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Preface

Network programming is a complex undertaking, with the potential for an extremely high
impact on the performance and scalability of the software it supports. Learning to leverage
the high-level language constructs and features of C# and the NET Core libraries can help
engineers to fine-tune their network applications to the performance modern users have
come to expect. This book is written to serve as a comprehensive exploration of the
concepts of network programming, as viewed through the lens of the .NET Core
framework. It seeks to explain every aspect of computer networks, and the software that
makes those networks possible. Using little more than the .NET Core SDK and a code
editor, the contents of this book demonstrate how to implement flexible, stable, and reliable
software to facilitate large-scale computer networking.

Who this book is for

If you have any experience with object-oriented programming languages, and would like to
learn more about how C# and .NET Core can facilitate network and web programming, this
book is for you. Additionally, if you administer or manage network resources and would
like to develop the skills to manage or customize your network with the tools available in
.NET Core, this book is an excellent resource. And finally, if you have any experience with
network programming, but would like to take a closer look at the .NET Core framework,
this is the book for you.

What this book covers

Chapter 1, Networks in a Nutshell, introduces readers to the fundamentals of computer
networks, and the challenges of writing software for use on distributed systems.

Chapter 2, DNS and Resource Location, explores the basics of resource location and the
origins of the DNS.

Chapter 3, Communication Protocols, investigates the OSI network stack and the variety of
communication protocols designed for each layer of that stack.

Chapter 4, Packets and Streams, looks at how data is encapsulated in packets and how
groups of packets are consumed by your software as a stream.
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Chapter 5, Generating Network Requests in C#, takes a deep dive into the request/response
model of network communication and how that model is implemented in C#.

Chapter 6, Streams, Threads, and Asynchronous Data, looks at how C# programs can be
designed to consume data streams from remote resources asynchronously, thereby
improving performance and reliability.

Chapter 7, Error Handling over the Wire, looks closely at how to design and implement
error-handling strategies in network software.

Chapter 8, Sockets and Ports, examines how logical connections are established between
network hosts by mapping a socket in your application code to a port on your network
interface.

Chapter 9, HTTP in .NET, takes a thorough look at how every aspect of HTTP is
implemented within the context of C# and .NET Core. It looks at implementing HTTP
clients and server applications using ASP.NET Core and the System.Net .Http library.

Chapter 10, FTP and SMTP, looks at some of the less commonly leveraged protocols of the
application layer of the OSI network stack, implementing a fully functional FTP server in
the process.

Chapter 11, The Transport Layer — TCP and UDP, takes a close look at the transport layer of
the OSI network stack, exploring the distinction between connection-based and
connectionless communication protocols, and looking at how to implement each in C#.

Chapter 12, The Internet Protocol, explores the backbone of the modern internet by looking
at how the Internet Protocol (IP) provides for device addressing and packet delivery.

Chapter 13, Transport Layer Security, looks at how the SSL and TLS were designed to
provide security for data transmitted over global, unsecured networks, and how to
implement TLS in .NET Core applications.

Chapter 14, Authentication and Authorization on Networks, considers how you can validate
the identity of users of your network software and restrict access to different features and
resources based on your users' permissions.

Chapter 15, Caching Strategies for Distributed Systems, looks at the various benefits of
caching different resources in your network software for performance and reliability
improvements.

Chapter 16, Performance Analysis and Monitoring, takes a close look at how to monitor the
health and performance of your network applications, and how to respond to, and reduce
the impact of, network unreliability in relation to your software.

[2]
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Chapter 17, Pluggable Protocols in .NET Core, looks at the .NET concept of a pluggable
protocol, and how you can use it to define your own custom application layer network
protocols, and incorporate those protocols seamlessly into your .NET applications.

Chapter 18, Network Analysis and Packet Inspection, examines the tools and resources
available in the .NET Core framework for investigating network traffic and the state of
network devices on your host machine. It looks at how you can investigate the content of
network traffic being processed by your host with packet inspection, and how you can use
the information gained by packet inspection to respond to security risks.

Chapter 19, Remote Logins and SSH, looks at the origins of the SSH protocol and how it
enables secure access to remote resources over an unsecured network. It looks at the most
popular C# library for interacting with remote hosts via SSH and considers the range of
applications you might build on top of the SSH protocol.

To get the most out of this book

This book assumes a basic knowledge of the principles of object-oriented programming,
and an ability to at least read and follow along with C# source code. A basic, high-level
understanding of networking concepts and principles is also assumed.

To leverage this book, you will need to at least download and install the latest version of
the .NET Core SDK and command-line interface. You should also take the time to
familiarize yourself with a C# source code editor, such as Visual Studio Community
Edition, or Visual Studio Code, both of which are free to use.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN =

[3]
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub

at https://github.com/PacktPublishing/Hands-On-Network—-Programming-with-CSharp—
and-.NET-Core. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Note the inclusion of the System.Net.Security namespace in

our using directives. This is where the AuthenticationLevel enum is defined."

A block of code is set as follows:

var httpRequest = WebRequest.Create ("http://test-domain.com");
var ftpRequest = WebRequest.Create ("ftp://ftp.test-domain.com");
var fileRequest = WebRequest.Create("file://files.test-domain.com");

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if (!WebRequest .RegisterPrefix ("cpf://", new CustomRequestCreator())) {
throw new WebException ("Failure to register custom prefix protocol

handler.");

}

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

[4]
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Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]
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Section 1: Foundations of
Network Architecture

Part one of the book will start by exploring the various network architectures that make
distributed programming possible in the first place. It will examine the standards adhered
to by hardware and software vendors to allow communication across networks, including
the DNS naming system, IPv4 and IPv6 standards for device addressing, and local
hardware-level APIs and data structures that allow users to program for those networks,
with basic examples of C# software that leverage or demonstrate these concepts.

The following chapters will be covered in this section:

Chapter 1, Networks in a Nutshell
Chapter 2, DNS and Resource Location
Chapter 3, Communication Protocols
Chapter 4, Packets and Streams



Networks in a Nutshell

It's hard to imagine that anyone reading this book doesn't have some intuitive idea of what
a network actually is. As I write this introduction, I'm surrounded by no fewer than six
distinct, network-connected devices within arm's reach. Even before I began a career in
software engineering, I could have given a reasonably accurate description of what
constitutes a network. However, no amount of intuition about what networks are or what
might run on them, nor the use of software running on distributed systems, can account for
the impact of a distributed architecture on your code. It's that impact on your software
design and implementation decisions that we'll cover in this chapter.

We'll try to nail down a concrete definition of a network, and we'll consider the new
problems you'll need to solve when writing software for them. This book assumes a fair
amount of general programming skills within the C# language from its readers. I won't take
any time to explain the use of native language structures, types, or keywords, nor will I
discuss or explain the common general algorithms used throughout. However, I will stop
short of making any assumptions of the reader's knowledge of networks, inter-device
communication, or how those problems are solved in .NET Core. As such, this chapter will
start from the most basic first principles and seek to provide a stable foundation from
which anyone with at least some programming skill can proceed competently through the
rest of the book.

The following topics will be covered in this chapter:

¢ The unique challenges of distributing computational or data resources over a
network, and how those challenges manifest in software

e The different components of a network, and how those components can be
arranged to achieve different goals

e The impact of the variability of devices, latency, instability, and standardization
of networks on the complexity of applications written for network use
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e Common concepts, terms, and data structures used for network programming,
and how those concepts are exposed by .NET Core

e Understanding the scope of applications that are made possible by networked
architectures, and the importance of developing skills in network programming
to enable those kinds of applications

Technical requirements

This being an introductory chapter, there will be no meaningful code samples, as we'll be
covering the high-level concepts and vocabulary of networks to establish a clear foundation
for the rest of the book. However, in this chapter, we'll be discussing the System.Net class
library provided by .NET Core. While this discussion will be happening at a very high
level, it would be a good opportunity to familiarize yourself with the development tools
made available to you by Microsoft Visual Studio Community edition. This is free to use,
and provides a rich feature suite out of the box, with broad support for .NET Core project
management and administration provided out of the box. As we discuss some of the
libraries provided within the .NET Core tools, I encourage you to investigate using the
Visual Studio IDE to include those libraries into your project and begin exploring them
through the IDE's IntelliSense.

Expanding the scope of software
— distributed systems and the challenges
they introduce

The first step to understanding programming for networks is, of course, understanding
networks. Defining what they are, clarifying the aspects of networks we are concerned
with, addressing how network architecture impacts the programs we write, and what kinds
of software solutions networks need to be effective.

[8]
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What is a network?

At its most basic, a network is nothing more than a physical implementation of an
undirected graph; a series of nodes and edges, or connections, between those nodes, as
demonstrated in the following diagram:

Node

C 7\ Connectonl

A basic, undirected graph

However, the preceding diagram doesn't quite capture the full picture. What constitutes a
node, and what is sufficient for a connection are all very pertinent details to clarify. An
individual node should probably be able to meaningfully interact with other nodes on the
network, or else you might have to concern yourself with programming for a potato
connected by two wires to a network of routers and servers. It's safe enough to say that
potatoes very obviously aren't nodes, and that an active and stable Azure server very
obviously is, so the line delineating nodes from non-nodes on a network falls somewhere
between those two poles. Likewise, we can easily identify that the cables from the power
supply of a computer to the outlet in a wall don't constitute a network connection, but that
a CAT-5 cable from our computer to a router obviously does. The dividing line probably
falls somewhere between those two, and it is important that we take care to draw that line
accurately.

We'll start with a workable definition of networks for the purposes of this book, unpack the
definition, and examine why we chose to make the specific distinctions we have, and
finally, consider what each essential property of a network means to us as programmers.
So, without further ado, the definition of a computer network is as follows:

A computer network is, for our purposes, an arbitrarily large set of computational or
navigational devices, connected by channels of communication across which computational
resources can be reliably sent, received, forwarded, or processed.

On the surface, that might seem basic, but there is a lot of nuance in that definition that
deserves our consideration. So, let's take a deeper dive.

[9]
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An arbitrarily large set

What do we mean when we say arbitrarily large? Well when you're writing software for a
router (accepting that you would realistically be bound by the maximum size of physically-
addressable space), you would not (and should not) care about how many devices are
actually connected to your hardware, or how many routes you need to reliably pass
resources or requests along. Suppose you are writing the system software for a wireless
router. While doing so, you tell your product owner that their marketing copy should
specify that this router can only connect a maximum of four computers to the internet. Can
you imagine any product owner would take that news kindly? You would be looking for a
new job in no time! Networks must be able to scale with the needs of their users.

A basic property of almost all computer networks is device-agnosticism, which is to say
that any device on a network should assume no knowledge of the number or kind of other
devices on that network at any given moment. Indeed, a program or device might need to
discern whether or not a specific device or piece of software exists on the network, but
nothing about the network connection it obtains will convey that information. Instead, it
should be equipped to send and receive messages in a format that is typically standardized
for the communication protocol over which the messages are sent. Then, using these
standardized messages, a device can request information about the availability,
configuration, or capabilities of other devices on the network, without actually knowing
whether or not the devices it expects to be available on the network are, in fact, available on
the network.

Ensuring that the receiving end of any given outgoing connection from a device is properly
connected, or that the receiving devices are configured accordingly, is the concern of the
network engineers who support your software. Supporting and responding to requests sent
by your software is the responsibility of the authors of the receiving software. Obviously, if
you're working in a sufficiently small software shop, both of those roles may well also be
filled by you; but in a sufficiently mature working environment, you can likely rely on
others to handle these tasks for you. However, when the time comes to deploy your
software to a networked device, no information about whether or not those responsibilities
were handled properly is available to you simply by virtue of being connected to a
network.

Device-agnosticism means that a network has no idea what has connected to it, and,
accordingly, cannot tell you as much. A corollary attribute of networks is that other devices
on the network cannot and will not be notified that your device or software has connected
and been made a resource.

[10]
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Ultimately, this is what is meant by an arbitrarily large set of devices. Technically, a single
computer constitutes a network of one node, and zero connections (though, for the
purposes of this book, we'll only be considering networks with at least two nodes, and at
least one connection between any given node and any other node on the network), but
there is no fixed maximum value of nodes beyond which a network ceases to be a network.
Any arbitrary number of nodes, from one to infinity (or whatever the maximum number of
physically possible nodes may be), constitutes a valid network, so long as those nodes have
some valid connection between themselves and the rest of the network.

Computational devices

Now that we know we can have an arbitrarily large number of computational devices as
nodes in our network, it bears further scrutiny to discern what exactly a computational
device is. While this may seem obvious, at least initially, we can quickly identify where it
becomes unclear by way of an example.

As per our definition of a network, the device I'm using to draft this book right now might
well qualify as a self-contained network. I have a keyboard, mouse, monitors, and
computer, all connected by standardized channels of communication. This looks awfully
network-like at a conceptual level, but intuitively, we would be inclined to say that it is a
network of one, and so, not really a network at all. However, while the what of the non-
network status of my computer seems obvious, the why might be less clear.

This is where we benefit from clearly explicating what constitutes a computational device
for the purposes of our definition of a network. Simply being able to perform computation
is insufficient for a network node. In my example, I can tell you that my mouse (a relatively
high-end gaming mouse) certainly performs a number of complex calculations
transforming a laser-sensor signal into directional inputs to pass to my computer. My
monitors certainly have to do a fair amount of computation to transform the raw binary
data of pixel color values into the rendered screens I see 60 or 120 times per second. Both of
these devices are connected by way of reliable, standardized communication protocols to
my machine, but I wouldn't necessarily be inclined to consider them nodes on a network.
My computer, when connected to the internet, or my local home network, surely
constitutes a node, but its individual peripherals? I'm inclined to say no.

[11]
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So, if peripherals aren't network devices, then what essential property is it that they're
missing? Open communication. While a monitor and a keyboard can communicate over a
connection with a wide variety of other devices, the manner in which they can
communicate is restricted to a very specific and limited range of possible signals. This
highlights an important distinction to be made between distributed systems and networks.
While a network is always a distributed system, a distributed system may not necessarily
always constitute a network.

My computer is a distributed system; its components can function independently of one
another, but they operate in a coordinated fashion to perform the responsibilities of a
computer. However, my computer is very obviously not a network. It lacks device-
agnosticism, as each component is explicitly configured to communicate its presence to the
next node in the graph, so that it can be used to service the needs of the end user. It is also
not arbitrarily scalable. I can only have, at most, three monitors connected to my machine at
any given time, and only under very specific conditions of connection interfaces and
organization. While being connected to a network, my computer and each of its peripherals
can instead be conceptually considered a single, atomic computational device. Thus, on a
network, we can specify that a computational device is something that can facilitate the
requirements of the network. It accepts and communicates openly over device-agnostic
channels of communication to provide or leverage computational resources on that
network.

Navigational devices

In our definition of a network, I specify computational or navigational devices. For the sake
of this book, a navigational device is a valid network device, and constitutes a node on our
network. The meaningful difference between a computational and navigational device (or
resource) is that a navigational device provides no resources of its own, and instead exists
only to facilitate the successful communication of other devices on the network. A simple
switch or router would fall under this category. These devices are still programmed to
operate successfully on a network, but are typically done at the system level in C or C++,
with on-board firmware. The concerns of programming these intermediary devices will
generally fall outside the purview of this book, but I wanted to note the distinction for the
sake of clarity and completeness.

[12]
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Channels of communication

Within the context of networks, what constitutes a channel of communication is merely a
shared interface for data transmission between any two devices on a network. There are no
constraints on the physical implementation of a channel of communication, or the format in
which data must be transmitted over a channel, simply that at least two devices can
communicate across that channel.

The software impact

When writing software meant to leverage or be leveraged by other devices on a network,
there are a number of new considerations and constraints that developers are shielded from
when only writing code for local systems. How these issues are best dealt with will be
addressed more thoroughly in subsequent chapters, but for now it is worth considering
what the impact these aspects of general computer networks might have on the software
we write.

The impact of device-agnosticism

When we talk about device-agnosticism, we assume our software is not given information
about which resources we expect to be available are actually available. So, going back to the
example of my computer as a distributed system that is not a network, I can reliably write
local programs that print or draw information to a screen. Because the program is executed
locally, I can trust that my operating system will take responsibility for acquiring the
connection to my monitor and transmitting the data from my program's stack frame to the
monitor's display port connection.

The monitors are resources that are not inherent to the distributed system; I can technically
execute any series of commands on my computer without a monitor. It's not essential for
the system to function, even if it is essential for the system to function in a way that is
decipherable to me. However, I can reliably assume that if the monitors are present on the
system, my software will have access to them, because my operating system acts as an
intelligent broker of requests between those peripherals. It will always have, and be capable
of delivering, information about the status of any peripherals that my software needs to
use.

[13]
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As soon as my software needs to access resources distributed on a network, however, I can
no longer make assumptions about the availability of those resources. That's the crux of
device-agnosticism and how it impacts networked programs. Where the operating system
of my computer served as an intelligent broker, we cannot assume the same of a network.
So, verifying the presence of resources, and our ability to access them, becomes a key
component in the design of our software. And I'll note that this task becomes more
challenging when we have multiple devices on our network that could provide the
resources we're looking for.

In that case, it's the responsibility of some software on the network to determine which
specific device ultimately services our software's request for that resource. Whether that
work is done by our own program as part of its communication algorithm, or handled by
some other intelligent broker deployed to the network to facilitate this situation, the work
needs to be done for our software to behave reliably on such a network.

Writing for open communication

When we talk about open communication on networks, we're talking about collaboration
between different devices or software components. This collaboration puts some
responsibility on every developer who intends to leverage the resources of another; the
responsibility to agree upon some standard for communication, and to respond according
to that agreed upon standard. There may be a functionally infinite number of ways to
format data to send and receive over a pipe, but unless someone else on the network has
agreed to receive your data in the format you've decided to send it, none of it can be
considered valid. You are, essentially, screaming into the void.

The broad range of possibility creates a need for standardization that is met by an equally
broad number of organizations, including the World Wide Web Consortium (W3C) and
the International Standards Organization (ISO). What this means for you is that you will
ultimately be responsible for understanding what standards your software should adhere
to in order to meet the functional requirements of your projects, and to provide the most
value to other users of your product. Common standards you'll learn about in this book
include communication protocols, such as TCP, UDP, and HTTP, as well as addressing and
naming standards such as the IP addressing standard and the domain naming system.

[14]
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Topologies and physical infrastructure

Having spent a sufficient amount of time discussing what a network is, we should now
consider how networks are actually implemented. This section will consider the various
solutions that the engineers have arrived at to build systems that meet the definition of a
network. We'll discuss the distinction between a logical and a physical topology for a
network, and then examine the most common examples of the former.

Physical and logical topologies

In the same way that the topology of a geographic region describes how the features of that
region are arranged over the area of the region, the topology of a network describes how
the components of that network are arranged relative to one another. There are two ways to
think about the organization of networks. As should be obvious, having read the header for
this subsection, they are the physical topology and the logical topology.

The physical topology describes how a network is physically connected and organized in
real space. It describes the medium by which connections are established, the medium of
the connections themselves, the location of devices in physical space, and the layout of the
connections between nodes. It is determined, in part, by the specific networking devices of
the network and the connections those devices allow (I can't use coaxial cabling to connect
to a router with only Ethernet ports). Separately, the physical topology itself determines the
maximum capabilities of the network in terms of performance, resilience, and, in some
cases, even security. Imagine that all incoming network traffic trying to access a local area
network (LAN) I own must be funneled through a firewall for security purposes. If I only
expose one physical device to act as that firewall, my network won't be very fault tolerant.
However, if I expose multiple firewall devices, with each servicing requests from different
regions, I can increase my fault tolerance considerably. Especially if each is capable of
serving as a backup in the event that one of the others is taken offline for any reason. The
physical topology of one firewall provides less fault tolerance than the physical topology of
several.

The physical topology also describes the variety of network devices I use on the network at
any point in time. This is where our high-level abstractions of communication channel and
node or computational device is brought down into concretions. Instead of a link or
connection, a physical topology characterizes a connection as wired or wireless. A robust
topology may even specify the type of wire used as coaxial or fiber optic cables, as is typical
of most high-speed home internet connections, or as twisted-pair copper wire, like what's
used for telecom networks.
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This is also where our network nodes get nailed down to a concrete, specific device. Instead
of a computational device, we have switches, routers, bridges, and network-interface
controllers (NIC). Each of these devices is responsible for a different task or service on a
network, and some, or all, of them may be present on any given implementation. For
example, I have no need for a bridge on my home wireless network, but it would be
impossible to imagine how the entire internet could exist without the use of each and every
device I listed, and dozens more that I haven't.

Meanwhile, the logical topology of a network explains the conceptual organization of
relevant actors on the network, and the connective paths over which they can, or must,
communicate with any other actors on that network. One important consideration to make,
though, is that physical topologies do not necessarily map directly to the logical topology.
Looking back at our earlier example of a physical topology with one firewall as compared
to a physical topology of multiple firewalls, we can illustrate the distinction between
physical and logical. First, let's take a look at the initial, naive implementation of an internal
network with a single physical firewall device to restrict access to our server resources:

Server Server Server

Firewall

Initial, single-firewall physical topology

While a complete physical topology would define and describe the type of connection
supported, and perhaps even define the model of the physical devices represented in the
preceding diagram, this will be sufficient for our purposes. Next, let's look at the more
resilient physical topology with multiple firewalls and a failover strategy for unresponsive
tirewalls:
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Server Server
Router
Firewall Firewall

Server

Firewall

It's easy to see why the physical topology diagram would be different, because there are
different physical components in play. What's more, for as simple a difference as it is

between them, the physical difference between the two is non-trivial, as the second

topology has a meaningful impact on the owner of the network in terms of cost, reliability,

and performance.

The point we want to make with this, however, is that in both physical implementations,

the logical topology remains the same. If we think of the single firewall (in the case of the
first physical topology) and the multi-firewall along with requesting the brokering router
(in the case of the second physical topology) as being, conceptually, a single secure access
point into our internal network, then we can easily see how both physical topologies map

to the following logical topology:

@

Secure Access Point
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Looking at this diagram, you might also notice that it bears a striking resemblance to the
physical layout of the first diagram, but looks wholly different from the second. This serves
to illustrate the fact that a logical topology might map one-to-one to its physical
counterpart, but does not necessarily map one-to-one with its physical implementation.

For the remainder of this book, we'll exclusively be concerned with the logical topology of a
network, as this abstraction defines the interactions we'll be processing in the software we
build. Device manufacturers can deal with the hardware components, and network
engineers can work to meet the physical performance constraints. We'll just think about
what resources we need, or need to provide, and how we can meet those needs. The logical
topology will be sufficient for that.

The specific organization of the logical topology of our network may well have an impact
on our software implementation, however, and there is a variety of common topologies
with their own strengths and disadvantages we'll want to consider, so we should take some
time to do so now.

Point-to-point topology

Let's start with the most basic. A point-to-point topology is exactly what it sounds like. A
single logical connection between two nodes on a network. This topology is how we would
define a minimum complete network, which is to say, at least one connection between at
least two nodes. It is the lowest cost in terms of implementation, and has the lowest impact
on the engineering considerations for software meant to be deployed to such a network.
Point-to-point networks can maintain a dedicated connection between the two relevant
nodes, or establish that connection dynamically as needed. Any direct peer-to-peer
communication is an instance of a point-to-point network on your system, even if that peer-
to-peer connection is established over a more complicated logical network topology, the
communication session itself is an instance of a logical point-to-point topology.

While the cost of a point-to-point connection might be exceptionally low, the benefits you
can possibly reap from those costs are also extremely low. The kinds of problems solved by
a point-to-point network design are limited in scope, and are usually specific to an
immediate problem.
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Linear topology (daisy-chaining)

A linear topology is exactly what it sounds like — a line! It is the most primitive extension of
the point-to-point topology, one of the simplest logical topologies conceptually, and often
one of the cheapest in terms of a corresponding physical implementation. In a linear
network topology, we extend our point-to-point model in such a way as to only ever have
one node connected to at most two other nodes at a given time. The benefit here is
obviously in the physical implementation cost (even with high resiliency, this configuration
can only ever get so complicated). The drawback, however, should be similarly obvious.
Communication from one node to any node other than one of its nearest neighbors will
require the intermediary nodes to do some work investigating the target of the inbound
request and determine if they are suitable to process the request, and if not, know to pass
the request along to the neighbor that didn't originate the request.

Note that specification to not return the request to the neighbor that originated the request
in the first place. If the nodes responded by simply submitting the request back out to both
of your neighbors blindly, you would end up in an infinite loop of submitting and re-
submitting the request between the two nodes. At least one of the nodes in any pair has to
be aware enough to not re-submit a request to its originator. This highlights the most
important drawback of this topology. Specifically, that it requires a tight coupling of nodes
to their conceptual position in the network structure.

While none of this is particularly complicated, you can already see how the logical
organization of your network can impact the design of your networking code. That will
only become more apparent as the complexity of the topology increases.

Bus topology

A bus topology is one in which every single node on the network is connected to every
other node on the network by way of a single channel of communication, as seen in the
following diagram:
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Each connection coming off of a node is joined to a shared connection between all nodes by
way of a simple connection interface. Any packets sent by a node on a bus topology will be
transmitted on the same bus as every other packet transmitted over the network, and each
node on the bus is responsible for identifying whether or not it is the most suitable node to
service the request carried by that packet. Similar to the linear network previously
described, packets on a bus topology must contain information about the target node for
the request.

As is the case with each of the topologies of lesser complexity, the bus topology has the
obvious benefit of a low upfront cost of implementation, and relatively low overheads for
orchestration. Hopefully, however, the previous description I provided helps to
characterize the particular challenges associated with this particular network topology.
Because all network communication happens over a single channel, all traffic, even under
ideal circumstances, is limited by the bandwidth of that channel. Especially chatty software
doesn't do well on a bus topology, as it tends to monopolize the link between nodes.

Additionally, because there is only a single channel of communication across the whole of
the network, that channel serves as a single point of failure for the network. If the central
bus comes offline, then each node is isolated simultaneously.

Star topology

Finally, we begin to consider network topologies more common in enterprise networks.
The star topology is arranged in such a way as to produce an asterisk-like star shape, with
each peripheral node connected by a single channel to a central hub-node, as demonstrated
in the following diagram:

The hub of a star topology serves as a broker of communication between all peripheral
nodes. It receives and forwards requests from each of its peripheral nodes by way of a
direct, point-to-point connection.
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This topology provides the benefit of isolating the failures of peripheral nodes or their
connections to the hub to those nodes specifically. Each of the other nodes can maintain
their connections to all the other nodes in the network with any one of them going down. It
is also, at least conceptually if not physically, infinitely scalable. The only task necessary to
add a node to the network is to add a link between the new node and the hub node.

Hopefully, by this point in the discussion of network topology, you'll already have
identified the obvious downside to this approach. If the hub-node goes offline, the entire
network is eliminated. From the perspective of any one peripheral node, loss of the hub
means a loss of the entire network, since everything can only ever communicate with the
hub.

In reading my description, you may have also realized that some network topologies can be
decomposed into sub-networks of completely different topologies. A network defined by
any given peripheral node and the hub node of a star topology is itself a single instance of a
point-to-point network. Likewise, a network defined by any two peripheral nodes and the
hub node of a star topology is technically a linear topology (which is itself a specialized
implementation of the bus topology). By logically extending these simple diagrams into
larger compositional topologies, we can describe any kind of network you could possibly
write software for.

Ring topology

A ring topology is very similar to a linear topology (which, as I noted before, is technically
an implementation of the bus topology) except that, in the case of a ring topology, the
endpoints are ultimately connected, and communication is unidirectional, as shown in the
following diagram:

The benefit of this particular network topology might not be immediately apparent, but
with each node in the network serving as a peer of the previous node in the chain, there's
no need for any request broker, or communication specific software or hardware. This can
lower your network management costs substantially.
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The drawbacks are similar to each of the previous implementations in that, once a link in
the chain is broken, the network is essentially rendered useless. Technically, because of the
unidirectional communication pattern of a ring topology, the node residing

immediately after the broken link in the chain can still communicate with every other node
in the network, and maintain some degree of operation. However, since any responding
device would be incapable of transmitting their response back to the originating node,
communication would be one-way for all nodes on the chain. I'm having an extremely hard
time imagining a scenario in which a device on a network can meaningfully interact with a
distributed system via strict one-way communication.

Another less obvious downside to this is that the maximum performance of the whole
network would be limited by the lowest performing link between any two nodes in the
network. This is the case because any round-trip communication of request-response
between two nodes would necessarily traverse the whole chain.

Mesh topology

The mesh topology is one of the most resilient and common network topologies in use
today. And the reason for that is that it is almost entirely arbitrary in how it is organized. A
mesh topology simply describes any non-formal topology of connectivity in which some
nodes are connected by way of a single point-to-point connection to some other nodes, and
some may have multiple connections to multiple nodes. The original graph diagram from
the beginning of this chapter, shown as follows, is technically a mesh network topology:

Node .
P Connection

In case you forgot.

You'll note that the nodes in the preceding diagram have anywhere from one to three direct
connections to other nodes in the network. This can provide some of the resilience of other
network topologies where necessary, without incurring their costs. Since there is no
obvious specification for a mesh network other than that it does not fully implement any of
the other network topologies we discussed, it can include networks with an arbitrary
degree of connectivity between nodes up to, and including, a fully-connected mesh
network.
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Fully connected mesh network

A fully connected mesh network is one in which every node has a direct connection to
every other node in the network, as demonstrated in the following diagram:

If this diagram looks a bit crowded to you, you've already noticed the single biggest
drawback of a fully-connected mesh network. It's nearly impossible to scale beyond a
certain point, because each new node on the network requires a connection for each
previously connected node on the network. The math works out to a quadratic increase in
connections for each new node to be added. Moving past a few nodes on the network
becomes physically impossible very quickly.

The incredibly high cost of a fully connected mesh network, however, brings with it the
most stable and resilient topology possible. No node has to be responsible for packet-
forwarding or request switching, because there should be no context in which two nodes
are communicating with each other indirectly. Any one node or connection between nodes
can go down, and every other node on the network has full connectivity with no loss of
performance. A single weak connection between two nodes has zero impact on the
performance of any other two nodes. As topologies go, a fully connected mesh is
bulletproof. It's also often prohibitively expensive, and so not common in anything but the
smallest and most trivial contexts.

Hybrid and specialized topologies

As I mentioned before, most larger networks over which you might need to access
resources are composed of multiple topologies joined together into what are typically called
hybrids. A star topology, in which one of the peripheral nodes is also a link in a linear
topology, would be an example of such a hybrid.
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Other kinds of topologies are actually variants of the topologies we've discussed here. For
example, a scenario where a node of a linear network topology is also the access point to a
secondary linear topology constitutes a tree topology, simply a hierarchical linear topology.
The specifics of these structures are less important than knowing that they exist and that,
depending on the nature of the software you intend to deploy onto a network, you know
that there are costs and considerations to be made for them. And speaking of those costs...

The software impact of distributing
resources on a network

All this talk of device-agnosticism and open communication might sound extremely
abstract up to this point. You may well be reading this and wondering yeah, so what? I
don't have to code a network switch, which is probably true. It is certainly true that you
won't have to code a network switch in C# using .NET Core, since that is quite a bit beyond
the scope and capabilities of the framework, and thus, this book. The impact of the
unpredictability of a network on your software, however, will be pretty substantial, and
that will be true no matter what part of the network stack you're programming for. So, let's
look at some of the ways your code should be prepared for distributed systems.

Security

I've gone to the most obvious and complicated issue first, because I personally find it to be
the most interesting. Writing software in a professional context will, across the board,
require you to code your applications to be secure. Even if your job doesn't explicitly
require it, I would argue until I'm blue in the face that, as an engineer, you have an ethical
obligation to write secure software regardless. That can be a daunting task. Especially since
having secured software is always a moving target. It's important that you keep this in
mind, though, because making your software useful as a resource to a wide variety of
benevolent consumers inherently opens you up to malicious intent.
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This is where device-agnosticism and open communication become hugely important.
Device-agnosticism means you can't reasonably be sure that a malicious actor hasn't gained
access to a network that you may have assumed was secured upstream from your hosting
environment. You will only ever see and process requests on the access points to your
software. And open communication means you may end up getting a number of requests
that are malformed that you'll attempt to parse initially, before determining that you can't,
and disposing of them. This need to first read the messages you're given, in order to know,
if they're something you care about, as that ultimately exposes you to malicious commands
or code.

Thankfully, as we'll explore later, the .NET Core libraries provide a wide array of strong
security components right out of the box, and the leg-work of getting and leveraging the
encryption libraries and request sanitizing algorithms is just a matter of knowing what
using statements to include at the top of your source files.

Communication overhead

The other, most obvious concern you face with networked programming is dealing with the
openness of open communication. That property means that you'll have to spend a
substantial amount of time familiarizing yourself with the specific messaging standards of
different communication protocols (which I'll cover in depth in this book). There's an
immense amount of organization necessary to cram data into well-formed packets, with
appropriate header information to tell your software when to start and when to stop
reading from your connection to get the full, uninterrupted binary stream and convert that
back into meaningful data structures in your code. It's a headache just describing the
process.

In locally hosted code, you have the benefit of sharing DLLs of your libraries among
consumer applications to facilitate a shared contract for data structures. You could
communicate with other software on your system through the filesystem itself. You could
just use the systems, file-access APIs to expose all the nuts and bolts of how much data
exists in your message, what the encoding of that data is, and expose it through random
access into the file.
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With a network, you have to give enough context for someone else to make sense of your
message with the message itself. And you have to communicate that context in a way that a
consumer could understand it before they have that context. Once again, the .NET libraries
will come to your rescue here, providing easy-to-use classes exposing standardized headers
and message formats to keep your code clear of that overhead.

Resilience

I mentioned this concept a few times talking about network topologies, but it bears special
mention here, because you'll be responsible for maintaining resiliency of your application
on a network from both ends of a connection. If your application leverages any resources
on a network, you'll have to account for the very likely possibility that there will be times at
which those resources aren't actually available on that network. You'll need to write your
code so that it still responds to its users in a reliable and stable manner in the event of such
an outage.

Likewise, if your software is a dependency for other systems on your network, and it goes
down, the best thing for you to do is have a strategy in place for rebounding from such an
outage. There are a number of viable solutions in place for notifying your downstream
consumers that you've recovered from an outage, each with their own strengths and costs
in terms of resource usage or development time, and we'll discuss several of them later in
this book. For now though, it is sufficient to consider this as you design your solutions and
adjust those designs accordingly.

