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Preface

Since the 1960s, when the connection between quasar energetics and supermas-
sive black holes was first established, galactic nuclei have remained objects of in-
tense interest to astrophysicists. Nowadays, the community of scientists with an
interest in galactic nuclei is enormous: not just the astronomers who study so-called
active galaxies, but also the relativists who hope to detect gravitational waves, cos-
mologists concerned with the role of feedback in structure formation, and particle
physicists searching for radiation produced by the annihilation of dark matter par-
ticles clustered around supermassive black holes. This book is intended as a basic
resource for all of these researchers, and for graduate students who are planning to
work in a field that is related, directly or indirectly, to galactic nuclei.

Supermassive black holes are sometimes accompanied by gas, but as near as we
can tell, they are always associated with stars: the stars of the galactic nuclei in
which they sit. Furthermore, this association appears to be more than a casual one
since there are strong correlations between black-hole mass and the large-scale
properties—mass, velocity dispersion, central concentration—of the host stellar
systems. Correlations on smaller scales exist as well; for instance, with the so-
called “mass deficits” observed at the centers of bright galaxies. While the ori-
gin of these correlations is still debated, they suggest a deep connection between
supermassive black holes and the stellar components of galaxies.

Partly for this reason, the emphasis in this book is on dynamical interactions in-
volving stars: either interactions of (single or binary) stars with (single or binary)
supermassive black holes, or interactions of stars with each other in the vicinity of
supermassive black holes. Gas dynamics is covered in a much less comprehensive
way, and only in contexts where its role appears essential: in the late evolution of bi-
nary supermassive black holes (chapter 8), or in theories that attempt to explain the
tight empirical correlations by invoking radiative feedback (chapter 2). The reader
who needs to know more about nuclear gas dynamics, or emission mechanisms re-
lated to black holes, is directed toward the “Suggestions for Further Reading” at
the end of this book.

On the other hand, the treatment here of stellar dynamics is as complete and as
self-contained as I could make it in a book of prescribed length. Chapter 3, on col-
lisionless models of nuclei, may be slightly more terse than the other chapters, but
this is due to the availability of Galactic Dynamics, the comprehensive (if largely
black-hole-free) text by J. Binney and S. Tremaine. Likewise, some parts of chap-
ters 5 and 7 overlap with L. Spitzer’s superbly succinct, and sadly out-of-print,
Dynamical Evolution of Globular Clusters. But chapters 6 (Loss-cone dynamics),
7 (Collisional evolution of nuclei), and 8 (Binary and multiple supermassive black
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holes) deal with topics that appear not to have been treated in any detail in textbooks
before now.

From a dynamical point of view, galactic nuclei occupy an interesting middle
ground. They are denser than the other parts of the galaxies in which they sit; but
not so dense that they are likely to be “collisionally relaxed,” in the way that most
globular clusters appear to be. That is, gravitational encounters between the stars
in most galactic nuclei do not appear to be frequent enough to have established a
statistically “most likely” distribution around the supermassive black hole—even
in nuclei as dense as that of the Milky Way. One consequence is that we probably
cannot trust intuition derived from the relaxed models to predict the distribution
of stars on subparsec scales around supermassive black holes. This is a relatively
new insight, and one that is still resisted in some circles, perhaps because it com-
plicates the calculation of event rates. On the other hand, the much larger variety
of steady states associated with “collisionless” nuclei implies more freedom for the
theorist to construct models—a positive development, at least in the author’s eyes.
The collisionless nature of galactic nuclei is a recurring theme in this book. If I
sometimes seem to press the point a little too strongly, it is with the good intention
of motivating others to think carefully about this important question.

It would be natural in a book like this to devote a separate chapter to the Galactic
center—the nucleus of our own galaxy, the Milky Way. Instead, the decision was
made to spread the discussion of the Galactic center among several chapters, using
the data and theoretical models to illustrate concepts as they arise. So, for instance,
the use of stellar kinematics to infer gravitational potentials is illustrated in chap-
ter 3 via proper motion studies of stars in the inner parsec of the Milky Way; the
“clockwise disk” at the Galactic center is introduced in chapter 5 in the context of
spin-orbit torques; the interaction of binary stars with supermassive black holes is
presented in chapter 6 together with a discussion of the Milky Way data that seem
to verify such interactions. The reader who is interested in specific topics related to
the Galactic center is directed to the index.

The author has always felt that there are two, equally important sorts of textbook:
those that are intended as reference works, to be dipped into as needed, and those
that are meant to be read from cover to cover. This book belongs to the second
category. What it lacks in comprehensiveness, it hopefully makes up for in quality
of exposition. There are no appendices, or problems for the reader to work out;
all the material that is deemed important is included in the main body of the text,
and derivations are presented from first principles whenever feasible. Readers who
wish to get a quick feeling for the topics covered are invited to begin by reading
chapters 1 and 2 and the introductory sections of chapters 3–8.

Finally, the acknowledgments. Much of what I know about galactic nuclei and
black holes is owed to conversations over the years with colleagues in Rochester
who are knowledgable about such things: D. Axon, S. Baum, J. Faber, D. Figer,
P. Kharb, R. Mittal, B. Mundim, H. Nakano, C. O’Dea, and A. Robinson. My un-
derstanding of post-Newtonian dynamics has benefited enormously from my col-
laborations with C. Will. Some sections of this book are based in part on review
articles that I wrote with various collaborators: chapter 1 is a revised and extended
version of an article on supermassive black holes written with L. Ferrarese and
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published in Physics World (vol. 15N6, pp. 41–46, June 2002); section 3.1.1 is
based on a review of torus construction written with M. Valluri (Astronomical
Society of the Pacific Conference Series, vol. 182, pp. 178–190); section 8.4.5,
on interactions of binary black holes with gas, is adapted from material in a re-
view article with M. Milosavljevic in Living Reviews in Relativity (vol. 8, no. 8,
2005). M. Milosavljevic, E. Vasiliev, and C. Will kindly gave their permissions
to reproduce unpublished calculations in sections 6.1.2, 4.4.2.2, and 4.6, respec-
tively. T. Alexander, H. Cohn, M. Colpi, A. Graham, M. Kesden, A. King, A. Mar-
coni, H. Perets, and E. Vasiliev were kind enough to read substantial parts of the
manuscript and to make detailed suggestions for improvements. A draft version of
the manuscript was used as the basis for a course on galactic nuclei taught at the
Rochester Institute of Technology in the winter of 2011–2012. I thank the students
in that course, M. Freeman, D. Lena, P. Peiris, I. Ruchlin, C. Trombley, and S. Vaddi,
for checking many of the derivations and identifying typos. I thank S. Vaddi also for
her assistance in making many of the figures. Parts of this book were written during
a sabbatical semester that was taken at various places, including Leiden University,
and the Weizmann Institute; I thank, respectively, Simon Portegies Zwart and Tal
Alexander for hosting me during these visits. Last but far from least, I thank my
wife for putting up with me during the hectic year in which this book was written.

Rochester, NY D. M.
December, 2011
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Chapter One

Introduction and Historical Overview

Of all the legacies of Einstein’s general theory of relativity, none is more fascinat-
ing than black holes. While we now take their existence almost for granted, black
holes were viewed for much of the 20th century as mathematical curiosities with
no counterparts in nature. Einstein himself had reservations about the existence of
black holes. In 1939 he published a paper with the daunting title “On a stationary
system with spherical symmetry consisting of many gravitating masses” [135]. In
it, Einstein sought to prove that black holes—objects so dense that their gravity
prevents even light from escaping—were impossible. Einstein’s resistance to the
idea is understandable. Like most physicists of his day, he found it hard to believe
that nature could permit the formation of objects with such extreme properties.
Ironically, in making his case, Einstein used his own general theory of relativity.
That same theory was used, just a few months later, to argue the opposite case: a
paper by J. Robert Oppenheimer and Hartland S. Snyder, entitled “On continued
gravitational contraction” [407], showed how black holes might form.

The modern view—that black holes are the almost inevitable end result of the
evolution of massive stars—arose from the work of Oppenheimer, Subrahmanyan
Chandrasekhar, Lev Landau, and others, in the first half of the 20th century. How-
ever, it was not until the discovery in 1963 of extremely luminous distant objects
called quasars that the existence of black holes was taken seriously. What is more,
black holes appeared to exist on a scale far larger than anyone had anticipated.

Quasi-stellar objects, or quasars,1 belong to a class of galaxies known as active
galactic nuclei, or AGNs. What makes these galaxies “active” is the emission of
large amounts of energy from their nuclei. Moreover, the luminosities of AGNs
fluctuate on very short timescales—within days or sometimes even minutes. The
time variation sets an upper limit on the size of the emitting region. For this rea-
son we know that the emitting regions of AGNs are only light-minutes or light-days
across; far smaller than the galaxies in which they sit. At the time, astronomers were
faced with a daunting task: to explain how a luminosity hundreds of times that of
an entire galaxy could be emitted from a volume billions of times smaller. Of all
proposed explanations, only one survived close scrutiny: the release of gravitational
energy by matter falling toward a black hole. Even using an energy source as effi-
cient as gravity, the black holes in AGNs would need to be enormous—millions or
even billions of times more massive than the Sun—in order to produce the luminosi-
ties of quasars. To distinguish these black holes from the stellar-mass black holes

1Purists reserve the term “quasar” for the subset of quasi-stellar objects that are radio loud.
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left behind by supernova explosions, the term “supermassive black hole” (SBH)
was coined.

For nearly three decades after quasars were discovered, SBHs continued to be
viewed as exotic phenomena and their existence was accepted only out of necessity.
However, by the late 1980s, a crisis was brewing. Surveys with optical telescopes
had shown that the number of quasars per unit volume is not constant with time. By
studying the redshift of the light emitted by the quasar on its journey to the Earth,
astronomers found that the number density of quasars peaked when the universe
was only about 2.5 billion years old and has been declining steadily ever since.

The reason for this evolution is still not completely understood. But whatever
its explanation, the evolution presents astronomers with a challenge. Many of the
quasars with large redshifts simply disappear at lower redshifts. Indeed, of the
quasars that populated the skies almost 10 billion years ago, only one in 500 can
be identified today—but we know of no way to destroy the SBHs that powered the
quasar activity. The unavoidable conclusion is that the local universe is filled with
“dead” quasars, SBHs that have exhausted the fuel supply that made the quasars
shine so brightly 10 billion years ago.

Where are these dead quasars? A reasonable place to look is at the centers of
AGNs. But while the AGNs almost certainly contain SBHs, there are far too few of
them—only a few percent of all galaxies are considered to be active—to account
for the SBHs that once powered the quasars. By the early 1990s, astronomers were
faced with the prospect that an SBH might have to be located at the center of almost
every galaxy, which would make them as fundamental a component of galactic
structure as stars.

This idea—though natural enough—did not come easily, since most galaxies
show no evidence for the emission associated with a central SBH. But the gravita-
tional field of an SBH is strong enough to imprint a characteristic signature on the
motion of surrounding matter at distances that are millions of times greater than the
event horizon. Stars, gas, and dust moving around a black hole—or any compact
object—have orbital velocities that follow the same laws discovered by Johannes
Kepler in the 17th century for the solar system. Moreover, the mass of the compact
object is easily computed once this Keplerian rotation has been mapped. These
arguments have been applied to measure the mass of the SBH in the core of our
own galaxy, the Milky Way. But almost a decade earlier, the same was done for a
distant galaxy, called NGC 4258.

NGC 4258 is a spiral galaxy, like the Milky Way, but containing an active nu-
cleus. Sufficient radiation is produced in the nucleus to excite water molecules in
the gas clouds that orbit around it, resulting in strong, stimulated emission at radio
wavelengths. These so-called water masers can be studied with very high spatial
and velocity resolution using radio interferometric techniques. In 1994, it was re-
ported that the maser clouds trace a very thin disk, which made their dynamics
easy to interpret. It was found that the motion of the clouds followed Kepler’s law
to 1 part in 100, reaching a velocity of 1100 km s−1 at a distance of about one par-
sec from the center (figure 1.1). Only by assuming that the nucleus of NGC 4258
hosts a central body with a mass 40 million times greater than the Sun could these
observations be explained.
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Figure 1.1 The top panel shows the distribution on the plane of the sky of the water masers
in NGC 4258. The units are milliarcseconds (mas), one mas corresponding to
0.035 pc at the distance of the galaxy. The bottom panel shows the rotation curve
traced by the maser clouds [393].

Perhaps even more remarkable is the case of the SBH at the center of the Milky
Way. The Galactic center has long been known to host a radio source, called Sagit-
tarius A* (Sgr A*), that is at rest, indicating that it must be very massive. But be-
cause of the high visible-wavelength extinction toward the Galactic center, almost
70 years elapsed between the discovery of Sgr A* and the demonstration, using
ground-based telescopes, that Sgr A* is in fact an SBH. Beginning around 1992,
two groups, at the University of California at Los Angeles and the Max Planck
Institute in Garching, have monitored the positions and velocities of over a thou-
sand stars within a parsec of Sgr A*. The stellar motions have been reconstructed
by combining the projected motion on the plane of the sky (the “proper motion”)
with the velocity along the line of sight; the latter was measured from the Doppler
shifts of absorption lines in the stellar spectra. These data revealed the unmistakable
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fingerprint of an SBH: stars closer to Sgr A* move faster than stars farther away in
the exact ratio predicted by Kepler’s law. Stars only a few light-days away from the
source move at fantastic speeds, in excess of 1000 km s−1. Such velocities can only
be maintained if Sgr A* is roughly four million times more massive than our Sun.
The current, best estimate of its mass is about 4.3 × 106 solar masses.

The Galactic center is 100 times closer than the next large galaxy, Andromeda,
and 2000 times closer than the nearby association of galaxies, the Virgo Cluster.
In no other galaxy do we have the opportunity to study the dynamics of individual
stars orbiting a central SBH in such exquisite detail. To make matters worse, water
masers like the one that populates the nucleus of NGC 4258 are very rare, and even
more rarely are they organized in simple dynamical structures that can be easily
interpreted.

In each of these two cases, the data probe regions in which the stellar or gas
motions are completely dominated by the gravitational force from the SBH, just as
the motions of planets in the solar system are dominated by the force from the Sun.
If we were to look further from the center of these galaxies, we would find that the
motion of the stars and gas clouds is influenced more by all the other nearby stars
than by the central black hole.

In this regard, it is useful to define the “sphere of influence” of an SBH as the
region of space within which the gravitational force from the SBH dominates that
of the surrounding stars. The Galactic center stars, and the water masers in NGC
4258, lie well inside the respective spheres of influence. Measuring the mass of an
SBH from data that do not resolve the sphere of influence is a bit like judging the
weight of a turkey that may, or may not, be lurking in a distant bush. The rustling
of the leaves may indicate a turkey; or it might be a bevy of quails; or maybe it’s
just the wind. All one can say for certain is that the bush isn’t hiding an ostrich, or
an elephant.2

Largely with the help of the Hubble Space Telescope, we have now resolved the
spheres of influence of the SBHs at the centers of a handful of nearby galaxies. The
most massive SBH detected to date, with a mass of about four billion solar masses,
belongs to a giant elliptical galaxy M87 at the center of the Virgo Cluster.

Confident of the existence of SBHs, we can begin to ask more fundamental ques-
tions about them: How are SBHs related to their host galaxies? How did they form?
What role do they play in galaxy evolution?

A partial answer to the first question emerged in 2000. A strong correlation turns
out to exist between SBHs and the properties of their host galaxies. The mass of an
SBH can be predicted with remarkable accuracy by measuring a single number—
the velocity dispersion, σ , of the stars in the galaxy (figure 1.2). What is so surpris-
ing about this relation, aside from its precision, is that the stars whose velocities
are measured are too far from the SBH to be influenced by its gravitational field. In
other words, SBHs appear to “know” about the motion of stars that lie well outside
of their sphere of mutual influence.

The origin of this relation is still being debated by theorists. But whatever its ulti-
mate meaning, the relation is an extremely valuable tool, because it links

2In fact, in order to place useful constraints on the mass of an SBH, such data must be resolved on scales
about one tenth of the influence radius, as discussed in chapters 2 and 3.
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Figure 1.2 The M•–σ relation. The masses of SBHs are tightly correlated with the velocity
dispersion of the stars in their host galaxies. The scatter of points about the best-
fit line is consistent with that expected on the basis of measurement errors alone
(shown by the error bars), implying that the underlying correlation is essentially
perfect. However, as discussed in chapters 2 and 3, the number of galaxies with
reliably measured SBH masses is still quite small.

something that is difficult to measure (the mass of an SBH) to something that is
easy to measure (the stellar velocity dispersion far from the SBH). This makes it
possible to determine the masses of SBHs in large samples of galaxies, much larger
than the sample for which the techniques described previously can be applied. The
result was a new field of endeavor: black-hole demographics. One finds that about
0.1% of a galaxy’s stellar mass3 is associated with its SBH, and the average den-
sity of SBHs in the local universe agrees remarkably well with the density inferred
from observations of quasars. For the first time, the SBHs that powered the distant
quasars were fully accounted for.

Current models of galaxy formation suggest that most large galaxies have expe-
rienced at least one “major merger” during their lifetime: a close collision between

3Dark matter, if it exists, far outweighs luminous matter in galaxies, but most of it is thought to lie far
beyond the nucleus.
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(a) (b)

Figure 1.3 (a) An optical image of the “antennae” galaxies NGC 4038/4039, believed to be
in the early stages of a merger. (Image courtesy of NASA/STScI/ B. Whitmore.)
(b) The bright pointlike sources in this X-ray image of the same galaxies
may be intermediate-mass black holes. (Image courtesy of NASA/SAO/CXC/G.
Fabbiano et al.)

two galaxies that results in a coalescence (figure 1.3a). Computer simulations sug-
gest that when two spiral galaxies merge, the result is an elliptical galaxy: most of
the gas is converted into stars, and the ordered rotation of stars in a disk is converted
into the more random motions observed in elliptical galaxies. In a galactic merger,
the SBHs at the centers of the two galaxies would sink rapidly to the center of the
merged system through a process called dynamical friction. Once at the center, they
would form a bound pair—a binary SBH—separated by about a parsec. It has long
been known that some active galaxies emit radio jets that twist symmetrically on
either side of the nucleus, suggesting that the SBH producing the jets is wobbling
like a precessing top. This is exactly what would happen in a binary SBH: the spin-
ning SBH that produces the jets would precess as it orbits around the other SBH,
just as the Earth’s axis wobbles due to the gravitational pull of the Sun and the
Moon.

Other active galaxies show periodic shifts in the amplitude or Doppler shift of
their emission. The best-studied case, a quasar called OJ 287, has experienced sev-
eral major outbursts every 12 years since monitoring began in 1895. These flares
could be produced by a smaller SBH (108 solar masses) passing through the ac-
cretion disk of a larger one (109 solar masses) once every 12 years. In the last few
years, a number of other candidate binary SBHs have been found, some with ap-
parent separations as small as 10 parsecs. While the number of such cases is still
very small, astronomers believe that most or all of the SBHs currently observed at
the centers of nearby galaxies must have been preceded by massive binaries.

As the two black holes in a binary system orbit each other, they emit energy
in the form of gravitational waves, ripples in space-time that propagate outward
at the speed of light. Any accelerating mass produces this kind of radiation, but
the only systems that can produce gravitational waves of appreciable amplitude
are pairs of relativistically compact objects—black holes or neutron stars—in orbit
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about each other. Gravitational waves carry away energy, and so a system emitting
gravitational radiation must lose energy—in the case of a binary black hole, this
means that the two black holes must spiral in toward each other. The infall would
be slow at first, but would accelerate until the final plunge when the two black holes
coalesced into a single object. The coalescence of a binary SBH would be one of the
most energetic events in the universe. However, virtually all of the energy would be
released in the form of gravitational waves, which are extremely difficult to detect;
there would be little if any of the electromagnetic radiation (light, heat, etc.) that
make supernova explosions or quasars so spectacular.

No direct detection of gravitational radiation has ever been achieved, but the
prospect of detecting gravitational waves from coalescing black holes is extremely
exciting to physicists: it would constitute robust proof of the existence of black
holes and it would permit the first real test of Einstein’s relativity equations in
the so-called strong-field limit. Furthermore, by comparing the gravitational waves
of coalescing black holes with detailed numerical simulations, the masses, spins,
orientations, and even distances of the two black holes could in principle be derived.

The prospect of observing the coalescence of a binary SBH is one of the primary
motivations behind building a gravitational-wave detector in space. Existing,
Earth-based gravitational-wave detectors are not able to detect the long-wavelength
gravitational waves that would be generated by binary SBHs. A detailed design
exists for a space-based detector, called the Laser Interferometer Space Antenna or
LISA, which would consist of three spacecraft separated by five million kilometers
flying in an equilateral triangle in the Earth’s orbit. A passing gravitational wave
would stretch and squeeze the space between the spacecraft, causing very slight
shifts in their separations. Although such shifts are tiny—some 10−12 m across—
they could be detected by laser interferometers.

The scientists who propose instruments like LISA must address one important
question: How frequently will the instrument detect a signal from coalescing black
holes? Space-based interferometers will have the sensitivity to detect mergers of
SBHs out to incredible distances, essentially to the edge of the observable universe.
One way to estimate the event rate is to calculate how frequently galaxies merge
within this enormous volume. On this basis, a telescope like LISA should detect
at least one event every few years. However, the situation is more complicated
than this, since it is only the final stages of black-hole coalescence that produce
an observable signal. In order to reach such small distances—less than 0.01 pc—
the black holes must first spiral together from their initial separation of several
parsecs. Gravitational radiation itself is too inefficient to achieve this; some other
mechanism must first extract energy from the binary or else the decay will stall at
a separation too great to generate a measurable signal for gravitational-wave tele-
scopes. The prospect that some binaries might fail to close this gap has been called
the “final-parsec problem.” (Of course, it is a “problem” only from the standpoint
of the physicists who hope to detect gravitational waves.)

As the merging galaxies come together, the two SBHs fall rapidly to the cen-
ter of the merged system, dragged by the dynamical friction force acting on the
galaxies as a whole. Once the binary is in place, a new mechanism comes into play
called the gravitational slingshot. Any star that passes near to the massive binary
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–0.05 0 0.05

Figure 1.4 One of the first computer simulations of a merger between two galaxies contain-
ing supermassive black holes [386]. Time progresses from upper left to lower
right; the contours indicate the projected density of stars, and the SBHs are indi-
cated by the two filled circles.

is accelerated to high velocities and ejected, taking energy away from the binary
and causing its orbit to decay slightly. As a result, the separation between the SBHs
gradually shrinks, although perhaps not enough to place the massive binary into the
gravitational-wave regime.

There is good observational support for this model. Ejection of stars from a
galactic nucleus by a massive binary would drastically lower the density of stars
there, on a spatial scale roughly equal to the gravitational influence radius of the
larger SBH (figure 1.4). Just such a feature—a low-density core, or “mass deficit”—
is always found in bright elliptical galaxies, which statistically should have experi-
enced the most mergers.

These cores are formed at an early stage in the evolution of the binary, and their
presence does not necessarily imply that the two SBHs coalesced. If coalescence
were delayed, long enough for a third SBH to be brought in by a subsequent galaxy
merger, the three massive objects could undergo a gravitational slingshot. The
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resulting violent interaction could eject one or more of the black holes from the
nucleus, and possibly from the entire galaxy. In this way, rogue SBHs might be
created that drift forever between the galaxies.

Another prediction concerns the spins of black holes. If two SBHs coalesce, their
orbital motion during the final plunge is converted into rotation of the resulting
object. This means that SBHs at the centers of galaxies should be rotating rapidly.
Furthermore, the directions of their spin axes should be essentially random, since
the mergers responsible for imparting the spin take place from random directions.
This prediction is consistent with observations of the orientations of radio jets in
active galaxies, which are thought to point in the same direction as the spin axis of
the black hole: the jet orientations are random with respect to the orientations of
their host galaxies.

The presence of an SBH in the nucleus of every or nearly every galaxy has be-
come a standard paradigm (even though the number of secure dynamical detections
of SBHs is still quite small—depending on whom is asked, somewhere between
5 and 50). However, all of the SBHs detected so far have masses above about
one million solar masses, while black holes created in supernova explosions are
believed to be much smaller, probably no more than about 20 solar masses. Noth-
ing definite is known about the existence of “intermediate-mass black holes,” with
masses between 102 and 106 solar masses. Empirical scaling relations like the one
plotted in figure 1.2 suggest that a natural place to look for such objects might be at
the centers of dwarf galaxies. However, the galaxies would need to be quite near in
order for the SBH influence spheres to be resolved. There are a few such galaxies
in the Local Group, the collection of three large, and many smaller, galaxies that
contains the Milky Way. Hubble Space Telescope data have been obtained for two
of these galaxies. Only an upper limit on the mass of a putative black hole could
be found—either because no massive black hole was present, or because the sphere
of influence was too small to be resolved. Frustratingly, the upper mass limits are
close to what the scaling relations predict.

Resolving the issue of whether these intermediate objects exist goes beyond mere
bookkeeping: it might be crucial for understanding how SBHs form. X-ray images
of galaxies that are the sites of recent mergers, like the “antennae” galaxies, reveal
pointlike X-ray sources that are too bright to have been produced by accretion onto
a ten-solar-mass black hole (figure 1.3b). It is possible that these X-ray sources are
produced by intermediate-mass black holes that formed, perhaps via runaway stel-
lar mergers, in dense star clusters. With time, such star clusters might spiral toward
the center of their host galaxy—thanks to the same dynamical friction process al-
ready described. The intermediate-mass black holes deposited at the galaxy’s center
might subsequently merge to form supermassive ones; or at least contribute to their
mass; or, they might continue to orbit for long periods of time around the SBH.

Before the presence of SBHs at the center of every galaxy became accepted, the-
oretical studies of galactic nuclei usually invoked the same physical mechanisms—
stellar encounters and collisions in a dense stellar system—as a source of nuclear
evolution. In these models, the density of a galactic nucleus gradually increases as
stars exchange kinetic energy in near collisions—or “gravitational encounters,” as
they are called. The increase in density leads to a higher rate of physical collisions
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between stars; when collision velocities exceed 1000 km s−1, roughly the escape
velocity from a star, collisions liberate gas that falls to the center of the system and
condenses into new stars which undergo further collisions. Later it was argued that
the evolution of a sufficiently dense nucleus might lead to the formation of a mas-
sive black hole at the center, either by runaway stellar mergers or by creation of a
massive gas cloud which subsequently collapses.

A fundamental timescale in these models is the relaxation time: the time over
which gravitational (not physical) encounters between stars cause them to exchange
orbital kinetic energy. In order for the evolutionary models to be viable, the relax-
ation time must be less than about 100 million years, implying very high stellar
densities—much higher than could be confirmed via direct observation at the time,
or indeed now. The necessity of attaining high densities in order for these evo-
lutionary models to work was clearly recognized. For instance, W. Saslaw [475]
wrote,

It is an extrapolation from the observations of galaxies we have dis-
cussed to the idea that even more dense stellar systems exist. . . .Yet
this follows naturally enough from the observations of quasars and the
realization that the central density of massive compact stellar systems
increases with age.

L. Spitzer [501] speculated,

The rate of dynamical evolution will depend on how compact is the
stellar system resulting from initial gas inflow. If this rate of evolution
is slow, activity will not begin for a long time. In fact, in some systems
there might be a wait of 1012 years before the fireworks begin.

We now know that relaxation times near the centers of galaxies are much longer
than 100 million years: partly as a result of the presence of SBHs, which increase
the mean velocities of stars and reduce the rate of gravitational encounters (which
have a strongly velocity-dependent cross section), and, in larger galaxies, because
of the low-density cores. The long relaxation times imply that nuclear structure will
still reflect to a large extent the details of the nuclear formation process; and indeed
the persistence of the cores is probably an example of this.

The fact that most galactic nuclei are essentially “collisionless”—that is, their re-
laxation times are longer than the age of the universe—has important implications
for their allowed dynamical states. In a collisional nucleus—that is, one that is many
relaxation times old—the distribution of stars will have had time to evolve to a
more-or-less unique form, a so-called Bahcall–Wolf cusp, in which the stellar den-
sity rises steeply with radius into the SBH. We have recently learned that the Milky
Way probably does not contain such a cusp, in spite of the fact that it has one of the
shortest measured relaxation times. In a collisionless nucleus, on the other hand,
the range of allowed stellar distributions is much larger: anything from rapidly ro-
tating disks like the solar system, to spheroidal configurations in which the stellar
motions are essentially random, to lopsided configurations. It is the possibility of
such a wide variety of dynamical states that makes the interpretation of observa-
tional data so frustrating, and the theoretical study of nuclei so fascinating.



Chapter Two

Observations of Galactic Nuclei and Supermassive

Black Holes

2.1 STRUCTURE OF GALAXIES AND GALACTIC NUCLEI

Supermassive black holes (SBHs) appear always to be associated with stellar sphe-
roids: the approximately spherical, or ellipsoidal, groupings of stars that constitute
the luminous parts of elliptical galaxies, or the central components of some disk
(spiral) galaxies. There are important systematic differences between the composi-
tion and internal kinematics of elliptical galaxies and the bulges of disk galaxies;
but for the purposes of this book, it will almost always be adequate to lump the
two sorts of system together. The terms “stellar spheroid” and “bulge” will be used
interchangeably to describe these components of galaxies.

We are most concerned in this book with the distribution of mass near the centers
of galaxies, but in practice, far more is known about the distribution of light. It
is common to assume as a working hypothesis that “mass follows light,” that is,
that the density of starlight is proportional to the mass density. (An exception is
naturally made in the case of SBHs. Other important exceptions are noted elsewhere
in this book.) To the extent that galaxies are transparent—a good approximation for
the stellar spheroids in which SBHs reside1—the observed intensity I of starlight at
a given position in the image of a galaxy is an integral along the line of sight of the
luminosity density j , and the problem of determining the galaxy’s mass density ρ
can be broken into two pieces: deprojecting the observed distribution of intensity to
find the intrinsic luminosity density; and assigning a value to ρ/j , the mass-to-light
ratio, often written simply as M/L.

Determination of mass-to-light ratios requires information in addition to photo-
metric data—for instance, kinematical data—from which the gravitational acceler-
ation produced by the mass can be measured. This problem is discussed at some
length in chapter 3, and more briefly later in this chapter, when we review tech-
niques for weighing SBHs.

The distribution of intensity across the image of a stellar spheroid is often found
to be well approximated by

I (X, Y ) = I (ξ), ξ 2 = X2

A2
+ Y 2

B2
; (2.1)

1The center of the Milky Way is an exception, since we observe it along a line of sight through the dusty
Galactic disk.
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in other words, the isophotes are elliptical—hence the name “elliptical galaxy.”
In equation (2.1), X and Y are spatial coordinates on the plane of the sky, and
the coordinate axes have been aligned with the principal axes of the elliptical fig-
ure. A projected density of the form (2.1) is consistent with an intrinsic (three-
dimensional) luminosity distribution of the form

j (x, y, z) = j

(
x2

a2
+ y2

b2
+ z2

c2

)
, (2.2)

that is, a density stratified on triaxial ellipsoids. However, the two axis ratios that
define the intrinsic figure are not uniquely derivable from the (single) observed
axis ratio, unless one is willing to assume that the orientation of the ellipsoid is
known. The deprojection problem becomes even more strongly underdetermined
if the space density is allowed to have a more general functional form than in
equation (2.2); for instance, if the ellipsoids have radially varying axis ratios or
orientations [468].

For the remainder of this chapter, we will generally ignore the complications
arising from the unknown three-dimensional shapes of stellar spheroids, and sim-
ply replace ξ in equation (2.1) by the projected radius R, the distance from the
projected center of the galaxy. The function I (R) is called the intensity profile
or surface brightness profile of the galaxy. At least from a purely mathematical
point of view, knowledge of I (R) at all projected radii in the image of a spherical
galaxy is equivalent to knowledge of j (r). In practice, I (R) might be constructed
by averaging the two-dimensional surface brightness over the azimuthal angle at
every R.

It is possible to deal nonparametrically with observed intensity profiles, but in
practice, astronomers usually prefer to fit simple, parametrized functions to I (R).
Probably the most important of these is the Sérsic profile [485, 486]:

ln I (R) = ln Ie − b(n)
[
(R/Re)

1/n − 1
]
. (2.3)

The constant b is normally chosen such that Re is the projected radius containing
one half of the total light—the effective radius. Aside from Re, there are then two
remaining parameters: Ie ≡ I (Re) and the Sérsic index n. Equation (2.3) may
seem an unlikely expression, but it can be cast into a slightly more appealing form
by differentiation:

d ln I

d lnR
= −b

n

(
R

Re

)1/n

. (2.4)

In other words, the slope of I versus R on a log–log plot varies continuously as a
power ofR. This might be seen as the simplest generalization of a power law, which
has a constant slope on a log–log plot. The popularity of Sérsic’s law is due to two
facts: first, it fits the intensity profiles of many individual galaxies over a very wide
radial range, often the entire range for which there are data, two or three decades
in radius; and second, it describes galaxies with a wide variety of types [68]. Aside
from the “scaling” parameters Re and Ie, Sérsic’s law has just one “shape” para-
meter, n; it turns out that the best-fit value of n varies systematically with spheroid
size or luminosity, in the sense that larger galaxies typically have larger n. Setting
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n = 4 gives the de Vaucouleurs profile [106, 107], which is a good representation
of bright elliptical galaxies. Setting n = 1 yields the exponential law, which ap-
proximates the intensity profiles of many dwarf galaxies and the disk components
of spiral galaxies.

Unfortunately, the intrinsic (three-dimensional) density that projects to Sérsic’s
law does not have a simple mathematical form [342]. It can be shown that at small
radii the deprojected density varies as

j (r) ∝ r(1−n)/n, r � Re (2.5)

[86], a power law. In spite of the good behavior of Sérsic’s law in projected space,
the deprojected density diverges at the origin when n > 1; as steeply as r−1 in the
limit of large n.

Various expressions have been proposed as approximations to the full, depro-
jected j (r). Perhaps the most widely used is the Prugniel–Simien model [439]:

j (r) = j0

(
r

Re

)−p
e−b(r/Re)

1/n
. (2.6)

The quantities Re, b, and n that appear in equation (2.6) are understood to be the
same quantities that appear in equation (2.3). The additional parameter p is given
by

p = 1 − 0.6097

n
+ 0.05563

n2
. (2.7)

The Prugniel–Simien model is said to be a good approximation to the deprojected
Sérsic profile over the radial range 10−2 <∼ r/Re <∼ 103, for Sérsic indices in the
range 0.6 <∼ n <∼ 10. Note that its asymptotic, small-radius behavior differs slightly
from that of the exact, deprojected Sérsic profile.

While Sérsic’s profile is a very good fit overall to most galaxies, systematic devi-
ations do appear; typically at the largest or smallest radii. The former do not concern
us here. Deviations at small radii are of two general kinds. Stellar spheroids fainter
than ∼1010.3 L� are often observed to have higher central surface brightnesses than
predicted by Sérsic’s law. These central enhancements are now often called nu-
clear star clusters, or NSCs, a name that reflects their very compact form, and
also the fact that these components often appear to contain a young, intrinsically
luminous stellar population. Radii of NSCs are a few parsecs at most, giving them
an unresolved, pointlike appearance in galaxies much beyond the Local Group. To
the extent that they can be spatially resolved, NSCs are sometimes seen to be flat-
tened (disklike) in morphology, possibly reflecting the recent formation of stars in
a gaseous disk (figure 2.1).

As a class, NSCs are the only distinct components of galaxies that might be
called “nuclei.” However, they are not present in all galaxies. Spheroids brighter
than ∼1010.3 L� generally exhibit central deficits in the intensity, compared with
an inward extrapolation of the best-fitting Sérsic profile (figure 2.2). The deviations
typically begin fairly sharply at a break radius or core radius,Rb orRc, that is tens
or hundreds of parsecs in extent—often large enough to be very well resolved, even
by ground-based observations. Galaxies with this feature are called core galaxies.
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Figure 2.1 The NSC in NGC 4244, a nearly edge-on spiral galaxy [489]. Both panels display
a region that is two seconds of arc, or roughly 40 pc, on a side; the black bar at
the lower left in each panel has a length of about 10 pc. The left image is a “color
map,” i.e., the ratio of intensities measured in two different filters; darker shades
indicate spectral energy distributions that are weighted toward shorter wave-
lengths, presumably indicating the presence of younger stars. The right panel
is a map showing the mean line-of-sight velocity of the stars. Rotation of the
nucleus is clearly visible, with a maximum amplitude of ∼30 km s−1. In both
panels, the solid contours follow the intensity of starlight as measured at a sin-
gle (near-infrared) wavelength. Gray areas in the panel on the right are regions
where the data quality is poor.

A relatively nearby example is the giant elliptical galaxy M87 in the Virgo Galaxy
Cluster; the core radius is a few hundred parsecs.2 Essentially all bright elliptical
galaxies are core galaxies.

The surface-brightness profiles of core galaxies are often well fit by the core-
Sérsic profile [210]:

I (R) =



Ib

(
Rb

R

)�
, R ≤ Rb,

Ibe
b(Rb/Re)

1/n
e−b(R/Re)

1/n
, R > Rb.

(2.8)

In addition to the break radius Rb, equation (2.8) also contains �, the logarithmic
slope of the inner intensity profile; for core galaxies, one typically finds 0 ≤ � <∼ 1.
A more general version of equation (2.8) exists, with extra parameters, that allows
for a smoother transition of I (R) from R < Rb to R > Rb [523]. As in the case
of the Sérsic model, there exist simple approximations to a deprojected core-Sérsic
model; for instance, the core-Prugniel–Simien model [513],

j (r) =



jb

(
r

Rb

)−γ
, r ≤ Rb,

jb

(
r

Rb

)−p (
Rb

Re

)p
eb(Rb/Re)

1/n
e−b(r/Re)

1/n
, r > Rb.

(2.9)

2M87 is an active galaxy, and its intensity profile at visual wavelengths also exhibits an unresolved
central enhancement, presumably due to light from gas in the accretion disk orbiting very near the SBH.
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Figure 2.2 Observed intensity profiles of two elliptical galaxies at visual wavelengths, show-
ing fits of the data to standard model profiles [210]. The galaxy on the right is
well fit by Sérsic’s law, equation (2.3), shown as the dashed curve. The galaxy on
the left has a well-resolved core; the solid curve shows a fit of the data to a core-
Sérsic model, equation (2.8), while the dashed curve is the best-fitting Sérsic
profile. The lower panels show the deviations between data and models. Inten-
sities are expressed in “magnitudes,” which are proportional to the logarithm of
the inverse of the surface brightness.

As in the Prugniel–Simien model, the parameters Re, Rb, b, and n are identified
with the same parameters in the core-Sérsic profile, and γ = � + 1.

As discussed in chapter 8, a leading hypothesis for the origin of cores is the
“scouring” effect of binary SBHs—binaries that were created, presumably, dur-
ing the same galactic merger event that formed the spheroid. The idea that the
cores of bright elliptical galaxies are due to an extrinsic modification of an un-
derlying, “universal” density profile gains support from another argument. If one
plots central intensity versus total galaxy luminosity, a break appears in the relation
at L ≈ 1010 L�, between “dwarf” and “giant” elliptical galaxies [296]. “Dwarf”
ellipticals define a continuous sequence spanning some four decades in luminos-
ity, along which the central surface brightness increases with increasing L. This
relation reverses for “giant” galaxies, which exhibit lower central intensities as L
increases. But if one replaces the actual central intensity by the inward extrapola-
tion of the best-fitting Sérsic law, one finds that bright ellipticals smoothly continue
the sequence defined by fainter ellipticals: central density increases with increasing
luminosity, with no sign of a break in the relation [259, 211].

Various generalizations of Sérsic’s profile have also been proposed for fitting the
excess nuclear light observed in fainter spheroids. But because NSCs are typically
poorly resolved, many different functional forms are found to do an equally good
job. Local Group galaxies provide the only exceptions: at least two of these contain
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Figure 2.3 Surface brightness data of the Local Group dwarf galaxy NGC 205 showing the
resolved NSC [356]. The observations, shown as the open circles, were made
in the I -band, which centers around λ ≈ 8000 Å [527, 280]. The data have
been fit by a two-component model; the dashed and solid curves show the model
before and after convolution with the instrumental point-spread function. The
lower panel shows the fit residuals. This galaxy is roughly 800 kpc away, and
one arcsecond corresponds to about 3 pc. Surface brightness units (magnitudes
per square arcsecond) are explained in the caption to figure 2.2.

NSCs that are near enough to be resolved. One is the dwarf elliptical galaxy NGC
205, a satellite companion to the “Andromeda nebula,” the giant spiral galaxy M31.
Figure 2.3 shows the intensity profile measured at near-infrared wavelengths. The
nuclear cluster appears as a very distinct component, with a half-light radius of
about 2 pc and an inner core. The intensity profile of this component was fit by a
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model with intrinsic luminosity density

j (r) = j0

(
1 + r2

r2
c

)−γ
, (2.10)

sometimes called a “modified Hubble model,” with γ = 3.2 and rc = 0.3 pc. The
prominence of this galaxy’s NSC is due in part to the presence of a population of
bright, blue, and presumably young stars [241]. A young stellar component turns
out to be common in NSCs; population synthesis suggests that many have expe-
rienced an extended star formation history, with luminosity-weighted mean stellar
ages that range from ∼10 Myr in the nuclei of late-type spiral galaxies to ∼10 Gyr
in elliptical galaxies [553]. However, it appears that the mass is typically dominated
by an old stellar population even when most of the light comes from young stars.
The assumption of a constant “mass-to-light ratio” breaks down in galaxies with
young NSCs since young stars have a much smaller M/L than old stars.

The Milky Way also contains an NSC. At a distance of only about 8 kpc, it is by
far the best-resolved example, although the strong and spatially varying extinction
toward the Galactic center presents serious obstacles to inferring its structure, and
indeed it was only in the last few years that its resemblance to nuclear clusters in
other galaxies became clear [479]. Fits of the intensity data at near-infrared wave-
lengths reveal that this component of our galaxy can be represented approximately
in terms of a power law in the space density, j (r) ∼ r−1.8, within ∼10 pc of Sgr
A* [310]. The total mass is perhaps 30 million solar masses, or roughly ten times
the mass of the SBH. As in NGC 205, the Milky Way NSC contains a population
of apparently young stars, which dominate the light inside of a parsec or so. When
these young stars are excluded, the number counts of the old, and presumably dom-
inant, population exhibit an inner core of radius ∼0.5 pc [66], similar in size to the
core in NGC 205.

In the early days of the search for SBHs it was commonly assumed that the
presence of an SBH would reveal itself via an enhancement in the central stellar
density, roughly at the radius where the gravitational force from the SBH begins
to rise above that from the galaxy as a whole [416]. For instance, in the “adia-
batic growth” model (section 3.3), the density near the SBH is predicted to rise as
ρ ∼ r−3/2; another example is the “Bahcall–Wolf cusp”3 which forms in response
to exchange of orbital energy between stars (section 5.5.2) and has ρ ∼ r−7/4.
Photometric data were sometimes interpreted to imply the presence of such density
cusps in nearby galaxies. For instance, M87, the giant elliptical galaxy in the Virgo
Cluster, contains a well-resolved core, but fits of the intensity profile to the standard
(“isothermal”) models that were in use at the time (the 1970s) seemed to require
an extra, cusplike component to fit the small-radius data. This was taken as indirect
evidence for the presence of an SBH [575].

To the author’s knowledge, there is no galaxy in which the presence of a density
cusp can convincingly be connected to the dynamical influence of an SBH. In the
case of galaxies like M87, it was realized [295] that “nonisothermal” cores are

3“Cusp” refers, apparently, to the fact that a plot of density versus radius that extends from one side of
the galaxy to the other, on linear axes, has a cusplike appearance.
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the norm, and that their intensity profiles could be easily fit by simple parametric
models like the core-Sérsic model, without the need for an additional component
representing a cusp. The Milky Way is a more interesting case, since an SBH-
induced density cusp could easily be resolved if it were present. Indeed, the steep
rise in luminosity density observed in the NSC continues well inside the influence
radius, roughly as a power law, j ∼ r−γ , γ ≈ 1–1.5 [183]. But as noted above,
most of the light in this region is due to the puzzling young stars, which cannot have
been present long enough for any of the proposed cusp-formation mechanisms to
apply. The number counts of the older stars are flatter, and in fact their density is
observed to be nearly constant inside ∼0.5 pc, which is just where a density cusp
would be expected to show itself [357].

It is rather ironic that the morphological feature most commonly associated
nowadays with SBHs is not a density cusp, but just the opposite—a low-density
core.

2.2 TECHNIQUES FOR WEIGHING BLACK HOLES

As discussed in chapter 1, there is compelling, albeit often circumstantial, evidence
for SBHs at the centers of many galaxies. But even when the existence of an SBH
is all but incontrovertible, one would still like to know its mass; and for many
astronomers, “detection” of an SBH is considered tantamount to a measurement of
its mass.

With few exceptions, convincing mass determinations in astronomy are dynam-
ical: one uses the observed motions of stars or gas to infer a force, then applies
Newton’s laws of gravitation to calculate the mass that is responsible for the force.
In the case of an SBH at the center of a galaxy, stars will always be present near the
SBH, and their velocities can be measured via individual Doppler shifts or proper
motions (in the nearest galaxies), or Doppler broadening of stellar absorption lines
in the integrated spectra (in galaxies beyond the Local Group). Gas may or may not
be present, at least in amounts, or in a form, that is easily observed. But luckily,
some galaxies happen to contain ionized gas that orbits, more-or-less coherently,
in a thin disk near the SBH, allowing the interior mass to be computed from a
measurement of the emission-line Doppler shifts.

Force is related to mass via distance, and techniques that determine mass from
Newton’s laws require a measurement also of the distance between the SBH and
the objects whose velocities are being measured. At the very least, this requires an
estimate of the distance to the galaxy; the inferred M• will scale linearly with that
distance. Less trivially, the kinematical data must be spatially resolved, on angular
scales small enough that the gravitational force is dominated by the SBH. We will
use the adjective primary to describe mass estimation methods that are based on
such data. Secondary mass estimation methods are based on empirical correlations
that were calibrated using primary mass estimates; and one can define tertiary and
even quaternary methods, in terms of the number of empirical correlations that
separate the data from the inferred mass.
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An SBH of mass M• embedded in a galactic nucleus strongly affects the motion
of gas or stars within a certain distance, called the gravitational influence radius,
or simply the “influence radius.” Since the gravitational force in a spherical galaxy
is determined by the enclosed mass, a natural definition of the influence radius is the
radius of a sphere that encloses a mass in stars similar to M•. This idea motivates
the definition of rm:

M�(r < rm) = 2M•. (2.11)

At r = rm in a spherical galaxy, 1/3 of the gravitational force comes from the SBH
and 2/3 from the stars. The numerical factor in this relation is somewhat arbitrary;
the reason for choosing a value of two for this factor is discussed below.

Equation (2.11) can be difficult to apply to real galaxies, given that the stellar
mass density is rarely well determined inside the influence radius. A second def-
inition of the influence radius is based on a quantity that is, at least in principle,
easier to measure. Let vrms be the rms stellar velocity near the center of a galaxy.
If the velocity distribution is isotropic, the velocity dispersion along any direction
is σ = vrms/

√
3. The latter quantity is closely related to the line-of-sight velocity

dispersion that would be measured from the integrated spectrum of stars near the
galaxy’s projected center. The second influence radius, rh, is defined such that the
velocity of a circular orbit around the SBH at rh, vc = (GM•/rh)1/2, is equal to σ :

rh ≡ GM•
σ 2

≈ 10.8

(
M•

108M�

)(
σ

200 km s−1

)−2

pc. (2.12)

Of course, sufficiently close to the SBH, velocities must increase as r−1/2, and
σ will become a steep function of radius. However, only a handful of galaxies4

are observed at sufficient angular resolution that the r−1/2 behavior of σ near the
SBH is apparent. In practice, observers often define σ as the rms, line-of-sight
velocity of stars within an aperture centered (hopefully) on the SBH—an aperture
dispersion. That practice is based on the expectation, which is probably justified in
all but a handful of galaxies, that the presence of the SBH has very little effect on
the measured velocities.

Which of these two definitions of “influence radius” is most relevant depends
on the physical question being addressed. Since the rms velocity near the center
of a galaxy contains contributions from stars that move far from the center, the
second definition compares the local gravitational effects of the SBH with those
from the galaxy as a whole. The first definition is based on a local comparison
of forces, which may be more appropriate when discussing the motion of gas, or
of test particles moving in nearly circular orbits around the SBH, since these are
unaffected by the distribution of matter farther out.

In a nucleus with stellar density ρ ∝ r−2, and no SBH, the velocity dispersion
can be shown, using the techniques presented in chapter 3, to be independent of
radius:

σ 2 = 2πGr2ρ(r), (2.13)

4The Milky Way, M31, and possibly M32.
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Figure 2.4 Comparisons between the two definitions given in the text, rm and rh, for the
gravitational influence radius of an SBH. The left panel shows the ratio of the
two radii in model galaxies that follow the Prugniel–Simien density law, equa-
tion (2.6), assuming that M• = 0.002Mgal. In the right panel, the core-Prugniel–
Simien model, equation (2.9) was used, setting the Sérsic index n to 4. In this
panel, radii are expressed in units of the effective radius Re.

and the enclosed mass is

M�(< r) = 4π
∫ r

dr r2ρ(r) = 2σ 2

G
r. (2.14)

In this model, called the singular isothermal sphere,5 the radius at which M� =
2M• is GM•/σ 2; in other words, rm = rh. (Of course, we are ignoring the fact that
addition of the SBH would change σ at r <∼ rm.) This is the motivation for the
numerical factor in equation (2.11). The singular isothermal sphere is a reasonable
description of the mass distribution in the inner few parsecs of the Milky Way, and
indeed for our galaxy, both rh and rm are approximately equal to 2.5 pc.

In nuclei that are not well described by the singular isothermal sphere model,
rm and rh can be substantially different. This is illustrated in figure 2.4, based on
spherical models that follow the Prugniel–Simien, or core-Prugniel–Simien, den-
sity profiles defined above. In making this figure, rh was defined as the root of

σ 2(r)− GM•
r

= 0, (2.15)

and σ(r)was computed from ρ(r) andM• using the isotropic Jeans equation (3.58);
that equation yields the unique dependence of σ on r in a spherical, isotropic,
steady-state galaxy with the specified mass distribution and SBH mass. As the cen-
tral density profile becomes flatter, the figure shows that rm increases compared
with rh. When the core radius exceeds ∼ rh, as appears to be the case in some
luminous elliptical galaxies, rm ≈ Rb and rm 	 rh.

5A nonsingular version of this model is presented in section 7.5.1.
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The observed relation between M• and rm for “core” galaxies (i.e., galaxies with
M• >∼ 108M�) is [374]

rm ≈ 35

(
M•

108M�

)0.56

pc. (2.16)

The form of this relation at smaller M• is probably similar, but it is less well deter-
mined due to the difficulty of resolving the region r <∼ rm in smaller galaxies.

2.2.1 Primary mass determination methods: Stellar and gas kinematics

Primary SBH mass estimates are most often based on velocities that have been af-
fected to some degree by the gravitational force from the distributed mass (stars,
gas) in the nucleus, as well as the SBH. When stars are used as the dynamical trac-
ers, the relation between the gravitational potential and the kinematical quantities
is described by an equation like

n
∂


∂r
= −∂(nσ

2)

∂r
+ n

r
v2
φ. (2.17)

This is essentially equation (3.112b), the Jeans equation for an axisymmetric galaxy;

 is the gravitational potential, n is the number density of stars, vφ is the mean, or
“streaming,” velocity of stars about the galaxy center and σ is the one-dimensional
velocity dispersion as defined above. The exact equation has been simplified here
by (1) expressing it in the galaxy’s equatorial plane; (2) replacing� , the cylindrical
radius, by r , the distance from the center; and (3) assuming isotropy of the stellar
velocities with respect to their mean motions.

Without any additional approximations, equation (2.17) can be rewritten in the
form

G [M�(r)+M•] = r
(
σ 2 + v2

φ

) + rσ 2

[
−

(
∂ log n

∂ log r
+ 1

)
− ∂ log σ 2

∂ log r

]
.

(2.18)

Typically, the two terms inside the brackets on the right-hand side of this relation
are small: because n ∼ r−1 (as in a Sérsic galaxy of high index); and because σ
is a slowly varying function of radius (unless one is well inside rh). The enclosed
mass is then determined essentially by (σ 2 + v2

φ). If the galaxy is observed from a
direction not too far off from its equatorial plane, the latter quantity is not too dif-
ferent from the rms, line-of-sight velocity of stars, as measured via the broadening
of absorption lines in an integrated stellar spectrum.

Figure 2.5 plots just this quantity,6 for 12 galaxies in which the presence of an
SBH has been claimed based on stellar kinematical data. The galaxies have been
ordered by the angular size of the influence radius rh; the latter was computed from
the published M• value and from the measured σ . The computed value of rh is
indicated by the dotted, vertical line in each frame.

6There is an additional justification for combining v and σ , having to do with instrumental limitations;
see section 2.3.3.
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Figure 2.5 Stellar kinematical data for galaxies with putative SBHs. The horizontal axis is
the angular distance from the center of the galaxy in seconds of arc. The vertical
axis is the mean square line-of-sight stellar velocity. In the case of M31, which
has a lopsided nucleus, data are plotted with respect to two possible centers: the
point of peak velocity dispersion (circles) and the point of zero mean velocity
(crosses). Galaxies are ordered in terms of the angular size of the SBH influence
radius rh = GM•/σ 2, shown as the vertical dotted line; rh was calculated using
the published value ofM•. In the case of the Milky Way and M87, the SBH mass
was derived from other data than shown here: individual stellar orbits in the case
of the Milky Way [193], and rotation of a gas disk in the case of M87 [332]. Well
inside rh, the mean square velocity should rise inversely with projected radius;
this is plotted as the dashed line. Only the Milky Way and the Local Group galaxy
M31 exhibit prima facie evidence for an SBH in the form of a Keplerian rise in
the stellar velocities near the center. (Data sources: Milky Way [481]; M31 [12];
M87 [181, 538]; NGC 3115 [141]; NGC 4649 [180]; M32 [262, 547]; NGC 4697
[180]; NGC 3379 [490]; NGC 1399 [246]; NGC 4473, 5845, 4564 [180].)
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Close enough to the SBH, M• 	 M�, and we expect to see a kinematical signa-
ture associated with the SBH. Suppose for sake of simplicity that v2

φ + σ 2 = Kσ 2

withK some constant; since most of the kinetic energy near the centers of galaxies
is in the form of random motions, K >∼ 1. Returning to the more general expres-
sion (2.17), and assuming that n(r) ∝ r−γ , the solution is

σ 2 + v2
φ ≡ v2

rms = K

K + γ

GM•
r

≈ 1

1 + γ

GM•
r

. (2.19)

The r−1/2 dependence of velocity on radius is the signature of an SBH; this depen-
dence is sometimes called “Keplerian” since, of course, it is the same dependence
exhibited by the orbital velocities of planets in the solar system. The constant term
in equation (2.19) is modified slightly if one replaces σ by the true, line-of-sight ve-
locity dispersion and r by the projected distance from the center; the proper relation
is plotted as the dashed lines in figure 2.5.

Beyond the Local Group, figure 2.5 reveals that no galaxy exhibits a convincing
Keplerian rise in stellar velocities near the center. Indeed, for a few of the galaxies
in the figure, the rms velocities are seen to drop in the inner few resolution elements.
Data like these do not provide much reassurance that an SBH is present, and the
value of M• inferred from such data will depend critically on how much of the
gravitational force near the center is attributed to the stars [181].

In the Local Group, two, and perhaps three, galaxies exhibit a convincing rise in
vrms near the center: the Milky Way, M31, and (possibly) M32. In the case of the
Milky Way, the best estimates of M• come not from the data plotted in figure 2.5,
but from the detailed astrometric (positional) data of a handful of stars, as discussed
in chapter 4. Nevertheless, the rms stellar velocities that are plotted in figure 2.5
(from a sample of ∼6000 stars with measured proper motions in the inner parsec)
show a very convincing Keplerian rise inside a projected radius of ∼10

′′ ≈ 0.4 pc,
or roughly 0.2rh. Indeed, one could obtain quite an accurate estimate of M• in the
Milky Way by simply laying a ruler on figure 2.5—although the mass of Sgr A*
has been inferred from these data in a slightly more careful way [481], and found
to be consistent with the more accurate value based on stellar astrometry [192].

M31, the Andromeda nebula, also shows a reasonably Keplerian rise in stellar
velocities near the center, although the nucleus of this galaxy is highly asymmetric,
making the interpretation of data like those in figure 2.5 problematic (section 2.3).

Finally, M32, the dwarf companion to M31, shows what might be called the
beginnings of a velocity rise near the center.

As noted above, in the Milky Way, the Keplerian rise in the stellar velocities
begins to become apparent inside a projected radius of ∼0.2rh. If one hopes to fit the
observed rise in rms velocities to a relation like (2.19), spatially resolved data would
need to extend somewhat farther in; let us say, to at least 0.1rh. If we assume that
roughly the same is true for other galaxies, we can write an approximate criterion
for detectability of SBHs: the measured velocities must be resolved on an angular
scale corresponding to a linear distance at least as small as 0.1rh, or

θdet <∼ 0′′.02

(
M•

108M�

)(
σ

200 km s−1

)−2 (
D

10 Mpc

)−1

, (2.20)
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where D is the distance to the galaxy. By comparison, the resolution of the Space
Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST),
which was the source for much of the data in figure 2.5, is ∼0′′.1. If we apply
equation (2.20) to galaxies in the Virgo Cluster (of which five appear in figure 2.5)
at a distance of ∼16 Mpc, we find the following condition for detectability with
HST:

M•
108M�

>∼ 8

(
σ

200 km s−1

)2

(Virgo). (2.21)

If one accepts the claimed, tight correlation between M• and σ discussed later
in this chapter (the “M•–σ relation”), one finds that the condition (2.21) requires
M• >∼ 2 × 109M� for galaxies in the Virgo Cluster. Only the giant galaxy M87
at the cluster center satisfies this condition. However, figure 2.5 shows only a very
gradual rise in the rms stellar velocities toward the center of M87. This is probably
a consequence of the low central density (large core) in this galaxy, which means
that the measured, line-of-sight velocities are more weakly weighted by stars that
are intrinsically close to the SBH. Most of the other galaxies in the figure have
cores similar to M87’s, and it is likely that the resolution required to detect SBHs
in these galaxies via stellar motions is likewise higher than in galaxies like the
Milky Way—in other words, that a resolution of ∼0.1rh is barely sufficient.

M87 is notable not just for having the most massive SBH with a primary mass
determination, it is also the nearest galaxy for which gas-dynamical data were used
to measure M• [332]. Figure 2.6 shows the data. The prima facie case for an SBH
in this galaxy, based on the gaseous rotation curve, is clearly much stronger than
the stellar-dynamical case (figure 2.5).

As this example suggests, estimates of M• based on the motion of gas tend to be
inherently superior to stellar-dynamical estimates, for a number of reasons:

1. The rotational velocity of the gas measures the interior mass directly:

v2
c (r) = G(M� +M•)

r
. (2.22)

In the case of stellar motions, velocities measured near the SBH are “conta-
minated” by stars that orbit to much greater distances.

2. With gas, there is less diminution of the signal due to an averaging along the
line of sight.

3. Stellar motions are inherently complex; for instance, the rms velocity can be
different in different directions. Gas moving in a regular disk is characterized
by just one velocity at every radius.

There are disadvantages to gas-dynamical mass estimates as well. Foremost is
that relatively few galaxies contain ionized gas orbiting in a more-or-less regular
disk near the center. Correcting the measured rotation velocities for the inclination
of the disk is also a problem, although stellar-dynamical mass estimates can also be
strongly inclination dependent, and the inclination of a (circular) gas disk is more
easily constrained than the shape and orientation of a galaxy’s three-dimensional
figure [536]. Gas motions can also deviate from the ballistic trajectories assumed
in writing equation (2.22) due to pressure gradients.
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Figure 2.6 The rotation curve of the ionized gas disk near the center of the giant elliptical
galaxy M87 [332]. The data are from the Faint-Object Camera on the Hubble
Space Telescope. The solid and dotted curves are from models that assume two
different orientations for the gas disk; all such models are found to imply the
presence of an SBH of a few 109 M�. The best-fit value is claimed to be 3.2 ±
0.9 × 109 M�. The stellar-dynamical data for this galaxy (figure 2.5) show only
a weak indication of a central rise and the value ofM• derived from those data is
accordingly less certain.

Assuming that a gas disk is present, the criterion for detectability of the SBH
is the availability of velocity data that extends inside ∼rm; this guarantees that
M• > M� in equation (2.22). This is a less stringent condition than in the case of
stellar velocity data, and indeed there are several galaxies beyond the Local Group
in which the gas velocities are clearly seen to rise near the center.

There is a small, but important, class of active galaxies in which rotation can be
measured at much higher spatial resolutions. These are galaxies containing water
masers, believed to originate from dense molecular clouds that are excited into
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stimulated emission by X-rays from the accretion disk around the SBH [215]. The
22 GHz maser emission can be studied using radio interferometric techniques at an-
gular resolutions of milliarcseconds, roughly 100 times better than can be achieved
with optical telescopes. Observations of the active galaxy NGC 4258 in the mid
1990s using the newly commissioned Very Long Baseline Array revealed the pres-
ence of water masers with large velocities relative to the galaxy; the maser sources
turned out to be arrayed in a thin, regular disk extending only a fraction of a par-
sec from the central source. These data provide one of the finest Keplerian rotation
curves observed for any SBH, yielding a mass of M• = 3.9 × 107M� and an
influence radius of ∼0′′.15 (figure 1.1) [392]. Furthermore, because the innermost
clouds sit at a distance of only ∼0.13 pc from the central source, the lower limit
on the mean density of the enclosed mass is ∼4 × 109M� pc−3, several orders of
magnitude larger than in any other nucleus, with the exception of the Milky Way.
Unfortunately, galaxies with water masers are rare, and none has been found to
exhibit as regular a rotation curve as NGC 4258 [303].

The technique of spectroastrometry, first developed in the context of binary
star observations [16], also has the potential to overcome the ∼0′′.1 limit of optical
telescopes in observations of gas rotation curves. Consider an unresolved source
consisting of two stars at different velocities. If the stars have different spectra, the
position measured for the centroid of the light will differ as a function of wave-
length. It turns out that relative shifts in the centroid position can be measured on
scales much smaller than the resolution limit of the telescope, and modeling of
simulated data from gas disks around SBHs suggests that information about the
gravitational potential can be obtained on angular scales of ∼0′′.01 [195]. This po-
tentially important technique has just begun to be applied to the determination of
M• in galactic nuclei [196].

2.2.2 Primary mass determination methods: Reverberation mapping

The techniques that allow us to measure SBH masses in quiescent galaxies are
difficult to apply to the host galaxies of bright AGN. Even in active galaxies near
enough that the SBH’s sphere of influence has some chance of being resolved, the
presence of a bright, pointlike nucleus due to the gaseous accretion disk tends to
dilute the very features that are necessary for dynamical studies. An alternative
method, called reverberation mapping, can be applied to a subset of AGN.

Spectra of AGN at optical and ultraviolet wavelengths exhibit broad emission
lines. The strongest lines are from the hydrogen Balmer series (Hα, λ = 6563 Å;
Hβ, λ = 4861 Å; etc.) The line widths are assumed to reflect Doppler broadening;
the inferred velocity widths lie in the range 500 km s−1 <∼ �V <∼ 104 km s−1, where
�V is the full width at half maximum of the velocity broadening function. The fact
that the emission-line fluxes vary strongly in response to changes in the continuum
(i.e., the light from the accretion disk near the SBH) implies that ionizing photons
from the central source are responsible for the emission lines. Furthermore, the
emission-line response is found to be delayed with respect to changes in the con-
tinuum; assuming that the delay is due to light travel times, the implied size of the
broad emission-line region (BLR) works out to be of order 0.01–0.1 pc.
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In principle, this “reverberation” response of the BLR to variations in the contin-
uum could be used to map out the three-dimensional structure of the BLR [53]. In
practice, the amount and quality of data required to carry out a model-independent
data deconvolution is prohibitive, and applications of this technique are usually di-
rected toward the more modest goal of recovering an estimate of the size of the
BLR [424]. Because the emission-line gas lies well inside the SBH sphere of in-
fluence [427], a determination of RBLR, together with the known velocity width,
yields a direct estimate of the SBH mass:

GM• = f RBLR(�V )
2, (2.23)

where f is a constant of order unity. Unfortunately, the proper value to take for
f depends on unknowns like the geometry of the BLR (sphere, disk), the radial
emissivity of the gas, etc. Until about 2004, f was estimated ab initio based on
simple models for the structure of the BLR. These early studies indicated that for
galaxies of comparable magnitude, masses derived from reverberation mapping and
those obtained using stellar dynamics differed by as much as a factor of 50, with
the AGN masses systematically lower [554]. The blame for the discrepancy fell
initially on the reverberation mapping results; however, these were vindicated when
it was realized that the stellar dynamical masses used in the comparison [335] were
seriously flawed. Further discussion of this issue and its resolution can be found
later in this chapter.

In spite of systematic uncertainties due to the unknown structure of the BLR,
reverberation mapping mass estimates have an important advantage compared with
those based on stellar kinematics, since the �V that appears in equation (2.23) is
due almost entirely to the gravitational force from the SBH. A devil’s advocate
could reconcile almost all existing stellar dynamical data from galaxies beyond the
Local Group with zero SBH masses by, for instance, allowing modest changes in
the stellar mass-to-light ratio inside the unresolved region.

2.2.3 Mass determination based on empirical correlations

Primary methods for determining M• are limited to galaxies near enough that rh or
rm is well resolved. With the exception of a few special cases, like NGC 4258 with
its maser disk, there are almost no galaxies beyond the Local Group that satisfy
this criterion, and astronomers who wish to enlarge the sample of SBH masses are
forced to fall back on less secure techniques.

If one had complete faith in the phenomenological relations described in the next
section—for instance, the M•–σ or M•–L relations—the simplest way to estimate
M• would be to insert a measured σ or L into those relations. That is probably not
an unreasonable way to proceed; but it rules out any possibility of detecting changes
of those relations over cosmological time. A less drastic alternative is possible in
AGN, by combining a measured �V with an estimate of RBLR, the latter based on
empirical correlations derived from reverberation mapping studies.

Radii of the BLR inferred from reverberation mapping correlate with the ob-
served luminosity of the nuclear source [272]. A recent determination of this
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RBLR–L relation is [41]

RBLR = (34.4 ± 4.5)

[
λLλ(5100 Å)

1044 erg s−1

]0.519±0.064

light-days, (2.24)

where RBLR is the radius of the BLR as measured from the Hβ emission line. As
a proxy for the continuum luminosity, the flux density (per unit of wavelength) is
measured at a rest-frame wavelength of λ = 5100 Å and multiplied by λ; this region
of the spectrum is relatively free of contamination by strong emission lines. When
restricted to the highest quality reverberation data, it is found that the RBLR–L
relation has a scatter of about 0.1 dex [425].7 The relation has tremendous appeal
because it yields an estimate of the BLR size from a quick, simple measurement of
the continuum luminosity, bypassing the need for long monitoring programs. Once
the BLR size is known, the SBH mass follows from equation (2.23):

M• ≈ f
(
1.96 × 105

) (
RBLR

light-days

) (
�V

103 km s−1

)2

M�, (2.25)

where �V is the velocity dispersion of the variable part of the broad Hβ emis-
sion line. Since the variable part of the emission line cannot be isolated in a single
spectrum, it generally suffices to use [93]

M• ≈ 2.3 × 105

(
RBLR

light-days

) (
�V

103 km s−1

)2

M�, (2.26)

where �V is the full width at half maximum flux of the Hβ emission line. The
value of this relation is that it is easily applicable to large samples of AGN, for
which direct reverberation mapping measurements would be infeasible.

As discussed in more detail below, since about 2004, the form factor f in equa-
tion (2.23) has generally been calibrated by requiring consistency with the M•–σ
relation of quiescent galaxies. For this reason, it is partly a matter of taste whether
reverberation mapping masses as they are currently computed should be labeled
“primary” or “secondary” estimates; if the latter, then methods for determining M•
based on relations like equation (2.24) would become “tertiary” methods etc.

In some low-luminosity AGN, the only broad emission line observed is Hα. It
turns out that the velocity width �V measured from the Hα line correlates with
that measured from Hβ; furthermore, there is an empirical relation between the
luminosity in the Hα line and L5100. Based on these correlations, versions of equa-
tions (2.24) and (2.25) can be written that use only measurements of the Hα broad
emission line [213]. This tertiary (quaternary?) technique has been used to esti-
mate SBH masses in large samples of low-luminosity AGN [214]. Similar relations
based on the C IV λ1549 [548] and Mg II λ2798 [346] emission lines have been
used to estimate masses of SBHs in large numbers of distant quasars.

7In astronomy, “dex” is a contraction of “decimal exponent.” A scatter of 0.1 dex denotes a range of
±0.1 in the base-10 logarithm of the measured quantity.
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2.3 SUPERMASSIVE BLACK HOLES IN THE LOCAL GROUP

The Local Group is the collection of three giant and numerous dwarf galaxies that
includes the Milky Way. The Andromeda Galaxy (also called M31, or NGC 2248)
is a spiral galaxy with roughly the same size and mass as the Milky Way; its distance
is estimated at about 780 kpc [345]. The Triangulum Galaxy (M33, NGC 598) is
also spiral but with perhaps one tenth the mass of the Milky Way or M31, and lies at
a distance estimated to be between 800 and 900 kpc [344]. Beyond the Local Group,
giant galaxies are sparse within a sphere of radius 10 Mpc: the Centaurus Galaxy
(NGC 5128) at 3–5 Mpc; M83 at 4.5 Mpc; M95 and M96 at about 10 Mpc; and
a few others. The next big grouping of galaxies, the Virgo Galaxy Cluster, has a
center (coincident with the giant elliptical galaxy M87) that is about 16.4 Mpc from
the Local Group.

There are three galaxies in the Local Group for which the (stellar) kinematical
data show evidence of a central massive object: the Milky Way, M31, and M32;
the latter is a dwarf elliptical companion of M31. Not surprisingly, the dynamical
case is strongest—most astronomers would say “incontrovertible”—in the case of
the Milky Way. Because the Galactic center is so much closer than the nucleus
of any other galaxy, the data that are available—for example, proper motions of
individual stars—are qualitatively different than in other galaxies. For this reason,
the determination of M• in the Milky Way is discussed separately, in chapters 3
and 4.

The dynamical case for an SBH is somewhat weaker in M31, due primarily to a
significant asymmetry in the nucleus which makes standard mass estimation tech-
niques difficult to apply. In the case of M32, the detection is reasonably secure, but
estimates of the SBH mass cover a wide range, apparently because the influence
radius is not sufficiently well resolved. The Local Group also contains two galaxies
in which the upper limits on the mass of a putative SBH are interestingly low: M33
and NGC 205. Each of these galaxies is discussed separately below, from largest to
smallest.

2.3.1 M31 / NGC 224 (the Andromeda Galaxy)

Photographs taken in 1974 using the balloon-borne, 36-inch telescope Stratoscope II
revealed that the nucleus of M31 was asymmetric, having a low-intensity extension
on one side of the bright peak [322]. The authors noted that “the observed asym-
metry is an intrinsic property of the nucleus and will probably require a dynamic
explanation.” Observations with the Hubble Space Telescope confirmed the asym-
metry, resolving the nucleus into two components [309]. The two brightness peaks,
denoted P1 and P2, have an angular separation of 0′′.5, or roughly 2 pc at the dis-
tance of M31. P2, the fainter peak, is located near what appears to be the dynamical
center of the bulge while P1 is offset. The combined luminosities of P1 and P2 are
about 3 × 106 L� and the combined mass is perhaps 2 × 107M�.

8“M31” means “the 31st object in the catalog of Charles Messier” (1730–1817). “NGC” stands for the
“New General Catalogue of Nebulae and Clusters of Stars,” compiled by J.L.E. Dreyer (1852–1926).
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P1 and P2 are similar spectroscopically although P2 is bluer; in fact it is brighter
than P1 in the ultraviolet [398]. This difference is due to a population of A stars
with ages of about 200 Myr embedded in P2 [39]. This population, called P3, ap-
pears to consist of a disk of stars with a mass of ∼4000M� and a radial extent
of about one parsec that surrounds the central SBH, roughly in the same plane as
the P1/P2 disk. The absorption lines of the A stars are kinematically broadened to
almost 1000 km s−1 within the inner 0′′.02. Assuming that this broadening is due
to unresolved circular motion of the stars in a circular disk, the implied, depro-
jected circular velocity is about 1700 km s−1 at 0.19 pc, implying an SBH mass of
1.4 ± 0.9 × 108M� [39].

The asymmetry has been argued to be a result of stars in P1 and P2 orbiting in
an eccentric disk, with P1 near apoapsis and P2 near periapsis [520]. However, the
persistence of the asymmetry in the face of phase mixing is difficult to demonstrate
[256] and the feature may be transient, perhaps even a result of a recent infall
event [140].

2.3.2 M33 / NGC 598 (the Triangulum Galaxy)

M33, situated about 850 kpc from the Milky Way, is the third brightest galaxy in
the Local Group. Like its two more massive neighbors, M33 is a spiral galaxy; it
is classified as “late type” (ScII-III), meaning that it has almost no bulge. It does
contain an NSC, with structural properties (mass, size) similar to those of the most
massive globular clusters [297]. One might hypothesize that the nucleus is a glob-
ular cluster that managed to find its way into the center of the galaxy. However,
the small mass-to-light ratio of the nucleus, coupled with the fact that the stars
are metal rich, implies a much younger stellar population than in globular clusters
[535], and the nucleus presumably formed from gas that accumulated, relatively
recently, at the bottom of the galaxy’s potential well.

The rms line-of-sight stellar velocities show no evidence of a central rise; in fact
they drop toward the center, to a value of about 20 km s−1. Dynamical modeling
of the kinematical data place only upper limits on the mass of a putative SBH
[178, 365]. But because the nuclear cluster is poorly resolved, the inferred upper
limit on M• depends strongly on what assumptions are made about the distribution
of (stellar) mass and light inside the inner resolution element. Values ofM• as large
as 1 × 104M� are consistent with the data if the stellar M/L is left unconstrained,
or if the character of the stellar orbits is allowed to change suddenly at a radius
unresolvable by the telescope. Such models are physically permissible but seem
unlikely. More reasonable models require M• <∼ 3000M�.

2.3.3 M32

This dwarf galaxy is the brightest satellite of M31. It is classified as a “compact
elliptical galaxy” (cE): a rare galaxy type exhibiting high central surface brightness
compared with normal elliptical galaxies of the same total luminosity. M32 also
has a high central velocity dispersion, σ ≈ 60 km s−1, that places it well off of the
mean relation between L and σ . So extreme are M32’s properties that a number
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of authors have explored speculative models for its origin; for instance, that it is
the tidally stripped remnant of a once much larger galaxy [285]. It has also been
suggested that M32 is actually a normal elliptical galaxy that lies three times farther
away than M31, that is, well beyond the Local Group [570]; however, the most
recent analyses [166] yield distance estimates that are consistent with that of M31.

M32 was one of the first galaxies for which an attempt was made to obtain spa-
tially resolved stellar kinematics in the search for an SBH [518, 519], using data
from the 5 meter Hale Telescope on Mount Palomar. Those data revealed that the
stellar rotational velocity near the center of M32 is ∼50 km s−1 (line of sight),
comparable with σ . Subsequent observations were made at higher angular reso-
lutions with other ground-based telescopes and with the Hubble Space Telescope
(figure 2.7). The velocity dispersion profile exhibits an impressive central “spike”;
however, the rotational velocities exhibit an equally impressive drop near the center,
with the result that the rms line-of-sight velocity is nearly constant going into the
center (figure 2.5). This is an instrumental effect [518]: a finite-width slit positioned
near the center of the galaxy includes light from stars orbiting in both directions,
and some fraction of the mean motion along the line of sight is converted into an
apparent dispersion.9

While there is no prima facie signature of an SBH in M32, just maintaining a
constant vrms near the center implies an increase in the mass-to-light ratio in the in-
ner parsec, at least if the stellar velocity distribution is assumed to be isotropic
about vφ [519]. If this M/L increase is attributed to a central dark mass, then
M• >∼ 3 × 106M�. However, modeling that accounts for the nonspherical shape
of M32, and for the possibility of velocity anisotropy, can reproduce the Hubble
Space Telescope data equally well with a range of assumed SBH masses that ex-
tends almost to zero: 1.5 × 106 ≤ M• ≤ 5 × 106M� [527]. Taking M• from the
upper end of this range, the implied radius of influence has an angular size of ∼1′′.4,
and the detectability criterion (2.20) would demand an instrumental resolution of
∼0′′.14—roughly correct for the Hubble Space Telescope, and consistent with the
fact that the constraints placed by these data on M• are weak.

The estimation of M• in M32 is discussed in more detail in chapter 3.

2.3.4 NGC 205

Like M32, NGC 205 is a dwarf elliptical companion to M31. But it has roughly
half the luminosity of M32, and its surface brightness is also lower, consistent with
the mean relation between luminosity and surface brightness defined by “normal”
elliptical galaxies. Its central velocity dispersion is about 20 km s−1, compared with
60 km s−1 in M32. NGC 205 contains an NSC (figure 2.3); the prominence of the
nucleus is due in part to its young stellar population, which is estimated to have
formed in the last ∼0.5 Gyr [312]. The nuclear mass is estimated at ∼9 × 104M�
[261] which places a firm upper limit on the value of M•. Dynamical modeling
of stellar kinematical data obtained from the Hubble Space Telescope observations
[527] yields an upper limit on M• of about 4 × 104M�.

9It is common practice, in papers on stellar-dynamical SBH detections, to plot σ(r) and v(r) separately.
This practice can give a reader the false impression that a sharp rise in velocities has been observed.
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Figure 2.7 Measurements of the line-of-sight mean velocity, V0, and velocity dispersion,
σ0, in the Local Group dwarf elliptical galaxy M32 [262]. Filled circles are data
from the Space Telescope Imaging Spectrograph [262]. Squares and triangles are
ground-based measurements from the William Herschel Telescope [542] and the
Canada–France–Hawaii Telescope [40], respectively. As discussed in the text,
the impressive peak in the velocity dispersion profile is an instrumental artifact
and is not due to the SBH.

2.3.5 Summary of Local Group observations

The ability to estimate SBH masses in galactic nuclei is critically dependent on
spatial resolution, and from this standpoint, Local Group galaxies have an advan-
tage over almost all others. It is significant therefore that the constraints on M•
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are fairly weak in all these galaxies, with the sole exception of the Milky Way.
Even in the Milky Way, early estimates of M• using stellar velocities (as opposed
to fitting orbital solutions to astrometric data) yielded masses for Sgr A* that were
consistently lower by factors of two or more than what we now believe to be the
correct mass, in spite of the fact that these data extended well inside the influence
radius [76, 182, 190]; the reason turned out to be the presence of an unexpectedly
low space density of stars in the inner fraction of a parsec, which had not been
accounted for in the dynamical models [481]. One could argue that Local Group
galaxies are all “difficult” cases: M31 with its lopsided nucleus; NGC 205 with its
spatially varying mass-to-light ratio; the Milky Way with its inner core; etc. But it
would be more reasonable to assume that many galaxies, if observed with the same
degree of resolution, would exhibit the same sorts of troubling detail.

2.4 PHENOMENOLOGY

By the late 1990s, the number of primary mass estimates for SBHs had reached ten
or so, and it was natural to begin considering phenomenological relations between
M• and other galaxy properties. In astronomy, the discovery of tight correlations
between measured properties of some class of object has often marked a turning
point in the study of those objects, even (or especially) in cases where the physi-
cal basis for the relation was not evident prior to the discovery. Famous examples
include the main sequence for stars, the Tully–Fisher relation for spiral galaxies,
and the redshift–distance relation. The discovery of such relations can motivate the
search for theoretical explanations. But even when the underlying physics remains
uncertain, tight correlations can be extremely useful tools for the observational as-
tronomer, by relating a distance-independent quantity (e.g., color) to an intrinsic
property (e.g., luminosity) that would otherwise be difficult to measure. For in-
stance, “main-sequence fitting” exploits the observed narrowness of the main se-
quence to assign intrinsic luminosities to stars based on their spectral types, thus
yielding distances to star clusters that are too far for geometrical distance determi-
nations to work.

In the case of SBHs, the natural correlations to search for relate M• to the prop-
erties of the stellar spheroid. It turns out—perhaps not surprisingly—that M• cor-
relates well with many such properties, although with various degrees of scatter.
In the following sections, the most important of the phenomenological relations
involving M• are described.

2.4.1 Relations with bulge luminosity and mass

One expects larger galaxies to contain larger SBHs. On the other hand, there are
luminous galaxies which appear to contain no SBH—or at least, for which the
upper limits on M• are small. The best example is the Local Group galaxy M33.
The luminosity of M33’s disk is about 3 × 109 L� at visual wavelengths [535], and
as discussed above, the upper limit on M• is about 3000M�—very roughly, one
part in 106 of the galaxy’s mass, a ratio that is about a thousand times smaller than
in the Milky Way.
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Figure 2.8 Relations between SBH mass and the total luminosity and mass of the host spher-

oid [338]. On the left, M• is plotted against the K-band luminosity of the bulge,
and on the right, against an estimate of the bulge mass. The solid and dashed
lines are least-squares fits using two different algorithms.

The apparent lack of an SBH in M33 would be natural if M• were correlated
strongly with Lbulge, the luminosity of the stellar spheroid, rather than Lgal, since
M33 contains essentially no bulge. Figure 2.8 verifies that such a correlation ex-
ists. The luminosities plotted in this figure were based on K-band (near-infrared)
images; infrared intensities are less affected by extinction than measurements in
visual bands, and they are also less influenced by light from the rare, but bright,
blue stars that are present in regions of recent star formation. In the case of disk
galaxies, the luminosity associated with the bulge was identified by carrying out a
“bulge-disk decomposition”, that is, by fitting two-component, parametrized mod-
els to the two-dimensional surface brightness data, one meant to represent the bulge
and the other the disk [338].

The relation between M• and LK,bulge, the K-band bulge luminosity, is well fit
by a power law:

log10(M•/M�) = a + b[ log10(LK,bulge/LK,�)− 10.9] (2.27)

with a = 8.21±0.07, b = 1.13±0.12 [338]. This is one version of the black-hole
mass–bulge luminosity relation (or M•–L relation). Other versions are based on
luminosities measured in different wavelength bands, for example, at visual wave-
lengths [298]; the slope is found to be similar, but the scatter tends to increase in
the bluer passbands.

The right panel of figure 2.8 plots the same SBH masses against a crude estimate
of the bulge mass:

Mbulge = 3G−1Reσ
2
e . (2.28)

Here, Re is the effective radius defined above, σe is the velocity dispersion mea-
sured at Re, and the factor 3 was chosen to maximize the correspondence of Mbulge
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with galaxy masses derived from the more careful dynamical modeling that has
been carried out for a few galaxies. Again a good correlation is observed:

log10(M•/M�) = a + b[ log10(Mbulge/M�)− 10.9] (2.29)

with a = 8.28±0.06, b = 0.96±0.07, and a vertical scatter of 0.25 dex [338]. The
estimate of b is consistent with unity; setting b = 1 implies a strict proportionality
between M• and the mass of the bulge:

M• ≈ 2.4 × 10−3Mbulge. (2.30)

This is one version of the black-hole mass–bulge mass relation (or M•–Mbulge

relation).

2.4.2 Mass–velocity dispersion relation

Galaxy luminosities have long been known to correlate well with some measure
of their internal motions. The “Faber–Jackson law” [152] is an empirical relation
between Lgal, the luminosity of an elliptical galaxy, and the central stellar velocity
dispersion σ :

Lgal ∝ σα (2.31)

with α ≈ 4. The “Tully–Fisher relation” [524] states that the luminosities of disk
galaxies correlate with �V , the rotation curve amplitude, roughly as

Ldisk ∝ (�V )β, (2.32)

with β ≈ 4 also. The existence of these well-known correlations, coupled with the
fact that σ is an easily measured quantity (and one that would necessarily be known
in any galaxy having a dynamically determined M•), might tempt anyone with a
few free minutes to try plotting M• versus σ . But the M•–σ relation10 [160, 176]
was not published until 2000, some five years after the first attempts were made at
constructing the M•–L relation [298].

The reasons for this delay are interesting and instructive [364, 159]. If one plots
M• versus σ , including all galaxies for which SBH mass estimates had been pub-
lished prior to 2000, the relation is not very striking: the scatter is large, comparable
with the scatter in the visual M•–L relation, and much greater than the scatter in
the infrared M•–L relation. Progress was made only after it was realized that the
scatter in the M•–σ relation depends greatly on sample selection [160]. If the sam-
ple is restricted to galaxies showing clear evidence of a central velocity rise, the
scatter in the relation drops to a value that is consistent with zero intrinsic scatter
(figure 2.9b). The mean relation defined by the secure subsample is [159]

M•
108M�

= (1.66 ± 0.24)

(
σ

200 km s−1

)4.86±0.43

. (2.33)

By contrast, the scatter in the visual M•–L relation is almost unchanged when the
restricted sample is used (figure 2.9a). Interestingly, the secure sample contains

10Originally called the “Faber–Jackson law for black holes” [351].
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Figure 2.9 Discovery of theM•–σ relation. (a)M• versus bulge visual luminosity, expressed
as MB , or absolute B (blue) magnitude (see caption to figure 2.2 for an explana-
tion of magnitudes). (b)M• versus bulge central velocity dispersion. SBH masses
derived from data that exhibit a central velocity increase are indicated with filled
circles; masses derived from lower quality—mostly stellar-dynamical—data are
the open circles. (Adapted from [160].)

galaxies with a wide range of types, while the less-secure measurements were al-
most all derived from stellar kinematics in elliptical galaxies.

Based on these findings, theM•–σ relation was proposed as the more fundamen-
tal of the two relations, a point of view that is still widely held.

The scatter in theM•–σ relation is so small that it is reasonable to use the relation
to predict SBH masses, even in galaxies for which determinations of M• based on
detailed modeling had previously been published. When this was done [363] it was
found that essentially all of the SBH mass estimates derived from ground-based,
stellar-dynamical data were too large,11 by factors ranging from ∼3 to ∼100, and
that the errors correlated with the ratio of instrumental resolution to rh. Discarding
those masses led to a severe revision of the M•–Mbulge relation: the mean ratio of
SBH mass to bulge mass dropped from ∼6×10−3 (the “Magorrian relation” [335])
to its currently accepted value of ∼1 × 10−3 [362].

This downward revision resolved at a stroke two long-standing controversies.
The mass density of SBHs at large redshifts can be estimated by requiring the
optical luminosity function of quasars to be reproduced by accretion onto SBHs
(the Soltan argument [499]). Assuming a standard accretion efficiency of ∼10%,
the mean mass density in SBHs works out to be ρ• ≈ 2 × 105M� Mpc−3 [85].
A similar argument based on the X-ray background gives consistent results, ρ• ≈
3 × 105M� Mpc−3 [153]. By comparison, the local SBH mass density implied by
all the primary M• mass estimates published prior to 2000 was five to ten times
higher [454]. A similar discrepancy existed with regard to SBH masses derived

11The reasons for the systematic error are explored in chapter 3.
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from reverberation mapping in AGN. While no galaxies having both sorts of mass
measurement existed—the bright, nonstellar light that makes reverberation map-
ping possible tends to swamp the stellar spectra—masses derived from reverber-
ation mapping were lower by factors as large as 50 compared with the claimed
values of M• in quiescent galaxies having comparable bulge luminosities [554].
Both of these discrepancies disappeared when the stellar dynamical mass estimates
were shown to be substantially in error [362].

The newfound consistency of SBH masses in active and quiescent galaxies
motivated observational programs designed to measure accurate stellar velocity
dispersions in the host galaxies of AGN for which reverberation mapping masses
existed [161, 177]. A natural next step was to use the M•–σ relation to “calibrate”
the reverberation mapping measurements, that is, to fix the geometrical factor f
in equation (2.23) so as to bring the M•–σ relation for AGN into the best possi-
ble agreement with the M•–σ relation for quiescent galaxies. The result [405] was
〈f 〉 ≈ 5 ± 2. Since about 2004, most AGN researchers have adopted this approach
to the determination of f .

As of this writing, published tabulations of primary SBH mass estimates in-
clude as many as 50 values, most derived from the modeling of stellar kinematical
data [221]. Based on the history outlined above, the reader might be excused for
wondering whether all of the publishedM• values are based on bona fide dynamical
detections. As figure 2.5 illustrates, there are no galaxies beyond the Local Group
for which the rms stellar velocities show a central upturn on spatial scales that
can plausibly be associated with an SBH. Gas dynamical observations fare better,
but not a great deal; careful investigators emphasize the large systematic uncertain-
ties [337], and independent analyses of the same data can yield estimates ofM• that
differ by amounts that are many times greater than the claimed uncertainties [333].
Perhaps all that can be said for certain is that SBH masses cannot be much greater
than the published values: if they were, the kinematical signatures would be un-
ambiguous. This argument has led to suggestions that the M•–σ and M•–Mbulge

relations may only trace the upper envelope of the SBH mass distribution [32]. The
author is not aware of any compelling counterargument to this hypothesis.

Uncertainties about which of the published SBH masses are based on bona fide
dynamical detections are reflected in uncertainties about the slope and scatter of
the M•–σ relation. As one broadens the sample of primary SBH mass estimates
to include masses that are less and less secure (based on the ratio of instrumental
resolution to rh, the latter computed using the published M• value—an admittedly
circular procedure), the inferred slope of the M•–σ relation falls and the scatter in-
creases (figure 2.10). Studies that accept most or all of the published masses as bona
fide measurements typically find 4.0 <∼ α <∼ 4.3 in the best-fit relation M• ∝ σα ,
and an intrinsic vertical scatter of ∼0.5 dex; while more conservative studies that
include only galaxies with clear kinematic signatures find slopes 4.5 <∼ α <∼ 5 and
an intrinsic scatter consistent with zero.

If the more conservative estimates of slope and scatter are adopted, the upper
limits on M• in the Local Group galaxies M33 and NGC 205 are both consistent,
within the uncertainties, with the M•–σ relation, as shown in figure 2.11.
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Figure 2.10 The slope of the M•–σ relation as derived from stellar dynamical data as a
function of data quality [364]. Here FWHM is the full width at half maximum
of the instrumental point spread function. Solid circles are slopes derived from a
regression algorithm that accounts for errors in both variables; open circles are
from a standard least-squares routine. The solid line is the slope derived from
gas dynamical data.

2.4.3 Relation with galaxy concentration

As noted above, larger galaxies tend to be fit by Sérsic models with larger values
of the index n in equation (2.3). The mean relation for elliptical galaxies is [208]

n ≈ 3.6

(
LB

1010 L�,B

)0.27

, (2.34)

where LB indicates total luminosity in the B (“blue”) passband. Since SBH masses
also correlate withL, one expects a correlation betweenM• and n. It turns out [209]
that such a correlation can be made tighter if n is replaced by an alternate measure
of “central concentration”: the ratio of the light inside a radius equal to Re/3 to the



M�

)
= (6.81 ± 0.95)C1/3 + (5.03 ± 0.41). (2.35)

Most of the SBH masses that were used in deriving this relation were themselves
derived from the M•–σ relation, and so the black-hole mass–galaxy concentra-
tion relation might be more properly interpreted as a relation between concen-
tration and σ . Nevertheless, the correlation is impressively tight, with a scatter of
about 0.3 dex in M•.

2.4.4 Relations involving nuclear star clusters

There is no evidence of an SBH in either of the Local Group galaxies M33, a fairly
luminous disk galaxy [178, 352]; or NGC 205, a dwarf elliptical companion to the
Andromeda Galaxy [527]. But both galaxies do contain a compact stellar nucleus.
The mass of the NGC 205 nucleus (shown in figure 2.3) has been estimated at
about 105M� [261]. That is not too different from the mass predicted by theM•–σ
relation for an SBH in this galaxy (figure 2.11).

In fact, as one moves to fainter galaxies, NSCs become increasingly common,
and they appear to be almost ubiquitous in stellar spheroids with central velocity
dispersions below about 100 km s−1 [71, 96]. That is roughly the value of σ at the
Galactic center; and the Milky Way’s SBH is the smallest with a secure dynamical
detection. These facts suggest that NSCs might be “complementary” to SBHs, in
the sense that SBHs are “replaced” by compact nuclei in stellar spheroids below a
certain mass.

Of course, the Milky Way itself is an exception to this hypothesis since it con-
tains both an SBH and an NSC. Another clear counterexample, discussed in more
detail in section 2.5, is the active galaxy NGC 4395. Other galaxies with spher-
oid luminosities comparable to, or less than, that of the Milky Way might also
contain undetected SBHs. Nevertheless, it is natural to wonder whether SBHs and
NSCs might constitute two members of a single category of objects that reside—
sometimes together, sometimes alone—at the centers of galaxies. The name cen-
tral massive object, or CMO, is sometimes used to describe both compact stellar
nuclei and SBHs [157, 557].

Figure 2.12 provides some support for the idea that NSCs and SBHs belong to
a single class. Both categories of CMO contain, on average, about 0.2% of the
mass of the stellar spheroid. Nuclear star clusters also obey a relation similar to
the M•–σ relation for SBHs, although with substantially more scatter, and with a
vertical offset.

It is entirely possible that NSCs were present, at one time or another, in all galax-
ies, but that they were destroyed in the more massive galaxies by the same mecha-
nism that created cores. And even if SBHs were present in all galaxies, they would
have gone undetected in low-mass spheroids due to instrumental limitations. For
these reasons, the significance of the apparent “replacement” of SBHs by NSCs in
galaxies below a certain mass is currently unclear.
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Figure 2.11 The M•–σ relation, extended to low σ values in order to plot the upper lim-
its on M• in the Local Group galaxies M33 [178, 365] and NGC 205 [527].
The thick solid line is equation (2.33), with 1 − σ confidence intervals shown
by the dashed lines. The two upper limits are consistent with this relation,
but marginally inconsistent with the shallower relation (thin dotted line) that
one obtains by using all published SBH mass estimates regardless of their
quality [176].

2.4.5 Significance of the phenomenological relations

Like other tight, empirical correlations in astronomy, theM•–σ andM•–L relations
must be telling us something fundamental about origins, and in particular, about the
connection between SBHs and the stellar spheroids in which they reside. But the
precise nature of that connection remains uncertain.

One could take the view that all of the phenomenological relations discussed
above are manifestations of a fixed ratio of SBH mass to bulge mass. The masses
of stellar spheroids scale with their luminosities as Mbulge ∼ L5/4 [151] and the
Faber–Jackson law states that L ∼ σ 4, hence Mbulge ∝ σ 5. Setting M• ∝ Mbulge
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Figure 2.12 Correlations involving central massive objects (CMOs) [157]. The left panel
plots the mass of the CMO against the absolute blue magnitude of the host
spheroid. (See the caption of figure 2.2 for a definition of magnitudes.) Gray
squares are NSCs; SBHs in elliptical and spiral galaxies are shown as the filled
and open circles, respectively. The middle and right panels show CMO mass
as a function of galaxy velocity dispersion and total galaxy mass, respectively.
The solid gray and black lines show the best-fit relations fit to the nuclei and to
the SBHs, respectively, with 1 − σ confidence levels on the slope shown by the
dotted lines. In the middle panel, the dashed line is the M•–σ relation; in the
right panel, the dashed line is the fit obtained for the combined (nuclei+SBH)
sample.

then implies

M• ∝ σ 5, M• ∝ L5/4, (2.36)

consistent with the observed M•–σ and M•–L relations.
There is nothing wrong with this argument; but the tightness of theM•–σ relation

suggests to most researchers that something else must be going on. After all, even
if a perfect correlation were set up between SBH mass and spheroid mass in the
early universe, it is hard to see how it could survive galaxy mergers, which convert
disks to bulges and may also channel gas into the nucleus, producing (presumably)
uncorrelated changes in M• and Mbulge. In order to maintain a close connection
betweenM• and σ orM• andMbulge, some sort of “negative feedback” would seem
to be required, allowing the SBH to regulate its own growth.

The Soltan argument summarized in section 2.4.2 suggests that SBHs acquired
most of their mass via accretion of gas. The radiation field from an accreting quasar
must drive a wind from the vicinity of the SBH, which would collide with the am-
bient gas in the galaxy and produce shocks. Perhaps an outflow driven by the accre-
tion could be the source of the feedback. In this picture, the SBH would eventually
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reach a mass such that further accretion is prevented because the outflow sweeps
away the ambient gas.

It is easy to show that this argument is not falsifiable on energetic grounds. The
energy released in growing an SBH of mass M• through the accretion of gas is
ηM•c2, where η is the accretion efficiency, defined as

L = ηṀc2, (2.37)

with L the accretion-driven luminosity and Ṁ the mass accretion rate. The accre-
tion efficiency is calculated by comparing the energy of an accreting mass element
at infinity with its energy at the last stable orbit around the SBH; while the result is
dependent on the SBH spin (chapter 4), η ≈ 0.1 is commonly assumed. The ratio
of the energy released to the gravitational binding energy of the bulge is then

ηM•c2

GM2
bulge/Rbulge

≈ η M•
Mbulge

c2

σ 2

≈ 225
( η

0.1

) (
M•/Mbulge

10−3

) (
σ

200 km s−1

)−2

	 1. (2.38)

In other words, there is more than enough energy released in the formation of an
SBH to unbind the entire mass of a galactic bulge.

There is no obvious way to couple that energy to the stars, but there is a well-
known way to couple it to the gas: Thomson scattering, the scattering of electro-
magnetic radiation by charged particles—in this case, the electrons in the ionized
gas. In a transparent plasma, both the radiation intensity from the central source,
and its gravitational force, drop off as 1/r2. The Eddington luminosity is defined
such that the outward radiation force on a single electron is equal to the gravita-
tional force on an electron–proton pair:

LE = 4πGM•mpc
σe

≈ 3.2 × 1012

(
M•

108M�

)
L�, (2.39)

where σe is the Thomson scattering cross section and mp the mass of the proton.
When L > LE, the net force on the ions is outward and accretion halts. Equat-
ing equations (2.37) and (2.39) gives the accretion rate at which L = LE, the
Eddington accretion rate:

ṀE = 4πGM•mp
ησec

≈ 2.6
( η

0.1

)−1
(

M•
108M�

)
M� yr−1. (2.40)

A number of lines of evidence suggest that SBHs accrete at roughly the Eddington
rate during their most luminous, quasar phase; for instance, accretion rates that
were much lower would not allow them to grow to their observed masses in the
available time.

We can ask what mass of SBH, radiating at the Eddington limit, produces enough
energy to unbind the bulge in one crossing time—the minimum time for infall to
occur [225, 497]? Approximating the crossing time as Rbulge/σ , this condition is

LE × Rbulge

σ
≈ GM2

bulge

Rbulge
. (2.41)
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Writing GMbulge ≈ σ 2Rbulge via the virial theorem, this becomes

M• ≈ σeσ
5

4πG2mpc
≈ 3 × 105

(
σ

200 km s−1

)5

M�. (2.42)

This has roughly the same functional form as the M•–σ relation, but the constant
of proportionality is too small by about three orders of magnitude.

The argument so far has implicitly assumed that all of the energy produced by
the SBH is available to drive the gas. This would be the case in an “energy-driven
flow”; one condition for such a flow is that the gas does not cool. At the other ex-
treme, a “momentum-driven flow” is one in which the cooling time is so short that
essentially all the energy in the flow is in the form of bulk motion. In a momentum-
driven flow, most of the energy released by the SBH is lost to radiation, and only a
small fraction (a few percent) is left to affect the bulge gas mechanically.12 It can in
fact be argued [281] that flows driven by accreting SBHs are more likely to be mo-
mentum driven than energy driven. This is because there are inevitable sources of
cooling: for instance, the radiation field from the central source is efficient at cool-
ing the shocked gas out to kiloparsec distances (“inverse Compton cooling” [87]).

In a momentum-driven flow, if the optical depth is of order unity, the momentum
of the outflow is comparable to the photon momentum:

Ṁv ≈ LE

c
. (2.43)

Equating Ṁ in this expression with ṀE implies a velocity for the gas of

v ≈ ηc ≈ 0.1c. (2.44)

Winds with these properties are in fact observed [284, 517].
Consider a shell of gas, of radius R(t), that has been swept up by the flow. The

mass of that shell is fgM(R), where M(R) is the total mass (stars plus gas) within
radius R and fg is the gas fraction. The equation of motion of the shell is [281]

d

dt

[
fgM(R)Ṙ

] + GfgM(R) [M• +M(R)]

R2
= LE

c
. (2.45)

Adopting as a simple model for the stellar bulge the singular isothermal sphere de-
fined in section 2.2, we can write M(R) = 2σ 2R/G, and equation (2.45) becomes

d

dt
(RṘ)+ GM•

R
= −2σ 2

(
1 − M•

Mσ

)
, (2.46)

where

Mσ ≡ fgσe

πG2mp
σ 4 ≈ 2 × 108

(
fg

0.1

) (
σ

200 km s−1

)4

M�. (2.47)

It is easy to show that equation (2.46) has no solution at large R if M• < Mσ ; in
other words, if M• is too small, the force on the shell is unable to lift it beyond a
certain radius. On the other hand, if M• > Mσ , Ṙ2 → σ 2 for large R and the shell

12The shock that must be cooled to produce a momentum-driven flow is the shock decelerating the wind,
not the one accelerating the ambient gas.
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can be expelled completely. Finally, setting fg ≈ 0.16—the accepted value for
the “cosmic baryon fraction,” that is, the ratio of ordinary matter to total (ordi-
nary plus dark) matter—yields a relation that is quite close to the observed M•–σ
relation [281, 282].

To summarize, if outflows communicate with the ambient gas by exchange of
momentum, the M•–σ relation emerges naturally as the SBH mass for which ra-
diation at the Eddington limit can drive a significant outward flow. At smaller M•,
the SBH can only drive flows which recollapse, failing to interrupt the gas supply
that is (presumably) responsible for its growth.

Note that the critical mass in equation (2.47) is larger by a factor ∼c/σ ≈ 103

than the critical mass derived under the assumption of an energy-driven flow, equa-
tion (2.42). This is because the former condition assumed that all the mechani-
cal energy was available to drive the gas, rather than assuming that the gas cools
efficiently.

The argument just presented really implies only an upper limit to M•. For in-
stance, in active galaxies—which must still be in the process of accreting—the
argument implies that M• < Mσ , and the same is likely to be true in other galaxies
as well [283]. But as discussed earlier in this chapter, and in more detail in chap-
ter 3, the observations are not able to rule out the possibility that many galaxies
contain “underweight” SBHs.

Arguments that explain theM•–σ relation in terms of gas-mediated feedback are
found convincing by many researchers. But SBHs can also grow by consumption
of stars: either directly through capture of stars that pass within the event horizon,
or indirectly by accreting the gas from tidally disrupted stars. In the most optimistic
scenario, capture would occur at the so-called “full-loss-cone” rate, which assumes
that orbits are (somehow) repopulated at a rate equal to or higher than their rate
of depletion due to capture by the SBH. The rate at which stars carry mass past a
sphere of radius r as they move along their orbits in a singular-isothermal-sphere
nucleus is

∼ 4πr2σρ ≈ 2σ 3

G
. (2.48)

A fraction ∼rlc/r are moving on orbits that will take them within a distance rlc
of the SBH. Setting r (rather arbitrarily) to the influence radius rh, and taking for
rlc some multiple of the SBH gravitational radius rh ≡ GM•/c2—for capture by
massive SBHs, rg <∼ rlc <∼ 10rg is appropriate (section 4.6)—the accretion rate
becomes

Ṁ ≈ 2σ 3

G

rlc

rh
≈ 10

σ 5

Gc2
. (2.49)

After ∼10 Gyr, the accumulated mass would be

M• ≈ 1 × 108

(
σ

200 km s−1

)5

M�, (2.50)

again consistent with the observed relation [581]. Arguments like this one (which
is presented in more detail in chapter 6) are perhaps not as compelling as arguments
based on feedback, but they do suggest that capture of stars may compete with gas
accretion as a mechanism for growing SBHs.
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2.5 EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES

The Milky Way SBH is the smallest having a secure dynamical detection. It is
possible that its mass—approximately four million solar masses—represents the
lower limit of the SBH mass distribution. But that would make our galaxy and
its SBH special; and given the difficulties associated with dynamical detections,
particularly at the lower values of M•, it seems more reasonable to suppose that
black holes with masses smaller than the Milky Way’s exist: at the centers of low-
luminosity galaxies, or perhaps in smaller systems like globular star clusters, or
even in intergalactic space.

Of course, black holes with masses of about 5–20M�—so-called stellar-mass
black holes—have long been accepted as a likely end state of the evolution of
upper-main-sequence stars [173], and there is strong observational evidence for
the existence of stellar-mass black holes in binary star systems in our galaxy [83].
But there is a big gap between ten solar masses and a million solar masses. In the
absence of compelling theoretical models for how massive black holes come into
existence, it is unclear how much of that gap Nature manages to fill.

Black holes in the mass range 102M� <∼ M• <∼ 106M� are called intermediate-
mass black holes, or IBHs. It is fair to say that IBHs are only hypothetical objects:
as of this writing, there are no unambiguous detections. But the indirect evidence
from various directions is tantalizing, as reviewed briefly here.

There exist bright, pointlike, off-center X-ray sources in several nearby galax-
ies: the sources are less luminous than AGN, but brighter than can easily be ex-
plained by accretion onto stellar-mass black holes. These ultra-luminous X-ray
sources, or ULXs, have X-ray luminosities in the range 2 × 1039 erg s−1 <∼ LX <∼
1041 erg s−1 [149]. The numbers just quoted assume that the emission is isotropic.
By comparison, the Eddington luminosity of stellar-mass black holes is given by
equation (2.39) as

LE ≈ 1.2 × 1038

(
M•

10M�

)
erg s−1. (2.51)

If ULXs are the result of accretion onto compact objects, their masses would need
to be at least as large as 15–1000M�, or higher if the accretion is sub-Eddington.
On the other hand, if the X-ray emission from these objects is directionally colli-
mated, then the observed fluxes would imply smaller total luminosities and hence
smaller masses. One possibility is that ULXs belong to the class of “X-ray bina-
ries,” binary systems in which one component is a normal star and the other is
a compact object. Such models need to invoke beaming, or super-Eddington ac-
cretion, to reconcile the observed fluxes with accretor masses of 10M� or less.
The fact that ULXs are often associated with regions of ongoing star formation
is consistent with an alternate model in which runaway stellar mergers in dense
star clusters create very massive stars that leave behind remnants in the IBH mass
range [435]. Such models are still rather speculative since they are based on the
poorly understood evolution of massive stars.

As discussed above, the upper limits on the masses of dark central objects in
the Local Group galaxies M33 and NGC 205 are ∼3000M� and ∼2 × 104M�,
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respectively. These upper limits are only slightly below what one would have pre-
dicted for M• in these galaxies using the M•–σ relation (figure 2.11). There is no
good reason to suppose that that relation extends to spheroidal systems of such low
mass, much less of even lower mass. But if we apply the relation (2.33) to stellar
systems as small as globular clusters, the predicted central masses would be

M• ≈ 2.3 × 103

(
σ

20 km s−1

)4.86

M�, (2.52)

and the influence radii

rh = GM•
σ 2

≈ 24

(
σ

20 km s−1

)2.86

mpc (2.53)

(mpc = milliparsecs), corresponding to an angular size

θh ≈ 0′′.5
(

σ

20 km s−1

)2.86 (
D

10 kpc

)−1

(2.54)

suggesting that IBHs might be detectable in globular clusters belonging to the
Milky Way, which have typical distances of 10 kpc. Just this claim has been made
in a handful of objects, based on fits of dynamical models to stellar velocity data.
The putative masses, followed by the implied influence radii, are ω Centauri [401]
(4.0×104M�, 15′′.0); M15 [188] (3.9×103M�, 2′′.9); and the Andromeda Galaxy
globular cluster G1 [179] (1.7 × 104M�, 0′′.031). None of the claimed detections
has stood up to scrutiny. In the case of ω Centauri, the putative influence radius
is well resolved; however, a reanalysis [5] found that the center of the cluster
had been misidentified, and a modeling study based on a more extensive sam-
ple of proper motions [540] inferred only an upper limit on a central dark mass,
M• <∼ 1.2 × 104M�. Reanalysis of the data for M15 and G1 also showed that they
could be fit equally well without massive central objects [34, 35].

Reasonably convincing evidence for the existence of IBHs comes from rever-
beration mapping studies of a few, low-luminosity AGN. NGC 4395 is an active
spiral galaxy at a distance of about 4 Mpc; it does not contain a bulge, and the
upper limit on the velocity dispersion of its nuclear cluster is ∼30 km s−1, which
would suggest an M•–σ mass of ∼1.6 × 104M�. In fact, reverberation mapping
yields M• = (3.6 ± 1.1) × 105M� [426]; a firm upper limit of ∼6 × 106M� is
set by the nuclear cluster’s size combined with the limit on σ [164]. As discussed
above, tertiary and quaternary mass-estimation techniques exist that are based on
empirical correlations derived from reverberation mapping data. These techniques
have been applied to spectral data of large samples of low-luminosity AGN lacking
the variability data required for reverberation mapping; the results have been inter-
preted to imply a spectrum of black-hole masses that extends down to a few times
105M� [214].

Simply establishing the presence of compact massive accretors in galaxies like
these, which often have small or nonexistent bulges, would constitute prima fa-
cie evidence for IBHs. This becomes progressively more difficult as one consid-
ers AGN with lower and lower luminosities. Such galaxies often lack the broad
emission lines that are uniquely associated with a massive black hole; the (narrow)
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emission lines in these galaxies might be due exclusively to gas heated by young
stars, or to other purely stellar processes. A standard technique for distinguishing
between these possibilities [18, 545] consists of plotting the galaxy on a “line-ratio
diagram” that compares the fluxes in two emission lines at similar wavelengths (to
avoid reddening effects); certain regions in these diagrams are said to be associated
with AGN, that is, with the presence of a source of hard ionizing photons produced
by gas near an SBH; and others with “star-forming regions,” that is, sources of ion-
ization due to massive young stars. The division is partly empirical and partly based
on theoretical modeling, and galaxies often fall in an intermediate region where the
classification is uncertain.

In summary, while there is no good reason to suppose that the Milky Way’s SBH
defines the low-M• limit of the mass distribution, evidence for lower-mass black
holes is not yet compelling.

As noted above, one model for the formation of IBHs invokes the runaway
merger of massive stars in dense clusters. The Milky Way contains a number of
very dense star clusters in the inner few parsecs: the “Arches” cluster, the “Quin-
tuplet,” and a few others [163]. It has been suggested that such clusters, or similar
ones that existed in the past, might be natural places for IBHs to form [222]. The
cluster would eventually spiral into the nucleus, carrying the IBH toward the SBH
until two black holes formed a binary system [226]. Models like these raise an inter-
esting question: Could there be an IBH at the center of our own galaxy? Figure 2.13
summarizes the constraints that can currently be placed on the mass and location
of a second black hole at the Galactic center. The most stringent constraints de-
rive from limits on the astrometric “wobble” of the radio source Sgr A* due to its
motion about the binary center of mass [453]; these are shown as the region la-
beled “VLBA” in figure 2.13. Another constraint comes from the requirement that
the center of mass of the binary coincides with the peak of the stellar distribution,
within observational uncertainties; this is the region labeled “CoM”. As discussed
in chapter 4, the orbit of a binary black hole will gradually shrink due to emission
of gravitational waves; demanding a lifetime of at least 10 Myr excludes the lowest
region in figure 2.13. The star S2 has an orbit about the SBH that is well fit by a
Keplerian ellipse; the resulting constraints on the amount of additional mass within
its orbit [193] yield the box labeled “S2”. None of these constraints is rock solid;
and even if they were, there is a large region of MIBH–semimajor axis space that is
not yet excluded.

2.6 EVIDENCE FOR BINARY AND MULTIPLE SUPERMASSIVE

BLACK HOLES

The constraints summarized in figure 2.13 on a second, massive black hole near
the center of the Milky Way are mostly dynamical in character. In external galax-
ies, dynamical detection of a single SBH is hard enough, even if its location is
known (or assumed) to be precisely at the center of its host galaxy. Detecting a sec-
ond (smaller) black hole dynamically would be extremely difficult, and essentially
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Figure 2.13 Constraints on the existence of a hypothetical binary system at the center of
the Milky Way, consisting of the known SBH, and a second black hole of mass
MIBH; a is the semimajor axis of the binary. Shaded areas represent regions
of parameter space that can be excluded based on observational or theoretical
arguments, as discussed in the text. The shaded box near the center is excluded
due to the perturbations that would be exerted by the second black hole on
the orbits of the S-stars [219]; the dotted lines mark the distances at which the
S-stars are currently observed. The dashed line represents the 5 yr binary orbital
period corresponding to discoverable systems. (Adapted from [219].)

impossible if it were located well inside the influence sphere of the larger SBH. But
if the goal is simply to establish the presence of a second SBH, active galaxies are
an obvious place to look: some of them might contain a source of activity that is
spatially or kinematically offset with respect to the primary AGN.

Figure 2.14 shows what was probably the first clear example of two SBHs in one
“system”: in this case, a pair of interacting galaxies near the center of the galaxy
cluster Abell 400. The associated radio source, 3C 75,13 consists of a pair of twin
radio lobes originating from the centers of the two galaxies, which have a projected

13“3C” refers to the “Third Cambridge Catalogue of Radio Sources,” a catalog published in 1959 by the
Radio Astronomy Group at the University of Cambridge.
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Figure 2.14 An image at radio wavelengths of the radio source 3C 75 near the center of the
galaxy cluster Abell 400: a “dual SBH.” There are two, twin-lobe radio sources
associated with each of two elliptical galaxies; the galaxies themselves are not
visible at these wavelengths. The jets bend and appear to be interacting. The
projected separation of the radio cores—presumably indicating the location of
the two SBHs—is about 7 kpc. (Image credit: NRAO/AUI and F. N. Owen, C. P.
O’Dea, M. Inoue, and J. Eilek.)

separation of about 7 kpc [408]. Kiloparsec-scale lobes are common components
of so-called radio-loud quasars and radio galaxies; the emission consists of syn-
chrotron radiation from the plasma that makes up the lobes, which is thought to
be energized by jets, beams of particles originating from near the accretion disk
around the SBH. The lobes typically come in more-or-less symmetric pairs that
are aligned through the center of the galaxy; in 3C 75, the lobes are bent or de-
formed, presumably due to pressure from the intracluster gas as the two galaxies
move about their common center of mass. Systems like 3C 75—containing two
SBHs separated by a distance much greater than their influence radii—are called
dual supermassive black holes or dual AGN.

The two galaxies that are the source of the radio emission in 3C 75 will prob-
ably merge, although it may take a very long time. Galaxies in the late stages of
a merger are plausible sites for dual SBHs, and many of these exhibit double nu-
clei in the optical or infrared range. However, few show unambiguous evidence of
AGN activity in both nuclei. There are a handful of clear exceptions; the best case
is probably NGC 6240, shown in figure 2.15. Both nuclei exhibit the flat X-ray
spectra characteristic of AGNs [292] and the projected separation is 1.4 kpc. Other
likely candidates are Arp 299 [19] and NGC 3393 [150]. A possible example of a
merging system containing three SBHs is shown in figure 2.16.
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Figure 2.15 The galaxy NGC 6240, which appears to contain a dual SBH. The left panel
shows an optical image of the galaxy [274], which appears to be in the late
stages of a merger. The right panel is an X-ray image of the galaxy’s center
[292]; the two “nuclei” are compact, hard-spectrum X-ray sources believed to
be associated with SBHs. Projected separation of the nuclei is about 1.4 kpc.
(Image courtesy of NASA/CXC/MPE/S. Komossa et al.)

Spatially resolving dual AGN at optical or X-ray wavelengths becomes diffi-
cult if their separation is much smaller than in NGC 6240. Radio-interferometric
techniques can do much better, and in fact there is one (elliptical) galaxy that is
observed to contain two, compact radio sources with spectra indicative of AGN,
and a projected separation of only 7.3 pc [460]. The likely combined mass of the
two SBHs is of the order of 108M�, which would imply a separation smaller than
the influence radius—a true binary supermassive black hole.

Even in cases where the binary separation is too small to be resolved spatially,
one can still hope to measure a kinematical offset between two emission-line sys-
tems, one or both of which is associated with an SBH. If it should happen that each
SBH has its own accretion disk and associated broad emission-line region, motion
about the binary center of mass would cause the lines to shift periodically, making
the combined spectrum analogous to that of a single- or double-lined, spectroscopic
binary star. In fact, many so-called “double-peaked emitters” are known; however,
an interpretation in terms of a binary system has fallen out of favor since the candi-
date systems tend not to show the predicted radial velocity variations that would be
present in a binary [143]. Even if only one broad emission-line region is present,
binary motion might still be detected by a velocity offset between these lines, and
the lines from the narrow emission-line region associated with excited gas that
is far from the galaxy center [375]. A number of such cases are known; a striking
example is the quasar SDSS J092712.65+294344.0, which exhibits a velocity off-
set between broad and narrow emission lines of 2650 km s−1 [294]. However, the
researchers who discovered this object preferred a different interpretation: a single
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Figure 2.16 The galaxy SDSS J1027+1749 at a redshift z = 0.066 contains three active
nuclei, possibly indicating the presence of three SBHs [324]. The left panel is
a radio image of the galaxy, showing distortions that may be due to a recent
merger event; the contours indicate flux densities in the radio, at 1.4 GHz. The
system contains three nuclei, labeled as A, B, and C; based on their optical line
ratios, all three appear to be AGN. The projected separation between nucleus B
(C) and nucleus A is 3.0 (2.4) kpc and the line-of-sight velocity separations are
450 (110) km s−1. The right panel is an optical image of the central region.

SBH that is recoiling from the center of its host galaxy. A number of similar cases
have since been found; however, the available data are generally consistent with
interpretations other than the binary SBH hypothesis.

Many active galaxies exhibit periodic variability with periods of days or years,
consistent with the orbital periods of binary SBHs. The most famous example is
probably OJ 287, a blazar, that is, an AGN in which the jet is believed to be
oriented nearly parallel to the line of sight. Optical variability of OJ 287 has been
recorded since 1890 [440] and it has a well-defined period of 11.86 yr (or ∼9 yr in
the galaxy’s rest frame; the difference is a result of the galaxy’s considerable dis-
tance and corresponding cosmological redshift). This period can be associated with
the orbital period of a second black hole; in such models, the variability is ascribed
to variations in the accretion rate as the smaller SBH passes through the accretion
disk surrounding the larger SBH [498]. Many other examples of variability in AGN
at optical, radio and even TeV energies are documented, some of which have pe-
riods as short as days; evidence for periodic variability has even been claimed for
the Milky Way SBH, at radio wavelengths; the ostensible period is 106 days [582].
However, none of these examples exhibits as clear a periodicity as OJ 287.

Radio lobes in active galaxies provide a fossil record of the orientation history
of the jets powering the lobes. Many examples of sinusoidally or helically dis-
torted jets are known, and these observations are often interpreted via a binary
SBH model. The wiggles may be due to physical displacements of the SBH emit-
ting the jet [464] or to precession of the larger SBH induced by orbital motion of
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the smaller SBH [462]. In the radio galaxy 3C 66B, the position of the radio core
shows well-defined elliptical motions with a period of just 1.05 yr [508].

A number of other radio galaxies exhibit sharp changes in the orientation of their
radio lobes, producing a “winged” or X-shaped morphology [311]. While originally
interpreted via a precession model [138], an alternative explanation is that the SBH
producing the jet has undergone a “spin flip,” a sudden reorientation of the SBH’s
spin axis, due perhaps to capture of a second SBH following a merger [361].

A number of other possibilities exist for detecting binary SBHs, including the use
of space-based interferometers to measure the astrometric reflex motion of AGN
photocenters due to orbital motion of the jet-producing SBHs [558]; measurement
of periodic shifts in pulsar arrival times due to passage of gravitational waves from
binary SBHs [119]; and—as discussed in the next section—the ultimate confirma-
tion, direct detection of gravitational waves.

2.7 GRAVITATIONAL WAVES

Electromagnetic radiation originates in the acceleration of charged particles; for
instance, the electrons and ions of a hot plasma. According to the general theory
of relativity, radiation is also produced by the acceleration of masses. Since the
“gravitational charge” (i.e., mass) only comes with one sign, gravitational waves
(GWs) are attributable at lowest order to the time-changing quadrupole moment
of the mass, and the waves themselves are likewise quadrupolar in nature: squeez-
ing along one axis while stretching along the other, like tides. (Monopole waves
would violate mass-energy conservation; dipole waves would violate momentum
conservation.)

To order of magnitude, the quadrupole moment, Q, of a source is given by
(source mass)×(source size)2. Dimensional analysis then tells us that the
amplitude, h, of a GW is14

h ≈ G

c4

Q̈

D
≈ GMQ

c2D

v2

c2
. (2.55)

Here, v is the internal velocity of the source,MQ is the portion of the source’s mass
that participates in quadrupolar motions, and D is the distance to the source. The
constant that couples the radiation amplitude, h, to the source, Q, is very small:

G

c4
= 6.673 × 10−8 cm3 s−2 g−1

(2.998 × 10 cm4 s−4)
≈ 8.26 × 10−50 s2 g−1 cm−1. (2.56)

On the other hand, since the observable is the wave amplitude, rather than the en-
ergy flux as in the case of electromagnetic radiation, the signal falls off only linearly
with distance. Furthermore, the weak interaction strength means that GWs propa-
gate from source to observer with almost no absorption.

14Of course, this is hand waving of a high order. Consensus that GWs are a consequence of Einstein’s
theory arose only after decades of theoretical work [98] and the discovery of a relativistic binary
pulsar [249].
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GWs act by changing the distance between widely separated objects:

�L(t) ≡ L1(t)− L2(t) = h(t)L. (2.57)

GW detectors measure this tidal field by measuring the change in distance between
two or more masses, which are either freely floating (in space) or which are isolated
from local forces (on the Earth). Typically, the masses are laid out in an “L” shape
to take advantage of the alternate stretching and squeezing along orthogonal axes.
To get an idea of the size of a detector required to observe a GW, consider a binary
SBH of mass M12 at distance D, and with separation a between the components
of the binary. Optimistically assigning all of the binary’s mass to MQ, and setting
v2 ≈ GM12/a, equation (2.58) implies

h ≈ 2 × 10−16

(
M12

108M�

)2 (
a

mpc

)−1 (
D

100 Mpc

)−1

. (2.58)

For every kilometer of baseline L, we must measure a shift �L ≈ 10−10 cm!
Remarkably, such measurement is possible using laser interferometry, even though
the displacements being measured may be smaller than the amplitude of thermal
fluctuations in the detectors.

GWs differ in important ways from electromagnetic waves. Electromagnetic ra-
diation typically arises from the incoherent superposition of waves produced by
many emitters; GWs are coherent superpositions arising from the bulk dynamics of
a dense source of mass-energy, and their frequency is determined by the frequency
of the bulk motion; for instance, the orbital frequency of two SBHs. This means
that GWs directly probe the dynamical state of a system, rather than, say, its ther-
modynamical state. The wavelength of the GWs produced by a binary SBH with
orbital period P is given roughly by

λ ≈ cP ≈ c
a3/2

√
GM•

≈ c

v
a > a, (2.59)

that is, greater than the physical separation between the bodies. Unlike electromag-
netic waves, GWs cannot be used to image a source; a closer analogy would be
with sound waves.

GW sources associated with an SBH will have frequencies no higher than the
frequency of the most tightly bound, stable orbit around the SBH. This frequency
is measured in mHz (millihertz, 10−3 s−1), far too low a frequency to be detected
on the Earth given the presence of local sources of noise (e.g., geothermal mo-
tions). Figure 2.17 shows one proposed design for a space-based interferometer,
called the Laser Interferometer Space Antenna, or LISA. LISA would use free-
floating masses at separations of ∼107 km to detect GWs in the mHz part of the
spectrum.15

At least two types of GW source involving massive black holes would be de-
tectable with a telescope like LISA. The first is the coalescence of binary SBHs, the

15In 2011 it was announced that the US National Aeronautics and Space Administration would be unable
to continue its participation in the LISA project. As this book goes to print, the European Space Agency
is still committed to launching LISA Pathfinder, a technology test mission, in 2014.
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Figure 2.17 One design proposal for a space-based gravitational-wave observatory, called
LISA (Laser Interferometer Space Antenna) [103]. Each of the three spacecraft
contains two optical assemblies, each containing a 1 W laser and a 30 cm tele-
scope. The three spacecraft which delineate the ends of LISA’s arms are placed
into orbits such that they form a triangular “constellation” orbiting the Sun, in-
clined 60◦ with respect to the plane of the ecliptic and following the Earth with a
20◦ lag. Since it essentially shares Earth’s orbit, the constellation orbits the Sun
once per year, “rolling” as it does so. This orbital motion plays an important
role in pinpointing the position of gravitational-wave sources by modulating
the measured waveform—the modulation encodes source location and makes
position determination possible.

same objects that were discussed in the previous section. Depending on the mass
of the binary, GWs from the coalescence would be detectable to large redshifts,
z ≈ 5–15, possibly probing an early epoch in the formation of the universe’s struc-
ture. For a telescope like LISA, the optimal mass of the binary is near 105–106M�:
the GWs from smaller systems are weak, whereas instrumental noise at the lower
frequencies is likely to swamp the signal. The other major class of sources con-
sists of relatively small bodies—black holes with masses ∼10M�, neutron stars,
or white dwarfs—that are captured by SBHs. These are called extreme-mass-ratio
inspirals, or EMRIs. Such events would be measurable to a distance of a few Gi-
gaparsecs if the inspiraling body is a 10M� black hole. For both types of event,
the observable volume is so large that the rate of measurable events is likely to
be interestingly high even if the intrinsic event rate (events per galaxy per year)
is low.

Detection of GWs will be important as a check on theories of gravity in the
strong-field regime, and this is a major motivation for building detectors. But GW
signals also contain information of astrophysical interest about the masses and or-
bits of the interacting bodies. In the case of binary SBHs, a signal could be detected
roughly one year before the coalescence. Information about the mass of the binary
is encoded in the rate at which the GW frequency changes (increases) over time.
Combining equation (4.240), the rate of change of a binary’s separation due to GW
emission, with Kepler’s third law gives an expression for the evolution of the orbital
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frequency:16

f (t)= f0

(
1 − t

tch

)−3/8

, (2.60a)

tch = 5

256
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G5/3

M
1/3
12

M1M2
f

−8/3
0 (2.60b)

= 5

256

c5

G5/3
M

−5/3
ch f

−8/3
0 . (2.60c)

The time tch is called the chirp time (since a chirp is a signal whose frequency
changes with time) and Mch = (M1M2)

3/5/M
1/5
12 is the chirp mass. Since both

f0 and tch can be determined through analysis of the GW signal, the chirp mass
can be measured. Combining this with a measurement of h yields the distance to
the source via equation (2.58). The other parameters defining the binary—its mass
ratio, orbital eccentricity, spins of the component SBHs, etc.—can in principle be
determined by comparing the observed waveform to precomputed template wave-
forms derived from detailed numerical simulations. (Similar techniques are used
to detect pulsars in radio or X-ray data.) If a source is sufficiently long lived that
an antenna like LISA can complete a large fraction of an orbit, it is possible also
to infer the binary’s position on the sky with some degree of accuracy, possibly
allowing identification of the GW source with an electromagnetic counterpart.

In the case of EMRIs, the extreme mass ratio implies that the smaller body takes
much longer to spiral in, remaining in the passband of a telescope like LISA for
∼105 orbits. In effect, the small body moves gradually through a sequence of orbits
around the SBH, spending a long time close to any orbit in the sequence. Study-
ing this evolution via the GWs emitted has been called bothrodesy,17 by analogy
to geodesy, the mapping of Earth’s gravity with satellite orbits. One goal of both-
rodesy is to confirm (or falsify) the predictions of general relativity by “mapping
out” the space-time around the SBH. But assuming that the theory is correct, both-
rodesy allows one to measure the masses of both objects, and the spin of the SBH,
to exquisite (by astronomical standards) precision, roughly one part in 104 [20].

Because of the smaller masses involved, a typical EMRI will generate GWs with
amplitudes an order of magnitude below the instrumental noise of a detector like
LISA, and as much as several orders of magnitude below the GW background from
sources like compact normal binary stars in the Milky Way. Extracting the EMRI
signal from beneath this torrent of noise is a challenging computational problem,
and it is currently unclear how effectively it can be solved.

16Defined here as the angular frequency, i.e., 2π divided by the Kepler period.
17From the Greek word “bothros” (βoθρoσ ), meaning “garbage pit,” or so the author is told.





Chapter Three

Collisionless Equilibria

It is often useful to approximate galactic nuclei as steady-state systems in which
the gravitational potential is a smooth and continuous function of the position. This
approximation is valid if two conditions are met. First, the nucleus must be much
older than the orbital period of a star, so that processes like phase mixing (defined
below) have had sufficient time to distribute stars uniformly around their orbits.
The period of a circular orbit of radius r around the center of a spherical galaxy
containing a supermassive black hole (SBH) is

P = 2πr

vc

≈ 2.96 × 105

(
M•

108M�

)−1/2 (
r

10 pc

)3/2

(1 − f )1/2 yr, (3.1)

where f (r) is the fraction of the total mass within r that is due to stars. At a radius
r = rm, the gravitational influence radius defined in chapter 2, the enclosed stellar
mass is twice the mass of the SBH and (1 − f )1/2 = 0.58. Any nucleus that is
more than a few hundred million years old is likely to satisfy this condition at all
r <∼ rm.

Second, if the effects of close encounters between stars are to be ignored, the nu-
clear relaxation time, defined as the time for encounters between stars to change
orbital energies and angular momenta, must be longer than other timescales of in-
terest. (The timescale for physical collisions to occur between stars is generally
much longer than the relaxation time.) A standard definition for the relaxation time
is [502]

Tr = 0.34σ 3

G2m�ρ ln�
(3.2)

≈ 0.95 × 1010

(
σ

200 km s−1

)3(
ρ

106M� pc−3

)−1(
m�

M�

)−1( ln�

15

)−1

yr.

Here ρ is the stellar density, σ is the one-dimensional velocity dispersion of the
stars,m� is the mass of a single star, and ln�, the “Coulomb logarithm,” is a “fudge
factor” that corrects for the divergent total perturbing force that would be expected
in an infinite homogeneous medium (chapter 5). Within the SBH’s sphere of influ-
ence,

ln� ≈ ln (M•/m�) ≈ ln(Nh), (3.3)

with Nh ≡ M•/m� the number of stars whose mass equals M• (section 5.2.3.3).
For m� = M� and M• = (0.1, 1, 10) × 108M�, ln� ≈ (15, 18, 20). Even in
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Figure 3.1 Estimates of the relaxation time at the SBH influence radius rm in a complete
sample of early-type galaxies in the Virgo Cluster (circles) and the Milky Way
(star). Panel (a) plots Tr versus the total blue luminosity of the galaxy bulge in
units of the solar luminosity [368]. Panel (b) plots Tr versus the bulge central
velocity dispersion σ [369]. A stellar mass of 1M� was assumed when comput-
ing Tr . Filled circles indicate galaxies in which rm is resolved, i.e., rm ≥ 0′′.1.
Open circles indicate galaxies in which rm is unresolved. In the latter galaxies,
the stellar density at rm is inferred from an extrapolation of the density at larger
radii and is highly uncertain. SBH masses were computed from the M•–σ rela-
tion, except in the case of the Milky Way. Dashed lines are least-squares fits to
the data, equations (3.4) and (3.5). Many of the galaxies in this figure for which
rm is unresolved contain nuclear star clusters (NSCs); figure 7.3 plots estimates
of Tr in these galaxies assuming no SBH.

nuclei that are older than one relaxation time, the stellar distribution at any given
moment must satisfy the equations describing a collisionless steady state. Many of
the models discussed in this chapter will therefore apply, for some interval of time,
to nuclei that are gradually evolving due to encounters.

Figure 3.1 shows estimates of Tr at r = rm in a sample of early-type (elliptical
and lenticular) galaxies. The stellar mass in equation (3.2) was set to M�, the
mass of the Sun, which is a reasonable guess for the typical mass in old stellar
populations (table 7.1). There are well-defined trends of Tr(rm) with spheroid
luminosity L:

Tr(rm) ≈ 3.8 × 109

(
L

109 L�

)3.0

yr, (3.4)

with bulge central velocity dispersion σ :

Tr(rm) ≈ 1.2 × 1011

(
σ

100 km s−1

)7.47

yr, (3.5)
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and with SBH mass:

Tr(rm) ≈ 8.0 × 109

(
M•

106M�

)1.54

yr. (3.6)

The mean relaxation time at rm drops below 1010 yr for spheroids fainter than
∼109 L�, a little fainter than the bulge of the Milky Way. Relaxation times in the
nuclei of brighter galaxies—or equivalently, galaxies with SBH masses greater than
∼107M�—are probably always longer than 10 Gyr.

Figure 3.1 suggests a distinction between collisionless nuclei, which have
Tr(rm) >∼ 1010 yr, and collisional nuclei for which Tr(rm) <∼ 1010 yr. Among galax-
ies with well-determined SBH masses, only the Milky Way comes close to having
a nucleus that is in the “collisional” regime.

