math- 
ematics, it does not immediately solve the problem of knowing values of these coef- 
ficients. This problem is formally solved just by writing 

J(2c + 1)(2f + 1)(2g + 1)(2h + 1) d e f 1: 11 (9.57) 

= ((ab)c, (de) f ;  im I (ad)g, (be)h;im) 

which follows from the unitarity of the recoupling transformation (orthonormality of 
the eigenkets). If formulas for the bra-ket on the right-hand side of (9.57) can be 
found, we have expressions for the 9-j coefficient. 

Expansions for 9-j Coefficients. Several expansion formulas for 9-j coeffi- 
cients can be produced. The basic one is obtained by expanding the bra-ket in 
(9.57) into sums of products of 3-j coefficients, as Problem 9.12 suggests you do. 
A model for such an expansion is provided by the G S  and j-j coupling scheme 
expansions given by (9.49)-(9.53). Thus one obtains, essentially by inspection, the 
expression 
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in which the summation is over all projection numbers except m. This form is suit- 
able for determining symmetries of 9-j coefficients, as we derive in Section 9.5.2. 
Note the direct correspondence between this formula and the tree representation in 
Figure 9.12, with the first row of 3-j coefficients being the couplings shown by 
solid lines in the figure and the second row of coefficients corresponding to the 
couplings shown by dashed lines. 

The form (9.58) is less efficient for computation than the expression in terms of 
6-j coefficients: 

To obtain this expression, pairs of 3-j coefficients are collapsed using (9.14), to ob- 
tain 6-j coefficients. As Problem 9.12 suggests verifying, the product of six 3-j 
coefficients becomes the product of just three 6-j coefficients, summed over a single 
variable, k. Since the algebraic expression for a 6-j coefficient, (9.20), takes only 
about as long to compute as expression (7.59) for a 3-j coefficient, a great savings 
in time is realized by using (9.59) rather than (9.58) to compute 9-j coefficients. 

Algorithms for 9-j Coefficients. Algebraic expressions for 9-j coefficients 
might be desirable, but nine arguments are required to define the coefficients, so 
their analysis is very complicated. On the other hand, exact numerical expres- 
sions-as rational fractions or decimal approximations (as discussed in Sec- 
tion 7.4.2)-are of great utility, because there are few published tables of the coeffi- 
cients, and these are only over very small values of the nine j arguments. Here we 
outline options for computing 9-j coefficients, then direct you to references and 
sources of programs. 

Permutational symmetries of the 9-j coefficients-(9.60) and (9.6 1) below-al- 
low the smallest angular momentum to be moved to a specific location within the co- 
efficient. By doing this, one can express the coefficient in its computationally sim- 
plest form. As when computing the 3-j and 6-j coefficients (Sections 7.4.2 and 
9.3.3), rational-fraction expressions in prime-exponent notation may be used for 9:j 
coefficients. The many factorials required should be precomputed and saved in a 
lookup table. 
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Although the 9-j coefficient is commonly evaluated as a sum over the product of 
three 6-j coefficients, (9.59), other algorithms are available and often significantly 
improve the efficiency of computation. This is especially important for 9-j coeffi- 
cients, because for a workstation to evaluate a single coefficient typically takes from 
a fraction of a second (decimal approximation) up to about one minute (rational-frac- 
tion form) and may require hundreds to tens of thousands of factorials. 

Alisauskas and Jucys [Ali71] derived a formula for 9-j coefficients as a triple 
sum over factorials instead of a single sum over products of three 6-j coefficients. 
Zhao and Zare [Zha88] tested the computational efficiency of this formula and con- 
cluded that generally the triple-sum formula is inferior. However, Rao, Rajeswari, 
and Chiu [Rao89] showed that the optimal method depends on the number of terms 
to be summed. Their program determines this number and chooses the evaluation 
method accordingly. Still another approach, discussed by Rao and coworkers, is to 
use hypergeometric functions to evaluate the 9-j coefficients, which they found also 
increases the speed. 

Parallel Processing. All the algorithms discussed above were: implemented on 
serial-processing computers. Implementation on parallel processors has been devel- 
oped by Fack, Van der Jeugt, and Rao [Fac92], using a network of transputers or- 
ganized as indicated in Figure 9.13. 

m---- computer 

FIGURE 9.13 Network of master and worker transputers used by [Fa921 for efficient computa- 
tion of 9-j coefficients. 

Fack and colleagues found that the 9-j coefficient is the first angular momentum 
coupling coefficient €or which parallelization has a remarkable impact. For their 
transputer configuration, the most appropriate algorithm was a sum over products of 
three 6-j coefficients, as in (9.59). Each “worker” transputer computes the product 
for a given summation variable, k, and returns the product to the “master” transputer 
for summing. They explored how the speed of computing the 9-j coefficient de- 
pends upon the number of transputers and found that for their system an average 
speedup of a factor of 4 was obtained with four worker transputers (Figure 9.13). 
Little was gained by using eight cross-linked worker transputers because of in- 
creased communication overhead between them. 

Programs for 9-j CoefJicients. Our programs for 9-j coefficients are the Math- 
ematica notebook Num9 j in Appendix I and the C-language program -9 j in Ap- 
pendix 11. Both use expansion (9.59) into products of three 6-j coefficients after 
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checking the six triangle conditions on rows and columns. The Mathernatica ver- 
sion provides exact rational-fraction value (Section 7.4.2), but with a very large in- 
crease in running time compared with the decimal approximations in the C program 
-9j. For example, to compute X(2, 1,  2, 3/2,3/2, 1, 1/2, 1/2, I) =-I/( LO&) on 
my workstation using the Mathernatica version takes about 7 seconds, but the C 
version needs only about 0.01 second for the decimal approximation. 

Published programs using the 6-j expansion, (9.59), include those by Lai and 
Chiu [Lai92] and by Fang and Shriner [Fan92]. Both yield exact rational-fraction 
values, although Lai and Chiu’s program switches from the Alisauskas-Jucys triple- 
sum formula to decimal approximations when the angular momenta in the coefficient 
exceed 10. Programs by Rao et al. [Rao89] are available for decimal approxima- 
tions. We summarize these recent programs in Table 9.3. 

TABLE 9.3 Published programs for 9-j coefficients. 

Source Method Remarks 

[Rao89] Decimal Workstation version available 

[Lai92] Prime and decimal Prime for j 5 10 

[Fan921 Prime Workstation version available 

[Fac92] Decimal Parallel-processing version 

These programs for 9-j coefficients are in Fortran, except for the version of Fack 
et al. [Fac92] for parallel processing, which is in C. Details about the programs are 
available in the references. If you wish to check out such a program installed in 
your computer, a practical way to check its correctness and numerical accuracy (for 
decimal versions) is to use the orthogonality relation (9.65) below. Initial checks 
can be made by verifying orthogonality for the squares of coefficients. If this is suc- 
cessful, check the correctness of relative phases by choosing one of the arguments to 
be different, which should give zero for the orthogonality sum. Such checks are 
suggested as Problem 9.13. 

Now that we appreciate how the 3n-j coefficients with rz = 1,2, 3 can be com- 
puted efficiently, we derive some more symmetries of the 9-j coefficients before dis- 
cussing uses of the coefficients. 

9.5.2 Symmetries, Special Values, and Sum Rules 
of 9-j Coefficients 

We discuss in Section 9.3.2 the complexity of 6-j coefficients because of their six 
arguments. The problem is more severe for recoupling among four angular momen- 
ta there are nine arguments. Fortunately, the 9-j coefficient appears very symmetric 
when displayed in matrix form and its symmetries under permutations of rows and 
columns are like those of the corresponding determinant, as we now derive. 
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Symmetries of 9-j Coefficients. To visualize symmetry relations of 9-j coeffi- 
cients, consider its tree representation in Figure 9.12. The probability of a recou- 
pling should not change if rows and columns (solid and dashed lines) are inter- 
changed, or if rows (or columns) are interchanged with each other, since any of 
these interchanges preserves the couplings between triads of angular momenta. 

To quantify these claims, consider the expansion into 3-j coefficients, as given 
by (9.58). The coefficients in the first row of the product are those from the row 
couplings in the 9-j coefficient, while in the second row of the product the 3-j coef- 
ficients come from column couplings. Since the ordering of 3-j coefficients in the 
product is not important, we have the first symmetry rule: 

Under interchange of all rows with all columns 
a 9-j coefficient is invariant. 

(9.60) 

Now consider interchanging the first and second rows, so that X(abc, def, ghi) 
+ X(def, abc, ghi). The 3-j coefficients in the first row of (9.5X) are unaltered, 
while in the second row each of the coefficients has its first and second columns in- 
terchanged, introducing an overall phase change as the sum of all total angular mo- 
menta in the second row. Since this property holds for any two rows or columns, 
we have the second symmetry rule: 

Under interchange of two rows or two columns 
a 9-j coefficient is multiplied by the phase (-l)p 

where P=a+b+c+d+e+ f +g+h+i.  

(9.61) 

Note that P must be an integer if the triangle rules for each coupling of triplets is 
satisfied. Isn't that beautifully simple? 

Special Values of 9-j Coefficients. Because of the high symmetry of the 9-j 
coefficients, any one argument can be moved to a special position--such as the top- 
left corner-and this will at most introduce a phase change. For a = 0, using the ex- 
pansion (9.59) and simplifying (as suggested in Problem 9.14), one obtains 

A particular case of this coefficient is for b = c = 1/2, which-upon rearranging 
the 6-j coefficient by using (9.22)-becomes 
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I I 

in which the special 6-j coefficient is given in Table 9.1. Formula (9.63) is useful 
for describing the transformation between L-S andj-j coupling in Section 9.5.3. 
Another formula that is useful for the same purpose can also be derived from (9.59) 
by substituting for the special 6-j coefficients (as suggested in Problem 9.14), 
namely 

[e(e + 1) + i(i + 1) - f(f + 1) - h(h + I)] 
4b(b + 1)(2b + l)d(d + 1)(2d + 1) 

(9.64) 

Many other special cases of the 9-j coefficient are given in Appendix 111 of Brink 
and Satchler [Bri94] and in the work of Varshalovich et al. [Var88]. 

Sum Rule for 9-j CoefSicients. The simplest sum rule expresses the unitarity 
(orthogonality, since the coefficients are real) of the recoupling transformation 
(9.57). The sum rule is given by 

Sum rules of great variety and some utility are given in sources such as [Bri94, 
Var88, Bie8la, Bie8lbl. 

9 .5 .3  Tensor Matrix Elements in Coupled Schemes 

In the quantum mechanics of atomic and subatomic systems a frequent problem is to 
understand a composite system, say two particles, in terms of its constituent parti- 
cles. Typically, one has operators acting on each particle and an angular momentum 
state formed by combining the angular momenta of the two particles. We are there- 
fore led to consider matrix elements of composite irreducible spherical tensors, as in 
Section 8.2.1, taken between coupled states, as in Chapter 7. 
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Consider the building-up formula for tensors, (8.2 1), expressed for temporary 
convenience in terms of Clebsch-Gordan coefficients as 

The reduced matrix elements of this tensor in the composite system with J = J1 + J2 
can be expressed by using the sum rule (8.50): 

The bras and kets can be expanded by using basic combination formula (7.39, the 
operator can be expressed by using (9.66), and the matrix elements in the uncoupled 
representation can be written in terms of their reduced matrix elements by using the 
Wigner-Eckart theorem. Amid the chaos of coupling coefficients you may recognize 
(especially by working Problem 9.15) that the magnetic substate summations pro- 
duce a quantity proportional to a 9-j coefficient. Thus, we obtain the formula for 
tensor matrix elements in the coupled scheme: 

In this formula it is understood but not expressed that the rank-K tensor is formed 
from coupling of a rank-kl and rank42 tensors. The spaces A1 and A2 must be dis- 
joint because this theorem relies on disjointness for constructing the states involved, 
as explained at the beginning of Section 7.1.2. 

If in (9.68) we set K = 0, so that the left-hand side becomes the reduced matrix 
element of the scalar product (thus, kl = k2 = k) ,  then (as you may verify in Prob- 
lem 9.15) we recover the factorization theorem, (9.27). 

9-5 .4  Transformations between L-S and j-j Coupling 

In Section 9.4.3 we discuss the advantages and differences between G S  and j-j 
coupling schemes. Suppose that part of a calculation or an analysis of data has used 
the L-S scheme and we want to transform to the j-j scheme. The 9-j coefficients 
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are immediately usable for this purpose, especially if eigenstates are to be converted. 
If we merge the two trees in Figure 9.1 1, taking care to distinguish their branches, 
as in Figure 9.12, then we obtain representation of the relation between L-S and j-j 
coupling schemes, as shown in Figure 9.14. 

FIGURE 9.14 The tree representation for transforming between L-S and j-j coupling schemes. 
Solid lines indicate couplings across the rows and dashed lines indicate couplings down the 
columns. 

We obtain eigenkets in the j - j  scheme merely by comparing labels between 
Figures 9.12 and 9.14, then rewriting (9.56), to obtain 

Because of the row-column symmetry (9.60) of 9-j coefficients and the invariance 
of the factor under the radical in (9.69) under row and column interchange, eigen- 
kets in the L-S scheme can be put on the left-hand side if those of thej-j scheme are 
put on the right-hand side and the summation is made over j ,  and j2. 

To make this plethora of symbols more realistic, we now consider a concrete 
example. 

G S  and j-j Coupling for Spin- 112 Particles. In calculations of atomic and 
nuclear structure or in the quark model of hadrons, the intrinsic spins of the particles 
(electrons, nucleons, or quarks) are 1/2. Thus, transformation (9.69) between 
coupling schemes has sl = s2 = 112; thus S = 0 (singlet state) or S = 1 (triplet state). 

The singlet-state contribution in (9.69) can be simplified by noting that the 9-j 
coefficient with S = 0 can be manipulated to the form (9.63) by using rule (9.61) for 
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interchanges of rows and columns, then the resulting 6-j coefficient can be manipu- 
lated by using (9.22) to produce the singlet-state contribution 

I (4 .+I 7 (e2 s2)j2 ; J M )  = I(e, f 2  )L, ( v 2  10; J M )  
(9.70) 

s=o 

Table 9.1 gives the required 6-j coefficients. 

three values of L, namely the sum 
The triplet-state contribution in (9.69) contains, in general, contributions from 

In the common situation that both particles are in the same shell-so that f2  = el and 
j2 = j ,  -the 9-j coefficient in (9.7 1)  changes by the phase P = 1 + L + J if the first 
and second columns-which are identical-are interchanged, as can be shown by 
using the phase-change rule (9.61) and simplifying by using the phase manipulation 
rules in Section 2.1.4. Therefore, the coupled orbital state that has L = J does not 
contribute to the triplet state in this case, as we see in the following example. This 
condition, which arises from rotational symmetries only, could easily be confused 
with the Pauli principle, which (9.71) does not invoke. 

A Worked Example of G S  and j-j Coupling. To see expansion (9.69) in 
explicit action, consider the simplest nontrivial example, having e2 = t ,  = 1 and 
j 2  = j, = 1 / 2 ,  To avoid confusion from effects of the Pauli principle, imagine that 
system 1 describes an electron, system 2 describes a proton, and their orbital angular 
momenta are referred to the center of a molecule of which this “hydrogen” is an 
atom. The j-j state is then obtained from G S  states as 

[(],I / 2)1/ 2,(1,1/2)1 12; J M )  

= 2c 1(11)L,(1/ 21 12)s; J M ) J ( 2 L  + 1)(2S + 1) 
LS 

We can now commit to a choice of J on the left-hand side, say J = 1 ,  which the bot- 
tom row of the 9-j coefficient shows is the largest possible value. Table 9.4 lists 
the appropriate 9-j (X) coefficients, which you can obtain when working Prob- 
lem 9.16 by using Muthematica notebook Num9 j in Appendix I. 
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TABLE 9.4 Values of 94 coefficients for expansion (9.72). 

X {  I ,  1 ,L; 1/2,1/2,S; 
L S 1/2,1/2,J ] 

0 1 -1/18 
1 0 1/(346) 
1 1 0 
2 1 1 /9 

By using these coefficients, expansion (9.72) reduces to 

l(l,l/ 2)1/2,(1,1/2)1/2;1M) 

E E  -1 -- - 101;lM)+ -IlO;lM)+ -121;1M} m 
(9.73) 

in which the kets have been abbreviated to 1LS;JM) .  The state 111;lM) does not 
contribute because the symmetry rule (9.61) makes the phase exponent in the 9-j co- 
efficient odd for L = 1 = S, yet two of its rows are identical, so it must be zero. 

As a partial check on the correctness of this expansion (it does not check correct- 
ness of signs), notice that the sum of the squares of the expansion coefficients is 
unity, consistent with (9.65). States with largest L and S are favored in this expan- 
sion, with L = 2, S = 1 being more than three times as probable (20/6) as L = 1, 
S = 0. As continually emphasized throughout this book, these properties arise from 
rotational symmetries, not from dynamics, once angular momenta are chosen. 

Extensive applications of the theory of recoupling angular momenta to atomic 
spectroscopy are given in Section 7.5 of Biedenharn and Louck [Bie8la] and in the 
monograph by Judd [Jud63]. Applications to the nuclear shell model are given in 
Section 7.9 of [Bie8la] and in the monograph by de-Shalit and Talmi [de-S631. 
Recoupling techniques for angular momentum in nuclear reactions are developed in 
Chapters X and XI of Rose’s book [Ros57] and in Section 7.8 of [Bie8la]. In all 
these applications the Pauli principle (Sections 1.4.3, 1.4.4) has a significant influ- 
ence. The inclusion of the identity of the fermions involved is emphasized in Chap- 
ter XI1 of [Ros57]. 