Asynchrony

Tying in somewhat closely with the notion of resiliency and open communication is the
concept of asynchronous communication. This is a hugely important concept for
maintaining any semblance of reliable performance on a networked program. Put simply,
it's the concept of processing the result of a request that is not provided by the code internal
to your system when that result becomes available.

When your program needs to request some resources from another node on its network,
there is a round-trip time associated with sending your initial request and then receiving
some meaningful response. During that time, you program technically could lock and wait
for the response to come back, but realistically, there is no reason why it should lock and
wait. However, even after our program may have moved on, deciding not to wait on the
response to our initial request, we typically want to take a step back and handle the
response whenever it does come back over the network. This process is asynchronous
programming, and it's a major key to developing reasonably performing network software.
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One obvious case of asynchronous programming you may have encountered separately
from the context of network programming is in programming responsive user interfaces
(UI). Typically, a UI component needs to actively listen and respond to user inputs
whenever that user chooses to engage with it. Since the programmer can't ever know
precisely when a user might want to press a button they've been presented with, they must
respond to the input at the earliest moment that resources that can respond to the

input without keeping those resources on hold while they wait to respond.

Network objects and data structures in .NET
Core

It may sound like a daunting task to start writing network code from scratch, and in some
cases, it absolutely is. There is help, however, in the form of the .NET Core class libraries.
With these libraries, you'll be well positioned to start working with clean abstractions for
complicated, and often frustrating, network protocols and standards to start producing
valuable components on a distributed network.

Using System.Net

The using statement might be one of the most important statements you can include in
source files containing any sort of networking code. The System.Net namespace is a suite
of general-purpose .NET Core classes and utilities for programming most protocols and
networked system behaviors. It is the root namespace for the most common networking
classes you'll use as we move through this book.

The namespace includes classes for the following;:

¢ Domain name resolution and DNS access

o The abstract base WebRequest and WebResponse classes, as well as common
implementations of those classes, including FtpWebRequest,
and HttpWebRequest

¢ Internet Protocol (IP) resolution and definition

¢ Socket utility class definitions

¢ Many others

The classes in this namespace will be your bread and butter as you begin to develop more
complex and powerful software, and you should spend a fair amount of time familiarizing
yourself with the features and functionality the System.Net namespace encapsulates.
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Getting specific with sub-namespaces

While the System.Net namespace encapsulates a wealth of useful classes for network
programming, there are a number of useful sub-namespaces under the System.Net package
hierarchy that you should also be familiar with, as follows.

e System.Net.Http: A utility class used to provide HTTP standards-compliant
messages and interactions within your .NET Core app

e System.Net .NetworkInformation: Provides traffic data, address information,
and other details about the host node on the network

e System.Net.Security: Provides reliably secure networked communication
and resource sharing and accessing

e System.Net.Sockets: Exposes netcore managed access to the WinSock
interface

Each of these namespaces and the classes they expose will be explored in much greater
detail over the course of this book, but for now, I wanted to expose you to some of the most
commonly used, and most broadly valuable, network classes provided out of the box by
.NET Core.

Their software is open source and described by robust and reliable documentation here:

https://docs.microsoft.com/en-us/dotnet/api/?view=netcore-2.1

It would certainly be worth the time of anyone considering a career in network web
development to examine the classes in their fullest.

A whole new computing world

The maximum value a piece of software can deliver is limited by the number of
downstream consumers of that software who have the ability to leverage it. Deploying your
software on a widely available network can increase the overall impact it has on your
organization or community of consumers. This last section takes a look at the kinds of
applications opened up by this transition.
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Long - distance communication

Thanks to communication protocols such as File Transfer Protocol (FTP) and Simple Mail
Transfer Protocol (SMTP), it is possible to write to, or receive a letter from, someone on the
entire other side of the globe within a few seconds of them having sent it. This feat of
engineering is made possible by a robust, resilient physical infrastructure supporting the
internet as a whole, and by the end of this book, the target is for you to have the skills
necessary to develop these kinds of applications.

With peer-to-peer communication protocols, we can build systems of networked
multiplayers for real-time, high-intensity, high-action games.

Share functionality, not code

With well-defined standards such as the RESTful API design and the messaging format of
HTTP, you can write stable, clean, well-isolated web API projects that allow a variety of
consumers to request functionality you've written on demand. Instead of sharing code
directly, you can keep your abstractions abstract and allow only conceptual access to the
business process you own through well-documented channels of communication.

Summary

This chapter took a very deep dive on a small handful of subjects. We delivered a carefully
considered definition of a network, and then considered how the key components of that
definition impact our development strategies for network programs. We considered the
distinction between a physical and logical network topology, and then explored the most
common logical topologies we'll be working with. Lastly, we considered what kinds of new
design decisions and strategies we'll have to make as we start to write our first network
programs, as well as the .NET classes that will help us implement those strategies easily
and cleanly.

In the next chapter, we'll take the first steps into programming for networks, as we look
into resource location and addressing.
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Questions

1. What is the definition of a network?

2. What is the difference between a physical and logical topology?

3. Which was the only network topology discussed in this chapter that is not
exposed to a potential single point of failure?

4. What are some of the physical devices that implement channels of
communication on a network? What physical devices serve as nodes?

5. What is the root namespace for the most common networking libraries and
classes provided by .NET Core?

6. Name at least four classes exposed by the System.Net namespace.

7. What are the four other most commonly used namespaces provided by .NET
Core for reliable and stable network programming?

Further reading

For additional general information on networks, check out Building Modern Networks

by Steven Noble, which is available through Packt Publishing. It's a great resource for
understanding the challenges facing modern network engineers, and a good, deep dive into
the applications of the concepts discussed in this chapter.
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The last chapter was spent dissecting networks to such a degree that most readers will
likely never think about them again. In this chapter, we'll take those concepts and look at
their real-world implementations. We'll start with a look at how the problem of resource
allocation is solved at the scale of the internet. Distributing resources is useless without
being able to access them from across your network, and this chapter will introduce you to
the systems and standards that make doing so possible. As we investigate these topics,
we'll finally get our hands dirty with some code. Throughout this chapter, we'll look at
software examples to get you familiar with leveraging the tools available with the NET
Core framework.

The following topics will be covered in this chapter:

e How data and services are exposed and made available on everything from your
home Wi-Fi network to the internet

e The specific standards used to identify resources at different levels of your
network, from URLs and domain names, to devices names and local directory
access

¢ Using the DNS class in .NET Core to access external resources and resolve
requests for data within your network

Technical requirements

To follow this chapter, you'll need to have either Visual Studio Code, or Visual Studio
Community Edition. Both are free downloads available at the Visual Studio website, at
https://visualstudio.microsoft.com/.

Check out the following video to see the code in action: http://bit.ly/2HVSHad
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We'll also be using the .NET Core command-line interface (CLI). This will give us access to
a series of programs we can call directly from the command prompt. To follow along, you'll
need to make sure you have the .NET Core SDK installed locally, which can be
downloaded from https://www.microsoft.com/net/download.

The source code is available at https://github.com/PacktPublishing/Hands-On-Network—

Programming-with-C-and-.NET-Core.

Needles in a haystack - data on the internet

The first step to using the resources exposed on a network is finding them. While this
problem is easily solved on a LAN with only four computers, you can imagine how
daunting a challenge it becomes when your context grows to the several billion devices
actively connected to the internet. To ensure reliable delivery of requests broadcast on a
network, each device on that network must be uniquely addressed, and any software that
wants to communicate with a device must know the address of the target device. With this
in mind, let's look at how the problem has been solved at scale and consider how we can
apply that solution to our more locally-relevant use cases with .NET Core.

The first network addresses

As I mentioned, every device on a network must be uniquely identifiable so that, at any
given time, requests intended for a specific device can be delivered. Likewise, unique
addressing means that any responses can be reliably returned to the originating device, no
matter how many network nodes lie between the two. If someone has written a service that
solves a problem you have, it's only useful to you if you can actually use that service. This
means either knowing the address of the device hosting that service, or, at the very least,
knowing who to ask for the address.

Thankfully, this is a problem that was solved long before even the earliest incarnations of
the modern internet. I am, of course, referring to telecommunication networks, and their
well-established system for addressing and address look-ups. With early telecom networks,
engineers needed to solve problems for a large set of devices that needed to be uniquely
addressed. Whatever system they came up with, though, would need to exhibit the
following characteristics in order to remain viable in the long term:

e Usability: The system would be used by anyone who wanted to communicate
over the telecom network, and so the system could not have been prohibitively
complex.

[32]
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e Scalability: The ultimate goal was to connect every home in the nation with a
single, unified network. The solution for adding nodes to that network would
need to grow with the population and the geographic region that it would
ultimately support.

e Performance: If a telephone call took as long as the postal service to deliver
messages back and forth, no one would use it. And, while that was never going
to be the case, there would certainly be a limit to what customers would tolerate
in terms of speed and reliability.

Thankfully, what they came up with was a sustainable solution that has scaled and
functioned for decades.

The system that telecom engineers devised was that of phone numbers. By assigning 10-
digit addresses to each phone on a telecom network, engineers guaranteed a network
capable of uniquely addressing up to 9,999,999,999 devices. Add two digit country codes to
that, and you've got a network that can theoretically support up to a trillion devices, or over
100 unique addresses for each human on the planet, with approximately another 240 billion
to spare.

You might have noticed that I specified that the phone numbering system only theoretically
supports up to a trillion devices. However, there are certain limitations of the addressing
system of telecoms that make reaching the theoretical maximum difficult. As most of you
will be well aware, the first three digits of a US telephone number are known as the area
code. Those digits were originally determined by the specific geographic location in which
the phone was located. This helped route numbers quickly, but means that the total number
of possible devices supportable by telecom networks is limited by the distribution of those
devices across geographic regions. Within an area code, there is only a theoretical
maximum of 9,999,999 possible devices; barely more than the total population of New York.

I'm over-simplifying the solution here, but what this trade-off provided for telecom
engineers was a simple mechanism for narrowing down the possible field of physical
phones to which an address would resolve as quickly as was reasonably possible. Calls
could be routed to a substantially restricted region by examining only the first three
numbers. This provided an obvious performance benefit by applying semantic meaning to
a syntactic standard. The telephone numbering system simply specifies that a physical
phone is addressed by a 10-digit address. That is a syntax requirement. However, the
geographic information conveyed by the first three digits of that address is a semantic
standard. There is an underlying meaning baked into those first three numbers that
conveys how the entire address should be handled.
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The scalability of this numeric addressing system helps network devices direct traffic
accurately. For a human user, though, an arbitrary series of seven to ten numbers can be
difficult to remember, and are error-prone to use. Those who grew up in the time before
smartphones and built-in contacts lists may remember the need to have a Rolodex, or
contact book, to keep frequently needed, but difficult to remember, phone numbers
organized and on-hand at all times. However, it was often the case that you'd need to call
someone whose number you didn't have conveniently stored. This is where the phone book
comes in. It served as a simple way of mapping easily-remembered unique identifiers for a
person (specifically, a full name and street address) to their corresponding network-
friendly address (their phone number).

All of these features, taken together, provided telecoms with the hallmarks of a successful
network implementation: usability (through the simplicity of phone books), scalability
(with the extensive range of valid addresses), and performance (with improved routing
speeds achieved by embedding semantic meaning into the syntactic standards of the
address). By now, though, you've likely correctly guessed that we won't be programming
for telephone networks in C#. So, let's see how the design decisions made by telecom
engineers translate to modern computer networks.

DNS - the modern phone book

As I have alluded to, engineers designing modern computer networks faced the same
problem as telecom engineers: defining a standardized syntax with which they could create
unique addresses for each device on their network. Thankfully, though, there were already
giants on whose shoulders those computer network engineers could stand (to paraphrase
Sir Isaac Newton).

The phone numbering system demonstrated that a simple system of fixed-length numeric
addresses could be quickly parsed and routed. Moreover, strictly numerical addresses can
be represented in binary. This meant no additional standards needed to be applied for
consistently representing non-numeric characters. However, this was a trade-off in
usability. The software written to use those addresses would still need to be written by
humans. As is often the case, the easier (and more performant) solution for computers to
use was the more difficult solution for humans. This meant that computer network
engineers would need to devise a phone book of their own. Thankfully, they rose to the
occasion.
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On all modern computational networks, the fixed-length numerical address by which you
can reliably locate an external device is the Internet Protocol (IP) address. Meanwhile, the
system from which you can reliably ask for the address of a given device is the Domain
Name System (DNS). This, the DNS, is the computer network's phone book. It's essentially
an elaborate, distributed mapping of human-readable domain names to their underlying IP
addresses.

Every device on the internet (or any local networks) will have their own IP address.
However, the specifics of how that IP address is determined, and the strengths and
limitations of the syntax for those addresses, will be discussed later in this book. For now,
what we're concerned with is specifically how those addresses are resolved by their more
meaningful, human-readable domain names. In this next section, we'll explore fully how
that happens every time you look up a resource by its URL.

URLs, domain names, and device addresses

With a solid understanding of the primary concerns that must be addressed for resource
location on networks, let's look at how they've been addressed in more detail. First, let's
consider how the much less error-prone URL naming convention allows easier access to
remote resources. Then we'll look at how the DNS provides a bridge between the usability
of URLs or domain names, and the speed and reliability of IP addressing.

URLs - user-friendly addressing

I've been taking a very basic approach to explaining the nature of locating resources so far.
I'm certainly aware, though, that most of you probably have at least some idea of how that
happens in, at the very least, a high-level context. Hell, you likely used a web browser to
find this book in the first place, and had a pretty solid idea that the long string of seemingly
random words and letters strung together in your browsers address bar was, in fact, a URL.
However, I have certainly met my fair share of developers who were surprised to learn
exactly how URLs are constructed and used. So, much as we've done so far, we're going to
start with a very basic explanation of what exactly URLs are, and how we can use them to
find what we need.
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Uniform Resource Locator (URL) is a universally agreed-upon standard for
(unsurprisingly) locating resources on the web. It does so by specifying the mechanism by
which to retrieve the resource, as well as the specific route over which to retrieve it. It does
so by specifying the order of, and delimiters between, specific components that collectively
define the specific physical location of any resource. The specification will initially seem
complicated, but will become more intuitive as we elaborate on the components and the
responsibilities they hold.

URL components

Every URL begins with the scheme by which a resource should be located. This specifies
the transport mechanism, or location type, that should be used to find what you're looking
for. There is a finite list of universally valid schemes that you can specify, including http,
ftp, and even file for locally hosted resources. The scheme is always followed by a colon (:)
delimiter. After the scheme specification, a URL could contain an optional authority
specification, which itself contains a small handful of sub-components.

The authority component

The authority has a designated prefix: the special delimiter of two consecutive forward
slash (/ /) characters, whose presence indicates that characters that follow should be parsed
according to the specification for a URL authority. This prefix is optionally followed by
access credentials, or user information, which transmits an optional user ID and/or
password to the destination host. These values, if included, will always be separated from
one another with a colon (:) as a delimiter, and will be separated from the rest of the
authority component with an at sign (@) delimiter.

Whether access credentials are included as part of the authority or not, it will always
include a host domain. This always follows either the double forward slash (/ /) prefix, or,
in the event of access credentials, the (@) delimiter. The host domain specifies the physical
address of the hardware hosting the resource being located. It can be specified as either a
registered domain name, or the underlying IP address for the hardware.

Finally, an authority might specify a listening port on the host. This is delimited from the
host domain name or IP address by the colon (:) character, and indicates the only ports on
the hardware to which requests for the specified resource should be sent.
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The path component

The path component specifies a series of path segments over which requests must travel to
arrive at the searched for resource. Each segment of the path is individually delimited with
a forward slash (/) character. It's technically valid to have an empty segment as part of your
path, resulting in two consecutive forward slash characters (//).

The query component

After the final segment of the path, the URL may contain an optional query component,
indicated by the presence of the question mark character (?) delimiter. The query
component allows users to specify additional parameters for more specific results from the
requested resource. Each different query comes in the form of a parameter, the equals sign
(=) delimiter, and the requested value of the query parameter. Finally, each parameter is
delimited by either a semi-colon (; ) or ampersand (&) delimiter between any two query
parameters and their values.

The fragment component

The final piece of a URL, at least ordinarily, is the fragment component. It's an optional
piece of the URL string, and its presence is indicated by the reserved pound, or hash (#)
prefix. The fragment component is often used to identify a sub-component of the
eventually-returned resource, and is typically used by web browsers to navigate to a
specific fragment of the HTML document that was searched for.

Putting it all together

Having clearly enumerated all the relevant components of a URL, we can simplify things
with a basic syntax specification. Every URL ultimately breaks down to the following
structure, where optional components are designated with square brackets []:

scheme: [//authority/]lpath[?query] [#fragment]

So here, we see plainly that the only required components of a URL are the scheme and
subsequent colon delimiter, and a path. Everything else is optional, and you'll note that
each optional component has its presence in the URL indicated by its unique prefix
character. And we can, of course, expand on the following components.
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Authority specification

The authority, as we already specified, can be broken down as follows:

//laccess_credentials] [R]lhost_domain[:port]

So, if an authority component is present, it will always be prefixed with a (/ /) delimiter,
and will always contain the host domain. Meanwhile, the access credentials component is
also broken down as follows:

[user_id] [:] [password]

Here, only one component is required. However, if either component is present, then the
(@) character separating access credentials from the host domain becomes a requirement.
And, if both the user_id and the password functions are present, then the colon (:)
delimiter between the two components will be required.

Query specification

Finally, the last component that has a well-defined specification for how it can be composed
is the query component. It can be broken down as follows:

? [parameter=value] [ (; | &) parameter=value]...

The sequence of additional delimiters and key-value pairs can extend all the way to the
maximum allowable length of a valid URL.

By following these syntax specifications, you can decompose any URL you are presented
with into its component parts, and meaningfully leverage it to access the resource it
identifies.

The URL as a sub-type of the URI

We've spent the bulk of this section discussing URLs specifically. What you may not have
realized, however, is that a URL is actually a single, specific kind of something known as a
Uniform Resource Identifier (URI), which is a string of characters adhering to a well-
defined syntax that universally and uniquely identifies a resource on a network.

The distinction between a URL and a URI is subtle, and almost entirely conceptual. The
simplest way to characterize that distinction is to note that, by using a URL, we are
guaranteed to be able to identify and locate a requested resource. The only thing we are
guaranteed, given a simple URI, is an ability to identify it that is to distinguish the resource
from any other arbitrary resource.
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In practice, however, the terms URL and URI are frequently used interchangeably. This is
because, since URL is a specific kind of URI, it's always valid to characterize a URL as a
URI. Meanwhile, it is often sufficient to characterize a URI as a URL since knowing the
specific identity of a resource within the context of a network is usually enough to then
locate that resource.

If you're wondering why I brought up a subject of such apparent triviality, it's for clarity's
sake. Over the course of this book, I'll consistently talk about resources as being identified
by their URL. However, the class exposed by .NET Core for constructing, decomposing,
and leveraging these addresses is named for the more generic URI specification. In fact, let's
take a quick look at that class now.

The System.Net.UriBuilder class

If you've made it all the way through this elaborate definition of the URL specification, you
might be wondering how on earth you can leverage this in your code to access a resource,
when you already know specifically where to look for it. Enter, dear readers, the
UriBuilder class!

Living in the System.Net namespace, the UriBuilder class is a factory class for
generating instances of the Uri class. It provides users with several overloaded
constructors to allow the specification of more of the components of a valid URL
progressively. It also provides accessors to properties representing each of those
components individually. Finally, it provides a function to produce the well-formed
instance of the Uri class from the component parts.

Let's start with a very simple example. We'll use UriBuilder to compose an instance of
Uri with only the Scheme and Host components as follows:

public Uri GetSimpleUri () {
var builder = new UriBuilder();
builder.Scheme = "http";
builder.Host = "packt.com";
return builder.Uri;

}

With this method, we can see how the UriBuilder class composes a well-formed and
syntactically correct Uri out of the component parts we specify, as demonstrated in the
following code snippet:

using System;
using System.Net;
using System.Threading;
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namespace UriTests {
public class TestUriProgram {
public static Uri GetSimpleUri ()
/...
}

public static void Main(string[[ args) {
var simpleUri = GetSimpleUri ();
Console.Warn (simpleUri.ToString());

Thread.Sleep (10000);

}

By running this program, you should see the http://packt .com output while your
console is open for ten seconds, before it closes and the application terminates.

Here, we didn't need to specify that the ht tp component of the URL should be followed by
a colon character. We didn't say anything about the host we specified being prefixed with
the // prefix characters. The UriBuilder class did that for us. This factory class gives us a
clean way to incrementally construct a more specific desired location, without us, as the
developers, having to keep the nitty-gritty details of delimiters, prefixes, and suffixes in our
heads all the time.

In this example, we leveraged the fact that the UriBuilder class provides public get
access to all of the properties that it has to encapsulate each component of a Uri. However,
you can also apply many of those properties through a series of overloaded constructors, if
you know their values at the time of construction.

The UriBuilder class has seven overloaded constructors. We've seen the default
constructor, taking no parameters, but now let's look at a program that leverages each of
the constructors and see what they provide. Given that we know the transport scheme and
domain name we intend to look up, we can simplify our initial method for a simple Uri as
follows:

public static Uri GetSimpleUri_Constructor () {
var builder = new UriBuilder ("http", "packt.com");
return builder.Uri;
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With that change, the output from our TestUriProgram will print the exact same string
we saw before, but the code to produce that output is one-third of the size. Whenever
possible, I recommend using the constructor overloads to instantiate the UriBuilder class.
Doing so shrinks our code height and makes our intentions explicit when instantiating the
class. Always be more explicit in your code when possible.

Hosts — domain names and IPs

In my description of the host component of a URL, I specified that the host domain could
be either a domain name, or an IP address. As I mentioned before, an IP address is the
underlying numeric address used by routing hardware and software to navigate to a
resource on a network. It's the unique ID, specific to a piece of hardware at a specific
location. A domain name, however, is the human-readable string of words and alpha-
numeric characters used to make addressing easier and more consistent. It is more
consistent, easily remembered, and less prone to error than a raw IP address. What's
interesting, however, is that domain names and their IP addresses are actually functionally
interchangeable. In any context in which you can use one, you can always safely substitute
the other.

Given that IP addresses can be resolved directly by the network transport layer, and don't
need to be resolved before they can be serviced by any node in the routing process, we'll
ignore them for now. We'll explore the syntax, limitations, and advantages gained by using
the IP address of a device later on in this book. For now, though, we're more concerned
with how we can find the IP address in the first place. That's why, for this chapter at least,
we're only concerning ourselves with domain names and how they're resolved by the DNS.

I'd bet that among everyone reading this book, there isn't a single person who knows a
single other person who hasn't typed google.comor en.wikipedia.org into their browser's
address bar. Our use of domain names is ubiquitous, and yet most of us have no idea how,
exactly, they are created or used. Even for me, it wasn't until I was explicitly tasked with
writing software for resolving those domain names on an internal network that I finally
took the time to understand what made that system work. At that time, I learned how the
web of DNS servers facilitated network usage by human users. While I only mentioned it
previously, it's time to consider just what the DNS is more deeply, and how we can use it.
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The DNS is a distributed, decentralized network of authoritative servers that hosts a
directory of all sub-domain servers, as well as any domain names that can be resolved by
that authoritative server. Any domain name that has been registered with a certified
domain name registrar, and which meets the syntax standards of a domain name (and
which hasn't already been registered), is considered valid. Valid domain names are added
to the distributed registry hosted by authoritative servers. Between your computer and any
other network node you hope to interact with using a valid, registered domain name, your
request will have to interact with one or more of these name servers.

Each server will inspect the domain name given, and look up the domain in its own
directory of names and IP address mappings. Naturally, the server will first determine if
the given name can be resolved by that server, or at least by one of its subordinate servers.
If so, the authoritative server simply replaces the domain name in the request with the IP
address to which it maps, and forwards the request along accordingly. If the current server
cannot resolve the domain name, however, it will forward it along up the hierarchy of
name servers to a more general, parent domain. This process continues up to the root name
server, or until the name is resolved.

The DNS in C#

It is occasionally necessary to identify the underlying IP address for a domain name from
within the context of our software. For that, NET Core provides the static Dns class as part
of the System.Net namespace. With the Dns class, we can access directory information as
returned by the nearest downstream name server capable of resolving the given name. We
can request an instance of the IPHostEntry class, containing all of the relevant directory
information of a DNS entry, or simply an array of IP addresses registered to resolve
requests against the domain name.

To see this in action, simply invoke any of the methods exposed by the static Dns class in a
sample program as follows:

using System;
using System.Net;
using System.Threading;

namespace DnsTest {
public class DnsTestProgram {
static void Main(string[] args) {
var domainEntry = Dns.GetHostEntry ("google.com");
Console.WritelLine (domainEntry.HostName) ;
foreach(var ip in domainEntry.AddressList) {
Console.WriteLine (ip);
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t
Thread.Sleep (10000);

}

With this program, we should see the following output:

google.com
172.217.10.14

Of course, the IP address that is resolved when you look for a host entry that resolves the
google.com domain name will likely be different. Google's servers are widely distributed,
and the specific server slice (and its associated IP address) that is nearest your network
location will be what resolves a lookup of that domain name.

If you want to validate that the IP address returned is in fact what is registered for that
domain name, you can actually intercept the host entry lookup locally by modifying your
computer's hosts file. On a Windows OS, that file will live at the
C:\Windows\System32\drivers\etc\hosts directory, and will have no file extension.
On macOS and *nix systems, it simply lives at \etc\hosts.

This file serves as the first stop on any outbound requests for a network resource addressed
by a host name. It is, technically, your computer's internal name server, and you can use it
to direct traffic any way you'd like. To demonstrate this, add an entry to your hosts file as
follows:

127.0.0.1 fun.with.dns.com

Now, opening your command prompt, navigate to an empty folder, and spin up a new
.NET Core Web API project with the following CLI command:

dotnet new webapi

Your console should print information about .NET Core, telemetry, ASP.NET Core, and
finally, finish execution with the following line:

Restore succeeded.

Assuming that this worked, you can immediately run the application by executing the
following command from within the same directory that you created the project:

dotnet run
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After this, you should see that your application is running and listening, as seen in the
following screenshot:

Pay attention to the specific port your application is listening on.

If we look inside the blank Web API application, we can see that NET Core stood up a
single controller, named ValuesController, and that it exposes a number of REST
endpoints. The only things that we're concerned with for now is the route specified for the
API, and the endpoint listening for HTTP GET requests, listed as follows:

[Route ("api/{controller}i")]

[HttpGet ("{id}") ]
public ActionResult<string> Get (int id) {
return "value";

}

This tells us that we should expect to see the "value" result if we navigate to the
/api/values/{id} path on the listening port of our local machine.

Sure enough, if you open your browser of choice and type the application's URL into your
address bar, appending the path specified in the controller, you should see the value string
displayed in your browser, as shown in the following screenshot:
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What's interesting, though, is that localhost is itself an alias for the 127.0.0.1 IP address.
By convention, that address always resolves to the current local machine. Since we
modified our hosts file, however, we should be able to replace localhost in our URL with
the fun.with.dns.com as new domain name. Make the change in your browser, and
you'll see the same response!

Now that we've seen how to set up our own domain name entries locally, we can use our
hosts file to explore the Dns class in more detail, and validate the responses.

First, add an additional entry to the hosts file with a new IP address, but the same fake
domain name as before. Your new hosts file should read as follows:

127.0.0.1 fun.with.dns.com
1.0.0.127 fun.with.dns.com

Here, it doesn't actually matter what the addresses are, since we won't be looking for
resources at those locations. What matters is that there are two. With those entries in place,
you can see more concretely how the Dns class in .NET exposes a host entry from the
nearest domain name server that can resolve it. We can modify our program from before as
follows:

using System;
using System.Net;

namespace DnsTest {
public class DnsTestProgram {
static void Main(string[] args) {
var domainEntry = Dns.GetHostEntry ("fun.with.dns.com");
Console.WritelLine (domainEntry.HostName) ;
foreach(var ip in domainEntry.AddressList) {
Console.WriteLine (ip);

}

var domainEntryByAddress = Dns.GetHostEntry ("127.0.0.1");
Console.Writeline (domainEntryByAddress.HostName) ;
foreach(var ip in domainEntryByAddress.AddressList) |
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Console.WritelLine (ip);

3
Thread.Sleep (10000);

}
}
}

We can now see the following output:

fun.with.dns.com
1.0.0.127
127.0.0.1
fun.with.dns.com
1.0.0.127
127.0.0.1

This demonstrates how we can access host information for a given domain name or IP
address using the Dns class. Note that the instance of the HostEntry class returned by the
methods of the Dns class always contain all of the IP addresses for which there is a record
in the naming server. Even when we looked up the HostEntry class by a specific IP
address, the Dns class still resolved and returned every other IP address registered for the
domain name that matched the IP address of the original lookup. This provides the
flexibility of being able to access and leverage alternative hardware resources for a given
request in the event that one of the registered addresses is unresponsive. The extent to
which you'll leverage this class in your work may vary, but I hope you see now that it can
be a useful tool to keep in your belt.

Summary

In this chapter, we examined the primary characteristics network engineers identified as
necessary to make networks viable. We considered the trade-off of usability for routing
hardware versus readability for humans when defining a standard syntax for network
addressing. With that consideration in mind, we looked at how the work of the telecom
engineers of previous generations contributed hugely to the solutions that were ultimately
standardized on all modern networks today.
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Within that context, we looked at how IP addresses are used by network hardware to locate
resources, and how the DNS facilitates the more memorable, human-readable addressing
schemes of URLs and URIs. We learned how those domain names are explicitly mapped to
their underlying IP addresses by implementing a domain name server of our own, using
the hosts file of our operating system. Using the sandbox of our self-contained DNS server,
we explored the C# classes provided by the System.Net namespace to facilitate building
syntactically correct URLs, and leveraging the DNS to lookup the underlying IP addresses
of a given URL, or resolve requests to do the same.

With this foundation in place, we'll use the next chapter to explore the communication
protocols that allow for data transmission from one host to another. We'll look at how a
standardized model facilitates communication between entities, and take a close look at
some of the most common protocols used in that communication.

Questions

1. What are the three characteristics network engineers seek to achieve for long-
term viability of a network addressing standard?

2. How did telecom engineers sacrifice the maximum possible scale of telecom
networks to achieve higher routing performance?

What are the phone number and phone book of the modern internet?
How does a URL locate resources on the web?

What are the valid components of a URL? Which of them are optional?
What is a fully qualified domain name?

NS Uk

How is a device given a domain name?

Further reading

For more information on URLs, domains, and resource location on networks, consider
Managing Mission-Critical Domains and DNS by Mark E. Jeftovic. It provides a deeper and
more considered analysis of working with the DNS, and strategies for leveraging that
system to your advantage when constructing networks of your own.
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We've spent the first two chapters of this book discussing what makes networks hard to
program for open communication and device agnosticism. These aspects of networks
demand standardization, and in this chapter, we'll examine how standards provide a
common language that the network software can communicate through. First, we'll learn
about the governing body that defines those standards. We'll learn a bit about who they are
and what objectives they sought to achieve. Once we understand who defined the common
architecture of networks, we'll take a deep dive into the way they've organized and
categorized each tier of the hierarchy of network layers.

The following topics will be covered in this chapter:

e The origin of the current standard for network architecture and a brief history of
it, as well as some background on the organization that is responsible for it.

e How application code interacts with networked resources through the
application layer and what communication standards are provided for that layer.

e How data is communicated out to, or read from, the network on the transport
layer of the network architecture standard.
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Technical requirements

As with chapter 1, Networks in a Nutshell, this will be more of a conceptual examination of

the standards defined for networks. There is no specific technology as such that is required

for this book. We'll be using the same technology for this chapter as we have in others: NET
Core 2.1 SDK and either Visual Studio Code, or Visual Studio Community Edition to use as
an IDE.

Check out the following video to see the code in action: [Placeholder link]

The Open Systems Interconnection network
stack

There are several steps in the process of sending or receiving a resource from a remote
source over a network, and each of those steps has been deeply considered by the network
engineers tasked with executing them. In this section, we'll look at who those network
engineers were, and how they defined a general pattern for implementing each step in that
process. This section will be all about the OSI, and how that specification defines the
network stack of a given network device.

What exactly is the Open Systems
Interconnection?

In order to talk about communication protocols, we need to understand how each protocol
fits into the larger picture of network connectivity, and to do that we need a common
model for thinking about each step in the process. To that end, we have the OSI model for
computer and telecommunication networks. This model seeks to organize the different
steps of standardized communication to or from a given device into a tiered model of
abstraction layers. Much like the logical topologies of a network, which we discussed in
Chapter 1, Networks in a Nutshell, the OSI model exists on a purely conceptual and abstract
level.

As the name suggests, it was defined in such a way as to be useful as a reference while
remaining entirely agnostic as to how any of the tiers defined in the model are
ultimately implemented at the physical level. In fact, many implementations of
communications protocols or standards do not cleanly map to the OSI network model.
However, the model is broadly considered the gold standard, and has been since it was
formalized in 1984. So, let's take a look at how that came to be.
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The origins of the OSI

The need for a standardized model for network implementations became apparent almost
as soon as networking became possible. To that end, back in the late 1970s, two different
organizations for governing standardization in computing set out to define such a

model. The first of these organizations was the International Organization for
Standardization (ISO). The other organization that set out to solve the same problem, at
roughly the same time, was the International Telegraph and Telephone Consultative
Committee (CCITT, initialized from the French translation of the name).

Interestingly, the shortened name for the International Organization for
Standardization, ISO, is not an initialism of the name of the organization.
Instead, since the name of the organization would be initialized
differently in each language that it is recognized, the members chose to
shorten the name to ISO. This is in reference of the Greek isos, which
means equal, and speaks to the goal of the organization to bring about
equal understanding.

The fact that two organizations sought to define their own model at roughly the same time
as one another isn't entirely surprising. The problem was faced by engineers across a wide
array of disciplines, and the lack of standardization was quickly becoming a bottleneck to
progress in those disciplines. What is surprising, however, is how similar the solutions
were to one another. Like Leibniz and Newton independently inventing calculus, these
organizations incidentally arrived at a common solution to their common problem.
However, this happy coincidence helped to expedite the standardization process, since the
similarity of their solutions served to validate both models as being highly likely to be
correct.

Given the success of both organization's efforts, it took only a handful of years before both
models were merged into a single standard. Thus, in 1983, the Basic Reference Model for
OSI was born. Over time, the name has, of course, been shortened to the OSI model. By
1984, each organization had published this new shared model under their own official
reference documents, canonizing the model, and its specific protocols, within the
international community. So, let's take a look at what that model entails.