The morphology and dynamical state of a collisionless nucleus is constrained
only by the requirement that the stellar phase-space density satisfy Jeans’s theo-
rem (section 3.1.3), that is, that f be constant along orbits. This weak condition
is consistent with a wide variety of possible equilibrium configurations, including
nonaxisymmetric nuclei, and nuclei in which the majority of orbits are chaotic. In a
nucleus with Tr(rm) <∼ 1010 yr, on the other hand, the stellar distribution will have
had time to evolve to a more strongly constrained, collisionally relaxed steady state,
as discussed in chapters 5 and 7.

The collisionless dynamics discussed in this chapter are relevant to the problem
of SBH mass estimation, particularly in galaxies where M• is inferred from the
observed motions of stars. The mass estimation problem is significantly hampered
by our current inability to resolve structure and kinematics on scales much smaller
than rh or rm in galaxies beyond the Local Group. As a result, estimates of M• can
be highly uncertain, or even degenerate.

Throughout this chapter, Newtonian mechanics are assumed. Relativistic effects
on the motion are discussed in chapter 4.

3.1 ORBITS, INTEGRALS, AND STEADY STATES

3.1.1 Basic concepts

Consider a nucleus that contains distributed matter in the form of stars, stellar rem-
nants, dark matter, etc., and possibly also a massive black hole. Assume further-
more that the granularity in the distributed component is sufficiently small that the
gravitational potential�(x, t) can be approximated as a smoothly varying function
of position and time.

Focus attention on one component of the distributed mass; call these objects
“stars.” We define the distribution function of the stars, f (x, v, t), such that the
number of stars at time t within the phase-space volume element dx dv, centered
at (x, v), is f (x, v, t)dx dv. Evidently, f is the density of stars in phase space,
and it will often be referred to as such. If the stellar trajectories are smooth and



60 CHAPTER 3

continuous, f obeys a continuity equation:

Df

Dt
= ∂f

∂t
+

∑
i

vi
∂f

∂xi
+

∑
i

ai
∂f

∂vi
= 0, (3.7)

where ai is the acceleration in the ith coordinate direction. Equation (3.7) is called
the collisionless Boltzmann equation, and it states simply that the phase-space
density is conserved following the flow. In vector notation,

∂f

∂t
+ v · ∇f − ∇� · ∂f

∂v
= 0, (3.8)

where the accelerations have been written in terms of the potential as

a = −∇�. (3.9)

In a steady state (∂f/∂t = 0), the phase-space density is the same, at all times,
at any phase-space point. Since equation (3.7) says that the value of f is “carried
along” with the flow, a steady state demands that f have the same value, at any
given time, at every point along a trajectory. The condition ∂f/∂t = 0 is therefore
equivalent to the statement that f is constant along trajectories. A steady state also
implies ∂�/∂t = 0; hence these trajectories are just the orbits defined by the time-
independent potential �(x).

The requirement that f be constant along orbits does not imply anything spe-
cial about the character of the motion in the potential �(x). At one extreme, the
motion could be essentially random, with every trajectory moving chaotically over
the phase-space volume enclosed by an energy surface �(x) ≤ E0. A steady state
would then demand a constant f = f0(E0) within every such region. At the other
extreme, orbits could behave very regularly, remaining confined to small parts of
the energy surface for all times. In this case, a steady-state f could have a different
value in each distinct piece of the energy surface.

The generic case lies somewhere between these two extremes. An important dis-
tinction can be made between motion that is regular or integrable and motion
that is chaotic or stochastic. Regular motion is defined as motion that respects at
least Ndof isolating integrals of the motion, where Ndof is the number of degrees
of freedom (d.o.f.) of the motion—in the present context, Ndof = 3, the number of
spatial dimensions. An integral of motion is any function I (x, v) of the phase-space
coordinates that is constant along an orbit; isolating integrals are those that—in
some transformed coordinate system (p, q)—make the Hamiltonian independent
of one of the “velocity” coordinates pi , so that dqi/dt = ∂H/∂pi = f (qi) can be
solved by quadratures. Each additional isolating integral reduces by one the dimen-
sionality of the phase-space volume traversed by an orbit.

Isolating integrals are often associated with symmetries in the potential. The
following three classes of potential exhibit a high degree of symmetry, and the
motion in them always respects at least one isolating integral in addition to the
energy:

1. The Kepler potential, �(r) = −GM•/r . This is the (Newtonian) potential of
a point massM• fixed at the origin. As is well known (and discussed in detail
in chapter 4), all trajectories respect five isolating integrals, which can be
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identified with the classical, or Keplerian, orbital elements. In configuration
space, bound orbits (E < 0) take the form of ellipses with one focus at the
origin.

2. Spherical potentials, �(x) = �(r). Four isolating integrals exist: the energy
and the three components of the angular momentum. Expressing these per
unit mass,

E = 1

2
v2 +�(r), L = x × v. (3.10)

An orbit defined by a given (E,L) is restricted to a planar annulus in config-
uration space.

3. Axisymmetric potentials, �(x) = �(�, z) where � 2 = x2 + y2 and the
symmetry axis is parallel to z. Two isolating integrals exist for every orbit:
the energy and the component Lz of the angular momentum parallel to the
z-axis. Orbits in axisymmetric potentials often exhibit a third integral; in con-
figuration space, such orbits typically resemble tori that surround the z-axis.
Low-Lz orbits may lack a third integral, particularly if the central force is
steeply rising. Such orbits are still approximately toroidal in shape due to the
conservation of Lz .

3.1.2 Action-angle variables

Regular orbits—orbits that respect three or more isolating integrals—are quasi-
periodic or conditionally periodic: the dependence of the coordinates and veloci-
ties on time can be expressed as

x(t)=
∞∑
k=1

Xk exp [i (lkν1 +mkν2 + nkν3) t] , (3.11a)

v(t)=
∞∑
k=1

V k exp [i (lkν1 +mkν2 + nkν3) t] , (3.11b)

with {lk, mk, nk} integers. The Fourier transform of x(t) or v(t) for a regular orbit
will therefore consist of a set of spikes at discrete frequencies νk = lkν1 +mkν2 +
nkν3 that are linear combinations of the fundamental frequencies {ν1, ν2, ν3} for
that orbit. Each regular orbit has its own set of fundamental frequencies, and in
general, the three νi for a given orbit are distinct.

Using Hamilton–Jacobi theory, it can be shown [59] that quasiperiodic motion is
always derivable from a Hamiltonian that is “cyclic in”—that is, independent of—
the coordinate variables, wi , if the latter are defined in a particular way. For this
special choice of thewi , Hamilton’s equations imply motion that is very simple: the
coordinate variables increase linearly with time, and the conjugate momentum vari-
ables are conserved. The special set of canonically conjugate variables for which
the motion has this simple representation is called the action-angle variables.
The action (i.e., momentum) variables are commonly written as Ji , and the angle
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J2 J1

θ2 θ1

Figure 3.2 Invariant torus defining the motion of a regular orbit in a two-dimensional poten-
tial. The torus is determined by the values of the actions J1 and J2; the position
of the trajectory on the torus is defined by the angles θ1 and θ2, which increase
linearly with time, θi = νi t + θ 0

i .

(i.e., coordinate) variables as θi . In terms of {Ji, θi}, the equations of motion are

Ji = constant, (3.12a)

θi = νit + θ0
i , νi = ∂H

∂Ji
, i = 1, . . . , N. (3.12b)

The frequencies νi are just the fundamental frequencies that appear in equa-
tion (3.11), and the amplitudes {Xk,V k} in that equation are functions only of J .

The motion described by equations (3.12) can be said to lie on a “torus”
(figure 3.2). In dynamics, one speaks most often of the invariant torus associ-
ated with a regular orbit—invariant, since a trajectory that lies on a torus at any
time will remain on it forever. The first d.o.f. is represented by the angle θ1 along
a circle of radius J1. The second d.o.f. is included by adding the angle θ2 at right
angles to θ1, forming a “2-torus” whose second dimension is J2; and similarly for
the third d.o.f. The period of oscillation about each dimension of the torus is given
by 2π/νi .

As noted above, the dimensionality of a regular orbit is reduced by one for every
additional integral that it respects: a regular orbit moves on a torus of dimension
(6 − Nint) where Nint ≥ 3 is the number of isolating integrals. More trivially, a
reduction of dimensionality also occurs for any regular orbit whose fundamental
frequencies happen to satisfy a commensurability condition:

m1ν1 +m2ν2 +m3ν3 = 0 (3.13)

with the mi integers (not all of which are zero). These resonant orbits (figure 3.3)
are dense in the phase space, in the same sense that the rational numbers are dense
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Figure 3.3 Illustrating resonant tori, i.e., orbits that satisfy a commensurability condition
like equation (3.13) [377]. The top image shows a two-dimensional torus, plotted
as a square with identified edges. The trajectory satisfies a 2:1 resonance between
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Figure 3.3 Continued. the fundamental frequencies, ν1 − 2ν2 = 0. The trajectory repeats
after one rotation in θ1 and two rotations in θ2. The corresponding orbit is closed
in configuration space and confined to a one-dimensional curve. The bottom im-
age illustrates a three-dimensional torus, represented as a cube with identified
sides. The shaded region is covered densely by a resonant trajectory for which
2ν1 + ν2 − 2ν3 = 0. This trajectory is not closed, but it is restricted by the
resonance condition to a two-dimensional subset of the torus. The orbit in con-
figuration space is thin, i.e., confined to a membrane.

in the space of real numbers. However, a commensurability of very high order leads
to motion that is, for practical purposes, incommensurable.

If it should happen that a regular trajectory satisfies two independent commen-
surability conditions, the motion is reduced in dimensionality yet again, to a one-
dimensional curve—a closed orbit.1 One expects the set of orbits satisfying two
commensurability conditions to be smaller than the set satisfying just one; in other
words, that thin orbits should be more common than closed orbits. Exceptions to
this rule occur in potentials for which there is global commensurability: for in-
stance, in which all orbits are closed. The Kepler potential is an example; another
is the potential of a uniform-density sphere, in which all orbits are ellipses centered
on the origin.

Action-angle variables are useful primarily as a starting point for perturbation
theory. In the case of perturbed Keplerian motion, a useful set of action-angle vari-
ables are the “Delaunay variables” defined in chapter 4. The Delaunay variables
can be expressed fairly simply in terms of the Cartesian coordinates and velocities,
or in terms of the Keplerian elements of the “osculating ellipse,” the Keplerian orbit
that is tangent to the instantaneous trajectory.

But in practice, the relation between the action-angle variables and the Cartesian
variables is rarely analytic. The process of determining the maps {x, v} ↔ {J , θ}
is called torus construction. There are a number of contexts in which it is useful
to have expressions, analytic or otherwise, for the {J , θ}. One example is when
calculating the response of orbits to slow changes in the potential, which leave the
actions unchanged [59]. Another is the behavior of weakly chaotic orbits, which
may be approximated as regular orbits that slowly diffuse from one torus to an-
other. A third example is galaxy modeling, where regular orbits are most efficiently
represented and stored via the coordinates that define their tori.

Even in potentials that are not globally integrable, regular orbits may still exist;
indeed these are the orbits for which torus construction machinery is most useful.
One expects that for a regular orbit in a nonintegrable potential, a canonical trans-
formation {x, v} → {J , θ} can be found such that

J̇i = 0, θ̇i = �i, i = 1, . . . , Ndof. (3.14)

However, there is no guarantee that the full Hamiltonian will be expressible as a
continuous function of the Ji . In general, the maps {x, v} ↔ {J , θ} will be different

1In the galaxy dynamics literature, many authors do not distinguish between resonant and closed orbits;
in other words, they implicitly assume that resonant orbits are closed.
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for each orbit and will not exist for those trajectories that do not respectN isolating
integrals.

Two general approaches to the torus construction problem have been devel-
oped. So-called trajectory-following algorithms [418, 58] are based on Fourier
decomposition of the numerically integrated trajectories, while iterative approaches
[82, 447] begin from some initial guess for x(θ), then iterate via Hamilton’s equa-
tions with the requirement that the θi increase linearly with time. We discuss the
two approaches briefly here; they are to a large degree complementary.

3.1.2.1 Trajectory-following approaches

The Fourier decomposition of a quasiperiodic orbit, equation (3.11), yields a dis-
crete frequency spectrum. The precise form of this spectrum depends on the coor-
dinates in which the orbit is integrated, but certain of its properties are invariant,
including the N fundamental frequencies νi from which every line is made up,2

νk = lkν1 + mkν2 + nkν3. Typically the strongest line in a spectrum lies at one of
the fundamental frequencies; once the νi have been identified, the integer vectors
(lk,mk, nk) corresponding to every line νk are uniquely defined, to within compu-
tational uncertainties [47]. Approximations to the actions can then be computed
using Percival’s formulas [418]; for example, the action associated with θ1 in a 3
d.o.f. system is

J1 =
∑
k

lk (lkν1 +mkν2 + nkν3) |Xk|2. (3.15)

Finally, the maps θ → x are obtained by making the substitution νit → θi in the
spectrum; for example,

x(t)=
∑
k

Xk(J ) exp [i (lkν1 +mkν2 + nkν3) t]

=
∑
k

Xk(J ) exp [i (lkθ1 +mkθ2 + nkθ3)]

= x(θ1, θ2, θ3). (3.16)

Trajectory-following algorithms are easily automated; for instance, integer pro-
gramming can be used to recover the vectors (lk,mk, nk) [528].

Since Fourier techniques focus on the frequency domain, they are particularly
well suited to identifying resonances and studying the effect of resonances on the
structure of phase space. Resonant tori are places where perturbation expansions
of integrable systems break down, due to the “problem of small denominators”
[320]. In “perturbed” (i.e., nonintegrable) potentials, one expects stable resonant
tori to generate finite regions of regular motion and unstable resonant tori to give
rise to chaotic regions. Trajectory-following algorithms allow one to construct a
frequency map of the phase space: a plot of the ratios of the fundamental frequen-
cies (ν1/ν3, ν2/ν3) for a large a set of orbits selected from a uniform grid in initial

2This statement ignores the fact that any linear combination of fundamental frequencies can also be
defined as a fundamental frequency.
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condition space [308]. Resonances appear on the frequency map as lines, either
densely filled lines in the case of stable resonances, or gaps in the case of unstable
resonances. Examples of frequency maps constructed from galactic potentials are
presented in sections 3.5 and 6.2.2.

In constructing a frequency map, one is applying the torus construction machin-
ery to orbits not all of which are restricted to tori. But many chaotic orbits have
properties similar to those of regular orbits, at least for some restricted time. The
frequency spectrum of a weakly chaotic orbit will typically be close to that of a
regular orbit, with most of the lines well approximated as linear combinations of
three “fundamental frequencies” �i . However, these frequencies will change with
time as the orbit diffuses from one “torus” to another. The diffusion rate can be
measured via quantities like |�1 − �′

1|, the change in a “fundamental frequency”
over two consecutive integration intervals [414, 528]. While such “tori” clearly do
not describe the motion of chaotic orbits over arbitrarily long times, they are useful
for understanding the onset of chaos and its relationship to resonances.

3.1.2.2 Iterative approaches

Iterative approaches to torus construction consist of finding successively better
approximations to the map θ → x given some initial guess x(θ); canonical pertur-
bation theory is a special case, and in fact iterative schemes often reduce to pertur-
bative methods in appropriate limits. Iterative algorithms were first developed [82]
in the context of semiclassical quantization for computing energy levels of bound
molecular systems, and they are still best suited to assigning energies to actions,
H(J ). Most of the other quantities of interest to galactic dynamicists—for exam-
ple, the fundamental frequencies νi—are not recovered with high accuracy by these
algorithms. Iterative schemes also tend to be numerically unstable unless the initial
guess is close to the true solution. On the other hand, iterative algorithms can be
more efficient than trajectory-following methods for orbits that are near resonance.

The equations of motion of a 2 d.o.f. regular orbit,

ẍ = −∂�
∂x
, ÿ = −∂�

∂y
, (3.17)

can be written in the form(
ν1

∂

∂θ1
+ ν2

∂

∂θ2

)2

x= −∂�
∂x
,

(
ν1

∂

∂θ1
+ ν2

∂

∂θ2

)2

y= −∂�
∂y
. (3.18)

If one specifies ν1 and ν2 and treats ∂�/∂x and ∂�/∂y as functions of the θi ,
equations (3.18) can be viewed as nonlinear differential equations for x(θ1, θ2) and
y(θ1, θ2) [447]. Expressing the coordinates as Fourier series in the angle variables,

x(θ) =
∑
n

Xne
in·θ , (3.19)
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and substituting (3.19) into (3.18) gives∑
n

(n · ν)2Xne
in·θ = ∇�. (3.20)

Solutions can be found numerically on a grid of points around the torus by trun-
cating the Fourier series after a finite number of terms and solving for the Xn by
iterating from an initial guess.

Another iterative approach is based on generating functions [82]. One begins by
dividing the Hamiltonian H into separable and nonseparable partsH0 and H1, then
one seeks a generating function S that maps the known tori of H0 into tori of H .
For a generating function of the F2 type [201], one has

J (θ ,J ′) = ∂S

∂θ
, θ ′(θ ,J ′) = ∂S

∂J ′ , (3.21)

where (J , θ) and (J ′, θ ′) are the action-angle variables of H0 and H , respectively.
The generator S is determined, for a specified J ′, by substituting the first of equa-
tions (3.21) into the Hamiltonian and requiring the result to be independent of θ .
One then arrives at H(J ′). A sufficiently general form for S is

S(θ ,J ′) = θ · J ′ − i
∑
n �=0

Sn(J′)ein·θ . (3.22)

Iterative schemes for finding the Sn can be set up that recover the results of first-
order perturbation theory after a single iteration [82]. Having computed the energy
on a grid of J ′ values, one can interpolate to obtain the full Hamiltonian H(J ′). If
the system is not in fact completely integrable, thisH can be rigorously interpreted
as a smooth approximation to the true H [556] and can be taken as the starting
point for secular perturbation theory [265].

The generating function approach is not naturally suited to deriving the other
quantities of interest to galactic dynamicists. For instance, equation (3.21) gives
θ ′(θ) as a derivative of S, but since S must be computed separately for every J ′ its
derivative is likely to be ill conditioned.

I. C. Percival [419] described a variational principle for constructing tori. His
technique has apparently not yet been implemented in the context of galactic
dynamics.

3.1.3 Jeans’s theorem

If all orbits in a galaxy respected three isolating integrals, the condition given above
for a steady state—that f be constant along trajectories—would become

f = f (J1, J2, J3), (3.23)

or equivalently

f = f (E, I2, I3), (3.24)
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where {I2, I3} are the isolating integrals in addition to the energy. In other words,

The phase-space density of a stationary stellar system with a globally
integrable potential can be expressed in terms of the isolating integrals
in that potential.

This is commonly referred to as Jeans’s theorem.
If not all orbits are regular, steady states are still possible (think of a steady-state

gas in which all the trajectories are chaotic), but Jeans’s theorem must be cast into
a more general form:

The phase-space density of a stationary stellar system is constant within
every well-connected region.

A well-connected region is one that cannot be decomposed into two finite regions
such that all trajectories lie, for all time, in either one or the other. Invariant tori
are such regions, but so are the more complex parts of phase space associated with
stochastic trajectories.

Jeans [257] first stated condition (3.24) in the context of motion in axisymmet-
ric potentials, assuming that the motion respected only the two classical integrals
E and Lz . Writing f = f (E,Lz) implies that the phase-space density is con-
stant on hypersurfaces of constant E and Lz . But not all orbits in axisymmetric
potentials are characterized by a third isolating integral, and parts of those hyper-
surfaces are likely to be associated with chaotic trajectories. Assigning a constant
density to such regions—as Jeans (and many others since him) implicitly did by
writing f = f (E,Lz)—thus depends on the more general form of the theorem for
its justification. One could construct axisymmetric models in which the surfaces of
constantE and Lz are not sampled uniformly; for instance, by excluding all chaotic
orbits, or by assigning different densities to different chaotic regions on the same
(E,Lz) hypersurface. Models like these do not appear to have been constructed.3

3.1.4 Mixing

Jeans’s theorem is often assumed to be satisfied in any stellar system that is many
crossing times old. However, Jeans’s theorem begs the question of how f came
to have a constant value throughout the regions of phase space associated with
individual orbits. A set of phase points on a given torus does not evolve toward a
uniform distribution; it simply translates forever, unchanged, around the torus. The
strongest sort of “mixing” that can occur in a fully integrable potential is phase
mixing: points that lie on different, but nearby, tori gradually move apart, due to the
(generally) different orbital frequencies associated with different tori. After many
revolutions, the density of points in such a filament, averaged over a small but
finite phase-space volume (i.e., a volume that intersects different tori)—the coarse-
grained phase-space density—will be independent of position on the torus, even
though the fine-grained f never reaches a steady state. Stochastic trajectories are
more obliging in this regard: their extreme sensitivity to initial conditions implies

3At least, not by theorists. There is no reason why real galaxies with such properties should not exist.
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Figure 3.4 Schematic representations of phase mixing (top) and chaotic mixing (bottom)
[376].

a stronger sort of mixing, chaotic mixing, in which a small patch of phase space
evolves so as to uniformly cover, at a later time, a much larger region (figure 3.4).

Phase mixing is an intrinsically slow process—in fact it has no well-defined
timescale. The rate at which a group of trajectories shears depends on the range
of orbital frequencies in the group. If the maximum and minimum frequencies
are �1 and �2, respectively, we expect phase mixing to take place in a time of
order |�1 −�2|−1. This time is never less than a dynamical time and can be much
longer. For instance, near the half-mass radius re of a de Vaucouleurs-law galaxy,
the phase mixing time 2π/(�1 − �2) for two stars on circular orbits with sepa-
ration �r is roughly 0.85/(�r/re) times the orbital period. Inhomogeneities on a
scale of 0.1re—roughly 100 pc in a real galaxy—damp out over ∼10 dynamical
times, and shorter length scales reach equilibrium even more slowly. Chaotic mix-
ing, on the other hand, has a well-defined timescale, roughly the Lyapunov time,
the mean time associated with the exponential divergence of initially nearby trajec-
tories. The chaotic mixing time is often short, of order the crossing time or even
less [270, 376].
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These two sorts of mixing are idealized models for what probably happens in
real stellar systems. Galaxy formation is a chaotic process, characterized by density
inhomogeneities with a wide spectrum of masses, and by a gravitational potential
that changes substantially on timescales of single orbital periods. These properties
of the potential would have promoted mixing by providing enhanced gravitational
perturbations, at least until such a time as the mixing process itself managed to
smooth out the lumps. The oxymoron “violent relaxation” [330] is popularly used
to describe this poorly understood phenomenon.

In any case, when applying Jeans’s theorem, it is commonplace to make no dis-
tinction between fine-grained and coarse-grained f ’s; the effects of incomplete
mixing are simply ignored and Jeans’s theorem is assumed, without real justifi-
cation, to be a statement about the fine-grained f . Unless otherwise noted, that
practice will be followed here.4

3.1.5 Self-consistency

In a steady state, the density of stars whose distribution function is f is

n(x) =
∫ ∫ ∫

f (x, v) dv. (3.25)

In the special case that all orbits respect three isolating integrals, this becomes

n(x) =
∫ ∫ ∫

f (E, I2, I3)
∂(v1, v2, v3)

∂(E, I2, I3)
dE dI2 dI3. (3.26)

In the more general case of a nonintegrable potential, a similar relation holds,
except that f is allowed to have the more complicated form corresponding to a
constant value in every well-connected phase-space region. In all of these cases,
the region of integration extends over the entire velocity-space volume traversed by
orbits that pass through point x.

The configuration-space density n(x) in equations (3.25) and (3.26) need not
bear any relation to the density of the matter that generates the gravitational poten-
tial. Indeed, in a nucleus containing an SBH, only a small fraction of the gravita-
tional force may come from the stars. However, one sometimes seeks a steady-state
model that describes a population of stars, under the assumption that the gravita-
tional potential in which the stars move is generated (at least in part) by the stars
themselves. This is the self-consistency problem. For instance, in a nucleus con-
taining a central SBH and stars with number density n(x) and mass m�, one can
write

�(x)= −GM•
r

+��(x), (3.27a)

∇2�� = 4πGm�n(x) = 4πGm�

∫
f dv, (3.27b)

where f is the phase-space density of the stars; the second equation, Poisson’s
equation, relates �� to the stellar mass density.

4Differences between the fine-grained and coarse-grained f are important in loss-cone theory; see
section 6.1.2.
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A useful way of thinking about the self-consistency problem is to imagine that
the gravitational potential in equation (3.27) is known. Each orbit then generates
a “partial density” ni(x), which can be computed by integrating a trajectory for a
long time and computing the time-averaged density at any point in configuration
space.5 For self-consistency, the total density must be representable as a superpo-
sition of those partial densities; that is, n(x) = ∑

i Cini(x), Ci ≥ 0. This may or
may not be possible [482]. For instance, if most of the orbits are stochastic, their
time-averaged shapes will be similar to the shapes of equipotential surfaces; since
the latter are generally rounder than the equidensity surfaces, no self-consistent
solution may exist. On the other hand, if most orbits respect three or more inte-
grals, many different orbital “shapes” will be available, increasing the chance that
self-consistent solutions can be found.

3.1.6 Modeling and the Jeans equations

In the context of galactic nuclei, a common goal of dynamical modeling is to
determine the gravitational potential, and hence the mass, given observations of
a sample of stars that are moving in that potential. We call this the potential esti-
mation problem; it is a subset of the dynamical inverse problem, the problem of
jointly determining f and � for a stellar system given kinematical and positional
data of its member stars.

In exceptionally favorable cases, one can hope to measure the accelerations of
individual stars. This method has been applied, with great success, to determination
of the mass of the Galactic center SBH (chapter 4). However, in most galaxies,
the best one can hope to do is to measure some set of moments of the velocity
distribution determined by large samples of stars. The velocity moments can be
defined generally as

n vαx v
β
y v

γ
z =

∫
f (x, v) vαx v

β
y v

γ
z dv. (3.28)

For instance, if z is defined as the distance along the line of sight (l.o.s.), the lowest
l.o.s. velocity moments (α = β = 0) are

n =
∫
f dv, nvz =

∫
f vz dv, nσ

2
z =

∫
f (vz − vz)

2 dv, (3.29)

which respectively define the number density, mean l.o.s. velocity vz , and l.o.s.
velocity dispersion σz . The number density is accessible via number counts or mea-
surement of the distribution of starlight, while the velocity moments are accessible,
in principle, via Doppler-broadened stellar spectra. Since f will in general be a
nonlinear function of the isolating integrals, equations like (3.28) will generally
be nonlinear in their dependence on �. One consequence is that the existence and
uniqueness of �, given kinematical data of a certain type, can be difficult to prove.

When modeling a galaxy in terms of velocity moments, it is often convenient
to work with moments of the collisionless Boltzmann equation, rather than with

5The ergodic theorem, which applies very generally to regular and stochastic motion, guarantees the
equivalence of time-averaged and steady-state densities [320].
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integral expressions like equation (3.28). The Jeans equations are derived by tak-
ing progressively higher moments over velocity of equation (3.8).6 The simplest
Jeans equation is obtained by integrating equation (3.8) over velocities; expressed
in Cartesian coordinates, the result is

∂n

∂t
+

3∑
i=1

∂ (nvi)

∂xi
= 0. (3.30)

Equation (3.30) is just a conservation equation for stars; it is trivially satisfied in
a steady-state system in which v = 0. Multiplying equation (3.8) by vj and again
integrating over all velocities, one finds the Jeans equation of next higher order:

∂
(
nvj

)
∂t

+
3∑
i=1

∂
(
nvivj

)
∂xi

+ n
∂�

∂xj
= 0, (3.31)

where

nvivj =
∫
vivjf dv. (3.32)

Equations like these relate � to moments of f in a straightforward way; the prob-
lem is that one can rarely measure all of the moments that appear in the Jeans
equations, and as a result, � will be underdetermined, unless ad hoc assumptions
are made about the unobserved moments or about the functional form of f . In prac-
tice, the degeneracy in � is often quite severe, as discussed in more detail below.

3.2 SPHERICAL NUCLEI

The integrals of motion in a spherically symmetric potential are the energy E and
the three components of the angular momentum L. The most general form of f
that describes a time-independent distribution of stars in a spherical potential is

f = f (E,L) = f
[
v2/2 +�(r), x × v

]
. (3.33)

Because this f depends in different ways on the different components of the veloc-
ity, it implies a distribution of velocities that is anisotropic, in general, at any r . In
addition, since f can depend on the orientation of L, equation (3.33) can describe
a population with a nonspherical mass distribution; for instance, a disk.

When solving the self-consistency problem in spherical symmetry, one wants to
choose a form for f that implies n = n(r). For instance, f (E,L) can be assumed
to have the restricted form

f = f (E,L2) = f
[
v2/2 +�(r), r2v2

t

] = f (r, vr , vt ), (3.34)

with {vr, vt } the components of the velocity parallel and orthogonal to a radius
vector. This form for f implies no streaming motions (i.e., v = 0) and the first Jeans
equation (3.30), is trivially satisfied. The second Jeans equation (3.31) becomes

d
(
nσ 2

r

)
dr

+ 2n

r

(
σ 2
r − σ 2

t

) + n
d�

dr
= 0, (3.35)

6The Jeans equations can also be derived directly from expressions like (3.28) [117].
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where

σ 2
r = v2

r , σ 2
t = v2

θ = v2
ϕ. (3.36)

One sometimes defines the anisotropy in terms of a parameter β where

β(r) ≡ 1 − σ 2
t

σ 2
r

; (3.37)

evidently −∞ ≤ β ≤ 1. In terms of β, equation (3.35) becomes

d
(
nσ 2

r

)
dr

+ 2nβσ 2
r

r
+ n

d�

dr
= 0 (3.38)

and the potential can be expressed in terms of the mass density ρ(r) = m�n(r) by
solving Poisson’s equation (3.27b):

�(r) = −4πG

r

∫ r

0
ρ(r ′)r ′2dr ′ − 4πG

∫ ∞

r

ρ(r ′)r ′dr ′. (3.39)

A spherical model described by f (E,L2) can be modified into a model that
“rotates” by selectively changing the sign of v for some of the stars, leaving the
density unchanged (“orbit flipping”). Discussion of rotating models is postponed
until the next section on axisymmetric models; unless otherwise noted, the spherical
models discussed in this section are assumed to have v = 0 everywhere.

It is useful to define N(E,L) dE dL as the number of stars with energy and
angular momentum in the intervals dE and dL centered at E and L. The
configuration-space volume accessible to stars of a particular E and L has the form
of a spherical shell, with inner and outer radii equal to r− and r+, the turning points
of the motion; these are the roots of vr = 0 or

0 = 2 [�(r)− E] − L2

r2
. (3.40)

At each radius within this shell, a given E and L corresponds to both positive and
negative values of vr ; we define vr to be positive and double the number of stars in
what follows. Integrating over the shell, the relation between N and f is

N(E,L) dE dL = 2
∫ r+

r−
f (E,L)× 4πr2dr × v2dv × 2π sin θ dθ, (3.41)

where θ is the angle between v and r:

vr = v cos θ, vt = v sin θ, (3.42)

and 0 ≤ θ ≤ π/2. We can write dE = v dv, and since L = rvt = rv sin θ ,

sin θ dθ = vt dL

rvvr
= LdL

r2vvr
. (3.43)

Equation (3.41) then becomes

N(E,L)= 16π2Lf (E,L)

∫ r+

r−

dr

vr
(3.44a)

= 8π2Lf (E,L)P (E,L), (3.44b)

where P(E,L) is the radial period.
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3.2.1 Isotropic models

After a time of order the relaxation time, the velocity distribution in a nonrotating
galactic nucleus is expected to be nearly isotropic. In the spherical geometry, an
isotropic velocity distribution requires

f = f (E) = f
[
v2/2 +�(r)

] = f (r, v). (3.45)

Based on figure 3.1, one expects isotropy to be necessary only in the nuclei of
galaxies with spheroids that are fainter than the Milky Way, that is, galaxies with
nuclear relaxation times shorter than ∼10 Gyr. However, it is common to assume
f = f (E) as a convenient starting point, even in cases where no a priori case for
isotropy can be made.

The relation between n and f for an isotropic population in a spherical potential
is

n(r) = 4π
∫
f (r, v)v2dv = 4π

∫ 0

�(r)

f (E)
√

2 [E −�(r)] dE. (3.46)

Writing n(r) = n(�(r)) = n(�), this equation can be converted into an Abel
integral equation, with solution

f (E) =
√

2

4π2

d

dE

∫ 0

E

d�√
�− E

dn

d�
. (3.47)

Equation (3.47) is Eddington’s formula [128]. While equation (3.47) shows that
f is uniquely determined by n and � in the isotropic case, it does not guarantee
that f will be finite and nonnegative. Indeed, the latter condition requires that∫ 0

E

d�√
�− E

dn

d�

be an increasing function of energy at all E.
An important application of Eddington’s formula is to the case of a power-law

distribution of stars around an SBH. Suppose that n(r) = ρ(r)/m�, with m� the
mass of a single star, and that

n(r) = 3 − γ

2π

M•
m�

1

r3
m

(
r

rm

)−γ
. (3.48)

Recall from chapter 2 that rm is the radius containing a mass in stars equal to twice
M•. Restricting attention to small radii, r � rm, where the contribution to the
gravitational potential from the stars is negligible, the potential is simply � ≈
−GM•/r , and n ∝ (−�)γ . Eddington’s formula then gives

f (E) = 3 − γ

8

√
2

π5

�(γ + 1)

�(γ − 1
2 )

M•
m�

ϕ
3/2
0

(GM•)3

( |E|
ϕ0

)γ−3/2

, (3.49)

where ϕ0 ≡ GM•/rm.
This solution is unphysical for γ ≤ 1/2. Stated differently, an isotropic distribu-

tion of stars in a point-mass potential requires a stellar density that increases faster
than r−1/2 toward the center. The reason is that the low-angular-momentum orbits
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at each energy imply a density that rises at least as fast as r−1/2 as r → 0. The stars
in some galaxies (including, perhaps, the Milky Way) are observed to have flat-
ter density profiles than n ∼ r−1/2 within the SBH influence radius. Achieving a
steady-state stellar distribution in this case requires a depopulation of the eccentric
orbits compared with the isotropic case, hence an anisotropic velocity distribution.

In the same way that we defined N(E,L), we can define N(E), the distribution
of energies, such that N(E) dE is the total number of stars with an energy in the
interval dE centered at E. Clearly,

N(E) dE =
∫

4π r2dr

∫
f (E) 4π v2dv. (3.50)

Since dE = v dv, this becomes

N(E)= 4πf (E)
∫

4π r2v dr

= 4π2p(E)f (E), (3.51)

where7

p(E)= 4
∫ �−1(E)

0
v(r, E) r2dr

= 4
√

2
∫ �−1(E)

0

√
E −�(r) r2dr (3.52)

and �−1(E) is the radius at which �(r) = E. Alternatively, we can derive N(E)
from N(E,L), equation (3.44), after replacing f (E,L) by f (E):

N(E)=
∫ Lc(E)

0
N(E,L) dL (3.53a)

= 8π2f (E)

∫ Lc(E)

0
P(E,L)L dL, (3.53b)

which yields a different (but equivalent) definition of p(E). The period P(E,L) is
a function of only E near the SBH, and it turns out that P(E,L) is typically a weak
function of L at all energies.8 Setting P ≈ P(E), equation (3.53b) can be written
approximately as

N(E)≈ 8π2P(E)f (E)

∫ Lc(E)

0
LdL (3.54a)

≈ 4π2L2
c(E)P (E)f (E), (3.54b)

showing that

N(E,L)dE dL ≈ N(E)dE d(L2/L2
c) (3.55)

7Some authors, e.g., Spitzer [502], omit the factor of 4 from the definition of p(E).
8The “isochrone” model [234] has P = P(E), and its ρ(r) does not differ too strongly from observed
density profiles of giant galaxies.
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and

p(E) ≈ L2
c(E)P (E). (3.56)

.
Continuing with the isotropic case, and defining σ ≡ σr = σt , the Jeans equation

(3.35) becomes

d
(
nσ 2

)
dr

+ n
d�

dr
= 0. (3.57)

Interpreted as a differential equation for nσ 2, the solution is

nσ 2 =
∫ ∞

r

dr ′GM(r
′)n(r ′)
r ′2 , (3.58)

where M(r) = (r2/G)d�/dr is the total mass within r . Typically one does not
observe n or σ directly, but rather their projections along the line of sight. The
projected density, or surface density, is

�(R) =
∫ ∞

−∞
n(z)dz = 2

∫ ∞

R

n(r)r dr√
r2 − R2

, (3.59)

where z defines the distance along the l.o.s. and R is the distance from the pro-
jected center. (We have assumed in writing equation (3.59) that the galaxy is free
from differential absorption.) The l.o.s. velocity dispersion σp is given by a similar
expression: (

�σ 2
p

)
(R) =

∫ ∞

−∞
n(z)σ 2(z)dz = 2

∫ ∞

R

r dr√
r2 − R2

nσ 2. (3.60)

Combining (3.58) and (3.60),(
�σ 2

p

)
(R)= 2G

∫ ∞

R

dr r√
r2 − R2

∫ ∞

r

dr ′n(r ′)M(r ′)
r ′2

= 2G
∫ ∞

R

dr

r2

√
r2 − R2 n(r)M(r) (3.61)

and substituting for �(R) from equation (3.59),

σ 2
p(R) = G

∫ ∞
R
dr r−2

(
r2 − R2

)1/2
n(r)M(r)∫ ∞

R
dr r

(
r2 − R2

)−1/2
n(r)

. (3.62)

This expression gives the line-of-sight, projected velocity dispersion of an isotropic,
spherical, nonrotating stellar system in terms of the mass distributionM(r) and the
number density n(r) of the observed population.

We can apply this formula to the case considered at the start of this subsection: a
power-law distribution of stars, n ∝ r−γ , in the point-mass potential of an SBH of
mass M•. The results are

σ 2(r)= 1

1 + γ

GM•
r

, (3.63a)

σ 2
p(R)=F(γ )

GM•
R

, F(γ ) ≡ 1

2

[
�(γ /2)

]2

�(
γ+3

2 )�(
γ−1

2 )
(γ > 1). (3.63b)
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Not surprisingly, the observed velocity dispersion increases as R−1/2 toward the
SBH. The function F is weakly dependent on γ for γ >∼ 1; for 1.5 ≤ γ ≤ 3.5,
0.18 ≤ F(γ ) ≤ 0.21.

The top panel of figure 3.5 shows the velocity dispersion profile predicted by
equation (3.63b) for stars at the center of the Milky Way, after setting F = 0.2 and
taking several values for M•. The predicted σp falls below the observed
velocity dispersions outside of ∼0.5 pc, suggesting that the stellar motions are
being affected at these radii by the distributed mass [481].

The lower panel of figure 3.5 shows the prediction of equation (3.62) when a
distributed component is added:

M(r) = M• + 4π
∫ r

0
dr ′ r ′2ρ(r ′), (3.64)

with ρ = ρ0(r/r0)
−1. Setting M• = 4.0 × 106M� and varying ρ0, the best fit from

this series of models is obtained for M�(< 1 pc) ≈ 1.1 × 106M�.
Comparisons of models to data like these are useful, but give little sense of

the uniqueness of the fitted parameters. In the isotropic case, equations (3.59)
and (3.60) are both of Abel form and have unique inversions:

n(r)= − 1

π

∫ ∞

r

d�

dR

dR√
R2 − r2

, (3.65a)

(
nσ 2

)
(r)= − 1

π

∫ ∞

r

(
d�σ 2

p

)
dR

dR√
R2 − r2

, (3.65b)

independent of any assumptions about �(r). Having determined n and σ , the po-
tential then follows uniquely from the Jeans equation (3.57) in the form

�(r) = �0 +
∫ ∞

r

1

n

d
(
nσ 2

)
dr

dr, (3.66)

and the distribution function f (E) follows uniquely from n and � via equa-
tion (3.47). It would generally be ill advised to try deriving � and f from
equations like (3.47) and (3.66), since they require a numerical differentiation of
data, and data tend to be noisy and incomplete. However, these equations demon-
strate that—under the spherical isotropic assumption—one can in principle infer
the gravitational potential of a nucleus, and the mass of the SBH, in a model-
independent way from the lowest observable velocity moments.

3.2.2 Anisotropic models and the problem of degeneracy

Unfortunately, the uniqueness of the solutions in the spherical isotropic case is
an exception. Allowing the velocity distribution to have the more general form
f = f (E,L2)means that the Jeans equation will contain two velocity dispersions,
σr and σt , too many to be determined uniquely from a single observed velocity
dispersion profile σp(R). And since the distribution function now depends on two
variables (E,L2), it cannot be derived uniquely from functions of one variable as
in Eddington’s formula (3.47).
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Figure 3.5 A spherical, isotropic model for the center of the Milky Way [481]. Points are
measured velocities of late-type stars from a sample of proper motions. Open
circles are binned estimates of the one-dimensional velocity dispersion based on
the plotted data points. The upper panel shows predictions of equation (3.63b)
for three values of the SBH mass, M• = (3, 4, 5) × 106 M�. In the bottom
panel, equation (3.62) has been used to compute the projected velocity disper-
sion profile, assuming an enclosed mass of the form given by equation (3.64)
withM• = 4×106 M�; the lines correspond to different values of the distributed
mass within one parsec of the SBH, from 2 × 105 M� to 5 × 106 M�. The thick
line has M�(< 1 pc) = 1.25 × 106 M�.
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In terms of (vr, vt ), the components of the velocity parallel and orthogonal to a
radius vector, the velocity space volume element is

dv = 2πvt dvt dvr = 2πvt
∂ (vr , vt )

∂ (E,L)
dE dL = 2π

r2vr
dE dL2. (3.67)

The configuration-space density is given in terms of f by

n(r) = 2π

r2

∫ 0

E

dE

∫ 2r2E−�(r)

0
dL2 f (E,L2)√

2 [E −�(r)] − L2/r2
, (3.68)

and the (one-dimensional) velocity dispersions in the directions parallel and per-
pendicular to the radius vector are

n(r)σ 2
r (r)=

2π

r2

∫ 0

E

dE

∫ 2r2E−�(r)

0
dL2f (E,L2)

√
2 [E −�(r)] − L2/r2,

(3.69a)

n(r)σ 2
t (r)=

π

r2

∫ 0

E

dE

∫ 2r2E−�(r)

0
dL2L

2

r2

f (E,L2)√
2 [E −�(r)] − L2/r2

. (3.69b)

In the spherical geometry, n(r) will still be uniquely recoverable from a measured
�(R). But the measured velocity dispersion profile, σp(R), will contain contribu-
tions from both σr(r) and σt (r). Unless more information is available than �(R)
and σp(R), many solutions for f and� (and many values for the mass of the SBH)
will be equally consistent with the data. This situation is sometimes referred to as
mass-anisotropy degeneracy, and it accounts for much of the systematic uncer-
tainty associated with estimates of M• in galactic nuclei based on stellar kinemati-
cal data.

The degeneracy is most easily illustrated using the Jeans equations [46, 117].
Suppose one observes the projected density and velocity dispersion profiles �(R)
and σp(R) of the stars in a spherical, nonrotating galaxy. The spatial density n(r) is
obtained from �(R) via equation (3.65a). The relation between the l.o.s. velocity
dispersion σp(R), and the two velocity dispersions {σr, σt } is

�σ 2
p =

∫ ∞

−∞
n(vr cosϕ − vθ sinϕ)2dz (3.70a)

= 2
∫ ∞

R

(
σ 2
r cos2 ϕ + σ 2

t sin2 ϕ
) n r dr√

r2 − R2
(3.70b)

= 2
∫ ∞

R

(
1 − R2

r2
β

)
n σ 2

r r dr√
r2 − R2

, (3.70c)

where sinϕ = R/r . This equation has a known left-hand side, but the right-hand
side contains two unknown functions (σr, β). We can formally remove the indeter-
minacy by assuming for the moment that the potential�(r) is known and using the
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Jeans equation (3.38) to write β in terms of �. The result is

�σ 2
p −R2

∫ ∞

R

d�

dr

n dr√
r2 − R2

=

2
∫ ∞

R

nσ 2
r r dr√
r2 − R2

+ R2
∫ ∞

R

d
(
nσ 2

r

)
dr

dr√
r2 − R2

. (3.71)

We denote the left-hand side by

g(y) = (
�σ 2

p

)
(y)− y

∫ ∞

√
y

d�

dr

n dr√
r2 − y

, y ≡ R2, (3.72)

which is (by assumption) a known function. Writing x ≡ r2, equation (3.71) then
becomes

g(y)=
∫ ∞

y

nσ 2
r

dx√
x − y

+ y

∫ ∞

y

d
(
nσ 2

r

)
dx

dx√
x − y

(3.73a)

= d

dy

(
y

∫ ∞

y

nσ 2
r

dx√
x − y

)
. (3.73b)

This equation is easily integrated:∫ y

y0

g(y ′)dy ′ = y

∫ ∞

y

nσ 2
r

dx√
x − y

, (3.74)

where y0 is an integration constant; regularity of nσ 2
r at r = 0 dictates y0 = 0.

Defining G(y) ≡ ∫ y
0 g(y

′)dy ′—also a known function—equation (3.74) can be
inverted to give (

nσ 2
r

)
(x) = − 1

π

∫ ∞

x

d

dy

[
G(y)

y

]
dy√
y − x

. (3.75)

Returning to the original variables {r, R}, this becomes(
nσ 2

r

)
(r)= G(∞)

2r3
− 2

πr3

∫ ∞

r

[
r√

R2 − r2
+ cos−1

( r
R

)]
g(R)R dR

= G(∞)

2r3

− 2

πr3

∫ ∞

r

[
r√

R2 − r2
+ cos−1

( r
R

)] (
� σ 2

p

)
(R)R dR

+ 2

3r3

∫ ∞

r

(
r ′3 + r3

2

)
n
d�

dr ′ dr
′. (3.76)

Once nσ 2
r has been computed from equation (3.76), the tangential velocity disper-

sion follows from the Jeans equation (3.38):

σ 2
t = σ 2

r + r

2

[
d�

dr
+ 1

n

d
(
nσ 2

r

)
dr

]
. (3.77)

As r → ∞ (or equivalently, at the edge of a finite system), these equations imply

nσ 2
r → G(∞)

2r3
, nσ 2

t → −G(∞)

4r3
. (3.78)
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UnlessG(∞) = 0, then either σ 2
r or σ 2

t must become negative at large radii, which
is unphysical. Thus we require

G(∞) =
∫ ∞

0
g(y)dy = 0 (3.79)

or, using equation (3.72),

3
∫ ∞

0
�(R) σ 2

p(R)R dR = 2
∫ ∞

0
n(r)

d�

dr
r3dr. (3.80)

This is an expression of the virial theorem [201]: the left-hand side is the mean
square stellar velocity, and the right-hand side is 〈x · ∇�〉, or twice the virial of
Clausius. Equation (3.80) sets the normalization of the potential.

According to equations (3.76) and (3.77), any assumed functional form for�(r)
that respects the virial condition (3.80) yields a mathematically well-defined solu-
tion for σr(r) and σt (r), that is, a solution that satisfies the Jeans equation (3.38)
and that generates the observed number density and velocity dispersion profiles
in projection. The degeneracy of the potential estimation problem in the spherical
geometry is a consequence of this result.

In fact the situation is not quite as bad as this. An additional constraint on �
exists, due to the requirement that the derived σ 2

r and σ 2
t be everywhere non-

negative. Only some choices for �(r) will satisfy the nonnegativity constraint.
This means that, if one characterizes the potential via some set of parameters, one
expects to find a finite (rather than unbounded) range of parameter values that are
equally consistent with the data.

A common parametrization is

�(r) = −GM•
r

+
(
M

L

)
�L(r), (3.81)

whereM/L is the mass-to-light ratio of the stars, assumed here to be independent
of radius, and �L is the “potential” corresponding to the stellar luminosity density
j (r):

�L(r) = −4πG

(
1

r

∫ r

0
j (r ′)r ′2dr ′ +

∫ ∞

r

j (r ′)r ′dr ′
)
. (3.82)

Denoting the projected luminosity density as �L(R), the virial theorem (3.80)
requires

M

L
= 3

∫ ∞
0 dR R�L(R)σp(R)

2 − 2GM•
∫ ∞

0 dr r j (r)

8πG
∫ ∞

0 dr r j (r)
∫ r

0 dr
′r ′2j (r ′)

. (3.83)

Given an assumed M•, equation (3.83) allows M/L to be computed from the data.
The set of allowed M• values is then determined, at least in principle, by comput-
ing the functions {σr, σt } from equations (3.76) and (3.77) and rejecting values of
(M•,M/L) that imply σ 2

r < 0 and/or σ 2
t < 0.

Figure 3.6 shows the results of carrying out this program using data from the
giant elliptical galaxy M87, the dominant galaxy in the Virgo Galaxy Cluster [370].
M87 is an illustrative case, since the value of M• is reasonably well constrained
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Figure 3.6 Mass-anisotropy degeneracy in stellar dynamical models of the giant elliptical
galaxy M87 [370]. The variations of σr and σt with radius were derived from the
observed surface density and line-of-sight velocity dispersion profiles assuming
the expression (3.81) for the gravitational potential. Three different values were
chosen for the mass of the SBH: (a) M• = 1.0 × 109 M�, rh ≈ 0′′.3; (b) M• =
2.4×109 M�, rh ≈ 0′′.8; (c)M• = 3.8×109 M�, rh ≈ 1′′.3. On the left, thick lines
are σr and thin lines are σt ; dashed lines show 90% confidence intervals. Each
of the three models produces the same projected profiles �(R), σp(R). Models
with M• >∼ 1 × 109 M� are characterized by tangential anisotropy, σt > σr , at
r <∼ rh.
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based on the kinematics of a parsec-scale gas disk: M• = 3.4 ± 1.0 × 109M�
[332]. Furthermore, at a distance of only ∼16 Mpc, M87 is close enough that the
SBH sphere of influence is well resolved: adopting σ = 330 km s−1 for the stellar
velocity dispersion gives rh ≡ GM•/σ 2 ≈ 120 pc, corresponding to an angular
size of ∼1′′.5, substantially greater than the ∼0′′.5 resolution of the data on which
the modeling is based [538]. Nevertheless, figure 3.6 shows that values for M• in
the range 1.0 × 109 ≤ M•/M� ≤ 3.9 × 109 are equally consistent with the stellar
kinematical data, and indeed setting M• = 0 also works [46].

As this example suggests, some of the degeneracy in stellar dynamical estimates
of M• arises from the fact that a central rise in velocities can be due either to the
gravitational force from a central point mass, or to the force from a distributed
mass, as long as orbits that pass near the center also feel the force from the distrib-
uted mass. Unless the spatial resolution of the velocity data substantially exceeds
rh, the Keplerian rise in velocities that is characteristic of a central point mass,
equation (3.63b), will not be observed, and it will not be clear whether the stel-
lar motions measured within the central resolution elements are attributable to the
presence of an SBH, to the stellar mass, or to a combination of the two.

The degree of degeneracy to be expected in estimates of M• will depend on the
size rres of the resolved region compared with the radius rh of the SBH sphere of
influence. Writing θres for the smallest angular separation that can be resolved, we
can define a “figure of merit”R such that

R≡ rh

rres
= GM•

σ 2

1

θresD

≈ 2.2

(
M•

108M�

)(
σ

200 km s−1

)−2(
D

10 Mpc

)−1(
θres

0′′.1

)−1

(3.84)

where, D is the distance to the galaxy. One expects large values of R to be associ-
ated with a small degree of degeneracy in M•. In the case of the M87 stellar data
plotted in figure 3.6, θres ≈ 0′′.5 and R ≈ 3; since the SBH mass is essentially
unconstrained by these data, one concludes that even values of R greater than one
may not be sufficient to remove the degeneracy. Recall that in chapter 2, a resolu-
tion of ∼0.1rh was suggested as the critical value for an SBH to be detected; the
corresponding figure of merit isR = 10.

In practice, other factors will affect the degree to which M• can be recovered
from kinematical data, including the steepness of the stellar density profile, the
signal-to-noise ratio of the stellar spectra, etc. We return to this question in subse-
quent sections of this chapter, where the results of axisymmetric modeling includ-
ing rotation are discussed. But before doing so, we discuss two sorts of additional
information that can help to reduce the degeneracy in stellar dynamical estimates
of the nuclear mass:
Proper motions. If the two velocity dispersion profiles σr(r), σt (r) were known
for a spherical galaxy, the Jeans equation (3.35) would yield a unique solution for
�(r). This can be achieved via measurement of proper motion velocities of a set
of stars [316]. Proper motion is defined as the change in apparent position of a
star over time due to its motion relative to the Earth. If the distance to the star is
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known, the two components {�x,�y} of its proper motion can be converted into
the components of its velocity parallel to the plane of the sky. Knowledge of the
Earth’s motion relative to the frame of the galaxy then allows two components of
the star’s velocity with respect to the galaxy to be determined.

Let vR and vT be the components of this velocity in directions parallel to, and
perpendicular to, the radius vector rp on the plane of the sky; rp = 0 is the apparent
center of the galaxy (and, presumably, the location of the SBH). Ignoring rotation,
we can write

v2
R = σ 2

r sin2 ϕ + σ 2
t cos2 ϕ, v2

T = σ 2
t , (3.85)

with sinϕ = R/r as above. The velocity dispersion perpendicular to rp, weighted
along the l.o.s. by the stellar density, is

�σ 2
T =

∫ ∞

−∞
nσ 2

t dz = 2
∫ ∞

R

nσ 2
t r dr√
r2 − R2

. (3.86)

This can immediately be inverted:

(
nσ 2

t

)
(r) = − 1

π

∫ ∞

r

d
(
�σ 2

T

)
dR

dR√
R2 − r2

. (3.87)

The velocity dispersion parallel to rp is given by

�σ 2
R =

∫ ∞

−∞
n

[
σ 2
r sin2 ϕ + σ 2

t cos2 ϕ
]
dz (3.88a)

= 2
∫ ∞

R

[
R2

r2
σ 2
r +

(
1 − R2

r2

)
σ 2
t

]
nr dr√
r2 − R2

. (3.88b)

Rearranging,

2
∫ ∞

R

nσ 2
r

r
√
r2 − R2

dr =R−2�
[
σ 2
R − σ 2

T

] + 2
∫ ∞

R

nσ 2
t

r
√
r2 − R2

dr

=R−2�σ 2
R − 1

R

∫ ∞

R

�(R′)σ 2
T (R

′)
dR′

R′2

≡A(R), (3.89)

which is a known function. The inversion is(
nσ 2

r

)
(r) = − r

2

π

∫ ∞

r

dA

dR

dR√
R2 − r2

. (3.90)

Equations (3.87)–(3.90) demonstrate the sufficiency of proper-motion velocity dis-
persions for determining the two functions {σr(r), σt (r)} in a spherical galaxy. The
gravitational potential then follows from equation (3.35).

Only the nucleus of the Milky Way is close enough that stellar proper motions
within the SBH influence sphere can be accurately measured. Figure 3.7 shows the
results of a study based on proper motion velocities of roughly 6000 stars within
the central parsec of Sgr A* [481]. Attempting to directly “deproject” the data, via
equations like (3.87)–(3.90), would be ill advised. Instead, smooth, nonparametric
representations of σr(r) and σt (r) were constructed and varied until the deviations
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Figure 3.7 Constraining the distribution of mass at the center of the Milky Way using proper
motions [481]. The points in panels (a) and (b) are the observed proper motion
velocities, measured (a) parallel, and (b) perpendicular, to the radius vector. The



86 CHAPTER 3

Figure 3.7 Continued. dashed lines show smoothed velocity dispersion profiles derived from
these data and associated (90%, 95%, 98%) confidence intervals (dashed lines).
The solid lines are the best-fit models, computed as described in the text. Panel
(c) shows the intrinsic velocity dispersions corresponding to the solid curves in
(a) and (b): radial (solid) and tangential (dashed) lines. Panel (d) shows the results
of fitting a model of the stellar potential to the proper motion data, assuming an
SBH mass of 4.0 × 106 M�.

of the projected velocity dispersions from the measured values were minimized,
under various assumptions about the form of the gravitational potential, and with
the requirement that {σr, σt ,�} satisfy the Jeans equation (3.35). Figure 3.7 shows
that the velocity distribution is mildly anisotropic, in the sense σt > σr , at 0.05 pc <∼
r <∼ 0.5 pc. The best-fit mass for the SBH from these data is M• = 3.6+0.2

−0.4 ×
106M�, consistent with the current best estimate from the orbit of the star S2 [192].
The distributed mass density implied by these data is consistent with ρ ∝ n (i.e.,
a constant mass-to-light ratio), with a total distributed mass inside one parsec of
1.1 ± 0.5 × 106M�. A dependence of density on radius as steep as ρ ∼ r−2 in the
central parsec can be securely excluded.
Line-of-sight velocity distributions. If the stellar velocities in a galaxy followed
the same Maxwellian distribution that characterizes molecules in a steady-state
gas, measurement of the velocity dispersion (“temperature”) at any point would be
equivalent to measurement of the full f (v), and the isotropic Jeans equation (3.57)
would contain a complete description of the dynamics. But in a collisionless nu-
cleus, the velocity distribution can in principle be very different from Maxwellian.

These arguments suggest that there might be useful information about the
dynamical state of galactic nuclei in the full line-of-sight velocity distribution,
or LOSVD. The LOSVD (sometimes also called the line profile) is accessible to
observation even in distant galaxies, via measurement of Doppler-broadened stellar
spectra, although in practice its recovery requires high quality data.

We define the local LOSVD L(vz, r) such that L(vz, r)dvz is the number of stars
at radius r with l.o.s. velocities in the range vz to vz+dvz . Adopting the convention
that L is normalized to unit area at each r , we have, for a spherical galaxy,

L(vz, r) = 1

n(r)

∫ ∫
f �=0

f (E,L2)dvx dvy, (3.91)

where vx, vy are velocity components in the plane of the sky. In most cases, we
observe the LOSVD integrated along the line of sight through the galaxy, weighted
by the local density:

Lp(vz, R) =
∫ rmax(vz)

R

n(r)r dr√
r2 − R2

L(vz, r)
/ ∫ rmax(vz)

R

n(r)r dr√
r2 − R2

, (3.92)

where �(rmax) = −v2
z /2 if all stars are bound.

Consider the case of an isotropic distribution of stars around an SBH. We can
simplify the expression for the local LOSVD, (3.91), by changing the integration
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Figure 3.8 Line-of-sight velocity distributions (LOSVDs) for stars following a power-law
density profile, n ∝ r−γ , γ = (1.5, 2, 2.5), and with an isotropic velocity distri-
bution, in the gravitational potential of an SBH. (a) Local LOSVDs; (b) LOSVDs
integrated along the line of sight and averaged over an aperture of diameter D
centered on the SBH.

variable to E = (v2
s +v2

z )/2+�(r) with v2
s = v2

x +v2
y ; then dvxdvy = 2πvsdvs =

2π dE and

L(vz, r) = 2π

n(r)

∫ 0

�(r)+v2
z /2
f (E)dE, vz ≤

√
−2�(r). (3.93)

Setting � = −GM•/r , and adopting equation (3.49) for f , we find the local
LOSVD corresponding to a power-law density profile (n ∝ r−γ ) of stars around an
SBH:

L(vz, r)= 1√
2π

1

γ − 1/2

�(γ + 1)

�(γ − 1/2)

(
GM•
r

)−1/2 (
1 − rv2

z

2GM•

)γ−1/2

,

(3.94)

vz ≤
√

2GM•
r

.

This function is plotted in figure 3.8a for several values of γ . The non-Gaussian
nature is apparent.

Suppose we observe the nucleus of a galaxy containing an SBH through an aper-
ture of diameter D centered on the SBH. The (normalized) LOSVD of all the stars
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in the aperture is

LD(vz)=
∫ D/2

0
dR R�(R)Lp(vz, R)

/∫ D/2

0
dR R�(R)

(3.95)

=
∫ rmax(vz)

0
dr r2n(r)L(vz, r)H(D/2r)

/∫ ∞

0
dr r2n(r)H(D/2r),

where H(x) = 1 −
√

max(0, 1 − x2); the second expression follows after sub-
stitution of equation (3.92). Because the aperture contains stars moving very near
to the SBH, the aperture-averaged LOSVD extends to arbitrarily high velocities.
Adopting equation (3.94) for L, it is easy to show that as vz → ∞, LD → v

−7+2γ
z ,

independent of D [537].
Figure 3.8b plots LD(vz) as a function of vz normalized to the escape velocity at

radius r = D/2. Because of the non-Gaussian shape of these LOSVDs, with nar-
row central peaks and broad wings, measurement of the central velocity dispersion
of a galaxy containing an SBH can be substantially in error (too small) if the spec-
tral modeling algorithm assumes a Gaussian form for Lp(vz) [537]. On the other
hand, detection of the extended wings would constitute strong evidence for a deep
potential well.

So far, we have said little about how LOSVDs are recovered from observations.
The optical spectrum at any point in the image of a galaxy is made up of the sum,
along the l.o.s., of the spectra of its component stars, each Doppler shifted accord-
ing to its l.o.s. velocity. If the galaxy spectrum is I (λ) and the spectrum of a single
star—after convolution with the instrumental response—is T (λ) (the “template”
spectrum), then

I (ln λ,R) =
∫ ∞

−∞
Lp(vz, R)T (ln λ− vz/c) dvz = L ◦ T , (3.96)

where ◦ denotes convolution. Given I and T , this is an integral equation whose
solution is Lp; in practice, most of the information about Lp is contained in broad-
ened stellar absorption features, for example, the Calcium triplet at a rest wave-
length λ0 ≈8600 Å. Many schemes have been developed for solving equation (3.96)
[38, 459, 350]; all of these schemes must deal with the fact that deconvolution is
an “ill-conditioned” operation, in the sense of amplifying noise and errors in the
data. The method of solution must therefore incorporate some sort of regulariza-
tion. Systematic uncertainties include the choice of stellar template spectrum, and
determining the level of the spectral continuum; the latter is especially important
when attempting to recover the extended wings of the LOSVD.

Because of the difficulty of recovering the full LOSVD, it is common to char-
acterize Lp in terms of the best-fitting Gaussian function, plus a small number of
terms that describe the most important deviations from Gaussian form. A natural
choice [185, 543] is a Gauss–Hermite (GH) series:

Lp(vz) ≈ L0√
2πσ 2

0

N∑
j=0

hjHj (w)e
−w2

, w ≡ (vz − v0) /σ0, (3.97)
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where the Hj are Hermite polynomials and hj are the coefficients of the GH ex-
pansion. The lowest-order Hermite polynomials are

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2,

H3(y) = 8y3 − 12y, H4(y) = 16y4 − 48y2 + 12.

The parameters {L0, v0, σ0} are essentially arbitrary, but it makes sense to choose
them to be close to the amplitude, mean velocity, and velocity dispersion of the
“best-fitting” Gaussian approximation to Lp. One way is to choose these parame-
ters such that (h0, h1, h2) = (1, 0, 0). Then the first nontrivial expansion coeffi-
cients are h3 and h4, which are determined, respectively, by the asymmetric and
symmetric deviations of Lp from a Gaussian. The actual mean velocity and veloc-
ity dispersion are

vz = v0 +
√

3σ0h3 + · · · , σp = σ0(1 +
√

6h4 + · · · ). (3.98)

Beyond the SBH influence sphere, but near the center of a galaxy, the shape of the
LOSVD reflects the degree of velocity anisotropy: radially anisotropic distributions
(σr > σt ) tend to have flat-topped LOSVDs, while tangentially anisotropic distribu-
tions (σt > σr ) have centrally peaked LOSVDs [116, 185]. One hope in measuring
LOSVDs is therefore that they contain the additional information needed to break
the mass/anisotropy degeneracy.

Unfortunately, the exact constraints that Lp(vz, R) place on f and � are not
known. Only a more limited statement can be made. Rewriting equation (3.92)
schematically as

Lp(vz, R) =
∫
dz

∫ ∫
dvxdvyf

(
E,L2

)
(3.99)

we see that both the (unknown) f (E,L2) and the (observed) Lp(vz, R) are func-
tions of two variables. It is tempting to conclude from a naive application of
Fredholm theory (integrals as continuous limits of systems of linear equations) that
equation (3.99) has a unique solution f (E,L2) given �(r), and in fact this turns
out to be true [117].

The constraints on � are less clear. It is obvious that Lp contains at least some
information about � that is not contained in the low-order velocity moments. For
instance, we know that

Lp(vz, R) = 0 for |vz| ≥
√

−2�(R) (3.100)

since stars with higher velocities would escape. In addition, only certain forms for
�(r) imply, via equation (3.99), nonnegative f ’s; this is a more general example
of the constraint on �, equation (3.80), that follows after imposing nonnegativity
on σ 2

r and σ 2
t . Numerical experiments [117, 373] have demonstrated that adding

progressively more information aboutLp leads to increasingly stringent restrictions
on the allowed form of �(r). But this is still very much an open problem, and one
that deserves a more complete understanding.
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3.3 THE ADIABATIC GROWTH MODEL

In the remaining sections of this chapter, the discussion of collisionless nuclei will
be extended to include axisymmetric and triaxial models. But before doing so, we
take a detour and approach the structure of collisionless nuclei from a different
direction.

Given the inherent difficulties associated with inferring the structure and dynam-
ical state of a nucleus from observations, it is tempting to try to derive the distrib-
ution of stars around an SBH from first principles [417]. For instance, if the stellar
velocity distribution is assumed to be Maxwellian, f (v) ∝ e−v

2/2σ 2
, with constant

σ , then Jeans’s theorem implies f (E) ∝ e−E ∝ e−(v
2/2+�(r))/σ 2

and for the stellar
density near the SBH, equation (3.46) gives

n(r) ∝
∫ √

2GM•/r

0
e−(v

2/2+�(r))/σ 2
v2dv ∝ eGM•/σ 2r . (3.101)

This expression implies a divergent number of stars within every radius. It has other
unphysical features as well: for instance, the fact that the velocity dispersion σ is
constant implies that typical kinetic energies near the SBH are much smaller than
binding energies, hence most stars must be near their apocenters.

A slightly more sophisticated approach consists of starting from a nucleus with
no SBH, then increasing the value of M• from zero and asking what happens to f
and n in the process. As the SBH grows (e.g., by accumulation of gas), its gradually
increasing gravity will pull in nearby stars, causing the stellar density to grow. The
change in the stellar density can be computed straightforwardly if it is assumed
that the timescale for growth of the SBH is long compared with stellar orbital
periods [416, 571]. This is reasonable, since even Eddington-limited accretion re-
quires ∼108 yr to double the SBH mass, and orbital periods throughout the region
dominated by the black hole are <∼ 106 yr. (It may be less reasonable to assume
that spherical symmetry is maintained during this process, since most models for
growth of SBHs invoke substantial departures from spherical symmetry.) Under
these assumptions, the adiabatic invariants Ji associated with the stellar orbits are
conserved and the phase-space density f remains fixed when expressed in terms
of the Ji [201]. In this adiabatic growth model, computing the final f becomes
a straightforward matter of expressing the final orbital integrals in terms of their
initial values under the constraint that the adiabatic invariants remain fixed.

In spherical potentials, the adiabatic invariants are the angular momentum L and
the radial action I = 2

∫ r+
r−
dr

√
2 [E −�(r)] − L2/r2, where r± are the pericenter

and apocenter radii [201]. It can be shown [329] that orbital shapes remain nearly
unchanged whenL and I are conserved, implying that an initially isotropic velocity
distribution f (E) remains nearly isotropic after the black hole grows (though not
exactly isotropic—see below). The final f corresponding to an initially isotropic f
is then simply

ff (Ef , L)= fi(Ei, L)
≈ ff (Ef ), (3.102)

where Ef is related to Ei through the condition If (Ef , L) = Ii(Ei, L).
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While the form of the nuclear density profile before the SBH appeared is not
known, observed nuclear density profiles are often well described as power laws
even on scales r � rm; for instance, at the center of the Milky Way, n ∼ r−1.8

for rm <∼ r <∼ 10 pc. Setting ni ∝ r−γ0 , �i ∝ r2−γ0 (0 < γ0 < 2), Eddington’s
formula (3.47) gives for the initial distribution function

fi(Ei) ∝ E
−β
i , β = 6 − γ0

2(2 − γ0)
(0 < γ0 < 2). (3.103)

To compute ff (Ef ) we need a relation between Ef and Ei . We restrict attention to
the region within the SBH’s sphere of influence by setting Ef = v2/2 − GM•/r .
The radial action I (E,L) in the power-law model cannot be computed analyti-
cally for every (E,L), but for certain orbits Ef (Ei) has a simple form. For in-
stance, circular orbits have I = 0, and conservation of angular momentum implies
riMi(ri) = rfM• or rf ∝ r

4−γ0
i . Thus Ef ∝ −r−1

f ∝ −rγ0−4
i ∝ −E(γ0−4)/(2−γ0)

i , or

Ei ∝ (−Ef )−(2−γ0)/(4−γ0). (3.104)

The same relation turns out to be precisely correct for radial orbits as well and is
nearly correct at intermediate eccentricities [202]. Thus we can write

ff (Ef ) = fi(Ei) ∝ E
−β
i ∝ (−Ef )δ, δ = 6 − γ0

2(4 − γ0)
(0 < γ0 < 2) (3.105)

and the final density profile within ∼rm is

nf (r)=
∫
ff (v)d

3v ∝
∫ 0

�(r)

(−E)δ
√
E −�(r) dE

∝ r−γ , γ = 2 + 1

4 − γ0
. (3.106)

For 0 < γ0 < 2, γ varies only between 2.25 and 2.5; in other words, the slope of
the final density profile within rm is almost independent of γ0.

The form of nf (r) at r ≈ rh must be computed numerically. Figure 3.9 shows
nf (r) when ni(r) ∝ r−γ0 ; the initial f was assumed to be isotropic, and the cal-
culation followed the changes in both E and L of the orbits. Growth of the SBH
induces a mild anisotropy in the stellar motions at r <∼ rm due to the slightly dif-
ferent ways that circular and eccentric orbits respond to the changing potential; the
net effect is a decrease in the average orbital eccentricity. Defining rcusp to be the
radius at which power laws fit to the inner and outer density profiles intersect, one
finds

rcusp = αrm, 0.19 <∼ α <∼ 0.22, 0.5 ≤ γ0 ≤ 1.5. (3.107)

In early treatments of the adiabatic growth model [416, 571], the SBH was as-
sumed to grow inside of a constant-density isothermal core, f ∝ e−E/σ

2
. The index

of the power-law cusp that forms from this initial state is γ = 1.5, compared with
the limiting value γ = 2.25 as γ0 → 0 in the power-law models just discussed.
This difference can be traced to differences in the central density profile:

ni(r) = n0 × (
1 + C1r + C2r

2 + · · · ) . (3.108)
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Figure 3.9 Influence of the adiabatic growth of an SBH on its nuclear environment in a
spherical, isotropic galaxy. (a) Density profiles after growth of the SBH. Initial
profiles were power laws, ni ∝ r−γ0 , with γ0 increasing upward in steps of 0.25.
The radial scale is normalized to rh as defined in the initial galaxy. The slope of
the final profile at r < rm is almost independent of the initial slope. (b) Velocity
anisotropies after growth of the black hole. A slight bias toward circular motions
appears at r < rm.

The isothermal model has C1 = 0 (an “analytic core”) implying a phase-space
density that tends to a constant value at low energies. Other sorts of cores have
C1 �= 0 and f diverges at low energies; for instance, the core produced by setting
γ = 0 in n(r) = r−γ (1 + r)−4 has f (E) → E − �(0)−1. In fact models with
finite central n’s can be found that generate final cusp slopes anywhere in the range
1.5 ≤ γ ≤ 2.25 [444]. There is probably no way of ruling out an analytic core in
the progenitor galaxy on the very small scales that are relevant to the later formation
of a cusp, hence the adiabatic growth model is compatible with any final slope in
the range 1.5 <∼ γ <∼ 2.5.

How do these predictions compare with the observations? Given that the radial
scale predicted for the stellar cusp, equation (3.107), is so small—a fraction of the
SBH influence radius—it is difficult to tell. Galaxies with well-resolved spheres
of influence tend to be giant ellipticals; as discussed in chapter 2, these galaxies
almost always exhibit low-density cores inside ∼ a few rm. While steep power-
law cusps may have existed at one time in these galaxies, they presumably were
destroyed by whatever process carved out the core. Fainter elliptical galaxies, and
the bulges of spiral galaxies, often seem to lack cores, and the density profiles
of these galaxies tend to be steep going into the influence radius; however, rm is
typically not resolved. In the case of the Milky Way, for which rm is well resolved,
the young stars in the inner parsec exhibit a steep density profile, n ∼ r−2, but these
stars must have formed long after the SBH reached its current mass. The old stars
exhibit a low-density core, inconsistent with the adiabatic growth model [66].
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3.4 AXISYMMETRIC NUCLEI

In an axisymmetric nucleus, the gravitational potential and the density can be
expressed in terms of � and z, where (�, z, ϕ) are cylindrical coordinates and
the z-axis is the axis of symmetry. Defining the effective potential,

�eff ≡ �(�, z)+ L2
z

2� 2
, (3.109)

where Lz = � 2ϕ̇ = constant, the equations of motion are

�̈ = − ∂�

∂�
− L2

z

� 3
= −∂�eff

∂�
, z̈ = −∂�

∂z
= −∂�eff

∂z
, (3.110)

and ϕ̇ = Lz/�
2. These equations describe the two-dimensional motion of a star in

the (�, z), or meridional, plane which rotates nonuniformly about the symmetry
axis. Motion in axisymmetric potentials is therefore a problem with two dynamical
degrees of freedom.

Every trajectory in the meridional plane is constrained by energy conservation
to lie within the zero-velocity curve, the set of points satisfying E = �eff(�, z).
While the equations of motion (3.110) cannot be solved in closed form for arbitrary
�(�, z), numerical integrations demonstrate that most orbits do not densely fill
the zero-velocity curve but instead remain confined to narrower, typically wedge-
shaped regions [404]; in three dimensions, the orbits are tubes around the short
axis.9 The restriction of the motion to a subset of the region defined by conserva-
tion ofE andLz is indicative of the existence of an additional conserved quantity, or
third integral I3, for the majority of orbits. Varying I3 at fixed E and Lz is roughly
equivalent to varying the height above and below the equatorial plane of the or-
bit’s intersection with the zero velocity curve (figure 3.10). In an oblate potential,
extreme values of I3 correspond either to orbits in the equatorial plane, or to “thin
tubes,” orbits which have zero radial action and which reduce to precessing circles
in the limit of a nearly spherical potential. In prolate potentials, two families of thin
tube orbits may exist: “outer” thin tubes, similar to the thin tubes in oblate poten-
tials, and “inner” thin tubes, orbits similar to helixes that wind around the long axis
[305].

The area enclosed by the zero-velocity curve tends to zero as Lz approaches
Lc(E), the angular momentum of a circular orbit in the equatorial plane. In this
limit, the orbits may be viewed as perturbations of the planar circular orbit, and
an additional isolating integral can generally be found [546]. As Lz is reduced at
fixed E, the amplitudes of allowed motions in � and z increases and resonances
between the two degrees of freedom begin to appear. Complete integrability is un-
likely in the presence of resonances, and in fact one can often find small regions
of stochasticity at sufficiently low Lz in axisymmetric potentials, particularly if the
force rises steeply toward the center. However, the fraction of phase space associ-
ated with chaotic motion typically remains small unless Lz is close to zero [148].

9Because of their boxlike shapes in the meridional plane, such orbits were originally called “boxes”
even though their three-dimensional shapes are more similar to doughnuts.
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Figure 3.10 Orbits in the meridional plane of an oblate-spheroidal galaxy model [113]. All
orbits have the same energy; they differ in terms of the values of the additional
integrals Lz and I3. Orbits b, c, f form a sequence of near-equatorial orbits with
increasing Lz , and orbits d, e, f form a sequence of decreasing I3.

Ignoring stochasticity, and assuming the global existence of a third integral I3,
the distribution function of a steady-state axisymmetric galaxy has the form

f = f (E,Lz, I3) = f
[
v2/2 +�(r),�vϕ, I3

]
, (3.111)

where the dependence of I3 on the phase-space coordinates is left unspecified. The
Jeans equations of second order in velocity are

n
∂�

∂z
= −∂(nσ

2
z )

∂z
− ∂(nv�vz�)

�∂�
, (3.112a)

n
∂�

∂�
= −∂(nσ

2
�)

∂�
− ∂(nv�vz)

∂z
− n

�

(
σ 2
� − v2

ϕ − σ 2
ϕ

)
, (3.112b)

where

σ 2
� = v2

� , σ 2
z = v2

z , σ 2
ϕ = (

vϕ − vϕ
)2
. (3.113)

Rotation is permitted about the symmetry axis, vϕ = vϕ(�, z). Nonzero v�vz cor-
responds to a tilt of the velocity ellipsoid in the meridional plane.
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Well inside the SBH sphere of influence, orbits in axisymmetric nuclei can be
described as perturbed Keplerian ellipses. We postpone a detailed discussion of
this regime until chapter 4, except to note that the major orbit family in the oblate
geometry at r < rh remains the short-axis tubes. For these orbits, one finds that the
angular momentum is relatively constant with time. A second family, the “saucer”
orbits, are characterized by large angular momentum variations. Of course, both
families must conserve Lz exactly.

The near constancy of L for many orbits in the axisymmetric geometry suggests
that I3 be represented by L, and approximately self-consistent models have been
constructed in this way [327]. If the flattening of such a model is not too severe,
one expects the distribution of orbital “integrals,” N(E,L), to be related to f in
much the same way as in equation (3.44). The dependence of N on Lz then follows
after noting that in a nearly spherical system, the fraction of orbits at given {E,L}
with Lz ≡ L cosψ in the range Lz to Lz + dLz is proportional to d cosψ ∝ dLz ,
or

N(E,L,Lz)dE dLdLz ≈ 4π2f (E,L,Lz)P (E,L,Lz)dE dLdLz. (3.114)

An alternative approach to the unknown form of the third integral is to simply
postulate that the phase-space density is constant on hypersurfaces of constant E
and Lz , the two classical integrals of motion:

f = f (E,Lz) = f
[
v2/2 +�(r),�vϕ

]
. (3.115)

Because v� and vz appear in the same way as arguments of f in equation (3.115),
these models are “isotropic” in the sense σ� = σz .

Just as f (E) for a spherical galaxy is determined uniquely by n(r) and �(r) via
Eddington’s formula (3.47), so f (E,Lz) is determined uniquely by n(�, z) and
�(�, z) in the axisymmetric geometry (up to the choice of which sign to attach
to Lz for each orbit). In this sense, two-integral axisymmetric models play a role
similar to that of isotropic models in the spherical geometry (although this could
equally be said of other, two-integral parametrizations of f ). The degeneracy that
appears in the spherical inverse problem when f is allowed to depend on a second
integral, f = f (E,L2), appears also in the axisymmetric geometry when f is
allowed to depend on a third integral.

Because of these similarities, and also because of the important role thatf (E,Lz)
axisymmetric models played in the early days of SBH detection, we first discuss
two-integral models before turning to the more general three-integral case.

3.4.1 Two-integral models

Ignoring any dependence of f on a third integral, the contribution to the
configuration-space density from stars on orbits with classical integrals in the range
E to E + dE and Lz to Lz + dLz is

δn = f (E,Lz)d v = 2πf (E,Lz)vm dvm dvϕ = 2π

�
f (E,Lz)dE dLz, (3.116)

where vm = √
v2
� + v2

z , the velocity in the meridional plane; δn is defined to be
nonzero only at points (�, z) reached by an orbit with the specified E and Lz . The
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total density contributed by all such phase-space pieces is

n(�, z) = 4π

�

∫ 0

�

dE

∫ �
√

2(E−�)

0
f+(E,Lz)dLz, (3.117)

where f+ is the part of f even in Lz , f+(E,Lz) = (1/2)
[
f (E,Lz)+ f (E,−Lz)

]
;

the odd part of f affects only the degree of streaming around the symmetry axis.
Equation (3.117) is a linear relation between known functions of two variables,
n(�, z) and�(�, z), and an unknown function of two variables, f+(E,Lz); hence
one might expect the solution for f+ to be unique and in fact it is [115, 250, 328],
although in practice the inversion can be difficult.

Just as in the spherical case, the “isotropy” of two-integral axisymmetric models
allows one to infer a great deal about their internal kinematics without even deriving
f (E,Lz). Writing σ = σ� = σz , the Jeans equations (3.112) become

n
∂�

∂z
= −∂(nσ

2)

∂z
, (3.118a)

n
∂�

∂�
= −∂(nσ

2)

∂�
− n

�

(
σ 2 − v2

ϕ

)
. (3.118b)

Interpreted as differential equations for the velocity moments, these equations have
solutions

nσ 2 =
∫ ∞

z

n
∂�

∂z
dz, (3.119a)

nv2
ϕ = nσ 2 +�

∫ ∞

z

(
∂n

∂�

∂�

∂z
− ∂n

∂z

∂�

∂�

)
dz, (3.119b)

similar to equation (3.58) in the spherical isotropic case. The uniqueness of the so-
lutions is a consequence of the uniqueness of the even part of f ; the only
remaining freedom relates to the odd part of f , that is, the division of v2

ϕ into mean

motions and dispersion about the mean, v2
ϕ = vϕ

2 + σ 2
ϕ . A model with streaming

motions adjusted such that σϕ = σ� = σz everywhere is called an “isotropic oblate
rotator” and the model’s flattening may be interpreted as being due completely to
its rotation.

Before continuing, it is important to point out one crucial difference between
the spherical and axisymmetric inverse problems. In the spherical geometry, the
density profile n(r) is uniquely determined by the projected density �(R) via
equation (3.65a). In the axisymmetric case, n(�, z) is uniquely constrained by the
observed surface density �(X, Y ) only if the galaxy is seen edge-on, or if some
other restrictive condition applies, for example, if the isodensity contours are as-
sumed to be coaxial ellipsoids with known axis ratios [468]. In general, the range of
space densities consistent with a given surface density increases as the inclination
varies from edge-on to face-on [187]. Uncertainties in deprojected n’s inevitably
contribute to uncertainties in computed values of the kinematical quantities [461],
thus increasing the degree of degeneracy associated with estimates of the gravita-
tional potential. A fairly common practice is to assume that an observed galaxy is
seen edge-on; in point of fact, of course, the observed ellipticity of a galaxy is a
lower limit on its true flattening.
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In the spherical isotropic case, f (E) and �(r) follow uniquely from �(R) and
σp(R), independent of assumptions about the relative distribution of mass and light
(equations 3.47, 3.65, 3.66). A similar result holds in the two-integral axisymmet-
ric case, assuming that the galaxy is viewed edge-on [348]: complete knowledge
of the surface density �(x, y) of a set of stars, together with their l.o.s. mean ve-
locity and velocity dispersion, vz(x, y) and σ 2

p(x, y), is equivalent to knowledge
of f (E,Lz) (both odd and even parts) and �(�, z). Just as in the spherical case,
this result highlights the difficulty of ruling out “isotropic” (i.e., two-integral) f ’s
for axisymmetric galaxies based on observed moments of the velocity distribution,
because the potential can be adjusted in such a way as to reproduce the data without
forcing f to depend on a third integral.

A more common approach in modeling axisymmetric galaxies is to parametrize
the potential as

�(�, z) = −GM•
r

+
(
M

L

)
�L(�, z), (3.120)

similar to equation (3.81) in the spherical geometry;�L is related to the luminosity
density j (�, z) via Poisson’s equation; that is, the mass-to-light ratio is assumed to
be independent of position. Given any choice for the two parameters (M/L,M•),
the potential and the mass density are known, and the even part of f (E,Lz) is
uniquely determined, as discussed above. The velocity moments can then be com-
puted and compared with the data [49]. Note the important point that the kinemati-
cal data are not used at all in the calculation of f+, except insofar as they determine
the normalization of the potential. Models constructed in this way have been found
to reproduce the observations quite well in a few galaxies, notably M32 [112, 441],
and the same approach was widely used prior to about 1998 for estimating SBH
masses [335, 542].

However, there is a potentially serious pitfall associated with inferring SBH
masses from two-integral models [539]. If one imagines making such a model flat-
ter, the velocity dispersion in the meridional plane drops compared with v2

ϕ ; this
is a consequence of their “isotropy,” σ� = σz , which links the two meridional
plane velocity dispersions to the vertical thickness of the galaxy (equation 3.119a).
As a result, the stellar orbits become increasingly circular as the flattening is in-
creased; in the limit of infinite flattening (i.e., a disk), two-integral models contain
only circular orbits. One consequence is that the rms velocities near the center are
forced to be lower than they would be in a genuinely isotropic galaxy (figure 3.11).
Unless the velocity distribution in the observed galaxy is also biased toward circular
motions near the center, the value of M• will need to be artificially increased in or-
der to make up the deficit in the central velocities. A similar effect can be seen in
the spherical models of M87 shown in figure 3.6.

In retrospect, it appears likely that most or all of the putative SBH detections
based on two-integral models were spurious [539]. This conclusion is based in part
on the fact that currently accepted scaling relations like the M•–σ relation imply
influence radii rh that would not have been resolvable given the data that were
available at the time [364]. The principal result of these early studies—that SBHs
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Figure 3.11 Velocity dispersion profiles of two-integral, f (E,Lz) models similar to those
that were used as templates for estimating SBH masses prior to about 1998.
Model flattening is indicated as c/a; the density increases as r−1.5 near the cen-
ter and there is no central SBH. Ticks mark the point of maximum velocity; this
radius moves outward as the flattening is increased. The velocity distribution in
two-integral models is forced to become more nearly circular as the flattening
is increased.

contain on average ∼0.6% of the mass of their host bulges [454] (the “Magorrian
relation”)—is now believed to be wrong by a factor of about five.

The shortcomings of the two-integral models would have been immediately
apparent if the data being modeled were derived from observations that clearly
resolved the SBH sphere of influence. In none of these galaxies (with the possible
exception of the Local Group galaxy M31) did the stellar data show anything ap-
proximating a Keplerian rise near the center. The observational situation since that
time has improved, due primarily to installation of the Space Telescope Imaging
Spectrograph (STIS) on the Hubble Space Telescope in 1997 [568]. However, even
with the ∼0′′.1 resolution of STIS, there are still no galaxies outside of the Local
Group that exhibit prima facie evidence for the presence of an SBH in the stellar
velocities (figure 2.5).

3.4.2 Three-integral models

In the general axisymmetric case, f is a function of three variables, f =f (E,Lz,I3)

(assuming that all orbits are characterized by three isolating integrals). As discussed
above, the third integral can be understood as determining the thickness of the
orbit in a direction perpendicular to the equatorial plane of the model (figure 3.10).



COLLISIONLESS EQUILIBRIA 99

A useful way to characterize such orbits is in terms of shape invariants, functions
of the orbital integrals that relate more directly to their time-averaged shapes [113].
For instance, a radial shape invariant is

Sr = (�+ −�−)/�max, (3.121)

where (�+,�−) are the apo- and pericenter distances of the orbit when it crosses
the equatorial plane and �max(E) is defined by �(�max, z = 0) = E. A second,
meridional shape invariant is

Sm = 1 − sin θ0, (3.122)

where θ0 is the minimum angle, measured from the symmetry axis, reached by the
orbit at apocenter; thus Sm = 0 for orbits in the equatorial plane and and Sm = 1
for orbits with Lz = 0. The radial shape invariant Sr is an approximate measure of
the radial extent of an orbit, while the meridional shape invariant Sm measures the
extent of the orbit above and below the equatorial plane.

Just as there are many anisotropic distribution functions f (E,L2) that reproduce
a given n(r) in the spherical geometry, so are there many three-integral f ’s that
reproduce a given n(�, z) in an axisymmetric potential. The different solutions
correspond to differing degrees of velocity anisotropy, that is, to different σ�/σz
and σ�/σϕ . For instance, distribution functions of the form f = f (E, Sm) assign
equal phase-space densities to orbits of all radial extents Sr , leading to roughly
equal dispersions in the � and ϕ directions. As noted above, classical two-integral
models, f = f (E,Lz), accentuate the nearly circular orbits to an extent that is
probably unphysical.

A common way [455, 165] to construct three-integral axisymmetric models is via
numerical integration of orbits in a specified potential, for instance, the potential of
equation (3.120). The time spent by each orbit in each of a set of finite cells is
recorded. Defining the known mass in the ith cell as Mi , and the mass placed by
the lth orbit in the ith cell as Morb

l,i , the self-consistency condition (3.27b) becomes

Mi =
Norb∑
l

wlM
orb
l,i , i = 1, . . . , Ncell, (3.123)

where wl is the weight assigned to the lth orbit. The condition f > 0 is imposed by
requiring the wl to be nonnegative. The degeneracy in f means that many choices
for the wl will solve equation (3.123). Note however, that this will only be true
computationally if Norb > Ncell; otherwise, an algorithm that attempts to invert
equations (3.123) will have fewer parameters to vary than the number of equations
to be solved. In this case, no choice for the wl is likely to satisfy equations (3.123)
exactly. However, an algorithm that minimizes a quantity like

χ2 =
∑
i

[
Mi −

Norb∑
l

wlM
orb
l,i

]2

(3.124)

will find a choice for the wl that minimizes χ2—a spurious “best-fit” solution.
When using three-integral models to estimate M• in galactic nuclei, one adds

to equation (3.123) or (3.124) an additional set of conditions corresponding to
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whatever kinematical data are available: l.o.s. mean velocity and velocity disper-
sion profiles, LOSVDs, etc. Degeneracy in f is still expected, although the degree
of degeneracy will depend on the number and quality of the additional constraints.
The argument that was made above in the anisotropic spherical case then applies
to the three-integral axisymmetric case: changes in the assumed form of �(�, z)
can generally be compensated for by changes in f so as to leave the fit to any finite
set of data constraints precisely unchanged. However, the degeneracy will only be
apparent if the number of orbits used in the solution is large enough—or, stated
differently, if the solution algorithm is flexible enough in its representation of f .

The degeneracy is illustrated in figure 3.12 for the galaxy M32, one of the best
observed and best resolved of the SBH candidate galaxies (figure 2.5) [530]. When
the number of orbits used to represent f is ∼3 times the total number of data con-
straints, a minimum appears in the value of χ2(M•,M/L) at M• ≈ 3.5 × 106M�.
This is the best-fit value for M• found in the first three-integral modeling study
of M32, which adopted a similar number of orbits [541]. When Norb is increased,
this minimum is seen to be spurious: it is gradually replaced by a plateau of nearly
constant χ2. Indeed the range of degeneracy in M• corresponding to these data is
1.5 × 106M� <∼ M• <∼ 5.0 × 106M� [530]. It is discouraging that even the avail-
ability of the lowest Gauss–Hermite moments does not remove the degeneracy.

While M32 is currently the only galaxy for which such comprehensive modeling
has been carried out, it is likely that M• as derived from stellar kinematics in other
galaxies is comparably degenerate, since most of these galaxies are observed at
lower effective resolution than M32 (figure 2.5).

Some studies remove the degeneracy by imposing additional constraints on f ;
for instance, “maximum entropy” [457]. The additional constraints have the effect
of singling out a single solution as “most probable,” even (or especially) in cases
where the data themselves are unable to do this (figure 3.13).

The Milky Way provides a cautionary example. Estimates of the mass of Sgr A*
based on velocities of samples of stars at radii <∼ rh [76, 182, 190] gave system-
atically smaller values for M• than the (presumably more accurate) mass inferred
from the inner S-star orbits [191, 193]. The discrepancy was about a factor of two.
The discrepancy was resolved when it was discovered [66] that the distribution of
stars at r <∼ 0.5 pc <∼ 0.2rh differs from the inward extrapolation of the density
observed at 1 pc <∼ r <∼ 10 pc: there is a central “hole” [481], hence a lack of
stars very near the SBH. No external galaxy has stellar data of a quality remotely
comparable with these data for the Galactic center, and any changes in the stellar
density, population or kinematics that occur inside rh would be difficult to detect in
these galaxies. The factor of two error that was made in the mass of the Milky Way
SBH is probably a lower limit on the systematic uncertainties in estimates ofM• in
external galaxies.

3.5 TRIAXIAL NUCLEI

An important shift in our understanding of early-type galaxies took place in 1975,
when it was discovered that most elliptical galaxies rotate significantly more slowly
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Figure 3.12 Degeneracy in three-integral models of M32 [530]. Top: Contours of constant
χ 2 in fits to stellar kinematical data from ground- and space-based observations
[541]. M32 is assumed to be edge-on. The four panels show the results using
four different sizes of orbit library. Model parameters are the SBH mass M• in
106 M� and the V -band mass-to-light ratio ϒ in solar units. Labeled positions
are models whose fit to the data is illustrated in detail in the right panel. As the
number of orbits is increased, the χ 2 minima merge and broaden into a plateau
of constant χ 2. Bottom: Intrinsic three-dimensional kinematics along the major
axis for each of the models A–F. SBH masses ranging from 1.4×106 M� (model
A) to 4.8 × 106 M� (model F) are shown.
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Mfit

M•

Figure 3.13 Schematic illustration of the way that restrictions on the allowed form of f
can lead to spurious “best-fit” solutions when modeling kinematical data. The
horizontal axis is the value Mfit adopted for the mass of the SBH in equa-
tion (3.120); the vertical axis measures the deviations of the model from the
data, equation (3.124). The lower curve shows the correct dependence of χ 2

on Mfit: a plateau of constant χ 2 that reflects the degeneracy in the solutions.
The upper curve, which exhibits a spurious minimum in χ 2, shows the result of
modeling when f is restricted in some arbitrary way. This curve could corre-
spond to modeling based on a two-integral f ; or a three-integral f represented
by too few discrete orbits or phase-space cells; or a three-integral f with the
imposition of a “maximum entropy” constraint.

than expected for a fluid body with the same flattening [43]. Elliptical galaxies were
revealed to be “hot” stellar systems, in which most of the support against gravita-
tional collapse comes from essentially random motions rather than from ordered
rotation. Two questions immediately arose from these observations: First, what
produces the observed flattenings? Second, given that rotation plays only a minor
role, are elliptical galaxies axisymmetric [45]? Numerical experiments [482] soon
showed that many orbits in triaxial potentials are regular, and that self-consistent
triaxial equilibria could be constructed via superposition of time-averaged orbits.

Since then, the observational evidence in favor of nonaxisymmetry on large
(∼ kpc) scales in early-type galaxies has gradually accumulated [69, 169, 507]. On
smaller scales, imaging of the centers of galaxies also reveals a wealth of features
in the stellar distribution that are not consistent with axisymmetry, including bars,
bars-within-bars, and nuclear spirals [145, 489, 493]. Even if some of these features
are transient, they may persist for a significant fraction of a galaxy’s lifetime.
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Triaxiality—or more precisely, absence of axisymmetry—is potentially of enor-
mous consequence for the dynamics and evolution of galactic nuclei containing
SBHs. Motion in nonaxisymmetric potentials does not conserve any component of
the angular momentum. As a consequence, at least some orbits—the centrophilic
orbits—are able to come arbitrarily close to the center after a finite time, even in
the absence of gravitational encounters or other collisional perturbations that would
otherwise be required to drive stars into the center.10 Particularly in the largest
galaxies, which have very long central relaxation times, centrophilic orbits proba-
bly dominate the feeding of stars to the SBH [371].

In a triaxial galaxy containing an SBH, the character of the motion depends
strongly on the distance from the center. As a starting point, consider orbits that
remain at all times close to the SBH, with radial extent rmax � rm. (These or-
bits are discussed in much greater detail in the following chapter.) Such orbits are
nearly Keplerian; the force from the distributed mass constitutes a small pertur-
bation which causes the Keplerian elements (semimajor axis, eccentricity, etc.) to
gradually change. Typically, the most rapid such change is a precession of the or-
bit in the plane perpendicular to its instantaneous angular momentum vector, with
frequency

νp ≈ −νr M�

M•

√
1 − e2 (3.125)

(equation 4.88). Here, νr = 2π/P (a) is the frequency of the radial motion, a is the
semimajor axis of the (nearly) Keplerian ellipse, and M�(a) is the distributed mass
within radius r = a. (The minus sign indicates that the precession is retrograde, i.e.,
opposite in sense to the circulation of the orbit about the SBH.) This precession is a
consequence of the fact that the gravitational force is not exactly inverse-square due
to the distributed mass, so that the degeneracy between radial and angular motions
that characterizes the Kepler problem is broken. Since we are assuming a � rm,
it follows that M� � M• and hence νp � νr : many radial periods are required
before the accumulated precession is appreciable. But after a sufficiently long time,
of order |2π/νp|, the orbit will fill an annulus about the SBH.

The rate of this in-plane precession is determined essentially by the radial force
law—that is, by the spherical component of the mass distribution. For this reason
it is sometimes called simply the mass precession. But even if the nucleus is only
slightly nonspherical, there will also be a component of the force directed perpen-
dicularly to the radius vector—a torque. The effect of the torque will be to change
the angular momentum of the orbit: both the amplitude of L (i.e., the eccentricity)
and its direction (i.e., the orbital plane).

Two basic types of orbit can result:

1. If the orbital eccentricity is modest, e ≈ 0, the e-dependent factor in equa-
tion (3.125) will be close to unity, and mass precession will continue to define
the motion. The orbit will fill an annulus, but the plane of the annulus will

10The same is true for orbits in axisymmetric potentials if the conserved component of L is zero, i.e., if
the orbit lies in the plane containing the long and short axes of the figure.
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Figure 3.14 Top: A pyramid orbit, seen in three projections. The z-axis is the short axis of
the triaxial figure and the SBH is at the origin. Bottom: 1−e2 versus time, where
e is the eccentricity. The eccentricity tends to unity when the orbit reaches the
corners of the pyramid’s base.

gradually change due to the torques, resulting in a orbit that looks qualita-
tively similar to the tube orbits discussed above. In a triaxial nucleus, it turns
out that such tube orbits can circulate about either the long or the short axis
of the triaxial figure [472].

2. If the orbital eccentricity is large, e ≈ 1, equation (3.125) says that the fre-
quency of the mass precession will be very small. As a result, the torques
from the nonspherical part of the potential can “build up,” causing appreciable
changes in the angular momentum—both its amplitude and orientation—in
the time it takes the orbit to precess once around. In fact, the eccentricity can
reach unity, implying that the orbit goes right into the SBH. A more careful
analysis [378] reveals that the orbit reverses its sense of circulation just be-
fore this happens; and since the direction of the mass precession is opposite
to the sense of circulation, the precession also reverses direction—instead of
precessing all the way around, the orbit librates. It turns out (as discussed in
more detail in the next chapter) that this libration can occur in two orthogonal
directions about the short axis of the triaxial figure; in the generic case, both
types of libration occur simultaneously (though with different frequencies),
and the orbit fills a pyramid-shaped region, with the apex of the pyramid near
the SBH and the base perpendicular to the short axis. An example of such a
pyramid orbit is shown in figure 3.14.

The motion described so far is essentially regular. If we now imagine increasing
the size of the orbit, so that a >∼ rm, the distributed mass within r ≈ a becomes
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comparable to or greater than the mass of the SBH. Equation (3.125) (which is very
approximate in this case) tells us that |νp| ≈ |νr |: the timescales associated with
the mass precession and the radial motion are now comparable. The similarity of
these two frequencies means that new families of orbits will appear that respect
the commensurability conditions (3.13); that is, m1νr + m2νp = 0, with m1,m2

small integers. For instance, closed, quasi-circular orbits appear in which the radial
and angular frequencies are equal.11 Such orbits avoid the center. In the case of
eccentric orbits, chaos begins to rear its interesting head: the SBH now acts like a
scattering center, rendering many of the “centrophilic” orbits stochastic [186]. This
zone of chaos extends outward from a few times rm to a radius where the enclosed
stellar mass is roughly 102 times the mass of the SBH [414, 528]. Integrable tube
orbits, which avoid the destabilizing center, continue to exist at these radii.

At radii r � rm, orbits in triaxial potentials containing SBHs are broadly similar
in their properties to those of orbits in triaxial potentials lacking central SBHs.
In particular, the tube orbits take almost no notice of the central singularity. This
is not quite true of the centrophilic orbits. In the absence of a central SBH, the
centrophilic orbits are typically regular, and fill regions that resemble rectangular
parallelepipeds with flaring ends. These box orbits are found to be a necessary,
and often dominant, component of self-consistent triaxial models [482, 483]; for
this reason they have been called the “backbone” of triaxial galaxies. The other
family of orbits that tend to be highly populated in the self-consistent models are
the tube orbits that circulate about the long axis.

In triaxial galaxies with SBHs, box orbits that pass too near the center are
generally rendered stochastic [186]. Stochasticity is avoided only if the orbit lies
sufficiently close to a resonant orbit; generically, such resonance orbits satisfy a
commensurability condition (3.13) involving all three fundamental frequencies and
are thin, that is, confined to a membrane in configuration space (as opposed to or-
bits that satisfy two such conditions and are closed). To a good approximation, box
orbits in triaxial galaxies are either nonresonant and stochastic, or resonant and thin
[377].

A key question is whether self-consistent triaxial equilibria exist for galaxies
containing SBHs. While a definitive answer to this question is not available, nu-
merical experiments suggest that triaxiality is supportable within r ≈ rm [434],
while on larger scales, the SBH may induce a gradual evolution in shape, toward
axisymmetry or sphericity [372]. These uncertainties, coupled with the generally
greater degree of degeneracy associated with the triaxial geometry, have kept most
galaxy modelers from venturing beyond the axisymmetric paradigm.

The remainder of this chapter focuses on the character of centrophilic orbits in
the triaxial geometry, at distances >∼ rm from the center, and on the triaxial self-
consistency problem. The reader should note that even many basic questions about
triaxial dynamics remain unanswered, particularly in the context of galaxies with
central SBHs.

11In nuclei lacking SBHs, such resonant orbits are the generators of tube orbits, which only exist beyond
a certain distance from the center [108, 172].
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3.5.1 Regular and chaotic motion in nonrotating triaxial models

A handful of studies [376, 377, 433] have mapped out the major orbit families near
the centers of triaxial galaxies containing SBHs, typically via brute-force numerical
integration of the equations of motion. Roughly speaking, the set of centrophilic
orbits can be identified with the set of orbits that have a stationary point, that is,
a point where �(x(t)) = E. (Tube orbits have no stationary point.) For instance,
in the case of pyramid orbits, the stationary points are the (four) points that define
the corners of the pyramid’s base (figure 3.14). A natural way to choose initial
conditions for centrophilic orbits (of a given energy, say) is to locate a set of points
on an equipotential surface, x = �−1(E), and to set v = 0. Corresponding to each
such initial (x, v = 0) will be a single, time-averaged orbit, the important properties
of which—its distance of closest approach to the center, its degree of stochasticity,
etc.—can be plotted on the equipotential surface as a kind of map.

Figure 3.15 shows several examples. Plotted there are properties of centrophilic
orbits near the center of a triaxial galaxy with density

ρ(m) = ρ0m
−γ (1 +m)γ−4 , m2 = x2

a2
+ y2

b2
+ z2

c2
, (3.126)

and γ = 0.5; the central SBH has a mass 0.003 times the total stellar mass, a little
larger than the mean value in observed galaxies. The degree of triaxiality of models
like these, having fixed axis ratios, is sometimes defined via the index T where

T ≡ 1 − (b/a)2

1 − (c/a)2
; (3.127)

thus oblate spheroids have T = 0 and prolate spheroids have T = 1. The models
used in figure 3.15 have c/a = 0.5, b/a = 0.791, which implies T = 0.5; in other
words, they are “maximally triaxial.”

For each orbit in figure 3.15, the fundamental frequencies of the motion were
computed as in section 3.1.2.1. Stochastic orbits are not quasiperiodic, and an
attempt to recover “fundamental frequencies” will fail; the degree to which the
“fundamental frequencies” change as the integration interval is changed is a
sensitive measure of stochasticity [414].

Just beyond rm, at a radius where the enclosed stellar mass is ∼3 times M•
(figure 3.15d), almost all orbits with stationary points are still regular; the excep-
tions are orbits that intersect the equipotential surface near the x–y plane. The
unstable orbit that generates this stochastic region is the long-axis orbit. Moving
outward to a radius where the enclosed mass is ∼4M• (figure 3.15c), a number
of new stochastic regions appear, associated with unstable resonant pyramids of
various orders, for example, (m1,m2,m2) = (2, 4,−5), (6,−2,−3), etc. A very
rapid transition to almost complete stochasticity then occurs (figure 3.15b,a). The
last remaining regular pyramid orbits are associated with a 2:1 resonance. The 2:1
orbits have the shape of parabolas that are elongated parallel to the short axis of the
triaxial figure; as one moves outward, to higher energies, the opening angle of the
parabola increases, as the stationary point moves along the equipotential surface
from the short (z-) to the long (x-) axis.
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Figure 3.15 Transition to chaos in triaxial galaxies containing SBHs [377]. Panels on the
left show one octant of an equipotential surface on which orbits were started
with zero velocity; the top, left and right vertices correspond to the z- (short),
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Figure 3.15 Continued. x- (long), and y- (intermediate) axes. Energy increases upward: the
stellar mass enclosed by the equipotential surface is (d) 3.0M•, (c) 3.77M•,
(b) 4.5M• and (a) 5.3M•. The gray scale is proportional to the degree of sto-
chasticity; initial conditions corresponding to regular orbits are white. The most
important resonant zones are marked with their order (m1, m2, m3). Panels on
the right show ratios of the fundamental frequencies; stochastic orbits, which
are not quasiperiodic, scatter about the line corresponding to the unstable reso-
nance that generated them.

What is most striking about the transition to stochasticity is its suddenness.
Orbits that start from equipotentials that enclose a stellar mass of ∼3M• or less
are almost all regular. Moving outward just slightly, to a radius where the enclosed
stellar mass is ∼4M•, almost all orbits with stationary points have become sto-
chastic. This “zone of chaos” extends outward to radii where the enclosed mass is
10M•–30M•; farther out, regular orbits with stationary points, like the box orbits,
begin to reappear.

The extent of the chaotic zone depends somewhat on the parameters of the tri-
axial potential [433]. For a given triaxiality T , chaos sets in at lower energies (i.e.,
closer to the SBH) in more highly elongated models, while for a given elongation
c/a, the transition to chaos is almost independent of T . The transition is interrupted
by the appearance of the 2:1 orbits, particularly in more elongated models. The 2:1
orbits in the most highly flattened models (c/a <∼ 0.6) manage to persist, stably,
throughout the chaotic zone, becoming the 2:1 “banana” orbits at high energies
[391].

Interestingly, the dynamical roles of the long and short axes of the triaxial figure
at low energies (near the SBH) are approximately reversed compared to their role at
high energies, or compared to triaxial potentials without SBHs [433]. The pyramid
orbits are generated from Keplerian ellipses oriented along the short (z-) axis, while
in triaxial potentials without central SBHs, it is the long (x-) axis orbit that gener-
ates the box orbits. Similarly, stochastic orbits near the SBH derive mostly from
starting points near the x–y plane, while in nonsingular potentials the instability
strip lies near the y–z plane [204]. These facts would seem to have important im-
plications for triaxial self-consistency in galaxies containing central SBHs, which
however, remain to be worked out in detail.

3.5.2 Motion in rotating triaxial galaxies

In an axisymmetric galaxy, rotation (at least, rotation about the symmetry axis) has
no effect on the gravitational force. In the nonaxisymmetric case, rotation of the
galaxy’s figure about any axis implies a significant modification of the equations of
motion. As observed from an inertial frame, figure rotation adds sinusoidal terms
to the gravitational force, with frequencies that are multiples of the rotational fre-
quency. If the galaxy rotates as a solid body, with frequency �f say, it is natural
to transform to a noninertial frame in which the rotation disappears. The equations
of motion will no longer contain time-dependent terms but new terms will appear,
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corresponding to the Coriolis and centrifugal forces:

ẍ = −∇�− 2(�f × ẋ)− �f × (�f × x) (3.128a)

= −∇�− 2(�f × ẋ)+ |�f |2x. (3.128b)

In the rotating frame, the Jacobi integral

EJ = 1

2
|ẋ|2 +�(x)− 1

2
|�f × x|2 (3.129)

plays the role of the conserved energy.
How important is figure rotation in real galaxies? Measuring �f is hard; it is

much easier to measure the mean velocities of stars integrated along the line of
sight. Some of the observed mean motion, V (x, y), may be due to figure rotation,
while some will be due to streaming with respect to the figure. In the absence of
secure knowledge about the three-dimensional shape of a galaxy, a natural measure
of the overall strength of the “rotation” is

λ ≡ 〈RV 〉〈
R

√
V

2 + σ 2

〉 , (3.130)

where σ is the line-of-sight velocity dispersion,R is the projected distance from the
center, and the angle brackets in equation (3.130) denote averages over the image
of the galaxy. Since RV has the dimensions of angular momentum per unit mass,
λ can be interpreted as a dimensionless angular momentum. In the case that most
of the mean motion is due to rotation of the figure, it follows that V is of order

〈R〉�p; furthermore, by the virial theorem, 〈V 2 + σ 2〉 ∼ 〈r∇�〉 ∼ 〈r2�2〉 where
� is a typical orbital frequency. Hence λ ∼ �/�f , and (again assuming that figure
rotation is responsible for V ) values of λ approaching unity imply rotation with
a period that is comparable to orbital periods in the rotating frame. Of course, a
galaxy whose axis of rotation lies along the line of sight will show no evidence of
rotation in the Doppler-shifted velocities, and in this sense λ is a lower limit on the
degree of rotation.

Figure 3.16 shows estimates of λ for a sample of early type (elliptical and S0)
galaxies, plotted versus the apparent axis ratio ε. Early-type galaxies appear to
fall into two, fairly distinct classes: “slow rotators” with λ < 0.1, and “rapid ro-
tators” with λ > 0.1. The slow rotators are believed to be generically triaxial in
shape, since they frequently display isophotal and kinematic twists, which are a
natural consequence of a nonaxisymmetric system being observed from a random
direction. These galaxies are typically luminous, with absolute magnitudes brighter
than MB ≈ −20. The more numerous, rapid rotators are typically fainter and their
shapes appear to be consistent with axisymmetry [522]; furthermore, the distribu-
tion of λ with respect to ellipticity for the rapid rotators, as shown in figure 3.16, is
statistically consistent with what is expected for the “isotropic oblate rotators” de-
fined above, that is, axisymmetric (oblate) galaxies in which the flattening is due to
streaming motions about the symmetry axis. While the origin of this dichotomy is
still debated, numerical simulations suggest that “major mergers,” that is, mergers



110 CHAPTER 3

0.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3

э N

λ Re

0.4 0.5 0.6 0 2 4 6 8 1012141618

4406

4365
4261

720

5866
2679

6548

7280 6547

2320
221

4379

1700

45514478

4168
4472

4649

Figure 3.16 Measured values of the parameter λ, equation (3.130), that describes the relative
importance of rotational and random motions in galaxies [139]. Slow rotators
(λ < 0.1) are circles and fast rotators (λ > 0.1) are ellipses. The dashed curve
corresponds to “isotropic oblate rotators” seen edge-on. Right panel shows a
histogram of the observed λ values.

in which the progenitor galaxies have roughly equal mass, result in slow rotators,
particularly if the gas fraction is small [242, 260].

Based on arguments like these, it is reasonable to assume that triaxial galaxies
are generically slowly rotating, with λ <∼ 0.1. A typical, luminous E galaxy with
λ = 0.1 would have a figure rotation period of ∼109 yr and a rotational frequency
of �f ≈ 10 km s−1 kpc−1. By comparison, the most rapidly rotating (and highly
flattened) bars at the centers of some disk galaxies are believed to have frequencies
of figure rotation as large as ∼100 km s−1 kpc−1.

Yet another proxy for the amplitude of figure rotation—useful when discussing
the behavior of orbits in theoretical models—is the corotation radius R�, the ra-
dius at which the period of figure rotation, 2π/�f , is equal to the period 2πr/Vc of
a circular orbit. Strictly circular orbits do not exist in triaxial potentials, but quasi-
circular, 1:1 closed orbits typically do; Vc can be defined as the mean velocity of
such an orbit, or as the velocity of a circular orbit in a symmetrized model with the
same mean radial density law as in the triaxial model. A typical value of R� in a
bright E galaxy with λ = 0.1 would be 10–20 kpc, well beyond the half-light radius
at ∼1–3 kpc.

In a rotating triaxial potential, orbits that are characterized by a stationary point
on the effective potential surface (the surface of constant Jacobi integral) look sim-
ilar to box orbits in a frame that corotates with the figure. However, there is one
important difference. In the absence of figure rotation, a box or pyramid orbit that
reaches a stationary point simply reverses velocity and retraces its path. If the figure
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rotates, the path traced out on the direct (with respect to the figure rotation) seg-
ment of the orbit is not retraced during the retrograde segment since the direction
of the Coriolis force reverses. The result is envelope doubling: the orbit in con-
figuration space appears to be composed of two, partially overlapping orbits with
slightly different shapes.

In the case of a nonresonant box orbit, the envelope doubling does not have a
significant effect on the character (regular versus stochastic) of the motion. How-
ever, a resonant centrophilic orbit, which remains regular by virtue of avoiding the
destabilizing center, is converted by figure rotation into a thicker orbit which may
intersect the central SBH (figure 3.17, right), rendering it stochastic. This argument
does not necessarily imply that the overall degree of chaos increases with the rate of
figure rotation: new, thin orbits can crop up that take the place of the thin orbits that
were destroyed by the rotation. Nevertheless, one finds via numerical integrations
that the fraction of regular centrophilic orbits drops rapidly as the rate of figure
rotation is increased (figure 3.17, left). The same turns out to be true for the so-
called inner long-axis tube orbits, orbits with the same general shape as box orbits
but with enough angular momentum about the long axis to avoid the very center.
Scaled to real galaxies, these results suggest that—for pattern speeds in the range
2 × 108 yr <∼ T� <∼ 5 × 109 yr—the two orbit families that are most important for
maintaining triaxiality in nonrotating models are rendered mostly chaotic [114].

3.5.3 Triaxial self-consistency

In the axisymmetric geometry, self-consistent equilibria exist for essentially all
physically interesting choices of the density profile and axis ratio; the only impor-
tant qualification is the lack of two-integral, f (E,Lz) models for prolate spher-
oids that are too elongated [33]. But allowing f to depend on a third integral,
f = f (E,Lz, I3), yields self-consistent equilibria for prolate spheroids with ar-
bitrary elongations [251].

The situation is very different for triaxial galaxies. Triaxial self-consistency was
considered inherently implausible until the demonstration [482, 483] that most of
the orbits in triaxial potentials with large smooth cores do respect three integrals
and that self-consistent equilibria could be constructed by superposition of such
orbits. The box orbits, which are unique to the triaxial geometry, were found to
be especially important. Subsequent support for the existence of self-consistent
triaxial equilibria came from N -body simulations of collapse in which the final
configurations were often found to be nonaxisymmetric [534, 565]. In addition, the
degree of stochasticity in triaxial potentials with central density cusps—but lacking
SBHs—was found to be modest [349, 366, 484], implying that most orbits would
behave like regular orbits.

As noted above, the box orbits that are so important for triaxial self-consistency
tend to disappear in triaxial potentials with central SBHs. Within the influence
radius, they are replaced by the pyramid orbits; at larger radii, they are either
stochastic, or they are associated with thin resonant orbits that avoid the center.
Stochastic orbits are generally considered to be an obstacle for self-consistency, for
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Figure 3.17 Left: Stability maps of orbits launched from an effective (Jacobi) equipotential
surface of rotating triaxial models having density law (3.126) with c/a = 0.5,
T = 0.58, γ = 1, and with a central SBH that contains 0.001 times the galaxy
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Figure 3.17 Continued. mass [114]. As in figure 3.15, the gray scale is proportional to the
degree of stochasticity. Each equipotential encloses roughly 1/2 the total mass
of the model; what varies is the degree of figure rotation, which is zero in panel
(d), while R�/RJ ≈ (25, 12, 6) in panels (c), (b), and (a), respectively, where
RJ is the approximate radius of the equipotential surface. Right: An orbit asso-
ciated with the (3,−1,−1) resonance. The top row shows two Cartesian pro-
jections of the orbit in the nonrotating model. The next four rows show cross
sections of the orbit with the x–y plane (left) and with the x–z plane (right) in
rotating models with the same four values of R�/RJ as at left.

two reasons:

1. Stochastic orbits have time-averaged shapes that are rounder than the isoden-
sity contours of the mass model that generated the potential. For instance, an
orbit that respects only one integral, the energy, will densely fill the volume
enclosed by an equipotential surface.

2. Unless it lies close to a resonance, a regular orbit covers its invariant torus
densely in a fairly short time, leading to a constant, time-averaged phase-
space density. Stochastic orbits do not behave so predictably; for instance,
they can “mimic” a regular orbit for many orbital periods, before suddenly
appearing to move to a different “torus.” This leads to the expectation that
a galaxy containing stochastic orbits would necessarily evolve in shape, per-
haps toward axisymmetry.

These concerns are probably less relevant to triaxial nuclei. Far from the center
of a galaxy, the equipotential surfaces are nearly spherical, and stochastic orbits
that fill such surfaces are not very useful for reconstructing an elongated triax-
ial figure. However, near the center of a galaxy, on scales r ≈ rm, equipotentials
are only slightly rounder than equidensities, particularly if the stellar density rises
rapidly toward the center. Because of this, even time-averaged stochastic orbits
might be useful building blocks. Furthermore, near the center of a galaxy, evolution
timescales for stochastic orbits tend to be short: in part because orbital periods are
intrinsically short, but also because the stochastic orbits near the SBH are found
to behave in a highly chaotic way, rapidly sampling the full phase-space volume
available to them.

A useful way to think about the consequences of stochastic motion is in terms
of chaotic mixing as defined in section 3.1.4. If the motion is chaotic, an initially
nonuniform distribution of points in phase space evolves to a uniform one, at least
in a coarse-grained sense [376]. Because of the exponential instability of stochastic
motion, chaotic mixing is essentially irreversible, in the sense that an infinitely fine
tuning is required to undo its effects. Chaotic mixing can also be very efficient.
In regions of phase space where most of the trajectories are stochastic—for in-
stance, the “zone of chaos” described above—there are few “barriers,” in the form
of invariant tori, to inhibit the stochastic motion, and chaotic mixing can lead to
essentially uniform phase-space distributions in a modest number of crossing times
[271, 529].
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Figure 3.18 Cumulative energy distributions of the various orbit families in self-consistent
models of triaxial nuclei with SBHs [434]. The symbols B, X, Z, C denote
the mass contributed by box (i.e., pyramid), x-tube, z-tube, and chaotic (i.e.,
stochastic) orbits, respectively; black dots give the totals. Lower panels show
solutions in which the stochastic orbits were excluded. Solid and dashed lines
show the distributions for isotropic spherical models with the same radial den-
sity profile, with and without the SBH, respectively.

Figure 3.18 shows the orbital composition of self-consistent models of triaxial
nuclei containing SBHs [434]. The density profile in these models is given by equa-
tion (3.126), with c/a = 0.5 and γ = (1, 2). The models extend outward in radius
to ∼10rm, that is, well into the “zone of chaos” discussed above. Self-consistent
solutions were constructed by superposition of time-averaged orbits; in addition,
the solutions were realized as N -body models and advanced forward in time to
verify that the numerical self-consistent solutions corresponded to bona fide steady
states. Self-consistency was achieved for maximally triaxial (T = 0.5) and nearly
oblate (T = 0.25) geometries. In both these geometries, solutions exist that include
only regular orbits—mostly tube orbits about the short axis. But solutions including
fully mixed stochastic orbits are also allowed. Perhaps surprisingly, a large fraction
of the mass, exceeding 50%, was found to be assignable to the stochastic orbits
without violating self-consistency or inducing noticeable evolution. By contrast,
no self-consistent solutions could be found for T = 0.75, a nearly prolate model.
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The results illustrated in figure 3.18 are from the only published study in which
the self-consistency problem for triaxial nuclei on scales r <∼ rm was addressed.
There is, however, a large body of work addressing the large-scale effects of central
mass concentrations on triaxial spheroids or bars [11, 125, 229, 266, 267, 372, 399].
These studies generally proceed by first constructing an N -body model for the bar
or triaxial spheroid, then a compact mass is inserted or grown at the center and the
model is integrated forward. Typically the model isophotes evolve toward rounder
and/or more axisymmetric shapes on scales >∼ rh, as the preexisting box orbits are
converted to stochastic orbits. The evolution can be very striking when the mass of
the central object exceeds ∼1% of the total galaxy mass (compared with ∼0.1% for
real SBHs) and when the figure is elongated. When the mass of the SBH is smaller,
M• <∼ 10−3Mgal, evolution is often still observed but the final shape can remain
appreciably nonaxisymmetric. It is currently unclear whether Nature would select
stable triaxial configurations for galactic nuclei like those in figure 3.18, or whether
the presence of an SBH would mitigate against such equilibria, as it seems to do on
larger scales.





Chapter Four

Motion Near Supermassive Black Holes

A supermassive black hole (SBH) is a compact object, and from the point of view of
a star that orbits far outside the event horizon, its gravitational field should be nearly
indistinguishable from that of a Newtonian point mass. Indeed this assumption was
the basis for the entire treatment of nuclear dynamics in the preceding chapter, and
estimation of the masses of SBHs from kinematical data almost always assumes
Newtonian dynamics as well. But the Newtonian approximation must break down
for matter that orbits within a few gravitational radii, rg, of the SBH:

rg ≡ GM•
c2

≈ 4.78 × 10−8

(
M•

106M�

)
pc (4.1)

since the orbital velocity at such distances is of order the speed of light.1

At first sight, one is struck by the enormous difference between rg and the grav-
itational influence radii rh or rm that were defined in chapter 2. For instance, in the
case of rh,

rg

rh
= GM•

c2

/
GM•
σ 2

= σ 2

c2
≈ 10−7

(
σ

100 km s−1

)2

(4.2)

(recall that σ is the stellar velocity dispersion near the galaxy’s center). Equa-
tion (4.2) seems to suggest that for the vast majority of stars orbiting within the
influence sphere of an SBH, relativity is unimportant.

This conclusion turns out to be misleading, for several reasons. First, the effects
of relativity depend less on the size of an orbit than on its distance of closest ap-
proach to the SBH. The lowest-order corrections to the Newtonian equations of
motion have amplitudes that are of order P−1 where P is the “penetration parame-
ter”:

P ≡ (1 − e2)
a

rg
= (1 + e)

rp

rg
.

Here, a and e are the semimajor axis and eccentricity of the orbit, and rp
= (1 − e)a is the distance of closest approach to the SBH. It turns out that the
feeding of stars and compact objects to SBHs occurs predominantly from very ec-
centric orbits. For instance, capture of stellar-mass black holes (BHs) by SBHs—a
so-called “extreme-mass-ratio inspiral” (EMRI)—is believed to take place from
orbits with semimajor axes of a <∼ 0.01 pc and eccentricities in the range 0.99–
0.9999. For such orbits, P can be of order unity even though the orbits extend
outward to a large fraction of rh.

1Some authors (e.g., [400]) define the gravitational radius as 2GM•/c2, equal to the radius of the event
horizon for a nonrotating hole.
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A second reason why the effects of relativity cannot be ignored has to do with
the way in which stars get placed onto orbits of such high eccentricity. One such
mechanism is torques (i.e., nonradial forces) that arise from the slightly aspherical
distribution of matter near an SBH. These torques remain effective as long as or-
bits near the SBH—both the orbit of the star being torqued, and the orbits of the
torquing stars—maintain their orientations; any mechanism that causes orbits to
precess (for instance) tends to randomize the torques. Relativistic precession of the
periastron—or, as it is called in the solar system, precession of the perihelion—is
such a mechanism. If the timescale for relativistic precession is shorter than the
timescale for the torques to do their work, feeding of objects to the SBH will be
greatly inhibited. This relativistic quenching effect turns out to be of major impor-
tance in the EMRI problem.

A third reason for considering relativistic effects is the prospect of measuring
those effects, via careful observation of the orbits of stars at the center of the Milky
Way. For the Galactic center SBH, rg ≈ 1.9 × 10−7 pc. The star S2, whose orbital
period is 15.8 yr, has a semimajor axis a ≈ 0.005 pc and an eccentricity e ≈ 0.88,
yielding a penetration parameter P ≈ 5.9 × 103. The time required for a star or-
biting in the Schwarzschild metric of a nonrotating SBH to precess by an angle π
works out to be

tS = 1

6
PP, (4.3)

where P is the Keplerian period. For S2, it follows that the argument of periapsis—
the angle that defines the orientation of the long axis of the orbit in its plane—
should increase with time due to relativity as

�ω

�t
= 6π

PP ≈ 0′.7 yr−1, (4.4)

or roughly 11′ over its 16 yr period. For comparison, the current measurement un-
certainty in this angle is about one degree (table 4.1), suggesting that a detection of
the relativistic precession may be quite feasible within the next few years.

But there are other forces acting on S2 which also cause deviations from its
otherwise Keplerian trajectory. The largest of these is likely to be the so-called
“mass precession,” apsidal precession due to the distributed mass (stars, stellar rem-
nants, dark matter, . . . ) inside its orbit. It turns out that this Newtonian precession
is predicted to be of similar magnitude (though opposite in direction) to the rela-
tivistic precession, at least if standard, “collisionally relaxed,” models of the mass
distribution are adopted for the Galaxy.2

Roughly speaking, this chapter deals with motion at distances from an SBH
that are large compared with rg and small compared with rh. In this regime, rel-
ativity is (sometimes) important, but it is never dominant, and the appropriate way
to include it is via the post-Newtonian expansion. As the example of S2 shows,
Newtonian and relativistic perturbations in this regime can be of comparable mag-
nitude. Fortunately, it is straightforward to include both sorts of perturbation into

2The likelihood of such models is discussed in chapter 7.
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the machinery that was developed by celestial mechanicians over the last three cen-
turies for treating solar-system motion, and that is the approach adopted in this
chapter.

One problem to which this machinery has often been applied is the classical
three-body problem. In the context of galactic nuclei, the three-body problem ap-
pears whenever there is a binary SBH, or an intermediate-mass black hole (IBH)
orbiting around an SBH; the third body might be a star in the nucleus. In the hier-
archical three-body problem, the separation of two of the bodies is assumed to be
much less than the distance of either body to the third object, and attention in this
chapter is restricted to that special case.

There is one context where a fully relativistic treatment cannot be avoided: when
deriving the critical orbital parameters corresponding to capture by an SBH. The
conditions are well known in the case of capture from circular orbits. As discussed
above, in galactic nuclei, capture is more likely to occur from highly elliptical or-
bits. The relevant question becomes, what are the Keplerian elements (as measured
near apoapsis, say) of an eccentric orbit that just avoids continuing into the SBH?
The answer to that question will be useful when considering the loss-cone problem
in chapter 6.

4.1 KEPLERIAN ORBITS

4.1.1 Description of the motion

Consider two point particles moving in response to their mutual gravitational at-
traction. Newton’s equations of motion are

ẍ1 = −Gm2
x1 − x2

r3
,

ẍ2 = −Gm1
x2 − x1

r3
, (4.5)

where r ≡ |x1 −x2| is the separation between the bodies whose masses arem1 and
m2.

Since

m1ẍ1 +m2ẍ2 = 0, (4.6)

the center of mass (m1x1 +m2x2)/(m1 +m2)moves with constant velocity. Trans-
forming to the frame in which that velocity is zero,

0 = m1v1 +m2v2, (4.7)

allows the individual positions and velocities to be expressed in terms of the relative
position and velocity vectors:

r = x1 − x2, v = v1 − v2 (4.8)
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since

x1 = µr

m1
, x2 = −µr

m2
, (4.9a)

v1 = µv

m1
, v2 = −µv

m2
, (4.9b)

where µ ≡ m1m2/(m1 +m2) is the reduced mass. The equation of relative motion
is then easily shown to be

dv

dt
= −Gmr

r3
(4.10)

where m ≡ m1 +m2 is the total mass.
The conserved quantities are the reduced energy and angular momentum,

E= 1

2
v2 − Gm

r
, (4.11a)

L = r × v, (4.11b)

which are the center-of-mass energy and angular momentum divided by µ. Conser-
vation of L implies that the orbit is confined to a plane. Writing

v2 =
(
dr

dt

)2

+ r2

(
dφ

dt

)2

, (4.12a)

|r × v| = r2 dφ

dt
, (4.12b)

where (r, φ) are polar coordinates in that plane, conservation of E and L imply(
dr

dt

)2

=A+ 2
B

r
+ C

r2
, (4.13a)

dφ

dt
= H

r2
, (4.13b)

where

A = 2E, B = Gm, C = −L2, H = L. (4.14)

In the case of bound (E < 0) motion, the solution of equations (4.13) can be
expressed parametrically in terms of the eccentric anomaly E (not to be confused
with the energy, E). The radial motion satisfies

n(t − t0)= E − e sin E, (4.15a)

r = a (1 − e cos E) . (4.15b)

Here n is the mean motion (i.e., the mean angular velocity) and the mean
anomaly, M, is defined as

M = n(t − t0). (4.16)

The mean motion is given by

n = (−A)3/2
B

= (−2E)3/2

Gm
(4.17)
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Figure 4.1 The geometry of a Keplerian ellipse, showing the motion of bodym2 with respect
to m1. The semimajor axis of the relative orbit is a, the semiminor axis is b, the
eccentricity is e, the longitude of periapsis is � , and the true anomaly is f .

and is equal to the orbital frequency, or 2π/P , where P is the orbital period:

P = 2π

n
= 2πa3/2

√
Gm

. (4.18)

The usual symbol for the mean motion, n, is easily confused with the symbol for
number density, and throughout most of this book the symbol νr will be used in-
stead; the subscript r indicates that this frequency is associated with radial motion
(as opposed to frequencies of angular precession, for instance). The constants a and
e are the semimajor axis and eccentricity (figure 4.1):

a= −B
A

= −Gm
2E

, (4.19a)

e=
(

1 − AC

B2

)1/2

=
(

1 + 2EL2

G2m2

)1/2

, (4.19b)

with inverse relations

E= −Gm
2a

, (4.20a)

L2 =Gma (1 − e2
)
. (4.20b)

The minimum and maximum values of r occur, respectively, at the periapsis, rp,
and apoapsis, ra , where

rp = (1 − e) a, ra = (1 + e) a. (4.21)
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The period can be expressed in terms of E as

P(E) = π√
2

Gm

(−E)3/2 . (4.22)

The solution to the angular equation is

φ − φ0 = H

(−C)1/2 f = f, (4.23a)

tan
f

2
=
(

1 + e

1 − e

)1/2

tan
E

2
, (4.23b)

where f is the true anomaly (figure 4.1). The angle φ0 is sometimes defined as the
longitude of pericenter, � ; what is important in what follows is that f = 0 at pe-
riapsis, the point of closest approach. The orbit in space is obtained by eliminating
E between equations (4.15) and (4.23):

r(φ) = a
(
1 − e2

)
1 + e cos (φ − φ0)

= a
(
1 − e2

)
1 + e cos f

, (4.24)

an ellipse. Other useful relations are

r cos f = a (cos E − e) , r sin f = a
(
1 − e2

)1/2
sin E,

r = a (1 − e cos E) . (4.25)

Let Ebin ≡ µE and Lbin ≡ µL be the energy and angular momentum of the
binary (rather than the quantities per unit of reduced mass) in the center-of-mass
frame. The relation between these quantities, and the Keplerian elements a and e,
is given by equations (4.19):

a = −Gm1m2

2Ebin
, e =

(
1 + 2EbinL2

bin

G2µ3m2

)1/2

, (4.26)

and the inverse relations are

Ebin = −Gm1m2

2a
, Lbin = µ

√
Gma

(
1 − e2

)
. (4.27)

So far we have assumed a bound orbit, E < 0. We will have occasion later
in this book also to consider the unbound case, when discussing the dynamics of
encounters between passing stars. We give the necessary expressions here without
derivation. The relative orbit in space is

r(φ) = L2

Gm

1

1 + e cos (φ − φ0)
, (4.28)

with e > 1 a quantity that plays the role of eccentricity:

e2 = 1 + 2EL2

G2m2
, (4.29)

identical to the expression (4.19b), except of course that now E > 0. The solution
to the angular equation is

tan
f

2
=

(
e + 1

e − 1

)1/2

tanh
F

2
, (4.30)
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with f = φ − φ0 and F playing the role of eccentric anomaly; the analogue to
Kepler’s equation is

e sinh F − F = M = n (t − t0) . (4.31)

Throughout this book, we will often be concerned with the motion of a star
around an SBH. In this case, we can set m1 = M• � m2 and µ = m2, and identify
the center of mass of the binary with the SBH, located at the origin with zero
velocity (say). The quantities E and L defined in equation (4.20) then become the
specific energy and angular momentum of the second body, the same quantities that
were identified in chapter 3 as integrals of motion in a general spherical potential.

