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PREFACE
I hold every man a debtor

from the which as men of course
doe seeke to receive countenance and profit,
so ought they of duty to endeavour
themselves by way of amends,
to be a help and

F R A N C I S B A C O N

to his profession,

ornament therunto.



PREFACE TO THE FIRST EDITION

Every aspect of this book was in�uenced by the desire to present calculus not
merely as a prelude to but as the ˇrst real encounter with mathematics. Since
the foundations of analysis provided the arena in which modern modes of math-
ematical thinking developed, calculus ought to be the place in which to expect,
rather than avoid, the strengthening of insight with logic. In addition to devel-
oping the students' intuition about the beautiful concepts of analysis, it is surely
equally important to persuade them that precision and rigor are neither deterrents
to intuition, nor ends in themselves, but the natural medium in which to formulate
and think about mathematical questions.

This goal implies a view of mathematics which, in a sense, the entire book
attempts to defend. No matter how well particular topics may be developed, the
goals of this book will be realized only if it succeeds as a whole. For this reason, it
would be of little value merely to list the topics covered, or to mention pedagogical
practices and other innovations. Even the cursory glance customarily bestowed on
new calculus texts will probably tell more than any such extended advertisement,
and teachers with strong feelings about particular aspects of calculus will know just
where to look to see if this book fulˇlls their requirements.

A few features do require explicit comment, however. Of the twenty-nine chap-
ters in the book, two (starred) chapters are optional, and the three chapters com-
prising Part V have been included only for the beneˇt of those students who might
want to examine on their own a construction of the real numbers. Moreover, the
appendices to Chapters 3 and 11 also contain optional material.

The order of the remaining chapters is intentionally quite in�exible, since the
purpose of the book is to present calculus as the evolution of one idea, not as a
collection of \topics." Since the most exciting concepts of calculus do not appear
until Part III, it should be pointed out that Parts I and II will probably require
less time than their length suggests|although the entire book covers a one-year
course, the chapters are not meant to be covered at any uniform rate. A rather
natural dividing point does occur between Parts II and III, so it is possible to
reach differentiation and integration even more quickly by treating Part II very
brie�y, perhaps returning later for a more detailed treatment. This arrangement
corresponds to the traditional organization of most calculus courses, but I feel
that it will only diminish the value of the book for students who have seen a
small amount of calculus previously, and for bright students with a reasonable
background.

The problems have been designed with this particular audience in mind. They
range from straightforward, but not overly simple, exercises which develop basic
techniques and test understanding of concepts, to problems of considerable difˇ-
culty and, I hope, of comparable interest. There are about 625 problems in all.
Those which emphasize manipulations usually contain many examples, numbered
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viii Preface

with small Roman numerals, while small letters are used to label interrelated parts
in other problems. Some indication of relative difˇculty is provided by a system of
starring and double starring, but there are so many criteria for judging difˇculty,
and so many hints have been provided, especially for harder problems, that this
guide is not completely reliable. Many problems are so difˇcult, especially if the
hints are not consulted, that the best of students will probably have to attempt only
those which especially interest them; from the less difˇcult problems it should be
easy to select a portion which will keep a good class busy, but not frustrated. The
answer section contains solutions to about half the examples from an assortment
of problems that should provided a good test of technical competence. A separate
answer book contains the solutions of the other parts of these problems, and of all
the other problems as well. Finally, there is a Suggested Reading list, to which the
problems often refer, and a glossary of symbols.

I am grateful for the opportunity to mention the many people to whom I owe my
thanks. Jane Bjorkgren performed prodigious feats of typing that compensated for
my ˇtful production of the manuscript. Richard Serkey helped collect the material
which provides historical sidelights in the problems, and Richard Weiss supplied
the answers appearing in the back of the book. I am especially grateful to my
friends Michael Freeman, Jay Goldman, Anthony Phillips, and Robert Wells for
the care with which they read, and the relentlessness with which they criticized, a
preliminary version of the book. Needles to say, they are not responsible for the
deˇciencies which remain, especially since I sometimes rejected suggestions which
would have made the book appear suitable for a larger group of students. I must
express my admiration for the editors and staff of W. A. Benjamin, Inc., who were
always eager to increase the appeal of the book, while recognizing the audience
for which it was intended.

The inadequacies which preliminary editions always involve were gallantly en-
dured by a rugged group of freshmen in the honors mathematics course at Brandeis
University during the academic year 1965{1966. About half of this course was
devoted to algebra and topology, while the other half covered calculus, with the
preliminary edition as the text. It is almost obligatory in such circumstances to
report that the preliminary version was a gratifying success. This is always safe|
after all, the class is unlikely to rise up in a body and protest publicly|but the
students themselves, it seems to me, deserve the right to assign credit for the thor-
oughness with which they absorbed an impressive amount of mathematics. I am
content to hope that some other students will be able to use the book to such good
purpose, and with such enthusiasm.

Waltham, Massachusetts

MIC HA E L SPIVA K

February 1967



PREFACE TO THE SECOND EDITION

I have often been told that the title of this book should really be something like \An
Introduction to Analysis," because the book is usually used in courses where the
students have already learned the mechanical aspects of calculus|such courses are
standard in Europe, and they are becoming more common in the United States.
After thirteen years it seems too late to change the title, but other changes, in
addition to the correction of numerous misprints and mistakes, seemed called for.
There are now separate Appendices for many topics that were previously slighted:
polar coordinates, uniform continuity, parameterized curves, Riemann sums, and
the use of integrals for evaluating lengths, volumes and surface areas. A few topics,
like manipulations with power series, have been discussed more thoroughly in the
text, and there are also more problems on these topics, while other topics, like
Newton's method and the trapezoid rule and Simpson's rule, have been developed
in the problems. There are in all about 160 new problems, many of which are
intermediate in difˇculty between the few routine problems at the beginning of
each chapter and the more difˇcult ones that occur later.

Most of the new problems are the work of Ted Shifrin. Frederick Gordon
pointed out several serious mistakes in the original problems, and supplied some
non-trivial corrections, as well as the neat proof of Theorem 12-2, which took
two Lemmas and two pages in the ˇrst edition. Joseph Lipman also told me
of this proof, together with the similar trick for the proof of the last theorem in
the Appendix to Chapter 11, which went unproved in the ˇrst edition. Roy O.
Davies told me the trick for Problem 11-66, which previously was proved only in
Problem 20-8 [21-8 in the third edition], and Marina Ratner suggested several
interesting problems, especially ones on uniform continuity and inˇnite series. To
all these people go my thanks, and the hope that in the process of fashioning the
new edition their contributions weren't too badly botched.

MIC HA E L SPIVA K

ix



PREFACE TO THE THIRD EDITION

The most signiˇcant change in this third edition is the inclusion of a new (starred)
Chapter 17 on planetary motion, in which calculus is employed for a substantial
physics problem.

In preparation for this, the old Appendix to Chapter 4 has been replaced by
three Appendices: the ˇrst two cover vectors and conic sections, while polar coor-
dinates are now deferred until the third Appendix, which also discusses the polar
coordinate equations of the conic sections. Moreover, the Appendix to Chapter 12
has been extended to treat vector operations on vector-valued curves.

Another large change is merely a rearrangement of old material: \The Cos-
mopolitan Integral," previously a second Appendix to Chapter 13, is now an
Appendix to the chapter on \Integration in Elementary Terms" (previously Chap-
ter 18, now Chapter 19); moreover, those problems from that chapter which used
the material from that Appendix now appear as problems in the newly placed
Appendix.

A few other changes and renumbering of Problems result from corrections, and
elimination of incorrect problems.

I was both startled and somewhat dismayed when I realized that after allow-
ing 13 years to elapse between the ˇrst and second editions of the book, I have
allowed another 14 years to elapse before this third edition. During this time I
seem to have accumulated a not-so-short list of corrections, but no longer have
the original communications, and therefore cannot properly thank the various in-
dividuals involved (who by now have probably lost interest anyway). I have had
time to make only a few changes to the Suggested Reading, which after all these
years probably requires a complete revision; this will have to wait until the next
edition, which I hope to make in a more timely fashion.

MIC HA E L SPIVA K
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PART 1
PROLOGUE



To be conscious that
you are ignorant is a great step
to knowledge.
BENJAMIN DISRAELI



CHAPTER 1 BASIC PROPERTIES OF NUMBERS

The title of this chapter expresses in a few words the mathematical knowledge
required to read this book. In fact, this short chapter is simply an explanation of
what is meant by the \basic properties of numbers," all of which|addition and
multiplication, subtraction and division, solutions of equations and inequalities,
factoring and other algebraic manipulations|are already familiar to us. Never-
theless, this chapter is not a review. Despite the familiarity of the subject, the
survey we are about to undertake will probably seem quite novel; it does not aim
to present an extended review of old material, but to condense this knowledge
into a few simple and obvious properties of numbers. Some may even seem too
obvious to mention, but a surprising number of diverse and important facts turn
out to be consequences of the ones we shall emphasize.

Of the twelve properties which we shall study in this chapter, the ˇrst nine are
concerned with the fundamental operations of addition and multiplication. For
the moment we consider only addition: this operation is performed on a pair
of numbers|the sum a + b exists for any two given numbers a and b (which
may possibly be the same number, of course). It might seem reasonable to regard
addition as an operation which can be performed on several numbers at once, and
consider the sum a1 + · · · + an of n numbers a1, . . . , an as a basic concept. It is
more convenient, however, to consider addition of pairs of numbers only, and to
deˇne other sums in terms of sums of this type. For the sum of three numbers
a, b, and c, this may be done in two different ways. One can ˇrst add b and c,
obtaining b+ c, and then add a to this number, obtaining a + (b+ c); or one can
ˇrst add a and b, and then add the sum a + b to c, obtaining (a + b) + c. Of
course, the two compound sums obtained are equal, and this fact is the very ˇrst
property we shall list:

(P1) If a, b, and c are any numbers, then

a + (b + c) = (a + b)+ c.

The statement of this property clearly renders a separate concept of the sum of
three numbers super�uous; we simply agree that a + b + c denotes the number
a+(b+c) = (a+b)+c. Addition of four numbers requires similar, though slightly
more involved, considerations. The symbol a + b + c+ d is deˇned to mean

(1) ((a + b)+ c)+ d,

or (2) (a + (b + c))+ d,

or (3) a + ((b + c)+ d),

or (4) a + (b + (c+ d)),

or (5) (a + b)+ (c + d).

3



4 Prologue

This deˇnition is unambiguous since these numbers are all equal. Fortunately, this

fact need not be listed separately, since it follows from the property P1 already
listed. For example, we know from P1 that

(a + b)+ c = a + (b + c),

and it follows immediately that (1) and (2) are equal. The equality of (2) and (3)
is a direct consequence of P1, although this may not be apparent at ˇrst sight
(one must let b + c play the role of b in P1, and d the role of c). The equalities
(3) = (4) = (5) are also simple to prove.

It is probably obvious that an appeal to P1 will also sufˇce to prove the equality
of the 14 possible ways of summing ˇve numbers, but it may not be so clear how we
can reasonably arrange a proof that this is so without actually listing these 14 sums.
Such a procedure is feasible, but would soon cease to be if we considered collections
of six, seven, or more numbers; it would be totally inadequate to prove the equality
of all possible sums of an arbitrary ˇnite collection of numbers a1, . . . , an. This
fact may be taken for granted, but for those who would like to worry about the
proof (and it is worth worrying about once) a reasonable approach is outlined in
Problem 24. Henceforth, we shall usually make a tacit appeal to the results of this
problem and write sums a1 + · · · + an with a blithe disregard for the arrangement
of parentheses.

The number 0 has one property so important that we list it next:

(P2) If a is any number, then

a + 0 = 0 + a = a.

An important role is also played by 0 in the third property of our list:

(P3) For every number a, there is a number −a such that

a + (−a) = (−a)+ a = 0.

Property P2 ought to represent a distinguishing characteristic of the number 0,
and it is comforting to note that we are already in a position to prove this. Indeed,
if a number x satisˇes

a + x = a

for any one number a, then x = 0 (and consequently this equation also holds for all
numbers a). The proof of this assertion involves nothing more than subtracting a
from both sides of the equation, in other words, adding −a to both sides; as the
following detailed proof shows, all three properties P1{P3 must be used to justify
this operation.

If a + x = a,

then (−a)+ (a + x) = (−a)+ a = 0;
hence ((−a)+ a)+ x = 0;
hence 0 + x = 0;
hence x = 0.



1. Basic Properties of Numbers 5

As we have just hinted, it is convenient to regard subtraction as an operation
derived from addition: we consider a − b to be an abbreviation for a + (−b). It
is then possible to ˇnd the solution of certain simple equations by a series of steps
(each justiˇed by P1, P2, or P3) similar to the ones just presented for the equation
a + x = a. For example:

If x + 3 = 5,
then (x + 3)+ (−3) = 5 + (−3);
hence x + (3 + (−3)) = 5 − 3 = 2;
hence x + 0 = 2;
hence x = 2.

Naturally, such elaborate solutions are of interest only until you become convinced
that they can always be supplied. In practice, it is usually just a waste of time to
solve an equation by indicating so explicitly the reliance on properties P1, P2, and
P3 (or any of the further properties we shall list).

Only one other property of addition remains to be listed. When considering the
sums of three numbers a, b, and c, only two sums were mentioned: (a + b) + c

and a + (b + c). Actually, several other arrangements are obtained if the order of
a, b, and c is changed. That these sums are all equal depends on

(P4) If a and b are any numbers, then

a + b = b + a.

The statement of P4 is meant to emphasize that although the operation of ad-
dition of pairs of numbers might conceivably depend on the order of the two
numbers, in fact it does not. It is helpful to remember that not all operations are
so well behaved. For example, subtraction does not have this property: usually
a − b �= b − a. In passing we might ask just when a − b does equal b − a, and it
is amusing to discover how powerless we are if we rely only on properties P1{P4
to justify our manipulations. Algebra of the most elementary variety shows that
a − b = b − a only when a = b. Nevertheless, it is impossible to derive this fact
from properties P1{P4; it is instructive to examine the elementary algebra care-
fully and determine which step(s) cannot be justiˇed by P1{P4. We will indeed
be able to justify all steps in detail when a few more properties are listed. Oddly
enough, however, the crucial property involves multiplication.

The basic properties of multiplication are fortunately so similar to those for ad-
dition that little comment will be needed; both the meaning and the consequences
should be clear. (As in elementary algebra, the product of a and b will be denoted
by a · b, or simply ab.)

(P5) If a, b, and c are any numbers, then

a · (b · c) = (a · b) · c.

(P6) If a is any number, then

a · 1 = 1 · a = a.



6 Prologue

Moreover, 1 �= 0.

(The assertion that 1 �= 0 may seem a strange fact to list, but we have to
list it, because there is no way it could possibly be proved on the basis of the
other properties listed|these properties would all hold if there were only one
number, namely, 0.)

(P7) For every number a �= 0, there is a number a−1 such that

a · a−1 = a−1 · a = 1.

(P8) If a and b are any numbers, then

a · b = b · a.

One detail which deserves emphasis is the appearance of the condition a �= 0
in P7. This condition is quite necessary; since 0·b = 0 for all numbers b, there is no

number 0−1 satisfying 0 · 0−1 = 1. This restriction has an important consequence
for division. Just as subtraction was deˇned in terms of addition, so division is
deˇned in terms of multiplication: The symbol a/b means a · b−1. Since 0−1 is
meaningless, a/0 is also meaningless|division by 0 is always undeˇned.

Property P7 has two important consequences. If a · b = a · c, it does not
necessarily follow that b = c; for if a = 0, then both a ·b and a · c are 0, no matter
what b and c are. However, if a �= 0, then b = c; this can be deduced from P7 as
follows:

If a · b = a · c and a �= 0,
then a−1 · (a · b) = a−1 · (a · c);
hence (a−1 · a) · b = (a−1 · a) · c;
hence 1 · b = 1 · c;
hence b = c.

It is also a consequence of P7 that if a · b = 0, then either a = 0 or b = 0. In fact,

if a · b = 0 and a �= 0,
then a−1 · (a · b) = 0;
hence (a−1 · a) · b = 0;
hence 1 · b = 0;
hence b = 0.

(It may happen that a = 0 and b = 0 are both true; this possibility is not excluded
when we say \either a = 0 or b = 0"; in mathematics \or" is always used in the
sense of \one or the other, or both.")

This latter consequence of P7 is constantly used in the solution of equations.
Suppose, for example, that a number x is known to satisfy

(x − 1)(x − 2) = 0.

Then it follows that either x − 1 = 0 or x − 2 = 0; hence x = 1 or x = 2.
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On the basis of the eight properties listed so far it is still possible to prove very
little. Listing the next property, which combines the operations of addition and
multiplication, will alter this situation drastically.

(P9) If a, b, and c are any numbers, then

a · (b + c) = a · b + a · c.

(Notice that the equation (b + c) · a = b · a + c · a is also true, by P8.)

As an example of the usefulness of P9 we will now determine just when a − b =
b − a:

If a − b = b − a,

then (a − b)+ b = (b − a)+ b = b + (b − a);
hence a = b + b − a;
hence a + a = (b + b − a)+ a = b + b.

Consequently a · (1 + 1) = b · (1 + 1),
and therefore a = b.

A second use of P9 is the justiˇcation of the assertion a · 0 = 0 which we have
already made, and even used in a proof on page 6 (can you ˇnd where?). This
fact was not listed as one of the basic properties, even though no proof was offered
when it was ˇrst mentioned. With P1{P8 alone a proof was not possible, since the
number 0 appears only in P2 and P3, which concern addition, while the assertion
in question involves multiplication. With P9 the proof is simple, though perhaps
not obvious: We have

a · 0 + a · 0 = a · (0 + 0)
= a · 0;

as we have already noted, this immediately implies (by adding −(a · 0) to both
sides) that a · 0 = 0.

A series of further consequences of P9 may help explain the somewhat myste-
rious rule that the product of two negative numbers is positive. To begin with,
we will establish the more easily acceptable assertion that (−a) · b = −(a · b). To
prove this, note that

(−a) · b + a · b = [(−a)+ a] · b
= 0 · b
= 0.

It follows immediately (by adding −(a · b) to both sides) that (−a) · b = −(a · b).
Now note that

(−a) · (−b)+ [−(a · b)] = (−a) · (−b)+ (−a) · b
= (−a) · [(−b)+ b]
= (−a) · 0
= 0.
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Consequently, adding (a · b) to both sides, we obtain

(−a) · (−b) = a · b.
The fact that the product of two negative numbers is positive is thus a consequence
of P1{P9. In other words, if we want P1 to P9 to be true, the rule for the product of two

negative numbers is forced upon us.
The various consequences of P9 examined so far, although interesting and im-

portant, do not really indicate the signiˇcance of P9; after all, we could have listed
each of these properties separately. Actually, P9 is the justiˇcation for almost all
algebraic manipulations. For example, although we have shown how to solve the
equation

(x − 1)(x − 2) = 0,

we can hardly expect to be presented with an equation in this form. We are more
likely to be confronted with the equation

x2 − 3x + 2 = 0.

The \factorization" x2 − 3x + 2 = (x − 1)(x − 2) is really a triple use of P9:

(x − 1) · (x − 2) = x · (x − 2)+ (−1) · (x − 2)
= x · x + x · (−2)+ (−1) · x + (−1) · (−2)
= x2 + x[(−2)+ (−1)] + 2
= x2 − 3x + 2.

A ˇnal illustration of the importance of P9 is the fact that this property is actually
used every time one multiplies arabic numerals. For example, the calculation

13
×24

52
26

312

is a concise arrangement for the following equations:

13 · 24 = 13 · (2 · 10 + 4)
= 13 · 2 · 10 + 13 · 4
= 26 · 10 + 52.

(Note that moving 26 to the left in the above calculation is the same as writing
26 · 10.) The multiplication 13 · 4 = 52 uses P9 also:

13 · 4 = (1 · 10 + 3) · 4
= 1 · 10 · 4 + 3 · 4
= 4 · 10 + 12
= 4 · 10 + 1 · 10 + 2
= (4 + 1) · 10 + 2
= 5 · 10 + 2
= 52.
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The properties P1{P9 have descriptive names which are not essential to remem-
ber, but which are often convenient for reference. We will take this opportunity to
list properties P1{P9 together and indicate the names by which they are commonly
designated.

(P1) (Associative law for addition)

(P2) (Existence of an additive
identity)

(P3) (Existence of additive inverses)

(P4) (Commutative law for addition)
(P5) (Associative law for multiplica-

tion)
(P6) (Existence of a multiplicative

identity)

(P7) (Existence of multiplicative
inverses)

(P8) (Commutative law for multi-
plication)

(P9) (Distributive law)

a + (b + c) = (a + b)+ c.

a + 0 = 0 + a = a.

a + (−a) = (−a)+ a = 0.

a + b = b + a.

a · (b · c) = (a · b) · c.

a · 1 = 1 · a = a; 1 �= 0.

a · a−1 = a−1 · a = 1, for a �= 0.

a · b = b · a.

a · (b + c) = a · b + a · c.

The three basic properties of numbers which remain to be listed are concerned
with inequalities. Although inequalities occur rarely in elementary mathematics,
they play a prominent role in calculus. The two notions of inequality, a < b

(a is less than b) and a > b (a is greater than b), are intimately related: a < b

means the same as b > a (thus 1 < 3 and 3 > 1 are merely two ways of writing
the same assertion). The numbers a satisfying a > 0 are called positive, while
those numbers a satisfying a < 0 are called negative. While positivity can thus
be deˇned in terms of <, it is possible to reverse the procedure: a < b can be
deˇned to mean that b − a is positive. In fact, it is convenient to consider the
collection of all positive numbers, denoted by P , as the basic concept, and state
all properties in terms of P :

(P10) (Trichotomy law) For every number a, one and only one of the
following holds:

(i) a = 0,
(ii) a is in the collection P ,
(iii) −a is in the collection P .

(P11) (Closure under addition) If a and b are in P , then a + b is in P .

(P12) (Closure under multiplication) If a and b are in P , then a · b is
in P .
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These three properties should be complemented with the following deˇnitions:

a > b if a − b is in P ;
a < b if b > a;
a ≥ b if a > b or a = b;
a ≤ b if a < b or a = b.*

Note, in particular, that a > 0 if and only if a is in P .
All the familiar facts about inequalities, however elementary they may seem, are

consequences of P10{P12. For example, if a and b are any two numbers, then
precisely one of the following holds:

(i) a − b = 0,
(ii) a − b is in the collection P ,
(iii) −(a − b) = b − a is in the collection P .

Using the deˇnitions just made, it follows that precisely one of the following holds:

(i) a = b,
(ii) a > b,
(iii) b > a.

A slightly more interesting fact results from the following manipulations. If
a < b, so that b − a is in P , then surely (b + c) − (a + c) is in P ; thus, if a < b,
then a + c < b + c. Similarly, suppose a < b and b < c. Then

b − a is in P,
and c− b is in P,
so c− a = (c − b)+ (b − a) is in P.

This shows that if a < b and b < c, then a < c. (The two inequalities a < b and
b < c are usually written in the abbreviated form a < b < c, which has the third
inequality a < c almost built in.)

The following assertion is somewhat less obvious: If a < 0 and b < 0, then
ab > 0. The only difˇculty presented by the proof is the unraveling of deˇnitions.
The symbol a < 0 means, by deˇnition, 0 > a, which means 0 − a = −a is in P .
Similarly −b is in P , and consequently, by P12, (−a)(−b) = ab is in P . Thus
ab > 0.

The fact that ab > 0 if a > 0, b > 0 and also if a < 0, b < 0 has one
special consequence: a2 > 0 if a �= 0. Thus squares of nonzero numbers are
always positive, and in particular we have proved a result which might have seemed
sufˇciently elementary to be included in our list of properties: 1 > 0 (since 1 = 12).

* There is one slightly perplexing feature of the symbols ≥ and ≤. The statements

1 + 1 ≤ 3
1 + 1 ≤ 2

are both true, even though we know that ≤ could be replaced by < in the ˇrst, and by = in the
second. This sort of thing is bound to occur when ≤ is used with speciˇc numbers; the usefulness
of the symbol is revealed by a statement like Theorem 1|here equality holds for some values of a
and b, while inequality holds for other values.
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The fact that −a > 0 if a < 0 is the basis of a concept which will play an
extremely important role in this book. For any number a, we deˇne the absolute
value |a| of a as follows:

|a| =
{
a, a ≥ 0
−a, a ≤ 0.

Note that |a| is always positive, except when a = 0. For example, we have |−3| =
3, |7| = 7, |1 +

√
2 −

√
3| = 1 +

√
2 −

√
3, and |1 +

√
2 −

√
10| =

√
10 −

√
2 − 1.

In general, the most straightforward approach to any problem involving absolute
values requires treating several cases separately, since absolute values are deˇned
by cases to begin with. This approach may be used to prove the following very
important fact about absolute values.

THEOREM 1 For all numbers a and b, we have

|a + b| ≤ |a| + |b|.

PROOF We will consider 4 cases:

(1) a ≥ 0, b ≥ 0;
(2) a ≥ 0, b ≤ 0;
(3) a ≤ 0, b ≥ 0;
(4) a ≤ 0, b ≤ 0.

In case (1) we also have a + b ≥ 0, and the theorem is obvious; in fact,

|a + b| = a + b = |a| + |b|,
so that in this case equality holds.

In case (4) we have a + b ≤ 0, and again equality holds:

|a + b| = −(a + b) = −a + (−b) = |a| + |b|.
In case (2), when a ≥ 0 and b ≤ 0, we must prove that

|a + b| ≤ a − b.

This case may therefore be divided into two subcases. If a+ b ≥ 0, then we must
prove that

a + b ≤ a − b,

i.e., b ≤ −b,
which is certainly true since b ≤ 0 and hence −b ≥ 0. On the other hand, if
a + b ≤ 0, we must prove that

−a − b ≤ a − b,

i.e., −a ≤ a,

which is certainly true since a ≥ 0 and hence −a ≤ 0.
Finally, note that case (3) may be disposed of with no additional work, by apply-

ing case (2) with a and b interchanged.
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Although this method of treating absolute values (separate consideration of var-
ious cases) is sometimes the only approach available, there are often simpler meth-
ods which may be used. In fact, it is possible to give a much shorter proof of
Theorem 1; this proof is motivated by the observation that

|a| =
√
a2.

(Here, and throughout the book,
√
x denotes the positive square root of x; this

symbol is deˇned only when x ≥ 0.) We may now observe that

(|a + b|)2 = (a + b)2 = a2 + 2ab + b2

≤ a2 + 2|a| · |b| + b2

= |a|2 + 2|a| · |b| + |b|2
= (|a| + |b|)2.

From this we can conclude that |a+ b| ≤ |a| + |b| because x2 < y2 implies x < y,
provided that x and y are both nonnegative; a proof of this fact is left to the reader
(Problem 5).

One ˇnal observation may be made about the theorem we have just proved: a
close examination of either proof offered shows that

|a + b| = |a| + |b|
if a and b have the same sign (i.e., are both positive or both negative), or if one of
the two is 0, while

|a + b| < |a| + |b|
if a and b are of opposite signs.

We will conclude this chapter with a subtle point, neglected until now, whose
inclusion is required in a conscientious survey of the properties of numbers. After
stating property P9, we proved that a− b = b− a implies a = b. The proof began
by establishing that

a · (1 + 1) = b · (1 + 1),

from which we concluded that a = b. This result is obtained from the equation
a · (1 + 1) = b · (1 + 1) by dividing both sides by 1 + 1. Division by 0 should
be avoided scrupulously, and it must therefore be admitted that the validity of the
argument depends on knowing that 1+1 �= 0. Problem 25 is designed to convince
you that this fact cannot possibly be proved from properties P1{P9 alone! Once
P10, P11, and P12 are available, however, the proof is very simple: We have
already seen that 1 > 0; it follows that 1 + 1 > 0, and in particular 1 + 1 �= 0.

This last demonstration has perhaps only strengthened your feeling that it is
absurd to bother proving such obvious facts, but an honest assessment of our
present situation will help justify serious consideration of such details. In this
chapter we have assumed that numbers are familiar objects, and that P1{P12 are
merely explicit statements of obvious, well-known properties of numbers. It would
be difˇcult, however, to justify this assumption. Although one learns how to \work
with" numbers in school, just what numbers are, remains rather vague. A great
deal of this book is devoted to elucidating the concept of numbers, and by the end
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of the book we will have become quite well acquainted with them. But it will be
necessary to work with numbers throughout the book. It is therefore reasonable
to admit frankly that we do not yet thoroughly understand numbers; we may still
say that, in whatever way numbers are ˇnally deˇned, they should certainly have
properties P1{P12.

Most of this chapter has been an attempt to present convincing evidence that
P1{P12 are indeed basic properties which we should assume in order to deduce
other familiar properties of numbers. Some of the problems (which indicate the
derivation of other facts about numbers from P1{P12) are offered as further evi-
dence. It is still a crucial question whether P1{P12 actually account for all prop-
erties of numbers. As a matter of fact, we shall soon see that they do not . In the
next chapter the deˇciencies of properties P1{P12 will become quite clear, but
the proper means for correcting these deˇciencies is not so easily discovered. The
crucial additional basic property of numbers which we are seeking is profound and
subtle, quite unlike P1{P12. The discovery of this crucial property will require all
the work of Part II of this book. In the remainder of Part I we will begin to see
why some additional property is required; in order to investigate this we will have
to consider a little more carefully what we mean by \numbers."

PROBLEMS

1. Prove the following:

(i) If ax = a for some number a �= 0, then x = 1.
(ii) x2 − y2 = (x − y)(x + y).
(iii) If x2 = y2, then x = y or x = −y.
(iv) x3 − y3 = (x − y)(x2 + xy + y2).
(v) xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1).
(vi) x3 + y3 = (x + y)(x2 − xy + y2). (There is a particularly easy way to

do this, using (iv), and it will show you how to ˇnd a factorization for
xn + yn whenever n is odd.)

2. What is wrong with the following \proof "? Let x = y. Then

x2 = xy,

x2 − y2 = xy − y2,

(x + y)(x − y) = y(x − y),

x + y = y,

2y = y,

2 = 1.

3. Prove the following:

(i)
a

b
= ac

bc
, if b, c �= 0.

(ii)
a

b
+ c

d
= ad + bc

bd
, if b, d �= 0.



14 Prologue

(iii) (ab)−1 = a−1b−1, if a, b �= 0. (To do this you must remember the
deˇning property of (ab)−1.)

(iv)
a

b
· c
d

= ac

db
, if b, d �= 0.

(v)
a

b

/
c

d
= ad

bc
, if b, c, d �= 0.

(vi) If b, d �= 0, then
a

b
= c

d
if and only if ad = bc. Also determine when

a

b
= b

a
.

4. Find all numbers x for which

(i) 4 − x < 3 − 2x.
(ii) 5 − x2 < 8.
(iii) 5 − x2 < −2.
(iv) (x − 1)(x − 3) > 0. (When is a product of two numbers positive?)
(v) x2 − 2x + 2 > 0.
(vi) x2 + x + 1 > 2.
(vii) x2 − x + 10 > 16.
(viii) x2 + x + 1 > 0.
(ix) (x − π)(x + 5)(x − 3) > 0.

(x) (x − 3
√

2 )(x −
√

2 ) > 0.
(xi) 2x < 8.
(xii) x + 3x < 4.

(xiii)
1
x

+ 1
1 − x

> 0.

(xiv)
x − 1
x + 1

> 0.

5. Prove the following:

(i) If a < b and c < d, then a + c < b + d.
(ii) If a < b, then −b < −a.
(iii) If a < b and c > d, then a − c < b − d.
(iv) If a < b and c > 0, then ac < bc.
(v) If a < b and c < 0, then ac > bc.
(vi) If a > 1, then a2 > a.
(vii) If 0 < a < 1, then a2 < a.
(viii) If 0 ≤ a < b and 0 ≤ c < d, then ac < bd.
(ix) If 0 ≤ a < b, then a2 < b2. (Use (viii).)
(x) If a, b ≥ 0 and a2 < b2, then a < b. (Use (ix), backwards.)

6. (a) Prove that if 0 ≤ x < y, then xn < yn, n = 1,2, 3, . . . .
(b) Prove that if x < y and n is odd, then xn < yn.
(c) Prove that if xn = yn and n is odd, then x = y.
(d) Prove that if xn = yn and n is even, then x = y or x = −y.
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7. Prove that if 0 < a < b, then

a <
√
ab <

a + b

2
< b.

Notice that the inequality
√
ab ≤ (a + b)/2 holds for all a, b ≥ 0. A gener-

alization of this fact occurs in Problem 2-22.

*8. Although the basic properties of inequalities were stated in terms of the col-
lection P of all positive numbers, and < was deˇned in terms of P , this
procedure can be reversed. Suppose that P10{P12 are replaced by

(P ′10) For any numbers a and b one, and only one, of the
following holds:
(i) a = b,
(ii) a < b,
(iii) b < a.

(P ′11) For any numbers a, b, and c, if a < b and b < c, then
a < c.

(P ′12) For any numbers a, b, and c, if a < b, then
a + c < b + c.

(P ′13) For any numbers a, b, and c, if a < b and 0 < c, then
ac < bc.

Show that P10{P12 can then be deduced as theorems.

9. Express each of the following with at least one less pair of absolute value
signs.

(i) |
√

2 +
√

3 −
√

5 +
√

7|.
(ii) |(|a + b| − |a| − |b|)|.
(iii) |(|a + b| + |c| − |a + b + c|)|.
(iv) |x2 − 2xy + y2|.
(v) |(|

√
2 +

√
3| − |

√
5 −

√
7|)|.

10. Express each of the following without absolute value signs, treating various
cases separately when necessary.

(i) |a + b| − |b|.
(ii) |(|x| − 1)|.
(iii) |x| − |x2|.
(iv) a − |(a − |a|)|.

11. Find all numbers x for which

(i) |x − 3| = 8.
(ii) |x − 3| < 8.
(iii) |x + 4| < 2.
(iv) |x − 1| + |x − 2| > 1.
(v) |x − 1| + |x + 1| < 2.
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(vi) |x − 1| + |x + 1| < 1.
(vii) |x − 1| · |x + 1| = 0.
(viii) |x − 1| · |x + 2| = 3.

12. Prove the following:

(i) |xy| = |x| · |y|.
(ii)

∣∣∣∣1x
∣∣∣∣ = 1

|x| , if x �= 0. (The best way to do this is to remember what

|x|−1 is.)

(iii)
|x|
|y| =

∣∣∣∣xy
∣∣∣∣, if y �= 0.

(iv) |x − y| ≤ |x| + |y|. (Give a very short proof.)
(v) |x| − |y| ≤ |x − y|. (A very short proof is possible, if you write things in

the right way.)
(vi) |(|x| − |y|)| ≤ |x − y|. (Why does this follow immediately from (v)?)
(vii) |x + y + z| ≤ |x| + |y| + |z|. Indicate when equality holds, and prove

your statement.

13. The maximum of two numbers x and y is denoted by max(x,y). Thus
max(−1,3) = max(3, 3) = 3 and max(−1,−4) = max(−4,−1) = −1.
The minimum of x and y is denoted by min(x,y). Prove that

max(x,y) = x + y + |y − x|
2

,

min(x,y) = x + y − |y − x|
2

.

Derive a formula for max(x, y, z) and min(x,y, z), using, for example

max(x,y, z) = max(x,max(y, z)).

14. (a) Prove that |a| = |−a|. (The trick is not to become confused by too many
cases. First prove the statement for a ≥ 0. Why is it then obvious for
a ≤ 0?)

(b) Prove that −b ≤ a ≤ b if and only if |a| ≤ b. In particular, it follows
that −|a| ≤ a ≤ |a|.

(c) Use this fact to give a new proof that |a + b| ≤ |a| + |b|.
*15. Prove that if x and y are not both 0, then

x2 + xy + y2 > 0,

x4 + x3y + x2y2 + xy3 + y4 > 0.

Hint: Use Problem 1.

*16. (a) Show that

(x + y)2 = x2 + y2 only when x = 0 or y = 0,
(x + y)3 = x3 + y3 only when x = 0 or y = 0 or x = −y.
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(b) Using the fact that

x2 + 2xy + y2 = (x + y)2 ≥ 0,

show that 4x2 + 6xy + 4y2 > 0 unless x and y are both 0.
(c) Use part (b) to ˇnd out when (x + y)4 = x4 + y4.
(d) Find out when (x+y)5 = x5+y5. Hint: From the assumption (x+y)5 =

x5+y5 you should be able to derive the equation x3+2x2y+2xy2+y3 =
0, if xy �= 0. This implies that (x + y)3 = x2y + xy2 = xy(x + y).

You should now be able to make a good guess as to when (x+y)n = xn+yn;
the proof is contained in Problem 11-57.

17. (a) Find the smallest possible value of 2x2 − 3x + 4. Hint: \Complete the
square," i.e., write 2x2 − 3x + 4 = 2(x − 3/4)2 + ?

(b) Find the smallest possible value of x2 − 3x + 2y2 + 4y + 2.
(c) Find the smallest possible value of x2 + 4xy + 5y2 − 4x − 6y + 7.

18. (a) Suppose that b2 − 4c ≥ 0. Show that the numbers

−b +
√
b2 − 4c

2
,

−b−
√
b2 − 4c

2

both satisfy the equation x2 + bx + c = 0.
(b) Suppose that b2 − 4c < 0. Show that there are no numbers x satisfying

x2 + bx + c = 0; in fact, x2 + bx + c > 0 for all x. Hint: Complete the
square.

(c) Use this fact to give another proof that if x and y are not both 0, then
x2 + xy + y2 > 0.

(d) For which numbers α is it true that x2 + αxy + y2 > 0 whenever x and
y are not both 0?

(e) Find the smallest possible value of x2 + bx + c and of ax2 + bx + c, for
a > 0.

19. The fact that a2 ≥ 0 for all numbers a, elementary as it may seem, is
nevertheless the fundamental idea upon which most important inequali-
ties are ultimately based. The great-granddaddy of all inequalities is the
Schwarz inequality:

x1y1 + x2y2 ≤
√
x1

2 + x2
2
√
y1

2 + y2
2.

(A more general form occurs in Problem 2-21.) The three proofs of the
Schwarz inequality outlined below have only one thing in common|their
reliance on the fact that a2 ≥ 0 for all a.

(a) Prove that if x1 = λy1 and x2 = λy2 for some number λ, then equality
holds in the Schwarz inequality. Prove the same thing if y1 = y2 = 0.
Now suppose that y1 and y2 are not both 0, and that there is no number
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λ such that x1 = λy1 and x2 = λy2. Then

0 < (λy1 − x1)
2 + (λy2 − x2)

2

= λ2(y1
2 + y2

2)− 2λ(x1y1 + x2y2)+ (x1
2 + x2

2).

Using Problem 18, complete the proof of the Schwarz inequality.
(b) Prove the Schwarz inequality by using 2xy ≤ x2+y2 (how is this derived?)

with
x = xi√

x12 + x22
, y = yi√

y1
2 + y2

2
,

ˇrst for i = 1 and then for i = 2.
(c) Prove the Schwarz inequality by ˇrst proving that

(x1
2 + x2

2)(y1
2 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2.

(d) Deduce, from each of these three proofs, that equality holds only when
y1 = y2 = 0 or when there is a number λ such that x1 = λy1 and
x2 = λy2.

In our later work, three facts about inequalities will be crucial. Although proofs
will be supplied at the appropriate point in the text, a personal assault on these
problems is inˇnitely more enlightening than a perusal of a completely worked-out
proof. The statements of these propositions involve some weird numbers, but their
basic message is very simple: if x is close enough to x0, and y is close enough to y0,
then x+y will be close to x0 +y0, and xy will be close to x0y0, and 1/y will be close
to 1/y0. The symbol \ε" which appears in these propositions is the ˇfth letter of the
Greek alphabet (\epsilon"), and could just as well be replaced by a less intimidating
Roman letter; however, tradition has made the use of ε almost sacrosanct in the
contexts to which these theorems apply.

20. Prove that if
|x − x0| < ε

2
and |y − y0| < ε

2
,

then

|(x + y)− (x0 + y0)| < ε,

|(x − y)− (x0 − y0)| < ε.

*21. Prove that if

|x − x0| < min
(

ε

2(|y0| + 1)
,1
)

and |y − y0| < ε

2(|x0| + 1)
,

then |xy − x0y0| < ε.

(The notation \min" was deˇned in Problem 13, but the formula provided by
that problem is irrelevant at the moment; the ˇrst inequality in the hypothesis
just means that

|x − x0| < ε

2(|y0| + 1)
and |x − x0| < 1;
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at one point in the argument you will need the ˇrst inequality, and at an-
other point you will need the second. One more word of advice: since the
hypotheses only provide information about x − x0 and y − y0, it is almost a
foregone conclusion that the proof will depend upon writing xy − x0y0 in a
way that involves x − x0 and y − y0.)

*22. Prove that if y0 �= 0 and

|y − y0| < min

(
|y0|
2
,
ε|y0|2

2

)
,

then y �= 0 and ∣∣∣∣1y − 1
y0

∣∣∣∣ < ε.

*23. Replace the question marks in the following statement by expressions involv-
ing ε, x0, and y0 so that the conclusion will be true:

If y0 �= 0 and

|y − y0| < ? and |x − x0| < ?

then y �= 0 and ∣∣∣∣xy − x0

y0

∣∣∣∣ < ε.

This problem is trivial in the sense that its solution follows from Problems 21
and 22 with almost no work at all (notice that x/y = x · 1/y ). The crucial
point is not to become confused; decide which of the two problems should
be used ˇrst, and don't panic if your answer looks unlikely.

*24. This problem shows that the actual placement of parentheses in a sum is
irrelevant. The proofs involve \mathematical induction"; if you are not fa-
miliar with such proofs, but still want to tackle this problem, it can be saved
until after Chapter 2, where proofs by induction are explained.

Let us agree, for deˇniteness, that a1 + · · · + an will denote

a1 + (a2 + (a3 + · · · + (an−2 + (an−1 + an))) · · · ).
Thus a1 + a2 + a3 denotes a1 + (a2 + a3), and a1 + a2 + a3 + a4 denotes
a1 + (a2 + (a3 + a4)), etc.

(a) Prove that

(a1 + · · · + ak)+ ak+1 = a1 + · · · + ak+1.

Hint: Use induction on k.
(b) Prove that if n ≥ k, then

(a1 + · · · + ak)+ (ak+1 + · · · + an) = a1 + · · · + an.

Hint: Use part (a) to give a proof by induction on k.
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(c) Let s(a1, . . . , ak) be some sum formed from a1, . . . , ak. Show that

s(a1, . . . , ak) = a1 + · · · + ak.

Hint: There must be two sums s ′(a1, . . . , al) and s ′′(al+1, . . . , ak) such
that

s(a1, . . . , ak) = s ′(a1, . . . , al)+ s ′′(al+1, . . . , ak).

25. Suppose that we interpret \number" to mean either 0 or 1, and + and · to
be the operations deˇned by the following two tables.

+ 0 1 · 0 1

0 0 1 0 0 0

1 1 0 1 0 1

Check that properties P1{P9 all hold, even though 1 + 1 = 0.



CHAPTER 2 NUMBERS OF VARIOUS SORTS

In Chapter 1 we used the word \number" very loosely, despite our concern with
the basic properties of numbers. It will now be necessary to distinguish carefully
various kinds of numbers.

The simplest numbers are the \counting numbers"

1,2, 3, . . . .

The fundamental signiˇcance of this collection of numbers is emphasized by its
symbol N (for natural numbers). A brief glance at P1{P12 will show that our
basic properties of \numbers" do not apply to N|for example, P2 and P3 do not
make sense for N. From this point of view the system N has many deˇciencies.
Nevertheless, N is sufˇciently important to deserve several comments before we
consider larger collections of numbers.

The most basic property of N is the principle of \mathematical induction."
Suppose P(x) means that the property P holds for the number x. Then the prin-
ciple of mathematical induction states that P(x) is true for all natural numbers x
provided that

(1) P(1) is true.
(2) Whenever P(k) is true, P(k + 1) is true.

Note that condition (2) merely asserts the truth of P(k+1) under the assumption
that P(k) is true; this sufˇces to ensure the truth of P(x) for all x, if condition
(1) also holds. In fact, if P(1) is true, then it follows that P(2) is true (by using
(2) in the special case k = 1). Now, since P(2) is true it follows that P(3) is true
(using (2) in the special case k = 2). It is clear that each number will eventually be
reached by a series of steps of this sort, so that P(k) is true for all numbers k.

A favorite illustration of the reasoning behind mathematical induction envisions
an inˇnite line of people,

person number 1, person number 2, person number 3, . . . .

If each person has been instructed to tell any secret he hears to the person behind
him (the one with the next largest number) and a secret is told to person number 1,
then clearly every person will eventually learn the secret. If P(x) is the assertion
that person number x will learn the secret, then the instructions given (to tell all
secrets learned to the next person) assures that condition (2) is true, and telling
the secret to person number 1 makes (1) true. The following example is a less
facetious use of mathematical induction. There is a useful and striking formula
which expresses the sum of the ˇrst n numbers in a simple way:

21
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1 + · · · + n = n(n+ 1)
2

.

To prove this formula, note ˇrst that it is clearly true for n = 1. Now assume that
for some natural number k we have

1 + · · · + k = k(k + 1)
2

.

Then

1 + · · · + k + (k + 1) = k(k + 1)
2

+ k + 1

= k(k + 1)+ 2k + 2
2

= k2 + 3k + 2
2

= (k + 1)(k + 2)
2

,

so the formula is also true for k + 1. By the principle of induction this proves
the formula for all natural numbers n. This particular example illustrates a phe-
nomenon that frequently occurs, especially in connection with formulas like the
one just proved. Although the proof by induction is often quite straightforward,
the method by which the formula was discovered remains a mystery. Problems 5
and 6 indicate how some formulas of this type may be derived.

The principle of mathematical induction may be formulated in an equivalent
way without speaking of \properties" of a number, a term which is sufˇciently
vague to be eschewed in a mathematical discussion. A more precise formulation
states that if A is any collection (or \set"|a synonymous mathematical term) of
natural numbers and

(1) 1 is in A,

(2) k + 1 is in A whenever k is in A,

then A is the set of all natural numbers. It should be clear that this formulation
adequately replaces the less formal one given previously|we just consider the
set A of natural numbers x which satisfy P(x). For example, suppose A is the set
of natural numbers n for which it is true that

1 + · · · + n = n(n+ 1)
2

.

Our previous proof of this formula showed that A contains 1, and that k + 1 is
in A, if k is. It follows that A is the set of all natural numbers, i.e., that the formula
holds for all natural numbers n.

There is yet another rigorous formulation of the principle of mathematical in-
duction, which looks quite different. If A is any collection of natural numbers, it
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is tempting to say that A must have a smallest member. Actually, this statement
can fail to be true in a rather subtle way. A particularly important set of natural
numbers is the collection A that contains no natural numbers at all, the \empty
collection" or \null set,"* denoted by ∅. The null set ∅ is a collection of natural
numbers that has no smallest member|in fact, it has no members at all. This
is the only possible exception, however; if A is a nonnull set of natural numbers,
then A has a least member. This \intuitively obvious" statement, known as the
\well-ordering principle," can be proved from the principle of induction as follows.
Suppose that the set A has no least member. Let B be the set of natural numbers
n such that 1, . . . , n are all not in A. Clearly 1 is in B (because if 1 were in A, then
A would have 1 as smallest member). Moreover, if 1, . . . , k are not in A, surely
k + 1 is not in A (otherwise k + 1 would be the smallest member of A), so 1, . . . ,
k + 1 are all not in A. This shows that if k is in B, then k + 1 is in B. It follows
that every number n is in B, i.e., the numbers 1, . . . , n are not in A for any natural
number n. Thus A = ∅, which completes the proof.

It is also possible to prove the principle of induction from the well-ordering
principle (Problem 10). Either principle may be considered as a basic assumption
about the natural numbers.

There is still another form of induction which should be mentioned. It some-
times happens that in order to prove P(k+ 1) we must assume not only P(k), but
also P(l) for all natural numbers l ≤ k. In this case we rely on the \principle of
complete induction": If A is a set of natural numbers and

(1) 1 is in A,

(2) k + 1 is in A if 1, . . . , k are in A,

then A is the set of all natural numbers.
Although the principle of complete induction may appear much stronger than

the ordinary principle of induction, it is actually a consequence of that principle.
The proof of this fact is left to the reader, with a hint (Problem 11). Applications
will be found in Problems 7, 17, 20 and 22.

Closely related to proofs by induction are \recursive deˇnitions." For example,
the number n! (read \n factorial") is deˇned as the product of all the natural
numbers less than or equal to n:

n! = 1 · 2 · · · · · (n − 1) · n.
This can be expressed more precisely as follows:

(1) 1! = 1
(2) n! = n · (n− 1)!.

This form of the deˇnition exhibits the relationship between n! and (n− 1)! in an

* Although it may not strike you as a collection, in the ordinary sense of the word, the null set arises
quite naturally in many contexts. We frequently consider the set A, consisting of all x satisfying some
property P ; often we have no guarantee that P is satisˇed by any number, so that A might be ∅|in
fact often one proves that P is always false by showing that A = ∅.
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explicit way that is ideally suited for proofs by induction. Problem 23 reviews a
deˇnition already familiar to you, which may be expressed more succinctly as a re-
cursive deˇnition; as this problem shows, the recursive deˇnition is really necessary
for a rigorous proof of some of the basic properties of the deˇnition.

One deˇnition which may not be familiar involves some convenient notation
which we will constantly be using. Instead of writing

a1 + · · · + an,

we will usually employ the Greek letter � (capital sigma, for \sum") and write

n∑
i=1

ai.

In other words,
n∑
i=1

ai denotes the sum of the numbers obtained by letting

i = 1,2, . . . , n. Thus
n∑
i=1

i = 1 + 2 + · · · + n = n(n+ 1)
2

.

Notice that the letter i really has nothing to do with the number denoted by
n∑
i=1

i,

and can be replaced by any convenient symbol (except n, of course!):

n∑
j=1

j = n(n+ 1)
2

,

i∑
j=1

j = i(i + 1)
2

,

j∑
n=1

n = j (j + 1)
2

.

To deˇne
n∑
i=1

ai precisely really requires a recursive deˇnition:

(1)
1∑
i=1

ai = a1,

(2)
n∑
i=1

ai =
n−1∑
i=1

ai + an.

But only purveyors of mathematical austerity would insist too strongly on such
precision. In practice, all sorts of modiˇcations of this symbolism are used, and
no one ever considers it necessary to add any words of explanation. The symbol



2. Numbers of Various Sorts 25

n∑
i=1
i �=4

ai,

for example, is an obvious way of writing

a1 + a2 + a3 + a5 + a6 + · · · + an,

or more precisely,
3∑
i=1

ai +
n∑
i=5

ai.

The deˇciencies of the natural numbers which we discovered at the beginning
of this chapter may be partially remedied by extending this system to the set of
integers

. . . ,−2,−1,0, 1,2, . . . .

This set is denoted by Z (from German \Zahl," number). Of properties P1{P12,
only P7 fails for Z.

A still larger system of numbers is obtained by taking quotients m/n of integers
(with n �= 0). These numbers are called rational numbers, and the set of all
rational numbers is denoted by Q (for \quotients"). In this system of numbers all
of P1{P12 are true. It is tempting to conclude that the \properties of numbers,"
which we studied in some detail in Chapter 1, refer to just one set of numbers,
namely, Q . There is, however, a still larger collection of numbers to which proper-
ties P1{P12 apply|the set of all real numbers, denoted by R. The real numbers
include not only the rational numbers, but other numbers as well (the irrational
numbers) which can be represented by inˇnite decimals; π and

√
2 are both

examples of irrational numbers. The proof that π is irrational is not easy|we
shall devote all of Chapter 16 of Part III to a proof of this fact. The irrationality
of

√
2, on the other hand, is quite simple, and was known to the Greeks. (Since the

Pythagorean theorem shows that an isosceles right triangle, with sides of length 1,
has a hypotenuse of length

√
2, it is not surprising that the Greeks should have

investigated this question.) The proof depends on a few observations about the
natural numbers. Every natural number n can be written either in the form 2k
for some integer k, or else in the form 2k + 1 for some integer k (this \obvious"
fact has a simple proof by induction (Problem 8)). Those natural numbers of the
form 2k are called even; those of the form 2k+ 1 are called odd. Note that even
numbers have even squares, and odd numbers have odd squares:

(2k)2 = 4k2 = 2 · (2k2),

(2k + 1)2 = 4k2 + 4k + 1 = 2 · (2k2 + 2k)+ 1.

In particular it follows that the converse must also hold: if n2 is even, then n is even;
if n2 is odd, then n is odd. The proof that

√
2 is irrational is now quite simple.

Suppose that
√

2 were rational; that is, suppose there were natural numbers p
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and q such that (
p

q

)2

= 2.

We can assume that p and q have no common divisor (since all common divisors
could be divided out to begin with). Now we have

p2 = 2q2.

This shows that p2 is even, and consequently p must be even; that is, p = 2k for
some natural number k. Then

p2 = 4k2 = 2q2,

so
2k2 = q2.

This shows that q2 is even, and consequently that q is even. Thus both p and q
are even, contradicting the fact that p and q have no common divisor. This
contradiction completes the proof.

It is important to understand precisely what this proof shows. We have demon-
strated that there is no rational number x such that x2 = 2. This assertion is often
expressed more brie�y by saying that

√
2 is irrational. Note, however, that the

use of the symbol
√

2 implies the existence of some number (necessarily irrational)
whose square is 2. We have not proved that such a number exists and we can as-
sert conˇdently that, at present, a proof is impossible for us. Any proof at this stage
would have to be based on P1{P12 (the only properties of R we have mentioned);
since P1{P12 are also true for Q the exact same argument would show that there
is a rational number whose square is 2, and this we know is false. (Note that the
reverse argument will not work|our proof that there is no rational number whose
square is 2 cannot be used to show that there is no real number whose square is 2,
because our proof used not only P1{P12 but also a special property of Q , the fact
that every number in Q can be written p/q for integers p and q.)

This particular deˇciency in our list of properties of the real numbers could,
of course, be corrected by adding a new property which asserts the existence of
square roots of positive numbers. Resorting to such a measure is, however, neither
aesthetically pleasing nor mathematically satisfactory; we would still not know that
every number has an nth root if n is odd, and that every positive number has an
nth root if n is even. Even if we assumed this, we could not prove the existence of
a number x satisfying x5 + x + 1 = 0 (even though there does happen to be one),
since we do not know how to write the solution of the equation in terms of nth
roots (in fact, it is known that the solution cannot be written in this form). And,
of course, we certainly do not wish to assume that all equations have solutions,
since this is false (no real number x satisˇes x2 + 1 = 0, for example). In fact,
this direction of investigation is not a fruitful one. The most useful hints about the
property distinguishing R from Q , the most compelling evidence for the necessity
of elucidating this property, do not come from the study of numbers alone. In
order to study the properties of the real numbers in a more profound way, we
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must study more than the real numbers. At this point we must begin with the
foundations of calculus, in particular the fundamental concept on which calculus
is based|functions.

PROBLEMS

1. Prove the following formulas by induction.

(i) 12 + · · · + n2 = n(n+ 1)(2n+ 1)
6

.

(ii) 13 + · · · + n3 = (1 + · · · + n)2.

2. Find a formula for

(i)
n∑
i=1

(2i − 1) = 1 + 3 + 5 + · · · + (2n− 1).

(ii)
n∑
i=1

(2i − 1)2 = 12 + 32 + 52 + · · · + (2n− 1)2.

Hint: What do these expressions have to do with 1 + 2 + 3 + · · · + 2n and
12 + 22 + 32 + · · · + (2n)2?

3. If 0 ≤ k ≤ n, the \binomial coefˇcient"
(
n

k

)
is deˇned by

(
n

k

)
= n!
k!(n− k)!

= n(n− 1) · · · (n− k + 1)
k!

, if k �= 0, n(
n

0

)
=
(
n

n

)
= 1. (This becomes a special case of the ˇrst formula if we

deˇne 0! = 1.)

(a) Prove that (
n+ 1
k

)
=
(

n

k − 1

)
+
(
n

k

)
.

(The proof does not require an induction argument.)

This relation gives rise to the following conˇguration, known as \Pas-
cal's triangle"|a number not on one of the sides is the sum of the two

numbers above it; the binomial coefˇcient
(
n

k

)
is the (k + 1)st number

in the (n+ 1)st row.
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
. . .
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(b) Notice that all the numbers in Pascal's triangle are natural numbers. Use

part (a) to prove by induction that
(
n

k

)
is always a natural number. (Your

entire proof by induction will, in a sense, be summed up in a glance by
Pascal's triangle.)

(c) Give another proof that
(
n

k

)
is a natural number by showing that(

n

k

)
is the number of sets of exactly k integers each chosen from 1,

. . . , n.
(d) Prove the \binomial theorem": If a and b are any numbers and n is a

natural number, then

(a + b)n = an +
(
n

1

)
an−1b +

(
n

2

)
an−2b2 + · · · +

(
n

n− 1

)
abn−1 + bn

=
n∑

j=0

(
n

j

)
an−jbj .

(e) Prove that

(i)
n∑

j=0

(
n

j

)
=
(
n

0

)
+ · · · +

(
n

n

)
= 2n.

(ii)
n∑

j=0

(−1)j
(
n

j

)
=
(
n

0

)
−
(
n

1

)
+ · · · ±

(
n

n

)
= 0.

(iii)
∑
l odd

(
n

l

)
=
(
n

1

)
+
(
n

3

)
+ · · · = 2n−1.

(iv)
∑
l even

(
n

l

)
=
(
n

0

)
+
(
n

2

)
+ · · · = 2n−1.

4. (a) Prove that
l∑

k=0

(
n

k

)(
m

l − k

)
=
(
n+m

l

)
.

Hint: Apply the binomial theorem to (1 + x)n(1 + x)m.
(b) Prove that

n∑
k=0

(
n

k

)2

=
(

2n
n

)
.
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5. (a) Prove by induction on n that

1 + r + r2 + · · · + rn = 1 − rn+1

1 − r

if r �= 1 (if r = 1, evaluating the sum certainly presents no problem).
(b) Derive this result by setting S = 1+r+· · ·+rn, multiplying this equation

by r, and solving the two equations for S.

6. The formula for 12 + · · · + n2 may be derived as follows. We begin with the
formula

(k + 1)3 − k3 = 3k2 + 3k + 1.

Writing this formula for k = 1, . . . , n and adding, we obtain

23 − 13 = 3 · 12 + 3 · 1 + 1

33 − 23 = 3 · 22 + 3 · 2 + 1
.

.

.

(n+ 1)3 − n3 = 3 · n2 + 3 · n+ 1

(n+ 1)3 − 1 = 3[12 + · · · + n2] + 3[1 + · · · + n] + n.

Thus we can ˇnd
n∑
k=1

k2 if we already know
n∑
k=1

k (which could have been

found in a similar way). Use this method to ˇnd

(i) 13 + · · · + n3.

(ii) 14 + · · · + n4.

(iii)
1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n+ 1)
.

(iv)
3

12 · 22 + 5
22 · 32 + · · · + 2n+ 1

n2(n+ 1)2
.

*7. Use the method of Problem 6 to show that
n∑
i=1

kp can always be written in

the form
np+1

p + 1
+ Anp + Bnp−1 + Cnp−2 + · · · .

(The ˇrst 10 such expressions are
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n∑
k=1

k = 1
2n

2 + 1
2n

n∑
k=1

k2 = 1
3n

3 + 1
2n

2 + 1
6n

n∑
k=1

k3 = 1
4n

4 + 1
2n

3 + 1
4n

2

n∑
k=1

k4 = 1
5n

5 + 1
2n

4 + 1
3n

3 − 1
30n

n∑
k=1

k5 = 1
6n

6 + 1
2n

5 + 5
12n

4 − 1
12n

2

n∑
k=1

k6 = 1
7n

7 + 1
2n

6 + 1
2n

5 − 1
6n

3 + 1
42n

n∑
k=1

k7 = 1
8n

8 + 1
2n

7 + 7
12n

6 − 7
24n

4 + 1
12n

2

n∑
k=1

k8 = 1
9n

9 + 1
2n

8 + 2
3n

7 − 7
15n

5 + 2
9n

3 − 1
30n

n∑
k=1

k9 = 1
10n

10 + 1
2n

9 + 3
4n

8 − 7
10n

6 + 1
2n

4 − 3
20n

2

n∑
k=1

k10 = 1
11n

11 + 1
2n

10 + 5
6n

9 − 1n7 + 1n5 − 1
2n

3 + 5
66n.

Notice that the coefˇcients in the second column are always 1
2 , and that after

the third column the powers of n with nonzero coefˇcients decrease by 2 until
n2 or n is reached. The coefˇcients in all but the ˇrst two columns seem to
be rather haphazard, but there actually is some sort of pattern; ˇnding it may
be regarded as a super-perspicacity test. See Problem 27-17 for the complete
story.)

8. Prove that every natural number is either even or odd.

9. Prove that if a set A of natural numbers contains n0 and contains k + 1
whenever it contains k, then A contains all natural numbers ≥ n0.

10. Prove the principle of mathematical induction from the well-ordering prin-
ciple.

11. Prove the principle of complete induction from the ordinary principle of
induction. Hint: If A contains 1 and A contains n+ 1 whenever it contains
1, . . . , n, consider the set B of all k such that 1, . . . , k are all in A.

12. (a) If a is rational and b is irrational, is a + b necessarily irrational? What
if a and b are both irrational?
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(b) If a is rational and b is irrational, is ab necessarily irrational? (Careful!)
(c) Is there a number a such that a2 is irrational, but a4 is rational?
(d) Are there two irrational numbers whose sum and product are both ra-

tional?

13. (a) Prove that
√

3,
√

5, and
√

6 are irrational. Hint: To treat
√

3, for exam-
ple, use the fact that every integer is of the form 3n or 3n+ 1 or 3n+ 2.
Why doesn't this proof work for

√
4?

(b) Prove that 3
√

2 and 3√3 are irrational.

14. Prove that

(a)
√

2 +
√

6 is irrational.

(b)
√

2 +
√

3 is irrational.

15. (a) Prove that if x = p+ √
q where p and q are rational, and m is a natural

number, then xm = a + b
√
q for some rational a and b.

(b) Prove also that (p − √
q )m = a − b

√
q.

16. (a) Prove that if m and n are natural numbers and m2/n2 < 2, then
(m + 2n)2/(m+ n)2 > 2; show, moreover, that

(m+ 2n)2

(m + n)2
− 2 < 2 − m2

n2 .

(b) Prove the same results with all inequality signs reversed.
(c) Prove that if m/n <

√
2, then there is another rational number m′/n′

with m/n < m′/n′ <
√

2.

*17. It seems likely that
√
n is irrational whenever the natural number n is not

the square of another natural number. Although the method of Problem 13
may actually be used to treat any particular case, it is not clear in advance
that it will always work, and a proof for the general case requires some extra
information. A natural number p is called a prime number if it is impos-
sible to write p = ab for natural numbers a and b unless one of these is p,
and the other 1; for convenience we also agree that 1 is not a prime number.
The ˇrst few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19. If n > 1 is not a
prime, then n = ab, with a and b both < n; if either a or b is not a prime it
can be factored similarly; continuing in this way proves that we can write n
as a product of primes. For example, 28 = 4 · 7 = 2 · 27̇.

(a) Turn this argument into a rigorous proof by complete induction. (To
be sure, any reasonable mathematician would accept the informal argu-
ment, but this is partly because it would be obvious to her how to state
it rigorously.)

A fundamental theorem about integers, which we will not prove here, states
that this factorization is unique, except for the order of the factors. Thus,
for example, 28 can never be written as a product of primes one of which
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is 3, nor can it be written in a way that involves 2 only once (now you should
appreciate why 1 is not allowed as a prime).
(b) Using this fact, prove that

√
n is irrational unless n = m2 for some natural

number m.
(c) Prove more generally that k

√
n is irrational unless n = mk.

(d) No discussion of prime numbers should fail to allude to Euclid's beautiful
proof that there are inˇnitely many of them. Prove that there cannot be
only ˇnitely many prime numbers p1, p2, p3, . . . , pn by considering
p1 · p2 · . . . · pn + 1.

*18. (a) Prove that if x satisˇes

xn + an−1x
n−1 + · · · + a0 = 0,

for some integers an−1, . . . , a0, then x is irrational unless x is an integer.
(Why is this a generalization of Problem 17?)

(b) Prove that
√

6 −
√

2 −
√

3 is irrational.

(c) Prove that
√

2 + 3
√

2 is irrational. Hint: Start by working out the ˇrst 6
powers of this number.

19. Prove Bernoulli's inequality: If h > −1, then

(1 + h)n ≥ 1 + nh.

Why is this trivial if h > 0?

20. The Fibonacci sequence a1, a2, a3, . . . is deˇned as follows:

a1 = 1,
a2 = 1,
an = an−1 + an−2 for n ≥ 3.

This sequence, which begins 1, 1, 2, 3, 5, 8, . . . , was discovered by Fibonacci
(circa 1175{1250), in connection with a problem about rabbits. Fibonacci
assumed that an initial pair of rabbits gave birth to one new pair of rabbits
per month, and that after two months each new pair behaved similarly. The
number an of pairs born in the nth month is an−1 + an−2, because a pair of
rabbits is born for each pair born the previous month, and moreover each
pair born two months ago now gives birth to another pair. The number of
interesting results about this sequence is truly amazing|there is even a Fi-
bonacci Association which publishes a journal, The Fibonacci Quarterly. Prove
that

an =

(
1 +

√
5

2

)n
−
(

1 −
√

5
2

)n
√

5
.

One way of deriving this astonishing formula is presented in Problem 24-15.
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21. The Schwarz inequality (Problem 1-19) actually has a more general form:

n∑
i=1

xiyi ≤
√√√√ n∑

i=1

xi
2

√√√√ n∑
i=1

yi
2.

Give three proofs of this, analogous to the three proofs in Problem 1-19.

22. The result in Problem 1-7 has an important generalization: If a1, . . . , an ≥ 0,
then the \arithmetic mean"

An = a1 + · · · + an

n

and \geometric mean"

Gn = n
√
a1 . . . an

satisfy
Gn ≤ An.

(a) Suppose that a1 < An. Then some ai satisˇes ai > An; for convenience,
say a2 > An. Let ā1 = An and let ā2 = a1 + a2 − ā1. Show that

ā1ā2 ≥ a1a2.

Why does repeating this process enough times eventually prove that Gn ≤
An? (This is another place where it is a good exercise to provide a formal
proof by induction, as well as an informal reason.) When does equality
hold in the formula Gn ≤ An?

The reasoning in this proof is related to another interesting proof.

(b) Using the fact that Gn ≤ An when n = 2, prove, by induction on k, that
Gn ≤ An for n = 2k .

(c) For a general n, let 2m > n. Apply part (b) to the 2m numbers

a1, . . . , an,An, . . . ,An︸ ︷︷ ︸
2m−n times

to prove that Gn ≤ an.

23. The following is a recursive deˇnition of an:

a1 = a,

an+1 = an · a.
Prove, by induction, that

an+m = an · am,
(an)m = anm.

(Don't try to be fancy: use either induction on n or induction on m, not both
at once.)
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24. Suppose we know properties P1 and P4 for the natural numbers, but that
multiplication has never been mentioned. Then the following can be used
as a recursive deˇnition of multiplication:

1 · b = b,

(a + 1) · b = a · b + b.

Prove the following (in the order suggested!):

a · (b + c) = a · b + a · c (use induction on a),
a · 1 = a,

a · b = b · a (you just ˇnished proving the case b = 1).

25. In this chapter we began with the natural numbers and gradually built up to
the real numbers. A completely rigorous discussion of this process requires
a little book in itself (see Part V). No one has ever ˇgured out how to get to
the real numbers without going through this process, but if we do accept the
real numbers as given, then the natural numbers can be defined as the real
numbers of the form 1, 1+1, 1+1+1, etc. The whole point of this problem
is to show that there is a rigorous mathematical way of saying \etc."

(a) A set A of real numbers is called inductive if

(1) 1 is in A,

(2) k + 1 is in A whenever k is in A.

Prove that

(i) R is inductive.
(ii) The set of positive real numbers is inductive.
(iii) The set of positive real numbers unequal to 1

2 is inductive.
(iv) The set of positive real numbers unequal to 5 is not inductive.
(v) If A and B are inductive, then the set C of real numbers which

are in both A and B is also inductive.
(b) A real number n will be called a natural number if n is in every inductive

set.

(i) Prove that 1 is a natural number.
(ii) Prove that k + 1 is a natural number if k is a natural number.

26. There is a puzzle consisting of three spindles, with n concentric rings of
decreasing diameter stacked on the ˇrst (Figure 1). A ring at the top of a
stack may be moved from one spindle to another spindle, provided that it
is not placed on top of a smaller ring. For example, if the smallest ring is
moved to spindle 2 and the next-smallest ring is moved to spindle 3, then
the smallest ring may be moved to spindle 3 also, on top of the next-smallest.
Prove that the entire stack of n rings can be moved onto spindle 3 in 2n − 1
moves, and that this cannot be done in fewer than 2n − 1 moves.F I G U R E 1
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*27. University B. once boasted 17 tenured professors of mathematics. Tradi-
tion prescribed that at their weekly luncheon meeting, faithfully attended by
all 17, any members who had discovered an error in their published work
should make an announcement of this fact, and promptly resign. Such an an-
nouncement had never actually been made, because no professor was aware
of any errors in her or his work. This is not to say that no errors existed,
however. In fact, over the years, in the work of every member of the de-
partment at least one error had been found, by some other member of the
department. This error had been mentioned to all other members of the
department, but the actual author of the error had been kept ignorant of the
fact, to forestall any resignations.

One fateful year, the department was augmented by a visitor from another
university, one Prof. X, who had come with hopes of being offered a perma-
nent position at the end of the academic year. Naturally, he was apprised, by
various members of the department, of the published errors which had been
discovered. When the hoped-for appointment failed to materialize, Prof. X
obtained his revenge at the last luncheon of the year. \I have enjoyed my visit
here very much," he said, \but I feel that there is one thing that I have to tell
you. At least one of you has published an incorrect result, which has been
discovered by others in the department." What happened the next year?

**28. After ˇguring out, or looking up, the answer to Problem 27, consider the fol-
lowing: Each member of the department already knew what Prof. X asserted,
so how could his saying it change anything?
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The statement is so frequently made
that the differential calculus deals with
continuous magnitude, and yet
an explanation of this continuity is
nowhere given;
even the most rigorous expositions
of the differential calculus do not base
their proofs upon continuity but,
with more or less consciousness of the fact,
they either appeal to geometric notions
or those suggested by geometry,
or depend upon theorems which are never
established in a purely arithmetic manner.
Among these, for example,
belongs the above-mentioned theorem,
and a more careful investigation
convinced me that this theorem, or
or any one equivalent to it, can be regarded
in some way as a sufficient basis
for infinitesimal analysis.
It then only remained to discover its true
origin in the elements of arithmetic
and thus at the same time
to secure a real definition of
the essence of continuity
I succeeded Nov. 24, 1858, and
a few days afterward I communicated
the results
of my meditations to my dear friend
Durège with whom I had a long
and lively discussion.
RICHARD DEDEKIND



CHAPTER 3 FUNCTIONS

Undoubtedly the most important concept in all of mathematics is that of a
function|in almost every branch of modern mathematics functions turn out to
be the central objects of investigation. It will therefore probably not surprise you
to learn that the concept of a function is one of great generality. Perhaps it will
be a relief to learn that, for the present, we will be able to restrict our attention to
functions of a very special kind; even this small class of functions will exhibit sufˇ-
cient variety to engage our attention for quite some time. We will not even begin
with a proper deˇnition. For the moment a provisional deˇnition will enable us to
discuss functions at length, and will illustrate the intuitive notion of functions, as
understood by mathematicians. Later, we will consider and discuss the advantages
of the modern mathematical deˇnition. Let us therefore begin with the following:

PROVISIONAL DEFINITION A function is a rule which assigns, to each of certain real numbers, some other real
number.

The following examples of functions are meant to illustrate and amplify this deˇ-
nition, which, admittedly, requires some such clariˇcation.

Example 1 The rule which assigns to each number the square of that number.
Example 2 The rule which assigns to each number y the number

y3 + 3y + 5
y2 + 1

.

Example 3 The rule which assigns to each number c �= 1,−1 the number

c3 + 3c+ 5
c2 − 1

.

Example 4 The rule which assigns to each number x satisfying −17 ≤ x ≤ π/3
the number x2.

Example 5 The rule which assigns to each number a the number 0 if a is
irrational, and the number 1 if a is rational.

Example 6 The rule which assigns

to 2 the number 5,

to 17 the number
36
π

,

39
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to
π2

17
the number 28,

to
36
π

the number 28,

and to any y �= 2, 17, π2/17, or 36/π , the number 16 if y is of the form a+ b
√

2
for a, b in Q .

Example 7 The rule which assigns to each number t the number t3 + x. (This
rule depends, of course, on what the number x is, so we are really describing
inˇnitely many different functions, one for each number x.)

Example 8 The rule which assigns to each number z the number of 7's in the
decimal expansion of z, if this number is ˇnite, and −π if there are inˇnitely many
7's in the decimal expansion of z.

One thing should be abundantly clear from these examples|a function is any

rule that assigns numbers to certain other numbers, not just a rule which can
be expressed by an algebraic formula, or even by one uniform condition which
applies to every number; nor is it necessarily a rule which you, or anybody else,
can actually apply in practice (no one knows, for example, what rule 8 associates
to π ). Moreover, the rule may neglect some numbers and it may not even be clear
to which numbers the function applies (try to determine, for example, whether the
function in Example 6 applies to π ). The set of numbers to which a function does

apply is called the domain of the function.
Before saying anything else about functions we badly need some notation. Since

throughout this book we shall frequently be talking about functions (indeed we shall
hardly ever talk about anything else) we need a convenient way of naming func-
tions, and of referring to functions in general. The standard practice is to denote
a function by a letter. For obvious reasons the letter \f " is a favorite, thereby
making \g" and \h" other obvious candidates, but any letter (or any reasonable
symbol, for that matter) will do, not excluding \x" and \y", although these letters
are usually reserved for indicating numbers. If f is a function, then the number
which f associates to a number x is denoted by f (x)|this symbol is read \f of
x" and is often called the value of f at x. Naturally, if we denote a function by x,
some other letter must be chosen to denote the number (a perfectly legitimate,
though perverse, choice would be \f ," leading to the symbol x(f )). Note that the
symbol f (x) makes sense only for x in the domain of f ; for other x the symbol
f (x) is not deˇned.

If the functions deˇned in Examples 1{8 are denoted by f , g, h, r, s, θ , αx ,
and y, then we can rewrite their deˇnitions as follows:

(1) f (x) = x2 for all x.

(2) g(y) = y3 + 3y + 5
y2 + 1

for all y.

(3) h(c) = c3 + 3c+ 5
c2 − 1

for all c �= 1,−1.
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(4) r(x) = x2 for all x such that −17 ≤ x ≤ π/3.

(5) s(x) =
{

0, x irrational
1, x rational.

(6) θ(x) =




5, x = 2

36
π
, x = 17

28, x = π2

17

28, x = 36
π

16, x �= 2, 17,
π2

17
, or

36
π

, and x = a + b
√

2 for a, b in Q .

(7) αx(t) = t3 + x for all numbers t .

(8) y(x) =
{
n, exactly n 7's appear in the decimal expansion of x
−π, inˇnitely many 7's appear in the decimal expansion of x.

These deˇnitions illustrate the common procedure adopted for deˇning a func-
tion f|indicating what f (x) is for every number x in the domain of f . (Notice
that this is exactly the same as indicating f (a) for every number a, or f (b) for ev-
ery number b, etc.) In practice, certain abbreviations are tolerated. Deˇnition (1)
could be written simple

(1) f (x) = x2

the qualifying phrase \for all x" being understood. Of course, for deˇnition (4)
the only possible abbreviation is

(4) r(x) = x2, −17 ≤ x ≤ π/3.

It is usually understood that a deˇnition such as

k(x) = 1
x

+ 1
x − 1

, x �= 0, 1

can be shortened to

k(x) = 1
x

+ 1
x − 1

;

in other words, unless the domain is explicitly restricted further, it is understood to consist of
all numbers for which the definition makes any sense at all.

You should have little difˇculty checking the following assertions about the func-
tions deˇned above:

f (x + 1) = f (x)+ 2x + 1;
g(x) = h(x) if x3 + 3x + 5 = 0;

r(x + 1) = r(x)+ 2x + 1 if −17 ≤ x ≤ π

3
− 1;
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s(x + y) = s(x) if y is rational;

θ

(
π2

17

)
= θ

(
36
π

)
;

αx(x) = x · [f (x)+ 1];
y

(
1
3

)
= 0, y

(
7
9

)
= −π.

If the expression f (s(a)) looks unreasonable to you, then you are forgetting that
s(a) is a number like any other number, so that f (s(a)) makes sense. As a matter
of fact, f (s(a)) = s(a) for all a. Why? Even more complicated expressions than
f (s(a)) are, after a ˇrst exposure, no more difˇcult to unravel. The expression

f (r(s(θ(α3(y( 1
3 )))))),

formidable as it appears, may be evaluated quite easily with a little patience:

f (r(s(θ(α3(y( 1
3))))))

= f (r(s(θ(α3(0)))))
= f (r(s(θ(3))))
= f (r(s(16)))
= f (r(1))
= f (1)
= 1.

The ˇrst few problems at the end of this chapter give further practice manipulating
this symbolism.

The function deˇned in (1) is a rather special example of an extremely impor-
tant class of functions, the polynomial functions. A function f is a polynomial
function if there are real numbers a0, . . . , an such that

f (x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0, for all x

(when f (x) is written in this form it is usually tacitly assumed that an �= 0). The
highest power of x with a nonzero coefˇcient is called the degree of f ; for
example, the polynomial function f deˇned by f (x) = 5x6 + 137x4 − π has
degree 6.

The functions deˇned in (2) and (3) belong to a somewhat larger class of func-
tions, the rational functions; these are the functions of the form p/q where p
and q are polynomial functions (and q is not the function which is always 0). The
rational functions are themselves quite special examples of an even larger class of
functions, very thoroughly studied in calculus, which are simpler than many of the
functions ˇrst mentioned in this chapter. The following are examples of this kind
of function:

(9) f (x) = x + x2 + x sin2 x

x sin x + x sin2 x

(10) f (x) = sin(x2).
(11) f (x) = sin(sin(x2)).
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(12) f (x) = sin2
(sin(sin2

(x sin2
x2))) · sin

(
x + sin(x sin x)
x + sin x

)
.

By what criterion, you may feel impelled to ask, can such functions, especially a
monstrosity like (12), be considered simple? The answer is that they can be built
up from a few simple functions using a few simple means of combining functions.
In order to construct the functions (9){(12) we need to start with the \identity
function" I, for which I (x) = x, and the \sine function" sin, whose value sin(x) at
x is often written simple sin x. The following are some of the important ways in
which functions may be combined to produce new functions.

If f and g are any two functions, we can deˇne a new function f + g, called
the sum of f and g, by the equation

(f + g)(x) = f (x)+ g(x).

Note that according to the conventions we have adopted, the domain of f + g

consists of all x for which \f (x)+ g(x)" makes sense, i.e., the set of all x in both
domain f and domain g. If A and B are any two sets, then A ∩ B (read \A
intersect B" or \the intersection of A and B") denotes the set of x in both A

and B; this notation allows us to write domain(f + g) = domainf ∩ domain g.

In a similar vein, we deˇne the product f · g and the quotient
f

g
(or f/g) of

f and g by

(f · g)(x) = f (x) · g(x)
and (

f

g

)
(x) = f (x)

g(x)
.

Moreover, if g is a function and c is a number, we deˇne a new function c · g by

(c · g)(x) = c · g(x).
This becomes a special case of the notation f · g if we agree that the symbol c
should also represent the function f deˇned by f (x) = c; such a function, which
has the same value for all numbers x, is called a constant function.

The domain of f · g is domain f ∩ domain g, and the domain of c · g is simply
the domain of g. On the other hand, the domain of f/g is rather complicated|it
may be written domain f ∩ domain g ∩ {x : g(x) �= 0}, the symbol {x : g(x) �= 0}
denoting the set of numbers x such that g(x) �= 0. In general, {x : . . . } denotes
the set of all x such that \ . . . " is true. Thus {x : x3 + 3 < 11} denotes the set of
all numbers x such that x3 < 8, and consequently {x : x3 +3 < 11} = {x : x < 2}.
Either of these symbols could just as well have been written using y everywhere
instead of x. Variations of this notation are common, but hardly require any
discussion. Any one can guess that {x > 0 : x3 < 8} denotes the set of positive
numbers whose cube is less than 8; it could be expressed more formally as {x :
x > 0 and x3 < 8}. Incidentally, this set is equal to the set {x : 0 < x < 2}. One
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variation is slightly less transparent, but very standard. The set {1,3, 2,4}, for
example, contains just the four numbers 1, 2, 3, and 4; it can also be denoted by
{x : x = 1 or x = 3 or x = 2 or x = 4}.

Certain facts about the sum, product, and quotient of functions are obvious con-
sequences of facts about sums, products, and quotients of numbers. For example,
it is very easy to prove that

(f + g)+ h = f + (g + h).

The proof is characteristic of almost every proof which demonstrates that two
functions are equal|the two functions must be shown to have the same domain,
and the same value at any number in the domain. For example, to prove that
(f +g)+h = f + (g+h), note that unraveling the deˇnition of the two sides gives

[(f + g)+ h](x) = (f + g)(x)+ h(x)

= [f (x)+ g(x)] + h(x)

and

[f + (g + h)](x) = f (x)+ (g + h)(x)

= f (x)+ [g(x)+ h(x)],

and the equality of [f (x)+ g(x)] + h(x) and f (x)+ [g(x)+ h(x)] is a fact about
numbers. In this proof the equality of the two domains was not explicitly men-
tioned because this is obvious, as soon as we begin to write down these equations;
the domain of (f + g)+ h and of f + (g + h) is clearly domainf ∩ domain g ∩
domain h. We naturally write f + g + h for (f + g)+ h = f + (g + h), precisely
as we did for numbers.

It is just as easy to prove that (f · g) ·h = f · (g ·h), and this function is denoted
by f · g · h. The equations f + g = g + f and f · g = g · f should also present
no difˇculty.

Using the operations +, · , / we can now express the function f deˇned in (9)
by

f = I + I · I + I · sin · sin
I · sin +I · sin · sin .

It should be clear, however, that we cannot express function (10) this way. We re-
quire yet another way of combining functions. This combination, the composition
of two functions, is by far the most important.

If f and g are any two functions, we deˇne a new function f � g, the compo-
sition of f and g, by

(f � g)(x) = f (g(x));
the domain of f �g is {x : x is in domain g and g(x) is in domain f }. The symbol
\f � g" is often read \f circle g." Compared to the phrase \the composition of f
and g" this has the advantage of brevity, of course, but there is another advantage
of far greater import: there is much less chance of confusing f � g with g � f , and
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these must not be confused, since they are not usually equal; in fact, almost any f
and g chosen at random will illustrate this point (try f = I · I and g = sin, for
example). Lest you become too apprehensive about the operation of composition,
let us hasten to point out that composition is associative:

(f � g) � h = f � (g � h)
(and the proof is a triviality); this function is denoted by f � g � h. We can now
write the functions (10), (11), (12) as
(10) f = sin � (I · I),
(11) f = sin � sin � (I · I),
(12) f = (sin · sin) � sin � (sin · sin) � (I · [(sin · sin) � (I · I)]) ·

sin �
(
I + sin � (I · sin)

I + sin

)
.

One fact has probably already become clear. Although this method of writing
functions reveals their \structure" very clearly, it is hardly short or convenient. The
shortest name for the function f such that f (x) = sin(x2) for all x unfortunately
seems to be \the function f such that f (x) = sin(x2) for all x." The need for
abbreviating this clumsy description has been clear for two hundred years, but no
reasonable abbreviation has received universal acclaim. At present the strongest
contender for this honor is something like

x → sin(x2)

(read \x goes to sin(x2)" or just \x arrow sin(x2)"), but it is hardly popular among
writers of calculus textbooks. In this book we will tolerate a certain amount of
ellipsis, and speak of \the function f (x) = sin(x2)." Even more popular is the
quite drastic abbreviation: \the function sin(x2)." For the sake of precision we
will never use this description, which, strictly speaking, confuses a number and
a function, but it is so convenient that you will probably end up adopting it for
personal use. As with any convention, utility is the motivating factor, and this
criterion is reasonable so long as the slight logical deˇciencies cause no confusion.
On occasion, confusion will arise unless a more precise description is used. For
example, \the function x + t3" is an ambiguous phrase; it could mean either

x → x + t3, i.e., the function f such that f (x) = x + t3 for all x

or
t → x + t3, i.e., the function f such that f (t) = x + t3 for all t .

As we shall see, however, for many important concepts associated with functions,
calculus has a notation which contains the \x→" built in.

By now we have made a sufˇciently extensive investigation of functions to war-
rant reconsidering our deˇnition. We have deˇned a function as a \rule," but it is
hardly clear what this means. If we ask \What happens if you break this rule?" it
is not easy to say whether this question is merely facetious or actually profound.
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A more substantial objection to the use of the word \rule" is that

f (x) = x2

and

f (x) = x2 + 3x + 3 − 3(x + 1)

are certainly different rules, if by a rule we mean the actual instructions given for
determining f (x); nevertheless, we want

f (x) = x2

and

f (x) = x2 + 3x + 3 − c(x + 1)

to deˇne the same function. For this reason, a function is sometimes deˇned as an
\association" between numbers; unfortunately the word \association" escapes the
objections raised against \rule" only because it is even more vague.

There is, of course, a satisfactory way of deˇning functions, or we should never
have gone to the trouble of criticizing our original deˇnition. But a satisfactory
deˇnition can never be constructed by ˇnding synonyms for English words which
are troublesome. The deˇnition which mathematicians have ˇnally accepted for
\function" is a beautiful example of the means by which intuitive ideas have been
incorporated into rigorous mathematics. The correct question to ask about a
function is not \What is a rule?" or \What is an association?" but \What does
one have to know about a function in order to know all about it?" The answer to
the last question is easy|for each number x one needs to know the number f (x);
we can imagine a table which would display all the information one could desire
about the function f (x) = x2:

x f (x)

1 1
−1 1

2 4
−2 4√

2 2

−
√

2 2

π π2

−π π2

It is not even necessary to arrange the numbers in a table (which would actually
be impossible if we wanted to list all of them). Instead of a two column array we
can consider various pairs of numbers

(1,1), (−1,1), (2,4), (−2,4), (π, π2), (
√

2, 2), . . .
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simply collected together into a set.* To ˇnd f (1) we simply take the second
number of the pair whose ˇrst member is 1; to ˇnd f (π) we take the second
number of the pair whose ˇrst member is π . We seem to be saying that a function
might as well be deˇned as a collection of pairs of numbers. For example, if we
were given the following collection (which contains just 5 pairs):

f = { (1,7), (3,7), (5,3), (4,8), (8, 4)},
then f (1) = 7, f (3) = 7, f (5) = 3, f (4) = 8, f (8) = 4 and 1, 3, 4, 5, 8 are the
only numbers in the domain of f . If we consider the collection

f = { (1, 7), (3, 7), (2, 5), (1,8), (8,4) },
then f (3) = 7, f (2) = 5, f (8) = 4; but it is impossible to decide whether f (1) = 7
or f (1) = 8. In other words, a function cannot be deˇned to be any old collection
of pairs of numbers; we must rule out the possibility which arose in this case. We
are therefore led to the following deˇnition.

DEFINITION A function is a collection of pairs of numbers with the following property: if
(a, b) and (a, c) are both in the collection, then b = c; in other words, the
collection must not contain two different pairs with the same ˇrst element.

This is our ˇrst full-�edged deˇnition, and illustrates the format we shall always
use to deˇne signiˇcant new concepts. These deˇnitions are so important (at
least as important as theorems) that it is essential to know when one is actually
at hand, and to distinguish them from comments, motivating remarks, and casual
explanations. They will be preceded by the word DEFINITION, contain the term
being deˇned in boldface letters, and constitute a paragraph unto themselves.

There is one more deˇnition (actually deˇning two things at once) which can
now be made rigorously:

DEFINITION If f is a function, the domain of f is the set of all a for which there is some b
such that (a, b) is in f . If a is in the domain of f , it follows from the deˇnition
of a function that there is, in fact, a unique number b such that (a, b) is in f .
This unique b is denoted by f (a).

With this deˇnition we have reached our goal: the important thing about a
function f is that a number f (x) is determined for each number x in its domain.
You may feel that we have also reached the point where an intuitive deˇnition has
been replaced by an abstraction with which the mind can hardly grapple. Two
consolations may be offered. First, although a function has been deˇned as a

* The pairs occurring here are often called \ordered pairs," to emphasize that, for example, (2,4) is
not the same pair as (4,2). It is only fair to warn that we are going to deˇne functions in terms of
ordered pairs, another undeˇned term. Ordered pairs can be deˇned, however, and an appendix to
this chapter has been provided for skeptics.
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collection of pairs, there is nothing to stop you from thinking of a function as a
rule. Second, neither the intuitive nor the formal deˇnition indicates the best way
of thinking about functions. The best way is to draw pictures; but this requires a
chapter all by itself.

PROBLEMS

1. Let f (x) = 1/(1 + x). What is

(i) f (f (x)) (for which x does this make sense?).

(ii) f

(
1
x

)
.

(iii) f (cx).
(iv) f (x + y).
(v) f (x)+ f (y).
(vi) For which numbers c is there a number x such that f (cx) = f (x).

Hint: There are a lot more than you might think at ˇrst glance.
(vii) For which numbers c is it true that f (cx) = f (x) for two different

numbers x?

2. Let g(x) = x2, and let

h(x) =
{

0, x rational
1, x irrational.

(i) For which y is h(y) ≤ y?
(ii) For which y is h(y) ≤ g(y)?
(iii) What is g(h(z)) − h(z)?
(iv) For which w is g(w) ≤ w?
(v) For which ε is g(g(ε)) = g(ε)?

3. Find the domain of the functions deˇned by the following formulas.

(i) f (x) =
√

1 − x2.

(ii) f (x) =
√

1 −
√

1 − x2.

(iii) f (x) = 1
x − 1

+ 1
x − 2

.

(iv) f (x) =
√

1 − x2 +
√
x2 − 1.

(v) f (x) =
√

1 − x +
√
x − 2.

4. Let S(x) = x2, let P(x) = 2x , and let s(x) = sin x. Find each of the following.
In each case you answer should be a number.

(i) (S � P)(y).
(ii) (S � s)(y).
(iii) (S � P � s)(t)+ (s � P)(t).
(iv) s(t3).

5. Express each of the following functions in terms of S, P , s, using only
+, · , and � (for example, the answer to (i) is P � s). In each case your
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answer should be a function.

(i) f (x) = 2sin x .
(ii) f (x) = sin 2x .
(iii) f (x) = sin x2.
(iv) f (x) = sin2 x (remember that sin2 x is an abbreviation for (sin x)2).
(v) f (t) = 22t . (Note: ab

c

always means a(b
c); this convention is adopted

because (ab)c can be written more simply as abc.)
(vi) f (u) = sin(2u + 2u2

).

(vii) f (y) = sin
(
sin
(
sin
(
222sin y )))

.

(viii) f (a) = 2sin2
a + sin(a2)+ 2sin(a2+sin a).

Polynomial functions, because they are simple, yet �exible, occupy a favored
role in most investigations of functions. The following two problems illustrate their
�exibility, and guide you through a derivation of their most important elementary
properties.

6. (a) If x1, . . . , xn are distinct numbers, ˇnd a polynomial function fi of
degree n− 1 which is 1 at xi and 0 at xj for j �= i. Hint: the product of
all (x− xi) for j �= i, is 0 at xj if j �= i. (This product is usually denoted
by

n∏
j=1
j �=i

(x − xj),

the symbol � (capital pi) playing the same role for products that � plays
for sums.)

(b) Now ˇnd a polynomial function f of degree n− 1 such that f (xi) = ai ,
where a1, . . . , an are given numbers. (You should use the functions
fi from part (a). The formula you will obtain is called the \Lagrange
interpolation formula.")

7. (a) Prove that for any polynomial function f , and any number a, there is a
polynomial function g, and a number b, such that f (x) = (x−a)g(x)+b
for all x. (The idea is simply to divide (x− a) into f (x) by long division,
until a constant remainder is left. For example, the calculation

x2 +x −2

x − 1
)
x3 −3x + 1
x3 −x2

x2 −3x
x2 −x

−2x + 1
−2x + 2

− 1
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shows that x3 − 3x + 1 = (x − 1)(x2 + x − 2) − 1. A formal proof is
possible by induction on the degree of f .)

(b) Prove that if f (a) = 0, then f (x) = (x − a)g(x) for some polynomial
function g. (The converse is obvious.)

(c) Prove that if f is a polynomial function of degree n, then f has at most
n roots, i.e., there are at most n numbers a with f (a) = 0.

(d) Show that for each n there is a polynomial function of degree n with
n roots. If n is even ˇnd a polynomial function of degree n with no
roots, and if n is odd ˇnd one with only one root.

8. For which numbers a, b, c, and d will the function

f (x) = ax + b

cx + d

satisfy f (f (x)) = x for all x?

9. (a) If A is any set of real numbers, deˇne a function CA as follows:

CA(x) =
{

1, x in A
0, x not in A.

Find expressions for CA∩B and CA∪B and CR−A, in terms of CA and CB .
(The symbol A ∩ B was deˇned in this chapter, but the other two may
be new to you. They can be deˇned as follows:

A ∪ B = {x : x is in A or x is in B},
R −A = {x : x is in R but x is not in A}.)

(b) Suppose f is a function such that f (x) = 0 or 1 for each x. Prove that
there is a set A such that f = CA.

(c) Show that f = f 2 if and only if f = CA for some set A.

10. (a) For which functions f is there a function g such that f = g2 ? Hint: You
can certainly answer this question if \function" is replaced by \number."

(b) For which functions f is there a function g such that f = 1/g?
*(c) For which functions b and c can we ˇnd a function x such that

(x(t))2 + b(t)x(t)+ c(t) = 0

for all numbers t ?
*(d) What conditions must the functions a and b satisfy if there is to be a

function x such that

a(t)x(t)+ b(t) = 0

for all numbers t? How many such functions x will there be?

11. (a) Suppose that H is a function and y is a number such that H(H(y))= y.
What is

H(H(H(· · · (H (y) · · · )︸ ︷︷ ︸
80 times

?
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(b) Same question if 80 is replaced by 81.
(c) Same question if H(H(y))= H(y).

*(d) Find a function H such that H(H(x)) = H(x) for all numbers x, and
such that H(1) = 36, H(2) = π/3, H(13) = 47, H(36) = 36, H(π/3) =
π/3, H(47) = 47. (Don't try to \solve" for H(x); there are many func-
tions H with H(H(x))= H(x). The extra conditions on H are supposed
to suggest a way of ˇnding a suitable H .)

*(e) Find a function H such that H(H(x)) = H(x) for all x, and such that
H(1) = 7, H(17) = 18.

12. A function f is even if f (x) = f (−x) and odd if f (x) = −f (−x). For
example, f is even if f (x) = x2 or f (x) = |x| or f (x) = cos x, while f is
odd if f (x) = x or f (x) = sin x.

(a) Determine whether f + g is even, odd, or not necessarily either, in the
four cases obtained by choosing f even or odd, and g even or odd. (Your
answers can most conveniently be displayed in a 2 × 2 table.)

(b) Do the same for f · g.
(c) Do the same for f � g.
(d) Prove that every even function f can be written f (x) = g(|x|), for in-

ˇnitely many functions g.

*13. (a) Prove that any function f with domain R can be written f = E + O,
where E is even and O is odd.

(b) Prove that this way of writing f is unique. (If you try to do part (b) ˇrst,
by \solving" for E and O you will probably ˇnd the solution to part (a).)

14. If f is any function, deˇne a new function |f | by |f |(x) = |f (x)|. If f
and g are functions, deˇne two new functions, max(f, g) and min(f, g), by

max(f, g)(x) = max(f (x), g(x)),
min(f, g)(x) = min(f (x), g(x)).

Find an expression for max(f, g) and min(f, g) in terms of | |.
15. (a) Show that f = max(f, 0) + min(f,0). This particular way of writing

f is fairly useful; the functions max(f, 0) and min(f, 0) are called the
positive and negative parts of f .

(b) A function f is called nonnegative if f (x) ≥ 0 for all x. Prove that any
function f can be written f = g − h, where g and h are nonnegative,
in inˇnitely many ways. (The \standard way" is g = max(f, 0) and h =
− min(f,0).) Hint: Any number can certainly be written as the difference
of two nonnegative numbers in inˇnitely many ways.

*16. Suppose f satisˇes f (x + y) = f (x)+ f (y) for all x and y.

(a) Prove that f (x1 + · · · + xn) = f (x1)+ · · · + f (xn).
(b) Prove that there is some number c such that f (x) = cx for all rational

numbers x (at this point we're not trying to say anything about f (x) for
irrational x ). Hint: First ˇgure out what c must be. Now prove that
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f (x) = cx, ˇrst when x is a natural number, then when x is an integer,
then when x is the reciprocal of an integer and, ˇnally, for all rational x.

*17. If f (x) = 0 for all x, then f satisˇes f (x+y) = f (x)+f (y) for all x and y,
and also f (x · y) = f (x) · f (y) for all x and y. Now suppose that f satisˇes
these two properties, but that f (x) is not always 0. Prove that f (x) = x for
all x, as follows:

(a) Prove that f (1) = 1.
(b) Prove that f (x) = x if x is rational.
(c) Prove that f (x) > 0 if x > 0. (This part is tricky, but if you have

been paying attention to the philosophical remarks accompanying the
problems in the last two chapters, you will know what to do.)

(d) Prove that f (x) > f (y) if x > y.
(e) Prove that f (x) = x for all x. Hint: Use the fact that between any two

numbers there is a rational number.

*18. Precisely what conditions must f , g, h, and k satisfy in order that f (x)g(y) =
h(x)k(y) for all x and y?

*19. (a) Prove that there do not exist functions f and g with either of the following
properties:

(i) f (x)+ g(y) = xy for all x and y.
(ii) f (x) · g(y) = x + y for all x and y.

Hint: Try to get some information about f or g by choosing particular
values of x and y.

(b) Find functions f and g such that f (x + y) = g(xy) for all x and y.

*20. (a) Find a function f , other than a constant function, such that |f (y) −
f (x)| ≤ |y − x|.

(b) Suppose that f (y) − f (x) ≤ (y − x)2 for all x and y. (Why does this
imply that |f (y)−f(x)| ≤ (y−x)2 ?) Prove that f is a constant function.
Hint: Divide the interval from x to y into n equal pieces.

21. Prove or give a counterexample for each of the following assertions:

(a) f � (g + h) = f � g + f � h.
(b) (g + h) � f = g � f + h � f .

(c)
1

f � g = 1
f

� g.

(d)
1

f � g = f �
(

1
g

)
.

22. (a) Suppose g = h � f . Prove that if f (x) = f (y), then g(x) = g(y).
(b) Conversely, suppose that f and g are two functions such that g(x) = g(y)

whenever f (x) = f (y). Prove that g = h � f for some function h. Hint:
Just try to deˇne h(z) when z is of the form z = f (x) (these are the only z
that matter) and use the hypotheses to show that your deˇnition will not
run into trouble.
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23. Suppose that f � g = I , where I (x) = x. Prove that

(a) if x �= y, then g(x) �= g(y);
(b) every number b can be written b = f (a) for some number a.

*24. (a) Suppose g is a function with the property that g(x) �= g(y) if x �= y.
Prove that there is a function f such that f � g = I .

(b) Suppose that f is a function such that every number b can be written
b = f (a) for some number a. Prove that there is a function g such that
f � g = I .

*25. Find a function f such that g � f = I for some g, but such that there is no
function h with f � h = I .

*26. Suppose f � g = I and h � f = I . Prove that g = h. Hint: Use the fact that
composition is associative.

27. (a) Suppose f (x) = x+1. Are there any functions g such that f �g = g�f ?
(b) Suppose f is a constant function. For which functions g does f � g =

g � f ?
(c) Suppose that f �g = g �f for all functions g. Show that f is the identity

function, f (x) = x.

28. (a) Let F be the set of all functions whose domain is R. Prove that, using +
and · as deˇned in this chapter, all of properties P1{P9 except P7 hold
for F , provided 0 and 1 are interpreted as constant functions.

(b) Show that P7 does not hold.
*(c) Show that P10{P12 cannot hold. In other words, show that there is

no collection P of functions in F , such that P10{P12 hold for P . (It is
sufˇcient, and will simplify things, to consider only functions which are 0
except at two points x0 and x1.)

(d) Suppose we deˇne f < g to mean that f (x) < g(x) for all x. Which of
P ′10{P ′13 (in Problem 1-8) now hold?

(e) If f < g, is h � f < h � g ? Is f � h < g � h ?
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APPENDIX. ORDERED PAIRS

Not only in the deˇnition of a function, but in other parts of the book as well,
it is necessary to use the notion of an ordered pair of objects. A deˇnition has
not yet been given, and we have never even stated explicitly what properties an
ordered pair is supposed to have. The one property which we will require states
formally that the ordered pair (a, b) should be determined by a and b, and the
order in which they are given:

if (a, b) = (c, d), then a = c and b = d.

Ordered pairs may be treated most conveniently by simply introducing (a, b)

as an undeˇned term and adopting the basic property as an axiom|since this
property is the only signiˇcant fact about ordered pairs, there is not much point
worrying about what an ordered pair \really" is. Those who ˇnd this treatment
satisfactory need read no further.

The rest of this short appendix is for the beneˇt of those readers who will feel
uncomfortable unless orderedpairs are somehow deˇned so that this basic property
becomes a theorem. There is no point in restricting our attention to ordered pairs
of numbers; it is just as reasonable, and just as important, to have available the
notion of an ordered pair of any two mathematical objects. This means that our
deˇnition ought to involve only concepts common to all branches of mathematics.
The one common concept which pervades all areas of mathematics is that of a
set, and ordered pairs (like everything else in mathematics) can be deˇned in this
context; an ordered pair will turn out to be a set of a rather special sort.

The set {a, b}, containing the two elements a and b, is an obvious ˇrst choice,
but will not do as a deˇnition for (a, b), because there is no way of determining
from {a, b} which of a or b is meant to be the ˇrst element. A more promising
candidate is the rather startling set:

{ {a}, {a, b} }.
This set has two members, both of which are themselves sets; one member is the set
{a}, containing the single member a, the other is the set {a, b}. Shocking as it may
seem, we are going to deˇne (a, b) to be this set. The justiˇcation for this choice is
given by the theorem immediately following the deˇnition|the deˇnition works,
and there really isn't anything else worth saying.

DEFINITION (a, b) = { {a}, {a, b} }.

THEOREM 1 If (a, b) = (c, d), then a = c and b = d.

PROOF The hypothesis means that

{ {a}, {a, b} } = { {c}, {c, d} }.
Now { {a}, {a, b} } contains just two members, {a} and {a, b}; and a is the only
common element of these two members of { {a}, {a, b} }. Similarly, c is the unique
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common member of both members of { {c}, {c, d} }. Therefore a = c. We there-
fore have

{ {a}, {a, b} } = { {a}, {a, d} },
and only the proof that b = d remains. It is convenient to distinguish 2 cases.

Case 1. b = a. In this case, {a, b} = {a}, so the set { {a}, {a, b} } really has only one
member, namely, {a}. The same must be true of { {a}, {a, d} }, so {a, d} = {a},
which implies that d = a = b.

Case 2. b �= a. In this case, b is in one member of { {a}, {a, b} } but not in the
other. It must therefore be true that b is in one member of { {a}, {a, d} } but not
in the other. This can happen only if b is in {a, d}, but b is not in {a}; thus b = a

or b = d, but b �= a; so b = d.



CHAPTER 4 GRAPHS

Mention the real numbers to a mathematician and the image of a straight line will
probably form in her mind, quite involuntarily. And most likely she will neither
banish nor too eagerly embrace this mental picture of the real numbers. \Geomet-
ric intuition" will allow her to interpret statements about numbers in terms of this
picture, and may even suggest methods of proving them. Although the properties
of the real numbers which were studied in Part I are not greatly illuminated by a
geometric picture, such an interpretation will be a great aid in Part II.

You are probably already familiar with the conventional method of considering
the straight line as a picture of the real numbers, i.e., of associating to each real
number a point on a line. To do this (Figure 1) we pick, arbitrarily, a point which
we label 0, and a point to the right, which we label 1. The point twice as far toFI G U R E 1

the right is labeled 2, the point the same distance from 0 to 1, but to the left of 0,
is labeled −1, etc. With this arrangement, if a < b, then the point corresponding
to a lies to the left of the point corresponding to b. We can also draw rational
numbers, such as 1

2 , in the obvious way. It is usually taken for granted that the
irrational numbers also somehow ˇt into this scheme, so that every real number
can be drawn as a point on the line. We will not make too much fuss about
justifying this assumption, since this method of \drawing" numbers is intended
solely as a method of picturing certain abstract ideas, and our proofs will never
rely on these pictures (although we will frequently use a picture to suggest or help
explain a proof ). Because this geometric picture plays such a prominent, albeit
inessential role, geometric terminology is frequently employed when speaking of
numbers|thus a number is sometimes called a point, and R is often called the
real line.

The number |a−b| has a simple interpretation in terms of this geometric picture:
it is the distance between a and b, the length of the line segment which has a as one
end point and b as the other. This means, to choose an example whose frequent
occurrence justiˇes special consideration, that the set of numbers x which satisfy
|x − a| < ε may be pictured as the collection of points whose distance from a is
less than ε. This set of points is the \interval" from a− ε to a+ ε, which may also
be described as the points corresponding to numbers x with a − ε < x < a + ε

(Figure 2).
Sets of numbers which correspond to intervals arise so frequently that it is desir-F I G U R E 2

able to have special names for them. The set {x : a < x < b} is denoted by (a, b)
and called the open interval from a to b. This notation naturally creates some
ambiguity, since (a, b) is also used to denote a pair of numbers, but in context it is
always clear (or can easily be made clear) whether one is talking about a pair or
an interval. Note that if a ≥ b, then (a, b) = ∅, the set with no elements; in prac-

56
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tice, however, it is almost always assumed (explicitly if one has been careful, and
implicitly otherwise), that whenever an interval (a, b) is mentioned, the number a
is less than b.

The set {x : a ≤ x ≤ b} is denoted by [a, b] and is called the closed interval
from a to b. This symbol is usually reserved for the case a < b, but it is sometimes
used for a = b, also. The usual pictures for the intervals (a, b) and [a, b] are shown
in Figure 3; since no reasonably accurate picture could ever indicate the difference
between the two intervals, various conventions have been adopted. Figure 3 also
shows certain \inˇnite" intervals. The set {x : x > a} is denoted by (a,∞),
while the set {x : x ≥ a} is denoted by [a,∞); the sets (−∞, a) and (−∞, a] are
deˇned similarly. At this point a standard warning must be issued: the symbols ∞F I G U R E 3

and −∞, though usually read \inˇnity" and \minus inˇnity," are purely suggestive;
there is no number \∞" which satisˇes ∞ ≥ a for all numbers a. While the
symbols ∞ and −∞ will appear in many contexts, it is always necessary to deˇne
these uses in ways that refer only to numbers. The set R of all real numbers is
also considered to be an \interval," and is sometimes denoted by (−∞,∞).

Of even greater interest to us than the method of drawing numbers is a method
of drawing pairs of numbers. This procedure, probably also familiar to you, re-
quires a \coordinate system," two straight lines intersecting at right angles. To
distinguish these straight lines, we call one the horizontal axis, and one the vertical

axis. (More prosaic terminology, such as the \ˇrst" and \second" axes, is probably
preferable from a logical point of view, but most people hold their books, or at
least their blackboards, in the same way, so that \horizontal" and \vertical" are
more descriptive.) Each of the two axes could be labeled with real numbers, butFI G U R E 4

we can also label points on the horizontal axis with pairs (a,0) and points on the
vertical axis with pairs (0, b), so that the intersection of the two axes, the \origin"
of the coordinate system, is labeled (0, 0). Any pair (a, b) can now be drawn as
in Figure 4, lying at the vertex of the rectangle whose other three vertices are la-
beled (0,0), (a, 0), and (0, b). The numbers a and b are called the first and second

coordinates, respectively, of the point determined in this way.

Our real concern, let us recall, is a method of drawing functions. Since a func-
tion is just a collection of pairs of numbers, we can draw a function by drawingFI G U R E 5

each of the pairs in the function. The drawing obtained in this way is called the
graph of the function. In other words, the graph of f contains all the points cor-
responding to pairs (x,f (x)). Since most functions contain inˇnitely many pairs,
drawing the graph promises to be a laborious undertaking, but, in fact, many
functions have graphs which are quite easy to draw.

Not surprisingly, the simplest functions of all, the constant functions f (x) = c,
have the simplest graphs. It is easy to see that the graph of the function f (x) = c

is a straight line parallel to the horizontal axis, at distance c from it (Figure 5).

The functions f (x) = cx also have particularly simple graphs|straight lines
through (0,0), as in Figure 6. A proof of this fact is indicated in Figure 7:FI G U R E 6
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Let x be some number not equal to 0, and let L be the straight line which passes
through the origin O, corresponding to (0, 0), and through the point A, corre-
sponding to (x, cx). A point A′, with ˇrst coordinate y, will lie on L when the
triangle A′B ′O is similar to the triangle ABO, thus when

A′B ′

OB ′ = AB

OB
= c;

this is precisely the condition that A′ corresponds to the pair (y, cy), i.e., that A′

lies on the graph of f . The argument has implicitly assumed that c > 0, but the
other cases are treated easily enough. The number c, which measures the ratio of
the sides of the triangles appearing in the proof, is called the slope of the straight
line, and a line parallel to this line is also said to have slope c.F I G U R E 7

This demonstration has neither been labeled nor treated as a formal proof.
Indeed, a rigorous demonstration would necessitate a digression which we are
not at all prepared to follow. The rigorous proof of any statement connecting
geometric and algebraic concepts would ˇrst require a real proof (or a precisely
stated assumption) that the points on a straight line correspond in an exact way
to the real numbers. Aside from this, it would be necessary to develop plane
geometry as precisely as we intend to develop the properties of real numbers.
Now the detailed development of plane geometry is a beautiful subject, but it is by
no means a prerequisite for the study of calculus. We shall use geometric pictures
only as an aid to intuition; for our purposes (and for most of mathematics) it is
perfectly satisfactory to define the plane to be the set of all pairs of real numbers,
and to define straight lines as certain collections of pairs, including, among others,
the collections {(x, cx) : x a real number}. To provide this artiˇcially constructedFI G U R E 8

geometry with all the structure of geometry studied in high school, one more
deˇnition is required. If (a, b) and (c, d) are two points in the plane, i.e., pairs of
real numbers, we define the distance between (a, b) and (c, d) to be√

(a − c)2 + (b − d)2.

If the motivation for this deˇnition is not clear, Figure 8 should serve as adequate
explanation|with this deˇnition the Pythagorean theorem has been built into our
geometry.*

Reverting once more to our informal geometric picture, it is not hard to see
(Figure 9) that the graph of the function f (x) = cx + d is a straight line
with slope c, passing through the point (0, d). For this reason, the functions
f (x) = cx + d are called linear functions. Simple as they are, linear func-
tions occur frequently, and you should feel comfortable working with them. The
following is a typical problem whose solution should not cause any trouble. Given
two distinct points (a, b) and (c, d), ˇnd the linear function f whose graph goes
through (a, b) and (c, d). This amounts to saying that f (a) = b and f (c) = d. IfF I G U R E 9

* The fastidious reader might object to this deˇnition on the grounds that nonnegative numbers
are not yet known to have square roots. This objection is really unanswerable at the moment|the
deˇnition will just have to be accepted with reservations, until this little point is settled.
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f is to be of the form f (x) = αx + β, then we must have

αa + β = b,

αc+ β = d;
therefore α = (d − b)/(c− a) and β = b − [(d − b)/(c − a)]a, so

f (x) = d − b

c − a
x + b − d − b

c− a
a = d − b

c − a
(x − a)+ b,

a formula most easily rememberedby using the \point-slope form" (see Problem 6).
Of course, this solution is possible only if a �= c; the graphs of linear functions

account only for the straight lines which are not parallel to the vertical axis. The
vertical straight lines are not the graph of any function at all; in fact, the graph of a
function can never contain even two distinct points on the same vertical line. This
conclusion is immediate from the deˇnition of a function|two points on the same
vertical line correspond to pairs of the form (a, b) and (a, c) and, by deˇnition, a
function cannot contain (a, b) and (a, c) if b �= c. Conversely, if a set of points in
the plane has the property that no two points lie on the same vertical line, then
it is surely the graph of a function. Thus, the ˇrst two sets in Figure 10 are not
graphs of functions and the last two are; notice that the fourth is the graph of a
function whose domain is not all of R, since some vertical lines have no points on
them at all.

After the linear functions the simplest is perhaps the function f (x) = x2. If we
draw some of the pairs in f , i.e., some of the pairs of the form (x, x2), we obtain
a picture like Figure 11.FI G U R E 1 0

F I G U R E 1 1
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It is not hard to convince yourself that all the pairs (x, x2) lie along a curve like
the one shown in Figure 12; this curve is known as a parabola.

Since a graph is just a drawing on paper, made (in this case) with printer's ink,
the question \Is this what the graph really looks like?" is hard to phrase in any
sensible manner. No drawing is ever really correct since the line has thickness.
Nevertheless, there are some questions which one can ask: for example, how can
you be sure that the graph does not look like one of the drawings in Figure 13?
It is easy to see, and even to prove, that the graph cannot look like (a); for if
0 < x < y, then x2 < y2, so the graph should be higher at y than at x, which is
not the case in (a) . It is also easy to see, simply by drawing a very accurate graph,
ˇrst plotting many pairs (x, x2), that the graph cannot have a large \jump" as in (b)
or a \corner" as in (c). In order to prove these assertions, however, we ˇrst need
to say, in a mathematical way, what it means for a function not to have a \jump"
or \corner"; these ideas already involve some of the fundamental concepts of
calculus. Eventually we will be able to deˇne them rigorously, but meanwhile youFI G U R E 1 2

may amuse yourself by attempting to deˇne these concepts, and then examining
your deˇnitions critically. Later these deˇnitions may be compared with the ones
mathematicians have agreed upon. If they compare favorably, you are certainly
to be congratulated!

The functions f (x) = xn, for various natural numbers n, are sometimes called
power functions. Their graphs are most easily compared as in Figure 14, by
drawing several at once.

The power functions are only special cases of polynomial functions, introduced
in the previous chapter. Two particular polynomial functions are graphed in

FI G U R E 1 3
F I G U R E 1 4
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Figure 15, while Figure 16 is meant to give a general idea of the graph of the
polynomial function

f (x) = anx
n + an−1x

n−1 + · · · + a0,

in the case an > 0.
In general, the graph of f will have at most n−1 \peaks" or \valleys" (a \peak"

is a point like (x, f (x)) in Figure 16, while a \valley" is a point like (y, f (y)). The
number of peaks and valleys may actually be much smaller (the power functions,
for example, have at most one valley). Although these assertions are easy to make,
we will not even contemplate giving proofs until Part III (once the powerful meth-
ods of Part III are available, the proofs will be very easy).

Figure 17 illustrates the graphs of several rational functions. The rational func-
tions exhibit even greater variety than the polynomial functions, but their behavior
will also be easy to analyze once we can use the derivative, the basic tool of Part III.

Many interesting graphs can be constructed by \piecing together" the graphs of
functions already studied. The graph in Figure 18 is made up entirely of straight
lines. The function f with this graph satisˇes

f

(
1
n

)
= (−1)n+1,

f

(−1
n

)
= (−1)n+1,

f (x) = 1, |x| ≥ 1,

and is a linear function on each interval [1/(n+1),1/n] and [−1/n,−1/(n+1)].F I G U R E 1 5

(The number 0 is not in the domain of f .) Of course, one can write out an explicit
formula for f (x), when x is in [1/(n+ 1),1/n]; this is a good exercise in the use
of linear functions, and will also convince you that a picture is worth a thousand
words.

F I G U R E 1 6
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F I G U R E 17

F I G U R E 18
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F I G U R E 1 9

It is actually possible to deˇne, in a much simpler way, a function which exhibits
this same property of oscillating inˇnitely often near 0, by using the sine function.
In Chapter 15 we will discuss this function in detail, and radian measure in par-
ticular; for the time being it will be easiest to use degree measurements for angles.
The graph of the sine function is shown in Figure 19 (the scale on the horizontal
axis has been altered so that the graph will be clearer; radian measure has, besides
important mathematical properties, the additional advantage that such changes
are unnecessary).

Now consider the function f (x) = sin 1/x. The graph of f is shown in Fig-
ure 20. To draw this graph it helps to ˇrst observe that

f (x) = 0 for x = 1
180

,
1

360
,

1
540

, . . . ,

f (x) = 1 for x = 1
90
,

1
90 + 360

,
1

90 + 720
, . . . ,

f (x) = −1 for x = 1
270

,
1

270 + 360
,

1
270 + 720

, . . . .

Notice that when x is large, so that 1/x is small, f (x) is also small; when x is

F I G U R E 2 0
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F I G U R E 2 1

\large negative," that is, when |x| is large for negative x, again f (x) is close to 0,
although f (x) < 0.

An interesting modiˇcation of this function is f (x) = x sin 1/x. The graph of
this function is sketched in Figure 21. Since sin 1/x oscillates inˇnitely often near 0
between 1 and −1, the function f (x) = x sin 1/x oscillates inˇnitely often between
x and −x. The behavior of the graph for x large or large negative is harder to

FI G U R E 2 2
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analyze. Since sin 1/x is getting close to 0, while x is getting larger and larger, there
seems to be no telling what the product will do. It is possible to decide, but this is
another question that is best deferred to Part III. The graph of f (x) = x2 sin 1/x
has also been illustrated (Figure 22).

For these inˇnitely oscillating functions, it is clear that the graph cannot hope to
be really \accurate." The best we can do is to show part of it, and leave out the
part near 0 (which is the interesting part). Actually, it is easy to ˇnd much simpler
functions whose graphs cannot be \accurately" drawn. The graphs of

f (x) =
{
x2, x < 1
2, x ≥ 1

and g(x) =
{
x2, x ≤ 1
2, x > 1

can only be distinguished by some convention similar to that used for open and
closed intervals (Figure 23).F I G U R E 2 3

Out last example is a function whose graph is spectacularly nondrawable:

f (x) =
{

0, x irrational
1, x rational.

F I G U R E 2 4

The graph of f must contain inˇnitely many points on the horizontal axis and
also inˇnitely many points on a line parallel to the horizontal axis, but it must not
contain either of these lines entirely. Figure 24 shows the usual textbook picture
of the graph. To distinguish the two parts of the graph, the dots are placed closer
together on the line corresponding to irrational x. (There is actually a mathemat-
ical reason behind this convention, but it depends on some sophisticated ideas,
introduced in Problems 21-5 and 21-6.)

The peculiarities exhibited by some functions are so engrossing that it is easy
to forget some of the simplest, and most important, subsets of the plane, which
are not the graphs of functions. The most important example of all is the circle.
A circle with center (a, b) and radius r > 0 contains, by deˇnition, all the points
(x, y) whose distance from (a, b) is equal to r. The circle thus consists (Figure 25)FI G U R E 2 5

of all points (x, y) with √
(x − a)2 + (y − b)2 = r

or
(x − a)2 + (y − b)2 = r2.
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The circle with center (0,0) and radius 1, often regarded as a sort of standard copy,
is called the unit circle.

A close relative of the circle is the ellipse. This is deˇned as the set of points,
the sum of whose distances from two \focus" points is a constant. (When the two
foci are the same, we obtain a circle.) If, for convenience, the focus points are
taken to be (−c, 0) and (c,0), and the sum of the distances is taken to be 2a (the
factor 2 simpliˇes some algebra), then (x, y) is on the ellipse if and only if√

(x − (−c))2 + y2 +
√
(x − c)2 + y2 = 2a

or √
(x + c)2 + y2 = 2a −

√
(x − c)2 + y2

or

x2 + 2cx + c2 + y2 = 4a2 − 4a
√
(x − c)2 + y2 + x2 − 2cx + c2 + y2

or
4(cx − a2) = −4a

√
(x − c)2 + y2

or
c2x2 − 2cxa2 + a4 = a2(x2 − 2cx + c2 + y2)

or
(c2 − a2)x2 − a2y2 = a2(c2 − a2)

or
x2

a2 + y2

a2 − c2 = 1.

This is usually written simply

x2

a2 + y2

b2 = 1,

where b =
√
a2 − c2 (since we must clearly choose a > c, it follows that

a2 − c2 > 0). A picture of an ellipse is shown in Figure 26. The ellipse inter-
sects the horizontal axis when y = 0, so that

x2

a2 = 1, x = ±a,

F I G U R E 2 6
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and it intersects the vertical axis when x = 0, so that

y2

b2 = 1, y = ±b.
The hyperbola is deˇned analogously, except that we require the difference of

the two distances to be constant. Choosing the points (−c,0) and (c,0) once
again, and the constant difference as 2a, we obtain, as the condition that (x, y)
be on the hyperbola,√

(x + c)2 + y2 −
√
(x − c)2 + y2 = ±2a,

which may be simpliˇed to

x2

a2 + y2

a2 − c2 = 1.

In this case, however, we must clearly choose c > a, so that a2 − c2 < 0. IfF I G U R E 2 7

b =
√
c2 − a2, then (x, y) is on the hyperbola if and only if

x2

a2 − y2

b2 = 1.

The picture is shown in Figure 27. It contains two pieces, because the difference
between the distances of (x, y) from (−c, 0) and (c, 0) may be taken in two dif-
ferent orders. The hyperbola intersects the horizontal axis when y = 0, so that
x = ±a, but it never intersects the vertical axis.

It is interesting to compare (Figure 28) the hyperbola with a = b =
√

2 and
the graph of the function f (x) = 1/x. The drawings look quite similar, and
the two sets are actually identical, except for a rotation through an angle of 45◦

(Problem 23).
Clearly no rotation of the plane will change circles or ellipses into the graphs of

functions. Nevertheless, the study of these important geometric ˇgures can often
be reduced to the study of functions. Ellipses, for example, are made up of the

FI G U R E 2 8
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graphs of two functions,

f (x) = b
√

1 − (x2/a2), −a ≤ x ≤ a

and

g(x) = −b
√

1 − (x2/a2), −a ≤ x ≤ a.

Of course, there are many other pairs of functions with this same property. For
example, we can take

f (x) =

 b

√
1 − (x2/a2), 0 < x ≤ a

−b
√

1 − (x2/a2), −a ≤ x ≤ 0

and

g(x) =

 −b

√
1 − (x2/a2), 0 < x ≤ a

b

√
1 − (x2/a2, −a ≤ x ≤ 0.

We could also choose

f (x) =

 b

√
1 − (x2/a2), x rational, − a ≤ x ≤ a

−b
√

1 − (x2/a2), x irrational, − a ≤ x ≤ a

and

g(x) =

 −b

√
1 − (x2/a2), x rational, − a ≤ x ≤ a

b
√

1 − (x2/a2), x irrational, − a ≤ x ≤ a.

But all these other pairs necessarily involve unreasonable functions which jump
around. A proof, or even a precise statement of this fact, is too difˇcult at present.
Although you have probably already begun to make a distinction between those
functions with reasonable graphs, and those with unreasonable graphs, you may
ˇnd it very difˇcult to state a reasonable deˇnition of reasonable functions. A
mathematical deˇnition of this concept is by no means easy, and a great deal of this
book may be viewed as successive attempts to impose more and more conditions
that a \reasonable" function must satisfy. As we deˇne some of these conditions,
we will take time out to ask if we have really succeeded in isolating the functions
which deserve to be called reasonable. The answer, unfortunately, will always be
\no," or at best, a qualiˇed \yes."

PROBLEMS

1. Indicate on a straight line the set of all x satisfying the following conditions.
Also name each set, using the notation for intervals (in some cases you will
also need the ∪ sign).

(i) |x − 3| < 1.
(ii) |x − 3| ≤ 1.
(iii) |x − a| < ε.
(iv) |x2 − 1| < 1

2 .
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(v)
1

1 + x2 ≥ 1
5 .

(vi)
1

1 + x2 ≤ a (give an answer in terms of a, distinguishing various cases).

(vii) x2 + 1 ≥ 2.
(viii) (x + 1)(x − 1)(x − 2) > 0.

2. There is a very useful way of describing the points of the closed interval [a, b]
(where we assume, as usual, that a < b).

(a) First consider the interval [0, b], for b > 0. Prove that if x is in [0, b],
then x = tb for some t with 0 ≤ t ≤ 1. What is the signiˇcance of the
number t? What is the mid-point of the interval [0, b]?

(b) Now prove that if x is in [a, b], then x = (1 − t)a + tb for some t with
0 ≤ t ≤ 1. Hint: This expression can also be written as a + t (b − a).
What is the midpoint of the interval [a, b]? What is the point 1/3 of the
way from a to b?

(c) Prove, conversely, that if 0 ≤ t ≤ 1, then (1 − t)a + tb is in [a, b].
(d) The points of the open interval (a, b) are those of the form (1 − t)a + tb

for 0 < t < 1.

3. Draw the set of all points (x, y) satisfying the following conditions. (In most
cases your picture will be a sizable portion of a plane, not just a line or curve.)

(i) x > y.
(ii) x + a > y + b.
(iii) y < x2.
(iv) y ≤ x2.
(v) |x − y| < 1.
(vi) |x + y| < 1.
(vii) x + y is an integer.

(viii)
1

x + y
is an integer.

(ix) (x − 1)2 + (y − 2)2 < 1.
(x) x2 < y < x4.

4. Draw the set of all points (x, y) satisfying the following conditions:

(i) |x| + |y| = 1.
(ii) |x| − |y| = 1.
(iii) |x − 1| = |y − 1|.
(iv) |1 − x| = |y − 1|.
(v) x2 + y2 = 0.
(vi) xy = 0.
(vii) x2 − 2x + y2 = 4.
(viii) x2 = y2.
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5. Draw the set of all points (x, y) satisfying the following conditions:

(i) x = y2.

(ii)
y2

a2 − x2

b2 = 1.

(iii) x = |y|.
(iv) x = sin y.

Hint: You already know the answers when x and y are interchanged.

6. (a) Show that the straight line through (a, b) with slope m is the graph of the
function f (x) = m(x − a)+ b. This formula, known as the \point-slope
form" is far more convenient than the equivalent expression f (x) =
mx+ (b−ma); it is immediately clear from the point-slope form that the
slope is m, and that the value of f at a is b.

(b) For a �= c, show that the straight line through (a, b) and (c, d) is the
graph of the function

f (x) = d − b

c − a
(x − a)+ b.

(c) When are the graphs of f (x) = mx + b and g(x) = m′x + b′ parallel
straight lines?

7. (a) For any numbers A, B, and C, with A and B not both 0, show that the
set of all (x, y) satisfying Ax + By + C = 0 is a straight line (possibly a
vertical one). Hint: First decide when a vertical straight line is described.

(b) Show conversely that every straight line, including vertical ones, can be
described as the set of all (x,y) satisfying Ax + By + C = 0.

8. (a) Prove that the graphs of the functions

f (x) = mx + b,

g(x) = nx + c,

are perpendicular if mn = −1, by computing the squares of the lengths
of the sides of the triangle in Figure 29. (Why is this special case, where
the lines intersect at the origin, as good as the general case?)F I G U R E 2 9

(b) Prove that the two straight lines consisting of all (x, y) satisfying the con-
ditions

Ax + By + C = 0,
A′x + B ′y + C ′ = 0,

are perpendicular if and only if AA′ + BB ′ = 0.

9. (a) Prove, using Problem 1-19, that√
(x1 + y1)

2 + (x2 + y2)
2 ≤

√
x1

2 + x2
2 +

√
y1

2 + y2
2.
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(b) Prove that√
(x3 − x1)

2 + (y3 − y1)
2 ≤

√
(x2 − x1)

2 + (y2 − y1)
2

+
√
(x3 − x2)

2 + (y3 − y2)
2.

Interpret this inequality geometrically (it is called the \triangle inequal-
ity"). When does strict inequality hold?

10. Sketch the graphs of the following functions, plotting enough points to get
a good idea of the general appearance. (Part of the problem is to make
a reasonable decision how many is \enough"; the queries posed below are
meant to show that a little thought will often be more valuable than hundreds
of individual points.)

(i) f (x) = x + 1
x

. (What happens for x near 0, and for large x? Where

does the graph lie in relation to the graph of the identify function? Why
does it sufˇce to consider only positive x at ˇrst?)

(ii) f (x) = x − 1
x

.

(iii) f (x) = x2 + 1
x2 .

(iv) f (x) = x2 − 1
x2 .

11. Describe the general features of the graph of f if

(i) f is even.
(ii) f is odd.
(iii) f is nonnegative.
(iv) f (x) = f (x + a) for all x (a function with this property is called peri-

odic, with period a.

12. Graph the functions f (x) = m
√
x for m = 1, 2, 3, 4. (There is an easy way to

do this, using Figure 14. Be sure to remember, however, that m
√
x means the

positive mth root of x when m is even; you should also note that there will be
an important difference between the graphs when m is even and when m is
odd.)

13. (a) Graph f (x) = |x| and f (x) = x2.
(b) Graph f (x) = | sin x| and f (x) = sin2 x. (There is an important differ-

ence between the graphs, which we cannot yet even describe rigorously.
See if you can discover what it is; part (a) is meant to be a clue.)

14. Describe the graph of g in terms of the graph of f if
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(i) g(x) = f (x)+ c.
(ii) g(x) = f (x + c). (It is easy to make a mistake here.)
(iii) g(x) = cf (x).
(iv) g(x) = f (cx).

(Distinguish the cases c = 0, c > 0, c < 0.)

(v) g(x) = f (1/x).
(vi) g(x) = f (|x|).
(vii) g(x) = |f (x)|.
(viii) g(x) = max(f, 0).
(ix) g(x) = min(f, 0).
(x) g(x) = max(f, 1).

15. Draw the graph of f (x) = ax2 + bx + c. Hint: Use the methods of Prob-
lem 1-18.

16. Suppose that A and C are not both 0. Show that the set of all (x, y) satisfying

Ax2 + Bx + Cy2 +Dy + E = 0

is either a parabola, an ellipse, or an hyperbola (or possibly ∅). Hint: The
case C = 0 is essentially Problem 15, and the case A = 0 is just a minor
variant. Now consider separately the cases where A and B are both positive
or negative, and where one is positive while the other is negative.

17. The symbol [x] denotes the largest integer which is ≤ x. Thus, [2.1] = [2] =
2 and [−0.9] = [−1] = −1. Draw the graph of the following functions
(they are all quite interesting, and several will reappear frequently in other
problems).

(i) f (x) = [x].
(ii) f (x) = x − [x].

(iii) f (x) =
√
x − [x].

(iv) f (x) = [x] +
√
x − [x].

(v) f (x) =
[

1
x

]
.

(vi) f (x) = 1[
1
x

] .

18. Graph the following functions.

(i) f (x) = {x}, where {x} is deˇned to be the distance from x to the nearest
integer.

(ii) f (x) = {2x}.
(iii) f (x) = {x} + 1

2{2x}.
(iv) f (x) = {4x}.
(v) f (x) = {x} + 1

2{2x} + 1
4{4x}.
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Many functions may be described in terms of the decimal expansion of a num-
ber. Although we will not be in a position to describe inˇnite decimals rigorously
until Chapter 23, your intuitive notion of inˇnite decimals should sufˇce to carry
you through the following problem, and others which occur before Chapter 23.
There is one ambiguity about inˇnite decimals which must be eliminated: Every
decimal ending in a string of 9's is equal to another ending in a string of 0's (e.g.,
1.23999 . . . = 1.24000 . . . ). We will always use the one ending in 9's.

*19. Describe as best you can the graphs of the following functions (a complete
picture is usually out of the question).

(i) f (x) = the 1st number in the decimal expansion of x.
(ii) f (x) = the 2nd number in the decimal expansion of x.
(iii) f (x) = the number of 7's in the decimal expansion of x if this number

is ˇnite, and 0 otherwise.
(iv) f (x) = 0 if the number of 7's in the decimal expansion of x is ˇnite,

and 1 otherwise.
(v) f (x) = the number obtained by replacing all digits in the decimal

expansion of x which come after the ˇrst 7 (if any) by 0.
(vi) f (x) = 0 if 1 never appears in the decimal expansion of x, and n if 1

ˇrst appears in the nth place.

*20. Let

f (x) =



0, x irrational
1
q
, x = p

q
rational in lowest terms.

(A number p/q is in lowest terms if p and q are integers with no common
factor, and q > 0). Draw the graph of f as well as you can (don't sprinkle
points randomly on the paper; consider ˇrst the rational numbers with q = 2,
then those with q = 3, etc.).

21. (a) The points on the graph of f (x) = x2 are the ones of the form (x, x2).
Prove that each such point is equidistant from the point (0, 1

4 ) and the
graph of g(x) = − 1

4 . (See Figure 30.)
(b) Given a point P = (α, β) and a horizontal line L, the graph of g(x) = γ ,

show that the set of all points (x,y) equidistant from P and L is the graph
of a function of the form f (x) = ax2 + bx + c.

*22. (a) Show that the square of the distance from (c, d) to (x,mx) isF I G U R E 3 0

x2(m2 + 1)+ x(−2md − 2c)+ d2 + c2.

Using Problem 1-18 to ˇnd the minimum of these numbers, show that
the distance from (c, d) to the graph of f (x) = mx is

|cm − d|/
√
m2 + 1.

(b) Find the distance from (c, d) to the graph of f (x) = mx + b. (Reduce
this case to part (a).)
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*23. (a) Using Problem 22, show that the numbers x ′ and y ′ indicated in Fig-
ure 31 are given by

x ′ = 1√
2
x + 1√

2
y,

y ′ = − 1√
2
x + 1√

2
y.

(b) Show that the set of all (x, y) with (x ′/
√

2 )2 − (y ′/
√

2 )2 = 1 is the same
as the set of all (x, y) with xy = 1.FI G U R E 3 1
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APPENDIX 1. VECTORS

Suppose that v is a point in the plane; in other words, v is a pair of numbers

v = (v1, v2).

For convenience, we will use this convention that subscripts indicate the ˇrst and
second pairs of a point that has been described by a single letter. Thus, if we
mention the points w and z, it will be understood that w is the pair (w1,w2),
while z is the pair (z1, z2).

Instead of the actual pair of numbers (v1, v2), we often picture v as an arrow
from the origin O to this point (Figure 1), and we refer to these arrows as vectors

in the plane. Of course, we've haven't really said anything new yet, we've simply
introduced an alternate term for a point of the plane, and another mental picture.
The real point of the new terminology is to emphasize that we are going to do
some new things with points in the plane.

For example, suppose that we have two vectors (i.e., points) in the plane,

v = (v1, v2), w = (w1, w2).

Then we can deˇne a new vector (a new point of the plane) v+w by the equationFI G U R E 1

(1) v + w = (v1 +w1, v2 + w2).

Notice that all the letters on the right side of this equation are numbers, and the
+ sign is just our usual addition of numbers. On the other hand, the + sign on
the left side is new: previously, the sum of two points in the plane wasn't deˇned,
and we've simply used equation (1) as a definition.

A very fussy mathematician might want to use some new symbol for this newly
deˇned operation, like

v Cw, or perhaps v ⊕ w,

but there's really no need to insist on this; since v +w hasn't been deˇned before,
there's no possibility of confusion, so we might as well keep the notation simple.

Of course, any one can make new notation; for example, since it's our deˇnition,
we could just as well have deˇned v + w as (v1 + w1 · w2, v2 + w1

2), or by some
other equally weird formula. The real question is, does our new construction have
any particular signiˇcance?

Figure 2 shows two vectors v and w, as well as the point

(v1 + w1, v2 +w2),

which, for the moment, we have simply indicated in the usual way, without drawing
an arrow. Note that it is easy to compute the slope of the line L between v and
our new point: as indicated in Figure 2, this slope is just

(v2 + w2)− v2

(v1 + w1)− v1
= w2

w1
,

and this, of course, is the slope of our vector w, from the origin O to (w1, w2). In
other words, the line L is parallel to w.F I G U R E 2
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Similarly, the slope of the line M between (w1,w2) and our new point is

(v2 + w2)−w2

(v1 +w1)− v2
= v2

v1
,

which is the slope of the vector v; so M is parallel to v. In short, the new point
v+w lies on the parallelogram having v and w as sides. When we draw v+w as
an arrow (Figure 3), it points along the diagonal of this parallelogram. In physics,
vectors are used to symbolize forces, and the sum of two vectors represents the
resultant force when two different forces are applied simultaneously to the same
object.

Figure 4 shows another way of visualizing the sum v+w. If we use \w" to denoteFI G U R E 3
an arrow parallel to w, and having the same length, but starting at v instead of at
the origin, then v + w is the vector from O to the ˇnal endpoint; thus we get to
v + w by ˇrst following v, and then following w.

Many of the properties of + for ordinary numbers also hold for this new + for
vectors. For example, the \commutative law"

v +w = w + v,

is obvious from the geometric picture, since the parallelogram spanned by v and
w is the same as the parallelogram spanned by w and v. It is also easily checked
analytically, since it states that

(v1 +w1, v2 + w2) = (w1 + v1,w2 + v2),

and thus simply depends on the commutative law for numbers:

v1 +w1 = w1 + v1,

v2 +w2 = w2 + v2.

Similarly, unraveling deˇnitions, we ˇnd the \associative law"FI G U R E 4

[v +w] + z = v + [w + z].

Figure 5 indicates a method of ˇnding v +w + z.
The origin O = (0,0) is an \additive identity,"

O + v = v +O = v,

and if we deˇne
−v = (−v1,−v2),

then we also have
v + (−v) = −v + v = O.

Naturally we can also deˇne

w − v = w + (−v),
exactly as with numbers; equivalently,

F I G U R E 5
w − v = (w1 − v1,w2 − v2).
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Just as with numbers, our deˇnition of w − v simply means that it satisˇes

v + (w − v) = w.

Figure 6(a) shows v and an arrow \w − v" that is parallel to w − v but that starts
at the endpoint of v. As we established with Figure 4, the vector from the origin
to the endpoint of this arrow is just v+ (w− v) = w (Figure 6(b)). In other words,
we can picture w− v geometrically as the arrow that goes from v to w (except that
it must then be moved back to the origin).

There is also a way of multiplying a number by a vector: For a number a and
a vector v = (v1, v2), we deˇne

a · v = (av1, av2)

(We sometimes simply write av instead of a · v; of course, it is then especially
important to remember that v denotes a vector, rather than a number.) The
vector a · v points in the same direction as v when a > 0 and in the opposite
direction when a < 0 (Figure 7).

You can easily check the following formulas:

F I G U R E 6 a · (b · v) = (ab) · v,
1 · v = v,

0 · v = O,

−1 · v = −v.
Notice that we have only deˇned a product of a number and a vector, we have

not deˇned a way of `multiplying' two vectors to get another vector.* However,
there are various ways of `multiplying' vectors to get numbers, which are explored
in the following problems.

PROBLEMS

1. Given a point v of the plane, let Rθ (v) be the result of rotating v around the
origin through an angle of θ (Figure 8). The aim of this problem is to obtain
a formula for Rθ , with minimal calculation.FI G U R E 7

(a) Show that

Rθ (1,0) = (cos θ, sin θ),
Rθ (0, 1) = (− sin θ, cos θ).

(b) Explain why we have

Rθ (v + w) = Rθ (v)+ Rθ (w),

Rθ (a · w) = a ·Rθ (w).
(c) Now show that for any point (x,y) we have

FI G U R E 8

Rθ (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

* If you jump to Chapter 25, you'll ˇnd that there is an important way of deˇning a product, but
this is something very special for the plane|it doesn't work for vectors in 3-space, for example, even
though the other constructions do.
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(d) Use this result to give another solution to Problem 4-23.

2. Given v and w, we deˇne the number

v ·w = v1w1 + v2w2;
this is often called the `dot product' or `scalar product' of v and w (`scalar'
being a rather old-fashioned word for a number, as opposed to a vector).

(a) Given v, ˇnd a vector w such that v ·w = 0. Now describe the set of all
such vectors w.

(b) Show that

v ·w = w · v
v · (w + z) = v ·w + v · z

and that

a · (v ·w) = (a · v) ·w = v · (a ·w).
Notice that the last of these equations involves three products: the dot
product · of two vectors; the product · of a number and a vector; and
the ordinary product · of two numbers.

(c) Show that v · v ≥ 0, and that v · v = 0 only when v = O. Hence we can
deˇne the norm ‖v‖ as

‖v‖ = √
v · v,

which will be 0 only for v = O. What is the geometric interpretation of
the norm?

(d) Prove that
‖v + w‖ ≤ ‖v‖ + ‖w‖,

and that equality holds if and only if v = 0 or w = 0 or w = a · v for
some number a > 0.

(e) Show that

v ·w = ‖v +w‖2 − ‖v −w‖2

4
.

3. (a) Let Rθ be rotation by an angle of θ (Problem 1). Show that

Rθ (v) · Rθ (w) = v ·w.
(b) Let e = (1,0) be the vector of length 1 pointing along the ˇrst axis, and

let w = (cos θ, sin θ); this is a vector of length 1 that makes an angle of θ
with the ˇrst axis (compare Problem 1). Calculate that

e ·w = cos θ.

Conclude that in general

v ·w = ‖v‖ · ‖w‖ · cos θ,

where θ is the angle between v and w.
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4. Given two vectors v and w, we'd expect to have a simple formula, involving
the coordinates v1, v2, w1, w2, for the area of the parallelogram they span.
Figure 9 indicates a strategy for ˇnding such a formula: since the triangle
with vertices w,A, v + w is congruent to the triangle OBv, we can reduce
the problem to an easier one where one side of the parallelogram lies along
the horizontal axis:

(a) The line L passes through v and is parallel to w, so has slope w2/w1.
Conclude that the point B has coordinate

v1w2 −w1v2

w2
,

and that the parallelogram therefore has area

det(v, w) = v1w2 −w1v2.

This formula, which deˇnes the determinant det, certainly seems to be simpleFI G U R E 9
enough, but it can't really be true that det(v, w) always gives the area. After
all, we clearly have

det(w, v) = − det(v,w),

so sometimes det will be negative! Indeed, it is easy to see that our \deriva-
tion" made all sorts of assumptions (that w2 was positive, that B had a positive
coordinate, etc.) Nevertheless, it seems likely that det(v,w) is ± the area; the
next problem gives an independent proof.

5. (a) If v points along the positive horizontal axis, show that det(v,w) is the
area of the parallelogram spanned by v and w for w above the horizontal
axis (w2 > 0), and the negative of the area for w below this axis.

(b) If Rθ is rotation by an angle of θ (Problem 1), show that

det(Rθv,Rθw) = det(v,w).

Conclude that det(v, w) is the area of the parallelogram spanned by
v and w when the rotation from v to w is counterclockwise, and the
negative of the area when it is clockwise.

6. Show that

det(v,w + z) = det(v,w)+ det(v, z)
det(v + w, z) = det(v, z) + det(w, z)

and that
a det(v,w) = det(a · v,w) = det(v, a · w).

7. Using the method of Problem 3, show that

det(v,w) = ‖v‖ · ‖w‖ · sin θ,

which is also obvious from the geometric interpretation (Figure 10).F I G U R E 1 0
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APPENDIX 2. THE CONIC SECTIONS

Although we will be concerned almost exclusively with ˇgures in the plane,
deˇned formally as the set of all pairs of real numbers, in this Appendix we want
to consider three-dimensional space, which we can describe in terms of triples of
real numbers, using a \three-dimensional coordinate system," consisting of three
straight lines intersecting at right angles (Figure 1). Our horizontal and vertical axes
now mutate to two axes in a horizontal plane, with the third axis perpendicular to
both.

One of the simplest subsets of this three-dimensional space is the (inˇnite) cone
illustrated in Figure 2; this cone may be produced by rotating a \generating line,"
of slope C say, around the third axis.F I G U R E 1

FI G U R E 2

For any given ˇrst two coordinates x and y, the point (x,y,0) in the horizontal

plane has distance
√
x2 + y2 from the origin, and thus

(1) (x, y, z) is in the cone if and only if z = ±C
√
x2 + y2.

We can descend from these three-dimensional vistas to the more familiar two-
dimensional one by asking what happens when we intersect this cone with some
plane P (Figure 3).

F I G U R E 3

If the plane is parallel to the horizontal plane, there's certainly no mystery|the
intersection is just a circle. Otherwise, the plane P intersects the horizontal plane
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in a straight line. We can make things a lot simpler for ourselves if we rotate
everything so that this intersection line points straight out from the plane of the
paper, while the ˇrst axis is in the usual position that we are familiar with. The
plane P is thus viewed \straight on," so that all we see (Figure 4) is its intersection L
with the plane of the ˇrst and third axes; from this view-point the cone itself simply
appears as two straight lines.

In the plane of the ˇrst and third axes, the line L can be described as the
collection of all points of the formFI G U R E 4

(x,Mx + B),

where M is the slope of L. For an arbitrary point (x, y, z) it follows that

(2) (x, y, z) is in the plane P if and only if z = Mx + B.

Combining (1) and (2), we see that (x, y, z) is in the intersection of the cone and
the plane if and only if

(∗) Mx + B = ±C
√
x2 + y2.

Now we have to choose coordinate axes in the plane P . We can choose L as the
ˇrst axis, measuring distances from the intersection Q with the horizontal plane
(Figure 5); for the second axis we just choose the line through Q parallel to our
original second axis. If the ˇrst coordinate of a point in P with respect to these
axes is x, then the ˇrst coordinate of this point with respect to the original axes
can be written in the form

αx + β

for some α and β. On the other hand, if the second coordinate of the point with
respect to these axes is y, then y is also the second coordinate with respect to the
original axes.F I G U R E 5

Consequently, (∗) says that the point lies on the intersection of the plane and the
cone if and only if

M(αx + β)+ B = ±C
√
(αx + β)2 + y2.

Although this looks fairly complicated, after squaring we can write this as

α2C2y2 + α2(M2 −A2)x2 +Ex + F = 0

for some E and F that we won't bother writing out. Dividing by α2 simpliˇes this
to

C2y2 + (C2 −M2)x2 +Gx + H = 0.

Now Problem 4-16 indicates that this is either a parabola, an ellipse, or an
hyperbola. In fact, looking a little more closely at the solution (and interchanging
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the roles of x and y ), we see that the values of G and H are irrelevant:

(1) If M = ±C we obtain a parabola;
(2) If C2 > M2 we obtain an ellipse;
(3) If C2 < M2 we obtain an hyperbola.

These analytic conditions are easy to interpret geometrically (Figure 6):

(1) If our plane is parallel to one of the generating lines of the cone we obtain
a parabola;

(2) If our plane slopes less than the generating line of the cone (so that our
intersection omits one half of the cone) we obtain an ellipse;

(3) If our plane slopes more than the generating line of the cone we obtain an
hyperbola.

F I G U R E 6

In fact, the very names of these \conic sections" are related to this description.
The word parabola comes from a Greek root meaning `alongside,' the same root
that appears in parable, not to mention paradigm, paradox, paragon, paragraph,
paralegal, parallax, parallel, even parachute. Ellipse comes from a Greek root
meaning `defect,' or omission, as in ellipsis (an omission, . . . or the dots that in-
dicate it). And hyperbola comes from a Greek root meaning `throwing beyond,' or
excess. With the currency of words like hyperactive, hypersensitive, and hyperven-
tilate, not to mention hype, one can probably say, without risk of hyperbole, that
this root is familiar to almost everyone.*

PROBLEMS

1. Consider a cylinder with a generator perpendicular to the horizontal plane
(Figure 7); the only requirement for a point (x,y, z) to lie on this cylinder isF I G U R E 7

* Although the correspondence between these roots and the geometric picture correspond so beau-
tifully, for the sake of dull accuracy it has to be reported that the Greeks originally applied the words
to describe features of certain equations involving the conic sections.
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that (x, y) lies on a circle:

x2 + y2 = C2.

Show that the intersection of a plane with this cylinder can be described by
an equation of the form

(αx + β)2 + y2 = C2.

What possibilities are there?

2. In Figure 8, the sphere S1 has the same diameter as the cylinder, so that its
equator C1 lies along the cylinder; it is also tangent to the plane P at F1.
Similarly, the equator C2 of S2 lies along the cylinder, and S2 is tangent to P
at F2.

(a) Let z be any point on the intersection of P and the cylinder. Explain
why the length of the line from z to F1is equal to the length of the vertical
line L from z to C1.F I G U R E 8

(b) By proving a similar fact for the length of the line from z to F2, show that
the distance from z to F1 plus the distance from z to F2 is a constant, so
that the intersection is an ellipse, with foci F1 and F2.

3. Similarly, use Figure 9 to prove geometrically that the intersection of a plane
and a cone is an ellipse.

F I G U R E 9
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APPENDIX 3. POLAR COORDINATES

In this chapter we've been acting all along as if there's only one way to label
points in the plane with pairs of numbers. Actually, there are many different
ways, each giving rise to a different \coordinate system." The usual coordinates
of a point are called its cartesian coordinates, after the French mathematician
and philosopher Ren�e Descartes (1596{1650), who ˇrst introduced the idea of
coordinate systems. In many situations it is more convenient to introduce polar
coordinates, which are illustrated in Figure 1. To the point P we assign the polar
coordinates (r, θ), where r is the distance from the origin O to P , and θ is theFI G U R E 1

angle between the horizontal axis and the line from O to P . This angle can be
measured either in degrees or in radians (Chapter 15), but in either case θ is not
determined unambiguously. For example, with degree measurement, points on
the right side of the horizontal axis could have either θ = 0 or θ = 360; moreover,
θ is completely ambiguous at the origin O. So it is necessary to exclude some ray
through the origin if we want to assign a unique pair (r, θ) to each point under
consideration.

