

Introduction to Lattices and Order

Introduction to Lattices and Order
Second edition

B.A. Davey
La Trobe University

H.A. Priestley
University of Oxford

˜

C©

A catalogue record for this publication is available from the British Library

Printed and Bound in the United Kingdom by the MPG Books Group

Second edition published 2002

First edition published 1990

the written permission of Cambridge University Press.

no reproduction of any part may take place without

and to the provisions of relevant collective licensing agreements,

This publication is in copyright. Subject to statutory exception

Cambridge University Press 1990, 2002

Information on this title: www.cambridge.org/9780521784511

www.cambridge.org

Published in the United States of America by Cambridge University Press, New York

The Edinburgh Building, Cambridge CB2 8RU, UK

Cambridge University Press

aCambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao P ulo,

cambridge university press

accurate or appropriate.

Cambridge University Press has no responsibility for the persistence or accuracy

and does not guarantee that any content on such websites is, or will remain,

of URLs for external or third-party internet websites referred to in this publication,

ISBN 978-0-521-78451-1 Paperback

Delhi, Mexico City

7th printing 2012

www.cambridge.org
www.cambridge.org/9780521784511

Contents

Preface to the second edition viii

Preface to the first edition x

1. Ordered sets 1

Ordered sets 1

Examples from social science and computer science 5

Diagrams: the art of drawing ordered sets 10

Constructing and de-constructing ordered sets 14

Down-sets and up-sets 20

Maps between ordered sets 23

Exercises 25

2. Lattices and complete lattices 33

Lattices as ordered sets 33

Lattices as algebraic structures 39

Sublattices, products and homomorphisms 41

Ideals and filters 44

Complete lattices and
⋂
–structures 46

Chain conditions and completeness 50

Join-irreducible elements 53

Exercises 56

3. Formal concept analysis 65

Contexts and their concepts 65

The fundamental theorem of concept lattices 70

From theory to practice 74

Exercises 79

4. Modular, distributive and Boolean lattices 85

Lattices satisfying additional identities 85

The M3–N5 Theorem 88

Boolean lattices and Boolean algebras 93

Boolean terms and disjunctive normal form 96

Exercises 104

vi Contents

5. Representation: the finite case 112

Building blocks for lattices 112

Finite Boolean algebras are powerset algebras 114

Finite distributive lattices are down-set lattices 116

Finite distributive lattices and finite ordered sets in

partnership 119

Exercises 124

6. Congruences 130

Introducing congruences 130

Congruences and diagrams 134

The lattice of congruences of a lattice 137

Exercises 140

7. Complete lattices and Galois connections 145

Closure operators 145

Complete lattices coming from algebra: algebraic lattices 148

Galois connections 155

Completions 165

Exercises 169

8. CPOs and fixpoint theorems 175

CPOs 175

CPOs of partial maps 180

Fixpoint theorems 182

Calculating with fixpoints 189

Exercises 193

9. Domains and information systems 201

Domains for computing 201

Domains re-modelled: information systems 204

Using fixpoint theorems to solve domain equations 221

Exercises 223

10. Maximality principles 228

Do maximal elements exist? – Zorn’s Lemma and the

Axiom of Choice 228

Prime and maximal ideals 232

Powerset algebras and down-set lattices revisited 237

Contents vii

Exercises 244

11. Representation: the general case 247

Stone’s representation theorem for Boolean algebras 247

Meet LINDA: the Lindenbaum algebra 252

Priestley’s representation theorem for distributive lattices 256

Distributive lattices and Priestley spaces in partnership 261

Exercises 267

Appendix A: a topological toolkit 275

Appendix B: further reading 280

Notation index 286

Index 289

Preface to the second edition

This new edition of Introduction to Lattices and Order is substantially
different from the original one published in 1990. We believe that the re-
vision greatly enhances the book’s usefulness and topicality. Our overall
aims however remain the same: to provide a textbook introduction which
shows the importance of the concept of order in algebra, logic, computer
science and other fields and which makes the basic theory accessible to
undergraduate and beginning graduate students in mathematics and to
professionals in adjacent areas.

In preparing the new edition we have drawn extensively on our
teaching experience over the past 10 years and on helpful comments
from colleagues. We have taken account of important developments in
areas of application, in particular in computer science. Almost all the
original material is included, but it has been completely re-organized.
Some new material has been added, most notably on Galois connections
and fixpoint calculus, and there are many new exercises.

Our objectives in re-arranging the material have been:

• to present elementary and motivational topics as early as possible,
for pedagogical reasons;

• to arrange the chapters so that the first part of the book contains
core material, suitable for a short, first course;

• to make it easy for particular interest groups to pick out just the
sections they want.

Originally, we treated ordered sets first and began the algebraic theory
of lattices only in Chapter 5. This meant that some quite sophisticated
and specialized material appeared early on, in particular the treatment
of CPOs, algebraic lattices and domains. We have now reversed this, and
have also made the treatment of the latter topics more independent. We
have moved forward the presentation of formal concept analysis so that
it now provides a concrete, application-oriented introduction to complete
lattices, to which the material on Galois connections and on completions
is later linked. There are numerous more localized repackagings of
individual topics too, giving a smoother presentation overall. Readers
of the first edition who look at the new table of contents will appreciate
how major the re-organization is.

Mathematical modelling in computer science has advanced extreme-
ly rapidly in the last decade, and this is reflected in the book. We draw
attention in particular to:

Preface to the second edition ix

• our acknowledgement of the importance of Galois connections in
formal methods for program development and verification, and

• the revised presentation of fixpoint theorems.

Our debt to those who have pioneered these advances will be clear from
the extent to which we have updated the appendix (now Appendix B)
which gives suggestions for further reading. Many colleagues, in par-
ticular past and present members of the Oxford University Computing
Laboratory, have assisted us, either by the insights their books and pa-
pers have provided or through their comments. They are too numerous
for us to acknowledge their influence and their contributions individually
here.

We are grateful to many readers of the first edition who drew our
attention to typographical and other minor errors. They were rewarded
with a Mars Bar for each misprint found and their corrections were
incorporated into the 1994 printing. For the present edition, our sincere
thanks go to a team of proof-readers based at La Trobe University:
Jane Pitkethly, aided by Miroslav Haviar, Shamsun Naher and Rashed
Talukder. They have done a very careful job of eradicating errors that
crept into successive drafts, pinpointing obscurities and spotting a few
typos from the first edition that were previously missed.

B.A.D. and H.A.P.

June 2001

Preface to the first edition

This is the first textbook devoted to ordered sets and lattices and to
their contemporary applications. It acknowledges the increasingly major
role order theory is playing on the mathematical stage and is aimed at
students of mathematics and at professionals in adjacent areas, including
logic, discrete mathematics and computer science.

Lattice theory has been taught to undergraduates at La Trobe
University since 1975, and more recently at Oxford University. The
notes for these courses were our starting point. The core of the book
– Chapters 1, 2 and 5 to 8 – provides a basic introduction to ordered
sets, lattices and Boolean algebras and is buttressed by exercises which
have been classroom-tested over many years. In a proselytizing article,
Order: a theory with a view [in Klassifikation und Ordnung , INDEKS,
Frankfurt, 1989], Ivan Rival discusses the modern role of order. The
pictorial philosophy he advocates is strongly evident in our approach:
diagrams and diagrammatic arguments are stressed in both the text and
the exercises.

Prerequisites are minimal. A reader who has taken a course in lin-
ear algebra, group theory or discrete mathematics should have sufficient
background knowledge and be familiar with our vocabulary and with
those symbols not listed in the notation index. To keep the treatment as
elementary as possible, we have denied ourselves the formalism of cat-
egory theory and of universal algebra. However, we have prepared the
ground carefully for those who will progress to texts on general lattice
theory or universal algebra and we have included, at the ends of Chap-
ters 2 and 5 and in Chapters 3, 9 and 10, some material suitable for
honours students or those beginning graduate work. Inevitably, there
was not space for all the topics we should have liked to cover; hints of
resisted temptations will be apparent in a few of the exercises. Within
lattice theory we have placed the emphasis on distributive lattices. We
thereby complement more advanced texts, in which modular and gen-
eral lattices are already well treated. The study of finite distributive
lattices (undertaken in Chapter 8) combines algebraic, order-theoretic
and graph-theoretic ideas to provide results which are linked to the or-
dered set constructions presented in Chapter 1, are easily accessible to
undergraduates and are complete in themselves. Our colleagues will
doubtless not be surprised that we have also included the extension of
the representation theory to the infinite case. To coax those wary of
topology, this introduction to duality is accompanied by a self-contained
primer containing the small number of topological results which we need.

Preface to the first edition xi

Order has recently appeared, sometimes a little coyly, in many com-
putational models. The thorough treatment of ordered sets in Chapter 1
(with examples foreshadowing applications in computation) and of inter-
section structures in Chapter 2 provides a firm foundation on which to
build the theory of CPOs and domains. Chapter 3 studies these struc-
tures and relates them to Scott’s information systems. Our account
is necessarily brief. Collateral reading of specialized texts, in which
the computer science applications are fully developed, may assist those
meeting domain theory for the first time. Chapter 4 deals with fixpoint
theory (and also discusses the order-theoretic roots of Zorn’s lemma).
Thus Chapters 1–4 serve as an introduction to order theory for com-
puter scientists, and for mathematicians seeking to enter their world. In
Chapter 11 we look outwards in a different direction and present the
rudiments of formal concept analysis. This new field has already made
an impact on lattice theory and has much to offer to social scientists
concerned with data analysis. We acknowledge our debt to the authors
of many unpublished notes and manuscripts on computer science and
on concept analysis. In particular, course notes by Dana Scott, Samson
Abramsky and Bill Roscoe enticed us into previously unfamiliar territory
and Jeff Sanders’ notes for the hardware course taught to Mathematics
and Computation undergraduates in Oxford influenced our treatment of
Boolean algebras.

The technological developments of the 1980s have made our collab-
oration possible. Our respective computers have faithfully worked many
nocturnal hours of overtime. Electronic mail has enabled us to commu-
nicate almost daily and, in conjunction with TEX, to confer easily on
fine points of presentation in a way that would have been impossible
with conventional (‘snail’) mail. TEX has also allowed us to control the
final shape of the text and has given the second author in particular
innumerable hours of fun and frustration.

Many people deserve our thanks. We are grateful to David Tranah
and the staff of Cambridge University Press for their patient assistance
and support and to Dorothy Berridge for her help in typing TEX files.
Generations of students have provided valuable consumer feedback and
Oxford undergraduates Mark Joshi, Graham Pollitt and Andy Sander-
son earn a special mention for their proof-reading. Thanks are due to
the colleagues we have pestered to read the book in draft: in particu-
lar to Michael Albert, Ralph McKenzie and J.B. Nation. We must also
thank Rudolf Wille and Bernhard Ganter for their advice on concept
analysis. Notwithstanding electronic communication, we greatly bene-
fited from the opportunity to spend a month discussing the book face to
face. The second author gratefully acknowledges the financial assistance

xii Preface to the first edition

of La Trobe University and the hospitality of its mathematics depart-
ment. Finally, a very big thank you for their support and forbearance
goes to the Davey family: wife Helen and children Evan, Owen and
Caitlin.

B.A.D. and H.A.P.

September 1989

1

Ordered Sets

Order, order, order – it permeates mathematics, and everyday life, to
such an extent that we take it for granted. It appears in many guises:
first, second, third, . . . ; bigger versus smaller; better versus worse. No-
tions of progression, precedence and preference may all be brought under
its umbrella. Our first task is to crystallize these imprecise ideas and to
formalize the relationship of ‘less-than-or-equal-to’. Besides presenting
examples and basic properties of ordered sets, this chapter also intro-
duces the diagrams which make order theory such a pictorial subject
and give it much of its character.

Ordered sets

What exactly do we mean by order? More mathematically, what do we
mean by an ordered set?

1.1 Order. Each of the following miscellany of statements has some-
thing to do with order.

(a) 0 < 1 and 1 < 1023 .

(b) Two first cousins have a common grandfather.

(c) 22/7 is a worse approximation to π than 3.141592654.

(d) The planets in order of increasing distance from the sun are Mer-
cury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto.

(e) Neither of the sets {1, 2, 4} and {2, 3, 5} is a subset of the other,
but {1, 2, 3, 4, 5} contains both.

(f) Given any two distinct real numbers a and b, either a is greater
than b or b is greater than a.

Order is not a property intrinsic to a single object. It concerns
comparison between pairs of objects: 0 is smaller than 1; Mars is further
from the sun than Earth; a seraphim ranks above an angel, etc. In
mathematical terms, an ordering is a binary relation on a set of objects.
In our examples, the relation may be taken to be ‘less than’ on N in (a),
‘is a descendant of’ on the set of all human beings in (b) and ⊆ on the
subsets of {1, 2, 3, 4, 5} (or of N) in (e).

What distinguishes an order relation from some other kind of re-
lation? Firstly, ordering is transitive. From the facts that 0 < 1 and
1 < 1023 we can deduce that 0 < 1023 . Mars is nearer the sun than Sat-
urn and Saturn is nearer than Neptune, so Mars is nearer than Neptune.

2 Ordered sets

Secondly, order is antisymmetric: 5 is bigger than 3 but 3 is not bigger
than 5. It is on these two properties – transitivity and antisymmetry –
that the theory of order rests.

Order relations are of two types: strict and non-strict. Outside
mathematics, the strict notion is more common. The statement ‘Charles
is taller than Bruce’ is generally taken to mean ‘Charles is strictly taller
than Bruce’, with the possibility that Charles is the same height as
Bruce not included. Mathematicians usually allow equality and write,
for instance, 3 � 3 and 3 � 22/7. We shall deal mainly with non-strict
order relations.

Finally a comment about comparability. Statement (f) asserts that,
for the ordering < on the real numbers, any two distinct elements can be
compared. This property is possessed by many familiar orderings, but
it is not universal. For example, there certainly exist human beings A
and B such that A is not a descendant of B and B is not a descendant
of A. Non-comparability also arises in (e).

1.2 Definitions. Let P be a set. An order (or partial order) on P is a
binary relation � on P such that, for all x, y, z ∈ P ,

(i) x � x,

(ii) x � y and y � x imply x = y ,

(iii) x � y and y � z imply x � z .

These conditions are referred to, respectively, as reflexivity, antisym-
metry and transitivity. A set P equipped with an order relation � is
said to be an ordered set (or partially ordered set). Some authors use
the shorthand poset. Usually we shall be a little slovenly and say simply
‘P is an ordered set’. Where it is necessary to specify the order relation
overtly we write 〈P ;�〉. On any set, = is an order, the discrete order. A
relation � on a set P which is reflexive and transitive but not necessarily
antisymmetric is called a quasi-order or, by some authors, a pre-order.
An order relation � on P gives rise to a relation < of strict inequality:
x < y in P if and only if x � y and x �= y . It is possible to re-state
conditions (i)–(iii) above in terms of <, and so to regard < rather than
� as the fundamental relation; see Exercise 1.1.

Other notation associated with � is predictable. We use x � y and
y � x interchangeably, and write x � y to mean ‘x � y is false’, and so
on. Less familiar is the symbol ‖ used to denote non-comparability: we
write x ‖ y if x � y and y � x.

We later deal systematically with the construction of new ordered
sets from existing ones. However, there is one such construction which
it is convenient to have available immediately. Let P be an ordered set

Ordered sets 3

and let Q be a subset of P . Then Q inherits an order relation from P ;
given x, y ∈ Q, x � y in Q if and only if x � y in P . We say in these
circumstances that Q has the induced order, or, when we wish to be
more explicit, the order inherited from P .

1.3 Chains and antichains. Let P be an ordered set. Then P is a chain
if, for all x, y ∈ P , either x � y or y � x (that is, if any two elements of
P are comparable). Alternative names for a chain are linearly ordered
set and totally ordered set. At the opposite extreme from a chain is an
antichain. The ordered set P is an antichain if x � y in P only if x = y .
Clearly, with the induced order, any subset of a chain (an antichain) is
a chain (an antichain).

Let P be the n-element set {0, 1, . . . , n− 1}. We write n to denote
the chain obtained by giving P the order in which 0 < 1 < · · · < n− 1
and n for P regarded as an antichain. Any set S may be converted into
an antichain S by giving S the discrete order.

1.4 Order-isomorphisms. We need to be able to recognize when two
ordered sets, P and Q, are ‘essentially the same’. We say that P and Q
are (order-) isomorphic, and write P ∼= Q, if there exists a map ϕ from
P onto Q such that x � y in P if and only if ϕ(x) � ϕ(y) in Q. Then
ϕ is called an order-isomorphism. Such a map ϕ faithfully mirrors the
order structure. It is necessarily bijective (that is, one-to-one and onto):
using reflexivity and antisymmetry of �, first in Q and then in P ,

ϕ(x) = ϕ(y)⇐⇒ ϕ(x) � ϕ(y) & ϕ(y) � ϕ(x)

⇐⇒ x � y & y � x

⇐⇒ x = y.

On the other hand, not every bijective map between ordered sets is an
order-isomorphism: consider, for example, P = Q = 2 and define ϕ by
ϕ(0) = 1, ϕ(1) = 0.

Being a bijection, an order-isomorphism ϕ : P → Q has a well-
defined inverse, ϕ−1 : Q → P . It is easily seen that this is also an
order-isomorphism.

We hinted in 1.1 at a variety of situations in which order is present.
In 1.2 we developed the vocabulary for treating these examples system-
atically. We conclude this section by presenting formally the important
orderings carried by some fundamental mathematical structures.

1.5 Number systems. The set R of real numbers, with its usual order,
forms a chain. Each of N (the natural numbers {1, 2, 3, . . . }), Z (the

4 Ordered sets

integers) and Q (the rational numbers) also has a natural order making it
a chain. In each case this order relation is compatible with the arithmetic
structure in the sense that the sum and product of two elements strictly
greater than zero is also greater than zero.

We denote the set N ∪ {0} (= {0, 1, 2, . . . }) by N0 . Endowed with
the order in which 0 < 1 < 2 < . . . , the set N0 becomes the chain known
in set theory as ω . It is order-isomorphic to N: the successor function
n �→ n+ := n + 1 from N0 to N is an order-isomorphism. A different
order on N0 is defined as follows. Write m � n if and only if there exists
k ∈ N0 such that km = n (that is, m divides n). Then � is an order
relation. Of course, 〈N0;�〉 is not a chain. Yet another order on N0 is
introduced in 1.22 for use in Chapters 8 and 9.

1.6 Families of sets. Let X be any set. The powerset ℘(X), consisting
of all subsets of X , is ordered by set inclusion: for A,B ∈ ℘(X), we
define A � B if and only if A ⊆ B .

Any subset of ℘(X) inherits the inclusion order. Such a family of
sets might be specified set-theoretically. For example, it might consist
of all finite subsets of an infinite set X . More commonly, families of sets
arise where X carries some additional structure. For instance, X might
have an algebraic structure – it might be a group, a vector space, or a
ring. Each of the following is an ordered set under inclusion:

• the set of all subgroups of a group G (denoted SubG), and the set
of all normal subgroups of G (denoted N -SubG);

• the set of all subspaces of a vector space V (denoted SubV);

• the set of all subrings of a ring R, and the set of all ideals of R.
Families of sets also occur in other mathematical contexts. For example,
let (X; T) be a topological space. We may consider the families of open,
closed, and clopen (meaning simultaneously closed and open) subsets
of X as ordered sets under inclusion. Finally we note a more inbred
member in this class of ordered sets which is of fundamental importance
later. This is the family O(P) of down-sets of an ordered set P ; it is
introduced in 1.27.

Essentially the same ordered set as 〈℘(X);⊆〉 manifests itself in a
different form, as the set of predicates on X . A predicate is a statement
taking value T (true) or value F (false). More precisely, a predicate on
X is a function from X to {T,F}; here we don’t distinguish between
different ways of specifying the same function. For example, the map
p : R → {T,F} given by p(x) = T if x � 0 and p(x) = F if x < 0 is
a predicate on R, which can alternatively be specified by p(x) = T if
|x−1| � |x+1| and F otherwise. We write P(X) for the set of predicates

Ordered sets 5

on X and order it by implication: for p, q ∈ P(X),

p � q if and only if {x ∈ X | p(x) = T } ⊆ {x ∈ X | q(x) = T } .
Define a map ϕ : P(X) → ℘(X) by ϕ(p) := {x ∈ X | p(x) = T }. Then
ϕ is an order-isomorphism between 〈P(X);�〉 and 〈℘(X);⊆〉. The
notion of a predicate is fundamental in logic and in computer science.

Examples from social science and computer science

Order and ordered structures enter into computer science, and also into
social science, in many ways and on many different levels. Our aim in
this section is to give a glimpse of why this should be so, rather than
to explain in detail how order theory is employed in applications. This
discussion supplies motivation for some of the theory we develop later
on, but much of it is not used directly. We look first at ways in which
ordered sets arise in social science.

1.7 Ordered sets in the humanities and social sciences. Below is a
pot-pourri of examples to indicate how ordered sets occur in the social
sciences and elsewhere. Each of these areas of application has led to the
investigation of ordered sets of special types.

An interval order on a set X is an order relation such that there
is a mapping ϕ of the points of X into subintervals of R such that,
for x < y in X , the right-hand endpoint of ϕ(x) is less than the left-
hand endpoint of ϕ(y). Interval orders model, for example, the time
spans over which animal species are found or the occurrence of styles of
pottery in archaeological strata. A variant on the definition requires all
the image intervals to be of the same length, with problems of inexact
measurement in mind.

The problem of amalgamating the expressed preferences of a group
of individuals to arrive at a consensus is of concern to selection commit-
tees, market researchers, psephologists and many others. More explicitly,
given m objects and rankings of them by n individuals specified by n
chains, how should a chain be constructed which best reflects the indi-
viduals’ collective preferences? A social choice function assigns to any
n–tuple of rankings a single ranking which defines a consensus, according
to specified criteria. A famous theorem, due to K. Arrow, asserts that
there is a set of criteria which are very natural but mutually incompat-
ible. This paradoxical result set off an avalanche of research on social
choice theory.

The problem of scheduling a collection of activities or events arises
in many different contexts, such as manufacturing and conference plan-
ning. Many such problems involve precedence constraints. For example,

6 Ordered sets

certain stages in the assembly of a car must precede others and a confer-
ence organizer is likely to have to schedule certain lectures before others.
The computational complexity of a scheduling problem depends criti-
cally on the order relation which describes the precedence constraints.

Order enters into the classification of objects on two rather differ-
ent levels. The first is illustrated by our introductory example of the
arrangement of the planets into a hierarchical list according to their dis-
tance from the sun and by Figure 9.1 which classifies certain ordered sets
according to various criteria. On a deeper level, the rather new discipline
of concept analysis provides a powerful technique for classifying and for
analysing complex sets of data. From a set of objects (to take a simple
example, the planets) and a set of attributes (for the planets, perhaps
large/small, moon/no moon, near sun/far from sun), concept analysis
builds an ordered set which reveals inherent hierarchical structure and
thence natural groupings and dependencies among the objects and the
attributes. Chapter 3 gives a brief introduction to concept analysis.

We now turn to order-theoretic ideas relating to computer science.
Our focus in this book is limited to certain aspects of this burgeoning
subject in which ordered structures provide useful mathematical models
and in this introductory chapter we concentrate on the description of
models for some particularly important datatypes. In each case, a re-
lation � serves to capture the notion of ‘is at least as informative as’,
with the precise interpretation depending on the context. But before
presenting examples of such information orderings we need to clarify
how computations are to be viewed.

1.8 Programs. Speaking simplistically, a program to perform a com-
putation takes a certain input and, the user hopes, returns a correspond-
ing output. The input and output data may come from many different
datatypes, such as natural numbers, strings, lists, sets, and so forth. The
term state is used to denote an assignment, to the variables used by a
program, of values drawn from the appropriate datatypes. The program
terminates if it transforms any given state before its execution to a state
afterwards; the initial and final states may be regarded as incorporat-
ing the input and output data. Frequently, the result of a computation
will be generated step by step, with additional information being gained
at each stage. Non-termination of a program naturally arises where
only partial information towards the solution is output in finite time.
A program is deterministic if, starting from a given initial state, it will
terminate in the same final state each time it is run. Non-determinism
can occur where the program’s specification allows for more than one
valid solution. For example, a program to compute an integer y such

Ordered sets 7

that y2 = x might start in the state x = 9 and terminate in either the
state y = 3 or y = −3.

We now give three examples of order relations on datatypes. In 1.12
we look at the features these examples have in common.

1.9 Binary strings. Let Σ∗ be the set of all finite binary strings, that
is, all finite sequences of zeros and ones; the empty string is included.
Adding the infinite sequences, we get the set of all finite or infinite
sequences, which we denote by Σ∗∗ . We order Σ∗∗ by putting u � v
if and only if u = v or u is a finite initial substring (the technical
term is prefix) of v . Thus, for example, 0100 < 010011, 010 ‖ 100 and
10101 < 101010 . . . (the infinite string of alternating ones and zeros).
Strings may be thought of as information encoded in binary form: the
longer the string, the greater the information content. Further, given
any string v , we may think of elements u with u < v as providing
approximations to v . In particular, any infinite string is, in a sense we
shall later need to make precise, the limit of its finite initial substrings.
Obviously this example can be generalized by considering strings whose
elements are drawn from an arbitrary alphabet of symbols.

1.10 Partial maps. Let X and Y be non-empty sets and f : X → Y a
map. Then f may be regarded as a recipe which assigns a member f(x)
of Y to each x ∈ X . Alternatively, and equivalently, f is determined by
its graph, namely graph f := { (x, f(x)) | x ∈ X }, a subset of X × Y .
If the values of f are given on some subset S of X , we have partial
information towards determining f . Formally, we define a partial map
from X to Y to be a map σ : S → Y , where domσ , the domain of σ , is
a subset S of X ; here S = ∅ is allowed. If domσ = X , then σ is a map
(or, for emphasis, a total map) from X to Y . The set of partial maps
from X to Y is denoted (X�→Y); it contains all total maps from X to
Y and all partial determinations of them. The elements of (X �→X)
are called partial maps on X . We order (X �→ Y) as follows: given
σ, τ ∈ (X �→ Y), define σ � τ if and only if domσ ⊆ dom τ and
σ(x) = τ(x) for all x ∈ domσ . Equivalently, σ � τ if and only if
graphσ ⊆ graph τ in ℘(X × Y). Note that a subset G of X × Y is the
graph of a partial map if and only if

(∀s ∈ X)
(
((s, y) ∈ G & (s, y′) ∈ G) =⇒ y = y′

)
.

In a (non-terminating) computation to determine a map f : X → Y ,
we may think of f as being built up from tokens of information, each
of which is an element σ of (X �→ Y) with finite domain and which
partially specifies f and where σ < f in the ordering defined above on

8 Ordered sets

(X�→Y). In the other direction, suppose we are given a collection F
of elements of (X�→Y). Is there a map f such that we have σ � f for
each σ ∈ F ? Clearly, the tokens must not supply conflicting messages
about the putative f . For example, f cannot exist if F contains elements
σ and τ such that, for some x ∈ X , we have (x, y) ∈ graphσ and
(x, y′) ∈ graph τ , where y �= y′ . We say that a subset F of (X �→Y)
is consistent if, for any finite subset G of F , there exists ρ ∈ (X�→Y)
(but not necessarily in F) such that σ � ρ for all σ ∈ G . It is easy to
see that, so long as F is a consistent subset of (X�→Y), there exists
a map f : X → Y such that σ � f for all σ ∈ F . Consistency is treated
in a more general setting in Chapter 9.

Let us now compare two programs P and Q having a common set
X of initial states and set Y of final states. Suppose first that they are
deterministic but do not necessarily terminate. As above, we may view
them as given by partial maps σP and σQ on X . Assume that σP � σQ ,
so that domσP ⊆ domσQ and σP (x) = σQ(x) for all x ∈ domσP . Thus
from any input state from which P terminates, Q does too and in the
same final state that P does; additionally Q may terminate from initial
states from which P fails to do so. Thus Q can achieve everything that
P can (more if σP < σQ , since then Q terminates from at least one
state from which P fails to terminate). We write P � Q if σP � σQ .
Widening this to (possibly) non-deterministic programs P and Q we
say that Q refines P , and write P � Q, if ‘Q is at least as good as
P ’ in the sense that Q achieves, at least, what P does. A particular
situation in which this may arise is the progressive unfolding of a while-
loop. Refinement of a non-deterministic program may result in one which
is deterministic, or closer to being deterministic. Refinement of a non-
terminating program may yield one which terminates more often.

1.11 Intervals in R and exact real arithmetic. The statement that
some computed quantity r equals 1.35 correct to 2 decimal places may
be re-expressed as the assertion that r lies in a particular interval in R.
We may accordingly treat the collection of all intervals [x, x] (where
−∞ � x � x � ∞) as a set P of approximations to the real numbers,
with a smaller interval giving a tighter bound than a larger one and so
being more informative. The intervals for which x = x correspond to
exact values. The set P carries a very natural order: for x = [x, x] and
y = [y, y] define x � y if and only if x � y and y � x. Then x � y
means that y represents (or contains) at least as much information as x.

Traditionally, a floating-point representation of real numbers has
been used in numerical computation. But this has inherent disadvan-
tages: rounding errors are endemic and errors in the input data, result-

Ordered sets 9

ing from its inexact representation, get propagated. An important goal,
therefore, is to implement in a suitable high-level programming language
the datatype for R, and the basic arithmetic operations and elementary
functions on it, in an efficient way and without rounding errors. (More
precisely, the objective is to accomplish this within the framework of
effective computation, in the sense of computability theory.) Building
on various partially successful attempts, A. Edelat has developed an ap-
proach starting from the observation that a real number can be viewed
as (being determined by) a shrinking nested sequence of intervals with
rational endpoints. The move to rational numbers here is, of course,
motivated by the fact that exact calculations can be performed with
rationals. A survey of Edelat’s work on this and other computational
models can be found in [18].

1.12 Information orderings. In each of Examples 1.9–1.11 the order
relation captures a notion of ‘is more informative than’: x � y has
an interpretation such as ‘y is more defined than x’ or ‘y is a better
approximation than x’. In each case, we have a notion of a total object
(a completely defined, or idealized, element). These total objects are the
infinite binary strings in the first example, the total maps in the second
and the 1-point intervals in the third. An important feature of these
examples from a computational point of view is that in each case the
total objects may be realized in a natural way as limits of partial objects.
Further, in Σ∗∗ and in (N�→N), for example, we have approximations
by partial objects which are in some sense ‘finite’: respectively, finite
strings or partial maps which have finite domain. In general, a finite
object should be one which encodes a finite amount of information.

We conclude our informal introduction to the occurrence of order in
computer science with a few general remarks, to widen the perspective
and to hint at themes picked up in later chapters.

1.13 Semantics and semantic domains. Running through our discus-
sion of ordered sets in computer science is the idea of a semantic domain:
a mathematical structure through which one can describe, analyse and
reason about the behaviour of entities such as datatypes, programs and
specifications. This use here of ‘semantic domain’ is generic, and very
broad. In Chapter 9, the term ‘domain’ acquires a narrower, more tech-
nical meaning, as an ordered set of a special sort. In a domain, certain
elements are to be viewed as partial, or incompletely specified, and each
element is required to be the limit (in an appropriate order-theoretic
sense) of special elements, designated finite. The ordered structures pre-
sented in 1.9 and 1.10 are examples of semantic domains. In fact, both

10 Ordered sets

these are domains in the sense of the formal definition in 9.7. Exam-
ple 1.11 is a structure of a similar but more general type.

Domains can alternatively be viewed as logical structures. From
this perspective, elements of domains are seen as being determined by
assertions about them (or propositions they satisfy) and are modelled by
sets of tokens of information. Defined in a precise way, either as a special
class of ordered sets or, equivalently, as information systems, domains
have a mathematical theory worthy of study in its own right, and not
just for its computational significance.

In computer science, different styles of semantic modelling are fav-
oured depending on what aspect of computing is being studied. As we
hint in our discussion of Galois connections in Chapter 7, a semantics
focussing on laws governing the actions of programs may be a useful view.
In operational semantics, programs are modelled by the actions they
perform on a computer (idealized rather than actual). With denotational
semantics, by contrast, the emphasis is on what programs do, rather
than on how a computer executes them. Programs are represented, for
example, by functions or relations and can be studied through their
representations without the distracting detail needed to describe their
implementation.

Chapters 8 and 9 deal with classes of semantic domains rich enough
to provide denotational models for complex computational processes,
including recursion. The term recursive is used of an algorithm defined
in terms of itself or a program which calls itself. An example is the
specification of the factorial function on N0 via the recursive formula

fact(k) =

{
1 if k = 0,

kfact(k − 1) if k > 0.

Recursion is a very powerful computational tool and so a central issue in
computer science has been the development of mathematical models of
programming which can accommodate it. Specifically, what is required
is a denotational framework within which theorems can be proved which
assert the existence of computable solutions to (suitable) objects given
by recursive definitions. The theory of fixpoints, which we introduce in
a mathematical way in Chapter 8, and of domains, have in part been
developed with this end in view.

Diagrams: the art of drawing ordered sets

One of the most useful and attractive features of ordered sets is that, in
the finite case at least, they can be ‘drawn’. To describe how to represent
ordered sets diagrammatically, we need the idea of covering.

Ordered sets 11

1.14 The covering relation. Let P be an ordered set and let x, y ∈ P .
We say x is covered by y (or y covers x), and write x −< y or y >− x, if
x < y and x � z < y implies z = x. The latter condition is demanding
that there be no element z of P with x < z < y .

Observe that, if P is finite, x < y if and only if there exists a finite
sequence of covering relations x = x0 −< x1 −< · · · −< xn = y . Thus, in
the finite case, the order relation determines, and is determined by, the
covering relation.

Here are some simple examples.

• In the chain N, we have m −< n if and only if n = m+ 1.

• In R, there are no pairs x, y such that x −< y .

• In ℘(X), we have A −< B if and only if B = A ∪ {b}, for some
b ∈ X \A.

1.15 Diagrams. Let P be a finite ordered set. We can represent
P by a configuration of circles (representing the elements of P) and
interconnecting lines (indicating the covering relation). The construction
goes as follows.

(1) To each point x ∈ P , associate a point p(x) of the Euclidean
plane R2 , depicted by a small circle with centre at p(x).

(2) For each covering pair x −< y in P , take a line segment &(x, y)
joining the circle at p(x) to the circle at p(y).

(3) Carry out (1) and (2) in such a way that

(a) if x −< y , then p(x) is ‘lower’ than p(y) (that is, in stan-
dard Cartesian coordinates, has a strictly smaller second coor-
dinate),

(b) the circle at p(z) does not intersect the line segment &(x, y) if
z �= x and z �= y .

It is easily proved by induction on the size, |P |, of P that (3) can be
achieved. A configuration satisfying (1)–(3) is called a diagram (or Hasse
diagram) of P . In the other direction, a diagram may be used to define
a finite ordered set; an example is given below. Of course, the same
ordered set may have many different diagrams. Diagram-drawing is as
much an art as a science, and, as will become increasingly apparent as
we proceed, good diagrams can be a real asset to understanding and to
theorem-proving.

Figure 1.1(i) shows two alternative diagrams for the ordered set
P = {a, b, c, d} in which a < c, a < d, b < c and b < d. (When we
specify an ordered set by a set of inequalities in this way, it is to be
understood that no other pairs of distinct elements are comparable.) In

12 Ordered sets

Figure 1.1(ii) we have drawings which are not legitimate diagrams for P ;
in the first, (3)(a) in 1.15 is violated and in the second, (3)(b) is.

❜
❜

❜
❜

❅
❅
❅�
�
�

b

d

a

c

❜❜
❜❜

��❅❅

✁
✁✁
✁❆

❆❆
❆ a

d
b

c

(i)

❜ ❜
❜❜

�
�
�

c

d

a

b ✟✟

❅
❅ ❜ ❜

❜❜
�
�
�

b

d

c

a ❅❅

(ii)

❜❜
❜❜ ❜❜

❜
�
�
�
�

c

e

g

a

b

d

f

(iii)

❜❜
❜�
��

❜ ❜ ❜ ❜ ❜
❅
❅�

�❅
❅�

� ❅❅
� � �� � �

(iv)

Figure 1.1

It is easy to tell from a diagram whether one element of an ordered
set is less than another: x < y if and only if there is a sequence of
connected line segments moving upwards from x to y . Thus in the
ordered set given in Figure 1.1(iii), e ‖ f and a < g , for example.

We have only defined diagrams for finite ordered sets. It is not pos-
sible to represent the whole of an infinite ordered set by a diagram, but
if its structure is sufficiently regular it can often be suggested diagram-
matically, as indicated by the examples in Figure 1.1(iv).

1.16 Examples. Figure 1.2 contains diagrams for a variety of ordered
sets. All possible ordered sets with three elements are presented in (i).
In (ii) we have diagrams for 2, 4 and 3.

Figure 1.2(iii)(a) depicts ℘({1, 2, 3}) (known as the cube). A less
satisfying, but equally valid, diagram for the same ordered set is shown in
Figure 1.2(iii)(b). In Figure 1.2(iv) are diagrams for SubG for G = V4 ,
the Klein 4-group, and G = S3 , the symmetric group on 3 letters; in
each case the subset N -SubG is shaded.

Figure 1.2(v) gives a diagram for the subset of Σ∗ consisting of
strings of length not more than 3.

The diagrammatic approach to finite ordered sets is made fully
legitimate by Proposition 1.18, which follows easily from Lemma 1.17.

Ordered sets 13

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

(iii)

(a) ❜ ❜❜
❜❜❜

❜ ❜

��✁
✁✁
✁

✂
✂
✂
✂
✂

❏
❏
❏
❏
❏

❅
❅
❅

✂
✂
✂
✂
✂

✁
✁✁
✁��

❅
❅
❅❆
❆❆
❆
❆
❆
❆

❆
❆❆
❆
❆
❆
❆

❏
❏
❏
❏
❏

❏
❏

(b)

❜❜
2

❜❜
❜❜

4

❜ ❜ ❜
3

(ii)

❜❜
❜

❜ ❜❜
✁
✁❆
❆

❜ ❜ ❜
❆
❆✁
✁ ❜❜ ❜ ❜ ❜ ❜

(i)

❜❜ ❜❜ ❜ ❜ ❜❜ ❜ ❜ ❜ ❜ ❜ ❜ ❜

✏✏
✏✏

✏✏						

✑
✑✑◗

◗◗
◗
◗◗✑

✑✑
✁
✁

✁
✁

✁
✁

✁
✁❆

❆
❆
❆

❆
❆

❆
❆

∅

10

00 01 10 11

000 001 010 011 100 101 110 111

(v)

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅

�� � ��
Sub V4 ❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅

�
� �
✟✟

✟✟

❍❍❍❍

Sub S3
(iv)

Figure 1.2

1.17 Lemma. Let P and Q be finite ordered sets and let ϕ : P → Q
be a bijective map. Then the following are equivalent:

(i) ϕ is an order-isomorphism;

(ii) x < y in P if and only if ϕ(x) < ϕ(y) in Q;

(iii) x −< y in P if and only if ϕ(x) −< ϕ(y) in Q.

Proof. The equivalence of (i) and (ii) is immediate from the definitions.

Now assume (ii) holds and take x −< y in P . Then x < y , so
ϕ(x) < ϕ(y) in Q. Suppose there exists w ∈ Q with ϕ(x) < w < ϕ(y).

14 Ordered sets

Since ϕ is onto, there exists u ∈ P such that w = ϕ(u). By (ii),
x < u < y , �. Hence ϕ(x) −< ϕ(y). The reverse implication is proved
in much the same way. Hence (iii) holds.

Now assume (iii) and let x < y in P . Then there exist elements
x = x0 −< x1 −< · · · −< xn = y . By (iii), ϕ(x0) = ϕ(x) −< ϕ(x1) −<

· · · −< ϕ(xn) = ϕ(y). Hence ϕ(x) < ϕ(y). The reverse implication is
proved similarly, using the fact that ϕ is onto. Hence (ii) holds. �

1.18 Proposition. Two finite ordered sets P and Q are order-iso-
morphic if and only if they can be drawn with identical diagrams.

Proof. Assume there exists an order-isomorphism ϕ : P → Q. To show
that the same diagram represents both P and Q, note that the dia-
gram is determined by the covering relation and invoke 1.17 (i) ⇒ (iii).
Conversely, assume P and Q can both be represented by the same dia-
gram, D. Then there exist bijective maps f and g from P and Q onto
the points of D. The composite map ϕ = g−1◦f is bijective and satisfies
condition (iii) in Lemma 1.17, so is an order-isomorphism. �

Constructing and de-constructing ordered sets

This section collects together a number of ways of constructing new
ordered sets from existing ones. The other way round, it will often
be helpful to analyse ordered sets by regarding them as built up from
simpler components. Where we refer to diagrams, it is to be assumed
that the ordered sets involved are finite.

1.19 The dual of an ordered set. Given any ordered set P we can form
a new ordered set P ∂ (the dual of P) by defining x � y to hold in P ∂ if
and only if y � x holds in P . For P finite, we obtain a diagram for P ∂

simply by ‘turning upside down’ a diagram for P . Figure 1.3 provides a
simple illustration.

To each statement about the ordered set P there corresponds a
statement about P ∂ . For example, we can assert that in P in Figure 1.3
there exists a unique element covering just three other elements, while in
P ∂ there exists a unique element covered by just three other elements.
In general, given any statement Φ about ordered sets, we obtain the dual
statement Φ∂ by replacing each occurrence of � by � and vice versa.

Thus ordered set concepts and results hunt in pairs. This fact can
often be used to give two theorems for the price of one or to reduce work
(as, for example, in the proof of Theorem 2.9). The formal basis for this
observation is the Duality Principle below; its proof is a triviality.

Ordered sets 15

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

❜
❜✟✟✟✟✟✟✟✟

✟✟

P

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅❜ ❍❍❍❍❍❍

❍❍❍❍ ❜
P ∂

Figure 1.3

1.20 The Duality Principle. Given a statement Φ about ordered sets
which is true in all ordered sets, the dual statement Φ∂ is also true in
all ordered sets.

We next introduce some important special elements.

1.21 Bottom and top. Let P be an ordered set. We say P has a
bottom element if there exists ⊥ ∈ P (called bottom) with the property
that ⊥ � x for all x ∈ P . Dually, P has a top element if there exists
� ∈ P such that x � � for all x ∈ P . As a simple instance of the
Duality Principle note that the true statement ‘⊥ is unique when it
exists’ has as its dual version the statement ‘� is unique when it exists’.
(The uniqueness comes from the antisymmetry of �.)

In 〈℘(X);⊆〉, we have ⊥ = ∅ and � = X . A finite chain always
has bottom and top elements, but an infinite chain need not have. For
example, the chain N has bottom element 1, but no top, while the chain
Z of integers possesses neither bottom nor top. Bottom and top do not
exist in any antichain with more than one element.

In the context of information orderings, ⊥ and � have the following
interpretations: ⊥ represents ‘no information’, while � corresponds to
an over-determined, or contradictory, element. None of the ordered
sets considered in 1.9–1.11 has a top element, except for the ordered
set (X �→ Y) in the very special case that X has just one element.
Each has a bottom element: this is the empty string for Σ∗∗ , the
partial map with empty domain for (X�→Y) and [−∞,∞] for interval
approximations to real numbers. In each case ⊥ is the least informative
element. In modelling computations, a bottom element is also useful
for representing and handling non-termination. Accordingly, computer
scientists commonly choose models which have bottoms, but prefer them
topless.

1.22 Lifting. In Chapters 8 and 9 almost all the results refer to ordered
sets with ⊥. Lack of a bottom element can be easily remedied by adding
one. Given an ordered set P (with or without ⊥), we form P⊥ (called P
‘lifted’) as follows. Take an element 0 /∈ P and define � on P⊥ := P∪{0}

16 Ordered sets

by
x � y if and only if x = 0 or x � y in P.

Any set S gives rise to an ordered set with ⊥, as follows. Order S by
making it an antichain, S , and then form S⊥ . Ordered sets obtained in
this way are called flat. In applications it is likely that S ⊆ R. In this
context we shall, for simplicity, write S⊥ instead of the more correct S⊥ .
Since we shall not have occasion to apply lifting to subsets of R ordered
as chains, this should cause no confusion. Figure 1.4 shows N⊥ .

❜ ❜❜ ❜❜ � ��
✁
✁
✑
✑✑❆

❆
◗
◗◗

⊥ N⊥

Figure 1.4

1.23 Maximal and minimal elements. Let P be an ordered set and
let Q ⊆ P . Then a ∈ Q is a maximal element of Q if a � x and x ∈ Q
imply a = x. We denote the set of maximal elements of Q by MaxQ.
If Q (with the order inherited from P) has a top element, �Q , then
MaxQ = {�Q}; in this case �Q is called the greatest (or maximum)
element of Q, and we write �Q = maxQ. A minimal element of Q ⊆ P
and minQ, the least (or minimum) element of Q (when these exist) are
defined dually, that is by reversing the order.

Figure 1.5 illustrates the distinction between ‘maximal’ and ‘max-
imum’: P1 has maximal elements a1, a2, a3 , but no greatest element; a
is the greatest element of P2 .

❜
❜❜ ❜❜❏

❏
❏�
�
❅
❅

a1
a2 a3

P1
❜✂✂✂❜✁✁❜ ❜❍❍

��
❜
◗
◗◗ ❜❜ P2

a

�
�

Figure 1.5

Let P be a finite ordered set. Then any non-empty subset of P
has at least one maximal element and, for each x ∈ P , there exists
y ∈ MaxP with x � y . In general a subset Q of an ordered set P may
have many maximal elements, just one, or none. A subset of the chain
N has a maximal element if and only if it is finite and non-empty. In the
subset Q of ℘(N) consisting of all subsets of N other than N itself, there
is no top element, but N \ {n} ∈ MaxQ for each n ∈ N. The subset of
℘(N) consisting of all finite subsets of N has no maximal elements. An
important set-theorists’ tool, known as Zorn’s Lemma, guarantees the

Ordered sets 17

existence of maximal elements, under suitable conditions. Zorn’s Lemma
is discussed in Chapter 10.

Referring to the examples in 1.9–1.11, we see that the maximal
elements in Σ∗∗ are the infinite strings, those in (X �→ Y) are the
total maps and the maximal elements in the interval approximations to
real numbers are the 1-element intervals. This suggests that when an
order relation models information, we might expect a correlation between
maximal elements and totally defined elements.

The next two subsections introduce important constructs for build-
ing new ordered sets.

1.24 Sums of ordered sets. There are several different ways to join two
ordered sets together. In each of these constructions we require that the
sets being joined are disjoint (and we shall assume this for the remainder
of this subsection). This is no real restriction since we can always find
isomorphic copies of the original ordered sets which are disjoint; see
Exercise 1.9 for a formal approach to this process.

Suppose that P and Q are (disjoint) ordered sets. The disjoint
union P

.∪ Q of P and Q is the ordered set formed by defining x � y
in P

.∪ Q if and only if either x, y ∈ P and x � y in P or x, y ∈ Q
and x � y in Q. A diagram for P

.∪Q is formed by placing side by side
diagrams for P and Q.

Again let P and Q be (disjoint) ordered sets. The linear sum P⊕Q
is defined by taking the following order relation on P ∪Q: x � y if and
only if

x, y ∈ P and x � y in P,

or x, y ∈ Q and x � y in Q,

or x ∈ P and y ∈ Q.

A diagram for P ⊕Q (when P and Q are finite) is obtained by placing
a diagram for P directly below a diagram for Q and then adding a line
segment from each maximal element of P to each minimal element of
Q. The lifting construction is a special case of a linear sum: P⊥ is just
1⊕ P . Similarly, P ⊕ 1 represents P with a (new) top element added.

Each of the operations
.∪ and ⊕ is associative: for (pairwise disjoint)

ordered sets P , Q and R,

P
.∪ (Q .∪R) = (P .∪Q) .∪R and P ⊕ (Q⊕R) = (P ⊕Q)⊕R.

This allows us to write iterated disjoint unions and linear sums unam-
biguously without brackets. We denote by Mn the sum 1 ⊕ n ⊕ 1.

18 Ordered sets

❜❜ ❜❜
❜

2
·∪ 3 ❜❜

❜❜
❜

2⊕ 3 ∼= 5

❜ ❜❜❜ ❜
❜❅

❅�
�

�
�❅

❅✟✟
✟✟❍❍❍❍

1⊕ 2⊕ 3

❜ ❜❜ ❜❜
��❅❅
❅❅��

M3

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜ ❜❜ ❜❜
��❅❅
❅❅��

M2

·∪M3

❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜❜
��❅❅
❅❅��

M2 ⊕M3

Figure 1.6

Figure 1.6 shows examples of sums. Further notions of sum, tailored to
particular applications, are presented in 8.4 and in Exercise 3.12.

1.25 Products. Let P1, . . . , Pn be ordered sets. The Cartesian prod-
uct P1 × · · · × Pn can be made into an ordered set by imposing the
coordinatewise order defined by

(x1, . . . , xn) � (y1, . . . , yn)⇐⇒ (∀i)xi � yi in Pi.

Given an ordered set P , the notation Pn is used as shorthand for the
n–fold product P × · · · × P .

As an aside we remark that there is another way to order the
product of ordered sets P and Q. Define the lexicographic order by
(x1, x2) � (y1, y2) if x1 < y1 or (x1 = y1 and x2 � y2). By iteration
a lexicographic order can be defined on any finite product of ordered
sets. Unless otherwise stated we shall always equip a product with the
coordinatewise order.

Informally, a product P × Q is drawn by replacing each point of
a diagram of P by a copy of a diagram for Q, and connecting ‘corre-
sponding’ points; this assumes that the points are placed in such a way
that the rules for diagram-drawing in 1.15 are obeyed. Figure 1.7(i)
shows diagrams for some simple products. In Figure 1.7(ii) we depict
the four-dimensional hypercube 24 in various ways. The right-hand rep-
resentation is obtained by thinking of 24 as order-isomorphic to 2× 23 .

Ordered sets 19

❜❜ × ❜❜
❜

= ❜ ❜ ❜❜ ❜ ❜
��
����

��

❅❅
❅❅
❅❅

❜❜ ❜
��❅❅ × ❜❜ ❜

��❅❅ = ❜❜ ❜
��❅❅

❜ ❜❜
��❅❅❜❜ ❜

��❅❅
✘✘✘

✘
✘✘✘

✘
✘✘✘

✘

(i)

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

✭✭✭✭
✭✭

✭✭✭✭
✭✭

✭✭✭✭
✭✭

✭✭✭✭
✭✭

✭✭✭✭
✭✭

✭✭✭✭
✭✭

✭✭✭✭
✭✭

✭✭✭✭
✭✭

❜❜ ❜ ❜❜ ❜ ❜ ❜❜❜ ❜❜ ❜❜ ❜ ❜

✁
✁

✁
✁❆
❆

❆
❆✑
✑✑◗

◗◗

✑
✑✑◗◗◗

�
�

�
�

❅
❅

❅
❅

✟✟
✟✟

✟✟
✟✟

✟✟
✟✟
✟✟

✟✟

❍❍❍❍
❍❍❍❍

❍❍❍❍

❍❍❍❍
❍❍❍❍

❍❍❍❍

�
�
�
�

�
�
�
�

❜❜ ❜❜❜ ❜ ❜❜ ❜❜ ❜❜ ❜ ❜❜ ❜

✦✦
✦

✦✦
✦

✦✦
✦

✦✦
✦

✦✦
✦

✦✦
✦

✦✦
✦✦✦

✦

�
�
� �

�
�

�
�
�

�
�
�

�
�
��

�
� �

�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

❛❛❛
�
�
��

�
�

�
�
� �

�
�

❛❛❛

❛❛❛

❛❛❛
❛❛❛

❛❛❛

❛❛❛

❛❛❛

❛❛❛

(ii)

Figure 1.7

The diagram for 23 is the same as that for ℘({1, 2, 3}) in Fig-
ure 1.2(iii). By 1.18, these two ordered sets are isomorphic. We can
prove directly a more general result.

1.26 Proposition. Let X = {1, 2, . . . , n} and define ϕ : ℘(X)→ 2n by
ϕ(A) = (ε1, . . . , εn) where

εi =

{
1 if i ∈ A,

0 if i /∈ A.

Then ϕ is an order-isomorphism.

Proof. Given A,B ∈ ℘(X), let ϕ(A) = (ε1, . . . , εn) and ϕ(B) =
(δ1, . . . , δn). Then

A ⊆ B ⇐⇒ (∀i) i ∈ A implies i ∈ B

⇐⇒ (∀i) εi = 1 implies δi = 1
⇐⇒ (∀i) εi � δi

⇐⇒ ϕ(A) � ϕ(B) in 2n.

20 Ordered sets

To show ϕ is onto, take x = (ε1, . . . , εn) ∈ 2n . Then x = ϕ(A), where
A = { i | εi = 1 }, so ϕ is onto. �

Down-sets and up-sets

Associated with any ordered set are two important families of sets.
They play a central role in the representation theory developed in later
chapters.

1.27 Definitions and remarks. Let P be an ordered set and Q ⊆ P .

(i) Q is a down-set (alternative terms include decreasing set and order
ideal) if, whenever x ∈ Q, y ∈ P and y � x, we have y ∈ Q.

(ii) Dually, Q is an up-set (alternative terms are increasing set and
order filter) if, whenever x ∈ Q, y ∈ P and y � x, we have y ∈ Q.

It may help to think of a down-set as one which is ‘closed under going
down’. Down-sets and up-sets may be depicted in a stylized way in a
‘directional Venn diagram’; see Figure 1.8. Such drawings do not have
the formal status of diagrams, as defined in 1.15.

✬

✫

✩

✪
✩✬�� xyQ1

✡ ✠☛✟
✒✑��uvQ2

P

Q1 a down-set, Q2 an up-set

✬

✫

✩

✪
P

✒
�

✑
�✏✩�

�� yx Q

Q not a down-set

Figure 1.8

Given an arbitrary subset Q of P and x ∈ P , we define

↓Q := { y ∈ P | (∃x ∈ Q) y � x } and ↑Q := { y ∈ P | (∃x ∈ Q) y � x } ,
↓x := { y ∈ P | y � x } and ↑x := { y ∈ P | y � x } .

These are read ‘down Q’, etc. It is easily checked that ↓Q is the smallest
down-set containing Q and that Q is a down-set if and only if Q = ↓Q,
and dually for ↑Q. Clearly ↓{x} = ↓x, and dually. Down-sets (up-sets)
of the form ↓x (↑x) are called principal.
1.28 The ordered set O(P) of down-sets. The family of all down-sets
of P is denoted by O(P). It is itself an ordered set, under the inclusion

Ordered sets 21

order. The letter O is traditional here; it comes from the term ‘order
ideal’. When P is finite, every non-empty down-set Q of P is expressible
in the form

⋃k
i=1↓xi (where {x1, . . . , xk} = MaxQ is an antichain). This

provides a recipe for finding O(P), though one which is practical only
when P is small. See also Exercise 1.14, which presents a ‘divide and
conquer’ strategy for calculating |O(P)| which is more efficient.

1.29 Examples.

(1) Consider the ordered set in Figure 1.1(iii). The sets {c}, {a, b, c, d, e}
and {a, b, d, f} are all down-sets. The set {b, d, e} is not a down-set;
we have ↓{b, d, e} = {a, b, c, d, e}. The set {e, f, g} is an up-set, but
{a, b, d, f} is not.

(2) Figure 1.9 shows O(P) in a simple case.

❜
❜

❜
❜

❅
❅
❅ d

c

a

b

N

❜ ❜❜ ❜
��

�� ❅❅

❅❅
❜ ❜❜ ❜
��

�� ❅❅

❅❅
❜ ❜❜ ❜
��

�� ❅❅

❅❅

∅

{d}
{c, d}

{a, c, d}

{a}
{a, d}

{a, b, d}
{a, b, c, d}

O(N)

Figure 1.9

(3) If P is an antichain, then O(P) = ℘(P).

(4) If P is the chain n, then O(P) consists of all the sets ↓x for x ∈ P ,
together with the empty set. Hence O(P) is an (n + 1)-element
chain. If P is the chain Q of rational numbers, then O(P) contains
the empty set, Q itself and all sets ↓x (for x ∈ Q). There are
other sets in O(P) too: for example, ↓x \ {x} (for x ∈ Q) and
{ y ∈ Q | y < a } (for a ∈ R \Q).

The following handy lemma connects the order relation and down-
sets. The proof is an easy but instructive exercise.

1.30 Lemma. Let P be an ordered set and x, y ∈ P . Then the
following are equivalent:

(i) x � y ;

(ii) ↓x ⊆ ↓y ;

(iii) (∀Q ∈ O(P)) y ∈ Q =⇒ x ∈ Q.

22 Ordered sets

1.31 O(P) and duality. Besides being related by duality, down-sets
and up-sets are related by complementation: Q is a down-set of P if
and only if P \ Q is an up-set of P (equivalently, a down-set of P ∂).
The proof is left as an exercise. For subsets A,B of P , we have A ⊆ B
if and only if P\A ⊇ P\B . It follows that

O(P)∂ ∼= O(P ∂),

the order-isomorphism being the complementation map.

The next proposition shows how O(P) can be analysed for various
compound ordered sets P . Another result of the same sort appears in
Exercise 1.18.

1.32 Proposition. Let P be an ordered set. Then

(i) O(P ⊕ 1) ∼= O(P)⊕ 1 and O(1⊕ P) ∼= 1⊕O(P);
(ii) O(P1

.∪ P2) ∼= O(P1)×O(P2).

Proof. (i) The down-sets of P ⊕ 1 are the down-sets of P together
with P ⊕ 1 itself. The down-sets of 1 ⊕ P are the empty set and all
down-sets of P with the least element of 1⊕ P adjoined. The required
isomorphisms are now easily set up.

(ii) It is easily verified that the map U �→ (U ∩ P1, U ∩ P2) defines an
order-isomorphism from O(P1

.∪ P2) to O(P1)×O(P2). �

❜❜ ❜❜ ❜❜❜
�
�❅

❅✟✟
✟✟❍❍❍❍

P2

❜ ❜❜ ❜❅
❅�

�

❜❜
❜ ❜❜ ❜❜❜
�
�
�
�

�
�

❅
❅

❅
❅

P1 ❜❜
❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜ ❜❜ ❜ ❜
��
����

��

❅❅
❅❅
❅❅

O(P1)

Figure 1.10

Ordered sets 23

1.33 Examples. Consider Figure 1.10.

(1) The ordered set P1 may be thought of as 1⊕((1⊕2)
.∪2). By 1.32(i)

and (ii), we see that O(P1) is isomorphic to 1⊕ ((1⊕ 22)× 3).
(2) Repeated use of Proposition 1.32 gives O(P2) ∼= (1⊕25)× (23⊕3).

This ordered set is too complicated to draw effectively, but we know
at least that its size is (1 + 25)× (23 + 3) = 363.

Maps between ordered sets

We have already made use of maps of a very special type between ordered
sets, namely order-isomorphisms. In this section, structure-preserving
maps are considered more generally.

1.34 Definitions. Let P and Q be ordered sets. A map ϕ : P → Q is
said to be

(i) order-preserving (or, alternatively, monotone) if x � y in P implies
ϕ(x) � ϕ(y) in Q;

(ii) an order-embedding (and we write ϕ : P ↪→ Q) if x � y in P if and
only if ϕ(x) � ϕ(y) in Q;

(iii) an order-isomorphism if it is an order-embedding which maps P
onto Q (recall 1.4).

It is important to appreciate the difference between the notions ‘order-
preserving map’ and ‘order-embedding’. The distinction is illustrated by
the examples below.

1.35 Examples.

(1) Figure 1.11 shows some maps between ordered sets. The map ϕ1

is not order-preserving. Each of ϕ2 to ϕ5 is order-preserving, but
not an order-embedding. The map ϕ6 is an order-embedding, but
not an order-isomorphism.

(2) Let P be any ordered set. Then, by 1.30, the map x �→ ↓x sets up
an order-embedding from P into O(P).

1.36 Remarks. The following are all easy to prove.

(1) Let ϕ : P → Q and ψ : Q→ R be order-preserving maps. Then the
composite map ψ ◦ ϕ, given by (ψ ◦ ϕ)(x) = ψ(ϕ(x)) for x ∈ P , is
order-preserving. More generally the composite of a finite number
of order-preserving maps is order-preserving, if it is defined.

(2) Let ϕ : P ↪→ Q and let ϕ(P) (defined to be {ϕ(x) | x ∈ P }) be the
image of ϕ. Then ϕ(P) ∼= P . This justifies the use of the term
embedding.

24 Ordered sets

❜ ❜❜ ❜
��

�� ❅❅

❅❅ a

cb

d

❜ e
❜❜
❜
ϕ5(b)=ϕ5(c)

ϕ5(a)

=ϕ5(d)

ϕ5(e)

ϕ5
✲

❜ ❜❜ ❜
��

�� ❅❅

❅❅ a

cb

d

❜ e
❜❜
❜

ϕ3
✲

ϕ3(a)=ϕ3(b)

ϕ3(c)=ϕ3(d)
=ϕ3(e)

❜ ❜❜ ❜
��

�� ❅❅

❅❅ a

cb

d

❜ e
❜❜
❜

ϕ4
✲

ϕ4(a)

ϕ4(b)=ϕ4(c)

ϕ4(d)=ϕ4(e)

❜ a ❜ b ❜ c ❜ d
�� ��❅❅ ❜❜

❜
ϕ1
✲

ϕ1(a)

ϕ1(b)=ϕ1(c)

ϕ1(d) ❜ ❜❜ ❜
��

�� ❅❅

❅❅ a

cb

d

❜ e
❜❜
❜

ϕ2
✲

ϕ2(a)=ϕ2(b)

ϕ2(c)=ϕ2(d)

ϕ2(e)

❜ ❜❜ ❜
��

�� ❅❅

❅❅ a

cb

d

ϕ6✲ ❜ ❜❜ ❜
��

�� ❅❅

❅❅
❜ ❜❜ ❜
��

�� ❅❅

❅❅

ϕ6(a)

ϕ6(c)

ϕ6(b)

ϕ6(d)

Figure 1.11

(3) An order-embedding is automatically a one-to-one map (by the
argument given in 1.4).

(4) Ordered sets P and Q are order-isomorphic if and only if there
exist order-preserving maps ϕ : P → Q and ψ : Q → P such that
ϕ ◦ ψ = idQ and ψ ◦ ϕ = idP (where idS : S → S denotes the
identity map on S given by idS(x) = x for all x ∈ S).

1.37 Ordered sets of maps. In elementary analysis an ordering of
functions is used and understood often without a formal definition ever
being given. Consider, for example, the statement ‘sinx � |x| on R’.
The order relation implicit here is the pointwise order: for functions
f, g : R → R, the relation f � g means f(x) � g(x) for all x ∈ R.

Pointwise ordering need not be confined to real-valued functions
on R. Suppose X is any set and Y an ordered set. We may order the
set Y X of all maps from X to Y as follows. We put f � g if and only
if f(x) � g(x) in Y , for all x ∈ X . When X is an n-element set, then
Y X is really just Y n , as defined in 1.25.

Any subset Q of Y X inherits the pointwise order. When X is itself
an ordered set, we may take Q to be the set of all order-preserving maps
from X to Y ; the resulting ordered set is denoted Y 〈X〉 . We sometimes
write (X → Y) in place of Y X and 〈X → Y 〉 in place of Y 〈X〉 . This
alternative notation is needed because the notation Y X and Y 〈X〉 be-
comes unwieldy when X or Y is of the form P⊥ or when higher-order

Ordered sets 25

functions are involved. (A higher-order function means a function which
maps functions to functions; a typical example is the map V in 8.12.)
As an example, we note that 〈X → 2〉 ∼= O(X)∂ ; see Exercise 1.25.

1.38 Speaking categorically. In modern pure mathematics it is rare
for a class of structures of a given type to be introduced without an
associated class of structure-preserving maps following hard on its heels.
Ordered sets + order-preserving maps is one example. Others are groups
+ group homomorphisms, vector spaces over a field + linear maps, topo-
logical spaces + continuous maps, and we later meet lattices + lattice
homomorphisms, CPOs + continuous maps, etc., etc. The recognition
that an appropriate unit for study is a class of objects together with
its structure-preserving maps (or morphisms) leads to category theory.
Informally, a category is a class of objects + morphisms, with an oper-
ation of composition of morphisms satisfying a set of natural conditions
suggested by examples such as those above.

Commuting diagrams of objects and morphisms expressing proper-
ties of categories and their structure-preserving maps (called functors)
form the basis of category theory. The representation theory we present
in Chapters 5 and 11 is a prime example of a topic which owes its devel-
opment to the apparatus of category theory. We do not have sufficient
need to call on the theory of categories to warrant setting up its for-
malism here, but it would be wrong not to acknowledge its subliminal
influence.

Exercises

Exercises from the text. Verify the unproved claims in 1.27. Prove
Lemma 1.30. Prove the unproved assertions in 1.31 and 1.36.

1.1 Let P be a set on which a binary relation < is defined such that,
for all x, y, z ∈ P ,

(a) x < x is false,

(b) x < y and y < z imply x < z .

Prove that if � is defined by

x � y ⇐⇒ (x < y or x = y),

then � is an order on P , and moreover every order on P arises from
a relation < satisfying (a) and (b). (A binary relation satisfying
(a) and (b) is called a strict order.)

1.2 There is a list of 16 diagrams of four-element ordered sets such
that every four-element ordered set can be represented by one of

26 Ordered sets

the diagrams in the list. (That is, up to order-isomorphism, there
are just 16 four-element ordered sets.) Find such a list.

1.3 Recall from 1.5 that � is defined on (any subset of) N0 by m � n if
and only if m divides n. Draw a diagram for each of the following
subsets of 〈N0;�〉:
(i) {1, 2, 3, 5, 30}, (v) {2, 3, 12, 18},
(ii) {1, 2, 3, 4, 12}, (vi) {1, 2, 3, 4, 6, 12},
(iii) {1, 2, 5, 10}, (vii) {1, 2, 3, 12, 18, 0},
(iv) {1, 2, 4, 8, 16}, (viii) {1, 2, 3, 5, 6, 10, 15, 30}.

1.4 Let P = {a, b, c, d, e, f, u, v}. Draw the diagram of the ordered set
〈P ;�〉 where

v < a, v < b, v < c, v < d, v < e, v < f, v < u,

a < c, a < d, a < e, a < f, a < u,

b < c, b < d, b < e, b < f, b < u,

c < d, c < e, c < f, c < u,

d < e, d < f, d < u,

e < u, f < u.

1.5 Prove that the ordered set Σ∗∗ of all binary strings is a tree (that
is, an ordered set P with ⊥ such that ↓x is a chain for each x ∈ P).
For each u ∈ Σ∗∗ describe the set of elements covering u.

1.6 Let P be the set of all finite binary strings (including the empty
string). Define � on P by u � v if and only if v is a prefix of u or
there exist (possibly empty) strings x, y, z such that v = x0y and
u = x1z . Show that � is an order on P and that 〈P ;�〉 is a chain
with a � but no ⊥. Draw a diagram of the induced order on the
seven strings of length less than three and another for the fifteen
strings of length less than four.

Let Q be the set of all finite or infinite binary strings with �
defined as for P ; then again 〈Q;�〉 is a chain. Does Q have a ⊥?
Show that if u is an infinite string then (i) there is no string v
such that u −< v , and (ii) there is a string w such that w −< u if
and only if u contains only a finite number of zeros. [Hint. First
consider the particular cases u1 = 1010101 and u2 = 10, where
x = xxx . . . for any finite string x.]

1.7 Let P and Q be ordered sets. Prove that (a1, b1) −< (a2, b2) in
P ×Q if and only if

(a1 = a2 & b1 −< b2) or (a1 −< a2 & b1 = b2).

Ordered sets 27

❜ ❜❜
❅
❅�

� × ❜❜
❜
❅❅ ❜

(i)

❜❜
❜

× ❜❜ ❜❜×

(ii)

Figure 1.12

1.8 Draw the diagrams of the products shown in Figure 1.12.

1.9 Let P and Q be ordered sets with P ∩ Q �= ∅. Give formal

definitions of the ordered sets P
.∪ Q and P ⊕ Q. [Hint. Define

appropriate orders on ({0} × P) ∪ ({1} ×Q).]

1.10 Let P and Q be chains. Prove that P ×Q is a chain in the lexico-
graphic order. Prove that P ×Q is a chain in the coordinatewise
order if and only if at most one of P and Q has more than one
element.

1.11 Let P and Q be ordered sets and equip P × Q with the lexico-
graphic order. Describe the down-sets of P ×Q.

1.12 Let A and B be down-sets of P . Prove that A −< B in 〈O(P);⊆〉
if and only if B = A ∪ {b} for some minimal element b of P \A.

1.13 Draw and label a diagram for O(P) for each of the ordered sets P
of Figure 1.13.

❜❜ ❜❜a

c

b

d

(i)

❜❜ ❜❜a

c

b

d

�
�

(ii)

❜❜ ❜❜❅
❅a

c

b

d

�
�

(iii)

Figure 1.13

1.14 Let P be a finite ordered set.

(i) Show that Q = ↓MaxQ, for all Q ∈ O(P).
(ii) Establish a one-to-one correspondence between the elements

of O(P) and antichains in P .

(iii) Hence show that, for all x ∈ P ,

|O(P)| = |O(P \ {x})|+ |O(P \ (↓x ∪ ↑x))|.

28 Ordered sets

❜ ❜ ❜ ❜ ❜
❅
❅�

�❅
❅�

�
c1

c2

c3

c4

c5

F5

❜
❜

❜
❜

❜
❜

�
�
�
�❅

❅
❅
❅

❅
❅
❅
❅�

�
�
�

a1

b1

a2

b2

a3

b3

C

Figure 1.14

1.15 (i) Let F5 be the 5-element ordered set (a fence) shown in Fig-
ure 1.14. By applying Exercise 1.14(iii) with x = c3 , or
otherwise, find the number of down-sets of F5 .

(ii) Let C be the 6-element ordered set (a crown) shown in
Figure 1.14. Calculate |O(C)| and deduce the number of
elements in O(〈℘({1, 2, 3});⊆〉).

1.16 Let Fn = {x1, . . . , xn} with x1 > x2 < x3 > . . . xn (and no other
comparabilities). An ordered set isomorphic to Fn or F

∂
n is called

an n-element fence. The Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . is
defined by f1 = f2 = 1 and fk = fk−2 + fk−1 for all k � 3. By
applying 1.31 and Exercise 1.14 with x = xn and using induction,
or otherwise, show that |O(Fn)| = |O(F ∂n)| = fn+2 for all n � 1.

1.17 Let P be a non-empty ordered set.

(i) Let Q be a subset of P which is both an up-set and a down-
set and let x �= y in P , with x ∈ Q. Assume that there exists
a fence in P joining x and y (that is, a fence as defined in
Exercise 1.16 with x = x1 and y = xn). Prove that y ∈ Q.

(ii) Prove that the following conditions are equivalent:

(a) the only up-sets of P belonging to O(P) are ∅ and P ;

(b) P is not the disjoint union of non-empty ordered sets
P1 and P2 ;

(c) P is such that, for any two points x, y in P , there is a
fence joining x and y (such an ordered set P is called
connected).

1.18 Let P and Q be ordered sets with � and ⊥, respectively. The
vertical sum P ⊕ Q of P and Q is obtained from the linear sum
P ⊕Q by identifying the top of P with the bottom of Q.

(i) Let P and Q be finite ordered sets. Show that

O(P ⊕Q) ∼= O(P)⊕O(Q).
(ii) Derive Proposition 1.32(i) from (i) above.

Ordered sets 29

1.19 Use the method illustrated in Examples 1.33, along with the result
of the previous exercise, to describe O(P) for each of the ordered
sets P in Figure 1.15. Give the cardinality of O(P) in each case.

❜❜
❜

❜❜
❜

❜ ❜

�
�❅
❅

�
�❅
❅

❅❅����� ���

x0

x1

x2

xn

y0

y1

y2

yn

P3

❜❜ ❜❜❅
❅�
�

❜ ❜❜ ❜❜
�
�❅
❅

❅
❅ �

�❅
❅

✁
✁

❍❍❍❍

❆
❆✑

✑✑◗◗◗

✟✟
✟✟

P4 ❜❜ ❜❜ ❜ ❜❜ ❜ ❜ ❜❜ ❜ ❜ ❜

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

P5 ❜
❜ ❜ ❜❜

❜❜❜❜
❜

❜ ❜
❚
❚
❚
❚
❚

✔
✔
✔
✔
✔

✑
✑✑

✂
✂
✂❇

❇
❇

✂
✂
✂❇
❇
❇

◗
◗◗

❜❜
❜❜
❜

✦✦
✦✦
✦

❛❛❛❛❛

P6

❜
❜
❜

❜ ❜
�
�
�

�
�
�

❅
❅
❅

❅
❅
❅✂

✂
✂

❇
❇
❇

� � � xnx1 x2

P1 =Mn

❜
❜
❜❜

❜ ❜ ❜
❜✡

✡
✡

✡
✡
✡❏

❏
❏

❏
❏
❏

P2

Figure 1.15

1.20 Let P be the 8-element ordered set shown in Figure 1.16.

(i) Explain carefully why |O(P)| �= 31.
(ii) Find the correct value for |O(P)|.
[Do not find all the down-sets!]

❜
❜ ❜
❜

❜ ❜

❜

❜

✁
✁
✁
✁
✁
✁❅

❅
❅

P

Figure 1.16

30 Ordered sets

1.21 Let X be a topological space satisfying

(T0) given x �= y in X there exists either an open set U
such that x ∈ U , y /∈ U or an open set V such that
x /∈ V , y ∈ V .

Show that �, defined by x � y if and only if x ∈ {y}, is an order
on X . Describe the down-sets and the up-sets for this order.

1.22 In which of the following cases is the map ϕ : P → Q order-
preserving?

(i) P = Q = 〈Z;�〉, and ϕ(x) = x+ 1.

(ii) P = 〈℘(S);⊆〉 with |S| > 1, Q = 2, and ϕ(U) = 1 if U �= ∅
and ϕ(∅) = 0.

(iii) P = 〈℘(S);⊆〉 with |S| > 1, Q = 2, and ϕ(U) = 1 if U = S
and ϕ(U) = 0 if U �= S .

(iv) P = Q = 〈N0;�〉, and ϕ(x) = nx (with n ∈ N0 fixed).

(v) P = 〈℘(S);⊆〉, Q = 2, and ϕ(U) = 1 if x ∈ U and ϕ(U) = 0
otherwise (with x ∈ S fixed).

(vi) P = Q = 〈℘(N);⊆〉, and ϕ defined by

ϕ(U) =

{1} if 1 ∈ U,

{2} if 2 ∈ U and 1 /∈ U,

∅ otherwise.

1.23 Let N∗
0 := {n ∈ N | 2 does not divide n } ∪ {0}.

(i) Define ϕ from 〈N0;�〉 to 〈N∗
0;�〉 by ϕ(0) = 0 and otherwise

ϕ(n) = n/2k , where 2k is the highest power of 2 which
divides n. Show that ϕ is order-preserving and maps onto
N∗

0 but is not an order-isomorphism.

(ii) Show that 〈N0;�〉 is order-isomorphic to 〈N∗
0;�〉.

1.24 Let P and Q be ordered sets.

(i) Show that ϕ : P → Q is order-preserving if and only if
ϕ−1(A) is a down-set in P whenever A is a down-set in Q.

(ii) Assume ϕ : P → Q is order-preserving. Then, by (i), the
map ϕ−1 : O(Q)→ O(P) is well defined.
(a) Show that ϕ is an order-embedding if and only if ϕ−1

maps O(Q) onto O(P).
(b) Show that ϕ maps onto Q if and only if the map

ϕ−1 : O(Q)→ O(P) is one-to-one.

Ordered sets 31

1.25 (i) Prove that a subset U of an ordered set P is an up-set if
and only if its characteristic function χ

U : P → 2 is order-
preserving. (Here χ

U(x) = 1 if x ∈ U and χ
U(x) = 0 if

x /∈ U .) Show further that O(P) ∼= 〈P → 2〉∂ .
(ii) Prove that 〈P → 2〉∂ ∼= 〈P ∂ → 2〉.

1.26 Prove that, for all ordered sets P , Q and R,

〈P → 〈Q→ R〉〉 ∼= 〈P ×Q→ R〉.

1.27 Let X be any set and let Y be an ordered set. Show that f −< g
in Y X if and only if there exists x0 ∈ X such that

(a) f(x) = g(x) for all x ∈ X \ {x0},
(b) f(x0) −< g(x0).

Assume that X is a finite ordered set. Show that f −< g in Y 〈X〉

if and only if there exists x0 ∈ X such that (a) and (b) hold.
[Hint. The ‘if’ direction is straightforward. To prove the ‘only
if’ direction, argue by contradiction. Assume that f −< g and
suppose that f and g differ at more than one element of X . Choose
y ∈ X minimal with respect to f(y) < g(y) and let z ∈ X \ {y}
satisfy f(z) < g(z). Define h : X → Y by

h(x) =

{
f(x) if x = y,

g(x) if x �= y.

Use the minimality of y to prove that h is order-preserving and
then show that f < h < g . Finally, show that if f −< g and
f(x0) < g(x0), then f(x0) −< g(x0).]

1.28 Draw diagrams for P 〈2〉 and P 〈3〉 where P is 2, 3 or V :=

1 ⊕ (1 .∪ 1). Label the elements—an element of P 〈2〉 may be
labelled xy where x � y in P and similarly an element of P 〈3〉

may be labelled xyz where x � y � z in P .

1.29 Let ρ ⊆ P ×P be a binary relation on a set P . Then the transitive
closure, ρt , of ρ is defined by a ρt b if and only if

(∃n ∈ N)(∃z0, z1, . . . , zn ∈ P) a = z0 ρ z1 ρ z2 ρ · · · ρ zn−1 ρ zn = b.

(i) Let � be an order on P and assume that a ‖ b for some
a, b ∈ P . Show that ρt is an order on P where

ρ := { (x, y) | x � y } ∪ {(a, b)}.

32 Ordered sets

[Hint. While this can be done directly, it is easier to work
with the corresponding strict order, <, and show that the
transitive closure of

{ (x, y) | x < y } ∪ {(a, b)}
is also a strict order. See Exercise 1.1.]

(ii) Use (i) to show that if P is finite then every order � on P
has a linear extension, that is, there is an order �1 such that
〈P ;�1〉 is a chain and for all a, b ∈ P we have a � b implies
a �1 b. (The infinite case will be proved in Exercise 10.2.)

(iii) Use (i) to show that if 〈P ;�〉 is a finite ordered set, then
there is a finite number of chains 〈P ;�1〉, . . . , 〈P ;�n〉 such
that for all a, b ∈ P we have

a � b ⇐⇒ (a �1 b & · · ·& a �n b).

(iv) Show that �1 is a linear extension of the order � on P if and
only if 〈P ;�1〉 is a chain and the identity map id: P → P is
an order-preserving map from 〈P ;�〉 to 〈P ;�1〉.

(v) Draw and label a diagram for every possible linear extension
of the ordered set N given in Figure 1.9.

1.30 Let P be a finite ordered set. The width of P is defined to be the
size of the largest antichain in P and is denoted by w(P).

(i) Find w(P) for each of the ordered sets P in Figure 1.13 and
show, in each case, that P can be written as a union of w(P)
many chains.

(ii) Show that if a finite ordered set P can be written as the
union of n chains, then n � w(P).

(iii) Dilworth’s Theorem states that the width w(P) of a finite
ordered set P equals the least n ∈ N such that P can be
written as a union of n chains. The more intrepid may try to
find their own proof of this important result. Alternatively,
a much easier, but still valuable, exercise is to rewrite the
snappy 14-line proof given in the paper by H. Tverberg in
J. Combinatorial Theory 3 (1967), pp. 305–306, explaining
every step in detail.

2

Lattices and Complete Lattices

Many important properties of an ordered set P are expressed in terms of
the existence of certain upper bounds or lower bounds of subsets of P .
Two of the most important classes of ordered sets defined in this way
are lattices and complete lattices. Here we present the basic theory of
such ordered sets, and also consider lattices as algebraic structures in a
way that is reminiscent of the study of, for example, groups or rings.

Lattices as ordered sets

It is a fundamental property of the real numbers, R, that if I is a closed
and bounded interval in R, then every subset of I has both a least
upper bound (or supremum) and a greatest lower bound (or infimum)
in I . These concepts pertain to any ordered set.

2.1 Definitions. Let P be an ordered set and let S ⊆ P . An element
x ∈ P is an upper bound of S if s � x for all s ∈ S . A lower bound is
defined dually. The set of all upper bounds of S is denoted by Su (read
as ‘S upper’) and the set of all lower bounds by S� (read as ‘S lower’):

Su := {x ∈ P | (∀s ∈ S) s � x } and S� := {x ∈ P | (∀s ∈ S) s � x }.
Since � is transitive, Su is always an up-set and S� a down-set. If
Su has a least element x, then x is called the least upper bound of S .
Equivalently, x is the least upper bound of S if

(i) x is an upper bound of S , and

(ii) x � y for all upper bounds y of S .