4.1.2 Orbital distributions

It is useful to rewrite some of the expressions derived in section 3.2 in terms of the
alternate integrals of motion a and e, after setting	(r) = −GM•/r . We assume, as
in that section, that f = f (E,L2), that is, that the spatial distribution is spherical
and the velocity distribution exhibits no mean motion. The velocity components
parallel and perpendicular to a radius vector, vr and vt , are

v2
r = GM•

a

[
2a

r
− 1 − a2

r2

(
1 − e2)] = GM•

a

( ra
r

− 1
) (

1 − rp

r

)
,

v2
t = GM•a

r2

(
1 − e2

) = GM•
a

rarp

r2
. (4.32)

The velocity-space volume element, dv = 2π vt dvt dvr , becomes

dv = 2πvt
∂ (vr , vt )

∂ (a, e)
da de

=π (GM•)3/2

ra1/2

[
a2e2 − (r − a)2

]−1/2
da e de

=π (GM•)3/2

ra1/2

[
(ra − r)

(
r − rp

)]−1/2
da e de. (4.33)

The configuration-space density, n(r), of an ensemble of orbits that are uniformly
populated with respect to mean anomaly (thus satisfying Jeans’s condition) is

n(r) =
∫
f (x, v) dv (4.34a)

=2π
(GM•)3/2

r

∫ ∞

r/2

da

a1/2

∫ 1

(1−r/a)

f (a, e2) e de√
a2e2 − (r − a)2

, (4.34b)

with f the phase-space density. Finally, consider the function N(a, e), where
N(a, e) da de is the number of stars with orbital elements in the intervals da and



MOTION NEAR SUPERMASSIVE BLACK HOLES 125

de centered on a and e. By definition,

N(a, e) da de= 2
∫ ra

rp

f (a, e2)× 4πr2dr × dv (4.35)

= 8π2

a1/2
(GM•)3/2 f (a, e2)

∫ ra

rp

r dr√
a2e2 − (r − a)2

da e de

= 8π3 (GM•)3/2 a1/2f (a, e2) da e de.

Suppose that the velocity distribution is isotropic, f = f (a). It was shown in
chapter 3 that near an SBH, a configuration-space density n(r) ∝ r−γ is reproduced
by an isotropic f of the form f (E) ∝ |E|γ−3/2 ∝ a3/2−γ . The corresponding
N(a, e) is

N(a, e) da de = N0a
2−γ da e de . (4.36)

The normalized eccentricity distribution, for stars with some specified range of a
(say), is simply

dN

de
= 2e. (4.37)

This is sometimes referred to as a “thermal” distribution of eccentricities. For such
a distribution,

〈e〉 =
∫ 1

0
N(e) e de = 2

3
, (4.38a)

〈e2〉 =
∫ 1

0
N(e) e2 de = 1

2
. (4.38b)

4.2 PERTURBED ORBITS

The remainder of this chapter deals with the effects of small perturbing forces on
the otherwise Keplerian orbit of a star around an SBH. The perturbing forces may
be due to distributed mass in the form of other stars, stellar remnants, dark matter,
etc., or to the effects of relativity. In such problems, it is useful to represent the
motion as a slow (compared with orbital frequencies) variation of the constants, or
elements, that define the shape and orientation of the otherwise-Keplerian orbit.
Figure 4.2 illustrates the traditional orbital elements. The semimajor axis a and
eccentricity e were defined above. Two more elements define the orientation of the
orbital plane: the inclination i, defined as the tilt of the ellipse with respect to a
reference plane, and the longitude of the ascending node, �, the angle between
the reference direction and the line of intersection of the orbit with the reference
plane; the latter is called the line of nodes. Two final elements specify the location
in the orbital plane: the argument of periapsis (or pericenter, or periastron) is the
angle between the line of nodes and the periapsis, and the mean anomaly, defined
above, gives the phase along the orbit. In the unperturbed two-body problem, all of
the Keplerian elements are conserved except for the mean anomaly, which increases
linearly with time.
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True anomaly

Longitude of
ascending node

Argument of
periapsis

Inclination

Ascending node

Reference
direction

ω

f

i

Ω

Orbit

Plane of reference

Figure 4.2 The Keplerian orbit in three-dimensional space, showing the angles that de-
fine its orientation with respect to a reference plane and a reference direction:
the inclination i, the longitude of the ascending node �, and the argument of
periapasis ω.

When describing observed orbits, for example, the orbits of stars around the
Galactic center SBH, the reference plane is often chosen to be the plane of the sky.
In other situations, the choice of reference plane is often motivated by symmetries
in the problem. For instance, in the case of motion around a spinning SBH, as-
sociating the reference plane with the plane perpendicular to the SBH spin vector
allows precession due to frame dragging to be described simply in terms of changes
in �.

The Keplerian elements are the basis for a commonly used set of action-angle
variables, the Delaunay variables or elements [201]. The Delaunay momentum
variables are the three actions (J1, J2, J3), where J1 = L = |x × v|, the magni-
tude of the angular momentum; J2 = I = Jr + L, where Jr is the radial action,
defined as

Jr = 1

π

∫ rmax

rmin

vr dr = 1

π

∫ rmax

rmin

dr

√
2E − 2	(r)− L2

r2
; (4.39)

and J3 = Lz , the projection of L onto the z-axis. The Delaunay actions are related
to the elements of a Kepler orbit via

L =
√
Gma(1 − e2), I =

√
Gma, Lz = L cos i. (4.40)

The variables conjugate to (L, I, Lz)—the “angles”—are, respectively, the argu-
ment of periapsis ω, the mean anomaly M, and the longitude of the ascending
node �.
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The Delaunay variables are particularly useful for representing perturbed mo-
tion, since in the absence of perturbations, all of the variables (excepting M) are
conserved. Expressed in terms of the Delaunay variables, the Hamiltonian describ-
ing relative motion in the nonrelativistic two-body problem is simply

HKep = −1

2

(
Gm

I

)2

. (4.41)

The Hamiltonian equations for the rates of change of the generalized coordinates
qk and momenta pk ,

q̇k = ∂H
∂pk

, ṗk = − ∂H
∂qk

, (4.42)

become, in terms of the Delaunay variables,

dI

dt
= −∂H

∂M
,

dL

dt
= −∂H

∂ω
,

dLz

dt
= −∂H

∂�
,

dM

dt
= ∂H
∂I
,

dω

dt
= ∂H
∂L

,
d�

dt
= ∂H
∂Lz

. (4.43)

In the unperturbed problem, H depends only on I and the only nontrivial equation
of motion is

dM

dt
= ∂HKep

∂I
= G2m2

I 3
=

√
Gm

a3/2
= 2π

P
= νr . (4.44)

In the case of perturbed motion,H will have an additional piece,

H = HKep +Hp, (4.45)

that describes the perturbation. If the dependence of Hp on the Cartesian coordi-
nates is known, its dependence on the Delaunay variables can be obtained from the
transformations

r = r [u1 cos(f + ω)+ u2 sin(f + ω)
]
, (4.46)

ṙ =
(
Gm

p

)1/2{
−u1

[
e sinω + sin(f + ω)

] + u2
[
e cosω + cos(f + ω)

]}
,

where p ≡ (1 − e2)a is the semilatus rectum, r = p/(1 + e cos f ), and the unit
vectors (u1, u2, u3) are directed along the line of nodes toward the ascending node,
perpendicular to the line of nodes in the plane of the orbit, and perpendicular to the
orbital plane, respectively:

u1 =

 cos�

sin�
0


, u2 =


 − cos i sin�

cos i cos�
sin i


, u3 =


 sin i sin�

− sin i cos�
cos i


. (4.47)

In equations (4.46) and (4.47), the reference plane is the x–y plane and the refer-
ence line is the x-axis.

Throughout this chapter we assume that the perturbing forces are small compared
with the inverse-square force from the SBH. This implies motion that remains close
enough to the SBH that the enclosed mass in stars is small compared withM•; but at
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the same time, not so close that relativistic effects begin to dominate the motion: in
other words, rg  r  rh. In this regime, one expects the motion to be essentially
Keplerian on timescales comparable with the period P .

A useful way to deal with such motion is via the technique of averaging [55].
Suppose that the equation of motion for an orbital element, say �, is

d�

dt
= ∂Hp

∂Lz
= g(x, y, z) = g(I, L,Lz, ω,�,M). (4.48)

In many problems of interest, the time dependence of g as seen by the orbiting
body will consist of a set of periodic terms with frequencies that are integer multi-
ples of νr . This is the case, for instance, if the perturbation is due to the force from
a fixed, distributed mass around the SBH. Furthermore, since the perturbation is
small, many revolutions will be required before appreciable changes take place in
any of the otherwise-conserved elements (I, L,Lz, ω,�). It makes intuitive sense
in this case to average the equations of motion over the short timescale associated
with radial motion in the unperturbed problem. Thus one replaces the exact equa-
tion (4.48) by

d�

dt

∣∣∣∣
Av

=
〈
d�

dt

〉
= 1

P

∫ P

0
g(I, L,Lz, ω,�,M)dt, (4.49)

where it is understood that the orbital elements in the integrand are to be regarded
as constants—the osculating elements. The result of the averaging is a set of equa-
tions describing the gradual evolution of the elements (L,Lz,�,ω) due to the
perturbing forces. The more rapid, periodic variations that occur over a single orbit
typically have amplitudes relative to the gradual changes of ∼ a|	p|/Gm  1.

If the perturbed motion is derivable from a velocity-independent potential,

	(x) = −GM•
r

+	p(x), (4.50)

with 	p the (small) perturbation, the averaged equations of motion can be ex-
pressed most simply in terms of the orbit-averaged HamiltonianH:

H= −1

2

(
GM•
I

)2

+	p(I, L,Lz, ω,�), (4.51a)

	p ≡
∮
dM

2π
	p = 1

2π

∫ 2π

0
dE (1 − e cos E)	p(x). (4.51b)

In the final integral, the mean anomaly M has been replaced by the eccentric anom-
aly E; alternatively, the true anomaly f can be used via dM/df = (1− e2)3/2/(1+
e cos f )2. In the remainder of this book, averaging will often be carried out using
the eccentric anomaly as dependent variable, and it is useful to express the trans-
formation equations (4.46) in terms of E rather than f :

r = r
[
w1(cos E − e)+ w2

√
1 − e2 sin E

]
(4.52)
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where r = a(1 − e cos E) and

w1 =

 cos� cosω − cos i sin� sinω

sin� cosω + cos i cos� sinω
sin i sinω


, (4.53a)

w2 =

 − cos� sinω − cos i sin� cosω

− sin� sinω + cos i cos� cosω
sin i cosω


. (4.53b)

The orbit-averaged equations of motion for the variables (L,Lz,�,ω) are then
given by Hamilton’s equations (4.43), after replacingH in those equations byH.

After the averaging,H is independent of M, implying that a (i.e., I ) is conserved.
This result can be justified ab initio using the concept of adiabatic invariance; al-
ternatively, it can be shown to be a consequence of the more general equations of
perturbed motion to be presented now.

In the post-Newtonian description, the equations of relative motion in the two-
body problem have the form

r̈ = −Gm
r3

r + ap, (4.54)

where ap = aPN depends on r , ṙ and (in the higher-order PN equations) on r̈ .
Over the last three centuries, many techniques have been worked out for obtaining
approximate solutions to equation (4.54) in the context of the solar system. The
starting point for many of these approximate methods is Lagrange’s planetary
equations, which give the instantaneous rates of change of the osculating elements
in terms of the ap [466]. In writing Lagrange’s equations, it is convenient (follow-
ing Gauss) to first resolve the perturbing acceleration into components (S, T ,W ):

ap = Sn + Tm +Wk, (4.55)

with

n =

 cos(f + ω) cos�− sin(f + ω) sin� cos i

cos(f + ω) sin�+ sin(f + ω) cos� cos i
sin(f + ω) sin i




and

m = ∂n

∂(f + ω)
, k = 1

sin(f + ω)

∂n

∂i
. (4.56)

S is the component parallel to the separation vector r , T is the component perpen-
dicular to r in the orbital plane, in the direction such that it makes an angle less
than 90◦ with the velocity vector, and W is the component perpendicular to the
orbital plane, in the direction of the orbital angular momentum vector. In terms of
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(S, T ,W ), Lagrange’s equations are

da

dt
= 2

n
√

1 − e2

(
Se sin f + T

p

r

)
, (4.57a)

de

dt
=

√
1 − e2

na

(
S sin f + T (cos f + cos E)

)
, (4.57b)

di

dt
= r cos(ω + f )

na2
√

1 − e2
W, (4.57c)

dω

dt
= − cos i

d�

dt
+

√
1 − e2

nae

[
−S cos f + T

(
1 + r

p

)
sin f

]
, (4.57d)

d�

dt
= r sin(ω + f )

na2 sin i
√

1 − e2
W, (4.57e)

dM

dt
=n−

√
1 − e2

(
dω

dt
+ cos i

d�

dt

)
− S

2r

na2
. (4.57f)

Lagrange’s equations (4.57) provide a complete description of the motion and
in principle could be solved without further approximation. However, if the per-
turbing force is small compared with the two-body force, the changes in the orbital
elements will be slow, and to a first approximation, the elements (with the excep-
tion of f ) can be set to constant values on the right-hand sides of equations (4.57).
Integrating those equations with respect to time then gives the first-order changes
in the elements, for example,

�� =
∫ t

t0

d�

dt
dt = (1 − e2)2

n2a sin i

∫ f (t)

f (t0)

sin(ω + f )

(1 + e cos f )3
W(a, e, i,�, ω; f )df,

(4.58)
where

df

dt
= na2

r2

√
1 − e2, r = a(1 − e2)

1 + e cos f

have been used. The orbit-averaged rate of change, 〈d�/dt〉, is then given by
��/�t after setting (t0, t) = (0, P ) and �t = t − t0.

In the remainder of this chapter, the focus will be on changes that take place on
timescales long compared with orbital periods, and the orbit-averaged expressions
are the most relevant. For this reason, expressions like d�/dt will be understood
to mean 〈d�/dt〉, the orbit-averaged time derivative, unless otherwise noted.

The Delaunay variables are useful for many problems, but they sometimes be-
come awkward to use. For instance, as the inclination goes to zero, the nodal lon-
gitude becomes ill defined. Many alternative sets of variables have been proposed.
One especially useful set are the vectorial elements. They are defined in terms of
a set of orthogonal unit vectors {e�, ee, en} whose directions are determined by the
orientation of the orbit in space. The vector e� is colinear with the orbital angular
momentum. The vector ee points in the direction of orbital periapsis, or equiva-
lently, along the Laplace–Runge–Lenz vector. The third vector is en = e� × ee.
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These vectors are related to Delaunay variables by

e� =

 sin i sin�

− sin i cos�
cos i


 , ee =


cosω cos�− cos i sinω sin�

cosω sin�+ cos i sinω cos�
sin i sinω


 ,

en =

− sinω cos�− cos i cosω sin�

− sinω sin�+ cos i cosω cos�
sin i cosω


 . (4.59)

The vectorial elements are parallel to {e�, ee, en} but are normalized in different
ways by different authors. One choice is

L = L e�, E =
√
Gma ee. (4.60)

The orbit-averaged components of the Cartesian position vector can be written very
simply in terms of E as [382]

xi = −3

2

√
a

Gm
Ei , (4.61)

and the time-averaged product of two coordinates as

xixj = 1

2

a

Gm

[
L2δij − JiJj + 5EiEj

]
. (4.62)

The set of vectors (4.59) will be useful in describing pyramid orbits in section 4.4.3.
They also provide the most compact and elegant way for expressing the three-body
Hamiltonian in section 4.8, and are useful when describing the changes in L due to
“resonant relaxation” (section 5.6).

4.3 THE POST-NEWTONIAN APPROXIMATION

As discussed in the introduction to this chapter, the effects of relativity on the mo-
tion of stars orbiting within the influence sphere of an SBH can be large enough to
produce significant departures from the predictions of Newtonian theory. In some
cases of physical interest, for example, the S-stars at the center of the Milky Way,
these departures can be significant even on timescales comparable with orbital
periods—which is to say, human lifetimes! But Einstein’s equations are notori-
ously difficult to solve, even in the case N = 2, and there is essentially no prospect
of obtaining exact solutions in the case of many-body systems like galactic nu-
clei. Fortunately, we would be satisfied with something far less ambitious—say,
a computational framework, preferably “Newtonian-like,” that allows us to treat
the effects of relativistic perturbations in an approximate way, with an error that
is smaller (say) than the amplitudes of the relativistic effects themselves. Such a
framework exists: it is called the post-Newtonian, or PN, approximation.

The PN approximation method was developed by Einstein, Droste and De Sitter
within one year of the 1916 publication of the general theory of relativity. The ini-
tial motivation was to make predictions that could be tested via observations of the
solar system, in which the Newtonian effects of the planets’ gravity were known to
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be much greater than the lowest-order corrections due to general relativity. Quanti-
tative predictions were calculated for the relativistic precession of Mercury’s peri-
helion, the deflection of light by the Sun, and the gravitational redshift [104].

The “small parameters” that are the basis for the PN approximation are

β = v

c
, γ = Gm

c2r
, (4.63)

where r, v are typical separations and relative velocities of bodies of mass m. In
other words, one assumes that objects are moving slowly compared with the speed
of light, and that their motion never brings them very near to the gravitational radius
of another body. An additional assumption is

v2 ∼ Gm

r
, (4.64)

that is, that characteristic velocities are of the order that would be expected in a sys-
tem that is bound together by the mutual gravitational attraction of its component
bodies. This assumption allows us to write

β2 ≈ γ  1 (4.65)

and to express the order of the PN approximation in terms of just one parameter,
for example, β. Thus the lowest-order, or 1PN, approximation yields corrections to
the Newtonian accelerations of order O(β2) = O(v2/c2), the 2PN approximation
to order O

[
(v/c)4

]
, etc.

A conceptually difficult point in implementing the post-Newtonian approxima-
tion is how to treat the internal structures of bodies. A point-mass approximation
might seem natural, but turns out to be surprisingly subtle in the context of general
relativity. Furthermore, SBHs are macroscopic bodies, and the effects of their spin
and flattening on the motion of stars is often significant. But allowing bodies to have
internal degrees of freedom is also complicated, whether their internal structure is
Newtonian or relativistic. In some developments of the PN formalism, additional
small parameters are introduced that express the assumption that the N bodies are
widely separated, for example,

α = R

r
, (4.66)

where R is a typical linear dimension.
Detailed treatments of the PN approximation are given in a number of excellent

texts [562, 566] and will not be repeated here. For the purposes of this book, only
certain key results are needed.

Consider first a set of N point particles that move in response to their mutual
attraction. In the absence of relativity, the acceleration of body a is given by the
summed gravitational force from all the other bodies:(

dva

dt

)
N

=
∑
b �=a

Gmbxab

r3
ab

, (4.67)

where xi , vi are the position and velocity of the ith particle of mass mi , xab =
xb − xa , and rab = |xab|.
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The order O(v2/c2), or 1PN, corrections to equation (4.67) are called the
Einstein–Infeld–Hoffman, or EIH, equations of motion [136]. They are

dva

dt
=

(
dva

dt

)
N

+
(
dva

dt

)
PN

and

c2

(
dva

dt

)
PN

=
∑
b �=a

Gmbxab

r3
ab

×
[
−4

∑
c �=a

Gmc

rac
+

∑
c �=a,b

Gmc

(
− 1

rbc
+ xab · xbc

2r3
bc

)

− 5
Gma

rab
+ v2

a + 2v2
b − 4va · vb − 3

2

(
vb · xab

rab

)2]

+
∑
b �=a

Gmb (vb − va)

[
xab

r3
ab

· (4va − 3vb)

]

+ 7

2

∑
b �=a

∑
c �=a,b

G2mb

rab

mcxbc

r3
bc

. (4.68)

The EIH equations of motion can be derived from Lagrange’s equations,

d

dt

(
∂L
∂vi

)
= ∂L
∂xi

, (4.69)

if the Lagrangian is taken to be

LEIH =LN + LPN ,

LN = 1

2

∑
a

mav
2
a + 1

2

∑
b �=a

mamb

rab
,

c2LPN = 1

8

∑
a

mav
4
a

+ 1

2

∑
b �=a

Gmamb

rab

[
3v2

a − 7

2
va · vb − 1

2
(va · nab) (vb · nab)

]

− 1

2

∑
b �=a

∑
c �=a

G2mamb

rab

mc

rac
, (4.70)

where nab = (xa − xb)/xab.
In the solar system, computation of accurate ephemerides for the planets requires

the inclusion of relativistic effects, and the EIH equations are the basis for much
work in this area. In the case of galactic nuclei, predicting the detailed motion of
individual stars is typically not the goal,3 and the EIH equations, in the form of

3This situation is likely to change in the near future, as increasingly detailed data become available for
stars at the Galactic center.
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equation (4.68), have seen relatively little application. However, setting N = 2 or
N = 3 in these equations is a natural starting point for talking about the relativistic
two- and three-body problems, and this is the approach we will take below.

In the two-body problem, the lowest-order relativistic corrections predict a pre-
cession of the relative orbit, the relativistic precession of the periastron (or peri-
apsis). As almost everyone knows, the amplitude of this precession was computed
by Einstein and others in the case of Mercury’s orbit around the Sun as one of the
first successful tests of the general theory of relativity.

The EIH equations assume that each body is a point mass. Effects due to the
finite sizes of bodies—for example, tidal perturbations, spin-orbit torques, multi-
pole corrections, etc.—are ignored. This effacement principle is justified in many
problems of interest, where finite size effects can be shown to appear only at high
PN order. But it breaks down in the case of motion sufficiently close to a rotating
SBH, where even approximate descriptions of the motion must take into account
the effects of the hole’s spin and of its nonspherical shape.

The spin angular momentum of a black hole can have any value between zero
and the maximum value allowed by the Kerr solution,

Smax = GM2
•

c
. (4.71)

Expressed as a vector,

S = χSmax, 0 ≤ χ ≤ 1. (4.72)

While the spin of no SBH has been convincingly measured, growth of an SBH by
accretion from matter in a fixed plane should result in a spin that is close to maximal
[22], and so χ <∼ 1 is a natural assumption to make.

In the weak-field and low-velocity limit, the spin of an SBH has two important
consequences for the motion of an orbiting body:

1. The spin introduces a Lorentz-like, velocity-dependent force into the equa-
tions of motion. This spin-orbit acceleration causes the orbit to precess:
both an in-plane precession, which contributes additively to the precession
derived in the previous section, and also a precession of the orbital angular
momentum vector about the spin axis, which causes the plane of the orbit to
change. These spin-related precessions are collectively referred to as Lense–
Thirring, or frame-dragging, precession.

2. A Kerr black hole (like most rotating objects) is not spherically symmetric.
This nonsphericity results in an additional nonradial acceleration, which to
lowest order in v/c is describable entirely in terms of the relativistic quadru-
pole moment Q of the spinning hole, given by

Q = − 1

c2

S2

M•
. (4.73)

The negative sign in equation (4.73) indicates that the distortion is oblate
in character, that is, that the hole is flattened in the direction parallel to its
spin. The quadrupole moment contains the lowest-order information about
the flattening of space-time around the spinning hole. It is interesting to note



MOTION NEAR SUPERMASSIVE BLACK HOLES 135

that the acceleration due to the quadrupole moment does not come out of the
post-Newtonian expansion, at any order, since those equations are derived
under the assumption that the bodies are point masses.

The spin-orbit terms have amplitudes of order

GM•
r2

×
(
GM•
c2r

× v

c

)
, (4.74)

that is, O(v3/c3) relative to the Newtonian acceleration if GM•/c2r ∼ O(v2/c2).
For this reason, spin-orbit effects are most often described as being of 1.5PN order
(and higher), even though they formally appear first at 1PN order.

As discussed in chapter 2, one of the motivations for considering motion near
SBHs is the prospect of detecting the gravitational radiation that would be pro-
duced. Gravitational waves are not discussed in any detail in this book, but it turns
out that energy loss due to gravitational radiation appears in the PN expansion at
order v5/c5. Orbits that evolve into a regime where gravitational-wave emission
would become important can therefore be handled via the PN formalism by in-
cluding terms up to order 2.5PN. However, the PN formalism is not adequate for
establishing the capture conditions, that is, the critical values of the orbital ele-
ments for which a trajectory continues inside the event horizon of the SBH, since
by definition such orbits must come very close to the SBH.

4.4 NEWTONIAN PERTURBATIONS

4.4.1 Distributed mass: Spherical case

We start with the simple case of a spherical star cluster around an SBH of mass
M•. Assume that the mass m2 of the orbiting body is much smaller than both M•
and the mass of the cluster. In this case, the SBH can be assumed to be fixed at the
origin, and the gravitational potential is

	(r) = −GM•
r

+	s(r). (4.75)

Because the potential is spherically symmetric, an orbiting body will conserve an-
gular momentum and the motion will take place in a fixed plane, just as in the
unperturbed Kepler problem. However, the frequencies associated with the radial
and angular motions in this plane will no longer be equal, and the orbit will pre-
cess: the trajectory will trace out a rosette as the orbit’s orientation—as defined by
the direction of its major axis, say—gradually changes with time. Relating the rate
of this “mass precession” to the form of the extended mass distribution is important
in many contexts; for instance, it can complicate the detection of precession due to
relativistic effects, as discussed later in this chapter, and it will turn out to play a
crucial role in “resonant relaxation” (chapter 5).

Assuming that the force from the distributed mass is small compared with the
force from the SBH, we can apply the technique of averaging. The averaged stellar
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potential is

	p = 1

2π

∫ 2π

0
dE (1 − e cos E)	s [a (1 − e cos E)] . (4.76)

In terms of the Delaunay variables, precession is defined as the rate of change of ω,
the argument of periapsis. Using equations (4.43) and the definition of the angular
momentum, the precession rate can be written in the following equivalent forms:

dω

dt
= ∂	p

∂L
= −1

I

√
1 − e2

e

∂	p

∂e
(4.77a)

= 1

2πI

√
1 − e2

e

∫ 2π

0
dE cos E

[
	s(r)+ a (1 − e cos E)

d	s

dr

]
(4.77b)

= − 1

πI

√
1 − e2

e2

∫ ra

rp

dr
e2 − (1 − r/a)√
e2 − (1 − r/a)2

d	s

dr
(4.77c)

= − 1

π

1√
GM•a

√
1 − e2

e2

∫ ra

rp

dr
r − a

(
1 − e2

)
√
(r − rp)(ra − r)

d	s

dr
. (4.77d)

Precession is retrograde, that is, opposite in sense to the direction of orbital circula-
tion. In the limit of large eccentricity, the integral in equation (4.77)
simplifies:

e → 1,
dω

dt
→ −

√
1 − e2

π
√
GM•a

∫ 2a

0
dr

√
r

2a − r

d	s

dr
. (4.78)

Eccentric orbits precess slowly, regardless of the form of 	s .
It is often useful to parametrize the mass distribution in a spherical nucleus as a

power law:

ρ(r) = ρ0

(
r

r0

)−γ
(γ < 3). (4.79)

For γ �= 2, the corresponding potential is

	s(r) = 4π

(2 − γ )(3 − γ )
Gρ0r

2
0

(
r

r0

)2−γ
+ constant. (4.80)

Ignoring the constant term (which does not appear in the equations of motion) and
averaging over the unperturbed motion,

	p = 4π

(2 − γ )(3 − γ )
Gρ0r

2
0

(
a

r0

)2−γ
Fγ (e), (4.81a)

Fγ (e)= 1

2π

∫ 2π

0
dx (1 − e cos x)3−γ (4.81b)

= 2F1

[
−2 − γ

2
,−3 − γ

2
, 1, e2

]
, (4.81c)
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where 2F1 is the ordinary hypergeometric function. A good approximation to Fγ (e)
is

Fγ (e) ≈ 1 + α1e
2, α1 = 23−γ �

(
7
2 − γ

)
√
π� (4 − γ )

− 1, (4.82)

which is exact for γ = 0 and γ = 1; for 0 ≤ γ < 2, 0 < α1 ≤ 3/2. When γ > 1
and e is close to 1, a better approximation is

Fγ (e) ≈ 1 + α1 + α2
(
e2 − 1

)
, α2 = 21−γ (2 − γ )√

π

�
(

5
2 − γ

)
� (3 − γ )

. (4.83)

The parameters α1 and α2 can themselves be approximated as

α1 ≈ 3

2
− 79

60
γ + 7

20
γ 2 − 1

30
γ 3, (4.84a)

α2 ≈ 3

2
− 29

20
γ + 11

20
γ 2 − 1

10
γ 3. (4.84b)

The precession rate becomes

dω

dt
= − 4π

(2 − γ )(3 − γ )

Gρ0r
2
0√

GM•a

(
a

r0

)2−γ √
1 − e2

e

∂Fγ

∂e
(4.85a)

≈ −νr 2α

2 − γ

√
1 − e2

[
M�(a)

M•

]
(γ �= 2), (4.85b)

where νr is the unperturbed (Kepler) frequency,

νr = 2π

P
=

√
GM•
a3/2

.

In equation (4.85b), α is identified either with α1 or α2 andM�(a) is the distributed
mass within radius r = a.

Setting γ = 2 gives the “singular isothermal sphere.” In this case the potential is

	s(r) = 4πGρ0r
2
0 log

(
r

r0

)
+ constant (4.86)

and the precession rate is given exactly, in the orbit-averaged approximation, by

dω

dt
= −νr

√
1 − e2

1 + √
1 − e2

M�(a)

M•
. (4.87)

We can summarize these results by writing

dω

dt
= −νrGM(e, γ )

√
1 − e2

[
M�(a)

M•

]
, (4.88)

where

GM(e, γ )= − 1

2πe

3 − γ

2 − γ

∫ 2π

0
dx cos x (1 − e cos x)2−γ (4.89a)

= 3 − γ

2
2F1

[
γ

2
− 1

2
,
γ

2
, 2, e2

]
(4.89b)
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Figure 4.3 The dimensionless function GM(e, γ ), equation (4.89), that appears in the ex-
pression (4.88) for the precession rate of a nonrelativistic orbit of eccentricity e
in a spherical star cluster of density ρ ∝ r−γ around an SBH. The continuous
curves are the exact relations; the dashed curve is for γ = 2. The dots show
the approximation of equation (4.91) (for γ < 2 only), using the approximate
expressions for α1 and α2 given by equations (4.84).

for γ �= 2, and

GM(e, 2) =
(

1 +
√

1 − e2
)−1

(4.90)

for γ = 2. Figure 4.3 plots GM(e, γ ), as well as the two approximations to GM

implied by equation (4.85b) when γ �= 2:

GM(e, γ ) ≈ 2

2 − γ
α(γ ) (4.91)

with α = {α1, α2}. The latter approximation is seen to be quite good; when describ-
ing eccentric orbits, α2 is the better choice, while α1 is better for e <∼ 0.9.

For orbits of a given eccentricity, the precession rate scales with radius as

dω

dt
∝ νr(a)M�(a) ∝ a3/2−γ . (4.92)

For γ < 3/2, inner orbits precess slower than outer orbits, and vice versa for
γ > 3/2.
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Finally, some remarks on terminology. Precession of the kind just discussed, in
which only the argument of periapsis changes, is variously called “apsidal preces-
sion” or “precession of the periapsis” or “precession of the periastron.” Apsidal
precession also results when the lowest-order relativistic corrections are added to
the equations of motion, as discussed later in this chapter. In the context of galactic
nuclei, apsidal precession due to Newtonian perturbations is often called mass pre-
cession to distinguish it from relativistic precession. The quantity |dω/dt | ≡ νM is
sometimes called the mass precession rate. Alternatively, some authors define the
mass precession rate more simply as νr(M�/M•), that is, as the precession rate of
an orbit with small e.

4.4.2 Distributed mass: Axisymmetric case

4.4.2.1 Tubes and saucers

The precession that occurs in a spherically symmetric star cluster leaves the ec-
centricity of the precessing orbit unchanged. By contrast, if the nuclear cluster that
surrounds the SBH is flattened or elongated, some component of the force exerted
on a test star will be perpendicular to the star’s radius vector: in other words, there
will be a torque, and the star’s angular momentum, both magnitude and direction,
can change with time. If the eccentricity should become large enough that the or-
bital periapsis r = rp = a(1−e) lies inside the SBH event horizon,4 the star can be
captured. This is one way that stars can find their way into the central SBH. “Co-
herent resonant relaxation,” discussed in chapters 5 and 6, operates via essentially
the same mechanism: in this case, the nonradial forces are due to irregularities in
the mass distribution resulting from the finite number of stars, whose orbits remain
nearly fixed in orientation over some limited time.

The gravitational potential of a nonspherical, steady-state nucleus can be ex-
pressed quite generally as

	(x) = −GM•
r

+	s(r)+	t(x, y, z), (4.93)

where 	s and 	t represent the spherical and nonspherical mass components, re-
spectively. Suppose that the spherical component of the mass density is given by
equation (4.79). Expressions for the potential of realistic, nonspherical mass dis-
tributions can be complicated. Here, we set the nonspherical component in equa-
tion (4.93) to

ρt (r, θ) = ρt,0

(
r

r0

)−γ
P2(cos θ), (4.94)

with P2(x) = (3/2)x2 − 1/2, a Legendre polynomial. This density is symmetric
about the θ = 0-axis, which we identify with the z-axis; setting ρt,0 > 0 then
yields a crude representation of a prolate stellar bar, while ρt,0 < 0 corresponds to

4The more exact condition for capture is given in section 4.6.
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an oblate nucleus. For the potential corresponding to ρt , Poisson’s equation gives

	t(r, θ)= −	t,0

(
r

r0

)2−γ
P2(cos θ), (4.95a)

	t,0 = 4π

γ (5 − γ )
Gρt,0r

2
0 (γ �= 0). (4.95b)

If we assume that the distributed mass is small compared withM•, we can replace
the exact equations of motion by the equations derived from the orbit-averaged
Hamiltonian:

H = −1

2

(
GM•
I

)2

+	s +	t. (4.96)

The averaged, spherical part of the potential is given by equation (4.81). The aver-
aged, nonspherical part is

2π	t = −	t,0

∫ 2π

0
dE

( r
a

)(
r

r0

)2−γ
P2(cos θ) (4.97a)

= −	t,0

2

(
a

r0

)2−γ ∫ 2π

0
dE

[
3
( z
a

)2 ( r
a

)1−γ
−

( r
a

)3−γ ]
,

(4.97b)

where r and z are understood to be functions of the unperturbed elements and of
the eccentric anomaly via equations (4.52)–(4.53):

r

a
= 1 − e cos E, (4.98a)

z

a
= (cos E − e) sin i sinω +

√
1 − e2 sin i cosω sin E. (4.98b)

Setting γ = 1 is both physically reasonable—it corresponds approximately to the
nuclear density profile of a giant elliptical galaxy—and it also allows the results of
the averaging to be expressed in terms of simple functions:

	s = 2πρ0r0a
(
1 + α1e

2) , (4.99a)

	t = −π
4
Gρt,0r0a

[
3 sin2 i

(
1 − e2 + 3e2 sin2 ω

) − 2 − e2] . (4.99b)

Here, α = α1 as defined in equation (4.82); for γ = 1, α1 is exactly equal to 1/2.
Because 	t depends on ω and on sin2 i = 1 − (Lz/L)

2, the equations of motion
(4.43) imply that L and � will change with time: the line of nodes will precess,
and the eccentricity will change due to the torque from the flattened potential. In
addition, the instantaneous rate of in-plane precession, dω/dt , will differ from the
precession rate due to the spherical mass component alone: directly because of the
torques, and indirectly because the rate of precession due to the spherical compo-
nent depends on the eccentricity.

The equations of motion can be simplified further by defining dimensionless
variables. Let the dimensionless time be τ = ν0t , with ν0 left unspecified for the
moment. A natural choice for the dimensionless, orbit-averaged Hamiltonian is
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then H = H/ν0I . We can also define a dimensionless angular momentum variable
� ≡ L/I = L/Lc(E), and cos i = �z/�. Note that, to this level of approximation,
we can also write

� = (
1 − e2)1/2

. (4.100)

Expressed in terms of these dimensionless quantities, the equations of motion (4.43)
are

dω

dτ
= ∂H

∂�
,

d�

dτ
= −∂H

∂ω
,

d�

dτ
= −∂H

∂�z
,

d�z

dτ
= ∂H

∂�
= 0. (4.101)

These equations become especially simple if we choose

ν0 = 2π(1 +�)Gρ0r0

(
GM•
a

)−1/2

, � = 1

4

ρt,0

ρ0
. (4.102)

Since �  1, ν0 ≈ νrM�(a)/M•, or approximately the “mass precession rate”
defined in equation (4.88).

Constant terms in H—including terms that depend only on a—do not appear in
the equations of motion, and we are free to drop them. The result is

H ≡ H
ν0I

= −�
2

2
+ 3

2
ε sin2 i

[
�2

3
+ (1 − �2) sin2 ω

]
. (4.103)

The parameter ε, defined as

ε ≡ − 3�

1 +�
≈ −3

4

ρt,0

ρ0
, (4.104)

specifies the degree of nuclear flattening or elongation. It is easy to show that the
axis ratio q of the isodensity contours, evaluated on the principal axes, is

q ≈ 1 − 2ε. (4.105)

Because �z is conserved,H = H(ω, �). Solving this expression for � = �(H,ω)

and substituting the result into the right-hand side of the first of the equations of
motion (4.101) yields dω/dτ = f (ω), which can be integrated numerically. A
similar procedure yields an integrable expression for �(τ ); and when the solutions
ω(τ) and �(τ ) are substituted into the third of the equations of motion, the time
dependence of� is likewise determined. It follows that the (orbit-averaged) motion
is completely regular [472].

Figure 4.4 shows the results of numerical integrations of the averaged equations
of motion in an oblate potential (ε = 0.1, or axis ratio ∼ 0.8). Neglecting reso-
nances, orbits fall into one of just two families:

• Tube orbits. Tube orbits circulate in ω and �. As long as �z is not too small,
tube orbits approximately conserve the total angular momentum as well; thus
the eccentricity and inclination are approximately constant. In configuration
space, the orbit fills an annular region and is symmetric with respect to the
symmetry plane.
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Figure 4.4 Motion in an axisymmetric nucleus around an SBH. These are solutions to the
equations of motion derived from the averaged Hamiltonian (4.103), with ε =
0.03. The three panels correspond to different values of �z , the component of the
(dimensionless) angular momentum parallel to the symmetry axis: (a) �z = 0.4,
(b) �z = 0.2, (c) �z = 0.02. Within each panel, the different phase curves have
different values of the “third integral” H . For large �z , as in panel (a), all orbits
are tubes; saucer orbits appear in this potential when �z <∼ 0.3, in panels (b) and
(c). In these panels, the fixed-point orbit that is the “generator” of the saucers is
indicated by the dot, and the maximum angular momentum reached by saucers is
indicated with a horizontal dashed line; the lower dashed line is �z . Saucer orbits
are important because their large angular momentum variations allow stars on
such orbits to come close to the SBH.

• Saucer orbits. Below some �z , a second family of orbits appear in which ω
librates. The parent of these orbits is an orbit of fixed � and ω = π/2, which
precesses in � at constant inclination, tracing out a saucer- or cone-shaped
region in configuration space. The saucer family includes orbits for which
L is not even approximately conserved, and for which the inclination varies
substantially.

Tube orbits were discussed in chapter 3, in the context of motion in general
axisymmetric potentials. The “third integral” associated with tube orbits was ex-
pressed there in terms of the “shape invariant” Sm = 1 − cos θ0, equation (3.122);
θ0 was defined as the minimum angular separation with respect to the symmetry
axis reached by the orbit at apoapsis. In the current case, tube orbits reach their
maximum inclination (minimum θ0) for ω = π/2, and for the relation between H
and θ0 equation (4.103) gives

cos2 θ0 ≈ 2H

3ε
, (4.106)

showing that H plays the role of the “third integral” here.
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The saucer orbits are restricted to those parts of phase space with small Lz , but
they are important because of their eccentricity variations: a star on such an orbit
can come much closer to the SBH than would be predicted on the basis of its mean
eccentricity.5 To understand these orbits in more detail, we begin by noting that in
spite of their eccentricity variations, most of the saucer orbits in figure 4.4 never
become very circular: �2

z
<∼ �2(τ )  1. It is therefore reasonable to try simplifying

the Hamiltonian (4.103) by ignoring the two terms of order ε�2. The result is

H ≈ H ′ ≡ −�
2

2
+ 3

2
ε sin2 i sin2 ω, (4.107)

with equations of motion

dω

dτ
= −�+ 3ε

�
cos2 i sin2 ω,

d�

dτ
= −3

2
ε sin2 i sin(2ω). (4.108)

The fixed point—the orbit of constant (ω, �, i) that is the generator of the saucers—
can be found by setting dω/dτ = 0, yielding

�2 = �2
fp ≡

√
3ε �z, cos2 i = cos2 ifp ≡ �z/

√
3ε. (4.109)

Evidently, a fixed point will only exist if �fp > �z , or

�z <
√

3ε ≡ �sep (4.110)

and this is the (approximate) condition for saucers to exist. Note that the require-
ment of small �z implies that saucer orbits are likely to represent a small fraction
of the orbital population of an axisymmetric nucleus.

The separatrix dividing the saucers from the tubes has H ′ = −�2
z /2, and the

angular momentum of this orbit spans the maximal range,

�min ≤ � ≤ �max, �min = �z, �max =
√

3ε = �sep . (4.111)

It is interesting that the maximum angular momentum attained by saucers is in-
dependent of Lz ; it depends only on the degree of elongation of the nucleus. The
inclination of the separatrix orbit likewise exhibits the maximal variation:

�z√
3ε

≤ cos2 i ≤ 1. (4.112)

Saucer orbits reach their maximum eccentricity near the equatorial plane; as the
orbit tilts up toward the z-axis, conservation of �z implies that � must increase.
Conservation of �z and H ′ likewise imply a simple relation between the maximum
and minimum values of � reached by any saucer orbit:

�− = �2
fp

�+
= �sep�z

�+
, �z <

√
3ε. (4.113)

As �z tends to zero, figure 4.4 shows that saucer orbits “crowd out” tube orbits; the
only tubes that remain are highly inclined and nearly circular.

Many readers will notice the similarities between the behavior of saucer orbits,
and the “Lidov–Kozai cycles” that occur in the hierarchical three-body problem
[321, 299]. Lidov–Kozai cycles are discussed in detail in section 4.8.

5Similar orbits can exist in oblate potentials lacking central SBHs; they have been called “pipe orbits”
[456] and “reflected banana orbits” [314] among other names.
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4.4.2.2 Motion in axisymmetric nuclei

Having established the basic character of the motion in axisymmetric nuclei, a more
general treatment will now be presented,6 relaxing two of the assumptions made
above: the index, γ , of the density power law will be allowed to have any value;
and it will no longer be assumed that ε�2  1.

Consider then a model of the nucleus similar to the one considered in section
4.4.2.1, consisting of a spherical and a flattened component in addition to the SBH.
Let the stellar density and its corresponding potential be

ρ(x)= ρ0

(
r

r0

)−γ (
1 + εd

[
z2

r2
− 1

3

])
, (4.114a)

	(x)=	0

(
r

r0

)2−γ (
1 + εp

[
z2

r2
− 1

3

])
, (4.114b)

where the flattening of the isodensity surfaces is specified via the parameter εd and
the axis of rotational symmetry is the z-axis. Poisson’s equation gives

	0 = 4πGρ0 r
2
0

(3 − γ )(2 − γ )
, (4.115a)

εd = 3(1 − q−γ )
1 + 2q−γ , (4.115b)

εp = εd (3 − γ )(2 − γ )

γ (γ − 5)
, 0 ≤ γ < 2. (4.115c)

Here, q ≤ 1 is the axis ratio of an isodensity surface; since these surfaces are
not ellipsoids, q is defined in terms of the points of intersection of an isodensity
surface with the z- and x-axes. The parameter ε defined in the previous section is
approximately equal to εp.

As in the previous section, we replace the exact equations of motion by the
equations derived from the Hamiltonian averaged over the unperturbed
motion:

H = −1

2

(
GM•
I

)2

+	 . (4.116)

After the averaging, H is independent of the mean anomaly M and I is con-
served, as is the semimajor axis a. Since H is an integral of the motion, so is 	.
The third integral, of course, is Lz due to the axial symmetry of the
potential.

6This section contains unpublished work carried out in collaboration with E. Vasiliev.
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A good approximation to 	 is

	=	0

(
a

r0

)2−γ
H(�, �z), (4.117a)

H =
(

1 − εp

3

) [
N − (N − 1)�2] + (4.117b)

+ εp

(
1 − �2

z

�2

)[
N(1 − �2) sin2 ω + 1

2
�2

]
,

N ≡ 23−γ �
(

7
2 − γ

)
√
π �(4 − γ )

. (4.117c)

These expressions are exact for γ = 0, 1 (for which N = 5/2, 3/2) and approx-
imate the true value to within few percent in other cases. The special case γ = 1
was considered in detail in the previous section; the analysis that follows general-
izes that treatment to arbitrary γ .

Define a dimensionless time τ = ν0t where

ν0 = 	0

I

( r0
a

)γ−2
≈ 2π

2 − γ

1

P

M̃

M•
, (4.118)

with M̃ ≡ 4πa3ρ(a)/(3 − γ ), an approximation to the mass in stars within r = a.
For γ = 1 and εp  1, this is the same quantity defined in equation (4.102). In
terms of the dimensionless H and τ , the equations of motion are then given by
equations (4.101).

It is convenient to replace H by H, a linear combination of the integrals H
and �z :

H≡ N(1 − εp/3)−H − (N − 1)(1 − εp/3)Rz
(N − 1)(1 − εp/3)− εp/2

= (R−Rz)
(

1 − Rsep

1 −Rsep

1 −R
R sin2 ω

)
, (4.119)

where

R ≡ L2/L2
c = �2, Rz ≡ �2

z , (4.120)

andRsep is given by

Rsep ≡ Nεp

(N − 1)(1 − εp/3)− εp/2 +Nεp
. (4.121)

It is shown below that Rsep is the maximum value of Rz for which saucers exist.
Equation (4.121) therefore generalizes equation (4.110), the approximate condition
when γ = 1.

The equation of motion for R is obtained by eliminating ω from the first of
equations (4.101) using equation (4.119). The result is

∂R
∂τ

= −k
√
(R1 −R)(R−R2)(R−R3), (4.122)
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where

k≡ 4Nεp
√

1 −Rsep

Rsep
≈ 4(N − 1) for εp  1, (4.123a)

R1,2 ≡R� ±
√
R2
� −RsepRz, (4.123b)

R3 ≡H+Rz, (4.123c)

R� ≡ 1

2

[Rsep(1 +Rz)+ (1 −Rsep)(H+Rz)
]
. (4.123d)

It is clear from the form of equation (4.122) thatRwill oscillate betweenR+ ≡ R1

and R− ≡ max(R2,R3). We thus have two classes of orbit, depending on the
relation betweenR2 andR3, which are separated byH = 0. ForH > 0,R3 > R2

and the orbit is a tube orbit, while forH < 0 the orbit is a saucer. It is easy to show
from equations (4.119) and (4.121) that saucer orbits appear only forRz ≤ Rsep.

Defining one additional variable as Rlow ≡ min(R2,R3), the solution to equa-
tion (4.122) can be expressed in terms of the elliptic cosine function, cn, as

R(τ )=R− + (R+ −R−) (4.124)

× cn2

(
k
√R+ −Rlow

2
τ,

√
R+ −R−
R+ −Rlow

)
.

The period of oscillation in ω or R is given, in physical (not dimensionless) units,
by

Tprec = ν−1
0

4

k
√R+ −Rlow

K

(√
R+ −R−
R+ −Rlow

)
, (4.125)

where K(k) is the complete elliptic integral,

K(k) =
∫ 1

0

dt√(
1 − t2

) (
1 − k2t2

) . (4.126)

For orbits not too close to the separatrix, K ≈ π/2. Note that, in a time Tprec, ω
varies by π for tube orbits and by an amount ≤ π for saucers.

Simple expressions can also be found that relateR− andR+. For tube orbits, the
relation is

R− = R+ − Rsep

1 −Rsep

(1 −R+)(R+ −Rz)
R+

. (4.127)

It is easy to see that—if εp  1 and Rsep  R <∼ 1—these two values are quite
close to each other, verifying that L2 is approximately conserved (figure 4.4). For
saucer orbits the relation is even simpler:

R−R+ = RsepRz (4.128)

which generalizes equation (4.113). The conditionR− = R+ gives the fixed-point
orbit

Rfp = (RsepRz
)1/2 ≈

√
N

N − 1
ε1/2
p �z (4.129)
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Figure 4.5 Properties of orbits in the axisymmetric Hamiltonian (4.117). The solid and
dashed curves show the maximum and minimum values of the dimensionless
angular momentum, R = L2/L2

c , as a function of R0, the value of R when
ω = π/2. Each saucer orbit appears twice, to the left and right of the fixed
point (f.p.). The dotted curve is the period, equation (4.125). This figure assumes
Rz = 0.05 andRsep = 0.2.

which generalizes equation (4.109). Figure 4.5 plots some properties of orbits for
Rz = 0.05,Rsep = 0.2.

By inverting equation (4.119), we can expressR in terms of ω:

R(ω)= Ra ± √R2
a − 4RzRb(1 +Rb)
2(1 +Rb) , (4.130a)

Rb ≡ Rsep

1 −Rsep
sin2 ω, (4.130b)

Ra ≡H+Rz +Rb(1 +Rz). (4.130c)

In the case of tube orbits only the upper root in equation (4.130a) is relevant, while
for saucers both roots are valid, as long as sin2 ω exceeds

sin2ωmin = 1 −Rsep

Rsep

Rz(1 −H−Rz)−H+ 2
√−HRz(1 −H−Rz)

(1 −Rz)2 .

(4.131)
Near the fixed point, the angular momentum of a saucer orbit varies sinusoidally
with time. Away from the fixed point, the period increases, becoming infinite on
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Figure 4.6 Time dependence of the angular momentum for three saucer orbits drawn from
figure 4.4c. Orbit (a) is near the fixed-point orbit, while orbit (c) is near the sep-
aratrix orbit that separates saucers from tubes. Dotted lines show �fp, the angular
momentum of the fixed point; dashed lines are plotted at � = �z and � = ε1/2,
the minimum and maximum � reached by saucer orbits. The frequency of oscil-
lations near the fixed point, νfp, is used to scale the time.
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the saucer/tube separatrix. Figure 4.6 illustrates the time dependence of the angular
momentum for three saucer orbits from figure 4.4. The sinusoidal behavior of �(τ )
near the fixed point changes to a very different form near the separatrix, in which
� lingers near its minimum value, � ≈ �z , for a larger and larger fraction of the
period.

Finally, we delineate the regions in (H,Rz) space corresponding to the orbital
types. As noted above, the boundary between tube and saucer orbits isH = 0. The
other important boundaries are

H = 1 −Rz (circular orbit, i.e.,R = 1),

H = − Rsep

1 −Rsep

(
1 −

√
Rz
Rsep

)2

(fixed-point saucer).
(4.132)

Looking ahead to the loss-cone problem (chapter 6), we can ask, what are the
conditions on an orbit such that its minimum angular momentum falls below some
interesting value �lc—allowing capture by the SBH? Evidently we require �z < �lc.
If in addition �z >∼

√
3ε, only tubes will exist, and the near constancy of angular

momentum for tube orbits allows us to write the capture condition simply as � <∼
�lc. If �z <∼

√
3ε, saucers will exist as well; the capture condition for saucers is

�− < �lc, or

�+ >
�sep

�lc
�z =

√
3ε

�lc
�z. (4.133)

Because �+ can greatly exceed �z , the fraction of stars in an axisymmetric galaxy
that are available to feed the SBH7 can greatly exceed the fraction in an equiva-
lent spherical galaxy. We can estimate the fraction in an axisymmetric galaxy, as
follows. Recall that in an isotropic, spherical galaxy, N(L;E)dL ∝ LdL (equa-
tion 3.44); suppose that the same is true in the axisymmetric galaxy. For an orbit
drawn randomly from a uniform distribution in L2 and cos i = Lz/L, the proba-
bility that �− < �lc is the product of two factors: the first, ∼ �2

sep, asserts that the
orbit is a saucer (since only very few tube orbits near the separatrix have low �−);
and the second, ∼ �lc/�sep, demands that �− = (�z/�+)�sep < �lc. The fraction of
orbits with �− < �lc is then ∼ �sep�lc ≈ √

ε�lc. By contrast, in a spherical galaxy,
this fraction would be ∼ �2

lc, that is, smaller by a factor ∼ �lc/
√
ε. At least until

such a time as the saucer orbits have been “drained” by the SBH, feeding rates in
axisymmetric galaxies can be much higher than in spherical galaxies [334].

4.4.3 Distributed mass: Triaxial case

4.4.3.1 Pyramids

The tube and saucer orbits that characterize motion near an SBH in an axisym-
metric nucleus are still present in nonaxisymmetric, or triaxial, nuclei. In fact, two
families of tube orbits exist, circulating about both the short and the long axes of
the triaxial figure, as well as saucers that circulate about the short axis. Like tube

7The possibility of scattering of stars onto low angular momentum orbits is being ignored here.
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orbits in the axisymmetric geometry, tube orbits in triaxial potentials respect a third
integral that is similar to the total angular momentum, and they avoid the very cen-
ter. But as discussed in chapter 3, triaxial potentials can also support orbits that are
qualitatively different from tubes and saucers: “centrophilic” orbits that pass arbi-
trarily close to the SBH. Such orbits are potentially very important for getting stars
and stellar remnants into the SBH [371].

Centrophilic orbits exist even in axisymmetric nuclei, but they are restricted to a
meridional plane, that is, to a plane that contains the z- (symmetry) axis. Orbits in
the meridional plane have Lz = 0, and so conservation of Lz does not impose any
additional restriction on the motion. Perturbing such an orbit out of the meridional
plane implies a nonzero Lz : the orbit is converted into a saucer or a tube and again
avoids the center. But in the triaxial geometry, Lz is not conserved, and it turns
out that a substantial fraction of such “perturbed” planar orbits will maintain their
centrophilic character, becoming pyramid orbits.

To illustrate how pyramid orbits arise near an SBH in a triaxial nucleus, we return
temporarily to the axisymmetric model discussed in the previous section. Consider
motion that is restricted to a meridional plane. Setting i = π/2 in the averaged
Hamiltonian (4.103) yields a simple relation between � = (1 − e2)1/2 and ω for
motion in this plane:

e2

e2
0

= 3 + 2ε

3 + 2ε − 3ε cos2 ω
≈ 1 + 3ε sin2 ω (ε  1). (4.134)

Here, e0 is the eccentricity when ω = π/2, that is, when the orbit is oriented
with its major axis parallel to the short (z-) axis. As the orbit precesses away from
the symmetry axis, its angular momentum decreases due to the torques from the
flattened potential. If

e0 > emin ≈
(

1 + ε

3

)−1/2
, (4.135)

the eccentricity reaches unity before the circulation in ω has brought the orbit to
the x-axis. In this case, circulation in ω changes to libration: the orbit—which is
highly eccentric if ε is small—librates about the short axis, reaching a maximum
angular displacement θmax given by

sin2 θmax = 1 − e2
0

1 − e2
min

(4.136)

(figure 4.7a). When θ = ±θmax, the direction of the angular momentum instan-
taneously flips, and the precession (which is due almost entirely to the spherical
mass component if ε is small) reverses direction as well. As discussed in more
detail below, relativistic effects would necessarily dominate the motion when the
eccentricity becomes so large; nevertheless, the essential character of the motion
predicted by this model—libration about the short axis, with the eccentricity reach-
ing a maximum value near the turning points—turns out to be robust.

If on the other hand e0 < emin, the orbit never attains unit eccentricity. The
motion then consists of circulation in ω and the eccentricity oscillates between a
minimum value of e = e0 when ω = 0 and a maximum value of e ≈ (1 + 3ε/2)e0
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Figure 4.7 (a) The origin of pyramid orbits around an SBH in a triaxial nucleus. The motion
is Newtonian: the orbit precesses due to the spherical component of the distrib-
uted mass, and at the same time, its eccentricity changes due to the torque from
the flattened potential. When θ = θmax, the angular momentum drops to zero (in
the orbit-averaged approximation) and the direction of circulation about the SBH
reverses, as does the sense of the precession. When perturbed out of the plane,
this orbit would become a three-dimensional pyramid orbit. (b) A windshield-
wiper orbit. Here, the motion includes the effects of the relativistic (Schwarz-
schild) precession. When the eccentricity reaches a critical value (at b), the rate
of Schwarzschild precession matches the rate of mass precession; because the
two act in opposite directions, the precession halts momentarily, then reverses
(b → c). The torques continue to increase the eccentricity, until the orbit crosses
the short axis (c), after which the eccentricity starts to decrease. When e is small
enough that mass precession again dominates, the direction of precession re-
verses again (d). This orbit’s name derives from the fact that motion from b → d

occurs more quickly than motion from a → b.

when ω ≈ 0, π, . . . , that is, when the orbit is elongated in the direction of the long
axis.

The case of large eccentricity is of particular interest because stars on these orbits
are able to come closest to the SBH. We now consider this case in detail [378]. As
we will see, libration about the short axis now occurs in two directions, with differ-
ent frequencies, and the orbit only attains unit eccentricity when both oscillations
reach their respective extrema at the same time.

4.4.3.2 Motion in triaxial nuclei

Consider a nucleus in which the gravitational potential is given by equation (4.93)
with

	t(x, y, z) = 2π Gρt
(
Txx

2 + Tyy
2 + Tzz

2
)
, (4.137)

with ρt a constant. 	t can be interpreted as the potential of a homogeneous tri-
axial ellipsoid of density ρt—for instance, a large-scale stellar bar. Alternatively,
	t could be taken as a first approximation to the potential of an inhomogeneous
triaxial component. In the former case, the dimensionless coefficients (Tx, Ty, Tz),
of order unity, are expressible in terms of the axis ratios of the ellipsoid via elliptic



152 CHAPTER 4

functions [80]. As always in this book, the x- and z-axis are assumed to be the long
and short axis, respectively, of the triaxial figure; that is, {Tx, Ty} < Tz .

If the perturbing forces are small compared with the force from the SBH, we can
average the Hamiltonian over the fast angle associated with radial motion. Assum-
ing again a power-law mass distribution, equation (4.80), for the averaged, spherical
part of the perturbing potential, we find

	s = 4π

(2 − γ )(3 − γ )
Gρ0r

2
0

(
a

r0

)2−γ (
1 + α1 − α2�

2
)
. (4.138)

Here we have adopted the second of our two approximations to Fγ (e),
equation (4.83), appropriate when the eccentricity is large. The orbit-averaged tri-
axial component is given, after some algebra, by

	t =2πGρtTx a
2

[
5

2
− 3

2
�2 + ε

(t)
b Hb(�, �z, ω,�)+ ε(t)c Hc(�, �z, ω)

]
,

(4.139a)

Hb =1

2

[
(5 − 4�2)(cωs� + cic�sω)

2 + �2(sωs� − cic�cω)
2
]
, (4.139b)

Hc =1

4
(1 − c2

i )
[
5 − 3�2 − 5(1 − �2)c2ω

]
, (4.139c)

ε
(t)
b ≡Ty/Tx − 1 , ε(t)c ≡ Tz/Tx − 1. (4.139d)

The shorthand sx, cx has been used for sin x, cos x. As in the previous section, we
have defined dimensionless angular momentum variables � = L/I and �z = Lz/I ;
the eccentricity is e = √

1 − �2 and the orbital inclination i is given by cos i =
�z/�.

We can simplify the Hamiltonian by dropping constant terms, including terms
that depend only on a, and defining a dimensionless time τ = ν0t , where

Iν0 ≡ 2πGρ0a
2

(
a

r0

)−γ [4

3

α

(3 − γ )(2 − γ )
+ ρt

ρ0
Tx

]
; (4.140)

henceforth, α ≡ α2. Since the orbit-averaged spherical potential, equation (4.138),
has the same dependence on �2 as the first nonconstant term in the averaged triaxial
potential, the coefficients at �2 have been summed when defining ν0. Expressing ν0

in terms of the radial frequency νr ,

ν0 = νr
[
Mt(a)

M•

3Tx
2

+ Ms(a)

M•

2α

3(2 − γ )

]
, (4.141a)

Mt(a)≡ 4π

3
a3ρt , Ms(a) ≡ 4π

3 − γ
a3ρ0

(
a

r0

)−γ
, (4.141b)

where M(a) denotes the mass enclosed within radius r = a. Since Mt  Ms ,
ν0 is related to the precession frequency due to the spherical part of the cluster,
νM = |dω/dt |, by νM ≈ 3�ν0. The dimensionless Hamiltonian H ≡ 	p/νpI and
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the equations of motion for the osculating elements are then

H = − 3

2
�2 + εbHb + εcHc, (4.142a)

d�

dτ
= − ∂H

∂ω
,
dω

dτ
= ∂H

∂�
,
d�z

dτ
= −∂H

∂�
,
d�

dτ
= ∂H

∂�z
. (4.142b)

Aside from factors of order unity, the renormalized triaxiality coefficients that ap-
pear in equation (4.142) are

εb,c � (
Ty,z − Tx

) ρt
ρ0

(
a

r0

)γ
. (4.143)

Solutions to the equations of motion (4.142b) that are characterized by circula-
tion in both ω and � correspond to tube orbits about the short axis—similar to the
tube orbits in the axisymmetric geometry. Motion that circulates in ω but librates
in� corresponds to tube orbits about the long axis. Motion that circulates in� and
librates in ω corresponds to saucer orbits.

Our primary interest here is in orbits that librate in both ω and �. Since the rate
of precession in ω is proportional to �, for sufficiently low � the triaxial torques
can produce substantial changes in � on a precession timescale via the first term
in (4.142b). As a result, the circulation in ω can change to libration and the orbital
eccentricity can approach arbitrarily close to one. As discussed above, this is the
origin of the pyramid orbits. An example of a pyramid orbit, obtained via direct
numerical integration of the equations of motion, was shown in figure 3.14. The
apex of the pyramid is defined by the orbital periapsis and so lies close to the SBH;
the pyramid’s base is traced out by the apoapsis as it oscillates in two directions
about the short axis of the triaxial figure.

Pyramid orbits can be treated analytically if the following two additional approx-
imations are made [378]:

1. The angular momentum is assumed to be small, �2  1.
2. The density of the triaxial component is assumed to be small compared with

that of the spherical component; that is, εb, εc  1.

These two assumptions allow us to omit the second-order terms in εb, εc and �2

from the Hamiltonian (4.142), yielding

H ≈ H ′ ≡ −3

2
�2 + 5

2

[
εc(1 − c2

i )s
2
ω + εb(cωs� + cisωc�)

2] . (4.144)

Pyramid orbits resemble precessing rods. Intuitively, one expects the important
variables to be the two angles that describe the orientation of the rod, and its eccen-
tricity. In equation (4.59) we defined a unit vector, ee, that points along the major
axis of the orbit, toward periapsis. Dropping the subscript n, the components of that
vector are

ex = cosω cos�− sinω cos i sin�, (4.145)

ey = sinω cos i cos�+ cosω sin�,

ez = sinω sin i,
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and e2
x + e2

y + e2
z = 1. In terms of these variables, the Hamiltonian (4.144) takes on

a particularly simple form:

H ′ = −3

2
�2 + 5

2

[
εc − εce

2
x − (εc − εb)e

2
y

]
. (4.146)

As expected, H ′ depends on only three variables: ex and ey , which describe the
orientation of the orbit’s major axis; and the angular momentum �.

To find the equations of motion, we must switch to a Lagrangian formulation.
Taking the first time derivatives of equations (4.145), and using equations (4.142b),
we find

ėx = 3�(sinω cos�+ cosω sin� cos i),

ėy = 3�(sinω sin�− cosω cos� cos i), (4.147)

where ėx ≡ dex/dτ etc. Taking second time derivatives, the variables (�, i, ω)
drop out, and the equations of motion for ex and ey turn out to be expressible purely
in terms of ex and ey :

ëx = − ex 6(H ′ + 3�2)

= − ex
[
30εc − 6H ′ − 30εce

2
x − 30(εc − εb)e

2
y

]
, (4.148a)

ëy = − ey 6(H ′ + 3�2 − 5εb)

= − ey
[
30εc − 6H ′ − 15εb − 30εce

2
x − 30(εc − εb)e

2
y

]
. (4.148b)

Given solutions to these equations, the additional elements (�, �z, ω,�) follow
from equations (4.145) and (4.147); in particular, the angular momentum is

�2 = ė2
x + ė2

y − (ėxey − exėy)
2

9(1 − e2
x − e2

y)
= 1

9
(ė2
x + ė2

y + ė2
z ). (4.149)

Ignoring for a moment the nonlinearity of the oscillations (i.e., assuming
ex , ey  1), the oscillations are harmonic and uncoupled, with dimensionless fre-
quencies

ν(0)x =
√

15εc , ν
(0)
y =

√
15(εc − εb). (4.150)

The corners of the pyramid’s base are defined by ėx = ėy = 0. From equa-
tion (4.147), (ėx, ėy) = 0 implies � = 0; that is, the eccentricity reaches 1 at
the corners. The full solution in this limiting case is

ex(τ )= ex0 cos(ν(0)x τ + φx),

ey(τ )= ey0 cos(ν(0)y τ + φy), (4.151a)

�2(τ )= �2
x0 sin2(ν(0)x τ + φx)+ �2

y0 sin2(ν(0)y τ + φy),

rp(τ )= rpx0 sin2(ν(0)x τ + φx)+ rpy0 sin2(ν(0)y τ + φy), (4.151b)
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where rp(τ ) ≈ �2(τ )/2 is the periapsis distance and

�x0 = ν(0)x ex0/3, �y0 = ν(0)y ey0/3, (4.152a)

rpx0 = 1

18

(
ν(0)x ex0

)2
, rpy0 = 1

18

(
ν(0)y ey0

)2
. (4.152b)

These solutions comprise a two-parameter family: ex0 and ey0 determine the extent
of the pyramid’s base, as well as the eccentricity e0 when the orbit precesses past
the z-axis; that is,

e2
0 = 1 − �2

x0 − �2
y0 (4.153a)

= 1 − 1

9

(
ν(0)x ex0

)2 − 1

9

(
ν(0)y ey0

)2
(4.153b)

= 1 − 5

3
εce

2
x0 − 5

3
(εc − εb)e

2
y0. (4.153c)

Equations (4.151) manifestly describe integrable motion. Remarkably, the more
general equations of motion (4.148) are integrable as well [378]. The first integral
is H ′, equation (4.142); an equivalent, but nonnegative, integral is U where

U ≡ 15εc − 6H ′ = 15εce
2
x + 15(εc − εb)e

2
y + (ė2

x + ė2
y + ė2

z ). (4.154)

The second integral is obtained after multiplying the first of equations (4.148) by
εcėx , the second by (εc − εb)ėy , and adding them to obtain a complete differential.
The integral W is then

W = εc(ė2
x + ν2

xe
2
x − 15εce

4
x)

+ (εc − εb)
(
ė2
y + ω2

ye
2
y − 15(εc − εb)e

4
y

)
− 30εc(εc − εb)e

2
xe

2
y, (4.155a)

ν2
x ≡U + 15εc, ν2

y ≡ U + 15(εc − εb). (4.155b)

The existence of two integrals (U,W ), for a 2 d.o.f. system, demonstrates regularity
of the motion. It is perhaps surprising that completely regular motion can result in
a star coming arbitrarily close to the central singularity!

The (dimensionless) periods of oscillation of the planar orbits (ex = 0 or ey = 0)
are easily shown to be

τpyr(ex0)= 4

ν
(0)
x

K (ex0) (ey = 0),

τpyr(ey0)= 4

ν
(0)
y

K
(
ey0

)
(ex = 0), (4.156)

where K(k) is the complete elliptic integral (equation 4.126). For small k, that
is, for a pyramid with a narrow opening angle, K ≈ π/2 and τpyr ≈ 2π/ν(0)x or
2π/ν(0)y . As k → 1, K → ∞; this corresponds to a pyramid that precesses from
the z-axis all the way to the x–y plane.

Figure 4.9 shows how U andW determine the type of orbit in one triaxial model.
In the case of pyramid orbits, the two integrals can be expressed more simply by
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using the fact that ėx = ėy = ėz = 0 at the “corners.” Recalling that (ex0, ey0) are
defined as the values at the corners, we have, for pyramids,

U = [
ν(0)x

]2
e2
x0 + [

ν(0)y
]2
e2
y0 , (4.157a)

W = [
ν(0)x

]4
e2
x0 + [

ν(0)y
]4
e2
y0 . (4.157b)

The two points in figure 4.9 that demarcate the rightmost boundary of the pyramids
are

U = [
ν(0)y

]2
, W = [

ν(0)y
]4
, (4.158a)

U = [
ν(0)x

]2
, W = [

ν(0)x
]4
, (4.158b)

corresponding, respectively, to pyramids that precess to ω = 0 in the y–z or
x–z planes. These extremal pyramids also have the largest angular momenta when
precessing past the z-axis; that is,

�0 = �y0 =
√

5 (εc − εb), (4.159a)

�0 = �x0 =
√

5εc. (4.159b)

A star on a pyramid orbit comes close to the SBH whenever the two variables
(ex, ey) are simultaneously close to 1—that is, near the corners of the pyramid. As
long as the frequencies of oscillation in ex and ey are incommensurable, the vector
(ex, ey) densely fills the whole available area, which has the form of a distorted rec-
tangle (figure 4.8). According to equation (4.146), �2 ≈ (1/3)

[
5εc − 2H − εce

2
x

−(εc − εb)e
2
y

]
, where ex and ey are close to sine functions. Since rp ∝ �2, it fol-

lows that the probability of having rp < X is almost proportional to X for small X.
This idea will be developed in more detail in chapter 6.

Finally, it is interesting to ask whether the four orbit families found here still
persist at radii r >∼ rm, where the approximation of nearly Keplerian motion breaks
down. In chapter 3, orbits like the pyramids were called “centrophilic” orbits, and
the loss of integrability of centrophilic orbits when their apoapsides exceeded ∼ rm
was described in section 3.5.1. Figure 4.10 summarizes the results of numerical
integrations of the equations of motion derived, without approximation, from the
triaxial potential of equation (4.93). As expected, chaotic orbits begin to appear
when a >∼ rm. The fraction of phase space associated with each of the orbit families
can be estimated by assuming that the orbital “integrals” (L,Lz) are distributed
as they would be in an isotropic, spherical galaxy, N(L,Lz;E) ∝ dL2dLz , and
choosing {�,�} uniformly in

[
0, π2

]
. Figure 4.10 shows that—whereas the fraction

of pyramid orbits gradually declines with increasing a—the fraction of centrophilic
(pyramid + chaotic) orbits increases again when a >∼ rm. As discussed in chapter 6,
the two types of centrophilic orbit behave similarly in terms of their frequency of
close approaches to the SBH.
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Figure 4.8 A pyramid orbit, in three approximations [378]. Each orbit has the same
(ex0, ey0) = (0.5, 0.35). (a) The simple harmonic oscillator (SHO) approxi-
mation, equations (4.151), valid for small �2, (εb, εc) and (ex0, ey0); (b) from
equations (4.148), which do not assume small (ex0, ey0); (c) from the full orbit-
averaged equations (4.142b), which do not assume small �2, ε or (ex0, ey0). Aside
from the fact that the latter orbit is fairly close to a 5 : 2 resonance, the correspon-
dence between the physically important properties of the approximate orbits is
good. The triaxiality parameters are (εb, εc) = (0.0578, 0.168), corresponding to
a pyramid orbit with a = 0.1r0 in a nucleus with triaxial axis ratios (0.5, 0.75),
density ratio ρt (r0)/ρs(r0) = 0.1, and γ = 1. The frequencies for the SHO case
are ν(0)x = 1.59, ν(0)y = 1.28 (equation 4.150); frequencies for planar orbits with
the same ex and ey amplitudes are 1.48 and 1.24, respectively.

4.5 RELATIVISTIC ORBITS

4.5.1 First post-Newtonian order

In the case of two point bodies, the EIH N -body Lagrangian (4.70) simplifies to

L =LN + LPN,

LN =1

2
m1v

2
1 + 1

2
m2v

2
2 + Gm1m2

r
,

c2LPN =1

8
m1v

4
1 + 1

8
m2v

4
2 + Gm1m2

2r

×
[

3
(
v2

1 + v2
2

) − 7v1 · v2 − (
v1 · n̂

) (
v2 · n̂) − G(m1 +m2)

r

]
, (4.160)
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Figure 4.9 Regions in the U–W plane occupied by the different orbit families, in a triaxial
nucleus with εb = 0.002, εc = 0.008 [378]. LAT = long-axis tubes; SAT = short-
axis tubes. This figure is based on the expressions (4.154) and (4.155), which are
valid in the case of highly eccentric orbits.

with

n̂ = x1 − x2

r
, r = |x1 − x2|. (4.161)

As in the Newtonian case, we seek the equations that describe the relative motion
in the (post-Newtonian) center-of-mass frame. The total momentum is

P = ∂L
∂v1

+ ∂L
∂v2

=m1v1 +m2v2 + 1

2
m1
v2

1

c2
v1 + 1

2
m2
v2

2

c2
v2

+Gm1m2

2c2r

[
− (v1 + v2)− n̂

(
n̂ · (v1 + v2)

)]
, (4.162)

which is conserved to 1PN order, and the center of mass is

X = m∗
1v1 +m∗

2v2

m∗
1 +m∗

2

, m∗
i ≡ mi + 1

2
mi
v2
i

c2
− 1

2

Gm1m2

r
. (4.163)
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Figure 4.10 Phase-space fractions associated with the various orbit families in a triaxial
nucleus, as a function of orbital semimajor axis [378]. This figure is based on
numerical integration of the equations of motion corresponding to the potential
(4.93), with γ = 1 and εc = 0.1 at a = rm. For a >∼ rm, most of the low
angular-momentum orbits are chaotic.

Transferring8 to a frame where P = X = 0, the individual positions are related to
the relative positions by

x1 =
[
m2

m
+ µδm

2m2

(
v2 − Gm

r

)]
x,

x2 =
[
−m1

m
+ µδm

2m2

(
v2 − Gm

r

)]
x, (4.164)

where

x = x1 − x2, v = v1 − v2,

m = m1 +m2, δm = m1 −m2. (4.165)

The relative motion obeys

dv

dt
= − Gmn̂

r2
+ 2 (2 − ν)

Gm

c2r2
v
(
n̂ · v

)
+ Gmn̂

c2r2

[
2(2 + ν)

Gm

r
− (1 + 3ν)v2 + 3

2
ν
(
n̂ · v

)2
]
, (4.166)

8The same result is obtained to this PN order if the nonrelativistic center of mass is used [99].
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with ν the reduced mass ratio,

ν ≡ µ

m
= m1m2

m2
. (4.167)

The Lagrangian, expressed in terms of the relative coordinates, becomes [252]

L =1

2
v2 + Gm

r
+ 1

8
(1 − 3ν)

v4

c2

+ Gm

2c2r

[
(3 + ν) v2 + ν

(
n̂ · v

)2 − Gm

r

]
. (4.168)

Exact solutions to the equation of motion (4.166) do not exist. One approach is to
treat the post-Newtonian accelerations as small perturbations and apply Lagrange’s
planetary equations (4.69) [552, 52, 142]. We will in fact adopt this approach in
most of the remainder of this chapter. However, it turns out that—if one consistently
ignores terms of second post-Newtonian order O(v4/c4)—a “post-Keplerian” de-
scription of the motion can be found that is exact to this order and that looks very
similar mathematically to the nonrelativistic solution. We present that solution be-
low, following closely the original analysis of Damour and Deruelle [99].

As a first step, one uses the time invariance and the rotational invariance of the
Lagrangian (4.168) to write the first integrals of the motion: the specific energy,

E = v · ∂L
∂v

=1

2
v2 − Gm

r
+ 3

8
(1 − 3ν)

v4

c2

+ Gm

2c2r

[
(3 + ν) v2 + ν

(
n̂ · v

)2 + Gm

r

]
, (4.169)

and the specific angular momentum,

L =
∣∣∣∣x × ∂L

∂v

∣∣∣∣ = |x × v|
[

1 + 1

2
(1 − 3ν)

v2

c2
+ (3 + ν)

Gm

c2r

]
. (4.170)

As in the nonrelativistic case, motion takes place in a plane. Writing

v2 =
(
dr

dt

)2

+ r2

(
dφ

dt

)2

, |r × v| = r2 dφ

dt
, (4.171)

one finds, to order O(v2/c2),

(
dr

dt

)2

=A+ 2B

r
+ C

r2
+ D

r3
, (4.172a)

dφ

dt
= H

r2
+ I

r3
, (4.172b)
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where

A= 2E

[
1 + 3

2
(3ν − 1)

E

c2

]
, (4.173a)

B =Gm
[

1 + (7ν − 6)
E

c2

]
, (4.173b)

C= −L2

[
1 + 2 (3ν − 1)

E

c2

]
+ 5 (ν − 2)

G2m2

c2
, (4.173c)

D= (8 − 3ν)
GmL2

c2
, (4.173d)

H =L
[

1 + (3ν − 1)
E

c2

]
, (4.173e)

I = 2 (ν − 2)
GmL

c2
. (4.173f)

Equations (4.172) differ in functional form from the nonrelativistic equations for
the radial and angular motion, equations (4.13), due to the r−3 terms. But—again
neglecting terms of order O(v4/c4)—they can be put into the same form as the
nonrelativistic expressions by two simple changes of variable. Consider first the
radial equation. Write

r = r + D

2C0
, (4.174)

where C0 = −L2 is the limit of C when c → ∞ (equation (4.174) is called
a “conchoidal transformation”). Substituting (4.174) into (4.172a), and neglecting
terms of order O(v4/c4), one finds(

dr

dt

)2

= A+ 2B

r
+ C

r2 , (4.175)

where

C = C − BD

C0
. (4.176)

The right-hand side of equation (4.175) has the same functional form as the nonrel-
ativistic equation (4.13a). By analogy, the solution can be expressed parametrically
as

nr(t − t0)= E − et sin E, (4.177a)

r = a (1 − et cos E) , (4.177b)

where

a = −B
A
, e2

t = 1 − AC

B2
(4.178)

and E plays the role of eccentric anomaly. Equations (4.174) and (4.177b) imply

r = ar (1 − er cos E) (4.179)
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with

ar = D

2C0
− B

A
, er =

(
1 + AD

2C0B

)
et (4.180)

(both expressions correct to O(v2/c2)). The main difference between the relativis-
tic and nonrelativistic solutions is the appearance of two different eccentricities: a
time eccentricity et , and a radial eccentricity er . Using equations (4.173), we can
express ar, er , et and nr in terms of the relativistic E and L:

ar = −Gm
2E

[
1 − 1

2
(ν − 7)

E

c2

]
, (4.181a)

er =
{

1 + 2E

G2m2

[
1 + 5

2
(ν − 3)

E

c2

] [
L2 + (ν − 6)

G2m2

c2

]}1/2

,

(4.181b)

et =
{

1 + 2E

G2m2

[
1 + 1

2
(−7ν + 17)

E

c2

] [
L2 + 2 (1 − ν)

G2m2

c2

]}1/2

,

(4.181c)

nr = (−2E)3/2

Gm

[
1 − 1

4
(ν − 15)

E

c2

]
. (4.181d)

Again neglecting terms of order O(v4/c4), the mean motion can be expressed in
terms of ar as

nr =
(
Gm

a3
r

)1/2 [
1 + Gm

2arc2
(ν − 9)

]
. (4.182)

Thus, just as in the nonrelativistic case, the semimajor axis and mean motion de-
pend only on the energy. We can also write

er

et
= 1 + (3ν − 8)

E

c2
(4.183)

= 1 + Gm

arc2

(
4 − 3

2
ν

)
. (4.184)

The time between periapsis passages is

2π

nr
= 2πa3/2

r√
Gm

[
1 + 1

2
(9 − ν)

Gm

c2ar

]
. (4.185)

A second conchoidal transformation,

r = r̃ + I

2H
, (4.186)

puts the relativistic angular equation (4.172b) into the same form as the nonrela-
tivistic equation (4.13b):

dφ

dt
= H

r̃2
, (4.187)
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where, as usual, terms of order O(v4/c4) have been neglected. Writing

r̃ = ã (1 − ẽ cos E) , (4.188)

with

ã = ar − I

2H
, ẽ = er

(
1 − AI

2BH

)
, (4.189)

and differentiating equation (4.177a) with respect to time,

dt = n−1
r (1 − et cos E) dE (4.190)

yields

dφ = H

nã2

1 − et cos E

(1 − ẽ cos E)2
dE. (4.191)

Defining a third eccentricity eφ , the angular eccentricity, as

eφ = 2ẽ − et , (4.192)

we find

1 − et cos E

(1 − ẽ cos E)2
= 1

1 − eφ cos E
+O(v4/c4), (4.193)

and

dφ = H

nrã2

dE

1 − eφ cos E
, (4.194)

the same form as the nonrelativistic equation. Integrating,

φ − φ0 =Kf, (4.195a)

tan
f

2
=
(

1 + eφ

1 − eφ

)1/2

tan
E

2
, (4.195b)

K = H

nrã2
(
1 − e2

φ

)1/2 , (4.195c)

where f plays the role of true anomaly. In terms of E and L, the constants eφ and
K are

eφ = (1 − νE) er =
(

1 + Gµ

2arc2

)
er (4.196a)

=
{

1 + 2E

G2m2

[
1 + 1

2
(ν − 15)

E

c2

] [
L2 − 6

G2m2

c2

]}1/2

,

(4.196b)

K = L(
L2 − 6G2m2/c2

)1/2 ≈ 1 + 3
G2m2

L2c2
. (4.196c)
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From equation (4.179), periapsis passages occur for E = 0, 2π , 4π, . . . . The
argument of periapsis precesses each revolution by an angle

�φ = 2π (K − 1) = 6πGm

ar
(
1 − e2

r

)
c2

+O(v4/c4). (4.197)

This is the relativistic precession of the periastron [105] (also called “geodetic
precession,” “De Sitter precession,” or “Schwarzschild precession”; the latter name
differentiates this precession from the precession induced by the Kerr metric of
a spinning hole). The direction of the precession is prograde, that is, in the same
angular sense as the direction of orbital circulation.

The equation for the relative orbit is found by eliminating E from
equations (4.179) and (4.195a):

r =
(
ar − Gµ

2c2

)
1 − e2

φ

1 + eφ cos f
+ Gµ

2c2
. (4.198)

Writing

f ′ = f − 1

2
er

Gµ

c2ar
(
1 − e2

r

) sin f (4.199)

allows the equation for the relative orbit to be written in a form that parallels the
nonrelativistic case:

r = ar
(
1 − e2

r

)
1 + er cos f ′ . (4.200)

As a final step, we can derive the motion of each body in the center-of-mass
frame by inserting the solutions for the relative motion into equations (4.164). The
polar angle of body 1 is the same as the relative angle φ and the polar angle of body
2 is φ + π . The radial motion for body 1 is then

r1 = ar,1
(
1 − er,1 cos E

)
, (4.201)

where

ar,1 = m2

m
ar, (4.202a)

er,1 = er
(

1 − Gm1δm

2marc2

)
(4.202b)

(replacing the subscript 1 by 2 gives the motion of body 2), and

nr(t − t0)= E − et sin E, (4.203a)

φ − φ0 =Kf, (4.203b)

as before. The path traced by body 1 in space is

r1(φ) = Gm2
1m2

2m2c2
+

(
ar,1 − Gm2

1m2

2m2c2

)
1 − e2

φ

1 + eφ cos
(
φ−φ0

K

) , (4.204)

and similarly for body 2. Equation (4.204) is the conchoid of a precessing ellipse.



MOTION NEAR SUPERMASSIVE BLACK HOLES 165

As this derivation shows, conserved quantities exist, to first post-Newtonian
order, that are analogous to the Keplerian semimajor axis and eccentricity.
Because the motion occurs in a fixed plane, the orbital inclination i and the
longitude of the ascending node � are also conserved. The only conserved
element in the nonrelativistic problem that has no fixed counterpart in the rela-
tivistic problem is the argument of periapsis, ω. Its variation between consecutive
periapsis passages is just the quantity�φ that is given by equation (4.197). Another
way to state this result is in terms of the orbit-averaged precession
rate: 〈

dω

dt

〉
= n

2π
�φ = n

3Gm

a(1 − e2)c2
= 3(Gm)3/2

a5/2(1 − e2)c2
. (4.205)

Here use has been made of the fact that—to first post-Newtonian order—ar , nr and
er in equation (4.197) for �φ can be replaced by n, a and e.

A quasi-Keplerian representation like Damour and Deruelle’s is not
possible in every case of perturbed motion, and it is instructive to compute the
rate of apsidal precession in a more direct (but less elegant) manner,
from Lagrange’s planetary equations (4.57). The starting point is again the
post-Newtonian equation for the relative motion, equation (4.166). We identify
the order O(v2/c2) terms in that expression with the perturbing acceleration ap
in equation (4.54). The Gaussian components of ap, equation (4.55),
are

S= Gm

c2r2

[
2(2 + ν)

Gm

r
+ (4 − ν/2)(n̂ · v)2 − (1 + 3ν)v2

]
,

T = 2Gm

c2r2
(2 − ν)(n̂ · v)(m̂ · v),

W = 0. (4.206)

Using

r = a(1 − e2)

1 + e cos f
,

v2 = Gm

a(1 − e2)

(
1 + e2 + 2e cos f

)
,

n̂ · v = vr =
[

Gm

a(1 − e2)

]1/2

e sin f,

m̂ · v = vt =
[

Gm

a(1 − e2)

]1/2

(1 + e cos f ) ,
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with f the true anomaly, we can express (S, T ,W ) in terms of the orbital elements
as

S= G2m2

c2a3(1 − e2)3
(1 + e cos f )2

[
3(e2 + 1)+ 5ν

(
1 − 7

10
e2

)

+ 2(e − 4ν) cos f − 4e2
(

1 − ν

8

)
cos2 f

]
,

T = G2m2

c2a3(1 − e2)3
2(2 − ν) (1 + e cos f )3 e sin f,

W = 0. (4.207)

The dependence of the orbital elements on time, to first order, is then given by
substituting these expressions into equations (4.57), fixing all the elements except
for f on the right-hand sides, and carrying out the integrations with respect to f .
In the case of a, e, � and i, the resulting expressions contain only oscillatory terms
in f that average to zero over a complete radial oscillation. The amplitudes of
the sinusoidal variations in these elements are of order O(v2/c2), consistent with
the fact that the relativistic elements {ar, er , et , eφ} differ from their nonrelativistic
counterparts a and e at the same order. In the case of ω, there appears as well a
secular term proportional to f :

ω(t)− ω(t0)= Gm

c2a(1 − e2)

{
3f +

[
ν − 3

e
+

(
1 + 21

8
ν

)
e

]
sin f

+
(

2ν − 5

2

)
sin 2f + ν

8
e sin 3f

}∣∣∣∣
t

t0

. (4.208)

In this expression, t0 corresponds to f = 0, that is, to periapsis passage. Setting
t = P (i.e., f = 2π ), the oscillatory terms go to zero, and the secular term yields
the correct, orbit-averaged precession rate, equation (4.205). Figure 4.11 plots ω(t)
over one orbital period for orbits with ν = 0 and various eccentricities. Most of the
precession takes place near periapsis passage, particularly when the orbital eccen-
tricity is large.

4.5.2 Second post-Newtonian order

It is possible to generalize equation (4.166), the relative acceleration in the 1PN
two-body problem, to higher post-Newtonian orders. The equation of motion for
the relative orbit turns out to have the general form

dv

dt
= −Gm

r2
(An + Bv) , (4.209)

where, as before, m = m1 + m2, x = x1 − x2, v = v1 − v2, r = |x1 − x2|,
v = |v1 − v2|, and n = x/r . The coefficients A,B are series expansions in the
small parameter c−1; that is,

A=A0 + c−2A1 + c−4A2 + · · · ,
B=B0 + c−2B1 + c−4B2 + · · · .
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Figure 4.11 Relativistic precession of the argument of periapsis ω at 1PN order. Curves in
the top panel are plots of equation (4.208) for test-particle orbits (ν = 0) and
for three different eccentricities: e = 0.5 (thinnest), e = 0.7, e = 0.9 (thickest).
The bottom panel shows the separation. Time is in units of the radial period.
Most of the precession occurs when the star is near periapsis.
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(Note that the subscript of An denotes the nth PN term which is of order c−2n.) Up
to second post-Newtonian order, the coefficients are [51]

A0 = 1,

A1 = −3ṙ2ν

2
+ (1 + 3ν)v2 − 2(2 + 2ν)

Gm

r
,

A2 = 15ṙ4ν

8
− 45ṙ4ν2

8
− 9ṙ2νv2

2
+ 6ṙ2ν2v2 + 3νv4 − 4ν2v4

+Gm
r

(
−2ṙ2 − 25ṙ2ν − 2ṙ2ν2 − 13νv2

2

)
+ G2m2

r2

(
9 + 87ν

4

)
,

B0 = 0,

B1 = −2(2 − ν)ṙ,

B2 = 9ṙ3ν

2
+ 3ṙ3ν2 − 15ṙνv2

2
− 2ṙν2v2 + Gm

r

(
2ṙ + 41ṙν

2
+ 4ṙν2

)
.

(4.210)

The expressions for A0, A1, B0 and B1 reproduce the 1PN equation of motion,
equation (4.166), after noting that ṙ = n · v.

In the previous section, Damour and Deruelle’s Keplerian-like solution for the
1PN two-body problem was presented. The relative orbit, to 1PN order, was shown
to be representable in terms of a parameter E that plays the role of the eccentric
anomaly in the nonrelativistic problem

nr(t − t0)= E − et sin E, (4.211a)

r = ar (1 − er cos E) , (4.211b)

φ − φ0 = 2K tan−1

(√
1 + eφ

1 − eφ
tan

E

2

)
(4.211c)

(cf. equations 4.177a, 4.179, and 4.195a). The quantities {nr , ar , er , et , eφ , K} dif-
fer from their nonrelativistic counterparts {n, a, e, 1} by terms of order O(v2/c2);
precession of the periapsis is a consequence of the fact that K �= 1. It turns out
[100] that a similar result holds at second post-Newtonian order: the relative orbit,
in the relativistic center-of-mass system, is given by

nr(t − t0)= E − et sin E + fP sin v + gP (v − E), (4.212a)

r = ar (1 − er cos E) , (4.212b)

φ − φ0 = 2K
[
v + f	 sin(2v)+ g	 sin(3v)

]
, (4.212c)

where

v = 2 tan−1

(√
1 + eφ

1 − eφ
tan

E

2

)
(4.213)

plays the role of φ in the nonrelativistic problem. The quantities (K , nr , ar , et , er ,
eφ , fP, gP, f	, g	) can be expressed, to orderO(v4/c4) accuracy, in terms of E and
L, the 2PN generalizations of the energy and angular momentum integrals [478].
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The character of the motion is essentially the same as in the 1PN description; the
rate of periapsis advance differs by a term of order O(v4/c4) [100].

4.5.3 Spin-orbit effects

The spin angular momentum, S, of a black hole of massM• is expressible in terms
of the dimensionless spin vector χ defined in equation (4.72):

S = χ
GM2

•
c

,

where χ = 1 for a maximally spinning hole. The hole’s quadrupole moment, Q,
was defined in equation (4.73):

Q = − 1

c2

S2

M•
.

In full general relativity, motion of a test particle around a spinning black hole is
integrable if expressed in suitable coordinates (section 4.6). There are three con-
served quantities: two of these are analogous to the energy and angular momentum
per unit mass in the Newtonian case, while the third, the Carter constant, plays a
role similar to that of the component of the angular momentum parallel to the sym-
metry (spin) axis of the hole. Excepting the case of resonance, all orbits belong to a
single, toruslike family, roughly similar in configuration-space structure to the tube
orbits that were described in chapter 3.

The post-Newtonian equations of motion in the presence of spin can differ de-
pending on how the “center of mass” of a spinning body is defined [26]. Here we
adopt the so-called “covariant spin supplementary condition”; the resulting equa-
tions of motion for the two-body problem have the property that they do not depend
explicitly on the motion of the center of coordinates [278].

Write the mass of the spinning black hole, m1, as M•, and m2  M• is the mass
of the orbiting (and nonspinning) body. Let n̂ = x/r be a unit vector pointing from
M• tom2. To lowest order in v/c, the spin-induced acceleration of the second body
is given by any of the three equivalent forms [278]

aJ = −2G2M2
•

c3r3

[
2v × χ − 3n̂(n̂ · v)× χ − 3n̂(n̂ × v) · χ

]
(4.214a)

= −2G2M2
•

c3r3

{
v × [

2χ + 3n̂ × (n̂ × χ)
]}

(4.214b)

= −2G2M2
•

c3r3

{
v × [−χ + 3(n̂ · χ)n̂

]}
. (4.214c)

The “gravitomagnetic” character of these equations becomes apparent if the last
one is rewritten as

aJ = −2

c
v × B, (4.215a)
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B = G

c

1

r3

[
− S + 3(S · n̂)n̂

]
= ∇ × A, (4.215b)

A= G

c

S × r

r3
. (4.215c)

The acceleration of the second body due to the quadrupole moment of the spin-
ning hole is, again to lowest order in v/c [27],

aQ = −3

2
χ2G

3M3
•

c4r4

[
5n̂(n̂ · êS)2 − 2(n̂ · êS)êS − n̂

]
, (4.216)

where êS ≡ S/S = χ/χ is a unit vector in the direction of the spin.
Because aJ is perpendicular to the relative velocity vector v, the spin does no

work on m2. However, aJ does contribute to the precession of m2’s orbit about
the spinning hole. As in previous sections, we calculate the first-order effects by
identifying aJ with the perturbing acceleration in equation (4.54). Without loss of
generality, the spin (which for the moment we assume to be fixed in magnitude and
direction) can be aligned with the z-axis, êS = êz . The Gaussian components (4.55)
of aJ are then easily seen to be

S= 2G2M2
•

c3r4
χ
(
xvy − yvx

)
,

T = 2G2M2
•

c3r3
χ
[
mx

(
−2vy + 3

y

r
vr

)
+my

(
2vx − 3

x

r
vr

)]
,

W = 2G2M2
•

c3r3
χ
[
kx

(
−2vy + 3

y

r
vr

)
+ ky

(
2vx − 3

x

r
vr

)]
, (4.217)

where m and k are the unit vectors defined in equations (4.56); that is,

mx = − sin(ω + f ) cos�− cos(ω + f ) sin� cos i,

my = − sin(ω + f ) sin�+ cos(ω + f ) cos� cos i,

kx = sin� sin i,

ky = − cos� sin i.

After some algebra, one finds

S= 2(GM•)5/2

c3r4
χ
√
a(1 − e2) cos i,

T = −2(GM•)5/2

c3r3

1√
a(1 − e2)

eχ sin f cos i,

W = 2(GM•)5/2

c3r4

√
a(1 − e2)χ sin i

×
[

2 sin(ω + f )+ er

a(1 − e2)
sin f cos(ω + f )

]
. (4.218)

Substituting these expressions into equations (4.57) and integrating with respect
to f reveals that a exhibits no variations to first order, and that e and i exhibit
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no secular variations. However, the expressions for ω(f ) and �(f ) both contain
secular terms:

�(f )= 2(GM•)3/2χ

c3
[
a(1 − e2)

]3/2

[
f − 1

2
sin 2u+ e

(
sin f − 1

2
sin 2u cos f

)]
,

(4.219a)

ω(f )= − 2(GM•)3/2χ

c3
[
a(1 − e2)

]3/2 cos i

[
3f − sin f

e
− 1

2
sin 2u (1 + e cos f )

]
,

(4.219b)

where u ≡ ω + f . The evolution of �(t) is plotted in figure 4.12 for three values
of e and for ω = 0. As in the case of 1PN precession of ω, most of the change in �
takes place near periapsis.

The changes in these elements over one period are

(��)J = 4πχ

c3

[
GM•

(1 − e2)a

]3/2

, (4.220a)

(�ω)J = −12πχ

c3

[
GM•

(1 − e2)a

]3/2

cos i = −3 cos i (��)J ,

(4.220b)

and the orbit-averaged precession frequencies are〈
d�

dt

〉
J

= 2G2M2
•χ

c3a3(1 − e2)3/2
= 2GS
c2a3(1 − e2)3/2

, (4.221a)

〈
dω

dt

〉
J

= − 6G2M2
•χ

c3a3(1 − e2)3/2
cos i = − 6GS

c2a3(1 − e2)3/2
cos i.

(4.221b)

These spin-related precessions are referred to collectively as the Lense–Thirring,
or frame-dragging, precession [315].9

The time for frame dragging to rotate the line of nodes by an angle π can be
written in various ways:

tJ = P

4χ
P3/2 = P

4χ

[
(1 − e2)c2a

GM•

]3/2

= π(1 − e2)3/2a3c3

2χG2M2•

≈ 1.4 × 105χ−1(1 − e2)3/2
(

M•
4 × 106M�

)−2 (
a

mpc

)3

yr,

(4.222)

where the penetration parameter P is defined, as above, to be (1−e2)a/rg. The last
of these relations shows that frame dragging can have appreciable effects on stellar
orbits inside a milliparsec from the Milky Way SBH, even on timescales that are
shorter than main-sequence lifetimes of massive stars [318].

9A historically more accurate name might be Einstein–Thirring–Lense precession [428].
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Figure 4.12 Relativistic precession of the line of nodes, �, due to frame dragging at 1.5PN
order. Curves in the top panel are plots of equation (4.219a) for three different
eccentricities: e = 0.5 (thinnest), e = 0.7, e = 0.9 (thickest). The bottom panel
shows the separation. The argument of periapsis, ω, was fixed at zero. Time is
in units of the radial period.

The precession described by equations (4.220) has two components: precession,
at fixed inclination, of the orbit’s angular momentum vector about the spin axis of
the SBH (��); and precession of the argument of periapsis within the changing
orbital plane (�ω). Both precessions cause changes in the spatial location of the
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orbit’s periapsis, and it is natural to define �� = �ω + cos i��, the precession
of the periapsis with respect to a fixed reference direction:10

(��)J = −2 cos i (��)J . (4.223)

Nodal precession induced by frame dragging can also be described in terms of
its effect on the direction of the angular momentum vector. From equation (4.59),
a unit vector in the direction of L is

L

L
= (sin i sin�) ex − (sin i cos�) ey + cos i ez . (4.224)

Since the magnitude of L is unchanged by frame dragging, the orbit-averaged rate
of change of L is〈

dL

dt

〉
J

=L(��)J
P

(
sin i cos� ex + sin i sin� ey

)
(4.225a)

= 2G2M2
•

c3(1 − e2)3/2a3
χ × L. (4.225b)

The angular momentum precesses about the spin axis of the SBH with a frequency

νJ = π

tJ
= 2G2M2

•χ
c3(1 − e2)3/2a3

. (4.226)

The period of the precession induced by frame dragging is independent of an
orbit’s inclination with respect to the SBH’s equatorial plane. However, over times
�t  tJ, the angular displacement of the direction of L is proportional to δt and
does depend on i. Let δθ be the angle between the angular momentum vector at
two times, ti and tf :

cos(δθ) = Li · Lf

L2
. (4.227)

Since L and i are unchanged by frame dragging,

cos(δθ) = cos2 i + sin2 i cos(δ�) . (4.228)

For small δt (i.e., small δ�) this becomes

δθ ≈ sin i δ�. (4.229)

Angular changes in the orientation of a star’s orbital plane due to frame dragging
are therefore proportional to sin i.

Returning now to the SBH’s quadrupole moment: it is straightforward to show
that the quadrupole adds an additional secular term to the evolution of both � and
ω, leading to changes, over one period, of

(��)Q= 3πχ2

c4

[
GM•

(1 − e2)a

]2

cos i, (4.230a)

(�ω)Q= 3πχ2

2c4

[
GM•

(1 − e2)a

]2 (
1 − 5 cos2 i

)
. (4.230b)

10The symbol� is more commonly used to denote ω+�, the so-called “longitude of pericenter.” Except
in the case of zero inclination, ω +� does not correspond to a physical angle.
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The time tQ for the quadrupole torque, by itself, to rotate the line of nodes by an
angle π is

(cos i)tQ= P

3χ2
P2 = P

3χ2

[
(1 − e2)c2a

GM•

]2

= π(1 − e2)2a7/2c4

6χ2(GM•)5/2

≈ 3.3 × 106χ−2 (1 − e2)2
(

M•
4 × 106M�

)−5/2 (
a

mpc

)7/2

yr.

(4.231)

4.5.4 Post-Newtonian order 2.5, and energy loss

In center-of-mass coordinates, the contribution of the order O(v5/c5) terms to the
relative acceleration in the two-body problem is

a2.5 = −8

5

G2m2

c5r3
ν

{
v

[
v2 + 3

Gm

r

]
− n(n · v)

[
3v2 + 17

3

Gm

r

]}
. (4.232)

Proceeding as above, we can express a2.5 in terms of its (S, T ,W) components as

S= 8

5

G3m3n

c5a3(1 − e2)9/2
ν (1 + e cos f )3 e sin f

×
(

14

3
+ 2e2 + 20

3
e cos f

)
,

T = −8

5

G3m3n

c5a3(1 − e2)9/2
ν (1 + e cos f )4 e

(
4 + e2 + 5e cos f

)
,

W = 0. (4.233)

Substituting these expressions into Lagrange’s equations (4.57), and integrating
with respect to true anomaly f while holding the other elements fixed, we find that
first-order changes in (�,ω, i) are oscillatory in time, while both a and e exhibit
secular changes.11 Averaged over a single period, the latter changes are [423]〈

da

dt

〉
= −64

5

G3m1m2m

c5a3
(
1 − e2

)7/2

(
1 + 73

24
e2 + 37

96
e4

)
, (4.234a)

〈
de

dt

〉
= −304

15

G3m1m2me

c5a4
(
1 − e2

)5/2

(
1 + 121

304
e2

)
. (4.234b)

In response to loss of energy via gravitational-wave emission, the semimajor axis
shrinks, and the eccentricity tends toward zero. If no other processes are acting to
change a or e, equations (4.234) imply

da

de
= 12

19

a

e

1 + (73/24)e2 + (37/96)e4(
1 − e2

) [
1 + (121/304)e2

] (4.235)

11Of course, the 1PN and 2PN terms imply secular changes in ω, and the spin-orbit terms imply secular
changes in �. The precession induced by these terms has no effect on the secular changes in a and e.
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Figure 4.13 Joint evolution of semimajor axis, a, and eccentricity, e, as an orbit evolves in
response to gravitational-wave energy loss according to equation (4.235). Initial
conditions (upper right) were e = 0.9 (thin), e = 0.99, and e = 0.999 (thick).

with solution

a(e) = C(a0, e0)
e12/19

1 − e2

(
1 + 121

304
e2

)870/2299

, (4.236)

where C(a0, e0) is determined by setting a(e0) = a0. Given a0 and e0, any two of
the equations (4.234a)–(4.235) can be numerically integrated to solve for the decay
of the orbit in the gravitational-wave-dominated regime, that is, to find a = a(t),
e = e(t) (figure 4.13).

Two types of initial condition are particularly interesting. If the eccentricity is
initially zero, then equation (4.234b) implies de/dt = 0 and the orbit remains cir-
cular during the decay. At the other extreme, suppose that the orbit is initially highly
eccentric, e ≈ 1; such initial conditions are relevant to the extreme-mass-ratio in-
spiral problem discussed in chapter 6 and to the triple-SBH problem discussed in
chapter 8. In this limit, equation (4.235) implies

�(1 − e)

(1 − e)
≈ −�a

a
. (4.237)

Since the periapsis distance is rp = (1 − e)a, equation (4.237) implies that rp
remains nearly constant as the orbit decays. In this high-eccentricity regime, loss
of energy to gravitational waves acts like a drag force that “turns on” suddenly near
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periapsis, much like the atmospheric drag force that causes the orbits of artificial
satellites around the Earth to decay.

By combining equations (4.234b) and (4.236), we can write the rate of change
of eccentricity in terms of e alone:〈

de

dt

〉
= −304

15

G3m1m2m

c5C(a0, e0)4

e−29/19(1 − e2)3/2[
1 + (121/304)e2

]1181/2299 . (4.238)

The time to coalescence, starting from eccentricity e0, is given by the integral of
this expression from e = 0 to e = e0. The results are well approximated by

tGW ≡ t (e = 0)− t (e = e0) (4.239)

≈ 5.8 × 106 (1 + q)2

q

(
a0

10−2 pc

)4 (
m1 +m2

108M�

)−3

× (
1 − e2

0

)7/2
f (e0) yr,

where q ≡ m2/m1 ≤ 1 is the mass ratio of the binary, and f (e0) is a weak function
of the initial eccentricity: f (0) = 0.979 and f (1) = 1.81. Clearly, gravitational-
wave emission only becomes interesting for a massive binary if the separation drops
well below one parsec, or if the initial eccentricity is very high.

If the decay has gone on so long that the eccentricity has dropped nearly to zero,
the subsequent evolution is obtained by integrating equation (4.234a) after setting
e = 0:

a(t)4 − a4
0 = −256

5

G3m1m2m

c5
(t − t0) (4.240)

and

tGW ≡ t (a = 0)− t (a = a0) = 5

256

c5a4
0

G3m1m2m
(4.241)

≈ 5.7 × 106 (1 + q)2

q

(
a0

10−2 pc

)4 (
m1 +m2

108M�

)−3

yr.

4.6 CAPTURE

In the previous section, the calculation of tGW assumed a value of zero for the final
radius of the inspiral orbit. Of course, a better choice would have been the radius
of the SBH’s event horizon; but the orbital decay rate becomes so large toward the
end that either choice gives essentially the same result for the total inspiral time.
But there are situations in which it is important to know the actual, limiting value
of the orbital radius. For instance, solar-type stars are not tidally disrupted by an
SBH with M• >∼ 108M�, and their capture rate is determined by the rate at which
they are scattered onto capture orbits: orbits that progress inevitably inside the
event horizon. It turns out that most such captures occur from very eccentric orbits
(chapter 6), so we need to derive capture criteria for orbits of arbitrary e, and of
course for SBHs of arbitrary spin.
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Capture is an inherently relativistic event: it occurs when an object passes within
a few gravitational radii of the SBH. It is not possible to derive useful capture crite-
ria in a post-Newtonian framework, and in this section, we cannot avoid presenting
some results from the exact theory. The reader who desires a more complete back-
ground to these equations is directed toward any of a number of excellent texts on
the general theory of relativity [562, 492, 400]. Throughout this section, we assume
that the mass of the orbiting object is small compared with the SBH mass.

Start by writing the metric for a spinning black hole:

−c2dτ 2 = −
(

1 − 2mr

ρ2

)
c2dt2 + ρ2

�
dr2 + ρ2dθ2 − 4mrs

ρ2
sin2 θc dt dφ

+
(
r2 + s2 + 2mrs2

ρ2
sin2 θ

)
sin2 θdφ2. (4.242)

This is the Kerr metric [275] in Boyer–Lindquist coordinates [60]. The black-
hole mass, M•, has been expressed in terms of m ≡ GM•/c2; note that m has
units of length and in fact is equal to the gravitational radius rg. The black hole is
assumed to be rotating in the φ direction with spin angular momentum

S = cM•s, i.e., s = GM•
c2

χ (4.243)

with χ = s/m the dimensionless spin parameter defined in equation (4.72). Since
0 ≤ χ ≤ 1,

0 ≤ s ≤ GM•
c2

.

(Relativists, who see no problem with setting G = c = 1, prefer to write 0 ≤
s/M• ≤ 1.) The other quantities in equation (4.242) are

ρ2 ≡ r2 + s2 cos2 θ, (4.244a)

�≡ r2 + s2 − 2mr. (4.244b)

Boyer–Lindquist coordinates tend, in the large-distance limit, to ordinary, “flat-
space” spherical coordinates. The proper time τ becomes the ordinary time in this
limit.

The event horizon—the surface from which escape to infinity requires infinite
energy—is located at the outer root of the equation �2 = 0, or

r = m+ (
m2 − s2

)1/2
. (4.245)

For s = 0, a Schwarzschild black hole, this radius is just 2m, or 2rg. Even in the
case of a rotating hole, the event horizon is still a sphere, but its radius decreases
with increasing s to a limiting value of rg when s = 1. When s �= 0, there is a
second important surface, the static limit, defined by

r(θ) = m+ (
m2 − s2 cos2 θ

)1/2
. (4.246)

Inside this surface, which lies outside the event horizon and is elongated perpen-
dicular to the spin axis, observers are forced to move in the positive φ direction by
the “dragging of inertial frames.”
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It turns out that motion of a particle in the Kerr geometry is completely integrable
[72]. The constants of the motion are

E∞ = total energy,

Lz = component of angular momentum parallel to spin axis,

C= Carter constant,

and the equation of motion in r has first integral(
dr

dτ

)2

−
(
r4

ρ4

)
V (r) = 0, (4.247)

where

V (r)

c2
= E2

∞
c2

−
(

1 − 2m

r
+ s2

r2

)(
1 + C

c2r2

)
− β

c2r2
+ 2mα2

c2r3
(4.248)

and

α=Lz − sE∞, (4.249a)

β =L2
z − s2E2

∞. (4.249b)

In the large-radius limit, Lz reduces to the Newtonian angular momentum per unit
mass, and E∞ is related to the Newtonian specific energy by

E2
∞ = 2E + c2. (4.250)

Note that E∞ includes the rest mass of the orbiting body. In the same limit, the
Carter constant becomes

C → L2 − L2
z , r → ∞, (4.251)

where L is the total angular momentum. Setting C = 0 is equivalent to restricting
motion to the hole’s equatorial plane.

First consider circular orbits in the equatorial plane: θ = π/2, C = 0, ρ2 = r2,
and (

dr

dτ

)2

= V (r). (4.252)

Turning points occur where V (r) = 0; for a circular orbit, we also require the
effective potential to be a minimum, that is,

V (r) = 0, dV/dr = 0. (4.253)

Solving these equations for E∞ and Lz ,

c−1E∞ = r2 − 2mr ± s
√
mr

r
(
r2 − 3mr ± 2s

√
mr

)1/2 , (4.254a)

c−1Lz =
√
mr

(
r2 ∓ 2s

√
mr + s2

)
r
(
r2 − 3mr ± 2s

√
mr

)1/2 . (4.254b)
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The upper sign refers to corotating (prograde) orbits, that is, orbits with angu-
lar momenta parallel to the black-hole spin, and the lower sign to counterrotating
orbits.

Not all circular orbits are stable; we are interested in the innermost stable cir-
cular orbit, or ISCO. Stability requires d2V/dr2 ≤ 0. After some algebra, one
finds for the ISCO radius [24]

rISCO =m {
3 + Z2 ∓ [(3 − Z1) (3 + Z1 + 2Z2)]

1/2
}
,

Z1 = 1 +
(

1 − s2

m2

)1/3 [(
1 + s

m

)1/3
+

(
1 − s

m

)1/3
]
,

Z2 =
(

3
s2

m2
+ Z2

1

)1/2

. (4.255)

Setting s = 0 gives the circular orbit capture radius for a Schwarzschild black hole:

rc = 6m = 6rg = 6GM•
c2

(s = 0), (4.256)

which is three times the radius of the event horizon. The corresponding orbital
angular momentum, from equation (4.254b), is

Lc =
√

12rgc (s = 0) (4.257)

and the energy, from equation (4.254a), is

E∞,c = 2
√

2

3
c (s = 0). (4.258)

A maximally rotating Kerr black hole has s = m. There are now two capture
radii in the equatorial plane:

rc =
{
rg, prograde,

9rg, retrograde.
(4.259)

Figure 4.14 plots capture radii as a function of the dimensionless spin. The expres-
sions given above for the energy and angular momenta are ill defined when s = m

and r = rg; alternative forms for these expressions, valid when s = m, are

c−1E∞ = r −m± (mr)1/2

r3/4
(
r1/2 ± 2m1/2

)1/2 (s = m), (4.260a)

c−1Lz =
m1/2

(
r3/2 ±m1/2r +mr1/2 ∓m3/2

)
r3/4

(
r1/2 ± 2m1/2

)1/2 (s = m).

(4.260b)

From these expressions, the angular momenta of the capture orbits for s = m are

Lc =
{
(2/

√
3)rgc, prograde,

(22/3
√

3)rgc, retrograde,
(4.261)
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Figure 4.14 Radius of the innermost stable circular orbit as a function of the dimensionless
spin parameter χ , for prograde and retrograde orbits. The dashed curve shows
the radius of the event horizon.

and the energies are

E∞,c =


(1/

√
3)c, prograde,

(5/
√

27)c, retrograde.
(4.262)

In the discussion of the loss-cone problem later in this book, we will mostly be
concerned with objects on orbits that are highly eccentric, and which only come
close to the SBH during brief intervals near periapsis. Such objects spend most
of their time in the Newtonian or post-Newtonian regime, and the detailed theory
of loss-cone repopulation that is developed in chapter 6 is likewise rooted firmly
in the Newtonian paradigm. When we insert the “capture conditions” that were
just derived into such theory, we are effectively pasting together a fully relativistic
description with a Newtonian one. Unfortunately, there is no unique way to do
that. Boyer–Lindquist coordinates are the natural generalization of Schwarzschild
coordinates and are best for many purposes, but they are not unique, and sufficiently
close to a rapidly spinning black hole they behave in a nonintuitive way [24]. It
is perhaps for this reason that different authors writing on the astrophysical loss-
cone problem adopt different expressions for the “radius” corresponding to capture,
particularly in the case of Kerr SBHs.

When considering capture from very eccentric orbits, there is a natural way to
proceed [470]. One computes the critical values of the orbital elements
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corresponding to capture in the adopted metric, then asks for the Keplerian
elements that would be inferred when an object on that orbit is far from the SBH,
near apoapsis.12

Consider then the case of capture from orbits of high eccentricity and (in the case
of a spinning black hole) arbitrary orbital inclination. A star on a highly eccentric
orbit spends most of its time at radii r � rg where the motion is essentially New-
tonian. We can therefore characterize the orbits by the Keplerian elements a and
e, defined as the values that would be computed far from the SBH. The energy is
E2

∞ = 2E+c2 ≈ c2(1−GM•/c2a) ≈ c2; that is, E2
∞/c

2 ≈ 1. It is useful to define
a new Carter constant, given by

C ′ = C + L2
z . (4.263)

In the spherically symmetric Schwarzschild geometry, C ′ is equal to the square of
the total angular momentum, L2. With this definition, the potential V (r) takes the
form

V (r)

c2
=

(
1 + 2ms2

r3
+ s2

r2

)
E2

∞
c2

−�

r2

(
1 + C ′

c2r2

)
+ s

2L2
z

c2r4
− 4msE∞Lz

c3r3
. (4.264)

In order to make the connection to the Newtonian part of the motion more nat-
ural, we define two new constants of motion: La > 0 and cos i, related to C ′ and
Lz by

L2
a ≡ C ′, cos i ≡ Lz

La
. (4.265)

In the Newtonian limit, La and i correspond to the total angular momentum and the
orbital inclination, respectively. For orbits in the equatorial plane, La = |Lz|, and
i = 0 (π ) for prograde (retrograde) orbits; for orbits out of the plane, 0 ≤ i ≤ π/2
for prograde motion and π/2 ≤ i ≤ π for retrograde motion.

We seek the critical angular momentum such that an orbit will not be “reflected”
back to large distances, but instead will continue on to smaller values of r . The
turning points of the orbit are still given by the condition V (r) = 0. The critical
values of E∞, C ′, and Lz are those for which the potential has an extremum at that
same point; that is, where d

[
(r4/ρ4)V (r)

]
/dr = 0. But since V (r) = 0 this is

equivalent to dV/dr = 0. This point should also be a minimum of V (r); that is,
d2V/dr2 > 0. The conditions V (r) = 0 and dV/dr = 0 then yield two quadratic
equations for r . Solving one equation for r and substituting into the other yields an
algebraic relation for the critical value of C in terms of m, s, and Lz . Scaling out
the factors of m by defining the dimensionless variables L̃a = La/(mc) and using
χ ≡ s/m, the equation for the critical value of the angular momentum, L̃c, has the

12The remaining material in this section was kindly provided by C. Will in advance of publication.
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form

0 =Q
{ (

1 − χ2 sin2 i
)
L̃8
c − 4χ cos iL̃7

c − 2
[
8 − χ2

(
3 + 7 sin2 i

)]
L̃6
c

+ 4χ cos i
[
24 − χ2

(
1 + 9 sin2 i

)]
L̃5
c

− χ2
[
240 − 192 sin2 i − χ2

(
1 + 18 sin2 i − 27 sin4 i

)]
L̃4
c

+ 64χ3 cos i
(
5 − 2 sin2 i

)
L̃3
c − 48χ4

(
5 − 4 sin2 i

)
L̃2
c

+ 96χ5 cos iL̃c − 16χ6

}
,

(4.266)

where Q = 1/
[
L̃2
c(L̃

4
c − 12L̃2

c + 24χL̃c cos i − 12χ2)2
]
. The critical radius cor-

responding to this unstable orbit is

r̃c =
L̃2
c

[(
L̃c − χ cos i

)2
− 8χ2 sin2 i

]

L̃4
c − 12

(
L̃c − χ cos i

)2
− 12χ2 sin2 i

. (4.267)

An orbit in the equatorial plane has i = {0, π}, and the condition becomes

0 =
(
L̃2
c ∓ 4L̃c + 4χ

) (
L̃2
c ± 4L̃c − 4χ

) (
L̃c ∓ χ

)4

L̃2
c

(
L̃4
c − 12L̃2

c ± 24χL̃c − 12χ2
)2 . (4.268)

The solutions that correspond to values of r that are outside the event horizon, and
to maxima of V (r), are

L̃c+ = 2 + 2
√

1 − χ, i = 0 (prograde),

L̃c− = 2 + 2
√

1 + χ, i = π (retrograde). (4.269)

For χ = 0, the solutions merge to L̃c = 4.
For arbitrary values of i, equation (4.266) must be solved numerically. Alterna-

tively, an approximate, analytic solution can be sought. Consider

L̃c = 2 + 2

√
1 − χ cos i − 1

8
χ2 sin2 i F (χ, cos i) (4.270)

which has the correct behavior when χ = 0, and when i = 0 or i = π for arbitrary
χ . Solving equation (4.266) as a power series in χ yields

F(χ, cos i) =1 + 1

2
χ cos i + 1

64
χ2

(
7 + 13 cos2 i

)
+ 1

128
χ3 cos i

(
23 + 5 cos2 i

)
+ 1

2048
χ4

(
55 + 340 cos2 i − 59 cos4 i

) +O(χ5). (4.271)
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Figure 4.15 Critical, Newtonian periapsis for capture of eccentric orbits (e ≈ 1) by Kerr
black holes as a function of the dimensionless spin parameter χ . Different
curves are for different values of cos i ≡ Lz/L in steps of 0.2, from cos i = 1
(thinnest) to cos i = 0 (thickest).

For χ = 1, the critical value is given to high accuracy by

L̃c =
{

1.575 + 2.276
√

1 − 1.044 cos i, −1 ≤ cos i ≤ √
2/3,

2/ cos i,
√

2/3 ≤ cos i ≤ 1.
(4.272)

Thus for a star in an orbit with a given cos i = Lz/L, capture will occur for
L ≤ Lc = (GM•/c)L̃c. When the star is far from the hole, the orbital angular
momentum per unit of µc2 is given in terms of the Newtonian semimajor axis a
and eccentricity e by L2 = GM•a(1 − e2)/c2 = mrp(1 + e) where rp is the
periapsis distance. For large eccentricity then, capture will occur when

rp ≤ rpc ≡ 1

2
rg

(
L̃c±

)2
. (4.273)

For a Schwarzschild black hole, rc = 8rg; in the equatorial plane of a maximally ro-
tating Kerr black hole, rc = 2(11.6)rg for prograde (retrograde) orbits. Figure 4.15
shows numerically computed values of rp corresponding to capture orbits for vari-
ous values of χ and i.

4.7 RELATIVISTIC MOTION IN THE PRESENCE OF A DISTRIBUTED

MASS

We are now in a position to consider the effects of relativity on the motion of a star
orbiting in a nonspherical nucleus.

As noted above, the relativistic periapsis advance of the Galactic center star S2
should occur at approximately the same, time-averaged rate (although in the op-
posite sense) as the rate of precession due to the distributed mass near Sgr A*.
But there is an even more interesting way in which Newtonian and relativistic per-
turbations can interact. If torques from the flattened potential of a nonspherical
nucleus should cause the angular momentum of a star to decrease to sufficiently
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low values—as in the case of the saucer orbits described in section 4.4.2, or the
pyramid orbits described in section 4.4.3—there will inevitably come a time when
precession is dominated by relativistic effects. As we will see, this fact implies an
effective upper limit on how eccentric such an orbit can become in response to
steady torques [378].

The orbit-averaged rate of relativistic periapsis advance is given by
equation (4.205):13 (

dω

dt

)
GR

= νr
3GM•

c2a(1 − e2)
. (4.274)

The rate of precession due to the distributed (spherical) mass is given by equa-
tion (4.88) (

dω

dt

)
M

= −νrGM(e, γ )
M�(r < a)

M•

√
1 − e2, (4.275)

where GM ≈ 1 (figure 4.3).
We begin by ignoring the (generally smaller) contribution to the precession rate

arising from the nonsphericity of the nucleus. The two frequencies (4.274), (4.275)
are equal in magnitude (but opposite in sign) when

� ≡
√

1 − e2 = �crit ≈
[
rg

a

M•
M�

]1/3

, (4.276)

where, as usual, rg ≡ GM•/c2. When � >∼ �crit, precession is dominated by the
mass term and is retrograde, while for � <∼ �crit, relativity dominates and the pre-
cession is prograde.

Now consider the effect of the nonspherical component of the potential, and
assume that �  �crit. In this regime, the precession rate scales as ∼ �−2, and
the sign of the torque as experienced by the rapidly precessing orbit will fluctuate
with such a high frequency that its net effect over one precessional period will be
negligible: in other words, relativity will “quench” the effects of the torque and the
orbit’s eccentricity will remain nearly constant.

To estimate the eccentricity at which this occurs, we express the torque as

|T | ≈ ε
GM�

a
, (4.277)

where M� is the stellar mass within r = a and ε measures the degree of nuclear
elongation. The timescale over which this torque changes a star’s angular momen-
tum is∣∣∣∣ 1

L

dL

dt

∣∣∣∣
−1

≈
∣∣∣∣LT

∣∣∣∣ ≈ M•
εM�

[
a3(1 − e2)

GM•

]1/2

≈ ν−1
r

M•
εM�

√
1 − e2. (4.278)

In order for L to undergo significant variation (i.e., by of order itself), this timescale
must be shorter than the timescale associated with relativistic precession,

13Henceforth in this chapter we ignore the distinction between a and ar , etc.
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|(1/π)(dω/dt)|−1
GR, or

� >∼ �min ≈ rg

a

M•
εM�

≈ ε−1�3
crit. (4.279)

We expect that the torque due to a fixed mass distribution will be unable to reduce
a star’s angular momentum much below this value. Stated differently, orbits which
have � <∼ �min will precess so rapidly that their angular momentum hardly changes;
orbits which at some moment have � >∼ �min will experience periodic changes in
angular momentum but � will not fall below ∼ �min.

We can get a more detailed picture of how relativity affects the behavior of orbits
by adding the orbit-averaged, 1PN accelerations to the equations of motion that
were previously derived for axisymmetric and triaxial nuclei. Consider first the
axisymmetric case. Since we are considering orbits of high eccentricity, we adopt
equations (4.108), which describe the behavior of low-� orbits in a mildly flattened
nucleus with radial density profile ρ ∼ 1/r . To the equation for dω/dt we now add
the term (4.274) representing Schwarzschild precession. The results are

dω

dτ
= −�+ 3ε

�
cos2 i sin2 ω + κ

�2
,

d�

dτ
= −3

2
ε sin2 i sin(2ω),

d�z

dτ
= d�

dτ
= 0, (4.280)

where

κ ≡ ν−1
0

(
dω

dt

)
GR

≈ 3
rg

a

M•
M�(a)

. (4.281)

Recall that the dimensionless time in equations (4.280) is τ = ν0t and that ν0,
defined in equation (4.102), is approximately equal to νrM�(a)/M•, the mass pre-
cession rate. When the relativistic term is absent (κ = 0), these equations were
found to define two sorts of orbit: tubes and saucers; saucer orbits were present
when �z < �sep ≈ √

3ε, where ε, defined in equation (4.104), is related to the axis
ratio, q, of the nucleus by ε ≈ (1 − q)/2. Recall also that saucer orbits can reach
values of � as low as �z , which of course is the lowest angular momentum consis-
tent with conservation of �z . It is interesting to ask: at what value of κ do saucer
orbits disappear?

Saucer-like orbits will be present if there is a fixed point of the motion at ω =
π/2 (figure 4.4). Setting ω̇ = 0, ω = π/2 in the first of equations (4.280) gives, for
the value of � at the fixed point,

�4 − κ�− 3ε�2
z = 0. (4.282)

As κ is increased from zero at fixed �z , the angular momentum associated with the
fixed point increases. When κ exceeds κmax, given by

κmax = 1 − 3ε�2
z , (4.283)

there is no longer a fixed point and the saucer orbits disappear.
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In the axisymmetric geometry, a lower limit on � is always set by �z , even in the
absence of the quenching effects of relativity. We now consider the more interesting
case of motion in a triaxial nucleus, for which the geometry imposes no lower limit
on �.

Consider then the orbit-averaged Hamiltonian (4.142a) that describes motion in a
nucleus containing both a spherical, and a triaxial, mass component. We can include
the effects of relativistic precession by adding an extra term to H :

H = −3

2
�2 + εbHb + εcHc − κ

�
, (4.284)

which is equivalent to adding the term κ/l2 to the right-hand side of dω/dτ =
∂H/∂�. Here κ is given by

κ ≡ 3GM•
c2a

νr

ν0
≈ rg

a

M•
M(a)

(4.285)

with ν0 defined in equation (4.141a). In terms of κ , the critical value of � at which
relativistic precession cancels precession due to the distributed mass is

�crit =
(κ

3

)1/3
. (4.286)

Consider an orbit for which � ≈ �crit. Since κ and �crit are typically much less than
one, it is appropriate in this case to replace (4.284) by the simplified Hamiltonian
(4.146). Adding the relativistic term,

5

2
εc −H =

[
3

2
�2 + κ

�

]
+

[
5

2
εce

2
x + 5

2
(εc − εb)e

2
y

]
≡P(�)+Q(ex, ey), (4.287)

where P and Q denote the expressions in the first and second sets of square brack-
ets. The minimum of P(�) occurs at � = �crit:

Pmin =
(

81κ2

8

)1/3

. (4.288)

The function Q can vary from 0 to some maximum value Qmax due to the lim-
itation that e2

x + e2
y ≤ 1. For each value of (ex, ey) (and therefore Q), there are

two allowed values of �; one of these is smaller than �crit while the other is greater
(figure 4.16). In the case of a librating orbit, these two values correspond to preces-
sion first in one, then the other sense at a given (ex, ey); in the case of a circulating
orbit, the two values correspond to orbits that precess in one, or the other sense
when they cross, for example, the z-axis. The minimum and maximum values of
�—both of which correspond to the maximum value of P (figure 4.16)—are at-
tained when Q = 0, that is, when ex = ey = 0; the maximum of Q corresponds to
� = �crit. (In the Newtonian case, the minimum of � corresponds to the maximum
of Q.)
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Figure 4.16 The allowed variations in angular momentum � for orbits in a triaxial nucleus
and in the presence of general relativistic precession [378]. The solid curve
represents the function P(�) (equation 4.287); the dashed parabola is the same
function in the Newtonian case (κ = 0). If κ �= 0, P(�) has a minimum at
�crit (equation 4.286). Orbits make excursions along the curve P(�) in the range
from a certain value Pmax to Pmax − Qmax (here Qmax is given for the case of
planar orbits). If during such an excursion � does not cross �crit, then the orbit
resides on one branch of P(�); otherwise it “flips” to the other branch, reaching
lower values of �min (equation 4.292), becoming a pyramid orbit or a long-axis
tube orbit (LAT).

Consider orbits that are confined to the y–z plane. Setting � = π/2, �z = 0 in
equation (4.144), the Hamiltonian and equations of motion become

5

2
εc −H = 3

2
�2

0 + κ

�0
= 3

2
�2 + κ

�
+ ν(0)y

2

6
cos2 ω , (4.289a)

�̇= −ν
(0)
y

2

6
sin 2ω , ω̇ = −3�+ κ

�2
. (4.289b)

Here, � = �0 is the angular momentum when the orbit coincides with the short (z-)
axis; that is, ω = π/2, ey = 0. The orbit in the course of its evolution may or may
not cross the y-axis (ω = 0). If it does, then the angle ω circulates monotonically,
with ω̇ �= 0. In figure 4.16, the condition ω̇ = 0 corresponds to reaching the lowest
point in the P(�) curve, � = �crit. Whether this happens depends on the value of
�0: since the orbit starts from Q = 0 and P = P(�0), it can “descend” the P(�)
curve at most by Qmax = ν2

y0/6. The critical values of �0, � = (�0+, �0−), at which
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circulation changes to libration are the solutions to

3

2
�2

0± + κ

�0±
= 3

2
�2

crit + κ

�crit
+ ν2

y0

6
; (4.290)

�0+ and �0− are the upper and lower positive roots of this equation. For a librating
(i.e., pyramid) orbit, these are the values of � when the orbit precesses first in one
sense, then the other, past the short (z-) axis. For such orbits, ω̇ changes sign exactly
at � = �crit, but the angular momentum continues to decrease beyond the point of
turnaround, reaching its minimum value only when ω returns again to π/2, that is,
the z-axis. The two semiperiods of oscillation are not equal: the first (� > �crit and
ω̇ < 0) is slower, the other is more abrupt (figure 4.17, cases b, d). In effect, these
windshield-wiper orbits14 are “reflected” by “striking” the relativistic angular mo-
mentum barrier, and so never reach unit eccentricity as in the case of Newtonian
pyramid orbits (figure 4.7). After the orbit precesses past the z-axis in the opposite
sense, the angular momentum begins to increase again, reaching its original value
after precession in ω has completed a full cycle and the orbit has returned to the
z-axis from the other side.

The extreme values of � both occur at ω = π/2, when the orbit precesses past
the short (z-) axis. Setting Q = 0 (i.e., P(�) = P(�0)) gives

�extr,P = �0

2

(√
1 + 8�3

crit/�
3
0 − 1

)
. (4.291)

If �0 > �crit, this root corresponds to the minimum �, with �0 the maximum value;
in the opposite case they exchange places. For κ  3�3

0 this additional root is

�min ≈ 2�3
crit

�2
0

= 2

3

κ

�2
0

. (4.292)

Evidently, the minimum angular momentum achievable by a pyramid orbit in the
presence of relativistic precession scales as �−2

0 —the pyramids with the widest
bases come closest to the SBH. Combining equation (4.292) with equation (4.159),
the maximum value of �0 for (nonrelativistic) pyramids, we find that the minimum
value of � for any pyramid is

�min ≈ κ

ε
≈ ε−1�3

crit, (4.293)

consistent with the order-of-magnitude estimate (4.279) made at the start of this
section.

Figure 4.18 shows the dependence of the maximum and minimum values of � on
�0 for the various orbit families.

In the case of pyramid orbits that are not restricted to a principal plane, numer-
ical solution of the equations of motion derived from the Hamiltonian (4.284) are
observed to be generally chaotic, increasingly so as κ is increased (figure 4.19).
This may be attributed to the “scattering” effect of the relativistic term κ/l in the
Hamiltonian, which causes the vector (ex, ey) to be deflected by an almost random

14The reader may be old enough to remember when automobile windshield wipers behaved in this way.
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Figure 4.17 Behavior of orbits in the y–z plane of a triaxial nucleus when the 1PN effects
of relativity are included [378]. These are solutions to the equations of mo-
tion (4.289b) in a potential with εc = 10−2, εb = εc/2, and with κ = 10−4.
All five orbits were started with ω = π/2 (i.e., along the z-axis) but with dif-
ferent �0: (a) 0.104, (b) 0.103, (c) 0.0322, (d) 0.006, (e) 0.0058. The first two
orbits lie close to the separatrix between long-axis tubes (LATs) and pyramids
at �0+ = 0.10392 (4.290); the third is the stationary orbit with �0 = �crit; and the
last two lie near the separatrix between pyramids and GR-precession-dominated
LATs, �0− = 0.005845. For pyramid orbits (b, d), the angle ω librates around
π/2, and � crosses the critical value �crit; tube orbits (a,e) have ω monotonically
circulating, and � is always above or below �crit.
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Figure 4.18 Minimum and maximum values of the dimensionless angular momentum � for
planar orbits like those in Figure 4.17 [378]. The straight line is � = �0; the
dashed line is the extremum for pyramids, equation (4.291). These two curves
intersect at �crit (equation 4.286), where they exchange roles. For � > �0+ and
� < �0− (equation 4.290) the orbit is a tube. The dotted gray line shows the
leading frequency of ω oscillations, νω × 10−2; for high-� orbits, ω̇ ≈ 3�, while
for orbits dominated by relativistic precession, ω̇ ≈ 2κ/�2. Letters denote the
position of orbits shown in figure 4.17.

angle whenever � approaches zero. In the limit that the motion is fully chaotic, H
remains the only integral of the motion, and equation (4.287) implies that the vector
(ex, ey) can lie anywhere inside an ellipse

Q(ex, ey) ≡ 5

2

[
εce

2
x + (εc − εb)e

2
y

] ≤ Qmax , (4.294)

whose boundary is given by

Qmax = 5

2
εc −H − Pmin. (4.295)

This ellipse defines the base of the “pyramid” (which now rather resembles a cone).
As in the planar case, the maximum and minimum values of � are attained—not on
the boundary of this ellipse (i.e., the corners in the Newtonian case)—but rather at
ex = ey = 0, where Q = 0 and P attains its maximum. The ellipse (4.294) serves
as a “reflection boundary” for trajectories that come below � ≈ �crit. If this happens,
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ey

ex

ey

ex

ey
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Figure 4.19 The effect of relativistic precession on three-dimensional pyramid orbits [378].
The three orbits were all started with the same initial conditions (� = 0.05,
�z = 0.02, ω = � = π/2) in a triaxial potential with εc = 0.01, εb = 0.005
and in the absence of relativity, each would be a pyramid orbit. The three panels
have different values of the coefficient κ (equation 4.285) that determines the
relative speed of relativistic and Newtonian precessions. Left: κ = 0 (regular);
middle: κ = 10−6 (weakly chaotic); right: κ = 10−5 (strongly chaotic). The
ellipse marks the maximal extent of the (ex, ey) vector, equation (4.294),
i.e. � = �crit, equation (4.286).

the vector (ex, ey) is observed to be quickly “scattered” by an almost random angle
(figure 4.19, right, denoted by the red segments), similar to the rapid change in ω
that occurs in the planar case (figure 4.17). It turns out [378] that the minimum
value of the angular momentum attained in the chaotic case is approximately the
same as in equation (4.291). Roughly speaking, all pyramid orbits and some tube
orbits (those that may attain � ≤ �crit) are found to be chaotic.

