
K.N.KING

A Modern Approach sEcoND ED1r10N

K.N.KING

OGRAMMING
.Approach sEcoND eD 1T,oN

90000 >

"I thoroughly enjoyed reading the

second edition of C Programming

and I look forward to using it in

future courses."

- Karen Reid, Senior Lecturer,

Department of Computer Science,

University of Toronto

"The second edition of King's

C Programming improves on an

ady impressive base, and is the

ommend to anyone who

K . N . KING (Ph.D., University of

California, Berkeley) is an

associate professor of computer

science at Georgia State

University. He is also the author

of Modula-2 : A Complete Guide

and Java Programming : From

the Beginning.

PREFACE

In computing, turning the obvious into the useful
is a living definition of the word "frustration."

ln the years since the first edition of C Progran,ming: A Modern Approach was
published, a host of new C-based languages have sprung up-Java and C# foremost
arnong them-and related languages such as C++ and Perl have achieved greater
prominence. Still, C remains as popular as ever. plugging away in the background.
quietly powering much of the world's software. It remains the lingua franca of the \
computer universe, as it was in 1996.

But even C must change with the times. The need for a new edition of C Pro­
grarnrning: A Modern Approach became apparent when the C99 standard was pub­
tished. Moreover, the first edition. with its references to DOS and 16-bit processors,
was becoming dated. The second edition is fully up-lo-date and bas been improved
in many other ways as well.

What's New in the Second Edition

Here's a list of new features and improvements in the second edition:

% � Complete coverage of both tlie C89 standard and tlie C99 standard. The big­
gest difference between the first and second editions is coverage of the C99 stan­
dard. My goal was to cover every significant difference between C89 and C99,
including all the language features and library functions added in C99. Each
C99 change is clearJy marked, either with "C99" in the beading of a section or-

(9 in the case of shorter discussions-with a special icon in the left margin. I did
this partly to draw attention to the changes and partly so that readers who aren't
interested in C99 or don't have access to a C99 compiler wilJ know what to skip.
Many of the C99 additions are of interest only to a specialized audience, but
some of the new features will be of use to nearly all C programmers.

XXI

xxii Preface

% � Includes a quick reference to all C89 and C99 library functions. Appendix
D in the fir st edition described al l C89 standard library functions. In this edi­
tion, the appendix covers all C89 and C99 library functions.

% � Expa11ded coverage of GCC. Ta the years since the first edition, use of GCC
(originally the GNU C Compiler, now Lhe GNU Compiler Collection) has
spread. GCC has son,e significant advantages, including high quality, low (i.e.,
no) cost, and portability across a variety of hardware and software platforms.
In recognition of its growing ilnportance, I 've included more information about
GCC in this eclition, including discussions of how to use it as well as common
GCC error messages and warnings.

% � New coverage of abstract data types. In the fir st ectition, a significant portion
of Chapter 19 was devoted to C++. Tb.is material seems less relevant today.
since students may already have learned C++, Java, or C# before reacting this
book. In this edition, coverage of C++ bas been replaced by a discussion of
how to set up abstract data types in C.

% � Expanded coverage of international features. Chapter 25, which is devoted
to C's international features, is now 1uuch longer and more detailed. Informa-

•
tion about the Unicode/UCS character set and its encodings is a highlight of
the expanded coverage.

% � Updated to re.fleet today's CPUs and operating syste,ns. When I wrote the
first edition, 16-bit arcrutectures and the DOS operating system were still rele­
vant to many readers, but such is not the case today. I' ve updated the discus­
sion to focus n1ore on 32-bit and 64--bit architecnrres. The ri se of Linux and
other versions of UNIX has dictated a stronger focus on that family of operat­
ing systems, although aspects of Windows and the Mac OS operating system
that affect C progra:111mers are mentioned as well.

% � More exercises a11d progranzming projects. The fir st edition of this book con­
tained 311 exercjses. This ewtion has nearly 500 (498, to be exact), divided
into two groups: exercises and programming projects.

% � Solutions to selected exercises a,zd progran111ii1ig projects. The most frequent
request l received from readers or the first edition was to provide answers to
the exercises. In response to this request, I 've put the answers to roughly one­
third of tb.e exercises and progran1mine projects on lbe web at k11king.con1/
bookslc2. This feature is parti cularly aseful for readers who aren't enroll ed in
a college course and need a way to check lheir work. Exercises and projects
for wbich answers are provided are marked with a G icon (the "W'' stands for
" answer available on Lhe Web").

% � Password-protected i11structor website. For this edition, I 've built a new in­
structor resou,-ce site (accessible through knking.conJ/bookslc2) containing
solutions to the remaining exercises and projects, plus PowerPoint presenta­
tions for most chapters. Faculty n1ay contact me at cbook@knking.com for a
password. Please use your campus email address and include a link to your
departn1ent's website so tha1 J can verify your identity.

Preface xx iii

I've also taken the oppornLnity to in,prove wording and explanations through­
out the book. The changes are extensive and painstaking: every sentence bas been
checked and-if necessary-rewritten.

Although much has changed jn this edition, I 've Lried to retain Lhe original
chapter and section numbering as much as possible. Only one chapter (the last one)
is entirely new, but many chapters have additional sections. In a few cases. existing
sections have been renumbered. One appendix (C syntax) has been dropped. but a
new appendix that compares C99 with C89 bas been added.

Goals

The goals of this edition remain the san1e as those of the first edition:

% � Be clear, readable, and possibly even entertaining. Many C books are too
concise for the average reader. Others are badly written or just plain dull. I've
Lried to give clear, thorough explanations, leavened with enough humor to hold
the reader's interest.

% � Be accessible to a broad range of readers. I assume that the reader has at least
a little previous program:rning experience, but I don't assume knowledge or a
particular language. I've tried to keep jargon to a minimum and 10 define the
terms that I use. I've also attempted to separate advanced material fron1 mo.re
elementary topics, so that the beginner won't gel discouraged.

% � Be authoritative witho1tt bei,zg pedantic. To avoid arbitrarily deciding what to
include and what not to include, I 've tried to cover aLI tbe features of the Clan­
guage and library. At the sa1ne time,]'ve tried to avoid burdening the reader
wilh unnecessary detail.

• Be orgallizedjor easy learning. My experience in teaching C underscores the
importance of presenting the features of C gradually. I use a spiral approach, in
which diflicuJt topics are introduced briefly, then revisited one or rnore times
later in the book with details added each time. Pacing is deliberate, with each
chapter building gradually on whaL has come before. Por most students, this is
probably the best approach: it avoids lhe extremes of boredom on the one hand,
or " information overload" oo the olher.

% � Motivate language f ea tu res. T nstead of just describing each featw·e of the Jan­
guage and giving a few simple examples of how the feature is used, I 've tried to
motivate each feature and discuss how it's used in practical situauons.

% � Enzpltasize style. It's important for every C programmer to develop a consis­
tent style. Rather than dictaling wbat lhis style should be, though, 1 usuaJly
describe a few possibilities and let the reader choose the one that's n1ost
appealing. Knowing alternative styles is a big help when reading other people's
programs (which programmers often spend a great deal of time doing).

% � Avoid dependence 011 a particular nwchine, con1piler, or operating system.
Since C is available on such a wide variety of platforms, I' ve tried to avoid

(

xxiv Preface

dependence on any particular machi11e. compiler. or operati ng system. All pro­
gran1s are designed to be portable to a wide variety of platforms.

% � Use illustrations to clarify key concepts. I 've tried to pot in as many figures as
I could, since I think these are crucial for understanding many aspects of C. In
particular, I' ve tried to '·animate" algorithms whenever possible by showing
snapshots of data at different points in the computation.

What's So Modern about A Modern Approach?

One of my n1ost in1portant goals bas been to take a "modern approach" to C. Here
are some of the ways I 've tried to achieve thjs goal:

% � Put C in perspective. I nstead of treating C as the only programming language
worth knowing, J treat it as one of many useful languages. I discuss what kind
of applications C is best suited for; I also show how to capitalize on C's
strengths while minimizing its weaknesses.

% � Elltphasize standard ver~ions of C. 1 pay minimal attention to versions of the
language prior to the C89 standard. There are just a few scattered references to
K&R C (the 1978 version of the language described in the first edition of Brian
Kernighan and Dennis Ritchie's book, The C Progranirning Language). Appen­
dix C lists the major differences between C89 and K&R C.

% � Debunk 1nyths. Today's compilers are often at odds with commonly held
assu1nptions about C. I don't hesitate to debunk some of the myths about C or
challenge beliefs that bave long been part of the C folklore (for example. the
belief that pointer arithn1etic is always faster than array subscripting). I 've re­
exan1ined the old conventions of C, keeping the ones that are still helpful.

% � Ernphasize software engineering. I treat C as a matw:e software engineering
tool. emphasizing how to use it to cope with issues that arise during program­
ming-in-the-large. I stress making programs readable, n1aiotainable, reliable,
and portable, and I pul special emphasis on information hiding.

• Postpone C's low-level features. These features, aJthough handy for the kind
of systems programming originally done in C, are not as relevant now that C is
used for a great variety of appli cations. Instead of introducing them in the early
chapters, as many C books do, I postpone them unLil Chapter 20.

• De-empha.size " 111a11ual opti1nization." Many books teach the reader to write
tri cky code in order to gain small savings .in program efficiency. With today's
abundance of optimizing C co1n-pilers, these techniques are often no longer
necessary; in Jact. they can resull in programs that are less efficient.

Q&A Sections

Each chapter ends with a "Q&A section"-a series of questions and answers related
to material covered in the chapter. Topics addressed in these sections include:

mm

�~�

oross-rele(ences %º� Prefaca

Idiom

portability t ip

Preface xxv

% � Frequently asked questions. I've tried to answer questions that come up fre­
quently in my own courses, in other books, and on newsgroups related to C.

% � Additional <liscussion and clarification of tricky issues. Although readers
with experience in a variety of languages may be satisfied with a brief expla­
nation and a couple of examples. readers with less experience need more.

% � Side issues that don't belong in the uiain f low. Some questions raise techni­
cal issues that won't be of interest to all readers.

% � Material too advanced or too esoteric to interest tli e average reader. Ques­
tions of lb.is nature are marked with an asterisk(*). Curious readers with a fair
bit of programrning experience rnay wish to delve into these questions imme­
diately: others should definitely skip them on a first reading. Warning: These
questions often refer to topics covered in later chapters.

• Conznzon differences among C co11zpilers. I discuss some frequently used (but
nonstandard) features provided by particular compilers.

Some questions in Q&A sections relate directly to specific places in the chap­
ter; these places are marked by a special icon to signal the reader that additional
inforn1ati'on is available.

Other Features

rn addition to Q&A sections, I've included a number of useful features, ninny of
which are marked with sin1ple but distinctive icons (shown at left).

% � Warnings alert readers to common pitfalls. C is famous for jts traps; docu­
menting them all is a hopeless-if not impossible-task. 1' ve Lried LO pick out
the pitfalls that are most common and/or most important.

% � Cross-references provide a hypertext-like abi lity to locate information. Al­
though many of these are pointers to topics covered later in Lhe book, some
point to previous topics that the reader may wish to review.

% � Idioms-code patterns frequently seen in C programs-are marked for quick
reference.

• Portabilit y tips give hjnls for writing programs that are independent of a par­
ticular machine, compiler. or operating system.

% � Sidebars cover lopics thaL aren ·t strictly part of C but that eve1y knowledge­
able C programn1er should be aware of. (See "Source Code" on tbe next page
for an exai11ple of a sidebar.)

% � Appendices provide valuable reference information.

Programs

Choos1ng illustrative progran1s isn't an easy job. If progrnn1s are too brief aod arti­
ficial. readers won'L get any sense of how Lhe features are used in the real world. On
the other hand, if a program is too realistic, its point can easily be lost in a forest of

I

xxvi Preface

details. l 've chosen a 1niddle course, using s1nall, si1nple examples to make con­
cepts clear when they're first introduced, then graduall y building up to complete
programs. I haven't included programs of great length; it 's been my experience that
instructors don't have the time to cover then, and students don't have the patience to
read them. I don't ignore the issues that arise in the creation of large programs,
though-Chapter 15 (Writing Large Programs) and Chapter 19 (Program Design)
cover them in detail.

l've resisted the urge to rewrite programs to take advantage of the features of
C99, since not every reader may have access to a C99 compiler or wish to use C99.
[have. however, used C99's <stdbool .h> headerin a few programs, because it
conveniently defines macros named bool, true. and false. If your compiler
doesn't support the <Stdbool. h> header, you'll need to provide your own defi­
nitions for these names.

The programs in this edition have undergone one very minor change. The
main [unction now has the form int main (void) { ... } in 1nost cases. This
change reflects recoo1mended practj ce and is compatible with C99, which requires
an explicit return type for each function.

Source Code

Source code for all programs is available at knking.comlbooks/c2. Updates, correc­
tions, and news about the book can also be found at thls site.

Audience

This book is designed as a primary text for a C course at the undergraduate level.
Previous programming experience in a high-level language or assembler is helpful
but not necessary for a computer-literate reader (an ''adept beginner," as one of my
former editors put it).

Since the book is self-contained and usable for reference as well as learning. it
makes an excellent companion text fo1· a course in data structures, compil er design,
operating systems, con1puter graphics, embedded systems, or other courses that use
C for project work. Thanks to its Q&A sections and emphasis on practicaJ prob­
lems, the book will also appeal to readers who are enrolled in a training class or who
are learning C by self-study.

Organization

The book is divided into fout parts:

% � Basic Features of C. Chapters J-J O cover enough of C to allow the reader to
write single-file programs using arrays and functions.

% � Advanced Features of C. Chapters 11-20 build on the material in the earlier
chapters. The topics become a little harder in these chapters, which provide in-

xxviii Preface

Acknowledgments

First, I 'd like to thank my editors at No1ton, Fred McFarland and Aaron Javsicas.
Fred got the second edition underway and Aaron stepped in with brisk efficiency to
bring it to completion. I'd also like to thank associate managing editor Kim Yi, copy
editor Mary Kelly, production manager Roy Tedoff, and editorial assistant Carly
Fraser.

1 owe a huge debt to the following colleagues, who reviewed some or an of the
manuscript for the second edition:

Markus Bussmann, Univers1ty of Toronto
Jim Clarke, University of Toronto
Karen Reid, University of Toronto
Peter Seebach, moderator of comp.lang.c.nzoderated

Jim and Peter deserve special 1nention for their detailed reviews, which $aved me
from a number of embarrassing sUps. The reviewers for the first edition1 in alpha­
betical order, were: Susan Anderson-Freed, Manuel E. Bermudez, Lisa J. Brown,
Steven C. Cater, Patrick Harrison, B1ian Harvey, Henry H. Leitner, Darrell Long,
Arthur B. Maccabe, Carolyn Rosner, and Patrick Terry.

I received many useful comments from readers of the first edition; T thank
everyone who took the time to write. Students and colleagues at Georgia State Uni­
versity also provided valuable feedback Ed Bu1lwinkel and his wife Nancy were
kind enough to read much of the manuscript. I 'm particularly grateful to my depart­
ment chair, Yi Pan, who was very supportive of the project.

My wife, Susan Cole, was a pil1ar of strength as always. Our cats, Dennis,
Pounce, and Tex, were also instn1n1ental in the completion of the book. Pounce and
Tex were happy to contribute the occasional catfigbt to help keep me awake while
I was working late at night.

Finally, l'd Like to acknow]edge the late Alan J. Perils, whose epigrams appear
at the beginning of each chapter. 1 had the privilege of studying briefly under Alan
at Yale in the nlid-70s. T think he'd be amused at finding his epigrams in a C book.

BRIEF CONTENTS

Basic Features of C The Standard C Library

1 Introducing C 1 21 The Standard Library 529
2 C Fundamentals 9 22 Input/Output 539
3 Formatted Input/Output 37 23 Library Support for Numbers
4 Expressions 53 and Character Data 589
5 Selection Statements 73 24 Error Handling 627
6 Loops 99 25 International Features 641
7 Basic Types 125 26 Miscellaneous Library
8 Arrays 161 Functions 677
9 Functions 183 27 Additional C99 Support for

10 Program Organization 219 Mathematics 705

Advanced Features of C Reference

11 Pointers 241 A C Operators 735
12 Pointers and Arrays 257 B C99 versus C89 737
13 Strings 277 C C89 versus K&R C 7 43
14 The Preprocessor 315 D Standard Library Functions 7 4 7
15 Writing Large Programs 349 E ASCII Character Set 801
16 Structures, Unions, and Bibliography 803

Enumerations 377 Index 807
17 Advanced Uses of Pointers 413
18 Declarations 457
19 Program Design 483
20 Low-Level Programming 509

V

CONTENTS

Preface xxi

1 INTRODUCING C 1
1.1 History of C 1

Origins 1
Standardization 2
C-Based Languages 3

1.2 Strengths and Weaknesses of C 4
Strengths 4
Weaknesses 5
Effective Use of C 6

2 C FUNDAMENTALS 9
2.1 Writing a Simple Program 9

Program: Printing a Pun 9
Compiling and Linking 10
Integrated Development Environments 1 1

2.2 The General Form of a Simple Program 12
Directives 12
Functions 13
Statements 14
Printing Strings 14

2.3 Comments 15
2.4 Variables and Assignment 17

Types 17
Declarations 17
Assignment 18

..
VII

viii Contents

Printing the Value of a Variable
Program: Computing the Dimensional Weight of a Box
Initialization
Printing Expressions

2.5 Reading Input
Program: Computing the Dimensional Weight of a Box
(Revisited)

2.6 Defining Names for Constants
Program: Converting from Fahrenheit to Celsius

2.7 ldentif iers
Keywords

2.8 Layout of a C Program

3 FORMATTEDINPUT/OUTPUT

4

5

3.1 The print£ Function
Conversion Specifications
Program: Usi~g print£ to Format Numbers
Escape Sequences

3.2 The scan£ Function
How scanf Works
Ordinary Characters in Format Strings
Confusing print£ with scanf
Program: Adding Fractions

EXPRESSIONS
4.1 Arithmetic 0 1perators

Operator Precedence and Associativity
Program: Computing a UPC Check Digit

4.2 Assignment Operators
Simple Assignment
Lvalues
Compound Assignment

4.3 Increment and Decrement Operators
4.4 Expression Evaluation

Order of Subexpression Evaluation
4.5 Expression Statements

SELECTION STATEMENTS
5.1 Logical Expressions

Relational Operators
Equality Operators
Logical Operators

5.2 The if Statement
Compound Statements

19
20
21
22
22

22
23
24
25
26
27

37
37
38
40
41
42
43
45
45
46

53
54
55
56
58
58
59
60
61
62
64
65

73
74
74
75
75
76
n

Contents ,x

The else Clause 78
Cascaded i£ Statements 80
Program: Calculating a Broker's Commission 81
The ,cDangling else" Problem 82
Conditional Expressions 83
Boolean Values in C89 84
Boolean Values in C99 85

5.3 The switch Statement 86
The Role of the break Statement 88
Program: Printing a Date in Legal Form 89

6 LOOPS 99
6.1 The whi 1 e Statement 99

Infinite Loops 101
Program: Printing a Table of Squares 102
Program: Summing a Series of Numbers 102

6.2 The do Statement 103
Program: Calculating the Number of Digits in an Integer 104

6.3 The for Statement 105
for Statement Idioms 106
Omitting Expressions in a for Statement 107
for Statements in C99 108
The Comma Operator 109
Program: Printing a Table of Squares (Revisited) 110

6.4 Exiting from a Loop 111
The break Statement 111
The continue Statement 112
The goto Statement 113
Program: Balancing a Checkbook 114

6.5 The Null Statement 116

7 BASIC TYPES 125
7.1 Integer Types 125

Integer Types in C99 128
Integer Constants 128
Integer Constants in C99 129
Integer Overflow 130
Reading and Writing Integers 130
Program: Summing a Series of Numbers (Revisited) 131

7.2 Floating Types 132
Floating Constants 133
Reading and Writing Floating-Point Numbers 134

7.3 Character Types 134
Operations on Characters 135
Signed and Unsigned Characters 136

x Contents

8

9

Arithmetic Types 136
Escape Sequences 137
Character-Handling Functions 138
Reading and Writing Characters using scant and printf 139
Rec:1ding and Writing Characters using getchar and
putchar 140
Program: Determining the Length of a Message 141

7 .4 Type Conversion 142
The Usual Arithmetic Conversions 143
Conversion During Assignment 145
Implicit Conversions in C99 146
Casting 147

7.5 Type Definitions 149
Advantages of Type Definitions 149
Type Definitions and Portability 150

7.6 The sizeof Operator 151

ARRAYS 161
8.1 One-Dimensional Arrays 161

Array Subscripting 162
Program: Reversing a Series of Numbers 164
Array Initialization 164
Designated Initializers 165
Program: Checking a Number for Repeated Digits 166
Using the sizeof Operator with Arrays 167
Program: Computing Interest 168

8.2 Multidimensional Arrays 169
Initializing a Multidimensional Array 171
Constant Arrays 172
Program: Dealing a Hand of Cards 172

8.3 Variable-Length Arrays (C99) 174

FUNCTIONS 183
9.1 Defining and Calling Functions 183

Program: Computing Averages 184
Program: Printing a Countdown 185
Program: Printing a Pun (Revisited) 186
Function Definitions 187
Function Calls 189
Program: Testing Whether a Number Is Prime 190

9.2 Function Declarations 191
9.3 Arguments 193

Argument Conversions 194
Array Arguments 195
Variable-Length Array Parameters 198

10

11

12

Contents x,

Using static in Array Parameter Declarations 200
Compound Literals 200

9.4 The re turn Statement
9.5 Program Termination

The exit Function
9.6 Recursion

The Quicksort Algorithm
Program: Quicksort

PROGRAM ORGANIZATION
10.1 Local Variables

Stat1c Local Variables
Parameters

10.2 External Variables
Example: Using External Variables to Implement a Stack
Pros and Cons of External Variables
Program: Guessing a Number

10.3 Blocks
10.4 Scope
10.5 Organizing a C Program

Program: Classifying a Poker Hand

POINTERS
11 .1 Pointer Variables

Declaring Pointer Variables

11 .2 The Address and Jndirection Operators
The Address Operator
The Indirection Operator

11 .3 Pointer Assignment
11.4 Pointers as Arguments

Program: Finding the Largest and Smallest Elements in an
Array
Using const to Protect Arguments

11 .5 Pointers as Return Values

POINTERS AND ARRA VS
12.1 Pointer Arithmetic

Adding an Integer to a Pointer
Subtracting an Integer from a Pointer
Subtracting One Pointer from Another
Comparing Pointers
Pointers to Compound Literals

12.2 Using Pointers for Array Processing
Combining the * and ++ Operators

201

202
203
204
205
207

219
219
220
221
221
221
222
224
227
228
229
230

241
241
242
243
243
244
245
247

249
250
251

257
257
258
259
259
260
260
260
262

x11 Contents

12.3 Using an Array Name as a Pointer 263
Program: Reversing a Series of Numbers (Revisited) 264
Array Arguments (Revisited) 265
Using a Pointer as an Array Name 266

12.4 Pointers and Multidimensional Arrays 267
Processing the Elements of a Multidimensional Array 267
Processing the Rows of a Multidimensional Array 268
Processing the Columns of a Multidimensional Array 269
Using the Name of a Multidimensional Array as a Pointer 269

12.5 Pointers and Variable-Length Arrays {C99) 270

13 STRINGS 277
13.1 String Literals 277

Escape Sequences in String Literals 278
Continuing a String Literal 278
How String Literals Are Stored 279
Operations on String Literals 279
String Literals versus Character Constants 280

13.2 String Variables 281
Initializing a String Variable 281
Character Arrays versus Character Pointers 283

13.3 Reading and Writing Strings 284
Writing Strings Using printf and puts 284
Reading Strings Using scanf and gets 285
Reading Strings Character by Character 286

13.4 Accessing the Characters In a String 287
13.5 Using the C String Library 289

The s trcpy (String Copy) Function 290
The strlen (String Length) Function 291
The strcat (String Concatenation) Function 291
The strcmp (String Comparison) Function 292
Program: Printing a One-Month Reminder List 293

13.6 String Idioms 296
Searching for the End of a String 296
Copying a String 298

13.7 Arrays of Strings 300
Command-Line Arguments 302
Program: Checking Planet Names 303

14 THE PREPROCESSOR 315
14.1 How the Preprocessor Works 315
14.2 Preprocessing Directives 318
14.3 Macro Definitions 319

Simple Macros 319
Parameterized Macros 321

Contents x111

The # Operator 324
The ## Operator 324
General Properties of Macros 325
Parentheses in Macro Definitions 326
Creating Longer Macros 328
Predefined Macros 329
Additional Predefined Macros in C99 330
Empty Macro Arguments 331
Macros wrth a Variable Number of Arguments 332
The f unc Identifier 333 -

14.4 Conditional Compilation 333
The #if and #endif Directives 334
The def ined Operator 335
The #-ifdef and #ifndef Directives 335
The #elif and #else Directives 336
Uses of Conditional Compilation 337

14.5 Miscellaneous Directives 338

•
The #error Directive 338
The -#line Directive 339
The #pragma Directive 340
The _Pragma Operator 341

15 WRITING LARGE PROGRAMS 349
15.1 Source Flies 349

15.2 Header Files 350
The #include Directive 351
Sharing Macro Definitions and Type Definitions 353
Sharing Function Prototypes 354
Sharing Variable Declarations 355
Nested Includes 357
Protecting Header Files 357
#er r o r Directives in Header Files 358

15.3 Dividing a Program into Files 359
Program: Text Formatting 359

15.4 Building a Multiple-File Program 366
Makefiles 366
Errors During Linking 368
Rebuilding a Program 369
Defining Macros Outside a Program 371

16 STRUCTURES, UNIONS, AND ENUMERATIONS 3TT
16.1 Structure Variables 377

Declaring Structure Variables 378
Initializing Structure Variables 379
Designated Initializers 380
Operations on Structures 381

xiv Contents

16.2 Structure Types 382
Declaring a Structure Tag 383
Defining a Structure Type 384
Structures as Arguments and Return Values 384
Compound Literals 386

16.3 Nested Arrays and Structures 386
Nested Structures 387
Arrays of Structures 387
Initializing an Array of Structures 388
Program: Maintaining a Parts Database 389

16.4 Unions 396
Using Unions to Save Space 398
Using Unions to Build Mixed Data Structures 399
Adding a "Tag Field" to a Union 400

16.5 Enumerations 401
Enumeration Tags and Type Names 402
Enumerations as Integers 403
Using Enumerations to Declare "Tag Fields" 404

17 ADVANCED USES OF POINTERS 413
17.1 Dynamic Storage Allocation 414

Memory Allocation Functions 414
Null Pointers 414

17.2 Dynamically Allocated Strings 416
Using mal loc to Allocate Memory for a String 416
Using Dynamic Storage Allocation in String Functions 417
Arrays of Dynamically Allocated Strings 418
Program: Printing a One-Month Reminder List (Revisited) 418

17.3 Dynamically Allocated Arrays 420
Using malloc to Allocate Storage for an Array 420
The callee Function 421
The realloc Function 421

17.4 Deallocating Storage 422
The free Function 423
The "Dangling Pointer'' Problem 424

17.5 Linked Lists 424
Declaring a Node Type 425
Creating a Node 425
The - > Operator 426
Inserting a Node at the Beginning of a Linked List 427
Searching a Linked List 429
Deleting a Node from a Linked List 431
Ordered Lists 433
Program: Maintaining a Parts Database (Revisited) 433

17.6 Pointers to Pointers 438

Contents xv

17.7 Pointers to Functions 439
Function Pointers as Arguments 439
The qsort Function 440
Other Uses of Function Pointers 442
Program: Tabulating the Trigonometric Functions 443

17.8 Restricted Pointers (C99) 445
17.9 Flexible Array Members (C99) 447

18 DECLARATIONS 457
18.1 Declaration Syntax 457

18.2 Storage Classes 459
Properties of Variables 459
The auto Storage Class 460
The static Storage Class 461
The ex.tern Storage Class 462
The register Storage Class 463
The Storage Class of a Function 464
Summary 465

18.3 Type Qualifiers 466

18.4 Declarators 467
Deciphering Complex Dectarations 468
Using Type Definitions to Simplify Declarations 470

18.5 In it la lizers 470
Uninitialized Variables 472

18.6 lnline Functions (C99) 472
lnline Definitions 473
Restrictions on lnline Functions 474
Using lnline Functions with GCC 475

19 PROGRAM DESIGN 483
19.1 Modules 484

Cohesion and Coupling 486
Types of Modules 486

19.2 Information Hiding 487
A Stack Module 487

19.3 Abstract Data Types 491

Encapsulation 492
Incomplete Types 492

19.4 A Stack Abstract Data Type 493
Defining the Interface for the Stack ADT 493
Implementing the Stack ADT Using a Fixed-Length Array 495
Changing the Item Type in the Stack ADT 496
Implementing the Stack ADT Using a Dynamic Array 497
Implementing the Stack ADT Using a Linked List 499

•

xvi Contents

19.5 Design Issues for Abstract Data Types 502
Naming Conventions 502
Error Handling 502
Generic ADTs 503
ADTs in Newer Languages 503

20 LOW-LEVEL PROGRAMMING 509
20.1 Bitwise Operators 509

Bitwise Shift Operators 510
Bitwise Compllement, And, Exclusive Or, and Inclusive Or 511
Using the Bitwise Operators to Access Bits 512
Using the Bitwise Operators to Access Bit-Fields 513
Program: XOR Encryption 514

20.2 Bit-Fields in Structures 516
How Bit-Fields Are Stored 517

20.3 Other Low-Level Techniques 518
Defining Machine~Dependent Types 518
Using Unions to Provide Multiple Views ot Data 519
Using Pointers as Addresses 520
Program: Viewing Memory Locations 521
The volatile Type Qualifier 523

21 THE STANDARD LIBRARY 529
21.1 Using the Library 529

Restrictions on Names Used in the Library 530
Functions Hidden by Macros 531

21 .2 C89 Library Overview 531
21 .3 C99 Library Changes 534
21 .4 The <stdd ef . h > Header: Common Definitions 535
21.5 The <stdbool. h> Header (C99): Boolean Type and

Values 536

22 INPUT/OUTPUT 539
22.1 Streams 540

File Pointers 540
Standard Streams and Redirection 540
Text Files versus Binary Files 541

22.2 File Operations 543
Opening a File 543
Modes 544
Closing a File 545
Attaching a File to an Open Stream 546
Obtaining File Names from the Command Line 546
Program: Checking Whether a File Can Be Opened 547

Contents ••
XVII

Temporary Files 548
File Buffering 549
Miscellaneous File Operations 551

22.3 Formatted 1/0 551
The ... printf Functions 552
... prin tf Conversion Specifications 552
C99 Changes to ... printf Conversion Specifications 555
Examples of ... print£ Conversion Specifications 656
The ... scan£ Functions 558
... scan£ Format Strings 559
... scan£ Conversion Specifications 560
C99 Changes to ... scan£ Conversion Specifications 562
scan£ Examples 563
Detecting End-of-File and Error Conditions 564

22.4 Character 1/0 566
Output Functions 566
Input Functions 567
Program: Copying a File 568

22.5 Line 1/0 569
Output Functions 569
Input Functions 570

22.6 Block 1/0 571

22.7 File Positioning 572
Program: Modifying a File of Part Records 574

22.8 String 1/0 575
Output Functions 576
Input Functions 576

23 LIBRARY SUPPORT FOR NUMBERS AND CHARACTER
DATA 589
23.1 The < £ 1 oat . h> Header: Characteristics of Floating

Types 589
23.2 The <limits. h> Header: Sizes of Integer Types 591
23.3 The <ma th. h> Header (C89): Mathematics 593

Errors 593
Trigonometric Functions 594
Hyperbolic Functions 595
Exponential and Logarithmic Functions 595
Power Functions 596
Nearest Integer, Absolute Value, and Remainder Functions 596

23.4 The <ma th. h> Header (C99): Mathematics 597
IEEE Floating-Point Standard 598
Types 599
Macros 600

xviii Contents

Errors 600
Functions 601
Classification Macros 602
Trigonometric Functions 603
Hyperbolic Functions 603
Exponential and Logarithmic Functions 604
Power and Absolute Value Functions 605
Error and Gamma Functions 606
Nearest Integer Functions 606
Remainder Functions 608
Manipulation Functions 608
Maximum, Minimum, and Positive Difference Functions 609
Floating Multiply-Add 61 0
Comparison Macros 611

23.5 The <ctype . h> Header: Character Handling 612
Character-Classification Functions 612
Program: Testing the Character-Classification Functions 613
Character Ca~e-Mapping Functions 614
Program: Testing the Case-Mapping Functions 614

23.6 The <string . h> Header: String Handling 615
Copying Functions 616
Concatenation Functions 617
Comparison Functions 617
Search Functions 619
Miscellaneous Functions 622

24 ERROR HANDLING 627
24.1 The <assert . h> Header: Diagnostics 628

24.2 The <errno. h> Header: Errors 629
The perror and strerror Functions 630

24.3 The <signal. h> Header: Signal Handling 631
Signal Macros 631
The signal Function 632
Predefined Signal Handlers 633
The raise Function 634
Program: Testing Signals 634

24.4 The <setjmp .h> Header: Nonlocal Jumps 635
Program: Testing setj mp/longj mp 636

25 INTERNATIONAL FEATURES 641
25.1 The <locale. h> Header: Localization 642

Categories 642
The setlocale Function 643
The localeconv Function 644

25.2 Multlbyte Characters and Wide Characters 647

Contents
.

XIX

Multlbyte Characters 648
Wide Characters 649
Unicode and the Universal Character Set 649
Encodings of Unicode 650
Multibyte/Wide-Character Conversion Functions 651
Multibyte/Wide-String Conversion Functions 653

25.3 Digraphs and Trigraphs 654
Trigraphs 654
Digraphs 655
The <iso646. h:> Header: Alternative Spellings 656

25.4 Universal Character Names (C99) 656
25.5 The <wchar . h > Header (C99): Extended Multibyte and

Wide-Character Utilities 657
Stream Orientation 658
Formatted Wide-Character Input/Output Functions 659
Wide-Character Input/Output Functions 661
General Wide-String Utilities 662
Wide-Character Time-Conversion Functions 667
Extended Multibyte/Wide--Character Conversion Utilities 667

25.6 The <we type. h > Header (C99): Wide-Character
Classification and Mapping Utilities 671
Wide-Character C lassification Functions 671
Extensible Wide-Character Classification Functions 672
Wide-Character Case-Mapping Functions 673
Extensible Wide-Character Case-Mapping Functions 673

26 MISCELLANEOUS LIBRARY FUNCTIONS 677
26.1 The <stda rg. h> Header: Variable Arguments 6n

Calling a Function with a Variable Argument List 679
The v ... printf Functions 680
The v ... scanf Functions 681

26.2 The <stdlib. h> Header: General Utilities 682
Numeric Conversion Functions 682
Program: Testing the Numeric Conversion Functions 684
Pseudo-Random Sequence Generation Functions 686
Program: Testing the Pseudo-Random Sequence Generation
Functions 687
Communication with the Environment 687
Searching and Sorting Utilities 689
Program: Determining Air Mileage 690
Integer Arithmetic Functions 691

26.3 The <time ~h> Header: Date and Time 692
Time Manipulation Functions 693
Time Conversion Functions 695
Program: Displayring the Date and Time 698

xx Contents

27 ADDITIONAL C99 SUPPORT FOR MATHEMATICS 705
27.1 The <stdint . h > Header (C99): Integer Types 705

<stdint. h> Types 706
Limits of Specified-Width Integer Types 707
Limits of Other Integer Types 708
Macros for Integer Constants 708

27.2 The <int t ypes .h> Header (C99): Format Conversion of
Integer Types 709
Macros for Format Specifiers 710
Functions for Greatest-Width Integer Types 711

27.3 Complex Numbers (C99) 712
Definition of Complex Numbers 713
Complex Arithmetic 714
Complex Types in C99 714
Operations on Complex Numbers 715
Conversion Rules for Complex Types 715

27.4 The <complex. h> Header (C99): Complex Arithmetic 717
<complex. h> Macros 717
The CX_LIMITED - RANGE Pragma 718
<complex. h> Functions 718
Trigonometric Functions 719
Hyperbolic Functions 720
Exponential and Logarithmic Functions 721
Power and Absolute-Value Functions 721
Manipulation Functions 722
Program: Finding the Roots of a Quadratic Equation 722

27.5 The <t gmath . h > Header (C99): Type-Generic Math 723
Type-Generic Macros 724
Invoking a Type-Generic Macro 725

27.6 The <f env. h> Header (C99): Floating-Point Environment 726
Floating-Poinl Status Flags and Control Modes 727
<fenv. h> Macros 727
The FENV - ACCESS Prag ma 728
Floating-Point Exception Functions 729
Rounding Functions 730
Environment Functions 730

Appendix A C Operators 735
Appendix B C99 versus C89 737
Appendix C C89 versus K&R C 743
Appendix D Standard Library Functions 747
Appendix E ASCII Character Set 801

Bibliography 803
Index 807

1 Introducing C

When someone says "I want a programming language in which
I need only say what I wish done,'' give him a lollipop.·

What is C'? The simple answer-a widely used programn1ing language developed
in the earJy 1970s at Bell Laboratories-conveys little of C's speciaJ flavor. Before
we become immersed in the details of the language, let's Lake a look at where C
can1e froiu, what it was designed for. and bow iL bas changed over the years (Sec­
tion 1.1). We' ll also discuss C's strengths and weaknesses and see bow to get the
most out of the language (Section 1.2).

1.1 History of C

Let's take a quick look at C's history, from its origins, to its coining of age as a
standardized language, to its influence on recent languages.

Origins

C is a by-producL of the UNIX operating system, which was developed al Bell Lab­
oratories by Ken Thompson, Dennis Ritchie, and others. Thompson single-hand­
edly wrote the original version of UNIX, which ran on the DEC PDP-7 computer,
an early minjcomputer with only 8K words of main memory (this was 1969. after
all!).

Like other operating systems of rhe tirue. UNIX was written in assembly lan­
guage. Programs written in assembly language are usually painful Lo debug and
hard to enhance; UNIX was no exception. ThoLnpson decided that a higher-level

""The epigrams at the beginning of each chapter are from "Epigrams on Programming" by Alan J. Pedis
(ACM SIGPJ..AN Notices (September, L982): 7-13).

1

I

2 Chapter 1 Introducing C

language \Vas needed for the further developmenl of UNIX. so he designed a small
language named B. Thompson based B on BCPL, a system.s programming lan­
guage developed in Lhe mi.d-1960s. BCPL, in turn, traces its ancestry to Algol 60,
one of the earliest (and most influential) programming languages.

Ritcbie soon joined the UNIX project and began programming in B. 1n l970.
Bell Labs acquired a PDP- J l for the UNIX project. Once B was up and runni11g on
the PDP- Ll , Thompson rewrote a portion of UNIX in B. By 1971, it became
apparent that B was nol well-suited Lo the PDP-I 1, so Ritchie began to develop an
extended version of B. He called his Language NB ("New B") at first. and then, as
it began to diverge more from B, he changed the name to C. The language was sta­
ble enough by L973 I.hat UNIX could be rewritten in C. The switch to C provided
an important benefit: portability. By wriLing C compilers for other co,nputers at
Bell Labs, the team could get UNl)(running on those machines as well.

Standardization

C continued Lo evoJve during the 1970s, especially between 1977 and 1979. Jl was
during this period that the first book on C appeared. The C Progra,nrning Lan­
guage. wriLten by Brian Kernighan and Dennis Ritchie and published in 1978.
quickly became tbe bible of C programmers. 1n Lbe absence or an official standard
for C, this book-known as K&R or the "White Book" to aficionados-served as a
de facto standard.

During Lhe 1970s, there were relatively few C programn1ers, and most of them
were UNIX users. By the 1980s, however, Chad expanded beyond Lhe narrow con­
tines of the UNTX world C compilers becan1e available on a variety of ruachines
running under different operating systems. In parlicular, C began to establish itself
on the fast-growing IBM PC platform.

With C's increasing popularity came problems. Programmers who wrote new
C compilers relied on K&R as a reference. Unfortunately, K&R was fuzzy about
some language features. so compilers often treated these features differently. Also.
K&R failed to n1ake a clear distinction between which feattu·es belonged to C and
which were part of UNIX. To make malters worse, C continued to change after
K&R was published. witb new features bejng added and a few older features
ren1oved. The need for a thorough, precise. and up-to-date description of the lan­
guage soon becan1e apparent. Without such a standard. nun1erous dialects would
have arisen, threatening Lhe po,tability or C programs, one of ihe language's major
strengths.

The developmen1 of a U.S. standard for C began in 1983 under the auspices of
lhe American National Standards Institute (ANS!). After many revisions, lhe stan­
dard was co111pleted in 1988 and formally approved in December 1989 as ANSI
standard X3.159-1989. In 1990. it was approved by the International Organization
for Standardizalion (ISO) as internationaJ standard ISO/IEC 9899: 1990. This ver­
sion of the language is usually referred to as C89 or C90, Lo distinguish it Crom the

2 C Fundamentals

One man's constant ls another man's variable.

(

This chapter introduces several basic concepts, including preprocessing directives,
functions, variables, and statements, that we'll need in order to write even the sim­
plest programs. Later chapters will cover lbese topics in much greater detail.

To start off, Section 2.1 presents a sn1a11 C program and describes how to com­
pile and link it. Section 2.2 then discusses how to generalize lbe program, and Sec­
tion 2.3 shows how to add explanatory remarks, kno\.vn as comments. Section 2.4
introduces variables, which store data that may change during the execution of a
program, and Section 2.5 shows how to use the scanf function to read data into
variables. Constants-data that won't change during program execution-can be
given names, as Section 2.6 shows. FinaDy. Section 2. 7 explains C's rules for cre­
ating names (identifiers) and Section 2.8 gives the rules for laying out a program.

2.1 Writing a Simple Program

In contrast to prograa,s written in some languages, C programs require little "boil­
erplate··-a complete program can be as short as a few lines.

PROGRAM Printing a Pun

The fi1·st program in Kernighan and Ritchie's classic The C Progra,n,ning lAn­
guage is extremely short: it does nothing but write the message hello, world.
Unlike other C authors, I won'l use this program as my frrst example. I will, how­
ever, uphold another C tradition: lbe bad pun. 1-:lere 's the pun:

To C, or not to C: that is the question.

9

2. 1 Writing a Simple Program 11

Fortunately, this process is often automated. so you won't find it too onerous. In
fact, the preprocessor is usually integrated with Lbe compiler. so you probably
won· t even notice it at work.

The commands necessary to compile and Link vary, depending on the compiler
and operating system. Under UNIX, the C con1piler is usually nan1ed cc. To com­
pile and link the pun . c program. enter the following command in a terminal or
command-line window:

% cc pun.c

(The% character is the UNIX prompt. not something that you need to enter.) Li{lk­
ing is automatic when using cc: no separate link command is necessary.

After cornpiling and linking the program, cc leaves the executable program in
a file na1ned a. out by default. cc bas many options; one of them (the -o option)
allows us Lo choose the name of the file contain ing the executable program. For
example, i r we want the executable version of pun . c to be named pun, we wou Ld
enter the followi11g con1mand:

% cc - 0 pun pun.c

Tl1e GCC Conzpiler

One of the most popular C compilers is the GCC compiler, whlch is supplied with
Linux but is available for many other platforms as well. Using this compiler Is similar
to using the traditional UNIX cc complier. For example, to compile the pun. c pro­
gram, we would use the following command:

% gee -o pun pun.c

rim The Q&A section at the end of the chapter provides more Information about GCC.

Integrated Development Environments

So far, we've assumed the use of a ··co1nmand-line'' compiler Lhat's invoked by
entering a comn1and in a special window provided by the operating system. The
alternative is to use an integrated developnzent environment (IDE), a software
package that allows us to edit, compile, link. execute, and even debug a program
without leaving the environ1nent. The co1nponents of an IDE are designed to work
together. For example, when the con1piler detects an error in a program, it can
arrange for the editor to highlight the line that contains the error. There's a great
deal of variation among IDEs, so 1 won't discuss Lhem further in this book. How­
ever, I would recommend checking to see which IDEs are available for your plat­
form.

2.2 The General Form of a Simple Program 13

Functions

Functions are like '·procedures'· or ··subroutines" in other programming lan­
guages-they're the building blocks fro n1 which programs are constructed. In fact,
a C program is little more than a collection of functions. Functions fal l into two
categories: those written by the programmer and those provided as part of the C
i.J11plementation. I 'll refer to Lbe latter as library fu11ctions , since they belong to a
"library" of functions tbat are supplied with the compiler.

The term ··function" comes from malhen1aLics, where a function is a rule for
computing a value when given one or more arguments:

j{x) = x + I

g(y, z) = Y2 -z2

C uses the term ·'function" more loosely. In C, a function is sin1ply a series of
state·ments that have been grouped together and given a name. Some functions
compute a value; some don't. A function that computes a value uses the return
statement to specify what vaJ ue iL "retw·ns:· For example, a function that adds I co
its argument might execute the statement

return x + 1;

while a function that computes the difference of the squares of its arguments might
execute the statement

return y * y - z * z;

Although a C program may consist of many functions, only the main func­
tion is mandatory. main is special: it gets called automati<.:ally when the program
is executed. Until Chapter 9. where we· 11 learn how to write other functions. main
will be the only function in our programs.

,& The name main is critical~ it can't be begin or start or even MAIN.

If main is a function, does it return a value? Yes: it returns a srarus code that
is given to the operating system when the prograin tenninates. Let's take another
look at the pun. c program:

#include <stdio.h>

int main (void)
{

}

printf("To C, or not to C: that is the question.\n");
return O;

The word int just before main indicates that the main function returns an inte­
ger value. The word void in parentheses indicates that main has no arguments.

2.3 Comments 15

The first caU of printf writes To C, or not to C: . The second call writes
that is the question. and advances to the next ljne. The nel effect is the
same as the original printf-the user can't tell lhe clilTerence.

The new-line character can appear more than once in a string literal. To dis­
play the 1nessage

Brevity is the soul of wit.
--Shakespeare

we could write

printf ("Brevity is the soul of wit. \n

2.3 Comments

l
--Shakespeare\n");

Our pun. c program still lacks something important.: docun1entation. Every pro­
gram should contain identifying information: the program name, Lhe date written,
the author, the purpose of the program, and so forth. In C, this information is
placed in conznzents. The symbol /* marks the beginning of a con,menl and the
symbol */marks the end:

/* This is a comment*/

Comments may appear almost anywhere in a program. either on separate lines
or on the san,e lines as other prograi11 text. Here's what pun. c might look like
with cornmeals added at the beginning:

/* Name: pun.c */
/* Purpose; Prints a bad pun. */
/* Author: K. N. King * /

#include <stdio.h>

int main (void)
{

}

printf("To C, or not to C: that is the question.\n 11
);

return O;

Comments ,nay extend over 1nore than one line: once it bas seen the / * sym­
bol, the compiler rends (and ignores) whatever follows until it encounters the * /
symbol. If we like, we can con,bine a series of short con101ents into one long com-
1nent

I * Name : pun. c
Purpose: Prints a bad pun.
Author: K. N. King*/

A comment like this can be bard lo read, though, because it's not easy to see where

16 Chapter 2 C Fundamentals

the comment ends. Putting * / on a line by itself helps:

I* Name : pun . c

*I

Purpose: Prints a bad pun.
Author; K. N. King

/
Even better, we can form a "box" around the co1nment to make it stand out:

/**
* Name: pun.c *
* Purpose: Prints a bad pun. *
* Author: K. N. King *
**/

Programmers often simplify boxed co1nrnents by omitting three of the sides:

/*
* Name : pun . c
* Purpose: Prints a bad pun.
* Author: K. N. King
* I .

A short comn1enl can go on the same Une wilh other program code:

int main(void) /* Beginning of main program* /

A comment like this is sometimes called a "winged comment:·

Forgetting to terminate a comn,ent may cause the compiler to ignore part of your
program. Consider lhe fo1Jov1ing example:

printf ("My 11
) ; /* forgot to close this comment ...

printf("cat ");
printf ("has ") ; / * so it ends here * /
printf ("fleas 11) ;

Because we've neglected to tern1inate the first comment, the compiler ignores the
middle two statements, and the exaLnple prints My fleas.

CE) C99 provides a second kind of commenl, which begins with / / (two adjacent
slashes):

// This is a comment

This style of cornmeal ends auton1atically at the end of a line. To create a comment
that's more than or1e line long, we can eilher use the older comment style (/ * ...
* /) or else put / / at the begiru1ing of each comment line:

I I Name : pun . c
// Purpose: Prints a bad pun.
// Author: K. N. King

20 Chapter 2 C Fundamentals

we'd call printf as follows:

printf ("Profit: $%. 2f\n", profit);

There 's no Tunit to lhe number of variables that can be printed by a single caJI
of printf. To display lhe values of both the height and length varjables, we
could use the following call of print£:

printf ("Height: %d Length: %d\n", height, lengt.h);

PROGRAM Computing the Dimensional Weight of a Box

Shipping companies don' t especially like boxes that are large but very light, since
they take up valuable space in a truck or airplane. In fact, co111panies often charge
exLra for such a box, basing the fee on its volume instead of its ,veigbt. In the
United States. Lhe usual method is Lo djvide the volun1e hy J 66 (the allowable num­
ber of cubic inches per pound). If this number-the box's "dimensional" or "vo1u­
n1etric" weight--exceeds its actual weight, the shipping fee is based on the
dimensional weight. (The 166 divisor is for international shipments; the din1eo­
sional weighL of a domestic shipment is typjcally calculated using 194 instead.)

Let's say that you·ve been hired by a shjpping company to wriLe a progran1
lhat co1nputes the dimensional weight of a box. Since you're new to C, you decide
to start off by writing a program thaL calculates the dimensional weight of a partic­
ular box that"s t 2" x LO" x 8". Division is represented by / in C, so lbe obvious
way to compute the din1ensional weight would be

weight = volume/ 166;

where weight and volume are integer variables representing the box's weight
and volume. Unfortunately. this fonnula isn't quite what we need. In C, when one
integer is divided by another. the answer js '·truncated'': all digits after the decimal
poinL are lost. The volume of a 12" x 10" x 8" box will be 960 cubic inches. Divid­
ing by 166 gives the answer 5 instead of 5.783, so we have in effect rounded down
to the next lowest pound; the shipping company expects us to round up. One solu­
tion is to add 165 to the volume before dividing by 166:

weight= (volume+ 165} / 166;

A volume of 166 would give a weight of 331/166, or 1, while a volume of 167
would yield 332/ l 66, or 2. Calculating lbe weight in Lhis fashion gives us the fol­
lowing progran1.

dweight.c / * Computes the dimensional weight of a 12 11 x 10 11 x a II box * /

#include <stdio.h~

int main (void)
{

'2. 6 Defining Names for Constants 23

caU of printf. That way, the user will know when to enter input and what input
to enter.

dweight2.c / * Computes the dimensional weight of a
box from input provided by the user * I

#include <Stdio .h>

int main(void)
{

}

int height, length, width, volume, weight;

printf (''Enter height of box: 11
) ;

scanf (t1 %d" , &height) ;
print f (11 Enter length of box: 11

) ;

scanf (t1%d 11 , &length);
print£ ("Enter width of box: ");
scanf (t1 %d 11 , &width) ;
volume= height* length* width;
weight= (volume+ 165) / 166;

printf(11 Volume (cubic inches): %d\n", volume);
printf ("Dimensional weight (pounds) : %d\n", weight);

return O;

The output of lhe program has the following appearance (input entered by the user
is underlined):

Enter height of box: 8
Enter lengtl1 of box: 12
Enter width of box : 10
Volume (cubic inches) : 960
Dimensional weight (pounds): 6

A message that asks the user to en ter input (a prompt) normally shouldn ' t end wiLh
a new-line character, because we wanL the user to enter input on Lhe same line as
the prompt itself. When Lhe user presses Lhe Enter key, the cursor automatically
moves to tbe next line-the program doesn' t need to display a new-line character
Lo terminate the current line.

The dweight2. c program suffers from one problem: it doesn' t work cor­
rectly if the user enters nonnumeric input. Section 3.2 discusses this issue in more
detail.

2.6 Defining Names for Constants

When a program contains constants. it's often a good idea to glve them names. The
dweight . c and dweight2 . c programs rely on the constant 166, whose mean­
ing may not be at all clear to someone reading the program later. Using a feature

30 Chapter 2 C Fundamentals

the primary compiler for many UNIX-based operating systems. including Linux,
BSD, and Mac OS X, and iL's used extensively for commercial software develop­
ment. For more information about GCC, visit gcc.gnu.org.

Q: Ho,v good is GCC at finding errors in programs?
A: ace has various command- line options that control how thoroughly it checks pro­

gran1S. When these options are used. GCC is quiLe good a1 fi nding potential trouble
spots in a program. Here are some of the more popular options:

-Wall Causes the compiler to produce warn ing messages when it
detects possible e1Tors. (-w can be fo11owed by codes for
specific warnings; -Wall means ''all -w options.") Should
be used in conjunction with -0 for maximum effect.

-W Issues addiLional warning messages beyond IJ1ose produced
by -Wall.

-pedantic Issues al l \,Vamings required by the C standard. Causes pro­
grams that use nonstandard features to be rejected.

-ansi Tums off features of ace that aren't standard C and enables
a few standard features that are normally disabled.

-std=c89
-std=c99 Specifies which version of C the compiler should use to

check the program.

These options are often used in combination :

% gee -0 -Wall -w -pedantic -ansi -std=c99 -o pun pun.c

Q: Why is C so terse? It seems as though programs would b e more r eadable if C
used begin and end instead of { and }, i nteger instead of i nt, and so
forth. [p. 12]

A: Legend bas it that the brevity of C programs is due to the environment that existed
in Bell Labs at the time the language was developed. The first C con1piler ran on a
DEC PDP-I I (an ear]y n1inicornputer); programtners used a teletype essentially
a typewriter coru1ected to a co111puter- to enter programs and print listings.
Because teletypes were very slow (they could print only 10 characters per second).
mini1nizing the number of characters in a program was clearly advantageous.

Q: In some C books, the main function ends with exit (O) instead of return
o. Are these the same? [p. 14]

A: When they appear inside main, these statements are indeed equivalent: both ter­
minate the program, returning the value O to Lhe operating system. Which one to
use is mostly a matter of taste.

Q: What happens if a program reaches the end of the main function without exe­
cuting a return statement? [p. 14]

A: The return statement isn't mandatory: if it's missing, the program will sti!J ter-

Section 2.1

Section 2.2

Section 2.4

Section 2.7

Exercises 33

Exercises

l. Create and run Kernighan and Ritchie's famous ·'hello, world" program:

#include <stdio .h>

int main(void)
{

printf ("hello, world\n");
}

Do you get a warning message from Lhe compi ler? 1I so, what's needed to make it go away?

0 2. Consider the following program:

#include <stdio.h>

int main(void)
{

}

printf("Parkinson's Law:\nWork expands so as to");
printf("fill the time\n");
printf("available for its completion.\n");
return O;

(a) ldenLify the directives and statements in this progran1.
(b) Wbat output Joes the prograo1 produce?

f> 3. Condense the dweight. c program by (I) replacing the assignments to height,
length. and width with initializers and (?) removing the weight variable, instead caJ­
culating (volume+ 165) / 166 within the last printf.

G 4. Write a progra1n that declares several int and float variables-without initializing
them-and then prints their values. [s there any pattern to the values? (UsuaJly there isn't.)

G 5. Which of the following are not legal C identifiers?
(a) 100 bottles
(b) 100 bottles
(c) one hundred bottles
(d) bottles_ by_ the_hundred_

6. Why is it not a good idea for an idenliuer lo contain more than one adjacent underscore (as
in current. __ balance, for example)?

7. Which of the foll.o\.ving are keywords in C'?

(a) for
(b) lf
(c) main
(d) printf
(e) while

G Answer available on I.he Web at "71king.co11ilbookslc2.

34 Chapter 2 C Fundamentals

Section 2.8 9 8. How niany tokens are there in the following scatement?

answer=(3*q-p*p)/3;

9. Insert spaces between the tokens in Exercise 8 to make the statement easier to read.

10. ln tbe dweight. c prograrn (Section 2.4). which spaces are essential?

Programming Projects

I. Write a progra,n that uses printf Lo display the following picture on the screen;

*
*

*
* *
* *
*

2. Write a program that con1putes the volwue of a sphere with a 10-meter raclius, using tbe for­
mula v= 4/3nr3. Write the fraction 4/3 as 4. Of/3 . Of. (Try writing it as 4/3. What hap­
pens?) Hint: C doesn ·t have an exponentiation operator. so you'll need to ,uultiply r by i1seJf
twice to corupute r3.

3. Modify the progran1 of Programming Project 2 so that it prompts the user to enter the radius
of the sphere.

f) 4. Write a program that asks the user to enter a dollars-and-cents amount. then displays the
amount with 5% tax added:

Enter an amount: 100.00
With tax added: $105.00

5. Write a program that asks the user to enter a value for x and then clisplays the value of the
fol lowing poJ ynomial:

3x5 + 2x4 - 5x3 _ ;i + 7x - 6

Hint: C doesn't have an ex.ponentiation operator, so you'll need to multiply x by itself
repeatedly in order to compute lhe powers of x. (For example, x * x *xis x cubed.)

6. Modify the program of Programming Project 5 so that the polynomial is evaluated using the
foUowing fonnuJa:

((((3x + 2)x- 5)x- J)x + 7)x-6

Note that the modified program performs fewer multiplications. This technique for evaluat­
jng polynomials is known as Horner's Rule.

7. Write a progran1 that asks the user to enter a U.S. dollar amount and lben shows how to pay
that amount using the smallest number of $20, $IO. $5, and $1 biJ ls:

Enter a dollar amount: 93

$20 bills: 4
$10 bills: 1

$5 bills: 0
$1 bills: 3

Programming Projects 35

Flint: Divide I.he amount by 20 lo determine the number of $20 bills needed, and lhen reduce
the ainount by the lolal value of Lhe $20 bills. Repeal for the other biU sizes. Be sure to use
integer values throughout. not floating-pomt oun1bers.

8. Write a program that calculates the remaining balance on a loan after the first, second. and
third rnonlhly paymenls:

Enter amount of loan: 20000 . 00
Enter interest rate: 6.0
Enter monthly payment: 386. 66

Balance remaining after first payment: $19713.34
Balance remaining after second payment: $19425 .25
Balance remaining after third payment: $19135.71

Display each balance with two digits after the decimal poinr. Hint: Each month. the balance
is decreased by the amount of the payment, but increased by the balance times the monthly
interest rate. To find the monthly interest rate, convert the inreresc race entered by the user lo
a -percentag,e and djvide it by 12.

3 Formatted Input/Output

In seeking the unattainable, simplicity only gets in the way.

scanf and printf, which support formatted reading and writing, are two of the
most frequently used functions in C. As this chapter shows, both are powerfuJ but
tricky to use properly. Section 3.1 describes printf, and Section 3.2 covers
scanf. Neither section gives complete details, which will have lo wait unlil Chap­
ter 22.

3.1 The printf Function

The printf function is designed to display Lhe contents of a string. known as the
format string, with values possibly inserted at specified points in the string. When
it's called, printf 1nust be supplied with tbe foro1at string. followed by any val­
ues that are to be inserted into the string during printing:

printf (string, expr,, e.xpr2, ...) ;

The values clisplayed can be constants, variables, or more complicated expressions.
There's no limit on the number of values that can be printed by a single call of
printf.

The format string may contain both ordinary characters and co11versio11 speci­
fications, which begin with the % character. A conversion specification is a place­
holder representing a value to be filled in during printing. The information that
follows the % character specifies bow the value is converted fi-on1 its internal form
(binary) to printed form (characters)-Lhal's where the term •'conversion specifica­
tion" comes from. For example. the conversion specification %d specifies that
print£ is Lo convert an int value Crom binary to a string of decimal digits, while
% f does the same for a f 1 oat value.

37

38 Chapter 3 Formatted Input/Output

Ordinary characters in a formal string are printed exactly as they appear in the
string; conversion specific.ations are replaced by the values lo be printed. Consider
the following example:

inti, j;
float x, y;

.
10; l. -. 20; J -

X - 43.2892f;
y - 5527 . 0f;

printf(''i = %d, j = %d, x = %f, y = %f\n", i, J, x, y);

This call of printf produces the following oulput:

i = 10, j = 20, X = 43.289200, y = 5527.000000

The ordinary characters in the format string are sin1ply copied to the output line.
The four conversion specifications are repJaced by tbe values of Lhe variables i. j.
x. and y, i11 that order.

C compilers aren't required to check lhat Lhe number of conversion specifications
in -a format string matches the number of output items. The following call of
printf has more conversion specifications than values lo be printed:

printf{ 11 %d %d\n 11
, i); /***WRONG***/

printf will print the value of i correctly, then print a second (meaningless) inte­
ger value. A caU with too few conversion specifications has sio1i lar problerus:

printf ("%d\n", i, j) ; /***WRONG***/

In this case. printf prints lhe value of i buc doesn't show Lhe value of j.
Furthermore, compilers aren't required to check that a conversion specifica­

tion is appropriate for the type of itern being printed. If the programmer uses an
incorrect specification, Lhe program wiU simply produce meaningless output. Con­
sider the following call of printf, in which the int variable i and the float
variable x are in the wrong order:

printf(11 %f %d\n", i, x); /***WRONG***/

Since printf must obey the format string, it will dutifully display a float
value, followed by an int value. Unfortunately, both will be meaningless.

Conversion Specifications

Conversion specifications give lhe programmer a great deal of control over the
appearance of output. On the other l1and, they can be complicated and hard to read.
In fact, describing conversion speciJications in complete detail is too arduous a

42 Chapter 3 Formatted Input/Output

Incidentally, you can't just put a single \ character in a string; the compiler
will assume that it's the beginning of an escape sequence. To print a single \ char­
acter. put two \ characters in the string:

printf ("\ \ "); /* prlnts one\ character*/

3.2 The scan£ Function

Just as printf prints output in a specified format. scanf reads input according
to a particular format. A scanf format string. like a printf format string, may
contain both ordinary characters and conversion specifications. The conversions
allowed with scanf are essentially the same as those used with printf.

ln many cases, a scanf forn1at string will contain only conversion specifica­
Lions, as in the following example:

int i, j ;
float x, y;

scanf(11 %d%d%f%f 11
, &i, &j, &x, &y);

Suppose thar the user enters the following input line:

1 -20 .3 -4.0e3

scanf will read the line, converting its characters to lhe numbers Lhey represent,
and then assign 1. - 20, 0.3, and -4000.0 to i, j. x, and y, respectively. "Tightly
packed" format strings like "%d%d%f%f II arc con1moa in scanf cal ls. printf
format strings are less Jjkely lo have adjacent conversion specifications.

sca11f, like printf. contains several traps for the unwary. When using
scanf, the programmer must check that the number of conversion specifications
matches the number of input variables and that each conversion is appropriate for
the corresponding variable-as with printf, the compiler isn't required Lo check
for a possible 1nisn1atch. Another trap involves the & symbol. which normally pre­
cedes each variable in a scanf call. The & is usually (but not always) required,
and jt's tbe progran1mer's responsibility to remember to use it.

Forgetting to put the & symbol in front of a variable in a call of scanf will have
unpredictable-and possibly disastrous- results. A program crash is a cornrnoa
outcome. At Lhe ve1y least, the value that is read from the input won't be stored in
the variable; instead, the variable will retain its oltl value (which n1ay be meaning­
less if Lhe variable wasn't given an initial value). Omilting Lhe & is an extren1ely
con1mon error-be careful! Some compilers can spot this error and produce a
warning message such as ''for,nat argu,nent is not a fJointe1:'' (Tbe term pointer i.
defined in Chapter 11; the & symbol is used to create a pointer to a variable.) If you
get a warning, check for a 1nissing &.

46 Chapter 3 Formatted Input/Output

PROGRAM

Portw1ately. this mistake is fa1rly easy to spot: printf will display a couple of
odd-Joolcing numbers instead of the values or i and j.

Since scanf nomiaJly skips white-space characters when looking for data
iten1s, there's often no need for a rom1al string to include characters other than
conversion specifications. lncorreclly assuming that scanf formal strings should
resen,ble printf forn1at strings-another common e1Tor-may cause scanf Lo
behave in unexpected ways. Let's see what happens when the following call of
scanf is executed:

scanf (11 %d, %d", &i, &j);

scanf will first look for an integer in c.be inpuL which it stores in the variable i.
scanf wiU c.ben try to 11:iatch a cotnma with the next input character. lf the next
input character is a space. not a comma. scanf will terminate witholll reading a
value for j.

Although printf format strings often end wirh \n. putting a new-line character
al the end of .:1 scanf format string is usually a bad idea. To scanf, a new-Line
character in a format string is equivalent to a space; both cause scanf to advance
lo the next non-white-space character. For example, if U1e formal string is
11 %-d\n", scanf will slup wbite space, read an integer, then skip to the next non­
white-space character. A format string like this can cause an interactive progrruu to
"hang'' until the user enters a nonblank character.

Adding Fractions

To illustrate scanf 's ability to match patterns, consider the problen1 of reading a
fraction entered by the user. Fractions are customarily written in the form 1uunera-
1orldenon1ina1or. Instead of having the user enter the numerator and denominator
of a fraction as separate integers. scanf makes it possible to read the entire frac­
tion. The following program, which adds two fractions, i11ustrates this technique.

addfrac.c / * Adds two fractions * /

#inalude <stdio . h>

int main{void)
{

int numl, denoml, num2, denom2, result_num, result_denom;

printf ("Enter first fraction: '') ;
scanf (11 %d/ %d 11 , &num1, &denoml) ;

printf ("Enter second fraction: 11) ;

scanf (11 %d/ %d" , &num2, &denom2) ;

result num - numi * denom2 + num2 * denoml;

48 Chapter 3 Formatted Input/Output

A: LeL's look at the following exa1nple:

print£ ("Enter a number: 11) ;

scanf (11 %d 11 , &i) ;

Suppose that the user enters a valid number, followed by nonnumeric characLers:

Enter a number: 23foo

In tltis case. scanf reads the 2 and the 3, storing 23 in i. The remaining charac­
ters (foo) are lefl to be read by the next call of scanf (or some other input func­
tion). On the other hand, suppose that the input is invalid from the beginning:

Enter a number: foo

1n Lhis case. the value of i is undetined and f oo is left for the next scanf.
What can we do about this sad state of affairs? Luter. we'll see how to test

detectlngerrorsin scant > 22.3 whether a caJL of scanf has succeeded. If the call fails, we can have the progran1
either terLninate or Lry to recover, perhaps by discarding the offending input and
asking the user to Lry again. (Ways to discard bad input are discussed in the Q&A
section at the end of Chapter 22.)

Q: I don't understand bow scan£ can "put back" characters and read them
again later. [p. 44]

A: As il turns outi progran1s don ' t read user input as it is typed. Instead, inpuL is sLored
in a hidden buffer, to which scanf has access. It's easy for scanf to put charac­
ters back into the buffer for subsequent reading. Chapter 22 discusses input buffer­
ing in 1nore detail.

Q: What does scan£ do if the user puts punctuation marks (commas, for exam­
ple) between nun1bers?

A: Let's look at a simple example. Suppose that we Lry to read a pair of integers using
scanf:

printf(11 Enter two numbers: 11);

scanf (11 %d%d" , &i, &j) ;

lf the user enters

4,28

scanf will read the 4 and store il in i. As it searches for the beginning of the sec­
ond number, scanf encounters the comma. Since numbers can't begin with a
comn1a. sca.nf retu111s imn1ediaceJy. The coulfila and the second number are left
for the next call of scan£.

Of course, we can easily solve the problem by adding a comma to the fo1mat
string if we 're sure that the nwnbers will aliva)'S be separated by a comma:

printf(11 Enter two numbers, separated by a comma: 11);

scanf(11 %d,%d 11 , &i, &j);

Section 3.1

Section 3.2

Exercises

l. Whal output do the following calls of printf produce?

~) printf(11 %6d,%4d11
, 86, 1040);

(b) printf(11 %12.5e 11
, 30.253);

(c) printf(11 %.4f 11
, 83.162);

(d) printf (11 %-6. 29 11
, • 0000009979);

Exercises 49

0 2. Write calls of printf that display a float variable x in the following formats.

(a) Exponential notation; left-justified in a field of size 8: one digit after the decimal point.
(b) Exponential notation; right-justilied in a field of size LO~ six digits after lhe decin1al

point.
(c) Fixed decimal notation: left-justified in a field of size 8; three ctigics after the decimal

point
(d) Fixed decimal notation; right-justified in a field of size 6: no djgits after Lhe decimal

point.

3. For each of d1e following pairs of scanf format strings, indicate whether or not the two
strings are equivalent. lf Lhey're not. show how 11,ey can be distinguished.

(a) 11 %d" versus 11 %d 11

(b) 11 %d-%d-%d'1 versus 11 %d -%d -%d 11

(c) 11 %f"
(d) II % f I % f II

versus " % f 11

versus 11 %f , % f 11

*4. Suppose tl1at we call scant as follows:

scanf(11 %d%f%d 11
, &i, &x, &j);

If the user eaters

10.3 S 6

wbat will be the values of i. x, and j after the call? (Assume that i and j are int variables
and xis a float variable.)

0 *5. Suppose that ,ve caJI scanf as follows:

scanf(11 %£%d%f 11
, &x, &i, &y);

lf the user enters

12.3 45.6 7·89

wbal wi!J be the values of x, i. and y after the call? (Assume that x and y are float vari­
ables and i is an int variable.)

6. Sbo,v bow to modify the addfrac. c program of Section 3.2 so thal the user is allowed to
enter fractions that contain spaces before and af1e.- each / character.

*Starred exercisel- ru:e tricky-the correct answer is usually not the obvious one. Read tbe question

lhorougWy, review the rele.vnnt section iif necessary. and be care full

50 Chapter 3 Formatted Input/Output

Programming Projects

I. Write a program that accepts a date fro1n the user in the fom1 111111/ dd /_vyyy and then dis­
plays it in the form yyyy1111ndd:

Enter a date (mm/dd/yyyy): 2/l7/20ll
You entered the date 201102l7

2. Write a progran1 lbat formal!\ producl inforn1ation entered by the user. A session with the
program should look like this:

Enter item number: 583
Enter unit price: 13.5
Enter purchase date (mm/dd/yyyy): 10/24/2010

Item

583

Unit
Price
$ 13.50

Purchase
Date
10/24/2010

Tbe item ou1nber and date shouJd be left justified; the uolt price should be right justified.
Allow dollar amounu; up to $9999.99. Hint: Use labs to line up tbe columns.

0 3. Books are identified by an International Standard Book Nun1ber (ISBN). CSBNs assigned
after January I, 2007 contain 13 ,.Hgits, arranged in five groups, such as 978-0-393-97950-3.
(Older ISBNs use 10 digits.) 'fbe first group (the GS I prefix) is currently either 978 or 979.
The group idenzifier specifies the language or country of origin (for example. 0 and 1 are
used in English~speaking countries). The publisher code identifies the publisher (393 is the
code for W. W. Norron). The ice,n nutnber is assigned by the publisher to identify a specific
book (97950 is the code for this book). An ISBN ends with a check digit that"s used to verify
Lhe accuracy of Lhe preceding digits. Write a program that breaks do\vn an £SBN entered by
the user:

Enter ISBN: 978-0-393-97950 - 3
GS1 prefix: 978
Group identifier: 0
Publisher code: 393
Item number: 97950
Check digit : 3

Note: The number or digirs in each group n1ay vary: you can't assume that groups have Lhe
lengths shown in this example. Tesl your progrrun with actua l lSBN values (usually found
on Lhe back cover of a book and on the copyright page).

4. Write a progran1 that prompts the user to enter a telephone number in the fonn (xxx) xxx­
xxxx and then displays lhe nun1ber in the form xxx.xxx.xxx:

Enter phone number [(xxx) xxx-xxxxJ: (404) 817-6900
You entered 404.817.6900

5. Write a program that asks the user to enter the numbers from l to 16 (in any order) and then
displays the nun1bers in a 4 by 4 arra:ngen1enl, followed by the sun1s of the rows, columns,
and diagonals:

Enter the numbers from 1 to 16 in any order:
16 3 2 13 5 10 11 8 9 6 7 12 4 15 l4 l

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Row sums: 34 34 34 34
Column sums: 34 34 34 34
Diagonal sums: 34 34

Programming Projects 51

If the row, column, and diagonal sums are all the same (as they are in this example), the
nu1nbers are said co form a ,nagic square. The rnagit: sL1uw~ slluwn here appears in a 1514
engravillg by artist and matben1atician AlbrechL Dtirer. (Note that Lhe n1iddle numbers in the
last row give U1e date of the engraving.)

6. Modify Lhe addfrac. c program of Section 3.2 so U,at the user enters both fractions at the
san,e time, separated by a plus sign:

Enter two fractions separated by a plus sign: 5/6+3/4
The sum is 38/24

4. 1 Arithmetic Operators 55

Implementation-Defined Behavior

The term implementation-defined will arise often enough that it's worth taking a
moment to discuss it. The C standard deliberately leaves parts of the language
unspecified, with the understanding that an Himplementation"-the software needed
to compile, link, and execute programs on a particular platform-will fill in the
details. As a result, the behavior of the program may vary somewhat from one
implementation to another. The behavior of the / and % operators for negative oper­
ands in C89 is an example of implementation-defined behavior.

Leaving parts of the language unspecified may seem odd or even dangerous,
but it reflects C's philosophy. One of the language's goals is efficiency, which often
means matching the way that hardware behaves. Some CPUs yield -1 when -9 is
divided by 7, while others produce -2; the C89 standard simply reflects this fact of

life.
It's best to avoid writing programs that depend on implementation-defined

behavior. If that's not possible, at least check the manual carefully-the C standard
requires that implementation-defined behavior be documented.

Operator Precedence and Associativity

When an expression contains 1nore than one operator, its interpretation may not be
immediately clear. For example, does i + j * k mean "add i and j, then multiply
the result by k," or does it mean "1nultiply j and k, then add i"? One solution to
this problem is to add parentheses, writing either (i + j) * k or i + (j * k). As
a generaJ rule, Callows the use of parentheses for grouping in all expressions.

What if we don't use parentheses, tl1ough? Will the compiler interpret i + j *
k as (i + j) * k or i + (j * k) ? Like many other languages, C uses operator
precedence rules to resolve this potentiaJ ambiguity. The arith n1etic operators have
the following relative precedence:

Highest: + - (unary)
* I %

Lowest: + - (binary)

Operators listed on the same line (such as+ and -) have equal precedence.
When two or more operators appear in the same expression, we can deLermine

how the compiler wi 11 interpret the expression by repeatedly putti11g parentheses
around subexpressions, starting with high-precedence operators and working down
to low-precedence operators. The following examples illustrate the result:

i + j * k
-i * -j
+i + j I k

is equivalent to
is equivaleot to
is equivalent to

i + (j * k)

(-i) * (- j)

(+i) + (j / k)

Operator precedence rules alone aren't enough when an expression contains two
or more operators at the same level of precedence. In this situation, the associativity

4. 1 Arithmetic Operators 57

Multiply the first sum by 3 and add it to the second sum.
Subtract l from the total.
Compute the remainder whe11 the adjusted LoLal is divided by 10.
Subtract the remainder from 9.

Using the Stouffer's example, we gel O + 3 + 0 + l + 1 + 3 = 8 for the first sum and
1 + 8 + 0 + 5 + 7 = 21 for the second sum. MultipJying the first sun1 by 3 and add­
ing the second yields 45. Subtracting 1 gives 44. The remainder upon dividing by
10 is 4. When the remainder is subtracted from 9, the result is 5. Here are a couple
of other UPCs, in case you want Lo try your hand at computing the check digit
(raiding the kitchen cabinet for tl1e answer is not allowed):

Jif Crean1y Peanut Butter (18 oz.): O 51500 24128
OceanSpray JelliedCranberrySauce(8oz.): O 31200 01005

The answers appear al the bottom of the page.

? .
? •

Let's write a program that calculates the check digit for an arbitrary UPC.
We'll ask the user lo enter the first 11 digits of the UPC, Lhen we'll display the cor­
responding check digit. To avoid confusion, we' ll ask the user to enter the number
in three parts: the single digit at the left. the first group of five digits, and the sec­
ond group of five digits. Here's what a session with the program will look like:

Enter the first (single) digit: Q
Enter first group of five digits: 13800
Enter second group of five digits : 15173
Check digit : 5

Instead of reading each digit group as a five-digit nurnber, we'll read it as five
one-digit numbers. Reading the numbers as single digits is more convenient~ also,
we won't have to worry that one of the five-digit numbers is too large to store in an
int variable. (Some older compilers limit the ma,umum value of an int variable
to 32,767.) To read single digits, we'll use scanf with the %1d conversion speci­
fi cation, which matches a one-digit in teger.

upc.c / * Computes a Universal Product Code check digit*/

#include <stdio.h>

int main(void)
{

int d , il, i2, i3, i4, is, jl, j2, j3, j4, j5,
first sum, second sum, total;

printf(11 Enter the first (single) digit: 11
);

scanf ("%1d 11
, &d) ;

printf(11 Enter first group of five digits: ");
scanf(11 %ld%ld%ld%ld%ld 11

, &il, &i2, &i3, &i4, &i5);
printf("Enter second group of five digits: 11

);

scanf(''%1d%1d%ld%1d%ld'', &jl, &j2, &j3, &j4, &jS);

The missing check dlgits arc 8 (Ji!) nnd 6 (Ocenn Spray).

4.3 Increment and Decrement Operators 61

program will still compile. Unforlunately, the]alter expression is equiva1enl to
i :;;; (+j), wlticl1 merely copies the value of j into i.

The con1pound assignment operators have tl1e same properties as the :;;; opera­
tor. ln particular, they 're right associative, so the statement

i += j +-= ki

means

i += (j += k) ;

4.3 Increment and Decrement Operators

1\vo of the mo L common operations on a variable are "incrementing•· (adding 1)
and ''decrementing'' (subtracting 1). We can, of course, acco,nplish these tasks by
writing

• •
1 = 1 + l;
. . 1 J = J - ;

The con1pound assignn1ent operators allow us to condense these statements a bit:

i += l;
j -= 1;

But Callows increments and decrements lo be shortened even further, using lhe ++
l:m (incre111ent) and - - (decrement) operators.

At first g lance. the increment and decrement operators are simplicity itself: ++
adds I to its operand~ whereas - - subtract~ J. Unfortunately, this simplicity is mis­
leading-the increment and decre1nent operators can be tricky to use. One compli­
cation is tl1at ++ and - - can be used as prefix operators (++i and - -i, for
exa1nple) or postfix operators (i++ and i- -). The correctness of a program may
hinge on picking the proper version.

Another complication is Lhat, like the assignment operators, ++ and - - have
side effects: they modify the values of their operands. Evaluating the expression
++i (a "pre-increment") yields i + 1 and-as a side effect-increments i:

i = 1;
printf("i is %d\n°, ++i);
printf ("i is %d\n", i);

/ * prints 11 i is 2 11 */
/* prints Hi is 2" */

Evaluating the expression i++ (a "post-increment'") produces Lhe result i. bul
causes i to be incremented afterwards:

i = l;
printf(11 i is %d\n'', i++) ;
printf("i is %d\n", i);

/* prints 11 i is l" */
/ * prints ''i is 2" * /

62 Chapter 4 Expressions

The first printf shows the original value of i. before it is incre1nentecl. The sec­
ond printf shows the new value. As these examples illustrate. ++i means
"incren1ent i im,nediately," while i + + means .. use lhe old value of i for now, but
increment i later.'' How much later? The C standard doesn ·L specify a precise time,
but it's safe to assume lhat i will be incremented before the next staten1ent is exe-

m/!1 cuted.
The - - operator has similar properties:

• 1; 1 -
printf (11 i
printf (11 i

•
l. - 1 ;
printf { 11 i
printf{"i

is %d\n 11 ,
• %d\n 11

, 1S

• %d\n", 1S .
%d\n", 1S

- -i) ;
i) ;

i- -) ;
i) ;

/* prints "i is 0 11 */
I * • t tl J.• 1' S O 11 * / prin s

/* prints 11 i is 1 11 */
/* prints ''i is 0 1' */

When++ or - - is used more than once in the same expression, the result can
often be hard to understand. Consider the fol lowing statements:

• 1; 1 -
• 2; J -

k - ++i + j++;

What are tl1e values or i. j. and k after these statements are executed'? Since i is
incremented before its value is used. but j is incren1ented after it is used. the last
statement is equjvaJenL to

. • 1; 1 - J_ +
k

. . - 1 + J ;
• .

1; J - J +

so the fin al values of i, j, and k are 2, 3, and 4, respectively. ln contrast. executing
the statements

• l; l. -
J - 2;
k - • 1++ + j++;

will give i, j, and k the values 2, 3, and 3, respectively.
For the record, the postfix versions of++ and - - have higher precedence than

unary plus and minus and are left associative. The prefix versions have the same
precedence as unary plus and minus and are right associative.

4.4 Expression Evaluation

Table 4.2 summarizes tbc operators we've seen so far. (Appendix A has a sin1ilar
table that shows all operators.) The first column sho.,,vs the precedence of each

Q&A 67

(and indeed, bolh slandards guarantee that this is the case, provided that the value
of a / b is ''representable"). The problen1 is that there are two ways for a / b and
a % b to satisfy this equality i.f either a or b is negative, as seen in C89, where
either - 9 / 7 is -J and - 9 % 7 is -2, or - 9 / 7 is -2 and - 9 % 7 is 5. In the first
case, (- 9 / 7) * 7 + - 9 % 7 has the value - 1 x 7 + -2 = -9, and in the second

8 case, (- 9 / 7) * 7 + - 9 % 7 has the value -2 x 7 + 5 = -9. By the time C99 rolled
around, 1nost CPUs were designed Lo truncate the result of division toward zero, so
this was written into the standard as the only allowable outcome.

Q: If C has lvalues, does it aJso have rvalues? [p. 59]
A: Yes, indeed. An [value is an expression that can appear on the left side of an assign­

ment; an rvalue is an expression that can appear on the right side. Thus, an rvalue
could be a variable, constant, or 1nore complex expression. In this book, as in the C
standard, we'll use the term ''expression" instead of "rvalue."

*Q: You said that v += e isn't equivalent to v = v + e if v has a side effect. Can you
explain? [p. 60]

A: Evaluating v += e causes v to be evaluated only once; evaluating v = v + e causes v
to be evaluated twice. Any side effect caused by evaluating v will occur twice in
the latter case. In the following example, i is incremented once:

a[i++J += 2;

If we use= instead of+=, here's what the statement will look like:

a[i++] = a[i++] + 2;

The value of i is rnodified as well as used elsewhere in the staten1ent, so the effect
of executing the statement is undefined. It's likely that i will be incremented
twice, but we can 't say with certainty what will happen.

Q: Why does C provide the ++ and - - operators? Are they faster than other
\vays of incrementing and decrementing, or they are just more convenient? [p.
61]

A: C inherited + + and - - from Ken Thompson's earlier B language. Thompson
apparently created these operators because bis B compiler could generate a more
coinpact translation for + + i than for i = i + 1. These operators have become a
deeply ingrained part of C (in fact, n1any of C's 1nost famous idioms rely on them).
With 1nodern compilers, using ++ and - - won't n1ake a compiled program any
smaller or faster; the continued popularity of these operators sten1s n1ostJy from
their brevity and convenience.

Q: Do++ and -- ,vork with float variables?

A: Yes; the increment and decrement operations can be applied to floating-point num­
bers as well as integers. ln practice, however, it's fairly rare to increment or decre­
ment a float variable.

68 Chapter 4 Expressions

Section 4.1

*Q: When l use the postfix version of++ or - -, just ,vben is the increment or dec­
rement performed? [p. 62]

A: That's an excellent queslion. Unfortunately, it's also a difficult one to answer. 111e
C standard introduces the concept oJ ·'sequence point" and says that "updating the
stored value of the operand shall occur belween the previous and the next sequence
point:' There are various kinds of sequence points in C: the end of an expression
slatement is one exan1ple. By lhe end of an expression statement, all increments
and decrements within the statement tnusl have been performed; the next staternenL
can't begin to execute until this condition bas been met.

Certain operators that we'll encounter in 1ater chapters (logical and, logical or,
conditional, and Coffilna) also impose sequence points. So do function call<,: the
argun1ents ir1 a function call must be fully evaluated before the call can be per­
formed. lf an argument happens to be an expression containing a++ or - - opera­
tor, the increment or decrement must occur before Lbe call can take place.

Q: What do you mean ,'Vhen you say that the value of an expression statement is
discarded? [p. 65]

A: By definiLion, an expression represents a value. If i has the value 5, for example,
then evaluating i -1- 1 produces the value 6. Let's tum i + 1 into a staten1ent by
putting a senticolon after it:

i + 1;

When this state1nent is executed, the value of i + l is computed. Since we have
failed to save this value-or at least use it in sorue way-it is lost.

Q: But what about statements like i = l; ? I don't see what is being discarded.
A: Don' t forget that = is an operator in C and produces a value just like any other

operator. The assignment

i::: 1;

assigns 1 to i. The value of the entire expression is 1, which is discarded. Discard­
ing the expression's value is no great loss. since the reason for writing the state­
ment in the fu·st place was to modify i.

Exercises

I. Show the output produced by euch of the following program fragments. Assume that i. j.
and k are int variables .
{a) ' J. - S· , •

J = 3. ,
printf(11 %d %d II, ' I • • % j) ; :L J, l.

(b) • 2; • 3; J. - J -
printf (11 %d 11 , (i + 10) % j) ;

(c) •
J. - 7· I

•
J - 8; k - 9;

printf (11 %d 11 , (i + 10) % k I j) ;

Section 4.2

Exercises 69

(d) i = 1 ; j = 2; k - 3 ;
printf(11 %d 11

, (i + 5) % (j + 2) / k);

el) *2. Tf i and j are positive integers, does (-i) /j always bave the same value as - (i/j)? Jus­
tify your answer.

3. What is the value of each of the following expressions in C89? (Give all possible values jf
an expression may have n1ore than one value.)

la) B / 5

(b) - 8 / 5
(c) 8 / -5
(d) -8 / -5

4. Repeal Exercise 3 for C99.

5. What is the value of each of the following expressions in C89'! (Give all possible values if
an expression n1ay have n1ore than one value.)

(a) 8 % 5
(b) -8 % s
(c) 8 % -5
(d) -8 % -5

6. Repeat Exercise 5 for C99.

7. The algorith1n for con1puting the UPC check digit ends wilh the following steps:

Subtract I fro1n the total.
Compute the ren1ai11der when the adjusted total is divide-el by 10.
Subtract the remainder fron1 9.

lt's Le1npting to try to simplify the algorithm by using these steps instead:

Compute the (enJainder when the cotaJ is divided by I 0.
Subo·act the ren1ai nder fron1 I 0.

Why doesn't this technique work?

8. Would the upc. c progra111 sci II work if rhe expression 9 - ((total - 1) % 1 0) were
replaced by (10 - (total% 10)) % 10?

G 9. Show the output produced by each of the following program fragments. Assume that i. j.
and k are int variabl.es.

(a) ' 7;
.

8; l - J -
' *=

.
l; l J +

print£ (11 %d %d" I

. j) ; l,

{b) i .
k l; - J - -

•
1 +: • J +: k;
print£ ('' %d %d %d" • .

k) ; 1, J I ,
(c)

.
l;

.
2 · k 3; l - J - I -

•
1 -= j -= k;
print£ ("%d %d %d"

. • k) ; J. / J / ,
(d) • 2; • l; k O; J. - J - -.

*=
. *= k; i J

printf (11 %d %d %d ,, I • .
k) ; 1. I J '

70 Chapter 4 Expressions

Section 4.3

Section 4.4

J 0. Show the output produced by each of the folJowing program fragments. Assume that i and
j are int variables.

(a) i = 6; . . .
J = J.. +=]. ;
printf("%d %d'', i, j);

(b) i = 5;
j = (i -= 2) + l;
printf (" %d %d 11 , i, j) ;

(c) i = 7;
j = 6 + (i = 2.5);
printf ("%d %d11 , i, j) ;

(d) i ::; 2 ; j = 8 ;
j ::; (i ::; 6) + {j = 3};
printf (11 %d %d11 , i, j);

*1 1. Show the output produced by each of the foUo~ving program fragments. Assume that i, j,
an<l k are int variables.
(a) •

1 - l· I

print£ (11 %d ,, i++ - 1) ; I

printf (11 %d 11
, i} ;

(b) i 10; • S; - J -
print£ ('' %d II

. ++j) ; J.++ -I

printf (11 %d !!,d II q I ' 1, j) ;
(c) • 7; • 8; l - J -

printf (11 %d II i++ - - -j} i I

printf (11 %d ~a11
0 '

•
J.., j) i

(d) • 3; • 4; k 5; l. - J - -
printf (11 %d II • j++ --k) ; 1++ - · + I

print£ (11 %d %d %d II'
. • k); J_ I J I

l2. Show lhe output produced by each of the foUowing program fragments. Assume that i and
j are int variables.

(a) i = 5;
j = ++i * 3 - 2;
printf(11 %d %d 11 , i, j};

(b) i = 5;
j = 3 - 2 * i++;
printf(11 %d %d 11

, i, j);
(c) i = 7;

j = 3 * i-- + 2;
printf (11 %d %d 11 , i, j) ;

(cl) i = 7;
j = 3 + --i * 2;
printf(11 %d %d 11 , i, j};

G 13. Only one of the expressions ++i and i++ is exact ly the san1e as (i += l}; \.Vhich is it?
Justify your answer. ,

14. Supply parenlheses Lo show how a C compiler would interpret each of the following expres•
•

SIODS.

Section 4.5

(aj a* b - C * d + e
(~ a I b % c / d
(c) - a - b + c - + d
(d) a * - b / c - d

Programming Projects 71

I 5. Give the values of i and j after each of the following expression statemeats bas been exe­
cuted. (Assume thaL i bas the value l initially and j has the value 2.)

(a) i += j;
(b) i--;
(c) i * j / i;
(d) i % ++j;

Programming Projects

I. Write a program that asks the user to enter a two-digiL number, then prints the number with
irs digits reversed. A session with the progran1 should have the foUowing appearance:

Enter a two-digit number: 28
The reversal is: 82

Read the number using %d, then break it into two digirs. Hint: lf n is an integer. then n % 1 o
is the last digit inn and n / 10 is n with tbe last digit removed.

9 2. Extend the program in Programming Project I to handle three-digit numbers.

3. Rewrite the progran1 in Programming Project 2 so that it prints the reversaJ of a three-digit
nun1ber without using arithn1etic to split the number inLo digits. Hint: See the upc. c pro­
gra111 of Section 4. l .

4. Write a progran1 that reads an integer enLered by the user and displays it in octal (base 8):

Enter a number between 0 and 32767: 1953
In octal, your number is: 03641

The output should be displayed using tive digits, even if fewer digits are sufficienL. Hint: To
convert the number lo octal, first divide iL by 8; the remainder is the last digit of the octal
nun1ber (1, in this case). Then divide the original number by 8 and repeat the process lo
arrive at the next-to-last digit. {printf is capable of displaying nu1nbers in base 8, as we'll
see in Chapter 7, so Lhere's actually an easier way to write this program.)

5. Rewrite the upc. c program of Section 4.1 so that the user enters 11 digits a1 one time,
instead of entering one digit. then five digits. and then anal.her five digits.

Enter the first ll digits of a UPC: 01380015173
Check digit: 5

6. European countries use a 13-digit code, known as a ELTropean Article Nu1nber (EAN)
instead of the 12-digit Universal Product Code (UPC) found in North America. Each BAN
ends with a check digit, just as a UPC does. The technique for calculating the check digit is
also similar:

Add the second. fourth. sixth, eighth, tenth, and twelfth digits.
Add lhe first. third. fifth. seventh. ninth, and clevenLh digirs.
Multiply the first stnn by 3 and add it to the seconu surn.

72 Chapter 4 Expressions

Subtract 1 from Lhe total.
Compute the remainder ,vhen Lhe adjusted total is divided by 10.
Subtract Lhe remainder from 9.

For example. consider Gulli.ioglu Turkish Delight Pistachio & CoconuL which bas an EAN
of 8691484260008. The first sum is 6 + 1 + 8 + 2 + 0 + 0 = 17. and the second sum is 8 + 9 +
4 + 4 + 6 + 0 = 31. Multiplying lhe first sum by 3 and adding the second yields 82. SubtracL­
ing l gives 81. The remainder upon dividing by 10 is 1. When the remainder is subtracted
from 9, tbe result is 8, which matches lhe last digit of the original code. Your job is to mod­
ify the upc . c program of Section 4.1 so that iL caJcuJates the check digit for an EAN. The
user will enter the first 12 digit<; of the EAN as a single number:

Enter the first 12 digits of an EAN: 869148426000
Check digit: 8

7 4 Chapter 5 Selection Statements

5.1 Logical Expressions

Table 5.1
Relational Operators

Several of C's statements, including the if statement. must test the value of an
expression to see if it is "true" or "false." For exan1ple, an if statement might need
to test the expression i < j; a true vaJue wouJd inrucate that i is less than j. In
many programming languages, an expression such as i < j would have a speciaJ
"Boolean" or "logical'. type. Such a type would have only two values, false and
true. In C, however, a comparison such as i < j yields an integer: either O (false)
or 1 (true). With this in mind, let's look at the operators LhaL are used to build logi­
cal expressions.

Relational Operators

C's relational operators (Table 5.1) correspond to the<,>,<, and> operators of
mathematics, except Lhat they produce O (false) or I (true) when used in expres­
sjons. For exan1ple, tbe value of 10 < 11 is I; the value of 11 < 10 is 0.

< less than
> greater than

<= less than or equal to
>= greater than or equal to

The relational operators can be used to compare integers and floating-point
uun1bers, wi lh operands of mixed types allowed. Thus, l < 2 . 5 has the value 1,
while 5. 6 < 4 has tJ1e value 0.

The precedence of lhe relational operators is lower than that of the arithmetic
operators: for example, i + j < k - 1 means (i + j) < (k - 1) . The relational
operators are left associative.

The expression

is legal in C. but doesn't have the rneaoioe that you might expect. Since the< oper­
ator is left associative, this expression is equiva1enl to

(i < j) < k

In other words, the expression first tesLS whether i is Jess than j : the J or O pro­
duced by this cornparison is then compared Lo k. The expression does nor tesc
whether j Lies between i and k. (We' 11 see later in this section that the correct
expression would be i < j && j < k.)

5.2 The if Statement 77

When an if staten1ent is executed. the expression in lhe parentheses is evalu­
ated; if the value of tl1e expression is nonzero- which C interprets as true the
statement after the parentheses is executed. Here's an example:

if (lin e_num == MAX_LINES)
line_num = O;

The statement line_nurn = O; is executed if the condition line num -­
MAX_ LINES is true (bas a nonzero value).

Don't confuse== (equality) with= (assignment). The staten1ent

if (i == 0) ...

tests whether i is equal Lo 0. However, the statement

if (i = 0) ...

assigns Oto i, then tests whet.her tl1e result is nonzero. ln th is case, the test always
fails.

Confusing == with = is perhaps the most coffilnon C programming en·or,
probably because = means "is equal to" in mathematics (and in certain program­
nung languages). Some compilers issue a warning if they notice = where== would
normally appear.

Often the expression in an if statement will test whether a variable falls
within a range of values. To tesL whether 0 < i < n, [or example, we'd write

idiom if (o < = i && i < n) ...

To tesL tJ1e opposite condition (i is outside the range). we'd write

Idiom if (i < o I I i >= n) ...

compound statement

Note the use of the I I operator instead of the && operator.

Compound Statements

In our if statemenl ten1plate, notice that state,nent is singular, not plural:

if (expression) s1ate,nent

What if we want an if statement to control two or more statements? That's where
the con1pound statement comes in. A compound statemenl bas the form

{ state1ne11ts }

By putting braces around a group of statements, we can force the co1npiler to treat
it as a sjngle statement.

78 Chapter 5 Selection Statements

if statement with
else clause

Here ·s an example of a compound statement:

{ line_num = O; page_num++; }

For clarity, r'll usually put a compound statemenL on several lines, with one state•
ment per line:

{

}

line num "' O;
page_num++;

Notice that each inner state,nent still ends with a semicolon. but the compound
statement itself does not.

Here's what a compound statement would look like when used inside an if
staten1ent:

if (line_num == MAX_LINES) {
line_num = 0;
page_num++;

}

Co1npound statements are also common in loops and other places where the syntax
of C requires a single statement, but we want more than one.

The else Clause

An if statement may have an else clause:

if (expression) staternent else starenient

The statement thaL follows the word else is executed if the expression in paren­
theses bas the value 0.