On the other hand, there is no problem associating a unique point to any pair
(r, θ). In fact, we can even associate a point to (r, θ) when r < 0, according to
the scheme indicated in Figure 2. Thus, it always makes sense to talk about \the
point with polar coordinates (r, θ)," even though there is some ambiguity when
we talk about \the polar coordinates" of a given point.

F I G U R E 2

It is clear from Figure 1 (and Figure 2) that the point with polar coordinates
(r, θ) has cartesian coordinates (x,y) given by

x = r cos θ, y = r sin θ.
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Conversely, if a point has cartesian coordinates (x, y), then (any of ) its polar co-
ordinates (r, θ) satisfy

r = ±
√
x2 + y2

tan θ = y

x
if x �= 0.

Now suppose that f is a function. Then by the graph of f in polar co-
ordinates we mean the collection of all points P with polar coordinates (r, θ)
satisfying r = f (θ). In other words, the graph of f in polar coordinates is the
collection of all points with polar coordinates (f (θ), θ). No special signiˇcance
should be attached to the fact that we are considering pairs (f (θ), θ), with f (θ)
ˇrst, as opposed to pairs (x, f (x)) in the usual graph of f ; it is purely a matter ofFI G U R E 3

convention that r is considered the ˇrst polar coordinate and θ is considered the
second.

The graph of f in polar coordinates is often described as \the graph of the
equation r = f (θ)." For example, suppose that f is a constant function, f (θ) = a

for all θ . The graph of the equation r = a is simply a circle with center O and
radius a (Figure 3). This example illustrates, in a rather blatant way, that polar
coordinates are likely to make things simpler in situations that involve symmetry
with respect to the origin O.

The graph of the equation r = θ is shown in Figure 4. The solid line corresponds
to all values of θ ≥ 0, while the dashed line corresponds to values of θ ≤ 0.

FI G U R E 4

As another example involving both positive and negative r, consider the graph of
the equation r = cos θ . Figure 5(a) shows the part that corresponds to 0 ≤ θ ≤ 90
[with θ in degrees]. Figure 5(b) shows the part corresponding to 90 ≤ θ ≤ 180;
here r < 0. You can check that no new points are added for θ > 180 or θ < 0.
It is easy to describe this same graph in terms of the cartesian coordinates of its
points. Since the polar coordinates of any point on the graph satisfyFI G U R E 5

r = cos θ,
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and hence
r2 = r cos θ,

its cartesian coordinates satisfy the equation

x2 + y2 = x

which describes a circle (Problem 3-16). [Conversely, it is clear that if the cartesian
coordinates of a point satisfy x2 +y2 = x, then it lies on the graph of the equation
r = cos θ .]

Although we've now gotten a circle in two different ways, we might well be
hesitant about trying to ˇnd the equation of an ellipse in polar coordinates. But
it turns out that we can get a very nice equation if we choose one of the foci as
the origin. Figure 6 shows an ellipse with one focus at O, with the sum of the
distances of all points from O and the other focus f being 2a. We've chosen f to
the left of O, with coordinates written as

(−2εa,0).

(We have 0 ≤ ε < 1, since we must have 2a > distance from f to O).

F I G U R E 6

The distance r from (x, y) to O is given by

(1) r2 = x2 + y2.

By assumption, the distance from (x, y) to f is 2a − r, hence

(2a − r)2 = (x − [−2εa])2 + y2,

or

(2) 4a2 − 4ar + r2 = x2 + 4εax + 4ε2a2 + y2.

Subtracting (1) from (2), and dividing by 4a, we get

a − r = εx + ε2a,
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or

r = a − εx − ε2a

= (1 − ε2)a − εx,

which we can write as

(3) r = 
− εx, for 
 = (1 − ε2)a.

Substituting r cos θ for x, we have

r = 
− εr cos θ,

r(1 + ε cos θ) = 
,

and thus

(4) r = 


1 + ε cos θ
.

In Chapter 4 we found that

(5)
x2

a2 + y2

b2 = 1

is the equation in cartesian coordinates for an ellipse with 2a as the sum of the
distances to the foci, but with the foci at (−c, 0) and (c,0), where

b =
√
a2 − c2.

Since the distance between the foci is 2c, this corresponds to the ellipse (4) when
we take c = εa or ε = c/a (with equation (3) determining 
). Conversely, given
the ellipse described by (4), for the corresponding equation (5) the value of a is
determined by (3),

a = 


1 − ε2 ,

and again using c = εa, we get

b =
√
a2 − c2 =

√
a2 − ε2a2 = a

√
1 − ε2 = 
√

1 − ε2
.

Thus, we can obtain a and b, the lengths of the major and minor axes, immediately
from ε and 
.

The number

ε = c

a
=
√
a2 − b2

a
=
√

1 −
(
b

a

)2

,

the eccentricity of the ellipse, determines the \shape" of the ellipse (the ratio of the
major and minor axes), while the number 
 determines its \size," as shown by (4).
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PROBLEMS

1. If two points have polar coordinates (r1, θ1) and (r2, θ2), show that the dis-
tance d between them is given by

d2 = r1
2 + r2

2 − 2r1r2 cos(θ1 − θ2).

What does this say geometrically?

2. Describe the general features of the graph of f in polar coordinates if

(i) f is even.
(ii) f is odd.
(iii) f (θ) = f (θ + 180) [when θ is measured in degrees].

3. Sketch the graphs of the following equations.

(i) r = a sin θ .
(ii) r = a sec θ . Hint: It is a very simple graph!
(iii) r = cos 2θ . Good luck on this one!
(iv) r = cos 3θ .
(v) r = | cos 2θ |.
(vi) r = | cos 3θ |.

4. Find equations for the cartesian coordinates of points on the graphs (i), (ii)
and (iii) in Problem 3.

5. Consider a hyperbola, where the difference of the distance between the two
foci is the constant 2a, and choose one focus at O and the other at (−2εa,0).
(In this case, we must have ε > 1). Show that we obtain the exact same
equation in polar coordinates

r = 


1 + ε cos θ

as we obtained for an ellipse.

6. Consider the set of points (x, y) such that the distance (x, y) to O is equal to
the distance from (x, y) to the line y = a (Figure 7). Show that the distance
to the line is a − r cos θ , and conclude that the equation can be written

a = r(1 + cos θ).

Notice that this equation for a parabola is again of the same from as (4).

7. Now, for any 
 and ε, consider the graph in polar coordinates of the equa-
tion (4), which implies (3). Show that the points satisfying this equation satisfy

(1 − ε2)x2 + y2 = 
2 − 2
εx.

Using Problem 4-16, show that this is an ellipse for ε < 1, a parabola forFI G U R E 7

ε = 1, and a hyperbola for ε > 1.
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8. (a) Sketch the graph of the cardioid r = 1 − sin θ .
(b) Show that it is also the graph of r = −1 − sin θ .
(c) Show that it can be described by the equation

x2 + y2 =
√
x2 + y2 − y,

and conclude that it can be described by the equation

(x2 + y2 + y)2 = x2 + y2

9. Sketch the graphs of the following equations.

(i) r = 1 − 1
2 sin θ .

(ii) r = 1 − 2 sin θ .
(iii) r = 2 + cos θ .

10. (a) Sketch the graph of the lemniscate

r2 = 2a2 cos 2θ.

(b) Find an equation for its cartesian coordinates.
(c) Show that it is the collection of all points P in Figure 8 satisfying

d1d2 = a2.
(d) Make a guess about the shape of the curves formed by the set of all P

satisfying d1d2 = b, when b > a2 and when b < a2.F I G U R E 8



CHAPTER 5 LIMITS

The concept of a limit is surely the most important, and probably the most difˇcult
one in all of calculus. The goal of this chapter is the deˇnition of limits, but we
are, once more, going to begin with a provisional deˇnition; what we shall deˇne
is not the word \limit" but the notion of a function approaching a limit.

PROVISIONAL DEFINITION The function f approaches the limit l near a, if we can make f (x) as close as we
like to l by requiring that x be sufˇciently close to, but unequal to, a.

Of the six functions graphed in Figure 1, only the ˇrst three approach l at a.
Notice that although g(a) is not deˇned, and h(a) is deˇned \the wrong way," it
is still true that g and h approach l near a. This is because we explicitly ruled
out, in our deˇnition, the necessity of ever considering the value of the function
at a|it is only necessary that f (x) should be close to l for x close to a, but unequal

to a. We are simply not interested in the value of f (a), or even in the question of
whether f (a) is deˇned.

FI G U R E 1

One convenient way of picturing the assertion that f approaches l near a is
provided by a method of drawing functions that was not mentioned in Chapter 4.
In this method, we draw two straight lines, each representing R, and arrows from
a point x in one, to f (x) in the other. Figure 2 illustrates such a picture for two
different functions.

90
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Now consider a function f whose drawing looks like Figure 3. Suppose we ask
that f (x) be close to l, say within the open interval B which has been drawn
in Figure 3. This can be guaranteed if we consider only the numbers x in the
interval A of Figure 3. (In this diagram we have chosen the largest interval which
will work; any smaller interval containing a could have been chosen instead.) If we
choose a smaller interval B ′ (Figure 4) we will, usually, have to choose a smaller A′,
but no matter how small we choose the open interval B, there is always supposed
to be some open interval A which works.

A similar pictorial interpretation is possible in terms of the graph of f , but in
this case the interval B must be drawn on the vertical axis, and the set A on the
horizontal axis. The fact that f (x) is in B when x is in Ameans that the part of the
graph lying over A is contained in the region which is bounded by the horizontal
lines through the end points of B; compare Figure 5(a), where a valid interval AF I G U R E 2

has been chosen, with Figure 5(b), where A is too large.
In order to apply our deˇnition to a particular function, let us consider f (x) =

x sin 1/x (Figure 6). Despite the erratic behavior of this function near 0 it is clear,
at least intuitively, that f approaches 0 near 0, and it is certainly to be hoped
that our deˇnition will allow us to reach the same conclusion. In the case we are
considering, both a and l of the deˇnition are 0, so we must ask if we can get
f (x) = x sin 1/x as close to 0 as desired if we require that x be sufˇciently close
to 0, but �= 0. To be speciˇc, suppose we wish to get x sin 1/x within 1

10 of 0. This
means we wantFI G U R E 3

− 1
10

< x sin
1
x
<

1
10
,

or, more succinctly, |x sin 1/x| < 1
10 . Now this is easy. Since

FI G U R E 4

∣∣∣∣ sin 1
x

∣∣∣∣ ≤ 1, for all x �= 0,

FI G U R E 5
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we have ∣∣∣∣ x sin
1
x

∣∣∣∣ ≤ |x|, for all x �= 0.

This means that if |x| < 1
10 and x �= 0, then |x sin 1/x| < 1

10 ; in other words,
x sin 1/x is within 1

10 of 0 provided that x is within 1
10 of 0, but �= 0. There is

nothing special about the number 1
10 ; it is just as easy to guarantee that |f (x)−0| <

1
100 |simply require that |x| < 1

100 , but x �= 0. In fact, if we take any positive
number ε we can make |f (x) − 0| < ε simply by requiring that |x| < ε, and
x �= 0.FI G U R E 6

For the function f (x) = x2 sin 1/x (Figure 7) it seems even clearer that f ap-
proaches 0 near 0. If, for example, we want∣∣∣∣ x2 sin

1
x

∣∣∣∣ < 1
10
,

then we certainly need only require that |x| < 1
10 and x �= 0, since this implies

that |x2| < 1
100 and consequently∣∣∣∣ x2 sin

1
x

∣∣∣∣ ≤ |x2| < 1
100

<
1
10
.

F I G U R E 7

(We could do even better, and allow |x| < 1/
√

10 and x �= 0, but there is no
particular virtue in being as economical as possible.) In general, if ε > 0, to
ensure that ∣∣∣∣ x2 sin

1
x

∣∣∣∣ < ε,

we need only require thatFI G U R E 8

|x| < ε and x �= 0,
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F I G U R E 9

provided that ε ≤ 1. If we are given an ε which is greater than 1 (it might be, even
thought it is \small" ε's which are of interest), then it does not sufˇce to require
that |x| < ε, but it certainly sufˇces to require that |x| < 1 and x �= 0.

As a third example, consider the function f (x) =
√

|x| sin 1/x (Figure 8). In
order to make |

√
|x| sin 1/x| < ε we can require that

|x| < ε2 and x �= 0

(the algebra is left to you).
Finally, let us consider the function f (x) = sin 1/x (Figure 9). For this function

it is false that f approaches 0 near 0. This amounts to saying that it is not true
for every number ε > 0 that we can get |f (x)− 0| < ε by choosing x sufˇciently
small, and �= 0. To show this we simply have to ˇnd one ε > 0 for which the
condition |f (x)− 0| < ε cannot be guaranteed, no matter how small we require
|x| to be. In fact, ε = 1

2 will do: it is impossible to ensure that |f (x)| < 1
2 noFI G U R E 1 0

matter how small we require |x| to be; for if A is any interval containing 0, there
is some number x = 1/(90+360n) which is in this interval, and for this x we have
f (x) = 1.

This same argument can be used (Figure 10) to show that f does not approach
any number near 0. To show this we must again ˇnd, for any particular number l,
some number ε > 0 so that |f (x) − l| < ε is not true, no matter how small x is
required to be. The choice ε = 1

2 works for any number l; that is, no matter how
small we require |x| to be, we cannot ensure that |f (x) − l| < 1

2 . The reason
is, that for any interval A containing 0 there is some x1 = 1/(90 + 360n) in this
interval, so that

f (x1) = 1,

and also some x2 = 1/(270 + 360m) in this interval, so that

f (x2) = −1.
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But the interval from l − 1
2 to l + 1

2 cannot contain both −1 and 1, since its total
length is only 1; so we cannot have

|1 − l| < 1
2 and also |−1 − l| < 1

2 ,

no matter what l is.
The phenomenon exhibited by f (x) = sin 1/x near 0 can occur in many ways.

If we consider the function

f (x) =
{

0, x irrational
1, x rational,

then, no matter what a is, f does not approach any number l near a. In fact, we
cannot make |f (x)− l| < 1

4 no matter how close we bring x to a, because in any
interval around a there are numbers x with f (x) = 0, and also numbers x withFI G U R E 1 1

f (x) = 1, so that we would need |0 − l| < 1
4 and also |1 − l| < 1

4 .

An amusing variation on this behavior is presented by the function shown in
Figure 11:

f (x) =
{
x, x rational
0, x irrational.

The behavior of this function is \opposite" to that of g(x) = sin 1/x; it ap-
proaches 0 at 0, but does not approach any number at a, if a �= 0. By now you
should have no difˇculty convincing yourself that this is true.

As a contrast to the functions considered so far, which have been quite patho-
logical, we will now examine some of the simplest functions.

If f (x) = c, then f approaches c near a, for every number a. In fact, to ensure
that |f (x)−c| < ε one does not need to restrict x to be near a at all; the conditionFI G U R E 1 2

is automatically satisˇed (Figure 12).
As a slight variation, let f be the function shown in Figure 13:

f (x) =
{ −1, x < 0

1, x > 0.

If a > 0, then f approaches 1 near a: indeed, to ensure that |f (x) − 1| < ε it
certainly sufˇces to require that |x − a| < a, since this implies

−a < x − a

or 0 < x

so that f (x) = 1. Similarly, if b < 0, then f approaches −1 near b: to ensure
that |f (x)− (−1)| < ε it sufˇces to require that |x − b| < −b. Finally, as you may
easily check, f does not approach any number near 0.

The function f (x) = x is easily dealt with. Clearly f approaches a near a: to
ensure that |f (x)− a| < ε we just have to require that |x − a| < ε.F I G U R E 1 3

The function f (x) = x2 requires a little more work. To show that f approaches
a2 near a, we must decide how to ensure that

|x2 − a2| < ε.
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Factoring looks like the most promising procedure: we want

|x − a| · |x + a| < ε.

Obviously the factor |x + a| is the one that will cause trouble. On the other
hand, there is no need to make |x + a| particularly small; as long as we know
some bound on the values of |x + a| we will be in good shape. For example, if
|x + a| < 1,000,000, then we will just need to require that |x − a| < ε/1,000,000.
Therefore, to begin with, let us require that |x−a| < 1 (any positive number other
than 1 would do just as well); presumably this will ensure that x is not too large,
and consequently that |x + a| is not too large. As a matter of fact, Problem 1-12
shows that

|x| − |a| ≤ |x − a| < 1,

so
|x| < 1 + |a|,

and consequently
|x + a| ≤ |x| + |a| < 2|a| + 1.

Now we need only the additional requirement that |x−a| < ε/(2|a|+1). In other
words,

if |x − a| < min
(

1,
ε

2|a| + 1

)
, then |x2 − a2| < ε.

Naturally, min(1, ε/(2|a| + 1)) will just be ε/(2|a| + 1) for small ε.
Precisely the same sort of trick will show that if f (x) = x3, then f approaches

a3 near a. In fact,

if |x − a| < min
(

1,
ε

(1 + |a|)2 + |a|(1 + |a|)+ |a|2
)
, then |x3 − a3| < ε.

The proof of this assertion will show where the weird denominator comes from:
If |x − a| < 1, then |x| < |a| + 1, and consequently

|x2 + ax + a2| ≤ |x|2 + |a| · |x| + |a|2
< (1 + |a|)2 + |a|(1 + |a|)+ |a|2.

Therefore

|x3 − a3| = |x − a| · |x2 + ax + a2|
<

ε

(1 + |a|)2 + |a|(1 + |a|)+ |a|2 · [(1 + |a|)2 + |a|(1 + |a|)+ |a|2]

= ε.

The time has now come to point out that of the many demonstrations about
limits which we have given, not one has been a real proof. The fault lies not
with our reasoning, but with our deˇnition. If our provisional deˇnition of a
function was open to criticism, our provisional deˇnition of approaching a limit
is even more vulnerable. This deˇnition is simply not sufˇciently precise to be
used in proofs. It is hardly clear how one \makes" f (x) close to l (whatever
\close" means) by \requiring" x to be sufˇciently close to a (however close \sufˇ-
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ciently" close is supposed to be). Despite the criticisms of our deˇnition you may
feel (I certainly hope you do) that our arguments were nevertheless quite convinc-
ing. In order to present any sort of argument at all, we have been practically forced
to invent the real deˇnition. It is possible to arrive at this deˇnition in several steps,
each one clarifying some obscure phrase which still remains. Let us begin, once
again, with the provisional deˇnition:

The function f approaches the limit l near a, if we can make f (x) as close
as we like to l by requiring that x be sufˇciently close to, but unequal to, a.

The very ˇrst change which we made in this deˇnition was to note that making
f (x) close to l meant making |f (x)− l| small, and similarly for x and a:

The function f approaches the limit l near a, if we can make |f (x)− l| as
small as we like by requiring that |x − a| be sufˇciently small, and x �= a.

The second, more crucial, change was to note that making |f (x)− l| \as small as
we like" means making |f (x)− l| < ε for any ε > 0 that happens to be given us:

The function f approaches the limit l near a, if for every number ε > 0 we
can make |f (x) − l| < ε by requiring that |x − a| be sufˇciently small, and
x �= a.

There is a common pattern to all the demonstrations about limits which we have
given. For each number ε > 0 we found some other positive number, δ say, with
the property that if x �= a and |x − a| < δ, then |f (x)− l| < ε. For the function
f (x) = x sin 1/x (with a = 0, l = 0), the number δ was just the number ε;
for f (x) =

√
|x| sin 1/x, it was ε2; for f (x) = x2 it was the minimum of 1 and

ε/(2|a| + 1). In general, it may not be at all clear how to ˇnd the number δ,
given ε, but it is the condition |x−a| < δ which expresses how small \sufˇciently"
small must be:

The function f approaches the limit l near a, if for every ε > 0 there is some
δ > 0 such that, for all x, if |x − a| < δ and x �= a, then |f (x)− l| < ε.

This is practically the deˇnition we will adopt. We will make only one trivial
change, noting that \|x − a| < δ and x �= a" can just as well be expressed \0 <
|x − a| < δ."

DEFINITION The function f approaches the limit l near a means: for every ε > 0 there
is some δ > 0 such that, for all x, if 0 < |x − a| < δ, then |f (x)− l| < ε.
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This deˇnition is so important (everything we do from now on depends on it) that
proceeding any further without knowing it is hopeless. If necessary memorize it,
like a poem! That, at least, is better than stating it incorrectly; if you do this you
are doomed to give incorrect proofs. A good exercise in giving correct proofs is to
review every fact already demonstrated about functions approaching limits, giving
real proofs of each. This requires writing down the correct deˇnition of what you
are proving, but not much more|all the algebraic work has been done already.
When proving that f does not approach l at a, be sure to negate the deˇnition
correctly:

If it is not true that

for every ε > 0 there is some δ > 0 such that, for all x, if 0 < |x − a| < δ,
then |f (x)− l| < ε,

then

there is some ε > 0 such that for every δ > 0 there is some x which satisˇes
0 < |x − a| < δ but not |f (x)− l| < ε.

Thus, to show that the function f (x) = sin 1/x does not approach 0 near 0, we
consider ε = 1

2 and note that for every δ > 0 there is some x with 0 < |x − 0| < δ

but not | sin 1/x − 0 | < 1
2 |namely, an x of the form 1/(90 + 360n), where n is

so large that 1/(90 + 360n) < δ.
As an illustration of the use of the deˇnition of a function approaching a limit,

we have reserved the function shown in Figure 14, a standard example, but one
of the most complicated:

f (x) =
{

0, x irrational, 0 < x < 1
1/q, x = p/q in lowest terms, 0 < x < 1.

(Recall that p/q is in lowest terms if p and q are integers with no common factor
and q > 0.)

F I G U R E 1 4
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For any number a, with 0 < a < 1, the function f approaches 0 at a. To prove
this, consider any number ε > 0. Let n be a natural number so large that 1/n ≤ ε.
Notice that the only numbers x for which |f (x)− 0| < ε could be false are:

1
2
; 1

3
,

2
3
; 1

4
,

3
4
; 1

5
,

2
5
,

3
5
,

4
5
; . . . ; 1

n
, . . . ,

n− 1
n

.

(If a is rational, then a might be one of these numbers.) However many of these
numbers there may be, there are, at any rate, only ˇnitely many. Therefore, of all
these numbers, one is closest to a; that is, |p/q − a| is smallest for one p/q among
these numbers. (If a happens to be one of these numbers, then consider only the
values |p/q − a| for p/q �= a.) This closest distance may be chosen as the δ. For
if 0 < |x − a| < δ, then x is not one of

1
2
, . . . ,

n− 1
n

and therefore |f (x) − 0| < ε is true. This completes the proof. Note that our
description of the δ which works for a given ε is completely adequate|there is no
reason why we must give a formula for δ in terms of ε.

Armed with our deˇnition, we are now prepared to prove our ˇrst theorem; you
have probably assumed the result all along, which is a very reasonable thing to do.
This theorem is really a test case for our deˇnition: if the theorem could not be
proved, our deˇnition would be useless.

THEOREM 1 A function cannot approach two different limits near a. In other words, if f
approaches l near a, and f approaches m near a, then l = m.

PROOF Since this is our ˇrst theorem about limits it will certainly be necessary to translate
the hypotheses according to the deˇnition.

Since f approaches l near a, we know that for any ε > 0 there is some number
δ1 > 0 such that, for all x,

if 0 < |x − a| < δ1, then |f (x)− l| < ε.

We also know, since f approaches m near a, that there is some δ2 > 0 such that,
for all x,

if 0 < |x − a| < δ2, then |f (x)− m| < ε.

We have had to use two numbers, δ1 and δ2, since there is no guarantee that the δ
which works in one deˇnition will work in the other. But, in fact, it is now easy to
conclude that for any ε > 0 there is some δ > 0 such that, for all x,

if 0 < |x − a| < δ, then |f (x)− l| < ε and |f (x)−m| < ε;

we simply choose δ = min(δ1, δ2).
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To complete the proof we just have to pick a particular ε > 0 for which the two
conditions

|f (x)− l| < ε and |f (x)−m| < ε

cannot both hold, if l �= m. The proper choice is suggested by Figure 15. If
l �= m, so that |l −m| > 0, we can choose |l −m|/2 as our ε. It follows that there
is a δ > 0 such that, for all x,

if 0 < |x − a| < δ, then |f (x)− l| < |l −m|
2

and |f (x)−m| < |l −m|
2

.

This implies that for 0 < |x − a| < δ we haveFI G U R E 1 5

|l − m| = |l − f (x)+ f (x)−m| ≤ |l − f (x)| + |f (x)−m|
<

|l −m|
2

+ |l −m|
2

= |l −m|,
a contradiction.

The number l which f approaches near a is denoted by lim
x→a

f (x) (read: the limit
of f (x) as x approaches a). This deˇnition is possible only because of Theorem 1,
which ensures that lim

x→a
f (x) never has to stand for two different numbers. The

equation
lim
x→a

f (x) = l

has exactly the same meaning as the phrase

f approaches l near a.

The possibility still remains that f does not approach l near a, for any l, so that
lim
x→a

f (x) = l is false for every number l. This is usually expressed by saying that

\lim
x→a

f (x) does not exist."

Notice that our new notation introduces an extra, utterly irrelevant letter x,
which could be replaced by t , y, or any other letter which does not already
appear|the symbols

lim
x→a

f (x), lim
t→a

f (t), lim
y→a

f (y),

all denote precisely the same number, which depends on f and a, and has nothing
to do with x, t , or y (these letters, in fact, do not denote anything at all). A more
logical symbol would be something like lim

a
f , but this notation, despite its brevity,

is so infuriatingly rigid that almost no one has seriously tried to use it. The notation
lim
x→a

f (x) is much more useful because a function f often has no simple name, even
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though it might be possible to express f (x) by a simple formula involving x. Thus,
the short symbol

lim
x→a

(x2 + sin x)

could be paraphrased only by the awkward expression

lim
a
f, where f (x) = x2 + sin x.

Another advantage of the standard symbolism is illustrated by the expressions

lim
x→a

x + t3,

lim
t→a

x + t3.

The ˇrst means the number which f approaches near a when

f (x) = x + t3, for all x;

the second means the number which f approaches near a when

f (t) = x + t3, for all t .

You should have little difˇculty (especially if you consult Theorem 2) proving that

lim
x→a

x + t3 = a + t3,

lim
t→a

x + t3 = x + a3.

These examples illustrate the main advantage of our notation, which is its �ex-
ibility. In fact, the notation lim

x→a
f (x) is so �exible that there is some danger of

forgetting what it really means. Here is a simple exercise in the use of this no-
tation, which will be important later: ˇrst interpret precisely, and then prove the
equality of the expressions

lim
x→a

f (x) and lim
h→0

f (a + h).

An important part of this chapter is the proof of a theorem which will make it
easy to ˇnd many limits. The proof depends upon certain properties of inequalities
and absolute values, hardly surprising when one considers the deˇnition of limit.
Although these facts have already been stated in Problems 1-20, 1-21, and 1-22,
because of their importance they will be presented once again, in the form of a
lemma (a lemma is an auxiliary theorem, a result that justiˇes its existence only
by virtue of its prominent role in the proof of another theorem). The lemma says,
roughly, that if x is close to x0, and y is close to y0, then x + y will be close to
x0 + y0, and xy will be close to x0y0, and 1/y will be close to 1/y0. This intuitive
statement is much easier to remember than the precise estimates of the lemma,
and it is not unreasonable to read the proof of Theorem 2 ˇrst, in order to see just
how these estimates are used.
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LEMMA (1) If
|x − x0| < ε

2
and |y − y0| < ε

2
,

then
|(x + y)− (x0 + y0)| < ε.

(2) If

|x − x0| < min
(

1,
ε

2(|y0| + 1)

)
and |y − y0| < ε

2(|x0| + 1)
,

then
|xy − x0y0| < ε.

(3) If y0 �= 0 and

|y − y0| < min

(
|y0|
2
,
ε|y0|2

2

)
,

then y �= 0 and ∣∣∣∣ 1
y

− 1
y0

∣∣∣∣ < ε.
PROOF (1) |(x + y)− (x0 + y0)| = |(x − x0)+ (y − y0)|

≤ |x − x0| + |y − y0| < ε

2
+ ε

2
= ε.

(2) Since |x − x0| < 1 we have

|x| − |x0| ≤ |x − x0| < 1,

so that
|x| < 1 + |x0|.

Thus

|xy − x0y0| = |x(y − y0)+ y0(x − x0)|
≤ |x| · |y − y0| + |y0| · |x − x0|
< (1 + |x0|) · ε

2(|x0| + 1)
+ |y0| · ε

2(|y0| + 1)

<
ε

2
+ ε

2
= ε.

(3) We have
|y0| − |y| ≤ |y − y0| < y0

2
,

so |y| > |y0|/2. In particular, y �= 0, and

1
|y| <

2
|y0|

.

Thus ∣∣∣∣ 1
y

− 1
y0

∣∣∣∣ = |y0 − y|
|y| · |y0|

<
2

|y0|
· 1
|y0|

· ε|y0|2
2

= ε.
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THEOREM 2 If lim
x→a

f (x) = l and lim
x→a

g(x) = m, then

(1) lim
x→a

(f + g)(x) = l +m;
(2) lim

x→a
(f · g)(x) = l ·m.

Moreover, if m �= 0, then

(3) lim
x→a

(
1
g

)
(x) = 1

m
.

PROOF The hypothesis means that for every ε > 0 there are δ1, δ2 > 0 such that, for
all x,

if 0 < |x − a| < δ1, then |f (x)− l| < ε,

and if 0 < |x − a| < δ2, then |g(x)− m| < ε.
This means (since, after all, ε/2 is also a positive number) that there are δ1, δ2 > 0
such that, for all x,

if 0 < |x − a| < δ1, then |f (x)− l| < ε

2
,

and if 0 < |x − a| < δ2, then |g(x)−m| < ε

2
.

Now let δ = min(δ1, δ2). If 0 < |x − a| < δ, then 0 < |x − a| < δ1 and
0 < |x − a| < δ2 are both true, so both

|f (x)− l| < ε

2
and |g(x)− m| < ε

2

are true. But by part (1) of the lemma this implies that |(f + g)(x)− (l+m)| < ε.
This proves (1).

To prove (2) we proceed similarly, after consulting part (2) of the lemma. If
ε > 0 there are δ1, δ2 > 0 such that, for all x,

if 0 < |x − a| < δ1, then |f (x)− l| < min
(

1,
ε

2(|m| + 1)

)
,

and if 0 < |x − a| < δ2, then |g(x)− m| < ε

2(|l| + 1)
.

Again let δ = min(δ1, δ2). If 0 < |x − a| < δ, then

|f (x)− l| < min
(

1,
ε

2(|m| + 1)

)
and |g(x)−m| < ε

2(|l| + 1)
.

So, by the lemma, |(f · g)(x)− l ·m| < ε, and this proves (2).
Finally, if ε > 0 there is a δ > 0 such that, for all x,

if 0 < |x − a| < δ, then |g(x)− m| < min

(
|m|
2
,
ε|m|2

2

)
.
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But according to part (3) of the lemma this means, ˇrst, that g(x) �= 0, so (1/g)(x)
makes sense, and second that ∣∣∣∣

(
1
g

)
(x)− 1

m

∣∣∣∣ < ε.

This proves (3).

Using Theorem 2 we can prove, trivially, such facts as

lim
x→a

x3 + 7x5

x2 + 1
= a3 + 7a5

a2 + 1
,

without going through the laborious process of ˇnding a δ, given an ε. We must
begin with

lim
x→a

7 = 7,

lim
x→a

1 = 1,

lim
x→a

x = a,

but these are easy to prove directly. If we want to ˇnd the δ, however, the proof of
Theorem 2 amounts to a prescription for doing this. Suppose, to take a simpler
example, that we want to ˇnd a δ such that, for all x,

if 0 < |x − a| < δ, then |x2 + x − (a2 + a)| < ε.

Consulting the proof of Theorem 2(1), we see that we must ˇrst ˇnd δ1 and δ2 > 0
such that, for all x,

if 0 < |x − a| < δ1, then |x2 − a2| < ε

2
and if 0 < |x − a| < δ2, then |x − a| < ε

2
.

Since we have already given proofs that lim
x→a

x2 = a2 and lim
x→a

x = a, we know how
to do this:

δ1 = min

(
1,

ε

2
2|a| + 1

)
,

δ2 = ε

2
.

Thus we can take

δ = min(δ1, δ2) = min

(
min

(
1,

ε

2
2|a| + 1

)
,
ε

2

)
.
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If a �= 0, the same method can be used to ˇnd a δ > 0 such that, for all x,

if 0 < |x − a| < δ, then
∣∣∣∣ 1
x2 − 1

a2

∣∣∣∣ < ε.

The proof of Theorem 2(3) shows that the second condition will follow if we ˇnd
a δ > 0 such that, for all x,

if 0 < |x − a| < δ, then |x2 − a2| < min

(
|a|2
2
,
ε|a|4

2

)
.

Thus we can take

δ = min




1,

min

(
|a|2
2
,
ε|a|4

2

)

2|a| + 1



.

Naturally, these complicated expressions for δ can be simpliˇed considerably, after
they have been derived.

One technical detail in the proof of Theorem 2 deserves some discussion. In
order for lim

x→a
f (x) to be deˇned it is, as we know, not necessary for f to be deˇned

at a, nor is it necessary for f to be deˇned at all points x �= a. However, there
must be some δ > 0 such that f (x) is deˇned for x satisfying 0 < |x − a| < δ;
otherwise the clause

\if 0 < |x − a| < δ, then |f (x)− l| < ε"

would make no sense at all, since the symbol f (x) would make no sense for
some x's. If f and g are two functions for which the deˇnition makes sense,
it is easy to see that the same is true for f + g and f · g. But this is not so
clear for 1/g, since 1/g is undeˇned for x with g(x) = 0. However, this fact gets
established in the proof of Theorem 2(3).

There are times when we would like to speak of the limit which f approaches
at a, even though there is no δ > 0 such that f (x) is deˇned for x satisfyingFI G U R E 1 6

0 < |x − a| < δ. For example, we want to distinguish the behavior of the two
functions shown in Figure 16, even though they are not deˇned for numbers less
than a. For the function of Figure 16(a) we write

lim
x→a+

f (x) = l or lim
x↓a

f (x) = l.

(The symbols on the left are read: the limit of f (x) as x approaches a from above.)
These \limits from above" are obviously closely related to ordinary limits, and the
deˇnition is very similar: lim

x→a+
f (x) = l means that for every ε > 0 there is a δ > 0

such that, for all x,

if 0 < x − a < δ, then |f (x)− l| < ε.

(The condition \0 < x − a < δ" is equivalent to \0 < |x − a| < δ and x > a.")
\Limits from below" (Figure 17) are deˇned similarly: lim

x→a−
f (x) = l (or

FI G U R E 1 7
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lim
x↑a

f (x) = l) means that for every ε > 0 there is a δ > 0 such that, for

all x,

if 0 < a − x < δ, then |f (x)− l| < ε.

It is quite possible to consider limits from above and below even if f is deˇned
for numbers both greater and less than a. Thus, for the function f of Figure 13,
we have

lim
x→0+

f (x) = 1 and lim
x→0−

f (x) = −1.

It is an easy exercise (Problem 29) to show that lim
x→a

f (x) exists if and only if
lim
x→a+

f (x) and lim
x→a−

f (x) both exist and are equal.

Like the deˇnitions of limits from above and below, which have been smuggled
into the text informally, there are other modiˇcations of the limit concept which
will be found useful. In Chapter 4 it was claimed that if x is large, then sin 1/x is
close to 0. This assertion is usually written

lim
x→∞ sin 1/x = 0.

F I G U R E 1 8

The symbol lim
x→∞ f (x) is read \the limit of f (x) as x approaches ∞," or \as

x becomes inˇnite," and a limit of the form lim
x→∞ f (x) is often called a limit at

inˇnity. Figure 18 illustrates a general situation where lim
x→∞ f (x) = l. Formally,

lim
x→∞ f (x) = l means that for every ε > 0 there is a number N such that, for all x,

if x > N, then |f (x)− l| < ε.

The analogy with the deˇnition of ordinary limits should be clear: whereas the
condition \0 < |x − a| < δ" expresses the fact that x is close to a, the condition
\x > N" expresses the fact that x is large.

We have spent so little time on limits from above and below, and at inˇnity,
because the general philosophy behind the deˇnitions should be clear if you un-
derstand the deˇnition of ordinary limits (which are by far the most important).
Many exercises on these deˇnitions are provided in the Problems, which also con-
tain several other types of limits which are occasionally useful.
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PROBLEMS

1. Find the following limits. (These limits all follow, after some algebraic ma-
nipulations, from the various parts of Theorem 2; be sure you know which
ones are used in each case, but don't bother listing them.)

(i) lim
x→1

x2 − 1
x + 1

.

(ii) lim
x→2

x3 − 8
x − 2

.

(iii) lim
x→3

x3 − 8
x − 2

.

(iv) lim
x→y

xn − yn

x − y
.

(v) lim
y→x

xn − yn

x − y
.

(vi) lim
h→0

√
a + h− √

a

h
.

2. Find the following limits.

(i) lim
x→1

1 − √
x

1 − x
.

(ii) lim
x→0

1 −
√

1 − x2

x
.

(iii) lim
x→0

1 −
√

1 − x2

x2 .

3. In each of the following cases, ˇnd a δ such that |f (x) − l| < ε for all x
satisfying 0 < |x − a| < δ.

(i) f (x) = x4; l = a4.

(ii) f (x) = 1
x

; a = 1, l = 1.

(iii) f (x) = x4 + 1
x

; a = 1, l = 2.

(iv) f (x) = x

1 + sin2 x
; a = 0, l = 0.

(v) f (x) =
√

|x|; a = 0, l = 0.
(vi) f (x) = √

x; a = 1, l = 1.

4. For each of the functions in Problem 4-17, decide for which numbers a the
limit lim

x→a
f (x) exists.

*5. (a) Do the same for each of the functions in Problem 4-19.
(b) Same problem, if we use inˇnite decimals ending in a string of 0's

instead of those ending in a string of 9's.
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6. Suppose the functions f and g have the following property: for all ε > 0
and all x,

if 0 < |x − 2| < sin2

(
ε2

9

)
+ ε, then |f (x)− 2| < ε,

if 0 < |x − 2| < ε2, then |g(x)− 4| < ε.

For each ε > 0 ˇnd a δ > 0 such that, for all x,

(i) if 0 < |x − 2| < δ, then |f (x)+ g(x)− 6| < ε.
(ii) if 0 < |x − 2| < δ, then |f (x)g(x)− 8| < ε.

(iii) if 0 < |x − 2| < δ, then
∣∣∣∣ 1
g(x)

− 1
4

∣∣∣∣ < ε.
(iv) if 0 < |x − 2| < δ, then

∣∣∣∣f (x)g(x)
− 1

2

∣∣∣∣ < ε.

7. Give an example of a function f for which the following assertion is false:
If |f (x) − l| < ε when 0 < |x − a| < δ, then |f (x) − l| < ε/2 when
0 < |x − a| < δ/2.

8. (a) If lim
x→a

f (x) and lim
x→a

g(x) do not exist, can lim
x→a

[f (x) + g(x)] or

lim
x→a

f (x)g(x) exist?

(b) If lim
x→a

f (x) exists and lim
x→a

[f (x)+ g(x)] exists, must lim
x→a

g(x) exist?

(c) If lim
x→a

f (x) exists and lim
x→a

g(x) does not exist, can lim
x→a

[f (x)+g(x)] exist?

(d) If lim
x→a

f (x) exists and lim
x→a

f (x)g(x) exists, does it follow that lim
x→a

g(x)

exists?

9. Prove that lim
x→a

f (x) = lim
h→0

f (a + h). (This is mainly an exercise in under-

standing what the terms mean.)

10. (a) Prove that lim
x→a

f (x) = l if and only if lim
x→a

[f (x)− l] = 0. (First see why
the assertion is obvious; then provide a rigorous proof. In this chapter
most problems which ask for proofs should be treated in the same way.)

(b) Prove that lim
x→0

f (x) = lim
x→a

f (x − a).

(c) Prove that lim
x→0

f (x) = lim
x→0

f (x3).

(d) Give an example where lim
x→0

f (x2) exists, but lim
x→0

f (x) does not.

11. Suppose there is a δ > 0 such that f (x) = g(x) when 0 < |x− a| < δ. Prove
that lim

x→a
f (x) = lim

x→a
g(x). In other words, lim

x→a
f (x) depends only on the

values of f (x) for x near a|this fact is often expressed by saying that limits
are a \local property." (It will clearly help to use δ′, or some other letter,
instead of δ, in the deˇnition of limits.)

12. (a) Suppose that f (x) ≤ g(x) for all x. Prove that lim
x→a

f (x) ≤ lim
x→a

g(x),
provided that these limits exist.
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(b) How can the hypotheses by weakened?
(c) If f (x) < g(x) for all x, does it necessarily follow that lim

x→a
f (x) <

lim
x→a

g(x)?

13. Suppose that f (x) ≤ g(x) ≤ h(x) and that lim
x→a

f (x) = lim
x→a

h(x). Prove that

lim
x→a

g(x) exists, and that lim
x→a

g(x) = lim
x→a

f (x) = lim
x→a

h(x). (Draw a picture!)

*14. (a) Prove that if lim
x→0

f (x)/x = l and b �= 0, then lim
x→0

f (bx)/x = bl. Hint:

Write f (bx)/x = b[f (bx)/bx].
(b) What happens if b = 0?
(c) Part (a) enables us to ˇnd lim

x→0
(sin 2x)/x in terms of lim

x→0
(sin x)/x. Find

this limit in another way.

15. Evaluate the following limits in terms of the number α = lim
x→0

(sin x)/x.

(i) lim
x→0

sin 2x
x

.

(ii) lim
x→0

sin ax
sin bx

.

(iii) lim
x→0

sin2 2x
x

.

(iv) lim
x→0

sin2 2x
x2 .

(v) lim
x→0

1 − cos x
x2 .

(vi) lim
x→0

tan2 x + 2x
x + x2 .

(vii) lim
x→0

x sin x
1 − cos x

.

(viii) lim
h→0

sin(x + h)− sin x
h

.

(ix) lim
x→1

sin(x2 − 1)
x − 1

.

(x) lim
x→0

x2(3 + sin x)
(x + sin x)2

.

(xi) lim
x→1

(x2 − 1)3 sin
(

1
x − 1

)3

.

16. (a) Prove that if lim
x→a

f (x) = l, then lim
x→a

|f |(x) = |l|.
(b) Prove that if lim

x→a
f (x) = l and lim

x→a
g(x) = m, then lim

x→a
max(f, g)(x) =

max(l, m) and similarly for min.
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17. (a) Prove that lim
x→0

1/x does not exist, i.e., show that lim
x→0

1/x = l is false for

every number l.
(b) Prove that lim

x→1
1/(x − 1) does not exist.

18. Prove that if lim
x→a

f (x) = l, then there is a number δ > 0 and a number M

such that |f (x)| < M if 0 < |x − a| < δ. (What does this mean pictorially?)
Hint: Why does it sufˇce to prove that l−1 < f (x) < l+1 for 0 < |x−a| < δ?

19. Prove that if f (x) = 0 for irrational x and f (x) = 1 for rational x,
then lim

x→a
f (x) does not exist for any a.

*20. Prove that if f (x) = x for rational x, and f (x) = −x for irrational x, then
lim
x→a

f (x) does not exist if a �= 0.

21. (a) Prove that if lim
x→0

g(x) = 0, then lim
x→0

g(x) sin 1/x = 0.

(b) Generalize this fact as follows: If lim
x→0

g(x) = 0 and |h(x)| ≤ M for all x,

then lim
x→0

g(x)h(x) = 0. (Naturally it is unnecessary to do part (a) if you

succeed in doing part (b); actually the statement of part (b) may make it
easier than (a)|that's one of the values of generalization.)

22. Consider a function f with the following property: if g is any function for
which lim

x→0
g(x) does not exist, then lim

x→0
[f (x) + g(x)] also does not exist.

Prove that this happens if and only if lim
x→0

f (x) does exist. Hint: This is

actually very easy: the assumption that lim
x→0

f (x) does not exist leads to an

immediate contradiction if you consider the right g.

**23. This problem is the analogue of Problem 22 when f +g is replaced by f ·g.
In this case the situation is considerably more complex, and the analysis
requires several steps (those in search of an especially challenging problem
can attempt an independent solution).

(a) Suppose that lim
x→0

f (x) exists and is �= 0. Prove that if lim
x→0

g(x) does not

exist, then lim
x→0

f (x)g(x) also does not exist.

(b) Prove the same result if lim
x→0

|f (x)| = ∞. (The precise deˇnition of this

sort of limit is given in Problem 37.)
(c) Prove that if neither of these two conditions holds, then there is a function

g such that lim
x→0

g(x) does not exist, but lim
x→0

f (x)g(x) does exist.

Hint: Consider separately the following two cases: (1) for some ε > 0
we have |f (x)| > ε for all sufˇciently small x. (2) For every ε > 0, there
are arbitrarily small x with |f (x)| < ε. In the second case, begin by
choosing points xn with |xn| < 1/n and |f (xn)| < 1/n.

*24. Suppose that An is, for each natural number n, some finite set of numbers in
[0,1], and that An and Am have no members in common if m �= n. Deˇne
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f as follows:

f (x) =
{

1/n, x in An
0, x not in An for any n.

Prove that lim
x→a

f (x) = 0 for all a in [0,1].

25. Explain why the following deˇnitions of lim
x→a

f (x) = l are all correct:
For every δ > 0 there is an ε > 0 such that, for all x,

(i) if 0 < |x − a| < ε, then |f (x)− l| < δ.
(ii) if 0 < |x − a| < ε, then |f (x)− l| ≤ δ.
(iii) if 0 < |x − a| < ε, then |f (x)− l| < 5δ.
(iv) if 0 < |x − a| < ε/10, then |f (x)− l| < δ.

*26. Give examples to show that the following deˇnitions of lim
x→a

f (x) = l are not

correct.

(a) For all δ > 0 there is an ε > 0 such that if 0 < |x − a| < δ, then
|f (x)− l| < ε.

(b) For all ε > 0 there is a δ > 0 such that if |f (x) − l| < ε, then 0 <

|x − a| < δ.
27. For each of the functions in Problem 4-17 indicate for which numbers a the

one-sided limits lim
x→a+

f (x) and lim
x→a−

f (x) exist.

*28. (a) Do the same for each of the functions in Problem 4-19.
(b) Also consider what happens if decimals ending in 0's are used instead of

decimals ending in 9's.

29. Prove that lim
x→a

f (x) exists if lim
x→a+

f (x) = lim
x→a−

f (x).

30. Prove that

(i) lim
x→0+

f (x) = lim
x→0−

f (−x).
(ii) lim

x→0
f (|x|) = lim

x→0+
f (x).

(iii) lim
x→0

f (x2) = lim
x→0+

f (x).

(These equations, and others like them, are open to several interpretations.
They might mean only that the two limits are equal if they both exist; or that
if a certain one of the limits exists, the other also exists and is equal to it; or
that if either limit exists, then the other exists and is equal to it. Decide for
yourself which interpretations are suitable.)

*31. Suppose that lim
x→a−

f (x) < lim
x→a+

f (x). (Draw a picture to illustrate this as-

sertion.) Prove that there is some δ > 0 such that f (x) < f (y) whenever
x < a < y and |x − a| < δ and |y − a| < δ. Is the converse true?
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*32. Prove that lim
x→∞(anx

n+· · ·+a0)/(bmx
m+· · ·+b0) exists if and only if m ≥ n.

What is the limit when m = n? When m > n? Hint: the one easy limit is
lim
x→∞ 1/xk = 0; do some algebra so that this is the only information you need.

33. Find the following limits.

(i) lim
x→∞

x + sin3
x

5x + 6
.

(ii) lim
x→∞

x sin x
x2 + 5

.

(iii) lim
x→∞

√
x2 + x − x.

(iv) lim
x→∞

x2(1 + sin2
x)

(x + sin x)2
.

34. Prove that lim
x→0+

f (1/x) = lim
x→∞ f (x).

35. Find the following limits in terms of the number α = lim
x→0

(sin x)/x.

(i) lim
x→∞

sin x
x

.

(ii) lim
x→∞ x sin

1
x

.

36. Deˇne \ lim
x→−∞ f (x) = l."

(a) Find lim
x→−∞(anx

n + · · · + a0)/(bmx
m + · · · + b0).

(b) Prove that lim
x→∞ f (x) = lim

x→−∞f (−x).
(c) Prove that lim

x→0−
f (1/x) = lim

x→−∞f (x).

37. We deˇne lim
x→a

f (x) = ∞ to mean that for all N there is a δ > 0 such that,

for all x, if 0 < |x − a| < δ, then f (x) > N . (Draw an appropriate picture!)

(a) Show that lim
x→3

1/(x − 3)2 = ∞.

(b) Prove that if f (x) > ε > 0 for all x, and lim
x→a

g(x) = 0, then

lim
x→a

f (x)/|g(x)| = ∞.

38. (a) Deˇne lim
x→a+

f (x) = ∞, lim
x→a−

f (x) = ∞, and lim
x→a

f (x) = ∞. (Or at least

convince yourself that you could write down the deˇnitions if you had
the energy. How many other such symbols can you deˇne?)

(b) Prove that lim
x→0+

1/x = ∞.

(c) Prove that lim
x→0+

f (x) = ∞ if and only if lim
x→∞ f (1/x) = ∞.

39. Find the following limits, when they exist.

(i) lim
x→∞

x3 + 4x − 7
7x2 − x + 1
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(ii) lim
x→∞ x(1 + sin2

x).

(iii) lim
x→∞ x sin2 x.

(iv) lim
x→∞ x

2 sin
1
x

.

(v) lim
x→∞

√
x2 + 2x − x.

(vi) lim
x→∞ x(

√
x + 2 − √

x ).

(vii) lim
x→∞

√
|x|
x

.

40. (a) Find the perimeter of a regular n-gon inscribed in a circle of radius r;
use radian measure for any trigonometric functions involved. [Answer:
2rn sin(π/n).]

(b) What value does this perimeter approach as n becomes very large?

41. After sending the manuscript for the ˇrst edition of this book off to the printer,
I thought of a much simpler way to prove that lim

x→a
x2 = a2 and lim

x→a
x3 =

a3, without going through all the factoring tricks on page 95. Suppose, for
example, that we want to prove that lim

x→a
x2 = a2, where a > 0. Given

ε > 0, we simply let δ be the minimum of
√
a2 + ε − a and a −

√
a2 − ε

(see Figure 19); then |x − a| < δ implies that
√
a2 − ε < x <

√
a2 + ε, so

a2 − ε < x2 < a2 + ε, or |x2 − a2| < ε. It is fortunate that these pages hadFI G U R E 1 9

already been set, so that I couldn't make these changes, because this \proof "
is completely fallacious. Wherein lies the fallacy?



CHAPTER 6 CONTINUOUS FUNCTIONS

If f is an arbitrary function, it is not necessarily true that

lim
x→a

f (x) = f (a).

In fact, there are many ways this can fail to be true. For example, f might not
even be deˇned at a, in which case the equation makes no sense (Figure 1).

Again, lim
x→a

f (x) might not exist (Figure 2). Finally, as illustrated in Figure 3,
even if f is deˇned at a and lim

x→a
f (x) exists, the limit might not equal f (a).

F I G U R E 1

FI G U R E 2

We would like to regard all behavior of this type as abnormal and honor, with
some complimentary designation, functions which do not exhibit such peculiarities.
The term which has been adopted is \continuous." Intuitively, a function f is
continuous if the graph contains no breaks, jumps, or wild oscillations. Although
this description will usually enable you to decide whether a function is continuous
simply by looking at its graph (a skill well worth cultivating) it is easy to be fooled,
and the precise deˇnition is very important.

DEFINITION The function f is continuous at a if

lim
x→a

f (x) = f (a).

We will have no difˇculty ˇnding many examples of functions which are, or are
not, continuous at some number a|every example involving limits provides an
example about continuity, and Chapter 5 certainly provides enough of these.

The function f (x) = sin 1/x is not continuous at 0, because it is not even deˇnedFI G U R E 3

at 0, and the same is true of the function g(x) = x sin 1/x. On the other hand, if
we are willing to extend the second of these functions, that is, if we wish to deˇne

113



114 Foundations

a new function G by

G(x) =
{
x sin 1/x, x �= 0
a, x = 0,

then the choice of a = G(0) can be made in such a way that G will be continuous
at 0|to do this we can (if fact, we must) deˇne G(0) = 0 (Figure 4). This sort of
extension is not possible for f ; if we deˇne

F(x) =
{

sin 1/x, x �= 0
a, x = 0,

then F will not be continuous at 0, no matter what a is, because lim
x→0

f (x) does

not exist.
The function

f (x) =
{
x, x rational
0, x irrational

is not continuous at a, if a �= 0, since lim
x→a

f (x) does not exist. However, lim
x→0

f (x) =
0 = f (0), so f is continuous at precisely one point, 0.

The functions f (x) = c, g(x) = x, and h(x) = x2 are continuous at all num-
bers a, since

lim
x→a

f (x) = lim
x→a

c = c = f (a),

lim
x→a

g(x) = lim
x→a

x = a = g(a),

lim
x→a

h(x) = lim
x→a

x2 = a2 = h(a).

Finally, consider the function

FI G U R E 4
f (x) =

{
0, x irrational
1/q, x = p/q in lowest terms.

In Chapter 5 we showed that lim
x→a

f (x) = 0 for all a. Since 0 = f (a) only when
a is irrational, this function is continuous at a if a is irrational, but not if a is
rational.

It is even easier to give examples of continuity if we prove two simple theorems.

THEOREM 1 If f and g are continuous at a, then

(1) f + g is continuous at a,
(2) f · g is continuous at a.

Moreover, if g(a) �= 0, then

(3) 1/g is continuous at a.
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PROOF Since f and g are continuous at a,

lim
x→a

f (x) = f (a) and lim
x→a

g(x) = g(a).

By Theorem 2(1) of Chapter 5 this implies that

lim
x→a

(f + g)(x) = f (a)+ g(a) = (f + g)(a),

which is just the assertion that f + g is continuous at a. The proofs of parts (2)
and (3) are left to you.

Starting with the functions f (x) = c and f (x) = x, which are continuous at a,
for every a, we can use Theorem 1 to conclude that a function

f (x) = bnx
n + bn−1x

n−1 + · · · + b0

cmxm + cm−1x
m−1 + · · · + c0

is continuous at every point in its domain. But it is harder to get much further
than that. When we discuss the sine function in detail it will be easy to prove that
sin is continuous at a for all a; let us assume this fact meanwhile. A function like

f (x) = sin2
x + x2 + x4 sin x

sin27
x + 4x2 sin2

x

can now be proved continuous at every point in its domain. But we are still
unable to prove the continuity of a function like f (x) = sin(x2); we obviously
need a theorem about the composition of continuous functions. Before stating this
theorem, the following point about the deˇnition of continuity is worth noting. If
we translate the equation lim

x→a
f (x) = f (a) according to the deˇnition of limits,

we obtain

for every ε > 0 there is δ > 0 such that, for all x,

if 0 < |x − a| < δ, then |f (x)− f (a)| < ε.

But in this case, where the limit is f (a), the phrase

0 < |x − a| < δ

may be changed to the simpler condition

|x − a| < δ,
since if x = a it is certainly true that |f (x)− f (a)| < ε.

THEOREM 2 If g is continuous at a, and f is continuous at g(a), then f � g is continuous at a.
(Notice that f is required to be continuous at g(a), not at a.)

PROOF Let ε > 0. We wish to ˇnd a δ > 0 such that for all x,

if |x − a| < δ, then |(f � g)(x)− (f � g)(a)| < ε,
i.e., |f (g(x))− f (g(a))| < ε.
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We ˇrst use continuity of f to estimate how close g(x) must be to g(a) in order
for this inequality to hold. Since f is continuous at g(a), there is a δ′ > 0 such
that for all y,

(1) if |y − g(a)| < δ′, then |f (y)− f (g(a))| < ε.
In particular, this means that

(2) if |g(x)− g(a)| < δ′, then |f (g(x))− f (g(a))| < ε.

We now use continuity of g to estimate how close x must be to a in order for the
inequality |g(x)− g(a)| < δ′ to hold. The number δ′ is a positive number just like
any other positive number; we can therefore take δ′ as the ε (!) in the deˇnition of
continuity of g at a. We conclude that there is a δ > 0 such that, for all x,

(3) if |x − a| < δ, then |g(x)− g(a)| < δ′.

Combining (2) and (3) we see that for all x,

if |x − a| < δ, then |f (g(x))− f (g(a))| < ε.

We can now reconsider the function

f (x) =
{
x sin 1/x, x �= 0
0, x = 0.

We have already noted that f is continuous at 0. A few applications of Theorems 1
and 2, together with the continuity of sin, show that f is also continuous at a, for
a �= 0. Functions like f (x) = sin(x2 + sin(x + sin2(x3))) should be equally easy
for you to analyze.

The few theorems of this chapter have all been related to continuity of functions
at a single point, but the concept of continuity doesn't begin to be really interesting
until we focus our attention on functions which are continuous at all points of some
interval. If f is continuous at x for all x in (a, b), then f is called continuous
on (a, b). Continuity on a closed interval must be deˇned a little differently; a
function f is called continuous on [a, b] if

(1) f is continuous at x for all x in (a, b),
(2) lim

x→a+
f (x) = f (a) and lim

x→b−
f (x) = f (b).

Functions which are continuous on an interval are usually regarded as especially
well behaved; indeed continuity might be speciˇed as the ˇrst condition which a
\reasonable" function ought to satisfy. A continuous function is sometimes de-
scribed, intuitively, as one whose graph can be drawn without lifting your pencil
from the paper. Consideration of the function

f (x) =
{
x sin 1/x, x �= 0
0, x = 0

shows that this description is a little too optimistic, but it is nevertheless true that
there are many important results involving functions which are continuous on an
interval. There theorems are generally much harder than the ones in this chapter,
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but there is a simple theorem which forms a bridge between the two kinds of results.
The hypothesis of this theorem requires continuity at only a single point, but the
conclusion describes the behavior of the function on some interval containing the
point. Although this theorem is really a lemma for later arguments, it is included
here as a preview of things to come.

THEOREM 3 Suppose f is continuous at a, and f (a) > 0. Then there is a number δ > 0 such
that f (x) > 0 for all x satisfying |x − a| < δ. Similarly, if f (a) < 0, then there is
a number δ > 0 such that f (x) < 0 for all x satisfying |x − a| < δ.

PROOF Consider the case f (a) > 0. Since f is continuous at a, if ε > 0 there is a δ > 0
such that, for all x,

if |x − a| < δ, then |f (x)− f (a)| < ε.

Since f (a) > 0 we can take f (a) as the ε. Thus there is δ > 0 so that for all x,

if |x − a| < δ, then |f (x)− f (a)| < f (a),

and this last inequality implies f (x) > 0.
A similar proof can be given in the case f (a) < 0; take ε = −f (a). Or one can

apply the ˇrst case to the function −f .

PROBLEMS

1. For which of the following functions f is there a continuous function F with
domain R such that F(x) = f (x) for all x in the domain of f ?

(i) f (x) = x2 − 4
x − 2

.

(ii) f (x) = |x|
x

.

(iii) f (x) = 0, x irrational.
(iv) f (x) = 1/q, x = p/q rational in lowest terms.

2. At which points are the functions of Problems 4-17 and 4-19 continuous?

3. (a) Suppose that f is a function satisfying |f (x)| ≤ |x| for all x. Show that
f is continuous at 0. (Notice that f (0) must equal 0.)

(b) Give an example of such a function f which is not continuous at any
a �= 0.

(c) Suppose that g is continuous at 0 and g(0) = 0, and |f (x)| ≤ |g(x)|.
Prove that f is continuous at 0.

4. Give an example of a function f such that f is continuous nowhere, but |f |
is continuous everywhere.

5. For each number a, ˇnd a function which is continuous at a, but not at any
other points.
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6. (a) Find a function f which is discontinuous at 1, 1
2 , 1

3 , 1
4 , . . . but continuous

at all other points.
(b) Find a function f which is discontinuous at 1, 1

2 , 1
3 , 1

4 , . . . , and at 0, but
continuous at all other points.

7. Suppose that f satisˇes f (x + y) = f (x) + f (y), and that f is continuous
at 0. Prove that f is continuous at a for all a.

8. Suppose that f is continuous at a and f (a) = 0. Prove that if α �= 0, then
f + α is nonzero in some open interval containing a.

9. (a) Suppose f is not continuous at a. Prove that for some number ε > 0 there
are numbers x arbitrarily close to a with |f (x) − f (a)| > ε. Illustrate
graphically.

(b) Conclude that for some number ε > 0 either there are numbers x arbi-
trarily close to a with f (x) < f (a)− ε or there are numbers x arbitrarily
close to a with f (x) > f (a)+ ε.

10. (a) Prove that if f is continuous at a, then so is |f |.
(b) Prove that every continuous f can be written f = E + O, where E is

even and continuous and O is odd and continuous.
(c) Prove that if f and g are continuous, then so are max(f, g) and

min(f, g).
(d) Prove that every continuous f can be written f = g − h, where g and h

are nonnegative and continuous.

11. Prove Theorem 1(3) by using Theorem 2 and continuity of the function
f (x) = 1/x.

*12. (a) Prove that if f is continuous at l and lim
x→a

g(x) = l, then lim
x→a

f (g(x)) =
f (l). (You can go right back to the deˇnitions, but it is easier to consider
the function G with G(x) = g(x) for x �= a, and G(a) = l.)

(b) Show that if continuity of f at l is not assumed, then it is not generally
true that lim

x→a
f (g(x)) = f ( lim

x→a
g(x)). Hint: Try f (x) = 0 for x �= l, and

f (l) = 1.

13. (a) Prove that if f is continuous on [a, b], then there is a function g which
is continuous on R, and which satisˇes g(x) = f (x) for all x in [a, b].
Hint: Since you obviously have a great deal of choice, try making g

constant on (−∞, a] and [b,∞).
(b) Give an example to show that this assertion is false if [a, b] is replaced

by (a, b).

14. (a) Suppose that g and h are continuous at a, and that g(a) = h(a). Deˇne
f (x) to be g(x) if x ≥ a and h(x) if x ≤ a. Prove that f is continuous
at a.

(b) Suppose g is continuous on [a, b] and h is continuous on [b, c] and
g(b) = h(b). Let f (x) be g(x) for x in [a, b] and h(x) for x in [b, c].
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Show that f is continuous on [a, c]. (Thus, continuous functions can be
\pasted together".)

15. (a) Prove the following version of Theorem 3 for \right-hand continuity":
Suppose that lim

x→a+
f (x) = f (a), and f (a) > 0. Then there is a number

δ > 0 such that f (x) > 0 for all x satisfying 0 ≤ x − a < δ. Similarly,
if f (a) < 0, then there is a number δ > 0 such that f (x) < 0 for all x
satisfying 0 ≤ x − a < δ.

(b) Prove a version of Theorem 3 when lim
x→b−

f (x) = f (b).

16. If lim
x→a

f (x) exists, but is �= f (a), then f is said to have a removable dis-

continuity at a.

(a) If f (x) = sin 1/x for x �= 0 and f (0) = 1, does f have a removable
discontinuity at 0? What if f (x) = x sin 1/x for x �= 0, and f (0) = 1?

(b) Suppose f has a removable discontinuity at a. Let g(x) = f (x) for
x �= a, and let g(a) = lim

x→a
f (x). Prove that g is continuous at a. (Don't

work very hard; this is quite easy.)
(c) Let f (x) = 0 if x is irrational, and let f (p/q) = 1/q if p/q is in lowest

terms. What is the function g deˇned by g(x) = lim
y→x

f (y)?

*(d) Let f be a function with the property that every point of discontinuity
is a removable discontinuity. This means that lim

y→x
f (y) exists for all x,

but f may be discontinuous at some (even inˇnitely many) numbers x.
Deˇne g(x) = lim

y→x
f (y). Prove that g is continuous. (This is not quite

so easy as part (b).)
**(e) Is there a function f which is discontinuous at every point, and which has

only removable discontinuities? (It is worth thinking about this problem
now, but mainly as a test of intuition; even if you suspect the correct
answer, you will almost certainly be unable to prove it at the present
time. See Problem 22-33.)



CHAPTER 7 THREE HARD THEOREMS

This chapter is devoted to three theorems about continuous functions, and some
of their consequences. The proofs of the three theorems themselves will not be
given until the next chapter, for reasons which are explained at the end of this
chapter.

THEOREM 1 If f is continuous on [a, b] and f (a) < 0 < f (b), then there is some x in [a, b]
such that f (x) = 0.

(Geometrically, this means that the graph of a continuous function which starts
below the horizontal axis and ends above it must cross this axis at some point, as
in Figure 1.)

THEOREM 2 If f is continuous on [a, b], then f is bounded above on [a, b], that is, there is
some number N such that f (x) ≤ N for all x in [a, b].

(Geometrically, this theorem means that the graph of f lies below some line par-
allel to the horizontal axis, as in Figure 2.)

THEOREM 3 If f is continuous on [a,b], then there is some number y in [a, b] such that
f (y) ≥ f (x) for all x in [a, b] (Figure 3).

These three theorems differ markedly from the theorems of Chapter 6. The
hypotheses of those theorems always involved continuity at a single point, while

FI G U R E 1 FI G U R E 2 FI G U R E 3
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the hypotheses of the present theorems require continuity on a whole interval
[a, b]|if continuity fails to hold at a single point, the conclusions may fail. For
example, let f be the function shown in Figure 4,

f (x) =
{

−1, 0 ≤ x <
√

2

1,
√

2 ≤ x ≤ 2.

Then f is continuous at every point of [0, 2] except
√

2, and f (0) < 0 < f (2),
but there is no point x in [0, 2] such that f (x) = 0; the discontinuity at the single
point

√
2 is sufˇcient to destroy the conclusion of Theorem 1.FI G U R E 4

Similarly, suppose that f is the function shown in Figure 5,

f (x) =
{

1/x, x �= 0
0, x = 0.

Then f is continuous at every point of [0,1] except 0, but f is not bounded above
on [0,1]. In fact, for any number N > 0 we have f (1/2N) = 2N > N .

This example also shows that the closed interval [a, b] in Theorem 2 cannot be
replaced by the open interval (a, b), for the function f is continuous on (0,1), but
is not bounded there.

Finally, consider the function shown in Figure 6,

f (x) =
{
x2, x < 1
0, x ≥ 1.

On the interval [0, 1] the function f is bounded above, so f does satisfy theFI G U R E 5
conclusion of Theorem 2, even though f is not continuous on [0, 1]. But f
does not satisfy the conclusion of Theorem 3|there is no y in [0, 1] such that
f (y) ≥ f (x) for all x in [0, 1]; in fact, it is certainly not true that f (1) ≥ f (x) for
all x in [0, 1] so we cannot choose y = 1, nor can we choose 0 ≤ y < 1 because
f (y) < f (x) if x is any number with y < x < 1.

This example shows that Theorem 3 is considerably stronger than Theorem 2.
Theorem 3 is often paraphrased by saying that a continuous function on a closed
interval \takes on its maximum value" on that interval.

As a compensation for the stringency of the hypotheses of our three theorems,
the conclusions are of a totally different order than those of previous theorems.
They describe the behavior of a function, not just near a point, but on a whole in-
terval; such \global" properties of a function are always signiˇcantly more difˇcult
to prove than \local" properties, and are correspondingly of much greater power.
To illustrate the usefulness of Theorems 1, 2, and 3, we will soon deduce some im-
portant consequences, but it will help to ˇrst mention some simple generalizations
of these theorems.FI G U R E 6

THEOREM 4 If f is continuous on [a, b] and f (a) < c < f (b), then there is some x in [a, b]
such that f (x) = c.
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PROOF Let g = f − c. Then g is continuous, and g(a) < 0 < g(b). By Theorem 1, there
is some x in [a, b] such that g(x) = 0. But this means that f (x) = c.

THEOREM 5 If f is continuous on [a, b] and f (a) > c > f (b), then there is some x in [a, b]
such that f (x) = c.

PROOF The function −f is continuous on [a, b] and −f (a) < −c < −f (b). By The-
orem 4 there is some x in [a, b] such that −f (x) = −c, which means that
f (x) = c.

Theorems 4 and 5 together show that f takes on any value between f (a)

and f (b). We can do even better than this: if c and d are in [a, b], then f

takes on any value between f (c) and f (d). The proof is simple: if, for example,
c < d, then just apply Theorems 4 and 5 to the interval [c, d]. Summarizing, if a
continuous function on an interval takes on two values, it takes on every value in
between; this slight generalization of Theorem 1 is often called the Intermediate
Value Theorem.

THEOREM 6 If f is continuous on [a, b], then f is bounded below on [a, b], that is, there is
some number N such that f (x) ≥ N for all x in [a, b].

PROOF The function −f is continuous on [a, b], so by Theorem 2 there is a number M
such that −f (x) ≤ M for all x in [a, b]. But this means that f (x) ≥ −M for all x
in [a, b], so we can let N = −M.

Theorems 2 and 6 together show that a continuous function f on [a, b] is
bounded on [a, b], that is, there is a number N such that |f (x)| ≤ N for all x in
[a, b]. In fact, since Theorem 2 ensures the existence of a number N1 such that
f (x) ≤ N1 for all x in [a, b], and Theorem 6 ensures the existence of a number
N2 such that f (x) ≥ N2 for all x in [a,b], we can take N = max(|N1|, |N2|).

THEOREM 7 If f is continuous on [a, b], then there is some y in [a, b] such that f (y) ≤ f (x)

for all x in [a, b].
(A continuous function on a closed interval takes on its minimum value on that
interval.)

PROOF The function −f is continuous on [a, b]; by Theorem 3 there is some y in [a, b]
such that −f (y) ≥ −f (x) for all x in [a, b], which means that f (y) ≤ f (x) for
all x in [a, b].

Now that we have derived the trivial consequences of Theorems 1, 2, and 3, we
can begin proving a few interesting things.

THEOREM 8 Every positive number has a square root. In other words, if α > 0, then there is
some number x such that x2 = α.
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PROOF Consider the function f (x) = x2, which is certainly continuous. Notice that the
statement of the theorem can be expressed in terms of f : \the number α has a
square root" means that f takes on the value α. The proof of this fact about f
will be an easy consequence of Theorem 4.

There is obviously a number b > 0 such that f (b) > α (as illustrated in Figure 7);
in fact, if α > 1 we can take b = α, while if α < 1 we can take b = 1. Since
f (0) < α < f (b), Theorem 4 applied to [0, b] implies that for some x (in [0, b]),
we have f (x) = α, i.e., x2 = α.

Precisely the same argument can be used to prove that a positive number has
an nth root, for any natural number n. If n happens to be odd, one can do
better: every number has an nth root. To prove this we just note that if the positive
number α has the nth root x, i.e., if xn = α, then (−x)n = −α (since n is odd), so
−α has the nth root −x. The assertion, that for odd n any number α has an nth
root, is equivalent to the statement that the equation

xn − α = 0

has a root if n is odd. Expressed in this way the result is susceptible of great
generalization.FI G U R E 7

THEOREM 9 If n is odd, then any equation

xn + an−1x
n−1 + · · · + a0 = 0

has a root.

PROOF We obviously want to consider the function

f (x) = xn + an−1x
n−1 + · · · + a0;

we would like to prove that f is sometimes positive and sometimes negative. The
intuitive idea is that for large |x|, the function is very much like g(x) = xn and,
since n is odd, this function is positive for large positive x and negative for large
negative x. A little algebra is all we need to make this intuitive idea work.

The proper analysis of the function f depends on writing

f (x) = xn + an−1x
n−1 + · · · + a0 = xn

(
1 + an−1

x
+ · · · + a0

xn

)
.

Note that ∣∣∣an−1

x
+ an−2

x2 + · · · + a0

xn

∣∣∣ ≤ |an−1|
|x| + · · · + |a0|

|xn| .

Consequently, if we choose x satisfying

(∗) |x| > 1, 2n|an−1|, . . . ,2n|a0|,
then |xk| > |x| and

|an−k|
|xk| <

|an−k|
|x| <

|an−k |
2n|an−k| = 1

2n
,
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so ∣∣∣an−1

x
+ an−2

x2 + · · · + a0

xn

∣∣∣ ≤ 1
2n

+ · · · + 1
2n︸ ︷︷ ︸

n terms

= 1
2
.

In other words,

− 1
2

≤ an−1

x
+ · · · + a0

xn
≤ 1

2
,

which implies that
1
2

≤ 1 + an−1

x
+ · · · + a0

xn
.

Therefore, if we choose an x1 > 0 which satisˇes (∗), then

(x1)
n

2
≤ (x1)

n

(
1 + an−1

x1
+ · · · + a0

(x1)n

)
= f (x1),

so that f (x1) > 0. On the other hand, if x2 < 0 satisˇes (∗), then (x2)
n < 0 and

(x2)
n

2
≥ (x2)

n

(
1 + an−1

x2
+ · · · + a0

(x2)
n

)
= f (x2),

so that f (x2) < 0.
Now applying Theorem 1 to the interval [x2, x1] we conclude that there is an x

in [x2, x1] such that f (x) = 0.

Theorem 9 disposes of the problem of odd degree equations so happily that it
would be frustrating to leave the problem of even degree equations completely
undiscussed. At ˇrst sight, however, the problem seems insuperable. Some equa-
tions, like x2 − 1 = 0, have a solution, and some, like x2 + 1 = 0, do not|what
more is there to say? If we are willing to consider a more general question, how-
ever, something interesting can be said. Instead of trying to solve the equation

xn + an−1x
n−1 + · · · + a0 = 0,

let us ask about the possibility of solving the equations

xn + an−1x
n−1 + · · · + a0 = c

for all possible numbers c. This amount to allowing the constant term a0 to vary.
The information which can be given concerning the solution of these equations
depends on a fact which is illustrated in Figure 8.FI G U R E 8

The graph of the function f (x) = xn+an−1x
n−1+· · ·+a0, with n even, contains,

at least the way we have drawn it, a lowest point. In other words, there is a
number y such that f (y) ≤ f (x) for all numbers x|the function f takes on a
minimum value, not just on each closed interval, but on the whole line. (Notice
that this is false if n is odd.) The proof depends on Theorem 7, but a tricky
application will be required. We can apply Theorem 7 to any interval [a, b], and
obtain a point y0 such that f (y0) is the minimum value of f on [a, b]; but if [a, b]
happens to be the interval shown in Figure 8, for example, then the point y0 will
not be the place where f has its minimum value for the whole line. In the next
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theorem the entire point of the proof is to choose an interval [a, b] in such a way
that this cannot happen.

THEOREM 10 If n is even and f (x) = xn + an−1x
n−1 + · · · + a0, then there is a number y such

that f (y) ≤ f (x) for all x.

PROOF As in the proof of Theorem 9, if

M = max(1,2n|an−1|, . . . , 2n|a0|),
then for all x with |x| ≥ M, we have

1
2

≤ 1 + an−1

x
+ · · · + a0

xn
.

Since n is even, xn ≥ 0 for all x, so

xn

2
≤ xn

(
1 + an−1

x
+ · · · + a0

xn

)
= f (x),

provided that |x| ≥ M. Now consider the number f (0). Let b > 0 be a number
such that bn ≥ 2f (0) and also b > M. Then, if x ≥ b, we have (Figure 9)

f (x) ≥ xn

2
≥ bn

2
≥ f (0).

Similarly, if x ≤ −b, then

FI G U R E 9 f (x) ≥ xn

2
≥ (−b)n

2
= bn

2
≥ f (0).

Summarizing:
if x ≥ b or x ≤ −b, then f (x) ≥ f (0).

Now apply Theorem 7 to the function f on the interval [−b,b]. We conclude
that there is a number y such that

(1) if −b ≤ x ≤ b, then f (y) ≤ f (x).

In particular, f (y) ≤ f (0). Thus

(2) if x ≤ −b or x ≥ b, then f (x) ≥ f (0) ≥ f (y).

Combining (1) and (2) we see that f (y) ≤ f (x) for all x.

Theorem 10 now allows us to prove the following result.

THEOREM 11 Consider the equation

(∗) xn + an−1x
n−1 + · · · + a0 = c,



126 Foundations

and suppose n is even. Then there is a number m such that (∗) has a solution for
c ≥ m and has no solution for c < m.

PROOF Let f (x) = xn + an−1x
n−1 + · · · + a0 (Figure 10).

According to Theorem 10 there is a number y such that f (y) ≤ f (x) for all x.
Let m = f (y). If c < m, then the equation (∗) obviously has no solution, since
the left side always has a value ≥ m. If c = m, then (∗) has y as a solution.
Finally, suppose c > m. Let b be a number such that b > y and f (b) > c. Then
f (y) = m < c < f (b). Consequently, by Theorem 4, there is some number x in
[y, b] such that f (x) = c, so x is a solution of (∗).

These consequences of Theorems 1, 2, and 3 are the only ones we will derive
now (these theorems will play a fundamental role in everything we do later, how-
ever). Only one task remains|to prove Theorems 1, 2, and 3. Unfortunately,
we cannot hope to do this|on the basis of our present knowledge about the real
numbers (namely, P1{P12) a proof is impossible. There are several ways of con-
vincing ourselves that this gloomy conclusion is actually the case. For example,
the proof of Theorem 8 relies only on the proof of Theorem 1; if we could prove
Theorem 1, then the proof of Theorem 8 would be complete, and we would have
a proof that every positive number has a square root. As pointed out in Part I, it
is impossible to prove this on the basis of P1{P12. Again, suppose we consider the
functionFI G U R E 1 0

f (x) = 1
x2 − 2

If there were no number x with x2 = 2, then f would be continuous, since the
denominator would never = 0. But f is not bounded on [0,2]. So Theorem 2
depends essentially on the existence of numbers other than rational numbers, and
therefore on some property of the real numbers other than P1{P12.

Despite our inability to prove Theorems 1, 2, and 3, they are certainly results
which we want to be true. If the pictures we have been drawing have any con-
nection with the mathematics we are doing, if our notion of continuous function
corresponds to any degree with our intuitive notion, Theorems 1, 2, and 3 have
got to be true. Since a proof of any of these theorems must require some new
property of R which has so far been overlooked, our present difˇculties suggest a
way to discover that property: let us try to construct a proof of Theorem 1, for
example, and see what goes wrong.

One idea which seems promising is to locate the ˇrst point where f (x) = 0, that
is, the smallest x in [a, b] such that f (x) = 0. To ˇnd this point, ˇrst considerFI G U R E 1 1

the set A which contains all numbers x in [a, b] such that f is negative on [a, x].
In Figure 11, x is such a point, while x ′ is not. The set A itself is indicated by a
heavy line. Since f is negative at a, and positive at b, the set A contains some
points greater than a, while all points sufˇciently close to b are not in A. (We are
here using the continuity of f on [a, b], as well as Problem 6-15.)
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Now suppose α is the smallest number which is greater than all members of A;
clearly a < α < b. We claim that f (α) = 0, and to prove this we only have to
eliminate the possibilities f (α) < 0 and f (α) > 0.

Suppose ˇrst that f (α) < 0. Then, by Theorem 6-3, f (x) would be less than 0
for all x in a small interval containing α, in particular for some numbers bigger
than α (Figure 12); but this contradicts the fact that α is bigger than every member
of A, since the larger numbers would also be in A. Consequently, f (α) < 0 is
false.

On the other hand, suppose f (α) > 0. Again applying Theorem 6-3, we see thatFI G U R E 1 2

f (x) would be positive for all x in a small interval containing α, in particular for
some numbers smaller than α (Figure 13). This means that these smaller numbers
are all not in A. Consequently, one could have chosen an even smaller α which
would be greater than all members of A. Once again we have a contradiction;
f (α) > 0 is also false. Hence f (α) = 0 and, we are tempted to say, Q.E.D.

We know, however, that something must be wrong, since no new properties of R
were ever used, and it does not require much scrutiny to ˇnd the dubious point.
It is clear that we can choose a number α which is greater than all members of A
(for example, we can choose α = b), but it is not so clear that we can choose a
smallest one. In fact, suppose A consists of all numbers x ≥ 0 such that x2 < 2.
If the number

√
2 did not exist, there would not be a least number greater than

all the members of A; for any y >
√

2 we chose, we could always choose a still
smaller one.

Now that we have discovered the fallacy, it is almost obvious what additional
property of the real numbers we need. All we must do is say it properly and use it.
That is the business of the next chapter.F I G U R E 1 3

PROBLEMS

1. For each of the following functions, decide which are bounded above or below
on the indicated interval, and which take on their maximum or minimum
value. (Notice that f might have these properties even if f is not continuous,
and even if the interval is not a closed interval.)

(i) f (x) = x2 on (−1,1).
(ii) f (x) = x3 on (−1, 1).
(iii) f (x) = x2 on R.
(iv) f (x) = x2 on [0,∞).

(v) f (x) =
{
x2, x ≤ a

a + 2, x > a
on (−a − 1, a + 1). (It will be necessary to

consider several possibilities for a.)

(vi) f (x) =
{
x2, x < a

a + 2, x ≥ a
on [−a − 1, a + 1].

(vii) f (x) =
{

0, x irrational
1/q x = p/q in lowest terms

on [0, 1].
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(viii) f (x) =
{

1, x irrational
1/q x = p/q in lowest terms

on [0, 1].

(ix) f (x) =
{

1, x irrational
−1/q x = p/q in lowest terms

on [0,1].

(x) f (x) =
{
x, x rational
0 x irrational

on [0, a].

(xi) f (x) = sin2(cos x +
√
a + a2 ) on [0, a3].

(xii) f (x) = [x] on [0, a].

2. For each of the following polynomial functions f , ˇnd an integer n such that
f (x) = 0 for some x between n and n+ 1.

(i) f (x) = x3 − x + 3.
(ii) f (x) = x5 + 5x4 + 2x + 1.
(iii) f (x) = x5 + x + 1.
(iv) f (x) = 4x2 − 4x + 1.

3. Prove that there is some number x such that

(i) x179 + 163

1 + x2 + sin2 x
= 119.

(ii) sin x = x − 1.

4. This problem is a continuation of Problem 3-7.

(a) If n − k is even, and ≥ 0, ˇnd a polynomial function of degree n with
exactly k roots.

(b) A root a of the polynomial function f is said to have multiplicity m

if f (x) = (x − a)mg(x), where g is a polynomial function that does not
have a as a root. Let f be a polynomial function of degree n. Suppose
that f has k roots, counting multiplicities, i.e., suppose that k is the sum
of the multiplicities of all the roots. Show that n− k is even.

5. Suppose that f is continuous on [a, b] and that f (x) is always rational. What
can be said about f ?

6. Suppose that f is a continuous function on [−1,1] such that x2 + (f (x))2 = 1
for all x. (This means that (x, f (x)) always lies on the unit circle.) Show that
either f (x) =

√
1 − x2 for all x, or else f (x) = −

√
1 − x2 for all x.

7. How many continuous functions f are there which satisfy (f (x))2 = x2 for
all x?

8. Suppose that f and g are continuous, that f 2 = g2, and that f (x) �= 0 for
all x. Prove that either f (x) = g(x) for all x, or else f (x) = −g(x) for all x.

9. (a) Suppose that f is continuous, that f (x) = 0 only for x = a, and that
f (x) > 0 for some x > a as well as for some x < a. What can be said
about f (x) for all x �= a?
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(b) Again assume that f is continuous and that f (x) = 0 only for x = a,
but suppose, instead, that f (x) > 0 for some x > a and f (x) < 0 for
some x < a. Now what can be said about f (x) for x �= a?

*(c) Discuss the sign of x3 + x2y + xy2 + y3 when x and y are not both 0.

10. Suppose f and g are continuous on [a, b] and that f (a) < g(a), but f (b) >
g(b). Prove that f (x) = g(x) for some x in [a, b]. (If your proof isn't very
short, it's not the right one.)

11. Suppose that f is a continuous function on [0,1] and that f (x) is in [0, 1]
for each x (draw a picture). Prove that f (x) = x for some number x.

12. (a) Problem 11 shows that f intersects the diagonal of the square in Fig-
ure 14 (solid line). Show that f must also intersect the other (dashed)
diagonal.

(b) Prove the following more general fact: If g is continuous on [0, 1] and
g(0) = 0, g(1) = 1 or g(0) = 1, g(1) = 0, then f (x) = g(x) for some x.F I G U R E 1 4

13. (a) Let f (x) = sin 1/x for x �= 0 and let f (0) = 0. Is f continuous on
[−1,1]? Show that f satisˇes the conclusion of the Intermediate Value
Theorem on [−1,1]; in other words, if f takes on two values somewhere
on [−1,1], it also takes on every value in between.

*(b) Suppose that f satisˇes the conclusion of the Intermediate Value Theo-
rem, and that f takes on each value only once. Prove that f is continuous.

*(c) Generalize to the case where f takes on each value only ˇnitely many
times.

14. If f is a continuous function on [0, 1], let ‖f ‖ be the maximum value of |f |
on [0, 1].

(a) Prove that for any number c we have ‖cf ‖ = |c| · ‖f ‖.
*(b) Prove that ‖f + g‖ ≤ ‖f ‖ + ‖g‖. Give an example where ‖f + g‖ �=

‖f ‖ + ‖g‖.
(c) Prove that ‖h− f ‖ ≤ ‖h− g‖ + ‖g − f ‖.

*15. Suppose that φ is continuous and lim
x→∞φ(x)/x

n = 0 = lim
x→−∞φ(x)/x

n.

(a) Prove that if n is odd, then there is a number x such that xn+φ(x)= 0.
(b) Prove that if n is even, then there is a number y such that yn + φ(y) ≤

xn + φ(x) for all x.

Hint: Of which proofs does this problem test your understanding?

*16. Let f be any polynomial function. Prove that there is some number y such
that |f (y)| ≤ |f (x)| for all x.F I G U R E 1 5

*17. Suppose that f is a continuous function with f (x) > 0 for all x, and
lim
x→∞ f (x) = 0 = lim

x→−∞f (x). (Draw a picture.) Prove that there is some

number y such that f (y) ≥ f (x) for all x.
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*18. (a) Suppose that f is continuous on [a, b], and let x by any number. Prove
that there is a point on the graph of f which is closest to (x,0); in
other words there is some y in [a, b] such that the distance from (x,0)
to (y, f (y)) is ≤ distance from (x,0) to (z, f (z)) for all z in [a, b]. (See
Figure 15.)

(b) Show that this same assertion is not necessarily true if [a, b] is replaced
by (a, b) throughout.

(c) Show that the assertion is true if [a, b] is replaced by R throughout.
(d) In cases (a) and (c), let g(x) be the minimum distance from (x,0) to a

point on the graph of f . Prove that g(y) ≤ g(x)+|x−y|, and conclude
that g is continuous.

(e) Prove that there are numbers x0 and x1 in [a, b] such that the distance
from (x0, 0) to (x1, f (x1)) is ≤ the distance from (x0

′, 0) to (x1
′, f (x1

′))
for any x0

′, x1
′ in [a, b].

**19. (a) Suppose that f is continuous on [0,1] and f (0) = f (1). Let n be any
natural number. Prove that there is some number x such that f (x) =
f (x+1/n), as shown in Figure 16 for n = 4. Hint: Consider the function
g(x) = f (x)− f (x + 1/n); what would be true if g(x) �= 0 for all x?

(b) Suppose 0 < a < 1, but that a is not equal to 1/n for any natural
number n. Find a function f which is continuous on [0,1] and which
satisˇes f (0) = f (1), but which does not satisfy f (x) = f (x + a) for
any x.

**20. (a) Prove that there does not exist a continuous function f deˇned on RF I G U R E 1 6

which takes on every value exactly twice. Hint: If f (a) = f (b) for
a < b, then either f (x) > f (a) for all x in (a, b) or f (x) < f (a) for
all x in (a, b). Why? In the ˇrst case all values close to f (a), but slightly
larger than f (a), are taken on somewhere in (a, b); this implies that
f (x) < f (a) for x < a and x > b.

(b) Reˇne part (a) by proving that there is no continuous function f which
takes on each value either 0 times or 2 times, i.e., which takes on exactly
twice each value that it does take on. Hint: The previous hint implies
that f has either a maximum or a minimum value (which must be taken
on twice). What can be said about values close to the maximum value?

(c) Find a continuous function f which takes on every value exactly 3 times.
More generally, ˇnd one which takes on every value exactly n times, if
n is odd.

(d) Prove that if n is even, then there is no continuous f which takes on
every value exactly n times. Hint: To treat the case n = 4, for example,
let f (x1) = f (x2) = f (x3) = f (x4). Then either f (x) > 0 for all x in
two of the three intervals (x1, x2), (x2, x3), (x3, x4), or else f (x) < 0 for
all x in two of these three intervals.



CHAPTER 8 LEAST UPPER BOUNDS

This chapter reveals the most important property of the real numbers. Never-
theless, it is merely a sequel to Chapter 7; the path which must be followed has
already been indicated, and further discussion would be useless delay.

DEFINITION A set A of real numbers is bounded above if there is a number x such that

x ≥ a for every a in A.

Such a number x is called an upper bound for A.

Obviously A is bounded above if and only if there is a number x which is an
upper bound for A (and in this case there will be lots of upper bounds for A); we
often say, as a concession to idiomatic English, that \A has an upper bound" when
we mean that there is a number which is an upper bound for A.

Notice that the term \bounded above" has now been used in two ways|ˇrst, in
Chapter 7, in reference to functions, and now in reference to sets. This dual usage
should cause no confusion, since it will always be clear whether we are talking
about a set of numbers or a function. Moreover, the two deˇnitions are closely
connected: if A is the set {f (x) : a ≤ x ≤ b}, then the function f is bounded
above on [a, b] if and only if the set A is bounded above.

The entire collection R of real numbers, and the natural numbers N, are both
examples of sets which are not bounded above. An example of a set which is

bounded above is
A = {x : 0 ≤ x < 1}.

To show that A is bounded above we need only name some upper bound for A,
which is easy enough; for example, 138 is an upper bound for A, and so are 2,
11

2 , 11
4 , and 1. Clearly, 1 is the least upper bound of A; although the phrase

just introduced is self-explanatory, in order to avoid any possible confusion (in
particular, to ensure that we all know what the superlative of \less" means), we
deˇne this explicitly.

DEFINITION A number x is a least upper bound of A if

(1) x is an upper bound of A,
and (2) if y is an upper bound of A, then x ≤ y.

131
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The use of the indeˇnite article \a" in this deˇnition was merely a concession
to temporary ignorance. Now that we have made a precise deˇnition, it is easily
seen that if x and y are both least upper bounds of A, then x = y. Indeed, in this
case

x ≤ y, since y is an upper bound, and x is a least upper bound,
and y ≤ x, since x is an upper bound, and y is a least upper bound;

it follows that x = y. For this reason we speak of the least upper bound of A.
The term supremum of A is synonymous and has one advantage. It abbreviates
quite nicely to

supA (pronounced \soup A")

and saves us from the abbreviation

lubA

(which is nevertheless used by some authors).
There is a series of important deˇnitions, analogous to those just given, which

can now be treated more brie�y. A set A of real numbers is bounded below if
there is a number x such that

x ≤ a for every a in A.

Such a number x is called a lower bound for A. A number x is the greatest
lower bound of A if

(1) x is a lower bound of A,
and (2) if y is a lower bound of A, then x ≥ y.

The greatest lower bound of A is also called the infimum of A, abbreviated

inf A;
some authors use the abbreviation

glbA.

One detail has been omitted from our discussion so far|the question of which
sets have at least one, and hence exactly one, least upper bound or greatest lower
bound. We will consider only least upper bounds, since the question for greatest
lower bounds can then be answered easily (Problem 2).

If A is not bounded above, then A has no upper bound at all, so A certainly
cannot be expected to have a least upper bound. It is tempting to say that A does
have a least upper bound if it has some upper bound, but, like the principle of
mathematical induction, this assertion can fail to be true in a rather special way.
If A = ∅, then A is bounded above. Indeed, any number x is an upper bound
for ∅:

x ≥ y for every y in ∅
simply because there is no y in ∅. Since every number is an upper bound for ∅,
there is surely no least upper bound for ∅. With this trivial exception however,



8. Least Upper Bounds 133

our assertion is true|and very important, deˇnitely important enough to warrant
consideration of details. We are ˇnally ready to state the last property of the real
numbers which we need.

(P13) (The least upper bound property) If A is a set of real numbers,
A �= ∅, and A is bounded above, then A has a least upper bound.

Property P13 may strike you as anticlimactic, but that is actually one of its
virtues. To complete our list of basic properties for the real numbers we require no
particularly abstruse proposition, but only a property so simple that we might feel
foolish for having overlooked it. Of course, the least upper bound property is not
really so innocent as all that; after all, it does not hold for the rational numbers Q .
For example, if A is the set of all rational numbers x satisfying x2 < 2, then thereFI G U R E 1

is no rational number y which is an upper bound for A and which is less than or
equal to every other rational number which is an upper bond for A. It will become
clear only gradually how signiˇcant P13 is, but we are already in a position to
demonstrate its power, by supplying the proofs which were omitted in Chapter 7.

THEOREM 7-1 If f is continuous on [a, b] and f (a) < 0 < f (b), then there is some number x
in [a, b] such that f (x) = 0.

PROOF Our proof is merely a rigorous version of the outline developed at the end of
Chapter 7|we will locate the smallest number x in [a, b] with f (x) = 0.

Deˇne the set A, shown in Figure 1, as follows:

A = {x : a ≤ x ≤ b, and f is negative on the interval [a, x]
}
.

Clearly A �= ∅, since a is in A; in fact, there is some δ > 0 such that A contains
all points x satisfying a ≤ x < a + δ; this follows from Problem 6-15, since f is
continuous on [a, b] and f (a) < 0. Similarly, b is an upper bound for A and, in
fact, there is a δ > 0 such that all points x satisfying b − δ < x ≤ b are upper
bounds for A; this also follows from Problem 6-15, since f (b) > 0.

From these remarks it follows that A has a least upper bound α and that
a < α < b. We now wish to show that f (α) = 0, by eliminating the possibil-F I G U R E 2
ities f (α) < 0 and f (α) > 0.

Suppose ˇrst that f (α) < 0. By Theorem 6-3, there is a δ > 0 such that
f (x) < 0 for α − δ < x < α + δ (Figure 2). Now there is some number x0 in A
which satisˇes α − δ < x0 < α (because otherwise α would not be the least upper
bound of A). This means that f is negative on the whole interval [a, x0]. But if
x1 is a number between α and α+ δ, then f is also negative on the whole interval
[x0, x1]. Therefore f is negative on the interval [a, x1], so x1 is in A. But this
contradicts the fact that α is an upper bound for A; our original assumption that
f (α) < 0 must be false.

Suppose, on the other hand, that f (α) > 0. Then there is a number δ > 0 such
that f (x) > 0 for α− δ < x < α+ δ (Figure 3). Once again we know that there is
an x0 in A satisfying α − δ < x0 < α; but this means that f is negative on [a, x0],F I G U R E 3
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which is impossible, since f (x0) > 0. Thus the assumption f (α) > 0 also leads to
a contradiction, leaving f (α) = 0 as the only possible alternative.

The proofs of Theorems 2 and 3 of Chapter 7 require a simple preliminary
result, which will play much the same role as Theorem 6-3 played in the previous
proof.

THEOREM 1 If f is continuous at a, then there is a number δ > 0 such that f is bounded
above on the interval (a − δ, a + δ) (see Figure 4).

PROOF Since lim
x→a

f (x) = f (a), there is, for every ε > 0, a δ > 0 such that, for all x,

if |x − a| < δ, then |f (x)− f (a)| < ε.

It is only necessary to apply this statement to some particular ε (any one will do),
for example, ε = 1. We conclude that there is a δ > 0 such that, for all x,

if |x − a| < δ, then |f (x)− f (a)| < 1.

It follows, in particular, that if |x − a| < δ, then f (x)− f (a) < 1. This completes
the proof: on the interval (a − δ, a + δ) the function f is bounded above by
f (a)+ 1.

It should hardly be necessary to add that we can now also prove that f is
bounded below on some interval (a − δ, a + δ), and, ˇnally, that f is bounded on
some open interval containing a.

A more signiˇcant point is the observation that if lim
x→a+

f (x) = f (a), then there

FI G U R E 4
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is a δ > 0 such that f is bounded on the set {x : a ≤ x < a + δ}, and a similar
observation holds if lim

x→b−
f (x) = f (b). Having made these observations (and

assuming that you will supply the proofs), we tackle our second major theorem.

THEOREM 7-2 If f is continuous on [a, b], then f is bounded above on [a, b].

PROOF Let
A = {x : a ≤ x ≤ b and f is bounded above on [a, x]

}
.

Clearly A �= ∅ (since a is in A), and A is bounded above (by b), so A has a least
upper bound α. Notice that we are here applying the term \bounded above" both
to the set A, which can be visualized as lying on the horizontal axis, and to f , i.e.,
to the sets {f (y) : a ≤ y ≤ x}, which can be visualized as lying on the vertical axis
(Figure 5).

Our ˇrst step is to prove that we actually have α = b. Suppose, instead, that
α < b. By Theorem 1 there is δ > 0 such that f is bounded on (α−δ, α+δ). Since
α is the least upper bound of A there is some x0 in A satisfying α−δ < x0 < α. This
means that f is bounded on [a, x0]. But if x1 is any number with α < x1 < α+ δ,
then f is also bounded on [x0, x1]. Therefore f is bounded on [a, x1], so x1 is
in A, contradicting the fact that α is an upper bound for A. This contradiction
shows that α = b. One detail should be mentioned: this demonstration implicitly
assumed that a < α [so that f would be deˇned on some interval (α − δ, α + δ)];
the possibility a = α can be ruled out similarly, using the existence of a δ > 0 such
that f is bounded on {x : a ≤ x < a + δ}.

The proof is not quite complete|we only know that f is bounded on [a, x] for
every x < b, not necessarily that f is bounded on [a, b]. However, only one small
argument needs to be added.FI G U R E 5

There is a δ > 0 such that f is bounded on {x : b − δ < x ≤ b}. There is x0
in A such that b − δ < x0 < b. Thus f is bounded on [a, x0] and also on [x0, b],
so f is bounded on [a, b].

To prove the third important theorem we resort to a trick.

THEOREM 7-3 If f is continuous on [a, b], then there is a number y in [a,b] such that f (y) ≥
f (x) for all x in [a,b].

PROOF We already know that f is bounded on [a, b], which means that the set{
f (x) : x in [a, b]

}
is bounded. This set is obviously not ∅, so it has a least upper bound α. Since
α ≥ f (x) for x in [a, b] it sufˇces to show that α = f (y) for some y in [a, b].

Suppose instead that α �= f (y) for all y in [a, b]. Then the function g deˇned
by

g(x) = 1
α − f (x)

, x in [a, b]
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is continuous on [a, b], since the denominator of the right side is never 0. On the
other hand, α is the least upper bound of

{
f (x) : x in [a, b]

}
; this means that

for every ε > 0 there is x in [a, b] with α − f (x) < ε.

This, in turn, means that

for every ε > 0 there is x in [a, b] with g(x) > 1/ε.

But this means that g is not bounded on [a, b], contradicting the previous theo-
rem.

At the beginning of this chapter the set of natural numbers N was given as an
example of an unbounded set. We are now going to prove that N is unbounded.
After the difˇcult theorems proved in this chapter you may be startled to ˇnd
such an \obvious" theorem winding up our proceedings. If so, you are, perhaps,
allowing the geometrical picture of R to in�uence you too strongly. \Look," you
may say, \the real numbers look like

so every number x is between two integers n, n+ 1 (unless x is itself an integer)."
Basing the argument on a geometric picture is not a proof, however, and even the
geometric picture contains an assumption: that if you place unit segments end-to-
end you will eventually get a segment larger than any given segment. This axiom,
often omitted from a ˇrst introduction to geometry, is usually attributed (not quite
justly) to Archimedes, and the corresponding property for numbers, that N is not
bounded, is called the Archimedian property of the real numbers. This property is not

a consequence of P1{P12 (see reference [17] of the Suggested Reading), although
it does hold for Q , of course. Once we have P13 however, there are no longer
any problems.

THEOREM 2 N is not bounded above.

PROOF Suppose N were bounded above. Since N �= ∅, there would be a least upper
bound α for N. Then

α ≥ n for all n in N.

Consequently,
α ≥ n+ 1 for all n in N,

since n+ 1 is in N if n is in N. But this means that

α − 1 ≥ n for all n in N,

and this means that α−1 is also an upper bound for N, contradicting the fact that
α is the least upper bound.
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There is a consequence of Theorem 2 (actually an equivalent formulation) which
we have very often assumed implicitly.

THEOREM 3 For any ε > 0 there is a natural number n with 1/n < ε.

PROOF Suppose not; then 1/n ≥ ε for all n in N. Thus n ≤ 1/ε for all n in N. But this
means that 1/ε is an upper bound for N, contradicting Theorem 2.

A brief glance through Chapter 6 will show you that the result of Theorem 3
was used in the discussion of many examples. Of course, Theorem 3 was not
available at the time, but the examples were so important that in order to give
them some cheating was tolerated. As partial justiˇcation for this dishonesty we
can claim that this result was never used in the proof of a theorem, but if your faith
has been shaken, a review of all the proofs given so far is in order. Fortunately,
such deception will not be necessary again. We have now stated every property of
the real numbers that we will ever need. Henceforth, no more lies.

PROBLEMS

1. Find the least upper bound and the greatest lower bound (if they exist) of
the following sets. Also decide which sets have greatest and least elements
(i.e., decide when the least upper bound and greatest lower bound happens
to belong to the set).

(i)
{

1
n

: n in N
}

.

(ii)
{

1
n

: n in Z and n �= 0.
}

.

(iii) {x : x = 0 or x = 1/n for some n in N}.
(iv) {x : 0 ≤ x ≤

√
2 and x is rational}.

(v) {x : x2 + x + 1 ≥ 0}.
(vi) {x : x2 + x − 1 < 0}.
(vii) {x : x < 0 and x2 + x − 1 < 0}.
(viii)

{
1
n

+ (−1)n : n in N
}

.

2. (a) Suppose A �= ∅ is bounded below. Let −A denote the set of all −x
for x in A. Prove that −A �= ∅, that −A is bounded above, and that
− sup(−A) is the greatest lower bound of A.

(b) If A �= ∅ is bounded below, let B be the set of all lower bounds of A.
Show that B �= ∅, that B is bounded above, and that supB is the greatest
lower bound of A.

3. Let f be a continuous function on [a, b] with f (a) < 0 < f (b).

(a) The proof of Theorem 1 showed that there is a smallest x in [a, b]
with f (x) = 0. Is there necessarily a second smallest x in [a, b] with
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f (x) = 0? Show that there is a largest x in [a, b] with f (x) = 0. (Try
to give an easy proof by considering a new function closely related to f .)

(b) The proof of Theorem 1 depended upon consideration of A = {x : a ≤
x ≤ b and f is negative on [a, x]

}
. Give another proof of Theorem 1,

which depends upon consideration of B = {
x : a ≤ x ≤ b and f (x) <

0
}
. Which point x in [a, b] with f (x) = 0 will this proof locate? Give

an example where the sets A and B are not the same.

*4. (a) Suppose that f is continuous on [a, b] and that f (a) = f (b) = 0.
Suppose also that f (x0) > 0 for some x0 in [a, b]. Prove that there are
numbers c and d with a ≤ c < x0 < d ≤ b such that f (c) = f (d) = 0,
but f (x) > 0 for all x in (c, d). Hint: The previous problem can be used
to good advantage.

(b) Suppose that f is continuous on [a, b] and that f (a) < f (b). Prove that
there are numbers c and d with a ≤ c < d ≤ b such that f (c) = f (a)

and f (d) = f (b) and f (a) < f (x) < f (d) for all x in (c, d).

5. (a) Suppose that y − x > 1. Prove that there is an integer k such that
x < k < y. Hint: Let l by the largest integer satisfying l ≤ x, and
consider l + 1.

(b) Suppose x < y. Prove that there is a rational number r such that x <
r < y. Hint: If 1/n < y−x, then ny−nx > 1. (Query: Why have parts
(a) and (b) been postponed until this problem set?)

(c) Suppose that r < s are rational numbers. Prove that there is an irrational
number between r and s. Hint: As a start, you know that there is an
irrational number between 0 and 1.

(d) Suppose that x < y. Prove that there is an irrational number between x
and y. Hint: It is unnecessary to do any more work; this follows from
(b) and (c).

*6. A set A of real numbers is said to be dense if every open interval contains a
point of A. For example, Problem 5 shows that the set of rational numbers
and the set of irrational numbers are each dense.

(a) Prove that if f is continuous and f (x) = 0 for all numbers x in a dense
set A, then f (x) = 0 for all x.

(b) Prove that if f and g are continuous and f (x) = g(x) for all x in a dense
set A, then f (x) = g(x) for all x.

(c) If we assume instead that f (x) ≥ g(x) for all x in A, show that f (x) ≥
g(x) for all x. Can ≥ be replaced by > throughout?

7. Prove that if f is continuous and f (x + y) = f (x)+ f (y) for all x and y,
then there is a number c such that f (x) = cx for all x. (This conclusion
can be demonstrated simply by combining the results of two previous prob-
lems.) Point of information: There do exist noncontinuous functions f satisfying
f (x + y) = f (x) + f (y) for all x and y, but we cannot prove this now; in
fact, this simple question involves ideas that are usually never mentioned in
any undergraduate course. The Suggested Reading contains references.
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*8. Suppose that f is a function such that f (a) ≤ f (b) whenever a < b (Fig-
ure 6).

(a) Prove that lim
x→a−

f (x) and lim
x→a+

f (x) both exist. Hint: Why is this prob-

lem in this chapter?
(b) Prove that f never has a removable discontinuity (this terminology comes

from Problem 6-16).
(c) Prove that if f satisˇes the conclusions of the Intermediate Value The-

orem, then f is continuous.

*9. If f is a bounded function on [0, 1], let |||f ||| = sup
{ |f (x)| : x in [0, 1]

}
.

Prove analogues of the properties of ‖ ‖ in Problem 7-14.

10. Suppose α > 0. Prove that every number x can be written uniquely in the
form x = kα + x ′, where k is an integer, and 0 ≤ x ′ < α.

11. (a) Suppose that a1, a2, a3, . . . is a sequence of positive numbers withFI G U R E 6

an+1 ≤ an/2. Prove that for any ε > 0 there is some n with an < ε.
(b) Suppose P is a regular polygon inscribed inside a circle. If P ′ is the

inscribed regular polygon with twice as many sides, show that the differ-
ence between the area of the circle and the area of P ′ is less than half the
difference between the area of the circle and the area of P (use Figure 7).

(c) Prove that there is a regular polygon P inscribed in a circle with area
as close as desired to the area of the circle. In order to do part (c) you
will need part (a). This was clear to the Greeks, who used part (a) as the
basis for their entire treatment of proportion and area. By calculating
the areas of polygons, this method (\the method of exhaustion") allows
computations of π to any desired accuracy; Archimedes used it to show
that 223

71 < π < 22
7 . But it has far greater theoretical importance:

*(d) Using the fact that the areas of two regular polygons with the same num-
ber of sides have the same ratio as the square of their sides, prove that the
areas of two circles have the same ratios as the square of their radii. Hint:F I G U R E 7
Deduce a contradiction from the assumption that the ratio of the areas
is greater, or less, than the ratio of the square of the radii by inscribing
appropriate polygons.

12. Suppose that A and B are two nonempty sets of numbers such that x ≤ y

for all x in A and all y in B.

(a) Prove that supA ≤ y for all y in B.
(b) Prove that supA ≤ inf B.

13. Let A and B be two nonempty sets of numbers which are bounded above, and
let A+B denote the set of all numbers x+y with x in A and y in B. Prove that
sup(A+B) = supA+supB. Hint: The inequality sup(A+B) ≤ supA+supB
is easy. Why? To prove that supA+ supB ≤ sup(A+ B) it sufˇces to prove
that supA+ supB ≤ sup(A+B)+ ε for all ε > 0; begin by choosing x in A



140 Foundations

and y in B with supA− x < ε/2 and supB − y < ε/2.

FI G U R E 8

14. (a) Consider a sequence of closed intervals I1 = [a1, b1], I2 = [a2, b2], . . . .
Suppose that an ≤ an+1 and bn+1 ≤ bn for all n (Figure 8). Prove that
there is a point x which is in every In.

(b) Show that this conclusion is false if we consider open intervals instead of
closed intervals.

The simple result of Problem 14(a) is called the \Nested Interval Theorem." It
may be used to give alternative proofs of Theorems 1 and 2. The appropriate
reasoning, outlined in the next two problems, illustrates a general method, called
a \bisection argument."

*15. Suppose f is continuous on [a, b] and f (a) < 0 < f (b). Then either
f ((a + b)/2) = 0, or f has different signs at the end points of the interval
[a, (a + b)/2], or f has different signs at the end points of [(a + b)/2, b].
Why? If f ((a + b)/2) �= 0, let I1 be one of the two intervals on which f

changes sign. Now bisect I1. Either f is 0 at the midpoint, or f changes
sign on one of the two intervals. Let I2 be such an interval. Continue in this
way, to deˇne In for each n (unless f is 0 at some midpoint). Use the Nested
Interval Theorem to ˇnd a point x where f (x) = 0.

*16. Suppose f were continuous on [a, b], but not bounded on [a, b]. Then f
would be unbounded on either [a, (a+b)/2] or [(a+b)/2, b]. Why? Let I1
be one of these intervals on which f is unbounded. Proceed as in Problem 15
to obtain a contradiction.

17. (a) Let A = {x : x < α}. Prove the following (they are all easy):

(i) If x is in A and y < x, then y is in A.
(ii) A �= ∅.
(iii) A �= R.
(iv) If x is in A, then there is some number x ′ in A such that x < x ′.

(b) Suppose, conversely, that A satisˇes (i){(iv). Prove that A = {x : x <
supA}.

*18. A number x is called an almost upper bound for A if there are only
ˇnitely many numbers y in A with y ≥ x. An almost lower bound is
deˇned similarly.

(a) Find all almost upper bounds and almost lower bounds of the sets in
Problem 1.

(b) Suppose that A is a bounded inˇnite set. Prove that the set B of all
almost upper bounds of A is nonempty, and bounded below.
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(c) It follows from part (b) that inf B exists; this number is called the limit
superior of A, and denoted by limA or lim supA. Find limA for each
set A in Problem 1.

(d) Deˇne limA, and ˇnd it for all A in Problem 1.

*19. If A is a bounded inˇnite set prove

(a) limA ≤ limA.

(b) limA ≤ supA.

(c) If limA < supA, then A contains a largest element.
(d) The analogues of parts (b) and (c) for lim.

FI G U R E 9

*20. Let f be a continuous function on R. A point x is called a shadow point
of f if there is a number y > x with f (y) > f (x). The rationale for this
terminology is indicated in Figure 9; the parallel lines are the rays of the sun
rising in the east (you are facing north). Suppose that all points of (a, b) are
shadow points, but that a and b are not shadow points.

(a) For x in (a, b), prove that f (x) ≤ f (b). Hint: Let A = {y : x ≤ y ≤ b

and f (x) ≤ f (y)}. If supA were less than b, then supA would be a
shadow point. Use this fact to obtain a contradiction to the fact that b
is not a shadow point.

(b) Now prove that f (a) ≤ f (b). (This is a simple consequence of continu-
ity.)

(c) Finally, using the fact that a is not a shadow point, prove that f (a) =
f (b).

This result is known as the Rising Sun Lemma. Aside from serving as
a good illustration of the use of least upper bounds, it is instrumental in
proving several beautiful theorems that do not appear in this book; see
page 443.
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APPENDIX. UNIFORM CONTINUITY

Now that we've come to the end of the \foundations," it might be appropriate
to slip in one further fundamental concept. This notion is not used crucially in
the rest of the book, but it can help clarify many points later on.

We know that the function f (x) = x2 is continuous at a for all a. In other
words,

if a is any number, then for every ε > 0 there is some δ > 0
such that, for all x, if |x − a| < δ, then |x2 − a2| < ε.

Of course, δ depends on ε. But δ also depends on a|the δ that works at a might
not work at b (Figure 1). Indeed, it's clear that given ε > 0 there is no one δ > 0
that works for all a, or even for all positive a. In fact, the number a + δ/2 will
certainly satisfy |x − a| < δ, but if a > 0, then∣∣∣∣∣

(
a + δ

2

)2

− a2

∣∣∣∣∣ =
∣∣∣∣∣ aδ + δ2

4

∣∣∣∣∣ ≥ aδ,

and this won't be < ε once a > ε/δ. (This is just an admittedly confusing compu-
tational way of saying that f is growing faster and faster!)

On the other hand, for any ε > 0 there will be one δ > 0 that works for all a
in any interval [−N,N]. In fact, the δ which works at N or −N will also workFI G U R E 1
everywhere else in the interval.

As a ˇnal example, consider the function f (x) = sin 1/x, or the function whose
graph appears in Figure 18 on page 62. It is easy to see that, so long as ε < 1,
there will not be one δ > 0 that works for these functions at all points a in the
open interval (0, 1).

These examples illustrate important distinctions between the behavior of various
continuous functions on certain intervals, and there is a special term to signal this
distinction.

DEFINITION The function f is uniformly continuous on an interval A if for every ε > 0
there is some δ > 0 such that, for all x and y in A,

if |x − y| < δ, then |f (x)− f (y)| < ε.

We've seen that a function can be continuous on the whole line, or on an open
interval, without being uniformly continuous there. On the other hand, the func-
tion f (x) = x2 did turn out to be uniformly continuous on any closed interval.
This shouldn't be too surprising|it's the same sort of thing that occurs when we
ask whether a function is bounded on an interval|and we would be led to suspect
that any continuous function on a closed interval is also uniformly continuous on
that interval. In order to prove this, we'll need to deal ˇrst with one subtle point.

Suppose that we have two intervals [a, b] and [b, c] with the common end-
point b, and a function f that is continuous on [a, c]. Let ε > 0 and suppose that
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the following two statements hold:

(i) if x and y are in [a, b] and |x − y| < δ1, then |f (x)− f (y)| < ε,
(ii) if x and y are in [b, c] and |x − y| < δ2, then |f (x)− f (y)| < ε.

We'd like to know if there is some δ > 0 such that |f (x)− f (y)| < ε whenever
x and y are points in [a, c] with |x − y| < δ. Our ˇrst inclination might be to
choose δ as the minimum of δ1 and δ2. But it is easy to see what goes wrong
(Figure 2): we might have x in [a, b] and y in [b, c], and then neither (i) nor (ii)
tells us anything about |f (x) − f (y)|. So we have to be a little more cagey, and
also use continuity of f at b.F I G U R E 2

LEMMA Let a < b < c and let f be continuous on the interval [a, c]. Let ε > 0, and
suppose that statements (i) and (ii) hold. Then there is a δ > 0 such that,

if x and y are in [a, c] and |x − y| < δ, then |f (x)− f (y)| < ε.

PROOF Since f is continuous at b, there is a δ3 > 0 such that,

if |x − b| < δ3, then |f (x)− f (b)| < ε

2
.

It follows that

(iii) if |x − b| < δ3 and |y − b| < δ3, then |f (x)− f (y)| < ε.

Choose δ to be the minimum of δ1, δ2, and δ3. We claim that this δ works. In
fact, suppose that x and y are any two points in [a, c] with |x−y| < δ. If x and y
are both in [a,b], then |f (x)− f (y)| < ε by (i); and if x and y are both in [b, c],
then |f (x)− f (y)| < ε by (ii). The only other possibility is that

x < b < y or y < b < x.

In either case, since |x − y| < δ, we also have |x − b| < δ and |y − b| < δ. So
|f (x)− f (y)| < ε by (iii).

THEOREM 1 If f is continuous on [a, b], then f is uniformly continuous on [a, b].

PROOF It's the usual trick, but we've got to be a little bit careful about the mechanism of
the proof. For ε > 0 let's say that f is ε-good on [a, b] if there is some δ > 0 such
that, for all y and z in [a, b],

if |y − z| < δ, then |f (y)− f (z)| < ε.

Then we're trying to prove that f is ε-good on [a, b] for all ε > 0.
Consider any particular ε > 0. Let

A = {x : a ≤ x ≤ b and f is ε-good on [a, x]}.
Then A �= ∅ (since a is in A), and A is bounded above (by b), so A has a least
upper bound α. We really should write αε, since A and α might depend on ε. But
we won't since we intend to prove that α = b, no matter what ε is.
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Suppose that we had α < b. Since f is continuous at α, there is some δ0 > 0
such that, if |y−α| < δ0, then |f (y)− f(α)| < ε/2. Consequently, if |y−α| < δ0
and |z − α| < δ0, then |f (y) − f (z)| < ε. So f is surely ε-good on the interval
[α − δ0, α + δ0]. On the other hand, since α is the least upper bound of A, it
is also clear that f is ε-good on [a, α − δ0]. Then the Lemma implies that f is
ε-good on [a, a + δ0], so a + δ0 is in A, contradicting the fact that α is an upper
bound.

To complete the proof we just have to show that α = b is actually in A. The
argument for this is practically the same: Since f is continuous at b, there is some
δ0 > 0 such that, if |b − y| < δ0, then |f (y)− f (b)| < ε/2. So f is ε-good on
[b − δ0, b]. But f is also ε-good on [a, b − δ0], so the Lemma implies that f is
ε-good on [a, b].

PROBLEMS

1. (a) For which of the following values of α is the function f (x) = xα uni-
formly continuous on [0,∞): α = 1/3, 1/2, 2, 3?

(b) Find a function f that is continuous and bounded on (0, 1], but not
uniformly continuous on (0, 1].

(c) Find a function f that is continuous and bounded on [0,∞) but which
is not uniformly continuous on [0,∞).

2. (a) Prove that if f and g are uniformly continuous on A, then so is f + g.
(b) Prove that if f and g are uniformly continuous and bounded on A, then

fg is uniformly continuous on A.
(c) Show that this conclusion does not hold if one of them isn't bounded.
(d) Suppose that f is uniformly continuous on A, that g is uniformly con-

tinuous on B, and that f (x) is in B for all x in A. Prove that g � f is
uniformly continuous on A.

3. Use a \bisection argument" (page 140) to give another proof of Theorem 1.

4. Derive Theorem 7-2 as a consequence of Theorem 1.
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In 1604, at the height of
his scientific career, Galileo argued
that for a rectilinear motion
in which speed increases proportionally
to distance covered,
the law of motion should be
just that (x ct 2)
which he had discovered
in the investigation of falling bodies.
Between 1695 and 1700
not a single one of the monthly issues
of Leipzig’s Acta Eruditorum was published
without articles of Leibniz,
the Bernoulli brothers
or the Marquis de l’Hôpital treating,
with notation only slightly different from
that which we use today,
the most varied problems of
differential calculus, integral calculus
and the calculus of variations.
Thus in the space of almost precisely
one century
infinitesimal calculus or,
as we now call it in English,
The Calculus,
the calculating tool par excellence,
had been forged;
and nearly three centuries of
constant use have not completely dulled
this incomparable instrument.
NICHOLAS BOURBAKI



CHAPTER 9 DERIVATIVES

The derivative of a function is the ˇrst of the two major concepts of this section.
Together with the integral, it constitutes the source from which calculus derives
its particular �avor. While it is true that the concept of a function is fundamental,
that you cannot do anything without limits or continuity, and that least upper
bounds are essential, everything we have done until now has been preparation|if
adequate, this section will be easier than the preceding ones|for the really exciting
ideas to come, the powerful concepts that are truly characteristic of calculus.

Perhaps (some would say \certainly") the interest of the ideas to be introduced
in this section stems from the intimate connection between the mathematical con-
cepts and certain physical ideas. Many deˇnitions, and even some theorems, may
be described in terms of physical problems, often in a revealing way. In fact, the
demands of physics were the original inspiration for these fundamental ideas of
calculus, and we shall frequently mention the physical interpretations. But we
shall always ˇrst deˇne the ideas in precise mathematical form, and discuss their
signiˇcance in terms of mathematical problems.

The collection of all functions exhibits such diversity that there is almost no
hope of discovering any interesting general properties pertaining to all. Because
continuous functions form such a restricted class, we might expect to ˇnd some
nontrivial theorems pertaining to them, and the sudden abundance of theorems
after Chapter 6 shows that this expectation is justiˇed. But the most interesting
and most powerful results about functions will be obtained only when we restrict
our attention even further, to functions which have even greater claim to be called
\reasonable," which are even better behaved than most continuous functions.

F I G U R E 1

Figure 1 illustrates certain types of misbehavior which continuous functions can
display. The graphs of these functions are \bent" at (0, 0), unlike the graph of
Figure 2, where it is possible to draw a \tangent line" at each point. The quotation
marks have been used to avoid the suggestion that we have deˇned \bent" orFI G U R E 2

147
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\tangent line," although we are suggesting that the graph might be \bent" at a
point where a \tangent line" cannot be drawn. You have probably already noticed
that a tangent line cannot be deˇned as a line which intersects the graph only
once|such a deˇnition would be both too restrictive and too permissive. With
such a deˇnition, the straight line shown in Figure 3 would not be a tangent line
to the graph in that picture, while the parabola would have two tangent lines at
each point (Figure 4), and the three functions in Figure 5 would have more than
one tangent line at the points where they are \bent."FI G U R E 3

FI G U R E 5

A more promising approach to the deˇnition of a tangent line might start withFI G U R E 4

\secant lines," and use the notion of limits. If h �= 0, then the two distinct points
(a, f (a)) and (a + h, f (a + h)) determine, as in Figure 6, a straight line whose
slope is

f (a + h)− f (a)

h
.

F I G U R E 6

As Figure 7 illustrates, the \tangent line" at (a, f (a)) seems to be the limit, in
some sense, of these \secant lines," as h approaches 0. We have never before
talked about a \limit" of lines, but we can talk about the limit of their slopes: the
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slope of the tangent line through (a, f (a)) should be

lim
h→0

f (a + h)− f (a)

h
.

We are ready for a deˇnition, and some comments.

DEFINITION The function f is differentiable at a if

lim
h→0

f (a + h)− f (a)

h
exists.

In this case the limit is denoted by f 0(a) and is called the derivative of f at
a. (We also say that f is differentiable if f is differentiable at a for every a
in the domain of f .)

The ˇrst comment on our deˇnition is really an addendum; we deˇne the
tangent line to the graph of f at (a, f (a)) to be the line through (a, f (a))

with slope f ′(a). This means that the tangent line at (a, f (a)) is deˇned only if
f is differentiable at a.

The second comment refers to notation. The symbol f ′(a) is certainly rem-
iniscent of functional notation. In fact, for any function f , we denote by f 0the
function whose domain is the set of all numbers a such that f is differentiable
at a, and whose value at such a number a isF I G U R E 7

lim
h→0

f (a + h)− f (a)

h
.

(To be very precise: f ′ is the collection of all pairs(
a, lim

h→0

f (a + h)− f (a)

h

)
for which lim

h→0
[f (a+h)−f (a)]/h exists.) The function f ′ is called the derivative

of f .
Our third comment, somewhat longer than the previous two, refers to the phys-

ical interpretation of the derivative. Consider a particle which is moving along a
straight line (Figure 8(a)) on which we have chosen an \origin" point O, and a
direction in which distances from O shall be written as positive numbers, the dis-
tance from O of points in the other direction being written as negative numbers.
Let s(t) denote the distance of the particle from O, at time t . The suggestive nota-
tion s(t) has been chosen purposely; since a distance s(t) is determined for each

FI G U R E 8 ( a )
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number t , the physical situation automatically supplies us with a certain function s.
The graph of s indicates the distance of the particle from O, on the vertical axis,
in terms of the time, indicated on the horizontal axis (Figure 8(b)).

The quotient
s(a + h)− s(a)

h

has a natural physical interpretation. It is the \average velocity" of the particle
during the time interval from a to a + h. For any particular a, this average speed
depends on h, of course. On the other hand, the limitF I G U R E 8 ( b )

lim
h→0

s(a + h)− s(a)

h

depends only on a (as well as the particular function s) and there are important
physical reasons for considering this limit. We would like to speak of the \velocity
of the particle at time a," but the usual deˇnition of velocity is really a deˇnition
of average velocity; the only reasonable deˇnition of \velocity at time a" (so-called
\instantaneous velocity") is the limit

lim
h→0

s(a + h)− s(a)

h

Thus we define the (instantaneous) velocity of the particle at a to be s ′(a).
Notice that s ′(a) could easily be negative; the absolute value |s ′(a)| is sometimes
called the (instantaneous) speed.

It is important to realize that instantaneous velocity is a theoretical concept,
an abstraction which does not correspond precisely to any observable quantity.
While it would not be fair to say that instantaneous velocity has nothing to do
with average velocity, remember that s ′(t) is not

s(t + h)− s(t)

h

for any particular h, but merely the limit of these average velocities as h ap-
proaches 0. Thus, when velocities are measured in physics, what a physicist really
measures is an average velocity over some (very small) time interval; such a pro-
cedure cannot be expected to give an exact answer, but this is really no defect,
because physical measurements can never be exact anyway.

The velocity of a particle is often called the \rate of change of its position." This
notion of the derivative, as a rate of change, applies to any other physical situation
in which some quantity varies with time. For example, the \rate of change of
mass" of a growing object means the derivative of the function m, where m(t) is
the mass at time t .

In order to become familiar with the basic deˇnitions of this chapter, we will
spend quite some time examining the derivatives of particular functions. Before
proving the important theoretical results of Chapter 11, we want to have a good
idea of what the derivative of a function looks like. The next chapter is devoted
exclusively to one aspect of this problem|calculating the derivative of compli-
cated functions. In this chapter we will emphasize the concepts, rather than the
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calculations, by considering a few simple examples. Simplest of all is a constant
function, f (x) = c. In this case

lim
h→0

f (a + h)− f (a)

h
= lim

h→0

c − c

h
= 0.

Thus f is differentiable at a for every number a, and f ′(a) = 0. This means that
the tangent line to the graph of f always has slope 0, so the tangent line always
coincides with the graph.

Constant functions are not the only ones whose graphs coincide with their tan-
gent lines|this happens for any linear function f (x) = cx + d. Indeed

f ′(a) = lim
h→0

f (a + h)− f (a)

h

= lim
h→0

c(a + h)+ d − [ca + d]
h

= lim
h→0

ch

h
= c;

the slope of the tangent line is c, the same as the slope of the graph of f .
A refreshing difference occurs for f (x) = x2. Here

f ′(a) = lim
h→0

f (a + h)− f (a)

h

= lim
h→0

(a + h)2 − a2

h

= lim
h→0

a2 + 2ah+ h2 − a2

h

= lim
h→0

2a + h

= 2a.

Some of the tangent lines to the graph of f are shown in Figure 9. In this picture
each tangent line appears to intersect the graph only once, and this fact can be
checked fairly easily: Since the tangent line through (a, a2) has slope 2a, it is the
graph of the functionFI G U R E 9

g(x) = 2a(x − a)+ a2

= 2ax − a2.

Now, if the graphs of f and g intersect at a point (x, f (x)) = (x,g(x)), then

x2 = 2ax − a2

or x2 − 2ax + a2 = 0;
so (x − a)2 = 0
or x = a.

In other words, (a, a2) is the only point of intersection.
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The function f (x) = x2 happens to be quite special in this regard; usually a
tangent line will intersect the graph more than once. Consider, for example, the
function f (x) = x3. In this case

f ′(a) = lim
h→0

f (a + h)− f (a)

h

= lim
h→0

(a + h)3 − a3

h

= lim
h→0

a3 + 3a2h+ 3ah2 + h3 − a3

h

= lim
h→0

3a2h+ 3ah2 + h3

h

= lim
h→0

3a2 + 3ah+ h2

= 3a2.

Thus the tangent line to the graph of f at (a, a3) has slope 3a2. This means that
the tangent line is the graph of

g(x) = 3a2(x − a)+ a3

= 3a2x − 2a3.

The graphs of f and g intersect at the point (x, f (x)) = (x, g(x)) when

x3 = 3a2x − 2a3

or x3 − 3a2x + 2a3 = 0.

This equation is easily solved if we remember that one solution of the equation
has got to be x = a, so that (x − a) is a factor of the left side; the other factor can
then be found by dividing. We obtain

(x − a)(x2 + ax − 2a2) = 0.

It so happens that x2 + ax − 2a2 also has x − a as a factor; we obtain ˇnally

(x − a)(x − a)(x + 2a) = 0.

Thus, as illustrated in Figure 10, the tangent line through (a, a3) also intersects
the graph at the point (−2a,−8a3). These two points are always distinct, except
when a = 0.

We have already found the derivative of sufˇciently many functions to illustrate
the classical, and still very popular, notation for derivatives. For a given function f ,
the derivative f ′ is often denoted by

df (x)

dx
.

For example, the symbolFI G U R E 1 0

dx2

dx
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denotes the derivative of the function f (x) = x2. Needless to say, the separate
parts of the expression

df (x)

dx

are not supposed to have any sort of independent existence|the d's are not num-
bers, they cannot be canceled, and the entire expression is not the quotient of two
other numbers \df (x)" and \dx." This notation is due to Leibniz (generally
considered an independent co-discoverer of calculus, along with Newton), and is
affectionately referred to as Leibnizian notation.* Although the notation df (x)/dx
seems very complicated, in concrete cases it may be shorter; after all, the symbol
dx2/dx is actually more concise than the phrase \the derivative of the function
f (x) = x2."

The following formulas state in standard Leibnizian notation all the information
that we have found so far:

dc

dx
= 0,

d(ax + b)

dx
= a,

dx2

dx
= 2x,

dx3

dx
= 3x2.

Although the meaning of these formulas is clear enough, attempts at literal
interpretation are hindered by the reasonable stricture that an equation should
not contain a function on one side and a number on the other. For example, if
the third equation is to be true, then either df (x)/dx must denote f ′(x), rather
than f ′, or else 2x must denote, not a number, but the function whose value at x
is 2x. It is really impossible to assert that one or the other of these alternatives is
intended; in practice df (x)/dx sometimes means f ′ and sometimes means f ′(x),
while 2x may denote either a number or a function. Because of this ambiguity,
most authors are reluctant to denote f ′(a) by

df (x)

dx
(a);

instead f ′(a) is usually denoted by the barbaric, but unambiguous, symbol

df (x)

dx

∣∣∣∣
x=a

.

* Leibniz was led to this symbol by his intuitive notion of the derivative, which he considered to be,
not the limit of quotients [f (x+h)−f (x)]/h, but the \value" of this quotient when h is an \inˇnitely
small" number. This \inˇnitely small" quantity was denoted by dx and the corresponding \inˇnitely
small" difference f (x+dx)−f(x) by df (x). Although this point of view is impossible to reconcile with
properties (P1){(P13) of the real numbers, some people ˇnd this notion of the derivative congenial.
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In addition to these difˇculties, Leibnizian notation is associated with one more
ambiguity. Although the notation dx2/dx is absolutely standard, the notation
df (x)/dx is often replaced by df/dx. This, of course, is in conformity with the
practice of confusing a function with its value at x. So strong is this tendency that
functions are often indicated by a phrase like the following: \consider the function
y = x2." We will sometimes follow classical practice to the extent of using y

as the name of a function, but we will nevertheless carefully distinguish between
the function and its values|thus we will always say something like \consider the
function (deˇned by) y(x)= x2."

Despite the many ambiguities of Leibnizian notation, it is used almost exclu-
sively in older mathematical writing, and is still used very frequently today. The
staunchest opponents of Leibnizian notation admit that it will be around for quite
some time, while its most ardent admirers would say that it will be around for-
ever, and a good thing too! In any case, Leibnizian notation cannot be ignored
completely.

The policy adopted in this book is to disallow Leibnizian notation within the
text, but to include it in the Problems; several chapters contain a few (immediately
recognizable) problems which are expressly designed to illustrate the vagaries of
Leibnizian notation. Trusting that these problems will provide ample practice in
this notation, we return to our basic task of examining some simple examples of
derivatives.

The few functions examined so far have all been differentiable. To fully ap-
preciate the signiˇcance of the derivative it is equally important to know some
examples of functions which are not differentiable. The obvious candidates are the
three functions ˇrst discussed in this chapter, and illustrated in Figure 1; if they
turn out to be differentiable at 0 something has clearly gone wrong.

Consider ˇrst f (x) = |x|. In this case

f (0 + h)− f (0)
h

= |h|
h
.

Now |h|/h = 1 for h > 0, and |h|/h = −1 for h < 0. This shows that

lim
h→0

f (h)− f (0)
h

does not exist.

In fact,

lim
h→0+

f (h)− f (0)
h

= 1

and lim
h→0−

f (h)− f (0)
h

= −1.

(These two limits are sometimes called the right-hand derivative and the left-
hand derivative, respectively, of f at 0.)
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If a �= 0, then f ′(a) does exist. In fact,

f ′(x) = 1 if x > 0,
f ′(x) = −1 if x < 0.

The proof of this fact is left to you (it is easy if you remember the derivative of a
linear function). The graphs of f and of f ′ are shown in Figure 11.

For the function

f (x) =
{
x2, x ≤ 0
x, x ≥ 0,

a similar difˇculty arises in connection with f ′(0). We have

FI G U R E 1 1 f (h)− f (0)
h

=



h2

h
= h, h < 0

h

h
= 1, h > 0.

Therefore,

lim
h→0−

f (h)− f (0)
h

= 0,

but lim
h→0+

f (h)− f (0)
h

= 1.

Thus f ′(0) does not exist; f is not differentiable at 0. Once again, however, f ′(x)
exists for x �= 0|it is easy to see that

f ′(x) =
{

2x, x < 0
1, x > 0.

The graphs of f and f ′ are shown in Figure 12.

Even worse things happen for f (x) =
√

|x|. For this function

FI G U R E 1 2 f (h)− f (0)
h

=




√
h

h
= 1√

h
, h > 0

√−h
h

= − 1√−h, h < 0.

In this case the right-hand limit

lim
h→0+

f (h)− f (0)
h

= lim
h→0+

1√
h

does not exist; instead 1/
√
h becomes arbitrarily large as h approaches 0. And,

what's more, −1/
√−h becomes arbitrarily large in absolute value, but negative

(Figure 13).

F I G U R E 1 3
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The function f (x) = 3
√
x, although not differentiable at 0, is at least a little

better behaved than this. The quotient

f (h)− f (0)
h

=
3√
h

h
= h1/3

h
= 1
h2/3 = 1( 3

√
h
)2

simply becomes arbitrarily large as h goes to 0. Sometimes one says that f has
an \inˇnite" derivative at 0. Geometrically this means that the graph of f has a
\tangent line" which is parallel to the vertical axis (Figure 14). Of course, f (x) =
− 3

√
x has the same geometric property, but one would say that f has a derivative

of \negative inˇnity" at 0.
Remember that differentiability is supposed to be an improvement over mereFI G U R E 1 4

continuity. This idea is supported by the many examples of functions which are
continuous, but not differentiable; however, one important point remains to be
noted:

THEOREM 1 If f is differentiable at a, then f is continuous at a.

PROOF lim
h→0

f (a + h)− f (a) = lim
h→0

f (a + h)− f (a)

h
· h

= lim
h→0

f (a + h)− f (a)

h
· lim
h→0

h

= f ′(a) · 0
= 0.

As we pointed out in Chapter 5, the equation lim
h→0

f (a+h)−f(a) = 0 is equivalent

to lim
x→a

f (x) = f (a); thus f is continuous at a.

It is very important to remember Theorem 1, and just as important to remember
that the converse is not true. A differentiable function is continuous, but a con-
tinuous function need not be differentiable (keep in mind the function f (x) = |x|,
and you will never forget which statement is true and which false).

The continuous functions examined so far have been differentiable at all points
with at most one exception, but it is easy to give examples of continuous functions
which are not differentiable at several points, even an inˇnite number (Figure 15).
Actually, one can do much worse than this. There is a function which is continuous

F I G U R E 1 5
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F I G U R E 1 6

everywhere and differentiable nowhere! Unfortunately, the deˇnition of this function will
be inaccessible to us until Chapter 24, and I have been unable to persuade the
artist to draw it (consider carefully what the graph should look like and you will
sympathize with her point of view). It is possible to draw some rough approxima-
tions to the graph, however; several successively better approximations are shown
in Figure 16.

Although such spectacular examples of nondifferentiability must be postponed,
we can, with a little ingenuity, ˇnd a continuous function which is not differentiable
at inˇnitely many points, all of which are in [0,1]. One such function is illustrated in
Figure 17. The reader is given the problem of deˇning it precisely; it is a straight
line version of the function

f (x) =

 x sin

1
x
, x �= 0

0, x = 0.

This particular function f is itself quite sensitive to the question of differentiability.
Indeed, for h �= 0 we haveFI G U R E 1 7
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f (h)− f (0)
h

=
h sin

1
h

− 0

h
= sin

1
h
.

Long ago we proved that lim
h→0

sin 1/h does not exist, so f is not differentiable at 0.

Geometrically, one can see that a tangent line cannot exist, by noting that the
secant line through (0,0) and (h, f (h)) in Figure 18 can have any slope between
−1 and 1, no matter how small we require h to be.

F I G U R E 1 8

This ˇnding represents something of a triumph; although continuous, the func-
tion f seems somehow quite unreasonable, and we can now enunciate one math-
ematically undesirable feature of this function|it is not differentiable at 0. Nev-
ertheless, one should not become too enthusiastic about the criterion of differen-
tiability. For example, the function

g(x) =

 x2 sin

1
x
, x �= 0

0, x = 0

is differentiable at 0; in fact g′(0) = 0:

lim
h→0

g(h)− g(0)
h

= lim
h→0

h2 sin
1
h

h

= lim
h→0

h sin
1
h

= 0.

The tangent line to the graph of g at (0, 0) is therefore the horizontal axis (Fig-
ure 19).

This example suggests that we should seek even more restrictive conditions on a
function than mere differentiability. We can actually use the derivative to formulate
such conditions if we introduce another set of deˇnitions, the last of this chapter.
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F I G U R E 1 9

For any function f , we obtain, by taking the derivative, a new function f ′ (whose
domain may be considerably smaller than that of f ). The notion of differentia-
bility can be applied to the function f ′, of course, yielding another function (f ′)′,
whose domain consists of all points a such that f ′ is differentiable at a. The func-
tion (f ′)′ is usually written simply f ′′ and is called the second derivative of f .
If f ′′(a) exists, then f is said to be 2-times differentiable at a, and the number
f ′′(a) is called the second derivative of f at a.

In physics the second derivative is particularly important. If s(t) is the posi-
tion at time t of a particle moving along a straight line, then s ′′(t) is called the
acceleration at time t . Acceleration plays a special role in physics, because, as
stated in Newton's laws of motion, the force on a particle is the product of its mass
and its acceleration. Consequently you can feel the second derivative when you
sit in an accelerating car.

There is no reason to stop at the second derivative|we can deˇne f ′′′ = (f ′′)′,
f ′′′′ = (f ′′′)′, etc. This notation rapidly becomes unwieldy, so the following abbre-
viation is usually adopted (it is really a recursive deˇnition):

f (1) = f ′,
f (k+1) = (f (k))′.

Thus

f (1) = f ′

f (2) = f ′′ = (f ′)′,
f (3) = f ′′′ = (f ′′)′,
f (4) = f ′′′′ = (f ′′′)′,
etc.

The various functions f (k), for k ≥ 2, are sometimes called higher-order
derivatives of f .

Usually, we resort to the notation f (k) only for k ≥ 4, but it is convenient to
have f (k) deˇned for smaller k also. In fact, a reasonable deˇnition can be made
for f (0), namely,

f (0) = f.
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Leibnizian notation for higher-order derivatives should also be mentioned. The
natural Leibnizian symbol for f ′′(x), namely,

d

(
df (x)

dx

)
dx

,

is abbreviated to

d2f (x)

(dx)2
, or more frequently to

d2f (x)

dx2

Similar notation is used for f (k)(x).
The following example illustrates the notation f (k), and also shows, in one very

simple case, how various higher-order derivatives are related to the original func-
tion. Let f (x) = x2. Then, as we have already checked,

f ′(x) = 2x,
f ′′(x) = 2,
f ′′′(x) = 0,
f (k)(x) = 0, if k ≥ 3.

Figure 20 shows the function f , together with its various derivatives.
A rather more illuminating example is presented by the following function,

whose graph is shown in Figure 21(a):

f (x) =
{
x2, x ≥ 0
−x2, x ≤ 0.

It is easy to see that

f ′(a) = 2a if a > 0,
f ′(a) = −2a if a < 0.

Moreover,

f ′(0) = lim
h→0

f (h)− f (0)
h

= lim
h→0

f (h)

h
.

Now

lim
h→0+

f (h)

h
= lim

h→0+

h2

h
= 0

and lim
h→0−

f (h)

h
= lim

h→0−

−h2

h
= 0,

soFI G U R E 2 0

f ′(0) = lim
h→0

f (h)

h
= 0.

This information can all be summarized as follows:

f ′(x) = 2|x|.
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It follows that f ′′(0) does not exist! Existence of the second derivative is thus a
rather strong criterion for a function to satisfy. Even a \smooth looking" function
like f reveals some irregularity when examined with the second derivative. This
suggests that the irregular behavior of the function

g(x) =

 x2 sin

1
x
, x �= 0

0, x = 0

might also be revealed by the second derivative. At the moment we know that
g′(0) = 0, but we do not know g′(a) for any a �= 0, so it is hopeless to begin
computing g′′(0). We will return to this question at the end of the next chapter,
after we have perfected the technique of ˇnding derivatives.

PROBLEMS

1. (a) Prove, working directly from the deˇnition, that if f (x) = 1/x, then
f ′(a) = −1/a2, for a �= 0.

(b) Prove that the tangent line to the graph of f at (a,1/a) does not intersect
the graph of f , except at (a,1/a).

2. (a) Prove that if f (x) = 1/x2, then f ′(a) = −2/a3 for a �= 0.
(b) Prove that the tangent line to f at (a,1/a2) intersects f at one other

point, which lies on the opposite side of the vertical axis.

3. Prove that if f (x) = √
x, then f ′(a) = 1/(2

√
a), for a > 0. (The expression

you obtain for [f (a + h)− f (a)]/h will require some algebraic face lifting,
but the answer should suggest the right trick.)

4. For each natural number n, let Sn(x) = xn. Remembering that S1
′(x) = 1,

S2
′(x) = 2x, and S3

′(x) = 3x2, conjecture a formula for Sn′(x). Prove your
conjecture. (The expression (x + h)n may be expanded by the binomial
theorem.)

5. Find f ′ if f (x) = [x].

6. Prove, starting from the deˇnition (and drawing a picture to illustrate):F I G U R E 2 1

(a) if g(x) = f (x)+ c, then g′(x) = f ′(x);
(b) if g(x) = cf (x), then g′(x) = cf ′(x).

7. Suppose that f (x) = x3.

(a) What is f ′(9), f ′(25), f ′(36)?
(b) What is f ′(32), f ′(52), f ′(62)?
(c) What is f ′(a2), f ′(x2)?
If you do not ˇnd this problem silly, you are missing a very important point:
f ′(x2) means the derivative of f at the number which we happen to be
calling x2; it is not the derivative at x of the function g(x) = f (x2). Just to
drive the point home:
(d) For f (x) = x3, compare f ′(x2) and g′(x) where g(x) = f (x2).
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8. (a) Suppose g(x) = f (x+c). Prove (starting from the deˇnition) that g′(x) =
f ′(x+ c). Draw a picture to illustrate this. To do this problem you must
write out the deˇnitions of g′(x) and f ′(x + c) correctly. The purpose
of Problem 7 was to convince you that although this problem is easy, it is
not an utter triviality, and there is something to prove: you cannot simply
put prime marks into the equation g(x) = f (x + c). To emphasize this
point:

(b) Prove that if g(x) = f (cx), then g′(x) = c · f ′(cx). Try to see pictorially
why this should be true, also.

(c) Suppose that f is differentiable and periodic, with period a (i.e.,
f (x + a) = f (x) for all x ). Prove that f ′ is also periodic.

9. Find f ′(x) and also f ′(x + 3) in the following cases. Be very methodical,
or you will surely slip up somewhere. Consult the answers (after you do the
problem, naturally).

(i) f (x) = (x + 3)5.
(ii) f (x + 3) = x5.
(iii) f (x + 3) = (x + 5)7.

10. Find f ′(x) if f (x) = g(t + x), and if f (t) = g(t + x). The answers will not

be the same.

11. (a) Prove that Galileo was wrong: if a body falls a distance s(t) in t seconds,
and s ′ is proportional to s, then s cannot be a function of the form
s(t) = ct2.

(b) Prove that the following facts are true about s if s(t) = (a/2)t2 (the ˇrst
fact will show why we switched from c to a/2):

(i) s ′′(t) = a (the acceleration is constant).
(ii) [s ′(t)]2 = 2as(t).

(c) If s is measured in feet, the value of a is 32. How many seconds do you
have to get out of the way of a chandelier which falls from a 400-foot
ceiling? If you don't make it, how fast will the chandelier be going when
it hits you? Where was the chandelier when it was moving with half that
speed?

12. Imagine a road on which the speed limit is speciˇed at every single point. In
other words, there is a certain function L such that the speed limit x miles
from the beginning of the road is L(x). Two cars, A and B, are driving along
this road; car A's position at time t is a(t), and car B's is b(t).

(a) What equation expresses the fact that car A always travels at the speed
limit? (The answer is not a′(t) = L(t).)

(b) Suppose that A always goes at the speed limit, and that B's position at
time t is A's position at time t−1. Show that B is also going at the speed
limit at all times.

(c) Suppose B always stays a constant distance behind A. Under what con-
ditions will B still always travel at the speed limit?
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13. Suppose that f (a) = g(a) and that the left-hand derivative of f at a equals
the right-hand derivative of g at a. Deˇne h(x) = f (x) for x ≤ a, and
h(x) = g(x) for x ≥ a. Prove that h is differentiable at a.

14. Let f (x) = x2 if x is rational, and f (x) = 0 if x is irrational. Prove that
f is differentiable at 0. (Don't be scared by this function. Just write out the
deˇnition of f ′(0).)

*15. (a) Let f be a function such at |f (x)| ≤ x2 for all x. Prove that f is
differentiable at 0. (If you have done Problem 14 you should be able to
do this.)

(b) This result can be generalized if x2 is replaced by |g(x)|, where g has
what property?

16. Let α > 1. If f satisˇes |f (x)| ≤ |x|α , prove that f is differentiable at 0.

17. Let 0 < β < 1. Prove that if f satisˇes |f (x)| ≥ |x|β and f (0) = 0, then f
is not differentiable at 0.

*18. Let f (x) = 0 for irrational x, and 1/q for x = p/q in lowest terms. Prove
that f is not differentiable at a for any a. Hint: It obviously sufˇces to prove
this for irrational a. Why? If a = m.a1a2a3 . . . is the decimal expansion
of a, consider [f (a + h)− f (a)]/h for h rational, and also for

h = −0.00 . . . 0an+1an+2 . . . .

19. (a) Suppose that f (a) = g(a) = h(a), that f (x) ≤ g(x) ≤ h(x) for all x,
and that f ′(a) = h′(a). Prove that g is differentiable at a, and that
f ′(a) = g′(a) = h′(a). (Begin with the deˇnition of g′(a).)

(b) Show that the conclusion does not follow if we omit the hypothesis
f (a) = g(a) = h(a).

20. Let f be any polynomial function; we will see in the next chapter that f
is differentiable. The tangent line to f at (a, f (a)) is the graph of g(x) =
f ′(a)(x − a) + f (a). Thus f (x)− g(x) is the polynomial function d(x) =
f (x)− f ′(a)(x − a)− f (a). We have already seen that if f (x) = x2, then
d(x) = (x − a)2, and if f (x) = x3, then d(x) = (x − a)2(x + 2a).

(a) Find d(x) when f (x) = x4, and show that it is divisible by (x − a)2.
(b) There certainly seems to be some evidence that d(x) is always divisible by

(x−a)2. Figure 22 provides an intuitive argument: usually, lines parallel
to the tangent line will intersect the graph at two points; the tangent line
intersects the graph only once near the point, so the intersection shouldFI G U R E 2 2

be a \double intersection." To give a rigorous proof, ˇrst note that

d(x)

x − a
= f (x)− f (a)

x − a
− f ′(a).

Now answer the following questions. Why is f (x) − f (a) divisible
by (x − a)? Why is there a polynomial function h such that h(x) =
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d(x)/(x − a) for x �= a? Why is lim
x→a

h(x) = 0? Why is h(a) = 0? Why

does this solve the problem?

21. (a) Show that f ′(a) = lim
x→a

[f (x)− f (a)]/(x − a). (Nothing deep here.)

(b) Show that derivatives are a \local property": if f (x) = g(x) for all x in
some open interval containing a, then f ′(a) = g′(a). (This means that
in computing f ′(a), you can ignore f (x) for any particular x �= a. Of
course you can't ignore f (x) for all such x at once!)

*22. (a) Suppose that f is differentiable at x. Prove that

f ′(x) = lim
h→0

f (x + h)− f (x − h)

2h
.

Hint: Remember an old algebraic trick|a number is not changed if the
same quantity is added to and then subtracted from it.

**(b) Prove, more generally, that

f ′(x) = lim
h,k→0+

f (x + h)− f (x − k)

h+ k
.