So far in this section, we have considered only the lowest-order relativistic cor-
rections to the equations of motion. The same approach can be used to include
progressively higher-order PN terms, representing the effects of frame dragging, of
torques due to the SBH’s quadrupole moment, etc. Of course, these higher-order
corrections become progressively more important at smaller distances from the
SBH. But sufficiently close to the SBH, the number of stars enclosed within any
orbit is so small that it may no longer make sense to represent the gravitational
potential from the stars as a smooth, symmetric function of position. Instead, the
nonsphericity of the potential may be due mostly to the fact that at any moment,
there are different numbers of stars on one side of the SBH as compared with an-
other. Here we are anticipating the discussion of “resonant relaxation” in chapter 5:
the idea is that—at least for some span of time—orbits near the SBH are nearly
Keplerian, and maintain their orbital elements, including particularly their orienta-
tions. As argued in section 5.6, the magnitude of the torque acting on a test star in
this regime is roughly

|T | ≈
√
N
Gm�

a
, (4.296)

where N is the number of stars inside the test-star’s orbit, of semimajor axis a, and
m� is the mass of one star. This “

√
N torque” will dominate the torque from the
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large-scale nonsphericity, equation (4.277), if

N(a) <∼ ε−2. (4.297)

So, for instance, if the nucleus is only slightly elongated, say ε ≈ 10−2, then at
radii where N(< a) <∼ 104, the

√
N torques will dominate torques from the large-

scale distortion. In the Milky Way, the corresponding radius might be ∼ 10−2rm ∼
10−2 pc. One can obtain an approximate understanding of the motion in this regime
by supposing that the

√
N torques are representable approximately in terms of an

axisymmetric or triaxial distortion (say), with amplitude given by ε ≈ 1/
√
N ,

and applying the orbit-averaged equations derived above. What makes the problem
much more interesting, and difficult, is the fact that the orbits generating the torque
do not maintain their orientations forever: they precess, causing the direction of the
torque to change with time in some complicated way. Understanding the motion in
this regime is extremely important but such work is still in its infancy. Elsewhere
in this book, two early results from that research are presented. In section 5.7.1
it is shown that there is a “sphere of rotational influence” inside of which drag-
ging of inertial frames by a spinning SBH dominates the

√
N torques from nearby

stars [358]. In section 6.4, interaction of the
√
N torques with the 1PN precession

is shown to create a “barrier” that reflects orbits to lower eccentricities, strongly
mediating the capture rate of stars near the SBH [359].

4.8 MOTION IN THE PRESENCE OF A SECOND MASSIVE BODY

So far in this chapter, we have considered several examples in which the two-body
equations of motion were modified by an additional, time-independent force term:
due to a distributed mass, or to relativity, or both. But there are many interesting
problems in nuclear dynamics that involve the presence of a second massive body
which itself is orbiting about the SBH. An extreme example would be a binary
SBH, formed, for instance, in a galaxy merger. Binary SBHs can radically change
the distribution of mass near the center of a galaxy, so much so that we postpone a
discussion of their dynamics until chapter 8. But there are less extreme possibilities
as well: for instance, an intermediate-mass black hole (IBH) that orbits about the
SBH. As discussed in chapter 2, these hypothesized objects would have masses
between ∼ 102 and ∼ 106M�. An IBH orbiting within the influence sphere of an
SBH would substantially perturb the orbits of stars at r <∼ rh [219].

Ignoring the influence of any distributed mass, what we are talking about here is
the famous three-body problem of classical mechanics. The three-body problem
has a long history and a voluminous literature, and there are a number of texts de-
voted entirely to this subfield of celestial mechanics [336, 532, 31]. In this section,
we restrict our attention to a special (but still very useful) case: the hierarchical
three-body problem, in which the separation of two of the bodies is much less
than the distance of either body to the third object. In addition, we will assume that
the evolution of interest takes place on timescales long compared with the periods
of the inner or outer “binaries,” allowing us to apply the averaging techniques that
were developed earlier in this chapter.
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4.8.1 The hierarchical three-body problem

Consider three bodies of massM ,m1, andm2. We define massM as the “primary,”
and will later set M > (m1,m2), but for the moment the ordering of masses is left
unspecified. Let the position vectors of the three bodies with respect to an inertial
coordinate system be R,R1,R2, and the positions ofm1,m2 relative to the primary
be r1, r2:

r1 = R1 − R, r2 = R2 − R (4.298)

(figure 4.20a). The equations of motion of the three masses are

MR̈ =GMm1
r1

r3
1

+GMm2
r2

r3
2

, (4.299a)

m1R̈1 =Gm1m2
r2 − r1

|r2 − r1|3
−GMm1

r1

r3
1

, (4.299b)

m2R̈2 =Gm2m1
r1 − r2

|r1 − r2|3
−GMm2

r2

r3
2

. (4.299c)

By differencing these expressions, we derive the accelerations ofm1 andm2 relative
to the primary:

r̈1 +G(M +m1)
r1

r3
1

=Gm2

(
r2 − r1

|r2 − r1|3
− r2

r3
2

)
, (4.300a)

r̈2 +G(M +m2)
r2

r3
2

=Gm1

(
r1 − r2

|r1 − r2|3
− r1

r3
1

)
. (4.300b)

Equations (4.300) can be written in terms of gradients of scalar functions:

r̈1 = −∇1 (	1 + R1) , r̈2 = −∇2 (	2 + R2) , (4.301)

where the subscript i on ∇ denotes differentiation with respect to the coordinates
r i . The functions 	i are

	1 = −GM +m1

r1
, 	2 = −GM +m2

r2
, (4.302)

which are just the two-body, or Keplerian, parts of the total potential. The functions
Ri are called the disturbing functions:

R1 = − Gm2

|r2 − r1| +Gm2
r1 · r2

r3
2

, (4.303a)

R2 = − Gm1

|r1 − r2| +Gm1
r1 · r2

r3
1

. (4.303b)

The first terms in equations (4.303) are called the direct terms. They represent the
pairwise interaction potentials of m1 and m2 and are symmetric in {r1, r2}. The
second terms are called the indirect terms, and their particular form depends on
the choice of coordinate system. In particular, the indirect terms are not symmetric
in {r1, r2}.
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Figure 4.20 Two coordinate systems that are useful when discussing the three-body prob-
lem. (a) “Astrocentric” coordinates. The position vectors r1 and r2, of masses
m1 and m2, are defined with respect to the primary mass M . (b) “Jacobi” co-
ordinates. The position vector r is defined in the same way as r1. The position
vector r2 is defined with respect to the center of mass of the (M,m1) system.
In the averaged equations of motion, the unperturbed outer “binary” is defined
in terms of the motion of m2 about this center of mass, and not in terms of the
(M,m2) binary.
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Suppose that r2 > r1. Then the interaction potential |r2 − r1|−1 can be expanded
in a Legendre series as

1

|r2 − r1| = 1

r2

∞∑
l=0

(
r1

r2

)l
Pl (cosφ) , (4.304)

where φ is the angle between r1 and r2; that is, r1 · r2 = r1r2 cosφ (figure 4.20a).
The two disturbing functions become

R1 = −Gm2

r2

∞∑
l=1

(
r1

r2

)l
Pl (cosφ)+Gm2

r1

r2
2

cosφ, (4.305a)

R2 = −Gm1

r2

∞∑
l=1

(
r1

r2

)l
Pl (cosφ)+Gm1

r2

r2
1

cosφ. (4.305b)

In these expressions, the l = 0 (constant) terms have been neglected since they do
not contribute to the accelerations. In the disturbing function for the inner body,
the l = 1 term in the Legendre expansion is exactly canceled by the additional
(indirect) term on the right-hand side of equation (4.305a), so that

R1 = −Gm2

r2

∞∑
l=2

(
r1

r2

)l
Pl (cosφ) . (4.306)

The lowest-order contribution to the perturbed potential is l = 2. In the case of the
outer body, this cancellation does not occur.

At this point, it is standard practice to effect a change in variables. Jacobi coor-
dinates are defined in the following way (figure 4.20b). The first position vector,
r , is equated with r1: it is the separation vector between M and m1, the two com-
ponents of the inner binary. The second position vector, r ′, connects the center of
mass of the inner binary to the location of m2. Thus

r = r1, r ′ = r2 − m1

M +m1
r. (4.307)

In effect, the outer “binary” consists of m2 orbiting about the center of mass of the
inner binary.15 If we define a new angleψ such that r ·r ′ = rr ′ cosψ (figure 4.20b),
the Hamiltonian of the three-body system becomes, after some algebra [228]:

H=−GMm1

2a1
− G(M +m1)m2

2a2

− G

a2

∞∑
l=2

(
a1

a2

)l
Ml

(
r

a1

)l (a2

r ′
)l+1

Pl (cosψ) , (4.308)

where

Ml = Mm1m2
Ml−1 − (−m1)

l−1

(M +m1)
l

. (4.309)

15Jacobi coordinates can be generalized to an arbitrary number of bodies [432].



196 CHAPTER 4

In equation (4.308), a1 is the semimajor axis of the (osculating) orbit of the inner
binary, and a2 is the semimajor axis of the outer “binary,” that is, the orbit defined
by m2’s motion about the center of mass of the inner binary. Note that the lowest-
order term in the ψ expansion has l = 2: a “quadrupole.”

We are now in a position to invoke our assumption that the triple system is hi-
erarchical. If a1  a2, the series in equation (4.308) will rapidly converge. Taking
only the lowest-order, l = 2, term yields the quadrupole Hamiltonian:

H=HKep +Hp, (4.310)

HKep = −GMm1

2a1
− G(M +m1)m2

2a2
,

Hp = − G

2a2

Mm1m2

M +m1

r2

r ′3
(
3 cos2 ψ − 1

)
.

Equations (4.310) are the basis for most studies of the hierarchical three-body prob-
lem. The quadrupole approximation turns out to be adequate for many problems,
but can yield misleading results in certain cases; for instance, if the two orbits are
nearly coplanar, or highly eccentric, and of course the approximation breaks down
if a1 ≈ a2. Some of these special cases are discussed in more detail below.

If we assume that {m1,m2}  M , the motion of the two bodies will remain close
to Keplerian for many orbital periods, and it is appropriate to average the Hamil-
tonian (4.310) over the unperturbed orbits. (No assumption is made yet about the
relative sizes ofm1 andm2.) As before in this chapter, the Hamiltonian is expressed
in terms of Delaunay variables andH is integrated with respect to the mean anom-
aly. In the current problem, the averaging is carried out twice: once with respect
to the outer orbit and once with respect to the inner orbit. Because of the fact that
we are dealing with two orbits, of arbitrary relative inclination, the algebra can be-
come daunting. It turns out that this is a problem for which the vectorial orbital
elements defined in section 4.2 are very useful. In terms of the unit vectors defined
in equation (4.59), the doubly averagedHp can be written very compactly as [156]

Hp = − 3GMm1m2

8(M +m1)(1 − e2
2)

3/2

a2
1

a3
2

(4.311)

×
[
−1

3
+ 2e2

1 + (
1 − e2

1

) (
e�,1 · e�,2

)2 − 5e2
1

(
ee,1 · e�,2

)2
]
.

Recall that e� is a unit vector in the direction of the orbital angular momentum
and ee is a unit vector parallel to the Runge–Lenz vector, pointing toward orbital
periapsis; the subscripts 1 and 2 refer to the inner and outer “binaries.”

The doubly averaged Hp is independent of ω2, the argument of periapsis of the
outer orbit. Since dL2/dt = −∂H/∂ω2, this means that the eccentricity of the
outer orbit is constant. Remarkably, this is true regardless of the eccentricity e1 of
the inner orbit—in spite of the fact that an eccentric inner orbit produces a nonax-
isymmetric force on the outer orbit! Not surprisingly, the constancy of e2 does not
hold at the next higher (octopole) order of expansion unless e1 = 0.

While the motion corresponding to (4.311) is integrable, the solutions are com-
plicated, and it is common to consider two limiting cases. Setting m1  m2 gives
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the inner restricted problem;16 settingm2  m1 gives the outer restricted prob-
lem. The inner restricted problem has received by far the most attention from ce-
lestial mechanicians; it applies, for instance, to the motion of an artificial satellite
that is perturbed by the Moon, or to an asteroid perturbed by Jupiter. In the context
of galactic nuclei, the inner restricted problem applies, for instance, to a star that
orbits about an SBH while being perturbed by an IBH orbiting farther out.

4.8.2 The inner restricted problem

The inner restricted problem is associated with the names M. L. Lidov [321] and
Y. Kozai [299], who first established the existence of solutions in which conserva-
tion of Lz (in the quadrupolar approximation) allows the inner body to exchange
eccentricity with inclination:(

1 − e2
1

)1/2
cos i = constant (4.312)

with e1 → 1 if the “initial” inclination is favorable. This is the Lidov–Kozai mech-
anism.17 In the context of triple SBHs, the Lidov–Kozai mechanism is important
because it can lead to greatly reduced timescales for gravitational-wave coalescence
of the inner binary.

Setting m1 = 0, the doubly averaged perturbing function (per unit of m1)
becomes [253]

Hp = Gm2

8(1 − e2
2)

3/2

a2

a3
2

[−2 − 3e2 + 3 sin2 i
(
5e2 sin2 ω + 1 − e2

)]
. (4.313)

Here, the variables (a, e, ω, e) lacking subscripts refer to the inner orbit, and the
inclination is defined with respect to the outer orbital plane, which is fixed in this
limit.

We saw a very similar Hamiltonian in section 4.4.2, in our discussion of motion
in an axisymmetric star cluster around an SBH. As in that case, we can define a

dimensionless, averaged Hamiltonian as H = Hp/(ν0I ), where I = √
GMa and

a natural choice for ν0 is

ν−1
0 ≡ TKozai =

√
GM

Gm2

a3
2

a3/2

(
1 − e2

2

)3/2 = 1

2π

M

m2

P 2
2

P

(
1 − e2

2

)3/2
. (4.314)

Thus

H = 1

8

[−5 + 3�2 + 3 sin2 i
(
�2 + 5e2 sin2 ω

)]
. (4.315)

As before, � ≡ L/I = (1−e2)1/2 is the dimensionless angular momentum variable
and cos i = �z/�. The equations of motion are

dω

dτ
= ∂H

∂�
= 3

4�

[
2�2 + 5 sin2 ω

(
e2 − sin2 i

)]
, (4.316a)

16“Restricted” here refers to the fact that one of the masses is negligible.
17Commonly attributed just to Y. Kozai.
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Figure 4.21 Lidov–Kozai oscillations of the inner binary (M,m1) in the inner restricted hi-
erarchical three-body problem (m1  m2). (a) Motion for �z = 0.1. These are
solutions to the equations of motion (4.316), with no relativistic corrections.
The fixed-point orbit that is the “generator” of the librating orbits is indicated
by the dot. (b) Motion for �z = 0.1 and κ = 0.5, where κ is defined in equa-
tion (4.334) and measures the strength of the relativistic term in the equation
of motion (4.333). (c) Motion for �z = 0.1 and κ = κmax, the maximum value
of κ that allows librating solutions for this value of �z (equation 4.335). In this
case, relativistic precession is so rapid that the eccentricity of the inner binary
is hardly affected by torques from m2.

d�

dτ
= −∂H

∂ω
= −15

8
e2 sin2 i sin(2ω), (4.316b)

d�

dτ
= −∂H

∂�z
= 3

4

cos i

�

(
�2 + 5e2 sin2 ω

)
, (4.316c)

d�z

dτ
= 0. (4.316d)

The last of these is equivalent to equation (4.312). In addition to �z , there is a
second conserved quantity, H . Using the constancy of �2

z = (1 − e2) cos2 i, the
second conserved quantity can also be written as

Q = e2 (5 sin2i sin2ω − 2
)
, (4.317)

which for a given �z differs from H only by a constant.
As in the case of the axisymmetric star cluster, we can solve H = H(�, ω)

given �z to find � = �(H,ω), substitute the result into the right-hand side of equa-
tion (4.316a), and integrate to find ω(τ). Inserting the result into equation (4.316b)
and integrating then yields �(τ ), and �(τ) follows from equation (4.316c).
Figure 4.21a shows numerical solutions for �z = 0.1.
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Just as in the axisymmetric problem discussed earlier, there are two classes of
solution, corresponding to motion that circulates in ω (0 ≤ ω ≤ 2π ), or that librates
over a limited range in ω. Librating solutions correspond to the “saucer” orbits
in the axisymmetric problem. Libration requires the existence of a fixed point, at
ω = ±π/2, where

�2 = �2
fp =

√
5

3
�z, cos2 i = cos2 ifp =

√
3

5
�z. (4.318)

Fixed points only exist for �z <
√

3/5 ≈ 0.775; at the maximum allowed �z , the
fixed-point inclination is cos i = √

3/5, that is, i = (39.23◦, 140.8◦). If �z <
√

3/5,
there will be a separatrix dividing the two sorts of motion. Figure 4.21 shows that
the separatrix passes through e = 0 when ω = 0, implying

Hsep = 1

8

(
1 − 3�2

z

)
. (4.319)

Along the separatrix, cos i varies between

�z ≤ cos i ≤
√

3

5
(4.320)

and the angular momentum varies between

5

3
�2
z ≤ �2 ≤ 1. (4.321)

For high “initial” inclinations, the eccentricity attains values close to 1 as the orbit
tilts down toward the plane of the outer binary. Remarkably, the degree of possible
variation in � is independent of the masses involved, which only set the timescale
of the oscillations.

We can obtain an estimate of that timescale by considering motion near the fixed
points. Linearizing the equations of motion about (� = �fp, ω = π/2) yields

dω

dτ
= −9

(
�− �fp

)
, (4.322a)

d�

dτ
= 1

4

[
15 − 3�2

fp

(
8 − 3�2

fp

)]
(ω − π/2) (4.322b)

with (dimensionless) period

4π

9
e−1

fp

(
5

3
− �2

fp

)−1/2

. (4.323)

Recalling that the unit of time is given by equation (4.314), the (dimensional) period
near the fixed point becomes

Tfp = 4π

9

√
3

5

[(√
5

3
− �z

)(√
3

5
− �z

)]−1/2

TKozai, (4.324)

where �2
fp has been replaced by

√
5/3�z . For �z = 0, the numerical factor mul-

tiplying TKozai is 1.082. When �z = √
3/5, the fixed point is coincident with the
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separatrix and the period diverges. For intermediate values of �z , the period near
the fixed point lies between these extremes.

It turns out that the period of librating orbits can be expressed simply in terms of
special functions, even for orbits that do not lie near the fixed point [544, 287]. The
period depends on �z and on a second parameter that characterizes the amplitude
of the oscillations. It is convenient to take as that second parameter the minimum
or maximum value of the angular momentum, �±, reached during the cycle. These
are related by

�−�+ = �2
fp (4.325)

(as in equation 4.113). Let z1 = 1 − �2
−, z2 = 1 − �2

+, and

z3 = −3

2

(
1 − �2

±
) (

1 − 5

3

�2
z

�2±

)
(4.326)

with z3 < 0 < z2 < z1. Then

T = 8

3
√

6

K(k2)√
z1 − z3

TKozai, (4.327)

where

k2 = z1 − z2

z1 − z3
(4.328)

and K(k2) is the complete elliptic integral of the first kind with modulus k. For
motion near the fixed point, K ≈ π/2 and equation (4.324) is recovered. The time
dependence of (ω, �,�), all of which vary with period T , can likewise be expressed
in terms of special functions [544, 287].

In the case of zero inclination, sin i = 0, equations (4.316) predict that the eccen-
tricity is constant, and conservation of �z then implies that the motion is restricted
to the i = 0 plane. This result seems counterintuitive, since two coplanar, eccentric
orbits will clearly exert torques on one another! The reason for this nonphysical
result is the quadrupolar approximation, which implies an effective potential that
is axisymmetric, even when the orbits involved are eccentric. Clearly in this case,
we need to take the expansion in equation (4.308) to one higher (octopole) order.
If we do so, then average the perturbing function over the unperturbed motion, and
define a dimensionless Hamiltonian as in equation (4.314), we find [313]

H = 1

8

[
−5 + 3�2 + 15

8

a

a2

ee2

(1 − e2
2)

(
7 − 3�2) cos (ω − ω2)

]
. (4.329)

Ignoring changes in the outer binary, appropriate if m2 � m, the equations of
motion of the inner binary are

dω

dτ
= ∂H

∂�
= 3

4
�− C

8

�

e

(
13 − 9�2

)
cosω, (4.330a)

d�

dτ
= −∂H

∂ω
= −C

8
e
(
7 − 3�2

)
sinω, (4.330b)

where ω2 has been set to 0 and

C = 15

8

a

a2

e2

(1 − e2
2)
. (4.331)
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The second of these equations states the reasonable result that the torque acting on
the inner binary varies as the sine of the angle between it and the perturbing (outer)
orbit. Note also that the torque depends linearly on both eccentricities and tends to
0 if either e or e2 is 0.

These results suggest that for eccentric, and/or nearly coplanar, orbits, the
quadrupole approximation can give misleading results. Indeed, direct numerical
integration of the three-body equations of motion reveals that qualitatively—and in
some cases, strikingly—different behavior can appear if the dominant binary is suf-
ficiently eccentric; for instance, orbits can “flip,” changing the sign of their angular
momentum [367]. Some examples of motion in this “eccentric Kozai problem” are
presented in section 8.6.4.

We also expect the model presented so far to break down if the inner binary is
so tight that relativistic precession begins to be important [243]. Roughly speaking,
this will be the case when the Kozai period, equation (4.314), is longer than the
time required for ω of the inner binary to advance by 2π due to relativity. Using
equation (4.205), this condition is

(
1 − e2

) a
rg
<∼

3

2π

M•
m2

a3
2

a3

(
1 − e2

2

)3/2
, (4.332)

where rg ≡ GM•/c2 is the gravitational radius of the dominant SBH. As in sec-
tion 4.7, we can include the lowest-order (1PN) effects of relativity by adding a
term ω̇GR, the orbit-averaged rate of periapsis advance, to the orbit-averaged equa-
tion of motion for ω. In terms of the dimensionless time τ = ν0t , the result is
[50]

dω

dτ
= 3

4�

[
2�2 + 5 sin2 ω

(
e2 − sin2 i

)] + κ

�2
, (4.333)

where

κ ≡ 3
M

m2

rga
3
2

a4

(
1 − e2

2

)3/2
(4.334a)

≈ 0.3

(
M

10m2

)(
a

102rg

)−1 (a2

a

)3 (
1 − e2

2

)3/2
. (4.334b)

Note that the motion remains regular. Figure 4.21 shows how increasing κ , at fixed
�z , causes the region associated with libration to shrink, until it disappears at

κ = κmax = 3

4

(
3 − 5�2

z

) (
�z ≤

√
3/5

)
. (4.335)

As κ is increased above κmax, the variations in eccentricity over one cycle de-
crease. For sufficiently large κ , the motion consists of precession in ω at a nearly
constant (orbit-averaged) rate ω̇GR ≈ κ/〈�2〉, with small-amplitude variations in
eccentricity:

ω(τ)≈ω0 + ω̇GRt, (4.336a)

�(τ )≈ 15

8κ

(
1 − 〈�2〉) (〈�2〉 − �2

z

)
cos [2 (ω0 + ω̇GRτ)] . (4.336b)
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4.8.3 The outer restricted problem

In the opposite limit ofm2  m1, the doubly averaged perturbing function becomes
[156]

Hp = − 3

16

GMm1

M +m1

a2

a3
2

1

(1 − e2
2)

3/2

× [
2 cos2 i2 − e2 sin2 i2 (3 − 5 cos 2�2)

]
. (4.337)

Once again, we define a dimensionless averaged Hamiltonian as H = Hp/(ν0I ),
now setting I = √

G(M +m1)a2 and

ν−1
0 ≡ Touter = [G(M +m1)]

3/2

G2Mm1

a
7/2
2

a2

(
1 − e2

2

)2
. (4.338)

The result is

H = −�2

4

[
2 cos2 i2 − e2 sin2 i2 (3 − 5 cos 2�2)

]
. (4.339)

Since ω2 does not appear in H , the conjugate momentum �2 is constant: the eccen-
tricity of the outer binary does not change (in the quadrupole approximation). How-
ever, its orientation does evolve, due to changes in each of the elements (ω,�, �z).

Consider first the case of a circular inner binary, e = 0. Then

H = −1

2
�2 cos2 i2. (4.340)

The inclination is fixed, and the only motion consists of a uniform precession of
the line of nodes:

d�2

dt
= − 1

T0

cos i2√
1 − e2

2

. (4.341)

If the inner binary is eccentric, the equations of motion of the outer binary
are more complicated. Those equations are greatly simplified if expressed in terms
of the vectorial elements. In particular, identify the principal plane with the (fixed)
plane of the inner orbit. Then the changes in the direction of the outer orbit’s angular
momentum can be expressed in terms of the components of the unit
vector e�:

x≡ e� · ex = sin i2 sin�2,

y≡ e� · ey = − sin i2 cos�2,

z≡ e� · ez = cos i2, (4.342)

satisfying x2 + y2 + z2 = 1. Using these variables, H can be written

H = −1

2

[
z2 − e2

(
4x2 − y2

)]
(4.343)
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and −(1/2) ≤ H ≤ 2e2. The equations of motion for (x, y, z) can be found by the
chain rule; the results are

ẋ= (
1 − e2

)
yx,

ẏ= − (
1 + 4e2

)
xz,

ż= 5e2xy. (4.344)

The region accessible to the motion can be found by writing the two equations(
1 + 4e2

)
x2 + (

1 − e2
)
y2 = 1 − h ≥ 0, (4.345a)

x2 + y2 + z2 = 1. (4.345b)

The first of these equations is just the energy integral after expressing z2 in terms
of x2 and y2, and h ≡ −2H . The tip of the angular momentum vector moves
along the intersection of these two surfaces: the first is an elliptic cylinder and
the second is a sphere. There are two distinct kinds of trajectory [156]. On the
one hand, motion can consist of closed trajectories around one of the poles of the
sphere, (x, y, z) = (0, 0,±1). The angular momentum precesses about the angular
momentum of the binary with an inclination that is always less than, or always
greater than, 90◦. On the other hand, the angular momentum vector can circulate
about (x, y, z) = (±1, 0, 0), corresponding to precession about the periapsis of the
inner binary or its opposite.

The period is [156]

T = 16

3

K(κ2)√
h+ 4e2

Touter, (4.346)

where

Touter = 1

2π

(M +m)2

M +m

P
7/3
2

P 4/3

(
1 − e2

2

)2

√
1 − e2

; (4.347)

as before, variables lacking subscripts refer to the inner binary. The argument of
the elliptic integral is now

κ2 = 5e2

1 − e2

1 − h

h+ 4e2
. (4.348)

If κ2 < 1 (h > e2), motion is of the first kind defined above, that is, the angular mo-
mentum precesses about that of the inner binary; in the opposite case, the angular
momentum precesses about the Runge–Lenz vector.

4.9 STELLAR MOTIONS AT THE CENTER OF THE MILKY WAY

A remarkable cluster of about 20 bright stars—the so-called S-stars18—is observed
in the central arcsecond (roughly 0.05 pc) of the Milky Way, centered on Sgr A*,
the presumed location of the SBH [300]. These appear to be main-sequence stars,
mostly of spectral type B [189, 137]; such stars would have masses in the range

18Apparently, “S” stands simply for “(infrared) source” [127].
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3–20M� and main-sequence lifetimes from 10–100 Myr, implying that the S-stars
are quite young, astronomically speaking. The S-stars are not the only population of
bright, young stars found within the influence radius of the SBH: there are also two
partially overlapping disklike structures consisting mostly of blue supergiant stars,
with ages of 10 Myr or less, extending from ∼ 0.05 to ∼ 0.4 pc [183, 415], as well
as a more uniformly distributed population of main-sequence B stars. The prove-
nance of these young populations—the so-called paradox of youth at the Galactic
center—is an important outstanding problem.

Whatever their origin, the S-stars have played a crucial role in constraining the
mass of the central dark object. Their periods,

P = 2πa3/2

√
GM•

≈ 1.48

(
M•

4 × 106M�

)−1/2 (
a

mpc

)3/2

yr, (4.349)

(mpc ≡ milliparsec) are measured in years, and several of the S-stars have com-
pleted a significant fraction of one full orbit since astrometric monitoring began
around 1992. The brightest S-star, called S2, also happens to have the shortest pe-
riod: just 15.8 yr. This star appears to be a normal, B0–B2.5 star with a mass that is
estimated between 15 and 20M� [340]. The astrometric data for S2, and the fitted
orbit, are shown in figure 4.22. All of the Keplerian elements are well determined
[191, 192]; the semimajor axis and eccentricity are

a = 5.03 ± 0.04 mpc, e = 0.883 ± 0.003 ; (4.350)

these numbers assumeM• = 4.3×106M�. Periapsis was reached in 2002; a radial
velocity of about 1600 km s−1, or ∼ 0.005c, was measured shortly after that time.

The orbital parameters of all the S-stars are listed in table 4.1. Unfortunately,
two similar, but slightly different, labeling conventions are in use for these stars.
A group centered in the Max-Planck-Institut für extraterrestrische Physik near Mu-
nich, Germany uses Sn, with n a numeral; we adopt that convention here. A group
centered in Los Angeles, California prefers S0-n. The following is a partial conver-
sion table.

MPE: S1 S2 S4 S8 S9 S11 S12 S13 S14
UCLA: S0-1 S0-2 S0-3 S0-4 S0-5 S0-9 S0-19 S0-20 S0-16

The fitted orbits are plotted, as they would be seen in projection on the plane of the
sky, in figure 4.23.

In fitting Keplerian orbits to the astrometric and radial velocity data, the mass,
position, distance, and velocity of the SBH are all free parameters. While combined
fits to all the S-star data can be and have been carried out [191, 193], it turns out
that essentially all the constraints on the SBH-related parameters come from just
one star: S2. The most recent study, which combines data from both groups, finds
[192]

M• = 4.30 ± 0.20|stat ± 0.30|sys × 106M�, (4.351a)

R0 = 8.28 ± 0.15|stat ± 0.29|sys kpc, (4.351b)

with R0 the distance to the SBH.
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Figure 4.22 Orbit of the star S2 (S0-2) at the center of the Milky Way [193]. The left panel
shows the apparent position on the plane of the sky during the time period 1992–
2010; the motion is clockwise on this plot, starting from near apoapsis. The
switch in 2002 from astrometry based on speckle interferometry to adaptive
objects is reflected in a sudden decrease in the size of the error bars. The ellipse
is from a Keplerian model in which the velocity of the central point mass and
its location were free parameters; because the best-fit velocity of the SBH is
not zero, the orbit does not close when it reaches apoapsis the second time. The
elongated dot near orbital periapsis is the fitted location of the SBH; its extent
and shape reflect the uncertainty in the fitted position. The right panel shows
measured radial velocities, compared with predictions from the orbital fit.

In addition to their usefulness in determining the mass and distance of Sgr A*,
the S-stars also hold the promise of revealing relativistic deviations from Keplerian
motion. Table 4.2 lists the penetration parameter, P , for each of the S-stars, as
defined in the introduction to this chapter:

P ≡ (1 − e2)
ac2

GM•
= (1 + e)rp

rg
, (4.352)

where rp = (1 − e)a is the (Keplerian) distance of closest approach and rg ≡
GM•/c2. Using the results obtained in this chapter, we can express the lowest-
order relativistic changes in the orbital elements in terms of P as follows: Let �ω
and �� be the advance in one period, due to the lowest-order relativistic correc-
tions to the equations of motion, of the argument of periapsis and the nodal angle,
respectively.
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Figure 4.23 Projection onto the plane of the sky of the orbits of the S-stars [193]. Shown
here are all the orbits for which the astrometric data were deemed good enough
to carry out a fit.

Then

�ω=AS − 3AJ cos i − 1

2
AQ

(
1 − 5 cos2 i

)
, (4.353a)

��=AJ − AQ cos i, (4.353b)

where

AS = 6πP−1, AJ = 4πχP−3/2, AQ = −3πχ2P−2. (4.354)

The subscripts S, J and Q refer to the geodetic (Schwarzschild), frame-dragging
(Kerr or Lense–Thirring), and quadrupole contributions, respectively. In
equations (4.353), the inclination i is defined with respect to the equatorial plane
of the SBH. Since P > 1 and χ < 1, these expressions show clearly the rank-
ing of the various contributions to the orbital precession. In the case of ω, geo-
detic precession always dominates, followed by Lense–Thirring precession and
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Table 4.2 Relativistic parameters of the S-stars, computed from the orbital elements in
table 4.1.P is the penetration parameter, equation (4.352).AS ,AJ , andAQ are the
angular precessions per orbital period due to the Schwarzschild, Kerr and quadru-
pole contributions to the metric, equation (4.354). The values of AJ and AQ as-
sume χ = 1, that is, maximal spin of the SBH; they scale, respectively, as χ
and χ 2.

Star P AS(
′) AJ (

′′) AQ(′′)
S1 8.27 × 104 0.784 0.109 2.84 × 10−4

S2 5.99 × 103 10.82 5.590 5.40 × 10−2

S4 5.37 × 104 1.206 0.208 6.73 × 10−4

S5 1.57 × 104 4.125 1.317 7.88 × 10−3

S6 2.02 × 104 3.202 0.900 4.75 × 10−3

S8 2.85 × 104 2.275 0.539 2.40 × 10−3

S9 2.02 × 104 3.208 0.903 4.76 × 10−3

S12 1.26 × 104 5.129 1.825 1.22 × 10−2

S13 4.87 × 104 1.330 0.241 8.19 × 10−4

S14 4.01 × 103 16.14 10.19 1.21 × 10−1

S17 5.83 × 104 1.113 0.184 5.73 × 10−4

S18 2.43 × 104 2.672 0.686 3.31 × 10−3

S19 4.96 × 104 1.308 0.235 7.92 × 10−4

S21 1.77 × 104 3.657 1.099 6.19 × 10−3

S24 2.96 × 104 2.186 0.508 2.21 × 10−3

S27 9.18 × 103 7.056 2.945 2.03 × 10−2

S29 1.38 × 104 4.698 1.600 1.02 × 10−2

S31 8.21 × 103 7.891 3.483 2.88 × 10−2

S33 4.12 × 104 1.572 0.310 1.14 × 10−3

S38 1.07 × 104 6.052 2.340 1.70 × 10−2

S66 2.53 × 105 0.256 0.020 3.04 × 10−5

S67 2.04 × 105 0.317 0.028 4.65 × 10−5

S71 6.59 × 104 0.983 0.153 4.48 × 10−4

S83 3.42 × 105 0.190 0.013 1.67 × 10−5

S87 2.23 × 105 0.290 0.025 3.90 × 10−5

precession due to the quadrupole moment; in the case of�, Lense–Thirring preces-
sion dominates quadrupolar precession. In table 4.2, the values given for AJ and
AQ assume χ = 1, that is, maximal spin. Currently, the constraints on the spin
of the Milky Way SBH are weak, but astrophysicists often assume that SBHs are
rapidly spinning.

Not surprisingly, some of the largest relativistic deviations are predicted for S2.
The predicted amplitude of advance of the periapsis is about 11′ per revolution.
By comparison, table 4.1 shows that the current measurement uncertainty in ω,
the argument of periapsis, is just under one degree—roughly five times larger.
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Fits to the astrometric data for S2 that include the possibility of relativistic pre-
cession find no significant effect [193].

Even if a significant precession were detected, it would not necessarily be due
to relativity. There is also likely to be a purely Newtonian contribution due to
the distributed mass (stars, stellar remnants) within S2’s orbit, as discussed in
section 4.4.1. For the Newtonian contribution to the precession, equation (4.88)
gives

�ω = −2πGM(e, γ )
√

1 − e2
M�(r < a)

M•
. (4.355)

(Recall from section 4.4.1 that the distributed mass density is assumed here to fol-
low ρ ∝ r−γ ; M�(< a) is the distributed mass within a sphere of radius r = a;
andGM is defined in equation 4.89.) The minus sign means that this contribution to
the precession is retrograde—opposite in sense to the relativistic (geodetic) preces-
sion. Unfortunately, essentially nothing is known about the amount or distribution
of mass at these distances from the SBH, and the best we can do for S2 is to write

�ω ≈ −23′.4GM
M�(r < 5.0 mpc)

104M�
, (4.356)

where GM = (1.5, 1.0, 0.68) for γ = (0, 1, 2) and e = 0.883. Apparently, if the
distributed mass within S2’s orbit is ∼ 1% of the mass of the SBH, the shift in ω
during one orbit is roughly one degree—substantially greater than the relativistic
precession. Turning the problem around, and placing limits on the amount of dis-
tributed mass from the measured positions and velocities, one finds thatM�(r < a)

must be less than about 104M� [193].
The prospects for detecting the effects of relativity are not as hopeless as this

comparison might suggest. As shown in figure 4.11, almost all of the relativistic
precession occurs near periapsis, and observations made during the next periapsis
passage (in 2018) might allow the Newtonian and relativistic contributions to be
sorted out, particularly if accurate radial velocities are available [584, 6].

If the stellar cluster around Sgr A* is spherically symmetric, the Newtonian con-
tribution to the precession leaves the plane of a star’s orbit unchanged. The same is
true of the relativistic precession if the SBH is not rotating. But orbits around a ro-
tating SBH also experience precession of the nodal angle� (defined with respect to
a reference plane that is perpendicular to the SBH’s spin axis). One way to separate
relativistic from Newtonian effects might be to find stars orbiting close enough to
Sgr A* that the out-of-plane precession due to the SBH’s spin is measurable [561].

Figure 4.24 plots the timescales associated with precession of orbital planes due
to frame dragging (tJ ) and due to the SBH’s quadrupole moment (tQ), where

tJ ≡
[
AJ (a, e)

πP (a)

]−1

= P

4χ

[
c2a(1 − e2)

GM•

]3/2

≈ 1.39 × 105
(
1 − e2

)3/2
χ−1a3

mpc yr, (4.357a)
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Figure 4.24 Timescales associated with precession of orbital planes about the Milky Way
SBH [358]. The quantities tJ and tQ are the precession timescales due to frame
dragging and to the quadrupole torque from a maximally spinning (χ = 1)
SBH. Line thickness denotes orbital eccentricity, from e = 0.99 (thickest) to
e = 0.9 and e = 0.5 (thinnest). The quantity tN is an estimate of the timescale
for torquing of orbital planes due to Newtonian perturbations from other stars,
assumed to have one solar mass (equation 4.362a). The line thickness denotes
the total distributed mass within 1 mpc from the SBH, from 103 M� (thickest) to
1M� (thinnest), assuming that density falls off as r−1. The shaded region shows
the range of interesting time intervals for observation, 1 yr ≤ �t ≤ 10 yr.

tQ≡
[
AQ(a, e)
πP (a)

]−1

= P

3χ2

[
c2a(1 − e2)

GM•

]2

≈ 1.34 × 107
(
1 − e2

)2
χ−2a7/2

mpc yr, (4.357b)
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as functions of a and e for stars at the Galactic center, assuming a maximally spin-
ning SBH (χ = 1); ampc is the semimajor axis in units of milliparsecs. Observing
changes of ∼ π in the nodal angle in a time less than 10 yr would require finding
stars that orbit well inside 1 mpc (recall that a ≈ 5 mpc for S2) and, if possible, that
have high eccentricities.

Determining the orbits of such stars allows one to do more than detect relativistic
effects. In principle, it becomes possible to test theories of gravity [567]. Accord-
ing to uniqueness, or no-hair theorems, of general relativity, an electrically neutral
black hole is completely characterized by its mass M and its spin angular momen-
tum S. As a consequence, all the multipole moments of its external space-time are
functions of M and S. This is true, in particular, of the quadrupole momentQ, and
equation (4.353) makes a unique prediction about the relation between the nodal
precession amplitudes due to quadrupole torques and frame dragging:

AQ
AJ

= 3

4

χ

P1/2
. (4.358)

The orbital angular momentum vector of a star is predicted to precess according to

dL

dt
=P−1

(
AJ − AQ cos i

)
(S × L) (4.359a)

= 4πP−1P−3/2

[
1 + 3

4
P−1/2χ · L

L

]
(χ × L) , (4.359b)

where i is the inclination with respect to the SBH’s equatorial plane. Keplerian fits
to the astrometric data for a single star yield P,P , and L for that star. Measurement
of the change in the direction of L for two stars—that is, four numbers—yields
enough information to determine χ (three numbers), and, independently, an esti-
mate of the ratio of the first (frame-dragging) and second (quadrupole) terms in the
square brackets. If this ratio does not have the “correct” value, a violation of the
uniqueness theorems has been detected [567].

Here again, a caveat is in order. If the distributed mass within the observed orbits
is spherically symmetric, there will be no Newtonian contribution to the out-of-
plane precession. But this assumption is certain to be violated at some level: either
because the nucleus is inherently aspherical, or due simply to the fact that the num-
ber of stars within the orbit at any given time is finite. Since we are considering
orbits within a milliparsec or so from the SBH, the number of stars at smaller radii
could be small.

To estimate the timescale for the orientation of an orbit to change due to these
Newtonian perturbations, we can use results from section 4.4 on motion in non-
spherical nuclei. For instance, for the orbit-averaged rate of change of the nodal
angle �, equations (4.108), (4.102) and (4.104) give

d�

dt
= −2ν0

ρt

ρ
× f (e, i, ω), (4.360)

where ν0 ≈ νrM�(r < a)/M•, ρt/ρ is the fractional amplitude of the nonspherical
part of the density, and the function f depends on the orbital elements. Ignoring f ,
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Figure 4.25 Evolution of orbital planes in a cluster of eight stars orbiting about the Galactic
center SBH for an elapsed time of 2 × 106 yr [358]. The SBH rotates about
the z-axis with maximal spin. Four different values were assumed for the stellar
masses m�, as indicated. Stars were placed initially on orbits with semimajor
axis a = 2 mpc and eccentricity 0.5 and with random orientations. In a nucleus
containing stars of a given mass, the transition between motion like that in the
first and last panels occurs at the “rotational influence radius” defined in section
5.7.1.

we can rewrite this approximately as

d�

dt
≈ P−1M�

M•

ρ

ρt
. (4.361)

Suppose we ascribe the nonspherical part of the potential to the finite number,N , of
stars at radii r <∼ a. We are concerned here with timescales that are long compared
with orbital periods, and so these “root-N fluctuations” are due to the fact that the
orbit-averaged density of the N stars is not precisely spherical. Then we can write
ρt/ρ ∼ N−1/2, and the timescale for changes in the orbit’s plane due to Newtonian
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perturbations becomes

tN ≈ P√
N

M•
m�

(4.362a)

≈6 × 105

(
M•

4 × 106M�

)1/2 (
N

102

)−1/2 (
m�

1M�

)−1

yr, (4.362b)

where m� = M�/N .19 This estimate, which is plotted in figure 4.24, can only be
considered very approximate; among other things, it ignores any dependence on
orbital eccentricity.20 Nevertheless, figure 4.24 suggests that Newtonian torquing
of orbital planes at the Galactic center is likely to overwhelm relativistic changes
beyond roughly a milliparsec from Sgr A* [358].

Figure 4.25 shows how the orbital planes of stars evolve in response to the
combined effects of frame dragging, the SBH’s quadrupole moment, and pertur-
bations from a small number of other stars. As the magnitude of the stellar per-
turbations increases, the orderly precession about the SBH spin axis is converted
into a more chaotic evolution. A comprehensive N -body study [358] suggests thet
detection of frame-dragging precession may be feasible after a few years’ monitor-
ing with the next generation of astrometric telescopes of stars in the radial range
0.2 mpc <∼ a <∼ 1 mpc; at smaller radii, the number of detectable stars is likely to
be too small, while at larger radii, Newtonian

√
N perturbations become too large.

Quadrupole-induced precession stands out from stellar perturbations only in a nar-
row class of assumed models for the nuclear cluster, and even then, only at radii
well inside 1 mpc.

19In chapter 5, changes in orbital planes due to torquing byN1/2 fluctuations in the background potential
will be called “coherent resonant relaxation.”

20A more precise criterion is given in section 5.7.1.



Chapter Five

Theory of Gravitational Encounters

5.1 BASIC CONCEPTS AND TIME OF RELAXATION

It is convenient to divide the forces acting on a star into two kinds. The gravitational
potential of the galaxy as a whole generates a force that can be approximated as a
smoothly varying function of position and (if need be) of time. This smooth force
determines the orbit of the star, as discussed in chapters 3 and 4. Each star is also
influenced by other forces arising from the fact that the mass making up a galaxy
is discrete: it is composed of individual stars and stellar remnants, as well as more
massive objects like star clusters and giant molecular clouds. As a star moves along
its orbit, it experiences fluctuations in the total force as its distance from these
objects changes—due both to the star’s own motion, and to the motion of the other
bodies. These gravitational encounters (so called to distinguish them from the
much rarer physical collisions, in which two bodies collide) alter the kinetic energy
and the direction of motion of each star, causing its orbit to deviate gradually from
the zero-order solutions described in chapters 3 and 4. The relaxation time, Tr , can
be defined as the time over which the cumulative effect of gravitational encounters
becomes significant for a typical star.

A more precise definition of the relaxation time is possible in terms of the in-
tegrals of motion, the quantities that are conserved in the unperturbed motion. For
instance, if the smooth potential is time independent, the energy E is conserved for
each orbit,1 and the relaxation time can be defined as the mean time forE to change
by of order itself as a result of encounters. If �(x, t) is spherically symmetric, a
second relaxation time can be defined in terms of changes in L; and so forth.

These different ways of defining Tr can sometimes yield very different estimates
for the time of relaxation. For instance, in the case of stars orbiting near the center
of a galaxy containing a supermassive black hole (SBH), it turns out that changes
in L due to gravitational encounters can occur much more rapidly than changes in
E; this is a consequence of the fact that the unperturbed orbits are nearly Keplerian
and the encounters are correlated over time.

But before dealing with such subtleties, it is useful to consider the simplest pos-
sible case: the effect of random encounters on a star that is following a rectilinear,
unaccelerated orbit in an infinite, homogeneous galaxy.

Since we will be satisfied here with an approximate calculation of Tr (more care-
ful treatments will follow later in this chapter), it is sufficient to consider encounters

1Unless otherwise noted, the symbolsE andL in this chapter refer to the energy and angular momentum
per unit mass.
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Figure 5.1 The geometry of an encounter between two stars of equal mass, in the limit of
large impact parameter.

with a single velocity V , defined as the relative speed between the test and perturb-
ing stars at infinity. We also assume for the moment that the two stars have equal
masses, m, and that their impact parameter p is so large that the change in veloc-
ity due to the encounter is slight. Figure 5.1 illustrates the geometry of such an
encounter in the center-of-mass frame.

When star 1 is at point S, at a distance r/2 from the center of mass and a distance
r from the second star, the acceleration along the separation vector OS is

Gm

r2
= Gm

p2
cos2 θ. (5.1)

The component of this acceleration along the fixed direction perpendicular to the
trajectory is

Gm

p2
cos3 θ. (5.2)

The total change in velocity of star 1 in this direction is then

�v⊥ =
∫ +∞

−∞

Gm cos3 θ

p2
dt = Gm

pV

∫ π/2

−π/2
cos θ dθ = 2Gm

pV
. (5.3)

We are interested in the cumulative effect of many encounters. If the encounters
are random, the expectation value of�v⊥ will tend to zero. However, if we imagine
a set of stars, each of which experiences its own encounters, the distribution of
their velocities will gradually broaden over time, even if the mean velocity remains
unchanged. This argument suggests that we look at the mean value of the squared
velocity change of our single star.

Accordingly, define 〈(�v)2〉 as the mean value of (�v⊥)2 per unit interval of
time. Invoking the assumption of an infinite homogeneous medium, with n the
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number density of stars, we can compute 〈(�v)2〉 by multiplying (�v⊥)2 by
2πpnV dp and integrating over p. The result is

〈(�v)2〉 = 8πG2m2n

V

∫
dp

p
= 8πG2m2n

V
ln

(
pmax

pmin

)
. (5.4)

A problem is now apparent: the integral over impact parameters diverges, both at
small and large p!

The divergence at small p is not necessarily worrisome, since our expression for
�v⊥ assumed that p was large. Encounters with small p are known to result in finite
velocity changes, and their number is small; hence we expect this divergence to
disappear in a more exact treatment. For now, we can use equation (5.3) to identify
the impact parameter p0 corresponding to �v⊥ ≈ V , that is,

p0 = 2Gm

V 2
, (5.5)

and adopt this as an effective lower limit for p in equation (5.4). Encounters with
p ≤ p0 will be called close encounters, and those with p > p0 called distant
encounters. For conditions characteristic of galactic nuclei,

p0 ≈ 9 × 10−7

(
m

M�

)(
V

102 km s−1

)−2

pc. (5.6)

If we assume that there is also an effective upper limit to the impact parameter,
p = pmax, we can write equation (5.4) as:

〈(�v)2〉 = 8πG2mρ

V
ln

(
pmax

p0

)
, (5.7)

where ρ = nm is the mass density of perturbers.
What should we choose for pmax? An absolute upper limit to p is set by the phys-

ical size of the stellar system. In the case of a galaxy, this argument suggests that
pmax <∼ 10 kpc and ln(pmax/p0) <∼ 20. But this is almost certainly an overestimate,
since real stellar systems are inhomogeneous; if we are interested in the relaxation
time near the center of a galaxy, the density of stars with large impact parameters
(i.e., at large distances) will be much lower than the local density and their contri-
bution to the velocity change will be much less than implied by equation (5.7) with
fixed ρ. A more reasonable guess for pmax in this case might be the linear scale over
which the stellar density changes by of order itself. Near the center of a galaxy like
the Milky Way, this length is of order one parsec, implying ln(pmax/p0) ≈ 10.

Whatever the proper definition of pmax, it is clear that pmax 	 p0, and hence
that distant encounters are responsible for the dominant contribution to 〈(�v)2〉.
Changes in velocity can therefore be assumed to result from the cumulative sum
of many, small velocity changes, rather than from the rare close encounters that
produce large �v’s.

It remains only to convert equation (5.7) into an estimate of the relaxation time
Tr . We can do this by setting

〈(�v)2〉 × Tr = V 2. (5.8)
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In other words, in a time Tr , the mean value of
∑
(�v⊥)2 is equal to V 2. The result

is

Tr = V 3

8πG2mρ ln�
, (5.9)

where ln� ≡ ln(pmax/p0), the Coulomb logarithm. Equation (5.9) is the same,
to within a factor of order unity, as the relaxation time defined earlier in this book
(equation 3.2), if V 2 is replaced by the mean square relative velocity between stars
having a Maxwellian velocity distribution.

5.2 DIFFUSION COEFFICIENTS

The quantity 〈(�v)2〉 defined above is an example of a diffusion coefficient. In
order to more completely describe the effect of gravitational encounters, we need
to define a number of additional diffusion coefficients, corresponding to the various
ways in which velocities can change.

Accordingly, let 〈�v〉 be the vector sum of the velocity changes�v experienced
by a test star per unit interval of time, in interactions with all the other stars (“field
stars”). If the components of v in some orthogonal coordinate system are vi , the
diffusion coefficient corresponding to the ith coordinate is 〈�vi〉. In the same way,
if we imagine summing�v�v over all encounters, we can derive the second-order
diffusion coefficients 〈�vi�vj 〉.

A complete description of the velocity changes would require an infinite set of
diffusion coefficients, extending to all orders in �v. In practice it is almost never
necessary to go beyond second order, for reasons that are set out in more detail
below.

We assume that the distribution of field-star velocities is isotropic in the frame in
which the galaxy is at rest. But a little thought makes it clear that velocity changes
of the test star might be different, on average, in directions parallel and perpen-
dicular to its instantaneous motion, since the field-star velocity distribution as seen
from a moving frame is not isotropic. In fact there are three independent diffusion
coefficients in this case. If the instantaneous velocity of the test star is taken to be
parallel to the x-axis, then 〈(�vx)2〉 can differ from 〈(�vy)2〉 and 〈(�vz)2〉, while
the latter two coefficients are equal due to symmetry. We write

〈(�v‖)2〉 = 〈(�vx)2〉 (5.10)

to describe the mean squared changes in the component of the velocity parallel to
the motion, and

〈(�v⊥)2〉 = 〈(�vy)2〉 + 〈(�vz)2〉 (5.11)

for the diffusion coefficient that describes changes perpendicular to the motion.
The only other diffusion coefficient that differs from zero is

〈�v‖〉 = 〈�vx〉. (5.12)

We anticipate a later result by calling 〈�v‖〉 the coefficient of dynamical fric-
tion: as its name suggests, this first-order coefficient describes a slowing down of
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Figure 5.2 A hyperbolic encounter, shown in a frame in which the test star is at rest.

the test particle. The second-order diffusion coefficients are sometimes referred to
collectively as coefficients of scattering.

5.2.1 Coefficient of dynamical friction

Consider an encounter between a test star of mass m and a field star of mass mf .
We assume that the two stars approach each other on an unbound orbit, with impact
parameter p (no longer assumed large) and relative velocity at infinity V . Figure 5.2
plots the relative orbit, the equations for which were presented in section 4.1 in
terms of E and L, the energy and angular momentum divided by the reduced mass.

It is useful to rewrite equations (4.28), (4.29) in terms of p and V using E =
V 2/2, L = pV :

1

r
= G(m+mf )

p2V 2
(1 + e cosφ) , (5.13a)

e2 = 1 + p2V 4

G2(m+mf )2
, (5.13b)

where φ = 0 corresponds to the point of closest approach. To derive the diffusion
coefficients, we require the vector change between the initial and final velocity of
the test star during the time that the relative velocity rotates through the angle χ ;
evidently the magnitude of the relative velocity, V , is unchanged by the encounter.
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When r is infinite, we see from figure 5.2 that φ = π ± ψ , and equation (5.13a)
implies cosφ = −1/e; using χ = π − 2ψ we find

sinχ = 2p/p0

1 + (p/p0)2
, cosχ = 1 − 2

1 + (p/p0)2
, (5.14)

where

p0 = G(mf +m)

V 2
. (5.15)

The factormf /(mf +m) converts the relative velocity to the velocity of the test star
in the center of mass frame, yielding for the changes in the test-star velocity

�v‖ = − mf

m+mf
V (1 − cosχ) = −2V

mf

m+mf

1

1 + (p/p0)2
,

(5.16a)

�v⊥ = mf

m+mf
V sinχ = 2V

mf

m+mf

p/p0

1 + (p/p0)2
; (5.16b)

these are the changes parallel, and perpendicular, to V , the initial relative velocity.
We are interested here in �v‖. In order to derive the coefficient of dynamical

friction, we need to sum the velocity changes, per unit interval of time, over all
impact parameters and over all values for the relative velocity at infinity. The first
operation proceeds as before: multiplying the velocity changes by 2πpnf V , with
V assumed fixed, and integrating over p yields

(�v‖) = −2πG2mf (mf +m)nf

V 2
ln
(
1 + p2

max/p
2
0

)
. (5.17)

The divergence at small p that appeared previously is no longer present due to our
proper treatment of close encounters. However, the integral dp still diverges at large
values of p, and so an upper limit pmax will still be required.

The final step is the integration over field-star velocities. The relative velocity is
V = v − vf , where v is the velocity of the test star. Since equation (5.17) gives the
velocity change in the direction of the initial relative motion, we must multiply it
by

V · v

V v
= v − vf x

V
(5.18)

to convert it into a velocity change in the direction of the test star’s motion, assumed
here to be along the x-axis. We then replace nf by

∫
f (vf )dvf , where f (vf ) is the

phase-space number density of field stars, and integrate over vf . We find for the
dynamical friction coefficient

〈(�v‖)〉 =
∫
f (vf ) (�v‖)

v − vf x

V
dvf (5.19)

=−2πG2(mf +m)mf

×
∫
f (vf )

v − vf x

V 3
ln

[
1 + p2

maxV
4

G2(mf +m)2

]
dvf .
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We now invoke our assumption that the field-star distribution is isotropic in ve-
locity space. Having made this assumption, there are various ways to simplify the
integral over velocities in equation (5.19). Here we follow Chandrasekhar [79] and
represent the velocity-space volume element in terms of vf and V , using

v − vf x = V 2 + v2 − v2
f

2v
.

The result is

〈(�v‖)〉 = −16π2G2(mf +m)mf

v2

∫ ∞

0
dvf v

2
f f (vf )H

(
v, vf , pmax

)
,

(5.20a)

H(v, vf , pmax) = 1

8vf

∫ v+vf

|v−vf |
dV

(
1 + v2 − v2

f

V 2

)
ln

[
1 + p2

maxV
4

G2(mf +m)2

]
.

(5.20b)

The integral that defines the weighting function H has an analytic solution which
the reader is invited to derive.2

The coefficient of dynamical friction is always negative: in other words, it de-
scribes a decrease in the test body’s velocity along the direction of its instantaneous
motion. This is a consequence of the fact that any deflection of the motion from its
otherwise linear path results in a decrease in v‖. Those same deflections can result
in an increase in the kinetic energy in directions perpendicular to the motion, as
reflected in the diffusion coefficients 〈(�v‖)2〉, 〈(�v⊥)2〉 (which we have yet to de-
rive). Furthermore, when the mass m of the test body greatly exceeds the mass of
a field star, equation (5.20) states that the deceleration is proportional to m. It will
turn out that the other diffusion coefficients do not have this property; thus the ef-
fect of encounters on a massive body is almost exclusively to slow down its motion.
This is the reason that 〈�v‖〉 is called the coefficient of “dynamical friction.”

In his 1943 paper [79], Chandrasekhar noticed a natural approximation that
greatly simplifies the expressions just derived. Suppose that one simply ignores
the velocity dependence of the logarithmic term in equation (5.20). Instead, write
this term as

ln

[
1 + p2

maxV
4

G2(mf +m)2

]
≡ 2 ln�, (5.21)

where ln�, the Coulomb logarithm (which we saw before, in a slightly different
form) is assumed constant. The weighting function then becomes simply

H =
{

ln� if v > vf ,

0 if v < vf
(5.22)

2The quantity H is related to the quantity J defined by Chandrasekhar in his 1943 paper [79] by H =
J/(8vf ).



220 CHAPTER 5

—stars whose velocity at infinity is greater than the test star’s velocity do not con-
tribute at all to the frictional force! The dynamical friction coefficient becomes

〈�v‖〉 = −16π2G2(mf +m)mf ln�

v2

∫ v

0
dvf v

2
f f (vf ) (5.23a)

= −4πG2(mf +m) ln�

v2
ρ
(
vf < v

)
, (5.23b)

where ρ
(
vf < v

)
is the mass density contributed by stars moving more slowly than

the test star.3

Equation (5.23) is very commonly used to define the coefficient of dynamical
friction [48]. We will follow that practice for the next few paragraphs, before re-
turning to the more exact form.

Suppose that f (vf ) is Maxwellian;4 that is,

f (vf ) = nf

(2πσ 2
f )

3/2
e−v

2
f /(2σ

2
f ) (5.24)

with σf the mean square velocity of the field stars in one direction. Writing x =
v/(

√
2σf ), equation (5.23) becomes

〈�v‖〉 = −
(

1 + m

mf

)
nf �

σ 2
f

G (x) , (5.25a)

G(x)= erf(x)− x erf ′(x)
2x2

. (5.25b)

Here

� ≡ 4πG2m2
f ln� (5.26)

and erf is the error function,

erf(x) ≡ 2√
π

∫ x

0
e−y

2
dy, (5.27)

with erf ′(x) ≡ (d/dx)erf(x).
The function G(x) has the following forms in the limits of large and small x:

G(x) =
{

2x
3
√
π

if x � 1,
1

2x2 if x 	 1.
(5.28)

Thus, the dynamical friction force increases linearly with the test body’s velocity
at low speeds (“Hooke’s law”) and declines as v−2 at large v. The peak value of G,
0.214, occurs for x = 1; in other words, the dynamical friction force is maximized
when v = √

2σf .
We can define the dynamical friction time as

Tdf ≡
∣∣∣∣ 〈�v‖〉
v

∣∣∣∣
−1

, (5.29)

3Note that vf is the velocity at infinity, in the frame in which the test star’s velocity is v. Stars with
vf < v may be moving faster than v as they approach the test body.
4As we saw in chapter 3, this is probably not a good approximation near an SBH.
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the time for v to decrease by of order itself. This time depends on v, except in the
limit that v is small. In that limit,

Tdf = 3

8

√
2

π

σ 3
f

G2ρm ln�
, (5.30)

where m 	 mf has been assumed. At higher test-body velocities, Tdf is increased
relative to this expression by the factor Q−1 where

Q(x)≡ 3
√
π

2x
G(x)

= 3

2x3

(∫ x

0
e−y

2
dy − xe−x

2

)
, x ≡ v/(

√
2σf ); (5.31)

Q → 1 for small x. Expressing Tdf in terms of Q, and in terms of physical scales
relevant to galactic nuclei, yields

Tdf ≈ 5 × 109

Q

×
(

σf

100 km s−1

)3(
ρ

105M� pc−3

)−1(
m

10M�

)−1( ln�

10

)−1

yr.

(5.32)

This expression implies, for instance, that a 10M� BH near the center of a galaxy
like the Milky Way would lose most of its kinetic energy over the age of the uni-
verse. As a result, it would spiral into the center—a process discussed in more detail
in chapters 7 and 8.

The simplicity of the dynamical friction coefficient that we have been using until
now, equation (5.23), is a consequence of the brute-force way in which the loga-
rithmic term was “taken out of the integral.” Unfortunately, there is a price to pay
for this brutality: we really have no idea how to define ln�. The definition given in
equation (5.21) includes the variable V , the relative velocity between test and field
stars. Somehow, we need to decide what number to associate with that V .

A myriad of different recipes have been proposed for doing this. Most authors
have accepted Chandrasekhar’s [79] suggested form:

� = pmaxv
2
rms

G(mf +m)
, (5.33)

where vrms = √
3σf , and recast the discussion in terms of the choice of pmax. In

a famous paper from 1942 [81], Chandrasekhar and von Neumann argued that the
effective limiting distance for encounters should be the interparticle distance. But
most subsequent authors (e.g., [88]) have advocated larger values for pmax: the half-
mass radius of the stellar system, the core radius (if there is a core), etc.

For instance, consider a test mass orbiting near the center of a galaxy that con-
tains an SBH, and assume m ≈ mf � M•. As discussed in chapter 2, many galax-
ies, including the Milky Way, are observed to contain cores with radii rc ≈ rh, with
the density falling off rapidly beyond r = rc. If the test mass is inside the core,
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a reasonable guess for pmax is ∼ rc ≈ rh. With this ansatz, equation (5.21) becomes

2 ln� ≈ ln

[
1 + r2

hV
4

G2(mf +m)2

]
≈ ln

[
1 + 1

4

M2
•

m2

V 4

σ 4

]
(5.34)

or, replacing V 2 again by 3σ 2,

ln� ≈ ln

(
3M•
2m

)
≈ lnNh, (5.35)

where Nh is the number of stars whose combined mass equals M•. For m ≈ M�
and M• ≈ 106M�, this prescription gives ln� ≈ 13, while for M• ≈ 109M�,
ln� ≈ 20. These values should be considered very approximate and subject to
verification by numerical simulation (section 5.2.3.3).

Given that there will always be some ambiguity in the choice of pmax, is there
anything to be gained by replacing the simple expression for 〈�v‖〉, equation (5.23),
by the more exact expression (5.20)? In fact, it is easy to think of circumstances
where “taking the logarithm out of the integrand” is unjustified. One example, con-
sidered later in this book (section 7.2), is a star orbiting near the center of a galaxy
containing an SBH and a low-density core. If the density profile inside the SBH
sphere of influence is flat, ρ ∼ r−1/2, there will be no stars moving more slowly
than the local circular velocity, and the standard expression for the coefficient of dy-
namical friction would predict zero frictional force. Numerical integrations demon-
strate that the frictional force in this case is, in fact, nonzero and is much better fit
by including the contribution from the fast-moving stars [8].

A second example is the frictional force experienced by a massive object near the
center of a galaxy without a central SBH; for instance, the force on an SBH that has
been displaced from the center. Such an object would normally move much more
slowly than the surrounding stars. But if v � vrms, and if (as equation 5.23 tells us)
the only field stars contributing to the frictional force are those with vf < v, then
the logarithmic term in equation (5.20b) will be close to zero for all field stars that
contribute to the frictional force. Either the frictional force in this case is much less
than implied by equation (5.23), or else most of the friction must come from stars
with vf > v.

To sort this out, we must return to the more exact expression for 〈�v‖〉, equa-
tion (5.20). Setting m = M 	 mf in that equation and expanding about v = 0, we
find 〈�v‖〉 = −Av + Bv3 − · · · , where

A = 32

3
π2G2Mρ

∫ ∞

0
f (vf )

p2
maxv

4
f /G

2M2

1 + p2
maxv

4
f /G

2M2

dvf

vf
. (5.36)

It is evident from this expression that field stars of every velocity contribute to
the dynamical friction force; there is no sharp cutoff at vf ≈ v. If f (vf ) is a
Maxwellian, the result of the integration is

〈�v‖〉 = −4
√

2π

3

G2Mρ ln�′

σ 3
f

v, (5.37)
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where

ln�′ ≡ 1

2

∫ ∞

0
dz e−z ln

(
1 + 4p2

maxσ
4
f

G2M2
z2

)
≈ ln

√
1 + 2p2

maxσ
4
f

G2M2
. (5.38)

This result for 〈�v‖〉 turns out to be identical to (5.25) in the limit that v is small, but
only if ln� in that equation is identified with ln�′ as defined in equation (5.38).
This example suggests that the approximate formula for 〈�v‖〉, equation (5.23),
may be adequate even in cases where it is unjustified to “remove ln� from the
integral,” as long as one is willing to adjust the definition of ln�. Given the in-
determinacy associated with the choice of pmax, this may or may not be deemed
important. But regardless of its implications for the magnitude of the frictional
force, it is clear that a substantial fraction of that force can come from stars that
move faster than the test star.5

Chandrasekhar [79] was aware of the shortcomings of his approximate formula,
and derived two, less approximate forms for 〈�v‖〉 by assuming a large, but finite,
value for the argument of the logarithm in equation (5.20). The second of these is
more commonly used: rather than settingH to a step function, as in equation (5.22),
one writes instead

H(v, vf , pmax) ≈




ln
[
�(v2 − v2

f )
]

if v > vf ,

1
2 ln

(
4�v2

f

)
− 1 if v = vf ,

ln
(
vf+v
vf−v

)
− 2 v

vf
if v < vf ,

(5.39)

where

� ≡ pmax

G(m+mf )
. (5.40)

The last of equations (5.39) illustrates what Chandrasekhar called the “nondomi-
nant terms”: terms appearing in the diffusion coefficients that do not contain
ln(�V 2). The “standard” approximation to 〈�v‖〉, equation (5.23), is lacking the
nondominant terms (as well as being approximate in other ways).

In general, the smaller�, or pmax, the greater the contribution of the fast-moving
stars to the dynamical friction force. This can be important in the case of small-N
systems [563]. Equating pmax with the size R of the system and V with the rms
velocity, and using the virial relation GM/R ≈ v2

rms with M the total mass, it
follows that � ∼ M/m ∼ N .

5.2.2 Scattering

We now wish to derive the two, second-order diffusion coefficients defined above,
〈(�v‖)2〉 and 〈(�v⊥)2〉.

5Figure 5.3 presents a concrete example.



224 CHAPTER 5

The squared velocity changes of the test star in one encounter with a field star
are given by equations (5.16):

(�v‖)2 = 4V 2
m2
f

(m+mf )2

1

(1 + p2/p2
0)

2
, (5.41a)

(�v⊥)2 = 4V 2
m2
f

(m+mf )2

p2/p2
0

(1 + p2/p2
0)

2
. (5.41b)

Multiplying by 2πpnf V dp and integrating over p as before,

(�v‖)2 =4πG2nfm
2
f

V

(
p2

max/p
2
0

1 + p2
max/p

2
0

)
, (5.42a)

(�v⊥)2 =4πG2nfm
2
f

V

[
ln

(
1 + p2

max

p2
0

)
− p2

max/p
2
0

1 + p2
max/p

2
0

]
. (5.42b)

These are velocity changes with respect to the direction of the initial relative
velocity vector V . We need to transform to a fixed frame in which the test particle
has velocity v. Let the fixed coordinate system be defined by the Cartesian unit
vectors (e1, e2, e3). A second coordinate system is defined in terms of the unit
vectors (e′

1, e
′
2, e

′
3), with e′

1 parallel to the initial relative velocity V , and e′
2, e

′
3

perpendicular to e′
1. The velocity changes in the fixed (e) frame are

〈�vi�vj 〉 = (ei · e′
1)(ej · e′

1)(�v‖)2 (5.43)

+ 1

2

[
(ei · e′

2)(ej · e′
2)+ (ei · e′

3)(ej · e′
3)
]
(�v⊥)2.

It is clear that ei · e′
1 = Vi/V where Vi is the component of V along the ei-axis.

Hence

(ei · e′
1)(ej · e′

1) = ViVj

V 2
. (5.44)

Furthermore,

ei =
3∑
k=1

(ei · e′k)e′k. (5.45)

Writing this equation again for ej and using ei · ej = δij , we find

(ei · e′
2)(ej · e′

2)+ (ei · e′
3)(ej · e′

3) = δij − ViVj

V 2
. (5.46)

Combining equations (5.43), (5.44) and (5.46),

〈�vi�vj 〉 = ViVj

V 2

[
(�v‖)2 − 1

2
(�v⊥)2

]
+ 1

2
δij (�v⊥)2 (5.47)
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or

〈�v1�v1〉 = V 2
x

V 2
(�v‖)2 + 1

2

(
1 − V 2

x

V 2

)
(�v⊥)2, (5.48a)

〈�v2�v2〉 + 〈�v3�v3〉 = V 2
y + V 2

z

V 2
(�v‖)2 +

(
1 − 1

2

V 2
y + V 2

z

V 2

)
(�v⊥)2.

(5.48b)

The final step is the integration over field-star velocities. Recalling that the e1-axis
is oriented parallel to v, the two diffusion coefficients are given by

〈�v2
‖〉 = 2π

nf v

∫ ∞

0
dvf vf f (vf )

∫ v+vf

|v−vf |
dV V 〈�v1�v1〉, (5.49a)

〈�v2
⊥〉 = 2π

nf v

∫ ∞

0
dvf vf f (vf )

∫ v+vf

|v−vf |
dV V [〈�v2�v2〉 + 〈�v3�v3〉] .

(5.49b)

Writing

Vx = V 2 + v2 − v2
f

2v
, V 2

y + V 2
z = 1 − V 2

x , (5.50)

we find

〈�v2
‖〉= 8π

3
(4πG2m2

f )v

∫ ∞

0
dvf

(vf
v

)2
f (vf )H2(v, vf , pmax),

(5.51a)

〈�v2
⊥〉= 8π

3
(4πG2m2

f )v

∫ ∞

0
dvf

(vf
v

)2
f (vf )H3(v, vf , pmax),

(5.51b)

whereH2 andH3 are weighting functions given by

H2(v, vf ,pmax)

= 3

8vf

∫ v+vf

|v−vf |
dV


1 − V 2

4v2

(
1 + v2 − v2

f

V 2

)2

 ln

(
1 +�2V 4

)

+
[

3

4

V 2

v2

(
1 + v2 − v2

f

v2

)
− 1

]
�2V 4

1 +�2V 4
, (5.52a)

H3(v, vf ,pmax)

= 3

8vf

∫ v+vf

|v−vf |
dV


1 + V 2

4v2

(
1 + v2 − v2

f

V 2

)2

 ln

(
1 +�2V 4

)

+
[

1 − 3

4

V 2

v2

(
1 + v2 − v2

f

v2

)]
�2V 4

1 +�2V 4
. (5.52b)
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We could stop at this point, but it is natural to explore the same sort of approxima-
tion that was used to simplify the expression for the dynamical friction coefficient.
We first note that—unlike in the case of H1, the weighting function in the integral
for 〈�v‖〉—the weighting functions {H2,H3} both contain nondominant terms. Ig-
noring those terms, and replacing ln(1 +�V 4) by the constant 2 ln� as before, we
find

H2 =



ln�
( vf
v

)2
if v > vf ,

ln�
(
v
vf

)
if v < vf ,

(5.53)

H3 =




ln�
(

3 − v2
f

v2

)
if v > vf ,

2 ln�
(
v
vf

)
if v < vf .

(5.54)

Even under this approximation, both fast- and slow-moving field stars make “dom-
inant” contributions to the diffusion coefficients. The latter are

〈(�v‖)2〉 = 32π2

3
G2m2

f ln�v [F4(v)+ E1(v)] , (5.55a)

〈(�v⊥)2〉 = 32π2

3
G2m2

f ln�v [3F2(v)− F4(v)+ 2E1(v)] , (5.55b)

where the functions En(v) and Fn(v) are given by

En(v)=
∫ ∞

v

(vf
v

)n
f (vf ) dvf , (5.56a)

Fn(v)=
∫ v

0

(vf
v

)n
f (vf ) dvf . (5.56b)

Equations (5.23) and (5.55), which assume an isotropic f (vf ) and ignore the non-
dominant terms, are very commonly used to define the diffusion coefficients [48].
Henceforth in this book, we refer to these expressions as the “standard forms” of
the diffusion coefficients.

In the case that f (vf ) is Maxwellian, the standard diffusion coefficients become

〈(�v‖)2〉 =
√

2
nf �

σf

G(x)

x
, (5.57a)

〈(�v⊥)2〉 =
√

2
nf �

σf

(
erf(x)−G(x)

x

)
(5.57b)

with � ≡ 4πG2m2
f ln� and x = v/(

√
2σf ) as above, and G(x) is defined as in

equation (5.25b).
In our discussion of the dynamical friction coefficient, we showed that the fric-

tional force acting on the test mass is proportional to its velocity v when v is low.
We can also examine the low-velocity limits of the two scattering coefficients. Re-
turning to the exact expressions (5.51) and expanding to lowest order in v/σf gives,
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after some algebra,

〈(�v‖)2〉 =C +Dv2 + · · · , (5.58a)

〈(�v⊥)2〉 = 2(E + Fv2)+ · · · , (5.58b)

with

C = E = 8
√

2π

3

G2mfρf

σf
ln�′; (5.59)

ln�′ is again given by equation (5.38). Equations (5.58) express the reasonable
results that the rate of diffusion in velocity tends toward a constant nonzero value
when the test body moves slowly, and that the diffusion rate is the same in all
directions.

As noted above, diffusion coefficients of even higher order, for example,
〈�vα�vβ�vγ 〉, can also be computed. However, it can be shown [465] that these
higher-order coefficients contain only nondominant terms. To the extent that ln� is
large, it is therefore justifiable to ignore them compared with the first- and second-
order coefficients. A roughly equivalent statement is that the higher-order coeffi-
cients are only important in situations where close encounters dominate the velocity
changes.

We are now in a position to compute a more precise expression for the time of
relaxation. One common definition is [503]

Tr ≡ 1

3

v2
rms

〈(�v‖)2〉 (5.60)

with 〈(�v‖)2〉 evaluated at v = vrms. In a time Tr , the mean value of
∑
(�v‖)2,

for stars moving at velocity vrms, is v2
rms/3 = σ 2

f . Adopting equation (5.57a) for
〈(�v‖)2〉, which assumes a Maxwellian velocity distribution with one-dimensional
velocity dispersion σf , we find

Tr = 0.34σ 3
f

G2mρ ln�
(5.61)

≈ 0.95 × 1010

(
σf

200 km s−1

)3(
ρ

106M� pc−3

)−1(
m

M�

)−1( ln�

15

)−1

yr.

This is the same expression for Tr that was given at the start of chapter 3.
Equation (5.61) describes the relaxation time for a system containing stars of

a single mass, m. But galaxies contain stars with a range of masses, as well as
other objects—stellar remnants, star clusters, etc.—with masses that may be much
greater than typical stellar masses.6 A little thought shows that there is no unique
way to define a single relaxation time for a system with a spectrum of masses,
since the time for gravitational encounters to change the velocity of one species
may be different from that of another species. But if we are willing to assume that
each species instantaneously obeys the same velocity distribution—for instance, a

6The expected form of the stellar mass distribution in galactic nuclei is discussed in section 7.1.2.
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Maxwellian distribution with dispersion σ—then there is a natural way to gener-
alize Tr . The second-order scattering coefficients, 〈(�v‖)2〉 and 〈(�v⊥)2〉, do not
depend on the mass of the test star; this is because the acceleration produced by a
given gravitational force is equal for all masses. From the expressions given above,
for example, equation (5.57), it is clear that the rate of scattering due to field stars
with a spectrum of masses is proportional to∑

i

m2
i ni →

∫
n(m)m2dm = m̃ρ, (5.62a)

m̃ ≡
∫
n(m)m2dm∫
n(m)mdm

. (5.62b)

Here n(m)dm is the number of (field) stars with masses m to m + dm, and ρ has
the same meaning as in equation (5.61), that is, the total mass density. Replacing
m by m̃ in equation (5.61) then gives the desired generalization of Tr . As discussed
in chapter 7, “standard” forms of n(m) describing an old stellar population imply
that m̃ should be roughly equal to one solar mass. But because m̃ is proportional
to the second moment of the mass distribution, even a small number of “massive
perturbers” can substantially reduce the relaxation time (section 7.4).

In the case of the Galactic center, the peak stellar density near Sgr A* is mea-
sured to be ∼ 105M� pc−3 at a distance of ∼ 0.5 pc from the SBH [481]; at this
radius, σ ≈ 100 km s−1. Assuming m̃ = 1M�, the relaxation time7 works out to
be ∼ 1010 yr. Roughly speaking, this is a minimum value, in the sense that σ 3/ρ

increases both toward larger and smaller r . Since Tr is a measure of the time for the
stellar velocity distribution to reach a steady state under the influence of encoun-
ters, it would evidently be unwise to assume that the Galactic center is collisionally
relaxed.

5.2.3 Alternative approaches

It is worthwhile at this point to review the assumptions that have been made up to
now in deriving the velocity diffusion coefficients:

1. The field-star distribution is infinite, homogenous and isotropic.
2. The unperturbed orbit of the test star is a straight line.
3. The effects of each encounter are transmitted instantaneously to the test star.
4. Gravitational encounters are independent and uncorrelated.
5. The distribution of field stars as seen by the test star is unchanging; that is,

there is no “memory” of initial conditions.

Some of the expressions derived above, for example, equations (5.25) and (5.55),
embody additional approximations:

6. The nondominant terms can be ignored.
7. f (vf ) is isotropic, or Maxwellian.

7In chapter 7 it will be argued that m̃ ≈ 0.5M�, implying an even longer relaxation time.
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Of course, none of these assumptions is strictly correct, and it is not hard to think
of physical situations in which each is seriously violated. Assumptions 1 and 2 are
invalid in any system that is inhomogeneous and finite—which, of course, includes
every stellar system. In the case of motion near an SBH, some stars will be moving
in bound Keplerian orbits; such motion violates not only assumption 2, but also
assumption 4, since stars on similar orbits will encounter each other at intervals
of time roughly equal to the radial period. Condition 6 was shown above to fail in
the case of Brownian motion of a massive body. And there are many cases where
assumption 5 of a steady state is violated.

A common practice is to accept the expressions derived above for the diffusion
coefficients, but to adjust the constants ρ, σf , ln�, etc. in such a manner as to com-
pensate for the limitations of the theory. For instance, inhomogeneity in a stellar
system can be accounted for, at least approximately, by setting pmax equal to the
density scale length, and by averaging the diffusion coefficients over the field-star
velocity distribution as seen by the test star as it moves along its trajectory (“orbit
averaging”). Whether these ad hoc adjustments are adequate can only be verified
by a detailed comparison with exact N -body integrations.

An alternative approach is to relax one or more of the simplifying assumptions
that were made in deriving the diffusion coefficients. In this section we discuss
some of these alternative approaches. One special case—the effect of encounters
on stars moving on bound orbits very near an SBH—deserves a more extended
treatment and will be dealt with in section 5.6.

5.2.3.1 Dynamical friction as the force from a density wake

In the limit that the mass of the test body, M , is much greater than that of a field
star, the dynamical friction coefficient (5.23) obeys

〈�v‖〉 ∝ −Mρ(< v) v−2. (5.63)

The deceleration depends only on the mass density of field stars, not on their in-
dividual masses. The second-order diffusion coefficients, on the other hand, have
magnitudes that scale as nfm2

f ∝ mf ρ, and in the limit M 	 mf , the changes they
predict in v are smaller by a factor ∼mf /M . In this limit, changes in the direction
of the test mass’s motion due to encounters can be ignored.

These arguments suggest an alternative way of computing the dynamical friction
acceleration [101, 394]: transfer to a frame moving with the massive body’s veloc-
ity vt (assumed constant) and find the steady-state distribution function f (x, v) of
the field stars in this frame, with the condition that f (x, v − vt ) → f (vf ) far from
the test mass. In this approach, dynamical friction is interpreted as the net force
due to the asymmetric distribution of field stars, ρ(x) = ∫

f (x, v)dv, around the
test mass—the density wake. Rather confusingly, dynamical friction in this limit is
describable using the formalism of chapter 3—which shows that there is not always
a clear distinction to be made between “collisional” and “collisionless” dynamics.

This way of computing the dynamical friction force is based on essentially the
same physical picture that was the basis for Chandrasekhar’s calculation, and it
should give the same result for the acceleration in the M 	 mf limit (with one
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qualification, related to the choice of pmax). We nevertheless include the method
here because it suggests a more general way of looking at the origin of the frictional
force.

Consider then a test mass that is moving at constant velocity vt relative to a fixed
frame. Let vf be the velocity of a field star in that frame, and v = vf − vt its
velocity in a frame moving with the test mass. Assume that the field-star velocity
distribution far from the test mass is a known function: f (vf ) in the fixed frame and
f (v + vt ) in the moving frame. Finally, assume that f (vf ) is isotropic. To satisfy
Jeans’s theorem in the moving frame, we need to find an expression, in terms of the
integrals of motion in the two-body problem, that reduces to

(v + vt )
2 = v2 + v2

t + 2v · vt = v2 + v2
t − vvt cosψ (5.64)

far from the test mass; here, ψ is the angle between vt and the asymptote of
the hyperbolic orbit of the field star with respect to the test mass. At infinity,
2E = v2 − GM/r → v2. The angle ψ can similarly be expressed in terms of
the components of the angular momentum of the relative orbit [394]. Replacing v
and ψ in equation (5.64) by these expressions then gives, via Jeans’s theorem, the
steady-state f (x, v) from which the response density can be computed.

Figure 5.3 shows the density computed in this way, assuming a field-star velocity
distribution at infinity of

f (vf ) = f0
(
2v2

c − v2
f

)γ−3/2
, vf ≤ 21/2vc, (5.65)

with γ = 5/4. This is the velocity distribution of stars in a power-law cusp around
an SBH, equation (3.49), at a distance from the SBH such that the circular velocity
is vc. In figure 5.3, the velocity vt of the test mass has been set equal to vc; in
other words, that figure represents the dynamical friction wake around a body in a
circular orbit around an SBH.8 The contributions to the density wake of stars with
vf < vt and vf > vt were computed separately. For this f and vt , most of the
field stars are moving faster than the test mass, and they dominate the density in the
wake as well.

Given ρ(x, v) computed in this way, the dynamical friction force can be com-
puted by integrating the force exerted by the perturbed medium on the test mass. At
first sight, this operation would seem to be independent of pmax and ln�, since the
density plotted in figure 5.3 includes the contributions from field stars that come
from arbitrarily large distances. But while the response density is uniquely deter-
mined everywhere, the net force on the test mass depends on the size of the region
over which the density is integrated: roughly speaking, the linear size of this region
corresponds to pmax [394]. In the example plotted in figure 5.3, one can get a sense
of how the relative contribution to the net force, of stars with vf > vt and vf < vt ,
changes with distance: the fast stars are most important close to the test mass, while
at larger distances, it is the asymmetry in the distribution of the slower stars that

8Note that we are identifying f (vf ), the velocity distribution at infinity, with f (v; r), the local velocity
distribution in the assumed model if the test mass were not present. This may seem an unreasonable
approximation, but it is precisely what is done when computing orbit-averaged diffusion coefficients for
the Fokker–Planck equation (section 5.5).
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Figure 5.3 Dynamical friction wake around a massive object, assuming the velocity distrib-
ution at infinity of equation (5.65) [8]. The panels at the top show contours of the
density, in a frame that follows the massive body (located at the origin); motion
is to the right at constant speed v. The left panel shows the total density of the
wake, the middle panel shows the density contributed only by stars with veloc-
ity at infinity less than that of the massive body, and the right panel shows the
contribution from the complement of stars that move faster than v. Thick (solid)
curves show the total response from the indicated stars; medium (dashed) curves
show the part of the response that is symmetric with respect to z; thin (dotted)
curves show the antisymmetric part (only on one side), which is responsible for
the frictional force. The lower panels show the density along a line through the
moving body in the direction of its motion.

dominates the net force. This corresponds, roughly, to Chandrasekhar’s result that
field stars with vf > vt contribute negligibly to the force if pmax is very large.

5.2.3.2 Perturbative approaches; dynamical friction in inhomogeneous systems

In treatments like Chandrasekhar’s, the unperturbed field-star trajectories consist
of straight lines that approach and recede from infinity. In reality, both test and
field stars follow unperturbed orbits about the center of the galaxy. Chandrasekhar’s
theory might be expected to give approximately correct results for the dynamical
friction force even in this case, as long as pmax 	 p0, since over many decades
in scale the orbits of the field stars will appear nearly rectilinear as seen by the
test body. But if the dynamical friction time is long compared with orbital periods,
individual field stars will encounter the test mass again and again.
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The consequences are most easily seen by considering a test body that moves
along a circular orbit in a spherical galaxy. We can transform to a frame in which
the test mass is stationary, that is, a frame that rotates with frequency�t = 2π/vcirc.
In this rotating frame, the apsides of field stars will be seen to precess, either for-
ward or backward, at a rate determined by the star’s energy and angular momen-
tum and by �t . Over some limited span of time, a field star will exert a torque
on the test mass, causing it to either accelerate or decelerate. But over a time long
compared with both the radial and precessional periods in the rotating frame, the
time-averaged torques will vanish, since the field star will spend equal amounts of
time ahead of and behind the test mass. However, there will always be some orbits
that are nearly closed in this frame; for instance, orbits that precess in the inertial
frame with a frequency close to�t . Such resonant orbits can exert a net torque; in
the case of an orbit that is nearly, but not quite, resonant, a very long time will be
required for its time-averaged torque to tend to zero.

One can carry out a perturbative analysis by assuming that the perturbing poten-
tial, and the changes induced by it in the orbits of field stars, are small [331]. It
turns out that essentially all of the torque acting on the test body comes from orbits
near resonance. The net torque induced by a particular resonance is proportional to
gradients in the unperturbed f near the resonance, that is, by the relative numbers
of stars on one or the other “side” of the resonance. Furthermore, the acceleration
induced by the resonant orbits depends on how quickly the orbit of the test mass
is evolving [521]. If orbital decay is very slow, the influence of a single resonance
can build up, invalidating the perturbative assumption. But if �t changes rapidly
enough, field stars will “sweep through” a given resonance before the changes in-
duced in their orbits are appreciable. In this case, the response of the field stars to
forcing by the test body is calculable. The equation describing the rate of change
of the specific angular momentum of the test mass takes the form [559]

dL

dt
=π3mT

∑
l

∫ ∫ ∫
dE dLd(cos i)P (E,L)

(
l3�t

∂f

∂E
+ l2

∂f

∂L

)

× |�l|2 δ(l1ν1 + l2ν2 − l3νt ). (5.66)

In this equation, f (E,L) is the unperturbed field-star phase-space density, νi =
∂H/∂Ji is the frequency associated with the ith action Ji in the unperturbed galaxy
potential, and the�l are coefficients that appear when the potential of the test mass
is expanded as a Fourier series in (J , θ):

ψt(r, t) = mTRe

{∑
l

�l(J ) exp [i (l · θ − l3�tt)]

}
, (5.67)

The same analysis leading to equation (5.66) also yields expressions for the density
wake [559]. While it may seem strange that only resonant orbits contribute to the
torque, a given resonance (i.e., a given set of integers (l1, l2)) corresponds to a mani-
fold of orbits, with different (E,L), that satisfy l1ν1(E,L)+l2ν2(E,L)−l3�t = 0.
Furthermore, in a real galaxy, the frequency spectrum of the perturbing potential is
not made up of sharp lines, but rather is broadened by the time dependence of the
decaying orbit and by the finite age of the galaxy.
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Formally, the advantage of the perturbative treatment is that it relaxes the as-
sumption of locality: the diffusion coefficients so derived reflect the inhomoge-
neous and bounded nature of real galaxies. On the negative side, evaluating ex-
pressions like (5.66) entails a considerable computational effort, which is probably
why only a few cases have been worked out in detail [559, 560]. It is also diffi-
cult to be certain whether a real system sits in a regime where the assumptions of
the perturbative treatment are justified: the test body’s orbit must decay quickly
enough that the response of the resonant orbits remains linear, but not so quickly
that the steady-state approximation is invalidated. So far, these studies have tended
to validate Chandrasekhar’s results; the main element they add is a quantitative es-
timate of the Coulomb logarithm. Another important application is to cases where
the assumption of locality is clearly violated; for instance, a satellite that orbits just
outside a galaxy where the local density is zero [412].

5.2.3.3 Numerical N -body treatments

The number of stars in a galaxy far exceeds the number that can be directly inte-
grated on a computer, at least with high accuracy and for interestingly long times.
But an N -body algorithm can still be useful for estimating certain parameters that
appear in Chandrasekhar’s theory; for instance, ln�. One well-studied example is
the inspiral of a massive body into the center of a galaxy: in the limit m 	 mf ,
equations like (5.63) tell us that the frictional force depends on the mass density of
the field stars, not on their individual masses. The only N dependence occurs im-
plicitly though the Coulomb logarithm. The value of ln�, and its dependence onN ,
can be evaluated numerically by fitting the computed trajectories to the predictions
of Chandrasekhar’s formulas.

The biggest potential pitfall associated with direct numerical integration is the
need for accurate treatment of close encounters. MostN -body codes deal with close
encounters via some sort of numerical “softening”: the forces between particles are
modified to avoid the singularities that occur when separations tend to zero. For
instance, one common scheme is to replace the force between m1 and m2 by

F 12 = Gm1m2
(x1 − x2)(|x1 − x2|2 + ε2

)3/2 , (5.68)

where ε is the softening length [1]. When simulating dynamical friction on a com-
puter, the softening length must be smaller than p0 given by equation (5.5), or

ε <∼ 2Gm/v2
rms. (5.69)

In so-called “standard N -body units” [232], the total mass of a galaxy and the
gravitational constant are unity, and the total energy (potential plus kinetic) is −1/4.
The virial theorem then gives vrms = 1/

√
2. In these units, equation (5.69) becomes

ε <∼ 4/N. (5.70)

Large values forN are also desirable; for instance, in simulating dynamical friction,
the mass of the test body,M , should be much greater than the field-star mass, where
mf = N−1. Together, these requirements are difficult to satisfy without sacrificing
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Figure 5.4 Numerical experiments designed to evaluate the Coulomb logarithm [500]. The
inspiral of a test mass was followed with anN -body code starting from a circular
orbit at the half-mass radius of the galaxy model. Results are shown for three
different values of the test-particle mass; M0 ≈ 5 × 10−4 in N -body units. The
solid curves show theoretical trajectories computed using the best-fit parameters
in equation (5.71).

accuracy, and in practice, the effect of the finite softening length must be taken into
account when evaluating the effects of encounters.

When fitting a numerically computed inspiral to equations like (5.23), it is rea-
sonable to replace the Coulomb logarithm by something like

ln�= ln
pmax

pmin + ε

= lnpmax − ln (pmin + ε) (5.71)

since encounters closer than ∼ ε do not feel the full deflection. The two free para-
meters in equation (5.71) can be estimated by integrating the motion of a test mass
on an initially circular orbit (say) for different values of ε. Results from one such
study [500] are illustrated in figure 5.4, based on a model for the N -body galaxy
motivated by observations of the Milky Way nuclear star cluster. The authors found

pmin ≈ 8.0 × 10−4, pmax ≈ 0.39 (5.72)

in N -body units. The former value is consistent with equation (5.5); the value for
pmax implies that encounters with “impact parameters” greater than about 1/4 the
linear size of the system are ineffective.

Another interesting application ofN -body methods is to the motion of a massive
object, like an SBH, as its orbit decays near the center of a galaxy. This case was
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Figure 5.5 Numerical evaluation of the Coulomb logarithm in N -body integrations of a
massive body (SBH) that has been ejected from the center of a galaxy [218].
The open circles show the numerically computed trajectory and the lines are fits
of Chandrasekhar’s formula, equation (5.23). The latter were computed in a
piecewise manner, starting from extrema in the SBH’s trajectory (vertical solid
lines) and continuing until the next extremum. For the purposes of computing the
theoretical trajectories, the properties (e.g., density) of the N -body model were
extracted at the time the SBH passed through the center and were assumed to
remain fixed until the next central passage. Estimated core radii are shown by
the horizontal dashed lines. Line styles correspond to different values of ln�:
1 (solid), 2 (dashed), 3 (dot-dashed), 4 (dotted).

considered in the context of Chandrasekhar’s theory in section 5.2.1; while the role
of the fast-moving stars was clarified, that treatment still contained an undetermined
parameter pmax in the argument of the logarithm, equation (5.38):

ln� ≈ ln

√
1 + 2p2

max

r2
h

, (5.73)

where GM/σ 2
f has been replaced by rh. Furthermore, the mass of an SBH is com-

parable with that of a galaxy core and its displacement from the center can be
expected to substantially affect the local distribution of stars, violating another of
Chandrasekhar’s approximations.

It was argued above that pmax for a test mass near the center of a galaxy contain-
ing an SBH should be of order rh. If so, equation (5.73) implies that ln� should be
small, of order unity.

Figure 5.5 shows an N -body simulation of this situation [218]: an SBH, with
mass 10−3 in N -body units, was given an impulsive kick at t = 0 equal to 70% of
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the escape velocity from the galaxy center. As its (nearly radial) orbit decayed, the
trajectory was fit to equation (5.23) with various values of ln�. Since the structure
of the nucleus changed each time the SBH passed through, the parameters defining
the local density were determined after each central passage and were assumed to
remain fixed until the next passage. The best-fit values of ln� were indeed found
to be small: 2 <∼ ln� <∼ 3.

Yet another case in which N -body methods are useful is the inspiral of a massive
body into the center of a galaxy containing a central SBH. A simple estimate was
given in equation (5.35) for ln� in this situation:

ln� ≈ lnNh (5.74)

with Nh the number of stars whose mass equals M•, the mass of the SBH. Of
course, in an N -body simulation, Nh will be much smaller than its value in a real
galaxy, but the prediction can nevertheless be tested. Figure 8.6 shows an example;
the theoretical curve in that figure was computed assuming ln� = 5.7. SinceM• =
0.01 in this simulation and N = 2 × 105, Nh ≈ 2000 and equation (5.74) predicts
ln� ≈ 7.6.

Numerous other N -body studies have been carried out to evaluate
Chandrasekhar’s formula in the case of a massive particle inspiraling toward the
center of a galaxy [564, 57, 94, 8, 264]. Early work was typically based on approx-
imate N -body schemes and the results were often discrepant from study to study
[580]; these differences appear to have been resolved in the last few years through
the use of higher-accuracy N -body algorithms.

5.3 FOKKER–PLANCK EQUATION

So far we have discussed gravitational encounters in terms of their effect on the
motion of a single test star. When dealing with a stellar system, we are also inter-
ested in the evolution of the phase-space density f (x, v, t) describing all the stars.
An important use of the diffusion coefficients is to compute this evolution.9

Formally, the effect of encounters on f can be described by adding a term to the
right-hand side of equation (3.7):

Df

Dt
= ∂f

∂t
+
∑
i

vi
∂f

∂xi
+
∑
i

ai
∂f

∂vi
=
(
∂f

∂t

)
c

. (5.75)

In the general case, (∂f/∂t)c is very complicated. For instance, in a close encounter,
the velocity change �v can be comparable to v, causing a star to jump suddenly
from one point in phase space to another. Such changes must be described by an in-
tegral expression, as in the Boltzmann equation. The encounter term can be greatly
simplified if only the effects of distant encounters are included, that is, if gravi-
tational deflections are assumed to be small; in this approximation, the encounter

9To keep the notation as simple as possible, f will be used to denote both the test-star and field-star
velocity distributions; in the latter case it will always be written as f (vf ). This notation is a natural one
in cases where f (v) and f (vf ) describe the same set of stars, as they often do.



THEORY OF GRAVITATIONAL ENCOUNTERS 237

term becomes a differential operator. The result is the Fokker–Planck equation
[167, 431].

Two basic forms of the Fokker–Planck equation are commonly used in galactic
dynamics. The local Fokker–Planck equation expresses (∂f/∂t)c in terms of the
phase-space variables (x, v), without regard to the fact that the unperturbed motion
consists of orbits in the smooth galactic potential. The orbit-averaged Fokker–
Planck equation invokes the approximation that the timescale for collisional ef-
fects to change f is long compared with orbital periods; the diffusion coefficients
are replaced by time averages over the unperturbed trajectories and the phase-space
variables are replaced by the integrals of motion in the unperturbed problem. In this
section the local Fokker–Planck equation is derived, and subsequent sections deal
with the orbit-averaged equation.

Let�t denote an interval of time that is short compared with the time over which
the velocity of a star changes due to encounters, but still long enough that many
encounters occur. Define the transition probability �(v;�v) that v changes by
�v in time �t . Then

f (v, t +�t) =
∫
f (v − �v, t) � (v − �v;�v) d�v. (5.76)

This equation assumes in addition that the evolution of f depends only on its instan-
taneous value, that is, that its previous history can be ignored. This is the definition
of a Markov process.

We now expand f (v, t +�t) on the left-hand side as a Taylor series in �t , and
f (v − �v, t) and � (v − �v;�v) on the right-hand side as Taylor series in �vi ,
where i runs from 1 to 3. The result is

f (v, t)+ ∂f

∂t
�t +O

[
(�t)2

] = (5.77)

∫ 
f (v, t)−∑

i

∂f

∂vi
�vi+ 1

2

∑
i

∂2f

∂v2
i

�v2
i +

∑
i<j

∂2f

∂vi∂vj
�vi�vj + · · ·




×

�(v;�v)−

∑
i

∂�

∂vi
�vi+ 1

2

∑
i

∂2�

∂v2
i

�v2
i +

∑
i<j

∂2�

∂vi∂vj
�vi�vj + · · ·




× d�v.

Writing

〈�vi〉 = 1

�t

∫
�(v;�v)�vi d�v, (5.78a)

〈�vi�vj 〉 = 1

�t

∫
�(v;�v)�vi�vj d�v, (5.78b)
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this becomes

∂f

∂t
+O [(�t)] = −

∑
i

∂f

∂vi
〈�vi〉 + 1

2

∑
i

∂2f

∂v2
i

〈�v2
i 〉

+
∑
i<j

∂2f

∂vi∂vj
〈�vi�vj 〉 −

∑
i

f
∂

∂vi
〈�vi〉

+
∑
i

∂

∂vi
〈�v2

i 〉
∂f

∂vi
+
∑
i �=j

∂f

∂vi

∂

∂vj
〈�vi�vj 〉

+ 1

2

∑
i

f
∂2

∂v2
i

〈�v2
i 〉 +

∑
i<j

f
∂2

∂vi
∂vj 〈�vi�vj 〉

+O
[〈�vi�vj�vk〉] , (5.79)

where the last term includes averages of quantities like�vi�vj�vk . Retaining only
the lowest-order terms, equation (5.79) gives for ∂f/∂t ≡ (∂f/∂t)c:(

∂f

∂t

)
c

= −
∑
i

∂

∂vi
(f 〈�vi〉)+ 1

2

∑
i,j

∂2

∂vi∂vj

(
f 〈�vi�vj 〉

)
. (5.80)

Substituting equation (5.80) into equation (5.75) then yields the Fokker–Planck
equation. The quantities defined in equations (5.78) are the same diffusion coeffi-
cients that were computed above.

Including only the first- and second-order terms in the Taylor expansions of f
and � may seem ad hoc. If the source of the velocity diffusion is random per-
turbations with a Gaussian white-noise spectrum, it can be shown [458] that the
expansion truncates after the first two terms. This is not the case for gravitational
encounters; however, as noted above, the higher-order diffusion coefficients con-
tain only nondominant terms and in many circumstances are small compared with
〈�vi〉, 〈�vi�vj 〉. For consistency, neglect of the higher-order diffusion coefficients
in the Fokker–Planck equation implies that the nondominant terms in 〈�vi〉 and
〈�vi�vj 〉 should also be omitted. It can also be argued that the nondominant terms
describe predominantly close encounters and should be excluded from the Fokker–
Planck equation for this reason [502].

Although it is much simpler than the Boltzmann equation, equation (5.80) is still
not very useful for calculations. The diffusion coefficients are expressed in terms
of Cartesian coordinates, which are not related in an obvious way to the quantities
〈�v‖〉, 〈(�v⊥)2〉, 〈(�v‖)2〉 whose forms have already been derived.

A scheme for expressing the Fokker–Planck equation in any coordinate system
will be presented below. An alternative approach, which is simpler in many cases
of interest, is to rederive (∂f/∂t)c from scratch.

Consider, for instance, a stellar system in which the velocity distribution is
isotropic, f = f (v). Let �(v,�v) be the probability that v changes by �v in
time �t . Then

N(v, t +�t) =
∫
N(v −�v)�(v −�v;�v)d�v, (5.81)
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where N(v)dv is the number of stars in velocity interval v to v + dv; evidently

N(v)dv = 4πv2f (v)dv. (5.82)

Carrying out the same series expansions as before, we arrive at(
∂N

∂t

)
c

= − ∂

∂v
[N(v)〈�v〉] + 1

2

∂2

∂v2

[
N(v)〈(�v)2〉] . (5.83)

The coefficients 〈�v〉 and 〈(�v)2〉 are defined in the usual way as sums, over a unit
interval of time, of�v and (�v)2 due to encounters with field stars. We would like
to express these in terms of the coefficients 〈�v‖〉 and 〈�v⊥〉. Clearly,

�v =
[(
v +�v‖

)2 + (�v⊥)2
]1/2

− v. (5.84)

Expanding to second order in the small quantities �v‖ and �v⊥ and taking means,

〈�v〉 = 〈�v‖〉 + 1

2

〈(�v⊥)2〉
v

, 〈(�v)2〉 = 〈(�v‖)2〉. (5.85)

Substituting equations (5.82) and (5.85) into equation (5.83) then yields(
∂f

∂t

)
c

=

1

v2

∂

∂v

[
−vf

(
v〈�v‖〉 + 1

2
〈(�v⊥)2〉

)
+ 1

2

∂

∂v

(
v2f 〈(�v‖)2〉

)]
. (5.86)

Adopting the standard forms of the diffusion coefficients, this becomes(
∂f

∂t

)
c

= 4π�

v2

∂

∂v

[
m

mf
f v2F2 + v3

3
(E1 + F4)

∂f

∂v

]
. (5.87)

Finally, if f (vf ) is Maxwellian,(
∂f

∂τ

)
c

= 1

x2

∂

∂x

[
2xG(x)

(
2x
m

mf
f + ∂f

∂x

)]
, (5.88)

where x = v/(
√

2σf ) as before and

τ ≡ t

t0
, t0 = 25/2

σ 3
f

n�
=

√
2σ 3
f

πG2m2
f n ln�

; (5.89)

t0 is 4/3 times the relaxation time defined in equation (5.61).
Evolution of stellar systems due to encounters is properly the subject of chap-

ter 7, but it is natural to ask here what equation (5.88) implies about the steady-state
form of f . A “zero-flux” solution is obtained by setting

2x
m

mf
f + ∂f

∂x

to zero. Upon integration,

f (v) = f0e
−v2/2σ 2

, σ 2 = mf

m
σ 2
f . (5.90)
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The steady-state velocity distribution is Maxwellian, and the velocity dispersion
satisfies the “equipartition” condition m〈v2〉 = mf 〈v2

f 〉.
Following Rosenbluth, MacDonald and Judd [465], we now present a general

method for expressing the local Fokker–Planck equation in any velocity-space co-
ordinates. We ignore the nondominant terms in the diffusion coefficients by “taking
the logarithmic term out of the integral.” In addition, the diffusion coefficients al-
ready derived will be generalized, in an obvious way, to the case that the field stars
have a variety of masses. We define fb(vf ) as the phase-space number density of
field stars of mass mb.

Begin by returning to equation (5.19) for the dynamical friction coefficient. That
equation gave the rate of change of v in the direction of the test particle’s motion.
A straightforward generalization gives the dynamical friction coefficient along any
of the three Cartesian directions:

〈�vi〉 = −�
∑
b

(
m+mb

mb

)∫
fb(vf )

V 2
(ei · e′

1)dvf , (5.91)

where (e, e′) are the orthogonal basis vectors defined above, oriented, respectively,
along the fixed axes, and such that e′

1 is parallel to the relative velocity vector V .
Equation (5.91) can be written

〈�vi〉 =�′ ∑
b

mb(m+mb)
∂hb

∂vi
, (5.92a)

hb(v)≡
∫

fb(vf )∣∣v − vf
∣∣dvf , (5.92b)

where �′ ≡ 4πG2 ln�. A similar representation is possible for the second-order
coefficients, if the nondominant terms are ignored:

〈�vi�vj 〉 =�′ ∑
b

m2
b

∂2gb

∂vi∂vj
, (5.93a)

gb(v)≡
∫
fb(vf )

∣∣v − vf
∣∣ dvf . (5.93b)

In the special case of an isotropic f (vf ), we can replace ∂/∂vi in these expressions
by (vi/v)(d/dv); the three diffusion coefficients already derived are then express-
ible in the compact forms

〈�v‖〉 =�′ ∑
b

mb(m+mb)
dhb

dv
, (5.94a)

〈(�v‖)2〉 =�′ ∑
b

m2
b

d2gb

dv2
, (5.94b)

〈(�v⊥)2〉 = 2�′

v

∑
b

m2
b

dgb

dv
, (5.94c)
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where

hb(v)= 4πv [I2(v)+ J1(v)] , (5.95a)

gb(v)= 4πv3

3
[3I2(v)+ I4(v)+ 3J3(v)+ J1(v)] (5.95b)

and

In(v)=
∫ v

0

(vf
v

)n
fb(vf )dvf , (5.96a)

Jn(v)=
∫ ∞

v

(vf
v

)n
fb(vf )dvf . (5.96b)

Returning to the case of a general f (vf ), and writing the encounter term in the
Fokker–Planck equation (5.80) in terms of g and h,

1

�′

(
∂f

∂t

)
c

= − ∂

∂vi

[
f
∑
b

mb (m+mb)
∂hb

∂vi

]

+ 1

2

∂2

∂v2
i

[
f
∑
b

m2
b

∂2gb

∂vi∂vj

]
. (5.97)

Equation 5.97 is expressed in Cartesian coordinates. Let vi , i = 1, 2, 3 be general
velocity-space coordinates; writing the index as a superscript indicates that v trans-
forms as a contravariant vector.10 The velocity-space metric associated with these
coordinates is aij where

ds2 =
∑
ij

aij dv
idvj (5.98)

and ds is the distance between two points whose coordinates differ by dv1, dv2,
dv3. For the remainder of this section, we adopt the summation convention: appear-
ance of an index twice in a single term implies a summation over all its possible
values. Hence ds2 = aij dv

idvj .
The quantity

T i = 〈�vi〉 = �′ ∑
b

mb(m+mb)
∂hb

∂vi
(5.99)

clearly transforms as a contravariant vector between different Cartesian coordinate
systems, and the quantity

Sij = 〈�vi�vj 〉 = �′ ∑
b

m2
b

∂2gb

∂vi∂vj
(5.100)

as a contravariant tensor. The invariant form of the Fokker–Planck encounter term
is therefore (

∂f

∂t

)
c

= − (
f T i

)
;i +

1

2

(
f Sij

)
;ij , (5.101)

10The next few paragraphs make use of standard results from tensor analysis. Readers in need of a
refresher are referred to chapter 4 of Weinberg’s text [562].
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where the semicolons denote covariant differentiation. The covariant divergences
can be expressed in terms of a as

(
f T i

)
;i = a−1/2 ∂

∂vi

(
a1/2f T i

)
(5.102)

and

(
f Sij

)
;ij = a−1/2 ∂2

∂vi∂vj

(
a1/2f Sij

)+ a−1/2 ∂

∂vj

(
a1/2�

j

ikf S
ik
)
, (5.103)

where the affine connection �jik is

�
j

ik = 1

2
ajm

(
∂amk

∂vi
+ ∂ami

∂vk
− ∂aik

∂vm

)
. (5.104)

Substituting these expressions into equation (5.101) yields(
∂f

∂t

)
c

= −a1/2

[
a1/2f

(
T i − 1

2
�ijkS

jk

)]
,i

+ 1

2
a−1/2

[
a1/2f Sij

]
,ij
, (5.105)

where the commas indicate simple derivatives, for example, x,i ≡ ∂x/∂vi . Finally,
we express T i and Sij explicitly in contravariant form as

T i =�′ ∑
b

mb(m+mb)

[
aij
∂hb

∂vj

]

≡�′aij
∂H
∂vj

, (5.106a)

Sij =�′ ∑
b

m2
b

[
aikajl

(
∂2gb

∂vk∂vl
− �mkl

∂gb

∂vm

)]

≡�′
[
aikajl

(
∂2G
∂vk∂vl

− �mkl
∂G
∂vm

)]
, (5.106b)

where

G(v) ≡
∑
b

m2
bgb(v), H(v) ≡

∑
b

mb(m+mb)hb(v). (5.107)

Equations (5.105)–(5.106), together with equations (5.92b) and (5.93b) for hb and
gb, are the desired equations.

Note that, in the case of an isotropic field-star distribution, T i and Sij can be
expressed in terms of the three Cartesian diffusion coefficients as

T i = vi

v
〈�v‖〉, (5.108a)

Sij = vivj

v2

(
〈�v2

‖〉 − 1

2
〈�v2

⊥〉
)

+ 1

2
δij 〈�v2

⊥〉. (5.108b)

A useful choice for the vi is spherical polar coordinates:

v1 = v, v2 = µ = cos θ, v3 = φ. (5.109)
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The reader may question the utility of a coordinate system that defines a preferred
direction, given that up to now we have been talking about infinite homogeneous
systems! However, before long, we will express the Fokker–Planck operator in
terms of the angular momentum as a velocity variable, and the preferred axis will
be the radius vector from the center of the galaxy to the point in question. In antic-
ipation, we ignore any dependence of f on φ, and write f = f (v, µ).

The nonzero components of the metric tensor, and its inverse, are

a11 = 1, a22 = v2(1 − µ2)−1, a33 = v2(1 − µ2),

a11 = 1, a22 = v−2(1 − µ2), a33 = v−2(1 − µ2)−1. (5.110)

The nonzero components of the affine connection are

�1
22 = −v(1 − µ2)−1, �1

33 = −v(1 − µ2), �2
12 = v−1,

�2
22 = µ

(
1 − µ2

)−1
, �2

33 = µ(1 − µ2), �3
13 = v−1,

�3
23 = −µ(1 − µ2)−1. (5.111)

The components of T i are

T 1 = �′ ∂H
∂v
, T 2 = �′v−2(1 − µ2)

∂H
∂µ

, T 3 = 0, (5.112)

and the components of Sij are

S11 =�′ ∂
2G
∂v2

,

S22 =�′v−4(1 − µ2)2
[
∂2G
∂µ2

+ v(1 − µ2)−1 ∂G
∂v

− µ(1 − µ2)−1 ∂G
∂µ

]
,

S33 =�′v−4
(
1 − µ2

)−1
(
v
∂G
∂v

− µ
∂G
∂µ

)
,

S12 =�′v−2
(
1 − µ2

) ( ∂2G
∂v∂µ

− v−1 ∂G
∂µ

)
,

S13 = S23 = 0. (5.113)

After just a bit more algebra (which we leave to the reader), equation (5.105) be-
comes

1

�′

(
∂f

∂t

)
c

= − 1

v2

∂

∂v

(
f v2 ∂H

∂v

)
− 1

v2

∂

∂µ

[
f (1 − µ2)

∂H
∂µ

]

+ 1

2v2

∂2

∂µ2

{
f

[
1

v2
(1 − µ2)2

∂2G
∂µ2

+ 1

v
(1 − µ2)

∂G
∂v

− 1

v2
µ(1 − µ2)

∂G
∂µ

]}
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+ 1

2v2

∂2

∂v2

(
f v2 ∂

2G
∂v2

)
+ 1

v2

∂2

∂µ∂v

{
f (1 − µ2)

[
∂2G
∂µ∂v

− 1

v

∂G
∂µ

]}

+ 1

2v2

∂

∂v

{
f

[
−1

v
(1 − µ2)

∂2G
∂µ2

− 2
∂G
∂v

+ 2
µ

v

∂G
∂µ

]}

+ 1

2v2

∂

∂µ

{
f

[
µ

v2
(1 − µ2)

∂2G
∂µ2

+ 2µ

v

∂G
∂v

+ 2

v
(1 − µ2)

∂2G
∂µ∂v

− 2

v2

∂G
∂µ

]}
.

(5.114)

Earlier, we derived (∂f/∂t)c in the case that f (v) and f (vf ) were isotropic, and
the field stars had a single mass mb = mf (equation 5.86). We can check that
equation (5.114) reduces to this form by setting to zero the derivatives with respect
to µ:

1

�′

(
∂f

∂t

)
c

= 1

v2

∂

∂v

[
−f

(
v2 ∂H
∂v

+ ∂G
∂v

)
+ 1

2

∂

∂v

(
f v2 ∂

2G
∂v2

)]
. (5.115)

Comparison with equations (5.94), (5.106), and (5.107) confirms the agreement;
note that equation (5.115) is slightly more general than equation (5.86) in that it
allows for a general distribution of field-star masses.

A second special case, not considered so far, is one in which f (vf ) is isotropic
but f (v) = f (v, µ) is not. This may seem unnatural, since the test and field stars
are drawn from the same population! However, to simplify numerical calculations,
it is often argued that anisotropies in the field-star distribution are less important
than those in the test distribution. In this approximation, f (vf ) can be replaced by
f (vf ), an appropriate average over µ and φ, when computing G and H; the latter
then become functions only of v, as in equation (5.95). The encounter term in the
Fokker–Planck equation is then

1

�′

(
∂f

∂t

)
c

= v−2 ∂

∂v

[
−f

(
v2 ∂H
∂v

+ ∂G
∂v

)
+ 1

2

∂

∂v

(
f v2 ∂

2G
∂v2

)]

+ v−3 ∂G
∂v

∂

∂µ

{
fµ+ 1

2

∂

∂µ

[
f
(
1 − µ2)] }. (5.116)

Almost all of the applications of the Fokker–Planck equation in the remainder
of this text will be based on equation (5.115) (isotropic f ) or equation (5.116)
(anisotropic f ).

So far in this section, we have ignored the fact that f in a steady-state galaxy
must obey Jeans’s theorem. More precisely, if changes in f and � due to grav-
itational encounters occur on a timescale much longer than a crossing time, then
f (x, v, t) at time t = t0 must be expressible as some function of the integrals of
motion in �(x, t = t0). For instance, in a spherical, nonrotating galaxy, we know
from chapter 3 that

f (x, v) = f (E,L), (5.117)

where E = (v2/2) + �(r), L = |x × v| = rv sin θ = rv(1 − µ2)1/2. If we think
of equation (5.116) as describing the evolution of f at some fixed radius r in such
a galaxy, it makes sense to adopt E and L as velocity variables instead of v and µ.
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One way to do this would be to repeat the entire derivation that began with equa-
tion (5.109), replacing (v, µ, φ) by (E,L, φ) as velocity-space variables. A second
way would be to carry out a brute-force change of variables in equation (5.105).
But it turns out to be simpler, and also more useful, to ask how the terms in equa-
tion (5.105) transform when the coordinates v1, v2, v3 are changed to the coordi-
nates V 1, V 2, V 3 [91].

We begin by writing that equation in the form(
∂f

∂t

)
c

= −a−1/2
[
a1/2f 〈�vi〉]

,i
+ 1

2
a−1/2

[
a1/2f 〈�vi�vj 〉]

,ij
, (5.118)

where

〈�vi〉 ≡ T i − 1

2
�ijkS

jk, 〈�vi�vj 〉 ≡ Sij . (5.119)

Equations (5.119) define generalized diffusion coefficients. These transform as

〈�V λ〉 = ∂V λ

∂vi
T i

− 1

2

∂V µ

∂vi

∂V ν

∂vj

(
∂V λ

∂vk

∂vl

∂V µ

∂vm

∂V ν
�klm − ∂vk

∂V ν

∂vm

∂V µ

∂2V λ

∂vl∂vm

)
Sij

= ∂V λ

∂vi
T i + 1

2

(
∂2V λ

∂vi∂vj
− ∂V λ

∂vk
�kij

)
Sij

=V λ,i T i +
1

2
V λ;ij S

ij , (5.120a)

〈�V µ�V ν〉 = ∂V µ

∂vi

∂V ν

∂vj
Sij = V

µ

,i V
ν
,j S

ij , (5.120b)

where the µ, ν, λ indices are associated with the new (V ) coordinate system and
i, j, k with the old (v) system. Equations (5.120) can be used to express the new
diffusion coefficients in terms of the T i , Sij that were already derived. The trans-
formed encounter term is then(

∂f

∂t

)
c

= −a−1/2
[
a1/2f 〈�V λ〉]

,λ
+ 1

2
a−1/2

[
a1/2f 〈�V µ�V ν〉]

,µν
, (5.121)

where a is the determinant of the metric tensor aµν corresponding to the V µ coor-
dinate system.

We illustrate the transformation by defining new velocity-space coordinates
(E,L, φ) with φ defined as in equation (5.109). The nonzero components of the
metric tensor, and its inverse, are

a11 = v−2
r , a22 = v2

r2v2
r

, a33 = L2

r2
, a12 = − L

r2v2
r

,

a11 = v2, a22 = r2, a33 = r2

L2
, a12 = L, (5.122)

where vr ≡ [
2(E −�(r))− L2/r2

]1/2
is the radial velocity, and a1/2 = L/(r2vr).

Using equation (5.120a), and the components �kij of the affine connection given in
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equation (5.111), we find

〈�E〉 =E,iT i + 1

2
E;ij Sij

=E,iT i + 1

2

[
E,ij − �kijE,k

]
Sij

= vT 1 + 1

2
S11 + v2

2(1 − µ2)
S22 + v2

2
(1 − µ2)S33. (5.123)

If we again assume that the field-star velocity distribution is isotropic, this simpli-
fies to

〈�E〉 =�′
[
v
∂H
∂v

+ 1

2

∂2G
∂v2

+ 1

v

∂G
∂v

]

= v〈�v‖〉 + 1

2
〈(�v‖)2〉 + 1

2
〈(�v⊥)2〉, (5.124)

where �′ ≡ 4πG2 ln� as above. The remaining diffusion coefficients are easily
shown to be

〈(�E)2〉 =�′v2 ∂
2G
∂v2

= v2〈(�v‖)2〉, (5.125a)

L〈�L〉=�′
[
L2

v

∂H
∂v

+ r2

2v

∂G
∂v

]

= L2

v
〈�v‖〉 + r2

4
〈(�v⊥)2〉, (5.125b)

〈(�L)2〉 =�′
[
L2

v2

∂2G
∂v2

+ 1

v

(
r2 − L2

v2

)
∂G
∂v

]

= L2

v2
〈(�v‖)2〉 + 1

2

(
r2 − L2

v2

)
〈(�v⊥)2〉, (5.125c)

〈�E�L〉 =�′L
∂2G
∂v2

= L〈(�v‖)2〉. (5.125d)

Finally, writing equation (5.121) explicitly in terms of the new variables,

a1/2

(
∂f

∂t

)
c

= − ∂

∂E

(
a1/2f 〈�E〉)+ 1

2

∂2

∂E2

(
a1/2f 〈(�E)2〉)

− ∂

∂L

(
a1/2f 〈�L〉)+ 1

2

∂2

∂L2

(
a1/2f 〈(�L)2〉)

+ ∂2

∂E∂L

(
a1/2f 〈�E�L〉) . (5.126)

5.4 GRAVITATIONAL BROWNIAN MOTION

The Fokker–Planck equation is most often used to describe the evolution of stellar
systems, after imposing the additional condition that the relaxation time is long
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compared with orbital periods. Before considering that approximation in detail, we
first discuss a problem for which such a separation of timescales is not required.

Consider a massive body (which we will call the SBH) that is located near the
center of a galaxy. The velocity of the SBH will undergo continuous small changes
due to perturbations from other stars, and as a consequence, its position will fluctu-
ate about the galaxy’s center. This motion is similar in many ways to the Brownian
motion of a pollen grain in a fluid—although as we will see, there are some distin-
guishing features. By analogy with the fluid case, we might expect the rms velocity
of the SBH to be of order the “equipartition” value; that is,

Vrms ≈
(m
M

)1/2
vrms, (5.127)

where M is the SBH’s mass, m is a typical stellar mass, and vrms is the rms stellar
velocity.

The most natural way to describe Brownian motion is via the Langevin equa-
tion, the equation of motion of a particle that moves in response to stochastic
perturbing forces [306]. It was shown by A. Einstein [133, 134] and M. V. Smolu-
chowski [550, 551] that given certain reasonable conditions, Brownian motion
could equally well be described via the Fokker–Planck equation; the function f
that appears in that equation is interpreted as the probability density of the parti-
cle’s velocity.

Following the approach of Einstein and Smoluchowski, we define f (x, v, t)
dx dv as the probability that the SBH is located in phase-space volume element
dx dv near (x, v) at time t . The evolution equation for f is equation (5.75),

Df

Dt
= ∂f

∂t
+
∑
i

vi
∂f

∂xi
−
∑
i

d�

dxi

∂f

∂vi
=
(
∂f

∂t

)
c

, (5.128)

where �(x, t) is the gravitational potential in which the SBH moves.11

We are interested in steady-state solutions, ∂f/∂t = 0. Suppose that the steady-
state f is a function only of the energy E. By Jeans’s theorem, the left-hand side of
equation (5.128) is then identically zero, and finding a steady-state solution reduces
to finding an f (E) = f

[
v2/2 +�(r)

]
for which the right-hand side is also zero

at every r and v.
When f = f (r, v), the Fokker–Planck encounter term is given by equation

(5.86). We force this term to be zero by requiring the velocity-space flux to vanish
at each r and v:

0 = f (r, v)

(
v〈�v‖〉 + 1

2
〈(�v⊥)2〉

)
− 1

2v

∂

∂v

(
v2f (r, v)〈(�v‖)2〉

)
. (5.129)

The diffusion coefficients appearing in equation (5.129) are complicated functions
of the field-star velocity distribution. But we can make use of equation (5.127),
which states our expectation that the test-particle velocity is very low compared
with σf . Expanding the diffusion coefficients about v = 0, as in sections 5.2.1

11When applied to the Brownian motion problem, equation (5.128), containing a fixed external potential,
is sometimes called the Klein–Kramers equation [289].
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and 5.2.2,

〈�v‖〉 = −Av + Bv3 + · · · ,
〈(�v‖)2〉 =C +Dv2 + · · · ,
〈(�v⊥)2〉 = 2(E + Fv2)+ · · · ,

and inserting these expressions into equation (5.129) gives

0 = f (r, v)
[
v2 (A+ 2D − F)− Bv4 + C − E

]+ (
C +Dv2

) v
2

∂f

∂v
. (5.130)

Setting v = 0 implies C = E. Keeping only the lowest-order terms in v,

0 = f (r, v)v2 (A+ 2D − F)+ v
C

2

∂f

∂v

≈Av2f + v
C

2

∂f

∂v
, (5.131)

where the second expression makes use of the fact that A, representing dynamical
friction, is larger than D or F by factors of order M/m 	 1. The solution is

f (r, v) = g(r)e−v
2/2σ 2

, σ 2 = C

2A
. (5.132)

Finally, we obtain f = f (E) by a judicious choice of g(r):

f (r, v)= f0e
−�(r)/σ 2

e−v
2/2σ 2

= f0e
−E/2σ 2

. (5.133)

Perhaps not surprisingly, the steady-state probability density is just the Boltzmann
distribution.

Figure 5.6 shows the results of numerical experiments in which a massive body
was placed initially at the center of a galaxy model. The figure verifies that the dis-
tribution of instantaneous velocities of the massive particle,N(v), is well described
by the Maxwell–Boltzmann formula,

N(v)dv = 4πv2
(
2π〈v2〉/3)−3/2

exp
(−3v2/2〈v2〉) dv . (5.134)

In figure 5.6, the rms velocity of the massive particle, which appears as an ar-
gument of equation (5.134), was computed directly from the measured velocities.
We would like to evaluate this quantity theoretically from equation (5.132), which
tells us that σ = (C/2A)1/2. In sections 5.2.1 and 5.2.2 we computed A and
C assuming that the field-star velocity distribution was Maxwellian. Using equa-
tions (5.37) and (5.59) from that section together with (5.133), we find

V 2
rms = 3C

2A
= m

M
v2

rms, (5.135)

precisely what we might have expected on the basis of “equipartition” [526]. Inter-
estingly, Vrms is independent of the form of �(r), and is the same value that would
have been obtained in the case of no confining potential.

However, in order to make statements about the SBH’s position, we need to
assume a form for�(r). At this point we cannot ignore one difference between the
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Figure 5.6 The thick curves show the measured distribution of instantaneous velocities, V ,
of a massive particle at the center of four N -body models [360]. The galaxy
models differed in terms of the density of stars near the center: n(r) ∝ r−γ .
The thin curves are Maxwell–Boltzmann distributions; the rms velocity in the
Maxwell–Boltzmann formula (5.134) was computed directly from the time series
of measured velocities.

fluid and gravitational cases. An SBH at the center of a galaxy will carry with it a
retinue of bound stars: some fraction of the stars within its gravitational influence
radius rh = GM•/σ 2

f . Since rh ≈ rm (section 2.2), it follows that the stellar mass
within rh is ∼ 2M•, hence the bound mass is comparable toM•. (Exceptions would
be galaxies with a “hole” around the SBH, or some other peculiar distribution.)
As the SBH moves in response to gravitational perturbations, it will carry with
it the bound stars, increasing its effective mass in equation (5.135), and lowering
Vrms. The effective potential in which the SBH moves will be the original stellar
potential minus the contribution from the bound stars. This argument suggests that
the effective potential is rather shallow; a reasonable form might be

�(r) = �(0)+ 1

2
�2r2, (5.136)

the potential corresponding to a constant-density core; here � = [
4πGρ/3

]1/2
,

with ρ given roughly by the density at the influence radius. For this �(r), the
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distributions in position and velocity, equation (5.133), are both Maxwellian, and
the relation between the rms displacements in radius and velocity is

〈V 2〉 = �2〈r2〉, (5.137)

a result that can also be derived directly from the differential equation (5.128) after
inserting equation (5.136) for �(r) and taking moments over r and v.

The bound stars affect the Brownian motion in a second way [360]. Ignoring
perturbations from the unbound stars, the center of mass of the bound subsystem is
fixed; that is,

MV (t)+m
∑
bound

vi (t) = 0, (5.138)

where V and vi are, respectively, the velocity of the SBH and of a bound star, with
respect to the center of mass of the bound system (assumed to be at rest). Assuming
no correlations between the motions of the bound stars, equation (5.138) implies

〈V 2〉 = Mbm

M2
〈v2〉 (5.139)

with 〈v2〉 the mean square velocity of the bound stars and Mb their total mass. If
the latter is comparable toM , as it is likely to be, then the contribution of the bound
stars to the SBH’s Brownian motion will be comparable to the contribution from
unbound stars. Furthermore, since 〈v2〉 for the bound population is determined in
large part by the gravitational force from the SBH itself, the dependence of the
Brownian velocity on M will no longer be linear: instead one finds [360]

〈V 2〉 ∝ M−1/(3−γ ) (5.140)

in models where the density of stars around the SBH falls off as n(r) ∝ r−γ .
Yet another difference between the fluid and gravitational cases is the possibil-

ity of non-Maxwellian field-star velocity distributions [84]. While the result that
the probability density of v for a massive body is Maxwellian (equation 5.132)
is robust—it is a consequence of the linear dependence of the dynamical friction
coefficient on v for low v (or “Stokes’s law” in the fluid case)—the width of that
Maxwellian depends on the details of the field-star velocity distribution and can dif-
fer from the value in equation (5.135) which was derived assuming a Maxwellian
f (vf ). The more general result is [354]

σ 2 = m

M

∫∞
0 dvf vf f (vf ) ln

(
1 + p2

maxv
4
f

G2M2

)
∫∞

0 dvf
(−df/dvf ) f (vf ) ln

(
1 + p2

maxv
4
f

G2M2

) . (5.141)

Reasonable choices for f (vf ) and pmax typically imply larger values of 〈V 2〉/〈v2〉
than in equation (5.135).

So far we have assumed a single value m for the field-star mass. Suppose in-
stead that there is a distribution of field-star masses. If field stars of all masses are
assumed to have the same velocity distribution, it is straightforward to show that

〈V 2〉 = m̃

M
〈v2〉, (5.142)
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where m̃ is defined in equation (5.62b). If the field-star mass function contains
even a small number of “massive perturbers” [422] with m 	 〈m〉, the Brownian
displacement of the test mass can be substantially increased.

Would the Brownian motion of an SBH be observable? In the case of the Milky
Way SBH, the predicted amplitude of the velocity fluctuations is

(�V )rms ≈ 0.2

(
m̃

1M�

)1/2 (
M

4 × 106M�

)−1/2

km s−1 (5.143)

and the rms displacement is

(�r)rms ≈ 5

(
ρ

105M� pc−3

)−1/2(
m̃

1M�

)1/2(
M

4 × 106M�

)−1/2

mpc.

(5.144)

These are small numbers. A displacement as small as ∼ 0.01 pc would be very
difficult to measure given uncertainties about the “center” of the Milky Way. In the
case of (�V ), current upper limits on the peculiar velocity of the radio source Sgr
A* are a few kilometers per second [453].

Gravitational Brownian motion becomes much more interesting in the case of
putative, intermediate-mass black holes (IBHs) at the centers of globular clusters
(section 2.5). Setting M ≈ 103M�, and using the fact that the most massive glob-
ular clusters have σf ≈ 20 km s−1, core radii rc ≈ 0.5 pc, and central densities
ρ ≈ 105M� pc−3, we predict

(�V )rms ≈ 1

(
M

103m̃

)−1/2 (
σf

20 km s−1

)
km s−1, (5.145a)

(�r)rms ≈ 0.03

(
ρ

105M� pc−3

)−1/2(
M/m̃

103M�

)−1/2(
σf

20 km s−1

)
pc.

(5.145b)

Thus (�r)rms ≈ 0.1rc. As discussed in chapter 2, there are currently no kinemati-
cal data that compel belief in IBHs in globular clusters. An alternative approach is
to search for the (possibly very weak) radio and X-ray emission that would result
from accretion of ambient gas onto a compact object. Such studies need to examine
all sources within a distance ∼ (�r)rms from the cluster center. If and when a can-
didate source is identified, its measured displacement could be used to construct a
probability function for its mass [360].

5.5 ORBIT-AVERAGED FOKKER–PLANCK EQUATION

The Brownian motion problem discussed above is one of only a few in galaxy
dynamics for which the Fokker–Planck equation admits an exact solution. Most ap-
plications of the Fokker–Planck equation to stellar systems invoke an additional ap-
proximation: that the relaxation time is long compared with orbital periods. In this
approximation, the phase-space density f is assumed to satisfy Jeans’s theorem,
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f (x, v) = f (E, I2, . . .), at any given time, but the functional form of f is al-
lowed to change gradually with time in response to encounters. Because a star is
assumed to complete many orbits during the time that f changes appreciably, the
diffusion coefficients that appear in the (local) Fokker–Planck equation can be av-
eraged over each orbit, resulting in an evolution equation that depends only on
the integrals of motion and the time as independent variables—the orbit-averaged
Fokker–Planck equation [323, 91].

