
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224755677

Hardware Implementation Analysis of the MD5 Hash Algorithm

Conference Paper · February 2005

DOI: 10.1109/HICSS.2005.291 · Source: IEEE Xplore

CITATIONS

64
READS

2,806

3 authors:

Kimmo Järvinen

Aalto University

65 PUBLICATIONS 1,480 CITATIONS

SEE PROFILE

Matti Tommiska

Xiphera Ltd

20 PUBLICATIONS 563 CITATIONS

SEE PROFILE

Jorma Skyttä

Aalto University

39 PUBLICATIONS 622 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jorma Skyttä on 19 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224755677_Hardware_Implementation_Analysis_of_the_MD5_Hash_Algorithm?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224755677_Hardware_Implementation_Analysis_of_the_MD5_Hash_Algorithm?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kimmo-Jaervinen?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kimmo-Jaervinen?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aalto_University?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kimmo-Jaervinen?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matti-Tommiska?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matti-Tommiska?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matti-Tommiska?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorma-Skyttae?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorma-Skyttae?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aalto_University?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorma-Skyttae?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorma-Skyttae?enrichId=rgreq-94d81a67b9c7680f00951ae1ed636396-XXX&enrichSource=Y292ZXJQYWdlOzIyNDc1NTY3NztBUzoxMDI3NjEzNzA3NTA5OTZAMTQwMTUxMTYyOTgwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Hardware Implementation Analysis of the MD5 Hash Algorithm

Kimmo Järvinen, Matti Tommiska and Jorma Skyttä
Helsinki University of Technology

Signal Processing Laboratory
Otakaari 5 A, FIN-02150, Finland

{kimmo.jarvinen}{matti.tommiska}{jorma.skytta}@hut.fi

Abstract

Hardware implementation aspects of the MD5 hash al-
gorithm are discussed in this paper. A general architecture
for MD5 is proposed and several implementations are pre-
sented. An extensive study of effects of pipelining on de-
lay, area requirements and throughput is performed, and
finally certain architectures are recommended and com-
pared to other published MD5 designs. The designs were
implemented on a Xilinx Virtex-II XC2V4000-6 FPGA and
a throughput of 586 Mbps was achieved with logic require-
ments of only 647 slices and 2 BlockRAMs. Methods to
increase the throughput to gigabit-level were also studied
and an implementation of parallel MD5 blocks achieving a
throughput of over 5.8 Gbps was introduced. At least to the
authors’ knowledge, MD5 designs presented in this paper
are the fastest published FPGA-based architectures at the
time of writing.

1. Introduction

Hash algorithms, also called as message digest algo-
rithms, are algorithms which generate a unique message
digest for an arbitrary message. The digest can be consid-
ered as a fingerprint of the message and it must have the
following properties: first, the hash must be easy to com-
pute. Second, it must be very hard to compute the mes-
sage from the digest and, third, it must be hard to find an-
other message which has the same message digest as the
first message [13].

Hash algorithms are used widely in cryptographic proto-
cols and Internet communication in general. Several widely
used hash algorithms exist. One of the most famous is
the MD5 message digest algorithm developed by Ronald
Rivest [12]. Other common algorithms are SHA-1 and its
variants [7] and RIPEMD-160 [4], for example.

Commonly, hardware acceleration for hash algorithms
is not required, because they are not especially compu-
tationally demanding. However in certain applications,

chains of thousands of hash algorithm rounds are calculated
and hardware acceleration may be required. One of these
applications is a micropayment initialization currently un-
der development in the GO-SEC project at Helsinki Univer-
sity of Technology (see go.cs.hut.fi) requiring cal-
culation of about 10,000 consecutive MD5 rounds. At the
moment, the initialization is performed calculating 10,000
consecutive rounds, but this value is only preliminary and
it may change as the project proceeds.

In the GO-SEC micropayment initialization, a chain of
10,000 MD5 rounds is calculated. The input for the chain is
a 160-bit key which is used as the input message for the first
round. The output message digest of the first round is used
as the input message of the second round, etc. When all
10,000 rounds have been calculated, the resulted message
digest values are used in reversed order. Because of the
one-way nature of the MD5 hash algorithm, the previous
message digest cannot be derived from the next one.

In hardware acceleration of chains of hash algorithm
rounds, the time required for a single algorithm calcula-
tion is more important than throughput. Thus in this paper,
concentration is on minimization of the delay of an imple-
mentation rather than on throughput maximization. How-
ever, two methods to increase the throughput of an MD5
accelerator to Gbps-level are discussed as well.

Only few publications have been published concern-
ing FPGA acceleration of the MD5 algorithm. Dominikus
achieved a throughput of 146 Mbps on a Xilinx Virtex 300E
FPGA in [5]. Throughputs of 165 and 354 Mbps on Virtex
1000 were achieved with iterative and pipelined designs by
Deepakumara et al. in [2]. Implementation by Diez et al.
achieved a throughput of 467 Mbps on a Xilinx Virtex-II
XC2V3000 FPGA [3].