*23. Prove that if f is even, then f ′(x) = −f ′(−x). (In order to minimize con-
fusion, let g(x) = f (−x); ˇnd g′(x) and then remember what other thing g
is.) Draw a picture!

*24. Prove that if f is odd, then f ′(x) = f ′(−x). Once again, draw a picture.

25. Problems 23 and 24 say that f ′ is even if f is odd, and odd if f is even.
What can therefore be said about f (k)?

26. Find f ′′(x) if

(i) f (x) = x3.
(ii) f (x) = x5.
(iii) f ′(x) = x4.
(iv) f (x + 3) = x5.

27. If Sn(x) = xn, and 0 ≤ k ≤ n, prove that

Sn
(k)(x) = n!

(n − k)!
xn−k

= k!
(
n

k

)
xn−k.

*28. (a) Find f ′(x) if f (x) = |x|3. Find f ′′(x). Does f ′′′(x) exist for all x?
(b) Analyze f similarly if f (x) = x4 for x ≥ 0 and f (x) = −x4 for x ≤ 0.

*29. Let f (x) = xn for x ≥ 0 and let f (x) = 0 for x ≤ 0. Prove that f (n−1) exists
(and ˇnd a formula for it), but that f (n)(0) does not exist.
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30. Interpret the following specimens of Leibnizian notation; each is a restate-
ment of some fact occurring in a previous problem.

(i)
dxn

dx
= nxn−1

(ii)
dz

dy
= − 1

y2 if z = 1
y
.

(iii)
d[f (x)+ c]

dx
= df (x)

dx
.

(iv)
d[cf (x)]
dx

= c
df (x)

dx
.

(v)
dz

dx
= dy

dx
if z = y + c.

(vi)
dx3

dx

∣∣∣∣∣
x=a2

= 3a4.

(vii)
df (x + a)

dx

∣∣∣∣
x=b

= df (x)

dx

∣∣∣∣
x=b+a

.

(viii)
df (cx)

dx

∣∣∣∣
x=b

= c · df (x)
dx

∣∣∣∣
x=cb

.

(ix)
df (cx)

dx
= c · df (y)

dy

∣∣∣∣
y=cx

.

(x)
dkxn

dxk
= k!

(
n

k

)
xn−k.



CHAPTER 10 DIFFERENTIATION

The process of ˇnding the derivative of a function is called differentiation. From the
previous chapter you may have the impression that this process is usually laborious,
requires recourse to the deˇnition of the derivative, and depends upon successfully
recognizing some limit. It is true that such a procedure is often the only possible
approach|if you forget the deˇnition of the derivative you are likely to be lost.
Nevertheless, in this chapter we will learn to differentiate a large number of func-
tions, without the necessity of even recalling the deˇnition. A few theorems will
provide a mechanical process for differentiating a large class of functions, which
are formed from a few simple functions by the process of addition, multiplication,
division, and composition. This description should suggest what theorems will be
proved. We will ˇrst ˇnd the derivative of a few simple functions, and then prove
theorems about the sum, products, quotients, and compositions of differentiable
functions. The ˇrst theorem is merely a formal recognition of a computation
carried out in the previous chapter.

THEOREM 1 If f is a constant function, f (x) = c, then

f ′(a) = 0 for all numbers a.

PROOF f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

h→0

c− c

h
= 0.

The second theorem is also a special case of a computation in the last chapter.

THEOREM 2 If f is the identity function, f (x) = x, then

f ′(a) = 1 for all numbers a.

PROOF f ′(a) = lim
h→0

f (a + h)− f (a)

h

= lim
h→0

a + h− a

h

= lim
h→0

h

h
= 1.

The derivative of the sum of two functions is just what one would hope|the
sum of the derivatives.

166
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THEOREM 3 If f and g are differentiable at a, then f + g is also differentiable at a, and

(f + g)′(a) = f ′(a)+ g′(a).

PROOF (f + g)′(a) = lim
h→0

(f + g)(a + h)− (f + g)(a)

h

= lim
h→0

f (a + h)+ g(a + h)− [f (a)+ g(a)]
h

= lim
h→0

[
f (a + h)− f (a)

h
+ g(a + h)− g(a)

h

]

= lim
h→0

f (a + h)− f (a)

h
+ lim

h→0

g(a + h)− g(a)

h

= f ′(a)+ g′(a).

The formula for the derivative of a product is not as simple as one might wish,
but it is nevertheless pleasantly symmetric, and the proof requires only a simple
algebraic trick, which we have found useful before|a number is not changed if
the same quantity is added to and subtracted from it.

THEOREM 4 If f and g are differentiable at a, then

(f · g)′(a) = f ′(a) · g(a)+ f (a) · g′(a).

PROOF (f · g)′(a) = lim
h→0

(f · g)(a + h)− (f · g)(a)
h

= lim
h→0

f (a + h)g(a + h)− f (a)g(a)

h

= lim
h→0

[
f (a + h)[g(a + h)− g(a)]

h
+ [f (a + h)− f (a)]g(a)

h

]

= lim
h→0

f (a + h) · lim
h→0

g(a + h)− g(a)

h
+ lim

h→0

f (a + h)− f (a)

h
· lim
h→0

g(a)

= f (a) · g′(a)+ f ′(a) · g(a).
(Notice that we have used Theorem 9-1 to conclude that lim

h→0
f (a + h) = f (a).)

In one special case Theorem 4 simpliˇes considerably:

THEOREM 5 If g(x) = cf (x) and f is differentiable at a, then g is differentiable at a, and

g′(a) = c · f ′(a).

PROOF If h(x) = c, so that g = h · f , then by Theorem 4,

g′(a) = (h · f )′(a)
= h(a) · f ′(a)+ h′(a) · f (a)
= c · f ′(a)+ 0 · f (a)
= c · f ′(a).
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Notice, in particular, that (−f )′(a) = −f ′(a), and consequently (f − g)′(a) =
(f + [−g])′(a) = f ′(a)− g′(a).

To demonstrate what we have already achieved, we will compute the derivative
of some more special functions.

THEOREM 6 If f (x) = xn for some natural number n, then

f ′(a) = nan−1 for all a.

PROOF The proof will be by induction on n. For n = 1 this is simply Theorem 2. Now
assume that the theorem is true for n, so that if f (x) = xn, then

f ′(a) = nan−1 for all a.

Let g(x) = xn+1. If I (x) = x, the equation xn+1 = xn · x can be written

g(x) = f (x) · I (x) for all x;
thus g = f · I . It follows from Theorem 4 that

g′(a) = (f · I)′(a) = f ′(a) · I (a)+ f (a) · I ′(a)
= nan−1 · a + an · 1
= nan + an

= (n+ 1)an, for all a.

This is precisely the case n + 1 which we wished to prove.

Putting together the theorems proved so far we can now ˇnd f ′ for f of the
form

f (x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0.

We obtain

f ′(x) = nanx
n−1 + (n − 1)an−1x

n−2 + · · · + 2a2x + a1.

We can also ˇnd f ′′:

f ′′(x) = n(n− 1)anxn−2 + (n − 1)(n− 2)an−1x
n−3 + · · · + 2a2.

This process can be continued easily. Each differentiation reduces the highest
power of x by 1, and eliminates one more ai . It is a good idea to work out the
derivatives f ′′′, f (4), and perhaps f (5), until the pattern becomes quite clear. The
last interesting derivative is

f (n)(x) = n!an;
for k > n we have

f (k)(x) = 0.

Clearly, the next step in our program is to ˇnd the derivative of a quotient f/g.
It is quite a bit simpler, and, because of Theorem 4, obviously sufˇcient to ˇnd
the derivative of 1/g.
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THEOREM 7 If g is differentiable at a, and g(a) �= 0, then 1/g is differentiable at a, and(
1
g

)′
(a) = −g′(a)

[g(a)]2 .

PROOF Before we even write (
1
g

)
(a + h)−

(
1
g

)
(a)

h

we must be sure that this expression makes sense|it is necessary to check that
(1/g)(a+h) is deˇned for sufˇciently small h. This requires only two observations.
Since g is, by hypothesis, differentiable at a, it follows from Theorem 9-1 that g is
continuous at a. Since g(a) �= 0, it follows from Theorem 6-3 that there is some
δ > 0 such that g(a + h) �= 0 for |h| < δ. Therefore (1/g)(a + h) does make sense
for small enough h, and we can write

lim
h→0

(
1
g

)
(a + h)−

(
1
g

)
(a)

h
= lim

h→0

1
g(a + h)

− 1
g(a)

h

= lim
h→0

g(a)− g(a + h)

h[g(a) · g(a + h)]

= lim
h→0

−[g(a + h)− g(a)]
h

· 1
g(a)g(a + h)

= lim
h→0

−[g(a + h)− g(a)]
h

· lim
h→0

1
g(a) · g(a + h)

= −g′(a) · 1
[g(a)]2 .

(Notice that we have used continuity of g at a once again.)

The general formula for the derivative of a quotient is now easy to derive.
Though not particularly appealing, it is important, and must simply be memo-
rized (I always use the incantation: \bottom times derivative of top, minus top
times derivative of bottom, over bottom squared.")

THEOREM 8 If f and g are differentiable at a and g(a) �= 0, then f/g is differentiable at a,
and (

f

g

)′
(a) = g(a) · f ′(a)− f (a) · g′(a)

[g(a)]2 .
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PROOF Since f/g = f · (1/g) we have(
f

g

)′
(a) =

(
f · 1

g

)′
(a)

= f ′(a) ·
(

1
g

)
(a)+ f (a) ·

(
1
g

)′
(a)

= f ′(a)
g(a)

+ f (a)(−g′(a))
[g(a)]2

= f ′(a) · g(a)− f (a) · g′(a)
[g(a)]2 .

We can now differentiate a few more functions. For example,

if f (x) = x2 − 1
x2 + 1

, then f ′(x) = (x2 + 1)(2x)− (x2 − 1)(2x)
(x2 + 1)2

= 4x
(x2 + 1)2

;

if f (x) = x

x2 + 1
, then f ′(x) = (x2 + 1)− x(2x)

(x2 + 1)2
= 1 − x2

(x2 + 1)2
;

if f (x) = 1
x
, then f ′(x) = − 1

x2 = (−1)x−2.

Notice that the last example can be generalized: if

f (x) = x−n = 1
xn
, for some natural number n,

then

f ′(x) = −nxn−1

x2n = (−n)x−n−1;

thus Theorem 6 actually holds both for positive and negative integers. If we inter-
pret f (x) = x0 to mean f (x) = 1, and f ′(x) = 0 · x−1 to mean f ′(x) = 0, then
Theorem 6 is true for n = 0 also. (The word \interpret" is necessary because it is
not clear how 00 should be deˇned and, in any case, 0 · 0−1 is meaningless.)

Further progress in differentiation requires the knowledge of the derivatives of
certain special functions to be studied later. One of these is the sine function. For
the moment we shall divulge, and use, the following information, without proof:

sin′(a) = cos a for all a,
cos′(a) = − sin a for all a,

This information allows us to differentiate many other functions. For example, if

f (x) = x sin x,

then

f ′(x) = x cos x + sin x,
f ′′(x) = −x sin x + cos x + cos x

= −x sin x + 2 cos x;
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if
g(x) = sin2 x = sin x · sin x,

then
g′(x) = sin x cos x + cos x sin x

= 2 sin x cos x,
g′′(x) = 2[(sin x)(− sin x)+ cos x cos x]

= 2[cos2 x − sin2
x];

if
h(x) = cos2 x = cos x · x,

then
h′(x) = (cos x)(− sin x)+ (− sin x) cos x

= −2 sin x cos x,
h′′(x) = −2[cos2 x − sin2 x].

Notice that
g′(x)+ h′(x) = 0,

hardly surprising, since (g + h)(x) = sin2 x + cos2 x = 1. As we would expect, we
also have g′′(x)+ h′′(x) = 0.

The examples above involved only products of two functions. A function involv-
ing triple products can be handled by Theorem 4 also; in fact it can be handled
in two ways. Remember that f · g · h is an abbreviation for

(f · g) · h or f · (g · h).
Choosing the ˇrst of these, for example, we have

(f · g · h)′(x) = (f · g)′(x) · h(x)+ (f · g)(x)h′(x)
= [f ′(x)g(x)+ f (x)g′(x)]h(x)+ f (x)g(x)h′(x)
= f ′(x)g(x)h(x)+ f (x)g′(x)h(x)+ f (x)g(x)h′(x).

The choice of f · (g · h) would, of course, have given the same result, with a
different intermediate step. The ˇnal answer is completely symmetric and easily
remembered:

(f · g ·h)′ is the sum of the three terms obtained by differentiating each of f ,
g, and h and multiplying by the other two.

For example, if
f (x) = x3 sin x cos x,

then
f ′(x) = 3x2 sin x cos x + x3 cos x cos x + x3(sin x)(− sin x).

Products of more than 3 functions can be handled similarly. For example, you
should have little difˇculty deriving the formula

(f · g · h · k)′(x) = f ′(x)g(x)h(x)k(x)+ f (x)g′(x)h(x)k(x)

+ f (x)g(x)h′(x)k(x)+ f (x)g(x)h(x)k′(x).
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You might even try to prove (by induction) the general formula:

(f1 · · · · · fn)′(x) =
n∑
i=1

f1(x) · · · · · fi−1(x)fi
′(x)fi+1(x) · · · · · fn(x).

Differentiating the most interesting functions obviously requires a formula for
(f � g)′(x) in terms of f ′ and g′. To ensure that f � g be differentiable at a, one
reasonable hypothesis would seem to be that g be differentiable at a. Since the
behavior of f � g near a depends on the behavior of f near g(a) (not near a), it
also seems reasonable to assume that f is differentiable at g(a). Indeed we shall
prove that if g is differentiable at a and f is differentiable at g(a), then f � g is
differentiable at a, and

(f � g)′(a) = f ′(g(a)) · g′(a).

This extremely important formula is called the Chain Rule, presumable because
a composition of functions might be called a \chain" of functions. Notice that
(f �g)′ is practically the product of f ′ and g′, but not quite: f ′ must be evaluated
at g(a) and g′ at a. Before attempting to prove this theorem we will try a few
applications. Suppose

f (x) = sin x2.

Let us, temporarily, use S to denote the (\squaring") function S(x) = x2. Then

f = sin � S.
Therefore we have

f ′(x) = sin′(S(x)) · S ′(x)
= cos x2 · 2x.

Quite a different result is obtained if

f (x) = sin2 x.

In this case
f = S � sin,

so

f ′(x) = S ′(sin x) · sin′(x)
= 2 sin x · cos x.

Notice that this agrees (as it should) with the result obtained by writing f = sin · sin
and using the product formula.

Although we have invented a special symbol, S, to name the \squaring" function,
it does not take much practice to do problems like this without bothering to write
down special symbols for functions, and without even bothering to write down the
particular composition which f is|one soon becomes accustomed to taking f

apart in one's head. The following differentiations may be used as practice for
such mental gymnastics|if you ˇnd it necessary to work a few out on paper, by
all means do so, but try to develop the knack of writing f ′ immediately after seeing
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the deˇnition of f ; problems of this sort are so simple that, if you just remember
the Chain Rule, there is no thought necessary.

if f (x) = sin x3 then f ′(x) = cos x3 · 3x2

f (x) = sin3 x f ′(x) = 3 sin2 x · cos x

f (x) = sin
1
x

f ′(x) = cos
1
x

·
(−1
x2

)
f (x) = sin(sin x) f ′(x) = cos(sin x) · cos x

f (x) = sin(x3 + 3x2) f ′(x) = cos(x3 + 3x2) · (3x2 + 6x)

f (x) = (x3 + 3x2)53 f ′(x) = 53(x3 + 3x2)52 · (3x2 + 6x).

A function like
f (x) = sin2 x2 = [sin x2]2,

which is the composition of three functions,

f = S � sin � S,
can also be differentiated by the Chain Rule. It is only necessary to remember
that a triple composition f � g � h means (f � g) � h or f � (g � h). Thus if

f (x) = sin2 x2

we can write

f = (S � sin) � S,
f = S � (sin � S).

The derivative of either expression can be found by applying the Chain Rule
twice; the only doubtful point is whether the two expressions lead to equally simple
calculations. As a matter of fact, as any experienced differentiator knows, it is much
better to use the second:

f = S � (sin � S).

We can now write down f ′(x) in one fell swoop. To begin with, note that the ˇrst
function to be differentiated is S, so the formula for f ′(x) begins

f ′(x) = 2( ) · .

Inside the parentheses we must put sin x2, the value at x of the second function,
sin � S. Thus we begin by writing

f ′(x) = 2 sin x2 ·
(the parentheses weren't really necessary, after all). We must now multiply this
much of the answer by the derivative of sin � S at x; this part is easy|it involves a
composition of two functions, which we already know how to handle. We obtain,
for the ˇnal answer,

f ′(x) = 2 sin x2 · cos x2 · 2x.
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The following example is handled similarly. Suppose

f (x) = sin(sin x2).

Without even bothering to write down f as a composition g�h�k of three functions,
we can see that the left-most one will be sin, so our expression for f ′(x) begins

f ′(x) = cos( ) · .

Inside the parentheses we must put the value of h � k(x); this is simply sin x2 (what
you get from sin(sin x2) by deleting the ˇrst sin). So our expression for f ′(x) begins

f ′(x) = cos(sin x2) · .

We can now forget about the ˇrst sin in sin(sin x2); we have to multiply what we
have so far by the derivative of the function whose value at x is sin x2|which is
again a problem we already know how to solve:

f ′(x) = cos(sin x2) · cos x2 · 2x.

Finally, here are the derivatives of some other functions which are the composition
of sin and S, as well as some other triple compositions. You can probably just
\see" that the answers are correct|if not, try writing out f as a composition:

if f (x) = sin((sin x)2) then f ′(x) = cos((sin x)2) · 2 sin x · cos x

f (x) = [sin(sin x)]2 f ′(x) = 2 sin(sin x) · cos(sin x) · cos x
f (x) = sin(sin(sin x)) f ′(x) = cos(sin(sin x)) · cos(sin x) · cos x

f (x) = sin2(x sin x) f ′(x) = 2 sin(x sin x) · cos(x sin x)
· [sin x + x cos x]

f (x) = sin(sin(x2 sin x)) f ′(x) = cos(sin(x2 sin x)) · cos(x2 sin x)

· [2x sin x + x2 cos x].

The rule for treating compositions of four (or even more) functions is easy|
always (mentally) put in parentheses starting from the right,

f � (g � (h � k)),
and start reducing the calculation to the derivative of a composition of a smaller
number of functions:

f ′(g(h(k(x)))) · .

For example, if

f (x) = sin2(sin2(x)) [f = S � sin � S � sin
= S � (sin � (S � sin))]

then
f ′(x) = 2 sin(sin2 x) · cos(sin2 x) · 2 sin x · cos x;
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if

f (x) = sin((sin x2)2) [f = sin � S � sin � S
= sin � (S � (sin � S))]

then
f ′(x) = cos((sin x2)2) · 2 sin x2 · cos x2 · 2x;

if
f (x) = sin2(sin(sin x)) [ˇll in yourself, if necessary]

then
f ′(x) = 2 sin(sin(sin x)) · cos(sin(sin x)) · cos(sin x) · cos x.

With these examples as reference, you require only one thing to become a master
differentiator|practice. You can be safely turned loose on the exercises at the end
of the chapter, and it is now high time that we proved the Chain Rule.

The following argument, while not a proof, indicates some of the tricks one
might try, as well as some of the difˇculties encountered. We begin, of course,
with the deˇnition|

(f � g)′(a) = lim
h→0

(f � g)(a + h)− (f � g)(a)
h

= lim
h→0

f (g(a + h))− f (g(a))

h
.

Somewhere in here we would like the expression for g′(a). One approach is to
put it in by ˇat:

lim
h→0

f (g(a + h))− f (g(a))

h
= lim

h→0

f (g(a + h))− f (g(a))

g(a + h)− g(a)
· g(a + h)− g(a)

h
.

This does not look bad, and it looks even better if we write

lim
h→0

(f � g)(a + h)− (f � g)(a)
h

= lim
h→0

f (g(a)+ [g(a + h)− g(a)])− f (g(a))

g(a + h)− g(a)
· lim
h→0

g(a + h)− g(a)

h
.

The second limit is the factor g′(a) which we want. If we let g(a + h)− g(a) = k

(to be precise we should write k(h)), then the ˇrst limit is

lim
h→0

f (g(a)+ k)− f (g(a))

k
.

It looks as if this limit should be f ′(g(a)), since continuity of g at a implies that k
goes to 0 as h does. In fact, one can, and we soon will, make this sort of reasoning
precise. There is already a problem, however, which you will have noticed if you
are the kind of person who does not divide blindly. Even for h �= 0 we might have
g(a + h) − g(a) = 0, making the division and multiplication by g(a + h) − g(a)

meaningless. True, we only care about small h, but g(a + h) − g(a) could be 0
for arbitrarily small h. The easiest way this can happen is for g to be a constant
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function, g(x) = c. Then g(a + h)− g(a) = 0 for all h. In this case, f � g is also
a constant function, (f � g)(x) = f (c), so the Chain Rule does indeed hold:

(f � g)′(a) = 0 = f ′(g(a)) · g′(a).

However, there are also nonconstant functions g for which g(a + h) − g(a) = 0
for arbitrarily small h. For example, if a = 0, the function g might be

g(x) =

 x2 sin

1
x
, x �= 0

0, x = 0.

In this case, g′(0) = 0, as we showed in Chapter 9. If the Chain Rule is correct, we
must have (f � g)′(0) = 0 for any differentiable f , and this is not exactly obvious.
A proof of the Chain Rule can be found by considering such recalcitrant functions
separately, but it is easier simply to abandon this approach, and use a trick.

THEOREM 9 (THE CHAIN RULE) If g is differentiable at a, and f is differentiable at g(a), then f �g is differentiable
at a, and

(f � g)′(a) = f ′(g(a)) · g′(a).

PROOF Deˇne a function φ as follows:

φ(h) =


f (g(a + h))− f (g(a))

g(a + h)− g(a)
, if g(a + h)− g(a) �= 0

f ′(g(a)), if g(a + h)− g(a) = 0.

It should be intuitively clear that φ is continuous at 0: When h is small,
g(a + h) − g(a) is also small, so if g(a + h) − g(a) is not zero, then φ(h) will
be close to f ′(g(a)); and if it is zero, then φ(h) actually equals f ′(g(a)), which
is even better. Since the continuity of φ is the crux of the whole proof we will
provide a careful translation of this intuitive argument.

We know that f is differentiable at g(a). This means that

lim
k→0

f (g(a)+ k)− f (g(a))

k
= f ′(g(a)).

Thus, if ε > 0 there is some number δ′ > 0 such that, for all k,

(1) if 0 < |k| < δ′, then
∣∣∣∣f (g(a)+ k)− f (g(a))

k
− f ′(g(a))

∣∣∣∣ < ε.
Now g is differentiable at a, hence continuous at a, so there is a δ > 0 such that,
for all h,

(2) if |h| < δ, then |g(a + h)− g(a)| < δ′.

Consider now any h with |h| < δ. If k = g(a + h)− g(a) �= 0, then

φ(h) = f (g(a + h))− f (g(a))

g(a + h)− g(a)
= f (g(a)+ k)− f (g(a))

k
;

it follows from (2) that |k| < δ′, and hence from (1) that

|φ(h)− f ′(g(a))| < ε.
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On the other hand, if g(a + h) − g(a) = 0, then φ(h) = f ′(g(a)), so it is surely
true that

|φ(h)− f ′(g(a))| < ε.

We have therefore proved that

lim
h→0

φ(h) = f ′(g(a)),

so φ is continuous at 0. The rest of the proof is easy. If h �= 0, then we have

f (g(a + h)− f (g(a))

h
= φ(h) · g(a + h)− g(a)

h

even if g(a + h)− g(a) = 0 (because in that case both sides are 0). Therefore

(f � g)′(a) = lim
h→0

f (g(a + h))− f (g(a))

h
= lim

h→0
φ(h) · lim

h→0

g(a + h)− g(a)

h

= f ′(g(a)) · g′(a).

Now that we can differentiate so many functions so easily we can take another
look at the function

f (x) =

 x2 sin

1
x
, x �= 0

0, x = 0.

In Chapter 9 we showed that f ′(0) = 0, working straight from the deˇnition (the
only possible way). For x �= 0 we can use the methods of this chapter. We have

f ′(x) = 2x sin
1
x

+ x2 cos
1
x

·
(

− 1
x2

)
;

Thus

f ′(x) =

 2x sin

1
x

− cos
1
x
, x �= 0

0, x = 0.

As this formula reveals, the ˇrst derivative f ′ is indeed badly behaved at 0|it is
not even continuous there. If we consider instead

f (x) =

 x3 sin

1
x
, x �= 0

0, x = 0,

then

f ′(x) =

 3x2 sin

1
x

− x cos
1
x
, x �= 0

0, x = 0.

In this case f ′ is continuous at 0, but f ′′(0) does not exist (because the expres-
sion 3x2 sin 1/x deˇnes a function which is differentiable at 0 but the expression
−x cos 1/x does not).
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As you may suspect, increasing the power of x yet again produces another
improvement. If

f (x) =

 x4 sin

1
x
, x �= 0

0, x = 0,

then

f ′(x) =

 4x3 sin

1
x

− x2 cos
1
x
, x �= 0

0, x = 0.

It is easy to compute, right from the deˇnition, that (f ′)′(0) = 0, and f ′′(x) is
easy to ˇnd for x �= 0:

f ′′(x) =

 12x2 sin

1
x

− 4x cos
1
x

− 2x cos
1
x

− sin
1
x
, x �= 0

0, x = 0.

In this case, the second derivative f ′′ is not continuous at 0. By now you may have
guessed the pattern, which two of the problems ask you to establish: if

f (x) =

 x2n sin

1
x
, x �= 0

0, x = 0,

then f ′(0), . . . , f (n)(0) exist, but f (n) is not continuous at 0; if

f (x) =

 x2n+1 sin

1
x
, x �= 0

0, x = 0,

then f ′(0), . . . , f (n)(0) exist, and f (n) is continuous at 0, but f (n) is not differ-
entiable at 0. These examples may suggest that \reasonable" functions can be
characterized by the possession of higher-order derivatives|no matter how hard
we try to mask the inˇnite oscillation of f (x) = sin 1/x, a derivative of sufˇciently
high order seems able to reveal the underlying irregularity. Unfortunately, we will
see later that much worse things can happen.

After all these involved calculations, we will bring this chapter to a close with
a minor remark. It is often tempting, and seems more elegant, to write some of
the theorems in this chapter as equations about functions, rather than about their
values. Thus Theorem 3 might be written

(f + g)′ = f ′ + g′,

Theorem 4 might be written as

(f · g)′ = f · g′ + f ′ · g,
and Theorem 9 often appears in the form

(f � g)′ = (f ′ � g) · g′.
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Strictly speaking, these equations may be false, because the functions on the left-
hand side might have a larger domain than those on the right. Nevertheless, this
is hardly worth worrying about. If f and g are differentiable everywhere in their
domains, then these equations, and others like them, are true, and this is the only
case any one cares about.

PROBLEMS

1. As a warm up exercise, ˇnd f ′(x) for each of the following f . (Don't worry
about the domain of f or f ′; just get a formula for f ′(x) that gives the right
answer when it makes sense.)

(i) f (x) = sin(x + x2).
(ii) f (x) = sin x + sin x2.
(iii) f (x) = sin(cos x).
(iv) f (x) = sin(sin x).

(v) f (x) = sin
(cos x

x

)
.

(vi) f (x) = sin(cos x)
x

.

(vii) f (x) = sin(x + sin x).
(viii) f (x) = sin(cos(sin x)).

2. Find f ′(x) for each of the following functions f . (It took the author 20 min-
utes to compute the derivatives for the answer section, and it should not take
you much longer. Although rapid calculation is not the goal of mathematics,
if you hope to treat theoretical applications of the Chain Rule with aplomb,
these concrete applications should be child's play|mathematicians like to
pretend that they can't even add, but most of them can when they have to.)

(i) f (x) = sin((x + 1)2(x + 2)).
(ii) f (x) = sin3(x2 + sin x).
(iii) f (x) = sin2((x + sin x)2).

(iv) f (x) = sin

(
x3

cos x3

)
.

(v) f (x) = sin(x sin x)+ sin(sin x2).
(vi) f (x) = (cos x)312.
(vii) f (x) = sin2

x sin x2 sin2
x2.

(viii) f (x) = sin3(sin2(sin x)).
(ix) f (x) = (x + sin5 x)6.
(x) f (x) = sin(sin(sin(sin(sin x)))).
(xi) f (x) = sin((sin7 x7 + 1)7).
(xii) f (x) = (((x2 + x)3 + x)4 + x)5.
(xiii) f (x) = sin(x2 + sin(x2 + sin x2)).
(xiv) f (x) = sin(6 cos(6 sin(6 cos 6x))).



180 Derivatives and Integrals

(xv) f (x) = sin x2 sin2
x

1 + sin x
.

(xvi) f (x) = 1

x − 2
x + sin x

.

(xvii) f (x) = sin




x3

sin

(
x3

sin x

).

(xviii)f (x) = sin


 x

x − sin
(

x

x − sin x

).

3. Find the derivatives of the functions tan, cotan, sec, cosec. (You don't have
to memorize these formulas, although they will be needed once in a while; if
you express your answers in the right way, they will be simple and somewhat
symmetrical.)

4. For each of the following functions f , ˇnd f ′(f (x)) (not (f � f )′(x)).

(i) f (x) = 1
1 + x

.

(ii) f (x) = sin x.
(iii) f (x) = x2.
(iv) f (x) = 17.

5. For each of the following functions f , ˇnd f (f ′(x)).

(i) f (x) = 1
x

.

(ii) f (x) = x2.
(iii) f (x) = 17.
(iv) f (x) = 17x.

6. Find f ′ in terms of g′ if

(i) f (x) = g(x + g(a)).
(ii) f (x) = g(x · g(a)).
(iii) f (x) = g(x + g(x)).
(iv) f (x) = g(x)(x − a).
(v) f (x) = g(a)(x − a).
(vi) f (x + 3) = g(x2).

7. (a) A circular object is increasing in size in some unspeciˇed manner, but it
is known that when the radius is 6, the rate of change of the radius is 4.
Find the rate of change of the area when the radius is 6. (If r(t) and A(t)
represent the radius and the area at time t , then the functions r and A
satisfy A = πr2; a straightforward use of the Chain Rule is called for.)
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(b) Suppose that we are now informed that the circular object we have been
watching is really the cross section of a spherical object. Find the rate
of change of the volume when the radius is 6. (You will clearly need to
know a formula for the volume of a sphere; in case you have forgotten,
the volume is 4

3π times the cube of the radius.)
(c) Now suppose that the rate of change of the area of the circular cross

section is 5 when the radius is 3. Find the rate of change of the volume
when the radius is 3. You should be able to do this problem in two
ways: ˇrst, by using the formulas for the area and volume in terms of
the radius; and then by expressing the volume in terms of the area (to
use this method you will need Problem 9-3).

8. The area between two varying concentric circles is at all times 9π in2. The
rate of change of the area of the larger circle is 10π in2/sec. How fast is the
circumference of the smaller circle changing when it has area 16π in2?

9. Particle A moves along the positive horizontal axis, and particle B along the
graph of f (x) = −

√
3x, x ≤ 0. At a certain time, A is at the point (5,0)

and moving with speed 3 units/sec; and B is at a distance of 3 units from
the origin and moving with speed 4 units/sec. At what rate is the distance
between A and B changing?

10. Let f (x) = x2 sin 1/x for x �= 0, and let f (0) = 0. Suppose also that h and k
are two functions such that

h′(x) = sin2(sin(x + 1)) k′(x) = f (x + 1)
h(0) = 3 k(0) = 0.

Find

(i) (f � h)′(0).
(ii) (k � f )′(0).
(iii) α′(x2), where α(x) = h(x2). Exercise great care.

11. Find f ′(0) if

f (x) =

 g(x) sin

1
x
, x �= 0

0, x = 0,

and
g(0) = g′(0) = 0.

12. Using the derivative of f (x) = 1/x, as found in Problem 9-1, ˇnd (1/g)′(x)
by the Chain Rule.

13. (a) Using Problem 9-3, ˇnd f ′(x) for −1 < x < 1, if f (x) =
√

1 − x2.
(b) Prove that the tangent line to the graph of f at (a,

√
1 − a2 ) intersects

the graph only at that point (and thus show that the elementary geometry
deˇnition of the tangent line coincides with ours).
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14. Prove similarly that the tangent lines to an ellipse or hyperbola intersect these
sets only once.

15. If f + g is differentiable at a, are f and g necessarily differentiable at a?
If f · g and f are differentiable at a, what conditions on f imply that g is
differentiable at a?

16. (a) Prove that if f is differentiable at a, then |f | is also differentiable at a,
provided that f (a) �= 0.

(b) Give a counterexample if f (a) = 0.
(c) Prove that if f and g are differentiable at a, then the functions

max(f, g) and min(f, g) are differentiable at a, provided that f (a) �=
g(a).

(d) Give a counterexample if f (a) = g(a).

17. If f is three times differentiable and f ′(x) �= 0, the Schwarzian derivative of f
at x is deˇned to be

Df (x) = f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

(a) Show that
D(f � g) = [Df � g] · g′ 2 + Dg.

(b) Show that if f (x) = ax + b

cx + d
, with ad − bc �= 0, then Df = 0. Conse-

quently, D(f � g) = Dg.

18. Suppose that f (n)(a) and g(n)(a) exist. Prove Leibniz’s formula:

(f · g)(n)(a) =
n∑
k=0

(
n

k

)
f (k)(a) · gn−k(a).

*19. Prove that if f (n)(g(a)) and g(n)(a) both exist, then (f � g)(n)(a) exists. A
little experimentation should convince you that it is unwise to seek a formula
for (f � g)(n)(a). In order to prove that (f � g)(n)(a) exists you will therefore
have to devise a reasonable assertion about (f �g)(n)(a) which can be proved
by induction. Try something like: \(f � g)(n)(a) exists and is a sum of terms
each of which is a product of terms of the form . . . ."

20. (a) If f (x) = anx
n+an−1x

n−1 +· · ·+a0, ˇnd a function g such that g′ = f .
Find another.

(b) If
f (x) = b2

x2 + b3

x3 + · · · + bm

xm
,

ˇnd a function g with g′ = f .
(c) Is there a function

f (x) = anx
n + · · · + a0 + b1

x
+ · · · + bm

xm

such that f ′(x) = 1/x?
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21. Show that there is a polynomial function f of degree n such that

(a) f ′(x) = 0 for precisely n− 1 numbers x.
(b) f ′(x) = 0 for no x, if n is odd.
(c) f ′(x) = 0 for exactly one x, if n is even.
(d) f ′(x) = 0 for exactly k numbers x, if n− k is odd.

22. (a) The number a is called a double root of the polynomial function f if
f (x) = (x − a)2g(x) for some polynomial function g. Prove that a is a
double root of f if and only if a is a root of both f and f ′.

(b) When does f (x) = ax2 + bx+ c (a �= 0) have a double root? What does
the condition say geometrically?

23. If f is differentiable at a, let d(x) = f (x)− f ′(a)(x− a)− f (a). Find d ′(a).
In connection with Problem 22, this gives another solution for Problem 9-20.

*24. This problem is a companion to Problem 3-6. Let a1, . . . , an and b1, . . . , bn
be given numbers.

(a) If x1, . . . , xn are distinct numbers, prove that there is a polynomial func-
tion f of degree 2n − 1, such that f (xj ) = f ′(xj ) = 0 for j �= i, and
f (xi) = ai and f ′(xi) = bi . Hint: Remember Problem 22.

(b) Prove that there is a polynomial function f of degree 2n−1 with f (xi) =
ai and f ′(xi) = bi for all i.

*25. Suppose that a and b are two consecutive roots of a polynomial function f ,
but that a and b are not double roots, so that we can write f (x) =
(x − a)(x − b)g(x) where g(a) �= 0 and g(b) �= 0.

(a) Prove that g(a) and g(b) have the same sign. (Remember that a and b
are consecutive roots.)

(b) Prove that there is some number x with a < x < b and f ′(x) = 0. (Also
draw a picture to illustrate this fact.) Hint: Compare the sign of f ′(a)
and f ′(b).

(c) Now prove the same fact, even if a and b are multiple roots. Hint: If
f (x) = (x− a)m(x− b)ng(x) where g(a) �= 0 and g(b) �= 0, consider the
polynomial function h(x) = f ′(x)/(x − a)m−1(x − b)n−1.

This theorem was proved by the French mathematician Rolle, in connection
with the problem of approximating roots of polynomials, but the result was
not originally stated in terms of derivatives. In fact, Rolle was one of the
mathematicians who never accepted the new notions of calculus. This was
not such a pigheaded attitude, in view of the fact that for one hundred years
no one could deˇne limits in terms that did not verge on the mystic, but on
the whole history has been particularly kind to Rolle; his name has become
attached to a much more general result, to appear in the next chapter, which
forms the basis for the most important theoretical results of calculus.

26. Suppose that f (x) = xg(x) for some function g which is continuous at 0.
Prove that f is differentiable at 0, and ˇnd f ′(0) in terms of g.
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*27. Suppose f is differentiable at 0, and that f (0) = 0. Prove that f (x) = xg(x)

for some function g which is continuous at 0. Hint: What happens if you try
to write g(x) = f (x)/x?

28. If f (x) = x−n for n in N, prove that

f (k)(x) = (−1)k
(n + k − 1)!
(n− 1)!

x−n−k

= (−1)kk!
(
n+ k − 1
k − 1

)
x−n−k, for x �= 0.

*29. Prove that it is impossible to write x = f (x)g(x) where f and g are differ-
entiable and f (0) = g(0) = 0. Hint: Differentiate.

30. What is f (k)(x) if

(a) f (x) = 1/(x − a)n?
*(b) f (x) = 1/(x2 − 1)?

*31. Let f (x) = x2n sin 1/x if x �= 0, and let f (0) = 0. Prove that f ′(0), . . . ,
f (n)(0) exist, and that f (n) is not continuous at 0. (You will encounter the
same basic difˇculty as that in Problem 19.)

*32. Let f (x) = x2n+1 sin 1/x if x �= 0, and let f (0) = 0. Prove that f ′(0), . . . ,
f (n)(0) exist, that f (n) is continuous at 0, and that f (n) is not differentiable
at 0.

33. In Leibnizian notation the Chain Rule ought to read:

df (g(x))

dx
= df (y)

dy

∣∣∣∣
y=g(x)

· dg(x)
dx

.

Instead, one usually ˇnds the following statement: \Let y = g(x) and
z = f (y). Then

dz

dx
= dz

dy
· dy
dx
.
"

Notice that the z in dz/dx denotes the composite function f � g, while the z
in dz/dy denotes the function f ; it is also understood that dz/dy will be \an
expression involving y," and that in the ˇnal answer g(x)must be substituted
for y. In each of the following cases, ˇnd dz/dx by using this formula; then
compare with Problem 1.

(i) z = sin y, y = x + x2.
(ii) z = sin y, y = cos x.
(iii) z = cosu, u = sin x.
(iv) z = sin v, v = cos u, u = sin x.



CHAPTER 1 1 SIGNIFICANCE OF THE DERIVATIVE

One aim in this chapter is to justify the time we have spent learning to ˇnd the
derivative of a function. As we shall see, knowing just a little about f ′ tells us a
lot about f . Extracting information about f from information about f ′ requires
some difˇcult work, however, and we shall begin with the one theorem which is
really easy.

This theorem is concerned with the maximum value of a function on an interval.
Although we have used this term informally in Chapter 7, it is worthwhile to be
precise, and also more general.

DEFINITION Let f be a function and A a set of numbers contained in the domain of f .
A point x in A is a maximum point for f on A if

f (x) ≥ f (y) for every y in A.

The number f (x) itself is called the maximum value of f on A (and we also
say that f \has its maximum value on A at x").

Notice that the maximum value of f on A could be f (x) for several different x
(Figure 1); in other words, a function f can have several different maximum points
on A, although it can have at most one maximum value. Usually we shall be
interested in the case where A is a closed interval [a, b]; if f is continuous, then
Theorem 7-3 guarantees that f does indeed have a maximum value on [a, b].

The deˇnition of a minimum of f on A will be left to you. (One possibleFI G U R E 1

deˇnition is the following: f has a minimum on A at x, if −f has a maximum
on A at x.)

We are now ready for a theorem which does not even depend upon the existence
of least upper bounds.

THEOREM 1 Let f be any function deˇned on (a, b). If x is a maximum (or a minimum) point
for f on (a, b), and f is differentiable at x, then f ′(x) = 0.
(Notice that we do not assume differentiability, or even continuity, of f at other
points.)

PROOF Consider the case where f has a maximum at x. Figure 2 illustrates the simple idea
behind the whole argument|secants drawn through points to the left of (x,f (x))
have slopes ≥ 0, and secants drawn through points to the right of (x,f (x)) have
slopes ≤ 0. Analytically, this argument proceeds as follows.

185
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If h is any number such that x + h is in (a, b), then

f (x) ≥ f (x + h),

since f has a maximum on (a, b) at x. This means that

f (x + h)− f (x) ≤ 0.

Thus, if h > 0 we have
f (x + h)− f (x)

h
≤ 0.

and consequently
FI G U R E 2 lim

h→0+

f (x + h)− f (x)

h
≤ 0.

On the other hand, if h < 0, we have

f (x + h)− f (x)

h
≥ 0,

so

lim
h→0−

f (x + h)− f (x)

h
≥ 0.

By hypothesis, f is differentiable at x, so these two limits must be equal, in fact
equal to f ′(x). This means that

f ′(x) ≤ 0 and f ′(x) ≥ 0,

from which it follows that f ′(x) = 0.FI G U R E 3

The case where f has a minimum at x is left to you (give a one-line proof ).

Notice (Figure 3) that we cannot replace (a, b) by [a, b] in the statement of the
theorem (unless we add to the hypothesis the condition that x is in (a, b).)

Since f ′(x) depends only on the values of f near x, it is almost obvious how to
get a stronger version of Theorem 1. We begin with a deˇnition which is illustrated
in Figure 4.

DEFINITION Let f be a function, and A a set of numbers contained in the domain of f .
A point x in A is a local maximum [minimum] point for f on A if
there is some δ > 0 such that x is a maximum [minimum] point for f on
A ∩ (x − δ, x + δ).

THEOREM 2 If f is deˇned on (a, b) and has a local maximum (or minimum) at x, and f is
differentiable at x, then f ′(x) = 0.

PROOF You should see why this is an easy application of Theorem 1.
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The converse of Theorem 2 is deˇnitely not true|it is possible for f ′(x) to be 0
even if x is not a local maximum or minimum point for f . The simplest example
is provided by the function f (x) = x3; in this case f ′(0) = 0, but f has no local
maximum or minimum anywhere.

Probably the most widespread misconceptions about calculus are concerned
with the behavior of a function f near x when f ′(x) = 0. The point made in
the previous paragraph is so quickly forgotten by those who want the world to be
simpler than it is, that we will repeat it: the converse of Theorem 2 is not true|the
condition f ′(x) = 0 does not imply that x is a local maximum or minimum point
of f . Precisely for this reason, special terminology has been adopted to describe
numbers x which satisfy the condition f ′(x) = 0.

DEFINITION A critical point of a function f is a number x such that

f ′(x) = 0.

The number f (x) itself is called a critical value of f .

The critical values of f , together with a few other numbers, turn out to be the
ones which must be considered in order to ˇnd the maximum and minimum of a
given function f . To the uninitiated, ˇnding the maximum and minimum value
of a function represents one of the most intriguing aspects of calculus, and there
is no denying that problems of this sort are fun (until you have done your ˇrst
hundred or so).

Let us consider ˇrst the problem of ˇnding the maximum or minimum of f
on a closed interval [a, b]. (Then, if f is continuous, we can at least be sure
that a maximum and minimum value exist.) In order to locate the maximum and
minimum of f three kinds of points must be considered:

(1) The critical points of f in [a, b].
(2) The end points a and b.
(3) Points x in [a, b] such that f is not differentiable at x.

If x is a maximum point or a minimum point for f on [a, b], then x must be in one
of the three classes listed above: for if x is not in the second or third group, then
x is in (a, b) and f is differentiable at x; consequently f ′(x) = 0, by Theorem 1,
and this means that x is in the ˇrst group.

If there are many points in these three categories, ˇnding the maximum andFI G U R E 4

minimum of f may still be a hopeless proposition, but when there are only a few
critical points, and only a few points where f is not differentiable, the procedure is
fairly straightforward: one simply ˇnds f (x) for each x satisfying f ′(x) = 0, and
f (x) for each x such that f is not differentiable at x and, ˇnally, f (a) and f (b).
The biggest of these will be the maximum value of f , and the smallest will be the
minimum. A simple example follows.
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Suppose we wish to ˇnd the maximum and minimum value of the function

f (x) = x3 − x

on the interval [−1,2]. To begin with, we have

f ′(x) = 3x2 − 1,

so f ′(x) = 0 when 3x2 − 1 = 0, that is, when

x =
√

1/3 or −
√

1/3.

The numbers
√

1/3 and −
√

1/3 both lie in [−1,2], so the ˇrst group of candidates
for the location of the maximum and the minimum is

(1)
√

1/3, −
√

1/3.

The second group contains the end points of the interval,

(2) − 1, 2.

The third group is empty, since f is differentiable everywhere. The ˇnal step is to
compute

f (
√

1/3 ) = (
√

1/3 )3 −
√

1/3 = 1
3

√
1/3 −

√
1/3 = − 2

3

√
1/3,

f (−
√

1/3 ) = (−
√

1/3 )3 − (−
√

1/3 ) = − 1
3

√
1/3 +

√
1/3 = 2

3

√
1/3,

f (−1) = 0,
f (2) = 6.

Clearly the minimum value is − 2
3

√
1/3, occurring at

√
1/3, and the maximum

value is 6, occurring at 2.
This sort of procedure, if feasible, will always locate the maximum and minimum

value of a continuous function on a closed interval. If the function we are dealing
with is not continuous, however, or if we are seeking the maximum or minimum
on an open interval or the whole line, then we cannot even be sure beforehand
that the maximum and minimum values exist, so all the information obtained by
this procedure may say nothing. Nevertheless, a little ingenuity will often reveal
the nature of things. In Chapter 7 we solved just such a problem when we showed
that if n is even, then the function

FI G U R E 5
f (x) = xn + an−1x

n−1 + · · · + a0

has a minimum value on the whole line. This proves that the minimum value must
occur at some number x satisfying

0 = f ′(x) = nxn−1 + (n− 1)an−1x
n−2 + · · · + a1.

If we can solve this equation, and compare the values of f (x) for such x, we can
actually ˇnd the minimum of f . One more example may be helpful. Suppose we
wish to ˇnd the maximum and minimum, if they exist, of the function

f (x) = 1
1 − x2
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on the open interval (−1, 1). We have

f ′(x) = 2x
(1 − x2)2

so f ′(x) = 0 only for x = 0. We can see immediately that for x close to 1 or −1 the
values of f (x) become arbitrarily large, so f certainly does not have a maximum.
This observation also makes it easy to show that f has a minimum at 0. We just
note (Figure 5) that there will be numbers a and b, with

−1 < a < 0 and 0 < b < 1,

such that f (x) > f (0) for

−1 < x ≤ a and b ≤ x < 1.

This means that the minimum of f on [a, b] is the minimum of f on all of
(−1,1). Now on [a, b] the minimum occurs either at 0 (the only place where
f ′ = 0), or at a or b, and a and b have already been ruled out, so the minimum
value is f (0) = 1.

In solving these problems we purposely did not draw the graphs of f (x) = x3−x
and f (x) = 1/(1 − x2), but it is not cheating to draw the graph (Figure 6) as long
as you do not rely solely on your picture to prove anything. As a matter of fact, we
are now going to discuss a method of sketching the graph of a function that really
gives enough information to be used in discussing maxima and minima|in fact
we will be able to locate even local maxima and minima. This method involves
consideration of the sign of f ′(x), and relies on some deep theorems.

The theorems about derivatives which have been proved so far, always yield
information about f ′ in terms of information about f . This is true even of Theo-
rem 1, although this theorem can sometimes be used to determine certain informa-
tion about f , namely, the location of maxima and minima. When the derivative
was ˇrst introduced, we emphasized that f ′(x) is not [f (x+ h)− f(x)]/h for any
particular h, but only a limit of these numbers as h approaches 0; this fact becomes
painfully relevant when one tries to extract information about f from information
about f ′. The simplest and most frustrating illustration of the difˇculties encoun-
tered is afforded by the following question: If f ′(x) = 0 for all x, must f be a
constant function? It is impossible to imagine how f could be anything else, and
this conviction is strengthened by considering the physical interpretation|if the
velocity of a particle is always 0, surely the particle must be standing still! Never-
theless it is difˇcult even to begin a proof that only the constant functions satisfy
f ′(x) = 0 for all x. The hypothesis f ′(x) = 0 only means that

lim
h→0

f (x + h)− f (x)

h
= 0,

and it is not at all obvious how one can use the information about the limit toFI G U R E 6

derive information about the function.
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The fact that f is a constant function if f ′(x) = 0 for all x, and many other facts
of the same sort, can all be derived from a fundamental theorem, called the Mean
Value Theorem, which states much stronger results. Figure 7 makes it plausible
that if f is differentiable on [a, b], then there is some x in (a, b) such that

f ′(x) = f (b)− f (a)

b − a
.

Geometrically this means that some tangent line is parallel to the line between
(a, f (a)) and (b, f (b)). The Mean Value Theorem asserts that this is true|there
is some x in (a, b) such that f ′(x), the instantaneous rate of change of f at x, is
exactly equal to the average or \mean" change of f on [a, b], this average changeFI G U R E 7

being [f (b) − f (a)]/[b − a]. (For example, if you travel 60 miles in one hour,
then at some time you must have been traveling exactly 60 miles per hour.) This
theorem is one of the most important theoretical tools of calculus|probably the
deepest result about derivatives. From this statement you might conclude that the
proof is difˇcult, but there you would be wrong|the hard theorems in this book
have occurred long ago, in Chapter 7. It is true that if you try to prove the Mean
Value Theorem yourself you will probably fail, but this is neither evidence that the
theorem is hard, nor something to be ashamed of. The ˇrst proof of the theoremFI G U R E 8
was an achievement, but today we can supply a proof which is quite simple. It
helps to begin with a very special case.

THEOREM 3 (ROLLE’S THEOREM) If f is continuous on [a, b] and differentiable on (a, b), and f (a) = f (b), then
there is a number x in (a, b) such that f ′(x) = 0.

PROOF If follows from the continuity of f on [a, b] that f has a maximum and a minimum
value on [a, b].

Suppose ˇrst that the maximum value occurs at a point x in (a, b). Then
f ′(x) = 0 by Theorem 1, and we are done (Figure 8).

Suppose next that the minimum value of f occurs at some point x in (a, b).
Then, again, f ′(x) = 0 by Theorem 1 (Figure 9).

Finally, suppose the maximum and minimum values both occur at the end
points. Since f (a) = f (b), the maximum and minimum values of f are equal,
so f is a constant function (Figure 10), and for a constant function we can chooseFI G U R E 9

any x in (a, b).

Notice that we really needed the hypothesis that f is differentiable everywhere
on (a, b) in order to apply Theorem 1. Without this assumption the theorem is
false (Figure 11).

You may wonder why a special name should be attached to a theorem as easily
proved as Rolle's Theorem. The reason is, that although Rolle's Theorem is a
special case of the Mean Value Theorem, it also yields a simple proof of the Mean
Value Theorem. In order to prove the Mean Value Theorem we will apply Rolle'sF I G U R E 1 0

Theorem to the function which gives the length of the vertical segment shown in
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Figure 12; this is the difference between f (x), and the height at x of the line L
between (a, f (a)) and (b, f (b)). Since L is the graph of

g(x) =
[
f (b)− f (a)

b − a

]
(x − a)+ f (a),

we want to look at
FI G U R E 1 1

f (x)−
[
f (b)− f (a)

b − a

]
(x − a)− f (a).

As it turns out, the constant f (a) is irrelevant.

THEOREM 4 (THE MEAN VALUE

THEOREM)

If f is continuous on [a, b] and differentiable on (a, b), then there is a number x
in (a, b) such that

f ′(x) = f (b)− f (a)

b − a
.

PROOF Let

h(x) = f (x)−
[
f (b)− f (a)

b − a

]
(x − a).

Clearly, h is continuous on [a, b] and differentiable on (a, b), and

h(a) = f (a),

h(b) = f (b)−
[
f (b)− f (a)

b − a

]
(x − a)

= f (a).

Consequently, we may apply Rolle's Theorem to h and conclude that there is
some x in (a, b) such that

0 = h′(x) = f ′(x)− f (b)− f (a)

b − a
,

so thatFI G U R E 1 2

f ′(x) = f (b)− f (a)

b − a
.

Notice that the Mean Value Theorem still ˇts into the pattern exhibited by
previous theorems|information about f yields information about f ′. This infor-
mation is so strong, however, that we can now go in the other direction.

COROLLARY 1 If f is deˇned on an interval and f ′(x) = 0 for all x in the interval, then f is
constant on the interval.

PROOF Let a and b be any two points in the interval with a �= b. Then there is some x in
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(a, b) such that

f ′(x) = f (b)− f (a)

b − a
.

But f ′(x) = 0 for all x in the interval, so

FI G U R E 1 3 0 = f (b)− f (a)

b − a
,

and consequently f (a) = f (b). Thus the value of f at any two points in the
interval is the same, i.e., f is constant on the interval.

Naturally, Corollary 1 does not hold for functions deˇned on two or more in-
tervals (Figure 13).

COROLLARY 2 If f and g are deˇned on the same interval, and f ′(x) = g′(x) for all x in the
interval, then there is some number c such that f = g + c.

PROOF For all x in the interval we have (f −g)′(x) = f ′(x)−g′(x) = 0 so, by Corollary 1,
there is a number c such that f − g = c.

The statement of the next corollary requires some terminology, which is illus-
trated in Figure 14.

DEFINITION A function is increasing on an interval if f (a) < f (b) whenever a and b are
two numbers in the interval with a < b. The function f is decreasing on
an interval if f (a) > f (b) for all a and b in the interval with a < b. (We
often say simply that f is increasing or decreasing, in which case the interval is
understood to be the domain of f .)

COROLLARY 3 If f ′(x) > 0 for all x in an interval, then f is increasing on the interval; if f ′(x) < 0
for all x in the interval, then f is decreasing on the interval.

PROOF Consider the case where f ′(x) > 0. Let a and b be two points in the interval with
a < b. Then there is some x in (a, b) with

f ′(x) = f (b)− f (a)

b − a
.

But f ′(x) > 0 for all x in (a, b), so

f (b)− f (a)

b − a
> 0.

Since b − a > 0 it follows that f (b) > f (a).
The proof when f ′(x) < 0 for all x is left to you.
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Notice that although the converses of Corollary 1 and Corollary 2 are true (and
obvious), the converse of Corollary 3 is not true. If f is increasing, it is easy to
see that f ′(x) ≥ 0 for all x, but the equality sign might hold for some x (consider
f (x) = x3).

Corollary 3 provides enough information to get a good idea of the graph of
a function with a minimal amount of point plotting. Consider, once more, the
function f (x) = x3 − x. We have

f ′(x) = 3x2 − 1.

We have already noted that f ′(x) = 0 for x =
√

1/3 and x = −
√

1/3, and it is
also possible to determine the sign of f ′(x) for all other x. Note that 3x2 − 1 > 0
precisely when

3x2 > 1

x2 > 1
3 ,

x >
√

1/3 or x < −
√

1/3;

thus 3x2 − 1 < 0 precisely when

−
√

1/3 < x <
√

1/3.

Thus f is increasing for x < −
√

1/3, decreasing between −
√

1/3 and
√

1/3,
and once again increasing for x >

√
1/3. Combining this information with the

following facts

(1) f (−
√

1/3 ) = 2
3

√
1/3,

f (
√

1/3 ) = − 2
3

√
1/3,

(2) f (x) = 0 for x = −1, 0, 1,
(3) f (x) gets large as x gets large, and large negative as x gets large negative,

it is possible to sketch a pretty respectable approximation to the graph (Figure 15).F I G U R E 1 4

By the way, notice that the intervals on which f increases and decreases could
have been found without even bothering to examine the sign of f ′. For example,
since f ′ is continuous, and vanishes only at −

√
1/3 and

√
1/3, we know that f ′

always has the same sign on the interval (−
√

1/3,
√

1/3 ). Since f (−
√

1/3 ) >
f (
√

1/3 ), it follows that f decreases on this interval. Similarly, f ′ always has the
same sign on (

√
1/3,∞) and f (x) is large for large x, so f must be increasing on

(
√

1/3,∞). Another point worth noting: If f ′ is continuous, then the sign of f ′

on the interval between two adjacent critical points can be determined simply by
ˇnding the sign of f ′(x) for any one x in this interval.

Our sketch of the graph of f (x) = x3 − x contains sufˇcient information
to allow us to say with conˇdence that −

√
1/3 is a local maximum point, and that√

1/3 is a local minimum point. In fact, we can give a general scheme for decid-
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F I G U R E 1 5

ing whether a critical point is a local maximum point, a local minimum point, or
neither (Figure 16):

(1) if f ′ > 0 in some interval to the left of x and f ′ < 0 in some interval to
the right of x, then x is a local maximum point.

(2) if f ′ < 0 in some interval to the left of x and f ′ > 0 in some interval to
the right of x, then x is a local minimum point.

(3) if f ′ has the same sign in some interval to the left of x as it has in some
interval to the right, then x is neither a local maximum nor a local minimum
point.

(There is no point in memorizing these rules|you can always draw the pictures
yourself.)

The polynomial functions can all be analyzed in this way, and it is even possible
to describe the general form of the graph of such functions. To begin, we need a

FI G U R E 1 6
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result already mentioned in Problem 3-7: If

f (x) = anx
n + an−1x

n−1 + · · · + a0,

then f has at most n \roots," i.e., there are at most n numbers x such that
f (x) = 0. Although this is really an algebraic theorem, calculus can be used
to give an easy proof. Notice that if x1 and x2 are roots of f (Figure 17), so that
f (x1) = f (x2) = 0, then by Rolle's Theorem there is a number x between x1
and x2 such that f ′(x) = 0. This means that if f has k different roots x1 < x2 <

· · · < xk, then f ′ has at least k − 1 different roots: one between x1 and x2, one
between x2 and x3, etc. It is now easy to prove by induction that a polynomial
functionFI G U R E 1 7

f (x) = anx
n + an−1x

n−1 + · · · + a0

has at most n roots: The statement is surely true for n = 1, and if we assume that
it is true for n, then the polynomial

g(x) = bn+1x
n+1 + bnx

n + · · · + b0

could not have more than n + 1 roots, since if it did, g′ would have more than n
roots.

With this information it is not hard to describe the graph of

f (x) = anx
n + an−1x

n−1 + · · · + a0.

The derivative, being a polynomial function of degree n − 1, has at most
n − 1 roots. Therefore f has at most n − 1 critical points. Of course, a criti-
cal point is not necessarily a local maximum or minimum point, but at any rate,
if a and b are adjacent critical points of f , then f ′ will remain either positive or
negative on (a, b), since f ′ is continuous; consequently, f will be either increasing
or decreasing on (a, b). Thus f has at most n regions of decrease or increase.

As a speciˇc example, consider the function

f (x) = x4 − 2x2.

Since

f ′(x) = 4x3 − 4x = 4x(x − 1)(x + 1),

the critical points of f are −1, 0, and 1, and

f (−1) = −1,
f (0) = 0,
f (1) = −1.

The behavior of f on the intervals between the critical points can be determined
by one of the methods mentioned before. In particular, we could determine the
sign of f ′ on these intervals simply be examining the formula for f ′(x). On theFI G U R E 1 8

other hand, from the three critical values alone we can see (Figure 18) that f
increases on (−1,0) and decreases on (0, 1). To determine the sign of f ′ on
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(−∞,−1) and (1,∞) we can compute

f ′(−2) = 4 · (−2)3 − 4 · (−2) = −24,
f ′(2) = 4 · 23 − 4 · 2 = 24,

and conclude that f is decreasing on (−∞,−1) and increasing on (1,∞). These
conclusions also follow from the fact that f (x) is large for large x and for large
negative x.

We can already produce a good sketch of the graph; two other pieces of infor-
mation provide the ˇnishing touches (Figure 19). First, it is easy to determine that
f (x) = 0 for x = 0, ±

√
2; second, it is clear that f is even, f (x) = f (−x), so the

graph is symmetric with respect to the vertical axis. The function f (x) = x3 − x,
already sketched in Figure 15, is odd, f (x) = −f (−x), and is consequently sym-
metric with respect to the origin. Half the work of graph sketching may be saved
by noticing these things in the beginning.

FI G U R E 1 9

Several problems in this and succeeding chapters ask you to sketch the graphs
of functions. In each case you should determine

(1) the critical points of f ,
(2) the value of f at the critical points,
(3) the sign of f ′ in the regions between critical points (if this is not already

clear),
(4) the numbers x such that f (x) = 0 (if possible),
(5) the behavior of f (x) as x becomes large or large negative (if possible).

Finally, bear in mind that a quick check, to see whether the function is odd or
even, may save a lot of work.

This sort of analysis, if performed with care, will usually reveal the basic shape
of the graph, but sometimes there are special features which require a little more
thought. It is impossible to anticipate all of these, but one piece of information is
often very important. If f is not deˇned at certain points (for example, if f is a
rational function whose denominator vanishes at some points), then the behavior
of f near these points should be pdetermined.

For example, consider the function

f (x) = x2 − 2x + 2
x − 1

,
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which is not deˇned at 1. We have

f ′(x) = (x − 1)(2x − 2)− (x2 − 2x + 2)
(x − 1)2

= x(x − 2)
(x − 1)2

.

Thus

(1) the critical points of f are 0, 2.

Moreover,

(2) f (0) = −2,
f (2) = 2.

Because f is not deˇned on the whole interval (0,2), the sign of f ′ must be
determined separately on the intervals (0, 1) and (1, 2), as well as on the intervals
(−∞,0) and (2,∞). We can do this by picking particular points in each of these
intervals, or simply by staring hard at the formula for f ′. Either way we ˇnd that

(3) f ′(x) > 0 if x < 0,
f ′(x) < 0 if 0 < x < 1,
f ′(x) < 0 if 1 < x < 2,
f ′(x) > 0 if 2 < x.

Finally, we must determine the behavior of f (x) as x becomes large or large
negative, as well as when x approaches 1 (this information will also give us another
way to determine the regions on which f increases and decreases). To examine
the behavior as x becomes large we write

x2 − 2x + 2
x − 1

= x − 1 + 1
x − 1

;

clearly f (x) is close to x− 1 (and slightly larger) when x is large, and f (x) is close
to x − 1 (but slightly smaller) when x is large negative. The behavior of f near 1
is also easy to determine; since

lim
x→1

(x2 − 2x + 2) = 1 �= 0,

the fraction
x2 − 2x + 2
x − 1

becomes large as x approaches 1 from above and large negative as x approaches 1
from below.

All this information may seem a bit overwhelming, but there is only one way
that it can be pieced together (Figure 20); be sure that you can account for each
feature of the graph.

When this sketch has been completed, we might note that it looks like the graph
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of an odd function shoved over 1 unit, and the expression

x2 − 2x + 2
x − 1

= (x − 1)2 + 1
x − 1

shows that this is indeed the case. However, this is one of those special features
which should be investigated only after you have used the other information to get
a good idea of the appearance of the graph.

Although the location of local maxima and minima of a function is always re-
vealed by a detailed sketch of its graph, it is usually unnecessary to do so much
work. There is a popular test for local maxima and minima which depends on the
behavior of the function only at its critical points.

THEOREM 5 Suppose f ′(a) = 0. If f ′′(a) > 0, then f has a local minimum at a; if f ′′(a) < 0,
then f has a local maximum at a.

PROOF By deˇnition,

f ′′(a) = lim
h→0

f ′(a + h)− f ′(a)
h

.

Since f ′(a) = 0, this can be written

f ′′(a) = lim
h→0

f ′(a + h)

h
.
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Suppose now that f ′′(a) > 0. Then f ′(a + h)/h must be positive for sufˇciently
small h. Therefore:

f ′(a + h) must be positive for sufˇciently small h > 0
and f ′(a + h) must be negative for sufˇciently small h < 0.

This means (Corollary 3) that f is increasing in some interval to the right of a
and f is decreasing in some interval to the left of a. Consequently, f has a local
minimum at a.

The proof for the case f ′′(a) < 0 is similar.

Theorem 5 may be applied to the function f (x) = x3 − x, which has already
been considered. We have

f ′(x) = 3x2 − 1
f ′′(x) = 6x.

At the critical points, −
√

1/3 and
√

1/3, we have

f ′′(−
√

1/3 ) = −6
√

1/3 < 0,
f ′′(
√

1/3 ) = 6
√

1/3 > 0.

Consequently, −
√

1/3 is a local maximum point and
√

1/3 is a local minimum
point.

Although Theorem 5 will be found quite useful for polynomial functions, for
many functions the second derivative is so complicated that it is easier to consider
the sign of the ˇrst derivative. Moreover, if a is a critical point of f it may happen
that f ′′(a) = 0. In this case, Theorem 5 provides no information: it is possible
that a is a local maximum point, a local minimum point, or neither, as shown
(Figure 21) by the functions

FI G U R E 2 1
f (x) = −x4, f (x) = x4, f (x) = x5;

in each case f ′(0) = f ′′(0) = 0, but 0 is a local maximum point for the ˇrst, a
local minimum point for the second, and neither a local maximum nor minimum
point for the third. This point will be pursued further in Part IV.

It is interesting to note that Theorem 5 automatically proves a partial converse
of itself.

THEOREM 6 Suppose f ′′(a) exists. If f has a local minimum at a, then f ′′(a) ≥ 0; if f has a
local maximum at a, then f ′′(a) ≤ 0.

PROOF Suppose f has local minimum at a. If f ′′(a) < 0, then f would also have a
local maximum at a, by Theorem 5. Thus f would be constant in some interval
containing a, so that f ′′(a) = 0, a contradiction. Thus we must have f ′′(a) ≥ 0.

The case of a local maximum is handled similarly.
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(This partial converse to Theorem 5 is the best we can hope for: the ≥ and ≤
signs cannot be replaced by > and <, as shown by the functions f (x) = x4 and
f (x) = −x4.)

The remainder of this chapter deals, not with graph sketching, or maxima and
minima, but with three consequences of the Mean Value Theorem. The ˇrst is a
simple, but very beautiful, theorem which plays an important role in Chapter 15,
and which also sheds light on many examples which have occurred in previous
chapters.

THEOREM 7 Suppose that f is continuous at a, and that f ′(x) exists for all x in some interval
containing a, except perhaps for x = a. Suppose, moreover, that lim

x→a
f ′(x) exists.

Then f ′(a) also exists, and

f ′(a) = lim
x→a

f ′(x).

PROOF By deˇnition,

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

For sufˇciently small h > 0 the function f will be continuous on [a, a + h] and
differentiable on (a, a + h) (a similar assertion holds for sufˇciently small h < 0).
By the Mean Value Theorem there is a number αh in (a, a + h) such that

f (a + h)− f (a)

h
= f ′(αh).

Now αh approaches a as h approaches 0, because αh is in (a, a + h); since
lim
x→a

f ′(x) exists, it follows that

f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

h→0
f ′(αh) = lim

x→a
f ′(x).

(It is a good idea to supply a rigorous ε-δ argument for this ˇnal step, which we
have treated somewhat informally.)

Even if f is an everywhere differentiable function, it is still possible for f ′ to be
discontinuous. This happens, for example, if

F I G U R E 2 2
f (x) =


 x2 sin

1
x
, x �= 0

0, x = 0.

According to Theorem 7, however, the graph of f ′ can never exhibit a disconti-
nuity of the type shown in Figure 22. Problem 55 outlines the proof of another
beautiful theorem which gives further information about the function f ′, and Prob-
lem 56 uses this result to strengthen Theorem 7.

The next theorem, a generalization of the Mean Value Theorem, is of interest
mainly because of its applications.
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THEOREM 8 (THE CAUCHY MEAN

VALUE THEOREM)

If f and g are continuous on [a, b] and differentiable on (a, b), then there is a
number x in (a, b) such that

[f (b)− f (a)]g′(x) = [g(b)− g(a)]f ′(x).

(If g(b) �= g(a), and g′(x) �= 0, this equation can be written

f (b)− f (a)

g(b)− g(a)
= f ′(x)
g′(x)

.

Notice that if g(x) = x for all x, then g′(x) = 1, and we obtain the Mean Value
Theorem. On the other hand, applying the Mean Value Theorem to f and g

separately, we ˇnd that there are x and y in (a, b) with

f (b)− f (a)

g(b)− g(a)
= f ′(x)
g′(y)

;

but there is no guarantee that the x and y found in this way will be equal. These
remarks may suggest that the Cauchy Mean Value Theorem will be quite difˇcult
to prove, but actually the simplest of tricks sufˇces.)

PROOF Let
h(x) = f (x)[g(b)− g(a)] − g(x)[f (b)− f (a)].

Then h is continuous on [a, b], differentiable on (a, b), and

h(a) = f (a)g(b)− g(a)f (b) = h(b).

It follows from Rolle's Theorem that h′(x) = 0 for some x in (a, b), which means
that

0 = f ′(x)[g(b)− g(a)] − g′(x)[f (b)− f (a)].

The Cauchy Mean Value Theorem is the basic tool needed to prove a theorem
which facilitates evaluation of limits of the form

lim
x→a

f (x)

g(x)
,

when
lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0.

In this case, Theorem 5-2 is of no use. Every derivative is a limit of this form, and
computing derivatives frequently requires a great deal of work. If some derivatives
are known, however, many limits of this form can now be evaluated easily.

THEOREM 9 (L’HÔPITAL’S RULE) Suppose that
lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0,

and suppose also that lim
x→a

f ′(x)/g′(x) exists. Then lim
x→a

f (x)/g(x) exists, and

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)
g′(x)

.

(Notice that Theorem 7 is a special case.)
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PROOF The hypothesis that lim
x→a

f ′(x)/g′(x) exists contains two implicit assumptions:

(1) there is an interval (a − δ, a + δ) such that f ′(x) and g′(x) exist for all x in
(a − δ, a + δ) except, perhaps, for x = a,

(2) in this interval g′(x) �= 0 with, once again, the possible exception
of x = a.

On the other hand, f and g are not even assumed to be deˇned at a. If we deˇne
f (a) = g(a) = 0 (changing the previous values of f (a) and g(a), if necessary),
then f and g are continuous at a. If a < x < a + δ, then the Mean Value
Theorem and the Cauchy Mean Value Theorem apply to f and g on the interval
[a, x] (and a similar statement holds for a − δ < x < a). First applying the Mean
Value Theorem to g, we see that g(x) �= 0, for if g(x) = 0 there would be some x1
in (a, x)with g′(x1) = 0, contradicting (2). Now applying the Cauchy Mean Value
Theorem to f and g, we see that there is a number αx in (a, x) such that

[f (x)− 0]g′(αx) = [g(x)− 0]f ′(αx)

or
f (x)

g(x)
= f ′(αx)
g′(αx)

.

Now αx approaches a as x approaches a, because αx is in (a, x); since
lim
y→a

f ′(y)/g′(y) exists, it follows that

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(αx)
g′(αx)

= lim
y→a

f ′(y)
g′(y)

.

(Once again, the reader is invited to supply the details of this part of the argu-
ment.)

PROBLEMS

1. For each of the following functions, ˇnd the maximum and minimum values
on the indicated intervals, by ˇnding the points in the interval where the
derivative is 0, and comparing the values at these points with the values at
the end points.

(i) f (x) = x3 − x2 − 8x + 1 on [−2,2].
(ii) f (x) = x5 + x + 1 on [−1,1].
(iii) f (x) = 3x4 − 8x3 + 6x2 on [− 1

2 ,
1
2].

(iv) f (x) = 1
x5 + x + 1

on [− 1
2 , 1].

(v) f (x) = x + 1
x2 + 1

on [−1, 1
2].

(vi) f (x) = x

x2 − 1
on [0,5].
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2. Now sketch the graph of each of the functions in Problem 1, and ˇnd all
local maximum and minimum points.

3. Sketch the graphs of the following functions.

(i) f (x) = x + 1
x

.

(ii) f (x) = x + 3
x2 .

(iii) f (x) = x2

x2 − 1
.

(iv) f (x) = 1
1 + x2 .

4. (a) If a1 < · · · < an, ˇnd the minimum value of f (x) =
n∑
i=1

(x − ai)
2.

*(b) Now ˇnd the minimum value of f (x) =
n∑
i=1

|x − ai|. This is a problem

where calculus won't help at all: on the intervals between the ai 's the
function f is linear, so that the minimum clearly occurs at one of the ai ,
and these are precisely the points where f is not differentiable. However,
the answer is easy to ˇnd if you consider how f (x) changes as you pass
from one such interval to another.

*(c) Let a > 0. Show that the maximum value of

f (x) = 1
1 + |x| + 1

1 + |x − a|
is (2 + a)/(1 + a). (The derivative can be found on each of the intervals
(−∞, 0), (0, a), and (a,∞) separately.)

5. For each of the following functions, ˇnd all local maximum and minimum
points.

(i) f (x) =




x, x �= 3,5,7, 9
5, x = 3

−3, x = 5
9, x = 7
7, x = 9.

(ii) f (x) =
{

0, x irrational
1/q, x = p/q in lowest terms.

(iii) f (x) =
{
x, x rational
0, x irrational.

(iv) f (x) =
{

1, x = 1/n for some n in N
0, otherwise.

(v) f (x) =
{

1, if the decimal expansion of x contains a 5
0, otherwise.
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6. (a) Let (x0, y0) be a point of the plane, and let L be the graph of the function
f (x) = mx + b. Find the point x̄ such that the distance from (x0, y0) to
(x̄, f (x̄)) is smallest. [Notice that minimizing this distance is the same as
minimizing its square. This may simplify the computations somewhat.]

(b) Also ˇnd x̄ by noting that the line from (x0, y0) to (x̄, f (x̄)) is perpen-
dicular to L.

(c) Find the distance from (x0, y0) to L, i.e., the distance from (x0, y0) to
(x̄, f (x̄)). [It will make the computations easier if you ˇrst assume that
b = 0; then apply the result to the graph of f (x) = mx and the pointFI G U R E 2 3
(x0, y0 − b).] Compare with Problem 4-22.

(d) Consider a straight line described by the equation Ax + By + C =
0 (Problem 4-7). Show that the distance from (x0, y0) to this line is
(Ax0 + By0 + C)/

√
A2 + B2.

7. The previous Problem suggests the following question: What is the relation-
ship between the critical points of f and those of f 2?

8. A straight line is drawn from the point (0, a) to the horizontal axis, and
then back to (1, b), as in Figure 23. Prove that the total length is shortest
when the angles α and β are equal. (Naturally you must bring a functionFI G U R E 2 4

into the picture: express the length in terms of x, where (x,0) is the point
on the horizontal axis. The dashed line in Figure 23 suggests an alternative
geometric proof; in either case the problem can be solved without actually
ˇnding the point (x,0).)

9. Prove that of all rectangles with given perimeter, the square has the greatest
area.

10. Find, among all right circular cylinders of ˇxed volume V , the one with
smallest surface area (counting the areas of the faces at top and bottom, as
in Figure 24).

11. A right triangle with hypotenuse of length a is rotated about one of its legs
to generate a right circular cone. Find the greatest possible volume of suchFI G U R E 2 5

a cone.

12. Two hallways, of widths a and b, meet at right angles (Figure 25). What
is the greatest possible length of a ladder which can be carried horizontally
around the corner?

13. A garden is to be designed in the shape of a circular sector (Figure 26), with
radius R and central angle θ . The garden is to have a ˇxed area A. For
what value of R and θ (in radians) will the length of the fencing around the
perimeter be minimized?

14. Show that the sum of a positive number and its reciprocal is at least 2.

15. Find the trapezoid of largest area that can be inscribed in a semicircle ofF I G U R E 2 6

radius a, with one base lying along the diameter.
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16. A right angle is moved along the diameter of a circle of radius a, as shown
in Figure 27. What is the greatest possible length (A+ B) intercepted on it
by the circle?

17. Ecological Ed must cross a circular lake of radius 1 mile. He can row across
at 2 mph or walk around at 4 mph, or he can row part way and walk the
rest (Figure 28). What route should he take so as to

(i) see as much scenery as possible?
(ii) cross as quickly as possible?FI G U R E 2 7

18. The lower right-hand corner of a page is folded over so that it just touches
the left edge of the paper, as in Figure 29. If the width of the paper is α and
the page is very long, show that the minimum length of the crease is 3

√
3α/4.

19. Figure 30 shows the graph of the derivative of f . Find all local maximum and
minimum points of f .

F I G U R E 2 8

F I G U R E 3 0

*20. Suppose that f is a polynomial function, f (x) = xn + an−1x
n−1 + · · · + a0,

with critical points −1, 1, 2, 3, 4, and corresponding critical values 6, 1, 2,
4, 3. Sketch the graph of f , distinguishing the cases n even and n odd.

*21. (a) Suppose that the critical points of the polynomial function f (x) = xn +
an−1x

n−1 +· · ·+a0 are −1,1,2, 3, and f ′′(−1) = 0, f ′′(1) > 0, f ′′(2) <
0, f ′′(3) = 0. Sketch the graph of f as accurately as possible on the
basis of this information.

(b) Does there exist a polynomial function with the above properties, except
that 3 is not a critical point?

22. Describe the graph of a rational function (in very general terms, similar toFI G U R E 2 9
the text's description of the graph of a polynomial function).

23. (a) Prove that two polynomial functions of degree m and n, respectively,
intersect in at most max(m, n) points.

(b) For each m and n exhibit two polynomial functions of degree m and n
which intersect max(m, n) times.

*24. (a) Suppose that the polynomial function f (x) = xn + an−1x
n−1 + · · · + a0

has exactly k critical points and f ′′(x) �= 0 for all critical points x. Show
that n− k is odd.
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(b) For each n, show that there is a polynomial function f of degree n with
k critical points if n− k is odd.

(c) Suppose that the polynomial function f (x) = xn + an−1x
n−1 + · · · + a0

has k1 local maximum points and k2 local minimum points. Show that
k2 = k1 + 1 if n is even, and k2 = k1 if n is odd.

(d) Let n, k1, k2 be three integers with k2 = k1 +1 if n is even, and k2 = k1 if
n is odd, and k1 + k2 < n. Show that there is a polynomial function f of
degree n, with k1 local maximum points and k2 local minimum points.

Hint: Pick a1 < a2 < · · · < ak1+k2 and try f ′(x) =
k1+k2∏
i=1

(x−ai) · (1+x2)l

for an appropriate number l.

25. (a) Prove that if f ′(x) ≥ M for all x in [a, b], then f (b) ≥ f (a)+M(b−a).
(b) Prove that if f ′(x) ≤ M for all x in [a, b], then f (b) ≤ f (a)+M(b−a).
(c) Formulate a similar theorem when |f ′(x)| ≤ M for all x in [a, b].

*26. Suppose that f ′(x) ≥ M > 0 for all x in [0, 1]. Show that there is an interval
of length 1

4 on which |f | ≥ M/4.

27. (a) Suppose that f ′(x) > g′(x) for all x, and that f (a) = g(a). Show that
f (x) > g(x) for x > a and f (x) < g(x) for x < a.

(b) Show by an example that these conclusions do not follow without the
hypothesis f (a) = g(a).

28. Find all functions f such that

(a) f ′(x) = sin x.
(b) f ′′(x) = x3.
(c) f ′′′(x) = x + x2.

29. Although it is true that a weight dropped from rest will fall s(t) = 16t2

feet after t seconds, this experimental fact does not mention the behavior of
weights which are thrown upwards or downwards. On the other hand, the
law s ′′(t) = 32 is always true and has just enough ambiguity to account for
the behavior of a weight released from any height, with any initial velocity.
For simplicity let us agree to measure heights upwards from ground level;
in this case velocities are positive for rising bodies and negative for falling
bodies, and all bodies fall according to the law s ′′(t) = −32.

(a) Show that s is of the form s(t) = −16t2 + αt + β.
(b) By setting t = 0 in the formula for s, and then in the formula for s ′,

show that s(t) = −16t2 + v0t+ s0, where s0 is the height from which the
body is released at time 0, and v0 is the velocity with which it is released.

(c) A weight is thrown upwards with velocity v feet per second, at ground
level. How high will it go? (\How high" means \what is the maximum
height for all times".) What is its velocity at the moment it achieves its
greatest height? What is its acceleration at that moment? When will it
hit the ground again? What will its velocity be when it hits the ground
again?
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30. A cannon ball is shot from the ground with velocity v at an angle α (Fig-
ure 31) so that it has a vertical component of velocity v sin α and a hori-
zontal component v cos α. Its distance s(t) above the ground obeys the law
s(t) = −16t2 + (v sin α)t , while its horizontal velocity remains constantly
v cosα.

(a) Show that the path of the cannon ball is a parabola (ˇnd the position at
each time t , and show that these points lie on a parabola).

(b) Find the angle α which will maximize the horizontal distance traveled
by the cannon ball before striking the ground.FI G U R E 3 1

31. (a) Give an example of a function f for which lim
x→∞ f (x) exists, but

lim
x→∞ f

′(x) does not exist.

(b) Prove that if lim
x→∞ f (x) and lim

x→∞ f
′(x) both exist, then lim

x→∞ f
′(x) = 0.

(c) Prove that if lim
x→∞ f (x) exists and lim

x→∞ f
′′(x) exists, then lim

x→∞ f
′′(x) = 0.

(See also Problem 20-15.)

32. Suppose that f and g are two differentiable functions which satisfy
fg′ − f ′g = 0. Prove that if a and b are adjacent zeros of f , and g(a)

and g(b) are not both 0, then g(x) = 0 for some x between a and b. (Natu-
rally the same result holds with f and g interchanged; thus, the zeros of f
and g separate each other.) Hint: Derive a contradiction from the assump-
tion that g(x) �= 0 for all x between a and b: if a number is not 0, there is a
natural thing to do with it.

33. Suppose that |f (x)− f (y)| ≤ |x − y|n for n > 1. Prove that f is constant by
considering f ′. Compare with Problem 3-20.

34. A function f is Lipschitz of order α at x if there is a constant C such that

(∗) |f (x)− f (y)| ≤ C|x − y|α

for all y in an interval around x. The function f is Lipschitz of order α on an

interval if (∗) holds for all x and y in the interval.

(a) If f is Lipschitz of order α > 0 at x, then f is continuous at x.
(b) If f is Lipschitz of order α > 0 on an interval, then f is uniformly

continuous on this interval (see Chapter 8, Appendix).
(c) If f is differentiable at x, then f is Lipschitz of order 1 at x. Is the

converse true?
(d) If f is differentiable on [a, b], is f Lipschitz of order 1 on [a, b]?
(e) If f is Lipschitz of order α > 1 on [a, b], then f is constant on [a, b].



208 Derivatives and Integrals

35. Prove that if
a0

1
+ a1

2
+ · · · + an

n+ 1
= 0,

then
a0 + a1x + · · · + anx

n = 0

for some x in [0,1].

36. Prove that the polynomial function fm(x) = x3 − 3x+m never has two roots
in [0,1], no matter what m may be. (This is an easy consequence of Rolle's
Theorem. It is instructive, after giving an analytic proof, to graph f0 and f2,
and consider where the graph of fm lies in relation to them.)

37. Suppose that f is continuous and differentiable on [0,1], that f (x) is in
[0,1] for each x, and that f ′(x) �= 1 for all x in [0, 1]. Show that there is
exactly one number x in [0, 1] such that f (x) = x. (Half of this problem
has been done already, in Problem 7-11.)

38. (a) Prove that the function f (x) = x2 − cos x satisˇes f (x) = 0 for precisely
two numbers x.

(b) Prove the same for the function f (x) = 2x2 − x sin x − cos2 x. (Some
preliminary estimates will be useful to restrict the possible location of the
zeros of f .)

*39. (a) Prove that if f is a twice differentiable function with f (0) = 0 and
f (1) = 1 and f ′(0) = f ′(1) = 0, then |f ′′(x)| ≥ 4 for some x in [0,1].
In more picturesque terms: A particle which travels a unit distance in
a unit time, and starts and ends with velocity 0, has at some time an
acceleration ≥ 4. Hint: Prove that either f ′′(x) > 4 for some x in
[0, 1

2 ], or else f ′′(x) < −4 for some x in [ 1
2 , 1].

(b) Show that in fact we must have |f ′′(x)| > 4 for some x in [0,1].

40. Suppose that f is a function such that f ′(x) = 1/x for all x > 0 and f (1) =
0. Prove that f (xy) = f (x)+ f (y) for all x, y > 0. Hint: Find g′(x) when
g(x) = f (xy).

*41. Suppose that f satisˇes

f ′′(x)+ f ′(x)g(x)− f (x) = 0

for some function g. Prove that if f is 0 at two points, then f is 0 on the
interval between them. Hint: Use Theorem 6.

42. Suppose that f is n-times differentiable and that f (x) = 0 for n + 1 differ-
ent x. Prove that f (n)(x) = 0 for some x.

43. Let a1, . . . , an+1 be arbitrary points in [a, b], and let

Q(x) =
n+1∏
i=1

(x − xi).
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Suppose that f is (n + 1)-times differentiable and that P is a polynomial
function of degree ≤ n such that P(xi) = f (xi) for i = 1, . . . , n + 1 (see
page 49). Show that for each x in [a, b] there is a number c in (a, b) such
that

f (x)− P(x) = Q(x) · f
(n+1)(c)

(n+ 1)!
.

Hint: Consider the function

F(t) = Q(x)[f (t)− P(t)] −Q(t)[f (x)− P(x)].

Show that F is zero at n+ 2 different points in [a, b], and use Problem 42.

44. Prove that
1
9 <

√
66 − 8 < 1

8

(without computing
√

66 to 2 decimal places!).

45. Prove the following slight generalization of the Mean Value Theorem: If f
is continuous and differentiable on (a, b) and lim

y→a+
f (y) and lim

y→b−
f (y) exist,

then there is some x in (a, b) such that

f ′(x) =
lim
y→b−

f (y)− lim
y→a+

f (y)

b − a
.

(Your proof should begin: \This is a trivial consequence of the Mean Value
Theorem because . . . ".)

46. Prove that the conclusion of the Cauchy Mean Value Theorem can be written
in the form

f (b)− f (a)

g(b)− g(a)
= f ′(x)
g′(x)

,

under the additional assumptions that g(b) �= g(a) and that f ′(x) and g′(x)
are never simultaneously 0 on (a, b).

*47. Prove that if f and g are continuous on [a, b] and differentiable on (a, b),
and g′(x) �= 0 for x in (a, b), then there is some x in (a, b) with

f ′(x)
g′(x)

= f (x)− f (a)

g(b)− g(x)
.

Hint: Multiply out ˇrst, to see what this really says.

48. What is wrong with the following use of l'Hôpital's Rule:

lim
x→1

x3 + x − 2
x2 − 3x + 2

= lim
x→1

3x2 + 1
2x − 3

= lim
x→1

6x
2

= 3.

(The limit is actually −4.)
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49. Find the following limits:

(i) lim
x→0

x

tan x
.

(ii) lim
x→0

cos2 x − 1
x2 .

50. Find f ′(0) if

f (x) =


g(x)

x
, x �= 0

0, x = 0,

and g(0) = g′(0) = 0 and g′′(0) = 17.

51. Prove the following forms of l'Hôpital's Rule (none requiring any essentially
new reasoning).

(a) If lim
x→a+

f (x) = lim
x→a+

g(x) = 0, and lim
x→a+

f ′(x)/g′(x) = l, then

lim
x→a+

f (x)/g(x) = l (and similarly for limits from below).

(b) If lim
x→a

f (x) = lim
x→a

g(x) = 0, and lim
x→a

f ′(x)/g′(x) = ∞, then

lim
x→a

f (x)/g(x) = ∞ (and similarly for −∞, or if x → a is replaced

by x → a+ or x → a−).
(c) If lim

x→∞ f (x) = lim
x→∞ g(x) = 0, and lim

x→∞ f
′(x)/g′(x) = l, then

lim
x→∞ f (x)/g(x) = l (and similarly for −∞). Hint: Consider

lim
x→0+

f (1/x)/g(1/x).

(d) If lim
x→∞ f (x) = lim

x→∞ g(x) = 0, and lim
x→∞ f

′(x)/g′(x) = ∞, then

lim
x→∞ f (x)/g(x) = ∞.

52. There is another form of l'Hôpital's Rule which requires more than algebraic
manipulations: If lim

x→∞ f (x) = lim
x→∞ g(x) = ∞, and lim

x→∞ f
′(x)/g′(x) = l,

then lim
x→∞ f (x)/g(x) = l. Prove this as follows.

(a) For every ε > 0 there is a number a such that∣∣∣∣ f ′(x)
g′(x)

− l

∣∣∣∣ < ε for x > a.

Apply the Cauchy Mean Value Theorem to f and g on [a, x] to show
that ∣∣∣∣ f (x)− f (a)

g(x)− g(a)
− l

∣∣∣∣ < ε for x > a.

(Why can we assume g(x)− g(a) �= 0?)
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(b) Now write

f (x)

g(x)
= f (x)− f (a)

g(x)− g(a)
· f (x)

f (x)− f (a)
· g(x)− g(a)

g(x)

(why can we assume that f (x) − f (a) �= 0 for large x?) and conclude
that ∣∣∣∣ f (x)g(x)

− l

∣∣∣∣ < 2ε for sufˇciently large x.

53. To complete the orgy of variations on l'Hôpital's Rule, use Problem 52 to
prove a few more cases of the following general statement (there are so many
possibilities that you should select just a few, if any, that interest you):

If lim
x→[ ]

f (x) = lim
x→[ ]

g(x) = { } and lim
x→[ ]

f ′(x)/g′(x) = ( ), then lim
x→[ ]

f (x)/g(x) = ( ). Here [ ] can be a or a+ or a− or ∞ or −∞, and { }
can be 0 or ∞ or −∞, and ( ) can be l or ∞ or −∞.

*54. (a) Suppose that f is differentiable on [a, b]. Prove that if the minimum
of f on [a, b] is at a, then f ′(a) ≥ 0, and if it is at b, then f ′(b) ≤ 0.
(One half of the proof of Theorem 1 will go through.)

(b) Suppose that f ′(a) < 0 and f ′(b) > 0. Show that f ′(x) = 0 for some x
in (a, b). Hint: Consider the minimum of f on [a, b]; why must it be
somewhere in (a, b)?

(c) Prove that if f ′(a) < c < f ′(b), then f ′(x) = c for some x in (a, b). (This
result is known as Darboux's Theorem.) Hint: Cook up an appropriate
function to which part (b) may be applied.

55. Suppose that f is differentiable in some interval containing a, but that f ′ is
discontinuous at a.

(a) The one-sided limits lim
x→a+

f ′(x) and lim
x→a−

f ′(x) cannot both exist. (This

is just a minor variation on Theorem 7.)
(b) Neither of these one-sided limits can exist even in the sense of being +∞

or −∞. Hint: Use Darboux's Theorem (Problem 54).

*56. It is easy to ˇnd a function f such that |f | is differentiable but f is not.
For example, we can choose f (x) = 1 for x rational and f (x) = −1 for
x irrational. In this example f is not even continuous, nor is this a mere
coincidence: Prove that if |f | is differentiable at a, and f is continuous at a,
then f is also differentiable at a. Hint: It sufˇces to consider only a with
f (a) = 0. Why? In this case, what must |f |′(a) be?

*57. (a) Let y �= 0 and let n be even. Prove that xn + yn = (x + y)n only
when x = 0. Hint: If x0

n + yn = (x0 + y)n, apply Rolle's Theorem to
f (x) = xn + yn − (x + y)n on [0, x0].
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(b) Prove that if y �= 0 and n is odd, then xn + yn = (x + y)n only if x = 0
or x = −y.

**58. Use the method of Problem 57 to prove that if n is even and f (x) = xn, then
every tangent line to f intersects f only once.

**59. Prove even more generally that if f ′ is increasing, then every tangent line
intersects f only once.

*60. Suppose that f (0) = 0 and f ′ is increasing. Prove that the function g(x) =
f (x)/x is increasing on (0,∞). Hint: Obviously you should look at g′(x).
Prove that it is positive by applying the Mean Value Theorem to f on the
right interval (it will help to remember that the hypothesis f (0) = 0 is essen-
tial, as shown by the function f (x) = 1 + x2).

*61. Use derivatives to prove that if n ≥ 1, then

(1 + x)n > 1 + nx for −1 < x < 0 and 0 < x

(notice that equality holds for x = 0).

62. Let f (x) = x4 sin2 1/x for x �= 0, and let f (0) = 0 (Figure 32).

(a) Prove that 0 is a local minimum point for f .
(b) Prove that f ′(0) = f ′′(0) = 0.

This function thus provides another example to show that Theorem 6 cannot
be improved. It also illustrates a subtlety about maxima and minima that
often goes unnoticed: a function may not be increasing in any interval to the
right of a local minimum point, nor decreasing in any interval to the left.

F I G U R E 3 2

*63. (a) Prove that if f ′(a) > 0 and f ′ is continuous at a, then f is increasing in
some interval containing a.

The next two parts of this problem show that continuity of f ′ is essential.

(b) If g(x) = x2 sin 1/x, show that there are numbers x arbitrarily close to 0
with g′(x) = 1 and also with g′(x) = −1.
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(c) Suppose 0 < α < 1. Let f (x) = αx + x2 sin 1/x for x �= 0, and let
f (0) = 0 (see Figure 33). Show that f is not increasing in any open
interval containing 0, by showing that in any interval there are points x
with f ′(x) > 0 and also points x with f ′(x) < 0.

FI G U R E 3 3

The behavior of f for α ≥ 1, which is much more difˇcult to analyze, is
discussed in the next problem.

**64. Let f (x) = αx + x2 sin 1/x for x �= 0, and let f (0) = 0. In order to ˇnd
the sign of f ′(x) when α ≥ 1 it is necessary to decide if 2x sin 1/x − cos 1/x
is < −1 for any numbers x close to 0. It is a little more convenient to
consider the function g(y) = 2(sin y)/y − cos y for y �= 0; we want to know
if g(y) < −1 for large y. This question is quite delicate; the most signiˇcant
part of g(y) is − cos y, which does reach the value −1, but this happens only
when sin y = 0, and it is not at all clear whether g itself can have values
< −1. The obvious approach to this problem is to ˇnd the local minimum
values of g. Unfortunately, it is impossible to solve the equation g′(y) = 0
explicitly, so more ingenuity is required.

(a) Show that if g′(y) = 0, then

cos y = (sin y)

(
2 − y2

2y

)
,

and conclude that

g(y) = (sin y)

(
2 + y2

2y

)
.
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(b) Now show that if g′(y) = 0, then

sin2 y = 4y2

4 + y4 ,

and conclude that

|g(y)| = 2 + y2√
4 + y4

.

(c) Using the fact that (2 + y2)/
√

4 + y4 > 1, show that if α = 1, then f is
not increasing in any interval around 0.

(d) Using the fact that lim
y→∞(2 + y2)/

√
4 + y4 = 1, show that if α > 1, then

f is increasing in some interval around 0.

**65. A function f is increasing at a if there is some number δ > 0 such that

f (x) > f (a) if a < x < a + δ

and
f (x) < f (a) if a − δ < x < a.

Notice that this does not mean that f is increasing in the interval (a − δ,

a + δ); for example, the function shown in Figure 33 is increasing at 0, but
is not an increasing function in any open interval containing 0.

(a) Suppose that f is continuous on [0,1] and that f is increasing at a for
every a in [0,1]. Prove that f is increasing on [0, 1]. (First convince
yourself that there is something to be proved.) Hint: For 0 < b < 1,
prove that the minimum of f on [b,1] must be at b.

(b) Prove part (a) without the assumption that f is continuous, by consider-
ing for each b in [0, 1] the set Sb = {x : f (y) ≥ f (b) for all y in [b, x]

}
.

(This part of the problem is not necessary for the other parts.) Hint:
Prove that Sb = {x : b ≤ x ≤ 1} by considering sup Sb.

(c) If f is increasing at a and f is differentiable at a, prove that f ′(a) ≥ 0
(this is easy).

(d) If f ′(a) > 0, prove that f is increasing at a (go right back to the deˇnition
of f ′(a)).

(e) Use parts (a) and (d) to show, without using the Mean Value Theorem,
that if f is continuous on [0, 1] and f ′(a) > 0 for all a in [0,1], then f
is increasing on [0, 1].

(f ) Suppose that f is continuous on [0,1] and f ′(a) = 0 for all a in (0, 1).
Apply part (e) to the function g(x) = f (x) + εx to show that f (1) −
f (0) > −ε. Similarly, show that f (1)− f (0) < ε by considering h(x) =
εx − f (x). Conclude that f (0) = f (1).
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This particular proof that a function with zero derivative must be constant has
many points in common with a proof of H. A. Schwarz, which may be the
ˇrst rigorous proof ever given. Its discoverer, at least, seemed to think it was.
See his exuberant letter in reference [40] of the Suggested Reading.

**66. (a) If f is a constant function, then every point is a local maximum point
for f . It is quite possible for this to happen even if f is not a constant
function: for example, if f (x) = 0 for x < 0 and f (x) = 1 for x ≥
0. But prove, using Problem 8-4, that if f is continuous on [a, b] and
every point of [a, b] is a local maximum point, then f is a constant
function. The same result holds, of course, if every point of [a, b] is a
local minimum point.

(b) Suppose now that every point is either a local maximum or a local min-
imum point for f (but we don't preclude the possibility that some points
are local maxima while others are local minima). Prove that f is con-
stant, as follows. Suppose that f (a0) < f (b0). We can assume that
f (a0) < f (x) < f (b0) for a0 < x < b0. (Why?) Using Theorem 1
of the Appendix to Chapter 8, partition [a0, b0] into intervals on which
sup f − inf f < (f (b0)−f (a0))/2; also choose the lengths of these inter-
vals to be less than (b0 − a0)/2. Then there is one such interval [a1, b1]
with a0 < a1 < b1 < b0 and f (a1) < f (b1). (Why?) Continue in-
ductively and use the Nested Interval Theorem (Problem 8-14) to ˇnd a
point x that cannot be a local maximum or minimum.

**67. (a) A point x is called a strict maximum point for f on A if f (x) > f (y)

for all y in A with y �= x (compare with the deˇnition of an ordinary
maximum point). A local strict maximum point is deˇned in the
obvious way. Find all local strict maximum points of the function

f (x) =



0, x irrational
1
q
, x = p

q
in lowest terms.

It seems quite unlikely that a function can have a local strict maximum
at every point (although the above example might give one pause for
thought). Prove this as follows.

(b) Suppose that every point is a local strict maximum point for f . Let
x1 be any number and choose a1 < x1 < b1 with b1 − a1 < 1 such
that f (x1) > f (x) for all x in [a1, b1]. Let x2 �= x1 be any point in
(a1, b1) and choose a1 ≤ a2 < x2 < b2 ≤ b1 with b2 − a2 <

1
2 such that

f (x2) > f (x) for all x in [a2, b2]. Continue in this way, and use the
Nested Interval Theorem (Problem 8-14) to obtain a contradiction.
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APPENDIX. CONVEXITY AND CONCAVITY

Although the graph of a function can be sketched quite accurately on the basis
of the information provided by the derivative, some subtle aspects of the graph are
revealed only by examining the second derivative. These details were purposely
omitted previously because graph sketching is complicated enough without wor-
rying about them, and the additional information obtained is often not worth the
effort. Also, correct proofs of the relevant facts are sufˇciently difˇcult to be placed
in an appendix. Despite these discouraging remarks, the information presented
here is well worth assimilating, because the notions of convexity and concavity are
far more important than as mere aids to graph sketching. Moreover, the proofs
have a pleasantly geometric �avor not often found in calculus theorems. Indeed,
the basic deˇnition is geometric in nature (see Figure 1).

DEFINITION 1 A function f is convex on an interval, if for all a and b in the interval, the line
segment joining (a, f (a)) and (b, f (b)) lies above the graph of f .

The geometric condition appearing in this deˇnition can be expressed in an
analytic way that is sometimes more useful in proofs. The straight line between
(a, f (a)) and (b, f (b)) is the graph of the function g deˇned by

g(x) = f (b)− f (a)

b − a
(x − a)+ f (a).

This line lies above the graph of f at x if g(x) > f (x), that is, if

f (b)− f (a)

b − a
(x − a)+ f (a) > f (x)

or
f (b)− f (a)

b − a
(x − a) > f (x)− f (a)

or
FI G U R E 1 f (b)− f (a)

b − a
>
f (x)− f (a)

x − a
.

We therefore have an equivalent deˇnition of convexity.

DEFINITION 2 A function f is convex on an interval if for a, x, and b in the interval with
a < x < b we have

f (x)− f (a)

x − a
<
f (b)− f (a)

b − a
.
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If the word \over" in Deˇnition 1 is replaced by \under" or, equivalently, if the
inequality in Deˇnition 2 is replaced by

f (x)− f (a)

x − a
>
f (b)− f (a)

b − a
,

we obtain the deˇnition of a concave function (Figure 2). It is not hard to see that
the concave functions are precisely the ones of the form −f , where f is convex.
For this reason, the next three theorems about convex functions have immediate
corollaries about concave functions, so simple that we will not even bother to
state them.FI G U R E 2

Figure 3 shows some tangent lines of a convex function. Two things seem to be
true:

(1) The graph of f lies above the tangent line at (a, f (a)) except at the point
(a, f (a)) itself (this point is called the point of contact of the tangent line).

(2) If a < b, then the slope of the tangent line at (a, f (a)) is less than the slope
of the tangent line at (b, f (b)); that is, f ′ is increasing.

As a matter of fact these observations are true, and the proofs are not difˇcult.

F I G U R E 3

THEOREM 1 Let f be convex. If f is differentiable at a, then the graph of f lies above
the tangent line through (a, f (a)), except at (a, f (a)) itself. If a < b and f is
differentiable at a and b, then f ′(a) < f ′(b).

PROOF If 0 < h1 < h2, then as Figure 4 indicates,

(1)
f (a + h1)− f (a)

h1
<
f (a + h2)− f (a)

h2
.

A nonpictorial proof can be derived immediately from Deˇnition 2 applied to
a < a + h1 < a + h2. Inequality (1) shows that the values of

f (a + h)− f (a)

h
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F I G U R E 4

decrease as h → 0+. Consequently,

f ′(a) <
f (a + h)− f (a)

h
for h > 0

(in fact f ′(a) is the greatest lower bound of all these numbers). But this means that
for h > 0 the secant line through (a, f (a)) and (a + h, f (a + h)) has larger slope
than the tangent line, which implies that (a + h, f (a + h)) lies above the tangent
line (an analytic translation of this argument is easily supplied).

For negative h there is a similar situation (Figure 5): if h2 < h1 < 0, then

f (a + h1)− f (a)

h1
>
f (a + h2)− f (a)

h2
.

This shows that the slope of the tangent line is greater than

f (a + h)− f (a)

h
for h < 0

(in fact f ′(a) is the least upper bound of all these numbers), so that f (a + h) lies
above the tangent line if h < 0. This proves the ˇrst part of the theorem.

FI G U R E 5
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F I G U R E 6

Now suppose that a < b. Then, as we have already seen (Figure 6),

f ′(a) <
f (a + (b − a))− f (a)

b − a
since b − a > 0

= f (b)− f (a)

b − a

and

f ′(b) >
f (b + (a − b))− f (b)

a − b
since a − b < 0

= f (a)− f (b)

a − b
= f (b)− f (a)

b − a
.

Combining these inequalities, we obtain f ′(a) < f ′(b).

Theorem 1 has two converses. Here the proofs will be a little more difˇcult.F I G U R E 7

We begin with a lemma that plays the same role in the next theorem that Rolle's
Theorem plays in the proof of the Mean Value Theorem. It states that if f ′

is increasing, then the graph of f lies below any secant line which happens to be

horizontal.

LEMMA Suppose f is differentiable and f ′ is increasing. If a < b and f (a) = f (b), then
f (x) < f (a) = f (b) for a < x < b.

PROOF Suppose ˇrst that f (x) > f (a) = f (b) for some x in (a, b). Then the maximum
of f on [a, b] occurs at some point x0 in (a, b) with f (x0) > f (a) and, of course,
f ′(x0) = 0 (Figure 7). On the other hand, applying the Mean Value Theorem to
the interval [a, x0], we ˇnd that there is x1 with a < x1 < x0 and

f ′(x1) = f (x0)− f (a)

x0 − a
> 0,
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contradicting the fact that f ′ is increasing. This proves that f (x) ≤ f (a) = f (b)

for a < x < b, and it only remains to prove that f (x) = f (a) is also impossible
for x in (a, b).

Suppose f (x) = f (a) for some x in (a, b). We know that f is not constant on
[a, x] (if it were, f ′ would not be increasing on [a, x]) so there is (Figure 8) some
x1 with a < x1 < x and f (x1) < f (a). Applying the Mean Value Theorem to
[x1, x] we conclude that there is x2 with x1 < x2 < x and

FI G U R E 8 f ′(x2) = f (x)− f (x1)

x − x1
> 0.

On the other hand, f ′(x) = 0, since a local maximum occurs at x. Again this
contradicts the hypothesis that f ′ is increasing.

We now attack the general case by the same sort of algebraic machinations that
we used in the proof of the Mean Value Theorem.

THEOREM 2 If f is differentiable and f ′ is increasing, then f is convex.

PROOF Let a < b. Deˇne g by

g(x) = f (x)− f (b)− f (a)

b − a
(x − a).

It is easy to see that g′ is also increasing; moreover, g(a) = g(b) = f (a). Applying
the lemma to g we conclude that

g(x) < f (a) if a < x < b.

In other words, if a < x < b, then

f (x)− f (b)− f (a)

b − a
(x − a) < f (a)

or

FI G U R E 9

f (x)− f (a)

x − a
<
f (b)− f (a)

b − a
.

Hence f is convex.

THEOREM 3 If f is differentiable and the graph of f lies above each tangent line except at the
point of contact, then f is convex.

PROOF Let a < b. It is clear from Figure 9 that if (b, f (b)) lies above the tangent line at
(a, f (a)), and (a, f (a)) lies above the tangent line at (b, f (b)), then the slope of
the tangent line at (b, f (b)) must be larger than the slope of the tangent line at
(a, f (a)). The following argument just says this with equations.

Since the tangent line at (a, f (a)) is the graph of the function

g(x) = f ′(a)(x − a)+ f (a),
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and since (b, f (b)) lies above the tangent line, we have

(1) f (b) > f ′(a)(b− a)+ f (a).

Similarly, since the tangent line at (b, f (b)) is the graph of

h(x) = f ′(b)(x − b)+ f (b),

and (a, f (a)) lies above the tangent line at (b, f (b)), we have

(2) f (a) > f ′(b)(a − b)+ f (b).

It follows from (1) and (2) that f ′(a) < f ′(b).
It now follows from Theorem 2 that f is convex.

If a function f has a reasonable second derivative, the information given in these
theorems can be used to discover the regions in which f is convex or concave.
Consider, for example, the function

f (x) = 1
1 + x2 .

For this function,

f ′(x) = −2x
(1 + x2)2

.

Thus f ′(x) = 0 only for x = 0, and f (0) = 1, while

f ′(x) > 0 if x < 0,
f ′(x) < 0 if x > 0.

Moreover,

f (x) > 0 for all x,
f (x)→ 0 as x → ∞ or −∞,
f is even.

FI G U R E 1 0

The graph of f therefore looks something like Figure 10. We now compute
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f ′′(x) = (1 + x2)2(−2)+ 2x · [2(1 + x2) · 2x]
(1 + x2)4

= 2(3x2 − 1)
(1 + x2)3

.

It is not hard to determine the sign of f ′′(x). Note ˇrst that f ′′(x) = 0 only when
x =

√
1/3 or −

√
1/3. Since f ′′ is clearly continuous, it must keep the same sign

on each of the sets

(−∞,−
√

1/3 ),

(−
√

1/3,
√

1/3 ),

(
√

1/3,∞).

Since we easily compute, for example, that

f ′′(−1) = 1
2 > 0,

f ′′(0) = −2 < 0,
f ′′(1) = 1

2 > 0,

we conclude that

f ′′ > 0 on (−∞,−
√

1/3 ) and (
√

1/3,∞),

f ′′ < 0 on (−
√

1/3,
√

1/3 ).

Since f ′′ > 0 means f ′ is increasing, it follows from Theorem 2 that f is convex on
(−∞,−

√
1/3 ) and (

√
1/3,∞), while on (−

√
1/3,

√
1/3 ) f is concave (Figure 11).

F I G U R E 1 1

Notice that at (
√

1/3, 3
4 ) the tangent line lies below the part of the graph to the

right, since f is convex on (
√

1/3,∞), and above the part of the graph to the left,
since f is concave on (−

√
1/3,

√
1/3 ); thus the tangent line crosses the graph. In

general, a number a is called an inflection point of f if the tangent line to the
graph of f at (a, f (a)) crosses the graph; thus

√
1/3 and −

√
1/3 are in�ection

points of f (x) = 1/(1 + x2). Note that the condition f ′′(a) = 0 does not ensure
that a is an in�ection point of f ; for example, if f (x) = x4, then f ′′(0) = 0, but
f is convex, so the tangent line at (0, 0) certainly doesn't cross the graph of f . In
order for a to be an in�ection point of a function f , it is necessary that f ′′ should
have different signs to the left and right of a.
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This example illustrates the procedure which may be used to analyze any func-
tion f . After the graph has been sketched, using the information provided by f ′,
the zeros of f ′′ are computed and the sign of f ′′ is determined on the intervals
between consecutive zeros. On intervals where f ′′ > 0 the function is convex;
on intervals where f ′′ < 0 the function is concave. Knowledge of the regions of
convexity and concavity of f can often prevent absurd misinterpretation of other
data about f . Several functions, which can be analyzed in this way, are given in
the problems, which also contain some theoretical questions.

To round out our discussion of convexity and concavity, we will prove one further
result that you may already have begun to suspect. We have seen that convex and
concave functions have the property that every tangent line intersects the graph
just once; a few drawings will probably convince you that no other functions have
this property. The proof of this assertion is rather tricky; it is closely related to the
proof of Theorem 2 of the next chapter, and is probably best deferred until after
that proof has been read.

THEOREM 4 If f is differentiable on an interval and intersects each of its tangent lines just
once, then f is either convex or concave on that interval.

PROOF There are two parts to the proof.
(1) First we claim that no straight line can intersect the graph of f in three different
points. Suppose, on the contrary, that some straight line did intersect the graph
of f at (a, f (a)), (b, f (b)) and (c, f (c)), with a < b < c (Figure 12). Then we
would have

(1)
f (b)− f (a)

b − a
= f (c)− f (a)

c − a
.

Consider the function

g(x) = f (x)− f (a)

x − a
for x in [b, c].

Equation (1) says that g(b) = g(c). So by Rolle's Theorem, there is some number x
in (b, c) where 0 = g′(x), and thusFI G U R E 1 2

0 = (x − a)f ′(x)− [f (x)− f (a)]

or

f ′(x) = f (x)− f (a)

x − a
.

But this says (Figure 13) that the tangent line at (x, f (x)) passes through (a, f (a)),
contradicting the hypotheses.

(2) Suppose that a0 < b0 < c0 and a1 < b1 < c1 are points in the interval. Let

FI G U R E 1 3

xt = (1 − t)a0 + ta1
yt = (1 − t)b0 + tb1
zt = (1 − t)c0 + tc1

0 ≤ t ≤ 1.
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Then x0 = a0 and x1 = a1 and (Problem 4-2) the points xt all lie between a0
and a1, with analogous statements for yt and zt . Moreover,

xt < yt < zt for 0 ≤ t ≤ 1.

Now consider the function

g(t) = f (yt )− f (xt )

yt − xt
− f (zt )− f (xt )

zt − xt
for 0 ≤ t ≤ 1.

By step (1), g(t) �= 0 for all t in [0, 1]. So either g(t) > 0 for all t in [0,1] or
g(t) < 0 for all t in [0, 1]. Thus, either f is convex or f is concave (compare
pages 231{232).

PROBLEMS

1. Sketch, indicating regions of convexity and concavity and points of in�ection,
the functions in Problem 11-1 (consider (iv) as double starred).

2. Figure 30 in Chapter 11 shows the graph of f ′. Sketch the graph of f .

3. Find two convex functions f and g such that f (x) = g(x) if and only if x is
an integer.

4. Show that f is convex on an interval if and only if for all x and y in the
interval we have

f (tx + (1 − t)y) < tf (x)+ (1 − t)f (y), for 0 < t < 1.

(This is just a restatement of the deˇnition, but a useful one.)

5. (a) Prove that if f and g are convex and f is increasing, then f �g is convex.
(It will be easiest to use Problem 4.)

(b) Give an example where g � f is not convex.
(c) Suppose that f and g are twice differentiable. Give another proof of the

result of part (a) by considering second derivatives.

6. (a) Suppose that f is differentiable and convex on an interval. Show that
either f is increasing, or else f is decreasing, or else there is a number c
such that f is decreasing to the left of c and increasing to the right of c.

(b) Use this fact to give another proof of the result in Problem 5(a) when f
and g are (one-time) differentiable. (You will have to be a little careful
when comparing f ′(g(x)) and f ′(g(y)) for x < y.)

(c) Prove the result in part (a) without assuming f differentiable. You will
have to keep track of several different cases, but no particularly clever
ideas are needed. Begin by showing that if a < b and f (a) < f (b), then
f is increasing to the right of b; and if f (a) > f (b), then f is decreasing
to the left of a.

*7. Let f be a twice-differentiable function with the following properties:
f (x) > 0 for x ≥ 0, and f is decreasing, and f ′(0) = 0. Prove that
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f ′′(x) = 0 for some x > 0 (so that in reasonable cases f will have an in�ec-
tion point at x|an example is given by f (x) = 1/(1+x2)). Every hypothesis
in this theorem is essential, as shown by f (x) = 1 − x2, which is not positive
for all x; by f (x) = x2, which is not decreasing; and by f (x) = 1/(x + 1),
which does not satisfy f ′(0) = 0. Hint: Choose x0 > 0 with f ′(x0) < 0. We
cannot have f ′(y) ≤ f ′(x0) for all y > x0. Why not? So f ′(x1) > f ′(x0) for
some x1 > x0. Consider f ′ on [0, x1].

*8. (a) Prove that if f is convex, then f ([x + y]/2) < [f (x)+ f (y)]/2.
(b) Suppose that f satisˇes this condition. Show that f (kx + (1 − k)y) <

kf (x)+ (1 − k)f (y) whenever k is a rational number, between 0 and 1,
of the form m/2n. Hint: Part (a) is the special case n = 1. Use induction,
employing part (a) at each step.

(c) Suppose that f satisˇes the condition in part (a) and f is continuous.
Show that f is convex.

*9. Let p1, . . . , pn by positive numbers with
n∑
i=1

pi = 1.

(a) For any numbers x1, . . . , xn show that
n∑
i=1

pixi lies between the smallest

and the largest xi .

(b) Show the same for (1/t)
n−1∑
i=1

pixi , where t =
n−1∑
i=1

pi .

(c) Prove Jensen’s inequality: If f is convex, then f
( n∑
i=1

pixi

)
≤

n∑
i=1

pif (xi).

Hint: Use Problem 4, noting that pn = 1− t . (Part (b) is needed to show

that (1/t)
n−1∑
i=1

pixi is in the domain of f if x1, . . . , xn are.)

*10. (a) For any function f , the right-hand derivative, lim
h→0+

[f (a+ h)− f (a)]/h,

is denoted by f+′(a), and the left-hand derivative is denoted by f−′(a).
The proof of Theorem 1 actually shows that f+′ and f−′ always exist if
f is convex. Check this assertion, and also show that f+′ and f−′ are
increasing, and that f−′(a) ≤ f+′(a).

**(b) Show that if f is convex, then f+′(a) = f−′(a) if and only if f+′ is con-
tinuous at a. (Thus f is differentiable precisely when f+′ is continuous.)
Hint: [f (b)− f (a)]/(b − a) is close to f−′(a) for b < a close to a, and
f+′(b) is less than this quotient.

*11. (a) Prove that a convex function on R, or on any open interval, must be
continuous.

(b) Give an example of a convex function on a closed interval that is not

continuous, and explain exactly what kinds of discontinuities are possible.



226 Derivatives and Integrals

12. Call a function f weakly convex on an interval if for a < b < c in this interval
we have

f (x)− f (a)

x − a
≤ f (b)− f (a)

b − a
.

(a) Show that a weakly convex function is convex if and only if its graph
contains no straight line segments. (Sometimes a weakly convex function
is simply called \convex," while convex functions in our sense are called
\strictly convex".)

(b) Reformulate the theorems of this section for weakly convex functions.

13. A set A of points in the plane is called convex if A contains the line segment
joining any two points in it (Figure 14). For a function f , let Af be the set
of points (x, y) with y ≥ f (x), so that Af is the set of points on or above
the graph of f . Show that A is convex if and only if f is weakly convex,
in the terminology of the previous problem. Further information on convex
sets will be found in reference [19] of the Suggested Reading.

FI G U R E 1 4



CHAPTER 1 2 INVERSE FUNCTIONS

We now have at our disposal quite powerful methods for investigating functions;
what we lack is an adequate supply of functions to which these methods may
be applied. We have studied various ways of forming new functions from old|
addition, multiplication, division, and composition|but using these alone, we can
produce only the rational functions (even the sine function, although frequently
used for examples, has never been deˇned). In the next few chapters we will
begin to construct new functions in quite sophisticated ways, but there is one
important method which will practically double the usefulness of any other method
we discover.

If we recall that a function is a collection of pairs of numbers, we might hit upon
the bright idea of simply reversing all the pairs. Thus from the function

f = { (1,2), (3,4), (5,9), (13, 8) },
we obtain

g = { (2,1), (4,3), (9,5), (8,13) }.
While f (1) = 2 and f (3) = 4, we have g(2) = 1 and g(4) = 3.

Unfortunately, this bright idea does not always work. If

f = { (1,2), (3,4), (5,9), (13, 4) },
then the collection

{ (2,1), (4,3), (9,5), (4, 13) }
is not a function at all, since it contains both (4, 3) and (4, 13). It is clear where
the trouble lies: f (3) = f (13), even though 3 �= 13. This is the only sort of thing
that can go wrong, and it is worthwhile giving a name to the functions for which
this does not happen.

DEFINITION A function f is one-one (read \one-to-one") if f (a) �= f (b) whenever a �= b.

The identity function I is obviously one-one, and so is the following modiˇca-
tion:

g(x) =


x, x �= 3,5
3, x = 5
5, x = 3.

The function f (x) = x2 is not one-one, since f (−1) = f (1), but if we deˇne

g(x) = x2, x ≥ 0

227
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(and leave g undeˇned for x < 0), then g is one-one, because g is increasing (since
g′(x) = 2x > 0, for x > 0). This observation is easily generalized: If n is a natural
number and

f (x) = xn, x ≥ 0,

then f is one-one. If n is odd, one can do better: the function

f (x) = xn for all x

is one-one (since f ′(x) = nxn−1 > 0, for all x �= 0).
It is particularly easy to decide from the graph of f whether f is one-one: the

condition f (a) �= f (b) for a �= b means that no horizontal line intersects the graph
of f twice (Figure 1).

F I G U R E 1

If we reverse all the pairs in (a not necessarily one-one function) f we obtain, in
any case, some collection of pairs. It is popular to abstain from this procedure un-
less f is one-one, but there is no particular reason to do so|instead of a deˇnition
with restrictive conditions we obtain a deˇnition and a theorem.

DEFINITION For any function f , the inverse of f , denoted by f −1, is the set of all pairs
(a, b) for which the pair (b, a) is in f .

THEOREM 1 f −1 is a function if and only if f is one-one.

PROOF Suppose ˇrst that f is one-one. Let (a, b) and (a, c) be two pairs in f −1. Then
(b, a) and (c, a) are in f , so a = f (b) and a = f (c); since f is one-one this
implies that b = c. Thus f −1 is a function.

Conversely, suppose that f−1 is a function. If f (b) = f (c), then f contains
the pairs (b, f (b)) and (c, f (c)) = (c, f (b)), so (f (b), b) and (f (b), c) are in f −1.
Since f −1 is a function this implies that b = c. Thus f is one-one.
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The graphs of f and f −1 are so closely related that it is possible to use the
graph of f to visualize the graph of f−1. Since the graph of f −1 consists of all
pairs (a, b) with (b, a) in the graph of f , one obtains the graph of f−1 from the
graph of f by interchanging the horizontal and vertical axes. If f has the graph
shown in Figure 2(a),
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This procedure is awkward with books and impossible with blackboards, so it is
fortunate that there is another way of constructing the graph of f−1. The points
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(a, b) and (b, a) are re�ections of each other through the graph of I (x) = x,
which is called the diagonal (Figure 4). To obtain the graph of f−1 we merely
re�ect the graph of f through this line (Figure 5).

F I G U R E 4 FI G U R E 5

Re�ecting through the diagonal twice will clearly leave us right back where we
started; this means that (f−1)−1 = f , which is also clear from the deˇnition. In
conjunction with Theorem 1, this equation has a signiˇcant consequence: if f
is a one-one function, then the function f−1 is also one-one (since (f−1)−1 is a
function).

There are a few other simple manipulations with inverse functions of which you
should be aware. Since (a, b) is in f precisely when (b, a) is in f −1, it follows that

b = f (a) means the same as a = f−1(b).

Thus f−1(b) is the (unique) number a such that f (a) = b; for example, if f (x) =
x3, then f −1(b) is the unique number a such that a3 = b, and this number is, by
deˇnition, 3

√
b.

The fact that f −1(x) is the number y such that f (y) = x can be restated in a
much more compact form:

f (f−1(x)) = x, for all x in the domain of f −1.

Moreover,

f−1(f (x)) = x, for all x in the domain of f ;

this follows from the previous equation upon replacing f by f−1. These two
important equations can be written

f � f−1 = I,

f−1 � f = I

(except that the right side will have a bigger domain if the domain of f or f −1 is
not all of R).
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Since many standard functions will be deˇned as the inverses of other functions,
it is quite important that we be able to tell which functions are one-one. We have
already hinted which class of functions are most easily dealt with|increasing and
decreasing functions are obviously one-one. Moreover, if f is increasing, then f−1

is also increasing, and if f is decreasing, then f −1 is decreasing (the proof is left
to you). In addition, f is increasing if and only if −f is decreasing, a very useful
fact to remember.

It is certainly not true that every one-one function is either increasing or decreas-
ing. One example has already been mentioned, and is now graphed in Figure 6:

FI G U R E 6
g(x) =



x, x �= 3,5
3, x = 5
5, x = 3.

Figure 7 shows that there are even continuous one-one functions which are neither
increasing nor decreasing. But if you try drawing a few pictures you will soon agree
that every one-one continuous function deˇned on an interval is either increasing
or decreasing. It's possible to give a straightforward, but cumbersome, proof of this
fact that involves keeping track of a lot of cases (very much like Problem 6(c) in
the previous Appendix). The following proof dispenses with all these unpleasant
details, although it is rather tricky.

THEOREM 2 If f is continuous and one-one of an interval, then f is either increasing or de-
creasing on that interval.

PROOF Let a0 < b0 be two numbers in the interval. Since f is one-one, we know that

either (i) f (b0)− f (a0) > 0
or (ii) f (b0)− f (a0) < 0.

We will assume that (i) is true, and show that the same inequality holds for any
a1 < b1 in the interval, so that f in increasing. (A similar argument shows that if
(ii) is true, then f is decreasing.)

Let
xt = (1 − t)a0 + ta1
yt = (1 − t)b0 + tb1

for 0 ≤ t ≤ 1.

Then x0 = a0 and x1 = a1 and the points xt all lie between a0 and a1 (Problem 4-2).
An analogous statement holds for yt . So xt and yt are all in the domain of f .
Moreover, since a0 < b0 and a1 < b1, we also haveFI G U R E 7

xt < yt for 0 ≤ t ≤ 1.

Now consider the function

g(t) = f (yt )− f (xt ) for 0 ≤ t ≤ 1.

Using Theorem 6-2, it is easy to see that g is continuous on [0,1]. Moreover, g(t)
is never 0, since xt < yt and f is one-one. Consequently, g(t) is either positive for
all t in [0,1] or negative for all t in [0, 1] (otherwise, by the Intermediate Value
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Theorem it would also by 0 somewhere in [0, 1]). But g(0) > 0 by (i). So also
g(1) > 0, which means that (i) also holds for a1, b1.

Henceforth we shall be concerned almost exclusively with continuous increasing
or decreasing functions which are deˇned on an interval. If f is such a function,
it is possible to say quite precisely what the domain of f−1 will be like.

Suppose ˇrst that f is a continuous increasing function on the closed interval
[a, b]. Then, by the Intermediate Value Theorem, f takes on every value between
f (a) and f (b). Therefore, the domain of f −1 is the closed interval [f (a), f (b)].F I G U R E 8

Similarly, if f is continuous and decreasing on [a, b], then the domain of f −1 is
[f (b), f (a)].

If f is a continuous increasing function on an open interval (a, b) the analysis
becomes a bit more difˇcult. To begin with, let us choose some point c in (a, b).
We will ˇrst decide which values > f (c) are taken on by f . One possibility is that
f takes on arbitrarily large values (Figure 8). In this case f takes on all values
> f (c), by the Intermediate Value Theorem. If, on the other hand, f does not
take on arbitrarily large values, then A = { f (x) : c ≤ x < b } is bounded above,
so A has a least upper bound α (Figure 9). Now suppose y is any number with
f (c) < y < α. Then f takes on some value f (x) > y (because α is the least
upper bound of A). By the Intermediate Value Theorem, f actually takes onFI G U R E 9
the value y. Notice that f cannot take on the value α itself; for if α = f (x) for
a < x < b and we choose t with x < t < b, then f (t) > α, which is impossible.

Precisely the same arguments work for values less than f (c): either f takes on
all values less than f (c) or there is a number β < f (c) such that f takes on all
values between β and f (c), but not β itself.

This entire argument can be repeated if f is decreasing, and if the domain of f
is R or (a,∞) or (−∞, a). Summarizing: if f is a continuous increasing, or
decreasing, function whose domain is an interval having one of the forms

(a, b), (−∞, b), (a,∞), or R,

then the domain of f −1 is also an interval which has one of these four forms.
Now that we have completed this preliminary analysis of continuous one-one

functions, it is possible to begin asking which important properties of a one-one
function are inherited by its inverse. For continuity there is no problem.

THEOREM 3 If f is continuous and one-one on an interval, then f−1 is also continuous.

PROOF We know by Theorem 2 that f is either increasing or decreasing. We might as
well assume that f is increasing, since we can then take care of the other case by
applying the usual trick of considering −f .

We must show that
lim
x→b

f−1(x) = f −1(b)



12. Inverse Functions 233

for each b in the domain of f−1. Such a number b is of the form f (a) for some a
in the domain of f . For any ε > 0, we want to ˇnd a δ > 0 such that, for all x,

if f (a)− δ < x < f (a)+ δ, then a − ε < f−1(x) < a + ε.

Figure 10 suggests the way of ˇnding δ (remember that by looking sideways you
see the graph of f−1): since

a − ε < a < a + ε,

it follows that
f (a − ε) < f (a) < f (a + ε);

we let δ be the smaller of f (a+ε)−f (a) and f (a)−f (a−ε). Figure 10 contains
the entire proof that this δ works, and what follows is simply a verbal account of
the information contained in this picture.

Our choice of δ ensures that

f (a − ε) ≤ f (a)− δ and f (a)+ δ ≤ f (a + ε).

Consequently, if
f (a)− δ < x < f (a)+ δ,

thenFI G U R E 1 0

f (a − ε) < x < f (a + ε).

Since f is increasing, f−1 is also increasing, and we obtain

f −1(f (a − ε)) < f −1(x) < f −1(f (a + ε)),

i.e.,
a − ε < f −1(x) < a + ε,

which is precisely what we want.

Having successfully investigated continuity of f−1, it is only reasonable to tackle
differentiability. Again, a picture indicates just what result ought to be true. Fig-
ure 11 shows the graph of a one-one function f with a tangent line L through
(a, f (a)). If this entire picture is re�ected through the diagonal, it shows the graph
of f−1 and the tangent line L′ through (f (a), a). The slope of L′ is the reciprocal
of the slope of L. In other words, it appears that

(f −1)′(f (a)) = 1
f ′(a)

.

This formula can equally well be written in a way which expresses (f−1)′(b) di-
rectly, for each b in the domain of f −1:F I G U R E 1 1

(f −1)′(b) = 1
f ′(f−1(b))

.

Unlike the argument for continuity, this pictorial \proof " becomes somewhat
involved when formulated analytically. There is another approach which might
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be tried. Since we know that

f (f−1(x)) = x,

it is tempting to prove the desired formula by applying the Chain Rule:

f ′(f −1(x)) · (f−1)′(x) = 1,

so

(f−1)′(x) = 1
f ′(f−1(x))

.

Unfortunately, this is not a proof that f −1 is differentiable, since the Chain Rule
cannot be applied unless f −1 is already known to be differentiable. But this argu-
ment does show what (f−1)′(x) will have to be if f−1 is differentiable, and it can
also be used to obtain some important preliminary information.

THEOREM 4 If f is a continuous one-one function deˇned on an interval and f ′(f−1(a)) = 0,
then f −1 is not differentiable at a.

PROOF We have
f (f −1(x)) = x.

If f −1 were differentiable at a, the Chain Rule would imply that

f ′(f−1(a)) · (f−1)′(a) = 1,

hence
0 · (f−1)′(a) = 1,

which is absurd.

A simple example to which Theorem 4 applies is the function f (x) = x3. Since
f ′(0) = 0 and 0 = f −1(0), the function f −1 is not differentiable at 0 (Figure 12).

Having decided where an inverse function cannot be differentiable, we are now
ready for the rigorous proof that in all other cases the derivative is given by the
formula which we have already \derived" in two different ways. Notice that theFI G U R E 1 2

following argument uses continuity of f −1, which we have already proved.

THEOREM 5 Let f be a continuous one-one function deˇned on an interval, and suppose that
f is differentiable at f −1(b), with derivative f ′(f −1(b)) �= 0. Then f−1 is differ-
entiable at b, and

(f −1)′(b) = 1
f ′(f−1(b))

.

PROOF Let b = f (a). Then

lim
h→0

f−1(b + h)− f −1(b)

h

= lim
h→0

f −1(b + h)− a

h
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Now every number b + h in the domain of f −1 can be written in the form

b + h = f (a + k)

for a unique k (we should really write k(h), but we will stick with k for simplicity).
Then

lim
h→0

f −1(b + h)− a

h

= lim
h→0

f −1(f (a + k))− a

f (a + k)− b

= lim
h→0

k

f (a + k)− f (a)
.

We are clearly on the right track! It is not hard to get an explicit expression for k;
since

b + h = f (a + k)

we have

f −1(b + h) = a + k

or

k = f−1(b + h)− f−1(b).

Now by Theorem 3, the function f−1 is continuous at b. This means that k
approaches 0 as h approaches 0. Since

lim
k→0

f (a + k)− f (a)

k
= f ′(a) = f ′(f −1(b)) �= 0,

this implies that

(f−1)′(b) = 1
f ′(f −1(b))

.

The work we have done on inverse functions will be amply repaid later, but here
is an immediate dividend. For n odd, let

fn(x) = xn for all x;

for n even, let

fn(x) = xn, x ≥ 0.

Then fn is a continuous one-one function, whose inverse function is

gn(x) = n
√
x = x1/n.
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By Theorem 5 we have, for x �= 0,

gn
′(x) = 1

fn ′(fn−1(x))

= 1
n(fn−1(x))n−1

= 1
n(x1/n)n−1

= 1
n

· 1
x1−(1/n)

= 1
n

· x(1/n)−1.

Thus, if f (x) = xa, and a is an integer or the reciprocal of a natural number, then
f ′(x) = axa−1. It is now easy to check that this formula is true if a is any rational
number: Let a = m/n, where m is an integer, and n is a natural number; if

f (x) = xm/n = (x1/n)m,
then, by the Chain Rule,

f ′(x) = m
(
x1/n)m−1 · 1

n
· x(1/n)−1

= m

n
· x[(m/n)−(1/n)]+[(1/n)−1]

= m

n
x(m/n)−1.

Although we now have a formula for f ′(x) when f (x) = xa and a is rational,
the treatment of the function f (x) = xa for irrational a will have to be saved
for later|at the moment we do not even know the meaning of a symbol like x

√
2.

Actually, inverse functions will be involved crucially in the deˇnition of xa for
irrational a. Indeed, in the next few chapters several important functions will be
deˇned in terms of their inverse functions.

PROBLEMS

1. Find f −1 for each of the following f .

(i) f (x) = x3 + 1.
(ii) f (x) = (x − 1)3.

(iii) f (x) =
{
x, x rational
−x, x irrational.

(iv) f (x) =
{

−x2 x ≥ 0
1 − x3, x < 0.

(v) f (x) =


x, x �= a1, . . . , an
ai+1 x = ai, i = 1, . . . , n− 1
a1, x = an.

(vi) f (x) = x + [x].



12. Inverse Functions 237

(vii) f (0.a1a2a3 . . . ) = 0.a2a1a3 . . . . (Decimal representation is being used.)

(viii) f (x) = x

1 − x2 , −1 < x < 1.

2. Describe the graph of f −1 when

(i) f is increasing and always positive.
(ii) f is increasing and always negative.
(iii) f is decreasing and always positive.
(iv) f is decreasing and always negative.

3. Prove that if f is increasing, then so is f−1, and similarly for decreasing
functions.

4. If f and g are increasing, is f + g? Or f · g? Or f � g?

5. (a) Prove that if f and g are one-one, then f � g is also one-one. Find
(f � g)−1 in terms of f−1 and g−1. Hint: The answer is not f−1 � g−1.

(b) Find g−1 in terms of f −1 if g(x) = 1 + f (x).

6. Show that f (x) = ax + b

cx + d
is one-one if and only if ad − bc �= 0, and ˇnd

f−1 in this case.

7. On which intervals [a, b] will the following functions be one-one?

(i) f (x) = x3 − 3x2.
(ii) f (x) = x5 + x.
(iii) f (x) = (1 + x2)−1.

(iv) f (x) = x + 1
x2 + 1

.

8. Suppose that f is differentiable with derivative f ′(x) = (1 + x3)−1/2. Show
that g = f−1 satisˇes g′′(x) = 3

2g(x)
2.

9. Suppose that f is a one-one function and that f −1 has a derivative which is
nowhere 0. Prove that f is differentiable. Hint: There is a one-step proof.

10. The Schwarzian derivative Df was deˇned in Problem 10-17.

(a) Prove that if Df (x) exists for all x, then Df −1(x) also exists for all x in
the domain of f−1.

(b) Find a formula for Df−1(x).

*11. (a) Prove that there is a differentiable function f such that [f (x)]5 +f (x)+
x = 0 for all x. Hint: Show that f can be expressed as an inverse
function. The easiest way to do this is to ˇnd f −1. And the easiest way
to do this is to set x = f −1(y).

(b) Find f ′ in terms of f , using an appropriate theorem of this chapter.
(c) Find f ′ in another way, by simply differentiating the equation deˇning f .
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The function in Problem 11 is often said to be defined implicitly by the
equation y5+y+x = 0. The situation for this equation is quite special, however. As
the next problem shows, an equation does not usually deˇne a function implicitly
on the whole line, and in some regions more than one function may be deˇned
implicitly.

12. (a) What are the two differentiable functions f which are deˇned implicitly
on (−1,1) by the equation x2+y2 = 1, i.e., which satisfy x2+[f (x)]2 = 1
for all x in (−1,1)? Notice that there are no solutions deˇned outside
[−1,1].

(b) Which functions f satisfy x2 + [f (x)]2 = −1?
*(c) Which differentiable functions f satisfy [f (x)]3 − 3f (x) = x? Hint: It

will help to ˇrst draw the graph of the function g(x) = x3 − 3x.

In general, determining on what intervals a differentiable function is deˇned im-
plicitly by a particular equation may be a delicate affair, and is best discussed in the
context of advanced calculus. If we assume that f is such a differentiable solution,
however, then a formula for f ′(x) can be derived, exactly as in Problem 11(c), by
differentiating both sides of the equation deˇning f (a process known as \implicit
differentiation"):

13. (a) Apply this method to the equation [f (x)]2 + x2 = 1. Notice that your
answer will involve f (x); this is only to be expected, since there is more
than one function deˇned implicitly by the equation y2 + x2 = 1.

(b) But check that your answer works for both of the functions f found in
Problem 12(a).

(c) Apply this same method to [f (x)]3 − 3f (x) = x.

14. (a) Use implicit differentiation to ˇnd f ′(x) and f ′′(x) for the functions f
deˇned implicitly by the equation x3 + y3 = 7.

(b) One of these functions f satisˇes f (−1) = 2. Find f ′(−1) and f ′′(−1)
for this f .

15. The collection of all points (x, y) such that 3x3 + 4x2y − xy2 + 2y3 = 4
forms a certain curve in the plane. Find the equation of the tangent line to
this curve at the point (−1,1).

16. Leibnizian notation is particularly convenient for implicit differentiation. Be-
cause y is so consistently used as an abbreviation for f (x), the equation in x
and y which deˇnes f implicitly will automatically stand for the equation
which f is supposed to satisfy. How would the following computation be
written in our notation?

y4 + y3 + xy = 1,

4y3 dy

dx
+ 3y2dy

dx
+ y + x

dy

dx
= 0,

dy

dx
= −y

4y3 + 3y2 + x
.
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17. As long as Leibnizian notation has entered the picture, the Leibnizian no-
tation for derivatives of inverse functions should be mentioned. If dy/dx
denotes the derivative of f , then the derivative of f −1 is denoted by dx/dy.
Write out Theorem 5 in this notation. The resulting equation will show you
another reason why Leibnizian notation has such a large following. It will
also explain at which point (f −1)′ is to be calculated when using the dx/dy
notation. What is the signiˇcance of the following computation?

x = yn,

y = x1/n,

dx1/n

dx
= dy

dx
= 1

dx

dy

= 1
nyn−1 .

18. Suppose that f is a differentiable one-one function with a nowhere zero
derivative and that f = F ′. Let G(x) = xf −1(x)− F(f −1(x)). Prove that
G′(x) = f−1(x). (Disregarding details, this problem tells us a very interesting
fact: if we know a function whose derivative is f , then we also know one
whose derivative is f−1. But how could anyone ever guess the function G?
Two different ways are outlined in Problems 14-17 and 19-15.)

19. Suppose h is a function such that h′(x) = sin2(sin(x + 1)) and h(0) = 3.
Find

(i) (h−1)′(3).
(ii) (β−1)′(3), where β(x) = h(x + 1).

20. Find a formula for (f−1)′′(x).

*21. Prove that if f (k)(f −1(x)) exists, and is nonzero, then (f −1)(k)(x) exists.

22. (a) Prove that an increasing and a decreasing function intersect at most once.
(b) Find two continuous increasing functions f and g such that f (x) = g(x)

precisely when x is an integer.
(c) Find a continuous increasing function f and a continuous decreasing

function g, deˇned on R, which do not intersect at all.

*23. (a) If f is a continuous function on R and f = f −1, prove that there is at
least one x such that f (x) = x. (What does the condition f = f−1 mean
geometrically?)

(b) Give several examples of continuous f such that f = f−1 and f (x) = x

for exactly one x. Hint: Try decreasing f , and remember the geometric
interpretation. One possibility is f (x) = −x.

(c) Prove that if f is an increasing function such that f = f −1, then
f (x) = x for all x. Hint: Although the geometric interpretation will
be immediately convincing, the simplest proof (about 2 lines) is to rule
out the possibilities f (x) < x and f (x) > x.

*24. Which functions have the property that the graph is still the graph of a func-
tion when re�ected through the graph of −I (the \antidiagonal")?
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25. A function f is nondecreasing if f (x) ≤ f (y) whenever x < y. (To be
more precise we should stipulate that the domain of f be an interval.) A
nonincreasing function is deˇned similarly. Caution: Some writers use
\increasing" instead of \nondecreasing," and \strictly increasing" for our
\increasing."

(a) Prove that if f is nondecreasing, but not increasing, then f is constant
on some interval. (Beware of unintentional puns: \not increasing" is not
the same as \nonincreasing.")

(b) Prove that if f is differentiable and nondecreasing, then f ′(x) ≥ 0 for
all x.

(c) Prove that if f ′(x) ≥ 0 for all x, then f is nondecreasing.

*26. (a) Suppose that f (x) > 0 for all x, and that f is decreasing. Prove that
there is a continuous decreasing function g such that 0 < g(x) ≤ f (x) for
all x.

(b) Show that we can even arrange that g will satisfy lim
x→∞ g(x)/f (x) = 0.
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APPENDIX. PARAMETRIC REPRESENTATION OF CURVES

The material in this chapter serves to emphasize something that we noticed a
long time ago|a perfectly nice looking curve need not be the graph of a function
(Figure 1). In other words, we may not be able to describe it as the set of all points
(x, f (x)). Of course, we might be able to describe the curve as the set of all points
(f (x), x); for example, the curve in Figure 1 is the set of all points (x2, x). But
even this trick doesn't work in most cases. It won't allow us to describe the circle,
consisting of all points (x, y) with x2 + y2 = 1, or an ellipse, and it can't be used
to describe a curve like the one in Figure 2.

The simplest way of describing curves in the plane in general harks back to the
physical conception of a curve as the path of a particle moving in the plane. AtFI G U R E 1

each time t , the particle is at a certain point, which has two coordinates; to indicate
the dependence of these coordinates on the time t , we can call them u(t) and v(t).
Thus, we end up with two functions. Conversely, given two functions u and v, we
can consider the curve consisting of all points (u(t), v(t)). This curve is said to
be represented parametrically by u and v, and the pair of functions u, v is called a
parametric representation of the curve. The curve represented parametrically by
u and v thus consists of all pairs (x, y) with x = u(t) and y = v(t). It is often
described brie�y as \the curve x = u(t), y = v(t)." Notice that the graph of a
function f can always be described parametrically, as the curve x = t , y = f (t).

Instead of considering a curve in the plane as deˇned by two functions, we
can obtain a conceptually simpler picture if we broaden our original deˇnition of
function somewhat. Instead of considering a rule which associates a number with
another number, we can consider a \function c from real numbers to the plane,"
i.e., a rule c that associates, to each number t , a point in the plane, which we canFI G U R E 2

denote by c(t). With this notion, a curve is just a function from some interval of
real numbers to the plane.

Of course, these two different descriptions of a curve are essentially the same:
A pair of (ordinary) functions u and v determines a single function c from the real
numbers to the plane by the rule

c(t) = (u(t), v(t)),

and, conversely, given a function c from the real numbers to the plane, each c(t)
is a point in the plane, so it is a pair of numbers, which we can call u(t) and v(t),
so that we have unique functions u and v satisfying this equation.

In Appendix 1 to Chapter 4, we used the term \vector" to describe a point in
the plane. In conformity with this usage, a curve in the plane may also be called
a \vector-valued function." The conventions of that Appendix would lead us to
write c(t) = (c1(t), c2(t)), but in this Appendix we'll continue to use notation like
c(t) = (u(t), v(t)) to minimize the use of subscripts.

A simple example of a vector-valued function that is quite useful is

e(t) = (cos t, sin t),

which goes round and round the unit circle (Figure 3).F I G U R E 3
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For two (ordinary) functions f and g, we deˇned new functions f + g and f · g
by the rules

(f + g)(x) = f (x)+ g(x),(1)
(f · g)(x) = f (x) · g(x).(2)

Since we have deˇned a way of adding vectors, we can imitate the ˇrst of these def-
initions for vector-valued functions c and d: we deˇne the vector-valued function
c + d by

(c + d)(t) = c(t)+ d(t),

where the + on the right-hand side is now the sum of vectors. This simply amounts
to saying that if

c(t) = (u(t), v(t)),

d(t) = (w(t), z(t)),

then

(c + d)(t) = (u(t), v(t))+ (w(t), z(t)) = (u(t)+w(t), v(t)+ z(t)
)
.

Recall that we have also deˇned a · v for a number a and a vector v. To
extend this to vector-valued functions, we want to consider an ordinary function α

and a vector-valued function c, so that for each t we have a number α(t) and a
vector c(t). Then we can deˇne a new vector-valued function α · c by

(α · c)(t) = α(t) · c(t),
where the · on the right-hand side is the product of a number and a vector. This
simply amounts to saying that

(α · c)(t) = α(t) · (u(t), v(t)) = (α(t) · u(t), α(t) · v(t)).
Notice that the curve α · e,

(α · e)(t) = (α(t) cos t, α(t) sin t),

is already quite general (Figure 4). In the notation of Appendix 3 to Chapter 4,
the point (α · e)(t) has polar coordinates α(t) and t , so that (α · e)(t) is the \graph
of α in polar coordinates."

Even more generally, given any vector-valued function c, we can deˇne new
functions r and θ by

c(t) = r(t) · e(θ(t)),

where r(t) is just the distance from the origin to c(t), and θ(t) is some choice of
the angle of c(t) (as usual, the function θ isn't deˇned unambiguously, so one has
to be careful when using this way of writing an arbitrary curve c).F I G U R E 4

We aren't in a position to extend (2) to vector-valued functions in general, since
we haven't deˇned the product of two vectors. However, Problems 2 and 4 of
Appendix 1 to Chapter 4 deˇne two real-valued products v · w and det(v,w). It
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should be clear, given vector-valued functions c and d, how we would deˇne two
ordinary (real-valued) functions

c · d and det(c, d).

Beyond imitating simple arithmetic operations on functions, we can consider
more interesting problems, like limits. For c(t) = (u(t), v(t)), we can deˇne

(∗) lim
t→a

c(t) = lim
t→a

(u(t), v(t)) to be
(

lim
t→a

u(t), lim
t→a

v(t)
)
.

Rules like

lim
t→a

c+ d = lim
t→a

c + lim
t→a

d,

lim
t→a

α · c = lim
t→a

α(t) · lim
t→a

c

follow immediately. Problem 10 shows how to give an equivalent deˇnition that
imitates the basic deˇnition of limits directly.

Limits lead us of course to derivatives. For

c(t) = (u(t), v(t))

we can deˇne c′ by the straightforward deˇnition

c′(a) = (u′(a), v′(a)
)
.

We could also try to imitate the basic deˇnition:

c′(a) = lim
h→0

c(a + h)− c(a)

h
,

where the fraction on the right-hand side is understood to mean

1
h

· [c(a + h)− c(a)].

As a matter of fact, these two deˇnitions are equivalent, because

lim
h→0

c(a + h)− c(a)

h
= lim

h→0

(
u(a + h)− u(a)

h
,
v(a + h)− v(a)

h

)

=
(

lim
h→0

u(a + h)− u(a)

h
, lim
h→0

v(a + h)− v(a)

h

)
by our deˇnition (∗) of limits

= (u′(a), v′(a)
)
.

Figure 5 shows c(a + h) and c(a), as well as the arrow from c(a) to c(a + h);
as we showed in Appendix 1 to Chapter 4, this arrow is c(a + h) − c(a), except
moved over so that it starts at c(a). As h → 0, this arrow would appear to move
closer and closer to the tangent of our curve, so it seems reasonable to define theFI G U R E 5
tangent line of c at c(a) to be the straight line along c′(a), when c′(a) is moved
over so that it starts at c(a). In other words, we deˇne the tangent line of c at c(a)
as the set of all points

c(a)+ s · c′(a);
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for s = 0 we get the point c(a) itself, for s = 1 we get c(a) + c′(a), etc. (Note,
however, that this deˇnition does not make sense when c′(a) = 0.) Problem 1
shows that this deˇnition agrees with the old one when our curve c is deˇned by

c(t) = (t, f (t)),

so that we simply have the graph of f .
Once again, various old formulas have analogues. For example,

(c+ d)′(a) = c′(a)+ d ′(a),
(α · c)′(a) = α′(a) · c(a)+ α(a) · c′(a),

or, as equations involving functions,

(c + d)′ = c′ + d ′,

(α · c)′ = α′ · c+ α · c′.
These formulas can be derived immediately from the deˇnition in terms of the
component functions. They can also be derived from the deˇnition as a limit,
by imitating previous proofs; for the second, we would of course use the standard
trick of writing

α(a + h)c(a + h)− α(a)c(a) =
α(a + h) · [c(a + h)− c(a)] + [α(a + h)− α(a)] · c(a).

We can also consider the function

d(t) = c(p(t)) = (c � p)(t),
where p is now an ordinary function, from numbers to numbers. The new curve d
passes through the same points as c, except at different times; thus p corresponds
to a \reparameterization" of c. For

c = (u, v),

d = (u � p, v � p),
we obtain

d ′(a) = ((u � p)′(a), (v � p)′(a))
= (p′(a)u′(p(a)), p′(a)v′(p(a))

)
= p′(a) · (u′(p(a)), v′(p(a))

)
= p′(a) · c′(p(a)),

or simply

d ′ = p′ · (c′ � p).
Notice that if p(a) = a, so that d and c actually pass through the same point at

time a, then d ′(a) = p′(a) · c′(a), so that the tangent vector d ′(a) is just a multiple
of c′(a). This means that the tangent line to c at c(a) is the same as the tangent
line to the reparameterized curve d at d(a) = c(a). The one exception occurs
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when p′(a) = 0, since the tangent line for d is then undeˇned, even though the
tangent line for c may be deˇned. For example, d(t) = c(t3) won't have a tangent
line deˇned at t = 0, even though it's merely a reparameterization of c.