Group theory (introduced in Section 2.5) provides an alternative methodology 
and emphasis to that used here and in the references of the preceding paragraph. 
Group theory for atomic and nuclear structure is presented in Chapter 8 of Elliott and 
Dawber [El1791 and in Chapter 13 of Ludwig and Falter [Lud88]. Related applica- 
tions to models of elementary particles are given in Chapters 10-12 of [El1791 and in 
Chapter 13 of [Lud88]. 

9 . 5 . 5  Graphical and Automated Methods 

As computers become more suitable for symbolic as well as numerical computation, 
more of the algebraic tedium of angular momentum coupling can be assigned to ma- 
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chines for processing while humans think about the science. 
One often begins by describing a graphical method, such as extension of the 

coupling triangles (for 3-j coefficients) and coupling quadrilaterals (for 6-j coeffi- 
cients), as in Brink and Satchler’s monograph [Bri94] or in the book by Danos and 
Gillet [Dan90], which provides a complete treatment. General methods for diagram 
techniques in group theory, including the 6-j and 9-j coupling coefficients, are de- 
scribed in Stedman’s monograph [Ste90]. Given the method, it can either be used 
by hand and brain or it can be implemented into a computer program, such as that 
published by Williams and Silbar [Wi192]. The logic of their program organizes the 
angular momentum couplings according to a tree structure-similar to Figures 9.3 
and 9.12-and uses several heuristic rules for simplifying solutions. Their program 
also simplifies expressions for reduced matrix elements. 

Alternatively, one can use a symbolic-processing system to compute directly the 
algebraic expressions for the results of coupling. When supplemented by some 
simplification rules, such an approach can be very effective. An example of such an 
application in atomic physics, using Mathematica, is given in the article by Way 
and Williams [way93]. 

PROBLEMS ON RECOMBINING SEVERAL 
ANGULAR MOMENTUM EIGENSTATES 

9 . 1  Derive the sum rule (9.14) between 3-j and 6-j coefficients by expanding the 
left-hand and right-hand sides of defining relation (9.13) into the basic states laa), 
Ibp), and (d6 ) ,  by using the coupling formula (7.60) twice on each side. Equate 
coefficients of these orthogonal states on each side, and assume that the 3-j coeffi- 
cients do not vanish because of violating the m-sum rules. Simplify the phases by 
using the phase-manipulation rules (Section 2.1.4), in order to obtain (9.14). 
9 . 2  Verify directly the explicit formula for the 6-j coefficient, (9.16), by expand- 
ing the bra-ket of the coupled states in the definition (9.13) into uncoupled states by 
using 3-j coefficients. 
9 . 3  To show the reduction of the sum (9.17) to (9.129, first identify the angular 
momenta between Figures 9.5 and 9.1. Next, use the permutation symmetry rule 
for 3-j coefficients, (7.68), to interchange the second and third arguments in coeffi- 
cients (4) and (2). Finally, simplify the phases and identify the part of the sum that 
agrees with the 6-j expansion (9.16). 
9.4M Algebraic expressions for 6-j coefficients can be obtained by using Mathe- 
matica notebook Alg6j in Appendix I. By this means you can extend Table 9.1 
if necessary. (Be careful when assigning symbols because of the symbol-replace- 
ment rules in Mathernatica. Also note that SixJSymbol checks the triangle and 
rn-sum selection rules only if all its arguments are numerical.) 
(a) Enter and check Alg6 j by running a few of the values given in Table 9.1. 
(b) Generate all the independent algebraic 6-j coefficients corresponding to the 
smallest angular momentum being 312. 
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(c) For a small angular momentum of your choice, say a = 1/2, modify the note- 
book so that it applies functions C F o r m  or FortranForm to the algebraic 6-j co- 
efficient generated by Mufhernaficu. Then use these coding statements to build a 
small program that computes the coefficient numerically. Check its results against 
the C-language program for 6-j coefficients given as C3 in Appendix 11. 
(d) Time the special-purpose program from (c) and the general-purpose program 
from Appendix 11, measuring only the execution times of the coefficients, not the 
times for input and output. What is the speedup factor for your computing system? 
Would this produce a significant saving in typical calculations in which you use 
these coefficients? 
9 . 5  Derive the orthogonality relation for 6-j coefficients, (9.21), by using unitar- 
ity of the coupling, with state ( e ,  E )  as intermediate state. The derivation of (7.61) 
for 3-j coefficients may serve as a model. 
9 . 6  Derive one of the symmetry conditions for 6-j coefficients that satisfies 
(9.22) by using expression (9.16) for its expansion as a sum of products of 3-j co- 
efficients then using the symmetries of these coefficients as given in Section 7.3.1. 
9 . 7  Investigate the recoupling schemes for wave functions given in (9.24) by 
giving the detailed expansions, analogous to (9.25), for the two cases with proton 
angular momentum jp = 3/2 combined to total J = 1/2 and to 1 = 3/2. 
9 . 8  With a numerical program that computes 6-j coefficients, for example -6 j in 
Appendix 11, check its accuracy by computing and printing the orthogonality sum 
(9.21) for a range of the six parameters over which you are likely to use the pro- 
gram. If feasible with your computer system, run the program in single- and 
double-precision modes in order to estimate how the accuracy of the results depends 
on roundoff errors in the floating-point arithmetic. 
9 . 9  Consider the matrix elements ((j, j2)JMlTk(AI)-Tk(A2)I(j,’j;)J’M’) for the 
scalar product in terms of matrix elements of the separate operators between uncou- 
pled states. 
(a)  Expand the coupled states in terms of uncoupled states and Clebsch-Gordan co- 
efficients by using the basic formula (7.35). 
( b )  Use the Wigner-Eckart theorem, (8.32), to express the rn dependences of the 
corresponding matrix elements in terms of Clebsch-Gordan coefficients. 
(c) Identify the resulting magnetic substate summation as proportional to a 6-j coef- 
ficient in order to derive (9.27). 
9 .10  For reduced matrix elements of the spin-orbit operator, carry out the details 
of the steps from (9.27) to (9.28), as indicated above the latter equation. 
9 . 1  1 Prove the projection theorem (9.29) for a representative component Jo with 
CT = f 1 , 0. To do this, verify the following steps. 
( a )  Write the matrix element as in (9.30), then use (9.31). Use the Racah condition 
(8.15) with k = 1 to simplify the commutator. Show that the sum over Clebsch- 
Gordan coefficients with all total angular momenta is zero, by using connection 
(7.57) to 3-j coefficients then explicit expressions in Table 7.3 for the latter. 
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(b) For the matrix element sum in (9.32), insert unit operators as suggested in the 
text, then use the Wigner-Eckart theorem with k = 1 and reduced matrix element 
(8.48). Simplify the sum over products of two Clebsch-Gordan coefficients by 
using their orthogonality relation (7.4 1). 
(c) Apply the Wigner-Eckart theorem again to produce (9.29). 
9 .12  Consider the expansion formulas for 9-j coefficients. 
(a) To derive expansion (9.58) into 3-j coefficients, make the complete expansion 
of the bra-ket in (9.57) into combining pairs of angular momenta according to 
(7.60), then cancel common factors and simplify the phases. 
(b) To obtain (9.59), collapse pairs of 3-j coefficients using (9.14) to get 6-j coef- 
ficients. Thus produce the product of three 6-j coefficients summed over k .  
9.13M The orthogonaIity sum for 9-j coefficients, (9.65), can be used to check a 
numerical program for computing 9-j coefficients, for example -9 j in Appendix 11. 
(a) Check the program accuracy by computing and printing the coefficient for a 
range of the nine parameters over which you intend to use the program. If feasible, 
run the program in single- and double-precision modes and estimate how the accu- 
racy of the calculations depends on roundoff errors. 
(b) Use Mathernatica notebook Num9 j in Appendix I to get exact 9-j coeffi- 
cients. Compare these with values from decimal approximation results in (a). 

9 .14M Consider the special values a = 0 and a = 1 in a 9-j Coefficient. 
(a) Derive (9.62) by using expansion (9.59), then simplifying the two 6-j coeffi- 
cients by using the first entry in Table 9.1. 
(b)  Verify the correctness of (9.62) by adding to Mathernatica notebook Num9 j a 
cell that evaluates the right-hand side of (9.62), then compares this with the result of 
evaluating the 9-j coefficient with a = 0. Run this for several values of the remain- 
ing eight arguments that are consistent with the triangle rules. 
(c) Make a similar analysis for a = 1, c = h, and g = d, in order to obtain (9.64). 
9.15  To derive (9.68) for tensor matrix elements in the coupled scheme, expand 
the bras and kets by using basic combination formula (7.35), express the operator 
by using (9.66), and write the matrix elements in the uncoupled representation by 
using the Wigner-Eckart theorem. Show that the magnetic substate summations pro- 
duce a quantity proportional to a 9-j coefficient, thereby (9.68). 
9.16M For example (9.72), relating L-S and j-j coupling, use Mathernatica 
notebook Num9 j in Appendix I to calculate the 9-j coefficients for the L and S val- 
ues in Table 9.4. 
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Myself when young did eagerly frequent 
Doctor and saint, and heard great argument 

About it and about: but evermore 
Came out by the same door as in I went. 

With them the seed of wisdom did I sow, 
And with my own hand labour’d it to grow: 
And this was all the harvest that I reap’d - 

‘‘I came like water, and like wind I go.” 

The Rubaiyar ofOrnar Khayyam, wan>,. Edward FitzGerald 

EPILOGUE 

We have now completed our introduction to rotational symmetries for physical sys- 
tems. As summarized in Section 1.3.3 (Figure 1. is), there are many interrelations 
among topics in angular momentum theory-geometrical and dynamical, classical 
and quantal. Aspects of angular momentum theory pertaining most nearly to math- 
ematical physics are presented in the two-volume encyclopedic works by Biedenharn 
and Louck [BieSla, Bie8 lb], with the first volume emphasizing the standard treat- 
ment of angular momentum theory and its applications, and the second dealing in 
depth with fundamental concepts of the subject and interrelations of the theory with 
other areas of mathematics. The handbook by Brink and Satchler [Bri94] and the 
compendium by Varshalovich et al. [Var88] are useful sources of formulas and fur- 
ther developments. 

Starting from macrosystems and turning inward to microsystems, applications of 
spherical harmonics and tensors to classical field theory (especially geophysics and 
fluid dynamics) are emphasized in the monograph by Jones [Jon85], angular mo- 
mentum theory for diatomic molecules is the subject of a text by Judd [Jud75], ap- 
plications in chemistry are emphasized in the book by Zare [Zar87], while nuclear 
physics applications (including electromagnetic multipole fields) are described in the 
two books by Rose [Ros55, Ros571. More general aspects of syrnmetries relevant 
to nuclear and particle physics are catalogued in the text by Greiner and Miiller 
[GreW]. Group-theoretical approaches to symmetry are made in several of the ref- 
erences indicated in Section 2.5. 

As we have continually emphasized throughout this book, rotations in the three 
dimensions of configuration space often provide the most concrete example of a con- 
tinuous symmetry operation. The more abstract symmetries, such as isospin 
(Section 3.4.3) and its generalizations, can therefore usually be most easily under- 
stood by comparison and analogy with angular momentum. 

3 8 5  
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APPENDIX I 

NOTEBOOKS FOR MATHEMATZCA 

Here we provide Mathernatica notebooks that you can use to visualize rotational 
symmetries and compute other quantities in Angular Momentum. The notebooks 
were used to produce many of the figures in the text, as indicated in figure captions, 
which give the names of the notebooks used. First, we summarize the purpose of 
the notebooks, the computer requirements to run them, their arrangement, the pro- 
gramming conventions used, and some suggestions for animating the graphics. 
Next come the notebooks in alphabetic order. Finally, there is a table that indexes 
the notebooks. Of the 135 problems at the end of the chapters, 27 suggest using 
Mathernatica to help with their solution. 

Purpose of the Notebooks. The Mathernatica notebooks enable you to ex- 
plore analytical, numerical, and graphical properties of objects occurring in the study 
of angular momentum and rotational symmetries for physical systems. Visualization 
is especially important for understanding rotational properties. Since Mathernatica 
is especially adept at graphics, the programs are easily written, compact, and usually 
simple to understand-hence my choice of this system for doing mathematics by 
computer. 

It is especially important for understanding angular momentum that once you 
have the notebook running on your computer you should use it extensively and 
thoughtfully in order to explore the fascinating world of rotations. Do not be afraid 
to stress the system, since the notebooks and the Mathernatica system will usually 
protect against inappropriate input. The three-dimensional graphics typically require 
the most memory and time for completion. Once the graphic object is completed, 
however, on most computers you can easily view it from different orientations by 
using the 3D Viewpoint Selector command in the Prepare Input submenu of the Ac- 
tion menu. 

387 
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Computer Requirements, The notebooks were prepared on an Apple Macin- 
tosh IIsi computer with accelerator board, RAM cache, and floating-point unit. The 
effective speed of the machine when running Mathematica is about 35 MHz, and 
the time required to execute most cells was a few seconds to a minute. The RAM re- 
quired was usually about 4 Mbyte, with a few notebooks needing 6 Mbyte. The 
simplest way to free up unneeded memory is to save the notebook after a run, then 
quit and relaunch Mathematica before making the next run. Displays that by de- 
fault display color will show in color on appropriate monitors but will also produce 
satisfactory black-and-white or gray-scale displays without modification. 

As the angular momentum numbers that you input increase, so do the time and 
memory required to execute the notebook cells. Also, for two-dimensional graphics 
(such as polar diagrams, Section 4.1.2) time and memory needs increase roughly 
linearly with the number of display points. For three-dimensional graphics both the 
time and memory required increase roughly quadratically with the number of display 
points in each dimension. If you have a smaller computer than mine or want more 
speed, you can run the kernels on a remote computer, with only the Mathematica 
front end on the local computer. Various means for doing this are described in 
books about the Mathematica system, such as [Mae911 and [Wo191]. 

The version of Mathematica used for the notebooks given here is version 2.2. 
Different versions have different requirements as to whether a built-in function or a 
package is used and will sometimes have different default values for options. Note- 
book user interfaces are available (as of this writing) on Macintosh, Microsoft Win- 
dows, NeXT systems, and on the X Window System on Unix operating systems. 

Arrangement of the Angular Momentum Notebooks. The notebook contents 
usually include only the program cells, without output. To see sample output, look 
at the section and figure or table numbers indicated at the start of each notebook list- 
ing. The programs are listed in full at the end of this appendix and are arranged by 
order of appearance by notebook name. 

You can also use Table A.I.1 to locate the chapter and section of the text in 
which the notebook is first used. Each figure in the book indicates if a Mathemat- 
ica notebook was used to help prepare the figure. Most such figures were enhanced 
by using an illustration and layout program with Mathematica Postscript graphics 
as its input; if so, the figure caption gives the notebook name and is annotated with 
“Adapted from . . . .”. The graphics, usually without lettering, should look like your 
notebook output cell, which you can use to test that your program is executing ap- 
propriately. 

For a few of the figures that were prepared with help from Marhematica, 1 do 
not provide the notebooks used. Some were too small and some were too large and 
cumbersome. Those that I include will be just right for you to learn about rotational 
symmetries. 

Programming Conventions. In these notebooks I use a consistent programming 
style, with the following programming conventions to keep the notebooks compact. 
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Built-in functions (in version 2.2 used) are preferred over packages or my own 
programming constructions. Repetitive coding is often avoided by using func- 
tions defined within each notebook. 
Options in functions are changed from default values as little as necessary to 
produce clear results. You may wish to change these options. 
Lettering is kept to the minimum needed to identify output clearly. 
Verbose output is suppressed by using the ";" code at the end of most expres- 
sions. Further suppression can be obtained by turning off Show InlOut Names 
in the File menu. This is recommended except if you need to debug a notebook. 

Animated Visualizations. On several computer systems that run Mathemat- 
ica, it is possible and straightforward to animate the graphics displays. For many of 
the notebooks in Angular Momentum this is worth the time and small extra pro- 
gramming effort involved. Particularly effective is animation of three-dimensional 
displays of rotation functions used to describe objects whose state is time-depen- 
dent, such as precessing tops (notebook Precess in Section 5.3.1) and rigid rota- 
tors (Section 6.5). Animation can usually be added to each appropriate notebook by 
writing a new cell and running it after the notebook cell provided here. 

The Mathernatica Notebooks. The notebooks are listed by order of their ap- 
pearance in the book. This order is specified by the section number and figure fol- 
lowing the notebook name. All this information is summarized in Table A.I. 1. 