Here·s an example of an if statement with an else clause:

if (i > j)
max - i;

else
max - .

J ;

Notice that botb •'inner" statements end with a semicolon.
When an if state,nenL contains an else clause, a layout issue arises: where

should the else be placed? Many C programmers align it with the if at the
beginning of the statement, as in the previous example. The inner statements are
usually indented, ba1 if they 're short they can be put on the same line as the if and
else:

if (i > j) max - i;
else max= j;

5.2 The if Statement 79

There are no restrictions on what kind of statements can appear inside an if
statement. la fac t, it's not unusual for if state1nents to be nested inside other if

statements. Consider the following if statement, which finds the largest of the
numbers stored in i, j, and k and stores that valne in max:

if (i > j)
if (i > k)

max - ' i;
else

max - k;
else

if (j > k)
max - ' J i

else
max - k;

if statements can be nested to any depth. Notice how aligning each else wilh the
matching if n1akes the nesting easier to see. l f you still find the nesting confusing,
don't hesitate to add braces:

if (i > j) {
if (i > k)

max - J. ;

else
max = k;

} else {
if (j > k)

max= •
J ;

else
max - k· (

}

Adding braces ro staten1ents--even when they're not necessary-is like using
parentheses in expressions: both techniques help make a pro1:,,1Tam mure readable
while at the same time avoiding the possibility that the compiler woo 't understand
lhe progra1n the way we thought it did.

Some programn1ers use as many braces as possible inside if statements (and
iteration statements as well). A programmer who adopts this convention would
include a pair of braces for every if clause and every else clause:

if (i > j) {
if (i > k) { .

max = 1.;

} else {
max = k;

}
} else {

}

if (j > k) {
' max=- Ji

} else {
max = k;

}

80 Chapter 5 Selection Statements

Using braces even when they·re nol required has Lwo advantages. First. the pro­
gram beco,nes easier to modify, because n1ore slalen1ents can easily be added to
any if or else c]ause. Second, it helps avoid errors that can resulL fro1n forget­
ting to use braces \.Yhen adding staten1ents to an if or else clause.

Cascaded if Statements

We' ll often need to test a series of conditions, stopping as soon as one of Lhen1 is
true. A ·•cascaded" if statement i.s often the best way to write such a series of
tests. For example, the following cascaded if staten1ent tests whether n is less
Lhan 0, equal to 0, or greater than 0:

if (n < O)

printf (11 n is less than 0\n" l ;
else

if (n == O)
print£ ("n is equal to 0\n 11) ;

else
printf ("n is greater than O\n");

Although Lhe second if statement jg nested inside the first. C programmers don 't
usually indent it. Instead. they align each else with the original if:

if (n < 0)
printf("n is less than 0\n") ;

else if (n == 0)
printf("n is equal to O\n") ;

else
printf("n is greater than O\n") ;

This arrangement gives tbe cascaded if a distinctive appearance:

if (expression)
stare,nent

else if (expression)
staten1ent

else if (expressLon)
staten1ent

else
staten1e1Ir

The last two lines (else stare,nent) aren't always present. of course. This way of
indenting the cascaded if staten1ent avoids the problem of excessive indentation
when the number of tests is large. Moreover, it assures the reader that the statement
is nothing more than a series of tests.

Keep in mind that a cascaded if statement isn't some new kind of statement;
it's just an ordinary if statement that happens to have another if state1nent as its
else clause (and that if staternenl has another if statemenl as its else clause,
ad infinitum).

5.2 The if Statement 81

PROGRAM Calculating a Broker's Commission

When sLocks are sold or purchased through a broker, the broker's commission is
oflen computed using a sliding scale that depends upon the value of the stocks
traded. Let·s say that a broker charges the amounts shown in the following table:

Transaction size
Under $2,500
$2,500-$6,250
$6,250-$20,000
$20,000-$50,000
$50,000-$500,000
Over $500,000

Cotnniission rate
$30 + 1.7%
$56 +0.66%
$76 +0.34%
$ LOO+ 0.22%
$155 + 0.11%
$255 + 0.09%

The minin1um charge is $39. Our nexl program asks the user to enter the amount of
the trade, then displays the amo unt of the con,mission:

Enter value of trade: 30000
Commission: $166.00

The heart of the program is a cascaded if statement that deter111ines which range
the trade fa lls into.

broke~c /* Calculates a broker's commission*/

#include <Stdio.h>

int main(void)
{

}

float commission, value;

printf("Enter value of trade: 11
);

scanf (11 %f", &value);

if (value< 2500.00f)
commission= 30.00f + .017f * value;

else if (value< 6250.00f)
commission= 56.00f + .0066£ * value;

else i£ (value< 20000.00f)
commission= 76 . 00f + .0034f * value;

else if (value< 50000.00f}
commission= 100.00f + .0022f * value;

else if (value< 500000.00f)
commission - 155.00f + .OOllf * value;

else
commission - 255.00f + .0009f * value;

if (commission< 39.00f)
commission= 39.00f;

printf("Commission: $%.2f\n", commission);

return O;

82 Chapter 5 Selection Statements

The cascaded if statement could have been written this way instead (the
changes are indicated in bold):

if (value< 2500 . 00f)
commission= 30 . 00f + . 017£ * value;

else if (value>= 2500 . 00f && value< 6250.00f)
commission= 56.00f + .0066f * value;

else if (value>= 6250.00f && value< 20000.00f)
commission= 76.00f + .0034£ * value;

...

Although Lhe program will still work, the added conditions aren' t necessary. For
example, the first if clause tests whether value is less than 2500 and, if so, com­
putes the COIDlnission. When we reach the second if test (value>= 2500. 00£
&& value < 6250 . OOf), we know that value can't be less than 2500 and
therefore must be greater than or equaJ to 2500. The condition value >=

2 5 O o . o of will always be trae, so there's no point in cl1ecking it.

The ''Dangling else'' Problem

When if state1nents are nested, we've got to watch out for the notorious "dangJing
e 1 se" problem. Consider the following example:

if (y != 0)
if (x I= 0)

result= x / y;
else

printf("Error : y is equal to O\n");

To wbich if statement does the else clause belong? The indentation suggests
lhat iL belongs Lo the outer if statement. However, C follows the rule that an else
clause belongs to the nearest if statement that hasn't already been paired with an
else. In this example, the else clause actually belongs to the inner if state­
ment. so a correctly indented version would look like Lhis:

i£ (y I= 0)
if (x !-= 0)

result= x / y;
else

printf (11 Error: y is equal to O \n 11) ;

To make the else clause part of the outer if statement, we can enclose the inner
if statement in braces:

if (y I= 0) {
if (x I= 0)

result= x / y;
} else

printf ("Error: y is equal to O\n") ;

This example illustrates the value of braces; if we'd used them in the original if
state1nent, we \VOuldn 't have gotten into this situation in the first place.

conditional
expression

5.2 The if Statement 83

Conditional Expressions

C's if statement allows a program to perform one of two actions depending on the
value of a condition. C also provides an operator that allows an expression to pro­
duce one of two values depending on the val ue of a condition.

The co,1ditio1ial operator cons ists of two symbols (? and :). whicb must be
used together in the following way:

exprl, eApr2. and expr3 can be expressions of any type. The resulting expression is
said to be a conditional expressio,i. The conditional operator is unique among C
operators in thal it requires three operands instead of one or two. For this reason, it
is often referred to as a ternary operator.

The conditional expression eJ.prl ? fhq1r2 : ex11r3 sl1ould be read "if exprl
then expr2 else expr3." The expression is evaluated in stages: exr>rl is evaluated
first; if its value isn't zero. then expr2 is evaluated, and its value is the value of the
entire conditional expression. " . the value of e.'t:prl is zero, then the value of ex1;r3
is the value of the conditional .

The following example illustrates the conditional operator:

int ' • k; l. , J ,

• l; 1 -
• 2; J -

k
. • ? • . I* k is 2 */ - l. > J l. . J ; now .

k (i 0 ? • 0)
.

/* k • 3 *I - >= 1 . + J ; l.S now .

The conditional expression i > j ? i : j in the first assignment Lo k returns the
value of either i or j, uepenrung on which one is larger. Since i has Lhe value I
and j bas the value 2, the i > j co1nparison fails, and the value of the conrutional
is 2, which is assigned to k . ln the second assignment to k, the i >= o comparison
succeeds; the conditional expression (i >= O ? i : O) has the value J, which is
then added to j to produce 3. The parentheses are necessary, by Lhe way; the prece­
dence of Lhe conditional operator is less Lhan that of the other operators we've dis­
cussed so far, with the exception of the assignment operators.

Conditjooal expressions tend to make programs shorter but harder to under­
stand, so it's probably best to avoid them. There are, however. a few places in
which they're tempting; one is the return statement. Instead of writing

if (i > j)
return i;

else
• return Ji

many programn1ers would write

return i > j ? i : j;

88 Chapter 5 Selection Statements

To save space, programmers somelimes pul several case labels on the same line:

switch (grade) {

}

case 4: case 3: case 2: case l:
printf (11 Passing t1) ;

break;
case O: printf ("Failing ti) ;

break;
default: printf('1Illegal grade'');

break;

Unfortunately, there·s no way to write a case labeJ Lbat specifies a range of vaJues,
as there is in some programming languages.

A switch statement isn't required to have a default case. If default is
missu1g and the value of the controUing expression doesn't match any of the case
labels, control simply passes to the next statement after the switch.

The Role of the break Statement

No\V, let's take a closer look at the mysterious break statement. As we've seen,
executing a break statement causes the program to "break" out of the switch
statement~ execution conlinues at the next staten1ent after the switch.

The reason that we need break has lo do with the fact that the switch state­
ment is reaUy a form of "computed jump.'' When the controlling expressjon is
evaluated, control jumps to the case label matching the value of the switch
expression. A case label is ooLhing more than a marker incLicating a position within
the switch. When the last statement in the case has been executed, control ·'falls
througl1'· Lo the first state,nent in the foJlowing case; the case label for the next case
is ignored. Without break (or some other juo1p statement), control will flow from
one case into the next. Consider the following switch statement:

switch (grade) {

}

case 4: printf(11 Excellent 11
);

case 3: printf("Good'');
case 2: printf (11 Average 11

) ;

case 1: printf(11 Poor 11);

case O: printf (11 Failing") ;
default: printf (11 Illegal grade ti) ;

If Lhe value of grade is 3. the message printed is

GoodAveragePoorFailingillegal grade

Forgetting to use break is a common error. Although omitting break is son1e­
times done intentionally to allow several cases to share code, it's usual1 y just an
oversight.

5.3 The switcl1 Statement 89

Since del iberately fall ing through fron1 ouc case into the next i.s rare, it's a
good idea Lo point out any deliberate omission of break:

switch (grade) {

}

case 4; case 3: case 2: case l:
• num_passing++;

/ * FALL THROUGH*/
case 0: total_grades++;

break;

Without the comment. someone nlight laler fix the "error·· by adding an unwanted
break state1nent.

Although tbe last case in a switch staten1en1 never needs a break state­
ment, it's common practice to put one IJJere anyway lo guard against a ··1nissing
break'' problem if cases should later be added.

PROGRAM Printing a Date in Legal Form

Contracts and other legal documents are often dated in the following way:

Datecl this ____ day of· ____ . 20_

Lef s write a program that displays dates in this form. We '11 have the user enter the
date in 111onth/day/year fonn, then we'll display the date in "legal'· form:

Enter date (mm/dd/yy) : 7/19/14
Dated this 19th day of July, 2014.

We can gel printf to do most of lhe formatting. 1-Jowever. we're lef1 \Vith two
problems: how to add 'th"' (or ··st" or '·na·· or "rd'') to the day, and how to print the
month as a word instead of a number. Fortunately. the switch statc1nent is ic.leal
for both situations; we· 11 have one switch print the day suffix and another print
the month name.

date.c I* Prints a date in legal form * /

#include <stdio.h>

int main(void)
{

int month, day, year;

printf("Enter date (mm/dd/yy}: 11
);

scanf(11 %d /%d /%d", &month, &day, &year);

printf ("Dated this %d" , day) ;
switch (day) {

case 1: case 21 : case 31:
printf ("st "); break;

case 2: case 22:
printf (11 nd 11) ; break;

90 Chapter 5 Selection Statements

}

}

case 3: case 23:
printf("rd"); break;

default: printf(11 th"); break;

printf (" day of ") ;

switch (month) {

}

case l: printf (11 January 11) ;

case 2: printf ("February") ;
case 3: printf (11 March11

) ;

case 4: printf ("April") ;
case 5: printf (11 May") ;
case 6: print£ ("June 11) ;

case 7: printf ("July") ;
case 8: printf ("August");
case 9: printf("September");
case lO: printf ("October") ;
case 11: printf ("November") ;
case 12: printf ("December") ;

printf(", 20%.2d.\n", year);
return O;

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

Note the use of%. 2d to display Lhe last two digits of the year. If we had used
%d instead, single-digit years would be displayed incorrectly (2005 ,vould be
printed as 205).

Q&A

Q: My compiler doesn't give a warning when I use= instead of==· Is there some
way to force the compiler to notice the problem? [p. 77]

A: Here 's a trick that some programmers use: instead of wriUng

if (i == 0) ...

they habitually write

if (0 == i) ...

Now suppose that the== operator is accidentally written as=:

if (0 = i) ...

The con1piler will produce an error message. since it's not possible to assign a
value to 0. l don't use this trick. because I think it 1nakes programs look unnatural.
Also, it can be used only when one of the operands in the test condilion isn't an
lvalue.

Fortunately, many compilers are capable of checking for suspect uses of the=
operator in if conditions. The GCC compiler, for exa111ple, will perform Lhis

Section 5.1

}

case 25: print£ ("Quarter") ;
break;

Exercises 93

If each case consists of a single action (a call of printf, in this example), the
break statement could even go on lhe same line as the action:

switch (coin) {

}

case l: printf(11 Cent"); break;
case 5: printf("Nickel"); break;
case 10: printf("Dime"); break;
case 25: printf("Quarter"); break;

The other method is lo put the statements under Lhe case label, indentjng the
statements to 111ake the case label stand out:

switch (coin) {

}

case 1:
printf("Cent 11);

break;
case 5:

printf ("Nickel 11
) ;

break;
case 10:

printf("Dime'');
break;

case 25:
printf ("Quarter") ;
break;

In one variation of this sche111e. each case label is aligned under the word switch.
The first 1netbod is fine when t.he statements in each case are short and there

are relatively few of them. The second metl1od is better for Jarge switch state­
ments in which the statements in eacl1 case are complex and/or numerous.

Exercises

l. The fo llowing p1ogran, fragi11ents illustrate lhe relational and equality operators. Show the
output produceu by eacb. assuming thaL i. j. and k are int variables.

(a) i = 2 ; j = 3 ;
k = i * j == 6;
printf ("%d" , k) ;

(b) i = 5; j = 10; k = 1;
printf(11%d 11

, k > i < j);
(c) i :: 3; j = 2; k = l;

printf ("Id" , i < j := j < k) ;

(~ i = 3; j = 4; k = 5;
printf (11 %d 11 , i % j + i < k) ;

94 Chapter 5 Selection Statements

Section 5.2

G 2. The following program frag,nents illustrale lbe logical operators. Show the output produced
by each, assu,ning that i, j. and k are int variables.

(aj i = 10; j = 5;
print:f ('1%d 11

, ! i < j);
(b) i = 2; j = 1;

printf ("%d" , ! ! i + ! j) ;
(c) i = 5; j = 0; k = -5;

print£ (11 %d 11
, i && j 11 k);

(d) i = 1; j = 2; k = 3;
print£ ("%d", i < j 11 k);

*3. The following program fragments illustrale the i:;hort-circuit behavior of logical expressions.
Show the output produced by each, asswning that i, j. and k are int variables.

(a) i = 3 ; j = 4 ; k = 5;
printf(11 %d ", i < j I I ++j < k);
printf("%d Id %d 1', i, j, k);

(b) i = 7 ; j = 8; k = 9;
printf(11 %d 11 , i - 7 && j++ < k);
printf("%d Id %d'1 1 i, J, k);

(C) i = 7; j = 8; k = 9;
print:f(11 %d 11

, (i = j) 11 (j = k));
printf(''%d %d %d11

, i, j, k);
(d) i = 1; j = 1; k = 1;

printf ('' %d 11 , ++i 11 ++j && ++k) ;
printf ("%d %d %d", i, j, k);

G *4. Write a single expression whose value is eilher-1, 0, or+ l, depending on whether i is less
than, equal lo, or greater than j, respectively.

*5. Ts the following if statement legal?

if (n >= 1 <= 10)
printf (1'n is between 1 and 10\n") ;

If so. what does il do when n is equaJ to O?

G *6. ls lhe following if statement legal?
if (n =c 1-10)

print£ ("n is between 1 and 10\n") ;

If so, what does it do when n is equal to 5?

7. What does lhe following staLement print if i has the value 17? Whal does it print if i has I.he
value-17?

printf(11 %d\n 11
, i >= O? i : -i);

8. The following if statement is unnecessarily complicated. SimpW"y it as much as possible.
CHi111: The entire slalemenl can be replaced by a single assignment.)
if (age>= 13)

if (age <= 19)
teenager - true;

else
teenager - false;

else if (age< 13)
teenager= false;

Section 5.3

Programming Projects 95

9. Are the following if statements equivalent? If not, why not?

if (score>= 90)
printf("A'');

else if (score>= 80)
print£ ("B") ;

else if (score>= 70)
printf ("C") ;

else if (score>= 60)
print£ ("D");

else
printf ("F");

if (score< 60)
printf ("F") ;

else if (score< 70)
print.£ ("D") ;

else if (score< 80)
printf("C");

else if (score< 90)
_printf ("B") ;

else
printf ("A") ;

G* I 0. What output does the following program fragment produce? (Assume that i is an integer
variable.)

i = 1;
switch (i % 3) {

}

case 0: printf("zero");
case 1: print£ ("one") ;
case 2: printf("two 11);

I I. The following table shows telephone area codes in the state of Georgia along with Lbe larg­
est city in each area:

Area code Major city
229 Albany
404 Atlanta
470 Atlanta
478 Macon
678 Atlanta
706 Collunbus
762 Columbus
770 Atlanta
912 Savannah

Write a switch statement whose controlling expression is the variable area_ code. If the
value of area_code is in the table, the switch statement will print the corresponding
city name. Otherwise, the switch statement will display the message "Area code not
recognized". Use the techniques discussed in Section 53 to make the switch state­
ment as simple as possible.

Programming Projects

I. Write a program that calculates how many digits a number contains:

Enter a number: 374
The number 374 has 3 digits

You may assu1ne that the number has no more than four digits. Hint: Use if statements to
test the nun,ber. For example. if the number is between 0 and 9, it has one digit. If the num­
ber is between l 0 and 99, it has two digits.

2:00 p.m.
3:45 p.01.

7:00 p.m.
9:45 p.m.

4:08 p.111.

5:55 p.m.
9:20 p.m.

11 :58 p.n1.

Programming Projects 97

Write a program that asks user lo enter a time (expressed in hours and ,ninutes, using the 24-
hour clock). The program then displays the departure and arrival times for the night whose
departure time is closest to that entered by tbe user:

Enter a 24-hour time: 13:15
Closest departure time is l2:47 p.m., arriving at 3:00 p.m.

Hinr; Convert the input into a time expressed in minutes since midnight. and compare iL to
the departure times, also expressed in minutes since m1dnighl. For exainple, 13: 15 is 13 x
60 + 15 = 795 minutes since n,iJnight. which is closer to 12:47 p.m. (767 nuoutes since
midnight) than to any of the other departure times.

9. Write a program that pro1npts the user to enter two dates and Lbeu indicates which date
comes earlier on the calendar:

Enter first date {mm/dd/yy): 3/6/08
Enter second date (mm/dd/yy) : 5/17/07
5/17/07 is earlier than 3/6/08

f> I 0. Using Lhe switch state1nenL write a program Lhat converts a nu1nerical grade into a letter
grade:

Enter numerical grade: 84
Letter grade: B

Use the following grading scale: A= 90-100, B = 80-89, C = 70-79, D = 60-69, F = 0-59.
Print an error 1nessage if Lhe grade is larger than 100 or less than O. Hint: Break che grade
into 1wo digits, then use a switch statement co test the ten's digit.

1 L. Write a progran1 that asks Lile user f'or a two-digit number. then prints the English word for
the number:

Enter a two-digit number: 45
You entered the number forty-five.

Hint: Break the number inlo two di.gits. Use one switch statement to print Lhe word for the
first digit ('·twenty.'' "thirty," and so forth). Use a second switch statement 10 print Lhe
word for the second digiL Don' L forget that the numbers between I I and 19 require special
treatment.

6 Loops

A program without a loop and a structured
variable isn't worth writing.

Chapter 5 covered C's selection statements, if and switch. This chapter intro­
duces C's iteration statements, which allow us to set up loops.

A loop is a statement whose job is to repeatedly execute some other stalement
(the loop body). fn C. every loop has a co11trolli1ig expression. Each time the loop
body is executed (an iteration of the loop), the controlling expression is evaluated;
if the expression is true-bas a vaJue that's not zero-the loop continues to exe­
cute.

C provides three iteration statements: while, do, and for, \Vhich are cov­
ered in Sections 6. J, 6.2, and 6.3, respectively. The while state1ne11t is used for
loops whose controlling expression is tested before the loop body is executed. The
do statement is used if the expression is tested after the loop body is executed. The
for statement is convenient for loops that increment or decrement a counting vari­
able. Section 6.3 also introduces lhe comma operator. which is used primarily in
for statements.

The Last two sections of this chapter are devoted to C features that are used in
conjunction with loops. Section 6.4 describes the break, continue, and goto
statements. break jumps out of a loop and rransfers control to the next statement
after the loop1 continue skips the rest of a loop iteration, and goto jumps lo

any statement within a function. Section 6.5 covers the nulJ statement, which can
be used to create loops with en1pty bodies.

6.1 The while Statement

Of all the ways to set up loops in C. the while state1nent is the simplest and most
fundamental. The while stateJnent has the form

99

102 Chapter 6 Loops

PROGRAM Printing a Table of Squares

Let's write a program that prints a table of squares. The program will first prompt
the user to enter a number n. [twill then prinl n lit1es of output, with each line con­
taining a number between l and n together with its square:

This program
Enter number

1

prints a table of squares.
of entries in table: s

2
3
4
5

1
4
9

16
25

Let's have the program store the desired au1nber of squares in a variable
named n. We'll need a loop that repeatedly prints a number i and its square, start­
ing with i equal to 1. The loop will repeat as long as i is less than or equal lo n.
We'll have to make sure to add l to i each tin1e through lhe loop.

We'll write lhe loop as a while statetnent. (Frankly, we haven·t got much
choice, since the while statement is lhe only kind of loop we've covered so far.)
Here's the finished program:

square.c /* Prints a table 0£ squares using a while statement * /

#include <stdio . h>

int main(void)
{

}

inti, n;

printf(11 This program prints a table of squares.\n11
);

printf("Enter number of entries in table: 11
);

scanf { " %d", &n) ;

i = l;
while (i <= n) {

printf (1' %10d%10d\n", i, i * i);

}

return o;

Note how square. c displays nu1nbers in neatly aligned columns. The u·ick
is to use a conversion specification like %l0d instead of just %d, taking advantage
of the fact that print£ right-justifies numbers when a field width is specified.

PROGRAM Summing a Series of N11mbers

As a second example of the while statement, let's write a program lhat sums a
series of integers entered by the user. Here's what the user will see:

6.2 The do Statement 103

This program sums a series of integers.
Enter integers (0 to terminate): 8 23 71 5 0
The sum is: 107

Clearly we' ll need a loop that uses scanf to read a nun1ber and then adds the
number to a running total.

Letting n represent the number just read and sum the total of all numbers pre­
vious]y read, we end up with the following program:

sum.c /* Sums a series of numbers*/

#include <Stdio . h>

int main(void)
{

}

int n, sum= O;

printf(11 This program sums a series of integers.\n");
printf(11 Enter integers (0 to terminate): ");

scanf (ti %d 11 , &n) ;
while (n ! = 0) {

sum+= n;
scanf (t1 %d 11

, &n) ;
}
printf(t1The sum is: %d\nt1, sum);

return O;

Notice that the condition n I= O is tested just after a nu1nber is read, allowing the
loop to terminate as soon as possible. Also note that there are two identical calls of
scan£, which is often hard to avoid when using while loops.

6.2 The do Statement

do statement

The do statement is closely related to the while statement; in fact, the do state-
1nent is essentially just a while statement whose controlling expression is tested
after each execution of the loop body. The do statement has the form

do statement while (expression) .
I

As with the while statement, the body of a do statement must be one statement
(possibly compound, of course) and the controlling expression must be enclosed
within parentheses.

When a do statement is executed, the loop body is executed first, then the con­
trolling expression is evaluated. If the value of the expression is nonzero, the loop

1 04 Chapter 6 Loops

body is exect1ted again and then the expression is evaluated once more. Execution
of the do statement terminates when the controlling expression has the value 0
after the loop body has been executed.

Let's rewrite the countdown exan1ple of Section 6.1, using a do statement this
ti1ne:

i = 10;
do {

printf("T minus %d and counting\n", i); .
--1;

} while (i > 0);

When the do statement is executed, the loop body is first executed, causing the
message T minus 10 and counting to be printed and i to be decremented.
Tl1e condition i > o is now tested. Since 9 is greater than 0, the loop body is exe­
cuted a second time. This process continues until the message T minus 1 and
counting is printed and i becon1es 0. The test i > o now fails, causing the loop
to terminate. As this example shows, the do statement is often indistinguishable
from the whi 1 e statement. The difference between the two is that the body of a
do statement is always executed at least once; the body of a while statement is
skipped entirely if the conu·olling expression is O initially.

Incidentally, it's a good idea to use braces in all do statements, whether or not
they're needed, because a do statement without braces can easily be mistaken for a
while statement:

do
printf("T minus %d and counting\n", i--);

whi 1 e (i > O) ;

A careless reader might think that the word while was the beginning of a while
statement.

PROGRAM Calculating the Number of Digits in an Integer

Although the while statement appears in C programs m11ch more often than the
do statement, the latter is handy for loops Lhat must execute at least once. To illus­
trate this point, let's write a program that calculates the number of digits in an inte­
ger entered by the user:

Enter a nonnegative integer: 60
The number has 2 digit(s).

Our strategy will be to divide tl1e user's input by 10 repeatedly until it
becomes 0; the number of divisions performed is the number of digits. Clear!)
we'll need some kind of loop, since we don't know bow many divisions it will take
to reach 0. But should we use awhile statement or a do statement? The do state­
ment turns out to be more attractive, because every integer even 0-has at least
one digit. Here's the program:

6.3 The for Statement 105

numdigits.c /* Calculates the number of digits in an integer * /

#include <Stdio.h>

int main (void)
{

}

int digits= 0, n;

printf ("Enter a nonnegative integer: 11) ;

scan£ ("%-d '' , &n) ;

do {
n /= 10;
digits++;

} while (n > o) ;

printf (11 The number has %-d digit (s). \n'', digits);

return O;

To see why the do statement is the 1ight choice, let's see what would happen if
we were to replace the do loop by a similar while loop:

while (n > 0) {
n I= 10;
digits++;

}

If n is O initially, this loop won't execute al all. and the progran1 would print

The number has o digit(s).

6.3 The for Statement

for statement

We now co1ne to the last of c·s loops: Lhe for staten1ent. Don't be discouraged by
the for statement's apparent complexity; it 's actually the best way to write many
loops. The for state1nent is ideal for loops U1at have a "counting" variable, but it's
versatile enougb to be used for other kinds of loops as well.

The for statement has the form

for (eXJJrl ; e.\'pr2 ; e.,pr3) stare,nenf

where exprl . expr?, and expr3 are expressions. Here's an ex.ample:

for (i = 10; i > O; i--}
printf ("T minus %d and counting\n", i) ;

When this for statement is executed, the varjable i is initialized to I 0, then i is
tested to see if it's greater than 0. Since it is, the message T minus 1 o and

11 O Chapter 6 Loops

for (sum= 0, i = l; i <= N; i++)
sum+= i;

The expression sum = O, i = 1 first assigns O to sum, then assigns I to i. With
additional commas, the for statement could initialize n1ore than two variables.

PROGRAM Printing a Table of Squares (Revisited)

The square. c program (Section 6.1) can be improved by converting i ts while
loop to a for loop:

square2.c /* Prints a table of squares using a for statement*/

#include <Stdio . h>

int main(void)
{

}

inti, n;

printf(11 This program prints a table of squares.\n");
printf(11 Enter number of entries in table: 11);

scanf(11 %d 11 , &n);

for (i = l; i <= n; i++)
printf(11 %lOd%lOd\n 11 , i, i * i);

return O;

We can use this program to illustrate an important point about lhe for state­
ment: C places no restJictio·ns on the three expressions that control its behavior.
Although these expressions usually initialize, test, and update the same variable,
there's no requirement that lbey be related in any way. Consider the following ver­
sion of the same program:

square3.c I * Prints a table of squares using an odd method * /

#include <Stdio.h>

int main(void)
{

inti, n, odd, square;

printf("This program prints a table of squares.\n");
print£ (11 Enter number of entries in table: 11) ;

scanf (11 %d 11 , &n) ;

•
1. = l· ,
odd= 3;
for (square= l; i <= n; odd+= 2) {

printf ("%10d%-10d\n", i, square);
++i;

1 12 Chapter 6 Loops

if (d < n)
printf (11 %d is divisible by %d\n", n, d);

else
print£ (11 %d is prime\n 11 , n);

The break statement is parlicularly useful for writing loops in whjch the exit
point is in the middle of the body ra1her than at the beginning or end. Loops that
read user iopul. terminating when a particular value is entered, often fall into this
category:

for (; ;) {

}

printf ("Enter a number (enter o to stop) : 11) ;

scanf (11 %-d" 1 &n);

if (n == o)
break.;

printf ("%-d cubed is %d\nJt, n, n * n * n) ;

A break staten1enl transfers control out of the inner,nnst enclosing while,
do, for, or switch statement. Thus. when these statements are nested, the
break statement can escape on]y one level of nesting. Conc:;ider tl1e case of a
switch staten1ent nested insjde a while staten1ent:

while (...) {
switch (...) {

break;

}
}

The break statement transr ers control out of the switch statement. but not out
of the while loop. I ' ll return to tbis point later.

The continue Statement

The continue statement doesn' t really belong here, because it doesn't exit Erom
a loop. lt ·s similar to break. though. so its inclusion in this section isn ·t com­
pletely arbitrary. break tro11sfers control just past the end of a loop. whi le
continue transfers control to a JJOinl just be.fore the end of Lhe loop body. With
break. control leaves the loop; with continue, co11lrol remains inside the loop.
There's another difference between break and continue: break can be used
i.n switch statements and loops (while, do, and for). whereas continue is
limited to loops.

The follo'vving example, which reads a series of numbers and computes lhe ir
sum, illustrates a simple use of continue. The loop terminates when 10 nonzero
numbers have been read. Whenever the number O is read. the continue state­
ment is executed, skippi ng the rest of the loop body (the state1nencs sum += i;
and n++;) but remaining inside the loop.

114 Chapter 6 Loops

exi t function ~ -5

done:
if (d < n)

printf(11 %-d is divisible by %d\n", n, d);
else

printf (11 %d is prime\n 11
, n);

The goto statement, a staple of older programming languages. is TareJy
needed in everyday C progranu11ing. The break, continue, and return state­
mei1ts-which are essentially restdcted goto statements-and the exit function
are sufficient to handle 1nost situations that migbt require a goto in other lan­
guages.

Nonetheless, the goto statement can be helpful once in a whi le. Consider the
problem of exiting a loop from within a switch statement As we saw earlier, Lhe
break statement doesn ' t quite have the desired effect: it exits from the switch,
but not from the loop. A goto sLatement solves the problem:

while (...) {
switch (...) {

on

goto loop_done; / * break won't work here*/
...

}
}
loop done: ...

The goto state1nent 1s also useful for exiling from nested loops.

PROGRAM Balancing a Checkbook

Many simple interactive programs are menu-based: U1ey present the user with a list
of commands to choose from. Once lhe user has selected a command. the program
performs the desired action, then prompts the user for another command. This pro­
cess continues until the user selects an '•exit" or ' ·quit" command.

The heart of such a program will obviously be a loop. lnside Lhe loop will be
statements Lhat pron1pt the user for a command, read the command, then decide
what action Lo Lake:

for (; ;) {

J

JJr0111pt user ro enter co,nn1and;
read co111111a11d;
execute co,nrnand;

Executing the command will require a switch statemeru (or cascaded if state­
ment):

for (; ;) {
pro,npt user to enter co1n111and;
r&1d co111mand;

switch (cofl'un.and) {

case co11z111and1 : pe1forn1 operation1; break;

6.4 Exiting from a Loop 115

case conm1and2 : peiforrn operation2 ; break;

case cotnn1a,u/
11

: peifonn operatio11
11

; break;
default: print error 111essage; break;

}
}

To illustrate this arrangemenl. 1el's develop a program that maintains a check­
book balance. The program will offer the user a menu of choices: clear the account
balance, credit ,noney to the account. debit money from the account, display the
current balance. and exit the program. The choices are represented by the in tegers
0, l . 2, 3, and 4, respectively. Here's what a session with the program will look

like:

*** ACME checkbook-balancing program***
Commands: O=clear, l=credit, 2=debit:, 3=balance, 4=exit

Enter command: l
Enter amount of credit: 1042.56
Enter command: 2 -
Enter amount of debit: 133.79
Enter command: 1
Enter amount of credit: 1754.32
Enter command: 2 -
Enter amount of debit: 1400
Enter command: 2 -
Enter amount of debit: 68
Enter command: 2 -Enter amount of debit: 50
Enter command: 3
Current balance: $1145.09
Enter command: 4

When the user enters the comm and 4 (exit), the program needs to exit from the
switch statement ancl the su1Tounding loop. The break staten1ent won't help,
and. we'd prefer not to use a goto statement. Instead, we'll have the program exe­
cute a return state1nent. which will cause the main function to return to the
operating system.

checking.c /* Balances a checkbook * /

#include <Stdio.h>

int main(void)
{

int cmd;
float balance= O.Of, credit, debit;

printf("* ** ACME checkbook-balancing program *** \n");
printf('1Commands: O=clear, l=credit, 2=debit, ");
printf ("3=balance, 4=exit\n\n");

116 Chapter 6 Loops

}

for (; ;) {

}

printf ("Enter command : ") ;
scanf (11 %d", &crnd);
switch (cmd) {

}

c.;3.se O:
balance= O.Of;
break;

case 1:
printf("Enter amount of credit: ");
scanf (11 %f 11 , &credit) ;
balance+= credit;
break;

case 2:
printf("Enter amount of debit: ");
scanf("%f 11 , &debit);
balance-= debit;
break;

case 3:
printf("Current balance: $%.2£\n", balance);
break;

case 4:
return O;

default :
printf("Commands : O=clear, l=credit, 2=debit, ");
printf("3=balance, 4=exit\n\n");
break;

Note that the return state1nent is not followed by a break statement. A break
in1medJate}y following a return can never be executed. and many compilers will
• • issue a warning n1essage.

6.5 The Null Statement

A statement can be null-devoid of symbols except for the semicolon at the end.
Here's an example:

J.• - O· · J. - 1· - I I - I

This line contains three statements: an assignment to i . a null statement. anti an
assignn1enl to j.

[!IJ The nulJ slalemenl is prima1ily good for one thing: writing loops whose bodies
are empty. As an example. recall the prime-finding loop of Section 6.4:

for (d = 2; d < n; d++)
if (n % d == O)

break;

Q&A 119

A: When the body of a for loop contains a continue statement, the while pat­
tern shown in Section 6.3 is no longer valid. Consider the following example from
Section 6.4:

n = O;
sum = O;
while (n < 10) {

scan£ ("%d", &i) ;
if (i == 0)

continue; . sum+= i;

n++ · I

}

At first glance, it looks as though we could convert the while loop into a for
loop:

sum = O;
for (n = O; n < 10; n++) {

scan£ ("%d", &i);
if (i == 0)

continue;
• sum+= i;

}

Unfortunately, this loop isn't equivalent to the original . When i is equal to 0. the
original loop doesn ' t increment n. but the new loop does.

Q: Which form of infinite loop is preferablet while (1) or for (; ;)? [p. 108]

A: C programmers have traditionally preferred for (; ;) for reasons of efficiency;
older con1pilers would often force programs to test the 1 condition each time
through the while loop. With modem compilers, however. there should be no dif­
f ere nee in performance.

Q: I've heard that programmers should never use the continue statement. ls
this true?

A: Tt's true that continue statements are rare. Still, continue is handy once i11 a
while. Suppose we're writing a loop that reads some input data, checks that it's
valid, and, if so, processes the input in some way. If there are a number of validity
tests, or if they're complex, continue can be helpful. The loop would look
something like tbis:

for (; ;) {
read data;
if (dtuafailsfirsr test)

continue;
i_f (data fails second test)

continue;

Section 6.1

Section 6.2

Section 6.3

Section 6.4

Exercises

I. What output does lhe following progrum fragment produce?

i = l;
while (i <= 128) {

print£ (11 %d 11
1 i) ;

i *= 2;
}

2. Whal ouLpuL Joes Lbe following program fragment produce'!

i = 9384;
do {

printf (11 %d 11
, i) ;

i I= 10;
} while (i > 0);

*3. What output does the following for Slalemenl produce'?

Exercises 121

for (i = 5, j = i - l; i > o, j > O; --i, j - i - 1)
printf(11 %d ", i);

0 4. Which one of Lhe following stat.emenL-. is not equivalent LO the other LVv'O (assunuog that the
loop bodies are the san1e)?

(a) for (i - o ; i < :LO ; i + +) ...

{b) for (i - O; i < 10; ++i) ...
(c) for (i - O; i++ < 10;) ...

5. Which one of the following staten1ents is not equivalent Lo the other two (assuming that the
loop bodies are the same)?

(a) while (i < 1 O) { ... }
(b) for (; i < 10;} { ... }
(c) do { ... } while (i < 10);

6. Translate rhe pro:;,•T~un fragment of exercise I into a single for suuemenL

7. Translate the progran1 fragn1ent of Exercise 2 into a single for stute1nenL

*8. Wbal output does the following for statemenl produce?

for (i = lO; i >= l; i /: 2)
printf(''%d '', i++);

9. Translate the for statement of Exercise 8 into an equivalent while staten,enl. You will
need one slalement in addition LO the while loop itself.

0 10. Show how lo replace a continue sratcnlcnl by an equivalent goto i.mlen1ent.

l l. Whal output does the following program fragment produce?

122 Chapter 6 Loops

Section 6.5

sum-= 0;
for (i = O; i < 10; i++) {

if (i % 2)
continue;

sum+= i;
}
printf (11 %d\n", sum) ;

8 12. The following "prin1e-testing" loop appeared in Section 6.4 as an example:

for (d = 2; d < n; d++)
if (n % d == O)

break;

This loop isn'l very efficient lt's not necessary to divide n by all numbers between 2 and
n -] to determjne whether it's prime. ln fact, we need only check divisors up Lo the square
rool of n. Modify the loop lo take advantage of this fact. Hint: Don't try to compute the
square root of n; instead, con1pare d * d with n.

*13. Rewrite the following loop so that its body is empty:

for (n = O; m > O; n++)
m /= 2;

f>* 14. Find the error in the following program Cragrneal and fix it.

if (n % 2 == 0) ;
printf ("n is even\n");

Programming Projects

1. Write a program that finds the largest in a series of numbers entered by the user. The pro­
gram must prompt the user to enter numbers one by one. When lhe user enters O or a nega­
tive number, the progrrun .must display lhe largest nonnegative number entered:

Enter a number: 60 -Enter a number: 38 .3
Enter a number: 4.89
Enter a number: 100.62
Enter a number: 75.2295
Enter a number: 0

The largest number entered was l00.62

Notice that the numbers aren't necessarily integers.

8 2. Write a program that asks lhe user lo enler two integers. tben calculates and displays their
greatest common divisor (GCD):

Enter cwo integers: 12 28
Greatest common divisor: 4

Hint: The classic algorithm for computing the GCD. known as Euclid's algorillun, goes as
follows: Let m and n be variables containing the two numbers. If n is 0, then stop: m con­
tains the GCD. Otherwise, compute the remainder when m is divided by n. Copy n into m
and copy che ren,ainder into n. Then repeat the process, starting with testing whether n is 0.

Programming Projects 123

3. Write a program that asks the user to enter a fraction. then reduces the fraction to lowest
terms:

Enter a fraction: 6/l2
In lowest terms: 1/2

Hint: To reduce a fraction to lowest tenns. first co111puce the GCD of the numerator and
denominator. Then divide both the numerator and denominator by the GCD.

9 4. Add a loop to the broker. c program of Section 5.2 so that the user can enter more than
one trade and the program \ViU calculate I.he commission on eacb. The program should ter­
minate when the user enters o as the trade vaJue:

Enter value of trade: 30000
Commission: $166.00

Enter value of trade: 20000
Commission: $144.00

Enter value of trade: 0

5. Programming Project I in Chapter 4 asked you to write a program tbar displays a two-digit
number with its digits reversed. Generalize the progran1 so that the ntunber can have one,
two, three, or more digits. Hin1: Use a do loop thal repeatedly divides the number by 10,
stopping when it reaches 0.

C> 6. Write a program that prompts the user to enter a number n, then prints a.lJ even squares
between J and n. For example, if the user enters 100, lhe program should print the follow­
ing:

4
16
36
64
100

7. Rearrange the square3. c program so that the for Joop initializes i, tests i, and incre­
ments i. Don't rewrite the program; in particular, don ·t use any n1ultiplications.

G 8. Write a program that prints a one-month calendar. The user specifies the number of days in
the monib and Lbe day of lhe week on which the month begins:

Enter number of days in month: 31
Enter starting day of the week (l=Sun, 7=Sat) : 3

1 2 3 4 5
6 7 8 9 lO 11 1-2

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Hint: This program isn · t as hard as it looks. The most important part is a for statement that
uses a variable i to count from I LO n, where n is the number of days in the month, printing
each value of i. Lnside the loop, an if state1nent cests whether i is the last day in a week; if
so. it prints a new-line character.

9. Programming Project 8 in Chapter 2 asked you to write a program that calculates lbe
remaining balance on a Joan after the first, second, and third monthly payments. Modify the
program so that it also asks t11e user to enter the number of payments and then displays the
balance remaining after each of these payments.

124 Chapter 6 Loops

10. Programming Project 9 in Chapter 5 asked you to write a program chat determines whjcb of
t\vo dates comes earlier on the calendar. Generalize the progra1n so U1at tbe user may enter
any nurnber of dates. The user will enter 0/0/0 to inilicate that no n1ore dates will be entered:

Enter a date (mm/dd/yy) : 3/6/08
Enter a date (rnrn/dd/yy): 5/17/07
Enter a date (rnrn/dd/yy): 6/3/07
Enter a date (rnrn/dd/yy): 0/0/0
5/17/07 is the earliest date

11. The value or the rnathemacicaJ constant e can be expressed as an infinite series:

e = I + I/ 11 + L/2 ! + l /3 ! + ...

Write a program that approxiinates e by con1puLing tbe value of

1 + I/ I ! + I /2 ! + 1 /3 ! + ... + J In I

where II is an integer entered by tbe user.

12. Modify Programming Project l J so that the program continues adding ten11s until the cur•
rent term becomes less than e, where £ is a srnall (ll()aling-po1nt) nun1ber entered by the
user.

7 Basic Types

Make no mistake about It: Computers process numbers­
not symbols. We measure our understanding (and control)

by the extent to which we can arithmetize an activity.

So far, we've use<l only two of C's basic (bu.ill-in) types: int and float. (We've
also seen _Bool. whjch is a basic type in C99.) This chapter describes the rest of
Lhe bac;ic types and discusses impo1tant issues about types in general. Section 7.1
reveals the full range of integer types, which include long integers, short integers.
and unsigned integers. Section 7.? inu·oduces the double and long double
types, which provide a larger range of values and greater precision than float.
Section 7.3 covers the char type, which we'U need in order to work with charac­
ter data. Section 7.4 tackles U1e thorny topic of converting a value of one type to an
equivalent value of another. Section 7.5 shows how lo use typedef ro define new
type names. Finally, Section 7.6 describes the sizeof operator, which 1neasures
Lhe an1ount of storage required for a type.

7.1 Integer Types

C supports lwo fundarnenlally differe11t kinds of numeric Lypes: integer types and
floating types. Values of an integer type are whole nun1bers. wl1ile values of a
floating type cau have a fTacLional part as wel l. The i_nteger types. in turn. are
divided into two categories: signed and unsigned.

Signed and Unsig,zed Integers

The leftmost bit of a signed integer (known as the sign bit) is O if the number is
positive or zero, 1 if it's negative. Thus, the largest 16-bit integer has the binary rep­
resentation

125

126 Chapter 7 Basic Types

0111111111111111

which has the value 32,767 (215 - 1). The largest 32-bit integer is

01111111111111111111111111111111

which has the value 2,147,483,647 (231 - 1). An integer with no sign bit (the left­
most bit is considered part of the number's magnitude) is said to be unsigned. The
largest 16-bit unsigned integer is 65,535 (216 - 1), and the largest 32-bit unsigned
integer is 4,294,967,295 (232 -1).

By default, integer variables are signed in C-the leftmost bit is reserved for the
sign. To tell the compiler that a variable has no sign bit, we declare it to be
unsigned. Unsigned numbers are primarily useful for systems programming and
low-level, machine-dependent applications. We'll discuss typical applications for
unsigned numbers in Chapter 20; until then, we'll generally avoid them.

C's integer types come in different sizes. The int type is usually 32 bits, but
n1ay be 16 bits on older CPUs. Since son1e programs require numbers that are too
large to store in int form, C also provides long integers. At times, we 1nay need to
conserve n1emory by instructing Lhe compiler to store a nun1ber in less space than
normal; such a number is called a short integer.

To construct an integer type that exactly meets our needs, we can specify that
a variable is long or short, signed or unsigned. We can even combine
specifiers (e.g., long unsigned int). However. only the following six combi­
nations actually produce different types:

short int
u.ns igned short int

int
unsigned int

long int
unsigned long int

Other combinations are synonyms for one of these six types. (For example, long
signed int is the same as long int, since integers arc always signed unless
otherwise specified.) Incidentally, the order of the specifiers doesn't matter;
unsigned short int is the same as short unsigned int.

C allows us to abbreviate the natnes of integer types by dropping the word
int. For example, unsigned short int may be abbreviated to unsigned
short, and long int tnay be abbreviated to just long. Omitting int is a
widespread practice among C programmers, and some newer C-based languages
(including Java) actua1ly require the programmer to write short or long rather
than short int or long int. For these reasons, I'U often omit the word int
when it's not stricUy necessary.

7. 1 Integer Types 129

• Hexadecin1al constants contain digits between 0 and 9 and letters between a
and f, a11d always begin with Ox:

Oxf Oxff Ox7fff

The letters in a hexadecimal constant may be e1ther upper or Jower case:

Oxff OxfF OxFf Ox.FF OXff OXfF OXFf OXFF

Keep in mind that octal and hexadecimal are nothing n10J·e than an alternative
way of writing numbers; they have no effect on how lhe numbers are actually
stored. (Integers are always stored in binary. regardless of what notation we've
used to express them.) We can switch from one notation to anotl1er at any time, and
even mix them: 1 o + o 15 + Ox2 O has the value 55 (decimaJ). OctaJ and hex are
1nost convenient for writing low-level programs; 'vVe won ·t use these notations
mlllcl1 until Chapler 20.

The type of a decimal integer constant is normally int. However, if the value
of lhe constant is too large to store as an int, the constant has type long int
instead. In Lhe unlikely case that Lhe constant is too large to sto1·e as a long int,
the compiler will lry unsigned long int as a last resort. The rules for deter­
mining the Lype of an octal or hexadeci,nal constant are slightly different: the com­
piler will go through the types int, unsigned int, long int, and unsigned
lo,ng int until it finds one capable of representing the constant.

To force the compiler to treat a constant as a long integer, just follo\v it with
the letter L (or 1):

lSL 0377L Ox7fffL

To indicate that a constant is unsigned. put the Iette.r U (or u) after it:

lSU 0377U Ox7fffU

L and u may be used in combination to show lhal a constant is both long and
unsigned: OxffffffffUL. (The order of the Land U doesn't matter. nor does
their case.)

Em) Integer Constants in C99

In C99, integer constants that end with either LL or 11 (the case of the two letters
must match) have type long long int. Adding the letter U (or u) before or after
the LL or 11 de11otes a constanL of type unsigned long long int.

C99's general rules for detennioing the type of an integer constant are a bil
different from those in C89. The type of a decimaJ constant with no s11f6x (U, u, L,
1 . LL. or 11) is the "smallest" of the types int, long int. or long long int
tl1at can represent Lhe value of Lbat constant. For an oclal or hexadecimal constant,
however, tbe list of possible types is int, unsigned int, long int,
unsigned long int, long long int, and unsigned long long int, in
that order. Any suffix at the end of a constant changes the list of possible types. For

132 Chapter 7 Basic Types

}

printf("Enter integers (0 to terminate): 11);

scanf (11 %ld 11
, &n);

while (n l= 0) {
sum += n;
scanf ("%ld", &n) ;

}
printf("The sum is: %ld\n 11 , sum);

return 0;

The change was fairly simple: we declared n and sum to be long variables
instead of int variables. then we changed the conversion specifications in scanf
and printf to %ld instead of %d.

7.2 Floating Types

The jnleger types aren't suitable for all applications. Sometimes we'U need vari­
ables lhal can store numbers with digits after the <lecimaJ point, or numbers that are
exceedingly large or small. Numbers like these are stored in floating-point format
(so caUed because the decin1al point "floats"). C provides three floating types, cor­
responding to different floating-point formats:

float
double
long double

Single-precision floating-point
Double-precision floating-point
Extended-precision floating-point

float is suitable when the amount of precision isn't critical (calculating tempera­
tures to one decimaJ point, for example). double provides greater precision­
enough for most programs. long double, which supplies the ultimate in preci­
sion, is rarely used.

The C standard doesn'l stale how much precision the float, double, and
long double types provide, since differenl computers may store floating-point
nu1nbers in different ways. Most modern computers follow the specifications in
IEEE Standard 754 (also known as IEC 60559), so we' U use it as an exainple.

The /REE Floating-Poi,zt Standard

IEEE Standard 754, developed by the Institute of Electrical and Electronics Engi­
neers, provides two primary formats for floating-point numbers: single precision (32
bits) and double precision (64 bits). Numbers are stored In a form of scientific nota­
tion, with each number having three parts: a sign, an exponent, and a fraction.
The number of bits reserved tor the exponent determines how large (or small) num­
bers can be, while the number of bits in the fraction determines the precision. In
single-precision format, the exponent is 8 bits long, while the fraction occupies 23

7.3 Character Types 135

to a 256-character code known as Latin-1 that provides the characters necessary
for Western European and many African languages.

A variable of type char can be assigned any single character:

char ch;

ch - I a I i /* lower-case a */
ch - I A I ; /* upper-case A */
ch - I Q I i I* zero *I
ch I ' . /* space *I - I

Notice that character constants are enclosed in singJe quotes, not double quotes.

Operations on Characters

Working with characters in C is simple, because of one fact: C trears characters as
snial! integers. After all, characters are encoded in binary, and il doesn·l take much
imagination to view these binary codes as integers. In ASCII, for example, charac­
ter codes range fron1 0000000 to 11 I 111 J, which we can think of as the integers
from O to 127. The character ' a ' has the value 97. ' A' has tbe value 65, ' o I has
the value 48, and ' ' has the vaJue 32. The connection between characters and
integers in C is so strong that character constanls acluaJly have int type rather
lhan char type (an interesting fact, but not one that wil I often matter lo us).

When a character appears in a computation. C simply uses its integer value.
Consider the following exampJes, whicl1 assume the ASCII character set:

char ch;
int

.
l.;

• ta I i /*
. • 97 *I l. - l. 1S now

ch= 65; I* ch
. 'A I *I l.S now

ch ch 1; /* ch • 'B' */ - + is now
ch++; /* ch •

l.S now IC I *I

Characters can be con1pared, just as numbers can. The following if statemenL
checks whether ch contains a lower-case letter; if so, it converts ch lo upper ca.:;e.

if (•a' <= ch && ch <= 'z 1)

ch = ch - ' a 1 + 1 A' ;

Co1nparisoos such as 'a 1 <= ch are done using the integer values of the charac­
lers involved. These values depend on the character set in use, so programs that use
<, <=, >, and >= to compare characters may not be portable.

The fact tl1al characters have the san1e properties as numbers has some advan­
tages. For example, we can easily write a for statement whose control variable
steps through aJI lbe upper-case letters:

for (ch = 1 A' ; ch <= ' Z 1 ; ch++) ...

7.3 Character Types 139

ch= toupper(ch); /* converts ch to upper case*/

When it's called, toupper checks whether its argument (ch in this case) is a
lower-case letter. If so, it returns the con·esponding upper-case letter. Otherwise,
toupper returns the value of the argument. In our example, we've used the
assignment operator to store the return value of toupper back into the ch vari­
able, although we could just as easily have done something else with it-stored it
in another variable, say, or tested it in an if statement:

if (toupper(ch) == 'A') ...

Programs that call toupper need to have the following #include directive
at the top:

#include <ctype.h>

toupper isn' t the only useful character-handling function in the C library. Sec­
tion 23.5 describes them all and g ives examples of their use.

Reading and Writing Characters using scanf and printf

The %c conversion specification allows scanf andprintf to read and write sin­
gle characters:

char ch;

scanf (11 %c 11
, &ch) ;

print£ (11 %c 11
, ch) ;

/* reads a single character*/
/ * writes a single character*/

scanf doesn't skip white-space characters before reading a character. If the
next unread character is a space, then the variable ch in the previous example wiIJ
contain a space after scanf returns. To force scanf to skip white space before
reading a character, put a space in ils format string just before %c:

scan£(" %c 11
, &ch); / * skips white space, then reads ch*/

Recall from Section 3.2 that a blank in a scanf format string means "skip zero or
more white-space characters."

Since scanf doesn't normally skip white space, i t 's easy to detect the end of
an input line: check to see if the character just read is the new-line character. For
example, the following loop will read and ignore all remaining characters in tl1e
current input line:

do {
scanf(11 %c 11 , &ch);

} while (ch!= ' \n');

When scanf is called the next li1ne, it will read the first character on the next
input line.

7.3 Character Types 141

idiom while (getchar () ! = 1 \n 1) /* skips rest of line *I
. ,

The resulting loop is a well-known C idiom that's cryptic but worth learning.
getchar is useful in loops that skip characters as well as loops that search

for characters. Consider the following statement, which uses getchar to skip an
indefinite number of blank characters:

idiom while ((ch = getchar ()) == ' ') /* skips blanks*/
• ,

When the]oop te1minates, ch will contain the fu·st nonblank character that

getchar encountered.

Be careful if you mix getchar and scanf in the same program. scanf has a
tendency to leave behind characters that it has "peeked" at but not read, including
the new-line character. Consider what happens if we try to read a number first, then
a character:

printf ("Enter an integer: ") ;
scanf ("%d", &i) ;
printf ("Enter a command: ");
command= getchar();

The call of scanf will leave behind any characters that weren't consumed during
the reading of i, including (but not limited to) the new-line character. getchar
will fetch the first leftover character, which wasn't what we had in mind.

PROGRAM Determining the Length of a Message

To illustrate how characters are read, let's write a program that calculates the
length of a 1nessage. After the user enters the message, the progran1 displays the

length:

Enter a message: Brevity is the soul of wit.
Your message was 27 character(s) long.

The length includes spaces and punctuation, but not the new-line character at the

end of the message.
We'll need a loop whose body reads a character and increments a counter. The

loop will terminate as soon as a new-line character turns up. We could use either
scanf or getchar to read characters; most C programmers would choose
get char. Using a straightforward while loop, we might end up with the foUow-
.
1ng program.

142 Chapter 7 Basic Types

length.c / * Determines the length of a message * /

#include <Stdio.h>

int main (void)
{

}

char ch;
int len = O;

printf ("Enter a message: 11) ;

ch= getchar();
while (ch!= 1 \n 1) {

len++;
ch= getchar();

}
printf("Your message was %d character(s) long.\n 11 , len);

return O;

Recalling our discussion of idioms invoJving while loops and getchar, we
realize that the program can be shortened:

length2.c I* Determines the length of a message * /

#include <Stdio.h>

int main(void)
{

}

int len"' O;

printf (11 Enter a message: 11) ;

while (getchar() != 1 \n 1)

len++;
print f (11 Your message was %d character (s) long. \n 11 , len) ;

return O;

7.4 Type Conversion

Computers tend to be more restrictive than C wben it co1nes to arithmetic. For a
computer to perform an arithmetic operation, the operands must usually be of the
same size (the same number of bits) and be stored in the san1e way. A computer
may be able to add two 16-bit integers directly. but nol a l6-bit integer and a 32-bit
integer or a 32-bit integer and a 32-bit floating-point nwnber.

C, on the other hand, allows the basic types to be mixed in expressions. We
can combine integers, floating-point numbers, and even charac ters in a single
expression. The C compiler may then have to generate instructions that conven

7.4 Type C,onversion 145

a converted value of 4,294,967,286. The comparison i < u wilJ therefore produce
0. Some compjlers produce a warning n1essage such as '·co,nparison ben,veen
signed and uJLsignecf' wben a progran1 attempts Lo compare a s igned number with
an unsigned number.

Because of traps like this one, it's best to use unsigned integers as linle as pos­
sible and, especially, never nux them with signed integers.

The following example shows lhe usual aritl1U1etic conversions in action:

char c;
short int s;
int i;
unsigned int u;
long int l;
unsigned long int ul;
float£;
doubled;
long double ld;

. ' /* is 1 - .l. + c; C
' i /*

.
J. - + s; s J.S .

/*
. .

u - u + 1· l. l.S I

1 - 1 + u; /* u is
ul = ul l; / * 1 •

+ 1S .

converted
converted
converted
converted
converted

f - f + ul; /* ul 1S converted
d = d f; I* f ' converted + 1S

ld ld d; / * d • converted - + J.S

Conversion During Assignment

to int *I
to int */
to unsigned int * I
to long int */
to unsigned long int */
to float */

to double */
to long double */

The usuaJ arithmetic conversions don't apply to assignment. Instead, C fol lows the
simple rule that the expression on the right side of the ass ignment is converted to
the type of the variable on the left side. If the variable's type is at least as "wide'' as
the expression· s, this will wotk without a snag. For example:

char c;
inti;
float f;
doubled;

']. - C;
f • - l;

d - f i

/* c is converted to int */
/* i is converted to float*/
/* f is converted to double*/

Other cases are problematic. Assigning a floating-point number to an integer
variable drops the fractjonal part of the number:

inti;

1 - 842.97;
i - -842.97;

/ * i is now 842 * /
/ * i is now -842 * /

cast expression

7. 4 Type Conversion 14 7

operand whose type bas lesser integer conversion rank to the type of the
operand with greater rank.

• If the unsigned operand has rank greater or equal to the rank of the type of
the signed operand, convert the signed operand lo the type of lhe unsigned
operand.

• If the type of the signed operand can represent all of the values of the type
of the unsigned operand, convert the unsigned operand to the type of l11e
signed operand.

• Otherwise, convert both operands to the unsigned type corresponding to the
type of tbe signed operand.

Incidentally, all arithmetic types can be converted to _Bool type. The result
of the conversion is O if the original value is O; otherwise, the result is 1.

Casting

Although C's implicit conversions are convenient, we sornetimes need a greater
degree of control over type conversion. For this reason, C provides casts. A cast
expression has tlie for,n

(rype-11arne) ex111-ess1011

type-na,ne specifies the type to which the expression should be converted.
The following exan1ple shows how to use a cast expression to con1pute the

fractional pa.it of a float value:

float f, frac_part;

frac_part = f - (int) f;

The cast expression (int) f represents the result of converting the value off to
type int. C's usual arithmetic conversions then require that (int) f be con­
verted back to type float before the subtraction can be performed. The differ­
ence between f and (int) f is the fractional part of f. which was dropped
during the cast.

Cast expressions enable us to document type conversions that would take
place anyway:

i = (int) f; / * f is converted to int*/

They also enable us to overrule the compiler and force it to do conversions that we
want. Consider the fol lowing example:

float quotient;
int dividend, divisor;

quotient= dividend/ divisor;

148 Chapter 7 Basic Types

As it's now written, the result of the division-an integer-will be converted to
float forn1 before being stored in quotient. We probably want dividend
and di visor converted to float be.fore the division, thougl1, so that we get a
more exact answer. A cast expression will do the trick:

quotient= (float) dividend/ divisor;

divisor doesn't need a cac;t_, since casting dividend co float forces the
co1npiler to conve1t di visor to float also.

Incidentally, C regards (type-na,ne) as a unary operator. Unary operators
have higher precedence than binary operators, so the compiler interprets

(float) dividend/ divisor

as

((float) dividend) / divisor

If you find this confusing, aote that there are other ways to accompli5h the same
effect:

quotient - dividend/ (float) divisor;

or

quotient= (float) dividend/ (float) divisor;

Casts are sometimes necessary to avoid overflow. Consider the follo,ving
example:

long i;
int j - 1000;

i = j * j; /* overflow may occur*/

At first glance. this staten1ent looks fine. The value of j * j is 1,000,000, and i is
a long, so it can easily store values of this size, right? The problem is that wben
Lwo int values are multiplied, the result will have int Lype. But j * j is too
Large to represent a'i an int on some n1acltines, causing an overflow. Fortunately,
using a cast avoids the problem:

i = (long) j * j;

Since the cast operator takes precedence over *, the first j is converted to 1 ong
type, forcing lhe second j to be converted as well. Note that the statement

i = (long) (j * j) ; /***WRONG***/

wouldn't work. since the overflow would already have occurred by the time of the
casL

7.5 Type Definitions 149

7 .5 Type Definitions

In Section 5 .2, we used the #define directive to create a n1acro that could be
used as a Boolean type:

#define BOOL int

l!!E1 There's a better way to set up a Boolean type, though, using a feature known as a
type definition:

typedef int Bool;

Notice that the name of the type being defined comes last. Note also that I've capi­
talized the word Boal. Capitalizing the first letter of a type name isn' t required;
it's just a convention that so1ne C programmers employ.

Using typedef to define Boal causes tbe compiJer to add Boal to the list
of type names that it recognizes. Boal can now be used i11 tbe same way as the
built-in type names-in variable declarations, cast expressions, and elsewhere. For
example, we n1igbt use Boal to declare variables:

Bool flag; /* same as int flag; */

The compiler treats Boal as a synonym for int; thus, flag is really nothing
more than an ordinary int variable.

Ad vantages of Type Definitions

Type de:finitio11s can make a program more understandable (assumi11g that the pro­
gram,ner has been careful to choose meaningful type names). For exainple, sup­
pose that the variables cash_in and cash out wi ll be used to sLore dollar
amounts. Declaring Dollars as

typedef float Dollars;

and then writing

Dollars cash .
in, cash_out;

is n1ore informative than just writing

float cash_in, cash_out;

Type definitions can also n1ake a program easier to 1nodify. 1£ we later decide
that Dollars should really be defined as double, all we need do is change the

type definition:

typedef double Dollars;

156 Chapter 7 Basic Types

Section 7.3

Section 7.4

0 3. Which of the following are oot legal types in C?

(a) short unsigned int
(b) short float
(c) long double
(d) unsigned long

0 4. If c is a variable of type char, wbich one of the following statements is illegal?

(a) i += c; / * i has type int * /
(b) c = 2 * c - 1;
(c) putchar Cc) ;
(d) print£ (c) ;

5. Which one of the following is not a legal way to wrire the nun1ber 65? (Assume that the
character set is ASCII.)
(n.) I A I

(b) Ob1000001

(c) 0101
(d) Ox41

6. For each of the following items of data, spcci fy which one of the types char. short, int.
or long is the smallest one guaranteed to be large enough to store the item.

(a) Days in a month
{b) Days in a year
(c) Minutes in a day
(d) Seconds in a day

7. For each of the following character escapes. give the equivalent octal escape. (Assume that
the character set is ASCll .) You n1ay wish to consult Appendix E, which lists the nu1nericaJ
codes for ASCU characters.

(a) \b
(b) \n
(c) \r
(d) \t

8. Repeal Exercise 7, but give the equivalent hexadecimal escape.

9. Suppose that i and j are variables of type int. What is the type of Lhc expression i / j +
I a I?

0 10. Suppose that i is a variable of type int, j is a variable of type long. and k is a variable of
type unsigned inl. What is Litt! type or the ~xpression i + (int) j * k?

I I. Suppose that i is a variable of type int, f is a variable of type float, and dis a variable
of type double. What is the type of the expression i * f / d'?

G 12. Suppose tbaL i is a variable of type int, f is a variable of type float, and dis a variable
of type double. Explain \vhat conversions take place during the execution of Lile following
statement:

d = i + f;

Section 7.5

Programming Projects 157

13. Assume Lhu1 a progrum cont.a.ins Lhe following declarations:

char c = 1
\ l ' ;

shorts= 2;
inti= -3;
long m = 5;
float f = 6.Sf;
doubled-= 7.5;

Give Lhe value and the type of each expression Listed below.

(a) c * i (c) f / c (e) f - d
(b) s + m (d) d / s (t) (int) f

fl 14. Does Lhe foil owing sLalemenl always compute tJ1c fractional part of f correctly (asstuning
that f and frac_part are float variables)?

frac_part = f - (int) f;

If not, what's lhe problem?

15. Use typedef to create types nan1ed Int8, Int16. and Int32. Define Lhe type so that
they represent 8-bil. 16-biL and 32-bit integers on yow· machine.

Programming Projects

I. The square2. c program of Section 6.3 will fail (usually by printing strange answers) if
i * i exceeds the n1ax.imum int value. Run the prognun and detern1ine the sn1allest value
of n that causes failure. Try changing the type of i to short and running Lhe progra111
again. (Don't forget Lo update the conversion specifications in the call of printf I) TI1en
try long. From Lhese experiments. what can you conclude abou1 the number of bits used lo
store integer types on youT machine?

G 2. Modify Lhe square2 . c program of Section 6.3 so that iL pauses after every 24 squares ru1d
displays the following message:

Press Enter to continue ...

After displaying lhe 1nessage, the program should use getchar to rea<l a character.
getchar won't aUow the program to continue until the user presses tile Enter key.

3. Modify the sum2. c progra1n of Section 7.1 to sun, a series of double values.

4. Write a program tha.t translates an alphabetic phone nun1ber into numeric form:

Enter phone number: CALLATT
2255288

(ln case you don 't have a telepbone neatby. here are the leners on the keys: 2=ABC, 3=DEF.
4-GHT, 5-JKL, 6-MNO, 7=PRS, 8 TUV. 9=WXY.) lf the original phone number contains
nonalphabetic characlers (digits or punctuation. for example). leave them unchanged:

Enter phone number: 1-800-COL-.LECT
1-800-265-5328

You may assume that any letters entered by lhe user urc upper case.

158 Chapter 7 Basic Types

G 5. In the SCRABBLE Crossword Oan1e, players fonn words using s1naJJ tiles, each containing
a letter and a face value. The face value var,cs fro1n one letter to another, based on the let­
ter's rarjty. (Here are the face values: L: AEil.,NORSTU. 'J: DO, 3: BCMP. 4: FHVWY. 5: K.
8: JX, I 0: QZ.) Write a program that computes the value of a word by su1nmlng the va1ues
of its letters:

Enter a word: pitiall
Scrabble value: 12

Your program should allow any mixture of lower-case and upper-case letters in the word.
Hi11t: Use the toupper library function.

G 6. Write a program that prints the values of sizeof (int). sizeof (short).
sizeof (long), sizeof (float). sizeof (double) and sizeof (long dou­
ble).

7. Modify Programming Project 6 from Chapter 3 so that the user 1nay add, subtract. n1ultiply,
or divide two fractions (by entering either +, - . * , or / bet\veen the fractions).

8. Modify Prograrn1ning Project 8 from Chapter 5 so that the user eaters a time using the 12-
hour clock. The input will bave the form hours: 111inuies followed by either A, P. AM. or PM
(either lower-case or upper-case). White space is allowed (but not required) bct\,vccn the
numerical time and the AM/PM indicator: Examples of valid input:

1:lSP
1:15PM
l:lSp
1:15pm
1:15 P
1:15 PM
1:15 p
1 : 15 pm

You may assu1ne that the input bas one of these forms; there is no need to test for en·ors.

9. Write a program lhat asks the user for a L2-b.our time, then dib'J)lays the lime in 24-hour
fo1m:

Enter a 12-hour time: 9:11 PM
Equivalent 24-hour time: 21:11

See Programming Project 8 for a description of the input format.

I 0. Write a prograrn that counts lhe nwnber of vowels (a, e, i, o, and 11) in a sentence:

Enter a sentence: And that's the way it is .
Your sentence contains 6 vowels.

11 . Write a prog:rrun that takes a first name and last name entered by the user and displays the
last name, a comma, and the first initial. followed by a period:

Enter a first and last name: Lloyd Fosdick
Fosdick, L.

The user's input may contain extra spaces before Lbe first name, between the first and last
names, and after the last name.

12. Write a program that evaluates an expression:

Enter an expression: 1+2.5*3
Value of expression: l0.5

Programming Projects 159

The operands in the expression are floating-point nu,nbers; the operators are+, -, *,and/.
The expression is evaluated from left to right (no operator talces precedence over any other
operator).

13. Write a program that calculates the average word length for a sentence:

Enter a sentence: It was deja vu all over again.
Average word length: 3.4

For simplicity, your program should consider a punctu<1tion mark to be parl of the word lo
wbjcb it is attached. Display the average word length to one decimal place.

14. Write a program that uses Newton's 1nethod to compute the square root of a positive float­
ing-point number:

Enter a positive number: 3
Square root: 1.73205

Let x be lhe nun1ber entered by the user. Newton's n1ethod requires an initial guess y for the
square root of x (we 'll use y = l). Successive guesses are found by computing the average of
y and xly. The folJowing table shows how the square root of 3 would be found:

Average of
X y xly y andxly

3 I 3 2
3 2 l.5 1.75
3 1.75 l .71429 1.73214
3 1.73214 l.73196 1.73205
3 1.73205 1.73205 1.73205

Note that the values of y get progressively closer to the true square root of .x. For greater
accuracy, yow· program should use variables of type double rather than float. Have the
progra1n tenninate when the absolute value of the difference between the old value of y and
the new value of y is less lhan the producL of .00001 and y. H;n1: Call the fabs function lo
find the absolute value of a double. (You'll need to include the <math. h> header at the
beginning of your program in order lo use fabs.)

15. Write a program tbat con1putes tbe factorial of a positive integer:

Enter a positive integer: 6
Factorial of 6: 720

(a) Use a short variable to store the value of the facLorial. Wbat is the largest value of 11

for which the program correctly prints the factorial of n?
(b) Repeat part (a), using an int variable instead.
(c) Repeat part (a), using a long variable instead.
(d) Repeat part (a), using a long long variable instead (if your compiler supports the

long long type).
(e) Repeat paii (a), using afloat variable instead.
(f) Repeal part (a), using a double variable instead.
(g) Repeat prut (a), using a long double variable instead.

In cases (e)-(g), the progra,n will rusplay a close approxirnation of the factorial , not neces­
sarily the exact value.

8 Arrays

If a program manipulates a large amount of data,
it does so in a small number of ways.

So far. the only variables we've seen are scalar: capable of holding a su1gle data
item. C aLc;o supports aggregate variables, whjch can store collectjons of values.
There are two ki11ds of aggregates in C: arrays and structures. This chapter shows
how lo declare and use arrays. both one-dimensional (Section 8. l) and multidi­
mensional (Section 8.2). Section 8.3 covers C99' variable-lengti1 arrays. The
focus of the chapter is on one-dimensional an·ays. which play a much bigger role
in C than do multidimensional arrays. Later chapters (Chapter 12 in particular)
provide additional inforn1ation about arrays; Chapter 16 covers stn1ctures.

8.1 One-Dimensional Arrays

An array is a data structure containing a nun1ber of data values, all of which have
the san1e type. These values, known as elenients, can be individually selected by
their position within the array.

Toe sin1plest kind of array has just one dimension. The elements of a one­
din1ensional an·ay arc conceptually arranged one after another in a single row (or
column, if you prefer). Here·s how we might visualize a one-din1ens1onaJ array
named a :

a_l _____ I
To declare an array, we must specify the 1ype of the array's elements and the

nurnber of elements. For exa,nple, to declare that the array a has 10 elements of
type int, we woulci write

int a (10) ;

161

8. 1 One-Dimensional Arrays 163

C doesn,t reqttire thal subscript bounds be checked; if a subscript goes out of
range, the program's bel1avior is undefmed. One cause of a subscript going out of
bounds: forgetting that an array with n elements is indexed from Oto n - l, not l to
n. (As one of n1y professors liked to say, "In this business, you're always off by
one." I-le was right, of course.) The folJowing exan1ple illustrates a bizarre effect
that can be caused by this common blunder:

int a[lO], i;

for (i = l; i <= 10; i++)
a[i) = O;

With some compilers, this innocent-looking for slalement causes an infrnite loop!
When i reaches 10, the program stores 0 into a [10]. But a [10] doesn't exist,
so 0 goes into 1nemory irnmediately after a [9] . If the variable i happens to fol­
low a [9] in n1emory-as might be the case-then i will be reset to 0, causing the
loop to starl over.

An array subscript may be any integer expression:

a[i+j*lO] = O;

The expression can even have side effects:

i = O;
while (i < N)

a[i++] = O;

Let's trace this code. After i is set to 0, the while statement checks whether i is
less tl1an N. If it is. 0 is assigned to a [o] , i is incremented, and the loop repeats.
Note that a [++i] wouldn't be right, because 0 would be assigned to a [1] during
the first loop iteration.

Be careful when an array subscrjpt has a side effect. For example, the following
loop-whjch is supposed to copy the elen1ents of the array b into the array a­
may not work properly:

i = O;
while (i < N)

a [i] = b [i ++) ;

The expression a [i] = b [i + +] accesses the value of i and also modifies i else­
where in the expression, which- as we saw in Section 4.4--causes 11ndefined
behavior. Of course, we can easily avoid the problem by removing the increment
from the subscript:

for (i - O; i < N; i++)
a [i] = b [i] ;

8. 1 One-Dimensional Arrays 165

If the initializer is sho11er than the array, tl1e reni.aining elements of the array are
given the value 0:

int a[lO]: {1, 2, 3, 4, 5, 6};
/* initial value of a is {1 1 2, 3, 4, s, 6, o, o, 0, o} */

Using this feature, we can easily initialize an an·ay to al] zeros:

int a [10] = { 0} ;
/* initial value of a is {o, o, o, o, o, o, o, o, o, o} */

It's illegaJ for an initializer to be completely emply, so we've put a singJe o inside
the braces. It's also illegal for an initializer to be longer than the array it initial­
izes.

If an initializer is present, the length of the array may be on1itted:

int a(]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

The compiler uses lbe length of Lhe initializer to determine how Long the array is.
The array stiJl J1as a fixed number of elements (10, in this example), just as if we
had specified the length explicitly.

O Designated Initializers

lt's often the case that relatively few elements of an array need to be initialized
explicitly; the other elen1ents can be given default values. Consider the following
example:

int a[lS] = {0, 0, 29, 0, 0, 0, 0, 0, 0, ?, 0, 0, 0, 0, 48};

We want elen-ient? of the array to be 29, element 9 to be 7, and elen1ent 14 to be
48, but the other values are just zero. For a large array, writing ru1 initializer in this
fashion is tedious and error-prone (what if there were 200 zeros between two of the
nonzero values?).

C99's designated initializers can be used to olve this proble1n. Here's how
we could redo the previous example using a designated tnitializer:

int a [15] = { [2] : 29, [9] = 7, [141 : 48};

Each number in brackets is said to be a desig11ator.
Besi.des being shorter and easier to read (at least for so,ne arrays), designated

initializers have another advantage: Lhe order in which the elements are listed no
longer maLters. Thus, our previous example could also be written io the following
way:

int a[lS] = {[14] = 48, [9]: 7, [2] = 29};

Designators n1ust be integer constant expressions. Tf the array being initialized
11as length n, each designator must be between 0 and n - I. However. if the length
of the array is omitted, a designator can be any nonnegative integer. Tn the latter
case. the compiler will deduce lhe length of tl1e array from the largest designalor.

166 Chapter B Arrays

In U1e following example. the fact that 23 appears as a designator wiJJ force the
array Lo have length 24:

int b[] = {[5] = 10, (23] = 13, [ll] = 36, [J.5] = 29};

An inilializer may use both the older (element-by-element) Lechnique and the
newer (designated) technique:

int c [1 o] = { s, J. 1 9, [4] = 3 , 7, 2, [8] = 6} ;

m This inilializer specifies that the array's first three elements will be 5, I, and 9. Ele­
ment 4 will have the value 3. The two elements after element 4 will be 7 and 2.
Finally, element 8 will have the value 6. All ele1nents for which no value is speci­
fied will default to zero.

PROGRAM Checking a Number for Repeated Digits

Our next program checks whether any of the digitc; in a number appear more than
once. After the user enters a number, the progran1 prints either Repeated digit
or No repeated digit:

Enter a number: 28212
Repeated digi_t

The number 28212 has a repeated digit (2); a number like 9357 doesn 'L
The program uses an array of Boolean values to keep track of which digits

appear in a number. The array. named digit_seen, is indexed from O to 9 to
correspond to the 10 possible digits. Initially. every element of the array is false.
(The initializer for digit_seen is {false}, which only initializes the first ele­
ment of the array. However, the con1piler will auton,atically tnake the remaining
eJcments zero, which is equivalent to false.)

When given a number n, the program exan,ines n's digits one at a time, stor­
ing each into the digit variable and then using it as ao index into digit_ seen.
lf digit_seen [digit] is true, then digit appears at least twice inn. On the
oLher hand. if digit seen [digit] is false, then digit has not been seen
before, so the program sets digit_seen [digit] to true and keeps going.

repdigitc / * Checks numbers £or repeated digits*/

#include <stdbool.h>
#include <Stdio.h>

/ * C99 only*/

int main (void)
{

bool digit_seen[lO] - {false};
int digit;
long n;

printf (11 Enter a number: ") ;
scan£ ("%ld", &n) ;

8.2 Multidimensional Arrays 169

interest.c /* Prints a table of compound interest * /

#include <stdio.h>

#define NUM RATES ((int) (sizeof(value} / sizeof(value[O])))
#define INITIAL BALANCE 100.00

int main(void)
{

}

inti, low_rate, num_years, year;
double value[S];

printf (11 Enter interest rate: 11
) ;

scanf ("%d 11
, &low_rate) ;

printf("Enter number of years: 11
);

S<'anf (11 %d 11
, &num_years) ;

printf(11 \nYears 11
);

for (i = O; i < NUM_RATES; i++) {
printf(11 %6d%% 11

, low_rate + i);
value[i] = INITIAL_BALANCE;

}
print£ ("\n 11

) ;

for (year = 1; year<= num_years; year++) {

}

printf(11 %3d 11 , year);
for (i = 0; i < NUM_RATES; i++) {

}

value[i] += (low_rate + i) / 100.0 * value[i];
printf (11 %7. 2£ 11

, value [i]) ;

printf ("\n 11
) ;

return O;

Nore the use of NUM_RATES to control two of the for loops. If we Later
change the size of the value an·ny. the Joops wilJ adjust automatically.

8.2 Multidimensional Arrays

An ruTay may have any nurnber of dimensions. For example. the following declara­
tion creates a two-dimensional array (a ,natri.x, in mathematical terin inoJogy):

int m [5] [9] i

The array m has 5 rows and 9 colurnns. Both rows and columns are indexed froo1 0,
as the following figure shows:

8.2 Multidimensional Arrays 173

lhat has four rows (one for each sujt) and 13 columns (one for each rank). ln other
words . each element in the array corresponds to one of the 52 cards ia the deck. All
elements of the an·ay will be false Lo starL with. Each time we pick a card at ran­
dom, we' ll check whether the elem ent of in_ hand corresponding to that card is
true or false. ff ifs true, we'll have to pick another card. If it's false. we' ll store
true in that card 's array element lo ren1ind us later that this card has alrendy been
picked.

Once we've verified that a card is "new"-not already selected- we· 11 need to
trans la te its numerical rru1k and suit into characters and then display the card. To
translate the rank and suit to character fom1. we'll set up two arrays of charac­
ters-one for the rank and one for the suit-and then use the nu1nbers to subscript
the arrays. These arrays won' t change during program execution, so we ,nay as
well declare them lo be const.

deal.c / -i- Deals a random hand of cards * /

#include <Stdbool . h>
#include <stdio . h>
#include <Stdlib . h>
#include <time.h>

/* C99 only*/

#define NOM SUITS 4
#define NUM RANKS 13

int main(void)
{

}

bool in_hand [NUM_SUITS] [NUM_RANKS] = {false};
int num cards, rank, su1t ;
cons t char rank_code [J - { 1 2 ' , ' 3 ' , ' 4 ' , ' 5 ' , ' 6 ' , ' 7 ' , ' 8 ' ,

1 9 1
,

1 t 1
,

1 j 1
,

1 q 1
1

1 k 1
, 'a'};

canst char suit_code[] - { 1 c 1
,

1 d 1
,

1 h','s'};

srand((unsigned) time(NULL));

printf ("Enter number of cards in hand: ") ;
scanf(11 %d 11 , &num_cards);

print£ ("Your hand : ") ;
while (num cards> O) {

suit= rand() % NUM_SUITS;
rank :::: rand () % NUM _ RANKS ;
if (I in_hand [suit] [rank]} {

in_hand[suit] [rank] = true;
num_cards--;

/* picks a random suit * /
/* picks a random rank */

printf(11 %c%c 11
, rank_code[rank.J, suit code[suit]);

}
}
print f (11 \n") ;

return O;

17 4 Chapter 8 Arrays

Notice the initializer for the in_hand array:

bool in_hand[NUM_SUITS] (NUM_RANKS] = {false};

Even though in_hand is a two-din1ensional array, we can use a single pair of
braces (al the risk of possibly incurring a warning from the compiler). AJso, we've
supplied only one vaJ ue in the initializer, knowing that the compiler will ti lI in 0
(false) for the other elements.

8.3 Variable-Length Arrays (C99)

Section 8.1 stated that the length of an array variable must be specified by a con­
stant expression. [n C99. however, iCs sometimes possible to use an expre~~ion
that's 1101 constru,L. The following modification of the reverse. c program (Sec­
tion 8.1) illustrates this abili ty:

reverse2.c / * Reverses a series of numbers using a variable-length
array - C99 only*/

#include <stdio.h>

int main(void)
{

}

int i, n;

printf ("How many numbers do you want to reverse? ");
scanf (11 %d 11 , &n) ;

int a (n] ; /* C99 only - length of array depends on n * /

print£ ("Enter %d numbers: ", n) ;
for (i = O; i < n; i++)

scanf(11 %d 11 , &a[i]);

printf ('1 In reverse order: ") ;
for (i = n - 1; i >= O; i--)

print_f (" %d", a [iJ) ;
printf("\n");

return O;

The array a in this program is an example of a variable-lengtlz array (or VIA for
short). The lenglh of a VLA is computed when tJ1e progra1n is execuled. not when
the program is compiled. The chief advantage of a VLA is U1at the programmer
doesn't have Lo pick an arbitrary length when declaring an array: instead. the pro­
gram itself can calculate exactly how n1any elcrnents are needed. lf the program­
mer 1nak.es the choice. it's like ly that the array wi ll be too long (wasting memory)
or loo short (causing the progra,n to fail). In lhe reverse2. c program. lhe num-

Section 8.1

Section 8.2

Exercises 177

memcpy(a, b, sizeof(a));

Many program1ners prefer memcpy, especially for large a1Tays, because it's poten­
tially faster than an ordinary loop.

*Q: Section 6.4 mentioned that C99 doesn't allow a goto statement to bypass the
declaration of a variable-length array. What's the reason for this restriction?

A: The memory used Lo store a variable-length array is usually allocated when the
declaration of the array is reached during program execution. Bypassing the decla­
ration using a goto statemenl couJd result in a program accessing the elements of
an array char was never allocated.

Exercises

G 1. We discussed using the expression sizeof (a) / sizeof (a [O]) to calculate the num­
ber of elements in an array. The expression sizeof (a) / sizeof (t), where tis Lhe type
of a 's elemenls. would also work, buL it's considered an inferior technique. Why?

9 2. The Q&A section shows how to use a lerter as an array subscript. Describe how to use a
digit (in character form) as a subscript.

3. Write a declaration of an array named weekend containing seven bool values. Include an
initializer that makes the first and last values true; all other values should be false.

4. (C99) Repeat Exercise 3, but this time use a designated initializer. Make lhe initializer as
short as possible.

5. The Fibonacci numbers are 0. 1, L 2. 3. 5. 8, 13, ... , where each number is the su1n of the
two preceding numbers. Write a program fragment that declares an array named
fib_ numbers of length 40 and fills the array with the first 40 Fibonacci numbers. Hint:
Fill in the first two numbers individually. then use a loop to con,pute the remaining num­
bers.

6. Calculators, watches, and other electronic devices often rely on seven-segment displays for
numerical output. To fom1 a digit. such devices "turn on·• some or the seven segments while
leaving others "off":

I I
I I

I I
I

I
I I

I I I I
I I I

Suppose that we want to set up an array that remembers which seg1nents should be '"on" for
each digit. Let's number the segn1ents as follows:

0

sl s 11

41 i 12

Here's whaL the array might look like, with each row representing one digit:

canst int segments [10] [7] = { {1, 1, 1, 1, 1, 1, o}, ... } ;

l 've given you the frrsl row of the initializer: fill in the rest.

178 Chapter 8 Arrays

9 7. lfsing the shortcu1s described in Section 8.2. shrink lhe initializer for Lhe segments array
(Exercise 6) as 01uch as you can.

8. Write a decJaratioa for a lwo-dimensiooal array named temperature_readings that
stores one month of hourly re1nperature readings. (For simplicity. ac;sume that a n1onth has
30 days.) The rO\VS of the array should represent days or the month; the column.c; should rep­
resent hours of (he day.

9. Using the array or Exerc.ise 8, write a progran1 fragment that cornputes the average ce1npera­
ture for a n1onth (averaged over al I days of the 111011Lh and al I hours of tbe day).

10. Write a declaration for an 8 x 8 char array named chess_board. lnclude an initializer
that pu1s Lhe following data inro I.he array (one character per array ele111ent):

rnbqkbnr
PPPPPPPP

p p p p p p p p

RNBQKBNR

11. Write a program fragment that declares an 8 x 8 char array named cbecker_board and
then uses a loop to store Lhe following data into the array (one cbaracter per array element):

BRBRBRBR
RBRBRBRB
BRBRBRBR
RBRBRBRB
B R B R B R B R
RBRBRBRB
BRBRBRBR
RBRBRBRB

Hinr: The elen1ent in row i, coJumnj, should be the leuer B if;+ j is an even number.

Programming Projects

l . Modify lhe repdigit. c program of Section 8.1 so Lhat it shows which digits (if any)
were repeated:

Enter a number: 939577
Repeated digit(s): 7 9

0 2. Modify the repdigi t. c prograin of Section 8. 1 so tbat it prints a table showing ho\v
many times each digit appears in the number:

Enter a number :
Digit: 0
Occurrences: 1

41271092
1 2 3
2 2 0

4
1

5

0
6
0

7
1

8
0

9
1

3. Modify the repdigit. c program of Section 8.1 so that the user can enter 111ore than one
number to be tested for repeated digits. The program should terminate when the user enters
a number that's less thaL1 or equal Lo O.

180 Chapter 8 Arrays

an element that already has a letter assigned. If either condition is violated. Lry moving in
another direction. lf aJI four directions are blocked. the progran1 111ust terminate. Here's an
example of pren1ature tern1ination:

A B G H I
C F J K
D E M L • •

N 0 •
w X y p Q • •

VU T s R

• •

•

Y is blocked on aJl four sides, so there's oo place to put z.

I 0. Modify Programming Project 8 fron1 Chapter 5 so that the departure ti mes are stored in an
array and the arrival tin1es are scored in a second array. (The tin,es are integers, representing
rhe number of minutes since midnight.) The progra,n will use a loop to search the array of
departure tiLues for the one closest to the time entered by the user.

I l. Modify Programn1ing Project 4 from Chapter 7 so lhat Lhe progran1 labels its out-put:

Enter phone number: 1-800-COL-LECT
In numeric form: 1-800-265-5328

The progran1 will need to store Lhe phone number (either in its original form or in its
nurueric form) in an array of characters until it can be printed. You rnay assume that the
phone number is no 111ore than 15 characters long.

12. Modify Progranuning Project 5 from Chapter 7 so thac the SCRABBLE values of the letters
are stored in an array. The array will have 26 elements. corresponding to the 26 letters of the
alphabet. For example. ele1nent O of the array will store I (because the SCRABBLE value of
the letter A is 1). element I of Lhe array will store 3 (because the SCRABBLE value of Lhe
letter B is 3), and so Fortb. As each character of the input word is read, the progran1 will use
the array lo detern,ine the SCRABBLE value of that character. Use an array initializer to set
up the array.

13. Modify Progra1nming Project 11 from Chapter 7 so that the progra111 label~ its output

Enter a first and last name: Lloyd Fosdick
You entered the name: Fosdick, L.

The program will need to store the last name (but not the first name) in an array of characters
until it can be printed. You may assu,ne that lbe last nan1e is no more than ?O characters long.

14. Write a progran1 that reverses the words in a sentence:

Enter a sentence: you can cage a swallow can't you?
Reversal of sentence: you can't swallow a cage can you?

Hint: Use a loop lo read the characters one by one and store them in a one-din1ensional
char array. Have the loop stop al a period, question mark. or exclamation point (the "termi­
nating character'·), which is saved in a separate char variable. Then use a second loop to
search back-ward through the array for che beginning of the last word. Print lhe last word,
then search backward for the nex1-to-last word. Repeat until Lhe beginning of the array is
reached. Finally. print Lhe terminating character.

15. One of the oldest known encryption techniques is the Caesar cipher. attributed to Julius Cae­
sar. It involves replacing each letter in a rnessage witb another letter lha1 is a fixed number of

182 Chapter 8 Arrays

Srore lhe magic square in a two-dimensional array. Start by placing the number J in the mid­
dle of row 0. Place each of the remaining numbers 2. 3, n2 by moving up one row and
over one colurnn. Any attempt to go outside the bounds of the array should '·wrap around"
to Lhe opposite side of the array. For example, instead of storing the next number in row -J.
we would store it in row n - l (lhe last row). Instead of storing the next number in column 11.

we would store il in column 0. lf a particular array elernent is already occl1pied, put the
number directly below the previously stored number. If your compiler supports variable­
length arrays. declare the array to have 11 rows and II colu1n11s. rr not, tlec1are the aiTay to
have 99 rows and 99 coh1mns.

9 Functions

If you have a procedure with ten
parameters, you probably missed some.

We saw in Chapter 2 that a function is simply a series of statements that bave been
grouped togelher and given a name. Although the term •~function·· comes from
mathematics, C (unctions don't always resemble math functions. In C, a function
doesn't necessarily have arguments, nor does iL necessarily compute a value. (In
some programming languages. a "function'1 returns a value. whereas a "procedure''

doesn't. C lacks this distinction.)
Functions are Lhe buildjng blocks of C programs. Each function is essentially a

small program, with its own declarations and statements. URing functions, we can
divide a program into small pieces that are easier for us-and others-to under­
stand and modify. Functions can Lake some of the tedium out of programming by
allowing us to avoid duplicati11g code that's used more than once. Moreover. func­
tions are reusable: we can take a function that was originally part of one program

and use it in others.
Our programs so far have consisted of just the main function. fn this chapter,

we'll see bow to write functions other than main, an<l we'll lerun more about
main itself. Section 9.1 sbows bow to define and call functions. Section 9.2 then
discusses function declarations and bow they differ from function definitions.
Next, Section 9.3 examines how arguments are passed to functions. The remainder
of the chapter covers the return statement (Section 9.4), the related issue of pro­
gram termination (Section 9.5), and recursion (Section 9.6).

9.1 Defining and Calling Functions

Before we go over the fo1mal rules for defining a function, let's look at three sim­

ple programs that define functions.

183

9. 1 Defining and Calling Functions 185

avg= average(x, y);

This statement calls average. Lheo saves its return value in the variable avg.
Now. let's use the average runction in a complete program. The following

program reads three numbers and cornputes thei r averages. one pair ar a ti1ne:

Enter three numbers: 3.5 9.6 10.2
Average of 3.5 and 9.6: 6.55
Average of 9 . 6 and 10.2: 9.9
Average of 3.5 and 10.2: 6.85

An1ong other things, this progran1 sl1ows that a funct ion can be cal1ed as often as
we need.

average.c /* Computes pairwise averages of three numbers * /

#include <stdio.h>

double average(double a, double b)
{

return (a+ b) / 2;
}

int main (void)
{

double x, y, z;

printf ("Enter three numbers: II) j

scan£ (11 %1£%lf%lf t1 1 &x, &y, &z) ;
printf ("Average of %9 and %9: %g\n 11

I x, Y, average(x,
printf ("Average of %9 and g..g. 0 • %g\n ti, y, z, average(y,
printf ("Average of %g and %9: %g\n II, x, z, average(x,

return 0;
}

y)) ;
z)) ;
z)) ;

Notice that I've put the deflllilion of average before n1ai11.. we· 11 see in Section
9.2 that putting average after main causes problems.

PROGRAM Printing a Countdown

Not every function returns a value. For example. a function whose job is to pro­
duce outpul may not need to return anything. To indicate that a fu nction has no
retorn value, we specify that its return type is void. (void is a type wilh no val­
ues.) Consider the following fw1ction. wh ich prints the 11-1essagc T minus n and
counting, where n is supplied when lhe function is calJed:

void print count(int n)
{ -

print£ (11 T minus %d and counting\n 11
, n) ;

}

186 Chapter 9 Functions

print_count has one parameter. n. of type int. It returns nothing. so L've
specified void as lhe return type and omitted the return statement. Since
print_count doesn ' t return a vaJue, we can't call it in lhe same way we call
average. Instead, a call of print count must appear in a staten1ent by itself:

print count(i);

Here's a program that calls print_count 10 tin1es inside a loop:

countdown.c / * Prints a countdown * /

#include <Stdio.h>

void print count(int n)
{ -

printf (11 T minus %d and counting\n", n) ;
}

int main(void)
{

}

inti;

for (i = 10; i > 0; --i)
print_count(i);

return O;

Initially, i has the value 10. Wben print_count is called for the first time.
i is copied into n, so that n takes on the value IO as well. As a result. the first call
ofprint_count will print

T minus 10 and counting

print_ count then returns to the point al which it was called, which happens to
be lhe body of a for staten1ent. Tbe for statement resumes where it left off, dec­
rementing i to 9 and tesling whether it's greater than 0. Tt is, so print_ count is
called again, this time printing

T minus 9 and counting

Each time print_count is called, i is different. so print_count will print
10 different messages.

PROGRAM Printing a Pun (Revisited)

Some functions have no paran1eters at an. Consider print_pun, which prints a
bad pun eacb time iL·s called~

void print_pun(void)
{

}
printf ("To C, or not to C: that is the question. \n 11 } ;

9.2 Function Declarations 191

return O;
}

Notice that main contains a variable named n even though is _prime's
param eter is also named n. r n general, a function may declare a variable wit.h Lhe
same narne a,;; a variable in another function. The two variables represent different
locations in rr1en1ory, so assigning a new value to one variable doesn't change the
other. (This prope1ty extends to parameters as well.) Section 10. 1 discusses this
point in more detail.

As is_prime demonstrates, a function may have more than one return
statement. However, we can execute just one of these statements during a given
call of the function, because reaching a return statement causes the function to
return to where it was called. we·11 learn more about the return statement in
Section 9 .4.

9.2 Function Declarations

In the progran1s in Section 9.1. the definition of each function was always placed
above the point at wh:ich iL was calfted. In fact, C doesn' t require that the definition
of a function precede its calls. Suppose that we rearrange the average . c pro­
gram by putting the definition of average a_fter the definition of main:

#include <Stdio . h>

int main(void)
{

}

double x, y, z;

printf("Enter three numbers: ");
scan£(11 %lf%lf%lf 11 , &x, &y, &z);
printf{"Average of %g and !l.g: %g\n 11 , x, y, average(x, y));
printf ("Average of %g and %g: %g\n 11 , y, z, average (y, z)) ;
printf(11 Average of %g and %g: %g\n", x, z, average(x, z));

return O;

double average(double a, double b)
{

return (a+ b) / 2;
}

When the con1piler encounters the fu·st call of average in main, it has no
info rn1ation about average: it doesn 't know how many parameters average
bas, what the types of these paran1etcrs are, or wbat kind of value average
returns. Instead of producing an error message, though, the compiler assumes that
average returns an int value (recalJ from Section 9. l that the return type of a

9.3

9.3 Arguments 193

of how Lo caU a function: bow many arguments to supply, what their types should
be, and what type of result will be returned.