Finally, since we can deˇne real-valued functions

(c · d)(t) = c(t) · d(t),
det(c, d)(t) = det(c(t), d(t)),

we ought to have formulas for the derivatives of these new functions. As you might
guess, the proper formulas are

(c · d)′(a) = c(a) · d ′(a)+ c′(a) · d(a),
[det(c, d)]′(a) = det(c′, d)(a)+ det(c, d ′)(a).

These can be derived by straightforward calculations from the deˇnitions in terms
of the component functions. But it is more elegant to imitate the proof of the or-
dinary product rule, using the simple formulas in Problems 2 and 4 of Appendix 1
to Chapter 4, and, of course, the \standard trick" referred to above.

PROBLEMS

1. (a) For a function f , the \point-slope form" (Problem 4-6) of the tangent
line at (a, f (a)) can be written as y − f (a) = (x − a)f ′(a), so that the
tangent line consists of all points of the form(

x, f (a)+ (x − a)f ′(a)
)
.

Conclude that the tangent line consists of all points of the form(
a + s, f (a)+ sf ′(a)

)
.

(b) If c is the curve c(t) = (t, f (t)), conclude that the tangent line of c at
(a, f (a)) [using our new deˇnition] is the same as the tangent line of f
at (a, f (a)).

2. Let c(t) = (f (t), t2), where f is the function shown in Figure 21 of Chap-
ter 9. Show that c lies along the graph of the non-differentiable function
h(x) = |x|, but that c′(0) = 0. In other words, a reparameterization can
\hide" a corner. For this reason, we are usually only interested in curves c
with c′ never 0.

3. Suppose that x = u(t), y = v(t) is a parametric representation of a curve,
and that u′ �= 0 on some interval.

(a) Show that on this interval the curve lies along the graph of f = v � u−1.
(b) Show that at the point x = u(t) we have

f ′(x) = v′(t)
u′(t)

.
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In Leibnizian notation this is often written suggestively as

dy

dx
=

dy

dt

dx

dt

.

(c) We also have

f ′′(x) = u′(t)v′′(t)− v′(t)u′′(t)
(u′(t))3

.

4. Consider a function f deˇned implicitly by the equation x2/3 + y2/3 = 1.
Compute f ′(x) in two ways:

(i) By implicit differentiation.
(ii) By considering the parametric representation x = cos3 t , y = sin3 t .

5. Let x = u(t), y = v(t) be the parametric representation of a curve, with
u and v differentiable, and let P = (x0, y0) be a point in the plane. Prove
that if the point Q = (u(t̄), v(t̄)) on the curve is closest to (x0, y0), and u′(t̄)
and v′(t̄) are not both 0, then the line from P to Q is perpendicular to the
tangent line of the curve at Q (Figure 6). The same result holds if Q isF I G U R E 6

furthest from (x0, y0).

We've seen that the \graph of f in polar coordinates" is the curve

(f · e)(t) = (f (t) cos t, f (t) sin t);
in other words, the graph of f in polar coordinates is the curve with the para-
metric representation

x = f (θ) cos θ, y = f (θ) sin θ.

6. (a) Show that for the graph of f in polar coordinates the slope of the tangent
line at the point with polar coordinates (f (θ), θ) is

f (θ) cos θ + f ′(θ) sin θ
−f (θ) sin θ + f ′(θ) cos θ

.

(b) Show that if f (θ) = 0 and f is differentiable at 0, then the line through
the origin making an angle of θ with the positive horizontal axis is a
tangent line of the graph of f in polar coordinates. Use this result to
add some details to the graph of the Archimedian spiral in Appendix 3
of Chapter 4, and to the graphs in Problems 3 and 10 of that Appendix
as well.

(c) Suppose that the point with polar coordinates (f (θ), θ) is further from
the origin O than any other point on the graph of f . What can you
say about the tangent line to the graph at this point? Compare with
Problem 5.
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(d) Suppose that the tangent line to the graph of f at the point with po-
lar coordinates (f (θ), θ) makes an angle of α with the horizontal axis
(Figure 7), so that α − θ is the angle between the tangent line and the
ray from O to the point. Show that

tan(α − θ) = f (θ)

f ′(θ)
.

7. (a) In Problem 5 of Appendix 1 to Chapter 4 we found that the cardioid
r = 1 − sin θ is also described by the equation (x2 + y2 + y)2 = x2 + y2.
Find the slope of the tangent line at a point on the cardioid in two ways:

(i) By implicit differentiation.
(ii) By using the previous problem.

(b) Check that at the origin the tangent lines are vertical, as they appear to
be in Figure 8.FI G U R E 7

FI G U R E 8

The next problem uses the material from Chapter 15, in particular, radian
measure, and the inverse trigonometric functions and their properties.

8. A cycloid is deˇned as the path traced out by a point on the rim of a rolling
wheel of radius a. You can see a beautiful cycloid by pasting a re�ector on
the edge of a bicycle wheel and having a friend ride slowly in front of the
headlights of your car at night. Lacking a car, bicycle, or trusting friend, you
can settle instead for Figure 9.

FI G U R E 9
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(a) Let u(t) and v(t) be the coordinates of the point on the rim after the
wheel has rotated through an angle of t (radians). This means that the
arc of the wheel rim from P to Q in Figure 10 has length at . Since the
wheel is rolling, at is also the distance from O to Q. Show that we have
the parametric representation of the cycloid

u(t) = a(t − sin t)
v(t) = a(1 − cos t).

Figure 11 shows the curves we obtain if the distance from the point to the
center of the wheel is (a) less than the radius or (b) greater than the radius.
In the latter case, the curve is not the graph of a function; at certain timesFI G U R E 1 0

the point is moving backwards, even though the wheel is moving forwards!

F I G U R E 1 1

In Figure 9 we drew the cycloid as the graph of a function, but we really
need to check that this is the case:

(b) Compute u′(t) and conclude that u is increasing. Problem 3 then shows
that the cycloid is the graph of f = v � u−1, and allows us to compute
f ′(t).

It isn't possible to get an explicit formula for f , but we can come close.

(c) Show that

u(t) = a arccos
a − v(t)

a
±
√

[2a − v(t)]v(t).

Hint: ˇrst solve for t in terms of v(t).
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(d) The ˇrst half of the ˇrst arch of the cycloid is the graph of g−1, where

g(y) = a arccos
a − y

y
−
√
(2a − y)y.

9. Let u and v be continuous on [a, b] and differentiable on (a, b); then u

and v give a parametric representation of a curve from P = (u(a), u(b))

to Q = (v(a), v(b)). Geometrically, it seems clear (Figure 12) that at some
point on the curve the tangent line is parallel to the line segment from P

to Q. Prove this analytically. Hint: This problem will give a geometric
interpretation for one of the theorems in Chapter 11.FI G U R E 1 2

10. The following deˇnition of a limit for a vector-valued function is the direct
analogue of the deˇnition for ordinary functions:

lim
t→a

c(t) = l means that for every ε > 0 there is some δ > 0 such that, for

all t , if 0 < |t − a| < δ, then ‖c(t)− l‖ < ε.

Here ‖ ‖ is the norm, deˇned in Problem 2 of Appendix 1 to Chapter 4. If
l = (l1, l2), then

‖c(t)− l‖2 = |u(t)− l1|2 + |v(t)− l2|2.

(a) Conclude that

|u(t)− l1| ≤ ‖c(t) − l‖ and |v(t)− l2| ≤ ‖c(t) − l‖,
and show that if lim

t→a
c(t) = l according to the above deˇnition, then we

also have

lim
t→a

u(t) = l1 and lim
t→a

v(t) = l2,

so that lim
t→a

c(t) = l according to our deˇnition (∗) in terms of component
functions, on page 243.

(b) Conversely, show that if lim
t→a

c(t) = l according to the deˇnition in terms
of component functions, then also lim

t→a
c(t) = l according to the above

deˇnition.



CHAPTER 1 3 INTEGRALS

The derivative does not display its full strength until allied with the \integral," the
second main concept of Part III. At ˇrst this topic may seem to be a complete
digression|in this chapter derivatives do not appear even once! The study of
integrals does require a long preparation, but once this preliminary work has been
completed, integrals will be an invaluable tool for creating new functions, and the
derivative will reappear in Chapter 14, more powerful than ever.

Although ultimately to be deˇned in a quite complicated way, the integral for-
malizes a simple, intuitive concept|that of area. By now it should come as
no surprise to learn that the deˇnition of an intuitive concept can present greatFI G U R E 1

difˇculties|\area" is certainly no exception.
In elementary geometry, formulas are derived for the areas of many plane ˇg-

ures, but a little re�ection shows that an acceptable deˇnition of area is seldom
given. The area of a region is sometimes deˇned as the number of squares, with
sides of length 1, which ˇt in the region. But this deˇnition is hopelessly inadequate
for any but the simplest regions. For example, a circle of radius 1 supposedly has
as area the irrational number π , but it is not at all clear what \π squares" means.
Even if we consider a circle of radius 1/

√
π , which supposedly has area 1, it is hard

to say in what way a unit square ˇts in this circle, since it does not seem possible
to divide the unit square into pieces which can be arranged to form a circle.F I G U R E 2

In this chapter we will only try to deˇne the area of some very special regions
(Figure 1)|those which are bounded by the horizontal axis, the vertical lines
through (a,0) and (b,0), and the graph of a function f such that f (x) ≥ 0
for all x in [a, b]. It is convenient to indicate this region by R(f, a, b). Notice that
these regions include rectangles and triangles, as well as many other important
geometric ˇgures.

The number which we will eventually assign as the area of R(f, a, b) will be
called the integral of f on [a, b]. Actually, the integral will be deˇned even for
functions f which do not satisfy the condition f (x) ≥ 0 for all x in [a, b]. If f is
the function graphed in Figure 2, the integral will represent the difference of the
area of the lightly shaded region and the area of the heavily shaded region (the
\algebraic area" of R(f, a, b)).

The idea behind the prospective deˇnition is indicated in Figure 3. The interval
[a, b] has been divided into four subintervals

[t0, t1] [t1, t2] [t2, t3] [t3, t4]

by means of numbers t0, t1, t2, t3, t4 with

a = t0 < t1 < t2 < t3 < t4 = b

(the numbering of the subscripts begins with 0 so that the largest subscript will
equal the number of subintervals).F I G U R E 3

250
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On the ˇrst interval [t0, t1] the function f has the minimum value m1 and the
maximum value M1; similarly, on the ith interval [ti−1, ti] let the minimum value
of f be mi and let the maximum value be Mi . The sum

s = m1(t1 − t0)+m2(t2 − t1)+m3(t3 − t2)+m4(t4 − t3)

represents the total area of rectangles lying inside the region R(f, a, b), while the
sum

S = M1(t1 − t0)+M2(t2 − t1)+M3(t3 − t2)+M4(t4 − t3)

represents the total area of rectangles containing the region R(f, a, b). The guid-
ing principle of our attempt to deˇne the area A of R(f, a, b) is the observation
that A should satisfy

s ≤ A and A ≤ S,

and that this should be true, no matter how the interval [a, b] is subdivided. It is to be
hoped that these requirements will determine A. The following deˇnitions begin
to formalize, and eliminate some of the implicit assumptions in, this discussion.

DEFINITION Let a < b. A partition of the interval [a, b] is a ˇnite collection of points in
[a, b], one of which is a, and one of which is b.

The points in a partition can be numbered t0, . . . , tn so that

a = t0 < t1 < · · · < tn−1 < tn = b;
we shall always assume that such a numbering has been assigned.

DEFINITION Suppose f is bounded on [a, b] and P = {t0, . . . , tn} is a partition of [a, b]. Let

mi = inf {f (x) : ti−1 ≤ x ≤ ti},
Mi = sup{f (x) : ti−1 ≤ x ≤ ti}.

The lower sum of f for P , denoted by L(f, P), is deˇned as

L(f,P) =
n∑
i=1

mi(ti − ti−1).

The upper sum of f for P , denoted by U(f,P), is deˇned as

U(f,P) =
n∑
i=1

Mi(ti − ti−1).

The lower and upper sums correspond to the sums s and S in the previous
example; they are supposed to represent the total areas of rectangles lying below
and above the graph of f . Notice, however, that despite the geometric motivation,
these sums have been deˇned precisely without any appeal to a concept of \area."
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Two details of the deˇnition deserve comment. The requirement that f be
bounded on [a, b] is essential in order that all the mi and Mi be deˇned. Note,
also, that it was necessary to deˇne the numbers mi and Mi as inf 's and sup's,
rather than as minima and maxima, since f was not assumed continuous.

One thing is clear about lower and upper sums: If P is any partition, then

L(f,P) ≤ U(f,P),

because

L(f,P) =
n∑
i=1

mi(ti − ti−1),

U(f,P) =
n∑
i=1

Mi(ti − ti1),

and for each i we have

mi(ti − ti−1) ≤ Mi(ti − ti−1).

On the other hand, something less obvious ought to be true: If P1 and P2 areFI G U R E 4

any two partitions of [a, b], then it should be the case that

L(f, P1) ≤ U(f,P2),

because L(f, P1) should be ≤ area R(f, a, b), and U(f,P2) should be ≥ area
R(f, a, b). This remark proves nothing (since the \area of R(f, a, b)" has not even
been deˇned yet), but it does indicate that if there is to be any hope of deˇning the
area of R(f, a, b), a proof that L(f, P1) ≤ U(f,P2) should come ˇrst. The proof
which we are about to give depends upon a lemma which concerns the behavior of
lower and upper sums when more points are included in a partition. In Figure 4
the partition P contains the points in black, and Q contains both the points in
black and the points in grey. The picture indicates that the rectangles drawn for
the partition Q are a better approximation to the region R(f, a, b) than those for
the original partition P . To be precise:F I G U R E 5

LEMMA If Q contains P (i.e., if all points of P are also in Q), then

L(f, P) ≤ L(f,Q),

U(f,P) ≥ U(f,Q).

PROOF Consider ˇrst the special case (Figure 5) in which Q contains just one more point
than P :

P = {t0, . . . , tn},
Q = {t0, . . . , tk−1, u, tk, . . . , tn},

where
a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b.
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Let

m′ = inf {f (x) : tk−1 ≤ x ≤ u},
m′′ = inf {f (x) : u ≤ x ≤ tk}.

Then

L(f, P) =
n∑
i=1

mi(ti − ti−1),

L(f,Q) =
k−1∑
i=1

mi(ti − ti−1)+m′(u− tk−1)+m′′(tk − u)+
n∑

i=k+1

mi(ti − ti−1).

To prove that L(f,P) ≤ L(f,Q) it therefore sufˇces to show that

mk(tk − tk−1) ≤ m′(u − tk−1)+m′′(tk − u).

Now the set {f (x) : tk−1 ≤ x ≤ tk} contains all the numbers in {f (x) : tk−1 ≤
x ≤ u}, and possibly some smaller ones, so the greatest lower bound of the ˇrst set
is less than or equal to the greatest lower bound of the second; thus

mk ≤ m′.

Similarly,
mk ≤ m′′.

Therefore,

mk(tk − tk−1) = mk(u− tk−1)+mk(tk − u) ≤ m′(u− tk−1)+m′′(tk − u).

This proves, in this special case, that L(f,P) ≤ L(f,Q). The proof that U(f,P) ≥
U(f,Q) is similar, and is left to you as an easy, but valuable, exercise.

The general case can now be deduced quite easily. The partition Q can be
obtained from P by adding one point at a time; in other words, there is a sequence
of partitions

P = P1, P2, . . . , Pα = Q

such that Pj+1 contains just one more point than Pj . Then

L(f,P) = L(f, P1) ≤ L(f, P2) ≤ · · · ≤ L(f, Pα) = L(f,Q),

and
U(f,P) = U(f,P1) ≥ U(f,P2) ≥ · · · ≥ U(f,Pα) = U(f,Q).

The theorem we wish to prove is a simple consequence of this lemma.

THEOREM 1 Let P1 and P2 be partitions of [a, b], and let f be a function which is bounded
on [a, b]. Then

L(f,P1) ≤ U(f,P2).
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PROOF There is a partition P which contains both P1 and P2 (let P consist of all points
in both P1 and P2). According to the lemma,

L(f,P1) ≤ L(f, P) ≤ U(f,P) ≤ U(f,P2).

It follows from Theorem 1 that any upper sum U(f,P ′) is an upper bound for
the set of all lower sums L(f,P). Consequently, any upper sum U(f,P ′) is greater
than or equal to the least upper bound of all lower sums:

sup{L(f,P) : P a partition of [a, b]} ≤ U(f,P ′),

for every P ′. This, in turn, means that sup{L(f,P)} is a lower bound for the set
of all upper sums of f . Consequently,

sup{L(f,P)} ≤ inf {U(f,P)}.
It is clear that both of these numbers are between the lower sum and upper sum
of f for all partitions:

L(f, P ′) ≤ sup{L(f,P)} ≤ U(f,P ′),
L(f, P ′) ≤ inf {U(f,P)} ≤ U(f,P ′),

for all partitions P ′.
It may well happen that

sup{L(f,P)} = inf {U(f,P };
in this case, this is the only number between the lower sum and upper sum of f
for all partitions, and this number is consequently an ideal candidate for the area
of R(f, a, b). On the other hand, if

sup{L(f, P)} < inf {U(f,P)},
then every number x between sup{L(f, P)} and inf {U(f,P)} will satisfy

L(f, P ′) ≤ x ≤ U(f,P ′)

for all partitions P ′.
It is not at all clear just when such an embarrassment of riches will occur. The

following two examples, although not as interesting as many which will soon ap-
pear, show that both phenomena are possible.

Suppose ˇrst that f (x) = c for all x in [a, b] (Figure 6). If P = {t0, . . . , tn} isF I G U R E 6

any partition of [a, b], then
mi = Mi = c,

so

L(f,P) =
n∑
i=1

c(ti − ti−1) = c(b − a),

U(f,P) =
n∑
i=1

c(ti − ti−1) = c(b − a).
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In this case, all lower sums and upper sums are equal, and

sup{L(f,P)} = inf {U(f,P)} = c(b − a).

Now consider (Figure 7) the function f deˇned by

f (x) =
{

0, x irrational
1, x rational.

If P = {t0, . . . , tn} is any partition, then

mi = 0, since there is an irrational number in [ti−1, ti],

and

Mi = 1, since there is a rational number in [ti−1, ti].

Therefore,F I G U R E 7

L(f, P) =
n∑
i=1

0 · (ti − ti−1) = 0,

U(f,P) =
n∑
i=1

1 · (ti − ti−1) = b − a.

Thus, in this case it is certainly not true that sup{L(f,P)} = inf {U(f,P)}. The
principle upon which the deˇnition of area was to be based provides insufˇcient
information to determine a speciˇc area for R(f, a, b)|any number between 0
and b − a seems equally good. On the other hand, the region R(f, a, b) is so
weird that we might with justice refuse to assign it any area at all. In fact, we can
maintain, more generally, that whenever

sup{L(f, P)} �= inf {U(f,P)},
the region R(f, a, b) is too unreasonable to deserve having an area. As our ap-
peal to the word \unreasonable" suggests, we are about to cloak our ignorance in
terminology.

DEFINITION A function f which is bounded on [a, b] is integrable on [a, b] if

sup{L(f,P) : P a partition of [a, b]} = inf {U(f,P) : P a partition of [a, b]}.
In this case, this common number is called the integral of f on [a, b] and is
denoted by ∫ b

a

f.

(The symbol
∫

is called an integral sign and was originally an elongated s, for
\sum;" the numbers a and b are called the lower and upper limits of integration.)
The integral

∫ b
a
f is also called the area of R(f, a, b) when f (x) ≥ 0 for all x

in [a, b].
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If f is integrable, then according to this deˇnition,

L(f,P) ≤
∫ b

a

f ≤ U(f,P) for all partitions P of [a, b].

Moreover,
∫ b
a
f is the unique number with this property.

This deˇnition merely pinpoints, and does not solve, the problem discussed
before: we do not know which functions are integrable (nor do we know how to
ˇnd the integral of f on [a, b] when f is integrable). At present we know only
two examples:

(1) if f (x) = c, then f is integrable on [a, b] and
∫ b

a

f = c · (b − a).

(Notice that this integral assigns the expected area to a rectangle.)

(2) if f (x) =
{

0, x irrational
1, x rational,

then f is not integrable on [a, b].

Several more examples will be given before discussing these problems further.
Even for these examples, however, it helps to have the following simple criterion
for integrability stated explicitly.

THEOREM 2 If f is bounded on [a, b], then f is integrable on [a, b] if and only if for every
ε > 0 there is a partition P of [a, b] such that

U(f,P) − L(f,P) < ε.

PROOF Suppose ˇrst that for every ε > 0 there is a partition P with

U(f,P) − L(f,P) < ε.

Since

inf {U(f,P ′)} ≤ U(f,P),

sup{L(f,P ′)} ≥ L(f,P),

it follows that
inf {U(f,P ′)} − sup{L(f,P ′)} < ε.

Since this is true for all ε > 0, it follows that

sup{L(f, P ′)} = inf {U(f,P ′)};
by deˇnition, then, f is integrable. The proof of the converse assertion is similar:
If f is integrable, then

sup{L(f,P)} = inf {U(f,P)}.
This means that for each ε > 0 there are partitions P ′, P ′′ with

U(f,P ′′)− L(f,P ′) < ε.
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Let P be a partition which contains both P ′ and P ′′. Then, according to the
lemma,

U(f,P) ≤ U(f,P ′′),
L(f, P) ≥ L(f, P ′);

consequently,

U(f,P)− L(f, P) ≤ U(f,P ′′)− L(f,P ′) < ε.

Although the mechanics of the proof take up a little space, it should be clear
that Theorem 2 amounts to nothing more than a restatement of the deˇnition
of integrability. Nevertheless, it is a very convenient restatement because there is
no mention of sup's and inf 's, which are often difˇcult to work with. The next
example illustrates this point, and also serves as a good introduction to the type
of reasoning which the complicated deˇnition of the integral necessitates, even in
very simple situations.

Let f be deˇned on [0, 2] by

f (x) =
{

0, x �= 1
1, x = 1.

Suppose P = {t0, . . . , tn} is a partition of [0,2] with

tj−1 < 1 < tj

(see Figure 8). Then
mi = Mi = 0 if i �= j,

butFI G U R E 8
mj = 0 and Mj = 1.

Since

L(f,P) =
j−1∑
i=1

mi(ti − ti−1)+mj(tj − tj−1)+
n∑

i=j+1

mi(ti − ti−1),

U(f,P) =
j−1∑
i=1

Mi(ti − ti−1)+Mj(tj − tj−1)+
n∑

i=j+1

Mi(ti − ti−1),

we have
U(f,P) − L(f,P) = tj − tj−1.

This certainly shows that f is integrable: to obtain a partition P with

U(f,P)− L(f,P) < ε,

it is only necessary to choose a partition with

tj−1 < 1 < tj and tj − tj−1 < ε.

Moreover, it is clear that

L(f,P) ≤ 0 ≤ U(f,P) for all partitions P .
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Since f is integrable, there is only one number between all lower and upper sums,
namely, the integral of f , so ∫ 2

0
f = 0.

Although the discontinuity of f was responsible for the difˇculties in this exam-
ple, even worse problems arise for very simple continuous functions. For example,
let f (x) = x, and for simplicity consider an interval [0, b], where b > 0. If
P = {t0, . . . , tn} is a partition of [0, b], then (Figure 9)

mi = ti−1 and Mi = ti

and therefore

L(f,P) =
n∑
i=1

ti−1(ti − ti−1)

= t0(t1 − t0)+ t1(t2 − t1)+ · · · + tn−1(tn − tn−1),

U(f,P) =
n∑
i=1

ti(ti − ti−1)

= t1(t1 − t0)+ t2(t2 − t1)+ · · · + tn(tn − tn−1).

Neither of these formulas is particularly appealing, but both simplify considerablyFI G U R E 9

for partitions Pn = {t0, . . . , tn} into n equal subintervals. In this case, the length
ti − ti−1 of each subinterval is b/n, so

t0 = 0,

t1 = b

n
,

t2 = 2b
n
, etc;

in general

ti = ib

n
.

Then

L(f, Pn) =
n∑
i=1

ti−1(ti − ti−1)

=
n∑
i=1

{
(i − 1)b

n

}
· b
n

=
[ n∑
i=1

(i − 1)
]
b2

n2

=
(n−1∑
j=0

j

)
b2

n2 .
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Remembering the formula

1 + · · · + k = k(k + 1)
2

,

this can be written

L(f, Pn) = (n − 1)(n)
2

· b
2

n2

= n− 1
n

· b
2

2
.

Similarly,

U(f,Pn) =
n∑
i=1

ti(ti − ti−1)

=
n∑
i=1

ib

n
· b
n

= n(n+ 1)
2

· b
2

n2

= n+ 1
n

· b
2

2
.

If n is very large, both L(f,Pn) and U(f,Pn) are close to b2/2, and this remark
makes it easy to show that f is integrable. Notice ˇrst that

U(f,Pn)− L(f,Pn) = 2
n

· b
2

2
.

This shows that there are partitions Pn with U(f,Pn)−L(f, Pn) as small as desired.
By Theorem 2 the function f is integrable. Moreover,

∫ b
0 f may now be found

with only a little work. It is clear, ˇrst of all, that

L(f,Pn) ≤ b2

2
≤ U(f,Pn) for all n.

This inequality shows only that b2/2 lies between certain special upper and lower
sums, but we have just seen that U(f,Pn) − L(f,Pn) can be made as small as
desired, so there is only one number with this property. Since the integral certainly
has this property, we can conclude that∫ b

0
f = b2

2
.

Notice that this equation assigns area b2/2 to a right triangle with base and alti-
tude b (Figure 10). Using more involved calculations, or appealing to Theorem 4,FI G U R E 1 0

it can be shown that ∫ b

a

f = b2

2
− a2

2
.
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The function f (x) = x2 presents even greater difˇculties. In this case (Fig-
ure 11), if P = {t0, . . . , tn} is a partition of [0, b], then

mi = f (ti−1) = (ti−1)
2 and Mi = f (ti) = ti

2.

Choosing, once again, a partition Pn = {t0, . . . , tn} into n equal parts, so that

ti = i · b
n

the lower and upper sums become

FI G U R E 1 1

L(f, Pn) =
n∑
i=1

(ti−1)
2 · (ti − ti−1)

=
n∑
i=1

(i − 1)2
b2

n2 · b
n

= b3

n3 ·
n−1∑
j=0

j 2,

U(f,Pn) =
n∑
i=1

ti
2 · (ti − ti−1)

=
n∑
i=1

i2
b2

n2 · b
n

= b3

n3

n∑
j=1

j 2.

Recalling the formula

12 + · · · + k2 = 1
6k(k + 1)(2k + 1)

from Problem 2-1, these sums can be written as

L(f, Pn) = b3

n3 · 1
6
(n− 1)(n)(2n− 1),

U(f,Pn) = b3

n3 · 1
6
(n+ 1)(2n+ 1).

It is not too hard to show that

L(f,Pn) ≤ b3

3
≤ U(f,Pn),

and that U(f,Pn) − L(f, Pn) can be made as small as desired, by choosing n

sufˇciently large. The same sort of reasoning as before then shows that∫ b

0
f = b3

3
.

This calculation already represents a nontrivial result|the area of the region
bounded by a parabola is not usually derived in elementary geometry. Never-
theless, the result was known to Archimedes, who derived it in essentially the same
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way. The only superiority we can claim is that in the next chapter we will discover
a much simpler way to arrive at this result.

Some of our investigations can be summarized as follows:∫ b

a

f = c · (b − a) if f (x) = c for all x,∫ b

a

f = b2

2
− a2

2
if f (x) = x for all x,∫ b

a

f = b3

3
− a3

3
if f (x) = x2 for all x.

This list already reveals that the notation
∫ b
a
f suffers from the lack of a convenient

notation for naming functions deˇned by formulas. For this reason an alternative
notation,* analogous to the notation lim

x→a
f (x), is also useful:

∫ b

a

f (x) dx means precisely the same as
∫ b

a

f.

Thus ∫ b

a

c dx = c · (b − a),∫ b

a

x dx = b2

2
− a2

2
,∫ b

a

x2 dx = b3

3
− a3

3
.

Notice that, as in the notation lim
x→a

f (x), the symbol x can be replaced by any
other letter (except f , a, or b, of course):∫ b

a

f (x)dx =
∫ b

a

f (t) dt =
∫ b

a

f (α)dα =
∫ b

a

f (y) dy =
∫ b

a

f (c) dc.

The symbol dx has no meaning in isolation, any more than the symbol x →
has any meaning, except in the context lim

x→a
f (x). In the equation

∫ b

a

x2 dx = b3

3
− a3

3
,

* The notation
∫ b
a f (x) dx is actually the older, and was for many years the only, symbol for the

integral. Leibniz used this symbol because he considered the integral to be the sum (denoted by
∫

)
of inˇnitely many rectangles with height f (x) and \inˇnitely small" width dx. Later writers used
x0, . . . , xn to denote the points of a partition, and abbreviated xi − xi−1 by xi . The integral was

deˇned as the limit as xi approaches 0 of the sums
n∑
i=1

f (xi) xi (analogous to lower and upper

sums). The fact that the limit is obtained by changing
∑

to
∫

, f (xi ) to f (x), and xi to dx, delights
many people.
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the entire symbol x2 dx may be regarded as an abbreviation for:

the function f such that f (x) = x2 for all x.

This notation for the integral is as �exible as the notation lim
x→a

f (x). Several ex-
amples may aid in the interpretation of various types of formulas which frequently
appear; we have made use of Theorems 5 and 6.*

(1)
∫ b

a

(x + y)dx =
∫ b

a

x dx +
∫ b

a

y dx = b2

2
− a2

2
+ y(b− a).

(2)
∫ x

a

(y + t) dy =
∫ x

a

y dy +
∫ x

a

t dy = x2

2
− a2

2
+ t (x − a).

(3)
∫ b

a

(∫ x

a

(1 + t) dz

)
dx =

∫ b

a

(1 + t)(x − a) dx

= (1 + t)

∫ b

a

(x − a) dx

= (1 + t)

[
b2

2
− a2

2
− a(b − a)

]
.

(4)
∫ b

a

(∫ d

c

(x + y) dy

)
dx =

∫ b

a

[
x(d − c)+ d2

2
− c2

2

]
dx

=
(
d2

2
− c2

2

)
(b − a)+ (d − c)

∫ b

a

x dx

=
(
d2

2
− c2

2

)
(b − a)+ (d − c)

(
b2

2
− a2

2

)
.

The computations of
∫ b
a
x dx and

∫ b
a
x2 dx may suggest that evaluating integrals

is generally difˇcult or impossible. As a matter of fact, the integrals of most func-
tions are impossible to determine exactly (although they may be computed to any degree

of accuracy desired by calculating lower and upper sums). Nevertheless, as we shall see in
the next chapter, the integral of many functions can be computed very easily.

Even though most integrals cannot be computed exactly, it is important at least
to know when a function f is integrable on [a, b]. Although it is possible to say
precisely which functions are integrable, the criterion for integrability is a little too
difˇcult to be stated here, and we will have to settle for partial results. The next
Theorem gives the most useful result, but the proof given here uses material from
the Appendix to Chapter 8. If you prefer, you can wait until the end of the next
chapter, when a totally different proof will be given.

* Lest chaos overtake the reader when consulting other books, equation (1) requires an important
qualiˇcation. This equation interprets

∫ b
a y dx to mean the integral of the function f such that each

value f (x) is the number y. But classical notation often uses y for y(x), so
∫ b
a y dx might mean the

integral of some arbitrary function y.
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THEOREM 3 If f is continuous on [a, b], then f is integrable on [a, b].

PROOF Notice, ˇrst, that f is bounded on [a, b], because it is continuous on [a, b]. To
prove that f is integrable on [a, b], we want to use Theorem 2, and show that for
every ε > 0 there is a partition P of [a, b] such that

U(f,P) − L(f,P) < ε.

Now we know, by Theorem 1 of the Appendix to Chapter 8, that f is uniformly
continuous on [a, b]. So there is some δ > 0 such that for all x and y in [a, b],

if |x − y| < δ, then |f (x)− f (y)| < ε

2(b − a)
.

The trick is simply to choose a partition P = {t0, . . . , tn} such that each |ti−ti−1| <
δ. Then for each i we have

|f (x)− f (y)| < ε

2(b − a)
for all x, y in [ti−1, ti],

and it follows easily that

Mi −mi ≤ ε

2(b − a)
<

ε

b − a
.

Since this is true for all i, we then have

U(f,P) − L(f,P) =
n∑
i=1

(Mi −mi)(ti − ti−1)

<
ε

b − a

n∑
i=1

ti − ti−1

= ε

b − a
· b − a

= ε,

which is what we wanted.

Although this theorem will provide all the information necessary for the use of
integrals in this book, it is more satisfying to have a somewhat larger supply of
integrable functions. Several problems treat this question in detail. It will help to
know the following three theorems, which show that f is integrable on [a, b], if it
is integrable on [a, c] and [c, b]; that f + g is integrable if f and g are; and that
c · f is integrable if f is integrable and c is any number.

As a simple application of these theorems, recall that if f is 0 except at one
point, where its value is 1, then f is integrable. Multiplying this function by c, it
follows that the same is true if the value of f at the exceptional point is c. Adding
such a function to an integrable function, we see that the value of an integrable
function may be changed arbitrarily at one point without destroying integrability.
By breaking up the interval into many subintervals, we see that the value can be
changed at ˇnitely many points.

The proofs of these theorems usually use the alternative criterion for integrability
in Theorem 2; as some of our previous demonstrations illustrate, the details of the
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argument often conspire to obscure the point of the proof. It is a good idea to
attempt proofs of your own, consulting those given here as a last resort, or as a
check. This will probably clarify the proofs, and will certainly give good practice
in the techniques used in some of the problems.

THEOREM 4 Let a < c < b. If f is integrable on [a, b], then f is integrable on [a, c] and on
[c, b]. Conversely, if f is integrable on [a, c] and on [c, b], then f is integrable
on [a, b]. Finally, if f is integrable on [a, b], then∫ b

a

f =
∫ c

a

f +
∫ b

c

f.

PROOF Suppose f is integrable on [a, b]. If ε > 0, there is a partition P = {t0, . . . , tn} of
[a, b] such that

U(f,P) − L(f,P) < ε.

We might as well assume that c = tj for some j . (Otherwise, let Q be the partition
which contains t0, . . . , tn and c; then Q contains P , so U(f,Q) − L(f,Q) ≤
U(f,P)− L(f,P) < ε.)

Now P ′ = {t0, . . . , tj } is a partition of [a, c] and P ′′ = {tj , . . . , tn} is a partition
of [c, b] (Figure 12). Since

L(f,P) = L(f,P ′)+ L(f,P ′′),
U(f,P) = U(f,P ′)+ U(f,P ′′),

we have

[U(f,P ′)− L(f,P ′)] + [U(f,P ′′)− L(f,P ′′)] = U(f,P)− L(f, P) < ε.

Since each of the terms in brackets is nonnegative, each is less than ε. This shows
that f is integrable on [a, c] and [c, b]. Note also thatFI G U R E 1 2

L(f, P ′) ≤
∫ c

a

f ≤ U(f,P ′),

L(f,P ′′) ≤
∫ b

c

f ≤ U(f,P ′′),

so that

L(f,P) ≤
∫ c

a

f +
∫ b

c

f ≤ U(f,P).

Since this is true for any P , this proves that∫ c

a

f +
∫ b

c

f =
∫ b

a

f.

Now suppose that f is integrable on [a, c] and on [c, b]. If ε > 0, there is a
partition P ′ of [a, c] and a partition P ′′ of [c, b] such that

U(f,P ′)− L(f,P ′) < ε/2,
U(f,P ′′)− L(f, P ′′) < ε/2.
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If P is the partition of [a, b] containing all the points of P ′ and P ′′, then

L(f, P) = L(f, P ′)+ L(f, P ′′),
U(f,P) = U(f,P ′)+ U(f,P ′′);

consequently,

U(f,P) − L(f,P) = [U(f,P ′)− L(f,P ′)] + [U(f,P ′′)− L(f,P ′′)] < ε.

Theorem 4 is the basis for some minor notational conventions. The integral∫ b
a
f was deˇned only for a < b. We now add the deˇnitions∫ a

a

f = 0 and
∫ b

a

f = −
∫ a

b

f if a > b.

With these deˇnitions, the equation
∫ c
a
f + ∫ b

c
f = ∫ b

a
f holds for all a, c, b even

if a < c < b is not true (the proof of this assertion is a rather tedious case-by-case
check).

THEOREM 5 If f and g are integrable on [a, b], then f + g is integrable on [a, b] and∫ b

a

(f + g) =
∫ b

a

f +
∫ b

a

g.

PROOF Let P = {t0, . . . , tn} be any partition of [a, b]. Let

mi = inf {(f + g)(x) : ti−1 ≤ x ≤ ti},
mi

′ = inf {f (x) : ti−1 ≤ x ≤ ti},
mi

′′ = inf {g(x) : ti−1 ≤ x ≤ ti},
and deˇne Mi , Mi

′, Mi
′′ similarly. It is not necessarily true that

mi = mi
′ + mi

′′,

but it is true (Problem 10) that

mi ≥ mi
′ +mi

′′.

Similarly,
Mi ≤ Mi

′ +Mi
′′.

Therefore,
L(f,P) + L(g,P) ≤ L(f + g, P)

and
U(f + g, P) ≤ U(f,P) + U(g,P).

Thus,

L(f,P) + L(g, P) ≤ L(f + g, P) ≤ U(f + g, P) ≤ U(f,P)+ U(g,P).

Since f and g are integrable, there are partitions P ′, P ′′ with

U(f,P ′)− L(f,P ′) < ε/2,
U(g,P ′′)− L(g, P ′′) < ε/2.
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If P contains both P ′ and P ′′, then

U(f,P) + U(g,P)− [L(f,P)+ L(g,P)] < ε,

and consequently
U(f + g,P) − L(f + g, P) < ε.

This proves that f + g is integrable on [a, b]. Moreover,

(1) L(f,P) + L(g, P) ≤ L(f + g, P)

≤
∫ b

a

(f + g)

≤ U(f + g,P) ≤ U(f,P)+ U(g, P);
and also

(2) L(f,P)+ L(g,P) ≤
∫ b

a

f +
∫ b

a

g ≤ U(f,P)+ U(g, P).

Since U(f,P) − L(f,P) and U(g,p) − L(g,P) can both be made as small as
desired, it follows that

U(f,P)+ U(g,P)− [L(f, P)+ L(g, P)]

can also be made as small as desired; it therefore follows from (1) and (2) that∫ b

a

(f + g) =
∫ b

a

f +
∫ b

a

g.

THEOREM 6 If f is integrable on [a, b], then for any number c, the function cf is integrable
on [a, b] and ∫ b

a

cf = c ·
∫ b

a

f.

PROOF The proof (which is much easier than that of Theorem 5) is left to you. It is a good
idea to treat separately the cases c ≥ 0 and c ≤ 0. Why?

(Theorem 6 is just a special case of the more general theorem that f · g is
integrable on [a, b], if f and g are, but this result is quite hard to prove (see
Problem 38).)

In this chapter we have acquired only one complicated deˇnition, a few simply
theorems with intricate proofs, and one theorem which required material from the
Appendix to Chapter 8. This is not because integrals constitute a more difˇcult
topic than derivatives, but because powerful tools developed in previous chapters
have been allowed to remain dormant. The most signiˇcant discovery of calculus
is the fact that the integral and the derivative are intimately related|once we
learn the connection, the integral will become as useful as the derivative, and as
easy to use. The connection between derivatives and integrals deserves a separate
chapter, but the preparations which we will make in this chapter may serve as a
hint. We ˇrst state a simple inequality concerning integrals, which plays a role in
many important theorems.
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THEOREM 7 Suppose f is integrable on [a, b] and that

m ≤ f (x) ≤ M for all x in [a, b].

Then

m(b− a) ≤
∫ b

a

f ≤ M(b − a).

PROOF It is clear that

m(b − a) ≤ L(f, P) and U(f,P) ≤ M(b − a)

for every partition P . Since
∫ b
a
f = sup{L(f,P)} = inf {U(f,P)}, the desired

inequality follows immediately.
Suppose now that f is integrable on [a, b]. We can deˇne a new function f on

[a, b] by

F(x) =
∫ x

a

f =
∫ x

a

f (t) dt.

(This depends on Theorem 4.) We have seen that f may be integrable even if it
is not continuous, and the Problems give examples of integrable functions whichFI G U R E 1 3

are quite pathological. The behavior of F is therefore a very pleasant surprise.

THEOREM 8 If f is integrable on [a, b] and F is deˇned on [a, b] by

F(x) =
∫ x

a

f,

then F is continuous on [a, b].

PROOF Suppose c is in [a, b]. Since f is integrable on [a, b] it is, by deˇnition, bounded
on [a, b]; let M be a number such that

|f (x)| ≤ M for all x in [a, b].

If h > 0, then (Figure 13)

F(c + h)− F(c) =
∫ c+h

a

f −
∫ c

a

f =
∫ c+h

c

f.

Since
−M ≤ f (x) ≤ M for all x,

it follows from Theorem 7 that

−M · h ≤
∫ c+h

c

f ≤ Mh;

in other words,

(1) −M · h ≤ F(c + h)− F(c) ≤ M · h.
If h < 0, a similar inequality can be derived: Note that

F(c + h)− F(c) =
∫ c+h

c

f = −
∫ c

c+h
f.
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Applying Theorem 7 to the interval [c + h, c], of length −h, we obtain

Mh ≤
∫ c

c+h
f ≤ −Mh;

multiplying by −1, which reverses all the inequalities, we have

(2) Mh ≤ F(c + h)− F(c) ≤ −Mh.
Inequalities (1) and (2) can be combined:

|F(c + h)− F(c)| ≤ M · |h|.
Therefore, if ε > 0, we have

|F(c + h)− F(c)| < ε,

provided that |h| < ε/M. This proves that

lim
h→0

F(c + h) = F(c);

in other words F is continuous at c.

Figure 14 compares f and F(x) = ∫ x
a
f for various functions f ; it appears

that F is always better behaved than f . In the next chapter we will see how true
this is.

F I G U R E 1 4



13. Integrals 269

PROBLEMS

1. Prove that
∫ b

0 x
3 dx = b4/4, by considering partitions into n equal subin-

tervals, using the formula for
n∑
i=1

i3 which was found in Problem 2-6. This

problem requires only a straightforward imitation of calculations in the text,
but you should write it up as a formal proof to make certain that all the ˇne
points of the argument are clear.

2. Prove, similarly, that
∫ b

0 x
4 dx = b5/5.

*3. (a) Using Problem 2-7, show that the sum
n∑
k=1

kp/np+1 can be made as close

to 1/(p + 1) as desired, by choosing n large enough.
(b) Prove that

∫ b
0 x

p dx = bp+1/(p + 1) .

*4. This problem outlines a clever way to ˇnd
∫ b

a

xp dx for 0 < a < b. (The

result for a = 0 will then follow by continuity.) The trick is to use partitions
P = {t0, . . . , tn} for which all ratios r = ti/ti−1 are equal, instead of using
partitions for which all differences ti − ti−1 are equal.

(a) Show that for such a partition P we have

ti = a · ci/n for c = b

a
.

(b) If f (x) = xp, show, using the formula in Problem 2-5, that

U(f,P) = ap+1(1 − c−1/n)

n∑
i=1

(c(p+1)/n)i

= (ap+1 − bp+1)c(p+1)/n 1 − c−1/n

1 − c(p+1)/n

= (bp+1 − ap+1)cp/n · 1
1 + c1/n + · · · + cp/n

and ˇnd a similar formula for L(f,P).
(c) Conclude that ∫ b

a

xp dx = bp+1 − ap+1

p + 1
.

5. Evaluate without doing any computations:

(i)
∫ 1

−1
x3
√

1 − x2 dx.

(ii)
∫ 1

−1
(x5 + 3)

√
1 − x2 dx.
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6. Prove that ∫ x

0

sin t
t + 1

dt > 0

for all x > 0.

7. Decide which of the following functions are integrable on [0, 2], and calculate
the integral when you can.

(i) f (x) =
{
x, 0 ≤ x < 1
x − 2, 1 ≤ x ≤ 2.

(ii) f (x) =
{
x, 0 ≤ x ≤ 1
x − 2, 1 < x ≤ 2.

(iii) f (x) = x + [x].

(iv) f (x) =
{
x + [x], x rational
0, x irrational.

(v) f (x) =
{

1, x of the form a + b
√

2 for rational a and b
0, x not of this form.

(vi) f (x) =




1[
1
x

] , 0 < x ≤ 1

0, x = 0 or x > 1.
(vii) f is the function shown in Figure 15.

FI G U R E 1 5

8. Find the areas of the regions bounded by

(i) the graphs of f (x) = x2 and g(x) = x2

2
+ 2.

(ii) the graphs of f (x) = x2 and g(x) = −x2 and the vertical lines through
(−1,0) and (1, 0).

(iii) the graphs of f (x) = x2 and g(x) = 1 − x2.
(iv) the graphs of f (x) = x2 and g(x) = 1 − x2 and h(x) = 2.
(v) the graphs of f (x) = x2 and g(x) = x2 − 2x + 4 and the vertical axis.
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(vi) the graph of f (x) = √
x, the horizontal axis, and the vertical line

through (2,0). (Don't try to ˇnd
∫ 2

0

√
x dx; you should see a way of

guessing the answer, using only integrals that you already know how to
evaluate. The questions that this example should suggest are considered
in Problem 21.)

9. Find ∫ b

a

(∫ d

c

f (x)g(y) dy

)
dx

in terms of
∫ b
a
f and

∫ d
c
g. (This problem is an exercise in notation, with a

vengeance; it is crucial that you recognize a constant when it appears.)

10. Prove, using the notation of Theorem 5, that

mi
′ +mi

′′ = inf {f (x1)+ g(x2) : ti−1 ≤ x1, x2 ≤ ti} ≤ mi.

11. (a) Which functions have the property that every lower sum equals every
upper sum?

(b) Which functions have the property that some upper sum equals some
(other) lower sum?

(c) Which continuous functions have the property that all lower sums are
equal?

*(d) Which integrable functions have the property that all lower sums are
equal? (Bear in mind that one such function is f (x) = 0 for x irrational,
f (x) = 1/q for x = p/q in lowest terms.) Hint: You will need the
notion of a dense set, introduced in Problem 8-6, as well as the results of
Problem 30.

12. If a < b < c < d and f is integrable on [a, d], prove that f is integrable on
[b, c]. (Don't work hard.)

13. (a) Prove that if f is integrable on [a, b] and f (x) ≥ 0 for all x in [a, b],

then
∫ b

a

f ≥ 0.

(b) Prove that if f and g are integrable on [a, b] and f (x) ≥ g(x) for all x

in [a, b], then
∫ b

a

f ≥
∫ b

a

g. (By now it should be unnecessary to warn

that if you work hard on part (b) you are wasting time.)

14. Prove that ∫ b

a

f (x)dx =
∫ b+c

a+c
f (x − c) dx.

(The geometric interpretation should make this very plausible.) Hint: Every
partition P = {t0, . . . , tn} of [a, b] gives rise to a partition P ′ = {t0 + c,

. . . , tn + c} of [a + c, b + c], and conversely.
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*15. Prove that ∫ a

1

1
t
dt +

∫ b

1

1
t
dt =

∫ ab

1

1
t
dt.

Hint: This can be written
∫ a

1
1/t dt =

∫ ab

b

1/t dt . Every partition P =
{t0, . . . , tn} of [1, a] gives rise to a partition P ′ = {bt0, . . . , btn} of [b, ab],
and conversely.

*16. Prove that ∫ cb

ca

f (t) dt = c

∫ b

a

f (ct) dt.

(Notice that Problem 15 is a special case.)

17. Given that the area enclosed by the unit circle, described by the equation
x2 + y2 = 1, is π , use Problem 16 to show that the area enclosed by the
ellipse described by the equation x2/a2 + y2/b2 = 1 is πab.

18. This problem outlines yet another way to compute
∫ b

a

xn dx; it was used by

Cavalieri, one of the mathematicians working just before the invention of
calculus.

(a) Let cn =
∫ 1

0
xn dx. Use Problem 16 to show that

∫ a

0
xn dx = cna

n+1.

(b) Problem 14 shows that∫ 2a

0
xn dx =

∫ a

−a
(x + a)n dx.

Use this formula to prove that

2n+1cna
n+1 = 2an+1

∑
k even

(
n

k

)
ck.

(c) Now use Problem 2-3 to prove that cn = 1/(n + 1).

19. Suppose that f is bounded on [a, b] and that f is continuous at each point
in [a, b] with the exception of x0 in (a, b). Prove that f is integrable on
[a, b]. Hint: Imitate one of the examples in the text.

20. Suppose that f is nondecreasing on [a, b]. Notice that f is automatically
bounded on [a, b], because f (a) ≤ f (x) ≤ f (b) for x in [a, b].

(a) If P = {t0, . . . , tn} is a partition of [a, b], what is L(f,P) and U(f,P)?
(b) Suppose that ti − ti−1 = δ for each i. Prove that U(f,P) − L(f, P) =

δ[f (b)− f (a)].
(c) Prove that f is integrable.
(d) Give an example of a nondecreasing function on [0,1] which is discon-

tinuous at inˇnitely many points.
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It might be of interest to compare this problem with the following extract
from Newton's Principia.*

LEMMA II

If in any figure AacE, terminated by the right lines Aa, AE, and the curve acE,

there be inscribed any number of parallelograms Ab, Bc, Cd, &c., comprehended

under equal bases AB, BC, CD, &c., and the sides, Bb, Cc, Dd, &c., parallel

to one side Aa of the figure; and the parallelograms aKbl, bLcm, cMdn, &c., are

completed: then if the breadth of those parallelograms be supposed to be diminished,

and their number to be augmented in inˇnitum, I say, that the ultimate ratios

which the inscribed figure AKbLcMdD, the circumscribed figure AalbmcndoE,
and curvilinear figure AabcdE, will have to one another, are ratios of equality.

For the difference of the inscribed and circumscribed ˇgures is the
sum of the parallelograms Kl, Lm, Mn, Do, that is (from the equality
of all their bases), the rectangle under one of their bases Kb and the
sum of their altitudes Aa, that is, the rectangle ABla. But this rectangle,
because its breadth AB is supposed diminished in infinitum, becomes less
than any given space. And therefore (by Lem. 1) the ˇgures inscribed
and circumscribed become ultimately equal one to the other; and much
more will the intermediate curvilinear ˇgure be ultimately equal to either.
Q.E.D.

*21. Suppose that f is increasing. Figure 16 suggests that∫ b

a

f −1 = bf−1(b) − af−1(a) −
∫ f −1(b)

f −1(a)

f.

(a) If P = {t0, . . . , tn} is a partition of [a, b], let P ′ = {f−1(t0), . . . ,

f −1(tn)}. Prove that, as suggested in Figure 17,

L(f −1, P ) + U(f,P ′) = bf−1(b)− af−1(a).

(b) Now prove the formula stated above.

(c) Find
∫ b

a

n
√
x dx for 0 ≤ a < b.

F I G U R E 1 6

22. Suppose that f is a continuous increasing function with f (0) = 0. Prove
that for a, b > 0 we have Young’s inequality,

ab ≤
∫ a

0
f (x)dx +

∫ b

0
f−1(x) dx,

and that equality holds if and only if b = f (a). Hint: Draw a picture like
Figure 16!

* Newton's Principia, A Revision of Mott's Translation, by Florian Cajori. University of California
Press, Berkeley, California, 1946.
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23. (a) Prove that if f is integrable on [a, b] and m ≤ f (x) ≤ M for all x in
[a, b], then

∫ b

a

f (x)dx = (b − a)µ

for some number µ with m ≤ µ ≤ M.

(b) Prove that if f is continuous on [a, b], then

FI G U R E 1 7 ∫ b

a

f (x)dx = (b − a)f (ξ)

for some ξ in [a, b]; and show by an example that continuity is essential.

(c) More generally, suppose that f is continuous on [a, b] and that g is
integrable and nonnegative on [a, b]. Prove that

∫ b

a

f (x)g(x)dx = f (ξ)

∫ b

a

g(x)dx

for some ξ in [a, b]. This result is called the Mean Value Theorem for
Integrals.

(d) Deduce the same result if g is integrable and nonpositive on [a, b].

(e) Show that one of these two hypotheses for g is essential.

24. In this problem we consider the graph of a function in polar coordinatesFI G U R E 1 8

(Chapter 4, Appendix 3). Figure 18 shows a sector of a circle, with central
angle θ . When θ is measured in radians (Chapter 15), the area of this sector

is r2 · θ
2

. Now consider the region A shown in Figure 19, where the curve is
the graph in polar coordinates of the continuous function f . Show that

area A = 1
2

∫ θ1

θ0

f (θ)2dθ.

*25. Let f be a continuous function on [a, b]. If P = {t0, . . . , tn} is a partition of

FI G U R E 1 9

[a, b], deˇne

�(f, P) =
n∑
i=1

√
(ti − ti−1)

2 + [f (ti )− f (ti−1)]2.
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The number �(f, P) represents the length of a polygonal curve inscribed in
the graph of f (see Figure 20). We deˇne the length of f on [a, b] to be
the least upper bound of all �(f, P) for all partitions P (provided that the set
of all such �(f, P) is bounded above).

(a) If f is a linear function on [a, b], prove that the length of f is the
distance from (a, f (a)) to (b, f (b)).

(b) If f is not linear, prove that there is a partition P = {a, t, b} of [a, b]
such that �(f, P) is greater than the distance from (a, f (a)) to (b, f (b)).
(You will need Problem 4-9.)

(c) Conclude that of all functions f on [a, b] with f (a) = c and f (b) = d,F I G U R E 2 0

the length of the linear function is less than the length of any other. (Or,
in conventional but hopelessly muddled terminology: \A straight line is
the shortest distance between two points".)

(d) Suppose that f ′ is bounded on [a, b]. If P is any partition of [a, b]
show that

L
(√

1 + (f ′)2, P
) ≤ �(f, P) ≤ U

(√
1 + (f ′)2, P

)
.

Hint: Use the Mean Value Theorem.
(e) Why is sup

{
L(

√
1 + (f ′)2, P )

} ≤ sup{�(f, P)}? (This is easy.)

(f ) Now show that sup{�(f, P)} ≤ inf
{
U(

√
1 + (f ′)2, P )

}
, thereby proving

that the length of f on [a, b] is
∫ b

a

√
1 + (f ′)2, if

√
1 + (f ′)2 is inte-

grable on [a, b]. Hint: It sufˇces to show that if P ′ and P ′′ are any two

partitions, then �(f, P ′) ≤ U
(√

1 + (f ′)2, P ′′). If P contains the points
of both P ′ and P ′′, how does �(f, P ′) compare to �(f, P)?

(g) Let L(x) be the length of the graph of f on [a, x], and let d(x) be the
length of the straight line segment from (a, f (a)) to (x,f (x)). Show that

lim
x→a

L(x)

d(x)
= 1.

Hint: It will help to use a couple of Mean Value Theorems.

26. A function s deˇned on [a, b] is called a step function if there is a partition
P = {t0, . . . , tn} of [a, b] such that s is a constant on each (ti−1, ti) (the values
of s at ti may be arbitrary).

(a) Prove that if f is integrable on [a, b], then for any ε > 0 there is a step

function s1 ≤ f with
∫ b

a

f −
∫ b

a

s1 < ε, and also a step function s2 ≥ f

with
∫ b

a

s2 −
∫ b

a

f < ε.

(b) Suppose that for all ε > 0 there are step functions s1 ≤ f and s2 ≥ f

such that
∫ b

a

s2 −
∫ b

a

s1 < ε. Prove that f is integrable.
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(c) Find a function f which is not a step function, but which satisˇes
∫ b

a

f =
L(f, P) for some partition P of [a, b].

*27. Prove that if f is integrable on [a, b], then for any ε > 0 there are continuous

functions g ≤ f ≤ h with
∫ b

a

h−
∫ b

a

g < ε. Hint: First get step functions

with this property, and then continuous ones. A picture will help immensely.

28. (a) Show that if s1 and s2 are step functions on [a, b], then s1 + s2 is also.

(b) Prove, without using Theorem 5, that
∫ b

a

(s1 + s2) =
∫ b

a

s1 +
∫ b

a

s2.

(c) Use part (b) (and Problem 26) to give an alternative proof of Theorem 5.

29. Suppose that f is integrable on [a, b]. Prove that there is a number x in

[a, b] such that
∫ x

a

f =
∫ b

x

f. Show by example that it is not always possible

to choose x to be in (a, b).

*30. The purpose of this problem is to show that if f is integrable on [a, b], then
f must be continuous at many points in [a, b].

(a) Let P = {t0, . . . , tn} be a partition of [a, b] with U(f,P) − L(f, P) <

b − a. Prove that for some i we have Mi −mi < 1.
(b) Prove that there are numbers a1 and b1 with a < a1 < b1 < b and

sup{f (x) : a1 ≤ x ≤ b1} − inf {f (x) : a1 ≤ x ≤ b1} < 1. (You can choose
[a1, b1] = [ti−1, ti] from part (a) unless i = 1 or n; and in these two cases
a very simple device solves the problem.)

(c) Prove that there are numbers a2 and b2 with a1 < a2 < b2 < b1 and
sup{f (x) : a2 ≤ x ≤ b2} − inf {f (x) : a2 ≤ x ≤ b2} < 1

2 .
(d) Continue in this way to ˇnd a sequence of intervals In = [an, bn] such

that sup{f (x) : x in In} − inf {f (x) : x in In} < 1/n. Apply the Nested
Intervals Theorem (Problem 8-14) to ˇnd a point x at which f is con-
tinuous.

(e) Prove that f is continuous at inˇnitely many points in [a, b].

*31. Recall, from Problem 13, that
∫ b

a

f ≥ 0 if f (x) ≥ 0 for all x in [a, b].

(a) Give an example where f (x) ≥ 0 for all x, and f (x) > 0 for some x in

[a, b], and
∫ b

a

f = 0.

(b) Suppose f (x) ≥ 0 for all x in [a, b] and f is continuous at x0 in [a, b]

and f (x0) > 0. Prove that
∫ b

a

f > 0. Hint: It sufˇces to ˇnd one lower

sum L(f,P) which is positive.
(c) Suppose f is integrable on [a, b] and f (x) > 0 for all x in [a, b]. Prove

that
∫ b

a

f > 0. Hint: You will need Problem 30; indeed that was one

reason for including Problem 30.
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*32. (a) Suppose that f is continuous on [a, b] and
∫ b

a

fg = 0 for all continuous

functions g on [a, b]. Prove that f = 0. (This is easy; there is an obvious
g to choose.)

(b) Suppose f is continuous on [a, b] and that
∫ b

a

fg = 0 for those con-

tinuous functions g on [a, b] which satisfy the extra conditions g(a) =
g(b) = 0. Prove that f = 0. (This innocent looking fact is an important
lemma in the calculus of variations; see the Suggested Reading for refer-
ences.) Hint: Derive a contradiction from the assumption f (x0) > 0 or
f (x0) < 0; the g you pick will depend on the behavior of f near x0.

33. Let f (x) = x for x rational and f (x) = 0 for x irrational.

(a) Compute L(f,P) for all partitions P of [0,1].
(b) Find inf {U(f,P) : P a partition of [0, 1]}.

*34. Let f (x) = 0 for irrational x, and 1/q if x = p/q in lowest terms. Show

that f is integrable on [0,1] and that
∫ 1

0
f = 0. (Every lower sum is clearly

0; you must ˇgure out how to make upper sums small.)

*35. Find two functions f and g which are integrable, but whose composition
g � f is not. Hint: Problem 34 is relevant.

*36. Let f be a bounded function on [a, b] and let P be a partition of [a, b].
Let Mi and mi have their usual meanings, and let Mi

′ and mi
′ have the

corresponding meanings for the function |f |.
(a) Prove that Mi

′ −mi
′ ≤ Mi −mi .

(b) Prove that if f is integrable on [a, b], then so is |f |.
(c) Prove that if f and g are integrable on [a, b], then so are max(f, g) and

min(f, g).
(d) Prove that f is integrable on [a, b] if and only if its \positive part"

max(f, 0) and its \negative part" min(f, 0) are integrable on [a, b].

37. Prove that if f is integrable on [a, b], then∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣ ≤
∫ b

a

|f (t)| dt.

Hint: This follows easily from a certain string of inequalities; Problem 1-14
is relevant.

*38. Suppose f and g are integrable on [a, b] and f (x), g(x) ≥ 0 for all x in
[a, b]. Let P be a partition of [a, b]. LetMi

′ and mi ′ denote the appropriate
sup's and inf 's for f , deˇneMi

′′ and mi ′′ similarly for g, and deˇneMi and mi
similarly for fg.

(a) Prove that Mi ≤ Mi
′Mi

′′ and mi ≥ mi
′mi ′′.
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(b) Show that

U(fg,P) − L(fg, P) ≤
n∑
i=1

[Mi
′Mi

′′ −mi
′mi ′′](ti − ti−1).

(c) Using the fact that f and g are bounded, so that |f (x)|, |g(x)| ≤ M for
x in [a, b], show that

U(fg,P) − L(fg, P)

≤ M

{
n∑
i=1

[Mi
′ −mi

′](ti − ti−1)+
n∑
i=1

[Mi
′′ −mi

′′](ti − ti−1)

}
.

(d) Prove that fg is integrable.
(e) Now eliminate the restriction that f (x), g(x) ≥ 0 for x in [a, b].

39. Suppose that f and g are integrable on [a, b]. The Cauchy-Schwarz inequality

states that (∫ b

a

fg

)2

≤
(∫ b

a

f 2
)(∫ b

a

g2
)
.

(a) Show that the Schwarz inequality is a special case of the Cauchy-Schwarz
inequality.

(b) Give three proofs of the Cauchy-Schwarz inequality by imitating the
proofs of the Schwarz inequality in Problem 2-21. (The last one will
take some imagination.)

(c) If equality holds, is it necessarily true that f = λg for some λ? What if
f and g are continuous?

(d) Prove that

(∫ 1

0
f

)2

≤
(∫ 1

0
f 2

)
. Is this result true if 0 and 1 are

replaced by a and b?

*40. Suppose that f is continuous and lim
x→∞ f (x) = a. Prove that

lim
x→∞

1
x

∫ x

0
f (t) dt = a.

Hint: The condition lim
x→∞ f (x) = a implies that f (t) is close to a for

t ≥ some N . This means that
∫ N+M

N

f (t) dt is close to Ma. If M is large in

comparison to N , then Ma/(N +M) is close to a.
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APPENDIX. RIEMANN SUMS

Suppose that P = {t0, . . . , tn} is a partition of [a, b], and that for each i we
choose some point xi in [ti−1, ti]. Then we clearly have

L(f,P) ≤
n∑
i=1

f (xi)(ti − ti−1) ≤ U(f,P).

Any sum
n∑
i=1

f (xi)(ti − ti−1) is called a Riemann sum of f for P . Figure 1 shows

the geometric interpretation of a Riemann sum; it is the total area of n rectangles
that lie partly below the graph of f and partly above it. Because of the arbitrary
way in which the heights of the rectangles have been picked, we can't say for
sure whether a particular Riemann sum is less than or greater than the integral∫ b

a

f (x) dx. But it does seem that the overlaps shouldn't matter too much; if the
FI G U R E 1

bases of all the rectangles are narrow enough, then the Riemann sum ought to be
close to the integral. The following theorem states this precisely.

THEOREM 1 Suppose that f is integrable on [a, b]. Then for every ε > 0 there is some δ > 0
such that, if P = {t0, . . . , tn} is any partition of [a,b] with all lengths ti − ti−1 < δ,
then ∣∣∣∣∣

n∑
i=1

f (xi)(ti − ti−1)−
∫ b

a

f (x) dx

∣∣∣∣∣ < ε,

for any Riemann sum formed by choosing xi in [ti−1, ti].

PROOF First we will prove the theorem when f is continuous. As in the proof that a
continuous function is integrable (Theorem 13-3), we will use Theorem 1 from
the Appendix to Chapter 8, so you might want to skip it. But if you've already
read the proof of Theorem 13-3, this part of the proof will be a snap|in fact, it's
practically the same.

Given ε > 0, choose δ > 0 so that for all x and y in [a, b]

if |x − y| < δ, then |f (x)− f (y)| < ε

2(b − a)
.

Now consider any partition P = {t0, . . . , tn} with each ti − ti−1 < δ, and any xi in
[ti−1, ti]. Then, as we saw in the proof of Theorem 13-3, we have

(1) U(f,P) − L(f,P) < ε.

But we also have

(2) L(f,P) ≤
n∑
i=1

f (xi)(ti − ti−1) ≤ U(f,P)

and

(3) L(f, P) ≤
∫ b

a

f (x) dx ≤ U(f,P).
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The desired inequality, for our continuous function f , follows immediately from
(1), (2) and (3).

The argument in the general case is simple (though perhaps a bit messy), using
Problem 13-27, which says that there are continuous functions g ≤ f ≤ h satisfying

(4)
∫ b

a

g ≤
∫ b

a

f ≤
∫ b

a

h,

with ∫ b

a

h−
∫ b

a

g < ε.

We have
n∑
i=1

g(xi)(ti − ti−1) ≤
n∑
i=1

f (xi)(ti − ti−1) ≤
n∑
i=1

h(xi)(ti − ti−1),

and since the theorem holds for continuous functions, we know that for ti−ti−1 < δ,
the left- and right-hand sides of this inequality are close to the left- and right-hand
sides of (4). This implies that the two middle terms,∫ b

a

f and
n∑
i=1

f (xi)(ti − ti−1),

must be close to
∫ b
a
h − ∫ b

a
f , which is small. Detailed inequalities are left to the

skeptical reader.

The moral of this tale is that anything which looks like a good approximation
to an integral really is, provided that all the lengths ti − ti−1 of the intervals in the
partition are small enough. Some of the following problems should bring home
this message with even greater force.

PROBLEMS

1. Suppose that f and g are continuous functions on [a, b]. For a partition
P = {t0, . . . , tn} of [a, b] choose a set of points xi in [ti−1, ti] and another set
of points ui in [ti−1, ti]. Consider the sum

n∑
i=1

f (xi)g(ui )(ti − ti−1).

Notice that this is not a Riemann sum of fg for P . Nevertheless, show that

all such sums will be within ε of
∫ b

a

fg provided that the partition P has all

lengths ti − ti−1 small enough. Hint: Estimate the difference between such a
sum and a Riemann sum; you will need to use uniform continuity.
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2. This problem is similar to, but somewhat harder than, the previous one.
Suppose that f and g are continuous nonnegative functions on [a, b]. For a
partition P , consider sums

n∑
i=1

√
f (xi)+ g(ui) (ti − ti−1).

Show that these sums will be within ε of
∫ b

a

√
f + g if all ti − ti−1 are small

enough. Hint: Use the fact that the square-root function is uniformly con-
tinuous on a closed interval [0,M].

3. Finally, we're ready to tackle something big! (Compare Problem 13-25.)
Consider a curve c given parametrically by two functions u and v on [a, b].
For a partition P = {t0, . . . , tn} of [a, b] we deˇne

�(c, P ) =
n∑
i=1

√
[u(ti)− u(ti−1)]2 + [v(ti)− v(ti−1)]2;

this represents the length of an inscribed polygonal curve (Figure 2). WeFI G U R E 2
deˇne the length of c to be the least upper bound of all �(f, P), if it exists.
Prove that if u′ and v′ are continuous on [a, b], then the length of c is∫ b

a

√
u′ 2 + v′ 2.

4. Let f ′ be continuous on the interval [θ0, θ1]. Show that the graph of f in
polar coordinates on this interval has the length∫ θ1

θ0

√
f 2 + f ′ 2.

5. Using Theorem 1, show that the Cauchy-Schwarz inequality (Problem 13-39)
is a consequence of the Schwarz inequality.



CHAPTER 14 THE FUNDAMENTAL THEOREM
OF CALCULUS

From the hints given in the previous chapter you may have already guessed the
ˇrst theorem of this chapter. We know that if f is integrable, then F(x) = ∫ x

a
f is

continuous; it is only ˇtting that we ask what happens when the original function f
is continuous. It turns out that F is differentiable (and its derivative is especially
simple).

THEOREM 1 (THE FIRST

FUNDAMENTAL THEOREM

OF CALCULUS)

Let f be integrable on [a, b], and deˇne F on [a,b] by

F(x) =
∫ x

a

f.

If f is continuous at c in [a, b], then F is differentiable at c, and

F ′(c) = f (c).

(If c = a or b, then F ′(c) is understood to mean the right- or left-hand derivative
of F .)

PROOF We will assume that c is in (a, b); the easy modiˇcations for c = a or b may be
supplied by the reader. By deˇnition,

F ′(c) = lim
h→0

F(c + h)− F(c)

h
.

Suppose ˇrst that h > 0. Then

F(c + h)− F(c) =
∫ c+h

c

f.

Deˇne mh and Mh as follows (Figure 1):

mh = inf {f (x) : c ≤ x ≤ c+ h},
Mh = sup{f (x) : c ≤ x ≤ c+ h}.

It follows from Theorem 13-7 that

mh · h ≤
∫ c+h

c

f ≤ Mh · h.

Therefore

mh ≤ F(c + h)− F(c)

h
≤ Mh.

If h < 0, only a few details of the argument have to be changed. Let

mh = inf {f (x) : c + h ≤ x ≤ c},
Mh = sup{f (x) : c + h ≤ x ≤ c}.

282
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F I G U R E 1

Then

mh · (−h) ≤
∫ c

c+h
f ≤ Mh · (−h).

Since

F(c + h)− F(c) =
∫ c+h

c

f = −
∫ c

c+h
f

this yields
mh · h ≥ F(c + h)− F(c) ≥ Mh · h.

Since h < 0, dividing by h reverses the inequality again, yielding the same result
as before:

mh ≤ F(c + h)− F(c)

h
≤ Mh.

This inequality is true for any integrable function, continuous or not. Since f is
continuous at c, however,

lim
h→0

mh = lim
h→0

Mh = f (c),

and this proves that

F ′(c) = lim
h→0

F(c + h)− F(c)

h
= f (c).

Although Theorem 1 deals only with the function obtained by varying the upper
limit of integration, a simple trick shows what happens when the lower limit is
varied. If G is deˇned by

G(x) =
∫ b

x

f,
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then

G(x) =
∫ b

a

f −
∫ x

a

f.

Consequently, if f is continuous at c, then

G′(c) = −f (c).
The minus sign appearing here is very fortunate, and allows us to extend Theo-
rem 1 to the situation where the function

F(x) =
∫ x

a

f

is deˇned even for x < a. In this case we can write

F(x) = −
∫ a

x

f,

so if c < a we have
F ′(c) = −(−f (c)) = f (c),

exactly as before.
Notice that in either case, differentiability of F at c is ensured by continuity of f

at c alone. Nevertheless, Theorem 1 is most interesting when f is continuous at
all points in [a, b]. In this case F is differentiable at all points in [a, b] and

F ′ = f.

In general, it is extremely difˇcult to decide whether a given function f is the
derivative of some other function; for this reason Theorem 11-7 and
Problems 11-54 and 11-55 are particularly interesting, since they reveal certain
properties which f must have. If f is continuous, however, there is no problem
at all|according to Theorem 1, f is the derivative of some function, namely the
function

F(x) =
∫ x

a

f.

Theorem 1 has a simple corollary which frequently reduces computations of
integrals to a triviality.

COROLLARY If f is continuous on [a, b] and f = g′ for some function g, then∫ b

a

f = g(b)− g(a).

PROOF Let

F(x) =
∫ x

a

f.

Then F ′ = f = g′ on [a, b]. Consequently, there is a number c such that

F = g + c.
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The number c can be evaluated easily: note that

0 = F(a) = g(a)+ c,

so c = −g(a); thus
F(x) = g(x)− g(a).

This is true, in particular, for x = b. Thus∫ b

a

f = F(b) = g(b)− g(a).

The proof of this corollary tends, at ˇrst sight, to make the corollary seem useless:
after all, what good is it to know that∫ b

a

f = g(b)− b(a)

if g is, for example, g(x) = ∫ x
a
f ? The point, of course, is that one might happen

to know a quite different function g with this property. For example, if

g(x) = x3

3
and f (x) = x2,

then g′(x) = f (x) so we obtain, without ever computing lower and upper sums:∫ b

a

x2 dx = b3

3
− a3

3
.

One can treat other powers similarly; if n is a natural number and g(x) =
xn+1/(n+ 1), then g′(x) = xn, so∫ b

a

xn dx = bn+1

n+ 1
− an+1

n+ 1
.

For any natural number n, the function f (x) = x−n is not bounded on any interval
containing 0, but if a and b are both positive or both negative, then∫ b

a

x−n dx = b−n+1

−n+ 1
− a−n+1

−n+ 1
.

Naturally this formula is only true for n �= −1. We do not know a simple expression for∫ b

a

1
x
dx.

The problem of computing this integral is discussed later, but it provides a good
opportunity to warn against a serious error. The conclusion of Corollary 1 is often
confused with the deˇnition of integrals|many students think that

∫ b
a
f is deˇned

as: \g(b)− g(a), where g is a function whose derivative is f ." This \deˇnition" is
not only wrong|it is useless. One reason is that a function f may be integrable
without being the derivative of another function. For example, if f (x) = 0 for
x �= 1 and f (1) = 1, then f is integrable, but f cannot be a derivative (why not?).
There is also another reason that is much more important: If f is continuous,
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then we know that f = g′ for some function g; but we know this only because of

Theorem 1. The function f (x) = 1/x provides an excellent illustration: if x > 0,
then f (x) = g′(x), where

g(x) =
∫ x

1

1
t
dt,

and we know of no simpler function g with this property.
The corollary to Theorem 1 is so useful that it is frequently called the Second

Fundamental Theorem of Calculus. In this book, that name is reserved for a
somewhat stronger result (which in practice, however, is not much more useful).
As we have just mentioned, a function f might be of the form g′ even if f is not
continuous. If f is integrable, then it is still true that∫ b

a

f = g(b)− g(a).

The proof, however, must be entirely different|we cannot use Theorem 1, so we
must return to the deˇnition of integrals.

THEOREM 2 (THE SECOND FUNDA-

MENTAL THEOREM OF CALCULUS)

If f is integrable on [a, b] and f = g′ for some function g, then∫ b

a

f = g(b)− g(a).

PROOF Let P = {t0, . . . , tn} be any partition of [a, b]. By the Mean Value Theorem there
is a point xi in [ti−1, ti] such that

g(ti)− g(ti−1) = g′(xi)(ti − ti−1)

= f (xi)(ti − ti−1).

If

mi = inf {f (x) : ti−1 ≤ x ≤ ti},
Mi = sup{f (x) : ti−1 ≤ x ≤ ti},

then clearly
mi(ti − ti−1) ≤ f (xi)(ti − ti−1) ≤ Mi(ti − ti−1),

that is,
mi(ti − ti−1) ≤ g(ti )− g(ti−1) ≤ Mi(ti − ti−1).

Adding these equations for i = 1, . . . , n we obtain
n∑
i=1

mi(ti − ti−1) ≤ g(b)− g(a) ≤
n∑
i=1

Mi(ti − ti−1)

so that
L(f,P) ≤ g(b)− g(a) ≤ U(f,P)

for every partition P . But this means that

g(b)− g(a) =
∫ b

a

f.
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We have already used the corollary to Theorem 1 (or, equivalently, Theorem 2)
to ˇnd the integrals of a few elementary functions:

∫ b

a

xn dx = bn+1

n+ 1
− an+1

n+ 1
, n �= −1.

(a and b both positive or
both negative if n > 0).

As we pointed out in Chapter 13, this integral does not always represent the area
bounded by the graph of the function, the horizontal axis, and the vertical lines
through (a,0) and (b,0). For example, if a < 0 < b, then

∫ b

a

x3 dx

does not represent the area of the region shown in Figure 2, which is given
instead by

−
(∫ 0

a

x3 dx

)
+
∫ b

0
x3 dx = −

(
04

4
− a4

4

)
+
(
b4

4
− 04

4

)

= a4

4
+ b4

4
.

Similar care must be exercised in ˇnding the areas of regions which are boundedFI G U R E 2

by the graphs of more than one function|a problem which may frequently involve
considerable ingenuity in any case. Suppose, to take a simple example ˇrst, that
we wish to ˇnd the area of the region, shown in Figure 3, between the graphs of
the functions

f (x) = x2 and g(x) = x3

on the interval [0,1]. If 0 ≤ x ≤ 1, then 0 ≤ x3 ≤ x2, so that the graph of g lies
below that of f . The area of the region of interest to us is therefore

area R(f, 0,1)− area R(g, 0, 1),

which is ∫ 1

0
x2 dx −

∫ 1

0
x3 dx = 1

3 − 1
4 = 1

12 .

This area could have been expressed as

∫ b

a

(f − g).

If g(x) ≤ f (x) for all x in [a, b], then this integral always gives the area bounded
by f and g, even if f and g are sometimes negative. The easiest way to see this is shown
in Figure 4. If c is a number such that f + c and g+ c are nonnegative on [a, b],
then the region R1, bounded by f and g, has the same area as the region R2,F I G U R E 3
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bounded by f + c and g + c. Consequently,

area R1 = area R2 =
∫ b

a

(f + c)−
∫ b

a

(g + c)

=
∫ b

a

[(f + c)− (g + c)]

=
∫ b

a

(f − g).

This observation is useful in the following problem: Find the area of the region
bounded by the graphs of

f (x) = x3 − x and g(x) = x2.

The ˇrst necessity is to determine this region more precisely. The graphs of f
and g intersect when

x3 − x = x2,

or x3 − x2 − x = 0,
or x(x2 − x − 1) = 0,

or x = 0,
1 +

√
5

2
,

1 −
√

5
2

.

On the interval ([1 −
√

5 ]/2, 0) we have x3 − x ≥ x2 and on the interval
(0, [1 +

√
5 ]/2) we have x2 ≥ x3 − x. These assertions are apparent from the

graphs (Figure 5), but they can also be checked easily, as follows. Since f (x) = g(x)

only if x = 0, [1+
√

5 ]/2, or [1−
√

5 ]/2, the function f −g does not change sign
on the intervals ([1−

√
5 ]/2,0) and (0, [1+

√
5 ]/2); it is therefore only necessaryFI G U R E 4

to observe, for example, that

(− 1
2 )

3 − (− 1
2 )− (− 1

2)
2 = 1

8 > 0,

13 − 1 − 12 = −1 < 0,

to conclude that

f − g ≥ 0 on ([1 −
√

5 ]/2,0),

f − g ≤ 0 on (0, [1 +
√

5 ]/2).

The area of the region in question is thus

∫ 0

1−
√

5
2

(x3 − x − x2) dx +
∫ 1+

√
5

2

0
[x2 − (x3 − x)] dx.

As this example reveals, one of the major problems involved in ˇnding the areas
of a region may be the exact determination of the region. There are, however,
more substantial problems of a logical nature|we have thus far deˇned the areas
of some very special regions only, which do not even include some of the regions
whose areas have just been computed! We have simply assumed that area made
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F I G U R E 5

sense for these regions, and that certain reasonable properties of \area" do hold.
These remarks are not meant to suggest that you should regard exercising ingenuity
to compute areas as beneath you, but are meant to indicate that a better approach
to the deˇnition of area is available, although its proper place is somewhere in
advanced calculus. The desire to deˇne area was the motivation, both in this
book and historically, for the deˇnition of the integral, but the integral does not
really provide the best method of defining areas, although it is frequently the proper
tool for computing them.

It may be discouraging to learn that integrals are not suitable for the very pur-
pose for which they were invented, but we will soon see how essential they are for
other purposes. The most important use of integrals has already been emphasized:
if f is continuous, the integral provides a function y such that

y ′(x) = f (x).

This equation is the simplest example of a \differential equation" (an equation
for a function y which involves derivatives of y ). The Fundamental Theorem
of Calculus says that this differential equation has a solution, if f is continuous.
In succeeding chapters, and in various problems, we will solve more complicated
equations, but the solution almost always depends somehow on the integral; in
order to solve a differential equation it is necessary to construct a new function,
and the integral is one of the best ways of doing this.

Since the differentiable functions provided by the Fundamental Theorem of
Calculus will play such a prominent role in later work, it is very important to
realize that these functions may be combined, like less esoteric functions, to yield
still more functions, whose derivatives can be found by the Chain Rule.

Suppose, for example, that

f (x) =
∫ x3

a

1

1 + sin2 t
dt.
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Although the notation tends to disguise the fact somewhat, f is the composition
of the functions

C(x) = x3 and F(x) =
∫ x

a

1

1 + sin2 t
dt.

In fact, f (x) = F(C(x)); in other words, f = F � C. Therefore, by the Chain
Rule,

f ′(x) = F ′(C(x)) · C ′(x)

= F ′(x3) · 3x2

= 1

1 + sin2 x3
· 3x2.

If f is deˇned, instead, as

f (x) =
∫ a

x3

1

1 + sin2 t
dt,

then

f ′(x) = − 1

1 + sin2 x3
· 3x2.

If f is deˇned as the reverse composition,

f (x) =
(∫ x

a

1

1 + sin2 t
dt

)3

,

then

f ′(x) = C ′(F (x)) · F ′(x)

= 3
(∫ x

a

1

1 + sin2 t
dt

)2

· 1

1 + sin2 x
.

Similarly, if

f (x) =
∫ sin x

a

1

1 + sin2 t
dt,

g(x) =
∫ a

sin x

1

1 + sin2 t
dt,

h(x) = sin
(∫ x

a

1

1 + sin2 t
dt

)
,

then

f ′(x) = 1

1 + sin2(sin x)
· cos x,

g′(x) = −1

1 + sin2(sin x)
· cos x,

h′(x) = cos
(∫ x

a

1

1 + sin2 t
dt

)
· 1

1 + sin2 x
.
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The formidable appearing function

f (x) =
∫ (∫ x

a

1
1+sin2 t

dt

)
a

1

1 + sin2 t
dt

is also a composition; in fact, f = F � F . Therefore

f ′(x) = F ′(F (x)) · F ′(x)

= 1

1 + sin2
(∫ x

a

1

1 + sin2 t
dt

) · 1

1 + sin2
x
.

As these examples reveal, the expression occurring above (or below) the integral
sign indicates the function which will appear on the right when f is written as a
composition. As a ˇnal example, consider the triple compositions

f (x) =
∫ (∫ x3

a

1
1+sin2 t

dt

)
a

1

1 + sin2 t
dt, g(x) =

∫


(∫ x

a
1

1+sin2
t
dt
)

∫
a

1
1+sin2

t
dt




a

1

1 + sin2 t
dt,

which can be written

f = F � F � C and g = F � F � F.
Omitting the intermediate steps (which you may supply, if you still feel insecure),
we obtain

f ′(x) = 1

1 + sin2

(∫ x3

a

1

1 + sin2 t
dt

) · 1

1 + sin2 x3
· 3x2,

g′(x) = 1

1 + sin2


∫

(∫ x

a

1
1+sin2 t

dt

)
a

1

1 + sin2 t
dt




· 1

1 + sin2
(∫ x

a

1

1 + sin2
t
dt

)

· 1

1 + sin2 x
.

Like the simpler differentiations of Chapter 10, these manipulations should be-
come much easier after the practice provided by some of the problems, and, like
the problems of Chapter 10, these differentiations are simply a test of your under-
standing of the Chain Rule, in the somewhat unfamiliar context provided by the
Fundamental Theorem of Calculus.

The powerful uses to which the integral will be put in the following chapters
all depend on the Fundamental Theorem of Calculus, yet the proof of that the-
orem was quite easy|it seems that all the real work went into the deˇnition of
the integral. Actually, this is not quite true. In order to apply Theorem 1 to a
continuous function we need to know that if f is continuous on [a,b], then f is
integrable on [a, b]. Although we've already offered one proof of this result, there
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is a more elementary argument that you might prefer. Like most \elementary"
arguments, it's quite tricky, but it has the virtue that it will force a review of the
proof of Theorem 1.

If f is any bounded function on [a, b], then

sup{L(f, P)} and inf {U(f,P)}
will both exist, even if f is not integrable. These numbers are called the lower
integral of f on [a, b] and the upper integral of f on [a, b], respectively, and
will be denoted by

L
∫ b

a

f and U
∫ b

a

f.

The lower and upper integrals both have several properties which the integral
possesses. In particular, if a < c < b, then

L
∫ b

a

f = L
∫ c

a

f + L
∫ b

c

f and U
∫ b

a

f = U
∫ c

a

f + U
∫ b

c

f,

and if m ≤ f (x) ≤ M for all x in [a, b], then

m(b − a) ≤ L
∫ b

a

f ≤ U
∫ b

a

f ≤ M(b − a).

The proofs of these facts are left as an exercise, since they are quite similar to the
corresponding proofs for integrals. The results for integrals are actually a corollary
of the results for upper and lower integrals, because f is integrable precisely when

L
∫ b

a

f = U
∫ b

a

f.

We will prove that a continuous function f is integrable by showing that this
equality always holds for continuous functions. It is actually easier to show that

L
∫ x

a

f = U
∫ x

a

f

for all x in [a, b]; the trick is to note that most of the proof of Theorem 1 didn't
even depend on the fact that f was integrable!

THEOREM 13-3 If f is continuous on [a, b], then f is integrable on [a, b].

PROOF Deˇne functions L and U on [a, b] by

L(x) = L
∫ x

a

f and U(x) = U
∫ x

a

f.

Let x be in (a, b). If h > 0 and

mh = inf {f (t) : x ≤ t ≤ x + h},
Mh = sup{f (t) : x ≤ t ≤ x + h},
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then

mh · h ≤ L
∫ x+h

x

f ≤ U
∫ x+h

x

f ≤ Mh · h,
so

mh · h ≤ L(x + h)− L(x) ≤ U(x + h)− U(x) ≤ Mh · h
or

mh ≤ L(x + h)− L(x)

h
≤ U(x + h)− U(x)

h
≤ Mh.

If h < 0 and

mh = inf {f (t) : x + h ≤ t ≤ x},
Mh = sup{f (t) : x + h ≤ t ≤ x},

one obtains the same inequality, precisely as in the proof of Theorem 1.
Since f is continuous at x, we have

lim
h→0

mh = lim
h→0

Mh = f (x),

and this proves that

L′(x) = U ′(x) = f (x) for x in (a, b).

This means that there is a number c such that

U(x) = L(x)+ c for all x in [a, b].

Since
U(a) = L(a) = 0,

the number c must equal 0, so

U(x) = L(x) for all x in [a, b].

In particular,

U
∫ b

a

f = U(b) = L(b) = L
∫ b

a

f,

and this means that f is integrable on [a, b].

PROBLEMS

1. Find the derivatives of each of the following functions.

(i) F(x) =
∫ x3

a

sin3 t dt .

(ii) F(x) =
∫ (∫ x

1
sin3

t dt
)

3

1

1 + sin6
t + t2

dt

(iii) F(x) =
∫ x

15

(∫ y

8

1

1 + t2 + sin2 t
dt

)
dy.

(iv) F(x) =
∫ b

x

1

1 + t2 + sin2 t
dt .
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(v) F(x) =
∫ b

a

x

1 + t2 + sin2 t
dt .

(vi) F(x) = sin
(∫ x

0
sin
(∫ y

0
sin3 t dt

)
dy

)
.

(vii) F−1, where F(x) =
∫ x

1

1
t
dt .

(viii) F−1, where F(x) =
∫ x

0

1√
1 − t2

dt .




(Find (F−1)′(x) in terms of
F−1(x).)

F I G U R E 6

2. For each of the following f , if F(x) = ∫ x
0 f , at which points x is F ′(x) =

f (x)? (Caution: it might happen that F ′(x) = f (x), even if f is not contin-
uous at x.)

(i) f (x) = 0 if x ≤ 1, f (x) = 1 if x > 1.
(ii) f (x) = 0 if x < 1, f (x) = 1 if x ≥ 1.
(iii) f (x) = 0 if x �= 1, f (x) = 1 if x = 1.
(iv) f (x) = 0 if x is irrational, f (x) = 1/q if x = p/q in lowest terms.
(v) f (x) = 0 if x ≤ 0, f (x) = x if x ≥ 0.
(vi) f (x) = 0 if x ≤ 0 or x > 1, f (x) = 1/[1/x] if 0 < x ≤ 1.
(vii) f is the function shown in Figure 6.
(viii) f (x) = 1 if x = 1/n for some n in N, f (x) = 0 otherwise.

3. Let f be integrable on [a, b], let c be in (a, b), and let

F(x) =
∫ x

a

f, a ≤ x ≤ b.

For each of the following statements, give either a proof or a counterexample.

(a) If f is differentiable at c, then F is differentiable at c.
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(b) If f is differentiable at c, then F ′ is continuous at c.
(c) If f ′ is continuous at c, then F ′ is continuous at c.

4. Show that the values of the following expressions do not depend on x:

(i)
∫ x

0

1
1 + t2

dt +
∫ 1/x

0

1
1 + t2

dt .

(ii)
∫ sin x

− cos x

1√
1 − t2

dt, x ∈ [0, π/2].

5. Find (f −1)′(0) if

(i) f (x) =
∫ x

0
1 + sin(sin t) dt .

(ii) f (x) =
∫ x

1
cos(cos t) dt .

(Don't try to evaluate f explicitly.)

6. Find a function g such that

(i)
∫ x

0
tg(t) dt = x + x2.

(ii)
∫ x2

0
tg(t) dt = x + x2.

(Notice that g is not assumed continuous at 0.)

7. Find all continuous functions f satisfying∫ x

0
f = (f (x))2 + C.

for some constant C.

*8. Suppose that f is a differentiable function with f (0) = 0 and 0 < f ′ ≤ 1.
Prove that for all x ≥ 0 we have∫ x

0
f 3 ≤

(∫ x

0
f

)2

.

*9. Let

f (x) =

 cos

1
x
, x �= 0

0, x = 0.

Is the function F(x) = ∫ x0 f differentiable at 0? Hint: Stare at page 177.

10. Use Problem 13-23 to prove that

(i)
1

7
√

2
≤
∫ 1

0

x6√
1 + x2

dx ≤ 1
7

.

(ii)
3
8

≤
∫ 1/2

0

√
1 − x

1 + x
dx ≤

√
3

4
.
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11. Find F ′(x) if F(x) = ∫ x
0 xf (t) dt . (The answer is not xf (x); you should

perform an obvious manipulation on the integral before trying to ˇnd F ′.)

12. Prove that if f is continuous, then∫ x

0
f (u)(x − u) du =

∫ x

0

(∫ u

0
f (t) dt

)
du.

Hint: Differentiate both sides, making use of Problem 11.

*13. Use Problem 12 to prove that∫ x

0
f (u)(x − u)2 du = 2

∫ x

0

(∫ u2

0

(∫ u1

0
f (t) dt

)
du1

)
du2.

14. Find a function f such that f ′′′(x) = 1
/ √

1 + sin2 x. (This problem is
supposed to be easy; don't misinterpret the word \ˇnd.")

*15. A function f is periodic, with period a, if f (x + a) = f (x) for all x.

(a) If f is periodic with period a and integrable on [0, a], show that∫ a

0
f =

∫ b+a

b

f for all b.

(b) Find a function f such that f is not periodic, but f ′ is. Hint: Choose
a periodic g for which it can be guaranteed that f (x) = ∫ x

0 g is not
periodic.

(c) Suppose that f ′ is periodic with period a. Prove that f is periodic if and
only if f (a) = f (0).

16. Find
∫ b

0
n
√
x dx, by simply guessing a function f with f ′(x) = n

√
x, and using

the Second Fundamental Theorem of Calculus. Then check with Prob-
lem 13-21.

*17. Use the Fundamental Theorem of Calculus and Problem 13-21 to derive the
result stated in Problem 12-18.

18. Let C1, C and C2 be curves passing through the origin, as shown in Figure 7.
Each point on C can be joined to a point of C1 with a vertical line segment
and to a point of C2 with a horizontal line segment. We will say that C bisects

C1 and C2 if the regions A and B have equal areas for every point on C.

(a) If C1 is the graph of f (x) = x2, x ≥ 0 and C is the graph of f (x) = 2x2,
x ≥ 0, ˇnd C2 so that C bisects C1 and C2.

(b) More generally, ˇnd C2 if C1 is the graph of f (x) = xm, and C is the
graph of f (x) = cxm for some c > 1.FI G U R E 7

19. (a) Find the derivatives of F(x) = ∫ x1 1/t dt and G(x) = ∫ bx
b

1/t dt .
(b) Now give a new proof for Problem 13-15.

*20. Use the Fundamental Theorem of Calculus and Darboux's Theorem (Prob-
lem 11-54) to give another proof of the Intermediate Value Theorem.
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21. Prove that if h is continuous, f and g are differentiable, and

F(x) =
∫ g(x)

f (x)

h(t) dt,

then F ′(x) = h(g(x)) · g′(x)− h(f (x)) · f ′(x). Hint: Try to reduce this to
the two cases you can already handle, with a constant either as the lower or
the upper limit of integration.

22. Suppose that f ′ is integrable on [0, 1] and f (0) = 0. Prove that for all x in
[0,1] we have

|f (x)| ≤
√∫ 1

0
|f ′|2.

Show also that the hypothesis f (0) = 0 is needed. Hint: Problem 13-39.

*23. (a) Suppose G′ = g and F ′ = f . Prove that if the function y satisˇes the
differential equation

(∗) g(y(x)) · y ′(x) = f (x) for all x in some interval,

then there is a number c such that

(∗∗) G(y(x))= F(x)+ c for all x in this interval.

(b) Show, conversely, that if y satisˇes (∗∗), then y is a solution of (∗).
(c) Find what condition y must satisfy if

y ′(x) = 1 + x2

1 + y(x)
.

(In this case g(t) = 1 + t and f (t) = 1 + t2.) Then \solve" the resulting
equations to ˇnd all possible solutions y (no solution will have R as its
domain).

(d) Find what condition y must satisfy if

y ′(x) = −1
1 + 5[y(x)]4 .

(An appeal to Problem 12-11 will show that there are functions satisfying
the resulting equation.)

(e) Find all functions y satisfying

y(x)y ′(x) = −x.
Find the solution y satisfying y(0) = −1.

24. In Problem 10-17 we found that the Schwarzian derivative

f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

was 0 for f (x) = (ax + b)/(cx + d). Now suppose that f is any function
whose Schwarzian derivative is 0.
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(a) f ′′ 2/f ′ 3 is a constant function.
(b) f is the form f (x) = (ax + b)/(cx + d). Hint: Consider u = f ′ and

apply the previous problem.

*25. The limit lim
N→∞

∫ N
a
f , if it exists, is denoted by

∫∞
a
f (or

∫∞
a
f (x) dx ), and

called an \improper integral."

(a) Determine
∫∞

1 xr dx, if r < −1.
(b) Use Problem 13-15 to show that

∫∞
1 1/x dx does not exist. Hint: What

can you say about
∫ 2n

1 1/x dx?
(c) Suppose that f (x) ≥ 0 for x ≥ 0 and that

∫∞
0 f exists. Prove that if

0 ≤ g(x) ≤ f (x) for all x ≥ 0, and g is integrable on each interval
[0, N], then

∫∞
0 g also exists.

(d) Explain why
∫∞

0 1/(1 + x2) dx exists. Hint: Split this integral up at 1.

26. Decide whether or not the following improper integrals exist.

(i)
∫ ∞

0

1√
1 + x3

dx.

(ii)
∫ ∞

0

x

1 + x3/2 dx.

(iii)
∫ ∞

0

1

x
√

1 + x
dx.

*27. The improper integral
∫ a
−∞ f is deˇned in the obvious way, as lim

N→−∞
∫ a
N
f .

But another kind of improper integral
∫∞
−∞ f is deˇned in a nonobvious way:

it is
∫∞

0 f + ∫ 0
−∞ f , provided these improper integrals both exist.

(a) Explain why
∫∞
−∞ 1/(1 + x2) dx exists.

(b) Explain why
∫∞
−∞ x dx does not exist. (But notice that lim

N→∞
∫ N
−N x dx does

exist.)
(c) Prove that if

∫∞
−∞ f exists, then lim

N→∞
∫ N
−N f exists and equals

∫∞
−∞ f .

Show moreover, that lim
N→∞

∫ N+1
−N f and lim

N→∞
∫ N
−N2 f both exist and equal∫∞

−∞ f . Can you state a reasonable generalization of these facts? (If you
can't, you will have a miserable time trying to do these special cases!)

*28. There is another kind of \improper integral" in which the interval is
bounded, but the function is unbounded:

(a) If a > 0, ˇnd lim
ε→0+

∫ a
ε

1/
√
x dx. This limit is denoted by

∫ a
0 1/

√
x dx,

even though the function f (x) = 1/
√
x is not bounded on [0, a], no

matter how we deˇne f (0).
(b) Find

∫ a
0 x

r dx if −1 < r < 0.
(c) Use Problem 13-15 to show that

∫ a
0 x

−1 dx does not make sense, even as
a limit.
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(d) Invent a reasonable deˇnition of
∫ 0
a

|x|r dx for a < 0 and compute it for
−1 < r < 0.

(e) Invent a reasonable deˇnition of
∫ 1
−1(1 − x2)−1/2 dx, as a sum of two

limits, and show that the limits exist. Hint: Why does
∫ 0
−1(1 + x)−1/2 dx

exist? How does (1 + x)−1/2 compare with (1 − x2)−1/2 for −1 < x < 0?

29. (a) If f is continuous on [0,1], compute lim
x→0+

x

∫ 1

x

f (t)

t
dt .

(b) If f is integrable on [0, 1] and lim
x→0

f (x) exists, compute lim
x→0+

x

∫ 1

x

f (t)

t2
dt .

*30. It is possible, ˇnally, to combine the two possible extensions of the notion of
the integral.

(a) If f (x) = 1/
√
x for 0 ≤ x ≤ 1 and f (x) = 1/x2 for x ≥ 1, ˇnd∫ ∞

0
f (x)dx (after deciding what this should mean).

(b) Show that
∫ ∞

0
xr dx never makes sense. (Distinguish the cases −1 <

r < 0 and r < −1. In one case things go wrong at 0, in the other case
at ∞; for r = −1 things go wrong at both places.)



CHAPTER 1 5 THE TRIGONOMETRIC FUNCTIONS

The deˇnitions of the functions sin and cos are considerably more subtle than
one might suspect. For this reason, this chapter begins with some informal and
intuitive deˇnitions, which should not be scrutinized too carefully, as they shall
soon be replaced by the formal deˇnitions which we really intend to use.

In elementary geometry an angle is simply the union of two half-lines with a
common initial point (Figure 1).

F I G U R E 1

More useful for trigonometry are \directed angles," which may be regarded as
pairs (l1, l2) of half-lines with the same initial point, visualized as in Figure 2.

FI G U R E 2

If for l1 we always choose the positive half of the horizontal axis, a directed angle
is described completely by the second half-line (Figure 3).

Since each half-line intersects the unit circle precisely once, a directed angle is
described, even more simply, by a point on the unit circle (Figure 4), that is, by a
point (x, y) with x2 + y2 = 1.FI G U R E 3

300
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The sine and cosine of a directed angle can now be deˇned as follows (Figure 5):
a directed angle is determined by a point (x, y) with x2 + y2 = 1; the sine of the
angle is deˇned as y, and the cosine as x.

Despite the aura of precision surrounding the previous paragraph, we are not
yet ˇnished with the deˇnitions of sin and cos. Indeed, we have barely begun.
What we have deˇned is the sine and cosine of a directed angle; what we want

to deˇne is sin x and cos x for each number x. The usual procedure for doing
this depends on associating an angle to every number. The oldest method is to
\measure angles in degrees." An angle \all the way around" is associated to 360,
an angle \half-way around" is associated to 180, an angle \a quarter way around"
to 90, etc. (Figure 6). The angle associated, in this manner, to the number x, is
called \the angle of x degrees." The angle of 0 degrees is the same as the angle
of 360 degrees, and this ambiguity is purposely extended further, so that an angleFI G U R E 4

of 90 degrees is also an angle of 360 + 90 degrees, etc. One can now deˇne a
function, which we will denote by sin◦, as follows:

sin◦(x) = sine of the angle of x degrees.

There are two difˇculties with this approach. Although it may be clear what we
mean by an angle of 90 or 45 degrees, it is not quite clear what an angle of

√
2

degrees is, for example. Even if this difˇculty could be circumvented, it is unlikely
that this system, depending as it does on the arbitrary choice of 360, will lead
to elegant results|it would be sheer luck if the function sin◦ had mathematically
pleasing properties.

\Radian measure" appears to offer a remedy for both these defects. Given any
number x, choose a point P on the unit circle such that x is the length of the
arc of the circle beginning at (1, 0) and running counterclockwise to P (Figure 7).
The directed angle determined by P is called \the angle of x radians." Since the
length of the whole circle is 2π , the angle of x radians and the angle of 2π + x

radians are identical. A function sinr can now be deˇned as follows:F I G U R E 5

sinr (x) = sine of the angle of x radians.

This same method can easily be adopted to deˇne sin◦; since we want to have
sin◦ 360 = sinr 2π , we can deˇne

sin◦
x = sinr

2πx
360

= sinr
πx

180
.

We shall soon drop the superscript r in sinr , since sinr (and not sin◦) is the only
function which will interest us; before we do, a few words of warning are advisable.

The expressions sin◦ x and sinr x are sometimes written

sin x◦

sin x radians,

but this notation is quite misleading; a number x is simply a number|it does notFI G U R E 6

carry a banner indicating that it is \in degrees" or \in radians." If the meaning
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of the notation \sin x" is in doubt one usually asks:

\Is x in degrees or radians?"

but what one means is:

\Do you mean `sin◦' or `sinr '?"

Even for mathematicians, addicted to precision, these remarks might be dispens-
able, were it not for the fact that failure to take them into account will lead to
incorrect answers to certain problems (an example is given in Problem 19).

Although the function sinr is the function which we wish to denote simply by sin
(and use exclusively henceforth), there is a difˇculty involved even in the deˇnition
of sinr . Our proposed deˇnition depends on the concept of the length of a curve.F I G U R E 7
Although the length of a curve has been deˇned in several problems, it is also easy
to reformulate the deˇnition in terms of areas. (A treatment in terms of length is
outlined in Problem 28.)

Suppose that x is the length of the arc of the unit circle from (1, 0) to P ; this arc
thus contains x/2π of the total length 2π of the circumference of the unit circle.
Let S denote the \sector" shown in Figure 8; S is bounded by the unit circle, the
horizontal axis, and the half-line through (0,0) and P . The area of S should be
x/2π times the area inside the unit circle, which we expect to be π ; thus S should
have area

x

2π
· π = x

2
.

We can therefore deˇne cos x and sin x as the coordinates of the point P whichFI G U R E 8

determines a sector of area x/2.
With these remarks as background, the rigorous deˇnition of the functions sin

and cos now begins. The ˇrst deˇnition identiˇes π as the area of the unit circle|
more precisely, as twice the area of a semicircle (Figure 9).

DEFINITION

π = 2 ·
∫ 1

−1

√
1 − x2 dx.

(This deˇnition is not offered simply as an embellishment; to deˇne the trig-
onometric functions it will be necessary to ˇrst deˇne sin x and cos x only for
0 ≤ x ≤ π .)

The second deˇnition is meant to describe, for −1 ≤ x ≤ 1, the area A(x) of
the sector bounded by the unit circle, the horizontal axis, and the half-line through
(x,
√

1 − x2 ). If 0 ≤ x ≤ 1, this area can be expressed (Figure 10) as the sum of

FI G U R E 9

the area of a triangle and the area of a region under the unit circle:

x
√

1 − x2

2
+
∫ 1

x

√
1 − t2 dt.
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This same formula happens to work for −1 ≤ x ≤ 0 also. In this case (Figure 11),
the term

x
√

1 − x2

2
is negative, and represents the area of the triangle which must be subtracted from

FI G U R E 1 0

the term ∫ 1

x

√
1 − t2 dt.

DEFINITION If −1 ≤ x ≤ 1, then

A(x) = x
√

1 − x2

2
+
∫ 1

x

√
1 − t2 dt.

Notice that if −1 < x < 1, then A is differentiable at x and (using the Funda-
mental Theorem of Calculus),

F I G U R E 1 1

A′(x) = 1
2

[
x · −2x

2
√

1 − x2
+
√

1 − x2

]
−
√

1 − x2

= 1
2

[
−x2 + (1 − x2)√

1 − x2

]
−
√

1 − x2

= 1 − 2x2

2
√

1 − x2
−
√

1 − x2

= 1 − 2x2 − 2(1 − x2)

2
√

1 − x2

= −1

2
√

1 − x2
.

Notice also (Figure 12) that on the interval [−1,1] the function A decreases
from

A(−1) = 0 +
∫ 1

−1

√
1 − t2 dt = π

2

to A(1) = 0. This follows directly from the deˇnition of A, and also from the factFI G U R E 1 2

that its derivative is negative on (−1,1).
For 0 ≤ x ≤ π we wish to deˇne cos x and sin x as the coordinates of a point

P = (cos x, sin x) on the unit circle which determines a sector whose area is x/2
(Figure 13). In other words:

DEFINITION If 0 ≤ x ≤ π , then cos x is the unique number in [−1,1] such that

A(cos x) = x

2
;

and
sin x =

√
1 − (cos x)2.
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This deˇnition actually requires a few words of justiˇcation. In order to know
that there is a number y satisfying A(y) = x/2, we use the fact that A is continuous,
and that A takes on the values 0 and π/2. This tacit appeal to the Intermediate
Value Theorem is crucial, if we want to make our preliminary deˇnition precise.
Having made, and justiˇed, our deˇnition, we can now proceed quite rapidly.

THEOREM 1 If 0 < x < π , then

cos′(x) = − sin x,
sin′(x) = cos x.

PROOF If B = 2A, then the deˇnition A(cos x) = x/2 can be written

B(cos x) = x;
in other words, cos is just the inverse of B. We have already computed that

A′(x) = − 1

2
√

1 − x2
,

from which we conclude that

B ′(x) = − 1√
1 − x2

.

Consequently,

F I G U R E 1 3
cos′(x) = (B−1)′(x)

= 1
B ′(B−1(x))

= 1

− 1√
1 − [B−1(x)]2

= −
√

1 − (cos x)2

= − sin x.

Since
sin x =

√
1 − (cos x)2,

we also obtain

sin′(x) = 1
2

· −2 cos x · cos′(x)√
1 − (cos x)2

= cos x sin x
sin x

= cos x.

The information contained in Theorem 1 can be used to sketch the graphs of
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sin and cos on the interval [0, π]. Since

cos′(x) = − sin x < 0, 0 < x < π,

the function cos decreases from cos 0 = 1 to cos π = −1 (Figure 14). Consequently,
cos y = 0 for a unique y in [0, π]. To ˇnd y, we note that the deˇnition of cos,

F I G U R E 1 4
A(cos x) = x

2
,

means that
A(0) = y

2
,

so

y = 2
∫ 1

0

√
1 − t2 dt.

It is easy to see that

FI G U R E 1 5

∫ 0

−1

√
1 − t2 dt =

∫ 1

0

√
1 − t2 dt

so we can also write

y =
∫ 1

−1

√
1 − t2 dt = π

2
.

Now we have

sin′(x) = cos x
{
> 0, 0 < x < π/2

< 0, π/2 < x < π,

so sin increases on [0, π/2] from sin 0 = 0 to sinπ/2 = 1, and then decreases on
[π/2, π] to sin π = 0 (Figure 15).

The values of sin x and cos x for x not in [0, π] are most easily deˇned by a
two-step piecing together process:

(1) If π ≤ x ≤ 2π , then

sin x = − sin(2π − x),

cos x = cos(2π − x).

Figure 16 shows the graphs of sin and cos on [0, 2π].

(2) If x = 2πk + x ′ for some integer k, and some x ′ in [0,2π], then

sin x = sin x ′,
cos x = cos x ′.

Figure 17 shows the graphs of sin and cos, now deˇned on all of R.
Having extended the functions sin and cos to R, we must now check that the

basic properties of these functions continue to hold. In most cases this is easy. ForFI G U R E 1 6

example, it is clear that the equation

sin2 x + cos2 x = 1
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F I G U R E 1 7

holds for all x. It is also not hard to prove that

sin′(x) = cos x,
cos′(x) = − sin x,

if x is not a multiple of π . For example, if π < x < 2π , then

sin x = − sin(2π − x),

so

sin′
(x) = − sin′

(2π − x) · (−1)
= cos(2π − x)

= cos x.

If x is a multiple of π we resort to a trick; it is only necessary to apply Theo-
rem 11-7 to conclude that the same formulas are true in this case also.

F I G U R E 1 8
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The other standard trigonometric functions present no difˇculty at all. We
deˇne

sec x = 1
cos x

tan x = sin x
cos x


 x �= kπ + π/2,

csc x = 1
sin x

cot x = cos x
sin x


 x �= kπ.

The graphs are sketched in Figure 18. It is a good idea to convince yourself that
the general features of these graphs can be predicted from the derivatives of these
functions, which are listed in the next theorem (there is no need to memorize the
statement of the theorem, since the results can be rederived whenever needed.)

F I G U R E 1 9

THEOREM 2 If x �= kπ + π/2, then

sec′(x) = sec x tan x,
tan′(x) = sec2 x.

If x �= kπ , then

csc′(x) = − csc x cot x,
cot′(x) = − csc2 x.

PROOF Left to you (a straightforward computation).

The inverses of the trigonometric functions are also easily differentiated. The
trigonometric functions are not one-one, so it is ˇrst necessary to restrict them
to suitable intervals; the largest possible length obtainable is π , and the intervals
usually chosen are (Figure 19)

[−π/2, π/2] for sin,
[0, π] for cos,
(−π/2, π/2) for tan.

(The inverses of the other trigonometric functions are so rarely used that they will
not even be discussed here.)

The inverse of the function

f (x) = sin x, −π/2 ≤ x ≤ π/2

is denoted by arcsin (Figure 20); the domain of arcsin is [−1,1]. The notation
sin−1 has been avoided because arcsin is not the inverse of sin (which is not one-
one), but of the restricted function f ; sometimes this function f is denoted by Sin,
and arcsin by Sin−1.F I G U R E 2 0
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The inverse of the function

g(x) = cos x, 0 ≤ x ≤ π

is denoted by arccos (Figure 21); the domain of arccos is [−1,1]. Sometimes g
is denoted by Cos, and arccos by Cos−1.

The inverse of the function

h(x) = tan x, −π/2 < x < π/2

is denoted by arctan (Figure 22); arctan is one of the simplest examples of a
differentiable function which is bounded even though it is one-one on all of R.
Sometimes the function h is denoted by Tan, and arctan by Tan−1.

The derivatives of the inverse trigonometric functions are surprisingly simple,
and do not involve trigonometric functions at all. Finding the derivatives is a simpleFI G U R E 2 1
matter, but to express them in a suitable form we will have to simplify expressions
like

cos(arcsin x), sec(arctan x).

F I G U R E 2 2

A little picture is the best way to remember the correct simpliˇcations. For exam-
ple, Figure 23 shows a directed angle whose sine is x|the angle shown is thus an
angle of (arcsin x) radians; consequently cos(arcsin x) is the length of the other
side, namely,

√
1 − x2. However, in the proof of the next theorem we will not

resort to such pictures.

F I G U R E 2 3
THEOREM 3 If −1 < x < 1, then

arcsin′(x) = 1√
1 − x2

,

arccos′(x) = −1√
1 − x2

.

Moreover, for all x we have

arctan′(x) = 1
1 + x2 .
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PROOF arcsin′(x) = (f−1)′(x)

= 1
f ′(f−1(x))

= 1
sin′(arcsin x)

= 1
cos(arcsin x)

.

Now
[sin(arcsin x)]2 + [cos(arcsin x)]2 = 1,

that is,
x2 + [cos(arcsin x)]2 = 1;

therefore,

cos(arcsin x) =
√

1 − x2.

(The positive square root is to be taken because arcsin x is in (−π/2, π/2), so
cos(arcsin x) > 0.) This proves the ˇrst formula.

The second formula has already been established (in the proof of Theorem 1).
It is also possible to imitate the proof for the ˇrst formula, a valuable exercise if
that proof presented any difˇculties. The third formula is proved as follows.

arctan′(x) = (h−1)′(x)

= 1
h′(h−1(x))

= 1
tan′(arctan x)

= 1
sec2(arctan x)

Dividing both sides of the identity

sin2
a + cos2 a = 1

by cos2 a yields
tan2 a + 1 = sec2 a.

It follows that
[tan(arctan x)]2 + 1 = sec2(arctan x),

or
x2 + 1 = sec2(arctan x),

which proves the third formula.

The traditional proof of the formula sin′(x) = cos x (quite different from the one
given here) is outlined in Problem 27. This proof depends upon ˇrst establishing
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the limit

lim
h→0

sin h
h

= 1,

and the \addition formula"

sin(x + y) = sin x cos y + cos x sin y.

Both of these formulas can be derived easily now that the derivative of sin and cos
are known. The ˇrst is just the special case sin′(0) = cos 0. The second depends
on a beautiful characterization of the functions sin and cos. In order to derive this
result we need a lemma whose proof involves a clever trick; a more straightforward
proof will be supplied in Part IV.

LEMMA Suppose f has a second derivative everywhere and that

f ′′ + f = 0,
f (0) = 0,
f ′(0) = 0.

Then f = 0.

PROOF Multiplying both sides of the ˇrst equation by f ′ yields

f ′f ′′ + ff ′ = 0.

Thus
[(f ′)2 + f 2]′ = 2(f ′f ′′ + ff ′) = 0,

so (f ′)2 + f 2 is a constant function. From f (0) = 0 and f ′(0) = 0 it follows that
the constant is 0; thus

[f ′(x)]2 + [f (x)]2 = 0 for all x.

This implies that
f (x) = 0 for all x.

THEOREM 4 If f has a second derivative everywhere and

f ′′ + f = 0,
f (0) = a,

f ′(0) = b,

then
f = b · sin + a · cos.

(In particular, if f (0) = 0 and f ′(0) = 1, then f = sin; if f (0) = 1 and f ′(0) = 0,
then f = cos.)
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PROOF Let
g(x) = f (x)− b sin x − a cos x.

Then

g′(x) = f ′(x)− b cos x + a sin x,
g′′(x) = f ′′(x)+ b sin x + a cos x.

Consequently,

g′′ + g = 0,
g(0) = 0,
g′(0) = 0,

which shows that

0 = g(x) = f (x)− b sin x − a cos x, for all x.

THEOREM 5 If x and y are any two numbers, then

sin(x + y) = sin x cos y + cos x sin y,
cos(x + y) = cos x cos y − sin x sin y.

PROOF For any particular number y we can deˇne a function f by

f (x) = sin(x + y).

Then

f ′(x) = cos(x + y)

f ′′(x) = − sin(x + y).

Consequently,

f ′′ + f = 0,
f (0) = sin y,
f ′(0) = cos y.

It follows from Theorem 4 that

f = (cos y) · sin +(sin y) · cos;
that is,

sin(x + y) = cos y sin x + sin y cos x, for all x.

Since any number y could have been chosen to begin with, this proves the ˇrst
formula for all x and y.

The second formula is proved similarly.

As a conclusion to this chapter, and as a prelude to Chapter 18, we will mention
an alternative approach to the deˇnition of the function sin. Since

arcsin′(x) = 1√
1 − x2

for − 1 < x < 1,
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it follows from the Second Fundamental Theorem of Calculus that

arcsin x = arcsin x − arcsin 0 =
∫ x

0

1√
1 − t2

dt.

This equation could have been taken as the definition of arcsin. It would follow
immediately that

arcsin′(x) = 1√
1 − x2

;

the function sin could then be deˇned as (arcsin)−1 and the formula for the deriva-
tive of an inverse function would show that

sin′
(x) =

√
1 − sin2

x,

which could be deˇned as cos x. Eventually, one could show that A(cos x) = x/2,
recovering at the very end of the development the deˇnition with which we started.
While much of this presentation would proceed more rapidly, the deˇnition would
be utterly unmotivated; the reasonableness of the deˇnitions would be known to
the author, but not to the student, for whom it was intended! Nevertheless, as
we shall see in Chapter 18, an approach of this sort is sometimes very reasonable
indeed.

PROBLEMS

1. Differentiate each of the following functions.

(i) f (x) = arctan(arctan(arctan x)).
(ii) f (x) = arcsin(arctan(arccos x)).
(iii) f (x) = arctan(tan x arctan x).

(iv) f (x) = arcsin

(
1√

1 + x2

)
.

2. Find the following limits by l'Hôpital's Rule.

(i) lim
x→0

sin x − x + x3/6
x3 .

(ii) lim
x→0

sin x − x + x3/6
x4 .

(iii) lim
x→0

cos x − 1 + x2/2
x2 .

(iv) lim
x→0

cos x − 1 + x2/2
x4 .

(v) lim
x→0

arctan x − x + x3/3
x3 .

(vi) lim
x→0

(
1
x

− 1
sin x

)
.
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3. Let f (x) =



sin x
x
, x �= 0

1, x = 0.

(a) Find f ′(0).
(b) Find f ′′(0).

At this point, you will almost certainly have to use l'Hôpital's Rule, but in
Chapter 24 we will be able to ˇnd f (k)(0) for all k, with almost no work
at all.

4. Graph the following functions.

(a) f (x) = sin 2x.
(b) f (x) = sin(x2). (A pretty respectable sketch of this graph can be ob-

tained using only a picture of the graph of sin. Indeed, pure thought
is your only hope in this problem, because determining the sign of the
derivative f ′(x) = cos(x2) ·2x is no easier than determining the behavior
of f directly. The formula for f ′(x) does indicate one important fact,
however|f ′(0) = 0, which must be true since f is even, and which
should be clear in your graph.)

(c) f (x) = sin x + sin 2x. (It will probably be instructive to ˇrst draw the
graphs of g(x) = sin x and h(x) = sin 2x carefully on the same set of
axes, from 0 to 2π , and guess what the sum will look like. You can
easily ˇnd out how many critical points f has on [0,2π] by considering
the derivative of f . You can then determine the nature of these critical
points by ˇnding out the sign of f at each point; your sketch will probably
suggest the answer.)

(d) f (x) = tan x − x. (First determine the behavior of f in (−π/2, π/2); in
the intervals (kπ − π/2, kπ + π/2) the graph of f will look exactly the
same, except moved up a certain amount. Why?)

(e) f (x) = sin x − x. (The material in the Appendix to Chapter 11 will be
particularly helpful for this function.)

(f ) f (x) =



sin x
x
, x �= 0

1, x = 0.
(Part (d) should enable you to determine approximately where the zeros
of f ′ are located. Notice that f is even and continuous at 0; also consider
the size of f for large x.)

(g) f (x) = x sin x.

*5. The hyperbolic spiral is the graph of the function f (θ) = a/θ in polar coordi-
nates (Chapter 4, Appendix 3). Sketch this curve, paying particular attention
to its behavior for θ close to 0.

6. Prove the addition formula for cos.
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7. (a) From the addition formula for sin and cos derive formulas for sin 2x,
cos 2x, sin 3x, and cos 3x.

(b) Use these formulas to ˇnd the following values of the trigonometric func-
tions (usually deduced by geometric arguments in elementary trigonom-
etry):

sin
π

4
= cos

π

4
=

√
2

2
,

tan
π

4
= 1,

sin
π

6
= 1

2
,

cos
π

6
=

√
3

2
.

8. (a) Show that A sin(x + B) can be written as a sin x + b cos x for suitable a
and b. (One of the theorems in this chapter provides a one-line proof.
You should also be able to ˇgure out what a and b are.)

(b) Conversely, given a and b, ˇnd numbers A and B such that a sin x +
b cos x = A sin(x + B) for all x.

(c) Use part (b) to graph f (x) =
√

3 sin x + cos x.

9. (a) Prove that

tan(x + y) = tan x + tan y
1 − tan x tan y

provided that x, y, and x + y are not of the form kπ + π/2. (Use the
addition formulas for sin and cos.)

(b) Prove that

arctan x + arctan y = arctan
(
x + y

1 − xy

)
,

indicating any necessary restrictions on x and y. Hint: Replace x by
arctan x and y by arctan y in part (a).

10. Prove that

arcsin α + arcsin β = arcsin
(
α

√
1 − β2 + β

√
1 − α2 ),

indicating any restrictions on α and β.

11.
Prove that if m and n are any numbers, then

sinmx sin nx = 1
2 [cos(m− n)x − cos(m + n)x],

sinmx cos nx = 1
2 [sin(m + n)x + sin(m− n)x],

cosmx cos nx = 1
2 [cos(m+ n)x + cos(m − n)x].
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12. Prove that if m and n are natural numbers, then∫ π

−π
sinmx sin nx dx =

{
0, m �= n

π, m = n,∫ π

−π
cosmx cos nx dx =

{
0, m �= n

π, m = n,∫ π

−π
sinmx cos nx dx = 0.

These relations are particularly important in the theory of Fourier series. Al-
though this topic will receive serious attention only in the Suggested Reading,
the next problem provides a hint as to their importance.

13. (a) If f is integrable on [−π,π], show that the minimum value of∫ π

−π
(f (x)− a cos nx)2 dx

occurs when
a = 1

π

∫ π

−π
f (x) cos nx dx,

and the minimum value of∫ π

−π
(f (x)− a sin nx)2 dx

when
a = 1

π

∫ π

−π
f (x) sin nx dx.

(In each case, bring a outside the integral sign, obtaining a quadratic
expression in a.)

(b) Deˇne

an = 1
π

∫ π

−π
f (x) cos nx dx, n = 0, 1,2, . . . ,

bn = 1
π

∫ π

−π
f (x) sin nx dx, n = 1,2, 3, . . . .

Show that if ci and di are any numbers, then

∫ π

−π

(
f (x)−

[
c0

2
+

N∑
n=1

cn cos nx + dn sin nx

])2

dx

=
∫ π

−π
[f (x)]2 dx − 2π

(
a0c0

2
+

N∑
n=1

ancn + bndn

)
+ π

(
c0

2

2
+

N∑
n=1

cn
2 + dn

2

)

=
∫ π

−π
[f (x)]2 dx − π

(
a0

2

2
+

N∑
n=1

an
2 + bn

2

)

+ π

((
c0√
2

− a0√
2

)2

+
N∑
n=1

(cn − an)
2 + (dn − bn)

2

)
,
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thus showing that the ˇrst integral is smallest when ai = ci and bi = di .
In other words, among all \linear combinations" of the functions sn(x) =
sin nx and cn(x) = cos nx for 1 ≤ n ≤ N , the particular function

g(x) = a0

2
+

N∑
n=1

an cos nx + bn sin nx

has the \closest ˇt" to f on [−π,π].

14. (a) Find a formula for sin x+ sin y. (Notice that this also gives a formula for
sin x− sin y.) Hint: First ˇnd a formula for sin(a+b)+ sin(a−b). What
good does that do?

(b) Also ˇnd a formula for cos x + cos y and cos x − cos y.

15. (a) Starting from the formula for cos 2x, derive formulas for sin2 x and cos2 x

in terms of cos 2x.
(b) Prove that

cos
x

2
=
√

1 + cos x
2

and sin
x

2
=
√

1 − cos x
2

for 0 ≤ x ≤ π/2.
(c) Use part (a) to ˇnd

∫ b
a

sin2 x dx and
∫ b
a

cos2 x dx.
(d) Graph f (x) = sin2 x.

16. Find sin(arctan x) and cos(arctan x) as expressions not involving trigono-
metric functions. Hint: y = arctan x means that x = tan y = sin y/cos y =
sin y/

√
1 − sin2 y.

17. If x = tan u/2, express sin u and cos u in terms of x. (Use Problem 16; the
answers should be very simple expressions.)

18. (a) Prove that sin(x + π/2) = cos x. (All along we have been drawing the
graphs of sin and cos as if this were the case.)

(b) What is arcsin(cos x) and arccos(sin x)?

19. (a) Find
∫ 1

0

1
1 + t2

dt . Hint: The answer is not 45.

(b) Find
∫ ∞

0

1
1 + t2

dt .

20. Find lim
x→∞ x sin

1
x

.

21. (a) Deˇne functions sin◦ and cos◦ by sin◦(x) = sin(πx/180) and cos◦(x) =
cos(πx/180). Find (sin◦)′ and (cos◦)′ in terms of these same functions.

(b) Find lim
x→0

sin◦
x

x
and lim

x→∞ x sin◦ 1
x

.

22. Prove that every point on the unit circle is of the form (cos θ, sin θ) for at
least one (and hence for inˇnitely many) numbers θ .
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23. (a) Prove that π is the maximum possible length of an interval on
which sin is one-one, and that such an interval must be of the form
[2kπ − π/2, 2kπ + π/2] or [2kπ + π/2, 2(k + 1)π − π/2].

(b) Suppose we let g(x) = sin x for x in (2kπ − π/2, 2kπ + π/2). What is
(g−1)′ ?

24. Let f (x) = sec x for 0 ≤ x ≤ π . Find the domain of f −1 and sketch its
graph.

25. Prove that | sin x − sin y| < |x − y| for all numbers x �= y. Hint: The same
statement, with < replaced by ≤ , is a very straightforward consequence of a
well-known theorem; simple supplementary considerations then allow ≤ to
be improved to < .

*26. It is an excellent test of intuition to predict the value of

lim
λ→∞

∫ b

a

f (x) sin λx dx.

Continuous functions should be most accessible to intuition, but once you
get the right idea for a proof the limit can easily be established for any inte-
grable f .

(a) Show that lim
λ→∞

∫ d
c

sin λx dx = 0, by computing the integral explicitly.

(b) Show that if s is a step function on [a, b] (terminology from Prob-
lem 13-26), then lim

λ→∞
∫ b
a
s(x) sin λx dx = 0.

(c) Finally, use Problem 13-26 to show that lim
λ→∞

∫ b
a
f (x) sin λx dx = 0 for

any function f which is integrable on [a, b]. This result, like Problem 12,
plays an important role in the theory of Fourier series; it is known as the
Riemann-Lebesgue Lemma.

27. This problem outlines the classical approach to the trigonometric functions.
The shaded sector in Figure 24 has area x/2.

(a) By considering the triangles OAB and OCB prove that if 0 < x < π/4,
then

FI G U R E 2 4

sin x
2

<
x

2
<

sin x
2 cos x

.

(b) Conclude that

cos x <
sin x
x

< 1,

and prove that

lim
x→0

sin x
x

= 1.

(c) Use this limit to ˇnd

lim
x→0

1 − cos x
x

.



318 Derivatives and Integrals

(d) Using parts (b) and (c), and the addition formula for sin, ˇnd sin′(x),
starting from the deˇnition of the derivative.

*28. This problem gives a treatment of the trigonometric functions in terms of
length, and uses Problem 13-25. Let f (x) =

√
1 − x2 for −1 ≤ x ≤ 1.

Deˇne L(x) to be the length of f on [x,1].

(a) Show that

L(x) =
∫ 1

x

1√
1 − t2

dt.

(This is actually an improper integral, as deˇned in Problem 14-28.)
(b) Show that

L′(x) = − 1√
1 − x2

for −1 < x < 1.

(c) Deˇne π as L(−1). For 0 ≤ x ≤ π , deˇne cos x by L(cos x) = x, and
deˇne sin x =

√
1 − cos2 x. Prove that cos′(x) = − sin x and sin′(x) =

cos x for 0 < x < π .

*29. Yet another development of the trigonometric functions was brie�y men-
tioned in the text|starting with inverse functions deˇned by integrals. It
is convenient to begin with arctan, since this function is deˇned for all x.
To do this problem, pretend that you have never heard of the trigonometric
functions.

(a) Let α(x)= ∫ x0 (1 + t2)−1 dt . Prove that α is odd and increasing, and that
lim
x→∞ α(x) and lim

x→−∞α(x) both exist, and are negatives of each other. If

we deˇne π = 2 lim
x→∞ α(x), then α−1 is deˇned on (−π/2, π/2).

(b) Show that (α−1)′(x) = 1 + [α−1(x)]2.
(c) For x = kπ + x ′ with x ′ �= π/2 or −π/2, deˇne tan x = α−1(x ′). Then

deˇne cos x = 1/
√

1 + tan2 x, for x not of the form kπ+π/2 or kπ−π/2,
and cos(kπ±π/2) = 0. Prove ˇrst that cos′(x) = − tan x cos x, and then
that cos′′(x) = − cos x for all x.

*30. If we are willing to assume that certain differential equations have solutions,
another approach to the trigonometric functions is possible. Suppose, in
particular, that there is some function y0 which is not always 0 and which
satisˇes y0

′′ + y0 = 0.

(a) Prove that y0
2 + (y0

′)2 is constant, and conclude that either y0(0) �= 0
or y0

′(0) �= 0.
(b) Prove that there is a function s satisfying s ′′ + s = 0 and s(0) = 0 and

s ′(0) = 1. Hint: Try s of the form ay0 + by0
′.

If we deˇne sin = s and cos = s ′, then almost all facts about trigono-
metric functions become trivial. There is one point which requires work,
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however|producing the number π . This is most easily done using an
exercise from the Appendix to Chapter 11:

(c) Use Problem 7 of the Appendix to Chapter 11 to prove that cos x cannot
be positive for all x > 0. It follows that there is a smallest x0 > 0 with
cos x0 = 0, and we can deˇne π = 2x0.

(d) Prove that sinπ/2 = 1. (Since sin2 + cos2 = 1, we have sin π/2 = ±1;
the problem is to decide why sin π/2 is positive.)

(e) Find cosπ , sinπ , cos 2π , and sin 2π . (Naturally you may use any addi-
tion formulas, since these can be derived once we know that sin′ = cos
and cos′ = − sin.)

(f ) Prove that cos and sin are periodic with period 2π .

31. (a) After all the work involved in the deˇnition of sin, it would be discon-
certing to ˇnd that sin is actually a rational function. Prove that it isn't.
(There is a simple property of sin which a rational function cannot pos-
sibly have.)

(b) Prove that sin isn't even deˇned implicitly by an algebraic equation; that
is, there do not exist rational functions f0, . . . , fn−1 such that

(sin x)n + fn−1(x)(sin x)n−1 + · · · + f0(x) = 0 for all x.

Hint: Prove that f0 = 0, so that sin x can be factored out. The remaining
factor is 0 except perhaps at multiples of 2π . But this implies that it is 0
for all x. (Why?) You are now set up for a proof by induction.

*32. Suppose that φ1 and φ2 satisfy

φ1
′′ + g1φ1 = 0,

φ2
′′ + g2φ2 = 0,

and that g2 > g1.

(a) Show that

φ1
′′φ2 − φ2

′′φ1 − (g2 − g1)φ1φ2 = 0.

(b) Show that if φ1(x) > 0 and φ2(x) > 0 for all x in (a, b), then∫ b

a

[φ1
′′φ2 − φ2

′′φ1] > 0,

and conclude that

[φ1
′(b)φ2(b)− φ1

′(a)φ2(a)] + [φ1(b)φ2
′(b)− φ1(a)φ2

′(a)] > 0.

(c) Show that in this case we cannot have φ1(a) = φ1(b) = 0. Hint: Con-
sider the sign of φ1

′(a) and φ1
′(b).

(d) Show that the equations φ1(a) = φ1(b) = 0 are also impossible if φ1 > 0,
φ2 < 0 or φ1 < 0, φ2 > 0, or φ1 < 0, φ2 < 0 on (a, b). (You should be
able to do this with almost no extra work.)
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The net result of this problem may be stated as follows: if a and b are
consecutive zeros of φ1, then φ2 must have a zero somewhere between
a and b. This result, in a slightly more general form, is known as the
Sturm Comparison Theorem. As a particular example, any solution of
the differential equation

y ′′ + (x + 1)y = 0

must have zeros on the positive horizontal axis which are within π of
each other.

33. (a) Using the formula for sin x − sin y derived in Problem 14, show that

sin(k + 1
2)x − sin(k − 1

2 )x = 2 sin
x

2
cos kx.

(b) Conclude that

1
2

+ cos x + cos 2x + · · · + cosnx = sin(n+ 1
2)x

2 sin
x

2

.

Like two other results in this problem set, this equation is very important
in the study of Fourier series, and we also make use of it in Problems 19-42
and 23-19.

(c) Similarly, derive the formula

sin x + sin 2x + · · · + sin nx =
sin
(
n+ 1

2
x

)
sin
(n

2
x
)

sin
x

2

.

(A more natural derivation of these formulas will be given in Prob-
lem 27-14.)

(d) Use parts (b) and (c) to ˇnd
∫ b

0
sin x dx and

∫ b

0
cos x dx directly from

the deˇnition of the integral.



*CHAPTER 1 6 π IS IRRATIONAL

This short chapter, diverging from the main stream of the book, is included to
demonstrate that we are already in a position to do some sophisticated mathemat-
ics. This entire chapter is devoted to an elementary proof that π is irrational. Like
many \elementary" proofs of deep theorems, the motivation for many steps in our
proof cannot be supplied; nevertheless, it is still quite possible to follow the proof
step-by-step.

Two observations must be made before the proof. The ˇrst concerns the func-
tion

fn(x) = xn(1 − x)n

n!
,

which clearly satisˇes

0 < fn(x) <
1
n!

for 0 < x < 1.

An important property of the function fn is revealed by considering the expression
obtained by actually multiplying out xn(1−x)n. The lowest power of x appearing
will be n and the highest power will be 2n. Thus fn can be written in the form

fn(x) = 1
n!

2n∑
i=n

cix
i,

where the numbers ci are integers. It is clear from this expression that

fn
(k)(0) = 0 if k < n or k > 2n.

Moreover,

fn
(n)(x) = 1

n!
[n! cn + terms involving x]

fn
(n+1)(x) = 1

n!
[(n+ 1)! cn+1 + terms involving x]

.

.

.

fn
(2n)(x) = 1

n!
[(2n)! c2n].

321
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This means that

fn
(n)(0) = cn,

fn
(n+1)(0) = (n+ 1)cn+1
.

.

.

fn
(2n)(0) = (2n)(2n− 1) · · · · · (n+ 1)c2n,

where the numbers on the right are all integers. Thus

fn
(k)(0) is an integer for all k.

The relation

fn(x) = fn(1 − x)

implies that

fn
(k)(x) = (−1)kfn(k)(1 − x);

therefore,
fn
(k)(1) is also an integer for all k.

The proof that π is irrational requires one further observation: if a is any
number, and ε > 0, then for sufˇciently large n we will have

an

n!
< ε.

To prove this, notice that if n ≥ 2a, then

an+1

(n+ 1)!
= a

n+ 1
· a

n

n!
<

1
2

· a
n

n!
.

Now let n0 be any natural number with n0 ≥ 2a. Then, whatever value

an0

(n0)!

may have, the succeeding values satisfy

a(n0+1)

(n0 + 1)!
<

1
2

· a
n0

(n0)!

a(n0+2)

(n0 + 2)!
<

1
2

· a(n0+1)

(n0 + 1)!
<

1
2

· 1
2

· an0

(n0)!
.

.

.

a(n0+k)

(n0 + k)!
<

1
2k

· a
n0

(n0)!
.

If k is so large that
an0

(n0)! ε
< 2k, then
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a(n0+k)

(n0 + k)!
< ε,

which is the desired result. Having made these observations, we are ready for the
one theorem in this chapter.

THEOREM 1 The number π is irrational; in fact, π2 is irrational. (Notice that the irrationality
of π2 implies the irrationality of π , for if π were rational, then π2 certainly would
be.)

PROOF Suppose π2 were rational, so that

π2 = a

b

for some positive integers a and b. Let

(1) G(x) = bn[π2nfn(x)− π2n−2fn
′′(x)+ π2n−4fn

(4)(x)

− · · · + (−1)nfn(2n)(x)].

Notice that each of the factors

bnπ2n−2k = bn(π2)n−k = bn
(a
b

)n−k
= an−kbk

is an integer. Since fn(k)(0) and fn(k)(1) are integers, this shows that

G(0) and G(1) are integers.

Differentiating G twice yields

(2) G′′(x) = bn[π2nfn
′′(x)− π2n−2fn

(4)(x)+ · · · + (−1)nfn(2n+2)(x)].

The last term, (−1)nfn(2n+2)(x), is zero. Thus, adding (1) and (2) gives

(3) G′′(x)+ π2G(x) = bnπ2n+2fn(x) = π2anfn(x).

Now let
H(x)= G′(x) sin πx − πG(x) cosπx.

Then

H ′(x) = πG′(x) cosπx +G′′(x) sin πx − πG′(x) cos πx + π2G(x) sin πx
= [G′′(x)+ π2G(x)] sinπx
= π2anfn(x) sin πx, by (3).

By the Second Fundamental Theorem of Calculus,

π2
∫ 1

0
anfn(x) sin πx dx = H(1)−H(0)

= G′(1) sin π − πG(1) cos π −G′(0) sin 0 + πG(0) cos 0
= π[G(1)+G(0)].

Thus

π

∫ 1

0
anfn(x) sin πx dx is an integer.
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On the other hand, 0 < fn(x) < 1/n! for 0 < x < 1, so

0 < πanfn(x) sin πx <
πan

n!
for 0 < x < 1.

Consequently,

0 < π

∫ 1

0
anfn(x) sinπx dx <

πan

n!
.

This reasoning was completely independent of the value of n. Now if n is large
enough, then

0 < π
∫ 1

0
anfn(x) sinπx dx <

πan

n!
< 1.

But this is absurd, because the integral is an integer, and there is no integer between
0 and 1. Thus our original assumption must have been incorrect: π2 is irrational.

This proof is admittedly mysterious; perhaps most mysterious of all is the way
that π enters the proof|it almost looks as if we have proved π irrational without
ever mentioning a deˇnition of π . A close reexamination of the proof will show
that precisely one property of π is essential|

sin(π) = 0.

The proof really depends on the properties of the function sin, and proves the
irrationality of the smallest positive number x with sin x = 0. In fact, very few
properties of sin are required, namely,

sin′ = cos,
cos′ = − sin,

sin(0) = 0,
cos(0) = 1.

Even this list could be shortened; as far as the proof is concerned, cos might just
as well be deˇned as sin′. The properties of sin required in the proof may then be
written

sin′′ + sin = 0,
sin(0) = 0,
sin′(0) = 1.

Of course, this is not really very surprising at all, since, as we have seen in the
previous chapter, these properties characterize the function sin completely.

PROBLEMS

1. (a) Prove that the areas of triangles OAB and OAC in Figure 1 are related
by the equation
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areaOAC = 1
2

√
1 −

√
1 − 16(areaOAB)2

2
.

Hint: Solve the equations xy = 2(areaOAB), x2 + y2 = 1, for y.
(b) Let Pm be the regular polygon of m sides inscribed in the unit circle. If

Am is the area of Pm show that

A2m = m

2

√
2 − 2

√
1 − (2Am/m)2.

This result allows one to obtain (more and more complicated) expressions
for A2n, starting with A4 = 2, and thus to compute π as accurately
as desired (according to Problem 8-11). Although better methods will
appear in Chapter 20, a slight variant of this approach yields a very
interesting expression for π :

2. (a) Using the fact thatFI G U R E 1

area(OAB)
area(OAC)

= OB,

show that if αm is the distance from O to one side of Pm, then

Am

A2m
= αm.

(b) Show that
2
A2k

= α4 · α8 · · · · · α2k−1.

(c) Using the fact that

αm = cos
π

m
,

and the formula cos x/2 =
√

1 + cos x
2

(Problem 15-15), prove that

α4 =
√

1
2

α8 =
√

1
2

+ 1
2

√
1
2
,

α16 =

√√√√1
2

+ 1
2

√
1
2

+ 1
2

√
1
2
,

etc.
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Together with part (b), this shows that 2/π can be written as an \inˇnite
product"

2
π

=

√√√√1
2

·

√√√√1
2

+ 1
2

√
1
2

·

√√√√1
2

+ 1
2

√
1
2

+ 1
2

√
1
2

· . . . ;

to be precise, this equation means that the product of the ˇrst n factors
can be made as close to 2/π as desired, by choosing n sufˇciently large.
This product was discovered by Franc�ois Vi�ete in 1579, and is only one of
many fascinating expressions for π , some of which are mentioned later.



*CHAPTER 1 7 PLANETARY MOTION

Nature and Nature's Laws lay hid in night
God said \Let Newton be," and all was light.

Alexander Pope

Unlike Chapter 16, a short chapter diverging from the main stream of the book,
this long chapter diverges from the main stream of the book to demonstrate that
we are already in a position to do some real physics.

In 1609 Kepler published his ˇrst two laws of planetary motion. The ˇrst law
describes the shape of planetary orbits:

The planets move in ellipses, with the sun at one focus.

The second law involves the area swept out by the segment from the sun to the
planet (the `radius vector from the sun to the planet') in various time intervals
(Figure 1):

Equal areas are swept out by the radius vector in equal times. (Equivalently, the area

swept out in time t is proportional to t .)

Kepler's third law, published in 1619, relates the motions of different planets. If aF I G U R E 1

is the major axis of a planet's elliptical orbit and T is its period, the time it takes
the planet to return to a given position, then:

The ratio a3/T 2 is the same for all planets.

Newton's great accomplishment was to show (using his general law that the
force on a body is its mass times its acceleration) that Kepler's laws follow from the
assumption that the planets are attracted to the sun by a force (the gravitational
force of the sun) always directed toward the sun, proportional to the mass of the
planet, and satisfying an inverse square law; that is, by a force directed toward
the sun whose magnitude varies inversely with the square of the distance from the
sun to the planet and directly with the mass of the planet. Since force is mass
times acceleration, this is equivalent simply to saying that the magnitude of the
acceleration is a constant divided by the square of the distance from the sun.

Newton's analysis actually established three results that correlate with Kepler's
individual laws. The ˇrst of Newton's results concerns Kepler's second law (which
was actually discovered ˇrst, nicely preserving the symmetry of the situation):

327
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Kepler’s second law is true precisely for ‘central forces’, i.e., if and only the force between

the sun and the planet always lies along the line between the sun and the planet.

Although Newton is revered as the discoverer of calculus, and indeed invented
calculus precisely in order to treat such problems, his derivation hardly seems to
use calculus at all. Instead of considering a force that varies continuously as the
planet moves, Newton ˇrst considers short equal time intervals and assumes that
a momentary force is exerted at the ends of each of these intervals.

To be speciˇc, let us imagine that during the ˇrst time interval the planet moves
along the line P1P2, with uniform velocity (Figure 2a). If, during the next equal
time interval, the planet continued to move along this line, it would end up at
P3, where the length of P1P2 equals the length of P2P3. This would imply that
the triangle SP1P2 has the same are as the triangle SP2P3 (since they have equal
bases, and the same height)|this just says that Kepler's law holds in the special
case where the force is 0.

Now suppose (Figure 2b) that at the moment the planet arrives at P2 it experi-
ences a force exerted along the line from S to P2, which by itself would cause the planet
to move to the point Q. Combined with the motion that the planet already has,
this causes the planet to move to R, the vertex opposite P2 in the parallelogram
whose sides are P2P3 and P2Q.

Thus, the area swept out in the second time interval is actually the triangle
SP2R. But the area of triangle SP2R is equal to the area of triangle SP3P2, since
they have the same base SP2, and the same heights (since RP3 is parallel to SP2).
Hence, ˇnally, the area of triangle SP2R is the same as the area of the original
triangle SP1P2 ! Conversely, if the triangle SRP2 has the same area as SP1P2, and
hence the same area as SP3P2, then RP3 must be parallel to SP2, and this implies
that Q must lie along SP2.F I G U R E 2

Of course, this isn't quite the sort of argument one would expect to ˇnd in a
modern book, but in its own charming way it shows physically just why the result
should be true.

To analyze planetary motion we will be using the material in the Appendix to
Chapter 12, and the \determinant" det deˇned in Problem 4 of Appendix 1 to
Chapter 4. We describe the motion of the planet by the parameterized curve

c(t) = r(t)(cos θ(t), sin θ(t)),

so that r always gives the length of the line from the sun to the planet, while θ
gives the angle. It will be convenient to write this also as

(1) c(t) = r(t) · e(θ(t)),

where
e(t) = (cos t, sin t)

is just the parameterized curve that runs along the unit circle. Note that

e′(t) = (− sin t, cos t)



17. Planetary Motion 329

is also a vector of unit length, but perpendicular to e(t), and that we also have

(2) det
(
e(t), e′(t)

) = 1.

Differentiating (1), using the formulas on page 244, we obtain

(3) c′(t) = r ′(t) · e(θ(t))+ r(t)θ ′(t) · e′(θ(t)),

and combining with (1), together with the formulas in Problem 6 of Appendix 1
to Chapter 4, we get

det
(
c(t), c′(t)

) = r(t)r ′(t) det
(
e(θ(t)), e(θ(t))

) + r(t)2θ ′(t)det
(
e(θ(t)), e′(θ(t))

)
= r(t)2θ ′(t) det

(
e(θ(t)), e′(θ(t))

)
,

since det(v, v) is always 0. Using (2) we then get

(4) det(c, c′) = r2θ ′.

As we will see, r2θ ′ turns out to have another important interpretation.

Suppose that A(t) is the area swept out from time 0 to t (Figure 3). We want
to get a formula for A′(t), and, in the spirit of Newton, we'll begin by making
an educated guess. Figure 4 shows A(t + h)− A(t), together with a straight lineFI G U R E 3

segment between c(t) and c(t + h). It is easy to write down a formula for the area
of the triangle (h) with vertices O, c(t), and c(t + h): according to Problems 4
and 5 of Appendix 1 to Chapter 4, the area is

area((h)) = 1
2 det

(
c(t), c(t + h)− c(t)

)
.

Since the triangle (h) has practically the same area as the region A(t+h)−A(t),
this shows (or practically shows) that

A′(t) = lim
h→0

A(t + h)− A(t)

h

= lim
h→0

area(h)
h

= 1
2 det

(
c(t), lim

h→0

c(t + h)− c(t)

h

)
= 1

2 det
(
c(t), c′(t)

)
.

A rigorous derivation, establishing more in the process, can be made using Prob-FI G U R E 4

lem 13-24, which gives a formula for the area of a region determined by the graph
of a function in polar coordinates. According to this Problem, we can write

(∗) A(t) = 1
2

∫ θ(t)

0
ρ(φ)2 dφ

if our parameterized curve c(t) = r(t) · e(θ(t)) is the graph of the function ρ in
polar coordinates (here we've used φ for the angular polar coordinate, to avoid
confusion with the function θ used to describe the curve c).
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Now the function ρ is just

ρ = r � θ−1

[for any particular angle φ, θ−1(φ) is the time at which the curve c has angular
polar coordinate φ, so r(θ−1(t)) is the radius coordinate corresponding to φ].
Although the presence of the inverse function might look a bit forbidding, it's
actually quite innocent: Applying the First Fundamental Theorem of Calculus
and the Chain Rule to (∗) we immediately get

A′(t) = 1
2ρ(θ(t))

2 · θ ′(t)

= 1
2 r(t)

2θ ′(t), since ρ = r � θ−1.

Brie�y,

A′ = 1
2 r

2θ ′.

Combining with (4), we thus have

(5) A′ = 1
2 det(c, c′) = 1

2 r
2θ ′.

Now we're ready to consider Kepler's second law. Notice that Kepler’s second law

is equivalent to saying that A′ is constant, and thus it is equivalent to A′′ = 0. But

A′′ = 1
2

[
det(c, c′)

]′ = 1
2 det(c′, c′)+ 1

2 det(c, c′′) (see page 245)

= 1
2 det(c, c′′).

So

Kepler's second law is equivalent to det(c, c′′) = 0.

Putting this all together we have:

THEOREM 1 Kepler's second law is true if and only if the force is central, and in this case each
planetary path c(t) = r(t) · e(θ(t)) satisˇes the equation

(K2) r2θ ′ = det(c, c′) = constant.

PROOF Saying that the force is central just means that it always points along c(t). Since
c′′(t) is in the direction of the force, that is equivalent to saying that c′′(t) always
points along c(t). And this is equivalent to saying that we always have

det(c, c′′) = 0.

We've just seen that this is equivalent to Kepler's second law.
Moreover, this equation implies that

[
det(c, c′)

]′ = 0, which by (5) gives (K2).
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Newton next showed that if the gravitational force of the sun is a central force
and also satisˇes an inverse square law, then the path of any object in it will be a
conic section having the sun at one focus. Planets, of course, correspond to the
case where the conic section is an ellipse, and this is also true for comets that visit
the sun periodically; parabolas and hyperbolas represent objects that come from
outside the solar system, and eventually continue on their merry way back outside
the system.

THEOREM 2 If the gravitational force of the sun is a central force that satisˇes an inverse square
law, then the path of any body in it will be a conic section having the sun at one
focus.

PROOF Notice that out conclusion speciˇes the shape of the path, not a particular param-
eterization. But this parameterization is essentially determined by Theorem 1: the
hypothesis of a central force implies that the area A(t) (Figure 5) is proportional
to t , so determining c(t) is essentially equivalent to determining A for arbitrary
points on the ellipse. Unfortunately, the areas of such segments cannot be deter-
mined explicitly.* This means that we have to determine the shape of the path
c = r(t) · e(θ(t)) without ˇnding its parameterization! Since it is the function
r � θ−1 which actually describes the shape of the path in polar coordinates, we
shouldn't be surprised to ˇnd θ−1 entering into the proof.F I G U R E 5

By Theorem 1, the hypothesis of a central force implies that

(K2) r2θ ′ = det(c, c′) = M

for some constant M. The hypothesis of an inverse square law can be written

(∗) c′′(t) = − H

r(t)2
e(θ(t))

for some constant H . Using (K2), this can be written

c′′(t)
θ ′(t)

= − H

M
e(θ(t)).

Notice that the left-hand side of this equation is

[c′ � θ−1]′(θ(t)).