Notebook Shell (Section 1.2.1, Figure 1.7) 

Print [ \nANGULAR MOMENTUM: Rotational Symmetries\nr! 1 
Print ["Notebook Shell: Helical Shell\n" 1 
Unprotect[In,Outl;C1ear[In,Out];Protect[In,Out]; 
Clear[h, rl; 

h = 2 ;  r = 7 / 4 ;  

Conch = ParametricPlot3D[ {phi Cos [phi] Cos [t] , 
phi Sinlphi] Cos[t], phi Sintt] + h phi), 
{ t , O ,  2 Pi), {phi, 0, 2 Pi r 1, 
PlotPoints->(*4*)20, DisplayFunction->Identity]; 

U n p r o t e c t [ I n , O u t l ; C 1 e a r l I n r O u t l ; P r o t e c t I I n , O u t l ;  
ShowSurf = Show[Conch,Boxed->Fa1sefAxes->Fa1se, 
DisplayFunction->$DisplayFunction]; 

Notebook Polyhedra (Section 1.2.2, Figure 1.9) 

( *  Regular polyhedra filling 3-space * )  
Print [ I' \nANGULAR MOMENTUM: Rotational Symmetries\n" 1 
Print [ "Notebook Polyhedra: The five regular polyhedra\n" 1 
<<Graphics'Polyhedra' ; 

Solid[name-] := Show[Graphics3D[name, 
Axes->False,Boxed->False] 1 ;  
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solid [Tetrahedron [ I I-; Solid [Cube 1 1 ; 
Solid[Octahedron[]];Solid[Dodecahedron[l I; 
~olid[IcosahedronC1 I ; 

Notebook Worldview (Section 1.3.2, Figure 1.14) 
print [ 11 \nANGULAR MOMENTUM: Rotational Symmetries\nll] 
print [ llNotebook Worldview: World views\n" 1 
<<Miscellaneous'WorldPlot' 
( *  To suppress irrelevant error messages * )  
Off[Power::infy,Infinity::indet,Graphics::gptn]; 

WPeasy = WorldPlot[{World, RandomGrays), 
WorldRotation->{O,O,O), 
WorldRange->({-90,90}, {-180,180)}, 
WorldProjection->LambertAzimuthal]; 

Notebook Ppsi (Section 1.4.1, Figure 1.19) 
Print [ 11 \nANGULAR MOMENTUM: Rotational Symmetries\nll] ; 
Print [ 'INotebook Ppsi: Parity and wave functions\nIII ; 
( *  Sample wave function, psi * )  
psi [x-1 
( *  Functions for plotting * )  

DashIt : = {Dashing [ ( 0 . 0 2 , O .  02 1 I ? ( *  short dash * ) 
WFPlot[sign-,pwr-,style-l := 

: = C o s  [XI + O  . 5 *  ( x + 2 )  *Sin Cxl ; 

Plot [ { (psi [XI +sign*psi [-XI ) ^pwrl, Ex, - 3 , 3 ) ,  
Plotstyle->style, DisplayFunction->Identity]; 

( *  Execution * )  

( *  psi and its square * )  
psishow = Show[WFPlot [O,l,DashIt], 
WFPlot[0,2,Automatic1, 
DisplayFunction->$DisplayFunction]; 

psiplot = Plot [{psi [XI " 2  + psi [-XI "21, Ex, - 3 , 3 )  1 ; 
( *  Even-parity; psi+ and square * )  
EvenShow = Show[WFPlot [l, l,DashIt], 
WFPlot[l,2,Automatic1, 
DisplayFunction->$DisplayFunctionl; 

( *  Odd-parity; psi- and square * )  
OddShow = Show[WFPlot [-l,l,DashIt], 
WFPlot[-1,2,Automatic], 
DisplayFunction-~$DisplayFunction]; 

Notebook PauliCC (Section 1.4.5, Figure 1.22) 

Print [ \nANGULAR MOMENTUM: Rotational Symrnetries\nll] 
Print [ "Notebook PauliCC: Coulomb scattering of C nuclei\n1#] 
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( *  Functions for Coulomb-scattering amplitudes * )  
fR[th~,sgn~l:=Exp~2I*eta*Log[Sin[th/2111 
/Sin[th/2] A2 

f Sym [ th-, sgn-1 : = fR[th, sgnl+ sgn*fR[Pi-th, sgn] 

SigPlot IF-, sgn-I : = Plot [ 
ith, Pi/9, 2*Pi/3),PlotPoints->80, Ticks->None, 
Axes->None, DisplayFunction->Identity]; 

Log EAbs CF Ith, egnl I *2 I , 

ClearLeta]; eta = 15; ( *  Sommerfeld parameter * )  

( *  Execution * )  
C12w12C = SigPlot [fSym, +1] ; 

C13w13C = SigPlot [fSym, -11; 

Show[GraphicsArray[{Cl2wl2C,Cl3wl2C,Cl3wl3C}], 

C13w12C = SigP10t [fR, 01 ; 

DisplayFunction->$DisplayFunction]; 

Notebook PL (Section 4.1.2, Figure 4.2) 
Print [ \nANGULAR MOMENTUM: Rotational Symmetries\n'I I 
Print [ "Notebook PL: Legendre polynomia1s\nm1] 
( *  To suppress irrelevant error messages * )  
Off[General::spellll; 

stepTheta = 0.10; LMx = 6; 

PLSurf = Table [N [Legendrep [L, Cos [theta] ] 1, 

PLGraphS = ListPlot3D[PLSurf, Ticks->None, 

{L,O,LMxl, itheta,O,Pi,stepTheta)l; 

ViewPoint->{1.3, - 2 . 4 ,  2.01, 
Axes Labe 1 - > I' theta , Is L I' , 'I PL " 1 , 
Plot Label - > PL : 

PLGraphTheta = 
Plot [N[LegendreP[LMx/2,Cos[thetal11, 

L=O-"<>ToString [LMx] <>I t ,  theta=O-Pilll ; 

(theta,O,Pi}, Ticks->Automatic, 
Axe s Lab e 1 - > { 'I the t a 'I , I' 1 , 
PlotLabel->*lPll<>ToString [LMx/2] <>I1 v theta"] ; 

Ticks->Automatic, 
Axe 8 Lab e 1 - > { I' L 'I , I' " 1 , 
PlotLabel->"PL(cos Pi/2) v L"1; 

PLGraphL = Plot[N[LegendreP[L,O] I, (L,O,LMx1, 

Notebook PLM (Section 4.1.2, Figure 4.4) 

Print [ \nANGULAR MOMENTUM: Rotational Symmetries\n" 1 
Print [ IINotebook PLM :\n Legendre functions ( L >= 0, 0 c- m <= L )\n" 1 
( *  Functions * )  
pos[x-l := If [ x>o, x, 01 
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neg[x-] := -If[ x<O, X, 01 
signedPoints[pn-,AutoOrDash-1 :=  

Parametricplot [ {pn [dL] *Sin [theta] , pn [dLl * 
Cos[theta]},{theta,O,2 Pi},PlotPoints->points, 
PlotDivision->points, Axes->{False,True}, 
AspectRatio->Automatic, Ticks->None, 
Plotstyle->AutoOrDash, 
DisplayFunction->Identity] 

( *  Execution * )  
L = Input ["Legendre functions, P(L)m. 

m = Input[" Enter m ( 0 <= m <= L ):"I; 
If[ m<O, Print[lV\n!!m < 0; Using Iml\nlll; 

Print [ I v  ",mI 
Print [lap (Coslthetal) = I l l  

Print [ I 1  *I ,L  1 
dL = Factor[Simplify[((L+m)!/(2Am (L)!))* 

( (Sin[thetal )Am)* 
dLsin = dL Sinltheta]; 
points = Max[8,Min[2*L+8,20]]; 
If[Input["For 2D x-y Plot enter non-zero:"] 1 =  0, 

Enter L ( > = O  ):"I; 

m = -m; I; 

JacobiPIL-m,m,m, Cosltheta] 1 1  1 

PlotCdL, {theta, 0, Pi}, 
PlotPoints->points, PlotDivision->points, 
Axe 8 Labe 1 - > { theta I' , 1 1 ; 

1 
If [Input ['#For 2D Polar Plot enter non-zero: 

! =  0, 
( 

( *  positive values as solid curves * )  
posPoints = signedPoints[pos,Automatic]; 

( *  negative values as dashed curves * )  
negpoints = signedpoints [neg, 

{Dashing[~0.05,0.05~l)l; 
Show[posPoints,negPoints, 

1 1  
DisplayFunction->$DisplayFunction]; 

Notebook YLMabs (Section 4.1.3, Figure 4.7) 
Print [ \nANGULAR MOMENTUM: Rotational Symmetries\nIl] 
Print [ "Notebook YLMabs: Plot ISpherical harmonicl\n" 1 
Declarepackage [ { "SphericalHarmonicY"} ] 
(*loads function if needed. * )  

( *  Function * )  
absYLM [theta-, phi-] : = ComplexExpand [Abs [ 

( *  Input * )  
L=Input [I1Spherical harmonic YLm. Enter L ( > = O )  :vll ; 
m=Input I "  Enter m ( In1 <=L) : I l l  ; 

SphericalHarmonicYEL,m,theta,philll; 
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Print ["Y ",L, ",m, 'I (theta,phi) ='I] 

( *  Execution * )  
Clear[PointYLM]; PointYLM = 24;  

yLm = SphericalHarmonicY [ L ,  m, theta, phi] 
g = SphericalPlot3D[EvaluatelabsYLM[theta,phil l ,  

{theta, 0, Pi, Pi/ (PointYLM-1) }, 
{phi, Pi/6,11 Pi/6,10 Pi/(6*(PointYLM-l))), 

ViewPoint->{3.0, 0.0, 1.5}, 
Boxed->False,Axes->False]; 

Notebook EXPimPHI (Section 4.1.3, Figure 4.8) 
Print 
Print "Notebook Expimphi: Re[exp(i m phi)] = cos (m phi)\n" 1 
Unprotect[In,Outl;Clear[In, Outl;Protect[In,Outl; 

( *  Functions * )  
( *  Phi dependence has a small offset * )  
rfatCos [phi-, t-I : = 

Cos [phi] * (R+ (Cos [m*phil +O. 05) *Cog [t] ) ; 
rf atSin [phi-, t-1 : = 

Sin[phil*(R+(Cos[m*phil+O.OS)*Cos~tl 1; 
rfat[phi-,t-l :=  (Cos[rn*phil + 0.05)*Sin[tl; 

( * Execution : 

ClearLm, R1; m = 1; R = 3; 

Print["exp(i 'I, m, *I phi)\n"] 
Surf = ParametricPlot3DC 

\nANGULAR MOMENTUM: Rotational Symmetries\nll I 

Very slow for m > 0 * )  

~Evaluate[rfatCoe[phi,tll, 
Evaluate[rfatSin[phi,t] I ,  
Evaluate [rfat [phi, t I ] 1 ,  
{tl0,2*Pi),{phi,O,2*Pi}, 

PlotPoints->15,Boxed->False,Axes->False]: 

Notebook Precess (Section 5.3.1, Figure 5.9)  

( *  Precessing shell * )  
( *  Needs about 4 Mbyte for Mathematica 

plus about 7 Mbyte for kernel * )  
Print [ I' \nANGULAR MOMENTUM: Rotational Symmetries\nll] 
Print [ "Notebook Precess: Uniform Precession\n" ] 

Unprotect [In,Out] ;Clear[In,Out] ;Protect [In,Outl ; 
( *  To suppress irrelevant error messages * )  
Off[General::spelll,General::spell, 

(*Functions ) 
( *  Define shell with axis along z, vertical, 

Set::write,SetDelayed::writel; 

helix pitch h * )  
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xV[ph-, t-1 : = ph*Cos [phl *COS [tl ; 
yvlph-, t-1 := ph*Sin[phl*Cos[tl; 
zv[ph-,t-l := ph*SinItl + h*ph; 

( *  Rotate around y by thS * )  
xYthS [ph-. t-] 

yYthS[ph-,t-l := yV[ph,tl 

: = xV[ph, tl * C O S  [thSl -~V[ph, tl* 
Sin[thSl; 

zYthS[ph-,t-] :=  xV[ph,tl*Sin[thSl+zV~ph,tl* 

( *  Then rotate around z by pS for precession * )  
xZphS [ph-, t-, pS-1 xYthS [ph, t 1 * 
cos [PSI -yYthS [ph, tl *Sin[pSI ; 

YZPhS 1Ph-t t-, PS-1 = xYthS [ph, tl * 
Sin[pSl+yYthS[ph,tl*Co~tpSl; 

zZphS [ph-, t-,pS-] : = zYthS [ph, tl ; 

Conch Ips-] : = ParametricPlot3D [ 

CosCthS]; 

: = 

~Evaluate~xZphS[ph,t,pSll, 
Evaluate [yZphS Cph, t ,PSI 1, 
Evaluate [zZphS [ph, t,pSI I}, 

{t, 0, 2*Pi), {ph, 0, 2*Pi*r I ,  
Boxed->False,Axes->False,SghericalRegion->True, 
ViewCenter->{l/2,1/2,1/2}, 
PlotRange->{~-20,20I,~-20,20~,~0,30}1, 
DisplayFunction->Identity, PlotPoints->151; 

( *  Execution * )  
Clear [h, r, thS] ; 
h = 2 ( *  helix pitch * ) ;  r = 7 / 4  ( *  phi range * ) ;  
thS = Pi/6 ( *  shell angle to z axis * ) ;  

Shells = Table[Conch[i*Pi/4I,{i,O,7,1}]; 
<<Graphics'Animation' 
Precess t ShowAnimation [Shells, 

DisglayFunction->$DisplayFunction]; 

Notebook BesL (Section 5.4.1, Figure 5.10) 

Print [ I' \nANGULAR MOMENTUM: Rotational Symmetries\n" ] 
Print [ 81Notebook BesL: Spherical Bessel functions\nrl ] 
( *  To suppress irrelevant error message * )  
Off[General::spellll; 

( *  Function * )  
jL [L-, rho-] : = 

( *  Execution * )  

rhoMx = 10.1; stepRho = 0.2; LMx = 5; 

jLSurf = Table[N[jL[L,rholl, 
{rho, 0.001, rhoMx, stepRho} ] ; 

Sqrt[Pi/(2*rho)]*BesselJ[L+(l/2),rhol 

{L, 0 ,  LMx) , 



APPENDIX I :  NOTEBOOKS FOR MATHEMATICA 395 

jLGraphS = ListPlot3D[jLSurf, Ticks->None, 
Viewpoint->{1.3, -2.4, 2.01, 
Axe sLabe 1 - > { 'I rho l1 , 'I Leu , 
PlotLabel- > "Spherical Bessel functions" I ; 

Plot [N[ jL [Floor tLMx/2], rho1 1, {rho, 0.001, rhoMx1, 

PlotLabel-> 
"j"<>ToString[Floor[LMx/211<," v rho"]; 

j L ( rho ) I' } , 

jLGraphRho = 

Ticks - >Automat i c , Axe 8 Labe 1 - > { rho I' , 'I } , 

jLGraphL= Plot[N[jL~L,FloorlrhoMx/2] I I, (L,O,LMx1, 
Ticks - > Au t oma t i c , Axe 8 Labe 1 - > { 'I L , '' 'I 1 , 

j L ( < >To S t r i ng [ F loo r [ rhoMx / 2 1 ] < > 
PlotLabel-> 

V L I' I ; 

Notebook BesM (Section 5.4.1, Figure 5.1 1) 

Print [ \nANGULAR MOMENTUM: Rotational Symmetries\n"] 
Print [ I'Notebook BesM: Cylindrical Bessel functions\n" ] 
( *  Execution * )  

rhoMx = 10.1; stepRho = 0.2; mMx = 5; 

JmSurf = Table[N[BeseelJ[m,rho] I ,  

JmGraphSurf = ListPlot3D[JmSurf, Ticks->None, 
{m,O,mMx},~rho,O.O01,rhoMx,stepRho11; 

ViewPoint->{1.3, -2.4, 2 . 0 1 ,  
AxesLabel-> { srhol', 'rm'v , "Jm(rh0) 
P 1 o t La be 1 - > C y 1 i ndr i c a 1 

{rho,O.OOl,rhoMx}, 
Tic ks - >Automat i c , 
PlotLabel-> 
~1J~~<>ToString[Floor[mMx/2] I <>'I  v rho"] ; 

{m, O,mMxl, 

PlotLabel-> 
1~Jm(r~<>ToString[Floor[rhoMx/211<>") v m"1; 

" 1 ,  
f unc t i on s 'I 1 ; Be s 8 e 1 

JmGraphRho = Plot[N[BesselJ[Floor[rnMx/2],rholl, 

Axes Labe 1 - > { rho 'I , 'I I' } , 

JmOraphM = P l o t [ N [ B e s s e l J ~ m , F l o o r C r h o M x / 2 l l l ,  

T i c k s - > Au t oma t i c , Axe s Labe 1 - > { "m" , '' 'I 1 , 

Notebook PW3D (Section 5.4.2, Figure 5.12) 

Print [ \nANGULAR MOMENTUM: Rotational Symmetries\n" 1 
Print [ ItNotebook PW3D: Plane waves in 3 dimensions\n" 1 

( *  Functions * )  
rho:=Sqrt[zA2+xh2](* Cartesian->plane polar * )  
theta: =ArcTan [ z, x] ( * define spherical Beesel * )  
jL [L-, rho-] : = 

( *  Execution * )  

LL = Input["Maximum L value ( > = O  ) " I ;  

S q r t [ P i / ( 2 * r h o ) ] * B e s s e l J [ L + ( 1 / 2 ) , r h o l  
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rL = Floor[LL/2]; iL = Floor[(LL-l)/21; 
rhoMx = Input["Max rho (=kr) value ( > O  )"I; 

NumZX = 15; ( *  points in z h x directions * )  
stepZX = rhoMx/(NumZX-1); 

( *  Real part of complex exponential * )  
ReExp3D = Table [N[Cos [rho*Cos [theta] 11, 
{z,O.OOOOl,rhoMx,stepZX), 
{x,O.OOOOl,rhoMx,stepZX}]; 

( *  Real part of partial-wave sum up to LL * )  
RePW3D = Table[NSum[ (-1)AL*(4*L+1)*jL[2*L,rhol* 

LegendreP[2*L,Cos[thetaIlI {L,O,rLlI, 
~z,O.OOOOl,rhoMx,stepZX). 
{x,O.OOOOl,rhoMx,stepZX}]; 

Ti c ks - >None, 
PlotLabel->'-Re { exp[i rho cos(theta)l }" I ;  