Incidentally, a function prototype doesn't have to specify the nan1es of the
function's parameters, as long as their ty/Jes are present:

double average(double, double);

It's usually best not to 01nit paran1eter nan1es, since they help docume11l the pur­
pose of each paran1eter and rcn1ind the programmer of the order in which argu­
ments must appear when the f unclion is ca1Jed. However, there are legitimate
reasons for omitting paran,eter names, and son1e programmers prefer to do so.

C99 bas adopted the rule that either a declaration or a definition of a function
must be present prior lo any call of the function. Calling a function for which the
compiler has not yet seen a declaration or definition is an error.

Arguments

Let's review the difference between n. parameter and an argument. Parct111e1ers

appear in fw1ction definitions; they·re dummy names that represent values to be
supplied when tl1e function is called. Argu,nents are expressions that appear in
function calls. When the distinction between arginnent and para,nerer isn' t impor­
tant, I'll sometimes use argunient to inean either.

In C, argun1ents are passed by value: when a ftmction is called, each argument
is evaluated and its value assigned to the corresponding parruneter. Since the
parameter contains a copy of the argument·s value. any changes made to the
parameter during the execution of the function don't affect the argument. In effect
each parameter behaves like a vaiiable that's been initialized to the value of the
matching argument.

The fact that arguments are passed by value has both advantages and disad­
vantages. Since a para111eter can be modified without affecting the corresponding
argument, we can use para1neters as variables within the function. thereby retluc­
ing tl1e nu111ber of genuine variables needed. Consider the following function.
which raises a 11un1ber x to a power n:

int power(int x, int n)
{

}

inti, result= l;

for (i - l; i <= n; i++)
result= result* x;

return result;

Since n is a copy of the original exponeol, we can n1odify it iuside Lhe function.
t11us removing the need for i:

9.3 Arguments 195

and short arguments to be converted to int . (In C99, the integer promo­
tions are performed.)

Relying on the default argumenl promotions is dangerous. Consider the following
program:

#include <stdio.h>

int main(void)
{

double x;::; 3.0;
printf("Square: %d\n 11

1 square(x});

return O;
}

int square (int n)
{

return n * n;
}

At the ti.Jne square is called. the compiler hasn' t seen a prototype yet) so it
doesn't k.J1ow that square expects an argument of lype int. Inslead, tl1e com­
piler performs the default argument promotions on x, with no effect. Since it 's
expecting an argu1nent of type int but has been given a double value instead,
the e ffect of caUing square is undefined. The problem can be fLXed by casting
square's argument to the proper type:

printf (11 Square: %d \n 11 , square ((int) x)) ;

Of course, a rnuch better solution is to provide a prototype for square before
calling it. To C99, calling square without first providing a declaration or defini­
tion of the function is an error.

Array Arguments

Arrays are often used as arguments. When a f Ltnction parameter is a one-dimen­
sional array, the length of the array can be (and is normally) left unspecified:

int f (int_ a[]) /* no length specified */
{

...
}

The argument can be any one-dimensional array whose elements are of the proper
type. There·s jus t one proble1n: how will f know how long the array is? Unfortu­
nately, C doesn' t provide any easy way for a function to determine the length of an
array passed to iL. instead, we'll have to supply the length-if the function needs
it-as an additional argument.

196 Chapter 9 Functions

AIU1ough we can use lhe sizeof operator to help determine the length of an
array variable. it doesn't give the correct answer for an array parcuneter:

int £(int a[])
{

int len = sizeof(a) / sizeof(a[OJ);
/ *** WRONG: not the number of elements in a** */

...
}

Section 12.3 explains why.

The following function illustrates the use of one-dimensio11al array arguments.
When given an array a of int values, sum_array rettrrns the sum of the ele­
ments in a . Since sum_array needs to know the length of a, we must supply it
as a second argument.

int sum array(int a[], int n)
{ -

inti, sum= O;

for (i - O; i < n; i++)
sum+= a[i];

return sum;
}

The prototype for sum_array J1as the following appearance:

int sum_array(int a[], int n);

As usual. we can on1it the paran1eter names if we wish:

int sum_array(int [), int);

When sum_array is called, the first argument wilJ be the name of an array,
and the second will be its length. For ex.an1ple:

#define LEN 100

int main(void)
{

int b[LENJ, total;

total - sum_array(b, LEN);

}

Notice that we don't put brackets after an array name when passing it to a function:

total= sum_array(b[], LEN); /***WRONG *** /

9.3 Arguments 197

An ituportant point about array arguments: A function has no way to check
that we've passed it Lhe correct array length. We can exploit this facL by telling the
function that the array is smaller lhan it really is. Suppose that we've only stored
50 numbers in the b array, even though it can hold 100. We can sum just the first
50 elen1enL1> by writing

total= sum_array(b, 50); /* sums first 50 elements*/

sum array will ignore the other 50 elen1ents. (I.ndeed. it won·t know that they
even exist!)

Be careful not to tell a function that an array argument is larger than it really is:

total= sum_array(b, 150); /***WRONG***/

In tbi,s example, sum_array wi.11 go past the end of the array, causing undefined
behavior.

Another important thing to know is that a function is allowed Lo change the
elements of an array paran1eter. and the change is re.fleeted in the corresponding
argument. For example. the folJowing fuJ1ction ,noclifies an array by storing zero
into each of its e1en1ents:

void store zeros(int a[]; int n)
{ -

}

inti;

for (i -
a [i] -

The call

• 0; J. < n;

O;

store_zeros(b, 100);

i++)

will store zero into the first 100 elements of the array b. Trus ability to modify the
elen1ents of an an·ay argument may seem to contradict Lhe fact lhat C passes argu-
111ents by value. rn fact, there·s no contractiction, but I won't be able lo explain why
until Section 12.3.

If a parameter is a multidin1ensio1,al array, only the length of the first di.men-
D sion may be omjtted when the paran1eter is declared. For example, if we revise the

sum_array function so thal a is a two-dimensional array. we n1ust specify the
number of columns in a , although we don't have Lo indjcate the number of rows:

#define LEN 10

int sum two dimensional array(int a[) [LEN], int n)
{ - - -

inti, j, sum= O;

9.3 Arguments 199

There arc several ways to v.1rite Lhe prototype for our new version of
sum_ array. One possibility is to make it look exactly like the fut1ction defini­
tion:

int sum_array(int n, int a[n]); /* Version 1 */

Another possibility is to replace the array Iengtl1 by an asterisk(*):

int sum_array(int n, int a[*)); /* Version 2a */

The reason for using the * notation is lhat parameter 11ames are optional in func­
tion declarations. If the name of the first pru·an1eter is omitted~ it woulru1·t be possi­
ble to specify that the length of the atTay is n. but the * provides a clue that the
length of the array is related to paran1eters that con1e earlier in Lhe li st:

int sum_array(int, int [*]); /* Version 2b */

It's also legal to leave the brackets empty, as we norn,ally do when declaring an
array parameter:

int sum_array(int n, int a[]);
int sum_array(int, int []);

/* Version 3a */
/* Version 3b */

Leaving the brackets empty isn't a good choice, because it doesn ·t expose tl1e rela­
tionship beLween n and a.

In general, the length of a variable-length array parameter can be any expres­
sion. For example, suppose that we were to write a function that concatenates two
arrays a and b by copying the elements of a, fo llowed by lhe elements of b . inlo a
third array named c:

int concatenate(int m, int n, int a[m], int b[n], int c[m+n))
{

}

The length of c is the sum of the lengths of a and b. The expression used to spec­
ify the length of c involves two other parameters, but in generaJ it could refer to
variables outside the function or even call other functions.

Variable-length array parameters witl1 a single dimension-as in aJl our exam­
ples so far-have limited usefulness. They make a function declaration or defini­
tion more descriptive by stating the desired length of an array argument. However,
no additional error-checking is performed: iL's still possible for an array argument
Lo be Loo long or too short.

It turns out that variable-length array parameters are n1ost useful for multidi­
mensional arrays. Earlier in this section, we tried to write a function that sums the
elements in a two-dimensionaJ array. Our original fu nction was]inrited lo arrays
with a fixed number of columns. If we use a variable-length atTay parameter. we
can generalize the function to any number of columns:

200 Chapter 9 Functions

int sum two dimensional array(int n, int m, int a[n] [rn]) { - - -

}

inti, j, sum= O;

for (i = O; i < n; i++)
for (j = O; j < m; j++)

sum+= a[i] [j];

return sum;

Prototypes for tWs function include Lhe following:

int sum_two_dimensional_array(int n,
int sum two dimensional array(int n, - -int sum_ two_dimensional_array(int n,
int sum two dimensional _array(int n, - -

int rn, int
int m, int
int m, int
int m, int

8 Using static in Array Pa1·ameter Declarations

a [n] [m]) ;
a[*][*]);
a [] [m]) ;
a[][*]);

C99 allows the use of the keyword static in the declaration of array parameters.
(The keyword itself existed before C99. Section 18.2 discusses its traditional uses.)

In the following exan1ple, putting static in front of the number 3 indicates
that the length of a is guaranteed to be at least 3:

int
{

sum_array(int a[static 3), int n)

...
}

Using static in this way has no effect on the behavior of the program. The pres­
ence of static is merely a "hint" that tnay allow a C compiler to generate faster
instructions for accessing the array. (If the co1npiler knows that an array will
always have a certain mioimun1 length, it can arrange to "prefetch·' these elements
from memory when the function is called~ before the elen1ents are actually needed
by statemenls withi_n the function.)

One lasL note about static: lf an array parameter has more than one dimen­
sion, static can be used only in Lhe first dimension (for example, when specify­
ing the nu,nber of rows in a two-dimensional array).

8 Compound Literals

Let·s return to the original sum_array funclion one last time. When
sum_array is called, Lhe first argun1ent is usually the name of an aiTay (the one
whose elements are to be summed). For exa1nple, we might call sum_array in
the following way:

int b [J :::; { 3 , o , 3 , 4 , 1} ;
total = sum_array(b, 5);

204 Chapter 9 Functions

in main is equivalent to

exit (expression) ;

The difference between return and exit is that exit causes program tennina­
tion regardless of which f uncLion calls it. The return state,nent causes program
terminal.ion only when it appears in the main function. Son1e progra1nmers use
exit exclusively to make it easier to locate all exit points in a program.

9.6 Recursion

A function is recursive if it calls itself. For exampJe. the following function com­
putes nl recursively. using the formula 11! = 11 x (11-1)!:

int fact(int n)
{

}

if (n <= 1)
return 1;

else
return n * fact(n - l);

Son1e progran1ming languages rely heavily on recun,ion, while others don't even
allow iL C falls somewhere in the middle: it allows recursion. but most C program­
mers don·t use i l that often.

To see how recursion works, Jet's trace the execution of the staten1ent

i = fact(3);

Here's what happens:

fact (3) finds that 3 is not less than or equal to J, so it cal ls
fact (2). which finds Lhat 2 is not less than or equal to 1, so i1 calls

fact (1), which finds Lbat l is lesl-1 than or equal lo I, so it returns I. causing
fact (2) to return '? x I = 2, causing

fact (3) to return 3 x 2 = 6.

Notice how the unfinished cal ls of fact "pile up" until fact is finally passed 1.
At that point, rhe old calls off act begin to "unwind .. one by one, until lhe origi­
nal call-fact (3} -tinaliy returns with lhe answer, 6.

Here's another example of recursion: a function that con1putes .x", using the
formula x' = X X x11

-
1
.

int power(int x, int n)
{

}

if (n =::c O)
return l;

else
return x * power(x, n - 1);

9.6 Recursion 205

The call power (5, 3) would be executed as follows:

power (5, 3) finds chat 3 is not equal to 0, so iL calls
power (5, 2). which finds that 2 is not equal to 0, so i1 calls

power (5, 1) , which finds that I is not equal to 0. so iL calls
power (5, O) , which fu1ds that O is equal to 0, so il returns I. causing

power (5, 1) to rel um 5 x l = 5. causing
power (5, 2) LO return 5 x 5 = 25, causing

power (5, 3) to return 5 x 25 = 125.

Incidentally, we can condense the power function a biL by putting a conditional
expression in lhe return staten1ent:

int power(int x, int n)
{

return n == 0? 1 : x * power(x, n - 1);
}

Both fact and power are careful to test a "termination condition" as soon as
they 're called. When fact is called. it i.nunediately checks whether it~ parameter
is less than or equal to I . When power is called, it first checks whether its second
parameter is equal to 0. AU recursive functions need some kind of termination con­
dition in order to prevent infini te recursion.

The Quicksort Algo1·ithm

At this poi11t. you 1nay wonder why we're bothering with recursion; after all. nei­
ther fact nor power really needs it. Well , you·ve got a point. NeiLher function
makes much of a case for recursion, because each calls itself just once. Recursion
is much n1ore helpful for sophisticated algodtl1111s that require a function to call
itself two or more titnes.

lo practice, recursion often arises naturally as a result of an algorithm design
technique known as divide-and-conquer. in which a large problem is cLivided into
s111aller pieces that are then tackled by Lbe same algoritlim. A classic example of
the divide-and-conquer strategy can be found in the popular so1ting algorithm
known as Qu.icksort. Tbe Quickso1t algorithm goes us follows (for simplicity.
we'll assume that the array being sorted is indexed fron1 L ton):

I. Choose an array element e (the "partitioning elemenl''), lhen rearrange tbe
array so that elements 1 ...• , i - l are less than or equal to e, element i con­
tains e, and elements i + I, n are greater Lhan or equal to e.

2. Sort elernenLs 1, ... , i- 1 by using Quicksort recursively.
3. Sort elemenls i + 1, ... , 11 by using Quicksort recursively.

After step 1. lhe element e is in its proper location. Since the elements to the left of
e are a] ! less than or equal to it. they' ll be in their proper places once lhey·ve been
sorted in step 2; si milar reasoning applies to lhe elements to the right of e.

Step I of the Qui.cksort algorithm is obviously critical. There are various
n1ethods to partition an a1Tay. some much better than others. We' ll use a technique

Q & A 211

double average();

Is this practice legal? [p. 192J
A: Yes. This declaration informs the compiler that average retw·ns a double value

bul provides no informaLion about the number and types of its parameters. (Leav­
ing the parentheses empty doesn't necessarily mean lhaL average has no param­
eters.)

In K&R C, this form of function declaration is the only one allowed: the fonn
that we've been using-the function prototype. in which parameter information is
included-was introduced in C89. The older kind of function declaration is now
obsolescent, allhough still allowed.

Q: Why would a programmer deliberately omit parameter name.1;; in a function
prototype? Isn't it easier to just leave the names'? [p. 193]

A: OmitLing paraineter names io prototypes is typically done for defensive purposes.
If a tnacro happens to have Lhe same nan1e as a parameter. the parameter name will
be replaced dtuing preprocessing, thereby damaging the prototype in which it
appears. Th.is isn ' r likely to be a problem in a small progran1 written by one person
but can occur in large applications wrilten by n1any people.

Q: Is it legal to put a function declaration inside the body of another function?

A: Yes. Here's an exrunple:

int main(void)
{

double average(double a, double b);

}

This declaration of average is valid only for the body of main: if other func­
tions need lo call average, they'll each have Lo declare it.

The advantage of lhis practice is that it's clearer to the reader which functions
call which other functions. (In lhis exaniple, we see that main will be calling
average.) On the olhcr hand. it can be a nuisance if several functions need to call
the srune fLmction. Even worse, trying to add and remove declarations during pro­
grnn1 n1ainlenance can be a real pain. For these reasons, r·n always put function
declarations outside function bodies.

Q: Jf several functions have the same return type, can their declarations be com­
bined? For example, since both print_pun and print_count have void
as their return type, is the follo,ving declaration legal'!

void print_pun(void), print_count(int n);

A: Yes. In fact, C even allows us lo con1bine fw1ction declarations with variable decla­
rations:

double x, y, average(double a, double b);

Q & A 213

contribute nothing to readability. (Kernighan and RiLchie apparently agree: lhe
return statements in the second edition of The C Progra,nn1i11g Longuage Jack
parentheses.)

Q: What J1appens if a non-void function attempts to execute a return state­
ment that has no expression? [p. 2021

A: TI1at depends on the version of C. In C89, executing a return statement without
an expression in a non-void function causes undefrned behavior (but only if the

<Im) program attempts to use the value returned by the runction). Tn C99. such a state­
ment is illegal and should be detected as an en·or by Lhe compiler.

Q: How can I test main's return vaJue to see if a program has tern1inated nor­
mally? LP· 203]

A: That depends on your operating system. Many operating systems allow Lhis value
to be tested within a ·'batch file'· or "shell scripc·· Lhal contains comn1ands to 1'1.10

several progranis. For example. tbe line

if errorlevel 1 co111111a11d

in a Windows batch file will execute co111111a11d if Lhe last program tern1inated with
a stalus code greater than or equal to l.

ln UNIX, each shell has its. own method for testing the status code. 1n the
Bourne shell, the variable $? contains the status of the last program run. The C
shell ha<i a sin1ilar variable. but its na1ne is $status.

Q: Why does my compiler produce a "co1Ztrol reaches end of non-void Ju11ctio11"
""varniog when it compiles main?

A: The compiler has noticed that main, despite having int as its return type, doesn't
have a return statement. Putting the statement

return O;

at the end of main will keep the compiler happy. Lncidentally. this is good practice
even if your compiler doesn't object to the lack of a return sratemenl.

<Im) When a program is compiled using a C99 compiler, this warning sbouldn 't
occur. ln C99, it's OK to "fall off' the end of main witJ1ou1 returning a value; the
standard states lhat main automatically returns 0 in this situation.

Q: With regard to the previous question: WI1y notjust definemain's return type
to be void?

A: Although this practice is fairly co1nmon, it's illegal according to the C89 standard.
Even if it weren't illegal, it wouldn't be a good idea, since it presumes that no one
will ever test the program·s status upon termination,

<Im) C99 opens the door to legalizing thjs practice, by allowing main to be
declared "in some other implementation-defined manner•· (with a return type other
than int or parameters otbcr than those specified by the standard). Ho\vever, any
such usage isn't portable. so it's best to declare main's return type to be int.

214 Chapter 9 Functions

Section 9.1

Section 9.2

Q: Is it legal for a function fl to caU a function f2, which then calls fl?

A: Yes. This is just an indirecl form of recursion in which one call of fl leads to
another. (But make sure Lhat either f 1 or f2 eventually terminates!)

Exercises

I. Toe following function, whicb computes Lhc area of a triangle. contains lWO errors. Locate
the errors and show how to fix I hem. (H111t: There are no errors in lhe formula.)

double triangle_area(double base, height)
double product;
{

}

product= base* height;
return product/ 2;

f) 2. Write a funclion check (x, y, n) that returns 1 if both x and y fall between O and n-1.
inclusive. The funclion should return O otherwise. Assume that x, y, and n are aU of type
int.

3. Write a function gcd (m, n) that calculates the greatest common divisor of the integers m
and n. (Programming Project 2 in Chapter 6 dcst:ribes EucUd"s algorithm for computing the
GCD.)

G 4. Writeafunctionday_of_year(mont:h, day, year) Lhalretums U1edayoflheyear
(an integer between I and 366) specified by the lbree argun1ents.

5. Write a function num_ digits (n) thaL returns Lhe number of digits in n (a positive inte­
ger). Hint: To determine Lhe number of digits in a number n, divide it by 10 repeatedly.
When n reaches 0. the number of div isions indicates bow 1nany digits n originaJly had.

9 6. Write a function digit (n, k) that returns the k'" digiL (fro1n the right) inn (a posi­
tive integer). Por example, digit (829, 1) returns9,digit(829, 2) retums2.and
digit (82 9, 3) returns 8. If k is greater than the number of digits in n, have the func­
tion rettu·n O.

7. Suppose that rhe function f has the following definition:

int f (int a, int b) { ... }

Which of the following statements are legal? (Assurne thaL i has type int and x has type
double.)
(a) i - f (8 3 I 12) j

~) X - f(83, 12);
(c) i - f (3, l_S I 9, 28) j

(d) x - f(3.15, 9.28);
(e) £(83, 12);

G 8. Which of lhe following would be valid prototypes for a function that returns nothing and has
one double parameter?

(a) void f (double x) ;

Section 9.3

Section 9.4

(b) void f(double);
(c) void f (x) ;

(tl) f (double x) ;

*9. What will be the output of tbe following program?

#include <stclio.h>

void swap(int a, int bl;

int main(void)
{

}

inti= 1, j = 2;

swap (i, j) ;
printf("i = %d, j - %d\n 11

, i, j);
return O;

void swap(int a, int b)
{

}

int temp= a;
a - b;
b = temp;

Exercises 215

fl> 10. Write functions that return the following values. (A.<;sume that a and n are parameters,
where a is an an·ay of int values and n is the length of lhe array.)

(a) The largest element in a.
(b) The average of all elements in a.
(c) The number of positive elements in a.

l L Write the fallowing function:

float compute GPA(char grades[], in~ n);

The grades array will co·ntain lerter grades (A B. c. D, or F. either upper-case or lower­
case); n is the length of the array. The function should return the average of the grades
(assume that A= 4, B = 3, c = 2, D = I, and F = 0).

12. Write Lhe following function:

double inner_product(double a[), double b[], int n);

Thefunctionshouldretuma[O] '11-b[O] +a[l] *b[l] + ... +a[n-1] *b[n-1].

13. Write the following function, which evaluates a chess posit.ion:

int evaluate_position(char board[B] [BJ);

board represents a configuration of pieces on a chessboard. where the letters K, Q, R, B, N,
P represent Whlte pieces, and the letters k. q. r, b. n. and p represent Black pieces.
evaluate _position should sun, the values of the White pieces (Q = 9. R = 5, B = 3,
N= 3. P = l). ll should also surn the values of lhe l3lack pieces (done in a similar way). The
function will return the difference between the two numbers. Tltis value wilJ be positive if
White l1as an advanLage in n1aterial and negative if Black has an advantage.

14. The following function is supposed Lo return t.rue if any elernent of che array a has lhe
value O and false if all elernento; are nonzero. Sadly, it contains an error. Find the en·or and
show how to fix it:

216 Chapter 9 Functions

Section 9.6

bool has_zero(int a[], int n)
{

}

inti;

for (i = O; i < n; i++)
if (a [i] == O)

return true;
else

return false;

G') 15. The following (ratJ1er confusi_ng) function finds the median of three numbers. Rewrite the
funcLion so that it has just one return stalement.

double median(double x, double y, double z)
{

}

if (x <= y)
if (y <= z) return y;
else if (x <= z) return z;
else return x;

if (z <= y) return y;
i£ (x <= z) return x;
return z;

16. Condense lhe fact function in the same way we condensed power.

G 17. Rev;rite the fact runel.ion so Lhat it's no longer recursive.

18. Write a recursive version of me gcd function (see Exercise 3). Here ·s the strategy to use for
co1nputing gcd (m, n) : If n is 0, return m. Otherwise, call gcd recursively, passing n as
Lhe first argun,cnt and m % n as the second.

9*19. Consider the following "mystery·• function:

void pb (int n)
{

}

if (n != O) {

}

pb (n / 2) ;
putchar(1 0' + n % 2);

Trace lhe execution of the function by hand. Then \vrite a program Lhat ca.11s lhe function,
passing it a number entered by the user. What does the function do?

Programming Projects

I. Write a program that asks the user to enter a series of integers (which it stores in an array),
then sorts the integers by calling the function selection_ sort. When given an array
with n elements. selection sort must do the follov.•in!!: - -
l. Search the array to find the Largest ele1nent, then move it to the Jasr position in the array.

2. Call itself recursively to sort the lirst 11 - I elements of Lhe array.

Programming Projects 217

2. Modify Progra1nming Project 5 from Chapter 5 so U1at it uses a function to co1npule the
an1ount of income LaJ... When passed an an1ount of LaXable income. the function will return
the LaX due.

3. Modify Progra1nn1ing Project 9 from Chapter 8 so that it includes the follo,ving functions:

void generate_random_walk(char walk[l0] [10]);
void print_array (char walk [10) [10]) ;

main firsl calls generate_random_walk. which initiaJizes the array lo contain ' '
characters and U1en replaces some of these characters by the letters A through z, as
described in Lhe original projecc. main then calls print_ array to display the array on
Lhe screen.

4. Modify Programn1ing Project 16 from Chapter 8 so Lhat it includes the following functions:

void read_word(int counts[26]) ;
bool equal_array(int counts1[26], int counts2[26]);

main will call read_ word twice, once for each of the two words entered by the user. As it
reads a word, read_ word wiJl use Lhe lctlcrs in the word to update the counts ai.Tay, as
c.lcscribed in lhe original projccl. (main wiU declare two arrays. one for each word. These
an·ays are used to track bow many li1nes each lelter occurc; in the words.) main \Viii then
call equal_array, passing it Lhe two arrays. equal_array will return true if the ele­
mencs in the two arrays are identical (indicating that Lhe words are anagrams) and false
otherwise.

5. Modify Progran1n1ing Project L 7 from ChapLer 8 so that it includes the following functions:

void create_magic_square(int n, char magic_square[n] [n]);
void print_magic_square{int n, char magic_square(n] [n]);

After obtaining Lhe oun1ber n from the user. main will call crea te_mag i c _ square.
passing it an 11 x n array that is declared inside main. create_magic_square will fill
the an·ay with the nu1nbers l, 2 112 as described in the original project. main will then
call print_magic_square. which will dispJay the array in rhe fonnat described in ilie
originaJ project. Note: If your compiler c.loesu 't support variable-length arrays. declare Lhe
array in main Lo be 99 x 99 instead of II x 11 and use the following prolotypes instead:

void create_magic_square(int 0 1 char magic_square[99] [99));
void print_magic_square(int n, char magic_square[99] [99));

6. Wrile c1 function tbat con1putes the value of the follo\ving polynomial:

3x5 + 2'.4 -5x3 -x2+ 7:c - 6

Write a program Lhat asks the user to enter a value for J:, calls the function Lo co,npute the
value of the polynominl, and then displays the value returned by Lhe function.

7. The power function of Section 9.6 can be niac.le faster by having it calculate .1.11 in a djlTer­
ent way. We first notice t.bal if II is a po\ver of 2, then .i' can be computed by squari11g. For
example, x.i is ilie square of x1• so x4 can be computed using only l\VO multiplications instead
of three. As it happens. this technique can be used even when II is not a power of 2. lf 11 is
even, we use the formula x" = (:<'12)2• If 11 is odd, then .-r1 =xx x',-1. Write a recursive func­
tion U1al con1putes :11

• (The recursion ends when 11 = 0. in which case the function returns I.)
To tesl your function. write a progra1n that asks the user lo enter values for x and 11, calls
power to co1npute .r1

, and then displays Lhe value reLurned by the function.

8. Write a program Lhal simulates ilie game of craps. which is played with two dice. On the
first roll. the player wins if the st11n of the dice is 7 or 11. The player loses if the su1n is 2. 3.

218 Chapter 9 Functions

or 12. Any other roll is called the "point" and Lhe gan1e conLinu_es. Oa each subsequent roll,
the player wins if he ors.he rolls the point again. Tbe player loses by rolling 7. Any other roU
is ignored and the game contiJlues. At lhe end of each game, the program will ask rhe user
whether or not to play again. When the user enters a response ocher than y or Y. the program
will display the number of win.'\ and losses and then terminate.

You rolled: 8
Your point is 8
You rolled: 3
You rolled: lO
You rolled: 8
You win!

Play again? y

You rolled: 6
Your point •

6 1S
You rolled: 5
You rolled: 12
You rolled: 3
You rolled: 7
You lose!

Play again? y

You rolled : 11
You win!

Play again? n

Wins: 2 Losses: 1

Write your program as three functions: main. roll_dice, and play_game. Here are
the prototypes for Lbc latter two functions:

int roll_dice(void);
bool play game(void);

roll_dice should generate two random nun1bers, each between I and 6, and return Lbeir
sum. play_ game should play one craps game (calling roll_dice to determine the out­
come of each dice rolJ); it wiU return true if lhe pJayer wins and false if the player loses.
play _game is also responsible for displaying messages showing Lhe resuJts of Lhe player's
dice rolls. main wi ll call play_game repeatedly. keeping track of 1he number of wins and
losses and djsplaying the "you win'' and "you lose" messages. Hint: Use the rand function
to generate random nun,bers. See lhe deal. c program in Section 8.2 for an example of
how to call rand and the related srand function.

10 Program Organization

As Will Rogers would have said, "There
is no such thing as a free variable."

I-laving covered functions in Chapter 9, we're ready to confront several issues that
arise when a program contains rnore than one function. The chapter begins with a
discussion of the differences between Jocal variables (Section J 0.1) and external
variab]es (Section J 0.2). Section I 0.3 then considers blocks (compound statements
containing declarations). Section 10.4 tackles the scope ru1es lhat apply to local
names, external names, and nru11es declared in blocks. Finally, Section I 0.5 sug­
gests a way to organize function prototypes, function definitions. variable declara­
tions. and the other parts of a C program.

10.1 Local Variables

A variabJe declared in U1e body of a function is said to be local to the function. lu
the fo llowing function, sum is a]ocal variable:

int sum_digits(int n)
{

}

int sum= O; / * local variable */

while (n > 0) {
sum+= n % 10;
n I= 10;

}

return sum;

219

}

10.2 External Variables 225

printf("Guess the secret number between 1 and %d.\n\n 11
,

MAX_ NUMBER) ;
initialize_number_generator(};
do {

choose_new_secret_number();
printf ("A new number has been chosen. \n 11) ;

read_guesses();
printf ("Play again? (Y/N) 11);

scanf (" %c 11 , &command) ;
pi-int£ ("\n") ;

} while (command== •y• I I command -- 'Y');

return O;

/**
* initialize number generator: Initializes the random * - - number generator using

the time of day.
*
*

**/
void initialize_number_generator(void)
{

srand((unsigned) time{NULL));
}

!******************~******************************~********
* choose_new_secret_number: Randomly selects a number *
* between 1 and MAX NUMBER and*

stores it in secret number. *
**/

void choose_new_secret_number(void)
{

secret number= rand() % MAX NtJMBER + 1;
}

/**
* read_guesses: Repeatedly reads user guesses and tells *
* the user whether each guess is too low, *
* too high, or correct. When the guess 1s *
* correct, prints the total number of *
* guesses and returns. *
**/

void read_guesses(void)
{

int guess, num_guesses - O;

for (; ;) {
nurn_guesses++;
printf ("Enter guess: ") ;
scanf ("%d 11

, &guess) ;
if (guess== secret_number} {

printf { ''You won in %d guesses I \n\n", num_guesses) ;
return;

} else if (guess< secret number)

10.3

10.3 Blocks 227

/**
* initialize_number_generator: Initializes the random *
* number generator using *
* the time of day. *
**/

void initialize number generator(void)
{ - -

srand((unsigned) time(NULL));
}

/ **
* new_secret_ number: Returns a randomly chosen nurohP.r *
* between 1 and MAX NUMBER. *
**/

int new secret number (void)
{ - -

return rand () %- MAX NUMBER + 1;
}

/**
* read_guesses: Repeatedly reads user guesses and tells *
* the user whether each guess is too low, *
* too high, or correct. When t.he guess is *
* correct, prints the total number of *
* guesses and returns. *
** /

void read guesses(int secret ouroher)
{ - -

}

int guess, num_guesses = O;

for (; ;) {
num_guesses++;

}

printf (11 Enter guess: 11
) ;

scan£ (11 %d", &guess) ;
if (guess== secret_number) {

printf ("You won in %d guesses I \n\n", num_guesses),
return;

} else if (guess< secret number)
printf ("Too low; try again. \n 11

) ;

else
printf ("Too high; try again. \n") ;

Blocks

In Seel.ion 5.2. we encountered co1npound statements of the forn1

{ sta1en1ents }

230 Chapter 1 O Program Organization

always fits into a single fi le. Chapter J 5 shows how Lo organize a progrrun that's
split over several tiles.

So far, we've seen that a program may contain the following:

Preprocessing dii-ectives such as #include and #define
Type definitions
Declarations of external variables
Function prototypes
Function definjtions

C imposes only a few rules on the order of these items: A preprocessing directive
doesn't take effect until the line on which it appears. A type name can't be used
until it's been defined. A variable can't be used untiJ it's declared. Although C isn't
as picky about functions, T strongly recommend that every function be defined or

CBm) declared prior to its first caJl. (C99 1nakes this a requirement anyway.)
There are several ways to organize a progran1 so that these rules are obeyed.

Here's one possible ordering:

inc 1 ude directives
#define directives
Type definitions
Declarations of external variables
Prototypes for functions other than main
Definition of main
Definitions of other functions

It 111akes sense to put #include directives first, since they bring in infor1nation
that will likely be needed in several places withjn the program. #define direc­
tives create n1acros, which are generally used throughout the program. Putting type
definitions above the declarations of external variables is logical, since the declara­
tions of these variables may refer to the lype names just defined. Declaring exter­
nal variables next makes U1e1n available to all the functions that follow. Declaring
al] functions except for main avoids the problems that arise when a function is
called before the compiler has seen its prototype. This practice also makes it possi­
ble to arrange the function definitions in any order whatsoever: alphabetically by
function name or with related functions grouped together, for example. Defining
main before the other functions makes it easier for a reader to locate the pro­
gran1's starting point.

A final suggestion: Precede each function definition by a boxed comn1ent that
gives the name of the function, explains its purpose, discusses the meaning of each
parameter, desc1ibes its retun1 value (if any), and I ists any side effects it has (such
as modifying external variables).

PROGRAM Classifying a Poker Hand

To show how a C program mjght be organized, Jet's attempt a program thal's a lit­
tle more co1nplex than our previous examples. The progran, will read and classify

10.5 Organizing a C Program 231

a poker hand. Each card in the hand will have both a suit (clubs, dirunonds. hearts,
or spades) and a rank (two. three. four, five. six. seven, eight, nine, ten. jack, queen,
king, or ace). We won't allow tl1e use of jokers, ru1d we'll assu1ne that aces are
high. The program will read a hru1d of five cards, then classify the hand into one of
lhe following categories (listed in order from best to \.Vorst):

straight flush (both a straight ru1d a tlush)
four-of-a-kind (four cards of the same rank)
full house (a three-of-a-kind and a pair)
flush (five cards of the saine suit)
straight (five cards with consecutive ranks)
three-of-a-kind (three cards of the sa,ne rru1k)
two pairs
pair (lwo cards of the san1e rank)
high card (any other hand)

II a ha11d falls -u1to two or more categories, the progra,n will choose the best one.
For input purposes, we' 11 abbreviate ranks and suits as follows (letters n1ay be

eilher upper- or lower-case):

Rru1ks: 2 3 4 5 6 7 8 9 t j q k a

Su_its: c d h s

IJ tl1e user enters ru1 illegal card or tries to enter the same card twice, the progrruu
will ignore the card, issue an en·or message, and then request another card. Enter­
ing the number O instead of a card will cause the progran1 to ter111inate.

A session with tbe program will have the following appearance:

Enter a card: 2s
Enter a card: 5s
Enter a card: 4s
Enter a card: 3s -Enter a card: 6s
Straight flush

Enter a card: Be
Enter a card: as
Enter a card: Be
Duplicate card; ignored.
Enter a card: 7c
Enter a card: ad -Enter a card: 3h
Pair

Enter a card: 6s -Enter a card: d2
Bad card; ignored.
Enter a card: 2d
Enter a card: 9c
Enter a card: 4h
Enter a card: ts

232 Chapter 1 O Program Organization

High card

Enter a card: 0

From this description of the progra1n, we see that it has three tasks:

Read a hand of five cards.
Analyze the hand for pairs. straights, and so forth.
Print the classification of the hand.

We'll divide the program into three functions-read_cards, analyze_hand,
and print_resul t-tbat perform these lhree tasks. main does nothing but call
these functions inside an endless loop. The fuL1ctions will need to share a fairly
large amount of infonnation, so we' U have them communicate through external
variables. read cards will store information about the hand into several exter­
nal vaiiables. analyze_hand will then examine these variables. storing its ·find­
ings into other external variables for the benefit of print result.

Based on this preliminary design, we can begin to sketch an outline of the pro­
gram:

/ * #include directives go here*/

/* #define directives go here*/

/ * declarations of external variables go here*/

/ *prototypes*/
void read_cards(void);
void analyze_hand(void);
void print_result(void);

/ **
* main: Calls read_cards, analyze_hand, and print_result *
* repeatedly. *
** /

int main(void,)
{

}

for (; ;) {
read_cards();
analyze_hand();
print_result();

}

/ **~***
* read cards: Reads the cards into external variables; *
* checks for bad cards and duplicate cards. *
** /

void read cards(void)
{ -

}

10.5 Organizing a C Program 233

/**
* analyze_hand: Determines whether the hand contains a *
*
*
*
*

straight, a flush, four-of-a-kind, *
and/or three-of-a-kind; determines the *
number of pairs; stores the results into*
external variables. *

**!
void analyze_hand(void)
{

}

/*********************** ***********************************
* print_result: Noti£ies the user of the result, using *
* the external variables set by *
* analyze_hand. *
**/

void print result(void)
{ -

}

The n1ost pressing question that remains is how to represe11t U1e hand of cards.
Let's see what operations read_cards and analyze_hand will perform on
the hand. During Lhe analysis of the band, analyze_hand will need to know
how many cards are in each rank and each suit. Thjs suggests that we use two
arrays, num_in_rank and num_in_suit. The va.Jue of num_in_rank [r]
will be the nun1ber of cards with rank r, and Lhe value of num_in_sui t [sJ will
be Lhe number or cards with suit s. (We'll encode ranks as nu1nbers between O and
I 2. and suits as numbers between O and 3.) We'll also need a Lhird array,
card_exists, so rhat read_cards can detect duplicate cards. Each time
read cards reads a card with rank r and suiL s. it checks whether the value of
card_exists [r] [s] is true. If so, the card was previously entered~ if noL,
read_cards assigns true to card_exists [r] [s].

Both the read_cards function and the analyze_hand function will need
access to lhe num_in_rank and num_in_suit arrays. so f'll make tl1em exter­
na1 variables. The card_ exists array is used only by read_cards, so it can
be local to lhat function. As a rule. variables should be made external only if neces­
sary.

Having decided on Lhe major data structures, we can now finish the program:

poker.c / * Classifies a poker hand*/

#include <stdbool . h>
#include <Stdio.h>
#include <Stdlib.h>

#define NUM RANKS 13
#define NtJM SUITS 4
#define NOM CARDS 5

/* C99 only*/

234 Chapter 1 O Program Organization

/* external variables*/
int num_in_rank[NUM_RANKSJ;
int num_in_suit(NUM_SUITS];
bool straight, flush, four, three;
int pairs; /* can be 0, 1, or 2 */

/ * prototypes *I
void read_cards(void);
void analyze_hand(void);
void print_result(void);

/**
* main: Calls read_cards, analyze_hand, and print_result *
* repeatedly. *
**/

int main (void)
{

}

for (;;) {
read_cards();
ana 1 yz e_hand () ;
print_result();

}

/**
* read cards: Reads the cards into the external *
* variables num_in_rank and num_in_suit; *
* checks for bad cards and duplicate cards. *
**/

void read cards(void)
{ -

bool card exists[NUM_RANKS) [NOM_SUITS);
char ch, rank_ch, suit_ch;
int rank, suit;
bool bad_card;
int cards read - O;

for (rank= O; rank< NOM RANKS; rank++) {
num_in_rank[rank] - O;

}

for (suit= O; suit< NUM_SUITS; suit++)
card_exists[rank) [suit) = false;

for (suit= O; suit< NUM_SUITS; suit++)
num_in_suit[suit] - 0;

while (cards read< NUM CARDS) {
bad card= false;

printf ("Enter a card: 11) ;

rank_ch = getchar();
switch (rank_ch) {

}
}

10.5 Organizing a C Program 235

case ' 0 ' : exit (EXIT _SUCCESS);
case ' 2 ' : ral1k - O; break;
case I 3 I : rank - l; break;
case I 4 I : rank - 2; break;
case t 5 I : rank - 3· I break;
case I 6 I : rank - 4; break;
case ' 7 t : rank - 5; break;
case ' 8 f : rank - 6; break;
case I 9 I : rank - 7· break; I

case I t I : case IT f rank - 8· I break;
case I j f : case I J f . rank - 9. break; . ,
case I q I : case IQ I . rank - 10; break; .
case I k I : case I KI rank - 11; break;
case I at : case I A' rank - 12; break;
default: bad card - true;

}

suit ch - getchar(); -
switch (suit - ch) {

case I C I : case 'C' . . suit - 0 . , break;
case I d I : case ID I . suit - 1. break; . I

case ' h I : case t HI suit - 2; break;
case I $ I ; case IS I . suit - 3; break; .
default: bad card -

}

while ((cb = getchar()) I= 1 \n')
if (ch ! = ' ') bad card = true;

if (bad_card)
printf("Bad card; ignored. \n");

t.rue;

else if (card_exists[rank) [suit])
print£ ("Duplicate card; ignored. \n") ;

else {

}

num_in_rank[rank]++;
num_in_suit[suit]++;
card_exists[rank] [suit] - true;
cards_read++;

/**
* analyze_hand: Determines whether the hand contains a *
* straight, a flush, four-of-a-kind, *
* and/or three-of-a-kind; determines the *
* number of pairs; stores the results into*
* the external variables straight, flush, *
* four, three, and pairs. *
**/

void analyze_hand(void)
{

int num consec = O;
int rank, suit;

236 Chapter 10 Program Organization

}

straight= false;
flush= false;
four= false;
three - false;
pairs= O;

/* check for flush*/
for (suit= O; suit< NDM SUITS; suit++)

if (num_in_suit[suit] == NUM_CARDS)
flush= true;

/* check for straight*/
rank = O;
while (num_in_rank[ra.nk] == 0) rank++;
for {;rank< NUM_RANKS && num_ in_ rank[rank] > O; rank++)

num_consec++;
if {num_consec == NUM_CARDS) {

straight= true;
return;

}

/* check for 4-of-a-kind, 3-of-a-kind, and pairs*/
for (rank= O; rank< NOM_RANKS; rank++) {

if (num_ in_rank[rank] -- 4) four= true;
if {num_in_rank[rank) -- 3) three= true;
if {num_in_rank[rank) -- 2) pairs++;

}

/ **
* print_result: Prints the classification of the hand, *
* based on the values of the external *
*
*

variables straight, flush, four, three, *
and pairs. *

**/
void print result{void)
{ -

}

if (straight && flush)
else if (four)
else if (three && . 1) pairs --
else if (flush)
else if (straight)
else if (three)
else if (pairs -- 2)
else if (pairs - - 1)
else

printf ("\n\n");

printf ("Straight flush");
print£ ("Four of a kind") ;

print£ (11 Ful 1 house 11
) ;

printf (nFlush") ;
printf(''Straight'');
printf ("Three of a kind'' l ;
print:f (11 Two pairs" l ;
printf{"Pair");
printf ("High card") ;

Notice Lhe use of the exit function in read_cards (in case ' o ' of Lhe frrst
switch statement). exit is convenieol for this program because of its ability to
terminate execution frorn anywhere in the program.

Section 10.4

Q&A 237

Q&A

Q: What impact do local variables with static storage duration have on recursive
functions? [p. 220]

A: When a function is called recursively, fresh copies are made of its automatic vari­
ables for each call. This doesn't occur for static variables, though. Instead, all calls
of the !'unction share the sanie static variables.

Q: In the following example, j is initialized to the same vaJue as i, but there are
two variables named i:

inti= J.;

void f (void)
{

}

int j - i;
inti - 2;

Is this code legaJ? If so, what is j's initiaJ value, 1 or 2?

A: The code is indeed legal. The scope of a local varjable doesn't begin until its decla­
ration. Therefore, the declaration of j refers to lhe external variable named i. The
initial value of j will be 1.

Exercises

9 1. The following program outline shows only function defulitions and variable declarations.

int a;

void f(int b)
{

int c;
}

void g(void)
{

int d;
{

int e;
}

}

int main (void)
{

int f;
}

238 Chapter 1 O Program Organization

For each of the following scopes, list all variable and parameter names visible in that scope:
(a) The f function
(h) The g funcLion
(c) The block in which e is declared
{d) The main function

2. The following prograo1 outline shows on ly function definjlions and variable declarations.

int b, c;

void f (void)
{

int b, d;
}

void g(int a)
{

int c;
{

int a, d;
}

}

int main(void)
{

int c, d;
}

For each of the following scopes. list all valiable and parameter names visible in that scope.
[f there's more than one variable or paran,eLcr with the same name. indicate which one is
visible.

(a) The f function
(b) The g function
(c) The block jn which a and dare declared
(ti) The main funcLion

*3 Suppose that a program has only one function (main). I-low n,any different variables named
i could Lhis program contain?

Programming Projects

J. MoJi fy the stack example of Section I 0.2 so LhaL it stores characters instead of in Legers.
Next, add a main r unclion that asks U1e user to enter a series of parenlheses and/or braces.
then indicates whether or not Lhey're properly nested:

Enter parentheses and/er braces: (() {}(()})
Parentheses/braces are nested properly

Hint: As the program reads characters. have iL push each lefL parenlhesis or left brace. When
it reads a right parenthesis or brace. have it pop the stack and check that the jLem popped is a
1natch1ng parenthesis or brace. (If not, the parentheses/braces aren't nested properly.) When
the program reads the new-line character. have it check \.vhether the stack is empty: if so, the
parentheses/braces are 1natched. If the stack is11 ·, empty (or ifs tack_ underflow is ever

•

Programming Projects 239

called), the parentheses/braces aren'r matched. Jf stack_overflow is called. have the
program print lhe message Stack over£low and terminale unmediately.

2. Modify the poker . c program of Section 10.5 by moving Lhe num_in_rank and
num_in_suit ruTays into main, which wilJ pass the1n as arguments to read_cards
and analyze_hand.

G 3. Re1nove the num_in_rank, num_in_suit, and card_exists arrays from the
poker. c prograin of Section I 0.5. Have the program store Lhe cards in a 5 x 2 array
instead. Each row of the array will represent a card. For example. if the array is named
hand, then hand [o] [O] will store the rank of the first card and hand [0 J [1 J will slore
the suit of the first card.

4. Modify the poker. c program of Section I 0.5 by having it recognize an additional cate­
gory, "royal flush'" (ace, king. queen. jack, ten of the same suit). A royal fiush rru1ks higher
tha11 all other hands.

G 5. Modify the poker. c program of Section L0.5 by aJlowing "ace-low" straights (ace, two,
lhrce, four. five).

6. Some calculators (notably those from Hewlett-Packard) use a system of writing mathemati­
cal expressions known as Reverse Polish Notation (RPN). 1n this notation. operators are
placed a,fter their operands instead of between their operands. For example. I + 2 would be
written 1 2 + in RPN. and L + 2 * 3 would be wrinen I 2 3 * +. RPN expressions can easily
be evaluated using a stack. The aJgodthn1 involves reading the operators and operands in an
expression from left ro right, perfon11ing the following actions:

When an operand is encountered, push it onto the stack.
When an operator is encountered, pop its operands from the stack. perform the opera­
tion on those operands, and then push the result onto the stack.

Write a program that evaluates RPN expressions. The opera11ds will be single-digit integers.
The operators are+,-.*,/, and=. The= operator causes the top stack item lo be displayed;
afterwards, the stack is cleared and the user is prompted to enter another expression. The
process continues until the user enters a character that is not an operator or operand:

Enter an RPN expression : 1 2 3 * + -
Value of expression: 7
Enter an RPN expression: 5 8 * 4 9 - / -
Value of expression: -8
Enter an RPN expression: g
If the stack overtlows, the program will display the message Expression is too com­
plex a11d ter1ninate. Tf the stack underflows (because of an expression such as 1 2 + +), the
program will display lhe 1nessage Not enough operands in expression and tenni­
nate. Hints: lncorporate the stack code from Section 10.2 into y()ur program. Use
scanf { 11 %c 11

, &ch) to read lhe operators and operands.

7. Write a prograiu that prompts the user for a number and then displays the number, using
characters to simulate the err ect of a seven-segment display:

Enter a number: 491-9014

I - [_ 1= I I­
_ I , _

Characters other than digits should be ignored. Wrice the program so that the maximum
number of digits is controlled by a macro na1ned MAX_DIGITS, \Vhich bas the value 10. If

240 Chapter 1 O Program Organization

the number conLains more lhan this number of digits, the extra digits are ignored. Hints: Use
two external arrays. One is the segments array {see Exercise 6 in Chapter 8). which stores
data representing the correspondence be1ween digits and segrnent<.. The oLhcr aJTay. dig­
its, will be an array of characters with 4 rows (since each segmented digiL is fow· charac­
Lers h.igb) and MAX DIGITS * 4 columns (digits are three characters wide. but a space is
needed between digits for readabiJjty). Write your program as four functions: main,
clear_digits_array. process_digit. and print_digits_array. Here are
the prototypes for the latter three functions:

void clear_digits_array(void);
void process_digit(int digit, int position);
void print_digits_array(void);

clear_digits_array will store blank characters into all elements of the digits
array. process_digit will store tbe seven-segn1ent representation of digit into a
specified position in lhe digits array (positions range from O to MAX_DIGITS - I).
print_digits_array will display lhe rows of tile digits array, each on a single line,
producing output such as that shown in lhe example.

11 Pointers

The 11th commandment was "Thou Shalt Compute"
or "Thou Shalt Not Compute11-I forget which.

Pointers are one or C's most important-and most often n1isunderstood-features.
Because of their importance, we'll devote tl1ree chapters to pointers. ln this chap­
ter, we'll concentrate on the basics; Chapters 12 and J 7 cover more advanced uses

of pointers.
We'll start with a discussion of memory addresses and their relationship to

pointer variables (Section J 1.1). Section 11.2 then introduces the address and indi­
rection operators. Section l J .3 covers pointer assignment. Seclion ll.4 explains
how to pass pointers to r unctions, while Section 11.5 discusses ren1rning pointers

from functions.

11.1 Pointer Variables

The first step in. understanding pointers is visualiL.ing what they represent at the
machine Jevel. In most modem computers, main 1nemory is divided into bytes,
with each byte capable of storing eight bits of infom1ation:

•

Each byte has a unique address to distinguish it from the other bytes in memory. If
there are n bytes in memory. we can think of addresses as numbers lhat range from
0 to II - 1. (see the figure al tbe top of the next page).

An executable progrrun consists of both code (machine instructions corre­
sponding to statements in the originaJ C program) and data (variables in the origi­
nal program). Each variable in the program occupies one or more bytes of n1ernory:

241

242 Chapter 11 Pointers

Address Contents

0

1

2

3

4

n-1

01010011
-

0111010:L

01.110011

01100001

01101110
,- . . .

01000011

the address of Lhe first byte is said to be the address of lhe variable. In the following
figure. the variable i occupies the bytes at addresses 2000 and 200 I, so i ·s address
is 2000:

2000

2001
i

Here's where pointers come in. Although addresses are represented by num­
bers, their range of values may differ from that of integers, so we can 1t necessarily
store then1 in ordinary integer variables. We can, however. store them in special
pointer variables. Wben we store the nddress of a variable i in the pointer variable
p. we say that p .. points to" i. [n other words. a pointer is nothing n1ore than an

6m address, and a pointer variable is just a variable that can store an address.
Instead of showing addresses as numbers in our examples, I'll use a sin1pler

notatio11. To indicate that a pointer variable p stores Lhe address of a variable i, I'U
show the contents of pas an arrow directed toward i:

Declaring Pointer Variables

A pointer variable is declared in much Lhe same way as an ordinary variable. The
only difference is that the 11a1ne of a pointer variable must be preceded by ao aster­
isk:

int *p;

244 Chapter 11 Pointers

It's also possjble lo initialize a pointer variable at the time we declare it:

inti;
int *p = &i;

We can even con1bine the declaration of i with lhe declaraliou of p, provided that
i is declared first:

inti, *p = &i;

The Indirection Operator

Once a pointer variable points to an object. we can use the * (indirection) operator
to access what's stored in the object. [f p points to i, for example, we can print the
value of i as follows:

printf(1'%d\n 11 , *p);

l!!!J printf will display the value of i, not the address of i.
The mathematicaUy inclined reader may wish to think of* as the inverse of&.

Applying & to a variable produces a poiuter to the variable; applying * to the
pointer takes us back Lo the original variable:

j = *&i; /* same as j = i; */

As long asp points Loi, *p is an alias for i. Not only does *p have the same
value as i, but changing the value of *P also changes the value of i. (*p is an
!value, so assignment to it is legal.) The following example illustrates the equiva­
lence of *p and i; diagrarns show the values of p and i at various points in the
computation.

p = &i;

J. - 1;

printf ("%d\n", i) i I* prints 1 *I
printf(11 %d\n 11 , *p) ; I* prints 1 */
*p = 2;

PG 1 2 Ii
printf ("%d\n" 1 i) ; I* prints 2 */
printf (11 %d\n 11

, *p) ; I* prints 2 */

11. 3 Pointer Assignment 245

Never apply the indirection operalor to an uninitialized pointer variable. If a
pointer variable p hasn · t been initiaLized, attempting lo use the vnlue of p in any
way causes undefined behavior. I.n Lhe following exan,ple. the call of printf n1ay
print garbage, cause the program to crash. or have some other effect:

int *p;
printf (11 %d 11

, *p); /***WRONG***/

Assigning a value to *p is particularly dangerous. If p happens to contain a valid
memory address, the foUowing assignment wiU attempt to modify the data stored
at thal address:

int *p;
*p = l; /** *WRONG***/

If the location modified by this assignment belongs to the program. iL n1ay behave
erratically: if it belongs to the operating systecn, the program will most likely
crash. Your con,pi1er may issue a warning that p is uninitialized, so pay close
attention to any v.rarning messages you gel.

11.3 Pointer Assignment

C allows the use of the assignn1ent operator to copy pointers, provided that they
have the same type. Suppose that i. j, p. and q have been declared as follows:

i t . . * n i, J, p,

The statement

p = &i;

*q;

is an example of pointer assignment; the address of i is copied lnLo p. Here's
another example of pointer assignment:

q = p;

This statement copies the contents of p (the address of i) into q, in effect making
q point to Lhe same p.lace asp:

Both p and q now poi nl to i. so we can change i by assigning a new value Lo

either *p or * q:

246 Chapter 11 Pointers

*p = l;

1 •
l.

*q - 2 ;

2
.
l.

Any number of pointer variables may point LO the same object.
Be careful not to confuse

q = p;

with

*q = *p;

The first statement is a pointer assignment: the second isn·t, as the following
exampJe shows:

p - &i;
q - &j;
• l; J. -

pr :3 ~._I 1__.l i
qG .__?_ .. j

*g - *p;

PG-1 1 Ii
gG ~1 1 lj

The assignment *q = *p copies the value lhat p points to (the vaJue of i) into the
object that q points Lo (the variable j).

11.4 Pointers as Arguments 247

11.4 Pointers as Arguments

So far, we've managed lo avoid a rather important question: What are pointers
good for? There's no single answer to that question, since pointers have several
distinct uses in C. In this section. we'll see bow a pointer to a variable can be use­
ful as a function argument We'll discover other uses for pointers in Section I 1.5
and in Chapters I ? and 17.

We saw in Section 9.3 that a variable supplied as an argument in a function
call is protected against change. because C passes arguments by value. This prop­
erly of C can be a nuisance if we want the function to be able to modify U1e vari­
able. 1n Section 9.3, we tried-and failed-to write a decompose function that

could modify two of its arguments.
PoinLers offer a solution to tJ1is problem: instead of passing a variable x as the

argument to a function, we'U supply &x, a pointer to x. We' ll declare the corre­
sponding parameter p to be a pointer. When the function is called, p will have the
value &x. hence *p (the object that p points Lo) will be an alias for x. Each appear­
ance of *P in the body of the function wilJ be an indirect reference to x, allowing
the function both to read x and to modify it.

To see this technique in action, let's modify lhe decompose function by
declaring the parameters int _part and frac _part to be pointers. The defini­
tion of decompose will now look like Lhis:

void decompose(double x, long *int_part, double *frac_part)
{

}

*int_part: (long) x;
*frac_part = x - *int___part;

The prototype for decompose could be either

void decompose(double x, long *int_part, double *frac_part);

or

void decompose(double, long*, double*);

We ·11 call decompose in the following way:

decompose(3.14159, &i, &d);

Because of the & operator in front of i and d. the argtiments to decompose are
pointers to i and d, not the values of i and d. When decompose is called, the
value 3.14159 is copied into x, a pointer to i is stored in int_part, and a
pointer to d is stored in frac_part:

248 Chapter 11 Pointers

xi 3 .14159 I
inc_part G ·I ?

Ii .

frac_part ~ I ~1 ? • Id
The first assignment in lhe body of decompose converts the value of x to type
long and stores it in I.he object pointed to by int _part. Since int _part
points LO i, the assignment puts the value 3 in i :

x[;.1415:)

int_part G-1.._ __ 3 __ 1i
frac_part G .. , " Id

The second assignment fetches the value that int _part points to (the value of
i), which is 3. This value is converted to type double and subtracted fro1n x, giv­
ing .14159, which is then stored in the object that frac_part points to:

X 3.14159)

int_part 1 . 1 -1- 3 -1 i

frac_part I • I •l .14159 Id

When decompose returns. i and d will have the values 3 and .14159, just as we
originally wanted.

Using pointers as argun1ents to functions is actually nothing new; we've beeo
do·ing it in calls of scanf since Chapter 2. Consider the following example:

inti ;

scanf (11 %d 11 , &i) ;

We must put the & operator in front of i so tha1 scanf is given a poinrer to i; that
pointer tells scanf where to put the value that i1 reads. Will1ouL the &, sr.anf
would be supplied with the value of i .

Although scanf ·s arguments 1nusl be pointers. it's not always true that every
argument needs lhe & operator. In the fo1lowing example, scanf is passed a
pointer variable:

11.4 Pointers as Arguments 249

int 1, *p;

p = &i;
scan£ ("%d", p);

Since p contains the address of i. scanf will read an integer and store it in i.
Using the & operator in the call would be wrong:

scan£ (" %d", &p) ; /***WRONG***/

scanf would read an integer and store it in p instead of in i.

Failing to pass a pointer to a function when one is expected can have disastrous
results. Suppose that we call decompose without the & operator in front of i and
d:

decompose(3.14159, i, d);

decompose is expecting pointers as its second and third atguments. but ifs been
given the values of i and d instead. decompose has no way to tell the <.Liff erence,
so lt will use the values of i and d as though Lhey were pointers. When decom­
pose stores values in *int_part and *.frac_part. it will attempt to change
llnknown memory locations instead of rnodifying i and d.

lf we've provided a prototype for decompose (as we should always do, of
course), the compiler will let us know that we're atternpling to pac,s argun1ents of
the wrong type. In tl1e case of scan£, however. failing to pass pointers often goes
undetected by the compiler. making scanf an especially error-prone function.

PROGRAM Finding the Largest and Smallest Elements in an Array

To illustrate how pointers are passed to functions, let's look at a function nru11ed
max_min that finds the largest and smallest elements in an array. When we call
max_min, we'll pass il pointers to two variables; max_min will Lhen store its
answers in these variables. max_min has the following prototype:

void max_min(int a[J, int n, int *max, int *min);

A call of max_min might have the following appearance:

max min(b, N, &big, &small); -
b is an array of integers; N is Lhe number of eJen_1eots in b. big and small are
ordinary integer variables. When max min finds the largest element in b, it stores
the vaJue in big by assigning it to *max. (Since max points to big. an a~sign­
ment to *max will modify the value of big.) max_ min stores the sn,allest ele­
ment ofb in small by assigning it to *min.

To test max_min, we'll write a program that reads JO numbers into an array.
passes the a:JTay tomax_min. and prints the results:

250 Chapter 11 Pointers

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
Largest: 102
Smallest: 7

Here's the comp]eLe program:

maxmin.c / * Finds the largest and smallest elements in an array*/

#include <Stdio . h>

#define N 10

void max_min(int a[], int n, int *max, int *min);

int main(void)
{

}

int b[N], i, big, small;

printf (11 Enter %d numbers: 11 , N) ;
for (i = O; i < N; i++)

scanf (11 %d 11 , &b [i]);

max_min(b, N, &big, &small);

printf ("Largest : %d\n'', big) ;
printf("Smallest: %d\n", small);

return O;

void max min{int a[], int n, int *max, int *min)
{

inti;

*max= *min= a[O];
for (i = l; i < n; i++) {

if (a[i] > *max)

}

*max = a[i];
else i£ (a[i] < *min)

*min = a [i] ;

Using cons t to Protect Arguments

When we call a function and pass it a pointer Lo a variable, we nom1ally assuo1e
that the function wil1 n1odify the variable (otherwise, why would the function
require a pointer?). For example, if we see a statemenL like

f (&x) ;

11.5 Pointers as Return Values 251

in a program, we'd probabJy expect f to change the value of x. IL's possible,
though, that £ merely needs to examine the value of x. not change it. The reason
for the pointer n1ight be efficiency: passjng the vaJue of a variabJe can waste time
and space if the variable requires a large amount of storage. (Section 12.3 covers
this poinL in more detail.)

We can use the word const to document t11at a function won't change an
objecl whose address is passed to the function. const goes in tl1e parameter's
declaration, just before Lhe specification of its type:

void f(const int *p)
{

*p = O; /***WRONG***/
}

This use of const indicates that p is a pointer to a "constant integer:· Attempting
to modify *p is an error that the con1piler will detect.

11.5 Pointers as Return Values

We can not only pass pointers to functions but also write functions lhal return
pointers. Such functions are relatively com1non; we' JI encounter several in Chapter
13.

The foUow ing function, when given pointers to two integers, returns a pointer
to whichever integer is larger:

int *max(int *a, int *b)
{

}

if (*a> *b)
return a;

else
return b;

When we call max. we'll pass pointers to two int variables and slore the result in
a JJoiater variable:

int *P, i, j;

p = rnax(&i, &j);

During the call of max, *a is an alias for i, whlle *bis an alias for j. If i has a
larger value than j, max returns the address of i; otherwise. it relu:rns the address
of j. After lhe call , p points to either i or j.

Allhough lhe max function returns one of the pointers passed to it as an argu-
1nent, that's not lhe only possibility. A function could also return a pointer to an
external variable or to a local variable that's been declared static.

252 Chapter 11 Pointers

Never return a pointer to an auto1natic local variable:

int * f (void)
{

inti;

return &i;
}

The variable i doesn ' t exist once f returns, so the pojncer to it will be invalid.
So,ne con1pilers issue a warning such as "function ref1,071s address of local vari­
able'· in this situation.

Pointers can point to array elements, not just ordinary variables. If a is an
array, then &a [i] is a pointer to element i of a. When a function ha~ an array
argument, it's someti1nes useful for the function to return a pointer to one of the
elements in the array. For example, the following function returns a pointer to the
,njddle element of the array a, assuming that a has n elements:

int *f ind middle(int a[], int n) {
return &a [n/2] ;

}

Chapter 12 explores tl1e relationship between pointers and arrays in considerable
detajJ.

Q&A

*Q: Is a pointer al\vays the same as an address? [p. 242]

A: Usually, but not always. Consider a computer whose main memory is divided into
words rather than bytes. A word might contain 36 bits, 60 bits, or some other
nun1ber of bits. If we assume 36-bit words, memory will have the following
appearance:

Address

0

1

2

3

4

n-1

Contents

0010100110010100110010100 11001 010011 - -
001110101001110101001110101001110101

001110011001110011001110011001110011

001100001001100001001100001001 100001

001101110001101110001101110001101110
.
.

001000011001000011001000011001000011

Q& A 253

When n1emory is divided into words. each word has an address. An integer
usually occupies one word, so a pointer to an integer can just be an address. How­
ever, a word can store 01ore than one character. For example, a 36-bit word might
store six 69 bit characters:

OlOOll 110101 11001.J. .J.00001 101110 000011

or four 9-bit characters:

001010011 T 001110101 T 001110011 001100001

For Lhis reason, a pointer to a character may need co be stored in a dillerent form
than other pointers. A pointer Lo a character might consist of an address (the word
in which the character is stored) plus a small integer (Lhe position of the character
within the word).

On some computers, pointers may be "offsets" rather tl1an complete
addresses. For exru11ple, CPUs in thelnLel x86 family (used in n1any personal co1n­
puters) can execute progran,s in several modes. The oldest of these, which dates
back to the 8086 processor of 1978. is called real ,node. In this mode. addresses
are someti,nes represented by a single 16-bit number (an offset) and sometimes by
two 16-bit numbers (asegment:offsetpair). An offset isn't a true memory address;
the CPU must combine it with a segment value stored in a specjal register. To sup­
port real mode, older C compilers orten provjde two k.indc; of poinLers: near poi11t­
ers (16-bit offsets) and far pointers (32-biL segment:offset pairs). These compilers
usually reserve the words near and far as nonst.andard keywords that cru1 be
used to declare pointer variables.

*Q: If a pointer can point to data in a program, is it possible to have a pointer to
program code?

A: Yes. We'll cover pointers to functions in Section 17.7.

Q : It seems to me that there's an inconsistency between the declru·ation

int *p = &i;

and the statement

p = &i;

Why isn't p preceded by a * symbol in the statement, as it is in the declara­
tion? [p. 244]

A: The source of the confusion is Lhe fact tl1at the * syn1bol can have different mean­
ings in C, depending on the context in which ifs used. In Lhe declaration

int *p = &i;

the * syn1bol 1s not Lhe indirection operator. Instead, il helps specify the type of p,
informing Lhe compiler that p il> a pointer to an int. When it appears in a staten1enl,

254 Chapter 11 Pointers

however, tbe * symbol performs indirection (when used as a unary operator). The
statement

*p = &i; /***WRONG*** /

would be wrong, because it assigns the address of i lo the object that p points to.
not to p itself.

Q: Is there some way to print the address of a variable? (p. 244]
A: Any pointer, including the address of a variable, can be displayed by calling the

printf function and using %p as the conversion specification. See Section 22.3
for details.

Q: The following declaration is confusing:

void f(const int *p);

Does this say that f can't modify p? [p. 251]
A: No. lt says that f can't change the integer that p points to: iL doesn' t prevent f

from changing p itself.

void f(const int *p)
{

}

int j;

*p = 0;
p = &j;

/ ***WRONG*** /
/ *legal*/

Since arguments a.re passed by value, assigning pa new value-by making il point
somewhere else-won' t have any effect ouLside the funclion.

*Q: When declaring a parameter of a pointer type, is it legal to put the word
cons t in front of tlte parameter's name, as in the following example?

void f(int * const p);

A: Yes, although the effect isn't the same as if const precedes p ·s type. We saw i11

Section 11.4 that putting const before p's type protects the object that p points
to. Putting canst after p's type protects p itself:

void f(int * canst p)
{

}

int j;

*p -= O;
p = &j i

/ *legal*/
/ ***WRONG*** /

This feature isn't used very oflen. Since p is n1erely a copy of anotl1er pointer (the
argument when lhe function is called), tl1ere 's rarely any reason to protect it.

An even greater rarity is the need to protect both p and the object it poinlS to,
which can be done by putting canst both before and after p's type:

Section 11.2

Section 11.3

Section 11.4

void f(const int* canst p)
{

}

. t .
l.ll Ji

*p = 0;
p = &j;

Exercises

/***WRONG***/
/***WRONG***/

Exercises 255

1. If i is a variable and p points to i, which of the following expressions are aHases for i?

(a) *p (c) *&p (e) *i (g) *&i
(b) &p (d) &*p (f) &i (h) &* i

G 2. If i is an int variable and p and q are pointers to int, whicb of the following assignments
are legal'?

(a) p = i;
(b) *p - &i;

(c) &p = q;

(d) p - &g;
(e) P - *&q;
(_f) p - q;

(g) p = *q;
{h) *p = q;
(i) *p = *q;

3. The following function supposedly computes Lhe sum and average of the numbers in Lhe
array a. which has length n. avg and sum poinl lo variables Lhat the function should mod­
ify. Unfortunately, the function contains several errors; find and correct them.

void avg_sum(double a[], int n, double *avg, double *sum)
{

}

inti;

sum= 0.0;
for (i = O; i < n; i++J

sum+= a[i];
avg= sum/ n;

G 4. Write the following function:

void swap(int *p, int *q);

When passed the addresses of two variables, swap should exchange the values or the vari­
ables:

swap (&i, &j); /* exchanges values of i and j */

5. Write the following function:

void split time(long total_sec, int *hr, int *min, int *sec);

total_sec is a time represented as tbe number of seconds since midnight. hr, min, and
sec ore pointers to variables in which U1e function will store the equivalenL time in hours
(0-23), minutes (0-59). and seconds (0-59), respectively.

I) 6. Write Lhe following function:

void find_two_largest(int a[], int n, int *largest,
int *second_largest);

256 Chapter 11 Pointers

Section 11.5

When passed an array a of length n. Lhe runclion will search a for its largest and second­
largest elen1ents, storing thc,n in the vaiiabJes pointed to by largest and
second_larges t, respectively.

7. Write the following function:

void split_date(int day_of_year, int year,
int *month, int *day);

day_ of _year is an integer between I and 366, specifying a pruticuJar day within Lhe year
designated by year. month and day point to variables in which the function will store the
equivalenL mo11Lh (1-12) and day \Vi thin t11at monlli (1-31).

8. Write Lhe following runclion:

int *find_largest(int a[] , int n);

When passed an a1Tay a of length n . the function will return a pointer to the array's largest
element.

Programming Projects

I. Modify Programnling Project 7 from Chapcer? so Lhat it includes the foJlo\ving function:

void pay_amount (int dollars, int *twenties, int *te11s 1

int *fives, int *ones);

The function determines Lhe sn1allest nun1ber of $20, $10. $5, and $ l bills necessary lo pay
the amount represented by the dollars parameter. The twenties parameter points to a
variable in \vhich the function will store the nwnber of $20 bills required. Tbe tens,
fives. and ones parameters are sin1ilar.

2. Modify Progrrunn1ing Project 8 fron1 Chapter 5 so that it includes the following function:

void find_closest_flight(int desired_time,
int *departure_time,
int *arrival_time);

This !'unction will find the Oight whose depaiture time is closest to desired_time
(expressed in mjnutes since midnight). lt will store tJ1e departure and arrival times of this
!light (also expressed in minutes since midnjgbt) in Lhe variables pointed to by
departure_time and arrival_time, respectively.

3. Modify Programming Project 3 fro1n Chapter 6 so that it includes lhe folJowing function:

void reduce(int numerator, int denominator,
int *reduced_numerator,
int *reduced_denominator);

numerator and denominator are tl1e numerator and denominator or a fraction.
reduced_numerator and reduced_denominator are pointers to variables in
which the function will store the nun1erator and denominator of the fTaction once it has boen
reduced to lowest Lenns.

4. Modify the poker . c program of Section I 0.5 by n1oving all external variables into main
and 1nodifying funclion~ so Lhat they communicate by passing arguments. The
analyze_hand funclion needs to change the straight, flush, four, three, nnd
pairs variables. so it will have to be passed pointers Lo those variables.

12 Pointers and Arrays

Optimization hinders evolution.

Chapter 11 introduced pointers and showed how they're used as function argu­
n1ents and as values returned by functions. Tius chapter covers another application
for pointers. When pointers point to array elements, C allows us to perform arith­
metic-addition and subtraction-on the pointers, which leads to an alternative
way of processing arrays in which pointers take the place of array subsc1·ipts.

The relationship between pointers and arrays in C is a close one. as we'lJ soon
see. We'll exploit this relationship in subsequent chapters, including Chapter 13
(Stri11gs) and Chapter 17 (Advanced Uses of Pointers). Understanding the connec­
tion between pointers and arrays is critical for n1astering C: it will give you insight
into how C was designed and help you untlerstand existing programs. Be aware,
however, that one of the primary reasons for using pointers to process arrays-effi­
ciency-is no longer as im.portanl as it once was. thanks lo improved compilers.

Section 12.1 discusses pointer arithmetic and shows how pointers can be com­
pared using the relational and equality operators. Section 12.2 then dcn1onstrates
how we can use pointer arithmetic for processing array eJements. Section 12.3
reveals a key facl about arrays-an array name can serve as a pointer to the array's
first element-and uses it to show how array arguments really work. Section 12.4
shows bow the topics of the fLrst three sections apply to rnultidimensional arrays.
Section l2.5 wraps up the chapter by expJoring the relationship between pointers
and variable-length arrays. a C99 feature.

12.1 Pointer Arithmetic

We saw in Section I 1.5 that pointers can point to array elements. For example,
suppose that a and p have been declared as follows:

257

258 Chapter 12 Pointers and Arrays

int a[lO], *p;

We can make p point to a [o] by wriling

p = &a[O];

Graphically, here's what we've just done:

I I I I
0 l 2 3 4 S 6 7 8 9

I
We can now access a [O] through p; for example. we can store the value 5 in
a [o J by writing

*P ::- 5;

Here's our picture now:

I

a
1,~,- -

5

0 l 2 3 4 5 6 7 8 9

Making a pointer p point to an elen1ent of an array a isn' t particularly excit­
ing. However. by performing pointer arith,netic (or address arith,netic) on p, we
can access the other elernents of a. C supports three (and only three) forms of
poi11ter arithmetic:

Adding an integer to a pointer
Subtracting an integer from a pointer
Subtracting one pointer from another

Lefs take a close look at each of these operations. Our exan1ples assun1e that the
following declarations are in effect:

int a[lO], *p, *q, i;

Adding an Integer to a Pointer

Adding an integer j to a pointer p yields a pointer to the clement j places after the
one that p pain Ls to. More precisely, if p points to the array element a [i] , Lhen

Em p + j points to a [i+j J (provided, of course, that a [i+j] exists).
The following example illustrates poincer addition~ diagrams show the values

of p and q at various points in the computation.

12.2 Using Pointers for Array Processing 261

p initially points to a (OJ . Each Lime through the loop, p is incremented; as a
result, it points to a [1], then a (2), and so forth. The loop terminates when p
steps past the last element of a.

#define N 10

int a[N], sum, *P i
...
sum = 0;
£or (p = &a[O); p < &a(N); p++)

sum+= *p;

The following figures show the contents of a, sum, and p at the end of the first
three loop iterations (before p bas been incremented).

Al the end of I.he first iteration:

At the end of the second iteration:

At the end of the third iteration:

p
I

a ll 134 821 7 164 98 47 18 79 20

01234 56789

sum LJ
p

a ll 34 82 7 64 98 47 18 79 20

0 1 2 3 4 S 6 7 8 9

sum 0

·cp
,---,---•<-,--,--,---,--,,--,---,---,

a [11 l 34 1 82 I , I 64 I 98141 I 18 l 79 I 20 1
0 l 2 3 4 5 6 7 8 9

sumG
The condition p < &a [NJ in the for statement deserves special mention.

Strange as it may seen1, it's legal to apply the address operator to a [N] , even
though this element doesn't exist (a is indexed from O to N - l). Using a [NJ in
this fashion ls perfectly safe. since U1e loop doesn 'L attempt to examine its value.
The body of the loop wiJ l be executed with p equal to &a [o) , &a [1 J , ... ,
&a [N -1] . but when p is equal to &a [NJ , the loop terminates.

We could just as easily have written the loop without pointers, of course. using
subscripting instead. The argument most often cited in support of pointer arithmetic
is that it can save execution tin1e. Hov-1ever, that depends on the implementation-

1:m so1ne C cornpilers actually produce better code for loops that rely on subscripting.

12.3 Using an Array Name as a Pointer 263

Here are Lhe new push and pop functions (updating the other stack functions is
left as an exercise):

void push(int i)
{

}

if (is_full ())
stack_overflow();

else
*top__ptr++ = i;

int pop(void)
{

}

if (is_ empty ())
stack_underflow();

else
return *- -top__ptr;

Note that I've written*- -top_ptr, not *top_ptr- -, since I want pop to dec­
rement top_ptr before fetcl1ing the value to which it points.

12.3 Using an Array Name as a Pointer

Pointer arithmetic is one way in wl1ich an·ays and pointers are related. but it's not
the only connection between the two. Here's another key relationship: The 11a111e of
an array can be used as a pointer to the first e/e111ent in the array. This relationship
simplifies pointer arith,netic and makes both arrays and pointers more versatile.

For example, suppose tJ1at a is declared as fol lows:

int a[lO];

Using a as a pointer to the first elen1ent in the array, we can modify a [o] :

a= 7; / stores 7 in a[O) */

We can modify a [1] through the pointer a+ 1:

(a+l) = 12; / stores 12 in a[l] *I

In general, a+ i is the same as &a [i] (both represent a pointer to element i of a)
and* (a+i) is equivalent to a [i] (boU, represent element i itself). In other
words. array subscripting can be viewed as a form of pointer a.rithn1etic.

The fact that an array narne can serve as a pointer makes il easier lo write
loops that step through an array. Consider the following loop fron1 Section 12.2:

for (p = &a[O] i p < &a[N]; p++)
sum+= *p;

264 Chapter 12 Pointers and Arrays

To simplify the loop, we can replace &a [0] by a and &a [NJ by a + N:

idiom for (p = a; p < a + N; p++)
sum+= *p;

Although an array name can be used as a pointer, it's not possible to assign it a new
value. Attempting to make it point elsewhere is an error :

while (*a != 0)
a++; /***WRONG***/

This is no great loss: we can always copy a into a pointer variable, then change lhe
pointer variable:

p = a;
while (*p ! = 0)

p++;

PROGRAM Reversing a Series of Numbers (Revisited)

Tl1e reverse. c program of Section 8.1 reads 10 nu tnbers, then writes Lhe num­
bers in reverse order. As the prograin reads the nwnbers, it stores them in an array.
Once aU the numbers are read, the progra1n steps Lhrough the array backwards as it
prints the numbers.

The original program used subscripting to access eJements of the array. Here's
a new version in which I've replaced subscripting with pointer arithmetic.

reverse3.c / * Reverses a series of numbers (pointer version) * /

#include <stdio.h>

#define N 10

int main(void)
{

}

int a[N], *p;

printf ("Enter %d numbers: 11
, N) ;

for (p = a; p <a+ N; p++)
scanf (11 %d 11

, p) ;

printf(11 In reverse order: 11
);

for (p =a+ N - l; p >= a; p--)
printf(11 %d 11 , *p);

printf ("\n") ;

return O;

In the original progrrun, an integer variable i kept Lra<.:k of the cun·ent position
within the array. The new version replaces i with p, a pointer variable. The num-

12. 3 Using an Array Name as a Pointer 265

bers are still stored in an array; \.\1e're simply osing a different technique to keep
track of where we are in the array.

Note that the second argu1nent to scanf is p, not &p. Since p points to an
array element, irs a satisfactory argument for scan£: &p, on the other hand,
would be a pointer to a pointer to an array eJement.

Array Arguments (Revisited)

Wben passed to a function, an array name is always treated as a pointer. Consider
the following function, which retw·ns the largest element in an array of integers:

int find_largest(int a[], int n)
{

}

inti, max;

max= a[O];
for (i = 1; i < n; i++)

if (a[i] > max)
max= a[i);

return max;

Suppose that we call f ind_largest as follows:

largest= find_largest(b, N);

This call causes a pointer to the first element of b to be a~signed to a: the array
itself isn't copied.

The fac t that an array argument is treated ac; a pojnter has some important con­
sequences:

• When an ordinary variable is passed to a function, its value is copied; any
cht'lnges to the corresponding para n1eter don't affect the variable. In contrast ,
an array used as an argument isn' t protected against change, since no copy is
made of the an·ay itself. For example, the following function (which we fi rst
saw in Section 9.3) n1odilies an array by storing zero into each of its elements:

void store zeros(int a[], int n)
{

}

inti;

for (i - O; i < n; i++)
a[i] - O;

To indicate that an array parameter won't be changed, we can include the word
cons t in its declaration:

int find_largest(const int a[], int n}
{

}

268 Chapter 12 Pointers and Arrays

But if we view a as a 011e-di_mensional array of integers (which is how it's stored),
we can replace the pair of loops by a sjngle loop:

int *p;

for (p = &a [OJ [OJ; p <= &a [NUM_ROWS-1] [NOM_COLS-lJ; p++)
*p = 0;

The loop begins with p pointing to a [OJ [OJ. Successive increments of p n1ake
it point Lo a [OJ [l], a [O] [2] . a [OJ [3]. and so on. When p reaches
a [OJ [NUM_COLS-1) (lhe Jasl elen1enl in row 0), incrementing it again makes
p point lo a [1] [OJ, the first element in row I. The process continues until p
goes past a [NUM_ROWS-1] [NUM_COLS-1], the last elemenlin the array.

Although treating a two-di111ensional array as one-din1ensional n1ay seem 1ike
£!m cheating, it works with most C compilers. Whether it's a good idea to do so is

another ,natter. Techniques like this one definitely hurt program readability, but­
at least with some older compilers-produce n con1pensating increase in effi­
ciency. Wjth many modem compilers, though, there's often bttle or no speed
advantage.

Processing the Rows of a MultirlimensionaJ Array

What about processing the elen1ents in just one roi,11 of a two-dimensiona1 array?
Again, we have the option of using a pointer vatiable p. To visit the e1en1ents of
row i, we'd inilialize p to point Lo element O in row i in the array a:

p = &a [i J [o] ;

Or we could si mpJy write

p = a [i] ;

since, for any two-dirnensional array a, the expression a [iJ is a pointer to Lhe
first ele1nent in row i. To see why this works, recall the rnagic forLn,ula that relates
array subscripting to pointer arithmetic: for any array a, the expression a [i] is
equivalent to * (a + i). Thus, &a [i] [OJ is lbe same as & (* (a [i] + O)).
wbicb is equivalent lo &*a [i], which is the same as a [i], ~i nce the & and *

operators cancel. We'll use this simplification in the following loop, which clears
row i of the array a:

int a[NUM_ROWSJ [NUM_COLS] 1 *p 1 i;

for (p = a[iJ; p < a[i] + NUM_COLS; p++)
*p = 0;

Since a [i] is a pointer to row i of the array a, we can pass a [i] to a
function that's expecting a one-dimensional array as its argument. In other words,
a function that's designed to work with one-djn1ensional arrays ,vill also work
with a row belonging to a two-dimensional array. As a result. functions such as

12.4 Pointers and Multidimensional Arrays 269

f ind_largest and store_zeros are more versatile than you might expect.
Consider f ind_largest, which we originally designed to find the largest ele­
ment of a one-di1nensional array. We can just as easily use f ind_largest to
determine the largest element in row i of Lhe two-dimensional array a:

largest= find_largest(a[i], NOM_COLS);

Processing the CoJuIDJ1s of a Multidimensional Array

Processing the elements in a colun1n of a two-djmensional array isn't as easy,
because arrays are stored by row, not by column. Here's a loop that clears column
i of Lhe aiTay a:

int a[NUM_ ROWS) [NOM_COLS], (*p) [NUM_COLS), i;

...
for (p = &a[0]; p < &a[NUM_ROWS]; p++)

(*pl [i] = O;

I've declared p Lo be a pointer to an array of length NUM _ COLS whose elements
are integers. The parentheses around *p in (*p) [NUM_COLS] are required;
without the1n, tl1e compiler would treat p as an array of pointers instead of a

•
pointer to an array. The expression p++ advances p to the beginning of the next
row. ln the expression (*p) [i] , *p represents an entire row of a. so (*p) [i J
selects the element in column i of tha1 sow. The parentheses in (*p) [i J are
essential, because Lhe compiler wottld interpret *p [i] as* (p [i]) .

Using the Name of a Multidimensional Array as a Pointer

Just as the name of a one-dimensional array can be used as a pointer. so can the
name of any array. regardless of how 11.1any di1nensions it has. Some care is
required, though. Consider the following array:

int a[NUM_ROWS] [NUM_COLS];

a is not a pointer to a [OJ [o] ; instead. ifs a pointer to a [o] . This makes more
sense if we look at it from the standpoint of C, which regards a not as a two­
ditnensional array but as a one-din1ensional array whose elen1ents are one­
dimensional arrays. When used us a pointer, a has type int (*) [NUM_COLS]

(pointer to an integer array or length NUM_ COLS).
Knowing that a points to a [O] is useful for simplifying loops tl1at process the

elements of a two-dimension.al array. For example, instead of writing

for (p = &a[0]; p < &a[NUM_ROWS]; p++)
{*p} (i] = O;

co clear column i of the array a, we C..'Ul write

for {p = a; p <a+ NUM_ROWS; p++)
(*p) [i] = O;

Q & A 271

If m:;: n, any subsequent use of p will cause undefined behavior.
Variably modified types are subject to certain restrictions, just as variable­

length arrays are. The most important restriction is lbat the declaration of a vari­
ably moditled type n1ust be inside the body of a function or i11 a function proto­

type.
Pointer arithmetic works with VLAs just as il does for ordinary arrays.

Returning to the example of Section 12.4 that clears a single column of a Lwo­
di n1ensional array a, lefs dec1are a as a VLA U1is time:

int a [ml [n] ;

A pointer capable of pointing to a row of a would be declared as follows:

int {*p) [n];

The loop that clears column i is almost identical to the one we used in Section

12.4:

for (p = a; p <a+ m; p++)
(*p) [iJ = 0;

Q&A

Q: I don't nnderstand pointer arithmetic. If a pointer is an address, does that
mean that an expression like p + j adds j to the address stored in p? [p. 258]

A: No. Integers used in pointer arithmetic are scaled dependlng on the type of the
pointer. If p is of type int *, for example, then p + j typically adds 4 x j to p,
assuming that int values are stor ed using 4 bytes. But i.f p has type double *,
then p + j wil1 probably add 8 x j to p, since double values are usually 8 bytes

long.

Q: When writing a loop to process an array, is it better to DSe array subscripting
or pointer arithmetic? [p. 261]

A: There's no easy answer to this question. since il depends on the machine you·re
using and the compiler itself. 1n the early days of C on the PDP-J l, pointer arith­
metic yielded a faster program. On today's machines, using today's compilers,
array subscripting is often just as good, and someti,nes even better. The bottom
line: Learn both ways and then use whichever is more natural for the kind of pro­
gram you 're writing.

*Q : I read somewhere that i [al is the same as a [i]. Is this true?

A: Yes, it is, oddly enough. The compiler treats i [a] as * { i + a) , which is the same
as * (a + i). (Pointer addition, like ordinary addition, is commutative.) But
*{a+ i) is equivalent to a [i]. Q.E.D. But please don't use i [a] in programs
unless you're planning to enter the nexl Obfuscated C contest.

272 Chapter 12 Pointers and Arrays

Q: Why is *a the same as a[] in a parameter declaration? [p. 266]

A: Both indicate that the argU.1nent is expected Lo be a pointer. The same operations on
a are possible in both cases (pointer ari thmetic and array subscripting, in particu­
lar). And, in both cases, a itself can be ass igned a new value with in the fu nction.
(Although C aJJows us to use the name of an array variable only as a "constant
pointer," there's no such restriction on Lbe nan,e of an array para,neter.)

Q: Is it better style to declare an array parameter as * a or a [] ?
A: Thac's a tough one. From one standpoint, a[] is the obvious choice. since *a is

an1biguous (does the function wanl an array of objects or a pointer to a single
object?). On the other hand. many programmers argue lhat declaring the pararneter
as * a is more accurate, since it reminds us lhat only a pointer is passed, not a copy
of the array. Others switch between * a and a [] , depending on whether the func­
tion uses pointer arithmetic or subscripting to access the elements of the array.
(That's the approach r· It use.) In practice, * a is more common than a [J • so you'd
better get used to it. For what it's worth, Dennis Ritchie now refers to the a[)
notation as "a living fossi l"' that "serves as much to confuse the learner as to alert
the reader."

Q: We've seen that arrays and pointers are closely related in C. Would it be accu­
rate to say that they're interchangeable?

A: No. It's true that array para,neters are interchangeable with pointer paran1eters, but
array variables aren't the same as pointer variables. Technically. the nan1e of an
array isn' t a pointer; rather, the C compiler converts it to a pointer when necessary.
To see this difference more clearly, consider what happens when we apply the
sizeof operator to an array a. The value of sizeof (a) is the total number of
bytes in the array-the size of each element mulliplied by the nun1ber of elements.
But if pis a pointer variable, sizeof (p) is the nu mber of bytes required to store
a pointer value.

Q: Yoo said that treating a t'\-vo-dimensionaJ array as one-dimPnsional works
with "most" C compilers. Doesn't it work with all compilers? [p. 268]

A: No. Some n1odern ''bounds-checking·· compilers Lrack not onJy the type of a
pointer, but-when it points to an airay-also the length of Lhe array. For example,
suppose that p is assigned a pointer to a [o J [o] . Technically, p points to the first
eJement of a [o J . a one-dimensional a.ITay. l f we increment p repeatedly in an
effort to visit all the ele1nents of a, we' II go out of bounds once p goes past the last
element of a [OJ . A con1piler that perforn1S bounds-checking may insert code ro
check that p is used only to access elen1ents in the array pointed to by a [0] : an
attempt to increment p past the end of this array would be detected as an error.

Q: If a is a two-dimensional array, why can ,ve pass a [o J -but not a itself-to
find_ largest? Don' t both a and a [OJ point to the san1e place (the begin­
ning of the array)? [p. 270]

A: They do, as a n1atter of fact-botll poi n l to eJen1ent a [o) [o] . The prob !em is that

Section 12.1

Section 12.2

Section 12.3

Exercises 273

a has the wrong type. When used as an argun1enl, ifs a pointer LO an array, but
find_largest is expecting a pointer to an integer. However, a (O] has type
int *, so ifs an acceptable argument for find_largest. This concern about
types is actually good; if C weren't so picky, we couJd make all kinds of horrible
pointer mistakes without the con1piler noticing.

Exercises

l. Suppose that the following declarations are in effect:

int a[] :: {5, 15, 34, 54, 14, 2, 52, 72}i
int *p = &a[l], *q:: &a[S];

(a) What is the value of * (p+3)?
(b) What is the value of* (q-3} ?
(c) What is tbe value of q - p ?
(d) ls the condition p < q true or false"?
(e) ls the condition *p < *q true o r false?

G *2. Suppose that high, low, and middle are au pointer variables of the same type, and that
low and high point Lo elen1ents of an array. Why is the following statement illegal, and
how could it be fixed?

middle= (low+ high) / 2;

3. Whal will be the contents of the a array after the following staten1ents are executed?

#define N 10

int a[NJ = {1, 2, 3, 4, s, 6, 7, 8, 9, 10};
int *p = &a[0], *q = &a[N- l], temp;

while (p < q) {
temp - *p;
*p++ - *q;
*q- - - temp;

}

9 4. Rewrite the make_empty, is_empty. and is_full functions of Section 10.2 to use the
pointer variable top _pt r instead of rhe integer variable top.

5. Suppose that a is a one-di1nensionaJ array and p is a pointer variable. Assuming that the
assig11n1ent p = a has just been perfom1ed. which of the following expressions are illegaJ
because of misn1atched types? Of the remaining expressions, which are true (have a nonzero
value)?

(a) p == a[0]
(b) p == &a [0]
(c) *p == a [O]

(d) p [OJ == a [O]

9 6. Rewrite the following function to use pointer arithmetic instead of array subscripting. (111
other words, eliminate the variable i and all uses of the [] operator.) Make as few changel)
as possible.

274 Chapter 12 Pointers and Arrays

Section 12.4

int sum_array(const int a[], int n)
{

}

inti, sum;

sum = 0;
for (i = O; i < n; i++)

sum+= a[iJ;
;return sum;

7. Wrile the foUowing function:

bool search(const int a[], int n, int key);

a is an array lo be searched, n is the number of elements in the array, and key is the search
key. search should ren1rn true if key matches some element of a, and false if it
doesn't. Use pointer arilhmetic-norsubscripting-lo visit array elements.

8. Rewrite the following function Lo use pointer arithmetic instead of array subscripting. CTn
other words. eliniinate the variable i and all uses of the [] operator.) Make as few changes
as possible.

void store zeros(int a[], int n)
{

}

inti;

for (i - O; i < n; i++)
a[i] - O;

9. Write the following function:

double inner_product(const double *a, const double *b,
int n) ;

a and b both point to arrays of length n. The function should return a [OJ * b [OJ +
a [l] * b [lJ + ... +a [n-1) * b [n-lJ. Use pointer arithmetic-not subscripting-to
visit array elements.

10. Modify the £ind_middle function of Section 11.5 so Lhat it uses pointer aritb1netic to
calculate the return vaJue.

11 . Modify tbe f ind_largest function so that it uses pointer aritbn1elic-not subscript­
ing-to visit array elements.

J2. Write lhe following function:

void find two largest{const int *a, int n, int *largest, - -
int *second_largest);

a points to an array of Jenglh n. The r unction searches the array for its largest and second­
largest elen1ents, storing them in the variables pointed to by largest and
second_largest, respectively. Use pointer arithmetic-not subscripting-to visit array
elements.

G 13. Seclion 8.2 bad a program fragment in which two nested for loops initialized the array
ident for use as an identity matrix. Rewrite thls code, using a single pointer 10 step
through the a1Tay one element at a Lime. Hi111: Since we won·, be using row and col index
variables.. it won ·t be easy to tell where to store I. Instead. we can use the fact that the first
element of the ,u-ray should be J. the next N ele,nents should be 0, the next element should

276 Chapter 12 Pointers and Arrays

Ignore all characters that aren't letters. Use integer variables 10 keep a·ack of positions in the
array.

(b) Revise lhe program to use poinlers instead of integers Lo keep track of posjtions in the
array.

9 3. Simplify Progrruruning Project l(b) by taking advantage of the facl that an array name can
be used as a pointer.

4. Simplify Prograrnnling Project ?(b) by taking advantage of lhe fact that an array nan1e can
be used as a pointer.

5. Modify Programming Project 14 from Chapter 8 so that it uses a poiurer instead of an inte­
ger to keep track of lhe current position in the array that contains the sentence.

6. Modify the qsort. c program of Section 9.6 so that low, high. and middle are pointers
to array elements rather than integers. The split function will need to return a pointer. nor
an inte!!er. -

7. Modify the maxmin. c program of Section 11.4 so that I.he max_min function use!> a
pointer instead of an integer to keep track of the current position in the array.

13 Strings

It's dffficult to extract sense from strings, but
they're the only communication coin we can count on.

Although we've used char variables and arrays of char values in previous chap­
ters, we still lack any convenienl way to process a series of characters (a string, in
C tern1inology). We'll remedy that defect in this chapter, ,vhich covers both string
constants (or literals, as they're called in the C standard) and string variables,
which can change during the execution of a program..

Section 13.l explains the rules t:hat govern string literals. including the ruJes
for embedding escape sequences in string literals and for breaking long string liler­
als. Section 13.2 then show how to declare . t1ing variables, which are simply
ruTays of characters in which a special character-the nuIJ character-marks the
end of a string. Section 13.3 describes ways Lo read and write strings. Section 13.4
shows bow to write functions that process st:Iings, and Section L3.5 covers some of
the slriog-bandling functions in the C library. Section 13.6 presents idion1s that are
often used when working with strings. Finally. Section 13.7 describes how to set
up arrays whose elements are pointers to strings of different l,englhs. This section
also explains how C uses such an array to suppJy command-line information to
programs.

13.1 String Literals

A string literal is a sequence of characters enclosed within double quotes:

"When you come to a £ork in the road, take it."

We first encountered string literals in Chapler 2; they often appear as format
suings in calls of printf and scanf.

277

13. 1 String Literals 279

join them into a single string. This rule allows us to split a string literal over two or
more lines:

printf("When you come to a fork in the road, take it.
''--Yogi Berra");

How String Literals Are Stored

fl

we·ve used string Literals often in calls o[printf and scanf. But when we call
printf and supply a string Literal as an argument, what are we actually passing?
To answer this question, we need to know how string literals are stored.

In essence, C treats string literals as character arrays. When a C compiler
encounters a string literal of length 11 in a program, it sets aside n + 1 bytes of
memory for the string. This area of 1nemory will contain the characters in the
string, plus one extra character-lhe null character-to mark the end of the string.
The null character is a byte whose bits are all zero, so it's represented by Lbe \ o
escape sequence.

Don· t confuse the null character (' \ o ') wi Lh the zero character (' o 1
) • The nu II

character has Lbe code 0: the zero character has a different code (48 in ASCII).

For example, the string literal II abc II is stored as an array of four characters
(a, b, c, and \ O):

String Literals 1nay be empty: the strjng 11 11 is stored as a single null character:

Since a string literal is stored as an array, the compiler treats it as a pointer of
type char *. Both printf and scanf. for example. expect a value of type
char * as their first argument. Consider the following example:

printf (11 abc 11) ;

When printf is called, il 's passed tl1e address of '' abc 11 (a pointer to where the
letter a is stored in memory).