Field Programmable Gate Arrays (FPGAs) manufac-
tured by Xilinx were chosen as target devices for the ar-
chitectures presented in this paper. Xilinx Virtex-II device
family was chosen, because it provides very fast perfor-
mance and large logic resources. Virtex-II XC2V4000-6
FPGA was used for the implementations and it includes
logic resources of 23,040 slices. A basic element of a slice

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

is a LUT (Look-Up Table) which can implement any 4-to-
1-bit operation. A slice includes 2 LUTs, 2 flip-flops and
some additional logic. [14]

Designs presented in this paper are called SIG-MD5 de-
signs, where SIG is an acronym for the Signal Processing
Laboratory at Helsinki University of Technology, where the
research work was performed.

The contributions of the paper are the following: a thor-
ough study of the effects of pipelining on delay, area re-
quirements and throughput of an MD5 design is performed.
A general architecture for MD5 hardware implementations
is suggested and analyzed. Two methods to increase the
throughput of an MD5 implementation to Gbps-level are
studied. At least to the authors’ knowledge, the fastest and
smallest1 open-literature FPGA-based MD5 implementa-
tions are presented.

The paper is organized as follows: a description of the
MD5 algorithm is presented in Section 2. The proposed
architecture is introduced and analyzed in Section 3 and
results of the implementations are presented in Section 4.
The results are compared to other published implementa-
tions in Section 5 and conclusions are made in Section 6.

2. The MD5 Algorithm

MD5 is a hash algorithm introduced in 1992 by profes-
sor Ronald Rivest [12]. It is an enhanced version of its pre-
decessor MD4 [11]. MD5 is widely used in several public-
key cryptographic algorithms and Internet communication
in general. MD5 calculates a 128-bit digest for an arbitrary
b-bit message and it consists of the following steps [12]:

1. Appending Padding Bits
The b-bit message is padded so that a single 1-bit is
added into the end of the message. Then, 0-bits are
added until the length of the message is congruent to
448, modulo 512.

2. Appending Length
A 64-bit representation of b is appended to the result
of the padding. Thus, the resulted message is a multi-
ple of 512 bits. This message is denoted here as M.

3. Buffer Initialization
Let A, B, C and D be 32-bit registers. These registers
are used in derivation of the 128-bit message digest.
At the beginning, they are initialized as follows:

A = x′′67452301′′
B = x′′e f cdab89′′
C = x′′98badc f e′′
D = x′′10325476′′

(1)

1at the time of writing the paper

4. Processing of the Message
The heart of MD5 is an algorithm which is used for
the processing of the message. The message M is di-
vided into 512-bit blocks which are processed sepa-
rately. Let Xj denote the jth block of M. First, X0, i.e.
the lowest 512-bits of M, is processed with the algo-
rithm, then X1 etc., until the entire M is processed.

The algorithm consists of four rounds, each of which
comprise 16 steps. Hence, 64 steps are performed in
the algorithm. Let i be the index of a step. Let Xj[k]
denote the kth 32-bit word of Xj and let T [i] be a table
of 64 32-bit constants. Let ≪ s denote circular shift
left by s bits. Values of k, s and T [i] depend on i and
they are presented in Table 1.

The algorithm is performed as follows: first, values of
A, B, C and D are stored into temporary variables AA,
BB, CC and DD. Then, the following operations are
performed for i = 0 to 63:

A = B+((A+Func(B,C,D)+Xj[k]+T [i]) ≪ s)
A ← D, B ← A, C ← B, D ←C (2)

where additions are additions of words, i.e. addi-
tions modulo-232. Func(X ,Y,Z) is different for every
round. Function F(X ,Y,Z) is used for the first round
(0 ≤ i ≤ 15), G(X ,Y,Z) for the second (16 ≤ i ≤ 31),
H(X ,Y,Z) for the third (32 ≤ i ≤ 47) and I(X ,Y,Z)
for the final round (48 ≤ i ≤ 63). The functions are
defined as follows:

F(X ,Y,Z) = (X ∧Y)∨ (¬X ∧Z)
G(X ,Y,Z) = (X ∧Z)∨ (Y ∧¬Z)
H(X ,Y,Z) = X ⊕ Y ⊕ Z
I(X ,Y,Z) = Y ⊕ (X ∨¬Z)

(3)

where ∨ is a bitwise or-operation, ¬ is a bitwise com-
plement, ⊕ is a bitwise exclusive-or-operation (xor)
and ∧ is a bitwise and-operation.

Finally, the values of the temporary variables are
added to the values obtained from the algorithm, i.e

A = A+AA
B = B+BB
C = C +CC
D = D+DD.

(4)

5. Output
When all Xj have been processed with the algorithm,
the message digest of M is in A, B, C, and D. The
low-order byte of A is the first byte of the digest and
the high-order byte of D is its last byte.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