Ticks->None, AxesLabel->{llx", "z", "Re"}, 
PlotLabel->"Re { Partial Wave Expansion }"I ; 

ReExpGraph = ListPlot3D[ReExp3D, 
Axes Labe 1 - > { " x *I , I' z 'I , Re 'I 1 , 

RePWGraph = ListP1ot3D[RePW3DI 

( *  Imaginary part of complex exponential * )  
ImExp3D = Table[N[Sin[rho*Cos[thetal] I ,  
{z,O.OOOOl,rhoMx,stepZX), 
~x,0.00001,rhoMx,stepZXll; 

( *  Imaginary part of partial-wave sum to LL * )  
ImPW3D = Table "Sum[ (-1) AL* 
( 4 * ~ + 3 )  * j~ [2*L+1, rho1 * 
{z,O.OOOOl,rhoMx,stepZX}, 
~x,0.00001,rhoMx,stepZX~l; 

Ticks - >None, Axes Labe 1 - > { x , 'I z I' , In" } , 
PlotLabel->I1Im { exp[i rho cos(theta)] }"I; 

Ticks - >None, 

LegendreP[2*L+l,Cos[theta]],{L,O,iL}], 

ImExpGraph = ListPlot3D[ImExp3D, 

ImPWGraph = ListPlot3D [ImPW3D, 
Axe s Labe 1 - > { "x I' , 'I z I' , I' Im" 1 , 

PlotLabel->I1Im { Partial Wave Expansion }vl] ; 

Notebook PW2D (Section 5.4.2, Figure 5.13) 
Print [ \nANGULAR MOMENTUM: Rotational Syrnmetries\nll] 
Print I "Notebook PW2D: Plane waves in 2 dimensions\n" I 
( *  Functions * )  

rho := Sqrt [xA2+yA21 ( *  Cartesian->plane polar * )  
phi := ArcTan[x,y] 

( *  Execution * )  

M = Input['lMaximum m value ( > = O  )I1]; 
rM = Floor[M/2]; iM = Floor[(M-l)/2]; 
rhoMx = Input["Max rho (=kr) value ( > O  ) * I ] ;  
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NumXY = 15; ( *  points in x & y directions * )  
stepXY = rhoMx/(NumXY-1); 

( *  Real part of complex exponential * )  
ReExp2D = TableCNICos~rho*Cos[phiJ~l, 
~x,0.00001,rhoMx,etepXYI, 
{y,O.OOOOl,rhoMx,stepXY}]; 

( *  Real part of partial-wave sum to M * )  
RePW2D = Table [N[BesselJ[O, rho] I + 
2*NS~m[(-l)~m*BesselJ[2*m,rhoI * 
Co8 [2*m*phi ] , {m, 1, rM1 I ,  
{x,O.O0001,rhoMx,stepXY}, 
~y,0.00001,rhoMx,stepXYIl; 

Ticks->None, 
PlotLabel->"Re { expli rho cos(phi)] I"]; 

Ticks - >None, 
PlotLabel->"Re { Partial Wave Expansion I If] ; 

ReExpGraph = ListP1ot3D[ReExp2Df 
AxesLabe1->{"yg', "x" , "Re" I 

RePWGraph = ListPlot3D[RePW2D, 
Axe sLabe 1 - > { 'Iy 'I , "x" , "Re 'I I 

( *  Imaginary part of complex exponential * )  
ImExp2D = Table "[Sin [rho*Cos [phi] I I ,  
{x,0.00001,rhoMx,stepXY), 
~y,0.00001,rhoMx,stepXYIl; 

Cosl (Z*m+l)*phiI , 

( *  Imaginary part of partial-wave sum to M * )  
ImPW2D = T a b l e [ 2 * N S ~ m [ ( - l ) ~ r n * B e s s e l J 1 2 * m + l , r h o l  

{m, 0, iM11, 
Ex, 0.00001, rhoMx, 8tepXY) , 
{y,0.00001,rhoMx,stepXYIl; 

ImExpGraph = ListPlot3D[ImExp2DI 
Ticks->None, AxesLabel->{"y" , "x" , Im" 3 , 
PlotLabel->"Im { exp[i rho cos(phi)l I"]; 

Ticks->None, AxesLabel->{llyls, I'x", "Im"I, 
ImPWGraph = ListPlot3D[ImPW2D, 

PlotLabel->"Im { Partial Wave Expansion I " ]  ; 

Notebook Djm'm (Section 6.3.3, Figure 6.7) 

Print 1 Is \nANGULAR MOMENTUM: Rotational Symetries\nal 1 
Print [ "Notebook Djm'm: Reduced rotation matrix elements\n" I 
( *  Functions * )  
pos[x-l :=  If [ x>o, x, 01 
negIx-1 := -If[ x<O, x. 01 

signedPointsCpn-,AutoOrDash-] :=  
ParametricPlot [ {pn [dj I *Sin [B] , 
{B,0,2*Pi}, PlotPoints->points, Axes->False, 
PlotDivision->goints, AspectRatio->Automatic, 
Ticks->None, Plotstyle->AutoOrDash, 
DisplayFunction->Identityl 

pn [dj I *COB [Bl I ,  

( *  Execution * )  
j = Input ["Reduced rotation matrix, d(j)m'm. 
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Enter j ( > = O  
mp = Input[" Enter m' ( Im'I<=j ):"I; 
m = Input[" Enter m ( Iml<=j ):"I; 
Print [ * I  * I ,  j ] ; Print [ *Id (B) ="I; 
Print [ II,mp, 'I, II,m 1 ; 
dj = Factor [Simplify[ 
Sqrt [ (j+m) ! (j-m) ! / (  (j+mp) ! (j-mp) !)I* 
((Sin[B/21)A(m-m~))*((Cos[B/21)A~m+mp))* 
JacobiPlj-m,m-mp,m+mp,Cos [Bll 1 1  

djsin = dj*Sin[B]; 
points = Max[lO,Min[6*j+l0,40]]; 
If[ Input[ 
"For 2D Cartesian Plot enter non-zero:lr] !=  0, 
Plot[dj, {B, 0, Pi), AxesLabel->{*~B~~,""}, 
PlotPoints->points, PlotDivision->points]; 

1 
If [ Input ["For 2D Polar Plot enter non-zero:"] 

!=  0, 
( 

( *  positive values as solid curves * )  
posPoints = signedPoints[pos,Automatic]; 

( *  negative values as dashed curves * )  
negpoints = signedPoints [neg, 
~Dashing[~0.05,0.051l)l; 

Show[posPoints,negPoints, 
DisplayFunction-~$D~splayFunct~on]; 

1 1  

Notebook DjjmCpr (Section 6.4.3, Figure 6.10) 

Print [ I' \nANGULAR MOMENTUM: Rotational Symmetries\nII ] 
Print [ I'Notebook: DjjmCpr: Rotation functions; \n 
Compare djjm (bars) and classical (curve)" I 
( *  Functions * )  
<<Graphics'Graphics' 
Probj j [m-1 
(Cos[b/2] ) A (2*( j+m) )*(Sin[b/2] ) A(2* (j-m) ) 

ProbClass [m-1 : = Exp[-(m-mc)A2/(j-mcA2/j)1; 

( *  Execution * )  

Clear [j , mc, bl ; 

( *  Classical m value (Imckj) * )  mc = -2; 

Print[" for j = I f ,  j,II & mc = ii,mc,ii\n\n"l 
b = N[ArcCos[mc/jll; ( *  Classical angle * )  
ProbTable = Table[ 

: = (2j / ( (j+m) ! * (j-m) ! ) 1 * 

( *  Total angular momentum * )  j = 6; 

{m,Probj j [ml /Probjj tmcl , O .  11, 
fm, -j, j, 111; 

Plotjjm = GeneralizedBarChart[ProbTable, 
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Axes->{True, False), 
DisplayFunction->Identity]; 

ClassTable = Table {m, NlProbClass [mil}, 

PlotClass = ListPlot[ClassTable, 
{m, -j, j, 0.0211; 

PlotJoined->True, 
DisplayFunctfon->Identity]; 

DisplayFunction->$DisplayFunction]; 
Compare = ShowEPlotjjm,PlotClass, 

Notebook DjjO (Section 6.4.3, Figure 6.1 1) 

Print ["\nANGULAR MOMENTUM: Rotational 
s ymme t r i e s \ n 1 
Print ["Notebook DjjO: Rotation functions;\n 
Probabilities f o r  m=O, m'=j=3,12,48\n"l 

( *  Functions * )  
 rob [ j-1 : = (Sin [B] ) (2*j ) 

probDen[j-,AutoOrDash-] : =  ParametricPlot[ 
(Prob [ j 1 *Sin[Bl , 
PlotPoints->points, PlotDivision->points, 
AspectRatio->Automatic, Axes->False, 
Ticks->None, Plotstyle->AutoOrDash, 
DisplayFunction->Identity] 

Prob [ j I *Cos [Bl } I {B, 0,2*Pi1, 

( *  Execution * )  

points = 100; 
prob3 = probDen[3,Automaticl; 
probl2 = probDenIl2,IDashing[{0.04,0.04~1~~; 
prob48 = probDen[48,{Dashing[{0.005,0.02}]~1; 
PlotAll = Show[prob3,probl2,prob48, 

DisplayFunction->$DisplayFunction]; 

Notebook Num3j (Section 7.3.1, Table 7.2) 

Print [ ' I  \nANGULAR MOMENTUM: Rotational Symmetries\nII I 
Print [ "Notebook Num3j: Numerical 3-j coefficients\n" I 

( *  Execution * )  

Clear la, b, c,ma,mbl ; 
a = Input ["Enter a: "I : b = Input[IlEnter b:"l ; 
c = Input["Enter c:"]; ma = 1nputC"Enter ma:"]; 
mb = Input["Enter &:"I; mc = -ma-mb; 
Print [ ( 'I, a, " I@, b, ",C, " )  = "1; 
print [I, (",ma, 

ThreeJay = ThreeJSymbo1[{a,rna},{b,mb},{c,mc1] 

" , m b ,  I' Im,mc, ' I )  ' I ]  ; 

Notebook 3jOOO (Section 7.3.1, Table 7.2) 
Print [ 'I \nANGULAR MOMENTUM: Rotational Symrnetries\n" 1 
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Print [ rlNotebook 3j000:\n 
3-j coefficients with all m values zero\n" 1 
( *  Function * )  

JaySpec Igg-, s-1 : = 
(((1-Mod[gg,21)*(-1)Ag)*g!/((g-a) l*(g-b) !*(g- 
C)!))* 
sqrt[(gg-2a)!*(gg-2b)!*(gg-2c)!/gg+l)!l 

( *  Execution * )  

Clear [a, b, cl ; 
a = Input[lIEnter a (number):"]; 
b = Input[I1Enter b (number):"I; 
c = Input["Enter c (number):"]; 

gg = a+b+c; g = gg/2; 

Print [ *I ( II , a, I1 

Print [ I' ( #I, 0, It 
'I , b , II 
II , 0 , 

If , c , If 1 = I' , Jay Spec [ gg , g 1 1 ; 
'I, 0, " )  I,] ; 

Notebook VccDnsty (Section 7.3.2, Figure 7.7) 
Print [ 'I \nANGULAR MOMENTUM: Rotational Symmetries\n'l] 
Print [ "Notebook VccDnsty:\n 
Density plots:l<jj mmljjJ 2m>IA2, j=3/2,2,6\n1I 1 
( *  Suppress irrelevant error message * )  
Off[ClebschGordan::phyl; 

( *  Function * )  

DPj j [j-1 : = DensityPlot 
l-(ClebschGordan[~j,ml,{j,m},~J,2 m11)^2, 
EJ, 0, 2*jl,Im, -j, jl, 
PlotPoints->2*j+l, Frame->False]; 

( *  Execution * )  

DPjj [3/21; DPjj [21; DPjj 161; 

Notebook Alg3j (Section 7.3.4, Table 7.3) 
Print [ IU \nANGULAR MOMENTUM: Rotational Symmetries\nll] 
Print ["Notebook Alg3j:\n 
Algebraic 3-j coefficients for first j small\nll] 

( *  Execution * )  

Clear [ 8 ,  a, as, ms , ma, mas ] ; 
s = Input ["Enter smallest j (number) : afl ; 
a = 1nputC"Enter next j 
as = Input ["Enter resulting j (symbols) :"I ; 
ms = Input ["Enter smallest m (number) :*I]; 
ma = InputlI'Enter next m (symbol):"]; 
mas = -ma-ma; 
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Print [ ( It , s , II , a , I' 'I, as, 'I = 181; 
Print [ I " " , m s , "  , ma , II lI,mas, ' I )  ; 

ThreeJay = T h r e e J S y m b o l [ ~ s , m s ~ , ~ a , r n a s ) l  

Notebook LegProd (Section 7.5.2, Figure 7.10) 
Print I I* \nANGULAR MOMENTUM: Rotational Symmetries\nI'] 
Print "Notebook LegProd: Product of Legendre polynornials\n" I 
Off [General: : spell11 ; 

( *  Functions * )  

( *  Abbreviated Legendre polynomial * )  
PLCeL-I := LegendreP[eL,Cos[betall 
PLp [one-l : = PL [Ll] *PL [L2] *one ( *  and product * ) 
pos[x-] := If[ x>O, x, 01 ( *  select positive * )  
neg[x-1 := -If[ x<O, x, 01 ( *  select negative * )  
( *  For plotting signed points * )  
signedPoints[fn-,eL-,pn_.AutoOrDash_l : =  
Parame t r i cP 1 o t [ 
{pn[fn[eLll*sin[betal ,pn[fn[eL1l*Cos[betal 1 ,  
{beta,0,2*Pi), PlotPoints->points, 
PlotDivision->points, PlotRange->All, 
AspectRatio->Automatic,Axes->False,Ticks->None, 
Plotstyle->AutoOrDash, 
DisplayFunction->Identity] 

signedPoints[fn,LV,pos,Automaticl, 
signedPoints[fn,LV,neg,{Dash~ng[{0.05,0.05~]}1, 
DisplayFunction->$Disp~ayFunct~on] 

ShowBoth [fn-, LV-I : = Show [ 

( *  Execution * )  

Clear [Ll,L2] ; 
( *  Sample input * )  
L1 = 2; L2 = 3; 

( *  Number of plotting points * )  
points = Max[2O,Min[5*Max[L1,L21+15,401 I; 

Print[I'P 'lrL1,tl [cos(beta)] = ",PLILl] ,"\n"l 

Print["P 'I,L2," [cos(beta)] = '1,PL[L21,"\n"l 
( *  Combined + & - points for PL1, PL2, PLl*PL2 * )  

ShowBoth[PL,Ll] ; ShowBoth[PL,L2]; ShowBothlPLp, 11; 

( *  Clebsch-Gordan series coefficients * )  
L3rnin = Max[Ll-L2,L2-L1]; L3max = L1+L2; 
Print [ 
"\n {L3, Clebsch-Gordan coefficient for L31 ' I ,  

( *  First Legendre * )  

( *  Second Legendre * )  

Table[{L3,(2*L3+1)*(N[ThreeJSymbol[ 
~Ll,0},{L2,0},CL3rO}ll)A2}, 
{L3, L3min, L3max3 1 1 
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( *  and series Legendre polar plots*) 
Do[ShowBoth[PL,L31, {L3,L3min,L3max,2)1 

Notebook YngThm (Section 7.5.2, Figure 7.11) 
Print [ 11 \nANGULAR MOMENTUM: Rotational Symmetries\n" 1 
Print [ IINotebook YngThm: Yang's theorem\n'l I ; 
( *  To suppress nuisance error messages * )  
Off[ClebschGordan::tril; 

( *  Functions * )  

pos[x-] := If[ x>o, x, 01 
neg[x-] := -If[ x<O, x, 01 
signedPntPW[pn-,AutoOrDash-1 := 
Parametricplot {pn [PWampl *Sin [theta], 
pn[PWamp]*Cos[thetal), {theta,O,2*Pi), 
PlotPoints->points, Axes->{False,True), 
PlotDivision->points,AspectRatio->Automatic, 
Ticks->None, Plotstyle->AutoOrDash, 
DisplayFunction->Identity] 

( *  Execution * )  

Clear[L,alfl; 
( *  Sample input * )  
L = 2; alf[l] = 1; alf[21 = -1; alf[31 = 6; 

( *  Number of plotting points * )  
points = Max[lO,Min[3*L+10,3011; 

( *  Direct method; amplitude * )  
Print [ "PW = I t ]  

PWamp = Sum[alf [elv+l] * 
LegendreP [elv, Cos [theta] 1, {elv, 0, L) 1 

( *  Positive values solid curves * )  
posPntPW = signedPntPW[pos,Automaticl; 
( *  Negative values dashed curves * )  
negPntPW = signedPntPW[neg, 
{Dashing[ { 0 . 0 5 , 0 .  05) 1 1 1  ; 

Show CposPntPW, negPntPW, ( *  combined plots * )  
DisplayFunctfon-~$D~splayFunction]; 

( *  Direct method; cross section * )  
PWSq = PWamp*PWamp; 
Parametricplot[ 
{pos [PWSql *Sin[thetal ,pos [PWSq] *Cos [theta] } ,  
{theta,O,2 Pi), PlotPoints->points, 
PlotDivision->points,AspectRatio->Automatic, 
Axes->{False,True),Ticks->None, 
P 1 o t Labe 1 - > I' PW A 2 II 1 ; 