Operations on String Literals

In general. we can use a string literal wherever C allows a char * pointer. For
exa1nple, a string literal can appear on lhe right side of an assignment:

280 Chapter 13 Strings

char *p;

p = 11 abc 11 ;

This assignment doesn't copy the characters in II abc"; it merely makes p point to
the frrst character of lhe s tring.

C allows pointers to be subscripted. so we can subscript string literals:

char ch;

ch = " abc " [1 J ;

The new value of ch will be the letter b. The other possible subscripLS are O (which
would select the letter a). 2 (the letter c), and 3 (the nuU character). This property
of string literals isn't used that much, but occasionally it's handy. Consider the fol­
lowing function. which converts a number betvveen O and 15 into a character that
represents the equivalent hex digit:

char digit to hex char(int digit)
{ - - -

}
return "0123456789ABCDEF"[digit];

Attempting to modify a string literal causes undefined behavior:

char *p = "abc";

p = Id I ; / **WRONG** */

l!!!1 A program tbat tries to change a string literal may crash or behave en·atically.

StriI1g Litera]s versus Character Constants

A string literal containing a sing]e character isn't the same as a character constant.
The string literal II a II is represented by a poi.Jzter to a memory location that con­
tains the character a (follo\ved by a null character). The character constant 'a' is
represented by an integer (the nume1ical code for the character).

Don't ever use a character when a string is required (or vice versa). The caU

printf ("\n") ;

is legal. because printf expects a pointer as its first argument. The following
call isn't legal, however:

printf (' \n') ; /** *WRONG*** /

13.2 String Variables 281

13.2 String Variables

Some programming languages provide a special string type for declaring string
variables. C takes a different tack: any one-dimensional array of characters can be
used to store a string, with the understanding that the string is tem,inated by a null
character. This approach is simple, but has significant difficulties. lt's someti1nes
hard to tell whether ai1 array of characters is being used as a sLring. lf we wrile our
own string-handl ing functions, we 've got to be careful that they deal properly with
the nulJ character. Also, there 's no faster way lo detennine the length of a string
than a character-by-character search for the nul I character.

Let's say that we need a vaiiable capable of storing a string of up to 80 charac­
ters. Since the string will need a null character at the encl, we'll declare the variable
to be an array of 81 characters:

idiom #define STR LEN 80 -
char str[STR_LEN+l];

We delined STR LEN to be 80 rather than 81. thus emphasizing the fact that str
can store strings of no more than 80 characters. and then added 1 to STR LEN in
the declaration of str. This a common practice among C progran1mers.

When declariJ1g an array of characters that will be used to hold a string, always
make the array one character longer than the string, because of the C convention
that every strjng is tenninated by a null character. Failing Lo leave room for the null
character may cause unpredictable results when tl1e progran, is executed, since
functions in the C Library assume that strings are nulJ-tern1ioated.

Declaring a character array to have length STR_LEN + 1 doesn' t mean lhal il
will always contain a string of STR_LEN characters. The length of a string
depends on lhe position of the terminating null character, not on Lhe length of the
array in which tl1e string is stored. An array of STR_ LEN + I characters can bold
strings of various lengths, ranging from Lhe e1npty string to strings of length
STR LEN.

Initializing a String Variable

A string variable can be initialized at the same time ifs declared:

char datel [8] = 11 June 14 1';

284 Chapter 13 Strings

Using an uninitiali_zed pointer variab-le as a string is a serious error. Consider the
following example, which arten1pts to build the string II abc 11 :

char *p;

p [OJ - I a Ii I*** WRONG *** /
p [l] - I b I ; I *** WRONG *** /
p [2] - IC I ; / *** WRONG *** /
p [3] - I \ 0 I i / *** WRONG *** /

Since p hasn't been initialized, we don't know where it's pointing. Using the
pointer to write the characters a, b, c, and \ O into memory causes undefined
behavior.

13.3 Reading and Writing Strings

Writing a string is easy using either the print£ or puts functions. Reading a
string is a bit harder, primarily because of the possibility that the input string may
be longer than the string variable into which it's being stored. To read a string in a
single step, we can use either scanf or gets. As an alternative, we can read
strings one character at a time.

Writing Strings Using printf and puts

The %s conversion specification allows printf to write a string. Consider the
foUowing example:

char str[] = "Are we having fun yet? 11 ;

printf(1'%s\n 11
, str};

The output wilJ be

Are we having fun yet?

printf writes the characters in a string one by one unlil it encounters a null char­
acter. (If the null character is missing, print f continues past the end of the string
antil-evenlualJy-it finds a null character somewhere in memory.)

To print just part of a string, we can use the conversion specification % .ps,
where p is the number of characters to be displayed. The statement

printf (11 %.6s \n 11 , str);

will print

Are we

13.5 Using the C String Library 295

int read line(char str[J, int n);

int main(void)
{

}

char reminders[MAX_REMIND] [MSG_LEN+3];
char day_str(3), msg_str[MSG_LEN+l];
int day, i, j, num remind= O;

for (; ;) {

}

if (num_remind == MAX_REMIND) {
printf (11 -- No space left - - \n 11) ;

break;
}

print£ ("Enter day and reminder: ") ;
scanf { 11 %2d 11 , &day) ;
if {day == 0)

break;
sprintf {day_str, 11 %2d", day);
read_line{msg_str, MSG_LEN);

for (i = 0; i < nu1n_remind; i++)
if (strcmp(day_str, reminders[i)) < 0)

break;
for (j = num_remind; j > i; j - -)

strcpy(reminders[j], reminders[j-1]);

strcpy(reminders[i), day_str);
strcat{reminders[i], msg_str);

num remind++;

printf { 11 \nDay Reminder\n 11
) ;

for (i = O; i < num remind; i++) -printf(11 %s\n 11 , reminders[i));

return O;

int read line{char str[], int n)
{

}

int ch, i = 0;

while ((ch= getchar()) I= 1 \n')
if (i < n)

str[i++J - ch;
str[i] = '\0';
return i;

Although remind. c is useful for demonstrating the strcpy. strcat. and
strcmp functions. it lacks something as a practical reminder program. There are

296 Chapter 13 Strings

obviously a number of Lrnprovements needed, ranging from minor tweaks to major
enhancements (such as saving the reminders in a file when the program termi­
nates). We' U discuss several improvemenLS in the progran1ming projects at the end
of this chapter and in later chapters.

13.6 String Idioms

Functions tbal manipulate strings are a particularly rich source of idJoms. In this
section. we' ll explore son1e of the most famous idioms by using Lhem to write the
strlen and strcat functions. You·11 never have to write these functions, of
course, since they 're part of the sta11dard library, but you may have Lo write func­
tions that are similar.

TJ1e concise style I'll use in this section is popular wi th many C programmers.
You should master this style even if you don't plan to use il in your own programs,
since you 're likely Lo encounter it in code written by others.

One last note before we get started. If you want to tTy out any of the versions
of strlen and strcat in Lhis section. be sure to alter the name of the function
(changing s trlen to my _strlen, for exainple). As Section 21.l explains.
we're not allowed to w1ite a function that has the same name as a tandard library
function, even when we don·t include the header to which the function belongs.la
fact, all names that begin wilh str and a lo\.ver-case letter are reserved (to allo\v
functions to be added to the <string. h> header in future versions of the C stan­
dard).

Searching for the End of a String

Many string operations require searching fo:r Lhe end of a string. The strlen
function is a prime example. The following version of strlen searches its string
argu,neot to -find the end, using a variable to keep lrack of the string's length:

size t strlen(const char *s)
{

}

size t n;

for (n = O; *s != 1 \0 1 ; s++)
n;-+;

return n;

As Lhe pointer s moves across the string from left to right, the variable n keeps
track of bow many characters have been seen so far. When s finally points to a 11uU
character, n contain:, the length of the string.

Let's see if we can condense Lhe func tion. First, we·11 move the initialization
of n to its declaration:

size t strlen(const char *s)
{

}

size t n = O;

for (; *s l= 1 \0 1
; s++)

n++;
return n;

13. 6 String Idioms 297

Nexl, we notice Lhat U1e condition * s ! == ' \ O ' is lhe same as * s l - o, because
the integer value of tbe null character is 0. But testing * s ! = O is the same as test­
ing *s; both are true if *s isn't equal to 0. These observations lead to our next ver­
sion of strlen:

size t strlen{const char *s)
{

size t n = O;

for (; *S; s++l
n++;

return n;
}

But, as we saw in Section 12.2. it's possible to increments and test *sin the same
expression:

size t strlen(const char *s)
{

}

size t. n = O;

for (; *s++;)
n++;

return n;

Replacing the for statement with a while statement, we arrive at the following
version of strlen:

size t strlen(const char *s)
{

}

size t n = O;

while (*s++)
n++;

return n;

Although we've condensed strlen quite a bit it's likely that we haven 't in­
creased its speed. 1-Iere's a version that does run faster, at least with some compilers:

size t strlen(const char *s)
{ -

const char *p = s;

298 Chapter 13 Strings

}

while (*s)
s++;

returns - p;

This version of strlen con1putes the length of the string by Tocating the positioa
of lhe null character, then subtrac ting from it the position of the first character in
the string. The improvement io sp eed comes fro1n not having to incrementn inside
the while loop. Note the appearance of the word const in the declaration of p,
by Lhe way; without it, lhe compiler would notice that assigning s to p places the
string that s points to at risk.

Tbe statement

idiom while (*s)
s++;

and the related

Idiom while (*s++)
. ,

are idioms meanjng "search for the null character at the end of a string." The first
version leaves s pointing to lhe null character. The second version is more concise,
but leaves s poin ting just past the nu11 character.

Copying a String

Copying a string is another common operation. To introduce C's .. string copy"
idion1, we'll develop two versions of the strcat function. Let's start with a
slraightfo1ward but somewhat lengthy version:

char *scrcat(cbar *sl, const char *s2)
{

}

char *p = s1;

while (*p != '\O')
p++;

while (*s2 != 1 \0 1) {

*p = *s2;
p++;
s2++;

}
*p = I\ QI i

return s1.;

This version of strcat uses a two-step algorithm: (1) Locate the null character at
lhe end of the string s1 and n1ake p point to it. (2) Copy characlers one by one
fron1 s2 to where p is pointing.

The first while statement in the function implements step (1). p is set lo
poinl to the ftrst character in the s1 string. Assuming that sl points to the string

11 abc 11
, we have the fo llowing picture:

13. 6 String Idioms 299

•
a b C \0

p is then incremenled as long as il doesn'l point lo a null character. When the loop
terminates, p must be pointing to the null character:

sl uJ p

l
a b C \O

The second while statement implements seep (2). The loop body copies one
character fro1n where s2 points to where p points. then increments both p and s2.
If s2 originally points to the string "def". here's what the strings will look like
after the first loop iteration:

sl p s2

a b C d

The loop temtlnates when s 2 points to the null character:

sl p[-

a b C d e f

After putting a null character where p is pointing. s trca t returns.
By a process si1nilar to the one we used for strlen, we can condense the

definition of strcat, arriving at lhe following version:

char *strcat(char *s1, const char *s2)
{

}

char *p = sl;

while (*p)
p++;

while (*p++ - *s2++)
.
I

return s l ;

13. 7 Arrays of Strings 303

name, argv [l] wi U point to the string 11 -l 11, argv [2] will point to the string
11 remind . c 11 , and argv [3] wiJ I be a nu.LI pointer:

0

1

2

3

argv

•

/
" -

progran1 na me

- 1 \0

1 r J e J m

This figure doesn' t show the program nan1e in detail, since it may include a path or
other information that depends on the opera6ng systen1. If the program nan1e isn ·t
available, argv [0] poin ts to an empty string.

Since argv is an array of pointers, accessing cotnmand-line arguments is
easy. Typjcally, a prograrn that expects cornmand-line argun1ents will set up a loop
that examines each argument in tum. One way to write such a loop is to use an
integer variable as an index into the argv array. For example, the following Joop
prints the command- line arguments, one per line:

inti;

for (i = l; i < argc; i++)
printf ("%s \n 11 , argv [i]) ;

Another technique is to set up a pointer to argv [1]. then increment the pointer
repeatedly to step through the rest of the array. Since the last ele1nent of argv is al­
ways a null pointer, the loop can terminate when it finds a null pointer in the array:

char **p;

for (p = &argv[l]; *p != NULL; p++)
printf(11 %s\n 11

, *p);

Si11ce p is a pointer to a pointer to a character, we've got to use it carefuJly. Setting
p equal to &argv [1] makes sense; argv [1] is a pointer to a character, so
&argv [1] will be a pointer to a pointer. The test *p ! = NULL is OK, siuce *p
and NULL are both pointers. Incrementing p looks good; p points to an array ele­
n1ent, so incrementing it will advance it to the next element. Printing *p is fine,
since *p points to the first character in a string.

PROGRAM Checking Planet Names

Our next program, planet. c, illustrates how to access co1nmand-ljne argu­
ments. The progra1n is designed to check a serie of strings to see which ones are
names of planets. When the program is run. the user will put the strings to be tested
on the conunand line:

planet Jupiter venus Earth fred

304 Chapter 13 Strings

T11e program will indicate whether or not each string is a planet name; if it is, the
progran1 will also display the planet's numbet (with planet I being the one closest
lo the Sun) :

Jupiter is planets
venus is not a planet
Earth is planet 3
fred is not a planet

Notice lhat the program doesn' t recognize a string as a planet name unless its first
Jetter is upper-case and its remaining letters are lower-case.

planet.c /* Checks planet names * /

#include <stdio.h>
#include <String.h>

#define NUM PLANETS 9

int main(int argc, char *argv[])
{

}

char *planets[] = {"Mercury", "Venus", "Earth",
"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

int ' .
1, J i

for (i = l; i < argc; i++) {

}

for (j = 0; j < NUM_PLANETS; j++)
if (strcmp(argv[i], planets[j]) == O) {

printf(11 %s is planet %d\n", argv[i], j + 1);
break;

}
if (j == NUM_PLANETS)

printf("%s is not a planet\n", argv[i]);

recurn O;

The program visits eacl1 command- line argument in turn, con1paring it with
the strings in the planets array untiJ iL finds a match or reaches the end of
the array. The most interesting part of rhe program is the call of s trcmp, in
which the arguments are argv [i] (a pointer to a command-line argument) and
pla11ets [j J (a poi_nter to a planet name).

Q&A

Q: Ho\v long can a string literal be?

A: Accorcw1g to the C89 standard, compilers n1ust allow string literals to be at least

Q & A 305

509 characters long. (Yes, you read lhat dght-509. Don' t ask.) C99 increases the
C) minimu_m to 4095 characters.

Q: Why aren't string literals called "string constants"?
A: Because they 're not necessarily constant. Since string Jjterals are accessed through

pointers. there's nothing to prevent a program from attempting to n1odify the char­
acters in a string literal.

Q: H.ow do we write a string LiteraJ that represents ''fiber" if 11 \xf cber II doesn't
work? [p. 278]

A: The secret is to write two adjacent string literals and let the compiler join them into
one. Tn this example, writing 11 \xfc" 11 ber 11 will gjve us a string literal that rep­
resents the word "tiber.''

Q: Modifying a string literal see1ns J1armless enough. Why does it cause unde­
fined behavior? [p. 280]

A: Some compilers try to reduce mernory requirements by storing single copjes of
identical string literaJs. Consider the following example:

char *p = 11 abc 11 , *q = 11 abc 11
;

A compiler might choose to store II abc II just once, making both p and q point to
it. If we were to chru1ge II abc II through the pointer p. Lhe string that q points to
would aJso be affected. Needless to say, this could lead to son1e annoying bugs.
Another potential problem is that string literals might be stored in a "read-onJy''
area of memory; a progran1 that atteJnpts to modify such a literal will sirnply crash.

Q: Should every array of characters include room for a null character?
A: Not necessarily, since not every array of characters is used as a string. Including

room for the null character (and actually putting one into the array) is necessary
only if you're planning to pass it to a function that requires a null-terminated
string.

You do not need a nuJl character if you']J only be performing operations on
individuaJ characters. For example, a prograu1 might have an array of characters
that it will use to translate from one character set to another:

char translation_table[l28];

The only operation that the progran1 will perform on this array is subscripting.
(The value of translation_table [ch] will be the translated version of the
character ch.) We would not consider translation table to be a string: it
need not contain a null character, and no string operations will be performed on iL

Q: liprintf and scanf expect their first argument to have type char*, does
tl1at mean that the argument can be a string variable instead of a string lit­
eral?

Q& A 307

The return value is the difference between lhe first "mismatched" characters in the
s and t strings, which will be negative ifs points to a "smaller" stri11g than t and
positive ifs points Lo a "larger" string. There's no guarantee that strcmp is actu­
ally written this way, though, so it's best not to assume that the magnitude of its
return value has any particular meaning.

Q: My compiler issues a warning '"vheo I try to compile the while statement in
the strcat function:

while {*p++ = *s2++)
I

What am I doing wrong?

A: Nothing. Many compilers-but not all. by any means-issue a warning if you use
= where == is normally expected. This warning is valid at least 95% of the time,
and iL will save you a lot of debugging if you heed it. Unfortunately. the warning
isn't relevant in this particular example; we actually do mean to use=, not ==. To
get rid of the warning, rewrite the while loop as follows:

while ((*p++:::; *s2++) != 0)
.
I

Since the while statement normally tests whether *p++ = *s2++ is not 0. we
haven't changed the meaning of the staten1enl. The warning goes away, however,
because the statement now tests a condition, not an assignn1ent. With the GCC
co1npjler, putting a pair of parentheses around the assignment is another way to
avoid a warning:

while {{*p++ = *s2++))
.
I

Q: Are the strlen and strcat functions actually written as shown in Section
13.6?

A: Possibly, although it's common practice for compiler vendors to write these func­
tions-and many other string functions-in assen1bly language instead of C. The
string functions need to be as fast as possible. since they·re used often and have to
deal with strings of arbitrary length. Writi11g these functions in assen1bly language
makes it possible to achieve great efficiency by taking advantage of any special
string-handling instructions that the CPU may provide.

Q: Why does the C standard use the term "program parameters" instead of
"command-line argun1ents"? [p. 302]

A: Programs aren·t always run from a command line. In a typical graphical user inter­
face, for example, programs are launched with a 111ouse click. ln such an environ­
ment, there's no traditional command line, although there may be other ways of
passing information to a program; the tern1 "program parameters" leaves the door
open for these alternatives.

310 Chapter 13 Strings

Section 13.6

file_name points to a string containing a file name. The function should store the exten­
sion on the file na1ne in the string poinLed to by extension. For example, if the file naine
is II memo. txt 11

, the function will store "txt II in the string pointed to by extension. lf
Lhe lile nan1e doesn't have an extension. the function should store an empty string (a single
null character) in the string pointed to by extension. Keep the function as simple as pos­
sible by having it use the st.rlen and strcpy functions.

13. Write the following function:

void build_index_url(const char *domain, char *index_url);

domain points to a string containing an Internet domain, such as "knking. com". The
function should add 11 http://www. 11 to lhe beginning of this string and 11 /

index. html II to lhe end of the string, storing the result in the string pointed to by
index url. (Tn this example, the resull will be "http://www. knking. com/
index. html 11

.) You n1ay assume that index_url points to a variable lhal is long
enought Lo hold the resulting string. Keep the function as simple as possible by having it use
the strcat and strcpy functions.

* 14. What does the following progrruu print?

#include <Stdio .h>

int main(void)
{

}

chars[] = 11 Hsjodi 11 , *p;

for (p = s; *p; p++)
--*p;

puts(s);
return O;

G* 15. Let f be the following function:

int f(char *s, char *t)
{

}

char *pl, *p2;

for (pl= S; *pl; pl++) {
for (p2 = t; *p2; p2++)

if (*pl== *p2) break;
if (*p2 == '\0') break;

}
return pl - s;

(a) What is the value off ("abed 11 , "babe 11)?

(b) What is the value off ("abed'', 11 bcd 11)?

(c) In general, what value does f return when passed two strings sand t?

G 16. Use lhe techniques of Section 13.6 to condense the count_spaces function or Section
13.4. ln particular, replace the for statement by a while loop.

17. Write the following function:

bool test extension(const char *file_name,
const char *extension);

Programming Projects 313

l 2. Modify Programcning Projecl 14 f ro,n Chapter 8 so thal it stores the words in a l wo­
<.li mensional char array as it reads Lhe sentence, with each ro,y of the array storing a sin­
gle word. Assume that the scnLence contains no more than 30 words and no \Vord is n1ore
than 20 characters long. Be sure lo store a null character at the end of eacb word so that il
can be treated as a string.

13. Modify Programming Project l5 fro1n Chapter 8 so that it includes the following function:

void encrypt(char *message, int shift);

The function expects message to point to a string containing the n1cssage to be encrypted~
shift represents the amount by vJhich each letter in the message i~ to be shifted.

14. Modify Programming Project 16 fron1 Chapter 8 so that it includes the following function:

bool are_anagrams(const char *wordl, const char *word2);

The function returns true if the strings pointed to by wordl and word2 are anagrru11S.

15. Modify Programnling Project 6 from Chapter 10 so Lbat it includes Lhe foUowing function:

int evaluate_RPN_expression(const char *expression);

The function rerun1s the value (.)f the RPN expression pc>inte<.I to by expression.

16. Modify Prograo11ning Project I fron1 Chapter 12 so thaL it includes the following runclion:

void reverse(char *message);

The function reverses the string pointed to by message. Hint: Use t,vo pointers. one ini­
tially pointi.ng LO the first characteT of the slring and the other initially pointing to the last
character. Have the function reverse these characters and then move the pointers to,vard
each other, repeating the process w1Lil Lhe pointers n1eet.

17. Modify Programming Project 2 fron1 Chapter 12 so that it includes tbe following function:

bool is_palindrome(const char *message) ;

The function returns true if the string pointed Lo by message is a palindro1ue.

18. Write a program that accepts a c.lare fron1 the user in the forrn 111111/dd/ \'V\')' and then dis­
plays it in the form 111011rh dd, yyyy. where ,nontlt is the name of the month:

Enter a date (mm/dd/yyyy): 2/17/2011
You entered the date February l7, 2011

Store the month names in an array that contains pointers to strings.

14 The Preprocessor

There will always be things we wish to say in our programs
that in all known languages can only be said poorly.

In previous chapters. I've used ilhe #define and #include directives without
going into detail about what they do. These directives-and others that we haven't
yet covered-are handled by the preprocessor, a piece of software that edits C pro­
grams just prior to compilation. lts reliance on a preprocessor makes C (along with
C++) unique an1ong n.1ajor programming languages.

The preprocessor is a powerful tool, but it also can be a source of hard-to-find
bugs. Moreover, the preprocessor can easily be 1njsused to create programs that are
almost impossible lo underst.and. Although some C programmers depend heavily
on lhe preprocessor, I recommend that it-like so many other things in life-be
used in moderation.

This chapter begins by describing how the preprocessor works (Section 14.1)
and giving some general rules that affect aU preprocessing directives (Section
J 4.2). Sections 14.3 and 14.4 cover two of the preprocessor's major capabilities:
macro definition and conrutional co1npilation. (I'l l defer detailed coverage of file
inclusion, the other major capability. until Chapter 15.) Section 14.5 discusses the
preprocessor's lesser-used directives: #error, #line, and #pragma.

14.1 How the Preprocessor Works

The behavior of Lhe preprocessor is controUed by pri!JJrocessing directives: com­
mands that begin with a # character. We've encountered two of these directives,
#define and #include, in previous chapters.

The #define directive defines a 1nacro-a name that represents something
else, such as a constant or frequently used expression. The preprocessor responds LO

a #define directive by storing the name of the macro together with itS definition.

315

316 Chapter 14 The Preprocessor

When the macro is used later in the program, lbe preprocessor "expands" the
n1acro, replacing it by its defined vaJue.

The #include directive tells the preprocessor Lo open a pru1icular tile and
"include" its contents as part of the file being compiled. For example, the line

#include <stdio.h>

instructs the preprocessor to open the file named stdio. h and b1ing its contents
into the program. (Among other things, stdio. h contains prototypes for C's
standard input/output functions.)

The following djagrarn shows the preprocessor's role in the compilation pro­
cess:

Cprogram

-
Preprocessor

+
Modified C program

'

Compiler

+
Object code

The input to the preprocessor is a C program. possibly containing djrectives. The
preprocessor executes these directives, removing them in the process. The output
of the preprocessor is another C progran1: an edited version of the origjnal pro­
gram, containing no directives. The preprocessor's output goes directly into the
cornpiler, which checks the progran1 for errors and translates it lo object code
(machine instructions).

To see whaL the preprocessor does. let's apply it to the celsius. c program
of Section 2.6. Here's the original progrrun:

/* Converts a Fahrenheit temperature to Celsius*/

#include <stdio.h>

#define FREEZING PT 32.0f
#define SCALE FACTOR (5.0f / 9.0f)

int main(void)
{

float fahrenheit, celsius;

printf (''Enter Fahrenheit temperature: ") ;
scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) * SCALE FACTOR;

14.1 How the Preprocessor Works 317

printf("Celsius equivalent is: %.lf\n'', celsius);

return O;
}

After preprocessing, lhc progra1n will have the following appearance:

Blank line
Blank line
lines brought in Jic1n1 stdio.h
Bh,nk line
!Jll111k line
Blank line
Blank line
int main(void)
{

}

float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf (11 %£ 11 , &fahrenheit) ;

celsius = (fahrenheit - 32.0f) * (5.0f / 9.0f);

printf("Celsius equivalent is: %.lf\n 11 , celsius);

return D;

The preprocessor responded to the #include directive by bringing in the con­
tents of stdio. h. The preprocessor also ren1oved the #define direclives and
replaced FREEZING_PT and SCALE_FACTOR wherever Lhey appeared later in
the ftle. Notice that the preprocessor doesn't remove lines containing clirectives;
instead, it simply makes then, e1npty.

As this example sho,vs. the preprocessor does a bit rnore than jusl execute
directives. In pa,ticulai·, it replaces each comment wilh a single space character.
Some preprocessors go further and remove unnecessary white-space characters,
including spaces and tabs at the beginning or indented lines.

In the early days of C, the preprocessor was a separate program that fed its
output into the compiler. Nowadays, the preprocessor is often part of the compiler,
and some of its output may not necessariJy be C code. (For example, inclucling a
standard header such as <stdio . h> may buve the effect or ,naking its functions
available to the progran, without necessarily copying Lhe contents of the header
into the progran1's source code.) Still, it's useful to think of the preprocessor as
separate fro111 the con1piler. ln fact, 1nost C compilers provide a way to view the
output of the preprocessor. Some cornpilers generate preprocessor output when a
certain option is specified (GCC will do so when the -E option is used). Others
co,ne with a separate program that behaves like the integrated preprocessor. Check
your compiler·s docu1nentntion for n1ore information.

A word of caution: The preprocessor has only a lin1ited knowledge of C. As
a result, it's quite capable of creating illegal programs as il executes directives.
Often the original program looks fine, making errors harder to find. In complicated

14.3 Macro Definitions 319

14.3 Macro Definitions

#define directive
(simple macro)

The macros Lhat we've been usjng since Chapter 2 are known as simple macros,
because Lhey have no parameters. The preprocessor also supports parameterized
n1acros. We' U look first at simple macros, then at parameterized macros. After
covering then, separately, we' ll examine properties shared by both.

Sin1ple Macros
The defini tion of asi,,-iple ,nacro (or object-like ,-,zacro, as il's called in the C stan­
dard) has the f onn

#define identifier replace1nerzt-lisc

rep/acernent-lisl is any sequence of preprocessing tokens, which are similar tot.he
tokens discussed in Section 2.8. Whenever we use the tertn "token" in this chapter,
it means ''preprocessing token."

A macro 's .replacement list may include identifiers, keywords, numeric con­
stants, character constants, string literals, operators, and punctuation. When it
encounters a macro defi nition, the preprocessor makes a note that identifier repre­
sents replace111e11t-list; wherever identifier appears later in lhe file, the preproces­
sor substitutes replacement-list.

Don't put any extra sy1n bols in a 1nacro definition-they' ll beco1ue part of the
replacement list. Putting the= symboJ in a n1acro definition is a common error:

#define N = 100

int a[N);

/ ***WRONG***/

/ * becomes int a[= 100]; */

ln this exan1ple, we've (incorrectly) defined N to be a pair of tokens(,:: and 100).
Ending a macro definition with a semicolon is another popular mistake:

#define N 100;

int a [NJ ;

/***WRONG***/

/* becomes int a[l00;]; */

Here N is defined to be the tokens l O O and ; .
The compiler will detect most errors caused by extra symbols in a macro defi­

nition. Unfortunately, the compiler wiU flag each use of the macro as incorrect,
rather than identifying the actual culprit-the macro's definition-wruch will have
been removed by the preprocessor.

Simple macros are primarily used for defin ing what Kernighan and Ritchie
call 1'1nanifest constants." Using n1acros, we can give names to numeric, character,

l!IJ and string values:

#define directive
(parameterized macro)

14.3 Macro Definitions 321

piled in "debugging ,node." wilh exlra statemenLs included to produce debug­
ging output:

#define DEBUG

lncidentally. it's legal for a macro's replacement list to be empty, as this exam­
ple shows.

When 1uacros are used as constants, C programn1ers custo1narily capitalize all
letters in their names. However. there's no consensus as to how to capitalize mac­
ros used for otJ1er purposes. Since n1acros (especially paran1eterized macros) can
be a source of bugs. some progra111mers like to draw attention to them by using al I
upper-case letters in their na1nes. Others prefer lower-case names, following the
style of Kernighan and Ritchie's The C Progra111111ing Language.

Parameterized Macros

Tbe definition of a para,neterized 111acro (also known as a fu11ctio11-like 111acro)
has the form

#define itlentifter (x1 , .T2 , ••• , x
11

) re1Jlaceme11t-list

where .,·L, x2 • ... , x
11

are identifiers (the macro's para,neters). The parameters may
appear as many times as desired in the replacement list.

Tbere must be no space between the Lnacro name and the left parenthesis. If space
is left, the preprocessor ,vill assume tbat we 're defining a sin1ple macro~ it will
ti-eat (x 1 , x2 , ••• , x,,) as prut of the replacement list.

When the preprocessor encounters Lhe definition of a parameterized macro. il
stores the deftnition away for later use. Wherever a macro i11vocation of the form
identifier (y 1, y2 , ••• , y,,) appears later in Lhe program (where y 1• y2, .•. , Y,, are
sequences of tokens). the preprocessor replaces it with replace,nent-list. substi tut­
ing y1 for x 1• y2 for x1 , and so forth.

For exan1ple. suppose that \ve·ve defined the following macros:

#define MAX (x, y} ((x) > (y}? (x} : (y})
#define IS EVEN (n) ((n) %2==0)

(The nu,nber or parentheses in these macros 111ay seen, excessive. but there's area­
son. as we·u see later in this section.) Now suppose that we invoke the two macros
in the folJowing way:

i = MAX(j+k, m-n);
if (IS EVEN(i)) 1++;

324 Chapter 14 The Preprocessor

The # Operator

Macro definitions rnay contain two speciaJ operators,# and ## . Neither operator is
recognized by the compiler; instead, they're executed during preprocessing.

E The # operatoJ converts a macro argument inlo a string literal; it can appear
onJy in the replace1nent list of a parameterized macro. (The operation performed
by # is known as ''stringization," a tenn that r· m sure you won' t find in the dictio­
nary.)

There are a nu1nber of uses for #~ let's consider just one. Suppose that we
decide to use the PRINT_ INT macro during debugging as a convenient way to
print the values of integer variables and expressions. The # operator makes iL pos­
sible for PRINT_INT to label each value that it prints. Here's ow· new version of
PRINT INT:

#define PRINT INT {n) print£ (#n '' = %d\n 11 , n)

The# operator in front of n instructs the preprocessor to create a string literal from
PRINT_INT's argument. Thus, the invocation

PRINT_INT(i/j);

will become

print£ (11 i/j 11
" = %d\n", i/j) ;

We saw in Section l3. 1 tJ1at the co1npiJer automatically joins adjacent string liter­
als, so this state1nent is equivalent to

printf("i/j = %d\n 11 , i/j);

When the program is executed. printf will display both the expression i/j and
its val ue. IJ i is 11 and j ii.s 2, for example, tJ1e output ,vill be

i/j = 5

The ## Operator

The ## operator can "paste" two tokens (identifiers, for example) together to fonn
a single token. (Not surpris ingly, the ## operation is known as "token-pasting.'') If
one of the operands is a macro para111eter. pasting occurs after lhe parameter bas
been replaced by the correspondiJ1g argument Consider the fo llowing ,nacro:

#define MK ID(n) i##n

When MK_ID i invoked (as MK_ID (1), say), the preprocessor first replaces the
parruneter n by tl1e argun1ent (1 in this case). Next, t11e preprocessor joins i and 1

to make a single token (il). The following declaration uses MK ID to create three
identifiers:

int MK_ID(l), MK_ID(2), MK ID(3);

14. 3 Macro Definitions 327

parentheses, the macros will s01neti1nes give unexpecled-and undesirabJe­
resuJts.

There are two rules to foil ow when deciding where to put parentheses in a
macro definition. First. if the macro's replacement list contains an operator, always
enclose the replacen1ent list in parentheses:

#define TWO_PI (2*3.14159)

Second, if the macro ha~ paran1eters, put parentl1eses around each parameter every
time it appears in the replacement Jjst

#define SCALE (x) ((x) *10)

Without the parentheses. we can't guarantee that the compiler will creat replace­
menl lists and arguments as whole expressions. The compiler may apply the rules
of operator precedence and associativity in ways that we didn ·1 anticipate.

To illustrate the importance of pulling parentheses around a 1nacro's replace­
ment list. consider the following n1acro det1nition. in which the parentheses are

. .
m1ss1ng:

#define TWO PI 2*3.14159
I* needs parentheses around replaceme11t list * /

During preprocessing, the statement

conversion factor - 360/TWO_PI;

beco,nes

conversion_factor = 360/2*3.14159;

The division wilJ be perfor1ned before tl1e n1ultiplication, yielding a result different
from tl1e one intended.

Putting parentheses around the replace1uent list isa 't enough if the macro has
parameters--each occurrence of a parameter needs parentheses as well. For exam­
ple. suppose that SCALE is defilled as follows:

#define SCALE(x) (x*lO) /* needs parentheses around x */

During preprocessing, the statement

j = SCALE (i+l) ;

becomes

j = (i+l*lO);

Since multiplication takes precedence over additio11, t11is statement is equivalent to

j = i+lO;

Of course, what we wanted was

j = (i+l)*lO;

Table 14.l
Predefined Macros

14.3 Macro Definitions 329

buL not statements. The solution is to wrap the staten1encs in a do loop whose con­
dition is false (and which therefore will be executed just once):

do { ... } while (0)

Notice that the do statement isn' t complete-it needs a semicolon at the end. To
see this trick (ahem. technique) in action. let's incorporate it into our ECHO tnacro:

#define ECHO(s) \
do { \

gets(s); \
puts(s); \

} while (0)

When ECHO is used, it n,ust be followed by a semicolon, which completes the do
statement:

ECHO (str);
/* becomes do { gets(str); puts(str); } while (0); */

Predefined Mac1·os

C has several predefined macros. Each macro represents an integer constant or
string literal. As Table J 4. l shows. these macros provide inf orrnation about the
current compilation or about the co1npiler itself.

Na,ne

LINE
FILE
DATE
TIME
STDC

Description

Line number of file being compiled
Name of rue being compiled
Date of compilation (in lhe form 11 Mmm dd yyyy 11

)

Ti1ne of compilation (in the form 11 hh: mm: ss 11
)

1 if Lhe co1npiler confom1s 10 the C standard (C89 or C99)

The _DATE_ and _TIME_ macros identify when a prograrn was com­
piled. For example, suppose that a progra1n begins with the following statements:

printf("Wacky Windows (c) 2010 Wacky Software, Inc.\n");
printf(11 Compiled on %sat %s\n", _DATE_, _TIME_);

Each Lime it begins lo execute, the program will print two lines of the fom1

Wacky Windows (c) 2010 Wacky Software, Inc.
Compiled on Dec 23 2010 at 22:18:48

This informalion can be helpful for distinguishing among different versions of the
san,e program.

We can use the _LINE_ and _FILE_ n1acros to help locate errors.
Consider the proble1n of detecting the location of a division by zero. When a C
program terminates prematurely because it divided by zero, there ·s usually no indi­
cation of which division caused the problem. The following 1nacto can help us pin­
point the source of the error:

14.4 Conditional Compilation 333

((voltage<= max_voltage)?
print£ (11 Passed test: %s\n 11

, "voltage <= max_voltage 11
) :

printf(11 Voltage %d exceeds %d\n 11
1 voltage, max_voltage));

When the program is executed, the program will display the message

Passed test: voltage<= max_voltage

if voltage is no more than max_vol tage. Otherwise, it will display the values
of voltage and max_vol tage:

Voltage 125 exceeds 120

& The _ func_ Identifier

Another new feature of C99 is the_ func _ identifier. _f unc _ has nothing
to do with the preprocessor, so it actually doesn't belong in this chapter. However,
like rnany preprocessor features, it's useful for debugging, so I've chosen to dis­
cuss it here.

Every function has access to lhe _func_ identifier, which behaves like a
string variable that slores the name of the cu1Tently executing function. The effect
is the same as if each fu nction contains the following declaration at the beginning
of its body:

static const char _func_[] = "ft111ction-11anze 11
;

where function-na111e is the name of the function. The existence of this identifier
makes it possible to write debugging macros such as the following:

#define FUNCTION_CALLED() printf(11 %s called\n", _func_);
#define FUNCTION_RETURNS() printf(11 %s returns\n", _func_);

Calls of these macros can then be placed inside functions to trace their calls:

void £(void)
{

FUNCTION_CALLED(); /* displays "f called" */

FUNCTION_RETURNS(); /* displays 11 f returns"*/
}

Another use of_ f unc _: it can be passed to a function to let it know the name
of the fu nction that called it.

14.4 Conditional Compilation

The C preprocessor recognizes a nu1nber of directives that support conditional
co1npilatior1-Lhe inclusion or exclusjon of a section of program text depending on
the outcome of a test performed by the preprocessor.

#ifdef directive

14.4 Conditional Compilation 335

will fail (but not generate an error message). v,hile the test

#if !DEBUG

will succeed.

The defined Operator

We encountered the # and ## operators ia Section 14.3. There's just one other
operator, de£ined, that's specific Lo the preprocessor. When applied to an identi­
fier, defined produces the value I if the identifier is a currently defined macro: it
produces O otherwise. The defined operator is normally u~ed in conjunction
with lhe #if directive; it allovvs us to write

#if defined(DEBUG)

#endif

The lines between the #if and #endif directives will be included ia the program
only if DEBUG is defined as a 1nacro. The parentheses around DEBUG aren't
required; we could simply write

#if defined DEBUG

Since defined tests onJy whether DEBUG is defined or not, it's not neces­
sary to give DEBUG a value:

#define DEBUG

The #if def and # i fnde f Directives

The #if def directive tests whether an identifier is currently defined as a macro:

#ifdef identifier

Using #if def is similar lo usirlg #if:

#if def identifier
Lines to be included if ident(fier is defined as a 11u1c-rv
#endif

StricUy speaking, there·s no need for #if def, since we can combine the #if
f:m direcLive with the defined operator to get the sa,ne effect. 1n other words. the

directive

#ifdef identifier

is equivalent LO

#if defined (ident(fier)

336 Chapter 14 The Preprocessor

#ifndef directive

#elif directive

#else directive

The #ifndef directive is sin1ilar to #ifdef, but tests whether an identifier
is not defined as a macro:

#i fndef identifier

Writing

#ifndef idenHfter

is the same as writing

#if I defined (identifier)

The #elif and #else Directives

#if, #if def, and #ifndef blocks can be nested just like ordinary if state­
ments. When nesting occurs. it's a good idea lo use an increasing an1ount of inden­
tation as the leveJ of nesting grows. Some progran1n1ers put a con,ment on each
closing #endif to indicate what condition the matching #if tests:

#if DEBUG

#endif / *DEBUG*/

This technique makes it easier for the reader Lo find the beginning of die #if block.
For additional convenience, the preprocessor supports the #elif and #else

directives:

#else

#elif and #else can be used in conjunction with #if, #ifdef, or #ifndef
to test a series of conditions:

#if exprl
Lines ro be included if exprl is 11011-::.ero
#elif expr2
lines to be included if expr I is zero but expr2 is nonzero
#else
lines ro be included othet~l'ise
#endif

Although the #if directive is sbo,vn above, an #ifdef or #ifndef directive
can be used instead. Any number of #elif directives-but at most one #else­
may appear between #if and #endif.

#if INT MAX< 100000
#error int type is too small
#endif

14.5 Miscellaneous Directives 339

Attempting to compile the -program on a n,achine whose integers are stored in l6
bits will produce a message such as

Error directive: int type is too small

The #error directive is of ten found in the #else part of an #if-#elif­
#else series:

#if defined(WIN32}

#elif defined(MAC_OS)

#elif defined(LINUX}

#else
#error No operating system specified
#endif

The # 1 ine Directive

The #1 ine directive is used to alter Lhe way progrrun Lines are numbered. (Lu1es
are usually numbered 1, 2. 3, as you'd expect.) We can also use this directive Lo

make the co1npiler think U1at it's reading the program from a file with a different
name.

The #line directive has two forms. In one forn1, we specify a line number:

#line directive #line 11

(form 1)

n n1ust be a sequence of digits representing an -integer between 1 and 3276 7
0 (2147483647 in C99). This directive causes subsequent lines in the program to be

numbered n, 11 + l, n + 2, and so forth.
In the second fonn of the #1 ine directive, both a line nun,ber and a file nrune

are specified:

#line directive #line n "file"
(form 2)

The lines that follow this directive are assumed to come from file, with line nun1-
bers starting at n. The values of n and/or the file string crui be speci fLed using mac­
ros.

One effect of the #line directive is Lo change the value of the _LINE_
macro (and possibJy the _FILE_ macro). More iinportantly, n1ost compilers
will use the information from the #line directive when generating error messages.

340 Chapter 14 The Preprocessor

#pragma directive

For example. suppose Lhal the foUowing directive appears at the beginning of the
fiJe f oo. c:

#line 1.0 "bar. c 11

Let's say that the con1piJer detects an error on line 5 of foo . c. The error message
will refer to line 13 of file bar. c, not line 5 of file foo. c. (Why line 13? The
directive occupies line 1 off oo. c, so the renumbering off oo. c begins at line 2.
which is treated as line JO of bar. c.)

At first glance, the #line directive is 1nystifying. Why would we want error
messages to refer to a different line and possibly a different file'? WouJdn't Lhis
make programs harder to debug?

In fact, the #line directive isn't used very often by progra1nmers. Instead,
it's used primarily by programs that generate C code as output. The most fan1ous
exan1ple of such a progran1 is yacc (Yet Another Compiler-Compiler). a UNlX
utili ty that automatically generates part of a compiJer. (The GNU version of yacc
is named bison.) Before using yacc, lhe programn1er prepares a tUe that con­
tains information for yacc as well as fragments of C code. From lhis tile, yacc
generates a C pro1,1Tam. y . tab . c. that incorporates Lhe code supplied by the pro­
gran1n1er. The programmer then compiles y. tab. c in the usua1 way. By inserting
#line directives in y. tab. c, yacc tricks d1e compiler into believing that the
code comes from the original file-Lhe one wrilten by Lhe programmer. As a result,
any error messages produced during the compiJalion of y. tab. c will refer to
lines in the original file, not lines in y. tab. c. This makes debugging easier,
because error messages refer lo the File written by the programmer, not the (more
complicated) file generated by yacc.

The #pragma Directive

The #pragma directive provides a way to request special behavior from Lhe com­
piler. This directive is most useful for programs that arc unusualJy large or chat
need to take advantage of the capabilities of a particular compiler.

The #pragma directjve has the form

#pragma tokens

where roke11s are arbitrary tokens. #pragma directives can be very si.tnple (a sin­
gle token) or they can be much n1ore elaborate:

#pragma data(heap size=> 1000, stack size=> 2000) - -
Not surprisingly, the set of commands that can appear in #pragma directives

is different for each compiler: you·u have to consult lhe documentation for your
con1piler to see which commands it allows and what those commands do. Inciden­
tally, the preprocessor n1ust ignore any #pragma directive that conLains an unrec­
ognized command; it's not pem1itted to give an error message.

14.5 Miscellaneous Directives 341

In C89, there are no standard pragmas-they·re all implementation-defined.
8 C99 has three standard pragmas, all of which use STDC as the lirst token following

#pragma. These pragmas are FP_CONTRACT (covered in Section 23.4),
ex LIMITED RANGE (Section 27.4), and FENV ACCESS (Section ?7.6). - - -

8 The _ Pragma Operator

_ Pragma expression

C99 introduces the Pragma operator. which is used in conjunction with the
#pragma directive. A _Pragma expressjon hali Lhe form

_Pragma (srring-literal)

When it encounters such an expression, the preprocessor ··ctestringizes'' the string
literal (yes, that's the term used in the C99 standard!) by removing the double
quotes around the string and r,eplacing the escape sequences \ 11 and \ \ by the
characters " and \, respectively. The result is a series of tokens, \Vhich are then
treated as though they appear in a #pragma directive. For example, writing

_Pragma (11 data (heap_size => 1000, stack size => 2000) 11
)

is the same as writing

#pragma data(heap_size => 1000, stack_size => 2000)

The _Pragma operator lets us work around a lin1itation of the preprocessor:
the facl that a preprocessjng directive can't generate anoLher directive. _Pragma.
however, is an operator, not a directive, and can therefore appear in a macro defini­
tion. Th:is makes it possible for a macro expansion to leave behind a #pragma
directive.

Let's look al an example from the ace manual. The following macro uses the
_ Pragma operator:

#define DO PRAGMA(x) _Pragma(#x)

The macro would be invoked as follows:

DO_PRAGMA (GCC dependency 11parse. y 11
)

After expansion, the result will be

#pragma GCC dependency 11 parse. y 11

which is one of the pragmas sDpported by acc. (Tt issues a warning if the date of
the specified file-parse.yin this exan1ple- is more recenl than the dace of the
cun·ent file-the one being compiled.) Note that Lbe argu1nent to the call of
DO PRAGMA is a series of tokens. The # operator in the defini lion of DO PRAGMA - -
causes the tokens lo be sltingized into 11 GCC dependency \"parse. y\" "~
this string is Lhen passed LO the _Pragma operator, which desuingizes it, produc­
ing a #pragma directive containing the original tokens.

344 Chapter 14 The Preprocessor

to handle. (Note the use of #undef to undefme sqrt before defining the sqrt
macro. As we1 I1 see in Section 21. l , the standard library is allowed to have bolb a
macro aod a function with the sa1ne name. Undefining sqrt before defining our
own sqrt macro is a defensive 1neasure. in case cJ1e library has already defined
sqrt as a macro.)

Q: I get an error when I try to use predefined macros such as _LINE_ and
FILE. Is there a special header that I need to include?

A: No. These macros are recognized auton1alically by the preprocessor. Make sure that
you have nvo underscores at the beginning and e11d of each macro name, not one.

Q: What's the purpose of distinguishing l>etween a ''hosted implementation" and
a ''freestanding implementation"? If a freestanding implementation doesn't
even support the <stdio . h> header, \Vl1at use is it? [p. 330]

A: A hosted implementation is needed for most programs (inclucLing the ones in lllis
book). which rely on the UJ1derlying operating system for input/output and other
essential services. A freestanding implementation of C would be used for pro­
grams that require no operating system (or only a rninimal operating system). For
example. a freestanding irnplementation would be needed for writing the kernel of
an operating system (which requires no traditional input/output and therefore
doesn't 11eed <stdio. h> anyway). Freestanding implementations are also useful
for writing software for e1nbedded systems.

Q: I thought the preprocessor was just an editor. How can it evaluate constant
expressions? [p. 334]

A: The preprocessor is more sophisticated than you 111ight expect; it knows enough
about C to be able to evaluate constant expressions, although it doesn't do so in
quite the same way as the con1piler. (For one thing. the preprocessor treats any
u11defined nan,e as having tbe value O. The other differences are too esoteric to go
into l1ere.) lo practice, the operands in a preprocessor constant expression are usu­
ally constants. macros that represent constants. and applications of the defined
operator.

Q: Why does C provide the #i fdef and #ifndef directives, since we can get
the same effect using tl1e #if directive and the defined operator? [p. 335]

A: The #ifdef and #ifndef directives have been a part of C sjnce the 1970s. The
defined operator, on lhe other hand. was added to C in lhe 1980s during stan­
dardization. So tJie real question is: Why was defined added co Lhe language?
The answer j s that defined adds fJexi bility. Instead of just being able to test the
existence of a single n1acro using #ifdef or #ifndef, we can now test any
number of macros using #if together wilh defined. For example. che following
djrective checks whether FOO and BAR are defined but BAZ is not defined:

#if defined(FOO) && defined(BAR) && !defined(BAZ)

Section 14.3

Exercises 345

Q: T ,vanted to compile a program that I hadn't finished writing, so I "condi­
tioned out" the unfinished part:

ftif 0

#endif

When J compiled the program, I got an error message referring to one of the
lines between #if and #endi f. Doesn't the preprocessor just ignore these
lines? [p. 338]

A: No, Lhe lines aren·t completely ignored. Comments are processed before prepro­
cessing directives are executed, and the source code is divided inlo preprocessing
tokens. Thus, an unterminated comment between #if and #end.if may cause an
error message. Also, an unpaired single quote or double quote character may cause
undefined behavior.

Exercises

I. Write paran.1eterized macros that co1npute the following values.

(a) The cube of x.
(b) The Temainder when n is divided by 4.
(c) l if the product of x and y is less than I 00, 0 otherwise.

Do your macros always work? If not, describe what arguments would make lhem fai l.

G 2. Write a macro NELEMS (a) that con1putes the nun1ber of element!. in a one-dimensional
array a. Hi11r: See the discussion of the sizeof operator in Section 8.1.

3. Let DOUBLE be the following macro:

#define DOUBLE(x) 2*x

(a) What is lhe value of DOUBLE (1+2)?
(b) Whal is the value of 4/DOUBLE (2)?
(c) Fix the definition of DOUBLE.

G 4. For each of the following macros, give an exa,nplc that illustrates a problem with the macro
and show how Lo fix it.

(a) #define AVG(x, y) (x-,-y) /2

(b) #define AREA (x, y) (x) * (y)

G *5. Let TOUPPER be the foUowing macro:

#define TOUPPER(c) ('a'<=(c)&&(c)<='z'?(c)-'a'+'A': (c))

Let s be a string and let i be an int variable. Show the output produced by each of the fol­
lowing program fragmen~.

(a) strcpy (s, "abed") ;
i = O;
putchar(TOUPPER(s[++i]));

Which of the following tests wil I fai I?

(a) #if M
(b} #ifdef M
(c) #ifndef M

(d) #if defined (M)

(e) #if !defined(M)

Exercises 347

13. (a) Show what the following prograrn wili look like after preprocessing. You Lnay ignore
any lines addeu to the prog_ran1 as a result of includjng the <stdio. h> header.

#include <stdio.h>

#define N 100

void £(void};

int main(void)
{

f () i

#ifdef N
#undef N
#endif

return O;
}

void f(void)
{
#if defined(N)

print£ ("N is %d\n 11
, N) ;

#else
print£ ("N is undefined\n") ;

#endif
}

(b) What will be the output of this program?

0* L4. Show what the (ollowing progrru11 will look like after preprocessing. Some lines of the pro­
gran1 ,nay cause compilation errors: find all such en·ors.

#define N: 10
#define INC(x) x+l
#define SUB (x,y) x-y
#define SQR (x) ((x) * (x))
#define CUBE(x) (SQR(x}*(x))
#define Ml(x,y) x##y
#define M2(x,y) #x #y

int main(void)
{

int a [.N] , i, j , k, m;

#ifdef N .
1 = Ji

#else . .
J : J.;

#endif

i = 10 * INC(j);

348 Chapter 14 The Preprocessor

Section 14.5

i - SUB (j , k) ;
i - SQR(SQR(j));
i - CUBE (j) ;
i - Ml (j , k) ;
puts (M2 (i I j)) ;

#undef SQR
i = SQR (j) ;

#define SQR
i = SQR {j);

return O;
}

LS. Suppose U1aL a program needs to display messages in either English. French. or Spanish.
Using conditional con1pilat.ion. write a -program fragmenl Lhal displays one of the following
three messages, depending on whether or not the specified 111acro is defined:

Insert Disk l (if ENGLISH is defined)
Inserez Le Disque l (if FRENCH is defined)
Inserte El Disco 1 (if SPANISH is detinc<l)

* 16. (C99) Assume that tl1e following macro definitions are in e1Tecl:

#define IDENT(x) PRAGMA(ident #x)
#define PRAGMA(x) _Pragma(#x)

Whal will 1he following line look like after macro expansjon?

IDENT(foo)

}
}

case Jq 1 :

def al.11 t =

16.3 Nested Arrays and Structures 391

ler,ninate progrlun;
11rinl error n,cssage ;

It vviH be convenient to have se11arate functjon .. perforn1 the insert ~earch.
update and print op~ rations. Since these £unctio11. ,viU all need acce n o
inventory and num_pai---ts. we n1ight \Vant t n1ake these variab]les e ·ternal.
A an alternativl' .. we could dl::c]are tht' variables inside main., and then pa. s the111
to the functions as argun1t:.nts. Pron1 a design stand1Joint, it · usually better to n1ake
variables local to a function rather than n1aking then1 external (ee Section 10.2 if
you"ve forgotten why). In this progran1 however putting inventory and

num _parts inside ma in vvould n1creJy con1plicate n1atters.
For reason · that I" 11 ex plain later. 1 'vt= dee idc,cJ to split the progran1 in to th I ee

ftle~: inventory. c. which contains the bulk of the progran1· readl ine . h ..
Vvrhich conlait1'-" the prototype for the read_l ine DHnction~ and readl ine. c"
wl1ich contains the definition of re.ad 1 ine. \\1c., 11 discuss th~ latter t\vo files
later in thi ... section. For OO\V .. let" L concentrate on inventory. c.

inventor~c /* Maintains a parts database (array version) */

#'nclude <stdio.h~
include nreadl'ne.h 11

define NAME LEN 25
#define MltX PARTS 100

struct part {
int numbe;
char name[N~..ME_LE +l];
int on_ hand;

} inventory [t-iAX_ PARTS] ;

n num parts= O; /* number of parts currently stored /

int find_part(int number);
void insert(void);
void ,search (void) ;
vo'd upda te(vo'd);
void print (void);

/**
* main: Prompts the user to enter a11 operatio11 code, *
* then calls a . _ unction t:a perforn1 the requested *
* action. Repeats until che user enters the *
* command 'q '. Pr'nts an error message if the user
* enters an illegal code. *
** **** ** * *** *** ********************* **************/
n tnain (voicl)

{
char code;

}

16.3 Nested Arrays and Structures 393

if (find_ part(part_nurn.ber) >= O) {
printf ("Part already exists. \n'');
return;

}

in"T,;-entory [num_pa ts] . nun1ber == part_number;
printf (11 E ter part name: ") ;
read_l in.e (inventory {nl1m_ par sJ . namt:, NA.r-·IE LE) i

printf ('1 Enter qltant .L Ly on har1d: 11
) ;

scanf ("%d 11 , &invento -y [num_parts] , on hand);
num_parts++;

/***************** *** ** * ******************** **** *
* search: Prompts the user to er1ter a part number, tl1en *

looks up the part in the database. I the part*
* exists, prints the name and quant'ty on hand;
* if not, prints an error message.
*******w***~****~*** *** ** ****************** ** * ****/

void search{void)
{

}

in i, number;

pri11t _ (11 Enter part n1ctmber: '') ;
scanf(11 %d 11 , &numbe~);
i = find_part{number);
if (i > = 0) {

printf(11 Part name: %s\nir, inventory i] .name);
prir1tf (nQuantity on hand: %d\n " , inventory [i] . on_hand);

} else
printf ("Part no ound. \n 11

) ;

/******* ******** ** *** ***************** ** ****
* update: Prompts the user to e11ter a part nu1Ttber.

* ***
*
* * Prins an error message if the part doesn't

* exist; other¼Tise, pramp s .h•e ttsei~ to enter
* change in quantity an hand and updates he

da.cabase.
*

**************~*** *** ************************ *********/
void update(void)
{

}

int i, nunilier, change;

pr'11tf(HEnter part number:");
scanf (11 %d 1,, &number);
i = find_ part(numbe);
if { I >= 0) {

pr· nt f (~1 Enter change in quant i ty on har1d: 11
) ;

scanf (11 %d 11
; &change) ;

inven ory ['] .on_h nd += change;
} else

pri n f (11 Part not found. \n 11
} ;

16.5

16.5 Enumerations 401

Number has two members, kind and u. The value of kind will be either
INT KIND or DOUBLE KIND.

Each time we assign a value lo a member of u, we'll also change kind to
ren1ind us which me1Tiber of u we modified. For example, if n is a Number vari­
able, an assignment to the i member of u would have the following appearance:

n.kind = INT_KINDi
n.u.i = 82;

Notice t11at assigning to i requires that we first select the u 1nember of n, then the
i member of u.

When we need to retrieve the number stoted in a Number variable, kind will
tell us which member of the union was the last to be assigned a value. The
print_number function can take advantage of this capability:

void print_nurnber(Nurnber n)
{

}

if (n.kind == INT_KIND)
print f ("%d" , n . u. i) ;

else
printf(11 %g 11 , n.u.d);

It's the program's responsjbili ty to change the tag field each time an assignment is
made to a member of the union.

Enumerations

[n many programs, we'll need variables that have only a small set of meaningful
values. A Boolean variable. for example. should have only two possible values:
"true" and "false.'· A vaiiable that stores the suit of a playing card should have only
four potentiaJ values: '"clubs," "dian,onds," ''hearts," and "spades."' The obvious
way to deal with such a variable is to cleclare it ai, an integer and have a set of codes
that represent the possible values of the variable:

int s;

s = 2;

/*swill store a suit*/

/* 2 represents "hearts"*/

Although this rechnique works, it leaves much Lo be desired. Son1eone reading the
program can't tell that s has only four possible values. and the signiftcance of 2
isn't immediaLely apparent.

Usj,ng macros Lo define a suit "type" and names for the various suits is a step
in the right direction:

16.5 Enumerations 403

As an alternative, we could use typedef to rnake Suit a type name:

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit s1, s2;

Tn C89, using typedef to name an enumeration is an excellent way to create
a Boolean type:

typedef enum {FALSE, TRUE} Bool;

C99 has a buill-in Boolean type. of course. so there's no need for a C99 program­
mer to define a Bool type in this way.

En11merations as Integers
Behind the scenes, C treats enumeration variables and constants as integers. By
default, the compiler assigns the integers 0, I. 2, ... to the constants in a particular
enumeration. In our suit enumeration. for example, CLUBS, DIAMONDS.

HEARTS, and SPADES represent 0, l, 2, and 3, respectively.
We're free to choose different values for enumeration constants if we like.

Let's say that we want CLUBS, DIAMONDS, HEARTS, and SPADES to stand for 1,
2, 3, and 4. We can specify these numbers when declaring the enumeration:

enum suit {CLUBS= l, DIAMONDS= 2, HEARTS= 3, SPADES= 4};

The values of enu1neration constants may be arbitrary integers, listed in no pruticu­
Jar order:

enum dept {RESEARCH= 20, PRODUCTION= 10, SALES= 25};

It's even legal for two or more enumeration constants to have the same value.
When no value is specified for ao enun1eration constant, its value is one

greater than the value of the previous constanl. (The first enumeration constant has
the value O by default.) In the following enutneration, BLACK bas the value 0,
LT_GRAY is 7, DK_GRAY is 8, and WHITE is 15:

enum EGA_colors {BLACK, LT_GRAY = 7, DK_GRAY, WHITE= 15};

Since enumeration values are nothing but thinly disguised integers, C allows
us to mix them with ordinary integers:

inti;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* • • 1 */ J. J.S now
s - O; / * s •

J.S now 0 (CLUBS) */
s++; /* s • 1S now 1 (DIAMONDS) *I
•

J_ = s + 2; /* i is now 3 * I

The co,npiler treats s as a variable of son,e integer type; CLUBS, DIAMONDS,

HEARTS, and SPADES are just names for the integers 0, 1, 2, and 3 .

404 Chapter 16 Structures, Unions, and Enumerations

AlLbough il's convenient to be able to use an enumeration value as an integer, it's
dangerous to use an integer as an enumeralioo value. For example, we might acci­
dentalJy store the number 4 wbicb doesn't correspond to any suit-into s.

Using Enumerations to Declare ''Tag Fields''

Enumerations are perfect for solving a problem that we encountered in Section
16.4: determining which rnember of a union was the last to be assigned a value. In
the Number structure. for example, we can 111ake the kind n1ember an enun1era­
tion instead of an int:

typedef struct {
enum {INT KIND, DOUBLE_KIND} kind;
union { -

int i;
doubled;

} u;
} Numberi

The new structure is used in exacUy the same way as the old one. The advantages
are that we've done away with the INT_KIND and DOUBLE_KIND macros
(they 're now enun1eration constants). and we've clariti.ed the meaning of kind­
it's now obvious that kind has only two poss ible values: INT_KIND and
DOUBLE KIND.

Q&A

Q: When I tried using the sizeof operator to determine the number of bytes in
a structm·e, I got a number that was larger than the sizes of the 01embers
added together. How can this be?

A: Lefs look at an example:

struct {
char a;
int b;

} S;

If char values occupy one byte aad int values occupy four bytes, how large is
s? The obvious answer-five bytes- may not be the correct one. Some computers
require that the address of certain data items be a multiple of some nun1 ber of bytes
(typical1y two, four, or eight. depending on the item's type). To satisfy thi s require­
n1ent, a compiler will "align" the members of a structure by leaving "holes"
(unused bytes) between adjacent members. If we assume that data ite1ns must

Section 16.1

A:

CD>

CD
Q:

A:

CD>

enum gray_values {
BLACK = 0,
DARK_GRAY = 64,
GRAY= 128,
LIGHT GRAY= 192,

}; -
[s this practice Jegal?

Exercises 407

1'his practice is indeed legal in C99 (and is supported by some pre-C99 compilers as
well). Allowing a "trailing comma" makes enumerations easier to moclify, because
we can add a constant Lo tbe end of an enumeration without changing existing lines
of code. For example, we might want to add WHITE to our enumeration:

enum gray_values {

} ;

BLACK = 0,
DARK_GRA Y = 64 ,
GRAY = 128,
LIGHT GRAY= 192,
WHITE= 255,

The comn1a after the defmition of LIGHT GRAY makes it easy to add WHITE to
the end of rhe list.

One reason for this change is that C89 allows trailing commas in initializers,
so it seemed inconsistent oot to allow the san1e flexibility in enu ,nerations. Inci­
denta1Jy, C99 also allows trailing commas iD compound literals.

Can the values of an enumerated type be used as subscripts?

Yes, indeed. They are integers and have-by default-values that start at O and
count upward, so they 1nake great subscriptc:;. In C99, n1oreover, enwneralion con­
stants can be used as subscripts in designaled initializers. Here's an example:

enum weekdays {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};
canst char *daily_ specials[J = {

} ;

[MONDAY] = "Beef ravioli",
[TUESDAY] = "BLTs 11 ,

[WEDNESDAY] = "Pizza",
[THURSDAY] = II Chicken fajitas,,,
(FRIDAY) = "Macaroni and cheese"

Exercises

l. In the folJowing declarations, the x and y stru<.:tures have members named x and y:

struct { int x, y; } x;
struct { int x, y; } y;

Are these declarations legal on an individual basis? Could both declarations appear as
shown in a progran1? Justify your answer.

408 Chapter 16 Structures, Unions, and Enumerations

Section 16.2

f> 2. (a) Declare slruclure variables uaJJ1e<l cl. c2, and c3. each having 1nembers real and
imaginary of type double.

(b) Modify the declaration in part (a) so that cl ·s 1nembers inilially have the values 0.0 and
L.O, while c2's n1e1ubers are t.0 and 0.0 initially. (c3 is not initialized.)

(c) Write st.ale1nenrs that copy the members of c2 into cl. Can Lhis be done in one state­
ment, or does it require t\vo?

(d) Write slatements tbat add the corresponding n1embers of cl and c2, storing the result
in c3.

3. (a) Show how to tlcclare a tag named complex for a struclu:re wiL11 two 1nen1bers. real
and imaginary, of type double.

(b) Use the complex tag to declare vadables named cl. c2, and c3.

(c) Write a function named make_complex that stores its ~vo arguments (both of type
double) in a complex suucture, then returns lhe structure.

(d) Write a function nan1e<l add_complex iliat adds the corresponding members of its
argu1nents (both complex structures). then returns the result (another complex structure).

8 4. Repeat Exercise 3. but this tiine using a type named Complex.

5. Write L11e following functions. assuming that the date structure contains three members:
month. day, and year (all of type int).

(a) int day _of_year (struct date d) ;

Returns Lbe day of the year (an integer between l and 366) that corresponds to Lhe date d.

(b) int compare_dates (struct date dl, struct date d2) ;

Returns -I if dl is an earlier date than d2. +I if dl is a later date ilian d2, and O if dl and
d2 are lhe same.

6. Wdte lhe follov.1ihg function, assu1ning Lhat L11e time structui-e contains tlu-ee members:
hours. minutes. and seconds (aJI of type int).

struct time split_ time(long total_seconds);

total_ seconds is a ti1ne represented as lhe number of seconds since midnight. The
function returns a =>fructure containing lhe equivalent tin1e in hours (0-23), minutes (0-59),
and seconds (0-59).

7. Assun,e that the fraction s1ructure contains two members: numerator and denomi­
nator (both of" type int). Write functions that perform the following operations on frac­
tions:
(a) Reduce the fraction f to lowest tenns. Hinr: To reduce a fraction Lo lowest lerms. t:irst

compute the greates1 co1nn1on divisor (GCD) of the nuIneralor and denominator. Then
clivicle both the nun1erator anc.l denominator by U1e GCD.

(b) Add the fractions fl and f2.
(c) Subtract lhe fraction f2 frort, the fmction fl.
(d) Multiply the fractions fl and f2.
(e) Divide the fraction fl by the fraction f2.

The fractions f, fl, and £2 ,viii be argUinents of type: struct fraction: each function
will renIn1 a value of type struct fraction. The fractions returned by Lhe functions in
parts (b)--(e) should be reduced to lowest Lerms. Hint: You n1ay use the function from part
(a) to help write the runclions in parts (b}-(e).

Section 16.3

8. Let color be the following- structure:

struct color {
int red;

} ;

int green;
int blue;

Exercises 409

(a) Write a declaration for a const variable aa1ned MAGENTA of type struct color
whose members have the values 255, 0. and 255, respectively.

(b) (C99) Repeat pan (a). but use a designated initializer that doesn't specify the value of
green, allowing it to clef nu It to 0.

9. Write the following functions. (The color slructure is dcfu,ed in Exercise 8.)

(a) struct color make_color(int red, int green, int blue);
Returns a color structure containing the specified red, green. and blue values. [f any argu­
rnen1 is less than zero, the corresponding member of the structure will contain zero instead.
If any argument is greater than 255, the corresponding n1ember of I be structure \Vi II contain
?5-- :,,

(b) int getRed (struct color c) ;

Returns Lhe value of e's reo 1ne1nber.

(c) bool equal_color(struct color colorl, struct color color2);
Returns true iJ Lbe corresponding men1bers of colorl and color2 are equal.

(d) struct color brighter(struct color c);
Returns a color structure that represents o. brighter version of the color c. The structure is
identical to c, except that each n1ember has been divided by 0.7 (\vith Lhe result truncated to
an integer). 1-lowcver, there are three specjaJ cases: (1) lf all members of c are zero, the
function returns a color whose n1embers all have lhe value 3. (?) Lf any n1e1nber of c i~
greater thaa O but less than 3, it is replaced by 3 before Lhe division by 0. 7. (3) lf dividing by
0.7 causes a member t0 exceed 255. it is reduced to 255.

(e) struct color darker (struct color c) ;
Returns a color structure tbal represents o t.larker version of the color c. The structure is
identical to c. except U1at each n1en1ber has been 111ulliplie<l by 0. 7 (with the result truncated
to an integer).

I 0. The following structures are designed to slorc information about objects on a graphics
screen:

struct point { int x, y; };
struct rectangle { struct point upper_lefc, lower_rigbt; };

A point structure stores the x and y coordinates of a point on Lhc screen. A rectangle
stnicLure stores the coordinates of the upper left and lower right corners of a rectangle. Write
functions that per:fonn the following operations on a rectangle stn,cture r passed as an
argu1nent:

(a) Compute the area of r.
(b) Con1pute the center of r. returning it as a point value. ff eiLber the .x or J' coordinate of

the center isn't an integer. store its truncated value in the point structure.
(c) Move r by x units in the x direction and y unit<; in Lhc y direction, returning the 1nodi­

tied version of r. (x and y are additional argun\ents to the function.)
(d) Determine whether a point p lies within r. returning true or false. (p is an addi­

tional argLrment of type struct point.)

410 Chapter 16 Structures, Unions, and Enumerations

Section 16.4 0 11. Suppose that s is the following structure:

struct {
double a;
union {

char b(4];
double c;
int d;

} e;
char f [4] ;

} S;

H char values occupy one byte, int values occupy four bytes, and double values occupy
eighl bytes, how rnucb space will a C con1piler a]locale for s? (Assu1ne Lhat the compiler
leaves no "holes" between members.)

12. Suppose that u is t.hc following union:

union {

I 3.

double a;

struct {
char b [4] ;
double c;
int d;

} e;
char f[4);

} U;

If char values occupy one byte. int values occupy four bytes. and double values occupy
eigbt bytes, how 1uuch space will a C con1piler allocate for u? (A ssume that the cornpiler
leaves no "holes" between members.)

Suppose thats is the following structure (point is a structure lag declared in Exercise I 0):

struct shape {
int shape_kind;
struct point center;
union {

struct {
int height, width;

} rectangle;
struct {

int radius;
} circle;

} U;
} s;

/ * RECTANGLE or CIRCLE*/
/ * coordinates of center*/

If the value or shape_kind is RECTJI.NGLE, t.he height and width members store the
dimensions of a rectangle. ff the value of shape_kind is CIRCLE. the radius member
stores chc radius of a circle. Inclicate wbich of the following state1nents are legal. and show
how LO repair the ones that aren't:

(a) s. shape_kind = RECTANGLE;
(b) s.center.x = lO;
(c} s. height = 25;
(cl) s. u. rectangle. width - 8;
(e) s.u.circle - 5;
(0 s.u.radius = 5;

Section 16.5

Exercises 411

9 14. Let shape be the structure tag declared in Exercise 13. Write functions Lhal perfonn the
following operations on a shape structure s passed as an argument:
(a) Compute the area of s.
(b) Move s by x un..its jn the x direction and y units in they direction, returning the ,nodi­

fied version of s. (x and y are additional ru·gu1nents to the function.)
(c) Scales by a factor of c (a double value), returning the modified version of s. (c is an

additional argun1ent to the function.)

0 15. (a) Declare a tag for an enun,eration whose values represent the seven days of the week.

(b) Use typedef co define a name for Lhe enumeration of part (a).

16. Wh.icb of the following staten1ents about enuineration constants are true?

(a} An enwneration constant may represent any integer i.-pecified by tbe progran11ner.
(b) Enumeration constants have exactly the san1e properties as constants created using

#define.
(c) Enumeration constants have the values 0, 1, 2, ... by default.
(d) All constants in an enumeralion must have different values.
(e) Enumeration conslants n1ay be used as integers in expressions.

I) 17. Suppose Lhat b and i are declared as follows:

enum {FALSE, TRUE} b;
inti;

Whjch of the following staLe1nenls are legal? Whlch ones are "safe" (always yield a rnean­
ingf ul result}?

(a) b = FALSE;
(b) b = i;
{C) b++;
(d) i = b;
(e) i = 2 * b + l;

18. (a) Each syuare of a chessboard can hold one piece-a pawn. knight, bishop, rook.. queen.
or kjng-or it n1ay be empty. Each piece is either black or white. Define two enumerated
types: Piece, whicb has seven possible values (one of which is ·'empty"). and Color,
which has two.

(b) Usjng the types fro1n part (a), define a structure type named Square that can store both
the type of a piece and its color.

{c) Using Lhe Square type fron1 part (b), declare an 8 x 8 array named board that can
store Lhe entire contents of a chessboard.

(d) Add an initializer to U1e declaration in part (c) so that board's initial value corresponds
to the usual arrangement of pieces at the start of a chess gan1e. A square thaL°s not occupied
by a piece should have an ''e1npty•· piece value and Lhe color black.

19. Declare a slruclure with lhe following members whose tag is pinball_ machine:
name - a string of up to 40 characters
year - an integer (representing the year of manufacture)
t:ype - an enumeration ,vith the values EM (electromechanical) and SS (solid state)
players - an integer (representing the L11aximum number of players)

20. Suppose that the direction variable is declared in the following way:

enum {NORTH, SOUTH, EAST, WEST} direction;

412 Chapter 16 Structures, Unions, and Enumerations

Let x and y be int variables. Wrile a switch staten1enl Lhat Lests the value oJ direc­
tion. incretnenting x jf direction is EAST. decrementing x if direction is WEST.
incrementing y if direction is SOUTH. and uccren1cn1ing y if direction is NORTH.

21. Whal are the integer values of the enumeraLion constants in each of the following declara­
tions?

(a) enum {NUL, SOH, STX, ETX};

(b) enum {VT = ll, FF, CR};
(c) enum {so= 14, SI, DLE, CAN = 24, EM};

(d) enum {ENQ = 45, ACK, BEL, LF = 37, ETB, ESC};

?'J_ Let chess _pieces be the follo,ving enumeration:

enum chess_pieces {KING, QUEEN, ROOK, BISHOP, KNIGHT, PAWN};

(a) Write a declaration (incl uding an iniLializer) for a constant array of integers named
piece_ value U1a1 stores tbe nun1bers 100, 9, 5, 3. 3, and l. representing the value of each
chess piece, from king to pa,vn. (The king's value is actuafly infinite, since .. capturing'' the
king (checkmate) ends the game. bul some chess-playing software assigns the king a large
value such as ?00.)

{b) (C99) Repeal part (a). but use a dcsignaled initializer Lo initialize the array. Li'>e Lhe enu­
mcraLion constants in chess_pieces as subscripts in lhe designators. (Hint: See the last
question in Q&A for au exa111ple.)

Programming Projects

0 L Write a program that asks the user to enler an international dialing col.le anu then looks it up
in Lhe country_codes array (see Section 16.3). If it fin<ls the cod~. the program should
display the na1nc of the corre!:.ponding country: if not. the program should print an error
111cssage.

2. Modir y the inventory. c progrrun of Section 16.3 so LhaL Lhe p (print) operation displays
the parts sorted by part number.

fa 3. Modify the inventory. c program of Section 16.3 by making inventory and
num _parts local to the main Junction.

4. Modify the inventory. c prohrran1 of Section 16.3 by adding a price member to the
part stn1clure. The insert function should ask the user for the price of a new ilen1. The
search and print functions should display lhe price. A<ld a new co1nmand Lhat allows
th.e user LO change tbe price of a pan.

5. Modify Progra1n1ning Project 8 fron1 Chapter 5 so that the tin1es are stored in a single array.
The elements of Lhe a1Tay \.Vill be slruccures, each con1a1ning a departure ti1ne and the corre­
sponding arrival time. (Eacb Lime \Vill be an integer, representing 1he nun1ber of 111inutes
since midnight.) The program \vi II use a loop Lo se~rrch 1he array for the departure time clos­
est to the 1i1ne entered by the user.

6. Modify Programming Project 9 from Chapter 5 so that each date entered by the user is
stored in a date structure (see Exercise 5). fncorporate the compare_dates function of
Exercise 5 into your program.

17 Advanced Uses of Pointers

One can only display complex information in the mind.
Like seeing, movement or flow or alteration of view is more

important than t11e static picture, no matter how lovely.

1n previous chapters, we·ve seen two i1nportanl uses of pointers. Chapter J J
showed bow using a pointer to a variable as a function argument allows lhe func­
tion Lo modify the variable. Chapter 12 showed ho\V to process arrays by perform­
ing arilhn1etic on pointers to array elements. This chapter con1pletes our coverage
of pointers by exaru:ining two au<litionaJ application~: dynamic storage allocation
and pointers to functions.

Using dynamic storage allocation, a progran1 can obtain blocks of me1nory as
needed during execution. Section 17. I explains tl1e basics of dynamic storage allo­
cation. Section 17.2 <liscusses dynamically allocated strings, which provide more
llexibility than ordinary character arrays. Seclion 17 .3 covers dynamic storage
allocation for arrays in general. Section 17 .4 deals with the issue of storage deallo­
cntion- releasing blocks of dynnmically allocated n1emory when they're no longer
needed.

Dynainically allocated structures play n big role in C programming. since they
can be linked together to form Lists. u·ees, and other highly flexible data structures.
Section 17.S rocuses on linked lists, the 1nost funda1nentaJ linked data structw·e.
One of the issues that arises in Lhis section- the concept of a ''pointer to a
pointer"-is important enough co warrant a section of its own (Section 17.6).

Section 17. 7 introduces pointers to functions, a surprisingly useful concept.
Some of C's mosl powerful library fw1cLions expect function pointers as argu­
ments. We ·u examine one or these functions. qsort, which is capable of s01ting
any array.

The last two sections cliscuss pointer-related features that f1rs1 appeared in
C99: restricted pointers (Section 17 .8) and tlexible aJray men1bers (Section 17 .9).
These features are p1imarily of interest to advanced C programmers. so both sec­
lions can be safely be skipped by tl1e beginner.

413

17. 1 Dynamic Storage Allocation 415

that should happen, the function will return a null pointer. A nuU pointer is a
"pointer to nothing·'-a special value that can be distinguished fron1 all valid
pointers. After we·ve stored the function's relum vaJue in a pointer variable, we
must test lo see if it's a null pointer.

It's the programmer's responsibility to test the return value of any memory alloca­
tion function and take appropriate aclion if it's a nu II pointer. The effect of attempt­
ing to access memory through a nuU pointer is w1defined: the program may crash
or behave unpredictably.

m The null pointer is represented by a macro named NULL, so we can test
malloc's return value in the foJlowing way:

p = malloc(lOOOO);
if (p == NULL) {

}
/* allocation failed; take appropriate action*/

Some progran1IDers combine the call of malloc with lbe NULL test:

if ((p = malloc(lOOOO)) == NULL) {

}
/* allocation failed; take appropriate action*/

The NULL macro is delined in six headers: <locale. h>, <stddef. h>,
G <stdio. h>, c::stdlib . h>. <string. h>, and <time. h>. (The C99 header

c::wchar. h> also def!lles NULL.) As long as one of Lhese headers is included io a
program, Lhe compiler will recognize NULL. A program that uses any of the 1nen1-
ory alJocatjon fLLnctions will include <stdlib. h>. of course, making NULL
available.

1n C, pointers test Lrue or false in the same way as numbers. All non-null
poi nters test true: only null pointers are false. Thus, instead of writing

if (p = NULL) ...

we could write

if (!p) ...

ru,d instead of writing

if (p ! = NULL) ...

we could wri re

if (p) ...

As a rnatter of style, T prefer the explicil comparison with NULL.

17.2 Dynamically Allocated Strings 417

Calling strcpy is one way LO initialize this array:

strcpy (p, 11 abc 11) ;

The first four characters in lhe array will now be a, b. c, and \ o:

Pu]
I
:t

I a b 1 c I \o I I · · · I I
0 l. 2 3 4 n

Using Dynan1ic Storage Allocation in String Functions

Dynan1ic storage aUocalion n,akes it possible to write functions that re111m a
poiJ,ter to a "new" string-a string Lbat didn't exist before lhe runction ,vas called.
Consider the problem of writing a function that concatenates two slrings \Vil.bout
changing eilher one. C's standard library doesn't include such a function (strcat
isn ' t quite what we want, since it n1odifies one of the strings passed to it), but we
can easiJy write our own.

Our function will measure the lengths of the two strings to be concatenated.
then call malloc to allocate just the right runount or space for lhe result. The
function next copies lhe first siring into the new space and then calls strcat Lo
concatenate the second suing.

char *concat(const char *sl, const char *s2)
{

}

char *result;

result= malloc(strlen(s1) + strlen(s2) + 1);
if (result== NULL) {

}

printf("Error: malloc failed in concat\n 11);

exit(EXIT_FAILURE);

strcpy(result, s1);
strcat(result, s2);
return result;

If malloc returns a null pointer, concat prints an error message and terminate~
the program. That's not always lhe right aclion to take; some progran1s need to
recover from memory allocation failures ru1d continue running.

Here·s how lhe concat function n1ight be called:

p = concat(11 abc 11 , "def");

After lhe call, p will point to the string "abcdef ", which is stored in a dynami­
cally alJocated an·ay. The array is seven chru·acters long, including the null charac­
ter at the end.

}

17.2 Dynamically Allocated Strings 419

int main(void)
{

}

char *reminders[MAX REMIND];
char day str[3], rnsg str(MSG LEN+l]; - - -int day, i, j, num remind= O;

for (; ;) {
if (num_rernind == MAX_REMIND) {

printf (" - - No space le£ t: - - \n") ;
break;

}

print£ ("Enter day and reminder: 11) ;

scanf (11 %2d11 , &day);
if (day == 0)

break;
sprintf (day_ str, 11 %2d 11 , day);
read_line(msg_str, MSG_LEN);

for (i = O; i < num_remind; i++)
if (strcrnp(day str, reminders[i]) < O)

break;
for (j = num_remind; j > i; j --)

reminders[j] = reminders[j - 1);

reminders(i] = malloc(2 + strlen (msg_ str) + 1);
if (reminders[i] == NULL} {

print£("-- No space left - -\n");
break;

}

strcpy(reminders[i], day_str);
strcat{reminders[i], msg_str);

num_remind++;

printf (11 \nDay Reminder\n '') ;
for {i = O; i < num_remind; i++)

printf (11 %s\n 11
, reminders [iJ);

return O;

int read line(char str[], int n)
{

}

int ch, i = 0;

while ((ch = getchar ()) ! = 1 \n')
if (i < n)

str[i++] - ch;
str[i) = '\0';
return i;

17.4 Dea/locating Storage 423

After the first two statements have been executed, p points to one memory block.
while q poinrs to another:

p G-·.._ ___
q l •I ·_I _I

After q is assigned to p, both variables now point to the second memory block:

p

q

There are no pointers to the first block (shaded), so we'lJ never be able to use it . agrun.

A block of n1ernory that's no longer accessible to a program is said to be gar­
bage. A program that leaves garbage behind bas a n1en1ory leak. Son1e languages
provide a garbage collector that auton1atically locates and recycles garbage, but C
doesn't. Instead, each C program is responsible for recycling its own garbage by
calling the free function to release unneeded memory.

The free Function

The free function bas the following prototype in <stdlib. h>:

void free(void *ptr);

Using free is easy; we simply pass it a pointer to a memory block that we no
longer need:

p = rnalloc (...) ;
q = malloc (. ..) ;
free(p);
p = q;

Calling free releases the block of memory that p points to. This block is now
available for reuse in subsequent calls of mal loc or oll1er memory allocation
functions.

The argu_ment to free must be a pointer that was previously returned by a mem­
ory allocation function, (The argument may also be a null pointer, in which case
the call of free has no effecl.) Passing free a pointer to any other object (such
as a variable or an·ay eJen1ent) causes undefined behavior.

17.5 Linked Lists 425

amounl of time: accessing a node in a linked list is fast if the node is close to the
beginning of the list. slow if it's near the end.

This section describes how to set up a linked list in C. It also shows how to
perform several com1non operations on linked lists: inserting a node at the begin­
ning of a list. searching for a node, and deleting a node.

Decla1·ing a Node Type

To set up a Unked list, Lhe first thing we'll need is a structure Lhat represents a sin­
gle node in the list. For simplicity. let's assume that a node contains nothing but an
integer (the node's data) plus a pointer to the next node in the list. Here's what our
node srructure will look I ike:

struct node {
int value;

} ;
struct node *next;

/* data stored in the node */
/* pointer to the next node*/

Notice that the next member has type s true t node *, which n1eans that it can
store a pointer to a node structure. There's nothing specjaJ about lhe name node,
by tl1e way; it's just an ordinary structure Lag.

One aspect of the node structure deserves special mention. As Section 16.?
explained, we non11ally have Lhe option of using either a tag or a typedef name
10 define a name for a particular kind of structure. However, when a structure has a
member that points to the same kiud of structure, as node does, we 're required to
use a structure tag. Without the node tag, we'd have no way Lo declare the type of

Eil!3 next.
Now thal we have the node structure declared, we'll need a way to keep track

of where the !isl begins. In other words, we ·u need a variable that always points to
the first node in the list. Let's nan1e the variable first:

struct node *first= NULL;

Setting first to NULL indicates that the list is initially empty.

Creating a Node

As we construct a linked list, we'tl want to create nodes one by one. adding each to
the list. Creating a node requires three steps:

1. Allocate n1e1nory for the node.
2. Store data in the node.
3. Insert the node into the list.

We' II concentrate on the first Lwo steps for now.
When we create a node, we'll need a variable tbat can point to the node te1n­

porarily, until it's been inserted inlo the Ust. Let's call this variable new_node:

struct node *new_node;

17.5 Linked Lists 429

new node->value = n; -new node->next = list;
return new_node;

}

Note that add_to_list doesn·t modify the list pointer. Instead, it Tetums a
pointer to the newly created node (now al Lhe beginning of the list). When we cal l
add to list. we'll need to store ics return value into first:

first= add_to_list(first, 10);
first= add to list(first, 20); - -

These state1nents add nodes containing 10 and 20 to the list pointed to by first.
Getting add_to_list Lo updale first directly, rather than return a new value
for first, turns oul to be tricky. we·u return to this issue in Section 17.6.

The following function uses add_ to_list to create a linked list containing
nun1bers entered by the user:

struct node *read numbers(void)
{ -

}

struct node *first= NULL;
int n;

printf("Enter a series of integers (0 to terminate): ");
for (; ;) {

}

scanf (11 %d11 , &n) ;
if (n == 0)

return first;
first= add to list(first, n); - -

The numbers wiJI be in reverse order within tbe list, since first always points to
the node containing the last number entered.

Searching a Linked List

Once we've created a linked lisL, we may need Lo search it for a parlicular piece of
data. Although a while loop can be used to search a list, the for staten1ent is
often superior. we·re accustomed to using the for statement when writing loops
that jnvolve counting. bul its f1exibilily n1ak.es the for staten1ent suitable for other
tasks as well , including operations on linked lists. Here's the customary way lo
visit the nodes in a Linked list. using a pointer variable p lo keep track of the "cur­
rent" node:

idiom for (p = first; p t = NULL; p : p->next)

The assign1nent

p = p->next

430 Chapter 17 Advanced Uses of Pointers

•

advances the p pointer from one node to lhe uexl. An assignment of chis fonn is
invariably used in C when ,vriting a Loop that traverses a linked list.

Let's write a function named search_list that searches a list (pointed to
by the parameter list) for an integer n. If it finds n, search list will return
a pointer to the node containing n; otherwise, it wi II return a null pointer. Our first
version of search list relies on the ·'list-traversal" idiom:

struct node *search_list(struct node *list, int n)
{

}

struct node *p;

for (p = list; p != NOLL; p - p->next)
if (p->value == n)

return p;
return NULL;

Of course, there are many other ways to write search list. One alterna­
tive would be to eliminate the p variable, instead using list it'ielf to keep track of
the current node:

struct node *search_list(struct node *list, int n)
{

}

for (; list != NULL; list= list->next)
if (list->value == n)

return list;
return NULL;

Since list is a copy of the original list pointer, U1ere's no harm in changing it
within the function.

Another alternative is to combine the list->value == n test with the
list ! = NULL test:

struct node *search list(struct node *list, int n)
{

for (; list l= NULL && list->value l= n; list= list- >next)
I

return list;
}

Since list is NULL if we reach the end of lhe list, returning list is correct even
if we don't find n. This version of search_list mjght be a bit clearer if we
used a while statement:

struct node *search 1ist(struct node *list, int n)
{ -

}

while (list != NULL && list->value != u)
list= list->next;

return list;

•

}

if (cur == NULL)
return list;

if (prev = NULL)
list= list->next;

else
prev->next = cur->next;

free(cur);
return list.;

17.5 Linked Lists 433

/* n was not found*/

/* n is in the first node*/

/* n is in some other node*/

Deleting the first node in the list is a special case. The prev == NULL test checks
for Lhis case, which requires a different bypass step.

Ordered Lists

When the nodes of a list are kept in order-sorted by the data stored inside the
nodes-we say that tbe list i ordered. Jnsetting a node into an ordered list is more
difficult (the node won't always be put at the beginning of the list), but searching jg

faster (we can stop looking after reaching the point al which the desired node
would have been located). Tbe following program illustrates both Lhe increased
difficulty of inserting a node and Lhe faster search.

PROGRAM Maintaining a Parts Database (Revisited)

Let's 1·edo the parts database program of Section 16.3. Lhis time storing the data­
base in a linked list. Using a I.inked list i11stead of an an·ay bas two major advan­
tages: (1) We don't need to put a preset limit on the size of the database: it can
grow until there's no 1norememory to store parts. (2) We can easily keep the data­
base sorted by part number-when a new part is added to Lhe database, we simply
insert it in its proper place in the list. f n the original program. the database wasn't
sorted.

f n the new program, tbe part structure will contain an additional member (a
pointer to lhe next node i.n the linked list). and the variable inventory wilJ be a
pointer to the fi rst node in the list:

struct part {

} i

int number;
char name[NAME LEN+l];
int on_hand;
struct part *next;

struct. part *inventory= NULL; /* points to first part*/

Most o f the functions in the new progran, will closely resemble their coanter­
parls in tbe original progran, . The find_part and insert functions will be
more complex. however. since we'll keep the nodes in the inventory list sorted
by part number.

434 Chapter 17 Advanced Uses of Pointers

In the original program, f ind_part returns an index into the inventory
array. In the new program, find _part wilJ return a pointer to Lhe node that con­
tains the desired part nu1nber. If iL doesn't find the part number, £ind__part will
return a null pointer. Since the inventory list is sorted by part number, the new
version of find_part cao save Lime by slopping its search when it finds a node
containing a part number that's greater than or equaJ to the desired part number.
find __part's search loop will have the form

for (p = inventory;

I

p I= NULL && number> p->number;
p = p - >next)

The loop will terminate when p becomes NOLL (indicating that the part number
wasn't found) or when number > p- >number is faJse (indicating lbat the -part
nwnber we're looking for is less than or equal to a number aJready stored in a
node). In the latter case, we still don't know whether or not the desired number is
actually in the list, so we'll need another Lest:

i£ (p != NULL && number== p->number)
return p;

The originaJ version of insert stores a new part in lbe next available array
element. The new version must determine where lbe new part belongs in the list
and insert it there. We"ll also have insert check whether the part number is
aJready present in the list. insert can accomplish both tasks by using a loop sin1-
ilar to the one in find_part:

for {cur= inventory, prev = NULL;

. ,

cur!= NULL && new node->number > cur->number;
prev = cur, cur= cur->next)

This loop relies on two pointers: cur. which points to Lhe current node. and prev,
which points to the previous node. Once tbe loop terminales, insert will check
whether cur isn ·r NULL and new_node- >number equals cur- >number; if
so, the part number is already in the list. Otherwise insert will insert a aew node
between the t1odes pointed to by prev and cur, using a strategy similar to the one
we employed for deleting a node. (This strategy works even jf the new part nu111ber
is larger than any in the list: in that case, cur will be NULL but prev will point to
the last node in Lhe list)

Here's tbe new program. Like the original program. th.is version requires the
read_line function described .in Section 16.3; r assume that readline.h
contains a prototype for this function.

inventory2.c /* Maintains a parts database (linked list version) * /

#include <stdio.h>
#include <Stdlib.h>
#include "readline.b"

}

#define NAME LEN 25

struct part {

} ;

int number;
char name(NAME_LEN+l);
int on hand;
struct part *next;

17.5 Linked Lists 435

struct part *inventory= NULL; /* points to first part*/

struct part *find_part (int number);
void insert(void);
void search(void);
void update(void);
void print(void);

/**
* main: Prompts the user to enter an operation code, *
* then calls a function to perform the requested *
* action. Repeats until the user enters the *
* command 'q'. Prints an error message i£ the user*
* enters an illegal code. *
**/

int main(void)
{

char code;

for (; ;) {

}

print£ ("Enter operation code: 11) ;

scanf('' le'', &code);
while (getchar() != 1 \n 1

) /* skips to end of line*/ .
I

switch (code) {

}

case 'i': insert();
break;

case 's': search();
break;

case 'u': update();
break;

case 'P' print();
break;

case 'q'
default:

return O;
printf(''Illegal code\n'');

print£ (11 \n 11) ;

/********************************~*************************
* find_part: Looks up a part number in the inventory *
* list. Returns a pointer to the node *
* containing the part number; if the part *
* number is not found, returns NULL. *
**/

436 Chapter 17 Advanced Uses of Pointers

struct part *find_part(int number)
{

}

struct part *p;

for (p = inventory;
p != NULL && number> p->number;
p - p - >next)

. ,
if (p != NULL && number

return p ;
return NULL;

p->number)

/ ********** **
* insert : Prompts the user for information about a new *
* part and then inserts the part into the *
* inventory list; the list remains sorted by *
* part number. Prints an error message and *
* returns prematurely if the part already exists *
* or space could not be allocated for the part. *
******** *** *** /

void insert(void)
{

}

struct part *cur, *prev, *new_node;

new node= malloc(sizeof(struct part)) ;
if (new_node == NULL) {

printf("Database is full ; can't add more parts . \n");
return ;

}

printf ("Enter part number: ") ;
scanf(11 %d 11

, &new_node- >number);

for (cur = inventory , prev = NULL;
cur!= NULL && new node->number > cur- >number;
prev = cur, cur= cur->next)

.
I

if (cur != NULL && new node- >number
print f("Part already exists . \n") ;
free(new_node);
return;

}

printf ("Enter part name : 11) ;

read line(new node- >name, NAME LEN) ; - -
printf ("Enter quantity on hand : 11);

scanf(11 %d 11
, &new_node->on_hand) ;

new_node->next = cur;
if (prev == NULL)

inventory= new_node;
else

prev- >next = new node;

cur->number) {

17.5 Linked Lists 437

/**
* search: Prompts the user to enter a part number, then *
* looks up the part in the database . If the part*
* exists, prints the name and quantity on hand; *
* if not, prints an error message. *
** /

void search(void)
{

}

int number;
struct part *p;

print£ ("Enter part number: 11
) ;

scanf (11 %d 11
, &number) ;

p = find_part (number);
if {p l.: NULL) {

printf ("Part name: %s\n 11
, p->name);

printf (11 Quantity on hand: %d\n 11
, p->on_hand) ;

} else
printf (11 Part not found. \ n") ;

/**** **
* update: Prompts the user to enter a part number . *
* Prints an error message if the part doesn't *
* exist; otherwise, prompts the user to enter *
* change in quantity on hand and updates the *
* database. *
**/

void update(void)
{

}

int number, change;
s truct part *p;

print£ ("Enter part number: 11
) ;

scanf (11 %d 11
, &number);

p = find_part(number);
if (p != NULL) {

printf ("Enter change in quantity on hand: 11
) ;

scanf(11 %d 11 , &change);
p->on_hand += change;

} else
printf(11 Part not found.\n 11

);

/ **
* print: Prints a listing of all parts in the database, *
* showing the part number, part name, and *
* quantity on hand. Part numbers will appear in *
* ascending order. *
** /

void print(void)
{

struct part *p;

438 Chapter 17 Advanced Uses of Pointers

printf ("l?art Number Part Name
"Quantity on Hand\n") ;

for (p = inventory; p != NULL; p = p - >next)

II

printf("%7d %--25s%1-ld\n", p->nurnber, p - :>name,

}
p->on_hand) ;

Notice the use of free in lhe insert function. insert allocates r11emory
for a part before checking to see if the pru1 already exists. 1J it does, insert
releases the space to avoid a memory leak.

17.6 Pointers to Pointers

In Section 13. 7. we came across the notjon of a /JD inter to a pointer. In chat section.
we used an array whose elements were of type char *; a pointer to one of the
array elements itself bad type char * *. The concept of "pointers to pointers·• also
pops up frequently in the context of linked data structures. ln particular, when an
argument to a function is a pointer variable. we·11 sometimes want the function to
be able to modify the variable by 1naking it point somewhere else. Doing so
requires the use of a pointer to a pointer.