The Basic Reference Model

The Basic Reference Model was formalized by ISO as standard ISO-7498 (and as standard
X.200 by the ITU, the successor to the CCITT). The model could be cleanly broken into two
parts. The first part is the abstract Basic Reference Model for networking. The second is the
list of protocols the organizations saw fit to standardize for use by systems that implement
the reference model.
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The reference model defines network communication streams, as implemented by a
compliant device on a network, in a hierarchy of seven distinct conceptual tiers, or layers,
organized in a stack. This stack is defined as far down as the transmission of raw bits over
physical media, and all the way up to the high-level application software that might use
any resource distributed over a network.

For our purposes, as we describe these layers, when we say a layer
is higher in the stack, we mean farther away from the hardware-level
transmission of bits across a physical medium.

The model defines a strict mechanism of unidirectional interaction between layers.
According to this communication standard, a given layer can only ever communicate with
the layer directly beneath it through an abstract interface exposed by that lower layer. This
interface is known as the service definition of a layer, and it defines the valid operations by
which a higher layer can interact with any lower layers. The interaction model between
layers of the OSI network stack shows the same:

Layer N

! Interacts With !
! The Service Definition Of I

Layer (N-1)

As data moves through the layers of the stack, each lower layer wraps the packet in its own
series of headers and footers to be parsed by the recipient device. This contains information
about what layer in the stack the data originated from, as well as how to parse it. The data
packet that gets passed down, layer-to-layer, through the network stack, is known as

a Protocol Data Unit (PDU).

While service definitions provide an interface for interaction from one layer to the layer
beneath it, protocols provide standardized interaction for an entity at a given level in the
network stack to interact directly with a corresponding component at the same level on a
remote host. These protocols assume smooth interaction down the stack of the originating
host, and then back up the stack on the remote host. Once it has bubbled up the stack to the
target layer of the remote host, the protocol determines how the receiving entity should
process the data.
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So, we can describe the entire process of data transmission through the OSI stack, as
follows:

1. An entity on the originating host creates a data packet, known as a PDU, at a
given layer in the network stack, N.

2. The originating layer passes it down the stack by leveraging the service
definition of the layer immediately beneath it.

3. Lower layers receive the PDU, each wrapping it in a set of headers and footers, to
be parsed by the corresponding layer on the remote host.

4. Once the PDU has been wrapped in headers and footers by the bottom most
layer of the stack, it is transmitted to the remote host.

5. Each layer of the stack on the remote host removes the headers and footers
applied by the corresponding layer of the originating host, bubbling the PDU up
through the stack.

6. The PDU is received by layer N on the remote host. The receiving layer then
parses the data of the PDU according to the specifications of a protocol for
layer N, as specified by the originating host.

And just like that, our data is transmitted, reliably, over the network. That is the complete,
if abstract, process of using protocols to transmit data units through the service definitions
of each layer in the network stack. I know, it's a lot to take in at once, but it will become
slightly more clear as we build up the picture more completely. So, with that, let's look at
what the individual layers of the stack are, why they're ordered the way they are, and what
they're ultimately responsible for.

The layers of the network stack

As we examine each layer of the network stack and what it is ultimately responsible for,
there are some key things to bear in mind. First, remember that the model is abstract at its
core, and is only meant to serve as a reference. For this reason, there may be times where
it's not obvious which layer a given responsibility or task belongs to. Second, bear in mind
that as we discuss the responsibilities of each layer in the stack, we're speaking specifically
about the responsibilities of that layer with respect to the successful transmission of data
over the network. So, the responsibilities of the session layer in the context of the network
stack are completely independent of, say, the management of a user session in the context
of a web application.
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Finally, it's useful to remember that the farther down the stack we go, the closer we get to
the physical transmission of data over a physical medium. We'll be numbering the layers in
our stack in descending order, from top to bottom, so that the smaller the number, the
closer we are to the signals on the wire. This will be helpful when considering why one
layer is lower than another, and how its responsibilities are distinct from those of the layer
above it. With all of this in mind, let's dive in, top to bottom, through the OSI network
stack.

The Host/Media distinction

The first thing to understand about the network stack is that there are different levels of
abstraction that you can view. The higher up, conceptually, that you look at network
interactions, the fewer layers there are, and the easier it is to distinguish between the
responsibilities of those layers. Meanwhile, when you build a model closer to its concrete
implementation, you see the distinctions between more subtle roles and responsibilities of
each entity in that model. We're going to be looking at the full, lower-level model provided
by the OSI reference model, but I want to take a moment to consider the higher-level
distinction between entities on a network, which breaks down into two fundamental layers.

The first of these layers is the Host layer. This encapsulates the four higher levels of the OSI
stack and describes entities or responsibilities specific to a given host trying to
communicate on a network. In the most basic context of two-way communication between
two hosts on a network, each host is responsible entirely for its own implementation of the
OSl layers that aggregate up under the Host layer (hence the name). Bundling application
data, specifying encoding and reliability expectations, and the methods for sending out a
PDU to a given target all fits, loosely, under the Host layer.

The second layer in the higher-level view of networks is the Media layer. These layers
describe the physical implementation of the network components between two hosts. This
provides the expected functionality specified or requested by entities in the Host layers.
Entities of this layer are typically implemented either on the hardware level, or in a low-
level systems language such as C or C++. For this reason, entities of this layer will generally
fall outside the scope of this book. However, C# provides abstractions that encapsulate and
represent the functionality of entities in this layer, so it's important to understand how the
layers that fall under the Media layer actually work on a basic level.

With that high-level distinction made, let's take a look at the full OSI model for networks,
starting from the top.
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The application layer

The top most layer of the network stack is also the layer that most developers will interact
with over the course of their careers. The application layer provides the highest-level
interface for interaction with network communication. This is the layer that business
application software uses to interact with the rest of the stack. There are a number of
protocols leveraged by entities on the application layer, and we'll discuss them later in this
chapter. For now though, it's only important to remember that the application layer serves
as the access point between actual end user applications and the OSI network stack.

The presentation layer

While it may sound like a way of visually representing the data, the presentation layer is
actually a way of defining how the data is to be interpreted by any consumer that wants to
look at it. This layer provides context for application-layer entities from different hosts to
mutually interact with a PDU. Entities in the presentation layer are responsible for
describing how data passed from the application layer should be interpreted on the other
side of a given data transaction. It does the work of abstracting away the encoding or
serialization of PDUs from the higher-level business logic of application layer entities.

The session layer

Entities on the session layer are responsible for establishing, maintaining, resuming, and
terminating an active communication session between two hosts on a network. The entities
at work on this layer provide communication mechanisms such as full-duplex interactions,
half-duplex interactions, and simplex interactions, as specified by the constraints of the
protocol used.

Full-duplex, half-duplex, and simplex communication

When a session is established between two hosts, there are a handful of ways that
communication can happen over that session. The two most common are the full and half-
duplex implementations. These simply describe a communication session that both
connected parties can communicate over.

In a full-duplex session, both parties can communicate with one another simultaneously.
The typical example for this kind of communication is a telephone call. On a phone call,
both parties can talk and hear the other talking at the same time. The extent that someone
can listen to what is being said to them while also speaking allows for much more efficient
data transfer, and can facilitate reliable communication systems.
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A half-duplex system is one where both parties can communicate over the session, but only
one party can communicate at a given time. A common example of this is a two-way radio
or walkie-talkie. On these systems, engaging the microphone of one radio will lock the
channel and prevent the other radio from transmitting until the first microphone has
disengaged. This can allow more reliable communication over a limited bandwidth, since
there is less opportunity for signal interference.

Finally, a simplex communication session is one where only a single party can actually
transmit data. That is, there is a sender and a receiver. A common example of this is
network television; there is a single broadcast source, with multiple receivers actually
accepting the transmitted signal. This is uncommon in most modern communication
networks, since the additional cost of implementing a duplex communication session is
often trivially small in relation to a simplex connection. However, it should be noted that a
duplex communication system is simply a system of two simplex connections with one
connection going in each direction between the hosts.

The transport layer

Entities in the transport layer use protocols specifically designed for interacting with other
hosts and the network entities in between. It might seem redundant given our description
of the presentation and session layer; however, there's an important role to be played here.
The presentation layer is concerned with character encoding, or the mapping from
platform-specific data representations to platform-agnostic descriptions of that
representation. The transport layer, though, looks at the full block of encoded data that was
passed down by the presentation layer, and determines how to break it apart. It's
responsible for cutting the data into segments of otherwise useless streams of binary. And,
importantly, it breaks those segments up in such a way that they can be reassembled on the
other side of the connection. The transport layer is also responsible for error detection and
recovery, with different protocols providing different levels of reliability.

This layer is the lowest layer in the Host layers umbrella previously described. Determining
what transport mechanism can and will be supported by a host remains the responsibility
of that host. However, it is the lowest boundary of a given host's responsibility in
successfully implementing network interaction. Everything below this layer falls into the
Media layer, and is the responsibility of the engineers who support the network that the
host has been deployed on.
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The network layer

Entities on the network layer manage interactions over the network topology. They're
responsible for address resolution and routing data to target hosts once an address has been
resolved. They also handle message delivery based on constraints or the resource
availability of the physical network. So, while the transport layer determines the
interactions between host-level tiers of the network stack on either side of a connection, the
network layer is responsible for applying the transport protocol across the chain of devices
that form the route between two hosts. The distinction between adjacent layers can be
subtle, and we'll discuss some of the responsibilities specific to the network layer later in
this chapter. So, if the distinction between transport and network layers is unclear, trust
that we'll (at least, attempt to) clarify that distinction later.

The data-link layer

The data-link layer falls very clearly into the Media layer's grouping, as entities in this layer
provide the actual transfer of data between nodes in a network. It's responsible for error
detection from the physical layer, and controls the flow of bits over physical media between
nodes. So, for example, in a half-duplex communication setup, an entity in the data-link
layer is responsible for restricting the transfer of data in one direction while data is being
transferred in the other direction. Entities in this layer almost serve as the traffic lights
directing traffic over the roads of a node-to-node connection. The data-link layer is broken
down even further into two sub-layers by the Institution of Electrical and Electronics
Engineers (IEEE) standard 802. These two sub-layers are as follows:

¢ The Medium Access-Control (MAC) layer: This sub-layer controls who can
transmit data through the data-layer entity, and how that data can be
transmitted.

¢ The Logical Link Control (LLC) layer: This sub-layer encapsulates the logical
protocols of network interaction. It is essentially the interface that provides the
entities links as a set of abstract protocol operations.

Driving home how narrowly specific the data-link layer is in terms of its responsibilities on
a network, its most common protocol is the Point-to-Point Protocol (PPP). This just
highlights that entities of the data-link layer really are only concerned with facilitating the
connection between two points.
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The physical layer

Finally, we've arrived at the bottom of the stack, with the simplest layer to understand. The
physical layer encapsulates the entities that are responsible for transmitting raw,
unstructured data from one node in the network to another. This is the layer responsible for
sending electrical signals that correspond to the strings of bits in a data packet. It
encapsulates the devices responsible for modulating voltage, timing signals, and timing the
frequency of wireless transmitters and receivers. Entities on this layer are explicitly outside
of the scope of this book, but are an interesting concern regardless.

Putting it all together

Now, we've seen how the OSI model organizes the responsibilities of transmitting data.
Hopefully, by this point, it should be clear how each layer in the stack is intended to
provide a reliable abstraction for the layer above it. However, the process of
communicating with a remote host, in its entirety, may still seem a bit vague. So, let's
consider a concrete example and address each of the concepts that we talked about as they
arise through the process of data transmission.

First, let's assume that an entity on layer 5 of our host (the session layer) wants to establish
a session with an entity on Layer 5 in a remote host. I haven't said so explicitly until now,
but we can always assume that an entity on a given layer on one host only ever
communicates directly with a corresponding entity on the same layer in the remote host.
So, for our example, an entity in layer 5 will communicate with a remote entity that also
resides in layer 5.

Communicating with remote entities will always happen through a protocol. Given this,
the first responsibility of any entity seeking to communicate with a remote host is to wrap
the transmitted data in the headers and footers appropriate for that protocol. For our entity
in the session layer, let's assume they are hoping to establish a session using the Session
Control Protocol (SCP). This means that our local entity will produce the data necessary to
establish a session, then wrap that data in SCP headers and footers, creating a well-formed
PDU (hopefully, this makes it clear why the name describes this package). This ensures that
the recipient host will be able to unwrap the data based on the information stored in the
headers and footers of our PDU.
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Since entities that reside on any layer above the physical layer cannot communicate directly
with one another, we have to pass our PDU down the stack. In our example, we can reliably
pass the PDU down to Layer 4 by taking advantage of its service definition and trusting
that the logical operations exposed through that definition are accurately implemented by
all of the responsible entities below Layer 5. So, we don't need to know how Layer 4
implements transport mechanisms. Instead, we simply ask it to use the appropriate
transport mechanism for this particular instance and trust that it will do so appropriately.

This pattern of trusting that lower layers in the stack will correctly implement the
operations being requested by higher layers in the stack continues all the way through to
Layer 1. Over the course of this process, each layer in the stack will wrap the PDU in its
own headers and footers. These standardized chunks of data give each intermediary layer
on the receiving host enough information to know to pass the PDU up its own stack. By
continuously wrapping the data in well-formed, well-understood chunks of binary data,
each layer on the remote host can trust that the inner segment of data that is passed up the
stack is exactly what should move up.

This process of wrapping the PDU in deeper and deeper layers of metadata continues
down the stack until we reach Layer 1. Layer 1 holds the physical connection from our host
to the remote host. Once we've reached this level, we can step across the expanse of the
network and start looking at how our PDU moves back up the network stack until it
reaches our target entity on Layer 5. Entities on each layer of the remote host will diligently
remove and read the headers and footers applied by the corresponding layer of the
originating host. The information in those wrappers will indicate that the PDU is destined
for a layer above the current layer, and so entities will simply strip their headers and
bubble the rest of the data up the network stack.

Once the data has reached layer 5 on the remote host, an entity on that layer will read the
headers and footers of the PDU that were applied on Layer 5 of the originating host. This
metadata will indicate that layer 5 is, in fact, the target layer for this particular PDU. The
metadata will also indicate what protocol should be used to parse the data passed to the
remote host. Using this information, the recipient host will have enough data to properly
read the data in the PDU, and construct its own response PDU.
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Once that response is received by the originating host, a session will be established, and be
open for use by any entities above the session layer in the originating or remote host. This
whole process is captured in the following diagram of the full life cycle of data transmission

through the OSI stack:
Laver 5 | __ Protocol for I
y Communication Layer 5 (Remote)
PDU wrapped PDU parsed l
PDU dina t ¢
according to according to <7
Protocol Protocol
Layer 4
kel Layer 4 (Remote)
: °
* °
i .
Laver 1 Physical Connection i
Y Between Hosts j Layer 1 (Remote)
Originating Host Remote Host

With this diagram in mind, is easy to see how the standardization provided by the OSI
model makes it easier for engineers to program software for networks. The clean separation
of concerns and the explicit pattern for passing data through the stack allows for well-
formed contracts, against which all interested parties can design and develop. Engineers
programming entities on the application layer can ignore the details of transporting data.
They simply pass down a well-formed PDU through the stack.

Hopefully, this description clarifies how entities on specific layers expose their abstractions
through a service definition, and how entities operating on the same layer of the network
stack on different hosts reliably communicate through protocols. With this perspective in
mind, let's take a closer look at the layers of this stack that we'll be programming for most
frequently, as well as looking at some of the classes that C# provides to represent the
entities of these layers.
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The application layer

I mentioned it before, but it bears repeating, application layer is where the vast majority of
day-to-day network programming will take place. This is especially true within the NET
Core framework, since the libraries provided by that framework deliver a wide array of
clean, easy-to-use abstractions for entities or responsibilities that must be programmed
lower in the stack. So, first, let's see why we should be so concerned with the
responsibilities of the application layer. We'll look at the kinds of responsibilities that are
typically delegated to entities in the layer, and see how frequently those responsibilities
overlap with the requirements faced by everyday .NET Core developers. Then, given the
extensive range of use cases for entities in the application layer, we'll take a look at some of
the common protocols used by entities at that tier of the stack. We'll seek to understand
them on a fundamental level. We'll look at what classes and libraries we have available to
us for each of those layers; however, after this chapter, my hope is that you'll have a deep
enough understanding to be able to reconstruct those classes yourself.

The most common layer in the stack

This might feel redundant at this point, but it really is worth driving home that the
application layer is where the vast majority of .NET developers are going to be doing their
network programming. Since that accounts for most of you, we're going to keep talking
about it. But why is the application layer so important?

The crux of it is that the application layer serves as the gateway to network activities for
your business logic. This becomes very apparent as you explore how thoroughly .NET has
hidden the implementation details of any of the responsibilities of lower levels of the
network stack. Essentially, if there is something that you need to specify about how your
application should behave anywhere below the stack, you'll be doing so through a .NET
library class.
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I really can't stress enough how important it is to understand how the protocols behave
under the hood. Knowing how the libraries are implemented will leave you better
equipped to actually use them in the future. It's like learning to drive a stick shift. If you
only ever learn the steps you have to perform to change gears, you'll likely get rusty
without consistent practice. Over time, you'll have forgotten enough to not be able to drive
a manual transmission anymore. However, if you learn how the steps you take serve to
allow your car to drive, you'll never forget the steps themselves. Even if it's been years since
you last drove a stick shift, you'll be able to reconstruct the steps you need to execute based
on your understanding of what those steps actually accomplish. By this same measure,
understanding exactly what the .NET core libraries are doing for you will enable you to use
them more efficiently and correctly. You'll find yourself looking up the documentation less
frequently and be better able to find the methods or properties you need through
IntelliSense. That said, let's look closely at some of the most common protocols in the most
common network layer.

HTTP - application to application communication

Welcome to the bread and butter of almost every .NET Core developer working today.
HTTP is by far the most common and useful protocol for applications to interact over
networks currently in use today. Why is that? Because HTTP is the protocol that almost
every single web page on the internet is served up on by remote hosts, and requested by
local clients. That alone is reason enough to call it the most common protocol in use. If you
want more evidence, though, consider that most native mobile applications that serve up
web-hosted data request this data from APIs that are exposed via HTTP. It almost feels
ridiculous to have to make a case for the importance of understanding HTTP, since I'm
certain there won't be a single person reading this book who doesn’t have at least some
experience with, or understanding of, HTTP.

So, why bother covering it so thoroughly if most of my readers are assumed to have some
basic understanding of it? The answer to that is twofold. First, it's because it is so common
as a communication protocol! HTTP is so prevalent that it would be criminally negligent
not to give it due consideration in a book purporting to teach network programming
fundamentals. And the second reason is because, at least in my own personal experience,
most developers, and even engineers who work with it daily, only have a passing or
surface-level understanding of what the specification provides. My hope is that by the end
of this book, anyone who has read it, cover to cover, can and will go forth and program
software that leverages every aspect of their target networks confidently and competently.
It wouldn't be possible to do that without a deep, thorough understanding of what HTTP
is, why it was defined, and how it is used by thousands of applications every second of
every day. With that in mind, let's take a look at the protocol.
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What is HTTP?

As almost every reader of this book is likely to be shouting at its pages already, let's go on
to HTTP. As should already be obvious, HTTP is a protocol implemented and leveraged by
software that lives in the application layer of the OSI network stack. It's the primary
mechanism of communication for applications exposed through the internet, and is
designed for the transfer of hypermedia over a network. Hypermedia typically refers

to hypertext documents that contain multimedia information, as well as hyperlinks that can
be used to navigate to and load additional resources from other remote hosts.

The transfer component of HTTP is, fundamentally, a request/response protocol that
assumes a client-server relationship between hosts in an active HTTP session. To
understand how this is done, let's start with the notion of a client-server relationship.

The client - server model in HTTP

Throughout this chapter, we've been referring to communication over a network as simply
happening between originating and target hosts, as if the two were functionally identical,
depending on which was sending a packet. In the client-server model, however, the two
hosts actually perform distinct and specific duties, and so they are not conceptually
interchangeable. A client entity is one who requests, and is granted, use of the services or
resources provided (or served) by the server entity. Servers do not make active requests of
clients, except when necessary to complete a service request already made by the client (for
example, requesting additional login information from the client, when the client has
initiated the transaction by requesting protected data). Likewise, clients are not expected to
serve any specific resources to the server, except the information necessary for the server to
sufficiently process and respond to a request.

Today, it's not uncommon for two applications to use HTTP to interact with one another in
such a way that, depending on the interaction, either application could be considered the
client or the server. For example, a desktop finance application might be responsible for
storing local user data, while also using a remote API to access live data feeds about current
interest rates on different kinds of loans. Now suppose the authors of that desktop
application want to periodically access information about users of their software. In the
case of a user logging onto their application to look up market rates for mortgages, the
desktop application will request information from the remote AP so the desktop
application is the client, while the APl is the server. However, when the remote software
decides to query instances of its desktop application for user data, the roles are reversed.
The remote software will request the data from known hosts of the desktop application; the
remote software is the client, requesting information from computers running the desktop
applications, which are the servers in this scenario.
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Alternatively, an application or host might be the client of one remote host, while
simultaneously operating as the server for a different remote host. Consider the case of an
API that responds to requests by aggregating information from a number of other APIs. In
the act of servicing requests by their downstream consumers, the application in question is
very obviously a server. However, when the application requests information from other
APIs upstream, it is acting as the client.

I bring these examples up to highlight the fact that the client-server relationship is mostly
conceptual. The assignment of client or server roles to a given host is specific to a given
interaction context. If that context changes, so too might the conceptual role of the hosts
involved. It's important that we avoid confusion by only referring to clients and servers
within the context of a specific interaction.

Request/response

In describing the nature of the client-server relationship, we've also touched on the nature
of the HTTP request/response protocol. This protocol, as a way of serving up information,
is fairly intuitive to understand. When a client makes a request of a server (the request part
of request/response), the server, assuming it meets the specifications of the protocol, is
expected to respond with meaningful information about the success or failure of that
request, as well as by providing the specific data initially requested.

Sometimes, the complete process of requesting information and receiving a meaningful
response requires several intermediary round-trips between the client and server to
establish initial connections, determine the ability of the server to service the request, and
then submit the information necessary to initiate the request. This entire process, however,
will be considered a single request/response session from the perspective of application-
layer software. This leads us nicely onto the subject of just how those sessions are initially
established in the first place.

HTTP sessions

So far, we've talked about the back and forth of the request/response communication
patterns of HTTP, but we've neglected the context that allows that chatter to happen so
seamlessly. This fluid interaction is facilitated by an underlying session established prior to
satisfying the first request made by a client. Historically, this session has been provided by
a Transmission Control Protocol (TCP) connection established against a specific port on
the host server. This port can be specified in the URI when designating your target host, but
typically will use default ports for HTTP, such as 80, 8080, or 443 (for HTTPS, which we'll
cover later in this book). Once the connection is established, round trips of HTTP
communication can proceed freely until the session is terminated.
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You might have noticed that I specifically said that TCP is historically used for HTTP. This
is because, for each of the current versions of HTTP (1.0, 1.1, and now HTTP/2), TCP has
been the standard transport layer protocol supporting it. However, in the current proposed
specification for HTTP/3, the protocol is being modified to take advantage of alternative
transport protocols, including the User Datagram Protocol (UDP), or Google's
experimental Quick UDP Internet Connections (QUIC) protocol. While there are trade-
offs associated with these alternate transport protocols, the underlying sessions they
provide are the same from our point of view. Each of these protocols serve to establish a
connection with a listening host and facilitate the transmission of request and response
messages. Next, let's take a look at some of the operations a client might request of a server,
and how those operations are specified through the HTTP standard by way of request
verbs.

Request methods

When a client wants to make a request of a server, it must specify the method by which the
server will be expected to respond to the given request. These method specifications are
typically called HTTP verbs, since most of them describe an action to be taken by the server
when processing a request sent by the client. The standard methods are as follows:

e OPTIONS: This returns the list of other HTTP methods supported by the server
at the given URL.

e TRACE: This is a utility method that will simply echo the original request as
received by the server. It is useful for identifying any modifications made to the
request by entities on the network while the request is in transit.

e CONNECT: CONNECT requests establish a transparent TCP/IP tunnel between
the originating host and the remote host.

e GET: This retrieves a copy of the resource specified by the URL to which the
HTTP request was sent. By convention, GET requests will only ever retrieve the
resource, with no side-effects on the state of the resources on the server
(however, these conventions can be broken by poor programming practices, as
we'll see later in the book).

e HEAD: This method requests the same response as a GET request to a given
URL, but without the body of the response. What is returned is only the response
headers.

¢ POST: The POST method transmits data in the body of the request, and requests
that the server store the content of the request body as a new resource hosted by
the server.
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e PUT: The PUT method is similar to the POST method in that the client is
requesting that the server store the content of the request body. However, in the
case of a PUT operation, if there is already content at the requested URL, this
content is then modified and updated with the contents of the request body.

e PATCH: The PATCH method will perform partial updates of the resource at the
requested URL, modifying it with the contents of the request body. A PATCH
request will typically fail if there is no resource already on the server to be
patched.

e DELETE: The DELETE method will permanently delete the resource at the
specified URL.

A server will not respond to a request method invoked against a given location unless the
server has been configured to do so. This is because some of the methods defined by the
HTTP standard can permanently impact the state of resources on that server, and so should
only be invoked and processed when it is safe to irrevocably update that state. There are,
however, a number of methods designated as safe, by convention. This simply means that
they can be processed by a server without having any side-effects on the state of the
resources on that server. HEAD, GET, OPTIONS, and TRACE are all conventionally
designated as safe.

Status codes

Even when an application has constructed a valid HTTP request object, and submits that
request to a valid path on an active host, it's not uncommon for the server to fail to properly
respond. For this reason, HTTP designates, as part of a response object, a status code to
communicate the ability of the server to properly service the request. HTTP status codes
are, by convention, 3-digit numeric codes returned as part of every response. The first digit
indicates the general nature of the response, and the second and third digits will tell you
the exact issue encountered. In this way, we can say that status codes are categorized by
their first digits.

When you're writing software that responds to HTTP requests, it's
important to send accurate status codes in response to different errors.
HTTP is a standard that must be adhered to by developers in order to
remain useful.
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There are only five valid values for the first digit of an HTTP status code, and thus, five
categories of responses; they are as follows:

¢ 1XX: Informational status code. This indicates that the request was in fact
received, and the processing of that request is continuing.

e 2XX: Success status code. This indicates that the request was successfully
received and responded to.

e 3XX: Redirection. This indicates that the requesting host must send their request
to a new location for it to be successfully processed.

e 4XX: Client Error. An error that is produced by the actions of the client, such as
sending a malformed request or attempting to access resources from the wrong
location.

e 5XX: Server Error. There was a fault on the server preventing it from being able
to fulfill a request. The client submitted the request correctly, but the server failed
to satisfy it.

Status codes are returned by servers for every HTTP request made against the server, and
so can be very useful for building resiliency into your client software.

The HTTP message format

Requests and responses in HTTP are always sent as plain text messages. Those plain text
messages consist of a well-ordered, and well-structured, series of message segments that
can be reliably parsed by the recipient. In requests, messages consist of three required
message components and one optional component:

¢ The request line consists of the method, the path to the requested resource, and
the specific protocol version that should be used to determine the validity of the
rest of the message; for example, GET /users/id/12 HTTP/1.1.

e A series of request headers and their values, for example, Accept :
application/json.

¢ An empty line.

¢ (Optional) A request message body. This consists of content headers that provide
metadata about the content type, as well as the content itself.
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Each segment is delineated by a <CR> carriage return character and an <LF> line

feed character; these are special white-space characters whose specific American Standard
Code for Information Interchange (ASCII) values allow them to reliably be used to
indicate the breaks between segments in a message stream.

Meanwhile, an HTTP response consists of its own series of almost identically structured
segments, each also delimited by the <CR><LF> characters. Just as with the request
message, it contains three required segments and one optional message body segment, as
follows:

e A status line consisting of the specific protocol, the HTTP status code, and the
reason phrase associated with that status code:

e HTTP/1.1 401 Bad Request: A response containing the 401
client error status code (indicating that the client sent an improper
request message for the resource that it was looking for).

e HTTP/2.0 201 Created: A response indicating the 201 success
status code, meaning that the desired resource has been created on
the server.

e Headers, as with the request message segment, providing metadata about how
the response should be parsed.

¢ An empty line.

¢ An optional message body.

Those simple segments fully define every valid HTTP message sent across the internet. This
accounts for millions of requests per second, between millions or billions of devices. It's the
simplicity of the message specification that makes that kind of scale possible.

HTTP in C#

Remembering the proper character delimiters and order for segments in an HTTP message,
anyone should be able to build a request from scratch. Thankfully though, you don't have
to remember those details; .NET Core has you covered with the System.Net .Http
namespace. We'll explore this namespace in much greater detail later in the book, but for
now, just trust that any feature or detail you find yourself needing to leverage HTTP
communication in your application is exposed through that namespace. This namespace
exposes enum types for status codes and header values, and an Ht tpMethod class to
specify your message verb. As a library, it's rich with out-of-the-box features while
remaining flexible and extensible enough to be leveraged in any use case.
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FTP and SMTP - the rest of the application layer

While we have developed a deep understanding of HTTP due to its prominence in the
daily lives of network programmers, we must also take the time to mention and briefly look
at some of the other common application-layer protocols in use today. In this section, we'll
look at the File Transfer Protocol (FTP) and SSH File Transfer Protocol (SFTP), which
allow for remote file copy operations and filesystem navigation; and the Simple Mail
Transfer Protocol (SMTP), which is used for email transmission over networks.

Interestingly, with each of these protocols operating on the application layer, it's not
uncommon to see one protocol provide the functionality that has historically fallen under
the domain of another protocol. For example, the data-agnostic nature of HTTP's plain-text
message structure makes it trivially simple to use HTTP to transfer complete file data over
an HTTP session. It's as simple as writing software on the server to transmit files through
the message body of the response. For this reason, FTP, and to a lesser degree, SMTP, have
fallen out of favor with network programmers in recent years, in favor of implementing
their responsibilities in HTTP-aware software hosts. The protocols remain, however, and it
will benefit us to consider what their flaws and advantages are.

FTP and SFTP

FTP (and SFTP) leverages a client-server model similar to the one used by HTTP, but its
connection specification is slightly more complicated than we saw before. Where HTTP sent
messages over a single connection by way of a series of stateless request/response
transactions, FTP maintains two connections between the client and server over the course
of a stateful session. One connection establishes a stateful control pipeline that tracks the
current state of the directory exposed by the FTP server and submits the commands
necessary to execute the desired file transfers. The other connection is stateless, and
facilitates the transfer of the raw file data between hosts. Establishing both of these
connections for a single FTP session introduces the benefit of reliability at the cost of latency
and complexity. Moreover, the limited nature of tasks that can be reliably executed through
FTP as a communication protocol has only served to limit its popular use as time goes on.
Thankfully though, as was the case with HTTP, much of the details of implementing an
FTP server or client is taken care of by way of the System.Net namespace in .NET core,
and we'll explore those tools later on in this book.
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SMTP

Similar to FTP, the feature set supported by the SMTP is quite limited and narrowly
tailored to performing a few specific tasks. However, the need to implement email servers
is actually fairly common, and understanding the complexity of sending or receiving
messages through SMTP remains a relevant and useful skill; certainly more so than with
FTP these days. SMTP is a connection-oriented protocol for sending mail messages to
remote servers that are configured to receive them. It leverages a client-server model
leveraging reliable sessions, over which a series of commands and data-transfer processes
transmit email, unilaterally, from the client to the server. The back-and-forth of an SMTP
session is actually quite a bit more complicated than we saw with HITP and FTP, and that
complexity is beyond the scope of this chapter. For now though, it's sufficient to say that
any network programmer worth their salt will have a sound understanding of HTTP, FTP,
and SMTP.

The Transport layer

While the application layer is the layer of the OSI model that the vast majority of .NET
developers work with in their daily lives, it would be useless without sound, reliable
protocol implementations on the transport layer. It's on this layer that the connections are
made and the data is streamed. It's the lowest layer in the stack that an individual host is
directly responsible for, and in the transport layer, TCP and UDP reign supreme. Each
provide their own mechanisms for delivering streams of data to their destination, and each
present their own trade-offs, to be considered when choosing a transport protocol for your
network services. As with all of these protocols, we'll take a closer look at them later in this
book, but for now let's learn what they are and why they came to be.

TCP

Developed in 1974 by engineers in the IEEE, the TCP is defined as a connection-based
communication protocol that provides the reliable delivery of ordered packets. It's used to
facilitate communication between hosts of all kinds from the internet, to SMTP clients and
servers, Secure Shell (SSH) connections, FTP clients and servers, and HTTP. It is
ubiquitous as the transport layer protocol of choice for almost all modern applications.
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The broad adoption of TCP as the transport layer supporting most application-layer
requests is primarily due to the reliability of a TCP connection. By convention, entities that
implement TCP are written to detect packet loss and the out-of-order delivery of data
streams, to re-request lost data, and to reorder the out-of-order streams. This error
correction is resolved prior to returning that data back up the stack to the application layer
entities making use of the TCP connection.

Of course, the obvious cost incurred by this error handling is latency and performance.
Multiple round-trips to fetch, essentially, the same data two or three times can add
substantial downtime to the client application. The reliability of TCP is ensured by
leveraging a round-trip chain of request, acknowledgements of the receipt of a request,
then another request, and so on. All the chatter incurred by this consistent back-and-forth
makes TCP far from ideal for real-time applications, such as for gaming, video streaming,
or video conferencing. Instead, where reliability or guaranteed ordering can be sacrificed in
favor of performance, UDP or a similar protocol should be used as the transmission layer of
choice.

UDP

If the reliability of TCP is not strictly required for an application, then UDP begins to look
like a very attractive option for its simplicity and performance. UDP is a simple, unreliable,
and connectionless communication protocol for transmitting data over a network. Where
TCP provided robust error handling through its pattern of repeated requests and
acknowledgments, UDP has no handshaking or acknowledgment signals to indicate
whether a packet was properly transmitted from host to host.

While UDP does not provide robust error-handling in the case of lost or unordered packets,
it does, at the very least, provide error-checking on the packet level. It does so by using a
checksum value stored in the header of the packet. The difference being that when an error
is detected in a packet, the packet is simply dropped by the UDP entity, and no request is
sent out to try to retrieve the packet again in a valid state.