( *  Clebsch-Gordan expansion method; * )  
( *  Expansion coefficients * )  
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ALP=Table[Sum[alf[el+l]*alf[elp+l]*(2*elpp+l)* 
~ N ~ T h r e e J S y m b o l ~ ~ e l , 0 1 , ~ e l ~ , 0 ~ , ~ ~ ~ P ~ , 0 1 1 1 ~ A 2 ,  
{el, 0, Ll, {elp, 0, Ll I, {elpp, 0,2*LlI; 

N[LegendreP[bigL,Cos[thetall 1 ,  {bigL,0,2*Ll]; 
Parametricplot[ 
{sigrna*Sin[thetal,sigma*Cos[thetal}, 
{theta,0,2*Pil, PlotPoints->points, 
PlotDivision->points,AspectRatio->Automatic, 
A x e s - > { F a l s e , T r u e ) , T i c k s - > N o n e ,  
PlotLabel->'*By expansion: ' '1  ; 

( *  Differential cross section * )  
sigma = SumCALP I [bigL+111* 

Notebook Alg6j (Section 9.2.2, Table 9.1) 
Print [ '' \nANGULAR MOMENTUM: Rotational Symmetries\nrl 1 
Print ["Notebook Alg6j:\n 
Algebraic 6-j ; no triangle condition checks\nI1] 

Clear[a,b,c,d,e,f,g,h,i]; 

( *  Substitute symbols of your choice * )  
TopRow = {l,b,b+ll; 
BottomRow = Id, C, C+l); 

SixJay = SixJSymbol [TopRow, BottomRow] ; 
Print[TableForm[{TopRow, BottomRowlll 
Print ["\n = 'I] 
Print [SixJay] 

Notebook Num6j (Section 9.3.2) 
Print [ \nANGULAR MOMENTUM: Rotational Symmetries;\nll I 
Print [ IINotebook Num6J:\n 
Numerical 6-j coefficients\n" I 
Print ["Be careful assigning values\n"] 
Clear[a,b,c,d,e,fl; 
a = Ingut[r*Enter a:"]; 
b = Input["Enter b:"]; 
e = Input [ "Enter intermediate, e : I' I ; 
d = Input["Enter d:"]; 
c = Input["Enter c:"]; 
f = Input ["Enter other intermediate, f: " I  ; 

Print [ I *  { I,, a, 
Print [ { , d , 'I , c , I' " , f , " 1 = 1 1 1 ;  

SixJay = SixJSyrnbol [{a, b, el, {d, c, f) 1 

'I , b , , 8, 'I l"1 ; 

Notebook Num9j (Section 9.5.1) 
Print [ \nANGULAR MOMENTUM: Rotational Symmetries\nI' I 
Print ["Notebook Num9j:\n 



404  APPENDIX I: NOTEBOOKS FOR MATHEMATICA 

Numerical 9-j coefficients\nr1 I 
( *  Triangle condition definition * )  
Tri[x-,y-,z-l := (Abs[x-zl <= y) && (y <= x+z); 

( *  Execution * )  

Clear[a,b,c,d,e,f,g,h,i]; 
a = Input["First row; enter a:"]; 
b = Input["enter b:"]; c = Input[I1enter c:"]; 
d = Input["Second row; enter d:I1]; 
e = Input["enter e:lvl; f = Input["enter f:l11; 
g = Input["Third row; enter g:I1]; 
h = Input["enter h:"]; i = Input["enter i:l11; 
Print ['l{ll,a, 'I I' , b, II 'I 1 ; 
Print ['I { 'I, d,  'I II , e , ll,f,l')lll; Print[" "1; 
Print [ I' { I t ,  g, II, h, I s ,  i, II 1 = 181; 

If Tri [a, b, cl && Tri Id, e, f 1 && Tri [g, h, 11 
&& Tri[a,d,gl && Tri[b,e,hl && Tri[c,f,il 

( *  Sum over 6 - j  products from kmin to kmax * )  
kmin = MaxLAbs [a-il , Abs [h-dl , Abs [b-f 1 1  ; 
kmax = Min[a+i, h+d, b+f]; 
NineJ = Sum[ (2*k+l)* 

, c , I* 1 II 1 ; Print [ It 

I 

SixJSymbol[{a,i,k), {h,d,g}l* 
SixJSymbol [ {b, f, k), Id, h, e} ] * 
SixJSymbol[{a,i,k), {f,b,c}l, 
{k, kmin, kmax} 1 

Print ["\n! ! A triangle rule is broken: ; 
NineJ = 0 

1 
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TABLE A.I.1 Index by chapter of Mathematica notebooks. Notebook names 
are listed by order of first application in each chapter. 

Chapter Notebook I section Subject of the Mathematica notebook 

Shell 11.2.1 
Polyhedra 11.2.2 
Worldview 11.3.2 
Ppsi 11.4.1 
PauliCC 11.4.5 

Problems 

No notebooks 

No notebooks 
Problems 

PL 14.1.2 
PLM 14.1.2 
YLMabs 14.1.3 
EXPimPHI / 4.1.3 
Problems 

Precess 15.3.1 
B e s L  I 5.4.1 
B e s M  / 5.4.1 
PW3D 15.4.2 
PW2D 1 5.4.2 

/Problems 

Djm’rn 16.3.3 
D j  jmCpr / 6.4.3 
D j j 0 I 6.4.3 

/Problems 

Num3j 17.3.1 
3 j 0 0 0  I7.3.1 
VccDnsty 11.3.2 
A l g 3  j 11.3.4 
LegProd 11.5.2 
YngThm 17.5.2 

/Problems 

PL 18.4.1 
/Problems 

A l g 6 J  19.2.2 
Nurn6j 19.3.2 
Num9 j / 9.5.1 

/Problems 

Generating a spiral shell; graphics 
Platonic solids; graphics 
Earth sphere in latitude and longitude; graphics 
Parity in quantum mechanics; formulas and graphics 
Pauli principle in scattering; formulas and graphics 

Legendre polynomials; formulas and graphics 
Associated Legendre functions; formulas and graphics 
Spherical harmonics; formulas and 3-D views 
Cosine of rn4 modulating a torus; 3-D views 

Precession of a top; animated graphics 
Spherical Bessel functions; graphics 
Cylindrical Bessel functions; graphics 
Plane waves in 3 dimensions; 3-D views 
Plane waves in 2 dimensions; 3-D views 

Reduced rotation functions; formulas and graphics 
Probability density classical limits; graphics 
Reduced rotation functions, m’=j and m = 0; graphics 

Numerical 3-j coefficients 
3-j coefficients with m values zero; formulas 
Density distribution of coupled states; graphics 
Algebraic 3-j coefficients; formulas 
Clebsch-Gordan series; formulas and graphics 
Yang’s theorem for distributions; formulas and graphics 

Legendre polynomials to transform polarizations; graphics 

Algebraic 6-j coefficients; formulas 
Numerical 6-j coefficients 
Numerical 9-j coefficients 
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APPENDIX I1 

NUMERICAL COMPUTER PROGRAMS IN C 

In the book we discuss reduced rotation matrix elements (the dA,m, Chapter 6 ) ,  co- 
efficients for coupling two angular momenta (the 3-j coefficients, Chapter 7) ,  and 
coefficients for recombining angular momenta (the 6-j and 9-j coefficients, Chap- 
ter 9). Here we provide computer programs in the C programming language to 
evaluate these coefficients numerically. All except the 9-j coefficient are also pro- 
vided in Mathematicu notebooks (Appendix I ) ,  which emphasize algebraic and 
graphical properties. In practical work, however, relatively efficient numerical rou- 
tines are desirable. For example, on the same workstation the 3-j and 6-j coupling 
coefficients programmed below evaluate about two orders of magnitude faster than 
the Mathematicu versions, albeit with slightly less accuracy. 

In the following, we provide four simple C programs for the above functions. 
These are not optimized in the ways discussed in the text, but are intended to be easy 
to understand and moderately efficient. We describe first the common features of 
the programs and their coding, then how they can be translated directly to Fortran or 
Pascal, and how several multi-use functions are to be used with the programs. Sec- 
tions C1 to C4 describe the programs individually, in terms of formulas used, cod- 
ing, and tests of correctness. 

The programs are provided on the diskette accompanying this book. This 3.5- 
inch diskette can be read by Apple computers, including Macintosh. Suggestions 
for converting the programs on diskette for other computers are suggested in The 
Computer Interface, page xiii. 

Programming the Functions. The four programs are prepared in a uniform 
way, so they are easy to use and understand. For the user, all angular momentum 
numbers are to be entered as decimals. For example, a = 312 is entered as 1.5 and 
mb = -2 is  entered as -2., in which the decimal point may be optional for some 
computer systems. Program execution is terminated if the first variable entered 
(which should be non-negative) is entered as a negative number. Otherwise, the 

4 0 7  
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program stays in a loop in the main program that inputs arguments, tests selection 
rules, then computes and prints a function value. 

Before a function is executed, its arguments are checked within the main pro- 
gram to see whether the function is automatically zero because of violation of selec- 
tion rules on m ( I  m IS j )  or betweenj values (the triangle selection rules). No such 
testing is done within the function itself. Therefore, if you wish to use the function 
apart from the main program, you should probably include these checks. 

We adopt the following conventions for coding the functions. ANSI-standard C 
is used. A variable name that begins with "t" indicates twice an angular momentum 
number, such as t j for 2j or t e for 2e. After this has been done, there is a one-to- 
one correspondence between program variables and formula variables, with the ex- 
ception that m' is replaced by mp. Function names that are capitalized-such as Max 
or Min-are functions provided in this appendix, not part of the C standard li- 
braries. The first line after the main program declaration is a comment line ( /  * 
Complete program uses ... / *) giving the names of all these capitalized 
functions that are needed. 

Fortran and Pascal Compatibility. The programs given here can be translated 
readily to Fortran or to Pascal, usually through line-by-line transliteration. A sum- 
mary of translating between C, Fortran, and Pascal languages is given in the ap- 
pendix to my textbook on computing (with C programs) for scientists and engineers 
[Tho92b]. The C language is described for Fortran programmers in the book by 
Kerrigan [Ker91], and an introduction to C for Pascal programmers is given in the 
book by Shammas [Sha88]. 

The Multi-Use C Functions. There are six multi-use functions that are used by 
more than one main program: Fctrl, Max, Min, Power, TriangleBroken, 
and Twice. They are listed here and reside in the file AM. h on the diskette, while 
the programs get these source programs through the #include "AM. h" at the top 
of each program. In the comment line after the declaration of each main program the 
names of all functions needed by that program are given. Here is the multi-use 
function file AM. h, with a description of the purpose of each function inserted. 

#define TRUE 1 
#define FALSE 0 

Fc t r I. This computes the factorial function for non-negative integer argu- 
ments. There is no check on overflow for this double-precision floating-point func- 
tion. 

double Fctrl (N) 
/ *  Factorial function; assumes N >= 0 * /  
i n t  N; 
I 
double product; 
int i; 
product = 1; 
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if ( N <= 1 ) return product; 
else 

{ 
for ( i = 2; i <= N; i++ ) 

( product = product*i; } 
return product; 
1 

1 

Max. This function returns the biggest of the N elements that are stored in 
array. The [ O ]  element of the array is not used. 

int Max (array, N) 
/ *  Maximum of first N elements; array [l]. . . [N] * /  
int array [ ] , N; 
{ 
int big, i ; 
big = array[l] ; 
for ( i = 2; i <= N; i++ ) 

{ 
if ( array[il > big ) big = array[i]; 
1 

return big; 
1 

Min. This function returns the smallest of the N elements that are stored in 
array. The [O] element of the array is not used. 

int Min(array,N) 
/ *  Minimum of first N elements; array [I].. . [N] * /  
int array [ I , N; 
{ 
int smal1,i; 
small = array[l]; 
for ( i = 2; i <= N; i++ ) 

i 
if ( array[i] < small )small = array[il; 
I 

return small; 
1 

Power. The Power function returns xi, in which i is an integer. The C lib- 
rary function pow (x, y ) assumes that x and y are double variables. Also, if 
x = 0 and y 2 0, the function returns negative infinity. However, as every school- 
child knows, xo = 1, so Power traps for i = 0, in which case it returns 1. Here’s 
the power play: 

double Power(x,i) / *  x to integer power * /  
double x; int i; 
{ 



4 10 APPENDIX 11: NUMERICAL COMPUTER PROGRAMS IN C 

double floati; 
/ *  always return 1.0 for i=O * /  
if ( i == 0 ) return 1.0; 
floati = i; return pow(x, floati) ; 
1 

TriangleBroken. This function tests the triangle condition, using twice 
each of the three angular momenta. Therefore, the sum of the three function argu- 
ments must be even. A TRUE (=1) is returned if either this condition or the triangle 
rule is broken, else a FALSE (=O) is returned. The calling functions then test for a 1 
or a 0 being returned. 

int TriangleBroken(tjl,tj2,tj3) 
/ *  tests the triangle condition * /  
int tjl,tj2,tj3; 
{ 
int sum; 
sum = tjl+tj2+tj3; 
if ( sum ! =  2*(sum/2) 1 1  

tj2 < abs(tj1-tj3) I I tj2 > tjl+tj3 ) 
{ 
printf 
("\n! ! (%i,%i,%i) breaks triangle rule:", 
tjl,tj2,tj3); 

return TRUE; 
I 

else return FALSE; 
1 

Twice. This function converts a decimal half integer, such as 1.5 or -2.0, to an 
integer that is twice this. The possibility that the decimal representation is imprecise 
is allowed for by adding the roundoff term 0.01. 

int Twice (x) 
/ *  Converts to integer(2*x) * /  
double x; 
c 
int int2x; 
if ( x < 0 ) int2x = -Z*(fabs(x)+O.Ol); 

return int2x; 
1 

else int2x = 2*(x+0.01); 

We now describe each of the angular momentum functions. 

C1 PROGRAM FOR REDUCED ROTATION MATRIX ELEMENTS 

Formulas and Coding for Reduced Rotation Matrix Elements. We use a di- 
rect implementation of formula (6.9), after making the checks that ImlI j and 
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Irnl I j .  The rotation angle p is entered in radian measure. Coding is straight- 
forward. The range of the sum over x is obtained by finding what extreme values of 
x would make any argument in the factorials within the summation equal to zero. 
The phase factor (-1)X is accounted for by changing the sign of the terms for which 
x is odd; that is, 2x is not exactly divisible by 4. 

Testing Reduced Rotation Matrix Elements, Tables 6.1-6.3 give several 
formulas for dA.m(/3) fo r j  5 2. Spot checks using these formulas are easily ,made. 
Mathernatica notebook D j m'm that computes algebraic expressions for d;,(p) 
can also be adapted to calculate numerical values. 

PROGRAM C.1 The reduced rotation matrix elements. 

#include <stdio.h> 
#include <math.h> 
#include "AM. h " 

main() / *  Reduced rotation matrix elements * /  
/ *  Complete program uses Djmpm given here, 
plus Fctrl,Max,Min,Power,Twice 
from AM.h file * /  

{ 
double beta,dj,j,mp,m; 
int tj,tmp,tm; 
double Djmpm( ) ; 

printf ( "Angular Momentum\n" ) ; 
printf ("Reduced rotation matrix elements\n") ; 
tj = 0; 
while ( tj >= 0 ) 

{ 
printf ("\n\nInput j (<O to end) : " ) ;  
scanf ("%lf",&j); tj = Twice(]); 
if ( t j  < O )  

I 
printf("\nEnd rotation matrix elements\n"); 
exit ( 0 )  ; 

printf ( "\nInput m' , m, beta (radian) : " ) ; 
printf("\n(Use only spaces to separate values) 
scanf ( 'I %1 f %1 f %1 f I' , &mp, &m, &beta) ; 
/ *  Convert to integers that are twice input values * /  
tmp = Twice(mp); tm = Twice(m); 
if ( abs(tmp) > tj I I abs(tm) > tj ) 
printf ("\n! !m' or m is too big; try again"); 

else 
{ 
dj = Djmpm(tj,tmp,tm,beta); 
printf ("\n djm'm(beta) = %lf",dj); 
I 

' I ) ;  

1 
1 
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double Djmpm(tj,tmp,tm,beta) 
/ *  Reduced rotation matrix element * /  
double beta; int tj,tmp,tm; 
{ 
double norm,cb2,sb2,sum,term; 
int minmax[3],txmin,txmax,tx; 

norm = sqrt (Fctrl( (tj+tmp) /2) *Fctrl( (tj-tmp) /2) * 

cb2 = cos(beta/2); sb2 = sin(beta/2); 
minmax[l] = 0; minmax[2] = tmp-tm; 
txmin = Max(minmax,2); / *  smallest x * /  
minmax[l] = tj+tmp; minmax[2] = tj-tm; 
txmax = Min(minmax,2); / *  largest x * /  
sum = 0; 
for ( tx = txmin; tx <= txmax; tx = tx+2 ) 

Fctrl((tj+tm)/2)*Fctrl((tj-tm)/2)); 

{ 
term = Power(cb2,tj-tx+(tmp-tm)/2)* 

Power(sb2, tx+(tm-tmp)/2)/ 
(Fctrl( (tj+tmp-tx) /2) * 
Fctrl ((tj-tm-tx) /2) *Fctrl (tx/2) * 
Fctrl((tx+tm-tmp)/2)); 

term = -term; / *  for x odd * /  
if ( tx ! =  4*(tx/4) ) 

sum = sum+norm*term; 
I 

return sum; 

C2 PROGRAM FOR 34 COEFFICIENTS 

Formulas and Coding for 3- j  C o e ~ c i e n t s .  Formula (7.59) is used for the 3- j  
coefficient. The formula is not computed if the sum of the m values is nonzero or if 
the magnitude of any m value exceeds its matching j value. 