Consider the add to list ftmction of Section 17.5. which inserLS a TIOde
at the beginning of a linked list. When we call add_to_list. we pass it a
poi11ter to the first node in the origioaJ list; it Lhen returns a pointer to the first node
in the updated list:

struct node *add_ to_list(struct node *list, int n)
{

}

struct node *new_ node;

new node= malloc(sizeof(struct node)) ;
if (new_node == NULL) {

}

printf (''Error: malloc failed in add_to_list\ n");
exit(EXIT_FAILORE);

new_node->value = n;
new node- >nex:t = list;
return new_ node;

Suppose that we 1nodify the function so that it assigns new _node to list
instead of returning new_ node. In other words. let's ren1ove the return state­
ment from add_to_list and replace it by

list= new_node;

Unfortunately, this idea doesn't work Suppose U1at we call add_to_list in the
f o11owing way:

add_to_list(first , 10) ;

17. 7 Pointers to Functions 439

At the point of the caU, first is copied into list. (Pointers, like all arguments,
are passed by value.) The last line in the functioo changes the value of 1 is t, mak­
ing it point to the oew node. This assignment doesn't affect first, however.

Gelling add_ to_list to modify first is possible, but it requires pass­
ing add_ to_list a pointer to first. Here's the correct version of the flmc­
tion:

void add_to_list (struct node **list , int n)
{

}

struct node *new_node;

new node= malloc (sizeof (struct node)) ;
if (new_node == NULL) {

}

printf (11 Error: malloc failed in add_ to_list \ n 11) ;

exit(EXIT FAILURE);

new_node->value = n;
new_node->next = *list;
*list= new_node;

When we call Lhe new version of add to list, the first argument will be the - -
address off irst:

add to list(&first, 10); - -

Since list is assigned the address of first, we can use * 1 ist as an alias for
first. In particular, assigning new_node to *list will modify first.

17. 7 Pointers to Functions

We've seen that pointers n,ay point to various kinds of data, including variables,
array elements, and dynamically aJ1ocated blocks of memory. But C doesn't
require that pointers point only to data; it's also possible to have pointers tofunc-
1 ions. Pointers to functions aren't as odd as you might chink. After au, I unctions
occupy memory locations, so every function hac; an address, just as each variable
has an address.

Function Pointers as Arguments

We can use function pointers in much the same way we use pointers to data. In par­
ticular, passing a function pointer as an argument is fairly common in C. Suppose
that "ve're writing a function named integrate Lhat integrates a mathematical
funcLion f between points a and b. We'd Jike to make integrate as generaJ as
possible by pac;siDg it fas an argumenl. To achieve this effect in C, we'll declare f
to be a pointeT to a function. Assuming that we want to integrate functions that have

444 Chapter 17 Advanced Uses of Pointers

tabulate.a / * Tabulates values of trigonometric funcr.ions * /

#include <math.h>
#include <Stdio.h>

void tabulate(double (*f) (double), double first,
double last, double incr);

int main(void)
{

}

double final, increment, initial;

printf ("Enter initial value : 11) ;

scanf(11 %lf 11
, &initial);

printf("Enter final value: 11
);

scanf ("% 1 f 11
, &final) ;

printf("Enter increment : ");
scanf ('' % lf 11 , &increment) ;

printf("\n X cos(x)"
"\n ------- - - - - - - - \n II) i

tabulate(cos, j ni tial, final, increment) ;

printf("\n X sin (x) 11

"\n ------- -------\n");
tabulate(sin, initial, final, increment) ;

printf(11 \n X tan (x) "
"\n ------- - - - - - - - \D II) i

tabulate(tan, initial, final, increment);

return O;

void tabulate(double (*f) (double), double first,
double last, double incr)

{

}

double X;
inti, num_intervals;

num intervals= ceil((last - first) / incr);
for (i = O; i <= num intervals; i++) {

x =first+ i * incr;
print£ (0 %10. 5f %10. Sf\n'', x, (*f) (x)) ;

}

tabulate uses the ceil function. which also in <math . h>. When given an
argument x of double type. ceil returns Lhe smallest integer that's greater than
or equal to x.

Here's what a session with tabulate . c might look like:

Enter initial value: 0
Enter final value : . 5
Enter increment: .1

X cos (x)
------- -------
0.00000 1.00000
0.10000 0.99500
0 . 20000 0.98007
0 . 30000 0.95534
0 . 40000 0.92106
0.50000 0 . 87758

X sin (x)
--- ---- -------
0 . 00000 0.00000
0 . 10000 0.09983
0.20000 0.19867
0.30000 0.29552
0 . 40000 0.38942
0.50000 0.47943

X tan (x)
------- -------
0.00000 0.00000
0 . 10000 0.10033
0.20000 0.20271
0.30000 0 . 30934
0.40000 0.42279
0.50000 0.54630

17.B Restricted Pointers (C99) 445

17 .8 Restricted Pointers (C99)

This section and the next discuss two of C99's pointer-relaLed features. Both are
prin1arily of interest to advanced C program1ners; mos1 readers will want to skip
these sections.

[n C99, Lhe keyword restrict may appear in the declaration of a pointer:

int* restrict p;

A pointer that's been declared using restrict is ca lled a restricted pointer. The
intent is that if p points to an object that is later n1odi fied, then Lhat object is not
accessed in any way other t11an through p. (Alternative ways lo access the object
include having another pointer lo the san1e object or having p point to a named
variable.) Having more than one way to access an object is often called aliasi,ig.

Let's look al an exan1ple of Lhe kind of behavjor thal restricted pointers are
supposed to discourage. Suppose thal p and q have been declared as follows:

int* restrict p;
int* restrict q;

17.9 Flexible Array Members (099) 447

memmove(&a[O], &a[l], 99 * sizeof(int));

Prior to C99, there was no way to document the difference between memcpy and
memmove. The prototypes for the two functions were nearly identicaJ:

void *memcpy(void *sl, canst void *s2, size_t n);
void *memmove(void *sl, const void *s2, size_ t n);

The use of restrict in tl1e C99 version of memcpy1s prototype lets the pro­
grammer know that sl and s2 should point lo objects that don't overlap. or else
the function isn't guaranteed to work.

Although using restrict in function prototypes is useful documentation.
that's not the primary reason for its existence. restrict provides infor1nation to
the compiler that may enable it to produce 1nore efficient code-a process known

regi ster storage class > 1B.2 as opti111izati.o1i. (The register storage class serves the same purpose.) Not
every compiler attempts to optimize programs, however. and the ones that do nor­
mally allow Lbc prograrruner to tlisable optimization. As a re.suit, the C99 standard
guarantees that restrict has no effect on the behavior of a program that con­
fom1s co the standard: if all uses of restrict are removed from such a program,
it should behave the sa1ne.

Most J>rogrammers won't use restrict unless they're frne-tuning a pro­
gram to achieve the best possjble perf onnance. Still, it's worth knowing about
restrict because iL appears in the C99 prototypes for a nun,ber of standard
library fu11ctions.

17.9 Flexible Array Members (C99)

Every once in a while, we' ll need to define a structure that contains an array of an
unknown size. For example, we ,night want to store strings in a form that's differ­
ent from Lbe usual one. Normally. a sLring is an array of characters, with a null
character n1arking the end. However. there are advantages to sto1i.ng strings in
other ways. One alternative is to store Lhe length of the string along with Lhe
string's characters (but with no null character). The length and the characters could
be stored in a structure such as this one:

struct vstring {
int len;
char chars[N];

} ;

Here N is a macro that represents the rnaximun, length of a string. Using a fixed­
length array such as this is undesirable, however, because it forces us Lo 1 i mit the
length of the string, plus it wastes memory (since most strings won't need all N
characters in the array).

C progra1nmers have traditionalJy solved this problem by declaring Lhe length
of chars to be L (a dummy vaJue) and Lhen dynamically allocating each string:

448 Chapter 17 Advanced Uses of Pointers

struct vstring {
int len;
char chars[l] i

} ;

scruct vstring *str = malloc (sizeof(struct vstring) + n - l);
str - >len = n;

We 're "cheating·• by aIJocaLing 111ore men1ory than the slructure is decJared to have
(in this case. an extra n - 1 characters). and Lhen using the memory to store addi­
tional elements of the chars array. This technique has become so common over
the years that it has a :name: the "struct hack."

The strucl hack isn't llinited Lo character arrays~ il ha<, a variety of uses. Over
Lime, it has becon1e popular enough to be supported by many compilers. Some
(inc]uding OCC) even allow the chars array to have zero length, which makes
this trick a little more explicit. Unfortunate.ly, the C89 standard doesn't guarantee
that the struct hack wiU work, nor does it allow zero-lengd1 arrays.

In recognition of the struct back's usefulness. C99 has a feature known as the
j7exible array menzber that serves the sa1ne purpose. When the last mc1nber of a
structure is an array, its length may be 0111itted:

struct vstring {
int len;
char chars[]; /* flexible array member - C99 only */

} ;

The length of the chars array isn't determined until memory is allocated for a
vstring structure, norr11ally using a caU of malloc:

struct vstring *str = malloc(sizeof(struct vstring) + n);
str->len = n;

In this example. str points to a vstring stn1cture in which the chars array
occupies n characters. The sizeof operator ignores the chars men1ber wben
computing the size of the structure. (A flexible array member is uausuaJ in that it
takes up no space within a structure.)

A few special rules apply to a structure that concains a flexible array member.
The flexible array member mnst appear last in Lhe structure, and the structure must
have at least one other member. Copying a structure that contains a flexible array
n1ember will copy the other members but not the fiexible array itself.

A structure that contains a JJexible array member is an incomplete type. An
incomplete type is n1issing part of the infom,ation needed LO determine bow much
memory it requires. Incomplete types. which are discussed further in one of the
Q&A questions at the end or this chapter and ia Section 19.3. are subject co various
restrictions. In particular, an incomplete type (and hence a structure that contains a
flexible array member) can't be a member of another structure or an element of an
array. However, an array may contain pointers to structures that have a flexible
array n1eruber; Prograrn1nlng Project 7 at Lhe end of this chapter is built around
such an array.

450 Chapter 17 Advanced Uses of Pointers

A: Not necessarily. Each C compiler is allowed to represent null pointers in a different
way, and not all compilers use a zero address. For example, son1e compilers use a
nonexistent memory address for the null pointer; that way, attempting to access
memory through a null pointer can be detected by the hardware.

How tbe nuU pointer is stored inside the co1nputer shouldn' t concern us; that's
a detail for con1pilerexperts to \.vorry abouL. The important thing is that. when used
in a pointer context, O is converted to tbe proper internal form by the compiler.

Q: Is it acceptable to use NOLL as a null character?

A: Definitely not. NULL is a macro that represents the null pointer, not the null char­
acter. Using NULL as a null character will work with some compilers, but nol with
all (since some define NULL a<; (void *) O). Tn any event, using NULL as any-
1.bing other lhan a pointer can lead to a great deaJ of confusion. If you want a name
for the null character, define the following macro:

#define NUL , \O,

*Q: When my program terminates, I get the message "Null pointer assignment."
What does this mean?

A: This message. whjcb is produced by programs compiled with some older DOS­
based C compilers, indicates Lhal lhe program has stored data in memory using a
bad pointer (bur not necessarily a null pointer). Unfortunately, lhe message isn't
displayed unW the prograi11 tenninales, so there's no clue as to which statement
caused the error. The "Null pointer ass;gnn,enr" message can be caused by a miss­
ing & in scanf:

scanf (11 %-d", i); /* should have been scanf(11 %d 11 , &i); */

Another possibility is an assignment involving a pointer that's uninitialized or null:

*p = i; / *pis uninitialized or null*/

*Q: HO\V does a program know that a "null pointer assignment" has occurred?

A: The message depends on the fact lhat. in lhe smalJ and medium memory models.
data is stored in a single segment, with addresses beginning al 0. The compiler
leaves a ''hole" ar the beginning of the data seg1nent- a small bJock of memory
Lhat's initialized to O but otherwise isn't used by the progra1n. When the program
terminates, it checks lo see if any data in the "hole·• area is nonzero. If so. it n1ust
have been altered through a bad pointer.

Q: Is there any advantage to casting the return value of malloc or the other
memory aJJocation functions? [p. 416]

A: Not usually. Casting the void* pointer that these functions return is unnecessary.
since pointers of type void * are automatically converted to any pointer type
upon assignment. The habit of casting the relurn value is a holdover fron1 older
versions of C, in which the memory allocation functions returned a char * value,
making the cast necessary. Programs lbat are designed Lo be con1piled as C++ code

452 Chapter 17 Advanced Uses of Pointers

A: Yes, there is. Some prograrun1ers use the following idiom when calling mal loc to
allocate 111emory for a single object:

p = rnalloc(sizeof(*p));

Since Si zeof (*p) is the size of the object to which p wilJ point. this staten1ent
guarantees that the correct amount of n1en1ory will be allocated. At first glance.
this idiom looks fishy: it's likely U1at p is uninitialized, making U1e value of *p
undefined. However, sizeof doesn't evaluate *p, it merely co,uputes its size, so
Lhe idiom ,11orks even if p ts uninitialized or contains a nuU poinler.

To allocate memory for an array with n elen1ents, we can use a slightly n1odi­
ued version of the idiom:

p = rnalloc(n * sizeof(*p});

Q: Why isn't the qsort function simply named sort? [p. 440]

A: The name qsort comes fi·om the Quicksort algorithm published by C. A. R.
1-loare in 1962 (and discussed in Section 9.6). Ironically, the C standard doesn't
require that qsort use the Quicksort aJgorithn, , aJtbough n1any versions of
qsort do.

Q: Isn't it necessary lo cast qsort's lirst argument to type void* 1 as in the fol­
lowing exan1ple? [p. 441]

qsort((void *) inventory, nurn__parts, sizeof(struct part),
compare_parts);

A: No. A pointer of any type can be converted to void * automaLicaUy.

,;:Q: I want to use qsort to sort an array of integers, but I'm having trouble wiit­
ing a comparison function. What's the secret?

A: I-Jere's a version Lhal works:

int compare_ints{const void *p, const void *q}
{

return *(int *)p - *(int *)q;
}

Bizarre. eh? The expression (int *) p casts p to type int *, so * (int *) p
would be t11e integer that p points to. A word of warning, tbough: Subtracting two
integers 111ay cause overflow. If the integers being sorted are completely arbitrary.
it's safer to use if statements to compare* (int *) p with * (int *) q.

I needed to sort an array of strings, so I figured I'd just ase s tromp as the
comparison function. When 1 passed it to qsort, ho\vever, the compiler gave
me a warning. l tried to tix the problem by embedding strcmp in a compari­
son function:

Section 17.1

Section 17.2

Section 17 .3

Section 17 .5

Exercises 453

int compare strings(const void *p, const void *q)
{ -

return strcmp(p, q);
}

Now my program compiles, but qsort doesn't seem to sort the array. What
am I doing wrong?

A: First, you can't pass strcmp itself to qsort, since qsort requires a con1parison
function with two canst void * parameters. Your compare strings func­
tion doesn't work because it incoa·ectly assumes thal p and q are strings (char *
pointers). In fact, p and q point to array elemenu; containing char * pointers. To
fix compare_strings. we'll castp and q LO type char* *, then use lhe *
operator to remove one level of indirection:

int compare strings(const void -.rp, const void *q)
{ -

return strcn1p{* (char **)p, * (char **)q);
}

Exercises

I. Having lo check the return value of malloc (or any other n1emory allocation function)
each tune we call it can be an annoyance. Write a function nan1ed my_malloc that serves
as a ·'wrapper'· for malloc. When we call my _malloc and ask il to allocate n bytes, il in
Lum calls malloc, tests to n1ake sure that malloc doesn't return a null pointer. and then
returns lhe pointer from malloc. Have my _malloc print an error message and terminate
the program if malloc returns a null pointer.

f) 2. Write a function named duplicate thal uses dynarnic storage allocalioo to create a copy
of a string. For exan1ple, the call

p = duplicate{str);

would allocate space for a string of the same length as str. copy the contents of str into
the new string, and return a pointer to it. Have duplicate return a null pointer if the
memory allocation fails.

3. Write the following function:

int *create_array(int n, int initial_value);

The function should return a pointer to a dynamically allocated int array with n members,
each of which is initialized to initial value. The return value should be NULL if the
array can't be allocated.

4. Suppose that the following declarations arc in effect:

struct point { int x, y; };
struct rectangle { struct point upper_left, lower_right; };
struct rectangle *p;

454 Chapter 17 Advanced Uses of Pointers

Assurne that we want p to point Lo a rectangle struccw·e whose upper left comer is at
(IO. 25) and v.rhose lower right corner is at (20, 15). Write a series of statements that allocate
such a structure and initialize it as indicated.

f> 5. Suppose that f and pare declared as follows:

struct {
union {

char a, b;
int C;

} d;
int e(SJ;

} f, *p = &f j

Which of the following statements are legal?

(a) p - >b -= , ' ;
(b) p->e[3) = 10;
(c) (*p) .d.a: '*';
(d) p->d->C = 20;

6. Modify the delete_from_list function so that it uses only one pointer variable instead
of two (cur and prev).

f> 7. The following loop is supposed co delete all nodes from a linked list and release the memory
that they occupy. Unfonunately, the loop is incorrect. Explain what's wrong with it and
show how to fix the bug.

for (p = first; pl= NULL; p = p->next)
free (pl ;

f> 8. Section 15 .2 describes a file. stack. c, that provides functions for storing integers in a
stack. Jo t11al section, the stack was implemented as an array. Modify stack. c so that a
stack is now stored as a linked lisL Replace the contents and top variables by a single
variable that points to Lbe first node in the List (the "top" of Lhe stack). Write the functions in
stack.c so that they use Lbis pointer. Remove the is_ full fw1ction, insteau having
push return eilher true (if memory was available co create a node) or £alse (if noL).

9. Tnie or false: Tf x is a structure and a is a member of that scructw·e. then (&x) - >a is Lbe
same as x . a. Justify your answer.

10. Modify the print_part fu111ction of Section 16.2 so that its parameter is a pointer to a
part structure. Use the - > operator in your answer.

11 . Write Lhe foUowing function:

int count_occurrences(struct node *l~st, int n);

The list parameter points to a linked list; the function should return the number of times
Lhat n appears in this List. Assume U1al the node structure is the one defined in Section 17 .5.

J 2. Write I.he following function:

struct node *find_last(struct node *list, int n);

The list parameter points to a linked list. The function should return a pointer lo lhe last
node lhat contains n; it should return NOLL if n doesn 'L appear in the List. Assume that the
node structure is the one defined in Section 17.5.

13. The following function is supposed to insert a new node into its proper place in an ordered
list, returning a pointer to the first node in the modified list. Unfortunately, the function

Section 17 .6

Section 17.7

Exercises 455

doesn't work correctly in aJI cases. Explain what's wrong wilb it aod sho\v how to fix it.
Assun)e that the node structure is the one defined in Section 17 .5.

struct node *insert i nto ordered list(struct node *list, - - -
{

struct node *new_node)

struct node *cur= list, *prev = NULL;
~hile (cur->value <= new_node->value) {

prev = cur;

}

cur= cur->next;
}
prev->next = new_node;
new node->next = cur;
return list;

14. Modify the delete_from_ list function (Section 17.5) so that its first parameter has
type struct node** (a pointer to a pointer to Lhe first node in a list) and its return type is
void. delete_from_list must modify its first argun1enl to point to the list after the
desired node bas been deleted.

8 15. Show Lhe output of the following program and explain what it does.

#include <stdio.h>

int fl(int (*f) (int));
int f2(int i);

int main(void)
{

printf("Answer: %d\n", f1(£2));
return O;

}

int fl (int (*f) (int))
{

}

int n = 0;

while ((*£) (n)) n++;
return n ;

int f2(int i)
{

return i * i + i - 12;
}

16. Write the following function. The call sum (g, 1., j) should return g (i) + ... + g (j) .

int sum(int (*fl (int), int start, int end);

8 17. Let a be an array of l00 jnlegers. Write a call of qsort that sorts only the Lasr 50 clements
in a (You don't need to write the comparison function).

18. Modify the compare_parts function so that parts are sorted with their nun1bers in
descending order,

19. Write a fw1clion that. when given a st:ting as its argUinenl. searches the following array of
structures for a matching command na1ne, then calls Lile function associated wilb lhal name.

456 Chapter 17 Advanced Uses of Pointers

struct {
char *cmd_name;
void (*cmd_pointer) {void) ;

} file cmd[) -
{ {"new'',

{ "open" ,
{ "close",
{"close all",
{

11 save",
{

11 save as 11
,

{ "save all",
{ "print 11 ,

{"exit",
} i

new_cmd},
open_cmd},
close cmd},
close_all_cmd},
save_cmd},
save_as_cmd},
save_all_cmd} ,
print_cmd},
exit_cmd}

Programming Projects
G 1. Modify the inventory. c program of Section J 6.3 so dial the inventory array is allo­

cated dyoun1ically and later reallocated when ii fills up. Use malloc iniLiaJly to aJJocate
enough space ror an array of IO part structures. When the array has no more room for new
parts, use realloc lo double its size. Repeat the doubling step each time the array
becomes full.

G 2. Modify the inventory. c program of Section 16.3 so that the p (print) command calls
qsort lo sort the inventory array before il prints the parts.

3. Modify the inventory2 . c program of Section 17.5 by adding an e (erase) command
that allows the user to remove n pan from the database.

4. Modify the justify progran, of Section 15.3 by rewriting Lbe line. c file so lhal it
stores lhe CU1Tent line in a linked list. Eath node in the list will store a single word. The
1 ine a1Tay \Vill be replaced by a variable that points to the node containing the first \vord.
This variable will store a null pointer whenever the line is en1pty.

5. Write a program that sorts a series of words entered by tbe aser:

Enter word: foo
Enter
Enter
Enter
Enter

word:
word:
word:
word:

bar
baz
quux

In sorted order: bar baz foo guux

Assume thal each word is no more than 20 characters long. Stop reading when the user
enters an empty word (i.e., presses Enter without entering a word). Store each word in a
dynantically allocated string, using an array of pointers to keep track of the strings. as in the
remind2 . c program (Section 17 .2). After all words have been read, sort the array (using
any sorting technique) and then use a loop to print the words in sorted order. Hint: Use the
read line function to read each word. as in remind2. c.

6. Modify Progra,nming Project 5 so that it uses qsort to sort the array of pointers.

7. (C99) Modify the remind2. c progran1 of Section 17.2 so that each element of the
reminders array is a pointer to a vstring structure (see Section 17.9) raLher than a
poi.nter to an ordinary string.

18.2 Storage Classes 463

Th1s rule prevenls multiple extern declarations from initializing a variable in
different ways.

A variable in an extern declaraLion always has static storage duration. The
scope of the variable depends on lhe declaration's placement. li the declaration is

lil!J inside a block, the variable has block scope; otherwise. it bas file scope:

extern int
--static storage duration

i ; file scope --? linkage

void f(void)
{

extern int
-- static storage duration

j ;--block scope --? linkage

Determining the linkage of an extern variable is a bit harder. If the variable was
declared static earlier in the ftle (outside of any function definition). then it has
inten1al linkage. Otherwise (the normal case), the variable has external Linkage.

The register Storage Class

Using the register storage class in tbe declaration of a variable asks the com­
piler to store the variable in a register instead of keeping it in main memory like
other vaiiables. (A register is a storage area located in a computer's CPU. Data
stored in a register can be accessed and updated faster lhan data stored in ordinary
memory.) Specifying the storage class of a variable to be register is a request.
not a command. The compiler is free to store a register variable in memory if
it chooses.

The register storage class is legal only for variables declared in a block. A
register variable has the same storage duration, scope. and linkage as an auto
variable. However, a register variable lacks one property lhat an auto vari­
able has: since registers don't have addresses, it's illegal to use the & operator to
take the address of a register variable. This restriction applies even if lhe com­
piler has elected to store the variable in memory.

register is best used for variables that are accessed and/or updated fre­
quently. For example, the loop control variable in a for staten1ent is a good candi­
date for register treatment:

int sum_array{int a[], int n)
{

}

register inti;
int sum= O;

for (i = O; i < n; i++)
sum+= a[i);

return sum;

Table 18.1
Properties of Variables

and Parameters

18.2 Storage Classes 465

bly wonldn 't deliberately reuse a function name for some other purpose, it can
be hard to avoid in large programs. An excessive number of names with exter­
nal linkage can result in what C progrd.111n1ers call "name space pollution":
na1nes in differenl files accidentally conflicting witb each other. Using
static helps prevent this problem.

Function paran1eters have the same properties as auto variables: automatic
storage duration , block scope, and no linkage. The only storage class that can be
specified for paran1eters is register.

Summary

Now tba1 we've covered the various storage classes, let's sumn1arize what we
know. The following program fragment shows all possible ways to include-or
omit-storage classes in declarations of variables and parameters.

int a;
extero int b;
static int c;

void f(int d, register int e)
{

}

auto int g;
int h;
static inti;
extern int j;
register int k;

Table 18. I shows the properties of each variable and paran1etel' in this example.

Nome Storage Duratiou Scope Linkage

a static file external
b static file ...

I

C static tile internal
d auton1atic block none
e automatic block none
g automatic block none
h auton1atic block none . static block none 1
' static block t J

k automalic block none

tThe t.lefiniLlons of b and j _arcn·t shown. hO ii ·s nol

possible to determine the link11ge of lhese variables. In
mosl cases. the variable~ ,vill be defined in another file
and ,viii have external linknge.

Of Lhe four storage classes, the most in1portant are static and extern.
auto ha5 no effect. and modern compilers have made register less in1por­
tant.

470 Chapter 18 Declarations

Mastering C declarations takes time and practice. The only good news is that
there are certain things thal can't be declared in C. Functions can't return a.rTays:

int f (int) [] ; /** *WRONG*** /

Functions can't return functions:

int g (int) (int); /***WRONG***/

Arrays of functions areo 't possible, either:

int a (10] (int) ; /***WRONG***/

Tn each case, we can use pointers to get tbe desired effect. A function can'l return an
array, but it can retun1 a po;nter to an array. A function can't return a function, but
it can return a pointer to a [unction. Arrays of functions aren ·tallowed. but an array
may contain pointers co functions. (Section 17.7 h&S an example of such an array.)

Using Type Definitions to Sin1plify Declarations

Some programmers use type definitions to help simplify complex declarations.
Consider the declaration of x that we examined earlier in this section:

int * (*x [lO]) (void) ;

To make x 's type easier to understand, we could use the following series of Lype
definitions:

typedef int *Fcn(void);
typedef Fen *Fcn_ptr;
typedef Fcn_ptr Fcn_ptr_array[lO];
Fcn_ptr_array x;

If we read Lhese lines in reverse order, we see that x has type Fcn_ptr_array. a
Fcn_ptr _ array is an array of Fen _ptr values, a Fen _ptr is a pointer to
type Fen. and a Fen is a function that has no argun1ents and reLurns a pointer to an
int value.

18.5 Initializers

For convenience.Callows us to specify initial values for variables as we're declar­
ing them. To initialize a variable. we wrile the = symbol after its declarator, then
fol low lhat with an initializer. (Don ·1 confuse the = symbol in a declaration with
the assignment operator; initialization isn'L the same as assignment.)

We've seen various kinds of initializers in previous chapters. The initializer
for a simple variable is an expTession of the same type as the variable:

inti= s / 2; / * i is initially 2 */

Q:

•
A:

Q:

A:

Q & A 477

Tl1e creators of C99 were unhappy with this state of affairs. because program­
n1ers were unlikely to expect lhat simpJy adding braces within an if staten1ent
would cause undefined behavior. To avoid the problem, they decided that the inner
staten1ents would always be considered blocks. As a resul t, Example I and Exam­
ple 2 are equivalent, with both exhibiting undefined behavior.

A s inlilar problen1 can arise when a compound literal is part of Lhe controlling
expression of a selection statement or iteration staten1ent. For this reason. each
entire selection statement and iteration statement is considered to be a block as
wel l (as though an invisible set of braces swTounds the entire statement). So, for
exa1nple, an if state1nent with an else clause consists of three blocks: each of
the two inner statements is a block. as is tl1e entire if staten1ent.

You said that storage for a variable with automatic storage duration is allo­
cated '\-Vhen the surrounding block is executed. Is tl1is true for C99's variable­
length arrays? [p. 4601
No. Storage for a variable-length array isn't allo<.:ated at the beginning of the sur­
rounding block. bet:ause the length of lhe array isn' t yet known. Instead. it's allo­
cated wben the declaration of the a1Tay is reached during tl1e execution of the
block. ln this respect. variable-length arrays are diJfercnt from all other auton1atic
variables.

What exactly is the difference between ''scope" and "linkage"? [p. 460]

Scope is for the benefit of the compiler, whi le link.age is for the benefit of the
linker. The compiler uses the scope of an identifier to determiJ.1e whether or not it's
legal to refer to the identifier at a given point in a file. When the co1npiler translates
a source file into objecl code, it notes which names have external linkage, eventu­
ally storing Lhese names in a table inside lhe object file. Thus, Lhe linker bas access
to names with external linkage; names with internal linkage or no linkage are
invis ible to the link.er.

Q: I don't understand how a name could ltave block scope but external linkage.
Could you elaborate? [p. 463]

A:. Certainly. Suppose that one source tile defines a variable i:

inti;

Let's asswne Lhitt the de[milion of i lies outside any function , so i has external
linkage by default. In another file. Lhere 's a function f that needs to access i . so
the body off declares i as extern:

void f(void)
{

extern inti;
...

}

1n the first file, i has file cope. Within £, however, i has block scope. lf other
funcLions besides f need access to i, they' ll need to declare it separately. (Or we

480 Chapter 18 Declarations

Section 18.3

Section 18.4

extern float a;

void f(register double bl
{

}

static int c;
auto chard;

G 4. Lel f be Lhe foJlowing function. Whal will be the value off (lO) if f has never been called
before? Whal will be lhe value off (10) if f has been called five Limes previous ly?

int f(int i)
{

}

static int j = O;
return i * j++;

5. Seate whether each of the following statements is true or false. Juslify each answer.

(a) Every variable with static storage duration has {lie scope.
(b) Every variable declared inside a function has no linkage.
(c) Every variab.le with internal linkage has staLic storage duration.
(d) Every parameLer has block scope.

6. The following function is supposed to print an error 1nessage. Eacb message is preceded by
an integer, indicaLing the number of tirnes lhe function bas been called. Unfortunalely. the
function always displays l as the number of Lhe error message. Locate the error and show
how to flx it without n1aking any changes outside the function.

void print error(const char *message)
{ -

int n = 1;
printf("Error %d: %s\n11 , n++, message);

}

7. Suppose lhal we declare x to be a const object. Which one of lhe following stalen1ents
about xis false?

(a) If xis of type int. it can be used as the value of a case label in a switch statem.ent.
(b) The co1npiler wi ll cbeck that no assignment is made to x.
(c) x is subject to the srune scope rules as variables.
(d) x can be of any type.

G 8. Write a complete de:,;cripLion or U1e type of x as specified by each of the following declara­
uons.
(a) char (*x [10)) (int);

(b) int (*x(int)) [5];
(c) float. * (*x (void)) (int) ;
(d) void (*x(int, void (*y) (int))) (int);

9. Use a series of lypc <lennitions to sin1plify each of the declarations in Exercise 8.

G l 0. Write declarations for the following variables and functions:

(a) p is a pointer to a function with a character pointer argument thal returns a character
pointer.

Section 18.5

Exercises 481

(b) f is a function with two arguments: p, a poinler to a structure with tag t, and n, a long
integer. f returns a pojnler to a function that has no arguments and returns nothing.

(c) a is an array of four pointers to functions that have no argun1enl'i and relurn nothing.
The elements of a iruUally point lo functions named insert, search. update, and
print.

(d) bis an array of 10 pointers to functions with two int arguments that return st111ctures
with tag t.

l 1. 1n Section 18.4, we saw that the following declarations arc illegal:

int f(int) [); /* functions can't return arrays */
int g(int) (int); /* functions can't return functions */
int a[lO) (int); /* array elements can•t be functions*/

We can, however. acrueve similar effects by using pointers: a function can return a pointer to
the first clement in an array, a function can return a pointer to a function, and the elements
of an array can be pointers to functions. Revise each of d1ese declarations accordingly.

* 12. (a) Write a complete description of lbe type of lhe function f . assuming LhaL it's declared as
follows:

int (*f(float (*) (long), char*)) (double);

(b) Give an example showing bow f would be called.

9 13. Which of Lhe following declarations are legal? (Asswne lhat PI is a macro lhaL represenLs
3.14159.)

(a) char c - 65;
(b) static int .

5, • i -It
.

1 - J - 1;

(c) double d = 2 * PI;
(d) double angles[] - { 0 ' PI I 2f

14. Which kind of variables cannot be initialized'?

(a) Array variables
(b) Enun1eration variables
(c) Structure variables
(d) Union variables
(e) None of the above

PI, 3 * PI I 2};

0 15. Which property of a variable detern1ines whether or not it has a default irutial value?

(a) Storage dw·ation
(b) Scope
(c) Linkage
(d) Type

19 Program Design

Wherever there Is modularity there is the potential for misunderstanding:
Hiding information implies a need to check communication.

It's obvious that real-world programs are larger than the examples in this book, but
you may not realize just how mucb larger. Faster CPUs and larger main men10.ries
have made il possible Lo wcile programs that would have been impractical just a
few years ago. The popularity of graphical user interfaces has added greaLly to Lbe
average length of a program. Most full-feaLured programs today are at least
100,000 lines long. Million-line programs are commonplace, and it's not unheard­
of for a program to have JO million lines or more.

r!!!3 Although C wasn't designed for writing large programs, many large programs
have io fact been written in C. It's tricky, and it requires a great deaJ of care, but it
can be done. In lhis chapter. I' ll discuss techniques Lbat have proved to be helpful
for writing large programs and show which C features (the static storage class.
for example) are especially useful.

Writing large programs (often called ·'programming-in-the-large") is quite clif­
ferenl fro1n writing small ones-it's like lhe difference becween writing a term
paper (10 pages double-spaced. of course) and a I 000-page book. A large program
requires more attention to style, since many people will be working on it. It
requires careful documentation. lt requires planoioe for maintenance, since il will
Ji_kely be modified many times.

Above all, a large program requires careful design and much more planning
than a small progran1. As Alan Kay, the designer of the Smalltalk programming
language, puts it. "You can build a doghouse out of anything:• A doghouse can be
built without any particular design, using whatever materials are at hand. A house
for humans, on the other hand. is too complex to just throw together.

Chapter 15 discussed wri1ing large programs in C, but it concentrated on Jan­
g11age details. ln thL1; chapter, ,ve '11 revisit the topic, this time focusing on tech­
niques for good progran1 design. A complete cliscussion of program design issues
is obviously beyond the scope of this book. However, l'U try to cover-briefly-

483

19.2 Information Hiding 489

int pop(void)
{

if (is_empty (})
terminate("Error in pop: stack is empty."};

return contents[-- top];
}

The variables that make up the stack (contents and top) are both declared
static, since there's no reason for the rest of the program to access the1n
directly. The terminate function is also declared static. This function isn't
pa1t of the n1odule's interface; instead, it's designed for use solely within the
implementation of the module.

As a matter of style, some programmers use macros to indicate which func­
tions and variables are "public" (accessible elsewhere in the program) and which
are "private•· (limited to a single file):

#define PUBLIC /*empty*/
#define PRIVATE static

The reason for writing PRIVATE instead of static is that the latter has more
than one use in C~ PRIVATE 1nakes it clear that we're using it to enforce informa­
tion hiding. Here·s what the stack implementation would look like if we were to
use PUBLIC and PRIVATE:

PRIVATE int contents[STACK SIZE];
PRIVATE int top= 0;

PRIVATE void terminate (const char *message) { ... }

PUBLIC void make_empty (void} { ... }

PUBLIC bool is empty (void) { ... }

PUBLIC bool is full (void) { ... }

PUBLIC void push (int i) { ... }

PUBLIC int pop (void) { ... }

Now we'll switch to a Linked-list implementation of the stack tnodule:

stack2.c #include <Stdio. h>
#include <Stdlib.h>
#include 11 stack.h 11

struct node {
int data;
struct node *next;

} ;

static struct node *top - NULL;

490 Chapter 19 Program Design

static void terminate(const char *message)
{

}

print£ ("%s\n", message) ;
exit(EXIT FAILURE);

void make_empty(void)
{

}

while (! is_empty())
pop();

bool is_empty (void)
{

return top== NULL;
}

bool is_full (void)
{

return false;
}

void push(int i)
{

}

struct node *new node= malloc(sizeof(struct node));
i£ (new node== NULL)

terminate ("Error in push: stack is full.");

new node->data = i;
new node->next = top;
top= new_node;

int pop (void)
{

}

struct node *old_top;
inti;

if {is_empty())
terminate ("Error in pop: stack is empty. 11) ;

old_top = top;
i = top->data;
top= top->next;
free (old_top) ;
return i;

Note that the is_full function returns false every lime iL's called. A liJ1ked
list has no limit on its size, so Lhe stack will never be full. Jt 's possible (but cot
likely) tbal Lhe program might n1n out of memory, which will cause tbe push
function to fail, but there's no easy way to test for that condition in advance.

Our stack example shows clearly the advantage or information hiding: il

19.3 Abstract Data Types 491

doesn' t matter whether we uses tackl . c or stack2. c to implement the stack
111odule . B oth versjons match the module's interface, so we can swilch from one to
the other without having to make changes elsewhere in Lhe program.

19.3 Abstract Data Types

A module that serves as an abstract object, like Lhe stack module in lhe previous
section. has a serious disadvantage: there ·s no way Lo have n1ultiple instances of
the object (more than one stack, in this case). To accon,plish this, we·u need to go
a step further and create a new type.

Once we·ve defined a Stack type. we' ll be able to have as many stacks as we
want. The following frag1nent illustrates how we could have lwo slack s in the sa1ne
prograin:

Stack sl, s2;

make empty(&s1); -
make_empty (&s2) ;
push (&sl, l) ;
push{&s2, 2);
if (lis_empty(&sl))

printf (11 %d\n 11
, pop (&sl)) ; /* prints 01 11 */

We're not really sure what s1 ai,d s2 are (structures? pointers?). but it doesn't
matter. To clients, s1 and s2 are c1bstractio11s that respond to certain operations
(make_empty, is_empty, is_full, push. and pop).

Let's conve11 our stack . h header so that ir provides a Stack type, where
Stack is a structure. Doing so will require adding a Stack (<>r Stack *) paratn­
eter to each function. The header wi ll now look like this (changes to stack . h are
in bold; unc.:hanged portions of the header aren ' t shown):

#define STACK SIZE 100

typedef struct {
int contents[STACK SIZE];
int top;

} Stack;

void make_empty(Stack *s);
bool is_empty{const Stack *s);
bool is_full(conat Stack *s);
void push(Stack *a, inti);
int pop(Stack *s);

Tbe stack paran1eters to make_empty, push, and pop need to be pointers, since
these fw,ctions modify tbe stack. The para111eter to is_empty and is_full
doesn' t need to be a pointer, but I've made it one anyway. Passing Lbese functions a
Stack pointer instead of a Stack value is more efficient, since the latter would
result in a structure being copied.

492 Chapter 19 Program Design

Encapsulation

Unfortunalely, Stack isn't an abstract data lype, since stack. h reveals what
the Stack type really is. Nothing prevents clients from using a Stack variable as
a structure:

Stack s1;

s1.top = O;
sl.contents[top++] = l;

Providing access to Lhe top and contents members nllows clients to corrupt the
stack. Worse still, we won't be able to change Lhe way stacks are stored without
having Lo assess the effect of the change on clients.

What we need is a way lo prevent clients fro,n knowing bow lbe Stack type
is represented. C has only limited support for e11capsulating types in this way.
Newer C-based languages, including C++, Java, and C#, are better equipped for
this purpose.

Incomplete Types

Tbe only tool that C gives us for encapsulation is the incomplete type. (lncomp1ete
types were mentioned briefly in Section 17.9 and in the Q&A section at Lhe end of
Chapter 17 .) The C standard describes incomplete types as "types tl1at describe
objects but lack i_nformalioo needed to determine their sizes." For example, the
declaration

struct t; /* incomplete declaration oft*/

te]ls the con1piler that t is a su·uctw·e tag but doesn·t describe the members of the
structure. As a result, Lhe con1piler doesn't have enough information to determine
the size of such a structw·e. The intent is that an incon,plete type will be completed
elsewhere in the program.

As long as a type ren1ains incomplete. its uses are limited. Since the co1npiler
E doesn ' t know the size of an incomplete type, it can't be used to declare a variable:

struct ts; /***WRONG***/

However, it's perfeclly legal to define a pointer type that references an incomplete
type:

typedef struct t *T;

This type definition states that a variable of type T is a pojnter to a structure with
tag t. We can now declare variables of type T, pass the1n as arguments to func­
tions, and perfo11n other operations Lhat are legal for pointers. (The size of a
pointer doesn't depend on what it points LO, which ex.p lains why C allows this
behavior.) What we can' t do. though, is apply Ltle -> operator Lo one of Lhese vari­
ables. since the con1piler knows nothing abouL the men1bers of at structure.

19.4 A Stack Abstract Data Type 493

19.4 A Stack Abstract Data Type

stackADT.h
(version 1)

To illustrate how abstract data types can be encapsulated using incomplete types,
we'll develop a stack ADT based on the stack module described in Section l 9 .2. lo
the process, we·11 explore three different ways to U11plement the stack.

Defining the Interface for the Stack ADT

First, we·ll need a header file that defines our stack ADT type and gives prototypes
for lhe functions that represent stack operations. Let's name this file stack­
ADT. h. The Stack type will be a pointer to a stack_ type structure that stores
the actual contents of the stack. This sn·ucLure is an incomplele type that will be
completed in the file that implernents the stack. The men1bers of this structure will
depend on how the stack is implemented. Herc's what the stackADT. h file will
look like:

#ifndef STACKADT H
#define STACKADT H

#include <stdbool .h> /* C99 only*/

typedef struct stack_type *Stack;

Stack create(void);
void destroy(Stack s);
void make_empty(Stack s);
bool is_empty(Stack s);
bool is_full(Stack s);
void push(Stack s, inti);
int pop(Stack s);

#endif

Clients that include stackADT . h wi ll be able to declare variables of type
Stack. each of which is capable of poinling to a stack_ type structure. Clients
can then call the functions declared in stackADT. h to ped'orrn operations on
stack variables. However, clients can't access lhe members of the stack_type
structure, since that structure wil I be defmed in a separate file.

Note that each function has a Stack parameter or returns a Stack value.
The stack functions in Section I 9.3 had para1neters of type Stack *. The rea­
son for the difference is that a Stack variable is now a pointer; it points to a
stack type structure that stores the contents of the stack. lf a function needs
to n1odify the stack, it changes the structure itself, not the pointer to the struc­
ture.

Also note the presence of the create and destroy functions. A module

494 Chapter 19 Program Design

generally doesn't need these functions, but an ADT does. create will dynami­
cally allocale memory for a stack (including the men1ory required for a
stack_type structure). as well as i_nitializing the stack to its "empty" state.
destroy will release the stack's dynamically allocated memory.

The foUowing client file can be used to test Lhe stack ADT. It creates two
stacks and performs a variety of operations on them.

stackc/ientc #include <stdio.h>
#irtclude "stackADT.h"

int main(void)
{

}

Stack Sl, S2;
int n;

sl - create();
s2 - create();

push (s1, 1) ;
push (sl, 2) ;

n = pop (s1) ;
printf ("Popped %d from sl \n", n) ;
push(s2, n);
n = pop(s1);
printf ("Popped %d from s1 \n 11 , n);
push (s 2 , n) ;

destroy(s1);

while (! is_ empty(s2))
printf (11 Popped %d from s2 \n 11 , pop (s2)) ;

push (s 2 , 3) ;
make_empty (s2);
if (is_ empty(s2))

printf (11 s2 is empty\n 11) ;

else
printf("s2 is not empty\n 11);

destroy(s2);

return O;

rf the stack ADT is in1plen1ented correctly, the program should produce lhe folJow­
ing output:

Popped 2 from sl
Popped 1 from sl
Popped 1 from s2
Popped 2 from s2
s2 is empty

19.4 A Stack Abstract Data Type 495

hnplementing the Stack ADT Using a Fixed-Length Array

There are several ways to in1p]en1ent the stack ADT. Our first approach is the sim­
plest. We' ll have lhe stackADT. c Ale define the stack_type structure so thal
it contains a fixed-lenglb array (to hold U1e contents of the stack) along with an
integer that keeps Lrack of the top of the stack:

struct stack_type {

} ;

int contents[STACK_SIZE];
int top;

Here's what stackADT . c wi]l look like:

stackADT.c #include <stdio. h>
#include <stdlib.h>
#include 11 stackADT.h 11

#define STACK SIZE 100

struct stack_type {

} ;

int contents[STACK_SIZE];
int top;

static void terminate(const char *message)
{

}

printf (11 %s\n", message);
exit(EXIT_FAILURE);

Stack create(void)
{

}

Stacks= malloc(sizeof(struct stack_type));
if (s == NULL)

terminate(11 Error in create: stack could not- be created.");
S->top = O;
returns;

void destroy(Stack s)
{

free (s);

}

void make empty(Stack s)
{ -

s->top = 0;
}

bool is empty(Stack s)
{ -

return s->top == O;
}

496 Chapter 19 Program Design

stackADT.h
(version 2)

bool is full(Stack s)
{ -
}

return S->top == STACK_SIZE;

void push{Stack s, inti)
{

if (is_full (s))
terminate (''Error in push: stack is full.") ;

s->contents[s->top++) = i;
}

int pop(Stack s)
{

if (is_empty(s))

}

terminate("Error in pop : stack is empty. ");
return s->contents[--s->top];

The most striking thing about the !"unctions in this fi le is Lbat they use Lhe - > oper~
ator, not the . operator, to access the contents and top men1bers of Lhe
stack_type structure. The s paraineter is a pointer to a stack_type stru.c­
ture. not a structure itself, so using Lhe . operalor would be illegal.

Changing the Item Type in the Stack ADT

Now that we have a working version or the stack ADT. let's try to improve it. First.
note that items in the stack must be integers. That's too restrictive; jn fact., lhe iten1
type doesn'l really matter. The stack items could just as easily be other basic types
(float, double, long, etc.) or even structures, unions, or pointers, for that
ma tter.

To make the stack ADT easier to modify for different item types, ler"s add a
type definition to the stackADT. h header. It will define a type named Item,
representing Lhe type of data to be stored on the stack.

#ifndef STACKADT H
#define STACKADT H

#include <Stdbool.h> /* C99 only*/

typedef int Item;

typedef struct stack_type *Stack;

Stack create(void);
void destroy(Stack s);
void make_empty(Stack s);
bool is_empty{Stack s);
bool is_full(Stack s);

498 Chapter 19 Program Design

f 've also added a new member. size, that stores lhe stack's m.aximum size (the
length of the array that contents points to) . We'll use this member to cbeck for
the "stack full" condition .

The create functmon will now have a paran1eter that specilies the desired
maximum ~tack size:

Stack create(int size);

When create is called. it will create a stack type structure plus an array of
length size. The contents men1ber of the structure will point to this array.

The stackADT . h file will be the same as before, excepl that we'll need to
add a size para111eter to the create function. (Let's name the new version
stackADT2 . h.) The s tackADT . c file wiJI need more extensive modification,
however. The new version appears below, with changes shown in bold.

stackADT2.c #include <stdio.h>
#include <stdlib.h>
"#include "stackADT2 . h "

struct stack type {

} ;

Item •contents ;
int top;
int size;

static void terminate(const char • message)
{

}

printf(11 %s\n 11
, message);

exit(EXIT_FAILURE);

Stack create(int size)
{

}

Stacks= mal loc(sizeof(struct stack_type));
if (s == NULL)

terminate ("Error in create: stack could not be created . 11);

s->contents = malloc (size * sizeof(Item));
if (s - >contents == NULL) {

free(s);

}
terminate("Error in create: stack could not be created. ");

S->tOp = 0;
s->size = size;
returns;

void destroy(Stack s)
{

}

free(s->contents};
free (s) ;

19.4 A Stack Abstract Data Type 499

void make_empty(Stack sl
{

S->top = 0;
}

bool is_empty(Stack s}
{

return s->top == O;
}

bool is_ full(Stack s)
{

return s->top == s->size;
}

void push(Stack s, Item i)
{

if (is full (s))
terminate("Error in push: stack is full.");

s->contents[s->top++] = i;
}

Item pop(Stack s)
{

}

if (is_empty(s))
terminate ("Error in pop: stack is empty. 11) ;

return s->contents[--s->top];

The create function now calls mal loc twice: once to allocate a stack_ type
structure and once to allocate the array that will contain the stack items. Either call
of malloc could fail, causing terminate to be called. The destroy function
must call free twice lo release all the memory allocated by create.

The stackclient. c file can again be used to test the stack ADT. The calls
of create will need to be changed. however. since create now requires an
argument. For example. we could replace the statements

sl = create () ;
s2 =create();

with the fallowing statements:

s1 - create(lOO);
s2 = create(200);

Implementing the Stack ADT Using a Linked List

Implementing the stack ADT using a dynamicaUy allocated an·ay gives us more
flexibility than using a fixed-size array. However. the clienl is still required to spec­
ify a maximum size Jor a stack at the lime it's crealed. If we use a linked-list imple­
mentation instead, there won't be any preset lini_jt on the size of a stack.

500 Chapter 19 Program Design

Our implementation will be similar to the one in Lhe stack2 . c file of See­
r ion I 9.2. The linked Hst will consist of nodes, represented by I.he following struc­
ture:

struct node {
Item data;
struct node *next;

} ;

The type of the data member is now Item rather than int. but the structure is
otherwise the same as before.

The stack_ type structure will contain a pointer to the first node in the list:

struct stack_type {

} ;
struct node *top;

Al first glance, the stack_type structure seen1s superfluous; we could just
define Stack to be struct node * and let a Stack vaJue be a pointer to the
first node in the lisl. However, we still need the stack_ type structure so that
the interface Lo U1e stack remains unchanged. (If we did away with it. any func­
tion that modified the stack would need a stack * parameter instead of a
Stack p,u·ameter.) Moreover, having the stack_type structure will make it
easier to change the implementation in t.he future, should we decide to store addi­
lionaJ information. For example, if we later decide that tl1e stack_type struc­
ture should contain a count of how many items are currently stored in the stack,
we can easily add a men1ber to the stack_type structure ro store this informa­
tion.

We won·l need Lo make any changes to the stackADT . h header. (We'll
use this header file, not stackADT2. h.) We can also use the original stack­
client. c file for testing. All the changes wiU be in the stack.ADT. c file.
Here's the new version:

stackADT3.c #:inc 1 ude <stdio. h>
#include <stdlib.h>
#include "stackADT.h 11

struct. node {
Item data;
st.ruct node

} ;
*next· I

struct stack_ type {
struct node *top;

} ;

static void terminate(const char *message)
{

}

printf(11 %s\n 11
, message);

exit(EXIT_FAILURE);

19.4 A Stack Abstract Data Type 501

Stack create(void)
{

Stacks= malloc(sizeof(struct stack_type));
if (s == NULL)

}

terminate("Error in create: stack could not be created.");
S->top = NULL;
returns ;

void destroy(Stack s)
{

}

make_empt y (s) ;
free (s);

void make_empty(Stack s)
{

}

while (lis_empty(s))
pop (s);

bool is empty(Stack s)
{ -

return s->top == NULL;
}

bool is full(Stack s)
{ -

return false;
}

void push(Stack s, Item i)
{

}

struct node *new node= malloc(sizeof{struct node));
if (new_node == NULL)

terminate("Error in push: stack is full.");

new node->data = i;
new_node->next = s->top;
s->top = new node;

Item pop(Stack s)
{

}

struct node *old_top;
Item i;

if (is_empty(s))
terminate ("Error in pop: stack is empty.") ;

old_top = s->top;
i = old_top->data;
s->top = old_top->next;
free (old_ top) ;
return i;

19.5 Design Issues for Abstract Data Types 503

Generic ADTs

Midway llu·ough Section 19.4, we improved the stack ADT by 1naking it easier to
change the type of iten1s stored in a stack-all we had to do was 1nodify the defini­
tion of the Item type. It's still somewhat or a nuisa11ce to do so; it would be nicer
if a stack could accommodate ite1ns of any type, without the need to modify the
stack. h file. Also note that Olli stack ADT suffers from a serious flaw: a pro­
gram can' t create two stacks whose items have different types. It's easy to create
n1ultiple stacks. but those stacks must have items wilh identical types. To allow
stacks with different item types. we'd have to make copies of the stack ADT's
header file and som·ce file and modify one set of files so that the Stack type and
its associated functions have different names.

Whal we'd like to have is a single ··generic'' stack type from which we could
create a stack of integers. a stack of strings, or any other stack lhal we might need.
There are various ways to create such a type in C. but none are completely satisfac­
tory. The 1nost com1non approach uses void * as the item type, which allows
arbilrary pointers to be pushed and popped. Wlt.h this technique, tbe stack­
ADT. h file would be similar to our original version; however, the prototypes of the
push and pop functions would l1ave tl1e foll owing appearance:

void push(Stack s, void *p);
void *pop(Stack s);

pop returns a pointer to the item popped from the stack; if the stack is e1npty, it
returns a nuU pointer.

There are two disadvantages to using void * as the ite1n type. One is that this
approach doesn't work for data that can't be represented in pointer form. Items
could be strings (which are repre.c;;ented by a pointer to the first character in the
string) or dynamically allocated structures but not basic types such as int and
double. The other disadvantage is that error checking is no longer possible. A
stack that stores void* items will happily aJlow a mixture of pointers of different
Lypes; there's no way to detect an error caused by pushing a pointer of the wrong
Lype.

ADTs in Newer Languages

The proble1ns that we·ve just discussed are deall ,vilb n1ucb more cleanly in newer
C-based lang11ages, such as C++. Java, and C#. Name clashes are prevented by
defining function nan1es within a c·lass. A stack ADT wouJd be represented by a
Stack class; Lhe stack functions would belong to this class, and would only be
recognized by the compiler when applied to a Stack object. These languages
have a feature known as exception Jiar1d/i11g that allows functions such as push
and pop to •'throw·• an exception ,vhen lhey detect an error condition. Code in the
client can then deal with the error by "catching" lhe exception. C++, Java. and C#
also provide special features for defining gene1ic ADTs. fn C++, for example, we
would defme a stack tellzplate, leaving the item type unspecified.

506 Chapter 19 Program Design

Section 19.3

Section 19.4

3. (a) Write an array based imple,nenlution of the queue Jnodulc described in Exercise l. Use
Lhree integers to keep track of the queue's stalus. with one integer storing the position of the
first empty sJot in the array (used wJ1en an item is inserted), the second storing the position
of the next item to be removed. and the third storing the number of items in the queue. An
insertion or removal that v,,ould cause either of' t.he first two integers to be incremented past
the end of the array should instead reset the variable to zero. thus causing it to "wrap
around" to Lhe beginning of the array.

(b) Write a linked-list implementation of the queue n1odulc described in E;<(ercise I. Use
two pointers, one pointing Lo the first node in t.hc list and the other poin6ng to the last node.
When an iten1 is inserted into the queue, add it to the end of the list. When an item is
removed from the queue, delete the lirsl node rn lhe list.

9 4. (a) Writ.e an implementation of lhe Stack type, as~uming that Stack is a structure con­
taining a fixed-length array.

(b) Redo the Stack type, this time using a linked-list representation instead of ru1 nrray.
(Show both stack. h anu stack. c.)

5. Modify the queue. h header of Exercise l so that it defines a Queue type, where Queue
is a structure containing a fixed-length an·ay (see Exercise 3(a)). Modify the functions in
queue . h to take a Queue * parameter.

6. (a) Add a peek runction to stackADT. c. This function will have a parameter of type
Stack. When called. ic returns the top iten, on the stack but doesn't modify the slack.

(b) Repeat part (a). 111odifying stackADT2 . c this time.

(c) Repeat parl (a). modifying stackADT3. c this time.

7. Modify stackADT2 . c so that a stack automalically doubles io size when it becomes full.
Have the push function dynamically allocate a new array that's twice:: as large as the old
one and then copy the stack contents fron1 the old array to the new one. Be sure to have
push deallocate the old array once the data has been copied.

Programming Projects

1. Modify Programn1ing Project L from Chapter JO so that it uses the stack ADT described in
Sect1on 19.4. You may use any of the in1plementations of the ADT described in that section.

2. Modify Prograrnn1ing Project 6 from Chapter IO so that it uses the stack ADT described in
Section J 9.4. You may use any of the implementations of the ADT described in that section.

3. Modify the stackADT3. c file or Section 19.4 by adding an int 111ember named lento
lhe stack_type structLtre. This member ,vill keep track or how n1any items are currently
stored in a stack. Add a ne\\' fimclion named length that has a Stack paran1eter and
returns the value of the len member. (Son1e of the existing function!> in stack.ADT3. c
will need to be 1nodified as ,vell.) Modify s tackcl ient . c so that it calls the length
fLU1ction (and displays the value that it returns) after each operation tbar n1odJfies a stack.

4. Modify the stack.AD'!'. h and stack.ADT3. c files of Section 19.4 so that a stack stores
values of type void*. as described in Seclion 19.5; the I tern type will no longer be use<l.
Modify stackclient. c so that it stores pointers to strings io the s1 and s2 stacks.

Programming Projects 507

5. Starting from the queue . h header of Exercise I. create-a file named queueADT. h that
defines the ronowing Queue type:

typedef struct queue_type *Queue;

queue_ type is an incomplele structure Lypc. Create a file na,ncd queueADT. c that con­
tains the full definition of queue_ type as well as deflllitions for all the functions in
queue. h. Use a lixed-Jent.rth array 10 store the ite,ns in a queue (see Exercise 3(a)). Create
a file nruned queueclient. c (similar lo lhe stackclient. c file of Section 19.4) that
creates two queues and perfonns operations on then,. Be sure to provide create and
destroy functions for your ADT.

6. Modify Programming Project 5 so that the items in a queue are stored in a <lynamically allo­
caJ.edarray whose lenglh is passed to the create function.

7. Modj_fy Programming Project 5 so that the iten'ts in a queue arc stored in a linked list (see
Exercise 3(b)).

510 Chapter 20 Low-Level Programming

Table 20.1
Bitwise Shift Operators

portability tip

Bitwise Shift Operators

The bitwise shift operators can transform lhe binary representaLion or an integer by
shifting its bits to the left or right. C provides two shift operators, which are shown
in Table 20.1.

SJ1111bol Mea11ing

<< lefl shift
>> righ1 shift

- -

The operands for << and >> n1ay be of any integer type (jncludiJ1g char). The
integer promotions are performed on both operands: the result has the type or the
left operand after promotion.

The vaJue of i << j is the resull when the bits ia i ,u·e shifted Jeft by j places.
For each bit that is "shifted off" the left end of i, a zero bit enters at the 1·ight. The
value of i >> j is the result when i is shifted right by j places. lf i is of an
unsigned type or if the value of i is nonnegative, Leros are added at the left as
needed. If i is a negative nun1ber, the result is implemenration-defLDed: some
implen1entations add zeros at the Jeft end, while others preserve the sign bit by
adding ones.

For portability, it's best to pe,form sh(fts only on unsigned numbers.

The following examples illustrate the effect of applying the shif1 operators lo
the nurnber 13. (For sin1plic-ity, these examples-and others in this section-use
shorl integers, which are typically 16 bits.)

unsigned short i, j ;

.
13; /* . • 13 (binary 0000000000001101) */ 1. - 1. 1S now . • 2; /* . is 52 (binary 0000000000110100) *I J - 1 << J now . • 2; I* • • 3 (binary 0000000000000011) ,,, I J = 1 >> J 1S now

A.') these examples show. neiU1er operalor modifies iLS operands. To modify a vari­
able by shifting its bits. we'd use the co1npound assignmenL operators <<= and
>>=:

' 13; 1 -
• 1 <<= 2; .

2; 1 >>=

/* i is now 13 (binary 0000000000001101) */
/ * i is now 52 (binary 0000000000110100) */
/* i is now 13 (binary 0000000000001101) */

The bitwise shi ft operators have lower precedence thao the aritbn1etic operators,
wbich can cause surprises. For example, i < < 2 + 1 means i < < (2 + l) . not
(i<<2)+1.

Table 20.2
Other Bitwise Operators

20.1 Bitwise Operators 511

Bitwise Complement, A1zd, Exclusive Or, and Inclusive Or

Table 20.2 lists the ren1aining bitwise operators.

Symbol Mea11ing
- ----;

bitwise complen1ent
& bitwise and
A bitwise exclusive or

bil\vise inclusive or

The ~ operator is unary; the integer promotions are performed on its operand. The
other operators are binary; the us11al ruilhmetic conversions are perfonned on their
operands.

The - . & , and I opera1ors perform Boolean operations on all bits in their
operands. The ~ operator produces the complen1ent of its operand. wilh zeros
replaced by ones and ones replaced by zeros. The & operator performs a Boolean
and operation on all corresponding bits in its two operands. The and l operators
are similar (both pe1form a Boolean or operation on the bi ts in their operands);
however produces O whenever both operands have a l bit. vvhereas J produces
J •

Don't conruse the bit1vise operators & and I with Lhe logical operators && and I I -
The bitwise operators son1ethnes produce the same resuJts as the logical operators,
but they're not equivaJent.

The fo llowing examples illustrate the effect of the - . &. A , and I operaLors:

unsigned short • • k; l, J ,

i 21; I* • • 2l (binary 00000000000l0101) *I - l. 1S now .
56; /* • .

56 (binary 0000000000111000) *I J - J 16 now
k

.
/* k • 65514 (binary 1111111111101010) */ = -J. i l.S now

k & j i I* k • 16 {binary 0000000000010000) */ - 1 lS now
k • I * k • 45 (binary 0000000000101101) */ - l. J ; 1S now
k "' ' • /* k • 61 (binary 0000000000111101) *I 1 J ; lS now

The value shown for ~i is based on lhe assumption that ru1 unsigned short
value occupies 16 bits.

The - operator deserves special mention. su1ce we can use it to help make
even low-level progran1s 1uore portable. Suppose that we need an integer whose
bits are a ll I. The preferred technique is to \vrite -0, which doesn' t depend on the
number of bits in an inLeger. Sintilarly, if we need an integer whose bits ru·e all J
except for Lhe last five, we could write ~Oxlf.

516 Chapter 20 Low-Level Programming

20.2 Bit-Fields in Structures

AILhough the 1echniques of Section 20.1 alJow us to work with bit-fields, these
techniques can be tricky to use and potentially confusing. Fortunately. C provides
au alternative: declaring stroctures whose mernbers represent bit-fields.

As an example, let's look at how the MS-DOS operating system (often j ust
E called DOS) stores the date at which a file was created or last n1odified. Since

days, 111onths, and years are small numbers, storing Lhem as nonnal integers would
waste space. Instead, DOS allocates onJy 16 bits for a date, with 5 bits for the day,
4 bits for the month, and 7 bjts for the year:

I

month day
I I

J.5 14 J.3 12 11 10 9 8 7 6 5 4 3 2 1 0

Using bit-fields, we can define a C sLrucLure with an identical layout:

struct file date {
unsigned int day: 5;
unsigned int month: 4;
unsigned int year: 7;

} ;

I

The number after each member indicates its length in bits. Since the members all
have t11e same type, we can condense Lhe declaration if we want:

struct file_date {
unsigned int day: 5, month: 4, year: 7;

} ;

The type of a biL-field 1nust be eilher int. unsigned int, or signed int.
Using int is ambiguous; son1e compilers treat the field's high-order bit as a sign
bit, but others don ' t.

portabtllty tip Declare all bit-fields co be eilher unsigned int or signed int.

8 In C99, bit-fields may also have type _Bool. C99 compilers n1ay allow addiLional
bit-field types.

We can use a bit-field just like any other member of a structure, as the follow­
ing example shows:

struct file date fd;

fd.day: 28;
fd.month: 12;
fd.year = 8; / * represents 1988 */

Note that the year n1ember is stored relative to 1980 (the year the world began.

20.2 Bit-Fields in Structures 517

according to Mic.Tosoft). Afler these assignments. the f d variable wiJl have the fol ­
Jowing appearance:

lo:o:a:i o o o 1 1 o o 1 1 1 o o l
15 14- 13 12 11 10 9 8 7 6 5 4 3 2 1 0

We coold have used lhe bitw1se operators to acco1nplisb the same effect; using
these operators might even make Lhe program a little faster. However, having a
readable program is usually more important than gaining a few microseconds.

Bit-fields do have one restriction that doesn1l apply to other men1bers of a
structure. Since bit-fields don't have addresses in the usual sense, C doesn't allow
us to apply the address operator(&) to a bit-field. Because of this rule, functions
such as scanf can't store data directly in a bit-field:

scanf (11 %d 11 , &fd. day) ; / ***WRONG*** /

Of course, we can always use scanf to read input into an ordinary variable and
then assign il to f d. day.

How Bit-Fields Are Stored

Let's take a close look at how a compiler processes the declarauon of a su·ucrure
that has bit-field n1embers. As we'll see, the C standard allows the compiler con­
siderable latitude in choosing how it stores biL-fields.

The rules concerning how the con1piler handles biL-fields depend on the notion
of Hstorage units:· The size of a storage unit is implementation-def10ed: typicaJ
values are 8 bits. 16 bits, and 32 bits. As it processes a structure declaration, the
compiler packs bit-fields one by one into a storage unit. with no gaps belwcen the
fields, until there's not enough room for the next field. At that point, son1e compil­
ers skip to the beginning of the next storage unit, while others split the bit-field
across the storage units. (Wl1ich one occurs is implernentaLion-defrned.) The order
in \Vhicb bit-fields are allocated (left to right or 1ight to left) is also itnplementa­
tion-defined.

Our file_date example assumes that storage units are 16 bits long. (An 8-
bit storage unit would also be accepLable, provided that the compiler splits the
month field across two storage units.) We also assume that bit-fields are allocated
fro1n right to left (with the first bit-field occupying the low-order bit!->).

Callows us to on1it lhe nan1e of any bit-field. Unnamed bit-fields are useful as
·'padding" Lo ensure that other bit fields are properly positioned. Consider the Lime
associated wirb a DOS fLle, which is stored in the following way:

struct file_t.ime {

} ;

unsigned int seconds: 5;
unsigned int minutes: 6;
u.nsigned int hours: 5;

20.3 Other Low-Level Techniques 519

typedef unsigned short WORD;

We'll use the BYTE and WORD types in later examples.

Using Unions to Provide Multiple Views of Data

Although unions can be used in a portable way-see Section I 6.4 for examples­
they're often used in C for an entirely different purpose: viewing a block of mem­
ory in two or more different ways.

Here's a simple example based on the file_dat.e structure described in
Section 20.2. Since a file date structure fits into two bytes, we can th.ink of
any two-byte value as a file_date structure. In parli.cular, we could view an
unsigned short value as a file_date structure (assum.ir1g that short inte­
gers are J 6 bits long). The following union allows us to easily convert a short inte­
ger to a file date or vice versa:

union int_date {
unsigned short i;
struct file date fd;

} ; -

With the help of this U11ion, we could fetch a fLle date from ilisk as two bytes, then
extract its month, day, and year fields. Conversely. we could construct a date as
a file_date structure, then write it to disk as a pair of bytes.

As an example of how we might use the int_da te union. here 's a function
that, when passed an unsigned short argument. prints it as a file date:

void print date(unsigned short n)
{ -

union int_date u;

u.i = n;

}
print£ ('' %d/%d/%d\n", u. fd. month, u. fd. day, u. fd. year + 1980) ;

Using unions to allow multiple views of data is especially useful when work­
ing wilh registers, which are often divided into smaller units. x86 processors, for
exan1ple, have 16-bit registers named AX, BX, CX. and DX. Each of these regis­
ters can be treated as two 8-bit registers. AX, for example, is divided inlo registers
named AH and AL. (The Hand L stand for "high'' and "low:')

When writing low-level applications for x86-based computers. we may need
variables that represent the contents of the AX, BX, CX, and DX registers. We
want access Lo bolh the 16- and 8-bit registers: at the same time, we need to take
their relationships into account (a change to AX affects both AH and AL; changing
AH or AL modifies AX). The solution is to set up two structures, one containing
members d1at correspond Lo the 16-bit registers. and the other containing members
thal match the 8-bit registers. We then create a union that encloses the two struc­
tures:

520 Chapter 20 Low-Level Programming

11nion {
struct {

WORD ax, bx, ex, dx;
} word;
struct {

BYTE al, ah, bl, bh, cl, ch, dl, dh;
} byte;

} regs;

The members of the word structure will be overlaid with the men1ber.s of the
byte structure; for example. ax will occupy the same memory as al and ah. And
that, of course. is exactly what we wanted. Here's an example showing how the
regs union might be used:

regs.byte.ah= 0xl2;
regs.byte.al= 0x34;
printf(11 AX: %hx\n 11 , regs.word.ax);

Changing ah and al affects ax. so the output will be

AX: 1234

Note that the byte structure lists al before ah. even though the AL register
is the "low'· half of AX and AH is lhe ·'h:igb'' haJf. Here·s the reason. When a data
iten1 consists of more lhan one byte, there are two logical ways to store it in tnein­
ory: with the bytes in the ··natural" order (with the leftmost byte stoi-ed first) or
wiU1 the bytes in reverse order (the leftn1ost byte is stored last). The first alternative
is called big-endian; lhe second is known as little-endian. C doesn't require a spe­
cific byte ordering. since that depends on the CPU on which a program will be exe­
cuted. Some CPUs use the big-endian approach and some use the little-endian
approach. What does this have to do with the byte structw·e? lt turns out that x86
processors assume I.bat data is stored in LiUle-endian order, so the first byte of
regs . word . ax is the low byte.

We don't normally need to worry about byte ordering. However, programs rhal
deal wiili memory at a low level must be aware of the order in which bytes are
stored (as the regs example illustrates). It's also relevant when working with files
Lbal contain non-character data.

Be careful when using unions to provide multiple views of data. Data that is valid
in its original format may be invalid when viewed as a different type, causing
unexpected problems.

Using Pointers as Addresses

We saw in Section l J .l Lbat a pointer is really some kind of 1ne1nory address,
although we usually don·t need to know Lhe details. When we do low-level pro­
gramming. however, the del.ails matter.

20.3 Other Low-Level Techniques 521

An address often has the same nurnber of bits as a.a integer (or long integer).
CreaLing a potnter that represents a specific address is easy: we jusL cast an integer
into a pointer. For exan1ple, here's how we rnight store the address I 000 (hex) in a
pointer variable:

BYTE -1\'p;

p = (BYTE *) OxlOOO; I* p contains address OxlOOO */

PROGRAM Viewing Memory Locations

Our nexl program allows the user Lo view segments of con1puter n1en1ory; it relies
on C's willingness to allow an i11tegcr to be used as a pointer. Most CPUs execute
programs in "_protected mode,'~ however. wbich means that a program can access
only those portions of memory that belong to the program. This prevents a pro­
gram from accessing (or changing) memory thaL belongs to another application or
to the operating system itself. As a result, we'll only be able to use our program to
view areas of rnemory that have been allocated for use by the program itself. Going
outside these regions will cause the program to crash.

The viewmemory. c progran1 begins by displaying (.he address of its own
main function as well as the address of one of its variables. This will give the user
a clue as to which areas of 1nemory can be probed. The program next prompts t11e
user to enter an address (in the form of a hexadecimal inleger) plus the number of
bytes to view. The progra1n then displays a block of bytes of Lhe chosen length.
starting al lhe specified address.

Bytes are displayed in groups of l O (except for the last group. which n1ay have
fe,ver than 10 bytes). The address of a group of bytes is displayed at the beginning
of a line, followed by the bytes in the group (displayed as hexadeci111al nun1ber~):
followed by the same bytes displayed as characters (just in case Lhe bytes happen to
represent characters, as some of them may). Only printing characters (as deter­
mined by the isprint Function) wilJ be displayed: other characters will be
shown ns periods.

We' 11 assume tbat int values are stored using 32 bits and Lhat addresses are
also 32 bits long. Addresses are displayed in hexadecimal. as is customary.

viewmemory.c / * Allows the user co view regions of computer memory * /

~include <Ctype.h>
#include cstdio.h>

typedef unsigned char BYTE;

int main(void)
{

unsi911ed int addr;
int i, n;
BYTE *ptr;

printf("Address of main function: %x\n 11 , (unsigned int) main);
printf("Address of addr variable: %x\n 11 , {unsigned int) &addrl;

522 Chapter 20 Low-Level Programming

printf(11 \nEnter a {hex) address: 11);

scan£ (11 %x 11
, &addr) ;

printf("Enter number of bytes to view: ");
scanf (11 %d 11 , &n) ;

printf (11 \n") ;
printf {" Address Bytes Characters\n") ;
printf('' ------- ----------------------------- ----------\n'');

}

ptr = (BYTE *) addr;
for (; n > O; n -= 10) {

}

printf{"%8X 11
, {unsigned int) ptr);

for (i = O; i < 10 && i < n; i++l
printf (11 % • 2X 11 , * (ptr + i)) ;

for (; i < 10; i++)
printf (II II) i

printf { 11 ");

for (i .. O; i < 10 && i < n; i++) {
BYTE ch: * (ptr + i);
if (!isprint(ch))

Ch - I I • - . '

}
printf { '' %c 11

, ch) ;

printf (11 \n 11
) ;

ptr += 10;

return 0;

The program is complicated somewhat by the possibility that the vaJue of n
isn't a multiple of 10, so there n1ay be fewer than LO bytes in the last group. Two of
the for statements are controlled by the condition i < 1 O && i < n. This condi­
tion causes the loops to execute 10 times or n times, whichever is smaller. There's
aJso a for statement that compensates for any missing bytes in the last group by
displaying three spaces for each missing byte. That way, the characters that follow
the last groap of bytes will align properly with the character groups on previous
lines.

The %X conversion specifier used in this program is similar to %x, which was
discussed in Section 7.1. The difference is that %X displays lhe hexadeciJnal digits
A, B, C, D, E, and Fas upper-case letters; %x displays them in lower case.

Here's what happened when 1 compiled the progran1 using GCC and tested it
on an x86 system running Linux:

Address of main function : 804847c
Address of addr variable: bff41154

Enter a (hex) address: 8048000
Enter number of bytes to view: 40

Address Bytes
------- ----------- ------------------
8048000 7F 45 4C 46 01 01 01 00 00 00
804800A 00 00 00 00 00 00 02 00 03 00
8048014 01 00 00 00 co 83 04 08 34 00
804801E 00 00 co DA 00 00 00 00 00 00

Characters

. ELF
.
. 4 .
..

20.3 Other Low-Level Techniques 523

I asked the program to display 40 bytes starting at address 8048000. which pre­
cedes the address of the main functio11. Note the 7F byte followed by bytes repre­
senting the letters E, L, and F. These four bytes .ide11tify the fo1:mat (ELF') in which
the executable file was stored. ELF (Executable and Linking Format) is widely
used by UNIX systenlS, including LiJ1ux. 8048000 is the default address at which
ELF executables are loaded on x86 platforn1S.

Let's run the program again, this time displaymg a block of bytes that starts at
the address of the addr variable:

Address of main function: 804847c
Address of addr variable: bfec5484

Enter a (hex) address: bfec5484
Enter number of bytes to view: 64

Address Bytes
- ------ -------- -- -------- -----------

BFEC5484 84 54 EC BF BO 54 EC BF F4 6F
BFEC548E 68 00 34 55 EC BF co 54 EC BF
BFEC5498 08 55 EC BF E3 3D 57 00 00 00
BFEC54A2 00 00 AO BC 55 00 08 55 EC BF
BFEC54AC E3 3D 57 00 01 00 00 00 34 55
BFEC54B6 EC BF 3C 55 EC BF 56 11 55 00
BFEC54C0 F4 6F 68 00

Characters

.T ... T ... o
h. 4.U ... T ..
. U .. . =W ...
.... u .. u ..
. =W 40
.. <U .. V.U.
.oh.

None of the data stored in this region of memory is in character form, so ifs a bit
hard to follow. However, we do know one thing: the addr variable occupies lhe
first four bytes of this region. Wben reversed, these bytes form the number
BFEC5484, lhe address entered by the user. Why the reversal? Because x86 pro­
cessors store data in little-endian order, as we saw earlier ta this section.

The volatile Type Qualifier

On some computers, certain me1nory locations are "volatile'·; the value stored at
such a location can change as a program is running, even though the program itself
isn't storing new values there. For example, some men101)' locations n1ight hold
data coming clirectly fro1n input devices.

The volatile type qualifier allows us to inform the compiler if any of tbe
data used ill a progralll is volatile. volatile typically appears in the declaration
of a pointer variable that will point to a volatile memory location:

volatile BYTE *p; /* p will point to a volatile byte*/

To see wby volatile is needed, suppose that p points to a n1emory location
that contams the most recent character typed at the user's keyboard. This location
is volatile: its value changes each time the user enters a character. We might use tbe
followillg loop to obtain characters from the keyboard and store then1 ill a buffer
array:

524 Chapter 20 Low-Level Programming

while (buffer 1101Jull) {

H'CJiT for i11p111;

buffer[i] = *p;
if (buffer [i++J -- 1 \n')

break;
}

A sophisticated co111pilcr might notice U1aL U,is loop changes neither p nor *p. so it
could oplimizc the program by altering it so that *p is fetched just once:

store *p in a register;
while (buffer 1101 full) {

}

,,.ait for input;
buffer [i] = vc1fue stored in regisrer;
if (buffer[i++] == 1 \n')

break;

The optimized progran1 wi!J fill the buffer with many copies of U,e san1e charac­
ter-not exactly what we had in mind. Declaring Lhat p points to volatile data
avoids Uiis problen1 by telling the compiler that *p must be fetched fj·om memory
each ti n1e it's needed.

Q&A

Q: What do you mea11 by saying that the & and I operators sometin1es produce
the same results as tbe && and I I operators, but not always? LP· 511]

A: Let's compare i & j with i && j (sin1ilar remarks apply to I and I I). As long as
i and j have l11e value O or 1 (in any combination). lhe two expressions wiJl have
the same value. However, if i and j should have other values, the expressions may
not always n1atch. (f i is 1 and j is 2, for exa1npJe. then i & j has Lhe value O (i
and j have no corresponding 1 bits), ,vbile i && j has U1e value I. If i is 3 and j
is 2. then i & j has lhe value 2. wb1le i && j has the value 1.

Side effects are another difference. Evaluating i & j ++ ahvays increments j
as a side effect. whereas evaluating i && j ++ soniethnes increments j.

Q: Who cares how DOS stores file dates'? Isn't DOS dead? (p. 516]
A: For Lhe most part, yes. However. there are still plenty of files created years ago

whose dates are stored in the DOS format. r n any event. DOS file dates are a good
example of hovv bit-fields are used.

Q: Where do the tern1s ''big-endian" and "little-e11dian" come from? [p. 520]
A: In Jonathan Swift's novel Gulliver's Travels, the fictional islands of Lilliput and

Blef uscu are perpetualJy al odds over whether to open boiled eggs on the big end
or tbe little end. The choice is arbitrary, of course, just like lhe order of bytes in a
data iten1.

Section 20.1

Exercises 525

Exercises

*I. Show Lhe output produced by eat:h or the following progran, fragment'>. Assume that i, j.
and k are unsigned short variables.

(a) i = a; j = 9;
printf (11 %d 11 , i >> 1 + j >> 1);

(b) i = 1;
printf (11 %d 11 , i & -i);

(c) i = 2; j = 1; k - 0;
printf (11 %d", ~i & j " k);

(d) i = 7; j = 8; k = 9;
printf ("%d", i " j & k) ;

9 2. Describe a sin1ple way Lo '"toggle·• a biL (change ii from Oto J or fro1n I to 0). Illustrate lhe
technique by writing a statc1ncnt that toggles biL 4 of lhe vatiublc i.

*3. Explajn what effect the folJo\vi.ng macro has on its arguments. You n,ay assurne that Lhe
argun1ents have the same LyPe.

#define M (x, y) ((x) "= (y), (y) "'= (x}, (x) ""= (y))

0 4. ln computer grapbil.:s. colors ~re often stored as lhree nu1nbers. representing red, green. and
blue intensities. Suppose thaL each number requires eight bils. and we'd like to store all three
values in a single long in Leger. Write a macro nan1cd MK_ COLOR wiLh three parameters (Lhe
red, green. ao<.I blue intensjties). MK_COLOR should return a long in which Lhe last three
bytes contain the red. green. and blue intensities, with the red value as the last byte and U1e
green value u::. the next-to-last byte.

5. Write macros na1ned GET_RED. GET_GREEN. and GET_ BLOE that, \Vhen given a color as
an argument (see Exercise 4), return its 8-bit red. green. and blue intensities.

"1) 6. (a) Use the bitwu;e operators to \Vrite the following function:

unsigned short s~ap_bytes(unsigned short i);

swap_bytes should return the nu1nbcr lhat results fron, swapping the two bytes in i.
(Shon inLegers occupy two bytes on n1osl con,pulers.) For example. if i has the value
0x1234 (00010010 00110100 in binary), then swap_bytes should return Ox3412
(00110100 00010010 in binary). Tesl yow· function by writing a progra1n that reads a nun1-
ber in hexadecimal. lhen writes the number with its bytes swapped:

Enter a hexadecimal number (up to £our digits): 1234
Number with bytes swapped: 3412

Hint: Use the %hx conversion to read and write the hex nurnben,.

(b) Condense the swap_bytes function so that irs body is a single state1nent.

7. Write the following functions:

unsigned int rotate left(unsigned inti, int n);
unsigned int rotate_right(unsigned inti, int n);

rotate_left should return the result of shifting the bits in i to the left by n places,
with the bits U,at were ''shifte<l off' n1oved 10 the right end of i. (For example. the call

526 Chapter 20 Low-Level Programming

Section 20.2

• 8.

rotate_left (Oxl2345678, 4) should retun1 Ox23456781 if integers are 32 bits
long.) rotate_right is similar, but it should ''rotate" bits to the right instead of the left .

Let f be the foUowing function:

unsigned int f(unsigned int i, int m, int n)
{

return (i >> (m + 1 - n)) & -(-0 << n) ;
}

(a) What is the value of - (-0 << n)?
(b) What does lhis function do?

9. (a) Write the following function:

int count_ones(unsigned char ch);

count ones should return lhe number of L bits in ch.

(b) Write t.he function in part. (a) without using a loop.

t 0. Write Lbe following function:

unsigned int reverse_bits(unsigned int n);

reverse_ bi t.s sbou Id return an unsigned integer whose bits are the same as those in n
but in reverse order.

11. Each of the following macros defines the position of a single bit within an integer:

#.define SHIFT BIT l
#define CTRL BIT 2 -#define ALT_BIT 4

The following statement is supposed to test whether any of the three bits have been sel. but it
never displays the specified message. Explain why the statement doesn 't work and show
how to fix it. Assume lhat key code is an int variable.

if {key_code & (SHIFT_ BIT I CTRL_BIT I ALT_BIT) == 0)
printf ("No modifier keys pressed\n");

12. The following function supposedly combines rwo bytes to form an unsigned short integer.
Ex.plain why the function doesn't work nnd show how to fix iL

unsigned short create_short{unsigned char higb_byte,

{

}

unsigned char low_byte)

return high byte<< 8 + low_byte;

* 13. lf n is an unsigned int variable. wbat effect does the following statement have on the
bits inn?

n &= n - l;

Hint: Consider the effect. on n if this statement is executed n1ore than once.

G 14. When stored according to the IEEE noating-point standard. a float value consists of a 1-
bit sign (the leftmost-or most significant-bit.). an 8-biL exponent, and a 23-bit fraction, in
tha1 order. Design a structure type that occupies 32 bits. with bit-field me1nbers correspond­
ing to the sign, exponent, and fraction. Declare the bit-fields to have type unsigned int.
Check the 111anual for your compiler to determlne the order of the bh-fields.

Section 20.3

Programming Projects 527

* 15. (a) Assume that the variable s has been declared as follows:

struct {
int flag: 1;

} s;

With some compilers, executing the following statements causes 1 to be disp1ayed. but with
other compilers. the output is -1. Explain the reason for this behavior.

s.flag = 1;
printf(11 %d\n 11

, s . flag);

(b) How can this problem be avoided?

16. Starting with the 386 processor, x8•6 CPUs have 32-bit registers named BAX, EBX, ECX,
and EDX. The second half (the least significant bits) of these registers is the same as AX,
BX. CX, and DX, respectively. Modify the regs union so that it includes these registers as
well as the older ones. Your union should be set up so that modif-ying EAX changes AX and
modifying AX changes the second half of EAX. (The other new registers will work in a shn­
ilar fashion.) You'll need to add some "dummy" members to the word aod byte structures,
corresponding to the other half of EAX, EBX, ECX. and EDX Declare I.he type of the new
registers to be DWORD (double word), which should be defined as unsigned long. Don·t
forget that the x86 architecture is little-endian.

Programming Projects

I. Design a union that makes it possible to view a 32-bit value as either a float or the struc­
ture described in Exercise 14. Write a program that stores l in the structure's sign -field. l 28
in the exponent field, and O in the fraction field, then prints the float value stored in the
union. (The answer should be-2.0 if you've set up the bit-fields correctly.)

Section 21.1

Q & A 537

Q&A

Q: I notice that yon use the tern1 "standard header'~ rather than "standard
header flle." Is tl1ere any reason for not us ing the ,vord "file"?

A: Yes. According to the C standard. a "standard header·· need not be a file. Although
most compilers do indeed store standard header!> as files, Lhe headers could in fact
be built into the con1piler itsel r.

Q: Section 14.3 described some disadvantages of using parameterized macros in
place of functions. In light of these problems, isn't it dangerous to provide a
macro substitute for a standard library function? [p. 531J

A: According to the C standard. a parameterized macro that substitutes for a library
function must be ·'fu lly protected .. by parentheses and must evaJuate its arguments
exactly once. These rules avoid mosl of the problems mentioned in Section 14.3.

Exercises

I. Locate where header fiJes are kepi un your system. Find the nonstandard headers and deter­
mine the purpose of each.

1. Having located the header files on your system (see Exercise l). find a standard header in
which a macro hides a function.

3. When a macro hides a funcLion, which 1nu~1 come first in Lbe hea<ler GJe: the macro defini­
tion or the function prototype? Justify your answer.

4. Make a Lisl of all reserved identifiers in t.he "future library directions'' section of t.he C99
standard. Distinguish between identifiers that arc reserved for use only when a specific
header is included versus identifiers that are reserved for use as external na1ncs.

*5. The is lower function. which belongs to <ctype. h>, tests "'hether a character is a
lo\ver-case letter. Why would the following n1acro version of islower not be legal.
according to lhe C standard? (You may assume tJ1al the chnr.1cter set L'- ASCll.)

#define islower(c) ((c) >= 'a' && (c) <= 'z'}

6. The <ctype .h> hea<lcr usually defines most of its functions as macros as ,vell. These
1nacros rely on 1.1 static array that's declared in <ctype . h> but defined in a separate file. A
portion of a typical <Ctype . h> header appears below. Use Lhis sample lo answer the fol­
lowing questions.

(a) Why do the names of tbe "bit" macros (such as _OPPER) and lhe _ ctype array begin
with an underscore?

(b) Explain what the _ctype array will contain. Assuming lhat the character set is ASCil.
show the values of the array elements at positions 9 (the horiLonlal tab character). 3? (Lhe
space character). 65 (lhe letter A). and 94 (lhe "' character). See Section 23.5 for a descrip­
tion or what each n1acro should return.

538 Chapter 2 1 The Standard Library

Section 21 .2

(c) What's the ndvanlage of using an array to implement these macros'?

#-define UPPER OxOl /* upper-case letter */
#define LOWER Ox02 I* lower-case letter */
#define DIGIT Ox04 /* decimal digit */
#define CONTROL 0x08 I* control character */
#define PUNCT OxlO /* punctuation character */
#define SPACE Ox20 /* white-space character */ -#define HEX Ox40 /* hexadecimal digit */ -
#define BLANK Ox80 /* space character*/

#define isalnum(c) (_ctype [c) & (_UPPER _LOWERI _DIGIT))
#define isalpha (c) (_ctype [c) & (UPPER _LOWER))
#define iscntrl(c) (_ctype[c] & CONTROL) -#define isdigit(c) (ctype (c] & DIGIT)
#define isgrapb(c) (_ctype (c) &

(_PUNCT I _UPPER I _ LOWER I_DIGIT))
#define islower(c) (_ctype [c) & LOWER)
#define isprint(c) (ctype [c) &

{_BLANKI _P'ONCTI_UPPERI_LOWERI_DIGIT))
#define ispunct(c) (_ctype [c) & PUNCT) -#define isspace(c) (_ctype [c) & SPACE) -#define isupper (c) (_ctype [c] & _UPPER)
#define isxdigit(c) (_ctype [c] & (_DIGIT I _REX))

0 7. In which standard header would you expect Lo find each of tbe foUowing?

(a) A function that determines the current day of lhe week
(b) A function that tests whether a character is a digit
(c) A macro U1at gives the largest unsigned int value
(d) A function U1at rounds a iloating-point number LO the next hjgher integer
(e) A macro thar specifies the number of bits in a character
(f) A macro that specities the nun1ber of significant digits in a double value
(g) A function that searches a string for a particular character
(b) A functio1, that opens a file for reading

Programming Projects

1. Write a program that declares tbe s structure (see Section 2 I .4) and prints the sizes and off­
sets of the a, b, and c n1embers. (Use sizeof to find sizes; use of fsetof to find off­
sets.) Have the program print the sjze of the entire structure as well. From this inforn,ation,
determine whether or not the stn1cture bas any boles. lf iL docs, describe the localion and
size of each.

Table 22.l
Standard Strean1s

File Pointer Strean,
- - -

stdin Standard input
stdout Stan<larcl output
stderr St."111dard error

22. 1 Streams 541

DefaulJ Meani11g

Keyboard
Screen
Screen

111e runctions that we've used io previous chapters-print:£. scanf.
putchar, getcbar. puts, nod gets-obtain inpu1 from stdin and send out­
put to stdout. By default. stdin represents the keyboard: stdout und
s tderr represent the screen. However. many operating systems allow these

E!J default meanings to be changed via a mechanism known us redirection.
] ypically. we can force a progran, to obtain its input fron, a file instead of

from lhe keyboard by putting the name of the ti.le on the command line. preceded
by the < character:

demo <in .dat

This technique, known as input re,lirecfion , essen tially makes the std.in stream
represent a file (in . da t. in this case) instead of the keyboard. TJ1e beauty of re<.li­
rection is that the demo program doesn't realize that it·s reading fron, in. dat; a
far as it knows. any data it obtains fron1 stdin is being entered at the keyboard.

Output redirection is sin1ilar. Redirecting lhe s tdout sLream is usually done
by putting a file name on Lhe conunand line. preceded by the> character:

demo >Out.dat

All datc:1 written to stdout will now go into the out. dat fi.le instead of appear­
ing on the screen. Incidentally, we can combine output redirection with input redi­
rection:

demo <in.dat >out.dat

The < and > characters don't have to be adjacent to file names. and the order in
which tbe redirected files are listed doesn 'l matter. "o the following examples
would work just as well:

demo< in.dat > out.dat
demo >out.dat <in.dat

One proble1n with output redirecuon ii, that e,•erytl1i11g written lo s tdout is
put into a file. If lbe progran1 goes off tbe rails and begins writing error n1essages.
we won't see then, unlil we look at the file. This is where stderr conies in. By
writing error messages LO stderr instead of stdout, we can guarantee that
those messages wiU appear on Lbe screen even when stdout has been redirected.
(Operating systems often allow stderr itself to be redirected. though.)

Text Files versus Binru·y Files

<stdio. h> supports two kinds of files: text and binary. The bytes in a text file
represent characters. making it possible for a human Lo examine Lhe file or edit it.

544 Chapter 22 Input/Output

Table22.2
Mode Strings
for Text Files

undefined.) There are two ways to avoid the problem. One is to use \ \ instead of
\:

fopen ("c: \ \project\ \ testl. dat 11 , 11 r")

The other technique is even easier-just u.5e the / character instead of\:

fopen { 11 c: /project/ test 1.. da t", "r")

Windows w;11 happily accept/ instead of\ as the directory separator.

£open returns a file pointer that the progran1 can (and usually wiJI) save in a
variable and use later ,vhenever it needs to perform an operaLion on the file. Here's
a typical call or f open, where fp is a vaiiable of type FILE *:

fp = fopen("in.dat", "r"); /* opens in.dat for reading*/

Vlheo the program calls an input function to read fron1 in. da t later, it will sup­
ply fp as an argun1enl.

When it can't open a file. £open returns a null pointer. Perhaps the file
doesn · t exist, or it's in the ,vrong place, or we don· t bave pe1mission to open iL

Never assume that a tile cru1 be ope11ed; always test the return value off open to
111ak:e sure il·s not a null poinler.

Modes

Which mode string we'll pass to f open depends not only on what operations we
plan to perform on the file later but also on whether the file contains text or binary
data. To open a text file, we'd use one of the mo<le strings in Table 22.2.

String Meaning
11 r II Open for reading

------------i

"w" Open for writing (file need not exist)
11 a II Open for appendiug (file need nul exist)

"r+ 11 Open for reading and \.Vriting. starting at beginning
"w+" Open for reading and writing (truncate if tile exists)
"a+" Open for reading and ,vriting (append iJfile exists)

El!J When we use fopen to open a binary file, we'll need to include the letterb in
the mode string. Table 22.3 lists mode strings for binary files.

Fro111 Tables 22.2 and 2?.3, we see thal <stdio. h> distinguishes between
'111riting data and a11pending data. When datn is written to a file. it norrnally over­
writes what was previously there. When a tile is opened for appending. however.
data written to the file is added at Lbe end. Lhus preserving Lhe file ·s original con Lents.

By the way, special rules apply when a tile is opened for both reading and writ­
ing (the n1ode string contains the+ character). We can't switcl1 from reading to writ-

546 Chapter 22 Input/Output

or the test against NULL:

if ((fp = fopen (FILE_NAME, 11 r 11
)) == NULL) ...

Attaching a File to an Open Stream

FILE *freopen(const char* restrict filename,
canst char* restrict mode,
FILE* restrict stream);

freopen freopen attaches a different rue to a stream that's already open. The most com­
mon use of freopen is to associate a file with one of the standard streams
(st din, stdout, or s tderr). To cause a progra1n to begin writing to the ftle
f oo, for instance, we could use the f o11owing call off reopen:

if (freopen("foo", 11 w 11
, stdout) == NULL) {

/* error; foo can't be opened*/
}

After closing any file previously associated with stdout (by command-line redi­
recLion or a previous call of freopen), freopen will open f oo and associate it
with stdout.

f reopen's normal return value is its third argument (a file pointer). If it can·r
open the new file, freopen returns a null pointer. (freopen ignores the error if
the old file can't be closed.)

9 C99 adds a new twist. If filename is a null pointer, freopen attempts to
change the su·ean1 's mode lo that specified by the mode paran1eter. Implementa­
tions aren't required to sllpport this feaLure, however: if Lhey do, Lhey may place
restrictions on which 1node changes are permitted.

Obtaining File Names from the Conunand Line

When we're writing a program that will need to open a file, one problem soon
becon1es apparent: how do we suppJy the file name to the program? Building ft.le
names into the program itself doesn't provide much flexibility, and pron1pting the
user to enter file names can be awkward. Often. the best solution is to have the p ro­
gram obtain file names from the command line. When we execute a program
named demo, for exan1ple, we 111ight supply it with file names by pulling the1n on
the comn1and line:

demo names.dat dates.dat

In Section 13.7, we sa\V how to access comn1and-line arguments by defining
main as a function with two parameters:

int main(int argc, char *argv[])
{

}

22.2 File Operations 547

argc is the number of command-line arguments; argv is an array of pointers to
the argument strings. argv [OJ points lo the program naine, argv [1 J through
argv [argc-1] point Lo the ren1aining arguments, and argv [argc] is a null
pointer. In the exainple above, argc is 3, argv [OJ points Lo a string containing
the progran1 name, argv [1] points to the siring II names . da t 11 , and argv [2 J
points to the string 11 dates . dat 11 :

0

].