Table 1. Values of k, s and T [i]

i k s T [i] i k s T [i] i k s T [i] i k s T [i]
0 0 7 d76aa478 1 1 12 e8c7b756 2 2 17 242070db 3 3 22 c1bdceee
4 4 7 f57c0faf 5 5 12 4787c62a 6 6 17 a8304613 7 7 22 fd469501
8 8 7 698098d8 9 9 12 8b44f7af 10 10 17 ffff5bb1 11 11 22 895cd7be
12 12 7 6b901122 13 13 12 fd987193 14 14 17 a679438e 15 15 22 49b40821
16 1 5 f61e2562 17 6 9 c040b340 18 11 14 265e5a51 19 0 20 e9b6c7aa
20 5 5 d62f105d 21 10 9 02441453 22 15 14 d8a1e681 23 4 20 e7d3fbc8
24 9 5 21e1cde6 25 14 9 c33707d6 26 3 14 f4d50d87 27 8 20 455a14ed
28 13 5 a9e3e905 29 2 9 fcefa3f8 30 7 14 676f02d9 31 12 20 8d2a4c8a
32 5 4 fffa3942 33 8 11 8771f681 34 11 16 6d9d6122 35 14 23 fde5380c
36 1 4 a4beea44 37 4 11 4bdecfa9 38 7 16 f6bb4b60 39 10 23 bebfbc70
40 13 4 289b7ec6 41 0 11 eaa127fa 42 3 16 d4ef3085 43 6 23 04881d05
44 9 4 d9d4d039 45 12 11 e6db99e5 46 15 16 1fa27cf8 47 2 23 c4ac5665
48 0 6 f4292244 49 7 10 432aff97 50 14 15 ab9423a7 51 5 21 fc93a039
52 12 6 655b59c3 53 3 10 8f0ccc92 54 10 15 ffeff47d 55 1 21 85845dd1
56 8 6 6fa87e4f 57 15 10 fe2ce6e0 58 6 15 a3014314 59 13 21 4e0811a1
60 4 6 f7537e82 61 11 10 bd3af235 62 2 15 2ad7d2bb 63 9 21 eb86d391

3. An Architecture for MD5

The proposed architecture for MD5 is presented in Fig-
ure 1. The structure of the MD5 algorithm allows both iter-
ative and pipelined implementations, because the MD5 step
of Equation (2) is performed 64 times. With small modi-
fications, the suggested architecture can be used for both
iterative and pipelined designs. Pipelining means here that
several of the MD5 steps are unrolled and then pipelined
by adding registers between them.

Because of the sequential nature of the MD5 algorithm,
only limited number of parallelism can be exploited. 64
MD5 steps of Equation (2) must be performed successively,
because the output of the last step is used as an input for
the next one. However, there are operations inside an MD5
step which can be performed in parallel.

The architecture of Figure 1 implements steps 3 – 5 of
the MD5 algorithm presented in Section 2, i.e., the padding
and length appending are left outside the design, because
they are easy and fast to perform, and hence hardware ac-
celeration is not needed for those steps.

The inputs of the architecture are the following: the
message is given for the design with data_in, address
and load signals. Width of data_in can be chosen
freely, e.g. 32 bits were used for implementations presented
later in Section 4. Address determines which bits of the
512-bit Xj are loaded. The data of data_in is loaded into
the design when load is high. Processing of the algorithm
is started with either start_new or continue signals.
Start_new is used when a derivation of a new message
digest is started, i.e. when X0 is processed, and continue
is used when a processing of a new Xj, for which j ≥ 1, is

started. For example, if a 1024-bit message is processed,
start_new is used for the first 512 bits, and when the
second 512 bits are processed, continue is utilized.

The counter in the architecture counts from 0 to 63 and
it is reset to zero when a new derivation begins. When a
derivation of a new message digest is started, A, B, C and D
registers are initialized to the values given in Equation (1).
Otherwise, values from the previous derivation are used.
The second multiplexer is used in iterative architectures,
where the same MD5_step block is utilized several times
in a processing of the algorithm. The adder (actually four
32-bit adders) performs the additions of Equation (4). The
6-input AND-gate determines when the calculation of the
algorithm is finished.

The MD5_step block calculates Equation (2). This
block can be implemented also in a pipelined fashion, and
then several MD5 steps are calculated in the block. The
structure of MD5_step is discussed in Section 3.1. The in-
puts T and X of the block are 32 bits wide in an iterative
design and in pipelined designs they are 32 · p bits wide,
where p is the number of pipelined stages. Analysis of the
effects of pipelining is presented in Section 3.2.

TXs_register is a storage element for the message Xj

and for constants T and s. It can be implemented using
simple registers or internal memory of the target device,
i.e. BlockRAMs in Xilinx devices. Effects of pipelining on
this block are discussed in Section 3.2.

3.1. General MD5 Step

The heart of the architecture is the MD5 step block
which calculates Equation (2). A block diagram of the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

init_value

DABC_in
round
T[i]
X[k]
s

ABCD_out

start_new

continue

data_in
addr
load

hash_out

ready

counter

reg

reg reg

regMD5_step(s)

rst i

en

di do

di

di

dido do

do

0

1

0

1

T[i]
X[k]

s

i
X
addr
load

TXs_register

reg

di do

reg

di do

reg

di do

en

Figure 1. An architecture for MD5

MD5 step block is presented in Figure 2. This block is im-
plemented so that it is performed in one clock cycle and it
forms the critical path of the MD5 architecture of Figure 1.
As can be seen from Equation (2) four 32-bit additions are
required and also all the functions F(X ,Y,Z), G(X ,Y,Z),
H(X ,Y,Z) and I(X ,Y,Z) must be implemented. However,
these functions are easy to implement and fast to perform,
because they are simple bitwise logical operations.

H

I

G

F

shifter

A

B

T

X

A_out

round

1

2

3

4

B, C, D

s

ABCD_in

B_out,
C_out,
D_out

Figure 2. A general MD5 step

Although the shifting may first seem to be trivial, it is
actually the most logic resources demanding operation in
the MD5 step [2]. Also a significant part of the delay of the
block consists of the delay of the shifter.