The least upper bound of S exists if and only if there exists x ∈ P such
that

(∀y ∈ P) [((∀s ∈ S) s � y) ⇐⇒ x � y],

and this characterizes the least upper bound of S . This way of presenting
the definition is slicker, but is less transparent until the two-step version
has been fully mastered.

Dually, if S� has a greatest element, x, then x is called the greatest
lower bound of S . Since least elements and greatest elements are unique
(see 1.23), least upper bounds and greatest lower bounds are unique when
they exist. The least upper bound of S is also called the supremum of S

34 Lattices and complete lattices

and is denoted by supS ; the greatest lower bound of S is also called the
infimum of S and is denoted by inf S .

2.2 Top and bottom. In the definitions of supS and inf S the two
extreme cases, where S is empty or S is P itself, warrant a brief inves-
tigation. Recall from 1.21 that, when they exist, the top and bottom
elements of P are denoted by � and ⊥ respectively. It is easily seen that
if P has a top element, then Pu = {�} in which case supP = �. When
P has no top element, we have Pu = ∅ and hence supP does not exist.
By duality, inf P = ⊥ whenever P has a bottom element. Now let S be
the empty subset of P . Then every element x ∈ P satisfies (vacuously)
s � x for all s ∈ S . Thus ∅u = P and hence sup∅ exists if and only if
P has a bottom element, and in that case sup∅ = ⊥. Dually, inf ∅ = �
whenever P has a top element.

2.3 Notation. Looking ahead, we shall adopt the following neater
notation: we write x∨y (read as ‘x join y ’) in place of sup{x, y} when it
exists and x∧ y (read as ‘x meet y ’) in place of inf{x, y} when it exists.
Similarly we write

∨
S (the ‘join of S ’) and

∧
S (the ‘meet of S ’) instead

of supS and inf S when these exist. It is sometimes necessary to indicate
that the join or meet is being found in a particular ordered set P , in
which case we write

∨
PS or

∧
P S . We shall often encounter the join

or meet of a set S of the form S = {Ai}i∈I where I is some indexing
set. We write, for example,

∨
i∈I Ai , as this is neater than the strictly

correct notation
∨{Ai | i ∈ I} for ∨

S . No confusion with the usage∨
PS is likely to arise.

We shall be particularly interested in ordered sets in which x ∨ y
and x ∧ y exist for all x, y ∈ P .

2.4 Definitions. Let P be a non-empty ordered set.

(i) If x ∨ y and x ∧ y exist for all x, y ∈ P , then P is called a lattice.

(ii) If
∨
S and

∧
S exist for all S ⊆ P , then P is called a complete

lattice.

In what follows we focus first on lattices, deferring a systematic
study of complete lattices until later.

2.5 Remarks on ∨ and ∧.

(1) Let P be any ordered set. If x, y ∈ P and x � y , then {x, y}u = ↑y
and {x, y}� = ↓x. Since the least element of ↑y is y and the greatest
element of ↓x is x, we have x∨y = y and x∧y = x whenever x � y .
In particular, since � is reflexive, we have x∨x = x and x∧x = x.

Lattices and complete lattices 35

(2) In an ordered set P , the least upper bound x∨ y of {x, y} may fail
to exist for two different reasons:

(a) because x and y have no common upper bound, or

(b) because they have no least upper bound.

In Figure 2.1(i) we have {a, b}u = ∅ and hence a∨ b does not exist.
In (ii) we find that {a, b}u = {c, d} and thus a∨ b does not exist as
{a, b}u has no least element.

❜ ❜
a b

(i)

❜
❜

❜
❜

❅
❅
❅�
�
�

b

d

a

c

(ii)

Figure 2.1

(3) Consider the ordered set drawn in Figure 2.2. It is tempting, at
first sight, to think that b ∨ c = i. On more careful inspection
we find that {b, c}u = {�, h, i}. Since {b, c}u has distinct minimal
elements, namely h and i, it cannot have a least element; hence
b∨ c does not exist. On the other hand, {a, b}u = {�, h, i, f} has a
least element, namely f , and thus a ∨ b = f .

❜❜ ❜ ❜ ❜
✑
✑✑◗

◗◗✁
✁❆
❆

❍❍❍❍�
�

❜ ❜ ❜�
�
�
�
�
�
�
�

❜❜ ❜❜
�
�

❆
❆
❆
❆

❅
❅

⊥

dcba

e f g

h i j

�

❜❜ ❜❜
�
�
�
�

i

�
h

f

{a, b}u = {�, h, i, f}

❜ ❜❜�
�

i

�
h

{b, c}u = {�, h, i}

Figure 2.2

(4) Let P be a lattice. Then for all a, b, c, d ∈ P ,

(i) a � b implies a ∨ c � b ∨ c and a ∧ c � b ∧ c,
(ii) a � b and c � d imply a ∨ c � b ∨ d and a ∧ c � b ∧ d.
We leave the proofs as an exercise.

(5) Let P be a lattice. Let a, b, c ∈ P and assume that b � a � b ∨ c.
Since c � b ∨ c, we have (b ∨ c) ∨ c = b ∨ c, by (1). Thus, by (4)(i),

b ∨ c � a ∨ c � (b ∨ c) ∨ c = b ∨ c,

36 Lattices and complete lattices

whence a ∨ c = b ∨ c; see Figure 2.3. This simple observation and
its dual are particularly useful when calculating joins and meets on
a diagram – once we know the join of b and c, the join of c with
the intermediate element a is forced.

❜ ❜❜ ❜
�
�
�
�❆
❆
❆
❆ c

b ∨ c
a

b

Figure 2.3

2.6 Examples.

(1) Let P be a non-empty ordered set. By Remark 2.5(1), if x � y
then x ∨ y = y and x ∧ y = x. Hence to show that P is a lattice,
it suffices to prove that x ∨ y and x ∧ y exist in P for all non-
comparable pairs x, y ∈ P . In particular, every chain is a lattice
in which x ∨ y = max{x, y} and x ∧ y = min{x, y}. Thus each of
R, Q, Z and N is a lattice under its usual order. None of them
is complete; every one lacks a top element, and a complete lattice
must have top and bottom elements (see 2.2). However, if x < y
in R, then the closed interval [x, y] is a complete lattice (by the
completeness axiom for R). Failure of completeness in Q is more
fundamental than in R. In Q, it is not merely the lack of top
and bottom elements which causes problems; for example, the set
{ s ∈ Q | s2 < 2 } has upper bounds but no least upper bound in Q.

(2) For any set X , the ordered set 〈℘(X);⊆〉 is a complete lattice in
which ∨

{Ai | i ∈ I } =
⋃
{Ai | i ∈ I },∧

{Ai | i ∈ I } =
⋂
{Ai | i ∈ I }.

As with
∨
and

∧
, we shall henceforth indicate the index set by

subscripting and, for example, instead of
⋃{Ai | i ∈ I } we shall

write
⋃
i∈IAi or occasionally, when no confusion is likely, simply⋃

Ai . We verify the assertion about meets; that about joins is
proved dually. Let {Ai}i∈I be a family of elements of ℘(X). Since⋂
i∈I Ai ⊆ Aj for all j ∈ I , it follows that

⋂
i∈I Ai is a lower bound

for {Ai}i∈I . Also, if B ∈ ℘(X) is a lower bound of {Ai}i∈I , then
B ⊆ Ai for all i ∈ I and hence B ⊆ ⋂

i∈I Ai . Thus
⋂
i∈I Ai is

indeed the greatest lower bound of {Ai}i∈I in ℘(X).
(3) Let ∅ �= L ⊆ ℘(X). Then L is known as a lattice of sets if it is

closed under finite unions and intersections and a complete lattice

Lattices and complete lattices 37

of sets if it is closed under arbitrary unions and intersections. If L
is a lattice of sets, then 〈L;⊆〉 is a lattice in which A ∨B = A ∪B
and A ∧ B = A ∩ B . Similarly, if L is a complete lattice of sets,
then 〈L;⊆〉 is a complete lattice with join given by set union and
meet given by set intersection. Further details will be given in
Lemma 2.28 and Corollary 2.29.

Let P be an ordered set and consider the ordered set O(P) of
all down-sets of P introduced in 1.27. If {Ai}i∈I ⊆ O(P), then⋃
i∈I Ai and

⋂
i∈I Ai both belong to O(P). Hence O(P) is a

complete lattice of sets, called the down-set lattice of P .

(4) The ordered set Mn (for n � 1) introduced in Chapter 1 (see
Figure 2.4) is easily seen to be a lattice. Let x, y ∈Mn with x ‖ y .
Then x and y are in the central antichain ofMn and hence x∨y = �
and x ∧ y = ⊥.

❜
❜
❜

M1

❜
❜❜

❜

✡
✡
✡

✡
✡
✡

❏
❏
❏

❏
❏
❏

M2

❜
❜
❜

❜❜
�
�
�

�
�
�

❅
❅
❅

❅
❅
❅

M3

❜
❜❜

❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅❜❜

✂
✂
✂

✂
✂
✂

❇
❇
❇

❇
❇
❇

M4

Figure 2.4

(5) Consider the ordered set 〈N0;�〉 of non-negative integers ordered
by division (see 1.5). Recall that k is the greatest common divisor
(or highest common factor) of m and n if

(a) k divides both m and n (that is, k � m and k � n),

(b) if j divides both m and n, then j divides k (that is, j � k for
all lower bounds j of {m,n}).

Thus the greatest common divisor of m and n is precisely the meet
of m and n in 〈N0;�〉. Dually, the join of m and n in 〈N0;�〉 is
given by their least common multiple. You should convince yourself
that these statements remain valid when m or n equals 0. Thus
〈N0;�〉 is a lattice in which

m ∨ n = lcm{m,n} and m ∧ n = gcd{m,n}.

Exercise 2.36 indicates two proofs that this lattice is complete.

38 Lattices and complete lattices

2.7 Lattices of subgroups. Assume that G is a group and 〈SubG;⊆〉
is its ordered set of subgroups. Let H,K ∈ SubG. It is certainly true
that H∩K ∈ SubG, whence H∧K exists and equals H∩K . Tiresomely,
H ∪K is only exceptionally a subgroup. Nevertheless, H ∨K does exist
in SubG, as (rather tautologically) the subgroup 〈H ∪K〉 generated by
H ∪K . Unfortunately there is no convenient general formula for H ∨K .
This lopsided behaviour is analysed more closely in the next section,
where we consider arbitrary joins and meets in SubG.

Normal subgroups are more amenable. Meet is again given by ∩
and join in N -SubG has a particularly compact description. It is a
straightforward exercise in group theory to show that if H,K are normal
subgroups of G, then

HK := {hk | h ∈ H, k ∈ K }
is also a normal subgroup of G. It follows easily that the join in N -SubG
is given by H ∨K = HK .

The lattices SubG and N -SubG are given in Figure 2.5 for the
group, D4 , of symmetries of a square and for the group Z2 × Z4 . The
elements of N -SubG are shaded. (You should convince yourself, from
the diagrams, that these ordered sets are indeed lattices.)

�� � ��
❅
❅�

�
�
�❅

❅

❜❜ ❜❜ ❅
❅�

�

✟✟
✟✟❍❍❍❍ ���❅

❅

SubD4 with N -SubD4 shaded

�� � ��
❅
❅�

�
�
�❅

❅

���
�
�

�
�❅

❅

SubZ2 × Z4 = N -SubZ2 × Z4

Figure 2.5

We may conjecture that properties of a group G are reflected in
properties of SubG and N -SubG, and vice versa. To take a very
simple example, a group G is finite if and only if SubG is finite (an
easy exercise). More interestingly, many group-theoretic properties of
G are equivalent to order- or lattice-theoretic properties of SubG or
N -SubG. Some results in this spirit can be found in the exercises for
Chapters 4 and 5. These results do not appear in the text because their
proofs lean much more heavily on group theory than on lattice theory.

Lattices and complete lattices 39

Lattices as algebraic structures

We introduced lattices as ordered sets of a special type. However, we
may adopt an alternative viewpoint. Given a lattice L, we may define
binary operations join and meet on the non-empty set L by

a ∨ b := sup{a, b} and a ∧ b := inf{a, b} (a, b ∈ L).

Note that 2.5(4)(ii) says precisely that the operations ∨ : L2 → L and
∧ : L2 → L are order-preserving.

In this section we view a lattice as an algebraic structure 〈L;∨,∧〉
and explore the properties of these binary operations. We first amplify
the connection between ∨,∧ and �. Since we shall often use the follow-
ing lemma, it deserves a name.

2.8 The Connecting Lemma. Let L be a lattice and let a, b ∈ L. Then
the following are equivalent:

(i) a � b;

(ii) a ∨ b = b;

(iii) a ∧ b = a.

Proof. It was shown in 2.5(1) that (i) implies both (ii) and (iii). Now
assume (ii). Then b is an upper bound for {a, b}, whence b � a. Thus
(i) holds. Similarly, (iii) implies (i). �

2.9 Theorem. Let L be a lattice. Then ∨ and ∧ satisfy, for all
a, b, c ∈ L,

(L1) (a ∨ b) ∨ c = a ∨ (b ∨ c) (associative laws)
(L1)∂ (a ∧ b) ∧ c = a ∧ (b ∧ c)
(L2) a ∨ b = b ∨ a (commutative laws)
(L2)∂ a ∧ b = b ∧ a
(L3) a ∨ a = a (idempotency laws)
(L3)∂ a ∧ a = a
(L4) a ∨ (a ∧ b) = a (absorption laws)
(L4)∂ a ∧ (a ∨ b) = a.

Proof. Note that the dual of a statement about lattices phrased in
terms of ∨ and ∧ is obtained simply by interchanging ∨ and ∧ (this
is the Duality Principle for lattices). It is therefore enough to consider
(L1)–(L4).

We proved (L3) in 2.5(1) and (L2) is immediate because, for any
set S , supS is independent of the order in which the elements of S are
listed. Also, (L4) follows easily from the Connecting Lemma. To prove
(L1) it is enough, thanks to (L2), to show that (a∨ b)∨ c = sup{a, b, c}.

40 Lattices and complete lattices

This is the case if {a ∨ b, c}u = {a, b, c}u . But
d ∈ {a, b, c}u ⇐⇒ d ∈ {a, b}u and d � c

⇐⇒ d � a ∨ b and d � c

⇐⇒ d ∈ {a ∨ b, c}u. �

We now turn things round and start from a set carrying operations
∨ and ∧ which satisfy the identities given in the preceding theorem.
2.10 Theorem. Let 〈L;∨,∧〉 be a non-empty set equipped with two
binary operations which satisfy (L1)–(L4) and (L1)∂–(L4)∂ from 2.9.

(i) For all a, b ∈ L, we have a ∨ b = b if and only if a ∧ b = a.

(ii) Define � on L by a � b if a ∨ b = b. Then � is an order relation.

(iii) With � as in (ii), 〈L;�〉 is a lattice in which the original operations
agree with the induced operations, that is, for all a, b ∈ L,

a ∨ b = sup{a, b} and a ∧ b = inf{a, b}.
Proof. Assume a ∨ b = b. Then

a = a ∧ (a ∨ b) (by (L4)∂)

= a ∧ b (by assumption).

Conversely, assume a ∧ b = a. Then

b = b ∨ (b ∧ a) (by (L4))

= b ∨ (a ∧ b) (by (L2)∂)

= b ∨ a (by assumption)

= a ∨ b (by (L2)).

Now define � as in (ii). Then � is reflexive by (L3), antisymmetric
by (L2) and transitive by (L1). The details are left as an exercise.

To show that sup{a, b} = a ∨ b in the ordered set 〈L;�〉, it must
first be checked that a ∨ b ∈ {a, b}u and second that d ∈ {a, b}u implies
d � a ∨ b. To do this, remember that � is given by p � q if and only
if p ∨ q = q and justify each step by appealing to one of the identities.
The characterization of inf is obtained by duality (again). �

2.11 Stocktaking. We have shown that lattices can be completely char-
acterized in terms of the join and meet operations. We may henceforth
say ‘let L be a lattice’, replacing L by 〈L;�〉 or by 〈L;∨,∧〉 if we want

Lattices and complete lattices 41

to emphasize that we are thinking of it as a special kind of ordered set
or as an algebraic structure.

In a lattice L, associativity of ∨ and ∧ allows us to write iterated
joins and meets unambiguously without brackets. An easy induction
shows that these correspond to sups and infs in the expected way:∨

{a1, . . . , an} = a1 ∨ · · · ∨ an,
for a1, . . . , an ∈ L (n � 1), and dually; observe that the case n = 3
underlies the proof of (L1) in 2.9. Consequently,

∨
F and

∧
F exist for

any finite, non-empty subset F of a lattice.

2.12 Definitions. Let L be a lattice. It may happen that 〈L;�〉 has
top and bottom elements � and ⊥ as defined in 1.21. When thinking
of L as 〈L;∨,∧〉, it is appropriate to view these elements from a more
algebraic standpoint. We say L has a one if there exists 1 ∈ L such that
a = a ∧ 1 for all a ∈ L. Dually, L is said to have a zero if there exists
0 ∈ L such that a = a∨0 for all a ∈ L. The lattice 〈L;∨,∧〉 has a one if
and only if 〈L;�〉 has a top element � and, in that case, 1 = �. A dual
statement holds for 0 and ⊥. A lattice 〈L;∨,∧〉 possessing 0 and 1 is
called bounded. A finite lattice is automatically bounded, with 1 =

∨
L

and 0 =
∧
L. Recalling 2.6(5), note that 〈N0; lcm, gcd〉 is bounded –

with 1 = 0 and 0 = 1 !!

Sublattices, products and homomorphisms

This section presents methods for deriving new lattices.

2.13 Sublattices. Let L be a lattice and ∅ �= M ⊆ L. Then M is a
sublattice of L if

a, b ∈M implies a ∨ b ∈M and a ∧ b ∈M.

We denote the collection of all sublattices of L by SubL and let
Sub0L = SubL ∪ {∅}; both are ordered by inclusion.
2.14 Examples.

(1) Any one-element subset of a lattice is a sublattice. More generally,
any non-empty chain in a lattice is a sublattice. (In fact, when
testing that a non-empty subset M is a sublattice, it is sufficient to
consider non-comparable elements a, b in 2.13.)

(2) In the diagrams in Figure 2.6 the shaded elements in lattices (i) and
(ii) form sublattices, while those in (iii) and (iv) do not.

42 Lattices and complete lattices

❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅�� ��

(iii)

❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅

��� ��

(iv)

❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅

� �� �

(i)

❜ ❜❜
❜❜

�
�

❅
❅

✑✑

◗◗

�
�

� �
(ii)

Figure 2.6

(3) A subset M of a lattice 〈L;�〉 may be a lattice in its own right
without being a sublattice of L; see Figure 2.6(iv) for an example.

2.15 Products. Let L and K be lattices. Define ∨ and ∧ coordinate-
wise on L×K , as follows:

(&1, k1) ∨ (&2, k2) = (&1 ∨ &2, k1 ∨ k2),

(&1, k1) ∧ (&2, k2) = (&1 ∧ &2, k1 ∧ k2).

It is routine to check that L×K satisfies the identities (L1)–(L4)∂ and
therefore is a lattice. Also

(&1, k1) ∨ (&2, k2) = (&2, k2)⇐⇒ &1 ∨ &2 = &2 and k1 ∨ k2 = k2

⇐⇒ &1 � &2 and k1 � k2

⇐⇒ (&1, k1) � (&2, k2),

with respect to the order on L × K defined in 1.25. Hence the lattice
formed by taking the ordered set product of lattices L and K is the
same as that obtained by defining ∨ and ∧ coordinatewise on L×K .

❜❜
❜

L = 3

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜
K = 1⊕ 22

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜✘✘✘✘✘✘✘
✘

✘✘✘
✘

✘✘✘
✘
✘✘✘

✘❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜✘✘✘✘✘✘✘
✘

✘✘✘
✘

✘✘✘
✘
✘✘✘

✘❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜
L×K

Figure 2.7

Lattices and complete lattices 43

Figure 2.7 shows the product of the lattices L = 3 and K = 1⊕22 .
Notice how (isomorphic copies) of L and K sit inside L × K as the
sublattices L×{0} and {0}×K . It is routine to show that the product
of lattices L and K always contains sublattices isomorphic to L and K .

Iterated products and powers are defined in the obvious way. It is
possible to define the product of an infinite family of lattices, but we
shall not need this construction.

2.16 Homomorphisms. From the viewpoint of lattices as algebraic
structures it is natural to regard as canonical those maps between lattices
which preserve the operations join and meet. Since lattices are also
ordered sets, order-preserving maps are also available. We need to
explore the relationship between these classes of maps. We begin with
some definitions.

Let L and K be lattices. A map f : L → K is said to be a
homomorphism (or, for emphasis, lattice homomorphism) if f is join-
preserving and meet-preserving, that is, for all a, b ∈ L,

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).
A bijective homomorphism is a (lattice) isomorphism. If f : L→ K is a
one-to-one homomorphism, then the sublattice f(L) of K is isomorphic
to L and we refer to f as an embedding (of L into K).

2.17 Remarks.

(1) It is straightforward to check that the inverse of an isomorphism is
a homomorphism and hence is also an isomorphism.

(2) We write L � K to indicate that the lattice K has a sublattice
isomorphic to the lattice L. It follows from (ii) of the proposition
below that M � L implies M ↪→ L (recall 1.34).

(3) For bounded lattices L and K it is often appropriate to consider
homomorphisms f : L→ K such that f(0) = 0 and f(1) = 1. Such
maps are called {0, 1}-homomorphisms. They arise in Chapters 5
and 11.

2.18 Examples. Referring back to Figure 1.11, we see that each of
ϕ2–ϕ6 is an order-preserving map from one lattice to another. The maps
ϕ2 and ϕ3 are homomorphisms, the remainder are not. Neither join nor
meet is preserved by ϕ4 . The map ϕ5 preserves joins but does not
preserve all meets; ϕ6 is meet-preserving but does not preserve all joins.
Thus in general an order-preserving map may not be a homomorphism.

44 Lattices and complete lattices

The possible demarcation dispute between order-isomorphism and
lattice isomorphism does not arise, as 2.19(ii) below shows.

2.19 Proposition. Let L and K be lattices and f : L→ K a map.

(i) The following are equivalent:

(a) f is order-preserving;

(b) (∀a, b ∈ L) f(a ∨ b) � f(a) ∨ f(b);
(c) (∀a, b ∈ L) f(a ∧ b) � f(a) ∧ f(b).

In particular, if f is a homomorphism, then f is order-preserving.

(ii) f is a lattice isomorphism if and only if it is an order-isomorphism.

Proof. Part (i) is an easy consequence of the Connecting Lemma. Con-
sider (ii). Assume that f is a lattice isomorphism. Then, by the Con-
necting Lemma,

a � b⇔ a∨b = b⇔ f(a∨b) = f(b)⇔ f(a)∨f(b) = f(b)⇔ f(a) � f(b),

whence f is an order-embedding and so is an order-isomorphism. Con-
versely, assume that f is an order-isomorphism. Then f is bijective
(see 1.4). By (i) and duality, to show that f is a lattice isomorphism
it suffices to show that f(a) ∨ f(b) � f(a ∨ b) for all a, b ∈ L. Since
f is surjective, there exists c ∈ L such that f(a) ∨ f(b) = f(c). Then
f(a) � f(c) and f(b) � f(c). Since f is an order-embedding, it follows
that a � c and b � c, whence a ∨ b � c. Because f is order-preserving,
f(a ∨ b) � f(c) = f(a) ∨ f(b), as required. �

Ideals and filters

Ideals are of fundamental importance in algebra. Filters, the order duals
of lattice ideals, have a variety of applications in logic and topology.
Ideals, specifically prime ideals, which we consider in Chapter 10, form
the basis for our representation theory in Chapter 11.

2.20 Definitions. Let L be a lattice. A non-empty subset J of L is
called an ideal if

(i) a, b ∈ J implies a ∨ b ∈ J ,

(ii) a ∈ L, b ∈ J and a � b imply a ∈ J .

See Figure 2.8 for illustrations.

The definition can be more compactly stated by declaring an ideal to
be a non-empty down-set closed under join. We spelt out the definition
as we did to draw a parallel between a lattice ideal and an ideal in a
ring. Later, Exercise 4.29 shows the connection to be stronger than just

Lattices and complete lattices 45

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

�� ��

shaded elements

an ideal

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

�� ���
shaded elements

not an ideal

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

� ��

shaded elements

not an ideal

Figure 2.8

an analogy. Clearly, every ideal J of a lattice L is a sublattice, since
a ∧ b � a for any a, b ∈ L.

A dual ideal is called a filter. Specifically, a non-empty subset G of
L is called a filter if

(i) a, b ∈ G implies a ∧ b ∈ G,

(ii) a ∈ L, b ∈ G and a � b imply a ∈ G.

The set of all ideals (filters) of L is denoted by I(L) (by F(L)), and
carries the usual inclusion order.

An ideal or filter is called proper if it does not coincide with L. It is
a very easy exercise to show that an ideal J of a lattice with 1 is proper
if and only if 1 /∈ J , and dually, a filter G of a lattice with 0 is proper if
and only if 0 /∈ G. For each a ∈ L, the set ↓a is an ideal; it is known as
the principal ideal generated by a. Dually, ↑a is a principal filter.

2.21 Examples.

(1) In a finite lattice, every ideal or filter is principal: the ideal J equals
↓∨J , and dually for a filter. (See also Exercise 2.37(ii).)

(2) Let L and K be bounded lattices and f : L → K a {0, 1}-homo-
morphism. Then f−1(0) is an ideal and f−1(1) is a filter in L.

(3) The following are ideals in ℘(X):

(a) all subsets not containing a fixed element of X ;

(b) all finite subsets (this ideal is non-principal if X is infinite).

(4) Let (X; T) be a topological space and let x ∈ X . Then the set
{V ⊆ X | (∃U ∈ T)x ∈ U ⊆ V } is a filter in ℘(X). Convergence
in a topological space can be elegantly formulated in terms of such
neighbourhood filters; see for example [5].

46 Lattices and complete lattices

Complete lattices and
⋂

–structures

We now return to complete lattices, which were briefly introduced at the
start of this chapter. Recall from 2.4 that a complete lattice is defined
to be a non-empty, ordered set P such that the join (supremum),

∨
S ,

and the meet (infimum),
∧
S , exist for every subset S of P .

We first collect together in a sequence of elementary lemmas useful
information for computing with arbitrary joins and meets, extending
the results for binary joins and meets presented earlier. The first lists
some immediate consequences of the definitions of least upper bound
and greatest lower bound.

2.22 Lemma. Let P be an ordered set, let S, T ⊆ P and assume that∨
S ,

∨
T ,

∧
S and

∧
T exist in P .

(i) s �
∨
S and s �

∧
S for all s ∈ S .

(ii) Let x ∈ P ; then x �
∧
S if and only if x � s for all s ∈ S .

(iii) Let x ∈ P ; then x �
∨
S if and only if x � s for all s ∈ S .

(iv)
∨
S �

∧
T if and only if s � t for all s ∈ S and all t ∈ T .

(v) If S ⊆ T , then
∨
S �

∨
T and

∧
S �

∧
T.

A straightforward application of this lemma yields the next one,
which shows that join and meet behave well with respect to set union.
We leave the proof as an exercise.

2.23 Lemma. Let P be a lattice, let S, T ⊆ P and assume that
∨
S ,∨

T ,
∧
S and

∧
T exist in P . Then∨(

S ∪ T) = (∨
S
) ∨ (∨

T
)

and
∧(

S ∪ T) = (∧
S
) ∧ (∧

T
)
.

An easy induction now yields the following result, previously noted
in 2.11, but worth re-iterating. The corollary follows from 2.2.

2.24 Lemma. Let P be a lattice. Then
∨
F and

∧
F exist for every

finite, non-empty subset F of P .

2.25 Corollary. Every finite lattice is complete.

We now describe how joins and meets interact with order-preserving
maps and order-isomorphisms. First we need a definition.

2.26 Definition. Let P and Q be ordered sets and ϕ : P → Q a map.
Then we say that ϕ preserves existing joins if whenever

∨
S exists in P

then
∨
ϕ(S) exists in Q and ϕ

(∨
S
)
=

∨
ϕ(S). Preservation of existing

meets is defined dually.

Lattices and complete lattices 47

2.27 Lemma. Let P and Q be ordered sets and ϕ : P → Q be an
order-preserving map.

(i) Assume that S ⊆ P is such that
∨
S exists in P and

∨
ϕ(S) exists

in Q. Then ϕ
(∨

S
)

�
∨
ϕ(S). Dually, ϕ

(∧
S
)

�
∧
ϕ(S) if both

meets exist.

(ii) Assume now that ϕ : P → Q is an order-isomorphism. Then ϕ
preserves all existing joins and meets.

The next lemma is useful for showing that certain subsets of com-
plete lattices are themselves complete lattices. Its corollary, obtained by
taking P to be a powerset with the inclusion order, is used sufficiently
frequently to deserve an explicit statement.

2.28 Lemma. Let Q be a subset, with the induced order, of some
ordered set P and let S ⊆ Q. If

∨
P S exists and belongs to Q, then∨

Q S exists and equals
∨
P S (and dually for

∧
Q S).

Proof. For any x ∈ S we have x �
∨
P S ; since

∨
P S ∈ Q by hypothesis,

it acts as an upper bound for S in Q. Further, if y is any upper bound
for S in Q, it is also an upper bound for S in P and so y �

∨
P S . �

2.29 Corollary. Let L be a family of subsets of a set X and let {Ai}i∈I
be a subset of L.

(i) If
⋃
i∈I Ai ∈ L, then

∨
L{Ai | i ∈ I } exists and equals

⋃
i∈IAi .

(ii) If
⋂
i∈I Ai ∈ L, then

∧
L{Ai | i ∈ I } exists and equals

⋂
i∈IAi .

Consequently, any (complete) lattice of sets is a (complete) lattice with
joins and meets given by union and intersection.

To show that an ordered set is a complete lattice requires only half
as much work as the definition would have us believe.

2.30 Lemma. Let P be an ordered set such that
∧
S exists in P for

every non-empty subset S of P . Then
∨
S exists in P for every subset

S of P which has an upper bound in P ; indeed,
∨
S =

∧
Su .

Proof. Let S ⊆ P and assume that S has an upper bound in P ; thus
Su �= ∅. Hence, by assumption, a :=

∧
Su exists in P . We claim that∨

S = a. The details are left as an exercise. �

2.31 Theorem. Let P be a non-empty ordered set. Then the following
are equivalent:

(i) P is a complete lattice;

(ii)
∧
S exists in P for every subset S of P ;

(iii) P has a top element, �, and
∧
S exists in P for every non-empty

subset S of P .

48 Lattices and complete lattices

Proof. It is trivial that (i) implies (ii), and (ii) implies (iii) since the meet
of the empty subset of P exists only if P has a top element (by 2.2). It
follows easily from the previous lemma that (iii) implies (i); the details
are left to the reader. �

This theorem has a simple corollary which, nevertheless, yields
many examples of complete lattices.

2.32 Corollary. Let X be a set and let L be a family of subsets of X ,
ordered by inclusion, such that

(a)
⋂
i∈IAi ∈ L for every non-empty family {Ai}i∈I ⊆ L, and

(b) X ∈ L.

Then L is a complete lattice in which∧
i∈I

Ai =
⋂
i∈I

Ai,

∨
i∈I

Ai =
⋂{

B ∈ L | ⋃i∈I Ai ⊆ B
}
.

Proof. By Theorem 2.31, to show that 〈L;⊆〉 is a complete lattice it
suffices to show that L has a top element and that the meet of every non-
empty subset of L exists in L. By (b), L has a top element, namely X .
Let {Ai}i∈I be a non-empty subset of L; then (a) gives

⋂
i∈IAi ∈ L.

Therefore Corollary 2.29 implies that
∧
i∈IAi exists and is given by⋂

i∈I Ai . Thus 〈L;⊆〉 is a complete lattice. Since X is an upper bound
of {Ai}i∈I in L, Lemma 2.30 gives∨

i∈I
Ai =

∧
{Ai | i ∈ I }u

=
⋂
{B ∈ L | (∀i ∈ I)Ai ⊆ B }

=
⋂{

B ∈ L | ⋃i∈I Ai ⊆ B
}
. �

2.33 Definitions. If L is a non-empty family of subsets of X which
satisfies condition (a) of Corollary 2.32, then L is called an intersection
structure (or

⋂
–structure) on X . If L also satisfies (b), we refer to it

as a topped intersection structure on X . An alternative term is closure
system; see 7.4.

Intersection structures which occur in computer science are usu-
ally topless while those in algebra are almost invariably topped. In a
complete lattice L of this type, the meet is just set intersection, but
in general the join is not set union. This is illustrated in the examples
which follow.

Lattices and complete lattices 49

2.34 Examples.

(1) Consider (X �→ Y), where X and Y are any non-empty sets.
From the observations in 1.10 we saw that the map π �→ graphπ is
an order-embedding of (X �→ Y) into ℘(X × Y). Let L be the
family of subsets of X × Y which are graphs of partial maps. To
prove that L is closed under intersections, use the characterization
given in 1.10: if S ⊆ X × Y , then S ∈ L if and only if (s, y) ∈ S
and (s, y′) ∈ S imply y = y′ . Thus L is an

⋂
–structure. It is not

topped unless |Y | = 1.
(2) Each of the following is a topped

⋂
–structure and so forms a

complete lattice under inclusion:

• the subgroups, SubG, of a group G;

• the normal subgroups, N -SubG, of a group G;

• the equivalence relations on a set X ;
• the subspaces, SubV of a vector space V ;

• the convex subsets of a real vector space;
• the subrings of a ring;
• the ideals of a ring;
• Sub0 L, the sublattices of a lattice L, with the empty set
adjoined (note that SubL is not closed under intersections,
except when |L| = 1);

• the ideals of a lattice L with 0 (or, if L has no zero element, the
ideals of L with the empty set added), and dually for filters.

These families all belong to a class of
⋂
–structures – called algebraic⋂

–structures because of their provenance – which we shall consider
further in Chapter 7.

(3) The closed subsets of a topological space are closed under finite
unions and finite intersections and hence form a lattice of sets in
which A ∨B = A ∪B and A ∧B = A ∩B . In fact, the closed sets
form a topped

⋂
–structure and consequently the lattice of closed

sets is complete. The formulae for arbitrary (rather than finite)
joins and meets given in 2.32 show that, in general, meet is given
by intersection while the join of a family of closed sets is not their
union but is obtained by forming the closure of their union.

(4) Since the open subsets of a topological space are closed under ar-
bitrary union and include the empty set, the dual of 2.31 shows
that they form a complete lattice under inclusion. The dual version

50 Lattices and complete lattices

of 2.32 shows that join and meet are given by∨
i∈I

Ai =
⋃
i∈I

Ai and
∧
i∈I

Ai = Int
(⋂
i∈I

Ai
)
,

where Int(A) denotes the interior of A.

We conclude this section with a famous theorem concerning com-
plete lattices, with an appealingly simple proof. Given an ordered set
P and a map F : P → P , an element x ∈ P is called a fixpoint of F if
F (x) = x. A full discussion of fixpoints is presented in Chapter 8 and
some applications of them are discussed in Chapter 9.

2.35 The Knaster–Tarski Fixpoint Theorem. Let L be a complete
lattice and F : L→ L an order-preserving map. Then

α :=
∨
{x ∈ L | x � F (x) }

is a fixpoint of F . Further, α is the greatest fixpoint of F. Dually, F
has a least fixpoint, given by

∧{x ∈ L | F (x) � x }.

Proof. Let H = {x ∈ L | x � F (x) }. For all x ∈ H we have x � α,
so x � F (x) � F (α). Thus F (α) ∈ Hu , whence α � F (α). We now
use this inequality to prove the reverse one (!) and thereby complete the
proof that α is a fixpoint. Since F is order-preserving, F (α) � F (F (α)).
This says F (α) ∈ H , so F (α) � α. If β is any fixpoint of F then β ∈ H ,
so β � α. �

2.36 Remark. Theorems which produce fixpoints of certain maps have
been extensively exploited in computer science. The Knaster–Tarski
Theorem is no exception, but it also has an important application of a
different kind: it yields as a by-product the famous Schröder–Bernstein
Theorem stating that there is a bijection between sets A and B if there
exist one-to-one maps from A to B and from B to A. For the proof,
see Exercise 2.32.

Chain conditions and completeness

By Corollary 2.25, every finite lattice is complete. There are various
finiteness conditions, of which ‘P is finite’ is the strongest, which will
guarantee that a lattice P is complete.

2.37 Definitions. Let P be an ordered set.

(i) If C = {c0, c1, . . . , cn} is a finite chain in P with |C| = n+ 1, then
we say that the length of C is n.

Lattices and complete lattices 51

(ii) P is said to have length n, written &(P) = n, if the length of the
longest chain in P is n.

(iii) P is of finite length if it has length n for some n ∈ N0 .

(iv) P has no infinite chains if every chain in P is finite.

(v) P satisfies the ascending chain condition, (ACC), if given any se-
quence x1 � x2 � · · · � xn � · · · of elements of P , there exists
k ∈ N such that xk = xk+1 = The dual of the ascending chain
condition is the descending chain condition, (DCC).

2.38 Examples.

(1) The lattices Mn of Figure 2.4 are of length 2. A lattice of finite
length has no infinite chains and so satisfies both (ACC) and (DCC).

(2) The lattice 〈N0;�〉 satisfies (DCC) but not (ACC).
(3) Consider the lattices in Figure 2.9. The chain N satisfies (DCC)

but not (ACC), and, dually, N∂ satisfies (ACC) but not (DCC).

The lattice 1 ⊕ (
.⋃
n∈N
n) ⊕ 1 is the simplest example of a lattice

which has no infinite chains but is not of finite length.

(4) The finiteness conditions in 2.37 first arose in ‘classical’ algebra. For
example, it can be shown that a vector space V is finite dimensional
if and only if SubV is of finite length, in which case dimV =
&(SubV).

❜❜
❜�
��

N

❜❜
❜

���
N∂

❜❜ ❜ ❜❜
❜❜❜❜

❜❜ ❜
❅
❅
❅
❅
❅

�
�
�
�
�

✑
✑✑

✁
✁❆
❆

✁
✁❆
❆
◗
◗◗

� � �

1⊕ (
.⋃
n∈N
n)⊕ 1

Figure 2.9

A formal proof of the following lemma requires some form of the
axiom of set theory known as the Axiom of Choice. We give an informal
derivation here and reveal in Chapter 10 how this can be converted into
a formal proof (see 10.1).

52 Lattices and complete lattices

2.39 Lemma. An ordered set P satisfies (ACC) if and only if every
non-empty subset A of P has a maximal element.

Informal proof: We shall prove the contrapositive in both directions,
that is, we prove that P has an infinite ascending chain if and only if
there is a non-empty subset A of P which has no maximal element.

Assume that x1 < x2 < · · · < xn < · · · is an infinite ascending
chain in P ; then clearly A := {xn | n ∈ N } has no maximal element.
Conversely, assume that A is a non-empty subset of P which has no
maximal element. Let x1 ∈ A. Since x1 is not maximal in A, there
exists x2 ∈ A with x1 < x2 . Similarly, there exists x3 ∈ A with x2 < x3 .
Continuing in this way (and this is where the Axiom of Choice comes
in) we obtain an infinite ascending chain in P . �

2.40 Theorem. An ordered set P has no infinite chains if and only if
it satisfies both (ACC) and (DCC).

Proof. Clearly if P has no infinite chains, then it satisfies both (ACC)
and (DCC). Suppose that P satisfies both (ACC) and (DCC) and con-
tains an infinite chain C . Note that if A is a non-empty subset of C , then
A has a maximal element m, by 2.39. If a ∈ A, then since C is a chain
we have a � m or m � a. But m � a implies m = a by the maximality
of m. Hence a � m for all a ∈ A, and so every non-empty subset of C
has a greatest element. Let x1 be the greatest element of C , let x2 be
the greatest element of C \{x1}, and in general let xn+1 be the greatest
element of C \ {x1, x2, . . . , xn}. Then x1 >− x2 >− · · · >− xn >− · · · is
an infinite, descending, covering chain in P , � . �

Lattices with no infinite chains are complete as the following more
general result shows.

2.41 Theorem. Let P be a lattice.

(i) If P satisfies (ACC), then for every non-empty subset A of P there
exists a finite subset F of A such that

∨
A =

∨
F (which exists in

P by 2.24).

(ii) If P has a bottom element and satisfies (ACC), then P is complete.

(iii) If P has no infinite chains, then P is complete.

Proof. Assume that P satisfies (ACC) and let A be a non-empty subset
of P . Then, by 2.24,

B :=
{∨

F | F is a finite non-empty subset of A
}

is a well-defined subset of P . Since B is non-empty, 2.39 guarantees
that B has a maximal element m =

∨
F for some finite subset F of A.

Lattices and complete lattices 53

Let a ∈ A. Then
∨
(F ∪ {a}) ∈ B and m =

∨
F �

∨
(F ∪ {a})

by 2.22(v). Thus m =
∨
F =

∨
(F ∪ {a}) since m is maximal in B . As

m =
∨
(F ∪ {a}) we have a � m, whence m is an upper bound of A.

Let x ∈ P be an upper bound of A. Then x is an upper bound of F
since F ⊆ A and hence m =

∨
F � x. Thus m is the least upper bound

of A; that is,
∨
A = m =

∨
F . Hence (i) holds.

Combining (i) with the dual of 2.31 yields (ii), and since a lattice
with no infinite chains has a bottom element and satisfies (ACC), (iii)
follows from (ii). �

Join-irreducible elements

The Fundamental Theorem of Arithmetic says that every natural num-
ber is a product of prime numbers. Since prime numbers are just the
product-irreducible natural numbers (other than 1) an analogous result
for lattices would state that every element is a meet of meet-irreducible
elements or, dually, a join of join-irreducible elements. This will not be
true in general but will hold provided we impose an appropriate finite-
ness condition. We prefer to build from the bottom up rather than the
top down and consequently focus on joins rather than meets.

2.42 Definitions. Let L be a lattice. An element x ∈ L is join-
irreducible if

(i) x �= 0 (in case L has a zero),
(ii) x = a ∨ b implies x = a or x = b for all a, b ∈ L.

Condition (ii) is equivalent to the more pictorial

(ii)′ a < x and b < x imply a ∨ b < x for all a, b ∈ L.

A meet-irreducible element is defined dually. We denote the set of
join-irreducible elements of L by J (L) and the set of meet-irreducible
elements by M(L). Each of these sets inherits L’s order relation, and
will be regarded as an ordered set.

Let P be an ordered set and let Q ⊆ P . Then Q is called join-
dense in P if for every element a ∈ P there is a subset A of Q such that
a =

∨
P A. The dual of join-dense is meet-dense.

2.43 Examples of join-irreducible elements.

(1) In a chain, every non-zero element is join-irreducible. Thus if L is
an n-element chain, then J (L) is an (n− 1)-element chain.

(2) In a finite lattice L, an element is join-irreducible if and only if it
has exactly one lower cover. This makes J (L) extremely easy to

54 Lattices and complete lattices

❜ ❜❜ ❜
��

�� ❅❅

❅❅ � ��
❜ ❜ ❜❜ ❜

��
�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅
� ��� ��

❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

� �� �
� �

�❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅
��� ��

❅
❅

�
�
�

�✥✥✥
✥✥❍❍❍

Figure 2.10

identify from a diagram of L. Figure 2.10 gives some examples.
The join-irreducible elements are shaded.

(3) Consider the lattice 〈N0; lcm, gcd〉. A non-zero element m ∈ N0 is
join-irreducible if and only if m is of the form pr , where p is a prime
and r ∈ N.

(4) In a lattice ℘(X) the join-irreducible elements are exactly the sin-
gleton sets, {x}, for x ∈ X .

(5) It is easily seen that the lattice of open subsets of R (that is, subsets
which are unions of open intervals) has no join-irreducible elements.

2.44 Remarks. In the definition in 2.42 we have debarred 0 from being
regarded as join-irreducible. This is necessary for the claim on lower
covers in 2.43(2) to be valid and leads to tidier statements of results in
Chapter 5. Certainly we can never write 0 as a non-empty join,

∨
P A,

unless 0 ∈ A. To compensate for this we have not excluded A = ∅ in
the definition of join-density in 2.42. Recall from 2.2 that

∨
P∅ = 0

in a lattice P with zero. Insisting that 0 is not join-irreducible is the
lattice-theoretic equivalent of declaring that 1 is not a prime number.

Our examples have shown that join-irreducible elements do not
necessarily exist in infinite lattices. On the other hand, it is easy to see
that in a finite lattice every element is a join of join-irreducible elements.
The next proposition proves more.

Lattices and complete lattices 55

2.45 Proposition. Let L be a lattice satisfying (DCC).

(i) Suppose a, b ∈ L and a � b. Then there exists x ∈ J (L) such that
x � a and x � b.

(ii) a =
∨ {x ∈ J (L) | x � a } for all a ∈ L.

These conclusions hold in particular if L is finite.

Proof. Let a � b and let S := {x ∈ L | x � a and x � b }. The set S
is non-empty since it contains a. Hence, since L satisfies (DCC), there
exists a minimal element x of S (via the dual of Lemma 2.39). We claim
that x is join-irreducible. Suppose that x = c∨d with c < x and d < x.
By the minimality of x, neither c nor d lies in S . We have c < x � a, so
c � a, and similarly d � a. Therefore c, d /∈ S implies c � b and d � b.
But then x = c ∨ d � b, � . Thus x ∈ J (L) ∩ S , which proves (i).

Let a ∈ L and let T := {x ∈ J (L) | x � a }. Clearly a is an upper
bound of T . Let c be an upper bound of T . We claim that a � c.
Suppose that a � c; then a � a ∧ c. By (i) there exists x ∈ J (L) with
x � a and x � a∧ c. Hence x ∈ T and consequently x � c since c is an
upper bound of T . Thus x is a lower bound of {a, c} and consequently
x � a ∧ c, � . Hence a � c, as claimed. This proves that a =

∨
T in L,

whence (ii) holds. �

Part (iii) of our final result for this chapter is the promised analogue
of (the existence portion of) the Fundamental Theorem of Arithmetic.
(See Exercise 4.20 for a lattice-theoretic analogue of the uniqueness part
of the theorem.)

The join-density of the join-irreducibles in a finite lattice plays a
vital role in Chapter 5. More immediately, in Chapter 3 we exploit the
join-density results in Theorem 2.46 in tandem with their meet-density
duals.

2.46 Theorem. Let L be a lattice.

(i) If L satisfies (DCC), then J (L) and, more generally, any subset Q
which contains J (L) is join-dense in L.

(ii) If L satisfies (ACC) and Q is join-dense in L, then, for each a ∈ L,
there exists a finite subset F of Q such that a =

∨
F .

(iii) If L has no infinite chains, then, for each a ∈ L, there exists a finite
subset F of J (L) such that a =

∨
F .

(iv) If L has no infinite chains, then Q is join-dense in L if and only if
J (L) ⊆ Q.

Proof. (i) is an immediate consequence of part (ii) of the previous propo-
sition, (ii) follows immediately from Theorem 2.41(i). Since no infi-
nite chains implies both (ACC) and (DCC), (iii) is a consequence of (i)

56 Lattices and complete lattices

and (ii). One direction of (iv) follows from (i). In the other direction,
assume that Q is join-dense in L and let x ∈ J (L). By (ii), there is a
finite subset F of Q such that x =

∨
F . Since x is join-irreducible we

have x ∈ F and hence x ∈ Q. Thus, J (L) ⊆ Q. �

Exercises

Exercises from the text. Prove the claims in 2.5(4). Show that the
inverse of a lattice isomorphism is also a lattice isomorphism. Complete
the proof of Proposition 2.19(i). Prove the unproved assertions in 2.21.
Complete the proofs of 2.22, 2.23, 2.24. Prove the assertions in 2.34(2)
concerning the families of sublattices and of ideals of a lattice. Prove
the assertion that, if G is any group, SubG is finite if and only if G is
finite (see 2.7).

2.1 Consider the diagram in Figure 2.11 of the ordered subset P =
{1, 2, 3, 4, 5, 6, 7} of 〈N0;�〉. Find the join and meet, where they
exist, of each of the following subsets of P . Either specify the join
or meet or indicate why it fails to exist.

(i) {3}, (ii) {4, 6}, (iii) {2, 3}, (iv) {2, 3, 6}, (v) {1, 5}.

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅ ❜ ❜❜❜
✟✟

✟✟
✏✏

✏✏
✏✏❅

❅

❅
❅

1

3 5 7

6

2

4

Figure 2.11

2.2 The ordered subset Q = {1, 2, 4, 5, 6, 12, 20, 30, 60} of 〈N0;�〉 is
not a lattice. Draw a diagram of Q (it is ‘cube-like’) and find
elements a, b, c, d ∈ Q such that a∨ b and c∧ d do not exist in Q.

2.3 Consider the ordered set drawn in Figure 2.2. Use the technique
illustrated in Example 2.5(3) to calculate the following elements or
to explain why they fail to exist.

(i) h ∧ i (iv) (a ∨ b) ∨ c (vii) a ∨ (c ∨ d)
(ii) a ∨ c (v) a ∨ (b ∨ c) (viii) (a ∨ c) ∨ d
(iii) h ∧ j (vi) c ∨ d (ix)

∨
{a, c, d}.

Lattices and complete lattices 57

2.4 Repeat Exercise 2.3 for the following elements of the ordered set
shown in Figure 2.12.

(i) & ∧ e (iv) d ∨ e (vii) (j ∧ &) ∧ k
(ii) (& ∧ e) ∧ k (v) c ∨ (d ∨ e) (viii) j ∧ (& ∧ k)
(iii) c ∨ e (vi)

∨
{c, d, e} (ix) j ∧ k.

❜ ❜❜
��

❜ ❜❜
❅❅

❍❍❍

❜❜❜
❅❅��

❜❜
✟✟
✟
❅❅

❜❜ ❜
��❅❅❆

❆
❆

❅
❅
❅

❜
❅❅��✟✟

✟

⊥
b

e

h

j

m

�

a

d

g

i

f

&

c

k

Figure 2.12

2.5 Give an example of an ordered set P in which there are three
elements x, y, z such that

(a) {x, y, z} is an antichain,
(b) x ∨ y , y ∨ z and z ∨ x fail to exist,
(c)

∨{x, y, z} exists.
(Of course, P will have more than three elements.)

2.6 Let P be an ordered set.

(i) Prove that if A ⊆ P and
∧
A exists in P , then⋂{ ↓a | a ∈ A

}
= ↓(∧A

)
.

(ii) Formulate and prove the dual result.

2.7 In Theorem 2.9 more identities were listed than was necessary.
Prove that each of (L3) and (L3)∂ may be derived from (L4) and
(L4)∂ . (Do not use any other identities.)

2.8 Write out the duals of the following statements. (Each is true in
all lattices, so its dual is also true in all lattices.)

(i) If z is an upper bound of {x, y}, then x ∨ y � z .

(ii) a ∧ b � a � a ∨ b and a ∧ b � b � a ∨ b.
(iii) If a −< c and b −< c, with a �= b, then a ∨ b = c.

58 Lattices and complete lattices

2.9 Let A = (aij) be an m× n matrix whose entries are elements of a
lattice L.

(i) Prove the Mini-Max Theorem, viz.
n∨
j=1

(m∧
i=1

aij

)
�

m∧
k=1

(n∨
�=1

ak�

)
,

that is, (the join of the meets of the columns of A) � (the
meet of the joins of the rows of A). (For the proof, this
should be treated as a result about suprema and infima, that
is, about a lattice qua ordered set. However, its applications,
such as those in (ii) and (iii), are primarily to lattices viewed
as algebraic structures.)

(ii) By applying (i) to a suitable 2 × 2 matrix, derive the dis-
tributive inequality

a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c).
(iii) By applying (i) to a suitable 3×3 matrix, derive the median

inequality

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) � (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).
[Hint. Each row and each column of such a 3 × 3 matrix
must contain exactly two of the elements a, b, c with one
repetition.]

2.10 Consider the lattices L1, L2 and L3 in Figure 2.13.

(i) Find L1 as a sublattice of L2 .

(ii) The shaded elements of L3 do not form a sublattice. Why?

❜

❜
❜❜ ❜
❅
❅

�
�

✡
✡
✡

❏
❏
❏

L1
❜❜ ❜❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

�
�❅

❅
u

c

e

ba

d

v

L2
❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

�� ��� ��

L3

Figure 2.13

2.11 Let L be a lattice. Prove that the following are equivalent:

(i) L is a chain;

(ii) every non-empty subset of L is a sublattice;

(iii) every two-element subset of L is a sublattice.

Lattices and complete lattices 59

2.12 (i) Draw a labelled diagram of the lattice 〈Sub03;⊆〉.
(ii) (a) Find a lattice L such that 〈Sub0L;⊆〉 has the diagram

given in Figure 2.14. (Justify your answer by labelling the
elements of your guess for L and then drawing a labelled
diagram of Sub0L.)

(b) Prove that, up to isomorphism, there is only one such
lattice L.

❜ ❜❜❜ ❜ ❜❜ ❜❜

�
�
�
�

�
�

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❜ ❜❜ ❜
✟✟

✟✟❍❍❍❍

✟✟
✟✟❍❍❍❍�

� ❅
❅

Sub0 L

Figure 2.14

2.13 (i) Up to isomorphism there are exactly 10 lattices L for which
1 � |L| � 5. Draw a diagram for each of these lattices.

(ii) Establish the number of sublattices of an n-element chain.

(iii) Prove that, up to isomorphism, there is at most one lattice L
for which 〈Sub0L;⊆〉 has the diagram given in Figure 2.15.

❜❜ ❜ ❜ ❜ ❜
�
�❅

❅✟✟
✟✟

✟✟
✟✟

✟✟
✟✟❍❍❍❍

❍❍❍❍
❍❍❍❍

❍❍❍❍ ✟✟
✟✟

❜ ❜ ❜ ❜ ❜ ❜
❅
❅ �

�
❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

✟✟
✟✟
✟✟

✟✟

✏✏
✏✏

✏✏						

❍❍❍❍
❍❍❍❍

Sub0 L

Figure 2.15

2.14 (i) Show that there is no lattice L such that Sub0 L is isomorphic
to the lattice L1 in Figure 2.16.

(ii) Explain carefully why there are only two possible lattices L
such that Sub0 L is given by the lattice L2 in Figure 2.16.

60 Lattices and complete lattices

❜❜ ❜ ❜ ❜❜ ❜❜❜

✑
✑✑

✁
✁
✁
✁

✁
✁
�
�

✁
✁

◗
◗◗
❆
❆

❆
❆

❆
❆

❅
❅
❆
❆

L1 ❜❜ ❜ ❜ ❜ ❜❜ ❜ ❜ ❜ ❜ ❜ ❜ ❜ ❜❜ ❜ ❜ ❜ ❜ ❜ ❜❜ ❜ ❜❜

✟✟
✟✟

�
�

✟✟
✟✟

�
�

✏✏
✏✏

✏✏

�
�
✏✏

✏✏
✏✏

✏✏
✏✏

✏✏

�
�

�
�

�
�

�
�

�
�
✘✘✘

✘✘✘
✘✘

�
�

�
�

✏✏
✏✏

✏✏

✟✟
✟✟

�
�

�
�

✏✏
✏✏

✏✏
�
�

❅
❅

❍❍❍❍

❍❍❍❍

❅
❅

						
❅
❅
❅
❅
❅
❅

❅
❅
❍❍❍❍

						
❅
❅
❅
❅
❅
❅

						
❅
❅
❍❍❍❍

❅
❅

						
❅
❅

❅
❅

L2

Figure 2.16

2.15 Let L be a lattice and for each X ⊆ L let

[X] :=
⋂{

K ∈ Sub0L | X ⊆ K
}
.

Show that if X is non-empty, then [X] is the smallest sublattice
of L which contains X .

The sublattice [X] is called the sublattice generated by X . The
definition in terms of set-intersection does not give a viable method
for calculating [X] in a finite lattice. Here is an alternative method
for obtaining [X] from a diagram of L. Let ∅ �= X ⊆ L and define
recursively

X0 := X and Xk+1 := { a ∨ b | a, b ∈ Xk } ∪ { a ∧ b | a, b ∈ Xk }.
(i) Show that Xk ⊆ Xk+1 for all k ∈ N0 .

(ii) Show that
⋃{Xk | k ∈ N0 } is a sublattice of L.

(iii) Show that [X] =
⋃{Xk | k ∈ N0 }.

(iv) For each of the lattices in Figure 2.17 take X to be the set
of shaded elements. Find [X] in each case. As you pro-
ceed, label each element in terms of ∨,∧ and the generators
a, b, c,

2.16 Draw the product of the lattices 3 and 22⊕1 and shade in elements
which form a sublattice isomorphic to 1⊕ (2× 3)⊕ 1.

2.17 Let L and K be lattices with 0 and 1 and let M = L×K . Show
that there exist a, b ∈M such that

(i) ↓a ∼= L and ↓b ∼= K ,

(ii) a ∧ b = (0, 0) and a ∨ b = (1, 1).
Is the lattice given in Figure 2.18 a product of two lattices each
with more than one element? (Justify your answer via a careful
case-by-case analysis.)

Lattices and complete lattices 61

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅� ❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅� �

��

��

a

b

c d�
❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅
❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅

� ��
����

❅❅ ❅❅��

❅❅
b ca

❜ ❜❜ ❜❜
��❅❅
❅❅�� �❜�� ❜ ❜❅❅� ❜��
❜ �❜
❅❅ b

a

c

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

� �� b

c

a � ❜ ❜❜
❜❜

�
�

❅
❅

✑✑

◗◗

❜��❅
❅

❜�
❅
❅✑✑

◗◗

❜
�
�❅

❅

� c
b

a

❜
�
�

❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅

��
��

❜❅❅ �
�
�

❜�� �❅❅�a
b

d

c �
�

Figure 2.17

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

Figure 2.18

2.18 Consider again the maps defined in Exercise 1.22. Which of these
maps are (i) join-preserving, (ii) homomorphisms?

2.19 Let f : L→ K be a lattice homomorphism.

(i) Show that if M ∈ SubL then f(M) ∈ SubK .
(ii) Show that if N ∈ SubK then f−1(N) ∈ Sub0L.

2.20 For each of the elements a ∈ N0 listed below, draw a diagram of
the principal ideal ↓a of the lattice 〈N0;�〉:

a = 1, 2, 3, 6, 8, 12, 13, 16, 21, 24, 30, 36.

2.21 (i) Give an example of a non-principal ideal in the chain R.

62 Lattices and complete lattices

(ii) Find all ideals in (a) Z, (b) Q (with their usual orders).
Which of these ideals are principal?

2.22 Let L be a lattice and let ∅ �= A ⊆ L. Show that

(A] := ↓{ a1 ∨ · · · ∨ an | n ∈ N, a1, . . . , an ∈ A }
is an ideal and moreover it is contained in any ideal J of L which
contains A. (See also 7.5(4).)

2.23 Let I be an ideal in a lattice L and let a ∈ L. Show that the set
↓{ a∨c | c ∈ I } is an ideal and is the smallest ideal in L containing
both I and a.

2.24 The set S = { (i, j) ∈ N× N | i < j } is given the order defined by
(i, j) � (i′, j′)⇐⇒ j � i′ or (i = i′ & j � j′).

(i) Draw a diagram of S (as a subset of N× N).

(ii) Show that S is a lattice having the property that, for any
n � 3 and a1, . . . , an ∈ S , the element a1 ∧ a2 ∧ · · · ∧ an can
be expressed as the meet of at most two of a1, . . . , an .

(iii) Show that the set of ideals of S , ordered by inclusion, is
isomorphic to

{ (i, j) | 1 � i < j � ∞} ∪ {(∞,∞)}
with the order given by

(i, j) � (i′, j′)⇐⇒ j � i′ or (i = i′ & j � j′).

2.25 A subset A of N is called cofinite if N \A is finite.

(i) Show that the collection L1 of cofinite subsets of N is a lattice
of sets.

(ii) Show that the collection L2 of subsets of N which are either
finite or cofinite is a lattice of sets.

(iii) Let An := N \ {2, 4, . . . , 2n} be obtained from N by deleting
the first n even natural numbers. Show that if B ⊆ An for
all n ∈ N then B is not cofinite and deduce that neither L1

nor L2 is complete.

2.26 (i) Verify that the linear sum P ⊕Q of (complete) lattices is a
(complete) lattice.

(ii) We saw in 2.15 that the product P ×Q of lattices P and Q
is again a lattice. Verify that P ×Q is a complete lattice if
P and Q are, with joins and meets being formed coordinate-
wise.

Lattices and complete lattices 63

2.27 Assume that P is any set and Q a (complete) lattice.

(i) Show that, under the usual pointwise order, the set QP of all
maps from P to Q is a (complete) lattice, with the join, ϕ,
of {ϕi | i ∈ I } given pointwise by

(∀x ∈ P)ϕ(x) =
∨{

ϕi(x) | i ∈ I
}
,

and similarly for meet.

(ii) Assume in addition that P carries an order relation and that
all the maps ϕi are order-preserving. Show that the maps∨{ϕi | i ∈ I } and ∧{ϕi | i ∈ I } are also order-preserving
and deduce that Q〈P 〉 is a (complete) lattice.

2.28 Let 〈P ;�〉 be an ordered set. A (possibly empty) subset K of P
is called (order-)convex if whenever a, b ∈ K with a � b, every
element of P between a and b is also in K ; more formally,

(∀a, b ∈ K)(∀x ∈ P) (a � x � b =⇒ x ∈ K).

Let K(P) := {K ⊆ P | K is a convex subset of P }.
(i) Find all the convex subsets of the three-element chain 0 <

a < 1. Draw and label the lattice 〈K(3);⊆〉. [Hint. Start
with the smallest convex subsets and work up.]

(ii) Prove that K(P) is a topped intersection structure on P .

2.29 Let P be a complete lattice. Prove that there is a topped
⋂
–

structure L on the set P such that P ∼= L. [Hint. Show that the
image of the order-embedding ϕ : P → O(P) defined by ϕ(x) = ↓x
is a topped

⋂
–structure on P .]

2.30 Draw the subgroup lattice SubG and shade in the elements of
N - SubG for each of the following groups: S3 , Z6 , Z12 , A4 , Dp
(the symmetries of a regular p-gon) where p is an odd prime, the
quaternion group.

2.31 Let H and K be finite groups such that gcd(|H|, |K|) = 1. Show
that Sub(H × K) ∼= SubH × SubK, where on the left we have
the usual coordinatewise product of groups and on the right the
coordinatewise product of ordered sets.

2.32 (i) Use the Knaster–Tarski Fixpoint Theorem to prove Banach’s
Decomposition Theorem:

Let X and Y be sets and let f : X → Y and g : Y → X
be maps. Then there exist disjoint subsets X1 and X2 of X
and disjoint subsets Y1 and Y2 of Y such that f(X1) = Y1 ,
g(Y2) = X2 , X = X1 ∪X2 and Y = Y1 ∪ Y2 .

64 Lattices and complete lattices

[Hint. Consider the map F : ℘(X) → ℘(X) defined by
F (S) = X \ g(Y \ f(S)) for S ⊆ X .]

(ii) Use (i) to obtain the Schröder–Bernstein Theorem:

Let X and Y be sets and suppose there exist one-to-one
maps f : X → Y and g : Y → X . Then there exists a
bijective map h from X onto Y .

2.33 Describe all lattices of length 2, proving that your list is complete.

2.34 Prove that P ×Q satisfies (ACC) if and only if both P and Q do.

2.35 Let P and Q be ordered sets of finite length. Prove that

&(P ×Q) = &(P) + &(Q).

2.36 (i) Show that 〈N0;�〉 satisfies (DCC) and deduce that 〈N0;�〉
is a complete lattice.

(ii) Prove directly that
∧
S exists in 〈N0;�〉 for every non-empty

subset S of N0 .

2.37 Let L be a lattice.

(i) Let J1 ⊆ J2 ⊆ · · · be a chain of ideals of L. Show that their
union,

⋃
n∈N

Jn , is an ideal of L.

(ii) Show that every ideal of L is principal if and only if L satisfies
(ACC).

2.38 Let L be a lattice satisfying both (ACC) and (DCC). Let a, b ∈ L.
Show that a � b if and only if, for all join-irreducible elements
x and all meet-irreducible elements y , the inequalities x � a and
b � y together imply x � y .

2.39 Let P be an ordered set and let Q ⊆ P . Show that the following
are related by (i) ⇔ (ii) ⇒ (iii) in general and are equivalent if P
is a complete lattice:

(i) Q is join-dense in P ;

(ii) a =
∨
P (↓a ∩Q) for all a ∈ P ;

(iii) for all a, b ∈ P with b < a there exists x ∈ Q with x � a
and x � b.

[Hint. To show that (iii) implies (ii) when P is a complete lattice,
apply (iii) with b :=

∨
P (↓a ∩Q).]

3

Formal Concept Analysis

Hierarchies occur often both within mathematics and in the ‘real’ world
and the theory of ordered sets and lattices provides a natural setting in
which to discuss and analyse them. In this chapter we take a brief
excursion into formal concept analysis in order to get a feel for the
potential of lattice theory in the analysis of hierarchies of concepts.

Contexts and their concepts

3.1 What is a concept? This would appear to be a question for
philosophers rather than for mathematicians. Indeed, traditional phil-
osophy’s answer provides us with the basis for our formal definition. A
concept is considered to be determined by its extent and its intent: the
extent consists of all objects belonging to the concept (as the reader
belongs to the concept ‘living person’) while the intent is the collection
of all attributes shared by the objects (as all living persons share the
attribute ‘can breathe’). As it is often difficult to list all the objects
belonging to a concept and usually impossible to list all its attributes,
it is natural to work within a specific context in which the objects and
attributes are fixed.

3.2 A context for the planets. The information presented in Table 3.1
gives a (somewhat limited) context for the planets of our solar system.

size distance from sun moon
small medium large near far yes no

Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×
Pluto × × ×

Table 3.1

66 Formal concept analysis

The objects are the planets while the attributes are the seven in-
dicated properties relating to size, distance from the sun and existence
of a moon. That the ith object possesses the jth attribute is indicated
by a × in the ij -position of the table. A concept of this context will
consist of an ordered pair (A,B), where A (the extent) is a subset of
the nine planets and B (the intent) is a subset of the seven properties.
To demand that the concept is determined by its extent and by its in-
tent means that B should contain just those properties shared by all the
planets in A and, similarly, the planets in A should be precisely those
sharing all the properties in B . A simple procedure for finding a concept
is as follows: take an object, say the planet Earth, and let B be the set
of attributes which it possesses, in this case

B = {size–small, distance–near, moon–yes},
then let A be the set of all planets possessing all the attributes in B , in
this case

A = {Earth, Mars}.
Then (A,B) is a concept. More generally, we may begin with a set of
objects rather than a single object. Concepts may also be obtained via
a similar process commencing with a set of attributes.

It is usual to regard a concept (A1, B1) as being ‘less general’ than
a concept (A2, B2) if the extent A1 of (A1, B1) is contained in the extent
A2 of (A2, B2). Thus an order is defined on the set of concepts by

(A1, B1) � (A2, B2) ⇐⇒ A1 ⊆ A2.

The apparent asymmetry in this definition is illusory since A1 ⊆ A2

is equivalent to B1 ⊇ B2 (see Lemma 3.5). The resulting ordered set
of concepts for our planetary context is the lattice given in Figure 3.1
later in the chapter. With respect to this order, the concept (A,B)
constructed above is the smallest concept whose extent contains the
planet Earth and is represented by the circle labelled EMa in Figure 3.1.
The significance of the labelling of the lattice will be explained when we
return to this example in 3.12.

We now wish to abstract the previous example. The resulting theory
has a broad range of applications outside mathematics, for example in
the social sciences, as well as having something useful to say within
lattice theory itself.

3.3 Contexts and concepts. A context is a triple (G,M, I) where
G and M are sets and I ⊆ G ×M . The elements of G and M are
called objects and attributes respectively. As usual, instead of writing

Formal concept analysis 67

(g,m) ∈ I we write gIm and say ‘the object g has the attribute m’. (The
letters G and M come from the German: Gegenstände and Merkmale.)
In finite examples we specify the context in the same manner as in
Table 3.1, by means of a cross-table.

For A ⊆ G and B ⊆M , define

A′ = {m ∈M | (∀g ∈ A) gIm },
B′ = { g ∈ G | (∀m ∈ B) gIm };

so A′ is the set of attributes common to all the objects in A and B′ is
the set of objects possessing the attributes in B . Then a concept of the
context (G,M, I) is defined to be a pair (A,B) where A ⊆ G, B ⊆M ,
A′ = B and B′ = A. The extent of the concept (A,B) is A while its
intent is B . Note that a subset A of G is the extent of some concept
if and only if A′′ = A in which case the unique concept of which A
is an extent is (A,A′). Of course, the corresponding statement applies
to those subsets B of M which are the intent of some concept. The
maps ′ : A �→ A′ and ′ : B �→ B′ are traditionally called the polars of
the relation I ⊆ G×M . The set of all concepts of the context (G,M, I)
is denoted by B(G,M, I). (Again the choice of letter comes from the
German: B for Begriff.)

The framework within which we are working – a pair of sets, G,
M , and a binary relation I linking them – is extremely general, and
encompasses contexts which might not at first sight be viewed in terms of
an object-attribute correspondence. Consider, for example, a computer
program modelled by an input-output relation R between a finite set
of initial states X and a finite set of final states Y with xRy if and
only if the program when started in state x can terminate in state y .
Then (X,Y,R) is the context for what is known as a (non-deterministic)
transition system. Here A′ (for A ⊆ X) is to be interpreted as the set of
final states in which the program can terminate when started from any
one of the states in A.

3.4 The ordering of concepts. Let (G,M, I) be a context. For con-
cepts (A1, B1) and (A2, B2) in B(G,M, I) we write (A1, B1) � (A2, B2),
if A1 ⊆ A2 . Also, A1 ⊆ A2 implies that A

′
1 ⊇ A′

2 , and the reverse im-
plication is valid too, because A′′

1 = A1 and A′′
2 = A2 . We therefore

have

(A1, B1) � (A2, B2)⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2.

We can then see easily that the relation � is an order on B(G,M, I).
As we see in Proposition 3.6, 〈B(G,M, I);�〉 is a complete lattice; it is
known as the concept lattice of the context (G,M, I).

68 Formal concept analysis

Note that each concept (A,B) is uniquely determined by either its
first component, A, or by its second component, B , and that the order �
is completely determined by the inclusion order on ℘(G) or equivalently
by the reverse inclusion order on ℘(M). This leads us to consider

BG := {A ⊆ G | A′′ = A } and BM := {B ⊆M | B′′ = B } ,
both ordered by inclusion. The map π1 : (A,B) �→ A gives an order-
isomorphism between B(G,M, I) and BG while π2 : (A,B) �→ B gives
an order-isomorphism between B(G,M, I) and B∂

M . We therefore have
a commutative diagram

B(G,M, I)

BG B∂
M

π1 π2❅
❅
❅
❅❘�

�
�
�

✠
✲

✛
′
′

with the indicated maps setting up order-isomorphisms.

While developing the theory, use of BG and BM allows us some
notational simplifications. However in applications, we choose to work
with B(G,M, I) since we want both the extent and the intent of each
concept to be visible.

The claims in the next lemma follow directly from the definitions of
A′ and B′ . The details are left to the reader. The final statement, (P5),
tells us that the polar maps ′ : ℘(G) → ℘(M)∂ and ′ : ℘(M)∂ → ℘(G)
set up a Galois connection, as defined in 7.23. We shall see in Chapter 7
that (P1)–(P3) in 3.5 are instances of properties which hold for any
Galois connection. The important fact that B(G,M, I) is a complete
lattice is derived below directly from Lemma 3.5. Alternatively, this
result may be seen as coming from the intimate relationship between
Galois connections, closure operators and topped

⋂
–structures which

we reveal in Chapter 7.

3.5 Lemma. Assume that (G,M, I) is a context and let A,Aj ⊆ G
and B,Bj ⊆M , for j ∈ J . Then

(P1) A ⊆ A′′ and B ⊆ B′′ ,
(P2) A1 ⊆ A2 =⇒ A′

1 ⊇ A′
2 and B1 ⊆ B2 =⇒ B′

1 ⊇ B′
2 ,

(P3) A′ = A′′′ and B′ = B′′′ ,

(P4)
(⋃

j∈J Aj
)′
=

⋂
j∈J A

′
j and

(⋃
j∈J Bj

)′
=

⋂
j∈J B

′
j ,

(P5) A ⊆ B′ ⇐⇒ A′ ⊇ B .

Formal concept analysis 69

3.6 Proposition. Let (G,M, I) be a context. Then 〈B(G,M, I);�〉 is
a complete lattice in which join and meet are given by

∨
j∈J
(Aj , Bj) =

((⋃
j∈J

Aj
)′′
,
⋂
j∈J

Bj

)
,

∧
j∈J
(Aj , Bj) =

(⋂
j∈J

Aj ,
(⋃
j∈J

Bj
)′′)

.

Proof. We shall prove that BG is a topped
⋂
–structure. Let Aj ∈ BG

for j ∈ J . Then A′′
j = Aj for each j . By (P1) in Lemma 3.5,⋂

j∈J
Aj ⊆

(⋂
j∈J

Aj
)′′
.

Also
⋂
j∈JAj ⊆ Ak for all k ∈ J , which, by (P2), implies that(⋂

j∈J
Aj

)′′ ⊆ A′′
k = Ak for all k ∈ J,

whence (⋂
j∈J

Aj
)′′ ⊆ ⋂

k∈J
Ak =

⋂
j∈J

Aj .

Therefore
(⋂

j∈J Aj
)′′
=

⋂
j∈J Aj and hence

⋂
j∈J Aj ∈ BG . Also,

G ⊆ G′′ so that necessarily G = G′′ , which shows that BG is topped.

By 2.32, BG is a complete lattice in which meet is given by inter-
section. A formula for the join is given in 2.32 but we shall proceed more
directly. We claim that ∨

j∈J
Aj =

(⋃
j∈J

Aj
)′′
.

Let A be the set on the right-hand side. Certainly A′′ = A, by (P3),
and

⋃
j∈J Aj ⊆ A, by (P1). Hence A is an upper bound for {Aj}j∈J in

BG . Also, if Y is any upper bound in BG for {Aj}j∈J , then⋃
j∈J

Aj ⊆ Y =⇒ (⋃
j∈J

Aj
)′′ ⊆ Y ′′ = Y.

Therefore A is indeed the required join. We may now appeal to 3.4,
2.27(ii) and 3.5 to deduce that B(G,M, I) is a complete lattice in which
joins and meets are given by the stated formulae. (Alternatively it can
be verified directly that these formulae do indeed provide the least upper
bound and greatest lower bound of {(Aj , Bj)}j∈J in B(G,M, I).) �

70 Formal concept analysis

The fundamental theorem of concept lattices

Before giving a range of examples of contexts and their concept lattices,
including a discussion of the planets example, we present the theory
that enables us to analyse concept lattices. We begin by relating the
cross-table to the lattice.

3.7 Relating G and M to B(G,M, I). Let (G,M, I) be a context and
B(G,M, I) the associated set of concepts. We define γ : G→ B(G,M, I)
and µ : M → B(G,M, I) by

γ(g) := ({g}′′, {g}′) and µ(m) := ({m}′, {m}′′)
for all g ∈ G and m ∈ M . Note that (P3) implies that γ(g) and µ(m)
are indeed concepts. The set {m}′ is called an attribute-extent. To
simplify notation we shall henceforth drop the braces, and write g′ in
place of {g}′ and m′ in place of {m}′ .

The maps γ and µ encode the relation I within the ordered set
B(G,M, I) of concepts. Indeed, gIm is equivalent to γ(g) � µ(m) as
the following simple calculation shows. Let g ∈ G and m ∈M ; then

gIm ⇐⇒ g ∈ m′

⇐⇒ g′′ ⊆ m′′′ = m′

⇐⇒ γ(g) � µ(m).

(The forward direction of the second equivalence above uses (P2) and
(P3) while the backward implication uses (P1).)

Recall from 2.42 that a subset Q of an ordered set P is called join-
dense if every element of P is the join of a subset of Q. Meet-dense is
defined dually.

3.8 Theorem. Let (G,M, I) be a context and L = B(G,M, I) the
associated complete lattice of concepts. Then the mappings γ : G → L
and µ : M → L are such that the set γ(G) is join-dense in L, the set
µ(M) is meet-dense in L, and gIm is equivalent to γ(g) � µ(m) for
each g ∈ G and m ∈M .

Proof. Let (A,B) ∈ B(G,M, I). Then∨
γ(A) =

∨
g∈A

γ(g)

=
∨
g∈A

(g′′, g′)

=

((⋃
g∈A

g′′
)′′
,
⋂
g∈A

g′
)
.

Formal concept analysis 71

But, by (P4), ⋂
g∈A

g′ =
(⋃
g∈A
{g})′ = A′ = B.

Since (A,B) and
∨
γ(A) are elements of B(G,M, I) with the same

second coordinate,
∨
γ(A) = (A,B). Similarly, we find

∧
µ(B) =

(A,B). Consequently γ(G) is join-dense and µ(M) is meet-dense in
L. We have already proved in 3.7 that gIm if and only if γ(g) � µ(m)
in B(G,M, I), for all g ∈ G and m ∈M . �

We now turn things round and prove that every complete lattice
arises, in a generally non-unique way, as a concept lattice.

3.9 Theorem. Let L be a complete lattice, let G and M be sets and
assume that there exist mappings γ : G → L and µ : M → L such that
γ(G) is join-dense in L and µ(M) is meet-dense in L. Define I by
gIm ⇔ γ(g) � µ(m), for all g ∈ G and m ∈ M . Then L is isomorphic
to B(G,M, I).

In particular, any complete lattice L is isomorphic to the concept
lattice B(L,L,�).
Proof. We first prove that, for all A ⊆ G and m ∈M ,

m ∈ A′ ⇐⇒
∨
γ(A) � µ(m).

Indeed,

m ∈ A′ ⇐⇒ (∀g ∈ A) gIm

⇐⇒ (∀g ∈ A) γ(g) � µ(m) (by definition)

⇐⇒ µ(m) is an upper bound of γ(A)

⇐⇒
∨
γ(A) � µ(m).

Dually, we have g ∈ B′ ⇐⇒ γ(g) �
∧

µ(B) for B ⊆M and g ∈ G.

We are now ready to set up an order-isomorphism between L
and BG . Recalling 1.36(4), we shall do this by defining a pair of mutu-
ally inverse order-preserving maps ϕ : BG → L and ψ : L→ BG . Define
ϕ by ϕ(A) =

∨
γ(A) for all A ∈ BG . Since, for all A1, A2 ∈ BG ,

A1 ⊆ A2 =⇒ γ(A1) ⊆ γ(A2)

=⇒
∨
γ(A1) �

∨
γ(A2) (by 2.22(v)),

the map ϕ is order-preserving. Let x ∈ L. Define

Ax := { g ∈ G | γ(g) � x } and Bx := {m ∈M | x � µ(m) }.

72 Formal concept analysis

For all m ∈M we have

m ∈ A′
x ⇐⇒

∨
γ(Ax) � µ(m) (from above)

⇐⇒ x � µ(m) (as γ(G) is join-dense)

⇐⇒ m ∈ Bx.

Consequently A′
x = Bx and dually (since µ(M) is meet-dense in L) we

find B′
x = Ax . Thus Ax ∈ BG . We may now define ψ : L → BG by

ψ(x) = Ax for all x ∈ L. Since x � y implies Ax ⊆ Ay , the map ψ is
order-preserving. Clearly

ϕ(ψ(x)) = ϕ(Ax) =
∨
γ(Ax) = x,

for all x ∈ L, since γ(G) is join-dense in L. Now let A ∈ BG ; we shall
prove that ψ(ϕ(A)) = A. Let x := ϕ(A) =

∨
γ(A); we wish to show

that Ax = A. For all g ∈ A we have γ(g) �
∨
γ(A) = x and therefore

g ∈ Ax . Hence A ⊆ Ax . In the other direction,

g ∈ Ax =⇒ γ(g) � x =
∨
γ(A)

=⇒ (∀m ∈ A′) γ(g) � µ(m) (as (∀m ∈ A′)
∨
γ(A) � µ(m))

=⇒ (∀m ∈ A′) gIm (by assumption)

=⇒ g ∈ A′′ = A (since A ∈ BG).

Thus Ax ⊆ A and so Ax = A, as required.

Consequently, ϕ and ψ are order-preserving and mutually inverse,
whence B(G,M, I) is order-isomorphic to L by 1.36(4).

Finally, given a complete lattice L, we can choose G =M = L, and
define both γ and µ to be idL (the identity map on L). The conditions
of the first part of the theorem are clearly satisfied. Since I equals �,
it follows that L ∼= B(L,L,�). �

3.10 Summing up. Proposition 3.6 and Theorem 3.8 tell us that the
concepts of a context (G,M, I) form a complete lattice B(G,M, I) into
which G and M map in the manner described above. Theorem 3.9
supplies the converse. This bevy of results completely characterizes
concept lattices, and is known collectively as the fundamental theorem
of concept lattices.

We conclude this section by presenting some simple inbred examples
of contexts and their concept lattices from lattice theory itself.