2

3

argv

-

/

program name

~1
1

PROGRAM Checking Whether a File Can Be Opened

The following program determines if a Ii le exists and can be opened for reading.
When the program is run, the user will give it a file name co check:

canopen file

The program will then print either file can be opened or .file can' t be
opened. If the user enters the wrong number of arguments on the comn1and line,
the progran1 wi ll print the message usage: canopen filename to remind the
user that canopen requires a single file name.

canopen.c I* Checks whether a file can be opened for reading * /

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv [])
{

}

FILE *fp;

if (argc ! = 2) {

}

printf("usage: canopen filename\n");
exit(EXIT_FAILURE);

if ((fp = fopen (argv [1) , "r")) == NULL) {
printf(11 %s can't be opened\n", argv[ll);
exit(EXIT_FAILURE);

}

printf(11 %s can be opened\n", argv[l]);
fclose (fp) ;
return O;

548 Chapter 22 Input/Output

Note Lhat we can use redirection to discard the oulput of canopen and simply test
the status value it returns.

Temporary Files

FILE *tmpfile(void);
char *tmpnam(char *s);

Real-world programs often need to create ten1porary files-files lhat exist only as
long as tl1e program is running. C comp1lers, ror instance, often create temporary
files. A compiler 111igbt first Lranslate a C program to some intermediate form,
which it stores in a rue. The compiler would then read the File later as it LTanslaLes
Lhe program to object code. Once Lhe program is completely compiled, there's no
need to preserve the file containing the program's intermediate form. <stdio. h>
provides two functions. tmpf ile and tmpnam, for working with te1nporary files.

tmpfile tmpfile creates a te1nporary file (opened in "wb+" mode) that will exist
until it's closed or Lhe program ends. A call of tmpf ile returns a file pointer that
can be used to access the tile later:

FILE *tempptr;

tempptr = tmpfile(); / * creates a temporary file*/

ff it fails to create a file. tmpfile returns a nuJJ pointer.
Although tmpfile is easy to use, it has a couple or drawbacks: (1) we don'L

know the naine or the file that tmpfile creates, and (2) we can·t decide later Lo
make the file permanent. If these restrictions turn out to be a problem, the alterna­
tive is LO create a temporary file using fopen. Of course. we don·t want this file to
have the same name as a previously existing 1ile, so we need some way to generate
new ille names; that's where lhe tmpnam funclion comes in.

tmpnam tmpnam generates a name for a temporary file. If its argument is a null
pointer, tmpnam slores U1e file name in a static variable and returns a pointer to it:

char *filename;

filename= tmpnam(NULL); /* creates a temporary file name*/

Otherwise, tmpnam copies Lhe file name into a character array provided by the
programmer:

char filename(L_tmpnam);

tmpnam(filename); / * creates a temporary file name*/

In the latter case, tmpnam also returns a pointer Lo the first character of this array.
L_tmpnam i.s a macro in <stdio. h> lhal specifies ho,v long to make a character
array that will hold a temporary file name.

22.2 File Operations 549

Be sure lhal tmpnam's argument points to an array of at Jeast L_ tmpnam charac­
ters. Also, be careful not lo ca11 tmpnam too often; the TMP MAX macro (defined
in <stdio. h>) specifies tbe maximum nurnber of temporary ftle names lhat can
potentially be generated by tmpnam during the execution of a program. If il fails
to generate a fLle name, tmpnam returns a null pointer.

File Buffering

int fflush(FILE *stream);
void setbuf(FILE * restrict stream,

char* restrict buf);
int setvbuf(FILE * restrict stream,

char* restrict buf,
int mode, size_t size);

Transferring data to or from a disk drive is a relatively slow operation. As a result,
it isn't feasible for a program to access a disk file directly each time iL wants Lo
read or write a byte. Tbe secret Lo achieving acceptable performance is buffering:
data written to a stream is actually stored in a buffer area in memory; when it's full
lor lhe strean, is closed), the buffer is "flushed" (written LO the acrual output
device). Input streams can be buffered in a similar way: the buffer contains data
fron1 the input device; input is read from this buffer instead of the devi.ce itself.
Buffering can result in enormous gains in efficiency. since reading a byte from a
buffer or storing a byte in a buffer lakes hardly any time at all. Of coUISe, it talces
timne to transfer the buffer contents lo or from disk, but one large '·block 1nove" is
much faster than many tiny byte moves.

The functions in <Stdio. h> perform buffering automaticaJly when it seems
advantageous. The buffering Lakes place behind the scenes, and we usually don't
worry about it. On rare occasions. though. we may need Lo take a more active role.
If so, ,ve can use the functions ff 1 ush, setbuf, and setvbuf.

fflush W11en a program writes outpul to a file. the data nonnally goes into a buffer
fisst. The buffer is flushed automatically when it's full or the file is closed. By call­

Em ing ff lush, however, a program can tlush a file's buffer as often as it wishes. The
call

ff lush (fp) ; /* flushes buffer for fp */

flushes tl1e buffer for the file associated with fp. The call

ff lush (NULL) ; / * flushes all buffers*/

flu shes all outpuL streams. f flush returns zero if ifs successful and E0F if an
error occurs.

22.3 Formatted 1/0 551

When using setvbuf or setbuf, be sure lo close the stream before ils buffer is
deallocated. In particular, if the buffer is locaJ to a function ru1d has automatic stor­
age duration, be sure to close the slream before the funt:tion returns.

Miscellaneous File Operations

int remove(const char *filename);
int rename(const char *old, const char *new);

The functions remove and rename allow a program to perform basic fue 1nan­
agement operations. Unlike most other functions in this section, remove and
rename work witb file na,nes instead of file pointers. Boil1 functions return zero
if they succeed and a nonzero value if they fail.

remove remove deletes a fiJe:

remove ("foo") ; /* deletes the file named 11 £00 11 */

If a program uses fopen (instead of tmpf ile) to create a le1nporary file, it can
use remove to delete the file before tbe program terntinates. Be sure that the file
to be removed has been closed; the effect of re1noving a file that's currently open is
implen,entation-deiined.

rename rename changes tJ1e name of a file:

22.3

rename (11 £00 11 , 11 bar 11) ; /* renames "foo" to "bar"*/

rename is handy for renaming a temporary file created using fopen if a program
should decide co n1ake it permanent. [fa file wilb the new name already exists, the
effect is implementation-defined.

If the ftle to be rena1ned is open, be sure Lo close it before calling rename: the
function may fail if asked to rename an open file.

Formatted 1/0

In this section, we'U exan1ine li brary functions that use formal strings lo control
reading and wriLing. These functiot1s, which include our old friends printf and
scanf. have the ability to convert tlata fron1 character forn1 to nun1eric fom1 dur­
ing inpul and from nutneric fonn to character rorm during output. None of the
other l/O functions can do such conversions.

'fable 22.8
Effect of Lhe # Flag

Table22.9
Effect of Minimum Field

WidLb and Precisjon on
U1e % s Conversion

Table 22.10
Examples of tbe

%g Conversion

22.3 Formatted //0 557

Table 2?.8 shows the effect of the# 11ag on the o. x, X, g . and G conversions.

Conl'ersi'1n
Specifi-catio11

%Bo
%#80

%8x
%#Bx

%8.X
%#8.X

%89
%#89

%BG
%#8G

Result of Applyi,ig
Co1rversion to I 23

···••173
··••0173
••••••7b
••••Ox7b
••••••7B
••••0X7B

Result of Applying
Conversion to 123.0

···••123
• 123 . 000
···••123
• 123 . 000

r n previous chapters, we've used the 1nioin1un1 field widtb and precision
when displaying nun1bers, so there's no point in more examples here. Instead,
Table 22.9 sho\vS the effect of the minimum field widlh and precision on t he %s

conversion.

Result of Applying Result o.fApplying
Co,n•ersion Conversion to C'o,rversion to

Specificat;ou "bogus" "buzzword"

%6s • bogus buzzword
%-6s bogus • buzzword
%. 4S bogu buzz

%6 . 4s ••bogu ••buzz
%-6.4s bogu•• buzz••

Table 22. 10 illustrates how the %-g conversion displays some nun1bers in %e
fom1 and others in %£ form. Atn nu1nbers in Lbe table were wriUen using the % • 4g
conversion specification. The first two nun1bers have exponenls of at least 4, so
they're displayed in %e form. The next eight numbers are displayed in %f form.
The last two nun1bers have exponent<: less tl1aJ1 -4, so they're disp1ayed in %-e
fonn.

123456.
1 ?345.6

I ?34.56
123.456

12.3456
1.23456
. I ?3456
.0123456
.00123456
.0001 23456
.00001 ?3456
.00000 I ?3456

ResuTt of Applying % • 4g
Conversion to Nu,nber

l.235e+05
l.235e+04
1235
123.5
12 . 35
1..235
0.1235
0.01.235
0.001235
0 . 0001235
l.235e-05
1.235e-06

558 Chapter 22 Input/Output

fscanf
scant

tn Lhe past, we've assumed Lhat the 111inin1um lielcl ,vidth and precision were
constantc; embedded in Lhe format string. Putting Lhe * character where ejLher num­
ber would nom1ally go allows us lo specify it ac; an argument after the format
string. For example, Lhe following calls of print f all produce the saJne output:

print f (" % 6 . 4 d" , i) ;
printf(11 %*.4d", 6, i);
printf(11 %6.*d", 4, i);

printf(11 %*.*d11
, 6, 4, i) ;

Notice Lhat the values to be filled in for the * con1e Just before U1e value to be dis­
played. A major advantage of *. by tbe way, is that it allows us to use a macro to
specify the width or precision:

printf(11 %*d", WIDTH, i);

We can even compute the width or precision during progran1 execution:

printf (1'%*d11
, page_width / num_cols, i);

The most unusual specifications are %p and %n. The %p conversion al lows us
LO p1int the value of a pointer:

printf ("%p 11
, (void *) ptr) ; /* displays value of ptr */

Allhougb %p is occasionally useful during debugging. it's not a feature that most
programmers use on a daiJy basis. The C standard doesn't specify wbat a pointer
looks like when printed using %p, but it's likely to be shown as an octal or hexa­
decimal number.

The %n conversion is used to find out how many characters have been printed
so far by a call of ... printf. For example, after tl1e caJl

printf { 11 %d%n\n 11
, 123, &len);

the vaJue of len wiU be 3, since printf had written 3 characters (123) by the
time it reached %n. Notice that & rnust precede len (because %n requires a
pointer) and that len itself" isn't printed.

The ... scanf Functions

int fscanf(FILE * restrict stream,
const char* restrict format,

int scanf(const char* restrict format,
. . .) ;

• . .) i

fscanf and scanf read data items fro111 an input stream, using a fonnat suing to
indicate the layout of the inpul. After the formal string, any nun1ber of pointers­
each pointing to an object-follow as adrutional arguments. lnput iten1s are con­
verted (according to conversion specifications in the forn1aL string) and stored in
these objects.

m
feof

ferror

m

22.3 Formatted //0 565

clearerr isn't needed often, since some of the other library functions clear one
or both indicators as a side effect.

We can call the f eof and ferror functions to test a stream's indicators Lo
determine why a prior operation on the stream failed. The call feof (fp) returns
a nonzero value if the end-of-tile indicator is set for the stream assoc.,'ialed with fp.
The call f error (f p) returns a nonzero value if the error indicator is set. Both
functions retwn zero otherwise.

When scanf returns a smaller-than-expected vaJue. we can use f eof and
f error to determine the reason. 1f feof returns a nonzero value. we·ve reached
the end of the input file. If f error returns a nonzero value, a read error occurred
du.rjng input. If neither returns a nonzero value, a n1atching failLLre 1nust have oc­
curred. Regardless of what the problem was, the return value of scan£ tells us
how many data items were read before the problem occurred.

To see how f eof and f error might be u. ed, let's wrilc a function that
searches a file for a line that begins wilh an integer. Here·5 how we intend to call
the function:

n = find_int (11 £00 11
) ;

11 f oo II is the nan1e of the file to be seaJched. The function returns the value of Lhe
integer that it finds, which is then assigned ton. If a problem arises-the file can 'l
be opened. a read error occurs. or no line begins with an integer-£ ind_int will
return an error code (-l. -2. or -3. respectively). 1·11 assume that no Line in the tile
begins with a negative integer.

int find int(const char *filename)
{ -

}

FI.LE *fp = fopen(filename, "r");
int n;

if (fp == NULL)
return -1; / * can't open file*/

while (fscanf (fp, 11 %d 11 , &n) != l) {
if (ferror(fp)) {

}

fclose (fp);
return -2;

}
if (feof (fp)) {

fclose (fp) ;
return -3;

fclose(fp);
return n;

/* read error*/

/* integer not found*/

/* skips rest of line*/

The while loop's controlling expression culls f scanf in an attempt to read an
integer from the tile. lf the atle[npt fails (fscan£ returns a value other than I),

566 Chapter 22 Input/Output

find_int calls ferror and feof to see if the problem was a read error or end­
of-lile. 1f not. f scan£ lnust have failed because of a tnatcbing error, so
f ind_int skips the rest of the characters on the current line and tries again. Note
the use of the conversion %* [A\nJ to skip aU characLers up to Lhe next new-line.
(Now that we know about scansecs, it's time to show off!)

22.4 Character 1/0

In this section, we'll examine library functions that read and write single charac­
ters. These functions work equally well with text streruns and binary strean1s.

You'll notice that the functions in lhis section treat characters as values or type
int, not char. One reason is that the input functions indicate an end-of-file (or
error) condition by returning EOF, whlcb is a negative integer constant.

•

Output Functions

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

putchar putchar writes one character to the stdout stream:

putchar (ch) ; /* writes ch to stdout */

fputc fputc and p\ltC are more general versions of put char that write a chru·acter lo
putc an arbitrary strean1:

fputc (ch, fp) ;
putc {ch, fp) ;

/* writes ch to fp */
/* writes ch to fp */

Although putc and fputc do the same thing, putc is usually implemented
as a macro (as well as a function), while fputc is implemented only as a function.
put char itself is usually a macro defined in lhe following way:

#define putchar(c) putc((c), stdout)

[t may seen, odd that tb.e Library provides both putc and fputc. But, as we saw
in Section 14.3. macros have several potential problems. The C standard allows the
put.c macro to evaluate the stream argument more than once, wruch fputc
isn't permitted to do. Although programmers usually prefer putc, which gives a

El!J faster program, fputc is avai lable as an alternative.
If u write error occurs, all three functions set (he error indicator for tbe stream

and return E0F; otherwise, they return the character that was written.

22.5 Line 110 569

if (argc l= 3) {
fprintf(stderr, "usage: £copy source dest\n");
exit(EXIT FAILURE);

}

if ((source_fp = fopen (argv [l] , 11 rb 11)) == NULL) {
fprintf(stderr, "Can't open %s\n", argv[l]);
exit(EXIT_FAILURE);

}

if ((dest_fp == fopen (argv [2] , 11 wb 1')) == NDLL) {
fprintf(stderr, "Can't open %s\n", argv[2));
fclose(source_fp);

}
exit(EXIT_FAILURE);

while ((ch~ getc(source_fp)} I= EOF)
putc(ch, dest_fp);

}

fclose(source_fp);
fclose(dest_£p);
return O;

Using '' rb II and II wb" c1s lhe tile n1odes enab]es fcopy to copy both text anti
binary ti.Jes. If we usec.l "r" and II w II instead. the program wouldn't necessarily be
ab le Lo copy binary fi les.

22.5 Line 1/0

We'll now Lun1 to library functions I.bat read and write lines. These fuuclions are
used mostly with text streams, aJ though ifs legal tn use them with binary strean1s
as we]l.

Output Functions

int fputs(const char* restricts,
FILE* restrict stream);

int puts(const char *s);

puts We encountered the puts function in Seclion 13.3: it wriLes a string of characLers
to stdout:

pu 1:-s ("Hi , there l 11) ; / * writes to stdout */

After ic w1i tes the characters jo the string, puts always adds a ne\v-line character.

-

570 Chapter 22 Input/Output

fputs £puts is a more general version of puts. [ls second argument indicates the
strean, to wl1ich the output should be ,vritten:

fputs ("Hi, there! 11 , fp) ; /* writes to fp */

Unlike puts, the fputs function doesn't write a new-line character unless one is
present in the string.

Both functions relarn EOF if a write error occurs: otherwise, they return a
nonnegative nu1nber.

Input Functions

char *fgets(char *restricts, int n,
FILE* restrict stream);

char *gets (char *s);

gets The gets function, which we l::i.rst encountered in Section 13.3. reads a line of
input from s tdin:

gets (str) ; I* reads a line from stdin */

gets reads characters one by one. storing them in the array poinLed Lo by str,
until it reads a new-line character (which it discards).

fgets fgets is a more general version of gets that can read from any stream.

f gets is also safer Lhan gets, since it limits the number of characters that it will
store. Here's how we might use fgets, assuming LhaL str is the name of a char­
acter array:

fgets(scr, sizeof(str), fp); /* reads a line from fp */

This call wi ll cause f gets to read characters until it reaches the fust new-line
character or sizeof (str) - l characters have been read, whichever happens
first. If it reads the new-line character. fgets stores it along with the other charac­
ters. (Thus, gets never stores the new-line character, but fgets sonietin1.es does.)

Both gets and £gets return a null pointer if a read error occurs or they
reach the end of the input stream before storing any characters. (As usual, we can
cal l f eof or ferror lo determine which situation occurred.) Otherwise, both
return their first argument. which points to the array in which the input was stored.
As you'd expect. both functions store a null character at the end of the string.

Now that you know about fgets, I'd suggest using iL instead of gets in
most si tuations. With gets, there's always the possibility of stepping outside the
bounds of the receiving array, so it's safe to use only when the string being read is
guaranteecl to fit into tJ1e array. When there's no guarantee (and there usually
isn't), it's much safer to use fgets. Note that fgets will read from the standard
input strean1 if passed st din as its Lhird argument:

fgets(str, sizeof(str), stdin);

22.6 Block J/O 571

22.6 Block 1/0

-fwrite

size t fread(void * restrict ptr,
size t size, size_t nmemb,
FILE* restrict stream);

size t fwrite(const void* restrict ptr,
size t size 1 size_t nmemb,
FILE* restrict stream);

The fread and fwrite functions allow a progrru11 to read and write large
blocks of data in a single step. fread and fwri te are used primarily with
binary streams. although-with care-it's possible to use them with text streams
as well

fwri te is designed to copy an array from memory lo a stream. The fi rsL
argument in a call of fwrite JS lhe array's address, Lhe second argomenL is lhe
size of each array elemenl (in bytes), and the LhirJ argument is tl1e number of ele­
ments to write. The fourth argument is a file pointer, inilicating where tbe data
should be wr.itten. To \vrite the entire contents of the array a, for instance, we
could use the following call off write:

fwrite(a, sizeof(a[O]), sizeof(a) / sizeof(a[O]), fp);

There's no rule that we have to write the entire array; we could just as easily
write any portion of it. f write returns tbe number of eJemencs (no! bytes) actu­
ally written. This number will be less than the third argument if a write error oc­
curs.

tread fread will read the elements of an array from a stream. freact·s arguments
are similar to f write 's: the array's address, the siLe of each elen1ent (in bytes).
the number of elements to read. and a file pointer. To read the contents of a file into
the array a, we might use the following call of fread:

n = fread(a, sizeof(a[O]), sizeof(a) / sizeof(a[O]), fp);

It's important to check f read's return value. which indicates tl1e actual nun1ber of
ele1nents (1101 bytes) read. This nun1ber should equal the third argun1en1 unless the
end of the input file was reached or a read error occurred. The feof and ferror
functions can be used to determine the reason for any shortage.

Be careful not to confuse f read's second and third arguments. Consider the fol­
lowing call of f read:

fread(a, 1, 100, fp)

We're asking f read to read 100 one-byte elements, so it will return a valoe

574 Chapter 22 Input/Output

rewind

fgetpos
fsetpos

ml1

idea to subtracL values returned by £tell Lo see how far apart two file positions
are.

The rewind functi00 sets the file posiLion at the beginning. The caU
rewind(fp) is nearly equivalent to fseek(fp, OL, SEEK_SET). The dif­
ference? rewind doesn't return a value bul does clear U1e error indicator for fp.

fseek and f tell have one problem: Lhey're limited to files whose posi­
tions can be stored in a long integer, For working with very large files, C pro­
vides two additional functions: fgetpos and f setpos. These functions can
handle large tiles because they use values of type fpos _ t Lo represent file posi­
tions. An fpos_t value isn' t necessaiily an integer: it could be a structure. for
ins lance.

The call fgetpos (fp, &file _pos) stores tJ1e file position associated
with fp in the file__pos variable. The call fsetpos (fp, &file_pos) sets
the file posiLion for fp to be the vaJue stored in file_pos. (This value must have
been obtained by a previous caU of fgetpos.) lf a call or fgetpos or fsetpos
fails. it stores an error code in errno. Both functions return zero when i.hey suc­
ceed and a nonzero value when they fail.

Here's how we might use fgetpos and fsetpos to save a file position and
return lo it tater:

fpos_t file_pos;
•••

fgetpos(fp, &file_pos);

fsetpos(fp, &file_pos);

/ * saves current position*/

/ * returns to old position*/

PROGRAM Modifying a File of Part Reco1·ds

The following program opens a binai·y file containing part structures. reads the
structures into an array, sets the on_hand me1nber of each structure to 0, and then
writes the structures back to the file. Note that the program opens the file in
11 rb+ 11 mode, allowing both reading and \Vriting.

invclea~c /* Modifies a file of part records by setting the quantity
on hand to zero for all records*/

#include <stdio.h>
#include <Stdlib.h>

#define NAME LEN 25 -#define MAX PARTS 100

struct part {
int number;
char name[N.AME_LEN+l];
int on_hand;

} inventory[MAX_PARTS];

22.8 String //0 575

int num_parts;

int main(void)

•

{

}

FILE *fp;
int i;

if ({fp = fopen ("inventory. dat 11 , 11 rb+ '')) == NULL) {
fprintf(stderr, "Can't open inventory file\n");
exit (EXIT_FAILURE);

}

num_parts - fread(inventory, sizeof(struct part),
MAX_PARTS I fp) ;

for (i:: O; i < num_parts; i++)
inventory[i] .on_hand = O;

rewind (fp) ;
fwrite(inventory, sizeof(struct part), num_parts, fp);
fclose(fp);

return O;

Calling rewind is critical, by tbe way. After the f read call. the file position is at
Lhe end of the file. lf we were to calJ fwri te without calling rewind first,
fwri te would add new data to the end of the file instead of overwriting the old
dala.

22.8 String 1/0

The functions described in this section are a bit unusual. since they have nothing to
do with streams or files. Instead, they allo,1/ us to read and write data using a s tring
as though it were a stream. The sprintf and snprintf functions write charac­
ters into a string in the sa1ue way lhey would be written to a stream: the sscanf
function reads characters from a stri11g as Lhough it were reading Irom a strean1.
These functions, which closely resemble printf and scan£, are quite useful.
sprintf and snprintf give us access to printf 's fonnatting capabil ities
without actuaUy having to write daLa to a stream. Sia1ilarly, sscanf gives us
access to scanf 's powerful patlern-malcbing capabilities. The remainder of this
section covers sprintf. snprintf, and sscanf in detai l.

Three sir11ilar functions (vsprintf, vsnprintf, and vsscanf) also
belong to <stdio. h>. However. these functions rely on the va list type, -which is declared in <stdarg . h>. rn postpone discussing them until Section
26. l , which covers that header.

576 Chapter 22 Input/Output

Output Functions

int sprintf(char *restricts,
const char* restrict format, ...) ;

int snprintf{char *restricts, size_t n,
canst char* restrict format, .. .);

Note: tn this anti subsequent chapters, the prototype for a function thal is new in
C99 will be in iLalics. Also, the nan,e of 1he function will be italicized when it
appears in the left n1argin.

sprintf The sprintf function is sinlilar to print£ and fprintf. except that it writes
output into a character array (pojnLe<l to by its first argument) instead or a stream.

sprintf's secontl argument is a fonnat string identical to that used by printf
and fprintf. For example. lbe call

sprint£ (date, 11 %-d/%d/%d 11
, 9, 20, 201.0);

will write 11 9/20/2010" into date. When it's finished writing into a suing.
sprint£ adds a null characler and returns the number of characters stored (not
counting the null character). ff an encoding error occurs (a wide character could
not be translated in to a valid multibyte character), sprintf returns a negative
value.

sprintf has a variety of uses. For exa1nple, we 1nighL occasionally want to

f or1nal data for output will1out actually writiag iL We can use sprintf to do lhe
formatting, U1en save Lhc resulL in a string until it's lime to produce outpul.
sprintf is also convenient for converting numbers to character form.

snprintf The snprintf function is the same ns sprintf, except for the additional
purameter n. No 1nore than n - I characters will he written Lo the string. nol count­
ing the tenninating null character. wh ich is always written unless n is zero. (Equiv­
alently, we could say that snprintf writes at 1nost n characters to the string, the
last of which is a null character.) For example, the call

snprintf (name, 13, 11 %s, %s 11
,

11 ~instein 11
1

11 Albert 11
);

will write "Einstein, Al" into name.
snpr int f returns the nu 1nber of characters that would have been written

(not including the null character) hatl there been no length restriction. If an encod­
ing error occu~. snprintf returns a negative nun1ber. To see if snprintf hatl
roon1 co write all the requested characters. we can test whether its return value was
nonnegative and less than n.

Input Functions

int sscanf(consc char* restricts,
canst char* restrict format, ...) ;

Q& A 577

sscanf TI1e sscanf function is similar to scanf and f scanf. except rbaL it read<; from
a strjng (pointed to by its first argun1ent) instead of reading from a stream.
sscanf 's second argument is a fom1at string identical Lo that used by scanf and
fscanf.

s scan£ is handy for extracting data from a string that ,vas read by another
input function. For example. we 1night use fgets to obtain a line of input. then
pass the line to sscan£ for further processing:

fgets(str, sizeof(str), stdin);
sscaof(str, 11 %d%d 11 , &i, &j);

/ * reads a line of input*/
/ * extracts two integers*/

One advantage of using sscanf instead of scan£ or f scanf is that we can
examine an input line as many times as needed. not just once, making it easier to
recogniL.e alternate input fom1s and to recover frotn errors. Consider Lhe problem
of reading a date that's written either in the f onn rnonrh I da_y/year or ,nonth -clay­
year. Assumi11g: Lhat str contains a line of input, we can extract the month. day,
and ye::ir as fol10~1s:

if (sscanf(str, 11 %d /%d /%d 11
, &month, &day, &year) == 3)

printf ("Month : %d, day: %d, year: %d\n", month, day, year) ;
else if (sscanf (str, 11 %d -%d -%d 11 , &month, &day, &year) == 3)

printf(11Month: %d, day; %d, year: %d\n 11 , month, day, year);
else

printf (11 Date not in the proper form\n 11) ;

Like the scanf and f scanf functions, sscanf returns the number of data
icems successfully read and stored. sscanf returns EOF if it reaches the end of
the string (marked by a null character) before f10ding the first item.

Q&A

Q: If I use input or output redirection, ,viJI the redirected file names show up as
command~line arguments? fp. 541]

A: No; the operating system removes then1 from the command line. Let's say that we
run a program by entering

demo foe <in file bar >out file baz

The value of argc will be 4. argv [O] wiJI point to the program name,
argv[l] will point to "foo''· argv[2] wilJ point to 11 bar 11 • and argv(3]
will point to '' baz " .

Q: 1 thought that the end of a line ,vas aJways n1a1·ked by a ne\\·-line character.
Now you're saying that the end-of-line marker varies, depending on the oper­
ating system. How you explain this discrepancy? [p. 542]

A; C library functions 1nake it appear as though each line ends with a single new-line

578 Chapter 22 Input/Output

character. Regardless of whether an input file contains a carriage-reLum character.
a line-feed character, or both, a library function such as getc wil1 return a single
new-line character. The output functions perform the reverse translation. If a pro­
grain calls a library function lo write a new-line character to a file. Lbe function
will translate the character into the appropriate end-of-line marker. C's approach
makes prograrns 1nore portable and easier to write; we can work with text files
without having to worry about how end-of-line is actually represented. Note that
input/output performed on a file opened in binary mode isn'L subject to any char­
acter translation-carriage return and line feed are treate<.1 the same as the other
characters.

Q: I'm writing a program that needs to save data in a file, to be read later by
a11other program. Is it better to store the data in text form or binary form? [p.
542)

A: That depends. If the data is a1J teJll to start with, there ·s nol much difference. If Lhe
data contains numbers. however, the decision is tougher.

Binary for1n is usua11y preferable, since it can be read and w1itten quickly.
Numbers are already in binary form when stored in memory, so copying Lhern to a
file is easy. Writing numbers in text for1n is much slower. since each number must
be converted (usually by £print£) to character form. Reading the Cile later will
also take 1nore tin1c, since nun1bers will l1ave to be conve11ed fro1n text forn1 back
to binary. Moreover, storing data in binary form often saves space, as we saw in
Section 22. 1.

Bina1y files have two disadvantages. however. They're hard for humans lo

read, which can han1per debugging. Also, binary files generaJly aren't portable
from one system to another, since different kinds of computers store data in differ­
ent ways. For instance, son1e 1nachines store int values using two bytes hut others
use four bytes. There's also the issue of byte order (big-endian versus little­
endian).

Q: C programs for UNIX never seem to use the letter b in the mode string, even
when the file being opened is binary. What gives? [p. 544)

A: In UNIX. text files and binary files l1ave exactly the same format. so there's never
any need to use b. UNIX progra1n1ners should still include the b, however. so Lhat
their prograins will be n1ore po1table to other operating systen1s.

Q: I've seen programs tl1at call £open and put the letter t in the n1ode string.
What does t mean?

A: The C standard allows additional characters to appear in U,e mode string, provided
that they foUow r. w. a . b, or+. S01ne con1pilers allow the use oft to indicate that
a file is to be opened in text mode instead of binary mode. Of course. text mode is
the default anyway, so t add.'- nothing. Whenever possible, it's best to avoid using
t and other nonportable features.

Q: Why bother to call £close to close a file? Isn't it true that all open files are
closed automatically when a program terminates? [p. 545]

580 Chapter 22 Input/Output

A: feof will onJy return a nonzero value when a previous read operation has Jailed:
you can't use feof to check for end-of-fi le before attempting to read. Instead. you
should first attempt to read, then check the rett1m value from the input function. If
the return value indicates Lhat the operation was unsuccessful, you can then use
f eof to determine whether the failure was due to end-of-file. ln other \.VOrds, it's
best not to think of calling feof as a way to cletect end-of-ille. Instead, think of it
as a way LO conftm1 that end-of-file was the reason for the failure of a read opera­
tion.

Q: I still don't understand why the 1/0 library provides macros named putc and
getc in addition to functions named fputc and fgetc. According to Sec­
tion 21.1, there are already two versions of putc and getc (a macro and a
function). If we need a genuine function instead of a macro, we can expose the
putc or getc function by undefining the macro. So ,vhy do fputc and
fgetc exist? [p. 5661

A: Historical reasons. Prior to standardization.Chad no rule that there be a true func­
tion to back up each parameterized 1nacro in the library. putc and getc were tra­
cLitiooaUy in1plen1ented only as macros; fputc and fgetc were implemented
only as functions.

*Q: What's wrong with storing the return value of fgetc. getc, or getchar in
a char variable? J don't see ho,v testing a char variable against EO? could
give the wrong answer. [p. 568]

A: There are two cases in wbjch Ulis test can give the wrong resull. To make the fol­
lowing discussion concrete, 1·u assume lwo·s-co111plerne11L arithn1etic.

First, suppose that char is an un~igne<l Lype. (Recall that some compilers
treat char a,; a signed Lype but others treat iL as an unsigned rype.) Now suppose
that getc returns EOF. which we store in a char variable named ch. If EOF rep­
resents - I (its typical value), ch will end up with the value 255. Comparing ch (an
unsigned character) with EOF (a signed integer) requires converting ch to a signed
integer (255, in thjs case). The comparison against EOF fails, since 255 is not equal
to -1.

Now ao;sume that char is a signed type instead. Consider what happens if
getc reads a byte containing the value 255 from a binary stream. Storing 255 in
the ch variable gives il the value -1. since ch is a signed character. Testing
whether ch is equal to EOF will (erroneously) give a true resull.

Q: The character input functions described in Section 22.4 require that the Enter
key be pressed before they can read \\1hat the user has typed. How can I write
a program that responds to individual keystrokes?

A: As you've noticed. lhe getc. fgetc, and getchar functions are buffered: they
don't start to read input until the user has pressed Lhe Enter key. In order to read
characters as they·re entered-which is importanL for some kinds of programs­
you'll need to use a non~tandard library that's tailored to your operating system. In
UNIX, for example. the curses library often provides lhis capabjlity.

582 Chapter 22 Input/Output

Section 22.1

Section 22.2

Section 22.3

Q: Why doesn't this chapter discuss screen control: moving the cursor, changing
the colors of characters on the screen, and so on?

A: C provides no standard functions for screen control. The C standard addresses only
issues that can reasonably be standardized across a wide range of computers and
operating systems; screen control is outside this realm. The customary way to
solve this problem in UNIX is lo use the curses library, which supports screen
control in a terminal-independent manner.

Similarly, there are no standard functions for building programs with a graphi­
cal user interface. However. you can most likely use C function cails to access the
windowing API (application programming interface) for your operating system.

Exercises

I. Indicate whether each of lhe following files is more likely to contain tex:t data or binary
data:

(a) A file of object code produced by a C con1piler
(b) A program Hsti ng produced by a C compiler
(c) An email message sent from one computer to another
(d) A file containing a graphics image

9 2. Indicate whlcb mode string is most likely to be passed to fopen in each of the following
situations:

(a) A database management systen1 opens a fi le containing records to be updated.
(b) A mail program opens a file of saved messages so that it can add additional messages lo

the end.
(c) A graphics program opens a file contaiaiae a picture to be displayed on the screen.
(d) An operating system command interpreter opens a "shell script" (or "batch file'') con­

taiaing commands to be executed.

3. Find the error in the following program fragment and show how to fix it

FILE *fp ;

if (fp = fopen(filename, "r")) {
read characters until end-of-file

}
fclose (fp);

9 4. Show how each of the following numbers will look if displayed by printf with
%#012. Sg as the conversion specification:
(a) 83.7361
(b) 29748.6607
(c) 1054932234.0
(d) 0.0000235218

5. Is there any difference between the print:f conversion specifications % • 4d and %04d? If
so. explain what it is.

Section 22.4

9 *6. Write a caU of printf lhat prints

1 widget

if lhe widget variable (of type int) has the value I. and

n widgets

Exercises 583

otherwise, where 11 is the value of widget. You are not allowed to use the if statement or
any other statement; the answer must be a single call of printf.

*7. Suppose that we call scanf as follows:

n = scanf(11 %d%f%d 11
, &i, &x, &j);

(i, j, and n are int variables and x is a float variable.) Assuming that the input stream
contains the characters shown. give the values of i, j, n. and x after the call. In addition,
indicate which characters were consumed by the call.

(a) 10 • 20 • 300
(b) 1.0• 2.0 • 3.00

(c) O.l• 0.2 • 0.30

(d) .l • .2 • .30

9 8. In previous chapters, we've used the scanf format string 11 %c" when we wanted to skip
white-space characters and read a nonblank character. Some -programmers use "% ls 11

instead. Are the two techniques equivaJent? I f not, what are che differences?

9. Which one of the following calls is not a valid way of reading one character fron1 the stan­
dard input strean1?

(a) getch ()
(b) getchar ()
(c) getc (stdin)
(d) fgetc (stdin)

9 10. The fcopy. c program bas one minor Oaw: iL doesn·t check for errors as it's writing to Lhe
destination file . Errors during writing are rare, but do occasionally occur (the disk might
beco1ne full, for example). Show how to add the missing error check to Lhe program, assum­
ing that we want it to display a message and terminate immediately if an error occur s.

11 . The following loop appears in the fcopy. c -program:

while ((ch= getc(source_fp)) I= EOF)
putc (ch, dest_fp);

Suppose that we neglected to put parentheses around ch= getc (source fp) :

while (ch= getc(source_fp) != EOF)
putc(ch, dest fp);

Would the program compile without an error'? If so, what would the program do when it's
run?

12. Find the error in the following function and show ho\v to fix it.

int count_periods(const char *filena~e)
{

FILE *fp;
int n = O;

Programming Projects 585

3. Write a program named feat that "concatenates" any number of files by writing them to
standard oulpul, one after the other, with no break between files. For examp1e, the following
command wilJ display the files fl. c. f2. c, and f3. con the screen:

feat fl.c £2.c f3.c

feat should issue an error n1essage if any fl.le can'l be opened. Hint: Since it has no more
lhaa one file open at a ti.n1e, f cat needs only a single file pointer variable. Once it's fin­
ished with a file, feat can use the same variable when it opens the next file.

f) 4. (a) Write a program Lhat counts the number of characters in a text file.

(b) Write a program that counts the number of words in a texl file. (A "word'' 1s any
sequence of non-white-space characters.)

(c) Write a program that counts the number of lines in a text file.

Have each program obtain the file name from the command line.

5. The xor. c program of Section 20. l refuses to encrypt bytes that-in original or encrypted
fonn-are control characters. We can now remove this restriction. Modify the program so
that Lhe names of the input and output files are command-line argumenls. Open both files in
binary mode, and remove the test that checks whether the original and encrypted characters
are printing characters.

f) 6. Write a program thal displays the contents of a file as bytes and as characters. Have the user
specify the file name on the command line. Here's what the output will look like when the
program is used lo display Lhe pun. c file of Section 2.1:

Offset Bytes Characters

0
10
20
30
40
50
60
70
80
90

100
110

23 69 6E 63 6C 75 64 65 20 3C
73 74 64 69 6F 2E 68 3E OD OA
OD OA 69 6E 74 20 6D 61 69 6E
28 76 6F 69 64 29 OD OA 7B OD
OA 20 20 70 72 69 6E 74 66 28
22 54 6F 20 43 2C 20 6F 72 20
6E 6F 74 20 74 6F 20 43 3A 20
74 68 61 74 20 69 73 20 74 68
65 20 71 75 65 73 74 69 6F 6E
2E SC 6E 22 29 3B OD OA 20 20
72 65 74 75 72 6E 20 30 3B OD
OA 7D

#include<
stdio. h> ..
.. int main
(void) .. { .

printf (
11 To C, or
not to C:
that is th
e question
• \n II) j ••

return 0; .
. }

Each line shows 10 bytes fron1 the file, as hexadecimal numbers and as characters. The
number in the Offset column indicates the position within the file of Lhe first byte on the
line. Only printing characters (as determined by the isprint function) are displayed;
other characters are shown as periods. Note that the appearance of a text file may vary,
depending on the character set and the operating system. The example above assurnes that
pun. c is a Windows file, so OD and OA bytes (the ASCil carriage-return and line-feed
characters) appear at the end of each line. Hint: Be sure to open the file in II rb II mode.

7. Of Lhe many techniques for con1pressing the contents of a file, one of the simp1est and fast­
est is known as run-length encoding. This technique compresses a file by replacing
sequences of identical bytes by a pair of bytes: a repetition count followed by a byte to be
repeated. For exarnple, suppose tbat the file to be compressed begins with the fo1lowing
sequence of bytes (shown in hexadecimal):

46 6F 6F 20 62 61 72 21 21 21 20 20 20 20 20

The compressed file will contain Lhe following bytes:

Programming Projects 587

Lity on hand to a file. (Don't save lhe next pointer; it won't be valid once the program ter­
minates.) As it reads parts from a file, Lhe r operation will rebuild the list one node at a time.

J I. Write a program that reads a date from the command line and displays it in the following
form:

September 13, 2010

Allow the user to enter rhe date as either 9-13-2010 or 9/13/2010; you may assume
that there are no spaces j a the date. Print an error message if the date doesn't have one of the
specified forn1s. Hint: Use sscanf to extract the monlh, day, and year from the command­
line argument.

L2. Modify Programming Project 2 from Chapter 3 so tbat the program reads a series of items
from a file and displays the data in columns. Each line of Lhe tile will have the following
form:

ite11i, price, min/ dd/ yyyy

For example, suppose that the file contains the following lines:

583,13.5,10/24/2005
3912,599.99,7/27/2008

The output of the program should have the following appearance:

Item

583
3912

Unit
Price
$ 13.50
$ 599.99

Purchase
Date
10/24/2005
7/27/2008

Have the program obtain the file name from the co1nn1and line.

13. Modify Programming Project 8 fron1 Chapter 5 so that the program obtains departure and
arrival Limes from a file named flights. dat. Each line of the file will contain a depar­
ture Lime followed by an arrival time, wilh one or more spaces separating lhe two. Times
will be expressed using the 24-hour clock. For exan1ple, here's what flights. dat might
look Like if it contained the tl1ght information listed in the original project:

8:00 10:16
9:43 ll:52
ll:19 1-3:31
12:47 15:00
14-:00 16:08
15:45 17:55
19:00 21:20
21:45 23:58

14. Modify Programtning Project 15 from Chapter 8 so that tbe program prompts the user to
enter che name of a file containing the message to be encrypted:

Enter name of file to be encrypted: message.txt
Enter shift amount (1-25): l
The program then writes the encrypted tnessage to a file with the same name but an added
extension of . enc. In this exrunple, the original file name is message. txt, so the
encrypted message will be stored in a file named message. txt. enc. There's no limit on
the size of the file to be encrypced or on the length of each tine in the file.

15. Modify the justify program of Section 15.3 so that it reads from one text file and writes
to another. Have the progran, obtain the names of both files from lhe cnmmand line.

588 Chapter 22 Input/Output

16. Modify lhe fcopy . c program of Section 22.4 so lhaL it uses fread and fwrite to copy
lhe file in blocks of 512 bytes. (The lasl bJock may contain fewer than _11? bytes, of course.)

17. WriLe a program that reads a series of phone numbers fron1 a file and displays them in a
standard forn1at. Eacll line of tJ1e file will contain a single phone nun1ber, but the numbers
may be in a variety of formats. You may assume that each line contains l0 digits, possibly
mixed with other characters (which should be ignored). For example, suppose that the file
contains the following lines:

404.817.6900
(215) 686-1776
312-746-6000
877 275 5273
6173434200

The outpul of the program should have the foUowing appearance:

(404) 817-6900
(2l5) 686-1776
(312) 746-6000
(877) 275-5273
(617) 343-4200

Have the program obtain the file name from the command line.

l8. Write a program that reads integers fro1n a text file whose name is given as a comn'.land-line
argument. Each line of the file may contain any number of integers (including none) sepa­
rated by one or n1ore spaces. Have the program display the largest number in the file, the
smallest nurnber. and the median (lhe number closest to the midc!Je if tJ1e inLegers were
sorted). [f the file contains an even n1101ber of integers, there will be two numbers in lhe
middle: the progran1 should display !heir average (rounded down). You may assume lhaL Lhe
file contains no more than I 0.000 integers. Hi111: Store Lhe integers in an array and tllen sort
the array.

19. (a) Write a program that converts a Wmdows text ti le to a UNIX text fi le. (See Section 22.1
for a discussion of tile differences bet ween Windows and UNIX text files.)

(b) Write a progratn that converts a UNIX lex.l file lo a Windows rex.t file.

In each case. have the progra,n obtain the names of both fi.les from the command line. Hint:
Open the input fiJe in II rb '' mode and the output file in "wb II mode.

Table 23.4
Max. Min, and Epsilon

Macros in <float. b>

Table 23.5
Evaluation Methods

23.2 The <limits. h> Header: Sizes of Integer Types 591

Na,ne Value Description
FLT MAX >10+37 Largesl finite value - >10+37 DBL MAX - > 10+31 LDBL MAX -
FLT MIN <10-37 Smallest positive value - <10-37 DBL MIN -
LDBL MIN 510-37 -
FLT EPSILON <10-s Smallest represent.able difference between two numbers - ~10-9 DBL EPSILON
LDBL EPSILON <10-9 -

C99 provides two other macros. DECIMAL DIG and FLT EVAL METHOD. - - -
DECIMAL_DIG represents the number of significant digits (base 10) in the wid-
est supported floating type; -it has a minimum value of I 0. The value of
FLT_EVAL_METHOD indicates whether an implementation will perform float­
ing-point arithmetic using greater range and precision than is strictly necessary. If
this macro has the value 0, for example, then adding two float values would be
done in the normal way. If it has the value l, however, then the float values
would be converted to double before the addition is performed. Table 23.5 lists
the possible values of FLT_EVAL_METHOD. (Negative values not shown in lhe
table indicate implementation-defined behavior.)

Valt,e Meaning
-1 lndetermi nable

I

0 Evaluate all operations and constants just to the range and precision of the rype 1

l Evaluate operations and constancs of type float and double ro lhe range "

and precision of the double type
2 Evaluate all operations and constants to the range and precision of lhe long

double type

Most of the n1acros in <float. h> are of interest only to experts in numeri­
cal analysis, making it probably one of the least-used headers in the standard
library.

23.2 The < 1 imi ts . h> Header: Sizes of Integer Types

The <limits .h> header provides macros that define the range of each integer
type (including the character types). <limits . h> declares no types or functions.

One set of macros in <limits. h> deals with Lhe character types: char,
signed char, and unsigned char. Tuble 23.6 lists these macros and shows
the maxin1u1n or minimum value of each.

The other macros in < 1 i mi ts . h> deal with the remaining integer types:
short int, unsigned short int, int, unsigned int. long int, and

600 Chapter 23 Library Support for Numbers and Character Data

Table 23.8
Relationship between

FLT EVAL METHOD
and the float t aad

double t Types

Value oj' lit/caning of Meani11gof
FLT EVAL METHOD float t doublet - -

0 float double
1 double double
2 long double long double

Other lmplementalion-detined Implen,entation-defined

Macros

C99 adds a number of macros to <math. h>. I'U mention just two of them at this
point. INFINITY represenLc; the float version of positive or unsigned infwity.
(IT the implementation doesn't support infinity, then INFINITY represents a
£loat value that overflows at co1npile time.) The NAN macro represents the
float version of "not a number." More ~pecificaUy, it represents a "quiet" NaN
(one lhar doesn't raise an exception if used in an arithmetic express.ion). If quiet
NaNs aren' t supported. the NAN n1acro won·L be defined.

I ' JJ cover the f1.1oction-Like macros in <math. h> later in the section, along
with ordinary functions. Macros that are relevant only to a specific function will be
described with the function itself.

Errors

For the n1ost pai1, the C99 version of <ma th. h> deals with errors in the same
way as the C89 version. However, there are n few twists that we'll need to discuss.

First, C99 provi.cles several macros that give impletnentations a choice of b.ow
errors are signaled: via a value stored in errno, via a floating-point exception, or
both. The ,nacres MATH_ERRNO and MATH_ERREXCEPT represent the integer
constants 1 and 2, respectively. A third macro, math_errhandling, represents
an int expression whose value is either MATH_ ERRNO, MATH_ERREXCEPT, or

the bitwise OR of the two values. (TCs also possible that math_errhandling
isn't really a 1nacro: it might be an identifier with external linkage.) Tile value of
math_ errhandling can't be changed within a program.

Now, let's see what happens when a domajn error occUTs during a call or one

of the functions in <math . h>. The C89 standard says that EDOM is stored in
errno. The C99 standard, on the other hand, states that if the expression
math_errhandling & MATH_ERRNO is nonzero (Le., the MATH_ERRNO bit is
set), then EDOM is stored in errno. If the expression math_errhandling &

MATH_ERREXCEPT is nonzero, the invalid Ooating-poinl exception is raised.
Thus. e_itber or both actions are possible, depencLing on the vaJue of
math_ errhandling.

Finally. let's turn to ci1e aclions that take place when a range error is detected
during a function call. There are two cases, based on the magnitude of the func­
tion's return value.

Overflow. lf the rnagnitude is too large, Lhe C89 standard requires the function
to return positive or negative HUGE_VAL, depending on the sign of the correct

602 Chapter 23 Library Support for Numbers and Character Data

The C99 version of <math .h> also includes a number of completely new
functions (and function-I ike macros). I'll give a brief description of each one. As in
Section 23.3, l won't discuss error conditions for these functions, bu1 Appendix
0-· which lisLS all standard library functions in alphabetical order-provides this
iaformalion. I won't List the names of al] the new functions in the left margin;
instead, I' ll show just the name of the primary function. For example, there are
tJ1ree new functions that compute the arc hyperbolic cosine: acosh. acoshf, and
acoshl. I' ll describe acosh and display only its name in the left margin.

Keep in mind tbat many of the new functions are highly specialized As a
result, the descriptions of these functions may seem sketchy. A discussion of wbat
these functions are used for is outside the scope of this book.

Classitica tion Macros

int fpc:lassify (real-floating x);
int isfini te (real-jloat;ng x);

int isinf (real:floating x) ;
int isnan (real-floating x);

int isnormal (real-:floaring x);
int signbi t (real-floating x);

Our first category consists of fw1ction-like macros that are used to determine
whether a floating-point value is a "normal" number or a special value such as
infutity or NaN. The macros in this group are designed to accept arguments of any
real floating type (float, double, or long double).

fpclassify The fpclassify macro classifies its argurnenl, returnioe the vaJue of one

Table 23.9
Nu1nber-Classificatiou

Macros

isfinite
isinf

isnan
isnormal

signbit

of the nun1ber-classification macros shown in Table 23.9. An implementation may
support other classifications by defining additional macros whose nan1es begin
with FP_ and an upper-case leuer.

Na,ne

FP INFINITE
FP NAN
FP NORMAL
FP SUBNORMAL
FP ZERO

Meaning
InfLOity (positive or negative)
Not a number
Nonna! (not zero, subnormal. infinite, or NaN)
Subnom1al
Zero (positive or negative)

The isfinite macro returns a nonzero value if its argument has a finite
va1ue (zero, subnormal, or norma1, but not infinite or NaN). i sin£ returns a non­
zero va1ue if its argument has the value infinity (positive or negative). isnan
returns a nonzero value if its argun.1ent is a NaN value. isnormal returns a non­
zero value if its argument has a normal value (uot zero, subnorn1al, iJ1finite, or
NaN).

The last classification 1nacro is a bit different from the others. signbit
returns a nonzero value if the sign of its argument is negative. The argument need
not be a finite number; signbit also works for infinity and NaN.

23.4 The <ma th. h> Header (C99): Mathematics 603

Trigonometric Functions

float acosf(float x);
long double acosl(long double x);

float asinf(float x);
long double asinl(long double x);

float atanf(float x);
long double atanl(long double x);

float atan2f(float y, float x);
long double atan2l(long double y,

long double x) ;

float cos£(£1oat x);
long double cosl(long double x);

float sinf(float x);
long double sinl(long double x);

float tanf(float x);
long double tanl(long double x);

see acos
see acos

• see asin
. see asin

see atan
see atan

see atan2

see atan2

see cos
see cos

see sin
• see sin

see tan
see tan

The only new trigonometric functions in C99 are analogs of C89 functions. For
descrjptions, see the corresponding functions in Section 23.3.

Hyperbolic Functions

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asjnh7(1ong double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

float coshf(float x);
long double coshl(long double x);

float sinhf(tloat x);
long double sinhl(long double x);

float tanhf(float x);
long double tanhl(long double x);

see cosh
see cash

see sinh
see sinh

see tanh
see tanh

604 Chapter 23 Library Support tor Numbers and Character Data

acosh
asinh
atanh

Six functions in this group correspond to the C89 fuoctions cosh, sinh, and
tanh. The new functions are acosh, which cotnputes the arc hyperbolic cosine;
asinh, which con1putes the arc hyperbolic sine: and atanh, which computes the
arc hyperbolic rangent.

Exponential and Logarithmic Functions

float expf(float x);
long double expl(long double x);

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double expm1(double x);
float expmlf(float x);

long double expmll(long double x);

float frexpf(floac value, int *exp);
long double frexpl(long double value,

int *exp);

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

float logf(float x);
long double logl(long double x);

float loglOf(float x);
long double loglOl(long double x);

double loglp(double x);
float; loglpf (float x),.
long double loglpl(long double x);

double log2(double x),-
£loat log2f(float x);
long double log2l(long double x);

double logb(double x),-
float logbf(float x);
long double logbl(long double x);

float modff(float value, float *iptr);
long double modfl(long double value,

long double *iptr);

see exp
see exp

see frexp

see frexp

seeldexp
see ldexp

see log
see log

see loglO
see loglO

see modf

see modf

exp2
expmt

mm
logb
ilogb

logtp
log2

scalbn
sea/bin

23.4 The <ma th. h> Header (C99): Mathematics 605

double scalbn(double x, int n);
float scalbnf(float x, int n);
long double soalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);

In additional to new versions of exp. frexp, ldexp, log. loglO, and modf,
there are several entirely new functions io this caLegory. Two of these, exp2 and
expml, are variations on the exp function. When applied to the argument x, the
exp2 function retun1s 2x. and expml returns ex. - I.

The logb fllnction returns the exponent of ils argument. More precisely. the
call logb (x) returns logr(lxl), where r is tl1e radix of ll oating-point arithmetic
(defined by the macro FLT_RADIX, which typically has the value2). The ilogb
function returns the value of logb after it bas been cast to int type. The loglp
function returns ln(l + x) when given x as its argumenL The log2 function com­
putes the base-2 logarithm of its argument.

The scalbn function returns xx FLT_RADIXn, which it computes in an
efficient way (not by explicitly raising FLT_RADIX to tbe n th power). scalbln
L<; the sa1ne as scalbn, except Lhat its second parameter bas type long int
instead of int.

Power and Absolute Value Functions

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

float fabsf(float x);
long double fabsl(long double x);

double hypot(double x, double y);
float hypotf(float x, floaty);
long double l1ypotl (long double x,

float powf(float x, floaty);
long double powl(long double x,

long double y);

float sqrtf(float x);
long double sqrtl(long double x);

see fabs
see fabs

long double y);

see pow

see pow

.,ee sqrt
see sqrt

Several functions in this group are new versions of old ones (fabs, pow, and
sqrt). Only tbe functions cbrt and hypot (and their variants) are entirely new.

cbrt The cbrt function con1putes the cube root of its argument. The pow function
can also be used for this purpose, but pow is unable to handle negative argun1ents

606 Chapter 23 Library Support for Numbers and Character Data

(a domain error occurs). cbrt, on the other band, is defined for both posiLive and
negative arguments. When its argument is negative, cbrt returns a negative result.

hypot When applied to arguments x and y, the hypot function returns Jx2 + y 2 . In
other words, this function computes the hypotenuse of a right triangle wi th legs x
and y.

Error and Gamma Functions

double erf(double x);
Boat erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x)i

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

erf The erf function computes the error fu11cti.on erf (also known as the Gaussian
erfc e"or functio11), which is used in probability, statistics and partial differential

equations. The mathematical definition of erf is

/gamma
tgamma

m

2 (t 2
erf(x) = c J, e -, dt

,.J7t 0

erf c co,nputes the comple11ientary error function., erfc(x) = 1 - erf(x).
The gam,na function r is an extension of the factorial function that can be

applied to reaJ numbers as well as to integers. Wben applied Lo an integer n, r (n) =
(n-1)!: the definition ofr ror nonintegers is more complicated. The tgamma func­
tion computes r. The lgamma function compuLes ln(II'(x)I). the natural logarithm
of the absolute value of tbe gan11na function. lgamma can sometimes be more use­
ful than the gamma function itself. because r grov.1s so quickly that using it in cal­
culations may cause overnow.

Nearest Integer Functions

float ceilf(float x);
long double ceill(long double x);

float floorf(float x);
long double floorl(long double x);

see ceil
see ceil

see floor
see floor

nearbyint
rint

lrint
llrint

round

23.4 The <ma th. h> Header (C99): Mathematics 607

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x),-

double rint(double x);
float rintf(float x),-
long double rintl(long double x);

long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
Jong long int llrintl (long double x);

double round(double x);
float roundf(float x);
long double roundl(long double x);

long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround (double x);

long long int llroundf(float x);
long long int llroundl(long double x);

double trunc(double x);
float truncf(float x),-
long double truncl(long double x),-

Besides additional versions of ceil and floor, C99 has a number of new func­
tions that convert a floating-pojnt value to the nearest integer. Be careful when
using these fttnctions: although all of them return an integer, some functions
return it in floating-point format (as a float, double, or long double
value) and s01ne return it in integer format (as a long int or long long int
value).

The nearbyint fuoction rounds iLs argurnenl to an integer, returning it as a
floating-point nu1nber. nearbyint uses the current rounding direction and does
not raise the inexact floating-point exception. rint is the san1e as nearbyint,
except that it may raise Lbe ine.ract floating-point exception if the result has a dif­
ferent value than the argument

The lrint function rounds its argument to the nearest integer, according to
the current rounding direction. lrint returns a long int value. llrint is the
same as lrint, except that it returns a long long int value.

The round function rounds its argument to the nearest integer value, return­
ing il as a floating-point number. round always rounds away from zero (so 3.5 is
rounded to 4.0, for exainple).

608 Chapter 23 Library Support for Numbers and Character Data

!round
I/round

trunc

The lround function rounds its argun1ent to the nearest integer va1ue. return­
ing it as a long int value. Like round, il rounds away from zero. llround is
the same as lround, except that it reLw'Tls a long long int value.

The trunc function rounds its argument to the nearest integer not larger in
magnitude. (In other words. it truncates Lhe argument toward zero.) trunc returns
the result as a floating-point number.

Remainder Functions

float fmodf(float x, floaty);
long double fmodl(long double x,

long double y);

double remainder(double x, double y);
float remainderf(float x, floaty);
long double remainderl (long double x,

long double y);

double remquo(double x, double y, int *quo);
float remquof(float x, floaty, int *quo);

see fmod

see fmod

long double remquol(long double x, long double y,
int *quo);

Besides additional versions of fmod, tbis category includes new remainder func­
tions named remainder and remquo.

remainder The remainder function returns x REM. y, where REM is a function defined
in the IEEE standard. For y * 0, the value of x REM y is r = x - ny, where n is the
integer nearest the exact value of x/y. (If x/y is halfway between two integers, n
is even.) If r = 0, it has the same sign as x.

remquo The remquo function returns the same value as remainder when given the
same fi rst two arguments. In addition, remquo modifies the object pointed to by
the quo parameter so that it contains n low-order bits of the integer quotient lx/yl.
where n depends on the implen1entation but 1nust be at least three. The value stored
in this object will be negative if x/y < 0.

Manipulation Functions

double copysign(double x, double y);
float copysignf(float x, floaty),-
long double copysignl(long double x, long double y);

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

double nextafter(double x, double y);
float nextafterf(float x, floaty);

610 Chapter 23 Library Support for Numbers and Character Data

fdim The f dim fu nction computes the positive difference of x and y:

{
x-y ifx>y
+O ifx<y

fmax The fmax function returns the larger of its two arguments. fmin returns the
fmin value of the smaller argument.

Floating Multiply-Add

double fma(double x, double y, double z);
float fmaf(float x 1 floaty, float z);
long double fmal(long double x, long double y,

long double z);

fma The fma function mulLiplies its first Lwo arguments, then adds the third argurnent.
In other words, we could replace the statement

a= b * c + d;

with

a= fma(b, c, d);

This function was added to C99 because some newer CPUs have a " fused multi­
ply-add" instruction that both multiplies and adds. Calling fma telJs the compiler
to use this instiuction (if available), which can be faster than perfom1ing separate
multiply and add instructions. Moreover, the fused multiply-add instruction per­
forms only one rounding operation, not two, so it may produce a more accurate
result. It 's particularly useful for algorithms that perform a series of multiplications
and additions, such as the algorithms for finding the dot product of two vectors or
multiplying two matrices.

To determine whether calling the fma function is a good idea, a C99 program
can test w hether the FP _FAST_ FMA 1nacro is defined. ff it is, then calling f ma
should be faster than-or at Jeast as fast as-performing separate n1ultipJy and add
operations. The FP_FAST_FMAF and FP_FAST_FMAL macros pJay the same
role for the fmaf and fmal functions. respectively.

Performing a combined multiply and add is an example of wbat the C99 stan­
dard calls "contraction,'· ~vhere two or more mathematical operations are combined
and performed as a single operation. As we saw with the fma function , contraction
often Jeads to better speed and greater accuracy. However, programmers may wish
to controJ whether contraction is done automatically (as opposed to calls of fma,
which are explicit requests for contraction). s ince contraction can lead to slightly
different results. 1n extreme cases, contraction can avoid a float-point exception
that would otherwise be raised.

Table 23.10
Character-CJassilication

Functions

23. 5 The <ct ype . h > Header: Character Handling 613

Each character-classificalion function returns a nonzero vaJue if its argu1nenl has a
particular property. Table 23.10 lists the property ti1at each function tests.

f!'unction Test
isalnurn (c) ls c alphanumeric?
isalpha (c) l s c alphabetic?
isblank (c) ls ca blank?+
iscntrl (c) ls ca control character?tt
isdigit (c) ls ca decimal digit?
isgraph (c) Is ca printing character (other than a space)?
islower (c) ls c a lower-case letter?
ispri.nt (c) Is ca printing character (including a space)?
ispunct (c) Is c puncluation?ttt
is space (c) ls ca white-space character?1"ttt

i supper (c) Ts c an upper-case letter?
isxdigit (c) Is ca hexadecimal digit?

L....,-._--....:;;_______ ----------~

'The standard blank characters are .space and horiLontal Lab (\ t). This
funclion is new in C99.
tt1n ASCII. 1he conlrol characters are \xoo lhrough \xlf plus \x7f.
ttt All prinllng characters exeept Lhose for which isspace or i~aJ num
are true are considered punctuation.
ttttThe white-space character::; are space, form feed (\E), new-line (\n).
carriage return (\r), horizontal tab(\ t), and vertical cab(\ v).

Gm) The C99 definition of ispunct is slighlly different than the one in C89. ln
C89, ispunct (c) tests whether c is a printing character but not a space or a
character for which isalnum(c) is true. Tn C99, ispunct (c) tests whether
c is a printing character for which neither is space (c) nor isalnum (c) is
true.

PROGRAM Testing the Character-Classification Functions

The following program den1onslrates the character-classification functions (with
the exception of isblank, which is new in C99) by applying them to the charac­
ters in the string 11 a zAZ O ! \ t 11

•

tclassify.c /* Tests the character-classification functions * /

#include <Ctype . h>
#include <stdio.h>

#define TEST(f) printf(" %c 11 , f(*p)? 'x' : ' ')

int main(void)
{

char *p;

printf(" alnum cntrl graph print"
II space xdigit\0 11

II alpha digit lower punct"
II upper\n") ;

614 Chapter 23 Library Support for Numbers and Character Data

tolower
toupper

PROGRAM

}

£0:t (p == "cilzAZO !\t"; *p != '\0'; p++) (
if (iscntrl (*p))

}

printf { "\ \x%02x: ", *p);
else

printf {" %-c: ", *p) ;
TEST (isalnum) ;
TEST (isalpha) ;
TEST (iscntrl) ;
TEST(isdigit);
TEST (is graph) ;
TEST (is lower) ;
l'EST(isprint);
TEST(ispunct);
TEST (isspace);
TEST (isupper) ;
TEST (isxdigit) ;
printf("\n");

return O;

The progran1 produces the fo llowing output:

alnum cntrl graph print
alpha digit lower punct

a: X X X X

z: X X X X

A: X X X

Z: X X X
0: X X X

. .
I • X

\x09 : X

Character Case-Mapping Functions

int tolower(int c) ;
int toupper(int c) ;

X

X

X

X

X

X

X X

space xdigit
upper

X

X X

X

X

X

X

The to lower function returns the lower-case version of a letter passed to it as an
argument, while toupper returns the upper-case version. If Lhe argument to
either function is not a letter, it returns the character unchanged.

Testing the Case-Mapping Functions

The fo llowing program applies the case-mapping fu nctions to Lhe characters in Lhe
string II aAO ! 11

•

616 Chapter 23 Library Support for Numbers and Character Data

memcpy
memmove

strcpy
strncpy

Copying Functions

void *memcpy(void * restrict sl 1

canst void* restrict s2, size_t n);
void *memmove(void *sl, const void *s2, size t n};
char *strcpy(char * restrict s1,

const char* restrict s2);
char *strncpy(cbar * restrict s1,

const char* restrict s2, size_t n);

The functions in this category copy characters (bytes) from one place in memory
(the "source") to another (the "destination"). Each function requires lhat the first
argument point to Lhe destination and the second point lo the source. Al I copying
functions return the first argument (a poinler to the destination).

memcpy copies n characters from the source to the destination, where n is the
function's third argumenl. Ir the source and destination overlap, the behavior of
memcpy is undeti.ned. memmove is Lhe same as memcpy, except that it works cor­
rectly when Lhe source and destination overlap.

s trcpy copies a nulJ-terminated string from the source to the destination.
strncpy is simiJar to strcpy, buL it won't copy more than n characters, where
n is the function 's third argu1nent. (lf n is too small, strncpy won't be able to
copy a terminating null character.) ff it encounters a null character in the source,
strncpy adds nu" characters to the destination until it has written a totaJ of n
characters. strcpy and strncpy, Like memcpy. aren't guaranteed to work if the
soW"ce and destination overlap.

The following exarnpJes iJlustrate the copying functions; the comrnents show
which characters are copied.

char source[] - { I h I I I O I I

char dest[7];

memcpy(dest, source, 3) ; /* h, o, t */
memcpy(dest, source, 4) ; / * h, o, t, \0 */
memcpy (des t, source, 7) ; / * h, o, t / \0, t, e, a */

memmove(dest, source, 3) ; I* h, o, t */
memmove(dest, source, 4) ; / * h, o, t, \0 */
memmove(dest, source, 7) ; I* h, o, t, \0, t, e, a */

strcpy(dest, source); /* h, o, t, \0 */

strncpy (dest, sourae, 3) ; /* h, o, t * /
strncpy(dest, source, 4) ; /* h, o, t, \0 */
strncpy(dest, source, 7) ; / * h, o, t, \0, \O I \O, \O */

Note Lhat memcpy, memmove, and strncpy don't require a nulJ-ter1ninated
string: they work just as well with any block of n1emory. The s trcpy function, on
the other band. does-n 'l stop copying until il reaches a nuU cbaracler. so it works
only with null-terminated strings.

23.6 The <string. h> Header: String Handling 617

Section 13.5 gives examples of how strcpy and strncpy are typically
used. Although neitl1er function is completely safe, strncpy at least provides a
way to limit tl1e number of characters it will copy.

Concatenation Functions

char *strcat(char * restrict sl,
const char * restrict s2);

char *strncat(char * restrict sl,
const char * restrict s2, size_t n) ;

strcat streat ap pends its second argu1nent to the end of the fi rst argun,ent. Both argu­
n1ents must be null-terminated strings; streat puLs a nul l character a l the end of
lhe concatenated string. Consider the fo llowing example:

char str[7] = "tea";

strcat(str, 11 bag 11); /* adds b, a, g, \0 to end of str */

The letter b overwrite ' the nulJ character after the a in "tea 11
, so that str now

contains the string II teabag". strcat returns its fi rst argument (a pointer).
strncat strneat is the same as strcat, except that its third argument limjts the

nttmber of characters it wiU copy:

char str[7l = 11 tea 11
;

strncat(str, "bag", 2);
strncat(str, ''bag", 3);
strncat (str, "bag", 4) ;

/* adds b, a, \0 to str */
/* adds b, a, g, \o to str */
/* adds b, a, g, \0 to str */

As Lhese examples show, strncat always leaves Lhe resulting string properly
null-tenninated.

In Section 13.5, we saw that a caU of strncat often bas the following ap­
pearance:

strncat(strl, str2, sizeof(strl) - strlen(strl) - 1);

The third argument calculates tbe amount of space remaining in strl (given by
the expression sizeof (strl) - strlen(strl)) and then subtracts l to
ensu1·e that there will be room for the null character.

Comparison Functions

int memcmp(const void *sl, const void *s2, size t n) ;
int strcmp(const char *sl, const char *s2);
int strcoll{const char *sl, const char *s2) ;
int strncmp(const char *s1, const char *s2,

size_t n);

size t strxfrm(char * restrict s1,
const char* restrict s2, size t n) ;

620 Chapter 23 Library Support for Numbers and Character Data

Like lhe strchr function, memchr returns a pointer to the f1rsl occurrence of the
character. If it can't find the desired character, memchr returns a null pointer.

strrchr strrchr is similar to strchr, but it searches lhe string in reverse order:

char *p , str[] = "Form follows function.";

p = strrchr(str, 1 f 1); / * finds last 'f' */

In this exan1ple, strrchr will first search for the nulJ character at the end of lhe
string. then go bacb..-wards to locate the letter f (the one in function). Like
strchr and memchr, .s trrchr returns a null pointer if it fails to find Lhe
desired character.

strpbrk strpbrk is n1ore general than strchr; it returns a pointer to the leftmost

strspn
strcspn

-

character in tl1e first argument that n1atches any character in the second argument:

char *p, str [] = 11 Form follows function. 11 ;

p = ptrpbrk {str, 11 mn 11) ; / * finds first 'm' or •n• */

[n this example, p will point to lhe letter m in Form. strpbrk ren1rns a nu.11
pointer if no n1atch is found.

The strspn and strcspn funclions, unlike tbe other search functions,
return an inLeger (of type size_t), representing a position within ::i string. When
given a string to search and a set of characters to Look for. strspn returns lhe
index of the first character that's not in Lhe set. When passed similar arguments.
strcspn returns lhe index of Lhe first character that's in the set. Here are exam­
ples of both functions:

size_t n;
char str[] = 11 Form follows function.";

n - s trspn (str, 11 morF 11) ; I * n - 4 * /
TI - strspn (str, II \t\n") ; I * n - 0 */
n - strcspn(str 1

11morF") ; /* n - 0 */
n - strcspn(str, " \ t \n II) i I* 11 - 4. * I

strstr s trstr searches its first argument (a string) for a match with its second
argu1nenr (also a string). T-n the following example, strstr searches for the word
fun:

char *p, str[] = "Form follows function.";

p = strstr(str, "fun"); /* locates "fun" instr*/

strstr returns a pointer to Lhe first occurrence of the search st1ing: it returns a
null pointer if it can't locate the string. After the call above, p will point to the let­
ter fin function.

strtok strtok is the most complicated of Lhe search functions. It's designed to
search a string for a "token"-a sequence of characters lhac doesn't include certain
delimiting characters. The call strtok (s1, s2) scans the s1 string for a non­
empty sequence of characters Lhat are not in lhe s2 string. strtok marks lhe end

23.6 The <string. h> Header: String Handling 621

of the token by storing a null character in sl just after the last character in the
token; it then returns a pointer to the first character in the token.

Whal makes strtok especially useful is that later calls can find additional
tokens in the same string. The call strtok (NULL, s2) continues lhe search
begun by the previous strtok call. As before, strtok marks the end of the
token with a null character, then returns a pointer to the beginning of Lbe token.
The process can be repeated until strtok returns anuJI pointer, indicating that no
token was found.

To see how strtok works, we·u use it to extract a month, day. and year from
a date wiitten in lhe forn1

nzonth day, year

where spaces and/or tabs separate the month from the day and the day from the
year. [n addition. spaces and tabs may precede the comma. Let's say l.bac the strmg
str has the fo!Jowing appearance to start with:

str l ._ ___ I_A __ [p r l _1 ._I 1 __ l _____ 2_ a __ I '....,l_i __ 9 ._I 9_ s..._l ,_o I
After the ca 11

p = strtok(str, 11 \t");

str will have the following appearance:

p

str

. - I , 0 I l 2 I 8 A p r i 1 I 1 9 9 8 \0

p points to the firsL character in the month string, which is now terminated by a
null character. Calling strtok with a null pointer as its ftrst argument causes it to
resume the search from where it left off:

p =- strtok (NULL, 11 \t, ") ;

After Lhis call, p poinls to the first character m the day:

p

str A p r . 1 \O J. 2 8 \O 1 9 9 8 \0

A final call of st rtok locates the year:

p = st rtok (NULL , 11
\ t 11

) ;

-

Section 23.3

Exercises 623

The loglp function exists for a similar reason. For vaJues of x that are close
to zero, loglp (x) should be more accurate than log (1 + x).

Q: Why is the function that compotes the gamma function named trramma
instead of just gamma? [p. 606]

A: At the time the C99 standard was being written, some compilers provided a func­
tion named gamma, but it computed the log of the gamn1a function. This function
was later renan1ed lgamma. Choosing the name gamma for the gamma function
would have conflicted with existing practice, so the C99 committee decided on the
name tgamma ("true gan1ma") instead.

Q: Why does the description of the nextafter function say that if x and y are
equaJ, nextafter returns y? If x and y are equaJ, what's the difference
between returning x or y? [p. 609]

A: Consider the call nextafter (- O. o, +O. o), in which the arguments are
mathematically equal. By returning y instead of x, the function bas a return value
of +0.0 (rather than -0.0, which would be counterintuitive). Similarly, the ca ll
nextafter (+O. O, - O. o) returns -0.0.

Q: Why does <string. h > provide so many ways to do the same thing? Do we
really need four copying functions (memcpy, memmove, strcpy, and
strncpy)? [p. 616]

A: Let's start with memcpy and s trcpy. These functions are used for different pur­
poses. strcpy wiJJ only copy a character array that's terminated with a null char­
acter (a string, in other words); memcpy can copy a memory bJock that lacks such
a terminator (an array of integers, for example).

The other functions allow us to choose between safety and perfom1ance.
strnc_py is safer than strcpy, since it Ii mite, the number of characters that can be
copied. We pay a price for safety, however, since strncpy is likely to be slower
than strcpy. Using memmove involves a sin1ilar trade-off. memmove will copy
bytes fTon, one region of n1emory into a possibly overlapping region. memcpy isn't
guaranteed to work properly in this si tuation; however, if we can guarantee no over­
lap, memcpy is likely Lo be faster than memmove.

Q: Why does the strspn function have such an odd name? [p. 620]
A: Instead of thinking of strspn's return value as the index of Lhe first character

that's not in a specified set, we could think of it as the length of the longest "span"
of characters that are in the set.

Exercises

G l. Extend the round_nearest function so Lhat it rounds a floating-point number x lo n dig­
its after the decimal point. Por example. the call round_nearest {3 .14159, 3) would

624 Chapter 23 Library Support for Numbers and Character Data

Section 23.4

Section 23.5

Section 23.6

return 3.142. Hint: Multiply x by Lon, round to the nearest integer. then divide by 10". Be
sure that your function works correctly for both positive and negalive values of x.

2. (C99) Write tbe following function:

double evaluate_polynomial(double a[], int n, double x);

The function should return the value of U1e polynomial a,r'<' + an_
1
_t"-1 + ... + a0, where the

a/s are stored in corresponding elements of the urray a, \Vhicb bas length n + J. Have the
function use Homer's Rule to compute the value of the polynomial:

((... ((a,,x + a11_ 1)x + a,1_ 2),t + ...)x + a 1)x + a0

Use the fma f u.nction to perform the n1ultiplications and additions.

3. (C99) Check the documentation for your compiler to see if it perfonns contraction on arith­
n1etic expressions and, if so, under what circumstances.

4. Using isalpha and isalnum, write a function that checks ,vhelher a string ha,,; lhe syn­
lax of a C identifier (it consists of letters, digits, and underscores, wiU1 a letter or underscore
al the beginning).

5. Using isxdigi t. write a function that checks whether a string represents a valid hexadec­
imal number (it consists solely of hexadecin1al digjLS). If so, Lhe function rerurns the value of
the number as a long int. OLherwise. the function returns -1.

0 6. Jn each of the following cases, indicate which function would be the best Lo use: memcpy.
memmove, strcpy, or strncpy. Assume that the indicated action is to be perfo11ned by a
single function call.

(a) Moving aJI clements of an array "down" one position in order to leave room for a new
element in position 0.

(b) Deleting the first character in a nuJl~tenninated string by moving aU other characters
back one posit.ion.

(c) Copying a string into a character array that may not be large enough to hold it-. If the
array is too small. assume Lhat the string is to be truncated: 110 null character is neces­
sary at the encl.

(d) Copying the contents of one array variable into another.

7. Section 23.6 explains how LO call strchr repeatedly Lo locate all occurrences of a charac­
ter within a string. rs it possible to locate all occurrences in reverse order by calling
st rrchr repeatedly?

G 8. Use strchr Lo write the following function:

int numchar(const char *s, char ch);

numchar returns the number of Limes the character ch occ:w·s in the string s.

9. Replace the Lest condition in the folJO\ving if statement by a single call of strchr:

if (ch == ' a' 11 ch == 'b' 11 ch == 'c') ·-

0 I 0. Replace Lhe test condition in the following if statement by a single call of strs tr:

if (strcmp(str, "foo") == 0 11 strcmp(str, "bar") == 0 11
strcmp(str, "baz") == 0) ...

H;nr: Co1nbine the string literals i11to a single suing. separaling rhem wit.h a special charac­
ter. Does yow--solu1ion assUil1e anythjng about the contents of str?

Programming Projects 625

f) 11. Write a call of memset that replaces the last n characters in a null-terminated string s with
! characters.

12. Many versions of <string. h> provide additjooal (nonstandard) :functions, such as those
listed below. Write each function using only the features of the C s1.andard.

(a) strdup (s) -Ren1rns a pointer to a copy of s stored in memory obtained by calling
malloc. Returns a null pointer if enough 1ne1nory couldn't be allocated.

(b) stricmp(sl, s2) -Similar tostrcmp,butignoresthecaseof letters.
(c) str 1 wr { s) - Converts upper-case letters in s to lower case. leaving other characters

unchanged: returns s.
(d) s trrev (s) -Reverses the characters in s (except the null character); returns s.
(e) strset (s, ch) - Fills s with copies of the character ch: returns s.

If you test any of these functions. you n1ay need to alter its name. Functions whose names
begin with str are reserved by the C standard.

13. Use strtok to write the following function:

int count_words(char *sentence);

count_words returns the nu111ber of words in the string sentence, where a "word'' is
any sequence of non-white-space characters. count words is allowed to modify the
string.

Programming Projects

1. Write a program that finds the roots of the equation ax:2 +bx+ c = 0 using the formula

x=
- b± Jb2 -4ac

2a

Have the program pron1pt for the values of a. b. and c. then print both values of x. (If b2
-

4ac is negative, the program should instead print a 1uessage to the effect that the roots are
co1nplex.)

f) 2. Write a program that copies a text fiJe from standard input to standard output, removing all
white-space characters from the beginning of each line. A line consisting entirely or white­
space characters will not be copied.

3. Write a program that copies a text file fro1n standard input to standard output. capitalizing
the first letter in each word.

4. Write a program that pro1npts the user to enter a series of words separated by single spaces,
then prints the words ill reverse order. Read the input as a string, and then use st rtok to
break it into words.

5. Suppose that money is deposited into a savings account and left fort years. Assume that the
annual interest rate is rand that interest is compounded continuously. The formula A(t) =
Per1 can be used to calculate the final value of the account. where P is the original amount
deposited. For example, $ I 000 left on deposit for l O years at 6% interest would be worth
$1000 x e·06xiu = $1000 x e·6 = $1000 x J .8221188 = $1,822.12. Write a program that dis­
plays the result of this calculation after pron1pting the user to enter the original amount
deposited, the interest rate, and the number of years.

626 Chapter 23 Library Support for Numbers and Character Data

6. Write a program that copies a text file from standard inpu110 standard output, replacing each
control character (other than \n) by a question mark.

7. Wrjte a program that counts the number of sentences in a text file (obtained fron1 standard
input). Assun1e that each sentence ends with a . , ? , or ! followed by a white-space charac­
ter (jncluding \n).

24 Error Handling

There are two ways to write error-free
programs; only the third one works.

Although student programs often fail when subjected to unexpected input, com­
mercial progran1s need to be ''bul1etproof'- able to recover gracefully from errors
instead of crashing. Making progran1s bulletproof requires that we anticipate
errors that might arise during the execution of the prograin, include a check for
each one, and provide a suitable action for the program to perform if the error
should occur.

This chapter describes two ways for progran1s to check for errors: by using
the assert macro and by testing the errno variable. Section 24.1 covers the
<assert. h> header, where assert is defined. Section 24.2 discusses the
<errno . h> header, to which the errno variable belongs. This section also
includes coverage of the perror and s trerror funclions. These functions,
which come from <stdio. h> and <string. h>, respectively. are closely re­
lated to the errno variable.

Section 24.3 explains how programs can detect and handle conditions known
as signals, some of which represent errors. The functions lhat deal with signals are
dee Jared in the <signal . h> header.

Finally, Section 24.4 explores lhe setjmp/longjmp mechanism, which is
often used for responding to errors. Both setjmp and longjmp belong to the
<Set j mp. h> header.

Error detection and handling arcn ' t runong C's strengths. C indicates run-time
errors in a variety of ways rather than i.n a single. uniform way. Fu1therrnore, it's
the programmer's responsibility to include code to test for errors. It's easy to over­
look potential errors; if one of these should actually occur, Lhe program often con­
tinues running. albeit not very well. Newer languages such as C++, Java, and C#
have an "exception handling" feature that makes it easier to detect and respond to
errors.

627

24.3 The <signal. h> Header: Signal Handling 631

sage that corresponds to the EDOM error. An ERANGE error usually produces a dif­
ferent 1nessage, such as Numerical result out of range.

strerror The strerror function belongs to <string. h>. W11en passed an error
code. strerror returns a pointer to a slring describing the error. For example,
the call

puts(strerror(EDOM));

might print

Numerical argument out of domain

The argurnent to strerror is usually one of the values of errno, but
strerror will return a string for any integer passed to it.

strerror is closely related to the perror function. The error message that
perror displays is the same message that strerror would return if passed
errno as its argun1ent.

24.3 The <signal . h> Header: Signal Handling

The <Signal. h> header provides facilities for handling exceptional conditions,
known as sig,zals . Signals fall into two categories: run-time errors (such as division
by zero) and events caused outside the program. Many operating syste1ns, for
example, allow users to interrupt or kill running programs; these events are treated
as signals in C. When an error or external event occurs, we say that a signal has
been raised. Many signals are asynchronous: they can happen at any time during
program execution, not just at certain points that are known to the programmer.
Since signals may occur at unexpected times, they have to be dealt with in a unique
way.

This section covers signals as they're described in the C standard. Signals play
a more prominent role in UNIX than you might expect from their limited coverage
here. For information about UNTX sjgnals, consult one of the UNIX programming
books listed in the bibliography.

Signal Macros

r!l!J <signal. h> defines a number of macros that represent signals; Table 24.1 lists
these macros and their n1eanings. The value of each macro is a positive integer
constant. C implementations are allowed to provide other signal macros, as long as
their nan1es begin with SIG followed by an upper-case letter. (UNIX implementa­
tions, in particular, provide a large number of additional signal macros.)

The C standard doesn't require that the signals in Table 24. l be raised auto­
matically, since not all of them ,nay be meaningful for a particular computer and
operating system. Most implementations support at least some of these signals.

634 Chapter 24 Error Handling

After a signal bas been handled, whether o.r not the handler needs to be reinstalled
is implementation-defined. UNIX iinplementations typicalJy leave the signal han­
dler installed after it·s been used, but other implementations may reset the handler
Lo SIG_DFL. In the latter case. I.he handler can reinstall itself by calling signal
before it returns.

C99 changes the signaJ-handling process in a few minor ways. When a signaJ
is raised. an implementation may choose to disable not just that signal but others as
well. If a signal-handling function returns from handling a SIG ILL or SIGSEGV
signal (as well as a SIGFPE signal), Lhe effecL is undefined. C99 also adds the
restriction that if a signal occurs as a result of calling the abort function or the
raise function, the signal handler itself must not call raise.

The raise Function

int raise(int sig);

raise Although signals usually arise from run-time errors or external evenls, it's occa­
sionaJly handy for a program to cause a signal to occur. The raise function does
just that. The argument to raise specifies the code for the desired signal:

raise(SIGABRT); /* raises the SIGABRT signal*/

The return value of raise can be used to test whether Lhe caJJ was successful:
zero indicates success, while a nonzero value indicates failure.

PROGRAM Testing Signals

The followiI1g program illustrates the use of signals. First, it installs a custom ban­
dJer for the SIGINT signal (carefully saving the original handler), then calls
raise_sig to raise thal signal Next, it installs SIG_IGN as the handler for the
SIGINT signal and calls raise_ sig again. Finally. it reinstalls I.he original ban~
dler for SIG INT, then calls raise_ sig one last Lime.

tsigna/.c I* Tests signals * /

#include <signal.h>
#include <stdio.h>

void handler (int sig) ;
void raise_sig(void);

int main(void)
{

void (*orig_handler) (int);

}

24.4 The <setjmp. h> Header: Nonlocal Jumps 635

printf (''Installing handler for signal %d\n 11 , SIGINT) ;
orig_handler = signal(SIGINT, handler);
raise_sig();

printf("Changing handler
signal(SIGINT, SIG IGN);
raise_sig();

to SIG IGN\n") ; -

printf("Restoring original handler\n°);
signal(SIGINT, orig_handler);
raise_sig();

printf("Program terminates normally\n");
return O;

void handler(int sig)
{

printf (11 Handler called for signal %d\n 11
, sig) ;

}

void raise_sig(void)
{

raise (SIGINT) ;
}

Incidentally. lhe call of raise doesn't need Lo be in a separate runct ion. I
defined raise_ sig sin1ply to make a point: regardless of where a signal is
raised-whether it's in main or in some other function-it will be caught by the
most recently instal led handler for that signal.

The output of this progran, can vary s01newhat. He1·e's one possibility:

Installing handler for signal 2
Handler called for signal 2
Changing handler to SIG IGN
Restoring original handler

From this output, we see that our irnplernentalion defines SIGINT LO be 2 and that
the original handler for SIGINT must have been SIG_DFL. (Tf it had been
SIG_IGN. we'd also see che message Program terminates normally.)
Finally, we observe that SIG_DFL caused the program to terminate without dis­
playing an error message.

24.4 The <setjmp. h> Header: Nonlocal Jumps

int setjmp(jmp buf env);
void longjmp(jmp buf env, int val);

Q&A 637

else {
printf(''Program terminates: longjmp called\n 11);

return O;

}

}

f 1 () ;

printf(11 Program terminates normally\n 11);

return O;

void fl(void)
{

}

printf("fl begins\n");
f2 () ;
printf("fl returns\n 11);

void f2(void)
{

}

printf(11 f2 begins\n11
);

longjmp(env, 1);
printf (11 f2 returns \n 11) ;

The output of this program wiJI be

setjmp returned O
fl begins
f2 begins
Program terminates: longjmp called

The origjnal call of setjmp returns 0, so main calls fl. Next, fl calls f2,
which uses longj mp to transfer control back to main instead of returning to f 1.
When longjmp is executed, control goes back to the setjmp call. This time,
setj mp returns J (the vaJue specified in the longj mp call).

Q&A

Q: You said that it's important to store zero in errno before calling a library
function that 111ay change it, but I've seen UNIX programs that test errno
without ever setting it to zero. What's the story? [p. 629]

A: UNIX programs often contain calls of functions that belong to the operating sys­
tem. These syste11z calls rely on errno, but they use it in a slightly different way
than described in this chapter. When such a call fails, it returns a special value
(such as - 1 or a null pointer) in addition to storing a value in errno. Programs
don't need to store zero in errno before such a call, because the function ·s return
value alone indicates that an error occurred. S01ue functions in the C standard
library work this way as we11, using errno not so much to signal an error as to
specify which error it was.

640 Chapter 24 Error Handling

Section 24.2

Section 24.4

3. Modify the stackADT2. c file of Section 19.4 so that it uses assert to Lest for errors
instead of using if statements. (Note Lhat the terminate function is no longer necessary
and can be re1noved.)

9 4. (a) Write a ·'wrapper" funcLion named try_math_fcn that calls a. 111alh function
(assumed 10 have a double argument and retun1 a double value) and then checks
\Vhethcr Lhe call succeeded. Here's how we might use try_math_fcn:

y = try_matb_fcn(sqrt, x, "Error in call of sqrt");

lf the call sqrt {x) is successful, try_math_fcn returns the value computed by sqrt.
lf the caU fails, try _math_ fcn calls perror to print the 1nessage Error in call of
sqrt. then calls exit lo terminate the progran1.

(b) Write a macro that has the same effect as try_math_fcn but builds the error mes­
sage from the function's name:

y = TRY_MATH_FCN(sqrt, x);

If the call of sqrt fails. the 1nessagc will be Error in call of sqrt. Hhu: Have
TRY_MATH_FCN call try_math_fcn.

0 5. ln lbe inventory. c program (see Section 16.3). I.he main function bas a for loop that
prompts the user to enter an operation code. reads the code. and then call,; either insert.
search. update. or print. Add a call of setjmp to main in such a \Vay that a subse-
4uent call of longjmp will return lo lhc for loop. (After the longjmp, the user will be
prompted for an operation code, and lhe program will continue normally.) setj mp will
need a j mp_ buf variable: where should it be declared')

25 International Features

If your computer speaks English
it was probably made in Japan.

For many years, C wasn·t especially suitable for use in non-English-speaking
countries. C originally assumed that characters were always single bytes and that
all computers recognized the characters#, [, \,] , , {, I, } , and-, wbicb are
needed to write programs. Unfortunately, these assumptions aren't valid in aU pares
of the world. AB a result, Lhe experts who created C89 added language features and
libraries in an effort LO make Ca n1ore inten1abonaJ language.

In J 994, Amendment l to the TSO C standaru was approved, creating an
enhanced version of C89 that's sometimes known as C94 or C95. This amend1nent
provides additional library support for international progran1miog via the digraph
language feature and the <iso646. h>, <wchar. h>, and <wctype .h> head­
ers. C99 adds even more support for internationalization in the form of universal
character names. This chapter covers all of C's inlernational featares. whether they
come from C89, Amendment I, or C99. l ' II flag lhe Amendment I changes as C99
changes. although they actually predate C99.

The <locale. h> header (Section 25. J) provides functions that allow a pro­
gram to tailor its behavior LO a particular «locaJe"--often a country or other geo­
graphical area in which a particular language is spoken. Mult.ibyte characters and
wide characters (Section 25.2) enable progran1,s Lo work with large character sets
such as those found in Asian countries. Digraphs, trigraphs, and the <iso646. h>
lleader (Section 25.3) 01ake it possible to write programs on computers that lack
son1e of the characters normaJJy used in C programming. Universal character
names (Section 25.4) allow programmers to embed characters from the Universal
Character Set into the source code of a program. The <Wchar. h> header (Section
25.5) supplies functions for wide-character input/output and wide-string manipula­
tion. Finally, the <wctype. h> header (Section 25.6) provides wide-cha.racter
classification and case-mapping functions.

641

646 Chapter 25 International Features

Table25.3
char Members of

1 con v Structure
(Tnternalional Formatting)

Table 25.4
Values of

... sep _by_ space
Men1bers

Table 25.5
Values of

... sign_posn
Nlembers

Va/11e in
Name "C" Locale Description ,________________________ -----I

int frac digits CHAR MAX Number of digits after deci1nal poi111
int_p_ cs precedest CHAR- MAX I if int_curr_ symbol precedes

nonnegative quantity: 0 if it succeeds

int_n_ cs_precedest CHAR MAX
quantity
I if int_curr_symbol precedes
negative quanLity: 0 if il succeeds
quantity

int_p_sep_by_spacet CHAR MAX Separation of int_curr_symbol
and sign string fro1n nonnegative
quantity (see Table 25.4)

int_n_ sep_by_spacet CHAR MAX Separation of int_curr_symbol
and sign string from negative quantity
(see Table 25.4)

int_p_sign_posnt

int_n_sign_posnt

CHAR MAX

CHAR MAX

Position of positi ve_ s1-gnfor
nonnegative quanlily (see Table 25.5)
Position of negative_sign for
negative quantity {see Table 25.5)

tc99 only

Table 25.4 explains Lhe meaning of the values of Lhe p_sep _by_ space.
n_sep_by_space,int_p_sep_by_space. and int_n_sep_by_space
members. The meaning of p_sep_by_space and n_sep_by_space has
changed in C99. In C89, Lhere are only two possible values for these members: l
(if there's a space between currency _symbol and a monetary quantity) or O (if
there's not).

Value Mea11i11g

O No space separates currency symbol and quantity .
1 If currency symbol and sign are adjacent, a space separates thern from

quantity; otherwise, a space separales currency symbol fro1n quantity.
2 If currency symbol and sign are adjacent, a space separates 1he111:

otherwise, a space separates sign from quantity. ..

Table 25.5 explains lhe meaning of the values of tbe p_sign_posn,
n_sign_posn, int_p_sign_posn and int_n_sign_posn members.

Value t.1eaning

O Parentheses surround quantity and currency symbol
l Sign precedes quantity and currency symbol
2 Sign succeeds quantity and cun·ency symbol
3 Sign immediately precedes currency symbol
4 Sign immediately succeeds currency symbol

~ro see how the members of Lhe 1 conv structure might vary from one locale to

another, let's look al two examples. Table 25.6 shows typical values of the ,nonetary
lconv members for lhe U.S.A. and FinJand (which uses the euro as its currency).

648 Chapter 25 International Features

Changing lhe meaning of type char to handle larger character sets isn't pos­
sible. since char values are-by definition-li1ujted to singJe bytes. Instead, C
allows compilers to provi.de an extended character set. This character set may be
used for writing C programs (in com,nents and strings, for example), in the envi­
ronment in which U1e program is run. or in both places. C provides two techniques

r£m for encoding an extended character set: multibyte characters and wide characters.
lt also supplies functions Lhal convert from one kind of encoding to the other.

Multibyte Characters

ln a ,nultibyte character encoding, each extended character is represented by a
sequence of one or n1ore bytes. The number of bytes n1ay vary. depending on the
character. C requires that any extended character set include certain essential char­
acters (Jetters. digits, operators, punctuation. and whi1e-space characters): these
characters n1ust be single bytes. Other bytes can be interpreted as the beginoinp; of
a m uJ Li byte character.

Japanese Character Sets

The Japanese employ several different writing systems. The most complex, kanj;,
consists of thousands of symbols-far too many to represent in a one-byte encod­
ing. (Kanji symbols actually come from Chinese, which has a similar problem with
large character sets.) There's no single way to encode kanji; common encodings
include JIS (Japanese Industrial Standard), Shift-JIS (the most popular encoding),
and EUC (Extended UNIX Code).

Some multibyte characLer sets rely on a state-dependent e1Lcodi1tg. In Lhjs
kind of encoding, each sequence of n1uJtibyte characters begins in an initial shift
state. Certain bytes encountered later (known as a shift sequence) may change Lhe
shift state. affecting lhe meaning of subsequent bytes. Japan's JIS encoding, for
example, nuxes one-byte codes with two-byte codes; "escape sequences•· embed­
ded in strings indicate when to swilch between one-byte and two-byte modes. (1n
contrast. lhe Shift-nS encoding is not state-dependent Each character requires
either one or two bytes, but Lhe first byte of a two-byle character can always be dis­
linguished fro,n a one-byte character.)

In any encoding. the C standard .requires that a zero byte always represent a
null character, regardless of shift state. Also. a zero byte can't be the second (or
later) byte of a multi byte character.

The C library provides two n1acros, MB_ LEN_MAX and MB_ CUR_ MAX. that
are related to multibyte characters. Both macros specify the n1aximu1n number of
bytes in a multibyte character. MB_LEN_ MAX (defined in <limits. h>) gives the
maxin1u1n for any supported locale: MB_ CUR_MAX (delined in <stdlib. h>)
gives the maximum for lhe current locale. (Changing Jocales n1ay affect the inter­
pretation of 1nu1libyte characters.) Obviously, MB_CUR_ MAX can't be larger than
MB LEN MAX.

25.2 Multibyte Characters and Wide Characters 649

Any string may contain mullibyte characters. although the length of such a
string (as determined by the strlen function) is the number of bytes in the string,
not the number of characters. In particular, the forn1at strings i_n calls of the
... printf and ... scanf functions may cont..'lin mullibyte characters. As a result.

0 the C99 standard defines the tern1 ltlllltibyte stritig to be a synonym for string.

Wide Characters

The other way to encode an extended character set is to use wide characters. A
>vide character is an integer whose value represents a character. Unlike multibyte
characters. which n1ay vary in length, all wide characters supported by a particular
imp1en1entation require lhe same number of bytes. ,!:\. lvide string is a string con­
sisting of wide characters. with a null wide character at the end. (A null •vide char­
acter is a wide character whose numerical value is zero.)

Wide characters have the type wchar_ t (declared in <stddef .h> and cer­
tain other headers). which 1nust be an integer type able to represent the largest
extended character set for any supported locale. For example. if two bytes are
enough to represent any extended character set, then wchar _ t could be defined
as unsigned short int.

C supports both wide character constants and wide string literal . Wide char­
acter constants resemble ordinary character constants but are prefixed by the letter
L:

L'a'

Wide string literals are also prefixed by L:

L"abc 0

This string represents an array containing the wide characters L' a 1 • L ' b' , and
L I c ' , followed by a null wide character.

Unicode and the Universal Character Set

The differences between multibyte character and wide characters becon1e appar­
ent when discussing U1zicode. Unicode is an enormous character se1 developed by
the Unicode Consortium, an organization established by a group of computer man­
ufacturers to create an international character set for con1puter use. The first ?56
characters of Unicode are identicnJ to Latin-I (and therefore the first 128 charac­
ters of Unicode match tl1e ASCII character set). However. Unicode goes far
beyond Latin-1, providing the characters needed for nearly all modem and ancient
languages. Unicode also includes a nwnber of specialized syn1bols. such as those
used in mathematics and n1usic. The Unico<le standard was first published in J 991.