This packet-delivery-oriented model of sending out individual packets without regard for
their successful delivery also means that UDP data requests can be sent without any prior
establishment of a connection between hosts. This lack of an initial round-trip greatly
reduces overhead in software systems that need to make frequent, real-time connections
between many hosts. In fact, this lack of an initial handshake is one of the primary
distinguishing factors between connection and connectionless communication protocols,
and that is a distinction that warrants elaboration.
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Connection versus connectionless communication

The idea of connectionless communication might seem like an oxymoron at first. How
could two entities possibly communicate if they haven't connected first? How would one
even know that the other exists to communicate with?

The underlying principle is that in a connection-based communication protocol, both hosts
must first establish a line of communication before the transmission of any application-
specific data can begin. The handshake sequence in TCP is the most obvious example of
this. There is a complete round-trip of sent/received messages that must succeed before the
connection is considered established, and data can be transmitted between hosts. That
established line of communication is the 'connection' in this context. It consumes time and
bandwidth, but provides reliability and error correction, and in almost all cases, the value
of the reliability and error correction is worth far more than the costs incurred.

Meanwhile, in connectionless communication, data could be transmitted, and the
communication terminated, without even a single complete round-trip from the client to
the server, and back to the client again. The packet has sufficient information in its own
headers to be properly routed to a listening host. Provided that host has no follow-up to the
initial request, that communication will stop with only a one-way packet delivery. The low-
latency of this transmission pattern could be a major benefit in certain application contexts.

There's still so much more to explore with both of these protocols, going forward, but that
is the concern of a later chapter in this book. For now though, I hope this makes it clear why
the transport layer and its protocols serve such a major role in designing and implementing
high-performance and highly-reliable network software.

Summary

In this chapter, we learned everything there is to know about the OSI network model. First,
we learned about the governing bodies that defined the standard reference model,
including when and why they set out to solve the problem of unified network modeling.
Then, we took a close look at the model they defined, including looking at every layer in
their stack, and what responsibilities entities in those layers assume. We learned about
how protocols define standardized communication patterns for entities operating on the
same level in the network stack, but on separate hosts on a network. We saw how service
definitions allow entities to pass data through the network stack and deliver messages to
remote entities.
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We also took a close look at some of the most common communication protocols, which
we'll be interacting with in the rest of this book. We started with the king of all network
protocols, HTTP. We looked at how HTTP sessions are established to allow communication
between clients and servers. We saw how HTTP operates through a series of requests and
responses using well-defined verbs to specify the operations to be performed in servicing
those requests. We looked at TCP and UDP, and how the transport layer serves as the bus
through which all application-layer network interactions must travel. Finally, we looked at
how the network layer facilitates this communication through the IP addressing system,
and discrete packet transmission.

With this foundation in place, we're well positioned to take a close look at how data is
broken down into discrete packets and transmitted over the network through data streams
in the next chapter.

Questions

1. What does OSI stand for, and what is the name of the organization that
standardized it?

2. What is the abstraction layer via which layers of the OSI network stack
communicate with layers beneath them?

3. How many layers are in the OSI network stack, and what are they?

4. What is the name of the standardization mechanism by which entities on the
same layer of the network stack on different hosts communicate?

5. What does HTTP stand for? For which network layer is HTTP used as a
communication protocol?

6. Name all of the HTTP verbs that a request can be sent from.

7. What are some of the primary differences between the TCP and UDP transport
protocols?
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Further reading

For more information about the OSI Reference Model, see Building Modern Networks,

by Steven Noble, Packt Publishing.

Additionally, you can refer to Computer Networking: Beginner's Guide for Mastering Computer
Networking and the OSI Model by Ramon Nastase’s, and The OSI Model for Network Engineers:

Improve Your Network Troubleshooting, by Al Rivas. Both are available in e-book form on
amazon.com, and will provide a much more thorough examination of the OSI stack than I

had time or space to cover in the context of this chapter.
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Packets and Streams

This chapter will build upon the discussion in chapter 3, Communication Protocols, of
network architecture to trace the flow of data across a network, and break down the
software you will write in C# to handle the data at each step in the process. We will explain
the encapsulation of data into minimal packets for network transmission, and how that
encapsulation helps to ensure that packets are delivered to the correct destination and are
decoded properly. We will explain the concept of a data stream as a serialized sequence of
discrete packets, and demonstrate the various ways that serialization can be executed in C#.
Finally, we will demonstrate a variety of abstractions exposed by the System. 10
namespace for handling streams.

The following topics will be covered in this chapter:

¢ Understanding how data moves through a network, and how the various layers
of network-stack metadata are unwrapped at each step in the transmission
process to ensure proper delivery

¢ A deep dive into the structure of a packet delivered over a network

e Understanding the concept of a data stream as a collection of discrete packets,
and how to leverage it to abstract away the process of receiving and parsing
packets using C#'s many St ream classes
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Technical requirements

For this chapter, we'll be looking closely at network communication. To that end, I'll be
using the Wireshark packet sniffing tool to demonstrate some of the concepts we discuss. If
you want to follow along and explore the network traffic on your own machine, Wireshark
is a free download, available at nttps://www.wireshark.org/.

Whether you plan to use it to follow along with this chapter or not, I absolutely recommend
familiarizing yourself with it as a tool. If you are at all serious about doing any meaningful
network programming with C#, low-level traffic inspection will be a major key to your
success and the earlier you learn the tool, the better off you'll be.

Leveraging networks - transmitting packets
for use by remote resources

To understand specifically what a packet is, we should first understand the constraints of a
network that necessitates packets in the first place. To do that, we'll need to understand the
limitations of bandwidth, latency, and signal strength. Each of these constraints plays a key
role in determining the maximum size of an atomic unit of data that can be transmitted
over a given network. These limitations demand that pieces of data transmitted over the
network include a number of attributes to ensure any measure of reliability. Data packets
sent between nodes in a network must be small, and contain sufficient context to be
properly routed. With that in mind, let's look at the ways a network's physical limitations
can inform and drive the software solutions written for them.

Bandwidth

Anyone with an internet connection is probably fairly familiar with the concept of
bandwidth. The monthly rates for an internet service are typically (at least in the US) tiered
by the maximum bandwidth provided. In professional programming vernacular, the term
bandwidth is often used, somewhat loosely, to refer to the amount of time or mental
capacity a team or team member can dedicate to new tasks. Each of us should have a
somewhat intuitive understanding of the concept. Put simply, it's the maximum rate of data
transmission over a given network connection.
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While that definition might seem basic, or even trivial, the way that bandwidth drives the
standards for packet size and structure may be less obvious. So, let's consider more
thoroughly what bandwidth describes and how it impacts data transmission. There are two
things to consider when we're discussing bandwidth: the speed of throughput and the
channel's maximum capacity.

The easiest way to conceptualize these concepts is through the analogy of a highway.
Imagine that you're the operator of a tollbooth on this hypothetical highway. However, for
this analogy, let's say that, instead of collecting a toll, you're responsible for counting the
total number of cars that move past your booth over a given period of time. The cars on
your highway represent individual bits of data. Every time a car crosses your toll booth,
you tally it. The total number of cars that cross your booth in any given time represents the
bandwidth of your highway over that time period. With this analogy in place, let's see how
the throughput and channel capacity can impact that bandwidth.

In this characterization, the speed of throughput is analogous to the speed limit of your
highway. It's the physical maximum velocity that a signal can travel over a connection.
There are a number of factors that can impact or change this speed, but in most cases, the
physics of electrical or optical signals traveling over their respective media render the
impact of those changes negligible. Speed will ultimately boil down to the physical limits of
the transmission medium itself. So, for example, fiber-optic cables will have a much higher
throughput speed than copper wire. Fiber-optic cables transmit data at speeds approaching
the speed of light, but copper wire introduces resistance to electrical current, slowing and
weakening any data signal traveling over it. So, in the context of our highway analogy,
fiber-optic cable networks have a much higher speed limit than copper cables. Sitting in
your tollbooth over a single shift, more cars will pass by on a highway with a higher speed
limit. Given this fact, it can be trivially simple to increase the bandwidth of a network by
taking the basic step to upgrade your transmission media.

While the speed of throughput is a strong determinant of bandwidth, we should also take a
moment to consider the maximum capacity of a given channel. Specifically, this refers to
how many physical wires can actively carry an individual bit at any given moment along a
channel. In our highway analogy, the channel capacity will describe the number of lanes on
our highway that a car could travel. So, imagine that instead of a single-file line of cars
moving down a single lane of our highway, it's been expanded to four lanes in one
direction. So now, at any given moment, we could have four cars, or four bits of data,
moving through our tollbooth at any given moment.
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Obviously, it's the responsibility of system programmers writing firmware for network
interface devices to write support for properly handling multiple simultaneous channels.
However, as I'm sure you can imagine, variable channel capacity can demand very specific
optimizations for the network entities responsible for breaking your data into atomic
packets.

Latency

Bandwidth limitations are only one consideration for the efficiency of a network. The next
most common limitation for which engineers must design, and that most users are at least
intuitively familiar, is latency. Put simply, latency is the time between the initial moment a
signal is sent, and the first moment a response to that signal can be initiated. It's the delay
of a network.

There are two ways to think about latency. Simply put, you can measure it as one-way, or
round-trip. Obviously, one-way latency describes the delay from the moment a signal is
sent from one device, to the time it is received by the target device. Alternately, round-trip
latency describes the delay between the moment a signal is sent from a device, and the
moment a response from the target is received by that same device.

One thing to note, however, is that round-trip latency actually excludes the amount of time
the recipient spends processing the initial signal before sending a response. For example, if
I send a request from my software to an external API to provide some calculations on a
piece of input data, I should reasonably expect that software to take some non-trivial
amount of time to process my request. So, imagine first that the request spends 0.005
seconds in transit. Then, once received, the request is processed by the API in 0.1 seconds.
Finally, the response itself spends another 0.01 seconds in transit back to my software. The
total amount of time between my software sending the request and getting a response is
0.005+ 0.1+ 0.01 = 0.115 seconds. However, since 0.1 seconds was spent processing, we will
ignore this when measuring round-trip latency, so the round-trip latency will be measured
as 0.115 - 0.1 = 0.015 seconds total.
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It's not uncommon for a software platform to provide a service that simply echoes the
request it was sent without any processing applied in response. This is typically called a
ping service, and is used to provide a useful measurement of the current round-trip latency
for network requests between two devices. For this reason, latency is commonly called
ping. There are a number of factors that confound the reliability of a ping request in any
given scenario, so the response times for such requests are not generally considered
accurate. However, the measurements any ping service provides are typically considered to
be approximate for a given network round-trip, and can be used to help isolate other
latency issues with a given request pipeline.

As I'm sure you can imagine, a constraint as generically defined as a network delay can
have any number of contributing factors to its impact on network performance. This delay
could come from just about any point in the network transaction, or on any piece of
software or hardware in between the originating and target devices. On a given packet-
switched network, there may be dozens of intermediary routers and gateways receiving
and forwarding your package for any single request. Each of these devices could introduce
some delay that will be nearly impossible to isolate when performance monitoring or
testing. And, if a given gateway is processing hundreds of simultaneous requests, you
could experience delays just by virtue of being queued up behind a number of requests that
you had nothing to do with and of which you might have no direct knowledge.

Mechanical latency

The different contributing factors to latency are sometimes categorized slightly differently.
Mechanical latency, for instance, describes the delay introduced into a network by the time
it takes for the physical components to actually generate or receive a signal. So, for instance,
if your 64-bit computer has a clock speed of 4.0 GHz, this sets a physical, mechanical limit
on the total amount of information that can be processed in a given second. Now, to be fair,
it would be a lot of information to be processed by such a system. Assuming the CPU is
processing a single byte per clock cycle, it's 4 billion 64-bit instructions per second being
processed; that's a ton. But that clock speed constitutes a mechanical limit that introduces
some measurable latency to any transaction. On such a system, a 64-bit instruction cannot
move onto the network transmission device any faster than at least 0.000000128 seconds,
assuming a bit is processed and delivered to the transmission stream at every interval of the
clock cycle.
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Operating system latency

The preceding example describes a somewhat unrealistic system, in that 64 bytes of data
can be sent directly to the transmission media uninterrupted. Realistically, an operating
system (OS) will be handling requests from the application and system software to send
over that hypothetical packet, and it will be doing so while simultaneously processing
thousands of other requests from hundreds of other pieces of software running on the host
machine. Almost all modern OSes have a system for interlacing operations from multiple
requests so that no one process is unreasonably delayed by the execution of another. So
really, we will never expect to achieve latency as low as the minimum mechanical latency
defined by our clock speed. Instead, what might realistically happen is that the first byte of
our packet will be queued up for transport, and then the OS will switch to servicing another
operation on its procedure queue, some time will be spent executing that operation, and
then it might come back and ready the second byte of our packet for transport. So, if your
software is trying to send a packet on an OS that is trying to execute a piece of long-running
or blocking software, you may experience substantial latency that is entirely out of your
control. The latency introduced by how your software's requests are prioritized and
processed by the OS is, hopefully very obviously, called OS latency.

Operational latency

While I did state earlier that latency typically describes only the time that a packet spends
in transit, it is often useful for you, as a network engineer, to consider the impact of latency
on your end user experience. While we would all like to, no engineer can get away with
ignoring a negative user experience by claiming that the causes are out of your control. So
even though your software may be performing optimally, and deployed to a lightning-fast
fiber-optic network, if it is dependent on an upstream resource provider that is slow to
process requests, your end user will ultimately feel that pain, no matter how perfect your
own code is. For this reason, it's often useful to keep track of the actual, overall window of
time necessary to process a given network request, including the processing time on the
remote host. This measurement is the most meaningful when considering the impact of
network operations on your user's experience, and is what's called operational latency. So,
while most of the contributing factors to the operational latency of a task are, typically, out
of your control, it is often important to be aware of its impact and, wherever possible, try to
optimize it down to a minimum.
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Ultimately, what each of these individual metrics should tell you is that there are dozens of
points throughout a network request at which latency can be introduced. Each of them has
varying degrees of impact, and they are often under varying degrees of your control, but to
the extent that you can, you should always seek to minimize the number of points in your
application at which external latency can be introduced. Designing for optimal network
latency is always easier than trying to build it in after the fact. Doing so isn't always easy or
obvious though, and optimizing for minimal latency can look different from either side of a
request.

To illustrate, imagine we are writing an application that is responsible for collecting one or
more transaction IDs, looking up the monetary value of those transactions, and then
returning a sum of them. Being a forward-thinking developer, you've separated this
transaction aggregation service from the database of transactions to keep the business logic
of your service decoupled from your data-storage implementation. To facilitate data access,
you've exposed the transaction table through a simple REST API that exposes an endpoint
for individual transaction lookups by way of a single key in the URL, such as
transaction-db/transaction/{id}. This makes the most sense to you since each
transaction has a unique key, and allowing individual-transaction lookup allows us to
minimize the amount of information returned by your database service. Less content
passed over the network means less latency, and so, from the data-producer perspective,
we have designed well.

Your aggregation service, though, is another story. That service will need multiple
transaction records to generate a meaningful output. With only a single endpoint returning
a single record at a time, the aggregation service will send multiple, simultaneous requests
to the transaction service. Each one of those requests will contribute their own mechanical,
OS, and operational latencies. While modern OSes allow for multithreaded processing of
multiple network requests simultaneously, there is an upper limit to the number of
available threads in a given process. As the number of transactions increases, requests will
start to become queued, preventing simultaneous processing and increasing the operational
latency experienced by the user.
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In this case, optimizing for both cases is a simple matter of adding an additional REST
endpoint, and accepting POST HTTP requests with multiple transaction IDs in the request
body. Most of us reading this will have likely already known this, but the example is useful
as an illustration of how optimal performance can look very different on either side of the
same coin. Often, we won't be responsible for both the service application and the database
API, and in those cases, we will have to do the best we can to improve performance from
only one side.

No matter what side of a request you're on, though, the impact of network latency on
application performance demands your consideration for minimizing the size of atomic
data packets that must be sent over the network. Breaking down large requests into
smaller, bite-sized pieces provides more opportunities for every device in the
communication chain to step in, perform other operations, and then proceed with
processing your packets. If our single-network request will block other network operations
for the duration of an entire 5 MB file transfer, it might be given lower priority in the queue
of network transactions that your OS is maintaining. However, if our OS only needs to slot
in a small, 64-byte packet for transmission, it can likely find many more opportunities to
send that request more frequently, reducing your OS latency overall.

If our application must send 5 MB of data, then doing so in 64-byte packets gives your
application's hosting context much more flexibility in determining the best way to service
that requirement.

Signal strength

The last major constraint of network communication that we'll look at is variable signal
strength. Over any non-trivial network, the strength of a given signal can be impacted by
anything from the distance between wireless transmitters and receivers, to just plain
distance between two gateways connected by a wire. This isn't much of a concern on
modern fiber optic networks, since those rely on the transmission of visible light through
glass or plastic fiber, and are thus not subject to many of the confounding factors that
interfere with older physical network standards. However, reliable signal strength can be a
major concern for wireless networks, or wired networks that use electric signals over
copper wiring.
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If you're at all familiar with the impact of resistance on signal strength (for those of you
who remember your college physics or computer hardware classes), you'll know that the
longer the wire over which you want to send a signal, the weaker the signal will be at the
receiving end. If you're defining a bit as being a 1 whenever the voltage on a wire is above a
given threshold, and the resistance of your wire reduces the voltage of a signal over time,
there's a non-zero chance that some bits of your packet will be rendered indeterminable by
your target due to the interference of your signal. A weak signal strength means a lower
reliability of transmission.

And mere resistance isn't the only thing that can weaken your signal strength. Most
electrical signals are subject to interference from any other nearby electrical signals, or
simply the electromagnetic fields that permeate the earth naturally. Of course, over time,
electrical engineers have devised innumerable ways to mitigate those effects; everything
from wire insulation to reduce the impact of electromagnetic interference, to signal relays to
reduce the impact of resistance by amplifying a signal along its route. However, as your
software is deployed to wider and wider networks, the extent to which you can rely on a
modern and well-designed network infrastructure diminishes significantly. Data loss is
inevitable, and that can introduce a number of problems for those responsible for ensuring
the reliable delivery of your requests.

So, how does this intermittent data loss impact the design of network transmission formats?
It enforces a few necessary attributes of our packets that we'll explore in greater depth later,
but we'll mention them here quickly. Firstly, it demands the transmission of the smallest
packets that can reasonably be composed. This is for the simple reason that, if there is an
issue of data corruption, it invalidates the whole payload of a packet. In a sequence of
zeroes and ones, uncertainty about the value of a single bit can make a world of difference
in the actual meaning of the payload. Since the payloads are only segments of the overall
request or response object, we can't rely on having sufficient context within a given packet
itself to make the correct assertion about the value of an indeterminate bit. So, if one bit
goes bad and is deemed indeterminable, the entire payload is invalidated, and must be
thrown out. By reducing the packet size to the smallest reasonable size achievable, we
minimize the impact of invalid bits on the whole of our request payload. It's much more
palatable to re-request a single 64-byte packet due to an indeterminable bit than it is to
restart an entire 5 Mb transmission.
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Astute readers may have already identified the second attribute of packets that are driven
by unreliable signal strength. While variable signal strength and external interference could
simply render a single bit indeterminable, it could also very well flip the bit entirely. So,
while the recipient might be able to determine its received value with certainty, it
ultimately determines the incorrect value. This is a much more subtle problem since, as I
mentioned before, packets will likely contain insufficient information to determine the
appropriate value for a specific bit in its payload. This means packets will have to have
some mechanism for, at the very least, error detection baked into the standard headers. So
long as the consuming device can detect an error, it can know, at the very least, to discard
the contents of the erroneous packet and request re-transmission.

It's worth noting that the benefits of decomposing a request into smaller and smaller
packets reach limits beyond which it ceases to be beneficial for network performance.
Subject this line of thinking to reduction ad absurdum and you'll quickly find yourself with
a full-fledged packet for every single bit in your payload, error-detection and all. With our
imagined request payload of 5 Mb, that's 40,000,000 packets being sent simultaneously.
Obviously, this is an absurd number of packets for such a small request. Instead, network
engineers have found a reliable range of sizes for packets being sent according to a given
protocol as falling somewhere between a few hundred bytes and a few kilobytes.

Now that we know why network communication is done with small, isolated packets, we
should take a look at what those are.

The anatomy of a packet

While I've touched on some features already in this chapter, here we'll take a closer look at
the attributes that a network packet must exhibit in order to actually be useful as a piece of
information. We'll look at how the standard for network packets is defined and the
minimum amount of features that all network packets will contain in some form or other.
Then we'll take a brief look at how different transmission protocols implement their own
standards for packets, and how some of the required attributes are expanded on to provide
more reliable data transmission, or higher performance. This will ultimately lay the
foundation for later in this book where we look at network security, diagnostics, and
optimization.
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What is a packet?

So, to start off with, we should engage in a bit of nit-picking. The term I've been using
throughout this chapter-packet-is not, strictly speaking, the most accurate term for what
I've been describing. Until now, I've been using the word packet to describe the most
atomic unit of data transmission over a network. However, for the sake of accuracy, I
should note that the term packet refers specifically to the most atomic piece of data
transmitted by the network layer of the Open Systems Interconnection (OSI) network
stack. In the transport layer, where we'll be most concerned with it (since that is the lowest
layer in the stack we'll directly interact with through C#), the atomic unit of data
transmission is actually called a datagram. However, I'll note that it is much more common
to refer to data units of the transmission layer as packets than datagrams and so will
continue with this colloquial use of the term throughout the chapter and throughout the
rest of the book. I did, however, want to take the opportunity to point out the distinction
between the two terms in case you encountered either being used elsewhere in different
contexts. With that in mind, what exactly is a datagram, or packet?

We already know quite a bit about what a packet must be in order to be useful, so let's
formalize it into a definition. A packet is an atomic unit of data, encapsulated with
sufficient context for reliable transmission over an arbitrary network implementation.

So basically, it's a payload (unit of data) with a header (sufficient context). This shouldn't be
surprising by this point, but let's look at how this translates to an actual array of bytes
passed from our transport layer to the network layer. To do so, we'll use Wireshark to
examine the actual data packets being sent to and from my own Ethernet port, and look at
how each part of that definition translates to actual datagrams.
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Setting up Wireshark

As a tool for network engineers, Wireshark is immeasurably useful, and I strongly
encourage you to familiarize yourself with its features and start to think about how you
could leverage it in your own development tasks. For now, though, we'll be using its most
basic packet sniffing functionality to examine every packet that comes through our open
internet connection. So, once Wireshark is installed, simply open it up and select your
Ethernet connection as your target for packet sniffing, as seen in the following screenshot:
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When you open it on your own machine, take a second to watch the graph growing out to
the right of the traffic source. This actually provides a quick view of the relative activity on
the given source over time. Once your primary internet source is selected, start capturing
by clicking the capture button on the top-left of the toolbar, or simply double-clicking the
desired source. Allow the tool to capture traffic for a few minutes just to get a good range of
sample data and then start exploring on your own. If you've never used a tool such as
Wireshark or Fiddler before, you'll likely be surprised by how much chatter is actually
happening, even with no input from you directly.

With the tool installed and running, let's take a look at some of the features of a packet
specified by our definition and see how it translates to real-world implementations.

Atomic data

If you have any experience with database design, you might already have a pretty clear
idea of what constitutes atomic data. Typically, it means the smallest components into
which a record can be broken down without losing their meaning. In the context of network
communication, though, we're not really concerned with the payload of a packet losing its
meaning. It would recompiled into the original data structure by the recipient of the
payload, and so it's fine if the small chunk of data that moves over the network is
meaningless on its own. Instead, when we talk about atomic data in the context of network
transactions, we're really talking about the minimum size that we can truncate our data
into, beyond which we will stop seeing the desired benefits of shrinking our data into
smaller and smaller chunks. Those chunks may well splice double-precision decimal values
in two, sending one half over in one packet and the other half in an entirely separate packet.
So, in that case, neither packet has enough information to make sense of the data in its
original form. It wouldn't be considered atomic in the same way that a FIRST_NAME field
will be the most atomic way to store the first name of a user record in a database. But if that
decomposition results in the most efficient distribution of packets for transmission over the
current network, with minimum latency and maximum bandwidth utilization, then it is the
most atomic way to represent it in a network packet.
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For an example of this, just look at any arbitrary packet you recorded in your Wireshark
capture. Looking at a packet in my data stream, we've got this arbitrary Transmission
Control Protocol (TCP) packet (or datagram), as follows:
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5218 167.619464 192.168.1.181 192.168.1.212 TCR 54 54527 » 8099 [ACK] 5eq=4223 Ack=4298 Win=251 Len=8
! 5219 168.0800399 192.168.1.181 192.168.1.255 uop 385 54915 - 54915 Len=263
H 52208 169.808554 192.168.1.181 192.168.1.255 uop 385 54915 - 54915 Len=263
5221 176.885664 192.168.1.181 192.168.1.255 uopP 385 54915 = 54915 Len=263
f 5222 171.002628 192.168.1.181 192.168.1.255 uopP 385 54915 = 54915 Len=263
i 5223 172.8@3334 192.168.1.181 192.168.1.255 uop 385 54915 » 54915 Len=263
5224 172.579933 192.168.1.181 192.168.1.212 TCP 171 54527 - 3e@e9 [PSH, ACK] Seq=4228 Ack=4298 Win=251 Len=117 [TCP segment of a. [ |
5225 172.581949 192.168.1.212 192.168.1.181 TCP 171 8889 + 54527 [PSH, A(K] Seq=4298 Ack=4345 Win=547 Len=117 [TCP segment of a. v
Checksum: @x3baf [unverified] ~

[Checksum Status: Unverified]
Urgent pointer: @

[SEQ/ACK analysis]
[Timestamps]

TCP payload (117 bytes)

TCP segment data (117 bytes)

34 97 f6 85 9d 35 @8 92 88 4d 25 4b @8 80 45 8@ 4:---5.- -MEK--E-

90 9d 17 a5 40 00 40 06 9d dc c@ a8 @1 dd co a8 - @@ -
2 b5 1f 49 d4 Ff 4f 24 31 06 Oc 2 9c 7e 56 18 -1 -0F 1 -~ p-
23 3b of o0 oo [FTIERL TR - o
aa48 o 9 8 6 g1 .-

ease @

2860

2a7e c7 be a3 be ba 4c f8 T

@ease b2 fd 95 4f el 9e 47 d

eage o 57 d4 4b a7 84 c5 74 c3g @

[:EERlSE da 53 21 c@ 18 9 86 7 7 Sle--- --7

@ 7 The TCP payload of this packet (tcp.payload), 117 bytes Packets: 5243 - Displayed: 5243 (100.0%) * Dropped: 0 (0.0%) || Profile: Default

As you can see in the selected text of the raw data view on the bottom of my Wireshark
panel, the payload of that particular packet was 117 bytes of nonsensical garbage. That
might not seem very useful to you or me, but once that specific TCP request is reassembled
with the rest of the packets in that request, the resulting data should make sense to the
consuming software (in this case, the instance of Google Chrome running on my computer).
So, this is what is meant by an atomic unit of data. Fortunately, that's not something that
we'll have to concern ourselves with, since that's handled directly by the hardware
implementation of the transport layer. So, even though we can implement software that
directly leverages a transport layer protocol of our choice, the actual act of decomposing
and recomposing packets or datagrams will always be out of our hands when we're
working on the .NET Core platform.
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Encapsulated with sufficient context

This aspect of our definition is actually the real meat of it, and is the real reason we're
messing about with Wireshark in the first place. What exactly does it mean to encapsulate a
packet with sufficient context? Let's start with the context that a datagram must have. This
refers to the information that any device in between the source and destination hosts will
need to route the packet accordingly, as well as any information necessary for the
destination host to properly read and process the packet once received. For obvious
reasons, this information is contained at the very front of a packet (which is to say, it
composes the first bits that will be read by a receiving device), and is what constitutes the
header of a packet. The context is the information necessary to either forward or process a
packet correctly.

So what, then, constitutes sufficient context? Well, that actually depends on the specific
protocol under which the packet was constructed. Different protocols have different
requirements and expectations, and thus, different requirements to be serviced properly.
What constitutes sufficient context for one might be grossly insufficient for another.

The two most commonly used transport layer protocols are TCP and User Datagram
Protocol (UDP), and each of them have different service contracts for the application
software that leverages them. This means that both of them have very distinct header
specifications. TCP seeks to provide sequential, reliable, error-checked transmission service
for packets traveling between hosts. Meanwhile, UDP, as a connection-less protocol (we'll
discuss specifically what that means later in this book), doesn't explicitly aim to provide the
reliability of transmission or a guarantee of the ordering of data. Instead, it seeks to provide
light weight communication with a minimal protocol definition to enforce. As such, the
sufficient context for UDP is actually substantially less than for that of a TCP packet.

A UDP packet header consists of a mere 8 bytes of data, broken up into 4 individual fields
that each are 2 bytes in length; those fields are as follows:

¢ Source port: The specific port of the socket connection on the source machine
generating the request.
¢ Destination port: The port of the connection on the destination machine.

¢ Length: The exact length of the packet, including the payload that immediately
follows the 8-byte header.

e Checksum: A simple value used to verify the data integrity of the payload.
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Using Wireshark, we can see this in action. With a simple UDP packet, the full contents are
captured by those few relevant fields, as seen in the Packet Details view in the middle of
my Wireshark window:

/| *Ethernet - [u]
File Edit View Go Capture Analyze Ststistics Telephony Wireless Tools Help

Am @ reszFiEEaaan

W [1oply a display fiter .. <Ctrl-/> =3 -] Expression... +
No. Time Source Destination Protocol  Length Info
i 5203 162.574379 192.168.1.181 192.168.1.212 TCP 171 54527 + 8889 [PSH, ACK] 5eq=3994 Ack=4856 Win=252 Len=117 [T(P segment of a..

5204 162.576267 192.168.1.212 192.168.1.181 TCP 171 88@9 » 54527 [PSH, ACK] Seq=4856 Ack=4111 Win=547 Len=117 [T(P segment of a..
f 5285 162.616388 192.168.1.181 192.168.1.212 TP 54 54527 + 8889 [ACK] Seq=4111 Ack=4173 Win=251 Len=@
‘ 52086 162.999575 192.168.1.181 192.168.1.255 uppP 385 54915 -+ 54915 Len=263

5247 163 09FA4 192 168 1 181 192 168 1 255 une 3@5 54915 54015 | ~n=263 —
Vv User Datagram Proteocel, Src Pert: 54915, Dst Port: 54915 -

Source Port: 54915
Destination Port: 54915
Length: 271
Checksum: @xefc3 [unverified]
[Checksum Status: Unverified]
[Stream index: @]
~ Data (263 bytes)
Data: 6d6TH b Bec1068088. . .
[Length: 263]

ee2e @1 ff d6 83 d6 83 81 af
:E:NO0 B0 78 b9 ee 26 86 @2 B0 08

2638 72 68 @0 BA @0 @8 60 A6
26 86 f Be

B6ed 72 68 @0 BA @0 @8 60 A6
" Mlo0 00 00 00 0D 00 0D 00 0O OP 0O B9 00 A0 0O PO
(AL RN00 60 00 00 00 @0 60 00

IGO0 00 00 00 00 00 B2 G2 00 02 00 B2 B0 o

6P BE 0° B0 BB G0 BR G0 B0 0B @0 B8 @e T3

8138 [

v

@ 7 Data(data), 263bytes || Packets: 5243 - Displayed: 5243 (100.0%) - Dropped: 0 (0.0%) || Profile: Default

However, since TCP provides reliable delivery, guaranteed ordering, and leverages a
handshake-protocol that UDP forgoes, the specification of a TCP packet header is much
longer. Where sufficient context for UDP could be encapsulated in a mere 8 bytes, sufficient
context for TCP demands a header of up to 20 bytes. This is including a number of flag-bits
indicating the state of the individual packets in the context of the larger session, and a
sequence number to provide the protocol-specified ordering of packets. A brief
examination of the Packet Details view of a simple TCP packet within Wireshark should
illuminate the disparity in the expected context provided by a TCP packet header, as
follows:
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" *Ethernet

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Adm i@ BRE Re==FL5=EaaqaaH

W[ Apply 2 display filter _._<Ciri-/> =3 -] Expression...  +
No. Time Source Destination Protocol  Length Info o
5283 162.574379 192.168.1.181 192.168.1.212 TCP 171 54527 » 8689 [PSH, ACK] Seq=3994 Ack=4856 Win=252 Len=117 [TCP segment of a..
5284 162.576267 192.168.1.212 192.168.1.181 TCP 171 8@@9 - 54527 [PSH, ACK] 5eq=4@56 Ack=4111 Win=547 Len=117 [TCP segment of a..
52085 162.616808 192.168.1.181 192.168.1.212 TCR 54 54527 + 8009 [ACK] Seq=4111 Ack=4173 Win=251 Len=0
! 5286 162.999575 192.168.1.181 192.168.1.255 uop 385 54915 - 54915 Len=263
i 5287 163.996942 192.168.1.181 192.168.1.255 uop 305 54915 » 54915 Len=263
i 5288 164.7@89648 192.168.1.181 52.17.23.153 TCP 1514 54614 » 443 [ACK] Seq=54883 Ack=396492 Win=2497 Len=146@ [TCP segment of a ..
i 5289 164.789646 192.168.1.181 52.17.23.153 TLSv1.2 1473 Application Data j——
¥ Transmissien Control Protocol, Src Port: 8889, Dst Port: 54527, Seq: 4856, Ack: 4111, Len: 117 ~

Source Port: 3889
Destination Port: 54527
[Stream index: @]
[TCP Segment Len: 117]
Sequence number: 4856  (relative sequence number)
[Next sequence number: 4173  (relative sequence number)]
Acknowledgment number: 4111 (relative ack number)
@181 .... = Header Length: 28 bytes (5)
v Flags: @x@18 (PSH, ACK)
Reserved: Not set
Nonce: Not set
= Congestion Window Reduced (CWR): Mot set
ECH-Echo: Not set
Urgent: Not set
Acknowledgment: Set
Push: Set
Reset: Not set
Syn: Not set
Fin: Not set
[TCP Flags: -------AP---]
Window size value: 547
[Calculated window size: 547]
[Window size scaling factor: -1 (unknown)]
Checksum: @x@le@ [unverified]
[Checksum Status: Unverified]
Urgent pointer: @
[SEQ/ACK analysis]
[Timestamps]
TCP paylead (117 bytes)
TCP segment data (117 bytes)

v
2030 ~
o040 [
8as5e
8060 H 3
aave 8@ al ed 5@ c6
aase 8 c6 57 4f ee 82
[YECEd7 BL 04 c4 22 22 c5 4e 78 85 fd a5 bo . (e eee) v
@ 7 The TCP payload of this packet (tep. payload), 117 bytes || Packets: 5243 - Displayed: 5243 (100.0%) - Dropped: 0 (0.0%) || Profie: Defauit

As you can see here, even though the actual length of the TCP packet in bytes is shorter
than the UDP packet that we looked at previously, the header provides substantially more
information than was necessary for a valid UDP connection. There was obviously overlap
(of the source and destination ports, and a checksum), but there was a wider gap between
the two headers than there was common ground.