We begin with equation (5.118), the local Fokker–Planck encounter term ex-
pressed in generalized velocity-space coordinates vi :

a1/2

(
∂f

∂t

)
c

= [
a1/2f 〈�vi〉]

,i
+ 1

2

[
a1/2f 〈�vi�vj 〉]

,ij
(5.146)

with a = det(aij , the determinant of the velocity-space metric. Now, from a theo-
rem of integral calculus [258], we also know that a1/2dv is an invariant velocity-
space volume element. This means that the number of stars in phase-space volume
element dx dv is given by

dN = f (x, v, t)dx a1/2dv. (5.147)

Suppose we choose as velocity-space variables the integrals of motion in the unper-
turbed problem. Then the unperturbed f is constant over the configuration-space
volume filled by an orbit. Integrating over this volume, we obtain

N(E, I2, . . .) = f (E, I2, . . .)

∫
orb
a1/2dx, (5.148)

whereN(E, I2, . . .)dE dI2 . . . is the number of stars in the interval dE dI2 . . . cen-
tered at (E, I2, . . .).

We now invoke our assumption that the relaxation time is long compared with
orbital periods, and approximate f in equation (5.146) by f (E, I2, . . .); in other
words we ignore the small variations in f along an orbit due to encounters. The
orbit-averaged Fokker–Planck equation is obtained by integrating equation (5.146)
over the configuration-space volume filled by an orbit:∫

orb
a1/2

(
∂f

∂t

)
c

dx = −
∫

orb

∂

∂E

(
a1/2f 〈�E〉) dx + · · · . (5.149)

We define the left-hand side as (∂N/∂t)enc. Each term on the right-hand side is
treated in the same manner and so we consider only the first. Invoking the Leibniz–
Reynolds transport theorem [436], we can exchange the order of integration and
differentiation: (

∂N

∂t

)
enc

= − ∂

∂E

(
f

∫
orb

〈�E〉a1/2dx

)
+ · · · . (5.150)

We then define the orbit average of the diffusion coefficient 〈�E〉 as

〈�E〉t ≡
∫

orb〈�E〉a1/2dx∫
orb a

1/2dx
. (5.151)
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Evidently, 〈�E〉t is an average of 〈�E〉 that weights each region of the orbit by the
time the star spends in that region. Then(

∂N

∂t

)
enc

= − ∂

∂E

[
f

(∫
orb
a1/2dx

)
〈�E〉t

]
+ · · ·

= − ∂

∂E
(N〈�E〉t )+ · · · . (5.152)

Repeating for the other terms on the right-hand side of equation (5.149) gives the
orbit-averaged Fokker–Planck equation,(

∂N

∂t

)
enc

= − ∂

∂E
(N〈�E〉t )+ 1

2

∂2

∂E2

(
N〈(�E)2〉t

)− · · · . (5.153)

Before proceeding further, an important caveat is in order. The orbit-averaged
Fokker–Planck equation is a good example of what computer scientists call a
“kludge.”12 The equation is nonlocal only in a very limited sense. While it is true
that the diffusion coefficients are averaged over the volume filled by an orbit, no
account is taken of the fact that the perturbations acting on a test star come from
stars in regions that may have very different properties than those near the test star.
Quantities like 〈�v⊥〉, from which the orbit-averaged coefficients are derived, are
computed under the assumption that the local properties (density, velocity distribu-
tion) apply everywhere, in spite of the fact that those same quantities are assumed to
vary along the orbit. Because of this basic inconsistency, there is no sense in which
the orbit-averaged Fokker–Planck equation tends (in some large-N limit, say), to a
correct description of the evolution of an inhomogeneous system.

5.5.1 Phase-space density a function of E and L

We can apply the formalism derived in the previous section to the case of a spherical
galaxy in which f = f (E,L). Let the third velocity-space variable be the angle φ
defined in equation (5.109). The determinant of the metric tensor is

a1/2 = L

r2vr
, (5.154)

and the orbit averages look like

〈�E〉t =
∫ r+
r−

4πr2dr(L/r2vr)〈�E〉∫ r+
r−

4πr2dr(L/r2vr)

= 2

P

∫ r+

r−

dr

vr
〈�E〉. (5.155)

The quantities r−(E,L) and r+(E,L) are the turning points of the orbit, that is, the
roots of

0 = 2 [�(r)− E] − L2

r2
, (5.156)

12“An ill-assorted collection of poorly matching parts, forming a distressing whole” [212].
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and P is the radial period,

P(E,L) = 2
∫ r+

r−

dr

vr
. (5.157)

The relation between N(E,L) and f (E,L) (the dependence on m and t is under-
stood) is

N(E,L)dE dLdφ = 2f (E,L)

[∫ r+

r−
dr4πr2a1/2

]
dE dLdφ; (5.158)

the factor of two accounts for the fact that orbits of a given E and L can have two
signs of the radial velocity at any radius. Thus

N(E,L)dE dL= 16π2Lf (E,L)

[∫ r+

r−

dr

vr

]
dE dL

= 8π2LP(E,L)f (E,L)dE dL. (5.159)

In terms of these quantities, the orbit-averaged Fokker–Planck equation for f =
f (E,L) is

∂N

∂t
= − ∂

∂E
(N〈�E〉t )+ 1

2

∂2

∂E2

(
N〈(�E)2〉t

)− ∂

∂L
(N〈�L〉t )

+ 1

2

∂2

∂L2

(
N〈(�L)2〉t

)+ ∂2

∂E∂L
(N〈�E�L〉t ) . (5.160)

Using the formulas (5.125) derived in the previous section for the local (E,L)
diffusion coefficients, it is straightforward to derive explicit expressions for the
orbit-averaged diffusion coefficients that appear in equation (5.160).

Rather than give those expressions here,13 we choose to make yet another change
of variables [91]. Instead of (E,L), we adopt (E,R), where

E = −E = −v
2

2
+ ψ(r), R = L2

L2
c(E)

; (5.161)

here ψ(r) = −�(r) and Lc(E) is the maximum angular momentum of an orbit
of energy E—that is, the angular momentum of a circular orbit. E is the binding
energy and has the desirable property that it is positive for bound orbits. R is a
dimensionless angular momentum variable; for every positive E , the range of R is
[0,1], with the endpoints of this interval corresponding to radial and circular orbits,
respectively. Clearly,

L2
c(E) = −r3

c

dψ

dr

∣∣∣∣
rc

, (5.162)

where rc(E) is the radius of the circular orbit of energy E ; rc(E) is determined by
the equation

2 [ψ(rc)− E] + rc
dψ

dr

∣∣∣∣
rc

= 0, (5.163)

13They are given by various authors, e.g., [491].
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while the two turning points r±(E) are the solutions to

2
[
ψ(r±)− E]− L2

r2±
= 0. (5.164)

The velocity-space volume element is

2πa1/2dE dR = 2π
L2
c(E)
r2vr

dE dR (5.165)

and the definition of an orbit-averaged quantity is the same as in equation (5.151).
The number density in (E,R) space is related to f by

N(E,R)= 4π2L2
c(E)P (E,R)f (E,R)

≡J (E,R)f (E,R). (5.166)

The orbit-averaged Fokker–Planck equation expressed in terms of (E,R) is ob-
tained by simply replacing E by E and L by R in equation (5.160), although of
course the new diffusion coefficients need to be derived. Clearly 〈�E〉 = −〈�E〉,
〈(�E)2〉 = 〈(�E)2〉, and using the transformation equations (5.120),

〈�R〉 = g′

g
R〈�E〉 + 2gL〈�L〉 + g′′

2g
R〈(�E)2〉 + g〈(�L)2〉

+ 2g′L〈�E�L〉, (5.167a)

〈(�R)2〉 =
(
g′

g

)2

R2〈(�E)2〉 + 4gR〈(�L)2〉 + 4g′RL〈�E�L〉,
(5.167b)

〈�E�R〉 = −g
′

g
R〈(�E)2〉 − 2gL〈�E�L〉. (5.167c)

We have defined g(E) = 1/L2
c(E); a prime denotes differentiation with respect

to E.
It is convenient to write the Fokker–Planck equation in “flux-conservation” form:

∂N

∂t
= −∂FE

∂E − ∂FR
∂R , (5.168)

where the components of the flux vector in (E,R) space are given by

−FE =DEE ∂f
∂E +DER

∂f

∂R +mDEf,

−FR=DRE ∂f
∂E +DRR

∂f

∂R +mDRf, (5.169)
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and

DE = −J 〈�E〉t + 1

2

∂

∂E
(J 〈(�E)2〉t

)+ 1

2

∂

∂R (J 〈�E�R〉t ) ,

DEE = 1

2
J 〈(�E)2〉t ,

DR= −J 〈�R〉t + 1

2

∂

∂R
(J 〈(�R)2〉t

)+ 1

2

∂

∂E (J 〈�E�R〉t ) ,

DRR= 1

2
J 〈(�R)2〉t ,

DER=DRE = 1

2
J 〈�E�R〉t . (5.170)

When computing the diffusion coefficients in the anisotropic Fokker–Planck
equation, it is a common practice to equate the field-star distribution function with
f , an average over angular momentum of the test-star distribution. There are var-
ious ways to do this. One possibility is to average f over L at each (E, r). Using
equation (5.165) for the (E,R) velocity-space volume element, the result is [89]

f (E, r) ≡ 1

2R1/2
max

∫ Rmax

0

f (E,R)
(Rmax −R)1/2 dR, (5.171)

where Rmax(E, r) = 2r2 [ψ(r)− E] /L2
c(E) is the maximum allowed value of R

for an orbit of energy E which passes through the radius r . This f has the compu-
tationally undesirable property that it depends on r as well as E . A second, simpler
choice is [491]

f (E) ≡
∫ 1

0
f (E,R)dR. (5.172)

The second definition is less well justified, but it greatly simplifies the computation
of the orbit-averaged diffusion coefficients. In what follows we will allow f to have
the more general dependence implied by equation (5.171).

One more item remains to be dealt with before writing explicit expressions for
the terms in equation (5.170). We would like to allow for a continuous distribution
of stellar masses, rather than the discrete distribution that was assumed in writing
equations (5.107). Accordingly, let f (x, v,m)dm be the number density in phase
space of stars with masses in the range m to m + dm. We define the first two
moments over mass of f as

ν(E,L, t)≡
∫
f (E,L,m, t)m dm, (5.173a)

µ(E,L, t)≡
∫
f (E,L,m, t)m2dm, (5.173b)

and ν and µ are the angular-momentum averages of ν and µ.
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The flux coefficients that appear in the (E,R) orbit-averaged equation are then

DE = −8π2�′L2
c

∫
dr

vr
N1,

DEE = 8π2

3
�′L2

c

∫
dr

vr
v2 (M0 +M2) ,

DR= −16π2�′Rr2
c

∫
dr

vr

(
1 − v2

c

v2

)
N1,

DRR= 16π2

3
�′R

∫
dr

vr

{
2
r2

v2

[
v2
t

(
v2

v2
c

− 1

)2

+ v2
r

]
M0

+ 3r2 v
2
r

v2
M1 + r2

v2

[
2v2

t

(
v2

v2
c

− 1

)2

− v2
r

]
M2

}
,

DER= 16π2

3
�′L2

∫
dr

vr

(
v2

v2
c

− 1

)
(M0 +M2) . (5.174)

In each of these expressions the radial integral extends from r− to r+. We have de-
fined vc, the velocity of a circular orbit, v2

c = L2
c/r

2
c , and vt , the tangential velocity,

v2
t = v2 − v2

r . The functions M0, N1,M1, and M2 are

M0(E, r)= 4π
∫ E

0
µ(E ′, r)dE ′,

N1(E, r)= 4π
∫ ψ

E

(
ψ − E ′

ψ − E
)1/2

ν(E ′, r)dE ′,

M1(E, r)= 4π
∫ ψ

E

(
ψ − E ′

ψ − E
)1/2

µ(E ′, r)dE ′,

M2(E, r)= 4π
∫ ψ

E

(
ψ − E ′

ψ − E
)3/2

µ(E ′, r)dE ′. (5.175)

These expressions will underlie much of the discussion of loss-cone dynamics in
chapter 6 and of collisional evolution in chapter 7.

5.5.2 Phase-space density a function of E; the Bahcall–Wolf solution

After a few relaxation times, the distribution of velocities in a galaxy will be ap-
proximately isotropic, implying f = f (E). This seemingly innocuous statement
begs the question of whether the relaxation time at the center of any galaxy is short
enough for isotropization to occur! For instance, in our own galaxy—which con-
tains one of the densest nuclei known—the relaxation time appears to nowhere fall
below about 1010 yr (figure 7.1b). But the observed trend of Tr(rh) with galaxy
luminosity, figure 3.1, suggests that nuclear relaxation times may be shorter in
galaxies with spheroids fainter than that of the Milky Way. And as discussed in
chapter 3, it is possible that collisionless processes acting during the formation of a
galaxy could have resulted in velocity distributions that are close to isotropic.
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But unless the relaxation time is much shorter than the age of the galaxy—
something which may not be true in any nucleus—there is no strong justifica-
tion for ignoring the dependence of f on angular momentum. The approximation
f = f (E, t) can nevertheless be motivated by the following argument. Roughly
speaking, the mean distance of a star from the center of a galaxy is determined by
its energy, while its distance of closest approach to the center is determined by both
its energy and its angular momentum. If we are primarily concerned with the evo-
lution of a galaxy’s density profile due to encounters, then to a first approximation,
it is adequate to look at the evolution of N(E), ignoring the dependence of f on L.
On the other hand, if our primary concern is the rate of supply of stars to the very
center (as in the next chapter), then changes in L are crucial.

There are various ways to derive the isotropic version of equation (5.160), and
the reader who has followed the developments of the last few sections should be
able to figure out at least one or two. But perhaps the easiest way is to integrate
equation (5.160) over angular momenta. The result, expressed in flux-conservation
form, is

∂N

∂t
= −∂FE

∂E , (5.176a)

FE = −DEE ∂f
∂E −mDEf, (5.176b)

DE = −16π3�′
∫ ψ(0)

E
dE ′p(E ′)ν(E ′, t), (5.176c)

DEE = 16π3�′
[
q(E)

∫ E
0
dE ′µ(E ′, t)+

∫ ψ(0)

E
dE ′q(E ′)µ(E ′, t)

]
.

(5.176d)

Here N , the number of stars per unit energy, is related to f via

N(E,m, t)=
∫ Lc(E)

0
N(E, L,m, t)dL (5.177a)

= 4π2p(E)f (E,m, t), (5.177b)

and the function p(E), which has already been defined in equation (3.52), is

p(E) =
∫ L2

c (E)

0
P(E, L)dL2 = 4

∫ ψ−1(E)

0
v(r, E)r2dr; (5.178)

ψ−1(E) is the inverse of the potential function ψ(r) = −�(r), and v = [2ψ(r)
−2E]1/2. The function q(E) is

q(E) =
∫ ψ(0)

E
dE ′p(E ′) = 4

3

∫ ψ−1(E)

0
dr r2v3(r, E). (5.179)

Orbit averages now take the form

〈�E〉t = p−1
∫ ψ−1(E)

0
〈�E〉vr2dr. (5.180)
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The functions ν(E, t) and µ(E, t) are defined as in equation (5.173):

ν(E, t)≡
∫
f (E,m, t)m dm, (5.181a)

µ(E, t)≡
∫
f (E,m, t)m2dm; (5.181b)

thus ν is the mass density in phase space and µ = m̃ν, with m̃ defined as in equa-
tion (5.62b).

Equations (5.176)–(5.179) are simple enough that one is tempted to look for
steady-state solutions, ∂N/∂t = 0. Analytic solutions do not exist for arbitrary
ψ(r), but one special case is especially interesting: motion near an SBH, where the
gravitational potential is

ψ(r) = GM•
r

.

In this case, the functions p(E) and q(E) become

p(E)=
√

2π

4
G3M3

•E−5/2, (5.182a)

q(E)=
√

2π

6
G3M3

•E−3/2. (5.182b)

(Since P(E, L) = P(E) in this case, p(E) can be computed most simply from
equation (3.56), p(E) = L2

c(E)P (E), using L2
c = GM•a, P = 2πa3/2/

√
GM•,

and E = GM•/(2a).) We further assume a single mass group so that ν = mf and
µ = m2f .

Since ψ(r), p(E) and q(E) are all power laws, it is natural to attempt a solution
of the form f (E) = f0Ep. With this ansatz, equations (5.176) and (5.182) imply

FE(E)= −4
√

2π4�G3M3
•f

2
0 E2p−3/2g(p), (5.183)

g(p)= 2(4p − 1)

3 − 5p − 4p2 + 4p3
, −1 < p < 1/2,

with � ≡ m2�′ = 4π2G2m2 ln�.
Now it is apparent from equation (5.176a) that two different sorts of steady-state

solution might exist:

I.
∂FE
∂E = 0.

II. FE = 0.

A solution of the first type is a “constant-flux” solution, while the second is a “zero-
flux” solution; of course, the second is a special case of the first. The flow of stars
into the SBH implies an outward flux of energy, and so it would seem natural to
consider solutions of type I [417]. According to equation (5.183), a constant flux
requires p = 3/4; but for this value of p, the integrals that define DE and DEE are
divergent: the constant flux is an infinite flux!
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It is possible that we were led to this unphysical result by our assumption of a
power-law form for f (E). But there is another way out: we can set the flux identi-
cally to zero by choosing p such that g(p) = 0, that is, by setting p = 1/4. This
value of p is mathematically acceptable.

The configuration-space density corresponding to f (E) = f0E1/4 is

n(r) =
∫
f (v, r)(4πv2dv) = 4π

√
2f0

∫ ψ(r)

0
E1/4

√
ψ(r)− E dE

or

n(r) ∝ r−7/4. (5.184)

This solution (f ∝ E1/4, n ∝ r−7/4) is often referred to as a Bahcall–Wolf cusp
[14]. As we will see in chapter 7, this scale-free solution differs only slightly from
solutions that impose more proper boundary conditions near the SBH.

5.5.3 Axisymmetric nuclei

The orbit-averaged Fokker–Planck equation (5.153) was derived from the local
equation (5.126) by an integration over the configuration-space volume filled by
an orbit. That operation requires, at the very least, some knowledge about the un-
perturbed orbits—what regions they fill, for instance. From the point of view of
computational feasibility, one requires considerably more information: analytic ex-
pressions for the isolating integrals of motion in terms of position and velocity.
Without such expressions, the elegant formalism presented above for the derivation
of the generalized diffusion coefficients is essentially useless.

Unfortunately, spherical potentials are the most general for which one has access
to analytic expressions for all the isolating integrals. In axisymmetric potentials,
motion always respects two integrals: the energy, and the component Lz of the
angular momentum along the symmetry axis. Two isolating integrals are not suffi-
cient to make orbits regular in a three-degrees-of-freedom system, but as discussed
in section 3.4, numerical integrations reveal that most orbits in axisymmetric po-
tentials are regular, implying the existence of a third integral. However, except in
the limiting case of motion near the SBH, as treated in section 4.4.2, simple and
general expressions for that integral are not available, nor does the extra integral
exist for all orbits.

Because E and Lz are the only analytic integrals in most axisymmetric poten-
tials, Fokker–Planck treatments of axisymmetric galaxies have generally assumed
f = f (E,Lz) [205, 132, 162]. At first blush, such an approach might seem no
less justified than setting f = f (E) in the Fokker–Planck equation for spherical
galaxies. But there is one important difference. Gravitational encounters drive the
local velocity distribution toward isotropy. In the spherical geometry, this is equiva-
lent to the statement f → f (E, t). No such special role is played by a distribution
function of the form f (E,Lz, t), since the implied three-dimensional velocity dis-
tribution is anisotropic: only the two velocity dispersions in the meridional plane,
σ� and σz , are required to be equal when f = f (E,Lz) (section 3.4). Forcing
f to remain a function of E and Lz in the face of encounters therefore places an
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arbitrary and probably unphysical constraint on the manner in which f is allowed
to evolve. Nevertheless, it is the best that can be done in general.

As always, there are many ways to proceed. One starting point would be the
spherical polar coordinates of equation (5.109). But it is probably simpler to define
new coordinates that reflect the axisymmetric geometry [132]. Keeping with the no-
tation defined in chapter 3, let (�, z, ϕ) be configuration-space coordinates, where
� 2 = x2 +y2 and, as always, the z-axis is the axis of symmetry. As velocity-space
variables we take

v1 = v, v2 = ψ, v3 = vϕ. (5.185)

Here v2 = v2
x+v2

y+v2
z , vϕ = v ·eϕ = (yvx−xvy)/� , and tanψ = v�/vz specifies

the orientation of the velocity vector in the meridional�–z plane. In terms of these
variables, Lz = �vϕ . Assuming no integrals aside from E and Lz , the velocity-
space volume element is simply

d3v = 2π

�
dE dLz (5.186)

and the relation betweenN(E,Lz) and f (E,Lz) (the dependence onm and t being
understood) is

N(E,Lz) dE dLz =
∫
dx (f dv)

=
∫
d� 2π�

∫
dz × 2πdE dLz

�
f (E,Lz)

=A(E,Lz)f (E,Lz)dE dLz, (5.187)

where

A(E,Lz) = 4π2
∫ ∫

M

d� dz (5.188)

and the subscript M denotes the region in the meridional plane that is accessible to
an orbit with specified E and Lz .

The nonzero components of the metric tensor, and its inverse, are

a11 = v2/v2
M, a22 = v2

M, a33 = v2/v2
M, a13 = a31 = −vvϕ/v2

M,

a11 = 1, a22 = v−2
M , a33 = 1, a13 = a31 = vϕ/v, (5.189)

where vM = (v2
� + v2

z )
1/2 is the velocity parallel to the meridional plane. The

nonzero components of the affine connection are

�1
11 = −v2

ϕ/(vv
2
M), �1

22 = −v2
M/v, �1

31 = vϕ/v
2
M,

�1
33 = −v/v2

M, �2
12 = v/v2

M, �2
32 = −vϕ/v2

M. (5.190)

The components of T i are

T 1 = �′
[
∂H
∂v

+ vϕ

v

∂H
∂vϕ

]
, T 2 = �′ 1

v2
M

∂H
∂�

, T 3 = �′
[
∂H
∂vϕ

+ vϕ

v

∂H
∂v

]
,

(5.191)
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and the nonzero components of Sij are

S11 =�′
(
∂2G
∂v2

+ v2
ϕ

v2

∂2G
∂v2

ϕ

+ 2vϕ
v

∂2G
∂v∂vϕ

)
,

S22 =�′ 1

vv2
M

∂G
∂�

,

S33 =�′
(
v2
ϕ

v2

∂2G
∂v2

+ ∂2G
∂v2

ϕ

+ v2
M

v3

∂G
∂v

+ 2vϕ
v

∂2G
∂v2

ϕ

)
,

S13 =�′
[
vϕ

v

∂2G
∂v2

+
(

1 + v2
ϕ

v2

)
∂2G
∂v∂vϕ

+ vϕ

v

∂2G
∂v2

ϕ

]
. (5.192)

The diffusion coefficients involving Lz immediately follow by inserting these ex-
pressions into equations (5.120):

〈�Lz〉 = �′
[
Lz

v

∂H
∂v

−�
∂H
∂vϕ

]
, (5.193a)

〈(�Lz)2〉 = �′
[
L2
z

v2

∂2G
∂v2

+ � 2v2 − L2
z

v3

∂G
∂v

+�

(
� + 2Lz

v

)
∂2G
∂v2

ϕ

]
,

(5.193b)

〈�E�Lz〉 = −�′
[
Lz
∂2G
∂v2

+ v�

(
1 + v2

ϕ

v2

)
∂2G
∂v∂vϕ

+ Lz
∂2G
∂v2

ϕ

]
. (5.193c)

Using equation (5.151), the orbit-averaged diffusion coefficients look like

〈�Lz〉t =
∫ ∫

M
〈�Lz〉(2π/�)� d� dz∫ ∫
M
(2π/�)� d� dz

=
∫ ∫

M
〈�Lz〉d� dz∫ ∫
M
d� dz

. (5.194)

Note the nonintuitive result that the weighting has no explicit dependence on or-
bital velocity! In this particular case, the term “orbit averaging” is something of
a misnomer. In deriving equation (5.194), we have assumed that orbits somehow
manage to spread uniformly over the region M accessible to a given E and Lz . If
there is a third integral, there is no reason for this to happen; our “orbit average” is
really an average over orbits having the same E and Lz but possibly different third
integrals. It turns out that, in the axisymmetric geometry, averaging so defined is
independent of the gravitational potential, except insofar as the latter determines
the integration boundary in equation (5.194).

Having obtained expressions for the orbit-averaged diffusion coefficients, we can
write the orbit-averaged Fokker–Planck equation for N(E,Lz, t) as

∂N

∂t
= − ∂

∂E
(N〈�E〉t )+ 1

2

∂2

∂E2

(
N〈(�E)2〉t

)− ∂

∂Lz
(N〈�Lz〉t )

+ 1

2

∂2

∂L2
z

(
N〈(�Lz)2〉t

)+ ∂2

∂E∂Lz
(N〈�E�Lz〉t ) . (5.195)
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Equations (5.193)–(5.195) are valid for any field-star velocity distribution. In
practice, f (vf ) is usually replaced by some simpler approximation, as we have
already seen in the case of f (E,L). For instance, one could replace f (vf ) by an
isotropic approximation f (vf ), yielding for the diffusion coefficients the simpler
forms

〈�Lz〉=�′Lz
v

∂H
∂v

= Lz

v
〈�v‖〉, (5.196a)

〈(�Lz)2〉=�′
[
L2
z

v2

∂2G
∂v2

+ � 2v2 − L2
z

v3

∂G
∂v

]

= L2
z

v2
〈(�v‖)2〉 + 1

2

(
� 2v2 − L2

z

)
v2

〈(�v⊥)2〉, (5.196b)

〈�E�Lz〉=−�′Lz
∂2G
∂v2

= −Lz〈(�v‖)2〉. (5.196c)

But making f (vf ) isotropic is probably too extreme an approximation, especially
if we want to use equation (5.195) to follow the evolution of rotating systems.

Probably the next simplest approximation is to make f (vf ) isotropic in a frame
that rotates with the local, mean velocity of the stars. Writing that mean velocity as
vϕ = � �(�, z)eϕ , the peculiar velocity u is

u = v −��eϕ (5.197)

and our approximation consists of writing the field-star velocity distribution in the
locally corotating frame as f (u). It is then straightforward to transform derivatives
with respect to v and vϕ into derivatives with respect to u; for instance, ∂/∂vϕ =
−(��/u)∂/∂u. The resulting, local diffusion coefficients are [132]

〈�E〉 =
(
u+ Lz�

u
− � 2�2

u

)
∂H
∂u

+ 1

2

∂2G
∂u2

+ 1

u

∂G
∂u
, (5.198a)

〈�Lz〉 =
(
Lz

u
− � 2�

u

)
∂H
∂u
, (5.198b)

〈(�E)2〉 =
(
u2 + 2Lz�− 2� 2�2 + L2

z�
2

u2
− 2Lz� 2�3

u2
+ � 4�4

u2

)
∂2G
∂u2

+
(
� 2�2
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We leave it as an exercise for the reader to carry out the orbit-averaging of these
coefficients.

5.6 GRAVITATIONAL ENCOUNTERS NEAR A SUPERMASSIVE BLACK

HOLE

As noted above, the orbit-averaged Fokker–Planck equation accounts for the fact
that stars move along orbits, but it does so in a very approximate way. For instance,
no allowance is made for the fact that the perturbations acting on a test star come
from stars which themselves are moving on orbits, or for the fact that the field-star
velocity distribution varies with location in the galaxy. An even more basic criti-
cism can be made of the orbit-averaging procedure itself. Consider a test star on
an eccentric orbit. At apoapsis, the star comes nearly to rest, and then its velocity
reverses. It is unreasonable to suppose that the dynamical friction wake that ac-
companies the star (figure 5.3) would be able to switch, instantaneously, from one
side of the star to the other; there is undoubtedly a time just after turnaround when
the most of the wake lies in front of the star. A simple averaging of the diffusion
coefficients over the trajectory fails to take account of such orbit-dependent effects.

By and large, these details do not seem to matter very much: comparisons of
Fokker–Planck evolutionary models with fully general N -body simulations typi-
cally find good agreement, at least in terms of the evolution of macroscopic vari-
ables like density and velocity dispersion [279]. But there is one important regime
in which the theory of random gravitational encounters worked out in the previ-
ous sections breaks down [449]. Sufficiently close to an SBH, both test and field
stars move on unperturbed orbits that are Keplerian ellipses. It is straightforward to
compute the orbit-averaged diffusion coefficients in this case, using the techniques
described in the previous sections, but doing so misses an essential element: the
unperturbed orbits are closed, or “resonant”: the frequencies of motion in the ra-
dial and angular directions are the same.14 Because of this property of Keplerian
motion, the unperturbed orbits are fixed in shape and orientation, and gravitational
interactions between stars are highly correlated. These correlations will persist for
as long as the stars maintain a fixed relative orientation—roughly speaking, for
a time equal to the average field-star precession time. We will call this time the
coherence time, tcoh; a more precise definition of tcoh is given below.

Suppose (as is usually the case) that tcoh for some set of N stars near an SBH is
long compared with orbital periods P . Then for elapsed times �t such that P �
�t � tcoh, we can imagine replacing each star by an elliptical ring, or (in the case
of eccentric orbits) a rod, of fixed orientation, whose linear density is inversely
proportional to the local speed in the Keplerian orbit. The total gravitational force
produced by the N rings and rods is stationary, and so it induces no change in the
energy of a test star. But because the number of stars is finite, the overall mass
distribution will differ slightly from spherical symmetry, and there will be a net

14This is a somewhat idiosyncratic use of the term “resonant”.
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torque on the test star, causing its angular momentum to change with time. In this
coherent resonant relaxation regime, the angular momentum of a test star changes
with time at roughly a constant rate.

On timescales longer than tcoh, the perturbing potential due to the N stars will
have changed its orientation with respect to the test star. The magnitude of the
torque will be roughly the same, but its direction will certainly be different. If we
assume that the direction of the torque from the field stars is essentially randomized
after each tcoh, the angular momentum of a test star will undergo a random walk,
with step size given by the product of the torque and the coherence time. The evo-
lution of L in this incoherent resonant relaxation regime is qualitatively similar
to the evolution discussed in the previous sections (“nonresonant relaxation”), but
as we will see, resonant relaxation can be much more efficient than nonresonant
relaxation at changing L near an SBH.

5.6.1 Coherent resonant relaxation

5.6.1.1 Basic concepts

Consider two stars orbiting around an SBH, with orbits of semimajor axis a and
masses m. The stars exert a mutual torque (per unit mass) of order |〈F × r〉| ≈
(Gm/a2) × a ≈ Gm/a. If there are N stars in the region r <∼ a, with randomly
oriented orbits, the net torque will be of order [N(< a)]1/2 (Gm/a).

We begin by considering the evolution of a single (“test”) orbit over times shorter
than tcoh. By definition, the orientations of the “field” orbits are nearly constant, as
is the direction of the net torque acting on the test orbit. As a consequence, its
angular momentum will change approximately linearly with time, at a rate |L̇| ≈√
N(Gm/a). Expressing this in terms of the orbital period,

P(a) = 2πa3/2

√
GM•

,

and the angular momentum Lc of a circular orbit, Lc(a) = √
GM•a, we find for

the change in L over times �t < tcoh

�L

Lc
≈

√
N
Gm

a
× �t√

GM•a
≈ 2π

m
√
N

M•

�t

P
. (5.199)

The coherent resonant relaxation time can be defined as the �t for which
�L = Lc:

TRR,coh ≡ P

2π

M•
m

1√
N

(5.200)

≈ 1.5 × 104

(
a

mpc

)3/2(
M•

106M�

)−1/2( q

10−6

)−1
(
N

103

)−1/2

yr,

where q ≡ m/M• and mpc is milliparsecs. Note that N on the right-hand side of
this equation is understood to be a function of a.

Resonant relaxation is a local phenomenon, in the sense that most of the torque
comes from stars with semimajor axes close to that of the test star. As a
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consequence, there is no equivalent to the ln� term that appears in nonresonant
relaxation. On the other hand, the precise value of the dimensionless factors that
appear in equations like (5.199) and (5.200) are poorly determined and will differ
depending on the details of the orbital distribution.

The coherence time is the time associated with the most rapid source of preces-
sion of the field stars. There are three likely sources of precession near an SBH:

1. Mass precession. Mass distributed around the SBH breaks the equality be-
tween radial and angular periods, leading to a retrograde advance of the ar-
gument of periastron ω (section 4.4.1). To a first approximation, the effects
of the distributed mass can be computed by assuming that its distribution is
spherically symmetric. Equation (4.88) gives the orbit-averaged precession
rate in the case that the density follows a power law, ρ(r) ∝ r−γ . The time
required for ω to advance by π is

tM(a, e) ≈ 1

2
(1 − e2)−1/2 M•

M�(a)
P (a), (5.201)

where M�(a) is the distributed mass within radius r = a; the dimensionless
quantity GM(e, γ ) defined in equation (4.89) has been set to 1 (figure 4.3).
The precession time defined by equation (5.201) depends on both a and e.
The coherence time corresponding to this precession is the average time for
all orbits at r ≈ a to precess. Averaging equation (5.201) over eccentricity as-
suming a “thermal” (isotropic) distribution, N(e)de = 2e de (equation 4.37),
we find the mass coherence time for orbits of semimajor axis a:

tcoh,M ≈ M•
Nm

P. (5.202)

2. Relativistic precession. The lowest-order relativistic corrections to the equa-
tions of motion imply precession at a rate given by equation (4.274). Like
mass precession, this “Schwarzschild precession” leaves the plane of the orbit
unchanged, but it is prograde, that is, opposite in sense to the mass precession.
The time required for ω to advance by π is

tS(a, e) = 1

6
(1 − e2)

c2a

GM•
P(a). (5.203)

Again averaging over e assuming a thermal distribution yields the relativistic
coherence time

tcoh,S ≈ 1

12

a

rg
P (5.204)

with rg ≡ GM•/c2. Precession due to the spin of the SBH (“Kerr precession”)
is slower than the Schwarzschild precession unless a ≈ rg.

3. Precession due to resonant relaxation. By changing L, resonant relaxation
causes orbital planes to precess, with a characteristic time given by equa-
tion (5.200). Ignoring for the moment the dependence of this time on eccen-
tricity, the self-coherence time is roughly

tcoh,N ≈ TRR,coh ≈ 1

2

M•
m

√
N
P. (5.205)
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Comparison of equations (5.202) and (5.205) shows that tcoh,M ≈ tcoh,N/
√
N : the

mass coherence time is always shorter than the self-coherence time. But sufficiently
close to the SBH, relativistic precession must dominate: tcoh,S < tcoh,M when

a

rg
<∼ 12

M•
mN

. (5.206)

Because mass precession and Schwarzschild precession are in opposite directions,
one might think that equation (5.206) defines a radius around the SBH at which
the coherence time goes to infinity. This is not so, since the two sorts of precession
depend differently on eccentricity. Precession rates of individual orbits are zero if
tM(a, e) = tS(a, e), that is,

(1 − e2)3/2 ≈ rg

a

M•
M�(a)

, (5.207)

which occurs at different a for orbits of different e. Even if a single orbit satisfies
this condition, the orbits of the other stars at similar a will not, implying a finite
coherence time.

5.6.1.2 A simple model for coherent resonant relaxation

To gain a deeper understanding of coherent resonant relaxation, we need to know
something about the typical form of the perturbing force due to N stars around
an SBH. In section 4.8.1, equations of motion were derived for two stars orbiting
about a third body. Identifying that third body with the SBH, it is straightforward
to generalize the three-body equations of motion to the case of N orbiting bodies.
The result, for the ith (test) body, is

r̈ i +G(M• +mi)
r i

r3
i

= G

j �=i∑
j=1,...,N

mj

(
rj − r i

r3
ij

− rj

r3
j

)
, (5.208)

where rij ≡ |r i−rj | and rj is the distance of the j th star from the SBH. Recall that
the first of the two terms of the right-hand side of equation (5.208) represents the
direct force exerted by the N − 1 bodies on the test mass, while the second term is
the “indirect force” resulting from the fact that the SBH is itself tugged to and fro.
We begin by noting that if all the rj are comparable in magnitude, then the indirect
term can have a magnitude that is comparable with the direct term, regardless of the
value of (M•/m)! However, in the context of resonant relaxation, we are concerned
not so much with the instantaneous accelerations as with the time-averaged torques
acting on a test star. The instantaneous torque is

τ i = r i × r̈ i

=G
j �=i∑

j=1,...,N

mj

(
r i × rj

r3
ij

− r i × rj

r3
j

)

= r i ×

 j �=i∑
j=1,...,N

Gmjrj

(
1

r3
ij

− 1

r3
j

)
 . (5.209)
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The “force” responsible for the torque has two components, direct and indirect:

FD =
∑

Gmj
rj

r3
ij

, F I = −
∑

Gmj
rj

r3
j

. (5.210)

Without loss of generality, we can place star j in the x–z plane. Then its unper-
turbed motion satisfies

xj (t) = −aj
√

1 − e2
j sinE, zj (t) = aj (cosE − ej ), (5.211)

where E = eccentric anomaly and (aj , ej ) are constants. The contribution of this
star to the indirect force depends on

rj

r3
j

= a−2
j (Rx êx + Rz êz), (5.212)

where

Rx = −
√

1 − e2
j sinE(

1 − ej cosE
)3 , Rz = − cosE − ej

(1 − ej cosE)3
. (5.213)

Time averages are computed as

〈Q〉 = 1

2π

∫ 2π

0
dE (1 − e cosE)Q(E) (5.214)

and it is easy to show that 〈Rx〉 = 〈Rz〉 = 0. In other words, the “rods” or “rings”
corresponding to the indirect force exert no torque on the test mass.

This result suggests a straightforward way to evaluate the torquing force: distrib-
ute N stars, or rather N time-averaged orbital rings, about the SBH and compute
the time-averaged torque on a test body that is moving on one of the orbits. The
results of such a calculation will of course be different for each different “realiza-
tion” of the N stars—that is, for each choice of the 5N variables that describe the
Keplerian elements {a, e, i,�, ω} for each star.

One way to describe the results of such experiments is in terms of the “average”
form of the field-star potential corresponding to N stars. For instance, one could
express the torquing potential as seen by each of the N stars in terms of multipoles,
and ask which angular term is typically dominant. Not surprisingly, such experi-
ments reveal that most of the torque can be ascribed to the lowest-order multipoles:
the dipole and quadrupole.

These results suggest the following simple form for the potential seen by a test
star:

� = −GM•
r

+�s(r)− S(a)a cos θ. (5.215)

�s(r) represents the spherically distributed mass; we adopt equation (4.80) for this
term, which assumes ρ(r) ∝ r−γ . The final term represents the nonspherical part
of the potential due to the

√
N fluctuations if we write

S(a) ≈ Gm
√
N

a2
= GM�(a)

a2
√
N

; (5.216)
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the elongation is assumed to be along the z-axis and cos θ = z/r . The evolution
of a test star’s orbit in the potential (5.215), on timescales long compared with P ,
can be found using the averaging procedure that was applied to a similar problem
in section 4.4.3. We first define a dimensionless time τ = ν0t where

ν0 ≡ νr
M�(a)

M•
,

2π

ν0
= tcoh,M. (5.217)

Following the averaging procedure, the semimajor axis is removed from the Hamil-
tonian, and the equations of motion for the remaining elements are

dω

dτ
= −�+ 1√

N

[
−�
e

sin i + e

�

cos2 i

sin i

]
sinω, (5.218a)

d�

dτ
= − 1√

N
e sin i cosω, (5.218b)

d�

dτ
= 1√

N
e
�z

�2

cos i

sinω
, (5.218c)

d�z

dτ
= 0. (5.218d)

As in section 4.4.3, we have defined a dimensionless angular momentum � ≡
L/Lc(a) = (1 − e2)1/2, and cos i = �z/�. The plane of reference has been taken to
be the x–y plane and the reference direction is the x-axis; thus an orbit in the x–z
plane has sin i = 1, and for such an orbit, ω = π/2 corresponds to an orientation
parallel to the z-axis, the assumed direction of the lopsided distortion.

Consider first the case sin i = 1. Equations (5.218) simplify to

dω

dτ
= −�− 1√

N

�

e
sinω, (5.219a)

d�

dτ
= − 1√

N
e cosω (5.219b)

and d�/dτ = d�z/dτ = 0: the orbit remains in a fixed plane, but its orientation
in this plane (ω) and its angular momentum (�) change. The coherent resonant
relaxation regime is defined by τ � 1; imposing this condition, ω and � are nearly
constant, and equation (5.219b) tells us

�(τ ) ≈ �(τ0)− 1√
N
(e cosω)0 (τ − τ0), (5.220)

that is,

�L

Lc
≈ − 2π√

N
(e cosω)0

�t

tcoh,M
, (5.221)

similar to equation (5.199).
Equation (5.220) contains one new result: the rate of change of angular momen-

tum is proportional to the eccentricity. This is a simple consequence of the fact that
the “lever arm” of an orbit, of fixed a, is proportional to e.
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Coherent resonant relaxation changes not just the eccentricity of an orbit, but also
the orientation of the orbital plane—in other words, all components of L. Returning
to the more general equations of motion (5.218), we can resolve the changes in L

into components parallel to, and perpendicular to, the original angular momentum
vector. The result, after some algebra, is(

d�

dτ

)
‖
≈ −N−1/2(e sin i cosω)0, (5.222a)

(
d�

dτ

)
⊥

≈N−1/2(e cos i)0 (5.222b)

in the coherent regime (τ � 1). Changes in the orbital orientation, measured by
(d�/dτ)⊥, occur on roughly the same timescale as changes in the eccentricity, mea-
sured by (d�/dτ)‖, and both changes scale in the same way with e. Taking averages
over ω and i, one finds 〈��2

⊥〉 = 2〈��2
‖〉.

5.6.1.3 Three-dimensional versus two-dimensional resonant relaxation

The analysis in the previous section was based on a particular form for the torquing
potential. But one feature of that analysis is generic to any treatment of resonant
relaxation: the assumption of a short timescale associated with the unperturbed
(Keplerian) motion. It was that assumption which justified the averaging of the
motion (both test and field stars) with respect to mean anomaly, resulting in the
removal of the corresponding “momentum” variable—the action I associated with
the radial motion, that is, the energy, or semimajor axis—from the equations of
motion of the test star.

One can imagine circumstances in which there are two short timescales. For
instance, suppose that precession in ω is so rapid that orbits fill their annuli many
times before the orbital planes have been changed by the mutual torques. In this
limit, it is appropriate to carry out a second averaging of the equations of motion,
this time over ω, effectively converting each orbit from a mass ring into a mass
annulus—a circularly symmetric disk. The mutual torques between two such disks
change only the direction of L, not its magnitude.

Roughly speaking, a star will be in this regime when the apsidal precession time
is short compared with the timescale for the

√
N torques (or any other process)

to change L. There are two cases in which the condition on the precession rate is
satisfied. Far enough from the SBH, tcoh,M � TRR,coh: the mass precession time
is short compared with the time for torques to change L. Using equations (5.200)
and (5.202), this occurs at radii where

M•
M�(a)

P (a) � P(a)

2π

M•
m

1√
N

(5.223)

or

N(< r) 	 (2π)2. (5.224)
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The other regime is near the SBH, where relativistic effects dominate the preces-
sion. Setting tcoh,S � TRR,coh gives15

N(< r) � 36

π2

(
M•
m

rg

r

)2

. (5.225)

In either of these cases, precession in ω is so fast that changes in eccentricity due
to the torques take place on a much longer timescale than changes in the direction
of L.

This can all be cast in the language of the Delaunay action-angle variables de-
fined in section 4.2. The “momentum” variable conjugate to the mean anomaly, M,
is the action I = √

GM•a. Averaging the equations of motion of a test star over
M, assuming a fixed torquing potential from the field stars, implies a constant I , or
a; the other Delaunay variables {L,Lz,�,ω}, or equivalently {e, i,�, ω}, change
with time in response to the fixed torques, as in the example worked out in the pre-
vious section (equations 5.218). The momentum variable conjugate to the argument
of periastron, ω, is the angular momentum, L =

√
GM•a(1 − e2). Averaging the

equations of motion of a test star a second time, over ω, implies constant {I, L}, or
{a, e}. The only elements that are left to vary in response to the field-star torques in
this case are the orientation variables, {i, �}.

It has become commonplace to talk about these two regimes in terms of “scalar”
and “vector” resonant relaxation: the former describing changes in the magnitude
of L and the latter describing changes in its direction. This division is unfortunate,
since there really is no regime in which the torques lead to changes only in the
magnitude of L. The more basic distinction is between evolution that causes all
components of L to change, on the one hand, and evolution that is limited (due to
rapid apsidal precession) to changes in the direction of L on the other hand. In this
book, the former sort of evolution will be called 3d resonant relaxation and the
latter 2d resonant relaxation.

In any case, it is standard to parametrize the changes that occur in L during the
coherent regime as

�L

Lc
=βs

√
N
m

M•

�t

P
, (5.226a)

|�L|
Lc

=βv
√
N
m

M•

�t

P
, (5.226b)

with βs, βv (“s” = scalar, “v” = vector) dimensionless parameters that can in prin-
ciple be measured via numerical experiments. This way of characterizing the evo-
lution is convenient numerically, since computing components of L is easier than
computing the full set of Delaunay variables (say). But the division is infelicitous
in other respects; for instance, βv contains information about changes in both the
magnitude and direction of L and so is not independent of βs [131]. In any case,
numerical experiments that exclude relativistic precession [223, 131] find that the
values of βs and βv depend fairly weakly on the assumed orbital distribution N(a).

15Since the rate of relativistic precession is strongly eccentricity dependent, highly eccentric orbits can
be in this regime even if typical field stars with the same a are not; see section 6.4.
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One study [223] found

βs ≈ 1.6e, βv ≈ 1.8

(
e2 + 1

2

)
. (5.227)

The dependence on eccentricity is qualitatively similar to what was found using
the simple Hamiltonian model given above. Averaging over a “thermal” (isotropic)
velocity distribution, equation (4.37), yields

〈βs〉 ≈ 1.1, 〈βv〉 ≈ 1.8. (5.228)

As noted above, an alternative, and more complete, way to characterize the ef-
fects of coherent resonant relaxation is in terms of the full set of orbital elements
that are affected by the field-star torques. Figure 5.7 shows the results of a set of
numerical experiments based on this idea. In this case, the test star was taken to be
S2, the bright young star near the center of the Milky Way whose orbit has been
used to measure the mass of the SBH (section 4.9). S2’s orbit has a ≈ 5.0 mpc,
e ≈ 0.88, and a period of just ∼ 15.8 yr (table 4.1). Figure 5.7 shows how the el-
ements defining the eccentricity and orientation of S2’s orbit change over a single
period. The quantity �θ plotted there measures changes in the direction of L:

cos(�θ) = L1 · L2

L1L2
(5.229)

with {L1,L2} the values of L at two times separated by P . The N field stars were
selected from a density profile n(r) ∝ r−2, under two assumptions about their
masses: m� = 10M� and 50M�. Each of the N field-star orbits was integrated
as well—in other words, no orbit averaging was carried out—and the integrator
included the mutual forces between stars, as well as post-Newtonian corrections
to the equations of motion. One hundred random realizations of each initial model
were integrated, allowing both the mean values of the changes to S2’s orbit, and
their variance, to be computed.

Based on equation (5.199), we expect the variables describing the magnitude and
direction of S2’s angular momentum to change by average values of

|�e| ≈Ke
√
N
m

M•
, (5.230a)

�θ ≈ 2πKt
√
N
m

M•
, (5.230b)

where N is understood to be the average number of stars inside r = 9.4 mpc,
the apoapsis of S2’s orbit, and {Ke,Kt } are constants to be determined from the
numerical experiments. The results are [469]

Ke = 1.4, Kt = 1.0. (5.231)

The results for �ω deserve a bit more elaboration. One does not normally think
of the argument of periapsis as a variable affected by resonant relaxation; rather,
ω is the variable whose rate of change (due to mass precession, say) defines the
length of the coherent regime. But equation (5.218a) for dω/dt contains a term
due to the

√
N torques, representing the change in the apsidal precession rate due

to field-star torques, whose amplitude is
√
N smaller than the term representing
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Figure 5.7 Results of numerical experiments showing changes in the orbital elements of the
Galactic center star S2 over one orbital period (∼ 16 yr) [469]. Filled circles are
from integrations assuming a field-star mass of m� = 50M� and open circles
are for m� = 10M�; the number of field stars was N = {25, 50, 100, 200} for
both values of m�. The abscissa is the distributed mass within S2’s apoapsis at
r ≈ 9.4 mpc. In each frame, the points are median values from 100 N -body
integrations, and the error bars extend from the 20th to the 80th percentile of the
distribution. The curve in (a) is equation (5.233). The solid and dashed lines in
(b) are equation (5.230a) with m = 50M� and m = 10M�, respectively, and
with Ke = 1.4. In (c), the solid and dashed lines are equations (5.230b) with
Kt = 1.0.
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mass precession. When considering time intervals � tcoh, the change in ω contains
a piece due to “resonant relaxation,” as well as a (generally larger) piece due to
either or both of the first two precession mechanisms listed in section 5.6.1.1. In
the simulations of figure 5.7, the Schwarzschild (relativistic) precession was active,
and of course the mass precession due to the N field stars as well. The quantity
plotted in the figure is the difference between the total change in ω, and the change
due to relativity:

�ω −�ωGR = �ω − 6πGM•
c2a(1 − e2)

. (5.232)

On average, one expects this quantity to have the value given by equation (4.88):

−2πGM(e, γ )
√

1 − e2

[
M�(r < a)

M•

]
≈ −1′.0

[
M�(r < a)

103M�

]
, (5.233)

where the latter expression uses the known {a, e} values for S2 and M• = 4.0 ×
106M�. The curve plotted in the top panel of figure 5.7 is equation (5.233). The
figure shows that there is a significant variation from one experiment to another
in the value of �ω − �ωGR, due to random differences in the field-star torques
(resonant relaxation), as well as random variations in the total enclosed mass (mass
precession). If and when a shift in S2’s argument of periapsis is measured, it will
be necessary to account for this variation before drawing conclusions about the
physical properties of the nucleus [469].

Before moving on to incoherent resonant relaxation, it is important to point
out one natural source of confusion. There are always two, distinct precessional
timescales that are relevant to the evolution of a test star subject to resonant relax-
ation: the mean precession time of the field stars—defined here as the coherence
time; and the precession time of the test star itself. In many cases, these two times
are comparable, and there is no need to distinguish between them. The distinction
becomes important if the precession rate of the test star is much higher than the
mean precession rate of the field stars, since it is the rate of change of the relative
orientation of test and field stars that determines the effective coherence time. For
instance, relativistic precession occurs at a rate that is proportional to (1 − e2)−1,
and a sufficiently eccentric orbit will precess due to relativity faster than a typical
field star of the same a. A test star that precesses much more rapidly than the field
stars can be said to be in the “2d resonant relaxation” regime (the magnitude of L

will hardly change) even if the field stars of similar a are not.

5.6.2 Incoherent resonant relaxation

The angular momentum of a test star changes linearly with time under coherent
resonant relaxation, a consequence of the fact that the

√
N torques driving the evo-

lution are constant. On timescales longer than ∼ tcoh, the field stars precess, and the
direction of the torque changes. These changes in the direction of the torque are
not really random—individual orbits precess more-or-less smoothly—but to a first
approximation, we can assume that the direction of the torque is randomized after
each �t ≈ tcoh.
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In the case of 3d resonant relaxation, the accumulated change in L in the coherent
regime is found by setting �t = tcoh in equation (5.199). If the coherence time is
set by mass precession,

|�L|coh,s ≈ πe√
N
Lc, (5.234)

while in the case that relativistic precession dominates,

|�L|coh,s ≈ π

6

a

rg

M�(a)

M•
√
N
Lc. (5.235)

Two-dimensional resonant relaxation, on the other hand, is not affected by in-plane
precession: its coherence time is longer, ∼ tcoh,N ≈ TRR,coh ≈ √

Ntcoh,M. The
change in L over a coherence time due to 2d resonant relaxation would therefore
seem to be

|�L|coh,v ≈ πLc. (5.236)

Of course, L cannot change by more than Lc! What equation (5.236) really implies
is that L rotates by an angle of order unity during each coherence time.

On timescales longer than the coherence time, the angular momentum of a test
star evolves approximately as a random walk. The accumulated change in L over
a coherence time, |�L|coh, becomes the step size (or “mean free path” in L) for
the random walk. It is because this step size is relatively large (a substantial frac-
tion of Lc) that resonant relaxation can be more efficient over the long term than
uncorrelated, or nonresonant, relaxation.

Because changes in the direction of L “saturate” already at ∼ tcoh, no new
timescale arises for 2d resonant relaxation in the incoherent regime. In other words,
the timescale for incoherent, 2d resonant relaxation is the same as tcoh,N, equa-
tion (5.205):

TRR ≈ 1

2

M•
m

√
N
P. (5.237)

In the case of 3d resonant relaxation, we expect changes

|�L| ≈ |�L|coh,s

(
�t

tcoh

)1/2

(5.238)

on timescales �t 	 tcoh. We can write this as

|�L|
Lc

=
(
�t

TRR

)1/2

, (5.239a)

TRR ≡
(

Lc

|�L|coh

)2

tcoh. (5.239b)

If tcoh is determined by mass precession, equations (5.202), (5.234) and (5.239)
imply

TRR ≈
(
M•
m

)
P. (5.240)
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In the case that relativistic precession dominates, equations (5.204), (5.235), and
(5.239) give

TRR ≈ 3

π2

rg

a

(
M•
m

)2
P

N
. (5.241)

We would like to estimate the distance from an SBH at which incoherent resonant
relaxation begins to “take over” from nonresonant relaxation. For this purpose, it is
useful to write TNRR, equation (5.61), approximately in terms of the quantities N
and P . Adopting equation (3.48) for ρ(r) and equation (3.63b) for σ(r) yields

TNRR ≈ANRR

(
M•
m

)2
P

N
, (5.242a)

ANRR = 0.68

(3 − γ )(1 + γ )3/2

1

ln�
, (5.242b)

where P(a) = 2π
[
a3/(GM•)

]1/2
is the Keplerian period. (Equation 5.242 is ex-

pressed in terms of local quantities; a better quantity to compare with TRR would
be an orbit-averaged relaxation time within some region r <∼ a.) In the case that
mass precession is the source of decoherence, TRR is given by equation (5.240), and
TRR < TNRR implies

mN(r < a) < ANRRM•. (5.243)

In the case that relativistic precession dominates, equations (5.241) and (5.242)
imply

N(r < a) < 1.8A1/2
NRR

(
a

rg

)1/2

. (5.244)

Note that m does not appear in this relation.
It is interesting to estimate these characteristic radii for the Milky Way nucleus.

Doing so requires the adoption of a specific model for the density of stars at r � rh.
Unfortunately, little is known about the distribution of stars or stellar remnants
so near to Sgr A*. One natural model—for which there is currently no obser-
vational support—would postulate a dynamically relaxed, Bahcall–Wolf cusp at
r <∼ 0.2rm (section 5.5.2). We can normalize the cusp density by requiring it to
match the density of the Milky Way nuclear star cluster (NSC) at r = 0.2rm; the
density of the NSC is observed to fall off as ρ(r) ∼ r−2 for r >∼ 1 pc [403]. Thus
our “relaxed model” would have

ρ(r) =




2 × 106
(

r
0.5 pc

)−7/4
M� pc−3, r ≤ 0.5 pc,

2 × 106
(

r
0.5 pc

)−2
M� pc−3, r > 0.5 pc,

(5.245)

and the enclosed number of stars, assuming m = M�, is

N(r) =

1.6 × 105

(
r

0.5 pc

)5/4
, r ≤ 0.5 pc,

1.6 × 105 + 2.0 × 105
(

r
0.5 pc − 1

)
, r > 0.5 pc.

(5.246)
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In this model, the radius at which relativistic precession begins to dominate New-
tonian precession for orbits of typical eccentricity is given by equation (5.206) as
r ≈ 5 × 10−3 pc ≈ 5 mpc: roughly the radius of S2’s orbit (4.1). Setting γ = 7/4
and ln� = 15 (equation 5.35) givesANRR ≈ 0.01; equation (5.243) then states that
RR overwhelms NRR inside r ≈ 0.06 pc ≈ 0.025rh. Referring to figure 6.5, this
radius is small compared with the radius from which most (normal) stars would be
scattered into the SBH, and we are probably justified in ignoring RR when com-
puting the rate of stellar tidal disruptions [448].

As discussed in the introduction to chapter 7, number counts of late-type stars
near the center of the Milky Way suggest a rather different model: a constant or
slowly rising density inside ∼ 0.5 pc ≈ 0.2rh. Motivated by these data, we define an
“unrelaxed model” in which n ∝ r−1/2, r ≤ 0.2rh; recall that this is the shallowest
power-law profile consistent with an isotropic f (E). Normalizing the density at
0.2rh in the same way as above, we find

ρ(r) =




2 × 106
(

r
0.5 pc

)−1/2
M� pc−3, r ≤ 0.5 pc,

2 × 106
(

r
0.5 pc

)−2
,M� pc−3, r > 0.5 pc,

(5.247)

and the enclosed number is given by

N(r) =

8.0 × 104

(
r

0.5 pc

)5/2
, r ≤ 0.5 pc,

8.0 × 104 + 2.0 × 105
(

r
0.5 pc − 1

)
, r > 0.5 pc.

(5.248)

In this low-density model, relativistic precession dominates mass precession al-
ready at r ≈ 0.02 pc for orbits of typical eccentricity. We now have ANRR ≈ 0.016,
and TRR < TNRR when r <∼ 0.18 pc ≈ 0.1rh—somewhat farther out than in the
“relaxed” model, but still small enough that one can reasonably ignore RR when
computing the consumption rate of normal stars.

Incoherent resonant relaxation does turn out to be important when computing
the rate at which compact remnants—for instance, stellar-mass BHs—are scattered
into an SBH from very small distances [245]. This process is discussed in more
detail in section 6.4.

5.7 ENCOUNTERS WITH A SPINNING SUPERMASSIVE BLACK HOLE

An SBH is much more massive than a star, and throughout most of this chapter,
the response of the SBH to perturbations from stars has been ignored. The sole
exception was the discussion of gravitational Brownian motion in section 5.4. But
stars (or compact remnants, which are better able to survive tidal stresses) can have
a substantial, cumulative effect on the spin angular momentum of an SBH, partic-
ularly if there is a net sense of rotation in the nucleus. Stars can affect SBH spins
in at least two ways: via spin-orbit torques, the complement of the frame-dragging
precession discussed in section 4.5.3; and via captures. As we will see, both mech-
anisms are capable of permanently changing the spin direction of an SBH, and
capture can result in changes in the magnitude of the spin as well.
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5.7.1 Spin-orbit torques

Consider a Kerr (rotating) SBH surrounded by stars or stellar remnants. Recall from
chapter 4 that the spin angular momentum, S, of the hole can be expressed as

S = χ
GM2

•
c

,

where 0 ≤ χ ≤ 1 is the dimensionless spin parameter. The acceleration induced by
this spin on a star orbiting the SBH was given, to lowest post-Newtonian order, by
equation (4.214). In the orbit-averaged approximation, this acceleration was found
to induce a precession of the star’s orbital angular momentum L about S according
to16

L̇j = νj × Lj , (5.249a)

νj = 2GS
c2a3

j (1 − e2
j )

3/2
. (5.249b)

This is just equation (4.225), now with the subscript j denoting the j th star. The
same torque acts back on the SBH, causing its spin to evolve (precess). The in-
stantaneous rate of change of S is given, again to lowest post-Newtonian order, by
[278]

Ṡ = 2G

c2

N∑
j=1

mj

r3
j

(
xj × vj

)× S (5.250a)

= 2G

c2

N∑
j=1

Lj × S
r3
j

, (5.250b)

where mj is the mass of the j th star whose distance from the SBH is rj . Since the
mean value of r−3 over the unperturbed orbit is a−3(1− e2)−3/2, the orbit-averaged
equation for Ṡ is

Ṡ = νS × S, (5.251a)

νS = 2G

c2

N∑
j=1

Lj

a3
j (1 − e2

j )
3/2
. (5.251b)

The vector νS is the spin precessional vector.
The coupled equations (5.249) and (5.251) describe the joint evolution of the

SBH spin, and the orbital angular momenta of the N stars, due to mutual spin-orbit
torques. In the absence of any other mechanism that acts to change the orbital aj
and Lj , these equations are complete. Of course, gravitational encounters between
the stars do change the orbital elements, and we might expect changes in the Lj

due to resonant relaxation to be particularly important. We nevertheless begin by
ignoring such effects. As we will see, this “collisionless” approximation is accurate
for stars sufficiently close to the SBH, where frame-dragging torques dominate
torques from the mutual gravitational interactions.

16In this section, the symbol L denotes angular momentum and not angular momentum per unit mass.
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Because the changes in S and Lj due to frame dragging are perpendicular to the
respective vectors, the magnitudes of those vectors are conserved:

S ≡ |S| = constant, (5.252a)

Lj ≡ ∣∣Lj

∣∣ = constant, j = 1, . . . , N. (5.252b)

We might also expect conservation of the total (spin plus orbital) angular momen-
tum, defined as

J tot ≡ S +
∑
j

Lj = S + Ltot. (5.253)

This turns out to be correct:

J̇ tot = Ṡ +
∑
j

L̇j

= GM2
•

c
(νS × χ)+

∑
j

(
νj × Lj

)

= 2G2M2
•

c3

∑
j

Lj × χ

a3
j (1 − e2

j )
3/2

+ 2G2M2
•

c3

∑
j

χ × Lj

a3
j (1 − e2

j )
3/2

= 0.

Note that Ltot is not conserved, either in magnitude or direction, nor is the spin
precessional vector νS . As the SBH precesses, both the magnitude and direction of
Ltot may change in order to keep J tot constant.

As an instructive example, consider the case that all the stars have the same a
and e; for instance, the orbits could all lie in a circular ring. There is no differential
precession in this case, and

Ṡ = ν0 × S, L̇tot = ν0 × Ltot, (5.254)

where

ν0 = J tot

S νLT, (5.255a)

νLT = 2G2M2
•χ

c3a3(1 − e2)3/2

≈ (7.0 × 105)−1(
1 − e2

)3/2 χ

(
M•

106M�

)2 (
a

1 mpc

)−3

yr−1. (5.255b)

The frequency νLT is the same quantity that was called νJ in section 4.5.3: the
Lense–Thirring precession frequency for the stars in the ring. In this idealized case,
Ltot is conserved, and both S and Ltot precess with frequency ν0 about the fixed
vector J tot. The controlling parameter is � ≡ Ltot/S. If � � 1, Ṡ ≈ 0 and
Ltot precesses about the nearly fixed SBH spin vector at the Lense–Thirring rate. If
� 	 1, L̇tot ≈ 0 and S precesses about the nearly fixed angular-momentum vector
of the stars with frequency �× νLT 	 νLT.

Is it reasonable that the stars in the nucleus should contain more angular mo-
mentum than the SBH? The answer, of course, is yes, at least if stars sufficiently
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far from the center are included, and if there is a nontrivial degree of net rotation
in the stellar motions. Consider, for instance, the “clockwise disk” at the Galactic
center. Its parameters are [29, 397, 415]

5000M� <∼ MCWD <∼ 15, 000M�,

rinner ≈ 0.05 pc, router ≈ 0.5 pc,

〈e〉 ≈ 0.2.

The total angular momentum of the disk is roughly

Ltot ≈ MCWD

√
GM•rCWD,

and so

�≈ 1

χ

MCWD

M•

√
rCWD

rg
(5.256a)

≈ 2

χ

(
MCWD

104M�

)(
rCWD

0.1 pc

)1/2

. (5.256b)

Even if χ is as large as one, the clockwise disk still contains roughly as much
angular momentum as the SBH. Evidently, this structure torques the SBH about as
much as it is torqued by it! However, the mutual precession time is long:

π

νLT
≈ 8 × 1010 χ−1

(
RCWD

0.1 pc

)3

yr, (5.257)

much longer than the ∼ 107 yr age of the disk inferred from the properties of its
stars. Nevertheless, this example demonstrates that identified structures near the
Galactic center can easily contain a net orbital angular momentum that exceeds
S, and the same may well be true in other nuclei. But if timescales associated with
spin precession are to be interestingly short, then (at least in a galaxy like the Milky
Way) there must be a significant amount of rotation in stars that are somewhat closer
to the SBH than 0.1 pc.

Suppose that the nucleus is approximately spherical. A reasonable guess for the
distribution of orbital elements near the SBH is equation (4.36):

N(a, e) da de = N0 a
2−γ da e de, (5.258)

which corresponds to a configuration-space density ρ(r) = ρ0(r/r0)
−γ , with

m�N0 = 8π3/2

2γ
�(γ + 1)

�(γ − 1/2)
ρ0r

γ

0 , γ > 1/2, (5.259)

and a “thermal” distribution of eccentricities. Rotation of such a cluster about an
axis—the z-axis, say—can be induced by identifying those orbits with Lj,z < 0
and “flipping” some fraction, F , of them, that is, reversing their motion, and there-
fore changing the sign of Lj . For such a model, the spin precessional vector is
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given by

νS = 2G

c2
(F eL)

∑
j

mj

[
GM•aj (1 − e2

j )
]1/2

a3
j (1 − e2

j )
3/2

(5.260a)

→ 2G3/2M1/2
•

c2
(F eL)N0m�

∫ ∫
da e de

a1/2+γ (1 − e2)
, (5.260b)

where eL is a unit vector in the direction of Ltot.
Formally, equation (5.260) states that stars with sufficiently small a or large e

can cause S to precess at an arbitrarily high rate. But in reality, stars nearest to the
SBH will precess so quickly, compared with the rate of precession of S, that their
time-averaged torque on the SBH is effectively zero. Furthermore, there will be a
region around the SBH in which the instantaneous torque from the stars will drop
to zero, as differential precession distributes the Lj uniformly about S. Roughly
speaking, this will be the region containing a total |L| equal to S, since stars in this
region precess faster than the SBH is precessed by the stars.

This argument suggests that an important quantity is aL, defined as the value of
a such that

Ltot(a < aL) = S = χ
GM2

•
c

. (5.261)

Figure 5.8 shows how aL varies with nuclear properties, assuming the orbital dis-
tribution of equation (5.258), and two different parametrizations of the density: in
terms of the stellar mass M0.1 within 0.1 pc; and in terms of rm, the gravitational
influence radius, assuming that rm scales withM• as in equation (2.16). The former
parametrization is most suitable for low-mass galaxies containing (mostly unre-
solved) NSCs, the latter for massive galaxies with cores. In massive galaxies, and
for χ/F ≈ 1,

10−2rm <∼ aL <∼ 10−1rm.

Figure 5.9 shows the results of integrating the coupled equations (5.249) and
(5.251). The model parameters are M• = 106M�, χ = 1, γ = 1, F = 1/2,
M0.1 ≈ 6 × 104M� and aL ≈ 15 mpc. Because the total stellar angular momen-
tum in this model greatly exceeds S, one might naturally expect the evolution to
consist of nearly uniform precession of S about Ltot. Such evolution can occur, as
shown in the lower set of figures. But changing the initial conditions just slightly—
decreasing the initial angle between S and Ltot from 70◦ to 40◦—produces a qual-
itatively different sort of evolution, in which S, Ltot and νS reach nearly complete
alignment after less than one precessional period in S. Evolution of the second
sort, or “damped precession,” is not excluded by the conservation laws (5.253),
(5.252) for any initial conditions, but numerical experiments show that it is usually
associated with small initial angles between S and Ltot [379].

In the examples of figure 5.9, spin precessional times are long compared with the
times over which stellar angular momenta might be expected to change as a result
of star–star interactions, via the mechanism of resonant relaxation discussed in the
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Figure 5.8 Radii associated with spin-orbit torques in galactic nuclei [379]. aL, equation
(5.261), is the radius containing a total angular momentum in stars equal to S,
computed assuming F = 1/2 and χ = 1 (maximum rotation of SBH and stellar
cluster). aK, equation (5.263), is the radius of rotational influence of the SBH,
assuming χ = 1. The left panel assumes M• = 106 M� and the stellar density
is parametrized in terms of M0.1, the mass within 0.1 pc, and γ , the power-law
index; solid lines are for γ = 1 and dashed lines for γ = 2. In the case of aK, two
values are assumed for the stellar mass:m� = 1M� (thin lines) andm� = 10M�
(thick lines). The right panel, for massive galaxies, assumes the relation (2.16)
between M• and the influence radius rm; solid, dashed and dotted lines are for
γ = 5/8, 1, and 3/2, respectively. The curves for aK in the right panel assume
m� = 1M�.

previous section. Recall that the shortest such timescale was associated with (co-
herent or incoherent) “2d resonant relaxation” (2dRR): the time for mutual torques
between stars to randomize orbital planes, that is, the directions of the Lj . Indeed,
in section 4.9 it was pointed out that this time becomes shorter than the Lense–
Thirring time for orbits closer than ∼ 10−3 pc from the Milky Way SBH, and fig-
ure 4.25 showed a numerical integration of orbits inside the region where changes
in the Lj due to gravitational encounters overwhelm changes due to frame drag-
ging.

If we adopt equation (5.200) as an estimate of the time for 2dRR to randomize
orbital planes, the condition that this time be longer than the Lense–Thirring time,
equation (5.257), is

(
1 − e2

)3
(
a

rg

)3

<∼
16χ2

N(a)

(
M•
m�

)2

, (5.262)

whereN(a) is the number of stars with semimajor axes less than a. Approximating
N(a) as

N(a) = 2M•
m�

(
a

rm

)3−γ
,
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Figure 5.9 This figure illustrates the joint evolution ofS, Ltot, and the spin precessional vec-
tor (written ωS ) due to mutual, spin-orbit torques, equations (5.249) and (5.251)
[379]. Stars were distributed initially according to equation (5.258), a sphere in
configuration space, with rotation induced by requiring all stars to orbit in the
same sense around the z-axis. The other model parameters are given in the text.
The only difference between top and bottom is the initial angle between S and
Ltot: 40◦ at the top and 70◦ at the bottom. In the first case, all vectors align in
roughly one precessional time, while in the second, the SBH continues to pre-
cess.
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we can write the condition (5.262) as

(
1 − e2

)3
(
a

aK

)6−γ
<∼ 1, (5.263a)

aK = rg

(
8χ2M•

m�

)1/(6−γ ) (
rm

rg

)(3−γ )/(6−γ )
. (5.263b)

The radius aK is the rotational influence radius of the SBH. Just as rh or rm define
the sphere inside of which the gravitational force from the SBH dominates the force
from the stars, so aK defines the size of the region inside of which the torque exerted
by the (spinning) SBH dominates the collective torque from the other stars.

To get an idea of the magnitude of aK, we can set γ = 1 in equation (5.263), and
adopt the empirical relation (2.16) betweenM• and rm. The result—appropriate for
massive galaxies—is

aK ≈ 0.16χ2/5

(
M•

108M�

)1.0 (
m�

M�

)−1/5

pc (γ = 1). (5.264)

The scaling turns out to be nearly linear with M•, allowing us to say that for a
rapidly spinning SBH, the radius of rotational influence extends ∼ 104 times farther
than rg (figure 5.8). This is yet another example of how relativistic effects in galactic
nuclei can be important far from the SBH event horizon.

Angular momenta of stars satisfying the condition (5.263) evolve “collision-
lessly” in response to frame dragging, unaffected by perturbations from other stars.
Since aK < aL, differential precession will allow these stars to distribute their an-
gular momentum vectors uniformly about S in a time shorter than the precession
time for S. Orbits of stars beyond aK evolve essentially independently of S, in re-
sponse to mutual gravitational perturbations. But although the Lj of stars in this
region are randomized by the mutual torques, gravitational encounters, by them-
selves, leave Ltot unchanged for these stars. Now, the torque that the stars in this
outer region exert on the SBH is determined by νS , not by Ltot; but conservation
of Ltot implies that the spin precessional vector will fluctuate, stochastically, about
some mean vector that is essentially constant over time and that points in roughly
the same direction as Ltot. Furthermore, since these fluctuations occur with a char-
acteristic time that is short compared with ν−1

S , the SBH takes little notice of them,
precessing smoothly about the mean νS . Detailed modeling [379] suggests that typ-
ical spin precessional periods are ∼ 107–108 yr for low-mass SBHs in dense nuclei,
∼ 108–1010 yr for SBHs with masses ∼ 108M�, and ∼ 1010–1011 yr for the most
massive SBHs.

As discussed briefly in chapter 2, evidence for SBH precession does exist, in
the form of changes over time in the directions of radio jets or lobes in active
galaxies. According to current models, production of the jets requires the presence
of a gaseous accretion disk, and models for jet precession have most often invoked
a misaligned accretion disk as the source of the torque on the spinning SBH [23].
This is reasonable, since an accretion disk, if present, would probably dominate the
torque from the stars near the SBH.
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Structures like the “clockwise disk” in the Milky Way are young, and their pres-
ence implies that infall of gas, followed by star formation, probably occurs episod-
ically. If this is the case, the direction of the spin-orbit torques acting on the SBH
will change in some near-random fashion after each star formation event. The con-
sequences of such evolution have yet to be explored.

5.7.2 Capture

The spin-orbit torques described above leave the magnitude of the hole’s spin un-
changed. But capture of a star or stellar remnant will change both the direction and
the magnitude of S, since the orbital angular momentum and mass-energy of the
star are added to those of the SBH. The change in χ after a single capture is com-
puted by evaluating the star’s energy and angular momentum on the capture orbit
and adding them to the energy and angular momentum of the SBH; the very slight
losses due to gravitational radiation during the final plunge can safely be ignored.

In section 4.6, we found that Lc, the angular momentum of the innermost stable
circular orbit (ISCO), varies from Lc/m� = √

12rgc for a test mass around a non-
spinning hole, to Lc/m� = 1(9)rgc for direct (retrograde) orbits in the equatorial
plane of a maximally spinning hole. The much larger value of Lc in the case of
retrograde capture implies that a rapidly rotating hole will typically spin down if
capture occurs from random directions [124, 197, 572].

The parameters defining the ISCO depend on an orbit’s inclination with respect
to the SBH spin direction. The inclination dependence was derived in section 4.6
in the limit of large orbital eccentricities. Here we restrict ourselves to the simpler
case of capture from circular orbits [247]. If one repeats the derivation leading to
equation (4.255), now allowing for arbitrary inclination, the numerical results are
found to be reasonably well approximated by

ζ(µ) ≈ |ζ−| + 1

2
(µ+ 1)(ζ+ − |ζ−|), (5.265)

where ζ can stand for rc, E∞,c, or Lc, the subscripts + and − refer to direct and
retrograde orbits in the equatorial plane, and

µ ≡ cos i = Lz

L2
z + L2

⊥
(5.266)

with Lz = µL, L⊥ =
√

1 − µ2L. If the mass and spin of the SBH are M and
S = (GM2/c)χez before capture, their values after capture are

M ′ =M [
1 + qcE∞,c(χ, µ)

]
, (5.267a)

S ′
z =

GM2

c
χ + qLz,c(χ, µ) , (5.267b)

S ′
⊥ = qL⊥,c(χ, µ), (5.267c)

where q ≡ m/M . The new value of the dimensionless spin is

χ ′ =
c

√
S ′2
z + S ′2

⊥
GM ′2 (5.268)
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Figure 5.10 Steady-state spin distributions produced by successive capture from random di-
rections at fixed mass ratio q, for q = (1/32, 1/16, 1/8, 1/4). Curves were
generated using Monte Carlo experiments based on the test-particle approxi-
mation, q � 1.

and the new spin vector is inclined by an angle δθ with respect to the original spin,
where

cos δθ = S ′
z√

S ′2
z + S ′2

⊥
. (5.269)

We are interested here in the limiting forms of these expressions for small q. (In-
deed, since our treatment is based on the test-particle equations of motion, it is only
valid in this limit.) The change in the dimensionless spin works out to be [247]

δχ ≈ −2qχ + Lc,z

rgMc
, (q � 1) . (5.270)

The first term in equation (5.270) describes conservation of spin angular momen-
tum of the SBH as its mass grows, χ ∝ M−2, while the second term accounts for
the additional angular momentum brought in by the smaller body. The change in
orientation is, to lowest order in q,

χδθ = q

rgMc
L(χ,µ)

√
1 − µ2, q � 1 . (5.271)
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Assuming successive mergers from random directions with fixed mass ratio q
(equivalent to assuming that m� grows proportionately to M•—mathematically
simple but not very realistic) leads to a steady-state spin distribution N(χ) that
is uniquely determined by q. For small q, this distribution can be derived from a
Fokker–Planck equation [247]:

N(χ)dχ ≈ N0χ
2e−3χ2/2χ2

rmsdχ, χrms ≈ 1.58
√
q. (5.272)

Equation (5.272) reflects the competition between captures that increase spin and
captures that decrease spin. For small χ , equation (5.270) implies that δχ > 0,
while for χ >∼

√
q the typical effect of capture from random directions is to de-

crease spin; the SBH spin evolves to a value such that spinup and spindown occur
with equal frequency on average. This situation is similar to the Brownian motion
of a massive particle, in the sense that the “frictional” force (due in this case to
retrograde captures) increases with the amplitude of the velocity (i.e., the spin).

Figure 5.10 shows the steady state N(χ) for various values of q. The Gaussian
form of equation (5.272) is seen to be accurate for q <∼ 0.1.

The orientation evolves as a random walk; there is no “resistive” term. The typi-
cal change in spin direction, after the SBH has grown by a mass �M , is [247]

〈δθ〉 ≈ 2.7

√
�M

M

q

χ2
. (5.273)





Chapter Six

Loss-Cone Dynamics

A supermassive black hole (SBH) at the center of a galaxy acts like a sink,
removing stars that come sufficiently close to it. This removal can occur in one
of two ways, depending on the mass of the SBH and on the physical properties of
the passing star. At one extreme, the “star” can itself be a gravitationally compact
object: a stellar-mass black hole or a neutron star. For such objects, tidal stresses
from the SBH are unimportant, and removal occurs only when the object finds it-
self on an orbit that takes it inside the SBH event horizon. The properties of capture
orbits were derived in section 4.6. In the case of circular orbits around nonspinning
(Schwarzschild) holes, the innermost stable radius is 6rg where rg ≡ GM•/c2 is
the gravitational radius of the SBH. This changes to 1(9)rg in the case of prograde
(retrograde) circular orbits in the equatorial plane of a maximally spinning SBH.
Circular orbits are not terribly likely, however, unless the mass of the infalling ob-
ject is large enough that some process like dynamical friction, or gravitational-wave
energy loss, can circularize the orbit prior to capture. In the case of stellar-mass ob-
jects, capture is more likely to be preceded by scattering onto an eccentric orbit.
For such orbits, it was shown in section 4.6 that the critical angular momentum
for capture by a nonrotating SBH is ∼4GM•/c; the periapsis of a Newtonian orbit
with this value of L is ∼8rg. This critical radius changes to ∼2(12)rg for prograde
(retrograde) orbits around maximally rotating SBHs.

Ordinary stars can also be swallowed whole, but only if they manage to resist
being pulled apart by tidal stresses from the SBH. The strength of a tidal encounter
can be expressed in terms of the parameter η, the square root of the ratio between
the surface gravity of the star and the tidal acceleration due to the SBH near peri-
apsis passage, r = rp:

η ≡
(

r3
p

GM•R�

Gm�

R2
�

)1/2

, (6.1)

where m� and R� are the mass and radius of the star. The right-hand side of equa-
tion (6.1) is also the ratio between the duration of periapsis passage and the hydro-
dynamic timescale of the star [437]. It is customary to define the tidal disruption
radius, rt , as the value of rp that satisfies this expression, or

rt =
(
η2M•
m�

)1/3

R� (6.2a)

≈ 1.1 × 10−5η2/3

(
M•

108M�

)1/3 (
m�

M�

)−1/3 (
R�

R�

)
pc. (6.2b)
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The quantity η then becomes a “form factor,” of order unity, that can be calculated
given the internal properties of the star.

Main-sequence stars can be modeled reasonably well as stellar-dynamical poly-
tropes, with gaseous equations of state P = Kργ = Kρ(n+1)/n; n is the “polytropic
index” [77]. For stars like the Sun, n ≈ 3 (γ ≈ 4/3), and one finds η ≈ 0.844.
The following are values of η corresponding to other polytropic indices [120].

n: 3 2 1.5 1 0
η: 0.844 1.482 1.839 2.223 3.074

Rewriting equation (6.2b) as

� ≡ rt

rg
= η2/3

(
M•
m�

)1/3
R�

rg

≈ 2.2 η2/3

(
M•

108M�

)−2/3 (
m�

M�

)−1/3
R�

R�
, (6.3)

we see that tidal disruption occurs outside of the SBH’s event horizon for solar-
type stars when M• <∼ 108M�; but when M• >∼ 108M�, stars like the Sun can be
captured whole. Figure 6.1, which is based on detailed models of stellar interiors,
shows the maximum value of M• for which tidal disruption of main-sequence stars
can occur. The most massive SBHs,M• ≈ 109M�, can only disrupt main-sequence
stars with m� >∼ 102M�. Such massive stars have very short lifetimes on the main
sequence, and in the absence of ongoing star formation, the only stars with com-
parable radii that would be present are red giants or asymptotic-giant-branch stars.
The relatively short lifetimes of these giant phases, plus the fact that “disruption”
of a red giant may leave its structure nearly unchanged, complicates the calculation
of tidal event rates in giant galaxies, as discussed in more detail in section 6.1.4.

SBHs of sufficiently low mass can disrupt objects even smaller than the Sun. For
instance, degenerate dwarfs have radii [396]

R

R�
≈ 1.1 × 10−2

[
1 − (mWD/MCh)

4/3
]1/2

(mWD/MCh)1/3
, MCh ≈ 1.4M�, (6.4)

or ∼10−2 R� formWD ≈ 1M�. White dwarfs are well approximated as polytropes,
with n ≈ 3/2 (η ≈ 1.8) at low masses, increasing to n ≈ 3 (η ≈ 0.8) for m <∼ MCh

[492]. Thus,

�WD ≈ 0.5

(
M•

106M�

)−2/3 (
mWD

MCh

)−1/3 (
RWD

10−2 R�

)
. (6.5)

In the Milky Way, M• ≈ 4 × 106M�, and equations (6.4)–(6.5) imply that tidal
disruption of a white dwarf is only possible for mWD <∼ 0.2M�. In fact, a more
accurate calculation [579] gives for the maximum radius of a carbon white dwarf
RWD ≈ 3.9 × 10−2 R� corresponding to a mass of ∼2.2 × 10−3M�. Even for
such an extreme object, equation (6.5) implies � ≈ 0.6, and for this reason, tidal
disruption of degenerate dwarfs is usually only discussed in the context of (hypo-
thetical) intermediate-mass black holes with M• <∼ 3 × 105M�. However, it has
been argued that tidal stresses can significantly change the internal structure of a
white dwarf even if it is not fully disrupted [73].
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Figure 6.1 Maximum mass of the SBH for which tidal disruption of stars on the main se-
quence can occur, as a function of main-sequence mass [171].

Tidal disruption of stars is important as a test of the SBH paradigm. Disrupted
stars are expected to produce X- and UV radiation with luminosities of
∼1044 erg s−1, potentially outshining their host galaxies [451]. Debris from a dis-
rupted star is launched onto orbits which span an energy range δE ≈ GM•R�/r2

t

[450]. This energy range is large compared with the energy of the (highly eccentric)
initial orbit, and so roughly half the liberated material will be unbound while the
other half will begin to fall back onto the SBH. For main-sequence stars, the fall-
back rate at late times should decline as ∼t−5/3 [429]. A handful of X-ray flaring
events have been observed that have the expected signatures [291], and the number
of detections is at least roughly consistent with theoretical estimates of the event
rate [123]. Neutron stars or stellar-mass black holes would not be disrupted, but
these objects can emit gravitational waves at potentially observable amplitudes and
frequencies before spiraling in, and may dominate the event rate for low-frequency
(space-based) gravitational-wave interferometers [496].

The rate of either sort of event is determined by the rate at which stars or
compact remnants pass within some critical distance from the SBH. We define the
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loss-cone radius rlc to be the larger of the tidal disruption radius, rt , or the radius
of capture, rc, for stars of a given type. An orbit that just grazes the sphere at
r = rlc has angular momentum

L2
lc(E) = 2r2

lc [E −�(rlc)] ≈ 2GM•rlc ; (6.6)

the latter expression assumes |E| � GM•/rlc, that is, that the star is on an orbit
with semimajor axis much greater than rlc. Within the SBH influence sphere, orbits
are nearly Keplerian, and equations (6.3) and (6.6) imply a limiting eccentricity

1 − e2
lc ≈ L2

lc

GM•a
≈ 2�

(
a

rg

)−1

, a � rh (6.7)

with � now defined in terms of rlc rather than rt . Orbits with L ≤ Llc are called
loss-cone orbits, and the ensemble of such orbits is sometimes called simply the
“loss cone.”1

The loss cone can be visualized as the set of velocity vectors, at some distance
r from the SBH, that are associated with orbits that pass within rlc. To satisfy this
condition, a star’s velocity vector must lie within a cone of half-angle θlc that is
given approximately by

θlc ≈
{
(rlc/r)

1/2, r <∼ rh,

(rlcrh/r
2)1/2, r >∼ rh

(6.8)

(figure 6.2a). These relations follow from equation (6.6), L2
lc ≈ 2GM•rlc, the first

after setting v(r) ≈ √
GM•/r and the second after setting v ≈ σ .

In a spherical galaxy, the number of stars with angular momenta small enough to
satisfy equation (6.6) would ordinarily be small; furthermore, these stars would be
removed at the first periapsis passage, that is, after a single orbital period. Contin-
ued supply of stars to the SBH requires some mechanism for loss-cone repopula-
tion: new stars need to be transferred onto loss-cone orbits, and the rate of supply
of stars to the SBH will be determined by the efficiency of the resupply process.

An upper limit to the consumption rate in a spherical galaxy comes from assum-
ing that stars are instantaneously replaced after being consumed by the SBH. In
this full-loss-cone model, stars at energy E are consumed at a constant rate (stars
per unit time) of

F flc(E) dE ≈ P(E)−1Nlc(E) dE, (6.9)

where P(E) is the period of a nearly radial orbit of energy E and Nlc(E) dE is the
number of stars at energies E to E + dE on orbits with L ≤ Llc. In a spherical
galaxy, we know from equation (5.159) that

N(E,L)dE dL = 8π2Lf (E,L)P (E,L)dE dL,

1This term derives from plasma physics: in a magnetic-mirror machine, particles are trapped if their
velocity vectors lie outside a cone in velocity space whose opening angle is determined by the properties
of the magnetic field [301].
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Figure 6.2 Two representations of the loss cone. (a) Orbits with velocity vectors that fall
within the cone θ ≤ θlc will pass within the capture/disruption sphere at r = rlc;
the angle θlc is given approximately by equation (6.8). (b) In energy–angular-
momentum space, the loss cone consists of orbits with L ≤ Llc (equation 6.6).
In this figure, E ≡ −E andR ≡ L2/Lc(E)

2;R = 0 corresponds to radial orbits
and R = 1 to circular orbits. The representation of the loss cone as a cylinder
is motivated by the fact that the differential equation describing SBH feeding
in a spherical galaxy, equation (6.29), has the same form mathematically as the
equation describing the flow of heat in an infinite cylinder.

and so

Nlc(E) dE≈ 4π2L2
lc(E)P (E)f (E) dE, (6.10a)

F flc(E)≈ 4π2L2
lc(E)f (E) ≈ 8π2GM•rlcf (E), (6.10b)

where isotropy in velocity space has been assumed. Using equation (3.54), this can
also be written as

F flc(E) ≈ N(E)

P (E)

L2
lc(E)

L2
c(E)

, (6.11)

showing that a fraction ∼L2
lc/L

2
c of the stars at E get into the SBH each radial

period.
Within the gravitational influence sphere, if the density follows a power law in ra-

dius, n ∝ r−γ , equation (3.49) tells us that f ∝ |E|γ−3/2. For γ >∼ 3/2, f increases
inward (i.e., toward larger |E|), while in galaxies with flat nuclear density profiles,
f typically peaks at energies near �(rh) then falls outward, since stellar densities
generally fall more rapidly than r−3/2 beyond ∼rh. In either case, most of the flux
comes from stars inside the influence sphere. Inserting f (E) from equation (3.49)
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into (6.10) then yields

F flc(E) ≈ (3 − γ )

√
2

π

�(γ + 1)

�(γ − 1
2 )

M•
m�

rlc√
GM•r3

m

( |E|
φ0

)γ−3/2

, (6.12)

1

2
< γ < 3,

for |E| >∼ φ0; recall that rm is the radius containing a stellar mass equal to 2M•,
and φ0 ≡ GM•/rm ≈ σ 2.

Integrating this expression with respect to energy gives the total consumption
rate (stars lost per unit time) in the full-loss-cone model:

Ṅflc ≈
∫ φ0

−∞
F flc(E)dE. (6.13)

For γ > 1/2, the integral diverges at large |E| due to the rapid rate of consump-
tion of the most bound stars. On the other hand, γ = 1/2 is the smallest value
consistent with an isotropic f (E) around an SBH! This means that the consump-
tion rate corresponding to a “full loss cone” is a rather poorly defined quantity—
perhaps helping to explain why different authors give rather different estimates for
this quantity.

The divergence in the total consumption rate is a result of the very short orbital
periods near the SBH. In reality, it is unlikely that those very bound orbits would
be refilled as efficiently as orbits near, say, r = rh. We can define an alternative,
and more conservative, full-loss-cone consumption rate as the number of stars on
loss-cone orbits within the SBH influence radius, divided by the orbital period at
that radius. The first quantity is∫ φ0

−∞
4π2L2

lcPf dE ≈ π1/2 (3 − γ )

(2 − γ )

�(γ + 1)

�(γ − 1/2)

M•
m�

rlc

rm
,

1

2
< γ < 2. (6.14)

Assuming that these stars are lost in a time equal to the Keplerian orbital period
when |E| = φ0, or

π√
2

GM•
φ

3/2
0

= π√
2

(
r3

m

GM•

)1/2

,

gives a (mass) consumption rate of

m�Ṅ ≈
√

2

π

(3 − γ )

(2 − γ )

�(γ + 1)

�(γ − 1/2)

rlc

rm

(
GM•
r3

m

)1/2

M•,
1

2
< γ < 2. (6.15)

For M• >∼ 108M� and solar-type stars, we can equate rlc with the SBH capture
radius ∼8GM•/c2. If we are willing to ignore the distinction between rm and rh ≡
GM•/σ 2, the dimensional quantities in equation (6.15) then become

rlc

rm

(
GM•
r3

m

)1/2

M• ≈ 8
σ 5

Gc2

≈ 7 × 107

1010

(
σ

200 km s−1

)5

M� yr−1. (6.16)
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While it took a fair bit of hand waving to get to this point, the result is remarkable:
a growth rate that reproduces the M•–σ relation after 10 Gyr, both in slope and
normalization [581]!

Models that invoke a full loss cone have an obvious weakness: they require some
mechanism for repopulating the depleted orbits on a timescale that is compara-
ble with orbital periods. At least in spherically symmetric or axisymmetric nuclei,
it is hard to think of such a mechanism. Efficient loss-cone repopulation is more
plausible during periods of rapid potential change, for example, during the galaxy
mergers that are thought to accompany quasar activity. Some early discussions of
quasar fueling [236, 410] invoked a full loss cone; for instance, in the “black tide”
model [574], gas from tidally disrupted stars radiates as it spirals into the SBH, and
the SBH shines as a quasar until its mass reaches ∼108M� at which point stars are
swallowed whole and the quasar fades.

Under more steady-state conditions, gravitational encounters can always be
counted on to repopulate loss-cone orbits, although at a rate that may be very low.
Gravitational encounters also drive the distribution of orbital energies toward the
Bahcall–Wolf form near the SBH: f ∼ |E|1/4, n ∼ r−7/4. But as discussed in chap-
ter 5, the Bahcall–Wolf solution is characterized by a flux of stars into the SBH that
is essentially zero, in the sense that |F | � N(< rh)/Tr(rh)—indeed we derived
that solution by setting the flux in energy space precisely to zero. To the extent that
stars find their way into the SBH via diffusion in energy, the feeding rate implied
by these models would appear to be many orders of magnitude smaller than the
full-loss-cone rate.

This discouraging conclusion led almost immediately [168, 323, 573] to the re-
alization that the most efficient way to scatter stars into an SBH is via changes in
angular momentum, not energy. Changes in L were ignored in the original deriva-
tion of the Bahcall–Wolf solution, which was based on the isotropic Fokker–Planck
equation. Generalizing that solution to the anisotropic case, f = f (E,L), turns out
to leave the energy dependence of the solution, and hence the radial density profile,
nearly unchanged [91]. But allowing stars to diffuse in angular momentum implies
a much greater flux of stars into the loss cone: roughly speaking, all stars within
a sphere of radius r will diffuse into the SBH in one relaxation time at r . The to-
tal consumption rate is therefore ∼ (M•/m�)/Tr(rh)—smaller (typically) than the
full-loss-cone rate but much larger than the rate implied by energy diffusion alone.

Figure 6.2b illustrates the loss cone in a spherical galaxy in terms of the energy–
angular momentum variables defined in chapter 5:

E ≡ −E = −v2/2 + ψ(r), R ≡ L2/L2
c(E)

with ψ(r) = −�(r); near the SBH, L2
c ≈ (GM•)2/(2E). To a first approximation,

the phase-space density must vanish for orbits that approach closer to the SBH than
rlc. The energy of a circular orbit at r = rlc is Elc = GM•/(2rlc); this defines the
maximum E for which f can be nonzero. For E < Elc the lower limit onR is given
by equation (6.6):

Rlc(E) = 2r2
lc

L2
c(E)

[ψ(rlc)− E] ≈ 2
E
Elc

(
1 − 1

2

E
Elc

)
, (6.17)
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where the last expression is valid for large E , that is, near the SBH. We can also ex-
pressRlc approximately in terms of the angle θlc defined in figure 6.2:Rlc ≈ θ2

lc, or

Rlc ≈
{
rlc/r, r <∼ rh,

rlcrh/r
2, r >∼ rh.

(6.18)

Once inside the loss cone, stars are lost in a time ∼P(E). Near the SBH, orbital
periods are very short, and stars hardly penetrate beyond the loss-cone boundary
before they are consumed or destroyed. At these energies, the phase-space density
vanishes throughout the loss cone except for a very small region near the boundary.
For small E , on the other hand, P is large and Rlc is small; at these energies it is
possible for a star to diffuse across the loss cone by gravitational encounters during
a single orbital period. Consider an orbit inside the loss cone. At r = rlc on such an
orbit, there are no stars moving in an outward direction; but if one were to follow
the orbit outward, stars from neighboring orbits would be scattered onto it. This
argument suggests that even orbits inside the loss cone will be populated, and to an
increasing degree as E → 0.

Let Tr(E) be the (orbit-averaged) relaxation time for orbits of energy E . The
typical change in L2 in a time Tr is ∼L2

c . Assuming that L evolves as a random
walk, then in a single orbital period, the rms change in L is roughly

δL ≈ (P/Tr)
1/2Lc. (6.19)

If δL � Llc, a star on the edge of the loss cone will execute many orbits before
suddenly disappearing. This is the diffusive, or empty-loss-cone regime. The con-
sumption rate of stars in this regime is set by the diffusion coefficients that appear
in the orbit-averaged Fokker–Planck equation and by the gradients in f with re-
spect to L at L ≈ Llc. On the other hand, if δL � Llc, orbits are repopulated so
efficiently by gravitational encounters that f > 0 even for orbits with L � Llc(E);
the feeding rate approaches the full-loss-cone rate defined above, independent of
the relaxation time. This is called the pinhole,2 or full-loss-cone regime. The en-
ergy separating the inner, diffusive regime from the outer, pinhole regime is Ecrit,
defined as the energy for which

δL ≈ (P/Tr)
1/2Lc = Llc. (6.20)

In steady-state solutions like Bahcall and Wolf’s, one typically finds that the total
consumption rate is dominated by stars with energies greater than Ecrit; in other
words, most captures take place in the diffusive regime.

As emphasized throughout this book, nuclear relaxation times are long, and there
is no a priori reason to suppose that the distribution of orbital energies near the SBH
is close to the Bahcall–Wolf form. But even in an unrelaxed nucleus, it can still
make sense to talk about steady-state distributions with respect to orbital angular
momenta near the loss cone. The time for L to change by an amount ∼Llc due to
encounters is

�tlc ≈
(
Llc

Lc

)2

Tr � Tr . (6.21)

2So called because far from the SBH, the capture sphere looks like a point.
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Even if Tr is longer than the age of the universe, �tlc need not be. In this chapter, a
steady-state loss cone will be defined as one for which the distribution of angular
momenta near the loss-cone boundary is in a stationary state at each E , even if
the distribution of orbital energies is still evolving. Time-dependent loss cones are
defined similarly as those for which f is still evolving with respect to L. Evolution
of nuclei on timescales of ∼Tr—that is, evolution in the energy distribution—will
be dealt with separately in chapter 7.

Loss-cone theory is less well developed in the context of axisymmetric or triaxial
nuclei. In a triaxial nucleus, a fraction of order unity of the stars can follow cen-
trophilic orbits like the pyramids (chapter 3). A star on such an orbit will eventually
come very close to the SBH, even in the absence of gravitational encounters. The
“loss cone” in such a nucleus could reasonably be said to include all such stars;
however, the time required for a star on a centrophilic orbit to pass within rlc can
be much longer than the period, P , of radial oscillations. Nevertheless, consump-
tion rates in triaxial nuclei can be high—of the same order as full-loss-cone rates
in spherical galaxies—and can remain high for relatively long times, even in the
absence of collisional loss-cone repopulation [371].

Stars like the Sun are disrupted outside the SBH’s event horizon for M• <∼
108M�, but compact remnants like neutron stars and stellar-mass black holes can
survive much farther in. For such objects, capture can occur in one of two ways:
directly, by scattering onto a loss-cone orbit, or indirectly, by scattering onto an or-
bit for which changes in energy and angular momentum due to gravitational-wave
emission occur more quickly than changes due to gravitational encounters. The first
sort of event is called a “plunge,” the second an “EMRI”—an extreme-mass-ratio
inspiral. This terminology originated within the community of physicists hoping
to detect gravitational waves. Plunges are of less interest to such researchers since
the gravitational waves are only emitted once, in a short burst near periapsis. In the
case of EMRIs, inspiral is driven by the gravitational waves themselves, and the
signal can be built up over time, making it much easier to detect and model the
source. The gravitational interactions that result in EMRIs differ from those that
produce tidal disruption events in that they take place much closer to the SBH. This
means that resonant relaxation needs to be considered in addition to nonresonant
relaxation, and also that relativistic precession of orbits cannot be ignored.

6.1 SPHERICAL SYMMETRY

6.1.1 Basic relations

In a spherical galaxy, the orbit-averaged Fokker–Planck equation expressed in
(E,R) variables is (section 5.5.1)

∂N

∂t
= − ∂

∂E (N〈�E〉t )+ 1

2

∂2

∂E2

(
N〈(�E)2〉t

) − ∂

∂R (N〈�R〉t )

+ 1

2

∂2

∂R2

[
N〈(�R)2〉t

] + ∂2

∂E∂R [N〈(�E)�R〉t ] , (6.22)
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where N , the number density in (E,R) space, is related to the distribution function
f via equation (5.166):

N(E,R, t)dE dR = 4π2P(E,R)L2
c(E)f (E,R, t)dE dR. (6.23)

The subscripts t on the diffusion coefficients denote orbit averages, for example,

〈�E〉t ≡ 2

P

∫ r+

r−

dr

vr
〈�E〉

(equation 5.155).
As discussed in the introduction to this chapter, the timescale over which N

attains a steady state with regard to R, near the loss cone, is expected to be much
shorter than the time required for N to reach a steady state with respect to E . At
any given E , therefore, we can seek solutions to

∂N

∂t
= − ∂

∂R (N〈�R〉t )+ 1

2

∂2

∂R2

[
N〈(�R)2〉t

]
(6.24)

while ignoring changes in energy. Using equations (5.125) and (5.167), the local
diffusion coefficients 〈�R〉, 〈(�R)2〉 that appear in this equation can be expressed
in terms of the velocity-space diffusion coefficients defined in equation (5.94). Fur-
thermore, except at energies close to ψ(rlc), the angular momentum of a loss-cone
orbit is small compared with Lc(E); that is, R � 1. Retaining only the leading
terms inR, we find for the local diffusion coefficients,

〈�R〉 = r2

Lc(E)2 〈�v2
⊥〉 +O(R), (6.25a)

〈(�R)2〉 = 2r2

Lc(E)2R〈�v2
⊥〉 +O(R2). (6.25b)

To lowest order inR,

〈�R〉 = 1

2

∂

∂R 〈(�R)2〉, (6.26)

a relation that is also valid if the local diffusion coefficients are replaced by their
orbit-averaged counterparts. Using (6.26), equation (6.24) can be written

∂N

∂t
≈ 1

2

∂

∂R
[
〈(�R)2〉t ∂N

∂R
]
, R� 1. (6.27)

It is convenient to define

D(E) ≡ lim
R→0

〈(�R)2〉t
2R . (6.28)

In terms of D, equation (6.27) becomes

∂N

∂t
≈ D ∂

∂R
(
R∂N
∂R

)
, R� 1, (6.29)

where the E dependence is understood. Equation (6.29), after a trivial change of
variables, has the same mathematical form as the equation governing transfer of
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heat in a cylindrical rod. Because of this, some authors prefer the term “loss cylin-
der” to “loss cone,” and that is why figure 6.2b adopts a cylindrical geometry.

Using the relations derived in chapter 5, and assuming an isotropic field-star
distribution, we can write

〈(�v⊥)2〉= 32π2G2m2 ln�

3
v [3I2(v)− I4(v)+ 2J1(v)] , (6.30a)

In(v)=
∫ v

0

(vf
v

)n
f (vf ) dvf , (6.30b)

Jn(v)=
∫ ∞

v

(vf
v

)n
f (vf ) dvf , (6.30c)

and

D(E) = 2

L2
c(E)P (E)

∫ ψ−1(E)

0

r2dr

vr
〈(�v⊥)2〉. (6.31)

If there is a distribution of field-star masses, m2f (vf ) in equations (6.30) is re-
placed by µ(vf ) ≡ ∫

dmm2f (vf ,m).
We wish to find steady-state solutions to (6.29). Setting N ∝ lnR implies

∂N/∂t = 0. As a boundary condition, it makes sense to require that N fall to zero
at some small angular momentum R0(E); we expect that R0 ≈ Rlc ≡ L2

lc/L
2
c , at

least in the “empty-loss-cone” regime. The steady-state solution then becomes

N(R; E) = ln(R/Rlc)

ln(1/Rlc)+Rlc − 1
N̄(E), (6.32)

where

N̄(E) =
∫ 1

Rlc

N(E,R)dR (6.33)

is a number-weighted average of N over angular momentum. N̄(E), and the corre-
sponding phase-space density

f̄ (E) ≈ N̄(E)
4π2L2

c(E)P (E)
, (6.34)

are approximately the N and f that would be inferred for an observed galaxy if it
were modeled assuming an isotropic velocity distribution.

Let F(E)dE be the flux of stars (number per unit time) in energy interval dE
centered on E , into the loss cone.3 In general,

F(E)dE = − d

dt

[ ∫ 1

Rlc

N(E,R)dR
]
dE . (6.35)

Substituting equation (6.29) into equation (6.35), and requiring ∂N/∂R = 0 at
R = 1, we find

F(E) = D(E)Rlc

(
∂N

∂R
)
Rlc

≈ N̄(E)D(E)
ln(1/Rlc)

, (6.36)

3Not to be confused with FE or FR, the functions that appear in the flux-conservation form of the
Fokker–Planck equation.
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where the latter expression assumes Llc � Lc. Now it is clear from its definition
that D is the inverse of an orbit-averaged relaxation time: the time over which R
changes by of order unity, that is, L changes by of order Lc. Equation (6.36) states
therefore that a fraction ∼1/| ln(Rlc)| of stars at energies E to E + dE are scattered
into the loss cone each relaxation time.

Before proceeding, we must return to a point made in the introduction. If the
change in L over one orbital period, δL, is comparable to Llc, the diffusive, orbit-
averaged approximation on which equation (6.36) is based breaks down. Instead, a
star will enter and exit the loss cone multiple times over a single orbital period, and
the loss rate should approach the full-loss-cone rate defined above. We can para-
metrize the goodness of the diffusive approximation in terms of q(E) ≡ (δL/Llc)

2.
Using equation (6.19), and identifying Tr in that expression with the orbit-averaged
time D−1, we are led to the definition

q(E) ≡ P(E)D(E)
Rlc(E) , (6.37)

where P(E) ≡ P(E,R)R→0. Evidently, q � 1 is the diffusive (empty-loss-cone)
regime and q � 1 is the pinhole (full-loss-cone) regime. In terms of q, for the flux
in the diffusive regime, equation (6.36) gives

F(E) ≈ q

ln(1/Rlc)

N̄Rlc

P
, q � 1. (6.38)

Since Nlc(E) ≈ N(E)Rlc(E), this capture rate is smaller by a factor ∼q/ ln(1/Rlc)

than the full-loss-cone capture rate defined in equation (6.10).
As we will see in section 6.1.3, in physically reasonable models for the distribu-

tion of stars in galactic nuclei, q � 1 at very bound energies (i.e., near the SBH),
while q � 1 far from the SBH. Furthermore, the energy at which q = 1 is roughly
the energy at which F(E) peaks. This means that feeding of stars to the SBH oc-
curs, in roughly equal numbers, from stars in the diffusive and pinhole regimes. We
therefore must develop an understanding of how stars get into the loss cone when
the orbit-averaged approximation breaks down.

6.1.2 The Cohn–Kulsrud boundary layer

Cohn and Kulsrud [91] derived a steady-state expression for f near the loss cone in
a spherical galaxy that is valid whether or not q � 1. Their solution was numerical.
Here we derive the Cohn–Kulsrud boundary layer solution in a more transparent
way, making use of the fact that the governing equation is mathematically equiva-
lent to the equation describing transfer of heat in a cylinder.4 The same approach
will be useful later in this chapter when the time-dependent loss-cone problem is
addressed.

Our starting point is the local (r-dependent) Fokker–Planck equation (5.121).
We express the collision term in that equation in terms of velocity-space variables
E andR using the volume element a1/2 = L2

c/(r
2vr) (equation 5.165). As justified

4Much of the material in this section is based on unpublished work by M. Milosavljevic, who kindly
gave permission for its use here.
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above, we ignore changes in energy so that E may be treated as a parameter rather
than a variable. Since vr(E,R) ≈ vr(E) whenR� 1, vr may be taken outside the
derivative with respect toR, yielding(

∂f

∂t

)
c

= − ∂

∂R (f 〈�R〉)+ 1

2

∂2

∂R2

(
f 〈(�R)2〉) (6.39a)

≈ 1

2

∂

∂R
[
〈(�R)2〉 ∂f

∂R
]

; (6.39b)

the second expression used equation (6.26). In a steady state, this must equal the
left-hand side of the Boltzmann equation with ∂f/∂t set to zero:∑

i

vi
∂f

∂xi
+

∑
i

ai
∂f

∂vi
=

(
∂f

∂t

)
c

. (6.40)

Expressed in terms of (E,R) as velocity-space variables, the left-hand side be-
comes simply vr∂f/∂r , and so

∂f

∂r
= v−1

r

∂

∂R

[
〈(�R)2〉

2R R ∂f
∂R

]
. (6.41)

Equation (6.41) describes how the phase-space density varies along an orbit, as
stars are scattered onto it and off of it.

It is useful to introduce the timelike variable τ :

τ ≡
[∫ r

r−

dr

vr

〈(�R)2〉
2R

] / [∮
dr

vr

〈(�R)2〉
2R

]

= (PD)−1
∫ r

r−

dr

vr

〈(�R)2〉
2R . (6.42)

The integrals are along the orbit, and the “orbital integral” of a function F(r, vr) is
defined as ∮

drF (r, vr) =
∫ r+

r−
F(r, vr)dr +

∫ r−

r+
F(r,−vr)dr. (6.43)

As τ varies from 0 to 1, r increases from r− to r+ and back to r− again. In terms of
τ , equation (6.41) becomes

∂f

∂τ
= P(E)D(E) ∂

∂R
(
R ∂f
∂R

)
, (6.44)

where use has been made of the fact that for smallR, 〈(�R)2〉/2R is independent
of R and can be commuted outside of ∂/∂R. As a final simplification, we define a
new angular momentum variable:

y ≡ R
P(E)D(E) , (6.45)

in terms of which equation (6.44) becomes

∂f

∂τ
= ∂

∂y

(
y
∂f

∂y

)
. (6.46)
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The dimensionless angular momentum corresponding to the geometric boundary
of the loss cone, at radius rlc, isR = Rlc; in terms of y,

ylc = Rlc

P(E)D(E) . (6.47)

Now, for y > ylc, the phase-space density f (τ, y) is a periodic function of τ :

f (0, y) = f (1, y), y > ylc. (6.48)

Inside the loss cone, we know that no stars exit the zone of destruction around the
SBH:

f (0, y) = 0, y < ylc, (6.49)

while the boundary condition at the other end of the orbit is

f (1, y) ≥ 0. (6.50)

The rate at which stars enter a sphere of radius r , per unit of E andR, is

1

2
× 4πr2 × 2πL2

c

vrr2
f (1,R)× vr . (6.51)

Integrating this expression overR gives the flux per unit of energy into the SBH:

F(E)dE = 4π2P(E)D(E)L2
c(E)

[∫ ylc

0
f (1, y)dy

]
dE . (6.52)

To calculate the flux, we need to solve for f (τ, y) subject to the boundary con-
ditions (6.48) and (6.49), with an additional boundary condition stipulating the
smoothness of f at y = 0:

∂f

∂L
∝ ∂f

∂
√
y

= 0 (y = 0). (6.53)

Equation (6.46) is solved separately inside and outside the geometric loss-cone
boundary and the two solutions are matched at y = ylc. Outside the boundary, one
can assume that Jeans’s theorem applies and f (τ, y) is independent of τ . Inside the
loss cone, the solution can be obtained using the method of separation of variables.
The problem is mathematically equivalent to the transfer of heat in a solid cylinder
of radius y1/2

lc that is initially at zero temperature, the surface of which is kept at the
constant temperature f (ylc). The solution is [411]

f (τ, y) = f (ylc)

[
1 − 2√

ylc

∞∑
m=1

e−β
2
mτ/4

βm

J0(βm
√
y)

J1(βm
√
ylc)

]
. (6.54)

Here J0 and J1 are Bessel functions of the first kind, and βm yield consecutive zeros
of the equation

J0(β
√
ylc) = 0. (6.55)
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Now, ∫ ylc

0
f (τ, y)dy= f (ylc)

(
ylc − 4

∞∑
m=1

e−β
2
m/4

β2
m

)

= f (ylc)ylc

(
1 − 4

∞∑
m=1

e−α
2
m/4ylc

α2
m

)
, (6.56)

where the αm are the consecutive zeros of the Bessel function J0(α). Thus, the
average flux traveling across ylc is

F(E)= 4π2P(E)D(E)L2
c(E)

∫ ylc

0
f (1, y)dy

= 4π2L2
cRlcf (Rlc)

(
1 − 4

∞∑
m=1

e−α
2
mq/4

α2
m

)
, (6.57)

where the E dependence is understood. Here, the quantity q,

q(E) ≡ P(E)D(E)
Rlc(E) ,

is defined precisely as in equation (6.37): it is the orbital period divided by the time
a star takes to diffuse across the loss cone. We can rewrite equation (6.57) as

F(E)= 4π2L2
cRlcf (Rlc)ξ(q), (6.58a)

ξ(q)≡ 1 − 4
∞∑
m=1

e−α
2
mq/4

α2
m

. (6.58b)

For small q, ξ ≈ (2/
√
π)

√
q ≈ 1.13

√
q; a good approximation for arbitrary q is

ξ ≈ (q2 + q4)1/4.
The value of f atRlc can be determined from the flux matching condition (6.53).

Setting ∂f/∂τ = 0 in equation (6.44), we find

f (R) = f (Rlc)+ f (1)− f (Rlc)

ln(1/Rlc)
ln(R/Rlc). (6.59)

This implies a flux just outside of the loss cone of

F(E)= 4π2L2
cPDRlc

∂f

∂R
∣∣∣∣
Rlc

= 4π2L2
cPD

f (1)− f (Rlc)

ln(1/Rlc)
. (6.60)

Equating the external flux (6.60) with the internal flux (6.58) and solving for f(Rlc),

f (Rlc) = f (1)

1 + q−1ξ(q) ln(1/Rlc)
. (6.61)

This can be substituted into equation (6.58) to yield

F(E) = 4π2L2
cRlc

f (E)
ξ(q)−1 + q−1 ln(1/Rlc)

, (6.62)



304 CHAPTER 6

where we have approximately identified

f (1) ≈ f (E) ≈
∫ 1

0
f (E,R)dR. (6.63)

It is customary to represent the flux in a form similar to that of equation (6.36):

F(E) = N(E)D(E)
ln(1/R0)

= 4π2qL2
cRlc

f (E)
ln(1/R0)

, (6.64)

where R0 is the f = 0 intercept of the external solution (6.59) extrapolated in-
side the loss cone. Comparison of equations (6.62) and (6.64) reveals the relation
betweenR0 andRlc:

R0(q) = Rlce
−q/ξ(q). (6.65)

Since ξ(q) ≈ 1 except when q � 1, the dependence ofR0 onRlc is exponential to
a good approximation. Based on their numerical solution, Cohn and Kulsrud [91]
suggested the form

R0(q) = Rlc ×
{
e−q, q � 1,

e−0.186q−0.824
√
q, q � 1.

(6.66)

Figure 6.3 shows that Cohn and Kulsrud’s approximation is good at both large and
small q; it is poorest at q ≈ 1 where it overestimatesR0/Rlc by ∼20%.

In terms ofR0, theR dependence of f is given by (equations 6.59, 6.61)

f (R) = f (E) ln(R/R0)

ln(1/R0)− 1 +R0
≈ f (E) ln(R/R0)

ln(1/R0)
. (6.67)

Near the SBH, q � 1 and R0 ≈ Rlc: relaxation effects are small and the phase-
space density falls to zero just inside the loss-cone boundary. Far from the SBH,
relaxation dominates, and f only falls to zero for orbits with L � Llc (i.e., R0 �
Rlc); at these energies, the loss cone is essentially full (figure 6.4).

A compact way to express the flux is in terms of the quantity Fmax, where

Fmax(E) ≡ N(E)D(E). (6.68)

Fmax is roughly equal to the maximum flux that can be driven, by gravitational
encounters, through a surface of constant E [323]. In terms of Fmax,

F(E) ≈ Fmax(E)
ln(1/R0)

. (6.69)

In the limits q � 1 and q � 1 this becomes

F ≈ Fmax ×
{

|lnRlc|−1, q � − ln |Rlc|,
q−1, q � − lnRlc.

(6.70)

Alternatively, we can express F in terms of the full-loss-cone flux defined in equa-
tion (6.10):

F(E) ≈ q(E) F
flc(E)

ln(1/R0)
(6.71)
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Figure 6.3 R0 ≡ L2
0/L

2
c(E) is the dimensionless angular momentum at which the phase-

space density falls to zero, for orbits that pass inside the loss cone of a spherical
galaxy. It is plotted here as a fraction of Rlc, the angular momentum of an orbit
that just grazes the loss cone. The parameter q = q(E) (equation 6.58) measures
the degree to which the diffusive approximation holds: q � 1 is the diffusive
(empty-loss-cone) limit, q � 1 is the pinhole (full-loss-cone) limit. The solid
line is the exact relation, equation (6.65), and the dashed line is the approximation
of equation (6.66).

which, in the large-q and small-q limits, becomes

F ≈ F flc ×
{
q| lnRlc|−1, q � − lnRlc,

1, q � − lnRlc.
(6.72)

The transition from empty- to full-loss-cone regimes can be said to occur at the
energy Ecrit where q(Ecrit) = | lnRlc(E)|; in other words, where the flux from the
two regimes is equal.5 The radius at whichψ(r) = Ecrit is called the critical radius,
rcrit. An approximate expression for rcrit is given in section 6.1.4.

5Some authors prefer to define q(Ecrit) = 1.
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Figure 6.4 Illustrating the Cohn–Kulsrud steady-state solution for f (R). The gray scale is
proportional to the logarithm of f . Rlc is the dimensionless angular momentum
of an orbit that grazes the loss sphere. The vertical dotted line marks the energy
at which q = 1; to the left, q � 1 and Rlc � R0 (full loss cone); to the right,
q � 1 andRlc � R0 (empty loss cone).

6.1.3 Tidal disruption rates in isothermal nuclei

It is instructive to apply the equations derived so far to a concrete nuclear model.
A density profile of the form

ρ(r) = m�n(r) = σ 2

2πGr2
(6.73)

is a fair description of the distribution of (old) stars near the center of the Milky
Way, at distances 0.5 pc <∼ r <∼ 10 pc from Sgr A*—the “nuclear star cluster”
[403]. The density law (6.73) is sometimes called the “singular isothermal sphere,”
since in the absence of a central point mass, the velocity dispersion computed from
the spherical Jeans equation is constant and equal to the parameter σ . Setting σ =
90 km s−1—roughly the value measured in the Milky Way just beyond the SBH
influence radius [184]—in equation (6.73) yields a mass density

ρ(r) ≈ 5 × 105

(
r

1 pc

)−2

M� pc−3 (6.74)

consistent with the density derived from detailed modeling of the observed number
counts and velocities in the inner few parsecs [481, 403].
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As discussed in chapter 2, compact nuclear star clusters (NSCs) like the one
observed in the Milky Way appear to be common components of low-luminosity
stellar spheroids. But in galaxies beyond the Local Group, NSCs are too small to be
spatially resolved, which seriously limits how well we can compute SBH feeding
rates in these systems. A reasonable starting point is to assume that equation (6.73)
describes the central density in all galaxies containing compact nuclear clusters. If
we are bold enough to assume that σ is these galaxies is related toM• via theM•–σ
relation, then all the relevant properties of the nucleus are determined by a single
parameter. Of course, we should always keep in mind that the Milky Way SBH is
the smallest with a well-determined mass.

The gravitational potential corresponding to the density (6.73) is

ψ(r) = GM•
r

− 2σ 2 ln

(
r

rh

)
; (6.75)

the arbitrary additive constant has been chosen so that the stellar potential is equal
to zero at r = rh, which we define in the usual way as GM•/σ 2—in this case, σ
is the parameter appearing in equation (6.73), and not the more vaguely defined
quantity that normally appears in the definition of rh (section 2.2).

The isotropic distribution function (number of stars per unit phase-space vol-
ume) that reproduces the density (6.73) in the potential (6.75) is easily found from
Eddington’s formula (3.47):

f (E)= 1√
8π2m�

d

dE
∫ E

−∞

dρ

dψ

dψ√E − ψ

= 1

r3
hσ

3

(
M•
m�

)
g(E∗), (6.76a)

g(E∗)=
√

2

4π3

∫ E∗

−∞

L2(u) [2 + L(u)]
[1 + L(u)]3

dψ∗
√E∗ − ψ∗ , (6.76b)

u(ψ∗)≡ 1

2
eψ

∗/2.

L(u) is the Lambert function (also called the W function) defined implicitly via
u = LeL. The superscripts “∗” denote dimensionless quantities, defined by setting
M•, σ and G to 1, for example, E∗ = E/σ 2.

Given f and ψ , q can be computed from equations (6.30)–(6.31) and (6.58):

q(E∗) = 32π2

3
√

2
ln�

(
m�

M•

)
h(E∗)

ψ∗(rlc)− E∗

(
rlc

rh

)−2

, (6.77)

where

h(E∗)≡ 2h0(E∗)+ 3h1/2(E∗)− h3/2(E∗), (6.78)

h0(E∗)=
[∫ r∗(E∗)

0

dr∗r∗2

√
ψ∗(r∗)− E∗

] [∫ E∗

−∞
g(E∗′

)dE∗′
]
,

hn/2(E∗)=
∫ r∗(E∗)

0

dr∗r∗2

√
ψ∗(r∗)− E∗

∫ ψ∗(r∗)

E∗

[
ψ∗(r∗)− E∗′

ψ∗(r∗)− E∗

]n/2
g(E∗′

)dE∗′
.
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The flux then follows, from equation (6.64):

F(E∗) = 256π4

3
√

2

ln�

σrh

1

lnR−1
0

g(E∗)h(E∗). (6.79)

The quantityR0(E) is given by equation (6.66), with

Rlc(E∗)= 2

(
rlc

rh

)2
ψ∗(r∗

lc)− E∗(
2 + r∗

c
−1

)
r∗
c

2
≈ rlc

rh

E
σ 2
, (6.80a)

r∗
c = 1

4L [
e(1+E∗)/2

] ; (6.80b)

rc(E) is the radius of a circular orbit of energy E and the second expression forRlc

is valid far from the loss sphere.
Here we note a surprising result: the stellar massm� does not appear explicitly in

the expression for the flux. The reason is that, for a given σ and M•, the number of
stars scales asm−1

� while the scattering rate scales asm�ρ ∝ m�σ
2 ∝ m�. There is a

dependence of F on m�, but it is indirect, via q and rlc, both of which appear in the
expressions forR0. In fact, the dimensionless flux depends on just two parameters:
M•/m� and rlc/rh. The latter is given by equation (6.2b):

rt

rh
≈ 4.7 × 10−2

( η

0.844

)2/3
(6.81a)

×
(
M•
m∗

)−2/3 (
σ

100 km s−1

)2 (
m�

M�

)−1 (
R�

R�

)

≈ 1.5 × 10−6
( η

0.844

)2/3
(6.81b)(

σ

100 km s−1

)−1.24

×
(
m�

M�

)−1/3 (
R�

R�

)
,

where (6.81b) has used the M•–σ relation, equation (2.33), to express σ in terms
of M•.

Figure 6.5 plots F(E) and q(E) for various values of M•, assuming m� = M�
and R� = R�, and equating rlc with rt . The flux exhibits a mild maximum at
E∗ ≈ 1 (i.e., E ≈ σ 2) and falls off slowly toward large (more bound) energies:
in other words, most of the disruptions occur from orbits within the gravitational
influence sphere, regardless of the value of M•. The plot of q(E) shows that, for
M• ≈ 108M�, the entire influence sphere lies within the empty-loss-cone regime;
that is, q < 1 for E >∼ σ 2. AsM• is reduced, more and more of the loss cone is full.

Figure 6.6 shows the total consumption rate Ṅ = ∫
F(E)dE as a function of

M• under two assumptions about σ : σ = 100 km s−1, or σ is related to M• via the
M•–σ relation. For fixed σ , figure 6.6 shows that Ṅ ∼ M−1

• , while allowing σ to
vary with M• implies a weaker (but still inverse) dependence of Ṅ on M•.

The dependence of the consumption rate onM• and σ appears from figure 6.6 to
be fairly simple, and it is useful to derive analytic approximations. Figure 6.5 shows
that over a wide range of M• values, most of the flux comes from stars within the
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Figure 6.5 (a) Energy-dependent flux of stars into the loss cone of an SBH embedded in
an “isothermal” nucleus, with density given by equation (6.73). Solar-type stars
were assumed, and the M•–σ relation was used to relate σ to M•. (b) The di-
mensionless function q(E), equation (6.77), that describes the degree to which
the loss cone is filled by gravitational scattering. For small M•, most of the
stars inside the SBH influence sphere are in the full-loss-cone regime. (Adapted
from [555].)

gravitational influence sphere, E >∼ σ 2. In this energy interval, ψ(r) ≈ GM•/r and

g(E∗) ≈ 1√
2π3
E∗1/2

, h(E∗) ≈ 5
√

2

24π2
E∗−2; (6.82)

the latter expression makes use of the fact that h ≈ h0, that is, most of the flux
comes from scattering by stars with energies less than that of the test star. It follows
that

q(E∗) ≈ 20

9
ln�

(
m�

M•

) (
rh

rt

)
E∗−2 (6.83)
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Figure 6.6 Tidal disruption rates as a function ofM• in “isothermal” nuclei, for two assump-
tions about the relation between the velocity dispersion σ and the SBH mass
M•. Dotted lines are equation (6.86). All curves assume {m�,R�} = {M�, R�}.
(Adapted from [555].)

and Rlc ≈ 4(rt/rh)E∗. The dimensionless flux is then

F ∗(E∗)≈ 160 ln�

9
√

2π
E∗1/2

[
A+ E∗2 ln

(
B

E∗

)]−1

, (6.84)

A= 20

9
ln�

(
m�

M•

) (
rh

rt

)
, B = rh

4rt
.

Ignoring the weak energy dependence of the logarithmic term and taking rh/rt from
equation (6.81), we find, for {m�,R�} = {M�, R�},

Ṅ =
∫
F(E)dE ∝ A−1/4 ∝ σ 7/2M−11/12

• . (6.85)

It turns out that the following, slightly different scaling,

Ṅ ≈ 4.3 × 10−4

(
σ

90 km s−1

)7/2 (
M•

4 × 106M�

)−1

yr−1, (6.86)

provides a better fit to the exact feeding rates plotted in figure 6.6. Equation (6.86),
combined with the M•–σ relation, implies Ṅ ∼ M−0.25

• . The dependence of the
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loss rate on {m�,R�} can be computed using equation (6.84); unfortunately this
dependence is not simply expressible.

Tidal disruption rates as high as 10−4 yr−1 in nuclei with M• = 106M� imply
a liberated mass comparable to M• after 10 Gyr. This is not necessarily a problem,
since only a fraction of the gas removed from stars is expected to find its way into
the hole [451]. Nevertheless, the high values of Ṅ predicted for low-luminosity
galaxies suggest that matter tidally liberated from stars might contribute substan-
tially to SBH growth in these galaxies. If SBHs are common in dwarf galaxies and
in the bulges of late-type spiral galaxies (both very uncertain hypotheses), these
systems would dominate the total tidal flaring rate, due both to their large numbers
and to their high individual event rates [555].

6.1.4 Consumption rates in giant galaxies

In galaxies with M• >∼ 108M�, figure 6.1 shows that stars like the Sun are “swal-
lowed whole,” while giant stars—red giants, asymptotic giant branch stars, or (in
the case of ongoing star formation) massive main-sequence stars—can be tidally
disrupted. Estimating feeding rates in these galaxies is both easier and harder than
in the case of galaxies with nuclear star clusters. On the one hand, the nuclear struc-
ture of bright galaxies is better constrained: core radii can exceed 102 pc, sometimes
large enough to be resolved beyond the Local Group. As discussed in chapter 2, the
density of starlight in giant galaxies follows weakly rising power laws, j ∼ r−γ ,
γ <∼ 1, inside cores whose linear sizes are comparable with rh or rm.

On the negative side, central densities in these galaxies are so low, and relaxation
times so long, that it is very unlikely that f (E,L) has reached a steady state, even
with regard to angular momenta (and this is certainly the case with regard to ener-
gies). One could choose to ignore this complication and apply the Cohn–Kulsrud
boundary layer solution anyway [334]. But doing so implies a greater degree of cer-
tainty about the phase-space structure of these galaxies than is probably justified.
Instead, we will be satisfied here to get a rough idea of how consumption rates vary
with nuclear properties in giant galaxies, using a simplified approach that is based
loosely on the more exact relations derived earlier in this chapter [168, 509]. The
presentation will be simple enough that the reader should have no difficulty repeat-
ing the calculations for different galaxy models, different assumptions about the
distribution of stellar masses, etc. Loss-cone feeding in a galaxy in which f (E,L)
is evolving due to encounters is discussed in the next section.

Throughout this section, the periapsis of a capture orbit will be assumed to lie at
rp = 8rg. Recall from chapter 4 that this is the minimum (Keplerian) periapsis of
an eccentric orbit around a nonspinning hole. The more general capture condition,
which depends on the hole’s spin and orientation of the orbit with respect to the
hole’s equatorial plane, is also given in that chapter. However, most of the results
presented in this section depend only logarithmically on rc.

We begin by noting that core hydrogen burning on the main sequence continues
for a time [227]

TMS ≈ 1010(m/M�)
L/L�

yr ≈ 1010

(
m�

M�

)−2.5

yr. (6.87)
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Assuming that star formation ceased many Gigayears ago, the stars that are avail-
able to be captured or tidally disrupted will consist of two types: main-sequence
stars with masses m� < mto ≈ 1M�, the main-sequence turnoff mass; and evolved
giant stars, with masses a little above the turnoff mass. Figure 6.1 shows that the
minimum mass of a star on the main sequence that is susceptible to tidal disruption
(as opposed to capture) is given approximately by

m�

M�
≈ M•

108M�
, 0.08 <∼ m�/M� <∼ 1. (6.88)

Thus, for M• <∼ 108M�, stars uppermost on the main sequence will be disrupted,
while for M• >∼ 108M�, stars on the main sequence can only be captured.

6.1.4.1 Single stellar mass

In a steady-state nucleus, equation (6.69) states

F(E) = Fmax(E)
lnR−1

0

≈ N(E)
Tr(E)

1

| lnR0| . (6.89)

In the final expression, D(E)−1 has been identified with Tr(E), an orbit-averaged
relaxation time for stars of energy E . We can divide the total consumption rate
into two pieces, corresponding to stars in the empty- and full-loss-cone regimes.
Referring to equations (6.11) and (6.36),

Ṅ ≈ Ṅ empty + Ṅ full

≈
∫ ∞

Ecrit

N(E)
Tr(E)

1

| lnRlc|dE +
∫ Ecrit

0

N(E)
P (E)Rlc(E)dE, (6.90)

where Ecrit is the energy at which P/(TrRlc) ≈ q(E) = | lnRlc(E)|; note that, at
this energy, the two integrands in equation (6.90) are equal. To further simplify the
computations, let us replace the energy by the radius as integration variable:

Ṅ ≈ 4π

|lnRlc|
∫ rcrit

0

n(r)

Tr(r)
r2dr + 4π

∫ ∞

rcrit

n(r)

P (r)
Rlc(r)r

2dr. (6.91)

The approximate dependence of Rlc on r was given in equation (6.18). Equa-
tion (6.91) is expressed purely in terms of configuration-space quantities, which
is reasonable given our inevitable uncertainty about the detailed phase-space struc-
ture of these unrelaxed systems.

In order to apply equation (6.91), we need to know how rcrit depends on galaxy
properties. It will turn out that—in these giant galaxies—rcrit is large compared
with rh or rm. We can therefore define rcrit as the solution to

|lnRlc(r)| Tr(r) = r2

rlcrh
P(r). (6.92)

All that remains is to specify the galaxy model. A simple, but not too unrealistic,
model for the distribution of stellar mass in a giant galaxy is

ρ(r) =
{
ρc, r ≤ Rc,

ρc (r/Rc)
−γ , r > Rc,

(6.93)
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where Rc is the core radius (figure 2.2), and γ >∼ 2.6 It is also not too bad an
approximation to identify the core radius with rm, the radius containing a stellar
mass equal to twice M• (section 8.2.2). Then

ρc = 3

2π

M•
r3

m

(6.94)

and we can write the distribution of enclosed mass (including the mass of the
SBH) as

M(< r) =
{
M•

[
1 + 2(r/rm)3

]
, r ≤ rm,

3M•
[
1 − γ + 2(r/rm)3−γ ] /(3 − γ ), r > rm.

(6.95)

The orbital period at r can be approximated as the period of a circular orbit:

P(r) = 2πr3/2

√
GM•




(
1 + 2x3

)−1/2
, r ≤ rm,[

3−γ
3(1−γ+2x3−γ )

]−1/2
, r > rm,

(6.96)

where x ≡ r/rm. (The reader can easily derive the expressions for M(r) and P(r)
in the special case γ = 3.)

To compute the dependence of the relaxation time Tr on r , we need to know how
the velocity dispersion σ varies with radius. Beyond rm, it is not a bad approxi-
mation to set σ(r) to a constant, σc, the same quantity that appears in the M•–σ
relation. This statement is based both on observed velocity dispersion profiles, and
also on the fact that for γ = 2 the Jeans equation gives σ(r) = constant. We can
therefore write

σ 2(r) ≈ GM•
r

+ σ 2
c ≈ σ 2

c

(
1 + rh

r

)
. (6.97)

Using equation (3.2), the relaxation time at r is then

Tr = 0.34σ 3

G2ρ m� ln�
(6.98a)

≈
(

1 + rh

r

)3/2 σ 3
c

3G2m�ρc ln�
×

{
1, r ≤ rm,

xγ , r > rm.
(6.98b)

Finally, we invoke the phenomenological correlations that have been presented
elsewhere in this book to relate rm and σc toM•: theM•–σ relation (equation 2.33),
and the empirical relation between rm and M• (equation 2.16):

σc ≈ σ0M
1/α
8 , σ0 ≈ 200 km s−1, α ≈ 4.86,

rm ≈ r0M
1/β
8 , r0 ≈ 35 pc, β ≈ 1.79, (6.99)

where M8 ≡ M•/108M�.
Figure 6.7 plots the characteristic radii as functions of M•, assuming rlc = 8rg

and m� = M�. The critical radius separating full- and empty-loss-cone regimes

6In reality, observed brightness profiles often imply a rising density inside Rc , but the radial dependence
is weak [95]. Note that a constant density inside rh is not strictly consistent with an isotropic f .
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Figure 6.7 Characteristic radii in giant galaxies as a function of SBH mass. The lower
hatched region lies inside 6rg = 6GM•/c2, the radius of the innermost stable
circular orbit around a nonspinning hole; the minimum periapsis of a highly ec-
centric orbit around a nonspinning SBH is 8rg. The lines labeled rt show the
tidal disruption radii of a 2M� red giant star at the start and end of the red giant
phase (equation 6.116). Giant stars like these are the only ones amenable to tidal
disruption when M• > 108 M�. The line labeled rm is the gravitational influence
radius, i.e., the radius containing a mass in stars equal to 2M• (equation 2.16).
The curves near the top show rcrit, the radius separating the empty- and full-
loss-cone regimes, assuming the density model of equation (6.93), which has a
core of radius rm and ρ ∝ r−γ outside the core, and assuming m� = 1M�. For
M• > 107 M�, the critical radius lies outside the influence radius, and most of
the flux into the loss cone originates in the empty-loss-cone regime. Critical radii
corresponding to tidal disruption of red giant stars are even greater.
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turns out to be roughly equal to the core radius, or to rm, when M• ≈ 107M�, but
the ratio rcrit/rm increases with increasing M•. Approximate expressions are(

rcrit

rm

)3γ /2−5

≈ 9
√

6√
3 − γ

Gm̃√
GM•

ln�

|lnRlc|
r

1/2
m

rlcσc
(6.100a)

≈ 0.04M−1.43
8

(
rg

rlc

)
, (6.100b)

where the second relation uses the empirical correlations (6.99), and sets the ratio of
the logarithmic terms to unity. A robust conclusion is that most of the flux into the
loss cone of a (spherical) giant galaxy will originate from the diffusive, or empty-
loss-cone, regime.