Testing the 3- j  CoefSicienrs. Spot checks for a range of angular momenta can 
be made by comparing the results from -3 j with those from the Mathemafica note- 
book Num3 j in Appendix I. A testing method that is more complete is to check the 
orthogonality conditions (7.61) and (7.62). Such tests are also useful for checking 
the numerical accuracy of the 3-j coefficients. 

PROGRAM C.2 The 3-j coefficients. 

#include <stdio.h> 
#include <math.h> 
# inc lude I’ AM. h ‘I 

main() / *  3-j coupling coefficients * /  
/ *  Complete program uses -3j,EvenOrOdd given here, 



C2 PROGRAM FOR 3-j COEFFICIENTS 4 13 

plus Fctrl,Max,Min,Power,TriangleBroken,Twice 
from AM.h file * /  

{ 
double a,b,c,ma,mb,mc,Three-j; 
int ta,tb,tc,tma,tmb,tmc; 
double -3j ( )  ; 
int EvenOrOdd ( ) ; 

print f ( "Angular Momentum\n" ) ; 
printf ( " 3 - j  coupling coefficients\n") ; 
ta = 0; 
while ( ta >= 0 ) 

{ 
printf ("\n\nInput a as 0.5, etc (<O to end) : " )  ; 
scanf ("%lf 'I, &a) ; 
i f ( a < O )  

{ 
printf ("\nEnd 3 - j  coupling coefficients\n" ) : 
exit (0) ; 
1 

printf("\nInput b, c, ma, mb, mc: " ) ;  
printf("\n(Use only spaces to separate values) " 1 ;  
scanf("%lf%lf%lf%lf%lf",&b,&c,&ma,&mb,&mc); 
/ *  Convert to integers that are twice input values * /  
ta = Twice(a); tb = Twice(b); tc = Twiceic); 
tma = Twice(ma); tmb = Twice(mb); tmc = Twice(mc); 
/ *  Testing for zero coefficient * /  
if ( tma+tmb+tmc ! =  0 ) 

{ printf ("\n! !ma+mb+mc not zero; try again") ; 1 
else 

{ 
if ( TriangleBroken(ta,tb,tc) ! =  0 ) 
printf ( "  try again") ; 

else 
{ 
if ( abs(tma) > ta I I 

abs(tmb) > tb I I 
abs(tmc) > tc ) 

printf("\n!!An m value is too big; try again"); 
else 

{ 
if ( EvenOrOdd(ta,tma) I I 

EvenOrOdd (tb, tmb) I I 
EvenOrOdd(tc,tmc) > 0 ) 

printf("\n! !An m doesn't match a j; try again"); 
else 

{ 
Three-j = -3j(ta,tb,tc,tma,tmb,tmc); 
printf("\n 3 - j  coefficient = %lf",Three-j); 
1 

I 
1 

I 
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double -3j (ta,tb,tc,tma,tmb,tmc) 
/ *  3-j coupling coefficient * /  
int ta,tb,tc,tma,tmb,tmc; 

{ 
double nl,n2,n3,dl,d2,d3,norm,sum,phase,term; 
int minmax[3] ,tkmin, tkmax,tk; 

/ *  Normalization factorials * /  
nl = Fctrl((tc+ta-tb)/2)*Fctrl((tc-ta+tb)/2); 
n2 = Fctrl ( (ta+tb-tc) /2) ; 
n3 = Fctrl( (tc-tmc) /2) *Fctrl( (tc+tmc) /2) ; 
dl = Fctrl((ta+tb+tc)/2+1); 
d2 = Fctrl ((ta-tma) /2) *Fctrl( (ta+tma) /2) ; 
d3 = Fctrl((tb-tmb)/2)*Fctrl((tb+tmb)/2); 
norm = Power(-1.0, (ta-tb-tmc)/2)* 

sqrt (nl*n2*n3/ (dl*d2*d3) ) ; 

minmax[l] = 0; minmax[2] = tb-ta-tmc; 
tkmin = Max(minmax,2); 
minmax[l] = tc-ta+tb; minmax[2] = tc-tmc; 
tkmax = Min(minmax,2); 
sum = 0; 
phase = Power(-l.O,(tkmin+tb+tmb)/2); 
for ( tk = tkmin; tk <= tkmax; tk = tk+2 ) 

nl = Fctrl((tb+tc+tma-tk)/2); 
n2 = Fctrl((ta-tma+tk)/2); 
dl = Fctrl (tk/2) *Fctrl( (tc-ta+tb-tk) /2) ; 
d2 = Fctrl( (tc-tmc-tk) /2) ; 
d3 = Fctrl((tk+ta-tb+tmc)/2); 
term = phase*nl*n2/(dl*d2*d3); 
phase = -phase; 
sum = sum+norm*term; 
1 

return sum; 
I 

int EvenOrOdd(tj,tm) / *  tests for tj+tm even * /  
int tj,tm; 
I 
int sum; 

sum = tj+tm; 
if ( sum ! =  2*(sum/2) ) return 1; 
else return 0; 
1 
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C 3  PROGRAM FOR 69 COEFFICIENTS 

Formulas and Coding for 6-j Coefficients. Formula (9.20) is used for the 6-j 
coefficient. The formula is not computed if any of the four triangles of the tetra- 
hedron, Figure 9.2, is not closed. 

Testing the 6-j Coeficienfs. Spot checks for a range of angular momenta can 
be made by comparing results from -6 j with those from Mathernatica notebook 
Num6 j in Appendix I. A more complete testing method is to check orthogonality 
condition (9.21). Such tests are also useful for checking numerical accuracy. 

PROGRAM C.3 The 6-j coefficients. 

#include <stdio.h> 
#include <math.h> 
#include "AM. h" 

main() / *  6-j recoupling coefficients * /  
/ *  Complete program uses -6j,Delt given here 
plus Fctrl,Max,Min,Power,TriangleBroken,Twice 
from AM.h file * /  

{ 
double a, b, c, d, e, f, Six-j ; 
int ta, tb, tc, td, te, tf; 

printf ( "Angular Momentum\n" ) ; 
printf("6-j recoupling coefficients\n"); 
ta = 0; 
while ( ta >= 0 ) 

I 
printf("\n\nInput a as 0.5, etc (<O to end): ' I ) ;  

scanf ("%lf ' I ,  &a) ; ta = Twice (a) ; 
if ( t a < O )  

t 
printf ("\nEnd 6 - j  recoupling coefficients\n") ; 
exit (0) ; 
} 

printf("\nInput b, c, d, e, f: ' I ) ;  

printf ( \n (Use only spaces to separate values) " ) ; 
s c a n f ( " % l f % l f % l f % l f % I f " , & b , & b , & c , & d , & e , & f ) ;  
/ *  Convert to integers that are twice input values * /  
tb = Twice(b) ; tc = Twice(c); 
td = Twice(d) ; te = Twice(e); tf = Twice(f); 

/ *  Testing for zero coefficient * /  
if ( TriangleBroken(ta,tb,te) ! =  0 I I 

TriangleBroken(ta,tc,tf) ! =  0 I I 
TriangleBroken (tb, td, tf) ! = 0 I I 
TriangleBroken(tc,td,te) ! =  0 ) 

printf ( I' try again" ) ; 
else 
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I 
Six-j = -61 (ta, tb, tc, td, te, tf) ; 
printf ("\n 6 - j  coefficient = %lf",Six-j); 
I 

double -6j (ta,tb,tc,td,te,tf) 
/ *  6 - j  recoupling coefficient * /  
int ta,tb,tc,td,te,tf; 
{ 
double norm,sum,phase,nl,dl,d2,d3,d4,d5,d6,term; 
int minray[4],maxray[6],tkmin,tkmax,tk; 
double Delt ( )  ; 

/ *  Normalization factorials * /  
norm = 

/ *  Minimum summation index * /  
minray[l] = 0; minray[2] = ta+td-te-tf; 
minray[3] = tb+tc-te-tf; thin = Max(minray,3); 
/ *  Maximum summation index * /  
maxray[l] = ta+tb+tc+td+2; maxrayL21 = ta+tb-te; 
maxray[3] = tc+td-te; maxray[4] = ta+tc-tf; 
maxray[5] = tb+td-tf; tkmax = Min (maxray, 5) ; 
sum = 0; / *  Phase of 6 - j  * /  
phase = Power(-l.O,(ta+tb+tc+td+tkmin)/2); 
for ( tk = tkmin; tk <= tkmax; tk = tk+2 ) 

sqrt (Delt (ta, tb, te) *Delt (ta, tc, tf) * 
Delt (tb,td,tf) *Delt (tc, td,te) ) ; 

I 
nl = Fctrl( (ta+tb+tc+td-tk) /2+1) ; 
dl = Fctrl(tk/2)*Fctrl((te+tf-ta-td+tk)/2); 
d2 = Fctrl((te+tf-tb-tc+tk)/2); 
d3 = Fctrl((ta+tb-te-tk)/2); 
d4 = Fctrl( (tc+td-te-tk) /2) ; 
d5 = Fctrl((ta+tc-tf-tk)/2); 
d6 = Fctrl ((tb+td-tf-tk) /2) ; 
term = phase*nl/(dl*d2*d3*d4*d5*d6); 
phase = -phase; 
sum = sum+norm*term; 
1 

return sum; 
1 

double Delt(ta,tb,tc) 

int ta,tb,tc; 
{ 
return Fctrl((ta+tb-tc)/2)* 

/ *  Square of delta factor * /  

Fctrl( (ta+tc-tb) /2) *Fctrl( (tb+tc-ta) /2) / 
Fctrl( (ta+tb+tc) /2+1) ; 

I 
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C4 PROGRAM FOR 9-j COEFFICIENTS 

Formulas and Coding for 9-j Coefficients. Formula (9.59)-expansion in 
terms of 6-j coefficients-is used for the 9-j coefficients. The formula is not com- 
puted if any of the six independent triangle conditions is not satisfied. The function 
- 6 j is obtained from Section C3. 

Testing the 9-j Coefficients. Spot checks can be made by comparing the re- 
sults from -9 j with those in Matsunobu and Takebe [Mat551 and with exact numer- 
ical values from Muthematica notebook Num9 j in Appendix I. For example, 

A more complete testing method is to check the orthogonality condition (9.65), 
which is also useful for checking the numerical accuracy of the coefficients. 

PROGRAM C.4 The 9-j coefficients. 

#include <stdio.h> 
#include <math.h> 
#include "AM. h" 

main0 / *  9-j recoupling coefficients * /  
/ *  Complete program uses -6j,-9j,Delt given here, 
plus Fctrl,Max,Min,Power,TriangleBroken,Twice 
from AM.h file * /  

{ 
double Nine-; ; 
int ta,tb,tc,td,te,tf,tg,th,ti; 
double a,b,c,d,e,f,g,h,i,-6j 0 ,-9j 0;  

printf ( "Angular Momentum\n" ) ; 
printf("9-j recoupling coefficients\n"); 
ta = 0; 
while ( ta >= 0 ) 

( 
printf ("\n\nInput a (<O to end) : " )  ; 
scanf("%lf",&a); ta = Twice(a); 
if ( t d <  0 )  

{ 
printf("\nEnd 9-1 recoupling coefficients\n"); 
exit ( 0 )  ; 
1 

printf ("\nInput b, c: " 1 ;  
printf ("\n(Use only spaces to separate values) " ) ; 
scanf ("%lf%lf",&b,&c); 
printf ("\nInput d, e, f: ' I ) ;  
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scan f ( I' % 1 f % 1 f % 1 f " , &d , &e , & f ; 
printf ( I' \nInput g, h, i : 'I ) ; 
s can f ( '' % 1 f % 1 f % 1 f '' , & g , &h , & i ) ; 

tb = Twice(b); tc = Twice(c); 
td = Twice(d) ; te = Twice(e) ; tf = Twice(f) ; 
tg = Twice(g); th = Twicelhf; ti = Twice(i); 
/ *  Testing for zero coefficient * /  
i f  ( TriangleBroken(ta,tb,tc) ! =  0 I 1  

TriangleBroken(td,te,tf) ! =  0 I I 
TriangleBroken(tg,th,ti) ! =  0 I I 
TriangleBroken(ta,td,tg) ! =  0 I I 
TriangleBroken(tb,te,th) ! =  0 I I 
TriangleBroken(tc,tf,ti) ! =  0 ) 

printf ( I '  try again") ; 
else 

{ 
Nine-j = -9j (ta, tb, tc, td, te, tf, tg, th, ti) ; 
printf("\n 9-1 coefficient = %lf",Nine-j); 
1 

1 
1 

double -6j (ta, tb, tc, td, te, tf) 
/ *  6-j recoupling coefficient * /  
int ta,tb,tc,td,te,tf; 
i 
double norm,sum,phase,nl,dl,d2,d3,d4,d5,d6,term; 
int minray[4l,maxray[6],tkmin,tkmax,tk; 
double Delt ( ) ; 

/ *  Normalization factorials * /  
norm = sqrt(Delt(ta,tb,te)*Delt(ta,tc,tf)* 

/ *  Minimum summation index * /  
minray[l] = 0; minray[2] = ta+td-te-tf; 
minray[3] = tb+tc-te-tf; thin = Max(minray,3); 
/ *  Maximum summation index * /  
maxray[l] = ta+tb+tc+td+2; maxray[Z] = ta+tb-te; 
maxray[3] = tc+td-te; maxray[4] = ta+tc-tf; 
maxray[5] = tb+td-tf; tkmax = Min (maxray, 5) ; 
sum = 0; / *  Phase of 6-j * /  
phase = Power(-1.0, (ta+tb+tc+td+tkmin)/2); 
for ( tk = tkmin; tk <= tkmax; tk = t k + 2  ) 

Delt(tb,td,tf)*Delt(tc,td,te)); 

{ 
nl = Fctrl((ta+tb+tc+td-tk)/2+1); 
dl = Fctrl(tk/2)*Fctrl(Ite+tf-ta-td+tk)/2); 
d2 = Fctrl((te+tf-tb-tc+tk)/2); 
d3 = Fctrl( (ta+tb-te-tk) / 2 )  ; 
d4 = Fctrl((tc+td-te-tk)/2); 
d5 = Fctrl((ta+tc-tf-tk)/2); 
d6 = Fctrl( (tb+td-tf-tk) /2) ; 
term = phase*nl/(dl*d2*d3*d4*d5*d6); 
phase = -phase; 
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sum = sum+norm*term; 

return sum; 
I 

double -9j (ta, tb, tc, td, te, tf, tg, th, ti) 
/ *  9-j recoupling coefficient * /  
int ta,tb,tc,td,te,tf,tg,th,ti; 

double sum,term,-6j 0; 
double terml,term2,term3; 
int minmax[4],tkmin,tkmax,tk; 

/ *  Minimum summation index * /  
minmax[ll = abs(ta-ti); minmax[2] = abs(th-td); 
minmax[3] = abs(tb-tf); tkmin = Max(minmax,3); 
/ *  Maximum summation index * /  
minmax[ll = ta+ti; minmax[2] = th+td; 
minmax[3] = tb+tf; tkmax = Min(minmax,3); 
sum = 0; 
f o r  ( tk = tkmin; tk <= tkmax; tk = tk+2 ) 

{ 
term = -6j (ta,ti,td, th,tk,tg)* 

- 6j (tb, tf, th, td, tk, te) * 
- 6j (ta,ti,tb, tf,tk,tc); 

sum = sum+ (tk+l) *term; 
1 

return sum; 
1 

double Delt (ta, tb, tc) 

int ta, tb, tc; 
/ *  Square of delta factor * /  

r 
1 

double F c t r l ( )  ; 
return Fctrl((ta+tb-tc)/2)* 

Fctrl((ta+tc-tb)/2)*Fctrl((tb+tc-ta)/2)/ 
Fctrl((ta+tb+tc)/2+1); 

} 
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APPENDIX I11 

TABLES OF FORMULAS 

In this appendix we tabulate formulas that are primarily of practical use in angular 
momentum calculations rather than being key formulas for understanding the sub- 
ject. You can therefore use the tables for ready reference. If you wish to understand 
the origins and uses of a formula in more detail, look for it in the text under the 
equation number given here. Also, the formulas given here appear in the text with a 
box around them, but not all boxed formulas appear here. The order of presentation 
of formulas is by increasing equation number. 

T1 LEGENDRE FUNCTIONS AND SPHERICAL HARMONICS 

Tables of Formulas 

Legendre functions C I 4, Table 4.1, p. 13 1. 
Spherical harmonics l 5 4 ,  Table 4.2, p. 139. 
Solid harmonics l S 4, Tables 4.4, 4.5, pp. 145, 146. 

Legendre Functions 

Integral property: 

(4.6) 



4 2 2 APPENDIX III: TABLES OF FORMULAS 

Spherical Harmonics 

Stretched-m value: 

(4.14) 

General formula (m 2 0): 

Relation to Legendre functions: 

qm (84) = (-11~ 1- (2t + I)(! -m)! P! (cos 8)e im4 m 2 0 (4.18) 
4 a  (t + m)! 

Relation to Legendre polynomials for m = 0: 

(4.19) 

(4.20) 

Values at 8 = 0, R : 

Spherical hannonic addition theorem: 

c ye*, (wq) r,, (e$) = pe (cos w) (4.23) 
m 
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Solid harmonic formulas: 

(4.28) 

(-I)X’(~ + iy)x’+m (. - iy)x’Ze-2x‘-m 

xc X‘ 22x’+m(m + x’)! x’! (e - m - 2x’)! 