Formal concept analysis 73

3.11 Lattice-theoretic examples.

(1) Our first example amplifies the last part of Theorem 3.9. Let L be
a complete lattice. Then

B(L,L,�) = { (↓x, ↑x) | x ∈ L }.
The theorem asserts that L ∼= B(L,L,�). The isomorphism is
given by x �→ (↓x, ↑x). This map is an order-isomorphism by
Lemma 1.30 and its dual and so a lattice isomorphism by Proposi-
tion 2.19(ii). In 7.38 we explore B(P, P,�) for an ordered set P .

(2) For a given complete lattice L, the context (L,L,�) is not the only
one whose concept lattice is isomorphic to L, nor is it necessarily
the most natural one. Consider the complete lattice ℘(X) for some
set X . While the concept lattice of the context (℘(X), ℘(X),⊆)
is isomorphic to ℘(X), both of the following concept lattices have
the property that BG (as defined in 3.4) actually equals ℘(X).
(i) B(X,X, �=) = { (A,X \A) | A ⊆ X } ∼= BG = ℘(X).
(ii) B(X,℘(X),∈) = { (A, {B ∈ ℘(X) | A ⊆ B }) | A ⊆ X } ∼=

BG = ℘(X).
(3) In contrast to (2)(i) above, we have

B(X,X,=) = { ({x}, {x}) | x ∈ X } ∪ {(∅, X), (X,∅)}.
Hence, if |X| = n, then B(X,X,=) ∼= BG

∼=Mn.

(4) Let P be an ordered set and consider the context (G,M,�) where
G =M = P . It is easy to check the following.

(i) g′ = P \ ↓g and m′ = P \ ↑m for g ∈ G and m ∈M .

(ii) For A ⊆ G and B ⊆M we have A′ := P \↓A and B′ := P \↑B .
For A ⊆ G we now have

A′′ = P \ ↑(P \ ↓A) = P \ (P \ ↓A) = ↓A
because P \ ↓A is an up-set. So, for A,B ⊆ P , we have that (A,B)
is a concept if and only if A ∈ O(P) and B = P \A. It follows that
B(P, P,�) is isomorphic to the down-set lattice O(P) of P .

(5) Let L be a lattice with no infinite chains, in particular any finite
lattice. Then, by Theorem 2.41 (or just Corollary 2.25 if L is finite),
L is complete and, by Theorem 2.46, the subsets J (L) of join-
irreducible elements and M(L) of meet-irreducible elements are
join-dense and meet-dense in L, respectively. Thus Theorem 3.9
yields L ∼= B(J (L),M(L),�) with the isomorphism given by

x �→ (↓x ∩ J (L), ↑x ∩M(L)).

74 Formal concept analysis

From theory to practice

In this section we apply our theory to non-mathematical examples. As we
have indicated already, concept lattices are a valuable tool in analysing
a data set (the objects) in terms of the properties (the attributes) of
its members. The examples which follow are chosen to illustrate this.
But it should be remembered that contexts may be used as mathemat-
ical models in a wide variety of settings, both mathematical and non-
mathematical, and may be analysed with the aid of the fundamental
theorem in the same manner as the examples we present.

3.12 Returning to the planets. The concept lattice of the planetary
context given in Table 3.1 and considered earlier in 3.2 is presented in
Figure 3.1. The labels indicate the mappings γ and µ of the fundamental
theorem, that is, the circle labelled g represents the concept (g′′ , g′) for
all g ∈ G and similarly the circle labelled m represents the concept
(m′ ,m′′) for each m ∈ M . The map ψ : L �→ BG defined in the proof
of the fundamental theorem allows us to read off the extent and intent
of each concept from the labelling: if x is an element of the lattice, then
the proof of Theorem 3.9 tells us that the corresponding concept is

(Ax, Bx) := ({ g ∈ G | γ(g) � x }, {m ∈M | x � µ(m) }) .
For example, the element in the middle of the diagram corresponds to
the concept

({Earth, Mars, Pluto}, {size–small, moon–yes}).

❜

❜

❜

❜❜
❜❜
❜ ❜❜

❜❜
❜

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
� ❅

❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

✏✏
✏✏

✏✏
✏✏✏									✟✟

✟✟
✟✟ UN

smJ SslP

df

my

EMa

ss

mn

dn

MeV

Figure 3.1

The concept lattice provides a basic analysis of a context: it yields
an appropriate classification of the objects and at the same time indicates

Formal concept analysis 75

the implications between the attributes. For the concept lattice of a
context to be of practical use, we must be able to determine which pairs
(A,B), with A ⊆ G and B ⊆ M , are concepts of the context, and we
must then be able to describe the resulting lattice of concepts.

3.13 The determination problem. A simple-minded and extremely
inefficient way of determining all the concepts of a context (G,M, I)
would be to form (A′′, A′) for all A ⊆ G (or (B′, B′′) for all B ⊆ M).
Here is an efficient alternative: for A ⊆ G and B ⊆M ,

B′ =
⋂
m∈B

m′ and A′ =
⋂
g∈A

g′.

In particular, if (A,B) is a concept of the context (G,M, I), then

A =
⋂
m∈B

m′ and B =
⋂
g∈A

g′.

For example, in the context for the planets considered in 3.2 and 3.12,
we first determine the extents

ss′, sm′, sl′, dn′, df ′,my′ and mn′

and then obtain all other extents by forming intersections. The intent
corresponding to each extent is then easily calculated. Alternatively, we
first determine all the intents and then the corresponding extents.

Once we have found all of the concepts and drawn the lattice,
Theorem 3.9 allows us to confirm that our diagram and its labelling are
correct. Since L is finite, by Theorem 2.46(iv) the set γ(G) is join-dense
in L if and only if J (L) ⊆ γ(G). Thus we need to check that each join-
irreducible element has a label g ∈ G. Dually, we must check that each
meet-irreducible element has a label m ∈M . In the case of the concept
lattice of the planetary context it is easily seen that J (L) = γ(G) and
M(L) = µ(M); see Figure 3.1. (The observant reader may have noticed
that the dual of the lattice in Figure 3.1 occurred back in Figure 2.10
with its join-irreducible elements shaded.) Finally, Theorem 3.9 tells
us that we must confirm that gIm holds in the context if and only if
γ(g) � µ(m) holds in the lattice. We do this by checking that, for all
m ∈ M , the set of object labels in ↓m is precisely the attribute-extent
m′ . For example, comparing the lattice in Figure 3.1 with the cross-table
in Table 3.1 we see that the set of object labels in ↓dn is {Me, V, E, Ma}
which agrees with the attribute-extent dn′ , as required.

We now convert the preceding observations into a systematic meth-
od for generating all the concepts of a context and for drawing the
concept lattice.

76 Formal concept analysis

3.14 An algorithm for drawing concept lattices. Assume we have the
cross-table of a context with the object set G down the side and the
attribute set M across the top. The following instructions will generate
a list of the extents of all concepts of the context in an order which is
convenient for drawing the lattice of all concepts.

Step 1. Find all extents of the concepts of the context (G,M, I).

(1.1) Draw up a table with two columns headed Attributes and Extents.
Leave the first cell of the Attributes column empty and write G in the
first cell of the Extents column.

(1.2) Find a maximal attribute-extent, say m′ .

(1.2.1) If the set m′ is not already in the Extents column, add the row
[m | m′] to the table. Intersect the set m′ with all previous
extents in the Extents column. Add these intersections to the
Extents column (unless they are already in the list) and leave the
corresponding cells in the Attribute column empty.

(1.2.2) If the set m′ is already in the Extents column, add the label m to
the attribute cell of the row where m′ previously occurred.

(1.3) Delete the column below m from the table.

(1.4) If the last column has been deleted, stop, otherwise return to (1.2).

Step 2. Draw the diagram with m and m′ labels.

Start at the top of the diagram with one point labelled G. Work down
the list of Extents in the table from Step 1. For each set S in the list, add
an appropriately positioned new point to the diagram. Below the point
corresponding to S list the elements in S . If S is an attribute-extent,
say S = m′ , add the label m above the point corresponding to S .

Step 3. Redraw the diagram with g and m labels.

(3.1) Redraw the diagram. Add the m labels as in the first diagram.

(3.2) For each object g in G, add a label g below the point on the diagram
which has the smallest extent containing the object g . (This can be
found from the first diagram.) Alternatively, the point to be labelled g
can be obtained by finding the point

∧{m | gIm } – find the set from
the g-row of the cross-table.

Step 4. Use the fundamental theorem to check the answer.

(4.1) Check that every join-irreducible element has a label g ∈ G.

(4.2) Check that every meet-irreducible element has a label m ∈M .

(4.3) Check that (∀g ∈ G)(∀m ∈ M) gIm ⇐⇒ g � m by checking that,
for all m ∈ M , the set of object labels in ↓m is exactly the attribute-
extent m′ .

Hint. When drawing the lattice, try to minimize the number of slopes and to

use parallelograms whenever possible.

Formal concept analysis 77

3.15 Example. The tables and lattices in Figure 3.2 illustrate the algo-
rithm at work. Observe that initially there are three maximal columns:
a′ , b′ and d′ . Once the column a′ has been removed from the table the
columns e′ and f ′ also become maximal and the algorithm would allow
us to deal with any one of b′ , d′ , e′ and f ′ next. Nevertheless, it helps
when drawing the lattice if we deal with the ‘old’ maximal columns first
before considering the ‘new’ maximal columns. We have indicated this
via bold horizontal lines in the Attributes/Extents table. Note that, in
accordance with Step (1.2.2), the row [b, d | STUW] corresponds to
the fact that b′ = d′ = {STUW}. The row [g | U] was struck out
after it was noticed that U already occurred in the list and, again in
accordance with Step (1.2.2), the label g was added to the Attribute cell
of the previous occurrence.

a b c d e f g

S × × × ×
T × × × ×
U × × × × × ×
V × × × ×
W × ×
X × ×

↓

Attributes Extents

G

a STUVX

b, d STUW
STU

e TUV
TU

f SUVX
SU
UV

g (added later) U

c V
∅

g– U–

❜
❜❜

❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅ ❜

❜❜ ❜
❜❜ ❜
❜

�
�
�

�
�
�

�
�
�

�
�
�

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅ ❜

❜❜
❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅

∅

U
g

V
c

SUTUUV

f

SUVX

e
TUV STU

b, d
STUW

a
STUVX

G

↘
↗

❜
❜❜

❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅ ❜

❜❜ ❜
❜❜ ❜
❜

�
�
�

�
�
�

�
�
�

�
�
�

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅ ❜

❜❜
❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅

U
g

V
c

ST

f
X

e

b, d
W

a

Figure 3.2

78 Formal concept analysis

3.16 A psychometric test. The context given in Table 3.2 shows the
characteristics attributed by a patient to his relatives as well as his own
ideal. (For typographical reasons the cross-table has been given with the
objects listed horizontally and the attributes vertically.)

My Brother-
Self Ideal Father Mother Sister in-Law

vulnerable × × × × ×
reserved × × × ×
self-confident × × ×
dutiful × × × × ×
happy × × × × × ×
difficult × × × ×
attentive × × × × ×
easily offended × ×
not hot-tempered × × × × ×
anxious × × × ×
talkative ×
superficial × × ×
sensitive × × × × ×
ambitious × × × × × ×

Table 3.2

❜ Se

❜

❜

❜❜
❜❜

❜ v, se, nht❜ at
❜ am, h

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

❅
❅
❅

❅
❅
❅

sc
❅
❅
❅

❅
❅
❅

❅
❅
❅

❜ I❜
B
t

❜
❜ Si

❜
❜
M
eo

❜❜
❜ ❜su an, di, r❜

❜du

❜
❜���

�
�
�

F

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

❅
❅
❅

❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅

❏
❏
❏
❏
❏
❏

❅
❅
❅
❅
❅
❅

❇
❇
❇

❇
❇
❇
❇
❇
❇

❇
❇
❇

❇
❇
❇
❇
❇
❇

❇
❇
❇

❇
❇
❇
❇
❇
❇

❇
❇
❇

❇
❇
❇
❇
❇
❇

❇
❇
❇

❅
❅
❅
❇
❇
❇

❇
❇
❇
❇
❇
❇

Figure 3.3

The concept lattice (see Figure 3.3) is intended in this case to aid
therapists in their analysis of the patient’s responses. Consider, for
example, the concepts ({Se, F, M, Si}, {an, di, r, v, se, nht, am, h}) and
({I, Se, F, M, Si}, {v, se, nht, am, h}) . They indicate that the patient
regards his immediate family (Self, Father, Mother and Sister) as being

Formal concept analysis 79

anxious, difficult and reserved and that these are precisely the attributes
which distinguish his immediate family from his Ideal Self. We suggest
that the reader do some of the simpler exercises for this chapter before
working out the Attributes/Extents table for this context and drawing
the lattice. Nevertheless, it would be an instructive task to carry out
Step 3 right now and so confirm that lattice is as shown in Figure 3.3.

3.17 The description problem. The most natural and informative
description of the concept lattice B(G,M, I) is a well-drawn diagram
labelled by (names for) the elements of G and M . If the number of
concepts is small, then the algorithm may be applied and the task may be
done by hand. As the size of the context and its lattice of concepts grows,
the need for appropriate computer software becomes more apparent. The
theory of ‘readable diagrams’ and computer-based implementations of
such a theory, which was in its infancy when the first edition of this
book was published, has now grown into a flourishing industry. (See
B. Ganter and R. Wille [48].)

Exercises

Exercises from the text. Prove Lemma 3.5. Find all concepts for the
context of the psychometric test given in 3.16 and verify that the lattice
given in Figure 3.3 is correct. Confirm the claims made in 3.11(4).

3.1 Let (G,M, I) be a context and let A ⊆ G and B ⊆M . Show that
the following are equivalent:

(a) A ⊆ B′ ; (b) B ⊆ A′ ; (c) A×B ⊆ I .

3.2 Draw and label the concept lattice for each of the contexts below.
In each case the incidence relation I is given in Table 3.3 with G
listed vertically and M horizontally.

(1) Large German cities.
G = {Hamburg, München, Köln},
M = {� 1.5 million, � 1.25 million, � 1.0 million}.

(2) Triangular shapes.
G = {Setsquare, Give Way Sign, Delta},
M = {rightangled, isosceles, equilateral}.

(3) Primary colour decomposition.
G = {Orange, Green, Violet},
M = {blue, red, yellow}.

80 Formal concept analysis

(4) Temperatures.
G = {Cold, Tepid,Warm},
M = {� 10◦C, � 20◦C, � 10◦C, � 20◦C}.

(5) Watercourses.
G = {Channel, Brook, Stream, River},
M = {very small, small, large, very large}.

(6) Family.
G = {Father, Mother, Son, Daughter},
M = {old, young, male, female}.

�1.5m �1.25m �1.0m
H × × ×
M × ×
K ×

Context (1)

r i e

S ×
G × ×
D ×
Context (2)

b r y

O × ×
G × ×
V × ×
Context (3)

�10◦ �20◦ �10◦ �20◦
C × ×
T × ×
W × ×

Context (4)

vs s l vl

C × ×
B ×
S ×
R × ×
Context (5)

o y m f

F × ×
M × ×
S × ×
D × ×
Context (6)

Table 3.3

3.3 A student presented the lattices L1 and L2 shown in Figure 3.4 as
concept lattices with object labels A, B, C, D, E, F, G and attribute
labels 1, 2, 3, 4, 5, 6, 7. One is correct and one is wrong.

(i) Decide which is incorrect and explain why.

(ii) For the correctly labelled concept lattice, write down the cross-
table of the context which gave rise to this concept lattice.

3.4 Find all concepts of the planetary context discussed in 3.2 and 3.12
and verify that the lattice given in Figure 3.1 is correct.

Formal concept analysis 81

❜ ❜❜❜ ❜ ❜❜ ❜❜

�
�
�
�

�
�

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅

1 2 3

F G 4

C

5

D

6 7
E

A B ❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅ ❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅

A B

7

C

D 6

4 5

E

F
1

G
2 3

L1 L2

Figure 3.4

3.5 Consider a context having the cross-table shown in Table 3.4.

(i) Find all concepts of this context.

(ii) Draw and label the lattice of concepts of this context.

s t u v w

A × ×
B × ×
C × × ×
D × × × ×

Table 3.4

3.6 Consider the lattice K in Figure 3.5. Complete the cross-table for a
context (G,M, I), with G = {A, B, C, D} and M = {m, n, o, p},
such that K is isomorphic to B(G,M, I).

❜
❜����❜

❜ ❜ ❜❜❜
��
��

��
����

��

❅❅
❅❅
❅❅ ❅❅
❅❅

K

m n o p

A
B
C
D

Figure 3.5

3.7 Consider the context (G,M, I) and lattice L shown in Figure 3.6.
Label the lattice to indicate the mappings γ and µ given that L is
the concept lattice B(G,M, I).

3.8 Consider the context (G,M, I) shown in Table 3.5. Find the 15
concepts and draw a labelled diagram of B(G,M, I). Show that no
relation strictly smaller than I yields the same concept lattice.

82 Formal concept analysis

p q r s t u v

P × × × × × ×
Q × × × × × ×
R × × × × × ×
S × × ×
T × × ×
U × × ×
V × × ×

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

❜ ❜ ❜
�
�
�

�
�
�

❅
❅
❅

❅
❅
❅�

�
�

❅
❅
❅

Figure 3.6

a b c d e f g h

A × × × ×
B × × × ×
C × × × ×
D × × × ×
E × × × ×
F × × × ×

Table 3.5

3.9 Consider the task-information context given in Table 3.6 which
comes from the German national division of health and welfare.
The context shows which personal information is required by law
for the different tasks of a local medical subdivision. The tasks
(objects) and information (attributes) are as follows:

TASKS
1. confirmation of request for preventative care;
2. calculation of insurance benefits;
3. confirmation of incapacity to work;
4. confirmation of correct diagnosis;
5. work preliminary to rehabilitation;
6. verification of sickness;
7. advice to clients;
8. advice on general preventatives;
9. updating the statistics of the medical service.

INFORMATION
a. name and address of client;
b. career history;
c. kind of membership;

Formal concept analysis 83

d. name of responsible agency;
e. family medical history;
f. vocational education;
g. number of certificates.

a b c d e f g

1 × × × × × ×
2 × × × × × ×
3 × × × × × ×
4 × × × ×
5 × × × × × ×
6 × × × ×
7 × × × × × ×
8
9 × ×

Table 3.6

Find the 13 concepts of this context then draw and label the result-
ing concept lattice.

3.10 The concept lattice of a task-information context (G,M, I) like the
one in the previous example provides a natural hierarchical clas-
sification of the tasks and indicates the dependencies between the
information. In some situations it may be more important to know
which information is not required for a particular task; for exam-
ple, if we wish to restrict access to personal or classified information.
Then it is more appropriate to work with the complementary con-
text (G,M, I) where

M := {m | m ∈M } and gIm⇐⇒ gIm is false.
(Here m is a new symbol to be thought of as ‘not m’.) Consider
the information-task context in the previous exercise. Find the 11
concepts of the complementary context, then draw and label the
resulting lattice B(G,M, I).

3.11 Let G and M be finite sets.

(i) Assume that 〈G;�〉 and 〈M ;�〉 are chains and I ⊆ G×M is
a down-set of the product. Show that B(G,M, I) is a chain.

(ii) Assume that (G,M, I) is a context such that L := B(G,M, I)
is a chain. Show that G and M may be linearly ordered such
that I becomes a down-set of G×M . [Hint. Choose orders on
G and M so that 〈G;�〉 and 〈M ;�〉 are chains and γ : G→ L
is order-preserving while µ : M → L is order-reversing.]

84 Formal concept analysis

3.12 The horizontal sum of two bounded ordered sets P and Q is ob-
tained from their disjoint union P

.∪Q by identifying the bottoms of
the two ordered sets and also identifying the tops. The vertical sum
of P and Q is obtained from the linear sum P ⊕ Q by identifying
the top of P with the bottom of Q.

Let (G1,M1, I1) and (G2,M2, I2) be contexts such that G1 ∩G2 =
M1 ∩ M2 = ∅ and G′

i = M ′
i = ∅ for i = 1, 2 and let Li :=

B(Gi,Mi, Ii) for i = 1, 2. Prove the following claims.

(i) B(G1

.∪ G2,M1

.∪M2, I1
.∪ I2) is isomorphic to the horizontal

sum of L1 and L2 .

(ii) B(G1

.∪G2,M1

.∪M2, I1
.∪ I2

.∪ (G1×M2)) is isomorphic to the
vertical sum of L1 and L2 .

(iii) B(G1

.∪ G2,M1

.∪ M2, I1
.∪ I2

.∪ (G1 × M2)
.∪ (G2 × M1)) is

isomorphic to the direct product of L1 and L2 .

3.13 Use the previous exercise to find the concept lattice for each of the
contexts given in Table 3.7. In each case draw the lattice.

a b c d e f

A × × × × ×
B × × × ×
C × × × ×
D × × × × ×
E × × × ×
F × × ×
Context (1)

a b c d e f

A × × × × ×
B × × × × ×
C × × ×
D × × ×
E × ×
F ×
Context (2)

a b c d e f g h

A × × ×
B × × ×
C ×
D × ×
E × × ×
F × ×
G × ×
H

Context (3)

Table 3.7

4

Modular, Distributive andBoolean Lattices

In Chapter 2 we began an exploration of the algebraic theory of lattices,
armed with enough axioms on ∨ and ∧ to ensure that each lattice
〈L;∨,∧〉 arose from a lattice 〈L;�〉 and vice versa. Now we introduce
identities linking join and meet which are not implied by the laws (L1)–
(L4) and their duals (L1)∂–(L4)∂ defining lattices (recall 2.9). These
hold in many of our examples of lattices, in particular in powersets.
In the second part of the chapter we abstract a different feature of
powersets, namely the existence of complements.

Lattices satisfying additional identities

Before formally introducing modular and distributive lattices we prove
three lemmas which will put the definitions in 4.4 into perspective. The
import of these lemmas is discussed in 4.5.

4.1 Lemma. Let L be a lattice and let a, b, c ∈ L. Then

(i) a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c), and dually,

(ii) a � c implies a ∧ (b ∨ c) � (a ∧ b) ∨ c, and dually,

(iii) (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) � (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).
Proof. We leave (i) and (iii) as exercises. (Alternatively, see Exer-
cise 2.9.) By the Connecting Lemma, (ii) is a special case of (i). �

4.2 Lemma. Let L be a lattice. Then the following are equivalent:

(i) (∀a, b, c ∈ L) a � c =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c;
(ii) (∀a, b, c ∈ L) a � c =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
(iii) (∀p, q, r ∈ L) p ∧ (q ∨ (p ∧ r)) = (p ∧ q) ∨ (p ∧ r).
Proof. The Connecting Lemma gives the equivalence of (i) and (ii). To
prove that (iii) implies (ii), assume that a � c and apply (iii) with p = a,
q = b and r = c. Conversely, assume (ii) holds and that p, q and r are
any elements of L. We may put a = p, b = q and c = p ∧ r in (ii), and
this gives (iii). �

4.3 Lemma. Let L be a lattice. Then the following are equivalent:

(D) (∀a, b, c ∈ L) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
(D)∂ (∀p, q, r ∈ L) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).

86 Modular, distributive and Boolean lattices

Proof. Assume (D) holds. Then, for p, q, r ∈ L,

(p ∨ q) ∧ (p ∨ r) = ((p ∨ q) ∧ p) ∨ ((p ∨ q) ∧ r) (by (D))

= p ∨ (r ∧ (p ∨ q)) (by (L2)∂ & (L4)∂)

= p ∨ ((r ∧ p) ∨ (r ∧ q)) (by (D))

= p ∨ (q ∧ r) (by (L1), (L2)∂ & (L4))

so (D) implies (D)∂ . By duality, (D)∂ implies (D) too. �

4.4 Definitions. Let L be a lattice.

(i) L is said to be distributive if it satisfies the distributive law,

(∀a, b, c ∈ L) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
(ii) L is said to be modular if it satisfies the modular law,

(∀a, b, c ∈ L) a � c =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c.
4.5 Remarks.

(1) Lemma 4.1 shows that any lattice is ‘half-way’ to being both mod-
ular and distributive. To establish distributivity or modularity we
only need to check an inequality (see 4.6(5) for an example).

(2) Lemma 4.2 serves two purposes. It shows that any distributive
lattice is modular. Also it reveals that the rather mysterious mod-
ular law can be reformulated as an identity, a fact we need in 4.7.
The modular law may be regarded as licence to rebracket a∧ (b∨ c)
as (a∧b)∨c, provided a � c. This observation has no mathematical
content, but is useful as an aide-mémoire.

(3) Providentially, distributivity can be defined either by (D) or by (D)∂

(from Lemma 4.3). Thus the apparent asymmetry between join and
meet in 4.4(i) is illusory. In other words, L is distributive if and
only if L∂ is. An application of the Duality Principle shows that L
is modular if and only if L∂ is.

(4) The universal quantifiers in Lemmas 4.2 and 4.3 are essential. It is
not true, for example, that if particular elements a, b and c in an
arbitrary lattice satisfy a∧ (b∨ c) = (a∧ b)∨ (a∧ c), then they also
satisfy a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

4.6 Examples.

(1) Any powerset lattice ℘(X) is distributive. More generally, any
lattice of sets is distributive. In 10.21 we prove the striking result
that every distributive lattice is isomorphic to a lattice of sets.

Modular, distributive and Boolean lattices 87

(2) Any chain is distributive (enumerate cases, or (slicker) do Exer-
cise 4.2, or (less elementary) use 4.10).

(3) The lattice 〈N0; lcm, gcd〉 is distributive. See Exercise 4.9 for a
useful necessary and sufficient condition for distributivity which
applies neatly to this example.

(4) Exercise 4.15 asks for a proof that the subgroup lattice of the infinite
cyclic group 〈Z; +〉 is isomorphic to 〈N0; lcm, gcd〉∂ . Consequently
SubZ is distributive. Now consider a finite group G. Exercise 5.16
will show that SubG is distributive if G is cyclic. The converse is
also true but is much harder to prove. It requires a more extensive
treatment of subgroup lattices than we have space to include.

(5) Our examples of classes of modular lattices come from algebra.

(i) We noted in 2.7 that the set N -SubG of normal subgroups of
a group G forms a lattice under the operations

H ∧K = H ∩K and H ∨K = HK,

with ⊆ as the underlying order. Let H,K,N ∈ N -SubG, with
H ⊇ N . Take g ∈ H∧(K∨N), so g ∈ H and g = kn, for some
k ∈ K and n ∈ N . Then k = gn−1 ∈ H , since H ⊇ N and H
is a subgroup. This proves that g ∈ (H ∧K) ∨N . Hence

H ∧ (K ∨N) ⊆ (H ∧K) ∨N.
Since the reverse inequality holds in any lattice (by 4.1) the
lattice N -SubG is modular, for any group G.

(ii) It can be shown in a similar way that the lattice of subspaces
of a vector space (see 2.34(2)) is modular.

(6) Consider the lattices M3 (the diamond) and N5 (the pentagon)
shown in Figure 4.1. The lattice M3 arose in 1.16 as N -SubV4 .
Hence, by (5)(i), M3 is modular. It is, however, not distributive.
To see this, note that in the diagram of M3

p ∧ (q ∨ r) = p ∧ 1 = p �= 0 = 0 ∨ 0 = (p ∧ q) ∨ (p ∧ r).
The lattice N5 is not modular (and so also not distributive): in the
diagram we have

u � w and u ∧ (v ∨ w) = u ∧ 1 = u > w = 0 ∨ w = (u ∧ v) ∨ w.

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅

0

rq

1

p

M3 ❜ ❜❜
❜❜

�
�

❅
❅

✑✑

◗◗
0

v

1

w

u

N5

Figure 4.1

88 Modular, distributive and Boolean lattices

These innocent-looking examples turn out to play a crucial role in
the identification of non-modular and non-distributive lattices; see
the discussion of the M3–N5 Theorem below.

4.7 Sublattices, products and homomorphic images. By 2.13, 2.15
and Exercise 2.19, new lattices can be manufactured by forming sublat-
tices, products and homomorphic images. Modularity and distributivity
are preserved by these constructions, as follows.

(i) If L is a modular (distributive) lattice, then every sublattice of L
is modular (distributive).

(ii) If L and K are modular (distributive) lattices, then L × K is
modular (distributive).

(iii) If L is modular (distributive) and K is the image of L under a
homomorphism, then K is modular (distributive).

Here (i) is immediate and (ii) holds because ∨ and ∧ are defined co-
ordinatewise on products. For (iii) we use the fact that a join- and
meet-preserving map preserves any lattice identity; for the modular case
we then invoke (i) ⇔ (iii) in 4.2.

A particularly useful consequence of the above results deserves to
be singled out as a proposition.

4.8 Proposition. If a lattice is isomorphic to a sublattice of a product
of distributive (modular) lattices, then it is distributive (modular).

4.9 Examples. Consider Figure 4.2. The lattice L1 is distributive
because it is a sublattice of 4 × 4 × 2, as indicated. (Any product
of chains is, of course, distributive.) The lattice L2 is isomorphic to the
shaded sublattice of the modular lattice M3×2 shown alongside and so
is itself modular.

The M3–N5 Theorem

We have as yet no way of showing that the distributive law or the
modular law is not satisfied except a random search for elements for
which the law fails. The M3–N5 Theorem remedies this in a most
satisfactory way. It implies that it is possible to determine whether or
not a finite lattice is modular or distributive from its diagram. The first
part of the theorem is due to R. Dedekind and the second to G. Birkhoff.

We adopt a head-on approach to the proof. This has the disad-
vantage that it does not reveal why the theorem works. For a more
illuminating treatment, beyond the scope of this book, see [40].

Modular, distributive and Boolean lattices 89

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

L1 ❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜❜ ❜❜ ❜❜ ❜

��
��

��
��

��

�� ❅❅
❅❅

❅❅

❅❅
❅❅
❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜❜ ❜❜ ❜❜ ❜

��
��

��
��

��

�� ❅❅
❅❅

❅❅

❅❅
❅❅
❅❅

�� �� � �� � �� � �� � �� ��

❜❜ ❜ ❜❜ ❜❜

❜ ❜❜
❜❜❜ ❜

4× 4× 2

❜ ❜
�
�

❅
❅❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅

L2 ❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅ ❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅

� � � �� ��

✘✘✘
✘✘✘

✘✘✘✘✘
✘✘✘

✘✘

✘✘✘
✘✘✘

✘✘

✘✘✘
✘✘✘

✘✘✘✘✘
✘✘✘

✘✘

M3 × 2
Figure 4.2

Recall from 2.17(2) that we write M � L to indicate that the
lattice L has a sublattice isomorphic to the lattice M .

4.10 The M3–N5 Theorem. Let L be a lattice.

(i) L is non-modular if and only if N5 � L.

(ii) L is non-distributive if and only if N5 � L or M3 � L.

Proof. By 4.6(6) and 4.7, it will be enough to prove that a non-modular
lattice has a sublattice isomorphic to N5 and that a lattice which is
modular but not distributive has a sublattice isomorphic to M3 .

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅

p

wv

q

u

(ii)

❜ ❜❜
❜❜

�
�

❅
❅

✑✑

◗◗
p

e

q

u

v

(i)

Figure 4.3

Assume that L is not modular. Then there exist elements d, e and f
such that d > f and v > u, where

u = (d ∧ e) ∨ f and v = d ∧ (e ∨ f).

90 Modular, distributive and Boolean lattices

We aim to prove that e ∧ u = e ∧ v (= p say) and e ∨ u = e ∨ v (= q
say). Then our required sublattice has elements u, v, e, p, q (which are
clearly distinct). The lattice identities give

v ∧ e = (e ∧ (e ∨ f)) ∧ d = d ∧ e and u ∨ e = (e ∨ (d ∧ e)) ∨ f = e ∨ f.
Also, by 2.5(4),

d ∧ e = (d ∧ e) ∧ e � u ∧ e � v ∧ e = d ∧ e
and, similarly,

e ∨ f = u ∨ e � v ∨ e � e ∨ f ∨ e = e ∨ f.
This proves our claims and so completes the proof of (i).

Now assume that L is modular but not distributive. We build a
sublattice isomorphic toM3 . Take d, e and f such that (d∧e)∨(d∧f) <
d ∧ (e ∨ f). Let

p := (d ∧ e) ∨ (e ∧ f) ∨ (f ∧ d),
q := (d ∨ e) ∧ (e ∨ f) ∧ (f ∨ d),
u := (d ∧ q) ∨ p,
v := (e ∧ q) ∨ p,
w := (f ∧ q) ∨ p.

Clearly u � p, v � p and w � p. Also, by Lemma 4.1(iii), we
have p � q . Hence u � (d ∧ q) ∨ q = q . Similarly, v � q and w � q .
Our candidate for a copy of M3 has elements {p, q, u, v, w}. We need
to check that this subset has the correct joins and meets, and that its
elements are distinct.

We shall repeatedly appeal to the modular law, viz.

(M) a � c implies a ∧ (b ∨ c) = (a ∧ b) ∨ c.
For each application of (M) we underline the elements a and c involved.
In the calculations which follow we use the commutative and associative
laws many times without explicit mention. We have d∧ q = d∧ (e∨ f),
by (L4)∂ . Also

d ∧ p = d ∧ ((e ∧ f) ∨ ((d ∧ e) ∨ (d ∧ f)))
= (d ∧ (e ∧ f)) ∨ ((d ∧ e) ∨ (d ∧ f))
= (d ∧ e) ∨ (d ∧ f).

Thus p = q is impossible. We conclude that p < q .

Modular, distributive and Boolean lattices 91

We next prove that u ∧ v = p. We have

u ∧ v = ((d ∧ q) ∨ p) ∧ ((e ∧ q) ∨ p)
= ((e ∧ q) ∨ p) ∧ (d ∧ q)) ∨ p (by (M))

= ((q ∧ (e ∨ p)) ∧ (d ∧ q)) ∨ p (by (M))

= ((e ∨ p) ∧ (d ∧ q)) ∨ p
= ((d ∧ (e ∨ f)) ∧ (e ∨ (f ∧ d))) ∨ p (by (L4) & (L4)∂)

= (d ∧ ((e ∨ f) ∧ (e ∨ (f ∧ d)))) ∨ p
= (d ∧ (((e ∨ f) ∧ (f ∧ d)) ∨ e)) ∨ p (by (M))

= (d ∧ ((f ∧ d) ∨ e)) ∨ p (since d ∧ f � f � e ∨ f)
= ((d ∧ e) ∨ (f ∧ d)) ∨ p (by (M))

= p.

In exactly the same way, v ∧ w = p and w ∧ u = p. Similar
calculations yield u ∨ v = v ∨ w = w ∨ u = q .

Finally, it is easy to see that if any two of the elements u, v, w, p, q
are equal, then p = q , which is impossible. �

4.11 Applying the M3–N5 Theorem. Consider the four lattices in
Figure 4.4. The lattices L1 and L2 have sublattices isomorphic to N5 ,
explicitly exhibited, and M3 � L3 . The M3–N5 Theorem implies,
immediately and conclusively, that L1 and L2 are non-modular and
that L3 is non-distributive.

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅

�� �� �p q r

0

1

x y z

L3 ❜ ❜ ❜❜ ❜ ❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅

❅
❅

L4

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

�
�❅

❅

�

��
� �

0

a b

d e
c

1

L1 ❜ ❜ ❜❜ ❜ ❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅

❅
❅

� ��� �

L2

Figure 4.4

92 Modular, distributive and Boolean lattices

It is apparent from the diagrams that N5 does not embed in L3

and that neither N5 nor M3 embeds in L4 . However, to justify such
assertions fully requires a tedious enumeration of cases. For example,
suppose {u, a, b, c, v}, with u < c < a < v, u < b < v , were a sublattice
of L3 isomorphic to N5 . Since L3 and N5 both have length 3, we must
have u = 0 and v = 1. Since a ∧ b = c ∧ b = 0 and a ∨ b = c ∨ b = 1,
by duality and symmetry we may assume without loss of generality that
a = r, c = p and b = x. But {0, r, x, p, 1} is not a sublattice of L3 , � .

To decide whether a given lattice L is non-modular, modular but
non-distributive, or distributive, we therefore proceed as follows. If a
sublattice of L isomorphic to N5 (M3) can be exhibited, then L is
non-modular (non-distributive), by the M3–N5 Theorem. If a search
for a copy of N5 (of either N5 or M3) fails, we conjecture that L is
modular (distributive). To substantiate this claim we first try to apply
the sublattice-of-a-product technique. Our remarks in Example 4.12
show that there are cases where this is doomed to fail. A fall-back
method, relying on a rather tricky proof, is given in Exercise 4.18.

It should be emphasized that the statement of theM3–N5 Theorem
refers to the occurrence of the pentagon or diamond as a sublattice
of L; this means that the joins and meets in a candidate copy of N5

or M3 must be the same as those in L. In Figure 4.4, the pentagon
K = {0, a, b, d, 1} in L1 is not a sublattice; a ∨ b = c /∈ K . In the other
direction, in applying Proposition 4.8 one must be sure to embed the
given lattice as a sublattice. Thus it would be erroneous to conclude from
Figure 2.6(iv) that N5 is distributive: N5 sits inside the distributive
lattice 23 , but not as a sublattice.

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅ ❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅

M3,3

x y s

t w z

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅ ❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

L

Figure 4.5

4.12 Example. Consider the lattice M3,3 in Figure 4.5. It can be
shown (see Exercise 6.15) that if M3,3 � A × B for some lattices A
and B , then M3,3 � A or M3,3 � B . Consequently the sublattice-of-
a-product technique cannot be applied to M3,3 . Nevertheless, M3,3 is
modular. To see this, note that for u ∈ {x, y, z}, the sublatticeM3,3\{u}
is isomorphic to L (Figure 4.5) or to its dual, both of which are modular

Modular, distributive and Boolean lattices 93

(see 4.9 and 4.5(3)). Thus any sublattice of M3,3 isomorphic to N5

would need to contain the antichain {x, y, z}, which is impossible.

Boolean lattices and Boolean algebras

A Boolean algebra is a distributive lattice with additional structure
which mimics the complementation in a powerset. Our first task is to
define complements in an arbitrary lattice.

4.13 Complements. Let L be a lattice with 0 and 1. For a ∈ L, we
say b ∈ L is a complement of a if a ∧ b = 0 and a ∨ b = 1. If a has a
unique complement, we denote this complement by a′ .

Assume L is distributive and suppose that b1 and b2 are both
complements of a. Then

b1 = b1 ∧ 1 = b1 ∧ (a ∨ b2) = (b1 ∧ a) ∨ (b1 ∧ b2) = b1 ∧ b2.
Hence b1 � b2 by the Connecting Lemma. Interchanging b1 and b2 gives
b2 � b1 . Therefore in a distributive lattice an element can have at most
one complement. It is easy to find examples of non-unique complements
in non-distributive lattices: look at M3 or N5 (Figure 4.1).

A lattice element may have no complement. The only comple-
mented elements in a bounded chain are 0 and 1. If L ⊆ ℘(X) is a
lattice of sets, then an element A ∈ L has a complement if and only if
X \ A belongs to L. Thus the complemented elements of O(P) are the
sets which are simultaneously down-sets and up-sets. (See Exercise 1.17.)

4.14 Definition. A lattice L is called a Boolean lattice if

(i) L is distributive,

(ii) L has 0 and 1,

(iii) each a ∈ L has a (necessarily unique) complement a′ ∈ L.

The following lemma collects together properties of the complement
in a Boolean lattice.

4.15 Lemma. Let L be a Boolean lattice. Then

(i) 0′ = 1 and 1′ = 0,

(ii) a′′ = a for all a ∈ L,

(iii) de Morgan’s laws hold: for all a, b ∈ L,

(a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′,
(iv) a ∧ b = (a′ ∨ b′)′ and a ∨ b = (a′ ∧ b′)′ for all a, b ∈ L,

(v) a ∧ b′ = 0 if and only if a � b for all a, b ∈ L.

94 Modular, distributive and Boolean lattices

Proof. To prove p = q′ in L it is sufficient to prove that p ∨ q = 1
and p ∧ q = 0, since the complement of q is unique. This observation
makes the verification of (i)–(iii) entirely routine. Part (iv) follows from
(ii) and (iii), while (v) is an easy exercise. �

4.16 Boolean algebras. A Boolean lattice was defined to be a special
kind of distributive lattice. In such a lattice it is often more natural to
regard the distinguished elements 0 and 1 and the unary operation ′

as an integral part of the structure, with their properties embodied in
axioms. Accordingly, a Boolean algebra is defined to be a structure
〈B;∨,∧, ′, 0, 1〉 such that
(i) 〈B;∨,∧〉 is a distributive lattice,
(ii) a ∨ 0 = a and a ∧ 1 = a for all a ∈ B ,

(iii) a ∨ a′ = 1 and a ∧ a′ = 0 for all a ∈ B .

This viewpoint is extended to other concepts from Chapter 2. We say
that a subset A of a Boolean algebra B is a subalgebra if A is a sublattice
of B which contains 0 and 1 and is such that a ∈ A implies a′ ∈ A.
Given Boolean algebras B and C , a map f : B → C is a Boolean
homomorphism if f is a lattice homomorphism which also preserves 0, 1
and ′ (that is, f(0) = 0, f(1) = 1 and f(a′) = (f(a))′ for all a ∈ B).
Lemma 4.17 shows that these conditions are not independent.

4.17 Lemma. Let f : B → C , where B and C are Boolean algebras.

(i) Assume f is a lattice homomorphism. Then the following are
equivalent:

(a) f(0) = 0 and f(1) = 1;

(b) f(a′) = (f(a))′ for all a ∈ B .

(ii) If f preserves ′ , then f preserves ∨ if and only if f preserves ∧.

Proof. (i) To confirm that (a) implies (b) use the equations

0 = f(0) = f(a ∧ a′) = f(a) ∧ f(a′),
1 = f(1) = f(a ∨ a′) = f(a) ∨ f(a′).

Conversely, if (b) holds, we have

f(0) = f(a ∧ a′) = f(a) ∧ (f(a))′ = 0,
f(1) = f(a ∨ a′) = f(a) ∨ (f(a))′ = 1.

(ii) Assume f preserves ′ and ∨. By Lemma 4.15(iv),
f(a ∧ b) = f((a′ ∨ b′)′) = (f(a′ ∨ b′))′ = (f(a′) ∨ f(b′))′

= ((f(a))′ ∨ (f(b))′)′ = f(a) ∧ f(b),
for all a, b ∈ B . The converse is proved dually. �

Modular, distributive and Boolean lattices 95

4.18 Examples of Boolean algebras. Here we present some old friends
in new clothes and add some examples of infinite Boolean algebras which
are important in Chapters 10 and 11.

(1) For any set X , let A′ := X \ A for all A ⊆ X . Then the structure
〈℘(X);∪,∩, ′,∅, X〉 is a Boolean algebra known as the powerset
algebra on X . By an algebra of sets (also known as a field of sets)
we mean a subalgebra of some powerset algebra ℘(X), that is, a
family of sets which forms a Boolean algebra under the set-theoretic
operations.

We shall prove in Chapter 5 that every finite Boolean algebra is
isomorphic to ℘(X) for some finite set X . Example (2) below shows
that there are infinite Boolean algebras which are not powerset
algebras. However, we show in Chapter 10 that every Boolean
algebra is isomorphic to an algebra of sets. Further, in 10.24 we
characterize the powerset algebras among Boolean algebras.

(2) The finite-cofinite algebra of the set X is defined to be

FC(X) := {A ⊆ X | A is finite or X \A is finite } .
It is easily checked that this is an algebra of sets, but we claim
that FC(N) is not isomorphic to ℘(X) for any set X . One way to
arrive at this is to consider cardinalities. It is a standard exercise
on countable sets to prove that FC(N) is countable. On the other
hand, Cantor’s Theorem implies that any powerset is either finite or
uncountable. A more lattice-theoretic proof involves completeness.
Exercise 2.25 shows that FC(N) is not complete. But ℘(X) is
always complete and an isomorphism must preserve completeness,
by 2.27(ii).

(3) The family of all clopen subsets of a topological space (X; T) is an
algebra of sets. Clearly this example will not be of much interest
unless X has plenty of clopen sets. The significance of Boolean
algebras of this sort emerges in Chapter 11 where we show that
every Boolean algebra can be concretely represented as such an
algebra.

(4) For n � 1 the lattice 2n is lattice-isomorphic to ℘({1, 2, . . . , n}),
which is a Boolean algebra. Hence 2n is a Boolean algebra, with

0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1),

(ε1, . . . , εn)
′
= (η1, . . . , ηn), where ηi = 0⇐⇒ εi = 1.

The simplest non-trivial Boolean algebra of all is 2 = {0, 1}. It
arises frequently in logic and computer science as an algebra of truth

96 Modular, distributive and Boolean lattices

values. In such contexts the symbols F and T, or alternatively ⊥
and �, are used in place of 0 and 1. We have

F ∨ F = F ∧ F = F ∧ T = T′ = F,

T ∧ T = F ∨ T = T ∨ T = F′ = T.

In the next section we begin to explore the way Boolean algebras
model deductive reasoning involving statements which are assigned
value T (true) or F (false).

Boolean terms and disjunctive normal form

Historically, Boolean algebras are inextricably linked to logic, and it is in
this context that students in a variety of disciplines encounter them, at
levels ranging from primary school to graduate. Many Boolean algebra
applications, circuit design for example, are specialist topics which rely
on the laws of Boolean algebra but quickly leave lattice theory behind.
We only hint at such applications.

4.19 Truth tables: the algebra of propositions. In propositional cal-
culus, propositions are designated by propositional variables which take
values in {F,T}. Admissible compound statements are formed using
logical connectives. Connectives include ‘and’, ‘or’ and ‘not’, denoted
respectively by our old friends ∧,∨ and ′ . Another natural connective is
‘implies’ (→). Compound statements built from these are assigned the
expected truth values according to the truth values of their constituent
parts. For example, p ∧ q has value T if and only if both p and q have
value T and p→ q has value T unless p has value T and q has value F.
(Any puzzlement resulting from the fact that p→ q is true whenever p
is false should be dispelled by reading p→ q as ‘if p, then q ’.)

Formally, we take an infinite set of propositional variables, denoted
p, q, r, . . . , and define a wff (or well-formed formula) by the rules:

(i) any propositional variable standing alone is a wff (optionally, con-
stant symbols T and F may also be included as wffs);

(ii) if ϕ and ψ are wffs, so are (ϕ ∧ ψ), (ϕ ∨ ψ), ϕ′ , (ϕ → ψ) (this
clause is suitably adapted if a different set of connectives is used);

(iii) any wff arises from a finite number of applications of (i) and (ii).

Thus ((p ∧ q′) ∨ r)′ and ((p′ → q) → ((p′ → q′) → p)) are wffs while
(((p ∨ q) ∧ p) (invalid bracketing) and ∨ → q (arrant nonsense) are not.
The parentheses may appear to clutter up wffs unnecessarily. Included
as dictated by the definition, they guarantee non-ambiguity. In practice
we drop parentheses where no ambiguity would result, just as if we were
writing a string of joins, meets and complements in a lattice.

Modular, distributive and Boolean lattices 97

A wff ϕ involving the propositional variables p1, . . . , pn defines a
truth function Fϕ of n variables. For a given assignment of values in
{F,T} to p1, . . . , pn , simply substitute these values into ϕ and compute
the resulting expression in the Boolean algebra {F,T} to obtain the value
of Fϕ . Conventionally, truth functions are presented via truth tables, as
illustrated in Table 4.1.

p q p → q

T T T
T F F
F T T
F F T

p1 p2 p3 (p1 ∨ p2) (p′1 ∨ p3) ((p1 ∨ p2) ∧ (p′1 ∨ p3))′

T T T T T F
T T F T F T
T F T T T F
T F F T F T
F T T T T F
F T F T T F
F F T F T T
F F F F T T

Table 4.1

Two wffs ϕ and ψ are called logically equivalent (written ϕ ≡ ψ) if
they define the same truth function, that is, they give rise to the same
truth table. For the purposes of deductive reasoning, logically equivalent
wffs are essentially the same. It is an easy exercise on truth tables to
prove that, for any wffs ϕ and ψ ,

(ϕ ∧ ψ) ≡ (ϕ′ ∨ ψ′)′, (ϕ ∨ ψ) ≡ (ϕ′ ∧ ψ′)′,
(ϕ→ ψ) ≡ (ϕ′ ∨ ψ), (ϕ ∧ ψ) ≡ (ϕ→ ψ′)′.

A proof by induction on the number of connectives then shows that any
wff built using ∨,∧ and ′ is logically equivalent to one built using →
and ′ , and vice versa. Therefore, up to logical equivalence, we arrive at
the same set of wffs whether we take {∨,∧, ′,→}, just {→, ′} or just
{∨,∧,′ } as the basic set of connectives. The choice of {→, ′} is the most
natural for studying logic, while {∨,∧, ′} brings out the connections with
Boolean algebras.

The set of wffs, with ∨,∧ and ′ as operations, closely resembles a
Boolean lattice. The axioms do not hold if = is taken to mean ‘is the

98 Modular, distributive and Boolean lattices

same wff as’, but it is a routine matter to show that they all hold if = is
read as ‘is logically equivalent to’. For example, to establish (L4) note
that ϕ∨ (ϕ∧ψ) takes value T if and only if ϕ does, so ϕ∨ (ϕ∧ψ) ≡ ϕ.
If F and T are included as wffs, to serve as 0 and 1, we obtain a Boolean
algebra. We meet this algebra of propositions again, in a more formal
guise, in Chapter 11.

4.20 Boolean terms. We used the Boolean symbols, representing log-
ical connectives, to build the formulae of propositional calculus from
propositional variables. This construction, freed from the trappings of
logic, has a variety of applications. We define the class BT of Boolean
terms (or Boolean polynomials) as follows. Let S be a set of variables,
whose members will be denoted by letters such as x, y, z, x1, x2, . . . , and
let ∨,∧, ′, 0, 1 be the symbols used to axiomatize Boolean algebras. Then
(i) 0, 1 ∈ BT and x ∈ BT for all x ∈ S ,

(ii) if p, q ∈ BT then (p ∨ q), (p ∧ q) and p′ belong to BT,
(iii) every element of BT is an expression formed by a finite number of

applications of (i) and (ii).

A Boolean term p whose variables are drawn from among x1, . . . , xn will
be written p(x1, . . . , xn). Examples of Boolean terms, illustrating the
building process, are

1, x, y, y′, (x ∨ y′), (1 ∧ (x ∨ y′)), (1 ∧ (x ∨ y′))′.

Just as numbers may be substituted into ‘ordinary’ polynomials,
elements of any Boolean algebra B may be substituted for the variables
of a Boolean term to yield an element of B . In particular we may
take B = 2. Thence every Boolean term p(x1, . . . , xn) defines a map
Fp : 2

n → 2. The map Fp associated with p can be specified by a ‘truth
table’ in just the same way as a wff determines a truth function; the only
difference is that each entry of the table is 0 or 1, instead of F or T.

It is usual to use p to denote both the term and the function Fp it
induces. As it simplifies the notation, we shall do this from time to time
when no confusion results.

We say that p(x1, . . . , xn) and q(x1, . . . , xn) are equivalent, and
write p ≡ q , if p and q have the same truth function, that is, Fp = Fq .
It is easy to see that, for instance, (x∧y′)′ ≡ (x′∨y); just check that both
sides give the same truth table. Note that the right-hand side can be
obtained from the left by applying the laws of Boolean algebra, treating
the variables as though they were Boolean algebra elements:

(x ∧ y′)′ = (x′ ∨ y′′) = (x′ ∨ y).

Modular, distributive and Boolean lattices 99

In general, whenever q(x1, . . . , xn) can be obtained from p(x1, . . . , xn)
by the laws of Boolean algebra, we have p ≡ q . We see in 4.24 that
the converse is also true. Where removal of parentheses from a Boolean
term would, up to equivalence, not result in ambiguity, we shall omit
the parentheses. For example, we shall write x ∨ y ∨ z in place of either
(x ∨ (y ∨ z)) or ((x ∨ y) ∨ z).

We prove in 4.23 that every map from 2n to 2 coincides with Fp for
some Boolean term p in n variables. This is a surprising and important
theorem. To motivate both the theorem and its proof, we preface it with
a brief discussion of one application.

4.21 Boolean terms and computer architecture. The design of a com-
puter system may be viewed hierarchically: from customer requirement,
down in multiple stages through high level programming language, ma-
chine code and integrated circuits to semiconductors. The circuits are
carried on chips of silicon and consist of interconnected groups of tran-
sistors. A crucial feature of transistors is that although subjected to
continuously varying voltages, they either allow current to pass to the
best of their ability or not at all, and so act as electrical switches. Tran-
sistors are linked to create gates. A gate recognizes only two levels of
voltage: high (denoted 1) and low (denoted 0). It may be regarded as
having n inputs each taking value 0 or 1, and having one or more out-
puts, each taking value 0 or 1 (depending on the combination of inputs).
A basic kit for constructing circuits consists of

AND gate two inputs; output 1 if and only if both inputs are 1,
OR gate two inputs; output 1 if and only if either input is 1,
NOT gate one input; output 0 if and only if the input is 1.

Figure 4.6(i) shows a stylized representation of these gates and 4.6(ii)
a gate diagram for a circuit. The same input–output behaviour results
from ordinary electric switches wired in series (for an AND gate) and in
parallel (for an OR gate). Thus gate diagrams are really what in olden,
pre-transistor days were known as series-parallel switching circuits.

Clearly AND, OR and NOT gates mimic ∧,∨ and ′ acting on {0, 1}.
Thus a gate diagram with k outputs corresponds to a k-element set of
Boolean terms. The 2–output diagram in Figure 4.6(ii) corresponds to
the 2-element set of terms {x1 ∧ x2, (x1 ∨ x2) ∧ (x′3 ∨ (x′4 ∧ x5))}.

The problem of constructing a gate diagram to model a circuit with
specified characteristics is just that of finding a Boolean term with a
given truth function. Theorem 4.23 solves this problem, but in a way
which is in general highly redundant. In circuit design this may be very
undesirable. A complicated Boolean term may lead to a circuit which is

100 Modular, distributive and Boolean lattices

Figure 4.6

costly (many connectives entail many gates), hard to realize compactly
on a chip (if the term is ‘irregular’), or slow (if the term involves many
sub-terms or long strings of joins or meets). This difficulty can in theory
be overcome by using the laws of Boolean algebra to replace a compli-
cated Boolean term by a simpler equivalent one; see Example 4.22(2).
However, a single chip may have millions of transistors, and direct imple-
mentation of complicated circuits would be impractical and wastefully
repetitive. Instead a modular approach is adopted. At the level above
gate diagrams in the design hierarchy comes microprogramming. This
deals with the implementation of relatively simple modular components
(adders, memories, etc.) from which, in turn, more complex processing
units are constructed. Effective system design depends on good commu-
nication between adjacent levels in the hierarchy. Thus gate diagrams
cannot be divorced from microprogramming (above) and the wiring of
transistors (below). The use of Boolean terms is enmeshed with the
methodology of these related topics, so that we can only illustrate it in
a limited way. A much fuller account can be found in [31], for example.

4.22 Examples.

(1) Each stage in the binary addition of two numbers involves addition
modulo 2, with a ‘carry’ if two 1s are added. For example, suppose
we wish to add 6, represented as 110, to 3, represented as 011.
We add the final bits 0 and 1 to give 1 and no carry, then add the
penultimate bits to give 0 with a carry 1, and finally add the leftmost
bits, remembering to include the carry. This gives the expected
result, 1001 = 9. A circuit (an adder) to execute this procedure
can be built from components known as half-adders, where each
half-adder carries out a single ‘sum and carry’ operation on a pair
of bits. Input–output for a half-adder is shown Table 4.2.

Modular, distributive and Boolean lattices 101

x y sum carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 4.2

It is immediate that carry is given by the Boolean term x∧ y . For
sum we require a term p(x, y) which takes value 1 when exactly one
of x, y takes value 1. Looking at lines 2 and 3 of the table we see
that x ∧ y′ and x′ ∧ y have this property; no other meets of pairs
do. It is then routine to verify that the term (x ∧ y′) ∨ (x′ ∧ y) has
exactly the truth table we require for sum. The associated gate
diagram is shown in Figure 4.7. This can be simplified by having
tailor-made gates for other 2-variable truth functions; here an XOR
gate is wanted, modelling the exclusive form of OR.

Figure 4.7

(2) Our second example concerns a circuit to execute a logical operation
as opposed to an arithmetical one. We seek p(x, y, z) having the
truth function given in Table 4.3.

x y z p(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1

1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 4.3

102 Modular, distributive and Boolean lattices

Notice that if x = 1 then p(x, y, z) must take the same value as y
and otherwise must take the value of z . We are therefore modelling
if-then-else, for which an appropriate term is (x ∧ y) ∨ (x′ ∧ z).
Let us now see how we can arrive at this by the technique we used in
the previous example. We want p(x, y, z) = 1 for the combinations
of truth values in rows 2, 4, 7 and 8. The terms x′∧y′∧z , x′∧y∧z ,
x∧ y ∧ z′ and x∧ y ∧ z give value 1 on these rows. Taking the join
of these we have a candidate for p(x, y, z), namely

(x′ ∧ y′ ∧ z) ∨ (x′ ∧ y ∧ z) ∨ (x ∧ y ∧ z′) ∨ (x ∧ y ∧ z)
≡ ((x′∧ z)∧ (y∨y′))∨ ((x∧y)∧ (z∨ z′)) ≡ (x∧y)∨ (x′∧ z).

The construction in the following proof generalizes that used above.
Take the truth table associated with a given truth function F : 2n → 2.
For each row (element of 2n) on which F has value 1, form the meet of
n symbols by selecting for each variable x either x or x′ depending on
whether x has value 1 or 0 in that row. The join of these terms, p, is
such that F = Fp .

4.23 Theorem. Every map F : 2n → 2 coincides with Fp for some
Boolean term p(x1, . . . , xn). A suitable term p may be described as
follows. For a = (a1, . . . , an) ∈ 2n , define pa(x1, . . . , xn) by

pa(x1, . . . , xn) = xε11 ∧ · · · ∧ xεnn where x
εj
j =

{
xj if aj = 1,

x′j if aj = 0.

Then define

p(x1, . . . , xn) =
∨
{ pa(x1, . . . , xn) | F (a) = 1 } .

Proof. Let a = (a1, . . . , an) ∈ 2n and b = (b1, . . . , bn) ∈ 2n . We have
carefully chosen the term pa(x1, . . . , xn) so that

Fpa(b1, . . . , bn) =

{
1 if b = a,

0 if b �= a.
We claim that F = Fp . Assume that F (b) = 1. Then

Fp(b1, . . . , bn) =
∨ {Fpa(b1, . . . , bn) | F (a) = 1 }

� Fpb(b1, . . . , bn) (since F (b) = 1)

= 1 (by the above).

Thus F (b) = 1 implies Fp(b) = 1. Now assume F (b) = 0. Then
F (a) = 1 implies b �= a, so Fpa(b1, . . . , bn) = 0. Therefore

Fp(b1, . . . , bn) =
∨
{Fpa(b1, . . . , bn) | F (a) = 1 } = 0.

Thus F (b) = 0 implies Fp(b) = 0. Hence F = Fp , as claimed. �

Modular, distributive and Boolean lattices 103

4.24 Disjunctive normal form. A Boolean term p(x1, . . . , xn) is said
to be in full disjunctive normal form, or DNF, if it is a join of distinct
meets of the form xε11 ∧ · · · ∧ xεnn . By definition, x

ε equals x if ε = 1,
and x′ if ε = 0; terms of the form xε are known as literals.

Theorem 4.23 implies that any Boolean term is equivalent to a term
in DNF (in the setting of propositional calculus this is just the classic
result that any wff is logically equivalent to a wff in DNF). Note that
the Boolean term 0 is already in DNF as it is the join of the empty set.
At the other end of the spectrum, the DNF of the Boolean term 1 is
the join of all 2n meets of the form xε11 ∧ · · · ∧ xεnn . Each truth function
uniquely determines, and is determined by, a DNF term, so p ≡ q in
BT if and only if each of p and q is equivalent to the same DNF, in the
sense that every meet of literals occurring in the DNF of p occurs in the
DNF of q and vice versa. We have already remarked that applying the
laws of Boolean algebra to a Boolean term yields an equivalent term. We
observe that this process can be used to reduce any term p(x1, . . . , xn)
to DNF, as outlined below.

(i) Use de Morgan’s laws to reduce p(x1, . . . , xn) to literals combined
by joins and meets.

(ii) Use the distributive laws repeatedly, with the lattice identities, to
obtain a join of meets of literals.

(iii) Finally, we require each xi to occur, either primed or not, once and
once only in each meet term. This is achieved by dropping any
terms containing both xi and x′i , for any i. If neither xj nor x

′
j

occurs in
∧
k∈Kx

εk
k , note that∧

k∈K
xεkk ≡ (∧

k∈K
xεkk

) ∧ (xj ∨ x′j) ≡ (∧
k∈K

xεkk ∧ xj
) ∨ (∧

k∈K
xεkk ∧ x′j

)
.

Repeating this for each missing variable we arrive at a term in DNF.

This process shows that a term may be converted to DNF by the laws
of Boolean algebra. We may therefore assert that p ≡ q if and only
if Fp(a1, . . . , an) = Fq(a1, . . . , an) for any elements a1, . . . , an in any
Boolean algebra B , and it is possible to test whether this is true by
reducing each of p and q to DNF; see Exercise 4.36.

For the term ((p1∨p2)∧ (p′1∨p3))
′ the truth table in Table 4.1 and

Theorem 4.23 give the DNF

(p′1 ∧ p′2 ∧ p3) ∨ (p1 ∧ p2 ∧ p′3) ∨ (p1 ∧ p′2 ∧ p′3) ∨ (p′1 ∧ p′2 ∧ p′3).
For comparison, try obtaining this by the process above.

Finally we give a theorem which is essentially a reformulation of
Theorem 4.23.

104 Modular, distributive and Boolean lattices

4.25 Theorem. Let B be the Boolean algebra 22n

. Then B is gener-
ated by n elements, in the sense that there exists an n-element subset
X of B such that the smallest Boolean subalgebra of B containing X
is B .

Proof. Identify B with the Boolean algebra ℘(2n). Define X to be
{e1, . . . , en}, where ei := { (a1, . . . , an) ∈ 2n | ai = 1 } for i = 1, . . . , n.
Then for each a = (a1, . . . , an) ∈ 2n we have

{a} =
⋂
{ ei | ai = 1 } ∩

⋂
{ e′i | ai = 0 } .

Each non-empty element of B is a union of singletons, {a}, and hence
expressible as a join of meets of elements of the form ei or e

′
i ; noting

that ∅ = e1 ∩ e′1 takes care of the empty set. �

Exercises

Exercises from the text. Prove Lemma 4.1(i), (iii). Prove that L∂ is
modular if L is (see 4.5(3)). Complete the proof of Lemma 4.15 (i)–(iv)
(see Exercise 4.26 for (v)).

4.1 Show that M3 and N5 are the only non-distributive lattices with
fewer than 6 elements.

4.2 (i) Find a set X of least cardinality such that the chain 3 is
isomorphic to a sublattice of ℘(X). Conclude that the chains
1,2 and 3 are distributive.

(ii) Let C be any chain and let x, y, z ∈ C . Show that x∧ (y∨z)
and (x ∧ y) ∨ (x ∧ z) both belong to {x, y, z}.

(iii) By combining (i) and (ii) show that every chain is distribu-
tive.

4.3 Which of the lattices of Figure 4.8 are distributive and which
are modular? (Use the M3–N5 Theorem and Proposition 4.8,
as explained in 4.11, to justify your answers.)

4.4 Repeat the previous exercise for the lattices in Figure 2.17.

4.5 Use theM3–N5 Theorem to show that if L is a distributive lattice,
then L∂ is also distributive. (This yields a non-computational
proof of Lemma 4.3.)

4.6 Use the M3–N5 Theorem to show that every lattice L of length 2
is modular (Exercise 2.33 sought a description of all such lattices).
(Hence, in particular, Mn is modular for all n.)

4.7 Find all pairs of lattices (L,K) (up to isomorphism) such that

Modular, distributive and Boolean lattices 105

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅
❜ ❜ ❜❜ ❜

��
�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅
❜

❜❅❅❅❅ ❜
❜ ❜❜ ❜
��

�� ❅❅

❅❅
❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜
❅❅ �� ❜ ❜❜ ❜

��
�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅❜��
❅❅ ❜ ❜❜ ❜

�
�❅

❅

�
�❅

❅❜
❜

❜
�
�
�
�

❍❍❍❍

Figure 4.8

(a) L×K contains 20 elements;

(b) L is non-distributive;

(c) K has at least 3 elements;

(d) the greatest element of L×K covers precisely 4 elements.

4.8 Determine the lattices L and K to within isomorphism given that

(a) |L×K| = 18,
(b) L is non-distributive,

(c) K has at least 3 elements,

(d) L×K is modular,

(e) the bottom element of L×K is covered by exactly 4 elements.

Fully explain your answer. Finish off by drawing and labelling L,
K and L×K .

4.9 (i) Let L be a distributive lattice and let a, b, c ∈ L. Prove that

(a ∨ b = c ∨ b & a ∧ b = c ∧ b) =⇒ a = c. (∗)

(ii) Find elements a, b, c in M3 violating (∗). Do the same
for N5 .

(iii) Deduce that a lattice L is distributive if and only if (∗) holds
for all a, b, c ∈ L.

4.10 Guess and then prove a characterization of modularity similar to
the characterization of distributivity given in Exercise 4.9.

106 Modular, distributive and Boolean lattices

4.11 It was seen in Example 2.6(5) and Exercise 2.36 that when N0 is
ordered by division the resulting ordered set is a complete lattice
in which finite joins are given by lcm and finite meets by gcd.

(i) Use Exercise 4.9 to show that 〈N0; lcm, gcd〉 is distributive.
(ii) Let A = {3, 5, 7, . . . } be the set of odd primes. Calculate ∨A

in 〈N0;�〉. Hence show that 〈N0;�〉 fails the Join-Infinite
Distributive law

x ∧
∨{

yi | i ∈ I
}
=

∨{
x ∧ yi | i ∈ I

}
.

(Compare this with Proposition 10.25.)

4.12 (i) Prove that a lattice L is distributive if and only if for each
a ∈ L, the map fa : L→ ↓a × ↑a defined by

fa(x) = (x ∧ a, x ∨ a) for all x ∈ L

is a one-to-one homomorphism. [Use Exercise 4.9.]

(ii) Prove that, if L is distributive and possesses 0 and 1, then
fa (as defined in (i)) is an isomorphism if and only if a has
a complement in L.

4.13 Let L be a lattice. Show that L is modular if and only if for all
a, b ∈ L the maps jb : x �→ x ∨ b and ma : y �→ y ∧ a are mutually
inverse lattice isomorphisms between [a∧b, a] and [b, a∨b]. Deduce
that, if L is finite, then L is modular if and only if

[a ∧ b, a] ∼= [b, a ∨ b] for all a, b ∈ L.

(Here [c, d] := {x ∈ L | c � x � d }.)
4.14 (For those with some group theory behind them.)

(i) Prove that no group G satisfies SubG ∼= N5 .

(ii) Prove that if a group G satisfies SubG ∼= M3 , then G ∼=
V4

∼= Z2 × Z2 .

4.15 Show that the lattice SubZ of subgroups of the infinite cyclic group
〈Z; +〉 is isomorphic to 〈N0;�〉∂ and hence is distributive.

4.16 (i) Let L and K be lattices and assume that N5 � L × K .
Show that N5 � L or N5 � K .

(ii) Under the additional assumption that both L and K are
modular, repeat (i) with M3 in place of N5 .

4.17 (i) Use Remark 2.5(5) to show that N5 � L if and only if there
exist five elements u, a, b, c, v ∈ L such that

(a) u < b < a < v and u < c < v ,

(b) a ∧ c = u and b ∨ c = v .

Modular, distributive and Boolean lattices 107

(ii) Let {u, a, b, c, v} be a sublattice of L isomorphic to N5 and
assume a1, b1 ∈ L with b � b1 < a1 � a. Show that
{u, a1, b1, c, v} is also a sublattice of L isomorphic to N5 .

4.18 Assume that L is a lattice, J is an ideal of L, and G is a filter of
L such that L = J ∪G and J ∩G �= ∅.

(i) Show that, if L has a sublattice M with M ∼= M3 , then
either M ⊆ J or M ⊆ G. (This does not require J∩G �= ∅.)

(ii) Show that if x ∈ J , y ∈ G and x � y , then there exists
z ∈ J ∩G such that x � z � y . [Hint. Consider x∨ (y ∧w),
where w ∈ J ∩G.]

(iii) (a) Prove that if N5 � L, then N5 � J or N5 � G.

[Hint. Let N = {u, a, b, c, v}: see Figure 4.9. The
non-trivial case occurs when u ∈ L \G and v ∈ L \ J .
Show that (up to duality) it suffices to consider the
configuration on the left in Figure 4.9. Apply (ii) to
obtain z , then add to the diagram the elements z ∧ b
and a ∨ (z ∧ b). Show that if c ∨ (z ∧ b) = a ∨ (z ∧ b),
then N5 � J ; otherwise, add c∨(z∧b) to the diagram
and show that then N5 � G. Exercise 4.17 will come
in handy.]

Figure 4.9

(b) Show by example that the assumption J ∩ G �= ∅ is
necessary in (a).

(iv) Prove that L is a modular (distributive) lattice if and only
if both J and G are modular (distributive) lattices.

(v) Use (iv) to prove that M3,3 is modular. (See Figure 4.5 and
Example 4.12.)

4.19 Prove that the following are equivalent for a distributive lattice L:

(i) L is finite;

(ii) L is of finite length;

(iii) The set J (L) of join-irreducible elements of L is finite.

108 Modular, distributive and Boolean lattices

[Hint. For (ii) ⇒ (iii) let C be a (necessarily finite) maximal chain
in L. Define ϕ : J (L) → C by ϕ(x) :=

∧
(↑x ∩ C). Show that ϕ

is one-to-one: assume that ϕ(x) = ϕ(y) = a, let b be the lower
cover of a in C and calculate x ∧ (b ∨ y). For (iii) ⇒ (i), appeal
to Theorem 2.46(iii).]

4.20 Let L be a lattice, let S ⊆ L be such that
∨
S exists in L. Then∨

S is called an irredundant join if
∨
(S \{s}) �= ∨

S for all s ∈ S .

(i) Show that if
∨
S is an irredundant join then S is an antichain.

Let L be a lattice such that ↓a has no infinite chains for all a ∈ L.

(ii) Show that every element a of L has a representation as an
irredundant join, a =

∨
S , of a finite subset S of J (L).

(iii) Show that in bothM3 and N5 the representation guaranteed
by (ii) is not always unique.

(iv) Show that if L is distributive, then every element of L
has a unique representation as an irredundant join of join-
irreducible elements. [Hint. Let a ∈ L and let S, T ⊆ J (L)
be such that a =

∨
S and a =

∨
T are irredundant. By

Exercise 4.19, both S and T are finite. Consider t ∧ ∨
S for

t ∈ T and s ∧ ∨
T for s ∈ S .]

(v) Use Exercise 4.11(i) and Example 2.43(3) to show that when
interpreted in the lattice 〈N0; lcm, gcd〉, part (iv) becomes a
reformulation of the Fundamental Theorem of Arithmetic.

4.21 For n ∈ N0 , consider the sublattice L = ↓n of 〈N0;�〉. When does
m ∈ L have a complement? Give a formula for m′ in L when it
exists. Characterize those n ∈ N0 such that L = ↓n is a Boolean
lattice.

4.22 For a Boolean lattice B and a, b ∈ B such that a � b, show that
the interval sublattice

[a, b] := ↑a ∩ ↓b = {x ∈ B | a � x � b }
is a Boolean lattice. When is [a, b] a Boolean subalgebra of B?
[Hint. First show that for any distributive lattice L the map
f : L → L, given by f(x) := (x ∨ a) ∧ b, is a homomorphism.
Then calculate f(L).]

4.23 Use Exercise 4.12 to give a proof by induction on |B| that |B| = 2n ,
for some n ∈ N0 , for every finite Boolean lattice B .

4.24 Let S be a set and f : S → S any map. A subset A of S is called
f -invariant if x ∈ A implies f(x) ∈ A; note that ∅ is f -invariant.
Denote the set of all f -invariant subsets of S by L(S, f).

Modular, distributive and Boolean lattices 109

(i) Show that L(S, f) is a lattice of sets.

(ii) Show that if S is finite and f is bijective, then L(S, f) is an
algebra of sets. Give an example to show that in general the
finiteness of S is necessary here.

(iii) Prove that if L(S, f) is an algebra of sets, then f is bijective.

4.25 Show that the following hold in all Boolean algebras:

(i) (a ∧ b) ∨ (a′ ∧ b) ∨ (a ∧ b′) ∨ (a′ ∧ b′) = 1;
(ii) (a ∧ b) ∨ (a′ ∧ c) = (a ∧ b) ∨ (a′ ∧ c) ∨ (b ∧ c);
(iii) a = b ⇐⇒ (a ∧ b′) ∨ (a′ ∧ b) = 0;
(iv) a ∧ b � c ∨ d ⇐⇒ a ∧ c′ � b′ ∨ d.

4.26 Let B be an ordered set such that a∧b exists in B for all a, b ∈ B .
Show that B is a Boolean lattice if and only if for all x ∈ B there
exists x′ ∈ B such that for all y ∈ B

x � y ⇐⇒ x ∧ y′ = 0,
where 0 is some fixed element of B . (This rather tricky exercise in
axiomatics gives an extremely useful characterization of Boolean
lattices as it eliminates the need to deal with joins and the dis-
tributive law. It is interesting that O. Frink’s original proof of this
result is short and non-computational but relies, unnecessarily, on
Zorn’s Lemma, (ZL) (see 10.2).)

4.27 A ring B with identity is called a Boolean ring if x2 = x for all
x ∈ B .

(i) Show that the following identities hold in a Boolean ring:

(a) xy + yx = 0; (b) x+ x = 0; (c) xy = yx.

(ii) Let B be a Boolean algebra and define + and · on B by

x+ y := (x ∧ y′) ∨ (x′ ∧ y), x · y := x ∧ y.
Show that 〈B; +, ·〉 is a Boolean ring.

(iii) Let B be a Boolean ring and define ∨ and ∧ on B by

x ∨ y := x+ y + xy, x ∧ y := xy, x′ := 1 + x.

Show that 〈B;∨,∧, ′, 0, 1〉 is a Boolean algebra. [Hint. Use
Exercise 4.26.]

(iv) Show that the correspondence between Boolean algebras and
Boolean rings established in (ii) and (iii) is a bijective one.

110 Modular, distributive and Boolean lattices

4.28 Show that under the correspondence set up in the previous exercise,
the Boolean algebra 2 corresponds to the Boolean ring Z2 . Show
that the additive group of the Boolean ring corresponding to the
Boolean algebra 22 is isomorphic to the Klein 4-group. (In general,
the additive group of the Boolean ring corresponding to 2n is
isomorphic to Zn2 .)

4.29 Let B be a Boolean algebra. Prove that I is a lattice ideal in
B if and only if I is a ring ideal in the ring 〈B; +, ·〉 defined in
Exercise 4.27.

4.30 Use Theorem 4.23 to find a Boolean term p(x, y) such that Fp
coincides with the function equal : 22 → 2, where

equal(x, y) :=

{
1 if x = y,

0 if x �= y.

4.31 For any non-empty set S , the ternary discriminator on S is a
function d : S3 → S given by

d(x, y, z) :=

{
z if x = y,

x if x �= y.

(This function plays an important role in universal algebra.)

(i) Give a formula for the ternary discriminator on 2 in terms
of ∨,∧, ′ and the function equal : 22 → 2 of the previous
exercise. Hence give a Boolean term p(x, y, z) such that Fp
coincides with the ternary discriminator on 2.

(ii) Use Theorem 4.23 to find a Boolean term q(x, y, z) such that
Fq equals the ternary discriminator on 2.

(iii) Show via the laws of Boolean algebra that for every Boolean
algebra B and all a, b, c ∈ B we have p(a, b, c) = q(a, b, c).

(iv) Find a ‘simple’ term r(x, y, z) such that Fr agrees with the
ternary discriminator on 2.

4.32 Design a gate diagram for a majority voting machine with four
inputs which allows a current to flow when three or more of the
inputs are 1.

4.33 A safe–unsafe decision circuit is required. There are to be three
inputs and two outputs, one to operate a green light and the other
to operate a red light. The green light should come on if all inputs
indicate safety (1), and the red light should come on if any input
indicates danger (0). Design the gate diagram.

4.34 The Duality Principle extends to Boolean algebras. Given a state-
ment Φ about Boolean algebras, involving the symbols ∨,∧, ′, 0, 1

Modular, distributive and Boolean lattices 111

and �, indicate the replacements needed to produce the dual
statement Φ∂ . Hence formulate and prove the Boolean Duality
Principle.

Define what it means for a Boolean term to be in conjunctive
normal form, or CNF. (This is simply the dual of DNF.)

State the dual of Theorem 4.23 which ensures that every Boolean
term is equivalent to a term in CNF.

4.35 For each of the following Boolean terms, p, draw up a truth table
for Fp then apply Theorem 4.23 to obtain an equivalent polynomial
in DNF. Show that the algorithm given in 4.24 yields the same
DNF.

(i) x ∧ (y ∨ z).
(ii) (x ∨ y′) ∧ z .
(iii) (x ∨ y′) ∧ (y ∨ z′) ∧ (z ∨ x′).
(iv) ((x ∧ y′) ∧ z′)′ ∧ (x ∨ z).

4.36 Test each of the following proposed Boolean algebra identities by
reducing both sides to DNF:

(i) (a ∧ b)′ ∨ (a ∧ c′) = (a ∧ (b ∨ c′)′)′ ;
(ii) (a ∧ b) ∨ (a ∧ c′) ∨ (b′ ∧ c′) = (a ∧ b) ∨ (b ∨ c)′ ;
(iii) (a′ ∨ b′) ∨ (c′ ∧ (a ∨ b))′ = a.

4.37 The binary operation, |, of inclusive denial on a Boolean algebra
is defined by x | y := x′ ∨ y′ . Show that ∨, ∧, ′, 0 and 1 can each
be defined in terms of | alone. (It is a somewhat more difficult
exercise to prove that if ∗ is a binary connective from which each
of ∨, ∧, ′, 0 and 1 can be defined, then ∗ is logically equivalent to
either inclusive denial or to its dual, ↓, defined by x ↓ y := x′ ∧ y′
and known as joint denial.)

4.38 Let B be a Boolean algebra and for X ⊆ B let [X] be the smallest
subalgebra of B containing X (cf. Exercise 2.15). Show that

[X] = { p(a1, . . . , an) | n ∈ N0, p ∈ BT, a1, . . . , an ∈ B } .
(Note that the case n = 0 is included to cover the ‘0–ary’ Boolean
terms 0 and 1.)

4.39 Find the subalgebra of the powerset algebra ℘({1, 2, 3, 4, 5}) gen-
erated by X = { {1, 2}, {1, 2, 3, 4} }. Draw a diagram of [X] and
label each element with an appropriate Boolean term p(a, b) where
a = {1, 2} and b = {1, 2, 3, 4}. (Compare with Exercise 2.15.)

5

Representation: the Finite Case

In previous chapters we have introduced various classes of lattices. We
have given examples of members of these classes, and described some of
their general properties. We now turn our attention to structure theo-
rems. Later (see Chapters 10 and 11) we give a concrete representation,
as a lattice of sets, of any (bounded) distributive lattice. This chapter
deals, less ambitiously, with the finite case, and reveals a very satisfac-
tory correspondence between finite distributive lattices and finite ordered
sets. We show that any finite distributive lattice L can be realized as
a lattice O(P) of down-sets built from a suitable subset P of L. We
begin by discussing in general terms the problem of finding a subset of
a lattice L which, as an ordered set, uniquely determines L.

Building blocks for lattices

This chapter draws on the final section of Chapter 2, concerned with
join-irreducible elements. In the remarks below we also make links with
the material on concept lattices from Chapter 3, but familiarity with
this is not essential for the representation theory that follows.

5.1 Remarks on lattice-building. In 2.42 we defined a non-zero ele-
ment x of a lattice L to be join-irreducible if x = a∨ b implies x = a or
x = b for all a, b ∈ L. Proposition 2.45 showed that if L satisfies (DCC),
and hence certainly if L is finite, the set J (L) of join-irreducible ele-
ments of L is join-dense; that is, that every element of L can be obtained
as a (possibly empty) join of elements from J (L).

We exploited join-dense subsets and, dually, meet-dense subsets of a
complete lattice (in particular of a finite lattice) in our study of concept
lattices. Theorem 3.9 says that we can reconstruct a complete lattice
〈L;�〉 from a join-dense subset G and a meet-dense subset M of L by
forming all concepts of the context (G,M,�). However this may be a
substantial labour. Ideally, we should like a more direct way of building
a lattice L from a suitable ‘skeletal’ subset P of L. We should like P
to have the following properties:

(i) P is ‘small’ and readily identifiable;

(ii) L is uniquely determined by the ordered set P .

Even more nebulously, we should also like:

(iii) the process for obtaining L from P is simple to carry out.