The MD5 step block was implemented on Xilinx Virtex-
II XC2V4000-6 FPGA device and it required 328 slices.
An estimated delay after synthesis was 11.574 ns.

3.2. Effects of Pipelining

As can be seen from the specifications of the MD5 algo-
rithm presented in Section 2, the structure of a single MD5

step can be simplified by unrolling and pipelining several
steps. Thus, the delay of an MD5 implementation may be
reduced by pipelining the calculation of the MD5 steps. An
analysis of the effects of pipelining on delay and area re-
quirements of a design is presented in this section. Let p be
the number of pipelined steps.

Pipelining simplifies the general MD5 step presented in
Section 3.1 in many ways. The most obvious effect is to
the functions of Equation (3). If the architecture is fully
pipelined, only one function needs to be implemented in-
stead of all four. If 32-stage pipelining is used, only two
functions are required in a block.

As can be seen in Table 1, only four values of s per round
are used. Thus, the shifter can be simplified by using 2-
or 4-stage pipelining. Because most of the logic resources
required in an MD5 step implementation are for the shifter,
these simplifications have a significant effect on the area
requirements of the block. The delay of the block is also
slightly reduced when a simpler shifter is utilized.

Because of the structure of the MD5 algorithm, reason-
able number of pipelined stages are p = 1 (an iterative de-
sign), p = 2, p = 4, p = 32 and p = 64 (a fully pipelined de-
sign). If some other number of pipelined stages, e.g. p = 8
or p = 16, is used, major enhancement in either area re-
quirements or in delay is not achieved compared to the val-
ues given above, as can be witnessed later in this section.

In a fully pipelined architecture, a single MD5 step re-
duces so that only one of the functions has to be imple-
mented. In that case, the shifter is reduced from the design,
because shifting by a constant value can be performed triv-
ially by rearranging the bit vector. The constant T [i] can
also be hardwired into the design. The architecture of the
MD5 step in a fully pipelined design is presented in Fig-

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

<<< s

A

B

ABCD_in

T

X

A_out

B, C, D

C_out
B_out

D_out

F / G / H / I

Figure 3. An MD5 step in a fully pipelined architecture

ure 3. In a fully pipelined architecture, there is no need for
the multiplexer in front of the MD5_step block in Figure 1
and, hence, it can be reduced from the architecture.

When a single MD5 step is observed, pipelining re-
duces both delay and area requirements as presented in Fig-
ure 4 (a). The values in Figure 4 (a) were obtained using
Xilinx Synthesis Tool 6.2 (XST) with high effort level with-
out any constraints. Thus, these values are not exact values
of how the architecture performs on a real device, but they
give an overview of how pipelining affects on the area re-
quirements and delay. As can be seen, considerable reduc-
tion in both area requirements and delay can be achieved in
a single MD5 step, if the design is pipelined.

Although the area requirements per MD5 step decrease
considerably, the overall area requirements naturally in-
crease as a function of the number of pipelined stages. Ap-
proximated area requirements and delay of the calculation
of all 64 MD5 steps is presented in Figure 4 (b). The values
in Figure 4 (b) were calculated as follows: the slices value
is calculated simply by multiplying the number of required
slices of a single MD5 step by the number of pipelined
stages p. The delay value is computed by multiplying the
delay value of a single MD5 step by 64. A delay of 1 ns was
added to the delay of a single MD5 step in the calculations,
because the multiplexer in front of the MD5_step block in
Figure 1 needs to noticed, as well. However, in the calcu-
lation of the fully pipelined architecture, this addition was
not performed, because the multiplexer was reduced from
the design, as discussed earlier. It should also be noticed
that the area requirements given in Figure 4 (b) are only
for the MD5 steps. In addition to this amount, also other
blocks of the architecture in Figure 1 require area.

In Figure 4 (b), it can be seen that, if p = 8 or p = 16
pipelining does not reduce delay at all. Also the bene-
fits of 32-stage pipelining are almost negligible, because
only little faster performance is achieved with considerably
larger area requirements. However, 2- and 4-stage pipelin-
ing seem to increase the area requirements only moderately,
but yet they provide faster performance. The area require-
ments of the fully pipelined architecture are so high that
it can be recommended only for applications, where very
high performance is demanded.

Pipelining simplifies also the TXs_register block in Fig-
ure 1. However, the effects are not as dramatic as in
MD5_step. In a fully pipelined design, the values of T [i]
are hardwired into the design and storage element is not
needed. Generally, the use of internal memory of the FPGA
device, e.g. BlockRAMs, is advantageous in iterative de-
sign or in design where only few pipelined stages are used.
When many stages are pipelined, register-based implemen-
tation should be preferred, because several values must be
read simultaneously, which makes the use of internal mem-
ory problematic. The register-based approach is advanta-
geous also in ASIC-based (Application Specific Integrated
Circuit) implementations, where memory blocks require a
significant amount of area.

As a conclusion for the pipelining study, it can be men-
tioned that pipelining seems to reduce delay of the calcu-
lation of the MD5 algorithm at the expense of higher area
requirements, as expected. However, final conclusions can
be drawn only after the implementation process. These re-
sults are presented in Section 4.