So, hopefully, it's now clear why what constitutes sufficient context is driven by the
protocol under which a packet was constructed. The specifics of what is sufficient can
change, but for every protocol, there will always be a minimum amount of context that is
sufficient to be forwarded or processed.
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Error detection and correction

Before we move on, I do want to take a brief moment to talk about the distinction between
error detection and error correction. You might have wondered why I left out any
stipulation regarding error correction or error detection from my definition of a packet.
This is because there is no guarantee that, for every protocol defined for the transport layer
of the OSI stack, packets will always contain sufficient information to detect or correct
errors incurred in transit.

I will say, however, that it is extremely common to have at least some kind of error
detection in a given protocol specification. TCP, and even the unreliable UDP transport
protocol, provide a checksum for simple error detection, as seen in the following two
packets on Wireshark:

/| *Ethernet - [m] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Adm 7@ BRE Re=2=2F 235 EQAGAAQE

(W apely a display fiter ... <C -] Expression...  +

No. Time Source Destination Protocol  Length Info — ]
1 0.000000 192.168.1.181 192.168.1.255 uop 305 54915 = 54915 Len=263

2 8.419842 192.168.1.181 172.217.5.238 upP 596 51828 > 443 Len=548

3 9.444350 172.217.5.238 192.168.1.181 UDP 112 443 + 51828 Len=7@

5 8.446870 192.168.1.181 172.217.5.238 UDP 70 51028 - 443 Len=28
6 1.886375 192.168.1.181 192.168.1.255 uop 3085 54915 » 54915 Len=263 —
7 2.886470 192.168.1.181 192.168.1.255 UDP 385 54915 - 54915 Len=263
8 2.681215 192.168.1.181 162.254.196.83 TLSv1.2 117 Application Data

10 3.e00782 192.168.1.181 192.168.1.255 uop 305 54915 = 54915 Len=263
11 4.803444 192.168.1.181 192.168.1.255 uppP 385 54915 > 54915 Len=263
12 4.432161 VerizonB_c5:@5:9f AsustekC_85:9d:35 ARP 60 Who has 192.168.1.181? Tell 192.168.1.1
13 4.432173 AsustekC_85:9d:35 VerizenB_c5:@5:9F ARP 42 192.168.1.181 is at 34:97:f6:85:9d:35

What those protocols don't provide, however, is any mechanism for error correction, which
is actually much more difficult to implement, and for anything other than trivial correction
capabilities, will require the packet size to balloon upwards. For example, while a
checksum can tell you whether the payload has altered in transit somehow, it cannot tell
you specifically where, or to what extent, the payload may have been altered. To do so
would require enough additional data to reconstruct the packet from scratch. Since packet
transmission is generally reliable over time (which is to say, even if one transmission failed,
retrying the transmission is likely to succeed), and generally exceptionally fast at the
transport layer, it's always a much better idea to simply detect an error, discard the
erroneous packet, and request retransmission.

With this in place, we have a solid idea of everything that a packet defined under a given
protocol must have, and of how we can examine or use individual pieces of network data.
But our software won't be using tiny little pieces of individual data. Our software will be
expecting JSON objects, XML payloads, or serialized byte-streams of C# objects. So, how
does software that consumes network traffic make heads or tails of those random flows of
bite-sized packets? By using them as streams.
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Streams and serialization — understanding
sequential data transmission

So with our fat, chunky JSON requests being broken up into tiny, sub-kilobyte packets, and
sent over as an array of seemingly random, disjointed pieces of data, how can we possibly
expect our recipients to process this data? Well, in C#, that's where the concept of a data
stream comes in. Within the context of our application code, we can reliably assume that
the transport layer will recompose our packets into a sequence of bits for us to consume as
soon as it becomes available to us. So once we get that sequence of bits back, how do we
consume it? As an IO stream!

The Stream class

If you've done any reading or writing of files on your local file system in C# on older .NET
Framework versions, you'll already be familiar with this concept. In .NET Core, we can
import the System. I0 namespace to our application to start working directly with the data
returned by a TCP/IP socket by simply opening up a new St reamReader object, initialized
with a NetworkStream instance connected to the target socket. So, what is a stream and
how should you use it?

Streams are a powerful concept in processing serialized data. They provide one-way access
to a sequential data source and allow you to handle the processing of that data explicitly.
Executing the Read () or ReadAsAsync () methods, or other associated methods, will
trigger this one-way traversal; starting at the beginning and reading, on demand, byte by
byte through the entire sequence, until a Terminal character has been reached. The .NET
implementation of this concept is extremely flexible, such that, regardless of the specific
instance of the St ream abstract class you're using, the St reamReader class will be
equipped to accept the data, traverse it accordingly, and allow you to build out a non-
serialized instance of a C# data structure as needed.

We'll examine streams more thoroughly in later chapters, but for now, I wanted to
highlight how, in the context of network communication, streams are composed of the
sequence of packets received by a specific port or socket, and returned to your application
through a normalized implementation of the st ream class.
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This is just one example of the power suite of abstractions provided by .NET Core. So, even
though you now have the understanding necessary to explicitly handle individual packets
returned from your transport layer to rebuild the response of a network request from
scratch, you thankfully never have to do that. The Core framework handles that headache
for you. And with this added perspective of what's happening under the hood, I hope you
feel better equipped to address potential performance issues or subtle network bugs in your
network-dependent applications going forward.

Summary

Looking back, this chapter covered the lowest-level details of network communication.
First, we learned about the three most common constraints of a physical network
infrastructure that demand the decomposition of a network request into packets. We
looked at how different aspects of the hosting context of our application can contribute
some measure of latency to our requests, how bandwidth can change the way requests
move from one node to another, and how signal strength can compromise the integrity of a
packet.

Next, we explored how those factors necessitate small, contextually-complete, atomic
packets as our transport format for network requests. We unpacked how some common
protocols provide that complete context with each packet through standardized formats.
This gave us a clearer idea of how a larger network request is decomposed and sent over
our network pipes.

Finally, we looked at how a set of packets, delivered at inconsistent intervals, can be
consumed as a sequential stream. With all of this, the lowest level of our foundation is set,
and we have the complete context of network infrastructure and communication standards
necessary to fully explore how C# provides that functionality in our .NET Core
applications. And that's exactly what we'll be looking at in the next chapter, as we finally
generate a network request in a user-facing application, and fully unpack every step of that
process as implemented by the .NET Core hosting platform.
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Questions

1. What are the three constraints of a network that necessitates the decomposition
of a network request into packets?

List each of the types of latency discussed in this chapter.

Why does unreliable signal strength warrant smaller packet sizes?

What is the definition of a datagram?

What are the two components of a datagram?

What is sufficient context in terms of a datagram or packet?

Which feature of .NET Core facilitates the processing of unreliable data streams?

NSOk N

Further reading

For a better understanding of how packets and data streams operate over a distributed
system, check out Packet Analysis with Wireshark, Anish Nath, Packt Publishing, here: https:/

/www.packtpub.com/networking—and-servers/packet—-analysis-wireshark.

For a closer look at data streams in practice, consider Stream Analytics with Microsoft Azure,
Anindita Basak, Krishna Venkataraman, Ryan Murphy, and Manpreet Singh, Packt Publishing,
here: https://www.packtpub.com/big-data-and-business-intelligence/stream—

analytics-microsoft-azure.
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Section 2: Communicating Over
Networks

Part two of the book will begin to dive deeper into the specific implementation details of
writing software for networks in C#. It will begin by explaining the most accessible and
basic abstractions the .NET framework exposes for generating and handling network
requests. Finally, it will explore the details of how that data transfer impacts software
design and complexity.

The following chapters will be covered in this section:
Chapter 5, Generating Network Requests in C#
Chapter 6, Streams, Threads, and Asynchronous Data

Chapter 7, Error Handling Over the Wire



Generating Network Requests
in C#

So, now we've got a deep and complete understanding of the nature of networks. We
understand the demands that networks place on the design and implementation of the
software and hardware that is meant to be deployed on those networks. But what are we
supposed to do with this knowledge? In this chapter, we'll finally explore the most
common paradigms for leveraging network resources in .NET Core. We'll be looking at the
common interface for implementing the request/response transaction model on the internet
(the most ubiquitous network with which you'll work), and examine some of the specific
implementations of it. Along the way, we'll take a look at what happens under the hood by
taking apart some of the source code for the .NET classes that we'll be using.

The following topics will be covered in this chapter:

e The basic structure of the webRequest class, and what functionality each of its
sub-classes is assured to expose through their methods

¢ How to leverage different sub-classes of the webRequest class, based on
different use cases you may encounter, and understanding the distinct operations
that they provide

e The internal phases of request execution as implemented by C#

Technical requirements

All of the code for this chapter is available at the GitHub repository for this book at https:/
/github.com/PacktPublishing/Hands-On-Network—-Programming-with-CSharp-and-.NET-

Core/tree/master/Chapter 5.
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As mentioned before, all of the code in this chapter can be read, manipulated, built, and
deployed with Visual Studio Code or Visual Studio Community Edition (or Visual Studio
for macOS, for those of you on a macOS system). The specific source control editor you use
is typically a matter of opinion, but I assure you that whatever you use to work with the
code in this chapter will be sufficient for all of the code throughout the rest of this book. I'd
encourage you to stick with that decision and take some time to familiarize yourself with it.
I expect most of the readers of this book will already have some deeply entrenched
opinions about the best environment for .NET Core development. If you don't, however, I
encourage you to pick whichever one feels most comfortable for you (either the feature-
richness of Visual Studio Community Edition, or the lightweight, multiplatform
friendliness of Visual Studio Code). Once you do, make sure you take a significant amount
of time to familiarize yourself with the tools of that environment. Learn the keyboard
shortcuts and set your auto-formatting options. Make it yours; once you do, you'll be ready
to begin.

One class to rule them all - the WebRequest
abstract class

As any software craftsman will tell you, if you want to understand how to leverage a
library or toolset provided to you by another developer, just look at the public interface. If
the interface is designed well enough, it will be obvious as to how that tool should be used.
A good interface design communicates a lot about the limits and original intentions for the
use of a piece of library software, and that's what we'll be looking at in this section.

The webRequest abstract class of the System. Net namespace is the public interface for
creating and working with general-purpose network requests that are meant to be sent over
the internet.

The interface or abstract class

I've been describing the abstract webRequest base class as providing an interface for how
Microsoft intends developers to interact with network operations. However, I must admit
that this isn't entirely accurate; WebRequest is, technically, an abstract class. For those

readers who are unfamiliar with the distinction, it's actually quite trivial for our purposes.
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Abstract classes do, in fact, define an interface for working with their implementations. The
relevant distinction between the two is that, with an abstract class, any given method
provided as part of the interface will typically have a default implementation defined
within the abstract base class itself. So, the methods provided by an abstract class still
define the interface through which you, as a consumer of the concrete classes, will interact
with the implementations of the class. It's really just a distinction of where the obligation
falls to define the expected behavior for that interface. Since you can't instantiate an abstract
class any more than you can instantiate an interface definition, the difference is entirely
trivial. Unless, of course, you choose to inherit from the webRequest class yourself (which
we will do at the end of this chapter). For now, though, let's just review the specification
provided by WwebRequest.

The interface

With any type of abstract class or interface definition, their proper use can best be
understood through two distinct lenses. The shape of the abstraction is made clear by the
properties of the interface. This gives users a concrete idea of the proper context in which
instances of the interface should be used. It should clearly convey the domain around
which the abstraction should operate. Meanwhile, the scope of the abstraction is conveyed
by the classes' method signatures. This is what tells users how the class operates over the
domain, as defined by its shape or properties.

An interface of well-named methods should give clear boundaries to the limits of the
usefulness of the class. If an interface is well defined, as with the WebRequest base class, its
properties and method signatures should make it clear exactly when it should, and

should not be used. What's more, if it should be used, well-named and well-scoped method
signatures will tell users exactly how to use the method.

So, with that perspective in mind, let's take a look at what is in the base definition of

the WebRequest class. This specification will tell us how it is meant to be used and how to
extend or implement it for ourselves. And what better place to start than with the
constructors?
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The constructors

WebRequest defines only two base constructors for its sub-classes. The first is the default
parameter-less constructor. The second allows developers to specify an instance of

the SerializationInfo and StreamingContext classes to more narrowly define the
scope of valid use cases for the newly-created instance of the class. So, our constructor
signatures will look like the following code block:

public WebRequest () {

}

public WebRequest (SerializationInfo si, StreamingContext sc) {

}

So far this is pretty straightforward, but why use the second constructor at all? What is so
common about using SerializationInfo and StreamingContext in WebRequest
instances that the base class defines a constructor which accepts instances of those classes?

We'll look more closely at streaming contexts in later chapters, but we did briefly discuss
the need for reliably serialized data in the previous chapter, and this is a good place to
consider the concept more fully. Every request or response payload will need to

be serialized prior to transport, and deserialized upon arrival at the destination machine.
As we discussed before, this is the process of taking unordered, locally-addressed chunks
of data and converting it into ordered strings of zeros and ones. Specifically, it must be
ordered in such a way that the same strings can be traversed in order and used to compose
locally-addressed in-memory objects by the recipient machine.

So, while our software might store an ordered list of integers as an array of contiguous
memory addresses, this is an implementation detail that is fundamentally independent of
the data structure it represents. The only key details are that the list is ordered, and that it is
a list of integers. It could just as easily be represented as a linked list under the hood, with
each node in the list containing the integer stored at that node, as well as the address of the
next node in the list, which may or may not be contiguous. In memory, these two data
structures are significantly different:
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Int Int Int | Int ® o o

However, as long as the proper serialization information is given for how those two lists
should be represented, they should look the same to any recipient receiving those lists as
the payload to a request or response over the network. They should be nothing more than a
well-delimited list of the integers. If your serialization mechanism is in the typical
Javascript Object-Notation (JSON) format, both of those implementations would serialize
the same output:

[
int,
int,
int,

]

Often, you'll find that WwebRequest and WebResponse instances are instantiated and
leveraged over and over again for the same kinds of messages, and their payloads should
be serialized in the same way each and every time. Being able to provide
SerializationInfo as a constructor input gives you the flexibility to define your
serialization rules and details once, and then leverage them for a theoretically infinite
number of requests.

The same goes for the St reamingContext parameter. As most network software is written
to facilitate the same sorts of operations that are being executed in the same way over the
lifespan of the software, it's unlikely that in a given application, your requests will need to
leverage different kinds of I/O streams. Later on, we'll look more closely at the different
kinds of streams available to you. It's a dense topic; however, for now, just know that this
input parameter gives you the same flexibility as the SerializationInfo parameter. It
allows you to define your streaming context once, and use it over and over again.
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And with only those two signatures, we've covered the only constructors explicitly defined
by the webRequest base class. This should give you a pretty clear idea of how the writers
of this library anticipated it would likely be used. Of course, if you wanted to, you could
write a sub-class that accepted HTTP verbs and default header values, and all sorts of other
aspects of a given request that you will likely need to define before you can send the
request. But at its most basic, these constructor signatures tell you that this is a class that is
meant to provide reliable serialization of data over a reliable data stream.

Class properties

So, your constructors give you a clear idea of the context in which the classes are expected
to be used, and your properties define the overall shape of a request. They define the
clearest and most unambiguous description of what the class actually is. What can we learn
about WebRequest, based on its properties? Well, let's take a closer look.

According to the base class specification, the public properties of the class are in
alphabetical order ( as they're listed in the Microsoft documentation, here: https://docs.
microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netcore-3.0), as
follows:

e AuthenticationLevel
® CachePolicy

e ConnectionGroupName
e ContentLength

® ContentType

e Credentials

e DefaultCachePolicy
e DefaultWebProxy

® Headers

e ImpersonationLevel
e Method

e PreAuthenticate

® Proxy

® RequestUri

e Timeout

e UseDefaultCredentials
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So, what does this tell us about instances derived from this abstract class? Well, the obvious
information is that it encapsulates common aspects of requests made over any protocol
leveraged on the internet. Headers, Method (that is, the specific protocol method, such as

a GET, POST, or PUT HTTP method), and RequestUri are all that you would expect from a
utility class. Others, though, such as ImpersonationLevel, AuthenticationLevel, and
CachePolicy indicate that more than simply encapsulating a request payload, the
WebRequest class is truly meant to encapsulate an operation.

The actions of authenticating and caching responses fall outside of the responsibility of the
simple-request payload and fall more into the segment of your software responsible for
brokering requests and responses between your application and external resources. The
presence of these methods indicates to us that this class (and its sub-classes) is intended to
be the broker of requests and responses network resources. Its definition makes clear that it
can handle the nitty-gritty details of connecting to remote hosts, authenticating itself, and,
by extension, your application, serializing payloads, deserializing responses, and providing
all of this through a clean and simple interface.

With the ContentType and ContentLength properties, it provides a clean way to access
and set the values for the most commonly required headers for any request with a payload.
The specification is telling you to just give me that package, tell me where you want to send
it, and let me handle the rest. It even gives you an interface for lumping similar operations
together in a connection group through the ConnectionGroupName property.

Imagine that you have multiple requests to the same external RESTful API living
athttps://financial-details.com/market/api, and there are a dozen different
endpoints that your application accesses over the course of its runtime. Meanwhile, you
also have a handful of requests that need to be routed
tohttps://real-estate-details.com/market/api. You can simply associate all of
the requests made to the financial details API under one connection group name, and the
real estate details API requests under another. Doing so allows .NET to more reliably
manage connections to a single ServicePoint instance. This allows multiple requests to a
single endpoint to be routed over the same active connection, improving performance and
reducing the risk of what's known as connection pool starvation.

Whenever possible, make sure you're using ConnectionGroupName to
associate requests to a single endpoint through a single connection. There
is a finite number of active connections that you can hold at a given time
in any .NET Core application, and without ConnectionGroupName tying
requests to a single connection, each request will be given its own
connection from the .NET Core runtime's pool of available connections. In
applications with high network traffic or frequent external requests, this
can lead to thread-starvation and unreliable performance.
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Implementing this feature is quite trivial, but it can save you a mountain of time in
performance tuning and chasing bugs. Simply define a static constant name for each
connection group that you want to leverage, as follows:

namespace WebRequest_Samples
{

// Service class to encapsulate all external requests.
public class RequestService {
private static readonly string FINANCE_CONN_GROUP =
"financial_connection";

private static readonly string REAL_ESTATE_CONN_GROUP =
"real_estate_connection";

Then, whenever you need to instantiate a new request for the target endpoint, you can
simply specify the connection group name through the assignment, and under the hood,
the ServicePoint instance that is associated with the WebRequest instance will check for
any connections that share the group name, and, if one is discovered, leverage the
connection for your new request:

public static Task SubmitRealEstateRequest ()

{
WebRequest req =

WebRequest .Create ("https://real-estate-detail.com/market/api");
req.ConnectionGroupName = REAL_ESTATE_CONN_GROUP;

}

And just like that, your request will take advantage of any established connections to that
same external resource. If there are no other requests associated with the specified
ConnectionGroupName property, then .NET Core will create a connection in its connection
pool, and associate your request as the first in the connection group. This is especially
useful if a set of requests are targeting a resource that requires access credentials, as the
connection is established with those access credentials once, and then shared with the
subsequent requests!
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Once the connection is established, we'll need to know what to do with the responses for
that request. For that, we have the CachePolicy property. This specifies how your
requests should handle the availability of a cached response from your remote resource.
This property gives us granular control over exactly how and when we should rely on a
cached response, if at all. So, for example, if we have a dataset that is updated almost
constantly, and we always want the most up-to-date response, we could avoid the cache
entirely, by setting the policy accordingly:

using System.Net.Cache;

public static Task SubmitRealEstateRequest ()

{
WebRequest req =

WebRequest.Create ("https://real-estate-detail.com/market/api");
reqg.ConnectionGroupName = REAL_ESTATE_CONN_GROUP;
var noCachePolicy = new

RequestCachePolicy (RequestCacheLevel .NoCacheNoStore) ;
reg.CachePolicy = noCachePolicy;

}

And just like that, the request will ignore any available cached responses, and likewise, it
won't cache whatever response it receives from the external resource itself. As you can see,
the property expects an instance of a RequestCachePolicy object, which is typically
initialized with a value from the RequestCacheLevel enum definition found in

the System.Net .Cache namespace (as indicated by its inclusion at the top of the code
block).

This is another instance where familiarizing yourself with the IntelliSense tools of Visual
Studio can give you a clear idea of what values are available in that enum. Of course, if
you're using something such as Visual Studio Code or another source code editor, you can
always look up the source code or the documentation for it on the manufacture's website.
No matter which editor you use, in the case of properties or methods whose use is not easy
to infer, make a habit of looking up implementation details and notes on Microsoft's
documentation. But with something as obvious and straightforward as an enum defining
cache policies, Visual Studio's autocomplete and IntelliSense functionality can save you the
time and mental energy of context-switching away from your IDE to look up valid values.
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In the same way that you define the behavior around cached or cache-able responses, you
can use the public properties of the WebRequest instance to define and specify the
expected behavior for authentication of your application and any expectations you have of
the remote resource to authenticate. This is exposed through the AuthenticationLevel
property and behaves much the same way as the CachePolicy property that we just
looked at.

Suppose, for instance, that your software depends on a remote resource that is explicitly
configured to work with only your software. The remote server would need to authenticate
requests to ensure that they are generated from valid instances of your software. Likewise,
you will want to make sure that you are communicating directly with the properly
configured server, and not some man-in-the-middle agent looking to swipe your valuable
financial and real-estate details. In that case, you would likely want to ensure that every
request is mutually authenticated, and I'm sure you can already see where I'm about to go
with this.

Since the WebRequest class is designed to encapsulate the entire operation of interacting
with remote resources, we should expect that we can configure our instance of that class
with the appropriate authentication policies, and not have to manage it ourselves. And
that's exactly what we can do. Building on our earlier example, we can define the
AuthenticationLevel property to enforce the policy we want to use once, and then let
the WwebRequest instance take it from there:

using System.Net.Security;

public static Task SubmitRealEstateRequest ()
{
WebRequest req =
WebRequest .Create ("https://real-estate-detail.com/market/api");
req.ConnectionGroupName = REAL_ESTATE_CONN_GROUP;
var noCachePolicy = new
RequestCachePolicy (RequestCachelLevel.NoCacheNoStore) ;
req.CachePolicy = noCachePolicy;
req.AuthenticationLevel = AuthenticationLevel.MutualAuthRequired;

}

Note the inclusion of the System.Net .Security namespace in our using directives. This
is where the AuthenticationLevel enum is defined. This makes sense, as authentication
is one-half of the authentication and authorization security components of most network
software. But we'll get more into that later.

As you can guess, getting your own software authenticated will likely require some
credentials.
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Assigning credentials is as easy to do as defining your authentication or caching policies. In
the webRequest class definition, the Credentials property is an instance of the
ICredentials interface from the System.Net namespace, typically implemented as an
instance of the NetworkCredential class. Again, the full scope of implementing reliable
security for network requests will be covered later in this book, but for now, let's take look
at how we might add some credentials to our mutually- authenticated web requests. It uses
the System.Net namespace, so no additional using statements are required. Instead, we
can simply set the property to a new instance of NetworkCredential and move on, as
follows:

reqg.Credentials = new NetworkCredential ("test_user",
"secure_and_safe_password");

We should actually be storing the password as SecureString, but this constructor is valid,
and as I said, we'll look closer at security in later chapters.

With this short, straightforward example, we can clearly see how the class properties of
WebRequest define the expected use case for instances of the concrete sub-classes that
implement and extend it. Now that we understand the shape and scope of the operations
WebRequest intends to abstract away for us, let's take a look at the actual execution of
those operations through the public methods exposed by the class.

The class methods

Now that we have a sufficiently complete picture of the shape of the WebRequest class,
let's explore its scope, or proper use. Let's take a look at its public methods. Understanding
what's available through the base class will give you everything you need to leverage any
concrete implementation in the vast majority of your use cases, with perhaps only minor
modifications. So, just as we did with the class properties, let's take look at the following list
of public methods and see what we can infer about how the class is meant to be used:

e Abort ()

® BeginGetRequestStream (AsyncCallback, Object)
® BeginGetResponse (AsyncCallback, Object)

® Create (string)

® Create (Uri)

® CreateDefault (Uri)

® CreateHttp(string)

e EndGetRequestStream (IAsyncResult)
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e EndGetResponse (IAsyncResult)

® GetObjectData(SerializationInfo, StreamingContext)
® GetRequestStream()

® GetRequestStreamAsync ()

® GetResponse ()

® GetResponseAsync ()

® GetSystemWebProxy ()

® RegisterPrefix(string, IWebRequestCreate)

I only included the methods specific to the webRequest class, and left out the public
methods inherited from parent classes, such as MarshalByRefObject and Object, since
those aren't relevant to our purpose. However, with this basic list of operations, the utility
of the class should be pretty obvious.

The first thing that likely stands out is that the class should be used asynchronously. All of
the Begin and End methods, as well as the Async suffix on a number of other methods, tell
you that the class supports fine-grained control of the lifetime of your requests through the
asynchronous features of .NET Core. Now, if you've never done async programming (as I
often find to be the case with newer programmers just starting out of school, or
programmers new to web development) we'll be covering that mental leap in much greater
detail in the next chapter. It's not always intuitively obvious how best to leverage the
features of async, or what's going on behind the scenes; so, for now, just think of it as
deferring the actual execution of the method until later. Just like all those methods suggest,
you Begin doing a task, and whenever you're ready to, you End it and look at your result.

The methods in this class can be broken up into two conceptual groups. There are methods
for state management and methods for request execution. The state management methods
allow you to modify or further define the state of your instance of the webRequest utility
class. Leveraging them to further configure and define the behavior of your instance is
similar to setting any of the public properties on the class as we did in the last section

on Class properties. The reason there are methods to do this, instead of simply having more
settable properties, is because doing so involves at least some non-trivial logic or
circumstance-specific details that are applied with each invocation of the methods.
Meanwhile, the request execution functions allow you to define, invoke, and resolve web
requests using the behavior of your instance. They're the workhorse methods that make all
of the earlier configuration worthwhile. So, let's take a look at each of these sets of methods
in turn and fully crystalize our understanding of this class.
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State management methods

I'd encourage you to try to sort the methods I've listed into the two categories I'm about to
describe for you. And in the future, I'd encourage you to try to categorize interfaces and
public class definitions in this way. Doing so will improve your ability to read and
internalize new software features quickly, and leverage them efficiently, instead of copying
code snippets from stackoverflow.com until you find something that works. That said, let's
take a look at the state management functions.

First, we have the Create methods. Each of these methods will return a usable instance of a
concrete WebRequest sub-class. They're all static, and so can be invoked from the class
definition without first needing to create an instance of it (for obvious reasons; why would
you need to create an instance of a class to then create an instance of a class?). Depending
on the specific method used, this sets up an instance of the default sub-class for the given
scheme specified in the URI supplied to the method. So, if we wanted instances of
WebRequest for accessing data from a RESTful HTTP service, collecting files from a
designated FTP server, and reading data from a remote file system, we could do all of this
with a simple call to Create (uriString):

var httpRequest = WebRequest.Create ("http://test-domain.com") ;
var ftpRequest = WebRequest.Create ("ftp://ftp.test-domain.com");
var fileRequest = WebRequest.Create("file://files.test-domain.com");

You may recognize this code from the submitRealEstateRequest sample method we
wrote in the Class properties section. I didn't explain it until now, but because the class is so
clearly and simply defined, I expect you were able to infer its use just fine from my code
without this explanation. But in case you were wondering why it seemed like I was creating
an instance of an abstract class (a compile-time error in C#), that's why. I was actually
requesting an instance of an appropriate sub-class from the abstract base-classes, static
definition.

Those three use cases in the preceding code block cover just about everything you can do
with Create () out of the box, but that certainly doesn't mean those are the only use cases
Create () can apply to. The functionality uses common protocol prefixes for URIs to
determine default sub-classes to instantiate. So, simply passing http://test-domain.com to
the method is all the default implementation needs to then return an instance of the
HttpWebRequest class. The same logic that allows the Uri class to parse the preceding
string is used to tell webRequest which protocol it should be creating a sub-class for.
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As I said, though, the default behavior is only defined for a limited set of use cases out of
the box. There are four specific protocols whose concrete sub-classes are preregistered with
the WebRequest class at runtime; they are as follows:

e http://
e https://
o ftp://

e file://

So, any URI string given to the Create method with any of these four prefixes as the first
characters in the string will be reliably handled by the WebRequest base class. And since
the base class provides a sufficient interface for executing the core operations of its sub-
classes, you don't even have to know specifically what sub-class was returned. Thanks to
type inheritance, you can just declare your instance as being of type WebRequest, and use
it accordingly, just like I did in the sample method from earlier.

But what if you don't want to work with one of these four preregistered types? What if you
wrote your own custom WebRequest sub-class specifically for working with

a WebSocket (WS) protocol, and you'd like to get the same support from WebRequest just
by passing in a URI with the WebSocket prefix of ws: //? Well, that exact use case leads us
to another state management method: RegisterPrefix (string,

IWebRequestCreate).

RegisterPrefix is a powerful new tool that supports what's known as pluggable
protocols. It's basically a way for you to incorporate custom implementations and sub-
classes of the WebRequest and WebResponse base classes into the runtime of your
application. When done properly, your custom code can be treated as a first-class citizen in
the System.Net namespace, being appropriately delegated to by system types and
methods, and having full access to the network stack, just like the native library classes
you'll be learning about next.

The scope and depth of fully implementing a custom protocol handler are beyond this
chapter, and will be explored in more detail later in this book. For now though, just know
that once the work of writing a custom protocol handler is completed, wiring it in is as
simple as calling RegisterPrefix. That's why this falls under the domain of state
management methods; because it's about configuring the working conditions of
WebRequest for the duration of your application's runtime.
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The method returns a bool to indicate the success or failure of your attempt to register
your custom protocol, and throw or process exceptions accordingly. So, while the process
of setting up a pluggable protocol is outside the scope of this chapter, for now just trust
that, once the work is done, configuring it as part of the valid state of the WwebRequest class
is a straightforward affair:

if (!WebRequest .RegisterPrefix ("cpf://", new CustomRequestCreator())) {
throw new WebException ("Failure to register custom prefix protocol
handler.");

}

And with that, we have every tool we need to properly configure and initialize network
requests. State management is complete, and all that's left is to begin submitting requests
and processing responses.

Request execution methods

As I said before, most of these methods are designed to be leveraged asynchronously, but at
least a few of them have synchronous, or blocking, counterparts. While we'll talk more
about async programming later, what's important now is to note that there are two primary
operations or tasks around which the WwebRequest class is focused. The first is accessing the
actual request data stream, and the second is accessing the response returned by the remote
resource.

With a WebRequest instance, the RequestStreamis .NET's representation of the open
connection. Think of it as the wire over which you can transmit your signal. Anytime you
want to pass data through a WebRequest instance, you'll first need to access that wire.
Once you have it, you can start passing data through that stream, and trust that the
WebRequest class is going to broker its transmission accordingly.

Bear in mind that writing to a stream typically requires the raw byte array for a given object
(this is where serialization comes into play), so once we have our stream, writing to it isn't
as simple as passing our objects or messages directly over the wire, although it's not
prohibitively complicated either. In practice, however you choose to access the request
stream for an active instance of WebRequest, writing to it will typically look similar to the
following code block:

using System.Text;

// convert message to bytes
string message = "My request message";
byte[] messageBytes = Encoding.UTF8.GetBytes (message);
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//write bytes to stream
Stream regStream = req.GetRequestStream();
regStream.Write (messageBytes, 0, messageBytes.length);

And that's all there is to it. There are some nuances with this method in some of the
common sub-classes of WebRequest, but the basic principle will always apply.

That, right there, accounts for about half of the request execution methods. The
BeginGetRequestStream() /EndGetRequestStream (), GetRequestStream(),

and GetRequestStreamAsync () methods are three different ways of accessing the same
logical component of your network transaction. They simply provide varying degrees of
control over the synchronization of the operation. For example, the
BeginGetRequestStream () /EndGetRequestStream () method provides an opportunity
for the user to cancel the request before it has completed transmission by explicitly calling
the Abort () method. Meanwhile, the GetRequestStreamAsync () method doesn't
provide the opportunity to explicitly abort the operation, but it does perform the operation
asynchronously. Circumstances will dictate what method or methods you should be using,
but if handled correctly and resolved properly by the underlying connection, the result
object is the same.

Finally, we can look at the response processing methods, and it should be no surprise to
you that in the request/response pattern that is typical of most network transactions, the
response handlers match, almost exactly, with the request handler method signatures. So,
where the act of retrieving a request stream from the WebRequest instance was exposed
through four different methods with various levels of granular control over the
synchronization of the operations, so too is response processing. The methods we have
available to us are BeginGetResponse () /EndGetResponse () (the processing for which
cannot be interrupted by Abort (), however), GetResponseAsync (), and of course,
GetResponse ().

Understanding the shape of a given response will depend on the specific protocol over
which it was received. Just as the WebRequest class has protocol-specific sub-classes, so too
does the WebResponse base class. We'll explore each of them in their respective chapters,
and look at how their responses can be handled more concretely. But for now, it is sufficient
to say that the WebResponse class provides us with a reliable enough interface to
meaningfully interact with whatever we get back from our request.
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So, by now, you should have an extremely clear understanding of exactly what problem the
WebRequest class was written to solve. You should understand its scope and the limits of
its use cases, and hopefully, you will know exactly how to tune it so that you can fully
leverage it for any scenario in which it could save you time and effort. With this
understanding in mind, let's take a look at some of the most common ways the base class is
explicitly leveraged through some of the sub-classes provided as part of the .NET Standard.

The sub-classes of the WebRequest class

For a lot of typical use cases, you can rely on the basic functionality provided by the
underlying WwebRequest class. However, you'll never actually be using instances of it
directly in your code (you can't... it's abstract, remember?), so now is the time to look at
what other functionality or features exist when you're using common concrete instances of
it. We'll look at each of the sub-classes for which WwebRequest has a default, preregistered
handler.