So if we let
D = c′ � θ−1

(this is the main trick|\we consider c′ as a function of θ"), then the equation can
be written as

D ′(θ(t)) = − H

M
e(θ(t)) = − H

M

(
cos θ(t), sin θ(t)

)
,

* More precisely, we can't write down a solution in terms of familiar \standard functions," like sin,
arcsin, etc.
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and we can write this simply as

D ′(u) = − H

M
(cos u, sin u) =

(
− H

M
cos u,− H

M
sin u

)
[for all u of the form θ(t) for some t , which happens to be all u], completely
eliminating θ .

The equation that we have just obtained is simply a pair of equations, for the
components of D, each of which we can easily solve individually; we thus ˇnd that

D(u) =
(
H · sin u

−M +A,
H · cos u
M

+ B

)
for two constants A and B. Letting u = θ(t) again we thus have an explicit formula
for c′:

c′ =
(
H · sin θ

−M + A,
H · cos θ
M

+ B

)
.

[Here sin θ really stands for sin�θ , etc., abbreviations that we will use throughout.]
Although we can't get an explicit formula for c itself, if we substitute this equa-

tion, together with c = r(cos θ, sin θ), into the equation

det(c, c′) = M (equation (K2)),

we get

r

[
H

M
cos2 θ + B cos θ + H

M
sin2

θ −A sin θ
]

= M,

which simpliˇes to

r

[
H

M2 + B

M
cos θ − A

M
sin θ

]
= 1.

Problem 15-8 shows that this can be written in the form

r(t)

[
H

M2 + C cos(θ(t)+D)

]
= 1,

for some constants C and D. We can let D = 0, since this simply amounts to
rotating our polar coordinate system (choosing which ray corresponds to θ = 0),
so we can write, ˇnally,

r[1 + ε cos θ] = M2

H
= 
.

But this is the formula for a conic section derived in Appendix 3 of Chapter 4.

In terms of the constant M in the equation

r2θ ′ = M

and the constant 
 in the equation of the orbit

r[1 + ε cos θ] = 
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the last equation in our proof shows that we can rewrite (∗) as

(∗∗) c′′(t) = − M2



· 1
r2 e(θ(t)).

Recall (page 87) that the major axis a of the ellipse is given by

(a) a = 


1 − ε2 ,

while the minor axis b is given by

(b) b = 
√
1 − ε2

.

Consequently,

(c)
b2



= a.

Remember that equation (5) gives

A′(t) = 1
2 r

2θ ′ = 1
2M,

and thus

A(t) = 1
2Mt.

We can therefore interpret M in terms of the period T of the orbit. This period T
is, by deˇnition, the value of t for which we have θ(t) = 2π , so that we obtain the
complete ellipse. Hence

area of the ellipse = A(T ) = 1
2MT,

or

M = 2(area of the ellipse)
T

= 2πab
T

by Problem 13-17.

Hence the constant M2/
 in (∗∗) is

M2



= 4π2a2b2

T 2


= 4π2a3

T 2 , using (c).

This completes the ˇnal step of Newton's analysis:

THEOREM 3 Kepler's third law is true if and only if the acceleration c′′(t) of any planet, moving
on an ellipse, satisˇes

c′′(t) = −G · 1
r2 e(θ(t))

for a constant G that does not depend on the planet.
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It should be mentioned that the converse of Theorem 2 is also true. To prove
this, we ˇrst want to establish one further consequence of Kepler's second law.
Recall that for

e(t) = (cos t, sin t)
we have

e′(t) = (− sin t, cos t).
Consequently,

e′′(t) = (− cos t,− sin t) = −e(t).

Now differentiating (3) gives

c′′(t) = r ′′(t) · e(θ(t))+ r ′(t)θ ′(t) · e′(θ(t))
+ r ′(t)θ ′(t) · e′(θ(t))+ r(t)θ ′′(t) · e′(θ(t)) + r(t)θ ′(t)θ ′(t) · e′′(θ(t)).

Using e′′(t) = −e(t) we get

c′′(t) = [r ′′(t)− r(t)θ ′(t)2
] · e(θ(t))+ [2r ′(t)θ ′(t)+ r(t)θ ′′(t)

] · e′(θ(t)).

Since Kepler's second law implies central forces, hence that c′′(t) is always a mul-
tiple of c(t), and thus always a multiple of e(θ(t)), the coefˇcient of e′(θ(t))
must be 0 [as a matter of fact, we can see this directly by taking the derivative of
formula (K2)]. Thus Kepler's second law implies that

(6) c′′(t) = [r ′′(t)− r(t)θ ′(t)2
] · e(θ(t)).

THEOREM 4 If the path of a planet moving under a central gravitational force is an ellipse with
the sun as focus, then the force must satisfy an inverse square law.

PROOF As in Theorem 2, notice that the hypothesis on the shape of the path, together
with the hypothesis of a central force, which is equivalent to Kepler's second law,
essentially determines the parameterization. But we can't write down an explicit
solution, so we have to obtain information about the acceleration without actually
knowing what it is.

Once again, the hypothesis of a central force implies that

(K2) r2θ ′ = M,

for some constant M, and the hypothesis that the path is an ellipse with the sun
as focus implies that it satisˇes the equation

(A) r[1 + ε cos θ] = 
,

for some ε and 
. For our (not especially illuminating) proof, we will keep differ-
entiating and substituting from these two equations.

First we differentiate (A) to obtain

r ′[1 + ε cos θ] − εrθ ′ sin θ = 0.

Multiplying by r this becomes

rr ′[1 + ε cos θ] − εr2θ ′ sin θ = 0.
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Using both (A) and (K2), this becomes


r ′ − εM sin θ = 0.

Differentiating again, we get


r ′′ − εMθ ′ cos θ = 0.

Using (K2) we get


r ′′ − εM2

r2 cos θ = 0,

and then using (A) we get


r ′′ − M2

r2

[



r
− 1
]

= 0.

Substituting from (K2) yet again, we get


[r ′′ − r(θ ′)2] + M2

r2 = 0,

or

r ′′ − r(θ ′)2 = − M2


r2 .

Comparing with (6), we obtain

c′′(t) = − M2


r2 e(θ(t)),

which is precisely what we wanted to show: the force is inversely proportional to
the square of the distance from the sun to the planet.



CHAPTER 1 8 THE LOGARITHM AND
EXPONENTIAL FUNCTIONS

In Chapter 15 the integral provided a rigorous formulation for a preliminary def-
inition of the functions sin and cos. In this chapter the integral plays a more
essential role. For certain functions even a preliminary deˇnition presents difˇcul-
ties. For example, consider the function

f (x) = 10x.

This function is assumed to be deˇned for all x and to have an inverse function,
deˇned for positive x, which is the \logarithm to the base 10,"

f−1(x) = log10 x.

In algebra, 10x is usually deˇned only for rational x, while the deˇnition for ir-
rational x is quietly ignored. A brief review of the deˇnition for rational x will
not only explain this omission, but also recall an important principle behind the
deˇnition of 10x .

The symbol 10n is ˇrst deˇned for natural numbers n. This notation turns out
to be extremely convenient, especially for multiplying very large numbers, because

10n · 10m = 10n+m.

The extension of the deˇnition of 10x to rational x is motivated by the desire
to preserve this equation; this requirement actually forces upon us the customary
deˇnition. Since we want the equation

100 · 10n = 100+n = 10n

to be true, we must deˇne 100 = 1; since we want the equation

10−n · 10n = 100 = 1

to be true, we must deˇne 10−n = 1/10n; since we want the equation

101/n · · · · · 101/n︸ ︷︷ ︸
n times

= 10 1/n+···+1/n︸ ︷︷ ︸
n times

= 101 = 10

to be true, we must deˇne 101/n = n
√

10 ; and since we want the equation

101/n · · · · · 101/n︸ ︷︷ ︸
m times

= 10 1/n+···+1/n︸ ︷︷ ︸
m times

= 10m/n

to be true, we must deˇne 10m/n = (
n
√

10 )m.
Unfortunately, at this point the program comes to a dead halt. We have been

guided by the principle that 10x should be deˇned so as to ensure that 10x+y =
10x10y ; but this principle does not suggest any simple algebraic way of deˇning

336
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10x for irrational x. For this reason we will try some more sophisticated ways of
ˇnding a function f such that

(∗) f (x + y) = f (x) · f (y) for all x and y.

Of course, we are interested in a function which is not always zero, so we might
add the condition f (1) �= 0. If we add the more speciˇc condition f (1) = 10,
then (∗) will imply that f (x) = 10x for rational x, and 10x could be defined as f (x)
for other x; in general f (x) will equal [f (1)]x for rational x.

One way to ˇnd such a function is suggested if we try to solve an apparently
more difˇcult problem: ˇnd a differentiable function f such that

f (x + y) = f (x) · f (y) for all x and y,

f (1) = 10.

Assuming that such a function exists, we can try to ˇnd f ′|knowing the derivative
of f might provide a clue to the deˇnition of f itself. Now

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

f (x) · f (h)− f (x)

h

= f (x) · lim
h→0

f (h)− 1
h

.

The answer thus depends on

f ′(0) = lim
h→0

f (h)− 1
h

;

for the moment assume this limit exists, and denote it by α. Then

f ′(x) = α · f (x) for all x.

Even if α could be computed, this approach seems self-defeating. The derivative
of f has been expressed in terms of f again.

If we examine the inverse function f −1 = log10, the whole situation appears in
a new light:

log10
′(x) = 1

f ′(f −1(x))

= 1
α · f (f −1(x))

= 1
αx
.

The derivative of f−1 is about as simple as one could ask! And, what is even

more interesting, of all the integrals
∫ b

a

xn dx examined previously, the integral∫ b

a

x−1 dx is the only one which we cannot evaluate. Since log10 1 = 0 we should

have
1
α

∫ x

1

1
t
dt = log10 x − log10 1 = log10 x.
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This suggests that we deˇne log10 x as (1/α)
∫ x

1
t−1 dt . The difˇculty is that α is

unknown. One way of evading this difˇculty is to deˇne

log x =
∫ x

1

1
t
dt,

and hope that this integral will be the logarithm to some base, which might be
determined later. In any case, the function deˇned in this way is surely more
reasonable, from a mathematical point of view, than log10. The usefulness of
log10 depends on the important role of the number 10 in arabic notation (and thus
ultimately on the fact that we have ten ˇngers), while the function log provides a
notation for an extremely simple integral which cannot be evaluated in terms of
any functions already known to us.

DEFINITION If x > 0, then

log x =
∫ x

1

1
t
dt.

The graph of log is shown in Figure 1. Notice that if x > 1, then log x > 0,
and if 0 < x < 1, then log x < 0, since, by our conventions,∫ x

1

1
t
dt = −

∫ 1

x

1
t
dt < 0.

For x ≤ 0, a number log x cannot be deˇned in this way, because f (t) = 1/t is
not bounded on [x,1].

F I G U R E 1

The justiˇcation for the notation \log" comes from the following theorem.

THEOREM 1 If x, y > 0, then
log(xy) = log x + log y.
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PROOF Notice ˇrst that log′(x) = 1/x, by the Fundamental Theorem of Calculus. Now
choose a number y > 0 and let

f (x) = log(xy).

Then

f ′(x) = log′
(xy) · y = 1

xy
· y = 1

x
.

Thus f ′ = log′. This means that there is a number c such that

f (x) = log x + c for all x > 0,

that is,
log(xy) = log x + c for all x > 0.

The number c can be evaluated by noting that when x = 1 we obtain

log(1 · y) = log 1 + c

= c.

Thus
log(xy) = log x + log y for all x.

Since this is true for all y > 0, the theorem is proved.

COROLLARY 1 If n is a natural number and x > 0, then

log(xn) = n log x.

PROOF Let to you (use induction).

COROLLARY 2 If x, y > 0, then

log
(
x

y

)
= log x − log y.

PROOF This follows from the equations

log x = log
(
x

y
· y
)

= log
(
x

y

)
+ log y.

Theorem 1 provides some important information about the graph of log. The
function log is clearly increasing, but since log′(x) = 1/x, the derivative becomes
very small as x becomes large, and log consequently grows more and more slowly.
It is not immediately clear whether log is bounded or unbounded on R. Observe,
however, that for a natural number n,

log(2n) = n log 2 (and log 2 > 0);
it follows that log is, in fact, not bounded above. Similarly,

log
(

1
2n

)
= log 1 − log 2n = −n log 2;



340 Derivatives and Integrals

therefore log is not bounded below on (0, 1). Since log is continuous, it actu-
ally takes on all values. Therefore R is the domain of the function log−1. This
important function has a special name, whose appropriateness will soon become
clear.

DEFINITION The \exponential function," exp, is deˇned as log−1.

The graph of exp is shown in Figure 2. Since log x is deˇned only for x > 0, we
always have exp(x) > 0. The derivative of the function exp is easy to determine.

THEOREM 2 For all numbers x,
exp′(x) = exp(x).

PROOF exp′(x) = (log−1)′(x) = 1

log′
(log−1

(x))

= 1
1

log−1(x)

= log−1(x) = exp(x).

A second important property of exp is an easy consequence of Theorem 1.

THEOREM 3 If x and y are any two numbers, then

exp(x + y) = exp(x) · exp(y).

PROOF Let x ′ = exp(x) and y ′ = exp(y), so that

x = log x ′,
y = log y ′.

Then
x + y = log x ′ + log y ′ = log(x ′y ′).

This means that
exp(x + y) = x ′y ′ = exp(x) · exp(y).

This theorem, and the discussion at the beginning of this chapter, suggest that
exp(1) is particularly important. There is, in fact, a special symbol for this number.F I G U R E 2

DEFINITION e = exp(1).
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This deˇnition is equivalent to the equation

1 = log e =
∫ e

1

1
t
dt.

As illustrated in Figure 3,∫ 2

1

1
t
dt < 1, since 1 · (2 − 1) is an upper sum for

f (t) = 1/t on [1, 2],

and ∫ 4

1

1
t
dt > 1, since 1

2 · (2 − 1)+ 1
4 · (4 − 2) = 1 is a lower

sum for f (t) = 1/t on [1,4].

ThusFI G U R E 3 ∫ 2

1

1
t
dt <

∫ e

1

1
t
dt <

∫ 4

1

1
t
dt,

which shows that
2 < e < 4.

In Chapter 20 we will ˇnd much better approximations for e, and also prove that
e is irrational (the proof is much easier than the proof that π is irrational!).

As we remarked at the beginning of the chapter, the equation

exp(x + y) = exp(x) · exp(y)

implies that

exp(x) = [exp(1)]x

= ex, for all rational x.

Since exp is deˇned for all x and exp(x) = ex for rational x, it is consistent with
our earlier use of the exponential notation to define ex as exp(x) for all x.

DEFINITION For any number x,
e x = exp(x).

The terminology \exponential function" should now be clear. We have suc-
ceeded in deˇning ex for an arbitrary (even irrational) exponent x. We have not
yet deˇned ax , if a �= e, but there is a reasonable principle to guide us in the
attempt. If x is rational, then

ax = (elog a)x = ex log a.

But the last expression is deˇned for all x, so we can use it to deˇne ax.
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DEFINITION If a > 0, then, for any real number x,

ax = ex log a.

(If a = e this deˇnition clearly agrees with the previous one.)

The requirement a > 0 is necessary, in order that log a be deˇned. This is not
unduly restrictive since, for example, we would not even expect

(−1)1/2 ?=
√

−1

to be deˇned. (Of course, for certain rational x, the symbol ax will make sense,
according to the old deˇnition; for example,

(−1)1/3 = 3
√

−1 = −1.)

Our deˇnition of ax was designed to ensure that

(ex)y = exy for all x and y.

As we would hope, this equation turns out to be true when e is replaced by any
number a > 0. The proof is a moderately involved unraveling of terminology. At
the same time we will prove the other important properties of ax .F I G U R E 4

THEOREM 4 If a > 0, then

(1) (ab)c = abc for all b, c.

(Notice that ab will automatically be positive, so (ab)c will be deˇned);

(2) a1 = a and ax+y = ax · ay for all x, y.

(Notice that (2) implies that this deˇnition of ax agrees with the old one for all
rational x.)

PROOF (1) (ab)c = ec log ab = ec log(eb log a) = ec(b log a) = ecb log a = abc.

(Each of the steps in this string of equalities depends upon our last deˇnition, or
the fact that exp = log−1.)

(2) a1 = e1 log a = elog a = a,

ax+y = e(x+y) log a = ex log a+y log a = ex log a · ey log a = ax · ay.

Figure 4 shows the graphs of f (x) = ax for several different a. The behavior
of the function depends on whether a < 1, a = 1, or a > 1. If a = 1, then
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f (x) = 1x = 1. Suppose a > 1. In this case log a > 0. Thus,

if x < y,

then x log a < y log a,
so ex log a < ey log a,

i.e., ax < ay.

Thus the function f (x) = ax is increasing. On the other hand, if 0 < a < 1,
so that log a < 0, the same sort of reasoning shows that the function f (x) = ax

is decreasing. In either case, if a > 0 and a �= 1, then f (x) = ax is one-one.
Since exp takes on every positive value it is also easy to see that ax takes on every
positive value. Thus the inverse function is deˇned for all positive numbers, and
takes on all values. If f (x) = ax , then f −1 is the function usually denoted by loga
(Figure 5).

Just as ax can be expressed in terms of exp, so loga can be expressed in terms
of log. Indeed,

if y = loga x,
then x = ay = ey log a,

so log x = y log a,

or y = log x
log a

.

In other words,

loga x = log x
log a

.

The derivatives of f (x) = ax and g(x) = loga x are both easy to ˇnd:FI G U R E 5

f (x) = ex log a, so f ′(x) = log a · ex log a = log a · ax,
g(x) = log x

log a
, so g′(x) = 1

x log a
.

A more complicated function like

f (x) = g(x)h(x)

is also easy to differentiate, if you remember that, by definition,

f (x) = eh(x) log g(x);
it follows from the Chain Rule that

f ′(x) = eh(x) log g(x) ·
[
h′(x) log g(x)+ h(x)

g′(x)
g(x)

]

= g(x)h(x) ·
[
h′(x) log g(x)+ h(x)

g′(x)
g(x)

]
.

There is no point in remembering this formula|simply apply the principle behind
it in any speciˇc case that arises; it does help, however, to remember that the ˇrst
factor in the derivative will be g(x)h(x).
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There is one special case of the above formula which is worth remembering.
The function f (x) = xa was previously deˇned only for rational a. We can now
deˇne and ˇnd the derivative of the function f (x) = xa for any number a; the
result is just what we would expect:

f (x) = xa = ea log x

so

f ′(x) = a

x
· ea log x = a

x
· xa = axa−1.

Algebraic manipulations with the exponential functions will become second na-
ture after a little practice|just remember that all the rules which ought to work
actually do. The basic properties of exp are still those stated in Theorems 2 and 3:

exp′(x) = exp(x),
exp(x + y) = exp(x) · exp(y).

In fact, each of these properties comes close to characterizing the function exp.
Naturally, exp is not the only function f satisfying f ′ = f , for if f = cex , then
f ′(x) = cex = f (x); these functions are the only ones with this property, however.

THEOREM 5 If f is differentiable and

f ′(x) = f (x) for all x,

then there is a number c such that

f (x) = cex for all x.

PROOF Let
g(x) = f (x)

ex
.

(This is permissible, since ex �= 0 for all x.) Then

g′(x) = exf ′(x)− f (x)ex

(ex)2
= 0.

Therefore there is a number c such that

g(x) = f (x)

ex
= c for all x.

The second basic property of exp requires a more involved discussion. The
function exp is clearly not the only function f which satisˇes

f (x + y) = f (x) · f (y).
In fact, f (x) = 0 or any function of the form f (x) = ax also satisˇes this equation.
But the true story is much more complex than this|there are inˇnitely many other
functions which satisfy this property, but it is impossible, without appealing to more
advanced mathematics, to prove that there is even one function other than those
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already mentioned! It is for this reason that the deˇnition of 10x is so difˇcult:
there are inˇnitely many functions f which satisfy

f (x + y) = f (x) · f (y),
f (1) = 10,

but which are not the function f (x) = 10x ! One thing is true however|any
continuous function f satisfying

f (x + y) = f (x) · f (y)
must be of the form f (x) = ax or f (x) = 0. (Problem 38 indicates the way to
prove this, and also has a few words to say about discontinuous functions with this
property.)

In addition to the two basic properties stated in Theorems 2 and 3, the function
exp has one further property which is very important|exp \grows faster than any
polynomial." In other words,

THEOREM 6 For any natural number n,

lim
x→∞

ex

xn
= ∞.

PROOF The proof consists of several steps.

Step 1. ex > x for all x, and consequently lim
x→∞ e

x = ∞ (this may be considered
to be the case n = 0).

To prove this statement (which is clear for x ≤ 0) it sufˇces to show that

x > log x for all x > 0.

If x < 1 this is clearly true, since log x < 0. If x > 1, then (Figure 6) x − 1 is an
upper sum for f (t) = 1/t on [1, x], so log x < x − 1 < x.

Step 2. lim
x→∞

ex

x
= ∞.

To prove this, note that

ex

x
= ex/2 · ex/2

x

2
· 2

= 1
2


ex/2x

2


 · ex/2.

By Step 1, the expression in parentheses is greater than 1, and lim
x→∞ e

x/2 = ∞; this
F I G U R E 6

shows that lim
x→∞ e

x/x = ∞.

Step 3. lim
x→∞

ex

xn
= ∞.

Note that
ex

xn
= (ex/n)n(

x

n

)n
· nn

= 1
nn

·

ex/nx

n


n.
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The expression in parentheses becomes arbitrarily large, by Step 2, so the nth
power certainly becomes arbitrarily large.

It is now possible to examine carefully the following very interesting function:
f (x) = e−1/x2

, x �= 0. We have

f ′(x) = e−1/x2 · 2
x3 .

Therefore,

f ′(x) < 0 for x < 0,
f ′(x) > 0 for x > 0,

so f is decreasing for negative x and increasing for positive x. Moreover, if |x| is
large, then x2 is large, so −1/x2 is close to 0, so e−1/x2 is close to 1 (Figure 7).

F I G U R E 7

The behavior of f near 0 is more interesting. If x is small, then 1/x2 is large,
so e1/x2

is large, so e−1/x2 = 1/(e1/x2
) is small. This argument, suitably stated with

ε's and δ's, shows that
lim
x→0

e−1/x2 = 0.

Therefore, if we deˇne

f (x) =
{
e−1/x2

, x �= 0
0, x = 0,

then the function f is continuous (Figure 8). In fact, f is actually differentiable

FI G U R E 8
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at 0: Indeed

f ′(0) = lim
h→0

e−1/h2

h
= lim

h→0

1/h
e(1/h)

2 ,

and

lim
h→0+

1/h
e(1/h)

2 = lim
x→∞

x

e(x
2)
, while lim

h→0−

1/h
e(1/h)

2 = − lim
x→∞

x

e(x
2)
.

We already know that

lim
x→∞

ex

x
= ∞;

it is all the more true that

lim
x→∞

e(x
2)

x
= ∞,

and this means that
lim
x→∞

x

e(x
2)

= 0.

Thus

f ′(x) =

 e−1/x2 · 2

x3 , x �= 0

0, x = 0.

We can now compute that

f ′′(0) = lim
h→0

f ′(h)− f ′(0)
h

= lim
h→0

e−1/h2 · 2
h3

h

= lim
h→0

2 · e−1/h2

h4 = lim
h→0

2 · 1
h4

e1/h2 = lim
x→∞

2x4

e(x
2)

;

an argument similar to the one above shows that f ′′(0) = 0. Thus

f ′′(x) =

 e−1/x2 · −6

x4 + e−1/x2 · 4
x6 , x �= 0

0, x = 0.

This argument can be continued. In fact, using induction it can be shown (Prob-
lem 40) that f (k)(0) = 0 for every k. The function f is extremely �at at 0, and
approaches 0 so quickly that it can mask many irregularities of other functions.
For example (Figure 9), suppose that

f (x) =

 e−1/x2 · sin

1
x
, x �= 0

0, x = 0.
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It can be shown (Problem 41) that for this function it is also true that f (k)(0) = 0
for all k. This example shows, perhaps more strikingly than any other, just how
bad a function can be, and still be inˇnitely differentiable. In Part IV we will
investigate even more restrictive conditions on a function, which will ˇnally rule
out behavior of this sort.

F I G U R E 9

PROBLEMS

1. Differentiate each of the following functions (remember that ab
c

always de-
notes a(b

c)).

(i) f (x) = ee
ee
x

.
(ii) f (x) = log(1 + log(1 + log(1 + e1+e1+x

))).

(iii) f (x) = (sin x)sin(sin x).

(iv) f (x) = e

(∫ x

0
e−t

2
dt
)
.

(v) f (x) = sin x sin xsin x
.

(vi) f (x) = log(ex) sin x.

(vii) f (x) =
[
arcsin

( x

sin x

)]log(sin ex)
.

(viii) f (x) = (log(3 + e4))e4x + (arcsin x)log 3.
(ix) f (x) = (log x)log x .
(x) f (x) = xx.

2. (a) The derivative of log �f is f ′/f .

This expression is called the logarithmic derivative of f . It is often easier
to compute than f ′, since products and powers in the expression for f
become sums and products in the expression for log �f . The deriva-
tive f ′ can then be recovered simply by multiplying by f ; this process is
called logarithmic differentiation.

(b) Use logarithmic differentiation to ˇnd f ′(x) for each of the following.

(i) f (x) = (1 + x)(1 + ex
2
).
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(ii) f (x) = (3 − x)1/3x2

(1 − x)(3 + x)2/3
.

(iii) f (x) = (sin x)cosx + (cos x)sinx .

(iv) f (x) = ex − e−x

e2x(1 + x3)
.

3. Find ∫ b

a

f ′(t)
f (t)

dt

(for f > 0 on [a, b]).

4. Graph each of the following functions.

(a) f (x) = ex+1.
(b) f (x) = esin x .
(c) f (x) = ex + e−x.
(d) f (x) = ex − e−x.

} (Compare the graph with the graphs of exp and
1/ exp.)

(e) f (x) = ex − e−x

ex + e−x
= e2x − 1
e2x + 1

= 1 − 2
e2x + 1

.

5. Find the following limits by l'Hôpital's Rule.

(i) lim
x→0

ex − 1 − x − x2/2
x2 .

(ii) lim
x→0

ex − 1 − x − x2/2 − x3/6
x3 .

(iii) lim
x→0

ex − 1 − x − x2/2
x3 .

(iv) lim
x→0

log(1 + x)− x + x2/2
x2 .

(v) lim
x→0

log(1 + x)− x + x2/2
x3 .

(vi) lim
x→0

log(1 + x)− x + x2/2 − x3/3
x3 .

6. The functions

sinh x = ex − e−x

2
,

cosh x = ex + e−x

2
,

tanh x = ex − e−x

ex + e−x
= 1 − 2

e2x + 1
,

are called the hyperbolic sine, hyperbolic cosine, and hyperbolic
tangent, respectively (but usually read `sinch,' `cosh,' and `tanch'). There
are many analogies between these functions and their ordinary trigonometric
counterparts. One analogy is illustrated in Figure 10; a proof that the regionFI G U R E 1 0
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shown in Figure 10(b) really has area x/2 is best deferred until the next chap-
ter, when we will develop methods of computing integrals. Other analogies
are discussed in the following three problems, but the deepest analogies must
wait until Chapter 27. If you have not already done Problem 4, graph the
functions sinh, cosh, and tanh.

7. Prove that

(a) cosh2 − sinh2 = 1.
(b) tanh2 +1/ cosh2 = 1.
(c) sinh(x + y) = sinh x cosh x + cosh x sinh y.
(d) cosh(x + y) = cosh x cosh y + sinh x sinh y.
(e) sinh′ = cosh.
(f ) cosh′ = sinh.

(g) tanh′ = 1

cosh2 .

8. The functions sinh and tanh are one-one; their inverses sinh−1 and tanh−1,
are deˇned on R and (−1,1), respectively. These inverse functions are some-
times denoted by arg sinh and arg tanh (the \argument" of the hyperbolic
sine and tangent). If cosh is restricted to [0,∞) it has an inverse, denoted
by arg cosh, or simply cosh−1, which is deˇned on [1,∞). Prove, using the
information in Problem 7, that

(a) sinh(cosh−1
x) =

√
x2 − 1.

(b) cosh(sinh−1 x) =
√

1 + x2.

(c) (sinh−1)′(x) = 1√
1 + x2

.

(d) (cosh−1
)′(x) = 1√

x2 − 1
for x > 1.

(e) (tanh−1)′(x) = 1
1 − x2 for |x| < 1.

9. (a) Find an explicit formula for sinh−1, cosh−1, and tanh−1 (by solving the
equation y = sinh−1 x for x in terms of y, etc.).

(b) Find∫ b

a

1√
1 + x2

dx,

∫ b

a

1√
x2 − 1

dx for a, b > 1 or a, b < 1,

∫ b

a

1
1 − x2 dx for |a|, |b| < 1.

Compare your answer for the third integral with that obtained by writing

1
1 − x2 = 1

2

[
1

1 − x
+ 1

1 + x

]
.
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10. Show that

F(x) =
∫ x

2

1
log t

dt

is not bounded on [2,∞).

11. Let f be a nondecreasing function on [1,∞), and deˇne

F(x) =
∫ x

1

f (t)

t
dt, x ≥ 1.

Prove that f is bounded on [1,∞) if and only if F/ log is bounded on [1,∞).

12. Find

(a) lim
x→∞ a

x for 0 < a < 1. (Remember the deˇnition!)

(b) lim
x→∞

x

(log x)n
.

(c) lim
x→∞

(log x)n

x
.

(d) lim
x→0+

x(log x)n. Hint: x(log x)n =
(−1)n

(
log

1
x

)n
1
x

.

(e) lim
x→0+

xx .

13. Graph f (x) = xx for x > 0. (Use Problem 12(e).)

14. (a) Find the minimum value of f (x) = ex/xn for x > 0, and conclude that
f (x) > en/nn for x > n.

(b) Using the expression f ′(x) = ex(x − n)/xn+1, prove that f ′(x) >
en+1/(n + 1)n+1 for x > n + 1, and thus obtain another proof that
lim
x→∞ f (x) = ∞.

15. Graph f (x) = ex/xn.

16. (a) Find lim
y→0

log(1 + y)/y. (You can use l'Hôpital's Rule, but that would be

silly.)
(b) Find lim

x→∞ x log(1 + 1/x).

(c) Prove that e = lim
x→∞(1 + 1/x)x .

(d) Prove that ea = lim
x→∞(1 + a/x)x. (It is possible to derive this from part (c)

with just a little algebraic ˇddling.)
*(e) Prove that log b = lim

x→∞ x(b
1/x − 1).

17. Graph f (x) = (1 + 1/x)x for x > 0. (Use Problem 16(c).)

18. If a bank gives a percent interest per annum, then an initial investment I
yields I (1 + a/100) after 1 year. If the bank compounds the interest (counts
the accrued interest as part of the capital for computing interest the next
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year), then the initial investment grows to I (1 + a/100)n after n years. Now
suppose that interest is given twice a year. The ˇnal amount after n years
is, alas, not I (1 + a/100)2n, but merely I (1 + a/200)2n|although interest is
awarded twice as often, the interest must be halved in each calculation, since
the interest is a/2 per half year. This amount is larger than I (1 + a/100)n,
but not that much larger. Suppose that the bank now compounds the interest
continuously, i.e., the bank considers what the investment would yield when
compounding k times a year, and then takes the least upper bound of all
these numbers. How much will an initial investment of 1 dollar yield after
1 year?

19. (a) Let f (x) = log |x| for x �= 0. Prove that f ′(x) = 1/x for x �= 0.
(b) If f (x) �= 0 for all x, prove that (log |f |)′ = f ′/f .

20. Suppose that on some interval the function f satisˇes f ′ = cf for some
number c.

(a) Assuming that f is never 0, use Problem 19(b) to prove that |f (x)| = lecx

for some number l (> 0). It follows that f (x) = kecx for some k.
(b) Show that this result holds without the added assumption that f is

never 0. Hint: Show that f can't be 0 at the endpoint of an open
interval on which it is nowhere 0.

(c) Give a simpler proof that f (x) = kecx for some k by considering the
function g(x) = f (x)/ecx .

(d) Suppose that f ′ = fg′ for some g. Show that f (x) = keg(x) for some k.

*21. A radioactive substance diminishes at a rate proportional to the amount
present (since all atoms have equal probability of disintegrating, the total
disintegration is proportional to the number of atoms remaining). If A(t)
is the amount at time t , this means that A′(t) = cA(t) for some c (which
represents the probability that an atom will disintegrate).

(a) Find A(t) in terms of the amount A0 = A(0) present at time 0.
(b) Show that there is a number τ (the \half-life" of the radioactive element)

with the property that A(t + τ ) = A(t)/2.

*22. Newton’s law of cooling states that an object cools at a rate proportional to
the difference of its temperature and the temperature of the surrounding
medium. Find the temperature T (t) of the object at time t , in terms of its
temperature T0 at time 0, assuming that the temperature of the surrounding
medium is kept at a constant, M. Hint: To solve the differential equation
expressing Newton's law, remember that T ′ = (T −M)′.

*23. Prove that if f (x) =
∫ x

0
f (t) dt , then f = 0.

24. Find all continuous functions f satisfying

(i)
∫ x

0
f = ex .
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(ii)
∫ x2

0
f = 1 − e2x2

.

25. Given a differentiable function f , ˇnd all continuous functions g satisfying∫ f (x)

0
fg = g(f (x))− 1.

*26. Find all functions f satisfying f ′(t) = f (t)+
∫ 1

0
f (t) dt .

27. Find all continuous functions f which satisfy the equation

(f (x))2 =
∫ x

0
f (t)

t

1 + t2
dt.

28. (a) Let f and g be continuous nonnegative functions on [a, b], and let
C > 0. Suppose that

f (x) ≤ C +
∫ x

a

fg a ≤ x ≤ b.

Prove Gronwall’s inequality:

f (x) ≤ Ce

∫ x
a
g
.

Hint: Consider the derivative of the function h(x) = C + ∫ x
a
fg.

(b) Use a limiting argument to show that this result holds even for C = 0.
(c) Suppose that f ′(x) = g(x)f (x) for some continuous function g, and that

f (0) = 0. Then f = 0. (Compare Problem 20.)

29. (a) Prove that

1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
≤ ex for x ≥ 0.

Hint: Use induction on n, and compare derivatives.
(b) Give a new proof that lim

x→∞ e
x/xn = ∞.

30. Give yet another proof of this fact, using the appropriate form of l'Hôpital's
Rule. (See Problem 11-53.)

31. (a) Evaluate lim
x→∞ e

−x2
∫ x

0
et

2
dt . (You should be able to make an educated

guess before doing any calculations.)
(b) Evaluate the following limits.

(i) lim
x→∞ e

−x2
∫ x+(1/x)

x

et
2
dt .

(ii) lim
x→∞ e

−x2
∫ x+(log x/x)

x

et
2
dt .

(iii) lim
x→∞ e

−x2
∫ x+(log x/2x)

x

et
2
dt .
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32. This problem outlines the classical approach to logarithms and exponentials.
To begin with, we will simply assume that the function f (x) = ax, deˇned in
an elementary way for rational x, can somehow be extended to a continuous
one-one function, obeying the same algebraic rules, on the whole line. (See
Problem 22-29 for a direct proof of this.) The inverse of f will then be
denoted by loga.

(a) Show, directly from the deˇnition, that

loga
′(x) = lim

h→0
loga

(
1 + h

x

)1/h

= 1
x

· loga

(
lim
k→0

(1 + k)1/k
)
.

Thus, the whole problem has been reduced to the determination of
lim
h→0

(1 + h)1/h. If we can show that this has a limit e, then loge
′(x) =

1
x

· loge e = 1
x

, and consequently exp = log−1
e has derivative exp′(x) =

exp(x).

(b) Let an =
(

1 + 1
n

)n
for natural numbers n. Using the binomial theorem,

show that

an = 2 +
n∑
k=2

1
k!

(
1 − 1

n

)(
1 − 2

n

)
· . . . ·

(
1 − k − 1

n

)
.

Conclude that an < an+1.
(c) Using the fact that 1/k! ≤ 1/2k−1 for k ≥ 2, show that all an < 3. Thus,

the set of numbers {a1, a2, a3, . . . } is bounded, and therefore has a least
upper bound e. Show that for any ε > 0 we have e − an < ε for large
enough n.

(d) If n ≤ x ≤ n+ 1, then(
1 + 1

n+ 1

)n
≤
(

1 + 1
x

)x
≤
(

1 + 1
n + 1

)n+1

.

Conclude that lim
x→∞

(
1 + 1

x

)x
= e. Also show that lim

x→−∞

(
1 + 1

x

)x
= e,

and conclude that lim
h→0

(1 + h)1/h = e.

*33. A point P is moving along a line segment AB of length 107 while another
point Q moves along an inˇnite ray (Figure 11). The velocity of P is always
equal to the distance from P to B (in other words, if P(t) is the position of P
at time t , then P ′(t) = 107 − P(t)), while Q moves with constant velocity
Q′(t) = 107. The distance traveled by Q after time t is deˇned to be the
Napierian logarithm of the distance from P to B at time t . Thus

FI G U R E 1 1 107t = Nap log[107 − P(t)].
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This was the deˇnition of logarithms given by Napier (1550{1617) in his
publication of 1614, Mirifici logarithmonum canonis description (A Description of
the Wonderful Law of Logarithms); work which was done before the use of
exponents was invented! The number 107 was chosen because Napier's ta-
bles (intended for astronomical and navigational calculations), listed the loga-
rithms of sines of angles, for which the best possible available tables extended
to seven decimal places, and Napier wanted to avoid fractions. Prove that

Nap log x = 107 log
107

x
.

Hint: Use the same trick as in Problem 22 to solve the equation for P .

*34. (a) Sketch the graph of f (x) = (log x)/x (paying particular attention to the
behavior near 0 and ∞).

(b) Which is larger, eπ or πe?
(c) Prove that if 0 < x ≤ 1, or x = e, then the only number y satisfying

xy = yx is y = x; but if x > 1, x �= e, then there is precisely one number
y �= x satisfying xy = yx; moreover, if x < e, then y > e, and if x > e,
then y < e. (Interpret these statements in terms of the graph in part (a)!)

(d) Prove that if x and y are natural numbers and xy = yx, then x = y or
x = 2, y = 4, or x = 4, y = 2.

(e) Show that the set of all pairs (x,y) with xy = yx consists of a curve and
a straight line which intersect; ˇnd the intersection and draw a rough
sketch.

**(f ) For 1 < x < e let g(x) be the unique number > e with xg(x) = g(x)x .
Prove that g is differentiable. (It is a good idea to consider separate
functions,

f1(x) = log x
x

, 0 < x < e

f2(x) = log x
x

, e < x

and write g in terms of f1 and f2. You should be able to show that

g′(x) = [g(x)]2

1 − log g(x)
· 1 − log x

x2

if you do this part properly.)

*35. This problem uses the material from the Appendix to Chapter 11.

(a) Prove that exp is convex and log is concave.

(b) Prove that if
n∑
i=1

pi = 1 and all pi > 0, then

z1
p1 · · · · · znpn < p1z1 + · · · + pnzn.

(Use Problem 9 from the Appendix to Chapter 11.)
(c) Deduce another proof that Gn ≤ An (Problem 2-22).
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36. (a) Let f be a positive function on [a, b], and let Pn be the partition of [a, b]
into n equal intervals. Use Problem 2-22 to show that

1
b − a

L(log f,Pn) ≤ log
(

1
b − a

L(f,Pn)

)
.

(b) Use the Appendix to Chapter 13 to conclude that for all integrable f > 0
we have

1
b − a

∫ b

a

log f ≤ log
(

1
b − a

∫ b

a

f

)
.

A more direct approach is illustrated in the next part:

(c) In Problem 35, Problem 2-22 was deduced as a special case of the in-
equality

g

(
n∑
i=1

pixi

)
≤

n∑
i=1

pig(xi)

for pi > 0,
n∑
i=1

pi = 1 and g convex. For g concave we have the reverse

inequality
n∑
i=1

pig(xi) ≤ g

(
n∑
i=1

pixi

)
.

Apply this with g = log to prove the result of part (b) directly for any
integrable f .

(d) State a general theorem of which part (b) is just a special case.

37. Suppose f satisˇes f ′ = f and f (x + y) = f (x)f (y) for all x and y. Prove
that f = exp or f = 0.

*38. Prove that if f is continuous and f (x + y) = f (x)f (y) for all x and y, then
either f = 0 or f (x) = [f (1)]x for all x. Hint: Show that f (x) = [f (1)]x

for rational x, and then use Problem 8-6. This problem is closely related to
Problem 8-7, and the information mentioned at the end of Problem 8-7 can
be used to show that there are discontinuous functions f satisfying f (x+y) =
f (x)f (y).

*39. Prove that if f is a continuous function deˇned on the positive real numbers,
and f (xy) = f (x) + f (y) for all positive x and y, then f = 0 or f (x) =
f (e) log x for all x > 0. Hint: Consider g(x) = f (ex).

*40. Prove that if f (x) = e−1/x2
for x �= 0, and f (0) = 0, then f (k)(0) = 0 for

all k.

*41. Prove that if f (x) = e−1/x2
sin 1/x for x �= 0, and f (0) = 0, then f (k)(0) = 0

for all k.
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42. (a) Prove that if α is a root of the equation

(∗) anx
n + an−1x

n−1 + · · · + a1x + a0 = 0,

then the function y(x) = eαx satisˇes the differential equation

(∗∗) any
(n) + an−1y

(n−1) + · · · + a1y
′ + a0y = 0.

*(b) Prove that if α is a double root of (∗), then y(x) = xeαx also satisˇes (∗∗).
Hint: Remember that if α is a double root of a polynomial equation
f (x) = 0, then f ′(α) = 0.

*(c) Prove that if α is a root of (∗) of order r, then y(x)= xkeαx is a solution
for 0 ≤ k ≤ r − 1.

If (∗) has n real numbers as roots (counting multiplicities), part (c) gives
n solutions y1, . . . , yn of (∗∗).

(d) Prove that in this case the function c1y1 + · · · + cnyn also satisˇes (∗∗).

It is a theorem that in this case these are the only solutions of (∗∗). Prob-
lem 20 and the next two problems prove special cases of this theorem,
and the general case is considered in Problem 20-19. In Chapter 27 we
will see what to do when (∗) does not have n real numbers as roots.

*43. Suppose that f satisˇes f ′′ −f = 0 and f (0) = f ′(0) = 0. Prove that f = 0
as follows.

(a) Show that f 2 − (f ′)2 = 0.
(b) Suppose that f (x) �= 0 for all x in some interval (a, b). Show that either

f (x) = cex or else f (x) = ce−x for all x in (a, b), for some constant c.
**(c) If f (x0) �= 0 for x0 > 0, say, then there would be a number a such that

0 ≤ a < x0 and f (a) = 0, while f (x) �= 0 for a < x < x0. Why? Use
this fact and part (b) to deduce a contradiction.

*44. (a) Show that if f satisˇes f ′′ − f = 0, then f (x) = aex + be−x for
some a and b. (First ˇgure out what a and b should be in terms of f (0)
and f ′(0), and then use Problem 43.)

(b) Show also that f = a sinh +b cosh for some (other) a and b.

45. Find all functions f satisfying

(a) f (n) = f (n−1).
(b) f (n) = f (n−2).

*46. This problem, a companion to Problem 15-30, outlines a treatment of the ex-
ponential function starting from the assumption that the differential equation
f ′ = f has a nonzero solution.

(a) Suppose there is a function f �= 0 with f ′ = f . Prove that f (x) �= 0 for
each x by considering the function g(x) = f (x0 + x)f (x − x0), where
f (x0) �= 0.
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(b) Show that there is a function f satisfying f ′ = f and f (0) = 1.
(c) For this f show that f (x + y) = f (x) · f (y) by considering the function

g(x) = f (x + y)/f (x).
(d) Prove that f is one-one and that (f −1)′(x) = 1/x.

47. Let f and g be continuous functions such that lim
x→∞ f (x) = lim

x→∞ g(x) = ∞.
We say that f grows faster than g (f � g) if

lim
x→∞

f (x)

g(x)
= ∞,

and we say that f and g grow at the same rate (f ∼ g) if

lim
x→∞

f (x)

g(x)
exists and is �= 0,∞.

For example, exp � P for any polynomial function P , and P � logn for
any positive integer n.

(a) Given f and g, with lim
x→∞ f (x) = lim

x→∞ g(x) = ∞, is it necessarily true

that one of the three conditions f � g or g � f or f ∼ g holds?
(b) If f � g, then f + g ∼ f .
(c) If

log f
log g

≥ c > 1

for sufˇciently large x, then f � g.

(d) If f � g and F(x) =
∫ x

0
f , G(x) =

∫ x

0
g, does it necessarily follow

that F � G?
(e) Arrange each of the following sets of functions in increasing order of

growth (for convenience, we indicate each function simply by giving its
value at x ):

(i) x3, ex , x3 + log(x3), log 4x, (log x)x, xx, x + e−5x, x3 log x.
(ii) x log2 x, e5x , log(xx), ex

2
, xx, x log x , (log x)x .

(iii) ex , xe, xx, ex
2
, 2x , ex/2, (log x)2x.

48. Suppose that g1, g2, g3, . . . are continuous functions. Show that there is a
continuous function f which grows faster than each gi .

49. Prove that log10 2 is irrational.



CHAPTER 1 9 INTEGRATION IN ELEMENTARY TERMS

Every computation of a derivative yields, according to the Second Fundamental
Theorem of Calculus, a formula about integrals. For example,

if F(x) = x(log x)− x then F ′(x) = log x;
consequently,∫ b

a

log x dx = F(b)− F(a) = b(log b)− b − [a(log a)− a], 0 < a, b.

Formulas of this sort are simpliˇed considerably if we adopt the notation

F(x)

∣∣∣∣b
a

= F(b)− F(a).

We may then write ∫ b

a

log x dx = x(log x)− x

∣∣∣∣b
a

.

This evaluation of
∫ b
a

log x dx depended on the lucky guess that log is the deriva-
tive of the function F(x) = x(log x)−x. In general, a function F satisfying F ′ = f

is called a primitive of f . Of course, a continuous function f always has a
primitive, namely,

F(x) =
∫ x

a

f,

but in this chapter we will try to ˇnd a primitive which can be written in terms of
familiar functions like sin, log, etc. A function which can be written in this way
is called an elementary function. To be precise,* an elementary function is
one which can be obtained by addition, multiplication, division, and composition
from the rational functions, the trigonometric functions and their inverses, and the
functions log and exp.

It should be stated at the very outset that elementary primitives usually cannot
be found. For example, there is no elementary function F such that

F ′(x) = e−x
2

for all x

(this is not merely a report on the present state of mathematical ignorance; it is
a (difˇcult) theorem that no such function exists). And, what is even worse, you

* The deˇnition which we will give is precise, but not really accurate, or at least not quite standard.
Usually the elementary functions are deˇned to include \algebraic" functions, that is, functions g
satisfying an equation

(g(x))n + fn−1(x)(g(x))
n−1 + · · · + f0(x) = 0,

where the fi are rational functions. But for our purposes these functions can be ignored.

359
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will have no way of knowing whether or not an elementary primitive can be found
(you will just have to hope that the problems for this chapter contain no misprints).
Because the search for elementary primitives is so uncertain, ˇnding one is often
peculiarly satisfying. If we observe that the function

F(x) = x arctan x − log(1 + x2)

2
satisˇes

F ′(x) = arctan x

( just how we would ever be led to such an observation is quite another matter), so
that ∫ b

a

arctan x dx = x arctan x − log(1 + x2)

2

∣∣∣∣∣
b

a

,

then we may feel that we have \really" evaluated
∫ b
a

arctan x dx.
This chapter consists of little more than methods for ˇnding elementary prim-

itives of given elementary functions (a process known simply as \integration"),
together with some notation, abbreviations, and conventions designed to facilitate
this procedure. This preoccupation with elementary functions can be justiˇed by
three considerations:

(1) Integration is a standard topic in calculus, and everyone should know
about it.

(2) Every once in a while you might actually need to evaluate an integral, under
conditions which do not allow you to consult any of the standard integral
tables (for example, you might take a (physics) course in which you are
expected to be able to integrate).

(3) The most useful \methods" of integration are actually very important the-
orems (that apply to all functions, not just elementary ones).

Naturally, the last reason is the crucial one. Even if you intend to forget how
to integrate (and you probably will forget some details the ˇrst time through), you
must never forget the basic methods.

These basic methods are theorems which allow us to express primitives of one
function in terms of primitives of other functions. To begin integrating we will
therefore need a list of primitives for some functions; such a list can be obtained
simply by differentiating various well-known functions. The list given below makes
use of a standard symbol which requires some explanation. The symbol∫

f or
∫
f (x) dx

means \a primitive of f " or, more precisely, \the collection of all primitives of f ."
The symbol

∫
f will often by used in stating theorems, while

∫
f (x)dx is most

useful in formulas like the following:∫
x3 dx = x4

4
.
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This \equation" means that the function F(x) = x4/4 satisˇes F ′(x) = x3. It
cannot be interpreted literally because the right side is a number, not a function,
but in this one context we will allow such discrepancies; our aim is to make the
integration process as mechanical as possible, and we will resort to any possible
device. Another feature of the equation deserves mention. Most people write∫

x3 dx = x4

4
+ C

to emphasize that the primitives of f (x) = x3 are precisely the functions of the
form F(x) = x4/4 + C for some number C. Although it is possible (Problem 13)
to obtain contradictions if this point is disregarded, in practice such difˇculties do
not arise, and concern for this constant is merely an annoyance.

There is one important convention accompanying this notation: the letter ap-
pearing on the right side of the equation should match with the letter appearing
after the \d" on the left side|thus∫

u3 du = u4

4
,∫

tx dx = tx2

2
,∫

tx dt = xt2

2
.

A function in
∫
f (x)dx, i.e., a primitive of f , is often called an \indeˇnite

integral" of f , while
∫ b
a
f (x) dx is called, by way of contrast, a \deˇnite integral."

This suggestive notation works out quite well in practice, but it is important not to
be led astray. At the risk of boring you, the following fact is emphasized once again:
the integral

∫ b
a
f (x)dx is not deˇned as \F(b) − F(a), where F is an indeˇnite

integral of f " (if you do not ˇnd this statement repetitious, it is time to reread
Chapter 13).

We can verify the formulas in the following short table of indeˇnite integrals
simply by differentiating the functions indicated on the right side.∫

a dx = ax∫
xn dx = xn+1

n+ 1
, n �= −1∫

1
x
dx = log x

(∫
1
x
dx is often written

∫
dx

x
for convenience; similar

abbreviations are used in the last two examples of this
table.)∫

ex dx = ex∫
sin x dx = − cos x
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∫
cos x dx = sin x∫
sec2 x dx = tan x∫
sec x tan x dx = sec x∫
dx

1 + x2 = arctan x∫
dx√

1 − x2
= arcsin x

Two general formulas of the same nature are consequences of theorems about
differentiation: ∫

[f (x)+ g(x)] dx =
∫
f (x) dx +

∫
g(x)dx,∫

c · f (x)dx = c ·
∫
f (x)dx.

These equations should be interpreted as meaning that a primitive of f + g can
be obtained by adding a primitive of f to a primitive of g, while a primitive of
c · f can be obtained by multiplying a primitive of f by c.

Notice the consequences of these formulas for deˇnite integrals: If f and g are
continuous, then∫ b

a

[f (x)+ g(x)] dx =
∫ b

a

f (x) dx +
∫ b

a

g(x) dx,∫ b

a

c · f (x)dx = c ·
∫ b

a

f (x) dx.

These follow from the previous formulas, since each deˇnite integral may be writ-
ten as the difference of the values at a and b of a corresponding primitive. Con-
tinuity is required in order to know that these primitives exist. (Of course, the
formulas are also true when f and g are merely integrable, but recall how much
more difˇcult the proofs are in this case.)

The product formula for the derivative yields a more interesting theorem, which
will be written in several different ways.

THEOREM 1 (INTEGRATION BY PARTS) If f ′ and g′ are continuous, then∫
fg′ = fg −

∫
f ′g,∫

f (x)g′(x) dx = f (x)g(x)−
∫
f ′(x)g(x) dx,

∫ b

a

f (x)g′(x) dx = f (x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x) dx.

(Notice that in the second equation f (x)g(x) denotes the function f · g.)
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PROOF The formula
(fg)′ = f ′g + fg′

can be written
fg′ = (fg)′ − f ′g.

Thus ∫
fg′ =

∫
(fg)′ −

∫
f ′g,

and fg can be chosen as one of the functions denoted by
∫
(fg)′. This proves the

ˇrst formula.
The second formula is merely a restatement of the ˇrst, and the third formula

follows immediately from either of the ˇrst two.

As the following examples illustrate, integration by parts is useful when the func-
tion to be integrated can be considered as a product of a function f , whose deriva-
tive is simpler than f , and another function which is obviously of the form g′.∫

x ex

↓ ↓
f g′

dx = xex

↓ ↓
f g

−
∫

1 · ex
↓ ↓
f ′ g

dx

= xex − ex∫
x sin x
↓ ↓
f g′

dx = x · (− cos x)
↓ ↓
f g

−
∫

1 · (− cos x)
↓ ↓
f ′ g

dx

= −x cos x + sin x

There are two special tricks which often work with integration by parts. The
ˇrst is to consider the function g′ to be the factor 1, which can always be written
in. ∫

log x dx =
∫

1 · log x
↓ ↓
g′ f

dx = x log x
↓ ↓
g f

−
∫
x · (1/x)
↓ ↓
g f ′

dx

= x(log x)− x.

The second trick is to use integration by parts to ˇnd
∫
h in terms of

∫
h again,

and then solve for
∫
h. A simple example is the calculation∫

(1/x) · log x
↓ ↓
g′ f

dx = log x · log x
↓ ↓
g f

−
∫
(1/x) · log x

↓ ↓
f ′ g

dx,

which implies that

2
∫

1
x

log x dx = (log x)2
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or ∫
1
x

log x dx = (log x)2

2
.

A more complicated calculation is often required:∫
exsin x
↓ ↓
f g′

dx = ex · (− cos x)
↓ ↓
f g

−
∫
ex · (− cos x)
↓ ↓
f ′ g

dx

= −ex cos x +
∫
excos x
↓ ↓
u v′

dx

= −ex cos x + [ex · (sin x)
↓ ↓
u v

−
∫
ex(sin x)
↓ ↓
u′ v

dx];

therefore,

2
∫
ex sin x dx = ex(sin x − cos x)

or ∫
ex sin x dx = ex(sin x − cos x)

2
.

Since integration by parts depends upon recognizing that a function is of the
form g′, the more functions you can already integrate, the greater your chances for
success. It is frequently reasonable to do a preliminary integration before tackling
the main problem. For example, we can use parts to integrate∫

(log x)2 dx =
∫
(log x)(log x)

↓ ↓
f g′

dx

if we recall that
∫

log x dx = x(log x)− x (this formula was itself derived by inte-
gration by parts); we have∫

(log x)(log x)
↓ ↓
f g′

dx = (log x)[x(log x)− x]
↓ ↓
f g

−
∫
(1/x)[x(log x)− x]

↓ ↓
f ′ g

dx

= (log x)[x(log x)− x] −
∫

[log x − 1] dx

= (log x)[x(log x)− x] −
∫

log x dx +
∫

1 dx

= (log x)[x(log x)− x] − [x(log x)− x] + x

= x(log x)2 − 2x(log x)+ 2x.

The most important method of integration is a consequence of the Chain Rule.
The use of this method requires considerably more ingenuity than integrating by
parts, and even the explanation of the method is more difˇcult. We will therefore
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develop this method in stages, stating the theorem for deˇnite integrals ˇrst, and
saving the treatment of indeˇnite integrals for later.

THEOREM 2

(THE SUBSTITUTION FORMULA)

If f and g′ are continuous, then∫ g(b)

g(a)

f =
∫ b

a

(f � g) · g′

∫ g(b)

g(a)

f (u) du =
∫ b

a

f (g(x)) · g′(x) dx.

PROOF If F is a primitive of f , then the left side is F(g(b)) − F(g(a)). On the other
hand,

(F � g)′ = (F ′ � g) · g′ = (f � g) · g′,

so F � g is a primitive of (f � g) · g′ and the right side is

(F � g)(b)− (F � g)(a) = F(g(b))− F(g(a)).

The simplest uses of the substitution formula depend upon recognizing that a
given function is of the form (f � g) · g′. For example, the integration of∫ b

a

sin5 x cos x dx
(

=
∫ b

a

(sin x)5 cos x dx
)

is facilitated by the appearance of the factor cos x, which will be the factor g′(x)
for g(x) = sin x; the remaining expression, (sin x)5, can be written as (g(x))5 =
f (g(x)), for f (u) = u5. Thus∫ b

a

sin5 x cos x dx
[
g(x) = sin x
f (u) = u5

]

=
∫ b

a

f (g(x))g′(x) dx =
∫ g(b)

g(a)

f (u) du

=
∫ sin b

sin a
u5 du = sin6 b

6
− sin6 a

6
.

The integration of
∫ b
a

tan x dx can be treated similarly if we write∫ b

a

tan x dx = −
∫ b

a

− sin x
cos x

dx.

In this case the factor − sin x is g′(x), where g(x) = cos x; the remaining factor
1/ cos x can then be written f (cos x) for f (u) = 1/u. Hence∫ b

a

tan x dx


 g(x) = cos x

f (u) = 1
u




= −
∫ b

a

f (g(x))g′(x) dx = −
∫ g(b)

g(a)

f (u) du

= −
∫ cos b

cos a

1
u
du = log(cos a)− log(cos b).
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Finally, to ˇnd ∫ b

a

1
x log x

dx,

notice that 1/x = g′(x) where g(x) = log x, and that 1/ log x = f (g(x)) for
f (u) = 1/u. Thus

∫ b

a

1
x log x

dx


 g(x) = log x

f (u) = 1
u




=
∫ b

a

f (g(x))g′(x) dx =
∫ g(b)

g(a)

f (u) du

=
∫ log b

log a

1
u
du = log(log b)− log(log a).

Fortunately, these uses of the substitution formula can be shortened considerably.
The intermediate steps, which involve writing∫ b

a

f (g(x))g′(x) dx =
∫ g(b)

g(a)

f (u) du,

can easily be eliminated by noticing the following: To go from the left side to the
right side,

substitute

{
u for g(x)
du for g′(x) dx

(and change the limits of integration);

the substitutions can be performed directly on the original function (accounting
for the name of this theorem). For example,∫ b

a

sin5 x cos x dx
[
substitute

u for sin x
du for cos x dx

]
=
∫ sin b

sin a
u5 du,

and similarly∫ b

a

− sin x
cos x

dx

[
substitute

u for cos x
du for − sin x dx

]
=
∫ cos b

cos a

1
u
du.

Usually we abbreviate this method even more, and say simply:

\Let u = g(x)

du = g′(x) dx."

Thus ∫ b

a

1
x log x

dx


 let u = log x

du = 1
x
dx


 =

∫ log b

log a

1
u
du.

In this chapter we are usually interested in primitives rather than deˇnite in-
tegrals, but if we can ˇnd

∫ b
a
f (x) dx for all a and b, then we can certainly ˇnd
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∫
f (x)dx. For example, since∫ b

a

sin5 x cos x dx = sin6
b

6
− sin6

a

6
,

it follows that ∫
sin5 x cos x dx = sin6 x

6
.

Similarly, ∫
tan x dx = − log cos x,∫
1

x log x
dx = log(log x).

It is quite uneconomical to obtain primitives from the substitution formula by ˇrst
ˇnding deˇnite integrals. Instead, the two steps can be combined, to yield the
following procedure:

(1) Let
u = g(x),

du = g′(x) dx;
(after this manipulation only the letter u should appear, not the
letter x ).

(2) Find a primitive (as an expression involving u).
(3) Substitute g(x) back for u.

Thus, to ˇnd ∫
sin5 x cos x dx,

(1) let

u = sin x,
du = cos x dx

so that we obtain ∫
u5 du;

(2) evaluate ∫
u5 du = u6

6
;

(3) remember to substitute sin x back for u, so that∫
sin5 x cos x dx = sin6 x

6
.
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Similarly, if

u = log x,

du = 1
x
dx,

then ∫
1

x log x
dx becomes

∫
1
u
du = log u,

so that ∫
1

x log x
dx = log(log x).

To evaluate ∫
x

1 + x2 dx,

let

u = 1 + x2,

du = 2x dx;
the factor 2 which has just popped up causes no problem|the integral becomes

1
2

∫
1
u
du = 1

2
log u,

so ∫
x

1 + x2 dx = 1
2

log(1 + x2).

(This result may be combined with integration by parts to yield∫
1 · arctan x dx = x arctan x −

∫
x

1 + x2 dx

= x arctan x − 1
2 log(1 + x2),

a formula that has already been mentioned.)
These applications of the substitution formula* illustrate the most straight-

forward and least interesting types|once the suitable factor g′(x) is recognized,
the whole problem may even become simple enough to do mentally. The following
three problems require only the information provided by the short table of indeˇ-
nite integrals at the beginning of the chapter and, of course, the right substitution

* The substitution formula is often written in the form∫
f (u) du =

∫
f (g(x))g′(x) dx, u = g(x).

This formula cannot be taken literally (after all,
∫
f (u) du should mean a primitive of f and the

symbol
∫
f (g(x))g′(x) dx should mean a primitive of (f � g) · g′ ; these are certainly not equal).

However, it may be regarded as a symbolic summary of the procedure which we have developed. If
we use Leibniz's notation, and a little fudging, the formula reads particularly well:∫

f (u) du =
∫
f (u)

du

dx
dx.
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(the third problem has been disguised a little by some algebraic chicanery).∫
sec2 x tan5 x dx,∫
(cos x)esin x dx,∫

ex√
1 − e2x

dx.

If you have not succeeded in ˇnding the right substitutions, you should be able to
guess them from the answers, which are (tan6 x)/6, esin x , and arcsin ex . At ˇrst you
may ˇnd these problems too hard to do in your head, but at least when g is of the
very simple form g(x) = ax+ b you should not have to waste time writing out the
substitution. The following integrations should all be clear. (The only worrisome
detail is the proper positioning of the constant|should the answer to the second be
e3x/3 or 3e3x? I always take care of these problems as follows. Clearly

∫
e3x dx =

e3x · (something). Now if I differentiate F(x) = e3x , I get F ′(x) = 3e3x , so the
\something" must be 1

3 , to cancel the 3.)∫
dx

x + 3
= log(x + 3),∫

e3x dx = e3x

3
,∫

cos 4x dx = sin 4x
4

,∫
sin(2x + 1) dx = − cos(2x + 1)

2
,∫

dx

1 + 4x2 = arctan 2x
2

.

More interesting uses of the substitution formula occur when the factor g′(x)
does not appear. There are two main types of substitutions where this happens.
Consider ˇrst ∫

1 + ex

1 − ex
dx.

The prominent appearance of the expression ex suggests the simplifying substitu-
tion

u = ex,

du = ex dx.

Although the expression ex dx does not appear, it can always be put in:∫
1 + ex

1 − ex
dx =

∫
1 + ex

1 − ex
· 1
ex

· ex dx.

We therefore obtain ∫
1 + u

1 − u
· 1
u
du,
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which can be evaluated by the algebraic trick∫
1 + u

1 − u
· 1
u
du =

∫
2

1 − u
+ 1
u
du = −2 log(1 − u)+ log u,

so that ∫
1 + ex

1 − ex
dx = −2 log(1 − ex)+ log ex = −2 log(1 − ex)+ x.

There is an alternative and preferable way of handling this problem, which does
not require multiplying and dividing by ex . If we write

u = ex, x = log u,

dx = 1
u
dx,

then ∫
1 + ex

1 − ex
dx immediately becomes

∫
1 + u

1 − u
· 1
u
du.

Most substitution problems are much easier if one resorts to this trick of express-
ing x in terms of u, and dx in terms of du, instead of vice versa. It is not hard to
see why this trick always works (as long as the function expressing u in terms of x
is one-one for all x under consideration): If we apply the substitution

u = g(x), x = g−1(u)

dx = (g−1)′(u) du

to the integral ∫
f (g(x)) dx,

we obtain
(1)

∫
f (u)(g−1)′(u) du.

On the other hand, if we apply the straightforward substitution

u = g(x)

du = g′(x) dx

to the same integral,∫
f (g(x)) dx =

∫
f (g(x)) · 1

g′(x)
· g′(x) dx,

we obtain

(2)
∫
f (u) · 1

g′(g−1)(u))
du.

The integrals (1) and (2) are identical, since (g−1)′(u) = 1/g′(g−1(u)).
As another concrete example, consider∫

e2x√
ex + 1

dx.
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In this case we will go the whole hog and replace the entire expression
√
ex + 1

by one letter. Thus we choose the substitution

u =
√
ex + 1,

u2 = ex + 1,
u2 − 1 = ex, x = log(u2 − 1),

dx = 2u
u2 − 1

du.

The integral then becomes∫
(u2 − 1)2

u
· 2u
u2 − 1

du = 2
∫
u2 − 1 du = 2u3

3
− 2u.

Thus ∫
e2x√
ex + 1

dx = 2
3
(ex + 1)3/2 − 2(ex + 1)1/2.

Another example, which illustrates the second main type of substitution that can
occur, is the integral ∫ √

1 − x2 dx.

In this case, instead of replacing a complicated expression by a simpler one, we

will replace x by sin u, because
√

1 − sin2 u = cos u. This really means that we
are using the substitution u = arcsin x, but it is the expression for x in terms of u
which helps us ˇnd the expression to be substituted for dx. Thus,

let x = sin u, [u = arcsin x]
dx = cos u du;

then the integral becomes∫ √
1 − sin2

u cos u du =
∫

cos2 u du.

The evaluation of this integral depends on the equation

cos2 u = 1 + cos 2u
2

(see the discussion of trigonometric functions below) so that∫
cos2 u du =

∫
1 + cos 2u

2
du = u

2
+ sin 2u

4
,

and ∫ √
1 − x2 dx = arcsin x

2
+ sin(2 arcsin x)

4

= arcsin x
2

+ 1
2

sin(arcsin x) · cos(arcsin x)

= arcsin x
2

+ 1
2
x
√

1 − x2.
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Substitution and integration by parts are the only fundamental methods which
you have to learn; with their aid primitives can be found for a large number of
functions. Nevertheless, as some of our examples reveal, success often depends
upon some additional tricks. The most important are listed below. Using these
you should be able to integrate all the functions in Problems 1 to 9 (a few other
interesting tricks are explained in some of the remaining problems).

1. TRIGONOMETRIC FUNCTIONS

Since
sin2

x + cos2 x = 1

and
cos 2x = cos2 x − sin2 x,

we obtain

cos 2x = cos2 x − (1 − cos2 x) = 2 cos2 x − 1,
cos 2x = (1 − sin2 x)− sin2 x = 1 − 2 sin2 x,

or

sin2 x = 1 − cos 2x
2

,

cos2 x = 1 + cos 2x
2

.

These formulas may be used to integrate∫
sinn x dx,∫
cosn x dx,

if n is even. Substituting

(1 − cos 2x)
2

or
(1 + cos 2x)

2

for sin2 x or cos2 x yields a sum of terms involving lower powers of cos. For
example,∫

sin4 x dx =
∫ (

1 − cos 2x
2

)2

dx =
∫

1
4
dx − 1

2

∫
cos 2x dx + 1

4

∫
cos2 2x dx

and ∫
cos2 2x dx =

∫
1 + cos 4x

2
dx.

If n is odd, n = 2k + 1, then∫
sinn x dx =

∫
sin x(1 − cos2 x)k dx;
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the latter expression, multiplied out, involves terms of the form sin x cosl x, all of
which can be integrated easily. The integral for cosn x is treated similarly. An
integral ∫

sinn x cosm x dx

is handled the same way if n or m is odd. If n and m are both even, use the
formulas for sin2 x and cos2 x.

A ˇnal important trigonometric integral is∫
1

cos x
dx =

∫
sec x dx = log(sec x + tan x).

Although there are several ways of \deriving" this result, by means of the meth-
ods already at our disposal (Problem 12), it is simplest to check this formula by
differentiating the right side, and to memorize it.

2. REDUCTION FORMULAS

Integration by parts yields (Problem 20)∫
sinn x dx = − 1

n
sinn−1 x cos x + n − 1

n

∫
sinn−2 x dx,

∫
cosn x dx = 1

n
cosn−1 x sin x + n− 1

n

∫
cosn−2 x dx,

∫
1

(x2 + 1)n
dx = 1

2n− 2
x

(x2 + 1)n−1 + 2n− 3
2n− 2

∫
1

(x2 + 1)n−1 dx

and many similar formulas. The ˇrst two, used repeatedly, give a different method
for evaluating primitives of sinn or cosn. The third is very important for integrating
a large general class of functions, which will complete our discussion.

3. RATIONAL FUNCTIONS

Consider a rational function p/q where

p(x) = anx
n + an−1x

n−1 + · · · + a0,

q(x) = bmx
m + bm−1x

m−1 + · · · + b0.

We might as well assume that an = bm = 1. Moreover, we can assume that n < m,
for otherwise we may express p/q as a polynomial function plus a rational function
which is of this form by dividing (the calculation

u2

u− 1
= u+ 1 + 1

u − 1
is a simple example). The integration of an arbitrary rational function depends
on two facts; the ˇrst follows from the \Fundamental Theorem of Algebra" (see
Chapter 26, Theorem 2 and Problem 26-3), but the second will not be proved in
this book.
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THEOREM Every polynomial function

q(x) = xm + bm−1x
m−1 + · · · + b0

can be written as a product

q(x) = (x − α1)
r1 · · · · · (x − αk)

rk(x2 + β1x + γ1)
s1 · · · · · (x2 + βlx + γl)

sl

(where r1 + · · · + rk + 2(s1 + · · · + sl) = m).

(In this expression, identical factors have been collected together, so that all
x−αi and x2 +βix+γi may be assumed distinct. Moreover, we assume that each
quadratic factor cannot be factored further. This means that

βi
2 − 4γi < 0,

since otherwise we can factor

x2 + βix + γi =

x −


−βi +

√
βi

2 − 4γi
2




 ·

x −


−βi −

√
βi

2 − 4γi
2






into linear factors.)

THEOREM If n < m and

p(x) = xn + an−1x
n−1 + · · · + a0,

q(x) = xm + bm−1x
m−1 + · · · + b0

= (x − α1)
r1 · · · · · (x − αk)

rk (x2 + β1x + γ1)
s1 · · · · · (x2 + βlx + γl)

sl ,

then p(x)/q(x) can be written in the form

p(x)

q(x)
=
[

a1,1

(x − α1)
+ · · · + a1,r1

(x − α1)r1

]
+ · · ·

+
[

αk,1

(x − αk)
+ · · · + αk,rk

(x − αk)rk

]

+
[

b1,1x + c1,1

(x2 + β1x + γ1)
+ · · · + b1,s1x + c1,s1

(x2 + β1x + γ1)
s1

]
+ · · ·

+
[

bl,1x + cl,1

(x2 + βlx + γl)
+ · · · + bl,sl x + cl,sl

(x2 + βlx + γl)sl

]
.

This expression, known as the \partial fraction decomposition" of p(x)/q(x), is
so complicated that it is simpler to examine the following example, which illustrates
such an expression and shows how to ˇnd it. According to the theorem, it is
possible to write

2x7 + 8x6 + 13x5 + 20x4 + 15x3 + 16x2 + 7x + 10
(x2 + x + 1)2(x2 + 2x + 2)(x − 1)2

= a

x − 1
+ b

(x − 1)2
+ cx + d

x2 + 2x + 2
+ ex + f

x2 + x + 1
+ gx + h

(x2 + x + 1)2
.
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To ˇnd the numbers a, b, c, d, e, f , g, and h, write the right side as a polynomial
over the common denominator (x2 + x+ 1)2(x2 + 2x+ 3)(x− 1)2; the numerator
becomes

a(x − 1)(x2 + 2x + 2)(x2 + x + 1)2 + b(x2 + 2x + 2)(x2 + x + 1)2

+ (cx + d)(x − 1)2(x2 + x + 1)2 + (ex + f )(x − 1)2(x2 + 2x + 2)(x2 + x + 1)

+ (gx + h)(x − 1)2(x2 + 2x + 2).

Actually multiplying this out (!) we obtain a polynomial of degree 8, whose coef-
ˇcients are combinations of a, . . . , h. Equating these coefˇcients with the coefˇ-
cients of 2x7+8x6+13x5+20x4+15x3+16x2+7x+10 (the coefˇcient of x8 is 0)
we obtain 8 equations in the eight unknowns a, . . . , h. After heroic calculations
these can be solved to give

a = 1, b = 2, c = 1, d = 3,
e = 0, f = 0, g = 0, h = 1.

Thus∫
2x7 + 5x6 + 13x5 + 20x4 + 17x3 + 16x2 + 7x + 7

(x2 + x + 1)2(x2 + 2x + 2)(x − 1)2
dx

=
∫

1
(x − 1)

dx +
∫

2
(x − 1)2

dx +
∫

1
(x2 + x + 1)2

dx +
∫

x + 3
x2 + 2x + 2

dx.

(In simpler cases the requisite calculations may actually be feasible. I obtained this
particular example by starting with the partial fraction decomposition and convert-
ing it into one fraction.)

We are already in a position to ˇnd each of the integrals appearing in the above
expression; the calculations will illustrate all the difˇculties which arise in integrat-
ing rational functions.

The ˇrst two integrals are simple:∫
1

x − 1
dx = log(x − 1),∫

2
(x − 1)2

dx = −2
x − 1

.

The third integration depends on \completing the square":

x2 + x + 1 = (x + 1
2 )

2 + 3
4

= 3
4


(x + 1

2√
3
4

)2

+ 1


 .

(If we had obtained − 3
4 instead of 3

4 we could not take the square root, but in this
case our original quadratic factor could have been factored into linear factors.) We
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can now write ∫
1

(x2 + x + 1)2
dx = 16

9

∫
1[(

x + 1
2√

3
4

)
+ 1

]2 dx.

The substitution

u = x + 1
2√

3
4

,

du = 1√
3
4

dx,

changes this integral to

16
9

∫ √
3
4

(u2 + 1)2
du,

which can be computed using the third reduction formula given above.
Finally, to evaluate ∫

x + 3
(x2 + 2x + 2)

dx

we write∫
x + 3

x2 + 2x + 2
dx = 1

2

∫
2x + 2

x2 + 2x + 2
dx +

∫
2

(x + 1)2 + 1
dx.

The ˇrst integral on the right side has been purposely constructed so that we can
evaluate it by using the substitution

u = x2 + 2x + 2,
du = (2x + 2) dx

The second integral on the right, which is just the difference of the other two, is
simply 2 arctan(x + 1). If the original integral were∫

x + 3
(x2 + 2x + 2)n

dx = 1
2

∫
2x + 2

(x2 + 2x + 2)n
dx +

∫
2

[(x + 1)2 + 1]n
dx,

the ˇrst integral on the right would still be evaluated by the same substitution.
The second integral would be evaluated by means of a reduction formula.

This example has probably convinced you that integration of rational functions
is a theoretical curiosity only, especially since it is necessary to ˇnd the factorization
of q(x) before you can even begin. This is only partly true. We have already seen
that simple rational functions sometimes arise, as in the integration∫

1 + ex

1 − ex
dx;

another important example is the integral∫
1

x2 − 1
dx =

∫ 1
2

x − 1
−

1
2

x + 1
dx = 1

2
log(x − 1)− 1

2
log(x + 1).
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Moreover, if a problem has been reduced to the integration of a rational function,
it is then certain that an elementary primitive exists, even when the difˇculty or
impossibility of ˇnding the factors of the denominator may preclude writing this
primitive explicitly.

PROBLEMS

1. This problem contains some integrals which require little more than alge-
braic manipulation, and consequently test your ability to discover algebraic
tricks, rather than your understanding of the integration processes. Never-
theless, any one of these tricks might be an important preliminary step in
an honest integration problem. Moreover, you want to have some feel for
which integrals are easy, so that you can see when the end of an integration
process is in sight. The answer section, if you resort to it, will only reveal
what algebra you should have used.

(i)
∫ 5
√
x3 + 6

√
x√

x
dx.

(ii)
∫

dx√
x − 1 +

√
x + 1

.

(iii)
∫
ex + e2x + e3x

e4x dx.

(iv)
∫
ax

bx
dx.

(v)
∫

tan2 x dx. (Trigonometric integrals are always very touchy, because
there are so many trigonometric identities that an easy
problem can easily look hard.)

(vi)
∫

dx

a2 + x2 .

(vii)
∫

dx√
a2 − x2

.

(viii)
∫

dx

1 + sin x
.

(ix)
∫

8x2 + 6x + 4
x + 1

dx.

(x)
∫

1√
2x − x2

dx.

2. The following integrations involve simple substitutions, most of which you
should be able to do in your head.

(i)
∫
ex sin ex dx.
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(ii)
∫
xe−x

2
dx.

(iii)
∫

log x
x

dx. (In the text this was done by parts.)

(iv)
∫

ex dx

e2x + 2ex + 1
.

(v)
∫
ee

x

ex dx.

(vi)
∫

x dx√
1 − x4

.

(vii)
∫
e
√
x

√
x
dx.

(viii)
∫
x
√

1 − x2 dx.

(ix)
∫

log(cos x) tan x dx.

(x)
∫

log(log x)
x log x

dx.

3. Integration by parts.

(i)
∫
x2ex dx.

(ii)
∫
x3ex

2
dx.

(iii)
∫
eax sin bx dx.

(iv)
∫
x2 sin x dx.

(v)
∫
(log x)3 dx.

(vi)
∫

log(log x)
x

dx.

(vii)
∫

sec3 x dx. (This is a tricky and important integral that often comes
up. If you do not succeed in evaluating it, be sure to
consult the answers.)

(viii)
∫

cos(log x)dx.

(ix)
∫ √

x log x dx.

(x)
∫
x(log x)2 dx.
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4. The following integrations can all be done with substitutions of the form
x = sin u, x = cos u, etc. To do some of these you will need to remember
that ∫

sec x dx = log(sec x + tan x)

as well as the following formula, which can also be checked by differentiation:∫
csc x dx = − log(csc x + cot x).

In addition, at this point the derivatives of all the trigonometric functions
should be kept handy.

(i)
∫

dx√
1 − x2

. (You already know this integral, but use the substitution
x = sin u anyway, just to see how it works out.)

(ii)
∫

dx√
1 + x2

. (Since tan2 u + 1 = sec2 u, you want to use the substi-
tution x = tan u.)

(iii)
∫

dx√
x2 − 1

.

(iv)
∫

dx

x
√
x2 − 1

. (The answer will be a certain inverse function that was
given short shrift in the text.)

(v)
∫

dx

x
√

1 − x2
.

(vi)
∫

dx

x
√

1 + x2
.

(vii)
∫
x3
√

1 − x2 dx.

(viii)
∫ √

1 − x2 dx.


 You will need to remember the methods for

integrating powers of sin and cos.

(ix)
∫ √

1 + x2 dx.

(x)
∫ √

x2 − 1 dx.

5. The following integrations involve substitutions of various types. There is
no substitute for cleverness, but there is a general rule to follow: substitute
for an expression which appears frequently or prominently; if two different
troublesome expressions appear, try to express them both in terms of some
new expression. And don't forget that it usually helps to express x directly
in terms of u, to ˇnd out the proper expression to substitute for dx.

(i)
∫

dx

1 +
√
x + 1

.

(ii)
∫

dx

1 + ex
.
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(iii)
∫

dx√
x + 3

√
x

.

(iv)
∫

dx√
1 + ex

. (The substitution u = ex leads to an integral requir-
ing yet another substitution; this is all right, but both
substitutions can be done at once.)

(v)
∫

dx

2 + tan x
.

(vi)
∫

dx√√
x + 1

. (Another place where one substitution can be made to
do the work of two.)

(vii)
∫

4x + 1
2x + 1

dx.

(viii)
∫
e
√
x dx.

(ix)
∫ √

1 − x

1 − √
x
dx. (In this case two successive substitutions work out best;

there are two obvious candidates for the ˇrst substitu-
tion, and either will work.)

*(x)
∫ √

x − 1
x + 1

· 1
x2 dx.

6. The previous problem provided gratis a haphazard selection of rational func-
tions to be integrated. Here is a more systematic selection.

(i)
∫

2x2 + 7x − 1
x3 + x2 − x − 1

dx.

(ii)
∫

2x + 1
x3 − 3x2 + 3x − 1

dx.

(iii)
∫
x3 + 7x2 − 5x + 5
(x − 1)2(x + 1)3

dx.

(iv)
∫

2x2 + x + 1
(x + 3)(x − 1)2

dx.

(v)
∫

x + 4
x2 + 1

dx.

(vi)
∫

x3 + x + 2
x4 + 2x2 + 1

dx.

(vii)
∫

3x2 + 3x + 1
x3 + 2x2 + 2x + 1

dx.

(viii)
∫

dx

x4 + 1
.

(ix)
∫

2x
(x2 + x + 1)2

dx.

(x)
∫

3x
(x2 + x + 1)3

dx.
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*7. Potpourri. (No holds barred.) The following integrations involve all the
methods of the previous problems

(i)
∫

arctan x
1 + x2 dx.

(ii)
∫
x arctan x
(1 + x2)3

dx.

(iii)
∫

log
√

1 + x2 dx.

(iv)
∫
x log

√
1 + x2 dx.

(v)
∫
x2 − 1
x2 + 1

· 1√
1 + x4

dx.

(vi)
∫

arcsin
√
x dx.

(vii)
∫

x

1 + sin x
dx.

(viii)
∫
esin x · x cos3 x − sin x

cos2 x
dx.

(ix)
∫ √

tan x dx.

(x)
∫

dx

x6 + 1
. (To factor x6 + 1, ˇrst factor y3 + 1, using Problem 1-1.)

The following two problems provide still more practice at integration, if you need
it (and can bear it). Problem 8 involves algebraic and trigonometric manipulations
and integration by parts, while Problem 9 involves substitutions. (Of course, in
many cases the resulting integrals will require still further manipulations.)

8. Find the following integrals.

(i)
∫

log(a2 + x2) dx.

(ii)
∫

1 + cos x

sin2 x
dx.

(iii)
∫

x + 1√
4 − x2

dx.

(iv)
∫
x arctan x dx.

(v)
∫

sin3 x dx.

(vi)
∫

sin3 x

cos2 x
dx.
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(vii)
∫
x2 arctan x dx.

(viii)
∫

x dx√
x2 − 2x + 2

.

(ix)
∫

sec3 x tan x dx.

(x)
∫
x tan2 x dx.

9. Find the following integrals.

(i)
∫

dx

(a2 + x2)2
.

(ii)
∫ √

1 − sin x dx.

(iii)
∫

arctan
√
x dx.

(iv)
∫

sin
√
x + 1 dx.

(v)
∫ √

x3 − 2
x

dx.

(vi)
∫

log(x +
√
x2 − 1 ) dx.

(vii)
∫

log(x + √
x ) dx.

(viii)
∫

dx

x − x3/5 .

(ix)
∫
(arcsin x)2 dx.

(x)
∫
x5 arctan(x2) dx.

10. If you have done Problem 18-9, the integrals (ii) and (iii) in Problem 4 will look
very familiar. In general, the substitution x = cosh u often works for integrals

involving
√
x2 − 1, while x = sinh u is the thing to try for integrals involving√

x2 + 1. Try these substitutions on the other integrals in Problem 4. (The
method is not really recommended; it is easier to stick with trigonometric
substitutions.)

*11. The world's sneakiest substitution is undoubtedly

t = tan
x

2
, x = 2 arctan t,

dx = 2
1 + t2

dt.
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As we found in Problem 15-17, this substitution leads to the expressions

sin x = 2t
1 + t2

, cos x = 1 − t2

1 + t2
.

This substitution thus transforms any integral which involves only sin and
cos, combined by addition, multiplication, and division, into the integral of
a rational function. Find

(i)
∫

dx

1 + sin x
. (Compare your answer with Problem 1(viii).)

(ii)
∫

dx

1 − sin2
x

. (In this case it is better to let t = tan x. Why?)

(iii)
∫

dx

a sin x + b cos x
. (There is also another way to do this, using
Problem 15-8.)

(iv)
∫

sin2
x dx. (An exercise to convince you that this substitution

should be used only as a last resort.)

(v)
∫

dx

3 + 5 sin x
. (A last resort.)

*12. Derive the formula for
∫

sec x dx in the following two ways:

(a) By writing

1
cos x

= cos x
cos2 x

= cos x

1 − sin2 x

= 1
2

[
cos x

1 + sin x
+ cos x

1 − sin x

]
,

an expression obviously inspired by partial fraction decompositions. Be
sure to note that

∫
cos x/(1− sin x) dx = − log(1− sin x); the minus sign

is very important. And remember that 1
2 log α = log

√
α. From there

on, keep doing algebra, and trust to luck.
(b) By using the substitution t = tan x/2. One again, quite a bit of manip-

ulation is required to put the answer in the desired form; the expression
tan x/2 can be attacked by using Problem 15-9, or both answers can
be expressed in terms of t . There is another expression for

∫
sec x dx,

which is less cumbersome than log(sec x + tan x); using Problem 15-9,
we obtain

∫
sec x dx = log




1 + tan
x

2

1 − tan
x

2


 = log

(
tan
(x

2
+ π

4

))
.

This last expression was actually the one ˇrst discovered, and was due,
not to any mathematician's cleverness, but to a curious historical acci-
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dent: In 1599 Wright computed nautical tables that amounted to deˇnite
integrals of sec. When the ˇrst tables for the logarithms of tangents were
produced, the correspondence between the two tables was immediately
noticed (but remained unexplained until the invention of calculus).

13. The derivation of
∫
ex sin x dx given in the text seems to prove that the only

primitive of f (x) = ex sin x is F(x) = ex(sin x − cos x)/2, whereas F(x) =
ex(sin x − cos x)/2 +C is also a primitive for any number C. Where does C
come from? (What is the meaning of the equation∫

ex sin x dx = ex sin x − ex cos x −
∫
ex sin x dx?)

14. Suppose that f ′′ is continuous and that∫ π

0
[f (x)+ f ′′(x)] sin x dx = 2.

Given that f (π) = 1, compute f (0).

15. (a) Find
∫

arcsin x dx, using the same trick that worked for log and arctan.
*(b) Generalize this trick: Find

∫
f −1(x) dx in terms of

∫
f (x) dx. Compare

with Problems 12-18 and 14-17.

16. (a) Find
∫

sin4 x dx in two different ways: ˇrst using the reduction formula,
and then using the formula for sin2 x.

(b) Combine your answers to obtain an impressive trigonometric identity.

17. Express
∫

log(log x) dx in terms of
∫
(log x)−1 dx. (Neither is expressible in

terms of elementary functions.)

18. Express
∫
x2e−x

2
dx in terms of

∫
e−x

2
dx.

19. Prove that the function f (x) = ex/(e5x+ex+1) has an elementary primitive.
(Do not try to ˇnd it!)

20. Prove the reduction formulas in the text. For the third one write∫
dx

(1 + x2)n
=
∫

dx

(1 + x2)n−1 −
∫

x2 dx

(1 + x2)n

and work on the last integral. (Another possibility is to use the substitution
x = tan u.)

21. Find a reduction formula for

(a)
∫
xnex dx

(b)
∫
(log x)n dx.

*22. Prove that ∫ coshx

1

√
t2 − 1 dt = cosh x sinh x

2
− x

2
.

(See Problem 18-6 for the signiˇcance of this computation.)
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23. Prove that ∫ b

a

f (x) dx =
∫ b

a

f (a + b − x) dx.

(A geometric interpretation makes this clear, but it is also a good exercise in
the handling of limits of integration during a substitution.)

24. Prove that the area of a circle of radius r is πr2. (Naturally you must remem-
ber that π is deˇned as the area of the unit circle.)

25. Let φ be a nonnegative integrable function such that φ(x) = 0 for |x| ≥ 1

and such that
∫ 1

−1
φ = 1. For h > 0, let

φh(x) = 1
h
φ(x/h).

(a) Show that φh(x) = 0 for |x| ≥ h and that
∫ h

−h
φh = 1.

(b) Let f be integrable on [−1,1] and continuous at 0. Show that

lim
h→0+

∫ 1

−1
φhf = lim

h→0+

∫ h

−h
φhf = f (0).

(c) Show that

lim
h→0+

∫ 1

−1

h

h2 + x2 dx = π.

The ˇnal part of this problem might appear, at ˇrst sight, to be an exact
analogue of part (b), but it actually requires more careful argument.

(d) Let f be integrable on [−1,1] and continuous at 0. Show that

lim
h→0+

∫ 1

−1

h

h2 + x2f (x) dx = πf (0).

Hint: If h is small, then h/(h2 + x2) will be small on most of [−1,1].

The next two problems use the formula

1
2

∫ θ1

θ0

f (θ)2 dθ,

derived in Problem 13-24, for the area of a region bounded by the graph of f in
polar coordinates.

26. For each of the following functions, ˇnd the area bounded by the graphs in
polar coordinates. (Be careful about the proper range for θ , or you will get
nonsensical results!)

(i) f (θ) = a sin θ .
(ii) f (θ) = 2 + cos θ .
(iii) f (θ)2 = 2a2 cos 2θ .
(iv) f (θ) = a cos 2θ .
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27. Figure 1 shows the graph of f in polar coordinates; the region OAB thus

has area
1
2

∫ θ1

θ0

f (θ)2 dθ . Now suppose that this graph also happens to be

the ordinary graph of some function g. Then the region OAB also has area

area Ox1B +
∫ x0

x1

g − area Ox0A.

Prove analytically that these two numbers are indeed the same. Hint: The

FI G U R E 1

function g is determined by the equations

x = f (θ) cos θ, g(x) = f (θ) sin θ.

The next four problems use the formulas, derived in Problems 3 and 4 of the
Appendix to Chapter 13, for the length of a curve represented parametrically (and,
in particular, as the graph of a function in polar coordinates).

28. Let c be a curve represented parametrically by u and v on [a, b], and let h
be an increasing function with h(ā) = a and h(b̄) = b. Then on [ā, b̄ ] the
functions ū = u � h, v̄ = v � h give a parametric representation of another
curve c̄; intuitively, c̄ is just the same curve c traversed at a different rate.

(a) Show, directly from the deˇnition of length, that the length of c on [a, b]
equals the length of c̄ on [ā, b̄ ].

(b) Assuming differentiability of any functions required, show that the
lengths are equal by using the integral formula for length, and the ap-
propriate substitution.

29. Find the length of the following curves, all described as the graphs of func-
tions, except for (iii), which is represented parametrically.

(i) f (x) = 1
3
(x2 + 2)3/2, 0 ≤ x ≤ 1.

(ii) f (x) = x3 + 1
12x

, 1 ≤ x ≤ 2.

(iii) x = a3 cos3 t, y = a3 sin3 t, 0 ≤ t ≤ 2π .
(iv) f (x) = log(cos x), 0 ≤ x ≤ π/6.
(v) f (x) = log x, 1 ≤ x ≤ e.
(vi) f (x) = arcsin ex, − log 2 ≤ x ≤ 0.

30. For the following functions, ˇnd the length of the graph in polar coordinates.

(i) f (θ) = a cos θ .
(ii) f (θ) = a(1 − cos θ).
(iii) f (θ) = a sin2 θ/2.
(iv) f (θ) = θ 0 ≤ θ ≤ 2π .
(v) f (θ) = 3 sec θ 0 ≤ θ ≤ π/3.



19. Integration in Elementary Terms 387

31. In Problem 8 of the Appendix to Chapter 12 we described the cycloid, which
has the parametric representation

x = u(t) = a(t − sin t), y = v(t) = a(1 − cos t).

(a) Find the length of one arch of the cycloid. [Answer: 8a.]
(b) Recall that the cycloid is the graph of v � u−1. Find the area under

one arch of the cycloid by using the appropriate substitution in
∫
f and

evaluating the resultant integral. [Answer: 3πa2.]

32. Use induction and integration by parts to generalize Problem 14-13:∫ x

0

f (u)(x − u)n

n!
du =

∫ x

0

(∫ un

0

(
. . .

(∫ u1

0
f (t) dt

)
du1

)
. . .

)
dun.

33. If f ′ is continuous on [a, b], use integration by parts to prove the Riemann-
Lebesgue Lemma for f :

lim
λ→∞

∫ b

a

f (t) sin(λt) dt = 0.

This result is just a special case of Problem 15-26, but it can be used to prove
the general case (in much the same way that the Riemann-Lebesgue Lemma
was derived in Problem 15-26 from the special case in which f is a step
function).

34. The Mean Value Theorem for Integrals was introduced in Problem 13-23.
The \Second Mean Value Theorem for Integrals" states the following. Sup-
pose that f is integrable on [a, b] and that φ is either nondecreasing or
nonincreasing on [a, b]. Then there is a number ξ in [a, b] such that∫ b

a

f (x)φ(x)dx = φ(a)

∫ ξ

a

f (x)dx + φ(b)

∫ b

ξ

f (x)dx.

In this problem, we will assume that f is continuous and that φ is differen-
tiable, with a continuous derivative φ′.

(a) Prove that if the result is true for nonincreasing φ, then it is also true for
nondecreasing φ.

(b) Prove that if the result is true for nonincreasing φ satisfying φ(b) = 0,
then it is true for all nonincreasing φ.

Thus, we can assume that φ is nonincreasing and φ(b) = 0. In this case,
we have to prove that∫ b

a

f (x)φ(x) = φ(a)

∫ ξ

a

f (x)dx.

(c) Prove this by using integration by parts.
(d) Show that the hypothesis that φ is either nondecreasing or nonincreasing

is needed.
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From this special case of the Second Mean Value Theorem for Integrals, the
general case could be derived by some approximation arguments, just as in the case
of the Riemann-Lebesgue Lemma. But there is a more instructive way, outlined
in the next problem.

35. (a) Given a1, . . . , an and b1, . . . , bn, let sk = a1 + · · · + ak. Show that

(∗) a1b1 + · · · + anbn = s1(b1 − b2)+ s2(b2 − b3)

+ · · · + sn−1(bn−1 − bn)+ snbn .

This disarmingly simple formula is sometimes called \Abel's formula for summation
by parts." It may be regarded as an analogue for sums of the integration by parts formula∫ b

a
f ′(x)g(x) dx = f (b)g(b)− f (a)g(a)−

∫ b

a
f (x)g′(x) dx,

especially if we use Riemann sums (Chapter 13, Appendix). In fact, for a partition
P = {t0, . . . , tn} of [a, b], the left side is approximately

(1)
n∑
k=1

f ′(tk)g(tk−1)(tk − tk−1),

while the right side is approximately

f (b)g(b) − f (a)g(a)−
n∑
k=1

f (tk)g
′(tk)(tk − tk−1)

which is approximately

f (b)g(b)− f (a)g(a)−
n∑
k=1

f (tk)
g(tk) − g(tk−1)

tk − tk−1
(tk − tk−1)

= f (b)g(b)− f (a)g(a)+
n∑
k=1

f (tk)[g(tk−1) − g(tk)]

= f (b)g(b)− f (a)g(a)+
n∑
k=1

[f (tk) − f (a)] · [g(tk−1) − g(tk)]

+ f (a)

n∑
k=1

g(tk−1)− g(tk).

Since the right-most sum is just g(a) − g(b), this works out to be

(2) [f (b)− f (a)]g(b) +
n∑
k=1

[f (tk) − f (a)] · [g(tk−1) − g(tk )].

If we choose
ak = f ′(tk)(tk − tk−1), bk = g(tk−1)

then

(1) is
n∑
k=1

akbk,

which is the left side of (∗), while

sk =
k∑
i=1

f ′(ti )(ti − ti−1) is approximately
k∑
i=1

f (ti) − f (ti−1) = f (tk)− f (a),

so

(2) is approximately snbn +
n∑
k=1

sk(bk − bk−1),

which is the right side of (∗).
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This discussion is not meant to suggest that Abel's formula can actually be derived from
the formula for integration by parts, or vice versa. But, as we shall see, Abel's formula can
often be used as a substitute for integration by parts in situations where the functions in
question aren't differentiable.

(b) Suppose that {bn} is nonincreasing, with bn ≥ 0 for each n, and that

m ≤ a1 + · · · + an ≤ M

for all n. Prove Abel's Lemma:

b1m ≤ a1b1 + · · · + anbn ≤ b1M.

(And, moreover,

bkm ≤ akbk + · · · + anbn ≤ bkM,

a formula which only looks more general, but really isn't.)
(c) Let f be integrable on [a, b] and let φ be nonincreasing on [a, b] with

φ(b) = 0. Let P = {t0, . . . , tn} be a partition of [a, b]. Show that the
sum

n∑
i=1

f (ti−1)φ(ti−1)(ti − ti−1)

lies between the smallest and the largest of the sums

φ(a)

k∑
i=1

f (ti−1)(ti − ti−1).

Conclude that ∫ b

a

f (x)φ(x)dx

lies between the minimum and the maximum of

φ(a)

∫ x

a

f (t) dt,

and that it therefore equals φ(a)
∫ ξ

a

f (t) dt for some ξ in [a, b].

36. (a) Show that the following improper integrals both converge.

(i)
∫ 1

0
sin
(
x + 1

x

)
dx.

(ii)
∫ 1

0
sin2

(
x + 1

x

)
dx.

(b) Decide which of the following improper integrals converge.

(i)
∫ ∞

1
sin
(

1
x

)
dx.

(ii)
∫ ∞

1
sin2

(
1
x

)
dx.
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37. (a) Compute the (improper) integral
∫ 1

0
log x dx.

(b) Show that the improper integral
∫ π

0
log(sin x) dx converges.

(c) Use the substitution x = 2u to show that∫ π

0
log(sin x)dx = 2

∫ π/2

0
log(sin x)dx + 2

∫ π/2

0
log(cos x)dx + π log 2.

(d) Compute
∫ π/2

0
log(cos x)dx.

(e) Using the relation cos x = sin(π/2 − x), compute
∫ π

0
log(sin x)dx.

38. Prove the following version of integration by parts for improper integrals:∫ ∞

a

u′(x)v(x)dx = u(x)v(x)

∣∣∣∣∞
a

−
∫ ∞

a

u(x)v′(x) dx.

The ˇrst symbol on the right side means, of course,

lim
x→∞u(x)v(x)− u(a)v(a).

*39. One of the most important functions in analysis is the gamma function,

�(x)=
∫ ∞

0
e−t t x−1 dt.

(a) Prove that the improper integral �(x) is deˇned if x > 0.
(b) Use integration by parts (more precisely, the improper integral version

in the previous problem) to prove that

�(x + 1) = x�(x).

(c) Show that �(1) = 1, and conclude that �(n) = (n − 1)! for all natural
numbers n.

The gamma function thus provides a simple example of a continuous function
which \interpolates" the values of n! for natural numbers n. Of course there
are inˇnitely many continuous functions f with f (n) = (n − 1)! ; there are
even inˇnitely many continuous functions f with f (x + 1) = xf (x) for all
x > 0. However, the gamma function has the important additional property
that log � � is convex, a condition which expresses the extreme smoothness
of this function. A beautiful theorem due to Harold Bohr and Johannes
Mollerup states that � is the only function f with log �f convex, f (1) = 1
and f (x + 1) = xf (x). See the Suggested Reading for a reference.

*40. (a) Use the reduction formula for
∫

sinn x dx to show that∫ π/2

0
sinn x dx = n− 1

n

∫ π/2

0
sinn−2 x dx.
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(b) Now show that

∫ π/2

0
sin2n+1 x dx = 2

3
· 4

5
· 6

7
· · · · · 2n

2n + 1
,∫ π/2

0
sin2n x dx = π

2
· 1

2
· 3

4
· 5

6
· · · · · 2n− 1

2n
,

and conclude that

π

2
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · · 2n

2n− 1
· 2n

2n + 1

∫ π/2

0
sin2n x dx∫ π/2

0
sin2n+1

x dx

.

(c) Show that the quotient of the two integrals in this expression is between
1 and 1 + 1/2n, starting with the inequalities

0 < sin2n+1 x ≤ sin2n x ≤ sin2n−1 x for 0 < x < π/2.

This result, which shows that the products

2
1

· 2
3

· 4
3

· 4
5

· 6
5

· 6
7

· · · · · 2n
2n − 1

· 2n
2n+ 1

can be made as close to π/2 as desired, is usually written as an inˇnite
product, known as Wallis' product:

π

2
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· . . . ·

(d) Show also that the products

1√
n

2 · 4 · 6 · · · · · 2n
1 · 3 · 5 · · · · · (2n − 1)

can be made as close to
√
π as desired. (This fact is used in the next

problem and in Problem 27-19.)

**41. It is an astonishing fact that improper integrals
∫ ∞

0
f (x)dx can often be

computed in cases where ordinary integrals
∫ b

a

f (x)dx cannot. There is no

elementary formula for
∫ b

a

e−x
2
dx, but we can ˇnd the value of

∫ ∞

0
e−x

2
dx

precisely! There are many ways of evaluating this integral, but most require
some advanced techniques; the following method involves a fair amount of
work, but no facts that you do not already know.
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(a) Show that∫ 1

0
(1 − x2)n dx = 2

3
· 4

5
· · · · · 2n

2n + 1
,

∫ ∞

0

1
(1 + x2)n

dx = π

2
· 1

2
· 3

4
· · · · · 2n − 3

2n− 2
.

(This can be done using reduction formulas, or by appropriate substitu-
tions, combined with the previous problem.)

(b) Prove, using the derivative, that

1 − x2 ≤ e−x
2

for 0 ≤ x ≤ 1.

e−x
2 ≤ 1

1 + x2 for 0 ≤ x.

(c) Integrate the nth powers of these inequalities from 0 to 1 and from 0 to
∞, respectively. Then use the substitution y = √

nx to show that

√
n

2
3

· 4
5

· · · · · 2n
2n+ 1

≤
∫ √

n

0
e−y

2
dy ≤

∫ ∞

0
e−y

2
dy

≤ π

2
√
n

1
2

· 3
4

· · · · · 2n− 3
2n− 2

.

(d) Now use Problem 40(d) to show that∫ ∞

0
e−y

2
dy =

√
π

2
.

**42. (a) Use integration by parts to show that∫ b

a

sin x
x

dx = cos a
a

− cos b
b

−
∫ b

a

cos x
x2 dx,

and conclude that
∫∞

0 (sin x)/x dx exists. (Use the left side to investigate
the limit as a → 0+ and the right side for the limit as b → ∞.)

(b) Use Problem 15-33 to show that∫ π

0

sin(n+ 1
2 )t

sin
t

2

dt = π

for any natural number n.
(c) Prove that

lim
λ→π

∫ π

0
sin(λ+ 1

2)t


2
t

− 1

sin
t

2


 dt = 0.

Hint: The term in brackets is bounded by Problem 15-2(vi); the
Riemann-Lebesgue Lemma then applies.
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(d) Use the substitution u = (λ+ 1
2 )t and part (b) to show that∫ ∞

0

sin x
x

dx = π

2
.

43. Given the value of
∫ ∞

0
(sin x)/x dx from Problem 42, compute

∫ ∞

0

(
sin x
x

)2

dx

by using integration by parts. (As in Problem 37, the formula for sin 2x will
play an important role.)

*44. (a) Use the substitution u = tx to show that

�(x) = 1
x

∫ ∞

0
e−u

1/x
du.

(b) Find �(1
2).

*45. (a) Suppose that
f (x)

x
is integrable on every interval [a, b] for 0 < a < b,

and that lim
x→0

f (x) = A and lim
x→∞ f (x) = B. Prove that for all α, β > 0

we have ∫ ∞

0

f (ax)− f (βx)

x
dx = (A− B) log

β

α
.

Hint: To estimate
∫ N

ε

f (αx)− f (βx)

x
dx use two different substitutions.

(b) Now suppose instead that
∫ ∞

a

f (x)

x
dx converges for all a > 0 and that

lim
x→0

f (x) = A. Prove that∫ ∞

0

f (αx)− f (βx)

x
dx = A log

β

α
.

(c) Compute the following integrals:

(i)
∫ ∞

0

e−αx − e−βx

x
dx.

(ii)
∫ ∞

0

cos(αx)− cos(βx)
x

dx.

In Chapter 13 we said, rather blithely, that integrals may be computed to any
degree of accuracy desired by calculating lower and upper sums. But an applied
mathematician, who really has to do the calculation, rather than just talking about
doing it, may not be overjoyed at the prospect of computing lower sums to evaluate
an integral to three decimal places, say (a degree of accuracy that might easily be
needed in certain circumstances). The next three problems show how more reˇned
methods can make the calculations much more efˇcient.
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We ought to mention at the outset that computing upper and lower sums might
not even be practical, since it might not be possible to compute the quantities mi
and Mi for each interval [ti−1, ti]. It is far more reasonable simply to pick points xi

in [ti−1, ti] and consider
n∑
i=1

f (xi) · (ti − ti−1). This represents the sum of the areas

of certain rectangles which partially overlap the graph of f|see Figure 1 in the
Appendix to Chapter 13. But we will get a much better result if we instead choose
the trapezoids shown in Figure 2.

FI G U R E 2

Suppose, in particular, that we divide [a, b] into n equal intervals, by means of
the points

ti = a + i

(
b − a

n

)
= a + ih.

Then the trapezoid with base [ti−1, ti] has area

f (ti−1)+ f (ti)

2
· (ti − ti−1)

and the sum of all these areas is simply

�n = h

[
f (t1)+ f (a)

2
+ f (t2)+ f (t1)

2
+ · · · + f (b)+ f (tn−1)

2

]

= h

2

[
f (a)+ 2

n−1∑
i=1

f (a + ih)+ f (b)

]
, h = b − a

n
.

This method of approximating an integral is called the trapezoid rule. Notice that to
obtain �2n from �n it isn't necessary to recompute the old f (ti ); their contribution
to �2n is just 1

2�n. So in practice it is best to compute �2, �4, �8, . . . to get

approximations to
∫ b

a

f . In the next problem we will estimate
∫ b

a

f −�n.

46. (a) Suppose that f ′′ is continuous. Let Pi be the linear function which agrees
with f at ti−1 and ti . Using Problem 11-43, show that if ni and Ni are
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the minimum and maximum of f ′′ on [ti−1, ti] and

I =
∫ ti

ti−1

(x − ti−1)(x − ti) dx

then
niI

2
≥
∫ ti

ti−1

(f − Pi) ≥ NiI

2
.

(b) Evaluate I to get

nih
3

12
≤
∫ ti

ti−1

(f − Pi) ≤ Nih
3

12
.

(c) Conclude that there is some c in [a, b] with∫ b

a

f = �n − (b − a)3

12n2 f ′′(c).

Notice that the \error term" (b − a)3f ′′(c)/12n2 varies as 1/n2 (while
the error obtained using ordinary sums varies as 1/n).

We can obtain still more accurate results if we approximate f by quadratic
functions rather than by linear functions. We ˇrst consider what happens when
the interval [a, b] is divided into two equal intervals (Figure 3).F I G U R E 3

47. (a) Suppose ˇrst that a = 0 and b = 2. Let P be the second degree poly-
nomial function which agrees with f at 0, 1, and 2 (Problem 3-6). Show
that ∫ 2

0
P = 1

3
[f (0)+ 4f (1)+ f (2)].

(b) Conclude that in the general case∫ b

a

P = b − a

6

[
f (a)+ 4f

(
a + b

2

)
+ f (b)

]
.

(c) Naturally
∫ b

a

P =
∫ b

a

f when f is a quadratic polynomial. But, re-

markably enough, this same relation holds when f is a cubic polynomial!
Prove this, using Problem 11-43; note that f ′′′ is a constant.

The previous problem shows that we do not have to do any new calculations

to compute
∫ b

a

Q when Q is a cubic polynomial which agrees with f at a, b, and

a + b

2
: we still have

∫ b

a

Q = b − a

6

[
f (a)+ 4f

(
a + b

2

)
+ f (b)

]
.

But there is much more lee-way in choosing Q, which we can use to our advantage:
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48. (a) Show that there is a cubic polynomial function Q satisfying

Q(a) = f (a), Q(b) = f (b), Q

(
a + b

2

)
= f

(
a + b

2

)

Q′
(
a + b

2

)
= f ′

(
a + b

2

)
.

Hint: Clearly Q(x) = P(x)+A(x − a)(x − b)

(
x − a + b

2

)
for some A.

(b) Prove that for every x we have

f (x)−Q(x) = (x − a)

(
x − a + b

2

)2

(x − b)
f (4)(ξ)

4!

for some ξ in [a, b]. Hint: Imitate the proof of Problem 11-43.
(c) Conclude that if f (4) is continuous, then∫ b

a

f = b − a

6

[
f (a)+ 4f

(
a + b

2

)
+ f (b)

]
− (b − a)5

2880
f (4)(c)

for some c in [a, b].
(d) Now divide [a, b] into 2n intervals by means of the points

ti = a + ih, h = b − a

2n
.

Prove Simpson’s rule:

∫ b

a

f = b − a

n

(
f (a)+ 4

n∑
i=1

f (t2i−1)+ 2
n−1∑
i=1

f (t2i)+ f (b)

)

− (b − a)5

2880n4 f
(4)(c̄)

for some c̄ in [a, b].
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APPENDIX. THE COSMOPOLITAN INTEGRAL

We originally introduced integrals in order to ˇnd the area under the graph of
a function, but the integral is considerably more versatile than that. For example,
Problem 13-24 used the integral to express the area of a region of quite another
sort. Moreover, Problem 13-25 showed that the integral can also be used to ex-
press the lengths of curves|though, as we've seen in Appendix to Chapter 13, a
lot of work may be necessary to consider the general case! This result was prob-
ably a little more surprising, since the integral seems, at ˇrst blush, to be a very
two-dimensional creature. Actually, the integral makes its appearance in quite a
few geometric formulas, which we will present in this Appendix. To derive these
formulas we will assume some results from elementary geometry (and allow a little
fudging).

Instead of going down to one-dimensional objects, we'll begin by tackling some
three-dimensional ones. There are some very special solids whose volumes can
be expressed by integrals. The simplest such solid V is a \volume of revolution,"
obtained by revolving the region under the graph of f ≥ 0 on [a, b] around
the horizontal axis, when we regard the plane as situated in space (Figure 1).F I G U R E 1

If P = {t0, . . . , tn} is any partition of [a, b], and mi and Mi have their usual
meanings, then

πmi
2(ti − ti−1)

is the volume of a disc that lies inside the solid V (Figure 2). Similarly,
πMi

2(ti − ti−1) is the volume of a disc that contains the part of V between ti−1
and ti . Consequently,

F I G U R E 2

π

n∑
i=1

mi
2(ti − ti−1) ≤ volume V ≤ π

n∑
i=1

Mi
2(ti − ti−1).

But the sums on the ends of this inequality are just the lower and upper sums for
f 2 on [a, b]:

π · L(f 2, P ) ≤ volume V ≤ π ·U(f 2, P ).

Consequently, the volume of V must be given by

volumn V = π

∫ b

a

f (x)2 dx.

This method of ˇnding volumes is affectionately referred to as the \disc method."

Figure 3 shows a more complicated solid V obtained by revolving the region
under the graph of f around the vertical axis (V is the solid left over when we start
with the big cylinder of radius b and take away both the small cylinder of radius aF I G U R E 3

and the solid V1 sitting right on top of it). In this case we assume a ≥ 0 as well
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as f ≥ 0. Figures 4 and 5 indicate some other possible shapes for V .

F I G U R E 4

FI G U R E 5

For a partition P = {t0, . . . , tn} we consider the \shells" obtained by rotating the
rectangle with base [ti−1, ti] and height mi or Mi (Figure 6). Adding the volumes
of these shells we obtain

π

n∑
i=1

mi(ti
2 − ti−1

2) ≤ volume V ≤ π

n∑
i=1

Mi(ti
2 − ti−1

2),

which we can write as

π

n∑
i=1

mi(ti + ti−1)(ti − ti−1) ≤ volume V ≤ π

n∑
i=1

Mi(ti + ti−1)(ti − ti−1).

Now these sums are not lower or upper sums of anything. But Problem 1 of theFI G U R E 6

Appendix to Chapter 13 shows that each sum

n∑
i=1

miti(ti − ti−1) and
n∑
i=1

miti−1(ti − ti−1)

can be made as close as desired to
∫ b

a

xf (x) dx by choosing the lengths ti − ti−1

small enough. The same is true of the sums on the right, so we ˇnd that

volume V = 2π
∫ b

a

xf (x)dx;

this is the so-called \shell method" of ˇnding volumes.
The surface area of certain curved regions can also be expressed in terms of inte-

grals. Before we tackle complicated regions, a little review of elementary geometric
formulas may be appreciated here.

Figure 7 shows a right pyramid made up of triangles with bases of length l and
altitude s. The total surface area of the sides of the pyramid is thus

FI G U R E 7
1
2
ps,

where p is the perimeter of the base. By choosing the base to be a regular polygon
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with a large number of sides we see that the area of a right circular cone (Figure 8)
must be

1
2
(2πr)s = πrs,

where s is the \slant height." Finally, consider the frustum of a cone with slant
height s and radii r1 and r2 shown in Figure 9(a). Completing this to a cone, as
in Figure 9(b), we have

FI G U R E 8

s1

r1
= s1 + s

r2
,

so
s1 = r1s

r2 − r1
, s1 + s = r2s

r2 − r1
.

Consequently, the surface area is

πr2(s1 + s)− πr1s1 = πs
r2

2 − r1
2

r2 − r1
= πs(r1 + r2).

Now consider the surface formed by revolving the graph of f around the hor-
izontal axis. For a partition P = {t0, . . . , tn} we can inscribe a series of frusta of
cones, as in Figure 10. The total surface area of these frusta is

π

n∑
i=1

[f (ti−1)+ f (ti )]
√
(ti − ti−1)2 + [f (ti)− f (ti−1)]2

= π

n∑
i=1

[f (ti−1)+ f (ti)]

√
1 +

(
f (ti)− f (ti−1)

ti − ti−1

)2

(ti − ti−1).

By the Mean Value Theorem, this is

F I G U R E 9 π

n∑
i=1

[
f (ti−1)+ f (ti)

]√
1 + f ′(xi)2 (ti − ti−1)

for some xi in (ti−1, ti). Appealing to Problem 1 of the Appendix to Chapter 13,
we conclude that the surface area is

2π
∫ b

a

f (x)
√

1 + f ′(x)2 dx.

PROBLEMS

1. (a) Find the volume of the solid obtained by revolving the region bounded
by the graphs of f (x) = x and f (x) = x2 around the horizontal axis.

(b) Find the volume of the solid obtained by revolving this same region
around the vertical axis.

2. Find the volume of a sphere of radius r.F I G U R E 1 0
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3. When the ellipse consisting of all points (x, y) with x2/a2 + y2/b2 = 1 is
rotated around the horizontal axis we obtain an \ellipsoid of revolution"
(Figure 11). Find the volume of the enclosed solid.

F I G U R E 1 1

4. Find the volume of the \torus" (Figure 12), obtained by rotating the circle
(x − a)2 + y2 = b2 (a > b) around the vertical axis.

F I G U R E 1 2

5. A cylindrical hole of radius a is bored through the center of a sphere of
radius 2a (Figure 13). Find the volume of the remaining solid.

F I G U R E 1 3



19, Appendix. The Cosmopolitan Integral 401

6. (a) For the solid shown in Figure 14, ˇnd the volume by the shell method.

FI G U R E 1 4

(b) This volume can also be evaluated by the disc method. Write down
the integral which must be evaluated in this case; notice that it is more
complicated. The next problem takes up a question which this might
suggest.

7. Figure 15 shows a cylinder of height b and radius f (b), divided into three
solids, one of which, V1, is a cylinder of height a and radius f (a). If f
is one-one, then a comparison of the disk method and the shell method of
computing volumes leads us to believe that

πbf (b)2 − πaf (a)2 − π

∫ b

a

f (x)2 dx = volume V2

= 2π
∫ f (b)

f (a)

yf−1(y) dy.

Prove this analytically, using the formula for
∫
f−1 from Problem 19-15.

FI G U R E 1 5

8. (a) Figure 16 shows a solid with a circular base of radius a. Each plane
perpendicular to the diameter AB intersects the solid in a square. Using
arguments similar to those already used in this Appendix, express the
volume of the solid as an integral, and evaluate it.F I G U R E 1 6

(b) Same problem if each plane intersects the solid in an equilateral triangle.
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9. Find the volume of a pyramid (Figure 17) in terms of its height h and the
area A of its base.

F I G U R E 1 7

10. Find the volume of the solid which is the intersection of the two cylinders
in Figure 18. Hint: Find the intersection of this solid with each horizontalF I G U R E 1 8
plane.

11. (a) Prove that the surface area of a sphere of radius r is 4πr2.
(b) Prove, more generally, that the area of the portion of the sphere shown

in Figure 19 is 2πrh. (Notice that this depends only on h, not on the
position of the planes!)

12. (a) Find the surface area of the ellipsoid of revolution in Problem 19-3.
(b) Find the surface area of the torus in Problem 19-4.

13. The graph of f (x) = 1/x, x ≥ 1 is revolved around the horizontal axis
(Figure 20).F I G U R E 1 9

(a) Find the volume of the enclosed \inˇnite trumpet."
(b) Show that the surface area is inˇnite.
(c) Suppose that we ˇll up the trumpet with the ˇnite amount of paint found

in part (a). It would seem that we have thereby coated the inˇnite inside
surface area with only a ˇnite amount of paint! How is this possible?

FI G U R E 2 0
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One of the most remarkable series of
algebraic analysis is the following:

1 +
m

1
x +

m(m 1)

1 . 2
x2

+ m(m 1)(m 2)
1 . 2 . 3

x3 + . . .

+ m(m 1) . . . [m (n 1)]
1 . 2 . . . . . . . . . . . n

xn

+ . . .

When m is a positive whole number
the sum of the series,
which is then finite, can be expressed,
as is well known, by (1 + x)m.
When m is not an integer,
the series goes on to infinity, and it will
converge or diverge according
as the quantities
m and x have this or that value.
In this case one writes the same equality

(1 + x)m 1 + m
1

x

+ m(m 1)
1 . 2

x2 + . . . etc.

. . . It is assumed that
the numerical equality will always occur
whenever the series is convergent, but
this has never yet been proved.
NIELS HENRIK ABEL



CHAPTER 20 APPROXIMATION BY
POLYNOMIAL FUNCTIONS

There is one sense in which the \elementary functions" are not elementary at all.
If p is a polynomial function,

p(x) = a0 + a1x + · · · + anx
n,

then p(x) can be computed easily for any number x. This is not at all true for
functions like sin, log, or exp. At present, to ˇnd log x = ∫ x1 1/t dt approximately,
we must compute some upper or lower sums, and make certain that the error
involved in accepting such a sum for log x is not too great. Computing ex =
log−1(x) would be even more difˇcult: we would have to compute log a for many
values of a until we found a number a such that log a is approximately x|then a
would be approximately ex .

In this chapter we will obtain important theoretical results which reduce the
computation of f (x), for many functions f , to the evaluation of polynomial func-
tions. The method depends on ˇnding polynomial functions which are close ap-
proximations to f . In order to guess a polynomial which is appropriate, it is useful
to ˇrst examine polynomial functions themselves more thoroughly.

Suppose that
p(x) = a0 + a1x + · · · + anx

n.

It is interesting, and for our purposes very important, to note that the coefˇcients ai
can be expressed in terms of the value of p and its various derivatives at 0. To
begin with, note that

p(0) = a0.

Differentiating the original expression for p(x) yields

p′(x) = a1 + 2a2x + · · · + nanx
n−1.

Therefore,
p′(0) = p(1)(0) = a1.

Differentiating again we obtain

p′′(x) = 2a2 + 3 · 2 · a3x + · · · + n(n− 1) · anxn−2.

Therefore,
p′′(0) = p(2)(0) = 2a2.

In general, we will have

p(k)(0) = k! ak or ak = p(k)(0)
k!

.

If we agree to deˇne 0! = 1, and recall the notation p(0) = p, then this formula
holds for k = 0 also.

405
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If we had begun with a function p that was written as a \polynomial in (x−a),"
p(x) = a0 + a1(x − a)+ · · · + an(x − a)n,

then a similar argument would show that

ak = p(k)(a)

k!
.

Suppose now that f is a function (not necessarily a polynomial) such that

f (1)(a), . . . , f (n)(a)

all exist. Let

ak = f (k)(a)

k!
, 0 ≤ k ≤ n,

and deˇne
Pn,a(x) = a0 + a1(x − a)+ · · · + an(x − a)n.

The polynomial Pn,a is called the Taylor polynomial of degree n for f at a.
(Strictly speaking, we should use an even more complicated expression, like Pn,a,f ,
to indicate the dependence on f ; at times this more precise notation will be useful.)
The Taylor polynomial has been deˇned so that

Pn,a
(k)(a) = f (k)(a) for 0 ≤ k ≤ n;

in fact, it is clearly the only polynomial of degree ≤ n with this property.
Although the coefˇcients of Pn,a,f seem to depend upon f in a fairly compli-

cated way, the most important elementary functions have extremely simple Taylor
polynomials. Consider ˇrst the function sin. We have

sin(0) = 0,
sin′

(0) = cos 0 = 1,
sin′′

(0) = − sin 0 = 0,
sin′′′

(0) = − cos 0 = −1,
sin(4)(0) = sin 0 = 0.

From this point on, the derivatives repeat in a cycle of 4. The numbers

ak = sin(k)(0)
k!

are

0, 1, 0, − 1
3!
, 0,

1
5!
, 0, − 1

7!
, 0,

1
9!
, . . . .

Therefore the Taylor polynomial P2n+1,0 of degree 2n+ 1 for sin at 0 is

P2n+1,0(x) = x − x3

3!
+ x5

5!
− x7

7!
+ · · · + (−1)n

x2n+1

(2n + 1)!
.

(Of course, P2n+1,0 = P2n+2,0).
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The Taylor polynomial P2n,0 of degree 2n for cos at 0 is (the computations are
left to you)

P2n,0(x) = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · + (−1)n

x2n

(2n)!
.

The Taylor polynomial for exp is especially easy to compute. Since exp(k)(0) =
exp(0) = 1 for all k, the Taylor polynomial of degree n at 0 is

Pn,0(x) = 1 + x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ · · · + xn

n!
.

The Taylor polynomial for log must be computed at some point a �= 0, since
log is not even deˇned at 0. The standard choice is a = 1. Then

log′(x) = 1
x
, log′(1) = 1;

log′′(x) = − 1
x2 , log′′(1) = −1;

log′′′(x) = 2
x3 , log′′′(1) = 2;

in general

log(k)(x) = (−1)k−1(k − 1)!
xk

, log(k)(1) = (−1)k−1(k − 1)! .

Therefore the Taylor polynomial of degree n for log at 1 is

Pn,1(x) = (x − 1)− (x − 1)2

2
+ (x − 1)3

3
+ · · · + (−1)n−1(x − 1)n

n
.

It is often more convenient to consider the function f (x) = log(1 + x). In this
case we can choose a = 0. We have

f (k)(x) = log(k)(1 + x),

so
f (k)(0) = log(k)(1) = (−1)k−1(k − 1)! .

Therefore the Taylor polynomial of degree n for f at 0 is

Pn,0(x) = x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)n−1xn

n
.

There is one other elementary function whose Taylor polynomial is important|
arctan. The computations of the derivatives begin

arctan′(x) = 1
1 + x2 arctan ′(0) = 1;

arctan′′(x) = −2x
(1 + x2)2

, arctan′′(0) = 0;

arctan′′′(x) = (1 + x2)2 · (−2)+ 2x · 2(1 + x2) · 2x
(1 + x2)4

, arctan′′′(0) = −2.
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It is clear that this brute force computation will never do. However, the Taylor
polynomials of arctan will be easy to ˇnd after we have examined the properties
of Taylor polynomials more closely|although the Taylor polynomial Pn,a,f was
simply deˇned so as to have the same ˇrst n derivatives at a as f , the connection
between f and Pn,a,f will actually turn out to be much deeper.

One line of evidence for a closer connection between f and the Taylor polyno-
mials for f may be uncovered by examining the Taylor polynomial of degree 1,
which is

P1,a(x) = f (a)+ f ′(a)(x − a).

Notice that
f (x)− P1,a(x)

x − a
= f (x)− f (a)

x − a
− f ′(a).

Now, by the deˇnition of f ′(a) we have

lim
x→a

f (x)− P1,a(x)

x − a
= 0.

F I G U R E 1

In other words, as x approaches a the difference f (x)−P1,a(x) not only becomes
small, but actually becomes small even compared to x− a. Figure 1 illustrates the
graph of f (x) = ex and of

P1,0(x) = f (0)+ f ′(0)x = 1 + x,

which is the Taylor polynomial of degree 1 for f at 0. The diagram also shows
the graph of

P2,0(x) = f (0)+ f ′(0)+ f ′′(0)
2!

x2 = 1 + x + x2

2
,

which is the Taylor polynomial of degree 2 for f at 0. As x approaches 0, the
difference f (x)−P2,0(x) seems to be getting small even faster than the difference
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f (x) − P1,0(x). As it stands, this assertion is not very precise, but we are now
prepared to give it a deˇnite meaning. We have just noted that in general

lim
x→a

f (x)− P1,a(x)

x − a
= 0.

For f (x) = ex and a = 0 this means that

lim
x→0

f (x)− P1,0(x)

x
= lim

x→0

ex − 1 − x

x
= 0.

On the other hand, an easy double application of l'Hôpital's Rule shows that

lim
x→0

ex − 1 − x

x2 = 1
2

�= 0.

Thus, although f (x)−P1,0(x) becomes small compared to x, as x approaches 0, it
does not become small compared to x2. For P2,0(x) the situation is quite different;
the extra term x2/2 provides just the right compensation:

lim
x→0

ex − 1 − x − x2

2
x2

= lim
x→0

ex − 1 − x

2x

= lim
x→0

ex − 1
2

= 0.

This result holds in general|if f ′(a) and f ′′(a) exist, then

lim
x→a

f (x)− P2,a(x)

(x − a)2
= 0;

in fact, the analogous assertion for Pn,a is also true.

THEOREM 1 Suppose that f is a function for which

f ′(a), . . . , f (n)(a)

all exist. Let

ak = f (k)(a)

k!
, 0 ≤ k ≤ n,

and deˇne

Pn,a(x) = a0 + a1(x − a)+ · · · + an(x − a)n.

Then

lim
x→a

f (x)− Pn,a (x)

(x − a)n
= 0.
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PROOF Writing out Pn,a(x) explicitly, we obtain

f (x)− Pn,a (x)

(x − a)n
=
f (x)−

n−1∑
i=0

f (i)(a)

i!
(x − a)i

(x − a)n
− f (n)(a)

n!
.

It will help to introduce the new functions

Q(x) =
n−1∑
i=0

f (i)(a)

i!
(x − a)i and g(x) = (x − a)n;

now we must prove that

lim
x→a

f (x)−Q(x)

g(x)
= f (n)(a)

n!
.

Notice that

Q(k)(a) = f (k)(a), k ≤ n− 1,

g(k)(x) = n!(x − a)n−k/(n − k)! .

Thus

lim
x→a

[f (x)−Q(x)] = f (a)−Q(a) = 0,

lim
x→a

[f ′(x)−Q′(x)] = f ′(a)−Q′(a) = 0,

·
·
·

lim
x→a

[f (n−2)(x)−Q(n−2)(x)] = f (n−2)(a)−Q(n−2)(a) = 0.

and
lim
x→a

g(x) = lim
x→a

g′(x) = · · · = lim
x→a

g(n−2)(x) = 0.

We may therefore apply l'Hôpital's Rule n − 1 times to obtain

lim
x→a

f (x)−Q(x)

(x − a)n
= lim

x→a

f (n−1)(x)−Q(n−1)(x)

n! (x − a)
.

Since Q is a polynomial of degree n − 1, its (n − 1)st derivative is a constant; in
fact, Q(n−1)(x) = f (n−1)(a). Thus

lim
x→a

f (x)−Q(x)

(x − a)n
= lim

x→a

f (n−1)(x)− f (n−1)(a)

n! (x − a)

and this last limit is f (n)(a)/n! by deˇnition of f (n)(a).

One simple consequence of Theorem 1 allows us to perfect the test for local
maxima and minima which was developed in Chapter 11. If a is a critical point
of f , then, according to Theorem 11-5, the function f has a local minimum
at a if f ′′(a) > 0, and a local maximum at a if f ′′(a) < 0. If f ′′(a) = 0 no
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conclusion was possible, but it is conceivable that the sign of f ′′′(a) might give
further information; and if f ′′′(a) = 0, then the sign of f (4)(a) = 0 might be
signiˇcant. Even more generally, we can ask what happens when

(∗) f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0,
f (n)(a) �= 0.

The situation in this case can be guessed by examining the functions

f (x) = (x − a)n,

g(x) = −(x − a)n,

which satisfy (∗). Notice (Figure 2) that if n is odd, then a is neither a local
maximum nor a local minimum point for f or g. On the other hand, if n is
even, then f , with a positive nth derivative, has a local minimum at a, while
g, with a negative nth derivative, has a local maximum at a. Of all functions
satisfying (∗), these are about the simplest available; nevertheless they indicate the
general situation exactly. In fact, the whole point of the next proof is that any
function satisfying (∗) looks very much like one of these functions, in a sense that
is made precise by Theorem 1.

THEOREM 2 Suppose that

f ′(a) = · · · = f (n−1)(a) = 0,
f (n)(a) �= 0.

(1) If n is even and f (n)(a) > 0, then f has a local minimum at a.
(2) If n is even and f (n)(a) < 0, then f has a local maximum at a.
(3) If n is odd, then f has neither a local maximum nor a local minimum at a.

PROOF There is clearly no loss of generality in assuming that f (a) = 0, since neither the
hypotheses nor the conclusion are affected if f is replaced by f − f (a). Then,
since the ˇrst n− 1 derivatives of f at a are 0, the Taylor polynomial Pn,a of f is

Pn,a(x) = f (a)+ f ′(a)
1!

(x − a)+ · · · + f (n)(a)

n!
(x − a)n

= f (n)(a)

n!
(x − a)n.

Thus, Theorem 1 states that

0 = lim
x→a

f (x)− Pn,a(x)

(x − a)n
= lim

x→a

[
f (x)

(x − a)n
− f (n)(a)

n!

]
.

Consequently, if x is sufˇciently close to a, then

f (x)

(x − a)n
has the same sign as

f (n)(a)

n!
.

Suppose now that n is even. In this case (x − a)n > 0 for all x �= a. SinceFI G U R E 2

f (x)/(x−a)n has the same sign as f (n)(a)/n! for x sufˇciently close to a, it follows
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that f (x) itself has the same sign as f n(a)/n! for x sufˇciently close to a. If
f (n)(a) > 0, this means that

f (x) > 0 = f (a)

for x close to a. Consequently, f has a local minimum at a. A similar proof works
for the case f (n)(a) < 0.

Now suppose that n is odd. The same argument as before shows that if x is
sufˇciently close to a, then

f (x)

(x − a)n
always has the same sign.

But (x−a)n > 0 for x > a and (x−a)n < 0 for x < a. Therefore f (x) has different

signs for x > a and x < a. This proves that f has neither a local maximum nor
a local minimum at a.

Although Theorem 2 will settle the question of local maxima and minima for
just about any function which arises in practice, it does have some theoretical
limitations, because f (k)(a) may be 0 for all k. This happens (Figure 3(a)) for the
function

f (x) =
{
e−1/x2

, x �= 0
0, x = 0,

which has a minimum at 0, and also for the negative of this function (Figure 3(b)),
which has a maximum at 0. Moreover (Figure 3(c)), if

f (x) =


e−1/x2

, x > 0
0, x = 0
−e−1/x2

, x < 0,

then f (k)(0) = 0 for all k, but f has neither a local minimum nor a local maximum
at 0.

The conclusion of Theorem 1 is often expressed in terms of an important con-
cept of \order of equality." Two functions f and g are equal up to order nF I G U R E 3

at a if

lim
x→a

f (x)− g(x)

(x − a)n
= 0.

In the language of this deˇnition, Theorem 1 says that the Taylor polynomial
Pn,a,f equals f up to order n at a. The Taylor polynomial might very well have
been designed to make this fact true, because there is at most one polynomial of
degree ≤ n with this property. This assertion is a consequence of the following
elementary theorem.

THEOREM 3 Let P and Q be two polynomials in (x − a), of degree ≤ n, and suppose that P
and Q are equal up to order n at a. Then P = Q.

PROOF Let R = P − Q. Since R is a polynomial of degree ≤ n, it is only necessary to
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prove that if
R(x) = b0 + · · · + bn(x − a)n

satisˇes
lim
x→a

R(x)

(x − a)n
= 0,

then R = 0. Now the hypotheses on R surely imply that

lim
x→a

R(x)

(x − a)i
= 0 for 0 ≤ i ≤ n.

For i = 0 this condition reads simply lim
x→a

R(x) = 0; on the other hand,

lim
x→a

R(x) = lim
x→a

[b0 + b1(x − a)+ · · · + bn(x − a)n]

= b0.

Thus b0 = 0 and
R(x) = b1(x − a)+ · · · + bn(x − a)n.

Therefore,
R(x)

x − a
= b1 + b2(x − a)+ · · · + bn(x − a)n−1

and
lim
x→a

R(x)

x − a
= b1.

Thus b1 = 0 and

R(x) = b2(x − a)2 + · · · + bn(x − a)n.

Continuing in this way, we ˇnd that

b0 = · · · = bn = 0.

COROLLARY Let f be n-times differentiable at a, and suppose that P is a polynomial in (x−a)
of degree ≤ n, which equals f up to order n at a. Then P = Pn,a,f .

PROOF Since P and Pn,a,f both equal f up to order n at a, it is easy to see that P equals
Pn,a,f up to order n at a. Consequently, P = Pn,a,f by the Theorem.

At ˇrst sight this corollary appears to have unnecessarily complicated hypotheses;
it might seem that the existence of the polynomial P would automatically imply
that f is sufˇciently differentiable for Pn,a,f to exist. But in fact this is not so. For
example (Figure 4), suppose that

f (x) =
{
xn+1, x irrational
0, x rational.

If P(x) = 0, then P is certainly a polynomial of degree ≤ n which equals f up to
order n at 0. On the other hand, f ′(a) does not exist for any a �= 0, so f ′′(0) is
undeˇned.
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F I G U R E 4

When f does have n derivatives at a, however, the corollary may provide a
useful method for ˇnding the Taylor polynomial of f . In particular, remember
that our ˇrst attempt to ˇnd the Taylor polynomial for arctan ended in failure.
The equation

arctan x =
∫ x

0

1
1 + t2

dt

suggests a promising method of ˇnding a polynomial close to arctan|divide 1
by 1 + t2, to obtain a polynomial plus a remainder:

1
1 + t2

= 1 − t2 + t4 − t6 + · · · + (−1)nt2n + (−1)n+1t2n+2

1 + t2
.

This formula, which can be checked easily by multiplying both sides by 1 + t2,
shows that

arctan x =
∫ x

0
1 − t2 + t4 − · · · + (−1)nt2n dt + (−1)n+1

∫ x

0

t2n+2

1 + t2
dt

= x − x3

3
+ x5

5
− · · · + (−1)n

x2n+1

2n+ 1
+ (−1)n+1

∫ x

0

t2n+2

1 + t2
dt.

According to our corollary, the polynomial which appears here will be the Taylor
polynomial of degree 2n+ 1 for arctan at 0, provided that

lim
x→0

∫ x

0

t2n+2

1 + t2
dt

x2n+1
= 0.

Since ∣∣∣∣∣
∫ x

0

t2n+2

1 + t2
dt

∣∣∣∣∣ ≤
∣∣∣∣
∫ x

0
t2n+2 dt

∣∣∣∣ = |x|2n+3

2n + 3
,

this is clearly true. Thus we have found that the Taylor polynomial of degree
2n+ 1 for arctan at 0 is

P2n+1,0(x) = x − x3

3
+ x5

5
− · · · + (−1)n

x2n+1

2n + 1
.
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By the way, now that we have discovered the Taylor polynomials of arctan, it is
possible to work backwards and ˇnd arctan(k)(0) for all k: Since

P2n+1,0(x) = x − x3

3
+ x5

5
− · · · + (−1)n

x2n+1

2n+ 1
,

and since this polynomial is, by deˇnition,

arctan(0)(0)+ arctan(1)(0)+ arctan(2)(0)
2!

x2 + · · · + arctan(2n+1)(0)
(2n+ 1)!

x2n+1,

we can ˇnd arctan(k)(0) by simply equating the coefˇcients of xk in these two
polynomials:

arctan(k)(0)
k!

= 0 if k is even,

arctan(2l+1)(0)
(2l + 1)!

= (−1)l

2l + 1
or arctan(2l+1)(0) = (−1)l · (2l)! .

A much more interesting fact emerges if we go back to the original equation

arctan x = x − x3

3
+ x5

5
− · · · + (−1)n

x2n+1

2n+ 1
+ (−1)n+1

∫ x

0

t2n+2

1 + t2
dt,

and remember the estimate∣∣∣∣∣
∫ x

0

t2n+2

1 + t2
dt

∣∣∣∣∣ ≤ |x|2n+3

2n+ 3
.

When |x| ≤ 1, this expression is at most 1/(2n + 3), and we can make this as
small as we like simply by choosing n large enough. In other words, for |x| ≤ 1
we can use the Taylor polynomials for arctan to compute arctan x as accurately as we like.
The most important theorems about Taylor polynomials extend this isolated result
to other functions, and the Taylor polynomials will soon play quite a new role.
The theorems proved so far have always examined the behavior of the Taylor
polynomial Pn,a for fixed n, as x approaches a. Henceforth we will compare Taylor
polynomials Pn,a for fixed x, and different n. In anticipation of the coming theorem
we introduce some new notation.

If f is a function for which Pn,a(x) exists, we deˇne the remainder term
Rn,a(x) by

f (x) = Pn,a(x)+ Rn,a (x)

= f (a)+ f ′(a)(x − a)+ · · · + f (n)(a)

n!
(x − a)n + Rn,a(x).

We would like to have an expression for Rn,a(x) whose size is easy to estimate.
There is such an expression, involving an integral, just as in the case for arctan.
One way to guess this expression is to begin with the case n = 0:

f (x) = f (a)+ R0,a(x).
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The Fundamental Theorem of Calculus enables us to write

f (x) = f (a)+
∫ x

a

f ′(t) dt,

so that

R0,a(x) =
∫ x

a

f ′(t) dt.

A similar expression for R1,a(x) can be derived from this formula using integra-
tion by parts in a rather tricky way: Let

u(t) = f ′(t) and v(t) = t − x

(notice that x represents some ˇxed number in the expression for v(t), so v′(t) = 1);
then ∫ x

a

f ′(t) dt =
∫ x

a

f ′(t) · 1
↓ ↓
u(t) v′(t)

dt

= u(t)v(t)

∣∣∣∣x
a

−
∫ x

a

f ′′(t)(t − x)

↓ ↓
u′(t) v(t)

dt.

Since v(x) = 0, we obtain

f (x) = f (a)+
∫ x

a

f ′(t) dt

= f (a)− u(a)v(a)+
∫ x

a

f ′′(t)(x − t) dt

= f (a)+ f ′(a)(x − a)+
∫ x

a

f ′′(t)(x − t) dt.

Thus
R1,a(x) =

∫ x

a

f ′′(t)(x − t) dt.

It is hard to give any motivation for choosing v(t) = t − x, rather than v(t) = t .
It just happens to be the choice which works out, the sort of thing one might
discover after sufˇciently many similar but futile manipulations. However, it is
now easy to guess the formula for R2,a(x). If

u(t) = f ′′(t) and v(t) = −(x − t)2

2
,

then v′(t) = (x − t), so∫ x

a

f ′′(t)(x − t) dt = u(t)v(t)

∣∣∣∣x
a

−
∫ x

a

f ′′′(t) · −(x − t)2

2
dt

= f ′′(a)(x − a)2

2
+
∫ x

a

f ′′′(t)
2

(x − t)2 dt.

This shows that

R2,a(x) =
∫ x

a

f (3)(t)

2
(x − t)2 dt.

You should now have little difˇculty giving a rigorous proof, by induction, that
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if f (n+1) is continuous on [a, x], then

Rn,a(x) =
∫ x

a

f (n+1)(t)

n!
(x − t)n dt.

From this formula, which is called the integral form of the remainder, it is possible
(Problem 15) to derive two other important expressions for Rn,a(x): the Cauchy
form of the remainder,

Rn,a(x) = f (n+1)(t)

n!
(x − t)n(x − a) for some t in (a, x),

and the Lagrange form of the remainder,

Rn,a(x) = f (n+1)(t)

(n+ 1)!
(x − a)n+1 for some t in (a, x).

In the proof of the next theorem (Taylor's Theorem) we will derive all three forms
of the remainder in an entirely different way. One virtue of this proof (aside from
its cleverness) is the fact that the Cauchy and Lagrange forms of the remainder
will be proved without assuming the extra hypothesis that f (n+1) is continuous. In
this way Taylor's Theorem appears as a direct generalization of the Mean Value
Theorem, to which it reduces for n = 0, and which is the crucial tool used in the
proof.

These remarks may suggest a strategy for proving Taylor's Theorem. Since
Rn,a(a) = 0, we might try to apply the Mean Value Theorem to the expression

Rn,a(x)

x − a
= Rn,a(x)− Rn,a(a)

x − a
.

On second thought, however, this idea does not look very promising, since it is not
at all clear how f (n+1)(t) is ever going to be involved in the answer. Indeed, if we
take the most straightforward route, and differentiate both sides of the equation
which deˇnes Rn,a , we obtain

f ′(x) = f ′(a)+ f ′′(a)(x − a)+ · · · + f (n)(a)

(n − 1)!
(x − a)n−1 + Rn,a

′(x),

which is useless. The proper application of the Mean Value Theorem has a lot in
common with the integration by parts proof outlined above. This proof involved
the derivative of a function in which x denoted a number which was fixed. This is just
how x will be treated in the following proof.

THEOREM 4 (TAYLOR’S THEOREM) Suppose that f ′, . . . , f (n+1) are deˇned on [a, x], and that Rn,a(x) is deˇned by

f (x) = f (a)+ f ′(a)(x − a)+ · · · + f (n)(a)

n!
(x − a)n + Rn,a(x).
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Then

(1) Rn,a(x) = f (n+1)(t)

n!
(x − t)n(x − a) for some t in (a, x).

(2) Rn,a(x) = f (n+1)(t)

(n+ 1)!
(x − a)n+1 for some t in (a, x).

Moreover, if f (n+1) is integrable on [a, x], then

(3) Rn,a(x) =
∫ x

a

f (n+1)(t)

n!
(x − t)n dt.

(If x < a, then the hypothesis should state that f is (n+ 1)-times differentiable on
[x, a]; the number t in (1) and (2) will then be in (x,a), while (3) will remain true
as stated, provided that f (n+1) is integrable on [x,a].)

PROOF For each number t in [a, x] we have

f (x) = f (t)+ f ′(t)(x − t)+ · · · + f (n)(t)

n!
(x − t)n + Rn,t (x).

Let us denote the number Rn,t (x) by S(t); the function S is deˇned on [a, x], and
we have

(∗) f (x) = f (t)+ f ′(t)(x − t)+ · · · + f (n)(t)

n!
(x − t)n + S(t)

for all t in [a, x].

We will now differentiate both sides of this equation, which asserts the equality of
two functions: the one whose value at t is f (x), and the one whose value at t is

f (t)+ · · · + f (n)(t)

n!
(x − t)n + S(t).

(In common parlance we are considering both sides of (∗) \as a function of t".)
Just to make sure that the letter x causes no confusion, notice that if

g(t) = f (x) for all t ,

then
g′(t) = 0 for all t ;

and if

g(t) = f (k)(t)

k!
(x − t)k,

then

g′(t) = f (k)(t)

k!
k(x − t)k−1(−1)+ f (k+1)(t)

k!
(x − t)k

= − f (k)(t)

(k − 1)!
(x − t)k−1 + f (k+1)(t)

k!
(x − t)k.
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Applying these formulas to each term of (∗), we obtain

0 = f ′(t)+
[
−f ′(t)+ f ′′(t)

1!
(x − t)

]
+
[

−f ′′(t)
1!

(x − t)+ f (3)(t)

2!
(x − t)2

]

+ · · · +
[

−f (n)(t)
(n− 1)!

(x − t)n−1 + f (n+1)(t)

n!
(x − t)n

]
+ S ′(t).

In this beautiful formula practically everything in sight cancels out, and we obtain

S ′(t) = − f (n+1)(t)

n!
(x − t)n.

Now we can apply the Mean Value Theorem to the function S on [a,x]: there
is some t in (a, x) such that

S(x)− S(a)

x − a
= S ′(t) = − f (n+1)(t)

n!
(x − t)n.

Remember that
S(t) = Rn,t (x);

this means in particular that

S(x) = Rn,x (x) = 0,
S(a) = Rn,a (x).

Thus

0 − Rn,a(x)

x − a
= − f (n+1)(t)

n!
(x − t)n

or

Rn,a(x) = f (n+1)(t)

n!
(x − t)n(x − a);

this is the Cauchy form of the remainder.
To derive the Lagrange form we apply the Cauchy Mean Value Theorem to

the functions S and g(t) = (x − t)n+1: there is some t in (a, x) such that

S(x)− S(a)

g(x)− g(a)
= S ′(t)
g′(t)

=
− f (n+1)(t)

n!
(x − t)n

−(n+ 1)(x − t)n
.

Thus

Rn,a(x)

(x − a)n+1 = f (n+1)(t)

(n+ 1)!
or

Rn,a(x) = f (n+1)(t)

(n+ 1)!
(x − a)n+1,

which is the Lagrange form.
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Finally, if f (n+1) is integrable on [a, x], then

S(x)− S(a) =
∫ x

a

S ′(t) = −
∫ x

a

f (n+1)(t)

n!
(x − t)n dt

or

Rn,a(x) =
∫ x

a

f (n+1)(t)

n!
(x − t)n dt.

Although the Lagrange and Cauchy forms of the remainder are more than
theoretical curiosities (see, e.g., Problem 23-18), the integral form of the remainder
will usually be quite adequate. If this form is applied to the functions sin, cos, and
exp, with a = 0, Taylor's Theorem yields the following formulas:

sin x = x − x3

3!
+ x5

5!
− · · · + (−1)n

x2n+1

(2n+ 1)!

+
∫ x

0

sin(2n+2)(t)

(2n+ 1)!
(x − t)2n+1 dt,

cos x = 1 − x2

2!
+ x4

4!
− · · · + (−1)n

x2n

(2n)!
+
∫ x

0

cos(2n+1)(t)

(2n)!
(x − t)2n dt,

ex = 1 + x + x2

2!
+ · · · + xn

n!
+
∫ x

0

et

n!
(x − t)n dt.

To evaluate any of these integrals explicitly would be supreme foolishness|the
answer of course will be exactly the difference of the left side and all the other terms
on the right side! To estimate these integrals, however, is both easy and worthwhile.

The ˇrst two integrals are especially easy. Since

| sin(2n+2)(t)| ≤ 1 for all t ,

we have∣∣∣∣∣
∫ x

0

sin(2n+2)(t)

(2n+ 1)!
(x − t)2n+1 dt

∣∣∣∣∣ ≤ 1
(2n+ 1)!

∣∣∣∣
∫ x

0
(x − t)2n+1 dt

∣∣∣∣ .
Since ∫ x

0
(x − t)2n+1 dt = −(x − t)2n+2

2n + 2

∣∣∣∣∣
t=x

t=0

= x2n+2

2n + 2

we conclude that ∣∣∣∣∣
∫ x

0

sin(2n+2)(t)

(2n+ 1)!
(x − t)2n+1 dt

∣∣∣∣∣ ≤ |x|2n+2

(2n + 2)!
.
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Similarly, we can show that∣∣∣∣∣
∫ x

0

cos(2n+1)(t)

(2n)!
(x − t)2n dt

∣∣∣∣∣ ≤ |x|2n+1

(2n + 1)!
.

These estimates are particularly interesting, because (as proved in Chapter 16) for
any ε > 0 we can make

xn

n!
< ε

by choosing n large enough (how large n must be will depend on x ). This enables
us to compute sin x to any degree of accuracy desired simply by evaluating the
proper Taylor polynomial Pn,0(x). For example, suppose we wish to compute
sin 2 with an error of less than 10−4. Since

sin 2 = P2n+1,0(2)+ R, where |R| ≤ 22n+2

(2n+ 2)!
,

we can use P2n+1,0(2) as our answer, provided that

22n+2

(2n + 2)!
< 10−4.

A number n with this property can be found by a straightforward search|it ob-
viously helps to have a table of values for n! and 2n (see page 428). In this case it
happens that n = 5 works, so that

sin 2 = P11,0(2)+ R

= 2 − 23

3!
+ 25

5!
− 27

7!
+ 29

9!
− 211

11!
+ R,

where |R| < 10−4.

It is even easier to calculate sin 1 approximately, since

sin 1 = P2n+1,0(1)+ R, where |R| < 1
(2n + 2)!

.

To obtain an error less than ε we need only ˇnd an n such that

1
(2n + 2)!

< ε,

and this requires only a brief glance at a table of factorials. (Moreover, the indi-
vidual terms of P2n+1,0(1) will be easier to handle.)

For very small x the estimates will be even easier. For example,

sin
1
10

= P2n+1,0

(
1
10

)
+ R, where |R| < 1

102n+2(2n+ 2)!
.

To obtain |R| < 10−10 we can clearly take n = 4 (and we could even get away
with n = 3). These methods are actually used to compute tables of sin and cos.
A high-speed computer can compute P2n+1,0(x) for many different x in almost no
time at all.
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Estimating the remainder for ex is only slightly harder. For simplicity assume
that x ≥ 0 (the estimates for x ≤ 0 are obtained in Problem 10). On the interval
[0, x] the maximum value of et is ex , since exp is increasing, so∫ x

0

et

n!
(x − t)n dt ≤ ex

n!