3.3. Methods to Increase Throughput

Although very fast performance can be achieved with
the designs presented in the previous sections, their per-
formance may fall short in certain very demanding envi-
ronments, e.g. in heavily-loaded servers. In such environ-
ments, throughput of an implementation becomes a con-
straint. Thus, methods to increase throughput to gigabit-
level are required.

Two different approaches to increase throughput are pre-
sented. Two commonly known methods are used for in-
creasing throughput. The first and simpler one is to use
parallel MD5 blocks. The second is to take advantage of
the pipelined architectures presented in Section 3.2.

In parallel method, several MD5 blocks are used in
parallel and each one of them can process MD5 calcula-
tions independently. Use of parallel MD5 blocks is a very
straightforward way to increase throughput: if n parallel
MD5 blocks are used, the achieved throughput is approx-
imately n times the throughput of one MD5 block. The
architecture for this method is very simple: several blocks
of the architecture of Figure 1 are placed in parallel. Simple
controlling logic is required, also.

The utilization of pipelined architectures is more diffi-
cult, because the use of the pipeline must be controlled.
However, compared to the parallel MD5 block implemen-
tations, slightly faster and smaller implementations are re-
sulted at the expense of reduced flexibility. The flexibility
is reduced because MD5 calculations cannot be performed
independently from each other. The upper limit for con-
current calculations is the number of pipelined stages p.
For example, it is possible to alter the 16-stage pipelined

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

8

8,5

9

9,5

10

10,5

11

11,5

12

100 150 200 250 300 350

slices

d
e

la
y

 (
n

s
)

p = 1
p = 2

p = 4, p = 8, p = 16

p = 32

p = 64

(a)

500

550

600

650

700

750

800

850

0 1000 2000 3000 4000 5000 6000 7000 8000

slices

d
e

la
y

 (
n

s
)

p = 1
p = 2

p = 4 p = 8 p = 16

p = 32

p = 64

(b)

Figure 4. Approximated area requirements and delay of a single MD5 step (a) and all 64 MD5 steps (b) in iterative
and pipelined architectures. Value of p indicates the number of pipelined stages

architecture so that it can process 16 MD5 calculations si-
multaneously, i.e. one in every pipelined stage. In addition
to the reduced flexibility, a problem in this method is that
extra storage elements are required for the values of Xj. If
one calculation is processed at the time, only 512 bits are
needed, but if p calculations are processed, 512 · p bits are
required. In addition to the extra storage elements, also ex-
tra control logic is required. However, the proposed archi-
tecture of Figure 1 applies with only small modifications.

The methods presented above do not decrease the delay
of a single calculation and, therefore, they do not speed up a
single micropayment initialization, where MD5 rounds are
calculated consecutively. The parallel or pipelined struc-
tures cannot be utilized inside a single initialization chain.
However, several initializations can be calculated concur-
rently which, again, increases throughput.

4. Results of the Implementation

The MD5 architectures presented in Section 3 were
implemented in VHDL. Aldec Active-HDL 6.2 was used
in project management and simulations. Synthesis was
performed with Xilinx Synthesis Tool XST 6.2 and the
place & route was performed with Xilinx ISE 6.2. Xilinx
Virtex-II XC2V4000-6 was used as a target device.

The VHDL source code for the SIG-MD5 designs was
written very carefully in order to guarantee best possible
performance. The focus was, especially, on the optimiza-
tion of the MD5_step block which ultimately defines the
performance of an MD5 implementation. The object was
to utilize the 4-input LUT-structure as efficiently as possi-
ble so that the used area and delay would be minimized.

The synthesis was performed for all designs presented in
Section 3, i.e. for iterative, 2, 4, 8, 16 and 32-stage and fully
pipelined designs. The synthesis was performed with XST
6.2 with high optimization effort and speed as an optimiza-
tion goal. The synthesis estimates of area requirements and
delay are presented in Figure 5 (a).

Comparing Figures 4 (b) and 5 (a), it can be noticed
that the observations made in Section 3 apply also after
synthesis. Area requirements are expectedly higher, be-
cause only the area requirements of the md5_step(s) were
included into the observations in Section 3.

The actual performance of the designs can be found out
after the implementation which includes translation, map-
ping, place & route and timing. The implementation was
performed with Xilinx ISE 6.2 and the results of the imple-
mentation are presented in Table 2.

Two versions of iterative, 2, 4 and 8-stage pipelined ar-
chitectures were implemented. The first one exploits in-
ternal memory resources of the FPGA, i.e. BlockRAMs.
The other one is implemented with simple registers. In
FPGA-based implementations, the use of BlockRAMs is
beneficial because it significantly reduces the number of
required slices. However, in ASIC-based implementations
register-based approach is more advantageous, because the
gate count is a lot smaller as can be witnessed in Table 2. It
should be noticed that, although the gate count is given in
Table 2, it is an independent figure, which does not have an
effect to other figures in the table. It is only an approxima-
tion of the required area on ASICs. The clock frequencies
are for Virtex-II XC2V4000 in all cases. The throughput in
Table 2 was calculated with the following formula [6]:

throughput = (blocksize× clockfrequency)/latency (5)

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

500

550

600

650

700

750

800

850

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

slices

d
e

la
y

 (
n

s
)

p = 1

p = 2

p = 4 p = 8 p = 16

p = 32

p = 64

(a)