Unicode is closely related to i_nternationaJ standard [SO/IEC I 0646, whjch
defmes a chru·acter encoding known as the Utliversal Character Set (UCS). UCS
was developed by the International Organization for Standardization (ISO), start­
ing at aboul the san1e tin1e that Unicode was initially defined. Although UCS orig­
inally differed from Unicode, the two character sets were later unifie<l. ISO now

650 Chapter 25 International Features

wo.rks cJosely with the Uni.code Consortiurn to ensure that TSO/TEC I 0646 re1nain~ m consistent with Unicode. Because Unicode and UCS are so similar. I'll use the two
terms interchangeably.

Table25.7
UTF-8 Encoding

U1tlcode was originally lirrrited to 65.536 characters (the 11un1ber of characters
that can be represented using 16 bits). That limit was later found to be insufficient;
Unicode currenll y has over 100,000 characters. (For the most recent version. visit
ww~v.unicode.org.) The first 65,536 characters of Unicode-which include the
most frequently used characters-are known as the Basic Multili1igual Plane
(BMP).

Encodings of Unicode

Unicode assigns a unique number (known as a code point) to each character. There
are a number of ways to represent lhese code points using bytes; I'll n1entioa two
of the simpler techniques. One of these encodings uses wide characters; tl1e ocher
uses multibyte characters.

UCS-2 is a wide-character encoding in whi.ch eacb Unicode code point is
stored as two bytes. UCS-2 can represent all lhe characters in the Basic MulLilin­
guaJ Plane (those with code points between 0000 and FFFF in hexadecimal). but it
is unable to represent Unicode characters that don·t belong to the BMP.

A popular alternative is the 8-bit UCS Tra11sfor11zalion For,nat (DTF-8) ,
which uses multibyte characters. UTF-8 was devised by Ken Thompson and his
Bell Labs colleague Rob Pike in 1992. (Yes, that's the saine Ken Thompson who
designed the B language, the predecessor of C.) UTF-8 has the useful property that
AS.Cll characters look identical in UTF-8: each character is one byte and has the
same bj nary encoding. Thus, software designed to read UTF-8 data_ can also handle
ASCII data with no change. FoT lhese reasons. UTF-8 is widely used on the Inter­
net for text-based applications such as web pages and email.

In UTF-8. each code point requires between one and four bytes. UTP-8 i
organized so that the most commonly used characters require fewer bytes, as
shown in Table 25.7.

Code P()int Range UTF-8 Byte Sequence
(Hexadecimal) (Bil,ar,;) .

000000-0000?F Oxxxxx:xx
000080-000?FF llOxxxxx lOxx:xxxx
000800-00FFFF lllOxx.xx lOxxxx:xx lOxxxxxx
010000 - lOFFFF llllOxxx lOxxxxxx lOxxxxx.x lOx.xxxxx

UTF-8 takes tl1e bits in the code point value, divides lhem into groups (repre­
sented by the x's in Table 25.7), and assigns each group to a differenl byte. The
simplest case js a code point in lhe range 0-7F (an ASC.n character), which is rep­
resented by a 0 followed by the seven bits in the original number.

A code point in the range 80-7FF (which includes all the Lat.in-I characters)
would have its bits split into groups of five bits and six bits. The five-bit group is

652 Chapter 25 International Features

characters. We'll now describe these functions. which beJong to Lhe <stdlib . h>
header. C99's <wchar . h> and <we type . h> headers. which are cLiscussed in
Sections 25.5 and 25.6, supply a number of additionaJ n1ultibyte and wide-character
functions.

C89's ruuJLibyte/wide-cbaracter functions are divided into two groups. The
iirst group converts single characters from multibyte form to wide form and vice
versa. The behavior of these functions depends on the LC_ CTYPE category of Lhe
current locale. lf the multibyte encoding is state-dependent. the behavior also
depend. on the current conversion state. The conversion state consists of the cur­
rent shift state as well as the current posilion within a multibyte character. Calling
any of these functjons with a null pointer as Lhe value of its char * parameter
sets the function's internal conversion stale to the iniJial conversio11 state, signify­
ing that no mullibyte character i.s yet in progress and that the initial shift slate is
in effect Later calls of the function cause its internal conversion state to be
updated.

mblen The mblen function checks whether its first argument points to a series of
bytes that form a valid n1ultibyte character. U so. the funclion returns the number
of bytes in the character: if not, it returns - I. As a special case, mblen returns O if
the first argu1uent points to a nuU character. The second argument limits the num­
ber of bytes that mblen will examine; typically, we' ll pass MB_CUR_MAX.

The following function, which comes from P. J. Plauger's The Standard C
Library, uses mblen to detennine whether a string consists of valid rnnltibyte
characters. Tbe funcLion returns zero jf s points to a valid string.

int mbcheck(const char *s)
{

int n;

for (mblen(NULL, 0); ; s += n)
if ((n = mblen (s, MB_COR_MAX)) <= O)

return n;
}

Two aspecl~ of the mbcheck function deserve special tnention. First, there's the
mysteriOu!-i caJ I mblen (NULL, o), which sets mblen ·s internal conversion state
to U1e i:nilial conversion state (in case the n1altibyle encoding is state-dependent).
Second, there's the matter of termination. Keep in nrind LhaL s points to an ordi­
nary character string, which is assumed to end with a null character. mblen will
return zero when it reaches this nulJ character. causing mbcheck to return.
mbcheck will retun1 sooner if mblen reLums -1 becau,;;e of an invalid multibyte
character.

mbtowc The mbtowc function convert,; a multibyte character (pointed to by the sec-
ond argument) into a wide character. The first argu,nent points to a wchar t vari­
able into which the function will store tl1e result. The tltlrd argurnent limits the
number of bytes U1al mbtowc will exa,nine. mbtowc returns the same value as
mblen: the nuruber of bytes in the 1nultibyte character if it's val id, -I if it's not,
and zero if the second argument points to a null c.haracter.

654 Chapter 25 International Features

wcstombs The wcstombs function is the opposite of mbstowcs: it converts a
sequence of wide characters into multi byte characters. The second argumenL points
to the wide-character string. The first argun,ent points to the array in which Lhe
rnultibyte characters are to be stored. Tl1e Lhird argumenr limits tJ1e number of
bytes that can be stored in Lhe array. wcstombs stops when it reaches the limit or
encounters a cull character (which ii stores). lt returns the number of bytes stored,
not including the rern,inati.ng null character, if any. wcstombs returns - 1 (ca~l to
type size_t) if it encounters a wide character that doesn't correspond to any
multi byte character.

The mbstowcs function assumes that the string Lo be converted begins in the
initial shift state. The string created by wcstombs always begins in the initial
shift state.

25.3 Digraphs and Trigraphs

Table 25.8
Trigraph Sequences

Prograrruners in certain countries have traditionally had trouble entering C pro­
grams because lheir keyboards lacked some of the characters that are required by C.
This has been especially true in Europe, where older keyboards provided lhe accent­
ed characters used in European languages in pJace of the characters rhat C needs,
such as#, [, \, J. ", {, I, }, and~. C89 inlToduced trigraphs-three-character
codes that represent problematic characters-as a solution to this problen1. Tri­
graphs proved to be unpopular. however. so Amendment l to the standard adtled
two improvements: digraphs. wJlich are more readable than trigraphs. and the
<iso646. h> header, which defines 1nacros that represent certain C operators.

Trigraphs

A trigraph sequence (or simply, a trigraph) is a three-character code that can be
used as an alternative lo ao ASCIJ character. Table 25.8 gives a complete list of tri­
graphs. All trigraphs begin with ? ? • which lnakes them. if not exactly attractive. at
least easy Lo spot.

- Trigrapll ASCII
Seqlle11ce Equivalent

??-.. - #
?? ([
??/ \
??)]
??I A

• •

??< {
?? I l

??> }
?? -. .

656 Chapter 25 International Features

antl >. not the characters L and J . In contrasl. the string 11 ?? (??) 11 has length
two, because the compiler replaces the trigraph ? ? (by the character [and the tri­
grapb ? ?) by the character] .

Digraphs are 1nore lirnitcd than trigraphs. First, as we've seen. digraphs are of
no use inside a string literal or character constant; lrigraphs are still needed in Lhese
situations. Second. digraphs don't solve the problem of providing alternate repre­
sentations for the characters \, "'. I, and ~. TI1e <iso646. h> header, described
next. helps with this problen,.

9 The < iso646 .h> Header: Alternative Spellings

Table 25.10
Macros Defined in

<iso646 .h>

The <iso646. h> header is quite simple. It contains nothing but the defmitions
of the eleven macros shown in Table 25.10. Each macro represenL~ a C operator
that contains one of the characters &, I, ~, ! . or "'. making it possible to use the
operalors I isted in the table even when these characters are absent from the key­
board.

,Wacro Value

and &&
and_eq &=
bitand &

bitor I
compl -
not I .

not _eq l=
or I I

or_eq I=
A xor

A xor eq -

The name of the header comes fron1 LSO/rEC 646, an older standard for an
ASCII-like character set. This standard allows for "national variants." ln wllicb
countries subslilute local characlers for certain ASCil characters, thereby causing
the problem that digraphs and the < i s06 4 6 . h > header are tryLng to solve.

25.4 Universal Character Names (C99)

Section 25.2 discussed the Universal Character Set (UCS). which is closely related
to Unicode. C99 provides a special feature, lllliversal character nan1es, that allows
us to use UCS cbaracters in Lhe source code of a program.

A universal character nan1e resen1bles an escape sequence. However. unlike
ordinary escape sequences, which can appear only in character constants and string
literals. universal character nrunes may also be used in identifiers. This fealure
aUows progrruruners to use their nalive languages when defining names for vari­
ables, functions. and the like.

25.5 The <wchar. h> Header (C99) 661

swprintf returns a negative value if the number of wide characters to be written
is nor more, which differs from the behavjor of both sprint f and snprintf.

vswprintf vswprintf is equivalent to swprintf, with arg replacing the variable

Table 25.12
Wide-Character Input/
Output Functions and

Their <Stdio. h>
Equivalents

argument list of swprintf. Like swprintf, which is sinlilar-but not identi­
ca1-to sprintf and snprintf, the vswprintf function is a combination of
vsprintf and vsnprintf. lf an atten1pt is made to wri te nor n1ore wide char­
acters, vswprint f returns a negative i-nteger, in a tTianner sinlilar to swprintf.

,vide-Character Input/Output Functions

wint_t fgetwc(FILE *stream);
wchar_t *fgetws(wchar_t *restricts, int n,

FILE* restrict stream);
wint_t fputwc(wchar_t c, FiLE *stream);
int fputws(const wchar_t *restricts,

FILE* restrict stream);
int fwide(FILE *stream, int mode);
wint t getwc(FILE *stream);
wint t getwchar(void);
wint t putwc (wcl1ar_t c, FILE *stream);
wint t putwchar(wchar_t c);
wint t ungetwc(wint_t c, FILE *stream);

The functions in this group are wide-character versions of the character input/oul­
put functions found in <stdio. h> and described in Section 22.4. Table 25. 12
shows the correspondence between the <Stdio. h> functions and their wide­
character counterparts. As the table shows, fwide is the only truly new function.

<wahar. h> Function
f.getwc
fgetws
fputwc
fputws
fwide
getwc

getwchar
putwc

putwchar
ungetwc

<stdio.h> Equivalent

fgetc
fgets
fputc
fputs

getc
getchar

putc
putchar
ungetc

Unless otherwise indicated. you can assume lhat each <wchar . h> function
listed in Table 25.12 behaves like the corresponding <stdio. h> function. How­
ever. one 1ninor difference is cominon to most of these functions. To indicate an
error or end-of-file condilion, some <stdio. h> character 1/0 functions return
EOF. The equivalent <Wchar. h> functions return WEOF instead.

Table 25.13
Wide-String Numeric

Conversion Functions and
Their <stdl ib. h>

Equivalents

25.5 The <wchar. h> Header (C99) 663

unsigned long int wcsco1zl (
const wcl1ar_t * restrict nptr,
wchar t ** restrict endptr,
int base);

unsigned long long int wcstoull (
const wchar_t * restrict nptr,
wchar_t ** restrict e11dptr,
int base);

The functions in this group are wide-character versions of the numeric conversion
functions found in <Stdlib. h> and described in Section 26.2. The <wchar. h>
functions have arguments of type wchar _ t * and wchar_t * * instead of char
* and char * *, but their behavior is mostly the same as the <stdlib. h> func­
tions. Table 25.13 sl1ows the correspondence between the <Stdlib. h> functions
and their wide-character counterparts.

<wahar. h> Functi(JJl

wested
wcstof
wcstold
wcstol
wcstoll
wcstoul
wcstoull

Wide-String Copying Functions

<stdlib .h>Equivalent

strtod
strtof
strtold
strtol
strtoll
strtoul
strtoull

wchar t *wcscpy(wchar_t * restrict sl,
const wohar t * restrict s2);

wcbar t *wcsncpy(wchar_t * restrict sl,
const wcbar t * restrict s2,
size_t n);

wchar t *wmemcpy(wchar_t * restrict sl,
const wchar t * restrict s2,
size_t n);

wchar t *wmemmove(wchar_t *SL, const wchar t *s2,
size t n) ;

The funcLions in this group are wide-character versions of the string copying func­
tions found in <string. h> and described in Section 23.6. The <Wchar. h>
functions have arguments of type wchar_t * instead of char *, bul their behavior
is mostly the same as the <st.ring. h> functions. Table 25.14 shows the corre­
spondence between the <string. h> functions and thei r wide-character cou11ter­
parts.

664 Chapter 25 International Features

Table 25.14
Wide-Suing Copying

Functions aod Their
<string.h>

Equivalents

Table 25.15
Wide-Suing Concatenation

Functions and Their
<st ring. h> Equivalents

<wchar. h> Function

wcscpy
wcsncpy
wmemcpy

wmemmove

<string. h> Equivalent

strcpy
strncpy
memcpy

memn1ove

Wide-Stri11g Co11cate11ation Functions

wchar t *wcscat(wchar t * restrict slr

canst wchar t * restrict s2);
wchar t *wcsncat(wchar_t * restrict si,

canst wchar t * restrict s2,
size_t n);

The functions in Lhis group ure wide-cl1uractcr versions of Lhe string concatenation
functions found in <string. h> and described in Section 23.6. The <wchar. h>
functions have argun1euts of lype wchar _ t * instead of char *. but their behavior
is rnostly the same as lhe <string. h> functions. Table 25.15 sho,vs tbe corre­
spondence between the <string. h> f1.1nctions an<l Lheir wide-character counter­
parts.

<wchar . h> Fu11ctiJJ11

wcscat
wcsncat

Wide-String Comparison Fu.11ctio11s

<string. h> EquiJ•alent

strcat
strncat

int wcscmp(const wchar_t *s1, const wchar t *s2);
int wcscoll(const wchar t *si, canst wcbar t *s2);
int wcsncmp(canst wchar_t *sl, canst wchar_t *s2 1

size t n);
size t wcsxfrm(wchar_t * restrict sl,

canst wcbar t * restrict s2,
size_t n);

int wmemcmp(const wchar_t * s1, oonst wcbar t * s2,
size_t .n) ,-

The funclions in Lhis group are wiue-characLer versions of Lile string co1nparison
functions found in <string. h> and described in Section ?3.6. The
<wchar. h> functions have arguments of type wchar _ t * instead of char *,
but their behavior is mostly the same as the <String. h> functions. Table 25.16
shows the correspondence between the <string. h> functions and their wid~
character counterparts.

666 Chapter 25 International Features

We saw in Section 23_6 that strtok searches a string for a "token•·-a
sequence of characters that doesn't include certain delimiting characters. The call
strtok (s1, s2) scaas the s1 string for a nonempty sequence of characters
that are not in tbe s2 string. strtok marks Lhe end of the token by storing a null
character in sl just after the last character in the token: it then returns a pointer to
the first character in the token.

Later calls of strtok can find additional tokens in the same string. The calJ
strtok (NULL, s2) continues the search begun by the previous strtok caJI.
As before, strtok marks the end of the token with a null character. and then
returns a pointer to the beginning of the token. The process can be repeated until
strtok retums a null pointer, indicating that no token was found.

One proble1n with strtok is that it uses a static vaiiable to keep track of a
search, which makes it impossible to use strtok to conduct simultaneous
searches on two or more strings. Thanks to its extra parameter, wcstok doesn't
have this problen1.

The first two parameters to wcstok are the sa1ne as for strtok (except that
they point to wide strings, of course). The tltird paran1eter, ptr, wjll poinl to a
variable of type wcha.r _ t *. The function will save information in this variable
that enables later cal]s of wcstok to continue scanning the same string (when the
fu·st argument is a null pointer). When the search is resumed by a subsequent call
of wcs tok, a pointer to the srune variable should be supplied as the third argu­
ment~ the value of this variable must not be changed between ca11s of wcstok.

To see how wcstok works, let's redo the example of Section 23.6. Assume
that str, p, and q are declared as follows:

wchar_ t str[) = L" April 28,1998";
wchar_t *P, *q;

Our initial call of wcstok will pass str as the fu·st argun1ent:

p = wcstok(str, L" \t", &q);

p now points to the first character in April, which is followed by a null wide
character. CaUing wcstok with a null pointer as its first argument and &q as lhc
third argument causes it to resume lhe search from where it left off:

p = wcstok(NULL, L" \t, 11
, &q);

After this call, p poinlS to the first character in 2 8, which is now terminated by a
nu1J wide character. A fmaJ call of wcstok locates the year:

p = wcstok (NULL, L 11
\ t", &q) ;

p now points to the first character in 1998.

Miscella11eous F1,1ictions

size t wcslen(const wchar_t *s);
wchar t *wmemaet(wchar_t *s, wchar t c, size t n);

Table 25.18
Miscellaneous Wide-String

Functions and Their
<String. h> Equivalent~

25.5 The <wchar. h> Header (C99) 667

The runcLions in this group are wide-character versions of the misceUaneous
string functions found in <string .h;;::, and described in Section 23.6. The
<wchar. h> funclions have arguments of type wchar_t * instead or char*,
but Lheir behavior is mostly the same as Lhe <String. h> functions. Table 25.18
shows the correspondence between lhe <string. h> functions and their wide­
character counterparts.

<wchar. h> FunctioTl <string. h> Equivalent

wcslen strlen
wmemset memset

Wide-Character Time-Conversion Fu11ctions

size t wcsftime(wchar_t *restricts, size_t maxsize,
const wchar t * restrict forrnat,
const struct tm * restrict timeptr);

wcsftime The wcsftime function is the wide-character vers.ion of strftime. which
belongs to the <time. h> header and is described in Section 26.3.

Extended Multibyte/Wide-Character Conversion Utilities

We'll now examine <Wchar. h> functions that perform conversions between
muJLibyte characters and wide characters. Five of these functions (mbrlen,
mbrtowc, wcrtomb, mbsrtowcs, and wcsrtombs) correspond to the multi­
byte/wide-character and multibyte/wide-string conversion functions declared in
< stdlib. h>. The <Wchar. h> functions have an additional parameter, a
pointer to a variable of type mbs tate_t. This variable keeps track of the state of
tJ1e conversion of a multibyte character sequence to a wide-character sequence (or
vice versa), ba(ied on the current locale. As a result, Lhe <Wchar. h> functions are
" restartable·•: by passing a pointer to an mbstate_t variable 1noclified by a previ­
ous function call. we can "restart', the function using the conversion state from that
call. One advantage of this arrangemenl is lhal it allows two functions to share the
sa1ne conversion state. For example, caJls of mbrtowc and mbsrtowcs that are
used to process a single multibyte character string could share an mbstate _ t
vruiable.

Tbe c0nversion state stored in an mbstate t variable consists of the current -
shift state plus the currenr position within a multibyte character. Setting the bytes
of an mbstate_ t variable co zero puts it in the initial conversion state, signjfying
that no multibyte character is yet in progress and that the initial shi ft state is in
effect:

mbstate_t state;
...
memset(&state, '\O', sizeof(state));

672 Chapter 25 International Features

Table 25.19
Wide-Character

Classification Functions

Function Test
----- ------------------l

iswalnum(wc)
iswalpha(wc)
iswblank(Wc)
iswcntrl(wc)
iswdigit(wc)
iswgraph(wc)
iswlower(wc)
iswprint (we)
iswpunct(wc)
iswspace(wc)
iswupper (wc)
iswxdigit(wc)

ls wc alphanumeric?
ls wc alphabetic? ...
Is we a blank? '
Is wc a conlrol character?
Is wc a decin1al digit?
ls we a printing character (other than a space)?
Is we a lower-case letter?
ls we a printing character (including a space)?
rs wc punctuation?
fs wc n whjte-space character?
Is we an upper-case letter?
Is we n hexadecimal digit?

tThe stundanl blauk wide cbaracters .:ire space (L 1 ') and horizontal tab
(L' \ t').

leaving open the possibility that more than one wide character is considered to be a
.. space:· See Appendix D for n1ore detailed descriptions of these fu nctions.

In most cases, the wide-cbaracter classification functions are consistent with
lhe corresponding functions in <ctype. h>: if a <ctype. h> function returns a
nonzero value (indicating "true") for a particular character, then tile corresponding
<wctype. h> function will return true for Lb.e wide version of the same character.
The 01)ly exception involves wbite-space wide characLers (OLher Lhan space) that
are also printing characters, which n1ay be classified differently by iswgraph
and iswpunct than by isgraph and ispunct. For exan1ple, a character for
which isgraph returns true may cause iswgraph to return false.

Extensible Wide-Character Classification Functions

int i$wctype(wint_t we, wctype_t desc);
wctype_c wctype(const char *property);

Each of the wide-character cla.<:sificarion functions just discussed is able to test a
single fixed condition. The wctype and iswctype functions-wbicb are de­
signed to be used together-make it possible to rest for other conditions as well.

wctype The wctype function is passed a string describing a class of wide characters:
it returns a wctype_t value Lhat represents this class. For example, the call

wctype (11upper 11
)

retu111s a wctype_t value representing the class of upper-case letters. The C99
standard requires 1.hat the following strings be allowed as argu1nents to wctype:

11 alnum 11 "alpha"
"lower" "print"

11 blank 11 11 cntrl 11 11digit 11

"punct" "space" 11 upper 11

"graph 11

11 xdigit 11

Additional string may be provided by an iinplemcntru:.ion. Which strings are legal
argun1ents Lo wctype at a given time depends on the LC_CTYPE category of the

25.6 The <wctype .h> Header (C99) 673

current locale~ lhe 12 strings listed above are legal in all locale$. I f wctype is
passed a string Lhat's not supported in lbe current locale, il renu11s zero.

iswctype A call of the iswctype function requires two parameters: we (a wide char-

towlower
towupper

acter) and desc (a value returned by wctype). iswctype returns a nonzero
value if we belongs to the class of characters con·esponding to desc. For example,
the call

iswctype (we, wctype ("alnum"))

is equivalent to

iswalnum(wc)

wctype and iswctype are most useful when lhe argument to wctype is a
string other than the standard ones listed above.

Wide-Character Case-Mapping Functions

wint t towlower(wint t we);
wint t towupper(wint_t we);

Tlle tow lower and towupper funclions are the wide-character counterparls of
tolower and toupper. For example. towlower returns the lower-case ver­
sion of its argwnenL if the argument is an upper-ca~e letter; otherwi.~e. it returns
the argument anchanged. As usual, there may be quirks when dealing with wide
characters. For example, more than one lower-case version of a letter may ex.isl in
the cw-rent locale. iii whicb case tow lower is allowed to return any one of thein.

Extensible Wide-Character Case-Mapping Functions

wint_t towctrans(wint_t we, wctrans_t desc);
wctrans t wctrans(const char *propert:y);

Tb.c wctrans and towctrans functions are used Logether to support general­
ized wide-character mapping.

wctrans The wctrans [unction is passed a string describing a character mapping; il
retun1s a we trans_ t value that represenL(; U1e mapping. For example, the call

wctrans ("to lower 11
)

returns a wctrans_t value representing the mapping of upper-case letters to low­
er case. The C99 standard requires that the strings II tolower '' and "toupper ''
be allowed a<; arguments to wctrans. Additional strings may be provided by an
implementation. Which strings are legal arguJ11ents to wctrans at a given tirne
depends on the LC_ CTYPE category of the current locale; 11 to lower " and

11 to upper" are legal in all locales. If wctrans is passe<l a string that's not sup­
ported in the current locale. itretums zero.

Section 25.1

Section 25.2

Exercises 675

read multibyte characters, convert them to wide characters for manipulation
wiLhjn the program, and then conve1t the wide characters back co muJtibyte form
for output

Q: Unicode and UCS seem to be pretty much the same. What's the difference
between the hvo·t LP, 650]

A: Both contain the san1e characters, and characters are represented by the same code
po.ints in both. Unicode is more than just a character set. though. For example, Uni­
code supports "bidirectional display order." Some languages, including Arabic and
Hebrew, allow text to be written from rjgbt to left ins tead of left to right. Unicode
is capable of specifying the display order of characters, allowing text to contain
some characters that are to be displayed fro1n left to right along with others that go
from right to left.

Exercises

I. Deterrnine which locales are supported by your compi ler.

2. The Sruft-JIS encoding for kanji requires either one or two bytes per character. If the first
byte of a character is between Ox81 and Ox9f or between Oxeo and Oxef, a second byte
is required. (Any other byte is treated as a whole characler.) The second byte musl be
between 0x40 and 0x7e or between Ox80 and Oxfc. (NI ranges are inclusive.) For each
of the following strings. give lbe value that the mbcheck function of Section 25.2 will
return when passed Lhat string as its argun1eoL, assuming that mullibyle characters are
encoded using Shift-TIS in the currenl locale.

(a) "\xOS\x87\xBO\x36\xed\xaa"
(b) "\x20\xe4 \x50\x88 \x3f"
(c) "\xde\xad\xbe\xef"
(d) "\xBa\x60\ x92\x74\x4l"

3. One of the useful properties of UTF-8 is LhaL no sequence of bytes within a multibyte char­
acter can possibly represent another valid multibyte character. Does the Shift-JCS encoding
for kanji (discussed in Exercise 2) have this property'?

4. Give a C slring literal that represents each of Lhe foUowing phrases. Assu1ne that the charac­
ters a. e, e, e, 'f, o. u, and i.i are represenLed by single-byte Latin-1 characters. (You'll need to
look up the Latin-! code points for these characters.) For exarnplc, tl1e phrase deja v11 could
be represented by tbe string II d \xe9j \xeO vu".
(a) Cote c/'1-\ zur
(b) crl111e brulea
(c) cra,ne.fra'iche
(d) Fahrvergnilgen
(e) rete-a-tete

5. Repeat Exercise 4, this time using the UTF-8 multibyLe encoding. For exan1ple, the phrase
deja vu could be represented by the string 11 d\xc3 \xa9j\xc3 \xao vu 11 •

676 Chapter 25 International Features

Section 25.3 Q 6. Modify lhe foUowing program fragment by replacing as many cbaracters as possible by tri­
graphs.

while ((orig_char = getchar()) I= EOF) {
new_char: orig_char A KEY;

}

if (isprint(orig_char) && isprint(new_char))
putchar(new_char);

else
putchar(orig_char};

7. (C99) Modify the progra1n fragn1cnL in Exercise 6 by replacing as many tokens as possible
by digraph~ and macros defined in <iso64 6. h>.

Programming Projects

fl) I. Write a program that tests whelher your compiler's 11 " (native) locale is the same as its II C"
locale.

2. vVrite a program that obtains the oa1ne of a locale Ironitbe co1umaud line and then displays
the values stored in the corresponding lconv structure. For example, if the locale is
"f i_FI" (Finland). the output of the program ,night look like this:

decimal_point - ","
thousands _ sep = " "
grouping= 3
mon_decimal_point _ 11 , 11

mon_thousands_sep - " 11

mon grouping= 3
positive sign = '' 11

negative_sign = 11
-"

currency_symbol - 11 EUR 11

frac_digits = 2
p_cs_precedes = o
n_cs_precedes = o
p_sep_by_space = 2
n_sep_by_space = 2
p_sign_posn = 1
n_sign_posn = 1.

int_curr_symbol - '' :EJUR "
int_frac_digits - 2
int_p_cs_precedes = 0
int_n_cs_precedes = o
int_p_sep_by_space = 2
int_n_sep_by_space = 2
int_p_sign_posn = 1
int_n_sign_posn = 1

For readabil.ity, tbe characters io grouping and mon_grouping should be displayed as
decimal numbers.

26 Miscellaneous Library
Functions

It is the user who should parametrize
procedures, not their creators.

<stdarg. h>, <stdlib. h>, and <time. h>-lhe only C89 headers that
\Veren'L covered in previous chapters-are unlike any olhers in lhe standard library.
The <stdarg . h> header (Section 26.1) makes it possible to write functions with
a variable nun1ber of arguments. <Stdlib. h> (Section ?6.?) is an assortment of
functions that don't tit into one of 1.be other headers. The < time . h> header (Sec­
tion 26.3) allows progran1s lo work with dates and limes.

26.1 The <stdarg. h > Header: Variable Arguments

type va_arg (va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start (va_list ap, parn,N);

Functions such as printf and scanf have an unusual property: they allow any
number of argun1ents. The ability to ha.ndle a variable number of arguments isn't
lin1ited to library functions. as il turns out. The <stdarg. h> header provides the
tools we'11 need to write our own functions with variable-length argument lists.
<Stdarg .h> declares one type (va_ list) and defines several 1nacros. In C89,
there are three macros, nan1ed va_start. va_arg, and va_end. which can be
thought of as functions with the prototypes shown above. C99 adds a function-like
1nacro nan1ed va _ copy.

677

678 Chapter 26 Miscellaneous Library Functions

va_start

To see bow these macros work, we'll use them to w1ite a function named
max int that finds the maximum of any number of integer arguments. Here's
how we 1night call the function:

max int(3, 10, 30, 20)

The first argument specifies bow n1any additionaJ argun1ents will follow. This call
of max int will return 30 (the largest of the numbers 10, 30, and 20).

Here's the definition of the max int function:

int max_int (int n, ... } / * n must be at least 1 */
{

}

va_list ap;
inti, current, largest;

va_start(ap, n);
largest= va arg(ap, int);

for (i = 1; i < n; i++) {
current= va arg(ap, int);
if (current> largest)

largest= current;
}

va end (ap) ;
return largest;

The . . . symbol in the parameter list (known as an ellipsis) indicates that the
parameter n is followed by a variable number of additional parameters.

The body of max_int begins with the declatation of a vatiable of type
va list:

va_list ap;

Declaring such a variable is mandatory for max_ int to be able to access the argu­
ments that follow n.

The statement

va_start(ap, n};

indicates where the variable-length part of the argument Ust begins (in this case,
after n). A function with a variable number of arguments must bave at least one
"normal" parameter; the ellipsis always goes at the end of the parameter list , after

the last normal parameter.
va_arg The statement

largest= va_arg(ap, int);

fetches max int's second argument (the one after n), assigns it to largest, -
and automatically advances to the next argument. The word int indicates that we
expect max_ int 's second argument to have int type. The statement

26.1 The ~stdarg. h> Header: Variable Arguments 681

its oulput and aJways w1ites to stderr instead of stdout. we·11 have errorf
call vfprintf lo do most of Lhe acluaJ outpul. Here'~ whal error£ might look
like:

int errorf(const char *format, ...)
{

}

static int num errors= O;
int n;
va_list ap;

num_errors++;
fprintf(stderr, 11 ** Error %d: ", num errors);
va_start(ap, format);
n = vfprintf(stderr, format, ap);
va_end (ap) ;
fprintf (stderr, 11 \n 11

) ;

return n;

The wrapper function errorf, in our exan,ple-is responsible for cal Ung
va_start prior lo ca11ing the v._printf funcLion and for calling va_end after
the v ... printf function returns. The wrapper funct ion is allowed to call va_arg
one or n1ore times before calling the v ... printf function.

vsnprintf The vsnprintf function was added to the C99 version of <stdio. h>. It
con·esponds to snprintf (discussed in SecLion 22.8), which L') also a C99 func­
tion .

C) The v ... scanf Functions

vfscanf
vscanf

vsscanf

int vfscanf(FILE * restrict stream,
const char* restrict format,
va_list arg); jronz <Stdio .h>

int vscanf(const char* restrict format,
va_list arg); .fro111<stdio.h>

int vsscanf(const char* restricts,
const char* restrict format,
va_list arg) ; .fronz <stdio. h>

C99 adds a set of "v ... scanf functions" to the <stdio. h> header. vf scanf.
vscanf, and vsscanf are equivalent to fscanf. scanf. and sscanf.
respectively, except that they have a va_list parameter Lhrough which a variable
argument list can be passed. Like the v ... printf functions, each v ... scanf func­
tion is designed to be called by a wrapper function that accepts a variable nun1ber
of arguments, which it then passes Lo the v .. .scanf function. The wrapper func­
tion js responsible for calling va _start prior to calling the v ... scanf function
and for calling va end afler the v ... scanf function reLw·ns.

682 Chapter 26 Miscellaneous Library Functions

26.2 The < s tdl ib. h> Header: General Utilities

< stdl ib. h> serves as a catch-all for functions that don't fit into any of the other
headers. The functions in <S tdlib . .h> fall into eight groups:

Numeric conversion functions
Pseudo-random sequence generation functions
Memory-management functions
Communication with the environmenl
Searching and sorting utilities
Integer arithmetic functions
Multibyte/wide-character conversion functions
Multibyte/wide-string conversion functions

We'll look at each group in tum, with three exceptions: the memory management
functions, the multibyte/wide-character conversion functions, and the mulcibyte/
wide-string conversion functions.

The memory-management functions (malloc, callee, realloc, and
free) permit a program to aJlocare a block of memory and then later release it or
change its size. Chapter 17 describes all four functions in some detail.

The multibyte/wide-character conversion functions are used to convert a
multibyte character to a wide character or vice-versa. The multibyte/wide-string
conversion functions perform similar conversions between mullibyte strings and
wide strings. Both groups of functions are discussed in Section 25.2.

Numeric Conversion Functions

double atof(const char *nptr);

int atoi{const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);

double strtod(const char* restrict nptr,
char** restrict endptr);

float strtof(const char* restrict nptr,
char** restrict endptr);

long double strtold(const char* restrict nptr,
char** restrict endptr);

long int strtol(const char* restrict nptr,
char** restrict endptr, int base);

26.2 The <std1-ib. h> Header: General Utilities 685

It _______ _
II

It _ _ _ ______ - _ - - - - - \Il 11) ;

errno = O;
printf ("strtod
CHK_VALID;

%-129 11
, strtod (argv [l] , &ptr)) ;

errno = 0;
printf ("strtol
CHK_ VALID;

%- 12ld 11 , strtol(argv[l], &ptr, 10));

errno = O;
print:f (11 strtoul
CHK VALlD;

%- - 12lu 11 , strtoul (argv[l), &ptr, 10));

return O;
}

lf 3000000000 is the command-line argun1ent. the output of the program
111ight have the fo llowing appearance:

Function

atof
atoi
atol

Function

strtod
strtol
strtoul

Ret.urn Value

3e+09
2147483647
2147483647

Return Value

3e+09
2147483647
3000000000

Valid?

Yes
No
Yes

String Consumed?

Yes
Yes
Yes

On many n1achines. the nun,ber 3000000000 is loo large lo represent as a long
integer, allhough it·s valid as an un~ignedlong integer. The atoi and at.cl func­
tions had no way to indicate that the number represented by their argument was out
of range. In the output shown, they returned 2147483647 (the largest long integer),
but the C standard doesn't guarantee this behavior. The strtoul function per­
formed lhe conversion co1TecLly: strtol returned 2147483647 (lbe standard
requires it to retun1 the largest long integer) and stored ERANGE in errno.

lf123 . 456 is thecomn1and-lineargument, the output will be

Function
-- - -----
atof
atoi
atol

Function

strtod
strtol
strtoul

Return Value

123.456
123
123

Return Value
----- -------
123.456
123
123

Valid?
--- ---
Yes
Yes
Yes

String Consumed?

Yes
No

No

26.2 The < s tdl ib . h> Header: General Utilities 689

something like thi s:

PATH=/usr/local/bin:/bin:/usr/bin:.

getenv provides access to any string in lhe user's environment. To find Lhe cur­
rent value of the PATH string, for example. we could write

char *p = getenv ("PATH 11
) ;

p now points to lhe string 11 /usr /local /bin: /bin: /usr /bin: . 11
• Be care­

ful wilh getenv: it returns a pointer to a statically allocated string that may be
changed by a later call of the fltoction.

system The system function allows a C program to run another program (possibly
an operating system comn1and). The argument to system is a string containing a
command, similar to one that we'd enter at the operating systen1 prompt. For
example, suppose that we're writing a program that needs a list ing of lhe files in
the current directory. A UNIX program would call system in the following way:

system ("ls >myfiles 11) ;

This call invokes the UNIX con1ma11d 1 s and asks it to write a listing of the cur­
rent directory into the file named myfiles.

The return value of system is 1n1plen1entation-defined. system typically
returns the termination status code from the program that we asked it to run: test­
ing this value allows us to check whether the program worked properly. Calling
system with a null pointer bas a special meaning: the function returns a nonzero
value if a command processor is available.

Searching and S01·ting Utilities

void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,

void

int (*compar) (const void*,
const void *)) ;

qsort(void *base, size_t nmernb, size_t
int (*compar) (cons.t void *, canst

• size,
void*)) i

bsearch The bsearch function searches a sorted array for u particular value (the "key'•).
When bsearch is called, the key paran1eter points LO the key, base points to the
array. nmernb is the number of elements in the array, size is the size of each ele­
menl (in bytes), anti compar is a pointer to a comparison function. The compari­
son function is similar to the one required by qsort: when passed pointers to the
key and an array elen1ent (in that order), the function must return a negative, zero,
or positive integer depending on whether the key is less tl1an. equal to, or greater
than the array element. bsearch returns a pointer to an element that matches the
key: if it doesn't find a match, bsearch retulns a null pointer.

690 Chapter 26 Miscellaneous Library Functions

Although the C standard doesn't require it to, bsearch normally uses the
binary search algorithm to search the array. bsearch first compares the key with
the element in the middle of the array: if there's a match, the function returns. If
the key is smaller than the middle element. bsearch limits itS search to the first
half of the array; if the key is larger, bsearch searches only the last half of the
array. bsearcb repeats this strategy until it finds the key or runs out of elements
to search. Thanks to this technique, bsearch is quite fast-searching an array of
1000 elements requires only 10 comparisons at most; searching an array of
1,000.000 elements requires no more than 20 comparisons.

qsort Section 17. 7 discusses the qsort function, which can sort any array.
bsearcb works only for sorted arrays, but we can always use qsort to sort an
array prior to asking bsearch to search it.

PROGRAM Determining Air Mileage

Our next program computes the air mileage from New York City to various inter­
national cities. The program first asks the user to enter a city name. then displays
the mileage to that city:

Enter city name: Shanghai
Shanghai is 7371 miles from New York City.

The progrrun will store ci ty/mileage pairs in an array. By using bsearch to
search tbe array for a city name, the progr-an1 can easily fmd the corresponding
mileage. (Mile-ages are from Infoplease.con-z.)

alrmiles.c / * Determines air mileage from New York to other cities * /

#include <Stdio .h>
#include <Stdlib.h>
#include <string.h>

struct city_info {

} ;

char *city;
int miles;

int compare_cities{const void *key_ptr,
const void *element_ptr);

int main(void)
{

char city name[81);
struct city_info *ptr;
const struct city info mileage[] =

{{"Berlin", - 3965}, {".Buenos Aires",
{"Cairo", 5602), {"Calcutta",
{

11 Cape Town" , 7764} , { "Caracas" ,
{"Chicago 11

, 713} , { 11 Hong Kong",
{"Honolulu", 4964}, {"Istanbul'',

5297},
7918},
2132},
8054},
4975},

}

26.2 The <stdl ib. h> Header: General Utilities 691

{"Lisbon",
{

11 Los Angeles",
{ "Mexico City",
{"Moscow'',
{ "Rio de Janeiro",
{"San Francisco 11

,

{''Stockholm",
{ "Tokyo" ,
{"Washington",

3364}, {"London",
2451}, {"Manila",
2094}, { "Montreal 11

,

4665}, {"Paris",
4 81 7 } , { 11 Rome 11

,

2 5 71} , { 11 shanghai 11
,

3924}, {"Sydney",
6740}, {"Warsaw",

205}};

printf ("Enter city name: 11) ;

scanf ("%80 ["\n] 11
, city_name) ;

ptr = bsearch(city_name, mileage,

3458},
8498},

320},
3624},
4281},
7371},
9933},
4344},

sizeof(mileage) / sizeof(mileage[O]),
sizeof(mileage[O]), compare_ cities);

if (ptr != NULL)
printf (11 %s is %d miles from New York City. \n",

city_ name, ptr->miles);
else

printf ('' %s wasn I t found. \n" 1 city_ name) ;

return O;

int compare_cities(const void *key_ptr,
const void *element_ptr)

{
return strcmp((char *) key_ptr,

}
((struct city_info *) element_ptr)->city);

Integer Arithmetic Functions

int abs (int j) ;
long int labs (long int j) ;
long long int llabs(long long int j);

div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);
lldiv t lldiv(long long int numer,

long long int denom);

abs The abs function retums the absolute value of an int value; the labs funclion
labs returns the absolute value of a long int value.
div The div function divides its first argun1ent by its second, returning a div t

value. div_ t is a structure that contains both a quotient member (named quot)
and a remainder member (rem). For example, if ans is a div_ t variable, we
could write

ans= div(S, 2);
printf("Quotient: %d Remainder: %d\n", ans.quot, ans.rem);

26.3 The <time. h> Header: Date and Time 693

Time Manipulation Functions

clock t clock(void);
double difftime(time_t timel, time_t timeO);
time t mktime(struct tm *timeptr);
time t time(time_t *timer);

clock The cloak function returns a clock_t value representing the processor time
used by the progra1n since execution began. To convert this value to seconds, we
can divide it by CLOCKS_PER_SEC, a macro defined in <time. h>.

When clock is used to determine how long a program has been running. it's
custon1ary to call it twice: once at the beginning of main and once just before the
progra1n terminates:

#include <stdio.h>
#include <time.h>

int rnain(void)
{

clock t start_clock =clock();

print£ ("Processor time used: %g sec. \n 11
,

(clock() - start_clock) / (double) CLOCKS_PER_SEC);
return O;

}

The reason for the initial call of clock is that the program will use some proces­
sor time before it reaches main. thanks co bidden "starl-up" code. Calling clock
at the beginning of main detern1ines how n1t1ch time lhe start-up code requires so
tbat we can subtract it later.

The C89 standard says only that clock_t is an ruithmetic type; lbe type of
CLOCKS_PER_SEC is unspeclfied. As a result. the type of the expression

(clock() - start_clock) / CLOCKS_PER_SEC

may vary fron1 one in1plementation to another. Lnaking it difticult to display using
printf. To solve the problern. our example converts CLOCKS_PER_SEC to

8 double, forcing the entire expressjon to have type double. ln C99, the type of
CLOCKS_PER_SEC is specilied to be clock_t. but clock_t is still an imp1e­
n1entation-defined type.

time The time function returns the cun·ent calendar time. If its argument isn't a
null pointer, time also store~ the calendar tin1e in the object that the argument
points to. time's ability to return a time in two different ways is an historical
quirk. but it gives us the option of writing either

cur time= time(NULL);

or

t.tm_sec: 0;
t .tm_ min = O;

26.3 The <time. h> Header: Date and Time 695

t . tm_hour = O;
t.tm_isdst = -1;

Next, we'll add 16 to the tm_mday member:

t.tm_mday += 16;

That leaves 43 in tm_mday, which is out of range for that member. Ca11ing
mktime wi11 bring tbe 1nembers of the structure back into their proper ranges:

mktime (&t) ;

We' ll discard mktime's return value, since we're interested only in the function's
effect on t. The relevant members of t now have the following values:

Men,eber Value Meaning
tm_mday 12]2

tm mon - 7 August
tm_year Jl2 201?
tm_wday 0 Sunday
tm yday 224 225 lh day of the year

Time Conversion Functions

char *asctime(const struct tm *timeptr);
char *ctime(const time t *timer);
struct tm *gmtime(const time_t *timer);
struct tm *localtime(const time t *timer) ;

• size t strftime(char *restricts, size_t maxsize,
const char* restrict format,
canst struct tm * restrict timeptr);

The time conversion functions rnake it possible Lo convert caJendar tin1es to bro­
ken-down times. They cru1 also convert tin1es (calendar or broken-down) to string
form. The following figure shows bow these functions are related:

Calendar time
time t

mktime

- -+1 Broken-down time
gmtime struct tm

local time

Character string

Table 26.2
Conversion Specifiers for

the strftime Function

Table 26.3
Replacement Strings for
strftime Conversion

Specifiers in the
" C" Locale

26.3 The <time. h> Header: Date and Time 697

Conversio11 Replace,nent

%a Abbreviated weekday name (e.g .. Sun)
%A Full weekday name (e.g., Sunday)
%b Abbreviated n1ontb name (e.g .. Jun)
%B Full month name (e.g .. June)
%c CompJetedayantlt.ime(e.g.,Sun Jun 3 17:48 : 34 2007)
%Ct Year divided by 100 and u·uncaced to an integer (00-99)
%d Day of month (01-31)

•
%D 1 Equivalent co %m/%d/%y ...
%e' Day of 1nonth (1-31); a single digit is preceded by a space
%Ft Eqaivalenl LO %Y-%m-%d

4

%9' Last two digits of ISO 8601 week-based year (00-99)
%Gt ISO 860 I week-based year

4

%h1 Equivalent LO %b
%H Hour on 24-hour clock (00-23)
%I Hour on 12-bour clock. (01-12)
%j Day of year (001-366)
%rn Month (01-12)
%M Minute (00-59)
%n t New-line character
%p AM/PM designator (AM or PM) ...
%r' 12-hour clock Lime (e.g .. 05: 48: 34 PM)
%Rt Equivalent to %H: %M
%8 Second (00-61): maximum value in C99 is 60
%t t liorizontal-tab character
%Tt Equivalent lo %H: %M: %S
%ut JSO 8601 weekday (1-7); Monru1y is I
%U Week number (00-53): firsl Sunday is beginning of week 1
%Vt ISO 8601 week nunJber (01-53)
%v1 Weekday (0-6): Sunday is 0
%W Week otnnber (0 0-5 3): first Monday is beginning of week l
%x Complete date (e.g., 06/03/07)
%X Complete tirue (e.g., 17: 48: 34)
%y Last two digits of year (00-99)
%Y Year
%zt Offset from UTC in ISO 8601 formal (e.g., -0530 or +0200)
%Z Time zone name or abbreviation (e.g., EST)
%% %

tc99 only

Coru1ersio11 Replace11ie11t --------
% a First three characters of %A
%A One of 11 Sunday 11

• "Monday" , 11 Saturday 11

%b First three characters of %B
%B One or II January", 11 February 11

, ••••
11 December"

%c Equivalent Lo 11 %a %b %e %T %Y 11

%p One of II AM" or II PM 11

%r Equivalent to 11 %1: %M: %S %p"
%x Equivalent to 11 %rn/%d/%y"
%X Equivalent to %T
%Z Implementation-defined

698 Chapter 26 Miscellaneous Library Functions

ISO8601

ISO 8601 is an international standard that describes ways of representing dates
and times. It was originally published in 1988 and later updated in 2000 and 2004.
According to this standard, dates and times are entirely numeric (i.e., months are
not represented by names) and hours are expressed using the 24-hour clock.

There are a number of ISO 8601 date and time formats, some of which are
directly supported by strftime conversion specifiers in C99. The primary ISO
8601 date format (YYYY-MM-OO) and the primary time format (hh:mm:ss) corre­
spond to the %F and %T conversion specifiers, respectively.

ISO 8601 has a system of numbering the weeks of a year; this system is sup­
ported by the %g, %G, and iv conversion specifiers. Weeks begin on Monday, and
week 1 is the week containing the first Thursday of the year. Consequently, the first
few days of January (as many as three) may belong to the last week of the previous
year. For example, consider the calendar for January 2011:

January 2011

Mo Tll We Th Fr Sa S11 Year Week
I 2 2010 52

3 4 5 6 7 8 9 2011

10 1 I J2 13 14 15 16 2011 2

17 18 19 20 21 22 23 2011 3
24 25 26 27 28 29 30 20 11 4

31 2011 5

January 6 is the first Thursday of the year, so the week of January 3-9 is week 1.
January 1 and January 2 belong to the last week (week 52) of the previous year. For
these two dates, strftime will replace %9 by 10, %G by 2010, and %V by 52. Note
that the last few days of December will sometimes belong to week 1 of the following
year; this happens whenever December 29, 30, or 31 is a Monday.

The %z conversion specifier corresponds to the ISO 8601 time zone specifica­
tion: -hhmm means that a time zone is hh hours and mm minutes behind UTC; the
string +hhmm indicates the amount by which a time zone is ahead of UTC.

<Im) C99 allows the use of an E or o character to 1nodif--y the meaning of certain
strf time conversion specifLers. Conversion specifiers that begin with an E or O
modifier cause a replacen1ent to be performed using an alternative format that
depends on the current locale. If an alternative representation doesn't exist in the
current locale, lhe modifier bas no effect. (In the "c" locale, El and o are ignored.)
Table 26.4 lists all conversion specifiers that are allowed. to have E or o modifiers.

PROGRAM Displaying the Date and Time

Let's say we need a program that displays the current date and time. The program's
first step, of course, is to call the time fuoction lo obtain lhe calendar time. The

Table 26.4
E- and 0-Modified

Conversion Specifiers
for the strftime

Function (C99 only)

26.3 The <time. h> Header: Date and TTme 699

Conversion Replace1ne1U

%Ee Alternative date and time representation
%EC Name of base year (period) in alternative representation
%Ex Allernative date representation
%EX Alternative time representation
%Ey Offset from %EC (year only) in alternative representation
%EY FuJJ alternative year representation
%Od Day of 1nonth, using aJtemative numeric symbols (filled with leading

t:eros or with leading spaces if there is no alternative symbol for zero)
%Oe Day of month, using alternative numeric symbols (ti I led with leading

spaces)
%OH I-tour on 24-hour clock, using alternative numeric symbols
%OI I-lour on 12-hour clock, using alternative DLLIDeric symbols
%Om Month. using alternative numeric symbols
%OM Minute. using alternative numeric symbols
%OS Second, using alternative numeric syn1bols
%Ou ISO 860 l weekday as a number in alternative representation,

where Monday is l
%OU Week number, using alternative numedc symbols
%0V ISO 860 I week number, using alternative numeric symbols
%Ow Weekday as a number, using alternative numeric sy1nbols
%OW Week number, using alLernative numeric symbols
%Oy Last two digits of year, using alternative numeric syn1bols

second step is to convert Lhe time to string f onn and prinl it. The easiest way to do
the second step is to call ctime, which returns a pointer to a string containing a
date and ti1ne, then pass this pointer lo puts or print£.

So far, so good. But wbat if we want the progran1 to display the date and time
in a particular way? Let's assume that we need the following format, where 06 is
the month and 03 is the day or lhe month:

06-03-2007 5:48p

The ctime function aJways uses the same format for the date and time, so il's no
he.Ip. The strftime function is better; using it, we can almost ach.ieve the
appearance that we want. Unfortunately, strftime won' t let us display a one­
digit hour without a leadiug zero. Also, strftime uses AM and PM instead of a
andp.

When strftime isn't good enough, we have another alternative: convert the
calendar time to a broken-down time. then extract the relevant information fron1
the tm structw·e and formal it ourselves using printf or a similar function. We
n1ight even use strftime lo do some of Lhe formatting before having other func­
tions complete the job.

The following progra111 Ulustrates the options. It displays the current date and
time in three formats: the one used by ctime. one close to what we want (creaLed
using strftime), and the desired fom1at (created using printf). The ctime
version is easy to do. the strftime vers.ion is a little harder, and the printf
version is the most difficult.

700 Chapter 26 Miscellaneous Library Functions

datetime.c /* Displays the current date and time in three formats * /

#include <Stdio.h>
#include <time.h>

int main (void)
{

}

time t current= time(NOLL);
struct tm *ptr;
char date_time[21J;
int hour;
char am_orym;

/ * Print date and time in default format */
puts(ctime(¤t));

/ * Print date and c.ime, using strftime to format*/
strftime(date_time, sizeof(date_time),

''lm-%d-tY %I:%M%p\n'', localtime(¤t));
puts (date_time) ;

/* Print date and time, using print£ to format */
ptr = localtime(¤t);
hour= ptr->tm_hour;
if (hour<= 11)

am_ or _pm :::; ' a ' ;
else {

hour-= 12;

}
am_or_pm -= 'P' ;

if (hour == 0)
hour= 12;

printf(11 %.2d-%.2d-%d %2d:% . 2d%c\n", pc.r->tm_mon + 1,
ptr->tm_mday, ptr->tm_year + 1900, hour,
ptr->tm_rnin, am_or_pm);

return O;

The output of datetime . c will have the foUowingappearance:

Sun Jun 3 17:48:34 2007

06-03-2007 05:48PM

06-03-2007 5:48p

Q&A

Q: Although < s tdl ib. h> provides a number of functions that convert strings
to numbers, there don't appear to be ai1y functions that convert 011mhers to
strings. What gives?

Section 26.2

Exercises 703

··normal'' pararneter. so you can't ren1ove the parameter n. lnstead, o.ssu1ne that it represents
one of Lhe numbers to be con1pared.

8 2. Write a simplified version of prinlc.f in which the only conversion specification is %d, and
aU arguments after ti1e first are assumed to 11ave int type. lf the function encounters a %
character that's not immediately followed by ad character. il should ignore both characters.
The function should use calls of put char Lo produce all output. You 1nay assu1ne that the
format string doesn't contain escape sequences.

3. Extend the function of Exercise 2 so that it allows two conversion specifications: %d and
%s. Each %din the fom1at string indicates an int argument, and each %s indicates a char
* (string) argument.

4. Write a function named display that Lakes any nw11ber of arguments. The first argun1ent
n1usL be an integer. The reanaining arguments will be strings. The first argument specifies
how many strings the call contains. The function will print the strings oo a single Line, with
adjacent strings separated by one space. For example, the caU

display{4, "Special", "Agent", "Dale", "Cooper");

will produce the following output:

Special Agent Dale Cooper

5. Write Lhe following function:

char *vstrcat{const char *first, ...);

All arguments of vstrca t are assumed to be strings. except for the last argument which
must be a nuJl pointer (cast to char* type). TI1e function rerurns a pointer to a dynamically
allocated string containing the concatenation of the arguanents. vstrcat should rerum a
null pointer if not enough me1nory is available. Hint: Have vstrcat go through the argu­
ments tw.ice: once to determine the amount of men1ory required for the returned string and
once to copy the arguments into the string.

6. Wdte ti1e following function:

char *max_pair(int num__pairs, ...) ;

The arguments of ma.x_pair are assumed to be "pairs'' of integers and strings; the value of
num_pairs indicates how many pairs will follow. (A pair consists of an int argltment
followed by a char * argument). The function searches the integers to find the largest one;
it lhen returns the string argument that follows it. Con:;ider the following call:

max_pair(S, 180, "Seinfeld", 180, "I Love Lucy",
39, "The Ho11.eymooners 11 , 210, "All in the Family",
8 6, 11 The Sopranos 11

)

The largest int argument is 210, so Lhe function returns "All in the Family". whicb
follows h in the argu1nent list

8 7. Explain Lhe meanjog of the folJowing state1nen1. assu1ning that value is a variable of type
long int andp is a variable of type char*:

value~ strtol(p, &p, 10);

8. Write a statement that randomly assigns one of the ntunbers 7, 11, 15, or 19 10 the variable n.

8 9. Write a function that returns a ro.ndon1 double valued in the range 0.0 < d < 1.0.

10. Convert the follov,ing calls of atoi, atol, and atoll into calls of strtol, strtol,
and strtoll, respectively.

704 Chapter 26 Miscellaneous Library Functions

Section 26.3

(a) atoi (str)
(b) atol (str)
(c) atoll(str)

J I. Allhough Lhe bsearch function is nom1aJJy used with a so1ted array, it will sometimes
\vork correctly with ao array Lhat is only partially sorted. Whal condition must an array sat­
isfy lo guarantee that bsearch works properly for a particular key? Hint: Toe answer
appears in the C standard.

12. Write a function that. when passed a year, returns a time_t value representing 12:00 a.m.
on lhe first day of that year.

13. Section 26.3 described some of the [SO 8601 date and Lime formats. Here are a few more:
(a) Year followed by day of year: YYYY- DDD, where DDD is a number bel\veen 001 and

366
(b) Year. week. anti day or week: YYYY-W~v~v-D, where'"'"'' is a number between 0l and

53. and Dis a digh beLwcen 1 through 7, beginning with Monday and ending with Sun­
day

(c) Combined date and tin1e: YYYY-Mlvf-DDThli:111111:ss

Give strftime strings that correspond lo each of these formats.

Programming Projects

I. (a) Write a program lhat calls the rand function 1000 times, printing the low-order biL or
eacb vaJue it returns (0 ir U1e return value is even, I if it's odd). Do you see any patterns?
(Often, the last rew bits or rand's return value aren't especially random.)

(b) How can we i111provc the randomness of rand for generating numbers within a small
range?

2. Write a prograrn that tests the atexi t function. The program should have two functions
(in addition lo main). one of which prints That's all, and the other folks l. Use the
atexi t funclion to register both lo be caJled al program teanination. Make sure they're
called in the proper order, so that we see the message That I s all, folks! on the
screen.

(I 3. Write a program that uses the clock function to n1casurc how long it Lalces qsort. Lo sore
an aiTay of I 000 integers ~hat are originally in reverse order. Run Lhe program for arrays of
I 0000 and 100000 integers as \vell.

G 4. Write a prograiu that proo1p~ Lhe user for a date (1non1h. day, and year) and an integer n,
then prints the date that's n days later.

5. Write a program that prompts the user to enter two dates. then prinL.; the difference between
tbem. measw-ed in days. Hint: Use the mktime and difftime functions.

9 6. WriLe progran1s LhtH display Lhe cun-ent date and tin1e in each of the following formals. Use
strft.ime co do all or rnost of Lhe formatting.

(a) Sunday, June 3, 2007 05:48p
(b) Sun, 3 Jun 07 17: 48

(C) 06/03/07 5: 48: 34 PM

Table 27.2
<stdint. h> Lin1it

Macros for Olher
Integer Types

27.2 The <inttypes.h> Header(C99) 709

Na,ne Value Description

PTRDIFF MIN ~5535 Minimum ptrdiff t value -
PTRDIFF MAX >+65535 Maximum ptrdi ff t value

SIG ATOMIC MIN <-127 (if signed) Minimum sig_atornic_t value - - 0 (if unsigned)

SIG ATOMIC MAX
>+ I ?7 (if signed) Maximum sig_atomic_t value

- - ~55 (if unsigned)

SIZE MAX >65535 Maximum size t value -
WCHAR MIN

<-l 27 (if signed)
Minimum wchar t value - 0 (if unsigned) -

WCHAR MAX
~+ 127 (if signed) Maximum wchar t value - >255 (if unsigned) -

WINT MIN
<-32767 (if signed) Minimu1n wint t value

- 0 (if unsigned) -

WINT MAX
>+32767 (if signed)

Maximum wint t value - ~65535 (if unsigned) -

i = 100000;

is problematic, because the constant 1 o o o o o might be too Large to represent using
type int (if int is a 16-bit type), However, the statement

i = INT32_C(100000);

is safe. [f int_least32_t represents the int type, then INT32_C(lOOOOO)
has type int. But if int_least32_t corresponds to long int. tbeo
INT32_C (100000) has type long int.

<stdint. h> ha~ two olher parameterized macros. INTMAX_C converts an
integer constant to type intmax_t, and UINTMAX_C converts an integer con­
stant to type uintmax t.

27.2 The <int types .h> Header (C99)
Format Conversion of Integer Types

The <int types .h> header is closely related to the <stdint .h> header, the
topic of Section 27.1. In fact, <int types. h> includes <Stdint. h>. so pro-

E£m grams that include <int types. h> don't need to include <stdint. h> as weU.
The <int types. h> header extends <stdint .h> in two ways. First, it defines
macros that can be used in ... printf and ... scanf formal strings for input/output
of the integer types declared in <Stdint. h>. Second, it provides functions for
working with greatest-width integers.

27.3 Complex Numbers (C99) 713

Definition of Complex N11mbers

Let i be the square root of -1 (a nurnber such that i2 =-I). i is known a~ the i1n.agi­
nary lrnit; engineers often represenl it by the syn1bol j instead of i. A conzplex
1iu1nber has the form a+ bi, where a and bare real numbers. a is said to be the real
part of lbe number, and bis the imaginary part. Note Lhat the complex nu1nbers
include the real numbers as a special case (when b = 0).

Why are complex numbers useful? For one thing, they allow solutions lo prob­
letns that are ot11erwise unsolvable. Consider lhe equation x? + L = 0, which has no
solution if x is restricted to the real numbers. If complex numbers are allowed,
there are two solulions: x = i and x = -i.

Con1plex nun1bers can be thought of as points in a two-dimensionaJ space
known as the comple:r. plane. Each complex number-a point in the complex
plane- is represented by Cartesian coordinates, where Lhe real part of the number
corresponds to the x-coordinate oJ the point, aod the imaginary part co1Tesponds
to Lhe y-coordinate. For example. the complex nu1nbers 2 + 2.5i, I - 3i. -3 - 2i,
and -3.5 + l.5i can be plotted as foUows:

•-3.5 +I.Si

lt11agi11ary
O.Xl.'i

3

2

I

•2+2.5i

Real
--l----1--l--1----1----1----J---- '

-3 -2 -1 2 3
QXJ.S

-1

•-3-2i -2

-3 • I -3i

An alternative system known as polar coordinates can also be used to specify
a point on the complex plane. With polar coordinates, a complex number z is repre­
sented by the values rand 8, where r is U1e lengtb of a Line segment from the origin
to z, and Bis tl1e angle between this segment and the real axis:

Imaginary
a.xis

b - - - - - z = a + bi
'

714 Chapter 27 Additional C99 Support for Mathematics

r is called the absolute value of z. (The absolute value is also known as the norm,
modulus, or magnitude.) Bis said to be the argu11zent (or 11hase angle) of z. The
absolute value of a+ bi is gjven by the following equation:

For additional information about converting Ii-om Cartesian coordinates to
polar coordinates and vice versa. see lhe Program.ming Projects at the end of the
chapter.

Complex Arithmetic

The sum of two complex numbers is found by separately adcling the real parts of
the two numbers and the imaginary parts. For example,

(3 -2i) + (1 .5 + 3i) = (3 + J .5) + (-2 + 3)i = 4.5 + i

The difference of two complex nu1nbers is computed in a similar manner, by sepa­
rately subtracting the real parts and the imaginary parts. For example,

(3 - 2i)- (1.5 + 3i) = (3 - l.5) + (-2 -3)i = 1.5 - Si

Multiplying complex numbers is done by multiplying each term of the first
number by each term of the second and then summing Lbe products:

(3 - 2i) X (1.5 + 31) = (3 X 1.5) + (3 X 3i) + (-2i X 1.5) + (-2i X 3i)
= 4.5 + 9i - 3i-6i2 = 10.5 + 6i

Note that rhe identity ;2 = - 1 is used to simplify the result
Dividing complex numbers is a bil harder. First, we need the concept of the

complex conjugate of a nun1ber, which is found by switching the sign of Lhe num­
ber's imaginary part. For example, 7 - 4i is the conjugate of 7 + 4i, and 7 + 4i is the
conjugate of 7 -4i. We' ll use z* to denote the conjugate of a complex number z.

The quotient of two complex numbers y and z is given by the for1nula

ylz = yz*lu.*

It turns out that zz* is always a real number, so dividing zz* into yz* is easy (just
divide both the real part and the in1aginary part of yz* separately). The following
example shows how to divide I 0.5 + 6i by 3 - 2i:

10.5 + 6i = (10.5 + 6i)(3 + 2i) =
3-2i (3-2i)(3 +2i)

19.5+39i - 1.5 + 3i
13

Complex Types in C99

C99 has considerable built-in support for complex numbers. Without including any
library headers, we can declare variables that represent complex numbers and then
perfora1 arithmetic and other operations on these variables.

720 Chapter 27 Additional C99 Support for Mathematics

casin

catan

ccos
csin
ctan

The casin function computes the complex arc sine. with branch cuts out5ide
lhe interval [-1. +J] along the real axis. The return value lies in a strip mathemati­
cally unbounded along the imaginary ax.is and in tbe interval L-n/2. +n/2J along the
real axis.

The catan function computes tbe complex arc tangent, with branch cuts out­
side the interval [-i, +i] along the imaginary axis. The return val ue lies in a strip math­
e1natically unbounded along the imaginary axis and in the interval [-rr/2, +7t/2l along
the real axis.

The ccos function computes the co111pJex cosine, the csin function com­
putes the complex sine. and the ctan function con1putes the con1plex tangent.

Hyperbolic Functions

double compiex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

double compiex casinh(double complex z);
float complex •Casinhf (float complex z)' ;
long double complex casinhl(long double complex z);

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

double complex csinh(double complex z);
float complex csinhf(float complex z);
long doubie complex csinhl(long double complex z);

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

cacosh The cacosh function computes the complex arc hyperbolic cosine. with a branch
cut at values less than 1 along the reaJ axjs. The return value lies in a half-strip of
nonnegative values along the real ax.is and in the interval [-in. +i1t] along the imag-
. .
mary axis.

casinh The casinh function computes the complex arc hyperbolic sine, with branch
cuts outside the interval [-i. +il along the imaginary ax.is. The return value lies in a
strip matbe1natically unbounded along the real axis and in the interval [-in/2.
+i1t/2] along the imaginary axis.

catanh The catanh function computes the complex arc hyperbolic tangent, with
branch cuts outside the interval [-1. +ll along the real axis. The return value lies in

ccosh
csinh
ctanh

27.4 The <complex .h> Header (C99): Complex Arithmetic 721

a strip mathe1natically unbounded along the real axis and in the interval [-iTC/2,
+in/2] aJong Lhe imaginary axis.

The ccosh function computes the cornplex hyperbolic cosine, the csinh
function computes the complex hyperbolic sine, and Lhe ctanh function com­
putes lhe complex hyperbolic tangent

Exponential and Logarithmic Functions

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long doubie complex z);

cexp The cexp function computes the complex base-e exponential value.
clog The clog function compuLes the co1nplex natural (base-e) logarithm, with a

branch cut along the negative real axis. The return value lies in a strip mathemati­
cally unbounded along the real axis and in the interval l-i7t, +in] along the i1nagi­
nary ax.rs.

Power a11d Absolute-Value Functions

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

double complex cpow(double complex x,
double complex y);

float complex cpowf(float complex x,
float complex y);

long double complex cpowl(long double complex x,
long double complex y);

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

cabs The cabs function computes the complex absolute value.
cpow The cpow function retw·ns x raised to the power y, with n branch cut for the

first parameter along the negative real axis.
csqrt The csqrt function computes the complex square root. with a branch cut

along the negative real axis. The ren1m vaJlle lies in the rigJ1t half-plane (including
the imaginary axis).

722 Chapter 27 Additional C99 Support for Mathematics

carg

cimag
conj

cproj

creal

PROGRAM

Manipulation Functions

double carg(double complex z) ;
float cargf(float complex z);
long double cargl(long double complex z);

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex. z);

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

The carg function retunlS the argument (phase angle) of z , with a branch cut
along the negative real axis. The return value lies in the interval [- 1t, +tt].

The cimag function returns the imaginary part of z.
The conj function returns the complex conjugate of z.
The cproj function computes a projection of z onto the Riemann sphere.

The return value is equal to z unless one of its parts is infLnite, in which case
cproj returns INFINITY+ I * copysign (o. o, cimag (z)) .

The ere al function returns the real part of z.

Finding the Roots of a Quadratic Equation

The roots of the quadratic equation

cu?- + bx + c = 0

are given by the quadratic for,nula :

-b ± Jb2 -4ac
x=

2a

ln general, the value of x will be a complex number, because the square root of b
2

-

4ac is imaginary if b2 - 4ac (k11own as tbe discriminant) is less than 0.
For example, suppose that a = 5, b = 2. and c = I, which gives us the equation

5.x2 + 2x + l = 0

The value of the discriminant is 4 - 20 = - 16, so the roots of the equation will be

27.5 The <tgmath. h> Header {C99): Type-Generic Math 723

complex numbers. The fo llowing program, which uses several <complex. h>
functions, con1putes and displays the roots.

quadratic.c /* Finds the roots of the equation 5x**2 + 2x + 1 = o * I

#include <complex.h>
#include <stdio.h>

int main(void)
{

}

double a= 5, b = 2, c = l;
double complex discriminant_sqrt = csqrt(b * b - 4 *a* c);
double complex rootl - (-b + discriminant_sqrt) / (2 *a);
double complex root2 = (-b - discriminant_sqrt) / (2 *a);

printf(11 rootl - %g + %gi\n 11
, creal(rootl), cimag(rootl));

printf ("root2 - %g + %gi\n 11
, creal (root2), cimag (root2));

return O;

Here,s the output of the program:

rootl = -0.2 + 0.4i
root2 = - 0.2 + -0.4i

The quadratic. c program shows how to display a complex number by
extracting the real and imaginary parts and then writing each as a floating-point
number. printf lacks conversion specifiers for complex numbers, so there's no
easier technique. There's also no shortcut for reading con1plex numbers; a progrrun
will need to obtain the real and imaginary parts separately and then combine them
into a single con1plex number.

27.5 The <tgmath.h> Header (C99): Type-Generic
Math

The <tgmath. h> header provides parameterized macros with names that n1atch
functions in <math. h> and <complex. h>. These type-generic rnacros can
detect the types of the arguments passed to them and substitute a call of the appro­
priate version of a <math. h> or <complex. h> function.

In C99, there are multiple versions of many math functions, as we saw in Sec­
tions 23.3, 23.4, and 27.4. For example, the sqrt function comes in a double
version (sqrt), a float version (sqrtf). and a long double version
(sqrtl), as well as three versions for complex numbers (csqrt, csqrtf, and
csqrtl). By using <tgmath . h>, the programmer can simply invoke sqrt
without having to worry about which version is needed: the call sqrt (x) could
be a caJI of any of the six versions of sqrt, depending on the type of x.

724 Chapter 27 Additional C99 Support for Mathematics

Table 27.S
Type-Generic Macros in

<tgmat:h.h> (Group 1)

Table 27.6
Type-Generic Macros in

<tgmath.h> (Group 2)

One advantage of using <tgmat-h. h> is that calls of math functions become
easier to write (and read!). More importantly, a call of a type-generic macro won't
have to be modified in the future should the type of its argument(s) change.

The <tgmath. h> header includes both <math . h> and <complex. h>, by
the way, so including <tgmath. h> provides access to the functions in both headers.

Type-Generic Macros
The type-generic n1acros defined in the <tgmath.h> header faU into three
groups. depending on whether they correspond to functions in <ma th. h>,
<complex. h>, or both headers.

Table 27 .5 lists the type-generic macros that correspond to functions in both
<math. h> and <complex. h>. Note that the name of each type-generic macto
matches the name of the "unsuffixed'. <math. h> function (aces as opposed to
acosf or acosl, for example).

<math .h> <complex.h> Type-Generic
Function Function Macro
acos cacos aces

casin • asl.D asin
atan catan atan
acosh cacosb acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos

' sin • csin •
Sl.D

tan ctan tan
cosh ccosh cosh
i:;inb csinh sinh
tanb ctanb t.anh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

The macros in the second group (Table 27.6) con·espond only to functions in
<math. h>. Each macro has the same name as the unsuffixed <math. h> func­
tion. Passing a complex argument to any of these macros causes undefined behavior.

atan2 fma llround remainder
cbrt fmax log10 remquo
ceil fmin loglp rint
copysign fmod log2 round
erf frexp logb scalbn
erfc hypot lrint scalbln
exp2 ilogb lround tgamma
expml ldexp nearbyint trunc
fdim lgamma next.after
floor llrint next toward

Table 27.7
Type-Generic Macros in

<tgmath. h> (Group 3)

27.5 The <tgmath. h> Header (C99): Type-Generic Math 725

The macros in the fi:rraJ group (Table 27 .7) correspond only to functions in
<Complex . h>.

carg conj ere al
cimag cproj

Between the lhree tables. all functions in <math. h> and <complex . h > m lhal have muJtiple versions are accounted ror. with Lhe exception or modf.

Invoking a Type-Generic Macro

To understand what happens when a type-generic macro is invoked, we first need
!the concept of a ge,ieric para111eter. Consider the prototypes for the three versions
of thenextafter function (from <math.h>):

double nextafter(double x, double y) ;
float nextafterf(float x, floaty);
long double nextafterl{long double x, long double y);

The types of both x and y change depending on the version of nextaf ter, so
lboth parameters are generic. Now consider the prototypes for the three versions of
!the next toward function:

double nexttoward(double x, long double y) ;
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

The first paran1eter is generic. but tbe second is nor (it aJwnys bas type long
double). Generic parameters al\.vays have type double (or double complex)
in the unsuffixed version of a function.

When a type-generic n1acro is invoked, the first step is to determine whether it
should be replaced by a <math. h> function or a <complex . h> function. (This
step doesn't apply Lo the macros ia Table 27.6. whicb are always replaced by a
<math. h> function, or the macros in Table 27.7, which are always replaced by a
<complex . h> function.) The rule is simple: if any argument corresponding to a
generic parameter is complex, then a <Complex. h> function is chosen; other­
wise, a <ma th. h> function is selected.

The next step is to deduce which version of the <ma t:h . h> function or
<complex . h> function is being caUed. Let's assume that the function being
caUed belongs to <math.h>. (The rules for the <complex-h> case are analo­
gous.) The following rules are used, in the order listed:

1. lf any argu n1ent corresponding to a generic parameter hns type long dou­
ble. the long double version of the function is called.

2. If any argument corresponding to a generic paran1eter has type double or
any integer type, the double version of the function is called.

3. Otherwise, the float version of Lhe funct ion is called.

Rule 2 is a litUe unusual: it states that an integer argun1enl causes the double ver­
l:m sion of a function to be called, not the float version., which you might expect.

726 Chapter 27 Additional C99 Support for Mathematics

As an exan1ple, assume that the following variables have been declared:

inti;
float f;
doubled;
long double ld;
float complex fc;
double complex de;
long double complex ldc;

For each macro invocation in the left column below, the corresponding function
call appears in the right column:

Macro
Invocation

sqrt(i)
sgrt(f)
sqrt (d)
sqrt (ld)
sqrt(fc)
sqrt (de)
sqrt (ldc)

Equivalent
F1mction Ccdl

sqrt(i)
sqrtf(f)
sqrt (d)
sqrtl(ld)
csqrtf(fc)
csqrt (de)
csqrtl(ldc)

Note that writing sqrt (i) causes the double version of sqrt to be called. not
the float version.

These rules also cover macros with more than one parameter. For example, the
macro invocation pow (ld, f) will be replaced by the call pawl (ld, f). Both
of pow's parameters are generic; because one of the arguments has type long
double, ruJe 1 states that the long double version of pow will be called.

27 .6 The < f env. h> Header (C99): Floating-Point
Environment

IEEE Standard 754 is the most widely used representation for floating-point num­
bers. (This standard is also known as IEC 60559. which is how the C99 standard
refers to it.) The purpose of the <f env. h> header is Lo give programs access to
the floating-point status flags and control modes specified in the TEEE standard.
Allhougb <fenv. h> was designed in a general fashion that allows it to work with
other floating-point representations, supporting the IEEE standard was the reason
for the header's creation.

A discussion or why programs might need access to status flags and control
modes is beyond the scope or this book. For good examples, see "What every com­
puter scientist should know about tloating-·point arithmetic" by David Goldberg
(ACM Con1puting Surveys, vol. 23, no. J (March 1991): 5-48), which can be found
on the Web.

27.6 The <fenv. h> Header (C99): Roating-Point Environment 727

Floating-Point Status Flags and Control Modes

Section 7.2 discussed some of the basic properties of IEEE Standard 754. Sec­
tion 23.4, which covered lhe C99 additions to the <math. h> header, gave addi­
tional detail. Some of that discussion. particularly concerning exceptions and
rounding directions, is directly relevant to the < f env. h> header. Before we con­
tinue, let's review some of the material from Section 23.4 as well as define a few
new terms.

A floating-poi11t status flag is a system va1iable that's set when a floating­
point exception is raised. In the IEEE standard. there are five types of floating­
point exceptions: overflow, underf/OliV, division by zero. invalid opera,;011 (the
resuJt of an arith1netic operation was NaN), and inexact (lhe result of an arithmetic
operation had to be rounded). Each exception has a corresponding status flag.

The <fenv. h> header declares a type nan1ed fexcept_t that's used for
working with the floating-point status flags. An f except_ L object represents
the collective value of these flags. AJthough f except_ t can simpJy be an inte­
ger type, with single bits representi.ng individual nags, lhe C99 standard doesn'L
make this a requirement. Other alternatives exist. including the possibility thal
f except_ t is a structure, with one mernber for each exception. This 1ne1nber
could store additional information about the corresponding exception, such as the
address of the floating-point instruction that caused the exception to be raised.

A floating-point control mode is a system variable that may be seL by a pro­
gra1n to change the future behavior of floating-point arithmetic. The IEEE standard
requires a "directed-rounding'' mode that controls the rounding direction when a
number can't be represented exactly using a floating-point representation. There
are four rounding directions: (1) Rountl to111ard nearest. Rounds to the nearest rep­
resentable value. If a number falls half way between two values, it's rounded to the
0 even'' value (the one whose least significant bit is zero). (2) Round toivard zero.
(3) Round to1-varcl positive infinity. (4) Round ro1vard negative infin;ty. The default
rounding direction is round toward nearest. Some implementations of the IEEE
standard provide two additional control n1odes: a mode that controls rounding pre­
cision and a "trap enablement'· mode Lbat determines whether a floating-point pro­
cessor will trap (or stop) when an exception is raised.

The term .f1oati11g-point environntent refers to tl1e combination of t1oating­
point status flags and control modes supported by a particular implementation. A
value of type fenv _ t represents an entire floating-point environment. The
fenv _ t type, like Lhe f except_t type, is declared io <fenv. h>.

<fenv .. h> Macros

Tbe <fenv. h> header potentially defines the macros listed in Table 27.8. Only
two of these macros (FE_ALL_EXCEPT and FE_DFL_ENV) are required, how­
ever. An implementation may define additional macros not listed in the table; the
names of these macros must begin with FE_ and an uppercase letter.

27.6 The <fenv.h> Header (C99): Floating-Point Environment 729

is needed. Undefined behavior occurs if a program tests floating-point statu Hags
or runs under non-default control modes in a region for which Lhe vaJuc of Lhe
pragnJa switch is OFF.

Typically. an FENV _ACCESS pragma that specifies the ON switcb \.vouJd be
placed at the beginning of a function body:

void f(double x, double y)
{

#pragma STDC FENV ACCESS ON

}

The function f may test floating-point status Oags or change contro] modes as
needed. At the end off's body. Lhe pragma switch will return to its previous state.

When a program goes fro1n an FENV_ACCESS ''off'' region LO an --on., region
du1iog execution, the floating-point status flags have unspecified values and the
control n1odes L1ave their default settings.

Floating-Point Exception Functions

int feclearexcept(int excepts)i
int fegetexceptflag(fexcept_t *flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexceptflag(const £except t *flagp,

int excepts) ;
int fetestexcept(int excepts);

The <f env. h> functions are clivided into Lhree groups. Functions u, Lhe first
group deal with the floating-point status flags. Each of the five functions has an
int parameter named excepts, which is the bitwise or of one or n1ore of the
floating-point exception ,uacros (the frrsL group of n1acros listed in Table 27 .8). For
example, the argun1ent passed to one of these function Lnight be FE_INVALID I
FE_ OVERFLOW I FE_ UNDERFLOW, to represent the combination of these three
status flags. The argument may also be zero, Lo indicate that no flags are selected.

feclearexcept The feclearexcept function anen1pts to cJear the t1oating-poi11t excep-
tions represented by excepts. lt returns zero if excepts is zero or if all
specified exceptions were successfully cleared; otherwise, it returns a nonzero
value.

fegetexceptf/ag The f egetexceptflag function attempts to retrieve U1e states of the
f1oating~point status flags represented by excepts. This data is stored in Lhe
fexcept_t object pointed to by flagp. The fegetexceptflag function
returns zero if the states of the status flags were successfully stored; otherwise. it
returns a nonzero value.

feraiseexcept The f eraiseexcept function attempts to raise supported floating-point

exceptions represented by excepts. It is in)ple1nentation-defined whether
f eraiseexcept also raises the inexact floating-point exception whenever it

•

730 Chapter 27 Additional C99 Support for Mathematics

raises the overflo,,,11 or u.nde,jlow exception. (implementations that conform to the
IEEE standard will have this pJoperty.) feraiseexcept returns zero if
excepts is zero or if all specifled exceptions were successfuUy raised; otherwise,
it returns a nonzero value.

fesetexceptflag The fesetexceptflag function attempts Lo set the floating-point status
flags represented by excepts. The states of the t1ags are stored in the
f except_ t object pointed to by f lagp; this object n1ust have been set by a pre­
vious caJI of fegetexceptf lag. Moreover, the second argument in the prior
call of fegetexceptflag must have included all floating-point exceptions rep­
resented by excepts. The fesetexceptflag function returns zero if
excepts is zero or if all specified exceptions were successfully set; otherwise, it
returns a nonzero value.

fetestexcept The f etestexcept function tests only those floating-point starus flags
represented by excepts. It returns the bitwise or of Lbe floating-point excep­
tion n1acros corresponding to the nags that are cun·ently set. For exaniple, if the
value of excepts is FE_INVALID I FE_OVERFLOW I FE_UNDERFLOW, the
fetestexcept function might return FE_INVALID I FE_UNDERFLOW, in­
dicating that, of the exceptions represented by FE_INVALID, FE_OVERFLOW,
and FE_DNDERFLOW, onJy the flags for FE - INVALID and FE - UNDERFLOW
are currently set.

Rounding Functions

int fegetround(void);
int fesetround(int round);

The f egetround and fesetround functions are used Lo detennine the round­
ing direction and modify it. Both functions rely on the rounding-direction macros
(the third group in Table 27.8).

fegetround The fegetround function returns the vaJue of the rounding-direction macro
that n1atches the current rounding ctirection. If lhe current rooncting direction can't
be determined or doesn't match any rounding-direction macro, f egetround
retun1s a negative number.

fesetround When passed the value of a rounding-direction macro, the fesetround
function attemplc;; to establish the corresponding rot111ding directjon. If the call is
successful, f esetround returns zero; otherwise, it returns a nonzero value.

Environment Functions

int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv t *envp);

Section 27 .2

Section 27.5

Programming Projects 733

a suffix ton conr.aining a con1bination of Land/or u characters. (See Section 7. l for a dis­
cussion of how to ase Lbe Land U suffixes with integer constants.)

3. (C99) In each of the following stateineals. assume that the variable i has the indicated orig­
inal type. Using macros from the-<int types, h> header. modify each statement so 1ha1 it
will work con·ectly if lhe type or ii~ changed co the indicated new type.

(a) printf(11 %d 11 , i); Originallype:int Newtype:int8_t
(b) printf("%12.4d11 , i); OrigiDaltype:int Newtype:int32_t
(c) printf (11 %-60 11 , i); Original type: unsigned int Ne\V type: uint16_t
(d) printf (11 %#.x", i) ; Original type: unsigned int New type: uint64_t

4. (C99) Assu1ne that the following variable declarations are in effect

inti;
float f;
doubled;
long double ld;
float complex fc;
double complex de;
long double complex ldc;

Each of lhefoUowing is an invocation of a macro in <tgma th . h>. Show what it will look
like after preprocessing, when lhe macro has been replaced by a fuacLion from <math. h>
or <complex. h>.

(a) tan (i)

(b) fabs(f)
(c) asin (d)
(d) exp (ld)
(e) log (fc)

(t) acosh (de)
(g) next toward (d, ld)
(h) remainder (f, i)

(i) copysign(d, ld)
U) carg (i)

(k) cimag (£)

(l) conj (ldc)

Programming Projects

l. (C99) Make (he following modifications to the quadratic. c program of Section 27.4:

(a) Have the user enter the coefficients of Lhe polyaamial (lhe values of the variables a, b,
and c).

(b) Have the progrrun test the discriminant before displaying the values of the roots. If the
discriminanl is negative, have the program display the rooL<; in the same way as before. lf it's
nonnegative. have the progra1n display the roots as real numbers (without an imaginary prut).
For example, if the quadratic equa1ion is ,r + x - 2 = 0, the output of the program would be

rootl - 1
root2 = -2

734 Chapter 27 Additional C99 Support for Mathematics

(c) Modify the program so that it displays a complex. number with a negative imaginary
part as a - bi instead of a + -bi. For example. the output of the program with the original
coefficients would be

rootl - -0.2 + 0.4i
root2 = -0.2 - 0.4i

2. (C99) Write a program that converts a complex number in Cartesian coordinate.~ to polar
form. The user will enter a and b (d1e real and in1aginary pares of the number); lhe program
will display Lhe values of r antJ 8.

3. (C99) Write a progratn that convercs a complex number in polar coordinates to Cartesian
form. After the user eaters the values of rand 8, the progran, will display the number in the
fonn a+ bi, where

a= rcos B
b = r sin 0

4. (C99) Write a program that displays the 11th rootS of unity when given a positive integer 11.

The nth roots of unity are given by the formula e2mkl", where k is an integer between O and
JI- I.

APPENDIX A
C Operators

Precedence Name Symbol(s) Associativity
I Array subscripting [] Left
I Function call () Left
1 Structure and union member . -> Left
L Increment (postfix) ++ Left
1 Decrement (postfix) - - Left -
2 lncremenL (prefix) ++ Right
2 Decrement (prefix) - - Right
2 Address & Right
2 Indirection * Right
2 Unary plus + Right
2 Unary minus - Right
2 Bitwise complement - Right
2 Logical negation ! Right
? - Size sizeof Right

3 Cast () Right
4 Multiplicative * I % Left

5 Addilive + - Left

6 Bitwise shift << >> Left

7 Relational < > <= >= Left

8 Equality -- 1-. - Left

9 Bitwise and & Left
10 B.iLwise exclusive or A

Left

I I Bitwise inclusive or I Left

12 Logical and && Left
13 Logical or I I Left

14 Conditional ? -. . Right
15 Assignment - * = I= %= Ricrht 0

+= - = <<= >>=
&=

.... I= -
16 Comma I Left

735

APPENDIX B
C99 versus C89

This appendix lists many of tJ1e most significant differences between C89 and C99.
(The smaller differences are Loo nurnerous to n1ention here.) The heaclings indicate
which chapter contains the primary discussion of each C99 feature. Son1e of the
changes attributed to C99 acrually occurred earlier, in Amendment 1 to the C89
standard; these changes are marked "Amendment J ."

2 C Fundamentals

I/ comments C99 adds a second kind of comn1ent, which begins wiU, / /.

identifiers C89 requires compilers to remember U,e first 31 characters of identifiers: in C99,
the requirement is 63 characters. Only the first six characters of names with external
linkage are significanl in C89. Moreover. the case of letters may not matter. In C99,
the first 3 J characters are significant, and the case of letters is taken into account.

keywords Five keywords are new in C99: inl ine, restrict. _Bool, _Complex, and
_Imaginary.

returning from main In C89. if a prograrn reaches the end of the main function wiiliout execuling a
return staten1ent, the value returned to the operating system is undetined. ln C99,
if main is declared to return an int. the progran, retw·ns Oto the operating system.

4 Expressions

/ and% operators The C89 standru·d slates that if either operand is negative. the result of an inleger
division can be rounded either up or down. Moreover, if i or j is negative, the sign
of i % j depends on the implementation. In C99, the result of a division is always
truncated Loward zero and the value of i % j has Lbe same sign as i.

737

738 Appendix B C99 versus C89

5

_Bool type

6

for statements

7

long long
integer types

extended integer types

long long integer
constants

types of integer
constants

hexadecimal floating
constants

implicit conversions

8

designated initiaf;zers

variable-length arrays

9

no default return type

mixed declarations
and statements

Selection Statements

C99 provides a Boolean Lype named _Bool; C89 has no Boolean type.

Loops

In C99, the fust expression in a for slalemenl can be replaced by a declaration,
allowing the statement to declare its own control variable(s).

Basic Types

C99 provides two additional standard integer types, long long int and un­
signed long long int.

rn addition to the standard integer types, C99 allows implementation-defined
extended signed and unsigned integer types.

C99 provides a way to indicate that an integer constant l1as type long long int
or unsigned long long int.

C99's rules for determining the type of an in1eger constanl are different from those
in C89.

C99 provides a way to write floating constants in hexadecimal.

The rules for implicit conversions in C99 are somewhat different from the rules in
C89, primarily because of C99's adctitional basic types.

Arrays

C99 supports designated initializers, wh ich can be used to initialize arrays, struc­
tures, and unions.

In C99, tbe length of an array may be speciJ}ed by an expression Lhat's not con­
stant, provided that Lhe array doesn't have static storage duration and its declara­
tion doesn't contain an initializer.

Functions

Uthe return type of a function is omitted in C89, the function is presumed Lo return
a value of type int. In C99, it's illegal to onlit the return type of a function.

In C89. declaratioas must precede statements within a block (including the body of
a function). ln C99, declarations and statements can be mixed, as long as each vari­
able is declared prior Lo the first statement lhaL uses the variable.

declaration or definition
required prior to

function call

variable-length
array parameters

static array
parameters

compound /lterals

declaration of main

return statement
without expression

14

additional predefined
macros

Appendix B C99 versus C89 739

C99 requires that either a declaration or a defin1tion of a function be present prior
Lo any call of the function. C89 doesn't have this .requiremenl; if a function is
called without a prior declaration or definition, the compiler assumes that the func­
tion returns an int value.

C99 allows variable-length array parameters. In a function declaration, the * sym­
bol may appear inside brackets to indicate a variable-length array parameter.

C99 anows the use of Ll1e word static in the declaration of an array parameter,
indjcating a 1ninimum length for the firsL dimension of the array.

C99 supports the use of compound literals, whlcb allow the creation of unnamed
array and sLructure valaes.

C99 allows main to be declared in an implementation-defined manner, with a
return type other than int and/or parameters other than those specified by the
standard.

In C89, executing a return statement without an expression in a non-void func­
tion causes undefined behavior (but only if the program attempts to use the value
returned by the function). In C99, such a statement is illegal.

The Preprocessor

C99 provides several new predefined macros.

empty macro C99 allows any or all of the arguments in a macro call to be empty, provided that
arguments the call conlains the correct a:umber of commas.

macros with a variable In C89, a rnacro n1ust have a fixed number of arguments. if it has any at all. C99
number of arguments allows macros that lake an unlimited number of arguments.

func identifier 1n C99, the _func_ identifier behaves like a string variable that stores the
name of the currently execuling function.

standard pragmas

_Pragma operator

16

structure type
compatibl/ity

In C89, there are no standard pragmas. C99 has three: CX_LIMITED_RANGE,
FENV_ACCESS, and FP_CONTRACT.

C99 provides the _Pragma operator, which is used in conjunction with the
#pragma directive.

Structures, Unions, and Enumerations

In C89, structures defined in different files are compatible if their members have
the same names and appear in the same order, with corresponding members having

7 40 Appendix B C99 versus C89

com-patible types. C99 also requires that either both structures have the same tag or
neither bas a tag.

trailing comma in [n C99. the last constant in an enumeration may be followed by a comma.
enumerations

17

restricted pointers

flexible array members

18

block scopes for
selection and iteration

statements

array, structure, and
union Initializers

inline functions

21

<stdbool .h> header

22

... print£ conversion
specifications

... scanf conversion
specifications

snprintf function

23

additional macros in
<float. h> header

Advanced Uses of Pointers

C99 has a new keyword, restrict, thal can appear in the declaration of a pointer.

C99 allows the last member of a su·ucture to be an array of unspecified length.

Declarations

ln C99. selection statementc, (if and switch) and iteration statements (while,
do, and f or)-along with the "inner'· statements that they control-are consid­
ered to be blocks.

In C89, a brace-enclosed initializer for an array, structure, or union must contain
only constant expressions. In C99, this restriction applies only if the variable has
static storage duration.

C99 allows functions to be declared inline.

The Standard Library

The <stdbool. h> header, which defines Lbe bool, true. and false n1acros.
is new in C99.

In put/Output

The conversion specifications for the ... printf functions have undergone a num­
ber of changes in C99, with ne,v length modifiers. new conversion specifiers, the
ability to wrile infinity and NaN, and support for wide characters. Also, the %le.
%1E, %lf, %lg, and %1G conversions are legal in C99; they caused undefined
behavior in C89.

In C99. the conversion specifications for the ... scan£ functions have new length
modifiers. new conversion specifiers, the ability to read infinity and NaN, and sup­
port for wide characters.

C99 adds the snprintf function to the <stdio. h> header.

Library Support for Numbers and Character Data

C99 adds the DECIMAL DIG and FLT EVAL METHOD macros lo the
<float. h> header.

7 42 Appendix B C99 versus C89

27 Additional C99 Support for M.athematics

<stdint. h> header The <Stdint. h> header, which declares integer types with specified widlhs, is
new in C99.

<int types .h> header The <int types . h> beader, which provides macros lhat are useful for inpul/ouL­
pul of the integer types in <St.dint .h>. is new in C99.

complex types C99 provides three complex types: float _ Complex, double _Complex,
and long double _Complex.

<complex. h> header The <Complex. h> header, which provides functions Lhat perfom1 rnatheniaticaJ
operations on complex numbers. is new in C99.

<tgmath .h> header The <tgmath. h> header, which provjdes type-generic macros Lhat make iL easier
to calJ library functions in <math. h> and <complex. h>. is new in C99.

<fenv. h> header The < f env . h> header, which gives programs access to floating-point status nags
and control modes, is new in C99.

744 Appendix C CB9 versus K&R C

7 Basic Types

unsigned types K&R C provides only one unsigned type (unsigned int).

signed K&R C doesn't support the signed type specifier.

number suffixes K&R C doesn· t support the U- (or u) suffix lo specify that an integer constant is
unsigned, nor does it support Lhe F (or f) suffix to indicate that a floating constant
is to be stored as a float value instead of a double value. In K&R C. the L (or
1) suffix can't be used wiLh floating constants.

long float K&R C allows the use of long float as a synonym for double; this usage
isn't legal in C89.

long double K&R C doesn't support lhe long double type.

escape sequences The escape sequences \a.\ v. and \ 7 don't exist in K&R C. Also, K&R C doesn't
support hexadecimal escape sequences.

size t In K&R C. the sizeof operator returns a value of type int: in C89, it returns a
value of type size_ t.

usual arithmetic K&R C requires that float operands be converted to double. Also, K&R C
conversions specifies that combining a shorter unsigned integer with a longer signed integer

always produces an unsigned result.

9 Functions

function definitions 1n a C89 function deflJli.tion. the types of the parameters are included in the param­
eter list:

double square(double x)
{

return x * x;
}

K&R C requires that the types of parameters be specified in separate lists:

double square(x)
double x;
{

return x * x;
}

function declarations A C89 function declaration (prototype) specifies the types of the function's param­
eters (and the naLnes as well, if desired):

double square (double x);

double square(double);
int rand (void) ;

/* alternate form*/
/* no parameters */

Appendix C C89 versus K&R C 745

A K&R C function declaration omits all information about parameters:

double square();
int rand();

function calls When a K&R C definition or declaration is used. the con1piler doesn't check that
the function is called with argu1nenls of the -proper number and type. Fwtbertnore,
the arguments aren't automatically converted to the types of the corresponding
parameters. instead. the integral promotions are performed. and float arguments
are conve1ted to double.

void K&R C doesn·t support the void type.

12 Pointers and Arrays

pointer subtraction Subtracting two pointers produces an int value in K&R C but a ptrdif f_t
value in C89.

13 Strings

string literals In K&R C, adjacent string literals aren·t concatenated. Also. K&R C doesn't pro­
hibit the modification of string literals.

string initialization In K&R C, an initializer for a character array of length n is limited ton - I charac­
ters (leaving room for a nuU character at Lhe end). C89 allows Ll1e initializer to have
length n.

14 The Preprocessor

#elif, #error, K&R C doesn't support the #elif, #error. and #pragma directives.
#pragma

#, ##,defined

16

structure and union
members and tags

whole-structure
operations

enumerations

K&R C doesn't suppo1i the#,##. and defined operators.