A note on obsolete sub-classes

Here, it's important to note that the webRequest class is primarily a tool for creating lower-
level, protocol agnostic request/response transactions with other resources on your
network. The .NET Standard provided sub-classes that, while not explicitly deprecated,
have been made mostly obsolete by slightly more robust client classes, such as the
HttpClient or WebClient classes.

As a matter of fact, Microsoft recently released a recommendation for always using the
newer client classes over any of the slightly older sub-classes that I'm about to discuss.
That's precisely why so little of this chapter is dedicated to the concrete classes. The
important aspects of the request/response model are still handled by .NET's webRequest
and WebResponse classes under the hood of the new webClient class. More importantly,
those base classes are the most basic building blocks from which you can build your own
custom protocol handlers. That's why it's so important to understand, especially for readers
new to any sort of web or network programming, how and why the WebRequest class is
written the way it is. However, as is often the case with software, times are changing, and
so the extent that this lesson will remain useful as a practical guide for specific
implementation of common patterns will only diminish with time.
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That being said, it is worth examining what is different about those classes and how they
can be used to build up a network request from scratch, so let's take a brief look.

HttpWebRequest

The HttpWebRequest class is interesting in that until very recently, it was the workhorse
class of network programming in .NET. This is evident in the huge explosion of the class
specification when compared to the relative simplicity of the WebRequest class. There are
properties for each standard HTTP header that could be defined for a given payload, as
well as a headers property inherited from the base class for specifying custom or non-
standard headers. There are properties to specify the transport details, such as the
TransferEncoding, or whether or not to send data in chunked segments. There are
properties to specify how to handle exceptional behaviors from the remote host, such as the
MaximumResponseHeadersLength and MaximumAutomaticRedirections properties.
All of these properties allowed you to build a complete and strong payload for an HTTP
request from scratch. As you can imagine, though, it was often tedious, error-prone, and
verbose to do this for every request to every HTTP resource. Often, developers would
hand-roll custom HTTP client classes of their own to isolate that aspect of their application
in a write once, use everywhere approach. This degree of granularity is why the engineers
at Microsoft decided to write a more robust and easy-to-use client for brokering common
HTTP requests.

It is interesting to note, however, that if you look at class specifications side by side, the
method signatures exposed by Ht tpilebRequest are exactly the same as those exposed by
WebRequest. The only meaningful distinction between the two is the context-specific
configurations that Ht t pWwebRequest provides as class properties. This further highlights
the elegance of the design of WebRequest. By taking a straightforward, generic approach to
the problem, it can serve all possible specific use cases using the same patterns.

FtpWebRequest

The FtpWebRequest class provides many of the same properties as the Ht t pWwebRequest
class. The distinction comes in the form of a few specific properties for configuring reliable
behavior when processing potentially large files over a potentially unreliable or slow
connection. To that end, it provides the ReadWriteTimeout property that specifies the
maximum amount of time allowed for processing the file stream. There's also the FTP-
specific UsePassive property that allows a user to specify the use of the passive transfer
process, leaving an open listening connection on the server for clients to access files
accordingly.
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There's also the explicit EnableSs1 parameter, which you might have noticed was not a
property of Ht t pWebRequest. Interestingly, this is necessary for the FtpWebRequest class
but not the Ht tpWebRequest class because the use of Secure Sockets Layer (SSL) in HTTP
is actually specified in the protocol component of the URI (that is, HTTP versus HTTPS);
whereas with FTP, that feature must be enabled explicitly.

Once again, the actual use of the FtpWebRequest class is exactly the same as with

the WebRequest base class. Once the protocol-specific settings are properly configured
through the class properties, FTP is ultimately just another request/response protocol for
accessing remote resources.

FileWebRequest

The FileWebRequest is probably the least commonly used sub-class of them all. Its
signature almost perfectly matches that of the WebRequest base class. Its purpose is to
expose the same reliable request/response pattern for accessing resources on the local file
system.

At this point, you may be wondering why on earth such a class would ever be useful. Well,
like any good engineer, we'll eventually want to be able to do a unit and integration test on
our network software. However, that won't always be feasible, since remote resources that
we can expect to be available to our production environment might not always be available
to our development environment. In that case, you'd want to be able to access your mock
resources on your local system. Thanks to the shared parent class of

the webRequest class, it's a trivial matter to swap out an instance of FileWebRequest and
HttpWebRequest in your development and production environments, respectively. Since
each of these sub-classes is only ever instantiated through the Create () method on the
WebRequest class, doing so is as easy as changing the URI of the remote resource stored in
your application's configuration files.

The power of the FileWebRequest class comes from the consistency of its interface. So,
while there are no special properties or methods associated with this instance of the class,
extending the behavior of WebRequest to local file access is really what makes this class
valuable.

And with that, our crash-course on the building blocks of network interactions is complete.
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Summary

In this chapter, we took a thorough look at the WebRequest utility class, and how it can be
used to handle a wide variety of common network operations within the context of a .NET
application. We used the public interface of the class definition to infer the proper use and
use cases for the class, as well as identifying the limits of its scope and operations. We
considered the proper use and invocation of each of the public properties and methods
defined on the base class, and wrote out some broadly applicable examples to demonstrate
the simplicity and utility of the class and its children. Then, we considered the three most
common concrete sub-classes of WebRequest. We examined some of the nuances between
each of them and looked at how they facilitate the specific details of the protocols they were
designed to operate over. Now we're ready to look at how to process the results of those
requests in the most optimal way for the .NET runtime. It's time we looked at data stream
processing, multi-threading, and asynchronous programming, which we'll explore in the
next chapter.

Questions

1. What are the valid values for the CachePolicy property of the webRequest
class, and where can they be found?

2. What is the method used to associate the custom sub-classes of the WebRequest
class with requests to the associated protocol for that custom sub-class?

3. What property is used to associate multiple requests to the same connection in
the NET connection pool?

4. What are the four preregistered protocols for which the webRequest class is
configured to return a valid sub-class from the Create (uri) method?

5. What is the difference between BeginGetRequestStream(),
GetRequestStreamAsync (), and GetRequestStream()?

6. Name some of the ways the HttpWebRequest class differs from the default
behavior of the WebRequest class?

7. Why is it important to always leverage Connect ionGroupName whenever
possible?
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Further reading

For additional reading on this subject, or to expand your horizons once you've conquered
the realm of network programming, check out Building Microservices with .NET Core, Gaurav
Aroraa, Lalit Kale, and Kanwar Manish, available through Packt Publishing at https://www.

packtpub.com/web-development /building-microservices—-net-core.

Additionally, I'd recommend checking out C# 7 and .NET: Designing Modern Cross-platform
Applications, Mark ]. Price and Ovais Mehboob Ahmed Khan, Packt Publishing, for some solid
advice for practical applications of the concepts discussed here. You can find this book

at https://www.packtpub.com/application-development/learning-path-c-7-and-net-

designing-modern-cross-platform-applications.
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Streams, Threads, and
Asynchronous Data

With the resources available to us to start working with sending network requests, we need
to look at how we can best incorporate those requests into our applications. We'll need to
work with those resources in a way that won't impact the performance of our application's
business logic or our user's experience. So, in this chapter, we'll look at how we can process
data streams in such a way as to be resilient and non-blocking to the rest of our
application's performance.

The following topics will be covered in this chapter:

¢ Understanding the nature of I/O streams in C#, and how to write to, read from,
and manage open streams

e How different I/O streams expose access to different types of data, and how the
parent St ream class simplifies the use of those distinct stream types

¢ The potential performance cost of processing large, or poorly performing data
streams and how to mitigate that cost

e Leveraging C#'s asynchronous programming feature set to maximize the
performance and reliability of your software
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Technical requirements

This chapter will have a number of samples and driver programs to demonstrate the
concepts discussed, all of which are available at https://github.com/PacktPublishing/
Hands-On-Network—-Programming-with-CSharp-and-.NET-Core/tree/master/Chapter 6.

As always, you're encouraged to clone this repository locally and begin playing with the
source code, or writing your own in order to get comfortable with some of the topics in this
chapter.

Check out the following video to see the code in action: http://bit.ly/2HYmhf?7

Going with the flow - data streams in C#

We looked briefly at accessing data streams in the last chapter when we talked about the
request stream property of the WebRequest class. I glossed over that subject then, but now
we should really understand how our data is prepared for transmission as a request
payload. We'll look at the common interface for data streams in C#, and give special
consideration for some of the trickier or less obvious aspects of streams that can introduce
some difficult-to-find bugs into your code. So, let's start with the st ream class and go from
there.

Initializing a data stream

Just like with network requests, writing to and reading from data streams is a common and
straightforward task in software engineering. So much so, in fact, that Microsoft provided
an extremely well-designed common specification for doing this in C#. The methods
defined by the base class are the same ones you'll use for any kind of data transmission that
you would reasonably have to execute, so with that as our starting point, let's take a look at
what the class provides.

The objective of the st ream class is, quite simply, to provide direct access to an ordered
sequence of bytes. There is no additional context around this information, so the sequence
of bytes could be anything from a file on your local disk storage, to the bytes of a packet
from an incoming request stream, or to an open communication pipe between two co-
located application processes and existing entirely in memory.
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What this simple definition provides is an easy way to define generic environment and
context-agnostic methods for working with the ordered list of zeros and ones. What it
doesn't provide, however, is any useful way to parse, process, and convert those bytes to
and from meaningful in-memory objects that make sense to the rest of your application. As
a programming task, this can be a bit tedious, but thankfully, some of the specific
implementations provide some reliable utility methods for more common parsing
situations. This is especially nice because that's where most of the work of streams lie.

Once you've got your information ready to pass over a binary data stream, or ingest bytes
from a data stream, there are only three primary operations that you'll care about. The first
two are obvious: reading and writing, collecting bytes, in order, from the data stream, or
pushing your own bytes onto it. The third is less obvious but just as important. Because the
data stream is an ordered array of arbitrary bytes, reading from and writing to it are
unidirectional operations. They are always processed in order. However, we don't always
need or want the information from a data stream in order, so the ability to seek out a
specific index in the stream is key, and will be the primary mechanism for traversing your
data stream out of order.

So, with that in mind, let's take a look at it in action. First, create a basic application to take
advantage of a data stream. To do so, you can use the .NET Core CLI and create a new
console app, as shown in the following screenshot:

Administrator: Command Prompt
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Similarly to how we created our sample project in chapter 2, DNS and Resource Location, in
the, The DNS in C# section, we used the dotnet new command to stand up a basic console
application as our test bed. This time the difference is that we'll specifically create a new
console app with the dotnet new console command. I'll keep making a note of this as
we work with new projects to highlight the speed and value of the .NET Core CLI; its speed
and utility really cannot be overstated.

Now, we want to establish a stream to work with, so we'll start by adding a using directive
to include the System. I0 namespace since I/O streams live in the I/O namespace. Then, for
the sake of demonstration, we'll read from the file, and write to a file on disk with
FileStream. We'll declare our variable to be of type St ream, so that the compiler's type
checking doesn't allow us to use the FileStream specific methods or properties. The point
is to understand how to use the abstraction that's provided by the st ream class. It doesn't
actually matter what we're reading from; by the time it gets to our application code, it's all
just incoming bytes, anyway. Using the local filesystem just gives us more direct access to
the results of our actions without having to go through the process of setting up a local API
and posting data to it.

To the extent that you can, it's usually wise to use as generic a type as
possible when declaring your variables. This allows you a lot more
flexibility if you need to change your implementation strategy down the
line. What might be a locally stored filesystem access today could become
a remote API call tomorrow. If your code is only concerned with the
generic concept of a Stream class, it's a lot easier to change it later for
different sources later.

To write this demo, the first thing you'll want to understand is that a Stream is an active
connection to a data source. That means it needs to be opened before it can be used, and it
should be closed, and then disposed of before you're done with it. Failing to do so can
result in memory leaks, thread starvation, and other performance or reliability issues with
your code. Thankfully, NET Core provides a built-in pattern for each of these life cycle
tasks. The constructors for most St ream classes will return an already-opened instance of
the class you're creating, so you can start reading from and writing to your streams right
away. As for guaranteeing the disposal of your streams, we have the eternally useful using
statement.
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If you haven't seen it before, a using statement is different from the using directives at the
top of your file that allows you to reference classes and data structures outside of your
current namespace. In the context of a method, in C#, the using statement is used to
instantiate a disposable class (which is to say, any class that implements the IDisposable
interface), and define the scope within which the instance should be kept alive. The syntax
for using this is as follows:

using (variable assignment to disposable instance) {
scope in which the disposable instance is alive.

}

We'll see this in action momentarily. But just like declaring variables within the scope of a
for loop or an if statement, the variable you create inside the signature of the using

statement ceases to exist outside of the scope of the open and close curly brackets of the
code block.

Alternatively, with C# 8, you can avoid the deep nesting created by the using statement by
choosing instead to leverage the using declaration. This functions the exact same as the
using statement, but it declares the variable to the scope of the encapsulating method
instead of establishing an inner-scope for the lifetime of the instance. So, instead of defining
the scope with the using statement and its opening and closing curly braces, you would
simply create your variable and declare it with the using keyword, as seen here:

using var fileStream = new FileStream(someFileName) ;

The only major distinction between the two is the scope to which the instance is bound.
With a using statement, the scope of the instance is defined by the curly braces of the
statement block. Meanwhile, with the using declaration, the scope is defined by the code
block in which the disposable instance was declared. In most cases, the using declaration
should be sufficient, and will help reduce deep nesting within your methods. However,
you should always take care to consider how the disposable instance will be used and bind
it to the appropriate scope for its use case.
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Once the flow of program control exits the scope to which your instance is bound, the NET
runtime will take all the necessary steps to call the Dispose () method, which is
responsible for ensuring that the state of the object is valid for disposal. In doing so, the
using statement implicitly assumes the responsibility of cleaning up any unmanaged
resources and any connection pools set up for the object it created. This well-defined scope
means that anytime you step out of the scope of the using directive, you lose your resource
handle and will have to instantiate a new one.

This well-defined scope means that any time you close your using
statement, you lose your resource handle. This means that accessing the
resource later will require you to create a new handle for it and then
dispose of it accordingly. This can incur a performance cost over the
lifetime of the application, and so you should take care to dispose of a
resource handle when you are certain you no longer need it.

Interestingly, while the object declared within the scope of the using statement will always
be properly disposed of, the using statement does not guarantee the disposal of any
disposable instances that the object creates. The assumption is that if any A class creates an
instance of a disposable B class as a member of itself, the owning instance of the A class
should also be responsible for cleaning up the member instance of the B class whenever the
owning instance of the A class is, itself, disposed of. The rule is, if you create it, you dispose
of it.

Now that we know how to create an instance of St ream, let's get our hands dirty and start
working with one.

Writing to and reading from a data stream

Now that we know how the life cycle of the st ream class is managed, let's use it to write a
message to a local file. First, we'll write a string to the stream, and then inspect the
destination of the stream to confirm that it was written properly:

using System;

using System.Text;
using System.IO;

using System.Threading;

namespace StreamsAndAsync {
public class Program {
static void Main(string[] args) {
string testMessage = "Testing writing some arbitrary string to a
stream";
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byte[] messageBytes = Encoding.UTF8.GetBytes (testMessage);
using (Stream ioStream = new FileStream(@"stream_ demo_file.txt",
FileMode.OpenOrCreate)) A
if (ioStream.CanWrite) {
ioStream.Write (messageBytes, 0, messageBytes.Length);
} else {
Console.WriteLine ("Couldn't write to our data stream.");
t
t

Console.WriteLine ("Done!");
Thread.Sleep (10000);
t

}

Just like in chapter 5, Generating Web Requests in C#, we couldn't write our string directly to
the stream. It's not the job of a stream of bytes to figure out how more complicated objects
should be represented as bytes. It's just the road over which they travel. So, we're
responsible for first getting the byte representation of the string that we want to send. For
this, we use the System. Text .Encoding class to get the byte representation for the
specific string encoding that we want to use.

Once we have this, we can write it to the stream. Or, at least, we assume we can. It's always
wise to check first, though. That's why the Write operation is wrapped in the conditional
block that checks the Canwrite property of our stream. This is a wonderful convenience
provided by the stream class that allows you to confirm a valid state in your stream for
the operation you're about to perform before you try to perform it. This puts error handling
and correction in our control without having to use clunky try/catch blocks around
everything.

So, we declared our St ream object in our using block and initialized it to open or create a
file called stream_demo_file.txt in the root of the application executable's directory.
Then, once we checked on it, we passed it our byte array and instructed the stream to write
that array to its destination resource. But what were those two additional parameters in the
Write method? Well, in the same way that a stream wouldn't reasonably have any
knowledge of what is passing over it, it doesn't know what bytes should be read from the
byte array when. It needs the array of bytes, then instructions on where to start reading
from, and precisely how many of those bytes it should write. The second parameter in the
Write method signature is your starting index. It starts at zero, just like the array does. The
third parameter is the total number of bytes you want to send in this Write operation.
There is a runtime error checking on this and if you try to send more bytes than there are
left in the array (starting from whatever index you designate), you'll get an index out-of-
bounds error.
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So, if you navigate to the folder from which the application was run, you should find a new
text file. Opening it, you should discover our message; it's as easy as that. But what
happens if we run the file again? Will the message be concatenated to the first message that
we wrote? Will it overwrite the existing message?

The seek operation

Run your application again, and then reload the file in a text editor. Whatever you were
expecting to happen, you should see no change to the file. However, assuming your
application ran successfully, and you saw the Done! message on your console for 10
seconds instead of our error message, you should have confidence that the write operation
was executed a second time. So, this should tell you that the operation was successful and it
did, in fact, overwrite the value of the original message. It might not be initially obvious,
because we used the same message the second time around, but if you want to confirm this
behavior, just change the testMessage variable in your program to read Testing writing a
different string to a stream and run it again. You should see the new message and, hopefully,
it's a little more obvious what's happening.

Every time we open a stream connected to a data source, we're getting the complete
ordered list of bytes stored at that source, along with a pointer to the start of that array.
Every operation we execute on the stream moves our pointer in one direction. If we write
10 bytes, we find ourselves 10 positions further down the array than when we started. The
same happens if we read 10 bytes. So, each of our primary operators can only ever move in
one direction from whatever point along the stream we happen to be at when we start
executing them. How, then, do we set those operations up to read or write what we want,
where we want? The answer is, with the Seek () method.

The seek method gives us arbitrary access to any index in our byte array through the
specification of a few simple parameters. Simply specify where you want to start relative to
a designated starting position, and then designate the starting position with one of the three
values of the SeekOrigin enum.

So, if I wanted to start on the last byte of the current array, and append my current message
onto the end of my last message, that would look like the following code block:

using (Stream ioStream = new FileStream(Q@"../stream_demo_file.txt",
FileMode.OpenOrCreate)) A
if (ioStream.CanWrite) {
ioStream.Seek (0, SeekOrigin.End);
ioStream.Write (messageBytes, 0, messageBytes.Length);
} else {
Console.WriteLine ("Couldn't write to our data stream.");
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}
}

Modify your using statement accordingly, and run the program again. Looking into your
output file, you should see the following message:

Testing writing a different string to a streamTesting writing a different
string to a stream

We started with our original byte array, navigated to the end of the stream of written bytes,
and then wrote our message from there; easy as that.

This might seem like a trivial thing, but imagine that you're unpacking a message payload
whose data is of a variable size. Typically, you'd have a series of headers or a map of your
byte array designating the starting index and the total length of the different components of
the payload. Using only those two pieces of information, you can navigate directly to the
relevant components of the message and read only and exactly as much as you need to.
Reducing this kind of data manipulation in the way that the st ream class does is incredibly
powerful in its simplicity.

But maybe you don't want to write your data to a request stream. Maybe you've written the
server code to read from requests and respond to them accordingly. Let's take a brief
moment to look at how that's done.

Reading from streams

As Isaid, reading is a one-way operation. Whatever your current index, you will always
read from the stream one byte at a time, and in doing so, move your cursor forward by one
in the index. So, your next Read operation always starts one byte after wherever you last
read. The trick here is that every time you want to read anything more than a single byte
(which you can simply assign to a variable of the byte type), you have to read it into a
destination array. So, you'll need to declare and assign a target destination array before you
can read it. Let's see this in action; first, though, remove the seek operation so that every
time you run your app, you don't grow your text file:

using (Stream ioStream = new FileStream(@"../stream_demo_file.txt",
FileMode.OpenOrCreate)) {
if (ioStream.CanWrite) {
ioStream.Write (messageBytes, 0, messageBytes.Length);
} else {
Console.WriteLine ("Couldn't write to our data stream.");

}

if (ioStream.CanRead) {
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byte[] destArray = new byte[10];
ioStream.Read(destArray, 0, 10);
string result = Encoding.UTF8.GetString(destArray);
Console.WritelLine (result);
t
t

So, like we did before, we check whether it's even valid to try to read from our stream.
Then, we designate a new byte array into which we'll be reading our bytes, and then Read,
starting at index zero, and reading for 10 bytes.

I'm sure at this point you're seeing a lot of the issues that this approach poses for
developers. Even just the use of old-style square-bracket arrays instead of the more flexible
and easy-to-work with List classes introduces a number of pain points for developers. In
order to use an old-style array as the target of a Read operation, you must know the exact
size of the array beforehand. This means that you'll either need to explicitly set a
predetermined length for your array (and the subsequent Read operation), or you'll need to
have an assigned variable from which you can determine the initial length of the array
(since you can't initialize square-bracket arrays without specifying their length).

This is rigid and tedious to use. It makes your deserialization code brittle. The alternative is
to designate a reasonable maximum length and use that value to initialize any byte arrays
that will be read to from your data stream. Of course, this approach fixes your software to
currently known limitations and makes it inflexible and difficult to extend in the future. All
of these are challenges posed by the otherwise elegant simplicity of the St ream class
definition. Thankfully, though, along with the power of the St ream class, comes the
simplicity of a number of utility classes NET Core provides out of the box.

The right stream for the job

Working with the lowest-level data streams representing your network connections does
give you a lot of power and control over exactly how incoming messages are parsed and
handled. When performance or security is an issue, that byte-level control is invaluable in
providing a skilled developer the tools they need to produce the most optimal solution for
the task at hand.

However, most of us won't be writing network code with such high demands for
performance or security. In fact, most of the code we write will all follow the same series of
simple and straightforward patterns of serialization and message generation. That's where
the additional st ream classes really come in handy.
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Stream readers and writers

While it is immeasurably useful to understand how to work directly with data streams and
bend their use to your specific purposes when you need to, the simple fact is that most of
the time, you won't need to. In fact, over my many years as a software engineer, I can count
on two hands the total number of times I've needed to devise my own serialization
strategies and implement them with lower-level classes for the sake of performance or
security. In my professional career, it's much more common to use simpler, well-established
serialization strategies that leverage the utility classes provided by the .NET core library.

On the modern web, the common language for communication is, irrefutably, Javascript
Object Notation (JSON). This simple specification for composing and parsing hierarchical
data translates so elegantly to almost every data structure you could possibly devise in
almost any language that, at this point, it is the transport format of choice for almost every
API or web service being written today.

Like everything we've talked about so far, its power comes from its simplicity. It's a string
representation of data with simple rules for delimiting and nesting different objects and
their respective properties. And while the hierarchy of a JSON object is rigidly defined, the
order of properties within that object is entirely arbitrary, giving users a high degree of
flexibility and reliability.

With such a ubiquitous standard for serialization, it should come as no surprise that there
are widely supported and easy-to-use tools for working with objects in JSON notation. Not
only that, but since simple strings account for so much of what we read and write between
data sources on a network, there are System. I0 classes designed explicitly for working
with them over streams.

Newtonsoft.Json

Let's familiarize ourselves with a non-Microsoft library that was so reliably popular it was
ultimately adopted by Microsoft as the official library for parsing JSON in C# and .NET.
The more you work with network transactions, the more you will come to appreciate the
powerful simplicity of the Newtonsoft . Json library. There's not a whole lot to it, so let's
take a moment now to take a peek under the hood, since we'll be relying on it quite a bit
going forward.
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It's important to know that while Newtonsoft . Json remains the library of choice for JSON
parsing in C#, Microsoft has actually developed an alternative approach for .NET Core 3.0.
The new library has been added as the System. Text . Json namespace. However, where
Netwonsoft.Json is written for user-friendliness, providing a rich set of easy to leverage
features, the focus of this new JSON library is on performance and fine-grained control over
the serialization process. As a result, the feature set of the System. Text . Json library is
severely limited when compared to Newtonsoft . Json. Since we're more concerned with
the fundamental concepts behind JSON serialization than with performance, we'll be

using Newtonsoft . Json as our library of choice throughout this book.

To get started with it, you'll need to include the library into your project. If you're using
Visual Studio Code, it's as simple as entering the following command into the Terminal
window of the editor:

dotnet add package Newtonsoft.Json

If you're using Visual Studio, you can simply right click on your project's Dependencies in
your Solution Explorer, and select Manage NuGet Packages. From there, search for
Newtonsoft.Json and install the package.

Once you have it available, we'll want an object with a little bit of complexity to it to really
show off what Newtonsoft can do. So, let's add a model definition to our project by adding
a new file named ComplexModels.cs and define a few classes inside:

using System;
using System.Collections.Generic;

namespace StreamsAndAsync {
public class ComplexModel {
public string ComplexModelId { get; set; } =
Guid.NewGuid() .ToString () ;
public int NumberDemonstration { get; set; } = 12354;
public InnerModel smallInnerModel { get; set; }
public List<InnerModel> listOfInnerModels { get; set; } = new
List<InnerModel> () |
new InnerModel (),
new InnerModel ()
bi
}

public class InnerModel {
public string randomId { get; set; } = Guid.NewGuid() .ToString();
public string nonRandomString { get; set; } = "I wrote this here.";

[128]



Streams, Threads, and Asynchronous Data Chapter 6

Here, we have one type with properties that are instances of another type and lists of
instances of another type. Notice that I'm using the inline property initialization feature that
was added with C# 6. This allows us to ensure the initialization of each member of our class
without having to define the default constructor to do so. So, just by adding up an instance
of our ComplexModel, we will have one fully initialized.

Now, I'm sure you can imagine the pain of trying to traverse that nested structure on your
own and then parsing it into a well-formed serialized string. And that's for an object that
we got to define ourselves! Consider the added complexity of writing a generic serialization
code for any object that you might need to travel over your own network stream classes. It
would be a mess of recursion or reflection and a whole bunch of other tedious and time-
consuming tasks that few developers enjoy doing.

Thankfully, we often won't have to. If we wanted to take an instance of the class we just
defined and write it to our data stream, it's as simple as a single line of code to generate the
output string. Let's re-work our sample program to start with an instance of our new
ComplexModel class, and then use Newtonsoft . Json to serialize it into something more
stream-friendly:

using System;

using System.Text;
using System.IO;

using System.Threading;
using Newtonsoft.Json;

namespace StreamsAndAsync
{
public class Program
{
static void Main(string[] args)
{
ComplexModel testModel = new ComplexModel () ;
string testMessage = JsonConvert.SerializeObject (testModel);
byte[] messageBytes = Encoding.UTF8.GetBytes (testMessage);

using (Stream ioStream = new
FileStream(@"../stream_demo_file.txt", FileMode.OpenOrCreate)) {
if (ioStream.CanWrite) {
ioStream.Write (messageBytes, 0, messageBytes.Length);
} else {
Console.WritelLine ("Couldn't write to our data
stream.");

Console.WriteLine ("Done!");
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Thread.Sleep (10000);

}

In that simple declaration in the second line of our method, we convert our model into a
complete string representation fit for serialized transport. Run the program and then
inspect your destination file once again. You should find yourself with a nest of double-
quote-delimited property names and their values, and curly and square braces galore.
Going the other direction is as simple as passing in your JSON string to the
Deserialize<T> () method, as follows:

ComplexModel model = JsonConvert.Deserialize<ComplexModel> (testMessage) ;

And just like that, you can cleanly and reliably serialize and deserialize your data into a
well-understood and widely-used format for network messaging.

The specification of the JSON notation isn't outside the scope of this book, but it should
look pretty familiar to you if you have any experience programming JavaScript. Otherwise,
I'd recommend checking out the MDN article on the subject here: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON.

And if you ever need help organizing a JSON string into something a little more well-
structured, you can paste it into http://jsonlint.com to validate that the structure is well-
formed, and get a prettified version of the string.

The StreamReader and StreamWriter classes

So, if we can easily and efficiently serialize almost any object we can conceive of to a string,
surely (you must be thinking) there is an easier way to write to and read from streams,
directly with strings.

Of course, there is; you knew it when you started this section. Enter the ever-versatile
StreamReader and StreamWriter classes. Each of these classes is explicitly designed to
read/write strings specifically. In fact, they both sub-class the TextReader class from the
System. IO namespace, and extend its functionality to interface directly with byte streams.
They are tailor-made to work with strings, and each of them, combined with the simplicity
of Newtonsoft.Json, can make short work of transporting even the most complex data
structures over the wire. So, let's see how to use them for the purposes of our network
streams.
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First, we want to get our stream, just as before, with the using statement, as follows:

using (Stream s = new FileStream(Q"../stream_demo_file.txt",
FileMode.OpenOrCreate)) {

However, before we do anything else, we also want to initialize our St reamWriter
instance, providing our stream as its initialization parameter:

using (StreamWriter sw = new StreamWriter(s)) {

There are a number of constructors for St reamReader/StreamWriter that accept
encoding specifications, byte order mark detection, and buffer size for buffered streams.
However, for network programming, we'll always be using the constructors that accept a
Stream as their first parameter. The constructors that accept strings only ever create
FileStream instances pointing to a local file path. Even though we're using a FileStream
here for demonstration purposes, for real network programming, we'll want to connect
directly to a data stream to a remote resource. To do so, we'll have to initialize the stream
(likely an instance of the NetworksStream class) first, and then provide that to our
writer/reader instances.

Once the StreamwWriter is initialized, writing is as simple as calling Write (string) or
WriteLine (string). Since the class assumes it will be working with strings, our example
method is simplified as follows:

static void Main(string[] args) {
ComplexModel testModel = new ComplexModel ();
string testMessage = JsonConvert.SerializeObject (testModel);

using (Stream ioStream = new FileStream(Q"../stream_demo_file.txt",
FileMode.OpenOrCreate)) A
using (StreamWriter sw = new StreamWriter (ioStream)) {
sw.Write (testMessage);

}

Console.WriteLine ("Done!");
Thread.Sleep (10000) ;
}

And in only five lines of code, we're successfully serializing a complex, nested object
instance, and writing it to our output stream.
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When working with strings from remote resources, knowing the specific
encoding with which to translate the incoming bytes is key. If a character
is encoded as UTF32, and decoded using ASCII, the result wouldn't match
the input, rendering your output string a garbled mess. If you ever find a
message that you've parsed to be indecipherable, make sure you're using
the right encoding.

Since these classes are designed to work exclusively with string content, they even provide
useful extensions, such as a WriteLine (string) method that will terminate the string
you've passed in with a line terminator character (in C#, this defaults to a carriage-return
followed by a line feed, or \r\n, though you can override this value based on your
environment). Meanwhile, the ReadLine () method will return characters from your
current index up to and including the next line terminator in the buffer. This isn't terribly
useful with a serialized object, since you don't want to read a line of a JSON string.
However, if you're working with a plain-text response, it can make reading and writing
that response a breeze.

Seek versus Peek

One caveat that may not be obvious, however, is the difference in changing your current
index with a StreamWriter or St reamReader instance. With the st ream class and its sub-
classes, we simply applied the Seek operation to move through our byte array by a given
number of positions forward from a given starting point. However, when you're working
with the writer/reader utility classes, you'll notice that you don't have that option. The
wrapper classes can only move forward with their base operations using the current index
on the stream. If you want to change that index, though, you can do so simply by accessing
the underlying stream directly. It's exposed by the wrapper classes through the
BaseStream property. So, if you want to change your position in the stream without
performing the operations of the wrapper, you'd use the BaseStream's Seek operation, as
follows:

using (Stream ioStream = new FileStream(Q"../stream_demo_file.txt",
FileMode.OpenOrCreate)) A
using (StreamWriter sw = new StreamWriter (ioStream)) |

sw.Write (testMessage);
sw.BaseStream.Seek (10, SeekOrigin.Begin);
sw.Write (testMessage);
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Modifying the St ream class that is underlying the wrapper class will directly change the
position to which the wrapper class can write. After running this code, our output file
should look like the following screenshot:

The first 10 characters of our output are null because the underlying St ream class had its
write index shifted forward by 10 characters!

It's not uncommon to forward search through a string until arriving at a terminating
character or flag value. Doing so with the St reamReader.Read () operation will result in
moving the index past the terminating character and popping the terminating character off
the array. If you want to simply read the last character before the terminating character,
though, you have the Peek () operation. Peek () will return the next character in the array
without advancing the current index of the St reamReader. This little tidbit can provide a
fair bit of flexibility when you're determining when to stop reading a segment from a string
whose length is indeterminable.

The NetworkStream class

While we're looking at the right streams for the right job, we should take a moment to look
at the Networkstream class. Operating much the same as the FileStream class that we've
been using in our sample code thus far, its underlying data source is an instance of the
Socket class connected to an external resource. Other than designating the underlying
Socket connection for the stream to read from and write to, however, it functions almost
entirely the same as the FileStream class. The various Read, Write, and Seek methods
behave exactly as you've seen with our local file samples. And, just as importantly, an
instance of NetworkStream can be used as BaseStream of an instance of the
StreamReader and StreamWriter classes, so sending raw text messages over the wire is
as easy as it is to write to a local text file. We'll use this class heavily when we start
implementing our own socket connections in later chapters, but those will only build on the
foundations that we've laid out in this chapter.
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Picking up the pace - multithreading data
processing

So far, we've only looked at trivial examples of read and write operations on our data
streams, and we've only done so with the synchronous Read () and Write () methods. This
hasn't been an issue for our 50 or 500 character-long messages and single-purpose test
applications. However, it isn't hard to imagine scenarios where the data stream is large
enough to take a considerable amount of time just to be read through from start to finish.
Imagine requesting a file over FTP that is 200 MB large, or imagine requesting 2 million
records from a database table hosted on a remote server. If the process that had to perform
those operations was also responsible for responding to user behavior through a graphical
interface, the long-running data processing task would render the GUI completely
unresponsive. Such behavior would be absolutely unacceptable. To that end, .NET Core
provides programmers with the concept of threads.