500

550

600

650

700

750

800

850

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

slices

d
e

la
y

 (
n

s
)

p = 1 p = 2
p = 4 p = 8 p = 16

p = 32

p = 64

(b)

Figure 5. Area requirements and delay after synthesis (a) and final implementation results (b) of SIG-MD5 designs
on Virtex-II XC2V4000-6 device. Value of p indicates the number of pipelined stages

Table 2. Results of the MD5 implementations on Xilinx Virtex-II XC2V4000-6

Design Pipeline Slices BRAMs Gate Count Clock Time Throughput
iterative 1 647 2 143,897 75.5 MHz 875 ns 586 Mbps
iterative 1 1325 0 21,359 78.3 MHz 843 ns 607 Mbps
2-stage 2 826 4 279,296 75.9 MHz 869 ns 589 Mbps
2-stage 2 1670 0 31,200 78.3 MHz 843 ns 607 Mbps
4-stage 4 1057 8 545,869 78.2 MHz 844 ns 607 Mbps
4-stage 4 2248 0 43,051 80.7 MHz 818 ns 626 Mbps
8-stage 8 1893 8 560,999 78.2 MHz 844 ns 607 Mbps
8-stage 8 3011 0 61,727 80.7 MHz 818 ns 626 Mbps
16-stage 16 4031 0 81,191 80.7 MHz 818 ns 626 Mbps
32-stage 32 5752 0 118,803 84.1 MHz 785 ns 652 Mbps
full 64 7997 0 169,715 93.4 MHz 706 ns 725 Mbps

where block size is 512 bits, latency is 66 and clock fre-
quency is given by the implementation.

The area requirements and delay of the final results are
presented in Figure 5 (b). The values of the register-based
designs were used in Figure 5 (b), because the area require-
ments are easier to represent if BlockRAMs are not used.
Comparing Figures 5 (a) and (b), it can be seen that signifi-
cant increase in delays occurs after the implementation for
the designs where several stages are pipelined. Thus, only
a very small enhancement in delay of a single MD5 round
can be achieved by pipelining the design. Two, eight, and
16-stage pipelining should be avoided, because similar de-
lays are achieved with smaller slice requirements.

Comparing Figures 5 (a) and (b) it can be seen that,
although the post-synthesis results in Figure 5 (a) in-
dicate that serious reduction in delay can be achieved
with pipelining, only small enhancement is achieved after

place & route. Theoretically, a more efficient place & route
would result in better results, i.e. results which are closer to
the synthesis results of Figure 5 (a). However, the structure
of the design becomes a lot more complicated when many-
stage-pipelining is used, thus, making the place & route
process much more difficult.

Pipelining considerably increases the area requirements
of an MD5 implementation, but only small decrease in de-
lay is achieved. The speed/area ratio is observed by calcu-
lating throughput/slice values presented in Table 3. Pipelin-
ing decreases significantly the speed/area-ratio.

If the delay of a single MD5 calculation is observed,
iterative design offers fast performance with minimal area
requirements. Enhancement of only 19.4% can be achieved
at the expense of over 500% increase in area requirements
if the fully pipelined architecture is used.

The throughputs of Table 2 are calculated by assum-

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

Table 3. Achieved throughput per slice values for dif-
ferent architectures

Design kbps / slice
iterative 458
2-stage 363
4-stage 278
8-stage 208
16-stage 155
32-stage 113
full 91

ing that the design can process only one MD5 calculation
at once. However, if the throughput of an iterative de-
sign is insufficient for an application, pipelined architec-
ture may be used for increasing throughput as described in
Section 3.2. The results of the high-throughput designs are
discussed in more detail in Section 4.1.

4.1. Results of the High-Throughput Designs

Two different approaches to increase throughput were
discussed in Section 3.3. The first and simpler one used
parallel MD5 blocks. The second took advantage of
pipelined architectures.

Two implementations using parallel MD5 blocks were
designed: the first, called SIG-MD5-HT4i, uses four par-
allel iterative MD5 blocks, and the second, SIG-MD5-
HT10i, consists of ten iterative MD5 blocks. HT stands
for High Throughput and 4/10 tells the number of paral-
lel blocks and i is for iterative. SIG-MD5-HT4i requires
5845 slices and operates at a clock frequency of 78.3 MHz
and SIG-MD5-HT10i occupies 11498 slices and 10 Block-
RAMs and operates at 75.5 MHz. High throughputs are
achieved with both designs: 2.32 Gbps with SIG-MD5-
HT4i and 5.86 Gbps with SIG-MD5-HT10i.

An implementation using 4-stage pipelining was de-
signed. It required 5732 slices and operated at 80.7 MHz
achieving a throughput of 2.40 Gbps. This design was
named SIG-MD5-HT4p where p stands for pipelined.

Almost similar results are achieved with both strategies.
Pipelining can be efficiently utilized for achieving high
throughput although the benefits of using it for reducing
delay were only small as discussed in Section 4. However,
using parallel MD5 blocks is easier to design and use.