Representation: the finite case 113

Conditions (i) and (ii) pull in opposite directions, since (ii) requires P to
be, in some sense, large. Good candidates for sets satisfying (ii) are, as
we have already seen, those which are join-dense, or (dually) meet-dense,
or both. However, the fact that Theorems 3.8 and 3.9 are converses to
one another suggests that we cannot expect to improve significantly on
the results in Chapter 3 so that in general (iii) is difficult to achieve. We
return to these issues in 7.43.

In Chapter 4 we saw that many important lattices are distributive.
There are very amenable concrete lattices of this type, namely down-set
lattices and, in the Boolean case, powerset lattices. This encourages us
to investigate whether the join-irreducible elements of a finite distributive
lattice form a good skeleton for it. We shall see that the answer – in the
finite case – is a resounding ‘yes!’

Before studying distributive lattices we look at join-irreducible ele-
ments in the more special Boolean case, which is especially simple and
easy to motivate.

5.2 Atoms. Our archetypal example of a Boolean algebra is a powerset
algebra 〈℘(X);∪,∩, ′,∅, X〉. Any A ∈ ℘(X) is a union of singleton
sets {x} for x ∈ A; indeed the singletons are precisely the join-irreducible
elements. But note too that the singletons are exactly the elements in
℘(X) which cover 0.

Let L be a lattice with least element 0. Then a ∈ L is called an
atom if 0 −< a. The set of atoms of L is denoted by A(L). The lattice
L is called atomic if, given a �= 0 in L, there exists x ∈ A(L) such
that x � a. Every finite lattice is atomic. By contrast, it may happen
that an infinite lattice has no atoms at all. The chain of non-negative
real numbers provides an example. Even a Boolean lattice may have no
atoms; see Exercise 10.11.

The following lemma compares atoms and join-irreducible elements.
It shows that in any Boolean lattice, J (L) coincides with A(L).

5.3 Lemma. Let L be a lattice with least element 0. Then

(i) 0 −< x in L implies x ∈ J (L),
(ii) if L is a Boolean lattice, x ∈ J (L) implies 0 −< x.

Proof. To prove (i), suppose by way of contradiction that 0 −< x and
x = a ∨ b with a < x and b < x. Since 0 −< x, we have a = b = 0,
whence x = 0, � .

114 Representation: the finite case

❜ ❜❜❜ ❜
❅
❅

�
�
�
�

0

x ∧ y′
y′

y

x

Figure 5.1

Now assume L is a Boolean lattice and that x ∈ J (L). Suppose
0 � y < x; we want y = 0. We have (see Figure 5.1)

x = x ∨ y = (x ∨ y) ∧ (y′ ∨ y) = (x ∧ y′) ∨ y.
Since x is join-irreducible and y < x, we must have x = x ∧ y′ , whence
x � y′ . But then y = x ∧ y � y′ ∧ y = 0, so y = 0. This proves (ii). �

Finite Boolean algebras are powerset algebras

The set of atoms, A(L), of a finite Boolean lattice L admirably meets
the building block criterion (i) in 5.1. For criterion (ii) we have the
following lemma. This confirms the join-density of A(L) in L and is a
consequence of Proposition 2.45 and Lemma 5.3. We give a direct proof
because this is so simple.

5.4 Lemma. Let B be a finite Boolean lattice. Then, for each a ∈ B ,

a =
∨
{x ∈ A(B) | x � a } .

Proof. Fix a ∈ B . Let S = {x ∈ A(B) | x � a }. Certainly a is an
upper bound for S . Let b be any upper bound for S . To complete the
proof we require a � b. Suppose not, so 0 < a ∧ b′ , by 4.15(v). Choose
x ∈ A(B) such that 0 −< x � a∧b′ . Then x ∈ S , so x � b. Since x � b′

also holds, we have x � b ∧ b′ = 0, � . �

The preceding lemma tells us how each individual element of L
is determined by the atoms, but it doesn’t by itself fulfill the aim of
building block criterion (ii). For this we want to construct the lattice L
as a whole from A(L). The next theorem tells us how to do this.

5.5 The representation theorem for finite Boolean algebras. Let B
be a finite Boolean algebra. Then the map

η : a �−→ {x ∈ A(B) | x � a }
is an isomorphism of B onto ℘(X), where X = A(B), with the inverse
of η given by η−1(S) =

∨
S for S ∈ ℘(X).

Representation: the finite case 115

Proof. We first show that η maps B onto ℘(X). Clearly ∅ = η(0).
Now let S = {a1, . . . , ak} be a non-empty set of atoms of B and define
a =

∨
S . We claim S = η(a). Certainly S ⊆ η(a). Now let x be any

atom such that x � a = a1∨· · ·∨ak . For each i, we have 0 � x∧ai � x.
Because x is an atom, either x ∧ ai = 0 for all i or there exists j such
x∧aj = x. In the former case, x = x∧a = (x∧a1)∨· · ·∨(x∧ak) = 0, � .
Therefore x � aj for some j , which forces x = aj , as aj and x are atoms.
Hence η(a) ⊆ S , as we wished to show.

Let a, b ∈ B . Then η(a) ⊆ η(b) implies, by Lemma 5.4, that
a =

∨
η(a) �

∨
η(b) = b. It is trivial (by the transitivity of �) that

η(a) ⊆ η(b) whenever a � b. So η is an order-isomorphism. By 2.19(ii)
and 4.17, η is an isomorphism of Boolean algebras. �

5.6 Corollary. Let B be a finite lattice. Then the following statements
are equivalent:

(i) B is a Boolean lattice;

(ii) B ∼= ℘(A(B));
(iii) B is isomorphic to 2n , for some n � 0.

Further, any finite Boolean lattice has 2n elements, for some n � 0.

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

� ��
B

❜ ❜ ❜
A(B)

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

℘(A(B))
Figure 5.2

5.7 Remarks. To cement the ideas of this section, we illustrate 5.5 in
the case that B is a Boolean algebra with 3 atoms; see Figure 5.2.

Corollary 5.6 is a very satisfactory result, but in a sense also a
disappointing one. There is little variety among finite Boolean algebras.
As we shall see, finite distributive lattices are a much richer class, but
with an equally satisfying representation theory.

116 Representation: the finite case

Finite distributive lattices are down-set lattices

We have seen that abstract finite Boolean algebras mimic finite pow-
erset algebras, with atoms playing the role that singleton sets play in
the concrete setting. In just the same way, we shall see that abstract
finite distributive lattices mimic finite down-set lattices. Here atoms are
replaced by join-irreducible elements and so our first task is to discover
how J (O(P)) is related to P .

5.8 The join-irreducible elements of a down-set lattice. Let P be an
ordered set. We claim that each set ↓x, for x ∈ P , is join-irreducible
in O(P). Suppose that ↓x = U ∪ V , where U, V ∈ O(P). Without loss
of generality, x ∈ U . But then ↓x ⊆ U . Since ↓x = U ∪ V implies
U ⊆ ↓x, we conclude that ↓x = U . This shows that ↓x ∈ J (O(P)).

Now assume that P is finite. Any non-empty U ∈ O(P) is the union
of sets ↓xi , i = 1, . . . , k, where xi ‖ xj for i �= j (recall Exercise 1.14).
Unless k = 1, the set U is not join-irreducible. Hence J (O(P)) =
{ ↓x | x ∈ P }.

In the previous paragraph P must be finite: { q ∈ Q | q < 0 } is
join-irreducible in O(Q), but is not of the form ↓x.

5.9 Theorem. Let P be a finite ordered set. Then the map ε : x �→ ↓x
is an order-isomorphism from P onto J (O(P)).
Proof. Lemma 1.30 implies that ε is an order-embedding of P into O(P)
and 5.8 gives that the image of ε is J (O(P)). �

For order-isomorphic ordered sets P and Q we have O(P) ∼= O(Q).
Therefore Theorem 5.9 tells us that, when L is a finite down-set lattice
O(P), we have L ∼= O(J (L)). We now look at O(J (L)) more generally.

5.10 Examples and remarks. Figure 5.3 shows L, J (L) and O(J (L))
for some small lattices L (cf. 1.29). In the right-hand diagrams the
join-irreducible elements have been shaded, to illustrate Theorem 5.9:
in every case the shaded elements in O(J (L)) form an ordered set
isomorphic to J (L).

Observe that L ∼= O(J (L)) only in the first two examples, and
that, of the four lattices L, just the first two are distributive. Since
O(J (L)) is always distributive, we cannot have L ∼= O(J (L)) unless L
is distributive, and any proof establishing this isomorphism must make
explicit use of distributivity of L. None of the results on join-irreducible
elements proved so far brought in the distributive law. The next result
does.

Representation: the finite case 117

❜ ❜❜
❜❜

�
�

❅
❅

✑✑

◗◗ L4

�� � ❜❜❜
J (L4) ❜ ❜❜ ❜

��
�� ❅❅

❅❅
❜ ❜❜ ❜
��

�� ❅❅

❅❅

O(J (L4))

�� �
❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅� � �

L3

❜ ❜ ❜
J (L3) ❜❜ ❜❜❜ ❜ ❜❜

��
����

��

❅❅
❅❅ ❅❅
❅❅

O(J (L3))

�� �
❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ��
�

���❅❅
L2

❜❜ ❜❜❅
❅

J (L2) ❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜
��
❅❅� � ��
O(J (L2))

❜ ❜❜ ❜
��

�� ❅❅

❅❅ �� �
❜ L1

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜ O(J (L1))

� ��❜ ❜❜
�
�❅

❅

J (L1)

Figure 5.3

5.11 Lemma. Let L be a distributive lattice and let x ∈ L, with x �= 0
in case L has a zero. Then the following are equivalent:

(i) x is join-irreducible;

(ii) if a, b ∈ L and x � a ∨ b, then x � a or x � b;

(iii) for any k ∈ N, if a1, . . . , ak ∈ L and x � a1 ∨ · · · ∨ ak , then x � ai
for some i (1 � i � k).

Proof. To prove that (i) implies (ii), we assume that x ∈ J (L) and that
a, b ∈ L are such that x � a ∨ b. We have

x = x ∧ (a ∨ b) (since x � a ∨ b)
= (x ∧ a) ∨ (x ∧ b) (since L is distributive).

Because x is join-irreducible, x = x ∧ a or x = x ∧ b. Hence x � a or
x � b, as required.

That (ii) implies (iii) is proved by induction on k; the case k = 1 is
trivial and (ii) gets the induction started at k = 2.

It is trivial that (iii) implies (ii), so it only remains to deduce (i)
from (ii). Suppose (ii) holds and that x = a∨b. Then certainly x � a∨b,

118 Representation: the finite case

so x � a or x � b. But x = a ∨ b forces x � a and x � b. Hence x = a
or x = b. �

We can now justify the claim made in the title of this section by
showing that every finite distributive lattice is (isomorphic to) a lattice
of down-sets.

5.12 Birkhoff’s representation theorem for finite distributive lattices.
Let L be a finite distributive lattice. Then the map η : L → O(J (L))
defined by

η(a) = {x ∈ J (L) | x � a } (= J (L) ∩ ↓a)
is an isomorphism of L onto O(J (L)).
Proof. It is immediate that η(a) ∈ O(J (L)) (since � is transitive). By
Proposition 2.19, it remains only to show that η is an order-isomorphism.

To prove that a � b implies η(a) ⊆ η(b), use 1.30. To prove that
η(a) ⊆ η(b) implies a � b, use Proposition 2.45 and 2.22(v) to obtain

a =
∨
η(a) �

∨
η(b) = b.

Finally, we prove that η is onto. Certainly ∅ = η(0). Now let
∅ �= U ∈ O(J (L)) and write U = {a1, . . . , ak}. Define a to be
a1 ∨ · · · ∨ ak . We claim U = η(a). To prove this, first let x ∈ U , so
x = ai for some i. Then x is join-irreducible and x � a, hence x ∈ η(a).
In the reverse direction, suppose x ∈ η(a). Then x � a = a1 ∨ · · · ∨ ak
and Lemma 5.11 implies x � ai for some i. Since U is a down-set and
ai ∈ U , we have x ∈ U . �

5.13 Corollary. Let L be a finite lattice. Then the following statements
are equivalent:

(i) L is distributive;

(ii) L ∼= O(J (L));
(iii) L is isomorphic to a down-set lattice;

(iv) L is isomorphic to a lattice of sets;

(v) L is isomorphic to a sublattice of 2n for some n � 0.

5.14 Remark. In 5.10 we stressed that no non-distributive lattice could
be isomorphic to a down-set lattice. Birkhoff’s representation theorem
provides an alternative to the M3–N5 Theorem for establishing non-
distributivity of a finite lattice L; see 4.11. If L ∼= O(J (L)) fails, then
L cannot be distributive. This applies, for example, to L3 = M3 and
L4 = N5 in 5.10. Further illustrations are given in 5.16.

Representation: the finite case 119

Finite distributive lattices and finite ordered sets in partnership

With Birkhoff’s representation theorem in hand, our knowledge of finite
ordered sets becomes a powerful asset in the study of finite distribu-
tive lattices. Questions concerning finite distributive lattices can often
be answered by converting them into simpler but equivalent questions
concerning ordered sets. The map J from finite distributive lattices
to finite ordered sets is the distributive-lattice theorist’s logarithm. In
particular, it maps products to sums.

5.15 The join-irreducible elements of a product lattice. Consider the
product L1×L2 of lattices L1 and L2 each with a least element, but not
necessarily distributive. First note that (x1, x2) = (x1, 0)∨(0, x2). Thus
(x1, x2) is not join-irreducible unless either x1 or x2 is zero. Further,
x1 = a1 ∨ b1 in L1 implies (x1, 0) = (a1, 0) ∨ (b1, 0). It follows that

J (L1 × L2) ⊆ (J (L1)× {0}) ∪ ({0} × J (L2)).

It is readily seen that the reverse inclusion also holds. It follows easily
that we have an order-isomorphism

J (L1 × L2) ∼= J (L1)
.∪ J (L2).

For an example, see Figure 5.4. The join-irreducible elements are shaded.

❜ ❜❜ ❜
��

�� ❅❅

❅❅ �� �
❜
L1

❜
�

L2

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜�
�� ❜ ❜ ❜❜ ❜

��
�� ❅❅

❅❅ �
✟✟

✟✟✟✟
✟✟✟
✟✟
✟

✟✟
✟✟✟
✟✟
✟

L1 × L2

Figure 5.4

Now assume that L1 and L2 are finite and distributive. In this
case, the result of the previous paragraph can be derived from Theorem
5.9, Birkhoff’s representation theorem and the fact that O(P1

.∪ P2) is
isomorphic to O(P1)×O(P2) (see 1.32):

J (L1 × L2) ∼= J (O(J (L1))×O(J (L2)))

∼= J (O(J (L1)
.∪ J (L2))) ∼= J (L1)

.∪ J (L2).

5.16 Examples. Consider Figure 5.5.

(1) Consider the lattice L1 . The ordered set J (L1) is shown alongside.
Since J (L1) ∼= 1

.∪(1⊕2), by 1.32 we have O(J (L1)) ∼= 2×(1⊕22),
which has 10 elements. We deduce that L1 is not isomorphic to
O(J (L1)), so that L1 is not distributive.

120 Representation: the finite case

❜❜
❜ ❜❜
�
�

�
�

❅
❅

❅
❅❜❜

❜ ❜❜
�
�

�
�

❅
❅

❅
❅� �� � �

L2

❜ ❜ ❜❜ ❜
�
�❅

❅

J (L2)

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅ ❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

❜��
�
�

❅
❅

❅
❅

�� � �
L1

❜ ❜❜ ❜
�
�❅

❅

J (L1)

Figure 5.5

(2) Now consider L2 . We could immediately describe O(J (L2)).
Instead, we note that L2

∼= L∂2 yet J (L2) is not isomorphic to its
order dual. Hence, by 1.31, L2 cannot be isomorphic to O(J (L2))
and consequently is not distributive.

5.17 A fruitful partnership. We denote by DF the class of all finite
distributive lattices and by PF the class of all finite ordered sets. The-
orems 5.12 and 5.9 assert that

L ∼= O(J (L)) and P ∼= J (O(P))
for all L ∈ DF and P ∈ PF . We call J (L) the dual of L and O(P)
the dual of P . (The use of the word dual here should of course not be
confused with that in 1.19.)

When we identify each finite distributive lattice L with the iso-
morphic lattice O(J (L)) of down-sets of J (L), we may regard DF as
consisting of the concrete lattices O(P), for P ∈ PF , rather than as
abstract objects satisfying certain identities.

Up to isomorphism, we have a one-to-one correspondence

O(P) = L
−−−−−−−→
←−−−−−−− P = J (L)

for L ∈ DF and P ∈ PF .
Describing P = J (L), given L, is entirely straightforward. Those

who worked through Exercise 1.13 will appreciate that describing L,
given P , can be laborious, even when P is quite small. Computer

Representation: the finite case 121

programs have been devised for drawing O(P) for a given finite ordered
set P . These are viable only so long as O(P) remains reasonably small
(of the order of hundreds). It is possible for |O(P)| to grow extremely
fast as P increases, so that the problem of determining O(P) from
P becomes intractable, even with computer assistance. The example
P = ℘(X), for |X| = 1, 2, 3, . . . , is instructive. Figure 5.6 shows ℘(X)
and O(℘(X)) for |X| = 3 and the accompanying table |℘(X)| and
|O(℘(X))| for |X| � 8. The size of O(℘(X)) for |X| = 9 remains
elusive.

|X| |℘(X)| |O(℘(X))|
1 2 3
2 4 6
3 8 20
4 16 168
5 32 7581
6 64 7828354
7 128 2414682040998
8 256 56130437228687557907788

❜❜❜ ❜❜❜ ❜❜

�
�
�
�

�
�
�
�

❅
❅

❅
❅
❅
❅

❅
❅

℘({1, 2, 3})
❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅
❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅

❜

❜

❜ ❜❜
����

�� ❅❅ ❅❅

❅❅

O(℘({1, 2, 3}))
Figure 5.6

The above observations show that the dual of a finite distributive
lattice is generally much smaller and less complex than the lattice itself.
This means that lattice problems concerning DF are likely to become
simpler when translated into problems about PF . We may regard the
maps L �→ J (L) and P �→ O(P) as playing a role analogous to that of
the logarithm and exponential functions (and this analogy is strength-
ened by 5.15).

122 Representation: the finite case

Special properties of a finite distributive lattice are reflected in spe-
cial properties of its dual. The following lemma provides an elementary
example. The descriptions of O(n) and O(n) come from 1.32. The
proofs are left as easy exercises.

5.18 Lemma. Let L = O(P) be a finite distributive lattice. Then

(i) L is a Boolean lattice if and only if P is an antichain; O(n) = 2n .

(ii) L is a chain if and only if P is a chain; O(n) = n+++ 1.

Our discussion of the partnership between DF and PF would be
seriously incomplete were we not to consider structure-preserving maps
(recall 1.38). Theorem 5.19 sets up a one-to-one correspondence between
{0, 1}-homomorphisms from O(P) to O(Q) and order-preserving maps
from Q to P , for P,Q ∈ PF (note the reversal of the direction). This
theorem is harder to formulate and to prove than any of our preceding
results on duals. Some of the difficulty stems from our hitherto admirable
choice of the join-irreducible elements as the basis for our representation
theory. In Chapter 11 we remove the finiteness restrictions under which
we are currently working. We shall then obtain a more natural version
of Theorem 5.19, as a special case of Theorem 11.31. In the meantime
we recommend only to the most intrepid readers the exercise of proving
Theorem 5.19 directly.

5.19 Theorem. Let P and Q be finite ordered sets and let L = O(P)
and K = O(Q).

Given a {0, 1}-homomorphism f : L → K , there is an associated
order-preserving map ϕf : Q→ P defined by

ϕf (y) = min{x ∈ P | y ∈ f(↓x) }
for all y ∈ Q.

Given an order-preserving map ϕ : Q → P , there is an associated
{0, 1}-homomorphism fϕ : L→ K defined by

fϕ(a) = ϕ−1(a) for all a ∈ L.

Equivalently,

ϕ(y) ∈ a if and only if y ∈ fϕ(a) for all a ∈ L, y ∈ Q.

The maps f �→ ϕf and ϕ �→ fϕ establish a one-to-one correspon-
dence between {0, 1}-homomorphisms from L to K and order-preserving
maps from Q to P .

Further,

(i) f is one-to-one if and only if ϕf is onto,

(ii) f is onto if and only if ϕf is an order-embedding.

Representation: the finite case 123

5.20 Example. Figure 5.7 shows an order-preserving map ϕ : Q → P
and the associated {0, 1}-homomorphism f : O(P)→ O(Q). The image
of f is shaded.

❜
❜

❜
❜

❅
❅
❅α δ

β γ

Q

❜ ❜❜ ❜
��

�� ❅❅

❅❅

P

s = ϕ(δ)

r = ϕ(γ)

q= p
ϕ(α) = ϕ(β)

✲
ϕ

❜❜
❜❜ ❜

��
�� ❅❅

❅❅

❜

∅

{s}
{q, s}{p, s}

{p, q, s}

L = O(P)

P

❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜
��
❅❅

{δ} =
f({s}) = f({q, s})

{α}
{α, δ} {γ, δ}

{α, γ, δ}= {α, β, δ}
f({p, s}) = f({p, q, s}) Q = f(P)

� �
� �

∅ = f(∅)

K = O(Q)

✲
f

Figure 5.7

5.21 Stocktaking. Combining 5.17 and 5.19, we have a correspondence
between DF + {0, 1}-homomorphisms and PF + order-preserving maps
which establishes what in technical parlance is called a duality or a dual
equivalence of categories. In Chapter 11 we specify more explicitly what
we mean by a duality, in the context of the representation of all bounded
distributive lattices. The import of the duality in the finite case should
already be clear: statements about finite distributive lattices can be
translated into statements about finite ordered sets, and vice versa. We
can now see that our two uses of the word ‘dual’ have an underlying
commonality. If, in an ordered set P , we think of x � y as representing
an ‘arrow’ from x to y , then P ∂ is obtained by reversing the arrows.
Similarly, for L,K ∈ DF , a {0, 1}-homomorphism f : L → K provides
an ‘arrow’ from L to K , and Theorem 5.19 shows that when we pass
from DF to PF the arrows again reverse. Category theory is exactly
the tool needed to formalize this hand waving. The step up into the
wide blue, category-theoretic yonder is not a large one but is beyond the
scope of our work here.

124 Representation: the finite case

Exercises

5.1 Consider the lattices in Figure 5.8.

(i) Draw labelled diagrams of the ordered sets J (L) andM(L)
for each of the lattices.

(ii) Draw a labelled diagram of O(J (L)) in each case and com-
ment on your results.

❜ 0❜
❜❜ ❜

�
�❅

❅

�
�❅

❅

❜ 1
c

d

a

b ❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

❜ ❜❜
0

b

e

1

a

d

c

❅
❅�

�

❜
❜❜

❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅❜

❜❜
❜

�
�
�❅

❅
❅

❅
❅
❅

❜
��
��

0

b

d

a

1

c

e

❜
❜❜

❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅❜

❜❜
❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅

0

b

d

a

1

c

Figure 5.8

5.2 Verify Theorem 5.9 for the ordered sets given in Figure 5.9.

❜❜ ❜
x y z ❜❜

❜ ❜
❅
❅�

�

w

x

zy

❜❜ ❜❜❅
❅�
�

x

z

w

y

❜❜
❜

❜❜
❜
x

y

z

u

v

w

Figure 5.9

5.3 Let L be a distributive lattice and define η : L → O(J (L)) as in
Birkhoff’s representation theorem. Prove directly that η preserves
∨, that is, η(a ∨ b) = η(a) ∪ η(b) for all a, b ∈ L.

Representation: the finite case 125

❜
❜❜

❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅ ❜

❜❜
❜

�
�
�❅

❅
❅

�
�
�❅

❅
❅

❜ ❜
❜ ❜

✂
✂
✂

✂
✂
✂

❇
❇
❇

❇
❇
❇

❇
❇
❇✂

✂
✂

✂
✂
✂❇
❇
❇

0

d

hge f

a b c

1

❜ ❜❜ ❜ ❜
❜❜

�
�
�
��

�
�
�

❅
❅
❅

❅
❅
❅

❅❅
❅❅

0

b

e

1

c
a

d

❜ ❜❜ ❜ ❜❜ ❜❜ ❜
❜

��

��

❅❅

❅❅

❅❅

❅❅

��

��

�
�

�
�

❅
❅

❅
❅

0

ba

c
ed f

hg

1

Figure 5.10

5.4 Use Theorem 5.12 to show that the lattices in Figure 5.10 are not
distributive.

5.5 Let L be 〈N0; lcm, gcd〉.
(i) Draw diagrams of ↓4 and ↓12.
(ii) Show that for every k � 1 there exists nk ∈ N such that

↓nk ∼= ℘({1, 2, . . . , k}).
(iii) Deduce that every finite distributive lattice can be embedded

into L.

(iv) Give an example of a countable distributive lattice which
cannot be embedded into L.

5.6 Let L be a finite distributive lattice. Prove that there exists a
finite Boolean lattice B and an embedding η : L→ B such that η
is a {0, 1}-homomorphism. Show further that, if |L| = n, then B
can be chosen so that |B| � 2n−1 .

5.7 Let L be a finite distributive lattice. Prove by the steps below that
J (L) ∼=M(L). (An alternative proof, by duality, is indicated in
Exercise 5.8.)

(i) Let x ∈ J (L). Show that there exists x̂ ∈ L such that
↓x̂ = L \ ↑x. [Hint. Let x̂ :=

∨
(L \ ↑x) and then use

Lemma 5.11 to show that x̂ � x.]

(ii) Show that for all x ∈ J (L) the element x̂ defined in (i) is
meet-irreducible.

(iii) Prove that the map ϕ : J (L) → M(L), given by ϕ(x) = x̂
for all x ∈ J (L), is an order-isomorphism. [Hint. Recall
from Lemma 1.30 that x � y if and only if ↑x ⊇ ↑y . When
proving that ϕ maps ontoM(L), use the dual of (i) and (ii).]

126 Representation: the finite case

5.8 Let P be a finite ordered set.

(i) Show that a down-set U is meet-irreducible in O(P) if and
only if it is of the form P \↑x for some x ∈ P .

(ii) Use (i) to show that P is order-isomorphic to M(O(P)).
(iii) Conclude that J (O(P)) ∼=M(O(P)). Use Birkhoff’s repre-

sentation theorem to deduce that J (L) is order-isomorphic
to M(L) for any finite distributive lattice L.

5.9 Give counterexamples to each of the following statements.

(i) If L and K are finite lattices and J (L) and J (K) are order-
isomorphic, then L and K are isomorphic.

(ii) If L is a distributive lattice, then L ∼= O(J (L)). [Hint.
Consider a suitable infinite chain.]

(iii) If L is a finite distributive lattice and J (L) is a lattice, then
J (L) is a sublattice of L.

(iv) If L is a finite lattice, then J (L) ∼= M(L). [Hint. Note
Exercise 5.7.]

5.10 Use Lemma 5.3(i) and the fact that J (L1 ×L2) ∼= J (L1)∪̇J (L2),
for finite lattices L1 and L2 , to answer the question posed in
Exercise 2.17.

5.11 Let L be a finite distributive lattice.

(i) Use Exercise 1.17 and Birkhoff’s representation theorem to
prove that the following conditions are equivalent:

(a) the only complemented elements of L are 0 and 1;

(b) L is indecomposable (that is, there do not exist lattices
L1, L2 with |L1| > 1, |L2| > 1 such that L ∼= L1 × L2).

(ii) Consider the lattice K shown in Figure 5.11, which you may
assume to be distributive. Show that K is indecomposable.

5.12 Let L,H1, H2,K1 and K2 be finite distributive lattices such that

H1 ×H2
∼= L ∼= K1 ×K2.

Prove that there exist finite distributive lattices M1,M2,M3 and
M4 such that

L ∼=M1 ×M2 ×M3 ×M4,

with

H1
∼=M1 ×M2, H2

∼=M3 ×M4,

K1
∼=M1 ×M3, K2

∼=M2 ×M4.

Representation: the finite case 127

❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆

❜❜ ❜❜
❆
❆

❆
❆

❜❜ ❜❜
❆
❆

❆
❆❜❜ ❜❜
❆
❆

❆
❆

K

Figure 5.11

5.13 Prove that the length of a finite distributive lattice L equals
|J (L)|. [Hint. Use Exercise 1.12.]

5.14 Let L be a finite distributive lattice. Prove that the width of
J (L) equals the least n ∈ N such that L can be embedded into a
product of n chains. [Hint. Use the duality between DF and PF
to reinterpret Dilworth’s Theorem – see Exercise 1.30.]

5.15 Consider the (distributive) lattice 〈N0; lcm, gcd〉 and let n ∈ N.

(i) Describe J (↓n) (recall 2.43(3)).
(ii) Let n = pk11 . . . pkss with the pi pairwise distinct primes. Show

that
↓n ∼= (k1 ⊕ 1)× · · · × (ks ⊕ 1).

5.16 Prove that the lattice SubZn of subgroups of the cyclic group
Zn = {0, 1, . . . , n−1}, under addition modulo n, is a finite product
of finite chains. [Hint. First prove that SubZn is isomorphic to
the dual of the principal ideal ↓n in 〈N0; lcm, gcd〉, then prove that
(↓n)∂ ∼= ↓n and finally apply Exercise 5.15.]

5.17 Let m1,m2, . . . ,ms ∈ N with mi > 1 for all i. Use the duality
between DF and PF to prove that

m1 × · · · ×ms
∼= 2t =⇒ m1 = . . . = ms = 2 and s = t.

5.18 Use Exercises 5.16 and 5.17 along with 4.6(4) to characterize those
groups G such that SubG is (i) a finite chain, (ii) isomorphic to
℘(X) for some finite set X .

128 Representation: the finite case

5.19 Recall from 1.37 that, if P and Q are ordered sets, then Q〈P 〉 , or
alternatively 〈P → Q〉, denotes the set of order-preserving maps
from P to Q with the pointwise order.

(i) Let L be a lattice and P an ordered set. Show that L〈P 〉 is
a sublattice of LP and hence is distributive whenever L is.

(ii) Use Exercises 1.25 and 1.26 to show that, for all ordered sets
P and Q,

O(Q)〈P 〉 ∼= O(P ∂ ×Q).

(iii) Conclude that, if L ∈ DF and P ∈ PF , then
J (L〈P 〉) ∼= P ∂ × J (L).

(iv) Hence draw diagrams of 2〈4〉 and 4〈2〉 .

5.20 Let L be a finite distributive lattice with |L| > 1 and let X denote
the set of all {0, 1}-homomorphisms from L to 2 ordered pointwise.

(i) Let x ∈ J (L) and define fx : L→ 2 by

fx(a) =

{
1 if a � x,

0 if a � x,

that is, fx is the characteristic function of ↑x. Show that fx
is a {0, 1}-homomorphism.

(ii) Prove that the map ε : J (L) → X∂ , defined by ε(x) = fx
for all x ∈ J (L), is an order-isomorphism from J (L) onto
X∂ whose inverse η : X∂ → J (L) is given by

η(f) =
∧
{ a ∈ L | f(a) = 1 } for all f ∈ X.

5.21 Consider the distributive lattices L1–L4 shown in Figure 5.12.

(i) Is it possible to find an onto {0, 1}-homomorphism f : L→ K
where L = L1 and K = L2? (Use Theorem 5.19(ii) to justify
your answer.)

(ii) Repeat (i) with L = L1 and K = L3 .

(iii) Repeat (i) with L = L3 and K = L4 .

(iv) Repeat (i) with L = 1⊕ 33 ⊕ 2 and K = 1⊕ (2× 3)⊕ 1.
(v) Repeat (i) with L = 22⊕22 and K = 4.

5.22 A lattice L with 0 is said to be pseudocomplemented if, for each
a ∈ L, there exists an element a∗ ∈ L such that, for all b ∈ L,

a ∧ b = 0 ⇐⇒ b � a∗,

that is, a∗ = max{ b ∈ L | a ∧ b = 0 }.

Representation: the finite case 129

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

L1 ❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

L2

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅

❜❜ ❜❜❜ ❜ ❜❜
��
����

��

❅❅
❅❅ ❅❅
❅❅

L3

❜ ❜ ❜❜
��
��

��

❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆❜❜ ❜❜❜ ❜ ❜❜

�
�
�
�

�
�
�
�

❆
❆

❆
❆

❆
❆
❆
❆

❜❜

❜❜��❜�� ❜❜�
�

�
�

L4

Figure 5.12

(i) Show that any Boolean lattice is pseudocomplemented.

(ii) Show that any bounded chain is pseudocomplemented.

(iii) Show that any finite distributive lattice is pseudocomple-
mented.

(iv) Prove that, if P ∈ PF , then for each a ∈ L := O(P) we have
a∗ = P \↑a. (Here ↑a is calculated in P not in L.)

(v) Give an example of a bounded distributive lattice which is
not pseudocomplemented.

5.23 Let P and Q be finite ordered sets and let L = O(P) and K =
O(Q) be the corresponding finite distributive lattices. Assume
that f : L → K is a {0, 1}-homomorphism and that ϕ : Q → P is
the dual of f . (See Theorem 5.19.)

Show that the following are equivalent:

(i) f(a∗) = (f(a))∗ for all a ∈ L (where a∗ is as given in
Exercise 5.22);

(ii) Min (ϕ(y)) = ϕ(Min (y)) for all y ∈ Q (where Min (z) de-
notes the set of minimal elements in ↓z).

6

Congruences

Lattices of congruences play a central role in lattice theory and in algebra
more widely. This chapter develops the rudiments of a theory which goes
way beyond the scope of an introductory text such as this.

Introducing congruences

In group theory courses it is customary, after homomorphisms have
been introduced, to go on to define normal subgroups and quotient
groups (factor groups) and to reveal the intimate connection between
these concepts that is summed up in the fundamental Homomorphism
Theorem (also called the First Isomorphism Theorem). We begin with a
summary of the basic group theory results, expressed in a form that will
make the parallels with the lattice case stand out clearly. This summary
is prefaced by a brief refresher on equivalence relations.

6.1 Equivalence relations: a recap. We recall that an equivalence
relation on a set A is a binary relation on A which is reflexive, symmetric
and transitive. We write a ≡ b (mod θ) or a θ b to indicate that a and b
are related under the relation θ; we use instead the notation (a, b) ∈ θ
where it is appropriate to be formally correct and to regard θ as a subset
of A×A.

An equivalence relation θ on A gives rise to a partition of A into
non-empty disjoint subsets. These subsets are the equivalence classes or
blocks of θ; we shall usually use the term block, as it is more in keeping
with the pictorial approach we shall be adopting. A typical block is of
the form [a]θ := {x ∈ A | x ≡ a (mod θ) }. In the opposite direction, a
partition of A into a union of non-empty disjoint subsets gives rise to an
equivalence relation whose blocks are the subsets in the partition. This
correspondence between equivalence relations and partitions is set out
more explicitly in, for example, [9].

6.2 The group case. Let G and H be groups and f : G → H be a
group homomorphism. We may define an equivalence relation θ on G
by

(∀a, b ∈ G) a ≡ b (mod θ)⇐⇒ f(a) = f(b).

This relation and the partition of G it induces have the following impor-
tant properties.

Congruences 131

(1) The relation θ is compatible with the group operation in the sense
that, for all a, b, c, d ∈ G,

a ≡ b (mod θ) & c ≡ d (mod θ) =⇒ ac ≡ bd (mod θ).

(2) The block N = [1]θ := { g ∈ G | g ≡ 1 (mod θ) } is a normal
subgroup of G.

(3) For each a ∈ G, the block [a]θ := { g ∈ G | g ≡ a (mod θ) } equals
the (left) coset aN := { an | n ∈ N }.

(4) The natural definition,

[a]θ[b]θ := [ab]θ for all a, b ∈ G,

yields a well-defined group operation on { [a]θ | a ∈ G }; by (2)
and (3), the resulting group is precisely the quotient group G/N and
hence (by the Homomorphism Theorem for groups) is isomorphic
to the subgroup f(G) of H .

6.3 Speaking universally. It should now be apparent that much of the
above is not particular to groups and group homomorphisms, but will
apply, mutatis mutandis, to lattices and lattice homomorphisms. In fact,
the natural setting for the Homomorphism Theorem and its consequences
is neither group theory nor lattice theory but universal algebra. This
is the general theory of classes of algebraic structures, of which groups,
rings, lattices, bounded lattices, vector spaces, . . . are examples. Lattice
theory and universal algebra have a close and symbiotic relationship:
results from universal algebra (such as the Homomorphism Theorem)
specialize to classes of lattices, and lattices arise naturally in the study of
abstract algebras, as lattices of congruences, for example. For references,
see Appendix B.

We now introduce congruences on lattices, as in the group case
using homomorphisms as our starting point. We say that an equivalence
relation θ on a lattice L is compatible with join and meet if, for all
a, b, c, d ∈ L,

a ≡ b (mod θ) and c ≡ d (mod θ)

imply
a ∨ c ≡ b ∨ d (mod θ) and a ∧ c ≡ b ∧ d (mod θ).

6.4 Lemma. Let L and K be lattices and let f : L → K be a lattice
homomorphism. Then the equivalence relation θ defined on L by

(∀a, b ∈ L) a ≡ b (mod θ)⇐⇒ f(a) = f(b)

is compatible with join and meet.

132 Congruences

Proof. It is elementary that θ is indeed an equivalence relation. Now
assume a ≡ b (mod θ) and c ≡ d (mod θ), so that f(a) = f(b) and
f(c) = f(d). Hence, since f preserves join,

f(a ∨ c) = f(a) ∨ f(c) = f(b) ∨ f(d) = f(b ∨ d).
Therefore a∨ c ≡ b∨ d (mod θ). Dually, θ is compatible with meet. �

6.5 Definitions and examples. An equivalence relation on a lattice L
which is compatible with both join and meet is called a congruence on L.
If L and K are lattices and f : L→ K is a lattice homomorphism, then
the associated congruence θ on L, defined in 6.4, is known as the kernel
of f and is denoted by ker f . The set of all congruences on L is denoted
by ConL. Examples of homomorphisms and their kernels are given in
Figure 6.1.

Figure 6.1

Note that a congruence on a lattice L can be indicated on a diagram
by placing a loop around the elements in each block of the corresponding
partition.

The following lemma is handy when calculating with congruences.

6.6 Lemma.

(i) An equivalence relation θ on a lattice L is a congruence if and only
if, for all a, b, c ∈ L,

a ≡ b (mod θ) =⇒ a∨ c ≡ b∨ c (mod θ) and a∧ c ≡ b∧ c (mod θ).
(ii) Let θ be a congruence on L and let a, b, c ∈ L.

(a) If a ≡ b (mod θ) and a � c � b, then a ≡ c (mod θ).

(b) a ≡ b (mod θ) if and only if a ∧ b ≡ a ∨ b (mod θ).
Proof. (i) Assume that θ is a congruence on L. If a ≡ b (mod θ),
then, since c ≡ c (mod θ), we have a ∨ c ≡ b ∨ c (mod θ) and a ∧ c ≡
b ∧ c (mod θ). The converse is left as an exercise.

Congruences 133

(ii) Let θ be a congruence on L. To prove (a), note first that a � c � b
implies a = a ∧ c and c = b ∧ c. Assume a ≡ b (mod θ). Then
a ∧ c ≡ b ∧ c (mod θ), so a ≡ c (mod θ).

Finally we consider (b). If a ≡ b (mod θ), then a∨a ≡ b∨a (mod θ)
and a∧ a ≡ b∧ a (mod θ) by the definition of a congruence. The lattice
identities imply a ≡ a ∨ b (mod θ) and a ≡ a ∧ b (mod θ). Since θ is
transitive and symmetric, we deduce a ∧ b ≡ a ∨ b (mod θ).

Conversely, assume a∧b ≡ a∨b (mod θ). We have a∧b � a � a∨b,
so a∧ b ≡ a (mod θ), by (a), and similarly a∧ b ≡ b (mod θ). Because θ
is symmetric and transitive, it follows that a ≡ b (mod θ). �

6.7 Quotient lattices. Given an equivalence relation θ on a lattice L
there is a natural way to try to define operations ∨ and ∧ on the set

L/θ := { [a]θ | a ∈ L }
of blocks. Namely, for all a, b ∈ L, we ‘define’

[a]θ ∨ [b]θ := [a ∨ b]θ and [a]θ ∧ [b]θ := [a ∧ b]θ.
These formulæ will produce well-defined operations precisely when they
are independent of the elements chosen to represent the equivalence
classes, that is, when

[a1]θ = [a2]θ and [b1]θ = [b2]θ

imply
[a1 ∨ b1]θ = [a2 ∨ b2]θ and [a1 ∧ b1]θ = [a2 ∧ b2]θ,

for all a1, a2, b1, b2 ∈ L. Since, for all a1, a2 ∈ L,

[a1]θ = [a2]θ ⇔ a1 ∈ [a2]θ ⇔ a1 ≡ a2 (mod θ),

it follows that ∨ and ∧ are well defined on L/θ if and only if θ is a con-
gruence. When θ is a congruence on L, we call 〈L/θ;∨,∧〉 the quotient
lattice of L modulo θ. Our next lemma justifies this terminology.

6.8 Lemma. Let θ be a congruence on the lattice L. Then 〈L/θ;∨,∧〉
is a lattice and the natural quotient map q : L → L/θ, defined by
q(a) := [a]θ , is a homomorphism.

We can now state the Homomorphism Theorem for lattices. Its
proof is a routine verification.

6.9 Theorem. Let L and K be lattices, let f be a homomorphism
of L onto K and define θ = ker f . Then the map g : L/θ → K , given
by g([a]θ) = f(a) for all [a]θ ∈ L/θ, is well defined, that is,

(∀a, b ∈ L) [a]θ = [b]θ implies g([a]θ) = g([b]θ).

134 Congruences

f ✲L K

L/θ

g
q

❄�
�
�
�✒

Figure 6.2

Moreover g is an isomorphism between L/θ and K . Furthermore, if q
denotes the quotient map, then ker q = θ and the diagram in Figure 6.2
commutes, that is, g ◦ q = f .

Theorem 6.10 is, likewise, the Boolean algebra version of the Ho-
momorphism Theorem; as for lattices, the proof is a straightforward
verification. An equivalence relation θ on a Boolean algebra B is a
Boolean congruence if it is a lattice congruence such that a ≡ b (mod θ)
implies a′ ≡ b′ (mod θ), for all a, b ∈ B .

6.10 Theorem. Let B and C be Boolean algebras, let f be a Boolean
homomorphism of B onto C and define θ = ker f . Then θ is a Boolean
congruence and the map g : B/θ → C , given by g([a]θ) = f(a) for all
[a]θ ∈ B/θ, is a well-defined isomorphism between B/θ and C .

Congruences and diagrams

In our discussion of congruences we have so far treated lattices as al-
gebraic structures; the underlying order on a lattice has not been men-
tioned. In this section we redress the balance.

6.11 Blocks of congruences. Some examples of congruences and the
resulting quotient lattices are given in Figure 6.3.

When considering the blocks of a congruence θ on L, it is best to
think of each block X as an entity in its own right rather than as the
block [a]θ associated with some a ∈ L, as the latter gives undue emphasis
to the element a. Intuitively, the quotient lattice L/θ is obtained by
collapsing each block to a point.

Assume we are given a diagram of a finite lattice L and loops
are drawn on the diagram representing a partition of L. Two natural
geometric questions arise.

(a) How can we tell if the equivalence relation corresponding to the
partition is a congruence ?

(b) If we know that the loops define the blocks of a congruence θ, how
do we go about drawing L/θ?

Congruences 135

Figure 6.3

There is, of course, no definitive way to draw a lattice diagram. By
providing a description of the order and the covering relation on L/θ,
Lemma 6.12 provides as good an answer as we can expect to Ques-
tion (b). The proof of the lemma is left as an easy exercise.

6.12 Lemma. Let θ be a congruence on a lattice L and let X and Y
be blocks of θ.

(i) X � Y in L/θ if and only if there exist a ∈ X and b ∈ Y such that
a � b.

(ii) X −< Y in L/θ if and only if X < Y in L/θ and a � c � b implies
c ∈ X or c ∈ Y , for all a ∈ X , all b ∈ Y and all c ∈ L.

(iii) If a ∈ X and b ∈ Y , then a ∨ b ∈ X ∨ Y and a ∧ b ∈ X ∧ Y .

We pursue an answer to Question (a) by first looking for properties
that the blocks of a congruence must possess. The blocks are certainly
sublattices and are convex. (A subset Q of an ordered set P is convex
if x � z � y implies z ∈ Q whenever x, y ∈ Q and z ∈ P .) A third
property, also with a geometric flavour, relates elements in different
blocks. It is described in 6.13. Theorem 6.14 shows that these properties
of blocks characterize congruences among equivalence relations.

6.13 The quadrilateral argument. Let L be a lattice and suppose that
{a, b, c, d} is a 4-element subset of L. Then a, b and c, d are said to be
opposite sides of the quadrilateral 〈a, b; c, d〉 if a < b, c < d and either

(a ∨ d = b and a ∧ d = c) or (b ∨ c = d and b ∧ c = a).

136 Congruences

We say that the blocks of a partition of L are quadrilateral-closed if
whenever a, b and c, d are opposite sides of a quadrilateral and a, b ∈ A
for some block A then c, d ∈ B for some block B (see Figure 6.4). Note
that for a covering pair a −< b, we often indicate a ≡ b (mod θ) on a
diagram by drawing a wavy line from a to b, to be thought of as a spring
which collapses a and b together. See the N5 in Figure 6.6.

Figure 6.4

6.14 Theorem. Let L be a lattice and let θ be an equivalence relation
on L. Then θ is a congruence if and only if

(i) each block of θ is a sublattice of L,

(ii) each block of θ is convex,

(iii) the blocks of θ are quadrilateral-closed.

Proof. Although the necessity of (i), (ii) and (iii) follows easily from
Lemma 6.6, we elect to give a proof based on Lemma 6.12 as this
illustrates the use of blocks of θ rather than the relation θ itself. Assume
that θ is a congruence on L and let X and Y be blocks of θ.

(i) If a, b ∈ X , then a ∨ b ∈ X ∨ X = X and a ∧ b ∈ X ∧ X = X ,
by 6.12(iii). Hence X is a sublattice of L.

(ii) Let a, b ∈ X , let c ∈ L with a � c � b and assume that c belongs
to the block Z of θ. Then, by 6.12(i), we have X � Z � X in L/θ and
hence X = Z . Thus c ∈ Z = X and hence X is convex.

(iii) Let a, b and c, d be opposite sides of a quadrilateral, with a∨ d = b
and a∧ d = c (see Figure 6.4). We assume that a, b ∈ X and d ∈ Y and
seek to prove that c ∈ Y . Since d � b we have Y � X (by 6.12(i)) and
thus c = a ∧ d ∈ X ∧ Y = Y , as required.

The converse is much harder. Assume that (i), (ii) and (iii) hold.
By Lemma 6.6, θ is a congruence provided that, for all a, b, c ∈ L,

a ≡ b (mod θ) implies a ∨ c ≡ b ∨ c (mod θ) and a ∧ c ≡ b ∧ c (mod θ).
Let a, b, c ∈ L with a ≡ b (mod θ). By duality it is enough to show that
a ∨ c ≡ b ∨ c (mod θ). Define X := [a]θ = [b]θ . Since X is a sublattice

Congruences 137

❜ ❜❜❜
�
�❅

❅

❅
❅

c

x ∨ c
y = y ∨ c

x

Case 1

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

❜ ❜
❅
❅

❅
❅

x

c

x ∨ c
y ∨ c

y

z := y ∧ (x ∨ c)

Case 2

Figure 6.5

of L, we have x := a∧ b ∈ X and y := a∨ b ∈ X . Our first claim is that
x ∨ c ≡ y ∨ c (mod θ). We distinguish two cases (see Figure 6.5).

Case 1: c � y . We have x � x∨c � y∨c = y ; the second inequality
holds because x � y (see 2.5(4)) and the final equality follows from the
Connecting Lemma. Hence x ∨ c ≡ y ∨ c (mod θ), since the block X
contains both x and y and is convex.

Case 2: c � y . Since x � y , we have x∨ c � y ∨ c. If x∨ c = y ∨ c,
then x ∨ c ≡ y ∨ c (mod θ) as θ is reflexive; thus we may assume
that x ∨ c < y ∨ c. Since x is a lower bound of {y, x ∨ c} we have
x � z := y ∧ (x ∨ c) � y . Now x � z � x ∨ c implies z ∨ c = x ∨ c
(see 2.5(4)) and hence z �= y as y ∨ c > x ∨ c. Consequently, z, y and
x ∨ c, y ∨ c are opposite sides of a quadrilateral. Since the block X is
convex and x, y ∈ X , it follows that z ∈ X . Since z, y ∈ X and θ is
quadrilateral-closed it follows that x ∨ c and y ∨ c belong to the same
block, say Y . Thus x ∨ c ≡ y ∨ c (mod θ), as claimed.

We show a∨ c ≡ b∨ c (mod θ) by showing that a∨ c and b∨ c both
belong to the block Y . Since a ∧ b � a � a ∨ b and a ∧ b � b � a ∨ b
we have (by 2.5(4) again) x ∨ c = (a ∧ b) ∨ c � a ∨ c � a ∨ b ∨ c = y ∨ c
and x ∨ c = (a ∧ b) ∨ c � b ∨ c � a ∨ b ∨ c = y ∨ c. Since x ∨ c, y ∨ c ∈ Y
and Y is convex, it follows that a ∨ c, b ∨ c ∈ Y . �

The lattice of congruences of a lattice

So far, we have looked at congruences one at a time. We now look at
the congruences on a lattice collectively. Much of the significance of
congruences comes from the fact that the congruences of a lattice (or
any other algebraic structure) form a lattice.

6.15 The lattice of congruences of a lattice. An equivalence relation θ
on a lattice L is a subset of L2 (see 6.1). We can rewrite the compatibility
conditions in the form

(a, b) ∈ θ and (c, d) ∈ θ imply (a ∨ c, b ∨ d) ∈ θ and (a ∧ c, b ∧ d) ∈ θ.

138 Congruences

As this says precisely that θ is a sublattice of L2 , we could define con-
gruences to be those subsets of L2 which are both equivalence relations
and sublattices of L2 . With this viewpoint, the set ConL of congruences
on a lattice L is a family of sets, and is ordered by inclusion. It is easily
seen to be a topped

⋂
–structure on L2 . Hence ConL, when ordered

by inclusion, is a complete lattice, by 2.32. The least element, 0, and
greatest element, 1, are given by 0 = { (a, a) | a ∈ L } and 1 = L2 .

6.16 Principal congruences. The characterization in 6.14 allows us to
see how a congruence spreads through a lattice L, that is, it permits us
to answer the question:

‘Which pairs of elements c, d in L must be collapsed in order
to obtain a congruence θ which collapses the pair a, b?’

The smallest congruence collapsing a given pair of elements a and b
is denoted by θ(a, b); it is called the principal congruence generated
by (a, b). Since ConL is a topped

⋂
–structure, θ(a, b) exists for all

(a, b) ∈ L2 : indeed,

θ(a, b) =
∧
{ θ ∈ ConL | (a, b) ∈ θ }.

The diagrams of N5 and M3 in Figure 6.6 show the partitions cor-
responding to the principal congruences θ(a, 1) and θ(0, c) respectively.
We use the quadrilateral argument to justify these claims.

Figure 6.6

Congruences 139

(1) To find the blocks of the principal congruence θ(a, 1) on N5 , we
first use the quadrilateral 〈a, 1; 0, b〉 to show that a ≡ 1 implies
0 ≡ b (here ≡ denotes equivalence with respect to θ(a, 1). The
quadrilateral 〈0, b; c, 1〉 yields c ≡ 1 (mod θ). Since blocks of θ(a, 1)
are convex, we deduce that a, c, 1 lie in the same block. It is clear
that {0, b} and {a, c, 1} are convex sublattices and together are
quadrilateral-closed. Thus they form the blocks of θ(a, 1) on N5 .

(2) The diagrams in Figure 6.6(iv)–(vi) illustrate the application of the
quadrilateral argument to M3 , starting with the pair (0, c). After
step (ii) we deduce that a, c, 0 lie in the same block, say A. Since
the blocks of a congruence are sublattices, we have 1 = a ∨ c ∈ A
and 0 = a ∧ c ∈ A. Thus, since blocks are convex, A is the only
block. Hence θ(0, c) = 1.

The next lemma indicates why principal congruences are important.

6.17 Lemma. Let L be a lattice and let θ ∈ ConL. Then

θ =
∨
{ θ(a, b) | (a, b) ∈ θ }.

Consequently the set of principal congruences is join-dense in ConL.

Proof. We verify that θ is the least upper bound in 〈ConL;⊆〉 of the
set S = { θ(a, b) | (a, b) ∈ θ }. First note that the definition of θ(a, b)
implies that θ(a, b) ⊆ θ whenever (a, b) ∈ θ. Therefore θ is an upper
bound for S . Now assume that ψ is any upper bound for S . This means
that θ(a, b) ⊆ ψ for any pair (a, b) ∈ θ. But (a, b) ∈ θ(a, b) always, so
(a, b) ∈ θ implies (a, b) ∈ ψ , as required. �

6.18 The join of two congruences. As frequently occurs with topped⋂
–structures, the join in ConL is not generally given by set union: the

union of two equivalence relations is often not an equivalence relation
because transitivity fails. We now describe finite joins in ConL.

Let L be a lattice and let α, β ∈ ConL. We say that a sequence
z0, z1, . . . , zn witnesses a (α ∨ β) b if a = z0 , zn = b and zk−1 α zk or
zk−1 β zk for 1 � k � n. We claim that a (α∨β) b if and only if for some
n ∈ N there exists a sequence z0, z1, . . . , zn which witnesses a (α ∨ β) b.
To prove the claim, define a relation θ on L by a θ b if and only if for some
n ∈ N there exists a sequence z0, z1, . . . , zn which witnesses a (α ∨ β) b.
The following are straightforward to check:

(i) θ ∈ ConL,
(ii) α ⊆ θ and β ⊆ θ, and

(iii) if α ⊆ γ and β ⊆ γ for some γ ∈ ConL, then θ ⊆ γ .

140 Congruences

Consequently θ is indeed the least upper bound of α and β in ConL.

A property which distinguishes lattices (and, more generally, lat-
tices with additional operations) from algebras in general is that the
congruence lattice of a lattice is distributive. This turns out to have
many far-reaching consequences. The study of congruence-distributive
algebras, as they are called, is integral to any modern course on universal
algebra. Our proof that congruence lattices of lattices are distributive
has a universal algebraic flavour: it shows that the crux of the mat-
ter is three simple identities satisfied by the median term, m(x, y, z) :=
(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x), viz.

m(x, x, y) = m(x, y, x) = m(y, x, x) = x,

rather than anything intrinsically lattice theoretic.

6.19 Theorem. The lattice ConL is distributive for any lattice L.

Proof. Let α, β, γ ∈ ConL. By Lemma 4.1 it will suffice to show
that α ∧ (β ∨ γ) � (α ∧ β) ∨ (α ∧ γ). Assume that a (α ∧ (β ∨ γ)) b.
Then aα b and by 6.18 there is a sequence a = z0, z1, . . . , zn = b which
witnesses a (β ∨ γ) b. We wish to construct a sequence which witnesses
a ((α∧β)∨ (α∧γ)) b. The identities satisfied by the median term give in
particular a = m(a, b, z0) and b = m(a, b, zn). Furthermore, since aα b,
for i = 0, . . . , n− 1, we have m(a, b, zi)αm(a, b, zi+1), since

m(a, b, zi)αm(a, a, zi) = a = m(a, a, zi+1)αm(a, b, zi+1).

Observe also that, if c θ d, then m(a, b, c) θm(a, b, d) for all c, d ∈ L and
all θ ∈ ConL. For i = 0, . . . , n − 1 we can apply this with c = zi ,
d = zi+1 and θ as either β or γ . We deduce that the sequence

a = m(a, b, z0),m(a, b, z1), . . . ,m(a, b, zn) = b

witnesses a ((α ∧ β) ∨ (α ∧ γ)) b. �

6.20 Groups revisited. Let G be a group. We showed in 6.1 that there
is a correspondence between normal subgroups of G and equivalence re-
lations compatible with the group structure, that is, group congruences.
Denote the set of all such congruences by ConG. Each congruence is
regarded as a subset of G × G and ConG is given the inclusion order
inherited from ℘(G×G). This makes ConG into a topped

⋂
–structure,

and so a complete lattice, in just the same way that ConL is, for L a lat-
tice. It is then easy to see that ConG ∼= N -SubG. We have already seen
that N -SubG is modular (see 4.6(5)). Consequently, ConG is modu-
lar. However, even for very small groups it may not be distributive. For
G = V4 , the Klein 4-group, for example, we have N -SubG ∼=M3 .

Congruences 141

A very important problem in group theory, solved around 1980,
was the classification of all finite simple groups. A group is defined to be
simple if it has no proper non-trivial normal subgroups. In a similar way,
it is natural to investigate lattices L which are simple in the sense that
they have precisely two congruences, namely 0 and 1. Since it can be
proved that every lattice can be embedded into a simple lattice, simple
lattices can be very complicated!

Exercises

Exercises from the text. Prove Lemma 6.8, Theorem 6.9, Theorem 6.10
and Lemma 6.12. Prove that ConG ∼= N -SubG, for every group G.

6.1 Let � be a quasi-order on a set P , that is, � is reflexive and
transitive. Define θ on P by a ≡ b (mod θ) ⇔ a � b & b � a.
Prove that the relation � defined on P/θ by

[a]θ � [b]θ ⇐⇒ (∃x ∈ [a]θ)(∃y ∈ [b]θ)x � y

is an order relation and that [a]θ � [b]θ if and only if a � b.

6.2 Draw the diagram of L/θ for each θ shown in Figure 6.7.

Figure 6.7

142 Congruences

6.3 Show that a homomorphism f : L → K is an embedding if and
only if ker f = 0.

6.4 Let J be an ideal of a lattice L and define a relation θJ on L by

θJ := { (a, b) ∈ L2 | (∃c ∈ J) a ∨ c = b ∨ c }.
Prove that L is distributive if and only if for every ideal J of L,
the relation θJ is a congruence on L and J is a block of the
corresponding partition of L.

6.5 Show that an equivalence relation on a Boolean algebra B is a
Boolean congruence if and only if it is a lattice congruence. Prove
that every congruence on a Boolean algebra B is of the form θJ
for some ideal J in B (see Exercise 6.4) and moreover (a, b) ∈ θJ
if and only if (a ∧ b′) ∨ (a′ ∧ b) ∈ J .

6.6 Let L be a lattice and let a, b, c, d ∈ L.

(i) Show that θ(a, b) ⊆ θ(c, d) if and only if a ≡ b (mod θ(c, d)).

(ii) Show that θ(a, b) = θ(a ∧ b, a ∨ b).
6.7 Let L be a distributive lattice and assume that c � d in L. Prove

that (a, b) ∈ θ(c, d) ⇐⇒ a ∧ c = b ∧ c & a ∨ d = b ∨ d.
6.8 Consider the lattices L and K in Figure 6.8.

(i) Assume that θ ∈ ConL and that a ≡ c (mod θ). Show that
b ≡ e (mod θ). Hence find θ(a, c) and then draw L/θ(a, c).

(ii) Assume that θ ∈ ConK and that a ≡ b (mod θ). Show that
b ≡ 0 (mod θ). Hence find θ(a, b) and then draw L/θ(a, b).

❜ ❜❜ ❜
�
�❅

❅

�
�❅

❅

❜ ❜❜
�
�❅

❅
0

e

b

1

d
c

a

L ❜❜❜❜
❜ ❜�

�

❅
❅

❅
❅

❅
❅

✁
✁
✁
✁

0

d

cb

a

1

K

Figure 6.8

6.9 Let L be the lattice in Figure 6.9.

(i) Let θ be a congruence on L with 0 ≡ a (mod θ). Show
carefully that d ≡ 1 (mod θ).

Congruences 143

❜❜ ❜❜ ❜❜ ❜

✟✟
✟✟

✟✟
✟✟

❍❍❍❍

❍❍❍❍

0

b

c

ed

1

a

L

Figure 6.9

(ii) Let θ ∈ ConL with 0 ≡ a (mod θ). Show that 0 ≡ 1 (mod θ)
and hence explain why θ = 1 in ConL.

6.10 Give an example of a congruence θ ∈ Con4 such that θ is not
principal.

6.11 Find all congruences on N5 , then draw the lattice ConN5 . [Hint.
First find all principal congruences on N5 , then show that they
are closed under ∨ in ConN5 . It then follows by Lemma 6.17 that
every congruence on N5 is principal.]

6.12 For each of the following lattices L, find all congruences and then
draw ConL:

(a) L = 2× 3; (b) L = 22 ⊕ 1; (c) L = 4.

6.13 Recall from 6.20 that a lattice L is called simple if it has precisely
two congruences, namely 0 and 1.

(i) Show that L is simple if and only if for all a, b ∈ L with
a �= b we have θ(a, b) = 1.

(ii) Show that each of the following lattices is simple:

(a) M3 ; (b) Mn (for n � 3); (c) M3,3 .

See Figures 2.4 and 4.5.

6.14 Consider again the second half of the proof of theM3–N5 Theorem
in 4.10. This actually shows that, if L is modular and a, b, c ∈ L,
then f : M3 → L defined by

f(0) = p := (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a),
f(1) = q := (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a),
f(x) = u := (a ∧ q) ∨ p,
f(y) = v := (b ∧ q) ∨ p,
f(z) = w := (c ∧ q) ∨ p,

144 Congruences

is a homomorphism. Use the fact thatM3 is simple (Exercise 6.13)
to show that f is one-to-one, and therefore an embedding, provided
p �= q . (This gives a more sophisticated proof of the last line of the
proof of the M3–N5 Theorem.)

6.15 (i) Let L, K1 and K2 be lattices and assume that the map
ϕ : L → K1 × K2 is an embedding. Define congruences
θ1, θ2 ∈ ConL by θi = ker(πi ◦ ϕ) where πi : K1 ×K2 → Ki

is the natural projection (i = 1, 2). Show that θ1 ∧ θ2 = 0
in ConL.

(ii) Let θ1, θ2 ∈ ConL with θ1 ∧ θ2 = 0. Show that the map
ψ : L → L/θ1 × L/θ2 defined by ψ(a) := ([a]θ1 , [a]θ2) is an
embedding.

(iii) Use (i) to show that each of the following lattices L has the
property that if L � K1 ×K2 , then L � K1 or L � K2 .

(a) L =M3; (b) L = N5; (c) L =M3,3 (see Figure 4.5).

[Hint. If you haven’t already done so, you’ll first need to
calculate ConL in each case (Exercises 6.11 and 6.13). Then
use Exercise 6.3.]

6.16 (i) Let P be an ordered set and let Q be any subset of P . Define
θ[Q] by

(A,B) ∈ θ[Q] ⇐⇒ A∩(P \Q) = B∩(P \Q) (A,B ∈ O(P)).
Prove that θ[Q] is a congruence on O(P).

(ii) Let C,D ∈ O(P) with C ⊆ D. Use Exercise 6.7 to prove
that θ(C,D) = θ[D\C] , and hence prove that the atoms in
Con(O(P)) are precisely the congruences θ[{x}] (x ∈ P).

6.17 Prove that if L is a finite distributive lattice then ConL is isomor-
phic to 2n where n = |J (L)|. [Hint. Here are three possible (but
related) approaches.

(a) Prove the result indirectly via Theorem 5.19 and the fact
that there is a bijection between congruences on L and the
kernels of homomorphisms with domain L (see Lemma 6.8
and Theorem 6.9).

(b) Define f : ℘(J (L))→ ConL by f(Y) = θ[Y] for each subset
Y of J (L), where, for a, b ∈ L,

a ≡ b (mod θ[Y]) ⇐⇒ ↓a ∩ (J (L) \ Y) = ↓b ∩ (J (L) \ Y),
and show that f is an order-isomorphism.

(c) Combine 6.17 and the result in Exercise 6.16(ii).]

7

Complete Lattices and Galois Connections

We return now to the study of complete lattices. We introduced such
lattices back in Chapter 2 where we saw many examples arising as
topped

⋂
–structures. In Chapter 3 we gave a glimpse of the role of

complete lattices in concept analysis. Here we pursue these ideas further
by presenting the circle of ideas that link complete lattices and topped⋂
–structures with closure operators and Galois connections. In 7.30 we

summarize for reference the various correspondences.

En route, we pursue the theory of complete lattices in a different
direction. Very many lattices arising in algebra are topped

⋂
–structures

of a special type. We explore the features of these lattices and of the
associated closure operators. The topped structures studied here have
as topless counterparts the computer scientists’ domains which we study
in Chapter 9.

Finally, as an application of results here and in Chapter 3, we
investigate the Dedekind–MacNeille completion of an ordered set.

Closure operators

Assume (X, T) is a topological space. There is an intimate connection
between the topped

⋂
–structure Γ(X) consisting of the closed subsets

of X and the closure operator − : ℘(X) → ℘(X) which maps a subset
A of X to its closure A. Namely,

Γ(X) =
{
A ⊆ X | A = A

}
and

A =
⋂{

B ∈ Γ(X) | A ⊆ B
}
,

for all A ⊆ X . In fact, this connection has nothing to do with topology
and exists for any topped

⋂
–structure.

To meet our needs when discussing Galois connections, we work
initially in an arbitrary ordered set rather than in a powerset.

7.1 Closure operators. Let P be an ordered set. A map c : P → P is
called a closure operator (on P) if, for all x, y ∈ P ,

(clo1) x � c(x),

(clo2) x � y =⇒ c(x) � c(y),

(clo3) c(c(x)) = c(x).

146 Complete lattices and Galois connections

An element x ∈ P is called closed if c(x) = x. The set of all closed
elements of P is denoted by Pc .

If P = 〈℘(X);⊆〉 for some set X , we customarily use the symbol
C rather than c and shall refer to a closure operator C : ℘(X)→ ℘(X)
on X . Of course, if 〈X, T 〉 is a topological space, then the topological
closure map − is a closure operator C on X , and ℘(X)C = Γ(X).

7.2 Proposition. Let c be a closure operator on an ordered set P .

(i) Pc = { c(x) | x ∈ P} and Pc contains the top element of P when it
exists.

(ii) Assume P is a complete lattice.

(a) For any x ∈ P ,

c(x) =
∧
P

{
y ∈ Pc | x � y

}
.

(b) Pc is a complete lattice, under the order inherited from P ,
such that, for every subset S of Pc ,∧

Pc
S =

∧
P
S and

∨
Pc
S = c

(∨
P
S
)
.

Proof. (i) Let y ∈ P . If y ∈ Pc , then y = c(y). If y = c(x) for some
x ∈ P , then c(y) = c(c(x)) = c(x) = y , by (clo3), and so y ∈ Pc . If �
exists in P , then � = c(�) by (clo1).

We now prove (ii)(a). By (clo2), c(x) ∈ { y ∈ Pc | x � y }� . Since
c(x) belongs to { y ∈ Pc | x � y } by part (i) and (clo1), it is the greatest
lower bound. Now consider (ii)(b). To show Pc is a complete lattice it
suffices by 2.31 to show that

∧
Pc
S exists for every S ⊆ Pc . By 2.28, this

happens provided
∧
PS ∈ Pc , and in that case

∧
P S serves as

∧
Pc
S .

But c
(∧

P S
)

� c(s) = s for all s ∈ S , so c
(∧

P S
)

�
∧
P S ; by (clo1)

this inequality must be an equality. Finally, note that∨
Pc
S =

∧
Pc

{
y ∈ Pc | (∀s ∈ S) s � y

}
(by 2.30)

=
∧
P

{
y ∈ Pc | (∀s ∈ S) s � y

}
(from above)

=
∧
P

{
y ∈ Pc |

∨
PS � y

}
= c

(∨
P
S
)

(by (ii)(a)). �

The next result says that every topped
⋂
–structure gives rise to

a closure operator and conversely. The first part is a specialization of
Proposition 7.2(ii)(b). The proofs of the remaining assertions are left as
exercises.

Complete lattices and Galois connections 147

7.3 Theorem. Let C be a closure operator on a set X . Then the family

LC := {A ⊆ X | C(A) = A }
of closed subsets of X is a topped

⋂
–structure and so forms a complete

lattice, when ordered by inclusion, in which∧
i∈I

Ai =
⋂
i∈I

Ai,

∨
i∈I

Ai = C
(⋃
i∈I

Ai
)
.

Conversely, given a topped
⋂

–structure L on X , the formula

CL(A) :=
⋂{

B ∈ L | A ⊆ B
}
.

defines a closure operator CL on X .

7.4 Remarks. The relationship between closure operators and topped⋂
–structures on a given set is a bijective one: the closure operator

induced by the topped
⋂
–structure LC is C itself, and, similarly, the

topped
⋂
–structure induced by the closure operator CL is L; in symbols,

C(LC) = C and L(CL) = L.

Thus, whether we work with a topped
⋂
–structure or the corresponding

closure operator is a matter of convenience.

It is worth recalling that every complete lattice arises (up to order-
isomorphism) as a topped

⋂
–structure on some set (see Exercise 2.29),

so that equivalently, every complete lattice is isomorphic to the lattice
of closed sets with respect to some closure operator.

We have already observed that the topological closure map is a
closure operator on X , for any topological space (X, T). It is also natural
to consider the map sending a subset A of X to its interior, Ao . This map
is not a closure operator because Ao ⊆ A rather than A ⊆ Ao . However
by reversing the order on ℘(X) (that is, by considering ℘(X)∂) we do
get a closure operator. This device allows topological interior operators
and their abstract counterparts to be brought within the scope of our
theory. An order-reversal of this sort appears in 7.27.

It is easy to identify the closure operators associated with the
topped

⋂
–structures introduced earlier. They are all very natural.

7.5 Examples.

(1) Let G be a group. Then the closure operator corresponding to the
topped

⋂
–structure SubG maps a subset A of G to the subgroup

〈A〉 generated by A.

148 Complete lattices and Galois connections

(2) Let V be a vector space over a field F and let SubV be the complete
lattice of linear subspaces of V . The corresponding closure operator
on V maps a subset A of V to its linear span.

(3) Let L be a lattice and for each X ⊆ L let

[X] :=
⋂{

K ∈ Sub0L | X ⊆ K
}
.

Then [−] : ℘(L) → ℘(L) is the closure operator corresponding to
the topped

⋂
–structure Sub0L. (Recall Exercise 2.15.)

(4) Let L be a lattice with 0. Then the closure operator corresponding
to the topped

⋂
–structure I(L) consisting of all ideals of L is

(−] : ℘(L)→ ℘(L), as defined in Exercise 2.22.
(5) Let P be an ordered set. The map ↓ : ℘(P) → ℘(P) introduced

in 1.27 is easily seen to be a closure operator. The corresponding
topped

⋂
–structure is the down-set lattice O(P).

Complete lattices coming from algebra: algebraic lattices

Any topped
⋂
–structure is a complete lattice in which meet is given by

set intersection, but, regrettably, join is usually not given by union. We
now explore the circumstances under which joins are given by union,
and discover that this occurs in a natural way for certain joins in many
of the lattices arising in algebra.

7.6 Example. Let G be a group and H := {Hi}i∈I be a non-empty
family of subgroups of G with the property that, for each i1, i2 ∈ I , there
exists k ∈ I such that Hi1 ∪ Hi2 ⊆ Hk . We claim that H :=

⋃
i∈IHi

is a subgroup. Choose g1, g2 ∈ H . It suffices to show that g1g
−1
2 ∈ H .

For j = 1, 2, there exists ij ∈ I such that gj ∈ Hij . By hypothesis we
can find Hk ∈ H so that Hi1 ⊆ Hk and Hi2 ⊆ Hk . Then g1, g2 both
belong to a common subgroup Hk , so g1g

−1
2 ∈ Hk . Hence g1g

−1
2 ∈ H ,

as required.

As a special case, note that if H1 ⊆ H2 ⊆ · · · is a non-empty chain
of subgroups, then

⋃
n�1Hn is a subgroup.

It should be clear that what is crucial to the argument above is not
that it concerns groups, but the existence, for a given pair H1, H2 of
members of H, of a member H of H which contains both H1 and H2 ,
so that we can exploit the closure properties of the group operations in
H . This leads us to the next definition.

7.7 Definition. Let S be a non-empty subset of an ordered set P .
Then S is said to be directed if, for every pair of elements x, y ∈ S ,

Complete lattices and Galois connections 149

there exists z ∈ S such that z ∈ {x, y}u . An easy induction shows that
S is directed if and only if, for every finite subset F of S , there exists
z ∈ S such that z ∈ Fu .

When D is a directed set for which
∨
D exists then we often write⊔

D in place of
∨
D as a reminder that D is directed. Directed joins

arise very naturally in the context of computer science. Example 7.8(5)
hints at the way directed sets may arise in approximation. This theme
is picked up in Chapter 8, which is concerned with CPOs: a CPO is an
ordered set P with ⊥ in which

⊔
D exists for every directed subset D

of P .

7.8 Examples.

(1) In any ordered set P , any non-empty chain is directed and any
subset of P with a greatest element is directed.

(2) The only directed subsets of an antichain are the singletons. More
generally, in an ordered set with (ACC) (recall 2.37) a set is directed
if and only if it has a greatest element.

(3) Let X be a set. Then any non-empty family D of subsets of X
which is closed under finite unions is directed: for A,B ∈ D, we
have A∪B ∈ {A,B}u in D. Hence, for example, the family of finite
subsets of N is directed.

(4) The finitely generated subgroups of a group G form a directed sub-
set L of SubG. To check this claim, let H and K be subgroups
of G generated, respectively, by {a1, . . . , am} and {b1, . . . , bn}.
Let M be the subgroup generated by {a1, . . . , am, b1, . . . , bn}. Then
M ∈ {H,K}u in L. Notice that, by contrast with the preceding
example, the exhibited upper bound is not given by set union: in
general H ∪K is, of course, not a subgroup.

(5) The graph of a map f : N → N is the union of the set of all graphs
of partial maps σ � f with domσ finite (more informally, f can
be built up from partial maps each specifying a finite amount of
information about f). This family of approximating partial maps
σ is a directed subset of (N�→N).

7.9 Directed families of sets. We can restate the result in 7.6 as
asserting that the union of a directed family of subgroups of a group is
again a subgroup. In an exactly analogous way, the union of a directed
family of subspaces of a vector space is a subspace, the union of a directed
family of ideals in a lattice is an ideal (Exercise 2.37(i) is a special case),
and so on. The union of a directed family of sets will be called a directed
union.

150 Complete lattices and Galois connections

Now recall 2.29: if {Ai}i∈I is a subset of a family L of subsets of a
set X , then⋃

i∈I
Ai ∈ L =⇒

∨
L

{
Ai | i ∈ I

}
exists and equals

⋃
i∈I

Ai.

We deduce that if the family L is closed under directed unions, we have⊔
i∈I Ai =

∨
i∈I Ai =

⋃
i∈I Ai whenever {Ai}i∈I ⊆ L is directed.

The following simple observation is very useful. A subset D =
{Ai}i∈I of ℘(X) is directed if and only if, given Ai1 , . . . , Ain in D,
there exists k ∈ I such that Aij ⊆ Ak for i = 1, . . . , n (equivalently,⋃{

Aij | j = 1, . . . , n
} ⊆ Ak). It follows that if D is directed and

Y = {y1, . . . , yn} is a finite subset of
⋃
Ai then there exists Ak ∈ D

such that Y ⊆ Ak .

7.10 Definitions. A non-empty family L in ℘(X) is said to be closed
under directed unions if

⋃
i∈I Ai ∈ L for any directed family D ={

Ai
}
i∈I in L.

A non-empty family L of subsets of a set X is said to be an algebraic⋂⋂⋂
–structure if

(i)
⋂
i∈I Ai ∈ L for any non-empty family {Ai}i∈I in L,

(ii)
⋃
i∈I Ai ∈ L for any directed family {Ai}i∈I in L.

Thus an algebraic
⋂
–structure is an

⋂
–structure which is closed under

directed unions. In such a structure the join of any directed family is
given by set union.

7.11 Examples. We see from 7.6 that the
⋂
–structure SubG is alge-

braic. Similarly, each of the
⋂
–structures presented in 7.5 can be shown

to be algebraic. We can also add to the list given there the congruence
lattice ConL, for any lattice L.

Theorem 7.3 set up a correspondence between topped
⋂
–structures

and closure operators on a set. This specializes in a very satisfactory way
to the algebraic case.

7.12 Definition. A closure operator C on a set X is called algebraic
if, for all A ⊆ X ,

C(A) =
⋃ {

C(B) | B ⊆ A and B is finite
}
.

It is easy to show that, for any closure operator C ,

C(A) ⊇
⋃ {

C(B) | B ⊆ A and B is finite
}

Complete lattices and Galois connections 151

(Exercise 7.1), so that to prove that a closure operator C is algebraic it
is only necessary to prove the reverse inclusion.

7.13 Example. Recall from 7.5(1) that the closure operator corre-
sponding to the

⋂
–structure SubG maps a subset A of G to the sub-

group 〈A〉 generated by A. We claim that this closure operator is alge-
braic. This follows, via 7.14, from the fact that SubG is an algebraic⋂
–structure, but the direct proof below is also instructive. By the re-

mark in 7.12, it is sufficient to show that

〈A〉 ⊆
⋃ { 〈B〉 | B ⊆ A and B is finite

}
.

Let g ∈ 〈A〉; then there exist a1, a2, . . . , an ∈ A such that g = a′1a
′
2 . . . a

′
n ,

where a′i ∈
{
ai, a

−1
i

}
for each i. Thus g ∈ 〈{a1, . . . , an}〉, and this gives

the required containment.

7.14 Theorem. Let C be a closure operator on a set X and let LC be
the associated topped

⋂
–structure. Then the following are equivalent:

(i) C is an algebraic closure operator;

(ii) for every directed family {Ai}i∈I of subsets of X ,

C
(⋃
i∈I

Ai
)
=

⋃
i∈I

C(Ai);

(iii) LC is an algebraic
⋂

–structure.

Proof. Assume (i) holds and let {Ai}i∈I be a directed family of subsets
of X . First observe that if B is finite and B ⊆ ⋃

i∈IAi , then B ⊆ Ak
for some k ∈ I (see 7.9). Consequently,

C
(⋃
i∈I

Ai
)
=

⋃{
C(B) | B ⊆ ⋃

i∈I Ai and B is finite
}

(by (i))

=
⋃{

C(B) | B ⊆ Ak for some k ∈ I and B is finite
}

(by the observation above)

⊆
⋃
i∈I

C(Ai).

The reverse inclusion is always valid (Exercise 7.1). Hence (i) ⇒ (ii).

Since LC = {C(A) | A ⊆ X }, it is trivial that (ii) implies (iii). Now
assume (iii). Let A ⊆ X . The family

D := {C(B) | B ⊆ A and B is finite }

152 Complete lattices and Galois connections

is directed. Hence
⋃D ∈ LC . Also A ⊆

⋃D since, for each x ∈ A, we
have x ∈ {x} ⊆ C({x}) ⊆ ⋃D. Hence

C(A) ⊆ C
(⋃D)

=
⋃D (since

⋃D ∈ LC)

=
⋃{

C(B) | B ⊆ A and B is finite
}
.

As previously noted, the reverse inclusion always holds. It follows that C
is algebraic. �

Our next objective is to characterize in a lattice-theoretic way the
closures, with respect to an algebraic closure operator on X , of the finite
subsets of X . Before we can do this we need further definitions.

7.15 Definitions. Let L be a complete lattice and let k ∈ L.

(i) k is called finite (in L) if, for every directed set D in L,

k �
⊔
D =⇒ k � d for some d ∈ D.

The set of finite elements of L is denoted F (L).

(ii) k is said to be compact if, for every subset S of L,

k �
∨

S =⇒ k �
∨

T for some finite subset T of S.

The set of compact elements of L is denoted K(L).

Lemma 7.16 reconciles these definitions. The term ‘compact’ (crib-
bed from topology) is commonly used in the context of algebra; the
notion of a ‘finite’ element comes from computer science. Observe that,
unlike compactness, finiteness makes sense in ordered sets in which joins
exist for directed subsets, but not necessarily for all subsets.

7.16 Lemma. Let L be a complete lattice. Then F (L) = K(L).
Further, k1 ∨ k2 ∈ F (L) whenever k1, k2 ∈ F (L).

Proof. Assume first that k ∈ K(L) and that k �
⊔
D, where D is

directed. Then there exists a finite subset F of D such that k �
∨
F .

Because D is directed, we can find d ∈ D with d ∈ F u . Then k � d, so
k ∈ F (L).

Conversely, assume that k ∈ F (L) and that k �
∨
S . The set

D =
{ ∨

T | T ⊆ S and T is finite
}

is directed and it is easy to see that
⊔
D =

∨
S (see Exercise 7.5).

Applying the finiteness condition, we find a finite subset T of S with
k �

∨
T .

Complete lattices and Galois connections 153

The second part is left as an exercise. �

7.17 Examples. Table 7.1 lists the finite (alias compact) elements in
various complete lattices. The assertions can easily be verified directly.
The first four lattices are topped

⋂
–structures and for these Lemma 7.19

below can alternatively be used.