∫ x

0
(x − t)n dt = exxn+1

(n+ 1)!
.

Since we already know that e < 4, we have

exxn+1

(n + 1)!
<

4xxn+1

(n+ 1)!
,

which can be made as small as desired by choosing n sufˇciently large. How large
n must be will depend on x (and the factor 4x will make things more difˇcult).
Once again, the estimates are easier for small x. If 0 ≤ x ≤ 1, then

ex = 1 + x + x2

2!
+ · · · + xn

n!
+ R, where 0 < R <

4
(n+ 1)!

.

(The inequality 0 < R follows immediately from the integral form for R.) In
particular, if n = 4, then

0 < R <
4
5!
<

1
10
,

so

e = e1 = 1 + 1 + 1
2!

+ 1
3!

+ 1
4!

+ R, where 0 < R <
1
10

= 65
24

+ R

= 2 + 17
24

+ R,

which shows that
2 < ε < 3.

(This then shows that

0 < R <
3xxn+1

(n+ 1)!
,

allowing us to improve our estimate of R slightly.) By taking n = 7 you can
compute that the ˇrst 3 decimals for e are

e = 2.718 . . .

(you should check that n = 7 does give this degree of accuracy, but it would be
cruel to insist that you actually do the computations).

The function arctan is also important but, as you may recall, an expression for
arctan(k)(x) is hopelessly complicated, so that the integral form of the remainder
is useless. On the other hand, our derivation of the Taylor polynomial for arctan
automatically provided a formula for the remainder:

arctan x = x − x3

3
+ · · · + (−1)nx2n+1

2n+ 1
+
∫ x

0

(−1)n+1t2n+2

1 + t2
dt.
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As we have already estimated,∣∣∣∣∣
∫ x

0

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣∣ ≤
∣∣∣∣
∫ x

0
t2n+2 dt

∣∣∣∣ = |x|2n+3

2n + 3
.

For the moment we will consider only numbers x with |x| ≤ 1. In this case, the
remainder term can clearly be made as small as desired by choosing n sufˇciently
large. In particular,

arctan 1 = 1 − 1
3

+ 1
5

− · · · + (−1)n

2n+ 1
+ R, where |R| < 1

2n+ 3
.

With this estimate it is easy to ˇnd an n which will make the remainder less than
any preassigned number; on the other hand, n will usually have to be so large as to
make computations hopelessly long. To obtain a remainder < 10−4, for example,
we must take n > (104 − 3)/2. This is really a shame, because arctan 1 = π/4,
so the Taylor polynomial for arctan should allow us to compute π . Fortunately,
there are some clever tricks which enable us to surmount these difˇculties. Since

|R2n+1,0(x)| < |x|2n+3

2n+ 3
,

much smaller n's will work for only somewhat smaller x's. The trick for computing
π is to express arctan 1 in terms of arctan x for smaller x; Problem 6 shows how
this can be done in a convenient way.

The Taylor polynomial for the function f (x) = log(x + 1) at a = 1 is best
handled in the same manner as the Taylor polynomial for arctan. Although the
integral form of the remainder for f is not hard to write down, it is difˇcult to
estimate. On the other hand, we obtain a simple formula if we begin with the
equation

1
1 + t

= 1 − t + t2 − · · · + (−1)n−1tn−1 + (−1)ntn

1 + t
;

this implies that

log(1 + x) =
∫ x

0

1
1 + t

dt = x − x2

2
+ x3

3
− · · · + (−1)n−1x

n

n

+ (−1)n
∫ x

0

tn

1 + t
dt,

for all x > −1. If x ≥ 0, then∫ x

0

tn

t + 1
dt ≤

∫ x

0
tn dt = xn+1

n+ 1
,

and there is a slightly more complicated estimate when −1 < x < 0 (Problem 11).
For this function the remainder term can be made as small as desired by choosing
n sufˇciently large, provided that −1 < x ≤ 1.
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The behavior of the remainder terms for arctan and f (x) = log(x + 1) is quite
another matter when |x| > 1. In this case, the estimates

|R2n+1,0(x)| < |x|2n+3

2n+ 3
for arctan,

|Rn,0(x)| <
xn+1

n+ 1
(x > 0) for f,

are of no use, because when |x| > 1 the bounds xm/m become large as m be-
comes large. This predicament is unavoidable, and is not just a deˇciency of our
estimates. It is easy to get estimates in the other direction which show that the
remainders actually do remain large. To obtain such an estimate for arctan, note
that if t is in [0, x] (or in [x,0] if x < 0), then

1 + t2 ≤ 1 + x2 ≤ 2x2, if |x| ≥ 1,

so ∣∣∣∣∣
∫ x

0

t2n+2

1 + t2
dt

∣∣∣∣∣ ≥ 1
2x2

∣∣∣∣
∫ x

0
t2n+2 dt

∣∣∣∣ = |x|2n+1

4n+ 6
.

Similarly, if x > 0, then for t in [0, x] we have

1 + t ≤ 1 + x ≤ 2x, if x ≥ 1,

so ∫ x

0

tn

t + 1
dt ≥ 1

2x

∫ x

0
tn dt = xn

2n+ 2
.

These estimates show that if |x| > 1, then the remainder terms become large as
n becomes large. In other words, for |x| > 1, the Taylor polynomials for arctan
and f are of no use whatsoever in computing arctan x and log(x+1). This is no tragedy,
because the values of these functions can be found for any x once they are known
for all x with |x| < 1.

This same situation occurs in a spectacular way for the function

f (x) =
{
e−1/x2

, x �= 0
0, x = 0.

We have already seen that f (k)(0) = 0 for every natural number k. This means
that the Taylor polynomial Pn,0 for f is

Pn,0(x) = f (0)+ f ′(0)x + f ′′(0)
2!

x2 + · · · + f (n)(0)
n!

xn

= 0.

In other words, the remainder term Rn,0(x) always equals f (x), and the Taylor
polynomial is useless for computing f (x), except for x = 0. Eventually we will be
able to offer some explanation for the behavior of this function, which is such a
disconcerting illustration of the limitations of Taylor's Theorem.

The word \compute" has been used so often in connection with our estimates
for the remainder term, that the signiˇcance of Taylor's Theorem might be mis-
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construed. It is true that Taylor's Theorem is an almost ideal computational aid
(despite its ignominious failure in the previous example), but it has equally im-
portant theoretical consequences. Most of these will be developed in succeeding
chapters, but two proofs will illustrate some ways in which Taylor's Theorem may
be used. The ˇrst illustration will be particularly impressive to those who have
waded through the proof, in Chapter 16, that π is irrational.

THEOREM 5 e is irrational.

PROOF We know that, for any n,

e = e1 = 1 + 1
1!

+ 1
2!

+ · · · + 1
n!

+ Rn, where 0 < Rn <
3

(n+ 1)!
.

Suppose that e were rational, say e = a/b, where a and b are positive integers.
Choose n > b and also n > 3. Then

a

b
= 1 + 1 + 1

2!
+ · · · + 1

n!
+ Rn,

so

n! a
b

= n! + n! + n!
2!

+ · · · + n!
n!

+ n!Rn.

Every term in this equation other than n!Rn is an integer (the left side is an integer
because n > b). Consequently, n!Rn must be an integer also. But

0 <Rn <
3

(n+ 1)!
,

so

0 < n!Rn <
3

n+ 1
<

3
4
< 1,

which is impossible for an integer.

The second illustration is merely a straightforward demonstration of a fact
proved in Chapter 15: If

f ′′ + f = 0,
f (0) = 0,
f ′(0) = 0,

then f = 0. To prove this, observe ˇrst that f (k) exists for every k; in fact

f (3) = (f ′′)′ = −f ′,
f (4) = (f 3)′ = (−f ′)′ = −f ′′ = f,

f (5) = (f (4))′ = f ′,
etc.
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This shows, not only that all f (k) exist, but also that there are at most 4 different
ones: f , f ′, −f , −f ′. Since f (0) = f ′(0) = 0, all f (k)(0) are 0. Now Taylor's
Theorem states, for any n, that

f (x) =
∫ x

0

f (n+1)(t)

n!
(x − t)n dt.

Each function f (n+1) is continuous (since f (n+2) exists), so for any particular x
there is a number M such that

|f (n+1)(t)| ≤ M for 0 ≤ t ≤ x, and all n

(we can add the phrase \and all n" because there are only four different f (k)).
Thus

|f (x)| ≤ M

∣∣∣∣
∫ x

0

(x − t)n

n!
dt

∣∣∣∣ = M|x|n+1

(n+ 1)!
.

Since this is true for every n, and since |x|n/n! can be made as small as desired by
choosing n sufˇciently large, this shows that |f (x)| ≤ ε for any ε > 0; consequently,
f (x) = 0.

The other uses to which Taylor's Theorem will be put in succeeding chapters
are closely related to the computational considerations which have concerned us
for much of this chapter. If the remainder term Rn,a(x) can be made as small as
desired by choosing n sufˇciently large, then f (x) can be computed to any degree
of accuracy desired by using the polynomials Pn,a(x). As we require greater and
greater accuracy we must add on more and more terms. If we are willing to add
up inˇnitely many terms (in theory at least!), then we ought to be able to ignore
the remainder completely. There should be \inˇnite sums" like

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · · ,

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− · · · ,

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · ,

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · if |x| ≤ 1,

log(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · if − 1 < x ≤ 1.

We are almost completely prepared for this step. Only one obstacle remains|
we have never even deˇned an inˇnite sum. Chapters 22 and 23 contain the
necessary deˇnitions.
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PROBLEMS

1. Find the Taylor polynomials (of the indicated degree, and at the indicated
point) for the following functions.

(i) f (x) = ee
x ; degree 3, at 0.

(ii) f (x) = esin x degree 3, at 0.

(iii) sin; degree 2n, at
π

2
.

(iv) cos; degree 2n, at π .

(v) exp; degree n, at 1.

(vi) log; degree n, at 2.

(vii) f (x) = x5 + x3 + x; degree 4, at 0.

(viii) f (x) = x5 + x3 + x; degree 4, at 1.

(ix) f (x) = 1
1 + x2 ; degree 2n + 1, at 0.

(x) f (x) = 1
1 + x

; degree n, at 0.

2. Write each of the following polynomials in x as a polynomial in (x − 3). (It
is only necessary to compute the Taylor polynomial at 3, of the same degree
as the original polynomial. Why?)

(i) x2 − 4x − 9.

(ii) x4 − 12x3 + 44x2 + 2x + 1.

(iii) x5.

(iv) ax2 + bx + c.

3. Write down a sum (using
∑

notation) which equals each of the following
numbers to within the speciˇed accuracy. To minimize needless computa-
tion, consult the tables for 2n and n! on the next page.

(i) sin 1; error < 10−17.

(ii) sin 2; error < 10−12.

(iii) sin 1
2 ; error < 10−20.

(iv) e; error < 10−4.

(v) e2; error < 10−5.



428 Infinite Sequences and Infinite Series

n 2n n!

1 2 1
2 4 2
3 8 6
4 16 24
5 32 120
6 64 720
7 128 5,040
8 256 40,430
9 512 362,880

10 1,024 3,628,800
11 2,048 39,916,800
12 4,096 479,001,600
13 8,192 6,227,020,800
14 16,384 87,178,291,200
15 32,768 1,307,674,368,000
16 65,536 20,922,789,888,000
17 131,072 355,687,428,096,000
18 262,144 6,402,373,705,728,000
19 524,888 121,645,100,408,832,000
20 1,048,576 2,432,902,008,176,640,000

*4. This problem is similar to the previous one, except that the errors demanded
are so small that the tables cannot be used. You will have to do a little
thinking, and in some cases it may be necessary to consult the proof, in
Chapter 16, that xn/n! can be made small by choosing n large|the proof
actually provides a method for ˇnding the appropriate n. In the previous
problem it was possible to ˇnd rather short sums; in fact, it was possible
to ˇnd the smallest n which makes the estimate of the remainder given by
Taylor's Theorem less than the desired error. But in this problem ˇnding any

speciˇc sum is a moral victory (provided you can demonstrate that the sum
works).

(i) sin 1; error < 10−(1010).
(ii) e; error < 10−1,000.
(iii) sin 10; error < 10−20.
(iv) e10; error < 10−30.

(v) arctan 1
10 ; error < 10−(1010).

5. (a) In Problem 11-38 you showed that the equation x2 = cos x has pre-
cisely two solutions. Use the Taylor polynomial of cos to show that the
solutions are approximately ±

√
2/3, and ˇnd bounds on the error.

(b) Similarly, estimate the solutions of the equation 2x2 = x sin x + cos2 x.
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6. (a) Prove, using Problem 15-9, that

π

4
= arctan

1
2

+ arctan
1
3
,

π

4
= 4 arctan

1
5

− arctan
1

239
.

(b) Show that π = 3.14159 . . . . (Every budding mathematician should ver-
ify a few decimals of π , but the purpose of this exercise is not to set you
off on an immense calculation. If the second expression in part (a) is
used, the ˇrst 5 decimals for π can be computed with remarkably little
work.)

7. For every number α, and every natural number n, we deˇne the \binomial
coefˇcient" (

α

n

)
= α(α − 1) · · · · · (α − n+ 1)

n!
,

and we deˇne
(
α

0

)
= 1, as usual. If α is not an integer, then

(
α

n

)
is never 0,

and alternates in sign for n > α. Show that the Taylor polynomial of degree n

for f (x) = (1 + x)α at 0 is Pn,0(x) =
n∑
k=0

(
α

k

)
xk, and that the Cauchy and

Lagrange forms of the remainder are the following:

Cauchy form:

Rn,0(x) = α(α − 1) · · · · · (α − n)

n!
x(x − t)n(1 + t)α−n−1

= α(α − 1) · · · · · (α − n)

n!
x(1 + t)α−1

(
x − t

1 + t

)n
= (n + 1)

(
α

n+ 1

)
x(1 + t)α−1

(
x − t

1 + t

)n
, t in [0, x] or [x,0].

Lagrange form:

Rn,0(x) = α(α − 1) · · · · · (α − n)

(n+ 1)!
xn+1(1 + t)α−n−1

=
(

α

n+ 1

)
xn+1(1 + t)α−n−1, t in [0, x] or [x,0].

Estimates for these remainder terms are rather difˇcult to handle, and are
postponed to Problem 23-18.

8. Suppose that ai and bi are the coefˇcients in the Taylor polynomials at a of f
and g, respectively. In other words, ai = f (i)(a)/i! and bi = g(i)(a)/i! . Find
the coefˇcients ci of the Taylor polynomials at a of the following functions,
in terms of the ai 's and bi 's.

(i) f + g.
(ii) fg.
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(iii) f ′.

(iv) h(x) =
∫ x

a

f (t) dt .

(v) k(x) =
∫ x

0
f (t) dt .

9. (a) Prove that the Taylor polynomial of f (x) = sin(x2) of degree 4n+2 at 0
is

x2 − x6

3!
+ x10

5!
− · · · + (−1)n

x4n+2

(2n+ 1)!
.

Hint: If P is the Taylor polynomial of degree 2n + 1 for sin at 0, then
sin x = P(x)+ R(x), where lim

x→0
R(x)/x2n+1 = 0. What does this imply

about lim
x→0

R(x2)/x4n+2 ?

(b) Find f (k)(0) for all k.
(c) In general, if f (x) = g(xn), ˇnd f (k)(0) in terms of the derivatives of g

at 0.

10. Prove that if x ≤ 0, then∣∣∣∣
∫ x

0

et

n!
(x − t)n dt

∣∣∣∣ ≤ |x|n+1

(n+ 1)!
.

11. Prove that if −1 < x ≤ 0, then∣∣∣∣
∫ x

0

tn

1 + t
dt

∣∣∣∣ ≤ |x|n+1

(1 + x)(n+ 1)
.

*12. (a) Show that if |g′(x)| ≤ M|x − a|n for |x − a| < δ, then |g(x)− g(a)| ≤
M|x − a|n+1/(n+ 1) for |x − a| < δ.

(b) Use part (a) to show that if lim
x→a

g′(x)/(x − a)n = 0, then

lim
x→a

g(x)

(x − a)n+1 = 0.

(c) Show that if g(x) = f (x)− Pn,a,f (x), then g′(x) = f ′(x)− Pn−1,a,f ′(x).
(d) Give an inductive proof of Theorem 1, without using l'Hôpital's Rule.

13. Deduce Theorem 1 as a corollary of Taylor's Theorem, with any form of
the remainder. (The catch is that it will be necessary to assume one more
derivative than in the hypotheses for Theorem 1.)

14. Deduce the Cauchy and Lagrange forms of the remainder from the integral
form, using Problem 13-23. There will be the same catch as in Problem 13.
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15. (a) Suppose that f is twice differentiable on (0,∞) and that |f (x)| ≤ M0
for all x > 0, while |f ′′(x)| ≤ M2 for all x > 0. Prove that for all x > 0
we have

|f ′(x)| ≤ 2
h
M0 + h

2
M2 for all h > 0.

(b) Show that for all x > 0 we have

|f ′(x)| ≤ 2
√
M0M2.

(c) If f is twice differentiable on (0,∞), f ′′ is bounded, and f (x) ap-
proaches 0 as x → ∞, then also f ′(x) approaches 0 as x → ∞.

(d) If lim
x→∞ f (x) exists and lim

x→∞ f
′′(x) exists, then lim

x→∞ f
′′(x) = lim

x→∞ f
′(x) =

0. (Compare Problem 11-31.)

16. (a) Prove that if f ′′(a) exists, then

f ′′(a) = lim
h→0

f (a + h)+ f (a − h)− 2f (a)
h2 .

The limit on the right is called the Schwarz second derivative of f at a. Hint:
Use the Taylor polynomial P2,a(x) with x = a + h and with x = a − h.

(b) Let f (x) = x2 for x ≥ 0, and −x2 for x ≤ 0. Show that

lim
h→0

f (0 + h)+ f (0 − h)− 2f (0)
h2

exists, even though f ′′(0) does not.
(c) Prove that if f has a local maximum at a, and the Schwarz second

derivative of f at a exists, then it is ≤ 0.
(d) Prove that if f ′′′(a) exists, then

f ′′′(a)
3

= lim
h→0

f (a + h)− f (a − h)− 2hf ′(x)
h3 .

17. Use the Taylor polynomial P1,a,f , together with the remainder, to prove a
weak form of Theorem 2 of the Appendix to Chapter 11: If f ′′ > 0, then
the graph of f always lies above the tangent line of f , except at the point
of contact.

*18. Problem 18-43 presented a rather complicated proof that f = 0 if f ′′−f = 0
and f (0) = f ′(0) = 0. Give another proof, using Taylor's Theorem. (This
problem is really a preliminary skirmish before doing battle with the general
case in Problem 19, and is meant to convince you that Taylor's Theorem is
a good tool for tackling such problems, even though tricks work out more
neatly for special cases.)
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**19. Consider a function f which satisˇes the differential equation

f (n) =
n−1∑
j=0

ajf
(j),

for certain numbers a0, . . . , an−1. Several special cases have already received
detailed treatment, either in the text or in other problems; in particular, we
have found all functions satisfying f ′ = f , or f ′′+f = 0, or f ′′−f = 0. The
trick in Problem 18-42 enables us to ˇnd many solutions for such equations,
but doesn't say whether these are the only solutions. This requires a uniqueness

result, which will be supplied by this problem. At the end you will ˇnd some
(necessarily sketchy) remarks about the general solution.

(a) Derive the following formula for f (n+1) (let us agree that \a−1" will be 0):

f (n+1) =
n−1∑
j=0

(aj−1 + an−1aj)f
(j).

(b) Deduce a formula for f (n+2).

The formula in part (b) is not going to be used; it was inserted only to con-
vince you that a general formula for f (n+k) is out of the question. On the
other hand, as part (c) shows, it is not very hard to obtain estimates on the
size of f (n+k)(x).

(c) Let N = max(1, |a0|, . . . , |an−1|). Then |aj−1 + an−1aj | ≤ 2N2; this
means that

f (n+1) =
n−1∑
j=0

bj
1f (j), where |bj 1| ≤ 2N2.

Show that

f (n+2) =
n−1∑
j=0

bj
2f (j), where |bj2| ≤ 4N3,

and, more generally,

f (n+k) =
n−1∑
j=0

bj
kf (j), where |bj k | ≤ 2Nk+1.

(d) Conclude from part (c) that, for any particular number x, there is a
number M such that

|f (n+k(x)| ≤ M · 2kNk+1 for all k.

(e) Now suppose that f (0) = f ′(0) = · · · = f (n−1)(0) = 0. Show that

|f (x)| ≤ M · 2k+1Nk+2|x|n+k+1

(n+ k + 1)!
≤ M · |2Nx|n+k+1

(n+ k + 1)!
,

and conclude that f = 0.
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(f ) Show that if f1 and f2 are both solutions of the differential equation

f (n) =
n−1∑
j=0

ajf
(j),

and f1
(j)(0) = f2

(j)(0) for 0 ≤ j ≤ n− 1, then f1 = f2.

In other words, the solutions of this differential equation are determined
by the \initial conditions" (the values f (j)(0) for 0 ≤ j ≤ n − 1). This
means that we can ˇnd all solutions once we can ˇnd enough solutions
to obtain any given set of initial conditions. If the equation

xn − an−1x
n−1 − · · · − a0 = 0

has n distinct roots α1, . . . , αn, then any function of the form

f (x) = c1e
α1x + · · · + cne

αnx

is a solution, and

f (0) = c1 + · · · + cn,

f ′(0) = α1c1 + · · · + αncn,

·
·
·

f (n−1)(0) = α1
n−1c1 + · · · + αn

n−1cn.

As a matter of fact, every solution is of this form, because we can obtain
any set of numbers on the left side by choosing the c's properly, but we
will not try to prove this last assertion. (It is a purely algebraic fact, which
you can easily check for n = 2 or 3.) These remarks are also true if some
of the roots are multiple roots, and even in the more general situation
considered in Chapter 27.

**20. (a) Suppose that f is a continuous function on [a, b] with f (a) = f (b)

and that for all x in (a, b) the Schwarz second derivative of f at x is 0
(Problem 16). Show that f is constant on [a, b]. Hint: Suppose that
f (x) > f (a) for some x in (a, b). Consider the function

g(x) = f (x)− ε(x − a)(b − x)

with g(a) = g(b) = f (a). For sufˇciently small ε > 0 we will have
g(x) > g(a), so g will have a maximum point y in (a, b). Now use
Problem 16(c) (the Schwarz second derivative of (x− a)(b− x) is simply
its ordinary second derivative).

(b) If f is a continuous function on [a, b] whose Schwarz second derivative
is 0 at all points of (a, b), then f is linear.
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*21. (a) Let f (x) = x4 sin 1/x2 for x �= 0, and f (0) = 0. Show that f = 0 up to
order 2 at 0, even though f ′′(0) does not exist.

This example is slightly more complex, but also slightly more impressive,
than the example in the text, because both f ′(a) and f ′′(a) exist for
a �= 0. Thus, for each number a there is another number m(a) such that

(∗) f (x) = f (a)+ f ′(a)(x − a)+ m(a)

2
(x − a)2 + Ra(x),

where lim
x→a

Ra(x)

(x − a)2
= 0;

namely, m(a) = f ′′(a) for a �= 0, and m(0) = 0. Notice that the function
m deˇned in this way is not continuous.

(b) Suppose that f is a differentiable function such that (∗) holds for all a,
with m(a) = 0. Use Problem 20 to show that f ′′(a) = m(a) = 0 for
all a.

(c) Now suppose that (∗) holds for all a, and that m is continuous. Prove
that for all a the second derivative f ′′(a) exists and equals m(a).



*CHAPTER 2 1 e IS TRANSCENDENTAL

The irrationality of e was so easy to prove that in this optional chapter we will
attempt a more difˇcult feat, and prove that the number e is not merely irrational,
but actually much worse. Just how a number might be even worse than irrational
is suggested by a slight rewording of deˇnitions. A number x is irrational if it is
not possible to write x = a/b for any integers a and b, with b �= 0. This is the
same as saying that x does not satisfy any equation

bx − a = 0

for integers a and b, except for a = 0, b = 0. Viewed in this light, the irrationality
of

√
2 does not seem to be such a terrible deˇciency; rather, it appears that

√
2 just

barely manages to be irrational|although
√

2 is not the solution of an equation

a1x + a0 = 0,

it is the solution of the equation

x2 − 2 = 0,

of one higher degree. Problem 2-18 shows how to produce many irrational num-
bers x which satisfy higher-degree equations

anx
n + an−1x

n−1 + · · · + a0 = 0,

where the ai are integers and a0 �= 0 (this condition rules out the possibility that
all ai = 0). A number which satisˇes an \algebraic" equation of this sort is called
an algebraic number, and practically every number we have ever encountered
is deˇned in terms of solutions of algebraic equations (π and e are the great ex-
ceptions in our limited mathematical experience). All roots, such as

√
2, 10√3, 4

√
7,

are clearly algebraic numbers, and even complicated combinations, like

3

√
3 +

√
5 + 4

√
1 +

√
2 + 5

√
6

are algebraic (although we will not try to prove this). Numbers which cannot be
obtained by the process of solving algebraic equations are called transcendental;
the main result of this chapter states that e is a number of this anomalous sort.

The proof that e is transcendental is well within our grasp, and was theoretically
possible even before Chapter 20. Nevertheless, with the inclusion of this proof, we
can justiˇably classify ourselves as something more than novices in the study of
higher mathematics; while many irrationality proofs depend only on elementary
properties of numbers, the proof that a number is transcendental usually involves

435
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some really high-powered mathematics. Even the dates connected with the tran-
scendence of e are impressively recent|the ˇrst proof that e is transcendental,
due to Hermite, dates from 1873. The proof that we will give is a simpliˇcation,
due to Hilbert.

Before tackling the proof itself, it is a good idea to map out the strategy, which
depends on an idea used even in the proof that e is irrational. Two features of the
expression

e = 1 + 1
1!

+ 1
2!

+ · · · + 1
n!

+ Rn

were important for the proof that e is irrational: On the one hand, the number

1 + 1
1!

+ · · · + 1
n!

can be written as a fraction p/q with q ≤ n! (so that n! (p/q) is an integer); on the
other hand, 0 < Rn < 3/(n+ 1)! (so n!Rn is not an integer). These two facts show
that e can be approximated particularly well by rational numbers. Of course, every
number x can be approximated arbitrarily closely by rational numbers|if ε > 0
there is a rational number r with |x − r| < ε; the catch, however, is that it may be
necessary to allow a very large denominator for r, as large as 1/ε perhaps. For e
we are assured that this is not the case: there is a fraction p/q within 3/(n + 1)!
of e, whose denominator q is at most n! . If you look carefully at the proof that e
is irrational, you will see that only this fact about e is ever used. The number e is
by no means unique in this respect: generally speaking, the better a number can be
approximated by rational numbers, the worse it is (some evidence for this assertion
is presented in Problem 3). The proof that e is transcendental depends on a natural
extension of this idea: not only e, but any ˇnite number of powers e, e2, . . . , en,
can be simultaneously approximated especially well by rational numbers. In our
proof we will begin by assuming that e is algebraic, so that

(∗) ane
n + · · · + a1e+ a0 = 0, a0 �= 0

for some integers a0, . . . , an. In order to reach a contradiction we will than ˇnd
certain integers M, M1, . . . , Mn and certain \small" numbers ε1, . . . , εn such that

e1 = M1 + ε1

M
,

e2 = M2 + ε2

M
,

·
·
·

en = Mn + εn

M
.

Just how small the ε's must be will appear when these expressions are substituted
into the assumed equation (∗). After multiplying through by M we obtain

[a0M + a1M1 + · · · + anMn] + [ε1a1 + · · · + εnan] = 0.
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The ˇrst term in brackets is an integer, and we will choose the M's so that it will
necessarily be a nonzero integer. We will also manage to ˇnd ε's so small that

|ε1a1 + · · · + εnan| < 1
2 ;

this will lead to the desired contradiction|the sum of a nonzero integer and a
number of absolute value less than 1

2 cannot be zero!
As a basic strategy this is all very reasonable and quite straightforward. The

remarkable part of the proof will be the way that the M's and ε's are deˇned. In
order to read the proof you will need to know about the gamma function! (This
function was introduced in Problem 19-39.)

THEOREM 1 e is transcendental.

PROOF Suppose there were integers a0, . . . , an, with a0 �= 0, such that

(∗) ane
n + an−1e

n−1 + · · · + a0 = 0.

Deˇne numbers M, M1, . . . , Mn and ε1, . . . , εn as follows:

M =
∫ ∞

0

xp−1[(x − 1) · · · · · (x − n)]pe−x

(p − 1)!
dx,

MK = ek
∫ ∞

k

xp−1[(x − 1) · · · · · (x − n)]pe−x

(p − 1)!
dx,

εk = ek
∫ k

0

xp−1[(x − 1) · · · · · (x − n)]pe−x

(p − 1)!
dx.

The unspeciˇed number p represents a prime number* which we will choose later.
Despite the forbidding aspect of these three expressions, with a little work they will
appear much more reasonable. We concentrate on M ˇrst. If the expression in
brackets,

[(x − 1) · · · · · (x − n)],

is actually multiplied out, we obtain a polynomial

xn + · · · ± n!

* The term \prime number" was deˇned in Problem 2-17. An important fact about prime numbers
will be used in the proof, although it is not proved in this book: If p is a prime number which does
not divide the integer a, and which does not divide the integer b, then p also does not divide ab.
The Suggested Reading mentions references for this theorem (which is crucial in proving that the
factorization of an integer into primes is unique). We will also use the result of Problem 2-17(d),
that there are inˇnitely many primes|the reader is asked to determine at precisely which points this
information is required.
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with integer coefˇcients. When raised to the pth power this becomes an even
more complicated polynomial

xnp + · · · ± (n!)p.

Thus M can be written in the form

M =
np∑
α=0

1
(p − 1)!

Cα

∫ ∞

0
xp−1+αe−x dx,

where the Cα are certain integers, and C0 = ±(n!)p. But∫ ∞

0
xke−x dx = k! .

Thus

M =
np∑
α=0

Cα
(p − 1 + α)!
(p − 1)!

.

Now, for α = 0 we obtain the term

±(n!)p
(p − 1)!
(p − 1)!

= ±(n!)p.

We will now consider only primes p > n; then this term is an integer which is not

divisible by p. On the other hand, if α > 0, then

Cα
(p − 1 + α)!
(p − 1)!

= Cα(p + α − 1)(p + α − 2) · · · · · p,

which is divisible by p. Therefore M itself is an integer which is not divisible by p.
Now consider Mk. We have

Mk = ek
∫ ∞

k

xp−1[(x − 1) · · · · · (x − n)]pe−x

(p − 1)!
dx

=
∫ ∞

k

xp−1[(x − 1) · · · · · (x − n)]pe−(x−k)

(p − 1)!
dx.

This can be transformed into an expression looking very much like M by the
substitution

u = x − k

du = dx.

The limits of integration are changed to 0 and ∞, and

Mk =
∫ ∞

0

(u + k)p−1[(u+ k − 1) · · · · · u · · · · · (u + k − n)]pe−u

(p − 1)!
du.

There is one very signiˇcant difference between this expression and that for M.
The term in brackets contains the factor u in the kth place. Thus the pth power
contains the factor up. This means that the entire expression

(u + k)p−1[(u+ k − 1) · · · · · (u+ k − n)]p
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is a polynomial with integer coefˇcients, every term of which has degree at least p.
Thus

Mk =
np∑
α=1

1
(p − 1)!

Dα

∫ ∞

0
up−1+αe−u du =

np∑
α=1

Dα

(p − 1 + α)!
(p − 1)!

,

where the Dα are certain integers. Notice that the summation begins with α = 1;
in this case every term in the sum is divisible by p. Thus each Mk is an integer
which is divisible by p.

Now it is clear that

ek = Mk + εk

M
, k = 1, . . . , n.

Substituting into (∗) and multiplying by M we obtain

[a0M + a1M + · · · + anMn] + [a1ε1 + · · · + anεn] = 0.

In addition to requiring that p > n let us also stipulate that p > |a0|. This means
that both M and a0 are not divisible by p, so a0M is also not divisible by p. Since
each Mk is divisible by p, it follows that

a0M + a1M1 + · · · + anMn

is not divisible by p. In particular it is a nonzero integer.
In order to obtain a contradiction to the assumed equation (∗), and thereby

prove that e is transcendental, it is only necessary to show that

|a1ε1 + · · · + anεn|
can be made as small as desired, by choosing p large enough; it is clearly sufˇcient
to show that each |εk | can be made as small as desired. This requires nothing more
than some simple estimates; for the remainder of the argument remember that n
is a certain ˇxed number (the degree of the assumed polynomial equation (∗)). To
begin with, if 1 ≤ k ≤ n, then

|ek | ≤ ek
∫ k

0

|xp−1[(x − 1) · · · · · (x − n)]p| e−x
(p − 1)!

dx

≤ en
∫ n

0

np−1|[(x − 1) · · · · · (x − n)]p| e−x
(p − 1)!

dx.

Now let A be the maximum of |(x − 1) · · · · · (x − n)| for x in [0, n]. Then

|εk| ≤ ennp−1Ap

(p − 1)!

∫ n

0
e−x dx

≤ ennp−1Ap

(p − 1)!

∫ ∞

0
e−x dx

= ennp−1Ap

(p − 1)!

≤ ennpAp

(p − 1)!
= en(nA)p

(p − 1)!
.
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But n and A are ˇxed; thus (nA)p/(p − 1)! can be made as small as desired by
making p sufˇciently large.

This proof, like the proof that π is irrational, deserves some philosophic af-
terthoughts. At ˇrst sight, the argument seems quite \advanced"|after all, we
use integrals, and integrals from 0 to ∞ at that. Actually, as many mathemati-
cians have observed, integrals can be eliminated from the argument completely;
the only integrals essential to the proof are of the form∫ ∞

0
xke−x dx

for integral k, and these integrals can be replaced by k! whenever they occur.
Thus M, for example, could have been deˇned initially as

M =
np∑
α=0

Cα
(p − 1 + α)!
(p − 1)!

,

where Cα are the coefˇcients of the polynomial

[(x − 1) · · · · · (x − n)]p.

If this idea is developed consistently, one obtains a \completely elementary" proof
that e is transcendental, depending only on the fact that

e = 1 + 1
1!

+ 1
2!

+ 1
3!

+ · · · .

Unfortunately, this \elementary" proof is harder to understand than the original
one|the whole structure of the proof must be hidden just to eliminate a few
integral signs! This situation is by no means peculiar to this speciˇc theorem|
\elementary" arguments are frequently more difˇcult than \advanced" ones. Our
proof that π is irrational is a case in point. You probably remember nothing
about this proof except that it involves quite a few complicated functions. There is
actually a more advanced, but much more conceptual proof, which shows that π
is transcendental, a fact which is of great historical, as well as intrinsic, interest. One
of the classical problems of Greek mathematics was to construct, with compass
and straightedge alone, a square whose area is that of a circle of radius 1. This
requires the construction of a line segment whose length is

√
π , which can be

accomplished if a line segment of length π is constructible. The Greeks were
totally unable to decide whether such a line segment could be constructed, and
even the full resources of modern mathematics were unable to settle this question
until 1882. In that year Lindemann proved that π is transcendental; since the
length of any segment that can be constructed with straightedge and compass can
be written in terms of +, ·, −, ÷, and

√
, and is therefore algebraic, this proves

that a line segment of length π cannot be constructed.
The proof that π is transcendental requires a sizable amount of mathematics

which is too advanced to be reached in this book. Nevertheless, the proof is not
much more difˇcult than the proof that e is transcendental. In fact, the proof
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for π is practically the same as the proof for e. This last statement should certainly
surprise you. The proof that e is transcendental seems to depend so thoroughly
on particular properties of e that it is almost inconceivable how any modiˇcations
could ever be used for π ; after all, what does e have to do with π? Just wait and
see!

PROBLEMS

1. (a) Prove that if α > 0 is algebraic, then
√
α is algebraic.

(b) Prove that if α is algebraic and r is rational, then α + r and αr are
algebraic.

Part (b) can actually be strengthened considerably: the sum, product,
and quotient of algebraic numbers is algebraic. This fact is too difˇcult
for us to prove here, but some special cases can be examined:

2. Prove that
√

2 +
√

3 and
√

2
(
1 +

√
3
)

are algebraic, by actually ˇnding
algebraic equations which they satisfy. (You will need equations of degree 4.)

*3. (a) Let α be an algebraic number which is not rational. Suppose that α
satisˇes the polynomial equation

f (x) = anx
n + an−1x

n−1 + · · · + a0 = 0,

and that no polynomial function of lower degree has this property. Show
that f (p/q) �= 0 for any rational number p/q. Hint: Use Prob-
lem 3-7(b).

(b) Now show that |f (p/q)| ≥ 1/qn for all rational numbers p/q with q > 0.
Hint: Write f (p/q) as a fraction over the common denominator qn.

(c) Let M = sup{ |f ′(x)| : |x − α| < 1 }. Use the Mean Value Theorem
to prove that if p/q is a rational number with |α − p/q| < 1, then
|α − p/q| > 1/Mqn. (It follows that for c = max(1, 1/M) we have
|α − p/q| > c/qn for all rational p/q.)

*4. Let
α = 0.110001000000000000000001000 . . . ,

where the 1's occur in the n! place, for each n. Use Problem 3 to prove that
α is transcendental. (For each n, show that α is not the root of an equation
of degree n.)

Although Problem 4 mentions only one speciˇc transcendental number, it should
be clear that one can easily construct inˇnitely many other numbers α which do
not satisfy |α − p/q| > c/qn for any c and n. Such numbers were ˇrst considered
by Liouville (1809{1882), and the inequality in Problem 3 is often called Liouville's
inequality. None of the transcendental numbers constructed in this way happens to
be particularly interesting, but for a long time Liouville's transcendental numbers
were the only ones known. This situation was changed quite radically by the work
of Cantor (1845{1918), who showed, without exhibiting a single transcendental
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number, that most numbers are transcendental. The next two problems provide an
introduction to the ideas that allow us to make sense of such statements. The basic
deˇnition with which we must work is the following: A set A is called countable
if its elements can be arranged in a sequence

a1, a2, a3, a4, . . . .

The obvious example (in fact, more or less the Platonic ideal of ) a countable set
is N, the set of natural numbers; clearly the set of even natural numbers is also
countable:

2,4, 6,8, . . . .

It is a little more surprising to learn that Z, the set of all integers (positive, negative
and 0) is also countable, but seeing is believing:

0,1,−1,2,−2,3,−3, . . . .

The next two problems, which outline the basic features of countable sets, are
really a series of examples to show that (1) a lot more sets are countable than one
might think and (2) nevertheless, some sets are not countable.

*5. (a) Show that if A and B are countable, then so is A∪B = { x : x is in A or
x is in B }. Hint: Use the same trick that worked for Z.

(b) Show that the set of positive rational numbers is countable. (This is really
quite startling, but the ˇgure below indicates the path to enlightenment.)

(c) Show that the set of all pairs (m, n) of integers is countable. (This is
practically the same as part (b).)

(d) If A1,A2,A3, . . . are each countable, prove that

A1 ∪A2 ∪ A3 ∪ . . .
is also countable. (Again use the same trick as in part (b).)

(e) Prove that the set of all triples (l, m, n) of integers is countable. (A triple
(l, m, n) can be described by a pair (l, m) and a number n.)

(f ) Prove that the set of all n-tuples (a1, a2, . . . , an) is countable. (If you have
done part (e), you can do this, using induction.)

(g) Prove that the set of all roots of polynomial functions of degree n with
integer coefˇcients is countable. (Part (f ) shows that the set of all these
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polynomial functions can be arranged in a sequence, and each has at
most n roots.)

(h) Now use parts (d) and (g) to prove that the set of all algebraic numbers
is countable.

*6. Since so many sets turn out to be countable, it is important to note that the
set of all real numbers between 0 and 1 is not countable. In other words,
there is no way of listing all these real numbers in a sequence

α1 = 0.a11a12a13a14 . . .

α2 = 0.a21a22a23a24 . . .

α3 = 0.a31a32a33a34 . . .

. . .

(decimal notation is being used on the right). To prove that this is so, suppose
such a list were possible and consider the decimal

0.ā11ā22ā33ā44 . . . ,

where ānn = 5 if ann �= 5 and ānn = 6 if ann = 5. Show that this number
cannot possibly be in the list, thus obtaining a contradiction.

Problems 5 and 6 can be summed up as follows. The set of algebraic numbers
is countable. If the set of transcendental numbers were also countable, then the
set of all real numbers would be countable, by Problem 5(a), and consequently the
set of real numbers between 0 and 1 would be countable. But this is false. Thus,
the set of algebraic numbers is countable and the set of transcendental numbers
is not (\there are more transcendental numbers than algebraic numbers"). The
remaining two problems illustrate further how important it can be to distinguish
between sets which are countable and sets which are not.

*7. Let f be a nondecreasing function on [0,1]. Recall (Problem 8-8) that
lim
x→a+

f (x) and lim
x→a−

f (x) both exist.

(a) For any ε > 0 prove that there are only ˇnitely many numbers a in
[0, 1] with lim

x→a+
f (x)− lim

x→a−
f (x) > ε. Hint: There are, in fact, at most

[f (1)− f (0)]/ε of them.
(b) Prove that the set of points at which f is discontinuous is countable.

Hint: If lim
x→a+

f (x) − lim
x→a−

f (x) > 0, then it is > 1/n for some natural

number n.

This problem shows that a nondecreasing function is automatically con-
tinuous at most points. For differentiability the situation is more difˇcult
to analyze and also more interesting. A nondecreasing function can fail
to be differentiable at a set of points which is not countable, but it is
still true that nondecreasing functions are differentiable at most points
(in a different sense of the word \most"). Reference [32] of the Sug-
gested Reading gives a beautiful proof, using the Rising Sun Lemma of
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Problem 8-20. For those who have done Problem 10 of the Appendix
to Chapter 11, it is possible to provide at least one application to dif-
ferentiability of the ideas already developed in this problem set: If f is
convex, then f is differentiable except at those points where its right-
hand derivative f+′ is discontinuous; but the function f+′ is increasing,
so a convex function is automatically differentiable except at a countable
set of points.

*8. (a) Problem 11-66 showed that if every point is a local maximum point for
a continuous function f , then f is a constant function. Suppose now that
the hypothesis of continuity is dropped. Prove that f takes on only a
countable set of values. Hint: For each x choose rational numbers ax
and bx such that ax < x < bx and x is a maximum point for f on
(ax, bx). Then every value f (x) is the maximum value of f on some
interval (ax, bx). How many such intervals are there?

(b) Deduce Problem 11-66(a) as a corollary.
(c) Prove the result of Problem 11-66(b) similarly.



CHAPTER 22 INFINITE SEQUENCES

The idea of an inˇnite sequence is so natural a concept that it is tempting to
dispense with a deˇnition altogether. One frequently writes simply \an inˇnite
sequence

a1, a2, a3, a4, a5, . . . ,"

the three dots indicating that the numbers ai continue to the right \forever." A
rigorous deˇnition of an inˇnite sequence is not hard to formulate, however; the
important point about an inˇnite sequence is that for each natural number, n,
there is a real number an. This sort of correspondence is precisely what functions
are meant to formalize.

DEFINITION An infinite sequence of real numbers is a function whose domain is N.

From the point of view of this deˇnition, a sequence should be designated by a
single letter like a, and particular values by

a(1), a(2), a(3), . . . ,

but the subscript notation
a1, a2, a3, . . .

is almost always used instead, and the sequence itself is usually denoted by a symbol
like {an}. Thus {n}, {(−1)n}, and {1/n} denote the sequences α, β, and γ deˇned
by

αn = n,

βn = (−1)n,

γn = 1
n
.

A sequence, like any function, can be graphed (Figure 1) but the graph is usually
rather unrevealing, since most of the function cannot be ˇt on the page.

F I G U R E 1

445
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F I G U R E 2

A more convenient representation of a sequence is obtained by simply labeling
the points a1, a2, a3, . . . on a line (Figure 2). This sort of picture shows where
the sequence \is going." The sequence {αn} \goes out to inˇnity," the sequence
{βn} \jumps back and forth between −1 and 1," and the sequence {γn} \converges
to 0." Of the three phrases in quotation marks, the last is the crucial concept
associated with sequences, and will be deˇned precisely (the deˇnition is illustrated
in Figure 3).

F I G U R E 3

DEFINITION A sequence {an} converges to l (in symbols lim
n→∞ an = l) if for every ε > 0 there

is a natural number N such that, for all natural numbers n,

if n > N , then |an − l| < ε.

In addition to the terminology introduced in this deˇnition, we sometimes say
that the sequence {an} approaches l or has the limit l. A sequence {an} is said
to converge if it converges to l for some l, and to diverge if it does not converge.

To show that the sequence {γn} converges to 0, it sufˇces to observe the following.
If ε > 0, there is a natural number N such that 1/N < ε. Then, if n > N we
have

γn = 1
n
<

1
N
< ε, so |γn − 0| < ε.

The limit
lim
n→∞

√
n+ 1 −

√
n = 0

will probably seem reasonable after a little re�ection (it just says that
√
n+ 1 is

practically the same as
√
n for large n), but a mathematical proof might not be so
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obvious. To estimate
√
n+ 1 −

√
n we can use an algebraic trick:

√
n+ 1 −

√
n = (

√
n+ 1 −

√
n )(
√
n+ 1 +

√
n )√

n+ 1 +
√
n

= n+ 1 − n√
n+ 1 +

√
n

= 1√
n+ 1 +

√
n
.

It is also possible to estimate
√
n+ 1 −

√
n by applying the Mean Value Theorem

to the function f (x) = √
x on the interval [n, n+ 1]. We obtain√

n + 1 −
√
n

1
= f ′(x)

= 1
2
√
x
, for some x in (n, n + 1)

<
1

2
√
n
.

Either of these estimates may be used to prove the above limit; the detailed proof
is left to you, as a simple but valuable exercise.

The limit

lim
n→∞

3n3 + 7n2 + 1
4n3 − 8n+ 63

= 3
4

should also seem reasonable, because the terms involving n3 are the most impor-
tant when n is large. If you remember the proof of Theorem 7-9 you will be able
to guess the trick that translates this idea into a proof|dividing top and bottom
by n3 yields

3n3 + 7n2 + 1
4n3 − 8n+ 63

=
3 + 7

n
+ 1
n3

4 − 8
n2 + 63

n3

.

Using this expression, the proof of the above limit is not difˇcult, especially if one
uses the following facts:

If lim
n→∞ an and lim

n→∞ bn both exist, then

lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn,

lim
n→∞(an · bn) = lim

n→∞ an · lim
n→∞ bn;

moreover, if lim
n→∞ bn �= 0, then bn �= 0 for all n greater than some N , and

lim
n→∞ an/bn = lim

n→∞ an/ lim
n→∞ bn.
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(If we wanted to be utterly precise, the third statement would have to be even
more complicated. As it stands, we are considering the limit of the sequence
{cn} = {an/bn}, where the numbers cn might not even be deˇned for certain n < N .
This doesn't really matter|we could deˇne cn any way we liked for such n|
because the limit of a sequence is not changed if we change the sequence at a
ˇnite number of points.)

Although these facts are very useful, we will not bother stating them as a
theorem|you should have no difˇculty proving these results for yourself, because
the deˇnition of lim

n→∞ an = l is so similar to previous deˇnitions of limits, especially
lim
x→∞ f (x) = l.

The similarity between the deˇnitions of lim
n→∞ an = l and lim

x→∞ f (x) = l is

actually closer than mere analogy; it is possible to deˇne the ˇrst in terms of the
second. If f is the function whose graph (Figure 4) consists of line segments joining

FI G U R E 4

the points in the graph of the sequence {an}, so that

f (x) = (an+1 − an)(x − n)+ an n ≤ x ≤ n + 1,

then
lim
n→∞ an = l if and only if lim

x→∞ f (x) = l.

Conversely, if f satisˇes lim
x→∞ = l, and we set an = f (n), then lim

x→∞ an = l.

This second observation is frequently very useful. For example, suppose that
0 < a < 1. Then

lim
n→∞ a

n = 0.

To prove this we note that

lim
x→∞ a

x = lim
x→∞ e

x log a = 0,

since log a < 0, so that x log a is a negative and large in absolute value for large x.
Notice that we actually have

lim
n→∞ a

n = 0 if |a| < 1;
for if a < 0 we can write

lim
n→∞ a

n = lim
n→∞(−1)n|a|n = 0.
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The behavior of the logarithm function also shows that if a > 1, then an be-
comes arbitrarily large as n becomes large. This assertion is often written

lim
n→∞ a

n = ∞, a > 1,

and it is sometimes even said that {an} approaches ∞. We also write equations
like

lim
n→∞ −an = −∞,

and say that {−an} approaches −∞. Notice, however, that if a < −1, then lim
n→∞ a

n

does not exist, even in this extended sense.
Despite this connection with a familiar concept, it is more important to visualize

convergence in terms of the picture of a sequence as points on a line (Figure 3).
There is another connection between limits of functions and limits of sequences
which is related to this picture. This connection is somewhat less obvious, but con-
siderably more interesting, than the one previously mentioned|instead of deˇning
limits of sequences in terms of limits of functions, it is possible to reverse the pro-
cedure.

THEOREM 1 Let f be a function deˇned in an open interval containing c, except perhaps at c
itself, with

lim
x→c

f (x) = l.

Suppose that {an} is a sequence such that

(1) each an is in the domain of f ,
(2) each an �= c,
(3) lim

n→∞ an = c.

Then the sequence {f (an)} satisˇes

lim
n→∞ f (an) = l.

Conversely, if this is true for every sequence {an} satisfying the above conditions,
then lim

x→c
f (x) = l.

PROOF Suppose ˇrst that lim
x→c

f (x) = l. Then for every ε > 0 there is a δ > 0 such that,

for all x,
if 0 < |x − c| < δ, then |f (x)− l| < ε.

If the sequence {an} satisˇes lim
n→∞ an = c, then (Figure 3) there is a natural num-

ber N such that,
if n > N, then |an − c| < δ.

By our choice of δ, this means that

|f (an)− l| < ε,
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showing that
lim
n→∞ f (an) = l.

Suppose, conversely, that lim
n→∞ f (an) = l for every sequence {an} with lim

n→∞ an =
c. If lim

x→c
f (x) = l were not true, there would be some ε > 0 such that for every

δ > 0 there is an x with

0 < |x − c| < δ but |f (x)− l| > ε.
In particular, for each n there would be a number xn such that

0 < |xn − c| < 1
n

but |f (xn)− l| > ε.

Now the sequence {xn} clearly converges to c but, since |f (xn)− l| > ε for all n,
the sequence {f (xn)} does not converge to l. This contradicts the hypothesis, so
lim
x→c

f (x) = l must be true.

Theorem 1 provides many examples of convergent sequences. For example, the
sequences {an} and {bn} deˇned by

an = sin
(

13 + 1
n2

)

bn = cos
(

sin
(

1 + (−1)n · 1
n

))
,

clearly converge to sin(13) and cos(sin(1)), respectively. It is important, however,
to have some criteria guaranteeing convergence of sequences which are not obvi-
ously of this sort. There is one important criterion which is very easy to prove, but
which is the basis for all other results. This criterion is stated in terms of concepts
deˇned for functions, which therefore apply also to sequences: a sequence {an} is
increasing if an+1 > an for all n, nondecreasing if an+1 ≥ an for all n, andFI G U R E 5
bounded above if there is a number M such that an ≤ M for all n; there are sim-
ilar deˇnitions for sequences which are decreasing, nonincreasing, and bounded
below.

THEOREM 2 If {an} is nondecreasing and bounded above, then {an} converges (a similar state-
ment is true if {an} is nonincreasing and bounded below).

PROOF The set A consisting of all numbers an is, by assumption, bounded above, so A has
a least upper bound α. We claim that lim

n→∞ an = α (Figure 5). In fact, if ε > 0,
there is some aN satisfying α − aN < ε, since α is the least upper bound of A.
Then if n > N we have

an ≥ aN, so α − an ≤ α − aN < ε.

This proves that lim
n→∞ an = α.
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The hypothesis that {an} is bounded above is clearly essential in Theorem 2: if
{an} is not bounded above, then (whether or not {an} is nondecreasing) {an} clearly
diverges. Upon ˇrst consideration, it might appear that there should be little
trouble deciding whether or not a given nondecreasing sequence {an} is bounded
above, and consequently whether or not {an} converges. In the next chapter such
sequences will arise very naturally and, as we shall see, deciding whether or not
they converge is hardly a trivial matter. For the present, you might try to decide
whether or not the following (obviously increasing) sequence is bounded above:

1, 1 + 1
2 , 1 + 1

2 + 1
3 , 1 + 1

2 + 1
3 + 1

4 , . . . .

Although Theorem 2 treats only a very special class of sequences, it is more
useful than might appear at ˇrst, because it is always possible to extract from an
arbitrary sequence {an} another sequence which is either nonincreasing or else
nondecreasing. To be precise, let us deˇne a subsequence of the sequence {an}
to be a sequence of the form

an1 , an2 , an3, . . . ,

where the nj are natural numbers with

n1 < n2 < n3 · · · .
Then every sequence contains a subsequence which is either nondecreasing or
nonincreasing. It is possible to become quite befuddled trying to prove this as-
sertion, although the proof is very short if you think of the right idea; it is worth
recording as a lemma.FI G U R E 6

LEMMA Any sequence {an} contains a subsequence which is either nondecreasing or non-
increasing.

PROOF Call a natural number n a \peak point" of the sequence {an} if am < an for all
m > n (Figure 6).

Case 1. The sequence has infinitely many peak points. In this case, if n1 < n2 <

n3 < · · · are the peak points, then an1 > an2 > an3 > · · · , so {ank } is the desired
(nonincreasing) subsequence.

Case 2. The sequence has only finitely many peak points. In this case, let n1 be greater
than all peak points. Since n1 is not a peak point, there is some n2 > n1 such that
an2 ≥ an1 . Since n2 is not a peak point (it is greater than n1, and hence greater
than all peak points) there is some n3 > n2 such that an3 ≥ an2 . Continuing in this
way we obtain the desired (nondecreasing) subsequence.

If we assume that our original sequence {an} is bounded, we can pick up an
extra corollary along the way.

COROLLARY (THE

BOLZANO-WEIERSTRASS THEOREM)

Every bounded sequence has a convergent subsequence.
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Without some additional assumptions this is as far as we can go: it is easy to
construct sequences having many, evenly inˇnitely many, subsequences converg-
ing to different numbers (see Problem 3). There is a reasonable assumption to
add, which yields a necessary and sufˇcient condition for convergence of any se-
quence. Although this condition will not be crucial for our work, it does simplify
many proofs. Moreover, this condition plays a fundamental role in more advanced
investigations, and for this reason alone it is worth stating now.

If a sequence converges, so that the individual terms are eventually all close to
the same number, then the difference of any two such individual terms should be
very small. To be precise, if lim

n→∞ an = l for some l, then for any ε > 0 there is
an N such that |an − l| < ε/2 for n > N ; now if both n > N and m > N , then

|an − am| ≤ |an − l| + |l − am| < ε

2
+ ε

2
= ε.

This ˇnal inequality, |an − am| < ε, which eliminates mention of the limit l, can
be used to formulate a condition (the Cauchy condition) which is clearly necessary
for convergence of a sequence.

DEFINITION A sequence {an} is a Cauchy sequence if for every ε > 0 there is a natural
number N such that, for all m and n,

if m,n > N, then |an − am| < ε.

(This condition is usually written lim
m,n→∞ |am − an| = 0.)

The beauty of the Cauchy condition is that it is also sufˇcient to ensure conver-
gence of a sequence. After all our preliminary work, there is very little left to do
in order to prove this.

THEOREM 3 A sequence {an} converges if and only if it is a Cauchy sequence.

PROOF We have already shown that {an} is a Cauchy sequence if it converges. The proof of
the converse assertion contains only one tricky feature: showing that every Cauchy
sequence {an} is bounded. If we take ε = 1 in the deˇnition of a Cauchy sequence
we ˇnd that there is some N such that

|am − an| < 1 for m,n > N.

In particular, this means that

|am − aN+1| < 1 for all m > N.

Thus {am : m > N} is bounded; since there are only ˇnitely many other ai 's the
whole sequence is bounded.
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The corollary to the Lemma thus implies that some subsequence of {an} con-
verges.

Only one point remains, whose proof will be left to you: if a subsequence of a
Cauchy sequence converges, then the Cauchy sequence itself converges.

PROBLEMS

1. Verify each of the following limits.

(i) lim
n→∞

n

n+ 1
= 1.

(ii) lim
n→∞

n+ 3
n3 + 4

= 0.

(iii) lim
n→∞

8
√
n2 + 1− 4

√
n+ 1 = 0. Hint: You should at least be able to prove

that lim
n→∞

8
√
n2 + 1 − 8

√
n2 = 0.

(iv) lim
n→∞

n!
nn

= 0. Hint: n! = n(n − 1) · · · · · k! for k < n, in particular, for

k < n/2.

(v) lim
n→∞

n
√
a = 1, a > 0.

(vi) lim
n→∞

n
√
n = 1.

(vii) lim
n→∞

n
√
n2 + n = 1.

(viii) lim
n→∞

n
√
an + bn = max(a, b), a, b ≥ 0.

(ix) lim
n→∞

α(n)

n
= 0, where α(n) is the number of primes which divide n.

Hint: The fact that each prime is ≥ 2 gives a very simple estimate of
how small α(n) must be.

*(x) lim
n→∞

n∑
k=1

kp

np+1 = 1
p + 1

.

2. Find the following limits.

(i) lim
n→∞

n

n+ 1
− n+ 1

n
.

(ii) lim
n→∞ n− √

n+ a
√
n+ b.

(iii) lim
n→∞

2n + (−1)n

2n+1 + (−1)n+1 .

(iv) lim
n→∞

(−1)n
√
n sin(nn)

n + 1
.

(v) lim
n→∞

an − bn

an + bn
.

(vi) lim
n→∞ nc

n, |c| < 1.
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(vii) lim
n→∞

2n2

n!
.

3. (a) What can be said about the sequence {an} if it converges and each an is
an integer?

(b) Find all convergent subsequences of the sequence 1, −1, 1, −1, 1, −1,
. . . . (There are inˇnitely many, although there are only two limits which
such subsequences can have.)

(c) Find all convergent subsequences of the sequence 1, 2, 1, 2, 3, 1, 2,
3, 4, 1, 2, 3, 4, 5, . . . . (There are inˇnitely many limits which such
subsequences can have.)

(d) Consider the sequence

1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 , . . . .

For which numbers α is there a subsequence converging to α ?

4. (a) Prove that if a subsequence of a Cauchy sequence converges, then so
does the original Cauchy sequence.

(b) Prove that any subsequence of a convergent sequence converges.

5. (a) Prove that if 0 < a < 2, then a <
√

2a < 2.
(b) Prove that the sequence

√
2,
√

2
√

2,

√
2
√

2
√

2, . . .

converges.
(c) Find the limit. Hint: Notice that if lim

n→∞ an = l, then lim
n→∞

√
2an =

√
2l,

by Theorem 1.

6. Let 0 < a1 < b1 and deˇne

an+1 =
√
anbn, bn+1 = an + bn

2
.

(a) Prove that the sequences {an} and {bn} each converge.
(b) Prove that they have the same limit.

7. In Problem 2-16 we saw that any rational approximation m/n to
√

2 can be
replaced by a better approximation (m+ 2n)/(m+ n). In particular, starting
with m = n = 1, we obtain

1,
3
2
,

7
5
, . . . .

(a) Prove that this sequence is given recursively by

a1 = 1, an+1 = 1 + 1
1 + an

.
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(b) Prove that lim
n→∞ an =

√
2. This gives the so-called continued fraction

expansion
√

2 = 1 + 1

2 + 1
2 + · · ·

.

Hint: Consider separately the subsequences {a2n} and {a2n+1}.
(c) Prove that for any natural numbers a and b,√

a2 + b = a + b

2a + b

2a + · · ·

.

8. Identify the function f (x) = lim
n→∞( lim

k→∞
(cos n!πx)2k). (It has been mentioned

many times in this book.)

9. Many impressive looking limits can be evaluated easily (especially by the
person who makes them up), because they are really lower or upper sums in
disguise. With this remark as hint, evaluate each of the following. (Warn-
ing: the list contains one red herring which can be evaluated by elementary
considerations.)

(i) lim
n→∞

n
√
e + n

√
e2 + · · · + n

√
en

n
.

(ii) lim
n→∞

n
√
e + n

√
e2 + · · · + n

√
e2n

n
.

(iii) lim
n→∞

(
1

n+ 1
+ · · · + 1

2n

)
.

(iv) lim
n→∞

(
1
n2 + 1

(n + 1)2
+ · · · + 1

(2n)2

)
.

(v) lim
n→∞

(
n

(n+ 1)2
+ n

(n+ 2)2
+ · · · + n

(n+ n)2

)
.

(vi) lim
n→∞

(
n

n2 + 1
+ n

n2 + 22 + · · · + n

n2 + n2

)
.

10. Although limits like lim
n→∞

n
√
n and lim

n→∞ a
n can be evaluated using facts about

the behavior of the logarithm and exponential functions, this approach is
vaguely dissatisfying, because integral roots and powers can be deˇned with-
out using the exponential function. Some of the standard \elementary" ar-
guments for such limits are outlined here; the basic tools are inequalities
derived from the binomial theorem, notably

(1 + h)n ≥ 1 + nh, for h > 0;
and, for part (e),

(1 + h)n ≥ 1 + nh+ n(n− 1)
2

h2 ≥ n(n− 1)
2

h2, for h > 0.
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(a) Prove that lim
n→∞ a

n = ∞ if a > 1, by setting a = 1 + h, where h > 0.

(b) Prove that lim
n→∞ a

n = 0 if 0 < a < 1.

(c) Prove that lim
n→∞

n
√
a = 1 if a > 1, by setting n

√
a = 1+h and estimating h.

(d) Prove that lim
n→∞

n
√
a = 1 if 0 < a < 1.

(e) Prove that lim
n→∞

n
√
n = 1.

11. (a) Prove that a convergent sequence is always bounded.
(b) Suppose that lim

n→∞ an = 0, and that each an > 0. Prove that the set of all
numbers an actually has a maximum member.

12. (a) Prove that

1
n+ 1

< log(n+ 1)− log n <
1
n
.

(b) If

an = 1 + 1
2

+ 1
3

+ · · · + 1
n

− log n,

show that the sequence {an} is decreasing, and that each an ≥ 0. It
follows that there is a number

γ = lim
n→∞

(
1 + · · · + 1

n
− log n

)
.

This number, known as Euler's number, has proved to be quite refractory;
it is not even known whether γ is rational.

13. (a) Suppose that f is increasing on [1,∞). Show that

f (1)+ · · · + f (n− 1) <
∫ n

1
f (x) dx < f (2)+ · · · + f (n).

(b) Now choose f = log and show that

nn

en−1 < n! <
(n+ 1)n+1

en
;

it follows that

lim
n→∞

n
√
n!
n

= 1
e
.

This result shows that n
√
n! is approximately n/e, in the sense that the

ratio of these two quantities is close to 1 for large n. But we cannot
conclude that n! is close to (n/e)n in this sense; in fact, this is false. An
estimate for n! is very desirable, even for concrete computations, because
n! cannot be calculated easily even with logarithm tables. The standard
(and difˇcult) theorem which provides the right information will be found
in Problem 27-19.
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14. (a) Show that the tangent line to the graph of f at (x0, f (x0)) intersects the
horizontal axis at (x1,0), where

x1 = x0 − f (x0)

f ′(x0)
.

This intersection point may be regarded as a rough approximation to
the point where the graph of f intersects the horizontal axis. If we now
start at x1 and repeat the process to get x2, then use x2 to get x3, etc.,
we have a sequence {xn} deˇned inductively by

xn+1 = xn − f (xn)

f ′(xn)
.

Figure 7 suggests that {xn} will converge to a number c with f (c) = 0;
this is called Newton’s method for ˇnding a zero of f . In the remainder
of this problem we will establish some conditions under which Newton's
method works (Figures 8 and 9 show two cases where it doesn't). A fewFI G U R E 7
facts about convexity may be found useful; see Chapter 11, Appendix.

(b) Suppose that f,′ f ′′ > 0, and that we choose x0 with f (x0) > 0. Show
that x0 ≥ x1 ≥ x2 ≥ · · · ≥ c.

(c) Let δk = xk − c. Then

δk = f (xk)

f ′(ξk)

for some ξk in (c, xk). Show that

δk+1 = f (xk)

f ′(ξk)
− f (xk)

f ′(xk)
.

Conclude that

FI G U R E 8

δk+1 = f (xk)

f ′(ξk)f ′(xk)
· f ′′(η)(xk − ξk)

for some ηk in (c, xk), and then that

(∗) δk+1 ≤ f ′′(ηk)
f ′(xk)

δk
2.

(d) Let m = inf f ′ on [c, x1] and let M = sup |f ′′| on [c, x1]. Show that
Newton's method works if x0 − c < m/M.

(e) What is the formula for xn+1 when f (x) = x2 −A?
If we take A = 2 and x0 = 1.4 we get

x0 = 1.4
x1 = 1.4142857
x2 = 1.4142136
x3 = 1.4142136,

which is already correct to 7 decimals! Notice that the number of correct
decimals at least doubled each time. This is essentially guaranteed by the
inequality (∗) when M/m < 1.FI G U R E 9
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15. Use Newton's method to estimate the zeros of the following functions.

(i) f (x) = tan x − cos2 x near 0.
(ii) f (x) = cos x − x2 near 0.
(iii) f (x) = x3 + x − 1 on [0, 1].
(iv) f (x) = x3 − 3x2 + 1 on [0, 1].

*16. Prove that if lim
n→∞ an = l, then

lim
n→∞

(a1 + · · · + an)

n
= l.

Hint: This problem is very similar to (in fact it is a special case of ) Prob-
lem 13-40.

17. Suppose that f is continuous and lim
x→∞ f (x + 1) − f (x) = 0. Prove that

lim
x→∞ f (x)/x = 0. Hint: See the previous problem.

*18. Suppose that an > 0 for each n and that lim
n→∞ an+1/an = l. Prove that

lim
n→∞

n
√
an = l. Hint: This requires the same sort of argument that works in

Problem 16, together with the fact that lim
n→∞

n
√
a = 1, for a > 0.

19. (a) Suppose that {an} is a convergent sequence of points all in [0, 1]. Prove
that lim

n→∞ an is also in [0, 1].

(b) Find a convergent sequence {an} of points all in (0, 1) such that lim
n→∞ an

is not in (0, 1).

20. Suppose that f is continuous and that the sequence

x, f (x), f (f (x)), f (f (f (x))), . . .

converges to l. Prove that l is a \ˇxed point" for f , i.e., f (l) = l. Hint: Two
special cases have occurred already.

21. (a) Suppose that f is continuous on [0,1] and that 0 ≤ f (x) ≤ 1 for all x in
[0, 1]. Problem 7-11 shows that f has a ˇxed point (in the terminology
of Problem 20). If f is increasing, a much stronger statement can be made:
For any x in [0, 1], the sequence

x, f (x), f (f (x)), . . .

has a limit (which is necessarily a ˇxed point, by Problem 20). Prove this
assertion, by examining the behavior of the sequence for f (x) > x and
f (x) < x, or by looking at Figure 10. A diagram of this sort is used
in Littlewood's Mathematician’s Miscellany to preach the value of drawing
pictures: \For the professional the only proof needed is [this Figure]."FI G U R E 1 0

*(b) Suppose that f and g are two continuous functions on [0,1], with 0 ≤
f (x) ≤ 1 and 0 ≤ g(x) ≤ 1 for all x in [0,1], which satisfy f � g =
g � f . Suppose, moreover, that f is increasing. Show that f and g have
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a common ˇxed point; in other words, there is a number l such that
f (l) = l = g(l). Hint: Begin by choosing a ˇxed point for g.

For a long time mathematicians amused themselves by asking whether the
conclusion of part (b) holds without the assumption that f is increasing, but
two independent announcements in the Notices of the American Mathemati-
cal Society, Volume 14, Number 2 give counterexamples, so it was probably
a pretty silly problem all along.

The trick in Problem 20 is really much more valuable than Problem 20 might
suggest, and some of the most important \ˇxed point theorems" depend upon
looking at sequences of the form x, f (x), f (f (x)), . . . . A special, but representa-
tive, case of one such theorem is treated in Problem 23 (for which the next problem
is preparation).

22. (a) Use Problem 2-5 to show that if c �= 1, then

cm + cm+1 + · · · + cn = cm − cn+1

1 − c
.

(b) Suppose that |c| < 1. Prove that

lim
m,n→∞ c

m + · · · + cn = 0.

(c) Suppose that {xn} is a sequence with |xn − xn+1| ≤ cn, where c < 1.
Prove that {xn} is a Cauchy sequence.

*23. Suppose that f is a function on R such that

(∗) |f (x)− f (y)| ≤ c|x − y|, for all x and y,

where c < 1. (Such a function is called a contraction.)

(a) Prove that f is continuous.
(b) Prove that f has at most one ˇxed point.
(c) By considering the sequence

x, f (x), f (f (x)), . . . ,

for any x, prove that f does have a ˇxed point. (This result, in a more
general setting, is known as the \contraction lemma.")

24. (a) Prove that if f is differentiable and |f ′| < 1, then f has at most one
ˇxed point.

(b) Prove that if |f ′(x)| ≤ c < 1 for all x, then f has a ˇxed point.
(c) Give an example to show that the hypothesis |f ′(x)| ≤ 1 is not sufˇcient

to insure that f has a ˇxed point.

25. This problem is a sort of converse to the previous problem. Let bn be a
sequence deˇned by b1 = a, bn+1 = f (bn). Prove that if b = lim

n→∞ bn exists

and f ′ is continuous at b, then |f ′(b)| ≤ 1. Hint: If |f ′(b)| > 1, then
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|f ′(x)| > 1 for all x in an interval around b, and bn will be in this interval
for large enough n. Now consider f on the interval [b, bn].

26. This problem investigates for which a > 0 the symbol

aa
a
..
.

makes sense. In other words, if we deˇne b1 = a, bn+1 = abn , when does
b = lim

n→∞ bn exist?

(a) Prove that if b exists, then ab = b. (The situation is similar to that in
Problem 5.)

(b) According to part (a), if b exists, then a can be written in the form
y1/y for some y. Describe the graph of g(y) = y1/y and conclude that
0 < a ≤ e1/e.

(c) Suppose that 1 ≤ a ≤ e1/e. Show that {bn} is increasing and also bn ≤ e.
This proves that b exists (and also that b ≤ e).

The analysis for a < 1 is more difˇcult.

(d) Using Problem 25, show that if b exists, then e−1 ≤ b ≤ e. Then show
that e−e ≤ a ≤ e1/e.

From now on we will suppose that e−e ≤ a < 1.

(e) Show that the function

f (x) = ax

log x

is decreasing on the interval (0, 1).
(f ) Let b be the unique number such that ab = b. Show that a < b < 1.

Using part (e), show that if 0 < x < b, then x < aa
x

< b. Conclude that
l = lim

n→∞ a2n+1 exists and that aa
l = l.

(g) Using part (e) again, show that l = b.
(h) Finally, show that lim

n→∞ a2n+2 = b, so that lim
n→∞ bn = b.

27. Let {xn} be a sequence which is bounded, and let

yn = sup{xn, xn+1, xn+2, . . . }.

(a) Prove that the sequence {yn} converges. The limit lim
n→∞ yn is denoted by

lim
n→∞ xn or lim sup

n→∞
xn, and called the limit superior, or upper limit,

of the sequence {xn}.
(b) Find lim

n→∞ xn for each of the following:

(i) xn = 1
n

.

(ii) xn = (−1)n
1
n

.
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(iii) xn = (−1)n
[
1 + 1

n

]
.

(iv) xn = n
√
n.

(c) Deˇne lim
n→∞

xn (or lim inf
n→∞ xn) and prove that

lim
n→∞

xn ≤ lim
n→∞ xn.

(d) Prove that lim
n→∞ xn exists if and only if lim

n→∞ xn = lim
n→∞

xn and that in this

case lim
n→∞ xn = lim

n→∞ xn = lim
n→∞

xn.

(e) Recall the deˇnition, in Problem 8-18, of limA for a bounded set A.
Prove that if the numbers xn are distinct, then lim

n→∞ xn = limA, where

A = {xn : n in N}.
28. In the Appendix to Chapter 8 we deˇned uniform continuity of a function

on an interval. If f (x) is deˇned only for rational x, this concept still makes
sense: we say that f is uniformly continuous on an interval if for every ε > 0
there is some δ > 0 such that, if x and y are rational numbers in the interval
and |x − y| < δ, then |f (x)− f (y)| < ε.

(a) Let x be any (rational or irrational) point in the interval, and let {xn} be
a sequence of rational points in the interval such that lim

n→∞ xn = x. Show
that the sequence {f (xn)} converges.

(b) Prove that the limit of the sequence {f (xn)} doesn't depend on the choice
of the sequence {xn}.

We will denote this limit by f̄ (x), so that f̄ is an extension of f to the
whole interval.

(c) Prove that the extended function f̄ is uniformly continuous on the inter-
val.

29. Let a > 0, and for rational x let f (x) = ax , as deˇned in the usual elementary
algebraic way. This problem shows directly that f can be extended to a
continuous function f̄ on the whole line. Problem 28 provides the necessary
machinery.

(a) Show that ax < ay for rational x < y.
(b) Using Problem 10, show that for any ε > 0 we have |ax − 1| < ε for

rational numbers x close enough to 0.
(c) Using the equation ax − ay = ay(ax+y − 1), prove that on any closed

interval f is uniformly continuous, in the sense of Problem 28.
(d) Show that the extended function f̄ of Problem 28 is increasing and sat-

isˇes f̄ (x + y) = f̄ (x)f̄ (y).

*30. The Bolzano-Weierstrass Theorem is usually stated, and also proved, quite
differently than in the text|the classical statement uses the notion of limit
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points. A point x is a limit point of the set A if for every ε > 0 there is a
point a in A with |x − a| < ε but x �= a.

(a) Find all limit points of the following sets.

(i)
{

1
n

: n in N
}

.

(ii)
{

1
n

+ 1
m

: n and m in N
}

.

(iii)
{
(−1)n

[
1 + 1

n

]
: n in N

}
.

(iv) Z.
(v) Q .

(b) Prove that x is a limit point of A if and only if for every ε > 0 there are
inˇnitely many points a of A satisfying |x − a| < ε.

(c) Prove that limA is the largest limit point of A, and limA the smallest.

The usual form of the Bolzano-Weierstrass Theorem states that if A is
an inˇnite set of numbers contained in a closed interval [a, b], then some
point of [a, b] is a limit point of A. Prove this in two ways:

(d) Using the form already proved in the text. Hint: Since A is inˇnite, there
are distinct numbers x1, x2, x3, . . . in A.

(e) Using the Nested Intervals Theorem. Hint: If [a, b] is divided into two
intervals, at least one must contain inˇnitely many points of A.

31. (a) Use the Bolzano-Weierstrass Theorem to prove that if f is continuous
on [a, b], then f is bounded above on [a, b]. Hint: If f is not bounded
above, then there are points xn in [a, b] with f (xn) > n.

(b) Also use the Bolzano-Weierstrass Theorem to prove that if f is contin-
uous on [a, b], then f is uniformly continuous on [a, b] (see Chapter 8,
Appendix).

**32. (a) Let {an} be the sequence

1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

2
6 , . . . .

Suppose that 0 ≤ a < b ≤ 1. Let N(n; a, b) be the number of integers
j ≤ n such that aj is in [a, b]. (ThusN(2; 1

3 ,
2
3 ) = 2, and N(4; 1

3 ,
2
3) = 3.)

Prove that

lim
n→∞

N(n; a, b)
n

= b − a.

(b) A sequence {an} of numbers in [0, 1] is called uniformly distributed
in [0,1] if

lim
n→∞

N(n; a, b)
n

= b − a
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for all a and b with 0 ≤ a < b ≤ 1. Prove that if s is a step function
deˇned on [0, 1], and {an} is uniformly distributed in [0,1], then∫ 1

0
s = lim

n→∞
s(a1)+ · · · + s(an)

n
.

(c) Prove that if {an} is uniformly distributed in [0,1] and f is integrable
on [0, 1], then∫ 1

0
f = lim

n→∞
f (a1)+ · · · + f (an)

n
.

**33. (a) Let f be a function deˇned on [0, 1] such that lim
y→a

f (y) exists for all a

in [0,1]. For any ε > 0 prove that there are only ˇnitely many points a
in [0, 1] with | lim

y→a
f (y)− f (a)| > ε. Hint: Show that the set of such

points cannot have a limit point x, by showing that lim
y→x

f (y) could not

exist.
(b) Prove that, in the terminology of Problem 21-5, the set of points where

f is discontinuous is countable. This ˇnally answers the question of
Problem 6-16: If f has only removable discontinuities, then f is contin-
uous except at a countable set of points, and in particular, f cannot be
discontinuous everywhere.



CHAPTER 23 INFINITE SERIES

Inˇnite sequences were introduced in the previous chapter with the speciˇc inten-
tion of considering their \sums"

a1 + a2 + a3 + · · ·

in this chapter. This is not an entirely straightforward matter, for the sum of
inˇnitely many numbers is as yet completely undeˇned. What can be deˇned are
the \partial sums"

sn = a1 + · · · + an,

and the inˇnite sum must presumably be deˇned in terms of these partial sums.
Fortunately, the mechanism for formulating this deˇnition has already been devel-
oped in the previous chapter. If there is to be any hope of computing the inˇnite
sum a1 + a2 + a3 + · · · , the partial sums sn should represent closer and closer ap-
proximations as n is chosen larger and larger. This last assertion amounts to little
more than a sloppy deˇnition of limits: the \inˇnite sum" a1 +a2 +a3 +· · · ought
to be lim

n→∞ sn. This approach will necessarily leave the \sum" of many sequences
undeˇned, since the sequence {sn} may easily fail to have a limit. For example, the
sequence

1, −1, 1, −1, . . .

with an = (−1)n+1 yields the new sequence

s1 = a1 = 1,
s2 = a1 + a2 = 0,
s3 = a1 + a2 + a3 = 1,
s4 = a1 + a2 + a3 + a4 = 0,
. . . ,

for which lim
n→∞ sn does not exist. Although there happen to be some clever ex-

tensions of the deˇnition suggested here (see Problems 9 and 24-20) it seems un-
avoidable that some sequences will have no sum. For this reason, an acceptable
deˇnition of the sum of a sequence should contain, as an essential component,
terminology which distinguishes sequences for which sums can be deˇned from
less fortunate sequences.

464
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DEFINITION The sequence {an} is summable if the sequence {sn} converges, where

sn = a1 + · · · + an.

In this case, lim
n→∞ sn is denoted by

∞∑
n=1

an (or, less formally, a1 + a2 + a3 + · · · )

and is called the sum of the sequence {an}.

The terminology introduced in this deˇnition is usually replaced by less precise
expressions; indeed the title of this chapter is derived from such everyday language.

An inˇnite sum
∞∑
n=1

an is usually called an infinite series, the word \series" emphasiz-

ing the connection with the inˇnite sequence {an}. The statement that {an} is, or

is not, summable is conventionally replaced by the statement that the series
∞∑
n=1

an

does, or does not, converge. This terminology is somewhat peculiar, because at

best the symbol
∞∑
n=1

an denotes a number (so it can't \converge"), and it doesn't de-

note anything at all unless {an} is summable. Nevertheless, this informal language
is convenient, standard, and unlikely to yield to attacks on logical grounds.

Certain elementary arithmetical operations on inˇnite series are direct conse-
quences of the deˇnition. It is a simple exercise to show that if {an} and {bn} are
summable, then

∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn,

∞∑
n=1

c · an = c ·
∞∑
n=1

an.

As yet these equations are not very interesting, since we have no examples of
summable sequences (except for the trivial examples in which the terms are even-
tually all 0). Before we actually exhibit a summable sequence, some general con-
ditions for summability will be recorded.

There is one necessary and sufˇcient condition for summability which can be
stated immediately. The sequence {an} is summable if and only if the sequence {sn}
converges, which happens, according to Theorem 22-3, if and only if lim

m,n→∞ sm −
sn = 0; this condition can be rephrased in terms of the original sequence as follows.
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THE CAUCHY CRITERION The sequence {an} is summable if and only if

lim
m,n→∞ an+1 + · · · + am = 0.

Although the Cauchy criterion is of theoretical importance, it is not very useful
for deciding the summability of any particular sequence. However, one simple
consequence of the Cauchy criterion provides a necessary condition for summability
which is too important not to be mentioned explicitly.

THE VANISHING CONDITION If {an} is summable, then

lim
n→∞ an = 0.

This condition follows from the Cauchy criterion by taking m = n+ 1; it can also
be proved directly as follows. If lim

n→∞ sn = l, then

lim
n→∞ an = lim

n→∞(sn − sn−1) = lim
n→∞ sn − lim

n→∞ sn−1

= l − l = 0.

Unfortunately, this condition is far from sufˇcient. For example, lim
n→∞ 1/n = 0,

but the sequence {1/n} is not summable; in fact, the following grouping of the
numbers 1/n shows that the sequence {sn} is not bounded:

1 + 1
2 + 1

3 + 1
4︸ ︷︷ ︸

≥ 1
2

(2 terms,
each ≥ 1

4 )

+ 1
5 + 1

6 + 1
7 + 1

8︸ ︷︷ ︸
≥ 1

2
(4 terms,
each ≥ 1

8 )

+ 1
9 + · · · + 1

16︸ ︷︷ ︸
≥ 1

2
(8 terms,

each ≥ 1
16 )

+ · · · .

The method of proof used in this example, a clever trick which one might never
see, reveals the need for some more standard methods for attacking these problems.
These methods shall be developed soon (one of them will give an alternate proof

that
∞∑
n=1

1/n does not converge) but it will be necessary to ˇrst procure a few

examples of convergent series.
The most important of all inˇnite series are the \geometric series"

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · .

Only the cases |r| < 1 are interesting, since the individual terms do not approach 0
if |r| ≥ 1. These series can be managed because the partial sums

sn = 1 + r + · · · + rn

can be evaluated in simple terms. The two equations

sn = 1 + r + r2 + · · · + rn

rsn = r + r2 + · · · + rn + rn+1
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lead to
sn(1 − r) = 1 − rn+1

or

sn = 1 − rn+1

1 − r

(division by 1 − r is valid since we are not considering the case r = 1). Now
lim
n→∞ r

n = 0, since |r| < 1. It follows that

∞∑
n=0

rn = lim
n→∞

1 − rn+1

1 − r
= 1

1 − r
, |r| < 1.

In particular,
∞∑
n=1

(
1
2

)n
=

∞∑
n=0

(
1
2

)n
− 1 = 1

1 − 1
2

− 1 = 1,

that is,
1
2 + 1

4 + 1
8 + 1

16 + · · · = 1,

an inˇnite sum which can always be remembered from the picture in Figure 1.

FI G U R E 1

Special as they are, geometric series are standard examples from which important
tests for summability will be derived.

For a while we shall consider only sequences {an} with each an ≥ 0; such
sequences are called nonnegative. If {an} is a nonnegative sequence, then the se-
quence {sn} is clearly nondecreasing. This remark, combined with Theorem 22-2,
provides a simple-minded test for summability:

THE BOUNDEDNESS CRITERION A nonnegative sequence {an} is summable if and only if the set of partial
sums sn is bounded.

By itself, this criterion is not very helpful|deciding whether or not the set of
all sn is bounded is just what we are unable to do. On the other hand, if some
convergent series are already available for comparison, this criterion can be used
to obtain a result whose simplicity belies its importance (it is the basis for almost
all other tests).

THEOREM 1

(THE COMPARISON TEST)

Suppose that
0 ≤ an ≤ bn for all n.
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Then if
∞∑
n=1

bn converges, so does
∞∑
n=1

an.

PROOF If

sn = a1 + · · · + an,

tn = b1 + · · · + bn,

then
0 ≤ sn ≤ tn for all n.

Now {tn} is bounded, since
∞∑
n=1

bn converges. Therefore {sn} is bounded; conse-

quently, by the boundedness criterion
∞∑
n=1

an converges.

Quite frequently the comparison test can be used to analyze very complicated
looking series in which most of the complication is irrelevant. For example,

∞∑
n=1

2 + sin3(n+ 1)
2n + n2

converges because

0 ≤ 2 + sin3
(n + 1)

2n + n2 <
3
2n
,

and ∞∑
n=1

3
2n

= 3
∞∑
n=1

1
2n

is a convergent (geometric) series.
Similarly, we would expect the series

∞∑
n=1

1

2n − 1 + sin2 n3

to converge, since the nth term of the series is practically 1/2n for large n, and we
would expect the series

∞∑
n=1

n+ 1
n2 + 1

to diverge, since (n + 1)/(n2 + 1) is practically 1/n for large n. These facts can
be derived immediately from the following theorem, another kind of \comparison
test."

THEOREM 2 If an, bn > 0 and lim
n→∞ an/bn = c �= 0, then

∞∑
n=1

an converges if and only if
∞∑
n=1

bn

converges.
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PROOF Suppose
∞∑
n=1

bn converges. Since lim
n→∞ an/bn = c, there is some N such that

an ≤ 2cbn for n ≥ N.

But the sequence 2c
∞∑
n=N

bn certainly converges. Then Theorem 1 shows that

∞∑
n=N

an converges, and this implies convergence of the whole series
∞∑
n=1

an, which

has only ˇnitely many additional terms.
The converse follows immediately, since we also have lim

n→∞ bn/an = 1/c �= 0.

The comparison test yields other important tests when we use previously an-

alyzed series as catalysts. Choosing the geometric series
∞∑
n=0

rn, the convergent

series par excellence, we obtain the most important of all tests for summability.

THEOREM 3 (THE RATIO TEST) Let an > 0 for all n, and suppose that

lim
n→∞

an+1

an
= r.

Then
∞∑
n=1

an converges if r < 1. On the other hand, if r > 1, then the terms an do

not approach 0, so
∞∑
n=1

an diverges. (Notice that it is therefore essential to compute

lim
n→∞ an+1/an and not lim

n→∞ an/an+1! )

PROOF Suppose ˇrst that r < 1. Choose any number s with r < s < 1. The hypothesis

lim
n→∞

an+1

an
= r < 1

implies that there is some N such that
an+1

an
≤ s for n ≥ N.

This can be written

an+1 ≤ san for n ≥ N.

Thus
aN+1 ≤ saN,

aN+2 ≤ saN+1 ≤ s2aN,

·
·
·
aN+k ≤ skaN .
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Since
∞∑
k=0

aNs
k = aN

∞∑
k=0

sk converges, the comparison test shows that

∞∑
n=N

an =
∞∑
k=0

aN+k

converges. This implies the convergence of the whole series
∞∑
n=1

an.

The case r > 1 is even easier. If 1 < s < r, then there is a number N such that
an+1

an
≥ s for n ≥ N,

which means that

aN+k ≥ aNs
k ≥ aN k = 0, 1, . . . .

This shows that the individual terms of {an} do not approach 0, so {an} is not
summable.

As a simple application of the ratio test, consider the series
∞∑
n=1

1/n! . Letting

an = 1/n! we obtain

an+1

an
=

1
(n+ 1)!

1
n!

= n!
(n+ 1)!

= 1
n+ 1

.

Thus
lim
n→∞

an+1

an
= 0,

which shows that the series
∞∑
n=1

1/n! converges. If we consider instead the series

∞∑
n=1

rn/n! , where r is some ˇxed positive number, then

lim
n→∞

rn+1

(n+ 1)!
rn

n!

= lim
n→∞

r

n+ 1
= 0,

so
∞∑
n=1

rn/n! converges. It follows that

lim
n→∞

rn

n!
= 0,
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a result already proved in Chapter 16 (the proof given there was based on the same

ideas as those used in the ratio test). Finally, if we consider the series
∞∑
n=1

nrn we

have

lim
n→∞

(n+ 1)rn+1

nrn
= lim

n→∞ r · n+ 1
n

= r,

since lim
n→∞(n + 1)/n = 1. This proves that if 0 ≤ r < 1, then

∞∑
n=1

nrn converges,

and consequently
lim
n→∞ nr

n = 0.

(This result clearly holds for −1 < r ≤ 0, also.) It is a useful exercise to provide a
direct proof of this limit, without using the ratio test as an intermediary.

Although the ratio test will be of the utmost theoretical importance, as a practical
tool it will frequently be found disappointing. One drawback of the ratio test is
the fact that lim

n→∞ an+1/an may be quite difˇcult to determine, and may not even
exist. A more serious deˇciency, which appears with maddening regularity, is the
fact that the limit might equal 1. The case lim

n→∞ an+1/an = 1 is precisely the one
which is inconclusive: {an} might not be summable (for example, if an = 1/n),

but then again it might be. In fact, our very next test will show that
∞∑
n=1

(1/n)2

converges, even though

lim
n→∞

(
1

n+ 1

)2

(
1
n

)2 = 1.

This test provides a quite different method for determining convergence or diver-
gence of inˇnite series|like the ratio test, it is an immediate consequence of the
comparison test, but the series chosen for comparison is quite novel.

THEOREM 4 (THE INTEGRAL TEST) Suppose that f is positive and decreasing on [1,∞), and that f (n) = an for all n.

Then
∞∑
n=1

an converges if and only if the limit

∫ ∞

1
f = lim

A→∞

∫ A

1
f

exists

PROOF The existence of lim
A→∞

∫ A

1
f is equivalent to convergence of the series

∫ 2

1
f +

∫ 3

2
f +

∫ 4

3
f + · · · .
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Now, since f is decreasing we have (Figure 2)

f (n+ 1) <
∫ n+1

n

f < f (n).

The ˇrst half of this double inequality shows that the series
∞∑
n=1

an+1 may be com-

pared to the series
∞∑
n=1

∫ n+1

n

f , proving that
∞∑
n=1

an+1 (and hence
∞∑
n=1

an) converges

if lim
A→∞

∫ A

1
exists.

The second half of the inequality shows that the series
∞∑
n=1

∫ n+1

n

f may be com-

pared to the series
∞∑
n=1

an, proving that lim
A→∞

∫ A

1
f must exist if

∞∑
n=1

an converges.
F I G U R E 2

Only one example using the integral test will be given here, but it settles the
question of convergence for inˇnitely many series at once. If p > 0, the conver-

gence of
∞∑
n=1

1/np is equivalent, by the integral test, to the existence of

∫ ∞

1

1
xp
dx.

Now ∫ A

1

1
xp
dx =


 − 1

(p − 1)
· 1
Ap−1 + 1

p − 1
, p �= 1

logA, p = 1.

This shows that lim
A→∞

∫ A

1
1/xp dx exists if p > 1, but not if p ≤ 1. Thus

∞∑
n=1

1/np

converges precisely for p > 1. In particular,
∞∑
n=1

1/n diverges.

The tests considered so far apply only to nonnegative sequences, but nonpositive
sequences may be handled in precisely the same way. In fact, since

∞∑
n=1

an = −
( ∞∑
n=1

−an
)
,

all considerations about nonpositive sequences can be reduced to questions involv-
ing nonnegative sequences. Sequences which contain both positive and negative
terms are quite another story.

If
∞∑
n=1

an is a sequence with both positive and negative terms, one can con-

sider instead the sequence
∞∑
n=1

|an|, all of whose terms are nonnegative. Cheerfully
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ignoring the possibility that we may have thrown away all the interesting informa-
tion about the original sequence, we proceed to eulogize those sequences which
are converted by this procedure into convergent sequences.

DEFINITION The series
∞∑
n=1

an is absolutely convergent if the series
∞∑
n=1

|an| is convergent.

(In more formal language, the sequence {an} is absolutely summable if the
sequence {|an|} is summable.)

Although we have no right to expect this deˇnition to be of any interest, it turns
out to be exceedingly important. The following theorem shows that the deˇnition
is at least not entirely useless.

THEOREM 5 Every absolutely convergent series is convergent. Moreover, a series is absolutely
convergent if and only if the series formed from its positive terms and the series
formed from its negative terms both converge.

PROOF If
∞∑
n=1

|an| converges, then, by the Cauchy criterion,

lim
m,n→∞ |an+1| + · · · + |am| = 0.

Since
|an+1 + · · · + am| ≤ |an+1| + · · · + |am|,

it follows that
lim

m,n→∞ an+1 + · · · + am = 0,

which shows that
∞∑
n=1

an converges.

To prove the second part of the theorem, let

an
+ =

{
an, if an ≥ 0
0, if an ≤ 0,

an
− =

{
an, if an ≤ 0
0, if an ≥ 0,

so that
∞∑
n=1

an
+ is the series formed from the positive terms of

∞∑
n=1

an, and
∞∑
n=1

an
−

is the series formed from the negative terms.

If
∞∑
n=1

an
+ and

∞∑
n=1

an
− both converge, then

∞∑
n=1

|an| =
∞∑
n=1

[an+ − (an
−)] =

∞∑
n=1

an
+ −

∞∑
n=1

an
−
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also converges, so
∞∑
n=1

an converges absolutely.

On the other hand, if
∞∑
n=1

|an| converges, then, as we have just shown,
∞∑
n=1

an

also converges. Therefore
∞∑
n=1

an
+ = 1

2

( ∞∑
n=1

an +
∞∑
n=1

|an|
)

and
∞∑
n=1

an
− = 1

2

( ∞∑
n=1

an −
∞∑
n=1

|an|
)

both converge.

It follows from Theorem 5 that every convergent series with positive terms can
be used to obtain inˇnitely many other convergent series, simply by putting in
minus signs at random. Not every convergent series can be obtained in this way,
however|there are series which are convergent but not absolutely convergent
(such series are called conditionally convergent). In order to prove this state-
ment we need a test for convergence which applies speciˇcally to series with positive
and negative terms.

THEOREM 6 (LEIBNIZ’S THEOREM) Suppose that
a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0,

and that
lim
n→∞ an = 0.

Then the series
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + a5 − · · ·

converges.

PROOF Figure 3 illustrates relationships between the partial sums which we will establish:

(1) s2 ≤ s4 ≤ s6 ≤ · · · ,
(2) s1 ≥ s3 ≥ s5 ≥ · · · ,
(3) sk ≤ sl if k is even and l is odd.

FI G U R E 3
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To prove the ˇrst two inequalities, observe that

(1) s2n+2 = s2n + a2n+1 − a2n+2
≥ s2n, since a2n+1 ≥ a2n+2

(2) s2n+3 = s2n+1 − a2n+2 + a2n+3
≥ s2n+1, since a2n+2 ≥ a2n+3.

To prove the third inequality, notice ˇrst that

s2n = s2n1 − a2n
≤ s2n−1 since a2n ≥ 0.

This proves only a special case of (3), but in conjunction with (1) and (2) the general
case is easy: if k is even and l is odd, choose n such that

2n ≥ k and 2n − 1 ≥ l;
then

sk ≤ s2n ≤ s2n−1 ≤ sl,

which proves (3).
Now, the sequence {s2n} converges, because it is nondecreasing and is bounded

above (by sl for any odd l). Let

α = sup{s2n} = lim
n→∞ s2n.

Similarly, let
β = inf {s2n+1} = lim

n→∞ s2n+1.

It follows from (3) that α ≤ β; since

s2n+1 − s2n = a2n+1 and lim
n→∞ an = 0

it is actually the case that α = β. This proves that α = β = lim
n→∞ sn.

The standard example derived from Theorem 6 is the series

1 − 1
2 + 1

3 − 1
4 + 1

5 − · · · ,

which is convergent, but not absolutely convergent (since
∞∑
n=1

1/n does not con-

verge). If the sum of this series is denoted by x, the following manipulations lead
to quite a paradoxical result:

x = 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + · · ·

= 1 − 1
2 − 1

4 + 1
3 − 1

6 − 1
8 + 1

5 − 1
10 − 1

12 + 1
7 − 1

14 − 1
16 + · · ·

(the pattern here is one positive term followed by two negative ones)

= (1 − 1
2 )− 1

4 + (1
3 − 1

6)− 1
8 + (1

5 − 1
10)− 1

12 + (1
7 − 1

14)− 1
16 + · · ·

= 1
2 − 1

4 + 1
6 − 1

8 + 1
10 − 1

12 + 1
14 − 1

16 + · · ·
= 1

2 (1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + · · · )

= 1
2x,
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so x = x/2, implying that x = 0. On the other hand, it is easy to see that x �= 0:
the partial sum s2 equals 1

2 , and the proof of Leibniz's Theorem shows that x ≥ s2.
This contradiction depends on a step which takes for granted that operations

valid for ˇnite sums necessarily have analogues for inˇnite sums. It is true that the
sequence

{bn} = 1, − 1
2 , − 1

4 ,
1
3 , − 1

6 , − 1
8 ,

1
5 , − 1

10 , − 1
12 , . . .

contains all the numbers in the sequence

{an} = 1, − 1
2 ,

1
3 , − 1

4 ,
1
5 , − 1

6 ,
1
7 , − 1

8 ,
1
9 , − 1

10 ,
1
11 , − 1

12 , . . . .

In fact, {bn} is a rearrangement of {an} in the following precise sense: each
bn = af (n) where f is a certain function which \permutes" the natural numbers,
that is, every natural number m is f (n) for precisely one n. In our example

f (2m + 1) = 3m + 1 (the terms 1, 1
3 ,

1
5 , . . . go into the 1st, 4th, 7th, . . .

places),
f (4m) = 3m (the terms − 1

4 ,− 1
8 ,− 1

12 , . . . go into the 3rd, 6th, 9th,
. . . places),

f (4m+ 2) = 3m + 2 (the terms − 1
2 ,− 1

6 ,− 1
10 , . . . go into the 2nd, 5th, 8th,

. . . places).

Nevertheless, there is no reason to assume that
∞∑
n=1

bn should equal
∞∑
n=1

an: these

sums are, by deˇnition, lim
n→∞ b1 + · · · + bn and lim

n→∞ a1 + · · · + an, so the particular

order of the terms can quite conceivably matter. The series
∞∑
n=1

(−1)n+1/n is not

special in this regard; indeed, its behavior is typical of series which are not ab-
solutely convergent|the following result (really more of a grand counterexample
than a theorem) shows how bad conditionally convergent series are.

THEOREM 7 If
∞∑
n=1

an converges, but does not converge absolutely, then for any number α there

is a rearrangement {bn} of {an} such that
∞∑
n=1

bn = α.

PROOF Let
∞∑
n=1

pn denote the series formed from the positive terms of {an} and let
∞∑
n=1

qn

denote the series of negative terms. It follows from Theorem 5 that at least one of
these series does not converge. As a matter of fact, both must fail to converge, for
if one had bounded partial sums, and the other had unbounded partial sums, then
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the original series
∞∑
n=1

an would also have unbounded partial sums, contradicting

the assumption that it converges.
Now let α be any number. Assume, for simplicity, that α > 0 (the proof for

α < 0 will be a simple modiˇcation). Since the series
∞∑
n=1

pn is not convergent,

there is a number N such that
N∑
n=1

pn > α.

We will choose N1 to be the smallest N with this property. This means that

(1)
N1−1∑
n=1

pn ≤ α,

but (2)
N1∑
n=1

pn > α.

Then if

S1 =
N1∑
n=1

pn,

we have
S1 − α ≤ pN1.

F I G U R E 4

This relation, which is clear from Figure 4, follows immediately from equation (1):

S1 − α ≤ S1 −
N1−1∑
n=1

pn = pN1.

To the sum S1 we now add on just enough negative terms to obtain a new sum T1
which is less than α. In other words, we choose the smallest integer M1 for which

T1 = S1 +
M1∑
n=1

qn < α.

As before, we have
α − T1 ≤ −qM1.

We now continue this procedure indeˇnitely, obtaining sums alternately larger
and smaller than α, each time choosing the smallest Nk or Mk possible. The



478 Infinite Sequences and Infinite Series

sequence

p1, . . . , pN1, q1, . . . , qM1, pN1+1, . . . , pN2, . . .

is a rearrangement of {an}. The partial sums of this rearrangement increase to S1,
then decrease to T1, then increase to S2, then decrease to T2, etc. To complete the
proof we simply note that |Sk−α| and |Tk−α| are less than or equal to pNk or −qMk

,
respectively, and that these terms, being members of the original sequence {an},
must decrease to 0, since

∞∑
n=1

an converges.

Together with Theorem 7, the next theorem establishes conclusively the distinc-
tion between conditionally convergent and absolutely convergent series.

THEOREM 8 If
∞∑
n=1

an converges absolutely, and {bn} is any rearrangement of {an}, then
∞∑
n=1

bn

also converges (absolutely), and

∞∑
n=1

an =
∞∑
n=1

bn.

PROOF Let us denote the partial sums of {an} by sn, and the partial sums of {bn} by tn.

Suppose that ε > 0. Since
∞∑
n=1

an converges, there is some N such that

∣∣∣∣ ∞∑
n=1

an − sN

∣∣∣∣ < ε.

Moreover, since
∞∑
n=1

|an| converges, we can also choose N so that

∞∑
n=1

|an| − (|a1| + · · · + |aN |) < ε,

i.e., so that

|aN+1| + |aN+2| + |aN+3| + · · · < ε.
Now choose M so large that each of a1, . . . , aN appear among b1, . . . , bM . Then
whenever m > M, the difference tm − sN is the sum of certain ai , where a1, . . . , aN
are definitely excluded. Consequently,

|tm − sN | ≤ |aN+1| + |aN+2| + |aN+3| + · · · .
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Thus, if m > M, then∣∣∣∣ ∞∑
n=1

an − tm

∣∣∣∣ =
∣∣∣∣ ∞∑
n=1

an − sN − (tm − sN)

∣∣∣∣
≤
∣∣∣∣ ∞∑
n=1

an − sN

∣∣∣∣+ |tm − sN |

< ε + ε.

Since this is true for every ε > 0, the series
∞∑
n=1

bn converges to
∞∑
n=1

an.

To show that
∞∑
n=1

bn converges absolutely, note that { |bn| } is a rearrangement

of { |an| }; since
∞∑
n=1

|an| converges absolutely,
∞∑
n=1

|bn| converges by the ˇrst part of

the theorem.

Absolute convergence is also important when we want to multiply two inˇnite
series. Unlike the situation for addition, where we have the simple formula

∞∑
n=1

an +
∞∑
n=1

bn =
∞∑
n=1

(an + bn),

there isn't quite so obvious a candidate for the product( ∞∑
n=1

an

)
·
( ∞∑
n=1

bN

)
= (a1 + a2 + · · · ) · (b1 + b2 + · · · ).

It would seem that we ought to sum all the products aibj . The trouble is that these
form a two-dimensional array, rather than a sequence:

a1b1 a1b2 a1b3 . . .

a2b1 a2b2 a2b3 . . .

a3b1 a3b2 a3b3 . . .

...
...

...

Nevertheless, all the elements of this array can be arranged in a sequence. The
picture below shows one way of doing this, and of course, there are (inˇnitely)
many other ways.
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Suppose that {cn} is some sequence of this sort, containing each product aibj
just once. Then we might naively expect to have

∞∑
n=1

cn =
∞∑
n=1

an ·
∞∑
n=1

bn.

But this isn’t true (see Problem 8), nor is this really so surprising, since we've said
nothing about the speciˇc arrangement of the terms. The next theorem shows
that the result does hold when the arrangement of terms is irrelevant.

THEOREM 9 If
∞∑
n=1

an and
∞∑
n=1

bn converge absolutely, and {cn} is any sequence containing the

products aibj for each pair (i, j ), then
∞∑
n=1

cn =
∞∑
n=1

an ·
∞∑
n=1

bn.

PROOF Notice ˇrst that the sequence

pL =
L∑
i=1

|ai| ·
L∑
j=1

|bj |

converges, since {an} and {bn} are absolutely convergent, and since the limit of a
product is the product of the limits. So {pL} is a Cauchy sequence, which means
that for any ε > 0, if L and L′ are large enough, then∣∣∣∣ L′∑

i=1

|ai| ·
L′∑
j=1

|bj | −
L∑
i=1

|ai | ·
L∑
j=1

|bj |
∣∣∣∣ < ε

2
.

It follows that
(1)

∑
i or j>L

|ai| · |bj | ≤ ε

2
< ε.

Now suppose that N is any number so large that the terms cn for n ≤ N include
every term aibj for i, j ≤ L. Then the difference

N∑
n=1

cn −
L∑
i=1

ai ·
L∑
j=1

bj

consists of terms aibj with i > L or j > L, so

(2)
∣∣∣∣ N∑
n=1

cn −
L∑
i=1

ai ·
L∑
j=1

bj

∣∣∣∣ ≤
∑

i or j>L

|ai| · |bj |

< ε by (1).

But since the limit of a product is the product of the limits, we also have

(3)
∣∣∣∣ ∞∑
i=1

ai ·
∞∑
j=1

bj −
L∑
i=1

ai ·
L∑
j=1

bj

∣∣∣∣ < ε
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for large enough L. Consequently, if we choose L, and then N , large enough, we
will have ∣∣∣∣ ∞∑

i=1

ai ·
∞∑
j=1

bj −
N∑
i=1

cn

∣∣∣∣ ≤
∣∣∣∣ ∞∑
i=1

ai ·
∞∑
j=1

bj −
L∑
i=1

ai ·
L∑
j=1

bj

∣∣∣∣
+
∣∣∣∣ L∑
i=1

ai ·
L∑
j=1

bj −
N∑
n=1

cn

∣∣∣∣
< 2ε by (2) and (3),

which proves the theorem.

Unlike our previous theorems, which were merely concerned with summability,
this result says something about the actual sums. Generally speaking, there is
no reason to presume that a given inˇnite sum can be \evaluated" in any simpler
terms. However, many simple expressions can be equated to inˇnite sums by using
Taylor's Theorem. Chapter 20 provides many examples of functions for which

f (x) =
n∑
i=0

f (i)(a)

i!
(x − a)i + Rn,a(x),

where lim
n→∞Rn,a(x) = 0. This is precisely equivalent to

f (x) = lim
n→∞

n∑
i=0

f (i)(a)

i!
(x − a)i,

which means, in turn, that

f (x) =
∞∑
i=0

f (i)(a)

i!
(x − a)i.

As particular examples we have

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · · ,

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · ,

ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ · · · ,

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · , |x| ≤ 1,

log(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
+ · · · , − 1 < x ≤ 1.
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(Notice that the series for arctan x and log(1+x) do not even converge for |x| > 1;
in addition, when x = −1, the series for log(1 + x) becomes

−1 − 1
2 − 1

3 − 1
4 − · · ·

which does not converge.)
Some pretty impressive results are obtained with particular values of x:

0 = π − π3

3!
+ π5

5!
− π7

7!
+ · · · ,

e = 1 + 1
1!

+ 1
2!

+ 1
3!

+ · · · ,
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · ,

log 2 = 1 − 1
2

+ 1
3

− 1
4

+ · · · .

More signiˇcant developments may be anticipated if we compare the series for
sin x and cos x a little more carefully. The series for cos x is just the one we would
have obtained if we had enthusiastically differentiated both sides of the equation

sin x = x − x3

3!
+ x5

5!
− · · ·

term-by-term, ignoring the fact that we have never proved anything about the
derivatives of inˇnite sums. Likewise, if we differentiate both sides of the for-
mula for cos x formally (i.e., without justiˇcation) we obtain the formula cos′(x) =
− sin x, and if we differentiate the formula for ex we obtain exp′(x) = exp(x).
In the next chapter we shall see that such term-by-term differentiation of inˇnite
sums is indeed valid in certain important cases.

PROBLEMS

1. Decide whether each of the following inˇnite series is convergent or diver-
gent. The tools which you will need are Leibniz's Theorem and the compar-
ison, ratio, and integral tests. A few examples have been picked with malice
aforethought; two series which look quite similar may require different tests
(and then again, they may not). The hint below indicates which tests may be
used.

(i)
∞∑
n=1

sin nθ
n2 .

(ii) 1 − 1
3 + 1

5 − 1
7 + · · · .

(iii) 1 − 1
2 + 2

3 − 1
3 + 2

4 − 1
4 + 2

5 − 1
5 + · · · .

(iv)
∞∑
n=1

(−1)n
log n
n

.
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(v)
∞∑
n=2

1
3
√
n2 − 1

. (The summation begins with n = 2 simply to avoid
the meaningless term obtained for n = 1).

(vi)
∞∑
n=1

1
3
√
n2 + 1

.

(vii)
∞∑
n=1

n2

n!
.

(viii)
∞∑
n=1

log n
n

.

(ix)
∞∑
n=2

1
log n

.

(x)
∞∑
n=2

1
(log n)k

.

(xi)
∞∑
n=2

1
(log n)n

.

(xii)
∞∑
n=2

(−1)n
1

(log n)n
.

(xiii)
∞∑
n=1

n2

n3 + 1
.

(xiv)
∞∑
n=1

sin
1
n

.

(xv)
∞∑
n=2

1
n log n

.

(xvi)
∞∑
n=2

1
n(log n)2

.

(xvii)
∞∑
n=2

1
n2(log n)

.

(xviii)
∞∑
n=1

n!
nn

.

(xix)
∞∑
n=1

2nn!
nn

.
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(xx)
∞∑
n=1

3nn!
nn

.

Hint: Use the comparison test for (i), (ii), (v), (vi), (ix), (x), (xi), (xiii), (xiv),
(xvii); the ratio test for (vii), (xviii), (xix), (xx); the integral test for (viii),
(xv), (xvi).

The next two problems examine, with hints, some inˇnite series that require
more delicate analysis than those in Problem 1.

*2. (a) If you have successfully solved examples (xix) and (xx) from Problem 1,

it should be clear that
∞∑
n=1

ann!/nn converges for a < e and diverges for

a > e. For a = e the ratio test fails; show that
∞∑
n=1

enn!/nn actually

diverges, by using Problem 22-13.

(b) Decide when
∞∑
n=1

nn/ann! converges, again resorting to Problem 22-13

when the ratio test fails.

*3. Problem 1 presented the two series
∞∑
n=2

(log n)−k and
∞∑
n=2

(log n)−n, of which

the ˇrst diverges while the second converges. The series

∞∑
n=2

1
(log n)log n ,

which lies between these two, is analyzed in parts (a) and (b).

(a) Show that
∫∞

0 ey/yy dy exists, by considering the series
∞∑
n=1

(e/n)n.

(b) Show that
∞∑
n=2

1
(log n)log n

converges, by using the integral test. Hint: Use an appropriate substitu-
tion and part (a).

(c) Show that
∞∑
n=2

1
(log n)log(log n)

diverges, by using the integral test. Hint: Use the same substitution as
in part (b), and show directly that the resulting integral diverges.
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4. Decide whether or not
∞∑
n=1

1
n1+1/n converges.

5. (a) Let {an} be a sequence of integers with 0 ≤ an ≤ 9. Prove that
∞∑
n=1

an10−n

exists (and lies between 0 and 1). (This, of course, is the number which
we usually denote by 0.a1a2a3a4 . . . .)

(b) Suppose that 0 ≤ x ≤ 1. Prove that there is a sequence of integers {an}
with 0 ≤ an ≤ 9 and

∞∑
n=1

an10−n = x. Hint: For example, a1 = [10x]

(where [y] denotes the greatest integer which is ≤ y ).
(c) Show that if {an} is repeating, i.e., is of the form a1, a2, . . . , ak,

a1, a2, . . . , ak, a1, a2, . . . , then
∞∑
n=1

an10−n is a rational number (and ˇnd

it). The same result naturally holds if {an} is eventually repeating, i.e., if
the sequence {aN+k} is repeating for some N .

(d) Prove that if x =
∞∑
n=1

an10−n is rational, then {an} is eventually repeat-

ing. ( Just look at the process of ˇnding the decimal expansion of p/q|
dividing q into p by long division.)

6. Suppose that {an} satisˇes the hypothesis of Leibniz's Theorem. Use the
proof of Leibniz's Theorem to obtain the following estimate:∣∣∣∣ ∞∑

n=1

(−1)n+1an − [a1 − a2 + · · · ± aN]
∣∣∣∣ < aN.

7. Prove that if an ≥ 0 and lim
n→∞

n
√
an = r, then

∞∑
n=1

an converges if r < 1, and

diverges if r > 1. (The proof is very similar to that of the ratio test.) This
result is known as the \root test." It is easy to construct series for which the
ratio test fails, while the root test works. For example, the root test shows that
the series

1
2 + 1

3 + (1
2 )

2 + (1
3)

2 + (1
2 )

3 + (1
3)

3 + · · ·
converges, even though the ratios of successive terms do not approach a
limit. Most examples are of this rather artiˇcial nature, but the root test is
nevertheless quite an important theoretical tool, and if the ratio test works the
root test will also (by Problem 22-18). It is possible to eliminate limits from

the root test; a simple modiˇcation of the proof shows that
∞∑
n=1

an converges

if there is some s < 1 such that all but ˇnitely many n
√
an are ≤ s, and that

∞∑
n=1

an diverges if inˇnitely many n
√
an are ≥ 1. This result is known as the
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\delicate root test" (there is a similar delicate ratio test). It follows, using

the notation of Problem 22-27, that
∞∑
n=1

an converges if lim
n→∞

n
√
an < 1 and

diverges if lim
n→∞

n
√
an > 1; no conclusion is possible if lim

n→∞
n
√
an = 1.

8. For two sequences {an} and {bn}, let cn =
n∑
k=1

akbn+1−k. (Then cn is the sum

of the terms on the nth diagonal in the picture on page 479.) The series
∞∑
n=1

cn is called the Cauchy product of
∞∑
n=1

an and
∞∑
n=1

bn. If an = bn =

(−1)n/
√
n, show that |cn| ≥ 1, so that the Cauchy product does not con-

verge.

9. A sequence {an} is called Cesaro summable, with Cesaro sum l, if

lim
n→∞

s1 + · · · + sn

n
= l

(where sk = a1 + · · · + ak). Problem 22-16 shows that a summable sequence
is automatically Cesaro summable, with sum equal to its Cesaro sum. Find
a sequence which is not summable, but which is Cesaro summable.

10. Suppose that an > 0 and {an} is Cesaro summable. Suppose also that the

sequence {nan} is bounded. Prove that the series
∞∑
n=1

an converges. Hint: If

sn =
n∑
i=1

ai and σn = 1
n

n∑
i=1

si , prove that sn − n

n+ 1
σn is bounded.

11. This problem outlines an alternative proof of Theorem 8 which does not rely
on the Cauchy criterion.

(a) Suppose that an ≥ 0 for each n. Let {bn} be a rearrangement of {an},
and let sn = a1 + · · · + an and tn = b1 + · · · + bn. Show that for each n
there is some m with sn ≤ tm.

(b) Show that
∞∑
n=1

an ≤
∞∑
n=1

bn if
∞∑
n=1

bn exists.

(c) Show that
∞∑
n=1

an =
∞∑
n=1

bn.

(d) Now replace the condition an ≥ 0 by the hypothesis that
∞∑
n=1

an converges

absolutely, using the second part of Theorem 5.
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12. (a) Prove that if
∞∑
n=1

an converges absolutely, and {bn} is any subsequence of

{an}, then
∞∑
n=1

bn converges (absolutely).

(b) Show that this is false if
∞∑
n=1

an does not converge absolutely.

*(c) Prove that if
∞∑
n=1

an converges absolutely, then

∞∑
n=1

an = (a1 + a3 + a5 + · · · )+ (a2 + a4 + a6 + · · · ).

13. Prove that if
∞∑
n=1

an is absolutely convergent, then
∣∣∣∣ ∞∑
n=1

an

∣∣∣∣ ≤ ∞∑
n=1

|an|.

*14. Problem 19-42 shows that
∫∞

0 (sin x)/x dx converges. Prove that∫∞
0 |(sin x)/x|dx diverges.

*15. Find a continuous function f with f (x) ≥ 0 for all x such that
∫∞

0 f (x)dx

exists, but lim
x→∞ f (x) does not exist.

*16. Let f (x) = x sin 1/x for 0 < x ≤ 1, and let f (0) = 0. Recall the deˇnitionFI G U R E 5

of �(f, P) from Problem 13-25. Show that the set of all �(f, P) for P a
partition of [0,1] is not bounded (thus f has \inˇnite length"). Hint: Try
partitions of the form

P =
{

0,
2

(2n+ 1)π
, . . . ,

2
7π
,

2
5π
,

2
3π
,

2
π
,1
}
.

17. Let f be the function shown in Figure 5. Find
∫ 1

0 f , and also the area of the
shaded region in Figure 5.

*18. In this problem we will establish the \binomial series"

(1 + x)α =
∞∑
k=0

(
α

k

)
xk, |x| < 1,

for any α, by showing that lim
n→∞Rn,0(x) = 0. The proof is in several steps,

and uses the Cauchy and Lagrange forms as found in Problem 20-7.

(a) Use the ratio test to show that the series
∞∑
k=0

(
α

k

)
rk does indeed converge

for |r| < 1 (this is not to say that it necessarily converges to (1 + r)α ). It

follows in particular that lim
n→∞

(
α

n

)
rn = 0 for |r| < 1.
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(b) Suppose ˇrst that 0 ≤ x < 1. Show that lim
n→∞Rn,0(x) = 0, by using

Lagrange's form of the remainder, noticing that (1 + t)α−n−1 ≤ 1 for
n+ 1 > α.

(c) Now suppose that −1 < x < 0; the number t in Cauchy's form of the
remainder satisˇes −1 < x < t ≤ 0. Show that

|x(1 + t)α−1| ≤ |x|M, where M = max(1, (1 + x)α−1),

and ∣∣∣∣ x − t

1 + t

∣∣∣∣ = |x|
(

1 − t/x

1 + t

)
≤ |x|.

Using Cauchy's form of the remainder, and the fact that

(n + 1)
(

α

n+ 1

)
= α

(
α − 1
n

)
,

show that lim
n→∞Rn,0(x) = 0.

19. (a) Suppose that the partial sums of the sequence {an} are bounded and that

{bn} is a sequence with bn ≥ bn+1 and lim
n→∞ bn = 0. Prove that

∞∑
n=1

anbn

converges. This is known as Dirichlet’s test. Hint: Use Abel's Lemma
(Problem 19-35) to check the Cauchy criterion.

(b) Derive Leibniz's Theorem from this result.

(c) Prove, using Problem 15-33, that the series
∞∑
n=1

(cos nx)/n converges if x

is not of the form 2kπ for any integer k (in which case it clearly diverges).

(d) Prove Abel’s test : If
∞∑
n=1

an converges and {bn} is a sequence which is either

nondecreasing or nonincreasing and which is bounded, then
∞∑
n=1

anbn

converges. Hint: Consider bn − b, where b = lim
n→∞ bn.

*20. Suppose {an} is decreasing and lim
n→∞ an = 0. Prove that if

∞∑
n=1

an converges,

then
∞∑
n=1

2na2n also converges (the \Cauchy Condensation Theorem"). No-

tice that the divergence of
∞∑
n=1

1/n is a special case, for if
∞∑
n=1

1/n converged,

then
∞∑
n=1

2n(1/2n) would also converge; this remark may serve as a hint.
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*21. (a) Prove that if
∞∑
n=1

an
2 and

∞∑
n=1

bn
2 converge, then

∞∑
n=1

anbn converges.

(b) Prove that if
∞∑
n=1

an
2 converges, then

∞∑
n=1

an/n
α converges for any α > 1

2 .

*22. Suppose {an} is decreasing and each an ≥ 0. Prove that if
∞∑
n=1

an converges,

then lim
n→∞ nan = 0. Hint: Write down the Cauchy criterion and be sure to

use the fact that {an} is decreasing.

*23. If
∞∑
n=1

an converges, then the partial sums sn are bounded, and lim
n→∞ an = 0. It

is tempting to conjecture that boundedness of the partial sums, together with

the condition lim
n→∞ an = 0, implies convergence of

∞∑
n=1

an. This is not true,

but ˇnding a counterexample requires a little ingenuity. As a hint, notice that
some subsequence of the partial sums will have to converge; you must somehow
allow this to happen, without letting the sequence itself converge.

24. Prove that if an ≥ 0 and
∞∑
n=1

an diverges, then
∞∑
n=1

an

1 + an
also diverges. Hint:

Compare the partial sums. Does the converse hold?

25. Let bn �= 0. We say that the inˇnite product
∞∏
n=1

bn converges if the sequence

pn =
n∏
i=1

bi converges, and also lim
n→∞pn �= 0.

(a) Prove that if
∞∏
n=1

(1 + an) converges, then an approaches 0.

(b) Prove that
∞∏
n=1

(1 + an) converges if and only if
∞∑
n=1

log(1 + an) converges.

(c) For an ≥ 0, prove that
∞∏
n=1

(1 + an) converges if and only if
∞∑
n=1

an con-

verges. Hint: Use Problem 24 for one implication, and a simple estimate
for log(1 + a) for the reverse implication.

26. (a) Compute
∞∏
n=2

(
1 − 1

n2

)
.

(b) Compute
∞∏
n=1

(1 + x2n) for |x| < 1.
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27. The divergence of
∞∑
n=1

1/n is related to the following remarkable fact: Any

positive rational number x can be written as a finite sum of distinct numbers
of the form 1/n. The idea of the proof is shown by the following calculation
for 27

31 : Since

27
31 − 1

2 = 23
62

23
62 − 1

3 = 7
186

7
186 <

1
4 , . . . ,

1
26

7
186 − 1

27 = 1
1674

we have
27
31 = 1

2 + 1
3 + 1

27 + 1
1674.

Notice that the numerators 23, 7, 1 of the differences are decreasing.

(a) Prove that if 1/(n+1) < x < 1/n for some n, then the numerator in this
sort of calculation must always decrease; conclude that x can be written
as a ˇnite sum of distinct numbers 1/k.

(b) Now prove the result for all x by using the divergence of
∞∑
n=1

1/n.



CHAPTER 24 UNIFORM CONVERGENCE AND
POWER SERIES

The considerations at the end of the previous chapter suggest an entirely new way
of looking at inˇnite series. Our attention will shift from particular inˇnite sums
to equations like

ex = 1 + x

1!
+ x2

2!
+ · · ·

which concern sums of quantities that depend on x. In other words, we are
interested in functions deˇned by equations of the form

f (x) = f1(x)+ f2(x)+ f3(x)+ · · ·
(in the previous example fn(x) = xn−1/(n − 1)!). In such a situation {fn} will be
some sequence of functions; for each x we obtain a sequence of numbers {fn(x)},
and f (x) is the sum of this sequence. In order to analyze such functions it will
certainly be necessary to remember that each sum

f1(x)+ f2(x)+ f3(x)+ · · ·
is, by deˇnition, the limit of the sequence

f1(x), f1(x)+ f2(x), f1(x)+ f2(x)+ f3(x), . . . .

If we deˇne a new sequence of functions {sn} by

sn = f1 + · · · + fn,

then we can express this fact more succinctly by writing

f (x) = lim
n→∞ sn(x).

For some time we shall therefore concentrate on functions deˇned as limits,

f (x) = lim
n→∞ fn(x),

rather than on functions deˇned as inˇnite sums. The total body of results about
such functions can be summed up very easily: nothing one would hope to beFI G U R E 1

true actually is|instead we have a splendid collection of counterexamples. The
ˇrst of these shows that even if each fn is continuous, the function f may not be!
Contrary to what you may expect, the functions fn will be very simple. Figure 1
shows the graphs of the functions

fn(x) =
{
xn, 0 ≤ x ≤ 1
1, x ≥ 1.

491
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These functions are all continuous, but the function f (x) = lim
n→∞ fn(x) is not

continuous; in fact,

lim
n→∞ fn(x) =

{
0, 0 ≤ x < 1
1, x ≥ 1.

Another example of this same phenomenon is illustrated in Figure 2; the func-
tions fn are deˇned by

FI G U R E 2
fn(x) =




−1, x ≤ − 1
n

nx, − 1
n

≤ x ≤ 1
n

1,
1
n

≤ x.

In this case, if x < 0, then fn(x) is eventually (i.e., for large enough n) equal to −1,
and if x > 0, then fn(x) is eventually 1, while fn(0) = 0 for all n. Thus

lim
n→∞ fn(x) =




−1, x < 0
0, x = 0
1, x > 0;

so, once again, the function f (x) = lim
n→∞ fn(x) is not continuous.

By rounding off the corners in the previous examples it is even possible to
produce a sequence of differentiable functions {fn} for which the function f (x) =F I G U R E 3
lim
n→∞ fn(x) is not continuous. One such sequence is easy to deˇne explicitly:

fn(x) =




−1, x ≤ − 1
n

sin
(nπx

2

)
, − 1

n
≤ x ≤ 1

n

1,
1
n

≤ x.

These functions are differentiable (Figure 3), but we still have

lim
n→∞ fn(x) =




−1, x < 0
0, x = 0
1, x > 0.

Continuity and differentiability are, moreover, not the only properties for which
problems arise. Another difˇculty is illustrated by the sequence {fn} shown in
Figure 4; on the interval [0,1/n] the graph of fn forms an isosceles triangle of
altitude n, while fn(x) = 0 for x ≥ 1/n. These functions may be deˇned explicitly
as follows:F I G U R E 4
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fn(x) =




2n2x, 0 ≤ x ≤ 1
2n

2n− 2n2x,
1
2n

≤ x ≤ 1
n

0,
1
n

≤ x ≤ 1.

Because this sequence varies so erratically near 0, our primitive mathematical
instincts might suggest that lim

n→∞ fn(x) does not always exist. Nevertheless, this

limit does exist for all x, and the function f (x) = lim
n→∞ fn(x) is even continuous.

In fact, if x > 0, then fn(x) is eventually 0, so lim
n→∞ fn(x) = 0; moreover, fn(0) = 0

for all n, so that we certainly have lim
n→∞ fn(0) = 0. In other words, f (x) =

lim
n→∞ fn(x) = 0 for all x. On the other hand, the integral quickly reveals the
strange behavior of this sequence; we have∫ 1

0
fn(x)dx = 1

2 ,

butFI G U R E 5 ∫ 1

0
f (x) dx = 0.

Thus,

lim
n→∞

∫ 1

0
fn(x)dx �=

∫ 1

0
lim
n→∞ fn(x) dx.

This particular sequence of functions behaves in a way that we really never
imagined when we ˇrst considered functions deˇned by limits. Although it is true
that

f (x) = lim
n→∞ fn(x) for each x in [0,1],

the graphs of the functions fn do not \approach" the graph of f in the sense of
lying close to it|if, as in Figure 5, we draw a strip around f of total width 2ε (al-
lowing a width of ε above and below), then the graphs of fn do not lie completely
within this strip, no matter how large an n we choose. Of course, for each x there
is some N such that the point (x,fn(x)) lies in this strip for n > N ; this assertion
just amounts to the fact that lim

n→∞ fn(x) = f (x). But it is necessary to choose larger
and larger N 's as x is chosen closer and closer to 0, and no one N will work for
all x at once.

The same situation actually occurs, though less blatantly, for each of the other
examples given previously. Figure 6 illustrates this point for the sequenceFI G U R E 6

fn(x) =
{
xn, 0 ≤ x ≤ 1
1, x ≥ 1.

A strip of total width 2ε has been drawn around the graph of f (x) = lim
n→∞ fn(x).

If ε < 1
2 , this strip consists of two pieces, which contain no points with second
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coordinate equal to 1
2 ; since each function fn takes on the value 1

2 , the graph of
each fn fails to lie within this strip. Once again, for each point x there is some N
such that (x, fn(x)) lies in the strip for n > N ; but it is not possible to pick one N
which works for all x at once.

It is easy to check that precisely the same situation occurs for each of the other
examples. In each case we have a function f , and a sequence of functions {fn},
all deˇned on some set A, such that

f (x) = lim
n→∞ fn(x) for all x in A.

This means that

FI G U R E 7 for all ε > 0, and for all x in A, there is some N such that if n > N , then
|f (x)− fn(x)| < ε.

But in each case different N 's must be chosen for different x's, and in each case it
is not true that

for all ε > 0 there is some N such that for all x in A, if n > N , then
|f (x)− fn(x)| < ε.

Although this condition differs from the ˇrst only by a minor displacement of the
phrase \for all x in A," it has a totally different signiˇcance. If a sequence {fn}
satisˇes this second condition, then the graphs of fn eventually lie close to the
graph of f , as illustrated in Figure 7. This condition turns out to be just the one
which makes the study of limit functions feasible.

DEFINITION Let {fn} be a sequence of functions deˇned on A, and let f be a function which
is also deˇned on A. Then f is called the uniform limit of {fn} on A if for
every ε > 0 there is some N such that for all x in A,

if n > N, then |f (x)− fn(x)| < ε.

We also say that {fn} converges uniformly to f on A, or that fn approaches
f uniformly on A.

As a contrast to this deˇnition, if we know only that

f (x) = lim
n→∞ fn(x) for each x in A,

then we say that {fn} converges pointwise to f on A. Clearly, uniform conver-
gence implies pointwise convergence (but not conversely!).

Evidence for the usefulness of uniform convergence is not at all difˇcult to amass.
Integrals represent a particularly easy topic; Figure 7 makes it almost obvious that
if {fn} converges uniformly to f , then the integral of fn can be made as close
to the integral of f as desired. Expressed more precisely, we have the following
theorem.
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THEOREM 1 Suppose that {fn} is a sequence of functions which are integrable on [a, b], and
that {fn} converges uniformly on [a, b] to a function f which is integrable on
[a, b]. Then ∫ b

a

f = lim
n→∞

∫ b

a

fn.

PROOF Let ε > 0. There is some N such that for all n > N we have

|f (x)− fn(x)| < ε for all x in [a,b].

Thus, if n > N we have∣∣∣∣
∫ b

a

f (x)dx −
∫ b

a

fn(x) dx

∣∣∣∣ =
∣∣∣∣
∫ b

a

[f (x)− fn(x)] dx
∣∣∣∣

≤
∫ b

a

|f (x)− fn(x)| dx

≤
∫ b

a

ε dx

= ε(b − a).

Since this is true for any ε > 0, it follows that∫ b

a

f = lim
n→∞

∫ b

a

fn.

The treatment of continuity is only a little more difˇcult, involving an
\ε/3-argument," a three-step estimate of |f (x)− f (x + h)|. If {fn} is a sequence
of continuous functions which converges uniformly to f , then there is some n such
that

(1) |f (x)− fn(x)| < ε

3
,

(2) |f (x + h)− fn(x + h)| < ε

3
.

Moreover, since fn is continuous, for sufˇciently small h we have

(3) |fn(x)− fn(x + h)| < ε

3
.

It will follow from (1), (2), and (3) that |f (x)−f (x+h)| < ε. In order to obtain (3),
however, we must restrict the size of |h| in a way that cannot be predicted until n
has already been chosen; it is therefore quite essential that there be some ˇxed n
which makes (2) true, no matter how small |h| may be|it is precisely at this point
that uniform convergence enters the proof.

THEOREM 2 Suppose that {fn} is a sequence of functions which are continuous on [a, b], and
that {fn} converges uniformly on [a, b] to f . Then f is also continuous on [a, b].

PROOF For each x in [a, b] we must prove that f is continuous at x. We will deal only
with x in (a, b); the cases x = a and x = b require the usual simple modiˇcations.



496 Infinite Sequences and Infinite Series

Let ε > 0. Since {fn} converges uniformly to f on [a, b], there is some n such
that

|f (y)− fn(y)| < ε

3
for all y in [a, b].

In particular, for all h such that x + h is in [a, b], we have

(1) |f (x)− fn(x)| < ε

3
,

(2) |f (x + h)− fn(x + h)| < ε

3
.

Now fn is continuous, so there is some δ > 0 such that for |h| < δ we have

(3) |fn(x)− fn(x + h)| < ε

3
.

Thus, if |h| < δ, then

|f (x + h)− f (x)|
= |f (x + h)− fn(x + h)+ fn(x + h)− fn(x)+ fn(x)− f (x)|
≤ |f (x + h)− fn(x + h)| + |fn(x + h)− fn(x)| + |fn(x)− f (x)|
<
ε

3
+ ε

3
+ ε

3
= ε.

This proves that f is continuous at x.

F I G U R E 8

After the two noteworthy successes provided by Theorem 1 and Theorem 2,
the situation for differentiability turns out to be very disappointing. If each fn is
differentiable, and if {fn} converges uniformly to f , it is still not necessarily true
that f is differentiable. For example, Figure 8 shows that there is a sequence of
differentiable functions {fn} which converges uniformly to the function f (x) = |x|.
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Even if f is differentiable, it may not be true that

f ′(x) = lim
n→∞ fn

′(x);

this is not at all surprising if we re�ect that a smooth function can be approximated
by very rapidly oscillating functions. For example (Figure 9), if

fn(x) = 1
n

sin(n2x),

then {fn} converges uniformly to the function f (x) = 0, but

fn
′(x) = n cos(n2x),

and lim
n→∞ n cos(n2x) does not always exist (for example, it does not exist if x = 0).

F I G U R E 9

Despite such examples, the Fundamental Theorem of Calculus practically guar-
antees that some sort of theorem about derivatives will be a consequence of The-
orem 1; the crucial hypothesis is that {fn′} converge uniformly (to some continuous
function).

THEOREM 3 Suppose that {fn} is a sequence of functions which are differentiable on [a, b],
with integrable derivatives fn ′, and that {fn} converges (pointwise) to f . Suppose,
moreover, that {fn′} converges uniformly on [a, b] to some continuous function g.
Then f is differentiable and

f ′(x) = lim
n→∞ fn

′(x).

PROOF Applying Theorem 1 to the interval [a, x], we see that for each x we have∫ x

a

g = lim
n→∞

∫ x

a

fn
′

= lim
n→∞[fn(x)− fn(a)]

= f (x)− f (a).
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Since g is continuous, it follows that f ′(x) = g(x) = lim
n→∞ fn

′(x) for all x in the

interval [a, b].

Now that the basic facts about uniform limits have been established, it is clear
how to treat functions deˇned as inˇnite sums,

f (x) = f1(x)+ f2(x)+ f3(x)+ · · · .
This equation means that

f (x) = lim
n→∞ f1(x)+ · · · + fn(x);

our previous theorems apply when the new sequence

f1, f1 + f2, f1 + f2 + f3, . . .

converges uniformly to f . Since this is the only case we shall ever be interested
in, we single it out with a deˇnition.

DEFINITION The series
∞∑
n=1

fn converges uniformly (more formally: the sequence {fn} is

uniformly summable) to f on A, if the sequence

f1, f1 + f2, f1 + f2 + f3, . . .

converges uniformly to f on A.

We can now apply each of Theorems 1, 2, and 3 to uniformly convergent series;
the results may be stated in one common corollary.

COROLLARY Let
∞∑
n=1

fn converge uniformly to f on [a, b].

(1) If each fn is continuous on [a, b], then f is continuous on [a, b].
(2) If f and each fn is integrable on [a, b], then∫ b

a

f =
∞∑
n=1

∫ b

a

fn.

Moreover, if
∞∑
n=1

fn converges (pointwise) to f on [a, b], each fn has an integrable

derivative fn ′ and
∞∑
n=1

fn
′ converges uniformly on [a,b] to some continuous func-

tion, then

(3) f ′(x) =
∞∑
n=1

fn
′(x) for all x in [a,b].
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PROOF (1) If each fn is continuous, then so is each f1+· · ·+fn, and f is the uniform limit
of the sequence f1, f1 + f2, f1 + f2 + f3, . . . , so f is continuous by Theorem 2.

(2) Since f1, f1 +f2, f1 +f2 +f3, . . . converges uniformly to f , it follows from
Theorem 1 that ∫ b

a

f = lim
n→∞

∫ b

a

(f1 + · · · + fn)

= lim
n→∞

(∫ b

a

f1 + · · · +
∫ b

a

fn

)

=
∞∑
n=1

∫ b

a

fn.

(3) Each function f1 + · · · + fn is differentiable, with derivative f1
′ + · · · + fn

′,
and f1

′, f1
′ +f2

′, f1
′ +f2

′ +f3
′, . . . converges uniformly to a continuous function,

by hypothesis. It follows from Theorem 3 that

f ′(x) = lim
n→∞[f1

′(x)+ · · · + fn
′(x)]

=
∞∑
n=1

fn
′(x).

At the moment this corollary is not very useful, since it seems quite difˇcult to
predict when the sequence f1, f1+f2, f1+f2+f3, . . . will converge uniformly. The
most important condition which ensures such uniform convergence is provided by
the following theorem; the proof is almost a triviality because of the cleverness
with which the very simple hypotheses have been chosen.

THEOREM 4

(THE WEIERSTRASS M-TEST)

Let {fn} be a sequence of functions deˇned on A, and suppose that {Mn} is a
sequence of numbers such that

|fn(x)| ≤ Mn for all x in A.

Suppose moreover that
∞∑
n=1

Mn converges. Then for each x in A the series
∞∑
n=1

fn(x)

converges (in fact, it converges absolutely), and
∞∑
n=1

fn converges uniformly on A

to the function

f (x) =
∞∑
n=1

fn(x).
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PROOF For each x in A the series
∞∑
n=1

|fn(x)| converges, by the comparison test; conse-

quently
∞∑
n=1

fn(x) converges (absolutely). Moreover, for all x in A we have

∣∣ f (x)− [f1(x)+ · · · + fn(x)]
∣∣ = ∣∣∣∣ ∞∑

n=N+1

fn(x)

∣∣∣∣
≤

∞∑
n=N+1

|fn(x)|

≤
∞∑

n=N+1

Mn.

Since
∞∑
n=1

Mn converges, the number
∞∑

n=N+1

Mn can be made as small as desired,

by choosing N sufˇciently large.

F I G U R E 1 0

The following sequence {fn} illustrates a simple application of the Weierstrass
M-test. Let {x} denote the distance from x to the nearest integer (the graph of
f (x) = {x} is illustrated in Figure 10). Now deˇne

fn(x) = 1
10n

{10nx}.

The functions f1 and f2 are shown in Figure 11 (but to make the drawings simpler,
10n has been replaced by 2n). This sequence of functions has been deˇned so that
the Weierstrass M-test automatically applies: clearly

FI G U R E 1 1
|fn(x)| ≤ 1

10n
for all x,
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and
∞∑
n=1

1/10n converges. Thus
∞∑
n=1

fn converges uniformly; since each fn is con-

tinuous, the corollary implies that the function

f (x) =
∞∑
n=1

fn(x) =
∞∑
n=1

1
10n

{10nx}

is also continuous. Figure 12 shows the graph of the ˇrst few partial sums f1 +
· · · + fn. As n increases, the graphs become harder and harder to draw, and

the inˇnite sum
∞∑
n=1

fn is quite undrawable, as shown by the following theorem

(included mainly as an interesting sidelight, to be skipped if you ˇnd the going too
rough).

THEOREM 5 The function

f (x) =
∞∑
n=1

1
10n

{10nx}

is continuous everywhere and differentiable nowhere!

PROOF We have just shown that f is continuous; this is the only part of the proof which
uses uniform convergence. We will prove that f is not differentiable at a, for
any a, by the straightforward method of exhibiting a particular sequence {hm}
approaching 0 for which

lim
m→∞

f (a + hm)− f (a)

hm

does not exist. It obviously sufˇces to consider only those numbers a satisfying
0 < a ≤ 1.

Suppose that the decimal expansion of a is

a = 0.a1a2a3a4 . . . .

Let hm = 10−m if am �= 4 or 9, but let hm = −10−m if am = 4 or 9 (the reason for
these two exceptions will appear soon). Then

f (a + hm)− f (a)

hm
=

∞∑
n=1

1
10n

· {10n(a + hm)} − {10na}
±10−m

=
∞∑
n=1

±10m−n[{10n(a + hm)} − {10na}].

This inˇnite series is really a ˇnite sum, because if n ≥ m, then 10nhm is an integer,
so

{10n(a + hm)} − {10na} = 0.

On the other hand, for n < m we can write

10na = integer + 0.an+1an+2an+3 . . . am . . .

10n(a + hm) = integer + 0.an+1an+2an+3 . . . (am ± 1) . . .
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(in order for the second equation to be true it is essential that we choose hm =
−10−m when am = 9). Now suppose that

0.an+1an+2an+3 . . . am · · · ≤ 1
2 .

Then we also have

0.an+1an+2an+3 . . . (am ± 1) · · · ≤ 1
2

(in the special case m = n + 1 the second equation is true because we chose
hm = −10−m when am = 4). This means that

{10n(a + hm)} − {10na} = ±10n−m,

and exactly the same equation can be derived when 0.an+1an+2an+3 . . . >
1
2 . Thus,

for n < m we have

10m−n[{10n(a + hm)} − {10na}] = ±1.

In other words,
f (a + hm)− f (a)

hm

is the sum of m − 1 numbers, each of which is ±1. Now adding +1 or −1 to a
number changes it from odd to even, and vice versa. The sum of m− 1 numbers
each ±1 is therefore an even integer if m is odd, and an odd integer if m is even.
Consequently the sequence of ratios

f (a + hm)− f (a)

hm

cannot possibly converge, since it is a sequence of integers which are alternately
odd and even.

In addition to its role in the previous theorem, the Weierstrass M-test is an ideal
tool for analyzing functions which are very well behaved. We will give special
attention to functions of the form

f (x) =
∞∑
n=0

an(x − a)n,

which can also be described by the equation

f (x) =
∞∑
n=0

fn(x),

for fn(x) = an(x − a)n. Such an inˇnite sum, of functions which depend onlyFI G U R E 1 2
on powers of (x − a), is called a power series centered at a. For the sake of
simplicity, we will usually concentrate on power series centered at 0,

f (x) =
∞∑
n=0

anx
n.
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One especially important group of power series are those of the form
∞∑
n=0

f (n)(a)

n!
(x − a)n,

where f is some function which has derivatives of all orders at a; this series is
called the Taylor series for f at a. Of course, it is not necessarily true that

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n;

this equation holds only when the remainder terms satisfy lim
n→∞Rn,a(x) = 0.

We already know that a power series
∞∑
n=0

anx
n does not necessarily converge for

all x. For example, the power series

x − x3

3
+ x5

5
− x7

7
+ · · ·

converges only for |x| ≤ 1, while the power series

x − x2

2
+ x3

3
− x4

4
+ x5

5
+ · · ·

converges only for −1 < x ≤ 1. It is even possible to produce a power series which
converges only for x = 0. For example, the power series

∞∑
n=0

n! xn

does not converge for x �= 0; indeed, the ratios

(n+ 1)! (xn+1)

n! xn
= (n+ 1)x

are unbounded for any x �= 0. If a power series
∞∑
n=0

anx
n does converge for

some x0 �= 0 however, then a great deal can be said about the series
∞∑
n=0

anx
n for

|x| < |x0|.

THEOREM 6 Suppose that the series

f (x0) =
∞∑
n=0

anx0
n

converges, and let a be any number with 0 < a < |x0|. Then on [−a,a] the series

f (x) =
∞∑
n=0

anx
n
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converges uniformly (and absolutely). Moreover, the same is true for the series

g(x) =
∞∑
n=1

nanx
n−1.

Finally, f is differentiable and

f ′(x) =
∞∑
n=1

nanx
n−1

for all x with |x| < |x0|.

PROOF Since
∞∑
n=0

anx0
n converges, the terms anx0

n approach 0. Hence they are surely

bounded: there is some number M such that

|anx0
n| = |an| · |x0

n| ≤ M for all n.

Now if x is in [−a,a], then |x| ≤ |a|, so

|anxn| = |an| · |xn|
≤ |an| · |an|
= |an| · |x0|n ·

∣∣∣∣ ax0

∣∣∣∣n (this is the clever step)

≤ M

∣∣∣∣ ax0

∣∣∣∣n .
But |a/x0| < 1, so the (geometric) series

∞∑
n=0

M

∣∣∣∣ ax0

∣∣∣∣n = M

∞∑
n=0

∣∣∣∣ ax0

∣∣∣∣n
converges. Choosing M · |a/x0|n as the number Mn in the Weierstrass M-test, it

follows that
∞∑
n=0

anx
n converges uniformly on [−a, a].

To prove the same assertion for g(x) =
∞∑
n=1

nanx
n−1 notice that

|nanxn−1| = n|an| · |xn−1|
≤ n|an| · |an−1|
= |an|

|a| · |x0|n n
∣∣∣∣ ax0

∣∣∣∣n
≤ M

|a| n
∣∣∣∣ ax0

∣∣∣∣n .
Since |a/x0| < 1, the series

∞∑
n=1

M

|a| n
∣∣∣∣ ax0

∣∣∣∣n = M

|a|
∞∑
n=1

n

∣∣∣∣ ax0

∣∣∣∣n
converges (this fact was proved in Chapter 23 as an application of the ratio test).
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Another appeal to the Weierstrass M-test proves that
∞∑
n=1

nanx
n−1 converges uni-

formly on [−a, a].
Finally, our corollary proves, ˇrst that g is continuous, and then that

f ′(x) = g(x) =
∞∑
n=1

nanx
n−1 for x in [−a, a].

Since we could have chosen any number a with 0 < a < |x0|, this result holds for
all x with |x| < |x0|.

We are now in a position to manipulate power series with ease. Most algebraic
manipulations are fairly straightforward consequences of general theorems about

inˇnite series. For example, suppose that f (x) =
∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n,

where the two power series both converge for some x0. Then for |x| < |x0| we
have ∞∑

n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(anx
n + bnx

n) =
∞∑
n=0

(an + bn)x
n.

So the series h(x) =
∞∑
n=0

(an + bn)x
n also converges for |x| < |x0|, and h = f + g

for these x.
The treatment of products is just a little more involved. If |x| < |x0|, then we

know that the series
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n converge absolutely. So it follows from

Theorem 23-9 that the product
∞∑
n=0

anx
n ·

∞∑
n=0

bnx
n is given by

∞∑
i=0

∞∑
j=0

aix
ibjx

j ,

where the elements aixibjxj are arranged in any order. In particular, we can
choose the arrangement

a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + · · ·

which can be written as
∞∑
n=0

cnx
n for cn =

n∑
k=0

akbn−k.

This is the \Cauchy product" that was introduced in Problem 23-8. Thus, the

Cauchy product h(x) =
∞∑
n=0

cnx
n also converges for |x| < |x0| and h = fg for

these x.
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Finally, suppose that f (x) =
∞∑
n=0

anx
n, where a0 �= 0, so that f (0) = a0 �= 0.

Then we can try to ˇnd a power series
∞∑
n=0

bnx
n which represents 1/f . This means

that we want to have
∞∑
n=0

anx
n ·

∞∑
n=0

bnx
n = 1 = 1 + 0 · x + 0 · x2 + · · · .

Since the left side of this equation will be given by the Cauchy product, we want
to have

a0b0 = 1
a0b1 + a1b0 = 0
a0b2 + a1b1 + a2b0 = 0
. . .

Since a0 �= 0, we can solve the ˇrst of these equations for b0. Then we can solve

the second for b1, etc. Of course, we still have to prove that the new series
∞∑
n=0

bnx
n

does converge for some x �= 0. This is left as an exercise (Problem 17).
For derivatives, Theorem 6 gives us all the information we need. In particular,

when we apply Theorem 6 to the inˇnite series

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− · · · ,

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− · · · ,

ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ · · · ,

we get precisely the results which are expected. Each of these converges for any x0,
hence the conclusions of Theorem 6 apply for any x:

sin′(x) = 1 − 3x2

3!
+ 5x4

5!
− · · · = cos x,

cos′(x) = − 2x
2!

+ 4x3

4!
− 6x5

6!
+ · · · = − sin x,

exp′(x) = 1 + 2x
2!

+ 3x2

3!
+ · · · = exp(x).

For the functions arctan and f (x) = log(1+x) the situation is only slightly more
complicated. Since the series

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · ·



24. Uniform Convergence and Power Series 507

converges for x0 = 1, it also converges for |x| < 1, and

arctan′(x) = 1 − x2 + x4 − x6 + · · · = 1
1 + x2 for |x| < 1.

In this case, the series happens to converge for x = −1 also. However, the formula
for the derivative is not correct for x = 1 or x = −1; indeed the series

1 − x2 + x4 − x6 + · · ·
diverges for x = 1 and x = −1. Notice that this does not contradict Theorem 6,
which proves that the derivative is given by the expected formula only for |x| < |x0|.

Since the series

log(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− · · ·

converges for x0 = 1, it also converges for |x| < 1, and

1
1 + x

= log′(1 + x) = 1 − x + x2 − x3 + · · · for |x| < 1.

In this case, the original series does not converge for x = −1; moreover, the
differentiated series does not converge for x = 1.

All the considerations which apply to a power series will automatically apply to
its derivative, at the points where the derivative is represented by a power series.
If

f (x) =
∞∑
n=0

anx
n

converges for all x in some interval (−R,R), then Theorem 6 implies that

f ′(x) =
∞∑
n=1

nanx
n−1

for all x in (−R,R). Applying Theorem 6 once again we ˇnd that

f ′′(x) =
∞∑
n=2

n(n− 1)anxn−2,

and proceeding by induction we ˇnd that

f (k)(x) =
∞∑
n=k

n(n− 1) · · · · · (n− k + 1)anxn−k.

Thus, a function deˇned by a power series which converges in some interval
(−R,R) is automatically inˇnitely differentiable in that interval. Moreover, the
previous equation implies that

f (k)(0) = k! ak,

so that

ak = f (k)(0)
k!

.
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In other words, a convergent power series centered at 0 is always the Taylor series at 0 of the

function which it defines.
On this happy note we could easily end our study of power series and Taylor

series. A careful assessment of our situation will reveal some unexplained facts,
however.