5. Performance Comparison

For convenience, iterative and fully pipelined designs
presented in Section 3 are renamed to SIG-MD5-I and SIG-
MD5-FP, where SIG is an acronym for the Signal Pro-
cessing Laboratory at Helsinki University of Technology

and I stand for iterative and FP for fully pipelined. The
high-throughput designs SIG-MD5-HT4p and SIG-MD5-
HT10i, presented in Section 4.1, are also included into the
comparison, although other similar designs have not been
published at least to the authors’ knowledge. Other open-
literature designs in the comparison are the designs by
Deepakumara et al. [2], Diez et al. [3] and Dominikus [5].
Two commercial designs by Amphion [1] and Helion Tech-
nology [8] have been also included into the comparison al-
though only limited information of these designs is avail-
able. The designs are presented in Table 4.

SIG-MD5 designs perform very well in both required
area and performance. SIG-MD5 designs are both fastest
and smallest published academical designs, although an ex-
act comparison to certain implementations is difficult, be-
cause different FPGA device families are used. The main
reason for the good performance of the SIG-MD5 designs
is most probably efficient use of design tools and, espe-
cially, careful low-level designing and optimization.

The design of Diez et al. is the fastest FPGA-based
implementation previously presented in the literature. Be-
cause the FPGA device family is the same for both SIG-
MD5 and Diez’ designs, the comparison between them is
straightforward. SIG-MD5-I is slightly smaller than the
corresponding design by Diez et al. but it performs nearly
30% faster. Thus, SIG-MD5 designs perform better than
any previously published design.

The comparison also shows that high throughput can
be easily achieved with methods presented in Section 3.3.
SIG-MD5-HT4p achieves over 570% higher throughput
with only 20% larger area requirements than Deepaku-
mara’s fully pipelined design.

If SIG-MD5 designs are compared to commercial de-
signs by Amphion and Helion Technology, it can be said
that SIG-MD5 designs compete well also with these de-
signs. The design by Amphion seems to be slightly smaller
but slower, whereas Helion Technology’s design is both
smaller and faster. However, exact comparison is hard, be-
cause only limited information is available.

6. Conclusions

As the use of public-key cryptography and certain mi-
cropayment schemes using hash algorithms increase, more
performance is required also from hash algorithm imple-
mentations. Thus, hardware acceleration may be required
also for these algorithms. Especially, micropayment initial-
izations requiring calculations of thousands of MD5 rounds
may need to be accelerated.

An architecture for MD5 hash algorithm was presented.
The architecture was designed so that it can be easily used
for different kinds of MD5 implementations. For example,
both very compact and fast designs can be implemented

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

Table 4. Comparison of published FPGA-based implementations. Commercial designs by Helion Technology
and Amphion have been included into the comparison, but comparison to these designs is difficult, because only
limited information of these designs is available

Design Device Slices BRAMs Clock Latency Time Throughput
SIG-MD5-I Virtex-II 2V4000-6 647 2 75.5 MHz 66 875 ns 586 Mbps
SIG-MD5-I Virtex-II 2V4000-6 1325 0 78.3 MHz 66 843 ns 607 Mbps
SIG-MD5-FP Virtex-II 2V4000-6 7997 0 93.4 MHz 66 706 ns 725 Mbps
SIG-MD5-HT4p Virtex-II 2V4000-6 5732 0 80.7 MHz 66 818 ns 2395 Mbps
SIG-MD5-HT10i Virtex-II 2V4000-6 11498 10 75.5 MHz 66 875 ns 5857 Mbps
Deepakumara et al. [2] Virtex V1000-6 880 2 21 MHz 65 3095 ns 165 Mbps
Deepakumara et al. [2] Virtex V1000-6 4763 0 71.4 MHz n.a. n.a. 354 Mbps
Diez et al. [3] Virtex-II 2V3000 1369 n.a. 60.2 MHz 66 1096 ns 467 Mbps
Dominikus [5] Virtex-E V300E ∼2008 n.a. 42.9 MHz 206 n.a. 146 Mbps
Amphion [1] Virtex-II 844 n.a. 60 MHz n.a. n.a. 472 Mbps
Helion Technology [8] Virtex-II -6 613 1 96 MHz n.a. n.a. 744 Mbps

with the same architecture. This architecture was used in
several designs, which are called the SIG-MD5 designs.

Effects of pipelining were discussed. In an MD5 calcu-
lation, 64 MD5 steps need to be calculated and the struc-
ture of one step can be significantly simplified by unrolling
and pipelining. It was found out that reasonable numbers
of pipelined stages are 1 (an iterative design), 2, 4, 32 and
64 (a fully pipelined design). Other numbers of pipelined
stages do not decrease the delay of an MD5 calculation.

Although pipelining first seems to reduce delay signifi-
cantly, only small enhancement in speed at the expense of
a lot larger area requirements is achieved at the end. This
slowdown originates from the grown area requirements and
complexity of the designs, which make the place & route
process significantly harder. However, although the delay
of a single calculation is not reduced significantly, pipelin-
ing may be used efficiently for achieving high throughput.

A delay of 843 ns with logic requirements of only 1325
slices was achieved with an iterative design, SIG-MD5-I,
on a Xilinx Virtex-II XC2V4000 FPGA, while for a fully
pipelined design, SIG-MD5-FP, the values were 706 ns and
7997 slices, respectively. Corresponding throughput values
are 607 Mbps for SIG-MD5-I and 725 Mbps for SIG-MD5-
FP. At least to the authors’ knowledge, these are the fastest
published FPGA-based MD5 designs. The better perfor-
mance of the SIG-MD5 designs compared to other pub-
lished FPGA-based MD5 implementations was achieved,
most probably, by careful implementation and efficient use
of design tools.