Real forms of spherical harmonics: 

PP(cosO)cosm@ m 20 (4.32) 
27t (1 + m)! Zjm (W) 

p4”(cos8)sinm@ m 2 ~ 0  
27r (t + m)! 

zirn (e@) = 

Real spherical harmonic addition theorem: 

T2 ROTATION MATRIX ELEMENTS 

Tables of Formulas 

Reduced rotation matrices j I 2, Tables 6.1 - 6.3, pp. 223, 224. 
Rotation matrix elements for special parameters, Table 6.4, p. 240. 

Reduced Rotation Matrix Elements 

General formula: 

dA,rn (p)  = J(j +m‘)!(j - m‘)!(j +m)!(j - m)! 

p y  [COS(p/2)12j+m’-rn-2x [s in(~/2) j2*+~’-~’  

X 
( j  + m’- x ) ! ( j  - m  - x)! x! (x + m - m’)! 

Reduced rotation matrix element with both projection numbers zero: 

(P> = P&os PI 

(4.34) 

(6.9) 

(6.13) 
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Reduced rotation matrix element with first projection number zero: 

Rotated state ket: 

Transformed amplitudes after rotation: 

Symmetries of reduced rotation matrix elements: 

Relation of reduced and full rotation matrix elements: 

D,$, (spy) = e-im'ad,$m (p)e-"Y 

Symmetries of full rotation matrix elements: 

Unitarity sum for full rotation matrix elements: 

(6.14) 

(6.19) 

(6.33) 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.50) 
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Orthogonality sum for reduced rotation matrix elements: 

C d i t m * ( P ) d i m n ( P )  = a m * m  
ma 

Orthogonality integral for rotation matrix elements: 

Spherical harmonics and reduced rotation matrix elements: 

(6.5 1) 

(6.56) 

(6.60) 

T3 THE 3 9  COEFFICIENTS 

Tables of Formulas 

3- j  with all m zero and smallestj I 3  (numerical), Table 7.2, p. 275. 
3- j  coefficients with smallestj I 1 (algebraic), Table 7.3, p. 281. 

Clebsch-Gordan Coefficients 

Clebsch-Gordan transformation between coupled and direct-product representations: 
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The 3-j Coefficients 

Definition in terms of Clebsch-Gordan coefficients: 

General formula for 3-j coefficient: 

3-j transformation between coupled and direct-product representations: 

I A ~ ~ J M )  = 2 e l i l m l ) l j 2 m 2 ) ~ m , + m , , ~  

(7.60) m, =- j ,  m2 =- j ,  

J-sum unitarity for 3-j coefficients: 

M-sum unitarity for 3-j coefficients: 

3-j coefficient with one j zero: 

Symmetry under reversal of all m values: 

(7.63) 
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Even permutations of columns of a 3-j coefficient leave it 

Odd permutations of columns of a 3-j coefficient produce 
change of ( - l ) j 1 + j 2 + j 3  . 

3-j coefficient with all m values zero: 

(; 0" ;)=o a+b+c  odd (7.72) 

g! (; ; ;)=(-l)g (g - a)!(g -b)!(g -c)! . .  ~ .- ~ \l(2X-2.)!0; a+b+c (7.73) 
X 

(21: + l)! 

Combined spin and orbital states: 

Yie+i 1 2 . ~  = 

Inverse Clebsch-Gordan series: 

Clebsch-Gordan series for D-matrix elements: 
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Clebsch-Gordan series for reduced rotation matrix elements: 

Clebsch-Gordan series for Legendre polynomials: 

Integral of the product of three D-matrix elements: 

Integral of the product of three reduced rotation matrix elements: 

Integral over the product of three Legendre polynomials: 

Integral of the product of three spherical harmonics (Gaunt integral): 

A(C,12L) l ,  +e2 + L even ml +m2 = M (7.103) 
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T4 IRREDUCIBLE SPHERICAL TENSOR OPERATORS 

Irreducible Spherical Tensors 

Basic definition of irreducible tensors: 

Racah's requirements on commutators: 

Gradient operator commutators: 

[ L0'Vq] = (-1)"&( 1 1 q + o, -cr~l l l  q )  vu+q 

= (-1)"'q 43 [: : +',)v"+q 

Hermitian adjoint of a tensor component: 

T& = (-1)P-q7& 

Matrix elements of tensor operators and adjoints: 

Building-up formula for tensors: 

Bipolar harmonics: 

(8.17) 

(8.19) 

(8.20) 

(8.21) 

(8.26) 
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Reduced Matrix Elements 

Spherical harmonic tensor: 

=:yt9L(P (2k + 1)(26 + 1) 
0 

(8.35) 

(8.48) 
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Vector spherical harmonics: 

Scalar product of two irreducible tensors: 

Wigner-&kart theorem: 

Reduced Matrix Elements 

Spherical harmonic tensor: 

Angular momentum operator: 

Formula for reduced matrix element (for nonzero Clebsch-Gordan coefficient): 

Reduced matrix element from sum rule: 

Absolute square of reduced matrix element: 

For Tk Hermitian: 
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T5 THE 6-j COEFFICIENTS 

Table of Formulas 

6-j coefficients with smallest j I 1 (algebraic), Table 9.1, p. 353. 

Recoupling transformation in terms of Racah coefficients: 

( ( e d k y )  = c I (af)cr)  j G m m  W(abcd;ef) 
f 

6-j coefficients in terms of Racah coefficients: 

(9.10) 

(9.1 1 )  

C=a+b+c+d 

Recoupling transformation in terms of 6-j coefficients: 

Triangle conditions for nonzero Racah or 6-j coefficient: 

{a, : ;} 
(" A ") {A A '] {A A A] A A] 

First expansion rule for 6-j coefficients: 

f 

Second expansion rule for 6-j coefficients: 

(9.14) 
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6-j coefficients in terms of 3-j coefficients: 

(9.16) 

General formula for 6-j coefficient: 

A(abe) A(acf) A(bdf) d(cde) 
a b e  

x x ( - l p ( a + b + c + d  +1 - k ) !  

x [k!(e + f -a  - d + k)!(e + f - b - c  + k)!]-'  

x [(u + b - e  - k)!(c +d - e  - k)!(u +c -f - k)!(b+d -f -k)!]- '  

k (9.20) 

(a + b +c +l)! 
A(abc)= 

Orthogonality relations of 6-j coefficients: 

Symmetry properties of 6-j coefficient: 

(9.21) 

A 6-j coefficient is invariant under interchange of any 
two columns and under interchange of the upper and 
lower arguments in each of any two columns. 

(9.22) 

Scalar Products of Irreducible Tensors 

Scalar product of two irreducible tensors: 

(9.26) 
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Projection theorem for rank- 1 tensors: 

(9.29) 

Factorization theorem for rank- 1 tensors in uncoupled representation: 

(MI J (J *TI )lj'm') = ( j m  1 JIM') ( j  1) J -TI IIj ) sjj' (9.34) 

Decomposition theorem for rank- 1 tensor operator: 

Reduced matrix element of rank- 1 tensor operator: 

(9.35) 

(9.36) 

Reduced matrix element of Legendre polynomial: 

T6 THE 9-j COEFFICIENTS 

9-j coefficients in terms of 3-j coefficients: 
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Symmetry properties of 9-j coefficients: 

Under interchange of all rows with all columns 
a 9-j coefficient is invariant. 

(9.60) 

Under interchange of two rows or two columns 
a 9-j coefficient is multiplied by the phase (-1)p 

where P = a + b + c + d + e + f + g + h + i .  
(9.61) 

9-j coefficient with one argument zero: 

g h i  

9-j coefficient with one argument unity: 

[e(e+l)+i( i+~)-f(f+l)-h(h+l)]  
+ 1)(2b + l)d(d + 1)(2d + 1) 

(9.62) 

(9.64) 

Orthogonality sum rule for 9-j coefficients: 

x(2c+1)(2f+1)  (9.65) 
cf 

Tensor matrix elements in the coupled scheme: 
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States inj-j scheme in terms of G S  scheme: 
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Danos, M., 381,439 
Dash, J., 258, 439 
Davies, P. C. W., 27, 439 
De Lange, 0. L., 42,439 
de-Shalit, A,, 380, 439 
decomposition theorem 

density distributions 

density matrices for spins, 325-330 

for spherical tensors, 364 

for combining angular momenta, 277 

rotation of, 327-330 
spin polarizations, 327 

determinants, 23 
for rotations and reflections, 38 

diagonal matrices, 64-66 
and eigenvectors, 66 
and Hermitian matrices, 66 

differential cross sections 
and Clebsch-Gordan series, 290-29 I 

dihedral group, 84 
dimension of a representation, 81 
dimensions of angular momentum, 96, 17 1 
Dirac, P. A. M., 158, 439 
Dirac equation, 25, 159 

Dirac strings, 72 
direct products, 47-49 

and time reversal symmetry, 30 

and separable Hamiltonians, 49 
and spin, 48 
compared with innerproducts, 49 
of groups, 80 
of matrices, 90 

discrete rotations and groups, 74 
discrete symmetries, 21-34 

and quantum systems, 21 
displacement vector angular momentum, 15 I 
DNA molecules, 9, 36 
Dodd, J. N., 155,439 
Down Under, 19 
Dubos, R., 9, 439 
Duplessy, J.-C., 35, 440 
dynamical angular momentum, 122 

rotational symmetries and, 170-179 

Earth’s angular momentum, 121 
eccentricity vector: 

classical, 259-261 
history of, 261 
quanta] operator, 261-263 

Eckart, C. ,  205, 317, 318,440 
Egyptian pyramids, 8 
Ehrenfest, P., 172, 440 

Ehrenfest theorems, 172-174 
and three types of angular momentum, 

for momentum, 172 
for orbital angular momentum, 173, 206 

of angular momentum, 127-165 
of orbital angular momentum, 127-149 
of rigid rotator, 244-245 
of spin, 156165 
with spin-orbit interaction, 256 

eigenvalues, 63-67 
degeneracy of 

etymology of, 64 

and diagonal matrices, 66 
as basis states, 66 
of Pauli matrices, 108 
of vector spin, 154 

Einstein, A,, 8, 203. 440 
Einstein summation convention, 98 
Eisberg, R., 258,440 
electromagnetic field intrinsic spin, 155 
Elliott, J. P., 30, 57, 73, 81, 163, 318, 

380,440 
ellipsoidal harmonics, 149 
enantiomers, 9 
energy conservation, 3 

Noether’s theorem for, 3 
Englefield, M. J., 87, 263, 440 
ErdBlyi, A., 221, 235, 440 
Euclidean group, 87 
Euler angles, 14, 97, 212 
expectation value in mixed state, 327 
exponentials: 

I 74 

eigenstates, 63-67 

in Coulomb potential, 258-263 

eigenvectors: 

and commutators, 58, 91 
of operators, 58, 91 
of Pauli matrices, 125 

extraterrestrial life, 9 

Fack, V., 373, 440 
factorials for efficient computing, 284-285 
factorization theorem: 

example of using, 362 
for spherical tensors, 361-362, 364 

faithful representation, 82 
Fang, D. F., 285,360, 374, 440 
Faxen, H., 194,440 
Ferraro, J. R., 73, 440 
Feynman, R. P., 191, 440 
Fitzgerald, E., 385 
Flood, R.,  30, 440 
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FormBnek, J., 197, 440 
formulas: 

tables of key, 421-435 
Fourier expansions, I97 
Frescura, F. A. M., 72, 440 
friendly-giant group, 79 
Froggatt, C. D., 87, 440 
Frisch, K., 35, 440 

g-factor, 175 
Land6 formula for, 365 

galaxy 
angular momenta of, 121, 122 

Galilean invariance: 
and electron g-factor, 159 
and spin, 159 

Gallian, I. A,, 35, 441 
Gardner, M., 9, 25, 27, 441 
gauge invariance, 17 
Gaunt integrals, 294 

examples of, 295-300 
Gaunt, I. A., 294, 441 
generalized coordinates, 54 
geometric symmetry, 7 
geometrical anguIar momentum, 120 
Georgi, H., 158,441 
Gibson, W. M., 88,441 
giraffe, and shirt-and-tie theorem, 47 
Goeppert-Mayer, M., 258 
Goldstein, H., 65, 66, 176, 242, 261, 441 
Gordan, P., 48, 264, 441 
Gordy, W., 245,441 
Gorenstein, D., 79, 441 
gradient operator as a rank-1 tensor, 3 1 I 
graphical methods for angular momentum 

Greiner, W., 385,441 
Grinstein, L. S., 6, 441 
groups, 72-89 

Abelian, 79 
and continuous rotations, 77,213 
and discrete rotations, 74 
and permutations, 75 
and reflections, 75 
as measuring symmetry, 90 
composite, 8 6 8 7  
continuous, 84-85 
definition of, 73-79 
direct product, RO 
Euclidean, 87 
examples, 73-79 
for Coulomb problem, 263 
for subatomic physics, 87 

recoupling, 380-381 

formal definition of, 78 
homomorphisms of, 79 
isomorphisms of, 7 9  
Lorentz, 87, 92 
matrix, 85 
order of, 79 
orthogonal, 86 
PoincarC, 87 
point, 84-85 
representations of, 80-84 
special, 86 
subgroup of a, 79 
symmetry examples, 74-78 
terminology for, 79-80 
unitary, 86 
used in physical sciences, 86-87 

Halprin, A., 158, 441 
Hamermesh, M., 73,441 
Hamiltonian of rigid rotator, 242-244 
handedness, 8 

handwaving in angular momentum, 8 
Hargittai, I., 1 1 ,  441 
harmonic oscillator 

Hawryshyn, C. W., 35,441 
Heck, A,, xiv, 441 
Heisenberg, W., 205, 441 
Heisenberg uncertainty relations 

helicity, 9 
of shell, 36 

Hermitian conjugate, 50 
of commutator, 59 

Hermitian matrices: 
and diagonal matrices, 66 
and eigenfunctions, 67 

Hobson, E. W., 129, 149,441 
homomorphisms: 

and group representations, 81 
of groups, 79 

see also helicity 

and ladder operators, 62 

see uncertainties 

Houtappel, R. M. F., 25. 441 
hyperspherical harmonics, 149 

Indians, 18 
inertia tensor, 307 
infinitesimal rotations: 

and angular momentum, 97-98 
applied to spatial functions, 100-103 
of vectors, 152-155 

notation. 258 
initiation rites and spectroscopic 
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inner products, 44 
compared with direct products, 49 
of matrices, 45-47 

integrals of rotation functions, 292-294 
intermediate coupling, 368 
intrinsic spin: 

of electromagnetic field, 155 
of vectors, 154 

see also spin 

for rotation matrix elements, 286-287 
inverse Clebsch-Gordan series 

irreducibility: 
of a representation, 88-89 
of J2 and J,  matrices, 115 
of matrices, 52 

irreducible spherical tensor operators 

isomorphisms of groups, 79 
isospin operators, 11 8 
isotropy of space, 12 

j-j coupling, 369 
jackknife case: 

see spherical tensors 

3-j with all projections zero, 274 
for angular momentum, 256 

Jacob, M., 124,442 
Jacobi polynomials and reduced rotation 

matrix elements. 221-222 
Jammer, M., 206,442 
Jones, M. N., 149, 315, 385, 442 
Jonkers, J. E., 235, 442 
Jordan, T. F., 42, 45, 54, 67, 111, 442 
Judd, B. R., 380, 385,442 

Kepler, J., 203, 442 
Kerrigan, J. F., 408, 442 
ket space, 42 
Khayyam, O., 385 
Kobe, D. H., 17, 442 
Kopal, Z., 295, 442 
Kramer’s degeneracy, 164 
Kramers, H. A,, 165, 442 
Krane, K. S., 331, 442 
Kronecker product, see direct products 
Kubic harmonics, 149 

L-S and j-j coupling, 367-369 
transformations between, 377-380 
transforming between for spin 112, 

worked example of transforming between, 
378-379 

379-380 
ladder operators, 59-63,91 

and harmonic oscillator, 62 

angular momentum eigenvalues from, 

spectrum of, 61 
spherical harmonics by, 136-137 

Lai, S.-T., 285, 360, 374,442 
Landau, R. H., 25, 124, 159, 198, 258, 

Land&, A., 190,205,442 
Land6 g-factor formula, 365 
Landsberg, P. T., 30, 442 
Lapidus, I. R., 197, 442 
Laplace, P. S., 260, 442 
Laplace equation, 127-129 
Larmor precession, 175-179,332 

113-1 15 

290, 442 

frequency, 176 
visualizing, 177, 190 

latitude, 17 
Lee, T. D., 10,290 
Legendre, A. M., 284,442 
Legendre functions, 129-135, 165 

and reduced rotation matrix elements, 221 
displaying, 131-135 
formulas for, 130-131 
key formulas for, 421 
orthogonality of, 130 
parity of, 130 
stretched in m, 13 1 

Legendre polynomials, 129-130, 194 
and Clebsch-Gordan series, 288-289 
integral of product of three, 293 

Legendre’s formula for primes, 284 
Lenz, W., 261,443 
Levinger, J. S., 106, 443 
Levy-Leblond, I-M., 59, 159,443 
light, angular momentum of, 155 
linear operators, 45 
h e a r  spaces, 4 2 4 5  

and conventional vectors, 43 
scalar products in, 44 

Lipkin, H. J., 53, 443 
longitude, 17 
Lorentz group, 85, 87, 92 
Lovett, D. R., 306, 443 
lowering operator, see ladder operators 
Lubanski, J. K., 124, 443 
Luder’s theorem, 32-33 
Luders, G., 32,443 
Ludwig, W., 318, 380,443 

Mach, E., 203, 443 
Maeder, R., xiii, 443 
magnetic fields: 

Hamiltonian in,  33 1 
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spin precession in, 330-335 
spin transport through gradients, 335-340 

magnetic moment, 175 
Majorana, E., 177, 443 
Majorana formulation of spin precession, 