The Taylor series of sin, cos, and exp are as satisfactory as we could desire;
they converge for all x, and can be differentiated term-by-term for all x. The
Taylor series of the function f (x) = log(1 + x) is slightly less pleasing, because it
converges only for −1 < x ≤ 1, but this deˇciency is a necessary consequence of
the basic nature of power series. If the Taylor series for f converged for any x0
with |x0| > 1, then it would converge on the interval (−|x0|, |x0|), and on this
interval the function which it deˇnes would be differentiable, and thus continuous.
But this is impossible, since it is unbounded on the interval (−1, 1), where it equals
log(1 + x).

The Taylor series for arctan is more difˇcult to comprehend|there seems to
be no possible excuse for the refusal of this series to converge when |x| > 1. This
mysterious behavior is exempliˇed even more strikingly by the function f (x) =
1/(1 + x2), an inˇnitely differentiable function which is the next best thing to a
polynomial function. The Taylor series of f is given by

f (x) = 1
1 + x2 = 1 − x2 + x4 − x6 + x8 − · · · .

If |x| ≥ 1 the Taylor series does not converge at all. Why? What unseen obstacle
prevents the Taylor series from extending past 1 and −1? Asking this sort of
question is always dangerous, since we may have to settle for an unsympathetic
answer: it happens because it happens|that's the way things are! In this case
there does happen to be an explanation, but this explanation is impossible to give
at the present time; although the question is about real numbers, it can be answered
intelligently only when placed in a broader context. It will therefore be necessary
to devote two chapters to quite new material before completing our discussion of
Taylor series in Chapter 27.

PROBLEMS

1. For each of the following sequences {fn}, determine the pointwise limit of
{fn} (if it exists) on the indicated interval, and decide whether {fn} converges
uniformly to this function.

(i) fn(x) = n
√
x, on [0, 1].

(ii) fn(x) =
{

0, x ≤ n

x − n, x ≥ n,
on [a, b], and on R.

(iii) fn(x) = ex

xn
, on (1,∞).

(iv) fn(x) = e−nx2 , on [−1,1].

(v) fn(x) = e−x2

n
, on R.



24. Uniform Convergence and Power Series 509

2. This problem asks for the same information as in Problem 1, but the functions
are not so easy to analyze. Some hints are given at the end.

(i) fn(x) = xn − x2n on [0,1].

(ii) fn(x) = nx

1 + n+ x
on [0,∞).

(iii) fn(x) =
√
x2 + 1

n2 on [a,∞), a > 0.

(iv) fn(x) =
√
x2 + 1

n2 on R.

(v) fn(x) =
√
x + 1

n
− √

x on [a,∞), a > 0.

(vi) fn(x) =
√
x + 1

n
− √

x on R.

(vii) fn(x) = n

(√
x + 1

n
− √

x

)
on [a,∞), a > 0.

(viii) fn(x) = n

(√
x + 1

n
− √

x

)
on [0,∞).

Hints: (i) For each n, ˇnd the maximum of |f −fn| on [0,1]. (ii) For each n,
consider |f (x) − fn(x)| for x large. (iii) Express f (x)− fn(x) as a fraction
and estimate |f (x) − fn(x)| for x ≥ a. (iv) Give a separate estimate of
|f (x)− fn(x)| for small |x|. (vii) Use (v).

3. Find the Taylor series at 0 for each of the following functions.

(i) f (x) = 1
x − a

, a �= 0.

(ii) f (x) = log(x − a), a �= 0.

(iii) f (x) = 1√
1 − x

= (1 − x)−1/2. (Use Problem 20-7.)

(iv) f (x) = 1√
1 − x2

.

(v) f (x) = arcsin x.

4. Find each of the following inˇnite sums.

(i) 1 − x + x2

2!
− x3

3!
+ x4

4!
− · · · .

(ii) 1 − x3 + x6 − x9 + · · · . Hint: What is 1 − x + x2 − x3 + · · · ?

(iii)
x2

2
− x3

3 · 2
+ x4

4 · 3
− x5

5 · 4
+ · · · for |x| < 1. Hint: Differentiate.
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5. Evaluate the following inˇnite sums. (In most cases they are f (a) where a
is some obvious number and f (x) is given by some power series. To evalu-
ate the various power series, manipulate them until some well-known power
series emerge.)

(i)
∞∑
n=0

(−1)n22nπ2n

(2n)!
.

(ii)
∞∑
n=0

1
(2n)!

.

(iii)
∞∑
n=0

1
2n+ 1

(
1
2

)2n+1

(iv)
∞∑
n=0

n

2n
.

(v)
∞∑
n=0

1
3n(n+ 1)

.

(vi)
∞∑
n=0

2n+ 1
2nn!

.

6. If f (x) = (sin x)/x for x �= 0 and f (0) = 1, ˇnd f (k)(0). Hint: Find the
power series for f .

7. In this problem we deduce the binomial series (1+x)α =
∞∑
n=0

(
α

n

)
xn, |x| < 1

without all the work of Problem 23-18, although we will use a fact established

in part (a) of that problem|the series f (x) =
∞∑
n=0

(
α

n

)
xn does converge for

|x| < 1.

(a) Prove that (1 + x)f ′(x) = αf(x) for |x| < 1.
(b) Now show that any function f satisfying part (a) is of the form f (x) =

c(1 + x)α for some constant c, and use this fact to establish the binomial
series. Hint: Consider g(x) = f (x)/(1 + x)α.

8. Prove that the series ∞∑
n=1

x

n(1 + nx2)

converges uniformly on R.

9. (a) Prove that the series
∞∑
n=0

2n sin
1

3nx

converges uniformly on [a,∞) for a > 0. Hint: lim
h→0

(sin h)/h = 1.



24. Uniform Convergence and Power Series 511

(b) By considering the sum from N to ∞ for x = 2/(π3N), show that the
series does not converge uniformly on (0,∞).

10. (a) Prove that the series

f (x) =
∞∑
n=0

nx

1 + n4x2

converges uniformly on [a,∞) for a > 0. Hint: First ˇnd the maximum
of nx/(1 + n4x2) on [0,∞).

(b) Show that

f

(
1
N

)
≥ N

2

∑
n≥√

N

1
n3 ,

and by using an integral to estimate the sum, show that f
(

1
N

)
≥ 1/4.

Conclude that the series does not converge uniformly on R.
(c) What about the series

∞∑
n=0

nx

1 + n5x2 ?

11. (a) Use Problem 15-33 and the method of proof used for Dirichlet's test
(Problem 23-19) to obtain a uniform Cauchy condition for the series

∞∑
n=1

sin nx
n

uniformly on [ε,2π − ε], ε > 0, and conclude that the series converges
uniformly there.

(b) For x = π/N , with N large, show that∣∣∣∣∣
2N∑
k=N

sin kx

∣∣∣∣∣ =
∣∣∣∣∣
N∑
k=0

sin kx

∣∣∣∣∣ ≥ N

π
.

Conclude that ∣∣∣∣∣
2N∑
k=N

sin kx
k

∣∣∣∣∣ ≥ 1
2π
,

and that the series does not converge uniformly on [0, 2π].

12. (a) Suppose that f (x) =
∞∑
n=0

anx
n converges for all x in some interval

(−R,R) and that f (x) = 0 for all x in (−R,R). Prove that each an = 0.
(If you remember the formula for an this is easy.)

(b) Suppose we know only that f (xn) = 0 for some sequence {xn} with
lim
n→∞ xn = 0. Prove again that each an = 0. Hint: First show that

f (0) = a0 = 0; then that f ′(0) = a1 = 0, etc.
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This result shows that if f (x) = e−1/x2 sin 1/x for x �= 0, then f cannot
possibly be written as a power series. It also shows that a function deˇned
by a power series cannot be 0 for x ≤ 0 but nonzero for x > 0|thus a
power series cannot describe the motion of a particle which has remained
at rest until time 0, and then begins to move!

(c) Suppose that f (x) =
∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n converge for all x

in some interval containing 0 and that f (tm) = g(tm) for some sequence
{tm} converging to 0. Show that an = bn for each n. In particular,
a function can have only one representation as a power series centered at 0.

13. Prove that if f (x) =
∞∑
n=0

anx
n is an even function, then an = 0 for n odd,

and if f is an odd function, then an = 0 for n even.

14. Show that the power series for f (x) = log(1 − x) converges only for −1 ≤
x < 1, and that the power series for g(x) = log[(1 + x)/(1 − x)] converges
only for x in (−1,1).

*15. Recall that the Fibonacci sequence {an} is deˇned by a1 = a2 = 1, an+1 =
an + an−1.

(a) Show that an+1/an ≤ 2.
(b) Let

f (x) =
∞∑
n=1

anx
n−1 = 1 + x + 2x2 + 3x3 + · · · .

Use the ratio test to prove that f (x) converges if |x| < 1/2.
(c) Prove that if |x| < 1/2, then

f (x) = −1
x2 + x − 1

.

Hint: This equation can be written f (x)− xf (x)− x2f (x) = 1.
(d) Use the partial fraction decomposition for 1/(x2 +x−1), and the power

series for 1/(x − a), to obtain another power series for f .
(e) It follows from Problem 12 that the two power series obtained for f must

be the same. Use this fact to show that

an =

(
1 +

√
5

2

)n
−
(

1 −
√

5
2

)n
√

5
.

16. Let f (x) =
∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n. Suppose we merely knew that

f (x)g(x) =
∞∑
n=0

cnx
n for some cn, but we didn't know how to multiply series
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in general. Use Leibniz's formula (Problem 10-18) to show directly that this
series for fg must indeed be the Cauchy product of the series for f and g.

17. Suppose that f (x) =
∞∑
n=0

anx
n converges for some x0, and that a0 �= 0;

for simplicity, we'll assume that a0 = 1. Let {bn} be the sequence deˇned
recursively by

b0 = 1

bn = −
n−1∑
k=0

bkan−k.

The aim of this problem is to show that
∞∑
n=0

bnx
n also converges for some

x �= 0, so that it represents 1/f for small enough |x|.
(a) If all |anx0

n| ≤ M, show that

|bnxn| ≤ M

n−1∑
k=0

|bkxk|.

(b) Choose M ≥
√

2 with all |anx0
n| ≤ M. Show that

|bnx0
n| ≤ M2n.

(c) Conclude that
∞∑
n=0

bnx
n converges for |x| sufˇciently small.

18. Show that the series
∞∑
n=0

x2n+1

2n + 1
− xn+1

2n+ 2

converges uniformly to 1
2 log(x + 1) on [−a, a] for 0 < a < 1, but that at 1

it converges to log 2 !

*19. Suppose that
∞∑
n=0

an converges. We know that the series f (x) =
∞∑
n=0

anx
n

must converge uniformly on [−a,a] for 0 < a < 1, but it may not converge
uniformly on [−1,1]; in fact, it may not even converge at the point −1
(for example, if f (x) = log(1 + x)). However, a beautiful theorem of Abel
shows that the series does converge uniformly on [0, 1]. Consequently, f is

continuous on [0,1] and, in particular,
∞∑
n=0

an = lim
x→1−

∞∑
n=0

anx
n. Prove Abel's

Theorem by noticing that if |am+· · ·+an| < ε, then |amxm+· · ·+anxn| < ε,
by Abel's Lemma (Problem 19-35).
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20. A sequence {an} is called Abel summable if lim
x→1−

∞∑
n=0

anx
n exists; Prob-

lem 19 shows that a summable sequence is necessarily Abel summable. Find
a sequence which is Abel summable, but which is not summable. Hint: Look
over the list of Taylor series until you ˇnd one which does not converge at 1,
even though the function it represents is continuous at 1.

21. (a) Using Problem 19, ˇnd the following inˇnite sums.

(i)
1

2 · 1
− 1

3 · 2
+ 1

4 · 3
− 1

5 · 4
+ · · · .

(ii) 1 − 1
4 + 1

7 − 1
10 + · · · .

(b) Let
∞∑
n=0

cn be the Cauchy product of two convergent power series
∞∑
n=0

an

and
∞∑
n=0

bn, and suppose merely that
∞∑
n=0

cn converges. Prove that, in fact,

it converges to the product
∞∑
n=0

an ·
∞∑
n=0

bn.

22. (a) Suppose that {fn} is a sequence of bounded (not necessarily continuous)
functions on [a, b] which converge uniformly to f on [a, b]. Prove that
f is bounded on [a, b].

(b) Find a sequence of continuous functions on [a, b] which converge point-
wise to an unbounded function on [a, b].

*23. Suppose that f is differentiable. Prove that the function f ′ is the pointwise
limit of a sequence of continuous functions. (Since we already know exam-
ples of discontinuous derivatives, this provides another example where the
pointwise limit of continuous functions is not continuous.)

24. Find a sequence of integrable functions {fn} which converges to the (nonin-
tegrable) function f that is 1 on the rationals and 0 on the irrationals. Hint:
Each fn will be 0 except at a few points.

25. (a) Prove that if f is the uniform limit of {fn} on [a, b] and each fn is
integrable on [a, b], then so is f . (So one of the hypotheses in Theorem 1
was unnecessary.)

(b) In Theorem 3 we assumed only that {fn} converges pointwise to f . Show
that the remaining hypotheses ensure that {fn} actually converges uni-
formly to f .

(c) Suppose that in Theorem 3 we do not assume {fn} converges to a func-
tion f , but instead assume only that fn(x0) converges for some x0 in
[a, b]. Show that fn does converge (uniformly) to some f (with f ′ = g).

(d) Prove that the series
∞∑
n=1

(−1)n

x + n
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converges uniformly on [0,∞).

26. Suppose that fn are continuous functions on [0,1] that converge uniformly
to f . Prove that

lim
n→∞

∫ 1−1/n

0
fn =

∫ 1

0
f.

Is this true if the convergence isn't uniform?

27. (a) Suppose that {fn} is a sequence of continuous functions on [a, b] which
approach 0 pointwise. Suppose moreover that we have fn(x) ≥ fn+1(x)

≥ 0 for all n and all x in [a, b]. Prove that {fn} actually approaches 0
uniformly on [a, b]. Hint: Suppose not, choose an appropriate sequence
of points xn in [a, b], and apply the Bolzano-Weierstrass theorem.

(b) Prove Dini's Theorem: If {fn} is a nonincreasing sequence of continuous
functions on [a, b] which approach the continuous function f pointwise,
then {fn} also approaches f uniformly on [a, b]. (The same result holds
if {fn} is a nondecreasing sequence.)

(c) Does Dini's Theorem hold if f isn't continuous? How about if [a, b] is
replaced by the open interval (a, b)?

28. (a) Suppose that {fn} is a sequence of continuous functions on [a, b] that
converges uniformly to f . Prove that if xn approaches x, then fn(xn)

approaches f (x).
(b) Is this statement true without assuming that the fn are continuous?
(c) Prove the converse of part (a): If f is continuous on [a, b] and {fn} is

a sequence with the property that fn(xn) approaches f (x) whenever xn
approaches x, then fn converges uniformly to f on [a, b]. Hint: If not,
there is an ε > 0 and a sequence xn with |fn(xn)− f(xn)| > ε. Then use
the Bolzano-Weierstrass theorem.

29. This problem outlines a completely different approach to the integral; con-
sequently, it is unfair to use any facts about integrals learned previously.

(a) Let s be a step function on [a, b], so that s is constant on (ti−1, ti) for

some partition {t0, . . . , tn} of [a, b]. Deˇne
∫ b

a

s as
n∑
i=1

si ·(ti−ti−1)where

si is the (constant) value of s on (ti−1, ti). Show that this deˇnition does
not depend on the partition {t0, . . . , tn}.

(b) A function f is called a regulated function on [a, b] if it is the uniform
limit of a sequence of step functions {sn} on [a, b]. Show that in this
case there is, for every ε > 0, some N such that for m, n > N we have
|sn(x)− sm(x)| < ε for all x in [a, b].

(c) Show that the sequence of numbers
{∫ b

a

sn

}
will be a Cauchy sequence.

(d) Suppose that {tn} is another sequence of step functions on [a, b] which
converges uniformly to f . Show that for every ε > 0 there is an N such
that for n > N we have |sn(x)− tn(x)| < ε for x in [a, b].
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(e) Conclude that lim
n→∞

∫ b

a

sn = lim
n→∞

∫ b

a

tn. This means that we can define∫ b

a

f to be lim
n→∞ sn for any sequence of step functions {sn} converging

uniformly to f . The only remaining question is: Which functions are
regulated? Here is a partial answer.

*(f ) Prove that a continuous function is regulated. Hint: To ˇnd a step func-
tion s on [a, b] with |f (x)− s(x)| < ε for all x in [a, b], consider all y
for which there is such a step function on [a, y].

*30. Find a sequence {fn} approaching f uniformly on [0, 1] for which
lim
n→∞ (length of fn on [0, 1]) �= length of f on [0, 1]. (Length is deˇned

in Problem 13-25, but the simplest example will involve functions the length
of whose graphs will be obvious.)



CHAPTER 25 COMPLEX NUMBERS

With the exception of the last few paragraphs of the previous chapter, this book
has presented unremitting propaganda for the real numbers. Nevertheless, the
real numbers do have a great deˇciency|not every polynomial function has a
root. The simplest and most notable example is the fact that no number x can
satisfy x2 + 1 = 0. This deˇciency is so severe that long ago mathematicians
felt the need to \invent" a number i with the property that i2 + 1 = 0. For a
long time the status of the \number" i was quite mysterious: since there is no
number x satisfying x2 + 1 = 0, it is nonsensical to say \let i be the number
satisfying i2 + 1 = 0." Nevertheless, admission of the \imaginary" number i to
the family of numbers seemed to simplify greatly many algebraic computations,
especially when \complex numbers" a + bi (for a and b in R) were allowed, and
all the laws of arithmetical computation enumerated in Chapter 1 were assumed
to be valid. For example, every quadratic equation

ax2 + bx + c = 0 (a �= 0)

can be solved formally to give

x = −b +
√
b2 − 4ac

2a
or x = −b −

√
b2 − 4ac

2a
.

If b2 −4ac ≥ 0, these formulas give correct solutions; when complex numbers are
allowed the formulas seem to make sense in all cases. For example, the equation

x2 + x + 1 = 0

has no real root, since

x2 + x + 1 = (x + 1
2 )

2 + 3
4 > 0, for all x.

But the formula for the roots of a quadratic equation suggest the \solutions"

x = −1 +
√

−3
2

and x = −1 −
√

−3
2

;

if we understand
√

−3 to mean
√

3 · (−1) =
√

3·
√

−1 =
√

3 i, then these numbers
would be

− 1
2

+
√

3
2
i and − 1

2
−

√
3

2
i.

It is not hard to check that these, as yet purely formal, numbers do indeed satisfy
the equation

x2 + x + 1 = 0.

517
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It is even possible to \solve" quadratic equations whose coefˇcients are themselves
complex numbers. For example, the equation

x2 + x + 1 + i = 0

ought to have the solutions

x = −1 ±
√

1 − 4(1 + i)

2
= −1 ±

√
−3 − 4i
2

,

where the symbol
√

−3 − 4i means a complex number α + βi whose square is
−3 − 4i. In order to have

(α + βi)2 = α2 − β2 + 2αβi = −3 − 4i

we need

α2 − β2 = −3,
2αβ = −4.

These two equations can easily be solved for real α and β; in fact, there are two
possible solutions:

α = 1
β = −2

and
α = −1
β = 2.

Thus the two \square roots" of −3 − 4i are 1 − 2i and −1 + 2i. There is no
reasonable way to decide which one of these should be called

√
−3 − 4i, and which

−
√

−3 − 4i; the conventional usage of
√
x makes sense only for real x ≥ 0, in

which case
√
x denotes the (real) nonnegative root. For this reason, the solution

x = −1 ±
√

−3 − 4i
2

must be understood as an abbreviation for:

x = −1 + r

2
, where r is one of the square roots of −3 − 4i.

With this understanding we arrive at the solutions

x = −1 + 1 − 2i
2

= −i,

x = −1 − 1 + 2i
2

= −1 + i;
as you can easily check, these numbers do provide formal solutions for the equation

x2 + x + 1 + i = 0.

For cubic equations complex numbers are equally useful. Every cubic equation

ax3 + bx2 + cx + d = 0 (a �= 0)

with real coefˇcients a, b, c, and d, has, as we know, a real root α, and if we divide
ax3+bx2+cx+d by x−α we obtain a second-degree polynomial whose roots are
the other roots of ax3+bx2+cx+d = 0; the roots of this second-degree polynomial
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may be complex numbers. Thus a cubic equation will have either three real roots
or one real root and 2 complex roots. The existence of the real root is guaranteed
by our theorem that every odd degree equation has a real root, but it is not really
necessary to appeal to this theorem (which is of no use at all if the coefˇcients
are complex); in the case of a cubic equation we can, with sufˇcient cleverness,
actually ˇnd a formula for all the roots. The following derivation is presented not
only as an interesting illustration of the ingenuity of early mathematicians, but as
further evidence for the importance of complex numbers (whatever they may be).

To solve the most general cubic equation, it obviously sufˇces to consider only
equations of the form

x3 + bx2 + cx + d = 0.

It is even possible to eliminate the term involving x2, by a fairly straight-forward
manipulation. If we let

x = y − b

3
,

then

x3 = y3 − by2 + b2y

3
− b3

27
,

x2 = y2 − 2by
3

+ b2

9
,

so

0 = x3 + bx2 + cx + d

=
(
y3 − by2 + b2y

3
− b3

27

)
+
(
by2 − 2b2y

3
+ b3

9

)
+
(
cy − bc

3

)
+ d

= y3 +
(
b2

3
− 2b2

3
+ c

)
y +

(
b3

9
− b3

27
− bc

3
+ d

)
.

The right-hand side now contains no term with y2. If we can solve the equation
for y we can ˇnd x; this shows that it sufˇces to consider in the ˇrst place only
equations of the form

x3 + px + q = 0.

In the special case p = 0 we obtain the equation x3 = −q. We shall see later on
that every complex number does have a cube root, in fact it has three, so that this
equation has three solutions. The case p �= 0, on the other hand, requires quite
an ingenious step. Let

(∗) x = w − p

3w
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Then

0 = x3 + px + q =
(
w − p

3w

)3
+ p

(
w − p

3w

)
+ q

= w3 − 3w2p

3w
+ 3wp2

9w2 − p3

27w3 + pw − p2

3w
+ q

= w3 − p3

27w3 + q.

This equation can be written

27(w3)2 + 27q(w3)− p3 = 0,

which is a quadratic equation in w3 (!!).
Thus

w3 =
−27q ±

√
(27)2q2 + 4 · 27p3

2 · 27

= − q

2
±
√
q2

4
+ p3

27
.

Remember that this really means:

w3 = − q

2
+ r, where r is a square root of

q2

4
+ p3

27
.

We can therefore write

w = 3

√√√√−q
2

±
√
q2

4
+ p3

27
;

this equation means that w is some cube root of −q/2+ r, where r is some square
root of q2/4 + p3/27. This allows six possibilities for w, but when these are
substituted into (∗), yielding

x = 3

√√√√−q
2

±
√
q2

4
+ p3

27
− p

3 · 3

√√√√−q
2

±
√
q2

4
+ p3

27

,

it turns out that only 3 different values for x will be obtained! An even more
surprising feature of this solution arises when we consider a cubic equation all of
whose roots are real; the formula derived above may still involve complex numbers
in an essential way. For example, the roots of

x3 − 15x − 4 = 0
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are 4, −2 +
√

3, and −2 −
√

3. On the other hand, the formula derived above
(with p = −15, q = −4) gives as one solution

x = 3
√

2 +
√

4 − 125 − −15

3 · 3
√

2 +
√

4 − 125

= 3
√

2 + 11i + 15

3 · 3
√

2 + 11i
.

Now,

(2 + i)3 = 23 + 3 · 22i + 3 · 2 · i2 + i3

= 8 + 12i − 6 − i

= 2 + 11i,

so one of the cube roots of 2 + 11i is 2 + i. Thus, for one solution of the equation
we obtain

x = 2 + i + 15
6 + 3i

= 2 + i + 15
6 + 3i

· 6 − 3i
6 − 3i

= 2 + i + 90 − 45i
36 + 9

= 4 (!).

The other roots can also be found if the other cube roots of 2 + 11i are known.
The fact that even one of these real roots is obtained from an expression which
depends on complex numbers is impressive enough to suggest that the use of
complex numbers cannot be entirely nonsense. As a matter of fact, the formulas
for the solutions of the quadratic and cubic equations can be interpreted entirely
in terms of real numbers.

Suppose we agree, for the moment, to write all complex numbers as a + bi,
writing the real number a as a + 0i and the number i as 0 + 1i. The laws of
ordinary arithmetic and the relation i2 = −1 show that

(a + bi)+ (c + di) = (a + c)+ (b + d)i

(a + bi) · (c + di) = (ac− bd)+ (ad + bc)i.

Thus, an equation like

(1 + 2i) · (3 + 1i) = 1 + 7i

may be regarded simply as an abbreviation for the two equations

1 · 3 − 2 · 1 = 1,
1 · 1 + 2 · 3 = 7.
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The solution of the quadratic equation ax2 + bx + c = 0 with real coefˇcients
could be paraphrased as follows:

If
{
u2 − v2 = b2 − 4ac,
uv = 0,

(i.e., if (u + vi)2 = b2 − 4ac),

then



a

[(−b+ u

2a

)2

−
( v

2a

)2
]

+ b

[−b+ u

2a

]
+ c = 0,

a

[
2
(−b+ u

2a

)( v
2a

)]
+ b

[v
a

]
= 0,

(
i.e., then a

(−b + u+ vi

2a

)2

+ b

(−b+ u+ vi

2a

)
+ c = 0

)
.

It is not very hard to check this assertion about real numbers without writing
down a single \i," but the complications of the statement itself should convince
you that equations about complex numbers are worthwhile as abbreviations for
pairs of equations about real numbers. (If you are still not convinced, try para-
phrasing the solution of the cubic equation.) If we really intend to use complex
numbers consistently, however, it is going to be necessary to present some reason-
able deˇnition.

One possibility has been implicit in this whole discussion. All mathematical
properties of a complex number a + bi are determined completely by the real
numbers a and b; any mathematical object with this same property may reasonably
be used to deˇne a complex number. The obvious candidate is the ordered pair
(a, b) of real numbers; we shall accordingly define a complex number to be a pair
of real numbers, and likewise define what addition and multiplication of complex
numbers is to mean.

DEFINITION A complex number is an ordered pair of real numbers; if z = (a, b) is a com-
plex number, then a is called the real part of z, and b is called the imaginary
part of z. The set of all complex numbers is denoted by C. If (a, b) and (c, d)
are two complex numbers we deˇne

(a, b)+ (c, d) = (a + c, b + d)

(a, b) · (c, d) = (a · c− b · d, a · d + b · c).
(The + and · appearing on the left side are new symbols being deˇned, while the
+ and · appearing on the right side are the familiar addition and multiplication
for real numbers.)

When complex numbers were ˇrst introduced, it was understood that real num-
bers were, in particular, complex numbers; if our deˇnition is taken seriously this
is not true|a real number is not a pair of real numbers, after all. This difˇculty
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is only a minor annoyance, however. Notice that

(a,0)+ (b,0) = (a + b,0 + 0) = (a + b,0),
(a,0) · (b,0) = (a · b − 0 · 0, a · 0 + 0 · b) = (a · b,0);

this shows that the complex numbers of the form (a,0) behave precisely the same
with respect to addition and multiplication of complex numbers as real numbers
do with their own addition and multiplication. For this reason we will adopt the
convention that (a,0) will be denoted simply by a. The familiar a + bi notation
for complex numbers can now be recovered if one more deˇnition is made.

DEFINITION i = (0,1).

Notice that i2 = (0, 1) · (0, 1) = (−1,0) = −1 (the last equality sign depends
on our convention). Moreover

(a, b) = (a,0)+ (0, b)
= (a,0)+ (b,0) · (0, 1)
= a + bi.

You may feel that our deˇnition was merely an elaborate device for deˇning
complex numbers as \expressions of the form a + bi." That is essentially correct;
it is a ˇrmly established prejudice of modern mathematics that new objects must
be deˇned as something speciˇc, not as \expressions." Nevertheless, it is inter-
esting to note that mathematicians were sincerely worried about using complex
numbers until the modern deˇnition was proposed. Moreover, the precise deˇni-
tion emphasizes one important point. Our aim in introducing complex numbers
was to avoid the necessity of paraphrasing statements about complex numbers in
terms of their real and imaginary parts. This means that we wish to work with
complex numbers in the same way that we worked with rational or real numbers.
For example, the solution of the cubic equation required writing x = w − p/3w,
so we want to know that 1/w makes sense. Moreover, w2 was found by solving a
quadratic equation, which requires numerous other algebraic manipulations. In
short, we are likely to use, at some time or other, any manipulations performed on
real numbers. We certainly do not want to stop each time and justify every step.
Fortunately this is not necessary. Since all algebraic manipulations performed on
real numbers can be justiˇed by the properties listed in Chapter 1, it is only nec-
essary to check that these properties are also true for complex numbers. In most
cases this is quite easy, and these facts will not be listed as formal theorems. For
example, the proof of P1,

[(a, b)+ (c, d)] + (e, f ) = (a, b)+ [(c, d)+ (e, f )]

requires only the application of the deˇnition of addition for complex numbers.
The left side becomes

([a + c] + e, [b + d] + f ),
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and the right side becomes

(a + [c + e], b + [d + f ]);
these two are equal because P1 is true for real numbers. It is a good idea to
check P2{P6 and P8 and P9. Notice that the complex numbers playing the role
of 0 and 1 in P2 and P6 are (0, 0) and (1,0), respectively. It is not hard to ˇgure
out what −(a, b) is, but the multiplicative inverse for (a, b) required in P7 is a little
trickier: if (a, b) �= (0,0), then a2 + b2 �= 0 and

(a, b) ·
(

a

a2 + b2 ,
−b

a2 + b2

)
= (1,0).

This fact could have been guessed in two ways. To ˇnd (x,y) with

(a, b) · (x, y) = (1,0)

it is only necessary to solve the equations

ax − by = 1,
bx + ay = 0.

The solutions are x = a/(a2 + b2), y = −b/(a2 + b2). It is also possible to reason
that if 1/(a + bi) means anything, then it should be true that

1
a + bi

= 1
a + bi

· a − bi

a − bi
= a − bi

a2 + b2 .

Once the existence of inverses has actually been proved (after guessing the inverse
by some method), it follows that this manipulation is really valid; it is the easiest one
to remember when the inverse of a complex number is actually being sought|it
was precisely this trick which we used to evaluate

15
6 + 3i

= 15
6 + 3i

· 6 − 3i
6 − 3i

= 90 − 45i
36 + 9

.

Unlike P1{P9, the rules P10{P12 do not have analogues: it is easy to prove that
there is no set P of complex numbers such that P10{P12 are satisˇed for all complex

numbers. In fact, if there were, then P would have to contain 1 (since 1 = 12) and
also −1 (since −1 = i2), and this would contradict P10. The absence of P10{P12
will not have disastrous consequences, but it does mean that we cannot deˇne
z < w for complex z and w. Also, you may remember that for the real numbers,
P10{P12 were used to prove that 1 + 1 �= 0. Fortunately, the corresponding fact
for complex numbers can be reduced to this one: clearly (1,0)+ (1, 0) �= (0, 0).

Although we will usually write complex numbers in the form a + bi, it is worth
remembering that the set of all complex numbers C is just the collection of all
pairs of real numbers. Long ago this collection was identiˇed with the plane, and
for this reason the plane is often called the \complex plane." The horizontal axis,
which consists of all points (a,0) for a in R, is often called the real axis, and the
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vertical axis is called the imaginary axis. Two important deˇnitions are also related
to this geometric picture.

DEFINITION If z = x + iy is a complex number (with x and y real), then the conjugate z̄
of z is deˇned as

z̄ = x − iy,

and the absolute value or modulus |z| of z is deˇned as

|z| =
√
x2 + y2.

(Notice that x2 +y2 ≥ 0, so that
√
x2 + y2 is deˇned unambiguously; it denotes

the nonnegative real square root of x2 + y2.)

Geometrically, z̄ is simply the re�ection of z in the real axis, while |z| is the
distance from z to (0, 0) (Figure 1). Notice that the absolute value notation forFI G U R E 1

complex numbers is consistent with that for real numbers. The distance between
two complex numbers z and w can be deˇned quite easily as |z−w|. The following
theorem lists all the important properties of conjugates and absolute values.

THEOREM 1 Let z and w be complex numbers. Then

(1) ¯̄z = z.
(2) z̄ = z if and only if z is real (i.e., is of the form a + 0i, for some real

number a).
(3) z+w = z̄+ w̄.
(4) −z = −z̄.
(5) z ·w = z̄ · w̄.

(6) z−1 = (z̄)−1, if z �= 0.
(7) |z|2 = z · z̄.
(8) |z · w| = |z| · |w|.
(9) |z+w| ≤ |z| + |w|.

PROOF Assertions (1) and (2) are obvious. Equations (3) and (5) may be checked by straight-
forward calculations and (4) and (6) may then be proved by a trick:

0 = 0̄ = z + (−z) = z̄+ −z, so −z = −z̄,
1 = 1̄ = z · (z−1) = z̄ · z−1, so z−1 = (z̄)−1.

Equations (7) and (8) may also be proved by a straightforward calculation. The
only difˇcult part of the theorem is (9). This inequality has, in fact, already oc-
curred (Problem 4-9), but the proof will be repeated here, using slightly different
terminology.

It is clear that equality holds in (9) if z = 0 or w = 0. It is also easy to see that (9)
is true if z = λw for any real number λ (consider separately the cases λ > 0 and
λ < 0). Suppose, on the other hand, that z �= λw for any real number λ, and that
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w �= 0. Then, for all real numbers λ,

(∗) 0 < |z − λw|2 = (z− λw) · (z − λw)

= (z− λw) · (z̄ − λw̄)

= zz̄ + λ2ww̄ − λ(wz̄+ zw̄)

= λ2|w|2 + |z|2 − λ(wz̄+ zw̄).

Notice that wz̄+ zw̄ is real, since

wz̄ + zw̄ = w̄ ¯̄z+ z̄ ¯̄w = w̄z+ z̄w = wz̄+ zw̄.

Thus the right side of (∗) is a quadratic equation in λ with real coefˇcients and no
real solutions; its discriminant must therefore be negative. Thus

(wz̄+ zw̄)2 − 4|w|2 · |z|2 < 0;
it follows, since wz̄ + z̄w and |w| · |z| are real numbers, and |w| · |z| ≥ 0, that

(wz̄+ zw̄) < 2|w| · |z|.
From this inequality it follows that

|z+ w|2 = (z+w) · (z̄+ w̄)

= |z|2 + |w|2 + (wz̄+ zw̄)

< |z|2 + |w|2 + 2|w| · |z|
= (|z| + |w|)2,

which implies that
|z +w| < |z| + |w|.

The operations of addition and multiplication of complex numbers both have
important geometric interpretations. The picture for addition is very simple (Fig-
ure 2). Two complex numbers z = (a, b) and w = (c, d) determine a paral-
lelogram having for two of its sides the line segment from (0, 0) to z, and the
line segment from (0, 0) to w; the vertex opposite (0, 0) is z + w (a proof of this
geometric fact is left to you [compare Appendix 1 to Chapter 4]).

The interpretation of multiplication is more involved. If z = 0 or w = 0,
then z · w = 0 (a one-line computational proof can be given, but even this is
unnecessary|the assertion has already been shown to follow from P1{P9), so we
may restrict our attention to nonzero complex numbers. We begin by putting every
nonzero complex number into a special form (compare Appendix 3 to Chapter 4).F I G U R E 2

For any complex number z �= 0 we can write

z = |z| z|z| ;

in this expression, |z| is a positive real number, while∣∣∣∣ z|z|
∣∣∣∣ = |z|

|z| = 1,
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so that z/|z| is a complex number of absolute value 1. Now any complex number
a = x + iy with 1 = |a| = x2 + y2 can be written in the form

a = (cos θ, sin θ) = cos θ + i sin θ

for some number θ . Thus every nonzero complex number z can be written

z = r(cos θ + i sin θ)

for some r > 0 and some number θ . The number r is unique (it equals |z|), but θ
is not unique; if θ0 is one possibility, then the others are θ0 + 2kπ for k in Z|any
one of these numbers is called an argument of z. Figure 3 shows z in terms of rF I G U R E 3
and θ . (To ˇnd an argument θ for z = x + iy we may note that the equation

x + iy = z = |z|(cos θ + i sin θ)

means that

x = |z| cos θ,
y = |z| sin θ.

So, for example, if x > 0 we can take θ = arctan y/x; if x = 0, we can take
θ = π/2 when y > 0 and θ = 3π/2 when y < 0.)

Now the product of two nonzero complex numbers

z = r(cos θ + i sin θ),
w = s(cosφ + i sin φ),

is

z · w = rs(cos θ + i sin θ)(cos φ + i sin φ)
= rs[(cos θ cos φ − sin θ sin φ)+ i(sin θ cos φ + cos θ sin φ)]
= rs[cos(θ + φ)+ i sin(θ + φ)].

Thus, the absolute value of a product is the product of the absolute values of the
factors, while the sum of any argument for each of the factors will be an argument
for the product. For a nonzero complex number

z = r(cos θ + i sin θ)

it is now an easy matter to prove by induction the following very important formula
(sometimes known as De Moivre's Theorem):

zn = |z|n(cosnθ + i sin nθ), for any argument θ of z.

This formula describes zn so explicitly that it is easy to decide just when zn = w:

THEOREM 2 Every nonzero complex number has exactly n complex nth roots.
More precisely, for any complex number w �= 0, and any natural number n,

there are precisely n different complex numbers z satisfying zn = w.

PROOF Let
w = s(cosφ + i sin φ)
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for s = |w| and some number φ. Then a complex number

z = r(cos θ + i sin θ)

satisˇes zn = w if and only if

rn(cos nθ + i sin nθ) = s(cos φ + i sin φ),

which happens if and only if

rn = s,

cos nθ + i sin nθ = cos φ + i sin φ.

From the ˇrst equation it follows that

r = n
√
s,

where n
√
s denotes the positive real nth root of s. From the second equation it

follows that for some integer k we have

θ = θk = φ

n
+ 2kπ

n
.

Conversely, if we choose r = n
√
s and θ = θk for some k, then the number z =

r(cos θ + i sin θ) will satisfy zn = w. To determine the number of nth roots of w,
it is therefore only necessary to determine which such z are distinct. Now any
integer k can be written

k = nq + k′

for some integer q, and some integer k′ between 0 and n− 1. Then

cos θk + i sin θk = cos θk′ + i sin θk′ .

This shows that every z satisfying zn = w can be written

z = n
√
s (cos θk + i sin θk) k = 0, . . . , n− 1.

Moreover, it is easy to see that these numbers are all different, since any two θk for
k = 0, . . . , n− 1 differ by less than 2π .

In the course of proving Theorem 2, we have actually developed a method for
ˇnding the nth roots of a complex number. For example, to ˇnd the cube roots
of i (Figure 4) note that |i| = 1 and that π/2 is an argument for i. The cube roots
of i are thereforeFI G U R E 4

1 ·
[
cos

π

6
+ i sin

π

6

]
,

1 ·
[
cos
(
π

6
+ 2π

3

)
+ i sin

(
π

6
+ 2π

3

)]
= cos

5π
6

+ i sin
5π
6
,

1 ·
[
cos
(
π

6
+ 4π

3

)
+ i sin

(
π

6
+ 4π

3

)]
= cos

3π
2

+ i sin
3π
2
.
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Since

cosπ6 =
√

3
2
, sin

π

6
= 1

2
,

cos
5π
6

= −
√

3
2
, sin

5π
6

= 1
2
,

cos
3π
2

= 0, sin
3π
2

= −1,

the cube roots of i are
√

3 + i

2
,

−
√

3 + i

2
, −i.

In general, we cannot expect to obtain such simple results. For example, to ˇnd
the cube roots of 2 + 11i, note that |2 + 11i| =

√
22 + 112 =

√
125 and that

arctan 11
2 is an argument for 2+11i. One of the cube roots of 2+11i is therefore

6
√

125

[
cos

(
arctan 11

2

3

)
+ i sin

(
arctan 11

2

3

)]

=
√

5

[
cos

(
arctan 11

2

3

)
+ i sin

(
arctan 11

2

3

)]
.

Previously we noted that 2 + i is also a cube root of 2 + 11i. Since |2 + i| =√
22 + 12 =

√
5, and since arctan 1

2 is an argument of 2 + i, we can write this
cube root as

2 + i =
√

5(cos arctan 1
2 + i sin arctan 1

2).

These two cube roots are actually the same number, because

arctan 11
2

3
= arctan

1
2

(you can check this by using the formula in Problem 15-9), but this is hardly the
sort of thing one might notice!

The fact that every complex number has an nth root for all n is just a special
case of a very important theorem. The number i was originally introduced in
order to provide a solution for the equation x2 + 1 = 0. The Fundamental Theorem

of Algebra states the remarkable fact that this one addition automatically provides
solutions for all other polynomial equations: every equation

zn + an−1z
n−1 + · · · + a0 = 0 a0, . . . , an−1 in C

has a complex root!
In the next chapter we shall give an almost complete proof of the Fundamental

Theorem of Algebra; the slight gap left in the text can be ˇlled in as an exercise
(Problem 26-5). The proof of the theorem will rely on several new concepts which
come up quite naturally in a more thorough investigation of complex numbers.
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PROBLEMS

1. Find the absolute value and argument of each of the following.

(i) 3 + 4i.
(ii) (3 + 4i)−1.
(iii) (1 + i)5.
(iv) 7

√
3 + 4i.

(v) |3 + 4i|.
2. Solve the following equations.

(i) x2 + ix + 1 = 0.
(ii) x4 + x2 + 1 = 0.
(iii) x2 + 2ix − 1 = 0.

(iv)
{
ix − (1 + i)y = 3,
(2 + i)x + iy = 4 .

(v) x3 − x2 − x − 2 = 0.

3. Describe the set of all complex numbers z such that

(i) z̄ = −z.
(ii) z̄ = z−1.
(iii) |z − a| = |z− b|.
(iv) |z − a| + |z− b| = c.
(v) |z| < 1 − real part of z.

4. Prove that |z| = |z̄|, and that the real part of z is (z+z̄)/2, while the imaginary
part is (z− z̄)/2i.

5. Prove that |z +w|2 + |z −w|2 = 2(|z|2 + |w|2), and interpret this statement
geometrically.

6. What is the pictorial relation between z and
√
i · z√−i ? Hint: Which line

goes into the real axis under multiplication by
√−i?

7. (a) Prove that if a0, . . . , an−1 are real and a + bi (for a and b real) satisˇes
the equation zn + an−1z

n−1 + · · · + a0 = 0, then a − bi also satisˇes this
equation. (Thus the nonreal roots of such an equation always occur in
pairs, and the number of such roots is even.)

(b) Conclude that zn+an−1z
n−1 +· · ·+a0 is divisible by z2 −2az+ (a2 +b2)

(whose coefˇcients are real).

*8. (a) Let c be an integer which is not the square of another integer. If a and b

are integers we deˇne the conjugate of a + b
√
c, denoted by a + b

√
c,

as a − b
√
c. Show that the conjugate is well deˇned by showing that a

number can be written a + b
√
c, for integers a and b, in only one way.

(b) Show that for all α and β of the form a + b
√
c, we have ¯̄α = α; ᾱ = α if
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and only if α is an integer; α + β = ᾱ + β̄ ; −α = −ᾱ; α · β = ᾱ · β̄ ; and
α−1 = (ᾱ)−1 if α �= 0.

(c) Prove that if a0, . . . , an−1 are integers and z = a + b
√
c satisˇes the

equation zn + an−1z
n−1 + · · · + a0 = 0, then z̄ = a − b

√
c also satisˇes

this equation.

9. Find all the 4th roots of i; express the one having smallest argument in a
form that does not involve any trigonometric functions.

*10. (a) Prove that if ω is an nth root of 1, then so is ωk.
(b) A number ω is called a primitive nth root of 1 if {1, ω, ω2, . . . , ωn−1}

is the set of all nth roots of 1. How many primitive nth roots of 1 are
there for n = 3, 4, 5, 9?

(c) Let ω be an nth root of 1, with ω �= 1. Prove that
n−1∑
k=0

ωk = 0.

*11. (a) Prove that if z1, . . . , zk lie on one side of some straight line through 0,
then z1 + · · · + zk �= 0. Hint: This is obvious from the geometric inter-
pretation of addition, but an analytic proof is also easy: the assertion is
clear if the line is the real axis, and a trick will reduce the general case
to this one.

(b) Show further that z1−1, . . . , zk−1 all lie on one side of a straight line
through 0, so that z1−1 + · · · + zk

−1 �= 0.

*12. Prove that if |z1| = |z2| = |z3| and z1 + z2 + z3 = 0, then z1, z2, and z3 are
the vertices of an equilateral triangle. Hint: It will help to assume that z1 is
real, and this can be done with no loss of generality. Why?



CHAPTER 26 COMPLEX FUNCTIONS

You will probably not be surprised to learn that a deeper investigation of complex
numbers depends on the notion of functions. Until now a function was (intuitively)
a rule which assigned real numbers to certain other real numbers. But there is no
reason why this concept should not be extended; we might just as well consider a
rule which assigns complex numbers to certain other complex numbers. A rigorous
deˇnition presents no problems (we will not even accord it the full honors of a
formal deˇnition): a function is a collection of pairs of complex numbers which
does not contain two distinct pairs with the same ˇrst element. Since we consider
real numbers to be certain complex numbers, the old deˇnition is really a special
case of the new one. Nevertheless, we will sometimes resort to special terminology
in order to clarify the context in which a function is being considered. A function
f is called real-valued if f (z) is a real number for all z in the domain of f , and
complex-valued to emphasize that it is not necessarily real-valued. Similarly,
we will usually state explicitly that a function f is deˇned on [a subset of ] R in
those cases where the domain of f is [a subset of ] R; in other cases we sometimes
mention that f is deˇned on [a subset of ] C to emphasize that f (z) is deˇned for
complex z as well as real z.

Among the multitude of functions deˇned on C, certain ones are particularly
important. Foremost among these are the functions of the form

f (z) = anz
n + an−1z

n−1 + · · · + a0,

where a0, . . . , an are complex numbers. These functions are called, as in the
real case, polynomial functions; they include the function f (z) = z (the \identity
function") and functions of the form f (z) = a for some complex number a (\con-
stant functions"). Another important generalization of a familiar function is the
\absolute value function" f (z) = |z| for all z in C.

Two functions of particular importance for complex numbers are Re (the \real
part function") and Im (the \imaginary part function"), deˇned by

Re(x + iy) = x,

Im(x + iy) = y,
for x and y real.

The \conjugate function" is deˇned by

f (z) = z̄ = Re(z)− i Im(z).

Familiar real-valued functions deˇned on R may be combined in many ways to
produce new complex-valued functions deˇned on C|an example is the function

f (x + iy) = ey sin(x − y)+ ix3 cos y.

532
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The formula for this particular function illustrates a decomposition which is always
possible. Any complex-valued function f can be written in the form

f = u+ iv

for some real-valued functions u and v|simply deˇne u(z) as the real part of f (z),
and v(z) as the imaginary part. This decomposition is often very useful, but not
always; for example, it would be inconvenient to describe a polynomial function
in this way.

One other function will play an important role in this chapter. Recall that an
argument of a nonzero complex number z is a (real) number θ such that

z = |z|(cos θ + i sin θ).

There are inˇnitely many arguments for z, but just one which satisˇes 0 ≤ θ <

2π . If we call this unique argument θ(z), then θ is a (real-valued) function (the
\argument function") on {z in C : z �= 0}.

\Graphs" of complex-valued functions deˇned on C, since they lie in 4-dimen-
sional space, are presumably not very useful for visualization. The alternative
picture of a function mentioned in Chapter 4 can be used instead: we draw two
copies of C, and arrows from z in one copy, to f (z) in the other (Figure 1).

F I G U R E 1

The most common pictorial representation of a complex-valued function is pro-
duced by labeling a point in the plane with the value f (z), instead of with z (which
can be estimated from the position of the point in the picture). Figure 2 shows this
sort of picture for several different functions. Certain features of the function are
illustrated very clearly by such a \graph." For example, the absolute value function
is constant on concentric circles around 0, the functions Re and Im are constant
on the vertical and horizontal lines, respectively, and the function f (z) = z2 wraps
the circle of radius r twice around the circle of radius r2.

Despite the problems involved in visualizing complex-valued functions in gen-
eral, it is still possible to deˇne analogues of important properties previously deˇned
for real-valued functions on R, and in some cases these properties may be easier
to visualize in the complex case. For example, the notion of limit can be deˇned
as follows:

lim
z→a

f (z) = l means that for every (real) number ε > 0 there is a (real) number

δ > 0 such that, for all z, if 0 < |z− a| < δ, then |f (z) − l| < ε.
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F I G U R E 2
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Although the deˇnition reads precisely as before, the interpretation is slightly dif-
ferent. Since |z − w| is the distance between the complex numbers z and w, the
equation lim

z→a
f (z) = l means that the values of f (z) can be made to lie inside

any given circle around l, provided that z is restricted to lie inside a sufˇciently
small circle around a. This assertion is particularly easy to visualize using the \two
copy" picture of a function (Figure 3).

F I G U R E 3

Certain facts about limits can be proved exactly as in the real case. In particular,

lim
z→a

c = c,

lim
z→a

z = a,

lim
z→a

[f (z)+ g(z)] = lim
z→a

f (z)+ lim
z→a

g(z),

lim
z→a

f (z) · g(z) = lim
z→a

f (z) · lim
z→a

g(z),

lim
z→a

1
g(z)

= 1
lim
z→a

g(z)
, if lim

z→a
g(z) �= 0.

The essential property of absolute values upon which these results are based is the
inequality |z + w| ≤ |z| + |w|, and this inequality holds for complex numbers as
well as for real numbers. These facts already provide quite a few limits, but many
more can be obtained from the following theorem.

THEOREM 1 Let f (z) = u(z) + iv(z) for real-valued functions u and v, and let l = α + iβ for
real numbers α and β. Then lim

z→a
f (z) = l if and only if

lim
z→a

u(z) = α,

lim
z→a

v(z) = β.

PROOF Suppose ˇrst that lim
z→a

f (z) = l. If ε > 0, there is δ > 0 such that, for all z,

if 0 < |z − a| < δ, then |f (z) − l| < ε.
The second inequality can be written∣∣[u(z) − α] + i[v(z)− β]

∣∣ < ε,
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or
[u(z)− α]2 + [v(z)− β]2 < ε2.

Since u(z)−α and v(z)− β are both real numbers, their squares are positive; this
inequality therefore implies that

[u(z)− α]2 < ε2 and [v(z)− β]2 < ε2,

which implies that

|u(z) − α| < ε and |v(z) − β| < ε.
Since this is true for all ε > 0, it follows that

lim
z→a

u(z) = α and lim
z→a

v(z) = β.

Now suppose that these two equations hold. If ε > 0, there is a δ > 0 such that,
for all z, if 0 < |z− a| < δ, then

|u(z) − α| < ε

2
and |v(z) − α| < ε

2
,

which implies that

|f (z)− l| = ∣∣[u(z)− α] + i[v(z)− β]
∣∣

≤ |u(z)− α| + |i| · |v(z)− β|
<
ε

2
+ ε

2
= ε.

This proves that lim
z→a

f (z) = l.

In order to apply Theorem 1 fruitfully, notice that since we already know the
limit lim

z→a
z = a, we can conclude that

lim
z→a

Re(z) = Re(a),

lim
z→a

Im(z) = Im(a).

A limit like
lim
z→a

sin(Re(z)) = sin(Re(a))

follows easily, using continuity of sin. Many applications of these principles prove
such limits as the following:

lim
z→a

z̄ = ā,

lim
z→a

|z| = |a|,

lim
(x+iy)→a+bi

ey sin x + ix3 cos y = eb sin a + ia3 cos b.

Now that the notion of limit has been extended to complex functions, the notion
of continuity can also be extended: f is continuous at a if lim

z→a
f (z) = f (a), and
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f is continuous if f is continuous at a for all a in the domain of f . The previous
work on limits shows that all the following functions are continuous:

f (z) = anz
n + an−1z

n−1 + · · · + a0,

f (z) = z̄,

f (z) = |z|,
f (x + iy) = ey sin x + ix3 cos y.

Examples of discontinuous functions are easy to produce, and certain ones come
up very naturally. One particularly frustrating example is the \argument func-
tion" θ , which is discontinuous at all nonnegative real numbers (see the \graph"
in Figure 2). By suitably redeˇning θ it is possible to change the discontinu-
ities; for example (Figure 4), if θ ′(z) denotes the unique argument of z with
π/2 ≤ θ ′(z) < 5π/2, then θ ′ is discontinuous at ai for every nonnegative real
number a. But, no matter how θ is redeˇned, some discontinuities will always
occur.

F I G U R E 4

The discontinuity of θ has an important bearing on the problem of deˇning a
\square-root function," that is, a function f such that (f (z))2 = z for all z. For real
numbers the function

√
had as domain only the nonnegative real numbers. If

complex numbers are allowed, then every number has two square roots (except 0,
which has only one). Although this situation may seem better, it is in some ways
worse; since the square roots of z are complex numbers, there is no clear criterion
for selecting one root to be f (z), in preference to the other.
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One way to deˇne f is the following. We set f (0) = 0, and for z �= 0 we set

f (z) =
√

|z|
(

cos
θ(z)

2
+ i sin

θ(z)

2

)
.

Clearly (f (z))2 = z, but the function f is discontinuous, since θ is discontinuous.
As a matter of fact, it is impossible to ˇnd a continuous f such that (f (z))2 = z for
all z. In fact, it is even impossible for f (z) to be deˇned for all z with |z| = 1. To
prove this by contradiction, we can assume that f (1) = 1 (since we could always
replace f by −f ). Then we claim that for all θ with 0 ≤ θ < 2π we have

(∗) f (cos θ + i sin θ) = cos
θ

2
+ i sin

θ

2
.

The argument for this is left to you (it is a standard type of least upper bound
argument). But (∗) implies that

lim
θ→2π

f (cos θ + i sin θ) = cos π + i sinπ
= −1
�= f (1),

even though cos θ + i sin θ → 1 as θ → 2π . Thus, we have our contradic-
tion. A similar argument shows that it is impossible to deˇne continuous \nth-root
functions" for any n ≥ 2.

For continuous complex functions there are important analogues of certain the-
orems which describe the behavior of real-valued functions on closed intervals. A
natural analogue of the interval [a, b] is the set of all complex numbers z = x+ iy
with a ≤ x ≤ b and c ≤ y ≤ d (Figure 5). This set is called a closed rectangle,
and is denoted by [a, b] × [c, d].

If f is a continuous complex-valued function whose domain is [a, b] × [c, d],F I G U R E 5

then it seems reasonable, and is indeed true, that f is bounded on [a, b] × [c, d].
That is, there is some real number M such that

|f (z)| ≤ M for all z in [a, b] × [c, d].

It does not make sense to say that f has a maximum and a minimum value on
[a, b] × [c, d], since there is no notion of order for complex numbers. If f is a
real-valued function, however, then this assertion does make sense, and is true. In
particular, if f is any complex-valued continuous function on [a, b] × [c, d], then
|f | is also continuous, so there is some z0 in [a, b] × [c, d] such that

|f (z0)| ≤ |f (z)| for all z in [a, b] × [c, d];

a similar statement is true with the inequality reversed. It is sometimes said that
\f attains its maximum and minimum modulus on [a, b] × [c, d]."

The various facts listed in the previous paragraph will not be proved here, al-
though proofs are outlined in Problem 5. Assuming these facts, however, we can
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now give a proof of the Fundamental Theorem of Algebra, which is really quite
surprising, since we have not yet said much to distinguish polynomial functions
from other continuous functions.

THEOREM 2 (THE FUNDAMENTAL

THEOREM OF ALGEBRA)

Let a0, . . . , an−1 be any complex numbers. Then there is a complex number z
such that

zn + an−1z
n−1 + an−2z

n−2 + · · · + a0 = 0.

PROOF Let
f (z) = zn + an−1z

n−1 + · · · + a0.

Then f is continuous, and so is the function |f | deˇned by

|f |(z) = |f (z)| = |zn + an−1z
n−1 + · · · + a0|.

Our proof is based on the observation that a point z0 with f (z0) = 0 would clearly
be a minimum point for |f |. To prove the theorem we will ˇrst show that |f | does
indeed have a smallest value on the whole complex plane. The proof will be almost
identical to the proof, in Chapter 7, that a polynomial function of even degree
(with real coefˇcients) has a smallest value on all of R; both proofs depend on the
fact that if |z| is large, then |f (z)| is large.

We begin by writing, for z �= 0,

f (z) = zn
(

1 + an−1

z
+ · · · + a0

zn

)
,

so that

|f (z)| = |z|n ·
∣∣∣∣ 1 + an−1

z
+ · · · + a0

zn

∣∣∣∣ .
Let

M = max(1,2n|an−1|, . . . , 2n|a0|).
Then for all z with |z| ≥ M, we have |zk | ≥ |z| and

|an−k|
|zk | ≤ |an−k|

|z| ≤ |an−k |
2n|an−k| = 1

2n
,

so ∣∣∣∣ an−1

z
+ · · · + a0

zn

∣∣∣∣ ≤
∣∣∣∣ an−1

z

∣∣∣∣+ · · · +
∣∣∣∣ a0

zn

∣∣∣∣ ≤ 1
2
,

which implies that∣∣∣∣ 1 + an−1

z
+ · · · + a0

zn

∣∣∣∣ ≥ 1 −
∣∣∣∣ an−1

z
+ · · · + a0

zn

∣∣∣∣ ≥ 1
2
.

This means that
|f (z)| ≥ |z|n

2
for |z| ≥ M.

In particular, if |z| ≥ M and also |z| ≥ n
√

2|f (0)|, then

|f (z)| ≥ |f (0)|.
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Now let [a, b] × [c, d] be a closed rectangle (Figure 6) which contains
{
z : |z| ≤

max
(
M,

n
√

2|f (0)| )}, and suppose that the minimum of |f | on [a, b] × [c, d] is
attained at z0, so that

(1) |f (z0)| ≤ |f (z)| for z in [a, b] × [c, d].

It follows, in particular, that |f (z0)| ≤ |f (0)|. Thus

(2) if |z| ≥ max
(
M,

n
√

2|f (0)| ), then |f (z)| ≥ |f (0)| ≥ |f (z0)|.

Combining (1) and (2) we see that |f (z0)| ≤ |f (z)| for all z, so that |f | attains its
minimum value on the whole complex plane at z0.

F I G U R E 6

To complete the proof of the theorem we now show that f (z0) = 0. It is
convenient to introduce the function g deˇned by

g(z) = f (z+ z0).

Then g is a polynomial function of degree n, whose minimum absolute value
occurs at 0. We want to show that g(0) = 0.

Suppose instead that g(0) = α �= 0. If m is the smallest positive power of z
which occurs in the expression for g, we can write

g(z) = α + βzm + cm+1z
m+1 + · · · + cnz

n,

where β �= 0. Now, according to Theorem 25-2 there is a complex number γ
such that

γ m = − α

β
.
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Then, setting dk = ckγ
k, we have

|g(γ z)| = |α + βγ mzm + dm+1z
m+1 + · · · + dnz

n|
= |α − αzm + dm+1z

m+1 + · · · |

=
∣∣∣∣α
(

1 − zm + dm+1

α
zm+1 + · · ·

) ∣∣∣∣
=
∣∣∣∣α
(

1 − zm + zm
[
dm+1

α
z + · · ·

]) ∣∣∣∣
= |α| ·

∣∣∣∣ 1 − zm + zm
[
dm+1

α
z+ · · ·

] ∣∣∣∣ .
This expression, so tortuously arrived at, will enable us to reach a quick contra-

diction. Notice ˇrst that if |z| is chosen small enough, we will have∣∣∣∣ dm+1

α
z + · · ·

∣∣∣∣ < 1.

If we choose, from among all z for which this inequality holds, some z which is real

and positive, then ∣∣∣∣ zm
[
dm+1

α
z+ · · ·

] ∣∣∣∣ < |zm| = zm.

Consequently, if 0 < z < 1 we have∣∣∣∣ 1 − zm + zm
[
dm+1

α
z+ · · ·

] ∣∣∣∣ ≤ |1 − zm| +
∣∣∣∣ zm

[
dm+1

α
z + · · ·

] ∣∣∣∣
= 1 − zm +

∣∣∣∣ zm
[
dm+1

α
z+ · · ·

] ∣∣∣∣
< 1 − zm + zm

= 1.

This is the desired contradiction: for such a number z we have

|g(γ z)| < |α|,
contradicting the fact that |α| is the minimum of |g| on the whole plane. Hence,
the original assumption must be incorrect, and g(0) = 0. This implies, ˇnally, that
f (z0) = 0.

Even taking into account our omission of the proofs for the basic facts about
continuous complex functions, this proof veriˇed a deep fact with surprisingly
little work. It is only natural to hope that other interesting developments will arise
if we pursue further the analogues of properties of real functions. The next obvious
step is to deˇne derivatives: a function f is differentiable at a if

lim
z→0

f (a + z)− f (a)

z
exists,
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in which case the limit is denoted by f ′(a). It is easy to prove that

f ′(a) = 0 if f (z) = c,

f ′(a) = 1 if f (z) = z,

(f + g)′(a) = f ′(a)+ g′(a),
(f · g)′(a) = f ′(a)g(a)+ f (a)g′(a),(

1
g

)′
(a) = −g′(a)

[g(a)]2 if g(a) �= 0,

(f � g)′(a) = f ′(g(a)) · g′(a);
the proofs of all these formulas are exactly the same as before. It follows, in
particular, that if f (z) = zn, then f ′(z) = nzn−1. These formulas only prove the
differentiability of rational functions however. Many other obvious candidates are
not differentiable. Suppose, for example, that

f (x + iy) = x − iy (i.e., f (z) = z̄).

If f is to be differentiable at 0, then the limit

lim
(x+iy)→0

f (x + iy)− f (0)
x + iy

= lim
(x+iy)→0

x − iy

x + iy

must exist. Notice however, that

if y = 0, then
x − iy

x + iy
= 1,

and

if x = 0, then
x − iy

x + iy
= −1;

therefore this limit cannot possibly exist, since the quotient has both the values 1
and −1 for x + iy arbitrarily close to 0.

In view of this example, it is not at all clear where other differentiable functions
are to come from. If you recall the deˇnitions of sin and exp, you will see that
there is no hope at all of generalizing these deˇnitions to complex numbers. At
the moment the outlook is bleak, but all our problems will soon be solved.

PROBLEMS

1. (a) For any real number y, deˇne α(x) = x + iy (so that α is a complex-
valued function deˇned on R). Show that α is continuous. (This follows
immediately from a theorem in this chapter.) Show similarly that β(y) =
x + iy is continuous.

(b) Let f be a continuous function deˇned on C. For ˇxed y, let g(x) =
f (x + iy). Show that g is a continuous function (deˇned on R). Show
similarly that h(y) = f (x + iy) is continuous. Hint: Use part (a).

2. (a) Suppose that f is a continuous real-valued function deˇned on a closed
rectangle [a, b]×[c,d]. Prove that if f takes on the values f (z) and f (w)
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for z and w in [a, b] × [c, d], then f also takes all values between f (z)
and f (w). Hint: Consider g(t) = f (tz+ (1 − t)w) for t in [0,1].

*(b) If f is a continuous complex-valued function deˇned on [a, b] × [c, d],
the assertion in part (a) no longer makes any sense, since we cannot talk
of complex numbers between f (z) and f (w). We might conjecture that
f takes on all values on the line segment between f (z) and f (w), but
even this is false. Find an example which shows this.

3. (a) Prove that if a0, . . . , an−1 are any complex numbers, then there are
complex numbers z1, . . . , zn (not necessarily distinct) such that

zn + an−1z
n−1 + · · · + a0 =

n∏
i=1

(z− zi).

(b) Prove that if a0, . . . , an−1 are real, then zn + an−1z
n−1 + · · · + a0 can be

written as a product of linear factors z+a and quadratic factors z2+az+b
all of whose coefˇcients are real. (Use Problem 25-7.)

4. In this problem we will consider only polynomials with real coefˇcients. Such
a polynomial is called a sum of squares if it can be written as h1

2+· · ·+hn2

for polynomials hi with real coefˇcients.

(a) Prove that if f is a sum of squares, then f (x) ≥ 0 for all x.
(b) Prove that if f and g are sums of squares, then so is f · g.
(c) Suppose that f (x) ≥ 0 for all x. Show that f is a sum of squares. Hint:

First write f (x) = xkg(x), where g(x) �= 0 for all x. Then k must be
even (why?), and g(x) > 0 for all x. Now use Problem 3(b).

5. (a) Let A be a set of complex numbers. A number z is called, as in the
real case, a limit point of the set A if for every (real) ε > 0, there is
a point a in A with |z − a| < ε but z �= a. Prove the two-dimensional
version of the Bolzano-Weierstrass Theorem: If A is an inˇnite subset
of [a,b] × [c, d], then A has a limit point in [a, b] × [c, d]. Hint: First
divide [a, b] × [c, d] in half by a vertical line as in Figure 7(a). Since A
is inˇnite, at least one half contains inˇnitely many points of A. Divide
this in half by a horizontal line, as in Figure 7(b). Continue in this way,
alternately dividing by vertical and horizontal lines.F I G U R E 7

(The two-dimensional bisection argument outlined in this hint is so stan-
dard that the title \Bolzano-Weierstrass" often serves to describe the
method of proof, in addition to the theorem itself. See, for example,
H. Petard, \A Contribution to the Mathematical Theory of Big Game
Hunting," Amer. Math. Monthly, 45 (1938), 446{447.)

(b) Prove that a continuous (complex-valued) function on [a, b] × [c, d] is
bounded on [a, b] × [c, d]. (Imitate Problem 22-31.)

(c) Prove that if f is a real-valued continuous function on [a, b] × [c, d],
then f takes on a maximum and minimum value on [a, b]× [c,d]. (You
can use the same trick that works for Theorem 7-3.)
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*6. The proof of Theorem 2 cannot be considered to be completely elementary
because the possibility of choosing γ with γ m = −α/β depends on Theo-
rem 25-2, and thus on the trigonometric functions. It is therefore of some
interest to provide an elementary proof that there is a solution for the equa-
tion zn − c = 0.

(a) Make an explicit computation to show that solutions of z2 − c = 0 can
be found for any complex number c.

(b) Explain why the solution of zn− c = 0 can be reduced to the case where
n is odd.

(c) Let z0 be the point where the function f (z) = zn − c has its minimum
absolute value. If z0 �= 0, show that the integer m in the proof of Theo-
rem 2 is equal to 1; since we can certainly ˇnd γ with γ 1 = −α/β, the
remainder of the proof works for f . It therefore sufˇces to show that the
minimum absolute value of f does not occur at 0.

(d) Suppose instead that f has its minimum absolute value at 0. Since n is
odd, the points ±δ,±δi go under f into −c±δn, −c±δni. Show that for
small δ at least one of these points has smaller absolute value than −c,
thereby obtaining a contradiction.

7. Let f (z) = (z− z1)
m1 · · · · · (z − zk)

mk .F I G U R E 8

(a) Show that f ′(z) = (z − z1)
m1 · · · · · (z− zk)

mk ·
k∑

α=1

mα(z− zα)
−1.

(b) Let g(z) =
k∑

α=1

mα(z − zα)
−1. Show that if g(z) = 0, then z1, . . . , zk

cannot all lie on the same side of a straight line through z. Hint: Use
Problem 25-11.

(c) A subset K of the plane is convex if K contains the line segment joining
any two points in it (Figure 8). For any set A, there is a smallest convex
set containing it, which is called the convex hull of A (Figure 9); if a

FI G U R E 9
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point P is not in the convex hull of A, then all of A is contained on one
side of some straight line through P . Using this information, prove that
the roots of f ′(z) = 0 lie within the convex hull of the set {z1, . . . , zk}.
Further information on convex sets will be found in reference [19] of the
Suggested Reading.

8. Prove that if f is differentiable at z, then f is continuous at z.

*9. Suppose that f = u + iv where u and v are real-valued functions.

(a) For ˇxed y0 let g(x) = u(x + iy0) and h(x) = v(x + iy0). Show that if
f ′(x0 + iy0) = α + iβ for real α and β, then g′(x0) = α and h′(x0) = β.

(b) On the other hand, suppose that k(y) = u(x0 + iy) and l(y) = v(x0+ iy).
Show that l′(y0) = α and k′(y0) = −β.

(c) Suppose that f ′(z) = 0 for all z. Show that f is a constant function.

10. (a) Using the expression

f (x) = 1
1 + x2 = 1

2i

(
1

x − i
− 1
x + i

)
,

ˇnd f (k)(x) for all k.
(b) Use this result to ˇnd arctan(k)(0) for all k.



CHAPTER 27 COMPLEX POWER SERIES

If you have not already guessed where differentiable complex functions are going
to come from, the title of this chapter should give the secret away: we intend to
deˇne functions by means of inˇnite series. This will necessitate a discussion of
inˇnite sequences of complex numbers, and sums of such sequences, but (as was
the case with limits and continuity) the basic deˇnitions are almost exactly the
same as for real sequences and series.

An infinite sequence of complex numbers is, formally, a complex-valued func-
tion whose domain is N; the convenient subscript notation for sequences of real
numbers will also be used for sequences of complex numbers. A sequence {an} of
complex numbers is most conveniently pictured by labeling the points an in the
plane (Figure 1).F I G U R E 1

The sequence shown in Figure 1 converges to 0, \convergence" of complex
sequences being deˇned precisely as for real sequences: the sequence {an}
converges to l, in symbols

lim
n→∞ an = l,

if for every ε > 0 there is a natural number N such that, for all n,

if n > N, then |an − l| < ε.
This condition means that any circle drawn around l will contain an for all sufˇ-
ciently large n (Figure 2); expressed more colloquially, the sequence is eventually
inside any circle drawn around l.

Convergence of complex sequences is not only deˇned precisely as for real
sequences, but can even be reduced to this familiar case.F I G U R E 2

THEOREM 1 Let

an = bn + icn for real bn and cn,

and let

l = β + iγ for real β and γ .

Then lim
n→∞ an = l if and only if

lim
n→∞ bn = β and lim

n→∞ cn = γ .

PROOF The proof is left as an easy exercise. If there is any doubt as to how to proceed,
consult the similar Theorem 1 of Chapter 26.

The sum of a sequence {an} is deˇned, once again, as lim
n→∞ sn, where

sn = a1 + · · · + an.

546
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Sequences for which this limit exists are summable; alternatively, we may say that

the inˇnite series
∞∑
n=1

an converges if this limit exists, and diverges otherwise. It

is unnecessary to develop any new tests for convergence of inˇnite series, because
of the following theorem.

THEOREM 2 Let
an = bn + icn for real bn and cn.

Then
∞∑
n=1

an converges if and only if
∞∑
n=1

bn and
∞∑
n=1

cn both converge, and in this

case
∞∑
n=1

an =
∞∑
n=1

bn + i

( ∞∑
n=1

cn

)
.

PROOF This is an immediate consequence of Theorem 1 applied to the sequence of partial
sums of {an}.

There is also a notion of absolute convergence for complex series: the series
∞∑
n=1

an converges absolutely if the series
∞∑
n=1

|an| converges (this is a series of real

numbers, and consequently one to which our earlier tests may be applied). The
following theorem is not quite so easy as the preceding two.

THEOREM 3 Let
an = bn + icn for real bn and cn.

Then
∞∑
n=1

an converges absolutely if and only if
∞∑
n=1

bn and
∞∑
n=1

cn both converge

absolutely.

PROOF Suppose ˇrst that
∞∑
n=1

bn and
∞∑
n=1

cn both converge absolutely, i.e., that
∞∑
n=1

|bn| and

∞∑
n=1

|cn| both converge. It follows that
∞∑
n=1

|bn| + |cn| converges. Now,

|an| = |bn + icn| ≤ |bn| + |cn|.

It follows from the comparison test that
∞∑
n=1

|an| converges (the numbers |an| and

|bn| + |cn| are real and nonnegative). Thus
∞∑
n=1

an converges absolutely.
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Now suppose that
∞∑
n=1

|an| converges. Since

|an| =
√
bn2 + cn2,

it is clear that
|bn| ≤ |an| and |cn| ≤ |an|.

Once again, the comparison test shows that
∞∑
n=1

|bn| and
∞∑
n=1

|cn| converge.

Two consequences of Theorem 3 are particularly noteworthy. If
∞∑
n=1

an con-

verges absolutely, then
∞∑
n=1

bn and
∞∑
n=1

cn also converge absolutely; consequently

∞∑
n=1

bn and
∞∑
n=1

cn converge, by Theorem 23-5, so
∞∑
n=1

an converges by Theorem 2.

In other words, absolute convergence implies convergence. Similar reasoning
shows that any rearrangement of an absolutely convergent series has the same
sum. These facts can also be proved directly, without using the corresponding the-
orems for real numbers, by ˇrst establishing an analogue of the Cauchy criterion
(see Problem 13).

With these preliminaries safely disposed of, we can now consider complex
power series, that is, functions of the form

f (z) =
∞∑
n=0

an(z − a)n = a0 + a1(z − a)+ a2(z− a)2 + · · · .

Here the numbers a and an are allowed to be complex, and we are naturally
interested in the behavior of f for complex z. As in the real case, we shall usually
consider power series centered at 0,

f (z) =
∞∑
n=0

anz
n;

in this case, if f (z0) converges, then f (z) will also converge for |z| < |z0|. The
proof of this fact will be similar to the proof of Theorem 24-6, but, for reasons
that will soon become clear, we will not use all the paraphernalia of uniform con-
vergence and the Weierstrass M-test, even though they have complex analogues.
Our next theorem consequently generalizes only a small part of Theorem 24-6.

THEOREM 4 Suppose that
∞∑
n=0

anz0
n = a0 + a1z0 + a2z0

2 + · · ·
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converges for some z0 �= 0. Then if |z| < |z0|, the two series
∞∑
n=0

anz
n = a0 + a1z+ a2z

2 + · · ·

∞∑
n=1

nanz
n−1 = a1 + 2a2z + 3a3z

2 + · · ·

both converge absolutely.

PROOF As in the proof of Theorem 24-6, we will need only the fact that the set of numbers
anz0

n is bounded: there is a number M such that

|anz0n| ≤ M for all n.

We then have

|anzn| = |anz0n| ·
∣∣∣∣ zz0

∣∣∣∣n
≤ M

∣∣∣∣ zz0
∣∣∣∣n ,

and, for z �= 0,

|nanzn−1| = 1
|z|n|anz0

n| ·
∣∣∣∣ zz0

∣∣∣∣n
≤ M

|z| n
∣∣∣∣ zz0

∣∣∣∣n .
Since the series

∞∑
n=0

|z/z0|n and
∞∑
n=1

n |z/z0|n converge, this shows that both
∞∑
n=0

anz
n

and
∞∑
n=1

nanz
n−1 converge absolutely (the argument for

∞∑
n=1

nanz
n−1 assumed that

z �= 0, but this series certainly converges for z = 0 also).

Theorem 4 evidently restricts greatly the possibilities for the set{
z :

∞∑
n=0

anz
n converges

}
.

For example, the shaded set A in Figure 3 cannot be the set of all z where
∞∑
n=0

anz
n

converges, since it contains z, but not the number w satisfying |w| < |z|.F I G U R E 3

It seems quite unlikely that the set of points where a power series converges
could be anything except the set of points inside a circle. If we allow \circles of
radius 0" (when the power series converges only at 0) and \circles of radius ∞"
(when the power series converges at all points), then this assertion is true (with one
complication which we will soon mention); the proof requires only Theorem 4 and
a knack for good organization.
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THEOREM 5 For any power series
∞∑
n=0

anz
n = a0 + a1z + a2z

2 + a3z
3 + · · ·

one of the following three possibilities must be true:

(1)
∞∑
n=0

anz
n converges only for z = 0.

(2)
∞∑
n=0

anz
n converges absolutely for all z in C.

(3) There is a number R > 0 such that
∞∑
n=0

anz
n converges absolutely if |z| < R

and diverges if |z| > R. (Notice that we do not mention what happens
when |z| = R.)

PROOF Let

S =
{
x in R :

∞∑
n=0

anw
n converges for some w with |w| = x

}
.

Suppose ˇrst that S is unbounded. Then for any complex number z, there is

a number x in S such that |z| < x. By deˇnition of S, this means that
∞∑
n=0

anw
n

converges for some w with |w| = x > |z|. It follows from Theorem 4 that
∞∑
n=0

anz
n

converges absolutely. Thus, in this case possibility (2) is true.
Now suppose that S is bounded, and let R be the least upper bound of S. If

R = 0, then
∞∑
n=0

anz
n converges only for z = 0, so possibility (1) is true. Suppose,

on the other hand, that R > 0. Then if z is a complex number with |z| < R, there

is a number x in S with |z| < x. Once again, this means that
∞∑
n=0

anw
n converges

for some w with |z| < |w|, so that
∞∑
n=0

anz
n converges absolutely. Moreover, if

|z| > R, then
∞∑
n=0

anz
n does not converge, since |z| is not in S.

The number R which occurs in case (3) is called the radius of convergence of
∞∑
n=0

anz
n . In cases (1) and (2) it is customary to say that the radius of convergence

is 0 and ∞, respectively. When 0 < R < ∞, the circle {z : |z| = R} is called
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the circle of convergence of
∞∑
n=0

anz
n. If z is outside the circle, then, of course,

∞∑
n=0

anz
n does not converge, but actually a much stronger statement can be made:

the terms anzn are not even bounded. To prove this, let w be any number with
|z| > |w| > R; if the terms anzn were bounded, then the proof of Theorem 4 would

show that
∞∑
n=0

anw
n converges, which is false. Thus (Figure 4), inside the circle of

convergence the series
∞∑
n=0

anz
n converges in the best possible way (absolutely) and

outside the circle the series diverges in the worst possible way (the terms anzn are
not bounded).

What happens on the circle of convergence is a much more difˇcult question.
We will not consider that question at all, except to mention that there are power
series which converge everywhere on the circle of convergence, power series which
converge nowhere on the circle of convergence, and power series that do just about
anything in between. (See Problem 5.)

Algebraic manipulations on complex power series can be justiˇed just as in the

real case. Thus, if f (z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n both have radius of

FI G U R E 4

convergence ≥ R, then h(z) =
∞∑
n=0

(an + bn)z
n also has radius of convergence

≥ R and h = f + g inside the circle of radius R. Similarly, the Cauchy product

h(z) =
∞∑
n=0

cnz
n, for cn =

n∑
k=0

akbn−k, has radius of convergence ≥ R and h = fg

inside the circle of radius R. And if f (z) =
∞∑
n=0

anz
n has radius of convergence > 0

and a0 �= 0, then we can ˇnd a power series
∞∑
n=0

bnz
n with radius of convergence

> 0 which represents 1/f inside its circle of convergence.
But our real goal in this chapter is to produce differentiable functions. We

therefore want to generalize the result proved for real power series in Chapter 24,
that a function deˇned by a power series can be differentiated term-by-term in-
side the circle of convergence. At this point we can no longer imitate the proof of
Chapter 24, even if we were willing to introduce uniform convergence, because no
analogue of Theorem 24-3 seems available. Instead we will use a direct argument
(which could also have been used in Chapter 24). Before beginning the proof,
we notice that at least there is no problem about the convergence of the series

produced by term-by-term differentiation. If the series
∞∑
n=0

anz
n has radius of con-

vergence R, then Theorem 4 immediately implies that the series
∞∑
n=1

nanz
n−1 also

converges for |z| < R. Moreover, if |z| > R, so that the terms anzn are unbounded,
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then the terms nanzn−1 are surely unbounded, so
∞∑
n=1

nanz
n−1 does not converge.

This shows that the radius of convergence of
∞∑
n=1

nanz
n−1 is also exactly R.

THEOREM 6 If the power series

f (z) =
∞∑
n=0

anz
n

has radius of convergence R > 0, then f is differentiable at z for all z with |z| < R,
and

f ′(z) =
∞∑
n=1

nanz
n−1.

PROOF We will use another \ε/3 argument." The fact that the theorem is clearly true for
polynomial functions suggests writing

(∗)

∣∣∣∣∣ f (z + h)− f (z)

h
−

∞∑
n=1

nanz
n−1

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=0

an
((z+ h)n − zn)

h
−

∞∑
n=1

nanz
n−1

∣∣∣∣∣
≤
∣∣∣∣∣

∞∑
n=0

an
((z+ h)n − zn)

h
−

N∑
n=0

an
((z+ h)n − zn)

h

∣∣∣∣∣
+
∣∣∣∣∣
N∑
n=0

an
((z + h)n − zn)

h
−

N∑
n=1

nanz
n−1

∣∣∣∣∣
+
∣∣∣∣∣
N∑
n=1

nanz
n−1 −

∞∑
n=1

nanz
n−1

∣∣∣∣∣ .
We will show that for any ε > 0, each absolute value on the right side can be made
< ε/3 by choosing N sufˇciently large and h sufˇciently small. This will clearly
prove the theorem.

Only the ˇrst term in the right side of (∗) will present any difˇculties. To begin
with, choose some z0 with |z| < |z0| < R; henceforth we will consider only h
with |z + h| ≤ |z0|. The expression ((z + h)n − zn)/h can be written in a more
convenient way if we remember that

xn − yn

x − y
= xn−1 + xn−2y + xn−3y2 + · · · + yn−1.

Applying this to
(z+ h)n − zn

h
= (z+ h)n − zn

(z + h)− z
,

we obtain
(z + h)n − zn

h
= (z + h)n−1 + z(z + h)n−2 + · · · + zn−1.
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Since
|(z + h)n−1 + z(z+ h)n−2 + · · · + zn−1| ≤ n|z0|n−1,

we have ∣∣∣∣ an ((z + h)n − zn)

h

∣∣∣∣ ≤ n|an| · |z0|n−1.

But the series
∞∑
n=1

n|an| · |z0|n−1 converges, so if N is sufˇciently large, then

∞∑
n=N+1

n|an| · |z0|n−1 <
ε

3
.

This means that∣∣∣∣∣
∞∑
n=0

an
((z + h)n − zn)

h
−

N∑
n=0

an
((z + h)n − zn)

h

∣∣∣∣∣
=
∣∣∣∣∣∣

∞∑
n=N+1

an
((z + h)n − zn)

h

∣∣∣∣∣∣ ≤
∞∑

n=N+1

∣∣∣∣ an ((z + h)n − zn)

h

∣∣∣∣
≤

∞∑
n=N+1

n|an| · |z0|n−1 <
ε

3
.

In short, if N is sufˇciently large, then

(1)

∣∣∣∣∣
∞∑
n=0

an
((z + h)n − zn)

h
−

N∑
n=0

an
((z+ h)n − zn)

h

∣∣∣∣∣ < ε

3
,

for all h with |z + h| ≤ |z0|.
It is easy to deal with the third term on the right side of (∗): Since

∞∑
n=1

nanz
n−1

converges, it follows that if N is sufˇciently large, then

(2)

∣∣∣∣∣
∞∑
n=1

nanz
n−1 −

N∑
n=1

nanz
n−1

∣∣∣∣∣ < ε

3
.

Finally, choosing an N such that (1) and (2) are true, we note that

lim
h→0

N∑
n=0

an
((z+ h)n − zn)

h
=

N∑
n=1

nanz
n−1,

since the polynomial function g(z) =
N∑
n=0

anz
n is certainly differentiable. Therefore

(3)

∣∣∣∣∣
N∑
n=0

an((z + h)n − zn)

h
−

N∑
n=1

nanz
n−1

∣∣∣∣∣ < ε

3
.

for sufˇciently small h.

As we have already indicated, (1), (2), and (3) prove the theorem.
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Theorem 6 has an obvious corollary: a function represented by a power series is
inˇnitely differentiable inside the circle of convergence, and the power series is its
Taylor series at 0. It follows, in particular, that f is continuous inside the circle of
convergence, since a function differentiable at z is continuous at z (Problem 26-8).

The continuity of a power series inside its circle of convergence helps explain the
behavior of certain Taylor series obtained for real functions, and gives the promised
answers to the questions raised at the end of Chapter 24. We have already seen
that the Taylor series for the function f (z) = 1/(1 + z2), namely,

1 − z2 + z4 − z6 + · · · ,
converges for real z only when |z| < 1, and consequently has radius of conver-
gence 1. It is no accident that the circle of convergence contains the two points
i and −i at which f is undeˇned. If this power series converged in a circle of
radius greater than 1, then (Figure 5) it would represent a function which was
continuous in that circle, in particular at i and −i. But this is impossible, since it
equals 1/(1 + z2) inside the unit circle, and 1/(1 + z2) does not approach a limit
as z s approaches i or −i from inside the unit circle.F I G U R E 5

The use of complex numbers also sheds some light on the strange behavior of
the Taylor series for the function

f (x) =
{
e−1/x2

, x �= 0
0, x = 0.

Although we have not yet deˇned ez for complex z, it will presumably be true that
if y is real and unequal to 0, then

f (iy) = e−1/(iy)2 = e1/y2
.

The interesting fact about this expression is that it becomes large as y becomes
small. Thus f will not even be continuous at 0 when deˇned for complex numbers,
so it is hardly surprising that it is equal to its Taylor series only for z = 0.

The method by which we will actually deˇne ez (as well as sin z and cos z) for
complex z should by now be clear. For real x we know that

sin x = x − x3

3!
+ x5

5!
− · · · ,

cos x = 1 − x2

2!
+ x4

4!
− · · · ,

ex = 1 + x

1!
+ x2

2!
+ · · ·

For complex z we therefore define

sin z = z− z3

3!
+ z5

5!
− · · · ,

cos z = 1 − z2

2!
+ z4

4!
+ · · · ,

exp(z) = ez = 1 + z

1!
+ z2

2!
+ · · ·
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Then sin′(z) = cos z, cos′(z) = − sin z, and exp′(z) = exp(z) by Theorem 6.
Moreover, if we replace z by iz in the series for ez, and make a rearrangement
of the terms ( justiˇed by absolute convergence), something particularly interesting
happens:

eiz = 1 + iz+ (iz)2

2!
+ (iz)3

3!
+ (iz)4

4!
+ (iz)5

5!
+ · · ·

= 1 + iz− z2

2!
− iz3

3!
+ iz4

4!
+ iz5

5!
+ · · ·

=
(

1 − z2

2!
+ z4

4!
− · · ·

)
+ i

(
z − z3

3!
+ z5

5!
+ · · ·

)
,

so
eiz = cos z+ i sin z.

It is clear from the deˇnitions (i.e., the power series) that

sin(−z) = − sin z,
cos(−z) = cos z,

so we also have
e−iz = cos z− i sin z.

From the equations for eiz and e−iz we can derive the formulas

sin z = eiz − e−iz

2i
,

cos z = eiz + e−iz

2
.

The development of complex power series thus places the exponential function at
the very core of the development of the elementary functions|it reveals a con-
nection between the trigonometric and exponential functions which was never
imagined when these functions were ˇrst deˇned, and which could never have
been discovered without the use of complex numbers. As a by-product of this
relationship, we obtain a hitherto unsuspected connection between the numbers e
and π : if in the formula

eiz = cos z+ i sin z

we take z = π , we obtain the remarkable result

eiπ = −1.

(More generally, e2πi/n is an nth root of 1.)
With these remarks we will bring to a close our investigation of complex func-

tions. And yet there are still several basic facts about power series which have not
been mentioned. Thus far, we have seldom considered power series centered at a,

f (z) =
∞∑
n=0

an(z− a)n,
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except for a = 0. This omission was adopted partly to simplify the exposition.
For power series centered at a there are obvious versions of all the theorems in
this chapter (the proofs require only trivial modiˇcations): there is a number R

(possibly 0 or \∞") such that the series
∞∑
n=0

an(z − a)n converges absolutely for z

with |z − a| < R, and has unbounded terms for z with |z− a| > R; moreover, for
all z with |z− a| < R the function

f (z) =
∞∑
n=0

an(z− a)n

has derivative

f ′(z) =
∞∑
n=1

nan(z− a)n−1.

It is less straightforward to investigate the possibility of representing a function
as a power series centered at b, if it is already written as a power series centered
at a. IfF I G U R E 6

f (z) =
∞∑
n=0

an(z− a)n

has radius of convergence R, and b is a point with |b − a| < R (Figure 6), then it
is true that f (z) can also be written as a power series centered at b,

f (z) =
∞∑
n=0

bn(z− b)n

(the numbers bn are necessarily f (n)(b)/n! ); moreover, this series has radius of
convergence at least R − |b − a| (it may be larger ).

We will not prove the facts mentioned in the previous paragraph, and there are
several other important facts we shall not prove. For example, if

f (z) =
∞∑
n=0

an(z− a)n and g(z) =
∞∑
n=0

bn(z− b)n,

and g(b) = a, then we would expect that f � g can be written as a power series
centered at b. All such facts could be proved now without introducing any basic
new ideas, but the proofs would not be as easy as the proofs about sums, products
and reciprocals of power series. The possibility of changing a power series centered
at a into one centered at b is quite a bit more involved, and the treatment of
f � g requires still more skill. Rather than end this section with a tour de force

of computations, we will instead give a preview of \complex analysis," one of
the most beautiful branches of mathematics, where all these facts are derived as
straightforward consequences of some fundamental results.

Power series were introduced in this chapter in order to provide complex func-
tions which are differentiable. Since these functions are actually inˇnitely differ-
entiable, it is natural to suppose that we have therefore selected only a very special
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collection of differentiable complex functions. The basic theorems of complex
analysis show that this is not at all true:

If a complex function is defined in some region A of the plane and is differentiable in A,

then it is automatically infinitely differentiable in A. Moreover, for each point a in A the

Taylor series for f at a will converge to f in any circle contained in A (Figure 7).

These facts are among the ˇrst to be proved in complex analysis. It is impossible
to give any idea of the proofs themselves|the methods used are quite different
from anything in elementary calculus. If these facts are granted, however, then
the facts mentioned before can be proved very easily.

Suppose, for example, that f and g are functions which can be written as power
series. Then, as we have shown, f and g are differentiable|it then follows from
easy general theorems that f + g, f · g, 1/g and f � g are also differentiable.
Appealing to the results from complex analysis, it follows that they can be writtenFI G U R E 7

as power series.
We already know how to compute the power series for f +g, f ·g and 1/g from

those for f and g. It is also easy to guess how one would compute an expression
for f �g as a power series in (z−b) when we are given the power series expansions

f (z) =
∞∑
n=0

an(z− a)n

g(z) =
∞∑
k=0

bk(z − b)k,

with a = g(b) = b0, so that

g(z) − a =
∞∑
k=1

bk(z− b)k.

First of all, we know how to compute the power series

(g(z) − a)l =
( ∞∑
k=1

bk(z− b)k
)l
,

and this power series will begin with (z − b)l. Consequently, the coefˇcient of zn

in

f (g(z)) =
∞∑
l=0

al(g(z) − a)l

can be calculated as a ˇnite sum, involving only coefˇcients arising from the ˇrst n
powers of g(z) − a.

Similarly, if

f (z) =
∞∑
n=0

an(z− a)n

has radius of convergence R, then f is differentiable in the region A = {z : |z−a| <
R}. Thus, if b is in A, it is possible to write f as a power series centered at b,



558 Infinite Sequences and Infinite Series

which will converge in the circle of radius R − |b − a|. The coefˇcient of zn

will be f (n)(b)/n! . This series may actually converge in a larger circle, because
∞∑
n=0

an(z − a)n may be the series for a function differentiable in a larger region

than A. For example, suppose that f (z) = 1/(1 + z2). Then f is differentiable,
except at i and −i, where it is not deˇned. Thus f (z) can be written as a power

series
∞∑
n=0

anz
n with radius of convergence 1 (as a matter of fact, we know that

a2n = (−1)n and ak = 0 if k is odd). It is also possible to write

f (z) =
∞∑
n=0

bn(z − 1
2 )
n,

where bn = f (n)(1
2 )/n! . We can easily predict the radius of convergence of this

series: it is
√

1 + (1
2 )

2, the distance from 1
2 to i or −i (Figure 8).F I G U R E 8

As an added incentive to investigate complex analysis further, one more result
will be mentioned, which lies quite near the surface, and which will be found in
any treatment of the subject.

For real z the values of sin z always lie between −1 and 1, but for complex z
this is not at all true. In fact, if z = iy, for y real, then

sin iy = ei(iy) − e−i(iy)

2i
= e−y − ey

2i
.

If y is large, then sin iy is also large in absolute value. This behavior of sin is typical
of functions which are deˇned and differentiable on the whole complex plane (such
functions are called entire). A result which comes quite early in complex analysis is
the following:

Liouville’s Theorem: The only bounded entire functions are the constant functions.

As a simple application of Liouville's Theorem, consider a polynomial function

f (z) = zn + an−1z
n−1 + · · · + a0,

where n > 1, so that f is not a constant. We already know that f (z) is large for
large z, so Liouville's Theorem tells us nothing interesting about f . But consider
the function

g(z) = 1
f (z)

.

If f (z) were never 0, then g would be entire; since f (z) becomes large for large z,
the function g would also be bounded, contradicting Liouville's Theorem. Thus
f (z) = 0 for some z, and we have proved the Fundamental Theorem of Algebra.

PROBLEMS

1. Decide whether each of the following series converges, and whether it con-
verges absolutely.
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(i)
∞∑
n=1

(1 + i)n

n!
.

(ii)
∞∑
n=1

1 + 2i
2n

.

(iii)
∞∑
n=1

in

n
.

(iv)
∞∑
n=1

(1
2 + 1

2 i)
n.

(v)
∞∑
n=2

log n
n

+ in
log n
n

.

2. Use the ratio test to show that the radius of convergence of each of the
following power series is 1. (In each case the ratios of successive terms will
approach a limit < 1 if |z| < 1, but for |z| > 1 the ratios will tend to ∞ or
to a limit > 1.)

(i)
∞∑
n=1

zn

n2 .

(ii)
∞∑
n=1

zn

n
.

(iii)
∞∑
n=1

zn.

(iv)
∞∑
n=1

(n + 2−n)zn.

(v)
∞∑
n=1

2nzn! .

3. Use the root test (Problem 23-7) to ˇnd the radius of convergence of each of
the following power series.

(i)
z

2
+ z2

3
+ z3

22 + z4

32 + z5

23 + z6

33 + · · · .

(ii)
∞∑
n=1

n! zn

nn
.

(iii)
∞∑
n=1

n

2n
zn.

(iv)
∞∑
n=1

n2

2n
zn.

(v)
∞∑
n=1

2nzn! .
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4. The root test can always be used, in theory at least, to ˇnd the radius of
convergence of a power series; in fact, a close analysis of the situation leads
to a formula for the radius of convergence, known as the \Cauchy-Hadamard
formula." Suppose ˇrst that the set of numbers n

√
|an| is bounded.

(a) Use Problem 23-7 to show that if lim
n→∞

n
√

|an| |z| < 1, then
∞∑
n=0

anz
n con-

verges.

(b) Also show that if lim
n→∞

n
√

|an| |z| > 1, then
∞∑
n=0

anz
n has unbounded terms.

(c) Parts (a) and (b) show that the radius of convergence of
∞∑
n=0

anz
n is

1/ lim
n→∞

n
√

|an| (where \1/0" means \∞"). To complete the formula, de-

ˇne lim
n→∞

n
√

|an| = ∞ if the set of all n
√

|an| is unbounded. Prove that in

this case,
∞∑
n=0

anz
n diverges for z �= 0, so that the radius of convergence

is 0 (which may be considered as \1/∞").

5. Consider the following three series from Problem 2:
∞∑
n=1

zn

n2 ,

∞∑
n=1

zn

n
,

∞∑
n=1

zn.

Prove that the ˇrst series converges everywhere on the unit circle; that the
third series converges nowhere on the unit circle; and that the second series
converges for at least one point on the unit circle and diverges for at least
one point on the unit circle.

6. (a) Prove that ez · ew = ez+w for all complex numbers z and w by showing
that the inˇnite series for ez+w is the Cauchy product of the series for ez

and ew.
(b) Show that sin(z + w) = sin z cosw + cos z sinw and cos(z + w) =

cos z cosw − sin z sinw for all complex z and w.

7. (a) Prove that every complex number of absolute value 1 can be written eiy

for some real number y.
(b) Prove that |ex+iy | = ex for real x and y.

8. (a) Prove that exp takes on every complex value except 0.
(b) Prove that sin takes on every complex value.

9. For each of the following functions, compute the ˇrst three nonzero terms of
the Taylor series centered at 0 by manipulating power series.

(i) f (z) = tan z.
(ii) f (z) = z(1 − z)−1/2.
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(iii) f (z) = esin z − 1
z

.

(iv) f (z) = log(1 − z2).

(v) f (z) = sin2
z

z2
.

(vi) f (z) = sin(z2)
z cos2 z

.

(vii) f (z) = 1
z4 − 2z2 + 3

.

(viii) f (z) = 1
z

[e(
√

1+z−1) − 1].

10. (a) Suppose that we write a differentiable complex function f as f = u +
iv, where u and v are real-valued. Let ū and v̄ denote the restrictions
of u and v to the real numbers. In other words, ū(x) = u(x) for real
numbers x (but ū is not deˇned for other x ). Using Problem 26-9, show
that for real x we have

f ′(x) = ū′(x)+ iv̄′(x),

where f ′ denotes the complex derivative, while ū′ and v̄′ denote the
ordinary derivatives of these real-valued functions on R.

(b) Show, more generally, that

f (k)(x) = ū(k)(x)+ iv̄(k)(x).

(c) Suppose that f satisˇes the equation

(∗) f (n) + an−1f
(n−1) + · · · + a0f = 0,

where the ai are real numbers, and where the f (k) denote higher-order
complex derivatives. Show that ū and v̄ satisfy the same equation, where
ū(k) and v̄(k) now denote higher-order derivatives of real-valued functions
on R.

(d) Show that if a = b+ci is a complex root of the equation zn+an−1z
n−1 +

· · · + a0 = 0, then f (x) = ebx sin cx and f (x) = ebx cos cx are both
solutions of (∗).

11. (a) Show that exp is not one-one on C.
(b) Given w �= 0, show that ez = w if and only if z = x+ iy with x = log |w|

(here log denotes the real logarithm function), and y an argument of w.
*(c) Show that there does not exist a continuous function log deˇned for

nonzero complex numbers, such that exp(log(z)) = z for all z �= 0.
(Show that log cannot even be deˇned continuously for |z| = 1.)

Since there is no way to deˇne a continuous logarithm function we can-
not speak of the logarithm of a complex number, but only of \a logarithm
for w," meaning one of the inˇnitely many numbers z with ez = w. And
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for complex numbers a and b we deˇne ab to be a set of complex num-
bers, namely the set of all numbers eb log a or, more precisely, the set of
all numbers ebz where z is a logarithm for a.

(d) If m is an integer, then am consists of only one number, the one given by
the usual elementary deˇnition of am.

(e) If m and n are integers, then the set am/n coincides with the set of values
given by the usual elementary deˇnition, namely the set of all bm where b
is an nth root of a.

(f ) If a and b are real and b is irrational, then ab contains inˇnitely many
members, even for a > 0.

(g) Find all logarithms of i, and ˇnd all values of ii .
(h) By (ab)c we mean the set of all numbers of the form zc for some number z

in the set ab. Show that (1i)i has inˇnitely many values, while 1i·i has
only one.

(i) Show that all values of ab·c are also values of (ab)c. Is ab·c = (ab)c∩(ac)b?
12. (a) For real x show that we can choose log(x + i) and log(x − i) to be

log(x + i) = log(1 + x2)+ i
(π

2
− arctan x

)
,

log(x − i) = log(1 + x2)− i
(π

2
− arctan x

)
.

(It will help to note that π/2 − arctan x = arctan 1/x for x �= 0.)
(b) The expression

1
1 + x2 = 1

2i

(
1

x − i
− 1
x + i

)
yields, formally,∫

dx

1 + x2 = 1
2i

[log(x − i)− log(x + i)].

Use part (a) to check that this answer agrees with the usual one.

13. (a) A sequence {an} of complex numbers is called a Cauchy sequence if
lim

m,n→∞ |am − an| = 0. Suppose that an = bn + icn, where bn and cn are

real. Prove that {an} is a Cauchy sequence if and only if {bn} and {cn}
are Cauchy sequences.

(b) Prove that every Cauchy sequence of complex numbers converges.
(c) Give direct proofs, without using theorems about real series, that an

absolutely convergent series is convergent and that any rearrangement
has the same sum. (It is permitted, and in fact advisable, to use the proofs

of the corresponding theorems for real series.)

14. (a) Prove that
n∑
k=1

eikx = eix
1 − einx

1 − eix
=

sin
(n

2
x
)

sin
x

2

ei(n+1)x/2.
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(b) Deduce the formulas for
n∑
k=1

cos kx and
n∑
k=1

sin kx that are given in

Problem 15-33.

15. Let {an} be the Fibonacci sequence, a1 = a2 = 1, an+2 = an + an+1.

(a) If rn = an+1/an, show that rn+1 = 1 + 1/rn.
(b) Show that r = lim

n→∞ rn exists, and r = 1 + 1/r. Conclude that r =
(1 +

√
5 )/2.

(c) Show that
∞∑
n=1

anz
n has radius of convergence 2/(1 +

√
5 ). (Using

the unproved theorems in this chapter and the fact that
∞∑
n=1

anz
n =

−1/(z2 + z − 1) from Problem 24-15 we could have predicted that the
radius of convergence is the smallest absolute value of the roots of z2 +
z − 1 = 0; since the roots are (−1 ±

√
5 )/2, the radius of convergence

should be (−1 +
√

5 )/2. Notice that this number is indeed equal to
2/(1 +

√
5 ).)

16. Since (ez − 1)/z can be written as the power series 1 + z/2! + z2/3! + · · ·
which is nonzero at 0, it follows that there is a power series

z

ez − 1
=

∞∑
n=0

bn

n!
zn

with nonzero radius of convergence. Using the unproved theorems in this
chapter, we can even predict the radius of convergence; it is 2π , since this is
the smallest absolute value of the numbers z = 2kπi for which ez − 1 = 0.
The numbers bn appearing here are called the Bernoulli numbers.*

(a) Clearly b0 = 1. Now show that

z

ez − 1
= − z

2
+ z

2
· e

z + 1
ez − 1

,

e−z + 1
e−z − 1

= − ez + 1
ez − 1

,

and deduce that

b1 = − 1
2 , bn = 0 if n is odd and n > 1.

(b) By ˇnding the coefˇcient of zn in the right side of the equation

z =
( ∞∑
k=0

bk

k!

)(
z+ z2

2!
+ z3

3!
+ · · ·

)
,

* Sometimes the numbers Bn = (−1)n−1b2n are called the Bernoulli numbers, because bn = 0 if n
is odd and > 1 (see part (a)) and because the numbers b2n alternate in sign, although we will not
prove this. Other modiˇcations of this nomenclature are also in use.
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show that
n−1∑
i=0

(
n

i

)
bi = 0 for n > 1.

This formula allows us to compute any bk in terms of previous ones, and
shows that each is rational. Calculate two or three of the following:

b2 = 1
6 , b4 = − 1

30 , b6 = 1
42 , b8 = − 1

30 .

*(c) Part (a) shows that
∞∑
n=0

b2n

(2n)!
z2n = z

2
· e

z + 1
ez − 1

= z

2
· e

z/2 + e−z/2

ez/2 − e−z/2
.

Replace z by 2iz and show that

z cot z =
∞∑
n=0

b2n

(2n)!
(−1)n22nz2n.

*(d) Show that
tan z = cot z − 2 cot 2z.

*(e) Show that

tan z =
∞∑
n=1

b2n

(2n)!
(−1)n−122n(22n − 1)z2n−1.

(This series converges for |z| < π/2.)

17. The Bernoulli numbers play an important role in a theorem which is best
introduced by some notational nonsense. Let us use D to denote the \differ-
entiation operator," so that Df denotes f ′. Then Dkf will mean f (k) and

eDf will mean
∞∑
n=0

f (n)/n! (of course this series makes no sense in general,

but it will make sense if f is a polynomial function, for example). Finally,
let  denote the \difference operator" for which f (x) = f (x + 1)− f (x).
Now Taylor's Theorem implies, disregarding questions of convergence, that

f (x + 1) =
∞∑
n=0

f (n)(x)

n!
,

or

(∗) f (x + 1)− f (x) =
∞∑
n=1

f (n)(x)

n!
;

we may write this symbolically as f = (eD − 1)f , where 1 stands for the
\identity operator." Even more symbolically this can be written  = eD − 1,
which suggests that

D = D

eD − 1
.
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Thus we obviously ought to have

D =
∞∑
k=0

bk

k!
Dk,

i.e.,

(∗∗) f ′(x) =
∞∑
k=0

bk

k!
[f (k)(x + 1)− f (k)(x)].

The beautiful thing about all this nonsense is that it works!

(a) Prove that (∗∗) is literally true if f is a polynomial function (in which case
the inˇnite sum is really a ˇnite sum). Hint: By applying (∗) to f (k), ˇnd
a formula for f (k)(x+1)−f (k)(x); then use the formula in Problem 16(b)
to ˇnd the coefˇcient of f (j)(x) in the right side of (∗∗).

(b) Deduce from (∗∗) that

f ′(0)+ · · · + f ′(n) =
∞∑
k=0

bk

k!
[f (k)(n+ 1)− f (k)(0)].

(c) Show that for any polynomial function g we have

g(0)+ · · · + g(n) =
∫ n+1

0
g(t) dt +

∞∑
k=1

bk

k!
[g(k−1)(n + 1)− g(k−1)(0)].

(d) Apply this to g(x) = xp to show that
n∑
k=1

kp = np+1

p + 1
+

p∑
k=1

bk

k

(
p

k − 1

)
np−k+1.

Using the fact that b1 = − 1
2 , show that

n∑
k=1

kp = np+1

p + 1
+ np

2
+

p∑
k=2

bk

k

(
p

k − 1

)
np−k+1.

The ˇrst ten instances of this formula were written out in Problem 2-7,
which offered as a challenge the discovery of the general pattern. This
may now seem to be a preposterous suggestion, but the Bernoulli num-
bers were actually discovered in precisely this way! After writing out
these 10 formulas, Bernoulli claims (in his posthumously printed work
Ars Conjectandi, 1713): \Whoever will examine the series as to their regu-
larity may be able to continue the table." He then writes down the above
formula, offering no proof at all, merely noting that the coefˇcients bk
(which he denoted simply by A, B, C, . . . ) satisfy the equation in Prob-
lem 16(b). The relation between these numbers and the coefˇcients in
the power series for z/(ez − 1) was discovered by Euler.
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*18. The formula in Problem 17(c) can be generalized to the case where g is not a
polynomial function; the inˇnite sum must be replaced by a ˇnite sum plus a
remainder term. In order to ˇnd an expression for the remainder, it is useful
to introduce some new functions.

(a) The Bernoulli polynomials ϕn are deˇned by

ϕn(x) =
n∑
k=0

(
n

k

)
bn−kxk.

The ˇrst three are

ϕ1(x) = x − 1
2
,

ϕ2(x) = x2 − x + 1
6
,

ϕ3(x) = x3 − 3x2

2
+ x

2
.

Show that

ϕn(0) = bn,

ϕn(1) = bn if n > 1,
ϕn

′(x) = nϕn−1(x),

ϕn(x) = (−1)nϕn(1 − x) for n > 1.

Hint: Prove the last equation by induction on n, starting with n = 2.
(b) Let RNk(x) be the remainder term in Taylor's Theorem for f (k), on the

interval [x,x + 1], so that

(∗) f (k)(x + 1)− f (k)(x) =
N∑
n=1

f (k+n)(x)
n!

+ RN
k(x).

Prove that

f ′(x) =
N∑
k=0

bk

k!
[f (k)(x + 1)− f (k)(x)] −

N∑
k=0

bk

k!
RN−kk(x).

Hint: Imitate Problem 17(a). Notice the subscript N − k on R.
(c) Use the integral form of the remainder to show that

N∑
k=0

bk

k!
RN−kk(x) =

∫ x+1

x

ϕn(x + 1 − t)

N !
f (N+1)(t) dt.

(d) Deduce the \Euler-Maclaurin Summation Formula":

g(x)+ g(x + 1)+ · · · + g(x + n)

=
∫ x+n+1

x

g(t) dt +
N∑
k=1

bk

k!
[g(k−1)(x + n+ 1)− g(k−1)(x)] + Sn(x, n),
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where

SN(x,n) = −
n∑

j=0

∫ x+j+1

x+j

ϕN(x + j + 1 − t)

N !
g(N)(t) dt.

(e) Let ψn be the periodic function, with period 1, which satisˇes ψn(t) =
ϕn(t) for 0 ≤ t < 1. (Part (a) implies that if n > 1, then ψn is continuous,
since ϕn(1) = ϕn(0), and also that ψn is even if n is even and odd if n is
odd.) Show that

SN(x, n) = −
∫ x+n+1

x

ψN(x − t)

N !
g(N)(t) dt(

= (−1)N+1
∫ x+n+1

x

ψN(t)

N !
g(N)(t) dt if x is an integer

)
.

Unlike the remainder in Taylor's Theorem, the remainder Sn(x, n) usually does
not satisfy lim

N→∞
SN(x, n) = 0, because the Bernoulli numbers and functions

become large very rapidly (although the ˇrst few examples do not suggest this).
Nevertheless, important information can often be obtained from the summation
formula. The general situation is best discussed within the context of a specialized
study (\asymptotic series"), but the next problem shows one particularly important
example.

**19. (a) Use the Euler-Maclaurin Formula, with N = 2, to show that

log 1 + · · · + log(n− 1)

=
∫ n

1
log t dt − 1

2
log n+ 1

12

(
1
n

− 1
)

+
∫ n

1

ψ2(t)

2t2
dt.

(b) Show that

log
(

n!
nn+1/2e−n+1/12n

)
= 11

12
+
∫ n

1

ψ2(t)

2t2
dt.

(c) Explain why the improper integral β =
∫ ∞

1
ψ2(t)/2t2 dt exists, and show

that if α = exp(β + 11/12), then

log
(

n!
αnn+1/2e−n+1/12n

)
= −

∫ ∞

n

ψ2(t)

2t2
dt.

(d) Problem 19-40(d) shows that

√
π = lim

n→∞
(n!)222n

(2n)!
√
n
.

Use part (c) to show that

√
π = lim

n→∞
α2n2n+1e−2n22n

α(2n)2n+1/2e−2n
√
n
,

and conclude that α =
√

2π .
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(e) Show that ∫ 1/2

0
ϕ2(t) dt =

∫ 1

0
ϕ2(t) dt = 0.

(You can do the computations explicitly, but the result also follows im-
mediately from Problem 18(a).) Now what can be said about the graphs

of ψ̄(x) = ∫ x0 ψ2(t) dt and ¯̄ψ(x) = ∫ x0 ψ̄(t) dt? Use this information and
integration by parts to show that∫ ∞

n

ψ2(t)

2t2
dt > 0.

(f ) Show that the maximum value of |ϕ2(x)| for x in [0, 1] is 1
6 , and conclude

that ∣∣∣∣
∫ ∞

n

ψ2(t)

2t2
dt

∣∣∣∣ < 1
12n

.

(g) Finally, conclude that
√

2π nn+1/2e−n < n! <
√

2π nn+1/2e−n+1/12n.

The ˇnal result of Problem 19, a strong form of Stirling's Formula, shows that
n! is approximately

√
2π nn+1/2e−n, in the sense that this expression differs from n!

by an amount which is small compared to n when n is large. For example, for
n = 10 we obtain 3598696 instead of 3628800, with an error < 1%.

A more general form of Stirling's Formula illustrates the \asymptotic" nature of
the summation formula. The same argument which was used in Problem 19 can
now be used to show that for N ≥ 2 we have

log
(

n!√
2π nn+1/2e−n

)
=

N∑
k=2

bk

k(k − 1)nk−1 ±
∫ ∞

n

ψN(t)

NtN
dt.

Since ψN is bounded, we can obtain estimates of the form∣∣∣∣
∫ ∞

n

ψN(t)

NtN
dt

∣∣∣∣ ≤ MN

nN−1 .

If N is large, the constant MN will also be large; but for very large n the factor
n1−N will make the product very small. Thus, the expression

√
2π nn+1/2e−n · exp

( N∑
k=2

bk

k(k − 1)nk−1

)

may be a very bad approximation for n! when n is small, but for large n (how large
depends on N ) it will be an extremely good one (how good depends on N ).
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There was a most ingenious Architect
who had contrived a new Method
for building Houses,
by beginning at the Roof, and working
downwards to the Foundation.
JONATHAN SWIFT



CHAPTER 28 FIELDS

Throughout this book a conscientious attempt has been made to deˇne all im-
portant concepts, even terms like \function," for which an intuitive deˇnition is
often considered sufˇcient. But Q and R, the two main protagonists of this story,
have only been named, never deˇned. What has never been deˇned can never be
analyzed thoroughly, and \properties" P1{P13 must be considered assumptions,
not theorems, about numbers. Nevertheless, the term \axiom" has been purposely
avoided, and in this chapter the logical status of P1{P13 will be scrutinized more
carefully.

Like Q and R, the sets N and Z have also remained undeˇned. True, some
talk about all four was inserted in Chapter 2, but those rough descriptions are far
from a deˇnition. To say, for example, that N consists of 1, 2, 3, etc., merely
names some elements of N without identifying them (and the \etc." is useless).
The natural numbers can be deˇned, but the procedure is involved and not quite
pertinent to the rest of the book. The Suggested Reading list contains references
to this problem, as well as to the other steps that are required if one wishes to
develop calculus from its basic logical starting point. The further development
of this program would proceed with the deˇnition of Z, in terms of N, and the
deˇnition of Q in terms of Z. This program results in a certain well-deˇned
set Q , certain explicitly deˇned operations + and · , and properties P1{P12 as
theorems. The ˇnal step in this program is the construction of R, in terms of Q .
It is this last construction which concerns us. Assuming that Q has been deˇned,
and that P1{P12 have been proved for Q , we shall ultimately define R and prove all
of P1{P13 for R.

Our intention of proving P1{P13 means that we must deˇne not only real num-
bers, but also addition and multiplication of real numbers. Indeed, the real num-
bers are of interest only as a set together with these operations: how the real
numbers behave with respect to addition and multiplication is crucial; what the
real numbers may actually be is quite irrelevant. This assertion can be expressed in
a meaningful mathematical way, by using the concept of a \ˇeld," which includes
as special cases the three important number systems of this book. This extraordi-
narily important abstraction of modern mathematics incorporates the properties
P1{P9 common to Q , R, and C. A field is a set F (of objects of any sort what-
soever), together with two \binary operations" C and � deˇned on F (that is, two
rules which associate to elements a and b in F , other elements a C b and a � b
in F ) for which the following conditions are satisˇed:

(1) (a C b)C c = a C (bC c) for all a, b, and c in F .
(2) There is some element 0 in F such that

(i) a C 0 = a for all a in F ,
(ii) for every a in F , there is some element b in F such that a C b = 0.

571
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(3) a C b = bC a for all a and b in F .
(4) (a � b) � c = a � (b � c) for all a, b, and c in F .
(5) There is some element 1 in F such that 1 �= 0 and

(i) a � 1 = a for all a in F ,
(ii) For every a in F with a �= 0, there is some element b in F such that

a � b = 1.

(6) a � b = b � a for all a and b in F .
(7) a � (bC c) = a � bC a � c for all a, b, and c in F .

The familiar examples of ˇelds are, as already indicated, Q , R, and C, with
C and � being the familiar operations of + and · . It is probably unnecessary to
explain why these are ˇelds, but the explanation is, at any rate, quite brief. When
C and � are understood to mean the ordinary + and · , the rules (1), (3), (4), (6), (7)
are simply restatements of P1, P4, P5, P8, P9; the elements which play the role of 0
and 1 are the numbers 0 and 1 (which accounts for the choice of the symbols 0, 1);
and the number b in (2) or (5) is −a or a−1, respectively. (For this reason, in an
arbitrary ˇeld F we denote by �a the element such that a C (�a) = 0, and by
a�1 the element such that a � a�1 = 1, for a �= 0.)

In addition to Q , R, and C, there are several other ˇelds which can be described
easily. One example is the collection F1 of all numbers a + b

√
2 for a, b in Q .

The operations C and � will, once again, be the usual + and · for real numbers.
It is necessary to point out that these operations really do produce new elements
of F1:

(a + b
√

2 )+ (c+ d
√

2 ) = (a + c)+ (b + d)
√

2, which is in F1;
(a + b

√
2 ) · (c+ d

√
2 ) = (ac+ 2bd)+ (bc+ ad)

√
2, which is in F1.

Conditions (1), (3), (4), (6), (7) for a ˇeld are obvious for F1: since these hold for
all real numbers, they certainly hold for all real numbers of the form a + b

√
2.

Condition (2) holds because the number 0 = 0+0
√

2 is in F1 and, for α = a+b
√

2
in F1 the number β = (−a) + (−b)

√
2 in F1 satisˇes α + β = 0. Similarly,

1 = 1 + 0
√

2 is in F1, so (5i) is satisˇed. The veriˇcation of (5ii) is the only slightly

difˇcult point. If a + b
√

2 �= 0, then

a + b
√

2 · 1

a + b
√

2
= 1;

it is therefore necessary to show that 1/(a + b
√

2 ) is in F1. This is true because

1

a + b
√

2
= a − b

√
2

(a − b
√

2 )(a + b
√

2 )
= a

a2 − 2b2 + (−b)
a2 − 2b2

√
2.

(The division by a − b
√

2 is valid because the relation a − b
√

2 = 0 could be true
only if a = b = 0 (since

√
2 is irrational) which is ruled out by the hypothesis

a + b
√

2 �= 0.)
The next example of a ˇeld, F2, is considerably simpler in one respect: it con-

tains only two elements, which we might as well denote by 0 and 1. The operations
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C and � are described by the following tables.

C 0 1 � 0 1

0 0 1 0 0 0

1 1 0 1 0 1

The veriˇcation of conditions (1){(7) are straightforward, case-by-case checks. For
example, condition (1) may be proved by checking the 8 equations obtained by
setting a, b, c = 0 or 1. Notice that in this ˇeld 1 C 1 = 0; this equation may also
be written 1 = �1.

Our ˇnal example of a ˇeld is rather silly: F3 consists of all pairs (a, a) for a
in R, and C and � are deˇned by

(a, a)C (b, b) = (a + b, a + b),

(a, a) � (b, b) = (a · b, a · b).
(The + and · appearing on the right side are ordinary addition and multiplication
for R.) The veriˇcation that F3 is a ˇeld is left to you as a simple exercise.

A detailed investigation of the properties of ˇelds is a study in itself, but for our
purposes, ˇelds provide an ideal framework in which to discuss the properties of
numbers in the most economical way. For example, the consequences of P1{P9
which were derived for \numbers" in Chapter 1 actually hold for any ˇeld; in
particular, they are true for the ˇelds Q , R, and C.

Notice that certain common properties of Q , R, and C do not hold for all ˇelds.
For example, it is possible for the equation 1 C 1 = 0 to hold in some ˇelds, and
consequently a � b = b � a does not necessarily imply that a = b. For the ˇeld
C the assertion 1 + 1 �= 0 was derived from the explicit description of C; for the
ˇelds Q and R, however, this assertion was derived from further properties which
do not have analogues in the conditions for a ˇeld. There is a related concept
which does use these properties. An ordered field is a ˇeld F (with operations C
and � ) together with a certain subset P of F (the \positive" elements) with the
following properties:

(8) For all a in F , one and only one of the following is true:

(i) a = 0,
(ii) a is in P,
(iii) �a is in P.

(9) If a and b are in P, then a C b is in P.
(10) If a and b are in P, then a � b is in P.

We have already seen that the ˇeld C cannot be made into an ordered ˇeld.
The ˇeld F2, with only two elements, likewise cannot be made into an ordered
ˇeld: in fact, condition (8), applied to 1 = �1, shows that 1 must be in P; then (9)
implies that 1 C 1 = 0 is in P, contradicting (8). On the other hand, the ˇeld F1,
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consisting of all numbers a + b
√

2 with a, b in Q , certainly can be made into
an ordered ˇeld: let P be the set of all a + b

√
2 which are positive real numbers

(in the ordinary sense). The ˇeld F3 can also be made into an ordered ˇeld; the
description of P is left to you.

It is natural to introduce notation for an arbitrary ordered ˇeld which corre-
sponds to that used for Q and R: we deˇne

a ì b if a � b is in P,
a ê b if b ì a,

a � b if a ê b or a = b,

a � b if a ì b or a = b.

Using these deˇnitions we can reproduce, for an arbitrary ordered ˇeld F , the
deˇnitions of Chapter 7:

A set A of elements of F is bounded above if there is some x in F such
that x � a for all a in A. Any such x is called an upper bound for A. An
element x of F is a least upper bound for A if x is an upper bound for A
and x � y for every y in F which is an upper bound for A.

Finally, it is possible to state an analogue of property P13 for R; this leads to the
last abstraction of this chapter:

A complete ordered field is an ordered ˇeld in which every nonempty set
which is bounded above has a least upper bound.

The consideration of ˇelds may seem to have taken us far from the goal of
constructing the real numbers. However, we are now provided with an intelligible
means of formulating this goal. There are two questions which will be answered
in the remaining two chapters:

1. Is there a complete ordered ˇeld?
2. Is there only one complete ordered ˇeld?

Our starting point for these considerations will be Q , assumed to be an or-
dered ˇeld, containing N and Z as certain subsets. At one crucial point it will be
necessary to assume another fact about Q :

Let x be an element of Q with x > 0. Then for any y in Q there is some n
in N such that nx > y.

This assumption, which asserts that the rational numbers have the Archimedian
property of the real numbers, does not follow from the other properties of an
ordered ˇeld (for the example that demonstrates this conclusively see reference [17]
of the Suggested Reading). The important point for us is that when Q is explicitly
constructed, properties P1{P12 appear as theorems, and so does this additional
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assumption; if we really began from the beginning, no assumptions about Q would
be necessary.

PROBLEMS

1. Let F be the set {0, 1,2} and deˇne operations C and � on F by the following
tables. (The rule for constructing these tables is as follows: add or multiply
in the usual way, and then subtract the highest possible multiple of 3; thus
2 · 2 = 4 = 3 + 1, so 2 · 2 = 1.)

C 0 1 2 � 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

Show that F is a ˇeld, and prove that it cannot be made into an ordered
ˇeld.

2. Suppose now that we try to construct a ˇeld F having elements 0, 1,
2, 3 with operations C and � deˇned as in the previous example, by adding
or multiplying in the usual way, and then subtracting the highest possible
multiple of 4. Show that F will not be a ˇeld.

3. Let F = {0, 1, α, β} and deˇne operations C and � on F by the following
tables.

C 0 1 α β � 0 1 α β

0 0 1 α β 0 0 0 0 0

1 1 0 β α 1 0 1 α β

α α β 0 1 α 0 α β 1

β β α 1 0 β 0 β 1 α

Show that F is a ˇeld.

4. (a) Let F be a ˇeld in which 1 C 1 = 0. Show that aC a = 0 for all a (this
can also be written a = �a).

(b) Suppose that a C a = 0 for some a �= 0. Show that 1 C 1 = 0 (and
consequently bC b = 0 for all b).
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5. (a) Show that in any ˇeld we have

(1 C · · · C 1)︸ ︷︷ ︸
m times

� (1 C · · · C 1)︸ ︷︷ ︸
n times

= 1 C · · · C 1︸ ︷︷ ︸
mn times

for all natural numbers m and n.
(b) Suppose that in the ˇeld F we have

1 C · · · C 1︸ ︷︷ ︸
m times

= 0

for some natural number m. Show that the smallest m with this property
must be a prime number (this prime number is called the characteristic
of F ).

6. Let F be any ˇeld with only ˇnitely many elements.

(a) Show that there must be distinct natural numbers m and n with

1 C · · · C 1︸ ︷︷ ︸
m times

= 1 C · · · C 1︸ ︷︷ ︸
n times

.

(b) Conclude that there is some natural number k with

1 C · · · C 1︸ ︷︷ ︸
k times

= 0.

7. Let a, b, c, and d be elements of a ˇeld F with a � d � b � c �= 0. Show that
the equations

a � x C b � y = α,

c � x C d � y = β,

can be solved for x and y.

8. Let a be an element of a ˇeld F . A \square root" of a is an element b of F
with b2 = b � b = a.

(a) How many square roots does 0 have?
(b) Suppose a �= 0. Show that if a has a square root, then it has two square

roots, unless 1 C 1 = 0, in which case a has only one.

9. (a) Consider an equation x2 C b � xC c = 0, where b and c are elements of
a ˇeld F . Suppose that b2 � 4 � c has a square root r in F . Show that
(�bC r)ë2 is a solution of this equation.

(b) In the ˇeld F2 of the text, both elements clearly have a square root.
On the other hand, it is easy to check that neither element satisˇes the
equation x2 CxC 1 = 0. Thus some detail in part (a) must be incorrect.
What is it?

10. Let F be a ˇeld and a an element of F which does not have a square root.
This problem shows how to construct a bigger ˇeld F ′, containing F , in
which a does have a square root. (This construction has already been carried
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through in a special case, namely, F = R and a = −1; this special case should
guide you through this example.)

Let F ′ consist of all pairs (x, y) with x and y in F . If the operations on F
are C and � , deˇne operations ⊕ and � on F ′ as follows:

(x, y)⊕ (z, w) = (x C z, y Cw),

(x, y)� (z, w) = (x � z C a � y �w, y � zC x �w).

(a) Prove that F ′, with the operations ⊕ and �, is a ˇeld.
(b) Prove that

(x,0)⊕ (y,0) = (x C y,0),
(x,0)� (y,0) = (x � y,0),

so that we may agree to abbreviate (x,0) by x.
(c) Find a square root of a = (a,0) in F ′.

11. Let F be the set of all four-tuples (w, x, y, z) of real numbers. Deˇne C
and � by

(s, t, u, v)C (w, x, y, z) = (s +w, t + x, u+ y,v + z),

(s, t, u, v) � (w, x, y, z) = (sw − tx − uy − vz, sx + tw + uz − vy,

sy + uw + vx − tz, sz+ vw + ty − ux).

(a) Show that F satisˇes all conditions for a ˇeld, except (6). At times the
algebra will become quite ornate, but the existence of multiplicative in-
verses is the only point requiring any thought.

(b) It is customary to denote

(0, 1,0, 0) by i,
(0, 0, 1,0) by j,
(0, 0, 0,1) by k.

Find all 9 products of pairs i, j , and k. The results will show in particular
that condition (6) is deˇnitely false. This \skew ˇeld" F is known as the
quaternions.



CHAPTER 29 CONSTRUCTION OF THE
REAL NUMBERS

The mass of drudgery which this chapter necessarily contains is relieved by one
truly ˇrst-rate idea. In order to prove that a complete ordered ˇeld exists we will
have to explicitly describe one in detail; verifying conditions (1){(10) for an ordered
ˇeld will be a straightforward ordeal, but the description of the ˇeld itself, of the
elements in it, is ingenious indeed.

At our disposal is the set of rational numbers, and from this raw material it is
necessary to produce the ˇeld which will ultimately be called the real numbers.
To the uninitiated this must seem utterly hopeless|if only the rational numbers
are known, where are the others to come from? By now we have had enough
experience to realize that the situation may not be quite so hopeless as that casual
consideration suggests. The strategy to be adopted in our construction has already
been used effectively for deˇning functions and complex numbers. Instead of
trying to determine the \real nature" of these concepts, we settled for a deˇnition
that described enough about them to determine their mathematical properties
completely.

A similar proposal for deˇning real numbers requires a description of real num-
bers in terms of rational numbers. The observation, that a real number ought to
be determined completely by the set of rational numbers less than it, suggests a
strikingly simple and quite attractive possibility: a real number might (and in fact
eventually will) be described as a collection of rational numbers. In order to make
this proposal effective, however, some means must be found for describing \the
set of rational numbers less than a real number" without mentioning real num-
bers, which are still nothing more than heuristic ˇgments of our mathematical
imagination.

If A is to be regarded as the set of rational numbers which are less than the
real number α, then A ought to have the following property: If x is in A and y
is a rational number satisfying y < x, then y is in A. In addition to this property,
the set A should have a few others. Since there should be some rational number
x < α, the set A should not be empty. Likewise, since there should be some
rational number x > α, the set A should not be all of Q . Finally, if x < α, then
there should be another rational number y with x < y < α, so A should not
contain a greatest member.

If we temporarily regard the real numbers as known, then it is not hard to
check (Problem 8-17) that a set A with these properties is indeed the set of rational
numbers less than some real number α. Since the real numbers are presently
in limbo, your proof, if you supply one, must be regarded only as an unofˇcial
comment on these proceedings. It will serve to convince you, however, that we
have not failed to notice any crucial property of the set A. There appears to be
no reason for hesitating any longer.

578
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DEFINITION A real number is a set α, of rational numbers, with the following four proper-
ties:

(1) If x is in α and y is a rational number with y < x, then y is also in α.
(2) α �= ∅.
(3) α �= Q .
(4) There is no greatest element in α; in other words, if x is in α, then there

is some y in α with y > x.

The set of all real numbers is denoted by R.

Just to remind you of the philosophy behind our deˇnition, here is an explicit
example of a real number:

α = {x in Q : x < 0 or x2 < 2}.
It should be clear that α is the real number which will eventually be known as

√
2,

but it is not an entirely trivial exercise to show that α actually is a real number.
The whole point of such an exercise is to prove this using only facts about Q ;
the hard part will be checking condition (4), but this has already appeared as a
problem in a previous chapter (ˇnding out which one is up to you). Notice that
condition (4), although quite bothersome here, is really essential in order to avoid
ambiguity; without it both

{x in Q : x < 1}
and

{x in Q : x ≤ 1}
would be candidates for the \real number 1."

The shift from A to α in our deˇnition indicates both a conceptual and a no-
tational concern. Henceforth, a real number is, by deˇnition, a set of rational
numbers. This means, in particular, that a rational number (a member of Q )
is not a real number; instead every rational number x has a natural counterpart
which is a real number, namely, {y in Q : y < x}. After completing the construc-
tion of the real numbers, we can mentally throw away the elements of Q and
agree that Q will henceforth denote these special sets. For the moment, however,
it will be necessary to work at the same time with rational numbers, real numbers
(sets of rational numbers) and even sets of real numbers (sets of sets of rational
numbers). Some confusion is perhaps inevitable, but proper notation should keep
this to a minimum. Rational numbers will be denoted by lower case Roman letters
(x, y, z, a, b, c) and real numbers by lower case Greek letters (α, β, γ ); capital
Roman letters (A, B, C) will be used to denote sets of real numbers.

The remainder of this chapter is devoted to the deˇnition of C, � , and P for R,
and a proof that with these structures R is indeed a complete ordered ˇeld.

We shall actually begin with the deˇnition of P, and even here we shall work
backwards. We ˇrst deˇne α ê β; later, when C, � , and 0 are available, we shall
deˇne P as the set of all α with 0 ê α, and prove the necessary properties for P.
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The reason for beginning with the deˇnition of ê is the simplicity of this concept
in our present setup:

Definition. If α and β are real numbers, then α ê β means that α is contained in
β (that is, every element of α is also an element of β), but α �= β.

A repetition of the deˇnitions of �, ì, � would be stultifying, but it is interesting
to note that � can now be expressed more simply than ê ; if α and β are real
numbers, then α � β if and only if α is contained in β.

If A is a bounded collection of real numbers, it is almost obvious that A should
have a least upper bound. Each α in A is a collection of rational numbers; if these
rational numbers are all put in one collection β, then β is presumably supA. In
the proof of the following theorem we check all the little details which have not
been mentioned, not least of which is the assertion that β is a real number. (We
will not bother numbering theorems in this chapter, since they all add up to one
big Theorem: There is a complete ordered ˇeld.)

THEOREM If A is a set of real numbers and A �= ∅ and A is bounded above, then A has a
least upper bound.

PROOF Let β = {x : x is in some α in A}. Then β is certainly a collection of rational
numbers; the proof that β is a real number requires checking four facts.

(1) Suppose that x is in β and y < x. The ˇrst condition means that x is in α
for some α in A. Since α is a real number, the assumption y < x implies
that y is in α. Therefore it is certainly true that y is in β.

(2) Since A �= ∅, there is some α in A. Since α is a real number, there is some
x in α. This means that x is in β, so β �= ∅.

(3) Since A is bounded above, there is some real number γ such that α ê γ

for every α in A. Since γ is a real number, there is some rational number
x which is not in γ . Now α ê γ means that α is contained in γ , so it is
also true that x is not in α for any α in A. This means that x is not in β;
so β �= Q .

(4) Suppose that x is in β. Then x is in α for some α in A. Since α does not
have a greatest member, there is some rational number y with x < y and y
in α. But this means that y is in β; thus β does not have a greatest member.

These four observations prove that β is a real number. The proof that β is the
least upper bound of A is easier. If α is in A, then clearly α is contained in β; this
means that α � β, so β is an upper bound for A. On the other hand, if γ is an
upper bound for A, then α � γ for every α in A; this means that α is contained
in γ , for every α in A, and this surely implies that β is contained in γ . This, in
turn, means that β � γ ; thus β is the least upper bound of A.

The deˇnition of C is both obvious and easy, but is must be complemented with
a proof that this \obvious" deˇnition makes any sense at all.
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Definition. If α and β are real numbers, then

a C β = {x : x = y + z for some y in α and some z in β}.

THEOREM If α and β are real numbers, then α C β is a real number.

PROOF Once again four facts must be veriˇed.

(1) Suppose w < x for some x in α C β. Then x = y + z for some y in α and
some z in β, which means that w < y + z, and consequently, w − y < z.
This shows that w−y is in β (since z is in β, and β is a real number). Since
w = y + (w − y), it follows that w is in α C β.

(2) It is clear that α C β �= ∅, since α �= ∅ and β �= ∅.
(3) Since α �= Q and β �= Q , there are rational numbers a and b with a

not in α and b not in β. Any x in α satisˇes x < a (for if a < x, then
condition (1) for a real number would imply that a is in α); similarly any y
in β satisˇes y < b. Thus x + y < a + b for any x in α and y in β. This
shows that a + b is not in α C β, so α C β �= Q .

(4) If x is in α C β, then x = y + z for y in α and z in β. There are y ′ in α
and z′ in β with y < y ′ and z < z′; then x < y ′ + z′ and y ′ + z′ is in αC β.
Thus α C β has no greatest member.

By now you can see how tiresome this whole procedure is going to be. Every time
we mention a new real number, we must prove that it is a real number; this requires
checking four conditions, and even when trivial they require concentration. There
is really no help for this (except that it will be less boring if you check the four
conditions for yourself ). Fortunately, however, a few points of interest will arise
now and then, and some of our theorems will be easy. In particular, two properties
of C present no problems.

THEOREM If α, β, and γ are real numbers, then (α C β)C γ = α C (β C γ ).

PROOF Since (x+y)+ z = x+ (y+ z) for all rational numbers x, y, and z, every member
of (α C β)C γ is also a member of α C (β C γ ), and vice versa.

THEOREM If α and β are real numbers, then α C β = β C α.

PROOF Left to you (even easier).

To prove the other properties of C we ˇrst deˇne 0.

Definition. 0 = {x in Q : x < 0}.

It is, thank goodness, obvious that 0 is a real number, and the following theorem
is also simple.
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THEOREM If α is a real number, then α C 0 = α.

PROOF If x is in α and y is in 0, then y < 0, so x+ y < x. This implies that x+ y is in α.
Thus every member of α C 0 is also a member of α.

On the other hand, if x is in α, then there is a rational number y in α such that
y > x. Since x = y + (x − y), where y is in α, and x − y < 0 (so that x − y is
in 0), this shows that x is in α C 0. Thus every member of α is also a member
of α C 0.

The reasonable candidate for �α would seem to be the set

{x in Q : −x is not in α}
(since −x not in α means, intuitively, that −x > α, so that x < −α). But in certain
cases this set will not even be a real number. Although a real number α does not
have a greatest member, the set

Q − α = {x in Q : x is not in α}
may have a least element x0; when α is a real number of this kind, the set
{x : −x is not in α} will have a greatest element −x0. It is therefore necessary to
introduce a slight modiˇcation into the deˇnition of �α, which comes equipped
with a theorem.

Definition. If α is a real number, then

�α = {x in Q : −x is not in α, but − x is not the least element of Q − α}.

THEOREM If α is a real number, then �α is a real number.

PROOF (1) Suppose that x is in �α and y < x. Then −y > −x. Since −x is not in α,
it is also true that −y is not in α. Moreover, it is clear that −y is not the
smallest element of Q − α, since −x is a smaller element. This shows that
y is in �α.

(2) Since α �= Q , there is some rational number y which is not in α. We can
assume that y is not the smallest rational number in Q − α (since y can
always be replaced by any y ′ > y ). Then −y is in �α. Thus �α �= ∅.

(3) Since α �= ∅, there is some x in α. Then −x cannot possibly be in �α, so
�α �= Q .

(4) If x is in �α, then −x is not in α, and there is a rational number y < −x
which is also not in α. Let z be a rational number with y < z < −x. Then
z is also not in α, and z is clearly not the smallest element of Q − α. So
−z is in �α. Since −z > x, this shows that �α does not have a greatest
element.

The proof that α C (�α) = 0 is not entirely straightforward. The difˇculties
are not caused, as you might presume, by the ˇnicky details in the deˇnition



29. Construction of the Real Numbers 583

of �α. Rather, at this point we require the Archimedian property of Q stated on
page 574, which does not follow from P1{P12. This property is needed to prove
the following lemma, which plays a crucial role in the next theorem.

LEMMA Let α be a real number, and z a positive rational number. Then there are (Figure 1)
rational numbers x in α, and y not in α, such that y − x = z. Moreover, we may
assume that y is not the smallest element of Q − α.

PROOF Suppose ˇrst that z is in α. If the numbers

z, 2z, 3z, . . .

were all in α, then every rational number would be in α, since every rational num-
ber w satisˇes w < nz for some n, by the additional assumption on page 574. This
contradicts the fact that α is a real number, so there is some k such that x = kz is
in α and y = (k + 1)z is not in α. Clearly y − x = z.

Moreover, if y happens to be the smallest element of Q − α, let x ′ > x be an
element of α, and replace x by x ′, and y by y + (x ′ − x).

If z is not in α, there is a similar proof, based on the fact that the numbers (−n)z
cannot all fail to be in α.

F I G U R E 1

THEOREM If α is a real number, then
α C (�α) = 0.

PROOF Suppose x is in α and y is in �α. Then −y is not in α, so −y > x. Hence
x + y < 0, so x + y is in 0. Thus every member of α C (�α) is in 0.

It is a little more difˇcult to go in the other direction. If z is in 0, then −z > 0.
According to the lemma, there is some x in α, and some y not in α, with y not the
smallest element of Q − α, such that y − x = −z. This equation can be written
x+ (−y)= z. Since x is in α, and −y is in �α, this proves that z is in αC (�α).

Before proceeding with multiplication, we deˇne the \positive elements" and
prove a basic property:

Definition. P = {α in R : α ì 0}.

Notice that α C β is clearly in P if α and β are.
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THEOREM If α is a real number, then one and only one of the following conditions holds:

(i) α = 0,
(ii) α is in P,
(iii) �α is in P.

PROOF If α contains any positive rational number, then α certainly contains all negative
rational numbers, so α contains 0 and α �= 0, i.e., α is in P. If α contains no
positive rational numbers, then one of two possibilities must hold:

(1) α contains all negative rational numbers; then α = 0.
(2) there is some negative rational number x which is not in α; it can be as-

sumed that x is not the least element of Q − α (since x could be replaced
by x/2 > x ); then �α contains the positive rational number −x, so, as we
have just proved, �α is in P.

This shows that at least one of (i){(iii) must hold. If α = 0, it is clearly impossible
for condition (ii) or (iii) to hold. Moreover, it is impossible that α ì 0 and �α ì 0
both hold, since this would imply that 0 = αC (�α) ì 0.

Recall that α ì β was deˇned to mean that α contains β, but is unequal to β.
This deˇnition was ˇne for proving completeness, but now we have to show that
it is equivalent to the deˇnition which would be made in terms of P. Thus, we
must show that α � β ì 0 is equivalent to α ì β. This is clearly a consequence
of the next theorem.

THEOREM If α, β, and γ are real numbers and α ì β, then α C γ ì β C γ .

PROOF The hypothesis α ì β implies that β is contained in α; it follows immediately from
the deˇnition of C that βCγ is contained in αCγ . This shows that αCγ � βCγ .
We can easily rule out the possibility of equality, for if

α C γ = β C γ,

then
α = (α C γ )C (�γ ) = (β C γ )C (�γ ) = β,

which is false. Thus α C γ ì β C γ .

Multiplication presents difˇculties of its own. If α, β ì 0, then α � β can be
deˇned as follows.

Definition. If α and β are real numbers and α, β ì 0, then

α � β = {z : z ≤ 0 or z = x · y for some x in α and y in β with x, y > 0}.

THEOREM If α and β are real numbers with α, β ì 0, then α � β is a real number.
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PROOF As usual, we must check four conditions.

(1) Suppose w < z, where z is in α � β. If w ≤ 0, then w is automatically
in α � β. Suppose that w > 0. Then z > 0, so z = x · y for some positive x
in α and positive y in β. Now

w = wz

z
= wxy

z
=
(
w

z
· x
)

· y.

Since 0 < w < z, we have w/z < 1, so (w/z) · x is in α. Thus w is in α � β.
(2) Clearly α � β �= ∅.
(3) If x is not in α, and y is not in β, then x > x ′ for all x ′ in α, and y > y ′

for all y ′ in β. Hence xy > x ′y ′ for all such positive x ′ and y ′. So xy is not
in α � β; thus α � β �= Q .

(4) Suppose w is in α � β, and w ≤ 0. There is some x in α with x > 0 and
some y in β with y > 0. Then z = xy is in α � β and z > w. Now suppose
w > 0. Then w = xy for some positive x in α and some positive y in β.
Moreover, α contains some x ′ > x; if z = x ′y, then z > xy = w, and z is
in α � β. Thus α � β does not have a greatest element.

Notice that α � β is clearly in P if α and β are. This completes the veriˇcation
of all properties of P. To complete the deˇnition of � we ˇrst deˇne jαj.

Definition. If α is a real number, then

jαj =
{
α, if α � 0
�α, if α � 0.

Definition. If α and β are real numbers, then

α � β =



0, if α = 0 or β = 0
jαj � jβj, if α ì 0, β ì 0 or α ê 0, β ê 0
�(jαj � jβj), if α ì 0, β ê 0 or α ê 0, β ì 0.

As one might suspect, the proofs of the properties of multiplication usually in-
volve reduction to the case of positive numbers.

THEOREM If α, β, and γ are real numbers, then α � (β � γ ) = (α � β) � γ .

PROOF This is clear if α, β, γ ì 0. The proof for the general case requires considering
separate cases (and is simpliˇed slightly if one uses the following theorem).

THEOREM If α and β are real numbers, then α � β = β � α.
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PROOF This is clear if α, β ì 0, and the other cases are easily checked.

Definition. 1 = {x in Q : x < 1}.
(It is clear that 1 is a real number.)

THEOREM If α is a real number, then α � 1 = α.

PROOF Let α ì 0. It is easy to see that every member of α � 1 is also a member of α.
On the other hand, suppose x is in α. If x ≤ 0, then x is automatically in α � 1.
If x > 0, then there is some rational number y in α such that x < y. Then
x = y · (x/y), and x/y is in 1, so x is in α � 1. This proves that α � 1 = α if α ì 0.

If α ê 0, then, applying the result just proved, we have

α � 1 = �(jαj � j1j) = �(jαj) = α.

Finally, the theorem is obvious when α = 0.

Definition. If α is a real number and α ì 0, then
α�1 = {x in Q : x ≤ 0, or x > 0 and 1/x is not in α, but 1/x is not the smallest

member of Q − α};
if α ê 0, then α�1 = �(jαj)�1.

THEOREM If α is a real number unequal to 0, then α�1 is a real number.

PROOF Clearly it sufˇces to consider only α ì 0. Four conditions must be checked.

(1) Suppose y < x, and x is in α�1. If y ≤ 0, then y is in α�1. If y > 0, then
x > 0, so 1/x is not in α. Since 1/y > 1/x, it follows that 1/y is not in α,
and 1/y is clearly not the smallest element of Q − α, so y is in α�1.

(2) Clearly α�1 �= ∅.
(3) Since α ì 0, there is some positive rational number x in α. Then 1/x is

not in α�1, so α�1 �= Q .
(4) Suppose x is in α�1. If x ≤ 0, there is clearly some y in α�1 with y > x

because α�1 contains some positive rationals. If x > 0, then 1/x is not in α.
Since 1/x is not the smallest member of Q −α, there is a rational number
y not in α, with y < 1/x. Choose a rational number z with y < z < 1/x.
Then 1/z is in α, and 1/z > x. Thus α�1 does not contain a largest
member.

In order to prove that α�1 is really the multiplicative inverse of α, it helps to
have another lemma, which is the multiplicative analogue of our ˇrst lemma.

LEMMA Let α be a real number with α ì 0, and z a rational number with z > 1. Then
there are rational numbers x in α, and y not in α, such that y/x = z. Moreover,
we can assume that y is not the least element of Q − α.
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PROOF Suppose ˇrst that z is in α. Since z− 1 > 0 and

zn = (1 + (z− 1))n ≥ 1 + n(z− 1),

it follows that the numbers
z, z2, z3, . . .

cannot all be in α. So there is some k such that x = zk is in α, and y = zk+1 is not
in α. Clearly y/x = z. Moreover, if y happens to be the least element of Q − α,
let x ′ > x be an element of α, and replace x by x ′ and y by yx ′/x.

If z is not in α, there is a similar proof, based on the fact that the numbers 1/zk

cannot all fail to be in α.

THEOREM If α is a real number and α �= 0, then α � α�1 = 1.

PROOF It obviously sufˇces to consider only α ì 0, in which case α�1 ì 0. Suppose that
x is a positive rational number in α, and y is a positive rational number in α�1.
Then 1/y is not in α, so 1/y > x; consequently xy < 1, which means that xy is
in 1. Since all rational numbers x ≤ 0 are also in 1, this shows that every member
of α � α�1 is in 1.

To prove the converse assertion, let z be in 1. If z ≤ 0, then clearly z is in
α � α�1. Suppose 0 < z < 1. According to the lemma, there are positive rational
numbers x in α, and y not in α, such that y/x = 1/z; and we can assume that y
is not the smallest element of Q − α. But this means that z = x · (1/y), where x
is in α, and 1/y is in α�1. Consequently, z is in α � α�1.

We are almost done! Only the proof of the distributive law remains. Once again
we must consider many cases, but do not despair. The case when all numbers are
positive contains an interesting point, and the other cases can all be taken care of
very neatly.

THEOREM If α, β, and γ are real numbers, then α � (β C γ ) = α � β C α � γ .

PROOF Assume ˇrst that α, β, γ ì 0. Then both numbers in the equation contain all
rational numbers ≤ 0. A positive rational number in α � (β C γ ) is of the form
x · (y + z) for positive x in α, y in β, and z in γ . Since x · (y + z) = x · y + x · z,
where x · y is a positive element of α � β, and x · z is a positive element of α � γ ,
this number is also in α � β C α � γ . Thus, every element of α � (β C γ ) is also in
α � β C α � γ .

On the other hand, a positive rational number in α � β C α � γ is of the form
x1 · y + x2 · z for positive x1, x2 in α, y in β, and z in γ . If x1 ≤ x2, then
(x1/x2) · y ≤ y, so (x1/x2) · y is in β. Thus

x1 · y + x2 · z = x2[(x1/x2)y + z]

is in α � (β C γ ). Of course, the same trick works if x2 ≤ x1.
To complete the proof it is necessary to consider the cases when α, β, and γ

are not all ì 0. If any one of the three equals 0, the proof is easy and the cases
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involving α ê 0 can be derived immediately once all the possibilities for β and
γ have been accounted for. Thus we assume α ì 0 and consider three cases:
β, γ ê 0, and β ê 0, γ ì 0, and β ì 0, γ ê 0. The ˇrst follows immediately from
the case already proved, and the third follows from the second by interchanging β
and γ . Therefore we concentrate on the case β ê 0, γ ì 0. There are then two
possibilities:

(1) β C γ � 0. Then

α � γ = α � ([β C γ ] C jβj) = α � (β C γ )C α � jβj,
so

α � (β C γ ) = �(α � jβj)C α � γ
= α � β C α � γ .

(2) β C γ � 0. Then

α � jβj = α � (jβ C γ j C γ ) = α � jβ C γ j C α � γ,
so

α � (β C γ ) = �(α � jβ C γ j) = �(α � jβj)C α � γ = α � β C α � γ .

This proof completes the work of the chapter. Although long and frequently
tedious, this chapter contains results sufˇciently important to be read in detail at
least once (and preferably not more than once!). For the ˇrst time we know that we
have not been operating in a vacuum|there is indeed a complete ordered ˇeld, the
theorems of this book are not based on assumptions which can never be realized.
One interesting and horrid possibility remains: there may be several complete
ordered ˇelds. If this is true, then the theorems of calculus are unexpectedly rich
in content, but the properties P1{P13 are disappointingly incomplete. The last
chapter disposes of this possibility; properties P1{P13 completely characterize the
real numbers|anything that can be proved about real numbers can be proved on
the basis of these properties alone.

PROBLEMS
There are only two problems in this set, but each asks for an entirely different

construction of the real numbers! The detailed examination of another construc-
tion is recommended only for masochists, but the main idea behind these other
constructions is worth knowing. The real numbers constructed in this chapter
might be called \the algebraist's real numbers," since they were purposely deˇned
so as to guarantee the least upper bound property, which involves the ordering <,
an algebraic notion. The real number system constructed in the next problem
might be called \the analyst's real numbers," since they are devised so that Cauchy
sequences will always converge.