Note that ⊥ in a complete lattice is always finite. As a simple
example of a non-finite element we have the top element of N⊕ 1. Now
consider 〈N0;�〉. We claim that no element other than 1 (= ⊥) is
compact. Since 0 (= �) is the join of the set of all primes but is not the
join of any finite set of primes, 0 is not compact. Now let n ∈ N0 with
n /∈ {0, 1} and let S be the set of primes which do not divide n. Then
S is infinite and so

∨
S = � (= 0), because any non-zero element of N0

has only finitely many prime divisors. Hence n �
∨
S but n �� ∨

T for
any finite subset T of S , whence n is not compact.

L F (L)

℘(X) (X a set) Finite subsets
O(P) (P an ordered set) Sets ↓F (F finite)
SubG (G a group) Finitely generated subgroups
SubV (V a vector space) Finite-dimensional subspaces
Complete lattice with (ACC) All elements of L
[0, 1] 0 only

Table 7.1

We now work towards a characterization of the ordered sets which
can be concretely represented as topped algebraic

⋂
–structures.

7.18 Definition. A complete lattice L is said to be algebraic if, for
each a ∈ L,

a =
∨{

k ∈ K(L) | k � a
}
.

The terminology will be justified by the next lemma which implies that
many lattices arising in algebra are algebraic; see 7.21. In the following
proofs, finiteness is more convenient to work with than compactness.
Lemma 7.16 then allows results about algebraic lattices to be stated, as
is traditional, in terms of compact elements.

7.19 Lemma. Let C be an algebraic closure operator on X and LC
the associated topped algebraic

⋂
–structure. Then LC is an algebraic

lattice in which an element A is finite (equivalently, compact) if and only
if A = C(Y) for some finite set Y ⊆ X .

154 Complete lattices and Galois connections

Proof. We show that the finite elements are the closures of the finite
sets. Then Definition 7.12 implies that LC is an algebraic lattice.

Let Y be a finite subset of X and let A = C(Y). Take a directed
set D in LC with A ⊆ ⊔D. Then, since ⊔

coincides with
⋃
in LC ,

Y ⊆ C(Y) = A ⊆
⊔
D =

⋃
D.

As Y is finite and D directed, there exists B ∈ D such that Y ⊆ B .
Then

A = C(Y) ⊆ C(B) = B,

so A is finite in LC .

Conversely, assume that A ∈ LC is a finite element. Certainly

A =
⊔ {

C(Y) | Y ⊆ A and Y is finite
}

(see 7.12). Invoke the finiteness of A in LC to find a finite set Y ⊆ A
such that A ⊆ C(Y). The reverse inclusion holds since Y ⊆ A implies
C(Y) ⊆ C(A) = A. �

7.20 Theorem.

(i) Let L be a topped algebraic
⋂

–structure. Then L is an algebraic
lattice.

(ii) Let L be an algebraic lattice and define Da := { k ∈ K(L) | k � a }
for each a ∈ L. Then L := {Da | a ∈ L } is a topped algebraic⋂

–structure isomorphic to L.

Proof. Part (i) follows from the preceding lemma and 7.14. For the
converse, (ii), we leave the proof that L is a topped

⋂
–structure as an

exercise and prove here that the map ϕ : a �→ Da is an isomorphism of
L onto L and that L is algebraic. Because L is algebraic, Da ⊆ Db in
L implies a =

∨
Da �

∨
Db = b in L. The reverse implication holds

always. Therefore ϕ is an order-isomorphism.

Take a directed subset D = {Dc | c ∈ C } of L. As ϕ is an order-
isomorphism, the indexing set C is a directed subset of L. Define
a =

⊔
C . We claim that

⋃D = Da and so belongs to L. Indeed,

k ∈ Da ⇐⇒ k ∈ K(L) = F (L) and k � a =
⊔

C

⇐⇒ k ∈ F (L) and k � c for some c ∈ C

⇐⇒ k ∈ Dc for some c ∈ C

⇐⇒ k ∈
⋃
D.

Hence L is closed under directed unions and so is algebraic. �

7.21 Examples. The following are topped
⋂
–structures arising from

algebraic closure operators and so are algebraic lattices (see 7.13 for a
typical proof):

Complete lattices and Galois connections 155

• ℘(X), for any set X ;

• any complete lattice of sets and, in particular, the down-set lattice
O(P), for any ordered set P (in Theorem 10.29 below we charac-
terize down-set lattices amongst algebraic lattices);

• SubG, for any group G (see also 7.8(4));

• SubV , for any vector space V ;
• I(L), the ideal lattice of any lattice L with 0;
• ConL, for any lattice L.

In addition, the chains n, for n � 1, and N ⊕ 1 are algebraic lattices.
Further, any lattice L with a bottom element and satisfying (ACC) is an
algebraic lattice: by 2.41 L is a complete lattice and, as noted in 7.17,
every element x ∈ L is compact, and so is the join of ↓x ∩K(L). As an
example of an infinite algebraic lattice of this type we have 〈N0;�〉∂ . On
the other hand, 〈N0;�〉 is not algebraic, since its only compact element
is ⊥ (that is, 1 – see 7.17).

Galois connections

We now introduce a class of examples which will later prove to be very
significant and which we shall relate to closure operators.

7.22 Contexts and their polar maps. Let (G,M, I) be a context and
consider the polar maps J : ℘(G) → ℘(M)∂ and K : ℘(M)∂ → ℘(G)
given by

AJ := A′ = {m ∈M | (∀g ∈ A) gIm } ,
BK := B′ = { g ∈ G | (∀m ∈ B) gIm } ;

(see 3.3). These polar maps satisfy, for A ⊆ G and B ⊆M ,

AJ � B ⇐⇒ A � BK

(see (P5) in Lemma 3.5); here � on the left-hand side is the order ⊆ of
℘(G) and � on the right-hand side is the order ⊇ of ℘(M)∂ .

We are now ready to reveal that the pair of maps (′, ′) provides
one example of a notion of widespread occurrence and considerable
importance: a Galois connection between two ordered sets.

7.23 Galois connections. Let P and Q be ordered sets. A pair (J , K)
of maps J : P → Q and K : Q→ P (called right and left respectively) is
a Galois connection between P and Q if, for all p ∈ P and q ∈ Q,

(Gal) pJ � q ⇐⇒ p � qK .

156 Complete lattices and Galois connections

The map J is called the lower adjoint of K and the map K the upper
adjoint of J ; the terms ‘lower’ and ‘upper’ here refer to the side of � on
which the map appears.

Galois connections manifest themselves in many settings, from alge-
bra to computer science. It is common for ubiquitous concepts to adopt
different guises in different contexts. Galois connections illustrate this
all too well. There are two versions of the definitions: the one we adopt
here, in which the paired maps are order-preserving (see 7.26) and the
other in which they are order-reversing, as would occur in our context
example if we worked with ℘(M) rather than ℘(M)∂ . Historically, and
in algebra, there are arguments for order-reversal: the most famous Ga-
lois connection of all, that discovered by Galois, between the subgroups
of a Galois group G(K,F) and the fields intermediate between F and K ,
is order-reversing. In computer science the maps are usually taken to
be order-preserving. At a theoretical level, the difference is not signifi-
cant: we can swap backwards and forwards between the two versions by
swapping between Q and Q∂ . There is also, regrettably, no uniformly
adopted notation. We have used the symbols J and K as they make it
easy to keep track of which map is which.

7.24 Order-theoretic examples.

(1) Suppose that sets P and Q are ordered by the discrete order, =.
Then J : P → Q and K : Q→ P set up a Galois connection between
P and Q if and only if these maps are set-theoretic inverses of each
other.

(2) Consider again 7.22. The ′ maps associated with a context (G,M, I)
give maps J : ℘(G) → ℘(M)∂ and K : ℘(M)∂ → ℘(G) such that
(J , K) is a Galois connection between ℘(G) and ℘(M)∂ .
(See Exercise 7.18 for an alternative way to construct a Galois
connection out of a relation R ⊆ A×B between sets A and B .)

(3) Let P be an ordered set. For A ⊆ P we have previously defined
the sets of upper and lower bounds of A as

Au := { y ∈ P | (∀x ∈ A)x � y } ,
A� := { y ∈ P | (∀x ∈ A) y � x } .

It is easy to see that (u, �) is a Galois connection between ℘(P)
and ℘(P)∂ :

Au ⊇ B ⇐⇒ (∀y ∈ B)((∀x ∈ A)x � y)

⇐⇒ (∀x ∈ A)((∀y ∈ B) y � x)

⇐⇒ A ⊆ B�.

Complete lattices and Galois connections 157

In fact this is a special case of (2) in which G = M = P and I is
the relation � (regarded as a subset of P × P). We shall return to
this important example in the next section, where we discuss the
Dedekind–MacNeille completion.

(4) Let P be an ordered set. For A ⊆ P , define

AJ := P \ ↓A and AK := P \ ↑A.
Then (J , K) establishes a Galois connection between ℘(P) and
℘(P)∂ . Again this is a specialization of (2).

7.25 A context for programs. We now give a computational interpre-
tation to Example 7.24(2).

Following up our introductory remarks in 1.8, we shall view a com-
puter program as operating on a (finite or infinite) state space X ,
whose elements are vectors of which each component is of an appro-
priate datatype, these components being the values which the program’s
variables can take. It will be helpful to distinguish between a set G of
initial states and a set M of final states.

Consider a deterministic program P which terminates when started
from a state in a subset S of the set G of initial states. Then P may be
viewed as a partial function σP from G to the set M of final states, with
domσP = S : given initial state x ∈ domσP the program terminates in
the final state σP (x) ∈ M . A non-deterministic (and possibly non-
terminating) program is modelled not by a partial function but by a
relation R ⊆ G ×M . To illustrate, we consider G = {A,B,C,D,E},
M = {a, b, c, d, e} and suppose that possible behaviours of the program
are given by the relation R shown in Table 7.2. Thus the program,
when started from initial state x, must terminate in a final state y for
which xRy . So, when started from state B , the final state is one of
c, d or e, and if the program is to terminate in state c, then it must
begin from either A or B . The model allows for the possibility that the
program fails to terminate, by having an initial state (that is, E) with
no associated final states.

a b c d e

A × × × ×
B × × ×
C × × × ×
D × ×
E

Table 7.2

158 Complete lattices and Galois connections

We now look at a different computational model. Consider again
a set G of initial states and set M of final states. We may, as in 1.6,
think of the predicates P(G) on G and P(M) on M as being identified
with ℘(G) and ℘(M), respectively. As usual, powersets are ordered by
⊆ and predicates by �. We think of a subset Y of M as specifying a
postcondition: a property of final states true precisely in Y . Similarly,
a predicate on initial states is a precondition. We may stipulate what a
(non-deterministic) program should do by giving conditions on the state
of the system before and after the program’s execution. For example,
with G = N and M = R, to find a square root of a natural number x in
the range 1 to 10, we could consider a variable y , take the precondition
‘1 � x � 10’ and the postcondition ‘y2 = x’, with only the value of
y being changed in the transition of the system from its initial state
to its final state. Our aim would still be met if we required ‘y > 0 &
y2 = x’ (a more restrictive postcondition than before) and ‘1 � x � 100’
(a less restrictive precondition). In general a program will still do what
is demanded of it if a postcondition is strengthened or a precondition
is weakened. Such changes result in a refinement of the given program
(recall the notion of refinement described in 1.8). Now fix G and M , and
consider a relation R ∈ R := ℘(G×M) modelling a program P , possibly
non-deterministic but which we assume, for simplicity, to be terminating
(the case of non-termination requires more care and involves the liftings
of G and M and an appropriate subset of ℘(G⊥ ×M⊥)). For a given
postcondition Y , the weakest precondition wpR(Y), is the set of input
states x such that P is guaranteed to terminate in a state in Y when it
is started from x. We may regard wpR as a map from P(M) to P(G);
it preserves �. Such maps are called predicate transformers. Given a
predicate transformer T ∈ T := (P(M) → P(G)) we may associate a
relation RT by

xRT y ⇐⇒ (∀Y ∈ ℘(M))x ∈ T (Y) =⇒ y ∈ Y (for x ∈ G, y ∈M).

It can be verified that, for R ∈ R and T ∈ T ,
R ⊆ RT ⇐⇒ wpR � T.

Thus there is a Galois connection between 〈R;⊆〉 and 〈T ;�〉∂ . Order
reversal here is essential; known preservation properties of wp : R → T
require that wp should be the upper adjoint (see 7.31). Taking these
ideas one step further, the program itself may be modelled by a predicate
transformer. The Galois connection above allows movement backwards
and forwards between relational and predicate transformer semantics.

The preceding discussion has been used to introduce, within the
framework of contexts, some terminology which is well established in
computer science and which we need later. Meanwhile, we return to the-
ory. The following lemma establishes the basic calculational properties

Complete lattices and Galois connections 159

of Galois connections. Compare with Lemma 3.5! Note that (J , K) is a
Galois connection between P and Q if and only if (K , J) is a Galois con-
nection between Q∂ and P ∂ . Consequently we have a ‘buy one, get one
free’ situation, and to prove (Gal1)–(Gal3) below we only need to verify
the first from each pair of mutually dual assertions. Sometimes, (Gal1)
and (Gal3) are referred to as the Cancellation Rule and the Semi-inverse
Rule.

7.26 Lemma. Assume (J , K) is a Galois connection between ordered
sets P and Q. Let p, p1, p2 ∈ P and q, q1, q2 ∈ Q. Then

(Gal1) p � pJ K and qK J � q ,

(Gal2) p1 � p2 =⇒ pJ1 � pJ2 and q1 � q2 =⇒ qK1 � qK2 ,

(Gal3) pJ = pJ K J and qK = qK J K .

Conversely, a pair of maps J : P → Q and K : Q→ P satisfying (Gal1)
and (Gal2) for all p, p1, p2 ∈ P and for all q, q1, q2 ∈ Q sets up a Galois
connection between P and Q.

Proof. For p ∈ P , we have pJ � pJ from which we obtain p � pJ K by
putting q = pJ in (Gal). Hence (Gal) implies (Gal1).

Consider (Gal2). We have

p1 � p2 =⇒ p1 � p2
J K (by (Gal1) and transitivity)

⇐⇒ p1
J � p2

J (from (Gal)).

We now prove (Gal3). Applying J to the inequality p � pJ K in
(Gal1) we have, by (Gal2), pJ � pJ K J . Also, by (Gal) with pJ K in
place of p and pJ in place of q ,

pJ K � pJ K =⇒ pJ K J � pJ .

Lastly, assume that (Gal1) and (Gal2) hold universally. Let pJ � q .
By (Gal2), pJ K � qK . Also, (Gal1) gives p � pJ K . Hence p � qK by
transitivity. The reverse implication follows in the same way. �

The exercises give a sample of further triangle-juggling games that
can be played, yielding in particular alternative characterizations of
Galois connections.

We turn now to the relationship between Galois connections and
the other structures we have been studying. We first reveal a connection
between Galois connections and closure operators. This is important
because it shows that Galois connections give rise to complete lattices.

160 Complete lattices and Galois connections

7.27 From a Galois connection to a closure operator. Let (J , K) be
a Galois connection between ordered sets P and Q∂ (note that we have
Q∂ not Q here). Then

(i) c := J K : P → P and k := K J : Q → Q are closure operators.
(Because we write the triangles to the right of their arguments, the
left-hand map in each composition is performed first.)

(ii) Let

Pc :=
{
p ∈ P | pJ K = p

}
and Qk :=

{
q ∈ Q | qK J = q

}
.

Then J : Pc → Q∂k and
K : Q∂k → Pc are mutually inverse order-

isomorphisms.

We leave the routine verification of (i) as an exercise in using the prop-
erties in 7.26. Now consider (ii). Using (Gal3) we see that J maps Pc
onto Q∂k and that

K maps Q∂k onto Pc and that these maps are inverse
to each other. Since they are also order-preserving (by (Gal2)), they are
order-isomorphisms (by 1.36(4)).

7.28 From a closure operator to a Galois connection. In a somewhat
contrived way, we can recognize that every closure operator arises as the
composite of the left and right maps of a Galois connection. To see this,
let c : P → P be a closure operator. Define Q := Pc , let

J : P → Pc
be given by pJ := c(p), and K : Pc → P be the inclusion map. Then
c = J K .

7.29 Concept lattices reviewed. We have already noted in 7.24(2)
that with every context (G,M, I) there is an associated Galois connec-
tion (′, ′) between ℘(G) and ℘(M)∂ . According to 7.27 there is an
associated closure operator c on ℘(G) which maps each A ⊆ G to A′′ .
Similarly, we have a closure operator k on ℘(M) which maps B ⊆M to
B′′ ; note that there is no order-reversal on ℘(M) here. Under the corre-
spondence between closure operators and topped

⋂
–structures (7.3), c

corresponds to BG and k to BM ; recall from 3.4 that both BG and B∂
M

are isomorphic to B(G,M, I). The fact that B(G,M, I) is a complete
lattice (Proposition 3.6) can now be seen in context.

7.30 The provenance of complete lattices: summing up. We bring
together here the correspondences which provide alternative ways in
which complete lattices manifest themselves.

• Every topped ⋂
–structure is a complete lattice (2.32) and, up to

isomorphism, every complete lattice arises this way (Exercise 2.29).

• The set of concepts B(G,M, I) associated with a context (G,M, I)
forms a complete lattice, and, up to isomorphism, every complete

Complete lattices and Galois connections 161

lattice arises this way (the fundamental theorem of concept lattices,
3.6–3.9).

• There is a bijective correspondence between closure operators on a
set X and topped

⋂
–structures on X (7.3).

• Every Galois connection (J , K) gives rise to a pair of closure oper-
ators, J K and K J , and thence to an isomorphic pair of complete
lattices (7.27).

We have seen that Galois connections occur widely and have a
natural place in the theory of complete lattices. But much of their
usefulness stems from the remaining results in this section, which reveal
the interaction between the maps in a Galois connection and joins and
meets.

7.31 Proposition. Let (J , K) be a Galois connection between ordered
sets P and Q. Then J preserves existing joins in the sense defined
in 2.26. Likewise, K preserves existing meets.

Proof. We first define z :=
∨
PS and show that z

J is an upper bound
for SJ . By (Gal2),

(∀s ∈ S) s � z =⇒ (∀s ∈ S) sJ � zJ .

Now let q be any upper bound for SJ . Then

(∀s ∈ S) sJ � q ⇐⇒ (∀s ∈ S) s � qK (by (Gal))

=⇒
∨
P
S � qK (by definition of

∨
P S)

⇐⇒ (∨
P
S
)J � q (by (Gal)).

We conclude that zJ is the least upper bound of SJ . �

The following lemma could have been presented in Chapter 1 along
with results about order-preserving maps but its significance would have
been far from obvious at that stage. Observe that Exercise 1.24 implies
that the inverse image under an order-preserving map of a principal
down-set is a down-set; the import of condition (ii) is that it is a principal
down-set.

7.32 Lemma. Let P and Q be ordered sets and ϕ : P → Q an order-
preserving map. Then the following are equivalent:

(i) there exists an order-preserving map ϕ0 : Q → P such that both
ϕ0 ◦ ϕ � idP and ϕ ◦ ϕ0 � idQ ;

(ii) for each q ∈ Q there exists a (necessarily unique) s ∈ P such that
ϕ−1(↓q) = ↓s.

162 Complete lattices and Galois connections

Proof. Assume (i). We claim that ϕ−1(↓q) = ↓ϕ0(q). We have

p ∈ ϕ−1(↓q)⇐⇒ ϕ(p) � q

=⇒ (ϕ0 ◦ ϕ)(p) � ϕ0(q) (since ϕ0 is order-preserving)

=⇒ p � ϕ0(q) (from ϕ0 ◦ ϕ � idP & transitivity)

⇐⇒ p ∈ ↓ϕ0(q).
For the other direction, let p ∈ ↓ϕ0(q). This yields ϕ(p) � (ϕ ◦ ϕ0)(q)
from which we can deduce that ϕ(p) � q , so that p ∈ ϕ−1(↓q). Therefore
(ii) holds.

Now assume (ii). For each q ∈ Q we have a unique element s ∈ P ,
depending on q , such that ϕ−1(↓q) = ↓s. Define ϕ0(q) := s. Restated,
this means that

(∀q ∈ Q)(∀p ∈ P) ϕ(p) � q ⇐⇒ p � ϕ0(q).

We now see that the pair (ϕ,ϕ0) is a Galois connection between P and Q,
so that the properties in (i) follow from Lemma 7.26. �

7.33 J from K and K from J . We can now interpret the proof
of (i) ⇒ (ii) in Lemma 7.32, and the dual proof, in the notation we
customarily use for Galois connections. We obtain the important fact
that in a Galois connection (J , K) each of J and K uniquely determines
the other via the formulae

pJ = min
{
q ∈ Q | p � qK

}
,

qK = max
{
p ∈ P | pJ � q

}
.

(For a subset S of an ordered set, minS and maxS denote respectively
the least and greatest elements of S , when these exist.)

7.34 Proposition. Let P and Q be ordered sets and ϕ : P → Q be a
map.

(i) Assume P is a complete lattice. Then ϕ preserves arbitrary joins
if and only if ϕ possesses an upper adjoint ϕ0 (that is, (ϕ,ϕ0) is a
Galois connection).

(ii) Assume Q is a complete lattice. Then ϕ preserves arbitrary meets
if and only if ϕ possesses a lower adjoint ϕ1 (that is, (ϕ1, ϕ) is a
Galois connection).

Proof. We prove (i). The backward implication comes from Proposi-
tion 7.31. For the forward implication, assume that ϕ preserves arbi-
trary joins. Note first that ϕ is order-preserving, by Proposition 2.19. It

Complete lattices and Galois connections 163

therefore suffices to show that condition (ii) in Lemma 7.32 is satisfied.
Let q ∈ Q. We claim that

s :=
∨
P

{
p ∈ P | ϕ(p) � q

} (
=

∨
P
ϕ−1(↓q))

is such that ϕ−1(↓q) = ↓s. It follows immediately that ϕ−1(↓q) ⊆ ↓s.
Since ϕ preserves arbitrary joins,

ϕ(s) =
∨
Q

{
ϕ(p) | p ∈ P with ϕ(p) � q

}
and hence ϕ(s) � q . For any p ∈ ↓s, we have ϕ(p) � q , because ϕ is
order-preserving and � is transitive. Therefore ↓s ⊆ ϕ−1(↓q). �

In 7.25, we indicated one way in which Galois connections arise in
the study of computational models, but we gave no intimation of what
makes this concept valuable to computer scientists. We conclude this
section by giving a very brief overview of the role Galois connections can
play in the development of programs from specifications. We seek here
to build a bridge between pure order theory and one important area of
application. Our primary aim is to inform a mathematical readership for
whom navigation through the vast literature can be daunting. References
to much fuller accounts can be found in Appendix B.

7.35 Refinement. The development of a computer program often starts
from a specification of the task the program is to perform and finishes
with program code in a selected programming language so that the final
program correctly meets the initial specification. At the initial (abstract)
level, the specification must be precise and intelligible; it will not nec-
essarily indicate an algorithm, or even a strategy, for performing the
desired task: for example, ‘find a solution x of the equation x2 = 2
correct to five decimal places’ is a valid specification. In the final (con-
crete) implementation, the program code may not be easily intelligible.
At the outset, even when an algorithm is available, it may perform the
desired task in an inefficient way. On the other hand, the efficiency of
the final executable program is likely to be a major issue. In practice the
transformation from specification to executable program will be carried
out in stages. The objective is to do this by applying fixed rules which
guarantee correctness at each step. This process is known as stepwise
refinement.

By way of illustration, let us consider an imperative style of pro-
gramming which is free of the distracting detail that intrudes in a final
implementation. Programs are described operationally, that is, by the
actions they perform: assignment, sequential composition, abort and so
forth. A suitable setting in which to work is provided by a specifica-
tion space 〈S;�〉 of commands, relative to some fixed state space X .

164 Complete lattices and Galois connections

This space consists of a chosen imperative programming language (‘real’
program code) augmented by specifications (descriptions of computa-
tions, not cast in an executable form). The specification space is thus
designed to be a universe within which program development can be
carried out. It is worthwhile to include in S commands such as magic
(which miraculously meets every specification) that are far removed from
code for feasible specifications; magic provides a top for S . The admit-
tance of commands for arbitrary non-deterministic choice corresponds
to the existence of arbitrary meets in S ; given a family of commands,
non-deterministic choice will select one of these commands, but without
there being any control on which one. So (recall 2.31) 〈S;�〉 is a com-
plete lattice. Mathematically this is advantageous. It means that the
full power of the theory of Galois connections is available. In particu-
lar maps from S to S preserving arbitrary meets (joins) possess lower
(upper) adjoints. The existence of such adjoints guarantees the existence
of commands that may assist in program development. Further, the cal-
culational rules obeyed by Galois connections will supply laws governing
these commands.

The notion of refinement is more versatile than the discussion above
may suggest. In general, one mechanism is said to be refined by another
of like type when every specification satisfied by the first is satisfied
also by the second. Here the term mechanism can refer to an indi-
vidual program, either in a formal guise or semantically modelled by
relations, predicate transformers or whatever, or to a command. Re-
finement may also involve enriching a language with new constructs to
increase its expressivity (algorithmic refinement). Alternatively it might
involve moving from abstract datatypes such as sets and bags to more
concrete versions such as strings and arrays (data refinement). Extend-
ing our earlier usage, we denote by � the relation ‘is refined by’. It
is clearly reflexive and transitive, and so a quasi-order. Its transitivity
validates a stepwise strategy in moving from abstract to concrete. It
is entirely reasonable for many aspects of program development not to
distinguish between algorithmic specifications with the same end result
or between syntactically distinct programs which achieve the required
objective. With this perspective we may regard � as an order. (The
process of obtaining an order from a quasi-order was explained formally
in Exercise 6.1.)

The instances in which refinement is most productive are those in
which one ordered structure 〈A;�〉 is refined by another 〈C;�〉, and
where there exists a Galois connection (J , K) between A (abstract)
and C (concrete). As we have done earlier, we think of the orders on A
and C as having the interpretation ‘is less informative than’, as in 1.8,

Complete lattices and Galois connections 165

so that x � y means that y is at least as good as x or that y serves
every purpose that x does. In case A and C are semantic models for
programming at different levels of abstraction it may help to think of the
Galois maps J : A → C (concretization) and K : C → A (abstraction)
as, respectively, compilation and verification. We think of cK as the
best available approximation, in the more abstract structure A, to the
element c in the more concrete structure C . Assume that a programming
command is described by c in C and suppose that we wish to show that c
implements some specification a in the more abstract model A. We can
either prove that aJ � c in the more concrete model or (equivalently,
since (J , K) is a Galois connection) prove that a � cK in the more
abstract model. We have cK J � c, for any c ∈ C . This expresses the
fact that, in general, abstraction results in a loss of information: if we
have concrete knowledge given by c ∈ C and we abstract this via K and
then concretize via J , the result, cK J , may contain less information
than the original c.

In summary, there is a trade-off between different semantic models
of programming: crude models may be easy to understand but cannot
fully capture intended behaviours, whereas more refined models may be
unacceptably unwieldy. There is clear merit in being able to move back-
wards and forwards between two such models via a Galois connection,
faithfully lifting up the semantic features of the simpler one to the more
sophisticated one. In the context of relational and predicate transformer
models for imperative programs (see 7.25), such Galois maps are pro-
vided by the map taking a relation to the associated weakest precondition
transformer and its upper adjoint (here the natural order on predicate
transformers has to be reversed to make the maps order-preserving).
This Galois connection can be extended from models of programs to
models of specifications to yield a powerful refinement calculus.

Completions

This section provides important applications of our earlier theory, in
particular of the fundamental theorem of concept lattices, but it is not
used later in the book. In general, there are many ways in which an
ordered set can be embedded into a complete lattice. In this section we
shall concentrate on one such embedding. This is associated with the
Galois connection (u, �) introduced in 7.24(3); it generalizes Dedekind’s
construction of R as the completion by cuts of Q.

7.36 Definition and remarks. Let P be an ordered set. If ϕ : P ↪→ L
and L is a complete lattice, then we say that L is a completion of P (via

166 Complete lattices and Galois connections

the order-embedding ϕ). It follows from Lemma 1.30 (see Exercise 2.29)
that the map ϕ : x �→ ↓x is an order-embedding of P into O(P). We saw
in 2.6(3) that O(P) is a complete lattice; hence O(P) is a completion
of P . This completion is unnecessarily large. For example, if P is a
complete lattice then P is a completion of itself (via the identity map)
while O(P) is much larger. Another completion of an ordered set is the
ideal completion (see Exercise 9.6).

7.37 Resumé. For ease of reference we repeat the definition and basic
properties of the maps u and � on an ordered set P . The properties
come from 7.26, or can easily be verified directly.

Let A ⊆ P . Then A ‘upper’ and A ‘lower’ are defined by

Au := {x ∈ P | (∀a ∈ A) a � x } and A� := {x ∈ P | (∀a ∈ A) a � x } .
For subsets A and B of P , we have

(i) A ⊆ Au� and A ⊆ A�u ,

(ii) if A ⊆ B , then Au ⊇ Bu and A� ⊇ B� ,

(iii) Au = Au�u and A� = A�u� .

Further, Au is an up-set and A� is a down-set.

7.38 The Dedekind–MacNeille completion. Let P be an ordered set.
We define

DM(P) :=
{
A ⊆ P | Au� = A

}
.

This is the topped
⋂
–structure on P corresponding to the closure op-

erator C(A) := Au� on P . Therefore the ordered set 〈DM(P);⊆〉 is
a complete lattice. It is known as the Dedekind–MacNeille completion
of P . (It is also referred to as the completion by cuts or the normal
completion of P .)

As we noted in 7.24, the Galois connection associated with the
context (P, P,�) is (u, �). Therefore we may view DM(P) as the lattice
BP associated with (P, P,�), meaning that BP is the isomorphic copy
of B(P, P,�) obtained via the projection π1 : (A,B) �→ A.

7.39 Lemma. Let P be an ordered set.

(i) For all x ∈ P , we have (↓x)u� = ↓x and hence ↓x ∈ DM(P).
(ii) If A ⊆ P and

∨
A exists in P , then Au� = ↓(∨A).

Proof. (i) Let y ∈ (↓x)u ; then z � y for all z ∈ ↓x so, in particular,
x � y (as x ∈ ↓x) and hence y ∈ ↑x. Thus (↓x)u ⊆ ↑x. If y ∈ ↑x, then
y � x and so, by transitivity, y � z for all z ∈ ↓x, that is, y ∈ (↓x)u .
Thus ↑x ⊆ (↓x)u . Therefore (↓x)u = ↑x and, by duality, (↑x)� = ↓x.
Thus (↓x)u� = (↑x)� = ↓x.

Complete lattices and Galois connections 167

(ii) Let A ⊆ P and assume that
∨
A exists in P . Of course

∨
A ∈

Au . Thus x ∈ Au� implies that x �
∨
A and hence x ∈ ↓(∨A).

Consequently Au� ⊆ ↓(∨A). Since
∨
A is the least upper bound of

A we have
∨
A � y for all y ∈ Au and hence

∨
A ∈ Au� . Since Au� is a

down-set this gives ↓(∨A) ⊆ Au� . Hence Au� = ↓(∨A), as required. �

7.40 Theorem. Let P be an ordered set and define ϕ : P → DM(P)
by ϕ(x) = ↓x for all x ∈ P .

(i) DM(P) is a completion of P via the map ϕ.

(ii) ϕ preserves all joins and meets which exist in P .

Proof. (i) As we saw above, 〈DM(P);⊆〉 is a complete lattice and the
order-embedding ϕ maps P into DM(P).

(ii) Let A ⊆ P and assume that
∨
A exists in P . We must show that

ϕ(
∨
A) =

∨
ϕ(A), that is, ↓(∨A

)
=

∨{ ↓a | a ∈ A
}
in DM(P).

Clearly, ↓ (∨A) is an upper bound for { ↓a | a ∈ A }. Now choose any
B ∈ DM(P) which is an upper bound for { ↓a | a ∈ A }. Since a ∈ ↓a ⊆
B , for all a ∈ A, we have A ⊆ B . Hence,

↓(∨A
)
= Au� ⊆ Bu� = B,

by 7.39(ii).

Now assume that
∧
A exists in P . We must show that

↓(∧A
)
=

∧
{ ↓a | a ∈ A } .

Since DM(P) is a topped
⋂
–structure, we have∧{ ↓a | a ∈ A

}
=

⋂{ ↓a | a ∈ A
}

in DM(P),

and hence Exercise 2.6 yields the result. �

We can now use the fundamental theorem of concept lattices to
characterize the Dedekind–MacNeille completion.

7.41 Theorem. Let P be an ordered set and let ϕ : P → DM(P) be
the order-embedding of P into its Dedekind–MacNeille completion given
by ϕ(x) = ↓x.

(i) ϕ(P) is both join-dense and meet-dense in DM(P).

(ii) Let L be a complete lattice and assume that P is a subset of L
which is both join-dense and meet-dense in L. Then L ∼= DM(P)
via an order-isomorphism which agrees with ϕ on P .

Proof. Consider (i). The order-isomorphism π1 between B(P, P,�) and
DM(P) preserves join- and meet-density. Hence join- and meet-density
of ϕ(P) follow from Theorem 3.8. Part (ii) follows from Theorem 3.9,
with the isomorphism ψ defined by ψ(x) = { g ∈ P | g � x }. (Each of
γ and µ is simply the natural embedding of P into L.) �

168 Complete lattices and Galois connections

7.42 Theorem. Let L be a lattice with no infinite chains. Then

L ∼= DM(J (L) ∪M(L)).

Moreover, J (L) ∪M(L) is the smallest subset of L which is both join-
dense and meet-dense in L.

Proof. For the first part, recall Theorems 3.9, 2.41 and 2.46.

It remains to show that, if P is both join-dense and meet-dense
in L, then J (L) ∪M(L) ⊆ P . Let x ∈ J (L). Since P is join-dense
there exists a subset A of P with x =

∨
A. Hence, by 2.41(i), there is a

finite subset F of A with x =
∨
F . Since x is join-irreducible we have

x ∈ F and so x ∈ A. Hence J (L) ⊆ P . By duality,M(L) ⊆ P too. �

7.43 Remarks. In 5.1 we put forward properties we would wish a
representing subset P for a lattice L to possess: L should be determined
by P , in a simple manner, and P should be ‘small’ and easily identifiable.
We showed in Chapter 5 that when L is a finite distributive lattice
then P = J (L) (or, equivalently, P = M(L)) serves the purpose
admirably. We now see that, so long as the lattice L has no infinite
chains, then the ordered set P = J (L) ∪M(L) is a possible substitute
‘skeleton’. However, in general we must construct a Dedekind–MacNeille
completion to recapture L from P and it is debatable whether this
process could be described as simple. Nonetheless a representation for
arbitrary finite lattices can be developed from this starting point, and
results about finite lattices derived from corresponding results on finite
ordered sets. We do not pursue this further.

7.44 Examples. The characterization of the Dedekind–MacNeille com-
pletion provided by Theorem 7.41 may be used in several ways. For
example, given an ordered set P , it may allow us to guess the struc-
ture of DM(P) without actually constructing the family of subsets of
P which satisfy Au� = A. Alternatively, given a complete lattice L it
may enable us to find subsets P of L such that L ∼= DM(P). These
ideas are illustrated in the examples which follow. These examples also
illustrate Theorem 7.42. In the diagram of each lattice L the set of
shaded elements is J (L) ∪M(L). Indeed it was via Theorem 7.42 that
the examples were constructed in the first place.

(1) It is not difficult to see that every real number x ∈ R satisfies∨
R
(↓x ∩ Q) = x =

∧
R
(↑x ∩ Q) and hence Q is both join-dense

and meet-dense in R ∪ {−∞,∞}. Consequently R ∪ {−∞,∞} is
(order-isomorphic to) the Dedekind–MacNeille completion of Q.

(2) DM(N) ∼= N⊕ 1.

Complete lattices and Galois connections 169

(3) For any set X , the complete lattice ℘(X) ∼= DM(P) where
P = { {x} | x ∈ X } ∪ {X \ {x} | x ∈ X } .

(4) The Dedekind–MacNeille completion of an n-element antichain (for
n � 1) is order-isomorphic to the lattice Mn (see Figure 2.4);
recall 3.11(3).

�� ���
�❅
❅ b

d

a

c

P1

� �
a b

P2

��
�

��
�

✁
✁
✁
✁❆
❆
❆
❆ b

d

f

a

c

e

P3

��
�

�
�

✁
✁
✁
✁❆
❆
❆
❆ b

e

a

c

d

P4

❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ��
� �

L1

❜ ❜❜ ❜
��

�� ❅❅

❅❅
��
L2

❜ ❜❜ ❜ ❜❜ ❜ ❜❜
��

����
��

❅❅
❅❅
❅❅

❅❅

��
�� ❅❅

❅❅
� �� �� �

L3
❜ ❜❜ ❜
��

�� ❅❅

❅❅

❜ ❜❜ ❜
��

�� ❅❅

❅❅� ��
� �

❅❅
��

L4

Figure 7.1

(5) Each pair of diagrams in Figure 7.1 may be interpreted either as
an ordered set Pi along with its Dedekind–MacNeille completion
Li ∼= DM(Pi) or as a lattice Li with a distinguished subset Pi such
that Li ∼= DM(Pi). In each case the elements of Pi are shaded.

Exercises

Exercises from the text. Complete the proof of Theorem 7.3. Verify
the assertions in 7.5. Prove the second part of Lemma 7.16 and confirm
the results given in Table 7.1. Verify the assertions in 7.27.

7.1 Suppose that C is a closure operator on X and let A ⊆ X and
Ai ⊆ X for each i ∈ I . Show that

(i) C
(⋃

i∈I Ai
) ⊇ ⋃

i∈I C(Ai),

(ii) C(A) ⊇ ⋃{
C(B) | B ⊆ A and B is finite

}
.

7.2 Let L = {0} ∪ { 2r3s | r, s = 0, 1, 2, 3, . . . } be ordered by � where
m � n⇔ (∃k ∈ N0)n = km.

(i) Prove that L is a complete, distributive lattice.

170 Complete lattices and Galois connections

(ii) Identify the compact (equivalently, finite) elements in L and
in the dual lattice L∂ . Is L an algebraic lattice ? Is L∂ an
algebraic lattice ?

7.3 In which of the following cases is D a directed subset of P ?

(i) P = ℘(N), D = {X ⊆ N | (∀m ∈ N) 2m ∈ X }.
(ii) P = ℘(N), D = {X ⊆ N | N \X is finite }.
(iii) P = (N�→N), D = {π ∈ P | π(n) � 2 for all n ∈ domπ }.
(iv) P = N2

0 , D = { (0, n) | n ∈ N } ∪ { (n, 0) | n ∈ N }.
(v) P = (N0 → N0), D = {fi}i�1 , where fi : N0 → N0 is defined

by fi(i) = 1 and fi(j) = 0 for j �= i.

(vi) P = 〈N;�〉, D =
{
2a3b | a, b ∈ N and a+ b is prime

}
.

7.4 Let R be a commutative ring with identity, 1, and let L be the⋂
–structure of all ideals of R. Prove that R ∈ K(L).

7.5 Let P be an ordered set and let S ⊆ P . Prove that if the joins on
the right-hand side exist then

∨
S exists and is given by∨

S =
⊔{∨

F | ∅ �= F ⊆ S, F finite
}
.

7.6 A non-empty ordered set S is called a join semilattice if x∨y exists
in S for all x, y ∈ S . As in the lattice case, a non-empty subset
J of S is an ideal of S if J is closed under finite joins and going
down. (See 2.20.)

(i) Show that the set I(S) of ideals of a join semilattice with ⊥ is
a topped algebraic

⋂
–structure on S and that K(I(S)) ∼= S .

(ii) By Lemma 7.16, K(L) is a join semilattice with ⊥ for any
complete lattice L. Prove that the following are equivalent:

(a) L is an algebraic lattice;

(b) L ∼= I(K(L));
(c) L ∼= I(S) where S is some join semilattice with ⊥.

[Hint. Show that J is an ideal of K(L) if and only if J is of the
form Da for some a ∈ L, then appeal to Theorem 7.20.]

7.7 Let L be an algebraic lattice and K a non-empty subset of L such
that

∨
LS and

∧
LS belong to K for every non-empty subset S

of K . Show that K is an algebraic lattice. [Hint. Represent L as
a topped algebraic

⋂
–structure on some set X and show that K

is also a topped algebraic
⋂
–structure on some subset Y of X .]

Deduce that the interval [x, y] := { z ∈ L | x � z � y } is an alge-
braic lattice for all x, y ∈ L with x � y .

Complete lattices and Galois connections 171

7.8 Let L be a complete lattice. Prove that the following statements
are equivalent:

(i) K(L) = L;

(ii) every directed subset of L has a greatest element;

(iii) L satisfies (ACC).

7.9 Let P be an arbitrary ordered set and let 〈O(P);⊆〉 be its lattice
of down-sets. Assume that O(P) satisfies (ACC). Prove that P
satisfies (ACC). Hence or otherwise prove that if P is infinite then
O(P) has an infinite descending chain. Deduce that O(P) satisfies
both (ACC) and (DCC) if and only if P is finite.

7.10 Let P be an ordered set. Define X = { ↓x | x ∈ P }, ordered by
inclusion, and Y = { ↑x | x ∈ P }, ordered by reverse inclusion.
Define J : X → Y by ↓x �→ ↑x and K : Y → X by ↑x �→ ↓x.
Check that (J , K) sets up a Galois connection between X and Y .

7.11 Assume that (J , K) is a Galois connection between ordered sets
P and Q. Prove the following are equivalent for p1, p2 ∈ P :

(i) p1
J � p2

J ;

(ii) p1
J K � p2

J K ;

(iii) p1 � pJ K2 .

7.12 Let P and Q be ordered sets and let J : P → Q and K : Q → P
be maps. Prove that the following are equivalent:

(i) (J , K) is a Galois connection;

(ii) the following hold for all p ∈ P , q ∈ Q:

(a) J is order-preserving,

(b) qK J � q ,

(c) pJ � q =⇒ p � qK ;

(ii)∂ the following hold for all p ∈ P , q ∈ Q:

(a)∂ K is order-preserving,

(b)∂ p � pJ K ,

(c)∂ pJ � q ⇐= p � qK .

7.13 Let (J , K) be a Galois connection.

(i) Prove that the following are equivalent:

(a) J is a surjective map;

172 Complete lattices and Galois connections

(b) K is an injective map;

(c) qK = max
{
s ∈ P | sJ = q

}
;

(d) J K = idQ .

(ii) Formulate the dual statement.

7.14 In which of the following cases does ϕ : P → Q possess (a) an upper

adjoint ϕ0 : Q→ P , (b) a lower adjoint ϕ1 : Q→ P ? Describe the
maps ϕ0 and ϕ1 when they exist.

(i) P = Q = N and ϕ(n) = mn, for fixed m in N.

(ii) P = Q = R and ϕ is the function floor, so that ϕ(x), usually
denoted 5x6, is the greatest integer � x.

(iii) P = Q = ℘(S) for some set S and ϕ(Y) = A ∩ Y , where A
is a fixed subset of S .

7.15 Let P , Q and R be ordered sets and let ϕ : P → Q and ψ : Q→ R
be order-preserving maps. Prove that if ϕ and ψ have upper
adjoints ϕ0 and ψ0 , respectively, then the composite ψ ◦ ϕ has
upper adjoint ϕ0◦ψ0 (so that (ψ◦ϕ,ϕ0◦ψ0) is a Galois connection).

7.16 Let P and Q be ordered sets and let ϕ1, ϕ2 : P → Q be order-

preserving maps which have upper adjoints ϕ01, ϕ
0
2 : Q→ P . Show

that, in the pointwise order, ϕ1 � ϕ2 if and only if ϕ
0
1 � ϕ02 .

7.17 Let P and Q be complete lattices and, for i ∈ I , let ϕi : P → Q

be an order-preserving map with an upper adjoint ϕ0i : Q → P .
Define ϕ : P → Q by ϕ(x) :=

∨
i∈I ϕi(x), for all x ∈ P . Show

that ϕ has an upper adjoint given by ϕ0(y) =
∧
i∈I ϕ

0
i(y), for all

y ∈ Q.

7.18 Let R ⊆ A × B be a relation between sets A and B and define
maps FR : ℘(A)→ ℘(B) and GR : ℘(B)→ ℘(A) by

FR(S) := { b ∈ B | (∃a ∈ S) (a, b) ∈ R } , and
GR(T) :=

{
a ∈ A | (∀b ∈ B)

(
(a, b) ∈ R⇒ b ∈ T

) }
,

for all S ⊆ A and T ⊆ B . Prove that (FR, GR) is a Galois
connection between ℘(A) and ℘(B).
Conversely, let (F,G) be a Galois connection between ℘(A) and
℘(B) and define R ⊆ A×B by

R := { (a, b) ∈ A×B | b ∈ F ({a}) } .
Prove that (F,G) = (FR, GR).

Complete lattices and Galois connections 173

7.19 Let L and M be bounded lattices, with associated ideal lattices
I(L) and I(M), and let (f, g) be a Galois connection between L
and M .

(i) Show that there is a well-defined map G : I(M) → I(L)
given for J ∈ I(M) by G(J) := f−1(J), and show also that
G(J) = ↓g(J).

(ii) Show that G has a lower adjoint F , given by F (I) = ↓f(I)
for I ∈ I(L).

7.20 Let L be a bounded lattice, with ideal lattice I(L) and filter lattice
F(L). Consider the relation R ⊆ I(L)×F(L) given by

(I, F) ∈ R⇐⇒ I ∩ F �= ∅.

Consider the context (I(L),F(L), R), the associated Galois con-
nection between ℘(I(L)) and ℘(F(L))∂ and the closure operator
c on ℘(I(L)) as defined in 7.27.
(i) Prove that, for any a ∈ L,

c({↓a}) = { I ∈ I(L) | a ∈ I } .

(ii) Deduce that α given by α : a �→ { I ∈ I(L) | a ∈ I }, is an
order-embedding of L into the complete lattice c(℘(I(L)))
(that is, the image of the map c).

(iii) Prove that, calculated in c(℘(I(L))), we have, for all S ⊆ L,

∧
α(S) = { I ∈ I(L) | I ⊇ S },∨
α(S) = { I ∈ I(L) | (∀F ∈ F(L)) (F ⊇ S ⇒ F ∩ I �= ∅) }.

(iv) Prove that c(S) = ∨{∧
α(I) | I ∈ S }

, for all S ⊆ I(L).

7.21 Recall that a quasi-order on a set P is a binary relation on P
which is reflexive and transitive. Let P be a set and assume that
�1 and �2 are quasi-orders on P such that x �1 y and x �2 y
imply x = y . Define, for a subset Y of P ,

Y J := {x ∈ P | (∀y)(y �1 x⇒ y /∈ Y) } ,
Y K := {x ∈ P | (∀y)(y �2 x⇒ y /∈ Y) } .

A subset Y of P is called stable if Y J K = Y ; denote the set of all
stable subsets of P by S(P).

174 Complete lattices and Galois connections

(i) Verify that the pair (J , K) sets up a Galois connection be-
tween the �1 -down-sets of P ordered by ⊆ and the �2 -down-
sets of P ordered by ⊇. (Down-sets of a quasi-ordered set
are defined in just the same way as down-sets of an ordered
set.)

(ii) Verify that 〈S(P);⊆〉 is a lattice in which meet and join are
given by Y ∧ Z = Y ∩ Z and Y ∨ Z = (Y J ∩ ZJ)K .

(iii) Let P be a 3-element set {a, b, c} with �1 defined by x �1 y
if and only if x = y or x = a and y = b and �2 defined by
x �2 y if and only if x = y or x = a and y = c. Identify the
stable subsets of P and prove that 〈S(P);⊆〉 ∼= N5 .

(iv) Let P be a 6-element set with elements a1, a2, . . . , a6 and
define �1 and �2 by

x �1 y ⇐⇒ x = y or {x, y} ∈ {{a1, a2} , {a3, a4} , {a5, a6}},
x �2 y ⇐⇒ x = y or {x, y} ∈ {{a2, a3} , {a4, a5} , {a6, a1}}.
Find the stable subsets of P and prove that 〈S(P);⊆〉 ∼=M3 .

(This exercise hints at the concrete representation for arbitrary
bounded lattices, due to A. Urquhart, which in the finite case
generalizes Birkhoff’s representation. In the distributive case,
�1 and �2 are respectively � and �, for an order �.)

7.22 Let L be a complete lattice, let P be a subset of L which is
both join-dense and meet-dense in L and let A ⊆ P . Prove that
Au� = ↓(∨LA)∩P . (Here Au� is calculated completely within P .)

7.23 Find the Dedekind–MacNeille completion of each of the ordered
sets P1 to P4 in Figure 7.1 and thereby verify that Li ∼= DM(Pi)
in each case. [Use the definition of DM(P); do not appeal to
Theorem 7.41.]

7.24 Let Q be an ordered set, let P be a subset of Q with the inherited
order and assume that P is both join-dense and meet-dense in Q.
Let ϕ : P → DM(P) be the embedding given in 7.41. Prove that
there is an order-embedding ψ of Q into DM(P) such that ψ
agrees with ϕ on P , that is, ψ(x) = ϕ(x) for all x ∈ P .

8

CPOs and Fixpoint Theorems

This chapter pursues themes hinted at in earlier chapters. Its main
focus is on order-theoretic fixpoint theorems, of which the Knaster–
Tarski Theorem in Chapter 2 was a first example, within the setting
of complete lattices. We mostly work with CPOs, which generalize
complete lattices and which we introduced in passing in the previous
chapter. For a comparative summary of the various theorems see 8.24.

CPOs

Consider a map f : N → N. We may regard each partial function σ in
(N�→N), with σ � f and domσ finite, as supplying an approximation
to f containing a finite amount of information. Such approximations
often arise as the output after a finite number of steps in a computation
of the values of f . These partial maps form a directed set in (N�→N)
with join f . In the context of information orderings more generally,
directed joins provide a natural framework in which to model partial
approximations to total objects. These observations lead us to study
CPOs systematically.

8.1 Definition. We say that an ordered set P is a CPO (an abbreviation
for complete partially ordered set) if

(i) P has a bottom element, ⊥,
(ii)

⊔
D (:=

∨
D) exists for each directed subset D of P .

Some authors do not require a CPO to have a bottom element and so
omit (i), using the term pointed CPO when both (i) and (ii) hold. When
we do not wish to assume ⊥ is present in an ordered set P satisfying
(ii) or do not want to regard ⊥, even if it exists, as an integral part of
the structure, we say P is a pre-CPO. Note that P⊥ is a CPO whenever
P is a pre-CPO. In the literature a pre-CPO is often called a dcpo (for
directedly complete partial order) and a CPO is called a dcppo (the
extra ‘p’ standing for ‘pointed’).

8.2 Examples.

(1) Recall that in an ordered set P satisfying (ACC) a non-empty
subset is directed if and only if it has a greatest element. Therefore
P is a pre-CPO and its lifting, P⊥ , is a CPO. In particular, any flat

176 CPOs and fixpoint theorems

ordered set (S⊥ , for some set S) is a CPO. Indeed, this example is
the primary motivation for introducing the lifting construction.

(2) Any complete lattice is a CPO.

(3) An algebraic
⋂
–structure is a CPO, with

⊔
coinciding with

⋃
.

(4) We claim that the set Σ∗∗ of all binary strings is a CPO under the
prefix ordering. A directed subset D of Σ∗∗ is necessarily a chain.
Its join is the well-defined string having nth element defined and
equal to δ (δ = 0 or 1) if and only if some u ∈ D has nth element
defined and equal to δ .

Many additional CPOs can be constructed by taking suitable sub-
sets of CPOs or by combining CPOs in various ways.

8.3 Sub-CPOs. Given a CPO P , we say that a subset Q of P is a
sub-CPO of P if

(i) the bottom element of P belongs to Q,

(ii) whenever D is a directed subset of Q, the join
⊔
PD belongs to Q.

By 2.28, condition (ii) is equivalent to

(ii)′ whenever D is a directed subset of Q, the join
⊔
QD exists and

coincides with
⊔
PD.

In a pre-CPO, (i) is dropped. It is possible for a subset of a CPO P to
be a CPO in its own right, without being a sub-CPO of P . For example,
under the inclusion order,

{S ⊆ N | S is finite or S = N }
is a CPO but is not a sub-CPO of ℘(N): consider the join of the directed
set {S ⊆ N \ {1} | S finite }.

8.4 Sums and products of CPOs. Let P and Q be ordered sets each
with a bottom element. Then their disjoint union P

.∪Q fails to have
a bottom element. There are two ways to modify this construction and
stay within the class of ordered sets with ⊥. The first is to form (P .∪Q)⊥ ;
this is the separated sum of P and Q, which we write as P ⊕⊥ Q.

❜ ❜❜ ❜
��

�� ❅❅

❅❅ ❜ ❜❜ ❜❜
��❅❅
❅❅��

❜✑✑✑◗
◗◗ M2 ⊕⊥M3 ❜ ❜ ❜ ❜❜❜

✁
✁❆
❆✑
✑✑◗

◗◗

❜ ❜
�
�

❅
❅

✁
✁❆
❆

✦✦
✦✦
✦

M2 ⊕∨M3

Figure 8.1

CPOs and fixpoint theorems 177

Alternatively, we may form the coalesced sum, P ⊕∨Q, by taking P
.∪Q

and identifying the two bottom elements. Figure 8.1 shows examples of
such sums.

8.5 Lemma. Let P and Q be CPOs and let S be a set.

(i) Each of P ⊕⊥ Q, P ⊕∨ Q and P ×Q is a CPO.

(ii) The power (S → P) of P is a CPO in which directed joins are
calculated pointwise. More precisely, if {ϕi}i∈I is a directed subset
of (S → P), then, for each s ∈ S , the set {ϕi(s)}i∈I is a directed
subset of P and (

⊔
i∈I ϕi)(s) =

⊔
i∈I ϕi(s).

Proof. It is elementary to show that each of P ⊕⊥ Q and P ⊕∨ Q is
a CPO. Exercise 8.5 provides guidance on how to show that P × Q is
also a CPO. If {ϕi}i∈I is a directed subset of (S → P), then, for each
s ∈ S , the set {ϕi(s)}i∈I is a directed subset of P and consequently, since
P is a CPO, we may define a map ϕ : S → P by ϕ(s) :=

⊔
i∈I ϕi(s).

We leave it as an easy exercise to show that ϕ is the least upper bound
in (S → P) of {ϕi}i∈I . �

8.6 Continuous maps. In analysis, a function is continuous if it pre-
serves limits. In a context in which a computation is modelled as the
join (= limit) of a directed set, it is natural to consider a map as being
continuous if it is compatible with the formation of directed joins; see
also Exercise 8.8. Formally, we say that ϕ : P → Q (where P and Q are
pre-CPOs) is continuous if, for every directed set D in P , the subset
ϕ(D) of Q is directed and

ϕ
(⊔

D
)
=

⊔
ϕ(D) (:=

⊔
{ϕ(x) | x ∈ D }).

Note that since the empty set is not directed (by definition), a continuous
map need not preserve bottoms. A map ϕ : P → Q such that ϕ(⊥) = ⊥
is called strict. The natural structure-preserving maps for pre-CPOs
are the continuous maps and for CPOs the strict continuous maps. The
next lemma shows that every continuous map is order-preserving. Where
the order represents ‘is less defined than’ or ‘is a worse approximation
than’, an order-preserving map ϕ is one which is such that, the better
the input x, the better the output ϕ(x). Thus only maps which are
order-preserving are likely to be of computational significance. For many
applications, continuity, which is generally a strictly stronger property
than order-preservation, is the appropriate one.

8.7 Lemma. Let P and Q be CPOs and ϕ be a map from P to Q.

(i) Suppose D is a directed subset of P and ϕ is order-preserving.
Then ϕ(D) is a directed subset of Q and

⊔
ϕ(D) � ϕ(

⊔
D). In

178 CPOs and fixpoint theorems

particular,
⊔
n�0 ϕ(xn) � ϕ

(⊔
n�0 xn

)
, for any ascending chain

x0 � x1 � x2 � · · · in P .

(ii) If ϕ(D) is directed and
⊔
ϕ(D) � ϕ(

⊔
D), for every directed set

D in P , then ϕ is order-preserving.

Proof. The first part is a consequence of 2.27(i) and of 7.8(1). For the
second, take x, y in P such that x � y . Then D := {x, y} is directed,
whence ϕ(x) �

⊔
ϕ(D) � ϕ(

⊔
D) = ϕ(y). �

8.8 Order-preserving versus continuous.

(1) Not every order-preserving map between CPOs is continuous. Con-
sider ϕ : ℘(N)→ ℘(N) defined by

ϕ(S) =

{
∅ if S is finite,

N otherwise.

The collection D of finite subsets of N is directed, with
⊔
ϕ(D) = ∅

and ϕ(
⊔D) = N.

(2) The continuity condition can be awkward to check. It is there-
fore useful to know when it is satisfied automatically. Using 7.8(2)
and 8.7(i), we see that an order-preserving map ϕ : P → Q is con-
tinuous whenever P satisfies (ACC), and in particular whenever P
is the flat CPO S⊥ , for some set S .

Let P and Q be pre-CPOs. The set of all continuous maps from P
to Q, with the pointwise order, is denoted [P → Q]. This function space
construction provides an important way of building new CPOs.

8.9 Theorem. Let P and Q be pre-CPOs. Then [P → Q] is a pre-
CPO, and is a CPO whenever Q is a CPO. Directed joins in [P → Q]
are calculated pointwise.

Proof. Note that the constant map onto ⊥ acts as ⊥ in [P → Q]
whenever ⊥ exists in Q. Let E = {ϕi}i∈I be a directed subset of
[P → Q]. For all x ∈ P , the subset {ϕi(x)}i∈I of Q is directed, since
E is directed, and so

⊔
i∈I ϕi(x) exists in the pre-CPO Q. Thus the

pointwise join, ϕ :=
⊔
i∈I ϕi , of E is well defined and is order-preserving

by Exercise 2.27. We establish that ϕ is continuous by showing that
ϕ(

⊔
D) �

⊔
ϕ(D) for an arbitrary directed subset D of P . Bracket-

CPOs and fixpoint theorems 179

pushing, we have

ϕ
(⊔

D
)
=

(⊔
i∈I

ϕi
)(⊔

D
)

=
⊔
i∈I

(
ϕi
(⊔

D
))

(by the definition of
⊔

i∈I ϕi)

=
⊔
i∈I

(⊔
x∈D

ϕi(x)
)
,

because each ϕi is continuous. But for each y ∈ D and each j ∈ I ,

ϕj(y) �
⊔
x∈D

(⊔
i∈I

ϕi(x)
)
.

Hence, for each j ∈ I , we have
⊔
x∈D ϕj(x) �

⊔
x∈D

(⊔
i∈I ϕi(x)

)
. So

ϕ
(⊔

D) =
⊔
i∈I

(⊔
x∈D

ϕi(x)
)

�
⊔
x∈D

(⊔
i∈I

ϕi(x)
)
=

⊔
x∈D

ϕ(x) =
⊔

ϕ(D). �

Note that if P is a pre-CPO and Q is a CPO, then [P → Q] is a
sub-CPO of the power (P → Q): see Lemma 8.5.

8.10 Directed sets versus chains. The directed sets in terms of which
CPOs have been defined link CPOs with the algebraic lattices in Chap-
ter 7 and with the domains which we shall meet in Chapter 9. Arguably,
in the context of approximations, it would be adequate and less compli-
cated to work with ascending chains rather than with directed sets. The
proof of Theorem 8.15 below seems to bear this out.

It turns out that an ordered set is a CPO provided that each chain
has a least upper bound in P . (Note that the join of the empty chain
guarantees the existence of ⊥.) We omit the proof of this highly non-
trivial result, which we record below as a theorem. Exercise 8.9 seeks a
proof in the countable case; the general case requires the machinery of
ordinals. The theorem would make it legitimate for directed sets to be
replaced by non-empty chains in the remainder of this chapter, but no
major simplification would result from this.

8.11 Theorem. Let P be an ordered set. Then P is a CPO if and only
if each chain has a least upper bound in P .

In the literature, an ordered set in which each chain has a least
upper bound is often called completely inductive (the reason for this
term emerges in 10.4). Thus, CPOs and completely inductive ordered
sets are one and the same thing.

180 CPOs and fixpoint theorems

CPOs of partial maps

Within computer science the fixpoint theorems, which will be the focus
of the remainder of this chapter, are frequently applied to CPOs of
partial maps. These seminal examples deserve further attention before
we continue with our general theory.

Let S be any non-empty set. We can use the lifting process, intro-
duced in 1.22, to give simple but important insights into the ordered set
of partial maps on S .

Define S⊥ as in 1.22; as before, we denote the bottom element of
S⊥ by 0. We can use the extra element 0 to convert any partial map
π ∈ (S�→S) into an ‘ordinary’ map defined on the whole of S : we let
π⊥ : S → S⊥ be given by

π⊥(x) =
{
π(x) if x ∈ domπ,

0 otherwise.

We can then define a map V from (S�→S) to (S → S⊥) by V (π) = π⊥ .

8.12 Lemma. Let S be a non-empty set. Then the map V : π �→ π⊥
is an order-isomorphism between (S �→ S) and (S → S⊥), and both
these ordered sets are CPOs.

Proof. For π, σ ∈ (S�→S), we have

V (π) � V (σ) in (S → S⊥)
⇐⇒ (∀x ∈ S)(π⊥(x) � σ⊥(x))
⇐⇒ (∀x ∈ S)(π⊥(x) = 0 or π⊥(x) = σ⊥(x))
⇐⇒ (∀x ∈ S)(x ∈ domπ ⇒ (x ∈ domσ and π(x) = σ(x)))

⇐⇒π � σ in (S�→S).

(The first equivalence uses the definition of � in (S → S⊥) and the
second uses the definition of � in S⊥ .) We have proved that V is
an order-embedding. To show that V is onto, take f : S → S⊥ . Let
T := {x ∈ S | f(x) �= 0 } and define π : T → S by π(x) = f(x) for
x ∈ T . Then V (π) = f . Hence V is an order-isomorphism.

Since S⊥ is a (flat) CPO, (S → S⊥) is also a CPO, by 8.5. Since
V is an order-isomorphism, (S�→S) is a CPO too. Alternatively, it is
easy to see this directly once we identify each partial map on S with its
graph (see 1.10). �

Lemma 8.12 lets us identify the CPOs (S �→ S) and (S → S⊥)
and, for a partial map π ∈ (S�→S), to write π(x) = ⊥ to mean that
x ∈ S \ domπ . The bottom element of (S �→ S) is (the map whose

CPOs and fixpoint theorems 181

graph is) ∅; this corresponds to the map in (S → S⊥) which sends every
element of S to ⊥ in S⊥ . We denote this map by ⊥⊥⊥ in either case.

To round out this section, we present two examples which illustrate
why, in the context of computations with natural numbers,

• it is natural to work with CPOs of the form P = (S�→S), and

• why fixpoints and, in particular, least fixpoints of maps F : P → P
play an important role.

We begin with an example which is a favourite with computer scientists.

8.13 The factorial function. Consider the set N0 = {0, 1, . . . }. The
factorial function, fact, is the map on N0 given by fact(k) = k!. It
satisfies

fact(k) =

{
1 if k = 0,

k fact(k − 1) if k � 1.

To each map f : N0 → N0 we may associate a new map f given by

f(k) =

{
1 if k = 0,

kf(k − 1) if k � 1.

Define a map F on (N0 → N0) by F (f) = f . Then we must have
F (fact) = fact.

To determine fact(k) for a given k � 1, we need to know fact(k−1),
and unless k = 1 this requires knowledge of fact(k − 2), and so on.
What we have here is a recursive equation F (f) = f , satisfied by fact
(recursive, from its latin roots, meaning running backwards). The entire
factorial function cannot be unwound from its recursive specification in
a finite number of steps. However, we can, for each n ∈ N0 , determine
in a finite number of steps the partial map fn which is the restriction
of fact to {0, 1, . . . , n}; the graph of fn is {(0, 1), (1, 1), . . . , (n, n!)}. To
accommodate approximations to fact, it is therefore natural to work not
with maps from N0 to N0 but with all partial maps on N0 . When this
is done, we regard f as having {0}∪ { k | k− 1 ∈ dom f } as its domain,
for each f ∈ (N0 �→N0). In summary, we may extend F to a map from
(N0 �→N0) to itself and regard the factorial function as a solution of
the recursive equation F (f) = f .

In a similar way, we may consider the solutions f ∈ (Z �→ Z)
of G(f) = f , where G(f)(0) = 1, G(f)(k) = kf(k − 1) if k � 1 and
f(k − 1) �= ⊥, and G(f)(k) = f(k) if k < 0. A fixpoint f of G is
uniquely determined on non-negative integers. However, f(−1) may
be assigned any value α ∈ Z, so that f contains extraneous unforced
information. Thus G has many different fixpoints. Nevertheless, G does

182 CPOs and fixpoint theorems

have a least fixpoint: the partial map coinciding with fact on N0 and
otherwise undefined. Typically in applications it is the least fixpoint
which is of most significance.

Fixpoint theorems

Much mathematical effort is expended on solving equations. These may
be of very diverse types, but many important ones can be expressed in
the form F (x) = x, where F : X → X is a map; the set X might be
a set of real numbers, maps, or sets, or might be of some other type.
A solution of such a fixpoint equation, when one exists, often has to be
obtained by a process of successive approximation. Order theory plays
a role when X carries an order and when the solution can be realized
as the join of elements which approximate it. CPOs provide a natural
class of ordered sets within which to develop such a fixpoint theory.

As indicated above, a compelling reason for investigating fixpoints
comes from computer science. Our objective here is to present the rudi-
ments of the theory without discussing specialized applications. How-
ever, in the previous section we gave an intimation of a connection be-
tween fixpoints and recursive programs. In Chapter 9, which deals with
domains, we hint at the use of fixpoints in the solution of domain equa-
tions.

We now turn to generalities.

8.14 Definitions and notation. We shall be concerned with maps
F : P → P , where P is some ordered set. We call such a map F a
self-map on P (another commonly used term is endofunction). We say
that x ∈ P is a fixpoint of F if F (x) = x, a pre-fixpoint if F (x) � x, and
a post-fixpoint if x � F (x). The sets of such points are denoted, respec-
tively, by fix(F), pre(F), and post(F); each carries the induced order
from P . The least element of fix(F), when it exists, is denoted µ(F),
and the greatest by ν(F), if this exists.

We have already proved one fixpoint theorem. The Knaster–Tarski
Theorem, 2.35, tells us that every order-preserving self-map on a com-
plete lattice has both least and greatest fixpoints. But this theorem
suffers from two disadvantages from the standpoint of computer sci-
ence. First, it concerns a map on a complete lattice, which is necessarily
topped. Second, it does not give an algorithmic procedure for finding
a fixpoint. We overcome the first difficulty by moving from a complete
lattice to a CPO. For a continuous map on a CPO we can also overcome
the second defect very easily.

CPOs and fixpoint theorems 183

We shall use the n-fold composite, Fn , of a map F : P → P . This is
defined as follows: F 0 is the identity map and Fn = F ◦Fn−1 for n � 1.
If F is order-preserving, so is Fn .

8.15 CPO Fixpoint Theorem I. Let P be a CPO, let F be an order-
preserving self-map on P and define α :=

⊔
n�0 F

n(⊥).
(i) If α ∈ fix(F), then α = µ(F).

(ii) If F is continuous, then the least fixpoint µ(F) exists and equals α.

Proof. (i) Certainly ⊥ � F (⊥). Applying the map Fn , we have
Fn(⊥) � Fn+1(⊥), for all n. Hence we have a chain

⊥ � F (⊥) � · · · � Fn(⊥) � Fn+1(⊥) � · · ·
in P . Since P is a CPO, α :=

⊔
n�0 F

n(⊥) exists. Let β be any fixpoint
of F . By induction, Fn(β) = β for all n. We have ⊥ � β , whence we
obtain Fn(⊥) � Fn(β) = β by applying Fn . The definition of α forces
α � β . Hence if α is a fixpoint then it is the least fixpoint.

(ii) It will be enough to show that α ∈ fix(F). We have
F
(⊔
n�0

Fn(⊥)) = ⊔
n�0

F (Fn(⊥)) (since F is continuous)

=
⊔
n�1

Fn(⊥)

=
⊔
n�0

Fn(⊥) (since ⊥ � Fn(⊥) for all n). �

8.16 Iteration and convergence. An instructive parallel may be drawn
between CPO Fixpoint Theorem I and another well-known fixpoint theo-
rem. Banach’s Contraction Mapping Theorem asserts that a contraction
map F on a complete metric space has a fixpoint, and this can be ob-
tained as the limit of the sequence defined iteratively by xn+1 := F (xn),
starting from a first approximation, x0 . The approximating sequence
converges because the metric space is complete, and its limit is a fix-
point thanks to the continuity of the map. In 8.15 we simply have order-
theoretic notions of completeness and continuity replacing the topologi-
cal ones in Banach’s Theorem.

Consider the chain P = N⊕ 2 and let F be the (order-preserving)
map fixing � and taking every other element to its upper cover. This
map has � as its unique fixpoint, but � �= ⊔

n�0 F
n(⊥). This example

shows that for a non-continuous map F on a CPO we cannot expect⊔
n�0 F

n(⊥) necessarily to provide a fixpoint even when one exists.
Referring back to 8.10, we note that the proof of CPO Fixpoint

Theorem I uses joins of chains, rather than of directed sets. This suggests

184 CPOs and fixpoint theorems

that a definition of CPOs in terms of chains would be quite justifiable
for fixpoint theory. Note too that in the proof we explicitly used the
existence of ⊥ in P but we did not require our map F to preserve ⊥.
This suggests that we should work in CPOs, rather than pre-CPOs, but
that we should not demand that maps be strict.

8.17 Applying CPO Fixpoint Theorem I to CPOs of partial maps. In
many practical applications of CPO Fixpoint Theorem I, the map F
is defined on a CPO of the form (S �→ S). Observe that a map
F : (S�→S)→ (S�→S) is order-preserving if and only if

graph f ⊆ graph g =⇒ graphF (f) ⊆ graphF (g),
for all f, g ∈ (S �→S). When this condition is satisfied, {Fn(⊥⊥⊥)}n�0

forms a directed set of partial maps with successively bigger domain sets.
Further, graph (

⊔
n�0 F

n(⊥⊥⊥)) = ⋃
n�0 graphF

n(⊥⊥⊥). In applications it
is usually helpful to work with graphs.

The graph perspective makes it transparent that the domain of def-
inition of an element σ of (S �→ S) critically affects its relationships,
in the order of (S�→S), to other elements. This can potentially cause
difficulty when we wish to define a map F : (S �→ S) → (S �→ S),
so that the image elements F (π) are partial maps (as occurs in 8.13,
for example): we need to take care to prescribe their domains appro-
priately, especially where we have a specification ‘by cases’. We always
take such maps F (π) to have the maximum possible domain. In other
words, domF (π) consists of all points x ∈ S for which the definition of
(F (π))(x) makes sense. In simple cases, this is just what common sense
would lead us to do.

8.18 The factorial function revisited. The recursive specification for
fact comes within the scope of CPO Fixpoint Theorem I. In 8.13, we
recognized fact as the solution in (N0 �→ N0) of a fixpoint equation
F (f) = f , where

(F (f))(k) =

{
1 if k = 0,

kf(k − 1) if k � 1.

It is obvious that F is order-preserving. It is true, but far less obvi-
ous, that F is continuous (Exercise 8.17 outlines a proof). We have
graphF (⊥⊥⊥) = {(0, 1)}, graphF 2(⊥⊥⊥) = {(0, 1), (1, 1)}, etc. An easy
induction confirms that fn = Fn+1(⊥⊥⊥) for all n, where {fn}n�0 is the
sequence of partial maps defined in 8.13 as approximations to fact. The
directed join of {fn}n�0 is obtained by taking the map (it is a well-
defined map!) whose graph is

⋃
n�0 graphfn , so that

⊔
n�0 F

n(⊥⊥⊥) is the
map fact : k �→ k! on N0 . It is the least fixpoint of F in (N0 �→N0).

CPOs and fixpoint theorems 185

8.19 Further examples. Only for a map which is continuous does CPO
Fixpoint Theorem I guarantee the existence of a fixpoint. In some simple
cases continuity can be side-stepped by appealing to the first part of
the theorem. This is convenient since verifying continuity can be a non-
trivial undertaking, especially when the underlying CPO is a set of maps.

(1) Let Σ∗∗ be the CPO of all binary strings. Given a finite string u
and an arbitrary string v , we denote by uv the string obtained
by concatenating u and v . Let F (u) = 01u for u ∈ Σ∗∗ . It is
intuitively clear that the fixpoint equation F (u) = u has a unique
solution, namely α, the infinite string of alternating zeros and ones.
This is exactly the solution we obtain by taking the empty string, ∅,
and forming

⊔
n�0 F

n(∅). Clearly, Fn(∅) is the 2n-element string
0101 . . . 01. The join in Σ∗∗ of these strings is α, which is certainly
a fixpoint of F . Trivially F is order-preserving so, by 8.15(i), α is
indeed the least fixpoint.

(2) The fixpoint formula in CPO Fixpoint Theorem I may be used
to determine certain recursively defined maps of more than one
variable. For each π ∈ (N2 �→N) define π by

π(j, k) =

{
1 if j = k,

(k + 1)π(j, k + 1) otherwise;

the domain of π is { (j, k) ∈ N2 | j = k or (j, k + 1) ∈ domπ }.
We now define F : (N2 �→N)→ (N2 �→N) to be the map taking
π to π . It is easy to see that F is order-preserving. A rather
complicated induction on n shows that, for all n � 1, we have

Fn(⊥⊥⊥)(j, k) =
{
j!/k! if 0 � j − k � n− 1,
⊥ otherwise.

The join of {Fn(⊥⊥⊥)}n�0 is the element σ of (N2 �→ N) that is
undefined at (j, k) if k > j and takes value j!/k! there if k � j .
It is easy to check that σ = σ and hence, by 8.15(i), µ(F) = σ .
It is not difficult to show that σ is the unique fixpoint of F in
(N2 �→N). Therefore, the recursive equation

π(j, k) =

{
1 if j = k,

(k + 1)π(j, k + 1) otherwise

has a unique solution in (N2 �→N), given by the partial map σ .

Although we have shown that it is sometimes possible to get useful
information from Theorem 8.15 for maps which are not continuous or not
known to be continuous, it is clearly worthwhile to ask whether every

186 CPOs and fixpoint theorems

order-preserving self-map on a CPO has a fixpoint or, better, a least
fixpoint. This proves to be the case, but it is much less straightforward
to establish than either Theorem 2.35 or Theorem 8.15.

We begin with a simple but very useful observation which charac-
terizes a least fixpoint. A special case of this was implicit in the proof
of the Knaster–Tarski Theorem, 2.35.

8.20 Least fixpoints and least pre-fixpoints. Let P be an ordered set
and let F be an order-preserving self-map on P .

(i) Assume that F possesses a least pre-fixpoint µ∗(F). Then F has a
least fixpoint, µ(F), which satisfies

F (x) � x⇒ µ(F) � x (the Induction Rule).

Indeed, µ(F) = µ∗(F).
(ii) Assume that P is a complete lattice. Then µ∗(F) exists and

hence (i) is applicable.

Proof. (i) Assume that µ∗(F) exists. The Induction Rule says simply
that µ(F) is a lower bound of pre(F). Since µ∗(F) is certainly a
lower bound of pre(F), it suffices to prove that µ(F) = µ∗(F). As
µ∗(F) ∈ pre(F), we have F (µ∗(F)) � µ∗(F). Applying the order-
preserving map F we find that F (F (µ∗(F))) � F (µ∗(F)), that is,
F (µ∗(F)) ∈ pre(F). Since µ∗(F) is the least element of pre(F) we
therefore have µ∗(F) � F (µ∗(F)). Hence, µ∗(F) is a fixpoint of F .
Since fix(F) ⊆ pre(F) we must then have µ(F) = µ∗(F).

For (ii), we have an obvious candidate for µ∗(F), namely
∧
pre(F).

We need to check that
∧
pre(F) ∈ pre(F). But this follows easily from

the assumption that F is order-preserving. �

Before stating and proving our second CPO fixpoint theorem, we
require a further concept and a preliminary lemma which is of interest
in its own right. Let P be a CPO and let F : P → P . The map F
is said to be increasing if it satisfies x � F (x) for all x ∈ P , that is,
post(F) = P . While increasing maps do not occur in the statement of
CPO Fixpoint Theorem II, they will play a crucial role in its proof.

8.21 Lemma. Let P be a CPO. Then the increasing order-preserving
self-maps on P have a common fixpoint.

Proof. Denote by I(P) the set of increasing order-preserving self-maps
on the CPO P . The set I(P) is non-empty since idP ∈ I(P). Let
F,G ∈ I(P) and x ∈ P . Then F (x) � F (G(x)) since G is increasing
and F is order-preserving and G(x) � F (G(x)) since F is increasing.
Therefore the map F ◦ G is an upper bound in I(P) for {F,G}. Thus

CPOs and fixpoint theorems 187

I(P) is a directed subset of the CPO 〈P → P 〉 of all order-preserving
self-maps on P .

Let H :=
⊔
I(P) be the join of I(P) in 〈P → P 〉. Since joins

in 〈P → P 〉 are calculated pointwise, it is trivial that H ∈ I(P). Let
G ∈ I(P). Since G ◦ H ∈ I(P) and H is the join of the set I(P), we
have G ◦H � H . On the other hand, H � G ◦H since G is increasing.
Hence G ◦H = H . It follows immediately that H(x) is a fixpoint of G
for all x ∈ P . �

8.22 CPO Fixpoint Theorem II. Let P be a CPO and let F : P → P
be order-preserving. Then F has a least fixpoint.

Proof. We say that a subset Y of P is F -invariant if F (Y) ⊆ Y . Since
the set of all F -invariant sub-CPOs of P is closed under intersection, P
has a smallest F -invariant sub-CPO P0 . We shall show that P0 has a
top, �P0

, and that µ(F) = �P0
.

Define a map Φ: ℘(P)→ ℘(P) by

Φ(X) := {⊥} ∪ F (X) ∪ {⊔D | D ⊆ X & D is directed }
for all X ⊆ P . It is easily checked that Φ is order-preserving. By the
Knaster–Tarski Fixpoint Theorem, 2.35, the map Φ has a least fixpoint,
given by

⋂{X ∈ ℘(P) | Φ(X) ⊆ X }. By the definition of Φ, this least
fixpoint is the smallest F -invariant sub-CPO P0 of P .

Claim 1. P0 ⊆ post(F).
Proof. Since ℘(P) is a complete lattice, the Induction Rule applies
(see 8.20). Thus, in order to show that P0 := µ(Φ) ⊆ post(F), it suffices
to show that Φ(post(F)) ⊆ post(F). Let Q := post(F). Certainly,
(a) ⊥ ∈ Q. Since F is order-preserving, post(F) is F -invariant, that
is, (b) F (Q) ⊆ Q. Let D be a directed subset of Q. As F is order-
preserving, F (D) is directed and

⊔
F (D) � F (

⊔
D). Since x � F (x)

for all x ∈ D, we also have
⊔
D �

⊔
F (D), whence

⊔
D � F (

⊔
D).

Consequently, (c)
⊔
D ∈ post(F) = Q. By (a), (b) and (c), we have

Φ(Q) ⊆ Q, as required.

Claim 2. If x ∈ P is a fixpoint of F , then P0 ⊆ ↓x.
Proof. Assume that F (x) = x. Since P0 is the smallest F -invariant
sub-CPO of P , it suffices to show that ↓x is an F -invariant sub-CPO
of P . The set ↓x is a sub-CPO of P for all x ∈ P . Since F (x) = x, the
fact that ↓x is F -invariant is an immediate consequence of the fact that
F is order-preserving.

As F (P0) ⊆ P0 we may define G := F 	P0
: P0 → P0 . By Claim 1,

G is increasing and hence, by Lemma 8.21 applied to the CPO P0 , we
have G(a) = a, and therefore F (a) = a, for some a ∈ P0 .

188 CPOs and fixpoint theorems

Claim 3. The element a is both the top of P0 and the least fixpoint
of F .

Proof. Assume that F (b) = b for some b ∈ P . It is clear from the
definition of Φ that Φ(↓b) ⊆ ↓b. Again, by the Induction Rule (8.20),
we obtain P0 = µ(Φ) ⊆ ↓b. Since a ∈ P0 we have a � b. �

CPO Fixpoint Theorem II is central to the study of fixpoints in
computer science. The elegant proof of it presented above is due to
D. Pataraia. Previous proofs came in two flavours. Some were quite
straightforward but relied on the Axiom of Choice via Zorn’s Lemma.
(We present such a proof in Chapter 10: see 10.5.) Others avoided the
Axiom of Choice but relied upon a further fixpoint theorem, stated below
as CPO Fixpoint Theorem III. This result is of independent interest.
However, especially when compared with Pataraia’s proof of 8.22, its
known proofs appear convoluted; Exercise 8.21 gives a step-by-step guide
to one of these.