With threads, certain operations can be relegated to background tasks that are executed as
soon as is feasible for the host process to do so, but won't block the operations of the main
thread of your application. So, with this simple, powerful concept, we can assign our
potentially long-running, or processor-intensive operations to a background thread, and
mitigates the impact of that operation on the performance of the rest of our application.
This performance improvement is the single biggest benefit of working with threads.

This aspect of .NET Core applications is accessed through the System.Threading
namespace, which provides everything from ThreadPool classes to semaphores for
protecting resources from concurrent access or mutation, to Timer classes and
WaitHandles classes for more granular control over when and how your background
threads are provisioned.

Because of the volatile nature of network connections and the unreliable availability of
remote resources, any attempt to access data or services from a remote resource should be
handled on a background thread. Fortunately, assigning those tasks to a background thread
for parallel processing is actually fairly simple to do. All we have to do is start leveraging
those asynchronous methods that we've been glossing over until now.
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Asynchronous programming for
asynchronous data sources

If you're not familiar with asynchronous programming then what we're about to talk about
may seem a little confusing at first, but I promise that in practice, it's actually quite simple.
All it means is performing individual computational tasks out of order, or out of sync. It
allows engineers to defer blocking the execution of their program to wait for a long-running
task until they absolutely have to. To make this clear, let's look at an example.

Let's imagine we have a method that must have step A send a request for a massive amount
of data, with step B performing long-running calculations locally, and finally, C returns the
two results as a single response. If we were to read the response from our network request
synchronously, then the time it takes to complete our method would be the total of the time
for each step, A + B + C. The processing time would look like the following diagram:

Processing Time

A | B | C

But if we run our web request asynchronously, we can let this run in a background task
simultaneously with our long-running local process. In doing so, we reduce the processing
time down to only the longer of the two tasks between A and B, plus C. Our processing
time now looks like the following diagram:

Processing Time

N

—~~
@ &
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Since C is the only step that is dependent on A to complete processing, we can defer
blocking our application code on the completion of A until we're ready to execute C. To see
what that looks like in code, let's first say that we have a ResultObject class that holds the
local and remote information that we want to return to our users. Next, let's assume that
the long-running work being done in part B of this method is done in the private local
method named (appropriately) LongRunningSlowMethod () . So, with those simple
assumptions, let's look at an asynchronous method for processing long-running network
requests, as follows:

public async Task<ResultObject> AsyncMethodDemo () {
ResultObject result = new ResultObject () ;
WebRequest request = WebRequest.Create ("http://test-domain.com");
request.Method = "POST";
Stream regStream = request.GetRequestStream();

using (StreamWriter sw = new StreamWriter (regStream)) {
sw.Write ("Our test data query");

}

var responseTask = request.GetResponseAsync();
result.LocalResult = LongRunningSlowMethod() ;
var webResponse = await responseTask;

using (StreamReader sr = new
StreamReader (webResponse.GetResponseStream())) {
result.RequestResult = await sr.ReadToEndAsync () ;

}

return result;

}

There's quite a lot going on here, but hopefully, now it's obvious why we approached these
last couple chapters the way we did. Let's look at this a little at a time; first, notice the
method signature, as follows:

public async Task<ResultObject> AsyncMethodDemo () {

Any method you write that takes advantage of asynchronous operations must be flagged
with the async keyword in its signature. This tells users of the method that the operations
in this method may take a while, and will run on background threads. And you might have
noticed, the return type isn't simply ResultObject, even though our return value,
result, is declared as such at the start of the method. This is because there are only three
valid return types for an asynchronous method: void, Task, and Task<T>.
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If your method returns a result, you must wrap that result's type in Task<> in your method
signature. You do not, however, have to wrap the actual returned value in a Task<> object.
This is done for you by the compiler when you have an asynchronous method signature.
That's how we're able to declare a return type in our method signature that seems to
mismatch the declared type of our returned value in the body of our method.

Moving on in our method, we create a WebRequest class pointing to our test domain, and
then use StreamiWriter to write our data query directly onto the webRequest's request
stream. What happens next is where it gets interesting, though, that is, we get to call this
following line in our code:

var responseTask = request.GetResponseAsync();

The result of the GetResponseAsync () method that is assigned to our responseTask
variable is actually not the WebResponse class. Instead, it's a handle to the task that is
started in a background thread by the GetResponseAsync () method. So, instead of
waiting around for the response to come back from our server, GetResponseAsync just
gives us a handle to the thread that is fetching that response, and then immediately returns
the flow of control to the next operation in our method. This allows us to start our
LongRunningSlowMethod () almost immediately.

Now, since our LongRunningSlowMethod () is not asynchronous, the flow of control
blocks until it completes executing, and its output is assigned to result.LocalResult.
Once that's complete, we can't actually proceed with the function until we've finished
getting the result from our web request. Thus, the next line in our program is as follows:

var webResponse = await responseTask;

By calling the await keyword, we're telling our program that we cannot meaningfully
proceed until the awaited operation is complete. So, if the task isn't done yet, the program
should now block further execution until it is. This is what I meant by defer blocking the
execution of their program. We were able to proceed with executing other, unrelated code
while this task was finishing up. It's only when there is no more work that can be done
without the result of the asynchronous task that you must block, and await the result.
That's what we're doing here with the await call.

The result of awaiting this async task is whatever was wrapped by the Task<T> return
type in the async method. So in this case, what gets assigned to the webResponse variable
is the instance of the WebResponse class we were expecting earlier.
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Now that we have our response, we can read from it. In our next few lines, we

instantiate St reamReader, and provided it the response stream from the WebResponse
instance we got back. Finally, we read from the response stream and assign it to our result
object:

result.RequestResult = await sr.ReadToEndAsync();

Note that even though we have no additional code to execute in this function, we still use
the ReadToEndAsync () method and await the result. The reason for this is because while
we don't have anything further to execute in our method, someone invoking our method
may be able to defer processing the result we pass back. Using the await operator tells the
compiler that this is another opportunity for deferred execution, and so when this point is
reached in our method, control may well return to the calling method until the result of our
method is awaited again. For this reason, it's important to always use async methods
wherever available, and use them all the way up the call chain. The performance gains will
add up substantially over time.

A final note on blocking code

You might notice that there is a Result property on the task instance returned whenever
you call an asynchronous method. While it may seem tempting to simply use
GetResponseAsync () .Result to avoid having to await your asynchronous operations, as
well as avoid having to apply asynchronous patterns all the way up the stack, this is a
terrible practice.

Never use .Result to access the result of an asynchronous task.

It not only blocks your code by forcing synchronous execution, but it also prevents anyone
who is calling your methods from being able to defer execution either. Unfortunately, this
is one of the most common mistakes that new developers make when they first start
working with asynchronous programming. However, you should almost never mix async
and blocking code together. As a very simple rule, if any of your code requires async
processing, all of it does.
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Summary

In this chapter, we further built on the foundations from which all network programming
in C# is supported. We learned about how .NET encapsulates the basic physical concept of
a physical stream of incoming or outgoing bits into an elegantly simple and broadly useful
Stream class. Then we looked at the best patterns for working with st ream through the
StreamWriter and StreamReader wrapper classes. To facilitate the ease with which we
could transmit data through those classes, we got our first look at the incredible power of
JSON, and the Newtonsoft .Json library.

Once we got data streams firmly under our belt, we looked at how to optimize working
with them. We talked about the power of multithreading, and what that can mean for
performance improvements with long-running tasks and operations. Finally, we took a
crash course in asynchronous programming. Learning about how to leverage background
tasks and the power of asynchronous method definitions, we saw how we could fully
leverage multithreading and background tasks to mitigate the operation latency of
potentially long-running operations. Now that we're more comfortably positioned to be
working with remote data sources, we'll take the next chapter to learn how to respond to
errors from remote data sources.

Questions

1. What does JSON stand for and why is it useful?

2. What are the three primary operations available to you through the st ream
class?

3. What is the purpose of a using statement?

4. What is the most important factor in working with strings through the
StreamReader and StreamWriter classes?

5. What is the biggest single benefit of leveraging background threads in your
programs?

6. What is the most common mistake programmers make when using
asynchronous methods?

7. What are the only three valid return types of an asynchronous method?
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Further reading

For more information about these subjects, I'd recommend taking a look at Multithreading
with C# Cookbook, Eugene Agafonov, Packt Publishing, at https://www.packtpub.com/

application-development/multithreading—-c-cookbook-second-edition.

For a deeper dive into modern asynchronous programming practices, you should check out
C# 7.1 and .NET Core 2.0 - Modern Cross-Platform Development, Mark |. Price, Packt Publishing.
You can find this at https://www.packtpub.com/application-development/c-71-and—

net-core-20-modern-cross-platform-development-third-edition.
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Error Handling over the Wire

This chapter will explore the many possible failure points of a distributed application, and
how the impact of a failure can be felt by downstream consumers of your application. We'll
examine how different errors are reported or detected depending on the severity, context,
and stage of the life cycle of network traffic. We'll explore a variety of error-handling
strategies as they are implemented in C#, and demonstrate how conventions and standards
can be leveraged to ensure that your application behaves as expected for any potential
downstream consumers. Finally, we'll look at how to generate meaningful errors for your
application's consumers when their requests cannot be reasonably serviced.

The following topics will be covered in this chapter:

e How different points of failure should generate different error messages, and
how to recover from them

e Common error codes and messages returned by services that have correctly
implemented their respective communication protocols

e Strategies for handling different kinds of errors depending on the needs your
application must meet

¢ Using status codes, errors, logs, and messages to generate and report your own
errors for downstream consumers
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Technical requirements

We'll be writing a substantial amount of sample code, which can be found on GitHub here:
https://github.com/PacktPublishing/Hands-On-Network—-Programming-with-CSharp-
and-.NET-Core/tree/master/Chapter 7.

Check out the following video to see the code in action: http://bit.1ly/2HT119z

This chapter will introduce a resilient network client called Polly to demonstrate common
error-recovery strategies. I'd recommend reading up on some of the features of that
particular library here: https://github.com/App-vNext/Polly.

Multiple devices, multiple points of failure

There is an inexhaustible number of problems that can occur on even simple software when
you introduce the unpredictability of network interactions. A single off-by-one error in an
upstream service could mean a missing the closing curly-brace in a JSON string, rendering
an entire payload impossible to parse. Internet service provider (ISP) service interruptions
or weak wireless signals can result in timeouts and incomplete payload delivery.
Meanwhile, the stability of the remote system you're requesting a resource from is entirely
out of your control. With all these factors introducing the potential for errors, we can't
simply hope to avoid errors or exceptions in our software. We must assume they will occur,
and design around that eventuality.

External dependencies

In our time as professional engineers, we can count on one hand the number of application
we wrote that neither served as a network dependency for a downstream consumer, nor
had a dependency on an upstream network resource. Every time your software must make
a network hop to access a necessary resource, you're introducing the risk of failure.

As arule, any time you are reading data from an external dependency, you must
implement proper exception handling. Always assume that something could go wrong. We
didn't do this in the last chapter because we didn't want to introduce unnecessary
complexity while I was still trying to fully elucidate the concepts and uses of data streams.
However, in this chapter, we'll be looking exclusively at error-handling strategies. And the
first strategy is to always assume accessing external dependencies will eventually fail.
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This is fairly straightforward when you are handling the response from another external
dependency, but what if your own software is a dependency for another application? The
next strategy for resilient application behavior is to always assume that your own software
will eventually fail. This will encourage you to account for that fact and provide fault
tolerance and useful error messaging for anyone who may be using your software at the
moment of failure. With that in mind, let's start with our network access code from the last
chapter and modify it for better resiliency.

Looking back at our method, we had the following;:

public async Task<ResultObject> AsyncMethodDemo () {
ResultObject result = new ResultObject () ;
WebRequest request = WebRequest.Create ("http://test-domain.com");
request.Method = "POST";
Stream regStream = request.GetRequestStream();

using (StreamWriter sw = new StreamWriter (regStream)) {
sw.Write ("Our test data query");

}

var responseTask = request.GetResponseAsync();

result.LocalResult = LongRunningSlowMethod() ;

var webResponse = await responseTask;
using (StreamReader sr = new
StreamReader (webResponse.GetResponseStream())) {
result.RequestResult = await sr.ReadToEndAsync();

}

return result;

}

Within this method, we have one external dependency. We could encounter a failure when
we attempt to access and process the response we receive from the server. Any number of
issues could arise here for any number of reasons, so we'll want to wrap that code in a
try/catch block, or apply an exception filter in our code (more on that shortly). We'll start
with a simple try/catch block, looking at an incredibly useful built-in Exception class for
our purposes, the WebException class. So let's catch that, and see what kind of utility we
can get from it:

try {
var webResponse = await responseTask;
using (StreamReader sr = new
StreamReader (webResponse.GetResponseStream())) A
result.RequestResult = await sr.ReadToEndAsync();
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} catch (WebException ex) {
Console.WritelLine (ex.Status);
Console.WritelLine (ex.Message);

}

Here, you'll note that we don't have to look for exceptions until we block our code and wait
for the response to return. If we kick off an asychronous task and, while executing, that task
throws an error, it doesn't reach our code until we await the result of that task. When we
catch the error that we know we'll get (since the test-domain.com resource doesn't actually
exist), we catch it as WebExcept ion. This class is the base exception class you will receive
from any network-specific exceptions your code encounters. What makes this especially
useful, as opposed to the catchall Exception class, is the availability of the network
error-specific Status property.

In this sample, we're merely logging the status and the exception message to our console. If
the code existed in an API that we wrote, however, and was exposed exposed to
downstream entities over a network, we would be responsible for returning a meaningful
status code of our own. Doing so ensures that if our specific application code is the primary
point of failure in a process pipeline, we are providing as much information as possible to
reliably respond to, and recover from, our exceptions.

Parsing the exception status for context

When there is an error status returned in WebException, the value of that property can tell
us a lot about what failed and why. The Status property is an instance of the
WebExceptionStatus enum, and the values returned can tell us a lot about the conditions
that caused our external dependency to fail. It may have been a routing issue, or an
inability to resolve a cache lookup or to maintain an active connection.

The information you can discern simply from checking the value of the status code can tell
you a lot about what specifically failed and what recovery strategy is most likely to yield
positive results. For example, if your exception has a Status of NameResolutionFailure,
you can safely assume that retrying the request won't be an effective strategy. If the DNS
failed to identify the host based on the provided name at your first attempt, subsequent
attempts with the same hostname are unlikely to prove fruitful. However, if you receive an
error status of the Timeout type, you could potentially increase your timeout threshold on
your request client and submit a series of retries, up to a predetermined maximum timeout

length.
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The documentation for the WebException status is freely available, and it's up to you to
identify which possible exception statuses you can encounter. Furthermore, once you know
where or what in the request chain failed, you can determine the best recovery strategy for
your application code. The main takeaway here, though, is that you should check for and
attempt to recover from the WebException occurrences at any point in your application in
which a request is transmitted.

Status codes and error messages

Now that we know where we should be checking for potential exceptions (or providing
them for our consumers), it's important to understand what those exceptions could
ultimately look like. Identifying the full scope of possible exceptions and writing recovery
solutions for each possibility will make our code nearly bulletproof against the unreliability
of distributed resource acquisitions. While we've already seen that we can access hugely
useful information just by inspecting the WebExcept ion exception that is thrown by any
failed network requests we could make, there's still a lot to understand about the standards
of Internet status code specifications and exceptional response handling.

Status messages and status codes

First, let's look at a reliable approach to handling different status responses in the case of an
error from an upstream dependency. Let's use the same snippet of code from our earlier
example, but respond more robustly to the variety of possible statuses we could receive. To
keep our request code short, we'll delegate the exception handling code to a different
method named ProcessException (WebException ex).The two parameters of this
method will be the exception that was generated, as well as the original request that
triggered the exceptional state in our code. This will give the exception-processing method
sufficient context about the original request to attempt to recover gracefully from the error.
So, inside the catch block of our earlier example, we'll replace our two
Console.WriteLine () statements accordingly:

} catch (WebException ex) {
ProcessException (ex);

}

[145 ]



Error Handling over the Wire

Chapter 7

Then, from within our ProcessException (WebException ex) method, we'll switch on
the possible value of the exception Status property, performing useful recovery logic
based on the status or messages received:

public void ProcessException (WebException ex) {
switch (ex.Status) {

case
case
case
case
case
case
case

WebExceptionStatus.
WebExceptionStatus.
WebExceptionStatus.
WebExceptionStatus.
WebExceptionStatus.
WebExceptionStatus.
WebExceptionStatus.

Console.WritelLine ("We
break;

case
case
case
case

WebExceptionStatus

ConnectFailure:

ConnectionClosed:

RequestCanceled:

PipelineFailure:

SendFailure:

KeepAliveFailure:

Timeout:

should retry connection attempts");

.NameResolutionFailure:
WebExceptionStatus.
WebExceptionStatus.
WebExceptionStatus.

ProxyNameResolutionFailure:
ServerProtocolViolation:
ProtocolError:

Console.WriteLine ("Prevent further attempts and notify consumers to
check URL configurations");
break;
case WebExceptionStatus.SecureChannelFailure:
case WebExceptionStatus.TrustFailure:
Console.WriteLine ("Authentication or security issue. Prompt for
credentials and perhaps try again");
break;
default:
Console.WritelLine ("We don't know how to handle this. We should post
the error message and terminate our current workflow.");
break;

}

By using the descriptive and reliable status codes returned by WebException, we can
group similar errors together, and respond to them with resolutions that will likely resolve
the common issue for each of them. If there were issues with connectivity or timeouts, there
may simply have been an issue with your ISP, or the remote host simply didn't have the
resources loaded from the cache, and so took too long to process the request. In that case,
simply trying again may well prove to be a consistently reliable solution. However, if the
exception was due to an inability to resolve the target hostname, then subsequent requests
will likely fail in the same way. They'd all be processed by the same DNS, so unless the
request URI is updated to a valid host name, there's no benefit in retrying the request.
Meanwhile, security issues can likely be resolved by refreshing authentication or
authorization credentials.
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You'll note that the default simply recommends publishing the inner message returned
with the WebException class. This is because, in cases where there is no common status
code returned by the server, the class itself will have some default messaging about what
has probably gone wrong. So even if we get back an instance of
WebExceptionStatus.UnknownError, there will likely still be useful information
returned as part of the error message.

Useful error messages

If we find ourselves in a scenario where we cannot gracefully recover from a failed attempt
to request resources from an upstream dependency, and we cannot proceed with the
service our application provides, it's time to send an error message of our own. It is our
responsibility to provide as much information about the failure state as we can for the user
to understand what went wrong while avoiding sending back any potentially
compromising details that could open our application up to vulnerabilities.

This is where status codes become your best friend. When you're handling HTTP requests
against your application, you should be as specific as you possibly can with which status
codes you return. It may seem extremely simple to return a 500 status code every time
something goes wrong, with your own software, since 5XX is the blanket code designation
for a server error. If you want people to be happy to use your services, though, I would
recommend you don't. The more specific you can be with your status codes, the less work
any of your consumers have to put in to understanding and recovering from issues on their
own side of the equation.

Using the most specific status codes possible also gives us a risk-free way of
communicating enough information about what went wrong, while not communicating
anything that could put our software at risk. If you respond to a bad authentication request
with a 401 status code (the status code for "unauthorized"), users will know that they have
to adjust their authentication mechanism. However, if you simply returned a blanket 400
status code, along with a message indicating that the minimum character requirements for
a password is eight, then you've just given potential malicious actors more information
about your authentication scheme than they had before their failed attempt. And with
malicious software, any information about the specifics of your system is dangerous.
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Understanding how much information is enough, versus too much, can be a delicate
balancing act. Much of knowing what others will want to see from your software will come
from experience. The more external services you see sending useless Something went
wrong. Oops! error messages, the more you'll have an idea of what you would have
wanted to know, and how you can do better in your own code in the future. A good rule of
thumb when you're starting out, though, is that status codes should be as specific as
possible, and error messages should be as vague as you can get away with. In HTTP, error
status codes are all isolated to the 4XX and 5XX values. These two groupings designate
request servicing errors and server errors, respectively.

A request-servicing error relates to anything about the structure, origin, or nature of the
request that caused the failure to occur. So, anything from requesting a resource that
doesn't actually exist at the requested location (404 - Not Found), to requesting a resource
with an HTTP verb that isn't supported by the listening server (405 - Method Not Allow) to
requesting access to resources for which the client isn't authorized (401 - Unauthorized).

Server errors, on the other hand, relate to issues that have occurred after a correct and well-
formed address has been received. There are far fewer of these since most well-formed
requests are considered well formed specifically because there is a server configured to
process it. The reasons for a 5XX response range from failure of an upstream server to
process some aspect of the client request (502 - Bad Gateway/504 - Gateway Timeout), to
the target server simply being out of commission or unavailable at the time of the request
(503 - Service Unavailable).

If you're sending correct error codes, it is incredibly unlikely that you will ever find
yourself returning a 5XX error code explicitly from within your own code. If your software
is written well, issues that cause it to throw an error will almost always be ultimately
traceable to some aspect of an incoming request. When that happens, though, it is
absolutely your responsibility to do your best to find out what, specifically, about the
request caused the error, and report it back promptly.

Error-handling strategies

Now that we've seen the tools available to you when encountering error messages from
network resources (and when sending error messages of your own), let's take a look at
what to do with them.

[148]



Error Handling over the Wire Chapter 7

How should we best respond to a RequestCancelled exception status? Which failure
states are likely to have a common root cause, and thus a common shared solution? How
should our software respond to our own users when we can't recover from errors further
upstream? In this section, we'll take a look at each of these questions, and leave with some
concrete approaches that can be adapted and scaled to almost any circumstance.

Resilient requests with Polly

As we already saw in our previous code sample, it's not uncommon to respond to a number
of similar error statuses with the same general recovery solution. This is a great practice for
simplifying your code base, and can provide durable exception handling in a wide variety
of common situations.

This act of associating common network issues into groups that can be resolved with
similar strategies is exactly the idea behind the Polly library for resilient HTTP clients.
While we're not looking specifically at HTTP now, it is one of the most robust libraries out
there for one of the most common network protocols, so I think it bears examination as we
continue to look at error-recovery strategies.

The first order of business is to include the package in our project either through an explicit
inclusion in the NuGet package manager, or with the following command-line input:

dotnet add package Polly

Once it's installed, we can declare a Policy class for how we plan to handle various
network exceptions using Polly's declarative handler and recovery methods. The Policy
class is a robust, transient container for a given task. We define a delegate, and then we
provide that delegate to a Policy for execution. The Policy class then uses the actively-
defined error handlers and their recovery definitions to execute the task, and then listen for
and respond to exceptional states accordingly.

Exceptions that we want Polly to respond to are set with the generic Handle<T> () method,
where T is some subclass of the Exception type. The Handle<T> () method also takes
optional conditional parameters specifying the state of the Exception type we want to
respond to with the corresponding recovery specification. This gives us the ability to define
specific recovery strategies for different states. Let's look at this in action to see what I
mean.
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First, we're going to define a method for requesting some remote resource. This will only be
used for demonstration purposes, so we'll want it to occasionally fail and occasionally
succeed. For that, we'll just generate a random number, and if the number is even, we'll
throw an exception; otherwise, we'll return a valid response. Importantly, though, we'll
want to log our failed attempts onscreen so we can see the retry in action:

public static HttpResponseMessage ExecuteRemoteLookup () A
if (new Random() .Next () % 2 == 0) {
Console.WritelLine ("Retrying connections...");
throw new WebException ("Connection Failure",
WebExceptionStatus.ConnectFailure);
t
return new HttpResponseMessage () ;

}

This will be the delegate that we pass to our Policy object once we've defined our recovery
strategy and want to try to execute it. Next, we'll define behaviors for a couple of the error
states we defined in our naive error-handling code from earlier. For the sake of readability,
we'll define some private class variables to hold the groups of the WebExceptionStatus
values that we had logically lumped together:

private List<WebExceptionStatus> connectionFailure = new
List<WebExceptionStatus> () |
WebExceptionStatus.ConnectFailure,
WebExceptionStatus.ConnectionClosed,
WebExceptionStatus.RequestCanceled,
WebExceptionStatus.PipelineFailure,
WebExceptionStatus.SendFailure,
WebExceptionStatus.KeepAliveFailure,
WebExceptionStatus.Timeout

Yy

private List<WebExceptionStatus> resourceAccessFailure = new
List<WebExceptionStatus> () |
WebExceptionStatus.NameResolutionFailure,
WebExceptionStatus.ProxyNameResolutionFailure,
WebExceptionStatus.ServerProtocolViolation

Yy

private List<WebExceptionStatus> securityFailure = new
List<WebExceptionStatus> () |
WebExceptionStatus.SecureChannelFailure,
WebExceptionStatus.TrustFailure

}i
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With that, we can easily define a Policy object that responds to WebException with a
status in one of our groupings, as follows:

public static void ExecuteRemoteLookupWithPolly () {
Policy connFailurePolicy = Policy
.Handle<WebException> (x => connectionFailure.Contains (x.Status))
.RetryForever();

HttpResponseMessage resp = connFailurePolicy.Execute(() =>
ExecuteRemoteLookup ()) ;
if (resp.IsSuccessStatusCode) {
Console.WriteLine ("Success!");

}

Note that when we execute Policy, we specify that as long as we

get WebExceptionStatus defined in our connectionFailure grouping, we want to retry
the request. So, let's now call this from a driver program a few times and see what our
console looks like after each run. The assumption is due to the sufficient randomness of the
pseudo-random number generator, there should be at least a few runs that fail multiple
times before returning a valid response. (Note that, for the purposes of this demo, all of the
Polly code exists ina static PollyDemo class). Let's have a look at the following code:

using System.Threading;

namespace ErrorHandling {
public class Program {
static void Main(string[] args) {
PollyDemo.ExecuteRemoteLookupWithPolly () ;
Thread.Sleep (10000);

}

If you have your IDE configured to break on errors, you'll get a pause in execution every
time your code fails. Just running this code myself, though, I saw an instant success, and
then five consecutive retries before my code successfully executed. The fact that I was able
to define that in fewer than 10 lines of code is incredible, and speaks to the value of Polly in
providing resiliency to an application.
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However, if we want to truly mirror the behavior we established in our naive error-
handling code from earlier, we want to respond to a variety of exceptional states with
specific recovery codes based on which state was reached. For that, Polly allows you to
define multiple state handlers and then wrap them together in a PolicyWrap class, which
does precisely. It will allow you to define the recovery policies for as many conditional
states as you need, and then wrap them up in a single common policy to be respected when
your PolicyWrap instance's Execute (delegate) method is called.

To demonstrate this, we'll define a few additional exceptional states for our delegate, such
that if the random number generated is divisible by 3, we'll throw a name resolution error,
and if the number is divisible by 4, we'll throw a security error:

public static HttpResponseMessage ExecuteRemoteLookup () {
var num = new Random() .Next ();
if (num % 3 == 0) {

Console.WriteLine ("Breaking the circuit");
throw new WebException ("Name Resolution Failure",
WebExceptionStatus.NameResolutionFailure);
} else if (num % 4 == 0) {
Console.WriteLine ("Falling Back");
throw new WebException ("Security Failure",
WebExceptionStatus.TrustFailure);
} else if (num % 2 == 0) {
Console.WriteLine ("Retrying connections...");
throw new WebException ("Connection Failure",
WebExceptionStatus.ConnectFailure);
}

return new HttpResponseMessage();

}

Now that we have a random chance that at least one of our exceptional conditions is met,
let's define the behavior for each circumstance. As you might have noticed from my console
messages, we'll use a different strategy for each specific error case. Polly defines a small
number of policies out of the box, and you can invoke each one in the case for which it is
most useful. I won't go into all of them now, but I will take a moment to encourage you to
read up on Polly's documentation (https://github.com/App-vNext/Polly). It's longer than
this whole chapter, but well written and immeasurably useful for anyone looking to
provide more reliable stability to a production application. For now though, we'll just be
looking at the Circuit-breaker policy and the Fallback policy. These two seem most
useful for our use cases since they most closely match the strategy we identified in our
naive approach.
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The Fallback policy is by far the simpler of the two. It simply allows you to designate an
alternative response to return in the event of the specified exception being handled. In our
example, since we'll be using Fallback for our security exceptions, we'll simply return a
new instance of Ht t pResponseMessage with a 401 status code set to notify our
downstream consumers that there is an issue with authorization that needs to be resolved.

The Circuit-breaker policy designates that multiple failed attempts to resolve a request
should open the circuit to the requested resource, and stop subsequent requests before they
start. This is useful in scenarios like the one we've defined for name resolution failures,
where, based on the error message subsequent attempts are no more likely to be successful
than the original request. Opening the circuit (and thus stopping the flow of requests over
that circuit) gives the upstream system a chance to recover without being bombarded by a
series of retry attempts. You can configure the circuit to open after a designated number of
failed attempts or after a designated timeout, and you can set it to stay open for as long as
you determine would probably be necessary to allow the upstream system to recover.

Unlike the retry policy and its variants, though, the Circuit-breaker doesn't actually do
anything in response to errors being thrown. In fact, it will always re-throw any caught
errors; even if the circuit has already been broken. If you want to retry requests after the
designated reset period for an open circuit, you are free to implement that behavior
yourself, but by default, the Polly spec doesn't do so with its Circuit-breaker
implementation. So in our example, we're going to break the circuit after only one failed
attempt, and we'll still need to look for the appropriate error messages in try/catch from
our calling code.

With that in mind, let's update our previous example. The first thing we'll do is add a
method to return the 401 status code in Ht t pResponseMessage for our Fallback policy:

private static HttpResponseMessage GetAuthorizationErrorResponse () {
return new HttpResponseMessage (HttpStatusCode.Unauthorized);
}

Then we'll set policies for each of our two alternative error states, and wrap them
accordingly:

public static void ExecuteRemoteLookupWithPolly () {
Policy connFailurePolicy = Policy
.Handle<WebException> (x => connectionFailure.Contains (x.Status))
.RetryForever();

Policy<HttpResponseMessage> authFailurePolicy =
Policy<HttpResponseMessage>
.Handle<WebException> (x => securityFailure.Contains (x.Status))
.Fallback (() => GetAuthorizationErrorResponse());

[153 ]



Error Handling over the Wire Chapter 7

Policy nameResolutionPolicy = Policy
.Handle<WebException> (x =>
resourceAccessFailure.Contains (x.Status))
.CircuitBreaker (1, TimeSpan.FromMinutes(2));

Policy intermediatePolicy = Policy
.Wrap (connFailurePolicy, nameResolutionPolicy);

Policy<HttpResponseMessage> combinedPolicies = intermediatePolicy
.Wrap (authFailurePolicy);

try |
HttpResponseMessage resp = combinedPolicies.Execute(() =>
ExecuteRemoteLookup ()) ;

if (resp.IsSuccessStatusCode) {
Console.WriteLine ("Success!");

} else if (resp.StatusCode.Equals (HttpStatusCode.Unauthorized)) {
Console.WriteLine ("We have fallen back!");

t
} catch (WebException ex) {
if (resourceAccessFailure.Contains (ex.Status)) |
Console.WriteLine ("We should expect to see a broken circuit.");

}

So, in our revised method, we define a policy for each possible scenario we want to respond
to, including the specific state of the exception that should be handled and the recovery
process we want to implement. Of note, though, are the two different calls to the
Policy.Wrap () method. The reason for this is that using the Fallback () method ona
strongly-typed instance of Policy<HttpResponseMessage> is the only way we can
designate the type of the return object from the delegate method we passed into

Fallback (). However, by strongly typing the policy, we can't Wrap () it with the other
weakly-typed policies in a single call. The Wrap () method of strongly-typed policies can
take at most one argument. So the workaround for this is to first wrap all of the weakly-
typed policies we've defined, and then use that wrapped Policy instance as the input to
the Wwrap () call on our strongly-typed Policy. This is confusing, initially, I realize, but will
become clearer as you work with Polly, read their excellent documentation, and most
importantly, implement these error-handling strategies in any networked software you
write.
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To make our driver program a little simpler to use for test purposes (instead of having to
run the program by hand two dozen times to see all possible outcomes), we'll update that
as well. Let's have a look at the following code:

public static void Main(string[] args) {

for (var i = 0; 1 < 24; i++) {
Console.WriteLine ($"Polly Demo Attempt {i}");
Console.WriteLine("-————————-——- ")
PollyDemo.ExecuteRemoteLookupWithPolly () ;
Console.WriteLine("-—————--—-——- ")

Thread.Sleep (5000);

}

Run that program once (maybe twice, since randomness is random, after all) and you
should see the appropriate log statements for each of our possible scenarios. I'm counting
on you to understand the nature of the flow of control through our program to understand
why the results onscreen demonstrate the promised functionality of the Policy objects we
defined.

As we move forward and look at specific implementations of different network protocols,
we'll be leaning heavily on Polly to define our recovery strategies. There's a lot of depth to
the library, and you'll get out of it whatever you choose to put in to learning it. With this
foundation, though, you'll be well equipped to move forward through the rest of this book.

Summary

In this chapter, we took a close look at how the .NET Core WebException class provides
engineers with a stable, reliable, and informative interface for understanding network
errors as they arise. We looked at where and when we should expect and account for
network exceptions, and how we could inspect the Status property of those exceptions to
determine their root cause. We also considered our responsibility in providing meaningful
exception messaging, as well as the value of providing as specific a status code as possible
for any consumers of our software. Finally, we looked at some common strategies, and an
extremely useful library in the form of Polly, for consistently recovering from network
exceptions to maximize our application's up time and increase our consumers' trust in our
software. It will be important to keep these ideas of resilience and optimization in mind
going forward.

In our next chapter, we'll be stepping into the world of low-level data transmission and
host-to-host communication.
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Questions

1. What is one thing we should always assume about external dependencies?

2. What are the two categories of error status codes in HTTP?

3. Which property of the webException class can we use to determine the nature
of the exception we received?

4. What does Polly's fallback policy provide for an exception state?

5. How does a Circuit-breaker policy specification differ from a ret ry policy
specification?

6. Write a sample method that combines fallback and retry policies based on
the statusCode of the response from a sample request.

7. In which circumstances would you not want to retry a web request after an initial
failure?

Further reading

For more information about specific error-handling strategies with various network
software architectures, check out the book Learning ASP.NET Core 2.0, by Jason De

Oliveira and Michel Bruchet. This will provide more in-depth guidance on error handling in
ASP.NET Core-based HTTP application scenarios. The book is available electronically or in

prhﬁ,here:https://www.packtpub.com/application—development/learning—aspnet—
core—20.