The implied loss rate, equation (6.91), is shown in figure 6.8 for two values of γ .
The figure confirms our expectation that most captures take place from the empty-
loss-cone region when M• >∼ 107M�. The total loss rate declines gradually with
increasing M•, with values in the approximate range 10−6 yr−1 <∼ Ṅ <∼ 10−5 yr−1.

It is interesting to compute the radius, rpeak, from which most stars are scattered
into the SBH. In the case of isothermal nuclei, we saw in the previous section
(figure 6.5) that this radius is roughly equal to the influence radius. It turns out that
for the galaxy models being considered here, the integrand of the first integral in
equation (6.91), r2n/Tr , always has its maximum at rpeak ≈ rm. Since rcrit > rm,
the loss cone is empty at this radius. We can make use of this result to derive an
even simpler, approximate expression for the total loss rate. Ignoring the second
(full-loss-cone) term in equation (6.91), we can write

Ṅ ≈ 1∣∣lnRlc(rpeak)
∣∣ N(r < rpeak)

Tr(rpeak)
(6.101a)

≈ 2M•/m
|ln (rm/rlc)|

1

Tr(rm)
. (6.101b)

For the galaxy models used in figure 6.8, this works out to be

Ṅ ≈ 1.6 × 10−6M−0.29
8 yr−1. (6.102)

This result is plotted as the dot-dashed line in figure 6.8. Not surprisingly, it falls a
little below the more exact calculation, but the dependence on M• is virtually the
same.

It is worth emphasizing again that in these giant galaxies, most stars scattered
into the loss cone are directly captured, not tidally disrupted. In a subsequent sec-
tion, the possibility of tidal disruption of red giant stars is considered in detail.

6.1.4.2 Distribution of stellar masses

The equations derived so far are appropriate when all stars are of a single type.
We would like to generalize these expressions to allow for a distribution of stellar
masses and radii; this will be particularly important when we consider giant stars in
the next section. For the moment, however, we continue limiting our consideration
to main-sequence stars.
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Figure 6.8 Consumption rates in spherical galaxies as a function of SBH mass, computed
using equation (6.91), and the same galaxy model as in figure 6.7. A single stellar
mass (m� = 1M�) was assumed and the loss-cone radius was fixed at rlc = 8rg;
no distinction is made here between tidal disruptions and direct captures. The
thick curves show the total consumption rates; the contributions from the empty-
and full-loss-cone regimes are plotted independently as the thin and the dashed
curves. In giant galaxies, almost all of the flux into the SBH comes from the
empty-loss-cone region. The dot-dashed line is the analytical estimate of equa-
tion (6.102); this estimate is independent of γ , the parameter that defines the
falloff in density outside the core.

Throughout this section, we adopt the simplified expression (6.101) for Ṅ and
assume that rpeak = rm.

On the main sequence, stars obey a mass–radius relation of the form [288]

R(m) ≈
(
m

M�

)0.8

R�. (6.103)

The number of stars per unit of mass on the main sequence is identical to the initial
mass function (IMF) defined in chapter 7; in the mass range 0.08 <∼ m�/M� <∼ 0.5,
the IMF is believed to have the form

n(m) dm ∝
(
m

M�

)−α
dm, α ≈ 1.3 (6.104)

(equation 7.21). We assume that this mass function holds in the mass range m0 ≤
m ≤ mto, where m0 ≈ 0.08M� and mto is the main-sequence turnoff mass given
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by equation (6.87):

mto ≈
(

T

1010 yr

)−0.4

M�.

Let N(m)dm be the number of stars, at radii r ≤ rm, in the mass range m to
m + dm. By definition, the total stellar mass in this region is 2M•. We associate
this mass, somewhat arbitrarily, with stars whose initial masses were in the range
m0 ≤ m ≤ 1M�. This assumption allows us to normalize N(m), yielding

N(m)dm ≈

(2 − α)

(
2M•
M�

) (
m
M�

)−α
dm
M�
, m ≤ mto,

0, m > mto.
(6.105)

The rate of loss of stars, per unit of m, is then given by replacing N(r < rpeak)

in equation (6.101a) by equation (6.105). One additional change is required. The
stellar mass, m�, that appears in the expression for Tr , equation (6.98), must be
replaced by m̃, as defined in equation (5.62b). It is argued in chapter 7 that m̃ ≈
0.5M� for an old stellar population; note that this is one half the mass that was
assigned to m� in the previous sections.

Finally, we should distinguish between stars that are captured, and stars that are
tidally disrupted. The minimum stellar mass that is amenable to tidal disruption,
mmin(M•), is given by equation (6.88). For a given M• and T , this minimum mass
may be greater or less than the turnoff mass mto; if the former, there can be no tidal
disruptions of main-sequence stars. This will be the case if(

M•
108M�

)2−α (
T

1010 yr

)0.4(2−α)
>∼ 1. (6.106)

When this condition is satisfied, the rate of tidal disruptions is zero, and the total
capture rate is given by integrating the expression for Ṅ(m) until mto.

Rather than quote results for Ṅ—which can be difficult to interpret when there
is a mass spectrum—we choose instead to compute Ṁ , the rate of loss of mass:

Ṁ =
∫
Ṅ(m)mdm. (6.107)

Given our assumptions, this becomes

Ṁ ≈ 1

| ln(rm/rlc)|
2M•
Tr(rm)

[
(2 − α)

∫
x1−αdx

]
, x ≡ m/M�,

(6.108)

≈ 5.3 × 10−7

(
M•

108M�

)−0.29 [
(2 − α)

∫
x1−αdx

]
M�. (6.109)

The latter expression uses the empirical relations noted in the previous section to
express Tr(rm) in terms of M•; in addition, m̃ was set to 0.5M�. The limits on the
integral depend on the age of the galaxy, and are different depending on whether
capture or tidal disruption is being considered.
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Figure 6.9 Rates of mass consumption in spherical galaxies as a function of SBH mass,
assuming a distribution of stellar masses, equation (6.104), below a turnoff mass
of 1M� and above a mass of 0.08M�. The “scattering mass,” m̃, has been set
to 0.5M�. The contribution from red giant stars is not included here. Above
∼108 M�, there are no tidal disruptions, since main-sequence stars are captured
whole.

In the case of captures, we find

Ṁcapture ≈ 5.3 × 10−7M−0.29
8 M� (6.110)

×




[(
mmin

M�

)2−α
−

(
m0

M�

)2−α]
, mmin ≤ mto,

[(
mto

M�

)2−α
−

(
m0

M�

)2−α]
, mmin > mto,

(6.111)

where M8 ≡ M•/(108M�).
The rate of tidal disruption of main-sequence stars is given by a similar set of

expressions:

Ṁtidal ≈ 5.3 × 10−7M−0.29
8 M� (6.112)

×




[(
mto

M�

)2−α
−

(
mmin

M�

)2−α]
, mmin ≤ mto,

0, mmin > mto.

(6.113)

Figure 6.9 plots these functions assuming T = 10 Gyr, α = 1.3, mto = 1M�.



LOSS-CONE DYNAMICS 319

6.1.4.3 Giant stars

The only stars large enough to be tidally disrupted by SBHs with M• >∼ 108M�
are giant stars: either upper-main-sequence stars, or stars that are ascending the red
giant or asymptotic giant branches. The times spent by stars in these giant phases
are relatively short. Nevertheless, such stars deserve special attention, since they
are the only stars that might be observed as tidal flaring events in giant galaxies
[509].

For a 10M� star, which is the lowest mass on the main sequence that can be
disrupted by a 109M� SBH (figure 6.1), TMS ≈ 3 × 107 yr. Unless there is ongo-
ing star formation in the nucleus, the contributions of massive stars on the main
sequence to tidal event rates can generally be ignored.

Of more interest are the post-main-sequence giant phases reached by stars of
lower initial mass, 0.5M� <∼ m <∼ 10M�. In these stars, exhaustion of hydrogen
in the core is followed by burning of hydrogen to helium in a thin shell; the mass of
the helium core gradually increases, and the star’s radius and luminosity shoot up
as the star climbs the red giant branch.7 In the evolutionary models, it turns out that
the radius and luminosity during the giant phase are determined almost uniquely
by the mass, mc, of the (helium) core. Approximate relations are

L

L�
≈ 105.3µ6

1 + 100.4µ4 + 100.5µ5
, (6.114a)

R

R�
≈ 3.7 × 103µ4

1 + µ3 + 1.75µ4
, (6.114b)

where µ ≡ mc/M� [263]. The dominant energy source in these evolutionary
phases is the p–p chain, and so the rate of energy production is tied to the rate
of increase of core mass by

L ≈ 7 × 10−3c2 × dµ

dt
M�. (6.115)

Equations (6.114)–(6.115) can be solved for the dependence of L and R on time.
Figure 6.10 shows the results, assuming an initial core mass of 0.17M�. In the late
stages, mass loss becomes important, and the maximum radius is believed to be
about 200R� [61]. The total length of the red giant phase is about 7 × 108 yr and
the time-averaged radius during the giant phase is about 12R�.

As discussed above, the degenerate core would be expected to survive
tidal stresses from all but the smallest SBHs. As for the envelope, it turns
out that much of it can be fit locally to a polytropic model with index n ≡
d lnP/d ln T ≈ 3/2 [130]. Setting η = 1.8 in equation (6.3), disruption of
the envelope would be expected to occur at a distance rt from the SBH such

7The causes of this expansion are still debated [129].
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Figure 6.10 Radius (left) and luminosity (right) of stars as they climb the red giant branch.
The initial core mass was set to 0.17M� and the final core mass is 0.8M�.

that

�RG ≡ rt

rg
≈ 5

(
M•

109M�

)−2/3 (
m

M�

)−1/3 (
RRG

10R�

)
(6.116)

≈




1.5

(
M•

109M�

)−2/3 (
m

M�

)−1/3

, RRG = 3R�,

95

(
M•

109M�

)−2/3 (
m

M�

)−1/3

, RRG = 200R�.

However, even if the star passes within rt , some fraction of the envelope can remain
bound to the core (figure 6.11). A red giant that has been partially disrupted in this
way tends to return, on a thermal evolution timescale, to the radius–core-mass and
luminosity–core-mass relations given above, and this is progressively more true
the farther up the red giant branch the star is at the time of disruption [97]. A likely
consequence is episodic tidal flaring, as the star returns again and again to orbital
periapsis [7].

Equation (6.100) implies that rcrit, the critical radius separating the empty- and
full-loss-cone regimes, would be even greater for red giants than for stars like the
Sun, and so it is clear that the full-loss-cone contribution to the capture rate is
ignorable. In a moment, we will argue that even the empty-loss-cone contribution
is small in comparison to an additional term that we have neglected up till now. But
before making that argument, we point out that the steep dependence of RRG on
time implies that there are really two values for rcrit, rcrit,min, and rcrit,max, defined
in terms of the minimum and maximum radii on the red giant branch, RRG =
(3R�, 200R�). Below ∼rcrit,min, the loss cone is empty for all red giants, and above
∼rcrit,max, the red giant loss cone is always full. Between these two radii, the loss
cone as seen by a single red giant is full until such time as the star reaches a size
for which rcrit is greater than its distance from the center.
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Figure 6.11 Tidal disruption of red giant stars by SBHs [452]. The initial stellar model con-
tained a degenerate core of mass 0.33M� and an extended envelope of mass
Me = 0.97M�. In these calculations, the star was assumed to fall inward on an
essentially radial orbit. The curves, which are labeled by M•, show the fraction
of the mass of the stellar envelope that is unbound as a function of distance, d ,
from the SBH, in units of RS ≡ 2GM•/c2.The radius labeled RT is an estimate
of the radius of tidal disruption based on an equation similar to (6.2b). When
M• ≈ 109 M�, only ∼70% of the envelope is removed before the core of the
star is swallowed.

However, there is a second way that red giants can enter the loss cone [509]. Stars
on orbits that pass within the tidal disruption sphere corresponding toR� ≈ 200R�,
the maximum radius of a red giant, can “grow onto the loss cone” after they begin
ascending the red giant branch, even in the absence of gravitational scattering. At
some early time, the fraction of stars on such orbits is given by

Nlc(E)
N(E) ≈ L2

lc(E)
L2
c(E)

≈ 2GM•rt
r2σ 2

≈ θ2
lc (6.117)

(equations 6.8, 6.6, and 6.10), which is a factor ∼300 times larger than the equiv-
alent expression for stars like the Sun. It turns out [509] that “growth onto the loss
cone” dominates diffusion onto the loss cone for red giants, and henceforth we will
only consider the former process.

The rate at which red giants grow onto the loss cone is determined by the rate at
which their progenitor, main-sequence stars leave the main sequence. Call that rate
Ṅto, and define dṄto/dM as the red giant production rate per unit of total stellar
mass. The rate of tidal disruption events is then given by an integral over the galaxy:

ṄRG ≈
∫
dMθ2

lc
dṄto

dM
(6.118a)

≈ 4π
∫
r2ρ(r)

rhrt

r2

dṄto

dM
dr (6.118b)

≈ 4π rhrt
dṄto

dM

∫
ρ(r) dr. (6.118c)
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For the galaxy models considered here, the integral can be approximated by ρcrm.
Using equations (6.94) and (6.116), this becomes

ṄRG ≈ 6�RG
G2M3

•
c2σ 2r2

c

dṄto

dM
. (6.119)

To compute the red giant production rate, we combine an initial mass function
appropriate to stars with m� >∼ 0.5M�, n(m)dm ∝ m−δdm, δ = 2.3 (sec-
tion 7.1.2.1), with equation (6.87) for the main-sequence lifetime, yielding

dṄto

dM
≈ 1

50

(
mto

M�

)3.5−δ
Gyr−1M−1

� . (6.120)

Substituting this expression into equation (6.119) then gives

ṄRG ≈ �RG

8.3

(
GM•
cσcrc

)2 (
M•
M�

) (
mto

M�

)3.5−δ
Gyr−1 (6.121a)

≈ �RG

2.0
M1.47

8

(
mto

M�

)1.2

Gyr−1 (6.121b)

≈ 2 × 10−7M0.8
8

(
mto

M�

)1.2

yr−1. (6.121c)

The second of these three expressions assumes the empirical relations given above
between {σc, rm} andM•, and the third adopts the rt value corresponding to RRG =
200R� in equation (6.116). While very approximate, this calculation suggests that
tidal disruption of giant stars would occur at a rate as high as a few per Megayear
in the galaxies with the most massive SBHs.

6.1.5 Time-dependent loss-cone dynamics

Loss-cone theory was originally directed toward understanding the observable con-
sequences of massive black holes at the centers of globular clusters [168, 323].
Globular clusters are many relaxation times old, and this assumption was built into
the theory, by requiring the stellar phase-space density near the hole to have reached
an approximate steady state under the influence of gravitational encounters. In a
collisionally relaxed cluster around a massive black hole, the dependence of f onE
is given by the Bahcall–Wolf “zero-flux” solution, f ∼ |E|1/4, and the dependence
of f on L near the loss cone is described by the Cohn–Kulsrud boundary-layer
solution. The rate of supply of stars to the hole is fixed by these assumptions [91].

Relaxation times in the nuclei of giant galaxies often exceed 10 Gyr (figure 3.1).
One consequence is that the stellar density profile near the SBH need not have the
Bahcall–Wolf form. But the fact that galactic nuclei are not collisionally relaxed
also has implications for the more detailed form of the phase-space density near the
loss-cone boundary, and hence for the SBH feeding rate. In a spherical galaxy, the
characteristic time for gravitational encounters to set up a steady-state distribution
in angular momentum for orbits with L <∼ L0 is

tL ≈ L2
0

L2
c

Tr . (6.122)
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If L0 is equal to Llc, the angular momentum of tidal disruption or capture, then
tL � Tr . But giant galaxies almost universally exhibit cores, with sizes 101–102 pc,
and one widely discussed model attributes cores to the ejection of stars by a binary
SBH during a galaxy merger. As discussed in chapter 8, the binary carves out a
hole in phase space corresponding to orbits with periapsis distances less than the
“hard binary” separation ah ≈ νrh, where ν ≡ M1M2/(M1 +M2)

2 is the reduced
mass ratio of the binary. Replacing L2

0 by 2GM•ah in equation (6.122), and writing
L2
c ≈ GM•rh, appropriate for stars at a distance ∼rh from the SBH, yields

tL

Tr(rh)
≈ ah

rh
≈ M2

M1
. (6.123)

Since Tr(rh) can be much greater than 1010 yr in bright elliptical galaxies, even
binary SBHs with M2 � M1 can open up phase-space gaps that would not be
refilled in a galaxy’s lifetime [380].

Our starting point for describing time-dependent loss cones is equation (6.29):

∂N

∂t
≈ D ∂

∂R
(
R∂N
∂R

)
.

Ignoring evolution in E is justified if tL � Tr . Equation (6.29) assumes diffusive
evolution—a very good approximation here if the physical size of the evacuated
region is much larger than, say, rt . Changing variables to �2 = R ≈ 1 − e2,

∂N

∂t
= µ

�

∂

∂�

(
�
∂N

∂�

)
, (6.124)

where µ(E) ≡ D(E)/4.
Equation (6.124) is the heat conduction equation in cylindrical coordinates, with

radial variable � and diffusivity µ [411]. To find its solution, we first need to specify
boundary conditions in � at every E . A reasonable boundary condition at � = 1 is

∂N

∂�

∣∣∣∣
�=1

= 0. (6.125)

For small �, a perfectly absorbing, Dirichlet boundary condition is appropriate:

N(E, �) = 0, � ≤ �lc(E) = Rlc(E)1/2, (6.126)

where Rlc � 1 is the angular momentum associated with the tidal disruption or
capture sphere, of radius rlc.

Given an initial N(E, �, 0) and the boundary conditions (6.125)–(6.126), the so-
lution to equation (6.124) can be obtained by means of Fourier–Bessel synthesis:

N(E, �, t) =π
2

2

∞∑
m=1

[βmJ0(βm�lc)]
2

[J0(βm�lc)]
2 − [J1(βm)]

2

× A(βm; �)e−µβ2
mt

∫ 1

�lc

�′A(βm; �′)N(E, �′, 0)d�′, (6.127)

where Jn and Yn (n = 0, 1) are Bessel functions of the first and second kind,
A(x; y) is a combination of the Bessel functions defined via

A(x; y) ≡ J0(xy)Y1(x)− J1(x)Y0(xy),
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Figure 6.12 The left panel shows the evolution of N(E,R, t) at one E , computed using
equation (6.127). The right panel shows the flux (per unit of E) into the loss
cone at this E , computed using equation (6.128). The initial N(R) is shown at
left as the dashed line: N(E,R, 0) = 0 forR ≤ 0.01. The angular momentum
of the loss cone was fixed atRlc = 10−4. In the left panel, times shown areµt =
(0, 0.05, 0.1, 0.2, 0.4)× 10−2; line width increases with time. The steady-state
solution is nearly reached in a time of ∼10−2Tr , consistent with the estimate of
equation (6.122).

while the βm are consecutive solutions of the equation

A(βm; �lc) = 0.

The flux into the loss cone at energy E is

F(E, t)dE = − d

dt

[
2
∫ 1

�lc

N(E, �, t)� d�
]
dE (6.128)

= 4µ
dN

d lnR
∣∣∣∣
Rlc

= −π2
∞∑
m=1

µβm
3�lc [J0(βm�lc)]

2

[J0(βm�lc)]
2 − [J1(βm)]

2

× B(βm; �lc)e
−µβ2

mt

[ ∫ 1

�lc

�′A(βm; �′)N(E, �′, 0)d�′
]
dE,

where B(x; y) is another combination of the Bessel functions:

B(x; y) ≡ J1(xy)Y1(x)− J1(x)Y1(xy).

Figure 6.12 illustrates the evolution described by these equations. The initially steep
phase-space gradients decay on the expected timescale of ∼R0Tr ∼ 10−2µ−1. At
the final time, N(R) has nearly attained the exponential form expected for the
steady-state solution outside of an empty loss cone, equation (6.32).
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Figure 6.13 Two characteristic times associated with loss-cone refilling in a sample of el-
liptical galaxies, assuming spherical symmetry, and that initially no stars were
present with periapsides inside revac. t0 (open circles) is the elapsed time before
the first star is scattered into the loss cone, and t1/2 (filled circles) is the time
for the loss-cone flux to reach 1/2 of its steady-state value. Solid lines are the
approximate fitting function for t1/2, equation (6.129). (Adapted from [380].)

Similar calculations can be used to estimate whether loss-cone feeding rates in
observed galaxies are likely to be close to their steady-state values [380]. The ini-
tial normalization of N(R) at each E is fixed by the requirement that the final,
R-averaged f be equal to the f inferred from the galaxy’s luminosity profile, as-
suming velocity isotropy. Figure 6.13 shows the results for a sample of elliptical
galaxies, and for two values of revac, assuming that stars are initially absent from
orbits with periapsides inside revac. The values of revac are roughly what would be
expected if the current SBH were preceded by a binary with mass ratio of 0.1 or 1.
Two characteristic times are plotted: the elapsed time before a single star would
be scattered into the loss cone; and the time before the flux (integrated over ener-
gies) reaches one half of its steady-state value. The latter time is found to be given
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roughly by

t1/2

1011 yr
≈ 4

revac

rh

M•
108M�

. (6.129)

Evidently, it would be dangerous to assume steady-state feeding rates in galaxies
with SBHs more massive than ∼108M�.

6.2 NONSPHERICAL NUCLEI

So far in our discussion of loss-cone dynamics, we have ignored one population of
stars that might in principle contribute to the feeding of an SBH. If the orbits in a
spherical galaxy were populated at some early time without regard to the presence
of a central “sink,” a certain number of stars would find themselves on loss-cone
orbits. Stars on such orbits will pass inside rt or rc simply as a consequence of
their unperturbed motion. This process is sometimes called orbit draining; in a
spherical galaxy, the rate of passage of stars into the SBH due to orbit draining is
of course just equal to the full-loss-cone rate defined above.

Orbit draining is usually ignored in the context of spherical galaxies, for two
(fairly obvious) reasons. First, the total number of stars that were initially on loss-
cone orbits is likely to have been small: a fraction ∼L2

lc/L
2
c(E) of all the stars at

any E, and far fewer than M•/m� in total. Second, these stars would have been
consumed very soon after the SBH was in place. As argued in the previous section,
if the SBH was preceded by a massive binary, even orbits well outside the SBH’s
loss cone might have been evacuated before the single SBH formed.

These arguments need to be modified in the case of nonspherical nuclei. Torques
from a flattened potential cause orbital angular momenta to change, even in the
absence of gravitational encounters. This means that—compared with spherical
nuclei—a potentially much larger fraction of stars can be on orbits that will eventu-
ally bring them inside the sphere of destruction. The timescale over which stars on
such orbits pass within rlc is typically long compared with radial orbital periods,
but it may still be much shorter than the timescale for gravitational encounters to
act.8

Consider first axisymmetric nuclei. Orbits conserve the energy E and the com-
ponent Lz of the angular momentum parallel to the symmetry axis. In the absence
of encounters, a minimum condition for a star to find its way into the SBH is
�z ≡ Lz/Lc(E) < �lc. But as discussed in chapter 4, small-�z orbits near the SBH
in axisymmetric nuclei need not conserve total angular momentum, even approxi-
mately; they are often “saucers,” orbits whose inclination and angular momentum
oscillate in such a way that �z = � cos i is conserved. The maximum, instanta-
neous angular momentum of a saucer orbit is � ≈ ε1/2 (equation 4.110), where
ε ≈ (1 − q)/2 is a measure of the short-to-long axis ratio q of the stellar density.
A substantial fraction of stars with �z < �lc, and with instantaneous angular mo-
menta less than ε1/2 � �lc, will pass eventually within rlc. If the population of low-�

8In principle, one could call all such orbits “loss-cone orbits.” In this text, that term is reserved for orbits
that will pass within rlc in at most one radial period.
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orbits is not too different from the population in an isotropic, spherical galaxy with
the same radial mass distribution, the fraction of stars at any E that are destined to
pass within rlc is

∼
∫ �lc

0
d�z

∫ √
ε

0
d� ≈ √

ε�lc (6.130)

(equation 3.114), compared with the much smaller fraction ∼�2
lc in a spherical

galaxy. The timescale over which these orbits will be drained is the longer of the
radial period and the period associated with circulation of saucer orbits about the
fixed-point orbit that generates the saucers. As shown in chapter 4, the latter time
is roughly ∼ε−1/2 times the “mass precession time” tM ≈ PM•/M�. Near the in-
fluence radius, M� ≈ M•, and in a nucleus of moderate flattening, ε−1/2tM will be
of order or somewhat longer than P(rh). While longer than the time, P , required
for loss-cone draining in spherical galaxies, this time is still short enough that the
saucer orbits within ∼rh would probably be drained soon after the SBH was in
place.

The situation is likely to be rather different in nuclei that are fully triaxial. Saucer
orbits still exist in triaxial potentials, but much of the phase space can be occupied
by an additional family of orbits: the pyramids, whose fixed-point orbit is the short
axis of the triaxial figure. The angular momentum of a pyramid orbit reaches zero
at the corners of the pyramid, and so every star on a pyramid orbit will eventually
pass within rlc—unlike saucer orbits, which are limited by conservation of �z to
a minimum radius of periapsis. As discussed in chapters 3 and 4, a fraction of
order ε of stars in a triaxial nucleus may be on pyramid orbits—much larger than
the fractions ∼�2

lc or ∼√
ε�lc of stars in spherical or axisymmetric nuclei that pass

within rlc. But the time required for a star on a pyramid orbit to reach a given
� = �lc � 1 can be much longer than for saucers, since the angular momentum of
a pyramid orbit oscillates with two independent frequencies, and the time to reach
� < �lc is roughly �0/�lc times the oscillation period in either direction, where �0 is
the orbit’s typical eccentricity. This time is long enough that some stars on pyramid
orbits, even within rh, can be expected to survive for times comparable to galaxy
lifetimes.

We can summarize these arguments as follows. In going from spherical to ax-
isymmetric to triaxial geometries, the fraction of orbits that pass within rlc increases
from negligible (spherical) toO(1) (triaxial), while the time for these orbits to drain
increases from ∼P (spherical) to � P (triaxial). It is probably reasonable to as-
sume that the feeding of SBHs in spherical galaxies is dominated by gravitational
scattering, as discussed in the previous sections of this chapter, while in triaxial
galaxies, gravitational encounters are of secondary importance compared with the
draining of centrophilic orbits like the pyramids.

Precisely axisymmetric nuclei are problematic. It has been argued [334]
that feeding rates in axisymmetric galaxies can be dominated by orbital draining,
even at very late times (>∼ 10 Gyr) after formation of the SBH, implying cap-
ture rates that are essentially the same as in fully triaxial galaxies. This argument
assumes that there exists in axisymmetric potentials a substantial population of
centrophilic—and, presumably, stochastic—orbits at r � rh and that these orbits
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are not drained at some early time. Whether or not this is correct, gravitational
scattering of stars into the loss cone in axisymmetric nuclei will be affected by the
presence of the saucers, even after draining is complete, implying modestly larger
capture rates than in equivalent spherical nuclei.

It is probably fair to say that no very satisfactory analysis of the loss-cone prob-
lem has yet been carried out in nonspherical geometries. For instance, there exists
no treatment of the steady-state loss-cone boundary condition in nonspherical nu-
clei comparable to Cohn and Kulsrud’s analysis in spherical galaxies. Regrettably,
the treatment of nonspherical loss cones that is presented in this section is no better
than what is currently available in the literature. Indeed the problem will be sim-
plified even further. Feeding rates in axisymmetric galaxies will be assumed to be
determined by gravitational scattering alone; orbit draining will be ignored. In the
triaxial geometry, only orbit draining will be considered; gravitational encounters
will be ignored. It is hoped that these idealized treatments will motivate more work
on this important problem in the future.

6.2.1 Axisymmetric nuclei

The character of the motion near an SBH in an axisymmetric nucleus was discussed
in section 4.4.2; the main results are summarized here. Orbits fall into one of two
classes, the tubes and the saucers. Except near the separatrices separating the two
families, tube orbits behave in a manner similar to the annular orbits in spherical
potentials: the amplitude of the total angular momentum, L, is nearly fixed, and
there is a minimum distance of closest approach to the SBH that is related to this
nearly constant L by an equation similar to (6.6). Saucer orbits, on the other hand,
can exhibit large angular momentum variations. Conservation ofLz , the component
of angular momentum parallel to the symmetry axis, implies

L cos i = constant, (6.131)

where i is the inclination with respect to the symmetry plane; saucer orbits un-
dergo large oscillations in i and accordingly in L, allowing them to approach much
more closely to the SBH than would be implied by their average, or minimum,
eccentricity.

Saucer orbits exist for

�z ≡ Lz

Lc(E)
< �sep ≈ √

ε, (6.132)

where ε is related to the isodensity axis ratios q by q ≈ 1 − 2ε. When Lz satisfies
this condition, there exists a one-parameter set of saucer orbits at each E and Lz
defined by the third integral, or equivalently by the maximum and minimum val-
ues of �, {�+, �−}, reached during a single period of oscillation in � or i. On the
separatrix, �+ = �sep and �− = �z ; away from the separatrix the variations in �
are smaller. The period of oscillation in � is very long near the separatrix but drops
rapidly away from it, with a typical value of ∼ε−1/2 times the “mass precession
time” PM•/M�(r < a): much longer than orbital periods, but probably shorter
than the timescale for gravitational encounters to change L or Lz .
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In the spherical geometry, an orbit must satisfy L < Llc if the star is to go
into the SBH. In the axisymmetric geometry, orbits satisfying the weaker condition
Lz < Llc can be captured, as long as L <∼ Lsep; but since Lsep is typically much
greater than Llc, the number of stars available for capture can be much larger than
in the spherical case. Because the condition for capture is less stringent, the rate of
diffusion onto loss-cone orbits will be higher.

We can estimate how much higher by the following argument [334]. Consider
diffusion only in Lz . Equations (5.196) give expressions for the diffusion coeffi-
cients assuming an isotropic field-star distribution. In the limit of small Lz , these
become

〈�Lz〉 = Lz

v
〈�v‖〉 ≈ 0, (6.133a)

〈(�Lz)2〉 = L2
z

v2
〈(�v‖)2〉 + 1

2

(� 2v2 − L2
z )

v2
〈(�v⊥)2〉

≈ 1

2
� 2〈(�v⊥)2〉. (6.133b)

Recall that in the spherical geometry, diffusion in L at low L is determined by the
quantity

D(E) ≡ lim
R→0

〈(�R)2〉
2R , (6.134)

the orbit-average of which appears in the spherical diffusion equation (6.29). Com-
paring equations (6.25b) and (6.133b), we can write for the (local) Lz diffusion
coefficient

〈(�Lz)2〉
L2
c

= D

2

� 2

r2
= D

2
sin2 θ, (6.135)

where θ is the (instantaneous) colatitude. We desire an orbit-averaged expression
for this coefficient. For a single, eccentric orbit, it is easy to show that θ is nearly
independent of the mean anomaly, and so the averaging would be carried out with
respect to ω and i. Since we are seeking an estimate of the typical diffusion rate for
saucer orbits of specified E and Lz , an additional averaging is required with respect
to the third integral. In the absence of detailed knowledge about the distribution
over that integral, we simply assume that θ is a uniformly populated variable over
its allowed range. Making use of the fact that θ varies nearly from 0 to π for saucers
with low Lz (figure 4.4), we can write

〈(�Lz)2〉t ≈ DL
2
c

4
. (6.136)

The orbit-averaged diffusion equation for N(E,Lz) is

∂N

∂t
= 1

2

∂2

∂L2
z

(
N〈(�Lz)2〉t

)
(6.137)

(cf. equation 5.195). Again acknowledging that we do not know the distribution
over the third integral, we can find the approximate relation between N(E,Lz) and
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f (E,Lz) by integrating equation (3.114) with respect to angular momentum from
0 to Lsep:

N(E,Lz) dE dLz ≈ 4π2PLsepf (E,Lz)dE dLz (6.138)

with P the period of a nearly radial orbit. Then a steady state with respect to Lz
near the loss cone implies f (E,Lz) = a(E) + b(E)|Lz|: a linear dependence,
rather than the logarithmic-dependence characteristic of the (E,L) loss cone. In
terms of the “isotropized” f , f ≡ L−1

c

∫
f dLz ,

f (E,Lz) = f (E)

[
1 + (b/a)Lz

1 + (b/2a)Lc

]
. (6.139)

In the spherical problem, we were able to determine the second integration con-
stant by requiring f = 0 at L = 0. In the axisymmetric geometry, Lz = 0 corre-
sponds to orbits with a range of values for the third integral, only some of which
penetrate to r = rlc. Hence f (Lz = 0) �= 0 and we must use another argument to
determine the quantity b(E)/a(E) in equation (6.139).

The flux of stars into the loss cone is

F(E)dE= − d

dt

[∫ Lsep

Llc

dLzN(E,Lz)

]
dE (6.140a)

≈ 1

2
〈(�Lz)2〉

[(
∂N

∂Lz

)
Llc

]
dE (6.140b)

≈ π2

2
DPL2

cLsep
∂f

∂Lz
dE, (6.140c)

where we are assuming ∂f/∂Lz is constant within the loss region. Now, at suffi-
ciently large E, the diffusive approximation breaks down, and the loss-cone flux
should approach the full-loss-cone value given by equation (6.10):

F flc(E) ≈ 4π2L2
lc(E)f (E). (6.141)

At these large energies, b(E) → 0 and f → a(E). Setting f = a in equation
(6.141) and identifying F flc with the flux in equation (6.140a) then gives

a(E)≈ PDL2
c

8L2
lc

Lsepb(E) (6.142a)

≈ qz(E)Lsep(E)b(E), (6.142b)

where

qz(E) ≡ P 〈(�Lz)2〉t
2L2

lc

= PDL2
c

8L2
lc

= q

8
(6.143)

plays the role of q(E) in the spherical geometry. Finally, replacing a/b in equa-
tion (6.139) by qzLsep yields

f (E,Lz) = f (E)

[
1 + |Lz|/(qzLsep)

1 + Lc/(2qzLsep)

]
(6.144)
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and substituting the result into equation (6.140c) gives for the diffusive loss-cone
flux,

F(E) dE ≈ 4π2L2
lc(E)

f (E) dE

1 + Lc/(2qzLsep)
. (6.145)

The transition from “empty” to “full” loss cones takes place at qz ≈ 0.5Lc/Lsep

(i.e., q ≈ 4Lc/Lsep), rather than at q ≈ ln(1/Rlc) as in the spherical case.
Referring to equation (6.70), we can write the diffusive flux in the spherical and

axisymmetric geometries in terms of the quantity Fmax defined in equation (6.68):

F ≈ Fmax ×
{[

2 ln(Lc/Llc)
]−1

, spherical,

(4Lc/Lsep)
−1, axisymmetric.

(6.146)

Thus, the fraction of stars of energy E that are lost in one relaxation time is ∼1/
ln(Lc/Llc) in the spherical geometry and ∼Lsep/Lc in the axisymmetric
geometry. The different functional dependencies reflect the fact that diffusion is
two-dimensional in the spherical case and effectively one-dimensional in the ax-
isymmetric case [323].

Even in the spherical geometry, the logarithmic factor in equation (6.146a) is of
order unity if evaluated at the influence radius, and it is not clear from this compar-
ison that feeding rates in the axisymmetric geometry should be much greater than
in the spherical case. In fact, computations based essentially on the formalism just
presented [334] suggest that accounting for axisymmetry increases the feeding rate
by less than a factor of two in most galaxies. Such an enhancement is not insignif-
icant, but is probably small compared with the combined effects of the various
systematic uncertainties; for instance, about the degree to which the steady-state
assumption is valid (section 6.1.5). For most purposes, the effect of axisymmetric
distortions on diffusive feeding rates can probably be ignored.

6.2.2 Triaxial nuclei

In axisymmetric nuclei, the number of stars on saucer orbits is expected to be small
compared with the number on tube orbits. In triaxial nuclei, on the other hand,
centrophilic orbits like the pyramids can dominate the orbital population of self-
consistent models (figure 3.18). In particular, the mass of stars on pyramid orbits
can easily exceed M•, and can greatly exceed the mass on loss-cone orbits in the
spherical or axisymmetric geometries. A reasonable estimate of the feeding rate
in triaxial nuclei can be obtained by simply ignoring collisional loss-cone refilling
and counting the rate at which stars on centrophilic orbits pass within a distance rlc
from the SBH.

Giant galaxies have very long central relaxation times (figure 3.1). These are also
the galaxies in which the evidence for triaxiality tends to be strongest. For both
these reasons, it is very likely that SBH feeding in giant galaxies is dominated by
the draining of centrophilic orbits. Furthermore, since the SBHs in these galaxies
are likely to have masses>∼ 108M�, tidal disruption will only occur for giant stars;
stars like the Sun will be “swallowed whole.”
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Referring to section 4.4.3, we recall the following property of the pyramid or-
bits: as long as the frequencies of oscillation in the two directions {x, y} about the
short axis are incommensurate, the vector (ex, ey), which points along the major
axis of the osculating ellipse, equation (4.145), densely fills the whole available
area, which has the form of a distorted rectangle. The corner points correspond
to zero angular momentum; near the corners, the periapsis distance is small. The
“drainage area” is therefore similar to the four holes in the corners of a billiard
table.

Unless otherwise noted, in this section we adopt the simple harmonic oscillator
(SHO) approximation to the {ex, ey} motion, that is, we use the simplified Hamil-
tonian (4.146) and its solutions (4.151); these orbits have e2

x + e2
y � 1 and they

form a rectangle in the ex–ey plane, with sides {2ex, 2ey}. As long as the motion is
integrable, the results for arbitrary pyramids with {ex, ey} <∼ 1 will be qualitatively
similar.

Figure 6.14 shows a two-torus describing oscillations in {ex, ey} for a pyramid
orbit. In the SHO approximation, solutions are given by equation (4.151). If the
two frequencies {ν(0)x , ν(0)y } are incommensurate, the motion will fill the torus; in
this case, we are free to shift the time coordinate so as to make both phase angles
{φ1, φ2} zero, yielding

�2(τ )= �2
x0 sin2(ν(0)x τ )+ �2

y0 sin2(ν(0)y τ ) (6.147a)

= �2
x0 sin2 θ1 + �2

y0 sin2 θ2. (6.147b)

In the case of commensurability (i.e., m1ν
(0)
x + m2ν

(0)
y = 0 with {m1,m2} inte-

gers), the trajectory will avoid certain regions of the torus and such a shift may
not be possible; we ignore that possibility here. In the SHO approximation, ν(0)x =√

15εc, ν(0)y = √
15(εc − εb), with {εb, εc} the dimensionless measures of elonga-

tion defined in equation (4.143). More generally, integrable motion will still be
representable as uniform motion on the torus but the frequencies and the relations
between � and the angles will be different. Finally, the dimensionless time, τ , in
equation (6.147) is defined as in equation (4.141a) (i.e., τ = ν0t), where νM =
3�ν0 and νM is the precession frequency due to the spherical part of the potential,
equation (4.88).

Stars are lost when �(θ1, θ2) ≤ �lc. Consider the loss region centered at (θ1, θ2) =
(0, 0). This is one of four such regions, of equal size and shape, that correspond
to the four corners of the base of the pyramid. For small �lc, the loss region is
approximately an ellipse,

�2
x0

�2
lc

θ2
1 + �2

y0

�2
lc

θ2
2
<∼ 1. (6.148)

The area enclosed by this “loss ellipse” is

π
�2

lc

�x0�y0
. (6.149)
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∂
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Figure 6.14 Two-torus describing oscillations of (ex, ey) for a pyramid orbit [378]. The el-
lipses correspond to regions near the four corners of the pyramid’s base where
� ≤ �lc. In the orbit-averaged approximation, trajectories proceed smoothly
along lines parallel to the solid lines, with slope tanα = νy/νx . In reality, suc-
cessive periapsis passages occur at discrete intervals, once per radial period.

There are four such regions on the torus; together, they constitute a fraction

µ = 1

π

�2
lc

�x0�y0
(6.150)

of the torus.
In the orbit-averaged approximation, stars move in the θ1–θ2 plane along lines

with slope tanα = ν(0)y /ν
(0)
x , at a constant angular rate of

√(
ν
(0)
x

)2 + (
ν
(0)
y

)2
.

But since periapsis passages occur only once per radial period, a star will move a
finite step in the phase plane between close encounters with the SBH. The dimen-
sionless time between successive periapsis passages is�τ = ν0(2π/νr). The angle
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traversed during this time is

�θ = 2π
ν0

νr

√(
ν
(0)
x

)2 + (
ν
(0)
y

)2
.

The rate at which stars move into one of the four loss ellipses is given roughly by
the number of stars that lie an angular distance �θ from one side of a loss ellipse,
divided by �τ .

This is not quite correct however, since a star satisfying this condition may pre-
cess past the loss ellipse before it has had time to reach periapsis. We carry out a
more exact calculation by assuming that the torus is uniformly populated at some
initial time, with unit total number of stars. To simplify the calculation, we first
transform to a new phase plane defined by

ψ = ν(0)x �
2
x0θ1 + ν(0)y �

2
y0θ2√(

ν
(0)
x �x0

)2
+

(
ν
(0)
y �y0

)2
, ϑ = −ν(0)y �x0�y0θ1 + ν(0)x �x0�y0θ2√(

ν
(0)
x �x0

)2
+

(
ν
(0)
y �y0

)2
. (6.151)

With this transformation, the phase velocity becomes

ψ̇ =
[(
ν(0)x �x0

)2 + (
ν(0)y �y0

)2
]1/2

, ϑ̇ = 0, (6.152)

and the loss regions become circles of radius �lc. The angular displacement in one
radial period is

�ψ = 2π
ν0

νr

[(
ν(0)x �x0

)2 + (
ν(0)y �y0

)2
]1/2

. (6.153)

The density of stars is (4π2�x0�y0)
−1.

At any point in the ψ–ϑ plane, stars have a range of radial phases. Assuming
that the initial distribution satisfies Jeans’s theorem, stars far from the loss regions
are uniformly distributed in χ where

χ = P−1
∫ r

rp

dr

vr
; (6.154)

here P ≡ 2π/νr is the radial period, rp is the periapsis distance and vr is the radial
velocity. The integral is performed along the orbit, hence χ ranges between 0 and
1 as r varies from rp to apoapsis and back to rp.

Figure 6.15 shows how stars move in the χ–ψ plane at fixed ϑ . The loss region
extends in ψ a distance 2

(
�2

lc − ϑ2
)1/2

, from ψin to ψout. Stars are lost to the SBH
if they reach periapsis while in this region.

Two regimes must be considered, depending on whether �ψ is less than or
greater than ψout − ψin:

1. �ψ < ψout − ψin (figure 6.15a). In one radial period, stars in the orange
region are lost. One half of this region lies within the loss ellipse; these are
stars with � < �0 but which have not yet attained periapsis. The persistence
of stars inside the “loss cone” is similar to what occurs in the case of diffusive
loss-cone repopulation in the spherical geometry; in that case, the width of the
boundary layer depends on the ratio of the relaxation time to the radial period
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Figure 6.15 Trajectories of stars in the ψ–χ plane [378]. Stars encounter a loss region from
left to right, defined as ψin ≤ ψ ≤ ψout. χ increases from 0 at periapsis, to 1/2
at apoapsis, to 1 at subsequent periapsis. Trajectories are indicated by dashed
lines. Stars are lost if they reach periapsis while inside the loss region. Stars
within the lightly shaded region are lost in one radial period. (a) �ψ < ψin −
ψout; (b) �ψ > ψin − ψout.

(section 6.1.2). The other half consists of stars that have not yet entered the
loss region. The area of the orange region is equal to the area of a rectangle of
unit height and width �ψ ; since stars are distributed uniformly on the χ–ψ
plane, the number of stars lost per radial period is equal to the total number
of stars, of any radial phase, contained within �ψ .

2. �ψ > ψout − ψin (figure 6.15b). In this case, some stars manage to cross the
loss region without being captured. The area of the orange region is equal to
that of a rectangle of unit height and width ψout − ψin. The number of stars
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lost per radial period is therefore equal to the number of stars, of arbitrary
radial phase, contained within ψout − ψin = 2

(
�2

lc − ϑ2
)1/2

.

To compute the total loss rate, we integrate the loss per radial period over ϑ . It is
convenient to express the results in terms of q, where

q ≡ �ψ

2�lc
= π

ν0

νr

1

�lc

√(
ν
(0)
x �x0

)2
+

(
ν
(0)
y �y0

)2
. (6.155)

A value of q � 1 corresponds to an “empty loss cone” and q � 1 to a “full loss
cone.” However, we note that, for any q < 1, there are values of ϑ such that the
width of the loss region, ψout − ψin, is less than �ψ . In terms of the integral W
defined in equation (4.157), q becomes simply

q = Pν0

6�lc

√
W. (6.156)

Unlike the case of collisional loss-cone refilling, where q = q(E) is a function
only of energy, here q is also a function of a second integral W . Pyramid orbits
with small opening angles will have small W and small q.

The area on the ψ–ϑ plane that is lost, in one radial period, into one of the four
loss regions is

2
∫ ϑc

0
�ψ dϑ + 2

∫ �lc

ϑc

(ψout − ψin)dϑ, (6.157)

where

ϑc ≡ �lc

√
1 − q2 (6.158)

is the value of ϑ where �ψ = ψout − ψin; for q ≥ 1, ϑc = 0. For q ≤ 1, the area
integral becomes

4q�lc

∫ ϑc

0
dϑ + 4

∫ �lc

ϑc

√
�2

lc − ϑ2dϑ

= 4q�2
lc

√
1 − q2 + 4�2

lc

∫ 1

√
1−q2

dx
√

1 − x2

= �2
lc

(
π + 2q

√
1 − q2 − 2 arcsin

√
1 − q2

)
= 4q�2

lcf (q),

f (q) = 1

2

√
1 − q2+ 1

2q
arcsin(q), (6.159)

and for q > 1 it is π�2
lc. The function f (q) varies from f (0) = 1 to f (1) = π/4 ≈

0.785.
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Considering that there are four loss regions, the instantaneous total loss rate F ,
in dimensionless units, is

F = f (q) 2�lc

π2 �x0�y0

√(
ν
(0)
x �x0

)2
+

(
ν
(0)
y �y0

)2

= µ

Pν0

4q f (q)

π
for 0 ≤ q ≤ 1, (6.160a)

F = q−1 �lc

2π �x0�y0

√(
ν
(0)
x �x0

)2
+

(
ν
(0)
y �y0

)2

= 1

2π2

�2
lc

�x0�y0

νr

ν0
= µ

Pν0
for q > 1. (6.160b)

The second expression for the loss rate, equation (6.160b), can be called the “full-
loss-cone” loss rate, since it corresponds to completely filling and emptying the loss
regions in each radial step. Note that the loss rate for q < 1 is ∼q times the full-
loss-cone loss rate; a similar relation was found to hold in the case of collisionally
repopulated loss cones in the spherical geometry (equation 6.70).

The inverse of the loss rate F gives an estimate of the (dimensionless) time
τdrain required to drain an orbit, or equivalently the time for a single star, selected
randomly on the torus, to go into the SBH. This time is

τdrain = 1

f (q)

3π2

2
√
W

�x0�y0

�lc
for 0 ≤ q ≤ 1, (6.161a)

= 6πq√
W

�x0�y0

�lc
for q > 1. (6.161b)

If we consider a “typical” pyramid orbit with �x0 ≈ �y0 ≡ �0 and ν(0)x ≈ ν(0)y ≡
ν(0), the (dimensionless) precessional period in either x or y is τpyr = 2π/ν(0)

(equation 4.156), and
√
W = 6

√
2π�0τ

−1
pyr . (6.162)

The (physical) times for orbital draining can then be written approximately in terms
of the (physical) precession time as

tdrain ≈ 1

f (q)

π
√

2

8

�0

�lc
tpyr for 0 ≤ q ≤ 1, (6.163a)

≈ q
√

2

2

�0

�lc
tpyr for q > 1. (6.163b)

We recall from section 4.4.3 that the maximal �0 for pyramids is ∼ (εb,c)
1/2 (equa-

tion 4.159) where εb,c is given by equation (4.143). Thus, in the “empty-loss-cone”
regime (q � 1), the draining time is a factor ∼√

ε/�lc longer than the pyramid pre-
cessional period, or ∼�−1

lc longer than the typical mass precession time PM•/M�.
These inequalities reflect the fact that capture only occurs near the corners of the
pyramid, when oscillations in both x and y are simultaneously near their peaks, and
much more rarely than once per precessional period in either x or y.
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If ηpyr(E) is the fraction of stars at energy E that are on pyramid orbits, the
differential loss rate can be written approximately as

Ṅ(E)≈ ηpyrN(E)t
−1
drain

≈ ηpyr
M�

M•
�lc
N

P
for 0 ≤ q ≤ 1, (6.164a)

≈ q−1ηpyr
M�

M•
�lc
N

P
for q > 1. (6.164b)

Recall that in a spherical galaxy, the full-loss-cone capture rate is ∼�2
lcN/P . It is

clear from equation (6.164) that the loss rate due to draining of the pyramids can be
comparable to this. Even though the time to drain one pyramid orbit is much longer
than P , the number of stars available to be captured in one draining time, ηpyrN , can
be much larger than the number of stars on loss-cone orbits in a spherical galaxy,
∼�2

lcN .
At what distance from the SBH do we expect the transition from empty to full

loss cones? Using equation (6.156) with W = (15εc)2, the maximum value for a
pyramid, and equations (6.6) and (4.141a), the condition q = 1 becomes

1 = 40π2

3

α2

(2 − γ )(3 − γ )

ρ0r
3
0

M•

(
rcrit

r0

)3−γ
εc(rcrit)

√
rcrit

�rg
. (6.165)

Without loss of generality, we can set r0 = rm, the radius containing a mass in stars
twice the mass of the SBH. Then using equation (4.143),

rcrit

rm
=

(
3

20π

2 − γ

α2

)2/7
[ √

�

εc(rm)

√
rg

rm

]2/7

(6.166a)

≈ 0.5

[
σ

c

√
�

εc(rm)

]2/7

, (6.166b)

where rm ≈ rh has been used in the second line. The giant elliptical galaxies for
which feeding by pyramid orbits is most relevant have σ ≈ 200–300 km s−1 and
� ≈ a few, so that

rcrit

rm
≈ 0.1 [εc(rm)]

−2/7 . (6.167)

For εc(rm) = 0.1(0.01), rcrit/rm ≈ 0.2(0.4). To a reasonable approximation, we
can say that feeding by stars inside rm occurs via an empty loss cone. Recall that
the pyramids are essentially replaced by chaotic centrophilic orbits when a ≈ rm;
to the extent that these orbits behave similarly to pyramids, their feeding to the SBH
would take place in the full-loss-cone regime.

The expressions just derived for the flux and for tdrain assumed a fully populated
torus. In reality, after ∼1 precessional periods, some parts of the torus that are enter-
ing the loss regions will be empty and the loss rate will drop below equation (6.160).
For �ψ ≥ ψin − ψout, the downstream density in figure 6.14, integrated over the

radial phase, is easily shown to be 1 − q−1
√

1 − ϑ2/�2
lc times the upstream density
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while for �ψ < ψin − ψout the downstream density is zero. Integrated over ϑ , the
downstream depletion factor becomes

1 − π

4q
−

√
1 − q2(1 + q)+ 1

2q
sin−1

√
1 − q2 (6.168)

for q ≤ 1 and 1 − π/4q for q > 1; it is 0 for q = 0, ∼0.215 for q = 1 and 1 for
q → ∞. For small q, the torus will become striated, containing strips of nearly zero
density interlaced with undepleted regions; the loss rate will exhibit discontinuous
jumps whenever a depleted region encounters a new loss ellipse and the time to
totally empty the torus will depend in a complicated way on the frequency ratio
νx/νy and on �lc. For large q, the loss rate will drop more smoothly with time,
roughly as an exponential law with time constant ∼tdrain.

Next, consider the case of pyramids with arbitrary opening angles, that is, for
which {ex0, ey0} are not necessarily small. For each orbit one can compute µ, the
fraction of the torus occupied by the loss cone (equation 6.150), by numerically
integrating the equations of motion and analyzing the probability distribution for
instantaneous values of �2: P(�2 < X) ∝ X−�2

min, where �2
min allows for a nonzero

lower bound on �2. Almost all pyramids have �min = 0, but some of them happen
to be resonances (commensurable νx and νy) and hence avoid approaching � = 0.
This linear character of the distribution of �2 near its minimum corresponds to a
linear probability distribution of periapsis radii (P(rperi < r) ∝ r), which is natural
to expect if we combine a quadratic distribution of impact parameters at infinity
with gravitational focusing [371].

The coefficient µ for each orbit is calculated as P(�2 < �2
lc). As seen from

equation (6.150), the smaller the extent of a pyramid in any direction, the greater
µ—this is true even for orbits with large ex0 or ey0. While µ varies greatly from
orbit to orbit, its overall distribution over the entire ensemble of pyramid orbits
follows a power law:

Pµ(µ > Y) ≈
(
Y

µmin

)−2

, µmin ≈ �2
lc

2η̃
; (6.169)

Pµ is the probability of having µ greater than a certain value and η̃ is the fraction
of pyramids among all orbits. The average µ for all pyramid orbits is therefore
µ = 2µmin, and the average fraction of time that an orbit of any � spends inside
the loss cone is µη̃ � �2

lc (almost independent of the potential parameters εb and
εc)—the same number that would result from an isotropic distribution of orbits in a
spherically symmetric potential. In other words, until such a time as the centrophilic
orbits have been substantially depleted, loss-cone feeding rates should be roughly
equal to full-loss-cone rates in the equivalent spherical model.

This is about as far as it is possible to go in terms of analytically computing
feeding rates in triaxial galaxies. As discussed in section 3.5, a “zone of chaos”
exists in triaxial potentials, starting at a few times rm and extending outward to
a radius containing a mass in stars of ∼102M•. Figure 6.16 illustrates some of
the important properties of orbits that extend into this region. There are, broadly
speaking, two types of centrophilic orbit: regular orbits that avoid passing through
the very center, and chaotic orbits. The former orbits lie near to a “thin” orbit, that
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Figure 6.16 Properties of centrophilic orbits in triaxial galaxies, with (right) and without
(left) central SBHs [377]. The top panels show one octant of an equipoten-
tial surface located just inside the half-mass radius of the model. Orbits were
started on this surface with zero velocity. The top, left, and right corners corre-
spond to the z- (short), x- (long), and y- (intermediate) axes. The gray scale is
proportional to the logarithm of the diffusion rate of orbits in frequency space,
computed in the same way as in section 3.1.2.1; initial conditions correspond-
ing to regular orbits are white. The most important resonance zones are labeled
with their defining integers (m1, m2, m3). Panels (c) and (d) show the distance
of closest approach, �, of orbits whose starting points lie along the heavy lines
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Figure 6.16 Continued. in (a) and (b). The most important stable resonances are again
labeled. Panels (e) and (f) show the degree of stochasticity of the orbits, as mea-
sured by the change δω in their “fundamental frequencies”; ω0 is the frequency
of the long-axis orbit and regular orbits have δω/ω0 = 0.

is, an orbit that respects a resonance between the fundamental frequencies:

m1ν1 +m2ν2 +m3ν3 = 0 (6.170)

with the mi integers (equation 3.13). If the parent, resonant orbit avoids the center,
orbits that lie close to the resonant torus will do so as well, passing no closer to the
center than some minimum distance �. As the initial conditions move farther from
the resonant torus, the orbit broadens, causing it to approach more closely to the
destabilizing center. At some critical �—typically much larger than rlc—the orbit
becomes chaotic. To a good approximation, all orbits that pass through the very
center and that extend outward into the “zone of chaos” are chaotic.

The complexity of the orbits in this region mandates a brute-force, numeri-
cal treatment of SBH feeding. Figure 6.17 shows the results of such an analysis,
starting from self-consistent models of triaxial nuclei [371]. Such calculations are
model-dependent, but they suggest feeding rates in triaxial galaxies of order

Ṁ ≈ 10−5η

(
rh

100 pc

)−5/2 (
M•

108M�

)5/2

M� yr−1 (6.171)

with a weak dependence on the degree of triaxiality; here η is the fraction of orbits
that are centrophilic. Equation (6.171) is based on a nuclear model in which ρ ∼
r−1, not too different from what is observed near the centers of bright elliptical
galaxies. Feeding rates due to collisional loss-cone refilling are very long in such
galaxies and even a modest fraction of centrophilic orbits could result in loss rates
that are far larger than predicted in collisional, spherical models (figure 6.18).

6.3 BINARY AND HYPERVELOCITY STARS

Interaction of binary stars with an SBH might seem to fit equally well into chapter 5
on gravitational encounters, or chapter 7 on collisional evolution of nuclei. The
topic is included here, since the continued supply of binary stars to the SBH is
inherently a loss-cone problem [578].

6.3.1 Basic concepts

It is believed that most stars, and in particular most massive stars, form in binary or
multiple systems. Studies of the multiplicity of solar-type stars in the solar neigh-
borhood find that about half are in binary or triple systems [2]; the observed dis-
tribution of periods, or semimajor axes, is approximately log–normal with a peak
around 30 AU [126]9. Upper main sequence (O, B) stars appear to almost always

9AU = astronomical unit, the distance from the Earth to the Sun; 1 AU = 1.50 × 1013 cm = 4.85 ×
10−6 pc.
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Figure 6.17 Energy-dependent capture rates due to centrophilic orbits in four triaxial models
at t = 0, i.e., before any orbital depletion has taken place [371]. Open circles
show Ṅ = mṀ computed using the actual chaotic orbit populations in the self-
consistent models (the same models illustrated in figure 3.18). Dashed lines are
capture rates predicted for a spherical, full-loss-cone model. Solid lines are an
analytic approximation. The parameter γ is the exponent in ρ ∝ r−γ , and T is
the triaxiality index defined in equation (3.127). Arrows indicate Eh.

form in close binary systems [290]; typical semimajor axes are less than one parsec.
A lower limit on binary separations is set by the distance at which the components
of the binary would overlap; this is roughly 0.01 AU for stars of type F or G and
roughly five times larger for upper-main-sequence stars. Binaries with large sep-
arations are easily disrupted by interactions with field stars, as discussed in more
detail below.

In stellar systems containing a modest number of stars—globular clusters, for
instance—the gravitational energy of a single stellar binary can be comparable with
that of the cluster as a whole. Exchange of energy between binary and field stars
can play an important role in mediating processes like core collapse (chapter 7) in
these systems. No such role is played by binary stars in galactic nuclei, since the
internal energy of a binary is small compared with that of a single star on a tightly
bound orbit, a � rh, around an SBH. It is for this reason that the existence of
binary stars can generally be ignored when discussing nuclear dynamics.

Binary stars are nevertheless interesting dynamically because they provide an
additional set of ways for single stars to interact closely with an SBH. The basic
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(“collisional”) and rates of orbital draining in triaxial nuclei (“collisionless”)
[371]. All curves assume a nuclear density profile ρ ∝ r−2. Line labeled “col-
lisional” is equation (6.86). In these models, the “collisionless” feeding rates
scale with ηt−1/2

10 , where η is the fraction of centrophilic orbits and t10 is the age
of the galaxy in units of 10 Gyr; the three lines were computed assuming values
of (0.3, 1, 3) for this parameter.

idea originated with J. G. Hills in 1988 [238]. A star that approaches closely to an
SBH will have a velocity

v(r)=
√

2(E −�(r)) ≈ (2GM•/r)1/2 (6.172)

= 2.9 × 103

(
M•

106M�

)1/2 (
r

1 mpc

)−1/2

km s−1

(mpc = milliparsec = 10−3 pc ≈ 206 AU). Suppose that the star experiences
a velocity change, δv � v, near its time of closest approach to the SBH. The
perturbation could come from field stars, but it can also be due to the presence of
the second star in a binary. The change in energy corresponding to the velocity
change δv is δE = 1

2 (v + δv)2 − 1
2v

2 ≈ v δv. If δE is much larger than |E|, the
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star can escape from the SBH, with velocity

(2v δv)1/2 ≈ 1.5 × 103

(
M•

106M�

)1/4(
r

1 mpc

)−1/4(
δv

400 km s−1

)1/2

km s−1.

(6.173)

Equation (6.173) is the velocity at the moment of departure; after climbing through
the potential well of the SBH, and (perhaps) the galaxy, the ejected star will be
moving more slowly. Nevertheless, this argument shows that hypervelocity stars
are a likely consequence of the interaction of binary stars with an SBH; and their
detection would constitute indirect evidence for the presence of an SBH. As dis-
cussed in more detail below, a handful of stars are observed, in the outskirts of the
Milky Way, whose kinematical properties and ages are consistent with their having
been ejected from the center of the Galaxy.

The same argument also implies that one member of a binary can lose energy;
indeed (in the absence of dissipation, or additional stellar perturbations) the to-
tal energy of the three-body system—SBH plus two stars—is conserved, and the
ejection of one star in an unbound orbit necessarily implies that the other star will
move onto a more tightly bound orbit around the SBH. This mechanism has been
proposed as a way to place the Galactic center S-stars onto their current orbits
[206], and also as a way to inject compact objects onto relativistic orbits very near
an SBH [385].

Binary stars in the environment of a galactic nucleus are “soft”: the relative ve-
locity of the two components of the binary is small compared with typical field-star
velocities; that is, Vbin < σ . An equivalent statement is

|Ebin|
m12σ 2

� 1, (6.174)

where Ebin ≡ −Gm1m2/(2abin) is the total energy of the binary (equation 4.27) and
m12 = m1 +m2 is the binary mass. Soft binaries tend to acquire smaller binding en-
ergies in interactions with passing stars (“soft binaries become softer” [236, 231]).
A straightforward calculation yields the characteristic time over which a soft binary
is disrupted by repeated encounters with field stars [532]:

tevap ≈ 0.1
σ

Gρabin ln�
, (6.175)

where ρ is the field-star mass density and abin is the semimajor axis of the binary;
equation (6.175) assumes that the binary components and the field stars have the
same mass. Figure 6.19 shows estimates of the evaporation time for 2M� bina-
ries near the center of the Milky Way. Two different assumptions were made for
ρ(r): an approximately “isothermal” density, ρ ∼ r−2, as in equation (6.73); and
a much flatter density profile, ρ ∼ r−1/2, motivated by the number counts of old
stars at the Galactic center (figure 7.1). The figure suggests that—inside roughly
1 pc—essentially all binaries would be subject to evaporation over the age of the
Galaxy. In the low-density model, the evaporation time exceeds 1 Gyr only for bi-
naries with abin <∼ 0.03 AU, while in the high-density model, only binaries with
abin <∼ 0.01 AU, that is, contact binaries, would survive for 1 Gyr inside ∼0.1 pc.
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Figure 6.19 Evaporation time of binary stars as a function of distance from the center of the
Milky Way [7]. Dashed curves were computed from equation (6.175) assuming
a high density of field stars near the SBH, equation (6.73). Solid curves are
based on a low-density model, motivated by the number counts in figure 7.1.
The gray region shows the estimated ages of the S-stars [137], which might
have been placed onto their current orbits following an exchange interaction
between a primordial binary star and the SBH.

However, as we will see, consideration of the loss-cone problem suggests that most
binaries destined to interact with the Milky Way SBH would originate on orbits
with semimajor axes beyond one parsec, where the density of field stars is lower
and evaporation times are much longer.

6.3.2 The binary loss cone

A binary that is tight enough to survive evaporation by field stars can nevertheless
be disrupted if it passes sufficiently close to the SBH. The distance at which that
occurs is given approximately by equation (6.2b), the radius of tidal disruption of a
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single star, if R� is replaced by abin and m� is replaced by m1 +m2 ≡ m12:

rt,bin ≈ abin

(
M•
m12

)1/3

≈ 10
( abin

0.1 AU

)(
M•

106m12

)1/3

AU. (6.176)

The velocity change experienced by either star is given roughly by its orbital
velocity relative to the binary center of mass at the time of disruption. For m1

this is

δv≈
√
G(m12)

abin

m2

m12

≈ 67

(
2m2

m12

)1/2 (
m2

1M�

)1/2 (
0.1 AU

abin

)1/2

km s−1, (6.177)

and similarly for m2.
What happens next depends on the details: the relative orientation of the two or-

bital planes, the location of the two stars on their relative orbit at the time of closest
approach to the SBH, etc. The outcome can be expressed statistically, based on the
results of extensive numerical experiments [238]. If m1 ≈ m2 and if the velocity of
the binary at closest approach is similar to the value given by equation (6.172) (i.e.,
a marginally bound orbit with respect to the SBH), the probability of an “exchange
interaction”—one star ejected, one remaining bound to the SBH—is a function
mainly of

λ ≡ rmin

rt,bin
, (6.178)

where rmin is the periapsis of the binary’s orbit around the SBH. Exchange interac-
tions are found to occur in approximately 80% of encounters with λ = 0.3 and in
50% of encounters with λ = 1 [238]. If an exchange interaction occurs, the ejection
velocity, defined as the velocity at infinity of the ejected star in the absence of the
Galactic potential, is given approximately by [238]

vej ≈ 1800
( abin

0.1 AU

)−1/2
(
m12

2M�

)1/3 (
M•

4 × 106M�

)1/6

km s−1. (6.179)

We are interested in ejections with velocities high enough to escape the Galactic
bulge, and perhaps even the Galactic halo. Ignoring the contribution to the grav-
itational potential from the SBH itself, the escape velocity from the center of the
Galaxy, vesc(0), is believed to be about 800 km s−1 [70]. Recalling that vej is the
velocity of an ejected star after it has climbed out through the SBH potential well,
energy conservation gives for its velocity at infinity,

v∞ = [
v2

ej − vesc(0)
2
]1/2

. (6.180)

Requiring vej > vesc(0) for exchange interactions with rmin ≈ rt,bin then implies,
via equation (6.179), abin <∼ 0.5 AU if m1 = m2 = 1M�. Based on figure 6.19, the
survival time of binaries with separations of 0.5 AU exceed 10 Gyr beyond a radius
of a few parsecs from Sgr A*.

Computing the rate of production of high-velocity stars (HVSs) from these for-
mulas requires a number of additional pieces of information. We would need to
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know the fraction of stars that are in binary systems and the distribution of binary
semimajor axes, and both quantities should preferably be expressed as functions of
m1 and m2.

Perhaps most important, we need to specify the mechanism that is responsible
for placing binary stars onto orbits that come close to the SBH; for the Milky Way,
that means orbits with rmin <∼ rt,bin <∼ 125abin. This is, of course, a loss-cone prob-
lem. It differs from the loss-cone problems treated elsewhere in this chapter in one
important respect: the radius of the tidal disruption sphere for a binary, rt,bin, is
much larger than that for a single star, rt :

rlc ≈ rt,bin ≈ abin

R�
rt ≈ 21

( abin

0.1 AU

) (
R�

R�

)−1

rt . (6.181)

If we suppose that loss-cone orbits are resupplied by gravitational encounters, an
important quantity is q(E) (equation 6.37):

q(E) ≡ P(E)D(E)
Rlc(E) ≈ P(E)

Tr(E)
L2
c(E)

2GM•rlc
. (6.182)

Recall that q ≈ 1 defines the transition between the “full-” (q � 1) and “empty-”
(q � 1) loss-cone regimes, and that for the loss cone corresponding to tidal dis-
ruption of single stars, this transition occurs roughly at energies corresponding to
the SBH influence radius in a galaxy like the Milky Way (figure 6.5). The much
larger value of rlc in the binary problem implies that q will be much smaller at a
given energy, and therefore that the loss cone will be emptier much farther out. In
fact, it is reasonable to simply ignore any contribution to the feeding rate from the
full-loss-cone regime, and define the encounter-driven, differential flux into the loss
cone as

F(E) ≈ η
Fmax(E)

| lnRlc(E)| ≈ η
N(E)D(E)
| lnRlc| (6.183)

(equations 6.70, 6.68), where η is the fraction by number of “stars” that are binary.
Calculations based on an equation like (6.183) [578, 244] find a total production
rate of

ṄHVS ≈ 10−5
( η

0.1

)
yr−1, (6.184)

weakly (logarithmically) dependent on the assumed value of abin. The orbits of the
binaries that dominate the flux into the loss cone have semimajor axes of a few
parsecs, large enough to avoid disruption from field stars (figure 6.19).

6.3.3 Observed populations

At 1000 km s−1, a star travels a distance of 100 kpc in a time of ∼108 yr. If the
production rate of HVSs is ∼ one per 105 yr, as suggested by equation (6.184), one
would predict the existence of many such objects at any given time, distributed with
a range of distances from the Galactic center.

The first candidate HVS was discovered in 2005 [64], with a galactocentric ve-
locity of 709 km s−1. The star’s spectrum suggested either a type B9 main-sequence
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star, or a blue horizontal branch star; in the former case its photometric distance
from the Galactic center would be about 100 kpc, in the latter case somewhat less.
Subsequent observations [174] supported the main-sequence interpretation. The
main-sequence lifetime of a B9 star is ∼ a few hundred Myr, consistent with the
time required to reach such a great distance; the identification of this star as an HVS
is further strengthened by the fact that B-type stars are rare so far from the Galactic
center.

Figure 6.20 summarizes the current evidence for HVSs in the Milky Way [63].
The figure is based on a survey that targeted main-sequence stars of spectral type A;
earlier (O, B) spectral types are more luminous but are easily confused with white
dwarfs. The figure shows 14 stars having radial velocities and distances that place
them beyond the curve of escape, computed using a standard model for the Galactic
potential. Equating the measured (line-of-sight) velocity with the space velocity—
likely to be approximately correct if these stars actually were ejected from the
Galactic center—the inferred travel times range from ∼60 Myr to ∼240 Myr, com-
fortably shorter than main-sequence lifetimes. The observed set of travel times is
consistent with a constant rate of production of HVSs, as opposed, say, to a burst.10

At first sight, the observed numbers of HVSs appear to be roughly consistent
with the rate predicted by equation (6.184) [65]. However, it has been argued [422]
that a careful accounting of the upper-main-sequence stars in binary systems in the
inner one or two parsecs of the Milky Way yields much lower numbers than are
implied by setting η ≈ 0.1 in equation (6.184), and hence a much lower rate of
production of the types of stars that would be picked up in the surveys (6.184).
Alternative models, with possibly higher production rates, have been proposed and
are discussed elsewhere in this book: scattering of binary stars by “massive per-
turbers” into the SBH loss cone (section 7.4); or ejection of stars by a binary SBH
at the Galactic center (section 8.6.2).

Corresponding to each HVS, there should be a second star—the other component
of the primordial binary—that becomes more tightly bound to the SBH. We can
estimate the properties of the bound star’s orbit as follows. Consider an equal-mass
binary that is disrupted at a distance rt,bin = abin(M•/m12)

1/3 . The point of tidal
disruption becomes the periapsis of the new orbit. The orbital energy extracted by
the work of the tidal field on the binary,

|δE| ≈
(
GM•
r3

t,bin

)
abin × rt,bin ≈ GM1/3

•
abin

m
5/3
12 , (6.185)

is carried away by the ejected star, so that the orbit of the captured star has energy
−|δE| and semimajor axis a = −GM•m12/(4|δE|), or

〈a〉 ≈
(
M•
m12

)2/3

abin (6.186a)

≈ 4

(
M•

4 × 106M�

)2/3 (
m12

5M�

)−2/3 ( abin

0.1 AU

)
mpc. (6.186b)

10An alternate model for the production of HVSs involving an intermediate-mass black hole would pre-
dict a burst; see section 8.6.
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Figure 6.20 Continued. distance R for the 26 stars with vrf > +275 km s−1. Distances were
computed assuming that the stars are on the main sequence. The objects labeled
with star symbols have distances and velocities that imply escape orbits; the
dashed lines are estimates of the escape velocity curve based on models for
the Galactic potential. The dotted lines are curves of constant travel time from
the Galactic center computed from the same model, assuming that the observed
velocity vrf is the full space motion of the stars.

In effect, the distribution of binary separations is mapped into the distribution of or-
bital semimajor axes about the SBH. The eccentricity is very high and independent
of abin:

〈e〉 ≈ 1 −
(
m12

M•

)1/3

>∼ 0.95. (6.187)

These properties are similar to those of the S-stars (table 4.1), the young, appar-
ently normal main-sequence B-stars in the inner ∼50 mpc of the Milky Way, and it
is natural to wonder whether the S-stars were placed onto their tightly bound, ec-
centric orbits by binary exchange interactions [206]. A special origin for the S-stars
seems implied by the significant systematic differences between them and the other
young stars in the inner parsec. For instance, stars in the two, parsec-scale stellar
disks are much more massive, short-lived O-stars and their orbits are nearly circu-
lar. These differences would seem to preclude a model in which the two populations
of young stars formed at the same time and in the same way [420].

The tidal capture hypothesis is supported by several lines of evidence. The lu-
minosity function of the S-stars is close to the steep, “universal” luminosity func-
tion that is observed in the field, and quite different from the apparently flat (“top
heavy”) luminosity function of the disk stars [29]. The eccentricity distribution of
the S-stars is close to “thermal,” N(e)de ∼ e de, although not as biased to high ec-
centricities as predicted by equation (6.187). However, the timescale for resonant
relaxation to change orbital eccentricities at these small distances from the SBH
may be short enough to convert an initial, highly nonthermal distribution into what
is observed (figure 6.21). The distribution of semimajor axes of the captured stars
is harder to predict since it depends on the poorly known, primordial distribution
of binary separations. Perhaps the biggest problems with the capture hypothesis
are the predicted rate of formation of HVSs (equation 6.184)—too low to deflect
massive binaries from the field at a high enough rate to maintain a steady-state
population of ∼40 S-stars—and the necessity of postulating a continuous source of
young binaries at distances of a few parsecs from Sgr A*.

6.4 RELATIVISTIC LOSS CONES AND EXTREME-MASS-RATIO

INSPIRALS

So far in our discussion of the loss-cone problem, we have assumed standard,
or “nonresonant,” relaxation (NRR) as the mechanism that scatters stars onto
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Figure 6.21 The evolution of the S-star eccentricity distribution due to resonant relaxation,
assuming the existence of a dense cluster of stellar-mass BHs around the Milky
Way SBH [421]. Two different assumptions were made about the initial eccen-
tricity distribution of the S-stars: a distribution peaked around e ≈ 1, as pre-
dicted by the binary exchange model; and a distribution with e ≤ 0.5, as might
be expected if the S-stars formed in a thin disk. The former model is most con-
sistent with the data, evolving, after ∼20 Myr, into an N(e) that is consistent
with the observed distribution.

loss-cone orbits. But as discussed in chapter 5, very near the center of a nucleus
containing an SBH, the mechanism of “resonant relaxation” (RR) can be more ef-
ficient than NRR at changing orbital angular momenta.

Recall from that discussion that RR is driven by torques from field-star orbits that
remain essentially fixed in their orientation for a time ∼tcoh, the “coherence time.”
For times t <∼ tcoh, the angular momentum of a test star changes roughly linearly
with time; this is the “coherent regime.” On longer timescales, angular momenta
undergo a random walk, similar in character to the random walk due to NRR. In
this “incoherent regime,” we define the RR time TRR as the time for RR to change
the angular momentum of a test star by of order Lc, the angular momentum of
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a circular orbit of the same energy (equation 5.239):

TRR =
(

Lc

|�L|coh

)2

tcoh,

where |�L|coh is the change in L over one coherence time. The coherence time
associated with Newtonian, or mass, precession was given by equation (5.202):

tcoh,M(a) ≈ M•
Nm

P(a). (6.188)

Recall that equation (6.188) defines the average time for field-star orbits to pre-
cess; it was computed as an average over eccentricity. A second source of coher-
ence breaking is geodetic, or Schwarzschild, precession due to the lowest-order
(1PN) effects of relativity. The corresponding coherence time was given by equa-
tion (5.204) as

tcoh,S(a) ≈ 1

12

a

rg
P(a), (6.189)

which again is an average over eccentricity. In section 5.6.2, it was argued that
TRR < TNRR only inside ∼0.1rh for a galaxy like the Milky Way. This is much
smaller than the radii from which most (normal) stars would be scattered into the
SBH (figure 6.5).

Nevertheless, there are interesting regimes in which RR could make an important
—even dominant—contribution to the feeding rate. One example would be an SBH
that had been forcibly removed from its host galaxy, perhaps by a gravitational
slingshot interaction involving three SBHs (section 8.7). Stars would only remain
bound to the ejected SBH if their orbital velocities at the moment of the kick were
higher than the kick velocity; for sufficiently large kicks, there would be few stars
remaining bound at radii as large as ∼rh, meaning that essentially all gravitational
encounters would be in the RR regime [293].

Another, less speculative, example is the capture of compact remnants—white
dwarfs, neutron stars, or stellar-mass BHs—by an SBH. Neutron stars and stellar
BHs are not tidally disrupted, even by passing just outside the event horizon of an
SBH. They can of course be directly captured. But a plunge—as these events are
called by the gravitational-wave community—is considered less interesting than an
inspiral: the gradual decay of an orbit due to emission of gravitational radiation.

Inspiral of a stellar-mass black hole or neutron star into an SBH is called an
extreme-mass-ratio inspiral, or EMRI [240, 496]. While no gravitational-wave
telescope yet exists that could detect the low frequency (∼10−3 Hz) gravitational
waves from such inspirals,11 there is hope that such an instrument will be built in
the near future. If so, an EMRI would provide a gravitational-wave train that could
be continuously detected over thousands or tens of thousands of orbits, allowing
the signal-to-noise ratio of the signal to be built up over time. The information
so obtained might permit tests of theories of gravity in the strong-field limit, as

11LISA, the Laser Interferometer Space Antenna described in section 2.7, was to have been such a tele-
scope [102]. Its status as of this writing is uncertain.
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well as encoding more prosaic information like the mass, spin, and distance of the
SBH [21].

In discussing the dynamics of EMRIs, it is useful to switch from (E,L) as orbital
parameters to (a, e): the semimajor axis and eccentricity. (Since we are guaranteed
to be in a mildly relativistic regime, an even better choice might be the 1PN general-
izations of a and e derived in section 4.5.1.) Figure 6.22 shows the evolution of or-
bits plotted in this space. That figure is based on the first, direct N -body simulation
of EMRI formation [359]. The simulation consisted of 50 particles representing
stellar-mass black holes (BHs), distributed initially between 0.1 mpc ≤ a ≤ 10 mpc
as n(r) ∝ r−2 around an M• = 106M� SBH. In these simulations, the Newtonian
and relativistic coherence times were roughly equal at a ≈ 1 mpc. If we adopt tcoh,M

as the coherence time, then equation (5.240) gives for the incoherent RR time

TRR(a) ≈ 105

(
a

mpc

)3/2

yr, (6.190)

while the NRR time is substantially longer,

TNRR ≈ 5 × 106

(
a

mpc

)1/2

yr. (6.191)

The effect of incoherent RR is to scatter objects in angular momentum. The ef-
fects of this scattering can be seen in figure 6.22: the evolutionary tracks are mostly
horizontal, since changes in L at fixed E correspond to changes in e at fixed a. In
the absence of any other mechanisms, RR would be expected to scatter almost all
the BHs into the SBH by 1 Myr. However, very few of the trajectories in figure 6.22
manage to reach the high eccentricities needed to become EMRIs. Instead, there is
an apparent barrier in orbital eccentricity which inhibits the evolution to high e.
BHs that “strike” this barrier are “reflected” back to smaller eccentricities.

The barrier is a consequence of the relativistic (Schwarzschild) precession [359].
As noted above, for orbits of average eccentricity, the rates of Newtonian and
Schwarzschild precession are similar at these distances from the SBH. But the
timescale associated with Schwarzschild precession of a single orbit,

tS = P(a)

6

c2a

GM•
(1 − e2), (6.192)

tends to zero as e → 1. For a very eccentric orbit, the effective time over which
background torques can act coherently is given by its precession time, and not
the average (and much longer) precession time of the other orbits. The angular
momentum barrier can be identified, in a qualitative way, with the value of e at
which RR becomes ineffective due to relativistic precession.

The residual torque produced by an otherwise-spherical distribution of stars, at
r ≈ a, is given roughly by

T ≈ Gm

a

√
N(a) ≈ 1√

N(a)

GM�(a)

a
. (6.193)
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interval of 2 Myr, of stellar-mass black holes orbiting a 106 M� SBH as they
undergo gravitational encounters with each other. Motion in the (a, e) plane
is mostly horizontal due to the fact that resonant relaxation causes changes in
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Figure 6.22 Continued. angular momentum (i.e., e) on a timescale that is much shorter
than non-resonant relaxation causes changes in energy (i.e., a). The dashed
line marked “capture” is the capture radius around the SBH; the dotted line
marked “SB” is the Schwarzschild barrier, equation (6.195); and the dot-dashed
line marked “GW” indicates the locus in the a–e plane where angular momen-
tum loss due to gravitational radiation dominates changes due to gravitational
encounters. Only one object manages to cross the latter line and become an
EMRI; most of the other objects are reflected by the Schwarzschild barrier be-
fore reaching the gravitational-wave regime. There are no “plunges.” The bot-
tom panel, a montage from several independent N -body integrations, shows a
number of EMRI events.

Writing L = [
GM•a(1 − e2)

]1/2
for the angular momentum of a test body, the

timescale over which this fixed torque changes L is∣∣∣∣ 1

L

dL

dt

∣∣∣∣
−1

≈
√
N(a)

M•
M(a)

[
a3(1 − e2)

GM•

]1/2

. (6.194)

(Note that we are comparing changes in L to its own value, and not to Lc.) The
condition that this time be shorter than the relativistic precession time is

(1 − e2) > (1 − e2)SB ≈ rg

a

M•
M�(a)

√
N(a). (6.195)

This relation between a and e—the Schwarzschild barrier—is plotted as the
dotted lines on figure 6.22.

Intuitively, one might expect that orbits would “hang up” after striking this bar-
rier, since their precession is so rapid that the torques have become ineffective.
What actually happens is a bit more interesting [359]. An orbit near the barrier has
an eccentricity that varies over one precessional cycle. For instance, if the torquing
potential is approximated by equation (5.215), and if the rate of precession in ω is
determined by equation (6.192), then the equations of motion for ω, the argument
of periastron, and � ≡ (1 − e2)1/2, the dimensionless angular momentum, are

dω

dτ
≈ �−2,

d�

dτ
≈ −Ae cosω, (6.196)

where

τ ≡ 6π
t

P (a)

rg

a
. (6.197)

The first equation of motion assumes that the precession in ω is driven entirely by
relativity—a good assumption if � is small. In the second equation, the dimension-
less factor A describes the asymmetry in the background potential due to the finite
value of N at a radius r ≈ a:

A ≈ 1√
N

M�(a)

M•

a

rg
. (6.198)

Equations (6.196) have approximate solution

1 − �(t)

〈�〉 ≈ 〈�〉A cos (νt) , (6.199)
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where

ν ≡ 3

c2

(GM•)3/2

〈�2〉a5/2
. (6.200)

As an orbit nears the Schwarzschild barrier, its angular momentum oscillates
between the values �− and �+, where

�+ − �− ≈ 2〈�〉2A. (6.201)

According to equation (6.196), it “lingers” at values of ω corresponding to large
�, that is, low eccentricity. Now, if we consider times long enough that the back-
ground potential is changing—that is, longer than the mean coherence time for all
the orbits at r ≈ a—then changes in the potential are most likely to catch a test
body when it is at the low-e part of its precessional cycle. This is one reason why
orbits tend to “bounce” after striking the Schwarzschild barrier: there is a bias to-
ward changes that decrease e. As a result of the bounce, and because RR is so rapid
to the right of the Schwarzschild barrier, the angular momentum distribution in this
region remains close to that associated with an isotropic phase-space density; that
is, N(�) d� ≈ constant × � d�. This contrasts with the logarithmic decrease in N
with respect to � associated with NRR.

If EMRIs are to occur, BHs must sometimes find their way out of this region, to
the left of the Schwarzschild barrier. Here, we are free to invoke NRR, which is not
quenched by relativistic precession. However, the fact that the angular momentum
of a test body near the Schwarzschild barrier is changing on a timescale much less
than TNRR—due to the relativistic precession, and less rapidly, due to RR—must
be taken into account. Nonresonant relaxation must change � by an amount greater
than δ� = �+ − �− ≈ �+ − �SB, in a time that is less than the coherence time of the
background potential; the latter time limits how long a BH lingers near the barrier.
These two conditions can be shown [359] to imply a critical value of a above which
NRR is able to push objects past the barrier:(

a

mpc

)
penetrate

≈ 15

(
M•

106M�

)5/2 (
m

10M�

)−3/2 (
N

102

)−1/2

. (6.202)

This prediction has been verified in direct N -body integrations (figure 6.23).
Assuming a BH does make it past the barrier, it will no longer be subject to

RR, and its angular momentum will undergo a random walk due to nonresonant
perturbations. If its eccentricity should become large enough, it will either undergo
a plunge, or else the timescale for gravitational-wave emission to change a,

tGW ≡
∣∣∣∣1

a

da

dt

∣∣∣∣ (6.203)

= 5

64

c5a4

G3M2•m
(
1 − e2

)7/2
(

1 + 73

24
e2 + 37

96
e4

)−1

≈ 1.2 × 1014

(
m

50M�

)−1 (
M•

106M�

)−2 (
a

mpc

)4

(1 − e)7/2 yr,

becomes shorter than ∼2(1−e)tNRR, the time for the angular momentum to change
by of order itself due to NRR. As discussed in chapter 4, in this high-eccentricity
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Figure 6.23 The distribution of semimajor axes for black holes that are captured, in a
set of N -body integrations [359]. “Series II” (top) consists of integrations in
which only the 2.5PN terms were added to the Newtonian equations of motion;
“Series III” integrations (bottom) included the 1PN and 2PN terms also, per-
mitting relativistic (Schwarzschild) precession. Unfilled histograms show the
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Figure 6.23 Continued. plunges; (cross-hatched) histograms show the EMRIs; the totals are
indicated in black. In the upper panel the initial value of a is used; in the lower
panel, the value of a during the final crossing of the Schwarzschild barrier is
used. In both panels, the elapsed time is 2 × 106 yr. To the left of the dashed
vertical line in the lower panel, NRR is predicted to be ineffective at pushing
stars past the Schwarzschild barrier. To the left of the dot-dashed vertical line,
the Schwarzschild barrier does not exist.

regime, inspiral driven by gravitational-wave emission occurs along lines of fixed
slope in the a–(1 − e) plane:

�(1 − e)

1 − e
≈ −�a

a
, (6.204)

such that rp = (1 − e)a is approximately constant. The locus in the a–e plane
where these two timescales become equal is shown as the dot-dashed (blue) curves
in figure 6.22.

There is generally a rather small range of a values from which EMRIs can
form: small enough that GW emission can overcome stellar perturbations, but large
enough that NRR can push stars past the Schwarzschild barrier. Interestingly, for
sufficiently dense clusters, this range can go to zero, implying essentially no EM-
RIs; however, it appears that the required densities are one or two orders of magni-
tude larger than expected for real galactic nuclei (figure 6.24).

The existence of the Schwarzschild barrier implies yet another characteristic ra-
dius associated with galactic nuclei. Setting e = 0 in equation (6.195) yields

a

rg
≈ M•
M�(a)

√
N(a). (6.205)

The radius a = aSB that satisfies equation (6.205) is the maximum radius for which
the Schwarzschild barrier exists. It is interesting to evaluate aSB in the two models
presented in section 5.6.2 for the distribution of mass near the center of the Milky
Way. The first, “relaxed” (i.e., high-density) model, equation (5.245), had

N(a) ≈ 105

(
m�

M�

)−1 (
a

0.2 pc

)
(6.206)

yielding

aSB ≈ 5

(
m�

10M�

)−1/3

mpc. (6.207)

The second, “core” (i.e., low-density) model, equation (5.247), had

N(a) ≈ 105

(
m�

M�

)−1 (
a

0.2 pc

)5/2

(6.208)

so that

aSB ≈ 30

(
m�

M�

)−2/9

mpc. (6.209)
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Figure 6.24 Critical curves for EMRI formation in models of nuclear star clusters [359].
M• = 106 M� and m = 10M� were assumed, and the density of stellar
BHs was assumed to obey n(r) ∝ r−γ , with various slopes and normaliza-
tions. Dashed (black) line: capture radius; dot-dashed line: radius at which GW
emission dominates stellar perturbations. The Schwarzschild barrier is shown
as the dotted line; Below the horizontal line, NRR is expected to be inefficient
at pushing stars past the barrier.

Interestingly, these radii are comparable with the semimajor axes of the S-stars,
which means that Nature is quite capable of depositing stars in this region of the
(a, e) diagram. A deeper understanding of the evolution of orbits “below the bar-
rier” is clearly to be desired.





Chapter Seven

Collisional Evolution of Nuclei

In chapter 3, a distinction was made between collisionless and collisional nuclei.
The former were defined as nuclei in which the relaxation time Tr—the time re-
quired for random gravitational encounters between stars to deflect them from their
otherwise fixed orbits—is long compared with the age of the universe. As we saw in
chapter 3, the allowed equilibrium states of collisionless galaxies are very diverse,
including models with essentially any radial distribution of matter around the super-
massive black hole (SBH), as well as many different morphologies (spherical, ax-
isymmetric, triaxial) and velocity distributions (isotropic, highly rotating, chaotic).
The only a priori requirement that can be placed on the stellar distribution function
f of a collisionless galaxy is that it satisfies Jeans’s theorem in the combined grav-
itational potential, �, of the stars and the SBH; but this requirement turned out to
place only very weak constraints on f and �. As discussed in detail in chapters 2
and 3, the degeneracy in f in collisionless nuclei is the biggest impediment to in-
ferring SBH masses from kinematical data, since in only a handful of galaxies is
the sphere of influence well-enough resolved that a Keplerian rise in velocities near
the center is seen.

A collisionless stellar system is like a gas in which the molecules have not yet ex-
perienced a single collision: the particle positions and velocities still reflect in large
measure the “initial conditions.” By analogy, one expects that collisional nuclei—
nuclei that are older than one relaxation time—might be much simpler than colli-
sionless nuclei, with phase-space densities that are determined by just a handful of
parameters: the “temperature” (i.e., the velocity dispersion), the mean density, the
distribution of stellar masses.

That expectation will turn out to be correct. But before exploring the conse-
quences of collisionality for the structure of galactic nuclei, it is interesting to ask
whether collisional nuclei exist, and if so, which galaxies are likely to host them.

For many years, the nuclear star cluster (NSC) of the Milky Way was believed
to be a prototypical example of a collisional nucleus. This belief was based on
what appeared to be a steeply rising density of stars inside rh—a density “cusp”
[183]. The inferred density was so high—roughly 105M� pc−3 at r = rh and even
higher at smaller radii—that the implied relaxation time, which depends inversely
on stellar density, fell well below 1010 yr at r � rh. But careful observations around
2009 by three groups [66, 121, 29] revealed that the density cusp was present only
in the handful of young, or early-type, stars that dominate the total light. The old,
or late-type, stars have a very different radial distribution, consistent with a number
density that is flat, or even declining, toward the center (figure 7.1a).
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Figure 7.1 (a) Density of late-type (i.e., old) stars at the center of the Milky Way. Open
circles are binned counts of late-type stars brighter than apparent magnitude
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Figure 7.1 Continued. mK = 15.5 [66]. Filled circles show the density of all stars with
mK ≤ 15.5 mag and R ≥ 20′′ after corrections for crowding and completeness
[480]. The dashed line is a broken-power-law model with � ∝ R−0.8 at large
radii and inner slope of zero; the core radius, defined as the radius at which
the surface density falls to 1/2 of its central value, is 0.49 pc. Arrows show the
SBH influence radius and the expected outer radius of the Bahcall–Wolf cusp.
(b) Estimates of the relaxation time, assuming a single-mass population of 1M�
stars [357]. The dashed horizontal line indicates the mean age of stars assuming
a constant rate of formation over the last 10 Gyr.

One needs to be careful in drawing conclusions from observations like these,
since they are technically very difficult, and since they can only tell us about the
tip of the iceberg—about the fraction of old stars (mostly 1–3M� red giants) that
are bright enough to be distinguished from the background light and to have their
spectral types assigned (figure 7.2). But it is a reasonable assumption (and one
commonly made in observations of external galaxies) that the brightest, late-type
stars are distributed in the same way as the old stellar population generally, and
therefore that their number counts trace the total stellar density. If one accepts this
ansatz, it follows that the relaxation time is rather long, of order 1010 yr, everywhere
in the central parsec of the Milky Way (figure 7.1b).1

There is an independent line of argument that leads to the same conclusion [357].
Suppose the Galactic center were older than one relaxation time; for instance, there
might be a population of undetected stars or stellar remnants with a density much
higher than the density inferred from the bright giants. If this were true, it can be
shown that every old stellar population in this region (including the bright giants)
would have a density that rises steeply toward the center at radii r <∼ 0.2rh ≈ 0.5 pc.
(The justification for this statement is presented later in this chapter.) This is very
different from the data plotted in figure 7.1a, which reveal a core inside 0.5 pc, not
a cusp. We are led again to the conclusion that the relaxation time at the center of
our galaxy is longer than the time since the formation of the observed giants.

If we are to find galaxies with collisional nuclei, figure 3.1 suggests that we
need to look in galaxies with spheroids less luminous than that of the Milky Way.
As discussed in chapter 2, low-luminosity spheroids often contain compact nuclei,
or NSCs, with bulk properties (size, luminosity) similar to those of the Milky Way’s
nucleus.2 A few galaxies with NSCs are known to be active [164, 203], but the frac-
tion of NSCs that contain SBHs can only be guessed at; beyond the Local Group,
none is near enough that a kinematical detection of an SBH would be possible
unless its mass far exceeded the mass predicted by the M•–σ relation. Typically,
the only structural information that can be derived for NSCs beyond the Local
Group is their half-light radii, reff, and total luminosities; the latter can be converted
into masses by assuming a reasonable mass-to-light ratio. From these numbers,

1Assuming a typical stellar mass of ∼1M�. It is argued in section 7.1.2 that a better choice for this
mass would be ∼0.5M�, implying a relaxation time that is twice as long.
2In fact, the existence of NSCs in external galaxies was recognized for some years before a definite
connection was made with the nucleus of the Milky Way [479].
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the half-mass relaxation time [502] can be computed:

Trh = 1.7 × 105
[
reff (pc)

]3/2
N1/2[

m�/M�
]1/2 yr. (7.1)

Equation (7.1) is the relaxation time, equation (3.2), if ρ is set to the average den-
sity inside reff (assumed to be the radius containing half the total mass), and σ is
identified with the velocity dispersion of all the stars in the NSC; N is the total
number of stars and the effects of an SBH on σ have been ignored. Figure 7.3
shows masses, radii and relaxation times for a sample of NSCs, all in galaxies that
belong to the Virgo Cluster [96]. Least-squares fits of log Trh to MB—the absolute
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Figure 7.3 Properties of nuclear star clusters (NSCs) in galaxies belonging to the Virgo
Galaxy Cluster [356]. The plotted points represent all Virgo galaxies, among
the 100 brightest, that have compact nuclei. (a) Half-mass relaxation times of
NSCs (stars) and their host galaxies (filled circles) plotted against absolute blue
magnitude of the galaxy. Relaxation times were computed from equation (7.1)
assuming m� = M�. (b) The vertical axis is the ratio of half-light radii of NSCs
(reff) to the half-light radius of the host galaxies (Re); the horizontal axis is the
ratio of nuclear mass to galaxy mass. Symbol size is proportional to the loga-
rithm of the nuclear relaxation time in (a). Open circles have log10(Trh/yr) ≥ 9.5
and filled circles have log10(Trh/yr) < 9.5. The dashed line is an estimate of the
critical value of reff/Re above which NSCs expand (section 7.5.3).

blue magnitude of the galaxy (not the NSC)—are

galaxies: log10(Trh/yr)= 14.2 − 0.336(MB + 16), (7.2a)

NSCs: log10(Trh/yr)= 9.38 − 0.434(MB + 16). (7.2b)

Nuclear half-mass relaxation times appear to fall below 10 Gyr in galaxies with
absolute magnitudes fainter than MB ≈ −17, or luminosities less than ∼4 ×
108 L�. The NSCs in these galaxies have masses below ∼107M� and half-light
radii <∼10 pc. The NSC in the Milky Way has properties that are close to these
limiting values, consistent with the fact that its relaxation time is >∼10 Gyr.

We are led to the interesting hypothesis that the only spheroids likely to contain
collisional nuclei are fainter than the spheroid of the Milky Way. While some of
these systems are known to contain SBHs, it is unclear how many do, nor are the
SBH masses well constrained in any of them. Indeed, if SBHs with masses below
that of the Milky Way are rare—which is entirely consistent with what little is
known of SBH demographics—it is possible that collisionality is a property that is
associated primarily with galaxies lacking SBHs. The collisional evolution of such
NSCs is discussed toward the end of this chapter.

Perhaps the safest conclusion to be drawn from this discussion is that many
galaxies—including, most likely, the Milky Way—have nuclei that are in an in-
termediate state: not fully collisionless, but not yet old enough that random
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gravitational encounters have been able to establish a “collisional steady state” with
easily predictable properties. Another way to state this is to say that the “initial con-
ditions” of galactic nuclei should only have been partially erased by the effects of
random gravitational encounters.3 The title of this chapter—collisional evolution
of nuclei—reflects this point of view.

As noted in the introduction to chapter 6, there are two timescales associated
with the approach to a collisional steady state for stars near an SBH: the time
for changes in L and the time for changes in E. If the initial conditions are far
from a collisionally relaxed state, the two timescales may be comparable. On the
other hand, there are some situations in which it makes sense to assume a steady
state with regard to L even if the energy distribution is still evolving. This is the
case, for instance, if the only significant changes in L are occurring near the loss
cone. Another example is very near to the SBH, where resonant relaxation dom-
inates the changes in L and acts much more quickly than nonresonant relaxation
(chapter 5). Yet another reason for focusing on the energy distribution is the fact
that the radial density profile is determined essentially by N(E). Finally, it turns
out that computing the evolution of f (E,L, t) for stars near an SBH is so demand-
ing that few attempts have been made to solve the full time-dependent problem; the
great majority of published studies focuses on the approach to a steady state of the
energy distribution alone, or on finding steady-state solutions f (E,L). Through-
out much of this chapter therefore, “collisional evolution” will be synonymous with
“evolution in the energy distribution.”

7.1 EVOLUTION OF THE STELLAR DISTRIBUTION AROUND

A SUPERMASSIVE BLACK HOLE

7.1.1 Nuclei with a single mass group

In discussing the collisional evolution of nuclei, a natural starting point is a spheri-
cal nucleus containing stars of a single mass orbiting around an SBH. Until other-
wise indicated, we will assume that gravitational encounters are uncorrelated—in
other words, that resonant relaxation is unimportant—and that stars are far enough
from the SBH that relativistic effects are also unimportant. Even in regimes where
resonant relaxation is effective, it does not directly affect the energy distribution,
which is the main focus of our attention here.

Suppose as well that f is nearly constant with respect to L at some initial time—
in other words, that the velocity distribution is isotropic. As noted in the introduc-
tion, this is not a very reasonable assumption, since the timescales for establishing
a steady state with respect to E and L are often similar. But writing f = f (E, t)

so greatly simplifies the evolution equations that it makes sense to investigate this
problem before considering the more general case.

3Continuous star formation, which appears to be common in the nuclei of low-luminosity galaxies like
the Milky Way, also implies that many stars will be young enough that their current distribution reflects
the details of their formation.
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Given these assumptions, the evolution equation for f is the isotropic, orbit-
averaged Fokker–Planck equation (5.176):

∂N

∂t
= −∂FE

∂E , (7.3a)

FE = −DEE ∂f
∂E −m�DEf. (7.3b)

Here E ≡ −E = −v2/2 −�(r) = −v2/2 + ψ(r) is the binding energy, N(E) =
4π2p(E)f (E) is the number of stars per unit energy, p(E) is the phase-space vol-
ume element given by equation (5.178), FE is the flux of stars in energy space,
and DE and DEE are diffusion coefficients that depend on f as given in equa-
tions (5.176c,d).

A natural, inner boundary condition is f (Et ) = 0, where Et is the energy above
which stars are captured or disrupted by the SBH. Of course, the real capture con-
dition is only expressible in terms of a radius rt ; whether a star passes within rt
depends on both E and L. But since we are ignoring the L dependence of f , setting
f = 0 at Et = GM•/rt is the best we can do. As for the outer boundary condition,
we assume that at some sufficiently small E = E∞ (large r), the relaxation time is
so long that f is unchanging: in other words, f (E∞, t) = f∞.

Bahcall and Wolf [14] first presented numerical solutions to equations (7.3).
They simplified the problem even further by ignoring the contribution to the gravi-
tational potential from the stars, that is, by settingψ(r) = GM•/r . This might seem
questionable—after all, unless the stars act on each other gravitationally, there can
be no relaxation! But the effects of gravitational encounters are described entirely
by the expressions for the flux; if the contribution of the stars to the potential is
negligible, their density normalization serves only to set the timescale for changes
in f . In this approximation, the expressions for p(E) and the related function q(E)
take on the simple forms given in equations (5.182). And for this assumed potential,
the outer boundary condition becomes f (E = 0) = fh where fh can be identified
with the phase-space density in the galaxy at energy E ≈ GM•/rh.

Given these additional approximations, the evolution equation for f (E, t)
becomes

∂f

∂t
= 4π	E5/2 ∂

∂E
[
−f

∫ Et

E
dE ′E ′−5/2

f

+ 2

3

∂f

∂E
(
E−3/2

∫ E

0
dE ′f +

∫ Et

E
dE ′E ′−3/2

f

)]
, (7.4)

where 	 ≡ 4πG2m2
� ln
. It is clear from this equation that changing the normal-

ization of f is equivalent to rescaling the time. We can make the equation dimen-
sionless by defining E = [E] E∗, t = [t] t∗, f = [

f
]
f ∗, where

[E] = σ 2
0 , [t] = 1

4π	

(2πσ 2
0 )

3/2

n0
,

[
f

] = n0

(2πσ 3
0 )

3/2
. (7.5)
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Here, n0 and σ0 are understood to be the stellar number density and velocity
dispersion just beyond the SBH influence radius. The unit of time can be
rewritten as

[t] = 1

8

√
2

π

σ 3
0

G2m�ρ0 ln

, (7.6)

where ρ0 ≡ m�n0; aside from a constant factor, this is the relaxation time defined
in equation (5.61). Substituting these expressions into equation (7.4), and removing
the ‘∗’s, gives us the evolution equation in terms of dimensionless variables:

∂f

∂t
= E5/2 ∂

∂E
[
−f

∫ Et

E
dE ′E ′−5/2

f (7.7)

+2

3

∂f

∂E
(
E−3/2

∫ E

0
dE ′f +

∫ Et

E
dE ′E ′−3/2

f

)]
.

Bahcall and Wolf solved this differential equation and found that a steady state is
reached after roughly one relaxation time at rh. If Et � GM•/rh, that is, if rt � rh,
the steady-state solution was found to be close to a power law in both energy and
configuration space:

f (E) ∝ E1/4, ρ(r) ∝ r−7/4, (7.8)

for σ 2 � E � Et , rt � r � rh . Equations (7.8) were derived in chapter 5;
they represent a “zero-flux” solution, that is, a solution for which FE = 0. The
ρ ∝ r−7/4 density profile around an SBH is commonly called a Bahcall–Wolf
cusp.

Figure 7.4 illustrates the evolution of f (E, t) in a galaxy model that extends
far beyond the SBH’s influence radius. The initial density follows ρ ∼ r−1/2 near
the SBH. As in Bahcall and Wolf’s numerical solution, the evolution in figure 7.4
assumes a fixed potential. However, this potential included the contribution from
the stars:

ψ(r) = GM•
r

+ ψ�(r), (7.9)

with ψ� evaluated from ρ(r) at t = 0. Assuming a fixed potential is often an
excellent approximation in the context of galactic nuclei, at least in cases where
the only significant changes in ρ take place well inside rh. (This is not the case in
the absence of an SBH; examples are presented later in this chapter.) Including the
stellar potential is important because it allows us to see how the Bahcall–Wolf cusp
merges with the stellar distribution beyond rh.

Figure 7.4 shows that the Bahcall–Wolf cusp grows “from the outside in.”
A nearly steady state has been reached by a time of Tr(rm), the relaxation time
at r = rm; however, even after half this time, the cusp is well established at all but
the smallest radii. The largest radius to which the cusp extends is ∼ 0.2rm.

In numerical solutions like these, the steady-state flux is found to be small but
nonzero, of order

n(rt )r
3
t

Tr (rt )
∝ rt . (7.10)
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Figure 7.4 Evolution of the stellar distribution around an SBH due to energy exchange
between stars. These curves were computed from the isotropic, orbit-averaged
Fokker–Planck equation (7.3) with boundary condition f = 0 at log10(E/σ 2) =
6. Left: Phase-space density f . Right: Configuration-space density ρ. The initial
distribution (shown in bold) had ρ ∝ r−0.5 near the SBH; thin curves show f

and ρ at times of (0.2, 0.4, 0.6, 1.0) in units of the relaxation time at the SBH’s
initial influence radius rm. Dashed lines have the slope of the “zero-flux” solu-
tion f ∝ E1/4, ρ ∝ r−7/4. The steady-state density is well approximated by the
zero-flux solution at r <∼ 0.2rm.

In other words, the flux is limited by the rate at which stars can diffuse into the
disruption sphere at rt . As rt is reduced, the flux approaches zero and the numerical
solution approaches the strict power-law forms of equation (7.8).

Scaled to a galaxy like the Milky Way, the flux implied by the Bahcall–Wolf
solution would be of order ∼10−12 stars per year—far too small to be physically
interesting. But soon after Bahcall and Wolf published their 1976 paper, Frank and
Rees [168] pointed out that the actual loss rate to an SBH would be dominated
by changes in angular momentum, not energy, implying a much larger flux. In a
second paper, Bahcall and Wolf [15] included these loss-cone effects heuristically,
by adding a term to their equation:

∂N

∂t
= −∂FE

∂E − F(E, t). (7.11)

Even though F represents the loss of stars due to scattering in angular momentum,
angular momentum does not appear in this equation; rather, it is assumed that the
distribution over L is known and is independent of time. As discussed in chapter 6,
that is not necessarily a bad assumption: the time required for f to reach a steady
state, near the loss cone, can be much shorter than the time for changes in energy.
In chapter 6, we derived several approximate expressions for this term. For instance,
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if f respects the Cohn–Kulsrud boundary layer solution, then equations (6.28),
(6.64) state

F(E, t)≈ 4π2P(E)L2
c(E)D(E, t)

ln(1/R0(E)) f (E, t),

D(E, t)= lim
R→0

〈(�R)2〉t
2R . (7.12)

Recall that R ≡ L2/L2
c(E) is a scaled angular-momentum variable, Lc(E) is the

angular momentum of a circular orbit of energy E , P is the period of a radial orbit,
and f is an angular-momentum-averaged f .R0 is the value ofR at which f (E,R)
drops to zero due to the competing effects of capture and diffusion (equation 6.65).

It is often the case that the scattering rate, for stars of energy E , is dominated
by stars with energies less than E , allowing two of the three integrals that appear
in the expression (6.31) for D(E) to be ignored. In addition, the transition between
the “pinhole” and “full-loss-cone” regimes (figure 6.3) is fairly sharp with respect
to energy. Invoking these approximations, the loss term can be written [323, 395]

F(E, t) ≈ 4π2f (E, t)
[

1 −Rlc

L2
lc

+ 3E
5π2

ln
(R−1

lc +Rlc − 1
)

	′p(E)M0(E)

]−1

, (7.13a)

M0(E) = 4π
∫ E

0
µ(E ′)dE ′. (7.13b)

Here 	′ = 4π2G ln
 and Llc is defined in equation (6.6). The expression for
M0 allows for a distribution of masses in the field-star (scattering) population,
with µ the second moment over mass of f (equation 5.181); for a single mass
group, µ = m2

�f . (A more general treatment of the multimass case is given in the
next section.) In equation (7.13a), the first term in the denominator represents the
contribution from the pinhole regime, the second from the empty-loss-cone regime.

In their 1977 paper [15], Bahcall and Wolf adopted an expression similar to
(7.13) for F . They found that inclusion of the loss term had only a small effect on
the steady-state forms of f (E) and ρ(r), even though it substantially increased the
implied loss rate. Figure 7.5 reproduces one of their steady-state solutions including
the loss term.

Only a handful of attempts have been made to solve the full, anisotropic Fokker–
Planck equation for stars orbiting near a massive black hole. Figure 7.5 shows
the steady-state solutions from two such studies [491, 91]; plotted are angular-
momentum averages of f (E,R). As in Bahcall and Wolf’s 1977 paper, the para-
meters in these studies were chosen to describe stars orbiting a 103M� black hole
in a globular cluster. For energies near Et , the isotropized f can be seen to differ
rather strongly from the form calculated using the isotropic equation (7.11). Even
more striking is the discrepancy between the inferred loss rates: in spite of hav-
ing virtually identical steady-state f ’s, the two solutions based on the anisotropic
equation had loss rates differing by a factor of two, presumably a consequence of
different treatments of the boundary layer [91]. In these solutions, the logarithmic
derivative of the steady-state density was found to be d ln ρ/(d ln r) ≈ −1.65 for
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Figure 7.5 Steady-state solutions to the orbit-averaged Fokker–Planck equation describing
stars of a single mass around a massive black hole [91]. The upper curve (tri-
angles) is from a calculation based on equation (7.11), with a loss-cone term
similar to equation (7.13) [15]. The lower curve (filled and open circles) shows
two, nearly indistinguishable solutions based on the anisotropic Fokker–Planck
equation (5.168); the plotted functions are angular-momentum-averaged f ’s
[491, 91]. The latter two solutions were computed using different expressions
for the angular-momentum dependence of f near the loss cone. All of these
models adopted parameters appropriate for a 103 M� black hole at the center of
a globular cluster.

r in the range 10−3 < r/rh < 10−1, compared with the Bahcall–Wolf value of
−1.75. The velocity anisotropy was found to be close to zero for r >∼ 10−3rh.

Time-dependent solutions to equations like (7.11) need to be interpreted with
caution. If the initial conditions are far from a steady state with respect to L, the
early evolution will be strongly influenced by changes in angular momentum, and
this is particularly true with regard to the feeding rate, as discussed in chapter 6.
Perhaps the most appropriate application of equations like (7.11) is to the time-
independent problem, ∂N/∂t = 0: inclusion of the loss term yields steady-state
f ’s that reflect, at least approximately, the modifications in f at large E resulting
from the loss cone. In principle, estimates of the loss rate based on such solutions
should be more accurate than if a loss-cone boundary condition is applied to an
ad hoc f , as in several examples from chapter 6. However, the comparisons of
figure 7.5 suggest that such estimates may still only be order-of-magnitude correct.

The same approach can be used to compute, in an approximate way, the steady-
state f (E) very near to the SBH, where the capture rate is determined by resonant
relaxation (RR) rather than by normal, or nonresonant relaxation (NRR) [245].
Since RR leaves orbital energies unchanged, its effects can be approximated by
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including an additional loss term on the right-hand side of equation (7.11):

∂N

∂t
= −∂FE

∂E − FNRR(E, t)− FRR(E, t). (7.14)

Here, FNRR is the same quantity that was called simply F in equation (7.11), while
FRR approximates the loss rate due to RR. For the latter term we can write

FRR(E, t) = χ
N(E, t)
T RR

, (7.15)

where T RR is an angular-momentum-average of the timescale TRR associated with
incoherent RR, and the dimensionless factor χ parametrizes the uncertainties in
the efficiency of RR and the neglect, in equation (7.15), of the partial depletion of
phase space near the loss-cone boundary. Combining equation (5.239),

TRR =
(

Lc

|�L|coh

)2

tcoh, (7.16)

with equation (5.226a),

�L

Lc
= βsN

1/2 m

M•

�t

P
, (7.17)

allows us to express TRR in terms of an arbitrary coherence time as

TRR = 1

β2
s

M2
•

m2

1

N

P 2

tcoh
. (7.18)

Defining an angular momentum average of this expression is problematic, for the
reasons discussed in section 6.4. The authors chose to replace tcoh in equation (7.18)
by

1

tcoh
→

∣∣∣∣ 1

tcoh,M
− 1

tcoh,S

∣∣∣∣ (7.19)

with the understanding that tcoh,S is a function of L; the minus sign accounts for the
fact that mass precession is retrograde and relativistic precession is prograde.

Figure 7.6 shows steady-state f (E)’s computed in this way, for various choices
of the factor χ [245]. Plotted there is g(X), where g is a normalized phase-space
density, and the dimensionless energy variable, X, is defined as X = E/σ 2

h with σh
the velocity dispersion at r = rh. Setting χ = 0 reproduces the Bahcall–Wolf [14]
solution; at high energies, there is a depletion that increases with χ . However, for
the likely value χ = 1, relativistic precession limits the effectiveness of RR at high
energies, and the differences with the χ = 0 case are modest.

The calculations leading to figure 7.6 did not take into account the presence of
the “Schwarzschild barrier” discussed in section 6.4, which strongly mediates the
evolution of low-angular-momentum orbits near an SBH [359]. The effect of the
Schwarzschild barrier on the steady-state distribution of stars near an SBH is a
topic of current research interest, but unfortunately is not yet fully understood.
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Figure 7.6 Steady-state solutions to equation (7.14) [245], which describes in an approx-
imate way the depleting effects of resonant relaxation on the value of f (E) at
high energies. Symbols are defined in the text.

7.1.2 Nuclei with multiple mass groups

7.1.2.1 Stellar mass functions

Galaxies contain stars with a range of masses. The stellar mass function is defined
such that n(m, t)dm is the number of stars with masses in the rangem tom+dm at
time t . Stellar mass functions can be constructed fairly easily for stars in the solar
neighborhood, given measurements of apparent magnitude, distance, and multiplic-
ity, for a large sample of individual stars. In distant galaxies, information about the
stellar mass function is contained in just a few integrated quantities: colors, sur-
face brightness, etc. Rather than attempt to infer n(m) directly from such limited
data, it is customary to express n(m) in terms of two other quantities—the initial
mass function (IMF), and the star formation history—and to vary the parameters
defining those functions until a good fit to the data is obtained. Theoretical stellar
evolution tracks are used to relate the initial mass to the observable properties of a
star at time t .

The IMF, ξ(m), is defined as n(m) at the time when the stars were formed. The
IMF is often approximated as a power law:

ξ(m)dm ∝ (m/m0)
−αdm (7.20)
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over some range in m. In 1955, E. Salpeter [471] proposed α = 2.35, and a power-
law IMF with this slope is called a Salpeter IMF.4 More recent studies have sug-
gested modifications to Salpeter’s law at low and high stellar masses. The Kroupa
IMF [302] is defined as a broken power law, n(m) ∝ m−αi , with

α1 = 0.3, 0.01 ≤ m/M� ≤ 0.08,

α2 = 1.3, 0.08 < m/M� ≤ 0.5, (7.21)

α3 = 2.3, 0.5 < m/M� ≤ 120.

The main difference between the Salpeter and Kroupa IMFs is the smaller number
of low-mass stars predicted by the latter. IMFs like Kroupa’s are often assumed, as
a working hypothesis, to be “universal,” that is, to characterize star formation at all
locations and all times.

Stellar evolution causes masses to change with time. Massive stars evolve
quickly to their final states: neutron stars or black holes, the remnants of the col-
lapsing cores that accompany supernova explosions. Stars with initial masses less
than about 10M� are believed to end their lives as white dwarfs. The initial-to-
final mass relation, mrem(minit), relates the mass of a star on the zero-age main
sequence to the mass of its remnant. While there are many uncertainties, the fol-
lowing simple form is consistent with what is currently known:

mrem =



minit, 0 < m/M� < mto,

0.109minit + 0.394M�, mto < minit/M� < 8,

1.4M�, 8 < minit/M� < 30,

0.1minit, 30 < minit/M� < 120.

(7.22)

Stars with masses below the main-sequence turnoff mass mto(t) have not yet left
the main sequence. The main-sequence lifetime, TMS, is approximately [227]

TMS ≈ 1010

(
minit

1M�

)−2.5

yr, (7.23)

so for an old (∼10 Gyr) stellar population, mto ≈ 1M�. Mass loss can generally
be ignored for stars with m < mto. The masses of observed white dwarfs and their
progenitors can be estimated via a number of techniques; the relation given above is
based on these observational studies [268]. Progenitor masses of neutron stars and
black holes are based primarily on theoretical modeling [569]; masses of a hand-
ful of neutron stars that are observed to be in binary systems can be dynamically
determined, and they appear to span a quite narrow range, 1.35 ± 0.04M� [515].
Dynamical measurements of black-hole masses in about 20 X-ray binaries yield
estimates in the range 3 <∼ m/M� <∼ 14 [74, 409]; these values are consistent with
the (still highly uncertain) predictions of supernova models [569], which suggest
that about one tenth of a star’s initial mass ends up in the black hole.

By combining the IMF, equation (7.20) or (7.21), with the initial-to-final mass
ratio, equation (7.22), it is straightforward to compute the fraction of the mass in
an evolved stellar population that would be associated with stars and remnants of

4Salpeter defined the mass function as dN/(d logm) ∝ m−	 , so that 	 = α − 1 = 1.35.
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Table 7.1 An evolved stellar population model.

Initial Number Mass Remnant Mass
mass fraction fraction fraction

0.01< m/M� < 1 0.94 0.47 – 0.80
1< m/M� < 8 5.7 × 10−2 0.32 White dwarf 0.16
8< m/M� < 30 3.4 × 10−3 0.12 Neutron star 2.1 × 10−2

30< m/M� < 120 6.1 × 10−4 8.5 × 10−2 Black hole 1.5 × 10−2

m̃ = 0.55M�
� ≈ 0.05

various types. Table 7.1 shows the results, based on a Kroupa IMF, and assuming a
main-sequence turnoff mass of 1M�. The fraction of the total mass in remnants is a
few percent. From the point of view of collisional dynamics, what is more important
is the mass fraction in stellar black holes alone, since these have masses ∼10M�,
while neutron stars, white dwarfs, and lower-main-sequence stars all have masses
below ∼1.5M�. The predicted black-hole mass fraction is roughly 1%. Table 7.1
also gives the mass m̃ defined in equation (5.62b) that determines the relaxation
time via equation (5.61); for the assumed Kroupa IMF, m̃ ≈ 0.55M�.

As long as the last star-forming event took place more than ∼108 yr ago, the
main-sequence lifetime of stars with minit ≈ 8M�, the numbers of dark remnants
(neutron stars, black holes) will not be changing. But if star formation is an ongoing
process, some high-mass stars may still be sitting on the main sequence at any given
time. This appears to be the case for the nuclear star cluster of the Milky Way, as
discussed in chapter 4. The stellar luminosity function of stars in the inner ∼50 pc
of our galaxy is poorly fit by assuming that all stars formed at the same time; a
constant star-formation rate over the last 10 Gyr gives a better fit, although models
which combine constant star formation with an old, “starburst” population are also
satisfactory [163]. NSCs in external galaxies cannot be resolved into individual
stars, but spectral data often reveals the presence of young stars, particularly in the
nuclei of late-type (disk) galaxies [553]. Even in these nuclei, most of the mass
appears typically to be attributable to stars with ages on the order of 10 Gyr.

Modeling studies like these often assume that the IMF is universal, with a known
functional form; all that is then left to vary when fitting the data is the star forma-
tion history. But evidence for departures from a universal IMF has surfaced from
time to time, typically in studies of star formation in “extreme” environments [30].
One such environment is the Galactic center, where the presence of massive, main-
sequence O and B stars in the inner parsec implies that one or more star formation
events have taken place in the last 108 yr alone [415]. It has been suggested that the
luminosity function of these young stars implies an IMF that is flatter at the high-
mass end (i.e., that falls off less steeply with m) than a Salpeter or Kroupa IMF—a
so-called top-heavy IMF—with a correspondingly larger fraction of high-mass
stars [29]. Theoretical studies of star formation in the tidal field of an SBH also
suggest that high masses would be preferred [318]. If one assumes that star for-
mation in the inner parsec of the Milky Way has always obeyed a top-heavy IMF,
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the fraction of accumulated mass in dark stellar remnants could be much larger
than the roughly 1% listed in table 7.1. This is an exciting possibility from many
perspectives; for instance, it would imply a high rate of gravitational-wave inspiral
events. But such models are constrained by the known mass-to-light ratio of the
inner parsec, which probably limits the remnant fraction to a few percent [325].

A reasonable first approximation would be to represent the mass function of
an evolved stellar population in terms of just two groups: a dominant population,
consisting of stars of roughly one solar mass or less; and a smaller population of
black holes of roughly ten solar masses each. For standard (Salpeter, Kroupa) IMFs,
the fraction of mass in the black holes would be about 1%, while a top-heavy IMF
would imply a larger fraction.

7.1.2.2 Equipartition and mass segregation

Locally, gravitational encounters tend to establish equipartition of kinetic energy
between stars of different masses:

m1v
2
1 = m2v

2
2 (7.24)

(section 5.3). The characteristic time to reach energy equipartition between two
mass groups can be estimated as follows [502]. Suppose that both groups adhere
to a Maxwellian velocity distribution. Combining equations (5.124), (5.25) and
(5.57), we find for the local diffusion coefficient describing changes in the specific
energy of a star of mass m1

〈�E〉 = v〈�v‖〉 + 1

2
〈(�v‖)2〉 + 1

2
〈(�v⊥)2〉

=	n2v
−1

[
−m1

m2
erf(x)+

(
1 + m1

m2

)
x erf′(x)

]
, (7.25)

where x ≡ v/(21/2σ2) and 	 ≡ 4πG2m2
2 ln
. The mean rate of kinetic energy

change of all the stars of mass m1 is

d

dt

m1v
2
1

2
= 21/2

π1/2σ 3
1

∫ ∞

0
dv v2 exp

[−v2/(2σ 2
1 )

]
m1〈�E〉. (7.26)

Combining equations (7.25) and (7.26) and integrating by parts,

d

dt

m1v2

2
= 4 (6π)1/2G2m1ρ2 ln
(

v2
1 + v2

2

)3/2

(
m2v

2
2 −m1v

2
1

)
. (7.27)

It is clear from this expression that energy exchange stops when m1v
2
1 = m2v

2
2.

Let εi = 1
2miv

2
i , and suppose that m2 � m1. The time for stars of each mass

group to reach energy equipartition with stars in the other group is

T1 ≡
∣∣∣∣ 1

ε1

dε1

dt

∣∣∣∣
−1

≈ 0.0814v3
rms

G2m1ρ2 ln

, T2 ≡

∣∣∣∣ 1

ε2

dε2

dt

∣∣∣∣
−1

≈ ρ2

ρ1
T1. (7.28)
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In writing these expressions we have assumed that v2
1 ≈ v2

2 ≡ v2
rms; this condition

might hold, for instance, shortly after a galaxy forms. Consider first the case that
the heavier stars dominate the total density and have a relaxation time Tr,1. Then
T2 ≈ Tr,1 and the light stars reach equipartition on the same timescale that the
heavy stars establish a collisional steady state. On the other hand, if the light stars
dominate, with relaxation time Tr,2, then T1 ≈ (m2/m1)Tr,2, and the heavy stars
lose energy to the light stars very rapidly compared with Tr,2. In either case, the time
for the subdominant population to reach equipartition with the dominant population
is, at most, of order the relaxation time defined for the dominant component.

So far in our discussion of equipartition we have ignored the fact that in the
absence of perturbations, stars move along orbits in the smooth galactic potential.
A change of energy due to encounters implies a change in the unperturbed orbit:
as heavy stars lose energy in their interactions with lighter stars, they congregate
closer to the center, and the lighter stars are pushed out. This is called mass segre-
gation. In the case of our simple, two-component mass function, mass segregation
implies that the heavy stars (stellar black holes) should cluster more strongly around
the SBH than the light (solar-mass) stars. As a consequence, they will end up mov-
ing faster, on average, than the light stars—an example of the “negative specific
heat” of gravitating systems [502].

The steady-state distributions near an SBH can be found using the orbit-
averaged Fokker–Planck equation. As in the single-mass case, we begin by assum-
ing isotropy, f = f (E,m, t). Equation (5.176) describes the evolution of f for an
arbitrary distribution of masses. It is straightforward to rewrite that equation for the
case of a discrete mass function. Let fi(E, t) be the phase-space number density of
the ith species, of mass mi . The evolution equation for fi is

4π2p(E)∂fi
∂t

= −∂Fi
∂E , (7.29a)

Fi =
∑
j

(
−DEE ij

∂fi

∂E −DE ij fi
)
, (7.29b)

DEE ij = 16π3	′m2
j

[
q(E)

∫ E

0
fj (E ′, t)dE ′ +

∫ ∞

E
fj (E ′, t)q(E ′)dE ′

]
,

(7.29c)

DE ij = −16π3	′mimj
∫ ∞

E
fj (E ′, t)p(E ′)dE ′. (7.29d)

Returning again to the case of a nucleus containing just two mass groups: to
avoid confusion, we will use the subscript H (heavy) for the first species and L
(light) for the second species; as before, we assume mH � mL. Suppose first that
the heavier stars dominate the local mass density, ρH � ρL. Thenm2

HfH � m2
LfL,

and the evolution equation for the light component is

∂fL

∂t
≈ 1

4π2p

∂

∂E
(
DEELH

∂fL

∂E
)
. (7.30)
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A steady state is reached when

∂fL

∂E = 0, (7.31)

that is, when fL(E) = constant [368]. Remarkably, this result is independent of the
distribution of the heavy stars: when phase space is uniformly populated, scattering
leaves the light-star distribution unchanged.

The relation between f (E) and n(r) is given by equation (3.46):

n(r) = 4π
∫ ψ(r)

0
f (E)

√
2 [ψ(r)− E] dE . (7.32)

If f is a power law in E , then

n(r) ∝
∫ ψ

0
Eα (ψ − E)1/2 dE ∝ ψ3/2+α. (7.33)

Near the SBH, this implies

f (E) = f0Eα, n(r) = n0r
−γ , γ = 3

2
+ α. (7.34)

Setting α = 0 for the light population,

nL(r) ∝ r−3/2 (ρH � ρL). (7.35)

This is a (slightly) shallower radial dependence than the Bahcall–Wolf solution,
n ∝ r−7/4. If we assume that the dominant (heavy) population has the Bahcall–
Wolf form, then its density will increase more rapidly toward the center than that
of the light population, and sufficiently close to the SBH, the assumptions made in
deriving equation (7.35) will be satisfied. Exactly how close depends on the relative
numbers in the two species; we return to this question shortly.

Before doing so, we consider the complementary case in which the light stars
dominate the total density, that is, ρL � ρH ; as before, mL � mH . These as-
sumptions might be satisfied at sufficiently large distances from the SBH where
the steeper radial falloff of the heavy component has resulted in a small density
compared with the light component.

Returning to equation (7.29), we now seek steady-state solutions of the form
∂fH/∂t = 0. Since ρL � ρH , we can ignore the terms in that equation that result
from interactions between the heavy stars. The energy-space flux for the heavy stars
is given approximately by

FH ≈ −DEEHL
∂fH

∂E −DEHLfH . (7.36)

Suppose that the dominant (light) population has

fL(E) = fL,0Eα, nL,0(r) = nL,0r
3/2+α. (7.37)

For instance, if the light population has reached a steady state with regard to self-
interactions, then α = 1/4, γ = 7/4. Inserting equation (7.37) for fL into the
expressions (7.29c), (7.29d) for the diffusion coefficients, the energy-space flux of
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the heavy population becomes

FH ≈ 27/2π4	′fL,0G3M3
•mLmH

×
[

− mL

mH

1

(α + 1)(1 − 2α)
Eα−1/2 ∂fH

∂E + 2

3 − 2α
Eα−3/2fH

]
, (7.38)

where equations (5.182) have been used for p and q and 	′ = 4πG2 ln
.
We are now faced with the same choice that confronted us when deriving the

Bahcall–Wolf solution in chapter 5: whether to set the flux to zero, or to a constant,
nonzero value. It turns out that the constant-flux solution is the physically more
relevant one here. It is easily seen to have the form

fH (E) = fH,0Eβ, β = 3

2
− α. (7.39)

If the light component has reached the Bahcall–Wolf steady state, then α = 1/4
and β = 5/4, and the density of the heavy component is

nH (r) = nH,0r
−11/4 (ρH � ρL), (7.40)

a steeper radial falloff than that of the Bahcall–Wolf cusp.
This solution was obtained using equation (7.38), but it is equally valid if only

the second term in that equation, corresponding to dynamical friction, is nonzero;
and since mL � mH , that is in fact nearly the case. In other words, equation (7.39)
corresponds to a constant (with respect to energy) flux in the heavy population due
to dynamical friction against the light population [3]. This is the kind of solution
we expect if the “supply” of heavy stars far from the SBH has not been seriously
depleted: heavy stars will continue to spiral in from large to small radii, and their
density will adjust in such a way that the inward flux is nearly constant. A zero-flux
solution also exists, but it has a slope that is proportional to mH/mL, much steeper
than the constant-flux solution. The zero-flux solution describes a case in which the
supply of heavy stars at large radii is inadequate to maintain a constant inspiral rate.

The two steady-state solutions just derived are asymptotic, in the sense that the
heavy stars either dominate the total density, or contribute negligibly to it. Under
what conditions should we expect these solutions to be valid? What matters here is
the relative strength of self-interactions between the heavy stars, on the one hand,
and interactions between the heavy and light stars on the other. This ratio can be
estimated using the velocity-space diffusion coefficients derived in chapter 5. As a
measure of the rate at which the heavy stars are scattered, consider

〈(�v)2〉 ≡ 1

2

(〈�v2
‖〉 + 〈�v2

⊥〉) ; (7.41)

the right-hand side of this expression contains the same combination of scattering
coefficients that appears in equation (7.25) for 〈�E〉. We can furthermore break
〈(�v)2〉 for the heavy stars into two pieces, describing self-interactions (H ) and
interactions with the light stars (L). Assuming Maxwellian velocity distributions
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for both populations,

〈(�v)2〉H = mHρH	
′

21/2σ

erf(x)

x
, (7.42a)

〈(�v)2〉L = mLρL	
′

21/2σ

erf(x)

x
. (7.42b)

Note that the subscripts refer to the scattering populations; x≡ v/√2σ , and we
have assumed that both populations have the same velocity dispersion σ—
reasonable if we apply the relations to stars at a given distance from the SBH.
As in the derivation of equation (7.27), we can average these expressions over the
heavy-star velocity distribution, yielding

〈(�v)2〉H = mHρH	
′

π1/2σ
, 〈(�v)2〉L = mLρL	

′

π1/2σ
. (7.43)

Referring again to equation (7.25), the effect of dynamical friction on the energy
distribution of the heavy stars is described by v〈�v‖〉. Breaking that quantity again
into contributions from the light and heavy stars, and averaging over velocities as
before, we find

v〈�v‖〉H = −mHρH	
′

π1/2σ
, (7.44a)

v〈�v‖〉L = −1

2

(
1 + m

mf

)
mLρL	

′

π1/2σ
. (7.44b)

Equations (7.42) and (7.44) allow us to define a simple measure of the relative
importance of heavy–heavy compared with heavy–light interactions [3]:

� ≡
∣∣v〈�v‖〉H

∣∣ +
∣∣∣〈(�v)2〉H ∣∣∣∣∣v〈�v‖〉L

∣∣ +
∣∣∣〈(�v)2〉L∣∣∣ = mHρH

mLρL

4

3 +mH/mL
. (7.45)

When � � 1, self-interactions dominate the evolution of the heavy component;
their density near the SBH will follow n ∼ r−7/4, and the light stars will follow
nL ∝ r−3/2, as in the first of the two cases considered above. When � � 1,
interactions with the light stars dominate the evolution of the heavy stars, and their
density falls off more steeply with radius, according to equation (7.39). If we set
mH/mL ≈ 10, then the condition � > 1 becomes

ρH

ρL
>∼

13

40
≈ 0.3. (7.46)

According to table 7.1, the mass fraction in black holes that is predicted by standard
IMFs is ρH/ρL ≈ 0.015, somewhat smaller than the value in equation (7.46). How-
ever, in the presence of mass segregation, ρH/ρL will increase as one approaches
the SBH.