8.23 CPO Fixpoint Theorem III. Let P be a CPO and let F be an
increasing self-map on P . Then F has a minimal fixpoint.

In fact, if P0 is the smallest F -invariant sub-CPO of P , then P0 has a
top, �P0

, and �P0
is a minimal element of fix(F). Note that we are not

asserting the existence of a least fixpoint; the reader should construct a
counterexample to show that F may not possess a least fixpoint.

8.24 Stocktaking. We have now presented three theorems guarantee-
ing the existence of a least fixpoint for a self-map F on an ordered set P
and one asserting the existence of a minimal fixpoint.

• The Knaster–Tarski Theorem (2.35) asserts that when F is order-
preserving and P is a complete lattice then F has least and greatest
fixpoints given respectively by

∧
pre(F) and

∨
post(F).

• CPO Fixpoint Theorem I (8.15) asserts that when F is continuous
and P a CPO then F has a least fixpoint given by

⊔
n�0 F

n(⊥).
• CPO Fixpoint Theorem II (8.22) asserts that F has a least fixpoint
if F is order-preserving and P is a CPO.

• CPO Fixpoint Theorem III (8.23) asserts that F has a minimal
fixpoint if P is a CPO and F is increasing.

Readers who know about ordinals may have surmised that, in the
case that F is order-preserving but not necessarily continuous, it is
possible to extend the formula in 8.15 by taking a limit over a chain
indexed by ordinals. This is indeed the case; an outline can be found in
Exercise 8.19.

CPOs and fixpoint theorems 189

The Knaster–Tarski Theorem and CPO Fixpoint Theorem II are
in a sense optimal. The following converses exist. Both are difficult to
prove; see [71].

8.25 Theorem. Let P be an ordered set.

(i) If P is a lattice and every order-preserving map F : P → P has a
fixpoint, then P is a complete lattice.

(ii) If every order-preserving map F : P → P has a least fixpoint, then
P is a CPO.

Proposition 8.26 gives information about the set of all fixpoints of
an order-preserving map on a complete lattice and on a CPO.

8.26 Proposition. Let F be an order-preserving self-map on an ordered
set P .

(i) If P is a complete lattice, then so is fix(F).

(ii) If P is a CPO, then so is fix(F).

Proof. We prove only the second claim. For the proof of the first see
Exercise 8.23.

Let P be a CPO and assume that F is order-preserving. By 8.22,
µ(F) exists, so fix(F) has a bottom element. Now let D be a directed
set in fix(F) and let α :=

⊔
D. Take x � α. Then, for all d ∈ D, we

have x � d, so that F (x) � F (d) = d. Hence F (x) � α. We have shown
that F maps ↑α into itself and may therefore consider the restriction G
of F to ↑α. Certainly ↑α is a CPO in the induced order. By 8.22, G
has a least fixpoint, and this necessarily acts as

⊔
fix(F) D. We deduce

that fix(F) is a CPO. �

Calculating with fixpoints

The preceding section has provided a clutch of theorems guaranteeing
that certain maps on ordered sets possess fixpoints or, better still, (neces-
sarily unique) least fixpoints. In this section we change our perspective
and show that much information can be gleaned about least fixpoints
from some simple calculational rules.

8.27 The need for a calculus for fixpoints. Often, computational pro-
cedures are modelled as least fixpoints. It may be important to verify
that alternative formulations of a given procedure – for example, dif-
ferent implementations of a ‘while’ command – really do result in the
same output. When the alternatives are specified as the least fixpoints

190 CPOs and fixpoint theorems

of two different self-maps F and G on some ordered set P , then we
require µ(F) = µ(G). Suppose, to take a very simple case, that we
can show that µ(F) ∈ fix(G) and µ(G) ∈ fix(F). Then µ(F) � µ(G)
and µ(G) � µ(F), so we do indeed have µ(F) = µ(G). In more com-
plicated situations, we may seek to show that µ(F) satisfies properties
characterizing µ(G), or vice versa. We may also want to be able to re-
cast expressions involving one or more least fixpoints in more amenable
forms.

We have already given one rule that is frequently used in fixpoint
calculus, namely the Induction Rule given in 8.20. Some of the other
most frequently used calculational rules for fixpoints are presented below
in 8.28–8.31 and in Exercises 8.28–8.31. As we shall see, the Induction
Rule is often employed in the proofs. Since we are more interested in
least fixpoints than in least pre-fixpoints, our focus in this section is on
complete lattices, so that the Induction Rule tells us that F (x) � x
implies µ(F) � x. We start with a very simple application.

8.28 The Monotonicity Rule. Let F and G be order-preserving self-
maps on a complete lattice P . Then F � G implies µ(F) � µ(G). (As
usual, maps are ordered pointwise.)

Proof. By the Induction Rule applied to F , the required conclusion
follows if we can prove that F (µ(G)) � µ(G). But since F � G we have
F (µ(G)) � G(µ(G)) = µ(G). �

8.29 The Rolling Rule. Let P and Q be complete lattices and let
F : P → Q and G : Q→ P be order-preserving. Then

G(µ(F ◦G)) = µ(G ◦ F).

Proof. By 8.20, it suffices to prove that G(µ(F ◦ G)) is the least pre-
fixpoint of G ◦ F . For this, note first that

(G ◦ F)(G(µ(F ◦G))) = G((F ◦G)(µ(F ◦G))) = G(µ(F ◦G)).
Hence G(µ(F ◦ G)) is a fixpoint and therefore a pre-fixpoint of G ◦ F .
Now assume that x ∈ P is such that (G ◦ F)(x) � x. We require
G(µ(F ◦G)) � x. We have

(G ◦ F)(x) � x =⇒ (F ◦G)(F (x)) � F (x)

(since F is order-preserving)

=⇒ µ(F ◦G) � F (x)

(by the characterization of µ(F ◦G))

CPOs and fixpoint theorems 191

=⇒ G(µ(F ◦G)) � (G ◦ F)(x)
(since G is order-preserving)

=⇒ G(µ(F ◦G)) � x

(by the assumption (G ◦ F)(x) � x) . �

8.30 The Fusion Rule. Assume that P and Q are complete lattices
and that F : P → Q possesses an upper adjoint F 0 : Q → P . Assume
further that G : P → P and H : Q → Q are order-preserving. Then, if
µ(G) and µ(H) exist,

(i) F ◦G � H ◦ F =⇒ F (µ(G)) � µ(H),

(ii) F ◦G = H ◦ F =⇒ F (µ(G)) = µ(H).

(So the two-stage process of forming the fixpoint µ(G) and then applying
F can be ‘fused’ into the single operation of forming the fixpoint µ(H).
Contrariwise, the Fusion Rule may be regarded as decomposing µ(H).
It is also known as the Transfer Rule since F can be seen as taking the
least fixpoint µ(G) in P to the least fixpoint µ(H) in Q.)

Proof. For (i), assume F ◦ G � H ◦ F . We use the defining property,
(Gal), of Galois connections from 7.23 and also (Gal1) from 7.26. We
have

F (F 0(µ(H))) � µ(H) (by (Gal1))

=⇒ (H ◦ F)(F 0(µ(H))) � µ(H) (as H is order-preserving)

=⇒ (F ◦G)(F 0(µ(H))) � µ(H) (by hypothesis)

⇐⇒ G(F 0(µ(H))) � F 0(µ(H)) (by (Gal))

=⇒ µ(G) � F 0(µ(H)) (by 8.20 for G)

⇐⇒ F (µ(G)) � µ(H) (by (Gal)).

Now assume that H ◦ F = F ◦G. To prove that F (µ(G)) � µ(H)
it suffices to show that F (µ(G)) is a fixpoint of H . But H(F (µ(G))) =
(H ◦F)(µ(G)) = (F ◦G)(µ(G)) = F (µ(G)), which, in combination with
(i), proves (ii). �

8.31 The Exchange Rule. Let P and Q be complete lattices and let
F,G : P → Q and H : Q→ P be order-preserving maps.

(i) Assume that F is the lower adjoint in a Galois connection (F, F 0)
between P and Q. Then

F ◦H ◦G � G ◦H ◦ F =⇒
{
µ(F ◦H) � µ(G ◦H),
µ(H ◦ F) � µ(H ◦G).

192 CPOs and fixpoint theorems

(ii) Assume that both F and G are lower adjoints. Then

F ◦H ◦G = G ◦H ◦ F =⇒
{
µ(F ◦H) = µ(G ◦H),
µ(H ◦ F) = µ(H ◦G).

Proof. For (i) we have

F ◦H ◦G � G ◦H ◦ F =⇒ F (µ(H ◦G)) � µ(G ◦H)
(by the Fusion Rule)

=⇒ (F ◦H)(µ(G ◦H)) � µ(G ◦H)
(by the Rolling Rule)

=⇒ µ(F ◦H) � µ(G ◦H)
(by the Induction Rule).

Also

F ◦H ◦G � G ◦H ◦ F =⇒ µ(F ◦H) � µ(G ◦H)
(from above)

=⇒ H(µ(F ◦H)) � H(µ(G ◦H))
(since H is order-preserving)

=⇒ µ(H ◦ F) � µ(H ◦G)
(by the Rolling Rule).

Part (ii) follows from part (i), as stated and also with F and G
interchanged, and antisymmetry of �. �

We conclude this section by returning to continuous maps on CPOs.
We have seen in 8.18 and 8.19 that, in the context of programs, math-
ematical induction can sometimes be used to establish what a least fix-
point outputs for a given input. There is, however, a formulation of
induction which is often more convenient to apply. Like the Induction
Rule given in 8.20, the Principle of Fixpoint Induction uses information
about a map to glean information about the least fixpoint.

8.32 Principle of Fixpoint Induction for continuous maps. Let F be
a continuous self-map on a CPO P and let S ⊆ P satisfy:

(FI1) ⊥ ∈ S ;

(FI2) x ∈ S implies F (x) ∈ S ;

(FI3) for any chain x0 � x1 � x2 � · · · in S , we have
⊔
n�0 xn ∈ S .

Then µ(F) ∈ S . This is derived by taking the formula for µ(F) given
in Theorem 8.15 and using mathematical induction. To illustrate in a

CPOs and fixpoint theorems 193

simple case, let F be a continuous map on a CPO P and let G and H
be continuous maps on P such that F ◦G = G ◦F , F ◦H = H ◦F and
G(⊥) = H(⊥). We can prove by induction that G(Fn(⊥)) = H(Fn(⊥))
for all n. Since G and H are continuous, and µ(F) =

⊔
n�0 F

n(⊥) by
Theorem 8.15, we deduce that G(µ(F)) = H(µ(F)). Alternatively we
can argue as follows. Let S := {x ∈ P | G(x) = H(x) }. Then (FI1)
holds by hypothesis, (FI2) because F commutes with each of G and H ,
and (FI3) because G and H are continuous.

In general the subset S of P above is taken to be a set on which
some property desired of a least fixpoint holds. It will be of the form
S = {x ∈ P | P(x) }, where P is some predicate. When P is a CPO
of partial maps, we might, for example, have P(f) as the assertion
that f is not defined at some given point c (or, alternatively, that a
computation to determine f(c) does not terminate). As an example,
consider P = (N2 �→N) and

f(j, k) = (F (f))(j, k) :=

{
1 if j = k,

(k + 1)(k + 2)f(j, k + 2) otherwise.

We claim that the associated least fixpoint, µ(F), is undefined at (j, k)
if j < k. To check this, take S = { g ∈ P | j < k =⇒ g(j, k) = ⊥}
and show that (FI1), (FI2) and (FI3) are satisfied. This technique of
fixpoint induction can be adapted to a wide range of circumstances, but
does have its limitations, since not all predicates yield a set S on which
the Principle of Fixpoint Induction works.

Exercises

Exercises from the text. Complete the proof of Lemma 8.5. Prove
directly that (S�→S) is a CPO, for each set S (see the proof of 8.12).
Prove all the claims made in 8.19(2). Give an example of an increasing
map F on a CPO which has no least fixpoint.

8.1 Let P , Q and R be ordered sets. Is it true that P 7 (Q 7 R) ∼=
(P 7 Q) 7 R when 7 denotes the operation of forming (i) the
separated sum, (ii) the coalesced sum?

8.2 Let P be a pre-CPO and let Ai ⊆ P for all i ∈ I . Suppose that Ai
is a directed subset of P for all i ∈ I and that {Ai}i∈I is a directed
family of subsets of P . Show that both

⋃
i∈I Ai and

{⊔
Ai

}
i∈I

are directed subsets of P and that⊔ (⋃
i∈I

Ai
)
=

⊔
i∈I

(⊔
Ai

)
.

194 CPOs and fixpoint theorems

8.3 Which of the following are (pre)-CPOs?

(i) {0, 1, 2}∗ (the set of finite strings of zeros, ones and twos with
order defined as in 1.9).

(ii) The set of all finite strings of zeros and ones with order
defined as in Exercise 1.6.

(iii) The family of all countable (including finite) subsets of R,
ordered by inclusion.

(iv) { 1/n | n ∈ N } ∪ {0}.
(v) The chain Q ∩ [0, 1].
(vi) { 1− 1/2n − 1/5m | n,m ∈ N }.
(In (iv)–(vi) the order is that induced from the chain R.)

8.4 Let C be a closure operator on a set X . Show that C is algebraic
if and only if it is continuous as a self-map on ℘(X).

8.5 Let P1 and P2 be CPOs. Let D ⊆ P1 × P2 be a directed set.
Define D1 and D2 by

D1 := {x1 ∈ P1 | (∃x2 ∈ P2) (x1, x2) ∈ D } ,
D2 := {x2 ∈ P2 | (∃x1 ∈ P1) (x1, x2) ∈ D } .

Show that D1 and D2 are directed and that
⊔
D =

(⊔
D1,

⊔
D2

)
.

Deduce that P1 × P2 is a CPO.

8.6 Let P1 and P2 be CPOs. Define the projections π1 : P1×P2 → P1

and π2 : P1 × P2 → P2 by πi(x1, x2) = xi (i = 1, 2).

(i) Prove that π1 and π2 are continuous.

(ii) Prove that a map ϕ : Q → P1 × P2 , where Q is another
CPO, is continuous if and only if both π1 ◦ ϕ and π2 ◦ ϕ are
continuous.

8.7 Let P1 , P2 and Q be CPOs and let ϕ : P1 × P2 → Q be a map.

(i) Define ϕx : P2 → Q and ϕy : P1 → Q by

ϕx(v) = ϕ(x, v) (v ∈ P2) and ϕy(u) = ϕ(u, y) (u ∈ P1).

Prove that ϕ is continuous if and only if ϕx and ϕy are
continuous for all x, y (that is, ϕ is continuous if and only if
it is continuous in each variable separately).

(ii) Let ϕ be continuous and define F : P1 → [P2 → Q] by

(F (x))(y) = ϕ(x, y) (x ∈ P1, y ∈ P2).

CPOs and fixpoint theorems 195

Prove that F is well defined and continuous and deduce that
[(P1 × P2)→ Q] ∼= [P1 → [P2 → Q]].

8.8 Let P be a CPO. Let F be the family of sets U ∈ O(P) such that⊔
D ∈ U whenever D is a directed subset of U .

(i) Identify F when P is

(a) N⊕ 1, (b) 2⊥, (c) (N× N)⊕ 1.

(ii) Show that F contains ∅ and P and is closed under arbitrary
intersections and finite unions (and so is the family of closed
sets for a topology T on P (the Scott topology)).

(iii) Let P and Q be CPOs and topologize each as above. Prove
that a map ϕ : P → Q is topologically continuous if and only
if it is continuous in the CPO sense. [Hint. Recall that ϕ is
topologically continuous if and only if ϕ−1(V) is closed in P
whenever V is closed in Q.]

8.9 Let P be a countable ordered set such that
⊔
C (=

∨
C) exists

for every non-empty chain C in P and let D = {x0, x1, x2, . . . } be
a directed subset of P . For each finite subset F of D let uF be an
upper bound for F in D. Define sets Di , for i ∈ N0 , as follows:

D0 = {x0}, Di+1 = Di ∪ {yi+1, uDi∪{yi+1}},
where yi+1 is the element xn in D \ Di with subscript n chosen
as small as possible. Prove that

(i) for each i, the set Di is directed and has at least i elements;

(ii) the sets Di form a chain;

(iii)
{∨

Di
}
i�1

is a chain in P and its join is
⊔
D.

8.10 Let S be a set. Prove that the ordered set (S �→ S) (or
equivalently (S → S⊥)) is order-isomorphic to the sub-CPO of
[S⊥ → S⊥] consisting of the strict maps, that is, those which map
⊥ to ⊥. (This result, combined with that in the next exercise,
gives a simple way of showing that certain maps defined on CPOs
of partial maps are order-preserving.)

8.11 Let S be any set and let ϕ,ψ : S⊥ → S⊥ be order-preserving. Show
that F : [S⊥ → S⊥]→ [S⊥ → S⊥], given by F (f) := ψ ◦ f ◦ ϕ for
all f ∈ [S⊥ → S⊥], is well defined and order-preserving. [Hint.
Use 8.8(2).]

196 CPOs and fixpoint theorems

8.12 For each partial map π on N define another such map by F (π) = π ,
where

π(k) =

{
1 if k = 1,

π(k − 1) + k if k > 1.

(Here π is to have the maximum domain allowed by its specification
(see 8.17), so that domπ = {1} ∪ { k + 1 | k ∈ domπ }.) Let π be
a solution in (N�→N) to the fixpoint equation F (π) = π . Verify
that π is total and that π(k + 1) = π(k) + k + 1, for all k ∈ N.
Deduce, by induction, that π(k) =

∑k
i=1 i, for all k ∈ N.

8.13 For each of the following recursive specifications, construct a map
F : P → P whose fixpoints satisfy the specification, show that F
is order-preserving and describe F 0(⊥), F 1(⊥), F 2(⊥), F 3(⊥),
Fn(⊥) and ⊔

n�0 F
n(⊥) via the graphs of the corresponding par-

tial maps or, if you can, via non-recursively defined (partial) maps.
Base your answer on our treatment of fact—see 8.13 and 8.18.

(i) P = (N�→N),

f(k) =

{
1 if k = 1,

(2k − 1) + f(k − 1) otherwise.

(ii) P = (N0 �→N0),

f(k) =

{
1 if k = 0,

f(k + 1) otherwise.

(iii) P = (N0 × N0 �→N0),

f(j, k) =

{
k if j = 0,

1 + f(j − 1, k) otherwise.

(iv) P = (N0 �→N0),

f(k) =

{
k − 10 if k > 100,

f(f(k + 11)) otherwise.

8.14 Find all fixpoints of F : (N0 �→N0)→ (N0 �→N0), where

(F (f))(k) =

{
1 if k = 0,

f(k + 1) otherwise.

8.15 Consider maps in P = (Z× Z�→Z). Show that each of

(j, k) �→ j + 1 and (j, k) �→
{
j + 1 if j � k,

k − 1 otherwise,

CPOs and fixpoint theorems 197

is a solution of

f(j, k) =

{
k + 1 if j = k,

f(j, f(j − 1, k + 1)) otherwise.

What is the least solution in P ?

8.16 Construct the least solutions to the following equations in the CPO
P = ℘(X):

(i) S = S ∪ T (T fixed);

(ii) (with X = N) S = S ∪ {1} ∪ {n+ 2 | n ∈ S};
(iii) (with X = N2)

S = { (n, n) | n ∈ N} ∪ { (n,m+ 1) | (n,m) ∈ S };

(iv) (with X a finite group) S = T ∪ S ∪ S · S (T fixed).

[Hint. Find a suitable order-preserving map F of which the re-
quired set is to be the least fixpoint, guess a formula for Fn(⊥) and
prove by induction that it works, and finally verify that

⊔
Fn(⊥)

is a fixpoint.] (See Theorem 8.15(i).)

8.17 Given f : N0 → (N0)⊥ , let f be defined by

f(k) =

1 if k = 0,

kf(k − 1) if k � 1 and f(k − 1) �= ⊥,
⊥ otherwise.

Define F : (N0 → (N0)⊥)→ (N0 → (N0)⊥) by F (f) = f .

(i) Show that F is order-preserving.

(ii) Prove that F is continuous. [Hint. Let D = {gi}i∈I be a
directed set in (N0 → (N0)⊥), and let g :=

⊔
i∈I gi . Check

that g(k) =
⊔
i∈I gi(k) for all k ∈ N0 by considering the

cases

(a) k = 0,

(b) gi(k − 1) = ⊥ for all i ∈ I ,

(c) gi(k − 1) �= ⊥ for some i ∈ I .]

(This exercise establishes the continuity of the map of which the
factorial function is the least fixpoint.)

198 CPOs and fixpoint theorems

8.18 Let P be a CPO and F an order-preserving self-map on P . Let

Q := post(F) ∩ fix(F)�
= {x ∈ P | x � F (x) & (∀y ∈ fix(F))x � y }.

(i) Show that Q is a sub-CPO of P .

(ii) Show that if Q has a maximal element, β , then the least
fixpoint µ(F) of F exists and equals β .

(It is important to notice that in the definition of Q we are not
claiming that F has a fixpoint. The second clause in the definition
of Q is satisfied vacuously if fix(F) = ∅. It serves to ensure that
a fixpoint of F in Q is the least fixpoint of F .)

8.19 (For those who know about ordinals.) Let P be a CPO and
F : P → P an order-preserving map. Let

F 0(⊥) = ⊥,
F β+1(⊥) = F (F β(⊥)),
Fα(⊥) =

⊔{
F β(⊥) | β < α

}
if α is a limit ordinal.

Prove that Fα(⊥) is well defined for all ordinals α by showing (by
transfinite induction) that, if α � β and F β(⊥) is defined, then
Fα(⊥) � F β(⊥). Argue by contradiction to show (with the aid of
Hartogs’ Theorem) that, for some ordinal, α, the point Fα(⊥) is
a fixpoint of F .

8.20 Prove CPO Fixpoint Theorem III (8.23) by following the steps
below. (Readers used to working with ordinals will find that the
verifications required are very reminiscent of arguments involving
ordinals directly; cf. Exercise 8.19.)

Let P0 be the smallest F -invariant sub-CPO of P . We shall work
entirely in P0 and shall show that F has a fixpoint in P0 . An
element x ∈ P0 is called a roof (of F) if F (y) � x for all y < x.

(i) Show that if x ∈ P0 is a roof and y ∈ P0 , then either y � x or
F (x) � y . [Hint. Show that Zx is an F -invariant sub-CPO
of P , where Zx := { y ∈ P0 | y � x or F (x) � y }. Conclude
that Zx = P0 .]

(ii) Show that each element of P0 is a roof. [Hint. Show that
Z := {x ∈ P0 | x is a roof } is an F -invariant sub-CPO
of P0 .]

(iii) Show that P0 is a chain.

(iv) Explain why P0 has a top element, �P0
, and show that �P0

is a minimal fixpoint of F .

CPOs and fixpoint theorems 199

8.21 Deduce CPO Fixpoint Theorem II from CPO Fixpoint Theorem III
by applying the latter to the set Q defined in Exercise 8.18.

8.22 Let P be an ordered set and Q a complete lattice. Given a map

f : P → Q, define f : P → Q by

f(x) =
∨{

f(y) | y � x
}
.

Show that f is order-preserving and that f = f if and only if f
is order-preserving. Show further that F defined by F : f �→ f
is an order-preserving map from QP to Q〈P 〉 ⊆ QP whose set of
fixpoints is exactly Q〈P 〉 .

8.23 Let P be a complete lattice and F : P → P be order-preserving.
Let X be a subset of fix(F). Define

Y = { y ∈ P | (∀x ∈ X)x � F (y) � y }
and let α =

∧
PY . Prove that α =

∨
fix(F)X . Deduce that fix(F)

is a complete lattice.

8.24 Let L be a complete lattice and define F : ℘(L) → ℘(L) by
A �→ ↓∨A. Show that F is order-preserving and that fix(F) ∼= L.
(This is the long proof that every complete lattice is, up to isomor-
phism, a lattice of fixpoints. Find the short proof.)

8.25 Let P be a CPO and let F,G : P → P be continuous self-maps
on P . Assume that F � G (pointwise).

(i) Use CPO Fixpoint Theorem I to prove that µ(F) � µ(G).
(Compare with 8.28.)

(ii) Now assume that F (x) < G(x) for all x ∈ P . Prove that
µ(F) < µ(G).

(iii) Prove that µ(F) � µ(F ◦ G) < µ(G) and that the first
inequality is strict if F is an injective map.

8.26 Let P be a CPO. Let µ : [P → P] → P be the fixpoint operator
which assigns to each continuous map f : P → P its least fixpoint
µ(f) and, for each n ∈ N, let µn be defined by µn(f) = fn(⊥).
(i) Show, by induction, that µn is continuous for each n.

(ii) Let Q = ([P → P]→ P), the CPO of all maps from [P → P]
to P . Show that {µn}n�1 is a chain in Q.

(iii) Show that
⊔
n�1 µn = µ in Q. Deduce that µ is continu-

ous. (This strengthens the monotonicity assertion in Exer-
cise 8.25(i).)

200 CPOs and fixpoint theorems

8.27 Let P be a CPO and let F and G be continuous self-maps on P
such that F ◦G = G ◦ F .
(i) Show that {Fm(Gn(⊥)) | n,m � 0 } forms a directed set.
(ii) Show that µ(F ◦G) is a fixpoint of both F and G.

(iii) Show that µ(F ◦G) = µ(F) if and only if µ(G) � µ(F).

8.28 Let F be an order-preserving self-map on a complete lattice P .
Prove that µ(F ◦ F) = µ(F) (the Square Rule).

8.29 Let L be a complete lattice and F,G be order-preserving self-maps
on L. Prove that if F and G have a common fixpoint then they
have a least common fixpoint, given by∧{

x ∈ L | F (x) � x & G(x) � x
}
.

Prove further that, if F ◦G = G◦F , then the least common fixpoint
of F and G is µ(F ◦G).

8.30 Let P be a complete lattice and assume that F : P × P → P is
order-preserving. Consider the induced ‘diagonal’ self-map on P
given by ∆(x) := F (x, x). Define maps Fy : u �→ F (u, y) and
F x : v �→ F (x, v), then define & : x �→ µ(F x) and r : y �→ µ(Fy).
Show that all five maps are order-preserving and then prove that
µ(∆) = µ(&) = µ(r).

(This is the Diagonal Rule. If F (x, x) is a complex expression
involving several occurrences of the variable x, the Diagonal Rule
may be applied to eliminate the occurrences of x one at a time.)

8.31 Let P be a complete lattice and assume that F and G are order-
preserving maps from P × P to P . We seek the least fixpoint
of H : P × P → P × P defined by H(x, y) = (F (x, y), G(x, y)).
Define maps Fy and G

x as in the previous exercise and then define
M : x �→ F (x, µ(Gx)) and N : y �→ G(µ(Fy), y). Show that all five
maps are order-preserving, then prove that µ(H) = (µ(M), µ(N)).
[Hint. Use Exercise 8.30.]

(This exercise illustrates the process known as mutual recursion.
A definition by mutual recursion can be viewed as a single fixpoint
equation in which the variable is a vector, (x, y) in our case. On
the other hand, it may be viewed as a collection of equations which
may be solved on an individual basis. The exercise asserts that the
two approaches are compatible.)

9

Domains and Information Systems

This chapter contains material at the interface between order theory
and computer science. It discusses domains – those CPOs in which
each element is the supremum of its ‘finite’ approximations – paralleling
the discussion given in Chapter 7 of the class of algebraic lattices lying
within the class of complete lattices. These domains provide a setting
for denotational semantics, in a way we outline in 9.33. An alternative
approach to domains, via information systems, is also presented. The
final section of the chapter returns to fixpoint theory, and shows how
the theorems in Chapter 8 can be applied in the solution of recursive
equations, and in particular domain equations.

Domains for computing

This section brings together the notions of directed joins and of finite
approximations.

9.1 Definitions. Let S be a non-empty subset of an ordered set P .
Then S is said to be consistent if, for every finite subset F of S , there
exists z ∈ P such that z ∈ Fu .

9.2 Remarks. Non-consistency arises only in ordered sets without �.
A directed set is, of course, consistent. The difference between the two
notions is in the location of upper bounds: for D to be directed we
require every finite subset F of D to have some upper bound which is a
member of D, but for consistency an upper bound in P suffices.

9.3 Complete semilattices. We introduced CPOs as a class of ordered
sets in which suitable joins exist, but meets play no role, yet Lemma 2.30
shows that meets may sneak in by the back door. The situation is
clarified by the following lemma, whose proof is left as an exercise.
A CPO satisfying the equivalent conditions of the lemma is called a
complete semilattice. Adjoining a top to such a CPO creates a complete
lattice. It is not true that removal of the top from an arbitrary complete
lattice leaves a complete semilattice; consider N⊕ 1.

202 Domains and information systems

9.4 Lemma. Let P be a CPO. Then the following are equivalent:

(i) P is consistently complete, that is,
∨
S exists for every consistent

set S in P ;

(ii)
∨
S exists whenever Su �= ∅;

(iii)
∧
S exists whenever S �= ∅;

(iv) P ⊕ 1 is a complete lattice.

We referred earlier to elements with a connotation of ‘finiteness’. We
now give the promised discussion of this concept in the context of CPOs.

9.5 Definition. Let P be a CPO and let k ∈ P . Then k is called finite
(in P) if, for every directed set D in P ,

k �
⊔

D =⇒ k � d for some d ∈ D.

The set of finite elements of P is denoted F (P). In case P is a complete
lattice this is just the definition we gave in 7.15.

9.6 Examples. In addition to the finite elements in complete lattices
given in 7.17, we note the following examples in CPOs which are not
complete lattices. In the ordered set Σ∗∗ of all binary strings the set
F (Σ∗∗) is Σ∗ (finite strings). In (X �→ X), the set of partial maps
on X , the finite elements are the maps with finite domain. In an ordered
set P with (ACC) we have F (P) = P .

9.7 Domains. Our information-content examples mostly lack a top but
are in all other respects very like the algebraic lattices we studied in
Chapter 7. If L is a complete semilattice (as defined in 9.3) then L is
called an algebraic semilattice or a domain if, for all a ∈ L,

a =
⊔
{ k ∈ F (L) | k � a }.

(The join here is taken over a directed set, by 9.4 and 7.16.) The
term domain is used widely in computer science, but not consistently
(and certainly not directedly!); its meaning ranges from CPO through
algebraic semilattice to algebraic semilattice with at most countably
many finite elements. This last property is important in connection
with computability questions which we shall not consider.

With the aid of Lemma 9.4 it is easily seen that adjoining a top to a
domain gives an algebraic lattice and adjoining a top to an algebraic

⋂
–

structure gives a topped algebraic
⋂
–structure. This observation yields

a topless counterpart to Theorem 7.20, which in one direction provides
a concrete realization of domains and in the other an order-theoretic
characterization of algebraic

⋂
–structures.

Domains and information systems 203

9.8 Theorem.

(i) Let L be an algebraic
⋂

–structure. Then L is a domain.

(ii) Let L be a domain and define Da := { k ∈ F (L) | k � a } for
each a ∈ L. Then L := {Da | a ∈ L } is an algebraic

⋂
–structure

isomorphic to L.

9.9 Examples. Any algebraic lattice is a domain. In addition the
following are domains:

(i) any flat CPO, and in particular N⊥ ;
(ii) (S�→S), for any S ⊆ R;

(iii) Σ∗∗ (all binary strings).

9.10 Continuous maps between domains. Let P and Q be domains.
A map ϕ : P → Q is continuous if and only if it is determined by finite
approximations, that is, by its effect on the finite elements of P . Where
domains are used as computational models, a finite element may be
interpreted as an object conveying a finite amount of information. In
this case the continuity condition asserts that to obtain a finite amount
of information about ϕ(x) it is only necessary to input a finite amount of
information about x; this is exactly the import of (iii) in 9.11. Compare
this with the requirement that ϕ be order-preserving, which may be
informally stated as ‘more information in implies more information out’.

9.11 Proposition. Let P and Q be domains and ϕ : P → Q be order-
preserving. Then the following are equivalent:

(i) ϕ is continuous;

(ii) ϕ(x) =
⊔{ϕ(k) | k ∈ F (P) and k � x } for each x ∈ P ;

(iii) Dϕ(x) ⊆ ↓ϕ(Dx) for all x ∈ P .

Further, [P → Q] (the continuous maps from P to Q) is isomorphic to
〈F (P)→ Q〉 (the order-preserving maps from F (P) to Q).

Proof. We have (i) ⇒ (ii) as Dx := {k ∈ F (P) | k � x } is directed.
Assume (ii) holds and let k′ ∈ Dϕ(x) . Then k′ �

⊔{ϕ(k) | k ∈ Dx }.
Directedness implies k′ � ϕ(k) for some k ∈ Dx . Thus (iii) holds.

To prove (iii) ⇒ (i), let D ⊆ P be directed and take x :=
⊔
D.

Let k′ ∈ Dϕ(x) . Thus, by (iii), k
′ � ϕ(k) for some k ∈ Dx . Since

k ∈ F (P) and k � x =
⊔
D, we have k � d for some d ∈ D. Thus

k′ � ϕ(k) � ϕ(d) �
⊔
ϕ(D). Hence

⊔
ϕ(D) is an upper bound of Dϕ(x)

and consequently ϕ(x) =
⊔
Dϕ(x) �

⊔
ϕ(D).

Finally we note that the restriction map ϕ �→ ϕ	F (P) sets up an
order-isomorphism from [P → Q] to 〈F (P) → Q〉; it is onto because,

204 Domains and information systems

for any ψ ∈ 〈F (P) → Q〉, the map x �→ ⊔{ψ(k) | k ∈ Dx } is in
[P → Q] and extends ψ . The details are left to the reader. �

9.12 Drawing parallels. We conclude this section by giving a diagram
to show the interrelation between the various structures introduced in
this chapter and in Chapter 7. A double arrow indicates a bijective cor-
respondence and a single arrow an inclusion. The numbers refer to the
subsections in which proofs of equivalence are given. The boxes indicate
the main areas of application. The structures with ‘algebraic’ appended
to their names have ‘plenty of finite elements’ (finite here having its tech-
nical meaning) and the various types of

⋂
–structures provide concrete

examples or representations of the more abstract structures in the left-
hand part of the diagram. Vertically we have a hierarchy of progressively
weaker conditions on join and meet.

algebraic
lattices

topped
algebraic⋂
–structures

lattices LC

(C an algebraic
closure operator)

complete
lattices

topped
⋂
–

structures
lattices LC

(C a closure operator)

domains
algebraic⋂
–structures

information
systems

complete
semilattices

⋂
–structures

CPOs

7.20
✛ ✲

7.14
✛ ✲

9.8✛ ✲ 9.19✛ ✲

✛ ✲2.32

Ex 2.29

7.3

7.4
✲✛

❅
❅
 ❅

❅
 ❅

❅

✻ ✻

✻ ✻

✻

❅
❅
 ❅

❅❅
❅

Algebra

Computer science (domain theory)

Fixpoint theory

Figure 9.1

Domains re-modelled: information systems

We already have two ways of presenting domains: abstractly, as algebraic
semilattices, and, more concretely, as algebraic

⋂
–structures. A third

way to arrive at domains is through information systems. This approach
has a particularly intuitive appeal, because it capitalizes on the finiteness
and information-content ideas which pervade the theory of computation.

Domains and information systems 205

In this section we give a brief introduction to information systems and
relate them to domains and algebraic

⋂
–structures. We contend that a

judicious combination of the techniques and constructions derived from
these alternative viewpoints gives an economical and intuitive approach
to domain theory.

The starting point for the notion of an information system is the
idea of identifying an object with a set of propositions true of it and
adequate to define it. These propositions are to be thought of as tokens,
each bearing a finite amount of information. Thus, if the objects to be
described are the maps from N to N, a suitable set of tokens would be
N× N, with the single token (m,n) true of f if and only if f(m) = n.

In the theory developed below, an information system has three con-
stituents: a set A of tokens, a family Con of finite subsets of A (repre-
senting gobbets of consistent information) and a relation 8 of entailment
(identifying implied, or superfluous, information). From an information
system we build an

⋂
–structure L on A so that each member of L is

a set of tokens whose finite subsets lie in Con and which contains all
entailed tokens. The members of L, which are known as the elements of
the information system, thus serve to represent the objects determined
by consistent information. Further, L is a domain and, conversely, every
domain is associated with an information system in a canonical way.

9.13 Definition. An information system is a triple A = 〈A,Con,8〉
consisting of

(i) a set A of tokens;

(ii) a non-empty set Con of finite subsets of A which satisfy

(IS1) Y ∈ Con and Z ⊆ Y implies Z ∈ Con,

(IS2) a ∈ A implies {a} ∈ Con;

(iii) 8 is a relation (entailment) between members of Con and members
of A (formally 8 is a subset of Con×A) satisfying

(IS3) Y ∪ {a} ∈ Con whenever Y ∈ Con, a ∈ A and Y 8 a,
(IS4) Y ∈ Con and a ∈ Y implies Y 8 a,
(IS5) if Y,Z ∈ Con and a ∈ A satisfy Y 8 b, for all b ∈ Z , and

Z 8 a, then Y 8 a.
Read Y 8 a as ‘Y entails a’ or ‘a is deducible from Y ’. An arbitrary
subset X ⊆ A is said to be consistent if every finite subset of X is
in Con. We adopt the notation Y
 A to mean that Y is a finite
(possibly empty) subset of A.

206 Domains and information systems

9.14 Remarks. Axioms (IS1), (IS3) and (IS4) formalize commonsense
features of consistency and entailment and (IS2) just says that every
token contributes some information. The most mysterious axiom, (IS5),
is a transitivity condition; it may be interpreted as saying that if from Y
we can deduce enough information, Z , to deduce a, then we can deduce
a from Y .

From (IS2) and (IS1) we deduce that ∅ (representing ‘no informa-
tion’) is in Con. Further, (IS1) implies that Con is precisely the set of
all finite consistent subsets of A.

The following rules are frequently used in proofs:

(a) if Y ∈ Con, Z ⊆ Y and Z 8 a, then Y 8 a;
(b) if Y ∈ Con, Z is finite and Y 8 a for every a ∈ Z , then Z ∈ Con.

The first is entirely elementary. To prove the second, use induction on
|Z| to show Y ∪ Z ∈ Con and then appeal to (IS1).

9.15 Examples. Each of the triples A = 〈A,Con,8〉 in (1)–(5) below
defines an information system, with the specified consistent sets. These
examples show that the structure of an information system may be borne
mainly by Con, by 8, or by the interaction between Con and 8.
(1) Take A = N× N and let

∅ ∈ Con and {(m1, n1), . . . , (mk, nk)} ∈ Con if and only if
(mi = mj ⇒ ni = nj),

Y 8 (n,m) if and only if (n,m) ∈ Y .

The consistent sets are just the (graphs of) partial maps on N.

(2) Let V be a vector space. Take A = V , Con to be all finite subsets
of A and put Y 8 v if and only if v belongs to the subspace spanned
by Y . All subsets of V are consistent.

(3) Take A = N, let Con be all finite subsets of N and define

{n1, . . . , nk} 8 n if and only if n � ni for some i.

All subsets of N are consistent.

(4) Take A = Σ∗ and let � be the order on Σ∗ defined in 1.9. Take
Con = {Y
 Σ∗ | σ, τ ∈ Y ⇒ σ � τ or τ � σ },
Y 8 σ if and only if σ � τ for some τ ∈ Y .

A subset of A is consistent if and only if it is a subset of ↓σ for
some σ ∈ Σ∗∗ .

(5) Recalling 1.11, take A = { [x, x] | −∞ � x � x � ∞} and define
∅ ∈ Con and {I1, . . . , Ik} ∈ Con if and only if I1∩· · ·∩Ik �= ∅.

{I1, . . . , Ik} 8 [x, x] if and only if I1 ∩ · · · ∩ Ik ⊆ [x, x].

Domains and information systems 207

The non-empty consistent sets are the subsets of A with non-empty
intersection.

(6) We may define a family of information systems ⊥⊥⊥n , for n � 0, as
follows. Let ⊥⊥⊥0 be the unique information system with ∅ as its set
of tokens. This has ∅ as its only consistent set and 8 the empty
relation. Now define inductively

a0 = (0, 0), a1 = {a0, (1, a0)} , . . . , an+1 = {an, (1, an)} .
This creates a chain a0, a1, . . . of sets satisfying a0 ∈ a1 , a1 ∈ a2

and so on; the process will be familiar to those who have seen the
formal construction of the natural numbers. (This rather artificial
notation is chosen to fit in with that used in 9.26(i). The pairing
with 1 ensures that a new element is added at each stage.) For
n � 1, take ⊥⊥⊥n = 〈An,Conn,8n〉, where

An = {a0, . . . , an−1},
Conn consists of all subsets of An ,

Y 8 ai if and only if there exists j � i such that aj ∈ Y .

9.16 Elements. Each of the information systems above has a strong
connection with some ordered set we have previously encountered. To
make this precise, we need more definitions. Let A = 〈A,Con,8〉 be an
information system. A set E of tokens is called an element of A if E is
consistent and 8–closed, in the sense that Y ∈ Con, Y
 E and Y 8 a
imply a ∈ E . The set of elements of A is denoted |A|; in 9.18 we show
that |A| is an algebraic ⋂

–structure.

For any consistent set X we define

X := { a ∈ A | (∃Y
 X)Y 8 a };
this may be interpreted as the set of tokens deducible from X . When
X ∈ Con, we have X = { a ∈ A | X 8 a }. Lemma 9.17 shows that X is
an element whenever X is consistent, and that every element is of this
form. This lemma also characterizes elements in a way which reveals
that, on the set of consistent subsets of A, the map X �→ X behaves
very like an algebraic closure operator. Before stating the lemma we find
the elements of the information systems in 9.15.

(1) |A| = (N�→N), since all consistent sets are 8–closed.
(2) |A| = SubV . This example typifies the way algebraic lattices come

from information systems.

(3) |A| = { ↓m | m ∈ N } ∪ {N}.

208 Domains and information systems

(4) There is a one-to-one correspondence between the set Σ∗∗ (finite or
infinite binary strings) and the elements, under which a string is as-
sociated with its set of finite initial substrings. Under the inclusion
order on |A|, the elements finite in the CPO sense correspond to
the finite strings and the maximal elements to the infinite strings.

(5) This example is rather similar to the last, with each element asso-
ciated to an interval in R ∪ {−∞,∞}. Here the maximal elements
correspond to the real numbers together with −∞ and ∞.

(6) The elements of ⊥⊥⊥n are ∅ and the sets {a0, . . . , ak} for 0 � k < n.
Ordered by inclusion, the elements form an n-element chain.

We prove one implication in the proof of the following lemma to
illustrate how the rules in 9.14 and the axioms are employed and set the
rest of the proof as an exercise.

9.17 Lemma. Let A = 〈A,Con,8〉 be an information system and let
E ⊆ A. Then the following are equivalent:

(i) E is consistent and 8–closed (that is, E ∈ |A|);
(ii) {Y | Y ∈ Con and Y
 E } is directed and

E =
⋃
{Y | Y ∈ Con and Y
 E };

(iii) E = X for some consistent set X .

Proof of (iii) ⇒ (i). Let Z := {x1, . . . , xk}
 E . For each i, there
exists Yi
 X with Yi ∈ Con and Yi 8 xi . Then Y := Y1 ∪ · · · ∪ Yk
 X
and so Y ∈ Con, since X is consistent. By Rule (a) in 9.14, Y 8 xi for
each i. By Rule (b) in 9.14, Z ∈ Con. Hence E is consistent. To show
E is 8–closed, assume Z 8 a. The set Y above is such that Y 8 b for
each b ∈ Z . By (IS5), Y 8 a, so a ∈ X = E . �

9.18 Information systems and algebraic
⋂

–structures. Take an in-
formation system A = 〈A,Con,8〉. We now prove our earlier claim that
|A| is an algebraic ⋂

–structure, in other words a non-empty family of
sets closed under intersections and directed unions of non-empty subfam-
ilies. Since |A| contains ∅, it is non-empty. It is routine to show that if
{Ei}i∈I is a non-empty subfamily of |A| then

⋂
i∈IEi is consistent and

8–closed, and so is in |A|. Finally, assume D = {Ei}i∈I is a directed
set in |A| and let E =

⋃
i∈I Ei . Take Y
 E . Because D is directed,

Y
 Ei for some i. Since Ei is consistent, we have Y ∈ Con. Assume
also Y 8 a. Then a ∈ Ei since Ei is 8–closed, so a ∈ E . Therefore E
is consistent and 8–closed. This completes the proof of the claim. It is
an easy exercise to prove in addition that the finite elements of |A| are
exactly the sets Y where Y ∈ Con.

Domains and information systems 209

In the other direction, take an algebraic
⋂
–structure L and let

IS(L) be the information system 〈A,Con,8〉 defined as follows:
(i) A :=

⋃
L;

(ii) Con := {Y | (∃U ∈ L)Y
 U };
(iii) Y 8 a if and only if a ∈ ⋂{U ∈ L | Y
 U }.

We outline the proof of the following theorem, leaving the reader to
supply the details.

9.19 Theorem. The maps A �→ |A| and L �→ IS(L) are mutually
inverse and set up a bijective correspondence between the class of infor-
mation systems and the class of algebraic

⋂
–structures.

Proof. Given A = 〈A,Con,8〉, we claim that A = IS(|A|). We have:
(i) A =

⋃ |A| (by (IS2));
(ii) if Y
 A, then Y ∈ Con ⇔ (∃E ∈ |A|)Y
 E (for the forward

implication note Y ∈ |A| and for the reverse recall that any E ∈ |A|
is consistent);

(iii) if Y ∈ Con and a ∈ A, then Y 8 a ⇔ a ∈ ⋂{E ∈ |A| | Y
 E }
(for the forward implication recall that any E ∈ |A| is 8–closed
and for the reverse use the fact that Y ⊆ Y ∈ |A|).
Let L be an algebraic

⋂
–structure. The formulae in 9.18 and 9.17

imply that, for an element E of IS(L),

E =
⋃{⋂

{U ∈ L | U ⊇ Y } | Y
 E
}
,

with the union taken over a directed set. Since L is algebraic, we have
|IS(L)| ⊆ L. Conversely, the definitions of consistency and entailment
in IS(L) imply that L ⊆ |IS(L)|. �

9.20 Information systems and domains. By combining 9.8 and 9.19
we obtain a bijective correspondence between information systems and
domains. Given a domain D, the associated information system IS(D)
has F (D) (the finite elements of D) as its tokens, the finite sets consis-
tent in the sense of 7.7 as the members of Con and Y 8 k if and only if
k �

∨
Y . Further |IS(D)| is order-isomorphic to D. The isomorphism

is given by U �→ ∨
U and its inverse by x �→ { k ∈ F (D) | k � x }.

One cautionary remark needs to be made. Let D be the domain of
elements of an information system A. Then |IS(D)| is order-isomorphic
to D but in general the set of tokens of A is quite different from the
set of tokens of IS(D); indeed these sets of tokens may be of different
cardinalities. Example 9.15(1) illustrates this well. The original set of

210 Domains and information systems

tokens is N× N, the domain D of elements is (N�→N) and the token
set of IS(D) is {σ ∈ (N�→N) | domσ is finite }.

9.21 Technical remark. Take an algebraic
⋂
–structure L on a set X .

As Theorem 9.19 tells us, |IS(L)| is the same family of sets as L. It is an⋂
–structure on

⋃
L, which may be a proper subset of X . We define L

to be full if
⋃

L = X or, in other words, if every point of the base set X
belongs to a member of L. By construction |A| is full for any information
system A. Henceforth we work always with full

⋂
–structures and adopt

the notation (L, A) to indicate that L is an
⋂
–structure with A as its

base set.

9.22 Substructures and subsystems. Let (L, A) and (K, B) be alge-
braic

⋂
–structures. Then L is called a substructure of K, and we write

L � K, if

(i) A ⊆ B ,

(ii) L = {U ∩A | U ∈ K }.
Note that we use the term substructure only in relation to

⋂
–structures

which are algebraic. If L � K and A = B , then L = K. This useful
property implies in particular that � is antisymmetric. It is obviously
also reflexive and transitive. Therefore � defines a partial order on the
set of substructures of any algebraic

⋂
–structure J. (Those who know

a little set theory will appreciate that staying within some fixed J is a
device to ensure that we work with a set and not a proper class. This
restriction causes no difficulties in practice, since it is usually possible to
assume that all the

⋂
–structures involved in a given problem have their

base sets lying in some fixed set X , so we may take J = ℘(X).)

The ordering � of
⋂
–structures (or its information system equiva-

lent, given below) is the key to solving domain equations (see 9.32 and
9.36). Exercise 9.15 elucidates how � works. It shows in particular
that, if L � K, then the map S �→ ⋂{T ∈ K | S ⊆ T } is a continuous
order-embedding of L into K.

Let A = 〈A,ConA,8A〉 and B = 〈B,ConB ,8B〉 be information
systems. Then (an exercise) |A| � |B| if and only if
(i) A ⊆ B ,

(ii) Y ∈ ConA ⇐⇒ (Y ⊆ A & Y ∈ ConB),

(iii) Y 8A a⇐⇒ (Y ⊆ A & a ∈ A & Y 8B a).

When these three conditions hold for A and B, we say A is a subsystem
of B and write A � B. The relation A � B essentially says that A is
less rich in information than B, with each token of information from A

Domains and information systems 211

providing a token in B with the same message. As a simple example we
note that, for the information systems ⊥⊥⊥n given in 9.15(6), we have

⊥⊥⊥0 �⊥⊥⊥1 � . . . �⊥⊥⊥n �

We next look at the order properties of 〈SubJ;�〉, the family
of substructures of J, and re-interpret these in terms of information
systems. The proof of Theorem 9.23 is routine and we omit it.

9.23 Theorem. Let J be an algebraic
⋂

–structure. Then 〈SubJ,�〉
forms a domain.

(i) The bottom element is N := {∅}, the unique algebraic
⋂

–structure
based on ∅.

(ii) Let {(Li, Ai)}i∈I be a non-empty family of substructures of J. Then{
X ⊆

⋂
i∈IAi | (∀j ∈ I)(∃Yj ∈ Lj)X = Yj ∩

⋂
i∈IAi

}
is an algebraic

⋂
–structure based on

⋂
i∈I Ai and equals

∧
i∈ILi .

(iii) Let {(Li, Ai)}i∈I be a family of substructures of J directed with
respect to �. Then{

X ⊆
⋃
i∈IAi | (∀j ∈ I)X ∩Aj ∈ Lj

}
is an algebraic

⋂
–structure on

⋃
i∈I Ai and equals

⊔
i∈I Li .

9.24 Proposition. Let {Li}i∈I be a non-empty family of substructures
of the algebraic

⋂
–structure J and let IS(Li) = 〈Ai,Coni,8i〉.

(i) IS(
∧
i∈ILi) = 〈

⋂
Ai,

⋂
Coni,

⋂ 8i〉.
(ii) If {(Li, Ai)}i∈I is directed, IS

(⊔
i∈I Li

)
= 〈⋃Ai,

⋃
Coni,

⋃ 8i〉.
(Here the entailment relation 8 of 〈A,Con,8〉 is taken to be the subset
{ (X, a) | X 8 a } of Con×A.)

Proof. Apply Theorem 9.19. �

9.25 Constructions. We have already noted that CPOs can be com-
bined by forming sums, products and so on. It is far from clear that
when we combine domains in such ways we remain within the class of
domains. The three-way correspondence

information system ←→ algebraic
⋂
–structure ←→ domain

allows us to carry out constructions in whichever of these settings seems
expedient and then use 9.8 and 9.19 to translate them into the formu-
lation required. For the simpler constructions it is very convenient to
work with algebraic

⋂
–structures, since it is quick and routine to check

212 Domains and information systems

that the resulting structures are algebraic, so that the constructions do
yield domains from domains. Proposition 9.26 collects a group of such
results together and Example 9.27 illustrates the definitions in simple
cases. We follow this with an example to show how the corresponding
constructions for information systems can be read off, using Proposi-
tion 9.26. The other constructions are handled similarly.

At first sight, the definitions we give in 9.26 may look somewhat
awkward. In (ii) the device of forming the product of the base sets A and
B with {0} and {1} is necessary to force disjointness (see Exercise 1.9);
from an information system viewpoint this is like colouring the tokens
of two systems red and blue to keep track of which system they refer to.
Similar tricks are employed in (i) and (iii). Also in (iv), the tokens in ⊥L

correspond to ‘no information’, so there is no harm in deleting them, so
that ⊥L = ∅, and similarly for K. This is done in forming the coalesced
sum which was introduced, along with separated sum, in 8.4.

9.26 Proposition. Let (L, A) and (K, B) be
⋂

–structures and let I be
a set.

(i) For all T ⊆ A, define T0 := {(0, 0)} ∪ ({1} × T). Define

L⊥ := {S ⊆ A0 | S = T0 for some T ∈ L } ∪ {∅}.
Then L⊥ is an

⋂
–structure on A0 and is order-isomorphic to 1⊕L.

(ii) For all S ⊆ A and T ⊆ B , define S
.∪ T = ({0} × S) ∪ ({1} × T).

Define
L � K := {S .∪ T | S ∈ L, T ∈ K }.

Then L � K is an
⋂

–structure on A
.∪B which is order-isomorphic

to the ordered-set product L× K.

(iii) Define (I→ L) := { { (i, a) ∈ I × A | a ∈ f(i) } | f ∈ (I → L) }.
Then (I→ L) is an

⋂
–structure on I×A which is order-isomorphic

to the power (I → L) = LI of L.

(iv) Let A
.∪∨ B be ({0} × (A \ ⊥L)) ∪ ({1} × (B \ ⊥K)) and define

L �∨K := { {0}×(S\⊥L) | S ∈ L }∪{ {1}×(T \⊥K) | T ∈ K }∪{∅}.
Then L �∨K is an

⋂
–structure on A

.∪∨B which is order-isomorphic
to the coalesced sum L⊕∨ K.

(v) L �⊥K := L⊥ �∨K⊥ is an
⋂

–structure on A0

.∪∨ B0 which is order-
isomorphic to the separated sum L⊕⊥ K.

Further, if L and K are algebraic, then so are L⊥ , L � K, (I→ L), L �∨K
and L �⊥K.

9.27 Example. We first illustrate 9.26(i). Take N = {∅}. Then N⊥
has base set {(0, 0)} and consists of the sets ∅ and {(0, 0)}. Now repeat

Domains and information systems 213

the process: (N⊥)⊥has base set {(0, 0), (1, (0, 0))} and consists of the
sets ∅, {(0, 0)} and {(0, 0), (1, (0, 0))}. We have N � N⊥ � (N⊥)⊥ , and
so on. This chain of

⋂
–structures corresponds to |⊥⊥⊥0|, |⊥⊥⊥1|, |⊥⊥⊥2|,

Now consider N⊥ �∨ (N⊥)⊥ . This has base set

{(0, (0, 0)), (1, (0, 0)), (1, (1, (0, 0)))}.

Its members are

∅, {(0, (0, 0))}, {(1, (0, 0))}, {(1, (0, 0)), (1, (1, (0, 0)))};
as anticipated, N⊥ �∨ (N⊥)⊥ with its inclusion order is isomorphic to
2⊕∨ 3 ∼= 1⊕ (1

.∪ 2).
9.28 Example. Take information systems A = 〈A,ConA,8A〉 and B =
〈B,ConB ,8B〉. Their product is defined to be IS(|A|�|B|), equal to
〈C,Con,8〉, say. Proposition 9.26 tells us immediately that C = A

.∪B ,
as defined in 9.26(ii). To describe Con and 8, we write

X0 := { a ∈ A | (0, a) ∈ X } and X1 := { b ∈ B | (1, b) ∈ X },
for any X ⊆ A

.∪B . Then, again from 9.26,

Con = {X
 C | X0 ∈ ConA and X1 ∈ ConB }
and (X 8 (0, a)⇔ X0 8A a) and (X 8 (1, b)⇔ X1 8B b).

9.29 Approximable mappings. In the applications of domain theory it
is very important to know that the CPO of continuous maps from one
domain to another is itself a domain. The search for an elementary route
to this result has probably been largely responsible for the proliferation of
alternative approaches to domains. We go via approximable mappings,
which are to information systems what continuous maps are to domains
(recall 1.38). An approximable mapping is not a map in the usual
sense. It is an ‘information-respecting’ relation, to be thought of as
a machine which from any finite set of information in one information
system produces output in another.

Specifically, given information systems A = 〈A,ConA,8A〉 and
B = 〈B,ConB ,8B〉, an approximable mapping is a subset r of ConA×B ,
satisfying (AM1) and (AM2) below. We read (Y, b) ∈ r as ‘under r (the
input) Y produces (the output) b’. Wherever possible, it is best to
replace (Y, b) ∈ r by the more suggestive notation r : Y � b, or simply
Y � b when the name of the approximable mapping is not required.
The axioms that must be satisfied are:

(AM1) Y � b for all b ∈ Z
 B implies

214 Domains and information systems

(a) Z ∈ ConB and

(b) Z 8B c⇒ Y � c;

(AM2) Y 8A a for all a ∈ Y ′ and Y ′ � b imply Y � b.

Here {X | X � b for some b ∈ B } should be thought as the inputs and
{ b | X � b for some X ∈ ConA } as the information which is output.

The requirements on r are sensible. Part (a) of (AM1) says that
putting consistent information into r gives consistent output, while (b)
says that if the total output resulting from Y is enough to deduce c in B ,
then we get c itself as part of the output. Condition (AM2) ensures that
adding extra consistent information to the input doesn’t alter the output.
Also, the conditions are exactly what is needed to make the next proof
work.

The family of all approximable mappings is a family of subsets of
ConA × B and is readily seen to be an algebraic

⋂
–structure. Propo-

sition 9.30 shows that this family gives the function space we require.
Note the mix of

⋂
–structures and information systems.

9.30 Proposition. Let (L, A) and (K, B) be algebraic
⋂

–structures.
Then the family of approximable mappings from IS(L) to IS(K) is
an algebraic

⋂
–structure which is order-isomorphic to [L → K]. The

isomorphism associates to ϕ ∈ [L → K] the approximable mapping sϕ
given by sϕ : Y � b if and only if b ∈ ϕ(Y).

Proof. A routine check confirms that sϕ is an approximable mapping
whenever ϕ is a well-defined order-preserving map.

In the other direction, assume that r is an approximable mapping
and define |r| on L by

|r|(U) := { b ∈ B | (∃Y
 U) r : Y � b }.
To show that |r| : L → K, it is enough by 9.19 to check that |r|(U) is
consistent and 8–closed for each U ∈ L. Let Z := {b1, . . . , bn}
 |r|(U).
For each i = 1, . . . , n, there exists Yi
 U such that r : Yi � bi .
Then, by (IS4) and (AM2), we have r : Y � bi for each i, where
Y := Y1 ∪ · · · ∪ Yn . By (AM1)(a), Z is consistent in IS(K), so |r|(U) is
consistent. To check 8–closure, assume also that Z 8 c. By (AM1)(b),
r : Y � c, whence c ∈ |r|(U).

We claim that |r| ∈ [L → K]. Let {Ui}i∈I be a directed family
in L. The directedness implies that Y

⋃
Ui if and only if Y
 Uj for

some j . It follows immediately that |r|(⋃ Ui) =
⋃ |r|(Ui), as required.

We now have maps Φ: ϕ �→ sϕ and Ψ : r �→ |r|. To prove that Φ
and Ψ are mutually inverse bijections between [L → K] and the family

Domains and information systems 215

of approximable mappings, we need ϕ = |sϕ| and r = s|r| . For U ∈ L,

ϕ(U) = ϕ
(⊔{Y | Y
 U }) (by 9.17)

=
⊔{

ϕ(Y) | Y
 U
}

(since ϕ is continuous)

= { b ∈ B | (∃Y
 U) sϕ : Y � b } (by the definition of sϕ)

= |sϕ|(U) (by the definition of |–|).
Let r be an approximable mapping. Then, for all Y ∈ ConA and b ∈ B ,

s|r| : Y � b⇐⇒ b ∈ |r|(Y)
⇐⇒ (∃Z
 Y) r : Z � b

⇐⇒ r : Y � b (by (AM2)).

The correspondence between [L → K] and the approximable map-
pings is an order-isomorphism provided Φ and Ψ are order-preserving.
It follows from the definition that Ψ is order-preserving. Note also that
ϕ1 � ϕ2 in [L → K] implies that ϕ1(Y) ⊆ ϕ2(Y) for all Y such that
Y
 U for some U ∈ L. But sϕi : Y � b if and only if b ∈ ϕi(Y)
for i = 1, 2. It follows that ϕ1 � ϕ2 implies sϕ1

⊆ sϕ2
, so Φ is order-

preserving. �

Thus the interplay between domains,
⋂
–structures and information

systems culminates in the following important theorem.

9.31 Theorem. Let P and Q be domains and let I be a set. Then
each of the following is also a domain:

P⊥, P ⊕⊥ Q, P ⊕∨ Q, P ×Q, (I → P), [P → Q].

9.32 Domain constructors. The various constructions often need to
be combined, in order to produce more complex domains. An n to
m domain constructor maps an n–tuple of domains to an m–tuple of
domains. Lifting, that is P �→ P⊥ , and P �→ [[P → P] → P] are
examples of unary constructors (n = m = 1). Taking ∗ equal to ⊕⊥ ,
⊕∨ , × or → in (P,Q) �→ P ∗Q, we obtain binary constructors (n = 2,
m = 1).

We indicate in 9.33 how the search for mathematical models for
programming languages leads to the problem of solving for P ‘domain
equations’ P ∼= F(P), where F is some domain constructor. Because
of the way P is ‘defined’ in terms of itself, it is far from clear that
a solution to this equation exists. Such apparent circularity is not

216 Domains and information systems

an insuperable problem in simpler cases. It is easy to see that the
equation P ∼= P⊥ is solved by taking P = N ⊕ 1 and it is almost as
obvious that P = Σ∗∗ is a solution to P ∼= P ⊕⊥ P . More complicated
equations, for example P ∼= [P → P]⊥ , P ∼= Q ⊕⊥ [P → P⊥] or
P ∼= Q ⊕⊥ (P × P) ⊕⊥ [[P → P] → P] (where Q is fixed), look far
less tractable.

A domain equation P ∼= F(P) can be recast in the language of
algebraic

⋂
–structures or of information systems. Then F may be

treated as an operator on a CPO of algebraic
⋂
–structures ordered by

� or on a CPO of information systems ordered by � (see 9.22). The
fixpoint theorems from Chapter 8 show that the above equation is soluble
if F is continuous, or, if we are willing to appeal to harder theory, just
order-preserving.

Let X be the family of substructures of some algebraic
⋂
–structure,

ordered by �. It is elementary that the lifting constructor preserves �.
To show that the binary constructors associated with sums, product
and function space are order-preserving (as maps defined on X × X) it
is convenient to use the fact that the binary constructor (L,K) �→ L ∗K,
where L and K range over X, is order-preserving if and only if each of
the unary constructors L �→ L ∗ K (for fixed K) and K �→ L ∗ K (for
fixed L) is order-preserving. To prove sufficiency, note that

(L1,K1) � (L2,K2) =⇒ L1 � L2 & K1 � K2

=⇒ L1 ∗ K1 � L2 ∗ K1 & L2 ∗ K1 � L2 ∗ K2

=⇒ L1 ∗ K1 � L2 ∗ K2.

The proof of necessity is equally easy. Checking this condition when ∗ is
any of �, �∨ or �⊥ (as in 9.26) or → (as in 9.30) requires a clear head,
but no ingenuity. It is recommended as an exercise to those wishing to
become familiar with the definitions.

In fact, each of our constructors is continuous. To prove this we may
first invoke Exercise 8.7, which reduces the problem to that of checking
continuity of unary operators. By definition, a unary constructor F on
X is continuous if and only if⊔

i∈I
F ((Li, Ai)) = F

(⊔
i∈I
(Li, Ai)

)
for any directed family {(Li, Ai)}i∈I in X. The remark following the
definition of � in 9.22, together with Exercise 8.7, imply that this holds
provided F is order-preserving and the

⋂
–structures

⊔
F((Li, Ai)) and

F(
⊔
(Li, Ai)) have the same base set. We say that F is continuous on

base sets if the latter condition is satisfied. In terms of information

Domains and information systems 217

systems, this just means that every token of IS(
⊔

Li) is a token drawn
from IS(Li) for some i. Checking the continuity of each of our domain
constructors is now quite straightforward.

We conclude this chapter with an informal account of the rudiments
of denotational semantics, to indicate how domains and fixpoint theory
underpin this approach to programming languages. Our discussion is
perforce very brief and is aimed principally at readers with some expe-
rience of programming. References to full treatments of the subject can
be found in Appendix B.

9.33 Denotational semantics and semantic domains. Suppose L is
a programming language specified by formal syntactic rules. One way
to analyze L is to construct a concrete mathematical model M and a
map V : L→M (the valuation map), which to each object P in L (that
is, a program constituent or a complete program) assigns V [[P]] in M,
denoting the ‘meaning’ of P . For example, P might be the multiplication
operator ∗ and V [[P]] the operation × of multiplication on Z (assuming
that M is such that Z ⊆M).

The abstract language L may be regarded as being made up of
various ‘syntactic categories’ (variables, commands, the expressions on
which commands act, etc.), with complex program constructs defined in
terms of simpler components. We seek to associate a ‘semantic domain’
to each syntactic category, to act as its concrete realization within M.
Starting from the most primitive of L’s syntactic categories, we build
up by stages the model M, and the corresponding valuation map. This
approach, which we illustrate below, is known as ‘denotational seman-
tics’. The model M enhances our understanding of L and enables us to
reason about it. For example, we might seek to confirm that two pro-
grams in L have the same effect by showing they always have the same
meaning in M. In the other direction, the formal language may help us
talk about M. The study of propositional logic reveals a similar inter-
play between syntactic and semantic philosophies (see Chapter 10): the
syntactic approach uses a formal language and the semantic approach
uses truth values. Predicate logic provides an even closer parallel. De-
notational semantics is to programming languages what model theory is
to predicate logic.

Just as five year olds are taught to read from Ladybird books rather
than War and Peace, a study of semantics begins not with a fully-fledged
programming language but with ‘baby’ languages, designed to exhibit
particular programming features. High-level languages are built up from
language fragments in a modular fashion. We therefore start by looking
at a very simple imperative language, adequate only for doing arithmetic

218 Domains and information systems

on N. This language has two primitive syntactic categories: Val (basic
values) and Id (identifiers, which are our variables). The members of
Val are ‘abstract versions’ of the values our programs take. They fall
into two sets: the numerals, Num = {1, 2, . . . }, and the Boolean values,
Bool = {tt, ff}. The associated semantic domain is V := N ∪ {T,F};
our notation for ‘concrete’ truth values is as in Chapter 4. The valuation
map takes each member of Val to the natural number or truth value it
‘means’. Thus, V [[tt]] = T and V [[42]] = 42, etc.

Out of Val we build the expressions. These are of two types,
numeric and Boolean:

N ::= N | (N1 +N2) | (N1 −N2) | I
B ::= B | ¬B | (N1 = N2).

Here we have used what is called BNF notation, a shorthand way of stat-
ing which operations are admitted. In this case, each numeric expression
is either a numeral, the sum or difference of two numerals, or an iden-
tifier. A Boolean expression is either a Boolean value, the negation of
a Boolean expression, or the assertion that two numeric expressions are
equal. We could, of course, make our language more complex by adding
additional clauses to the prescription of the syntax, to represent further
operations. We use generic letters (subscripted or unsubscripted) to label
objects in the language: N for numeric expressions, E for expressions,
C for commands, and so on. We adopt the conventional notation and
use E and C to denote the restriction of V to Exp and Cmd.

Language Valuation map Model

L V−−−−−→ M

Syntactic categories Semantic domains

Basic values, Val V := N ∪ {T,F}
Numerals, Num N
Boolean values, Bool {T,F}

Identifiers, Id Id

Expressions, Exp E (St → V⊥)
Commands, Cmd C (St⊥ → St⊥)

Table 9.1

The values assigned to identifiers are not constants. They change
as a program runs. A state σ records, as σ(I), the current value of
each identifier I . Formally σ is a map from Id to V . We then define
E [[I]]σ = σ(I), for σ ∈ St, the set of states. This reflects our intention

Domains and information systems 219

that the meaning of an identifier at a given moment is the value currently
assigned to it. We take the semantic domain for Exp to be (St → V⊥).
This choice allows us to define E on compound expressions as follows:
E [[(N1 +N2)]]σ = E [[N1]]σ + E [[N2]]σ;

E [[(N1 −N2)]]σ =

{ E [[N1]]σ − E [[N2]]σ if this makes sense in N,

⊥ otherwise;

E [[¬B]]σ = T⇐⇒ E [[B]]σ = F;

E [[E1 = E2]]σ =

{
T if E [[E1]]σ = E [[E2]]σ,

F otherwise.

On the left-hand sides, +, − and = are drawn from the formal language,
while on the right they have their usual meanings in V . The set V is
lifted so that ⊥ can be used to model an ‘error value’.

Finally, we need commands. These are ‘state transformers’: a
command acts on a state and returns a new state. Their semantic
domain is (St⊥ → St⊥). The lifting on the right allows for an error
value. That on the left accommodates non-termination (looping): ⊥ fed
to a command is required to yield ⊥. Our syntax for commands is

C ::= I := E | C1;C2 | if B then C1 else C2

This says that a command either assigns an expression to an identifier,
or is two simpler commands in sequence (C1 followed by C2), or is
an abstract version of if-then-else. The meanings of commands are
determined as follows:

C [[I := E]]σ is the state which at I ′ �= I takes value σ(I ′),
and at I takes value E [[E]]σ,

C [[C1;C2]]σ = (C [[C2]] ◦ C [[C1]])σ,

C [[if B then C1 else C2]]σ = cond (E [[B]] , C [[C1]] , C [[C2]])σ.

In the last definition, cond maps (St→ {T,F})× (St→ St)× (St→ St)
to St and is given by

cond (P, f, g)σ =

{
f(σ) if P (σ) = T,

g(σ) otherwise.

Putting together the semantic domains for Exp and Cmd by forming
the separated sum, we get our model M for L:

M = (St⊥ → V⊥)⊕⊥ (St⊥ → St⊥).

By Theorem 9.31, M is indeed a domain. The construction of M has
the following features:

220 Domains and information systems

(i) the linguistic constructs on the primitive syntactic categories (+,
=, etc.) are given global (that is, once-and-for-all) meanings,

and, fundamental to the philosophy of denotational semantics,

(ii) the meaning of a compound syntactic object is determined by the
meanings of its syntactic subcomponents.

To add more elaborate commands, such as ‘while B do C ’, which
involve recursion, we need the machinery of fixpoints.

9.34 The while-loop. In the examples in Chapter 8 we started from
a fixpoint equation and sought its solution(s). More commonly in ap-
plications, the starting point is a recursive definition of some map or
procedure, with the object to be defined recognizable as a solution of
some fixpoint equation. This is the situation here.

We ask how commands of the form ‘while B do C ’ should be as-
signed a meaning. Intuitively, the interpretation should be: ‘so long as B
is true, do C repeatedly; once B is false, stop in current state’. We want,
for any state σ , C [[while B do C]]σ to be C [[while B do C]] C [[C]]σ
if E [[B]] is true and σ otherwise. More succinctly, we are demanding

C [[while B do C]] = cond (E [[B]] , C [[while B do C]] ◦ C [[C]] , id).
This appears to require C [[while B do C]] to be defined in terms of
itself, indicating that we are dealing with recursion. The position is
clarified by writing A for C [[while B do C]] (a member of the domain
D := (St⊥ → St⊥)) and F for the map from D to D which sends f
to cond (E [[B]] , f ◦ C [[C]] , id). Then the while-loop equation becomes
F (A) = A. Thus the problem of showing that the recursive procedure
‘while B do C ’ does have a proper definition is reduced to that of
showing that a certain fixpoint equation has a solution.

The while-loop shows striking similarities to the factorial function
which we analysed in 8.13 and 8.18. The successive approximations to
C [[while B do C]] are given, for n � 1, by {Wn(B,C)}n�1 , where
Wn(B,C) coincides with ‘while B do C ’ for computations involving
fewer than n iterations of the loop, and is undefined otherwise; W0(B,C)
is ‘do nothing’. The transition from Wn(B,C) to Wn+1(B,C) accom-
plishes one stage in unwinding the loop. Fixpoint theory allows us to
realize a recursively defined object as the limit of partially defined ob-
jects which can be specified without recursion.

In programming, there are often alternative ways of modelling in-
tended behaviour, and a consequent need to verify the denotational
equivalence of program constructs defined in different ways, for example

Domains and information systems 221

different versions of ‘while’. Here the advantage of realizing the con-
structs as least fixpoints emerges. Many of the rules derived in Chapter 8
for calculating with least fixpoints have as their conclusions the equality
of least fixpoints of different maps.

Using fixpoint theorems to solve domain equations

Our fixpoint examples so far have concerned maps and procedures. In
this section we hint at the potential of CPO Fixpoint Theorem I for
creating solutions to domain equations.

9.35 Introducing domain equations. To see how equations between
domains may arise, let us consider what might be involved in setting
up a semantic model for a functional programming language. This is
much more difficult than the imperative programming we considered
above. We now suggest, without setting up the syntax and semantics
in full, what shape a model M for a language of this sort might have.
We may take Val and V as before. We replace the previous categories
Exp and Cmd by a single category of expressions. This encompasses
our previous commands and expressions, except that the assignment
clause I := E is omitted and a mechanism for defining maps and
procedures is substituted. The latter makes use of a new syntactic
category of ‘declarations’. Values of compound programs are to be
determined from the values of their parts, so we must allow M to
contain maps. Maps may well need to act on other maps and we
may require procedures to act on maps or even other procedures. We
therefore do not want to tie ourselves down by specifying the ‘type’ of
the argument of a map or procedure. This suggests we should take
as the semantic domain for expressions the domain (M → M⊥), so
that the meanings of expressions may be maps defined on any part
of M; recall 8.12. When all this is fleshed out and made precise (no
small undertaking) it leads to the conclusion that a model M for a
functional language might need to satisfy M ∼= V ⊕⊥ (M → M⊥).
This is patently impossible on cardinality grounds, by Cantor’s Theorem
(see [6]). The cardinality problem disappears if instead of all maps from
M to M⊥ we take [M → M⊥]. Since it is the continuous maps that
are the computationally significant ones (recall 9.10), this is a sensible
modification in any case. We are now faced with the problem of whether
there is a domain M satisfying

M ∼= V ⊕⊥ [M→M⊥].

Fixpoint theory is just what is needed to show that this equation is

222 Domains and information systems

soluble, along with many others of a similar kind. The existence of
domains to serve as models for functional languages is thus ensured.

9.36 Recursively defined domains. As a simple first example, consider
the domain equation F(P) ∼= P , where F(P) = P⊥ . Starting from 1 and
forming {Fn(1)}n�1 , we obtain 1, 1⊥ ∼= 2, 2⊥ ∼= 3, etc. This makes it
highly plausible that the least solution to F(P) ∼= P is the domain N⊕1.
To confirm this, we must realize F as an order-preserving map on a CPO
of domains and verify that N ⊕ 1 is indeed the join in this CPO of the
approximations {Fn(1)}n�0 . We do not have an ordering of ‘abstract’
domains and must therefore realize domains concretely, either as

⋂
–

structures (ordered by �) or as information systems (ordered by �).
Using

⋂
–structures, we then have to construct Fn(N). The reward

for disentangling this notational horror (recall 9.27) is that the correct
embeddings are then given at once via Exercise 9.15. This confirms that
the ‘natural’ nesting of the chains 1,2, . . . (in which each chain sits, in
N⊕1, as a down-set in the next) corresponds to the �–ordering of their
realizations as

⋂
–structures. See Figure 9.2 (in which 000 is used as an

abbreviation for (0, 0)).

❜ ❜❜ ❜❜
❜

❜❜
❜❜

❜❜
❜❜
���

✲ ✲

✲

✲

✲

✲

✲

✲

✲

✲

� � �� � �� � �� � �
❜

∅ ∅ ∅ ∅

{000} {000} {000}

{000, (1,000)} {000, (1,000)}

{000, (1,000), (1, (1,000))}

N N⊥
(
N⊥

)
⊥

((
N⊥

)
⊥
)
⊥

Figure 9.2

As a second example, consider the equation P ∼= P ⊕⊥ P . Let
F(P) = P ⊕⊥ P . Then the least fixpoint of F is isomorphic to Σ∗∗ ,
the domain of all binary strings. The nth approximation, Fn(∅), to the
solution is the set of strings of length at most n; again the ordering �
is the ‘natural’ nesting. Finally, we note that we cannot exhibit explicit
solutions to domain equations, such as P ∼= [P → P]⊥ , which involve
function spaces. As those who did Exercise 1.28 will realize, these spaces
get very unwieldy very quickly and the limit domain cannot be visualized

Domains and information systems 223

easily. However, so long as the domain constructor used is continuous,
or more generally order-preserving, we know that there is a solution to
the associated fixpoint equation, and this is what really matters, since
it ensures that the models required for denotational semantics do indeed
exist.

Exercises

Exercises from the text. Prove Rules (a) and (b) in 9.14. Verify that
the examples in 9.15 are indeed information systems, with elements as
specified in 9.16. Complete the proof of Lemma 9.17 by proving the
implications (i) ⇒ (ii) ⇒ (iii). Prove the claim in 9.18 that F (|A|) =
{X | X ∈ Con } for any information system A. Complete the proof of
Theorem 9.19. Prove the claim in 9.22 that for information systems A
and B we have |A| � |B| if and only if conditions (i)–(iii) given there
hold. Prove Theorem 9.23.

9.1 Consider the examples given in Exercise 7.3. In which cases is D
a consistent subset of P ?

9.2 Let P = { (a, b) | a, b ⊆ N, a ∩ b = ∅ }, ordered as a subset of
℘(N)×℘(N). When are two elements (a, b) and (c, d) consistent?
Which elements of P are maximal? Which elements are finite?
Prove that P is a domain.

Prove that P is isomorphic to the set of all maps from N to 2⊥
with the pointwise order.

9.3 Give an example of a CPO P and elements x /∈ F (P), k ∈ F (P)
such that x < k.

9.4 Show that if D is a domain then D⊕1 is an algebraic lattice. [Hint.
First consider the particular case where D itself is an algebraic
lattice.]

9.5 Let Q be a non-empty ordered set. A non-empty subset J of Q
is called an ideal of Q if it is a directed down-set. The set of all
ideals of Q is denoted by I(Q).
(i) Show that if Q is a join semilattice then this concept of ideal

agrees with the one introduced in Exercise 7.6.

(ii) Give an example of an ordered set Q such that I(Q) ∪ {∅}
is not an

⋂
–structure on Q.

(iii) Show that, if Q is an ordered set, then 〈I(Q);⊆〉 is a pre-
CPO in which

⊔
is given by set union, and α : x �→ ↓x is a

(well-defined) order-embedding of Q into I(Q).

224 Domains and information systems

(iv) Prove that, if D is a domain, then the map ϕ : a �→ Da ,
where Da := { f ∈ F (D) | f � a }, is an order-isomorphism
of D onto the set I(F (D)) of ideals of F (D).

9.6 Let Q be an ordered set and R a pre-CPO. Then R is called a
free pre-CPO generated by Q if there is an order-preserving map
η : Q → R such that for each order-preserving map ϕ : Q → P ,
where P is a pre-CPO, there exists a unique continuous map
ϕ′ : R→ P such that ϕ′ ◦ η = ϕ.

The pre-CPO 〈I(Q);⊆〉 is called the ideal completion of Q and is
denoted by IC(Q). By Exercise 9.5(iii), α : x �→ ↓x is an order-
embedding of Q into the pre-CPO IC(Q).

(i) Show that, if both R and R′ are free pre-CPOs generated
by Q, then R ∼= R′ . [Hint. Use 1.36(4).]

(ii) By (i) we may, up to order-isomorphism, refer to the free
pre-CPO R generated by Q. Show that η : Q ↪→ R. [Hint.
Try ϕ = α in the definition of R.]

(iii) Show that, if J is an ideal of Q, then J =
⊔
x∈J ↓x in IC(Q).

(iv) Show that IC(Q) is generated as a pre-CPO by α(Q), that
is, the smallest sub-pre-CPO of IC(Q) containing α(Q) is
IC(Q) itself.

(v) Prove that IC(Q) is the free pre-CPO generated by Q. [Hint.
Take η = α and, given ϕ : Q → P , define ϕ′ : IC(Q) → P
by ϕ′ : J �→ ⊔

ϕ(J). Use Exercise 8.2 to show that ϕ′ is
continuous and (iii) above to show that ϕ′ is unique.]

(vi) Show, directly and without reference to the ideal completion,
that the uniqueness assumption on the continuous map ϕ′ in
the definition of the free pre-CPO generated by Q may be
replaced by the assumption that R is generated as a pre-CPO
by η(Q).

9.7 Let Q be an ordered set and P a pre-CPO. The first part of the
proof of Theorem 8.9 shows that 〈Q → P 〉 is a pre-CPO and the
theorem itself implies that [IC(Q)→ P] is a pre-CPO. Show that
ϕ �→ ϕ′ is an order-isomorphism from 〈Q→ P 〉 onto [IC(Q)→ P].