1. Since every real number ought to be the limit of some Cauchy sequence
of rational numbers, we might try to define a real number to be a Cauchy
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sequence of rational numbers. Since two Cauchy sequences might converge
to the same real number, however, this proposal requires some modiˇcations.

(a) Deˇne two Cauchy sequences of rational numbers {an} and {bn} to be
equivalent (denoted by {an} ∼ {bn}) if lim

n→∞(an − bn) = 0. Prove that
{an} ∼ {an}, that {bn} ∼ {an} if {an} ∼ {bn}, and that {an} ∼ {cn} if
{an} ∼ {bn} and {bn} ∼ {cn}.

(b) Suppose that α is the set of all sequences equivalent to {an}, and β is the
set of all sequences equivalent to {bn}. Prove that either α ∩ β = ∅ or
α = β. (If α∩β �= ∅, then there is some {cn} in both α and β. Show that
in this case α and β both consist precisely of those sequences equivalent
to {cn}.)
Part (b) shows that the collection of all Cauchy sequences can be split up
into disjoint sets, each set consisting of all sequences equivalent to some
ˇxed sequence. We deˇne a real number to be such a collection, and
denote the set of all real numbers by R.

(c) If α and β are real numbers, let {an} be a sequence in α, and {bn} a
sequence in β. Deˇne α+ β to be the collection of all sequences equiva-
lent to the sequence {an+bn}. Show that {an+bn} is a Cauchy sequence
and also show that this deˇnition does not depend on the particular se-
quences {an} and {bn} chosen for α and β. Check also that the analogous
deˇnition of multiplication is well deˇned.

(d) Show that R is a ˇeld with these operations; existence of a multiplicative
inverse is the only interesting point to check.

(e) Deˇne the positive real numbers P so that R will be an ordered ˇeld.
(f ) Prove that every Cauchy sequence of real numbers converges. Remem-

ber that if {αn} is a sequence of real numbers, then each αn is itself a
collection of Cauchy sequences of rational numbers.

2. This problem outlines a construction of \the high-school student's real num-
bers." We deˇne a real number to be a pair (a, {bn}), where a is an inte-
ger and {bn} is a sequence of natural numbers from 0 to 9, with the pro-
viso that the sequence is not eventually 9; intuitively, this pair represents

a +
∞∑
n=1

bn10−n. With this deˇnition, a real number is a very concrete ob-

ject, but the difˇculties involved in deˇning addition and multiplication are
formidable (how do you add inˇnite decimals without worrying about car-
rying digits inˇnitely far out?). A reasonable approach is outlined below; the
trick is to use least upper bounds right from the start.

(a) Deˇne (a, {bn}) ê (c, {dn}) if a < c, or if a = c and for some n we have
bn < dn but bj = dj for 1 ≤ j < n. Using this deˇnition, prove the least
upper bound property.

(b) Given α = (a, {bn}), deˇne αk = a +
k∑
n=1

bn10−n; intuitively, αk is the
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rational number obtained by changing all decimal places after the kth

to 0. Conversely, given a rational number r of the form a +
k∑
n=1

bn10−n,

let r ′ denote the real number (a, {bn′}), where bn′ = bn for 1 ≤ n ≤ k

and bn′ = 0 for n > k. Now for α = (a, {bn}) and β = (c, {dn}) deˇne

α C β = sup{(αk + βk)
′ : k a natural number}

(the least upper bound exists by part (a)). If multiplication is deˇned
similarly, then the veriˇcation of all conditions for a ˇeld is a straight-
forward task, not highly recommended. Once more, however, existence
of multiplicative inverses will be the hardest.



CHAPTER 30 UNIQUENESS OF THE REAL NUMBERS

We shall now revert to the usual notation for real numbers, reserving boldface
symbols for other ˇelds which may turn up. Moreover, we will regard integers and
rational numbers as special kinds of real numbers, and forget about the speciˇc
way in which real numbers were deˇned. In this chapter we are interested in only
one question: are there any complete ordered ˇelds other than R? The answer
to this question, if taken literally, is \yes." For example, the ˇeld F3 introduced in
Chapter 28 is a complete ordered ˇeld, and it is certainly not R. This ˇeld is a
\silly" example because the pair (a, a) can be regarded as just another name for
the real number a; the operations

(a, a)C (b, b) = (a + b, a + b),

(a, a) � (b, b) = (a · b, a · b),
are consistent with this renaming. This sort of example shows that any intelligent
consideration of the question requires some mathematical means of discussing such
renaming procedures.

If the elements of a ˇeld F are going to be used to rename elements of R, then
for each a in R there should correspond a \name" f (a) in F . The notation f (a)
suggests that renaming can be formulated in terms of functions. In order to do
this we will need a concept of function much more general than any which has
occurred until now; in fact, we will require the most general notion of \function"
used in mathematics. A function, in this general sense, is simply a rule which
assigns to some things, other things. To be formal, a function is a collection of
ordered pairs (of objects of any sort) which does not contain two distinct pairs with
the same ˇrst element. The domain of a function f is the set A of all objects a
such that (a, b) is in f for some b; this (unique) b is denoted by f (a). If f (a) is
in the set B for all a in A, then f is called a function from A to B. For example,

if f (x) = sin x for all x in R (and f is deˇned only for x in R), then f is a
function from R to R; it is also a function from R to [−1,1];

if f (z) = sin z for all z in C, then f is a function from C to C;

if f (z) = ez for all z in C, then f is a function from C to C; it is also a
function from C to {z in C : z �= 0};

θ is a function from {z in C : z �= 0} to {x in R : 0 ≤ x < 2π};

if f is the collection of all pairs (a, (a, a)) for a in R, then f is a function
from R to F3.

591
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Suppose that F1 and F2 are two ˇelds; we will denote the operations in F1 by
⊕, �, etc., and the operations in F2 by C, � , etc. If F2 is going to be considered
as a collection of new names for elements of F1, then there should be a function
from F1 to F2 with the following properties:

(1) The function f should be one-one, that is, if x �= y, then we should have
f (x) �= f (y); this means that no two elements of F1 have the same name.

(2) The function f should be \onto," that is, for every element z in F2 there
should be some x in F1 such that z = f (x); this means that every element
of F2 is used to name some element of F1.

(3) For all x and y in F1 we should have

f (x ⊕ y) = f (x)C f (y),

f (x � y) = f (x) � f (y);
this means that the renaming procedure is consistent with the operations of
the ˇeld.

If we are also considering F1 and F2 as ordered ˇelds, we add one more re-
quirement:

(4) If x ©< y, then f (x) ê f (y).

A function with these properties is called an isomorphism from F1 to F2. This
deˇnition is so important that we restate it formally.

DEFINITION If F1 and F2 are two ˇelds, an isomorphism from F1 to F2 is a function f
from F1 to F2 with the following properties:

(1) If x �= y, then f (x) �= f (y).
(2) If z is in F2, then z = f (x) for some x in F1.
(3) If x and y are in F1, then

f (x ⊕ y) = f (x)C f (y),

f (x � y) = f (x) � f (y).

If F1 and F2 are ordered ˇelds we also require:

(4) If x ©< y, then f (x) ê f (y).

The ˇelds F1 and F2 are called isomorphic if there is an isomorphism between
them. Isomorphic ˇelds may be regarded as essentially the same|any important
property of one will automatically hold for the other. Therefore, we can, and
should, reformulate the question asked at the beginning of the chapter; if F is a
complete ordered ˇeld it is silly to expect F to equal R|rather, we would like to
know if F is isomorphic to R. In the following theorem, F will be a ˇeld, with
operations C and � , and \positive elements" P; we write a ê b to mean that b�a
is in P, and so forth.
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THEOREM If F is a complete ordered ˇeld, then F is isomorphic to R.

PROOF Since two ˇelds are deˇned to be isomorphic if there is an isomorphism between
them, we must actually construct a function f from R to F which is an isomor-
phism. We begin by deˇning f on the integers as follows:

f (0) = 0,
f (n) = 1 C . . .C 1︸ ︷︷ ︸

n times

for n > 0,

f (n) = � (1 C . . .C 1)︸ ︷︷ ︸
|n| times

for n < 0.

It is easy to check that

f (m + n) = f (m)C f (n),

f (m · n) = f (m) � f (n),
for all integers m and n, and it is convenient to denote f (n) by n. We then
deˇne f on the rational numbers by

f (m/n) = mën = m � n�1

(notice that the n-fold sum 1 C · · · C 1 �= 0 if n > 0, since F is an ordered ˇeld).
This deˇnition makes sense because if m/n = k/l, then ml = nk, so m�l = k�n, so
m � n�1 = k � l�1. It is easy to check that

f (r1 + r2) = f (r1)C f (r2),

f (r1 · r2) = f (r1) � f (r2),
for all rational numbers r1 and r2, and that f (r1) ê f (r2) if r1 < r2.

The deˇnition of f (x) for arbitrary x is based on the now familiar idea that
any real number is determined by the rational numbers less than it. For any x
in R, let Ax be the subset of F consisting of all f (r), for all rational numbers
r < x. The set Ax is certainly not empty, and it is also bounded above, for if r0
is a rational number with r0 > x, then f (r0) ì f (r) for all f (r) in Ax. Since F
is a complete ordered ˇeld, the set Ax has a least upper bound; we deˇne f (x) as
supAx.

We now have f (x) deˇned in two different ways, ˇrst for rational x, and then for
any x. Before proceeding further, it is necessary to show that these two deˇnitions
agree for rational x. In other words, if x is a rational number, we want to show
that

supAx = f (x),

where f (x) here denotes mën, for x = m/n. This is not automatic, but depends
on the completeness of F ; a slight digression is thus required.

Since F is complete, the elements

1 C . . .C 1︸ ︷︷ ︸
n times

for natural numbers n
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form a set which is not bounded above; the proof is exactly the same as the proof
for R (Theorem 8-2). The consequences of this fact for R have exact analogues
in F : in particular, if a and b are elements of F with a ê b, then there is a rational
number r such that

a ê f (r) ê b.

Having made this observation, we return to the proof that the two deˇnitions
of f (x) agree for rational x. If y is a rational number with y < x, then we
have already seen that f (y) ê f (x). Thus every element of Ax is ê f (x).
Consequently,

supAx � f (x).

On the other hand, suppose that we had

supAx ê f (x).

Then there would be a rational number r such that

supAx ê f (r) ê f (x).

But the condition f (r) ê f (x) means that r < x, which means that f (r) is in the
set Ax ; this clearly contradicts the condition supAx ê f (r). This shows that the
original assumption is false, so

supAx = f (x).

We thus have a certain well-deˇned function f from R to F . In order to show
that f is an isomorphism we must verify conditions (1){(4) of the deˇnition. We
will begin with (4).

If x and y are real numbers with x < y, then clearly Ax is contained in Ay .
Thus

f (x) = supAx � supAy = f (y).

To rule out the possibility of equality, notice that there are rational numbers r
and s with

x < r < s < y.

We know that f (r) ê f (s). It follows that

f (x) � f (r) ê f (s) � f (y).

This proves (4).
Condition (1) follows immediately from (4): If x �= y, then either x < y or

y < x; in the ˇrst case f (x) ê f (y), and in the second case f (y) ê f (x); in
either case f (x) �= f (y).

To prove (2), let a be an element of F , and let B be the set of all rational
numbers r with f (r) ê a. The set B is not empty, and it is also bounded above,
because there is a rational number s with f (s) ì a, so that f (s) ì f (r) for r
in B, which implies that s > r. Let x be the least upper bound of B; we claim
that f (x) = a. In order to prove this it sufˇces to eliminate the alternatives

f (x) ê a,

a ê f (x).
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In the ˇrst case there would be a rational number r with

f (x) ê f (r) ê a.

But this means that x < r and that r is in B, which contradicts the fact that
x = supB. In the second case there would be a rational number r with

a ê f (r) ê f (x).

This implies that r < x. Since x = supB, this means that r < s for some s in B.
Hence

f (r) ê f (s) ê a,

again a contradiction. Thus f (x) = a, proving (2).
To check (3), let x and y be real numbers and suppose that f (x + y) �=

f (x)C f (y). Then either

f (x + y) ê f (x)C f (y) or f (x)C f (y) ê f (x + y).

In the ˇrst case there would be a rational number r such that

f (x + y) ê f (r) ê f (x)C f (y).

But this would mean that
x + y ê r.

Therefore r could be written as the sum of two rational numbers

r = r1 + r2, where x ê r1 and y ê r2.

Then, using the facts checked about f for rational numbers, it would follow that

f (r) = f (r1 + r2) = f (r1)C f (r2) ì f (x)C f (y),

a contradiction. The other case is handled similarly.
Finally, if x and y are positive real numbers, the same sort of reasoning shows

that
f (x · y) = f (x) � f (y);

the general case is then a simple consequence.

This theorem brings to an end our investigation of the real numbers, and resolves
any doubts about them: There is a complete ordered ˇeld and, up to isomorphism,
only one complete ordered ˇeld. It is an important part of a mathematical educa-
tion to follow a construction of the real numbers in detail, but it is not necessary
to refer ever again to this particular construction. It is utterly irrelevant that a real
number happens to be a collection of rational numbers, and such a fact should
never enter the proof of any important theorem about the real numbers. Reason-
able proofs should use only the fact that the real numbers are a complete ordered
ˇeld, because this property of the real numbers characterizes them up to isomor-
phism, and any signiˇcant mathematical property of the real numbers will be true
for all isomorphic ˇelds. To be candid I should admit that this last assertion is just
a prejudice of the author, but it is one shared by almost all other mathematicians.
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PROBLEMS

1. Let f be an isomorphism from F1 to F2.

(a) Show that f (0) = 0 and f (1) = 1. (Here 0 and 1 on the left denote
elements in F1, while 0 and 1 on the right denote elements of F2.)

(b) Show that f (�a) = �f (a) and f (a�1) = f (a)�1, for a �= 0.

2. Here is an opportunity to convince yourself that any signiˇcant property of
a ˇeld is shared by any ˇeld isomorphic to it. The point of this problem is
to write out very formal proofs until you are certain that all statements of
this sort are obvious. F1 and F2 will be two ˇelds which are isomorphic; for
simplicity we will denote the operations in both by C and � . Show that:

(a) If the equation x2 C 1 = 0 has a solution in F1, then it has a solution
in F2.

(b) If every polynomial equation xn C an−1 � xn−1 C · · · C a0 = 0 with
a0, . . . , an−1 in F1, has a root in F1, then every polynomial equation
xn C bn−1 � xn−1 C · · · C b0 = 0 with b0, . . . , bn−1 in F2 has a root in F2.

(c) If 1 C · · · C 1 (summed m times) = 0 in F1, then the same is true in F2.
(d) If F1 and F2 are ordered ˇelds (and the isomorphism f satisˇes f (x) ê

f (y) for x ê y ) and F1 is complete, then F2 is complete.

3. Let f be an isomorphism from F1 to F2 and g an isomorphism from F2
to F3. Deˇne the function g � f from F1 to F3 by (g � f )(x) = g(f (x)).
Show that g � f is an isomorphism.

4. Suppose that F is a complete ordered ˇeld, so that there is an isomorphism f

from R to F . Show that there is actually only one isomorphism from R
to F . Hint: In case F = R, this is Problem 3-17. Now if f and g are two
isomorphisms from R to F consider g−1 � f .

5. Find an isomorphism from C to C other than the identity function.
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A man ought to read
just as inclination leads him;
for what he reads as a task
will do him little good.

SAMUEL JOHNSON





One purpose of this bibliography is to guide the reader to other sources, but the
most important function it can serve is to indicate the variety of mathematical
reading available. Consequently, there is an attempt to achieve diversity, but no
pretense of being complete. The present plethora of mathematics books would
make such an undertaking almost hopeless in any case, and since I have tried to
encourage independent reading, the more standard a text, the less likely it is to
appear here. In some cases, this philosophy may seem to have been carried to
extremes, as some entries in the list cannot be read by a student just ˇnishing a
ˇrst course of calculus until several years have elapsed. Nevertheless, there are
many selections which can be read now, and I can't believe that it hurts to have
some idea of what lies ahead.

Many of these books have gone through numerous editions and printings, which
will be re�ected in more recent publication dates. Many of the books with older
publications dates are out of print, though that generally doesn't apply to books
from the redoubtable Dover Publications, or from the Mathematical Association of
America. Those that are no longer in print can still often be found in well-stocked
academic libraries.

One of the most elementary unproved theorems mentioned in this book is the
fact that every natural number can be written as a product of primes in only one
way. A proof of this basic theorem will be found near the beginning of almost
any book on elementary number theory. Few books have won so enthusiastic an
audience as

[1] An Introduction to the Theory of Numbers (ˇfth edition), by G. H. Hardy and
E. M. Wright; Oxford University Press, 1980.

The Pergamon Press published a series, Popular Lectures in Mathematics, with
several titles worth investigating, among them

[2] A Selection of Problems in the Theory of Numbers, by W. Sierpinski; Macmillan
(Pergamon), 1964.

Finally, I will mention an intriguing little book, now out of print I fear,

[3] Three Pearls of Number Theory, by A. Khinchin; Graylock Press, 1952.

The subject of irrational numbers straddles the ˇelds of number theory and
analysis. An excellent introduction will be found in

[4] Irrational Numbers, by I. M. Niven; Mathematical Association of America,
1956.

Together with many historical notes, there are references to some fairly elementary
articles in journals. There is also a proof that π is transcendental (see also [51])
and, ˇnally, a proof of the \Gelfond-Schneider theorem": If a and b are algebraic,
with a �= 0 or 1, and b is irrational, then ab is transcendental.

All the books listed so far begin with natural numbers, but whenever necessary
take for granted the irrational numbers, not to mention the integers and rational
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numbers. Several books present a construction of the rational numbers from the
natural numbers, but one of the most lucid treatments is still to be found in

[5] Foundations of Analysis (second edition), by E. Landau; Chelsea, 1960.

Incidentally, the original German edition,

[6] Grundlagen der Analysis (fourth edition), by E. Landau; Chelsea, 1965.

has been printed in paper back, together with a complete German-English diction-
ary (of about 300 words) for the whole book|an excellent way to begin reading
mathematical German. The basic idea for constructing the real numbers is derived
from Dedekind, whose contributions can be found in

[7] Essays on the Theory of Numbers, by R. Dedekind; Dover, 1963.

While many mathematicians are content to accept the natural numbers as a nat-
ural starting point, numbers can be deˇned in terms of sets, the most basic starting
point of all. A charming exposition of set theory can be found in a sophisticated
little book called

[8] Naive Set Theory, by P. R. Halmos; Springer-Verlag, 1991.

Another very good introduction is

[9] Theory of Sets, by E. Kamke; Dover, 1950.

Perhaps it is necessary to assure some victims of the \new math" that set theory
does have some mathematical content (in fact, some very deep theorems). Using
these deep results, Kamke proves that there is a discontinuous function f such
that f (x + y) = f (x) + f (y) for all x and y. For those who enjoy reading the
classics, the most important notions of set theory were ˇrst introduced by Cantor,
whose work is reproduced in

[10] Contributions to the Founding of the Theory of Transfinite Numbers, by G. Cantor;
Dover, 1952.

Inequalities, which were treated as an elementary topic in Chapters 1 and 2,
actually form a specialized ˇeld. A good elementary introduction is provided by

[11] Analytic Inequalities, by N. Kazarinoff; Mathematical Association of Amer-
ica, 1961.

Twelve different proofs that the geometric mean is less than or equal to the arith-
metic mean, each based on a different principle, can be found in the beginning of
the more advanced book

[12] An Introduction to Inequalities, by E. Beckenbach and R. Bellman; Mathemat-
ical Association of America, 1961.

The classic work on inequalities is

[13] Inequalities (second edition), by G. H. Hardy, J. E. Littlewood, and G. Polya;
Cambridge University Press, 1988.



Suggested Reading 601

Each of the authors of this triple collaboration has provided his own contribution
to the sparse literature about the nature of mathematical thinking, written from a
mathematician's point of view. My favorite is

[14] A Mathematician’s Apology, by G. H. Hardy; Cambridge University Press,
1992.

Littlewood's anecdotal selections are entitled

[15] A Mathematician’s Miscellany, by J. E. Littlewood; Methuen, 1953.

Polya's contribution is pedagogy at the highest level:

[16] Mathematics and Plausible Reasoning (Vol. I: Induction and Analogy in Mathematics;

Vol. II: Patterns of Plausible Inference), by G. Polya; Princeton University Press,
1990.

Geometry is the other main ˇeld which can be considered as background for
calculus. Euclid's Elements is still a masterful mathematical work, but should per-
haps be postponed until some preparation has been made, with a modern work
on \classical geometry," like

[17] Elementary Geometry from an Advanced Standpoint (second edition), by E. Moise;
Addison-Wesley, 1974.

This beautiful book provides excellent historical perspectives and contains a thor-
ough discussion of the role of the \Archimedean axiom" in geometry; in addition,
Chapter 28 describes an ordered ˇeld in which the Archimedean axiom does not
hold. Speaking of beautiful geometry books, all sorts of fascinating things can be
found in

[18] Introduction to Geometry (second edition), by H. S. Coxeter; Wiley, 1989.

Almost all treatments of geometry at least mention convexity, which forms an-
other specialized topic. I cannot imagine a better introduction to convexity, or a
better mathematical experience in general, than reading and working through

[19] Convex Figures, by I. M. Yaglom and W. G. Boltyanskii; Holt, Rinehart and
Winston, 1961.

This book contains a carefully arranged sequence of deˇnitions and statements of
theorems, whose proofs are to be supplied by the reader (worked-out proofs are
supplied in the back of the book). Another geometry book has been modeled on
the same principle:

[20] Combinatorial Geometry in the Plane, by H. Hadwiger and H. Debrunner;
Holt, Rinehart and Winston, 1964.

Along with these two out-of-the-ordinary books, I might mention an extremely
valuable little book, also of a specialized sort,

[21] Counterexamples in Analysis, by B. Gelbaum and J. Olmsted; Holden-Day,
1964.
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Many of the example in this book come from more advanced topics in analysis,
but quite a few can be appreciated by someone who knows calculus.

Of calculus books I will mention only two, each something of a classic:

[22] A Course of Pure Mathematics (tenth edition), by G. H. Hardy; Cambridge
University Press, 1952.

[23] Differential and Integral Calculus (two volumes), by R. Courant; Wiley (Inter-
science), 1988.

Courant is especially strong on applications to physics. Speaking of such appli-
cations, an elegant exposition of the material in Chapter 17, together with much
further discussion, can be found in the article

[24] On the Geometry of the Kepler Problem, by John Milnor; in The American Mathe-

matical Monthly, Volume 90 (1983), pp. 353{365.

(In this paper the curve c′ of Chapter 17 is denoted by v, and the derivative of
the important composition v � θ−1 (page 331) is introduced quite off-handedly as
dv/dθ .) A \straight-forward" derivation of Kepler's laws, together with numerous
references, can be found in another article in this same journal,

[25] The Mathematical Relationship Between Kepler’s Laws and Newton’s Laws, by
Andrew T. Hyman; in The American Mathematical Monthly, Volume 100
(1993), pp. 932{936.

The latter parts of Volume I of Courant contain material usually found in ad-
vanced calculus, including differential equations and Fourier series. An introduc-
tion to Fourier series (requiring a little advanced calculus) will also be found in

[26] An Introduction to Fourier Series and Integrals, by R. Seeley; W. A. Benjamin,
1966.

The second volume of Courant (advanced calculus in earnest) contains additional
material on differential equations, as well as an introduction to the calculus of vari-
ations. A widely admired, though somewhat more advanced, book on differential
equations is

[27] Lectures on Ordinary Differential Equations, by W. Hurewicz; Dover, 1990.

I will bypass the more or less standard advanced calculus books (which can easily
be found by the reader) since nowadays there is a movement to revise the whole
presentation of advanced calculus, basing it upon linear algebra. One of the ˇrst,
and still one of the nicest, treatments of advanced calculus using linear algebra is

[28] Calculus of Vector Functions, by R. H. Crowell and R. E. Williamson; Prentice-
Hall, 1962.

Several recent books on advanced calculus attempt to acquaint undergraduates
with very large areas of modern mathematics. My favorite, of course, is

[29] Calculus on Manifolds, by M. Spivak; W. A. Benjamin, 1965.
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There are three other topics which are somewhat out of place in this bibliog-
raphy because they are rapidly becoming established as part of a standard under-
graduate curriculum. The purposeful study of ˇelds and related systems is the
domain of \algebra." One of the favorite texts is

[30] Topics in Algebra (second edition), by I. N. Herstein; Wiley, 1975.

A more advanced book is the great classic:

[31] Algebra, by B. L. van der Waerden; Springer-Verlag, 1990.

By the way, this book contains a proof of the partial fraction decomposition of a
rational function.

There are now several introductions to complex analysis, as well as many ele-
mentary books on topology. Although the latter subject has not been mentioned
before, it has really been in the background of many discussions, since it is the
natural generalization of the ideas about limits and continuity which play such a
prominent role in Part II of this book.

The next few topics, ranging from elementary to very difˇcult, are included in
this bibliography because they have been alluded to in the text. The proof that a
nondecreasing function is differentiable at almost all points (and an explanation of
just what this means) receives a beautiful exposition in

[32] Functional Analysis, by F. Riesz and B. Sz.-Nagy; Ungar, 1955.

(After this elementary beginning, the book moves on to quite advanced material.)
The gamma function has an elegant little book devoted entirely to its properties,
most of them proved by using the theorem of Bohr and Mollerup which was
mentioned in Problem 19-39:

[33] The Gamma Function, by E. Artin; Holt, Rinehart and Winston, 1964.

The gamma function is only one of several important improper integrals in math-
ematics. In particular, the calculation of

∫∞
0 e−x

2
dx (see Problem 19-41) is impor-

tant in probability theory, where the \normal distribution function"

�(x) = 1√
2π

∫ x

−∞
e−

1
2 y

2
dy

plays a fundamental role. A classic book on probability theory is

[34] An Introduction to Probability Theory and Its Applications (third edition), by
W. Feller; Wiley, 1968.

The impossibility of integrating certain functions in elementary terms (among
them f (x) = e−x

2
) is one of the most esoteric subjects in mathematics. An in-

teresting discussion of the possibilities of integrating in elementary terms, with an
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outline of the impossibility proofs, and references to the original papers of Liou-
ville, will be found in

[35] The Integration of Functions of a Single Variable (second edition), by
G. H. Hardy; Cambridge University Press, 1958.

A complete presentation of the impossibility proofs will be found in

[36] Integration in Finite Terms, by J. Ritt; Columbia University Press, 1948.

Oddly enough, a related but seemingly more difˇcult problem has a much neater
solution. There are simple differential equations (y ′′ + xy = 0 is a speciˇc exam-
ple) whose solutions cannot be expressed even in terms of indeˇnite integrals of
elementary functions. This fact is proved on page 43 of the (60-page) book:

[37] An Introduction to Differential Algebra, by I. Kaplansky; Hermann, 1957.

To read this book you will need to know quite a bit of algebra, however.
A few words should also be said in defense of the process of integrating in ele-

mentary terms, which many mathematicians look upon as an art (unlike differen-
tiation, which is merely a skill). You are probably already aware that the process
of integration can be expedited by tables of indeˇnite integrals. For those who
enjoy pursuing tables there is a really beautiful collection, that includes indeˇnite
integrals, deˇnite improper integrals, and a great deal more besides (if you should
ever happen to need the value of the thirty-fourth Bernoulli number, this is the
place to look):

[38] Tables of Integrals, Series, and Products, by I. S. Gradschteyn et al.; Academic
Press, 1980.

For the thrifty, there is a paperback table of integrals:

[39] Tables of Indefinite Integrals, by G. Petit Bois; Dover, 1961.

The remaining references are of a somewhat different sort. They fall into three
categories, of which the ˇrst is historical. The letter of H. A. Schwarz referred to
in Problem 11-65 will be found in

[40] Ways of Thought of Great Mathematicians, by H. Meschkowski; Holden-Day,
1964.

Some historical remarks, and an attempt to incorporate them into the teaching of
calculus, will be found in

[41] The Calculus: A Genetic Approach, by O. Toeplitz; University of Chicago
Press, 1981.

An admirable textbook on the history of mathematics is

[42] An Introduction to the History of Mathematics (sixth edition), by H. Eves; Saun-
ders College Publishing, 1990.
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Three good scholarly works are

[43] History of Analytic Geometry, by C. Boyer; Scholar's Bookshelf, 1988.
[44] A History of the Calculus, and Its Conceptual Development, by C. Boyer; Dover,

1959.
[45] The Mathematics of Great Amateurs, by J. Coolidge; Oxford University Press,

1990

and extracts from original sources will be found in

[46] A Source Book in Mathematics (2 vols.), by D. Smith; Dover, 1959.

Despite the impression that might be given by the large number of books listed
here, it is often hard to ˇnd speciˇc concrete information about the origins of cal-
culus. For example, it is almost impossible to ˇnd out who ˇrst proved the Mean
Value Theorem (according to the Encyklopädie der Mathematischen Wissenschaften, Vol-
ume II, it was O. Bonnet, whose name is familiar to students of differential geom-
etry from the \Gauss-Bonnet Theorem"). Similarly, though many history books
tell us that Wallis proved Wallis' formula by a \complicated method of interpola-
tion," most never bother to mention what it was, even though it inspired Euler's
investigations of the gamma function (a description is given in the answer book,
along with the solution to Problem 19-40).

The second category in this ˇnal group of books might be described as \pop-
ularizations." There are a surprisingly large number of ˇrst-rate ones by real
mathematicians:

[47] What is Mathematics? (fourth edition), by R. Courant and H. Robbins;
Oxford University Press, 1979.

[48] Geometry and the Imagination, by D. Hilbert and S. Cohn-Vossen; Chelsea,
1952.

[49] The Enjoyment of Mathematics, by H. Rademacher and O. Toeplitz; Dover,
1990.

[50] Famous Problems of Mathematics (second edition), by H. Tietze; Graylock
Press, 1965.

One of the most renowned \popularizations" is especially concerned with the
teaching of mathematics:

[51] Elementary Mathematics from an Advanced Standpoint, by F. Klein (vol. 1: Arith-

metic, Algebra, Analysis; vol. 2: Geometry); Dover, 1948.

Volume 1 contains a proof of the transcendence of π which, although not so ele-
mentary as the one in [4], is a direct analogue of the proof that e is transcendental,
replacing integrals with complex line integrals. It can be read as soon as the basic
facts about complex analysis are known.

The third category is the very opposite extreme|original papers. The difˇ-
culties encountered here are formidable, and I have only had the courage to list
one such paper, the source of the quotation for Part IV. It is not even in English,
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although you do have a choice of foreign languages. The article in the original
French is in

[52] Oeuvres Complètes d’Abel; Christiania. Johnson Reprint Corporation, New
York, 1965.

It ˇrst appeared in a German translation in the Journal für die reine und angewandte

Mathematik, Volume 1, 1826. To compound the difˇculties, these references will
usually be available only in university libraries. Yet the study of this paper will
probably be as valuable as any other reading mentioned here. The reason is
suggested by a remark of Abel himself, who attributed his profound knowledge of
mathematics to the fact that he read the masters, rather than the pupils.
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CHAPTER 1 1. (i) 1 = a−1a = a−1(ax) = (a−1a)x = 1 · x = x.
(iii) If x2 = y2, then 0 = x2 − y2 = (x − y)(x + y), so either x − y = 0 or

x + y = 0, that is, either x = −y or x = y.
(vi) Replace y by −y in (iv).

2. One step requires dividing by x − y = 0.
3. (i) a/b = ab−1 = (ac)(b−1c−1) = (ac)(bc)−1 (by (iii)) = ac/bc.

(ii) (ad + bc)/(bd) = (ad + bc)(bd)−1 = (ad + bc)(b−1d−1) (by (iii)) =
ab−1 + cd−1 = a/b + c/d.

(iii) ab(a−1b−1) = (a · a−1)(b · b−1) = 1, so a−1 · b−1 = (ab)−1.
(v) (a/b)/(c/d) = (a/b)(c/d)−1 = (a · b−1)(c · d−1)−1 = (a · b−1)(c−1 · d) =

ad(b−1 · c−1) = ad(bc)−1 = (ad)/(bc).
4. (i) x < −1.

(iii) x >
√

7 or x < −
√

7.
(v) All x, since x2 − 2x + 2 = (x − 1)2 + 1.
(vii) x > 3 or x < −2, since 3 and −2 are the roots of x2 − x − 6 = 0.
(ix) x > π or −5 < x < 3.
(xi) x < 3.
(xiii) x > 1 or 0 < x < 1.

5. (i) b − a and d − c are in P , so (b − a)+ (d − c) = (b + d)− (a + c) is
in P . Thus, b + d > a + c.

(iii) Using (ii), −c < −d; then (i) implies that a + (−c) < b + (−d).
(v) (b−a) and −c are in P , so −c(b−a) = ac−bc is in P , that is, ac > bc.
(vii) Using (iv), a > 0 and a < 1, so a2 < a.
(ix) Substitute a for c and b for d in (viii).

9. (i)
√

2 +
√

3 −
√

5 +
√

7.
(iii) |a + b| + |c| − |a + b + c|.
(v)

√
2 +

√
3 +

√
5 −

√
7.

10. (i) a if a ≥ −b and b ≥ 0;
−a if a ≤ −b and b ≤ 0;
a + 2b if a ≥ −b and b ≤ 0;
−a − 2b if a ≤ −b and b ≥ 0.

(iii) x − x2 if x ≥ 0;
−x − x2 if x ≤ 0.

11. (i) x = 11, −5.
(iii) −6 < x < −2.
(v) No x (the distance from x to 1 plus the distance from x to −1 is at

least 2).
(vii) x = 1, −1.

12. (i) (|xy|)2 = (xy)2 = x2y2 = |x|2|y|2 = (|x| · |y|)2; since |xy| and |x| · |y|
are both ≥ 0, this proves that |xy| = |x| · |y|.

(iii) |x|/|y| = |x| · |y|−1 = |x| · |y−1| by (ii)) = |xy−1| (by (i)) = |x/y|.
(v) It follows from (iv) that |x| = |y− (y− x)| ≤ |y|+ |y− x|, so |x|− |y| ≤

|x − y|.
(vii) |x + y + z| ≤ |x + y| + |z| ≤ |x| + |y| + |z|. If equality holds, then

|x + y| = |x| + |y|, so x and y have the same sign. Moreover, z must
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have the same sign as x + y, so x, y, and z must all have the same sign
(unless one is 0).

CHAPTER 2 1. (i) Since 12 = 1 · (2) · (2 · 1 + 1)/6, the formula is true for n = 1. Suppose
that the formula is true for k. Then

12 + · · · + k2 + (k + 1)2 = k(k + 1)(2k + 1)
6

+ (k + 1)2

= (k + 1)
6

[k(2k + 1)+ 6(k + 1)]

= (k + 1)
6

[(k + 2)(2k + 3)]

= (k + 1)(k + 2)(2[k + 1] + 1)
6

,

so the formula is true for k + 1.
2. (i)

n∑
i=1

(2i − 1) = 1 + 3 + 5 + · · · + (2n − 1)

= 1 + 2 + 3 + · · · + 2n− 2(1 + · · · + n)

= (2n)(2n+ 1)
2

− n(n+ 1)

= n2.

5. (a) Since

1 + r = 1 − r2

1 − r
,

the formula is true for n = 1. Suppose that

1 + r + · · · + rn = 1 − rn+1

1 − r
.

Then

1 + r + · · · + rn + rn+1 = 1 − rn+1

1 − r
+ rn+1

= 1 − rn+1 + rn+1(1 − r)

1 − r

= 1 − rn+2

1 − r
.

(b)
S = 1 + r + · · · + rn

rS = r + · · · + rn + rn+1.

Thus
S(1 − r) = S − rS = 1 − rn+1,
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so
S = 1 − rn+1

1 − r
.

6. (i) From

(k + 1)4 − k4 = 4k3 + 6k2 + 4k + 1, k = 1, . . . , n

we obtain

(n + 1)4 − 1 = 4
n∑
k=1

k3 + 6
n∑
k=1

k2 + 4
n∑
k=1

k + n,

so

n∑
k=1

k3 =
(n + 1)4 − 1 − 6

n(n+ 1)(2n+ 1)
6

− 4
n(n+ 1)

2
− n

4

= n4

4
+ n3

2
+ n2

4
.

(iii) From
1
k

− 1
k + 1

= 1
k(k + 1)

, k = 1, . . . , n

we obtain

1 − 1
n+ 1

=
n∑
k=1

1
k(k + 1)

.

x
8. 1 is either even or odd, in fact it is odd. Suppose n is either even or odd;

then n can be written either as 2k or 2k+ 1. In the ˇrst case n+ 1 = 2k+ 1
is odd; in the second case n + 1 = 2k + 1 + 1 = 2(k + 1) is even. In either
case, n + 1 is either even or odd. (Admittedly, this looks ˇshy, but it is really
correct.)

9. Let B be the set of all natural numbers l such that n0 − 1 + l is in A. Then
1 is in B, and l + 1 is in B if l is in B, so B contains all natural numbers,
which means that A contains all natural numbers ≥ n0.

12. (a) Yes, for if a+ b were rational, then b = (a+ b)− a would be rational. If
a and b are irrational, then a + b could be rational, for b could be r − a

for some rational number a.
(b) If a = 0, then ab is rational. But if a �= 0, then ab could not be rational,

for then b = (ab) · a−1 would be rational.
(c) Yes; for example, 4

√
2.

(d) Yes; for example,
√

2 and −
√

2.
13. (a) Since

(3n+ 1)2 = 9n2 + 6n+ 1 = 3(3n2 + 2n)+ 1,
(3n+ 2)2 = 9n2 + 12n+ 4 = 3(3n2 + 4n+ 1)+ 1,

it follows that if k2 is divisible by 3, then k must also be divisible by 3.
Now suppose that

√
3 were rational, and let

√
3 = p/q where p and
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q have no common factor. Then p2 = 3q2, so p2 is divisible by 3, so
p must be. Thus, p = 3p′ for some natural number p′, and conse-
quently (3p′)2 = 3q2, or 3(p′)2 = q2. Thus, q is also divisible by 3, a
contradiction.

The same proofs work for
√

5 and
√

6, because the equations

(5n+ 1)2 = 25n2 + 10n+ 1 = 5(5n2 + 2n)+ 1,
(5n+ 2)2 = 25n2 + 20n+ 4 = 5(5n2 + 4n)+ 4,
(5n+ 3)2 = 25n2 + 30n+ 9 = 5(5n2 + 6n+ 1)+ 4,
(5n+ 4)2 = 25n2 + 40n+ 16 = 5(5n2 + 8n+ 3)+ 1,

and the corresponding equations for numbers of the form 6n+m, show
that if k2 is divisible by 5 or 6, then k must be. The proof fails for

√
4,

because (4n + 2)2 is divisible by 4. (For precisely this reason this proof
cannot be used to show that in general

√
a is irrational if a is not a

perfect square|we have no guarantee that (an + m)2 might not be a
multiple of a for some m < a. Actually, this assertion is true, but the
proof requires the information in Problem 17.)

(b) Since

(2n+ 1)3 = 8n3 + 12n2 + 6n+ 1 = 2(4n3 + 6n2 + 3n)+ 1,

it follows that if k3 is even, then k is even. If 3
√

2 = p/q where p and
q have no common factors, then p3 = 2q3, so p3 is divisible by 2, so p
must be. Thus, p = 2p′ for some natural number p′, and consequently
(2p′)3 = 2q3, or 4(p′)3 = q3. Thus, q is also even, a contradiction.

The proof for 3
√

3 is similar, using the equations

(3n+ 1)3 = 27n3 + 27n2 + 9n+ 1 = 3(9n3 + 9n2 + 3n)+ 1,
(3n+ 2)3 = 27n3 + 54n2 + 36n+ 8 = 3(9n3 + 18n2 + 12n+ 2)+ 2.

19. If n = 1, then (1 + h)n = 1 + nh. Suppose that (1 + h)n ≥ 1 + nh. Then

(1 + h)n+1 = (1 + h)(1 + h)n ≥ (1 + h)(1 + nh), since 1 + h > 0
= 1 + (n+ 1)h+ nh2 ≥ 1 + (n+ 1)h.

For h > 0, the inequality follows directly from the binomial theorem, since
all the other terms appearing in the expansion of (1 + h)n are positive.

CHAPTER 3 1. (i) (x+1)/(x+2); the expression f (f (x))makes sense only when x �= −1
and x �= −2.

(iii) 1/(1 + cx) (for x �= −1/c if c �= 0).
(v) (x + y + 2)/(x + 1)(y + 1) (for x,y �= −1).
(vii) Only c = 1, since f (x) = f (cx) implies that x = cx, and this must be

true for at least one x �= 0.
2. (i) y ≥ 0 and rational, or y ≥ 1.

(iii) 0.
(v) −1, 0, 1.
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3. (i) {x : −1 ≤ x ≤ 1}.
(iii) {x : x �= 1 and x �= 2}.
(v) ∅.

4. (i) 22y .
(iii) 22 sin t + sin(2t ).

5. (i) P � s.
(iii) s � S.
(v) P � P .
(vii) s � s � s � P � P � P � s.

11. (a) y.
(b) H(y).
(c) H(y).

12. (a)

even odd

even even neither

odd neither odd

(b)

even odd

even even odd

odd odd even

(c)

f even f odd

g even even even

g odd even odd

(d) Let g(x) = f (x) for x ≥ 0 and deˇne g arbitrarily for x < 0.
21. (i) Let g(x) = h(x) = 1 and let f be a function for which f (2) �= f (1)+

f (1). Then f � (g + h) �= f � g + f � h.
(ii) [(g + h) � f ](x) = (g + h)(f (x)) = g(f (x))+ h(f (x)) = (g � f )(x)+

(h � f )(x) = [(g � f )+ (h � f )](x).
(iii)

1
f � g (x) = 1

f (g(x))
= 1
f
(g(x)) =

(
1
f

� g
)
(x).

(iv) Let g(x) = 2 and let f be a function for which f (1
2 ) �= 1/f (2). Then

1/(f � g) �= f � (1/g).
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CHAPTER 4 1. (i) (2, 4).
(iii) [2, 4].
(v) (−2, 2).
(vii) (−∞, 1] ∪ [1,∞).

3. (i) All points below the graph of f (x) = x.
(iii) All points below the graph of f (x) = x2.
(v) All points between the graphs of f (x) = x + 1 and f (x) = x − 1.
(vii) A collection of straight lines parallel to the graph of f (x) = −x, inter-

secting the horizontal axis at the points (n,0) for integers n.
(ix) All points inside the circle of radius 1 and around (1, 2).

4. (i) A square with vertices (1, 0), (0,1), (−1,0), and (0,−1).
(iii) The union of the graph of f (x) = x and of f (x) = 2 − x.
(v) The point (0, 0).
(vii) The circle of radius

√
5 around (1,0), since x2 − 2x + y2 = (x − 1)2 +

y2 − 1.
6. (a) Simply observe that the graph of f (x) = m(x− a)+ b = mx+ (b−ma)

is a straight line with slope m, which goes through the point (a, b). (The
important point about this exercise is simply to remember the point slope
form.)

(b) The straight line through (a, b) and (c, d) has slope (d − b)/(c − a), so
the equation follows from part (a).

(c) When m = m′ and b �= b′. In that case, there is clearly no number x with
f (x) = g(x), while such a number x always exists if m �= m′, namely,
x = (b′ − b)/(m−m′).

7. (a) If B = 0 and A �= 0, then the set is the vertical straight line formed
by all points (x, y) with x = −C/A. If B �= 0, the set is the graph of
f (x) = (−A/B)x + (−C/A).

(b) The points (x,y) on the vertical line with x = a are precisely the ones
which satisfy 1 · x + 0 · y + (−a) = 0. The points (x, y) on the graph of
f (x) = mx+b are precisely the ones which satisfy (−m)x+1 ·y+(−b)=
0.

11. (i) The graph of f is symmetric with respect to the vertical axis.
(ii) The graph of f is symmetric with respect to the origin. Equivalently,

the part of the graph to the left of the vertical axis is obtained by re-
�ecting ˇrst through the vertical axis, and then through the horizontal
axis.

(iii) The graph of f lies above or on the horizontal axis.
(iv) The graph of f repeats the part between 0 and a over and over.

21. (a) The square of the distance from (x, x2) to (0, 1
4 ) is

x2 +
(
x2 − 1

4

)2

= x2 + x4 − x2

2
+ 1

16

= x4 + x2

2
+ 1

16
= (x2 + 1

4 )
2,
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which is the square of the distance from (x,x2) to the graph of g.
(b) The point (x, y) satisˇes this condition if and only if

(x − α)2 + (y − β)2 = (y − γ )2,

or

x2 − 2αx + α2 + y2 − 2βy + β2 = y2 − 2γy + γ 2,

or

y =
(

1
2β − 2γ

)
x2 +

(
α

γ − β

)
x +

(
α2 + β2 − γ 2

2β − 2γ

)
.

(This solution works only for β �= γ , which is just the condition that P is
not on L. If P is on L, then the solution is the vertical line through P .)

CHAPTER 5 1. (ii)

lim
x→2

x3 − 8
x − 2

= lim
x→2

(x2 + 2x + 4) = 12.

(iv)

lim
x→y

xn − yn

x − y
= lim

x→y
xn−1 + xn−2y + · · · + xyn−2 + yn−1

= yn−1 + yn−1 + · · · + yn−1 = nyn−1.

(vi)

lim
h→0

√
a + h− √

a

h
= lim

h→0

(
√
a + h− √

a )(
√
a + h+ √

a )

h(
√
a + h+ √

a )

= lim
h→0

1√
a + h+ √

a

= 1
2
√
a
.

3. (i) It is possible to ˇnd δ by beginning with the equation

x4 − a4 = (x − a)(x3 + ax2 + a2x + a3).

If |x − a| < 1, then |x| < 1 + |a|, so

|x3 + ax2 + a2x + a3| ≤ |x|3 + |a| · |x|2 + |a|2 · |x| + |a|3
< (1 + |a|)3 + |a|(1 + |a|)2 + |a|2(1 + |a|)+ |a|3;

therefore we can choose

δ = min
(

1,
ε

(1 + |a|)3 + |a|(1 + |a|)2 + |a|2(1 + |a|)+ |a|3
)
.

It is instructive, and probably easier, to use part (2) of the lemma. This
shows that |x4 − a4| < ε when

|x2 − a2| < min
(

1,
ε

2(|a|2 + 1)

)
,
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which is true when

|x − a| < min




1,
min

(
1,

ε

2(|a|2 + 1)

)
2(|a| + 1)




= min
(

1,
ε

4(|a|2 + 1)(|a| + 1)

)
= δ.

(ii) By part (3) of the lemma, |1/x − 1| < ε when

|x − 1| < min
(

1
2
,
ε

2

)
= δ.

(iii) By part (1) of the lemma, |(x4 + 1/x)− 2| < ε when |1/x − 1| < ε/2
and |x4 − 1| < ε/2. According to parts (i) and (ii) of this problem, this
happens when

|x − 1| < min
(

1
2
,
ε

4
, 1,

ε

8 · 2 · 2

)
= min

(
1
2
,
ε

32

)
= δ.

(v) Let δ = ε2, since 0 < |x| < ε2 implies that
√

|x| < ε.
6. (i) We need |f (x)− 2| < ε/2 and |g(x)− 4| < ε/2, so we need

0 < |x − 2| < min

(
sin2

(
ε2

36

)
+ ε

2
,
ε2

4

)
= δ.

(iii) We need

|g(x)− 4| < min

(
|4|
2
,
ε|4|2

2

)
,

so we need

0 < |x − 2| < [min(2,8ε)]2 = δ.

9. Let l = lim
x→a

f (x) and deˇne g(h) = f (a + h). Then for every ε > 0 there is
a δ > 0 such that, for all x, if 0 < |x − a| < δ, then |f (x)− l < ε|. Now, if
0 < |h| < δ, then 0 < |(h+a)−a|< δ, so |f (a+h)− l| < ε. This inequality
can be written |g(h)− l| < ε. Thus, lim

h→0
g(h) = l, which can also be written

lim
h→0

f (a+h) = l. The same sort of argument shows that if lim
h→0

f (a+h) = m,

then lim
x→a

f (x) = m. So either limit exists if the other does, and in this case

they are equal.
10. (a) Intuitively, we can get f (x) as close to l as we like if and only if we can

get f (x)− l as close to 0 as we like. The formal proof is so trivial that it
takes a bit of work to make it look like a proof at all. To be very precise,
suppose lim

x→a
f (x) = l and let g(x) = f (x)− l. Then for all ε > 0 there

is a δ > 0 such that, for all x, if 0 < |x − a| < δ, then |f (x)− l| < ε.
This last inequality can be written |g(x)− 0| < ε, so lim

x→a
g(x) = 0. The

argument in the other direction is similarly uninteresting.
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(b) Intuitively, making x close to a is the same as making x − a close to 0.
Formally: Suppose that lim

x→a
f (x) = l, and let g(x) = f (x − a). Then

for all ε > 0 there is a δ > 0 such that, for all x, if 0 < |x − a| < δ,
then |f (x)− l| < ε. Now, if 0 < |y| < δ, then 0 < |(y + a)− a| < δ, so
|f (y + a)− l| < ε. But this last inequality can be written |g(y)− l| < ε.
So lim

y→0
g(y) = l. The argument in the reverse direction is similar.

(c) Intuitively, x is close to 0 if and only if x3 is. Formally: Let lim
x→0

f (x) =
l. For every ε > 0 there is a δ > 0 such that if 0 < |x| < δ, then
|f (x)− l| < ε. Then if 0 < |x| < min(1, δ), we have 0 < |x3| < δ, so
|f (x3) − l| < ε. Thus, lim

x→0
f (x) = l. On the other hand, if we assume

that lim
x→0

f (x3) exists, say lim
x→0

f (x3) = m, then for all ε > 0 there is a δ

such that if 0 < |x| < δ, then |f (x3) − m| < ε. Then if 0 < |x| < δ3,
we have 0 < | 3

√
x| < δ, so |f ([ 3

√
x]3)−m| < ε, or |f (x)−m| < ε. Thus

lim
x→0

f (x) = m.

(d) Let f (x) = 1 for x ≥ 0, and f (x) = −1 for x < 0. Then lim
x→0

f (x2) = 1,

but lim
x→0

f (x) does not exist.

17. (a) The function f (x) = 1/x cannot approach a limit at 0, since it be-
comes arbitrarily large near 0. In fact, no matter what δ > 0 may
be, there is some x satisfying 0 < |x| < δ, but 1/x > |l| + ε, namely,
x = min(δ,1/(|l| + ε)). This x does not satisfy |1/(x − l)| < ε.

(b) No matter what δ > 0 may be, there is some x satisfying 0 < |x−1| < δ,
but 1/(x−1) > |l|+ε, namely, x = min(1+δ,1+1/(|l|+ε)). This x does
not satisfy |1/(x − 1)− l| < ε. (It is also possible to apply Problem 10(b):
lim
x→0

1/x = lim
x→1

1/(x − 1) if the latter exists, so this limit does not exist,

because of part (a).)
25. (i) This is the usual deˇnition, simply calling the numbers δ and ε, instead

of ε and δ.
(ii) This is a minor modiˇcation of (i): if the condition is true for all δ > 0,

then it applies to δ/2, so there is an ε > 0 such that if 0 < |x − a| < ε,
then |f (x)− l| ≤ δ/2 < δ.

(iii) This is a similar modiˇcation: apply it to δ/5 to obtain (i).
(iv) This is also a modiˇcation: it says the same thing as (i), since ε/10 > 0,

and it is only the existence of some ε > 0 that is in question.
29. If lim

x→a+
f (x) = lim

x→a−
f (x) = l, then for every ε > 0 there are δ1, δ2 > 0 such

that, for all x,

if a < x < a + δ1, then |f (x)− l| < ε,

if a − δ2 < x < a, then |f (x)− l| < ε.

Let δ = min(δ1, δ2). If 0 < |x − a| < δ, then either a − δ2 < a − δ < x < a

or else a < x < a + δ < a + δ1, so |f (x)− l| < ε.
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30. (i) If l = lim
x→0+

f (x), then for all ε > 0 there is a δ > 0 such that |f (x)−l| <
ε for 0 < x < δ. If −δ < x < 0, then 0 < −x < δ, so |f (−x)− l| < ε.
Thus lim

x→0−
f (−x) = l. Similarly, if lim

x→0−
f (x) exists, then lim

x→0+
f (x)

exists and has the same value. (Intuitively, x is close to 0 and positive if
and only if −x is close to 0 and negative.)

(ii) If l = lim
x→0+

f (x), then for all ε > 0 there is a δ > 0 such that |f (x)−l| <
ε for 0 < x < δ. So if 0 < |x| < δ, then |f (|x|) − l| < ε. Thus
lim
x→0

f (|x|) = l. The reverse direction is similar. (Intuitively, if x is close

to 0, then |x| is close to 0 and positive.)
(iii) If l = lim

x→0+
f (x), then for all ε > 0 there is a δ > 0 such that |f (x)−l| <

ε for 0 < x < δ. If 0 < |x| <
√
δ, then 0 < x2 < δ, so |f (x2)− l| < ε.

Thus lim
x→0

f (x2) = l. The reverse direction is similar. (Intuitively, if x

is close to 0, then x2 is close to 0 and positive.)
34. If l = lim

x→∞ f (x), then for every ε > 0 there is some N such that |f (x)−l| < ε

for x > N , and we can clearly assume that N > 0. Now, if 0 < x < 1/N ,
then 1/x > N , so |f (1/x) − l| < ε. Thus lim

x→0+
f (1/x) = l. The reverse

direction is similar.

CHAPTER 6 1. (i) F(x) = x + 2 for all x.
(iii) F(x) = 0 for all x.

CHAPTER 7 1. (i) Bounded above and below; minimum value 0; no maximum value.
(iii) Bounded below but not above; minimum value 0.
(v) Bounded above and below. It is understood that a > −1 (so that

−a − 1 < a + 1). If −1 < a ≤ − 1
2 , then a ≤ −a − 1, so f (x) = a + 2

for all x in (−a − 1, a + 1), so a + 2 is the maximum and minimum
value. If − 1

2 < a ≤ 0, then f has the minimum value a2, and if a ≥ 0,
then f has the minimum value 0. Since a + 2 > (a + 1)2 only for
[−1 −

√
5 ]/2 < a < [1 +

√
5 ]/2, when a ≥ − 1

2 the function f has a
maximum value only for a ≤ [1 +

√
5 ]/2 (the maximum value being

a + 2).
(vii) Bounded above and below; maximum value 1; minimum value 0.
(ix) Bounded above and below; maximum value 1; minimum value −1.
(xi) f has a maximum and minimum value, since f is continuous.

2. (i) n = −2, since f (−2) < 0 < f (−1).
(iii) n = −1, since f (−1) = −1 < 0 < f (0).

3. (i) If f (x) = x179 + 163/(1 + x2 + sin2 x), then f is continuous on R and
f (1) > 0, while f (−2) < 0, so f (x) = 0 for some x in (−2, 1).

5. f is constant, for if f took on two different values, then f would take on all
values in between, which would include irrational values.

7. (1) f (x) = x;
(2) f (x) = −x;
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(3) f (x) = |x|;
(4) f (x) = −|x|.

10. Apply Theorem 1 to f − g.
11. If f (0) = 0 or f (1) = 1, choose x = 0 or 1. If f (0) > 0 = I (0) and

f (1) < 1 = I (1), then Problem 10 applied to f and I implies that f (x) = x

for some x.

CHAPTER 8 1. (i) 1 is the greatest element, and the greatest lower bound is 0, which is
not in the set.

(iii) 1 is the greatest element, and 0 is the least element.
(v) Since {x : x2+x+1 ≥ 0} = R, there is no least upper bound or greatest

lower bound.
(vii) Since {x : x < 0 and x2 + x − 1 < 0} = ([−1 −

√
5 ]/2, 0), the greatest

lower bound is [−1 −
√

5 ]/2, and the least upper bound is 0; neither
belongs to the set.

2. (a) Since A �= ∅, there is some x in A. Then −x is in −A, so −A �= ∅.
Since A is bounded above, there is some y such that y ≥ x for all x in
A. Then −y ≤ −x for all x in A, so −y ≤ z for all z in −A, so −A is
bounded below. Let α = sup(−A). Then α is an upper bound for −A,
so, reversing the argument just given, −α is a lower bound for A.
Moreover, if β is any lower bound for A, then −β is an upper bound for
−A, so −β ≥ α, so β ≤ −α. Thus −α is the greatest lower bound for A.

5. (a) If l is the largest integer with l ≤ x, then l+1 > x, but l+1 ≤ x+1 < y.
So we can let k = l + 1. (Proof that a largest such integer l exists:
Since N is not bounded above, there is some natural number n with
−n < x < n. There are consequently only a ˇnite number of integers l
with −n ≤ l ≤ x. Pick the largest.)

(b) Since y − x > 0, there is some natural number n with 1/n < y − x.
Since ny − nx > 1, there is, by part (a), an integer k with nx < k < ny,
which means that x < k/n < y.

(c) Choose r +
√

2(s − r)/2.
(d) By part (b), there is a rational number r with x < r < y, and therefore

a rational number s with x < r < s < y. Apply part (c) to r < s.
10. Let k be the largest integer ≤ x/α (the solution to Problem 5 shows that such

a k exists), and let x ′ = x − kα ≥ 0. If x − kα = x ′ ≥ α, then x ≥ (k + 1)α,
so k + 1 ≤ x/α, contradicting the choice of k. So 0 ≤ x ′ < α.

12. (a) Since any y in B satisˇes y ≥ x for all x in A, any y in B is an upper
bound for A, so y ≥ supA.

(b) Part (a) shows that supA is a lower bound for B, so supA ≤ inf B.
13. Since x ≤ supA and y ≤ supB for every x in A, and y in B, it follows that

x+ y ≤ supA+ supB. Thus, supA+ supB is an upper bound for A+B, so
sup(A+B) ≤ supA+ supB. If x and y are chosen in A and B, respectively,
so that supA−x < ε/2 and supB−y < ε/2, then supA+supB−(x+y) < ε.
Hence,

sup(A+ B) ≥ x + y > supA+ supB − ε.
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CHAPTER 9 1. (a)

f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

h→0

1
a + h

− 1
a

h

= lim
h→0

−1
a(a + h)

= − 1
a2 .

(b) The tangent line through (a,1/a) is the graph of

g(x) = −1
a2 (x − a)+ 1

a

= −x
a2 + 2

a
.

If f (x) = g(x), then

1
x

= − x

a2 + 2
a

or
x2 − 2ax + a2 = 0,

so x = a.
2. (a)

f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

h→0

1
(a + h)2

− 1
a2

h

= lim
h→0

(−2ah− h2)

ha2(a + h)2
= − 2

a3 .

(b) The tangent line through (a,1/a2) is the graph of

g(x) = − 2
a3 (x − a)+ 1

a2

= − 2x
a3 + 3

a2 .

If f (x) = g(x), then

1
x2 = −2x

a3 + 3
a2 ,

or
2x3 − 3ax2 + a3 = 0,

or

0 = (x − a)(2x2 − ax − a2) = (x − a)(2x + a)(x − a).

So x = a or x = −a/2; the point (−a/2,4/a2) lies on the opposite side
of the vertical axis from (a, 1/a2).
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3.

f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

h→0

√
a + h− √

a

h

= lim
h→0

(
√
a + h− √

a )(
√
a + h+ √

a )

h(
√
a + h+ √

a )
= lim

h→0

h

h(
√
a + h+ √

a )

= 1
2
√
a
.

4. Conjecture: Sn ′(x) = nxn−1. Proof:

Sn
′(x) = lim

h→0

Sn(x + h)− Sn(x)

h
= lim

h→0

(x + h)n − xn

h

= lim
h→0

n∑
j=0

(
n

j

)
xn−jhj − xn

h

= lim
h→0

n∑
j=1

(
n

j

)
xn−jhj−1

=
(
n

1

)
xn−1 = nxn−1, since lim

h→0
hj−1 = 0 for j > 1.

5. f ′(x) = 0 for x not an integer, and f ′(x) is not deˇned if x is an integer.
6. (a)

g′(x) = lim
h→0

g(x + h)− g(x)

h
= lim

h→0

[f (x + h)+ c] − [f (x)+ c]
h

= lim
h→0

f (x + h)− f (x)

h
= f ′(x).

(b)

g′(x) = lim
h→0

g(x + h)− g(x)

h
= lim

h→0

cf (x + h)− cf (x)

h

= c · lim
h→0

f (x + h)− f (x)

h
= cf ′(x).

7. (a) f ′(9) = 3 · 92; f ′(25) = 3 · (25)2; f ′(36) = 3 · (36)2.
(b) f ′(32) = f ′(9) = 3 · 92; f ′(52) = f ′(25) = 3 · (25)2; f ′(62) = f ′(36) =

3 · (36)2.
(c) f ′(a2) = 3(a2)2 = 3a4; f ′(x2) = 3(x2)2 = 3x4.
(d) f ′(x2) = 3x4; but g(x) = x6, so g′(x) = 6x5.

8. (a)

g′(x) = lim
h→0

g(x + h)− g(x)

h
= lim

h→0

f (x + h+ c)− f (x + c)

h

= lim
h→0

f ([x + c] + h)− f (x + c)

h
= f ′(x + c).
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(b)

g′(x) = lim
h→0

g(x + h)− g(x)

h
= lim

h→0

f (cx + ch)− f (cx)

h

= lim
h→0

c[f (cx + ch)− f (cx)]
ch

= lim
k→0

c[f (cx + k)− f (cx)]
k

= c · lim
k→0

f (cx + k)− f (cx)

k
= c · f ′(cx).

(Compare the manipulations in this calculation with Problem 5-14.)
(c) If g(x) = f (x + a), then g′(x) = f ′(x + a), by part (a). But g = f , so

f ′(x) = g′(x) = f ′(x+a) for all x, which means that f ′ is periodic, with
period a.

9. (i) If g(x) = x5, then g′(x) = 5x4. Now f (x) = g(x + 3), so by Prob-
lem 8(a), f ′(x) = g′(x + 3) = 5(x + 3)4. And f ′(x + 3) = 5(x + 6)4.

(ii) f (x) = (x − 3)5, so f ′(x) = 5(x − 3)4, as in part (i). And f ′(x + 3) =
5 · 04 = 0.

(iii) f (x) = (x + 2)7, so f ′(x) = 7(x + 2)6, as in part (i). And f ′(x + 3) =
7(x + 5)6.

10. If f (x) = g(t+x), then f ′(x) = g′(t+x), by Problem 8(a). If f (t) = g(t+x),
then f ′(t) = g′(t + x), by Problem 8(a), so f ′(x) = g′(2x).

11. (a) If s(t) = ct2, then s ′(t) = 2ct , and there is no number k such that
s ′(t) = ks(t) [that is, 2ct = kct2] for all t .
(By the way, at this point we do not know any nonzero function f for
which f ′ is proportional to f . After Chapter 18 it might be amusing to
determine what the world would be like if Galileo were correct.)

(b) (i) If s(t) = (a/2)t2, then s ′(t) = at , so s ′′(t) = a.
(ii) [s ′(t)]2 = (at)2 = 2a · (a/2)t2 = 2as(t).

(c) The chandelier falls s(t) = 16t2 feet in t seconds, so it falls 400 feet in
t seconds, if 400 = 16t2, or t = 5. After 5 seconds the velocity will
be s ′(5) = 5a = 5 · 32 = 160 feet per second. The speed was half this
amount when 80 = s ′(t) = 32t , or t = 5

2 .
21. (a) This is another way of writing the deˇnition (see Problem 5-9).

(b) This follows from Problem 5-11, applied to the functions α(h) =
[f (a + h)− f (a)]/h and β(h) = [g(a + h)− g(a)]/h.

26. (i) f ′′(x) = 6x.
(iii) f ′′(x) = 4x3.

30. (i) means that f ′(a) = nan−1 if f (x) = xn.
(iii) means that g′(a) = f ′(a) if g(x) = f (x)+ c.
(v) means the same as (iii).
(vii) means that g′(b) = f ′(b + a) if g(x) = f (x + a).
(ix) means that g′(b) = cf ′(cb) if g(x) = f (cx).

CHAPTER 10 1. (i) (1 + 2x) · cos(x + x2).
(iii) (− sin x) · cos(cos x).
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(v) cos
(cos x

x

)
· −x sin x − cos x

x2 .

(vii) (cos(x + sin x)) · (1 + cos x).
2. (i) (cos((x + 1)2(x + 2))) · [2(x + 1)(x + 2)+ (x + 1)2].

(iii) [2 sin((x + sin x)2) cos((x + sin x)2)] · 2(x + sin x)(1 + cos x).
(v) (cos(x sin x)) · (sin x + x cos x)+ (cos(sin x2)(cos x2)) · 2x.

(vii) (2 sin x cos x sin x2 sin2 x2)+ (2x cos x2 sin2 x sin2 x2)

+ (4x sin x2 cos x2 sin2 x sin x2).
(ix) 6(x + sin5 x)5(1 + 5 sin4 x cos x).

(xi) cos(sin7 x7 + 1)7 · 7(sin7 x7 + 1)6 · (7 sin6 x7 · cos x7 · 7x6).
(xiii) cos(x2 + sin(x2 + sin x2)) · [(2x + cos(x2 + sin x2) · (2x + 2x cos x2))].

(xv)
(1 + sin x)(2x cos x2 · sin2 x + sin x2 · 2 sin x cos x)− cos x sin x2 sin2 x

(1 + sin x)2
.

(xvii) cos




x3

sin

(
x3

sin x

)

 ·

3x2 sin

(
x3

sin x

)
− x3 cos

(
x3

sin x

)
·
(

3x2 sin x − x3 cos x

sin2
x

)

sin2

(
x3

sin x

) .

4. (i) − (x + 1)2

(x + 2)2
.

(iii) 2x2.
5. (i) −x2.

(iii) 17.
6. (i) f ′(x) = g′(x + g(a)).

(iii) f ′(x) = g′(x + g(x)) · (1 + g′(x)).
(v) f ′(x) = g(a).

7. (a) A′(t) = 2πr(t)r ′(t). Since r ′(t) = 4 for that t with r(t) = 6, it follows
that A′(t) = 2π · 6 · 4 = 48π when r(t) = 6.

(b) If V (t) is the volume at time t , then V (t) = 4πr(t)3/3, so V ′(t) =
4πr(t)2r ′(t) = 4π · 62 · 4 = 576π when r(t) = 6.

(c) First method: Since A′(t) = 2πr(t)r ′(t), and A′(t) = 5 for r(t) = 3, it
follows that

r ′(t) = A′(t)
2πr(t)

= 5
6π

when r(t) = 3.



624 Answers to Selected Problems

Thus

V ′(t) = 4πr(t)2r ′(t)

= 4π · 9 · 5
6π

= 30 when r(t) = 3.

To apply the second method, we ˇrst note that if

f (t) = A(t)3/2 =
√
A(t)3,

then, using Problem 9-3 and the Chain Rule,

f ′(t) = 1

2
√
A(t)3

· 3A(t)2A′(t)

= 1
2A(t)3/2

· 3A(t)2A′(t)

= 3
2
A(t)1/2A′(t) ( just as we might have guessed).

Now

V (t) = 4πr(t)3

3
= 4π[r(t)2]3/2

3

= 4[πr(t)2]3/2

3π1/2

= 4A(t)3/2

3π1/2 .

So

V ′(t) = 4
3π1/2 · 3

2

√
A(t)A′(t)

= 2
π1/2 · π1/2r(t)A′(t)

= 2 · 3 · 5 = 30.

10. (i) (f � h)′(0) = f ′(h(0)) · h′(0) = f ′(3) · sin2(sin 1) =
[6 sin 1

3 − cos 1
3] sin2(sin 1).

(iii) α′(x2) = h′(x4) · 2x2 = sin2(sin(x4 + 1)) · 2x2.
12. The Chain Rule implies that(

1
g

)′
(x) = (f � g)′(x) = f ′(g(x)) · g′(x)

= − 1
g(x)2

· g′(x).

33. (i)
dz

dx
= dz

dy
· dy
dx

= (cos y) · (1 + 2x) = (cos(x + x2)) · (1 + 2x).
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(iii)
dz

dx
= dz

du
· du
dx

= (− sin u) · (cos x) = (− cos(sin x)) · (cos x).

CHAPTER 11 1. (i) 0 = f ′(x) = 3x2 − 2x − 8 for x = 2 and x = − 4
3 , both of which are in

[−2,2];
f (−2) = 5, f (2) = −11, f (− 4

3) = 203
27 ;

maximum = 203
27 , minimum = −11.

(iii) 0 = f ′(x) = 12x3 − 24x2 + 12x = 12x(x2 − 2x + 1) for x = 0 and
x = 1, of which only 0 is in [− 1

2 ,
1
2 ];

f (− 1
2) = 43

16 , f (1
2 ) = 11

16 , f (0) = 0;
maximum = 43

16 , minimum = 0.
(v) 0 = f ′(x) =

x2 + 1 − (x + 1)2x
(x2 + 1)2

= 1 − 2x − x2

(x2 + 1)2

for x = −1 +
√

2 and x = −1 −
√

2, of which only −1 +
√

2 is in
[−1, 1

2 ];
f (−1) = 0, f (1

2 ) = 6
5 , f (−1 +

√
2 ) = (1 +

√
2 )/2;

maximum = (1 +
√

2 )/2, minimum = 0.
2. (i) − 4

3 is a local maximum point, and 2 is a local minimum point.
(iii) 0 is a local minimum point, and there are no local maximum points.
(v) −1 +

√
2 is a local maximum point, and −1 −

√
2 is a local minimum

point.
4. (a) Notice that f actually has a minimum value, since f is a polynomial

function of even degree. The minimum occurs at a point x with

0 = f ′(x) = 2
n∑
i=1

(x − ai),

so x = (a1 + · · · + an)/n.
5. (i) 3 and 7 are local maximum points, and 5 and 9 are local minimum

points.
(iii) All irrational x > 0 are local minimum points, and all irrational x < 0

are local maximum points.
(v) x is a local maximum (minimum) point if the decimal expansion con-

tains (does not contain) a 5.
8. If f (x) is the total length of the path, then

f (x) =
√
x2 + a2 +

√
(1 − x)2 + b2.

The positive function f clearly has a minimum, since lim
x→∞ f (x) = lim

x→−∞ f (x)

= ∞, and f is differentiable everywhere, so the minimum occurs at a point
x with f ′(x) = 0. Now, f ′(x) = 0 when

x√
x2 + a2

− (1 − x)√
(1 − x)2 + b2

= 0.
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This equation says that cos α = cos β.
It is also possible to notice that f (x) is equal to the sum of the lengths of the

dashed line segment and the line segment from (x,0) to (1, b). This is short-
est when the two line segments lie along a line (because of Problem 4-9(b), if
a rigorous reason is required); a little plane geometry shows that this happens
when α = β.

9. If x is the length of one side of a rectangle of perimeter P , then the length
of the other side is (P − 2x)/2, so the area is

A(x) = x(P − 2x)
2

.

So the rectangle with greatest area occurs when x is the maximum point for f
on (0, P/2). Since A is continuous on [0, P/2], and A(0) = A(P/2) = 0,
and A(x) > 0 for x in (0, P/2), the maximum exists. Since A is differentiable
on (0, P/2), the minimum point x satisˇes

0 = A′(x) = P − 2x
2

− x

= P − 4x
2

,

so x = P/4.
10. Let S(r) be the surface area of the right circular cylinder of volume V with

radius r. Since

V = πr2h where h is the height,

we have h = V/πr2, so

S(r) = 2πr2 + 2πrh

= 2πr2 + 2V
r
.

We want the minimum point of S on (0,∞); this exists, since lim
r→0

S(r) =
lim
r→∞ S(r) = ∞. Since S is differentiable on (0,∞), the minimum point r

satisˇes

0 = S ′(r) = 4πr − 2V
r2

= 4πr3 − 2V
r2 ,

or

r = 3

√
V

2π
.

19. 1 is a local maximum point, and 3 is a local minimum point.
25. (a) We have

f (b)− f (a)

b − a
= f ′(x) for some x in (a, b)

≥ M,
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so f (b)− f (a) ≥ M(b − a).
(b) We have

f (b)− f (a)

b − a
= f ′(x) for some x in (a, b)

≤ m,

so f (b)− f (a) ≤ m(b − a).
(c) If |f ′(x)| ≤ M for all x in [a, b], then −M ≤ f (x) ≤ M, so

f (a)−M(b − a) ≤ f (b) ≤ f (a)+M(b − a),

or
|f (b)− f (a)| ≤ M(b − a).

28. (a) f (x) = − cos x + a for some number a (because f (x) = − cos x is one
such function, and any two such functions differ by a constant function).

(b) f ′(x) = x4/4+a for some number a, so f (x) = x5/20+ax+b for some
numbers a and b.

(c) f ′′(x) = x2 + x3/3 + a for some a, so f ′(x) = x3/6 + x4/12 + ax + b

for some a and b, so f (x) = x4/24 + x5/60 + ax2/2 + bx + c for some
numbers a, b, and c. Equivalently, and more simply, f (x) = x4/24 +
x5/60 + ax2 + bx + c for some numbers a, b, and c.

29. (a) Since s ′′(t) = −32, we have s ′(t) = −32t + α for some α, so s(t) =
−16t2 + αt + β for some α and β.

(b) Clearly, s(0) = 0 + 0 + β and s ′(0) = 0 + α. Thus, α = v0 and β = s0.
(c) In this case, s0 = 0 and v0 = v, so s(t) = −16t2 + vt . The maximum

value of s occurs when 0 = s ′(t) = −32t + v, or t = v/32, so the
maximum value is

s
( v

32

)
= −16

( v
32

)2
+ v ·

( v
32

)
= −v2

64
+ v2

32

= v2

64
.

At that moment the velocity is clearly 0, but the acceleration is −32 (as
at any time). The weight hits the ground at time t > 0 when

0 = s(t) = −16t2 + vt,

or t = v/16 (it takes as long to fall back down as it took to reach the top).
The velocity is then

s ′(v/16) = −32
( v

16

)
+ v

= −v
(the same velocity with which it was initially moving upward).
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44. Apply the Mean Value Theorem to f (x) = √
x on [64, 66]:

√
66 −

√
64

66 − 64
= f ′(x) = 1

2
√
x

for some x in [64,66].

Since 64 < x < 81, we have 8 <
√
x < 9, so

1
2 · 9

<

√
66 − 8

2
<

1
2 · 8

.

48. l'Hôpital's Rule does not lead to the equation

lim
x→1

3x2 + 1
2x − 3

= lim
x→1

6x
2

because lim
x→1

3x2 + 1 �= 0.

49. (i)

lim
x→0

x

tan x
= lim

x→0

1
sec2 x

= lim
x→0

cos2 x = 1.

(ii)

lim
x→0

cos2 x − 1
x2 = lim

x→0

−2 sin x cos x
2x

= −1.

CHAPTER 12 1. (i) f −1(x) = (x − 1)1/3. (If y = f −1(x), then x = f (y) = y3 + 1, so
y = (x − 1)1/3.)

(iii) f −1 = f . (If y = f−1(x), then

x = f (y) =
{
y, y rational
−y, y irrational;

since ±y is rational or irrational if and only if y is, we have y = x if x
is rational and y = −x if x is irrational, so y = f (x).)

(v)

f −1(x) =


x, x �= a1, . . . , an
ai−1, x = ai, i = 2, . . . , n
an, x = a1.

(vii) f −1 = f .
2. (i) f −1 is increasing and f−1(x) is not deˇned for x ≤ 0.

(iii) f −1 is decreasing and f−1(x) is not deˇned for x ≤ 0.
3. Suppose f is increasing. Let a < b. Then f −1(a) �= f−1(b), since f −1 is

one-one. So either f −1(a) < f −1(b) or f −1(a) > f −1(b). But if f−1(a) >

f−1(b), then
b = f (f−1(b)) < f (f −1(a)) = a,

a contradiction. The proof is similar for decreasing f , or one can consider
−f instead.

4. Clearly, f + g is increasing, for if f (a) < f (b) and g(a) < g(b), then
(f + g)(a) = f (a)+ g(a) < f (b)+ g(b) = (f + g)(b).
f ·g is not necessarily increasing; for example, if f (x) = g(x) = x. (But f ·g
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is increasing if f (x) ≥ 0 for all x.)
f � g is increasing, for if a < b, then g(a) < g(b), so f (g(a)) < f (g(b)).

5. (a) If (f � g)(x) = (f � g)(y), so that f (g(x)) = f (g(y)), then g(x) = g(y),
since f is one-one, so x = y, since g is one-one.
(f � g)−1 = g−1 � f −1: for if y = (f � g)−1(x), then x = (f � g)(y) =
f (g(y)), so g(y) = f−1(x), so y = g−1(f−1(x)).

6. If f (x) = f (y), then
ax + b

cx + d
= ay + b

cy + d
,

so

acxy + bcy + adx + bd = acxy + ady + bcx + bd,

or

ad(x − y) = bc(x − y).

If ad �= bc, this implies that x − y = 0. (But if ad = bc, then f (x) = f (y)

for all x and y in the domain of f .)
If y = f−1(x), then x = f (y), so

x = ay + b

cy + d

so

f −1(x) = y = −dx + b

cx − a
for x �= a/c.

7. (i) Those intervals [a, b] which are contained in (−∞, 0] or [0, 2] or
[2,∞), since f is increasing on (−∞, 0] and [2,∞), and decreasing
on [0,2].

(iii) Those intervals [a, b] which are contained in (−∞, 0] or [0,∞), since
f is increasing on (−∞,0] and decreasing on [0,∞).

17. The formula for the derivative reads:

dx

dy
= 1
dy

dx

.

(In this formula, it is understood that dx/dy means (f −1)′(y), while dy/dx
is an \expression involving x," and in the ˇnal answer x must be replaced
by y, by means of the equation y = f (x).)
The computation in Problem 17, when completed, shows that

dx1/n

dx
= 1
n(x1/n)n−1 = 1

nx1−(1/n)

= 1
n
x(1/n)−1.
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18.
G′(x) = x(f−1)′(x)+ f −1(x)− F ′(f−1(x)) · (f −1)′(x)

= x(f−1)′(x)+ f −1(x)− f (f−1(x)) · (f −1)′(x)
= x(f−1)′(x)+ f −1(x)− x(f−1)′(x)
= f−1(x).

19. (i)

(h−1)′(3) = 1
h′(h−1(3))

= 1
h′(0)

= 1

sin2(sin 1)
.

20. Since
(f −1)′(x) = 1

f ′(f −1(x))
,

we have

(f −1)′′(x) = −f ′′(f −1(x)) · (f−1)′(x)
[f ′(f −1(x))]2

= −f ′′(f −1(x))

[f ′(f −1(x))]3 .

CHAPTER 13 1. If Pn = {t0, . . . , tn} is the partition with ti = ib/n, then

L(f, Pn) =
n∑
i=1

(ti−1)
3 · (ti − ti−1)

=
n∑
i=1

(i − 1)3 · b3

n3 · b
n

= b4

n4

n−1∑
j=0

j 3

= b4

n4

[
(n− 1)4

4
+ (n− 1)3

2
+ (n − 1)2

4

]
,

and similarly

U(f,Pn) = b4

n4

n∑
j=1

j 3

= b4

n4

[
n4

4
+ n3

2
+ n2

4

]
.

Clearly L(f, Pn) and U(f,Pn) can be made as close to b4/4 as desired by
choosing n sufˇciently large, so U(f,Pn) − L(f,Pn) can be made as small
as desired, by choosing n large enough. This shows that f is integrable.
Moreover, there is only one number a with L(f, Pn) ≤ a ≤ U(f,Pn) for
all n; since

∫ b
0 x

3 dx has this property, the proof that
∫ b

0 x
3 dx = b4/4 will

be complete once we show that L(f,Pn) ≤ b4/4 ≤ U(f,Pn) for all n. This
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can be done by a straightforward computation, but it actually follows from
the fact that L(f,Pn) and U(f,Pn) can be made as close to b4/4 as desired
by choosing n sufˇciently large. In fact, if it were true that b4/4 <

∫ b
0 x

3 dx,
then it would not be possible to make U(f,Pn) as close as desired to b4/4 by
choosing n large enough, since each U(f,Pn) ≥ ∫ b

0 x
3 dx, and similarly we

cannot have b4/4 >
∫ b

0 x
3 dx.

2. We have

L(f,Pn) = b5

n5

[
(n− 1)5

5
+ (n− 1)4

2
+ (n− 1)3

3
− (n− 1)

30

]
,

U(f,Pn) = b5

n5

[
n5

5
+ n4

2
+ n3

3
− n

30

]
.

Clearly L(f, Pn) and U(f,Pn) can be made as close to b5/5 as desired by
choosing n large enough. As in Problem 1, this implies that

∫ b
0 x

4 dx = b5/5.
7. (i)

∫ 2
0 f = 0.

(iii)
∫ 2

0 f = 3.
(v) f is not integrable.
(vii)

∫ 2
0 f = 1.

(For a rigorous proof that the functions in (i), (iii), and (vii) are integrable,
see Problem 20. The values of the integrals, which are clear from the
geometric picture, can also be deduced rigorously by using the ideas in
the proof of Problem 20, together with known integrals.)

8. (i) ∫ 2

−2

[(
x2

2
+ 2

)
− x2

]
dx = 16

3
.

(iii) ∫ √
2/2

−
√

2/2
[(1 − x2)− x2] dx = 2

√
2

3
.

(v) ∫ 2

0
[(x2 − 2x + 4)− x2] dx = 4.

9.∫ b

a

(∫ d

c

f (x)g(y)dy

)
dx =

∫ b

a

(
f (x)

∫ d

c

g(y)dy

)
dx (here f (x) is the constant)

=
∫ d

c

g(y)dy ·
∫ b

a

f (x)dx

(here
∫ d

c

g(y) dy is the constant).

13. (a) Clearly L(f,P) ≥ 0 for every partition P .
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(b) Apply part (a) to f − g, and use the fact that∫ b

a

(f − g) =
∫ b

a

f −
∫ b

a

g.

23. (a) Clearly

m(b − a) ≤ L(f,P) ≤ U(f,P) ≤ M(b − a)

for all partitions P of [a, b]. Consequently,

m(b − a) ≤
∫ b

a

f (x)dx ≤ M(b − a).

Thus

µ =

∫ b

a

f (x)dx

b − a

satisˇes m ≤ µ ≤ M.
(b) Let m and M be the minimum and maximum values of f on [a, b].

Since f is continuous, it takes on the values m and M, and consequently
the number µ of part (a).

33. (a) 0.
(b) 1

2 .
37. Since

−|f | ≤ f ≤ |f |,
we have

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |,
so ∣∣∣∣

∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|f |.

(Problem 36 implies that
∫ b

a

|f | makes sense.)

CHAPTER 14 1. (i) (sin3 x3) · 3x2.

(iii)
∫ x

8

1

1 + t2 + sin2 t
dt .

(v)
∫ b

a

1

1 + t2 + sin2 t
dt .

(vii) (F−1)′(x) = 1
F ′(F−1(x))

= F−1(x).

2. (i) All x �= 1.
(iii) All x �= 1.
(v) All x.
(vii) All x �= 0. (F is not differentiable at 0 because F(x) = 0 for x ≤ 0, but

there are x > 0 arbitrarily close to 0 with F(x)

x
= 1

2 .)
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5. (i)

(f−1)′(0) = 1
f ′(f −1(0))

= 1
1 + sin(sin(f−1(0)))

= 1
1 + sin(sin 0)

= 1.

11. F(x) = x

∫ x

0
f (t) dt , so

F ′(x) = xf (x)+
∫ x

0
f (t) dt.

14.

f (x) =
∫ x

0

(∫ y

0

(∫ x

0

1√
1 + sin2 t

dt

)
dz

)
dy.

16. We can choose

f (x) = x(1/n)+1

1
n

+ 1
.

Then ∫ b

0

n
√
x dx = f (b)− f (0) = b(1/n)+1

1
n

+ 1
.

CHAPTER 15 1. (i)
1

1 + arctan2(arctan x)
· 1

1 + arctan2 x
· 1

1 + x2 .

(iii)

1
1 + (tan x arctan x)2

·
(

sec2 x arctan x + tan x
1 + x2

)
.

2. (i) 0.
(iii) 0.
(v) 0.

7. (a)
sin 2x = sin(x + x) = sin x cos x + cos x sin x = 2 sin x cos x.
cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x.

sin 3x = sin(2x + x) = sin 2x cos x + cos 2x sin x
= 2 sin x cos2 x + (cos2 x − sin2

x) sin x
= 3 sin x cos2 x − sin3 x.

cos 3x = cos(2x + x) = cos 2x cos x − sin 2x sin x
= (cos2 x − sin2 x) cos x = 2 sin2 x cos x
= cos3 x − sin2

x cos x − 2 sin2
x cos x

= cos3 x − 3 sin2 x cos x
= 4 cos3 x − 3 cos x.
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(b) Since cos π/4 > 0 and

0 = cos
π

2
= cos 2 · π

4
= 2 cos2 π

4
− 1,

we have cos π/4 =
√

2/2. It follows, since sin π/4 > 0 and sin2 +
cos2 = 1, that sin π/4 =

√
2/2, and consequently tanπ/4 = 1. Sim-

ilarly, since cos π/6 > 0 and

0 = cos
π

2
= cos 3 · π

6
= 4 cos3 π

6
− 3 cos

π

6
,

we have cosπ/6 =
√

3/2. It follows, since sin π/6 > 0, that sin π/6 =√
1 − (

√
3/2)2 = 1

2 .
9. (a)

tan(x + y) = sin(x + y)

cos(x + y)

= sin x cos y + cos x sin y
cos x cos y − sin x sin y

=

sin x cos y
cos x cos y

+ cos x sin y
cos x cos y

cos x cos y
cos x cos y

− sin x sin y
cos x cos y

= tan x + tan y
1 − tan x tan y

.

(b) From part (a) we have

tan(arctan x + arctan y) = tan(arctan x)+ tan(arctan y)
1 − tan(arctan x) tan(arctan y)

= x + y

1 − xy
,

provided that arctan x, arctan y, and arctan x + arctan y �= kπ + π/2.
Since −π/2 < arctan x, arctan y < π/2, this is always the case except
when arctan x + arctan y = ±π/2, which is equivalent to xy = 1. From
this equation we can conclude that

arctan x + arctan y = arctan
(
x + y

1 − xy

)

provided that arctan x+arctan y lies in (−π/2, π/2), which is true when-
ever xy < 1. (If x,y > 0 and xy > 1, so that arctan x+ arctan y > π/2,
then we must add π to the right side, and if x, y < 0 and xy > 1, so
that arctan x + arctan y < −π/2, then we must subtract π .)
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11. The ˇrst formula is derived by subtracting the second of the following two
equations from the ˇrst:

cos(m− n)x = cos(mx − nx) = cosmx cos(−nx)− sinmx sin(−nx)
= cosmx cos nx + sinmx sin nx,

cos(m+ n)x = cosmx cos nx − sinmx sin nx.

The other formulas are derived similarly.
12. It follows from Problem 11 that if m �= n, then∫ π

−π
sinmx sin nx dx = 1

2

∫ π

−π
[cos(m− n)x − cos(m+ n)x] dx

= 1
2

{[
sin(m − n)π

m− n
− sin(m+ n)π

m+ n

]

−
[

sin(m− n)π

m− n
− sin(m + n)π

m+ n

]}
= 0.

But if m = n, then∫ π

−π
sinmx sin nx dx = 1

2

∫ π

−π
1 − cos(m+ n)x dx

= 1
2
{
[π − cos(m + n)π] − [−π − cos(m+ n)π]

}
= π.

The other formulas are proved similarly.
15. (a) We have

cos 2x = cos2 x − sin2 x

= 1 − 2 sin2 x

= 2 cos2 x − 1.

So

sin2 x = 1 − cos 2x
2

,

cos2 x = 1 + cos 2x
2

.

(b) These formulas follow from part (a), because cos x/2 ≥ 0 and sin x/2 ≥ 0
(since 0 ≤ x ≤ π/2).

(c)∫ b

a

sin2 x dx =
∫ b

a

1 − cos 2x
2

dx = 1
2
(b − a)− 1

4
(sin 2b − sin 2a).∫ b

a

cos2 x dx =
∫ b

a

1 + cos 2x
2

dx = 1
2
(b − a)+ 1

4
(sin 2b − sin 2a).

19. (a) arctan 1 − arctan 0 = π/4.
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(b) lim
x→∞ arctan x − arctan 0 = π/2.

20. lim
x→∞ x sin

1
x

= lim
x→0+

1
x

sin x = 1.

21. (a)
(sin◦)′(x) = π

180
cos
( πx

180

)
= π

180
cos◦(x).

(cos◦)′(x) = π

180
· − sin

( πx
180

)
= −π

180
sin◦(x).

(b) lim
x→0

sin◦ x
x

= lim
x→0

sin(πx/180)
x

= lim
x→0

π

180
· sin(πx/180)

πx/180
= π

180
.

lim
x→∞ x sin◦ 1

x
= lim

x→0+

sin◦ x
x

= π

180
.

CHAPTER 18 1. (i) ee
ee
x

· eeex · eex · ex .
(iii) (sin x)sin(sin x)[(log(sin x)) · cos(sin x) · cos x

+ (cos x/ sin x) · sin(sin x)] .

(v) sin x sinxsin x
[(log(sin x)) · sin x sinx

·{(log(sin x)) · cos x + (cos x/ sin x) · sin x}
+ (cos x/ sin x) · sin x sinx].

(vii)
[
arcsin

( x

sin x

)]log(sin ex)


(log

(
arcsin

( x

sin x

)))
· (cos ex)ex

sin ex

+ log(sin ex) · sin x − x cos x

arcsin
( x

sin x

)√
1 −

( x

sin x

)2
· sin2 x


 .

(ix) (log x)log x ·
[
log(log x) · 1

x
+ log x · 1

log x
· 1
x

]
.

5. (i) 0.

(iii) 1
6 .

(v) 1
3 .

7. (a)
cosh2 x − sinh2 x =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
[
e2x

4
+ 1

2
+ e−2x

4

]
−
[
e2x

4
− 1

2
+ e−2x

4

]

= 1.
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(c)

sinh x cosh y + cosh x sinh y =
(
ex − e−x

2

)(
ey + e−y

2

)
+
(
ex + e−x

2

)(
ey − e−y

2

)

=
[
ex+y

4
+ e−x−y

4
− e−x+y

4
+ ex−y

4

]
+
[
ex+y

4
+ e−x−y

4
+ e−x+y

4
− e−x−y

4

]

= ex+y + e−(x+y)

2
= sinh(x + y).

(e) Since

sinh x = ex + e−x

2
,

we have

sinh′(x) = ex − e−x

2
= cosh x.

(g) Since

tanh x = sinh x
cosh x

,

we have

tanh′(x) = (cosh x)2 − (sinh x)2

cosh2
x

= 1

cosh2 x
by part (a).

8. (a) If y = arg cosh x, then x ≥ 0 and

x = cosh y =
√

1 + sinh2 y by part (a).

So

sinh(arg cosh x) = sinh y =
√
x2 − 1 since sinh y ≥ 0 for y ≥ 0.

(c)

(arg sinh)′(x) = 1
sinh′(arg sinh(x))

= 1
cosh(arg sinh(x))

= 1√
1 + x2

by part (b).

(e)

(arg tanh)′(x) = 1
tanh′(arg tanh(x))

,

= cosh2(arg tanh(x)).
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Now,

tanh2 y + 1

cosh2 y
= 1 by Problem 7(b),

so

tanh2(arg tanh(x))+ 1

cosh2
(arg tanh(x))

= 1,

or

cosh2(arg tanh(x)) = 1
1 − x2 .

9. (a) If y = arg sinh x, then

x = sinh y = ey − e−y

2
so

ey − e−y = 2x,
e2y − 2xey − 1 = 0,

ey = 2x ±
√

4x2 + 4
2

so
ey = x +

√
1 + x2 since ey > 0

or
y = arg sinh x = log(x +

√
1 + x2 ).

Similarly,

arg cosh x = log(x +
√
x2 − 1 ),

arg tanh x = 1
2 log(1 + x)− 1

2 log(1 − x).

(b) ∫ b

a

1√
1 + x2

dx = arg sinh b − arg sinh a by Problem 8(c)

= log(b +
√

1 + b2 )− log(a +
√

1 + a2 ).∫ b

a

1√
x2 − 1

dx = log(b +
√
b2 − 1 )− log(a +

√
a2 − 1 ).

∫ b

a

1
1 − x2 dx = 1

2
[log(1 + b)− log(1 − b)− log(1 + a)+ log(1 − a)].

12. (a) lim
x→∞ a

x = lim
x→∞ e

x log a. Since log a < 0, we have lim
x→∞ x log a = −∞, so

lim
x→∞ e

x log a = 0.

(c) lim
x→∞

(log x)n

x
= lim

y→∞
yn

ey
= 0.

(e) lim
x→0+

xx = lim
x→0+

ex log x . Now, lim
x→0+

x log x = 0 by part (d), so lim
x→0+

xx = 1.



Answers to Selected Problems 639

16. (a) lim
y→0

log(1 + y)/y = log′(1) = 1.

(b) lim
x→∞ x log(1 + 1/x) = lim

y→0+
log(1 + y)/y = 1.

(c)

e = exp(1) = exp( lim
x→∞ x log(1 + 1/x))

(∗) = lim
x→∞ exp(x log(1 + 1/x))

= lim
x→∞(1 + 1/x)x.

(The starred equality depends on the continuity of exp at 1, and can
be justiˇed as follows. For every ε > 0 there is some δ > 0 such that
|e − expy| < ε for |y − 1| < δ. Moreover, there is some N such that
|x log(1 + 1/x)− 1| < δ for x > N . So |e− exp(x log(1 + 1/x))| < ε for
x > N .

(d)

ea = [ lim
x→∞(1 + 1/x)x]a = lim

x→∞(1 + 1/x)ax

= lim
ax→∞(1 + 1/x)ax

= lim
y→∞(1 + a/y)y.

18. After one year the number of dollars yielded by an initial investment of one
dollar will be

lim
x→∞(1 + a/100x)x = ea/100.

19. (a) Clearly f ′(x) = 1/x for x > 0. If x < 0, then f (x) = log(−x), so
f ′(x) = (−1) · 1/(−x) = 1/x.

(b) We can write log |f | as g � f where g(x) = log |x| is the function of part
(a). So (log |f |)′ = (g′ � f ) · f ′ = 1/f · f ′.

20. (c) Let g(x) = f (x)/ecx . Then

g′(x) = ecxf ′(x)− f (x)cecx

e2cx = 0,

so there is some number k such that g(x) = k for all x.
21. (a) According to Problem 20, there is some k such that A(t) = kect . Then

k = ke0·t = A0. So A(t) = A0e
ct .

(b) If A(t + τ ) = A(t)/2, then

A0e
ct+cτ = A0e

ct

2
,

so ectecτ = ect/2 or ecτ = 1
2 , so τ = −(log 2)/c. It is easy to check that

this τ does work.
22. Newton's law states that, for a certain (positive) number c,

T ′(t) = c(T −M),
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which can be written

(T −M)′ = c(T −M).

So by Problem 20 there is some number k such that

T (t)−M = kect ,

and k = ke0·t = T (0) = T0. So T (t) = M + T0e
ct .

CHAPTER 19 1. (i)
( 5
√
x3 + 6

√
x
)/√

x = x1/10 + x−1/3.

(ii)
1√

x − 1 +
√
x + 1

=
√
x − 1 −

√
x + 1

−2
.

(iii) (ex + e2x + e3x)/e4x = e−3x + e−2x + e−x.
(iv) ax/bx = (a/b)x = ex log(a/b).
(v) tan2 x = sec2 x − 1.

(vi)
1

a2 + x2 = 1/a2

1 +
(x
a

)2 .

(vii)
1√

a2 − x2
= 1/a√

1 − (x/a)2
.

(viii)
1

1 + sin x
= 1 − sin x

1 − sin2 x
= 1 − sin x

cos2 x
= sec2 x − sec x tan x.

(ix)
8x2 + 6x + 4

x + 1
= 8x − 2 + 6

x + 1
.

(x)
1√

2x − x2
= 1√

1 − (x − 1)2
.

2. (i) − cos ex . (Let u = ex .)
(iii) (log x)2/2. (Let u = log x.)
(v) ee

x

. (Let u = ee
x

.)
(vii) 2e

√
x . (Let u = √

x.)
(ix) −(log(cos x))2/2. (Let u = log(cos x).)

3. (i)
∫
x2ex dx = x2ex −

∫
2xex dx = x2ex −

[
2xex −

∫
ex dx

]
= x2ex − 2xex + 2ex.

(iii) We have∫
eax sin bx dx = eax sin bx

a
− b

a

∫
eax cos bx dx

= eax sin bx
a

− b

a

[
eax cos bx

a
− b

a

∫
eax(− sin bx)dx

]
,

so∫
eax sin bx dx = a

a2 + b2 e
ax sin bx − b

a2 + b2 e
ax cos bx.
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(v) Using the result
∫
(log x)2 dx = x(log x)2−2x(log x)+2x from the text,

we have∫
(log x)3 dx = [x(log x)2 − 2x(log x)+ 2x] log x

−
∫

1
x

[x(log x)2 − 2x(log x)+ 2x] dx

= x(log x)3 − 2x(log x)2 + 2x log x

−
∫
(log x)2 dx + 2[x log x − x] − 2x

= x(log x)3 − 2x(log x)2 + 2x log x
− [x(log x)2 − 2x(log x)+ 2x] + 2[x log x − x] − 2x

= x(log x)3 − 3x(log x)2 + 6x log x − 6x.

(vii)∫
sec3 x dx =

∫
(sec2 x)(sec x)dx = tan x sec x −

∫
(tan x)(sec x tan x) dx

= tan x sec x −
∫

sec x(sec2 x − 1) dx

= tan x sec x −
∫

sec3 x dx +
∫

sec x dx,

so ∫
sec3 x dx = 1

2 [tan x sec x + log(sec x + tan x)].

(ix) ∫ √
x log x dx = 2x3/2

3
log x − 2

3

∫
x3/2 · 1

x
dx

= 2x3/2

3
log x − 2

3

∫
x1/2 dx

= 2x3/2

3
log x − 4

9
x3/2.

4. (i) Let x = sin u, dx = cos u du. The integral becomes∫
cosu du√
1 − sin2

u
=
∫

1 du = u = arcsin x.

(iii) Let x = sec u, dx = sec u tan u du. The integral becomes∫
sec u tan u du√

sec2 u− 1
=
∫

sec u du = log(sec u + tan u)

= log(x +
√
x2 − 1 ).
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(v) Let x = sin u, dx = cos u du. The integral becomes∫
cos u du

sin u
√

1 − sin2 u
=
∫

csc u du = − log(csc u + cot u)

= − log

(
1
x

+
√

1 − x2

x

)
.

(vii) Let x = sin u, dx = cos u du. The integral becomes∫
(sin3

u cosu) cosu du =
∫

sin3
u cos2 u du =

∫
(sin u)(1 − cos2 u) cos2 u du

=
∫
(sin u)(cos2 u − cos4 u) du = − cos3 u

3
+ cos5 u

5

= − (1 − x2)3/2

3
+ (1 − x2)5/2

5
.

(ix) Let x = tan u, dx = sec2 u du. The integral becomes∫
sec u sec2 u du =

∫
sec3 u du

= 1
2[tan u sec u + log(sec u + tan u)] by Problem 3(vii)

= 1
2[x
√

1 + x2 + log(x +
√

1 + x2 )].

5. (i) Let u =
√
x + 1, x = u2 − 1, dx = 2u du. The integral becomes∫

2u du
1 + u

=
∫ (

2 + −2
1 + u

)
du

= 2u − 2 log(1 + u) = 2
√
x + 1 − 2 log(1 +

√
x + 1 ).

(iii) Let u = x1/6, x = u6, dx = 6u5 du. The integral becomes∫
6u5 du

u3 + u2 = 6
∫ (

u2 − u+ 1 − 1
u + 1

)
du = 2u3 − 3u2 + 6u − 6 log(u + 1)

= 2
√
x − 3 3

√
x + 6 6

√
x − 6 log

(
6
√
x + 1

)
.

(v) Let u = tan x, x = arctan u, dx = du/(1 + u2). The integral becomes∫
du

(1 + u2)(2 + u)
= 1

5

∫ (
1

2 + u
− u− 2

1 + u2

)
du

= 1
5

∫
du

2 + u
− 1

10

∫
2u

1 + u2 du+ 2
5

∫
du

1 + u2

= 1
5

log(2 + u)− 1
10

log(1 + u2)+ 2
5

arctan u

= 1
5

log(2 + tan x)− 1
10

log(1 + tan2 x)+ 2
5
x.



Answers to Selected Problems 643

(vii) Let u = 2x , x = (log u)/(log 2), dx = du/(u log 2). The integral
becomes

1
log 2

∫
u2 + 1
(u+ 1)u

du = 1
log 2

∫ (
1 + 1 − u

u(u+ 1)

)
du

= 1
log 2

∫ (
1 + 1

u
− 2
u + 1

)
du

= 1
log 2

[u+ log u− 2 log(u+ 1)]

= 1
log 2

[2x + x log 2 − 2 log(2x + 1)].

(ix) Let u = √
x, x = u2, dx = 2u. The integral becomes∫ √

1 − u2 2u du
1 − u

.

Now let u = sin y, du = cos y dy. The integral becomes∫
2 cos y sin y cos y

1 − sin y
dy = 2

∫
(1 − sin2 y) sin y

1 − sin y
dy

= 2
∫
(1 + sin y) sin y dy

= 2
∫

sin y dy +
∫

1 − cos 2y dy

= −2 cos y + y − sin 2y
2

= −2 cos y + y − sin y cos y

= −2
√

1 − u2 + arcsin u− u
√

1 − u2

= −2
√

1 − x + arcsin
√
x −

√
x
√

1 − x.

The substitution u =
√

1 − x, x = 1 − u2, dx = −2udu leads to∫ −2u2 du

1 −
√

1 − u2

and the substitution u = sin y then leads to∫ −2 sin2
y cos y dy

1 − cos y
= −2 sin y − y − sin y cos y

= −2u− arcsin u− u
√

1 − u2

= −2
√

1 − x − arcsin
√

1 − x −
√

1 − x
√
x.

These answers agree, since

arcsin
√
x = π

2
− arcsin

√
1 − x

(check this by comparing their derivatives and their values for x = 0).
6. In these problems I will denote the original integral.



644 Answers to Selected Problems

(i)

I =
∫

2
x − 1

dx +
∫

3
(x + 1)2

dx

= 2 log(x − 1)− 3
x + 1

.

(iii)

I =
∫

1
(x − 1)2

dx +
∫

4
(x + 1)3

dx

= − 1
(x − 1)

− 2
(x + 1)2

.

(v)

I = 1
2

∫
2x

x2 + 1
dx +

∫
4

x2 + 1
dx

= 1
2 log(x2 + 1)+ 4 arctan x.

(vii)

I =
∫

1
(x + 1)

dx +
∫

2x
(x2 + x + 1)

dx

=
∫

1
x + 1

dx +
∫

2x + 1
x2 + x + 1

dx −
∫

1
x2 + x + 1

dx.

Now ∫
1

x2 + x + 1
dx =

∫
1

(x + 1
2 )

2 + 3
4

dx

= 4
3

∫
1[

2√
3

(
x + 1

2

)]2
+ 1

dx

= 4
3

·
√

3
2

arctan
(

2√
3

(
x + 1

2

))

= 2
√

3
3

arctan
(

2√
3

(
x + 1

2

))
,

so

I = log(x + 1)+ log(x2 + x + 1)− 2
√

3
3

arctan
(

2√
3

(
x + 1

2

))
.

(ix)

I =
∫

2x + 1
(x2 + x + 1)2

dx −
∫

1
(x2 + x + 1)2

dx

=
∫

2x + 1
(x2 + x + 1)2

dx − 16
9

∫
1([

2√
3

(
x + 1

2

)]2
+ 1
)2 dx.

Now the substitution

u = 2√
3

(
x + 1

2

)
, dx =

√
3

2 du
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changes the second integral to

− 16
9

·
√

3
2

∫
du

(u2 + 1)2
.

Using the reduction formula, this can be written

− 8
√

3
9

[
u

2(u2 + 1)
+ 1

2

∫
du

u2 + 1

]
= − 8

√
3

9

[
log(u2 + 1)

4
+ 1

2
arctan u

]
,

so

I = − 1
x2 + x + 1

− 2
√

3
9

log
(

4
3
(x2 + x + 1)

)

− 4
√

3
9

arctan
(

2√
3

(
x + 1

2

))
.

13. The equation
∫
ex sin x dx = ex sin x−ex cos x−∫ ex sin x dx means that any

function F with F ′(x) = ex sin x can be written F(x) = ex sin x − ex cos x −
G(x)whereG is another function with G′(x) = ex sin x. Of course,G = F+c
for some number c, but it is not necessarily true that F = G.

15. (a) ∫
arcsin x dx =

∫
1 · arcsin x dx = x arcsin x −

∫
x√

1 − x2
dx

= x arcsin x +
√

1 − x2.

16. (a)∫
sin4 x dx = − sin3 x cos x

4
+ 3

4

∫
sin2 x dx

= − sin3 x cos x
4

+ 3
4

[
− sin x cos x

2
+ 1

2

∫
1 dx

]

= − sin3 x cos x
4

− 3 sin x cos x
8

+ 3
8
x.∫

sin4 x dx =
∫ (

1 − cos 2x
2

)2

dx =
∫ (

1
4

− cos 2x
2

+ cos2 2x
4

)
dx

= x

4
− sin 2x

4
+ 1

4

∫
1 + cos 4x

2
dx

= x

4
− sin 2x

4
+ 1

4

[
x

2
+ sin 4x

8

]

= 3x
8

− sin 2x
4

+ sin 4x
32

.

(b) It follows that these two answers are the same, since they have the same
value for x = 0.
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20. (a)

sinn x dx =
∫
(sin x)(sinn−1

x) dx

= − cos x sinn−1
x + (n− 1)

∫
cos x(sinn−2

x) cos x dx

= − cos x sinn−1 x + (n− 1)
∫
(sinn−2 x − sinn x) dx,

so

∫
sinn x dx = − 1

n
cos x sinn−1 x + n− 1

n

∫
sinn−2 x dx.

(b)

∫
cosn x dx =

∫
(cos x)(cosn−1 x) dx

= sin x cosn−1 x + (n − 1)
∫

sin x(cosn−2 x) sin x dx

= sin x cosn−1 x + (n − 1)
∫
(cosn−2 x − cosn x) dx,

so

∫
cosn x dx = 1

n
sin x cosn−1 x + n− 1

n

∫
cosn−2 x dx.

(c)

∫
dx

(1 + x2)n
=
∫

dx

(1 + x2)n−1 −
∫

x2 dx

(1 + x2)n

=
∫

dx

(1 + x2)n−1 −
∫
x · x

(1 + x2)n
dx

=
∫

dx

(1 + x2)n−1 −
[

x

2(1 − n)(1 + x2)n−1

−
∫

dx

2(1 − n)(1 + x2)n−1

]

so

∫
dx

(1 + x2)n
= 1

2(n− 1)
x

(x2 + 1)n−1 − (2n − 3)
2(n − 1)

∫
1

(x2 + 1)n−1 dx.



Answers to Selected Problems 647

We can also use the substitution x = tan u, dx = sec2 u du, which
changes the integral to∫

sec2 u du

sec2n u
=
∫

cos2n−2 u du

= 1
2n− 2

cos2n−3 u sin u + 2n− 3
2n− 2

∫
cos2n−4 u du

= 1
2n− 2

· 1

(
√

1 + x2 )2n−3
· x√

1 + x2
+ 2n− 3

2n− 2

∫
dx

(1 + x2)n−1

= 1
2(n− 1)

x

(1 + x2)n−1 + 2n− 3
2n− 2

∫
dx

(1 + x2)n−1 .

CHAPTER 20 1. (i) P3,0(x) = e + ex + ex2 + (5e/3!)x3.

(iii) P2n,π/2(x) = 1 − (x − π/2)2

2!
+ (x − π/2)4

4!
− · · · + (−1)n(x − π/2)2n

(2n)!
.

(v) Pn,1(x) = e+ e(x − 1)+ e(x − 1)2

2!
+ · · · + e(x − 1)n

n!
.

(vii) P4,0(x) = x + x3.
(ix) P2n+1,0(x) = 1 − x2 + x4 − · · · + (−1)nx2n.

2. If f is a polynomial function of degree n, then f (n+1) = 0. It follows from
Taylor's Theorem that Rn,a(x) = 0, so f (x) = Pn,a(x).

(i) −12 + 2(x − 3)+ (x − 3)2.
(iii) 243 + 405(x − 3)+ 270(x − 3)2 + 90(x − 3)3 + 15(x − 3)4 + (x − 3)5.

3. (i)
9∑
i=0

(−1)i

(2i + 1)!

(
since

1
(2n+ 2)!

< 10−17 for 2n+ 2 ≥ 19, or n ≥ 9
)

.

(iii)
8∑
i=0

(−1)i

2i(2i + 1)!

(
since

1
22n+2(2n+ 2)!

< 10−20 for 2n+ 2 ≥ 18,

or n ≥ 8
)

.

(v)
11∑
i=0

2i

i!

(
since

32 · 2n+1

(n + 1)!
< 10−5 for n+ 1 ≥ 12, or n ≥ 11

)
.

8. (i) ci = ai + bi .
(iii) ci = (i + 1)ai .

(v) c0 =
∫ a

0
f (t) dt; ci = ai−1/i for i > 0.

CHAPTER 22 1. (i) 1 − n/(n+ 1) = 1/(n+ 1) < ε for n+ 1 > 1/ε.

(iii) lim
n→∞

8
√
n2 + 1− 4

√
n + 1 = lim

n→∞
( 8
√
n2 + 1− 8

√
n2
)+ lim

n→∞
(

4
√
n− 4
√
n+ 1

)
= 0 + 0 = 0. (Each of these two limits can be proved in the same way
that lim

n→∞
(√
n+ 1 − √

n
) = 0 was proved in the text.)
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(v) Clearly lim
n→∞(log a)/n = 0. So lim

n→∞
n
√
a = lim

n→∞ e
(log a)/n = e0 (by Theo-

rem 1) = 1.
(vii) n

√
n2 ≤ n

√
n2 + n ≤ n

√
2n2, so ( n

√
n )2 ≤ n

√
n2 + n ≤ n

√
2( n

√
n )2, and

lim
n→∞(

n
√
n )2 = lim

n→∞
n
√

2( n
√
n )2 = 1 by parts (v) and (vi).

(ix) Clearly α(n) ≤ log2 n, and lim
n→∞(log2 n)/n = 0.

5. (a) If 0 < a < 2, then a2 < 2a < 4, so a <
√

2a < 2.
(b) Part (a) shows that

√
2 <

√
2
√

2 <

√
2
√

2
√

2 < · · · < 2,

so the sequence converges by Theorem 2.
(c) If this sequence is denoted by {an}, then the sequence

{√
2an

}
is the

same as {an+1}. So the hint shows that l =
√

2l, or l = 2.
8. If x is rational, then n!πx is a multiple of π for sufˇciently large n, so

(cosn!πx)2k = 1 for all such n, so lim
n→∞( lim

k→∞
(cosn!πx)2k) = 1. If x is

irrational, then n!πx is not a multiple of π for any n, so | cosn!πx| < 1, so
lim
k→∞

(cos n!πx)2k = 0, so f (x) = 0.

9. (i)
∫ 1

0
ex dx = e− 1. (Use partitions of [0, 1] into n equal parts.)

(iii)
∫ 1

0

1
1 + x

dx = log 2.

(v)
∫ 1

0

1
(1 + x)2

dx = 1
2

.

CHAPTER 23 1. (i) (Absolutely) convergent, since |(sin nθ)/n2| ≤ 1/n2.
(iii) Divergent, since the ˇrst 2n terms have sum 1

2 + · · · + 1/n. (Leibniz's
Theorem does not apply since the terms are not decreasing in absolute
value.)

(v) Divergent, since

1
3
√
n2 − 1

≥ 1
2n2/3

for sufˇciently large n.
(vii) Convergent, since

lim
n→∞

(n+ 1)2/(n + 1)!
n2/n!

= lim
n→∞

(
n+ 1
n

)2

· 1
n+ 1

= 0.

(ix) Divergent, since 1/(log n) > 1/n.

(xi) Convergent, since 1/(log n)n <
1
2n

for n > 9.

(xiii) Divergent, since
n2

n3 + 1
>

1
2n
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for large enough n.
(xv) Divergent, since∫ N

2

1
x log x

dx = log(logN)− log(log 2) → ∞ as N → ∞.

(Notice that f (x) = 1/(x log x) is decreasing on [2,∞), since

f ′(x) = −[1 + log x]
(x log x)2

< 0 for x > 1.

(xvii) Convergent, since 1/n2(log n) < 1/n2 for n > 2.
(xix) Convergent, since

lim
n→∞

2n+1(n+ 1)!/(n + 1)n+1

2nn!/nn
= lim

n→∞
2(n+ 1)nn

(n+ 1)n+1

= lim
n→∞

2(
1 + 1

n

)n = 2
e
,

by Problem 18-16.
5. (a) For each N we clearly have

0 ≤
N∑
n=1

an10−n < 9
∞∑
n=1

10−n = 1,

so
∞∑
n=1

an10−n converges by the boundedness criterion, and lies between

0 and 1. (Actually, this number is denoted by 0.a1a2a3a4 . . . only when
the sequence {an} is not eventually 0.)

17. The area of the shaded region is 1
2 . The integral is

1
2([1 − 1

2 ] + [ 1
4 − 1

8] + [ 1
16 − 1

32] + · · · )− 1
2 ([

1
2 − 1

4] + [ 1
8 − 1

16 ] + · · · )
= 1

2(
1
2 + 1

8 + 1
32 + 1

128 + · · · )− 1
2 (

1
4 + 1

16 + 1
64 + 1

256 + · · · )
= 1

4(1 + 1
4 + 1

16 + 1
64 + · · · )− 1

8 (1 + 1
4 + 1

16 + 1
64 + · · · )

= 1
8

(
1 + 1

4
+ 1

42 + 1
43 + · · ·

)

= 1
8

· 1
1 − 1

4

= 1
6
.

CHAPTER 24 1. (i)

f (x) = lim
n→∞ fn(x) =

{
0, x = 0
1, 0 < x ≤ 1.

{fn} does not converge uniformly to f .
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(iii) f (x) = lim
n→∞ fn(x) = 0 (since lim

n→∞ x
n = ∞ for x > 1). The sequence

{fn} does not converge uniformly to f ; in fact, for any n we have fn(x)
large for sufˇciently large x.

(v) f (x) = lim
n→∞ fn(x) = 0, and {fn} converges uniformly to f , since

|fn(x)| ≤ 1/n for all x.

3. (i) − 1
a

− x

a2 − x2

a3 − · · · .

(iii)
∞∑
k=0

(−1)k
(− 1

2
k

)
xk.

(v)
∞∑
k=0

(−1)k
(− 1

2
k

)
2k + 1

x2k+1.

4. (i) e−x .
(iii) If

f (x) = x2

2
− x3

3 · 2
+ x4

4 · 3
− · · · , |x| ≤ 1

then

f ′(x) = x − x2

2
+ x3

3
− · · ·

= log(1 + x) |x| < 1,

so for |x| < 1 we have f (x) = (1 + x) log(1 + x) − (1 + x) + c for
some number c. Since f (0) = 0, we have c = 1, so f (x) = (1 + x) ·
log(1 + x)− x for |x| < 1.

6. Since

sin x =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

we have

f (x) =
∞∑
n=0

(−1)nx2n

(2n + 1)!

(notice that the right side is 1 for x = 0). So

f (k)(0) =



(−1)n

(2n+ 1)!
, k = 2n

0, k odd.

CHAPTER 25 1. (i) |3 + 4i| = 5; θ = arctan 4
3 .

(iii) |(1 + i)5| = (|1 + i|)5 = (
√

2 )5; since π/4 = arctan 1/1 is an argument
for 1 + i, an argument for (1 + i)5 is 5π/4.

(v) |(|3 + 4i|)| = |5| = 5; θ = 0.
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2. (i)

x = −i ±
√

−1 − 4
2

= −i ±
√

5 i
2

= (−1 +
√

5 )i
2

or
(−1 −

√
5 )i

2
.

(iii) x2 + 2ix − 1 = (x + i)2, so the only solution is x = −i.
(v) x3 − x2 − x − 2 = (x − 2)(x2 + x + 1). The solutions are

2, −1
2

+
√

3
2
i, −1

2
−

√
3

2
i.

3. (i) All z = iy with y real.
(iii) All z on the perpendicular bisector of the line segment between a and b.
(v) For z = x + iy, we clearly need 1 − x = 1 − real part of z ≥ 0, or

x ≤ 1. For such x, our condition
√
x2 + y2 < 1 − x is equivalent

to x2 + y2 < (1 − x)2, or x < (1 − y2)/2. The set of points with
x = (1 − y2)/2 is the parabola pointing along the second axis, with the
point (0,1/2) closest to the origin, and intersecting the line x = 1 at
(1, 1) and (1,−1). The area bounded by this parabola and the line
x = 1 is the desired set of points.

4. |x + iy|2 = x2 + y2 = x2 + (−y)2 = |x − iy|2.
(z+ z̄)/2 = [(x + iy)+ (x − iy)]/2 = x.
(z− z̄)/2 = [(x + iy)− (x − iy)]/2i = y.

5. |z + w|2 + |z − w|2 = (z + w)(z̄ + w̄) + (z − w)(z̄ − w̄) = 2zz̄ + 2ww̄ =
2(|z|2 + |w|2). Geometrically, this says that the sum of the squares of the
diagonals of a parallelogram equal the sum of the squares of the sides.

CHAPTER 27
1. (i) Converges absolutely, since |(1+ i)n/n!| ≤ (

√
2 )n/n!, and

∞∑
n=1

(
√

2 )n/n!

converges.
(iii) Converges, but not absolutely, since the real terms form the series

− 1
2 + 1

4 − 1
6 + 1

8 − · · ·
and the imaginary terms form the series

i
( 1

1 − 1
3 + 1

5 − 1
7 + · · · ).

(v) Diverges, since the real terms form the series

log 3
3

+ 2
log 4

4
+ log 5

5
+ log 7

7
+ 2

log 8
8

+ log 9
9

+ · · · .
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2. (i) The limit

lim
n→∞

|z|n+1/(n+ 1)2

|z|n/n2 = lim
n→∞

(
n+ 1
n

)2

|z| = |z|

is < 1 for |z| < 1, but > 1 for |z| > 1.
(iii) The limit

lim
n→∞

|z|n+1

|z|n = |z|

is < 1 for |z| < 1 but > 1 for |z| > 1.
(v) The limit

lim
n→∞

2n+1|z|(n+1)!

2n|z|n! = lim
n→∞ 2|z|(n+1)!−n!

is 0 for |z| < 1, but ∞ for |z| > 1.
3. (i) The limits

lim
n→∞

2n

√
|z|2n
3n

= |z|√
3

and lim
n→∞

2n+1

√
|z|2n+1

2n+1 = |z|√
2

are < 1 for |z| <
√

2, so the series converges absolutely for |z| <
√

2.
But the series does not converge absolutely for |z| >

√
2, so the radius

of convergence is
√

2.
(iii) Since

lim
n→∞

n

√
n! |z|n
nn

= lim
n→∞

|z| n
√
n!

n
≤ lim

n→∞
|z|
n

= 0,

the series converges absolutely for all z, so the radius of convergence
is ∞.

(v) The limit
lim
n→∞

n
√

2nzn! = 2 lim
n→∞ z

(n−1)!

is 0 for |z| < 1, but ∞ for |z| > 1, so the radius of convergence is 1.
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P 9
|a| 11
√
x 12

max(x, y) 16
min(x, y) 16
ε (\epsilon") 18
N 21
∅ 23
n! 23

n∑

i=1

ai 24

Z 25
Q 25
R 25, 579(
n

k

)
27

f (x) 40, 47, 591
I 43
f + g 43, 242
A ∩ B 43
f · g 43
f/g 43
c · g 43
{x : . . . } 43
{a, . . . , z} 44
f + g + h 44
f · g · h 44
f B g 44
f B g B h 45
x → f (x) 45

n∏

i=1

ai 49

abc 49
CA 50
A ∪ B 50
R − A 50
|f | 51
max(f, g) 51
min(f, g) 51
f < g 53
the pair (a, b) 54
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56
[a, b] 57
(a,∞) 57
[a,∞) 57

(−∞, a) 57
(−∞, a] 57
(−∞,∞) 57
[x] 72
{x} 72
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v · w 78
‖v‖ 78
det(v,w) 79
δ (\delta") 96

lim
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f (x) 99

lim
a
f 99

lim
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f (x) 104

lim
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f (x) 104

lim
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f (x) 104

lim
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f (x) 104

lim
x→∞

f (x) 105

lim
x→−∞

f (x) 111

lim
x→a

f (x) = ∞ 111

lim
x→∞

f (x) = ∞ 111

supA 132
lubA 132
inf A 132
glbA 132

limA 141
lim supA 141
limA 141

f ′(a) 149
f ′ 149
df (x)

dx
152

df (x)

dx

∣∣∣∣
x=a

153

f ′′ 159
f ′′′ 159
f (k) 159

d2f (x)

dx2
160

f −1 228

e 241, 328
c + d 242
α · c 242
c · d 243
det(c, d) 243
c′ 243
R(f, a, b) 250
L(f,P ) 251
U(f,P ) 251
∫ b

a

f 255

∫ b

a

f (x) dx 261

`(f,P ) 274
L(x) 275

L
∫ b

a

f 292

U
∫ b

a

f 292

∫ ∞

a

f 298

∫ ∞

a

f (x) dx 298

∫ a

−∞
f 298

∫ ∞

−∞
f 298

sin◦ 301
sinr 301
π 302
A(x) 303
cos 303, 305, 554
sin 303, 305, 554
sec 397
tan 307
csc 307
cot 307
arcsin 307
arccos 308
arctan 308
e 328
log 338
exp 340, 554
e 340
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ex 341
ax 342
log

a
343

sinh 349
cosh 349
tanh 349
arg cosh 350
arg sinh 350
arg tanh 350
Nap log 354

F(x)

∣∣∣
b

a
359

∫
f 360

∫
f (x) dx 360

0(x) 390
Pn,a 406
Pn,a,f 406
Rn,a 415
(
α

n

)
429

{an} 445

lim
n→∞

an 446

lim
n→∞

an = ∞ 449

γ 456

lim
n→∞

xn 460

lim sup
n→∞

xn 460

lim
n→∞

xn 461

lim inf
n→∞

xn 461

N(n; a, b) 462
∞∑

i=1

an 465

i 517, 523
C 522
z̄ 525
|z| 525
Re 532
Im 532
θ 533
lim
z→a

f (z) 533

f ′(a) 542

sin 554
cos 554
exp 554
bn 563
Bn 563
D 564
Dk 564
eD 564
1 564
ϕn 566
ψn 567
C 571, 581
� 571, 584
0 571, 581
1 572,586
�a 572,582
a�1 572, 586
P 573
ì 574, 580
ê 574, 580
� 574, 580
� 574, 580
jαj 585
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AalbmcndoE, 273
Abel, Niels Henrik, 404, 513
Abel summable, 514
Abel's formula for summation by parts,

388
Abel's Lemma, 389
Abel's test, 488
Abel's Theorem, 513
Absolute value, 11

of a complex number, 525
Absolutely convergent, 473, 547
Absolutely summable, 473
Acceleration, 159
Acta Eruditorum, 146
Addition, 3

associative law for, 9
commutative law for, 9
of complex numbers, 522

geometric interpretation of, 526
of vector-valued functions, 242
of vectors, 75

Addition formula
for arcsin, 314
for arctan, 314
for cos, 311
for sin, 310, 311
for tan, 314

Additive identity
existence of, 9
for vectors, 76

Additive inverses
existence of, 9

Algebra, Fundamental Theorem of,
373, 529, 539, 558

Algebraic functions, 359
Algebraic number, 435
Algebraist's real numbers, 588
Almost lower bound, 140
Almost upper bound, 140
Analyst's real numbers, 588
Angle, 300

directed, 300
Antidiagonal, 239
Arabic numerals, multiplication of, 8
Arc length, 275, 281
Arccos, 308

derivative of, 308
Archimedes, 136, 139, 260

Archimedian property
for the rational numbers, 574
for the real numbers, 136

Archimedian spiral, 85, 246
Arcsec, 317, 379
Arcsin, 307

addition formula for, 314
derivative of, 308
Taylor series for, 509

Arctan, 308
addition formula for, 314
derivative of, 308
Taylor polynomial for, 407, 414

remainder term for, 422
Area, 250, 255
Arg cosh, 350
Arg sinh, 350
Arg tanh, 350
Argument, 527
Argument function, 533

discontinuities of, 537
Argument of the hyperbolic

functions, 350
Arithmetic mean, 33
Arrow, 75, 76

\x arrow sin(x2)", 45
Associative law

for addition, 9
of vectors, 76

for multiplication, 9
Average velocity, 150
Axis

horizontal, 57
imaginary, 525
real, 524
vertical, 57

Bacon, Francis, vi
Basic properties of numbers, 3
\Bent graphs", 147
Bernoulli, 146, 565
Bernoulli numbers, 563
Bernoulli polynomials, 566
Bernoulli's inequality, 32
Big game hunting, mathematical

theory of, 543
Binary operation, 571
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Binomial coefˇcient, 27, 429
Binomial series, 487, 510
Binomial theorem, 28
Bisection argument, 140, 543
Bohr, Harold, 390
Bolzano-Weierstrass Theorem, 451, 461,

543
Bound

almost lower, 140
almost upper, 140
greatest lower, 132
least upper, 131, 574
lower, 132
upper, 131

Bounded above, 120, 131, 450, 574
Bounded below, 132, 450
Bourbaki, Nicholas, 146

Cardioid, 89, 247
Cartesian coordinates, 84
Cauchy, 278
Cauchy Condensation Theorem, 488
Cauchy criterion, 466
Cauchy form of the remainder, 417,

419
Cauchy Mean Value Theorem, 201
Cauchy product, 486, 505
Cauchy sequence, 452, 562

equivalence of, 589
Cauchy-Hadamard formula, 560
Cauchy-Schwarz inequality, 278
Cavalieri, 272
Cesaro summable, 486
Chain Rule, 172 ff.

proof of, 176
Change, rate of, 150
Characteristic (of a ˇeld), 576
Circle, 65

\f circle g", 44
unit, 66

Circle of convergence, 550
Classical notation

for derivatives, 152{154, 160, 165,
184, 238

for integrals, 262
Cleio, 183
Closed interval, 57

Closed rectangle, 538
Closure under addition, 9
Closure under multiplication, 9
Commutative law

for addition, 9
of vectors, 76

for multiplication, 9
Comparison test, 467, 468
Comparison Theorem, Sturm, 320
Complete induction, 23
Complete ordered ˇeld, 574, 593
Completing the square, 17, 375
Complex analysis, 556
Complex function

continuous, 536
differentiable, 541
graph of, 533
limit of, 533
nondifferentiable, 542
Taylor series for, 554

Complex nth root, 527
Complex numbers, 517, 522

absolute value of, 525
addition of, 522

geometric interpretation of, 526
geometric interpretation of, 525
imaginary part of, 522
inˇnite sequence of, 546
inˇnite series of, 546{548
logarithm of, 561
modulus of, 525
multiplication of, 522

geometric interpretation
of, 526{527

real part of, 522
Complex plane, 524
Complex power series, 548

circle of convergence of, 550
radius of convergence of, 550

Complex-valued functions, 532
Composition of functions, 44
Concave function, 217
Conditionally convergent series, 474
Cone, 80

generating line of, 80
surface area of, 399

Conic sections, 80; see also Ellipse,
Hyperbola, Parabola

Conjugate, 525, 530
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Conjugate function, 532
Constant function, 43
Construction of the real numbers,

578 ff.
Continued fraction, 455
Continuous, uniformly, 142
Continuous at a, 113, 536
Continuous function, 113, 116, 537

nowhere differentiable, 157, 501
Continuous on (a, b), 116
Continuous on [a, b], 116
Contraction, 459
Contraction lemma, 459
Converge

pointwise, 494
uniformly, 494, 498

Convergent sequence, 446, 546
Convergent series, 465, 547

absolutely, 473, 547
conditionally, 474

Convex function, 216
strictly, 226
weakly, 226

Convex subset of the plane, 226, 544
Cooling, Newton's law of, 352
Coordinate

ˇrst, 57
second, 57

Coordinate system, 57
cartesian, 84
origin of, 57

Coordinates
polar, 84

\Corner", 60
Cos, 300, 303, 318{319, 554

addition formula for, 311
derivative of, 170, 304
inverse of, see Arccos
Taylor polynomials for, 407

remainder term for, 420
Cosh, 349
Cosine, hyperbolic, 349
Cot, 307

derivative of, 307
Countable, 442
Counting numbers, 21
Critical point, 187
Critical value, 187
Csc, 307

derivative of, 307
Cubic equation, general solution,

519{520
Curve

parameterized, tangent line of, 243
parametric representation of, 241
reparameterization of, 244

Cycloid, 247

Darboux's Theorem, 211
De Moivre's Theorem, 527
Decimal expansion, 73, 485
Decreasing function, 192
Decreasing sequence, 450
Dedekind, Richard, 38
Deˇned implicitly, 238
Deˇnite integral, 361
DEFINITION, 47
Deˇnition, recursive, 23
Degree (of a polynomial), 42
Degree measurement, 63, 301{302
Delicate ratio test, 486
Delicate root test, 486
Dense, 138
Derivative, 147 ff., 149

classical notation for, 152{154, 160,
165, 184, 238

higher-order, 159
\inˇnite", 156
left-hand, 154
Leibnizian notation for, see Derivative,

classical notation for
logarithmic, 348
\negative inˇnity", 156
of f , 149
of f at a, 149
of vector-valued function, 243
right-hand, 154
Schwarzian, 182
second, 159

Schwarz, 431
Derivative of quotient, incantation for,

169
Descartes, Ren�e, 84
Determinant, 79

of vector-valued functions, 243
Diagonal, 230
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Difference operator, 564
Differentiable, 149, 541
Differential equation, 289, 297, 318,

320, 352, 357, 432
initial conditions for, 433

Differentiation, 166 ff.
implicit, 238
logarithmic, 348

Differentiation operator, 564
Dini's Theorem, 515
Directed angle, 300
Dirichlet's test, 488
Disc method, 397
Discontinuities of a nondecreasing

function, 443
Discontinuity, removable, 119
Disraeli, Benjamin, 2
Distance, 58, 525

shortest between two points, 275
Distributive law, 9
Diverge, 446, 547
Division, 6
Division by zero, 6
Domain, 40, 41, 47, 591
Dot product

of vectors, 78
of vector-valued functions, 243

Double intersection, 163
Double root, 183
Dur�ege, 38

e, 340
irrationality of, 425
relation with π , 441, 555
transcendentality of, 437
value of, 341, 422

Eccentricity of ellipse, 87
Elementary function, 359
Ellipse, 66, 82

axes of, 87
eccentricity of, 87
equation in polar coordinates, 86
focus point of, 66, 86
major axis of, 87
minor axis of, 87

Ellipsoid of revolution, 400
Empty collection, 23

Entire function, 558
Epsilon, 18
Equal up to order n, 412
Equality, order of, 412
Equations, differential, see Differential

equations
Equivalent Cauchy sequences, 589
Etymology lesson, 82
Euler, 565
Euler's number, 456
Euler-Maclaurin Summation Formula,

566
Even function, 51, 196
Even number, 25
Eventually inside, 546
Exhaustion, method of, 139
Exp, 340 ff., 554

classical approach to, 354
elementary deˇnition of, 461
Taylor polynomials for, 407

remainder term for, 422
Expansion, decimal, 73, 485
Extension of a function, 113{114

Factorial, 23
Factorials, table of, 428
Factorization into primes, 31
Fibonacci, 32
Fibonacci Association, 32
Fibonacci Quarterly, The, 32
Fibonacci sequence, 32, 512, 563
Field, 571

characteristic of, 576
complete ordered, 574, 593
ordered, 573

First coordinate, 57
First Fundamental Theorem of Calculus,

282
Fixed point of a function, 458
Focus point, 66, 86
Force, as vector, 76
Four leaf clover, 88
Fourier series, 315, 317, 320
Fraction, continued, 455
Function, 39, 47

absolute value, 532
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Function (continued )
argument, 533

discontinuities of, 537
complex valued, 532
composition of, 44
concave, 217
conjugate, 532
constant, 43
continuous, 113 ff.
convex, 216
critical point of, 187
critical value of, 187
decreasing, 192
derivative of, 147 ff.
differentiable, 149, 541
elementary, 359
entire, 558
even, 51, 196
exponential, 340{341
extension of, 113{114
ˇxed point of, 458
from A to B , 591
from real numbers to the plane, 241
graphs of, 57{65, 195, 533
hyperbolic, 349
identity, 43
imaginary part, 532
increasing, 192
integrable, 255
integral of, 255
inverse, 228 ff.
linear, 58
local maximum point of, 186
local minimum point of, 186
local strict maximum point of, 215
logarithm, 338, 343
maximum point of, 185
maximum value of, 185
minimum value of, 185
most general deˇnition of, 591
negative part of, 51
nondecreasing, 240
nonincreasing, 240
nonnegative, 51
notation for, 40, 45
odd, 51, 196
periodic, 71, 162, 296

polynomial, 42
positive part of, 51
power, 60
product of, 43
quotient of, 43
rational, 42
real part, 532
real-valued, 532
\reasonable", 68, 116, 178
regulated, 515
step, 275
strict maximum point of, 215
sum of, 43
trigonometric, 300 ff.
value at x, 40
vector-valued, 241

Fundamental Theorem of Algebra, 373,
529, 539, 558

Fundamental Theorem of Calculus
First, 282
Second, 286

Gabriel, 402
Galileo, 146, 162
Gamma function, 390, 437
Generating line, of a cone, 80
Geometric mean, 33
Geometric series, 466
Global property, 121
Goes to, \x goes to sin(x2)", 45
Graph of polynomial function, 194
Graph sketching, 193{198
Graphs, 57{65, 85 ff., 90{91, 196, 533
Gravitation, 327
Greatest lower bound, 132
Grin and bear it, 381{382
Gronwall's inequality, 353
Grow

at the same rate as, 358
faster than, 358
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Hadamard, 560
Half-life (of radioactive substance), 352
Hermite, 436
High-school student's real numbers, 589
Higher-order derivatives, 159
Hilbert, 436
Horizontal axis, 57
Hyperbola, 67, 82

equation in polar coordinates, 88
Hyperbolic cosine, 349
Hyperbolic functions, 349
Hyperbolic sine, 349
Hyperbolic spiral, 313

Identity
additive, 9
multiplicative, 9

Identity function, 43
Identity operator, 564
Imaginary axis, 525
Imaginary part function, 532
Imaginary part of a complex number,

522
Implicit differentiation, 238
Implicitly deˇned, 238
Improper integral, 298{299, 391{393
Incantation for derivative of quotient,

169
Increasing at a, 214
Increasing function, 192
Increasing sequence, 450
Indeˇnite integral, 361
Indeˇnite integrals, short table of,

361{362
Induction, mathematical, 21

complete, 23
Inductive set of real numbers, 34
Inequalities, 9

in an ordered ˇeld, 574
Inequality

Bernoulli's, 32
Cauchy-Schwarz, 278
geometric-arithmetic mean, 33
Gronwall's, 353
Jensen's, 225

Liouville's, 441
Schwarz, 17, 32, 278
triangle, 71
Young's, 273

Inˇmum, 132
\Inˇnite" derivative, 156
Inˇnite intervals, 57
Inˇnite product, 326, 391
Inˇnite products, 489
Inˇnite sequence, 445, 546
Inˇnite series, 465

multiplication of, 479{481
Inˇnite sum, 426, 464
Inˇnite trumpet, 402
Inˇnitely many primes, 32
\Inˇnitely small", 153, 261
Inˇnity, 57

minus, 57
Inection point, 222
Initial conditions for differential equa-

tions, 433
Instantaneous speed, 150
Instantaneous velocity, 150
Integer, 25
Integrable, 255
Integral, 255

classical notation for, 262
deˇnite, 361
improper, 298{299, 391{393
indeˇnite, 361

short table of, 361{362
Leibnizian notation for, see Integral,

classical notation for
lower, 292
Mean Value Theorem for, 274
Second Mean Value Theorem for,

387
upper, 292

Integral form of the remainder, 417,
418

Integral sign, 255
Integral test, 471
Integration

by parts, 362 ff.
by substitution, 365 ff.
limits of, 255
of rational functions, 373 ff.

Interest (ˇnance), 351



Index 665

Intermediate Value Theorem, 122, 129,
133, 296

Interpolation, Lagrange, 49
Intersection of sets, 43
Interval, 56

closed, 57
inˇnite, 57
open, 56; see also Nested Intervals

Theorem
Inverse

additive, 9
multiplicative, 9

Inverse of a function, 228 ff.
Inverse square law, 327
Inverses of trigonometric functions,

see Trigonometric functions
Irrational numbers, 25
Isomorphic ˇelds, 592
Isomorphism, 592

Jensen's inequality, 225
Johnson, Samuel, 597
Jump, 60

Kepler, 327
Kepler's laws of planetary motion, 327

Lagrange form of the remainder, 417,
418

Lagrange interpolation formula, 49
Large negative, 64
Least upper bound, 131 ff., 574
Least upper bound property, 133
Lebesgue, see Riemann-Lebesgue

Lemma
Left-hand derivative, 154
Leibniz, 153, 261
Leibniz's formula, 182
Leibniz's Theorem, 474
Leibnizian notation for derivatives, 153{

154, 165, 184, 238
for higher order derivatives, 160

Lemma, 100
Lemniscate, 89
Length, 275, 281
L'Hôpital, Marquis de, 146
L'Hôpital's Rule, 201, 210{211
Limit, 90 ff., 96, 533

at inˇnity, 105
\does not exist", 99
from above, 104
from below, 104
of a sequence, 446
of vector-valued function, 243, 249
uniqueness of, 98

Limit of integration, 255
Limit point, 462, 543
Limit superior, 141, 460
Lindemann, 440
Line, real, 56
Line, tangent, see Tangent line
Linear functions, 58
Liouville, 441
Liouville's inequality, 441
Liouville's Theorem, 558
Lipschitz of order α, 207
Local maximum point of function, 186

higher-order derivative test for, 411
second derivative test for, 198

Local minimum point of function, 186;
see also Local maximum point

Local property, 107, 121, 164
Local strict maximum point, 215
Log, 338, 343

Taylor polynomials for, 407
remainder term for, 423

Logarithm
classical approach to, 354
Napierian, 354
of a complex number, 561
to the base 10, 336

Logarithmic derivative, 348
Lower bound, 132

almost, 140
greatest, 132

Lower integral, 292
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Lower limit of integration, 255
Lower sum, 251
Lowest terms, 73

Maclaurin, 566
Major axis of ellipse, 87
Mass, rate of change of, 150
Mathematical induction, 21
Maximum of two numbers, 16
Maximum point of a function, 185

local, 186; see also Local maximum
point

local strict, 215
strict, 215

Maximum value of function, 185
Mean

arithmetic, 33
geometric, 33

Mean Value Theorem, 190, 191
Cauchy, 201
for integrals, 274

Second, 387
Method of exhaustion, 139
Minimum of function, 185
Minimum of two numbers, 16
Minimum point of a function, local,

186; see also Local minimum point
Minor axis of ellipse, 87
Minus inˇnity, 57
Mirifici logarithmonum canonis description,

355
Modulus of a complex number, 525
Mollerup, Johannes, 390
Multiplication, 5

associative law for, 9
closure under, 9
commutative law for, 9
of arabic numerals , 8
of complex numbers, 522

geometric interpretation, 526{527
of function and vector-valued func-

tion, 242
of inˇnite series, 479{481
of number and vector, 77
of vectors , 77

Multiplicative identity, existence of, 9

Multiplicative inverses, existence of, 9
Multiplicity (of a root), 128

Napier, 355
Napierian logarithm, 354
Natural numbers, 21, 34
Negative, large, 64
\Negative inˇnity", derivative, 156
Negative number, 9
Negative numbers, product of two, 7
Negative part of a function, 51
Nested Interval Theorem, 140
Newton, 153, 273, 327
Newton's law of cooling, 352
Newton's laws of motion, 159
Newton's method, 457
Nondecreasing function, 240
Nondecreasing sequence, 450
Nondifferentiable complex functions,

542
Nonincreasing function, 240
Nonincreasing sequence, 450
Nonnegative function, 51
Nonnegative sequence, 467
Norm, 78, 249
Notational nonsense, 564
Nowhere differentiable continuous

function, 501
nth root, 71, 527

existence of, 123, 527, 544
primitive, 531

Null set, 23
Number

algebraic, 435
complex, 517, 522
counting, 21
even, 25
imaginary, 517
irrational, 25
natural, 21, 34
odd, 25
prime, 31
rational, 25
real, 25, 525, 579
transcendental, 435

Numbers, basic properties of, 3
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Odd function, 51, 196
Odd number, 25
One-one function, 227
Open interval, 56
\Or", 6
Order of equality, 412
Ordered ˇeld, 573

complete, 574
Ordered pair, 47 (footnote), 54
Origin (of a coordinate system), 57

Pair, 46
ordered, 47 (footnote), 54

Parabola, 60, 82
area under, 260
equation in polar coordinates, 88

Parallelogram, 76
Parameterized curve, tangent line of,

243
Parametric representation of a curve,

241
Partial fraction decomposition, 374
Partial sums, 464
Partition, 251
Parts

Abel's formula for summation by, 388
integration by, 362 ff.

Pascal's triangle, 27
\Peak", 61
Peak point, 451
Period of a function, 71, 162, 296
Periodic function, 71, 162, 296
Perpendicularity of lines, 70
Petard, H, 543
Pig, yellow, v, 371
Pigheaded, 183
Plane, 58

complex, 524
Planetary motion, Kepler's laws of, 327
Point, 56
Point of contact, 217
Point-slope form of equation of a line,

59, 70
Polar coordinates, 84 ff.
Polynomial function, 42

graph of, 61, 194
multiplicity of roots, 128, 183

Polynomials, Bernoulli, 566
Pope, Alexander, 327
Position, rate of change of, 150
Positive element of R, 583
Positive elements of an ordered

ˇeld, 573
Positive number, 9
Positive part of a function, 51
Power functions, 60
Power series, complex, 548
Power series centered at a, 502, 555
Power series representation, uniqueness

of, 512
Powers of 2, table of, 428
Prime number, 31

characteristic of a ˇeld, 576
inˇnitely many of, 32
unique factorization into, 31

Primitive, 359
Primitive nth root, 531
Principia, 273
Product, 5

Cauchy, 486, 505
inˇnite, 326, 391, 489
of function and vector-valued func-

tion, 242
of functions, 43
of number and vector, 77
of two negative numbers, 7
of vectors, 77

Pyramid
surface area of, 398
volume of, 402

Pythagorean theorem, 25, 58
π , 302

Archimedes' approximation of, 139
irrationality of, 323
relation to e, 441, 555
transcendentality of, 440
value of, 429
Vi�ete's product for 2/π , 326
Wallis' product for π/2, 391

Quaternions, 577
Quotient of functions, 43
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Rabbits
growth of population, 32

Radian measure, 63, 301{302
Radioactive decay, 352
Radius of convergence of complex

power series, 550
Rate of change of mass, 150
Rate of change of position, 150
Ratio test, 469

delicate, 486
Rational functions, 42

integration of, 373 ff.
Rational numbers, 25
Real axis, 524
Real line, 56
Real number (formal deˇnition), 579
Real numbers, 25

algebraist's, 588
analyst's, 588
Archimedian property of, 136
construction of, 578 ff.
high-school student's, 589
inductive set of, 34

Real part function, 532
Real part of a complex number, 522
Real-valued function, 532
Rearrangement of a sequence, 476
\Reasonable" function, 68, 116, 147,

178
Rectangle, closed, 538
Recursive deˇnition, 23
Reduction formulas, 373
Regulated function, 515
Remainder term for Taylor poly-

nomials, 415
Removable discontinuity, 119
Reparameterization, 244
Revolution

ellipsoid of, 400
solid of, 397

Riemann sum, 279
Riemann-Lebesgue Lemma, 317, 387
Right-hand derivative, 154
Rising Sun Lemma, 141
Rolle, 183
Rolle's Theorem, 190
Root

multiplicity of, 128
Root of a polynomial function, 50

double, 183; see also nth roots
Root test, 485

delicate, 486

Same sign, 12
Scalar, 78
Scalar product of vectors, 78
Schwarz, H. A., 17, 215
Schwarz inequality, 17, 32, 278
Schwarz second derivative, 431
Schwarzian derivative, 182
Sec, 307

derivative of, 307
inverse of, see Arcsec

Secant line, 148
Second coordinate, 57
Second derivative, 159

Schwarz, 431
Second derivative test for maxima and

minima, 198
Second Fundamental Theorem of

Calculus, 286
Second Mean Value Theorem for

Integrals, 387
Sequence

absolutely summable, 473
Cauchy, 452

complex, 562
equivalence of, 589

complex numbers, 546
convergent, 446

pointwise, 494
uniformly, 494

decreasing, 450
divergent, 446
Fibonacci, 32, 512, 563
increasing, 450
inˇnite, 445
limit of, 446
nondecreasing, 450
nonincreasing, 450
nonnegative, 467
rearrangement of, 476
summable, 465

Series
absolutely convergent, 473
conditionally convergent, 474
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Series (continued )
convergent, 465
Fourier, 315, 317, 320
geometric, 466
power, 502, 548
Taylor, 503

Set, 22
empty, 23

Sets
intersection of, 43
notation for, 43{44

Shadow point, 141
Shell method, 398
Sigma, 24
Sign, 12
Simpson's rule, 396
Sin, 43, 300, 303, 318{319, 554

addition formula for, 310, 311
derivative of, 170, 304
inverse of, see Arcsin
Taylor polynomials for, 406

remainder term for, 420
Sine, hyperbolic, 349
Sine function, 43
Sinh, 349
Sketching graphs, 193{198
Skew ˇeld, 577
Slope of a straight line, 58
Solid of revolution, 397
Speed, instantaneous, 150
Spiral

Archimedian, 85
hyperbolic, 313

Square root, 12, 518
existence of, 122

Square root function, 537{538
Square root in a ˇeld, 576
Squaring the circle, 440
Step function, 275
Stirling's Formula, 568
Straight line

analytic deˇnition, 58
shortest distance between two points,

275
slope of, 58

Strict maximum point, 215
Strictly convex, 226
Sturm Comparison Theorem, 320
Subsequence, 451

Substitution
integration by, 365 ff.
world's sneakiest, 382

Substitution formula, 365
Subtraction, 5
Sum

ˇnite, 3{4
inˇnite, 426, 464
lower, 251
of an inˇnite sequence, 465
of an inˇnite sequence of complex

numbers, 546
of functions, 43
of vector-valued functions, 242
of vectors, 75
partial, 464
sigma notation for, 24
upper, 251

Sum of squares, 543
Summable, 465, 547

Abel, 514
absolutely, 473
Cesaro, 486
uniformly, 498

Summation by parts, Abel's formula for,
388

Supremum, 132
Surface area

of cone, 399
of pyramid, 398
of solid of revolution, 397

Swift, Jonathan, 570
Symmetry in graphs, 196

Tan, 307
derivative of, 307
inverse of, see Arctan
Taylor series for, 564

Tangent, hyperbolic, 349
Tangent line, 147, 149

of parameterized curve, 243
point of contact of, 217

\Tangent line", vertical, 156
Tanh, 349
Taylor polynomial, 406 ff.

remainder term of, 415, 417, 418;
see also specific functions
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Taylor series, 503, 554
Taylor's Theorem, 417
Torus, 400
Transcendental number, 435
Trapezoid rule, 394
Triangle inequality, 71
Trichotomy law, 9
Trigonometric functions, 300, see also

cos, cot, csc, sec, sin, tan
integration of, 372{373
inverses of, 307; see also Arccos,

arcsec, arcsin, arctan
Trumpet

inˇnite, 402
Two-time differentiable, 159

Uniform limit, 494
Uniformly continuous function, 142
Uniformly convergent sequence, 494
Uniformly convergent series, 498
Uniformly distributed sequence, 462
Uniformly summable, 498
Uniqueness

of factorization into primes, 31
of limits, 98
of power series representations, 512

Unit circle, 66
Upper bound, 131, 574

almost, 140
least, 131

Upper integral, 292
Upper limit of integration, 255
Upper sum, 251

\Valley", 61
Value

absolute, see Absolute value
Value of f at x

Vanishing condition, 466
Vector-valued functions, 241
Vector-valued functions

determinant of, 243
derivative of, 243
dot product of, 243
limit of, 243, 249
multiplication of function by, 242
sum of, 242

Vectors, 75
addition of, 75
as forces, 76
dot product of, 78
multiplication by numbers, 77
multiplication of, 77
scalar product of, 78

Velocity
average, 150
instantaneous, 150

Vertical axis, 57
Vi�ete, Franc�ois, 326
Volume, 397{398

Wallis' product, 391
Weakly convex, 226
Weierstrass, see Bolzano-Weierstrass

Theorem
Weierstrass M-test, 499
Well-ordering principle, 23
Wright, 383

Young's inequality, 273

Zahl, 25
Zero, division by, 6