Figure 7.7 shows time-dependent solutions to equation (7.29) for two mass
groups, representing solar-mass stars (MS) and ten-solar-mass black holes (BH).
The initial densities of both species followed n ∼ r−1/2 near the SBH; recall that
this is the flattest density profile consistent with a nonnegative f (E). The relative
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Figure 7.7 Evolution toward a steady state of two mass groups around an SBH. These are
solutions to the orbit-averaged, isotropic Fokker–Planck equation (7.29). The
component labeled “MS” represents stars of 1M�; the component labeled “BH”
represents 10M� black holes. Initially, the two components have similar radial
density profiles, and the BH density is 0.005 times the MS density. Times shown
are 0, 0.05, 0.1, 0.2, 0.5 in units of the initial MS relaxation time at the influence
radius rm. The MS slope grows initially toward 7/4, the Bahcall–Wolf single-
component value, at small radii but asymptotes to a value closer to 3/2 as the
BH density climbs. The BH slope tends initially toward 11/4, equation (7.40),
then asymptotes to 7/4 after the BH density begins to dominate. The radii at
which � = 1 and � = 0.1 are plotted as filled circles. Scaled to the Milky Way,
the unit of time is ∼ 2.5 × 1010 yr and the unit of length is ∼ 2.5 pc.
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numbers in the two populations were nBH/nMS = 5 × 10−4, that is, ρBH/ρMS =
0.005. After one-half relaxation time at the SBH influence radius the two distribu-
tions have reached a nearly steady state. The BHs dominate the mass density inside
∼10−2rm, and at small radii, nMS ∼ r−3/2, nBH ∼ r−7/4 as expected. Farther from
the SBH, at r ≈ rm, the stars dominate the mass density; equation (7.39) tells us
that the density in BHs should be falling off faster than the MS density at these radii
and this is clearly seen to be the case.

In models like these, the “observable” is the distribution of the stars, and it is
interesting to ask how that distribution is affected by the presence of the black
holes. Comparison of two-component solutions, like the one plotted in figure 7.7,
with the single-component solution, figure 7.4, reveals the following differences:

1. The n ∼ r−7/4 Bahcall–Wolf cusp in the stars is replaced by a weaker cusp,
n ∼ r−γ , 3/2 <∼ γ <∼ 7/4.

2. The radial extent of the stellar cusp decreases somewhat with increasing black
hole density: from ∼ 0.2rm when nBH = 0, to ∼ 0.1rm when the black holes
dominate the gravitational scattering.

3. The time required for growth of the stellar cusp is reduced somewhat by the
presence of the black holes, although for physically relevant black hole num-
bers, this change is slight.

How do these predictions compare with the distribution of (old) stars near the
center of the Milky Way? The influence radius for Sgr A* is estimated to be 2 pc <∼
rm <∼ 3 pc, and the relaxation time at this radius, assuming m̃ = 1M�, is 20–30 Gyr
[357].5 The final time plotted in figure 7.7 is half of this time, or roughly the age
of the universe: perhaps twice the mean age of the stars. An immediate conclusion
is that—if our estimate of the relaxation time is correct—we would not necessarily
expect the stars at the Galactic center to have reached a collisionally relaxed steady
state by now. On the other hand, if there has been time enough to form a steady-state
cusp—perhaps because m̃ is greater than 1M� and Tr correspondingly shorter—
then the stellar density should rise as n ∼ r−3/2 inside a radius ∼ 0.1rm ≈ 0.25 pc
≈ 2′′. This radius is well resolved by the number counts, but as figure 7.1 shows,
no cusp is observed; instead the counts level off, or even begin to decrease, inside
roughly this radius. The most straightforward interpretation is that the nucleus of
the Milky Way has not yet reached a collisional steady state [357].

Solutions to the isotropic Fokker–Planck equation that incorporate more than
just two mass groups have also been constructed [395, 170, 245]. In studies like
these, loss of stars to the SBH can be approximated by adding a term similar
to equation (7.13) to the right-hand side of the evolution equation for each fi ,
equation (7.29a). The only additional change required is to replace Rlc in the loss
term by Rlc,i , the appropriate value for the ith group. Figure 7.8 shows a steady-
state solution for the stars near the Milky Way SBH that was computed in this way
[245]. Four mass groups were included, with masses approximating those of main-
sequence stars (MS), white dwarfs (WD), neutron stars (NS), and stellar-mass black

5Table 7.1 suggests that m̃ may be smaller than one solar mass, which would make Tr longer.
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Figure 7.8 A steady-state solution to the isotropic Fokker–Planck equation (7.29) with four
mass groups, and including a loss term similar to equation (7.13). The left panel
shows the number density profiles n(r) and the right panel shows logarithmic
slopes. This model does not include the gravitational potential due to the stars
themselves and so is only valid well inside the SBH influence radius of ∼2 pc.
Inclusion of a loss term is responsible for the flattening of the profiles inside
∼0.005 pc. (Based on calculations of C. Hopman and T. Alexander.)

holes (BH):

mMS = 1M�, mWD = 0.6M�, mNS = 1.4M�, mBH = 10M�. (7.47)

The relative numbers in the four groups at the outermost radius (r = 1 pc) were
fixed at MS : WD : NS : BH = 1 : 0.1 : 0.01 : 0.001, consistent with the density ratios
in the second column of table 7.1. In this collisionally relaxed solution, the stellar
black holes dominate the mass density inside r ≈ 0.005 pc; the three lighter species
have logarithmic density slopes that are all close to γ = 3/2, while the black
holes have n ∼ r−2. At very small radii, r <∼ 10−3 pc, the density of each of the
species falls below the power-law solutions due to the inclusion of a loss term.
The predicted number of black holes within 1 pc is 1.8 × 103, and within 0.1 pc is
150. But just as in the two-component models, the distribution of observable stars
predicted by this model is seriously in conflict with observations of the Milky Way
nucleus.

7.2 CUSP (RE)GENERATION

Several arguments have been presented in this book in support of the hypothesis
that the nucleus of the Milky Way is not in a collisionally relaxed state. These in-
clude the long relaxation time computed for stars within the SBH influence radius
(figure 7.1b), and the apparent absence of a Bahcall–Wolf cusp in the late-type stars
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(figure 7.1a). Given the empirical scaling of nuclear relaxation time with galaxy lu-
minosity shown in figure 3.1, it is reasonable to conclude that galaxies brighter than
the Milky Way also harbor unrelaxed nuclei. Galaxies less luminous than the Milky
Way often contain dense nuclear star clusters, like that of the Milky Way, and these
NSCs display a trend of decreasing relaxation time with decreasing galaxy lumi-
nosity (figure 7.3). But it is unclear how often NSCs contain SBHs. In the absence
of an SBH, evolution of a nucleus over relaxation timescales will be fundamentally
different than what has been described so far in this chapter; we reserve a detailed
discussion of that case until later in this chapter.

In a collisionally unrelaxed nucleus, predicting the distribution of stars and stellar
remnants at any given time becomes an initial-value problem. In other words, we
need to say something about how the various components were distributed at some
specified time, then integrate these initial conditions forward into the present epoch.
The results of such a calculation can then be compared with the observations—
assuming of course that there are any nuclei close enough that the relevant features
can be resolved.

What should the initial conditions be? One could imagine going back to a time
when both the stars and the SBH were being formed. Fortunately, in many galaxies,
such an ambitious program is probably not necessary. It is likely that the nuclear
“clock” was reset to zero much more recently, at the time of the last major merger
that formed the stellar bulge. As discussed in detail in the next chapter, if the merg-
ing galaxies each contained SBHs, the massive binary that was created during the
merger would efficiently eject passing stars via the gravitational slingshot, essen-
tially erasing the preexisting nuclei and producing a low-density core comparable
in size to the binary’s semimajor axis. Such cores are in fact ubiquitous in galaxies
close enough that features on scales of rh can be well resolved (chapter 2).

Suppose that a preexisting binary SBH has ejected all stars that passed within
some distance rc of the galaxy center. We expect rc to be of order the semimajor
axis of the binary SBH at the time it first became “hard,” in the sense defined in
chapter 8: that is, sufficiently bound that it is capable of ejecting passing stars com-
pletely from the galaxy core. As shown in section 8.1, this separation is a fraction
of rh. Let Ec ≡ ψ(rc) ≈ GM•/rc with M• the mass of the single SBH that remains
after the binary has coalesced. Approximating the galactic potential as spherical,
stars will have been removed by the binary if their orbits satisfy either of the con-
ditions

E >∼ Ec, L2 <∼ L2
c(E) ≡ 2r2

c (Ec − E) . (7.48)

Lc is the specific angular momentum of a star with periapsis at rc. The
configuration-space density corresponding to this “hole” in phase space will be
zero at r ≤ rc; at radii beyond rc, the density will have been lowered by the massive
binary, though not all the way to zero, due to its removal of stars on low-angular-
momentum orbits.

These “initial conditions” are the same ones that were explored in section 6.1.5,
in our discussion of time-dependent loss cones around single SBHs. It was ar-
gued there that evolution would proceed on two timescales: a short timescale,
tL ≈ (rc/rh)Tr(rh), associated with replenishment of low-angular-momentum
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orbits; and a longer timescale, ∼ Tr(rh), over which orbital energies evolve. After
a time tL, evolution in L will have “filled in” the angular-momentum gap created
by the massive binary. Ignoring the evolution in E that takes place during this time,
the resulting phase-space density can be approximated as

f (E) =
{
f0(E), E <∼ Ec,
0, E >∼ Ec.

(7.49)

The configuration-space density corresponding to this f is

ρ(r) ≈



ρ0(r), r > rc,

4
√

2π
∫ ψ(rc)

0
dEf0(E)

√
ψ(r)− E, r < rc.

(7.50)

The latter expression is approximately

4
√

2π
√
ψ(r)

∫ ψ(rc)

0
dEf0(E) ∝ r−1/2 (7.51)

at r <∼ rc. Roughly speaking, this is what is meant by a “core”: a region of nearly
constant density inside rc. In fact, the density in this “core” diverges weakly toward
the center; but as seen in projection against the rest of the galaxy, such a weak
density cusp is almost indistinguishable from a constant-density core.

We could have arrived at this model for the density via a less circuitous route.
The luminosity profiles of elliptical galaxies are often observed to be flat, or slowly
rising, at r <∼ rh (chapter 2). Regardless of how these cores formed, Eddington’s
formula, equation (3.47), can be used to infer f (E) from the observed ρ(r). If
the density near the SBH is slowly rising, f (E) will be similar in form to
equation (7.49): it will increase with E until E ≈ Ec, then drop off sharply for
E >∼ Ec. Indeed, as noted in chapter 3, a density that rises as r−1/2 is the shallow-
est profile consistent with an isotropic velocity distribution in a 1/r potential: it
corresponds to an f that is zero near the SBH. Density profiles that are still flat-
ter imply a deficit of eccentric orbits at large E , that is, an anisotropic velocity
distribution—as indeed might be created by a binary SBH, if it preferentially ejects
stars on eccentric orbits.

Before exploring the evolution of models that start from initial conditions like
these, there is an important point to be made about dynamical friction [8]. If the
distribution function is sharply truncated as in equation (7.48), then the density at
r ≤ rc is zero, and Chandrasekhar’s formula predicts zero frictional force. But it
turns out that the same is true even if f has the form (7.49)—in spite of the fact
that this f implies a nonzero configuration-space density everywhere!

Chandrasekhar’s dynamical friction coefficient, in its standard form, is given by
equation (5.23):

〈�v‖〉 = −4πG2
(
mf +m

)
ln


v2
ρ

(
vf < v

)
, (7.52)

where ρ
(
vf < v

)
is the mass density contributed by stars whose velocities at in-

finity are less than the test body’s velocity v. If the field stars are described by an
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isotropic f , then

ρ(vf < v; r) = 4
√

2π
∫ ψ(r)

ψ(r)−v2/2
dEf (E)

√
ψ(r)− E . (7.53)

If in addition, f is truncated at E > Ec, as in equation (7.49), then ρ(vf < v) falls
to zero for orbits with

ψ(r)− v2

2
≥ Ec (7.54)

since there are no stars locally that move slower than v at these energies—regardless
of whether the configuration-space density at r is nonzero. Assuming a circular
orbit for the test body, and that the orbit lies inside the influence radius of the SBH,
this condition becomes

r <∼
rc

2
. (7.55)

Thus, inside approximately half of the core radius, the frictional force drops pre-
cisely to zero.

What (if anything) went wrong? Aside from the assumption of isotropy,
equation (7.52) is not based on any particular functional form for f . But its deriva-
tion was tainted at one point, when the logarithmic term was “taken out of the
integral” (following equation 5.21). As discussed in chapter 5, this is the approx-
imation that results in only the slow-moving stars contributing to the dynamical
friction force. If the logarithmic term is left inside the integral, one obtains the more
general expression for 〈�v‖〉 given by equation (5.20)—which indicates a contri-
bution to the frictional force from field stars of all velocities, including vf > v.

Clearly we need to worry about how important a contribution the fast-moving
stars can make to the frictional force. Suppose that the stellar density near the SBH
has the form ρ ∝ r−γ , γ > 1/2 at radii r <∼ rh, and consider a test mass moving in
a circular orbit, v = vc(r). Using equation (5.20), the dynamical friction force can
be computed and broken down into two contributions, due to field stars with vf > v

and with vf < v. Figure 7.9 shows the results, in a model scaled to match the den-
sity near the center of the Milky Way; the density inside the core (of radius 0.3 pc)
has been allowed to have the form ρ ∝ r−γ , γ > 1/2. Inside the core, the fraction
of the frictional force that comes from the fast-moving stars is substantial when
γ <∼ 1. Our initial conclusion that the frictional force should go to zero was wrong:
even Chandrasekhar’s treatment predicts a nonzero force, but only if the ln
 term
is left inside the integrand. Another useful comparison is made in the right panel of
this figure, which plots the frictional force—including the fast-moving stars—as a
fraction of the force that would be computed if one applied Chandrasekhar’s for-
mula in its standard form and assumed a locally Maxwellian velocity distribution,
equation (5.23). The Maxwellian approximation can substantially overestimate the
frictional force, whether the latter is computed from just the slow-moving stars, or
from all of them.

The reader may be wondering at this point whether treatments like Chandra-
sekhar’s are to be trusted in a case like this—even if the fast-moving stars are ac-
counted for. That is a valid worry for a number of reasons: the inhomogeneity of
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Figure 7.9 These figures illustrate how dynamical friction acts in a core around an SBH, in
Chandrasekhar’s formalism [8]. They are based on a density model for the cen-
ter of the Milky Way that looks similar to the dashed line in figure 7.1a, except
that the density inside the core (of radius rc = 0.3 pc) is allowed to have the
more general form ρ ∝ r−γ . Eddington’s formula (3.47) was used to compute
f (E) from ρ(r), and the test body was assumed to follow a circular orbit. The left
panel shows the fraction of the frictional force that comes from stars with vf > v

as a function of γ at different galactocentric radii: r = 0.1, 0.2, 0.3 and 0.6 pc.
Equation (5.20) was used to compute these curves; N -body experiments verify
that this equation accurately predicts the frictional force. The right panel com-
pares the total frictional force computed by this equation with the force computed
using equation (5.23), which assumes a Maxwellian distribution of velocities.

the models, the fact that the field stars are orbiting in the near-Keplerian field of the
SBH, etc. One way to assess these concerns would be via a perturbative analysis
that accounts properly for the orbits of the field stars. Unfortunately, such an analy-
sis has never been carried out for models like these. But direct simulation via an
N -body code is a viable alternative, and one which does not suffer from the limi-
tations and ambiguities associated with a perturbative treatment. Such a study [8]
confirms that Chandrasekhar’s equation (5.20)—the version that includes the con-
tribution from the fast-moving stars—does a very good job of predicting the orbital
decay of a massive body in models with ρ ∝ r−γ near an SBH.

Before returning to our discussion of cusp regeneration, we note that the velocity
distribution inside a core with n(r) ∝ r−γ is given approximately by

f (E)= f0Eγ−3/2

∝ [
ψ(r)− v2/2

]γ−3/2

∝ (
GM•/r − v2/2

)γ−3/2

∝ (
2v2

c − v2
)γ−3/2

, v ≤ 21/2vc. (7.56)

The first of these expressions is equation (3.49); note that f0 in that equation be-
comes undefined for γ ≤ 1/2. The final expression replaces 2GM•/r by v2

c , the
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Figure 7.10 Regeneration of a mass-segregated cusp around an SBH following a galaxy
merger. The simulated galaxies contained four mass components, as in (7.47);
only two are shown here. Vertical (dotted) lines mark the initial influence radius
rm. Times shown are (0.2, 0.5, 1, 2, 3) in units of the initial relaxation time at
the influence radius, as defined by the MS stars. Other details are given in the
text. (Adapted from [220].)

square of the circular velocity at r . While it is not obvious from these expressions,
in the limit γ → 1/2, f (v) becomes a delta function at v = √

2vc; in other words,
all stars have zero energy with respect to the SBH. Here we have a concrete exam-
ple of how non-Maxwellian the velocity distribution near an SBH is expected to
be.6

Armed with our insights into the workings of dynamical friction in cores, we
now consider two examples that illustrate the regeneration of cusps around SBHs.

The first example, illustrated in figure 7.10, is taken from a large-scale N -body
simulation of a galaxy merger [220]. The “initial conditions” in this plot consisted
of the N -body model at a time after the galaxy merger was essentially complete,
and the binary SBH—of mass ratio M2/M1 = 1/3—had created a core from the
preexisting, Bahcall–Wolf cusps in each of the two merging galaxies. These sim-
ulations included four mass groups, as in (7.47); before the merger, the nuclei of
the two galaxies were each in a collisionally relaxed, mass-segregated state, similar
to what is shown in figure 7.8. The galaxy merger, together with ejection of stars
by the binary SBH, have acted to create a large core around the single, coalesced
SBH. The radius of the core as defined by the “stars” (the component labeled MS)
is roughly twice the SBH influence radius rm. The stellar black holes (BH) have a
smaller core initially—a relic of the pre-merger mass segregation, which was in-
completely erased by the massive binary. But because the core in the dominant
(MS) component is so large, the core radius scarcely evolves, even after a time of

6This is the same velocity distribution that was used in computing the dynamical friction wakes in
figure 5.3.
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Figure 7.11 Left: Evolution of the surface density �(R) and configuration-space density
ρ(r) for a population of 1M� stars around the Milky Way SBH, assuming
an initial core size of 1 pc. Increasing line thickness denotes increasing time,
t = (0, 0.2, 0.5, 1, 2) × 1010 yr. The dashed line is the asymptotic form corre-
sponding to a Bahcall–Wolf cusp, i.e., ρ ∝ r−7/4. (Adapted from [357].) Right:
Evolution of the distribution of 10M� black holes due to dynamical friction
against the field stars. Evolution of the field-star distribution was ignored, and
the frictional force was computed using equation (5.20), which accounts for the
contribution of the fast-moving stars to the frictional force. (Adapted from [8].)

3Tr(rm). A Bahcall–Wolf cusp can be seen to grow in this component but only at
radii r <∼ 0.2rm � rc.

The BHs evolve against this essentially fixed background. But the frictional force
inside the stellar core is small, and the BH distribution barely reaches a steady state
by the end of the simulation, after ∼3 MS relaxation times at rm. At this time the
BHs dominate the total density inside ∼0.1rm.

A second example of cusp regeneration is shown in figure 7.11. Here, the initial
conditions were designed specifically to represent the NSC of the Milky Way. The
initial density was given by equation (7.50) with

ρ0(r) = 1.5 × 105

(
r

1 pc

)−1.8

M� pc−3 (7.57)

and with a core of radius rc = 1 pc. This functional form is a good match to what is
observed in the Milky Way NSC, except that the adopted core radius is about a fac-
tor of two too large (figure 7.1). The initial core is still smaller than the SBH influ-
ence radius, however. Figure 7.11 (left), based on the single-component, isotropic
Fokker–Planck equation, shows how the core gradually shrinks, as gravitational
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encounters drive the stellar density toward a Bahcall–Wolf cusp. Interestingly, the
density falloff in the Milky Way NSC beyond the core is essentially identical with
the Bahcall–Wolf form ρ ∼ r−7/4—even at radii much greater than rh (≈2–3 pc)
where gravitational encounters are unlikely to have been effective over the age of
the universe. Because of this coincidence, and because the initial core in our model
lies completely inside rh, the evolution has the effect of maintaining the slope of the
density profile outside ∼ rc(t), while gradually reducing rc. After roughly 10 Gyr,
the core size has decreased by about a half, to a size that is consistent with the size
of the currently observed core.

Figure 7.11 (right) shows the results of a second set of integrations, this time of
the orbits of 10M� black holes, starting from a model in which both the BHs and
the field (MS) stars had the same distribution as in figure 7.11 (left). The frictional
force acting on the BHs was computed from equation (5.20), assuming that the
field-star distribution was unevolving. These plots suggest that the spatial distrib-
ution of stellar-mass black holes near the Galactic center may not have reached a
steady state under the influence of gravitational encounters—at least, if their initial
conditions were as far from equilibrium as assumed in making the figure.

7.3 BLACK-HOLE-DRIVEN EXPANSION

The terms “equilibrium” and “steady-state” have been used freely throughout this
chapter to describe time-independent models for stars around an SBH. But a little
thought makes it clear that a true steady state can never exist, as long as the SBH
is consuming or destroying stars. This is not so much because the supply of stars
in a galaxy is finite; the number of stars is far greater than could be consumed by
the SBH in any physically interesting time. But beyond a certain distance from the
SBH, the relaxation time is so long that the encounter-driven flux of stars toward the
galaxy center cannot keep up with losses near the SBH. As a result, the density near
the SBH must drop. This gradual decrease in density can equally well be described
as an expansion, in the sense that the radius of a sphere containing a fixed mass in
stars will increase with time.

In steady-state models like those of Bahcall and Wolf [14, 15], as well as the
solutions plotted in figure 7.5, this expansion was absent due to the choice of outer
boundary condition: f (E) was fixed at small E , that is, far from the SBH. In effect,
stars were resupplied at large radii at just the correct rate to counteract the losses to
the SBH. The expansion also did not appear in the time-dependent solutions plotted
in figures 7.4 or 7.7 since those integrations did not include a loss term.

We can estimate the approximate radius, in a spherical galaxy, beyond which
gravitational encounters are unable to supply stars at a high enough rate to com-
pensate for losses to the SBH. Equation (7.11) gives the rate of change of N(E)
due to the combined effects of diffusion in energy, and loss of stars to the SBH;
recall that the latter process is driven almost entirely by changes in angular mo-
mentum. Integrating that equation in energy from Et to E yields

∂

∂t
N(> E) ≈ FE(E)− Ṅ lc. (7.58)
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We have assumed that E is small compared with the energy of peak flux into the loss
cone, hence the second term on the right-hand side can be identified with the total
loss rate. Equation (6.86) gives Ṅ lc in a nuclear star cluster like that of the Milky
Way, with density n(r) ∼ r−2. We wish to find the largest r , that is, the smallest
E , for which FE can equal Ṅ lc. The most optimistic estimate of FE is Fmax ≡
N(E)D(E) defined in equation (6.68). We can write that expression approximately
in terms of radius by noting that D(E) is the inverse of an orbit-averaged relaxation
time. The maximum inward flux of stars (number per unit time) at radius r is then

Ṅmax(r) ≈ N(< r)

Tr(r)
. (7.59)

Using equation (5.61) for Tr , writing N(< r) = 2(M•/m)(r/rm), and setting
σ(r) = σ0, both appropriate for the singular isothermal sphere, we find

Ṅmax(r)≈ G2M2
• ln


σ 3
0 r

2
mr

(7.60a)

≈
(
rh

rm

)2
σ0

r
ln
 (7.60b)

≈ 9 × 10−5

(
σ

90 km s−1

)(
r

pc

)−1

ln
 yr−1, (7.60c)

where rm has been identified with rh, again appropriately for the singular isothermal
sphere. This energy diffusion rate falls below the total loss rate, equation (6.86), at
radii greater than

r ≈ 3

(
σ

90 km s−1

)−5/2 (
M•

4 × 106M�

)
pc, (7.61)

or roughly the influence radius in the case of the Milky Way.
Figure 7.12 illustrates the expansion. Equation (7.11) was integrated until a

Bahcall–Wolf cusp had formed. The integration was then continued for an addi-
tional ∼20 Gyr, based on a scaling that identified the final density at 1 pc with the
density currently observed in the Milky Way (equation 6.73). The right panel in
the figure compares the density at 0.1 pc to the time-integrated captured mass. By
the time the SBH has destroyed a mass in stars equal to its own mass, the density,
and therefore the rate of supply of stars to the loss cone, has fallen by roughly a fac-
tor of three. Multimass models that include a loss term behave in a similar manner
[395, 170]; in particular, the dominant mass component maintains an approximate,
n ∝ r−7/4 dependence near the SBH as the density drops.

7.4 MASSIVE PERTURBERS

In section 5.2.2 it was pointed out that the characteristic time for scattering of a test
star by a set of field stars having a range of different masses could be written as

Tr = 0.34σ 3

G2m̃ρ ln

, (7.62)
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Figure 7.12 Expansion of a nucleus driven by loss of stars to the SBH. The left panel shows
the density at constant time intervals after a Bahcall–Wolf cusp has been es-
tablished; the final influence radius is rh ≈ 3 pc. The right panel shows the
evolution of the density at 0.1 pc as a function of Macc, the accumulated mass
in tidally disrupted stars. As scaled to the Milky Way, the final time is roughly
2 × 1010 yr.

where m̃ is given by equation (5.62b):

m̃ ≡
∫
n(m)m2dm∫
n(m)mdm

= ρ−1
∫
n(m)m2dm, (7.63)

and n(m)dm is the number of field stars with masses in the interval dm centered on
m. Equations (7.62) and (7.63) are appropriate if field stars of all masses have the
same velocity distribution; a defensible assumption if the system is less than one
relaxation time old.

Table 7.1 gave an estimate of m̃, m̃ ≈ 0.55M�, in a stellar population with
a “normal” initial mass function (IMF) and in which the most massive stars had
evolved off the main sequence, leaving behind compact remnants. It is interesting to
compute m̃ for other mass functions. For instance, consider a stellar cluster young
enough that all its stars are still on the main sequence. In this case, n(m) is equal to
the IMF; writing the latter as ξ(m) = ξ0(m/m0)

−α , we find

ρ m̃= ξ0

∫ m2

m1

m2

(
m

m0

)−α
dm

= ξ0m
3
0

3 − α

[(
m2

m0

)3−α
−

(
m1

m0

)3−α]

≈ ξ0m
3
0

3 − α

(
m2

m0

)3−α
. (7.64)

The last line is valid if m2 � m1 and α <∼ 3. In fact, for a Salpeter IMF, α = 2.35.
For such a mass function, the value of m̃ depends sensitively on what is assumed
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Table 7.2 Massive perturbers in the Galactic center [422].

Type r (pc) N m (M�) m̃ (M�) R (pc)

GMCs <100 ∼100 104–108 3 × 106–3 × 107 5
Clusters <100 ∼10 102–105 4.8 × 103–2.4×104 1
Gas clumps 1.5–3 ∼25 102–105 3.7 × 103–4.1 × 104 0.25

for the maximum stellar mass. Settingm2 ≈ 102M� andm1 ≈ 10−2M�, one finds
m̃ ≈ 101M�, corresponding to a relaxation time that is roughly ten times shorter
than in an evolved cluster with the same mass density.

In 1951, L. Spitzer and M. Schwarzschild [504] took this line of reasoning to a
logical conclusion. They pointed out that the interstellar gas, whose mean density
is similar to that of the stars in the Galactic disk, is distributed in a clumpy fashion,
with individual clouds having masses as great as 105M�. They argued that the
time for stars to be gravitationally scattered by gas clouds was therefore roughly
105 times shorter than the star–star relaxation time, short enough that star–cloud
scattering could be responsible for the observed dependence of stellar scale height
on age.

If we write the mass function in Spitzer and Schwarzschild’s model as

n(m) = [n(m)]star + [n(m)]cloud , (7.65)

then equation (7.63) implies

ρ m̃=
[∫

n(m)m2dm

]
star

+
[∫

n(m)m2dm

]
cloud

(7.66a)

= ρstarm̃star + ρcloudm̃cloud. (7.66b)

Now replacing the clouds by any collection of objects more massive than stars, the
condition that the scattering time be dominated by the more massive objects is

(ρm̃)MP � (ρm̃)star . (7.67)

The subscript MP stands for massive perturber [422].
Near the center of a galaxy, massive perturbers can include gas clouds of vari-

ous masses, up to and including giant molecular clouds (GMCs). Star clusters, both
open and globular, also fall into this category. Table 7.2 gives estimates of the num-
bers and masses of massive perturbers near the center of the Milky Way. While
mean number densities are very small—roughly 10−5 pc−3 in the case of GMCs—
these objects are so much more massive than stars that they can easily dominate the
gravitational scattering inside any region large enough to contain them. The dom-
inant contribution to ρm̃ comes from the GMCs; in the region 1.5 pc <∼ r <∼ 5 pc,
one finds [422]

(ρm̃)GMC ≈ (20–2000) (ρm̃)star . (7.68)

The uncertainty in this estimate arises primarily from uncertainties in the measured
masses of GMCs. In order to estimate the effective reduction in the timescale for
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gravitational scattering, we need to also take into account the large physical size
of GMCs, which implies a lower effectiveness of close encounters. Recall from
chapter 5 that the Coulomb logarithm can be written as

ln
 ≈ 1

2
ln

[
1 + p2

max

p2
0

]
with

p0 ≡ 2Gm

V 2
≈ 10−6

(
m

M�

) (
V

102 km s−1

)−2

pc.

Numerical experiments (section 5.2.3.3) suggest that pmax is roughly 1/4 times the
linear extent of the test star’s orbit. Setting this size to 10 pc, and replacing p0 by
1/2 the physical size of a GMC, R ≈ 5 pc (table 7.2), one finds that ln
 near the
center of the Milky Way decreases from ∼15 in the case of star–star scattering to
∼0.5 in the case of scattering by GMCs. Combined with equation (7.68), this result
suggests that the effective timescale for gravitational scattering near the Galactic
center might be reduced by a factor of ∼100 to ∼102 due to the presence of GMCs.

What would be the consequences of such a reduction? The effect on the distri-
bution of stars inside the influence radius of Sgr A*, r < rh ≈ rm ≈ 2–3 pc, is
likely to be small: at these radii, velocity perturbations are due mostly to objects
within ∼rh, a region that is not likely to contain a single massive perturber. But as
we saw in section 6.1.3, the supply of stars to the SBH is likely to be dominated
by gravitational encounters that take place at larger radii. In the absence of massive
perturbers, the transition from empty- to full-loss-cone regimes takes place roughly
at r ≈ rh in a nuclear star cluster like that of the Milky Way (figure 6.5). Massive
perturbers cannot increase the flux in the full-loss-cone regime, but they could con-
vert an empty loss cone into a full loss cone, implying an increased rate of capture
by the SBH.

Recall from equation (6.72) that the energy-dependent loss-cone flux is given in
the two regimes as

F ≈ F flc ×
{
q| lnRlc|−1, q � − lnRlc,

1, q � − lnRlc,

where F flc is the full-loss-cone flux, Rlc ≈ rlc/r , and q ≈ P/(TrRlc) with P the
orbital period. A decrease in the effective value of Tr due to massive perturbers
would imply a larger q, hence a smaller radius of transition to the full-loss-cone
regime. But the effect on the net rate of stellar captures is likely to be modest, at
least in a galaxy like the Milky Way, since the transition radius even in the absence
of massive perturbers is rcrit ≈ rh, and since massive perturbers will not signifi-
cantly decrease the effective value of Tr inside rh.

These arguments are modified somewhat in the case of the interaction of binary
stars with an SBH. As discussed in section 6.3, the distance from an SBH at which
a binary star is tidally separated, rt,bin, is larger than the tidal disruption radius for
a single star, rt, by a factor

rt,bin

rt
≈ abin

R�
≈ 21

( abin

0.1 AU

)(
R�

R�

)−1

, (7.69)
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where abin is the binary semimajor axis and R� is a stellar radius. Identifying rt,bin

with rlc allows us to define a “capture sphere” for binary stars; the rate of diffusion
of binaries into this sphere determines the rate at which, for instance, hypervelocity
stars are produced. Since the capture sphere for binaries is so much larger than
rt, the empty-loss-cone regime extends much farther out, and any mechanism that
decreases the effective relaxation time can therefore have a substantial effect on the
binary disruption rate. It has been argued that massive perturbers increase the rate
of interaction of binary stars with the Milky Way SBH by a factor of 101–103, with
corresponding increases in the rate of production of hypervelocity stars, and the
rate of deposition of stars in tightly bound orbits near the SBH [422].

7.5 EVOLUTION OF NUCLEI LACKING MASSIVE BLACK HOLES

Throughout this book, the presence of an SBH at the center of a nucleus has been a
default assumption. But there is no compelling reason to believe that every galaxy
contains a massive black hole, and this is perhaps most true in the case of low-
luminosity galaxies. For instance, the upper limit on the mass of any compact
central object in the Local Group dwarf galaxy NGC 205 is a few times 104M�
[527]. But like many low-luminosity galaxies, NGC 205 does contain a compact
nuclear star cluster (NSC), with a central relaxation time that is estimated at less
than 108 yr. NSCs beyond the Local Group are not as well resolved as the one in
NGC 205, but as discussed in the introduction to this chapter, half-mass relaxation
times of NSCs show a trend with galaxy luminosity, falling below ∼109 yr in the
faintest NSCs whose structure can be reasonably well resolved (figure 7.3). Cen-
tral relaxation times (assuming that no SBH is present) would be even shorter than
half-mass relaxation times.

In the absence of a massive central object, nuclei evolve very differently in re-
sponse to gravitational encounters. The evolution can be divided roughly into two
phases. On timescales of order the initial, central relaxation time, the velocity dis-
tribution becomes approximately isothermal, f (E) ∼ eE/σ 2

. The corresponding
configuration-space density is flat, within a core of some radius that is determined
by the initial conditions.

One might expect this configuration to represent a steady state. But suppose that
the NSC is sufficiently dense that it can be modeled as an isolated system: in other
words, gravitational interactions with stars in the larger galaxy can be ignored. In
this case, gravitational encounters will gradually populate the high-velocity tails
of the Maxwellian distribution, and stars will escape from the cluster. The binding
energy of the remaining stars will grow, and this energy must be shared among
a shrinking population. The cluster will therefore contract, and its central density
will reach a (formally) infinite value in a finite time, given roughly by 102 central
relaxation times. This process is called core collapse.

On the other hand, if an NSC is not so compact, there will be an additional
source of evolution due to gravitational encounters between stars in the galaxy,
and stars in the nucleus. This interaction can lead to the opposite outcome: the
NSC becomes less gravitationally bound, until its density equals that of the galaxy.



396 CHAPTER 7

We will call this process core expansion. Any further evolution due to gravitational
encounters would then take place on the much longer timescale determined by the
central relaxation time of the galaxy.

Whether a given NSC will expand or contract depends on its degree of com-
pactness with respect to the larger galaxy. It turns out that the critical compactness
(a term that will be defined more carefully below) lies well within the range of
parameters that are observed to characterize real NSCs, suggesting that both types
of evolution have occurred [356]: in other words, some NSCs may have under-
gone core collapse, while others may have reached their current states starting from
denser initial conditions.

In the era before SBHs came to be seen as ubiquitous components of galax-
ies, theoretical studies often emphasized core collapse as the dominant mechanism
driving the evolution of galactic nuclei [505, 506, 92, 474]. In these models, the
increase in central density led to a significant rate of physical collisions between
stars; when random velocities exceeded ∼103 km s−1—higher than the escape ve-
locity from the surfaces of stars, and also much higher than the velocities observed
in any NSC—collisions would liberate gas that fell to the center of the galaxy and
condensed into new stars, generating further collisions. It was argued that the evo-
lution of a dense nucleus would lead inevitably to the formation of a massive black
hole at the center, either by runaway stellar mergers or by creation of a massive gas
cloud which would collapse [37].

These models seem less relevant today. At least in the more luminous galaxies,
SBHs are believed to have been present, with roughly their current masses, since
very early times. Evolution of galactic nuclei during and after the era of peak quasar
activity took place with the SBHs already in place, and processes like core collapse
and the buildup of massive stars via collisions could not have occurred after this
time due to the inhibiting effects of the SBH’s gravitational field.

At least in the current universe, the only systems for which significant evolution
toward a collapsed core may have occurred are the densest NSCs. In the Milky Way,
if we imagine removing the SBH, the central relaxation time would be ∼10 Gyr,
its value at the SBH influence radius. In NGC 205, which appears to lack an SBH,
this time is ∼0.1 Gyr. If we suppose that these values define the range of central
relaxation times of NSCs lacking SBHs, then evolution may have taken place for
as little as ∼1, and as many as ∼102, relaxation times; the latter value is just long
enough for core collapse to have occurred. We will take the conservative view here
that few if any nuclei reach a state of post-core-collapse evolution in which close
encounters and physical collisions between stars are important processes.

7.5.1 t ≤ Tr

As we have seen, near an SBH, a time of ∼ Tr(rh) is required for the distribution of
stars to reach a nearly steady state under the influence of gravitational encounters.
In the absence of an SBH, an NSC can also be expected to reach an approximately
steady state in a time of order the relaxation time. Encounters drive the local veloc-
ity distribution toward a Maxwellian, f (v) ∝ e−v

2/(2σ 2). Invoking Jeans’s theorem,
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a locally Maxwellian velocity distribution implies

f = f (E) = f0e
E/σ 2 = f0 exp

[
ψ(r)− v2/2

σ 2

]
. (7.70)

The corresponding mass density is given by

ρ(r)= 4πf0m

∫ ψ(r)

−∞
[2(ψ − E)]1/2 eE/σ

2
dE (7.71a)

= 25/2πf0mσ
3eψ/σ

2
(7.71b)

= ρ(0)e(ψ−ψ(0))/σ 2
(7.71c)

with ψ(r) the (still unspecified) potential. Combining equation (7.71c) with Pois-
son’s equation (3.27b) gives

∇2ψ + 4πGρ(0)e(ψ−ψ(0))/σ 2 = 0. (7.72)

The solution to this differential equation, with appropriate boundary conditions,
is called the isothermal sphere [77]. One class of solutions has been mentioned
already several times in this book: the “singular isothermal sphere,” for which
ρ(r) ∝ r−2. The class of solution most relevant here has inner development

ρ(r)= ρ(0) (1 − Ar2 + · · · ) , (7.73a)

ψ(r)=ψ(0)− Br2 + · · · , (7.73b)

a constant-density core. Substituting (7.73a) into (7.72) yields

ρ(r)= ρ(0)
(

1 − 3

2

r2

r2
c

+ · · ·
)
, (7.74a)

ψ(r)=ψ(0)− 2

3
πGρ(0)r2 + · · · (7.74b)

with rc, the core radius, defined by7

Gρ(0) = 9

4π

σ 2

r2
c

. (7.75)

At large radii, r � rc, it is easy to verify that

ψ(r)→ −2σ 2 ln

(
r

r0

)
, (7.76a)

ρ(r)→ σ 2

2πGr2
, r � rc. (7.76b)

At intermediate radii the solution must be found numerically [77]. In the case of
the singular isothermal sphere, the relations (7.76) hold exactly at all radii.

Our concern here is with NSCs that are roughly one relaxation time old: long
enough to have reached a collisional steady state near the center, though not neces-
sarily at r � rc. It is interesting to consider the manner in which that approximate

7The numerical factor in equation (7.74a) is chosen so that equation (7.75) matches a widely used
definition of the core radius [286].
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Figure 7.13 Evolution due to gravitational encounters of a nuclear star cluster lacking a cen-
tral black hole [443]. The density and velocity dispersion are shown at various
times during the expansion (solid lines) and collapse (dashed lines) phases. The
initial conditions are given by the solid line with highest central value in the
case of ρ, and with the lowest central value in the case of σ . The unit of length
is approximately the half-mass radius.

steady state is reached. Figure 7.13a shows an example, based on integrations of
the orbit-averaged, isotropic Fokker–Planck equation [443]. The initial conditions
consisted of an NSC with a central density diverging as ρ ∼ r−1. Under the influ-
ence of gravitational encounters, the density near the center initially drops. This is
easy to understand. According to equation (3.39), the gravitational potential near
the center of a galaxy with ρ(r) ∝ r−γ scales with radius as

ψ(r) →
{

−r2−γ , γ �= 2,

− ln r, γ = 2,
(7.77)

and using the spherical Jeans equation (3.35), we find for the velocity dispersion
near the center,

σ 2(r) →
{
r2−γ , 1 < γ < 3,

rγ , 0 ≤ γ < 1.
(7.78)

For values of γ less than or equal to 2, the velocity dispersion drops toward the
center, except in two special cases: γ = 2, the singular isothermal sphere; and γ =
0, which can be interpreted as describing a (nonsingular) isothermal sphere at r <∼
rc. In all other cases, there is a “temperature inversion” near the center: the mean
square velocity rises outward, then (for reasonable models of the density profile at
large radii) reaches a peak before falling (figure 7.13b). If we think of the central
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parts of the NSC as a “cool” subsystem, it is clear that gravitational encounters
between these stars, and stars a little farther out, will tend to increase the mean
square velocity of the inner stars (as described, for instance, by equation 7.27). In
effect, heat flows into the center, causing it to expand.

This expansion continues until the temperature inversion has been erased, and
the density near the center is approximately constant. At this time, the velocity
distribution is well approximated by a Maxwellian, with constant σ , inside a radius
rc that is roughly equal to the radius of peak σ(r) in the initial cluster. That radius
can be large: comparable with the half-mass radius of the NSC. The time required to
erase the temperature inversion is therefore comparable with the nuclear half-mass
relaxation time; this is the same quantity that is plotted in figure 7.3a.

The evolution toward an isothermal core at times t <∼ Tr would not be very
striking from an observational point of view, since it leaves observable quantities
like the half-mass radius nearly unchanged. But it is important in that it determines
the elapsed time required before the more interesting phases of evolution—for in-
stance, core collapse—can get started. Figure 7.3 suggests that many NSCs will
remain in this preliminary stage of evolution over their entire lifetimes.

7.5.2 t � Tr : Compact nuclear star clusters

By establishing a nearly isothermal core, the phase of nuclear expansion described
in the previous section sets the initial conditions for the subsequent evolution. What
happens next (assuming, of course, that the NSC exists for a time longer than a
relaxation time) depends on how strongly the stars in the nucleus interact with the
rest of the galaxy. We first consider the case in which those interactions can be
ignored; the conditions under which this approximation is justified will be set out
in detail in the next section, but the key requirement is that the NSC be much denser
than the surrounding galaxy. This is the case, for instance, in the Milky Way.

Once its core is isothermal, an NSC can be expected to continue evolving toward
the isothermal sphere solution described above, at a rate determined roughly by the
local relaxation time at each radius. That is essentially correct; but something else
happens too.

Beyond the core, the velocity dispersion is almost certain to decline with radius
(e.g., figure 7.13b). This is because the ρ ∝ r−2 density profile implied by a con-
stant velocity dispersion cannot extend arbitrarily far; that would imply a diverging
total mass. Since the velocity dispersion falls off with radius, there will be a con-
tinuous transfer of heat from the inside to the outside. Roughly speaking, in each
(local) relaxation time, the fraction of the stars in the tail of the Maxwellian veloc-
ity distribution that move faster than the local escape velocity (roughly 1%) will be
lost [4]. This transfer of heat is in the opposite sense of the inward flow described
in the previous section, and it has the opposite effect: the core must contract.

Up until now, we have largely ignored changes in the gravitational potential due
to changes in the stellar distribution, based on the assumption that an SBH domi-
nates the gravitational force; the only exception was our discussion, in chapter 3,
of the adiabatic growth model, in which the SBH mass changes substantially over
time. But in the absence of an SBH, changes in the gravitational potential due to
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a contracting core can become significant. To see this, we first need to derive an
important property of self-gravitating systems.

The Jeans equation for an equilibrium spherical system is given by equa-
tion (3.31):

d
(
nσ 2

r

)
dr

+ 2n

r

(
σ 2
r − σ 2

t

) + n
d�

dr
= 0, (7.79)

where σr and σt are the one-dimensional velocity dispersions, parallel and perpen-
dicular, respectively, to the radius vector. Multiply both sides of this equation by
−4πr3m and integrate from r = 0 to infinity. Integrating the first term by parts,
and assuming that r3ρσ 2

r is zero both at very small and very large radii, yields

4π
∫ ∞

0
ρ

(
σ 2
r + 2σ 2

t

)
r2dr − 4π

∫ ∞

0
ρ
d�

dr
r3dr = 0 (7.80)

or

2K +W = 0, (7.81)

where K is the total kinetic energy and W is the total potential energy. This is a
second form of the virial theorem that we first saw in chapter 3. (While we derived
equation (7.81) under the assumption of spherical symmetry, it turns out to apply
more generally [78].) Since the total energy is given by E = K +W , we can also
write the virial theorem as

K + E = 0. (7.82)

The transfer of heat that occurs from the core of an NSC to its envelope corre-
sponds to a loss of energy from the core. To the extent that we can consider the core
to be a distinct stellar system, equation (7.82) tells us

δK = −δE. (7.83)

In other words, removal of energy from the core makes it hotter! The reason, of
course, is that the system readjusts: its radius decreases (i.e.,W becomes more neg-
ative) causing the stars to move, on average, faster. This property of self-gravitating
systems is sometimes called a negative specific heat.

We seem to have established the conditions for a runaway: the core loses
energy to the envelope; it contracts and becomes hotter; the rate of energy loss
increases, etc. In such circumstances, we do not expect to find a steady-state so-
lution. The most we might hope for is a self-similar solution: a solution in which
the spatial distributions of the various properties (density, velocity dispersion, etc.),
at different moments of time, can be obtained from one another by a similarity
transformation—a rescaling of the axes. So, for instance, we might expect the den-
sity profile to achieve a fixed form that is close to the isothermal sphere profile, but
the core radius and central density would change with time.

It is also clear that such self-similarity (if it exists) will not apply at all times
and all radii; for instance, if the initial conditions are far from those of the isother-
mal sphere, self-similar behavior will require a finite time to be established. What
we expect instead is what mathematicians call “intermediate-asymptotic” behavior:
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self-similarity over some range in spatial and temporal scales [25]. In the case of
core collapse, this means times long enough that the initial conditions have been
“erased,” but not so long that the core has shrunk to a size containing (say) just
one star, or to a central density so high that physical collisions between stars would
become important. Given that the runaway occurs near the center, we also do not
expect self-similarity to apply at radii r � rc.

Over such a limited range in time and radius, a self-similar solution would have
the form

ρ(r, t)≈ ρc(t)ρ̃ (r̃) , (7.84a)

r̃ = r/rc(t), (7.84b)

where ρ̃(r̃) is a fixed function, and the time-dependent rescaling is determined by
the functions ρc(t) and rc(t). If we require that ρ̃(0) = 1, then ρc becomes the
central density, and rc can similarly be defined as the core radius.

Establishing self-similarity, and deriving the functional forms of ρ̃(r̃), rc(t) and
ρc(t), requires a numerical treatment. But one can make considerable progress
based on simple physical arguments [230, 502]. In the self-similar regime, one
expects

ξ ≡ Trc
1

ρc

dρc

dt
(7.85)

should be constant, where Trc is the central relaxation time (itself a function of
time). A similar relation will hold for other core parameters (rc, σc), which implies
that these parameters vary with each other as power laws. Writing ρc ∝ r−α

c , sub-
stituting this relation into equation (7.84), and requiring that the time dependence
vanish, we find

ρ(r) ∝ r−α (7.86)

which describes the (fixed) form of the density falloff at large radii. We also know
from equation (7.75) that σ 2

c ∝ r2−α
c . Finally, if we assume that the time t − tcc re-

maining to a state of infinite central density is proportional to the current relaxation
time,8 then

ρc(t)= ρc,0 (1 − t/tcc)
β , (7.87a)

rc(t)= rc,0 (1 − t/tcc)
δ , (7.87b)

with β = −2α/(6 − α), δ = 2/(6 − α).
There are various ways to proceed numerically; three important methods are

summarized here:

1. As an eigenvalue problem. Mathematically, the assumption of self-similarity
allows a set of partial differential equations that describe the time evolution of a
system to be reduced to a set of ordinary differential equations that describe the
time-independent, self-similar solution. In the case of core collapse, a starting point
for this technique can be the orbit-averaged, isotropic Fokker–Planck equation.

8We ignore the dependence of the Coulomb logarithm on the core parameters.
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We first need to generalize that equation slightly, to account for the fact that the
gravitational potential is changing—like f , on a timescale long compared with or-
bital periods. This can be done [304, 235] by adding a term to the right-hand side
of equation (7.3):

∂f

∂t
= − 1

4π2p

∂FE
∂E − 1

p

∂q

∂t

∂f

∂E . (7.88)

The first term on the right-hand side of equation (7.88) describes the diffusion of
particles in phase space due to encounters. As a result of this diffusion, the density
and potential slowly vary, so that the energy E associated with a given point in
phase space changes with time. The second term compensates for this effect. Its
physical meaning can be made clear by writing f as a function of the variable q,
f (E, t) ≡ ζ(q, t). Differentiating this function with respect to energy and time,
and using the relation p = −∂q/∂E ,

∂f

∂E = ∂ζ

∂q

∂q

∂E = −p∂ζ
∂q
, (7.89a)

∂f

∂t
= ∂ζ

∂q

∂q

∂t
+ ∂ζ

∂t
. (7.89b)

Substituting these expressions into equation (7.88) and ignoring for the moment the
energy diffusion term,

∂ζ

∂q

∂q

∂t
+ ∂ζ

∂t
= ∂q

∂t

∂ζ

∂q
. (7.90)

Equation (7.90) implies ∂ζ/∂t = 0, i.e., that the potential readjusts in such a way
as to maintain f a fixed function of q. But q can be written as an integral over

angular momentum of the radial action, Jr ≡ ∫ r+
r−
vr dr:

q(E) =
∫ L2

c (E)

0
dL2Jr(E, L) = 4

3

∫ ψ−1(E)

0
dr r2v3(r, E). (7.91)

Forcing f to be a fixed function of q while the potential varies is therefore equiv-
alent to assuming that the potential changes slowly enough, compared with orbital
periods, that the radial adiabatic invariant Jr is conserved for each orbit.

With this addition, we are ready to convert the time-dependent Fokker–Planck
equation into a set of time-independent equations by assuming self-similarity, this
time for the functions f (E) and q(E):

f (E, t)= fc(t)f̃ (Ẽ), (7.92a)

q(E, t)= qc(t)q̃(Ẽ), (7.92b)

Ẽ = E/Ec(t). (7.92c)

We can also write

ψ(r, t)=ψc(t)ψ̃(r̃), (7.93a)

r̃ = r/rc(t). (7.93b)
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These expressions are then substituted into equations (7.88) and (7.91), and into
Poisson’s equation (3.27b), in the form

∂2ψ

∂r2
+ 2

r

∂ψ

∂r
= −16π2Gm

∫ ψ(r,t)

0
f (E) [2 (ψ − E)]1/2 dE . (7.94)

The result [235, 233] is a set of ordinary differential equations for f̃ , q̃, and ψ̃ ,
which depend on the constants

C1 = 1

	fc

d

dt
ln fc, C2 = 1

	fc

d

dt
ln Ec. (7.95)

It is straightforward to show that the assumption of a power-law dependence of ρ
on r at large radii, ρ ∝ r−α , implies

C1

C2
= 6 − α

2(α − 2)
, (7.96)

and the dimensionless collapse rate defined in equation (7.85) is

ξ = C1 + 3
2C2

0.167π1/2
. (7.97)

Given appropriate boundary conditions, the set of differential equations can be
solved, with the constants C1, C2 appearing as eigenvalues. The results are [233]

α = 2.23, C1 = 9.1 × 10−4, C2 = 1.1 × 10−4, ξ = 3.64 × 10−3. (7.98)

The numerical solution to ρ̃(r̃) is plotted as the filled circles in figure 7.14. The den-
sity falloff, ρ ∼ r−2.23, is seen to be slightly steeper than “isothermal,” as expected.
The computed value of ξ implies that, in the asymptotic limit, the time remaining
until complete core collapse is

t − tcc = 2α

6 − α
ξ−1Trc ≈ 330 Trc. (7.99)

2. Via coarse dynamic renormalization. The orbit-averaged Fokker–Planck
equation is an approximation; some of the reasons for distrusting it were outlined
in chapter 5. A fully general alternative is direct integration of the N -body equa-
tions of motion. That is the method of choice when N is small [1]. But values of N
that are computationally tractable (N <∼ 106) are smaller than the number of stars
in a nucleus. During core collapse, the number of stars in the core decreases as
collapse proceeds, and two-body and higher-order correlations, which are ignored
in the Fokker–Planck equation, begin to dominate the evolution. In N -body sim-
ulations, this occurs at a time far earlier than would be the case in a real nucleus,
and in fact no published N -body simulation has followed core collapse beyond a
density contrast of ∼104 (roughly where self-similar behavior first appears) before
binary stars begin to lock up most of the gravitational energy.

A general framework exists for establishing self-similarity in problems like core
collapse which can avoid these problems [276]. One starts from an algorithm for
solving the exact, “microscopic” physics; in our case, anN -body code. A particular
coarse-grained function—in our case, f (E) or ρ(r)—is identified as the “macro-
scopic” quantity of interest. One then carries out short bursts of computation using
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Figure 7.14 Core collapse via coarse-grained renormalization [510]. (a) Evolution of the
rescaled density. The dashed line is the initial state and the points are the self-
similar ρ̃(r) derived by Heggie and Stevenson [233] from the Fokker–Planck
equation. The inset shows α ≡ −d log ρ/(d log r) at the end of the final inte-
gration; the dashed line is α = 2.23. (b) Evolution of the dimensionless collapse
rate parameter ξ ≡ (ρ̇c/ρc)/Trc. Each time interval corresponds to one “burst”
of integration, after which the model was rescaled. The dashed line shows the
asymptotic (self-similar) value ξ = 3.6 × 10−3 as computed via the Fokker–
Planck equation.

the fine-scale model and extracts a smooth approximation of ρ(r) at the end of the
burst. The integration interval is chosen to be long enough that substantial evolution
of the coarse-grained function occurs, but short enough that correlations due to the
finite N are insignificant. The coarse-grained function, for example, ρ(r), is then
rescaled—shifted on a log–log plot—in such a way that the core properties are left
unchanged. A new N -body model is then generated from the renormalized density,
and another burst of integration is carried out; any correlations that do arise are
eliminated during this step. By following this procedure, the number of particles in
the core remains essentially constant as the core shrinks; in effect, the region be-
ing simulated shrinks along with the macroscopic observable (core radius). If self-
similarity exists, the rescaling will be found, after a few interactions, to leave the
macroscopic function unchanged. This method is able to establish self-similarity
even if the equations describing the evolution of the macroscopic functions are un-
known, or (as in our case) if they are approximations of unknown validity.

Figure 7.14 illustrates an application of this method to the core collapse problem
[510]. The total number of particles was N = 1.6 × 104, modest by N -body stan-
dards. Each integration interval was long enough for the central density to increase
by roughly a factor of 5. After four or five such intervals, the renormalized density
had attained a time-independent form, with ρ ∼ r−2.23 at r � rc (figure 7.14a). The
other parameters that characterize the self-similar behavior are also derivable. For
instance, if t1 and t2 are two distinct times in the self-similar regime, the exponent
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β of equation (7.87) can be obtained as

β = (t2 − t1)

/(
ρc(t2)

(dρc/dt)|t2
− ρc(t1)

(dρc/dt)|t1

)
(7.100)

and similarly for δ. Figure 7.14b shows that the dimensionless collapse rate pa-
rameter ξ obtained by this method is consistent with the value obtained from the
Fokker–Planck equation.

3. As a solution to the time-dependent Fokker–Planck equation. Integration of
the time-dependent evolution equation for f provides another route to establishing
self-similarity. A time-dependent solution also contains additional useful informa-
tion: for instance, it can reveal over what range of spatial and temporal scales the
self-similar solution is valid, and how the system behaves outside the self-similar
regime. This is especially important in the context of NSCs, since in many cases,
gravitational encounters may not have had time to reach the self-similar regime.

Integration of equations like (7.3) or (5.168) over space and time is in principle
straightforward, except that questions of energy and number conservation become
critical if the evolution is to be accurately followed far into the self-similar regime.
Changes in the gravitational potential can be dealt with in one of two ways. If the
independent variables are taken to be E and t , say, then changes in the potential
require a readjustment of f (E) so that f remains a fixed function of the q, as
discussed above. This can be done via an iterative procedure at each time step
[89, 90]. On the other hand, it is possible to recast the evolutionary equations in
terms of the radial adiabatic invariant Jr rather than E [194]. This eliminates the
need for iteration, and it also simplifies some computational tasks, for example, the
orbit averaging; the cost is the extra effort required in converting from action-space
variables to Cartesian coordinates.

7.5.3 t � Tr : Diffuse nuclear star clusters

So far, we have been discussing the evolution of NSCs without regard to the fact
that they sit inside a larger galaxy. This idealization seems intuitively justified if
the nucleus is sufficiently compact. But if the density of an NSC is low enough
compared with that of the galaxy, the effects of encounters with stars belonging to
the galaxy cannot be ignored [122, 269].

Consider a two-component system consisting of a galaxy and an NSC. Assume
for simplicity that both components are homogeneous, with densities (ρgal, ρnuc),
half-mass radii (rgal, rnuc), rms velocities (Vgal, Vnuc), and half-mass relaxation times
(Tgal, Tnuc).

Define εnuc ≡ (1/2)ρnucV
2

nuc to be the kinetic energy per unit volume of the
nucleus. Assuming Maxwellian velocity distributions and a single stellar mass m,
the rate of change of εnuc due to gravitational encounters is given by an equation
similar to equation (7.27):

dεnuc

dt
= 4

√
6πG2mρnucρgal ln
(
V 2

gal + V 2
nuc

)3/2

(
V 2

gal − V 2
nuc

)
. (7.101)
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A necessary and sufficient condition for the nucleus to be heated by the galaxy is
Vgal > Vnuc. When this condition is satisfied, the nuclear heating time is

Theat ≡
∣∣∣∣ 1

εnuc

dεnuc

dt

∣∣∣∣
−1

(7.102a)

= 1

48

√
6

π

V 3
nuc

G2mρnuc ln


(
ρnuc

ρgal

) (
(V 2

gal/V
2

nuc)+ 1
)3/2

(V 2
gal/V

2
nuc)− 1

. (7.102b)

In the limiting case Vgal � Vnuc this becomes

Theat =
(
ρnuc

ρgal

) (
Vgal

Vnuc

)
1

48

√
6

π

V 3
nuc

G2mρnuc ln

(7.103a)

≈
(
ρnuc

ρgal

) (
Vgal

Vnuc

)
Tnuc ≈

(
Vgal

Vnuc

)2

Tgal (7.103b)

≈
(
ρnuc

ρgal

)1/2 (
Vnuc

Vgal

)1/2 (
TnucTgal

)1/2
. (7.103c)

If Vgal > Vnuc, as assumed, then ρnuc cannot be large compared with ρgal

(figure 7.15). Thus, the nuclear heating time is of the same order as, or somewhat
less than, the geometric mean of Tnuc and Tgal. According to figure 7.3, this time is
shorter than 10 Gyr in at least some galaxies.

Heating from the galaxy will reverse core collapse if Theat is shorter than the
nuclear core collapse time. One definition of the latter time is

Tcc ≡
∣∣∣∣ 1

ρnuc

dρnuc

dt

∣∣∣∣
−1

= ξ−1Tnuc, (7.104)

where ξ−1 varies from ∼10 in the early stages of core collapse to an asymptotic
value of ∼300, as discussed above. The condition Theat < Tcc becomes

ρnuc

ρgal

Vgal

Vnuc
< ξ−1, (7.105)

where Vgal � Vnuc has again been assumed. We can convert equation (7.105) into
a relation between the quantities plotted in figure 7.3 by writing ρnuc ≈ Mnuc/r

3
nuc

and by applying the virial theorem separately to both components, that is,

V 2
nuc ∼ GMnuc

rnuc
, V 2

gal ∼ GMgal

rgal
; (7.106)

the former expression will only be approximately true for low-density nuclei. With
these substitutions, the condition (7.105) becomes

Mnuc

Mgal

<∼ 104

(
ξ−1

100

)2 (
rnuc

rgal

)5

. (7.107)

A typical ratio of NSC mass to galaxy mass is Mnuc/Mgal ≈ 0.003 [157, 557].
Using this value, equation (7.107) implies that rnuc/rgal must be smaller than ∼0.05
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Figure 7.15 Models of galaxies with NSCs of various degrees of compactness [356]. Each
of these models has Mnuc/Mgal = 0.003 but they differ in their degree of



408 CHAPTER 7

Figure 7.15 Continued. nuclear concentration, from rnuc/rgal ≈ 0.0002 to ∼ 0.03. The top
curves show the density while the bottom curves show the velocity dispersion.
When rnuc/rgal >∼ 0.003, the central σ is lower than the peak value in the outer
galaxy. “Temperature inversions” like these imply a flow of heat from galaxy
to nucleus, which tends to counteract the outward flow that would otherwise
drive the nucleus toward core collapse. Thick lines denote models in which the
NSC undergoes “prompt” core collapse, while thin lines are models in which
heat transfer from the galaxy causes the nucleus to expand initially, as shown in
figure 7.16.

in order for core collapse to occur. Figure 7.3 suggests that some NSCs satisfy this
condition.

A more accurate estimate of the critical degree of compactness can be obtained
by integrating the time-dependent, isotropic Fokker–Planck equation. Figure 7.16
shows the results, starting from the initial conditions plotted in figure 7.15. As
predicted, there is a critical value of rnuc/rgal above which evolution toward core
collapse is halted and the nucleus expands. The initial evolution of these diffuse
nuclei can be understood using the arguments in the previous section, except that
now, the temperature inversion exists on a larger spatial scale: between the NSC
as a whole, and the galaxy. Core collapse still occurs in these models but on a
much longer timescale; reversing the gradient requires the creation of a large, flat
core extending to roughly the half-mass radius of the galaxy, and the time required
is roughly ten times the galaxy half-mass relaxation time—far longer than galaxy
lifetimes; see figure 7.3. In the models with denser NSCs that contract, core collapse
occurs in 15–20 times the initial nuclear half-mass relaxation time.

A large number of experiments like the ones illustrated in figure 7.16, starting
from different models of the NSC and the galaxy, reveals that the critical com-
pactness separating models that exhibit “prompt” core collapse (of the NSC) from
models that undergo core collapse much later is given by a relation similar to
equation (7.107):

Mnuc

Mgal
= A

(
rnuc

rgal

)B
(7.108)

with A ≈ 350 and B ≈ 2.5. The exact values of A and B depend on the functional
forms adopted for the density profiles of the NSC and galaxy [356]. Interestingly,
figure 7.3 shows that observed NSCs almost all lie in the “prompt” core collapse
regime; the only clear exceptions are nuclei with such long relaxation times
(>∼10 Gyr) that very little evolution would have occurred since their formation.

7.5.4 Rotating nuclei

As discussed in chapter 2, NSCs that are near enough for their internal structure
and kinematics to be resolved are sometimes observed to be flattened and rotating;
perhaps a consequence of star formation that took place in a gaseous disk, or per-
haps an indication that the nucleus formed from the inspiral of star clusters. It is
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Figure 7.16 Long-term evolution of the galaxy models plotted in figure 7.15 [356]. The
vertical axis is the core density normalized to its initial value. The horizontal
axis is the time in units of the initial, half-mass relaxation time defined by the
galaxy (left) or the NSC (right). The four models that undergo prompt core
collapse are plotted with thick lines in figure 7.15.

interesting to ask how the shape and angular-momentum distribution of a such a
nucleus would evolve under the influence of gravitational encounters.

Flattened nuclei are difficult to treat theoretically, for reasons that were discussed
in chapters 3 and 5. Even assuming a gravitational potential with rotational sym-
metry, the only known integrals of motion are the energy E and the component Lz
of the angular momentum parallel to the symmetry axis. In triaxial nuclei, the only
known integral is typically E. Numerical integration of the equations of motion
in axisymmetric potentials reveals that most orbits respect an additional isolating
integral, I3, but analytic expressions for I3(x, v) are almost never available. The
techniques developed in the latter half of chapter 5 are essentially useless unless
the functional forms of all the integrals are known. As a consequence, the few ex-
isting studies of relaxation in flattened systems have generally restricted f to the
form f = f (E,Lz); in other words, an axisymmetric nucleus in which the phase-
space density is assumed, without real physical justification, to be constant with
respect to the unknown I3.

The equilibrium properties of these “two-integral” axisymmetric models were
discussed in section 3.4.1. Such models are “isotropic” in a limited sense: the ve-
locity dispersions σ� and σz in the meridional plane are equal. Writing σ� =
σz ≡ σ , the dependence of σ on � and z is determined uniquely by n(�, z) and
�(�, z) via the Jeans equation (3.119a). A similar relation, equation (3.119b),
gives v2

ϕ(�, z) in terms of n and �. The only remaining freedom lies in how
the ϕ motions are partitioned between streaming, that is, rotation, and dispersion:
v2
ϕ = vϕ

2 + σ 2
ϕ . Depending on how that partitioning is carried out, the velocity
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distribution in a locally “corotating” frame (a frame moving with the local, mean
velocity) can be isotropic (σϕ = σ ) or anisotropic (σϕ �= σ ). Another way to state
this is in terms of f : the degree of streaming about the symmetry axis is determined
by the odd part of f , f−(E,Lz) = (1/2)

[
f (E,Lz)− f (E,−Lz)

]
, while the even

part of f is fixed by n and �.
A little thought shows that the degree of rotation of a two-integral model need

bear no relation to its shape. Even precisely spherical models can be made to
“rotate” by selectively changing the sign of L for some fraction of the orbits.9

But intuition suggests that the same dynamical processes that induce rotation in
a stellar system will also cause it to be flattened. For instance, in the famous
Maclaurin series of incompressible spheroids, the elongation of the fluid surface
is expressible simply and uniquely in terms of the angular rotation rate. This is a
consequence of the fact that the distribution of random velocities in an incompress-
ible fluid is isotropic and independent of position. Stellar systems are certainly not
homogeneous, but to the extent that their velocity ellipsoids are spherical, they
should obey roughly similar relations between rotation and flattening.

Approximating a nucleus as an isolated system, with total massM , energy E and
angular momentum L,10 we can define a dimensionless measure of its degree of
rotation:

λ ≡ L |E|1/2
GM5/2

. (7.109)

In a self-gravitating system, λ is the only dimensionless combination of conserved
quantities that is proportional to L. Let� be an average value of the angular velocity
in the nucleus. Then, in an obvious notation, � ∼ V/R; and setting E ∼ GM2/R

via the virial theorem, we can write λ as

λ ≈ �√
GM/R3

≈ �√
Gρ

(7.110)

with ρ a mean nuclear density. Since λ measures the dynamical importance of
rotation, the nucleus should get flatter if λ increases and rounder if it decreases.
A constant λ would imply

�(t) ∝ ρ(t)1/2. (7.111)

If � should be found to increase more steeply with time than ρ1/2 during core
collapse, this would correspond to the nucleus being “spun up.” Such would be the
case, for instance, if the total mass and angular momentum of the nucleus were
conserved, since this would imply

L ∝ MVR ∝ M�R2 = constant →
� ∝ R−2 ∝ (M/R3)2/3 ∝ ρ2/3.

But a constant L is unlikely, since we know that angular momentum in a dif-
ferentially rotating system is redistributed by the viscosity. For instance, in a

9Spherical, rotating models were discussed in section 5.7.
10Note that E and L have the dimensions of energy and angular momentum, not specific energy and
specific angular momentum.
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self-gravitating fluid body, the Navier–Stokes equations state that

ρ
Du

Dt
= −∇P − ρ∇�+ ρν

(
∇2u + 1

3
∇(∇ · u)

)
, (7.112)

where u is the mean velocity, P is the pressure, and ν is the kinematic viscosity. The
viscosity has dimensions (length)2/time. In a stellar system, dimensional analysis
suggests that the quantity that plays the role of viscosity is

ν ∼ Kν
(σ/

√
Gρ)2

Tr
(7.113)

with Kν a dimensionless constant. The numerator of equation (7.113) is the square
of the typical distance traversed by the star in its orbit, and the denominator is the
time over which it exchanges energy with other stars.

Using equations (7.112) and (7.113), it is possible to search for self-similar so-
lutions describing the collapse of a rotating nucleus. To equations (7.84) are added

vr(r, t)= vc(t) ṽ (r̃) , (7.114a)

ν(r, t)= νc(t) ν̃ (r̃) , (7.114b)

�(r, t)=�c(t) �̃ (r̃) , (7.114c)

where vr is the radial component of the mean stellar velocity and � specifies the
mean velocity via v = ��eϕ . The result is [205]

�c ∝ ρδ, 0.10 <∼ δ <∼ 0.15. (7.115)

The uncertainty in the exponent δ is due largely to uncertainties in the value of
Kν . Equation (7.115) states that the rate of rotation near the center increases with
time during the late stages of core collapse, but it does so more gradually than
would be needed to maintain a fixed ratio of rotational to gravitational energy (i.e.,
�c ∝ ρ

1/2
c ). The nucleus “spins down” as it collapses, becoming less flattened with

time, due to the transfer of angular momentum outward.
Figure 7.17 shows results from a set of numerical integrations of the orbit-

averaged Fokker–Planck equation for f (E,Lz, t), equation (5.195), starting from
flattened and rotating initial conditions [132]. As in most numerical treatments of
the orbit-averaged equations, computation of the diffusion coefficients was simpli-
fied by assigning a simplified form to the field-star velocity distribution f (vf ). In
the study of figure 7.17, f (vf ) was assumed to have the form

f (vf ) = ρ

(2πσ 2)3/2
exp

[
− (vf −��eϕ)

2

2σ 2

]
, (7.116)

a “rotating Maxwellian”; the parameters {ρ,�, σ } were estimated at each time
step by taking the appropriate moments over f (v). With this ansatz, the diffu-
sion coefficients are relatively straightforward to calculate using equations (5.198)
from section 5.5.3; the reader will recall that the diffusion coefficients in that
section were derived assuming a locally isotropic velocity distribution, as in
equation (7.116). Initial conditions were taken to be

f0(E,Lz) = f0
(
e−βE − 1

)
eβ�0Lz . (7.117)
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Figure 7.17 Results from the numerical integration of the orbit-averaged Fokker–Planck
equation describing a rotating stellar system [132]. The distribution function
was assumed to have the form f (E,Lz; t), a “two-integral” model. Initial con-
ditions were given by equation (7.117); the initial degree of rotation, or flatten-
ing, was determined by the dimensionless rotation parameter ω0, where ω0 = 0
corresponds to a spherical, nonrotating model and ω0 = 1 to a maximally ro-
tating model. The left panel shows the evolution of the central angular velocity,
�c, in terms of the central density nc. The rotation rate increases as the core col-
lapses, but much more slowly than would be required to maintain a fixed ratio of
rotational kinetic energy to gravitational potential energy. The right panel shows
the evolution of the mean shape of the model, defined in terms of a “dynamical
ellipticity” edyn. The time is expressed in units of τrh, the initial, half-mass relax-
ation time; the curves terminate when the central density goes to infinity. The
initially flattened models become rounder, in a typical time of ∼τrh. The thick
curve near the bottom shows the evolution of the initially spherical model; due
to the neglect of the third integral, this model’s shape exhibits a slight, spurious
evolution.

The parameters f0 and β in this expression are scaling factors; the degree of ini-
tial rotation is fixed by the dimensionless angular velocity ω0 =√

9/(4πGρc)�0,
which can vary between 0 (no rotation) and 1.

At late times, figure 7.17 shows that the central angular velocity �c increases
roughly as a power of the central density:

d log�c
d log nc

≈ δ, 0.06 <∼ δ <∼ 0.08. (7.118)

Consistent with the predictions of the more approximate, fluid dynamical model,
the rate of rotation increases as the core collapses, but more slowly than the de-
pendence (�c ∝ ρ1/2) that would be required to maintain a fixed degree of rota-
tional support, and much more slowly than would be predicted if L were constant
(�c ∝ ρ2/3). As a consequence, the central regions become rounder. The right
panel of figure 7.17 plots the evolution of a global shape parameter, εdyn, defined
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as the ellipticity11 of an oblate spheroid having the same partitioning of kinetic en-
ergy between mean and random motions as the numerical model. (For a Maclaurin
spheroid, the relation between this shape parameter, and the parameter λ defined
above, is λ2 ≈ (24/625)edyn [205].) All of the models become essentially spherical
after a few, half-mass relaxation times; in other words, in the time it takes the core
to collapse.

Results like those of figure 7.17 have most often been applied to globular clus-
ters. Globular clusters associated with the Milky Way are generically “old” (com-
pared with their half-mass relaxation times), slowly rotating, and very round; few
have ellipticities greater than about 0.2. On the other hand, globular clusters asso-
ciated with the Large Magellanic Cloud, a dwarf companion galaxy to the Milky
Way, exhibit a range of ages and flattenings: some appear to be as young as ∼107 yr
and there is a good correlation between shape and age, in the sense that younger
clusters are more elongated. These observed regularities are well explained in terms
of dynamical evolution [155, 326].

What about NSCs? The empirical trends shown in figure 7.3a suggest that the
faintest NSCs might have relaxation times short enough for core collapse to have
run to completion, implying that they could have evolved by now into nearly spher-
ical, slowly rotating configurations. A complicating factor in the case of NSCs is
the likelihood of ongoing star formation, from gas that accumulates at the bottom
of the galaxy potential well; roughly speaking, the predictions made in this section
would apply only to the oldest stellar population, and it is difficult to extract infor-
mation about the old stars if there is also a population of bright young stars. The
NSCs with the shortest relaxation times also tend to be the smallest (figure 7.3b)
and therefore the most difficult to resolve. For these reasons, little evidence can
currently be drawn from the observations about the influence of rotation on the
dynamical evolution of NSCs.

11Ellipticity is defined as ε = 1 − b/a with b (a) the short (long) axis of the ellipse. It is related to
eccentricity, e, via ε = 1 − √

1 − e2.





Chapter Eight

Binary and Multiple Supermassive Black Holes

According to the currently accepted paradigm, galaxies grow through the agglom-
eration of smaller galaxies and protogalactic fragments—through galaxy mergers.
If galaxies were no larger than implied by the sizes of their luminous components,
mergers would be extremely rare. But many galaxies appear to be embedded in
much larger systems: dark-matter halos that extend tens or hundreds of times far-
ther than the stars or gas. According to large-scale simulations of the clustering of
dark matter in the universe, the mean time between “major mergers”—mergers with
mass ratios 3 : 1 or less1—varies from ∼ 0.2 Gyr at a redshift z = 10, to ∼ 10 Gyr
at z = 1, with a weak dependence on halo mass [154]. These simulations do not
contain baryonic matter; but mergers between halo-sized objects would be guaran-
teed to bring the central, luminous components together in a time comparable to the
time required for the halos to merge, and this has been verified via detailed merger
simulations of galaxies embedded in dark halos [28].

By the same reasoning, if the merging galaxies each contains a central super-
massive black hole (SBH), the two SBHs will form a bound system in the merged
galaxy—a binary supermassive black hole—shortly after the merger is complete
[36, 463]. This idea has received considerable attention because the ultimate coa-
lescence of such a binary would generate an observable outburst of gravitational
waves [514]. Furthermore, to the extent that galaxies grow to their current sizes via
mergers, so must their SBHs. The tight correlations found between SBH masses and
the properties (luminosity, velocity dispersion) of their host galaxies could hardly
be maintained otherwise.

The evolution of a binary SBH can be divided into three phases:

1. As the galaxies merge, the SBHs sink toward the center of the new galaxy
via dynamical friction where they form a binary.

2. The binary interacts with nearby stars, ejecting them at velocities comparable
to the binary’s orbital velocity. The binary’s binding energy increases as a
result.

3. If the binary’s separation decreases to the point where the emission of gravi-
tational waves becomes efficient at carrying away the last remaining angular
momentum, the SBHs coalesce.

1So defined, since early simulations suggested that this was the largest mass ratio capable of converting
two disk galaxies into an elliptical galaxy.
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The transition from (2) to (3) has long been seen as a potential bottleneck. At
least in a spherical galaxy, the number of stars on orbits that intersect the massive
binary is fairly small, and once these stars have been ejected from the galaxy’s
core, it is not clear that their orbits would be repopulated in a time shorter than
the age of the universe. This has been called the final-parsec problem [387]; the
name derives from the fact that the separation of a massive binary when it first
forms at the center of a galaxy is roughly one parsec. Whether the massive binary
continues to shrink beyond this separation is unclear, and probably depends in large
measure on the details of its environment. One possibility is that the “loss cone”
of orbits that intersect the binary is refilled by one of the mechanisms discussed
in chapter 6: gravitational encounters between stars, torquing by a nonspherical
galactic potential, massive perturbers, etc. For instance, a galaxy that formed via
a major merger is likely to be nonspherical, even nonaxisymmetric, implying the
existence of centrophilic orbits, like the saucers and pyramids. The amount of mass
on such orbits can greatly exceed the mass of the central binary, and as shown
in chapter 6, centrophilic orbits can maintain a “full loss cone” even in galaxies
where timescales for collisional loss-cone repopulation are very long. There is some
support for this idea inN -body merger simulations [277]. Interstellar gas could also
play an important role in the dynamical evolution of binary SBHs. Any gas located
close to a massive binary will be disturbed by the SBHs and exert gravitational
torque on them, thereby affecting their orbit. Furthermore, if SBH coalescence is
accompanied by the presence of gas, an observable electromagnetic “afterglow”
might accompany the coalescence [248].

Of course, the final-parsec problem is a “problem” only from the point of view of
those who would like to observe the final coalescence; there is probably an equally
large community of scientists who would be happy to observe uncoalesced bina-
ries! As discussed in chapter 2, a handful of uncoalesced, binary SBHs have prob-
ably been observed, and there may be a great many more that have gone unnoticed.
But there is circumstantial evidence that efficient coalescence is the norm. Jets in
the great majority of radio galaxies do not show the wiggles expected if the SBH
hosting the accretion disk were orbiting or precessing. The X-shaped radio sources
[118] are probably galaxies in which SBHs have recently coalesced, causing jet di-
rections to flip. The inferred production rate of the X-sources is comparable to the
expected merger rate of bright ellipticals, suggesting that coalescence occurs rela-
tively quickly following mergers [361]. If binary SBHs failed to merge efficiently,
uncoalesced binaries would be present in many bright ellipticals, resulting in 3- or
4-body slingshot ejections when subsequent mergers brought in additional SBHs.
This would produce off-center SBHs, which seem to be rare, as well as (perhaps)
too much scatter in the M•–σ and M•–L relations [224]. Furthermore, the total
mass density in SBHs in the local universe is consistent with that inferred from
high-redshift AGN [362, 577], implying that only a modest fraction of SBHs could
have been ejected from galaxies in the intervening period.

Whether or not a massive binary manages to coalesce, it will leave behind an im-
print: a mass deficit—a lowered density of stars near the center of the galaxy. The
displacement of matter takes place relatively quickly, as the separation between the
two SBHs drops from �r ≈ rh to roughly one tenth this distance—the separation
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at which slingshot ejections become efficient. Simulations suggest that this phase
of the evolution is unavoidable, and as discussed in chapter 2, observations con-
firm that low-density cores are ubiquitous in luminous elliptical galaxies; measured
mass deficits are roughly consistent with the predictions of the merger simulations.

Intermediate-mass black holes (IBHs), if they exist, could also form binary sys-
tems with SBHs. As summarized in chapter 2, the evidence for IBHs is circum-
stantial, and strong constraints can be put on the properties of a hypothetical IBH
near the center of our galaxy (figure 2.13). But an IBH at the Galactic center could
nicely explain a number of puzzling observations, including the parsec-scale core
recently discovered in the distribution of the old stars (figure 7.1), and the fact
that the S-stars in the inner tenth of a parsec have orbits that are so eccentric and
misaligned (figure 4.23). These possibilities are intriguing enough to motivate con-
siderable work on the formation and evolution of IBHs near the centers of galaxies,
even in the absence of a secure detection.

8.1 INTERACTION OF A MASSIVE BINARY WITH FIELD STARS

Consider a binary system consisting of two SBHs of mass M1 and M2. Let q ≡
M2/M1 ≤ 1 be the binary mass ratio andM12 ≡ M1 +M2 its total mass. If the two
SBHs are in a bound Keplerian orbit of semimajor axis a, the energy of the binary
is given by equation (4.27):

Ebin = −GM1M2

2a
= −GµM12

2a
, (8.1)

where µ = M1M2/M12 is the reduced mass.2 The binary’s angular momentum is

Lbin = µ
[
GM12a(1 − e2)

]1/2
(8.2)

with e the eccentricity. The relative velocity of the two SBHs, assuming a circular
orbit, is

Vbin =
√
GM12

a
= 658

(
M12

108M�

)1/2 (
a

1 pc

)−1/2

km s−1; (8.3)

note that Vbin is independent of the mass ratio.
From the point of view of a distant star, the binary appears almost as a single

mass. Suppose that the star, of mass m� � M12, approaches the binary on an
unbound orbit. To a first approximation, the orbit of the star with respect to the
binary’s center of mass is given by equations (5.13), after setting m = M12 and
mf ≈ 0. The distance of closest approach, rmin, of the star to the binary center of
mass is

rmin ≈ GM12

V 2

[(
1 + p2V 4

G2M2
12

)1/2

− 1

]
≈ p2V 2

2GM12
, (8.4)

2Note that E and L have the dimensions of energy and angular momentum, not specific energy and
specific angular momentum.
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where p is the impact parameter and V is the velocity of the star with respect to
the binary at infinity (figure 5.2); the second relation assumes V 2 � GM12/p,
appropriate for close encounters. Under the same approximation, the star’s velocity
at closest approach is

vmax ≈ 2GM12

pV
. (8.5)

We are interested in stars that come closer to the binary than a few times a; for
such stars, the gravitational force from the binary will differ significantly from that
of a single mass. Requiring rmin < Ka implies

p

a
<∼ (2K)1/2

(
V

Vbin

)−1

(8.6)

and for trajectories that satisfy this condition,

vmax >∼
(

2

K

)1/2

Vbin. (8.7)

With very low probability, such a star can be captured onto a stable bound orbit
about one or the other component of the binary. But it is much more likely that the
star will escape again to infinity. The average velocity change can be determined
via scattering experiments [237]: for a large number of different values of p and
V , the orbit of a field star is integrated from some large starting distance until it
has escaped again to a large distance from the binary. In the limit m� � M12,
the problem reduces to the restricted three-body problem: changes in the orbital
motion of the binary due to the field star can be ignored. Use of this approximation
greatly simplifies the integrations [383].

Figure 8.1 shows the results from a large set of such experiments, all with V =
0.5Vbin. In these experiments, the Keplerian elements describing the orientation
and initial phase of the binary’s orbit, (�, i, ω), were randomized from integration
to integration, equivalent to assuming that stars approach from all directions with
equal probability. SettingK = 2 in equation (8.6), we expect that stars with p <∼ 4a
will feel the effects of the binary. Figure 8.1 confirms this prediction: for p >∼ 4a
the field star’s velocity is nearly unchanged by the encounter. Furthermore, as p is
reduced, there is an increasing bias toward positive changes in velocity: on average,
the star gains energy from the binary.

The tendency for stars to gain energy after interaction with a massive binary is
a manifestation of the gravitational slingshot.3 This asymmetry is due in part to
the prolonged character of binary-star interactions. After its first close encounter
with the binary, a star may have more or less energy than before. If its energy is
less, the star is likely to remain near the binary and interact with it again; this will
continue until the star gains enough energy to escape. Such repeated interactions
are common, and this means that the statistics of the “escapers” depends in part on
how escape is defined. For instance, one can take the view that stars that remain
near the binary for, say, 10 orbits or more have been “captured,” even if those stars

3First described in the 1960s in the context of artificial satellites [390].
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Figure 8.1 Distribution of velocity changes for stars that are scattered off a massive, circular-
orbit binary with M1 = M2. Velocities are expressed in units of Vbin, the relative
velocity of M1 and M2. The initial velocity of each star was V = 0.5Vbin; V∞
is the velocity of the star after it has escaped far from the binary. Each panel in-
cludes stars with some range of impact parameters [p1, p2]; expressed in units of
the binary semimajor axis a, these are (a) [4,10], (b) [2,4], (c) [1,2], (d) [0.2,0.4].

would eventually escape. In the context of galactic nuclei, what matters is the ratio
of the time to escape to the time over which the orbital elements of the binary
evolve. That ratio is typically small for all but a tiny fraction of the interactions.

The experiments illustrated in figure 8.1 were based on an equal-mass binary.
In the case of binaries with M2 � M1, most of a star’s energy gain results from
interaction with the less massive component. An interaction force of F ≈ GM2/a

2

acts for a time �t ≈ (a3/GM12)
1/2 to produce a velocity change �v ≈ F ×�t ≈

(M2/M12)Vbin. The corresponding change in the star’s (specific) energy is

�E≈ 1

2

[
(V +�v)2 − V 2

]
≈ V ·�v

≈ (M2/M12)V
2

bin. (8.8)

Of course, this energy is taken from the binary. Using the definitions of Vbin and
Ebin, we can write the change in the binary’s energy, −m��E, as

�Ebin

Ebin
≈ −2

m�

M1
, M2 � M1, rmin ≈ a. (8.9)
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This approximate result motivates the definition of a dimensionless energy change
C [237]:

C ≡ M12

2m�

�Ebin

Ebin
= a�E

Gµ
, (8.10)

where �Ebin and �E are computed using energies at a time when the field star has
moved far from the binary. Evidently, C is of order unity for interactions that bring
the field star close to the binary.

Let 〈C〉 be the value of C averaged over all orientations and initial phases of the
binary, for star–binary interactions with a given p and V . The rate of change of the
binary’s energy due to interactions with a specified V is given by an integration
over impact parameter:

dEbin

dt

∣∣∣∣
V

= 2πV
∫ ∞

0
dp p�Ebin (8.11a)

= −4πG2M1M2ρV
−1

∫ ∞

0
dx x〈C〉, (8.11b)

where ρ = m�n and

x = p/p1, p2
1 = 2GM12a/V

2; (8.12)

p1 is the approximate impact parameter corresponding to rmin = a. Here we note an
important difference with the derivation of the single-particle diffusion coefficients
in chapter 5: for large p, energy changes are negligible, and so there is no need to
artificially truncate the integration over impact parameters. Expressed in terms of
the binary’s semimajor axis, equation (8.11) becomes

d

dt

(
1

a

) ∣∣∣∣
V

= 8πGρ

V

∫ ∞

0
dx x〈C〉 (8.13a)

= Gρ

V
H1(V ), (8.13b)

where

H1(V ) = 8π
∫ ∞

0
dx x〈C〉. (8.14)

The final step is to perform an integration over the field-star velocity distribution
f (vf ). We define the binary hardening rate, H , that results from this integration
as

H ≡ σ

Gρ

d

dt

(
1

a

)
, (8.15)

where σ is the field-star velocity dispersion. Identifying f (vf )with the distribution
of V ,

H(σ) = 4π
∫ ∞

0
dvf v

2
f f (vf /σ )

σ

V
H1(V ), (8.16)

where it is understood thatH is also a function of the binary orbital elements (a, e)
and mass ratio q.
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Table 8.1 Parameters for fits to H1 (equation 8.17) assuming a circular binary [442].

q H0 λ

1 17.97 0.5675
1/4 20.54 0.4263
1/16 21.87 0.2228
1/64 22.78 0.1043
1/256 22.57 0.0573

Scattering experiments based on a circular-orbit binary yield a velocity-
dependent hardening parameter H1 that is well fit by [442]

H1(V ) = H0[
1 + V 4/(λVbin)4

]1/2 . (8.17)

Table 8.1 gives numerically determined values of H0 and λ for various binary mass
ratios. H0 is weakly dependent on q, while λ ≈ (M2/M12)

1/2. At low V , H1 is
nearly constant; it begins to drop off rapidly when V >∼ λVbin ≈ √

M2/M12Vbin.
Assuming a Maxwellian f (vf ) in equation (8.16) yields

H

H1(
√

3σ)
≈

(
2

π

)1/2

+ ln

[
1 + α

(
σ

λVbin

)β]
(8.18)

with α = 1.16, β = 2.40. This relation shows that the binary’s hardening rate is a
function of its “hardness,” Vbin/σ , that is, of the ratio of binary orbital velocity to
typical stellar velocities. For “hard” binaries, binaries with Vbin � λ−1σ ≈ q−1/2σ ,
the logarithmic term on the right-hand side of equation (8.18) is negligible and H1

can be replaced by H0, yielding

H ≈
(

2

π

)1/2

H0, Vbin >∼ q−1/2σ. (8.19)

In other words, hard binaries harden at a constant rate [237]. Table 8.1 shows that
this asymptotic hardening rate is H ≈ 16, with a weak dependence on binary mass
ratio.

It is worth dwelling for a moment on the meaning of the phrase “hard binary.”
In the context of star clusters, where all stars have roughly the same mass, a “hard
binary” is one in which Vbin >∼ σ . Such binaries tend to acquire larger binding
energies in interactions with passing stars (“hard binaries become harder”
[236, 231]); they also harden at a nearly constant rate, that is, (d/dt)(1/a) is inde-
pendent of a. When the components of the binary are much more massive than any
star, interactions always tend, on average, to harden the binary, regardless of the
value of a. If we instead define a “hard” binary as one which hardens at a constant
rate, equation (8.18) gives the condition

Vbin

σ
� λ−1 ≈

(
M12

M2

)1/2

. (8.20)
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Now, the fact that a binary SBH hardens at a constant rate is not particularly
interesting. What is more significant is the typical velocity at infinity of a star
ejected by such a binary. For stars that undergo close interactions with the binary,
equation (8.8) implies

v∞ ≈
(

2M2

M12

)1/2

Vbin. (8.21)

A standard criterion for “escape” from a star cluster with velocity dispersion σ is
v ≥ 2

√
3σ [502]. Substituting this for v∞ in equation (8.21) gives

Vbin

σ
>∼ 61/2

(
M12

M2

)1/2

, (8.22)

similar to equation (8.20). In other words, a massive binary that hardens at a con-
stant rate, also ejects stars with velocities high enough to escape from its vicinity.4

These arguments motivate the definition of the hard binary separation, ah, as

ah ≡ Gµ

4σ 2
= M2

M12

rh

4
(8.23)

≈ 0.27 (1 + q)−1

(
M2

107M�

)(
σ

200 km s−1

)−2

pc,

where rh = GM1/σ
2 is the influence radius of the larger SBH.5 The numerical

factor in equation (8.23) is somewhat arbitrary. In the next section, it will be shown
that an expression like equation (8.23) predicts fairly well the value of a below
which a massive binary at the center of a galaxy begins to “act” like a binary, in the
sense of obeying the hardening equation (8.15). Prior to this time, the two SBHs
interact with field stars in roughly the same way they would if the other SBH were
not present [386].

A roughly equivalent definition of a hard binary is one for which the binding
energy per unit mass, |Ebin|/M12 = Gµ/2a, exceeds σ 2.

So far, we have considered only circular-orbit binaries. It turns out that the hard-
ening rate is a weak function of the binary’s eccentricity [383, 442], and in practice,
the dependence of H on e can usually be ignored.

If we also ignore changes in the distribution of field stars due to the presence
of the massive binary (an approximation that is justified only in certain circum-
stances—as discussed in detail in the next section), then the evolution of the
binary’s semimajor axis in the hard-binary regime is described approximately by

1

a(t)
− 1

ah
≈ H

Gρ

σ
(t − th) , t ≥ th, (8.24)

where th is the time at which a = ah. Let aGR be the value of a at which gravitational
radiation begins to dominate the loss of energy from the binary. If aGR � ah, the

4For a binary at the center of the deep potential well of a galaxy, this “escape” may be temporary; see
the discussion of the “secondary slingshot” in section 8.3.1.1.
5The relation between ah and rh is unchanged if µ in equation (8.23) is replaced by M2 and rh by
GM12/σ

2. Both conventions, and some others, can be found in the literature; in fact, an alternative
definition is used elsewhere in this book, in equation (8.71).
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time to reach this separation is

�t ≡ t (aGR)− t (ah) ≈ σ

HGρaGR

≈ 2.8 × 108

(
σ

200 km s−1

) (
ρ

103M� pc−3

)−1 (
aGR

10−2 pc

)−1

yr. (8.25)

The choice of aGR is somewhat arbitrary; a reasonable definition is the value of a at
which da/dt due to stellar interactions is equal to da/dt due to gravitational-wave
emission (equation 4.234). Assuming a circular-orbit binary, the result is

a5
GR = 64G2M1M2M12σ

5Hc5ρ

≈ (1.65 × 10−2 pc)5

× q

(1 + q)2

(
M12

108M�

)3 (
σ

200 km s−1

) (
ρ

103M� pc−3

)−1

. (8.26)

Comparing equations (8.25) and (8.26), we see that a massive binary that hardens in
a fixed stellar background can reach the gravitational-radiation-dominated regime
in a time that is much shorter than galaxy lifetimes.

The “final-parsec problem” arises, in part, because the stellar background does
not remain fixed. As noted above, a hard binary, a <∼ ah, ejects stars with velocities
high enough to escape permanently from its vicinity. Suppose we define vej as the
velocity at infinity of a star in the scattering experiments that can be considered to
have “escaped,” and Mej as the total mass in such stars. We might guess that the
binary needs to eject a mass comparable with its own mass in order to shrink by an
appreciable factor, that is, that

�Mej

M12
≈ �(1/a)

1/a
≈ � ln(1/a). (8.27)

This argument motivates the definition of a second dimensionless parameter, J ,
describing the rate of mass ejection:

J ≡ 1

M12

dMej

d ln(1/a)
. (8.28)

Comparing this expression with equation (8.15), we can write

J = σ

GM12ρaH

dMej

dt
. (8.29)

If Fej(p, V ) is the fraction of stars in the scattering experiments, with impact para-
meter p and initial velocity V , that satisfy v∞ ≥ vej, it is easy to show that

J (σ ) = 4π

H

∫ ∞

0
dvf v

2
f f (vf /σ )

σ

V
4π

∫ ∞

0
dx xFej(x, V ) (8.30)

with x defined as in equation (8.12). For a hard binary, one finds [442] that J ≈ 1,
weakly dependent on q.
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Figure 8.2 This figure shows the mass that would be ejected by a binary SBH in order to
reach a value of a such that emission of gravitational waves would lead to co-
alescence in a time of 1010 yr (lower), 109 yr (middle) and 108 yr (upper). This
plot assumes a nuclear velocity dispersion σ = 200 km s−1. Mass ejected by the
binary before becoming “hard” is ignored; this figure also ignores the “secondary
slingshot” (see section 8.3.1.1).

The mass ejected by the binary in decaying from a = ah to a = aGR is given by
the integral of equation (8.28):

Mej =M12

∫ ah

aGR

J (a)
da

a
(8.31a)

≈M12 ln

(
ah

aGR

)
; (8.31b)

the latter expression uses J (a < ah) ≈ 1. Figure 8.2 evaluates equation (8.31)
using the results of scattering experiments [442]. The mass ejected in reaching
coalescence is of order M12 for equal-mass binaries, and several times M2 when
M2 � M1. If this mass came mostly from stars that were originally in the nucleus,
the density within r ≈ rh would drop drastically and the rate of binary evolution
would go almost to zero. On the other hand, if the supply of stars is continuously re-
plenished (via gravitational encounters, say), the change in density might be much
smaller. Furthermore, as discussed in the next section, a binary can do considerable
damage to a nucleus even before it reaches the hard-binary regime.

It was noted above that bothH and J depend weakly on binary eccentricity. Nev-
ertheless, the eccentricity of the binary can change in response to interactions with
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stars, and such changes are potentially important since the rate of orbital energy
loss due to gravitational radiation grows steeply for e → 1 (equation 4.234a).

The dimensionless parameter K , where

K ≡ de

d ln(1/a)
, (8.32)

defines changes in the binary’s eccentricity. The value of K can be derived from
scattering experiments in much the same way asH and J [384, 442]. The change in
the binary’s eccentricity is expressed in terms of changes in its energy and angular
momentum by differentiating equation (8.2):

�e = −1 − e2

2e

(
�Ebin

Ebin
+ 2�Lbin

Lbin

)
. (8.33)

Conservation of total angular momentum is used to relate �Lbin in a single scat-
tering experiment to �L�, the change in orbital angular momentum of the field
star.

After integrating over an isotropic distribution of field-star velocities, net changes
in binary eccentricity tend to be modest; they are due to the systematic differences
between encounters that are direct or retrograde with respect to the binary’s or-
bital motion. Except possibly in the case of soft, nearly circular binaries, evolution
is always found to be in the direction of increasing eccentricity; that is, K ≥ 0.
Evolution rates tend to increase with increasing hardness of the binary, reaching
maximum values of K ≈ 0.2 for equal-mass binaries with e ≈ 0.75 and falling
to zero at e = 0 and e = 1. For an equal-mass binary, and in the limit of large
binding energy, Vbin � σ , two approximate expressions have been derived for the
dependence of K on e [384, 442]:

KMV(e)≈
(
1 − e2

)
2e

[(
1 − e2

)m − 1
]
,

(8.34)
m= 0.3e2 − 0.8,

and
KQ(e)≈ e

(
1 − e2

)k0
(k1 + k2e) , (8.35)

(k0, k1, k2)= (0.731, 0.265, 0.230).

Figure 8.3 shows that the two expressions are in good agreement in spite of their
disparate functional forms. Values of K have also been computed and tabulated for
other binary mass ratios [488]. The implied changes in e as a binary decays from
a = ah to aGR are modest, �e <∼ 0.2.

On the other hand, if the nucleus is rotating, it is possible for the number of
prograde and retrograde encounters with the binary to be very different, resulting
in less “cancellation” and in a larger rate of change of the binary’s eccentricity
[487].

In order to understand this, we must consider the different ways in which stars
that approach the binary on prograde and retrograde orbits (with respect to the
binary orbit) end up interacting with it. It is clear that—all else being equal—a pro-
grade encounter will result in larger changes to the orbit of the star, since the star
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Figure 8.3 Two approximations, derived from scattering experiments, for the coefficient
K (equation 8.32) that describes the rate of eccentricity evolution of a mas-
sive binary in the limit of large binding energy, Vbin � σ [369]. Both assume
a Maxwellian distribution of field-star velocities with no net circulation. Solid
line: equation (8.35) [442]. Dashed line: equation (8.34) [384].

is moving in roughly the same sense, and with a similar velocity, as the (smaller
of the two) SBHs, and so the integrated momentum change can be larger. Stars on
retrograde orbits are likely to avoid ejection during their initial encounter with the
binary. But if the binary is even mildly eccentric, the torque that it exerts on such
a star can cause its orbit to radically change—in fact, the orbit can “flip,” from ret-
rograde to prograde (the “eccentric Kozai mechanism” [367]; section 8.6.4). When
such a star is finally ejected by the massive binary, it is likely to be on a prograde
orbit. The total change in the star’s angular momentum might therefore be greater
than for a star that was on a prograde orbit initially, and the corresponding change
in the binary’s eccentricity will also be greater. Since the star’s angular momentum
has experienced a net increase in the direction of the binary’s angular momentum,
the latter must decrease, implying an increase in the binary’s eccentricity. This pre-
diction is verified in N -body simulations (figure 8.4).
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Figure 8.4 Evolution of binary SBHs in rotating nuclei [487]. The upper and lower panels
plot the changes in the binary’s semimajor axis, a, and eccentricity, e, as it in-
teracts with stars. The binary mass ratio is 1/81 and time is given in units of P0,
the initial period of the binary. The parameter F describes the degree of initial
rotation of the (spherical) nucleus: F = 0.5 is an isotropic nucleus, F = 1 is
a nucleus in which half of the orbits have been reversed so that all motion is
initially prograde with respect to the binary’s orbit, and F = 0 has all orbits
initially retrograde. The initial eccentricity of the massive binary is e = 0.5.
For F >∼ 0.7, the eccentricity of the binary decreases, while for F <∼ 0.7 the
eccentricity increases.

Angular momentum is a vector quantity, and its conservation during a single scat-
tering event implies changes in both the magnitude, and direction, of the binary’s
internal angular momentum, Lbin. Changes in the magnitude of Lbin are equiva-
lent to changes in eccentricity, as discussed above. Changes in the direction of Lbin
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imply a reorientation of the binary [353]. This process is similar to the reorientation
of polar molecules, as studied by P. Debye in the context of dielectric theory
[109, 110]. The polarization of a dielectric material is a competition between
torques due to the imposed electric field, which tend to align the molecules, and
collisions, which tend to destroy the alignment. In the case of binary SBHs, inter-
actions with passing stars result both in a random walk of the binary’s orientation,
as well as a realignment if the passing stars are drawn from a velocity distribution
with a net sense of circulation. It is reasonable to call the resulting evolution of the
binary’s orientation rotational Brownian motion by analogy with the use of this
term in solid-state theory.

Following Debye [110], let F(θ, φ, t)d� be the probability that the spin axis of
the binary is oriented within solid angle d� at time t . In the case that velocities
in the stellar cluster are isotropic, the orientation of the axes that define (θ, φ) are
arbitrary; if there is a net sense of cluster rotation, we define θ = 0 in the direction
of net rotational angular momentum. The evolution equation for F is

∂F

∂t
= 1

sin θ

∂

∂θ

[
sin θ

( 〈�ϑ2〉
4

∂F

∂θ
− 〈�θ〉

)]
. (8.36)

In this equation, the evolution of the binary’s orientation is determined by two dif-
fusion coefficients. The second-order coefficient, 〈�ϑ2〉, is defined as

〈�ϑ2〉 =
∫
�(d�, d�′)ϑ2d�′, (8.37)

where �(d�, d�′)d�′ is the probability that, during a unit interval of time, a bi-
nary whose angular momentum Lbin is directed toward d� will reorient itself such
that Lbin lies within d�′, and ϑ is the angular separation between d� and d�′. The
first-order coefficient, 〈�θ〉, is the rate of change of the angle between Lbin and the
preferred axis.

Consider first the case 〈�θ〉 = 0. In this case, gravitational encounters occur
from random directions, and the massive binary responds by undergoing a random
walk in its orientation (figure 8.5). We can define a dimensionless diffusion coeffi-
cient as

R2 ≡ M12

m�

σ

Gρa
〈�ϑ2〉. (8.38)

The factor σ/(Gρa) is the hardening time defined above; the factor M12/m� ac-
counts for the fact that the reorientation is a diffusive process. From its definition,
〈�ϑ2〉 is the sum, over a unit interval of time, of (δϑ)2 due to encounters with field
stars, and it can be computed from changes in the field-star orbital angular momen-
tum obtained via scattering experiments [353]. After integrating over a Maxwellian
distribution of field-star velocities, one finds that R2 for an equal-mass, circular-
orbit binary varies from ∼ 30 for a binary with a ≈ ah to ∼ 60 in the hard-binary
limit. The dependence of R2 on binary mass ratio and eccentricity is approximately
R2 ∝ q−1(1 − e2)−1 [446].
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Figure 8.5 Rotational Brownian motion of an equal-mass, circular binary in three N -body
simulations with different particle masses [386]. Plotted is the angular inclina-
tion of the binary’s axis of rotation. Medium dots: M12/m� = 164; light dots:
M12/m� = 328; heavy dots: M12/m� = 655. The amplitude of the angular
changes scales approximately as

√
m�/M12.

Changing the time variable from t to x ≡ ln(a/a0) in equation (8.36), and using
equations (8.15) and (8.38), this can be written as

∂F

∂x
= −1

4

L

H

m�

M12

∂

∂µ

[(
1 − µ2

) ∂F
∂µ

]
, (8.39)

where µ ≡ cos θ . In the hard-binary limit, the dependence of H and L on a can be
ignored. Defining µ as the expectation value of µ, the solution to equation (8.39)
in this limit is

µ(a) = µ0

(
a

a0

)n
, n = 1

2

L

H

m�

M12
. (8.40)
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The exponent in this expression is of order m�/M12 � 1, hence

µ(a) ≈ 1 + 1

2

L

H

m�

M12
ln

(
a

a0

)
, (8.41)

where µ0 has been set to unity, corresponding to an initial orientation parallel to
the θ = 0-axis. Let δθ ≡ √

2(1 − µ) be the rms change in the angle defined by the
binary’s spin axis. If we identify a0 with ah and set L/2H ≈ 60/(2 × 16) ≈ 2, we
find

(δθ)2 ≈ 2m�
M12

ln

(
ah

aGR

)
≈ 10

m�

M12
, (8.42)

where, in the last expression, the argument of the logarithm has been set to ∼ 102.
For an equal-mass, circular binary of mass 106M� surrounded by 10M� black
holes, this predicts δθ ≈ 0.5◦. Larger reorientations would be produced by interac-
tion with “massive perturbers” (section 7.4), or for binaries with large mass ratios
or eccentricities.

Next consider the case that the stellar cluster has a net sense of rotation. A di-
mensionless, first-order diffusion coefficient can be defined as

R1 ≡ σ

Gρa
〈�θ〉, (8.43)

where θ = 0 defines the rotation axis of the stellar cluster. In a nonrotating nucleus,
we expect R1 = 0 by symmetry. In the case of rotation, the following argument
suggests that the binary’s angular momentum should align with that of the nucleus.
Field stars that interact with the binary are ejected in nearly random directions;
this is particularly true when the binary is eccentric. Assuming that the direction of
ejection is completely random, the average change in angular momentum of stars
that impinge on the binary is

〈δL�〉 = 〈L�,final − L�,initial〉 (8.44a)

= −〈L�,initial〉. (8.44b)

Since the change in the binary’s angular momentum is opposite in sign to 〈δL�〉,
it follows that the binary’s axis of rotation tends to align with that of the nucleus.
One finds that to a good approximation, 〈�θ〉 ∝ − sin θ [217].

Competing with this evolution is the tendency of encounters to randomize the
binary’s orientation, as described by the second-order coefficient. One expects the
two effects to cancel, on average, when the binary angular momentum is inclined
by a certain value with respect to Ltot. In fact, the steady-state solution to equa-
tion (8.36) is

F(θ) = F0e
α cos θ , (8.45)

where

α ≡ − 4

〈�ϑ2〉
〈�θ〉
sin θ

. (8.46)
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The function (8.45) is peaked at θ = 0 and falls off by a factor of order unity at an
angle

θcrit =
√

2

α
. (8.47)

Evaluating R1 via scattering experiments [446] yields R1 ≈ 3 for hard, equal-
mass, circular-orbit binaries; the dependence of R1 on q and e is approximately
(1 − e2)−1/2. The critical orientation works out to be

θcrit = 0.5

√
m�

M12

(
1√
q

+ √
q

) (
1 − e2

)−1/4
(2a − 1)−1/2 . (8.48)

This angle is again small, unless m� refers to a “massive perturber.” Nevertheless,
there is likely to be a “big” effect associated with the reorientation from θ(t = 0)
to θcrit [217], with possibly observable consequences, since the spin axis of the
coalesced binary will be determined by the angular momentum of the binary prior
to coalescence.

Close encounters of field stars with the binary also contribute to the random walk
of the binary’s center of mass—to its translational Brownian motion. Brownian
motion of single SBHs was considered in chapter 5. It was shown there that

V 2
rms = 3C

2A
= m�

M
v2

rms, (8.49)

where vrms = √
3σ is the rms velocity of the field stars, and A and C define the

behavior of the massive particle’s diffusion coefficients at low velocity:

〈�v‖〉 = −Av + Bv3 · · · ,
〈(�v‖)2〉 =C +Dv2 · · · .

Recall that both A and C are proportional to a term ln�′ ≈ ln(pmax/pmin) that
plays the role of “Coulomb logarithm” for low test-particle velocities; however, this
dependence drops out when taking the ratio in equation (8.49). If we now imagine
replacing the single massive object by a binary, it is clear that the Brownian motion
will be increased, since field stars gain kinetic energy on average from the binary,
increasing the amplitude of the binary’s recoil. This “superelastic scattering” will
give the binary a larger random velocity than expected for a point particle in energy
equipartition with background stars.

There is a second way in which close encounters contribute to the binary’s
Brownian motion. Translational Brownian motion represents a balance between
dynamical friction and the random encounters that induce an acceleration. But as
noted above, field stars that interact strongly with the binary are ejected in nearly
random directions, and this reduces the dynamical friction force that they exert
on the binary. The velocity change experienced by a field star in a low-impact-
parameter collision with a point-mass perturber is ∼ −2V , corresponding to a 180◦

change in its direction. When the point mass is replaced by a (hard) binary, the field
star is ejected in a nearly random direction and its mean velocity change (averaged
over many encounters with different phases and orientations of the binary) is there-
fore ∼ −V in a direction parallel to V. The drag force exerted on the massive
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object is proportional to the mean velocity change of the field stars and hence the
contribution to the frictional force from close encounters is only ∼ 1/2 as great in
the case of a binary as in the case of a point mass.

These two effects can be evaluated, by using scattering experiments to compute
the effective, single-particle diffusion coefficients for the binary [352]. The results
can be expressed as

V 2
rms,bin =

(
R2

R1

)(
m�

M12

)
v2

rms, (8.50)

where R1 and R2 are the coefficients A and C computed for the binary, expressed
in terms of the point-mass coefficients:

R1 ≡ Abin

A
, R2 ≡ Cbin

C
. (8.51)

Now, the effects associated with super-elastic scattering are due almost entirely
to field stars with low impact parameters. This means that both R1 and R2 will
tend to unity if the integration over impact parameters is extended to large pmax,
since the distant encounters will overwhelm the finite contribution from the close
encounters. However, it was argued in chapter 5 that pmax is of order rh = GM/σ 2

for a massive object at the center of a galaxy, and even smaller if the density profile
around the SBH is steep. In this case, R1 will be significantly less than one, and R2

significantly greater than one. In fact, the results from the scattering experiments
are well fit by

Vrms,bin

Vrms
≈

(
1 + 0.18

ln
√

1 + 2�2

)1/2

, (8.52)

where � ≡ pmax/(GM12/σ
2), implying that the Brownian motion of a massive

binary might be increased by a factor as great as ∼ 2 compared with the motion of
a single mass.

8.2 MASSIVE BINARY AT THE CENTER OF A GALAXY: I. EARLY

EVOLUTION

The rates of binary evolution derived in the previous section can be applied to a
binary SBH at the center of a galaxy, if the parameters ρ and σ that appear in equa-
tions like (8.15) and (8.38) are appropriately defined. But expressions like (8.24),
which assumes a constant density of field stars as the binary evolves, are more prob-
lematic. By interacting with and ejecting stars, a massive binary inevitably changes
the density of stars in its vicinity. Furthermore, quantities likeMej, the mass in stars
ejected by the binary, are not so clearly defined when the binary is embedded in a
deep potential well.

Scattering experiments are a useful guide, but there is no substitute for fully self-
consistent N -body integrations. Figure 8.6 shows the results from a set of such
integrations, in which an SBH (i.e., a massive Newtonian particle) was placed on
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Figure 8.6 The three evolutionary phases of a binary SBH near the center of a spherical
galaxy [355]. These plots were derived from N -body integrations in which a
second SBH was added to a galaxy model that contained a larger SBH at its
center; the mass ratio was M2/M1 = 0.1 and the initial orbit of the smaller
SBH was eccentric. The unit of time is roughly the galaxy half-mass crossing
time. The top panel plots the distance between the two SBHs; the thin line is the
evolution predicted by the dynamical friction formula, equation (5.23), ignoring
changes in the galaxy. The two horizontal lines indicate rh and ah; the former is
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Figure 8.6 Continued. the influence radius of the larger SBH and the latter is the hard-binary
separation, equation (8.23). The inset shows the evolution of the inverse semima-
jor axis of the binary in this integration, and in a second integration with roughly
one half the number of particles; the latter curve lies above the former, i.e., the
decay occurs more rapidly for smaller N when a < ah, due to the higher rate
at which star–star encounters repopulate orbits that were depleted by the binary.
In the large-N limit of a spherical galaxy, the binary hardening rate would drop
to zero at a ≈ ah. The lower panel shows evolution of the mass deficit in the
same two N -body integrations; the solid lines show least-squares fits to the time
interval t ≥ 120.

an eccentric orbit (e ≈ 0.5) near the center of a spherical galaxy containing a larger
SBH at its center; the mass ratio was q = 0.1.

The separation between the two SBHs, �r , can be divided into the three, fairly
distinct regimes �r > rh, rh > �r > ah, and �r < ah:

1. �r > rh: dynamical-friction-driven inspiral. At early times, the orbit of
the smaller SBH decays due to dynamical friction from the stars. This phase
ends when the separation between the two SBHs falls to ∼ rh, the gravita-
tional influence radius of the larger SBH.

2. rh > �r > ah: formation of a hard binary. When �r <∼ rh, the two SBHs
form a bound pair. The separation between the two SBHs drops rapidly in
this phase, due first to dynamical friction acting on M2, and later to ejection
of stars by the binary. Energy input from the binary causes the stellar density
to drop substantially. The motion of the smaller SBH around the larger is
approximately Keplerian in this (and later) phases.

3. �r < ah: continued hardening of the binary. The rapid phase of bi-
nary evolution comes to an end when the binary’s binding energy reaches
∼ M12σ

2, that is, when a ≈ ah, the “hard binary” separation. At this separa-
tion, the binary is ejecting nearby stars with high enough velocities that they
can move far beyond its sphere of influence, effectively excluding them from
further interactions. If the binary is to continue evolving, the depleted orbits
must be replenished.

The first two of these evolutionary phases can be called “robust,” in the sense that
the associated timescales, and the response of the galaxy to the binary, are fairly in-
dependent of details like the galaxy shape, the masses of the stars, etc. However, the
third phase, after the binary becomes hard, can be very dependent on such factors.
For instance, in a spherical galaxy, orbits conserve their angular momenta (except
for the short period of time when they are near the binary), and after roughly a
single galaxy crossing time, the hard binary will have ejected all stars that come
close enough to the galaxy center to interact with it. Continued evolution of the bi-
nary can only occur if these orbits are repopulated. In the simulations of figure 8.6,
that repopulation occurred via gravitational (star–star) encounters; the associated
timescale is the relaxation time, which is a function of the stellar mass.
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In the remainder of this section, the first two evolutionary phases are discussed.
We will proceed from a point in time after the galaxy merger has deposited the
second SBH near the center of the merged galactic system, but before the two
SBHs have formed a bound pair. Evolution in phase three, after the binary has
become “hard,” is treated in section 8.3.

8.2.1 �r > rh: Inspiral driven by dynamical friction

The most important question to be asked about evolution in this phase is, how
quickly can the second SBH reach the center? We can address this question by
adopting a simple model for the distribution of mass near the center of a galaxy
and solving the equations of motion for M2, including the acceleration 〈�v‖〉 from
dynamical friction. (Recall that the dynamical friction force is independent of m�
as long as M2 � m�.) Since the second SBH was brought in during the course
of a galaxy merger, it will retain some fraction of its host galaxy’s mass until late
in the inspiral. We begin by ignoring the extra mass; this will yield a conservative
upper limit on the inspiral time. We then consider a simple model that includes the
time-dependent mass in stars around M2 as it spirals in.

The relative orbit of the two galaxies that produced the binary SBH was probably
eccentric. Dynamical friction tends to circularize orbits, and so as a first approxi-
mation, we assume that M2 follows a circular orbit as it spirals in. The question of
eccentricity evolution during this phase will be delayed until after a discussion in
section 8.2.2 of how the inspiral affects the structure of the galaxy core.

Since the inspiral time is long compared with orbital periods, we can average
over the angular motion of M2 in its orbit, and equate the torque from dynamical
friction with the rate of change of M2’s orbital angular momentum. Defining r(t)
as the orbital radius, we find

dL

dt
= dL

dr

dr

dt
= r〈�v‖〉 (8.53)

or

dr

dt
= r〈�v‖〉
dL/dr

, (8.54)

where

L2(r) = r2v2
c (r) = r3 d�

dr
. (8.55)

Near the center of a galaxy, the density profile can often be approximated as a
power law, ρ(r) = ρ0(r/r0)

−γ . Equation (4.80) then tells us

dL

dr
= (4 − γ ) (3 − γ )−1/2

(
πGρ0r

2
0

)1/2
(
r

r0

)1−γ /2
. (8.56)

If we identify r0 with the galaxy half-mass radius re, it is not a bad approximation
[111] to express ρ0 in terms of the total galaxy mass via

ρ0 = (3 − γ )

4π

Mgal

r3
e

. (8.57)
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Finally, using Eddington’s formula (3.47), we can compute the isotropic f (E) that
generates the power-law density profile in the potential (4.80), and find the fraction
of the density at each radius contributed by stars moving more slowly than vc,
which yields 〈�v‖〉. The result, after some algebra, is

dr

dt
= −

√
GMgal

re

M2

Mgal
ln�

(
r

re

)γ /2−2

F(γ ),

F (γ ) = 2β+1

√
2π

�(β)

�(β − 3/2)

(3 − γ )

4 − γ
(2 − γ )−γ /(2−γ )

(8.58)

×
∫ 1

0
dy y1/2

(
y + 2

2 − γ

)−β
,

β ≡ (6 − γ )/2(2 − γ ).

For γ = (1.0, 1.5, 2.0), F = (0.258, 0.362, 0.427).
Equation (8.58) implies that M2 comes to rest at the center of the galaxy in a

time

�t ≈ 0.2

√
r3
e

GMgal

Mgal

M2

(
ri

re

)(6−γ )/2
(8.59a)

≈ 3 × 109

(
re

1 kpc

)3/2 (
Mgal

1011M�

)1/2 (
M2

107M�

)−1 (
ri

re

)(6−γ )/2
yr;
(8.59b)

the leading coefficient in equation (8.59a) turns out to depend weakly on γ . Here,
ri is the initial orbital radius, and following the discussion in chapter 5, ln� was
set to 6.6. Evidently, an SBH can spiral in from ri = re to the center in a time less
than 10 Gyr if

M2 >∼ 3 × 106

(
Mgal

1011M�

)1/2

M�, (8.60)

a condition that is satisfied by all but the most massive galaxies—at least for SBHs
that are more massive than the one in the Milky Way (which may describe all
SBHs).

Next, we replace M2 in the dynamical friction equation by M2, the mass that
remains of the infalling SBH’s host galaxy (assumed much larger than M2). We
assume that this mass is determined by the tidal field of the larger galaxy, hence it
decreases with time as the inspiraling galaxy loses progressively more of its mass.

The radial acceleration per unit distance in a frame corotating with the smaller
galaxy’s orbit, of radius r , is given by [285]

dFT

dδ
= 3

r

d�

dr
− 4πGρ, (8.61)

where δ is the distance measured from the position of M2, and � and ρ refer to
the larger galaxy. Equation (8.61) includes the tidal force due to the radial gradient
in the larger galaxy’s potential, as well as the centrifugal force from the smaller
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galaxy’s orbit about the center of the larger galaxy, both of which act to remove
stars from the smaller galaxy. Let δT be the tidally truncated outer radius of the
smaller galaxy. The force holding a star onto the galaxy at its edge is

F� ≈ GM2

δ2
T

. (8.62)

To make further progress, we need to relateM2 to δT . Suppose that the density of
the smaller galaxy falls off with distance from its center as ∼ δ−2—the singular
isothermal sphere. This is a good description, for instance, of the density near the
center of the Milky Way. Then

GM2 ≈ 1

2
α2σ 2

2 δT , (8.63)

where σ2 is the (constant) velocity dispersion in the smaller galaxy, andM2 �M2

has been assumed. The factor α ≈ 1 accounts for the fact that the smaller galaxy’s
density must fall below the assumed form near its edge; a sharp truncation would
imply α = 2. Substituting (8.63) into (8.62),

F� ≈ 1

2

α2σ 2
2

δT
. (8.64)

Equating FT with F� then yields

δT ≈ ασ2

21/2

(
3

r

d�

dr
− 4πGρ

)−1/2

. (8.65)

If we are willing to approximate the larger galaxy also as a singular isothermal
sphere (an irresistible approximation, since it allows the galaxy’s density to be spec-
ified by a single parameter, its velocity dispersion σ ), then it is easy to show that
equations (8.63) and (8.65) imply

GM2(r) ≈ σ 3
2

2σ
r. (8.66)

At a distance

r = rmin ≈ 2σGM2

σ 3
2

(8.67a)

≈ 2

(
M2

106M�

)(
σ

200 km s−1

) (
σ2

100 km s−1

)−3

pc (8.67b)

from the center of the larger galaxy, the smaller galaxy has lost essentially all of its
stars and its mass is ∼ M2.

SubstitutingM2 from equation (8.66) for the mass that appears in the dynamical
friction formula, we find for the rate of orbital decay,

dr

dt
= −0.30

GM2

σr
ln� ≈ −0.15

σ 3
2

σ 2
ln�, r � rmin. (8.68)
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Assuming ri � rmin, the center is reached in a time

�t ≈ 6.7

ln�

σ 2

σ 3
2

ri (8.69)

≈ 1.3 × 108

(
σ

200 km s−1

)2(
σ2

100 km s−1

)−3( ln�

2

)−1(
ri

1 kpc

)
yr.

(8.70)

This second estimate of�t is also likely to be shorter than 10 Gyr for all reasonable
values of σ and σ2.

8.2.2 rh > �r > ah: Formation of a hard binary and the generation of cores

The second phase of binary evolution begins when the separation �r between the
two SBHs falls below ∼ rh = GM1/σ

2, and it ends when �r ≈ ah. Figure 8.7
illustrates this phase of the evolution, in a series of N -body integrations with vari-
ous values of q ≡ M2/M1. In that figure, a slightly different definition was adopted
for ah:

ah = µ

M12

rm

4
= q

(1 + q)2

rm

4
(8.71)

with rm defined as the radius containing a mass in stars equal to twiceM1. (Defining
the “influence radius” in terms of an enclosed mass makes life computationally
simpler—at least if the “galaxy” is an N -body model!) Over quite a wide span
in binary mass ratios—from 1/2 down to 1/40—the condition �r ≈ ah is seen
to accurately predict the point at which the binary’s hardening drastically slows,
announcing the end of phase two.

What drives the evolution during this phase? When the two SBHs are sufficiently
far apart, deposition of energy into the stars by dynamical friction acting on the
two SBHs individually is responsible for the orbital decay, while when they are
sufficiently close, ejection of stars that interact with the binary is the dominant
mechanism. Neither of these processes is well defined in the regime where the
binary is neither very hard nor very soft. Nevertheless, we can write approximate
expressions for the rate of energy loss from the two mechanisms, by assuming
either that the two SBHs are moving independently of each other (�r >∼ rh), or as
members of a tight binary (�r ≈ ah). We focus here on changes in energy, since
the energy lost by the binary is gained by the stars, and this energy gain turns out
to imply substantial changes in the stellar density near the binary.

Dynamical friction causes the energy of M2 to decrease at a rate given by equa-
tion (5.124):

dE

dt
= M2v〈�v‖〉 = −4πG2M2

2ρ ln�
v

σ 2
G(x) (8.72)

with v the orbital velocity around M1; G(x) = G[v/(
√

2σ)] is defined in equa-
tion (5.25). When�r = rh, the mass enclosed within the orbit ofM2 is ∼ 3M1 and
its orbital velocity is v2 ≈ 3GM1/rh ≈ 3σ 2; thus G(x) ≈ G(

√
3/2) ≈ 0.2, and
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Figure 8.7 Evolution of the binary separation in five N -body integrations with initial con-
ditions similar to those in figure 8.6 [355]. Binary mass ratios are, from left to
right, 0.5, 0.25, 0.1, 0.05, 0. 025. The upper horizontal line indicates rm, the
influence radius of the more massive SBH in the initial model. The lower hori-
zontal lines show ah as defined in equation (8.71). The vertical lines are estimates
of the times at which hardening of the massive binary would “stall,” in a galaxy
containing a much larger number of stars than in theN -body model. Note that the
rapid phase of binary hardening (“phase two”) continues until �r ≈ ah ∝ M2,
with the result that the binary’s binding energy at the end of this phase is nearly
independent of M2.

we find for the energy loss rate

dE

dt
≈ −4.4

G2M2
2ρ ln�

σ
, �r ≈ rh. (8.73)

If instead we treat the two SBHs as members of a binary, equations (8.1) and
(8.15) imply for the rate of change of the binary’s energy,

dE

dt
= −G

2M1M2ρH

2σ
= −H(a)

2q

G2M2
2ρ

σ
. (8.74)

Recall from section 8.1 that H is nearly independent of a and q when a <∼ ah:
H = H∞ ≈ 16. When a ≈ rh, equations (8.17) and (8.18) implyH ≈ qH∞. Thus,
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both mechanisms predict an energy loss rate that can be written as∣∣∣∣dEdt
∣∣∣∣ = C(a, q)G2M2

2ρσ
−1 (8.75)

and when �r ≈ rh,

C ≈



9 (ln�/2) , dynamical friction,

8 (H∞/16) , binary.
(8.76)

Roughly speaking, dynamical friction, and slingshot ejection of stars, are equally
responsible for the binary’s evolution at the start of this phase. As the binary
shrinks, the rate of energy generation by the binary increases, eventually by a factor
∼ q−1 (assuming a fixed ρ) when a has decreased to ah.

The energy of the binary when �r ≈ rh is roughly −M2σ
2, so the characteristic

time over which either process extracts energy is approximately

TE ≡
∣∣∣∣ 1

E

dE

dt

∣∣∣∣
−1

≈ σ 3

CG2M2ρ
(8.77a)

≈ 4 × 107

(
C

10

)−1(
σ

200 km s−1

)3(
M2

106M�

)−1(
ρ

103M� pc−3

)−1

yr.

(8.77b)

The transfer of energy from the SBHs into the surrounding stars is evidently a very
rapid process—so rapid that it is difficult to see how a galaxy could avoid it.

The energy given up by the binary in shrinking from �r ≈ rh to �r ≈ ah is

�E≈ −GM1M2

2rh
−

(
−GM1M2

2ah

)
(8.78a)

≈ −1

2
M2σ

2 + 2M12σ
2 ≈ 2M12σ

2, (8.78b)

roughly proportional to the combined mass of the two SBHs. The reason for this
counterintuitive result is the dependence of ah on M2 (equation 8.23): smaller in-
falling SBHs form tighter binaries. An energy of 2M12σ

2 is comparable with the
total energy of the stars within the sphere of influence of the binary. By absorbing
such a large energy, the stars within rh must undergo a substantial redistribution.
If there was a density cusp or compact nuclear star cluster prior to formation of
the binary, it will be replaced by a low-density core of radius ∼ rh. This process
is called cusp disruption, and it is probably responsible for the almost ubiquitous
presence of cores at the centers of luminous galaxies. Cusp disruption is illustrated
in figure 8.8.

One would like to compare the structure of the cores produced in simulations
with those of observed galaxies. One goal, of course, is to test the cusp-disruption
model; another is to extract information about the merger histories of galaxies.
This is a subtle and frustrating business. In a simulation, one knows the detailed
distribution of matter both before and after the binary has done its work. In a real
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Figure 8.8 Results ofN -body simulations that demonstrate the “scouring” effect of a binary
SBH on a preexisting density cusp [355]. The binary mass ratio q is (a) 0.5, (b)
0.25, (c) 0.1. In the upper panels, dotted lines show the initial density profile and
solid lines show ρ(r) at the end of a set of successive inspiral events. In the lower
panels, points showMdef/M• and dotted lines showMdef/M• = 0.5N , whereM•
is the accumulated SBH mass and N is the number of inspiral events. The mass
deficit depends weakly on the mass ratio of the binary, for reasons discussed in
the text.

galaxy, one observes only the end result. A large core could indicate a substantial
degree of cusp disruption; or it could simply mean that the galaxies from which the
observed galaxy formed also contained low-density cores.

Most attempts to address this question start by adopting a simple parametrization
for the distribution of mass (or light) near the center of a galaxy. A basic parameter
is the core, or break, radius. If the surface density far from the center is well fit
by some smooth function of radius—for instance, a Sérsic [486] law—one defines
Rb as the radius where the observed density begins to depart from (fall below) the
model density. An example of this procedure is shown in figure 2.2.

Since the binary is expected to inject a characteristic energy into the core, it is
natural to parametrize its effects in terms of a displaced mass. In a spherical galaxy,
the mass deficit [389] is defined as

Mdef ≡ 4π
∫ rmax

0
[ρinit(r)− ρ(r)] r2dr. (8.79)
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Figure 8.9 Mass deficits in galaxies with resolved cores [355]. (a)Mdef in solar masses. Data
are from [207] (filled circles) and [158] (stars). Thick, thin, dashed, and dotted
lines show Mdef/M• = 0.5, 1, 2, and 4, respectively. (b) Histogram of Mdef/M•
values in (a); M• in most of the galaxies was computed from the M•–σ relation.

(The definition is straightforwardly generalized to the case of a nonspherical
galaxy.) Here, ρinit(r) and ρ(r) are the density profiles before and after the binary
SBH has acted on the stars. As an integrated quantity, Mdef might seem to be more
robust than Rb. But this is not really the case, for several reasons. First, the value
of the integral in equation (8.79) can depend sensitively on the upper integration
limit rmax. One can equate rmax with Rb, but Rb is typically also uncertain. Sec-
ond, ρinit for observed galaxies is not known. Assuming that a steep density cusp,
or dense nuclear star cluster, was present initially implies a larger Mdef than if the
original galaxy contained a core. Finally, one is always faced with the problem of
converting the observable—the luminosity density—into a mass.

Perhaps because of these difficulties, there is some disagreement between pub-
lished estimates ofMdef in observed galaxies. However, most studies [95, 158, 207]
find that mass deficits correlate well with SBH masses, and that

M• <∼ Mdef <∼ 2M• (8.80)

for the majority of galaxies with resolved cores (figure 8.9). In other words, the typ-
ical mass deficit is comparable with the mass of the SBH (itself typically inferred
from the M•–σ relation.)

Computing mass deficits in simulations is somewhat less problematic. In the case
of N -body models like those illustrated in figures 8.6 and 8.7, in which a second
SBH was added gently to a galaxy already containing a larger SBH, one finds that
the mass deficit produced by inspiral of the binary to �r ≈ ah is [355]

Mdef ≈ 0.70q0.2M12 (8.81)

for galaxies with initial nuclear density profiles ρ ∼ r−γ , 1 <∼ γ <∼ 1.5.
Equation (8.81) implies a weak dependence on binary mass ratio, consistent with
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our expectation that the energy injected by the binary into the stars depends es-
sentially on M12 (equation 8.78). Assuming no other source of cusp disruption,
equation (8.81) predicts

0.4 <∼
Mdef

M12

<∼ 0.6, 0.05 <∼ q <∼ 0.5. (8.82)

This is reasonably consistent with the peak in the histogram of measured values, at
Mdef/M• ≈ 1 (figure 8.9b). But some galaxies clearly have larger deficits, as large
as several times M•.

There are a number of possible explanations for the existence of mass deficits
greater than ∼ M•. We list some of them briefly here, before discussing them in
more detail later in this chapter:

1. Luminous elliptical galaxies are believed to have formed via a succession of
mergers. Since the mass displaced by a binary SBH is nearly independent of
q, the ratio of Mdef to the (accumulated) SBH mass should increase with the
number of mergers.

2. If a binary continues to harden beyond a ≈ ah, it can continue displacing
stars.

3. Mechanisms that forcibly remove a single or binary SBH from a nucleus—
for instance, a slingshot interaction involving three SBHs—can lower the
density of stars.

Consider just the first of these. If the stellar mass displaced in a single merger
is ∼ 0.5M12, then—assuming that the two SBHs always coalesce before the next
SBH falls in—the mass deficit followingN mergers withM2 � M1 is ∼ 0.5NM•.
N -body simulations verify this prediction (figure 8.8). Mass deficits in the range
0.5 <∼ Mdef/M• <∼ 1.5 therefore imply 1 <∼ N <∼ 3, consistent with the number of
gas-free mergers expected for bright galaxies.

The fact that there are potentially so many ways to create, or increase, mass
deficits is disappointing: it is difficult to falsify a theory when the predictions of the
theory are vague. On the other hand, the good observed correlation between Mdef

and M• (figure 8.9), and the fact that observed mass deficits are at least approxi-
mately equal to M•, lends support to the view that galaxy cores are a consequence
of binary SBHs.

Near the end of this evolutionary phase, the two SBHs are separated by a distance
�r ≈ ah. To reach this separation, the binary must have interacted with most or
all stars on orbits having periapsis distances with respect to the galaxy center less
than ∼ �r(t). Those interactions were increasingly energetic as�r decreased from
∼ rh to ∼ ah; toward the end, sufficient energy was imparted to the stars to eject
them from the galaxy core. What happens next?