177-179 
rotational symmetries and, 179 
spinor representations and, 177 
time-evolu1ion operator, 178 
visualizing, 178 

Marquez, L., 198,443 
Martin, G. E., I I ,  443 
Mathernatica, 387-389 
Marhernatica notebooks, 387 

3 j000 ,278 ,  399 
A 1 g 3 j ,  281,283, 342,400 
A l g 6 j ,  353, 359, 381,403 
animated visualizations, 389 
BesL, 194, 208, 394 
BesM, 197, 208, 395 
D j  j 0,238, 399 
D j  j rnCpr,  238,249, 398 
Djrn’m,  221, 222,224,229,231, 

232, 237,248, 249, 391 
EXPirnPHI,  141, 166, 393 
index of topics, 405 
LegProd ,  289,401 
Num3 j ,215,399 
Num6 j, 357-359,403 
Num9 j, 373,379, 383,403 
Pau l iCC,  34,390 
PL, 132, 133,391 
PLM, 133, 134, 165, 166, 391 
P o l y h e d r a ,  11,389 
P p s i ,  24, 390 
Precess. 191,207, 393 
programming conventions, 388 
purpose of, 387 
PW2D, 201, 202, 209, 396 
PWlD, 200,208, 395 
Shell, 10, 389 
VccDnsty, 277,400 
Worldview, 18, 390 
YLMabs ,  140,392 
YngThm, 291,402 

mathematics; relation to physics, 169-170 
matrices: 

block-diagonal, 5 1 
diagonal, 64-66 
irreducible, 52 
operations on, 50 
symmetry properties of, 51 

matrix elements of operators, 45 

matrix groups, 85 
matrix products: 

see direct products, 45 
see inner products, 45 

Maxwell equations: 
and PCT, 30-32, 38 
and vector spherical harmonics, 3 15 
intrinsic spin, I55 

Meiring, W. J., 36, 443 
mindset in mathematics 

minimum-uncertainty state, I82 

function, 187-189 

and physical sciences, 89 

for angular momentum and angle 

for momentum and position, 182 
for orbital angular momenta 185,207 
visualizing, 186, 188 

Misner, C. W., 72,443 
mixed state, 326 
molecular rotational states, 245 
momentum conservation, 2 

Noether’s theorem for, 2 
monster group, 79 
Morette-de Witt, C., 156, 444 
Morse, P. M., 149, 444 
mosaics, 10 
multipole expansion: 

for scattering interaction, 298 
matrix elements of, 365-367 

matrix elements of, 299 
multipole moments, 298 

Neogloboquadrina pachyderma. 35 
Nernst, W., 205, 444 
Neumann’s principle, 6 
New Zealand, 19 
Newton, I., 203, 444 
nirvana, 326 
Noether, E., 6, 203, 444 
Noether’s theorem, 5, 36 

and conservation of 
angular momentum, 4 

and energy conscrvation, 3 
Nolte, E., 33, 444 
noncommuting of rotations, 19 
norm of a vector, 44 
normal modes, 66 
Normand, J. M., 325, 444 
notebooks for Mathemotica, 387-389 
Nuclear Data Sheets, 247, 444 
nuclear magnetic resonance, 175 
nuclear magneton, 175 
nucfear rotational states. 246 
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oblate rotator, 244 
charge distribution of, 321 

Ohanian, H. C., 156, 160, 444 
operations on matrices, 50-52 
operators, 5 3 4 3  

angular momentum, 96 
antilinear, 45 
exponential of, 58 
linear, 45 
noncommuting and uncertainties, 

18&181 
orbital angular momentum: 

connection to mechanics, 102-103 
Ehrenfest theorems for, 173 
eigenstates of, 127-149 
operators, 100-105 
operators in spherical basis, 104-105 
operators in spherical polar coordinates, 

quantum-mechanical, 102 
reference frames and, 122- 124 
special role of z component, 105 

103-104 

orthogonal group, 86 
orthogonal transformation, 57 
Ozma problem, 9 

parallel processing for 9-j coefficients, 373 
parity symmetry, 21, 22-25 

and rotations, 22 
in classical mechanics, 23 
in quantum mechanics, 24, 38 
of Legendre functions, 130 
of spherical harmonics, 137 

Park, D. A., 258, 444 
partial-wave expansion: 

centripetal barrier in, 199 
convergence of, 198 
for Coulomb scattering, 198 
in three dimensions, 193-196 
in two dimensions, 196-197 
visualizing, 199-203 

passive rotations, 16 
passive transformations, 54 
Pasteur, L., 9, 203, 444 
Pauli, W., 159, 261, 444 
Pauli equation, 159 
Pauli matrices: 

anticommutation property of, 106 
as angular momentum operators, 105-1 1 1  
eigenvectors of, 108 
exponentials of, 125 
finite rotations and, 109-1 10 
in Cartesian coordinates, 106 

in spherical basis, 107 
properties of, 106 

Pauli principle, 33-34 
in scattering, 33, 38 
limits on validity of, 33 

Payne, W. T., 72,444 
PCT: 

and Maxwell equations, 30-32 
and Pauli principle, 32-33 

pearls dissolve in vinegar, 25 
Peiia, L., 59, 444 
permutation symbol, 98 
permutations and groups, 75 
phase factors, 52 

z-axis rotations and, 110 
phase-manipulation rules, 52-53 
phases when combining angular momenta, 

photon spin, 155 
physics relation to mathematics, 169-170 
Planck’s constant: 

273-274 

distinguishes geometrical from dynamical 

dynamical angular momentum and, 
angular momentum, 171 

17 1-1 72 
plane waves, 193-203 

in one dimension, 197 
in three dimensions, 193-196 
in two dimensions, 196-197 
partial-wave expansion, 193, 196 

planetary rings, spin and, 123 
Platonic solid, 11 

and groups, 84 
Plattner, G.-R., 34, 445 
Poincark group, 87 
point groups, 84-85 
polar diagrams, 133 

for associated Legendre functions, 134 
for Legendre polynomial, I33 

polyominoes, 11 
Poole, C. P., 176, 335, 445 
position operator 

positive-definite norm, 44 
precession, 190 

reduced matrix elements, 323 

see also Larmor precession 
of spins in magnetic fields, 33C335 
visualizing, 191 

precession length, 338 
prime-factor forms: 

for 3-j coefficients, 283-284 
for 6-j coefficients, 359 

primes, Legendre’s formula for, 284 
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principal axes frame, 242 
principal-axis transformation, 65 
projection theorem 

prolate rotator, 244 

pure state, 326 

for spherical tensors, 362-364 

charge distribution of, 321 

see also nirvana 

quadrilaterals for recoupling, 348-349 
quadrupole moment: 

in body-fixed frame, 321 
reduced matrix elements, 320-322 
spectroscopic, 322 

quantum analogues of classical mechanics, 

quantum mechanics: 
172-173, 190-192 

and parity symmetry, 24-25 
classical analogues of, 258 
development of, and angular momentum 

204-206 
history of, 206 
rigid rotator in, 240-247 
spin and, 124 
uncertainty relations in, 180-1 83 

quantum-mechanical orbital angular 
momentum, 102 

Racah, G., 204, 309,445 
Racah coefficients 

Racah definition of spherical tensors, 

Racah-Wigner algebra, 345 
raccmic mixture, 9 
radiation pattern, see polar diagrams 
raising operator, see ladder operators 
Rao, K. S., 360, 373, 374, 445 
rational-fraction forms: 

for 3-j coefficients, 283-284 
for 6-j coefficients, 359 

see 6-j coefficients 

309-312 

Rauch, H., 68,445 
Rayleigh expansion 

see partial-wave expansion 
recoupling tetrahedra, quadrilaterals, 

and trees, 348-349 
reduced matrix elements: 

conventions for, 320 
for angular momentum operators, 323 
for Hermitian spherical tensors, 324 
general formulas, 324 
how to determine and use, 320-325 
key formulas for, 430 

of position operator, 323 
of quadrupole moment, 320,322 
selection rules for, 319 

reduced rotation matrix elements, 216-224 
analytical expressions for, 222-224 
computing, 222-224 
numerical values of, 224 
relation to other functions, 220-222 

orbital angular momentum and, 122-124 
spin and, 122-124 

reflection symmetry, 8 
and groups, 75 

Regge, T., 282, 445 
Rcgge symmetries 

regular polygons, 10, 37 
regular polyhedron, I I ,  37 
Renaud, P., 7, 445 
representations of groups, 80-84 

reference frames: 

for 3-j coefficients, 282-283 

examples of, 82-83 
faithful, 82 
identity, 82 
of continuous rotations, 21 3 
tensors and, 307 

Riccati-Bessel function, 198, 199 
Rieflin, E., 72, 445 
rigid rotator, 240-241 

coupled wave functions, 297 
energy eigenstates of, 244-245 
Hamiltonian of, 242-244 

integrals for scattering by, 296-300 
matrix elements for scattering by, 351 

rigid-body rotations in quantum mechanics 

Robson, B. A., 325.445 
Roman, P., 5, 25, 30, 33, 124, 445 
Rose, M. E., 135, 315, 380, 385, 445 
Rosen, J., 7, 32, 445 
rotated states: 

rigid rotators: 

240-247 

interpreting, 224-230 
interpreting for any j, 228-230 
interpreting for j = ID ,  228 
orbital angular momentum, 225-227 

rotating-frame transformation, 333-334 
for spin transport in uniform field 

gradient, 336 
spin equation in,  334 
visuaking, 334 

rotation matrices for spin-1/2, 11 1 
rotation matrix elements: 

and coupling coefficients, 286-300 
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rotation matrix elements (continued) 
arbitrary j ,  213-224 
as angular-momentum eigenfunctions, 

classical limits of, 236-239 
Clebsch-Gordan series, 286,287-291 
for y-axis rotations, 216-21 8 
for z-axis rotations, 214-216 
integrals of, 292-294 
integrals of their products, 292-294 
inverse Clebsch-Gordan series, 286-287 
key formulas for, 423 
symmetry properties, 232-234 
unitarity and orthogonality, 234-236 
unitarity integrals, 234-236, 292 
visualizing, 230-232 

24 1-242 

rotational band, 244 
rotational invariance, 5 
rotational states of molecules and nuclei, 

rotational symmetries, 12-19 
and group theory, 205 
and Majorana formulation, 179 
and shells, 10 
dynamical angular momentum and, 

245-247 

170-179 
rotations: 

and groups, 77,213 
and parity symmetry, 22 
and semiclassical vector model, 21 8 
angle schemes for, 212 
of density matrices for spin, 327, 330 
Pauli matrix representation, 109-1 10 
schemes for describing, 96-97 

Rotenberg, M., 282, 354, 445 
Runge-Lenz vector 

see eccentricity vector 

Sakurai, J. J., 4143 ,  445 
Saturn, 123 

spin of, 156 
scalar products, 44-45 

in linear spaces, 44 
of spherical tensors, 3 16, 361-365 

in one dimension, 197 
in two dimensions, 197 

and parity symmetry, 24 
and time-reversal symmetry, 27-29 
spin in,  158-159 
time-dependent, I72 

Schwarz inequality, 180 

scattering: 

Schrdinger equation: 

Schwinger, J., 33, 446 
sectorial harmonic, 142-143 
semiclassical vector model, 189-193 

analogies, 190 
and rotations, 218 
and z-axis rotations, 215-216 
for combining angular momenta, 263 
uses and limitations of, 192-193 
visualizing with spinning shell, 207 

Shammas, N., 406,446 
Shankar, R., 41,446 
Sharp, R. T., 446 
shell, 10, 36 
shell model, 257 
shift operator, see ladder operators 
shirt-and-tie theorem, 46 

and quantum mechanics, 47 
similarity transformations, 54-57 

and unitarity, 57 
Slichter, C. P., 176, 335, 446 
sodium D-line doublet, 257 
solid harmonics, 143-146 
Sommerfeld, A,, 190, 205, 446 
Sommerfeld Coulomb parameter, 38 
space, isotropy of, 12 
space-fixed frame, 241 
spatial symmetries, 7-12 
special group, 86 
spectroscopic calculations, 380 
spectroscopic notation, 258 
spectroscopic quadrupole moment, 322 
spherical basis: 

angular momentum matrix elements in, 

angular momentum operators, 99 
orbital operators in, 104-105 
spherical harmonics in, 144-145 
unit vectors, 150-151 

visualizing, 194, 208 

addition theorem for, 138, 166 
as irreducible tensors, 3 1 1 
as rotation matrix elements, 239-240 
calculating, 135-137 
for negative rn, 137 
formulas for, 139-140 
in spherical basis, 144-145 
integral over product of three, 294 
key formulas for, 422 
parity of, 137 
properties of, 137-138 
real form of, 146-148 

116-117 

spherical Bessel functions, 194 

spherical harmonics: 
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visualizing, 140-141 
spherical polar coordinates, 103, 128 
spherical tensors: 

adjoint of, 3 12 
and angular momentum, 305 
and commutators, 309 
and irreducibility, 309 
and Maxwell equations, 315 
and vector spherical harmonics, 3 I5 
and Wigner-Eckart theorem, 316-320 
bipolar harmonics, 3 14 
building up, 312-315 
classical field theory and, 315 
combining, 312-3 16 
contraction to scalars, 315 
decomposition theorem for, 364 
definitions of, 308-312 
factorization theorem for, 361-362,364 
key formulas for, 429430,432433 
matrix elements in coupled schemes, 

projection theorem for, 362-364 
Racah definition, 309, 3 12 
reduced matrix elements, 317 
scalar products of, 361-365 
second-rank from vectors, 314 

and Cheshire cat, 157 
and conservation of angular momentum, 

and direct products, 48 
combining with orbital states, 161 
Dirac equation and wave field, 160 
eigenstates, 156-165 
eigenstates of, 16CL161 
Galilean invariance and, 159 
in Schrodinger equation, 158-159 
interpretation of, 156-158 
Kramer’s degeneracy, 164 
matrices for eigenstates, 161 
planetary rings and, 123 
quanta1 systems and, 124 
reference frames and, 122-124 
time-reversal symmetry and, 163-165 

376377 

spin: 

I60 

spin polarizations, 327 
spin precession: 

in magnetic field, 176-177 
Majorana formulation of, 177-179 

spin transport in magnctic field gradients, 
335-340 

for spin-I12 systems, 339-340 
vector polarization for spin 112, 344 
visualizing, 340 

spin-orbit interaction, 160, 256-258 
combining spin and orbital states for, 

in atoms and nuclei, 257-258 
275-276 

spin-orbit splitting, 257 
spin-statistics theorem, 3 2-33 
spinor representations, 1 1 1 

and Majorana formulation, 177 
for Clebsch-Gordan coefficients, 266268 
for constructing rotation matrix elements, 

of angular momentum eigenstates, 

visualizing, 178 

and rotations through 27r, 72 
definition of, 67 
neutron experiment demonstrating, 68 
representation space, 11 1-1 13 
representing, 69-70 
rotation of, 7CL71 
spin-112 rotations and, 110 
wave functions and, 68-69 
y-axis rotations and half-integer spins, 

z-axis rotations and half-integer spins, 

2 18-2 19 

162-163 

spinors, 67-72 

220 

216 
standard deviation, 180 
Stedman, G. E., 38 1.446 
stretched case: 

3-j with all projections zero, 274 
for angular momentum, 256 

Strutt, J. W. (Baron Rayleigh), 194, 445 
Sturm-Liouville differential operators, 67 
subatomic physics, 87 
subgroup, 79 
superposition principle, 24 
symbols in coupling coefficients, 269, 346 
symmetric rotator, 244 
symmetries: 

and groups, 74-78 
and humans, 34 
groups for subatomic physics, 87 
in logos and hubcaps, 34 
of matrices, 51 
reflection, 8 

see also parity symmetry 
symmetries and conservation laws, 2-7 

tables of formulas, 42 1-435 
Taff, L. G., 295, 446 
tensor harmonics, 149 
tensor polarization, 327 
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tensors: 
as representations of rotation group, 307 
in physical sciences, 3 6 3 0 7  
nomenclature, 306 
scalars and vectors as, 307 
second-rank, 307 

tesseral harmonic, 142-143 
tetrahedra for recoupling. 348-349 
thermodynamics and time-reversal 

Thompson, D. W., 35,446 
Thompson, W. J., 197,203,408,446 
tiles, see mosaics 
time reversal operator, 45 
time reversal symmetry, 21, 25-30 

and angular momentum, 29 
and arrow of time, 26 
and complex conjugation, 28 
and Schrodinger equation, 27-29 
and spin, 163-165 
and thermodynamics, 26 

time-evolution operator 

Tinkham, M., 73,446 
torture in advanced mechanics courses, 240 
transformations, 53-63 

symmetry, 26 

for spin precession, 178 

active, 54 
canonical, 55 
orthogonal, 57 
passive, 54 
similarity, 54-57 

translation symmetry, 10 
transputer, 373 
trees for recoupling, 348-349 
triangle rules: 

for combining two angular momenta, 

for recombining three angular momenta, 
253-255 

349 

uncertainties: 
between angular momentum and angles, 

for angular momentum, 179-189 
for momentum and position, 181 
in quanta1 angular momentum, 183-189 
in  simultaneous measurement of angular 

orbital angular momentum and angle 

orbital angular momentum 

stares with minimal, 181-182 

18&189 

momenta, 184 

functions, 187 

and angles, 186 

unit vectors in spherical basis, 150-151 
unit-operator expansion, 46 
unitarity : 

and diagonal matrices, 64 
and similarity transformations, 57 
of rotation matrix elements, 234-236 
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