Alternatively, I would once again recommend C# 7 and .NET: Designing Modern Cross-
platform Applications, by Mark |. Price and Ovais Mehboob Ahmed Khan. The content on
exception handling is useful and well focused for many common use cases. Once again, the

link to purchase as an e-book or printed copy is here: https://www.packtpub.com/
application-development/learning-path-c-7-and-net-designing-modern-cross-
platform-applications.
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Section 3: Application Protocols
and Connection Handling

In this part, the reader will take a deep dive into the different components of network
applications, with extensive examples of code, exploring each layer of the network stack.

The following chapters will be covered in this section:
Chapter 8, Sockets and Ports

Chapter 9, HTTP in .NET

Chapter 10, FTP and SMTP

Chapter 11, The Transport Layer — TCP and UDP



Sockets and Ports

At this point, we understand how to handle data streams from remote hosts, process those
streams asynchronously on background threads, and handle the errors that arise from
processing that data. Now we're going to look at the most primitive connections you can
make with a remote host. In this chapter, we'll be looking at the physical ports through
which your machine is going to do this, and we'll be looking at the concept of a socket: the
software structure that exposes access to a port for network interaction. We'll examine the
WinSocks library for instantiating and working with those ports, and we'll consider the
various ways sockets can be leveraged by your application code for efficient, low-level
communication with a target host.

The following topics will be covered in this chapter:

e How the System.Net.Sockets classes serve as the C# interface to your
hardware-level network APIs for communication with external machines

e How to establish a connection to a socket exposed by another machine on your
network

¢ How to program server applications that expose sockets to accept external
connection requests

¢ The nature of communicating over serial ports and exposing serial ports to accept

serial data for processing, and how this can open you up to interesting use cases
for C# and .NET Core
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Technical requirements

This chapter will have a number of samples and driver programs to demonstrate the
concepts discussed, each of which will be available here: https://github.com/
PacktPublishing/Hands-On-Network-Programming-with-CSharp-and-.NET-Core/tree/
master/Chapter 8.

As always, clone the repository locally and begin playing with the source code, or writing
your own along with the topics in the chapter to get comfortable with it.

We'll also start using external tools to test and inspect the behavior of a sample API. For
this, you'll need to download and install either Postman, which can be found here:
https://www.getpostman.com/apps/ ,Or you'll need the Insomnia REST client, which can
be found here: nttps://insomnia.rest/.

The feature set of each of these applications is almost identical, and each will allow you to
send arbitrary requests to a local API through an intuitive UL We'll be using them to test
out our web software going forward, and I'd recommend spending at least a little time
getting familiar with some of the basic functionality of whichever tool you choose to use.
Throughout this chapter I'll be presenting screenshots captured from Postman, but that's
not an endorsement of Postman over Insomnia, and the steps and UI when following along
should be virtually identical in both.

Finally, we'll be using Docker to demonstrate port mapping. While you could manage an
understanding of the specific concepts of this chapter without this tool, I'd strongly
recommend downloading and familiarizing yourself with it. It is core to the modern web
application development experience, and you will only benefit from practicing with it. This
chapter provides one of the best opportunities to do so, and I'd certainly encourage you to
try. Docker can be downloaded here:
https://hub.docker.com/editions/community/docker—ce—-desktop-windows.

Check out the following video to see the code in action: http://bit.ly/2HYmX49

Sockets versus ports

The first thing we should do as we look at these connection mechanisms is to distinguish
between the two. While they are two words identifying a common hardware interaction,
the software or abstract concepts each term identifies are actually mutually exclusive. These
terms aren't as interchangeable as abstract class and interface were in previous chapters, so
when we use each term, it will be for a specific purpose, and you'll need to know what it is.
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Ports — a hardware interface

As we already know, machines are identified by their IP address, or the hostname mapped
to that IP address in the DNS registry. So for any given connection between machines to be
resolved, the initiating host will ultimately need the underlying IP address of the target
host. However, simply specifying the target IP address is insufficient to target a service or
application running on the host. It only gives us the location of the host itself. That's where
ports come in. A port is a two byte unsigned integer that identifies a running process on a
target machine.

Each application on your host that will interact with remote processes must do so on a
designated port. Furthermore, no two applications can listen on the same port. Every time
you want to start up your application and designate it as listening for network requests,
you must assign it to an unsigned port on your machine. If you've ever tried to run
multiple instances of an API project on the 8099 or 8080 port (or any other common
listening port) on your local machine, you'll have seen the startup failure message
indicating that the target port is already in use. That port is occupied, so you'll have to find
a different one to process transactions targeting your new application.

The reason for this should be fairly obvious. If you want to host multiple services on a
single device, you will need some way of distinguishing between incoming requests for
service A and incoming requests for service B. By designating mutually-exclusive listening
ports for each hosted application, you move the burden of proper routing back to the client.
This is perfectly acceptable, since the client already has to keep track of the remote hosts
URI, and if you remember from our earlier chapter, the port number is simply another
component of that API. The alternative would require an application to serve as an
intermediary between your hosted listening applications and all incoming network
requests. Such an application would have to have reasonable knowledge of the state or
expectations of each listening application, then it will parse every incoming request to
identify which expectation the following requests meets. It would be just a whole mess of
state management that would become infeasible incredibly quickly. So instead, we simply
add 2-byte address suffixes to specify the target listening application built directly into our
URI specification.
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Reserved ports

If you know the valid integer values of an unsigned 2-byte int, you already know the full
range of possible exposed ports for a machine. Using this data type, a port specification
could have a value from 0 to 65535. However, just because a port designation falls within
the range for the data-type of a port, it doesn't mean you should attempt to listen on it.
There are in fact a number of port ranges that your user-application code should never
attempt to listen on. These are designated as reserved ports and typically handle very
specific functions.

The first set of ports that are reserved, and thus unavailable for you to register your
application to, are called the well-known ports. These ports fall between 0 and 1023, and
are used for anything from DNS address resolution (the port 53 used to make sure there is
still a machine listening at the address listed in the registry) to FTP data and control ports
(the ports 20 and 21 , respectively). If you've done any sort of network programming prior
to reading this book, you're already likely to be familiar with the fact that the 80 port is the
designated port for incoming HTTP requests and the 443 port is reserved for HTTPS.

The other list of ports that you won't be able to register your application to is what's known
as the dynamic port range. Dynamic ports, or private ports, are used to establish
connections for private or customized services or interactions, or used for temporary
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) interactions
between two hosts. When used in a temporary context to service a brief need from either
machine, the designated port is known as an ephemeral port. These ports cannot be
registered with the Internet Assigned Numbers Authority (IANA) for use in general-
purpose network interactions on a given host. The range for these ports begins at port
number 49152 and ends at 65535.

The IANA is a non-profit organization responsible for managing the
allocation of IP addresses, among other things. As I mentioned in chapter
1, Networks in a Nutshell, a centralized system for standards (and names) is
important to guarantee that every device routes requests for one IP
address to the same device.

With that specification, that appears to leave everything between and including 1024 and
49151 as available for use by your applications. These are what's known as registered
ports. They are available for assignment by user applications or system services as needed,
and won't interfere with default behavior from your hardware or other connected hosts.
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It probably seems like configuring your application to listen within the registered port
range will be sufficient for use. However, that's still not gquite the case. If you've ever run a
JBoss application server (back in the bad old days of bloated application servers like JBoss,
you probably remember accessing your locally-hosted development environment by
accessing http://localhost:8080/my-java-application, or at least that's what I
used to have to do. The reason JBoss always configured that port specifically is because it
actually serves as an alias for the 80 port, the HTTP port. The same is true for 8008. So,
even though the ports fall within the registered port range, there are specific expectations
around their behavior. It really just provides a value within the registered ports range for
users to define default HTTP handlers, since you can't really assign an application directly
to the 80 port.

There are other ports within the registered port range that will likely be occupied by
common services and applications on your local machine. Since .NET Core will stop if it
can't register itself with the designated port, though, you'll notice immediately if you need
to update your configuration with a different port number.

Exposing multiple applications on a single port

If you have been working in web development for a substantial amount of time, you may
already be familiar with wrangling the various configurations and settings in Internet
Information Services (IIS) or the aforementioned JBoss whenever you wanted to deploy a
web application on a Windows host. This is what's called an application server, and it
essentially serves as a shared hosting environment for any network-exposed applications
on your system. When working with IIS, you can register any number of applications to
respond to requests against a single port (80 for HTTP, or 443 for HTTPS) and distinguish
between them with application paths in the URI, or sub-domain specifications.

So if you had two applications named, for instance, TestApp and SampleApp, and you
wanted to host both on a single machine, but expose both over the HTTP port, you would
do so by registering them and deploying them within IIS. In doing so, you would specify
an application directory within IIS, such as /sample and /test. This would tell IIS that
any requests to your hostname over the 80 port, the request paths had as their first
component the /sample directory, should be routed to your SampleApp as though the
request went directly to that application. This essentially moved the problem of mapping
specific ports to mapping specific application directories.
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While IIS still supports deployment of .NET Core applications, it's much less common in
modern web-hosting contexts. IIS specifically is known for its convoluted configuration
schemes and the immense memory and CPU usage footprint it imposes on your host
machine. That's not to mention the fact that IIS is exclusive to Windows operating systems,
making portability of IIS hosted applications non-existent.

More typically, engineers are embracing a more lightweight approach to hosting concerns.
With the cross-platform support of the .NET Core runtime, engineers that have the benefit
of working in greenfield applications are encouraged to pursue more cutting- edge
solutions. Typically, .NET Core developers deploy your application to a remote host by
way of a Docker container. Docker provides an isolated hosting context for your
application, and exposes the ports your application is listening on to the outside world by
mapping the container's internal listening ports to an available port on the machine that's
actually running your Docker container. You can specify the port you'd like your
application to listen on within what's called a Dockerfile, which specifies the build and
deployment steps for a Docker-hosted application. It's not unlike a PowerShell script or
bash script for automating common OS-level operations. Once you specify your desired
port, you can map it to a port on the host machine within the run command like so:

docker run -p 80:5000 -p 443:5001 SampleApp

This command will map from the port 5000 inside our Docker Container to the 80 port on
the host machine, and the 5001 port to the 443 port. So from our hosting context, we'll get a
request against the 80 port, and that will be listened to by our Docker instance, which will
forward the request into our running .NET Core App, which will be listening on the 5000
port:

Host Device

HTTP Request emmmm pot 80 W Docker Container

Listening Docker
Container

Port 5000

. .NET Core App
Listening .NET App
T _

[163 ]



Sockets and Ports Chapter 8

From here, the problem of hosting multiple applications behind a single port that was
solved by IIS or JBoss is often simply a matter of configuration. If your application is cloud-
hosted, you can typically do the same sort of route-prefix mapping that was provided by
IIS. In other contexts, you can host your suite of applications behind what's called a
reverse-proxy.

We'll take the time to look at, and in some cases even build, each of these approaches in
later chapters. For now though, it is sufficient that you understand the nature of ports as a
mechanism by which external requests can access specific services or applications hosted
on a target device. When exposing your application to network resources, the specific port
over which you do so is typically a matter of simple configuration and convention; for now,
we'll take a look at how to interact with those specific ports in our software through
sockets.

Sockets - a software interface to a port

So now that we understand how ports are used to route requests to specific processes on a
host device, how do we set up our applications to actually accept requests over those ports?
This is where a socket comes in.

A socket provides a software interface to a specific port on a specific remote host. It's an
open connection stream between your application and any remote application exposed at
the server and port address you specify. Once this connection is established, you're free to
write (or read) any data to the open stream of that connection that you need. Sockets are a
versatile concept, implemented in almost any server-side programming language, and
.NET Core is no different.

One key distinction between a socket and its underlying port is that the port represents
access to a single process on a remote device. Therefore, a port can only be registered for a
single application. Sockets, however, represent active connections to that single resource.
Therefore, there can be as many active sockets connected to a resource as can be supported
by the network and the remote host:

Socket Connection

Remote Host

Socket Connection _l
ng Port ]—
Server Application

Listeni

-
Socket Connection —-'

Socket Connection
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So, a port represents a single process running on a remote machine, while a socket
represents a connection to a process on a remote machine, designated by a port number.
When we run our applications and intend to expose them to remote resources, we must
register them to a specific port. If we want to connect to our application to an exposed port,
we do so with a socket. A port is merely a configuration concern, whereas leveraging
sockets is an implementation detail, so let's take a look now at how to instantiate and
leverage sockets for network communication.

While I brush aside port registration as merely a configuration concern,
that doesn't mean it's not your responsibility to understand and configure.
Full-stack network engineering requires you to understand not only how
to write your applications, but how to properly configure and deploy
them to your various preproduction and production environments so that
others can use them. We'll take a look at application deployment in the
next chapter.

Leveraging sockets in C#

Sockets in C# are an extremely versatile and flexible concept. As their definition indicates,
they only expose a connection to a remote resource, and how that connection is used is
almost entirely up to the developer who establishes it. An instance of the Socket class in
C# provides synchronous and asynchronous data transfer of packets of arbitrary collections
of bytes. The contents, structure, and even protocol used to transmit those packets is up to
you (though I do strongly recommend that you always leverage asynchronous
communication over synchronous communication). So, let's look at how we'll use it.

The socket specification

The first thing to know about a socket is how to initialize it. The most basic information
necessary to initialize a socket is understanding what kind of socket we'll be working with,
and what protocol it will be operating on.
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The first aspect of that specification, the socket type, tells our code how we'll be interacting
with the connection once it's established. This is defined in a SocketType array, located in
the System.Net . Sockets namespace, which defines the full set of valid interaction
mechanisms. The values of enum include Dgram, which indicates that we'll be working
directly with unordered, connectionless datagrams between our software and the
connected host; the Segpacket type, which operates with ordered, boundary-protected
bytes transmitted back and forth over a stream; and the st ream type, which provides the
asynchronous flow of bytes over a St ream instance that we've become familiar with so far.
There are a handful of other SocketType values, and you can find them and descriptions
of what they mean, and how they're used on the Microsoft documentation page. For this
chapter, we'll just be working with a St ream type, since that most closely resembles the
Stream classes from the System. I0 namespace that we're already so familiar with.

A socket can connect and communicate over a wide array of protocols from the
transmission layer of the OSI network stack. This means that when you're constructing a
socket, you'll need to specify specifically what protocol you'll be using to communicate
once the connection is established. This informs the remote host of how it should be parsing
the primitive datagrams or packets it will be receiving once the connection is established
(provided the host supports the requested protocol in the first place). To define the protocol
your Socket instance will be using, you'll be looking to values of the ProtocolType enum
found in the System.Net . Sockets namespace. There are a number of defined values that
correspond to well-established transmission protocols, including IPv4, IPv6, TCP, UDP,
IDP, Raw, and others. For the purposes of our code, we'll be connecting to a local
application listening for HTTP requests, which is handled by the TCP protocol, so we'll
specify the TCP protocol when we initialize Socket.

And those two pieces of information are the minimum details we're required to specify for
a socket, the public constructor signature being as follows:

public Socket (System.Net.Sockets.SocketType socketType,
System.Net.Sockets.ProtocolType protocolType);

There is also an option to specify what's known as the AddressFamily of your connection.
This can actually be derived from your connection endpoint and provided to the
constructor for your socket. Typically, for an HTTP resource transmitted over TCP, your
specification will be AddressFamily.Osi, indicating that you're using OSI addressing
schemes. So now that we know how to initialize a socket, let's look at what it takes to
connect a socket to a remote endpoint.
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Establishing a socket connection

The first thing we'll want to do is set up a simple listening server to which we can connect
our socket driver program. To do this, we'll spin up a simple, WebAPI project and run it.
Start by opening up Command Prompt and navigating to the directory where you want to
create your sample API. Next, create a new WebAPI with the following command from the
.NET Core CLI:

dotnet new webapi —-n SampleApp

This will spin up a new application from scratch that will be ready-made to receive and
respond to HTTP and HTTPS requests made to your local machine and a pre-configured
port.

For the purposes of this demonstration, we'll actually want to disable some default
functionality in this application. The template for a WebAPI will redirect all calls made to
the HTTP port to the HTTPS port instead. We want to prevent this from happening so the
HTTP port, can service requests directly. You'll see why later, but for now you can disable
this functionality by opening up your SampleApp project and navigating to the

Startup. cs file. Within this file, you'll find a method with the following signature:

public void Configure (IApplicationBuilder app, IHostingEnvironment env)
At the bottom of this method, delete or comment out the line of code that reads:
app.UseHttpsRedirection () ;

Once that's done, you can close that folder and ignore its contents for the rest of this sample
project. Now, let's run it and test it, first by navigating into the folder that was just created,
and then calling the CLI dotnet run command. Once you've done that, you should see the
following output from your running application:

Administrator: Command Prompt - dotnet run

* .NET\DataProtectior y as key repository and

mpleApp

it down.
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You can take your time investigating the project template created by the
dotnet new command if you're curious, but we'll be covering WebAPI
applications, among many others, in much greater detail in the next
chapter. For now, it's just important that we have an application that's
listening for requests and returning responses. You can simply take my
word on its expected functionality going forward, if you'd rather defer
learning that until later.

The last three lines of your console output give you some valuable information; they tell
you the exact host and port through which your application is exposed to outside
connections. As you can see, the default from new WebAPIs created by .NET is going to be
port 5000 for incoming HTTP requests, and 5001 for HTTPS.

To confirm that the application is responding to requests, open up Postman (or Insomniac,
if that was your REST client of choice), and send a GET request to
http://localhost:5000/api/values. You should see the following response in your
output:

2% MyWorkspace ¥ &, Invite

No Environment
hitp:/localhost5000/apifvalues

Collections .
http://localhost:5000/api/values

GET hitp:/flocalhost:5000/apilvalues
populate_measurements

Headers

DESCRIPTION

We can see a valid response with two strings in a JSON array. Once you have this, we're
ready to connect with Socket.

Create a new console application in the parent directory of SampleApp, using the dotnet
new console -n SocketTest command in the CLI This will be our driver application
for working with the Socket class. The objective of this sample project is to connect to our
SampleApp, which is listening on the 5000 port, submit a request to the /api/values
endpoint, and then parse and print the response.
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So, the first thing we'll have to do is define an IPEndPoint instance for Socket to connect
to. IPEndPoint is a specific implementation of the EndPoint abstract class required by the
Socket.ConnectAsync () method we'll be using. It defines the specific location of the
remote resource we intend to connect to, and exposes metadata about that endpoint. It also
provides the AddressFamily value for our Socket constructor signature. So let's first
define that with the host address and port, and use it to construct socket.

To do so, we need an IPAddress instance, which we could build ourselves based on the 4
bytes stored in our localhost address of 127.0.0. 1, or we could simply request it explicitly
from our DNS using the Dns.GetHostEntry () method from chapter 2, DNS and Resource
Location. You can do as you please when following along, but since it involves less math, I'll
be using the DNS. However, since AddressList returned by a host entry can have an
arbitrarily large list of IP Addresses to which the name could resolve, we'll want to connect
to the first address that allows us to, and proceed from there. This means looping through
AddressList until a connection is established. So the initial setup to attempt to establish
our connection will look like this:

static async Task Main(string[] args) {
string server = "localhost";
int port = 5000;
string path = "/api/values";
Socket socket = null;
IPEndPoint endpoint = null;
var host = Dns.GetHostEntry (server);

foreach (var address in host.AddressList) {

socket = new Socket (address.AddressFamily, SocketType.Stream,
ProtocolType.Tcp) ;
endpoint = new IPEndPoint (address, port);

await socket.ConnectAsync (endpoint) ;
if (socket.Connected) {
break;

}
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One thing that might jump out to you about this code is that we're using the async version
of the Main () method. This is a feature that was only added in version 7.2 of C#, and if
your project isn't configured to target at least that version, you'll encounter build errors. To
resolve them, simply modify the PropertyGroup tag of your . csproj file to include the
LangVersion tag with its version set to 1atest, as seen here:

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp2.2</TargetFramework>
<LangVersion>latest</LangVersion>
</PropertyGroup>

Once you've made this change, your source code will always target the latest minor version
of C#. With that in place, you should have no problems running your Main () method
asynchronously.

If you want to make sure things are behaving as expected, you can go ahead and run your
application, placing a breakpoint on the break; operator, and you should see that the
breakpoint is hit, and so a connection was established between your two applications.
You'll notice, though, that simply establishing the connection didn't trigger any log
messages in your running WebAPI application. This is because, while a connection was
established, no request was made of the resource to which we connected. Requests must be
sent as a well-formed message over an established connection. So now, let's build our
request and send it over the connected socket.

Sending requests is as simple as calling the SendAsync () method on our socket with a byte
array representing our data buffer to be sent over the connection. So for an HTTP request,
we have to build our message from scratch. That means specifying the method or HTTP
verb we'll be using, the specific URL of our requested resource, the size of any content we
intend to send over, and any request headers we need to attach. I'm sure by now you can
already see how tedious it is to work directly with sockets. For such a simple request,
however, we can easily construct our message with a simple utility function:

private static string GetRequestMessage (string server, int port, string
path) {

var message = S$"GET {path} HTTP/1.1\r\n";

message += S$"Host: {server}:{port}\r\n";

message += "cache-control: no-cache\r\n";

message += "\r\n";

return message;
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Then using this, we can build our byte array just as we did when writing to streams. So
back in our main method, we'll get our request message, convert it to a byte array, and then
send the request to our remote host (SampleApp, running at http://localhost:5000).
Add the following lines into the main method after the connection has been established by
the Socket instance:

var message = GetRequestMessage (server, port, path);
var messageBytes = Encoding.ASCII.GetBytes (message);
var segment = new ArraySegment<byte> (messageBytes);

await socket.SendAsync (segment, SocketFlags.None);

If you add this code and then run your application, you'll know you've succeeded when
you begin to see logging information in the console displayed by your WebAPI project, as
seen here:

Select Administrator: Command Prompt - dotnet run

mpledpp)”

And just like that, you've managed to send your first transport-level message over a socket
connection.
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Now, to confirm that we're receiving the responses from the server properly, we'll try to
write to our SocketTest application's console the same message that we saw earlier in the
responses from our Postman (or Insomnia) requests. In order to do that, we'll have to use
the ReceiveAsync () method to accept whatever byte arrays were returned by the server
in response to our request.

Just like with the instances of the st ream class we used in earlier chapters, the
ReceiveAsync () method accepts a byte array into which it will write. For this, we'll
provide it with an empty array, 512 bytes long. Once we define that, we can receive the
response from the remote resource, and simply write it to our console, one line at a time.
Just add the following lines of code to the bottom of your Main () method:

var receiveSeg = new ArraySegment<byte> (new byte[512], 0, 512);

await socket.ReceiveAsync (receiveSeg, SocketFlags.None);

string receivedMessage = Encoding.ASCII.GetString(receiveSeq);

foreach(var line in receivedMessage.Split ("\r\n")) {
Console.WritelLine (line);

}

Thread.Sleep (10000) ;

When you run the application now, you should see the message headers, along with the
body containing the string array we saw earlier in Postman, printed to your console:

W C\Program Files\dotnet\dotnet.exe

And just like that, you've successfully executed an HTTP request over TCP from scratch.
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The last order of business is to disconnect from your host, and dispose of your socket. Let
the last two lines of your application Main () method read as follows:

socket .Disconnect (false);
socket .Dispose();

}

This is a major courtesy on your part. Even though a port can handle multiple connections
simultaneously, there is an upper limit to how many connection requests it can service at a
given point in time. Disconnecting your own Socket frees up resources on the remote host
for others to take advantage of. While there is a maximum time limit for an inactive
connection, after which the remote host will forcibly cancel the connection, you shouldn't
ever let an inactive connection remain alive for that long. If you're done with the host,
disconnect from the host.

Parsing responses

As I'm sure you already figured out, the simple string of ASCII characters that encapsulated
the entirety of a response from your remote host is not exactly a computer-friendly format.
Receiving a response is one thing, but leveraging its contents in your application is a whole
different kinds of beast. Doing this kind of work from scratch every time you needed to
access something on a different machine would slow the software development life cycle
down to a crawl.

This is why .NET Core provides so many functional flexible wrapper and utility classes for
the specific protocols and interactions you're most likely to deal with day to day. So, while I
think it's important that you understand exactly how to establish and then leverage a direct
connection from your application to any other application running on any other machine
on your network, it's also not exactly so common that you'll find yourself needing to do so.
As we move into the next few chapters, we'll see how the templates and libraries provided
by .NET Core (and ASP.NET Core, in the case of HTTP) do all the heavy lifting so that we
don't have to. If you're curious to learn more about low-level network interactions in C#,
there's an entire ocean of knowledge and use cases that I simply didn't have time to cover
in this chapter, and I would encourage you to spend some time digging in. If this content
seemed a bit boring or tedious, though, don't worry. It's about to get a lot more fun.
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Summary

In this chapter, we began to leverage and finally build from the foundation we've laid in
previous chapters, opening up our applications to the full spectrum of network
functionality available in C#. We learned that any application we write that we expect to be
used by resources on our network must first be exposed to those resources through a port
on our host machine. We looked at how ports are specified and registered, and learned
about some restrictions that exist on how we can register our own, looking at the reason for,
and the range, of well-known port addresses and the range of dynamic or ephemeral ports
to which we cannot (or at least should not) register our applications.

Once we cemented that concept, we looked at the other side of the connection, and started
working with sockets. We learned that sockets are a generic in-code representation of an
active connection to an open port on a remote machine. We saw how the simplicity of that
concept opened up a wide array of applications for socket-based network code and the low-
level control it gives over packet-level communication.

With the concepts we've covered in this book so far, you have the resources necessary to
write any network software you could ever need. Understanding the nature of
asynchronous streams, packet construction and parsing, and socket connections to remote
resources would be sufficient to implement any piece of networking functionality possible.
It would be far from ideal, though, using such primitive building blocks. That's why the
.NET Standard provides so many useful templates, patterns, and libraries for the myriad of
applications you might have to write, and that's what we'll start looking at in the next
chapter, starting with HTTP-based applications.

Questions

What is the definition of a port?

What is the range of well-known ports?

What is the dynamic port range?

What is one of the primary functions of an application server?

What is the definition of a socket?

What are some of the primary distinctions between a socket and a port?

Nk N

Which construct provides the range of protocols over which a socket can
connect?

8. What are some of the protocols that sockets support?
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Further reading

For further reading on this subject, many of the books I've recommended in previous
chapters still apply.

For additional insight, though, you can look at ASP.NET Core 1.0 High Performance, James
Singleton, Packt Publishing. While the subject of that book is specifically application-layer
network programming, he addresses the performance benefits of managing direct
connection I/O, and the subject may be of interest. You can find it through Packt Publishing,
here: https://www.packtpub.com/application-development/aspnet—-core-10-high-

performance.
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HTTP in .NET

In each of the previous chapters, we explored the fundamental building blocks with which
network software is built. In this chapter, we'll use those building blocks to construct an
application that leverages the most common network protocol, Hypertext Transfer
Protocol (HTTP). We'll re-examine where in the Open Systems Interconnection (OSI)
network stack HTTP falls, and why it is categorized as such. We'll more deeply consider the
conventions around HTTP requests and responses, and spend some time exploring request,
response, and content headers. We'll demonstrate how to use standard headers for
specifying the content you want from an external HTTP resource, and how custom headers
can be used to toggle specific features and functions of your application. Lastly, we'll
explore how to serve content over the protocol to service HTTP requests made to your
application.

The following topics will be covered in this chapter:

¢ The background for the HTTP protocol, and the strengths and limitations of its
specification

e The HTTP request methods, including how to generate, and respond to, those
requests out of the box with C#

o How to construct Ht tpRequestMessage, or use HttpClient to send requests,
and the various classes available for responding to requests with a valid HTTP
response

e How HTTPS is implemented in C#

e New features supported by HTTP/2 and how to leverage those features in .NET
Core
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Technical requirements

In this chapter, we'll be using sample applications available in the GitHub repository for the
book

here: https://github.com/PacktPublishing/Hands-On-Network-Programming-with-CShar
p-and-.NET-Core/tree/master/Chapter 9.

We'll also be using each of the tools we leveraged in chapter 8, Sockets and Ports. So, if you
didn't take the time to install and start working with them before, I suggest you do so now.
Specifically, I recommend installing Postman from

here: https://www.getpostman.com/apps.

Alternatively, you can use the Insomnia REST client, which can be found here: https://

insomnia.rest/.

And, while it's not going to be featured heavily in this chapter, since deployment options
will fall outside the scope of this chapter, I would encourage you to use this opportunity to
begin working with Docker. I'll point out opportunities to modify and extend your
Dockerfile and deploy your changes locally.

Check out the following video to see the code in action: http://bit.ly/2HY5WaA

Cracking open HTTP

In chapter 3, Communication Protocols, we had a section, The application layer, where we
looked at why certain protocols fell at that layer. With a little bit more exposure to the nitty-
gritty details of network transactions under our belt, I'm hoping it will be easier to
distinguish between the transport layer and the application layer. With HTTP, we have the
best opportunity to explore that distinction. As a protocol, it has by far the broadest, and
most robust, support from out-of-the-box C# libraries. That depth of in-language resources
will give us a sharp lens through which to view the distinction between the application
layer and its underlying transport layer. So, before we learn how to use HTTP, let's learn
just exactly what it is.
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The nature of HTTP

When we worked with low-level streams in chapter 8, Ports and Sockets, we saw the
responsibility that falls on a developer when you have to work directly with byte streams,
serializing and deserializing data, and manually parsing your input headers. There's a
mountain of boilerplate code just to get a simple string from one machine to another.
Obviously, writing the same boilerplate code every time you need to make an external
resource request is tedious and error-prone. This is where protocols come in.

We discussed the topic briefly in chapter 3, Communication Protocols, where we looked at
the protocols defined for each layer in the network stack. However, in the intervening
chapters, we've established a better understanding of how different protocols are separated
across the OSI stack. So, hopefully, some of the distinctions that may have been hazy back
in chapter 3, Communication Protocols, will be a bit more clear now.

When writing networked software in .NET, there are two primary tiers in the OSI stack on
which we'll be working. The first, and most obvious, is the application layer. That's where
HTTP lives, where FTP and SMTP live, and where any web application software that you
likely have interacted with in the past would have lived. The other layer that's commonly
written for in .NET, though, is the transport layer. Handling TCP and UDP calls directly
within a listening server is easily done (and we'll see how in later chapters) using some of
the versatile and easy-to-use utility classes you've likely come to expect from .NET Core.
But what's the difference between those two layers, from the perspective of the
programmer? When we're writing HTTP software, we're still very much concerned with
the format and structure of our serialized data. So, why is that concern different when
writing HTTP than when handling streams directly with a TCP client?

The application layer and the transport layer

The most important thing to internalize when you're trying to understand this distinction is
the smallest piece of data with which each layer is concerned. The application layer is
predominantly concerned with application objects. So, as long as the language you're
working with provides a fully-realized abstraction of the rest of the network stack (as is the
case with C#), you can write code that communicates with external resources exclusively
through business and application models. You'll never have to worry about composing
those models from their serialized datagrams, or wondering about the character encoding,
or the endianness of integers.
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Instead, you'll be speaking and thinking in terms of the end result of the network
transaction—for example, "I'm requesting a database record,” instead of "I'm requesting a series
of bytes for the database record.” If you find yourself falling into the anti-pattern of making
your application layer software over-generalized and abstract, you'll quickly find that it
doesn't provide any meaningful value. Application layer software should describe and rely
on at least some concrete business models; otherwise, it's just an unnecessary additional
layer in between the transport layer and the segment of your code that does use those
business models.

Meanwhile, on the other side of this conceptual coin, we have the transport layer. And as
you've likely figured out, software written at this level needs no business context to be
implemented properly and provide its expected value. In fact, any representation of non-
primitive Objects beyond simple generics, such as Serialize<T> (), would render your
transport layer software pretty much useless outside the context of a specific business
application. Any architecture for transport-layered software built around concrete business
objects would be like a house made out of toothpicks and held together with bubblegum:
unstable and short-lived.

I'highlight the distinction between application- and transport-layer software now to make
the content of the rest of this chapter more intuitive. Going forward, some of the classes
we'll be working with and thinking about in .NET, and some of the advice I'll be giving you
around this, will rely on your understanding of this distinction. Moreover, though, it's good
to understand how HTTP came to be, and how it transformed into what it is today.

The history of HTTP

AsImentioned in chapter 3, Communication Protocols, while, today, HTTP is the de-facto
protocol of web-based software, its original design and intent is actually much simpler and
more limited. Even its namesake, hypertext, has grown well beyond its original conception.

First described in 1965, hypertext was defined as a specification for rendering text on a
computer, or other electronic device, with references to other hypertext documents, which
could be immediately accessed through a system of references, known as hyperlinks. At its
most basic, this describes little more than a primitive web page. In fact, you've undoubtedly
already realized the link between hypertext as a concept and the hypertext markup
language, or HTML, file format, which is used to render web pages. These basic
specifications served as the precursor to the modern internet.

Like much of our modern world, the origins for hypertext, HTML, and
HTTP can be traced back to an influential work of science fiction! A 1941
short story titled The Garden of Forking Paths, by Jorge Luis Borges, is often
credited with being the inspiration for the first definition of hypertext.
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Decades later, in 1989, researchers at the European Organization for Nuclear Research
(CERN) began to formalize their efforts to define the standards for a global computer
network, now known as the World Wide Web (WWW). This work included defining a
standard for document representation, as well as a protocol for transmitting those
documents between machines. In 1991, the first ever formal definition for HTTP was
drafted, and dubbed v0.9.

This original definition was extremely limited in its scope, intended only to define the
process of requesting hypertext pages from a given server; the specification defined a single
method, which is GET. As the early internet began to reach consumers, however, the needs
of the wider audience forced the evolution of the standards for the network. By the time
HTTP v1.0 was formalized and broadly recognized in 1996, the standard grew to include
message headers, security, and a wider array of operations.

Still, though, it was almost exclusively used to transmit web pages from servers to clients.
Each request had to negotiate its own connection with the server, and once that request was
serviced, the connection was closed. This kind of behavior makes sense if you're only
requesting a static web page, but what if you wanted to incorporate user interaction? That
connection negotiation comes at a cost.

The engineers at CERN recognized this, and in only one year, in 1997, they released an
updated HTTP v1.1 (often written as HTTP/1.1) specification that provided an even richer
feature set. This included headers to specify response-caching behavior, persistent
connections, authentication and authorization, message syntax, and routing or redirection
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