Structures, Unions, and Enumerations

In C89, each structure and union bas its own name space for members; structure
and union tags are kept in a sepaTate name space. K&R C uses a sjngle name space
for n1embers and tags. so members can ·1 have the same name (with son1e excep­
tions). and members and tags can 'L overlap.

K&R C doesn·t allow structures to be assigned. passed as arguments. or returned
by functions.

K&R C doesn't support enumerations.

7 46 Appendix C C89 versus K&R C

17

void*

pointer mixing

pointers to functions

18

const andvo1atile

initialization of arrays,
structures, and unions

25

wide characters

trigraph sequences

26

variable arguments

Advanced Uses of Pointers

In C89. void * is used as a ''generic'· pointer type: for example, mal l oc returns
a value of type void*. [n K&R C, char * is used for this purpose.

K&R Callows pointers of different types to be mixed in assignments and compar­
isons. 1n C89, pointers of type void * can be mixed wilh pointers of other types,
but any other mixing isn't allowed without casting. Similarly, K&R Callows the
n1ixing of integers and pointers in assignments and con1parisons; C89 requires
casting.

If pf is a pointer to a function, C89 permits using either (*pf) (...) or pf (...) to
call the function. K&R Callows only (*pf) (...).

Declarations

K&R C doesn't support the const and volatile type qualifiers.

K&R C doesn' t allow the initialization of auton1atic an·ays and su·uctures, nor does
it allow initiali.lation or unions (regardless or storage duraLion).

International Features

K&R C doesn't support wide character consLants and wide string literals.

K&R C doesn' t support trigraph sequences.

Miscellaneous Library Functions

K&R C doesn't provide a portable way to write f11nctions with a variable number
of arguments. and it lacks the ... (ellipsis) notation.

Appendix D Standard Library Functions 749

Returns Ar.c cosine of x; the return value is in the range O to 7t. A domain error occurs if x
isn't between -I and +I . 23.3

acosh Arc Hyperbolic Cosine (C99) <math.h>

double acosh(double x),-
acoshf float acoshf(float x);
acoshl long double aaoshl(long double x),-

Returns Al.·c hyperbolic cosine of x: the return value is in the range O Lo +oo. A domain error
occw·s if xis Less than 1. 23.4

asc time Convert Broken-Down Time to String <time.h>

char *asctime(const struct tm *timeptr);

Returns A pointer to a auU-terminated string of the form

Sun Jun 3 17:48:34 2007\n

constructed from the broken-down Lime in the structure pointed to by timeptr.
26.3

I as in Arc Sine <math. h>

double asin(double x);
asinf float asinf(float x);
asi nl long double asinl(long double x);

Returns Arc sine of x; tbe return value is in the range -TC/2 to +n/2. A doniain c1Tor occurs
if x isn · t between - 1 and + l. 23.3

asinh Arc Hyperbolic Sine (C99) <math. h>

double asinh(double x);
a s inhf float asinhf(float x);
asinhl long double asinhl(long double x);

Returns .A.re hyperbolic sine of x. 23.4

assert Assert Truth of Expression <assert .h>

void assert (scalar expression) ; ,nacro

If the value of expression -is nonzero, assert does nothing. lf the value is
zero, assert writes a message to stderr (specifying the text of expression,
the name of the source file containing the assert, and the line number of lhe
assert); il then teanioates the program by calling abort. To disable assert,
define the macro NDEBUG before including <assert. h>. C99 changes: The
argumenl is allowed to have any scalar type; C89 specifies that the type is int.
Also, C99 requires that the message written by assert include the name of the
function in which the assert appears; C89 doesn ·t have this requirement 24. 1

a tan Arc Tangent

double atan(double x) ;
atanf float atanf(float x);

<math.h>

750 Appendix D Standard Library FuncYons

atanl long double atanl (long double x);

Returns Arc tangent of x: the relum vaJue ls in the range -rr/2 to +n/2.

a tan2 Arc Tangent of Quotient

double atan2(double y, double x);
float atan2f(float y, float x);

23.3

<math.h>

atan2f
atan21 long double atan2l(long double y, long double x);

Returns Arc tangent of y / x: the return value is in lhe range -7t to +n. A domain error rnay
occur if x and y are both zero. 23.3

a tanh Arc Hyperbolic Tangent (C99) <math. h>

double atanh(double x);
atanbf float atanhf(float x);
atanhl long double atanhl(long double x);

Returns Arc hyperbolic tangent of x. A domain error occurs if x is not between -1 and + l .
A range error may occur if xis equal to -I or+ l. 23.4

a texi t Register Function to Be Called at Program Exit

int atexit(void (*func) (void));

<Stdlib.h>

Registers the function pointed Lo by func as a termination function. The function
will be calJed if the progrrun terminates normally (via return or exit but nol
abort).

Returns Zero if successfuJ, nonzero if unsuccessful (an implementation-dependent limit
has been reached). 26.2

at of Convert String to Floating-Point Number <stdlib.h>

double atof(const char *nptr);

Returns A double value c01Tesponding to the longest initial part of lhe string pointed to
by nptr that has the form of a floating-point number. Returns zero if no conver­
sion could be pe1formed. The function's behavior is undefined if the number can't
be represented. 262

a toi Convert String to Integer <stdlib.h>

int atoi(const char *nptr);

Returns An int value corresponding to the longest iniliaJ part of tbe string pointed to by
nptr that has the form of an integer. Retua1S zero if no conversion could be per­
formed. The function's behavior is undefined if the number can' l be represented.

26.2

a tol Convert String to Long Integer <stdlib.h>

long int atol(const char *nptr);

Returns A long int value corresponding to the longest initial part of the string point­
ed to by nptr that has the form of an integer. Returns zero if no conversion

Appendix D Standard Library Functions 751

could be performed. The function's behavior is undefined if the nun1ber can't be
represented. 28.2

a toll Convert String to Long Long Integer (C99) <Stdlib.h>

long long int atoll(const char *nptr) ;

Returns A long long int value corresponding to U1e longest initial prut of the string
pointed to by nptr thal has the form of an integer. ReLurns zero if no conversion
couJd be performed. The runction's behavior is undefined if the number can't be
represented. 26.2

bsearch BinarySearch <Stdlib.h>

void *bsearch(const void *key, const void *base,
size_t memb, size_t size,
int (*compar) (canst void*,

canst void*));

Searches Jor the value pointed Lo by key in the sorted array pointed Lo by base.
The array has nmemb elements, each size bytes long. compar is a pointer to a
comparison function. When passed pointers to the key and an array element. in
that order. the comparison function must return a negative, zero, or positive inte­
ger, depending on whether the key is less than. equal to, or greater lhan the array
element

Returns A pointer to an array elen1ent that tests equal to lhe key. Returns a nun pointer if
the key isn ·t found. 26.2

b towc Convert Byte to Wide Character (C99)

wint_t btowc(int c);

<wchar.h>

Returns Wide-character representation of c. RetW11s WEOF if c is equal lo EOF or if c
(when cast to unsigned char) isn ' t a valid single-byte character in the initial
shifL state. 25.5

cabs

cabsf
cabsl

Returns

cacos

Complex Absolute Value (C99) <complex. h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Complex absolute value of z. 27.4

Complex Arc Cosine (C99) <complex.h>

double complex cacos(double complex z);
cacosf float complex cacosf(float complex z);
cacosl long double complex cacosl(long double complex z);

Returns Complex arc cosine of z, with branch cuts outside the interval [-I , + I I along the
real axis. The return value lies in a strip mathe1natically unbounded along the
imaginary axis ru1d in the interval [0, rt] along the real axis. 27.4

752 Appendix D Standard Library Functions

cacosh Complex Arc Hyperbolic Cosine (C99)

double complex cacosh(double complex z);
cacoshf float complex cacoshf(float complex z);

<complex.h>

cacoshl long double complex cacoshl(long double complex z);

Returns Complex arc hyperbolic cosine of z, with a branch cut at values less than 1 along
the real axis. The return value lies in a half-strip of nonnegative values along Lhe
real axis and in the interval [-in, +inj along the irnaginary axis. 27.4

cal loc Allocate and Clear Memory Block <Stdlib.h>

void *calloc(size_t nmemb, size t size);

Allocates a block of memory for an array with nmemb elements. each with size
bytes. The block is cleared by setting all bits to zero.

Returns A pointer to the beginning of the block. Returns a nuJJ poinLer if a block of the

carg

cargf
cargl

requested size can't be allocated. 17.3

Complex Argument (C99) <complex. h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Returns Argument (phase angle) of z, with a branch cut along the negative real axis. The
return vaJue lies in the interval [-7t, +rr]. 27.4

• casin Complex Arc Sine (C99)

double complex casin(double complex z);
float complex casinf(float complex z);

<complex.h>

casinf
casinl long double complex casinl(long double complex z);

Returns Con1plex arc sine of z. with branch cuts outside the interval [-I,+ l] along the real
axis. The return value lies in a strip mathematically unbounded along the in1agi­
nary axis and in the interval [- n/2, +rt/2] along the real ax.is. 27.4

casinh Complex Arc Hyperbolic Sine (C99)

doubie complex casinh(double complex z);
casinhf float complex casinhf(float complex z);

<complex.h>

casinhl long double complex casinhl(long double complex z);

Returns Complex arc byperbolic sine of z, with branch cuts outside the i11terval (-;, +i]
along Lhe imaginary axis. The retnrn value lies in a srrjp mathematically unbounded
along the real axis and in the interval [- in/2, +i1t/2] along the imaginary axis. 27.4

ca tan Complex Arc Tangent (C99)

double complex catan(double complex z),­
catanf float complex catanf(float complex z) ;

<COmplex.h>

catanl long double complex catanl(long double complex z);

Appendix D Standard Library Functions 753

Returns Complex arc tangent of z. with branch cuts ouLSide the interval [-i, +i] along the
i1naginary axis. The return value lies in a strip mathematically unbounded along
the imaginary axis and in tbe interval r-rc/2, +n/2J along the real axis. 27.4

ca tanh Complex Arc Hyperbolic Tangent (C99)

double complex catanh(double complex z);
float complex catanbf(float complex z);

<Complex.h>

catanhf
catanhl long double complex catanhl(long double complex z);

Returns Co1nplex arc byperbolic tangent of z, with bran.ch cuts outside the interval [-l, +l]
along tbe real axis. The reLU1n value lies in a strip mathematically unbounded
along the real axis and in the interval l- i'Jt/2. +in/2] along the imaginary axis. 27.4

cbrt Cube Root (C99) <math.h>

double cbrt{double x);
cbrt£ float cbrtf(float x};
cbrtl long double cbrtl(long double x);

Returns Real cube root of x. 23.4

CCOS Complex Cosine (C99) <complex. h>

double complex ccos(double complex z);
float complex ccosf(float complex z); ccosf

caosl long double complex ccosl(long double complex z);

Returns Complex cosine of z. 27.4

ccosh Complex Hyperbolic Cosine (C99)

double complex ccosh(double complex z);
ccoshf float complex ccoshf(float complex z);

<COmplex.h>

ccos hl long double complex ccoshl(long double complex z);

Returns Complex hyperbolic cosjne of z. 27.4

ceil Ceiling <math.h>

double ceil(double x);
cei l f float ceilf(float x};
ceill long double ceill(long double x);

Returns Smallest integer thal is greater than or equal to x.

cexp Complex Base-e Exponential (C99)

double complex cexp(double complex z);
float complex cexpf(float complex z);

23.3

<Complex.h>

c exp£
cexpl. long double complex cexpl(long double complex z);

Returns Co,nplex base-e exponential of z. 27.4

• cimag Imaginary Part of Complex Number (C99) <complex.h>

double cimag(double complex z);

754 Appendix D Standard Library Functions

cimagf
cimagl

Returns

clearerr

float cimagf(float complex z);
long double cimagl(long double complex z);

Imaginary parl of z. 27.4

Clear Stream Error <Stdio.h>
void clearerr(FILE *stream);

Clears the end-of-fi le and error indicators for the strea111 pointed to by stream.
22.3

cl cc k Processor Clock

clock_t clock(void);
<time .h>

Returns Elapsed processor time (measured in "clock ticks'') since the beginning of program
execution. (To convert into seconds, divide by CLOCKS_PER_SEC.) Returns
(clock_t) (-1) if rhetime is unavailable or can't be represented. 26.8

c 1 og Complex Natural Logarithm (C99) <Complex.h>

clogf
clogl

Returns

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

Complex natural (base-e) logarithm of z, with a branch cut along the negative rea1
axis. The return value lies in a strip mathematically unbounded along the real axis
and in the interval [-in. +ht] along Lhe imaginary axis. 27.4

• conJ Complex Conjugate (C99) <Complex.h>

conjf
conjl

Returns

double complex conj(double complex z};
float complex conjf (float complex z);
long double complex conjl(long double complex z);

Complex conjugate of z. 27.4
• copysign Copy Sign (C99) <math. h>

double copysign(double x, double y);
float copysignf(float x, floaty); c opysignf

copysignl long double copysignl(long double x, long double y);
Returns A value with the magnitude of x and the sign of y. 23.4

cos Cosine <ma th. h>

double cos(double x);
cosf float cosf(float x);
cosl long double cosl(long double x);

Returns Cosine of x (measured in radians).

cash Hyperbolic Cosine

double cosh(double x);
coshE float coshf(float x);

23.3

<math.h>

756 Appendix D Standard Library Functions

Returns Complex square root of z, with a branch cut along Lhe negative reaJ axis. The
return value Jies in lhe right half-plane (includjng the imaginary ax.is). 27.4

ctan Complex Tangent (C99)

double complex ctan(double complex z);
float complex ctanf(float complex z);

<COmplex.h>

ctanf
ctanl long double complex ctanl(long double complex z);
Returns CompJex tangent of z. 27.4

ctanh Complex Hyperbolic Tangent (C99)

double complex ctanh(double complex z);
ctanhf float complex ctanhf(float complex z);

<complex.h>

ctanhl long double complex ctanh.l(long double complex z);

Returns Complex hyperbolic tangent of z. 27.4

c time Convert Calendar Time to String <ti me . h>

char *ctime(const time t *timer);

Returns A pointer to a string describing a local time equivalent to the calendar time pointed
to by timer. Equivalent to asctime (local time (timer)). 26.3

di ff time Time Difference <time.h>

double difftime(time_t timel, time_t time0);

Returns Difference between timeo (the earlier Lime) and timel. measured in seconds.
26.3

div Integer Division <Stdlib.h>

div t div(int numer, int denom);

Returns A di v_t structure containing members named quot (the quotien1 when numer
is divided by denorn) and rem (the remainder). The behavior is undefined if either
part of the result can 't be represented. 26.2

erf Error Function (C99) <rnath.h>

double erf(double x);
erff float erff(float x);
erfl long double erfl(long double x);

Returns erf(x), where erf is the Gaussian en·or function.

erfc Complementary Error Function (C99)

double erfc(double x) ;
erfcf float erfcf(float x);
erfcl long double erfcl (long double x);

23.4

<math.h>

Returns erfc(x) = l - erf(x), where erf is the Gaussian en·or function. A range error occurs
if x is too large. 23.4

Appendix D Standard Library Functions 757

exit Exit from Program <Stdlib.h>

void exit(int status);

Cal ls all functions registered with atexit, nushes all output buffers, closes all
open streams, ren1oves any files created by tmpf ile. and terminates Lhe pro­
gram. The value of status indicates whether the progran1 terminated normally.
The only portable values for status are o and EXIT_SUCCESS (both indicate
successful tennination) plus EXIT _FAILURE (unsuccessful tenninatioo).

9.5, 26.2

Exit Exit from Program (C99}

void _Exit(int status);

<stdlib.h>

exp

expf
expl

Causes normal program termination. Doesn' t call functions registered with
a texi t or signal handlers registered with signal. The status returned is deter­
mined in the same way as for exit. Whether output buffers are flushed, open
streams are closed, or temporary files are removed is implemenLation-defined.

26.2

Base-e Exponential <ma th. h>

double exp(double x);
float expf(float x);
long double expl(long double x);

Returns e [aised to the power x. A range error occurs if tbe magnitude of xis too large.
23.3

exp2

exp2 f
exp2 1

Base-2 Exponential (C99} <math. h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

Returns 2 raised to the power x. A range error occurs if the n1ugnitude of xis loo large.
23.4

expml

expmlf
expmll

Returns

fabs

Base-e Exponential Minus 1 (C99} <math.h>

double expmi(double x);
float expmlf(float x);
long double expmll(long double x);

e raised Lo tbe power x. minus 1. A range error occurs if xis Loo large. 23.4

Floating Absolute Value <ma th . h>

double fabs(double x);
f absf float fabsf(float x);
f absl long double fabsl(long double x);

Returns Absolute value of x. 23.3

758 Appendix D Standard Library Functions

fclose Close File <Stdio.h>

int fclose(FILE *stream);

Closes lhe stream pointed to by stream. Flushes any tmwritten output remaining
in the $tream's buffer. Deallocates lhe buffer if it was aJ1ocated auto1natically.

Returns Zero if successfuJ, EOF if an error was detected.

fdim Positive Difference (C99)

double fdim (double x, double y);
fdimf float fdimf(float x, floaty);

22.2

<math . h>

f d i ml long double fdiml(long double x, long double y);

Returns Positive difference of x and y:

{
x-y ifx>y
+O if x <y

A range error may occm·.

feclearexcept Clear Floating-Point Exceptions (C99)

int feclearexcept(int excepts);

23.4

<fenv.h>

Attempts to clear the floating-point exceptions represented by excepts.

Returns Zero if excepts is zero or if all specified exceptions were successfully cleared:
otherwise, returns a nonzero value. 27.6

fegetenv Get Floating-Point Environment (C99)

int fegetenv(fenv_t *envp);

<fenv.h>

Attempts to store the current floating-point envi1·onment in the object pointed to by
envp.

Returns Zero if the environment was successfully stored: otherwise, returns a nonzero
value. 27.6

£egetexc ep t f lag Get Floating-Point Exception Rags (C99) <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);

Attempts to retrieve lhe states of the tloating-poinl slatus flags represented by
excepts and store tben1 in the object pointed lo by flagp.

Returns Zero if the states of the status flags were successfully stored; otherwise, returns a
nonzero vaJue. 27.6

f ege tround Get Floating-Point Rounding Direction (C99)

int fegetround(void);

<fenv.h>

Returns Value of the rounding-direction macro Lhat represents the current rounding direc­
tion. Reurrns a negative value if the current rounding direction can't be detenni.ned
or doesn't match any rounding-direction macro. 27.6

Appendix D Standard Library Functions 759

feholdexcept Save Floating-Point Environment (C99)

int feholdexcept(fenv_t *envp);

<fenv.h>

Saves the currenl noating-poiat environment in the object pointed lo by envp.
clears the tloating-point status flags , and attempts to ins tall a non-stop mode for all
floating-point exceptions.

Returns Zero if non-stop floating-point exception handling was successfully installed; oth-
erwise, returns a nonzero value. 27.8

f eo f Test for End-of-File <stdio.h>

int feof(FILE *stream);

Returns A non1.ero value if the end-of.file indicator is set for the strean1 pointed to by
stream; otherwise. returns zero. 22.3

feraiseexcept Raise Floating-Point Exceptions (C99)

int feraiseexcept(int excepts);

<fenv . h>

Alternpts to raise supported floating-point exceptions represented by excepts.

Returns Zero if excepts is zero or if all specified exceptions were successfully raised:
otherwise, returns a nonzero value. 27.6

£error Test for File Error <Stdio .h>

int ferror(FILE *stream);

Returns A nonzero value if the error indicalor is set for the stream pointed to by stream;
otherwise, returns ,:ero. 22.3

fesetenv Set Floating-Point Environment (C99) <fenv .h>

int fesetenv(const fenv_t *envp);

Attempts to establish the floating-point environment represented by tl1e object
pointed to by envp.

Returns Zero if the environment was successfuUy established: otherwise, returns a nonzero
value. 27.6

fesetexceptflag Set Floating-Point Exception Flags (C99) <fenv.h>

int fesetexceptflag(const fexcept_t *flagp,
int excepts);

Attempts to set the floating-point status flags represented by excepts to the
states stored in the object pointed to by f lagp.

Returns Zero if excepts is Lero or if aU specified exceptions were successfully sel; other-
wise, returns a nonzero value. 27.6

fesetround Set Floating-Point Rounding Direction (C99)

int fesetround (int round);

<fenv.h>

Appendix D Standard Library Functions 761

Reads characters from the slrean, pointed to by stream and stores them in the
array pointed to by s. Reading stops at the first new-line character (which is stored
in the string). when n - I characters have been read, or at end-of-file. fgets
appends a null character to the string.

Returns s (a pointer to the array in which the input is stored). Returns a null pointer if a
read error occw·s or fgets encounters the end of the stream before it has stored
any chnracte1·s. 22.5

fgetwc Read Wide Character from File (C99)

wint t fgetwc(FILE *stream) ,­

Wide-character version of fgetc.

fgetws Read Wide String from File (C99)

wchar_t *fgetws (wchar_t *restricts, int n,
FILE* restrict stream},.

Wide-character version of fgets.

<wchar.h>

25.5

<wchar.h;:,

25.5

floor Floor <math. h>

double floor(double x);
floorf float floorf(float x);
floorl long double £loorl(long double x),.

Returns Largest integer that is less than or equal to x.

fma Floating Multiply-Add (C99)

double fma (double x, double y, double z),.
fmaf float fmaf(float x, floaty, float z);
fmal long double fmal(long double x, long double y,

long double z),.

23.3

<math.h>

Returns (x x y) + z. The result is rounded only once, using the rounding mode correspond-
cng to FLT ROUNDS. A range error may occur. 23.4

fmax Floating Maximum (C99) <math.h>

double fmax(double x, double y);
fmaxf float fmaxf(float x, floaty);
fmaxl long double fmaxl(long double x, long double y);

Returns Maximum of x and y. If one argument is a NaN and the other is numeric, the
numeric value is returned. 23.4

fmin Floating Minimum (C99) <ma th. h>

double fmin(double x, double y);
fminf float fminf(float x, floaty);
fminl long double fminl(long double x, long double y);

Returns Minimum of x and y. If one argument is a NaN and the other is numeric, the
numeric value is returned. 23.4

762 Appendix D Standard Library Functions

fmod Floating Modulus <math. h>

double fmod(double x, double y);
£mod£ float fmodf(float x, floaty);
f mo dl long double fmodl(long double x, long double y);

Returns Remainder when xis divided by y. lf y is zero, either a domain error occurs or
zero is returned. 23.3

f open Open File <Stdio.h>

FILE *fopen(const char * restrict filename,
const char* restrict mode);

Opens the file whose name is pointed to by filename and associates it with a
stream. mode specifies the mode in which the file is to be opened. Clears the error
and end-of-file indicators for the stream.

Returns A fi le pointer to be used when -perfomling subsequent operations on the tile.
Returns a null pointer if the fue can't be opened. 22.2

:fpclassi :fy Floating-Point Classificauon (C99) <math.h>

int fpclassify (real-floating x) ; macro

Returns Either FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, or FP ZERO,

depending on whether x is infinity, not a nwnber, normal. subnor111al, or zero.
respectively. 23.4

f print f Formatted File Write <stdio.h>

int fprintf(FILE * restrict stream,
const char* restrict format, .. .) ;

Writes output to the stream pointed to by stream. The string pointed to by
format specifies how subsequent argun1ents will be displayed.

Returns Number of characters \Vritten. Returns a negative value if an error occurs. 22.3

fpu tc Write Character to File <stdio.h>

int fputc(int c, FILE *stream);

Writes the character c to the stream pointed to by stream.

Returns c (the character wiitten). If a write error occurs, fputc sets lhe slream·s error
indicator and returns EOF. 22.4

f puts Write String to File <Stdio . h>

int fputs(const char* restricts,
FILE* restrict stream);

Writes the string pointed lo bys to the stream pointed to by stream.

Returns A nonnegative value if successful. Returns EOF if a write error occurs. 22.5

Appendix D Standard Library Functions 763

fpu twc Write Wide Character to File (C99) <WChar.h>

wint_t fputwc (wcl1ar_ t c, FILE *stream);

Wide-character version of fputc. 25.5

f pu tws Write Wide String to File (C99) <Wcbar.h>

int tputws(const wchar_t *restricts,
FILE* restrict stream);

Wide-character version of fputs. 25.5

fread Read Block from File <Stdio.h>

size t fread(void * restrict ptr, size t size,
size t nmemb, FILE* restrict stream);

Attempts to read nmemb elements, each size bytes long. fro,n the stream pointed
to by stream and store them in the array pointed to by ptr.

Returns Nun1ber of ele1nenls actually read. This nwnber will be Jess than nmemb if f read
encounters end-of-file or a read error occurs. Returns zero if either nmemb or
size is zero. 22.6

free Free Memory Block <Stdlib.h>

void free(void *ptr);

Releases the memory block pointed to by ptr. (If ptr is a nuU pointer, the call
bas no effecL) The blockmost Jiave been allocated by a call of calloc, malloc,
orrealloc. 1~4

f reopen Reopen File <stdio .h>

FILE *freopen(const char* restrict file~ame,
canst char* restrict mode,
FILE* restrict stream);

Closes lhe file associated with stream. then opens the 6le whose name is pointed
to by filename and associates il wilh stream. The mode parameter has the
same meaning as in a call of fopen. C99 change: lf filename is a null pointer,
freopen attempts to change the stream's 1uode Lo that specified by mode.

Returns Value of stream if the operation succeeds. Returns a null pointer if the ftle can't

frexp

f-rexp:f
:frexpl

be opened. 22.2

Split into Fraction and Exponent <math.h>

double frexp(double value, int *exp);
float frexpf(float value, int *exp);
long double frexpl(long double value, int *exp);

Splits value into a fl'actional partf'and an exponent 11 in such a way that

value= Jx 2"

Appendix D Standard Library Functions 765

stream byte-oriented if it has no orientation. ff mode is lero. the orientruion is not
changed.

Returns A positive value if the scream has wide orientation after the call, a negative value if
it has byte orjentation, or zero if it bas no orientation. 25.5

fwprin tf Wide-Character Formatted File Write (C99) <Wchar.h>

int fwprintf(FILE * restrict stream,
const wchar_t * restrict format, .. . Ji

Wide-character version of fprintf. 25.5

f wr i t e Write Block to File <Stdio.h>

size t fwrite(const void* restrict ptr, size t size,
size t nmemb, FILE* restrict stream);

Writes nmemb ele,nents. each size bytes long, from the array poinled to by ptr
to the stream pointed to by stream.

Returns Nun1ber of elements actually V11ritten. This nu ,nber wiU be less than nmemb if a
write error occurs. in C99. returns zero if either nmemb or size is zero. 22.6

fwscanf Wide-Character Formatted File Read (C99) <wchar.h>

int fwscanf(FILE * restrict stream,
const wchar t * restrict format, ...);

Wide-character version of fscanf. 25.5

getc Read Character from File <stdio.h>

int getc(FILE *stream);

Reads a character from the stream pointed to by stream. Note: get.c is normaUy
in1plen1ented as a n,acro; ir n1ay evaluate stream n,ore than once.

Returns Character read from the strean,. rr getc encounters the end of the stream, it sets
the stream's end-of-file indicator and returns EOF. Tf a read error occurs. getc sets
the st:rean1 's error indicator and returns EOF. 22.4

getchar Read Character <Stdio.h>

int getchar(void);

Reads a character fro1n the stdin stremn. Note: getchar is normally imp]e­
rnented as a rnacro.

Returns Character read from the stream. [f get char encounters lhe end of the <;treain, iL
sets the stream's end-of-file indicator and returns EOF. If a read error occurs,
get char 5ets Lhe strean1's en·or indicator and returns EOF. 7.3, 22.4

getenv Get Environment String <Stdlib.h>

char *getenv(const char *name);

Searches the operating system's environment List to see if any string matches the
one poi11ted to by name.

766 Appendix D Standard Library Functions

Returns A pointer to Lhe string associated with the matching narne. Returns a nul l pointer if
no match is found. 26.2

gets Read String <Stdio.h>

char *gets(char *s);

Reads characters from the stdin strearn and stores them in lhe array pointed to
by s. Reading stops at the first new-line character (which is discarded) or at enu­
of-file. gets appends a n ull character to the string.

Returns s (a pointer to the array in which the input is stored). Returns a null pointer if a
read error occurs or gets encounters the end of the stream before it has stored any
characters. 13.3, 22.5

ge twc Read Wide Character from File {C99)

wint_t getwc(FILE *stream);

Wide-character version of getc.

ge twchar Read Wide Character (C99}

wint_t getwchar(void);

Wide-character version of get char.

gm time Convert Calendar Time to Broken-Down UTC Time

struct tm *gmtime(const time_t *timer);

<wchar.h>

25.5

<wchar . h>

25.5

<time.h>

Returns A pointer Lo a structure containing a broken-down UTC time equivalent to lhe cal­
endar time pointed Lo by timer. Returns a null pointer if the calendar time can't
be converted to lITC. 26.3

hypot

hypotf
hypo t l

Hypotenuse (C99) <math. h>

double hypot(double x, double y);
float hypotf(float x, floaty);
long double hypotl(long double x, long double y);

Returns Jx2 + y 2 (the hypotenuse of a right triangle wiLh legs x and y). A range error may
occur. 23.4

i 1 ogb Unbiased Exponent (C99) <math .h>

ilogbf
i l ogbl

Returns

int ilogb(double x);
int ilogb£(£ioat x);
int ilogbl(long double x);

Exponent of x as a signed integer; equivalent to calling the corresponding logb
function and casting the returned value to type int. Returns FP_ILOGB0 if xis
zero, INT_MAX ifx is infinite. and FP_ILOGBNAN if xis a NaN; a domain error
or range error may occur in these cases. 23.4

imaxabs Greatest-Width Integer Absolute Value (C99)

intmax t imaxabs(intmax t j)i

<inttypes.h>

Appendix D Standard Library Functions 767

Returns Absolute value of j. The behavior is undefined if the absolute value of j can't be
represented. 27.2

imaxdi v Greatest-Width Integer Division (C99) <inttypes .h>

imaxdiv_t imaxdiv(intma.x_t numer, intmax t denom);

Returns A structure of type imaxdi v_t containing members named quot (the quotient
when numer is divided by denom) and rem (the remainder). The behavior is
undefined if either part of the result can't be represented. 27.2

i salnum Test tor Alphanumeric

int isalnum(int c);

<ctype.h>

Returns A nonzero value if c is alphanumeric and zero otherwise. (c is alphanumeric if
either isalpha (c) or isdigit (c) is true.) 23.5

isalpha

Returns

isblank

Test for Alphabetic

int isalpha(int c);

A nonzero value if c is alphabetic and zero otherwise. In the
alphabetic if either islower (c) or isupper (c) is true.

Test for Blank {C99)

int isblank(int c);

<ctype. h>

11 c" locale, c is
23.5

<Ctype.h>

Returns A nonzero value if c is a blank character that is used Lo separate words within a
line of text. Iu the II C" locale, the blank characters are space (1 1) and horizontal
Lab (1

\ t 1
). 23.5

is en tr 1 Test for Control Character

int iscntrl(int c);

Returns A nonzero vaJue if c is a control character and zero otherwise.

isdigi t Test tor Digit

int isdigit(tnt c);

Returns A nonzero value if c is a decimal digjt and zero other.vise.

isf ini te Test for Finite Number (C99)

<Ctype.h>

23.5

<ctype.h>

23.5

<math .h>

int isfinite (real-floating x); ,nacro

Returns A nonzero value if x is finite (zero. subnormal, or normal, but not infinite or NaN)
and zero otherwise. 23.4

isgraph Test for Graphical Character

int isgraph(int c);

<Ctype.h>

Returns A nonzero value if c is a printing character (except a space) and zero otherwise.
23.5

isgrea ter Test tor Greater Than (C99)

int isgreater (real-floating x, rea/-fluating y);

<math.h>

,nacro

768 Appendix D Standard Library Functions

Returns (x) > (y). Unlike the> operator. isgreater doesn' t Taise lhe invalid fioating-
point exception if one or both of the argun1ents is a NaN. 23.4

i s grea terequal Test for Greater Than or Equal (C99) <math.h>

niacro int isgreaterequal (real~floating x, real~f1oaring y) ;

Returns (x) >::::- (y). Unlike the >= operator, isgreaterequal doesn't raise lhe
inl'alid floating-point exception if one or both of the arguments is a NaN. 23.4

isinf Test for Infinity (C99) <math.h>

,nacro int isinf (real-floating x);

Returns A nonzero value if xis infinity (positive or negative) and Lero otherwise. 23.4

is 1 es s Test for Less Than (C99) <math.h>

int isless (real-floating x, real-floating y); 11,acro

Returns (x) < (y). Unlike Lh.e < operator. isless doesn·r raise the invalid floaling-
point exception if one or both of the arguments is a NaN. 23.4

is 1 es s equa 1 Test for Less Than or Equal (C99) <math.h>

int islessequal (real-floating x, real~floating y) ; n1acro

Returns (x) <= (y). Unlike tbe <= operator. islessequal doesn't raise the invalid
lloali ng-poinc exception if one or both of lbe argumenls is a NaN. 23.4

islessgrea t er Test for Less Than or Greater Than (C99) <math.h>

int islessgreater (real-floating x, real-.floating y); ,nacro

Returns (x) < (y) 11 (x) > (y). Unlike this expression, islessgreater doesn't
raise the invalid floating-point exceplion if one or both of the arguments is a NaN;
also. x and y are evaluated only once. 23.4

is 1 ower Test for Lower-Case Letter

int islower(int c);

Returns A nonzero value if c is a lower-case letter and 1.ero otherwise.
,

.1 snan Test for NaN (C99)

int isnan (real-floa1ing x) ;

Returns A nonzero value if xis a NaN value and 1:ero other,vise.

isnoz1,,dl Test for Normal Number (C99)

int isnormal (real-floating x);

<Ctype.h>

23.5

<math.h>

n1acro

23.4

<math.h>

,nacro

Returns A nonzero value if x has a normal value (not zero. subnormal. infinite. or NaN)
and zero otherwise. 23.4

isprint Test for Printing Character

int isprint(int c);

<Ctype.h>

770 Appendix D Standard Library Functions

i swcn tr 1 Test for Control Wide Character (C99)

int iswentrl(wint t we);

<wctype.h>

-
Returns A nonzero value if we is a control wide character and zero otherwise. 25.6

i swc type Test Type of Wide Character (C99) <WCtype . h>

int iswctype(wint t we, wctype t desc); - -
Returns A nonzero value if the wide character we bas the property described by desc.

(desc must be a value returned by a call of wctype; the cu:rrenl setting of the
LC_ CTYPE category 1nusl be the same during both calls.) Returns zero otherwise.

25.6

iswdigi t Test for Digit Wide Character(C99)

int iswdigit(wint_t we);

<Wctype . h>

Returns A nonzero value iJ we corresponds to a decin1al digit and zero otherwise. 25.6

iswgraph Test for Graphical Wide Character (C99)

int iswgraph(wint t we);

<wctype.h>

Returns A nonzero value if is,-,print (we) is true and iswspace (we) is false.
Returns zero otherwise. 25.6

i sw lower Test for Lower-Case Wide Character (C99)

int iswlower(wint_t we);

<WCtype.h>

Returns A nonzero value if we corresponds to a lower-case letter or is one of a locale­
specific set of wide characters for which none of iswcntrl, iswdigit,
iswpunct, or iswspace is true. Returns zero otherwise. 25.6

i swpr int Test for Printing Wide Character (C99)

int iswprint(wint_t we);

<wctype.h>

Returns A nonzero value if we is a printing wide character and zero otherwise. 25.6

i swpunc t Test for Punctuation Wide Character (C99) <WCtype.h>

int iswpunct(wint_t we);

Returns A nonzero value if we is a prinling wide character that is one of a locale-specific
set of punctuation wide characters for which neither iswspace nor iswalnum
is true. Retu111s zero olhe1wise. 25.6

I iswspace Test tor White-Space Wide Character (C99) <Wctype.h>

int iswspace (wint_ t we);

Returns A nonzero value if we is one of a locale-specific set of white-space wide characters
[or which none of i swalnum, i swgraph. or i swpunct is true. Returns zero
otherwise. 25.6

Appendix D Standard Ubrary Functions 771

•
J. swupper Test for Upper-Case Wide Character (C99) <wctype.h>

int iswupper (wint_t we),-

Returns A nonzero value if we corresponds to an upper-case letter or is one of a locale­
specific set of wide characters for which none of iswcntrl, iswdigit,
iswpunct, or iswspace is Lrue. Returns zero otherwise. 25.6

i swxdi g i t Test for Hexadecimal-Digit Wide Character (C99)

int iswxdigit(wint_t we);

<Wctype.h>

Returns A nonzero value if we corresponds to a hexadecin1al digit (0-9, a-f, A- F) and
zero otherwise. 25. 6

i sxdi git Test for Hexadecimal Digit <Ctype.h>

int isxdigit(int c};

Returns A nonzero value if c is a hexadecimal digit (0- 9, a - f , A-F) and zero otherwise.
23.5

1 abs Long Integer Absolute Value

long int labs(long int j);

<stdlib.h>

Returns Absolute value or j. The behavior is undefined iI the absolute value of j can't be

ldexp

ldexpf
ldexpl

Returns

ldiv

represented. 26.2

Combine Fraction and Exponent <math. h>

double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

xx 2 exp_ A range error may occur. 23.3

Long Integer Division <stdlib. h>

ldiv_ t ldiv(long int numer, long int denom);

Returns An ldi v _ t structure containing members named quot (the quotient wben
numer is div ided by denom) and rem (the remainder). The behavior is undefined
if either part of the result can't be represented. 26.2

lga.mma Logarithm of Gamma Function (C99)

l gamma f
lgammal

double lgamma{double x);
float lgammaf(float x);
long double lgammal(long double x) ;

<math.h>

Returns Ln(lr(x)I), where r is the gamma function. A range error occurs if x is too large
and n1ay occur if xis a negative integer or zero. 23.4

llabs Long Long Integer Absolute Value (C99) <Stdlib.h>

long long int llabs(long long int j),-

772 Appendix D Standard Library Functions

Returns Absolute value of j. The behavior is undefined jf the absolute value of j can't be
represented. 26.2

11 div Long Long Integer Division (C99) <stdlib.h>

lldiv t lldiv(long long int numer,
long long int denom);

Returns An lldi v _ t structure containing meinbers named quot (the quotient when
numer is divided by denom) and rem (the re1nainder). The behavior is undefined
if either part of the result can· t be represented. 26.2

11 r int Round to Long Long Integer Using Current Direction (C99) <math.h>

llrint £
llrintl

long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);

Returns x rounded to the nearest integer using the current rouucling direction, If tl1e
rounded value is outside the range of Lhe long long int type. the resu lt is
unspecified and a do111ain or range error may occur. 23.4

llround

l l r o und £
llr oundl

Round to Nearest Long Long Integer (C99) <math. h->

long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);

Returns x rounded to the nearest integer, with halfway cases rounded away from zero. If
the rounded value is outside the range of the long long int type, the resulL is
unspecified and a domain or range error may occur. 23.4

localeconv Get Locale Conventions <locale.h>

struct lconv *localeconv(void);

Returns A pointer to a structure containing informatjon about the current locaJe. 25.1

local time Convert Calendar Time to Broken~Down Local Time <time.h>

struct tm *localtime(const time_t *timer);

Returns A pointer to a structure containing a broken-down local ti111e equivalent to the caJ­
endar time pointed to by timer. Returns a null pointer if I.be calendar ti1ne can't
be converted to local time. 26.3

log

logf
logl

Natural Logarithm <math. h>

double log(double x);
float logf(float x);
long double logl(long double x);

Returns Logarithm of x to the base e. A do111ain error occurs if x is negative. A range error
may occur if xis zero. 23.3

loglO

loglOf
loglOl

Appendix D Standard Library Functions 773

Common Logarithm <math. h>

double loglO(double x);
float loglOf(float x);
long double loglOl(long double x);

Returns Logaritb1n of x to the base 10. A don1ain error occurs if x is negative. A range
error n1ay occur if x is zero. 28.3

loglp Natural Logarithm of 1 Plus Argument (C99) <math.h>

loglp:f
loglpl

double loglp(double x);
float loglpf(float x);
long double loglpl(long double x);

Returns Logarithm of I + x to the base e. A dotnain error occurs if x is less than - 1. A

log2

log2f
log2l

range error 1nay occur if x is equal to - L. 23.4

Base-2 Logarithm (C99) <math. h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

Returns Logarithn, of x to the base 2. A dorr1ain error occurs if x is negative. A range error
may occur if xis zero. 23.4

1 ogb Radix-Independent Exponent (C99)

logbf
logbl

double logb(double x);
float logbf(float x);
long double logbl(long double x);

<math . h>

Returns Log,(lxl), where r is Lhe radix of floating-point arithmetic (defined by the macro
FLT_RADIX, which typically has the value 2). A domain error or range error may
occur j f x is zero. 23.4

1 ongj mp Nonlocal Jump <Setjtnp.h>

void longjmp(jmp_buf env, int val);

Restores the env_ironn1ent stored in env and returns from the call of setj mp that
originally saved env. lfval is nonzero. it will be setjmp's return value; if val
is 0, setjmp returns l. 24.4

1 r int Round to Long Integer Using Current Direction (C99)

long int lrint(double x);
lrintf long int lrintf(float x);
lrintl long int lrintl(long double x)i

<math.h>

Returns x rounded to the nearest integer using the current rounding direction. Tf the
rounded value is outside the range of tlle long int type, the result is unspecified
and a do,nain or range error rnay occur. 23.4

Appendix D Standard Library Functions 775

they complete a valid rnultibyte cbaracter. U so, the mullibyte character is con­
verted into a wide character. If pwc isn't a null pointer, the wide character is stored
in the object pointed to by pwc. The value of ps should be a pointer to an object of
type mbsta te _ t that contains the cun·ent conversion state. If ps is a null pointer,
mbrtowc uses an internal object to store the conversion state. If the result of the
conversion is the null wide character, the mbstate_t object used during the caJ1
is left in the initiaJ conversion state.

Returns O if the conversjon produces a null wide character. Returns a nun1ber between 1
and n if the conversion produces a wide character other than null, where the value
returned is the number of bytes used to cornplete the multibyte character. ReLurns
(size_t) (- 2) if then bytes pointed to bys weren't enough to complete a
mullibyte character. Returns (size_ t) (-1) and stores E ILSEQ in errno if an
encoding error occurs. 25.5

mbsini t Test for Initial Conversion State (C99) <wchar.h>

int mbsinit(const mbstate_t *ps);

Returns A nonzero value if ps is a null pointer or it points to ao mbstate_t object that
describes an iniLial conversion state: otherwise, relums zero. 25.5

mbsrtowcs Convert Multibyte String to Wide String- Restartable (C99) <wchar .h>

size t mbsrtowcs(wchar_t * restrict dst 1

const char** restrict src/
size_t len, mbstate_t * restrict ps);

Converts a sequence of multibyte characters from the array indirectly pointed Lo
by src into a sequence of corresponding wide characters. ps shouJ<l point to an
object of type mbs tate _ t that contains the current conversion state. lf the argu­
ment corresponding tops is a null pointer, mbsrtowcs uses an internal object to
store the conversion state. ff dst isn't a nuU pointer. the converted characters are
stored in the array lhaL it poinLs to. Conversion continues up to and including a ter­
minating null character, which is aJso stored. Conversion stops earlier if a
sequence of bytes is encountered that doesn't form a valid multi byte character
or-if dst isn't a null pointer- when len wide characters have been stored in
the ruTay. [f dst isn't a null pointer, the object pointed to by src is a~signed
either a null pointer (if a terminating null character was reached) or the address
j ust past Lhe last multibyte character converted (if any). If the conversion ends at a
null character and if dst isn't a. null pointer, the resulting state is the initia1 con­
version state.

Returns Number of multibyte characters successfully converted, not inclucLing any termi­
nating null character. Returns (size_t) (-1) and stores EILSEQ in errno if
an invalid multibyte character is encountered. 25.5

mbs towcs Convert Multibyte String to Wide String <Stdlib.h>

size t mbstowcs(wchar t * restrict pwcs,
const char* restricts, size t n);

Appendix D Standard Library Functions TT7

mems et Initialize Memory Block <string.h>

void *memset(void *s, int c, size_t n);

Stores c in each of the fu·st n characters of the object pointed lo by s.

Returns s (a pointer to the object). 23.6

mk.time Convert Broken-Down Local Time to Calendar Time <time. h>

time_t mktime(struct tm *timeptr);

Converts a broken-down local time (stored in the structure pointed to by time­
ptr) into a calendar time. The me1nbers of the structure aren't required to be
within their legal ranges; also, the values of tm_wday (day of the week) and
tm_yday (day of the year) are ignored. mktime stores values in tm_wday and
tm _yday after adjusting the other me1nbers to bring them into their proper
ranges.

Returns A calendar time co1Tesponding to the stn1cture pointed to by timeptr. Returns
(ti me_ t) (- l) if the calendar time can· t be represeo ted. 26.3

modf Split into Integer and Fractional Parts <math. h>

double modf(double value, double *iptr);
modff float modff(float value, float *iptr);
mo dfl long double modfl (long double value, long double *iptr);

Splits value into integer and fractional parts; stores the integer part in the object
pointed to by iptr.

Returns Fractional part of value. 23.3

nan Create NaN (C99) <math.h>

nanf
nan1

Returns

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

A "quiet" NaN whose binary pattern is detem1ined by the string pointed to by
tagp. Returns zero if quiet NaNs aren't supported. 23.4

nearby int Round to Integral Value Using Current Direction (C99) <math.h>

n e arbyintf
nearbyintl

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

Returns x rounded to an integer (in noaling-poinl formal) using the current rounding direc-
tion. Doesn't raise the ine .. racr floating-point exception. 23.4

nextafter Next Number After {C99) <math.h>

double nextafter(double x, double y);
nextafterf float nextafterf(float x, floaty);
n extafterl long double nextafterl(long double x, long double y);

778 Appendix D Standard Library Functions

Returns Next representable value after x in the direction of y. Returns the value just before
x if y < x or the value just after x if x < y. Returns y if x equals y. A range en·or
may occur if the rnagnitude of x is lhe largest representable finite value and L11e
result is infinite or not representable. 23.4

next toward Next Number Toward (C99) <math. h>

double nexttoward(double x, long double y);
ne xt toward£ float nexttowardf(float x, long double y);
nex ttoward1 long double nexttowardl(long double x, long double y);

Returns Next representable value after x in the direction of y (see nextafter). Returns
y converted to the function's type if x equalsy. 23.4

perror Print Error Message <stdio.h>

pow

pow£
powl

void perror(const char *s);

Writes the following message to the stderr stream:

string: error-message

string is Lhe string pointed to by sand error-111essage is an irnplen1entarion-defined
message that matches the one retwned by the call s tr error (errno) . 24.2

Power <math.h>

double pow(double x, double y);
float powf(float x, floaty);
long double powl(long double x, long double y);

Returns x raised to the power y. A domain or range error may occur in certain cases, which
vary between C89 and C99. 23.3

print£ Formatted Write <stdio.h>

int printf(const char* restrict format, ... } ;

Writes output to the stdout strean1. The string pointed lo by format specifies
how subsequent argaments will be displayed.

Returns Number of characters wrirten. Returns a negative value if an error occurs. 8.1, 22.3

pu tc Write Character to Fife <Stdio.h>

int putc(int c, FILE *stream);

Writes the character c to tbe stream pointed to by stream. Note: putc is nor­
mally imple.mented as a n1acro: ii may evaluate stream more than once.

Returns c (the character written). If a write error occurs, putc sets tbe stream's error indi-
cator and returns EOF. 22.4

putchar Write Character <Stdio.h>

int putchar(int c);

Writes the character c to tbe stdout stream. Note: putchar is normally imple­
n1ented as a macro.

Appendix D Standard Library Functions 779

Returns c (the character written). If a write en·or occurs, putchar sets the stream's error
indicator and returns EOF. 7.3, 22.4

puts Write String <stdio.h>

int puts(const char *s);

Writes the string pointed to by s to the stdout stream, Lhen writes a new-line
character.

Returns A nonnegative value if successful. Returns EOF if a write error occurs. 13.3, 22.5

pu twc Write Wide Character to File (C99) <Wchar.h~

wint_t putwc(wchar_t c, FILE *stream);

Wide-character version of putc. 25.5

pu twchar Write Wide Character (C99)

wint_t putwchar(wchar_t c);

Wide-character version of put char.

<Wchar.h>

25.5

qsort Sort Array <Stdlib.h>

void qsort(void *base, size t nmemb, size t size,
int (*compar) (canst void*, canst void*));

Sorts the array pointed to by base. The array has nmemb elenJents, each size
bytes long. compar is a pointer to a co1nparison function. When passed pointers
ro two array elements, the comparison function must return a negative, zero. or
positive integer, depending on whether the first array element is less than, equal to,
or greater Lban the second. 17. 7, 26.2

• raise Raise Signal <Signal.b>

int raise(int sig);

Raises the signal whose ou1nber is sig.

Returns Zero if successful, nonzero otherwise. 24.3

rand Generate Pseudo-Random Number <stdlib.h>

int rand(void);

Returns A pseudo-random integer between O and RAND_MAX (inclusive). 26.2

realloc Resize Memory Block <stdlib.h>

void *realloc(void *ptr, size_t size);

ptr is assumed to point to a block of memory previously obtained from calloc.
malloc, or real lac. realloc allocates a block of size bytes, copying the
contents of the old block if necessary.

Returns A -pointer to the beginning of the new mea1ory block. Returns a null pointer if a
block of the requested size can't be allocated. 17.3

780 Appendix D Standard Library Functions

remainder Remainder (C99)

double remainder(double x, double y);
remainde r£ float remainderf(float x, floaty),-

<math.h>

remainderl long double remainderl{long double x, long double y);

Returns x - ny, where n is the integer nearest the exact value of x/y. (If x/y is halfway
between two integers, n is even,) 1f x - ny = 0, the return value bas the same sign
as x. If y is zero, either a domain error occurs or zero is returned. 23.4

remove Remove File <Stdio.h>

int remove(const char *filename);

Deletes the file whose nrune is pointed to by filename.

Returns Zero if successful, nonzero otherwise. 22.2

remquo Remainder and Quotient (C99) <math.h>

remquof
remquol

Returns

double remquo(double x, double y, int *quo);
float remquof(float x, floaty, int *quo);
long double remquol(long double x, long double y,

int *quo);

Comptttes both the remainder and the quolient when x is divided by y. Tbe object
pointed to by quo is modified so that it contains n low-order bits of the integer
quotient lx/yl, where n is implementation-defined but must be at leasl three. The
value stored in this object will be negative if x/y < 0.

Sa111e value as the corresponding remainder function. If y is zero, either a
domain error occurs or zero is returned. 23.4

rename Rename File <Stdio.h>

int rename(const char *old, const char *new);

Changes Lhe name of a fi le. old and new poinL to strings containing lhe old name
and new name, respectively.

Returns Zero if the renaming is successful. Returns a nonzero value if the operation falls
(perhaps because the old file is currently open). 22.2

rewind Rewind File <stdio.h>

void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the begin­
ning of the Ille. Clears the en·or and end-of-file indicators for the stream. 22.7

r int Round to Integral Value Using Current Direction (C99)

double rint(double x);
rint f float rintf(float x);
rintl long double rintl(long double x);

<math.h>

Returns x rounded to an integer (in floating-point format) using the current rounding di.rec-

Appendix D Standard Library Functions 781

tion. May raise the inexact floating-point exception if the result has a different
value than x. 23.4

round Round to Nearest Integral Value (C99)

double round(double x)i

roundf float roundf(float x);
r o undl long double roundl(long double x);

<math.h>

Returns x rounded to the nearest integer (in floating-point format). Halfway cases are
rounded away from zero. 23.4

scalbln Scale Floating-Point Number Using Long Integer (C99)

double scalbln(double x, long int n);
s calb l nf float scalblnf(float x, long int n);

<mat.h.h>

s calb lnl long double scalblnl (long double x, long int n);

Returns xx FLT_RADIXn, con1puted in an efficient way. A range error may occur. 23.4

s ca lbn Scale Floating-Point Number Using Integer (C99)

double scalbn(double x, int n);
scalbnf float scalbnf(float x, int n);
scalbnl long double scalbnl(long double x, int n);

<math.h>

Returns xx FLT_RADIXn, computed in an efficient way. A range error may occur. 23.4

scan f Formatted Read <stdio.h>

int scanf(const char* restrict format, ...) ;

Reads input items from the stdin stream. The string pointed to by format spec­
ifies the format of the items to be read. The arguments that follow format point
to objects in which the items are to be stored.

Returns Number of input items successfully read and stored. Returns E0F if an input fail-
ure occurs before any iten,s can be read. 3.2, 22.3

setbuf Set Buffer

void setbuf(FILE * restrict stream,
char* restrict buf);

If buf isn't a null pointer, a caJJ of setbuf is equivalent to:

(void} setvbuf(stream, buf, _IOFBF, BUFSIZ);

Otherwise, it's equivalent to:

(void) setvbuf(stream, NULL, IONBF, 0);

set j mp Prepare for Nonlocal Jump

int setjmp(jmp_buf env);

<Stdio.h>

222

<setjmp.h>

rnacro

Stores the current environment in env for use in a later cal_) of longj mp.

Returns Zero when called directly. Returns a nonzero value when returning from a call of
longj mp. 24.4

782 Appendix D Standard Library Functions

setlocale Set Locale <locale.h>

char *setlocale(int category, const char *locale);

Sets a portion of the program's locale. category indicates which portion is
affected. locale points to a string representing the new locale.

Returns If loca 1 e is a null pointer, returns n pointer Lo the string associated with cate­

gory for the current locale. Otherwise, returns a pointer to the string associated
with category for U1e new locale. Returns a null pointer jf the operation fails.

25.1

setvbuf Set Buffer <Stdio.h>

int setvbuf(FILE * restrict stream,
char* restrict buf,
int mode, size_t size);

Changes the buffering of the stream pointed to by stream. The value of mode
can be either _I0FBF (ful] buffering), _I0LBF (line buffering), or _I0NBF (no
buffering). lf buf is a null pointer, a buffer is automatica1Jy allocated if needed.
Otherwise, buf poinLS to a memory block that can be used a.~ the buffer; size is
the nun1ber of bytes in lbe block. Note: setvbuf ,nust be called after the stream
is opened but before any other operations are performed on it_

Returns Zero if the operation is succes~ful. Returns a nonzero value jf mode is invalid or
the request can't be honored. 22.2

signal Install Signal Handler <signal.h>

void (*signal(int sig, void (*func) (int))) (int);

Installs the function pointed to by func as the handler for lbe signal whose 1Jun1-
ber is sig. Passing SIG_DFL as the second argun1ent causes default handJing for
the signal; passing SIG_IGN causes the signal to be ignored.

Returns A pointer to the previous handler for this signal; returns SIG_ERR and stores a
positive value in errno if the handler can't be installed. 24.3

'_...h. s1921 1 t Sign Bit (C99) <math . .h>

int signbi t (real-floating x) i n-zacro

Returns A nonzero value if the sign of x is negative and zero otherwise. The value of x n1ay

• sin

sinf
sinl

Returns

sinh

be any number, including iofIO.ity and NaN. 23.4

Sine <ma th. h>

double sin(double x);
float sinf(float x)i

long double sinl(long double x) ;

Sine of x (measured in radians). 23.3

Hyperbolic Sine <math. h>

double sinh(double x);

s i nhf
s inhl

Returns

Appendix D Standard Library Functions 783

float sinhf(float x);
long double sinhl(long double x);

Hyperbolic sine of x. A range error occurs if the magnitude of x is too large. 23.3

snpr int f Bounded Formatted String Write (C99) <stdio.h>

int snprintf(char *restricts, size_t n,
const char* restrict format, .. .);

Equivalent to fprintf. but stores ch.aracters in the array pointed Lo bys instead
of writing then1 to a stream. No more than n - 1 characlers will be written to the
array. The string pointed to by format specifies ho,v subsequent argun,ents will
be cLisplayed. Stores a null character in the array at the end of output.

Returns Number of characters Lhal wouJd have been stored in the array (not inclucting rbe
nu ll character) had there been no length restriction. Returns a negative value if an
encoding error occurs. 22.B

sprint£ Formatted String Write <stdio.h>

int sprintf(char *restricts,
const char* restrict format, ...) ;

Equivalent to fprintf. bot stores characters in the array pointed to by s instead
of writing tllen1 to a sn·eam. The string pointed to by format specifies bow subse­
quent argun1ents will be displayed. Stores a nuH character in the array at the end of
output.

Returns Number of characters stored in the array, not including Lhe null character. ln C99.

sqrt

sqrt£
sqrtl

returns a negative value iJ an encoding en·or occurs. 22.B

Square Root <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

Returns Nonnegative square rool of x. A domain error occLLrs if xis negative. 23.3

s rand Seed Pseudo-Random Number Generator <Stdlib.h>

void srand(unsigned int seed);

Uses seed Lo initialize the sequence of pseudo-random numbers produced by call­
ing rand. 26.2

s scan f Formatted String Read .:::stdio.h>

int sscanf(const char* restricts,
const char* restrict format, . . .) ;

Equivalent to f scanf, but reads characters from the string pointed to by s instead
of reading Lhem rrom a stream. The strin_g pointed Lo by format specifies the for­
mal of the iterns to be 1·ead. Tne argun1ents that follow format point to objects in
which the items are to be stored.

784 Appendix D Standard Library Functions

Returns Number of input ite1ns successfully read and stored. Returns EOF if an input fail-
ure occurs before any items could be read. 22.8

s trca t String Concatenation <String.h>
char *strcat(char * restrict s1,

canst char* restrict s2);

Appends characters from the stringpojnted to by s2 to the string pointed to by s1.

Returns sl (a pointer to the concatenated string). 13.5, 23.6

s trchr Search String for Character <string.h>
char *strchr(const char *s, int c);

Returns A pointer to the first occun·eace of the character c in the string pointed to by s.
Returns a null pointer if c isn·t found. 23.6

strcmp String Comparison <String.h>

int strcmp(const char *s1, const char *s2);

Returns A negative, zero, or positive integer. depending on whether tbe string pointed to by
s1 is less than, equal to, or greater than lhe string pointed to by s2. 13.5, 23.6

s trcol l String Comparison Using Locale-Specific Collating
Sequence

int strcoll(const char *sl, const char *s2);

<string.h>

Returns A negative, zero, or positive integer, depending on whether the string pointed to by
sl is less than, equal to, or greater than tbe strlng pointed to by s2. The comparison
is performed according to the rules of the current locale's LC_COLLATE category.

23.6

st rcpy String Copy <string.h>

char *strcpy(char * restrict sl,
canst char* restrict s2);

Copies the string pointed to by s2 into the array pointed Lo by s1.

Returns s1 (a pointer to the destination). 13.5, 23.6

s trc spn Search String for Initial Span of Characters Not in Set <string.h>

size_t strcspn(const char *sl, canst char *s2);

Returns Length of the longest initial segment of the string pointed to by s 1 that doesn't
contain any character in the string pointed to by s2. 23.6

s trerror Convert Error Number to String <String.h>
char *strerror(int errnum);

Returns A pointer to a string containing an en·or message corresponding to the value of
errnum. 24.2

Appendix D Standard Library Functions 785

st r ft ime Write Formatted Date and Time to String <time.h>

size t strftime(char *restricts, size t maxsize,
const char* restrict format,
canst struct tm * restrict timeptr);

Stores characters in the array pointed to by s under controJ of Lhe string pointed to
by format. The format string may contain ordinary characters, which are copied
unchanged. and conversion specifiers. which are replaced by values from the struc­
ture pointed to by timeptr. The maxsize parameter limits the number of char­
acters (including the null character) tbal can be stored.

Returns Nun1ber of characters stored (not including U1e tenninating null character). Returns
zero if the number of characters to be stored (including the null character) exceeds
maxs i ze. 26.3

s trlen String Length <String.h>

size t strlen(const char *s);

Returns Length of the string pointed to by s, not including the null character. 13.5, 23.6

strncat Bounded String Concatenation <string.h>

char *strncat(char * restrict s1,
canst char* restrict s2, size_t n);

Appends characters from the array pointed to by s2 to the string pointed to by
s1. Copying stops when a null character is encountered or n characters have been

copied.

Returns s1 (a pointer to the concatenated string). 13.5, 23.6

strncmp Bounded String Comparison <String.h>

int strncmp(const char *s1, const char *s2, size t n) i

Returns A negative. zero, or positive integer. depending on whether the first n characters of
the array pointed to by s 1 are less than. equal lo, or greater Lhan the first n charac­
ters of Lhe array pointed to by s2. Comparison stops if a null character is encoun­
tered in either array. 23.6

s trncpy Bounded String Copy <string.h>

char *strncpy(char * rest:rict s1,
const char* restrict s2, size_t n);

Copies the first n characters of the array pointed to by s2 into the array pointed to
by sl. If it encounters a null character in the array pointed Lo by s2. strncpy
adds null characters lo the array pointed to by si until a total of n characters have
been written.

Returns s1 (a pointer to the destination). 13.5, 23.6

786 Appendix D Standard Library Functions

s t rpb r k Search String for One of a Set of Characters <string.h>

char *strpbrk(const char *sl, const char *s2);

Returns A pointer to the left1nost character in the string pointed to by s 1 that matches any
cl1aracter in the string pointed to by s2. Relums a nuU pointer ifnomatcb is found.

23.6

s trrchr Search String in Reverse for Character <String.h>
char *strrchr(const char *s, int c);

Returns A pointer to the last occurrence of the character c in tbe string pointed to by s.
Returns a null pointer if c isn't found. 23.6

s trspn Search String for Initial Span of Characters in Set <string.h>
size t strspn(const char *sl, const char *s2); -

Returns Length of the longest initial segment in the string pointed to by sl that consists
entirely of characters in tbe string pointed to by s2. 23.6

st rs tr Search String for Substring <string.h>

char *strstr(const char *sl, canst char *s2);

Returns A pointer to ilie first occurrence in the string pointed to by sl of the sequence of
characters in the string pointed to by s2. Retums a null pointer if no match is
found. 23.6

s trtod Convert String to Double <Stdlib.h>

double strtod(const char* restrict nptr,
char** restrict endptr);

Skips white-space characters in the string pointed to by nptr, I.hen converts subse­
quent characters into a double value. If endptr isn' t a null pointer, strtod
modifies the object pointed to by endptr so that it points to the first Jeftover char­
acter. If no double value is found, or if it has Lhe wrong form, strtod stores
nptr in the object pointed to by endptr. 1f the number is too large or smaU to
represent, it stores ERANGE in errno. C99 changes: The string pointed to by
nptr may contain a hexadecimal floating-point number, infinity, or NaN.
Whether ERANGE is stored in errno when the number is too small to represent is
implementation-defined.

Returns 'fhe converted nu1nber. Returns zero if no conversion could be performed_ If the
nun1ber is too large to represent, returns plus or minus HUGE_VAL, depenrung on
the number's sign. Returns zero if the number is too small to represent. C99
change: lf the number is too small to represent, strtod returns a value whose
magnitnde is no greater than Lhe smallest normalized positive double. 26.2

s trtof Convert String to Float (C99)

float strtof(const char* restrict nptr,
char** restrict endptr);

<Stdlib.h>

Appendix D Standard Library Functions 789

st rx f rm Transform String <string.h>

size t strxfrm(char * restrict sl,
canst char* restrict s2, size_t n);

Transforms the sLring pointed to by s2, placing the first n characters of the
result-including the null character~ the array pointed to by s1. Cal1ing
strcmp with two transformed strings should produce Lhe sa111e outcome (nega­
tive, zero, or positive) as cal ling strcoll with the original strings. ff n is zero,
s1 is allowed to be a null pointer.

Returns Length of the transfonned stiing. If this value is n or more, the conLents of the
array pointed to by s 1 are indeterminate. 23.6

swpr int f Wide-Character Formatted String Write {C99) <wchar .h>

int swprintf(wchar_t *restricts, size_t n,
const wchar_t * restrict format, .. .);

Equivalent to fwprintf, but stores wide characters in the array pointed to bys
instead of writing them to a stream. The string pointed to by format specifies
how subsequent arguments will be displayed. No more than n wide characters will
be written to the array, including a tern1inating null wide cbara.cter.

Returns Number of wide characters stored in the array, not including the null wide charac­
ter. Returns a negative value if an encoding error occurs or the number of wide
characters to be written is nor more. 25.5

swscanf Wide-Character Formatted String Read (C99) <wchar.h>

int swscanf(const wchar t *restricts,
const wchar t * restrict format, .. .);

Wide-character version of sscanf. 25.5

system Perform Operating-System Command

int system(const char *string);

<stdlib.h>

Passes the string pointed to by string to the operating system's command pro­
cessor (shell) to be executed. Program termination may occur as a result of execut­
ing Lhe command.

Returns If string is a null pointer, returns a nonzero value if a comn1and processor is
available. If string isn't a nuIJ pointer. system returns an impJen1entation­
defined value (if it returns at all). 26.2

tan Tangent

tanf
tanl

double tan(double x);
float tanf(float x);
long double tanl(long double x);

Returns Tangent of x (measured in radians).

<math.h>

23.3

790 Appendix D Standard Library Functions

tanh Hyperbolic Tangent <math. h>

double tanb(double x) ;
tanh£ float tanhf(float x);
tanhl long double tanhl(long double x);

Returns Hyperbolic tangent of x. 23.3

tgamma Gamma Function (C99) <math .h>

double tgamma(double x);
tgamro~f float tgammaf(float x);
tgamm~l long double tgammal(long double x);

Returns r (x), ,vhere r;s the gam1na function. A don1ain error or range error may occur if x
is a negative integer or zero. A range error n1ay occur if the magnitude of xis coo
large or loo small. 23.4

time Current Time <time.h>

time_t time(time_t *timer) ;

Returns Current calendar ti1ne. Returns (time t) (- l) if the calendar time isn 't avail­
able. If timer isn't a null pointer, also stores the return value in Lhe object pointed
to by timer. 26.3

tmp f i 1 e Create Temporary File

FILE *tmpfile(void);

<Stdio.h>

Creates a temporary file that wiJI automatically be Temoved when it's closed or the
program ends. Opens the file in 11 wb+ 11 mode.

Returns A file pointer to be used when pe1forming subsequent operations on the file.
Returns a null pointer if a temporary file can't be created. 22.2

tmpnam Generate Temporary File Name <stdio.h>

char *tmpnam(char *s);

Generates a name for a temporary file. lf sis a nuJl pointer, tmpnam stores the file
nan1e in a static object. Otherwise, it copies the file nan1e into the character array
pointed to by s. (The array n,ust he long enough to store L_tmpnam characters.)

Returns A pointer to the file name. Returns a null pointer if a file name can't be generated.
22.2

to 1 owe r Convert to Lower Case <Ctype.h>

int tolower(int c);

Returns lf c is an upper-case letter, returns lhe corresponding lower-case letter. If c isn't an
upper-case letter, returns c unchanged. 23.5

toupper Convert to Upper Case

int toupper(int c);

<Ctype.h>

Appendix D Standard Library Functions 791

Returns If c is a lower-case letter. returns the corresponding upper-case letler. If c isn't a
lo,ver-case letter, recurns c unchanged. 23.5

towctrans Transliterate Wide Character (C99) <wctype.h>

wint_t towctrans(wint_t we, wctrans_t desc)i

Returns Mapped value of we using the mappjng described by desc. (desc must be a
vaJue returned by a call of we trans; the current setting of the LC_ CTYPE cate­
gory must be the same during both calls.) 25.6

towlower Convert Wide Character to Lower Case (C99)

wint_t towlower(wint_t we);

<wctype.h>

Returns If i swupper (we) .is true, returns a con·esponding wide character for which
iswlower is true in the current locale, if such a character exists. Otherwise.
returns we unchanged. 25.6

towupper Convert Wide Character to Upper Case (C99)

wint_t towupper(wint_t we);

<wctype.h>

Returns If iswlower (we) is true, returns a corresponding wide character for which
i swupper is true in the current locale, if such a character exists. OtheTwise,
returns we unchanged. 25.6

trunc Truncate to Nearest Integral Value (C99)

double trunc(double x);
truncf float truncf(float x) i
truncl iong double truncl(long double x);

Returns x rounded to the integer (in floating-point format) nearest to it but no larger in
magnitude. 23.4

ungetc Unread Character <stdio.h>

int ungetc(int c, FILE *stream);

Pushes the character c back onto the sLream pointed to by stream and clears the
stream's end-of-file indicator. The number of characters thac can be pushed back
by consecutive calls of ungetc varies; only the first call is guaranteed to succeed.
Calling a file positioning function (fseek. fsetpos, or rewind) causes the
pushed-back character(s) to be lost.

Returns c (the pushed-back character). Returns E0F if an attempt is n1ade to push back
E0F or to push back too many characters withoul a read or file positioning opera­
tion. 22.4

unge twc Unread Wide Character (C99)

wint_t ungetwc (wint_t c, FILE *stream);

Wide-character version of ungetc.

<wchar.h>

25.5

792 Appendix D Standard Library Functions

va _ arg Fetch Argument from Variable Argument List

rype va_arg(va_list ap, type);

<Stdarg.h>

macro
Fetches an argument in rhe variable argument list associated wilh ap. then modi­
fies ap so that Lhe next use of va _ arg fetches the foilo"ving argument. ap must
have been in.iLialized by va_start (or va_copy in C99) prior to the first use of
va_arg.

Returns Value of the argument. assuming Lhal its type (after the default argw11ent pron10-
tions have been applied) is compatible with type. 26. 1

va _ copy Copy Variable Argument Ust (C99) <Stdarg.h>

void va_copy(va_list dest, va_list src); ,nacro

Copies src into dest. The value of dest will be lhe same as if va_start had
been applied to dest followed by the same sequence of va_arg appJications lhat
was used to reach the present state of src. 26.1

va end End Processing of Variable Argument Ust <stdarg.h>

void va_end(va_list ap);

Ends the processing of the variable argument list a~sociated with ap.
n1acro

26.1

va start Start Processing of Variable Argument List <Stdarg.h>

void va_start (va_list ap, parniN); rruicro

Must be invoked before accessing a variable argument list. Initializes ap for later
use by va_arg and va_end. parrnN is the name of lhe last ordinary parameter
(the one followed by , ...). 26.1

vf print f Formatted File Write Using Variable Argument List

int vfprintf(FILE * restrict stream,
const char* restrict format,
va_list arg) ;

<Stdio.h>

Equivalent to fprintf with tbe variable argu1nent list replaced by arg.

Returns Number of characters wrillen. Returns a negative value if an error occurs. 26, 1

v f scan f Formatted File Read Using Variable Argument List (C99)

int vfscanf(FILE * restrict stream,
canst char* restrict format,
va_list arg);

<Stdio.h>

Equivalent to f scanf with lhe variable argument list replaced by arg.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 26.1

vfwprin tf Wide-Character Formatted File Write Using Variable
Argument List (C99)

<wchar.h>

Appendix D Standard Ljbrary Functions 793

int vfwprintf(FILE * restrict stream,
const wchar t * restrict format,
va_list arg);

Wide-character version of vfprintf.

vfwscanf Wide-Character Formatted File Read Using Variable
Argument List (C99)

int vfwscanf(FILE * restrict stream,
const wchar t * restrict format,
va_list arg);

Wide-character version of vf scanf.

vprint f Formatted Write Using Variable Argument List

25.5

<wchar.h>

25.5

<stdio.h>

int vprintf(const char* restrict format, va list arg);

Equivalent to printf with the va1iable argumenL (isl replaced by arg.

Returns N amber of cbaracters written. Returns a negative value if an error occurs. 26. 1

vs can£ Formatted Read Using Variable Argument List (C99) <stdio.h>

int vscanf(const char* restrict format, va list arg);

Equivalent to scanf with the variable argument list replaced by arg.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 26.1

vsnpr int f Bounded Formatted String Write Using Variable Argument
List (C99)

int vsnprintf(char *restricts, size_t n,
const char* restrict format,
va_list arg);

<Stdio.h>

Equivalent to snprintf with the variable argument list replaced by arg.

Returns Number of characters that wot1ld have been stored in the array pointed to by s (not
including the null character) had there been no length restriction. Returns a nega­
tive value if an encoding error occurs. 26.1

vspr int f Formatted String Write Using Variable Argument List

int vsprintf(char *restricts,
const char* restrict format,
va_list arg) ;

<Stdio.h>

Equivalent to sprintf with the variable argument List replaced by arg.

Returns Number of characters stored in the array pointed to by s, not including lhe null
character. In C99, returns a negative value if an encoding en·or occurs. 26.1

Appendix D Standard Library Functions 795

where buf is an internal buffer. Otherwise. wcrtomb converts we from a wide
character into a multibyte character (possibly including shlfL sequences), which it
stores in the array pointed to by s. The value of ps should be a pointer to an object
of type mbs ta te _ t that contains the current conversion state. If ps is a null
pointer. wcrtomb uses an internal object to store the conversion state. If we is a
null wide character, wcrtomb stores a null byte, preceded by a shift sequence if
necessary to restore the initial shift state, and the mbs ta te_t object used during
the caJl is left in the initial conversion state.

Returns Number of bytes stored in the array, including shift sequences. If we isn't a valid
wide character. returns (size t) (-1) and stores EILSEQ in errno. 25.5

we seat Wide-String Concatenation (C99)

wchar t *wcscat(wchar_t * restrict sl,
const wchar t * restrict s2);

Wide-character version of strcat.

wcschr Search Wide String for Character (C99)

wchar_t *wcschr(const wchar_t *s, wchar t c);

Wide-character version of strchr.

wcscmp Wide-String Comparison (C99)

<wchar.h>

25.5

<wchar.h>

25.5

<Wchar.h>

int wcscmp (canst wchar_t *sl, canst t<1char t *s2);

Wide-character version of strcmp. 25.5

wcscoll Wide-String Comparison Using Locale-Specific Collating <wchar.h>
Sequence (C99)

int wcscall(const wchar t *s1, canst wchar t *s2);

Wide-character version of strcoll. 25.5

wcscpy Wide-String Copy (C99) <wchar.h>

wchar_t *wcscpy (wchar_t * restrict s1 1

const wchar t * restrict s2);

Wide-character version of strcpy. 25.5

wcscspn Search Wide String for Jn;tial Span of Characters Not in Set <wchar .h>
(C99)

size_t wcscspn(const wchar_t *sl, const wchar t *s2);

Wide-character version of strcspn. 25.5

wcsftime Write Formatted Date and Time to Wide String (C99) <wchar.h>

size t wcsftime(wchar_t *restricts, size_t maxsize,
const wchar t * restrict format,
Const struct tm * restrict timeptr);

Wide-character version of strf time. 25.5

796 Appendix D Standard Library Functions

we s 1 en Wide-String Length (C99)

size t wcslen(const wchar t *s) ;

Wide-character version of st r 1 en.

wcsnca t Bounded Wide-String Concatenation (C99)

wchar t *wcsncat(wchar t * restrict sl,
const wchar t * restrict s2,
size_t n);

Wide-character version of strncat.

we sncmp Bounded Wide-String Comparison (C99)

<wchar.h>

25.5

<Wchar.h>

25.5

<Wchar.h>

int wcsncmp(const wchar_t *sl, const wchar t *s2,
size_t n) ;

Wide-cbaracter version of strncmp.

we sncpy Bounded Wide-String Copy (C99)

wchar t *wcsncpy(wchar_t * restrict sl,
const wchar t * restrict s2,
size_t n);

Wide-character version of s trncpy.

wcspbrk Search Wide String for One of a Set of Characters (C99)

wchar_t *wcspbrk(const wchar_t *Sl,
const wchar t *s2);

Wide-character version of strpbrk.

wcsrchr Search Wide String in Reverse for Character (C99}

wchar_t *wcsrchr(const wchar_t *s, wchar t c);

Wide-character version of ,.strrchr.

25.5

<WChar.h>

25.5

<wchar.h>

25.5

<wchar.h>

25.5

wc s rtombs Convert Wide String to Mu/tibyte String- Restartable (C99) <wchar. h>

size t wcsrtombs(char * restrict dst,
const wchar t ** restrict src,
size_t len,
mbstate_t * restrict ps);

Converts a sequence of wide characters fron1 the array indirectly pointed to by
src into a sequence of corresponding multibyte characters that begins in the con­
version state described by the object pointed to by ps. If ps is a null pointer,
wcsrtombs uses an internal object to store the conversion state. If dst isn't a
null pointer, the converted characters are then stored in the array pointed to by
dst. Conversion continues up to and including a terminating null wide character,
which is also stored. Conversion stops earlier if a wide character is reached tha1
doesn't correspond to a valid 01ultibyte character or-if dst isn't a null pointer-

798 Appendix D Standard Library Functions

type wchar_t * that wcs tok modifies to keep track of its progress. If s1 is a
null pointer, this object must be lhe same one used in a previous call of wcs tok; il
determines which wide string is to be searched and where the search is to begin.

Returns A pointer to the first wide character of the token. Returns a null pointer if no token
could be found. 25.5

wcs tol Convert Wide String to Long Integer (C99) <wchar.h>

long int wcstol(const wchar_t * restrict nptr,
wchar t ** restrict endptr, int base);

Wide-character version of strtol. 25.5

wcstold Convert Wide String to Long Double (C99) <WChar . h>

long double wcstold(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

Wide-character version of strtold. 25.5

wcs toll Convert Wide String to Long Long Integer (C99) <wchar . h>

long long int wcstoll(const wcbar t * restrict nptr,
wchar t ** restrict endptr,
int base);

Wide-character version of strtol l. 25.5

wcs tombs Convert Wide String to Multibyte String <Stdlib.h>

size t wcstombs(char *restricts,
const wchar t * restrict pwcs,
size_t n) ;

Converts a sequence of wide characters into con·esponding multibyte characters.
pwcs points to an an·ay containing the wide characters. The n1ultibyte characters
are stored in the array pointed to bys. Conversion ends if a null character is stored
or if storing a multi byte character would exceed the Limit of n bytes.

Returns Number of bytes stored, not including the ternunating null character, if any.
Returns (size_t) (-1) if a wide character is encountered that doesn't corre­
spond Lo a valid mulLibyte character. 25.2

wcs tou1 Convert Wide String to Unsigned Long Integer (C99)

unsigned long int wcstoul(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

Wide-character version of strtoul.

wcs toull Convert Wide String to Unsigned Long Long Integer (C99)

unsigned long long int wcstoull(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

Wide-character version of strtoul 1.

<WChar.h>

25.5

<wchar.ID

25.5

Appendix D Standard Library Functions 799

wcstownax Convert Wide String to Unsigned Greatest-Width Integer <inttypes .h>
(C99)

uintmax t wcstoumax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

Wide-character version of strtoumax. 27.2

wcsxfr111 Transform Wide String (C99) <wchar.h>
size_ t wcsxfrm (wchar_ t * restrict sl,

const wchar t * restrict s2, size t n);
Wide-characler version of strxfrm. 25.5

wctob Convert Wide Character to Byte (C99) <wchar.h>
int wctob (wint t c);

Returns Single-byte representaLion of c as an unsigned char converted to int. Returns
EOF if c doesn't correspond to one multibyte character in tbe initial shift state.

25.5

we tomb Convert Wide Character to Multibyte Character <stdlib .h>
int wotomb(char *s, wchar_t we);

Converts lhe wide character stored in we into a Lnultibyte character. [f s isn't a null
pointer, stores the result in lhe array that s points to.

Returns If s is a nuU pointer, returns a nonzero or zero value, depending on whether or nol
multibyte characters have state-dependent encodings. Otherwise, returns the num­
ber of bytes in the multibyte character that corresponds to we: returns - 1 if we
doesn't co1Tespond to a valid rnuJtibyte character. 25.2

wc tr ans Define Wide-Character Mapping (C99) <wctype.h>
t\rctrans_t wctrans (const char *property);

Returns lf property identifies a valid mapping of wide characters according to the
LC_ CTYPE category of the cun·ent locale, returns a nonzero value that can be used
as lhe second a.rgumenL to the towctrans function; otherwise, returns zero.

25.6

wc type Define Wide-Character Class (C99) <wctype.h>
wctype_t wctype(const char *property);

Returns IT property identifies a valid class of wide characters according to the
LC_ CTYPE category of the current locale, returns a nonzero value that can be used
as the second arg1.1n1ent to the iswctype func tion; otherwise, returns zero. 25.6

wmemchr Search Wide-Character Memory Block for Character (C99)

wchar_t *wrnemchr(const wchar_t *s, wcbar t c,
size t n);

Wide-character version of memchr.

<WChar .h>

25.5

800 Appendix D Standard Library Functions

wmemcmp Compare Wide-Character Memory Blocks (C99) <Wchar.h>

int wmemcmp(const wchar_t * s1 1 const wchar t * s2,
size_t n);

Wide-character version of memcmp. 25.5

wmemcpy Copy Wide-Character Memory Block (C99) <wchar.h>

wchar t *wmemcpy(wchar_t * restrict s1,
const wchar t * restrict s2,
size_t n);

Wide-character version of memcpy. 25.5

wmemmove Copy Wide-Character Memory Block (C99) <Wchar.h>

wchar_t *wmemmove(wchar_t *sl, const wchar t *s2,
size t n);

Wide-character version of memmove. 25.5

wmemset Initialize Wide-Character Memory Block (C99) <wchar . h>

wchar_t *wmemset(wchar_t *s, wchar t c, size t n);

Wide-character version of memset. 25.5

wpr int f Wide-Character Formatted Write (C99) <Wchar.h>

int wprintf (const wcl1ar t * restrict format, ...) ;

Wide-character version of printf. 25.5

wscanf Wide-Character Formatted Read (C99) <wchar.h>

int wscanf(const wchar t * restrict format, .. .);

Wide-character version of scanf. 25.5

BIBLIOGRAPHY

C Programming

The best book on programming for the layman is
"Allee in Wonderland"; but that's because ft's

the best book on anything for the layman.

Feuer, A. R., The C Puzzle Book, Revised Printing, Addison-Wesley, Reading.
Mass., 1999. Contains numerous "puzzles··-smaJI C programs whose outpul
the reader is asked to predict. The book shows the correcL output of each pro­
gram and provides a detailed explanation of how it works. Good for testing
yow· C knowledge and reviewing Lhe fine points of the language.

Harbison, S. P. , Ill, and G. L. Steele. Jr. , C: A Reference Manual, Fifth Edition,
Prentice-Hall, Upper Saddle River, N.J., 2002. The ultimate C reference­
essential reading for the would-be C expert. Covers both C89 and C99 in con­
siderable detail, with frequent discussions of irnplementation differences
found in C compilers. Not a tutorial- assumes that the reader is already well
versed in C.

Ken1ighan, B. W., and D. M. Ritchie, The C Progranuning Language, Second Edi­
tion, Prentice-Hall, Englewood Cliffs, N.J., l 988. The original C book. affec­
tionately known as K&R or simply .. the White Book:' Includes both a tutorial
and a complete C reference manual. The second edition reflects the changes
made in C89.

Koenig, A., C Traps and Pitfalls. Addison-Wesley, Reading, Mass .. 1989. An
ex.cellent compendium of com,non (and son1e not-so-comrnon) C piLfalls.
Forewarned is forearmed.

Plauger, P. J., The Standard C Library, PrenLice-Hall, Englewood Cliffs, N.J.,
1992. Not only explains all aspects of lhe C89 standard library, but provides
con1plete source code! Tl1ere's no better way lo learn the library Lhan to study
this book. Even if your interest in the library is minimal, the book is worth get­
ting just for the opportunity to study C code written by a master.

803

804 Bibliography

Ritchie, D. M., The development of the C programming language, in History of'
Progranuning Languages Tl, edited by T. J. Bergin, Jr .. and R. G. Gibson. Jr.,
Addison-Wesley, Reading, Mass., 1996, pages 671-687. A brief history of C
written by the language's designer for the Second ACM SJGPLAN History of
Programming Languages Conference, which was held in 1993. The arLicle is
followed by transcripts of Ritchie's presentation at the conference and the
question-and-answer session wilh the audience.

Ritchie, D. M., S. C. Johnson. M. E. Lesk. and B. W. Kernighan, UNIX time­
sharing system: the C progran,ming language, Bell Systen1 Techn;cal Jou,1lal
57, 6 (Jul y-AugusL 1978), 1991-2019. A famous article that discusses the
origins of C and describes the language as it looked in 1978.

Rosler, L., The UNIX system: the evolution of C-past and future, AT&T Bell
Laboratories Technical Journal 63, 8 (October 1984), 1685-1699. Traces the
evolution of C from 1978 to 1984 and beyond.

Sun11nil, S., C Program,ning FAQs: Frequently Asked Questions, Addison-WesJey.
Reading, Mass., 1996. An expanded version of the FAQ list that has appeared
for years in the Usenet corllp.la,ig.c newsgroup.

van der Linden, P., Expert C Progrc1111111irig. Prenlice-Hall, Englewood Cliffs, N.J.,
1994. Written by one of lhe C wizards at Sun Microsyste1ns, this book man­
ages to ente1tain and inform in equal amounts. With its profusion of anecdotes
and jokes. it n1akes learning the fine points of C seen, al1nost fun.

UNIX Programming

Rochkind, M. J. , Advanced UNTX Progranuning, Second Edition, Addison-Wesley,
Boston, Mass., 2004. Covers UNIX system calls in considerable detail. This
book, along with the one by Stevens and Rago. is a must-have for C program­
mers who use the UNIX operating system or one of its variants.

Stevens, W.R., and S. A. Rago, Advauced Progranuning in the UNIX Environment,
Second Edition. Addison-Wesley, Upper Saddle River, N.J .. 2005. An excel­
Jent follow-up to this book for progran1mers working under the UNIX operat­
ing syste1n. Focuses on using UNlX system ca1Js, including standard C Hbra:ry
functions as well as functions that are specific to UNIX.

Programming in General

Bentley, J., Progra,n,ning Pearls. Second Edition, Addison-Wesley, Reading,
Mass., 2000. This updated version of Bentley's classic progran,ming book
emphasizes writing efficient progran1s, but touches on other topics that are
cruciaJ for the professjonal programJner. The author's ligl1t touch makes the
book as enjoyable to read as it is infonnative.

Bibliography 805

Kernighan, B. W., and R. Pike, The Practice of Program1ni1ig. Addison-Wesley,
Reading, Mass., 1999. Read this book for advice on programming style, choos­
ing the right aJgorithn1, testing and debugging, and writing portable programs.
Examples are drawn from C, C++. and Java.

McConnell, S., Code Co,nplere, Second Edition, Microsoft Press. Redn1ond. Wash.,
2004. Tries to bridge the gap between progran1ming theory and practice by pro­
viding down-to-earth coding advice based on proven research. lncludes plenty
of examples in a variety of programming languages. Highly recon1n1ended.

Raymond, E. S., ed., The New !lacker's Dictionary, Third Edition. MIT Press, Cam­
bridge, Ma-;s., 1996. Explains 1nuch of the jargon that program,ners use, and it's
great fun to read as wel I.

Web Resources

ANSI eStandards Store (111ebstore.ansi.org). The C99 standard (TSO/JEC
9899: J 999) can be purchased at this site. Each set of corrections to the stan­
dard (known as a Technical Corrigendum) can be downloaded for free.

cornp.lang.c Frequently Asked Questions (c-jaq.coni). Steve Sum1nit's FAQ list for
the con1p.la11g.c newsgroup is a must-read for any C progran1n1er.

Dinkumware (lvw-i,v,dinkun1¾•are.co111). Dinku1nware is owned by P. J. Plauger, the
acknowledged n1aster of the C and C++ standard libraries. The web site in­
cludes a handy C99 library reference. among 0U1er things.

Google Groups (groups.goog/e.con1). One of the best ,vays to find answers to pro­
gramming questions is to search the Usenet newsgroups using the Google
Groups search engine. If you have a question, it's likely that son1eone else has
already asked the question on a newsgroup and the answer has been posted.
Groups of particular interest to C programmers include a/1.co1n1;.lang.lear11.c­
c++ (for C and C++ beginners), co,nr;.lang.c (the primary C language group).
and con1p.std.c (devoted to discussion of the C standard).

International Obfuscated C Code Contest (11·1v~v.ioccc.org). Home of an annual con­
test in which participants vie to see who can write the 1nosr obscure C prograrns.

1S0/IEC JTC1/SC22/WG14 (~v1r11~,v.011en-srd.org/jtcllsc22/1vgl41). The official web
site of WG14, the international working group that created the C99 standard
and is responsible for updating it. Of particular interest an1ong the n1any docu­
ments available at the site is the rationale for C99. which explain. the reasons
for the changes made in the standard.

Lysator (1,1rwH1.lysato1:liu.se/cl). A collection of]inks to C-related web sites main­
tained by Lysator. an academic con1puter society located at Sweden· s Lin­
ko ping University.

	Cover
	Preface
	Brief Contents
	Contents
	1 Introducing C
	1.1 History of C
	1.2 Strengths and Weaknesses of C
	1 Q & A

	2 C Fundamentals
	2.1 Writing a Simple Program
	2.2 The General Form of a Simple Program
	2.3 Comments
	2.4 Variables and Assignment
	2.5 Reading Input
	2.6 Defining Names for Constants
	2.7 Identifiers
	2.8 Layout of a C Program
	2 Q & A
	2 Exercises
	2 Programming Projects

	3 Formatted Input/Output
	3.1 The printf Function
	3.2 The scanf Function
	3 Q & A
	3 Exercises
	3 Programming Projects

	4 Expressions
	4.1 Arithmetic Operators
	4.2 Assignment Operators
	4.3 Increment and Decrement Operators
	4.4 Expression Evaluation
	4.5 Expression Statements
	4 Q & A
	4 Exercises
	4 Programming Projects

	5 Selection Statements
	5.1 Logical Expressions
	5.2 The if statement
	5.3 The switch Statement
	5 Q & A
	5 Exercises
	5 Programming Projects

	6 Loops
	6.1 The while Statement
	6.2 The do Statement
	6.3 The for Statement
	6.4 Exiting from a Loop
	6.5 The Null Statement
	6 Q & A
	6 Exercises
	6 Programming Projects

	7 Basic Types
	7.1 Integer Types
	7.2 Floating Types
	7.3 Character Types
	7.4 Type Conversion
	7.5 Type Definitions
	7.6 The sizeof Operator
	7 Q & A
	7 Exercises
	7 Programming Projects

	8 Arrays
	8.1 One-Dimensional Arrays
	8.2 Multidimensional Arrays
	8.3 Variable-Length Arrays (C99)
	8 Q & A
	8 Exercises
	8 Programming Projects

	9 Functions
	9.1 Defining and Callling Functions
	9.2 Function Declarations
	9.3 Arguments
	9.4 The return Statement
	9.5 Program Termination
	9.6 Recursion
	9 Q & A
	9 Exercises
	9 Programming Projects

	10 Program Organization
	10.1 Local Variables
	10.2 External Variables
	10.3 Blocks
	10.4 Scope
	10.5 Organizing a C Program
	10 Q & A
	10 Exercises
	10 Programming Projects

	11 Pointers
	11.1 Pointer Variables
	11.2 The Address and Indirection Operators
	11.3 Pointer Assignment
	11.4 Pointers as Arguments
	11.5 Pointers as Return Values
	11 Q & A
	11 Exercises
	11 Programming Projects

	12 Pointers and Arrays
	12.1 Pointer Arithmetic
	12.2 Using Pointers for Array Processing
	12.3 Using an Array name as a Pointer
	12.4 Pointers and Multidimensional Arrays
	12.5 Pointers and Variable-Length Arrays (C99)
	12 Q & A
	12 Exercises
	12 Programming Projects

	13 Strings
	13.1 String Literals
	13.2 String Variables
	13.3 Reading and Writing Strings
	13.4 Accessing the Characters in a String
	13.5 Using the C String Library
	13.6 String Idioms
	13.7 Arrays of Strings
	13 Q & A
	13 Exercises
	13 Programming Projects

	14 The Preprocessor
	14.1 How the Preprocessor Works
	14.2 Preprocessing Directives
	14.3 Macro Definitions
	14.4 Conditional Compilation
	14.5 Miscellaneous Directives
	14 Q & A
	14 Exercises

	15 Writing Large Programs
	15.1 Source Files
	15.2 Header Files
	15.3 Dividing a Program into Files
	15.4 Building a Multiple-File Program
	15 Q & A
	15 Exercises
	15 Programming Projects

	16 Structures, Unions, and Enumerations
	16.1 Structure Variables
	16.2 Structure Types
	16.3 Nested Arrays and Structures
	16.4 Unions
	16.5 Enumerations
	16 Q & A
	16 Exercises
	16 Programming Projects

	17 Advanced Uses of Pointers
	17.1 Dynamic Storage Allocation
	17.2 Dynamically Allocated Strings
	17.3 Dynamically Allocated Arrays
	17.4 Deallocating Storage
	17.5 Linked Lists
	17.6 Pointers to Pointers
	17.7 pointers to Functions
	17.8 Restricted Pointers (C99)
	17.9 Flexible Array Members (C99)
	17 Q & A
	17 Exercises
	17 Programming Projects

	18 Declarations
	18.1 Declaration Syntax
	18.2 Storage Classes
	18.3 Type Qualifiers
	18.4 Declarators
	18.5 Initializers
	18.6 Inline Functions (C99)
	18 Q & A
	18 Exercises

	19 Program Design
	19.1 Modules
	19.2 Information Hiding
	19.3 Abstract Data Types
	19.4 A Stack Abstract Data Type
	19.5 Design Issues for Abstract Data Types
	19 Q & A
	19 Exercises
	19 Programming Projects

	20 Low-Level Programming
	20.1 BItwise Operators
	20.2 Bit-Fields in Structures
	20.3 Other Low-Level Techniques
	20 Q & A
	20 Exercises
	20 Programming Projects

	21 The Standard Library
	21.1 Using the Library
	21.2 C89 Library Overview
	Functions Hidden by Macros

	21.3 C99 Library Changes
	21.4 The <stddef.h> Header: Common Definitions
	21.5 The <stdbool.h> Header (C99): Boolean Type and Values
	21 Q & A
	21 Exercises
	21 Programming Projects

	22 Input/Output
	22.1 Streams
	22.2 File Operations
	Opening a File
	Closing a File
	Temporary Files
	File Buffering
	Miscellaneous File Operations

	22.3 Formatted I/O
	22.4 Character I/O
	22.5 Line I/O
	22.6 Block I/O
	22.7 File Positioning
	22.8 String I/O
	22 Q & A
	22 Exercises
	22 Programming Projects

	23 Library Support for Numbers and Character Data
	23.1 The <float.h> Header: Characteristics of Floating Types
	23.2 The <limits.h> Header: Sizes of Integer Types
	23.3 The <math.h> Header (C89): Mathematics
	23.4 The <math.h> Header (C99): Mathematics
	23.5 The <ctype.h> Header: Character Handling
	23.6 The <string.h> Header: String Handling
	23 Q & A
	23 Exercises
	23 Programming Projects

	24 Error Handling
	24.1 The <assert.h> Header: Diagnostics
	24.2 The <errno.h> Header: Errors
	24.3 The <signal.h> Header: Signal Handling
	24.4 The <setjmp.h> Header: Nonlocal Jumps
	24 Q & A
	24 Exercises

	25 International Features
	25.1 The <locale.h> Header: Localization
	25.2 Multibyte Characters and Wide Characters
	25.3 Digraphs and Trigraphs
	25.4 Universal Character Names (C99)
	25.5 The <wchar.h> Header (99) Extended Multibyte and Wide-Character Utilities
	25.6 The <wctype.h> Header (C99) Wide-Character Classification and Mapping Utilities
	25 Q & A
	25 Exercises
	25 Projects

	26 Miscellaneous Library Functions
	26.1 The <stdarg.h> Header: Variable Arguments
	26.2 The <stdlib.h> Header: General Utilities
	26.3 The <time.h> Header: Date and Time
	26 Q & A
	26 Exercises
	26 Programming Projects

	27 Additional C99 Support for Mathematics
	27.1 The <stdint.h> Header (C99): Integer Types
	27.2 The <inttypes.h> Header (C99) Format Conversion of Integer Types
	27.3 Complex Numbers (C99)
	27.4 The <complex.h> Header (C99): Complex Arithmetic
	27.5 The <tgmath.h> Header (C99): Type-Generic Math
	27.6 The <fenv.h> Header (C99): Floating-Point Environment
	27 Q & A
	27 Exercises
	27 Programming Projects

	A C Operators
	B C99 versus C89
	C C89 versus K&R C
	D Standard Library Functions
	a
	b
	c
	d
	e
	f
	g
	h
	i
	l
	m
	n
	p
	q
	r
	s
	t
	u
	v
	w

	E ASCII Character Set
	Bibliography