9.8 Given a group G, describe an information system 〈G,Con,8〉
whose set of elements is order-isomorphic to SubG (cf. 9.15).

9.9 Let X be a set and let F := {Y | Y
 X }. Describe infor-
mation systems X and F, with X and F as their sets of tokens
respectively, such that |X| = ℘(X) while |F| ∼= ℘(X).

Domains and information systems 225

Define approximable mappings r from X to F and s from F to
X such that the induced continuous maps |r| : |X| → |F| and
|s| : |F| → |X|, as defined in the proof of Proposition 9.30, are
mutually inverse order-isomorphisms.

9.10 (i) Given an ordered set P , define an information system P,
with P as its token set, such that |P| = O(P).

(ii) Let Q be an ordered set. Show that Q � P if and only if
Q ⊆ P and Q has the order induced from P .

(iii) Assume that Q ⊆ P has the order induced from P . For
Y
 P and b ∈ Q define

r : Y � b⇐⇒ b � a for some a ∈ Y .

Show that r is an approximable mapping from P to Q
and describe the corresponding continuous map from O(P)
to O(Q).

9.11 Let A = Q ∩ (0, 1). Define A = 〈A,Con,8〉 by setting Y ∈ Con
if and only if Y
 A and Y 8 a if and only if a � y for some
y ∈ Y . Describe F (|A|) and show that the non-finite elements
are in order-preserving correspondence with the half-open interval
(0, 1].

9.12 Let M = 〈N× N, Con,8〉, where
Y ∈ Con⇐⇒ Y
 N× N such that

(m1, n1), (m2, n2) ∈ Y and m1 � m2 imply n1 � n2 ,

Y 8 (m,n)⇐⇒
(a) n = 1 and (∃m1 ∈ N)m � m1 and (m1, 1) ∈ Y , or

(b) (∃m1,m2 ∈ N)m1 � m � m2 and (m1, n), (m2, n) ∈ Y .

Show that M is an information system and that

|M| = {ϕ ∈ (N�→N) | ϕ is order-preserving }.

9.13 The triple A = 〈A,Con,8〉 is defined as follows:
(a) A = { (x1, x2)× (y1, y2) ⊆ R×R | x1 < x2& y1 < y2 } (open

rectangles in the plane),

(b) Y ∈ Con if and only if Y = ∅ or Y
 A&
⋂
Y �= ∅,

(c) Y 8 a if and only if ⋂ Y ⊆ a.

Verify that A is an information system. Describe the finite ele-
ments and the maximal elements of |A|.

226 Domains and information systems

9.14 Let F be the information system given in Example 9.15(1) and let
M be the information system from the previous example. Show
that

Σ: Y � (m,n)⇐⇒ (1, k1), . . . , (m, km) ∈ Y and

m∑
i=1

ki = n

defines an approximable mapping from F toM. Show that the cor-
responding continuous map σ from |F| to |M| satisfies σ(f)(m) =∑m
i=1 f(i) for each total map f : N → N. What is the value of σ(f)

if f is a partial map and 1 /∈ domσ?

9.15 Let (L, A) and (K, B) be algebraic
⋂
–structures with L � K.

Define ι : L → K by ι(S) :=
⋂{

T ∈ K | S ⊆ T
}
and π : K → L by

π(T) := T ∩A for all S ∈ L and T ∈ K.

(i) Show that ι is well defined and that π(ι(S)) = S for all S ∈ L
and ι(π(T)) ⊆ T for all T ∈ K.

(ii) Show that π is continuous and ι is a continuous order-
embedding.

9.16 Let (L, A) be an
⋂
–structure and let A1 := ({0} × A) ∪ {(1, 1)}.

Construct an
⋂
–structure L � 1 on A1 which is isomorphic as an

ordered set to L⊕ 1.
Show that the domain constructor L �→ L � 1 is (a) �-preserving,
(b) continuous on base sets (and hence continuous).

Let L0 = N, the unique
⋂
–structure based on ∅, and for all

n ∈ N0 let Ln+1 := Ln � 1 . Construct Ln for n = 0, 1, 2, 3, 4 and
draw a labelled diagram of each. (For notational convenience let
a0 = (1, 1) and an+1 = (0, an) for n � 0.) Indicate via arrows the
embeddings ι0 : L0 → L1 , ι1 : L1 → L2 , etc. (see Exercise 9.15).

9.17 Consider the following domain equations. In each case, let F be the
corresponding domain constructor. Draw diagrams for Fn(1) for
n = 1, 2, 3, 4 and for the least solution P of the equation. Indicate
the order-embedding of Fn(1) into Fn+1(1) for n = 1, 2, 3 and
of F4(1) into P . [Either (a) work abstractly, treating 1 as an
abstract ordered set, or (b) work concretely, replacing 1 by N
and the operators ⊕∨ , ⊕⊥ and ⊕ by �∨ , �⊥ and �, respectively.
While the abstract approach has the advantage that Fn(1) is easily
found, the embeddings can be more elusive. Using the concrete
approach, constructing Fn(N) can be a notational nightmare but
the embeddings are given at once via Exercise 9.15. In order to

Domains and information systems 227

solve (v) and (vi) concretely, the operator � must first be defined
– see Exercise 9.16 for a particular case.]

(i) P ∼= 1⊕∨ P .

(ii) P ∼= 1⊕⊥ P .

(iii) P ∼= P ⊕ 1. (See Exercise 9.16.)
(iv) P ∼= 1⊕ P ⊕ 1 = (P ⊕ 1)⊥ .
(v) P ∼= P ⊕ (1⊕⊥ 1).
(vi) P ∼= (1⊕⊥ 1)⊕ P .

(vii) P ∼= (1⊕⊥ P)⊥ .

9.18 Show that (N → 2) is the least solution to the domain equation
P ∼= P × 2.

10

Maximality Principles

There are many examples in mathematics of statements which, overtly
or covertly, assert the existence of an element maximal in some ordered
set (commonly, a family of sets under inclusion). The first section of
this chapter addresses the question of the existence of maximal elements.
This question cannot be answered without a discussion of Zorn’s Lemma
and the Axiom of Choice, and this necessitates an excursion into the
foundations of set theory. It would be inappropriate to include here a full
discussion of the role and status in mathematics of Zorn’s Lemma and its
equivalents. Rather we seek to complement the treatment in set theory
texts of this important topic and, although our account is self-contained,
it is principally directed at readers who have previously encountered
the Axiom of Choice. En route, we provide belated justification for
the arguments in 2.39, prove some intrinsically interesting results about
ordered sets, and derive the results on prime and maximal ideals on
which the representation theory in Chapter 11 rests. Those who do not
wish to explore this foundational material but who do wish to study
Chapter 11, may without detriment, skip over the first section of this
chapter; see 10.15.

Do maximal elements exist? – Zorn’s Lemma and the Axiom of Choice

Aside from the treatment of ordinals, ordered sets have traditionally
played a peripheral role in introductory set theory courses. It is not
unusual for ordered sets only to be formally introduced immediately
before Zorn’s Lemma is presented. By setting Zorn’s Lemma in its order-
theoretic context we hope to refute the view prevalent amongst some
mathematicians that Zorn’s Lemma is psychologically unappealing.

10.1 The Axiom of Choice. A non-empty ordered set may, but need
not, possess maximal elements (see 1.23 for examples). In 2.39 we gave
an informal argument that a non-empty subset A of an ordered set with
(ACC) has a maximal element by picking, one element at a time, a
strictly increasing chain of elements of A. By a similar argument we
may deduce, more generally, that every CPO has a maximal element.
The argument, which appeals to CPO Fixpoint Theorem III (8.23), goes
as follows. Let P be a CPO and suppose that every element of P fails to
be maximal. This means that, for each x ∈ P , the set { y ∈ P | y > x }
is non-empty. For each x select a point y > x. Since y depends on x,

Maximality principles 229

we label it F (x). Then x �→ F (x) defines a map F on P to which we
may apply CPO Fixpoint Theorem III. Since x < F (x) for every x ∈ P ,
we have a contradiction, so P does indeed have a maximal element.
We must now come out in the open and make it clear how in both the
above arguments we invoke the Axiom of Choice. This asserts that it is
possible to find a map which picks one element from each member of a
family of non-empty sets. (Only for finitely many sets can this be done
without recourse to an axiom additional to those used in standard ZF
set theory.) Formally, the Axiom of Choice may be stated as follows.

(AC) Given a non-empty family A = {Ai}i∈I of non-empty
sets, there exists a choice function for A, that is, a map

f : I →
⋃
i∈I

Ai such that (∀i ∈ I) f(i) ∈ Ai.

To apply (AC) to obtain the map Φ required above we take I = P and
Ax = { y ∈ P | y > x } for each x ∈ P . Likewise, to formalize the proof
of 2.39, we take I = A and Ax = { y ∈ A | y > x } for each x ∈ A.

10.2 Maximality axioms. In the same way that (AC) may be regarded
as an (optional) axiom of set theory, and deductions made from it, we
may take the following statement as a postulate.

(ZL) Let P be a non-empty ordered set in which every non-
empty chain has an upper bound. Then P has a maximal
element.

We shall also need the following three axioms concerning the existence
of maximal elements.

(ZL)′ Let E be a non-empty family of sets such that ⋃i∈IAi ∈ E
whenever {Ai}i∈I is a non-empty chain in 〈E ;⊆〉. Then
E has a maximal element.

(ZL)′′ Let P be a CPO. Then P has a maximal element.

(KL) Let P be an ordered set. Then every chain in P is
contained in a maximal chain.

Clearly (ZL)′ is just the restriction of (ZL) to families of sets. Our
next theorem shows that the five assertions (AC), (ZL), (ZL)′ , (ZL)′′

and (KL) are all equivalent. It is the implication (AC) ⇒ (ZL) that we
refer to as Zorn’s Lemma. (Some authors use Zorn’s Lemma to mean
the statement (ZL) instead.) Similarly, the implication (AC) ⇒ (KL)
is Kuratowski’s Lemma.

230 Maximality principles

10.3 Theorem. The conditions (AC), (ZL), (ZL)′ , (ZL)′′ and (KL) are
equivalent.

Proof. We prove (AC) ⇒ (ZL)′′ ⇒ (KL) ⇒ (ZL) ⇒ (ZL)′ ⇒ (AC).
The first implication has been obtained in 10.1 and the fourth is trivial
since (ZL)′ is a restricted form of (ZL).

We next prove that (ZL)′′ implies (KL). Take an ordered set P
and let P denote the family of all chains in P which contain a fixed
chain C0 , and order this family of sets by inclusion. We claim that P
is a CPO. By 8.11, it suffices to show that every chain in P has a least
upper bound in P . Let C = {Ci}i∈I be a chain in P . If I is empty,
then

∨
P C = C0 since C0 is the bottom of P . Now assume that I is

non-empty. Let C =
⋃
i∈ICi . We claim that C ∈ P , that is, C is a

chain. Then,
∨

PC = C by 2.29. Let x, y ∈ C . We are required to show
that x and y are comparable. There exist i, j ∈ I such that x ∈ Ci
and y ∈ Cj . Since C is a chain, we have Ci ⊆ Cj or Cj ⊆ Ci . Assume,
without loss of generality, that Ci ⊆ Cj . Then x, y both belong to the
chain Cj , and hence x and y are comparable, whence C is a chain,
as required. We may therefore apply (ZL)′′ to P to obtain a maximal
element C∗ in P .

The next step is to show that (KL) implies (ZL). Let P be a non-
empty ordered set in which every non-empty chain has an upper bound.
By (KL), an arbitrarily chosen chain C in P is contained in a maximal
chain C∗ . By hypothesis, C∗ has an upper bound u in P . If u were not
a maximal element of P , we could find v > u. Clearly v /∈ C∗ , since
u � c for all c ∈ C∗ . Thus C∗∪{v} would be a chain strictly containing
the maximal chain C∗ , � .

Finally, we prove that (ZL)′ implies (AC). Consider the ordered set
P of partial maps from I to

⋃
i∈IAi (see 1.10). By identifying maps with

their graphs we may regard P as a family of sets ordered by inclusion.
Let E = {π ∈ P | (∀i ∈ domπ)π(i) ∈ Ai }. Certainly E �= ∅ since
the partial map with empty domain vacuously belongs to E . Now let
C = {πj}j∈J be a non-empty chain in E . Because C is a chain, the
partial maps πj are consistent and the union of their graphs is the graph
of a partial map, which necessarily belongs to E . By (ZL)′ , E has a
maximal element, f : dom f → ⋃

Ai , say. Provided f is a total map, it
serves as the required choice function. Suppose f is not total, so that
there exists k ∈ I \ dom f . Because Ak �= ∅, there exists ak ∈ Ak .
Define g by

g(j) =

{
ak if j = k,

f(j) if j ∈ dom f.

Then g ∈ E and g > f , which contradicts the maximality of f . �

Maximality principles 231

10.4 Inductive ordered sets. An ordered set P in which every non-
empty chain has an upper bound is often referred to as inductive. We
may contrast this with our earlier definition of P being completely
inductive: every chain in P has a least upper bound. In the definition of
‘inductive’ it is convenient to exclude the empty chain (which, of course,
has every element of P as an upper bound). Thus, (ZL) and, via 8.11,
(ZL)′′ can be restated as

(ZL) every non-empty inductive ordered set has a maximal
element,

(ZL)′′ every completely inductive ordered set has a maximal
element.

Indeed, it was this version of (ZL)′′ that was used in the proof of
(ZL)′′ ⇒ (KL) above.

In Chapter 8 we gave an (AC)-free proof of CPO Fixpoint Theo-
rem II (8.22). If we are willing to use (AC), or one of its equivalents, then
we can give a much simpler proof which relies only on an easy exercise
from Chapter 8.

10.5 CPO Fixpoint Theorem II, with (AC). Assume that P is a CPO
and that F is an order-preserving self-map on P . Then F has a least
fixpoint.

Proof. Exercise 8.18 tells us that F has a least fixpoint provided a cer-
tain CPO Q has a maximal element. If we assume (AC), then, by (ZL)′′ ,
Q does have a maximal element and so F has a least fixpoint. �

This proof is unusual in that it relies upon the axiom (ZL)′′ . Most
proofs which appeal to some form of the Axiom of Choice rely on (ZL)
or more commonly the particular case (ZL)′ of (ZL).

10.6 (ZL) in action. The axiom (ZL) (or more usually (ZL)′) is used
to assert the existence of an object which cannot be directly constructed,
such as

(a) a maximal linearly independent subset in a vector space V �= {0},
(b) a maximal ideal in a ring R,

(c) the choice function sought in the last part of the proof of Theo-
rem 10.3.

Proofs involving (ZL)′ have a distinct sameness. Let X be an object
whose existence we wish to establish. We proceed as follows:

(i) take a non-empty family E of sets ordered by inclusion, in which X
is a (hypothetical) maximal element;

232 Maximality principles

(ii) check that (ZL)′ is applicable;

(iii) verify that the maximal element supplied by (ZL)′ has all the prop-
erties demanded of X .

Let us review these steps in turn. Choosing E is usually straight-
forward. For example, we take E to be all linearly independent subsets
of V in (a) and all proper ideals of R in (b). We then have to exhibit
an element of E to ensure E �= ∅. Again this is easy in our examples:
take {v}, where 0 �= v ∈ V in (a), and the ideal {0} in (b). Notice that
E may be thought of as a family of partial objects, having some of the
features X should have.

Now consider (ii). To confirm that (ZL)′ applies, we need to show
that the union of a non-empty chain of sets in E is itself in E . Observe
the similarity between the arguments in the proof of (ZL)′′ ⇒ (KL) and
of Example 7.6. A chain is a special case of a directed set. In an algebraic⋂
–structure L we have

⋃D ∈ L whenever D is a directed subset of L.
In each of our examples above, and in many other (ZL) applications, E is
an algebraic

⋂
–structure, and it is this fact that ensures success in (ii).

Step (iii) is immediate in examples (a) and (b), but not in (c). In
cases where (iii) is non-trivial, argument by contradiction is invariably
used. Exercise 10.1 and the proof of Theorem 10.18 below provide
illustrations.

Prime and maximal ideals

We introduced lattice ideals in Chapter 2, as part of the development
of the algebraic theory of lattices. But we did not take the theory far
enough to reveal the importance of ideals, or of their order duals, filters.

Join-irreducible elements served very well as building blocks for fi-
nite distributive lattices, but we need an alternative if we are to remove
the finiteness restriction. Example 2.43(5) shows that an infinite dis-
tributive lattice may have no join-irreducible elements at all. We next
introduce a class of ideals which will substitute for join-irreducible ele-
ments to yield an extension of Birkhoff’s representation theorem for the
infinite case. But we shall need (ZL) to show that such ideals exist.

10.7 Definitions. Let L be a lattice. Recall from 2.20 that a non-empty
subset J of L is called an ideal if

(i) a, b ∈ J implies a ∨ b ∈ J ,

(ii) a ∈ L, b ∈ J and a � b imply a ∈ J ;

it is proper if J �= L.

Maximality principles 233

A proper ideal J of L is said to be prime if a, b ∈ L and a ∧ b ∈ J
imply a ∈ J or b ∈ J . The set of prime ideals of L is denoted Ip(L). It
is ordered by set inclusion. A filter and prime filter are defined dually
and the set of prime filters is denoted by Fp(L).

A subset J of a lattice L is a prime ideal if and only if L \ J is a
prime filter – a simple exercise. Thus it is easy to switch between Ip(L)
and Fp(L). In the sequel we work predominantly with prime ideals. The
next two results provide evidence that these may act as a substitute for
join-irreducible elements in the representation of distributive lattices.

10.8 Lemma.

(i) Let L be a finite distributive lattice and let a ∈ L. Then the map
x �→ L \↑x is an order-isomorphism of J (L) onto Ip(L) that maps
{x ∈ J (L) | x � a } onto { I ∈ Ip(L) | a /∈ I }.

(ii) Let B be a finite Boolean algebra and let a ∈ B . Then the
map x �→ B \ ↑x is a bijection of A(L) onto Ip(B) that maps
{x ∈ A(L) | x � a } onto { I ∈ Ip(B) | a /∈ I }.

Proof. We prove (i); part (ii) then follows from Lemma 5.3. Lemma 5.11
asserts that ↑x is a prime filter if and only if x ∈ J (L). Hence, taking
complements, we have

Ip(L) = {L \↑x | x ∈ J (L) }.
We now know that ϕ maps J (L) onto Ip(L). By the dual of 1.30, x � y
if and only if ↑x ⊇ ↑y , so ϕ is an order-embedding. �

The following corollary reformulates Proposition 2.45(i) – a critical
step in the proof of Birkhoff’s representation theorem.

10.9 Corollary. Let L be a finite distributive lattice and let a � b in L.
Then there exists I ∈ Ip(L) such that a /∈ I and b ∈ I .

Prime ideals are related to ideals of another important type.

10.10 Definitions. Let L be a lattice and I a proper ideal of L. Then
I is said to be a maximal ideal if the only ideal properly containing I
is L. In other words, I is a maximal ideal if and only if it is a maximal
element in 〈I(L) \ {L};⊆〉. A maximal filter, more usually known as an
ultrafilter, is defined dually.

10.11 Theorem. Let L be a distributive lattice with 1. Then every
maximal ideal in L is prime. Dually, in a distributive lattice with 0,
every ultrafilter is a prime filter.

234 Maximality principles

Proof. Let I be a maximal ideal in L and let a, b ∈ L. Assume a∧b ∈ I
and a /∈ I ; we require b ∈ I . Define Ia = ↓{ a ∨ c | c ∈ I }. Then Ia is
an ideal containing I and a (Exercise 2.23). Because I is maximal, we
have Ia = L. In particular 1 ∈ Ia , so 1 = a ∨ d for some d ∈ I . Then

I > (a ∧ b) ∨ d = (a ∨ d) ∧ (b ∨ d) = b ∨ d.
Since b � b ∨ d, we have b ∈ I . �

In fact, this theorem is true whether or not L has any bounds – a
good exercise for the reader. In a Boolean lattice we can do better.

10.12 Theorem. Let B be a Boolean lattice and let I be a proper ideal
in B . Then the following are equivalent:

(i) I is a maximal ideal;

(ii) I is a prime ideal;

(iii) for all a ∈ B , it is the case that a ∈ I if and only if a′ /∈ I .

Proof. Theorem 10.11 gives (i) ⇒ (ii). To prove (ii) ⇒ (iii), note that,
for any a ∈ B , we have a ∧ a′ = 0. Because I is prime, a ∈ I or a′ ∈ I .
If both a and a′ belong to I then 1 = a ∨ a′ ∈ I , � .

Finally we prove that (iii) ⇒ (i). Let J be an ideal properly
containing I . Fix a ∈ J \ I . Then a′ ∈ I ⊆ J , so 1 = a ∨ a′ ∈ J .
Therefore J = B , which shows that I is maximal. �

10.13 Ultrafilters on a set. Let S be a non-empty set. An ultrafilter
of the Boolean lattice ℘(S) is called an ultrafilter on S . Such ultrafilters
are important in logic.

An ultrafilter on S is said to be principal if it is a principal filter, and
non-principal otherwise. For each s ∈ S , the set {A ∈ ℘(S) | s ∈ A } is
a principal ultrafilter on S , and every principal ultrafilter is of this form.
Non-principal ultrafilters prove much more elusive; see Exercise 10.8. All
ultrafilters on a finite set are, of course, principal.

Theorem 10.14 characterizes the ultrafilters on a set. It takes the
dual of Theorem 10.12 and adds two further useful equivalences. For the
proof, do (ii) ⇒ (v) ⇒ (iii) ⇒ (iv) ⇒ (i) ⇒ (ii).

10.14 Theorem. Let F be a proper filter in ℘(S). Then the following
are equivalent:

(i) F is an ultrafilter;

(ii) F is a prime filter;

(iii) for each A ⊆ S , either A ∈ F or S \A ∈ F ;

Maximality principles 235

(iv) for each B ⊆ S , if A ∩B �= ∅ for all A ∈ F , then B ∈ F ;

(v) given pairwise disjoint sets A1, . . . , An such that A1∪· · ·∪An = S ,
there exists a unique j such that Aj ∈ F .

10.15 Do prime ideals exist? We have so far given singularly few non-
trivial examples of prime or maximal ideals. This is unfortunate since
in order to remove the finiteness condition in Corollary 10.9 we need a
plentiful supply of prime ideals.

To help see what is at stake, consider a Boolean lattice B . Theo-
rem 10.12 implies that a prime ideal in B is just a maximal element of
〈I(B)\{B};⊆〉. The question of the existence of maximal elements was
addressed earlier in this chapter. The discussion there showed that this
topic has closer affinities with set theory than with lattice theory, and
we should not wish knowledge of it to be a prerequisite for proceeding
to Chapter 11. The solution to this apparent dilemma is to present a
treatment that operates on two levels. The statements (BPI) and (DPI)
introduced below assert the existence of certain prime ideals. On one
level, (BPI) and (DPI) may be taken as axioms, whose lattice-theoretic
implications we pursue. At a deeper level, we show (in a self-contained
account which may be omitted) how (BPI) and (DPI) may be derived
from (ZL) (see 10.2). Our remarks in 10.19 will reveal that the difference
between these two philosophies is less than might appear.

10.16 (DPI) and (BPI). We consider the following assertions, which
embody the existence statements we shall require.

(DPI) Given a distributive lattice L and an ideal J and a filter
G of L such that J ∩ G = ∅, there exist I ∈ Ip(L) and
F = L \ I ∈ Fp(L) such that J ⊆ I and G ⊆ F .

(BPI) Given a proper ideal J of a Boolean lattice B , there exists
I ∈ Ip(B) such that J ⊆ I .

The remainder of this section employs (ZL). The proof of the first
result is typical of Zorn’s Lemma arguments (see 10.6).

10.17 Theorem. (ZL) implies (BPI).

Proof. Let B be a Boolean lattice and J be a proper ideal of B . We
apply the special case (ZL)′ of (ZL) stated in 10.2 to the set

E := {K ∈ I(B) | B �= K ⊇ J },
ordered by inclusion. The set E contains J , and so is non-empty. Let
C = {Kλ | λ ∈ Λ } be a chain in E . We require K :=

⋃
λ∈Λ Kλ ∈ E .

Certainly K �= B (why?), K ⊇ J and K is a down-set. It remains

236 Maximality principles

to prove that a, b ∈ K implies a ∨ b ∈ K . For some λ, µ ∈ Λ, we
have a ∈ Kλ and b ∈ Kµ . Since C is a chain, we may assume without
loss of generality that Kλ ⊆ Kµ . But then a, b both belong to Kµ , so
a ∨ b ∈ Kµ ⊆ K . The maximal element of E provided by (ZL)′ is just
the maximal ideal we require (by 10.12). �

The corresponding result for distributive lattices, often referred to
as the Prime Ideal Theorem, is slightly more complicated to prove, but
essentially just combines the techniques of 10.11 and 10.17.

10.18 Theorem. (ZL) implies (DPI).

Proof. We take L,G and J as in the statement (DPI) and define

E = {K ∈ I(L) | K ⊇ J and K ∩G = ∅ }.
An argument mildly more complicated than the one in 10.17 shows that
〈E ;⊆〉 has a maximal element I . It remains to prove that I is prime. To
do this we adapt the proof of 10.11, which is the case G = {1}. Suppose
a, b ∈ L \ I but a ∧ b ∈ I . Because I is maximal, any ideal properly
containing I is not in E . Consequently Ia = ↓{ a ∨ c | c ∈ I } (the
smallest ideal containing I and a) intersects G. Therefore there exists
ca ∈ I such that a ∨ ca is above an element of G and hence is itself
in G, because G is an up-set. Similarly we can find cb ∈ I such that
b ∨ cb ∈ G. Now consider

(a ∧ b) ∨ (ca ∨ cb) = ((a ∨ ca) ∨ cb) ∧ ((b ∨ cb) ∨ ca).
The right-hand side is in G, since G is a filter, while the left is in I ,
since I is an ideal. This gives I ∩G �= ∅, � . �

10.19 A choice of axioms. Some further comments on the relationship
between (ZL), (BPI) and (DPI) are appropriate, although we cannot
attempt to justify all the assertions we make. Consult [18] and [25] for
more details, related results and references.

When L is a distributive lattice with 1, we may take G = {1}
in (DPI). Then (DPI) implies the existence of a maximal ideal of L con-
taining a given proper ideal J . So (DPI), restricted to Boolean lattices,
yields (BPI) as a special case. Much less obviously, (BPI) ⇒ (DPI).
This is proved by constructing an embedding of a given distributive lat-
tice into a Boolean lattice, to which (BPI) is applied. Hence (BPI) and
(DPI) are equivalent.

We proved in 10.3 that (ZL) is equivalent to the Axiom of Choice,
(AC), and remarked that many other equivalents of (AC) (set-theoretic
and otherwise) were known. It turns out that one such statement is:

Maximality principles 237

(DMI) every distributive lattice with 1, which has more than one
element, contains a maximal ideal.

It is easy to derive (DMI) from (ZL) (see Exercise 10.1). Conversely
it can be proved that (AC) can be derived from (DMI), applied to a
suitable lattice of sets. A proof that (DMI) ⇒ (DPI) is indicated in
Exercise 10.10.

By contrast, (BPI) and (DPI) belong to a family of conditions
known to be equivalent to the choice principle (AC)F (asserting that
every family of non-empty finite sets has a choice function). It is known
that (AC)F is strictly weaker than (AC), so that it is not true that
(DPI) implies (DMI). However, (AC)F is not derivable within traditional
Zermelo–Fraenkel set theory. To obtain results such as (DPI) and (BPI)
some additional axiom must be added, and whether this is (AC), (ZL),
or even (DPI) itself, is a matter of choice. Thus our suggestion that
readers ignorant of (ZL) should take (DPI) as a hypothesis had a sound
logical basis.

There are many instances in logic and topology of the construction
of ultrafilters in Boolean lattices (especially powerset lattices). The
proof via filters of Tychonoff’s Theorem is an example. Accordingly
we introduce

(BUF) Given a proper filter G of a Boolean lattice B , there exists
F ∈ Fp(B) such that G ⊆ F .

A proper filter (an ultrafilter) of a Boolean lattice B is a proper ideal
(a maximal ideal) of B∂ (which is also a Boolean lattice). Thus the
statements (BPI) and (BUF) are equivalent.

We sum up the connections between the various conditions below.

(AC) ⇐⇒ (ZL) =⇒ (BPI) ⇐⇒ (BUF)

(DMI) =⇒ (DPI) ⇐⇒ (AC)F

⇓⇑ ⇓⇑ ⇓⇑

Powerset algebras and down-set lattices revisited

Our representation theorems in the finite case show that any finite
Boolean algebra is isomorphic to a powerset and any finite distributive
lattice is isomorphic to the lattice of down-sets of an ordered set. We
cannot expect these statements to remain universally true when we delete
the word ‘finite’: we gave in 4.18 an example of a Boolean algebra which
is not isomorphic to a powerset algebra.

238 Maximality principles

However, we can use the results of the preceding section to show,
easily, that every distributive lattice does have a concrete representation
as a lattice of sets, or, in a Boolean case, an algebra of sets. At the
end of the section we characterize among Boolean algebras and bounded
distributive lattices those which are, respectively, powerset algebras and
down-set lattices.

10.20 Lemma. Let L be a lattice and let X = Ip(L). Then the map
η : L→ ℘(X) defined by

η : a �−→ Xa := { I ∈ Ip(L) | a /∈ I }
is a lattice homomorphism.

Proof. We have to show that Xa∨b = Xa∪Xb and Xa∧b = Xa∩Xb , for
all a, b ∈ L. Take I ∈ Ip(L). Since I is an ideal,

a ∨ b ∈ I if and only if a ∈ I and b ∈ I

and, since I is prime,

a ∧ b ∈ I if and only if a ∈ I or b ∈ I.

Thus we have

Xa∨b = { I ∈ Ip(L) | a ∨ b /∈ I }
= { I ∈ Ip(L) | a /∈ I or b /∈ I }
= Xa ∪Xb.

Similarly, Xa∧b = Xa ∩Xb . �

We would like the map η above to give a faithful copy of L in the
lattice ℘(Ip(L)). We certainly cannot prove this without the additional
hypothesis of distributivity, because a lattice of sets must be distributive.
Theorem 10.21 shows that (DPI) is exactly what is needed to ensure that
a distributive lattice L has enough prime ideals for η : L→ ℘(Ip(L)) to
be an embedding.

10.21 Theorem. Let L be a lattice. Then the following are equivalent:

(i) L is distributive;

(ii) given an ideal J of L and a filter G of L with J ∩ G = ∅, there
exists a prime ideal I such that J ⊆ I and I ∩G = ∅;

(iii) given a, b ∈ L with a � b, there exists a prime ideal I such that
a /∈ I and b ∈ I ;

Maximality principles 239

(iv) the map η : a �→ Xa := { I ∈ Ip(L) | a /∈ I } is an embedding of L
into ℘(Ip(L));

(v) L is isomorphic to a lattice of sets.

Proof. The implications (iv) ⇒ (v) ⇒ (i) are trivial and (i) ⇒ (ii) is
the statement that (DPI) holds for L. To prove (ii) ⇒ (iii) just take
J = ↓b and G = ↑a in (DPI).

Since η is a homomorphism, it is order-preserving. To prove that
(iii) ⇒ (iv) it is enough to show that a � b implies Xa 	 Xb . This is
true since the prime ideal I supplied by (iii) belongs to Xa \Xb . �

For Boolean algebras we have the following result.

10.22 Theorem. Let B be a Boolean algebra. Then

(i) given a proper ideal J of B , there exists a maximal ideal I ∈ Ip(B)
with J ⊆ I ,

(ii) given a �= b in B , there exists a maximal ideal I ∈ Ip(B) such that
I contains one and only one of a and b,

(iii) the map η : a �→ Xa := { I ∈ Ip(B) | a /∈ I } is a Boolean algebra
embedding of B into the powerset algebra ℘(Ip(L)).

Proof. We first show that (i), which is the statement (BPI) for B ,
implies (ii). Take a, b ∈ B with a �= b. Without loss of generality we may
assume a � b and this gives 1 �= a′∨b. Apply (i) with J = ↓(a′∨b). Any
prime ideal I containing J contains b, but, by Theorem 10.12, not a.

The map η : a �→ Xa := { I ∈ Ip(B) | a /∈ I } is a lattice homomor-
phism. Also X0 = ∅ because each prime ideal contains 0 and X1 = X
since each prime ideal is proper. So, by 4.17, η is a Boolean algebra
homomorphism. Since (ii) holds, η is also one-to-one. �

Our next objective is the characterization of those Boolean algebras
which are powerset algebras. Our starting point is the observation that,
just as lattices of sets are distributive, complete lattices of sets, and in
particular powersets, must satisfy a very strong distributive law.

10.23 Infinite distributive laws. A complete lattice L is said to be
completely distributive if, for any doubly indexed subset {xij}i∈I,j∈J
of L, we have

(CD)
∧
i∈I

(∨
j∈J

xij

)
=

∨
α : I→J

(∧
i∈I

xiα(i)

)
.

240 Maximality principles

The formulation of (CD) is simply a formal way of saying that any
meet of joins is converted into the join of all possible elements obtained
by taking the meet over i ∈ I of elements xik where k depends on i;
the functions α : I → J do the job of picking out the indices k. The law
(CD) can be shown to be self-dual, as distributivity is (recall 4.3); that
is, L satisfies (CD) if and only if L∂ does.

Certainly any powerset 〈℘(X);⊆〉 satisfies (CD). So does any com-
plete lattice of sets, and in particular any lattice 〈O(P);⊆〉, where P is
an ordered set.

As an instance of (CD), obtained by taking I = {1, 2}, x1j = x and
x2j = yj for all j ∈ J , we have the Join-Infinite Distributive Law: for
any subset {yj}j∈J of L and any x ∈ L,

(JID) x ∧
∨
j∈J

yj =
∨
j∈J

x ∧ yj .

The dual condition is the Meet-Infinite Distributive Law, (MID), and it
too holds in any completely distributive lattice.

10.24 Theorem. Let B be a Boolean algebra. Then the following are
equivalent:

(i) B ∼= ℘(X) for some set X ;

(ii) B is complete and atomic;

(iii) B is complete and completely distributive.

Proof. Certainly (i) implies both (ii) and (iii). Now assume (ii). By
exactly the same argument as in the proof of Theorem 5.5, the map

η : a �−→ {x ∈ A(B) | x � a }
is a Boolean algebra isomorphism mapping B onto ℘(A(B)). Thus (ii)
implies (i).

To complete the proof we show that (iii) implies (ii). We apply
(CD) with I = B and J = {±1}, with

xij =

{
i if j = 1,

i′ if j = −1.
Note that, for any i, we have

∨
j∈Jxij = i∨ i′ = 1. Therefore, by (CD),

∨
α : I→J

(∧
i∈I

xiα(i)

)
= 1.

Let y ∈ B . Then by (JID) we have

∨
α : I→J

(
y ∧

∧
i∈I

xiα(i)

)
= y.

Maximality principles 241

We shall show that zα := y ∧ ∧
i∈I xiα(i) is an atom whenever it is non-

zero. Suppose 0 < u � zα . Then u � xuα(u) . This forces α(u) = 1
since otherwise u � u′ in contradiction to u �= 0. But α(u) = 1 gives
xuα(u) = u, so that u � zα . Therefore u = zα , so that zα ∈ A(B), as
claimed. �

Characterizing down-set lattices requires substantially more work.
We note that any lattice O(P) is algebraic, and begin by extending our
knowledge of algebraic lattices.

Exercise 4.11 seeks a proof that 〈N0;�〉 fails (JID). By contrast,
any bounded distributive lattice which satisfies (ACC) (respectively
(DCC)) does satisfy (JID) (respectively (MID)); for the proof use The-
orem 2.41(i). The next proposition generalizes this.

10.25 Proposition. Let L be an algebraic lattice.

(i) Meet distributes over directed joins in L, that is,

x ∧
⊔
{ yi | i ∈ I } =

⊔
{x ∧ yi | i ∈ I } .

(ii) If L is distributive, then it satisfies (JID).

Proof. (i) Let D = {yi}i∈I be directed. It is easy to see that {x∧yi}i∈I
is also directed. Note that

x ∧
⊔
{ yi | i ∈ I } �

⊔ {x ∧ yi | i ∈ I } ,
since the left-hand side is an upper bound for {x ∧ yi}i∈I . Suppose for
a contradiction that the inequality is strict. Because L is algebraic, this
implies that there exists k ∈ F (L) such that

k � x ∧
⊔
{ yi | i ∈ I } but k �

⊔
{x ∧ yi | i ∈ I } .

Then k � x and k �
⊔
D, from which we get k � yj for some j . But

then k � x ∧ yj �
⊔{

x ∧ yi
}
, � .

For (ii) we draw on Exercise 7.5: for any non-empty set S ,∨
S =

⊔
{
∨
F | ∅ �= F
 S }.

Since meet distributes over directed joins and over finite joins it is easy
to show that meet distributes over arbitrary joins. We leave the checking
of the details as an exercise. �

We have seen various analogues, (CD), (JID) and (MID), of the
distributive laws (D) and (D)∂ that a complete lattice may satisfy.
We now turn to analogues of join- and meet-irreducible elements, and
introduce a new atomicity condition.

242 Maximality principles

10.26 Definitions. An element a of a complete lattice is called com-
pletely join-irreducible if a =

∨
S implies that a ∈ S , for every subset

S of L; in particular, a �= 0 (take S = ∅). The element a is called com-
pletely join-prime if a �

∨
S implies a � s for some s ∈ S . Completely

meet-irreducible and completely meet-prime are defined dually.

It is easy to see that every completely join-prime element is com-
pletely join-irreducible. By a parallel argument to that used to prove
(i) ⇒ (ii) in Lemma 5.11, in the presence of (JID) every completely
join-irreducible element is completely join-prime. We denote the set of
completely join-prime elements in L by Jp(L).

We say that a lattice L is weakly atomic if, given x < y in L, there
exist a, b ∈ L such that x � b −< a � y . Note that this condition is
satisfied in any down-set lattice (use Exercise 1.12) and note too that it
is self-dual.

Compare the proof of (ii) below with that of (the dual version of)
Proposition 2.45. Note how (ZL) is used to guarantee the existence of a
maximal element in the absence of (ACC). We leave the proof of (i) as
an exercise (see Exercise 10.13).

10.27 Proposition. Let L be a complete lattice.

(i) Assume that L is algebraic. Then the completely meet-irreducible
elements are meet-dense in L.

(ii) Assume that L satisfies (JID) and is weakly atomic. Then the
completely meet-irreducible elements are meet-dense in L.

Proof. (ii) By the dual of Exercise 2.39, to prove meet-density of a set
Q it suffices to show that if s, t ∈ L with t > s then there exists m ∈ Q
with m � s and m � t.

Assume L satisfies (JID) and is weakly atomic. Take t > s. Then
there exist p, q ∈ L such that t � q >− p � s. Define

P = {x ∈ L | x � p and x � q }.
The set P contains p and so P �= ∅. Let C be a non-empty chain
in P , and suppose for a contradiction that

∨
C /∈ P . This means

that
∨
C � q . Invoking (JID) we have

∨
x∈C (x ∧ q) = q . If we had

x ∧ q � p for all x ∈ C then
∨
x∈C (x ∧ q) � p, � . Pick x ∈ C

such that x ∧ q � p. Then, using the contrapositive of the Connecting
Lemma, p < (x ∧ q) ∨ p. By distributivity, which is implied by (JID),
(x ∧ q) ∨ p = (x ∨ p) ∧ (q ∨ p) = x ∧ q � q . Hence, because q >− p,
we have x ∧ q = q , � . By (ZL), P has a maximal element, m say, and
this satisfies m � p and m � q . By transitivity, m � s and m � t.

Maximality principles 243

Finally suppose for a contradiction that m =
∧
S but that m �= y for

every y ∈ S . Because m is maximal in P , every y ∈ S lies outside P .
But y � m � p, so we must have y � q for all y ∈ S . But then
m =

∧
S � q , � . Hence m is completely meet-irreducible. �

Our next result about algebraic lattices also requires (ZL). This
result does not imply that (ii) in Proposition 10.27 follows from (i)
because L is not required to be distributive.

10.28 Proposition. Every algebraic lattice L is weakly atomic.

Proof. Let x < y in L. Recall from Exercise 7.7 that K := [x, y] is an
algebraic lattice. We claim that if a ∈ K is finite and x < a, then there
exists b ∈ K such that x � b −< a. To do this we apply (ZL) to the set

P = { b ∈ K | x � b < a }
and show that a maximal element b of P is a lower cover of a. We leave
the verification as an exercise. �

At last we have the promised characterization of down-set lattices.

10.29 Theorem. Let L be a lattice. Then the following are equivalent:

(i) L is isomorphic to O(P) for some ordered set P ;

(ii) L is isomorphic to a complete lattice of sets;

(iii) L is distributive and both L and L∂ are algebraic;

(iv) L is complete, L satisfies (JID) and the completely join-irreducible
elements are join-dense;

(v) the map η : x �→ {x ∈ Jp(L) | x � a} is an isomorphism from L
onto O(Jp(L));

(vi) L is completely distributive and L is algebraic;

(vii) L is complete, satisfies (JID) and (MID) and is weakly atomic.

Proof. We have the following implications:

(i) =⇒ (ii) (trivially),

(ii) =⇒ (iii) (trivially),

(iii) =⇒ (iv) (by the duals of 10.25 and 10.27),

(iv) =⇒ (v) (cf. 5.12 and see 10.26),

(v) =⇒ (i) (trivially),

(ii) =⇒ (vi) (using 7.21),

(vi) =⇒ (vii) (by 10.28),

(vii) =⇒ (iv) (by the dual of 10.27(ii)).

These implications show that all seven conditions are equivalent. �

244 Maximality principles

Exercises

Exercises from the text: Complete the proof of Lemma 10.8. Show
that 10.11 holds without the assumption that L has any bounds. Fill in
the details of the proofs of 10.25(ii) and 10.28.

10.1 Let L be a lattice. Recall that I(L) denotes the set of all ideals
of L. Deduce from (ZL)′ that if L has a top then any ideal J
in L with J �= L is contained in an ideal I which is maximal in
〈I(L) \ {L};⊆〉.

10.2 Let 〈P ;�〉 be an ordered set. By applying (ZL)′′ to an appropriate
family E of partial orders (regarding an order relation on P as
a subset of P × P), show that � has a linear extension. (This
is Szpilrajn’s Theorem; you will need its finite version, given in
Exercise 1.29(ii), to prove that the maximal element of E supplied
by (ZL)′′ is a chain.)

10.3 Let L be a lattice. Prove that Ip(L) ∼= Fp(L)∂ .
10.4 Let L and K be bounded lattices and f : L → K a {0, 1}-

homomorphism.

(i) Show that f−1(0) is an ideal in L.

(ii) Show that, if K = 2, then f−1(0) is a prime ideal in L.

(iii) Let I be a prime ideal in L. Define fI : L→ 2 by

fI(a) =

{
1 if a /∈ I,

0 if a ∈ I.

Prove that fI is a {0, 1}-homomorphism.
(iv) Let X denote the set of all {0, 1}-homomorphisms from

L to 2, ordered pointwise. Show that there is an order-
isomorphism between Ip(L), ordered by inclusion, and X∂ .
[cf. Exercise 5.20 and Corollary 10.9.]

10.5 Let L and K be bounded lattices.

(i) Prove that every ideal of L ×K is of the form I × J where
I is an ideal of L and J is an ideal of K .

(ii) Let I be a prime ideal of L and let J be a prime ideal of K .
Show that I ×K and L× J are prime ideals in L×K and
that every prime ideal of L×K is of this form.

10.6 Find all prime ideals (prime filters) in 〈N0; lcm, gcd〉. (See Lemma
10.8 and Exercise 5.15.) Describe the order on the set of prime
filters of 〈N0; lcm, gcd〉.

Maximality principles 245

10.7 Let B = {b1, b2, . . . , bn, . . . } be a countable Boolean lattice. With-
out using (ZL) or an equivalent, prove that B satisfies (BUF).
[Hint. Consider

⋃
n�0 Gn where G0 = G and, for n � 0, Gn =

Gn−1 if b
′
n ∈ Gn−1 and Gn is the smallest filter containing Gn−1

and bn otherwise.]

10.8 Let S be an infinite set.

(i) Let G be the set of cofinite subsets of S .
(a) Show that G is a filter in ℘(S).
(b) Show that if F is a proper filter in ℘(S) and G ⊆ F ,

then F is not principal.

(ii) Assume that (BUF) holds. Show that there is a non-principal
ultrafilter on S .

(iii) Assume that (ZL) holds. Prove directly from (ZL), or (ZL)′ ,
that there is a non-principal ultrafilter on S .

10.9 A filter G of a lattice L is called distributive if it satisfies

(∀a, b, c ∈ L) a ∨ b, a ∨ c ∈ G =⇒ a ∨ (b ∧ c) ∈ G.

(i) Find all distributive filters of N5 and M5 .

(ii) Prove that L is distributive if and only if every filter of L is
distributive.

(iii) Let L be a lattice and G a filter in L. Prove that the
following are equivalent:

(a) G is a distributive filter;

(b) every ideal I which is a maximal element of the set
{K ∈ I(L) | K ∩G = ∅ } is a prime ideal;

(c) G is an intersection of prime filters, that is, G =⋂
i∈IFi for some family {Fi}i∈I of prime filters.

[Hint. The implication (a) ⇒ (b) is a refinement of the sec-
ond portion of the proof of Theorem 10.18, while the impli-
cation (b) ⇒ (c) is an easy consequence of Exercise 10.9(i).
(Note that (ZL) is required.)]

10.10 Let L be a distributive lattice, J an ideal and G a filter of L such
that J ∩G = ∅.

(i) Suppose that there is an onto homomorphism f : L → K
such that:

(a) |K| � 2 and K has a 0 and a 1, and

246 Maximality principles

(b) J ⊆ f−1({0}) and G ⊆ f−1({1}).
Show that (DMI) applied to K yields (DPI) for L.

(ii) Let θJ be the congruence on L defined in Exercise 6.4 and let
θG be defined dually. Let j : L→ L/θJ be the natural map.
Show that j(G) is a filter of L/θJ . Consider the natural
map g : L/θJ → (L/θJ)/θ

j(G) . (Note: L/θJ is distributive.)
Show that f := g ◦ j : L→ (L/θJ)/θ

j(G) satisfies (a) and (b)
of (i).

Thus (DMI) implies (DPI).

10.11 Let B be the family of all finite unions of subintervals of R of
the form: (−∞, a), [a, b), and [b,∞), where −∞ < a < b < ∞,
together with ∅. Show that B is a Boolean subalgebra of the
powerset algebra ℘(R) and that B has no atoms.

10.12 Let B be an atomic Boolean lattice. Prove that B is weakly
atomic.

10.13 Show that in an algebraic lattice L the completely meet-irreducible
elements are meet-dense. [Hint. Use the dual of Exercise 2.39.
Take t > s and apply (ZL) to the set

P = { a ∈ L | a � s and a � k }
where k ∈ K(L) with t � k and s � k.]

10.14 Let L be a complete lattice. If a, b ∈ L satisfy L = ↑a .∪ ↓b, then
(a, b) is called a completely prime pair. This exercise justifies the
terminology.

(i) Prove that if (a, b) is a completely prime pair, then a is
completely join-prime and b is completely meet-prime.

(ii) Prove that a is completely join-prime in L if and only if there
exist b ∈ L such that (a, b) is a completely prime pair.

10.15 Let C be a closure operator on a set X and let LC be the corre-
sponding topped

⋂
-intersection structure on X .

(i) Show that A ∈ LC is completely join-irreducible if and only
if there exists a ∈ X such that

(a) A = C({a}), and
(b) the set {x ∈ X | x ∈ C({a}) and a /∈ C({x}) } belongs

to LC .

(ii) Let A,B ∈ LC . Show that (A,B) is a completely prime pair
in LC if and only if there exists a ∈ X such that A = C({a})
and B = {x ∈ X | a /∈ C({x}) }.

11

Representation: the General Case

This chapter continues the study of Boolean algebras and distributive
lattices. It improves on the representations by sets given in Theo-
rems 10.21 and 10.22, and presents a duality theory as powerful as that
we obtained in Chapter 5 in the finite case.

Stone’s representation theorem for Boolean algebras

We showed in Chapter 5 that every finite Boolean algebra is isomorphic
to some powerset algebra. Finiteness is essential here: we saw in Exam-
ple 4.18(2) that the finite-cofinite algebra FC(N) is not isomorphic to a
powerset algebra and Theorem 10.24 showed how special the powerset
algebras are. However, it is true that any Boolean algebra B is isomor-
phic to a subalgebra of a powerset algebra (Theorem 10.22). We now
refine this result, by describing precisely which subalgebra this is.

11.1 The prime ideal space of a Boolean algebra. Let B be a Boolean
algebra. Theorem 10.22 tells us that the map

η : a �−→ Xa := { I ∈ Ip(B) | a /∈ I }
is a Boolean algebra embedding of B into ℘(Ip(B)). What we seek is
a characterization of the image of the embedding η . The description of
im η has to be in terms of additional structure on the set of prime ideals.
A topological structure on Ip(B) is exactly what we need. A topology on
a set X is a family of subsets of X containing X and ∅ and closed under
arbitrary unions and finite intersections. Readers whose knowledge of
topology is rusty or non-existent will find an outline of the concepts
and results we need in Appendix A. References such as A.1 are to this
appendix.

The family of clopen subsets of a topological space 〈X; T 〉 forms a
Boolean algebra. This suggests that we might try to impose a topology
T on Ip(B) so that im η is characterized as the family of clopen subsets
of the topological space 〈Ip(B); T 〉. It is certainly necessary that

Xa := { I ∈ Ip(B) | a /∈ I }
be in T for each a ∈ B . The family B := {Xa | a ∈ B } is not a topology
because it is not closed under the formation of arbitrary unions. We have
to define T on Ip(B) as follows:

T := {U ⊆ Ip(B) | U is a union of members of B }.

248 Representation: the general case

In the terminology of A.3, the family B is a basis for T (which is indeed
a topology). The topological space 〈Ip(B); T 〉 is called the prime ideal
space or dual space of B . Let X := Ip(B). Each element of B is clopen
in X , because X \Xa = Xa′ and so X \Xa is open. To prove that every
clopen subset of 〈X; T 〉 is of the form Xa , we need further information
about the prime ideal space.

11.2 Proposition. Let B be a Boolean algebra. Then the prime ideal
space 〈Ip(B); T 〉 is compact.

Proof. Let U be an open cover of X := Ip(B). We have to show that
there exist finitely many members of U whose union is X . Every open
set is a union of sets Xa and we may therefore assume without loss of
generality that U ⊆ B. Write U = {Xa | a ∈ A }, where A ⊆ B . Let J
be the smallest ideal containing A, that is (by Exercise 2.22),

J = { b ∈ B | b � a1 ∨ · · · ∨ an for some a1, . . . , an ∈ A }.
If J is not proper, then 1 ∈ J and we have a1∨· · ·∨an = 1 for some finite
subset {a1, . . . , an} of A. Then X = X1 = Xa1∨···∨an = Xa1

∪ · · · ∪Xan
and {Xa1 , . . . , Xan} provides the required finite subcover of U . If J is
proper we can use (BPI) to obtain a prime ideal I containing J . But
then I belongs to X but to no member of U , � . �

11.3 Proposition. Let X := Ip(B) and let 〈X; T 〉 be the prime ideal
space of the Boolean algebra B . Then the clopen subsets of X are
exactly the sets Xa for a ∈ B . Further, given distinct points x, y ∈ X ,
there exists a clopen subset V of X such that x ∈ V and y /∈ V .

Proof. As noted above, each set Xa is clopen. Also, given distinct I1
and I2 in Ip(B), there exists, without loss of generality, a ∈ I1 \ I2 .
Then Xa contains I2 but not I1 . This proves the final assertion.

It remains to prove that an arbitrary clopen subset U of X is of
the form Xa for some a ∈ B . Because U is open, U =

⋃
a∈AXa

for some subset A of B . But U is also a closed subset of X and so
compact (by A.7). Hence there exists a finite subset A1 of A such that
U =

⋃
a∈A1

Xa . Then U = Xa , where a =
∨
A1 (see 10.20). �

By combining Theorem 10.22 and the first part of the preceding
proposition we obtain Stone’s famous representation theorem.

11.4 Stone’s representation theorem for Boolean algebras. Let B be
a Boolean algebra. Then the map

η : a �−→ Xa := { I ∈ Ip(B) | a /∈ I }
is a Boolean algebra isomorphism of B onto the Boolean algebra of
clopen subsets of the dual space 〈Ip(B); T 〉 of B .

Representation: the general case 249

To exploit this representation to the full we need to know more
about topological spaces with the properties possessed by Ip(B). The
last part of Proposition 11.3 asserts that the prime ideal space of a
Boolean algebra satisfies a separation condition guaranteeing that the
space has ‘plenty’ of clopen subsets. We next pursue the topological
ramifications of this condition.

11.5 Totally disconnected spaces and Boolean spaces. We say that a
topological space 〈X; T 〉 is totally disconnected if, given distinct points
x, y ∈ X , there exists a clopen subset V of X such that x ∈ V and
y /∈ V . Topologists usually give a different definition of total disconnect-
edness. For compact spaces their definition agrees with ours. If 〈X; T 〉 is
both compact and totally disconnected, it is said to be a Boolean space.
Propositions 11.2 and 11.3 assert that 〈Ip(B); T 〉 is a Boolean space for
every Boolean algebra B . We denote by ℘T

(X) the family of clopen
subsets of a Boolean space 〈X; T 〉.

Given distinct points x, y in a totally disconnected space X , there
exist disjoint clopen sets V and W := X\V such that x ∈ V and y ∈W .
This implies that a totally disconnected space is Hausdorff; see A.5.
In particular, a Boolean space is compact and Hausdorff. Compact
Hausdorff spaces are well known to have many nice properties, some
of which are stated in A.7 and A.8. Working with Boolean spaces is like
working with compact Hausdorff spaces, but with the bonus of having
a basis of clopen sets. This is illustrated by the proof of Lemma 11.6
which is analogous to that of Lemma A.8, except that use of the total
disconnectedness condition replaces use of the Hausdorff condition.

11.6 Lemma. Let 〈X; T 〉 be a Boolean space.

(i) Let Y be a closed subset of X and x /∈ Y . Then there exists a
clopen set V such that Y ⊆ V and x /∈ V .

(ii) Let Y and Z be disjoint closed subsets of X . Then there exists a
clopen set U such that Y ⊆ U and Z ∩ U = ∅.

Proof. (i) For each y ∈ Y there exists a clopen set Vy with y ∈ Vy
and x /∈ Vy . The open sets {Vy | y ∈ Y } form an open cover of Y .
Since Y is compact (by A.7), there exist y1, . . . , yn ∈ Y such that
Y ⊆ V := Vy1 ∪ · · · ∪ Vyn . As a finite union of clopen sets, V is clopen;
by construction it does not contain x.

(ii) This is left as an exercise; compare Lemma A.8. �

This section has so far been totally bereft of examples. The simplest
type of Boolean space is a finite set with the discrete topology, but
infinite examples are more elusive. We shall discuss the prime ideal space

250 Representation: the general case

of the finite-cofinite algebra, FC(N), in 11.8. To aid us in identifying this
we need an important companion to Theorem 11.4, which provides an
indirect way to obtain dual spaces. The proof of Theorem 11.7 uses
several topological lemmas. However, the benefits we shall reap from
the result make worthwhile the work involved in the proof.

11.7 Theorem.

(i) Let Y be a Boolean space, let B be the algebra ℘T
(Y) of clopen

subsets of Y and let X be the dual space of B . Then Y and X are
homeomorphic.

(ii) Let C be a Boolean algebra and Y a Boolean space such that
C ∼= ℘T

(Y). Then the dual space of C is (homeomorphic to) Y .

Proof. We define ε : Y → X by ε(y) := { a ∈ B | y /∈ a }. Certainly ε(y)
is a prime ideal in B . We shall show that ε is a continuous bijection
from Y onto X . It then follows by A.7 that ε is a homeomorphism.

Because Y is totally disconnected, if y �= z in Y then there exists
a clopen subset a of Y such that y ∈ a and z /∈ a. Hence ε is injective.

To establish continuity of ε we need A.4: it suffices to show that
ε−1(Xa) is clopen for each a ∈ B . But this is so: by the definition of
Xa and the definition of ε we have

ε−1(Xa) = { y ∈ Y | ε(y) ∈ Xa } = { y ∈ Y | a /∈ ε(y) } = a.

Finally, we prove that ε is surjective. By Lemma A.7, ε(Y) is a
closed subset of X . Suppose by way of contradiction that there exists
x ∈ X \ ε(Y). Then 11.6 and 11.3 imply that there is a subset Xa of X
such that ε(Y)∩Xa = ∅ and x ∈ Xa . We have ∅ = ε−1(Xa) = a. But
this contradicts x ∈ Xa , � .

This proves (i), and (ii) follows from it. �

11.8 Example: the finite-cofinite algebra FC(N). Denote by N∞ the
set of natural numbers with an additional point, ∞, adjoined. We define
T as follows: a subset U of N∞ belongs to T if

either (a) ∞ /∈ U,

or (b) ∞ ∈ U and N∞ \ U is finite.

We leave as an exercise the proof that T is a topology.

A subset V of N∞ is clopen if and only if both V and N∞ \ V are
open. It follows that the clopen subsets of N∞ are the finite sets not
containing ∞ and their complements.

It is now easy to show that N∞ is totally disconnected. Given
distinct points x, y ∈ N∞ , we may assume without loss of generality
that x �=∞. Then {x} is clopen and contains x but not y .

Representation: the general case 251

We next prove that N∞ is compact. Take an open cover U of N∞ .
Some member of U must contain ∞; say U is such a set. Then N∞ \U
is finite, by (b). Hence only finitely many members of U are needed to
cover N∞ \ U and these, together with U , provide the required finite
subcover of U . (The cognoscenti will recognize the space N∞ as the
1-point compactification of a countable discrete space.)

The algebra B of clopen sets of the Boolean space N∞ consists
of the finite sets not containing ∞ and their complements. Define
f : FC(N)→ B by

f(a) =

{
a if a is finite,

a ∪ {∞} if a is cofinite.

This map is easily seen to be an isomorphism. Therefore, by Theo-
rem 11.7(ii), the dual space of FC(N) can be identified with N∞ . We
can now recognize the elements of Ip(B). The points of N are in one-
to-one correspondence with the principal prime ideals of FC(N), via the
map n �→ ↓(N \ {n}). There is a single non-principal prime ideal, asso-
ciated with ∞: it consists of all finite subsets of N.

The next example extends our repertoire of Boolean spaces. It is
included for those with the topological knowledge and sophistication to
appreciate it. We shall not use it later.

11.9 Example: a countable atomless Boolean algebra. The example
of a Boolean algebra with no atoms given in Exercise 10.11 is uncount-
able. It might be surmised that all atomless algebras are uncountable,
but this is not so.

Let C be the Cantor ‘middle third’ set, regarded as a subset of [0, 1].
Then C is compact, since C is obtained from [0, 1] by removing open
intervals. Also, if x < y in C , there exists u such that x < u < y and
u /∈ C . Then C ∩ [0, u] is clopen, contains x and does not contain y . It
follows that C is a Boolean space. Those reasonably adept at topology
can now prove that ℘T

(C) is an example of a countable Boolean algebra
with no atoms.

11.10 Duality for Boolean algebras. We have by no means yet fully
exploited the power of the Stone representation for Boolean algebras.
However, everything we have done so far in this chapter, and much more,
extends to the more general setting of bounded distributive lattices. We
shall therefore suspend our treatment of the Stone representation at this
point, but note that the results of 11.27 and 11.29–11.32 specialize to
Boolean algebras.

252 Representation: the general case

Meet LINDA: the Lindenbaum algebra

This optional section deals with an important fragment of mathematical
logic and the part Boolean algebras play in it. We do not claim to
be presenting a primer on formal logic, and those unfamiliar with the
subject are referred to standard texts for motivation and background.

There are two quite different approaches to propositional calculus.
One is the semantic one, based on assignments of truth values, which we
discussed in 4.19. In this approach a wff is said to be true if its truth
function always takes value T. Such a wff is called a tautology.

The alternative is a syntactic approach, based on a formal deduction
system in which a wff is declared to be true if it can be derived from a
set of axioms via given deduction rules. We outline one such system.

The reconciliation of these two approaches is discussed in 11.12.

11.11 The formal system L. A deduction system consists of

(i) a set of formulae,

(ii) a subset of the formulae designated as axioms,

(iii) a finite set of deduction rules.

The system L of propositional calculus is defined as follows.

(i) The formulae are the wffs of propositional calculus, with → and ¬
as connectives. (In this section we use the notation ¬ϕ for the
negation of ϕ, rather than ϕ′ , and introduce (ϕ ∨ ψ) as shorthand
for (¬ϕ→ ψ) and (ϕ ∧ ψ) as shorthand for ¬(ϕ→ ¬ψ).)

(ii) The axioms of L are all wffs of the form

(A1) (ϕ→ (ψ → ϕ)),

(A2) ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))),

(A3) ((¬ϕ→ ¬ψ)→ (ψ → ϕ)),

where ϕ,ψ and χ are any wffs.

(iii) There is a single deduction rule, modus ponens:

(MP) from ϕ and (ϕ→ ψ) deduce ψ .

A proof in L is a finite sequence of formulae of which each is either
an axiom or is obtained from two previous ones by (MP). A theorem
of L is the last formula in a proof (in other words, it is the culmination
of a proof). If ϕ is a theorem of L we write 8Lϕ. Theorems of L must
not be confused with theorems about the system L, which are usually
called metatheorems.

Representation: the general case 253

11.12 Semantics versus syntax. We now have two classes of wffs with
a claim to be called true:

(i) the tautologies (semantically true);

(ii) the theorems of the formal system L (syntactically true).

We can say that L successfully models deductive reasoning with propo-
sitions if it is

• sound, that is, every theorem is a tautology, and

• adequate, that is, every tautology is a theorem.
The major metatheorems of propositional calculus are the Soundness
Theorem and the Adequacy Theorem, asserting respectively that L is
sound and L is adequate. Of these, the Soundness Theorem is by far
the more elementary. It works because (a) each axiom is a tautology
(a routine verification) and (b) from tautologies ϕ and ϕ → ψ , the
rule (MP) yields another tautology, ψ . The Adequacy Theorem is far
more subtle, and it is only the judicious choice of axioms that makes it
work. Indeed, it is remarkable that it does. As anyone who has tried
will appreciate, establishing that a particular wff of L is a theorem can
be a tricky business. The Adequacy Theorem says that a given wff is a
theorem of L if it is a tautology, and this may be confirmed or refuted
by writing down the truth table, a purely mechanical process which can
be carried out in a finite number of steps.

Below we derive the Adequacy Theorem as a consequence of (BPI),
or equivalently of (BUF) (see 10.19). In preparation we need to associate
a Boolean algebra with the formal system L, which is a syntactic coun-
terpart of the Boolean algebra to which we alluded, rather informally,
at the end of 4.19. Before discussing these algebras we recall some facts
from propositional calculus which we have not so far needed.

11.13 Valuations. A map v from wffs to {F,T} is a valuation if
(i) v(¬ϕ) = T if and only if v(ϕ) = F,

(ii) v(ϕ→ ψ) = T unless v(ϕ) = T and v(ψ) = F.

An equivalent definition requires v to preserve ∨,∧ and ′ (interpreted
on the set of wffs as connectives and on {F,T} as in 4.18). Elementary
lemmas assert that any assignment of truth values to the propositional
variables extends in a unique way to a valuation and that a wff ϕ is a
tautology if and only if v(ϕ) = T for all valuations v .

Given wffs ϕ and ψ , we say ϕ logically implies ψ , and write ϕ |= ψ ,
if whenever v(ϕ) = T for a valuation v , then v(ψ) = T. Note that ϕ ≡ ψ
if and only if ϕ |= ψ and ψ |= ϕ.

254 Representation: the general case

11.14 The Lindenbaum algebra, LINDA. We define equivalence rela-
tions, called semantic equivalence, ∼|= , and syntactic equivalence, ∼� ,
on wffs by

ϕ ∼|= ψ if and only if ϕ ≡ ψ,

ϕ ∼� ψ if and only if 8L (ϕ→ ψ) and 8L (ψ → ϕ).

Given the Soundness and Adequacy Theorems, it is an easy exercise
to show that ∼|= and ∼� are actually the same relation. However, en
route to proving the Adequacy Theorem we must treat these relations
independently. Let ∼ denote either ∼|= or ∼� , let [ϕ] be the equivalence
class of ϕ under ∼ and denote the set of ∼–equivalence classes by LA
or, where we need to specify which relation is being used, LA|= or LA� .

We show that, for either choice of ∼, there are natural operations
making LA into a Boolean algebra. The most economical route is to
define an order relation on LA, to show this makes LA a lattice and
finally to show that this lattice is Boolean. All the verifications required
are much easier for ∼|= than for ∼� . This is only to be expected. In
the former case only logical equivalence and implication are involved.
In the latter, it is necessary to show that many wffs are theorems of L.
We only give an indication of the steps, but energetic readers familiar
with L should be able to complete the proofs. The Deduction Theorem,
a standard metatheorem of propositional calculus not relying on the
Adequacy Theorem, is an extremely useful tool.

Define � on LA|= by

[ϕ] � [ψ] if and only if ϕ |= ψ

and on LA� by

[ϕ] � [ψ] if and only if 8L (ϕ→ ψ).

It can be checked in either case that � is well defined, that is, [ϕ] = [ϕ1],
[ψ] = [ψ1] and [ϕ] � [ψ] together imply [ϕ1] � [ψ1]. Further, � is an
order relation. In 〈LA;�〉 there are greatest and least elements,

1 =

{
[ϕ], where ϕ is any tautology (for ∼|=),

[ϕ], where ϕ is such that 8Lϕ (for ∼�),
and 0, obtained similarly, with [ϕ] replaced by [¬ϕ].

The next step is to define join, meet and complement on LA. Let

[ϕ] ∨ [ψ] := [ϕ ∨ ψ], [ϕ] ∧ [ψ] := [ϕ ∧ ψ], [ϕ]′ := [¬ϕ].
We claim that

(i) 〈LA;�〉 is a lattice with join and meet given by ∨ and ∧;
(ii) 〈LA;∨,∧〉 is distributive;
(iii) [ϕ] ∨ [ϕ]′ = 1 and [ϕ] ∧ [ϕ]′ = 0.

Representation: the general case 255

Some guidance on checking these claims for LA� is called for. To show,
for example, that [ϕ ∨ ψ] is the least upper bound of [ϕ] and [ψ] with
respect to �, we need

8L (ϕ→ (¬ϕ→ ψ)),

8L (ψ → (¬ϕ→ ψ)),

8L ((ϕ→ χ)→ ((ψ → χ)→ ((¬ϕ→ ψ)→ χ))) for any wff χ.

The first of these is a well-known theorem and the second is an instance
of an axiom. The third is easily obtained using the Deduction Theorem
and the following theorems of L:

8L ((α→ β)→ (¬β → ¬α)), 8L ((¬α→ ¬β)→ ((¬α→ β)→ α)).

We conclude that each of 〈LA|=;∨,∧, ′, 0, 1〉 and 〈LA�;∨,∧, ′, 0, 1〉 is
a Boolean algebra. The former algebra was introduced, without the
formality of equivalence classes, in 4.19.

Once the Adequacy Theorem is established we know that these are
actually the same Boolean algebra. It is known as the Lindenbaum
algebra, or, to its friends, as LINDA.

11.15 Valuations and homomorphisms. There is a connection between
valuations and Boolean homomorphisms from LA|= or LA� to 2. Since
valuation is a semantic concept, it might seem more natural to consider
LA|= . However working instead with LA� provides the key to the
Boolean algebra proof of the Adequacy Theorem in 11.16. Assume that v
is a valuation. The Soundness Theorem implies that fv , given by

fv([ϕ]) =

{
1 if v(ϕ) = T,

0 if v(ϕ) = F,

is a well-defined map from LA� to 2. It is routine to show that fv is
a Boolean homomorphism and that every Boolean homomorphism from
LA� to 2 arises in this way from some valuation.

11.16 The Adequacy Theorem. We promised that we would prove the
Adequacy Theorem for the system L of propositional calculus by using
the Boolean algebra LA� (recall 11.14).

We wish to prove that 8L ϕ for every tautology ϕ. We prove the
contrapositive. Suppose
L ϕ. Then [ϕ] �= 1 in LA� . The ideal ↓[ϕ] is
proper. We appeal to (BPI) to find a prime ideal I such that ↓[ϕ] ⊆ I .
Define a map from the wffs to {F,T} by

v(ψ) =

{
T if [ψ] /∈ I,

F if [ψ] ∈ I.

256 Representation: the general case

It can be proved directly that this map is a valuation (see 11.13); al-
ternatively this may be verified by introducing as a stepping stone the
Boolean homomorphism f on LA� specified by f−1(0) = I . By con-
struction, v(ϕ) = F, so ϕ is not a tautology. This completes the proof
of the Adequacy Theorem.

It is usual in elementary treatments of propositional calculus to
take the set of propositional variables to be countable. This assumption
is made to avoid having to invoke (ZL). When the set of propositional
variables is countable, so is LA� . Exercise 10.7 shows that (BPI) for
countable Boolean algebras can be proved without (ZL) (by a process
remarkably reminiscent of the technique customarily employed in the
proof of the Adequacy Theorem).

We remark also that there is a strong connection between the Com-
pactness Theorem for propositional calculus and the compactness of the
dual space of a Boolean algebra. (cf. [60], 1.2.3, which makes this explicit
(in a negation-free setting).)

Priestley’s representation theorem for distributive lattices

We now move from Boolean algebras to distributive lattices.

11.17 Stocktaking. Let L be a distributive lattice and let X = Ip(L)
be its set of prime ideals ordered, as usual, by inclusion. We already
have representations for L in two special cases.

When L is Boolean and X is topologized in the way described
above, L is isomorphic to the algebra ℘T

(X) of clopen subsets of X .
Every prime ideal of a Boolean algebra is maximal (by 10.12), so the
order on X is discrete (that is, x � y in X if and only if x = y). Thus
the order has no active role in this case.

When L is finite, L is isomorphic to the lattice O(X) of down-sets
of X (by 5.12 and 10.8). Suppose X has a topology T making it a
Boolean space. Then T is the discrete topology, in which every subset
is clopen (see A.9). In this case the topology contributes nothing.

These observations suggest that to represent L in general we should
equip X with the inclusion order and a suitable Boolean space topology.
A prime candidate for a lattice isomorphic to L would then be the lattice
of all clopen down-sets of X . Our remarks above imply that this lattice
coincides with O(X) when L is finite, with ℘T

(X) when L is Boolean
(and with ℘(X) when L is both finite and Boolean). We prove in 11.23
that a bounded distributive lattice L is indeed isomorphic to the lattice
of clopen down-sets of Ip(L), ordered by inclusion and appropriately

Representation: the general case 257

topologized, and thereby obtain a natural common generalization of
Birkhoff’s and Stone’s theorems. The boundedness restriction is forced
upon us because the lattice of clopen down-sets is bounded. Extensions
of the theorem to lattices lacking bounds do exist, but we do not consider
them here.

11.18 The prime ideal space of a bounded distributive lattice. Let
L be a distributive lattice with 0 and 1 and for each a ∈ L let

Xa := { I ∈ Ip(L) | a /∈ I },
as before. Let X := Ip(L). We want a topology T on X so that each
Xa is clopen. Accordingly, we want every element of

S := {Xb | b ∈ L } ∪ {X \Xc | c ∈ L }
to be in T . Compared with the Boolean case we have a double compli-
cation to contend with. The family S contains sets of two types and it
is also not closed under finite intersections. We let

B := {Xb ∩ (X \Xc) | b, c ∈ L }.
Since L has 0 and 1, the set B contains S . Also B is closed under finite
intersections. Finally, we define T as follows: U ∈ T if U is a union of
members of B. Then T is the smallest topology containing S ; in the
terminology of A.3, S is a subbasis for T and B a basis.
11.19 Theorem. Let L be a bounded distributive lattice. Then the
prime ideal space 〈Ip(L); T 〉 is compact.

Proof. Alexander’s Subbasis Lemma proved (with the aid of (BPI))
in A.10 tells us that it is sufficient to prove that any open cover U
of X = Ip(L) by sets in the subbasis S has a finite subcover. Doing this
is only slightly more complicated than proving 11.2. Let

U = {Xb | b ∈ A0 } ∪ {X \Xc | c ∈ A1 }.
Let J be the ideal generated by A0 (this is {0} if A0 is empty) and let
G be the filter generated by A1 (this is {1} if A1 is empty). Assume
first that J ∩G = ∅ and invoke (DPI) to find a prime ideal I such that
J ⊆ I and G ∩ I = ∅. Then I /∈ Xb for any b ∈ A0 and I /∈ X \Xc for
any c ∈ A1 and this means that U does not cover X , � .

Hence J ∩ G �= ∅. Take a ∈ J ∩ G. If A0 and A1 are both
non-empty, there exist b1, . . . , bj ∈ A0 and c1, . . . , ck ∈ A1 such that

c1 ∧ · · · ∧ ck � a � b1 ∨ · · · ∨ bj ,
whence

X = X1 = Xb1 ∪ · · · ∪Xbj ∪ (X \Xc1) ∪ · · · ∪ (X \Xck).

258 Representation: the general case

In this case, therefore, U has a finite subcover. The case A1 = ∅ is
treated as in 11.2 and the case A0 = ∅ is similar. �

11.20 Totally order-disconnected spaces. A set X carrying an order
relation � and a topology T is called an ordered (topological) space and
denoted 〈X;�, T 〉 (or by X where no ambiguity would result). It is said
to be totally order-disconnected if, given x, y ∈ X with x � y , there
exists a clopen down-set U such that x ∈ U and y /∈ U . This separation
condition is illustrated in Figure 11.1. We call a compact totally order-
disconnected space a Priestley space. These spaces are also known as
ordered Stone spaces or CTOD spaces. We shall denote by OT (X) the
family of clopen down-sets of a Priestley space X . As noted above,
OT (X) coincides with ℘T

(X) when the order on X is discrete and with
O(X) when X is finite.

✬

✫

✩

✪

X ✩✬�
✄
✄
✄❈
❈
❈↓x

x �y
U

Figure 11.1

Clearly total order-disconnectedness implies total disconnectedness
and the two notions coincide when the order is discrete. In many ways
Priestley spaces behave like a cross between Boolean spaces and ordered
sets. Lemma 11.21 illustrates this. The first part, which is an easy
exercise, should be compared with Lemma 1.30. The remainder of the
lemma is an analogue for Priestley spaces of Lemma 11.6 and is proved
in the same way, but with clopen down-sets replacing clopen sets.

11.21 Lemma. Let 〈X;�, T 〉 be a Priestley space.

(i) x � y in X if and only if y ∈ U implies x ∈ U for every U ∈ OT (X).

(ii) (a) Let Y be a closed down-set in X and let x /∈ Y . Then there
exists a clopen down-set U such that Y ⊆ U and x /∈ U .

(b) Let Y and Z be disjoint closed subsets of X such that Y is
a down-set and Z is an up-set. Then there exists a clopen
down-set U such that Y ⊆ U and Z ∩ U = ∅.

Representation: the general case 259

We can now characterize clopen sets and clopen down-sets in the
dual space 〈Ip(L);⊆, T 〉 of a bounded distributive lattice L. The proof
follows the same lines as that of Proposition 11.3.

11.22 Lemma. Let L be a bounded distributive lattice with dual space
〈X;⊆, T 〉, where X = Ip(L). Then

(i) the clopen subsets of X are the finite unions of sets of the form
Xb ∩ (X \Xc) for b, c ∈ L,

(ii) the clopen down-sets of X are exactly the sets Xa for a ∈ L.

11.23 Priestley’s representation theorem for distributive lattices. Let
L be a bounded distributive lattice. Then the map

η : a �−→ Xa := { I ∈ Ip(L) | a /∈ I }
is an isomorphism of L onto the lattice of clopen down-sets of the dual
space 〈Ip(L);⊆, T 〉 of L.

Proof. Combine Theorem 10.21 and Lemma 11.22(ii). �

Our next task is to give a simultaneous generalization of Theo-
rem 5.9 and Theorem 11.7. Ordered spaces X and Y are ‘essentially the
same’ if there exists a map ϕ from X onto Y which is simultaneously
an order-isomorphism and a homeomorphism. We call such a map an
order-homeomorphism and say X and Y are order-homeomorphic.

11.24 Theorem.

(i) Let Y be a Priestley space, let L be the lattice OT (Y) of clopen
down-sets of Y and let X be the dual space of L. Then Y and X
are order-homeomorphic.

(ii) Let L be a bounded distributive lattice and Y a Priestley space such
that OT (Y) ∼= L. Then the dual space of L is (order-homeomorphic
to) Y .

Proof. The second part follows from the first. The proof of (i) is similar
to the proof given for the Boolean case in 11.7, but somewhat more
complicated.

We define ε : Y → X by ε(y) := { a ∈ L | y /∈ a }. Certainly ε(y) is
a prime ideal in L. We must show that

(a) ε is an order-embedding (and hence, by 1.36(3), one-to-one);

(b) ε is continuous;

(c) ε maps Y onto X .

Combined with A.7 this will establish (i).

260 Representation: the general case

For (a) note that

y � z in Y ⇐⇒ (∀a ∈ L) (z ∈ a⇒ y ∈ a) (by Lemma 11.21(i))

⇐⇒ ε(y) ⊆ ε(z).

To prove (b) we need A.4. It implies that (b) holds so long as
ε−1(Xa) and ε−1(X \Xa) are open for each a ∈ L. We find that

ε−1(X \Xa) = { y ∈ Y | ε(y) /∈ Xa } = Y \ ε−1(Xa).

Thus (b) holds provided ε−1(Xa) is clopen in Y for each a ∈ L. But,
by the definition of Xa and the definition of ε, we have

ε−1(Xa) = { y ∈ Y | ε(y) ∈ Xa } = { y ∈ Y | a /∈ ε(y) } = a,

and this is clopen, by the definition of L.

Finally, we prove (c). By Lemma A.7, ε(Y) is a closed subset
of X . Suppose by way of contradiction that there exists x ∈ X \ ε(Y).
Lemma 11.6(i) implies that there is a clopen subset V of X such that
ε(Y) ∩ V = ∅ and x ∈ V . By 11.22, we may assume that V =
Xb ∩ (X \ Xc) for some b, c ∈ L. We have ∅ = ε−1(V) = b ∩ (Y \ c).
Thus b ⊆ c, which is impossible since x ∈ Xb ∩ (X \Xc), � . �

11.25 Examples. Our first dual space examples involve a minimum of
topology. A variety of Priestley spaces can be obtained by equipping the
Boolean space N∞ , introduced in 11.8, with an order. For a very simple
example, order N∞ as the chain N with ∞ adjoined as top element, as
in Figure 11.2(i). Take x � y . Then y > x and ↓x, which is clopen
because it is finite and does not contain ∞, contains x but not y . Hence
we have a Priestley space; its lattice of clopen down-sets is isomorphic
to the chain N⊕ 1.

Alternatively, consider the ordered space Y obtained by equipping
N∞ with the order depicted in Figure 11.2(ii). We have n >− n− 1 and
n >− n+ 1 for each even n.

For each n ∈ N, the down-set ↓n is finite and does not contain
∞ and so is clopen. Given x � y in Y , we claim that there exists
U ∈ OT (Y) such that x ∈ U and y /∈ U . Either x �= ∞, in which case
y /∈ ↓x and we may take U = ↓x, or x =∞, in which case we may take
U = Y \ {1, 2, . . . , 2y}. Hence Y is a Priestley space. The associated
lattice OT (Y) – a sublattice of FC(N) – is easily described.

These examples illustrate how Priestley spaces can be constructed
by imposing suitable order relations on a given Boolean space. Alter-
natively, we might start from an ordered set and try to make it into a

Representation: the general case 261

❜❜
❜

❜
���

1

2

3

∞

(i)

❜�� ❜
❅
❅ ❜�� �

�❅
❅

❅
❅

❅
❅ ❜❜ ❜ ❜ �� �� �� ❜∞

1 3 5 7
��

2 4 6

(ii)

Figure 11.2

Priestley space by topologizing it. This raises the interesting, but diffi-
cult, problem of representability: when is a given ordered set isomorphic
to 〈Ip(L);⊆〉 for some bounded distributive lattice L, or, more gener-
ally, an arbitrary distributive lattice L? For more information on this,
see the bibliography of [56].

11.26 Further examples of Priestley spaces.

(1) We indicated in Example 11.9 that the Cantor ‘middle third’ set, C ,
regarded as a subset of [0, 1], is a Boolean space. In fact with the
order inherited from [0, 1] it is a Priestley space.

(2) Let S be a set. As a subbasis for a topology on 〈℘(S);⊆〉 we
take the collection of up-sets of the form ↑{s} (for s ∈ S), and
their complements. Alexander’s Subbasis Lemma can be used to
prove, much as in the proof of 11.19, that ℘(S) then becomes a
Priestley space. When S is countable, the underlying Boolean space
is homeomorphic to the Cantor space described in 11.9. For further
information on this example see [51].