Two methods to raise the throughput of an MD5 design
were discussed. The first was to simply use parallel MD5
blocks and the second used a pipelined structure. Results of
both methods are almost similar, but the first one is easier
to design and use. A throughput of 2.40 Gbps was achieved
with a design occupying 5732 slices and 5.86 Gbps was at-

tained with 11498 slices and 10 BlockRAMs, respectively.
A study of MD5 implementation was performed and

aspects of delay, throughput and area requirements were
studied. Although the structure of the MD5 algorithm pre-
vents large-scale parallelization of the operations of the al-
gorithm, very efficient hardware implementations were at-
tained. It was found out that MD5 can be implemented ef-
ficiently on hardware with very small logic resources. Be-
cause of the small area requirements of an MD5 design, a
high-speed MD5 design can be included also into designs
where computational resources are limited, e.g. into mobile
applications. Very high throughput can be also achieved
with moderate logic requirements.

Future Work Future work includes the use of the MD5
architecture presented in this paper for a micropayment ini-
tialization designed in the GO-SEC project at HUT. This
initialization consists of several consecutive MD5 rounds
(about 10,000) and it is slow to perform with software and,
thus, hardware acceleration is required at least in heavily-
loaded environments. FPGA board described in [9] will be
used as an implementation platform for the design.

Hardware implementation aspects of the SHA-1 hash
algorithm [7] will be studied and compared to the MD5
implementations presented in this paper. An architecture
combining both MD5 and SHA-1 will be designed.

Effects of the recent NIST report [10] are studied. The
report discussed flaws in the security of MD5 and several
other hash algorithms. However, the security of SHA-1 is
not threatened and replacement of MD5 with SHA-1 in the
GO-SEC micropayment initialization is considered.

Acknowledgements This paper was written as a part of
the GO-SEC project at Helsinki University of Technology.
GO-SEC is financed by the National Technology Agency of
Finland and several Finnish telecommunication companies.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

References

[1] Amphion. CS5315, High Performance Message Digest
5 Algorithm (MD5) Core. Datasheet, URL: http://
www.amphion.com/acrobat/DS5315.pdf, (visited
September 9, 2004).

[2] J. Deepakumara, H.M. Heys, and R. Venkatesan. FPGA
Implementation of MD5 Hash Algorithm. Proceedings of
the Canadian Conference on Electrical and Computer Engi-
neering, CCECE 2001, Toronto, Canada, Vol. 2:919 – 924,
May 13 – 16, 2001.

[3] J.M. Diez, S. Bojanić, Lj. Stanimirovicć, C. Carreras, and
O. Nieto-Taladriz. Hash Algorithms for Cryptographic Pro-
tocols: FPGA Implementations. Proceedings of the 10th
Telecommunications Forum, TELFOR’2002, Belgrade, Yu-
goslavia, November 26 – 28, 2002.

[4] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160:
A Strengthened Version of RIPEMD. In Fast Software En-
cryption, pages 71–82, 1996.

[5] S. Dominikus. A Hardware Implementation of MD4-Family
Hash Algorithms. Proceedings of the 9th IEEE Interna-
tional Conference on Electronics, Circuits and Systems,
ICECS 2002, Dubrovnik, Croatia, Vol. 3:1143 – 1146,
September 15 – 18, 2002.

[6] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA
Implementation and Performance Evaluation of the AES
Block Cipher Candidate Algorithm Finalists. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, Vol.
9:545 – 557, August 2001.

[7] Federal Information Processing Standards. Secure
Hash Standard. FIPS PUB 180-2, August 1, 2002.

With changes, February 25, 2004, URL: http:
//www.csrc.nist.gov/publications/fips/
fips180-2/fips180-2withchangenotice.pdf,
(visited September 9, 2004).

[8] Helion Technology. Datasheet - High Perfor-
mance MD5 Hash Core for Xilinx FPGA. URL:
http://www.heliontech.com/downloads/
md5_xilinx_helioncore.pdf, (visited September
9, 2004).

[9] E. Korpela. Design of a Generic Reconfigurable Computing
Platform. Master’s thesis, Helsinki University of Technol-
ogy, Signal Processing Laboratory, 2004.

[10] National Institure of Standards and Technology. NIST Brief
Comments on Recent Cryptanalytic Attacks on Secure
Hashing Functions and the Continued Security Provided by
SHA-1, August 25, 2004. URL: http://csrc.nist.
gov/hash_standards_comments.pdf, (visited
September 9, 2004).

[11] R.L. Rivest. The MD4 Message-Digest Algorithm. RFC
1320, MIT Laboratory for Computer Science and RSA Data
Security, Inc., April 1992.

[12] R.L. Rivest. The MD5 Message-Digest Algorithm. RFC
1321, MIT Laboratory for Computer Science and RSA Data
Security, Inc., April 1992.

[13] B. Schneier. Applied Cryptography. John Wiley & Sons,
Inc., second edition, 1996.

[14] Xilinx. Virtex-II Platform FPGAs: Complete Data Sheet,
October 14, 2003. URL: http://direct.xilinx.
com/bvdocs/publications/ds031.pdf, (visited
September 9, 2004).

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

10
View publication stats

https://www.researchgate.net/publication/224755677