There are many possibilities; some of these are discussed later in this chapter.
But one possibility is that evolution of the binary essentially stalls at a ≈ ah. This
would be the case, for instance, if the galaxy potential was accurately spherical, and
the nuclear relaxation time long. Under these circumstances, the angular momenta
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Table 8.2 Some of the properties that “stalled,” binary SBHs would have if they were lo-
cated at the centers of the brightest elliptical galaxies in the Virgo Cluster [355].
SBH masses are in units of 108 M�; excepting in the case of NGC 4486 (M87),
these were computed using the M•–σ relation. Influence radii rm are given in pc
(arcsec); stalling radii ah are in parsecs. v∞ is the typical velocity with which a
star would be ejected (equation 8.83). In the last columns, vesc is the velocity in
kilometers per second required to escape from the galaxy, starting from a distance
ah from the center; the gravitational potential used in computing vesc included the
contribution from the massive binary, modeled as a single body of mass M•.

ah ah vesc vesc

Galaxy M• rm q = 0.5 q = 0.1 v∞ q = 0.5 q = 0.1
NGC 4472 5.94 130. (1.6) 5.6 2.1 562. 1395. 1865.
NGC 4486 35.7 460. (5.7) 20. 7.6 733. 1480. 2175.
NGC 4649 20.0 230. (2.9) 10. 3.8 776. 1590. 2325.
NGC 4406 4.54 90. (1.1) 4.0 1.5 590. 1255. 1790.
NGC 4374 17.0 170. (2.1) 7.6 2.8 832. 1635. 2435.
NGC 4365 4.72 115. (1.4) 5.0 1.9 533. 1115. 1615.
NGC 4552 6.05 73. (0.91) 3.2 1.2 757. 1500. 2230.

of orbits with respect to the galaxy center would remain essentially fixed, and the
supply of stars on eccentric orbits capable of interacting with the binary would be
shut off.

Table 8.2 lists some properties of hypothetical, stalled binary SBHs at the cen-
ters of bright elliptical galaxies in the Virgo Galaxy Cluster. All of these galaxies
contain well-resolved cores [158]. The column labeled v∞ lists the approximate
velocity with which a hard binary would eject stars. Recall from section 8.1 that
this velocity is v∞ ≈ 2

√
3σ ; in terms of rh ≡ GM•/σ 2,

v∞ ≈ 3.5

(
GM•
rh

)1/2

≈ 725

(
M•

108M�

)1/2 (
rh

10 pc

)−1/2

km s−1,

(8.83)

independent of mass ratio. (This property was built into the definition of ah.) The
table also lists the escape velocity, defined as

√−2�(ah) with �(r) the galaxy’s
gravitational potential including the contribution from the binary; the latter was
modeled as a point with mass equal to the inferred value of M•. Ejection velocities
are seen to be much smaller than vesc in all cases, implying that essentially no
stars would be ejected beyond the galaxy. Production of such “hypervelocity stars”
(section 6.3) would require that the binary separation shrink well beyond a ≈ ah in
these galaxies.

Assuming that evolution of the binary stalls, it is interesting to ask what the
phase-space distribution of the remaining stars would be. Figure 8.10, based on
Monte Carlo simulations of a binary SBH at the center of a galaxy [380], provides
a partial answer. As expected, a gap has been created in phase space, corresponding
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Figure 8.10 The gap in phase space created by a binary SBH at the center of a galaxy [380].
The binary mass ratios are (a) q = 1, and (b) q = 1/8. Monte Carlo simulations
were used to track the evolution of stellar orbits as they interacted with the
binary; the binary’s semimajor axis was evolved in response to energy carried
away by the stars. At the times shown, the binary has reached its “stalling”
radius, a ≈ ah. Curves show the angular momenta of orbits with periapses of
0.5, 1, and 2 times ah. The edge of the gap is approximately coincident with
the middle curve, corresponding to orbits that graze the sphere r = ah. The
larger circles are stars that are still interacting with the binary, i.e., stars with
periapses that lie within a few times ah. These stars can experience a “secondary
slingshot.”

to orbits that intersected the binary at some point in its evolution from ∼ rh to ∼ ah.
The three curves in the figure are

Lgap = Kah

√
2 [ψ(Kah)− E], K = (0.5, 1, 2), (8.84)

where E ≡ −E = −v2/2 + ψ(r) and �(r) = −ψ(r) is the galaxy poten-
tial. A value K = 1 corresponds to an orbit that just grazes the sphere r = ah.
Figure 8.10 shows that there is a sharp drop in the phase-space density at the value
of L corresponding to K ≈ 1. A few stars linger within the gap; these are on orbits
that intersect the (stalled) binary, but have not yet gained enough energy to escape.
Models like the one in figure 8.10 provide the motivation for the initial conditions
that were adopted in the time-dependent loss-cone calculations of section 6.1.5.

The binary preferentially ejects stars on eccentric orbits, but the strength of its
interactions also depends on the sense of a star’s orbital motion with respect to the
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binary’s. Stars that orbit in a retrograde sense are “more stable,” on average, than
stars that orbit in a direct sense [347, 583]. This means that the phase-space gap ex-
tends to lower L for retrograde stars than for direct stars, and this effect is strongest
for orbits that lay initially near the equatorial plane of the binary. The result is a
toruslike structure in the region ah <∼ r <∼ 5ah: stars that remain bound move pref-
erentially on retrograde, approximately spherical, orbits near the equatorial plane.

8.3 MASSIVE BINARY AT THE CENTER OF A GALAXY: II. LATE

EVOLUTION

It was argued in the previous sections that a binary SBH is likely to reach the
“hard binary” separation, a = ah, in a time much shorter than galaxy lifetimes
(equation 8.77). But a hard binary still has a long way to go before gravitational
radiation can be an important source of energy loss. According to equation (4.241),
the gravitational-wave inspiral time, starting from a = ah, is

tGW ≈ 5.7 × 1014 (1 + q)2

q

(
ah

1 pc

)4 (
M12

108M�

)−3

yr (8.85)

assuming a circular-orbit binary. Using the definition of ah in equation (8.23), this
can be written

tGW ≈ 3 × 1016 q3

(1 + q)6

(
M12

108M�

) (
σ

200 km s−1

)−8

yr. (8.86)

Of course, the inefficiency of gravitational radiation at these parsec-scale separa-
tions is the origin of the “final-parsec problem.”

We now discuss a variety of ways in which a binary SBH might be expected to
evolve past a ≈ ah due to interactions with stars. Of course, such mechanisms are
only interesting if they act in a time that is reasonably short compared with galaxy
lifetimes.

8.3.1 Spherical galaxies

8.3.1.1 The secondary slingshot

In the “hard” limit, a <∼ ah, a binary SBH imparts an energy �E ≈ Gµ/a to
stars that interact with it (equation 8.10 with C = 1). As noted in the previous
section, even when a ≈ ah, this energy transfer is typically not large enough to put
a star onto an escape orbit from its host galaxy; instead, the star is transferred to
a different, bound orbit of greater energy, from which it may interact again with
the binary. The result is a population of stars on orbits that pass inside a(t), but
with energies that have been boosted by previous interactions with the binary. The
heavy dots in figure 8.10 belong to this population; the phase-space “gap” that
was discussed in connection with that figure is only really empty at large E (i.e.,
very bound energies); as one moves to lower E , the distribution of points can be
seen to include stars with angular momenta less than Lgap—stars that have already
interacted once with the binary but are still bound by the galactic potential.
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Repeated interaction of stars with a massive binary is called the secondary sling-
shot [388]. In spite of its name, there is nothing “secondary” about the importance
of the mechanism; indeed, it is the primary way in which a massive binary, located
at the bottom of a deep potential well, interacts with stars. Among other things,
consideration of the secondary slingshot will lead to a sharper understanding of the
concept of “escape” from a massive binary.

Let Llc(t) be the angular momentum of an orbit that grazes the sphere of radius
r = Ka(t) around the binary. Based on the discussion in section 8.1, a value 1 <∼
K <∼ 2 should correspond to orbits that interact strongly with the binary. As in
equation (8.84), we can write

Llc(E, t) = Ka(t)
√

2 [ψ(Ka)− E] ≈
√

2GM12Ka(t). (8.87)

By analogy with the single-SBH case, we define orbits having L ≤ Llc as “loss-
cone orbits.” Of course, the physical scale associated with the loss cone of a massive
binary is many orders of magnitude larger than that of the loss cones discussed in
chapter 6. Furthermore, in the case of a binary, stars are not necessarily “lost” if
L < Llc. If f (E, L) is the stellar distribution function, we can use equation (5.159)
to write for the energy distribution of loss-cone orbits,

Nlc(E)dE =
[∫ L2

lc

0
dL24π2f0(E, L)P (E, L)

]
dE

≈ 8π2GM12af (E)P (E)dE, (8.88)

where P is the radial period of a star in the galaxy’s potential; in the final line,
isotropy has been assumed, and P has been approximated by the period of a radial
orbit of energy E .

To understand how loss-cone orbits evolve in response to the secondary sling-
shot, it is instructive to look at an N -body simulation. Figure 8.11 shows the evo-
lution of the energy distribution of stars that were initially within the binary’s loss
cone in such a simulation; here “initial” refers to a time when a ≈ ah. The initial
energy distribution of these orbits is proportional to fP and is strongly peaked.
As time progresses, the binary shrinks, and its interactions with stars become in-
creasingly energetic. The peak in the energy distribution shifts toward E = Eeject,
where

Eeject(t) ≈ ψeject − Gµ

a(t)
(8.89)

and ψeject is the potential energy at a radius (roughly the binary’s influence radius)
from which the majority of ejections occur.

If the binary orbit decays slower than typical orbital periods, (d ln a/dt)−1 �
P , most stars inside the loss cone remain inside, encounter the binary at their
next periapsis passage, and are “reejected.” On the other hand, if the decrement in
the binary separation is substantial, some stars that are ejected very near the loss-
cone boundary finish just outside boundary as that boundary shifts inward. Both
populations can be discerned in figure 8.11; the latter as the broad, secondary hump
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Figure 8.11 These plots show the evolution of Nlc(E, t), the distribution of orbital energies
of stars that were initially within the binary loss cone, in an N -body simulation
[388]. The binary mass ratio is q = 1 and the binary separation at t = 0 was
roughly ah. The binary separation decayed by a factor of about four during the
integration. The distributions, from right to left, were recorded at logarithmi-
cally progressing times t = (0, 1, 2, 4, 8, 16, 32, 64, 128, 256)×4×10−4P(0),
with P defined as in equation (8.98). The left panel shows that the peak of
the distribution travels from larger to smaller binding energies following the
increase in the energy of ejection (equation 8.89). Note the late formation of
the secondary hump at |E|/(2σ 2) ≈ 3.0–8.0, leveling at Nlc ∼ 1400; this
hump consists of stars that had originally been inside the loss cone, but then
finished just outside, beyond reach of the SBH binary. The right panel shows
D ≡ 103∂Nlc(|E|, t)/∂ ln t at t = (1, 2, 4, 8, 16, 32, 64, 128)× 4 × 10−4P(0).

that appears at late times. The stars in this hump are unable to interact further
with the binary.

Returning to equation (8.88), let Nlc(E, t) be the time-dependent loss-cone pop-
ulation, defined by allowing a and f on the right-hand side to be functions of time.
(Note that Nlc is determined by the number of stars actually within the loss cone at
time t , and not by the initial loss-cone population as in figure 8.11.) To derive the
time dependence of Nlc, we consider the evolution over a small interval �t :

Nlc(E, t +�t) =
∫
Nlc(E ′, t)ζ(E ′, E,�t)dE ′. (8.90)

Here, ζ(E ′, E,�t) is the transition probability between the energy E ′ at time t and
the energy E at time t + �t . The transition probability can be understood as a
combination of the kicks from E into some other energy; the kicks from another
energy E ′ into E ; and attrition due to decrease in the size of the loss cone as the
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binary shrinks. We can approximate these three terms as

ζ(E ′, E,�t)≈
[

1 − �t

P (E ′)

]
δ(E − E ′)+ �t

P (E ′)
ζ1(E ′, E)

+
[
L2

lc(t +�t)

L2
lc(t)

− 1

]
. (8.91)

Here, ζ1(E ′, E) is the probability that a star ejected from energy E ′ will end up on
an orbit with energy E, normalized so that

∫
ζ1(E ′, E)dE ′ = 1. In writing these

expressions, we have made a number of simplifying assumptions:

1. The probability for slingshot ejection is uniform with respect to time over an
orbital period and totals to unity within one period.

2. Orbital phases of stars at a given energy are randomly distributed, even after
one or more ejections.

3. f remains a function only of E in the loss cone, so that Nlc(L)dL ∝ LdL.

Passing to the infinitesimal limit in equations (8.90) and (8.91), and using
(d/dt) lnL2

lc(t) = (d/dt) ln a(t), we obtain an equation describing the evolution
of the loss-cone orbital population:

∂

∂t
Nlc(E, t) = −Nlc(E, t)

P (E) +
∫
Nlc(E ′, t)
P (E ′)

ζ1(E ′, E)dE ′ +Nlc(E, t)d ln a(t)

dt
.

(8.92)
The total number of stars inside the loss cone evolves as

dNlc(t)

dt
≡ d

dt

∫
Nlc(E, t)dE = Nlc(t)

d ln a(t)

dt
(8.93)

and the total energy of these stars evolves as

dE(t)
dt

≡ d

dt

∫
Nlc(E, t)E dE

=
∫
Nlc(E, t)
P (E)

[
−E +

∫
ζ1(E, E ′)E ′dE ′

]
dE

+
∫
Nlc(E, t)d ln a(t)

dt
E dE . (8.94)

The factor in brackets is the average energy change that a star originally at E expe-
riences as a consequence of the gravitational slingshot:

〈�E〉 ≡ −E +
∫
ζ1(E, E ′)E ′dE ′. (8.95)

The energy gained in the first term of equation (8.94) must be compensated by the
change in the binary’s binding energy:

d

dt

(
GM1M2

2a

)
= −m�

∫
Nlc(E, t)
P (E) 〈�E〉dE . (8.96)
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The hardening of a binary SBH coupled to an evolving stellar population inside the
loss cone is described by equations (8.92) and (8.96).

To make further progress, we must specify a model for the galactic potential. As
elsewhere in this book, we adopt for simplicity the singular isothermal sphere,

ρ(r) = σ 2

2πGr2
, ψ(r) = −2σ 2 ln

(
r

r0

)
, (8.97)

where σ is the galaxy velocity dispersion outside ∼ rh and r0 is an arbitrary radius.
Note that we have ignored the contribution of the massive binary to the potential;
this approximation is justified by the fact that essentially all stars interacting with
the binary after it is hard are on orbits with a > rh. The radial period of a star in
this potential is

P(E) =
∮

dr

vr(E) =
√
πr0

σ
e−E/2σ

2
. (8.98)

Substituting this into equation (8.96) gives

d

dt

(
GM1M2

2a

)
= − m�

P (0)

∫
Nlc(E, t)eE/2σ 2〈�E〉dE . (8.99)

As noted above, the distribution of stars inside the loss cone peaks at the energy
given by equation (8.89). In order to solve equation (8.99) analytically, we pretend
that all stars inside the loss cone have the same energy, Eeject(t), at time t :

Nlc(E, t) → Nlc(t)δ(E − Eeject). (8.100)

Therefore

d

dt

(
GM1M2

2a

)
≈ − m�

P (0)
Nlc(t)〈�E〉Eejecte

Eeject/2σ 2
. (8.101)

Equation (8.101) can be simplified further by noting that the product N(t)〈�E〉Eeject

is approximately constant with respect to time. Equation (8.93) implies that the
total number of stars inside the loss cone decreases in proportion to the binary
separation, N(t) ∝ a(t). After the two SBHs form a hard binary, stars that interact
with the SBH binary for the first time receive a kick �E ≈ −Gµ/a ∝ a−1. A
similar result can be shown to hold late in the binary’s evolution [388]. Making the
approximation N(t)〈�E〉 ∝ a1a−1 = constant, we can integrate equation (8.101)
after substituting Eeject from equation (8.89):

1

a(t)
= 1

a(0)
+ 2σ 2

Gµ
ln

[
1 + m�Nlc |〈�E〉|

M12σ 2

t

P (E0)

]
(8.102)

for t > 0, where a(0) is the initial separation and E0 is the energy of ejected stars
at the outset:

E0 = Eeject

∣∣
t=0 = ψeject − Gµ

a(0)
. (8.103)

Equation (8.102) tells us that, in the secondary slingshot, the binding energy of the
binary increases as a logarithmic function of time. This result has been confirmed
by Monte Carlo simulations [388].
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How far beyond a = ah can the secondary slingshot bring the two SBHs? We
can calculate this using equation (8.102), given an elapsed time t , and given an
estimate for m�Nlc |〈�E〉|, the product of the initial mass in the loss cone and the
typical energy change when a ≈ ah. From the definition of a hard binary we know
that |〈�E〉| ≈ Gµ/ah ≈ a few × σ 2. The mass initially in the loss cone is given
by integrating equation (8.88) over energy. If we continue to adopt the singular
isothermal sphere model, and restrict the integration to energies beyond the sphere
of influence, the result is Mlc ≈ a few × µ. Using these numbers, we find that a−1

will have increased by the factor

ah

a(t)
≈ 1 + 1

2
ln

[
10 × t

P (E0)

]
. (8.104)

P(E0) is the period of a star extending some way beyond rh; in the Milky Way,
P(E0) >∼ rh/σ ≈ 104.5 yr, and equation (8.102) implies ah/a(10 Gyr) ≈ 8. In
galaxies with larger σ this factor will be smaller.

These estimates are probably too optimistic. Realistically, reejection becomes
ineffective once a star gains too much energy: first because the density in many
galaxies falls off more rapidly than r−2 beyond rh, and second because a star with
large apoapsis is easily perturbed from its nearly radial orbit on the way in or out.
Furthermore, in many galaxies, other mechanisms (discussed below) can be ex-
pected to decrease a on timescales less than 10 Gyr, mitigating the importance of
the secondary slingshot.

Finally, we return to the concept of “ejected mass” that was first discussed in
section 8.1 in connection with the dimensionless parameter J , defined as

J ≡ 1

M12

dMej

d ln(1/a)
= σ

GM12ρaH

dMej

dt
. (8.105)

The reejection paradigm suggests a more general expression for the relation be-
tween the ejected mass and the change in a binary’s energy. Equation (8.105) was
motivated by scattering experiments in which stars are assumed lost if they exit
with enough velocity to escape the binary’s influence sphere. In the case of a bi-
nary embedded in a galactic potential, the critical quantity is the energy gained by
a star between the time it first enters, and finally exits, the loss cone. Equating this
with the change in the binary’s absolute binding energy, we find

GM1M2

2

(
1

afinal
− 1

ainitial

)
= Mlost

(Ēenter − Ēexit
)
. (8.106)

Defining
(Ēenter − Ēexit

) ≡ �� and passing to the infinitesimal limit ainitial →
afinal ≡ a in equation (8.106), we obtain

1

M12

dMlost

d ln(1/a)
= 1

(��/2σ 2)(a/ah)
. (8.107)

Comparing this relation to equation (8.105), we identify the effective value of the
mass-ejection parameter J :

J ≈ 1

(��/2σ 2)(a/ah)
. (8.108)
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Figure 8.12 (a) Short-term, and (b) long-term evolution of the mean value of 1/a in a large
set of N -body integrations [369]. The sets differed in N , the number of “star”
particles making up the galaxy. The horizontal line in panel (a) is the hard-
binary radius; it also indicates approximately where the transition occurs be-
tween N -independent and N -dependent evolution.

To shrink the binary by one e-folding, a stellar mass of JM12 must be transported
from an energy marginally bound to the binary, to the galactic escape velocity.
These ideas will require further modification when we consider the additional ef-
fects of gravitational encounters between stars.

8.3.1.2 Collisional loss-cone repopulation

Until now, we have been treating the host galaxies of binary SBHs as collision-
less systems, in the sense that gravitational encounters between stars have been
ignored.6 That is not a bad approximation: nuclear relaxation times are long, even
in the densest of galaxies. But just as gravitational encounters tend to drive stars
into the loss cone of a single SBH, so can they drive stars into the larger loss cone
defined by a binary SBH. In this way, evolution of a massive binary can continue
indefinitely beyond a ≈ ah, on a timescale of order the relaxation time, as stars
diffuse onto the eccentric orbits that were previously depopulated by the binary.

It is natural to address this kind of evolution using N -body simulations.
Figure 8.12 shows the results from a set of such simulations, in which the num-
ber N of stars representing the galaxy was varied, while quantities like the total
mass and the mass of the binary remained fixed. Evolution of the binary’s binding
energy can be seen to exhibit two separate regimes. At early times, a−1 (i.e., the
energy of the binary) increases approximately linearly with time, at a rate that is
independent of N . This phase comes to an end when a ≈ ah, and we identify it
with the second of the three phases discussed in section 8.2.2.

6Interactions of stars with the massive binary are certainly “collisional.”
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Once a has dropped below ah, figure 8.12 shows that the linear dependence of
a−1 on t continues, but the hardening rate is now seen to be a decreasing function of
N . This is reasonable if we postulate that the binary’s evolution is linked to gravi-
tational encounters between stars, since the scattering rate scales in proportion with
the mass of a single star, that is, as ∼ N−1. Evidently, for these values of N , evolu-
tion of the binary due to the secondary slingshot (which should be N independent)
is swamped by the contribution from collisional loss-cone repopulation.

Inspection of the right panel of figure 8.12 reveals another interesting result:
only for sufficiently large N is the binary’s hardening rate N dependent; for the
two smallest N values, the binary hardens at roughly the same rate. It turns out
that this rate is consistent with equation (8.24), the rate of hardening of a binary in
a fixed stellar background, if the quantities ρ and σ in that equation are assigned
their values in the N -body models. A natural interpretation is that—for these low
values of N—the timescale for gravitational encounters to scatter stars into the
binary’s loss cone is shorter than the time required for the binary to eject stars; in
other words, we are in the “full-loss-cone” regime defined in chapter 6. Presumably,
for the much larger N -values associated with real galaxies, a massive binary would
be in the “empty-loss-cone” regime.

Armed with these insights, we can attempt to generalize the theory of collisional
loss-cone repopulation presented in chapter 6 to the case of a massive binary. As in
chapter 6, our model will be based on the orbit-averaged Fokker–Planck equation,
and we will assume a fixed gravitational potential (though not a fixed density) for
the galaxy. Changes that occur in the structure of the core prior to formation of a
“hard binary” are not well treated by such a model and so we will assume a <∼ ah;
evolution of the binary prior to its hard phase is best treated via N -body methods.

Let F(E, t) be the flux (number per unit energy per unit time) of stars that are
driven via gravitational encounters into the loss cone of the massive binary. The
relation between F and the rate of change of the binary’s semimajor axis a is

d

dt

(
GM1M2

2a

)
= −m�

∫
F(E, t)�E dE, (8.109)

where �E is the mean specific-energy change of stars that interact with the binary.
In the orbit-averaged approximation, it is appropriate to identify �E with the total
change in energy that occurs between the time a star first enters the loss cone,
and the time that it ceases to interact with the binary: either because it has gained
enough energy to escape from the galaxy, or because its angular momentum no
longer satisfies L > Llc.

The flux, F , will be a function of the constant K in equation (8.87) that defines
the physical size of the interaction region around the binary; we expect 1 <∼ K <∼ 2.
Given a value of K , and ignoring for a moment the possibility of reejection, the
average energy change �E can be derived as follows [576].

Suppose that the stars beyond ∼ rh define a constant-density core with velocity
distribution

f (v) = ρ

m�

1

(2πσ 2)3/2
exp

(−v2/2σ 2
) ; (8.110)
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here ρ and σ are constants, which we identify with the ρ and σ that appear in
expressions like equation (8.15) for H . The stars described by f pass within a
distance Ka of the galaxy’s center at a rate given by equation (6.10):

F flc(E) = 4π2L2
lc(E)f (E) ≈ 8π2GM12Kaf (E) (8.111)

and so∫
F flc(E)dE ≈ 8π2GM12Ka

∫ ∞

0
f (v)v dv ≈ 2

√
2πGM12Kaρ

m�σ
. (8.112)

For stars that interact strongly with the binary, �E depends weakly on E if the
binary is hard, and equations (8.109) and (8.112) imply

d

dt

(
1

a

)
≈ −4

√
2π

Kaρ

µm�σ
�E, K >∼ 1. (8.113)

Comparing this with equation (8.15) yields

�E ≈ − H

4
√

2π

Gµ

Ka
≈ −1.6

Gµ

Ka
(8.114)

which is the desired relation. Finally, for the binary hardening rate due to collisional
loss-cone repopulation, equations (8.114) and (8.109) give

s(t) ≡ d

dt

(
1

a

)
≈ 3.2

Ka

m�

M12

∫
F(E, t)dE . (8.115)

In general, F in this equation will not be linearly dependent on Ka, and some care
must be put into selectingK . One way is by comparing Fokker–Planck models with
N -body simulations; one finds K ≈ 1.2 [42].

The physical size of a binary SBH, a, is many orders of magnitude larger than
the radius of the tidal-disruption sphere or capture sphere around a single SBH.
Since L2

lc is proportional to this size (equation 8.87), the time for a star to diffuse
across the loss cone of a binary SBH will be much longer than in the case of a
single SBH. We recall from chapter 6 that this implies a much smaller value for the
quantity qlc(E);7 in other words, we expect the binary’s loss cone to be “empty”:
stars will execute many orbits just outside the loss cone before diffusing over the
boundary and being lost. (The same conclusion follows from figure 8.12, where
behavior corresponding to a “full loss cone” was only exhibited for values of N
much smaller than in real galaxies.) When computing the flux into the loss cone
of a binary SBH, it is therefore an excellent approximation to set f (E, L) ≡ 0,
L ≤ Llc .

A consistent choice for F(E) [576] would be the steady-state, Cohn–Kulsrud
flux derived in section 6.1.2. For qlc � 1, the Cohn–Kulsrud f falls to zero just at
Llc:

f (R) ≈ f (E) ln(R/Rlc)

ln(1/Rlc)
, Rlc ≤ R ≤ 1 (8.116)

7In this chapter, the quantity defined as q(E) in chapter 6 will be written as qlc(E), to avoid confusion
with the symbol for the binary mass ratio, q = M2/M1.
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withR ≡ L2/L2
c(E). The flux would then be given by equation (6.64):

F(E) ≈ f (E)4π2qlc(E)L2
lc(E)

ln(1/Rlc)
. (8.117)

On the other hand, the Cohn–Kulsrud solution assumes a steady state with respect
to L. But evolution of the massive binary prior to its becoming “hard” took place on
a timescale much shorter than the relaxation time, and there is no reason to expect
that f will have reached a form like equation (8.116) by the time a ≈ ah. A more
likely form for f at this time is suggested by figure 8.10:

f (E,R) ≈
{
f̄ (E), R > Rlc(ah),

0, R < Rlc(ah),
(8.118)

a step function.
A similar argument was made in chapter 6, in the context of the feeding of single

SBHs. In that case, the phase-space gap emptied by the binary needed to be refilled
before stars could reach the much smaller capture sphere around the single SBH,
implying a capture rate much lower than the steady-state value. In the present con-
text, the binary “fills” the gap at the moment of its creation; since the collisional
transport rate in phase space is proportional to the gradient of f with respect to R
at R = Rlc, the steep gradients imply an enhanced flux into the loss cone, and a
faster decay of the binary than if equation (8.117) were used for F .

If we artificially force the loss-cone boundary (i.e., a) to remain fixed, the evolu-
tion of f and F can be computed using the time-dependent machinery developed
in section 6.1.5. Figure 8.13 shows the results, at one, arbitrarily chosen energy,
assuming that the loss cone is empty withinRlc and thatN is a constant function of
R outside ofRlc at t = 0. The phase-space gradients ∂N/∂R decay rapidly at first
and then more gradually as they approach the equilibrium solution. It is evident
that the total population

∫
NdR incurs a decrement of order unity before it has had

time to reach the state of collisional equilibrium—the Cohn–Kulsrud solution. Of
course, in reality, the loss of stars due to diffusion in L would be compensated for,
in part, by their replacement via diffusion in E. But a decrease in N turns out to be
a robust result, as discussed in more detail below. In other words, evolution of the
binary past a ≈ ah due to collisional loss-cone repopulation, is associated with a
certain degree of continued “cusp destruction.”

This model can be made one degree more realistic by allowing the binary, and
hence the loss-cone boundary, to change with time. At the end of each time step, the
binary semimajor axis is corrected for the energy that the binary has exchanged with
the ejected stars via equation (8.115). The Fourier–Bessel coefficients in equation
(6.127) are then recalculated using the new, advanced N(E,R, t + �ti) and the
corrected loss-cone boundary Rlc(E, t + �ti). Figure 8.14 shows an example; the
physical scalings are similar to those of figure 8.13. In the illustrated model, the
nuclear relaxation time is roughly 10 Gyr, and the binary shrinks by a substantial
factor beyond its initial value (∼ ah) in this time.

In the models of figures 8.13 and 8.14, the stellar distribution function evolved
only with respect to L. Over times as long as nuclear relaxation times, orbital en-
ergies will change substantially as well. Qualitatively, we expect diffusion in E to
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Figure 8.13 This figure shows how the empty loss cone created by a hard, binary SBH would
refill due to gravitational encounters [388]. Physical scalings were based on the
galaxy M32 assuming an initial separation between the SBHs of 0.1 pc. The
inner loss-cone boundary was artificially fixed at R = 0.02; in reality, this
boundary would move inward as the binary shrinks. The panels in (a) show
slices of the density N(E,R, t) at one, arbitrary energy, at times, from left to
right, of 100, 101, 102, 103, and 104 Myr. Also shown as the dotted curve is the
equilibrium solution, equation (8.116). In (b), the integrated flux of stars into
the loss cone as a function of time is shown as the solid curve, again compared
with the steady-state curve. The horizontal dashed line indicates roughly the
value ofMlost above which the assumption of a static loss-cone boundary would
break down due to evolution of the binary.

accelerate the evolution of the binary, since orbits that were depleted by the angular-
momentum diffusion can be repopulated by diffusion in energy.

As in chapter 7, we can model the effects of diffusion in energy space on f (E)
in an approximate way using equation (7.11):

∂N

∂t
= −∂FE

∂E − F(E, t). (8.119)

This is the isotropic Fokker–Planck equation, with the loss-cone flux added as an
energy-dependent “sink” term. Equation (8.119), coupled with an equation like
(8.115) for the binary hardening rate, and a prescription for computing the loss-
cone flux F given f , then defines the problem. The price we pay for this simplicity,
of course, is that we cannot treat the detailed evolution of f with respect to L as in
the previous examples.
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Figure 8.14 Solutions to equation (8.115) for a binary SBH at the center of a galaxy
like M32 [388]. The dashed curves use the steady-state loss-cone flux, equa-
tion (8.117), while the solid curves are based on a model in which f evolves as
in figure 8.13. These models ignore diffusion of stars in energy.

In deriving equation (8.115) for da/dt , the possibility of reejection of stars by the
binary was ignored. The effects of the secondary slingshot can be included in an ap-
proximate way by modifying the prescription for computing �E , equation (8.114).
If E+�E is less than zero, corresponding to escape from the galaxy, then no further
interactions will occur, and equation (8.114) is correct. If E + �E > 0, reejection
will occur, and it is reasonable to assume that the star will eventually escape, with
�E = −E .

Figure 8.15 shows the results, assuming a binary with M12 = 10−3 Mgal, and
two values of M2/M1. The loss-cone flux was computed from f and Llc using
the Cohn–Kulsrud prescription, which is likely to be valid for times greater than
∼ (M2/M1)Tr(rh) (section 6.1.5). The basic physical time determining the rate of
evolution of the binary is seen to be the relaxation time, expressed in figure 8.15 in
terms of its value at rm. There is an additional dependence on N = Mgal/m�, the
number of stars in the galaxy. The N dependence appears through qlc(E)
(equation 6.37), which we can write approximately in terms of the relaxation
time as

qlc(E) ≈ P(E)
Rlc(E)Tr(E) (8.120)

and so the flux of stars into the binary, equation (6.64), becomes

F(E) = 4π2qlcL
2
cRlc

f (E)
ln(1/R0)− 1

≈ 4π2L2
cPT

−1
r

f (E)
ln (1/R0)− 1

. (8.121)
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Figure 8.15 Joint evolution of a massive binary and its host galaxy due to gravitational en-
counters, as modeled via the isotropic Fokker–Planck equation including a sink
term, equation (8.119) [369]. (a) q = 1; (b) q = 0.1. The panels on the left show
the evolution of the binary semimajor axis a, starting from a = ah. Time is reck-
oned from a = ah and is plotted in units of the relaxation time at the binary’s
influence radius. The panels on the right show the mass deficit as a function of
binary separation, normalized to zero at t = 0. Different lines correspond to dif-
ferent values of N ≡ Mgal/m�: N = 106, 107, . . . , 1011, 1012 (thick line). The
symbols mark the times teq at which the binary hardening rate equals the grav-
itational radiation evolution rate, assuming a binary mass of 105 M� (squares),
106 M� (circles), 107 M� (triangles), and 108 M� (stars). Dashed lines in the
left-hand panels are the analytic model described in the text, equation (8.125).

Ignoring changes in the structure of the galaxy, the flux into the binary, integrated
over one relaxation time, scales approximately as

F(E)Tr(E)∝
[
ln (1/R0)− 1

]−1
(8.122a)

≈



[
lnR−1

lc

]−1
, qlc � 1,

q−1
lc , qlc � 1.

(8.122b)

The binary-hardening rate is fixed by F and a (equation 8.115), so these expres-
sions imply that the binary’s evolution over a specified number of relaxation times
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will be smaller for smaller N , that is, larger qlc; while in the large-N limit, the evo-
lution rate at a given a will be determined solely by Tr . The latter regime is of most
interest for real galaxies; in the large-N limit, we expect

1

Tr

∣∣∣a
ȧ

∣∣∣ ≡ thard

Tr
∝ ln

(ah

a

)
, (8.123)

that is, the fractional change in a over one relaxation time is weakly dependent on
a. The solutions plotted in figure 8.15 can in fact be well represented in terms of
the slightly more general form,

1

Tr

∣∣∣a
ȧ

∣∣∣ = A ln
(ah

a

)
+ B (8.124)

with A = 0.016, B = 0.08. The weak dependence of the fitting parameters on bi-
nary mass ratio reflects the lack of a mass-ratio dependence in the evolution equa-
tions at a given a/ah.

Integrating equation (8.124) gives a simple expression for the time dependence
of the binary semimajor axis:

ln
(ah

a

)
= −B

A
+

√
B2

A2
+ 2

A

t

Tr(rm)
, (8.125)

where t is defined as the time since the binary first became hard, that is, the time
since a = ah. This function is plotted as the dashed curves in figure 8.15.

This model of binary evolution will remain valid until the two SBHs are so close
together that energy losses due to gravitational radiation begin to dominate the
binary’s evolution. Using equation (8.86) together with theM•–σ relation, one finds
for the value of a = aeq at which this first occurs,

ah

aeq
≈ (315, 93, 27, 8.0) (8.126)

for M• = (105, 106, 107, 108)M� and q = M2/M1 = 1, and
ah

aeq
≈ (140, 40, 12, 3.5) (8.127)

for q = 0.1. The corresponding times are

teq ≈
{
(0.73, 0.53, 0.35, 0.20)× Tr(rm), q = 1,

(0.65, 0.54, 0.27, 0.13)× Tr(rm), q = 0.1.
(8.128)

Evidently, the time required for a massive binary in a spherical galaxy to reach
the gravitational radiation regime is of the same order as the relaxation time at the
binary’s influence radius.

The time to coalescence of the binary can be estimated by supposing that the rate
of energy loss from the binary is the sum of the rates due to stellar interactions and
gravitational radiation:

d

dt

(
1

a

)
= d

dt

(
1

a

)
stars

+ d

dt

(
1

a

)
GW

(8.129)
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Figure 8.16 The time required for a massive binary in a spherical galaxy to reach coales-
cence, starting from the hard binary separation a = ah, as a function of binary
mass [369]. The solid curves are derived from equation (8.130) after setting
ymax = ∞; the black curve is for a binary mass ratio q = 1, the gray curve for
q = 0.1. Dotted curves show the evolution time from a = aeq to a = 0, i.e.,
the time spent in the gravitational radiation regime only. Equation (8.132) gives
accurate analytic approximations to Tcoal(M12; q).

The first term is given by equation (8.125) and the second by equation (8.86); for
the dependence of Tr(rm) on binary mass, we can use equation (3.6) after setting
M• = M12. The time for the separation to drop from ah to a is then given by

1010 ×
∫ ymax

0

Ay + B

C +D (Ay + B) e4y
yr, (8.130)

where

C= 1.25M−1.54
6 , (8.131a)

D= 1.75 × 10−9q−3 (1 + q)6M0.65
6 , (8.131b)

ymax = ln(ah/a), andM6 ≡ M12/106M�. The full time to coalescence, Tcoal, start-
ing from ah is given by setting ymax = ∞ in this expression. Figure 8.16 shows Tcoal
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as a function ofM12 for q = (1, 0.1). Shown separately on this figure is the time to
evolve from a = aeq to a = 0, that is, the time spent in the gravitational radiation
regime alone. The latter time is a factor ∼ 10 shorter than the total evolution time
Tcoal, which motivates fitting the following functional form to Tcoal(M12; q):

Y =C1 + C2X + C3X
2, (8.132a)

Y ≡ log10

(
Tcoal

1010 yr

)
, (8.132b)

X≡ log10

(
M12

106M�

)
. (8.132c)

(This functional form is the integral of equation (8.125).) A least-squares fit to the
curves in figure 8.16 gives

q = 1 C1 = −0.372, C2 = 1.384, C3 = −0.025, (8.133a)

q = 0.1 C1 = −0.478, C2 = 1.357, C3 = −0.041. (8.133b)

Based on figure 8.16, binary SBHs in spherical galaxies would be expected to reach
gravitational-wave coalescence in 10 Gyr if M12 <∼ 2 × 106M�.

Before leaving the spherical paradigm, we consider how evolution of the binary
past a = ah contributes to mass deficits. The right-hand panels of figure 8.15 show
thatMdef correlates well with binary hardness, ah/a. This dependence is accurately
described by

Mdef

M12
≈ (1.8, 1.6) log10 (ah/a) , (8.134)

where the numbers in parentheses refer to q = (1, 0.1), respectively. The mass
deficits generated between formation of a hard binary, and the start of the gravita-
tional radiation regime, are given by setting a = aeq in this expression; that is,

Mdef,eq ≈


(4.5, 3.5, 2.6, 1.6)M12, q = 1,

(3.4, 2.6, 1.7, 0.9)M12, q = 0.1,
(8.135)

for M12 = (105, 106, 107, 108)M�. These values are somewhat greater than the
mass deficits Mdef,h generated prior to the hard-binary phase; that is, Mdef,h ≈
0.5M12 (equation 8.82).

Why do mass deficits continue to grow? Diffusion in angular momentum causes
stars to be lost to the binary, as represented by the term −F(E, t) on the right-hand
side of equation (8.119). We saw earlier in this section how such a term causes
the density of stars near the center of the galaxy to drop. But the depleted orbits
can be repopulated by diffusion in energy, as represented by the first term on the
right-hand side of equation (8.119). As mass deficits increase, so do the gradients
in f , which tend to increase the energy flux and counteract the drop in density.
In principle, these two terms could balance, at least over some range in energies,
allowing the binary to harden without generating a mass deficit. This would require

FE(E) =
∫ ∞

E
F(E)dE; (8.136)
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that is, the inward flux of stars due to energy diffusion at energy E must equal the
integrated loss to the binary at all energies greater than E . However, at sufficiently
great distances from the binary, the relaxation time is so long that the local FE(E)
drops below the integrated loss term. Growth of a mass deficit reflects the imbalance
between these two terms.

It is tempting to associate the large mass deficits predicted by this evolutionary
model—as great as several times M12 (equation 8.135)—with the large Mdef/M•
values observed in a few galaxies (figure 8.9). That association is probably not jus-
tified, since the mass deficits plotted in that figure are in galaxies with long nuclear
relaxation times. Aside from the Galactic center, no nucleus with Tr(rh) <∼ 1010 yr
is near enough that features on a scale of r <∼ rh can be well resolved. Further-
more, assuming that the two SBHs eventually coalesce, evolution in such nuclei
will continue on a relaxation timescale via the various mechanisms discussed else-
where in this book: regeneration of a Bahcall–Wolf cusp at r <∼ 0.2rm (section 7.2),
nuclear heating by the SBH (section 7.3), and, if the nucleus is sufficiently diffuse,
erasure of the “temperature inversion” (section 7.5.3). Galaxies that host SBHs of
such low mass also tend to contain nuclear star clusters that are sites of ongoing
star formation.

8.4 INTERACTION OF BINARY SUPERMASSIVE BLACK HOLES

WITH GAS

Any model for how material is channeled into a single or binary SBH must de-
scribe the mechanism by which angular momentum is removed from the matter.
In the case of stars, such mechanisms include random gravitational encounters
with other stars or with massive perturbers, resonant relaxation, or torques from
the mean gravitational field if the galaxy is nonspherical, as discussed in detail in
chapters 4–6.

The dissipative nature of gas gives rise to behavior that can differ fundamentally
from that of the stars. Possible mechanisms for the loss of angular momentum from
gas are even more diverse than in the case of stars, and include torquing of gas flows
by the rapidly fluctuating potential of merging galaxies [381] or by nested stellar
bars [495], angular momentum transport by hydrodynamical turbulence driven by
the onset of self-gravity [175, 494], magnetohydrodynamical turbulence [17], or
magnetic braking [54], among many others.

Whatever the dominant mechanism for gas accretion may be, it is believed to
operate universally during the epoch in which SBHs grew to their present masses,
by driving rapid accretion of material onto preexisting black-hole “seeds.” This is
the same period in which the galaxy merger rate peaked [273]. While still largely
inaccessible to observation due to obscuration [473], the nuclei of merging galaxies,
which are also the sites for the formation of binary SBHs, are expected to contain
the largest concentrations of dense gas anywhere in the universe. The inevitable
abundance of gas suggests that gas dynamics be considered as a supplement to
stellar dynamics during this early evolutionary phase.
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It is natural to distinguish between two cases depending on whether or not the
particles making up the gas are moving faster than the SBHs. The gas particles
move at an average velocity given by

3

2
kTgas = 1

2
µmpV

2
gas, (8.137)

where µ is the mean particle mass in units of the proton mass mp and k is Boltz-
mann’s constant. The ratio of Vgas to Vbin, equation (8.3), is(

Vgas

Vbin

)2

= 3kTgas

µmp

a

GM12
= Tgas

Tvir
, (8.138)

where Tvir is the “virial temperature”:

Tvir ≡ GM12µmp

3ak
(8.139a)

≈ 1.7 × 109µ

(
M12

108M�

) (
a

0.01 pc

)−1

K. (8.139b)

More generally, Vbin can be replaced in the definition of Tvir by the typical veloc-
ities of whatever objects are moving “virially” (i.e., in a steady state) in the local
gravitational potential.

A “hot” flow is one in which Tgas >∼ Tvir, while in “cold” flows, Tgas � Tvir.
The prototype of a hot flow is Bondi accretion [56], in which the accreting gas is
supported by pressure against free infall toward the accretor. The prototype of a cold
flow is a thin disk, in which the gas is rotationally supported against infall. Even in
hot flows, gas with nonzero angular momentum that accretes sufficiently close to
the central object can achieve rotational support. Astronomical observations offer
abundant evidence for both hot and cold gas flows in the immediate vicinity of SBH
candidates. The origin and the dynamical impact of the two classes of gas flow are
distinct and are discussed here separately.

8.4.1 Interaction with hot gas

Hot gas permeates interstellar space in galaxies, and intergalactic space in groups
of galaxies and galaxy clusters. Virial temperatures in these systems range from
106 K–108 K and the hot gas is almost completely ionized. Various sources con-
tribute to the pool of hot gas. During the early stages of galaxy formation, inter-
galactic space contained partially ionized gas inherited from the pregalactic, early
universe. Hydrogen recombines at redshifts z ≈ 1000 and is reionized at redshifts
z ≈ 10 by the radiation emitted by the earliest structures. According to the cur-
rent paradigm, this partially ionized gas cools within the confining gravitational
potential of dark matter halos and filaments. Cold gas accelerates toward the ha-
los’ centers of gravity and is shock-heated to about the virial temperature. Cooling
times at the centers of halos where the gas is the densest are short compared to the
dynamical time and thus most of the primordial gas is consumed by star formation
on a dynamical timescale.

The rate at which gas cools is determined by the cooling function �(T ); multi-
plying � by the gas density squared yields the rate of energy loss per unit volume.
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The cooling time—the time for a given volume of gas to radiate an energy equal to
(3/2)nV kT—is then

tcool = 3

2

kT

n�
. (8.140)

Tenuous gas that remains after the cooling time has exceeded the dynamical time
in the nascent galaxy might still be plentiful enough to feed a massive black hole
growing at an Eddington-limited rate. Equating tcool with rh/σ yields, for the resid-
ual number density at the radius of influence of the SBH,

n≈ σ 3kTvir

GM•�
(8.141)

≈ 20µ

(
M•

108M�

)5/(α−1) (
�

2 × 10−23 erg cm3 s−1

)−1

cm−3;

in the latter relation the M•–σ relation (2.33), M• ∝ σα , has been used to relate
virial temperature to SBH mass.

This so-called “cooling flow model of quasar fueling” [87, 402] is, however,
plagued by many problems. Most of the gas left over from star formation might be
blown out by the mechanical feedback associated with the radiative and mechanical
output of the accreting SBH, as discussed in section 2.4.5. A small amount of an-
gular momentum in the gas results in circularization and settling into an accretion
disk; this disk may be susceptible to fragmentation, thereby converting most of the
gas mass into stars and effectively cutting off the supply of gas to the SBH [512].

The geometry of the flow of a hot, magnetized gas near a binary SBH is un-
known. Assuming spherical, nonrotating accretion, the timescale on which the hot
gas is captured by the SBH is

tcapt ≡
∣∣∣∣M•
Ṁ

∣∣∣∣ ≈ fb
σ 3

G2Mµmpn

≈ 108fbµ
−2

(
M

108M�

)−2/α (
�

2 × 10−23 erg cm3 s−1

)
yr, (8.142)

where fb ≈ 1–10 is a numerical factor that depends on the equation of state of the
gas. If a binary SBH is present, gravitational torques from the gas induce decay of
the binary’s semimajor axes on approximately the same timescale. This crude esti-
mate is based on an analogy with the stellar interactions discussed in the previous
sections: the binary must eject of order its own mass in stars to decay an e-folding
in separation. Hot gas torquing the binary might be ejected in an outflow and thus
the actual rate at which gas is accreting onto individual binary components might
be severely suppressed compared to the accretion expected in an isolated SBH.

Galactic nuclei also contain hot gas produced by secondary sources. For ex-
ample, observations with the Chandra X-ray Observatory have revealed tenuous
(n ≈ 10–100 cm−3), hot (kT ≈ 1 keV) plasma within a parsec of the Milky Way
SBH [13]. This plasma is apparently being generated by the numerous massive,
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evolved stars in the Galactic center region through stellar wind and supernova ac-
tivity. Since its temperature is higher than Tvir, most (> 99%) of the plasma should
escape the neighborhood of the SBH. While the hot gas densities in active galaxies
might be transiently larger than that at the Galactic center, the tendency of the hot
plasma to escape the neighborhood of the SBH reduces the likelihood that large
quantities of virialized gas would remain enmeshed with the binary’s orbit long
enough to affect its dynamical evolution. If it did, however, the effect of the hot gas
would be to induce a source of gravitational drag in addition to dynamical friction
from the stars, thus assisting in the decay of the binary’s orbit [146, 147].

8.4.2 Interaction with cold gas

The specific angular momentum of a cold gas flow might easily exceed that of a
binary SBH. In this case, the gas tends to settle into rotationally supported, geomet-
rically thin rings and disks. Such gas is “cold” in the sense Tgas < Tvir, but it can
still be hot enough to be ionized; that is, Tgas >∼ 104K.

Observations offer abundant evidence for the presence of dense gas in galactic
nuclei. As discussed in chapter 2, thin molecular disks on scales 0.1–0.5 pc have
been seen in the water maser emission in the nuclei of some Seyfert galaxies, most
famously in NGC 4258 [216]. The Galactic SBH is surrounded by a molecular gas
torus of mass ∼ 104–105M� at distances beyond ∼ 1 pc from the SBH [255].
Compact stellar disks on scales >∼ 20 pc, which are most likely fossil relics of pre-
existing gas disks, are seen in the nuclei of many galaxies [430]. Massive accretion
disks must be present in quasars in order to account for what appears to be rapid
accretion onto the central SBHs in these systems. However, the structure of these
disks at radii comparable to the size of a hard SBH binary is unknown.

If a disk surrounding a binary SBH is initially inclined with respect to the bi-
nary’s orbital plane, the quadrupole component of the binary’s gravitational poten-
tial causes differential precession in the disk at the rate [307]

�prec(r) = 3

4

q

(1 + q)2

(GM12)
1/2a2

r7/2
, q ≡ M2

M1
, (8.143)

which results in a warping of the disk. Depending on the details of the gas viscosity,
the warp either dissipates, or smears around the binary, resulting ultimately in a
nearly axisymmetric disk in the binary’s orbital plane.

Interest in coplanar, circumbinary disks stems from their ability to extract a bi-
nary’s angular momentum via a form of tidal coupling. Two interrelated questions
might be posed: First, what is the response of a circumbinary disk to the binary’s
tidal forcing? Second, how does such a disk affect the evolution of the binary’s
orbit?

Existing attempts to answer these questions have employed rather ad hoc models
for the form of the binary-disk torque coupling [438, 254], or have been restricted to
binaries with components of very unequal mass [9], where an array of neighboring
resonances facilitate binary-disk coupling [199], much like the coupling between
a massive planet and its natal gas disk [200]. Early numerical simulations of cir-
cumbinary disks with nearly equal masses [10], however, suggested that the disks
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are truncated exterior to the resonances, which was interpreted as a consequence of
a collisionless nonlinear parametric instability [467, 144]. Fluid dynamical theory
of circumbinary disk truncation is still lacking.

The outer Lindblad resonances are radii in the disk where the natural, epicyclic
frequency of radial oscillation is an integer multiple of the rate at which a packet of
disk gas receives tidal “kicks” by the binary. In the case of a circular binary, these
resonances are located at radii rm/a = (1 + 1/m)2/3, where m = 1, 2, . . . is the
order in the decomposition of the binary’s gravitational potential into multipoles:

ϕ(r, θ) =
∞∑
m=0

ϕm(r) cos [m(θ −�bint)] . (8.144)

The outermost resonance (m = 1) is located at r ≈ 1.6a. The forcing near a
resonance, as well as at a radius where surface density in the disk exhibits a large
gradient, excites nonaxisymmetric propagating disturbances, or “density waves,” in
the disk.

The gravitational potential of eccentric binaries contains low-frequency compo-
nents that are absent in circular binaries. These low-frequency components activate
resonances located at larger radii than in the circular case, and might lead to mutual
excitation and reinforcement of the binary and the disk eccentricities [413, 198].
Many extrasolar planets, which are thought to form in circumstellar disks, are no-
tably eccentric, suggesting that dynamical coupling between a binary point mass (a
star and a planet, or a pair of black holes) and a gas disk is conducive to eccentric-
ity growth. The observed circumbinary disks in young stellar binaries are typically
eccentric, are truncated at radii a few times the semimajor axis [343], which lends
support to this hypothesis.

Density waves transport angular momentum outward through the circumbinary
disk, and angular momentum carried by the waves is extracted from the binary’s
angular momentum. The binary experiences a negative torque equal and opposite
to the total angular momentum flux transferred to the disk. The location of the
inner edge of the disk reflects a balance between the angular momentum flux de-
posited into the disk, and the angular momentum flux transported through the disk
by another, possibly viscous mechanism. Wave momentum is deposited into the
disk material via a form of dissipative damping. The location in the disk where the
waves are damped can be separated by many wavelengths from the location where
they are excited. The damping could take place in the nonlinear steepening and the
breaking of wave crests [477, 445]. In marginally optically thick disks, radiation
damping might also play a role [75]. Yet another form of damping could be due to
the dissipation of wave shear if the disk is strongly viscous [511]. The amplitude of
the density waves is a steeply decreasing function of the radius of excitation. The
amplitude is diminished if the waves are nonlinear at excitation and damp in situ,
but then one expects the inner edge to recede where in situ damping shuts off.

The intricate and insufficiently understood nature of binary–disk interactions
calls for grid-based hydrodynamical simulations with a shock-capturing capabil-
ity. The necessity that the radial wavelength, which is smaller than the vertical
scale height of the disk, be resolved by multiple cells, places severe demands on
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the computational resources, especially if a three-dimensional representation of the
disk is required. It should also be noted that the radiative and thermal structure of
accretion disks around single SBHs are not adequately understood on any radial
scale.

As a binary’s semimajor axis decreases due to stellar, gas dynamical, or gravi-
tational radiation processes, a circumbinary disk’s inner edge spreads inward vis-
cously while maintaining constant edge-to-semimajor axis ratio, for example,
redge/a ∼ 2. In the final stages of the gravitational radiation-driven inspiral,
however, the timescale on which the semimajor axis decays becomes shorter than
the viscous timescale, and the disk can no longer keep up with the binary, resulting
in binary–disk detachment. On the relevant length scales the disk might be dom-
inated by radiation pressure and the electron scattering opacity; the structure and
the stability of such disks is an active research area [525].

8.5 SIMULATIONS OF GALAXY MERGERS

In the stellar spheroids that exhibit evidence for the “scouring” effects of binary
SBHs, nuclear relaxation times are always extremely long, >∼ 1014 yr (figure 3.1).
Repopulation of a massive binary’s loss cone by star–star gravitational encounters,
as discussed in section 8.3, would act very slowly in such galaxies: far too slowly
to bring the binary to coalescence in 10 Gyr (figure 8.16). This is just another way
of stating the “final-parsec problem.”

On the other hand, the feeding rate of stars to single SBHs can be much higher
in axisymmetric and triaxial galaxies than in spherical ones, and the same is pre-
sumably true for the feeding of stars to binary SBHs [576, 371]. Furthermore,
galaxy mergers are rather asymmetrical events, known to be capable of converting
spherical or axisymmetric galaxies into systems with more complicated
shapes.

The first simulations of galaxy mergers including SBHs with sufficient resolution
to follow the formation and evolution of a massive binary were only carried out in
2011 [277]. Figure 8.17 shows the results from such a simulation, in which the
merging galaxies (of mass ratio 1 : 3) contained collisionally relaxed, multimass
density cusps prior to the merger, intended to represent nuclear star clusters [220].
The binary SBHs created in these simulations continue to harden, long past the
hard-binary stage, at a rate consistent with the “full-loss-cone” rate in a spherical
galaxy, in spite of the fact that the number of particles in the simulations (∼ 106)
implies a low rate of collisional loss-cone refilling. Partly because of the dense,
preexisting nuclei, and partly because of the complex shape of the merger remnant,
the supply of stars to the massive binary remains high.

Much more work along these lines needs to be carried out; in particular, it has
not yet been established, using the torus-construction machinery described in sec-
tion 3.1, precisely which orbits in the N -body models are responsible for the effi-
cient loss-cone repopulation. Only after this is done will it be safe to extrapolate the
N -body results to real galaxies. But a preliminary conclusion is that the final-parsec
problem may not be as much of a problem as once believed.
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Figure 8.17 Evolution of the inverse binary semimajor axis (upper) and the binary harden-
ing rate (lower) inN -body simulations of 3 : 1 galaxy mergers [220]. The points
represent the N -body results while the dashed lines represent the semianalytic
estimates for the different mass groups, assuming a full loss cone. Model A
merged the galaxies on a circular orbit, and Model B from an eccentric orbit.
In spite of the large number of particles in the simulations, and the long re-
laxation time, the massive binary continues to harden as if its loss cone were
full—presumably due to the large number of centrophilic orbits. These simula-
tions began from galaxies with collisionally relaxed nuclei containing four mass
groups around the SBH, as in figure 7.8.

The state of the art of simulation of gas-rich galaxy mergers is improving. As
of this writing, such simulations have resolutions of the order of ∼ 10−2 times
the half-mass radius of the merging systems, or ∼ 10 pc for a galaxy of half-mass
radius 1 kpc [341, 67]. This is far too coarse a resolution for treating the dynamics
of gas on the scale of a hardening binary SBH, and so such “subgrid physics” can
only be included in a very approximate way.

8.6 DYNAMICS OF INTERMEDIATE-MASS BLACK HOLES

As discussed in chapter 2, intermediate-mass black holes (IBHs) are objects whose
existence and mode of formation are still somewhat speculative. Even the range of
masses associated with this hypothetical class of object differs from author to au-
thor. From the point of view of nuclear dynamics, however, we can usefully define
an IBH as one whose mass satisfies

m� � MIBH � M•, (8.145)

with M•, as always, the mass of the SBH at the galaxy’s center. The condition
MIBH � M• implies that the majority of stars moving within the SBH’s sphere of
influence are essentially unaffected by the presence of the IBH, except when they
happen to come close to it. The condition m� � MIBH means that perturbations
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by stars of the motion of the IBH will take the form of a dynamical friction force;
the effects of scattering by field stars will be negligible. These two approximations
allow the interaction between an IBH and the surrounding stars to be computed in a
simpler and more satisfying way than in the case of binary SBHs in which the two
components are comparably massive.

8.6.1 Orbital decay

SinceMIBH � m�, the orbit of the IBH will gradually decay due to dynamical fric-
tion. Its eccentricity will also change; as we will see, that change is often expected
to be in the direction of increasing eccentricity.

SinceMIBH � M•, we assume that the field-star distribution is unaffected by the
presence of the IBH (aside, of course, from the dynamical-friction wake) and that
changes in its orbit occur slowly enough that we can average the accelerations over
an orbit. We also assume that the IBH is orbiting inside the sphere of influence of
the SBH. Finally, we ignore for the moment the possibility of a significant mass in
bound stars around the IBH, in spite of the fact that some models for IBH formation
invoke stellar clusters.

The local diffusion coefficient describing changes in the scaled angular mo-
mentum variable R = L2/L2

c(E) is given by equation (5.167a). Near the SBH,
R ≈ 1−e2, with e the eccentricity of the Keplerian orbit. Invoking our assumption
MIBH � m�, equation (5.167a) becomes

〈�R〉 = g′

g
R〈�E〉 + 2gL〈�L〉 (8.146a)

= 〈�v‖〉
(
g′

g
Rv + 2g

L2

v

)
, (8.146b)

where g(E) = 1/L2
c(E), and equations (5.124) and (5.125) have been used to

express 〈�E〉 and 〈�L〉 in terms of the velocity-space diffusion coefficient 〈�v‖〉.
Near the SBH, L2

c(E) = (GM•)2/(2E) and

〈�R〉
R = 〈�E〉

E
+ 2

〈�L〉
L

(8.147a)

= 〈�v‖〉
(
v

E
+ 2

v

)
. (8.147b)

If we adopt Chandrasekhar’s first approximation, equation (5.23), to 〈�v‖〉, this
becomes

〈�R〉
R = −4πG2MIBH ln�

ρ(vf < v)

v3

(
v2

E
+ 2

)
, (8.148)

with ρ(vf < v) the density in field stars with velocities less than v.
Suppose that the field-star density is a power law in radius, ρ(r) = ρ0(r/r0)

−γ ,
and that the field-star velocity distribution is isotropic. Then f (vf ) is given by
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equation (3.49), and

ρ(vf < v, r)

ρ(r)
= 4

π1/2

�(γ + 1)

�(γ − 1/2)

∫ v/vesc(r)

0
dy y2

(
1 − y2

)γ−3/2
, (8.149)

where vesc(r) = √
2GM•/r is the escape velocity at r .

The final step is to orbit-average the local diffusion coefficient. Before doing
so, we note an interesting special case [206]. If γ = 3/2, f (E) = f0, and equa-
tion (8.149) becomes simply

ρ(vf < v)

ρ(r)
=

(
v

vesc

)3

(8.150)

and

〈�R〉
R = −4πG2MIBH ln�

[
ρ(r)

v3
esc(r)

] (
v2

E
+ 2

)
, γ = 3/2. (8.151)

Since vesc ∝ r−1/2, the quantity in square brackets is constant. Furthermore, the
time average of v2 for a Keplerian orbit is v2 = −2E. Hence 〈�R〉t = 0 in this
case: orbital eccentricity is conserved. Intuitively, we expect that for γ > 3/2,
the greater density near periapsis will imply orbital circularization, and that for
γ < 3/2, orbits should become more eccentric.

Figure 8.18 verifies this expectation. Plotted there is

〈�R〉t
R

/ 〈�E〉t
E

, (8.152)

the fractional change inR = 1−e2 that occurs in one decay time of E or a. Except
when γ is near 3/2, the fractional change is of order unity when e is large, falling to
zero for circular orbits. In other words, substantial eccentricity increases should be
expected for intermediate-mass-ratio inspirals in nuclei with density profiles flatter
than ∼ r−3/2.

Now for a few caveats. As noted in section 7.2, the standard dynamical-friction
formula, equation (5.23), predicts zero frictional force on a circular orbit in the
γ → 1/2 limit—an unphysical consequence of “taking the Coulomb logarithm out
of the integral.” (It is easy to show that the same is true for noncircular orbits when
γ = 1/2.) It was argued there that field stars with vf > v become increasingly
important as γ → 1/2; these were ignored in the treatment just presented. Further-
more, if the core was created by a binary SBH, an isotropic velocity distribution
may be unsuitable; instead there may be a genuine “hole” in configuration space
corresponding to the ejection of stars that came close to the preexisting binary.

In spite of these caveats, the conclusion that eccentricities should increase during
inspiral into cores is robust (figure 8.19).

8.6.2 Ejection of stars

A star that passes sufficiently close to an IBH can receive a velocity perturbation
large enough for it to escape; in other words, large enough that the
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Figure 8.18 Changes in eccentricity for a test mass that inspirals toward an SBH, assuming
a field-star density of ρ ∝ r−γ . The potential is assumed to be Keplerian, i.e.,
the distributed mass inside the orbit is much less than M•. The vertical axis
is the fractional change in R = 1 − e2 in a time E/〈�E〉t , i.e., the orbital
decay time. For γ = 3/2, dynamical friction leaves the eccentricity unchanged;
for larger γ , orbits circularize, and for smaller γ , they become more eccentric.
These curves were computed as discussed in the text, using Chandrasekhar’s
diffusion coefficients in their standard forms.

star’s velocity, after moving beyond the sphere of influence of the IBH, exceeds
vesc = (2GM•/r)1/2, the local escape velocity from the SBH. Escape was dis-
cussed in section 8.1 in the context of three-body scattering experiments; vej was
defined as the final velocity of a star that was moving fast enough, after interacting
with the massive binary, to escape from the galaxy core. In the scattering exper-
iments, all stars are unbound from the massive binary, both before and after the
interaction, and some consideration needed to be given to the precise definition of
vej. In the case of an IBH–SBH binary, we can compute the rate of escapers in a
more definite way by invoking our assumption that MIBH � M• [317, 406].

To simplify the notation, we use v to denote field-star velocities (rather than vf )
and vIBH to denote the orbital velocity of the IBH around the SBH. Let f (x, v)
be the steady-state distribution function describing stars that move in the fixed
gravitational potential of the SBH at radius r; since MIBH � M•, we ignore the
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Figure 8.19 N -body simulation of the inspiral of a 5000M� IBH into the center of the
Milky Way [8]. The initial stellar density was ρ ∼ r−0.6 inside a core of radius
rc ≈ 0.3 pc, falling off more steeply outside. The initial IBH orbit was eccen-
tric, e ≈ 0.5; as the orbit decays it becomes more eccentric, for the reasons dis-
cussed in the text. The dashed curves show the predictions of Chandrasekhar’s
dynamical-friction formula in its standard form, equation (5.23), which ignores
the contribution from fast-moving stars; the dotted curve uses a more exact ver-
sion that includes the contributions from these stars.

influence of the IBH on the field-star velocities when writing f , and f = 0 for
v > vesc(r) = (2GM•/r)1/2. The v that appears as an argument of f is understood
to be the velocity of a star before it has come near enough to the IBH for its motion
to be affected by it. Since stars will be affected by the IBH only when they are very
close, the r that appears in f can be identified with the radius of the IBH’s orbit.

Define vin and vout as the velocity of a star before and after it has passed near to
the IBH, respectively (figure 8.20). The relative velocity vectors are

win ≡ vin − vIBH, wout ≡ vout − vIBH. (8.153)

Because the velocity change occurs very near to the IBH, it takes place in a time
short compared with the time for vIBH to change; hence we can write

|win| = |wout| = w. (8.154)

Stars of interest have initial velocities vin < vesc; that is,

|vIBH + win| < vesc. (8.155)

Let vej ≥ vesc(r) be the minimum final velocity of a star that is considered to have
escaped from the SBH. Then escapers satisfy

|vIBH + wout| > vej. (8.156)
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Figure 8.20 This figure shows, in velocity space, the vectors that are useful in describing
the scattering of stars by an IBH. The initial stellar velocities, vin, lie inside
the sphere of radius vesc, the local escape velocity from the SBH. Stars with
velocities in the shaded region are able to be scattered by the IBH to velocities
greater than vej.

This can be written as the joint conditions

w>vej − vIBH, (8.157a)

cosφout> cosφ0 = v2
ej − v2

IBH − w2

2vIBHw
, (8.157b)

where φout is the angle between vIBH and wout.
However, not all stars satisfying the conditions (8.155), (8.157) will escape. Let

�(win) be the cross section for a star with initial velocity win to be scattered into
the velocity-space volume defined by equation (8.157b). In terms of �, the rate at
which stars are ejected with velocities greater than vej is

Ṅej =
∫
f (vin)w�(win)d

3vin. (8.158)

The region of integration is shown as the shaded region in figure 8.20.
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To calculate �, we first relate the initial and final velocities using the quantities
defined in figure 5.2:

wout = win cosχ − w
p

p
sinχ, (8.159)

where p is a vector whose magnitude is p and which is directed from the IBH
toward the star’s initial trajectory as shown in the figure. Using equations (5.14) we
can also write

tan
(χ

2

)
= GMIBH

w2p
. (8.160)

From equation (8.159) we see that

cosφout = cosφin cosχ + sinφin sinχ cosφb, (8.161)

where φb is the polar angle in the p plane. Equations (8.160) and (8.161), together
with equation (8.157b), define a finite domain in the p plane, the area of which is

�(win) = πG2M2
IBH

w4

sin2 φ0

(cosφin − cosφ0)2
, (8.162)

where φin is the angle between vIBH and win.
In the previous section, we noted that a field-star density n ∝ r−3/2 has an

isotropic distribution function at r � rh with the simple form f = f0 = constant.
Assuming this form for f , the ejection rate integral (8.158) is analytically tractable,
and the rate of ejection at speeds greater than vej is

Ṅ(vout > vej)= 3π

2

G2M2
IBH

v3
esc

n(r)R(δ, λ)

≈ 1.4 × 10−6

(
MIBH

103M�

)2 (
M•

4 × 106M�

)−3/2

×
(

n1pc

105 pc−3

)
R(δ, λ) yr−1, (8.163a)

R(δ, λ)≡ −(λ− 1)3 + 8δ3

3(λ2 − 1)δ
− ln

(
1 + δ

λ− δ

)
,

1 ≤ λ ≤ 2δ + 1, (8.163b)

where δ ≡ vIBH/vesc < 1, λ ≡ vej/vesc > 1. The differential ejection rate at vout is

dṄ

dv

∣∣∣∣
v=vout

= 3π

2

G2M2
IBH

v4
esc

n(r)S(δ, ν),

(8.164)

S(δ, ν)≡ ν(ν − 2δ − 1)2(ν2 + 2ν − 4δ2 + 4δ − 3)

3δ(ν − δ)(ν2 − 1)2
,

where ν ≡ vout/vesc.
If the IBH is in a circular orbit about the SBH, δ = 2−1/2; figure 8.21, (left), plots

R(λ) for this case. The radial dependence of Ṅ comes entirely from the dependence
of R on λ for this choice of density profile.
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Figure 8.21 Left: The dimensionless quantity R, equation (8.163), that is proportional to
the rate of ejection of stars with v > vej by an IBH; vesc = (2GM•/r)1/2

is the escape velocity from the SBH. The IBH is assumed to be in a circular
orbit around the SBH, and the field-star density is ρ ∝ r−3/2. Right: The rate
of ejection of stars with velocities large enough to escape from the galaxy as
a function of time, for inspiraling IBHs with three different masses: 103 M�
(lower), 3 × 103 M�, and 104 M� (upper). In each case the inspiral began from
a distance of 0.4 pc. Other parameters were chosen based on the Milky Way (see
text). The curves change to dashed at the radius where the enclosed stellar mass
is equal to the IBH mass; in this regime, changes in the stellar distribution due
to the presence of the IBH could no longer be ignored. One expects the ejection
rate to peak at roughly this time.

Writing ρ(r) = ρ0(r/r0)
−3/2 for the field-star density, and again assuming a

circular orbit, equations (5.23), (8.54), and (8.150) give for the dependence of the
IBH’s orbital radius on time,

r(t)= r(0)e−t/Tdf , (8.165a)

Tdf = 1

81/2π

M3/2
•

G1/2MIBH ln�

1

ρ0r
3/2
0

(8.165b)

≈ 27

(
M•

4 × 106M�

)3/2 (
MIBH

103M�

)−1 (
ρ(1pc)

105M� pc−3

)−1

×
(

ln�

5

)−1

Myr. (8.165c)

We can compute the time dependence of the ejection rate using equations (8.163)–
(8.165), after specifying a value for vej, the minimum velocity of stars that are
considered to have “escaped.”
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If we are interested in the stars that escape completely from the galaxy, it is
appropriate to set

v2
ej(r) = v2

esc(r)+ v2
galaxy, (8.166)

where vgalaxy is the escape velocity from the bottom of the galaxy’s potential well.
In the case of the Milky Way, an estimate of the latter is 103 km s−1. Figure 8.21,
(right), plots the result, assuming ρ(1pc) = 5 × 105M� pc−3, a starting radius of
0.4 pc, and three different values for MIBH. Such stars have the correct kinematical
properties to be associated with the “hypervelocity stars” discussed in section 6.3.
However, it is currently unclear whether the inferred ejection times of these stars is
consistent with the highly peaked rate of production predicted by this model [62].

8.6.3 Perturbation of stars by an IBH in a circular orbit

In addition to producing hypervelocity stars, an IBH can also affect stellar mo-
tions in a more gentle way, leaving them bound to the SBH but with altered orbits
[44, 319]. Understanding this sort of perturbation has long been the bread and but-
ter of celestial mechanicians; for instance, when predicting the motion of comets
or asteroids that have been perturbed by Jupiter. In fact, the ratio between the mass
of a 103M� IBH and a 106M� SBH is similar to the Jupiter/Sun mass ratio. If we
assume that the orbit of the IBH remains fixed for many periods—in other words,
that its inspiral has “stalled”—then the analogy is almost complete.

In the case of the solar system however, Jupiter’s orbit is known to be nearly
circular (e ≈ 0.05), and a great deal of work has been devoted to this special
case—the the circular restricted three-body problem. (Recall from chapter 4 that
“restricted” means that the mass of the third body—in our case, a star—is negligible
compared with the other two.) If the two massive bodies are moving in circular
orbits, the distance between them is fixed, and each body moves about its common
center of mass at a fixed angular velocity n = 2π/P , with P the binary period. It
is well known that by transforming to a frame that rotates about the center of mass
with frequency n, a conserved quantity appears in the motion of a test body, the
Jacobi constant, given by

HJ = n2
(
ξ 2 + η2

) + 2

(
GM•
r1

+ GMIBH

r2

)
− ξ̇ 2 − η̇2 − ζ̇ 2, (8.167)

where (ξ, η, ζ ) are Cartesian coordinates in the rotating frame, (r1, r2) are, respec-
tively, the distance of the test mass (star) from the SBH and the IBH, and the z-axis
is identified with the binary’s axis of rotation. The first term in equation (8.167)
represents the centripetal acceleration. Transforming back to an inertial frame, HJ
can be written

HJ = 2

(
GM•
r1

+ GMIBH

r2

)
+ 2nLz − ẋ2 − ẏ2 − ż2, (8.168)

where Lz = xẏ− yẋ is the specific angular momentum of the star about the binary
center of mass. Note that Lz itself is not conserved; rather, only this particular
combination of Lz and the energy.
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Conservation of Jacobi’s constant does not greatly restrict the motion of the star,
which can in principle reach any point within the zero-velocity surface. But if we
assume that MIBH � M•, and that close encounters between star and IBH are rare,
an alternate form for HJ can be derived that is more useful [516]. We first replace
ẋ2 + ẏ2 + ż2 in equation (8.168) by the approximation

v2 = GM•

(
2

r
− 1

a

)
; (8.169)

in other words, we assume that the motion of the star is close to that of a Keplerian
orbit about the dominant mass, with semimajor axis a, and we identify r1 with r .
We can also replace Lz by

L cos i =
√
GM•a(1 − e2) cos i, (8.170)

with i the inclination of the star’s orbit with respect to the plane of the binary, and
e its eccentricity. The Jacobi constant then becomes

HJ ≈ 2

(
GM•
r1

+ GMIBH

r2

)

+2n cos i
√
GM•a(1 − e2)−GM•

(
2

r
− 1

a

)
. (8.171)

Invoking our assumption of no close encounters allows us to neglectMIBH/r2 com-
pared with M•/r1, and again identifying r1 with r , we find

HJ ≈ 2GM•
aIBH

{
aIBH

2a
+

[
a

aIBH
(1 − e2)

]1/2

cos i

}
, (8.172)

where n has been expressed in terms of the semimajor axis of the inner binary via
n2 = GM•/a3

IBH.
The quantity in braces in equation (8.172) is called Tisserand’s parameter,

or T . “Tisserand’s relation” is the statement that T (a′, e′, i ′) = T (a, e, i), where
(a, e, i) and (a′, e′, i ′) are the orbital elements of a comet (say) before and after
an encounter with Jupiter (say). Tisserand’s relation has been used to determine
whether a “new” comet is actually a previously discovered one whose orbit has
been altered by interaction with Jupiter.

In the context of galactic nuclei, Tisserand’s relation can be used in the following
way [44]. Imagine that an IBH is orbiting, undetected, somewhere near the Galactic
center. Suppose in addition that this IBH was once associated with a cluster of stars,
which were subsequently tidally dispersed, into a disk; and then perturbed again,
by interactions with the IBH [226]. Finally, suppose that one knows which stars
were brought into the center in this way. For instance, they might be the S-stars,
which are young enough to be associated with a recent inspiral and whose current
orbital elements are well determined (table 4.1).

When these stars were still in a disk, each had roughly the same a = aIBH and
some eccentricity close to zero, yielding T ≈ 3/2. In terms of the current orbital
elements (a, e, i), Tisserand’s relation for each star can therefore be written

aIBH

a
+ 2

[
a

aIBH
(1 − e2)

]1/2

cos i ≈ 3, (8.173)
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where the inclination is defined with respect to the (unknown) orientation of the
M•–MIBH orbital plane. One can then try to find a value for aIBH and for the two
angles that define the plane of the SBH–IBH orbit such that the relation (8.173)
is most nearly satisfied for all the stars in question. (Note that the mass of the
IBH does not enter into the problem.) So far, this procedure has not led to the
identification of an unseen IBH. But the reader is encouraged to spend a few hours
playing this game, using whatever are the best current estimates for the orbital
elements of the young Galactic center stars.

Tisserand’s relation allows for changes in the energy of the interacting star—that
is, changes in its semimajor axis. If a is constant, Tisserand’s relation simplifies to√

1 − e2 cos i ≈ constant. (8.174)

Equation (8.174) states simply that the component of the star’s angular momen-
tum parallel to the SBH–IBH rotation axis is conserved. This is not too surprising:
recall from section 4.8.2 that the same quantity was found to be conserved in the
hierarchical three-body problem (HTBP), after averaging, when the lowest-order,
or “quadrupole,” approximation was made for the perturbing potential.

We can apply the results from our detailed discussion of the HTBP in section 4.8
to the motion of a star that is perturbed by an IBH, as long as we are careful to
respect the assumptions that were made in that derivation. We considered two lim-
iting cases, depending on the ratio m1/m2 between the masses of the inner and
outer bodies: the “inner restricted problem” for which m1 � m2; and the “outer
restricted problem” for which m2 � m1. In the current context, the inner problem
refers to a star that orbits well inside the IBH orbit, and the outer problem to a star
that orbits well outside. To summarize briefly what we found in chapter 4:

• Inner problem. The star’s argument of periapsis ω either circulates (0 ≤
ω ≤ 2π ), or librates over a finite range; in either case, its eccentricity and in-
clination vary periodically with ω, in such a way as to conserve (1− e2) cos i
(“Lidov–Kozai cycles”).

• Outer problem. The star’s eccentricity is constant, but its angular-
momentum vector circulates, either about the angular momentum vector of
the inner binary, or about its major axis.

At least in the case of a circular SBH–IBH binary, numerical experiments show
that the HTBP is a reasonably good representation of the motion of nearby
stars [219]. Figure 8.22 shows an example: the orbits of three of the Galactic cen-
ter S-stars—S8, S12, and S27—as they evolve over the next 2 Myr, assuming the
presence of a 4000M� IBH in a circular orbit of radius 30 mpc. Referring to ta-
ble 4.1, we see that apoapsides of these three stars lie at distances of 30.0, 23.6, and
35.7 mpc, respectively, from the SBH. Whereas all three stars spend much of their
time inside the orbit of the hypothesized IBH, none can be said to strictly satisfy
the conditions that define the “inner restricted problem.” Nevertheless, each of the
three orbits exhibits oscillations in eccentricity that are similar to those predicted
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Figure 8.22 This figure shows how the orbits of three S-stars at the center of the Milky
Way would evolve in eccentricity over the next two million years, in response
to forcing from an IBH with mass MIBH = 4000M� and orbital radius r =
30 mpc. The initial relative inclinations were i = 58◦ (S8), 86◦ (S12), and 79◦

(S27). The horizontal dashed lines show the predicted maximum value of the
eccentricity, equation (8.174), and the space between the solid vertical lines
indicates the predicted period, equation (8.175) [219].

by the HTBP, with period close to TKozai, the characteristic time for Lidov–Kozai
oscillations (equation 4.314):

TKozai =
√
GM•

GMIBH

a3
IBH

a3/2

(
1 − e2

IBH

)3/2

≈ 9 × 105
(
1 − e2

IBH

)3/2
(
MIBH

103M�

)−1 (
aIBH

0.1 pc

)3

×
(

a

0.1 mpc

)−3/2

yr. (8.175)
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8.6.4 Perturbation of stars by an IBH in an eccentric orbit

As we saw in section 8.6.1, it is entirely possible that the orbit of an IBH–SBH
binary would be substantially noncircular. The treatment of the HTBP in section
4.8 allowed for nonzero eccentricities of both the test star and the perturber, but
only under the quadrupole approximation to the perturbing potential, or equiva-
lently, if a2 � a1. Adding the octopole and higher-order terms to the averaged
Hamiltonian would be one way to improve the description of the motion, but the
equations quickly become very complicated, and in any case the validity of the
hierarchical approximation would always be questionable for stars that happen to
come close to the IBH.

For these reasons, direct numerical integration of the equations of motion is prob-
ably the best way to investigate how an IBH on an eccentric orbit affects the mo-
tions of stars orbiting the SBH. The consequences of making the IBH orbit eccen-
tric turn out to be dramatic [367]. Even a mild eccentricity (e >∼ 0.5) can cause the
orbits of stars to “flip,” that is, to change their sense of circulation around the SBH,
from prograde (i.e., in the same sense as the IBH) to retrograde or vice versa. Fur-
thermore, the eccentricities of the stellar orbits can be driven to very large values.
Figure 8.23 shows an example in which the stellar orbits initially had small incli-
nations with respect to the SBH–IBH binary. Equation (8.174) would predict only
modest changes in the eccentricity and inclination of these orbits, but after roughly
1 Myr, the eccentricity distribution is close to “thermal,” N(e)de ∼ e de, and the
distribution of orbital inclinations is also essentially random.

Examination of the stellar orbits in these simulations reveals the following char-
acteristics of the flipping phenomenon:

1. Large changes in inclination occur near the time when the eccentricity of the
stellar orbit reaches large values (figure 8.24). It is intuitively obvious that
changing the sign of L is “easiest” when the magnitude of L is small.

2. The timescale over which the eccentricity and inclination change is of a sim-
ilar order to, but longer than, the time associated with Kozai–Lidov oscilla-
tions, equation (8.175), and much longer than orbital periods; in other words,
this is a “secular” effect and not a result of (say) rare, close interactions with
the IBH.

3. The large changes in e and cos i are not a result of close encounters between
stars; evolution of the stellar orbits is nearly unchanged if the stars are re-
placed by test masses.

4. The flipping behavior “turns on” suddenly as the mass and the orbital ec-
centricity of the IBH are increased. For initial conditions like those of figure
8.23, flipping of the orbits requires an eccentricity of the IBH–SBH binary
greater than ∼ 0.5, and a mass ratio greater than ∼ 4 × 10−4 [367].

Simulations like the ones shown in figures 8.23 and 8.24 are interesting because
they provide a possible, albeit partial, solution to the S-star puzzle [367]. Recall
that the S-stars—unlike, say, the young stars in the two nuclear disks—exhibit
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Figure 8.23 An IBH on an eccentric orbit can induce enormous changes in the orbits of
nearby stars [367]. The two panels on the left show the initial conditions,
which consisted of a 4000M� IBH orbiting about the Galactic center SBH with
aIBH = 15 mpc and eIBH = 0.5, and a set of stars on similar orbits. Such initial
conditions might result from the tidal dispersion of a cluster of stars around the
IBH [226]. The panels on the right show the same stars after 1 Myr. The IBH
orbit is the heavy curve in all panels and the unit of length is milliparsecs. The
initially disklike, corotating distribution of stars is converted, after 1 Myr, into
an approximately isotropic distribution of orbits with a range of eccentricities,
similar to what is observed for the S-stars. Many of the orbits “flip” in response
to the perturbing force from the IBH; i.e., the direction of their angular momen-
tum vector changes by roughly 180◦. The flipping phenomenon is only observed
when the IBH orbital eccentricity exceeds about 0.5, the value assumed in this
figure.

an apparently random distribution of orientations and eccentricities, with no clear
sense of rotation. Perhaps these stars were carried into their current location by
an inspiraling IBH, and their orbits were then “randomized”, as in figure 8.23, by
perturbations from that same IBH, in a time much less than their current ages. The
IBH responsible for this evolution might still be orbiting, unseen, somewhere in-
side the inner 10 mpc or so; or perhaps it managed to spiral in and merge with Sgr
A*, contributing to the formation of the ∼ 0.5 pc core in the stellar distribution
(figure 7.1).
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Figure 8.24 Flipping of orbits by a perturber in an eccentric orbit in the three-body (SBH–
IBH–star) problem [367]. The figure shows the evolution of a single stellar
orbit in the simulation of figure 8.23. The top and bottom panels show the star’s
eccentricity and inclination; the latter is defined with respect to the original
orbital plane, which is also the plane of the SBH–IBH orbit. Large changes
in inclination occur near the time when the eccentricity of the stellar orbit is
largest.
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8.7 TRIPLE SUPERMASSIVE BLACK HOLES AND THE

FINAL-PARSEC PROBLEM

If a massive binary fails to coalesce, it can be present in a nucleus when a third
SBH, or a second binary, is deposited there following a subsequent galaxy merger.
The multiple SBH system that forms can then engage in three-body interactions.
Possible outcomes include ejection of one or more of the SBHs from the nucleus
by the gravitational slingshot; rapid coalescence of two SBHs that are placed onto a
mutual orbit of high eccentricity or small semimajor axis; or both [476, 531]. This
is one way to overcome the final-parsec problem.

Suppose that only one of the two merging galaxies contains a binary SBH, and
that the larger of the two galaxies contains the largest of the three SBHs. Call the
mass of this object M1, and the mass of the primary (or single) SBH in the smaller
galaxy M3; the third SBH has mass M2 and can be located either in the larger
or smaller galaxy. Logically, there are three possibilities for the arrangement and
relative masses of the three SBHs:

I. The binary M1 +M2 is in the larger galaxy and M2 < M3 < M1.

II. The binary M1 +M2 is in the larger galaxy and M3 < M2 < M1.

III. The binary M3 +M2 is in the smaller galaxy and M2 < M3 < M1.

Cases I and II have received the most attention in the literature and we focus on
them here.

Recall from chapter 4 that gravitational-wave (GW) emission brings an isolated
binary to coalescence in a time

tGW ≈ 6 × 106 (1 + q)2

q

(
a0

10−2 pc

)4 (
M1 +M2

108M�

)−3 (
1 − e2

0

)7/2
yr

(equation 4.239), where q ≡ M2/M1 ≤ 1 is the binary mass ratio and (a0, e0) are
its initial semimajor axis and eccentricity. It is clear from this expression that even
modest increases in eccentricity can greatly reduce tGW. The presence of a third
SBH can cause this to happen in one of two ways: via Lidov–Kozai oscillations
when M3 is relatively far from the binary; and via strong, three-body interactions
should the orbit of M3 decay (due to dynamical friction) so far that it is brought
close to the central binary, before the latter has coalesced.

It is natural to consider these two regimes separately, since an inspiraling SBH
will naturally transition from one to the other as its separation from the central
binary decreases. In the language of the three-body problem, this transition cor-
responds roughly to a change from a “stable” to an “unstable” three-body system.
“Stable” triples are defined as those that evolve in a manner similar to what we have
seen in the hierarchical problem, with little exchange of energy between the inner
and outer binaries. “Unstable” triples evolve chaotically, and the final outcome is
ejection: one of the bodies extracts enough energy from the other two to escape,
perhaps to infinity. The distinction is largely empirical; there is no fundamental
constraint that would keep any three-body system from eventually evolving into
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a bound binary and a detached third body that escapes to infinity. Nevertheless,
in numerical integrations, one often observes a sharp transition from one sort of
behavior to another as a parameter (e.g., the initial relative separations) is changed.

Various, approximate criteria have been derived for the stability of hierarchi-
cal three-body systems based on numerical integrations. One widely used formula
[339] predicts stability for

a2

a1
> � ≡ 2.8

1 − e2

[(
1 + M3

M1 +M2

)
1 + e2

(1 − e2)1/2

]2/5

. (8.176)

The notation here is the same as in the discussion of the hierarchical three-body
problem in chapter 4: the subscript 1 on a or e refers to the inner (M1,M2) binary
and the subscript 2 refers to the binary consisting of M3 moving about the center
of mass of the (M1,M2) system. Equation (8.176) was derived assuming coplanar,
corotating orbits; more general configurations are expected to be more stable. Note
that—for M3 � (M1,M2)—equation (8.176) states roughly the same condition
that was given in section 8.1 for a field star to interact strongly with a binary SBH:
a distance of closest approach that is at most a few times the binary separation.

Ignoring the effects of the galaxy’s confining potential, the evolution of a triple
SBH in the “stable” regime, a2/a1 >∼ �, can be approximated using the hierarchical
three-body equations of motion derived in section 4.8: either the inner restricted
equations (case I) or the outer restricted equations (case II). Figure 8.25 shows the
results of a set of such calculations, in which the averaged Hamiltonian included
terms up to octopole order [50]. The effects of relativity were approximated by
adding terms representing the averaged rate of Schwarzschild precession (1PN)
and gravitational-wave energy loss (2.5PN) to the equations of motion of the inner
binary. The figure shows that Lidov–Kozai oscillations can greatly accelerate the
coalescence, particularly if the initial eccentricity is low.

Recall from chapter 4 that Lidov–Kozai oscillations are quenched by the
Schwarzschild precession when

(
1 − e2

1

) a1

rg
<∼

3

2π

M1 +M2

M3

a3
2

a3
1

(
1 − e2

2

)3/2
, (8.177)

where rg ≡ GM1/c
2 (equation 4.332). Figure 8.26 shows the dependence of the

coalescence time on the initial value of a2/a1 for triple systems with fixed initial
inclination. For sufficiently large a2/a1, relativistic precession quenches the Lidov–
Kozai cycles and the eccentricity of the inner binary is left almost unchanged.
The dashed line in that figure was computed by using the merging time of equa-
tion (4.239) as a proxy for a1, together with a relation similar to equation (8.177),
yielding

tmerge =1.2 × 106

(
a2/a1

10

)12 (
2M3

M1 +M2

)−4 (
M1

106M�

)−1

×
(

M2

106M�

)−1 (
M1 +M2

2 × 106M�

)3
(1 − e2

2)
6

(1 − e2
1)

5/2
f (e1) yr, (8.178)
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Figure 8.25 This figure shows how the time for a binary SBH to coalesce depends on its
initial eccentricity e1 in the presence of a third SBH [50]. These are integrations
of the averaged, hierarchical three-body equations of motion, similar to equa-
tions (4.316) but derived from an octopole Hamiltonian and including terms
corresponding to the 1PN and 2.5PN accelerations for the inner binary. The as-
sumed masses were M1 = 2 × 106 M�, M2 = M3 = 106 M�, and the initial
conditions of the triple system were a1 = 3.16×10−3 pc, a2/a1 = 10, e2 = 0.1,
and i = 80◦. The merger time is expressed as a multiple of the coalescence time
for an isolated binary having the same initial parameters as the inner binary. Two
initial values were chosen for the orientation of the inner binary, specified by
the value of ω (indicated here by g1). The first, g1 = 0, corresponds to a circu-
lating inner binary that starts out with an eccentricity that is at the minimum in
the Lidov–Kozai cycle (as in figure 4.21a). The subsequent oscillations always
result in higher eccentricities and a reduced time for GW energy loss. The sec-
ond case, g1 = 90◦, corresponds to librating orbits for low e1 and circulating
orbits for high e1. Irregularities in the latter curve reflect chaos in the motion.

with f (e) ≈ 1 the same function defined in equation (4.239). Initial conditions
to the right of this curve on figure 8.26 result in coalescence times that are almost
unaffected by the Lidov–Kozai oscillations.

If the infalling SBH manages to reach a separation from the inner binary such
that � in equation (8.176) is less than one, and does so before the inner binary
has coalesced, the motion of the three SBHs will enter into a qualitatively differ-
ent regime characterized by close encounters between the three massive bodies. If
the infalling SBH is less massive than either of the components of the preexisting
binary, M3 < (M1,M2), the subsequent evolution is similar to that of a star in-
teracting with a massive binary, as discussed extensively in the first parts of this
chapter. Each close interaction of the smaller SBH with the binary increases the
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Figure 8.26 Illustrating how the coalescence time of the inner binary in a triple-SBH system
depends on the initial ratio of semimajor axes [50]. The component masses are
M1 = 2 × 106 M�, M2 = 106 M� and M3 = 106 M�; the initial conditions
were e1 = 0.1, e2 = 0.1, ω1 = 0, ω2 = 90◦, and i = 80◦. The curves show
results for different initial values of a1 spaced at equal logarithmic intervals:
a1 = {1.00, 1.26, 1.58, 2.00, 2.51, 3.16, 3.98, 5.01, 6.31, 7.94, 10.0}×10−3 pc.
The dashed curve is equation (8.178); to the right of this curve, Lidov–Kozai
cycles are quenched by relativistic precession.

latter’s binding energy by 〈|�E/E|〉 ≈ 0.4M3/(M1 +M2) [239], and the ultimate
outcome is likely to be ejection of the smaller SBH with a velocity roughly 1/3 the
relative velocity of the two SBHs in the inner binary [476]. Since the escaping SBH
carries with it a nonnegligible linear momentum, the binary also recoils, but with
a speed that is lower by ∼ M3/(M1 +M2). The smaller SBH will escape entirely
from the galaxy if

Vbin >∼ 3Vesc, (8.179)

where Vbin is the relative velocity of the inner binary during the last close encounter
and Vesc is the escape velocity from the center of the galaxy. This condition can be
written (

M1 +M2

108M�

)1/2 (
a1

10−2 pc

)−1/2

>∼ 0.5

(
Vesc

1000 km s−1

)
. (8.180)

Escape of the least massive of the three bodies from the galaxy is evidently to be
expected in many cases, and if the three masses are comparable, the binary may also
gain enough energy from the close interaction to escape. Even if it does not escape
entirely, its temporary displacement from the galaxy center will cause the inner
regions of the galaxy to expand, in a region r <∼ rh = G(M1 +M2)/σ

2, increasing
the size of the core that was created when the binary first formed. Subsequent decay
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of the displaced binary’s orbit due to dynamical friction against the stars will result
in additional transfer of energy to the galaxy, causing the central stellar density to
decrease still more. Figure 5.5 (which was based on a single displaced SBH, not a
binary) illustrates this evolution.

If M3 > M2, the most likely outcome of the close three-body encounters will be
an exchange interaction, with the lightest SBH ejected and the two most massive
SBHs forming a new binary. Further interactions then proceed as in the case M3 <

(M1,M2).
During these strong, three-body interactions, both the semimajor axis and eccen-

tricity of the dominant binary will change stochastically, in a manner that is not
well described by the hierarchical equations of motion. The timescale for GW co-
alescence can be enormously shortened, although to an extent that is difficult to
estimate from the initial conditions [383, 531, 533].

One would obviously like to know how important such interactions are likely to
be for the evolution of galaxies, and their central SBHs, over cosmological times.
There is very little that can be said with certainty. If binary SBHs manage to co-
alesce in a time that is less than the typical time between galaxy mergers, triple
SBH systems will almost never form. One study [549], based on a highly simpli-
fied model for binary/galaxy interactions, estimates that three-body recoils could
result in 10% of SBHs having been ejected completely from galaxies. If this has
occurred, a significant fraction of nuclei could be left with no SBH, with an offset
SBH, or with an SBH whose mass is lower than expected based on the M•–σ or
M•–L relations.





Suggestions for Further Reading

Chapter 1, “Introduction and historical overview”

Popular and semipopular books on supermassive black holes abound. For the Milky
Way supermassive black hole in particular, see

The Black Hole at the Center of our Galaxy, F. Melia. Princeton University
Press, 2003,

and

The Black Hole at the Center of the Milky Way, A. Eckart, R. Schoedel, and
C. Straubmeier. Imperial College Press, 2005.

A more rigorous text on black holes is

Physics of Black Holes, I. D. Novikov and V. P. Frolov. Kluwer, 1989.

Gravitational waves are the subject of

Einstein’s Unfinished Symphony: Listening to the Sounds of Space-Time,
Marcia Bartusiak. Berkley Trade, 2003.

A broader, more speculative and more personal book about the general theory of
relativity is

Black Holes and Time Warps: Einstein’s Outrageous Legacy, K. Thorne.
W. W. Norton, 1994.

Chapter 2, “Observations of galactic nuclei and supermassive black holes”

An article on galaxy structure that pays close attention to the history of the subject
is

“A review of elliptical and disc galaxy structure, and modern scaling laws,”
A. Graham, in Planets, Stars and Stellar Systems, T. D. Oswalt (editor).
Springer, 2012.

The nucleus of the Milky Way is treated in a number of review articles. For a mostly
observational slant, see

“The Galactic center massive black hole and nuclear star cluster,” R. Genzel,
F. Eisenhauer, and S. Gillessen, Reviews of Modern Physics, 82(4):3121–
3195, 2010,



490 SUGGESTIONS FOR FURTHER READING

and for a more theoretical perspective,

“Stellar processes near the massive black hole in the Galactic center,”
T. Alexander, Physics Reports, 419(2–3):65–142, 2005.

The technique of reverberation mapping is reviewed in

“The central black hole and relationships with the host galaxy,” B. Peterson,
New Astronomy Reviews, 52(6):240–252, 2008.

For the history of the M•–σ relation, see

“Relationship of black holes to bulges,” D. Merritt and L. Ferrarese, in
I. Shlosman J. H. Knapen, J. E. Beckman and T. J. Mahoney, editors, The
Central Kiloparsec of Starbursts and AGN: The La Palma Connection,
volume 249 of Astronomical Society of the Pacific Conference Series, page
335, 2001.

Observational evidence for binary supermassive black holes is reviewed in

“Observational evidence for binary black holes and active double nuclei,”
S. Komossa, Memorie della Società Astronomica Italiana, 77:733–741,
2006.

A standard reference for theory and detection of gravitational waves is

Gravitational Waves: Theory and Experiments, M. Maggiore, Oxford
University Press, 2007.

Chapter 3, “Collisionless equilibria”

Action-angle variables are discussed in many textbooks on classical mechanics.
Nonintegrability is central to galactic dynamics however, and a comprehensive text
that covers both sorts of motion is

Regular and Chaotic Dynamics, A. J. Lichtenberg and M. A. Lieberman.
Springer, 1992.

A review of galactic dynamics that emphasizes chaos is

“Elliptical galaxy dynamics,” D. Merritt, Publications of the Astronomical
Society of the Pacific, 111(756):129–168, 1999.

A slightly dated text on galactic dynamics, of which the author is still very fond
(perhaps because it was the text he learned from) is

Galactic Astronomy, D. Mihalas and P. M. Routly. W. H. Freeman and
Company, 1968.
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Chapter 4, “Motion near supermassive black holes”

Motion in the Schwarzschild and Kerr metrics is covered in many texts on relativity;
one that places the subject in a broader astrophysical context is

Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact
Objects, S. L. Shapiro and S. Teukolsky. Wiley, 1986.

A comprehensive review of the two-body problem in the post-Newtonian
approximation—though excluding spin—is

“Gravitational radiation from post-Newtonian sources and inspiralling com-
pact binaries,” L. Blanchet, Living Reviews in Relativity, 9(4), 2006.

Two texts that extensively use Lagrange’s planetary equations to derive the post-
Newtonian equations of motion, including spin (but in the context of the solar sys-
tem, not black holes) are

Essential Relativistic Celestial Mechanics, V. A. Brumberg. Adam Hilger,
1991,

and

Relativity in Astrometry, Celestial Mechanics and Geodesy, M. H. Soffel.
Springer, 1989.

The three-body problem is the subject of quite a number of books; one that includes
applications to supermassive black holes and galactic nuclei is

Three-Body Problem, M. Valtonen and H. Karttunen. Cambridge University
Press, 2006.

Chapter 5, “Theory of gravitational encounters”

This topic is covered in the book by Mihalas and Routly cited above, and also in

Dynamical Evolution of Globular Clusters, L. Spitzer. Princeton University
Press, 1987,

and

Galaxy Dynamics, 2nd edition, J. Biney and S. Tremaine. Princeton Univer-
sity Press, 2002.

Both texts contain a more extensive discussion of binary stars than this book; the
latter contains some basic material relating to supermassive black holes and galactic
nuclei. Chandrasekhar’s text is still quite readable:

Principles of Stellar Dynamics, S. Chandrasekhar. Dover Publications, 1943.
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Chapter 6, “Loss-cone dynamics”

A short, qualitative review containing many of the important references is

“Loss cone: Past, present and future,” S. Sigurdsson, Classical and Quantum
Gravity, 20(10):S45–S54, 2003.

Observational evidence relating to tidal disruption events is reviewed in

“X-ray evidence for supermassive black holes at the centers of nearby, non-
active galaxies,” S. Komossa, Reviews in Modern Astronomy, 15:27–35,
2002,

and this article summarizes observational evidence for hypervelocity stars:

“Hypervelocity stars and the Galactic center,” W. Brown, Galactic Center
Newsletter, 28:7–12, 2008.

A review article on the detection of EMRIs and the (ever-changing) status of LISA
is

“Low-frequency gravitational-wave science with eLISA/NGO,” P. Amaro-
Seoane et al., Classical and Quantum Gravity, 29(12):124016, 2012.

Chapter 7, “Collisional evolution of nuclei”

The book cited above for chapter 5 by L. Spitzer, as well as

The Gravitational Million-Body Problem: A Multidisciplinary Approach to
Star Cluster Dynamics, D. Heggie and P. Hut. Cambridge University Press,
2003,

cover collisional evolution of stellar systems in detail, mostly in the context of
star clusters; Spitzer’s text is more rigorous, although succinct, while the second
approaches the topic from a more intuitive point of view.

Chapter 8, “Binary and multiple supermassive black holes”

Two textbooks that deal with structure formation in a hierarchical universe are

Cosmological Physics, J. A. Peacock. Cambridge University Press, 1999,

and

Modern Cosmology, S. Dodelson. Academic Press, 2003.

Techniques of N -body simulation are comprehensively reviewed in

Gravitational N -body Simulations, S. J. Aarseth. Cambridge University
Press, 1991.

Dynamics of gas in galactic nuclei is treated in

Accretion Power in Astrophysics, 3rd edition, J. Frenk, A. King, and D. J.
Raine. Cambridge University Press, 2002.
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[387] M. Milosavljević and D. Merritt. The final parsec problem. In The Astro-
physics of Gravitational Wave Sources, volume 686 of AIP Conference Pro-
ceedings, pages 201–210, October 2003.
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Figure 5.8
initial mass function (IMF), 373–76. See also

Kroupa initial mass function; Salpeter
initial mass function

initial-to-final mass relation, 374
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innermost stable circular orbit (ISCO), 179
instability strip (triaxial potentials), 108
integrable motion. See regular motion
integral of motion, 60

in the Kepler potential, 61
in spherical galaxy, 61
isolating, 60
role in Jeans’s theorem, 68
third

in axisymmetric potentials, 61, 93, 95,
98, 111, 260, 262, 328–30, 412f—
from averaged Hamiltonian, 141–43,
145 (See also orbits, saucer); neglect of
in the Fokker–Planck equation, 260

in the Lidov–Kozai problem, 197–98,
202

in triaxial potentials, 103–5—from
averaged Hamiltonian, 152–56
(See also orbits, pyramid)

intensity profile. See surface brightness profile
intergalactic

black holes, 45
gas, 463

intermediate-asymptotic behavior, 400
intermediate-mass black holes (IBH), 9, 45,

120, 192, 197, 417, 468. See also
ultra-luminous X–ray sources

in active galactic nuclei, 46–47
Brownian motion of, 251
constraints on the presence of at the

Galactic center, 47–48, Figure 2.13
creation of cores by, 481
disruption of white dwarfs by, 290
dynamics of, 468–82
ejection of stars by, 470–76
flipping of orbits by, 480–82
formation of, 9, 45, 47
in globular clusters, 46, 251
and hypervelocity stars, 348n, 476
observational evidence for, 45–47
orbital decay of, 469–70
perturbation of stellar orbits by, 476–82

intermediate-mass-ratio inspirals, 470
interstellar gas, 393, 416, 463
invariant tori, 62, 68, 113, Figure 3.2
irregular orbits. See orbits, chaotic
ISM. See interstellar medium
isochrone model, 75n
isophotes, 12
isothermal sphere, 397–98, 400, 437, 451

apsidal precession rate in, 137
and core collapse, 399
and core expansion, 397
as a model for the Galactic center, 20,

306
singular, 20, 43, 450

tidal disruption rates in, 306–11, 391

isotropic
oblate rotator, 96, 109, 110f
Fokker–Planck equation,

238–40
orbit-averaged, 257–60, 377

stellar systems, 74–77

Jacobi coordinates, 195
Jeans, J., 68
Jeans equations, 72

for axisymmetric systems, 96
derivation from integral equation, 72n
for spherical systems, 72–73

isotropic, 76
Jeans’s theorem, 59, 67–68, 70, 251–52, 361.

See also distribution function; integral
of motion

chaotic orbits and, 68
generalized, 68
integrability and, 60, 68
and the orbit-averaged Fokker–Planck

equation, 244, 251

Kepler, J., 2
Kepler potential, 60

action-angle variables in, 64
Delaunay elements, 126, Figure 4.2
eccentricity distribution, 125
frequency, 137
Hamiltonian, 127

perturbed, 128–30
orbital distributions in, 124–25
orbital elements, 125
orbits in, 120–24

post-Newtonian—1PN, 157–66; 1.5PN,
169–74; 2PN, 166–69; 2.5PN, 174–76

period ,122
Keplerian rotation, 2, 22f, 23, 26, 83, 98, 361.

See also rotation curves
Kepler’s equation, 121

relativistic, 161
unbound orbits, 124

Kepler’s third law 4. See also Kepler potential,
period

Kerr metric, 177
Klein–Kramers equation, 247n
Kozai cycles. See Lidov–Kozai problem
Kroupa initial mass function, 374

Lagrangian
Einstein–Infeld–Hoffman (EIH), 133
relativistic two-body, 157

Lambert function, 307
�CDM model, 415
Landau, Lev, 1
Langevin equation, 247
Laplace–Runge–Lenz vector, 130, 196, 203
Large Magellanic Cloud, 413
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Laser Interferometer Space Antenna (LISA,)
7, 53–55, 352n, Figure 2.17

Leibniz–Reynolds transport theorem, 253
Lense–Thirring precession, 134, 171, 279

in the Galactic center, 206–12, 282
Lidov–Kozai problem, 143, 197–203, 478–83

eccentric, 201, 426
flipping of orbits in, 201, 426, 480–82
inner restricted problem, 197–201, 478
outer restricted problem, 202–3, 478
relativistic, 201, 484–86
time scale, 197

Lindblad resonances, 466
line of nodes, 125
line-of-sight velocity

dispersion. See velocity dispersion,
line-of-sight

distribution (LOSVD). See velocity
distribution, line-of-sight mean.
See mean velocity, line-of-sight

line profile. See line-of-sight velocity
distribution

line-ratio diagram, 47
LISA. See Laser Interferometer Space

Antenna
Local Group, 9, 29

lack of stellar-dynamical black hole
detections beyond, 22f, 23, 27, 37,
59, 98

members. See Milky Way; M31; M32;
M33; NGC 205

supermassive black holes in, 29–33
longitude of ascending node, 125
longitude of pericenter, 123
loss cone, 292, Figure 6.2

binary star, 347
chaotic, 339–41
empty, 296
full, 296
radius, 291–92
repopulation, 292
relativistic, 350–59
steady state, 297
time-dependent, 322–26

loss-cone orbits, 292
loss-cone radius, 291–92
loss-cone repopulation, 292
LOSVD. See line-of-sight velocity

distribution
luminosity density, 12

core-Prugniel–Simien model, 14–15
Hubble model, 17
and mass deficits, 442
Prugniel–Simien model, 13, 20
relation to surface brightness, 76
and the virial theorem, 81

Lyapunov time, 69

M•–L relation, 33–34
M•–Mbulge relation, 34–35
M•–σ relation, 4–5, 35–38, Figure 1.2

discovery of, 4, 35–36, Figure 2.9
extension to low-mass spheroids, 37,

Figure 2.11
importance of sample selection in, 37
as a mass estimator, 5, 36
origin of

via gas accretion, 40–44
via stellar captures, 44, 294–95

predictions for globular clusters, 46
role in calibration of reverberation mapping,

28, 37
scatter in, 36, 37
slope of, 37–38, Figure 2.10
as an upper envelope, 37

Maclaurin spheroids, 410
magnetic-mirror machine, 292n
magnitude, 15f
“Magorrian relation,” 36, 98
main-sequence fitting, 33
main-sequence lifetimes, 204, 311, 348, 374,
masers. See water masers
mass-anisotropy degeneracy, 79
mass deficits, 8, 416, 441–42. See also cores;

cusp disruption
observed, 442, Figure 8.9
origin of, 443. See also core formation

due to binary supermassive black holes,
8, 438–43, 458–62, 433f

due to ejection of supermassive
black holes, 235f, 443, 486

mass estimation (galaxies), 71–72, 81, 96,
100. See also dynamical inverse
problem

mass estimation (supermassive black holes),
18–28, 59, 117

degeneracy of, 72, 81–83, 96, 100–102
importance of resolving influence radius, 4,

9, 23–24, 29, 83
in M32, 31–32, 100
in M33, 30
in M87, 25, 81–83
in NGC 205, 31–32
primary methods, 18

gas dynamics, 24–26—superiority of, 24
reverberation mapping, 26–27
stellar kinematics, 21–24

—spherical galaxies, 81–83;
axisymmetric galaxies: two-integral
f (E,Lz), 95–98; three-integral
f (E,Lz, I3), 99–100

secondary methods, 18
superiority of gas-dynamical methods, 24
tertiary/quaternary methods, 18

mass function, 373
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mass precession, 103–5, 135, 139, 104, 141,
151f, 327

frequency of, 135–39, Figure 4.3
importance for resonant relaxation, 266–67,

270, 274–77, 352, 372
of the orbit of, S2 118–20, 272–74

mass segregation, 377, 388–90
in Bahcall–Wolf cusp, 378–82
at the Galactic center, 382–83, 388–90

mass-to-light ratio (M/L), 11, 27, 81
assumption of a constant value when mod-

eling galaxies, 17, 27, 97
determination of, 81, 97–98
of the Galactic center, 86
of M32, 31
of M33, 30
of NGC 205, 31, 33
of nuclear star clusters, 13, 31, 363

mass-velocity dispersion relation. See M•–σ
relation.

massive perturbers, 391–95, Table 7.2
and Brownian motion, 250–51
and capture rates, 394–95
and the final-parsec problem, 416
and relaxation times, 228

Maxwellian or Maxwell–Boltzmann velocity
distribution, 220. See also isothermal
sphere

inappropriateness near a supermassive
black hole, 90, 387

“rotating,” 411
mean anomaly, 121
mean velocity, 94, 110, 263, 410, 411

line-of-sight, 71, 89, 100
megamasers. See water masers
mergers, galaxy, 415

dual AGN in, 63–64
and the final-parsec problem, 7, 416,

467–68
and the formation of stellar spheroids, 6, 41,

110–11
and the formation of binary supermassive

black holes, 7–9, 415–16, 467–68
role of gas in, 462–67

gas-free, 443
gas-rich, 41, 468
major versus minor, 5–6, 109, 384, 415n
simulations of, 467–68

mergers, stellar, 10, 396
and the formation of intermediate-mass

black holes, 9, 45, 47
mergers, binary black hole. See binary super-

massive black holes, coalescence
meridional plane, 93
Messier catalog (M), 29n

M15, 46

M31 (Andromeda galaxy), 14f, 19n, 16,
22f, 23, 29, 31, 33, 98

supermassive black hole in 29–30
M32, 14f, 19n, 22f, 23, 29, 30–31, 32f, 97,

100–101, 456f, 457f
supermassive black hole in, 30–31

—degeneracy of mass, 100–101
M33 (Triangulum galaxy), 29, 30–31, 37,

39, 40f, 41f, 45
supermassive black hole in, 30–31,

33–34
M83, 29
M87, 4, 14, 17, 22f, 24, 25f, 29, 81, 82f, 83,

97, 444t
supermassive black hole in, 4, 24

—degeneracy of mass, 81–83
M95, 29
M96, 29

Mg II emission lines, 28
Milky Way. See Galactic center
Mixing, 68, Figure 3.4

chaotic mixing, 69
phase mixing, 68
role in galaxy formation, 70

molecular clouds, 213
as massive perturbers, 393–94
properties of, 393, Table 7.2
and water masers, 25

moments
Gauss–Hermite, 89, 100
multipole, 210
quadrupole

of spinning black hole. See quadrupole
moment, black hole of velocity distrib-
ution, 71–72, 77, 89, 96, 411. See also
Jeans equations

insufficiency of for recovering black hole
masses, 81–83

Monte Carlo experiments, 286f, 444, 445f,
450

M-sigma relation. See M•–σ relation
multiple supermassive black holes, 483–87.

See also binary supermassive black
holes; dual supermassive black holes

and the final-parsec problem, 483–87
gravitational slingshot interactions, 8, 352,

416, 443, 483
observations of, 49–50

multipole expansion, 195, 466

narrow emission-line region (NLR), 50
N-body simulations

of dynamical friction, 233–36
of galaxy mergers, 467–68

neutron stars, 6, 290, 291, 374–75,
as extreme-mass-ratio inspirals, 54,

297, 352
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at the Galactic center, 382–83
New General Catalog (NGC) 29n

NGC 205, 16, 17, 29, 31, 33, 37, 39, 40f,
41f, 45, 395–6, Figure 2.3

NGC 221. See M32
NGC 224. See M31
NGC 598. See M33
NGC 1399, 14f
NGC 3115, 22f
NGC 3348, 15f, Figure 2.2
NGC 3379, 14f
NGC 3393, 49
NGC 4038/9, 6f, Figure 1.3
NGC 4244, 14f, Figure 2.1
NGC 4258, 2–4, 26, 27, 465
NGC 4365, 444t
NGC 4374, 444t
NGC 4395, 39, 46
NGC 4472, 444t
NGC 4406, 444t
NGC 4473, 14f
NGC 4486. See M87
NGC 4552, 444t
NGC 4564, 14f
NGC 4649, 14f, 444t
NGC 4697, 14f
NGC 512, 8 29
NGC 5831, 15f, Figure 2.2
NGC 5845, 14f
NGC 6240, 49–50, Figure 2.15

nodal precession, 103–5, 135, 139, 104, 141,
151f, 327

frequency of, 135–39
importance for resonant relaxation, 266–67,

270, 274–77, 352, 372
in the orbit of S2, 118–20, 272–74

no-hair theorems, 210
testing at the Galactic center, 210–12

nuclear star clusters (NSC) 13, 14f. See also
central massive objects; core collapse;
core expansion

active 363. See also NGC 4395
collisional evolution of, 413
compact, evolution of, 399–405
correlations with black hole mass,

39–41
diffuse, evolution of, 405–8
expansion of, 396–99, 405–8
individual: M33, 30; Milky Way, 17–18,

276–77, 361–63, 389–90; NGC 205,
16, Figure 2.3; NGC 4244, 14f

masses of, 39
mass-to-light ratio, 13, 31, 363
massive black holes in, 39, 363
relaxation time in, 363–65
rotation of, 15
shapes of, 15

stellar populations in, 15, 375
tidal disruption rates in, 306–11

ω Centauri, 46
open clusters

individual: the Arches, 47; the Quintuplet,
47

as massive perturbers, 393, Table 7.2
properties of, Table 7.2

Oppenheimer, J., Robert 1
orbit-averaged

diffusion coefficients, 252
Fokker–Planck equation, 251–53

in axisymmetric potentials, 260–64
in spherical potentials—anisotropic,
f (E,L), 253–57; isotropic, f (E),
257–60: discrete masses, 377

numerical solutions to, 370, 411–13
Hamiltonian, 128
relaxation time, 276, 296, 300, 312, 391

orbit-based models, 99
orbit draining, 326
orbit flipping

and rotating spherical systems, 73, 280
in the three-body problem, 201, 426,

480–82
orbital angular momentum. See angular

momentum, orbital
orbital distributions

axisymmetric systems
two-integral N(E,Lz), 95, 330
three-integral, 95

spherical systems
isotropic N(E), 75
anisotropic N(E,L), 73—in terms of
a and e, 124–25, 280

triaxial systems, 114
orbits. See also integral of motion; Kepler

potential; torus construction
in axisymmetric potentials, 93–94, 139–49
banana, 108, 143n
box, 105, 108–10, 114–15,
capture, 176–83
centrophilic, 103
chaotic, 60

in axisymmetric potentials, 93, 327
frequencies of, 66
role in Jeans’s theorem, 68
in triaxial potentials, 107–8, 111–15, 156,

188–91, 340–42
closed, 64
commensurate, 62
frequency analysis, 65–66
fundamental frequencies of, 61
hyperbolic, 123
irregular. See orbits, chaotic
Keplerian. See Kepler potential
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orbits (Continued)
osculating elements, 128–29, 153
pyramid, 104, 106, 149–59, Figure 3.14

feeding of black holes by, 331–41
relativistic, 186–92

regular, 60
relativistic

capture. See orbits, capture
Kerr metric, 176–80
post-Newtonian—1PN, 157–66; 1.5PN,

169–74; 2PN, 166–69; 2.5PN, 174–76
resonant, 62–64, 232, Figure 3.3
saucer, 142–49

feeding of black holes by, 328–31
relativistic, 185
in triaxial potentials, 187f, 331

in spherical potentials, 72
stochastic. See orbits, chaotic
thin. See orbits, commensurate
tori. See tori, orbital
in triaxial potentials

non-rotating, 100–108, 149–57
rotating, 108–13
windshield-wiper, 151f, 188

tube, 94f, 141
in triaxial potentials, 187f, 331

windshield-wiper, 151f, 188
osculating orbit, 64, 128, 153, 196, 332
outflows

energy-driven, 43
momentum-driven, 43–44

“paradox of youth,” 204
penetration parameter 118, 205

of S2, 118
of the S-stars, 205–8, Table 4.2

Percival, I. C., 67
Percival’s formula, 65
periapsis, 122. See also argument of periapsis
period

circular-orbit, 57
Kepler, 123
Lidov–Kozai, 197

phase mixing, 68. See also chaotic mixing
phase space density. See distribution function
plunge, 352
point-mass potential. See Kepler potential
Poisson’s equation, 70

solution for spherical system, 73
polytropes, 290

index, 290
post-Newtonian (PN) approximation, 118,

131–35
post-Newtonian equations of motion

1PN
Einstein–Infeld–Hoffman (EIH), 133–34
two-body, 157–59

1.5PN, 169–70
2PN, 166–68
2.5PN, 174

potential
integrable, 60–61
of spherical body, 73

potential estimation problem, 71
power-law cusp. See density cusp
precession

orbital. See also mass precession;
Lense–Thirring precession;
Schwarzschild precession; nodal
precession

axisymmetric potentials, 141–42
spherical potentials, 135–39
in the three-body problem, 199
triaxial potentials, 150–51
of spinning black holes, 51–52, 277–85

primary mass-estimation technique, 18
“problem of small denominators,” 65
prolate galaxies, 111, 114

orbits in, 93
proper motion, 3, 83

and mass estimation, 83–86
of stars at the Galactic center, 84–86

Prugniel–Simien model, 13, 20. See also core-
Prugniel–Simien model.

pyramid orbits. See orbits, pyramid

quadrupole Hamiltonian (three-body
problem), 196, 201–2, 478, 480

quadrupole moment
black hole, 52, 134–35, 169, 191

acceleration of a test mass due to, 170
orbital precession due to, 173–74,

206–12
role in no-hair theorems, 210

of a gravitational-wave source, 52
quasars, 1–2, 5, 7, 10, 28, 36, 295, 396, 465

feedback from, 41–42
cooling flow model of quasar fueling, 464
radio-loud, 49

quasiperiodic motion, 61
Quintuplet cluster, 47

radiation pressure, 42, 467. See also Edding-
ton luminosity; feedback; outflows

radio galaxies, 49
radio lobes, 48

and binary supermassive black holes, 48–51
helical, 51

radio-loud quasars, 49
radius

capture. See capture radius
core. See core radius
gravitational. See gravitational radius
half-mass or half-light. See effective radius
loss-cone. See loss-cone radius
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of influence. See influence radius
tidal. See tidal disruption radius

RBLR–L relation, 28
recombination, 463
red giant branch, 319–21
red giant stars, 290, 314–15, 318f, 319–22

evolution of, 319–20
at the Galactic center, 363, 364f
“growth onto the loss cone,” 321
structure of, 319–20
tidal disruption of, 320–22

redshift–distance relation, 33
reduced mass, 121
reduced mass ratio, 160
regular motion, 60. See also integral of

motion; quasi-periodic motion; torus
construction

in axisymmetric potentials, 61, 93–95,
139–49

saucer orbits, 142, 143–49
third integral, 61, 93, 95, 98, 111, 142f,

144, 260, 262, 328–29, 330, 412f
tube orbits, 93, 141

and Jeans’s theorem, 60, 68
in the Kepler potential, 61, 120–24
in spherical potentials, 61, 72
in triaxial potentials, 103–4, 149–57

non-classical integrals, 150, 155–56
pyramid orbits, 104, 150, 154–56

reionization, 463
relativistic precession. See Schwarzschild pre-

cession; Lense–Thirring precession
relaxation time (Tr),10, 57, 213, 215–16, 227,

239. See also resonant relaxation
energy versus angular momentum, 214
in the Galactic center, 361–63, Figure 7.1

resonant versus non-resonant, 276–77
in galactic nuclei, 57–59, 384, Figure 3.1
in giant galaxies, 313
half-mass, 364
in multi-mass systems, 228, 375

massive perturbers, 393–94
in NGC, 205 395
nuclear

dependence on black-hole mass, 59
dependence on galaxy luminosity, 58,

365
dependence on galaxy velocity

dispersion, 58
in nuclear star clusters, 363–65, Figure 7.3
orbit-averaged, 300, 312
resonant (TRR)

coherent, 265
incoherent, 275

resonant orbits, 62–64, Figure 3.3
and closed orbits, 64n

resonant relaxation, 131, 135, 139, 192, 212n,

264–77, 297, 354f, 366. See also
Schwarzschild barrier; rotational influ-
ence radius

and black hole spin, 281–85
coherent, 265–74

coherence time, 266–67, 274
coherent resonant relaxation time, 265

eccentricity dependence of, 269–70
effect on S-star orbits, 350–51
at the Galactic center, 210–12, 272–74
incoherent, 274–77

incoherent resonant relaxation time, 275
scalar, 271
and tests of relativity, 210–12
and tidal disruption rates, 371–73
timescale (TRR)

coherent, 265
incoherent, 275

2d versus 3d, 270–71
vector, 271

restricted three-body problem. See hierarchi-
cal three-body problem

reverberation mapping, 26–28
calibration of via the M•–σ relation, 28, 37
form factor, 28
of NGC 4395, 46
RBLR–L relation, 28
as a secondary mass estimator, 28

Rosenbluth potentials, 240
rotating nuclei

axisymmetric, 94, 96
collisional evolution of, 408–13
observations of, 13–14
spherical, 280–81
and supermassive black hole spin, 278–85
triaxial, 108–13

rotating reference frame, equations of motion
in, 93

rotation curves, 24–26. See also disk galaxies;
Tully–Fisher relation

individual galaxies: M87, 24, Figure 2.6;
NGC 4258, 2, 26, Figure 1.1

rotational Brownian motion, 428–31
rotational influence radius. See influence

radius, rotational
R1/4 law. See de Vaucouleurs profile
Runge–Lenz vector. See Laplace–Runge–

Lenz vector

S02 (star). See S2 (star)
S2 (star), 47–48, 48f, 118, 183, 204–5,

Figure 4.22
mass of, 204
and the mass of Sagittarius A*, 86, 204
orbit elements of, 204–5, Figure 4.22,

Table 4.1
orbital evolution of, 206–10, 272–74
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S2 (star) (Continued)
spectral class of, 204
in tests of relativity, 118, 207–8

Sagittarius A* (Sgr A*), 3–4. See also
Galactic center

Brownian motion of, 251
gravitational influence radius of, 20, 382
mass of

from astrometric data (orbit-fitting), 204
from stellar velocity dispersions, 76–78,

100
reflex motion of, 47
rotational influence radius of, 212

Salpeter initial mass function, 374
saucer orbits. See orbits, saucer
scattering experiments, 418
Schwarzschild barrier, 192, 355–59, 372,

Figure 6.22
Schwarzschild, M., 393
Schwarzschild metric, 118
Schwarzschild modeling. See orbit-based

models
Schwarzschild precession, 118, 134, 164.

See also Schwarzschild barrier
coherence time due to, 266, 267, 274,

352–53, 372
instantaneous rate of, 166, Figure 4.11
and Lidov–Kozai oscillations, 198f, 201,

484
orbit-averaged rate of, 165
of S2’s orbit, 272–74
of the S-star orbits, 206–8, Table 4.2
and pyramid orbits, 151f, 186–92, 191f.

See also orbits, windshield-wiper
and saucer orbits, 183–86

secondary mass-estimation technique, 18
secondary slingshot, 422n, 424f, 445f,

446–52, 453, 457
self-consistency problem, 70
self-similarity, 400
semimajor axis, 122
Sérsic profile (Sérsic law), 12–13, 21,

Figure 2.2. See also core-Sérsic pro-
file, de Vaucouleurs profile

Sérsic index, 12, 20f, 38
use of in computing mass deficits, 441,

Figure 2.2
Sgr A*. See Sagittarius A*
shape invariants, orbital, 99, 142
singular isothermal sphere. See isothermal

sphere, singular
slingshot. See gravitational slingshot;

secondary slingshot
Smoluchowski, M. V., 247
smoothing length, 233–34
Snyder, Hartland S., 1

soft binary stars. See binary stars, soft versus
hard

Soltan argument, 41, 50
specific heat, negative, 400
spectral lines. See absorption lines, emission

lines
spectroastrometry, 26
sphere of influence. See influence radius
spherical stellar systems, 72–89.

See also adiabatic-growth model;
anisotropic velocity dispersion;
isochrone model; isothermal sphere

Jeans equations for, 72–73
loss-cone dynamics of, 297–300
orbital distributions in, 73, 75, 124–25, 280
orbital precession in, 135–39
orbits in, 61, 253
potential of, 73
relation between luminosity density and

surface brightness, 76
rotating, 73, 280–81
tidal disruption rates in, 306–26
virial theorem, 81, 400

spheroids. See stellar spheroids
spin (black hole), 134, 177, 180f, 183f, 278.

See also no-hair theorems, spin flip,
spin-orbit torques, spin precessional
vector

effect of gas accretion on, 134
effect of spin-orbit torques on, 278–85
effect of stellar capture on, 285–87

spin angular momentum. See angular momen-
tum, spin

spin flip, 52
spin-orbit torques, 134–35, 174n, 169–74

effect on black hole spin, 278–85
effect on the clockwise disk, 280
and Galactic center S–stars, 208–12
post-Newtonian order of, 135

spin precessional vector, 278, 280, 284
spiral galaxies. See disk galaxies
Spitzer, L., 10, 75n, 393
S-stars, 48f, 131, 203–6, 345f, 359, 417,

Tables 4.1, 4.2
and hypervelocity stars, 350
individual: S2. See S2 (star); S8, 478,

479f; S12, 478, 479f; S27, 478,
479f

and the mass of Sagittarius A*, 204
naming conventions, 203n, 204
orbital precession of, 206–12, 272–74
origin of, 344, 350–51, 477–78
and resonant relaxation, 350–51
response to perturbations by

intermediate-mass black hole,
478–82

in tests of relativity, 205–12, 272–74
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stability
of accretion disks, 467
of orbits around a black hole, 179
parametric, 466
of the three-body problem, 484

star clusters. See open clusters; globular
clusters

star formation 34, 312, 319, 374–75, 408,
463–64

history, 373
in the Galactic center, 285, 366n
in nuclear star clusters, 17, 413, 462
and ultra-luminous X-ray sources, 45

starbursts, 375
stars. See also binary stars; S-stars; star forma-

tion; stellar mass function; stellar pop-
ulations

asymptotic giant branch, 290
collisions, 9–10, 57, 213, 396, 401
initial and initial-to-final mass relation, 374
main-sequence lifetimes, 204, 311, 348,

374,
neutron. See neutron stars
as polytropes, 290
red giant. See red giant stars
tidal disruption of, 289–91
white dwarf. See white dwarfs

static limit, 177
stellar bars, 462
stellar-mass black holes, 1–2, 45, 117, 290,

291, 297, 311, 374–75. See also
top-heavy initial mass function;
ultra-luminous X-ray sources; X-ray
binaries

accreting, 9, 45, 251
as extreme-mass-ratio inspirals, 52, 297,

352–59
at the Galactic center, 351f, 382, 389–90

stellar mass function, 373. See also
initial mass function

stellar mergers. See mergers, stellar
stellar populations

at the Galactic center. See Galactic center,
stellar populations

old (late-type), 17, 361, 363, 374–76, 413,
Table 7.1

young (early-type), 13, 30, 31. See also star
formation

stellar spheroids, 11, 15, 39, 40, 365
cores in, 13
correlation of luminosity with black hole

mass 33–35; with nuclear star cluster
mass, 39–40; with nuclear relaxation
time, 58–59

correlation of velocity dispersion with black
hole mass, 35–38

formation of, 7–8, 15, 110–11, 415

relation between flattening and rotation,
410–11

shapes of, 12
triaxial, 115

stochastic motion. See orbits, chaotic
Stratoscope II, 29
summation convention, 241
supermassive black holes (SBHs), 1–10

binary. See binary supermassive black holes
criteria for detection of

using gas motions, 25
using stellar kinematical data, 23–24, 83
degeneracy of mass estimates, 72, 81–83,

96, 100–102
ejection from galaxies, 50–51, 352
expansion driven by, 390–91
individual: in M31, 29–30; in M32, 30–31,

100; in M33, 30; in M87, 25, 81–83;
in NGC 205, 31–32

Milky Way. See Sagittarius A*
multiple. See multiple supermassive black

holes
“underweight,” 44

supernovae, 2, 7, 9, 374, 465
surface brightness

of spherical systems, 12
and luminosity density, 77

of M32, 31
of M87, 24
and detectability of black holes, 24
core-Sérsic profile, 14–15, 18,

Figure 2.2
Sérsic profile, 12–13, 21, Figure 2.2
de Vaucouleurs profile, 13

surface density, 76

tertiary mass-estimation technique, 18
thermal eccentricity distribution, 125, 266,

272, 280, 350, 351f, 480
thermal evolution timescale (of red giants),

320
thermal fluctuations, 53
thin orbits. See resonant orbits
Third Cambridge Catalogue of Radio Sources

(3C Catalogue), 48n
3C 66b, 52
3C 75, 48–49, Figure 2.14

third integral. See integral of motion
three-body problem, 192

hierarchical. See hierarchical three-body
problem

of supermassive black holes, 483–87
Thomson scattering, 42
tidal disruption, 289–91. See also tidal

disruption radius; tidal disruption
rates

of main-sequence stars, 290–91



550 INDEX

tidal disruption (Continued)
of red giants, 319–22
of white dwarfs, 290

tidal disruption radius, 289–90
of main-sequence stars, 290
of red giants, 320
of white dwarfs, 290

tidal disruption rates
in axisymmetric galaxies, 328–32
in isothermal nuclei, 306–11
in spherical galaxies, 297–300

distribution of stellar masses, 315–18
full-loss-cone rate, 292–95, 305
giant stars, 319–22
single stellar mass, 311–15
time-dependent, 322–26

in triaxial galaxies, 331–41
Tisserand parameter, 477–78
top-heavy initial mass function, 375
tori, orbital, 62, 68, 113, Figure 3.2
torus construction, 64

and detection of chaos, 66
by iteration, 66–67
by trajectory-following, 65–66

transition to stochasticity (in triaxial
potentials), 108

triaxial nuclei, 100–116
destruction by supermassive black holes,

115
orbital distributions in, 114, 159f
orbits in. See also orbits, pyramid

non-rotating nuclei, 103–8, 149–51,
154–57
—effects of relativity, 186–92

rotating nuclei, 110–11
self-consistent, 111–15
tidal disruption rates in, 331–41

triple supermassive black holes
interactions between, 483–87
observations of, 49, Figure 2.16

true anomaly, 123
Tully–Fisher law, 33, 35
two-body relaxation. See diffusion

coefficients; encounters, gravitational;
relaxation time

ultra-luminous X-ray sources (ULXs),
9, 45

ULX. See ultra-luminous X-ray sources
“underweight” black holes, 44

vectorial elements, 130–131, 153, 196,
202

velocity. See also line-of-sight velocity;
velocity dispersion; velocity
distribution

generalized, 241

mass-velocity dispersion relation. See
M•–σ relation

moments, 71
proper motion, 83

velocity dispersion
of active galactic nuclei, 37
of elliptical galaxies, 82f, 109, Figure 2.5,

Figure 2.12, Figure 3.1
Faber–Jackson law, 35, 40
individual galaxies: M32, 30–31,

Figure 2.7; M33, 30; M87, 81–83,
Figure 3.6; NGC 205, 31

and mass-to-light ratio
at Galactic center, 77–78, 84–86,

Figure 2.5, Figure 3.5
of gas

in reverberation mapping, 27–28
of globular clusters, 46, 251
in two-integral axisymmetric models,

97–98, Figure 3.11
insufficiency of for recovering black hole

masses, 81–83
line-of-sight, 76, 79

effect of anisotropy on, 79–80
mass–velocity dispersion relation. See

M•–σ relation
of nuclear star clusters, 14f, 31, 46, 364–65,

Figure 2.12
proper motion, 83–84
of spiral galaxies

individual galaxies: M33, 30; Milky Way.
See velocity dispersion, Galactic
center; NGC 4395, 46

velocity distribution
line-of-sight (LOSVD), 86

aperture-averaged, 88
and mass estimation, 89
measurement of, 88
representation via Gauss–Hermite series,

88–89
Maxwellian or Maxwell–Boltzmann, 220

Very Long Baseline Array (VLBA), 26
“violent relaxation,” 70
Virgo Galaxy Cluster, 4, 14, 24, 29

galaxies
individual: M87. See M87
nuclear star clusters in, 365–65,

Figure 7.3
relaxation times of, 58–59, 364–65
resolving black hole influence radii in,

24
stalled binary supermassive black holes

in, 444, Table 8.2
virial temperature, 463
virial theorem, 43, 81, 109, 233, 400,

406, 410
von Neumann, J., 221
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water masers, 2–3, 4, 25–27, 465.
See also NGC 4258

and determination of black hole masses,
26

weighing black holes. See mass estimation
(supermassive black holes)

white dwarfs, 54, 352, 374–75
at the Galactic center, 348, 382–83
mass–radius relation, 290
tidal disruption of, 290

windshield-washer orbits. See orbits,
windshield-wiper

windshield-wiper orbits. See orbits,
windshield-wiper

winds. See outflows

winged radio sources. See X-shaped
radio sources

X-ray binaries, 9, 45, 374
X-ray emission. See also ultra-luminous X-ray

sources
from active galactic nuclei, 9, 49, 50
from binary stars. See X-ray binaries
from the Galactic center, 464
from stellar-mass black holes, 251
from tidally disrupted stars, 291

X-shaped radio source, 52. See also spin flip

zero-velocity curve or surface, 93, 477
“zone of chaos,” 105