Distributive lattices and Priestley spaces in partnership

The remainder of the chapter parallels the final section of Chapter 5.
So far we have presented Boolean algebra results first, and then their
distributive lattice counterparts. While we were setting up the necessary
machinery this had advantages, since the Boolean case was somewhat
simpler. Also this approach gave an easily identified shortest-path route
to Stone’s Theorem for those interested primarily in Boolean algebras.
We contend that, once obtained, the distributive lattice representation is
just as easy to work with as that for Boolean algebras and also provides

262 Representation: the general case

a richer source of examples. Therefore, we henceforth place the emphasis
on distributive lattices, deriving Boolean algebra results as corollaries by
specializing to the discrete order.

11.27 Duality. Denote the class of bounded distributive lattices by D,
and the class of Priestley spaces (compact totally order-disconnected
spaces) by P. Define maps D : D→ P and E : P→ D by

D : L �→ Ip(L) (L ∈ D) and E : X �→ OT (X) (X ∈ P).
Theorems 11.23 and 11.24 assert that, for all L ∈ D and X ∈ P,

ED(L) ∼= L and DE(X) ∼= X;

the latter ∼= means ‘is order-homeomorphic to’.

We may use the isomorphism between L and ED(L) to represent
the members of D concretely as lattices of the form OT (X) for X ∈ P.
As an immediate application we note that the representation allows us to
construct a ‘smallest’ Boolean algebra B containing (an isomorphic copy
of) a given lattice L ∈ D: identify L with OT (X) and take B = ℘T

(X).
Lemma 11.22 shows how OT (X) and ℘T

(X) are related.

As in the finite case, X is generally very much simpler than OT (X).
We can relate properties of OT (X) to properties of X , as in 5.18
and 1.32. To complement Chapter 5, we relegate the generalization
of these results to the exercises, and use as illustrations in the text a
discussion of pseudocomplements (the subject of an exercise in the finite
case) and of ideals (of no interest in the finite case since every ideal is
then principal).

Before we proceed, a comment on a conflict of notation is called
for. We have customarily used lower case letters a, b, c, . . . for lattice
elements. On the other hand, when L ∈ D is concretely represented as
the lattice OT (X) of clopen down-sets of its dual space X , it is natural
to denote subsets of X , including elements of L, by U, V,W, . . . , and the
points of the space X by x, y, z, The problem is made worse by the
fact that the points of a prime ideal space are ideals and, as sets, ideals
are usually denoted by upper case letters. We perforce display a kind of
notational schizophrenia and switch between these conflicting notational
styles as the context indicates.

11.28 Pseudocomplements. We have encountered many distributive
lattices which are not Boolean: the requirement that every element a
of a bounded lattice L have a complement is stringent. There are
many ways to weaken the condition. One possibility is to define the
pseudocomplement of an element a in a lattice L with 0 to be

a∗ = max{ b ∈ L | b ∧ a = 0 },

Representation: the general case 263

if this exists. Pseudocomplements in finite lattices were the subject of
Exercise 5.22. Now consider L = OT (X), where X is a Priestley space.
When does U ∈ L have a pseudocomplement? We claim that this is so
if and only if ↑U is clopen, and that then U∗ = X \↑U . To prove the
claim, first observe that a down-set W in X does not intersect U if and
only if W ⊆ X \↑U . Hence X \↑U is the largest down-set disjoint from
U and, if it is also clopen, it must be U∗ . Conversely, assume U∗ exists.
Take x /∈ ↑U . We show x ∈ U∗ , from which it follows that U∗ = X \↑U .
Exercise 11.14 implies ↑U is closed. By the dual of Lemma 11.21(ii)
we can find a clopen up-set V such that x /∈ V and ↑U ⊆ V . Then
(X \ V) ∩ U = ∅, so X \ V ⊆ U∗ by definition of U∗ . This implies
that x ∈ U∗ . See Figure 11.3.

✬

✫

✩

✪
� ✩

✒✑
✏�
✂
✂
✂
✂
✂
✂
✂

U X \↑U
= U∗

Figure 11.3

11.29 Duality for ideals. Let L = OT (X) where X is a Priestley space
whose family of open down-sets we denote by L. How can we describe
the ideals and filters of L in terms of X? An ideal J is determined by
its members, which are clopen down-sets of X . Define

Φ(J) =
⋃
{U | U ∈ J } (for J ∈ I(L));

as a union of clopen sets, Φ(J) is an open set (but not in general clopen).
In the other direction, define

Ψ(W) = {U ∈ OT (X) | U ⊆W } (for W ∈ L);
it is easily checked that Ψ(W) is an ideal of L. Further, we claim that

Φ(Ψ(W)) =W for all W ∈ L and Ψ(Φ(J)) = J for all J ∈ I(L).
The first equation asserts that an open down-set W is the union of the
clopen down-sets contained in it. To prove this, take any x ∈ W and
use the dual of Lemma 11.21(ii) to find a clopen up-set V containing the
closed up-set X \W but with x /∈ V ; then x ∈ X \V , a clopen down-set
inside W (see Figure 11.4).

264 Representation: the general case

✬

✫

✩

✪

✬ ✩✏��x
X\V

W

Figure 11.4

Certainly J ⊆ Ψ(Φ(J)) for each ideal J . Take V ∈ Ψ(Φ(J)). This
means that J , regarded as a family of open subsets of X , is an open
cover of the clopen set V . By A.7, only finitely many elements of J
are needed to cover V , say U1, . . . , Un . But V ⊆ U1 ∪ · · · ∪ Un implies
V ∈ J , since J is an ideal. This establishes the second equation.

The bijective correspondence we have set up between I(L) and L
is in fact a lattice isomorphism (an easy exercise). In addition, special
types of ideal correspond to special types of open set (see Exercise 11.17).

Filters may be treated similarly: F(L) ∼= F , the lattice of open
up-sets of X .

11.30 Duality. We have amassed a lot of evidence that lattice con-
cepts in D can be translated into ordered set concepts in P and vice
versa. This ‘D-P dictionary’ results from there being what is known
as a (full) duality between D (bounded distributive lattices + {0, 1}-
homomorphisms) and P (Priestley spaces + continuous order-preserving
maps). In line with the philosophy in 1.38, we have here extended the
scope of the symbols D and P to encompass structure-preserving maps
as well as objects. For L,K ∈ D and X,Y ∈ P, we denote the set of
{0, 1}-homomorphisms from L to K by D(L,K) and the set of contin-
uous order-preserving maps from Y to X by P(Y,X).

The way the duality is required to work is formally laid out in (O)
and (M) below. Note the reversal of the directions in (M). We do not
digress to discuss the categorical background to these conditions, but do
point out that those familiar with dual vector spaces should have a sense
of déjà vu.

(O) There exist maps D : D→ P and E : P→ D such that

(i) for each L ∈ D, there exists ηL : L → ED(L) such that ηL is
an isomorphism,

(ii) for each X ∈ P, there exists εX : X → DE(X) such that εX
is an order-homeomorphism.

Representation: the general case 265

(M) For any L,K ∈ D, there exists, for each f ∈ D(L,K), a map
D(f) ∈ P(D(K), D(L)). For each X,Y ∈ P, there exists, for
each ϕ ∈ P(Y,X), a map E(ϕ) ∈ D(E(X), E(Y)). The maps
D : D(L,K)→ P(D(K), D(L)) andE : P(Y,X)→ D(E(X), E(Y))
are bijections and the diagrams below commute.

L
f−−−−→ K Y

ϕ−−−−→ X

ηL

� ηK

� εY

� εX

�
ED(L)

ED(f)−−−−→ ED(K) DE(Y)
DE(ϕ)−−−−→ DE(X)

By Exercise 11.7, P(X,2) is a {0, 1}-sublattice of 2X and is isomor-
phic to E(X)∂ . By Exercise 10.4, D(L,2) is order-isomorphic to D(L)∂ .
Exercise 11.22 indicates that these ‘homsets’ provide a viable alterna-
tive for setting up the duality between D and P. In fact, the homset
approach is technically superior but is inappropriate for a first pass at
this topic as it lacks the geometric appeal inherent in the approach via
prime ideals and clopen down-sets.

We already have (O), the object part of the duality, with ηL and εX
the maps supplied by Theorems 11.23 and 11.24 appropriately labelled.
Theorem 11.31 provides (M), the correspondence for maps.

11.31 Theorem. Condition (M) holds. Moreover,

a ∈ (D(f))(y)⇐⇒ f(a) ∈ y for all f : L→ K , a ∈ L, y ∈ D(K).

Further,

(i) f is one-to-one if and only if D(f) is onto,

(ii) f is onto if and only if D(f) is an order-embedding.

Proof. It is elementary to show that, given ϕ ∈ P(Y,X), the formula
(E(ϕ))(U) := ϕ−1(U) for U ∈ E(X) defines a {0, 1}-homomorphism
E(ϕ) : E(X)→ E(Y).

Now assume f ∈ D(L,K). Take y ∈ D(K) and define (D(f))(y) :=
f−1(y). It is routine to check that (D(f))(y) is a prime ideal in L and
that D(f) is order-preserving. To prove D(f) is continuous it is enough
(see the proof of 11.24) to prove that D(f)−1(ηL(a)) is clopen for each
a ∈ L. (Here ηL(a) is just the set we previously wrote as Xa ; we
have used the alternative notation because we now have to keep track of
subbasic clopen sets in two different dual spaces.) We have

y ∈ D(f)−1(ηL(a))⇐⇒ (D(f))(y) ∈ ηL(a)⇐⇒ a /∈ (D(f))(y)
⇐⇒ f(a) /∈ y ⇐⇒ y ∈ ηK(f(a)),

266 Representation: the general case

and ηK(f(a)) is clopen in D(K). The maps D and E are therefore
well defined. To verify that diagrams in (M) indeed commute requires
a fairly energetic definition-chase, which we leave to the reader, along
with the proofs that D and E are bijections on homsets and the proofs
of (i) and (ii) (Exercises 11.11 and 11.12). �

Congruences play a very central role in the more advanced theory
of lattices. In particular, they are important in the study of distributive
lattices with additional operations. It is therefore gratifying that the
lattice of congruences of L ∈ D turns out to have a very nice concrete
representation under our duality.

11.32 Duals of congruences. Let L ∈ D. As usual, our work is
simplified by assuming that L = OT (X) for some X ∈ P. We have
correspondences (the first by 6.9, the second by 11.31, and the last
by A.7):

congruences on L↔ surjective {0, 1}-homomorphisms with domain L
↔ continuous order-embeddings into X

↔ closed subsets of X.

Further, a larger congruence on L gives a smaller homomorphic image
and hence a smaller closed subset of X . We would therefore expect
the lattice ConL to be isomorphic to the dual of the lattice Γ(X) of
closed subsets of X . We now elucidate how this isomorphism works,
leaving the reader to check the details (not difficult, but a clear head is
recommended).

The first step is easy. For each closed subset Y of X , we can define
a congruence θY on OT (X) by

(U, V) ∈ θY ⇐⇒ U ∩ Y = V ∩ Y
for U, V ∈ OT (X). The congruence θY is the kernel of the {0, 1}-
homomorphism f from OT (X) onto OT (Y) given by f(U) := U ∩ Y .

Now let θ be any congruence on L and let q : OT (X) → OT (X)/θ
be the natural quotient map. Theorems 6.9 and 11.23 guarantee that
there exists an isomorphism h : OT (X)/θ → OT (Z) for some Z ∈ P.
Then h ◦ q maps OT (X) onto OT (Z). By 11.31 the dual of this map is
an order-embedding ϕ : Z ↪→ X . The set Y := ϕ(Z) is closed in X and
θ = θY .

This shows that Y �→ θ[Y] is a map from Γ(X) onto ConL. It is

an order-isomorphism between Γ(X)∂ and ConL provided θY1
⊆ θY2

implies Y1 ⊇ Y2 in Γ(X) (the reverse implication is trivial). It is enough

Representation: the general case 267

to prove that whenever Z is a closed subset of X and y ∈ X \ Z ,
there exist clopen down-sets U, V in X such that U ∩ Z = V ∩ Z and
y ∈ V \U . To do this, apply Exercise 11.14 and Lemma 11.21(ii) twice:
first to ↓(Z ∩↓y) and ↑y to yield U , then to U ∪↓y and ↑(Z \ U) to
yield V .

Hence Γ(X)∂ ∼= ConOT (X), via the map Y �→ θY . We deduce
that ConO(X) is isomorphic to the lattice of open subsets of X .

Exercises

Exercises from the text. Prove Lemma 11.6(ii). Show that the family
T of subsets of N∞ , defined in Example 11.8, is a topology on N∞ – but
beware special cases when checking the topology conditions (T1)–(T3)!
(See A.1 for conditions (T1)–(T3).) Prove (or complete the proof of)
Lemmas 11.21 and 11.22. Prove the assertion in the penultimate para-
graph of 11.29 that I(L) ∼= L. Fill in the details in 11.32.
11.1 A topological space X is called zero-dimensional if the clopen

subsets of X form a basis for the topology. Prove that the following
conditions are equivalent: (One implication is tough!)

(i) X is a Boolean space;

(ii) X is compact, Hausdorff and the only connected subsets of
X are the singletons {x} for x ∈ X ;

(iii) X is compact, T0 (see Exercise 1.21) and zero-dimensional.

11.2 Let X and Y be topological spaces with X ∩ Y = ∅. There is a

natural topology on X
.∪ Y whose open sets are of the form A

.∪B
where A is open in X and B is open in Y . This space is called
the disjoint union of X and Y . (If X and Y are not disjoint, we
must first replace them by disjoint copies – see Exercise 1.9 where
the corresponding construction was considered for ordered sets.)

(i) Show that if X and Y are (disjoint) Boolean spaces then
X

.∪ Y is also a Boolean space.

(ii) Describe the Boolean algebra of clopen subsets of X
.∪ Y .

11.3 A topological space X is called extremally disconnected if the
closure of every open set in X is open. Prove that a Boolean
lattice B is complete if and only if the Boolean space D(B) is
extremally disconnected.

[Hint. Apply the duality. Work with a Boolean space X and the
Boolean lattice ℘T

(X).]

268 Representation: the general case

11.4 Given a chain C define the interval topology on C to be the
topology which has ∅, C and the sets of the form {x ∈ C | x < c }
and {x ∈ C | x > c }, for c ∈ C , as a subbasis.

(i) Prove that the interval topology on a chain C gives a Boolean
space if and only if C is an algebraic lattice.

(ii) (For those who know about ordinals.) Show that the interval
topology on an ordinal λ gives a Boolean space if and only
if λ is not a limit ordinal.

11.5 (For those who want to get to know LINDA better.)

(i) Check that each axiom of the formal system L, as given
in 11.11, is a tautology.

(ii) Show that, as claimed in 11.14, the orders defined on LA|=

and LA� are well defined.
(iii) By following the hints given in 11.14, prove that [ϕ ∨ ψ] is

the least upper bound of [ϕ] and [ψ] in LA� .
(iv) Let v be a valuation. Prove that the map fv : LA� → 2,

as defined in 11.15, is a well-defined Boolean homomorphism
and that every Boolean homomorphism from LA� to 2 arises
in this way from some valuation.

11.6 Characterize the atoms

(i) in ℘T
(X) for a Boolean space X ,

(ii) in OT (X) for a Priestley space X .

11.7 Let X be a Priestley space.

(i) Assume that ϕ ∈ P(X,2). Show that ϕ−1(0) is a clopen
down-set in X .

(ii) Let U be a clopen down-set in X . Define ϕ : X → 2 by

ϕ(x) =

{
1 if x /∈ U,

0 if x ∈ U.

Show that ϕ ∈ P(X,2).
(iii) Let L denote the set P(X,2). Show that L is a {0, 1}-

sublattice of 2X . Set up an order-isomorphism between
OT (X) and L∂ .

11.8 (i) Show that if X and Y are (disjoint) Priestley spaces then

X
.∪ Y is also a Priestley space (for the definition of the

topology on X
.∪ Y see Exercise 11.2).

Representation: the general case 269

(ii) (a) Show that, if X,Y ∈ P, then OT (X
.∪ Y) is isomorphic

to OT (X)×OT (Y).

(b) Let L,K ∈ D. Use (a) and the duality between D and P
to show there is an order-homeomorphism from the space
D(L × K) of prime ideals of L × K to D(L)

.∪ D(K).
(Compare this with Exercise 10.5.)

11.9 Given X,Y ∈ P, we denote by X ⊕ Y the usual linear sum of the
underlying ordered sets endowed with the disjoint union topology
defined in Exercise 11.2.

(i) Show that X ⊕ Y ∈ P.
(ii) Show that OT (X ⊕Y) ∼= OT (X)⊕OT (Y), where ⊕ denotes

the vertical sum as defined in Exercise 1.18 (the finite case).

(iii) Let L,K ∈ D. Find all prime ideals in L⊕K . Hence prove,
without use of the duality between D and P, that D(L⊕K)
is order-homeomorphic to D(L)⊕ 1⊕D(K).

X5 ❜
a1

❜b1
❅
❅ ❜

a3

❜b3
❅
❅ ❜

a5

❜b5
❅❅ � � �� � � ❜

a∞

❜b∞� � �� � � ❜
a6

❜b6
���

�
❜b4❜
a4

�
�

❜b2❜
a2

X4 ❜
a1

❜b1
❅
❅ ❜

a2

❜b2
❅
❅ ❜

a3

❜b3
❅❅ � � �� � � ❜

a∞

❜b∞❜ c

X3

❜b1 ❜b2 ❜b3 � � � ❜b∞❜
a∞
� � � ❜

a3

❜
a2

❜
a1

X2❜
1

❜
2

❜
3

❜
4

✏✏
✏✏

✏✏
✏✏✏

✦✦
✦✦

✦✦
✦

✟✟
✟✟
✟

✑
✑✑

❜∞����
X1 ❜

a1

❜b1
❅
❅ ❜

a2

❜b2
❅
❅ ❜

a3

❜b3
❅❅ � � �� � � ❜

a∞

❜b∞

Figure 11.5

11.10 Consider the ordered spaces shown in Figure 11.5. In each case the
order and the topology should be apparent. For example, in X1

the only comparabilities are a1 −< b1 and an −< bn−1, an −< bn

270 Representation: the general case

for n � 2; note, in particular, that a∞ ‖ b∞ . As a topological
space, X1 is the disjoint union of two copies on N∞ , namely
{a1, a2, . . . } ∪ {a∞} and {b1, b2, . . . } ∪ {b∞}. The other examples
are built similarly from one or two copies of N∞ .

(i) Show that X1 /∈ P.
(ii) Show that X2 ∈ P and describe all the elements of OT (X2).

(iii) Consider the Priestley space Y given in Figure 11.2. Show
that OT (Y) is a sublattice of FC(N) and describe the ele-
ments of OT (Y) (in terms of odd and even numbers).

(iv) Show that X3 ∈ P. Show that OT (X3) is isomorphic to
a sublattice of FC(N) × FC(N). [Hint. Find a continuous
order-preserving map from N∞

.∪ N∞ onto X3 then use the
duality.] Give an explicit description of the elements of this
sublattice of FC(N)× FC(N).

(v) Show that X4 ∈ P and X5 ∈ P.

11.11 This exercise completes the proof of Theorem 11.31. Let L,K ∈ D
and let f ∈ D(L,K).
(i) (a) Show that, if I is a prime ideal of K , then f−1(I) is a

prime ideal of L.

(b) Show that, if K1 is a sublattice of K and J is an ideal of
K1 , then ↓J is an ideal of K .

(ii) (a) Let K1 be a sublattice of K and let I1 be a prime ideal of
K1 . Show that there exists a prime ideal I of K satisfying
K1 ∩ I = I1 [Hint. Apply (DPI) to the ideal ↓I and filter
↑(K1 \ I1) of K .]

(b) Prove that, if f is one-to-one, then D(f) is onto.

(c) Prove that, if D(f) is onto, then f is one-to-one. [Hint.
Prove the contrapositive. Assume that a, b ∈ L satisfy
a �= b and f(a) = f(b). Use Theorem 10.21 to obtain a
prime ideal I ∈ D(L) which is not in the image of D(f).]

(iii) (a) Show that, if f is onto, then D(f) is an order-embedding.

(b) Prove that, if D(f) is an order-embedding, then f is onto.
[Hint. Again prove the contrapositive. Let K1 = f(L)
and assume that a ∈ K \ K1 . Apply (DPI) first to the
pair ↓a, ↑(K1 ∩ ↑a) to yield a prime ideal I , and then to
the pair ↓(K1 ∩ I), ↑a to yield a second prime ideal J .
Show that D(f)(I) ⊆ D(f)(J) while I 	 J .]

Representation: the general case 271

11.12 Let X,Y ∈ P, let X1 be a closed subset of X and let ϕ ∈ P(Y,X).
(i) Let U1 be a clopen down-set in X1 . Prove that there exists

a clopen down-set U in X satisfying X1 ∩ U = U1 . [Hint.
Apply Lemma 11.21(ii) to the pair ↓U1, ↑(X1 \ U1).]

(ii) Prove that, if ϕ is an order-embedding, then E(ϕ) is onto.

(iii) Use (ii) and the duality between D and P to give an alter-
native proof of Exercise 11.11(iii). [Hint. Use the left-hand
commutative diagram in 11.30.]

11.13 A lattice M ∈ D is said to be injective in D if, for each K ∈ D and
each {0, 1}-embedding f : L → K , every {0, 1}-homomorphism
g : L → M can be extended to a homomorphism g : K → M ,
that is g(f(a)) = g(a) for all a ∈ L. Similarly, a Priestley space
Z is injective in P if, for every X ∈ P and every continuous
order-embedding ϕ : Y → X , each continuous order-preserving
map ψ : Y → Z extends to a continuous order-preserving map
ψ : X → Z .

(i) Use Exercises 11.11(ii)(a) and Exercise 10.4 to show that 2
(regarded as a bounded distributive lattice) is injective in D.

(ii) Use Exercises 11.7 and 11.12(i) to show that 2 (regarded as
a Priestley space) is injective in P.

11.14 Let X be a Priestley space.

(i) Show that ↓y and ↑y are closed for each y ∈ X .

(ii) Show that, if Y ⊆ X is closed in X , then ↑Y and ↓Y are
closed in X .

(iii) Show that Y is a closed down-set in X if and only if Y is an
intersection of clopen down-sets.

(iv) Prove that every directed subset D of X has a join in X. [Hint.
Use the duality.] (Hence X is a pre-CPO.)

11.15 For any ordered set P , let MinP and MaxP denote respectively
the set of minimal elements and the set of maximal elements of P .

(i) Prove that if X is a Priestley space then both MinX and
MaxX are non-empty provided X is. [Hint. Use the duality
between D and P.]

(ii) (For those at home with (ZL).) Give a direct proof of the
claim in (i). [Hint. When proving that any chain C in X
has an upper bound in X , use Exercise 11.14(ii) and the
compactness of X to show that

⋂
x∈C↑x �= ∅.]

272 Representation: the general case

11.16 (Compare with Exercise 11.3.) An ordered space X is called
extremally order-disconnected if, for every open down-set U in X ,
the smallest closed down-set containing U is open. Prove that
a bounded distributive lattice L is complete if and only if the
space D(L) is extremally order-disconnected. [Hint. Apply the
duality. Apply Exercise 11.14(iii) to a Priestley space X and the
distributive lattice OT (X).]

11.17 Let X be a Priestley space and let L = OT (X). (See 11.29.)

(i) Prove that J is a principal ideal in L if and only if Φ(J) is
a clopen down-set.

(ii) Prove that I is a prime ideal in L if and only if Φ(I) = X \↑x
for some x ∈ X .

(iii) Prove that I is a maximal ideal in L if and only if Φ(I) =
X \ {x} for some maximal element x of X .

11.18 Let L ∈ B. Use Exercise 11.17 to prove that every prime ideal in
L is principal if and only if L is finite.

11.19 Let X be a Priestley space and let L = OT (X). Describe the
mutually inverse maps which establish a bijection between the
lattice F(L) of filters of L and the lattice F of open up-sets in X .

11.20 Let B be a Boolean algebra. Show that the lattices ConB of
(Boolean) congruences, I(B) of ideals and F(B) of filters are
isomorphic. [Hint. Use 11.32 and Exercise 6.5.]

Conclude that every (Boolean) congruence θ on a Boolean algebra
is of the form θJ for some ideal J in B (see Exercise 6.4).

11.21 A Priestley space X is called a p-space if ↑U is open (and there-
fore clopen, by Exercise 11.14(ii)) for every clopen down-set U
in X . Thus, by 11.28, L = OT (X) is pseudocomplemented if and
only if X is a p-space. Let X and Y be p-spaces; then a con-
tinuous order-preserving map ϕ : Y → X is called a p-morphism
if ϕ(MinY ∩↓y) = MinX ∩↓ϕ(y) for all y ∈ Y . Given pseudo-
complemented lattices L and K , a map f : L → K is said to
preserve pseudocomplements if f(a∗) = f(a)∗ for all a ∈ L.

(i) Prove that, if X and Y are p-spaces and ϕ ∈ P(Y,X),
then E(ϕ) : OT (X)→ OT (Y) preserves pseudocomplements
if and only if ϕ is a p-morphism.

(ii) Show that if X is a p-space then MinX is closed in X .

(iii) Show that Examples X2 and X3 from Exercise 11.10 are not
p-spaces while Examples X4 and X5 are.

Representation: the general case 273

(iv) Let X be a Priestley space such that for every x ∈ X there is
a unique element m(x) ∈ MinX such that m(x) � x. Show
that X is a p-space if and only if the map m : X → MinX
is continuous.

11.22 This exercise and the next introduce the homset approach to du-
ality referred to in 11.30. Let L ∈ D and X ∈ P. The first task is
to topologize D(L,2). Let a ∈ L and ε ∈ {0, 1} and let

U(a, ε) = { f ∈ 2L | f(a) = ε }.

Let T be the topology on 2L which has the sets U(a, ε), for a ∈ L
and ε ∈ {0, 1}, as a subbasis; thus U is open in 2L if and only if
it is a union of sets each of which is a finite intersection of sets of
the form U(a, ε). We endow D(L,2) with the subspace topology;
thus sets of the form

U(a, ε) ∩D(L,2) = { f ∈ D(L,2) | f(a) = ε }

constitute a subbasis for the topology on D(L,2). Show that the
map ϕ : Ip(L) → 2L , given by ϕ(I) := fI (see Exercise 10.4), is
a homeomorphism onto D(L,2). [Hint. By Exercise 10.4, ϕ is
one-to-one and maps onto D(L,2), so, by A.7, it remains to show
that ϕ is continuous.]

11.23 Define maps D′ : D→ P and E′ : P→ D by

D′ : L �→ D(L,2) (L ∈ D),
E′ : X �→ P(X,2) (X ∈ P).

Given L,K ∈ D and g ∈ D(L,K), define D′(g) : D′(K)→ D′(L)
by (D′(g))(f) = f ◦ g for all f ∈ D′(K) = D(K,2) and, given
X,Y ∈ P and ψ ∈ P(Y,X), define E′(ψ) : E′(X) → E′(Y) by
(E′(ψ))(ϕ) = ϕ ◦ ψ for all ϕ ∈ E′(X) = P(X,2).

(i) Show that D′(g) is continuous and order-preserving and that
E′(ψ) is a {0, 1}-homomorphism.

(ii) For all L ∈ D and X ∈ P define ηL : L → E′D′(L) and
εX : X → D′E′(X) to be the natural ‘evaluation maps’, that
is, (ηL(a))(f) := f(a) for all a ∈ L and f ∈ D′(L) =
D(L,2) and, similarly, (εX(x))(ϕ) := ϕ(x) for all x ∈ X
and all ϕ ∈ E′(X) = P(X,2). Show that ηL is a {0, 1}-
homomorphism, that εX is continuous and order-preserving

274 Representation: the general case

and that the diagrams below commute.

L
f−−−−→ K Y

ϕ−−−−→ X

ηL

� ηK

� εY

� εX

�
E′D′(L)

E′D′(f)−−−−−→ E′D′(K) D′E′(Y)
D′E′(ϕ)−−−−−→ D′E′(X)

11.24 Let S be a set and equip 2S with the topology defined in Ex-
ercise 11.22. You may assume without proof that this topology
is compact. (This is a consequence of a famous result known
as Tychonoff’s Theorem. Alternatively it can be obtained from
Alexander’s Subbasis Lemma.)

(i) Show that for all S the ordered space 2S belongs to P.

(ii) Prove directly from the definition of the topology on 2L that
D(L,2) is a closed subset of 2L .

(iii) Let X be an ordered space. Show that X ∈ P if and only if
there exists for some set S an order-homeomorphism ϕ from
X onto a closed subspace of 2S .

Appendix A: a Topological Toolkit

This appendix provides a very concise summary of the results from
topology needed in Chapter 11 and its exercises. Our account aims solely
to pinpoint those topological ideas we need. Any standard text may
be consulted for proofs and further motivation. Our references are to
W.A. Sutherland, An Introduction to Metric and Topological Spaces [15].

Topology is usually introduced as an abstraction of concepts first
met in elementary analysis, such as open neighbourhood and continuous
function. In a topological space, a family of open sets generalizes the
open neighbourhoods of the euclidean spaces Rn . The axioms for a
topological space bring under topology’s umbrella many structures which
are very unlike euclidean spaces. It is certain of such spaces that concern
us. The metric spaces which utilize the idea of a distance function
analogous to the modulus function on R and which are frequently used
as a stepping stone to topological spaces play no role here.

Proving results in topology demands a certain facility in manipu-
lating sets and maps. The formulae set out in [15], pp. xi–xiii, are a
necessary stock in trade.

A.1 Topological spaces. A topological space (X; T) consists of a set
X and a family T of subsets of X such that

(T1) ∅ ∈ T and X ∈ T ,
(T2) a finite intersection of members of T is in T ,
(T3) an arbitrary union of members of T is in T .

The family T is called a topology on X and the members of T are called
open sets. We write X in place of (X; T) where T is the only topology
under consideration. The justification for the lopsidedness of conditions
(T2) and (T3) is ‘because it works’. The standard topology TR on R
consists of

{U ⊆ R | (∀x ∈ U)(∃δ > 0) (x− δ, x+ δ) ⊆ U };
here δ may depend on x. Equivalently, TR consists of those sets which
can be expressed as unions of open intervals, together with ∅. Cer-
tainly this family does satisfy (T1), (T2) and (T3). The equation⋂
n�1(−1/n, 1/n) = {0} exhibits an intersection of open sets which is

not open. Thus (T2) could not be strengthened to require arbitrary
intersections of open sets to be open without sacrificing the motivating
example of the ‘usual’ open sets of R.

Given a topological space (X; T) we define a subset of X to be
closed if it belongs to Γ(X) := {X \ U | U ∈ T }. The family Γ(X) is

276 Appendix A: a topological toolkit

closed under arbitrary intersections and finite unions. For every A ⊆ X
there exists a smallest closed set A containing A; see 7.1 and [15], 3.7.

Sets which are both open and closed are called clopen. Very many of
the topological spaces encountered in elementary analysis and geometry
are connected, in the sense that their only clopen subsets are the whole
space and the empty set. The spaces used in our representation theory,
by contrast, have an ample supply of clopen sets. For a discussion of
connectedness, see [15], Chapter 6.

A.2 Subspaces ([15], 3.4). Let (X; T) be a topological space. Any
subset Y of X inherits a topology in a natural way. It is given by

TY := {V ⊆ Y | V = U ∩ Y for some U ∈ T }.

A.3 Bases and subbases ([15], 3.2, 3.3). We need to be able to create
a topology on a set X in which a specified family S of subsets of X
are open sets. We shall always assume that S contains ∅ and X . If
S is already closed under finite intersections, then we define T to be
those sets which are unions of sets in S . Then T satisfies (T1), (T2)
and (T3) and S is said to be a basis for T . In general, to obtain a
topology containing S we first form B, the family of sets which are finite
intersections of members of S , and then define T to be all arbitrary
unions of members of B. In this case S is called a subbasis for T .
A.4 Continuity. Let (X; T) and (X ′; T ′) be topological spaces and
f : X → X ′ a map. Then ([15], 3.7.8, 3.2.5 and p. xii) the following
conditions are equivalent:

(i) f−1(U) is open in X whenever U is open in X ′ ;
(i)′ f−1(V) is closed in X whenever V is closed in X ′ ;
(ii) f−1(U) is open in X for every U ∈ S , where S is a given basis or

subbasis for T ′ .
When f satisfies any of these conditions it is said to be continuous. In
the special case that (X; T) = (X ′; T ′) = (R; TR) and S is the family of
subintervals (a, b) (for −∞ < a < b < ∞), plus R and ∅, (ii) is just a
restatement of the ε-δ definition of continuity that so plagues students.

The map f : X → X ′ is said to be a homeomorphism if f is bijective
and both f and f−1 are continuous. Homeomorphisms are topology’s
isomorphisms.

A.5 Hausdorff spaces ([15], Chapter 4). Of a hierarchy of possible
separation conditions augmenting the topological space axioms, the most
important to us is the Hausdorff condition. The topological space (X; T)

Appendix A: a topological toolkit 277

is said to be Hausdorff if, given x, y ∈ X with x �= y , there exist open
sets U1, U2 such that x ∈ U1, y ∈ U2 and U1∩U2 = ∅. Mnemonically, X
is Hausdorff if distinct points can be ‘housed off’ in disjoint open sets. It
is easy to prove the useful result that singleton sets in a Hausdorff space
are closed.

A.6 Compactness ([15], Chapter 5). A prime objective of elementary
topology is to set in their wider topological context the various results
concerning closed bounded subintervals of R and the continuous real-
valued functions on them. The famous Heine–Borel Theorem states
that a subset of R is closed and bounded if and only if it is compact, in
the sense we shortly define. Compactness is a fundamental topological
concept and may be regarded as a substitute for finiteness. It frequently
compensates for the restriction to finite intersections in axiom (T2) by
allowing arbitrary families of open sets to be reduced to finite families.
All the spaces we use in our representation theory are compact.

Let (X; T) be a topological space and let U := {Ui}i∈I ⊆ T . The
family U is called an open cover of Y ⊆ X if Y ⊆ ⋃

i∈IUi . A finite
subset of U whose union still contains Y is a finite subcover. We say Y
is compact if every open cover of Y has a finite subcover.

The lemmas below contain basic results about compact spaces which
are also Hausdorff. The first relates compactness and closedness and
shows that continuous maps behave well.

A.7 Lemma. Let (X; T) be a compact Hausdorff space.

(i) ([15], 5.4.2, 5.6.1) A subset Y of X is compact if and only if it is
closed.

(ii) ([15], 5.5.1, 5.9.1) Let f : X → X ′ be a continuous map, where
(X ′; T ′) is any topological space.

(a) f(X) is a compact subset of X ′ .
(b) If (X ′; T ′) is Hausdorff and f : X → X ′ is bijective, then f is

a homeomorphism.

Since the next lemma is given in [15] only as an exercise we outline
its proof. The lemma strengthens the Hausdorff condition, which is
recaptured by taking the closed sets to be singletons.

A.8 Lemma. Let (X; T) be a compact Hausdorff space.

(i) Let V be a closed subset of X and x /∈ V . Then there exist disjoint
open sets W1 and W2 such that x ∈W1 and V ⊆W2 .

(ii) Let V1 and V2 be disjoint closed subsets of X . Then there exist
disjoint open sets U1 and U2 such that Vi ⊆ Ui for i = 1, 2.

278 Appendix A: a topological toolkit

Proof. (i) For y ∈ V , use the Hausdorff condition to construct dis-
joint open sets Ux,y1 and Ux,y2 containing x and y respectively. Then
U2 := {Ux,y2 | y ∈ V } is an open cover of V , which is compact by A.7.
Take a finite subcover {Ux,yj2 | j = 1, . . . , n }. Let Ux1 :=

⋂
1�j�nU

x,yj
1

and Ux2 :=
⋃

1�j�nU
x,yj
2 . Then Ux1 and U

x
2 are disjoint, since each U

x,yj
2

does not intersect the corresponding U
x,yj
1 and so is disjoint from Ux1 .

Also Ux1 and U
x
2 are open. (Note how compactness reduces the intersec-

tion we need to a finite one, so (T2) applies.) These sets contain x and
V respectively. Take W1 := Ux1 and W2 := Ux2 to obtain (i).

For (ii) we repeat the process, taking V := V2 and letting x vary
over V1 . The family U1 := {Ux1 | x ∈ V1 } is an open cover of the
compact set V1 . Take a finite subcover {Uxi

1 | i = 1, . . . ,m } and define
U1 :=

⋃
1�i�mU

xi
1 and U2 :=

⋂
1�i�mU

xi
2 . �

The last of this group of lemmas enables us to fit our finite repre-
sentation theory into the general theory in Chapter 10.

A.9 Lemma. Let (X; T) be a compact Hausdorff space. Then the
following conditions are equivalent:

(i) X is finite;

(ii) every subset of X is open (that is, T is discrete);

(iii) every subset of X is clopen.

Proof. Trivially (ii) ⇔ (iii). To prove (iii) ⇒ (i) consider the open cover
{ {x} | x ∈ X }. Finally assume (i). For ∅ �= Y ⊆ X , the set X \ Y is a
finite union of singleton sets, which are closed because X is Hausdorff.
So X \ Y is closed, whence Y is open. �

The deepest result about compact spaces we need is Alexander’s
Subbasis Lemma. We prove this using (BPI); recall 10.17. We have
elected to avoid the machinery of product spaces in the main text. Those
who already know about product spaces will realize that Alexander’s
Lemma is closely related to Tychonoff’s Theorem. The latter is employed
directly in the alternative approach to duality outlined in Exercise 11.22.

A.10 Alexander’s Subbasis Lemma. Let (X; T) be a topological space
and S a subbasis for T . Then X is compact if every open cover of X
by members of S has a finite subcover.

Proof. Let B be the basis formed from all finite intersections of members
of S . To prove X is compact it is enough to show that every open cover
U of X by sets in B has a finite subcover. Suppose this is false and
let U be an open cover of X by sets in B which does not have a finite
subcover. Define J to be the ideal in ℘(X) generated by U , so a typical

Appendix A: a topological toolkit 279

element of J is a subset of U1 ∪ · · · ∪ Uk for some U1, . . . , Uk ∈ U (see
Exercise 2.22); J is proper, by our hypothesis. Use (BPI) to construct
a prime ideal I of ℘(X) containing J . For each x ∈ X , there exists
U(x) ∈ U with x ∈ U(x). Each U(x) is a finite intersection of members
of S and belongs to I since U ⊆ I . As I is prime we may assume that
U(x) itself lies in S . Let V := {U(x) | x ∈ X }. Then V is an open
cover of X by members of S and so by assumption has a finite subcover.
But then X = U(x1) ∪ · · · ∪ U(xn) for some finite subset {x1, . . . , xn}
of X , so that X ∈ I , �. �

Appendix B: Further Reading

Background references for related areas of mathematics

[1] S. Abramsky, D. M. Gabbay and T. S. E. Maibaum (eds.), Handbook of
Logic in Computer Science, Vol. I, Background: mathematical structures,
Oxford University Press, 1992. [This includes accounts of basic universal
algebra, category theory, topology and logic.]

[2] S. N. Burris, Logic for Mathematics and Computer Science, Prentice-Hall,
1998.

[3] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra,
Springer-Verlag, 1981. (Millennium edition may be freely downloaded
from http://thoralf2.uwaterloo.ca.)

[4] P. J. Cameron, Introduction to Algebra, Oxford University Press, 1998.

[5] J. Dugundji, Topology , Allyn and Bacon, 1966.

[6] H. B. Enderton, Elements of Set Theory , Academic Press, 1977.

[7] J. B. Fraleigh, A First Course in Abstract Algebra, 6th edition, Addison-
Wesley, 1999.

[8] D. C. Goldrei, Classic Set Theory: a Guided Independent Study , Chap-
man & Hall/CRC, 1996.

[9] G. Grätzer, Universal Algebra, 2nd edition, Springer-Verlag, 1979.

[10] A. G. Hamilton, Logic for Mathematicians, 2nd edition, Cambridge Uni-
versity Press, 1988.

[11] W. Hodges, A Shorter Model Theory , Cambridge University Press, 1997.

[12] J. Kelley, General Topology , Van Nostrand, 1955.

[13] S. Maclane, Categories for the Working Mathematician, 2nd edition,
Springer-Verlag, 1998.

[14] J. J. Rotman, An introduction to the theory of groups, 4th edition,
Springer-Verlag, 1995.

[15] W. A. Sutherland, An Introduction to Metric and Topological Spaces,
Oxford University Press, 1975.

References from the computer science literature

In recent years much of the stimulus for the development of aspects of
order theory has come from computer science. Many of the references
cited below were not available when the first edition of this book was
published. They give a sample of books and papers, written from a
computer science perspective, which deal with topics related to lattices
and order; further references can be found in their bibliographies.

We draw attention in particular to [25], our primary source for the
discussion of refinement in Chapter 7 and to the forthcoming multi-
author volume [17], which treats in a unified way a spectrum of material

Appendix B: further reading 281

from pure order theory to practical program construction, and has Galois
connections and fixpoint calculus as central themes.

[16] S. Abramsky, D. M. Gabbay and T. S. E. Maibaum (eds.), Handbook of
Logic in Computer Science, Vol. 3, Semantic structures, Oxford Univer-
sity Press, 1994.

[17] R. Backhouse, R. Crole and J. R. Gibbons, Algebraic and Coalgebraic
Methods in the Mathematics of Program Construction, Springer Lecture
Notes in Computer Science, due for publication in 2002.

[18] A. Edelat, Domains for computation, physics and exact real arithmetic,
Bull. Symbolic Logic 3 (1997), 401–452.

[19] Eindhoven University of Technology Mathematics of Program Construc-
tion Group, Fixed-point calculus, Inf. Proc. Letters 53 (1995), 131–136.

[20] C. A. Gunter, Semantics of Programming Languages, MIT Press, 1992.

[21] C. A. Gunter and D. S. Scott, Semantic domains, in Handbook of Theo-
retical Computer Science, Vol. B, J. van Leeuween (ed.), Elsevier, 1990,
633–674.

[22] C. A. R. Hoare and H. Jifeng, Unifying Theories of Programming ,
Prentice-Hall, 1998.

[23] J. D. Lawson, The versatile continuous order, Lecture Notes in Computer
Science 298, M. Main et al. (eds.), Springer-Verlag, 1987, 134–160.

[24] J. Loeckx and K. Sieber, The Foundations of Program Verification, 2nd
edition, Wiley–Teubner, 1987.

[25] A. K. McIver, C. C. Morgan and J. W. Sanders, Programs and Abstrac-
tion. Obtainable electronically via:
ftp://ftp.comlab.ox.ac.uk/tmp/Jeff.Sanders/w2.ps.

[26] A. Melton, D. A. Schmidt and G. E. Strecker, Galois connections and
computer science applications, Lecture Notes in Computer Science 240,
G. Goos and J. Hartmanis (eds.), Springer-Verlag, 1986, 299–312.

[27] A. W. Roscoe, The Theory and Practice of Concurrency , Prentice-Hall
1997.

[28] D. A. Schmidt, Denotational Semantics, Allyn & Bacon, 1986.

[29] D. S. Scott, Domains for denotational semantics, Lecture Notes in Com-
puter Science 140, M. Nielsen and E. T. Schmidt (eds.), Springer-Verlag,
1982, 577–613.

[30] V. Stoltenberg-Hansen, I. Lindström and E. R. Griffor, Mathematical
theory of domains, Cambridge Tracts in Computer Science 22, Cam-
bridge University Press, 1994.

[31] A. S. Tanenbaum, Structured Computer Organization, 4th edition, Prent-
ice-Hall, 1999.

[32] G. Winskel and K. G. Larsen, Using information systems to solve domain
equations recursively, Lecture Notes in Computer Science 173, G. Kahn
and G. D. Plotkin (eds.), Springer-Verlag, 1984, 109–130.

282 Appendix B: further reading

General references on the theory of ordered sets and lattices

Rather few books have been written on lattices and ordered sets. The suc-
cessive editions of G. Birkhoff’s Lattice Theory (1940, 1948 and 1967) are
pioneering classics. In the 1960s George Grätzer put forward a proposal
for a survey of the whole of lattice theory in depth, of which his textbook
[39] on distributive lattices was originally intended as the first part. The
rapid development of lattice theory in the following decade quickly made
Grätzer’s original objective quite impossible to attempt and his General
Lattice Theory , which appeared in 1978, had more restricted aims. The
second edition, [40], published twenty years later, includes appendices
by various authors on later developments and a comprehensive bibliog-
raphy. A four-volume work on the theory of algebras, in which lattices
play a central role, was planned in the 1980s by Ralph McKenzie, George
McNulty and Walter Taylor. Only the first volume, [42], of this advanced
monograph has appeared in print.

Marcel Erné’s enchantingly illustrated text [36] covers much of the
same elementary material on ordered sets as we do and provides links
with set theory. The forthcoming monograph [47] takes the theory of
ordered sets further. The Compendium, [38], and Johnstone’s treatise,
[41], are essential reading, at an advanced level, for those wishing to
pursue further the order-theoretic background to domain theory and the
connections between order, lattices and topology.

Proceedings of conferences supplement the textbook literature. In
particular we draw attention to [43]. This contains a range of interesting
articles which give access through their bibliographies to applications of
order theory (including those in the social sciences) which we do not have
space to reference individually. In addition [43] contains a comprehensive
bibliography for ordered sets, up to 1981. Lattices and ordered sets are
also served by two specialist journals, Algebra Universalis and Order ,
which were launched in 1971 and 1984, respectively.

[33] R. Balbes and Ph. Dwinger, Distributive Lattices, University of Missouri
Press, 1974.

[34] G. Birkhoff, Lattice Theory , 3rd edition, Coll. Publ., XXV, American
Mathematical Society, 1967.

[35] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-
Hall, 1973.

[36] M. Erné, Einführung in die Ordnungstheorie, Bibliographisches Institut,
Mannheim, 1982.

[37] R. Freese, J. Ježek and J. B. Nation, Free lattices, Mathematical Surveys
and Monographs 42, Amer. Math. Soc., 1995.

[38] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S.
Scott, A Compendium of Continuous Lattices, Springer-Verlag, 1980.

[39] G. Grätzer, Lattice Theory: First Concepts and Distributive Lattices,
W. H. Freeman, 1971.

Appendix B: further reading 283

[40] G. Grätzer, General Lattice Theory , 2nd edition, Birkhäuser Verlag, 1998.

[41] P. T. Johnstone, Stone Spaces, Cambridge University Press, 1982.

[42] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices and
Varieties, Vol. I, Wadsworth & Brooks/Cole, 1987.

[43] I. Rival (ed.), Ordered sets, NATO ASI Series 83, Reidel, 1982.

[44] I. Rival (ed.), Graphs and order, NATO ASI Series 147, Reidel, 1985.

[45] I. Rival (ed.), Algorithms and order, NATO ASI Series 255, Reidel, 1989.

[46] I. G. Rosenberg and G. Sabidussi (eds.), Algebras and orders, NATO ASI
Series C 389, Kluwer Academic Publishers, 1993.

[47] B. Schröder, Ordered Sets – Underlying Structure and Open Problems,
Birkhäuser Verlag (forthcoming).

Background and further reading on specialized topics

We do not attempt to attribute all the theorems in the book, but merely
give references to the original sources for a few of the major landmarks
as well as selected suggestions on specialized topics.

Concept analysis (Chapter 3) is still a relatively new field. The topic
was introduced by R. Wille in [43], pp. 445–470. Entry to the subject
and to its extensive literature is most easily made through the textbook
[48].

[48] B. Ganter and R. Wille, Formal Concept Analysis, Springer-Verlag, 1999
(German original published in 1996 by Springer-Verlag).

The theory of modular and distributive lattices (Chapter 4 and
parts of Chapters 10 and 11) is well treated in the books on lattice
theory listed above. We also draw attention to two classic papers.

[49] G. Birkhoff, Applications of lattice algebra, Proc. Camb. Phil. Soc. 30
(1934), 115–122. [Theorem 4.10(ii).]

[50] R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe, Math.
Ann. 53 (1900), 371–403. [Modularity of N–SubG (4.6(5)) and The-
orem 4.10(i), implicitly.]

Boolean algebras have an extensive literature separate from their
coverage in lattice theory sources.

[51] J. L. Bell and A. B. Slomson, Models and Ultraproducts, North-Holland,
1971.

[52] G. Boole, An Investigation into the Laws of Thought , London, 1854. (Re-
printed by Dover Publications, 1951.)

[53] P. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1963.

[54] J. D. Monk (ed.), Handbook of Boolean Algebras, 3 vols., North-Holland,
1989.

[55] J. E. Whitesitt, Boolean Algebra and its Applications, Addison-Wesley,
Reading, Mass., 1961. (Reprinted by Dover Publications, 1995.)

The use of Boolean algebras in circuit design is also covered in [31].

284 Appendix B: further reading

The duality for distributive lattices (Chapters 5 in the finite case
and Chapter 11 in general) is surveyed in [61], and [40] and a full bib-
liography up to 1996 can be found in the special issue of the journal
Studia Logica, [56], devoted to Priestley duality. The historical com-
ments made in these sources are supplemented by the introduction
to [41] which puts Marshall Stone’s pioneering contributions in per-
spective. A discussion of Stone’s original, purely topological, represen-
tation of distributive lattices (equivalent to the order-topological
theory we give in Chapter 11) can be found in [33] and [39]. Priestley
duality is the stepping-off point for the general theory of natural dualities,
see [60]. Our treatment of Zorn’s Lemma (Chapter 10) is complemented
by that in [6]. The characterization of powerset algebras and down-
set lattices (Chapter 10) has a long history: the former is due to A.
Tarski [65] from 1930 while the latter was discovered and rediscov-
ered by various authors starting with [63], [57] and [59] in the
1950s.

[56] M. Adams and W. Dziobiak (eds.), Studia Logica Special Issue on Priest-
ley duality, Studia Logica 56, Nos. 1–2, 1996.

[57] V. K. Balachandran, A characterization of Σ∆-rings of subsets, Fund.
Math. 41 (1954), 38–41.

[58] G. Birkhoff, On the combination of subalgebras, Proc. Camb. Phil. Soc.
29 (1933), 441–464. [Theorems 5.12 and 10.21.]

[59] G. Bruns, Verbandstheoretische Kennzeichnung vollständiger Mengen-
ringe, Arch. Math. 10 (1959), 109–112.

[60] D. M. Clark and B. A. Davey, Natural Dualities for the Working Alge-
braist, Cambridge University Press, 1998.

[61] B. A. Davey and D. Duffus, Exponentiation and duality, in [28], 43–95.

[62] L. Nachbin, Topology and Order , Krieger Publishing Co., 1976.

[63] G. R. Raney, Completely distributive complete lattices, Proc. Amer.
Math. Soc. 3 (1952), 677–680.

[64] M. H. Stone, The theory of representations for Boolean algebras, Trans.
Amer. Math. Soc. 40 (1936), 37–111. [Theorem 11.4.]

[65] A. Tarski, Une contribution à la théorie de la mesure, Fund. Math. 15
(1930), 42–50.

Our discussion of congruences (Chapter 6) is rather elementary and
is influenced as much by universal algebra as it is by lattice theory. For
further information on the role of congruences in universal algebra we
refer the reader to [3] and for a thorough treatment of congruences on
lattices we refer to [39].

The material on complete and algebraic lattices (Chapter 7) is
classical: they are discussed, in particular, in [33], [34], [37], [40] and
[41]. The following original papers on completions are noteworthy.

Appendix B: further reading 285

[66] B. Banaschewski and G. Bruns, Injective hulls in the category of distribu-
tive lattices, J. Reine Angew. Math. 232 (1968), 102–109. [The source for
Theorem 7.41.]

[67] H. M. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42
(1937), 416–460.

The theory of Galois connections (Chapter 7) is documented in
many places and from many perspectives. They are discussed from an al-
gebraic point of view in the first and subsequent editions of G. Birkhoff’s
Lattice theory . The article [68] gives further references for the topic.
Nowadays, much of the incentive to study Galois connections comes
from computer science. See, in particular, [17], [25] and [26], and the
references therein.

[68] M. Erné, J. Koslowski, A. Melton and G. E. Strecker, A primer on Galois
connections, Annals N. Y. Acad. Sci., 704 (1993), 103–125.

Our treatment of CPOs and fixpoint theory (Chapters 8 and 10)
has been much influenced by the work of many computer scientists,
communicated orally, through unpublished notes and through texts and
conference proceedings. Regarding fixpoint calculus, we should make
special mention of the work of R. Backhouse and his collaborators.

The proof of CPO Fixpoint Theorem II in 8.22 is due to D. Pataraia
and was unpublished as this text went to press; we are grateful for his per-
mission to include this proof. The proof of CPO Fixpoint Theorem III,
8.23, indicated in Exercise 8.20 is due to K. H. Hoffman and is also
unpublished and that of CPO Fixpoint Theorem II via (ZL) for CPOs
in 10.5 is due to A. W. Roscoe [27]. The obscure history of the various
fixpoint theorems and their correct attribution is discussed in [69].

[69] N. Bourbaki, Sur la théoreme de Zorn, Arch. Math. (Basel) 2 (1949/50),
434–437. [CPO Fixpoint Theorems II and III.]

[70] J.-L. Lassez, V. L. Nguyen, E. A. Sonenberg, Fixedpoint theorems and
semantics: a folk tale, Inf. Proc. Letters 14 (1982), 112–116.

[71] G. Markowsky, Chain-complete posets and directed sets with applica-
tions, Algebra Universalis 6 (1976), 53–68.

[72] A. Tarski, A lattice-theoretical fixpoint theorem and its applications,
Pacific J. Math. 5 (1955), 285–309.

As with the material on Galois connections, CPOs and fixpoint the-
ory, our presentation of the theory of domains and information systems
(Chapter 9) draws heavily on the work of theoretical computer scientists,
originally through unpublished notes of D. S. Scott and A. W. Roscoe.
Of the more recent literature we recommend in particular the account of
domain theory given by S. Abramsky and A. Jung in [16] and the papers
of A. Edelat (see [18]).

Notation Index

The symbol := denotes ‘equals by definition’. The end of a proof is
marked by �. The beginning of an argument by contradiction is flagged
by ‘suppose [by way of contradiction]’ and the lightning symbol, � ,
signals that the required contradiction has been reached. See for example
the proof of Lemma ‘1.17’.

� 2, 25

〈P ; �〉 2

< 2, 25

� 2

‖ 2

n 3

n 3

S 3
∼= 3

R,Q,Z,N 3–4

〈N0; �〉 4
℘(X) 4

SubG, N -SubG 4

SubV 4

(X; T) 4, 275

� 5

Σ∗,Σ∗∗ 7

(X�→Y), (X�→X) 7

domσ 7

graph f , dom f 7

� 8

>− , −< 11

P ∂ , Φ∂ 14

⊥, � 15

P⊥ 15

N⊥ 16

MaxQ, maxQ, minQ 16

P
.
∪Q 17

P ⊕Q 17

Mn 17

P1 × · · · × Pn 18

Pn 18

↓Q, ↑Q 20

↓x, ↑x 20

O(P) 20

↪→ 23

ψ ◦ ϕ 23

idS 24

f � g 24

Y X , (X → Y) 24

Y 〈X〉, 〈X → Y 〉 24

P⊕Q 28

w(P) 32

Su, S� 33

supS, inf S 34

x ∨ y, x ∧ y 34
∨

S,
∧

S,
∨

P S,
∧

PS 34
∨

i∈I Ai 34

HK 38

〈L;∨,∧〉 39

0, 1 41

SubL, Sub0(L) 41

� 43

I(L) 45

Notation index 287

�(P) 51

J (L),M(L) 53

[X] 60, 111

(A] 62

(G,M, I) 66

gIm 67

A′, B′ 67

B(G,M, I) 67

BG , BM 68

γ(g), µ(m) 70

(G,M, I) 83

M3 , N5 87

M3,3 92

a′ 93

FC(X) 95

T, F 96

→ 96

≡ 97

BT 98

Fp 98

[c, d] 106

A(L) 113

DF , PF 120

a∗ 128, 262

a ≡ b (mod θ), a θ b 130

(a, b) ∈ θ 130

[a]θ 130

ConL 132, 138

ker f 132

L/θ 133

〈a, b; c, d〉 135

0, 1 (in ConL) 138

θ(a, b) 138

θJ 141

θ[Q] 144

Γ(X) 145

A, C(A) 145, 146

Pc 146

LC 147

CL(A) 147
⊔

D 149

F (L) 152

K(L) 152

p(, q* 155

((, *) 155

ϕ�, ϕ� 161, 162

DM(P) 166

I(S) 170

P ⊕⊥ Q 176

P ⊕∨ Q 177

[P → Q] 178

⊥⊥⊥ 181

fact 10, 181

fix(F) , pre(F), post(F) 182

µ(F), ν(F) 182

Fn 183

µ∗(P) 186

F (P) 202

A = 〈A,Con,�〉 205

Con 205

� 205

Y � A 205

⊥⊥⊥n 207

|A| 207

X 207

IS(L), IS(D) 209

� 210

N 211

288 Notation index

L⊥ 212

L � K, L �⊥K, L �∨K, 212

(I → L) 212

A
.
∪∨ B 212

Y 	 b 213

|r| 214

V [[P]] 217

tt, ff 218

St 218

cond 219

IC(Q) 224

I(Q) 233

Ip(L), Fp(L) 233

Xa 238

〈Ip(B); T 〉 248

℘T
(X) 249

N∞ 250

|= 253

∼|= ∼	 254

LA	, LA|= 254

OT (X) 258

〈X; �, T 〉 258

〈Ip(L);⊆, T 〉 259

D, P 262

D(L,K), P(Y,X) 264

θY 266

(AC) 229

(ACC) 51

(AM1)–(AM2) 213

(BPI) 235

(BUF) 237

(CD) 239

(clo1)–(clo3) 145

(DCC) 51

(D), (D)∂ 85

(DMI) 237

(DPI) 235

(FI1)–(FI3) 192

(Gal) 155

(Gal1)–(Gal3) 159

(IS1)–(IS5) 205

(JID) 240

(KL) 229

(L1)–(L4), (L1)∂–(L4)∂ 39

(M) 90

(MID) 240

(P1)–(P5) 68

(T1)–(T3) 275

(ZL), (ZL)′ , (ZL)′′ 229

Index

Page numbers given in boldface refer to definitions and those in italic
to exercises, with the latter overriding the former where definitions are
given in exercises.

absorption laws 39

Adequacy Theorem 253, 255

adjoint (lower, upper) 156, 161–162,
172

Alexander’s Subbasis Lemma 257,
261, 274, 278

algebra of propositions 96–98

algebra of sets 95

algebraic closure operator 150–152,
153, 154, 194, 204

algebraic
⋂
–structure 150, 151,

153–154, 176, 203, 208–209, 211,
214

algebraic lattice 153–155, 170, 203,
204, 223, 241, 242, 243, 246, 268,
284

algebraic semilattice (= domain) 202,
204

antichain 3, 21, 27, 32, 122, 149, 169

antisymmetry 2

approximable mapping 213–215, 225

Arrow’s Theorem 5

ascending chain condition, (ACC)
51–53, 55, 64, 149, 153, 155, 171

associative laws 39

atom 113–115, 144, 246, 268

atomic 113, 240, 246

weakly 242–243, 246

attribute (of a context) 66

Axiom of Choice, (AC) 51, 52, 228–
230, 231, 236–237

Banach’s Contraction Mapping Theo-
rem 183

Banach’s Decomposition Theorem 63

basis (for a topology) 248, 257, 276

bijective 3

Birkhoff’s representation theorem 118,
119, 126, 174, 257

block 130–131, 132, 133, 134–137

Boolean algebra(s) 94–104, 109–111,
239, 240, 247–248, 283

atomless 246, 251

examples 95–96, 246, 255

finite 114–115, 233

representation of 240, 248, 256

Boolean homomorphism 94, 134, 255,
268

Boolean lattice 93, 108, 109, 113–114,
122, 128, 234, 235, 237

Boolean ring 109–110

Boolean space 249–250, 256, 267, 268

Boolean term (polynomial) 98–104,
110–111

bottom (element), ⊥ 16, 17, 34, 41,
175, 176, 180

bounded lattice 41

(BPI) 235–237, 255, 256

(BUF) 237, 245, 253

Cancellation Rule 159

Cantor set, space 251, 261

Cantor’s Theorem 95, 221

category 25

chain(s) 3, 27, 32, 36, 41, 58, 83, 87,
122, 129

and directed sets 149, 179, 184,
195, 231

conditions 50–52

maximal 229–230

290 Index

choice function 229

clopen down-set 256–259

clopen set 95, 247, 276

closed set 4, 49, 147, 195, 275–276

closure operator 145–147, 150–152,
169, 194, 204, 246

algebraic (see algebraic closure oper-
ator) 150

examples 147–148, 173

and topped
⋂
–structures 68, 147,

160, 246

closure system (= topped
⋂
–structure)

48

coalesced sum, ⊕∨ 177, 193, 212

cofinite sets 62, 245

commutative laws 39

compact element 152–153

compact space 277–279

compactification, 1-point 251

comparable 2

compatible with join and meet 131

complement 93, 108, 126

complete distributivity law, (CD)
239–240

complete lattice(s) 34, 46–50, 52, 63,
160–161, 272, 284

and closure operators 146–147, 161,
246

and concept lattices 69–73

examples 49, 147–148

and fixpoints 50, 186, 189, 199

of sets 36–37, 47, 243

and topped
⋂
–structures 48, 147,

160, 246

complete partially ordered set (= CPO)
175

complete semilattice 201

completely distributive lattice 239,
240, 243

completely inductive 179, 231

completely join-irreducible element
242, 243, 246

completely join-, meet-prime element
242, 246

completely meet-irreducible element
242, 243, 246

completion 165, 285

by cuts (= Dedekind–MacNeille
completion) 166

Dedekind–MacNeille 166–169, 174

ideal 224

normal (= Dedekind–MacNeille
completion) 166

composite map 23, 183

computer architecture 99–102

concept 65–67,

concept analysis, formal 6, 65–84, 283

concept lattice(s) 67–84, 160

algorithm for drawing 76

fundamental theorem of 70–72

lattice theoretic examples of 73

congruence(s) 130–144

blocks of 134–137

Boolean 134, 142, 272

duality for 119–123, 144, 266–267

and ideals 142, 246

join of 139

lattice of 137–138, 139–140, 144

principal 138–139, 142, 143, 144

Connecting Lemma 39

consistent set

in information system 205–206

in ordered set 8, 201

consistently complete 202

context 65, 66, 157

complementary 83

continuous

on base sets 216

map(s) between CPOs and pre-CPOs
177–179, 194–195, 199

maps between domains 203, 213,
215, 216, 221

Index 291

separately 194

with respect to Scott topology 195

topologically 276

convex 63, 135

covering relation 11, 13, 26, 27, 53

CPO(s) (and pre-CPO(s)) 149,
175–181, 189, 193, 194, 195, 202,
229–231

fixpoints in 183–189, 197–198, 199,
231

free 224

maps between 177–179, 194, 195,
199

of partial maps 180–182, 184, 193

CPO Fixpoint Theorem I 183, 184,
185, 188

CPO Fixpoint Theorem II 187, 188,
189, 199, 231

CPO Fixpoint Theorem III 188, 198

cross-table (of a context) 67

CTOD space (= Priestley space) 258

cube 12

dcpo (=pre-CPO) 175

dcppo (= CPO) 175

decreasing set (= down-set) 20

Dedekind–MacNeille completion 166
–169, 174

de Morgan’s laws 93

denotational semantics 10, 217–221

descending chain condition, (DCC)
51, 52, 55, 64

description problem 79

determination problem 75

deterministic (program) 6

Diagonal Rule 200

diagram 11–14, 18–19, 134–137

diamond, M3 87

Dilworth’s Theorem 32, 127

directed set 148–150, 179, 194, 193,
195

directed union 149

closed under 150

discrete order 2, 256, 258

discrete topology 249, 256, 278

disjoint union,
.∪ 17, 27

of ordered sets 17

topology 267, 269

disjunctive normal form, (DNF) 103–
104, 111

distributive inequality 58

distributive lattice(s) 86–93, 104–106,
140, 233–237

bounded 257–267

characterizations of 89, 105, 106,
107, 118, 142, 245

congruences of 142

duality for 119–123, 144, 266–267

finite 116–129, 233

as lattice of sets 118, 238–239, 243

prime ideals of 233–234, 235–237,
238–239, 272

prime ideal space of 257

representation of 118, 243, 259

(DMI) 237, 246

domain 9–10, 202–205, 224, 285

constructors 215–217, 226

equation 216, 221–223, 226–227

maps between 203

recursively defined 222

domain of a map 7, 184

down-set(s) 20–21, 27–28, 30

clopen 256–259

down-set lattice, O(P) 20–23, 166,
225

characterization of 243, 284

(DPI) 235–237, 246, 257

dual of an ordered set 14

dual space (= prime ideal space) 248,
257, 260–261

dual statement 14, 111

292 Index

duality (dual category equivalence)
123, 264

for Boolean algebras 251

between D and P 262–267, 270
–274, 284

between DF and PF 120–123,
128–129

for congruences 144, 266–267, 272

for ideals 263–264, 272

Duality Principle

for Boolean algebras 111

for lattices 39

for ordered sets 15

element (in an information system)
207–208

embedding

lattice-, � 43, 107

order-, ↪→ 23, 43

empty set, join and meet of 34

endofuntion (= self-map) 182

entailment relation, � 205

�-closed 207

equivalence class (= block) 130

equivalence relation 49, 130

equivalent (Boolean terms) 98

exact real arithmetic 8–9

Exchange Rule 191

extent (of a concept) 65, 67

extremally disconnected 267

extremally order-disconnected 272

factorial function 10, 181, 184

fence 28

Fibonacci sequence 28

field of sets (= algebra of sets) 95

filter 45, 107, 272

distributive 245

maximal (= ultrafilter) 233

prime 233–234, 245

proper 45, 232

finite distributive lattice(s) 116–129,
233

duality for 119–123

prime ideals of 233

representation of 116–118, 256

finite element 152–153, 202

finite length 51, 107

finite-cofinite algebra 95, 250–251

First Isomorphism Theorem (= Homo-
morphism Theorem) 130

fixpoint(s) 50, 182, 196–199, 285

calculational rules for 186, 189–192,
200

equation 182

greatest 50, 182

least 182, 186, 197–200

existence of 50, 183, 186, 187,
188, 189, 198, 231

induction 192

minimal, existence of 188, 198

operator 199

flat ordered set 16, 175, 178, 203

free pre-CPO 224

full
⋂
–structure 210

function space 24–25, 31, 128, 178,
203, 214, 216, 222, 224

Fundamental Theorem of Arithmetic
53, 55, 108

fundamental theorem of concept lattices
70–72, 161

Fusion Rule (Transfer Rule) 191

Galois connection(s) 68, 155–165,
171–174, 285

calculational rules for 159, 171

gate 99

diagram 99–102, 110

graph 7

greatest common divisor 37

greatest element 16

Index 293

greatest lower bound (see also meet)
33–34, 39

group (see also subgroups) 130–131,
140

Hasse diagram (= diagram) 11

Hausdorff space 277

higher-order function 24

highest common factor 37

homeomorphism 276

order- 259

homomorphism 43–44, 61, 88, 131–
132, 133–134, 142

of Boolean algebras (see Boolean
homomorphism) 94

{0, 1}-homomorphism 43, 122–123,
128, 244, 264–266, 270

Homomorphism Theorem 131

for Boolean algebras 134

for groups 131

for lattices 133–134

homset 265, 273–274

ideal(s)

completion 224

duality for 263–264, 272

in join semilattice 170

in lattice 44–45, 62, 64, 107, 141,
232, 244

lattice of 49, 148, 155, 267

maximal 233–235, 237, 272

order (= down-set) 20

in ordered set 223

prime (see prime ideal) 233

principal 45, 64, 272

proper 45, 232

in ring 4, 49, 110, 231

idempotency laws 39

identities, lattice 39, 57

identity map 24

inclusion order 4

increasing (map) 186, 187, 188, 193

increasing set (= up-set) 20

indecomposable (lattice) 126

induced (inherited) order 3

induction, fixpoint 192

Induction Rule 186

inductive (ordered set) 231

infimum (= greatest lower bound) 34

information ordering 6, 9

information systems 205–217, 223,
224–226, 285

and algebraic
⋂
–structures 204,

208–209

and domains 204, 209–210

injective 271

integers, Z , chain of 3–4, 36, 62

intent (of a concept) 65, 67

interior 50, 147

invariant (F -invariant) 108, 187

intersection structure(s) (
⋂
–struct-

ure(s)) 48–49, 204

algebraic 150–152, 153–154, 204,
208–209

combinations of 212

topped 48–49, 69, 138, 147–148,
160–161, 204

interval 106, 108, 170

interval order 5

interval topology 268

irredundant join 108

isomorphism

of lattices 43, 44

of ordered sets 3, 13–14, 23–24, 47

join

as binary operation 39–41

in
⋂
–structure 48, 150

irredundant 108

properties of 34–36, 46

in a subset 47

294 Index

join-dense 53, 55, 64, 70–72, 75, 112,
167, 168, 243

Join-Infinite Distributive Law, (JID)
106, 240, 241, 242, 243

join-irreducible element(s) 53–56, 107,
112, 113, 116–120, 125–126, 128,
168

join-preserving map 43, 44

join semilattice 170, 223

kernel 132, 142, 144

Knaster–Tarski Fixpoint Theorem 50,
63, 188, 189

Kuratowski’s Lemma, (KL) 229, 230

lattice(s)

as algebraic structure 39–45, 57–58

algebraic (see algebraic lattice) 153

Boolean (see Boolean lattice) 93

bounded 41

chain conditions in 50–52

complete (see complete lattice) 34

concept (see concept lattice) 67

congruence 132

distributive (see distributive lattice)
86

examples 36–38

finite 45, 46, 50

homomorphism of (see homomor-
phism) 43

identities 39, 57

as ordered set 34–36

with no infinite chains 51, 52, 55,
168

modular (see modular lattice) 86

product of 42–43, 119, 244

quotient 133–134

of sets 36–37, 47, 239

of subgroups (see subgroups, lattice
of)

least common multiple 37

least element 16

least fixpoint 182, 186, 197–200

existence of 50, 183, 186, 187,
188, 189, 198, 231

least pre-fixpoint 186

least upper bound (see also join)
33–35, 39–41

length 50–51, 64, 127

lexicographic order 18, 27

lifting 15–16, 17, 176, 180, 216

Lindenbaum algebra (LINDA) 252–
255, 268

linear extension 32, 244

linear sum, ⊕ 17, 62, 269

linearly ordered set (= chain) 3

logical connectives 96

logically equivalent, ≡ 97

lower adjoint 156, 161–162

lower bound(s) 33, 156

Mn 17, 37, 51, 73, 104, 143, 169

M3 18, 87, 138, 143, 144

M3–N5 Theorem 88–93, 144

map

composite 23, 183

continuous (see continuous map)
177, 276

join-, meet-preserving 43, 44

order-preserving (see order-preserving
map(s)) 23

partial (see partial map) 7

preserving existing joins, meets
46–47, 161

strict 177, 184, 195

total 7

maximal element 16–17, 52, 229, 231,
271

maximal filter (= ultrafilter) 233

maximal ideal 233–234, 239, 272

maximum (= greatest) element 16

median inequality 58, 85

Index 295

meet

as binary operation 39–41

properties of 34–36, 46

in a subset 47

meet-dense 53, 55, 70–72, 112, 167,
168, 242

Meet-Infinite Distributive Law, (MID)
240

meet-irreducible element 53, 112,
125–126

meet-preserving map 43, 44

minimal element 16, 271

Mini-Max Theorem 58

minimum (= least) element 16

modular lattice 86–93

characterizations of 86, 89, 105,
106, 107

modular law 86

monotone (= order-preserving) 23

Monotonicity Rule 190

N5 87, 106–107, 138, 143, 144

natural numbers, N , chain of 3, 36

natural numbers under division, 〈N0;�〉
4, 37, 41, 51, 54, 64, 87, 106, 108,
125, 127, 153, 155, 244

neighbourhood filter 45

non-comparable, ‖ 2

non-principal ultrafilter 234, 245

normal completion (= Dedekind–Mac-
Neille completion) 166

normal subgroups 4, 38, 49, 87, 131,
140

number systems 3–4

object (of a context) 66

one 41

open cover 277

open set 4, 49, 275

order (relation) 2

coordinatewise (on product) 18

inclusion 4

induced (on subset) 3

inherited from (subset) 3

lexicographic 18, 27

linear (= chain) 3

linear extension of 32, 244

pointwise 24

strict 2, 25

order-embedding 23, 43

order filter (= up-set) 20

order-homeomorphism 259

order ideal (= down-set) 20

order-isomorphism 3, 13–14, 23–24,
43, 44, 47

order-preserving map(s) 23–24, 162,
178, 199, 200, 203

fixpoints of 50, 187, 188, 189, 231

function space of 24, 31, 128, 224

ordered set(s) 2, 282

chain conditions in 50–52

connected 28

examples 3–5

flat 16, 175, 178, 203

with no infinite chains 51, 52

product of 18–19, 26, 27

sums of (see sum) 17

ordered Stone space (= Priestley
space) 258

ordered (topological) space 258

ordinal 188, 198, 268

partial order (= order) 2

partially ordered set (= ordered set) 2

partial map(s) 7–8, 149, 180–181, 184,
193, 202

pentagon, N5 87

pointwise order 24

polar 67

poset (= partially ordered set) 2

postcondition 158

296 Index

post-fixpoint 182

powerset 4, 234–235

powerset algebra 95, 113, 114–115

characterization of 115, 240, 284

powerset lattice 19, 36, 45, 54, 73, 86,
153

precondition 158

pre-CPO (see also CPO) 175, 193,
224, 271

predicate 4–5, 158

transformer 158, 164, 165

pre-fixpoint 182, 186

pre-order (=quasi-order) 2

Priestley space 258–262, 268–272

Priestley’s representation theorem 259

prime filter 233–234, 245

prime ideal(s) 233–237, 238–239, 272

prime ideal space

of Boolean algebra 247–248, 251

of bounded distributive lattice 257

Prime Ideal Theorem 236

principal congruence 138–139, 142,
143, 144

principal down-set 20, 161

principal filter 45

principal ideal 45, 64, 272

product

of chains 27, 127

of complete lattices 63

of CPOs 177, 194

of domains 212, 216

of downset-lattices 22, 119

of
⋂
–structures 212

of lattices 42–43, 64, 88, 119, 144

of ordered sets 18–19, 64

program 6, 157–158

proper (filter, ideal) 45, 232

propositional calculus 96–98, 252–256

p-space 272, 273

pseudocomplement(ed) 128–129,
262–263, 272

quadrilateral 135

quadrilateral argument 135–137

quadrilateral-closed 136

quasi-order 2, 141, 173

quotient lattice 133–134

rational numbers, Q , chain of 4, 36,
62, 168

real numbers, R , chain of 3, 36, 61,
168

recursion 10, 181, 200

recursively defined domains 222–223

refine(ment) 8, 163–165, 280

reflexivity 2

representability (of ordered set) 261

representation

of Boolean algebras 114–115, 240,
248, 256

of distributive lattices 118, 243, 259

of domains

as information systems 209

as
⋂
–structures 208

as lattice of sets 118, 238–239, 243

of lattices 174

remarks on 112–113, 256

ring 4, 49, 170, 231

Boolean 109–110

Rolling Rule 190

scheduling 5–6

Schröder–Bernstein Theorem 50, 64

Scott topology 195

self-map 182

semantic(s) 9–10

denotational 10, 217–221

for a deduction system 253

domain 9–10

Semi-inverse Rule 159

Index 297

semilattice

algebraic (= domain) 202, 204

complete 201

join 170

separated sum, ⊕⊥ 176, 177, 193,
212

separately continuous map 194

series-parallel switching circuit 99

simple lattice 140, 143

social choice function 5

specification 163–165

Square Rule 200

Stone’s representation for Boolean
algebras 248, 251, 256

strict map 177, 184, 195

strict order 2, 25

strings, binary 7, 9, 12, 15, 17, 26,
176, 185, 202, 203, 208, 222

subalgebra (of a Boolean algebra) 94,
95, 111

subbasis (for a topology) 257, 276,
278

sub-CPO 176

subgroups of a group 4, 12

as
⋂
–structure 49, 147, 155

lattice of 38, 49, 56, 63, 106, 127,
153, 156

lattice of normal 38, 49, 87, 140

unions of 148

sublattice(s) 41–42, 44, 58, 60, 61,
88, 92, 282

ordered set of 49, 148

sublattice-of-a-product technique 88,
92

subspace(s) of a vector space 4, 49,
87, 148, 149, 153, 155

substructure 210, 211, 216, 222, 226

subsystem 210

sum 17–18, 176–177

coalesced, ⊕∨ 177, 193, 212

disjoint union,
.∪ 17, 27

horizontal 84

of
⋂
–structures 212

linear, ⊕ 17, 63, 269

separated, ⊕⊥ 176, 177, 193, 212

vertical, ⊕ 28, 84, 269

state 6, 157

supremum (= least upper bound) 33

syntax 252, 253

Szpilrajn’s Theorem 244

tautology 252

terminating (program) 6

ternary discriminator 110

token 205

top (element), 15, 16, 17, 34, 41,
202

topological space 4, 30, 45, 275

topology 247, 275–279

discrete 249, 256, 278

of prime ideal space 247, 257

Scott 195

T0 30

topped
⋂
–structure 48–49, 69, 138,

147–148, 160, 161, 204

total map 7

total object 9

totally disconnected space 249

totally order-disconnected space 258

transitive closure 31

transitivity 2

tree 26

truth function 97, 102–103

truth table 97

Tychonoff’s Theorem 237, 274, 278

ultrafilter(s) 233–234

existence of 237

non-principal 234, 245

on a set 234–235, 245

universal algebra 110, 131, 284

298 Index

upper adjoint 156, 161–162, 172

upper bound(s) 33, 156

up-set 20, 21–22, 31

valuation 253, 255, 268

vector space 51, 206, 231

weakest precondition 158

weakly atomic 242–243, 246

well-formed formula (wff) 96

while-loop 8, 220

width 32, 127

witness 139

zero-dimensional space 267

zero element, 0 41

Zorn’s Lemma, (ZL) 16, 109, 188,
229, 230, 231–232, 235–237, 244,
245, 246, 284

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface to the second edition������������������������������������
	Preface to the first edition�����������������������������������
	1. Ordered sets����������������������
	Ordered sets�������������������
	Examples from social science and computer science��
	Diagrams: the art of drawing ordered sets��
	Constructing and de-constructing ordered sets��
	Down-sets and up-sets����������������������������
	Maps between ordered sets��������������������������������
	Exercises����������������

	2. Lattices and complete lattices��
	Lattices as ordered sets�������������������������������
	Lattices as algebraic structures���������������������������������������
	Sublattices, products and homomorphisms��
	Ideals and filters�������������������������
	Complete lattices and [intersection]–structures
	Chain conditions and completeness��
	Join-irreducible elements��������������������������������
	Exercises����������������

	3. Formal concept analysis���������������������������������
	Contexts and their concepts����������������������������������
	The fundamental theorem of concept lattices��
	From theory to practice������������������������������
	Exercises����������������

	4. Modular, distributive and Boolean lattices��
	Lattices satisfying additional identities��
	The M[sub(3)]–N[sub(5)] Theorem
	Boolean lattices and Boolean algebras��
	Boolean terms and disjunctive normal form��
	Exercises����������������

	5. Representation: the finite case���
	Building blocks for lattices�����������������������������������
	Finite Boolean algebras are powerset algebras��
	Finite distributive lattices are down-set lattices���
	Finite distributive lattices and finite ordered sets in partnership��
	Exercises����������������

	6. Congruences���������������������
	Introducing congruences������������������������������
	Congruences and diagrams�������������������������������
	The lattice of congruences of a lattice��
	Exercises����������������

	7. Complete lattices and Galois connections��
	Closure operators������������������������
	Complete lattices coming from algebra: algebraic lattices��
	Galois connections�������������������������
	Completions������������������
	Exercises����������������

	8. CPOs and fixpoint theorems������������������������������������
	CPOs�����������
	CPOs of partial maps���������������������������
	Fixpoint theorems������������������������
	Calculating with fixpoints���������������������������������
	Exercises����������������

	9. Domains and information systems���
	Domains for computing����������������������������
	Domains re-modelled: information systems���
	Using fixpoint theorems to solve domain equations��
	Exercises����������������

	10. Maximality principles��������������������������������
	Do maximal elements exist? – Zorn’s Lemma and the Axiom of Choice��
	Prime and maximal ideals�������������������������������
	Powerset algebras and down-set lattices revisited��
	Exercises����������������

	11. Representation: the general case���
	Stone’s representation theorem for Boolean algebras��
	Meet LINDA: the Lindenbaum algebra���
	Priestley’s representation theorem for distributive lattices���
	Distributive lattices and Priestley spaces in partnership��
	Exercises����������������

	Appendix A: a topological toolkit��
	Appendix B: further reading����������������������������������
	Notation index���������������������
	Index������������

