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Preface
Linux has been the mainstay of embedded computing for many
years. And yet, there are remarkably few books that cover the topic
as a whole: this book is intended to fill that gap. The term
"embedded Linux" is not well defined and can be applied to the
operating system inside a wide range of devices ranging from
thermostats to Wi-Fi routers to industrial control units. However, they
are all built on the same basic open source software. Those are the
technologies that I describe in this book, based on my experience as
an engineer and the materials I have developed for my training
courses.

Technology does not stand still. The industry based around
embedded computing is just as susceptible to Moore's law as
mainstream computing. The exponential growth that this implies has
meant that a surprisingly large number of things have changed since
the first edition of this book was published. This third edition is fully
revised to use the latest versions of the major open source
components, which include Linux 5.4, the Yocto Project 3.1 Dunfell,
and Buildroot 2020.02 LTS. In addition to Autotools, the book now
covers CMake, a modern build system that has seen increased
adoption in recent years.

Mastering Embedded Linux Programming covers the topics in
roughly the order that you will encounter them in a real-life project.
The first eight chapters are concerned with the early stages of the



project, covering basics such as selecting the toolchain, the
bootloader, and the kernel. I introduce the idea of embedded build
systems, using Buildroot and the Yocto Project as examples. The
section ends with new in-depth coverage of the Yocto Project.

Section 2, Chapters 9 to 15, looks at the various design decisions
that need to be made before development can take place in earnest.
It covers the topics of filesystems, software update, device drivers,
the init program, and power management. Chapter 12

demonstrates various techniques for rapid prototyping with a
breakout board, including how to read schematics, solder headers,
and troubleshoot signals using a logic analyzer. Chapter 14 is a deep
dive into Buildroot where you will learn how to partition your system
software into separate services using BusyBox runit.

Section 3, Chapters 16, 17, and 18, will help you in the
implementation phase of the project. We start with Python packaging
and dependency management, a topic of growing importance as
machine learning applications continue to take the world by storm.
Next, we move on to various forms of inter-process communication
and multithreaded programming. The section concludes with a
careful examination of how Linux manages memory and
demonstrates how to measure memory usage and detect memory
leaks using the various tools that are available.

The fourth section, which includes Chapters 19 and 20, shows you
how to make effective use of the many debug and profiling tools that
Linux has to offer in order to detect problems and identify



bottlenecks. Chapter 19 now describes how to configure Visual
Studio Code for remote debugging using GDB. Chapter 20 now
includes coverage of BPF, a new technology that enables advanced
programmatic tracing inside the Linux kernel. The final chapter
brings together several threads to explain how Linux can be used in
real-time applications.

Each chapter introduces a major area of embedded Linux. It
describes the background so that you can learn the general
principles, but it also includes detailed working examples that
illustrate each of these areas. You can treat this as a book of theory,
or a book of examples. It works best if you do both: understand the
theory and try it out in real life.



Who this book is for
This book is written for developers with an interest in embedded
computing and Linux who want to extend their knowledge into the
various branches of the subject. In writing the book, I assume a
basic understanding of the Linux command line, and in the
programming examples, a working knowledge of the C and Python
languages. Several chapters focus on the hardware that goes into an
embedded target board, and, so, familiarity with hardware and
hardware interfaces will be a definite advantage in these cases.



What th is book covers
Chapter 1, Starting Out, sets the scene by describing the embedded
Linux ecosystem and the choices available to you as you start your
project.

Chapter 2, Learning about Toolchains, describes the components of
a toolchain and shows you how to create a toolchain for cross-
compiling code for the target board. It describes where to get a
toolchain and provides details on how to build one from the source
code.

Chapter 3, All about Bootloaders, explains the role of the bootloader
in loading the Linux kernel into memory, and uses U-Boot as an
example. It also introduces device trees as the mechanism used to
encode the details of the hardware in almost all embedded Linux
systems.

Chapter 4, Configuring and Building the Kernel, provides information
on how to select a Linux kernel for an embedded system and
configure it for the hardware within the device. It also covers how to
port Linux to the new hardware.

Chapter 5, Building a Root Filesystem, introduces the ideas behind
the user space part of an embedded Linux implementation by means
of a step-by-step guide on how to configure a root filesystem.

Chapter 6, Selecting a Build System, covers two commonly used
embedded Linux build systems, Buildroot and the Yocto Project,



which automate the steps described in the previous four chapters.

Chapter 7, Developing with Yocto, demonstrates how to build system
images on top of an existing BSP layer, develop onboard software
packages with Yocto's extensible SDK, and roll your own embedded
Linux distribution complete with runtime package management.

Chapter 8, Yocto under the Hood, is a tour of Yocto's build workflow
and architecture including an explanation of Yocto's unique multi-
layer approach. It also breaks down the basics of BitBake syntax and
semantics with examples from actual recipe files.

Chapter 9, Creating a Storage Strategy, discusses the challenges
created by managing flash memory, including raw flash chips and
embedded MMC (eMMC) packages. It describes the filesystems
that are applicable to each type of technology.

Chapter 10, Updating Software in the Field, examines various ways
of updating the software after the device has been deployed, and
includes fully managed Over-the-Air (OTA) updates. The key topics
under discussion are reliability and security.

Chapter 11, Interfacing with Device Drivers, describes how kernel
device drivers interact with the hardware by implementing a simple
driver. It also describes the various ways of calling device drivers
from user space.

Chapter 12, Prototyping with Breakout Boards, demonstrates how to
prototype hardware and software quickly using a pre-built Debian
image for the BeagleBone Black together with a peripheral breakout



board. You will learn how to read datasheets, wire up boards, mux
device tree bindings, and analyze SPI signals.

Chapter 13, Starting Up – The init Program, explains how the first
user space 
program–init–starts the rest of the system. It describes three
versions of the init program, each suitable for a different group of
embedded systems, ranging from the simplicity of the BusyBox
init, through System V init, to the current state-of-the-art
approach, systemd.

Chapter 14, Starting with BusyBox runit, shows you how to use
Buildroot to divide your system up into separate BusyBox runit
services each with its own dedicated process supervision and
logging like that provided by systemd.

Chapter 15, Managing Power, considers the various ways that Linux
can be tuned to reduce power consumption, including dynamic
frequency and voltage scaling, selecting deeper idle states, and
system suspend. The aim is to make devices that run for longer on a
battery charge and also run cooler.

Chapter 16, Packaging Python, explains what choices are available
for bundling Python modules together for deployment and when to
use one method over another. It covers pip, virtual environments,
conda, and Docker.

Chapter 17, Learning about Processes and Threads, describes
embedded systems from the point of view of the application



programmer. This chapter looks at processes and threads, inter-
process communications, and scheduling policies.

Chapter 18, Managing Memory, introduces the ideas behind virtual
memory and how the address space is divided into memory
mappings. It also describes how to measure memory usage
accurately and how to detect memory leaks.

Chapter 19, Debugging with GDB, shows you how to use the GNU
debugger, GDB, together with the debug agent, gdbserver, to
debug applications running remotely on the target device. It goes on
to show how you can extend this model to debug kernel code,
making use of the kernel debug stubs with KGDB.

Chapter 20, Profiling and Tracing, covers the techniques available to
measure the system performance, starting from whole system
profiles and then zeroing in on particular 
areas where bottlenecks are causing poor performance. It also
describes how to use Valgrind to check the correctness of an
application's use of thread synchronization and memory allocation.

Chapter 21, Real-Time Programming, provides a detailed guide to
real-time programming on Linux, including the configuration of the
kernel and the PREEMPT_RT real-time kernel patch. The kernel trace
tool, Ftrace, is used to measure kernel latencies and show the effect
of the various kernel configurations.



To get the most out of  th is
book
The software used in this book is entirely open source. In almost all
cases, I have used the latest stable versions available at the time of
writing. While I have tried to describe the main features in a manner
that is not version-specific, it is inevitable that some of the examples
will need adaptation to work with later software.



* See the Compatible Linux Distribution section of the Yocto Project
Quick Build guide at https://www.yoctoproject.org/docs/current/brief-
yoctoprojectqs/brief-yoctoprojectqs.html for more details.

Embedded development involves two systems: the host, which is
used for developing the programs, and the target, which runs them.
For the host system, I have used Ubuntu 20.04 LTS, but most Linux
distributions will work with just a little modification. You may decide to
run Linux as a guest in a virtual machine, but you should be aware
that some tasks, such as building a distribution using the Yocto
Project, are quite demanding and are better run on a native
installation of Linux.

I chose three exemplar targets: the QEMU emulator, the BeagleBone
Black, and the Raspberry Pi 4. Using QEMU means that you can try
out most of the examples without having to invest in any additional
hardware. On the other hand, some things work better if you do have
real hardware, for which, I have chosen the BeagleBone Black
because it is not expensive, it is widely available, and it has very
good community support. The Raspberry Pi 4 was added in the third
edition for its built-in Wi-Fi and Bluetooth. Of course, you are not
limited to just these three targets. The idea behind the book is to
provide you with general solutions to problems so that you can apply
them to a wide range of target boards.

Download the example code
f i les

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


You can download the example code files for this book from GitHub
at 
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

In case there's an update to the code, it will be updated on the
existing GitHub repository. We also have other code bundles from
our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/97817895303
84_ColorImages.pdf.

Convent ions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table
names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles. Here is an example: "To
configure the host side of the network, you need the tunctl
command from the User Mode Linux (UML) project."

A block of code is set as follows:

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781801071000_ColorImages.pdf


#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

    printf ("Hello, world!\n");

    return 0;

}

Any command-line input or output is written as follows:
$ sudo tunctl -u $(whoami) -t tap0

Bold: Indicates a new term, an important word, or words that you
see onscreen. For example, words in menus or dialog boxes appear
in the text like this. Here is an example: "Click Flash from Etcher to
write the image."

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and
email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us. Please

mailto:customercare@packtpub.com


visit www.packtpub.com/support/errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
http://packt.com/


Sect ion 1:  
Elements of  Embedded
Linux
The objective of Section 1 is to help the reader set up their
development environment and create a working platform for the later
phases. It is often referred to as the "board bring-up" phase.

This part of the book comprises the following chapters:

Chapter 1, Starting Out

Chapter 2, Learning About Toolchains

Chapter 3, All About Bootloaders

Chapter 4, Configuring and Building the Kernel

Chapter 5, Building a Root Filesystem

Chapter 6, Selecting a Build System

Chapter 7, Developing with Yocto

Chapter 8, Yocto Under the Hood



Chapter 1 :  Start ing Out
You are about to begin working on your next project, and this time it
is going to be running Linux. What should you think about before you
put finger to keyboard? Let's begin with a high-level look at
embedded Linux and see why it is popular, what are the implications
of open source licenses, and what kind of hardware you will need to
run Linux.

Linux first became a viable choice for embedded devices around
1999. That was when Axis (https://www.axis.com) released their first
Linux-powered network camera and TiVo (https://business.tivo.com)
their first Digital Video Recorder (DVR). Since 1999, Linux has
become ever more popular, to the point that today it is the operating
system of choice for many classes of product. In 2021, there were
over two billion devices running Linux. That includes a large number
of smartphones running Android, which uses a Linux kernel, and
hundreds of millions of set-top boxes, smart TVs, and Wi-Fi routers,
not to mention a very diverse range of devices such as vehicle
diagnostics, weighing scales, industrial devices, and medical
monitoring units that ship in smaller volumes.

In this chapter, we will cover the following topics:

Choosing Linux

When not to choose Linux

Meeting the players

https://www.axis.com/
https://business.tivo.com/


Moving through the project life cycle

Navigating open source

Selecting hardware for embedded Linux

Obtaining the hardware for this book

Provisioning your development environment

Choosing Linux
Why is Linux so pervasive? And why does something as simple as a
TV need to run something as complex as Linux just to display
streaming video on a screen?

The simple answer is Moore's Law: Gordon Moore, co-founder of
Intel, observed in 1965 that the density of components on a chip will
double approximately every 2 years. That applies to the devices that
we design and use in our everyday lives just as much as it does to
desktops, laptops, and servers. At the heart of most embedded
devices is a highly integrated chip that contains one or more
processor cores and interfaces with main memory, mass storage,
and peripherals of many types. This is referred to as a System on
Chip, or SoC, and SoCs are increasing in complexity in accordance
with Moore's Law. A typical SoC has a technical reference manual
that stretches to thousands of pages. Your TV is not simply
displaying a video stream as the old analog sets used to do.

The stream is digital, possibly encrypted, and it needs processing to
create an image. Your TV is (or soon will be) connected to the



internet. It can receive content from smartphones, tablets, and home
media servers. It can be (or soon will be) used to play games and so
on. You need a full operating system to manage this degree of
complexity.

Here are some points that drive the adoption of Linux:

Linux has the necessary functionality. It has a good scheduler, a
good network stack, support for USB, Wi-Fi, Bluetooth, many
kinds of storage media, good support for multimedia devices, and
so on. It ticks all the boxes.

Linux has been ported to a wide range of processor
architectures, including some that are very commonly found in
SoC designs – Arm, MIPS, x86, and PowerPC.

Linux is open source, so you have the freedom to get the source
code and modify it to meet your needs. You, or someone working
on your behalf, can create a board support package for your
particular SoC board or device. You can add protocols, features,
and technologies that may be missing from the mainline source
code. You can remove features that you don't need to reduce
memory and storage requirements. Linux is flexible.

Linux has an active community; in the case of the Linux kernel,
very active. There is a new release of the kernel every 8 to 10
weeks, and each release contains code from more than 1,000
developers. An active community means that Linux is up to date
and supports current hardware, protocols, and standards.



Open source licenses guarantee that you have access to the
source code. There is no vendor tie-in.

For these reasons, Linux is an ideal choice for complex devices. But
there are a few caveats I should mention here. Complexity makes it
harder to understand. Coupled with the fast-moving development
process and the decentralized structures of open source, you have
to put some effort into learning how to use it and to keep on re-
learning as it changes. I hope that this book will help in the process.

When not to choose Linux
Is Linux suitable for your project? Linux works well where the
problem being solved justifies the complexity. It is especially good
where connectivity, robustness, and complex user interfaces are
required. However, it cannot solve every problem, so here are some
things to consider before you jump in:

Is your hardware up to the job? Compared to a traditional real-
time operating system (RTOS) such as VxWorks or QNX, Linux
requires a lot more resources. It needs at least a 32-bit processor
and lots more memory. I will go into more detail in the section on
typical hardware requirements.

Do you have the right skill set? The early parts of a project, board
bring-up, require detailed knowledge of Linux and how it relates
to your hardware. Likewise, when debugging and tuning your
application, you will need to be able to interpret the results. If you



don't have the skills in-house, you may want to outsource some
of the work. Of course, reading this book helps!

Is your system real-time? Linux can handle many real-time
activities so long as 
you pay attention to certain details, which I will cover in detail in
Chapter 21, 
Real-Time Programming.

Will your code require regulatory approval (medical, automotive,
aerospace, and so on)? The burden of regulatory verification and
validation might make another OS a better choice. Even if you do
choose Linux for use in these environments, it may make sense
to purchase a commercially available distribution from a company
that has supplied Linux for existing products, like the one you are
building.

Consider these points carefully. Probably the best indicator of
success is to look around for similar products that run Linux and see
how they have done it; follow best practice.

Meeting the players
Where does open source software come from? Who writes it? In
particular, how does this relate to the key components of embedded
development—the toolchain, bootloader, kernel, and basic utilities
found in the root filesystem?

The main players are as follows:



The open source community: This, after all, is the engine that
generates the software you are going to be using. The
community is a loose alliance of developers, many of whom are
funded in some way, perhaps by a not-for-profit organization, an
academic institution, or a commercial company. They work
together to further the aims of the various projects. There are
many of them—some small, some large. Some that we will be
making use of in the remainder of this book are Linux itself, U-
Boot, BusyBox, Buildroot, the Yocto Project, and the many
projects under the GNU umbrella.

CPU architects: These are the organizations that design the
CPUs we use. The important ones here are Arm/Linaro (Arm
Cortex-A), Intel (x86 and x86_64), SiFive (RISC-V), and IBM
(PowerPC). They implement or, at the very least, influence
support for the basic CPU architecture.

SoC vendors (Broadcom, Intel, Microchip, NXP, Qualcomm, TI,
and many others): They take the kernel and toolchain from the
CPU architects and modify them to support their chips. They also
create reference boards: designs that are used by the next level
down to create development boards and working products.

Board vendors and OEMs: These people take the reference
designs from SoC vendors and build them in to specific products,
for instance, set-top boxes or cameras, or create more general-
purpose development boards, such as those from Advantech and
Kontron. An important category are the cheap development
boards such as BeagleBoard/BeagleBone and Raspberry Pi that



have created their own ecosystems of software and hardware
add-ons.

Commercial Linux vendors: Companies such as Siemens
(Mentor), Timesys, and Wind River offer commercial Linux
distributions that have undergone strict regulatory verification and
validation across multiple industries (medical, automotive,
aerospace, and so on).

These form a chain, with your project usually at the end, which
means that you do not have a free choice of components. You
cannot simply take the latest kernel from https://www.kernel.org/,
except in a few rare cases, because it does not have support for the
chip or board that you are using.

This is an ongoing problem with embedded development. Ideally, the
developers at each link in the chain would push their changes
upstream, but they don't. It is not uncommon to find a kernel that has
many thousands of patches that are not merged. In addition, SoC
vendors tend to actively develop open source components only for
their latest chips, meaning that support for any chip more than a
couple of years old will be frozen and not receive any updates.

The consequence is that most embedded designs are based on old
versions of software. They do not receive security fixes, performance
enhancements, or features that are in newer versions. Problems
such as Heartbleed (a bug in the OpenSSL libraries) and ShellShock
(a bug in the bash shell) go unfixed. I will talk more about this later in
this chapter under the topic of security.

https://www.kernel.org/


What can you do about it? First, ask questions of your vendors (NXP,
Texas Instruments, and Xilinx, to name just a few): what is their
update policy, how often do they revise kernel versions, what is the
current kernel version, what was the one before that, and what is
their policy for merging changes upstream? Some vendors are
making great strides in this way. You should prefer their chips.

Secondly, you can take steps to make yourself more self-sufficient.
The chapters in Section 1 explain the dependencies in more detail
and show you where you can help yourself. Don't just take the
package offered to you by the SoC or board vendor and use it blindly
without considering the alternatives.

Moving through the project
l i fe cycle
This book is divided into four sections that reflect the phases of a
project. The phases are not necessarily sequential. Usually, they
overlap and you will need to jump back to revisit things that were
done previously. However, they are representative of a developer's
preoccupations as the project progresses:

Elements of Embedded Linux (Chapters 1 to 8) will help you set
up the development environment and create a working platform
for the later phases. It is often referred to as the board bring-up
phase.



System Architecture and Design Choices (Chapters 9 to 15) will
help you to look at some of the design decisions you will have to
make concerning the storage of programs and data, how to
divide work between kernel device drivers and applications, and
how to initialize the system.

Writing Embedded Applications (Chapters 16 to 18) shows how
to package and deploy Python applications, make effective use of
the Linux process and thread model, and how to manage
memory in a resource-constrained device.

Debugging and Optimizing Performance (Chapters 19 to 21)
describes how to trace, profile, and debug your code in both the
applications and the kernel. The last chapter explains how to
design for real-time behavior when required.

Now, let's focus on the four basic elements of embedded Linux that
comprise the first section of the book.

The four elements of embedded
Linux
Every project begins by obtaining, customizing, and deploying these
four elements: the toolchain, the bootloader, the kernel, and the root
filesystem. This is the topic of the first section of this book.

Toolchain: The compiler and other tools needed to create code
for your 
target device.



Bootloader: The program that initializes the board and loads the
Linux kernel.

Kernel: This is the heart of the system, managing system
resources and interfacing with hardware.

Root filesystem: Contains the libraries and programs that are
run once the kernel has completed its initialization.

Of course, there is also a fifth element, not mentioned here. That is
the collection of programs specific to your embedded application that
make the device do whatever it is supposed to do, be it weigh
groceries, display movies, control a robot, or fly a drone.

Typically, you will be offered some or all of these elements as a
package when you buy your SoC or board. But, for the reasons
mentioned in the preceding paragraph, they may not be the best
choices for you. I will give you the background to make the right
selections in the first eight chapters and I will introduce you to two
tools that automate the whole process for you: Buildroot and the
Yocto Project.

Navigat ing open source
The components of embedded Linux are open source, so now is a
good time to consider what that means, why open sources work the
way they do, and how this affects the often proprietary embedded
device you will be creating from it.



Licenses
When talking about open source, the word free is often used. People
new to the subject often take it to mean nothing to pay, and open
source software licenses do indeed guarantee that you can use the
software to develop and deploy systems for no charge. However, the
more important meaning here is freedom, since you are free to
obtain the source code, modify it in any way you see fit, and
redeploy it in other systems. These licenses give you this right.
Compare that with freeware licenses, which allow you to copy the
binaries for no cost but do not give you the source code, or other
licenses that allow you to use the software for free under certain
circumstances, for example, for personal use, but not commercial.
These are not open source.

I will provide the following comments in the interest of helping you
understand the implications of working with open source licenses,
but I would like to point out that I am an engineer and not a lawyer.
What follows is my understanding of the licenses and the way they
are interpreted.

Open source licenses fall broadly into two categories: copyleft
licenses, such as the GNU General Public License (GPL), and
permissive licenses, such as the BSD and MIT licenses.

The permissive licenses say, in essence, that you may modify the
source code and use it in systems of your own choosing so long as
you do not modify the terms of the license in any way. In other



words, with that one restriction, you can do with it what you want,
including building it into possibly proprietary systems.

The GPL licenses are similar but have clauses that compel you to
pass the rights to obtain and modify the software on to your end
users. In other words, you share your source code. One option is to
make it completely public by putting it onto a public server. Another
is to offer it only to your end users by means of a written offer to
provide the code when requested. The GPL goes further to say that
you cannot incorporate GPL code into proprietary programs. Any
attempt to do so would make the GPL apply to the whole. In other
words, you cannot combine a GPL and proprietary code in one
program. Aside from the Linux kernel, the GNU Compiler Collection
and GNU Debugger as well as many other freely available tools
associated with the GNU project fall under the umbrella of the GPL.

So, what about libraries? If they are licensed with the GPL, any
program linked with them becomes GPL also. However, most
libraries are licensed under the GNU Lesser General Public
License (LGPL). If this is the case, you are allowed to link with them
from a proprietary program.

IMPORTANT NOTE

All of the preceding description relates specifically to GPL v2 and
LGPL v2.1. I should mention the latest versions of GPL v3 and LGPL
v3. These are controversial, and I will admit that I don't fully
understand the implications. However, the intention is to ensure that
the GPL v3 and LGPL v3 components in any system can be



replaced by the end user, which is in the spirit of open source
software for everyone.

The GPL v3 and LGPL v3 have their problems though. There are
issues with security. If the owner of a device has access to the
system code, then so might an unwelcome intruder. Often the
defense is to have kernel images that are signed by an authority
such as the vendor, so that unauthorized updates are not possible. Is
that an infringement of my right to modify my device? Opinions differ.

IMPORTANT NOTE

The TiVo set-top box is an important part of this debate. It uses a
Linux kernel, which is licensed under GPL v2. TiVo have released
the source code of their version of the kernel and so comply with the
license. TiVo also has a bootloader that will only load a kernel binary
that is signed by them. Consequently, you can build a modified
kernel for a TiVo box, but you cannot load it on the hardware. The
Free Software Foundation (FSF) takes the position that this is not
in the spirit of open source software and refers to this procedure as
Tivoization. The GPL v3 and LGPL v3 were written to explicitly
prevent this from happening. Some projects, the Linux kernel in
particular, have been reluctant to adopt the GPL version 3 licenses
because of the restrictions they would place on device
manufacturers.



Select ing hardware for
embedded Linux
If you are designing or selecting hardware for an embedded Linux
project, what do you look out for?

First, a CPU architecture that is supported by the kernel—unless you
plan to add a new architecture yourself, of course! Looking at the
source code for Linux 5.4, there are 25 architectures, each
represented by a sub-directory in the arch/ directory. They are all 
32- or 64-bit architectures, most with an MMU, but some without.
The ones most often found in embedded devices are Arm, MIPS,
PowerPC, and x86, each in 32 and 64-bit variants, all of which have
memory management units (MMUs).

Most of this book is written with this class of processor in mind.
There is another group that doesn't have an MMU and that runs a
subset of Linux known as microcontroller Linux or uClinux. These
processor architectures include ARC (Argonaut RISC Core),
Blackfin, MicroBlaze, and Nios. I will mention uClinux from time to
time, but I will not go into detail because it is a rather specialized
topic.

Second, you will need a reasonable amount of RAM. 16 MiB is a
good minimum, although it is quite possible to run Linux using half
that. It is even possible to run Linux with 4 MiB if you are prepared to
go to the trouble of optimizing every part of the system. It may even



be possible to get lower, but there comes a point at which it is no
longer Linux.

Third, there is non-volatile storage, usually flash memory. 8 MiB is
enough for a simple device such as a webcam or a simple router. As
with RAM, you can create a workable Linux system with less storage
if you really want to, but the lower you go, the harder it becomes.
Linux has extensive support for flash storage devices, including raw
NOR and NAND flash chips, and managed flash in the form of SD
cards, eMMC chips, USB flash memory, and so on.

Fourth, a serial port is very useful, preferably a UART-based serial
port. It does not have to be fitted on production boards, but makes
board bring-up, debugging, and development much easier.

Fifth, you need some means of loading software when starting from
scratch. Many microcontroller boards are fitted with a Joint Test
Action Group (JTAG) interface for this purpose. Modern SoCs also
have the ability to load boot code directly from removable media,
especially SD and micro SD cards, or serial interfaces such as
UART or USB.

In addition to these basics, there are interfaces to the specific bits of
hardware your device needs to get its job done. Mainline Linux
comes with open source drivers for many thousands of different
devices, and there are drivers (of variable quality) from the SoC
manufacturer and from the OEMs of third-party chips that may be
included in the design, but remember my comments on the
commitment and ability of some manufacturers. As a developer of



embedded devices, you will find that you spend quite a lot of time
evaluating and adapting third-party code, if you have it, or liaising
with the manufacturer if you don't. Finally, you will have to write the
device support for interfaces that are unique to the device or find
someone to do it for you.

Obtaining the hardware for
this book
The examples in this book are intended to be generic, but to make
them relevant and easy to follow, I have had to choose specific
hardware. I have chosen three exemplar devices: the Raspberry Pi
4, the BeagleBone Black, and QEMU. The first is by far the most
popular Arm-based single board computer on the market. The
second is a widely available and cheap development board that can
be used in serious embedded hardware. The third is a machine
emulator that can be used to create a range of systems that are
typical of embedded hardware. It was tempting to use QEMU
exclusively, but, like all emulations, it is not quite the same as the
real thing. Using the Raspberry Pi 4 and BeagleBone Black, you
have the satisfaction of interacting with real hardware and seeing
real LEDs flash. While the BeagleBone Black is several years old
now, it remains open source hardware (unlike the Raspberry Pi).
This means that the board design materials are freely available for
anyone to build a BeagleBone Black or derivative into their products.



In any case, I encourage you to try out as many of the examples as
you can, using either of these three platforms, or indeed any
embedded hardware you may have to hand.

The Raspberry Pi 4
At the time of writing, the Raspberry Pi 4 Model B is the flagship tiny,
dual-display, desktop computer produced by the Raspberry Pi
Foundation. Their website is 
https://raspberrypi.org/. The Pi 4's technical specs include the
following:

A Broadcom BCM2711 1.5 GHz quad-core Cortex-A72 (Arm®
v8) 64-bit SoC

2, 4, or 8 GiB DDR4 RAM

2.4 GHz and 5.0 GHz 802.11ac wireless, Bluetooth 5.0, BLE

A serial port for debug and development

A MicroSD slot, which can be used as the boot device

A USB-C connector that is used to power the board

2 × full size USB 3.0 and 2 × full size USB 2.0 host ports

A Gigabit Ethernet port

2 × micro-HDMI ports for video and audio output

In addition, there is a 40-pin expansion header for which there are a
great variety of daughter boards, known as HATs (Hardware

https://raspberrypi.org/


Attached on Top), that allow you to adapt the board to do many
different things. However, you will not need any HATs for the
examples in this book. Instead, you will make use of the Pi 4's built-
in Wi-Fi and Bluetooth (which the BeagleBone Black lacks).

In addition to the board itself, you will require the following:

A 5V USB-C power supply capable of delivering 3 A or more

A USB to TTL serial cable with 3.3V logic-level pins like the
Adafruit 954

A MicroSD card and a means of writing to it from your
development PC or laptop, which will be needed to load software
onto the board

An Ethernet cable and a router to connect it to, as some of the
examples require network connectivity

Next is the BeagleBone Black.

The BeagleBone Black
The BeagleBone and the later BeagleBone Black are open hardware
designs for a small, credit card-sized development board produced
by CircuitCo LLC. The main repository of information is at
https://beagleboard.org/. The main points of the specifications are as
follows:

A TI AM335x 1 GHz Arm® Cortex-A8 Sitara SoC

512 MiB DDR3 RAM

https://beagleboard.org/


2 or 4 GiB 8-bit eMMC onboard flash storage

A serial port for debug and development

A MicroSD slot, which can be used as the boot device

A Mini-USB OTG client/host port that can also be used to power
the board

A full size USB 2.0 host port

A 10/100 Ethernet port

An HDMI port for video and audio output

In addition, there are two 46-pin expansion headers for which there
are a great variety of daughter boards, known as capes, which allow
you to adapt the board to do many different things. However, you do
not need to fit any capes for the examples in this book.

In addition to the board itself, you will require the following:

A Mini-USB to USB-A cable (supplied with the board).

A serial cable that can interface with the 6-pin 3.3V TTL level
signals provided by the board. The BeagleBoard website has
links to compatible cables.

A MicroSD card and a means of writing to it from your
development PC or laptop, which will be needed to load software
onto the board.

An Ethernet cable and a router to connect it to, as some of the
examples require network connectivity.



A 5V power supply capable of delivering 1 A or more.

In addition to the above, Chapter 12, Prototyping with Breakout
Boards, also requires 
the following:

A SparkFun model GPS-15193 Breakout board.

A Saleae Logic 8 logic analyzer. This apparatus will be used to
probe pins for SPI communications between the BeagleBone
Black and NEO-M9N.

QEMU
QEMU is a machine emulator. It comes in a number of different
flavors, each of which can emulate a processor architecture and a
number of boards built using that architecture. For example, we have
the following:

qemu-system-arm: 32-bit Arm

qemu-system-mips: MIPS

qemu-system-ppc: PowerPC

qemu-system-x86: x86 and x86_64

For each architecture, QEMU emulates a range of hardware, which
you can see by using the -machine help option. Each machine
emulates most of the hardware that would normally be found on that



board. There are options to link hardware to local resources, such as
using a local file for the emulated disk drive.

Here is a concrete example:
$ qemu-system-arm -machine vexpress-a9 -m 256M -

drive file=rootfs.ext4,sd -net nic -net
use -kernel zImage -dtb vexpress- v2p-
ca9.dtb -append "console=ttyAMA0,115200
root=/dev/mmcblk0" -serial stdio -net
nic,model=lan9118 -net tap,ifname=tap0

The options used in the preceding command line are as follows:

-machine vexpress-a9: Creates an emulation of an Arm
Versatile Express development board with a Cortex A-9
processor

-m 256M: Populates it with 256 MiB of RAM

-drive file=rootfs.ext4,sd: Connects the SD interface to
the local file rootfs.ext4 (which contains a filesystem image)

-kernel zImage: Loads the Linux kernel from the local file
named zImage

-dtb vexpress-v2p- ca9.dtb: Loads the device tree from
the local file vexpress-v2p-ca9.dtb

-append "...": Appends this string as the kernel command
line

-serial stdio: Connects the serial port to the terminal that
launched QEMU, usually so that you can log on to the emulated



machine via the serial console

-net nic,model=lan9118: Creates a network interface

-net tap,ifname=tap0: Connects the network interface to
the virtual network interface, tap0

To configure the host side of the network, you need the tunctl
command from the User Mode Linux (UML) project; on Debian and
Ubuntu, the package is named uml-utilites:
$ sudo tunctl -u $(whoami) -t tap0

This creates a network interface named tap0 that is connected to
the network controller in the emulated QEMU machine. You
configure tap0 in exactly the same way as any other interface.

All of these options are described in detail in the following chapters. I
will be using Versatile Express for most of my examples, but it
should be easy to use a different machine or architecture.

Provis ioning your
development environment
I have only used open source software, both for the development
tools and the target operating system and applications. I assume that
you will be using Linux on your development system. I tested all the
host commands using Ubuntu 20.04 LTS, and so there is a slight
bias toward that particular version, but any modern Linux distribution
is likely to work just fine.



Summary
Embedded hardware will continue to get more complex, following the
trajectory set by Moore's Law. Linux has the power and the flexibility
to make use of hardware in an efficient way. Together we will learn
how to harness that power so we can build robust products that
delight our users. This book will take you through the five phases of
the embedded project's life cycle, beginning with the four elements
of embedded Linux.

The sheer variety of embedded platforms and the fast pace of
development lead to isolated pools of software. In many cases, you
will become dependent on this software, especially the Linux kernel
that is provided by your SoC or board vendor, and, to a lesser extent,
the toolchain. Some SoC manufacturers are getting better at pushing
their changes upstream and the maintenance of these changes is
getting easier. Despite these improvements, selecting the right
hardware for your embedded Linux project is still an exercise fraught
with peril. Open source license compliance is another topic you need
to be aware when building products atop the embedded Linux
ecosystem.

In this chapter, you were introduced to the hardware and some of the
software you will use throughout this book (namely QEMU). Later on,
we will examine some powerful tools that can help you create and
maintain the software for your device. We cover Buildroot and dig
deep into the Yocto Project. Before I describe these build tools, I will



describe the four elements of embedded Linux, which you can apply
to all embedded Linux projects, however they are created.

The next chapter is all about the first of these, the toolchain, which
you need in order to compile code for your target platform.



Chapter 2 :  Learning about
Toolchains
The toolchain is the first element of embedded Linux and the starting
point of your project. You will use it to compile all the code that will
run on your device. The choices you make at this early stage will
have a profound impact on the final outcome. Your toolchain should
be capable of making effective use of your hardware by using the
optimum instruction set for your processor. It should support the
languages that you require and have a solid implementation of the
Portable Operating System Interface (POSIX) and other system
interfaces.

Your toolchain should remain constant throughout the project. In
other words, once you have chosen your toolchain, it is important to
stick with it. Changing compilers and development libraries in an
inconsistent way during a project will lead to subtle bugs. That being
said, it is still best to update your toolchain when security flaws or
bugs are found.

Obtaining a toolchain can be as simple as downloading and installing
a TAR file, or it can be as complex as building the whole thing from
source code. In this chapter, I take the latter approach, with the help
of a tool called crosstool-NG, so that I can show you the details of
creating a toolchain. Later on, in Chapter 6, Selecting a Build
System, I will switch to using the toolchain generated by the build



system, which is the more usual means of obtaining a toolchain.
When we get to Chapter 14, Starting with BusyBox runit, we'll save
ourselves some time by downloading a prebuilt Linaro toolchain to
use with Buildroot.

In this chapter, we will cover the following topics:

Introducing toolchains

Finding a toolchain

Building a toolchain using the crosstool-NG tool

The anatomy of a toolchain

Linking with libraries – static and dynamic linking

The art of cross-compiling

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system with autoconf, automake, bison,
bzip2, cmake, flex, g++, gawk, gcc, gettext, git, gperf,
help2man, libncurses5-dev, libstdc++6, libtool,
libtool-bin, make, patch, python3-dev, rsync, texinfo,
unzip, wget, and xz-utils or their equivalents installed.

I recommend using Ubuntu 20.04 LTS or later since the exercises in
this chapter were all tested against that Linux distribution at the time



of writing. Here is the command to install all the required packages
on Ubuntu 20.04 LTS:
$ sudo apt-get install autoconf automake bison

bzip2 cmake \ flex g++ gawk gcc

gettext git gperf help2man libncurses5-dev
libstdc++6 libtool \ libtool-bin make

patch python3-dev rsync texinfo unzip wget xz-
utils

All of the code for this chapter can be found in the Chapter02 folder
from the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition

Introducing toolchains
A toolchain is a set of tools that compiles source code into
executables that can run on your target device and includes a
compiler, a linker, and runtime libraries. Initially, you need one to
build the other three elements of an embedded Linux system: the
bootloader, the kernel, and the root filesystem. It has to be able to
compile code written in assembly, C, and C++ since these are the
languages used in the base open source packages.

Usually, toolchains for Linux are based on components from the
GNU project 
(http://www.gnu.org), and that is still true in the majority of cases at
the time of writing. However, over the past few years, the Clang
compiler and the associated Low Level Virtual Machine (LLVM)

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
http://www.gnu.org/


project (http://llvm.org) have progressed to the point that it is now a
viable alternative to a GNU toolchain. One major distinction between
LLVM and GNU-based toolchains is the licensing; LLVM has a BSD
license while GNU has the GPL.

There are some technical advantages to Clang as well, such as
faster compilation and better diagnostics, but GNU GCC has the
advantage of compatibility with the existing code base and support
for a wide range of architectures and operating systems. While it
took some years to get there, Clang can now compile all the
components needed for embedded Linux and is a viable alternative
to GNU. To learn more about that, see
https://www.kernel.org/doc/html/latest/kbuild/llvm.html.

There is a good description of how to use Clang for cross-
compilation at https://clang.llvm.org/docs/CrossCompilation.html. If
you would like to use it as part of an embedded Linux build system,
the EmbToolkit (https://embtoolkit.org) fully supports both GNU and
LLVM/Clang toolchains, and various people are working on using
Clang with Buildroot and the Yocto Project. I will cover embedded
build systems in Chapter 6, Selecting a Build System. Meanwhile,
this chapter focuses on the GNU toolchain as it is still the most
popular and mature toolchain for Linux.

A standard GNU toolchain consists of three main components:

Binutils: A set of binary utilities including the assembler and the
linker. It is available at http://gnu.org/software/binutils.

http://llvm.org/
https://www.kernel.org/doc/html/latest/kbuild/llvm.html
https://clang.llvm.org/docs/CrossCompilation.html
https://embtoolkit.org/
http://gnu.org/software/binutils


GNU Compiler Collection (GCC): These are the compilers for C
and other languages, which, depending on the version of GCC,
include C++, Objective-C, Objective-C++, Java, Fortran, Ada,
and Go. They all use a common backend that produces
assembler code, which is fed to the GNU assembler. It is
available at http://gcc.gnu.org/.

C library: A standardized application program interface (API)
based on the POSIX specification, which is the main interface to
the operating system kernel 
for applications. There are several C libraries to consider, as we
shall see later on in this chapter.

Along with these, you will need a copy of the Linux kernel headers,
which contain definitions and constants that are needed when
accessing the kernel directly. Right now, you need them to be able to
compile the C library, but you will also need them later when writing
programs or compiling libraries that interact with particular Linux
devices, for example, to display graphics via the Linux frame buffer
driver. This is not simply a question of making a copy of the header
files in the include directory of your kernel source code. Those
headers are intended for use in the kernel only and contain
definitions that will cause conflicts if used in their raw state to
compile regular Linux applications.

Instead, you will need to generate a set of sanitized kernel headers,
which I have illustrated in Chapter 5, Building a Root Filesystem.

http://gcc.gnu.org/


It is not usually crucial whether the kernel headers are generated
from the exact version of Linux you are going to be using or not.
Since the kernel interfaces are always backward compatible, it is
only necessary that the headers are from a kernel that is the same
as, or older than, the one you are using on the target.

Most people would consider the GNU Debugger (GDB) to be part of
the toolchain as well, and it is usual that it is built at this point. I will
talk about GDB in Chapter 19, Debugging with GDB.

Now that we've talked about kernel headers and seen what the
components of a toolchain are, let's look at the different types of
toolchains.

Types of toolchains
For our purposes, there are two types of toolchain:

Native: This toolchain runs on the same type of system
(sometimes the same actual system) as the programs it
generates. This is the usual case for desktops and servers, and it
is becoming popular on certain classes of embedded devices.
The Raspberry Pi running Debian for ARM, for example, has self-
hosted native compilers.

Cross: This toolchain runs on a different type of system than the
target, allowing the development to be done on a fast desktop PC
and then loaded onto the embedded target for testing.



Almost all embedded Linux development is done using a cross-
development toolchain, partly because most embedded devices are
not well suited to program development since they lack computing
power, memory, and storage, but also because it keeps the host and
target environments separate. The latter point is especially important
when the host and the target are using the same architecture,
x86_64, for example. In this case, it is tempting to compile natively
on the host and simply copy the binaries to the target.

This works up to a point, but it is likely that the host distribution will
receive updates more often than the target, or that different
engineers building code for the target will have slightly different
versions of the host development libraries. Over time, the
development and target systems will diverge, and you will violate the
principle that the toolchain should remain constant throughout the life
of the project. You can make this approach work if you ensure that
the host and the target build environments are in lockstep with each
other. However, a much better approach is to keep the host and the
target separate, and a cross toolchain is the way to do that.

However, there is a counter argument in favor of native
development. Cross development creates the burden of cross
compiling all the libraries and tools that you need for your target. We
will see later in the section titled The art of cross compiling that cross
development is not always simple because many open source
packages are not designed to be built in this way. Integrated build
tools, including Buildroot and the Yocto Project, help by
encapsulating the rules to cross-compile a range of packages that



you need in typical embedded systems, but if you want to compile a
large number of additional packages, then it is better to natively
compile them. For example, building a Debian distribution for the
Raspberry Pi or BeagleBone using a cross compiler would be very
hard. Instead, they are natively compiled.

Creating a native build environment from scratch is not easy. You
would still need a cross compiler at first to create the native build
environment on the target, which you then use to build the packages.
Then, in order to perform the native build in a reasonable amount of
time, you would need a build farm of well-provisioned target boards,
or you may be able to use Quick EMUlator (QEMU) to emulate the
target.

Meanwhile, in this chapter, I will focus on a more mainstream cross
compiler environment, which is relatively easy to set up and
administer. We will start by looking at what distinguishes one target
CPU architecture from another.

CPU architectures
The toolchain has to be built according to the capabilities of the
target CPU, which includes the following:

CPU architecture: ARM, Microprocessor without Interlocked
Pipelined Stages (MIPS), x86_64, and so on.

Big- or little-endian operation: Some CPUs can operate in both
modes, but the machine code is different for each.



Floating point support: Not all versions of embedded
processors implement a hardware floating-point unit, in which
case the toolchain has to be configured to call a software floating-
point library instead.

Application Binary Interface (ABI): The calling convention used
for passing parameters between function calls.

With many architectures, the ABI is constant across the family of
processors. One notable exception is ARM. The ARM architecture
transitioned to the Extended Application Binary Interface (EABI)
in the late 2000s, resulting in the previous ABI being named the Old
Application Binary Interface (OABI). While the OABI is now
obsolete, you'll continue to see references to EABI. Since then, the
EABI has split into two, based on the way the floating-point
parameters are passed.

The original EABI uses general-purpose (integer) registers, while the
newer Extended Application Binary Interface Hard-Float
(EABIHF) uses floating point registers. The EABIHF is significantly
faster at floating-point operations, since it removes the need for
copying between integer and floating-point registers, but it is not
compatible with CPUs that do not have a floating-point unit. The
choice, then, is between two incompatible ABIs; you cannot mix and
match the two, and so you have to decide at this stage.

GNU uses a prefix to the name of each tool in the toolchain, which
identifies the various combinations that can be generated. It consists



of a tuple of three or four components separated by dashes, as
described here:

CPU: This is the CPU architecture, such as ARM, MIPS, or
x86_64. If the CPU has both endian modes, they may be
differentiated by adding el for little-endian or eb for big-endian.
Good examples are little-endian MIPS, mipsel, and big-endian
ARM, armeb.

Vendor: This identifies the provider of the toolchain. Examples
include buildroot, poky, or just unknown. Sometimes it is left
out altogether.

Kernel: For our purposes, it is always linux.

Operating system: A name for the user space component,
which might be gnu or musl. The ABI may be appended here as
well, so for ARM toolchains, you may see gnueabi, gnueabihf,
musleabi, or musleabihf.

You can find the tuple used when building the toolchain by using the
-dumpmachine option of gcc. For example, you may see the
following on the host computer:
$ gcc -dumpmachine

x86_64-linux-gnu

This tuple indicates a CPU of x86_64, a kernel of linux, and a
user space of gnu.

IMPORTANT NOTE



When a native compiler is installed on a machine, it is normal to
create links to each of the tools in the toolchain with no prefixes, so
that you can call the C compiler with the gcc command.

Here is an example using a cross compiler:
$ mipsel-unknown-linux-gnu-gcc -dumpmachine

mipsel-unknown-linux-gnu

This tuple indicates a CPU of little-endian MIPS, an unknown
vendor, a kernel of linux, and a user space of gnu.

Choosing the C l ibrary
The programming interface to the Unix operating system is defined
in the C language, which is now defined by the POSIX standards.
The C library is the implementation of that interface; it is the
gateway to the kernel for Linux programs, as shown in the following
diagram. Even if you are writing programs in another language,
maybe Java or Python, the respective runtime support libraries will
have to call the C library eventually, as shown here:



Figure 2.1 – C library

Whenever the C library needs the services of the kernel, it will use
the kernel system call interface to transition between user space and
kernel space. It is possible to bypass the C library by making the
kernel system calls directly, but that is a lot of trouble and almost
never necessary.

There are several C libraries to choose from. The main options are
as follows:

glibc: This is the standard GNU C library, available at
https://gnu.org/software/libc. It is big and, until recently, not very
configurable, but it is the most complete implementation of the
POSIX API. The license is LGPL 2.1.

musl libc: This is available at https://musl.libc.org. The musl
libc library is comparatively new but has been gaining a lot of
attention as a small and standards-compliant alternative to GNU

https://gnu.org/software/libc
https://musl.libc.org/


libc. It is a good choice for systems with a limited amount of
RAM and storage. It has an MIT license.

uClibc-ng: This is available at https://uclibc-ng.org. u is really a
Greek mu character, indicating that this is the microcontroller C
library. It was first developed to work with uClinux (Linux for
CPUs without memory management units) but has since been
adapted to be used with full Linux. The uClibc-ng library is a
fork of the original uClibc project (https://uclibc.org), which has
unfortunately fallen into disrepair. Both are licensed with LGPL
2.1.

eglibc: This is available at http://www.eglibc.org/home. Now
obsolete, eglibc was a fork of glibc with changes to make it
more suitable for embedded usage. Among other things, eglibc
added configuration options and support for architectures not
covered by glibc, in particular the PowerPC e500 CPU core.
The code base from eglibc was merged back into glibc in
version 2.20. The eglibc library is no longer maintained.

So, which to choose? My advice is to use uClibc-ng only if you are
using uClinux. If you have a very limited amount of storage or RAM,
then musl libc is a good choice, otherwise, use glibc, as shown
in this flow chart:

https://uclibc-ng.org/
https://uclibc.org/
http://www.eglibc.org/home


Figure 2.2 – Choosing a C library

Your choice of C library could limit your choice of toolchain since not
all pre-built toolchains support all C libraries.

Finding a toolchain
You have three choices for your cross-development toolchain: you
may find a ready-built toolchain that matches your needs; you can
use one generated by an embedded build tool, which is covered in
Chapter 6, Selecting a Build System; or you can create one yourself
as described later in this chapter.

A pre-built cross toolchain is an attractive option, in that you only
have to download and install it, but you are limited to the



configuration of that particular toolchain and you are dependent on
the person or organization you got it from.

Most likely, it will be one of these:

An SoC or board vendor. Most vendors offer a Linux toolchain.

A consortium dedicated to providing system-level support for a
given architecture. For example, Linaro, (https://www.linaro.org)
have pre-built toolchains for the ARM architecture.

A third-party Linux tool vendor, such as Mentor Graphics,
TimeSys, or MontaVista.

The cross-tool packages for your desktop Linux distribution. For
example, Debian-based distributions have packages for cross
compiling for ARM, MIPS, and PowerPC targets.

A binary SDK produced by one of the integrated embedded build
tools. The Yocto Project has some examples at
http://downloads.yoctoproject.org/releases/yocto/yocto-
[version]/toolchain.

A link from a forum that you can't find anymore.

In all of these cases, you have to decide whether the pre-built
toolchain on offer meets your requirements. Does it use the C library
you prefer? Will the provider give you updates for security fixes and
bugs, bearing in mind my comments on support and updates from
Chapter 1, Starting Out. If your answer is no to any of these, then
you should consider creating your own.

https://www.linaro.org/


Unfortunately, building a toolchain is no easy task. If you truly want
to do the whole thing yourself, take a look at Cross Linux From
Scratch (https://trac.clfs.org). There you will find step-by-step
instructions on how to create each component.

A simpler alternative is to use crosstool-NG, which encapsulates the
process into a set of scripts and has a menu-driven frontend. You still
need a fair degree of knowledge, though, just to make the right
choices.

It is simpler still to use a build system such as Buildroot or the Yocto
Project, since they generate a toolchain as part of the build process.
This is my preferred solution, as I have shown in Chapter 6,
Selecting a Build System.

With the ascendance of crosstool-NG, building your own toolchain is
certainly a valid and viable option. Let's look at how to do that next.

Bui ld ing a toolchain using
crosstool-NG
Some years ago, Dan Kegel wrote a set of scripts and makefiles for
generating cross-development toolchains and called it crosstool
(http://kegel.com/crosstool/). In 2007, Yann E. Morin used that base
to create the next generation of crosstool, crosstool-NG
(https://crosstool-ng.github.io). Today it is by far the most convenient
way to create a standalone cross toolchain from source.

https://trac.clfs.org/
http://kegel.com/crosstool/
https://crosstool-ng.github.io/


In this section, we will use crosstool-NG to build toolchains for the
BeagleBone Black 
and QEMU.

Instal l ing crosstool-NG
Before you can build crosstool-NG from source, you will first need to
install a native toolchain and some build tools on your host machine.
See the section on Technical requirements at the beginning of this
chapter for crosstool-NG's complete list of build and runtime
dependencies.

Next, get the current release from the crosstool-NG Git repository. In
my examples, I have used version 1.24.0. Extract it and create the
frontend menu system, ct-ng, as shown in the following
commands:
$ git clone https://github.com/crosstool-

ng/crosstool-ng.git

$ cd crosstool-ng

$ git checkout crosstool-ng-1.24.0

$ ./bootstrap

$ ./configure --prefix=${PWD}

$ make

$ make install

The --prefix=${PWD} option means that the program will be
installed into the current directory, which avoids the need for root



permissions, as would be required if you were to install it in the
default location /usr/local/share.

We now have a working installation of crosstool-NG that we can use
to build cross toolchains with. Type bin/ct-ng to launch the
crosstool menu.

Building a toolchain for
BeagleBone Black
Crosstool-NG can build many different combinations of toolchains.
To make the initial configuration easier, it comes with a set of
samples that cover many of the common use cases. Use bin/ct-
ng list-samples to generate the list.

The BeagleBone Black has a TI AM335x SoC, which contains an
ARM Cortex A8 core and a VFPv3 floating-point unit. Since the
BeagleBone Black has plenty of RAM and storage, we can use
glibc as the C library. The closest sample is arm-cortex_a8-
linux-gnueabi.

You can see the default configuration by prefixing the name with
show-, as 
demonstrated here:
$ bin/ct-ng show-arm-cortex_a8-linux-gnueabi

[G...]   arm-cortex_a8-linux-gnueabi

    Languages       : C,C++

    OS              : linux-4.20.8



    Binutils        : binutils-2.32

    Compiler        : gcc-8.3.0

    C library       : glibc-2.29

    Debug tools     : duma-2_5_15 gdb-8.2.1
ltrace-0.7.3 strace-4.26

    Companion libs  : expat-2.2.6 gettext-0.19.8.1
gmp-6.1.2 isl-0.20 libelf-0.8.13 libiconv-
1.15 mpc-1.1.0 mpfr-4.0.2 ncurses-6.1
zlib-1.2.11

    Companion tools :

This is a close match with our requirements, except that it uses the
eabi binary interface, which passes floating-point arguments in
integer registers. We would prefer to use hardware floating point
registers for that purpose because it would speed up function calls
that have float and double parameter types. You can change the
configuration later, so for now you should select this target
configuration:
$ bin/ct-ng arm-cortex_a8-linux-gnueabi

At this point, you can review the configuration and make changes
using the configuration menu command menuconfig:
$ bin/ct-ng menuconfig

The menu system is based on the Linux kernel menuconfig, and so
navigation of the user interface will be familiar to anyone who has
configured a kernel. If not, refer to Chapter 4, Configuring and
Building the Kernel, for a description of menuconfig.

There are three configuration changes that I would recommend you
make at this point:



In Paths and misc options, disable Render the toolchain read-
only 
(CT_PREFIX_DIR_RO).

In Target options | Floating point, select hardware (FPU)
(CT_ARCH_FLOAT_HW).

In Target options, enter neon for Use specific FPU.

The first is necessary if you want to add libraries to the toolchain
after it has been installed, which I describe later, in the Linking with
libraries section. The second selects the eabihf binary interface for
the reasons discussed earlier. The third is needed to build the Linux
kernel successfully. The names in parentheses are the configuration
labels stored in the configuration file. When you have made the
changes, exit the menuconfig menu and save the configuration as
one does.

Now you can use crosstool-NG to get, configure, and build the
components according to your specification, by typing the following
command:
$ bin/ct-ng build

The build will take about half an hour, after which you will find your
toolchain is present in ~/x-tools/arm-cortex_a8-linux-
gnueabihf.

Next, let's build a toolchain that targets QEMU.



Building a toolchain for QEMU
On the QEMU target, you will be emulating an ARM-versatile PB
evaluation board that has an ARM926EJ-S processor core, which
implements the ARMv5TE instruction set. You need to generate a
crosstool-NG toolchain that matches the specification. The
procedure is very similar to the one for the BeagleBone Black.

You begin by running bin/ct-ng list-samples to find a good
base configuration to work from. There isn't an exact fit, so use a
generic target, arm-unknown-linux-gnueabi. You select it as
shown, running distclean first to make sure that there are no
artifacts left over from a previous build:
$ bin/ct-ng distclean

$ bin/ct-ng arm-unknown-linux-gnueabi

As with the BeagleBone Black, you can review the configuration and
make changes 
using the configuration menu command bin/ct-ng menuconfig.
There is only one change necessary:

In Paths and misc options, disable Render the toolchain read-
only 
(CT_PREFIX_DIR_RO).

Now, build the toolchain with the command shown here:
$ bin/ct-ng build

As before, the build will take about half an hour. The toolchain will be
installed in ~/x-tools/arm-unknown-linux-gnueabi.



You will need a working cross toolchain to complete the exercises in
the next section.

Anatomy of  a toolchain
To get an idea of what is in a typical toolchain, I want to examine the
crosstool-NG toolchain you have just created. The examples use the
ARM Cortex A8 toolchain created for the BeagleBone Black, which
has the prefix arm-cortex_a8-linux-gnueabihf-. If you built
the ARM926EJ-S toolchain for the QEMU target, then the prefix will
be arm-unknown-linux-gnueabi instead.

The ARM Cortex A8 toolchain is in the directory ~/x-tools/arm-
cortex_a8-linux-gnueabihf/bin. In there, you will find the
cross compiler, arm-cortex_a8-linux-gnueabihf-gcc. To
make use of it, you need to add the directory to your path using the
following command:
$ PATH=~/x-tools/arm-cortex_a8-linux-

gnueabihf/bin:$PATH

Now you can take a simple helloworld program, which in the C
language looks like this:
#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

    printf ("Hello, world!\n");

    return 0;



}

You compile it like this:
$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -

o helloworld

You can confirm that it has been cross-compiled by using the file
command to print the type of the file:
$ file helloworld

helloworld: ELF 32-bit LSB executable, ARM, EABI5
version 1 (SYSV), dynamically linked,
interpreter /lib/ld-linux-armhf.so.3, for
GNU/Linux 4.20.8, with debug_info, not
stripped

Now that you've verified that your cross compiler works, let's take a
closer look at it.

Finding out about your cross
compiler
Imagine that you have just received a toolchain and that you would
like to know more about how it was configured. You can find out a lot
by querying gcc. For example, to find the version, you use --
version:
$ arm-cortex_a8-linux-gnueabihf-gcc --version

arm-cortex_a8-linux-gnueabihf-gcc (crosstool-NG
1.24.0) 8.3.0

Copyright (C) 2018 Free Software Foundation, Inc.



This is free software; see the source for copying
conditions.  There is NO warranty; not
even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

To find how it was configured, use -v:
$ arm-cortex_a8-linux-gnueabihf-gcc -v

Using built-in specs.

COLLECT_GCC=arm-cortex_a8-linux-gnueabihf-gcc

COLLECT_LTO_WRAPPER=/home/frank/x-tools/arm-
cortex_a8-linux-gnueabihf/libexec/gcc/arm-
cortex_a8-linux-gnueabihf/8.3.0/lto-
wrapper

Target: arm-cortex_a8-linux-gnueabihf

Configured with: /home/frank/crosstool-
ng/.build/arm-cortex_a8-linux-
gnueabihf/src/gcc/configure --
build=x86_64-build_pc-linux-gnu --
host=x86_64-build_pc-linux-gnu --
target=arm-cortex_a8-linux-gnueabihf --
prefix=/home/frank/x-tools/arm-cortex_a8-
linux-gnueabihf --with-
sysroot=/home/frank/x-tools/arm-cortex_a8-
linux-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot --enable-languages=c,c++
--with-cpu=cortex-a8 --with-float=hard --
with-pkgversion='crosstool-NG 1.24.0' --
enable-__cxa_atexit --disable-libmudflap -
-disable-libgomp --disable-libssp --
disable-libquadmath --disable-libquadmath-
support --disable-libsanitizer --disable-
libmpx --with-gmp=/home/frank/crosstool-
ng/.build/arm-cortex_a8-linux-
gnueabihf/buildtools --with-



mpfr=/home/frank/crosstool-ng/.build/arm-
cortex_a8-linux-gnueabihf/buildtools --
with-mpc=/home/frank/crosstool-
ng/.build/arm-cortex_a8-linux-
gnueabihf/buildtools --with-
isl=/home/frank/crosstool-ng/.build/arm-
cortex_a8-linux-gnueabihf/buildtools --
enable-lto --with-host-libstdcxx='-static-
libgcc -Wl,-Bstatic,-lstdc++,-Bdynamic -
lm' --enable-threads=posix --enable-
target-optspace --enable-plugin --enable-
gold --disable-nls --disable-multilib --
with-local-prefix=/home/frank/x-tools/arm-
cortex_a8-linux-gnueabihf/arm-cortex_a8-
linux-gnueabihf/sysroot --enable-long-long

Thread model: posix

gcc version 8.3.0 (crosstool-NG 1.24.0)

There is a lot of output there, but the interesting things to note are
the following:

--with-sysroot=/home/frank/x-tools/arm-

cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-

gnueabihf/sysroot: This is the default sysroot directory;
see the following section for an explanation.

--enable-languages=c,c++: Using this, we have both C and
C++ 
languages enabled.

--with-cpu=cortex-a8: The code is generated for an ARM
Cortex A8 core.



--with-float=hard: Generates opcodes for the floating-point
unit and uses the VFP registers for parameters.

--enable-threads=posix: This enables the POSIX threads.

These are the default settings for the compiler. You can override
most of them on the gcc command line. For example, if you want to
compile for a different CPU, you can override the configured setting,
--with-cpu, by adding -mcpu to the command line, as follows:
$ arm-cortex_a8-linux-gnueabihf-gcc -mcpu=cortex-

a5 \ helloworld.c \

-o helloworld

You can print out the range of architecture-specific options available
using --target-help, as follows:
$ arm-cortex_a8-linux-gnueabihf-gcc --target-help

You may be wondering whether it matters that you get the
configuration exactly right at this point, since you can always change
it as shown here. The answer depends on the way you anticipate
using it. If you plan to create a new toolchain for each target, then it
makes sense to set everything up at the beginning, because it will
reduce the risk of getting it wrong later on. Jumping ahead a little to
Chapter 6, Selecting a Build System, I call this the Buildroot
philosophy. If, on the other hand, you want to build a toolchain that is
generic and you are prepared to provide the correct settings when
you build for a particular target, then you should make the base
toolchain generic, which is the way the Yocto Project handles things.
The preceding examples follow the Buildroot philosophy.



The sysroot, l ibrary, and header
f i les
The toolchain sysroot is a directory that contains subdirectories for
libraries, header files, and other configuration files. It can be set
when the toolchain is configured through --with-sysroot=, or it
can be set on the command line using --sysroot=. You can see
the location of the default sysroot by using -print-sysroot:
$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

/home/frank/x-tools/arm-cortex_a8-linux-
gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

You will find the following subdirectories in sysroot:

lib: Contains the shared objects for the C library and the
dynamic linker/loader, ld-linux

usr/lib: The static library archive files for the C library, and any
other libraries that may be installed subsequently

usr/include: Contains the headers for all the libraries

usr/bin: Contains the utility programs that run on the target,
such as the 
ldd command

usr/share: Used for localization and internationalization

sbin: Provides the ldconfig utility, used to optimize library
loading paths



Plainly, some of these are needed on the development host to
compile programs, and others, for example, the shared libraries and
ld-linux, are needed on the target at runtime.

Other tools in the toolchain
Below is a list of commands to invoke the various other components
of a GNU toolchain, together with a brief description:

addr2line: Converts program addresses into filenames and
numbers by reading the debug symbol tables in an executable
file. It is very useful when decoding addresses printed out in a
system crash report.

ar: The archive utility is used to create static libraries.

as: This is the GNU assembler.

c++filt: This is used to demangle C++ and Java symbols.

cpp: This is the C preprocessor and is used to expand #define,
#include, and other similar directives. You seldom need to use
this by itself.

elfedit: This is used to update the ELF header of the ELF files.

g++: This is the GNU C++ frontend, which assumes that source
files contain 
C++ code.



gcc: This is the GNU C frontend, which assumes that source files
contain C code.

gcov: This is a code coverage tool.

gdb: This is the GNU debugger.

gprof: This is a program profiling tool.

ld: This is the GNU linker.

nm: This lists symbols from object files.

objcopy: This is used to copy and translate object files.

objdump: This is used to display information from object files.

ranlib: This creates or modifies an index in a static library,
making the linking stage faster.

readelf: This displays information about files in ELF object
format.

size: This lists section sizes and the total size.

strings: This displays strings of printable characters in files.

strip: This is used to strip an object file of debug symbol tables,
thus making it smaller. Typically, you would strip all the
executable code that is put onto the target.

We will now switch gears from command-line tools and return to the
topic of the C library.



Looking at the components of the
C l ibrary
The C library is not a single library file. It is composed of four main
parts that together implement the POSIX API:

libc: The main C library that contains the well-known POSIX
functions such as printf, open, close, read, write, and so
on

libm: Contains math functions such as cos, exp, and log

libpthread: Contains all the POSIX thread functions with
names beginning 
with pthread_

librt: Has the real-time extensions to POSIX, including shared
memory and asynchronous I/O

The first one, libc, is always linked in but the others have to be
explicitly linked with the -l option. The parameter to -l is the library
name with lib stripped off. For example, a program that calculates
a sine function by calling sin() would be linked with libm using -
lm:
$ arm-cortex_a8-linux-gnueabihf-gcc myprog.c -o

myprog -lm

You can verify which libraries have been linked in this or any other
program by using the readelf command:



$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog
| grep "Shared library"

0x00000001 (NEEDED)               Shared library:
[libm.so.6]

0x00000001 (NEEDED)               Shared library:
[libc.so.6]

Shared libraries need a runtime linker, which you can expose using
this:
$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog

| grep "program interpreter"

    [Requesting program interpreter: /lib/ld-
linux-armhf.so.3]

This is so useful that I have a script file named list-libs, which
you will find in the book code archive in MELP/list-libs. It
contains the following commands:
#!/bin/sh

${CROSS_COMPILE}readelf -a $1 | grep "program
interpreter"

${CROSS_COMPILE}readelf -a $1 | grep "Shared
library"

There are other library files we can link to other than the four
components of the C library. We will look at how to do that in the next
section.

Linking with l ibrar ies –
stat ic and dynamic l inking



Any application you write for Linux, whether it be in C or C++, will be
linked with the libc C library. This is so fundamental that you don't
even have to tell gcc or g++ to do it because it always links libc.
Other libraries that you may want to link with have to be explicitly
named through the -l option.

The library code can be linked in two different ways: statically,
meaning that all the library functions your application calls and their
dependencies are pulled from the library archive and bound into your
executable; and dynamically, meaning that references to the library
files and functions in those files are generated in the code but the
actual linking is done dynamically at runtime. You will find the code
for the examples that follow in the book code archive in
MELP/Chapter02/library.

We'll start with static linking.

Static l ibraries
Static linking is useful in a few circumstances. For example, if you
are building a small system that consists of only BusyBox and some
script files, it is simpler to link BusyBox statically and avoid having to
copy the runtime library files and linker. It will also be smaller
because you only link in the code that your application uses rather
than supplying the entire C library. Static linking is also useful if you
need to run a program before the filesystem that holds the runtime
libraries is available.



You can link all the libraries statically by adding -static to the
command line:
$ arm-cortex_a8-linux-gnueabihf-gcc -static

helloworld.c -o helloworld-static

You will note that the size of the binary increases dramatically:
$ ls -l

total 4060

-rwxrwxr-x 1 frank frank   11816 Oct 23 15:45
helloworld

-rw-rw-r-- 1 frank frank     123 Oct 23 15:35
helloworld.c

-rwxrwxr-x 1 frank frank 4140860 Oct 23 16:00
helloworld-static

Static linking pulls code from a library archive, usually named
lib[name].a. In the preceding case, it is libc.a, which is in
[sysroot]/usr/lib:
$ export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-

gcc -print-sysroot)

$ cd $SYSROOT

$ ls -l usr/lib/libc.a

-rw-r--r-- 1 frank frank 31871066 Oct 23 15:16
usr/lib/libc.a

Note that the syntax export SYSROOT=$(arm-cortex_a8-linux-
gnueabihf-gcc -print-sysroot) places the path to the
sysroot in the shell variable, SYSROOT, which makes the example
a little clearer.



Creating a static library is as simple as creating an archive of object
files using the ar command. If I have two source files named
test1.c and test2.c, and I want to create a static library named
libtest.a, then I would do the following:
$ arm-cortex_a8-linux-gnueabihf-gcc -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -c test2.c

$ arm-cortex_a8-linux-gnueabihf-ar rc libtest.a
test1.o test2.o

$ ls -l

total 24

-rw-rw-r-- 1 frank frank 2392 Oct 9 09:28
libtest.a

-rw-rw-r-- 1 frank frank 116 Oct 9 09:26 test1.c

-rw-rw-r-- 1 frank frank 1080 Oct 9 09:27 test1.o

-rw-rw-r-- 1 frank frank 121 Oct 9 09:26 test2.c

-rw-rw-r-- 1 frank frank 1088 Oct 9 09:27 test2.o

Then I could link libtest into my helloworld program, using
this:
$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -

ltest \

-L../libs -I../libs -o helloworld

Now let's rebuild the same program using dynamic linking.

Shared l ibraries
A more common way to deploy libraries is as shared objects that are
linked at runtime, which makes more efficient use of storage and



system memory, since only one copy of the code needs to be
loaded. It also makes it easy to update the library files without having
to relink all the programs that use them.

The object code for a shared library must be position-independent,
so that the runtime linker is free to locate it in memory at the next
free address. To do this, add the -fPIC parameter to gcc, and then
link it using the -shared option:
$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c

test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c
test2.c

$ arm-cortex_a8-linux-gnueabihf-gcc -shared -o
libtest.so test1.o test2.o

This creates the shared library, libtest.so. To link an application
with this library, you add -ltest, exactly as in the static case
mentioned in the preceding section, but this time the code is not
included in the executable. Instead, there is a reference to the library
that the runtime linker will have to resolve:
$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -

ltest \

-L../libs -I../libs -o helloworld

$ MELP/list-libs helloworld

    [Requesting program interpreter: /lib/ld-
linux-armhf.so.3]

0x00000001 (NEEDED)            Shared library:
[libtest.so.6]

0x00000001 (NEEDED)            Shared library:
[libc.so.6]



The runtime linker for this program is /lib/ld-linux-
armhf.so.3, which must be present in the target's filesystem. The
linker will look for libtest.so in the default search path: /lib and
/usr/lib. If you want it to look for libraries in other directories as
well, you can place a colon-separated list of paths in the
LD_LIBRARY_PATH shell variable:
$ export LD_LIBRARY_PATH=/opt/lib:/opt/usr/lib

Because shared libraries are separate from the executables they link
to, we need to be aware of their versions when deploying them.

Understanding shared library version
numbers
One of the benefits of shared libraries is that they can be updated
independently of the programs that use them.

Library updates are of two types:

Those that fix bugs or add new functions in a backward-
compatible way

Those that break compatibility with existing applications

GNU/Linux has a versioning scheme to handle both these cases.

Each library has a release version and an interface number. The
release version is simply a string that is appended to the library
name; for example, the JPEG image library libjpeg is currently at
release 8.2.2 and so the library is named libjpeg.so.8.2.2.
There is a symbolic link named libjpeg.so to



libjpeg.so.8.2.2, so that when you compile a program with -
ljpeg, you link with the current version. If you install version 8.2.3,
the link is updated, and you will link with that one instead.

Now suppose that version 9.0.0 comes along and that breaks the
backward compatibility. The link from libjpeg.so now points to
libjpeg.so.9.0.0, so that any new programs are linked with the
new version, possibly throwing compile errors when the interface to
libjpeg changes, which the developer can fix.

Any programs on the target that are not recompiled are going to fail
in some way, because they are still using the old interface. This is
where an object known as the soname helps. The soname encodes
the interface number when the library was built and is used by the
runtime linker when it loads the library. It is formatted as <library
name>.so.<interface number>. For libjpeg.so.8.2.2, the
soname is libjpeg.so.8 because the interface number when that
libjpeg shared library was built is 8:
$ readelf -a /usr/lib/x86_64-linux-

gnu/libjpeg.so.8.2.2 \

| grep SONAME

0x000000000000000e (SONAME)    Library soname:
[libjpeg.so.8]

Any program compiled with it will request libjpeg.so.8 at
runtime, which will be a symbolic link on the target to
libjpeg.so.8.2.2. When version 9.0.0 of libjpeg is installed,
it will have a soname of libjpeg.so.9, and so it is possible to



have two incompatible versions of the same library installed on the
same system. Programs that were linked with libjpeg.so.8.*.*
will load libjpeg.so.8, and those linked with
libjpeg.so.9.*.* will load libjpeg.so.9.

This is why, when you look at the directory listing of
/usr/lib/x86_64-linux-gnu/libjpeg*, you find these four
files:

libjpeg.a: This is the library archive used for static linking.

libjpeg.so -> libjpeg.so.8.2.2: This is a symbolic link,
used for dynamic linking.

libjpeg.so.8 -> libjpeg.so.8.2.2: This is a symbolic
link, used when loading the library at runtime.

libjpeg.so.8.2.2: This is the actual shared library, used at
both compile time and runtime.

The first two are only needed on the host computer for building and
the last two are needed on the target at runtime.

While you can invoke the various GNU cross-compilation tools
directly from the command line, this technique does not scale
beyond toy examples such as helloworld. To really be effective at
cross-compiling, we need to combine a cross toolchain with a build
system.

The art  of  cross-compi l ing



Having a working cross toolchain is the starting point of a journey,
not the end of it. At some point, you will want to begin cross-
compiling the various tools, applications, and libraries that you need
on your target. Many of them will be open source packages, each of
which has its own method of compiling and its own peculiarities.

There are some common build systems, including the following:

Pure makefiles, where the toolchain is usually controlled by the
make variable CROSS_COMPILE

The GNU build system known as Autotools

CMake (https://cmake.org)

Both Autotools and makefiles are needed to build even a basic
embedded Linux system. CMake is cross-platform and has seen
increased adoption over the years especially among the C++
community. In this section, we will cover all three build tools.

Simple makefi les
Some important packages are very simple to cross-compile,
including the Linux kernel, the U-Boot bootloader, and BusyBox. For
each of these, you only need to put the toolchain prefix in the make
variable CROSS_COMPILE, for example, arm-cortex_a8-linux-
gnueabi-. Note the trailing dash -.

So, to compile BusyBox, you would type this:

https://cmake.org/


$ make CROSS_COMPILE=arm-cortex_a8-linux-
gnueabihf-

Or, you can set it as a shell variable:
$ export CROSS_COMPILE=arm-cortex_a8-linux-

gnueabihf-

$ make

In the case of U-Boot and Linux, you also have to set the make
variable ARCH to one of the machine architectures they support,
which I will cover in Chapter 3, All About Bootloaders, and Chapter
4, Configuring and Building the Kernel.

Both Autotools and CMake can generate makefiles. Autotools only
generates makefiles whereas CMake supports other ways of building
projects depending on which 
platform(s) we are targeting (strictly Linux in our case). Let's look at
cross-compiling 
with Autotools first.

Autotools
The name Autotools refers to a group of tools that are used as the
build system in many open source projects. The components,
together with the appropriate project pages, are as follows:

GNU Autoconf
(https://www.gnu.org/software/autoconf/autoconf.html)

GNU Automake (https://www.gnu.org/savannah-
checkouts/gnu/automake/)

https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/savannah-checkouts/gnu/automake/


GNU Libtool (https://www.gnu.org/software/libtool/libtool.html)

Gnulib (https://www.gnu.org/software/gnulib/)

The role of Autotools is to smooth over the differences between the
different types of systems that the package may be compiled for,
accounting for different versions of compilers, different versions of
libraries, different locations of header files, and dependencies with
other packages.

Packages that use Autotools come with a script named configure
that checks dependencies and generates makefiles according to
what it finds. The configure script may also give you the
opportunity to enable or disable certain features. You can find the
options on offer by running ./configure --help.

To configure, build and install a package for the native operating
system, you would typically run the following three commands:
$ ./configure

$ make

$ sudo make install

Autotools is able to handle cross-development as well. You can
influence the behavior of the configured script by setting these shell
variables:

CC: The C compiler command.

CFLAGS: Additional C compiler flags.

CXX: The C++ compiler command.

https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/gnulib/


CXXFLAGS: Additional C++ compiler flags.

LDFLAGS: Additional linker flags; for example, if you have
libraries in a non-standard directory <lib dir>, you would add
it to the library search path 
by adding -L<lib dir>.

LIBS: Contains a list of additional libraries to pass to the linker;
for instance, 
-lm for the math library.

CPPFLAGS: Contains C/C++ preprocessor flags; for example, you
would add -I<include dir> to search for headers in a non-
standard directory 
<include dir>.

CPP: The C preprocessor to use.

Sometimes it is sufficient to set only the CC variable, as follows:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc ./configure

At other times, that will result in an error like this:
[…]

checking for suffix of executables...

checking whether we are cross compiling...
configure: error: in '/home/frank/sqlite-
autoconf-3330000':

configure: error: cannot run C compiled programs.

If you meant to cross compile, use '--host'.

See 'config.log' for more details



The reason for the failure is that configure often tries to discover
the capabilities of the toolchain by compiling snippets of code and
running them to see what happens, which cannot work if the
program has been cross-compiled.

IMPORTANT NOTE

Pass --host=<host> to configure when you are cross-

compiling so that configure searches your system for the cross-

compiling toolchain targeting the specified <host> platform. That

way, configure does not try to run snippets of non-native code as

part of the configuration step.

Autotools understands three different types of machines that may be
involved when compiling a package:

Build: The computer that builds the package, which defaults to
the current machine.

Host: The computer the program will run on. For a native
compile, this is left blank and it defaults to be the same computer
as Build. When you are cross-compiling, set it to be the tuple of
your toolchain.

Target: The computer the program will generate code for. You
would set this when building a cross compiler.

So, to cross-compile, you just need to override the host, as follows:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf



One final thing to note is that the default install directory is
<sysroot>/usr/local/*. 
You would usually install it in <sysroot>/usr/* so that the header
files and libraries would be picked up from their default locations.

The complete command to configure a typical Autotools package is
as follows:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf -
-prefix=/usr

Let's dive deeper into Autotools and use it to cross-compile a
popular library.

An example – SQLite
The SQLite library implements a simple relational database and is
quite popular on embedded devices. You begin by getting a copy of
SQLite:
$ wget http://www.sqlite.org/2020/sqlite-autoconf-

3330000.tar.gz

$ tar xf sqlite-autoconf-3330000.tar.gz

$ cd sqlite-autoconf-3330000

Next, run the configure script:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf -
-prefix=/usr

That seems to work! If it had failed, there would be error messages
printed to the Terminal and recorded in config.log. Note that
several makefiles have been created, so now you can build it:



$ make

Finally, you install it into the toolchain directory by setting the make
variable DESTDIR. If you don't, it will try to install it into the host
computer's /usr directory, which is not what you want:
$ make DESTDIR=$(arm-cortex_a8-linux-gnueabihf-gcc

-print-sysroot) install

You may find that the final command fails with a file permissions
error. A crosstool-NG toolchain is read-only by default, which is why
it is useful to set CT_PREFIX_DIR_RO to y when building it. Another
common problem is that the toolchain is installed in a system
directory, such as /opt or /usr/local. In that case, you will need
root permissions when running the install.

After installing, you should find that various files have been added to
your toolchain:

<sysroot>/usr/bin: sqlite3: This is a command-line
interface for SQLite that you can install and run on the target.

<sysroot>/usr/lib: libsqlite3.so.0.8.6,
libsqlite3.so.0, libsqlite3.so, libsqlite3.la,
libsqlite3.a: These are the shared 
and static libraries.

<sysroot>/usr/lib/pkgconfig: sqlite3.pc: This is the
package configuration file, as described in the following section.

<sysroot>/usr/lib/include: sqlite3.h,
sqlite3ext.h: These are the header files.



<sysroot>/usr/share/man/man1: sqlite3.1: This is the
manual page.

Now you can compile programs that use sqlite3 by adding -
lsqlite3 at the 
link stage:
$ arm-cortex_a8-linux-gnueabihf-gcc -lsqlite3

sqlite-test.c -o sqlite-test

Here, sqlite-test.c is a hypothetical program that calls SQLite
functions. Since sqlite3 has been installed into the sysroot, the
compiler will find the header and library files without any problem. If
they had been installed elsewhere, you would have had to add -
L<lib dir> and -I<include dir>.

Naturally, there will be runtime dependencies as well, and you will
have to install 
the appropriate files into the target directory as described in Chapter
5, Building a 
Root Filesystem.

In order to cross-compile a library or package, its dependencies first
need to be 
cross-compiled. Autotools relies on a utility called pkg-config to
gather vital information about packages cross-compiled by Autotools.

Package configuration



Tracking package dependencies is quite complex. The package
configuration utility pkg-config
(https://www.freedesktop.org/wiki/Software/pkg-config/) helps track
which packages are installed and which compile flags each package
needs by keeping a database of Autotools packages in
[sysroot]/usr/lib/pkgconfig. For instance, the one for
SQLite3 is named sqlite3.pc and contains essential information
needed by other packages that need to make use of it:
$ cat $(arm-cortex_a8-linux-gnueabihf-gcc -print-

sysroot)/usr/lib/pkgconfig/sqlite3.pc

# Package Information for pkg-config

prefix=/usr

exec_prefix=${prefix}

libdir=${exec_prefix}/lib

includedir=${prefix}/include

Name: SQLite

Description: SQL database engine

Version: 3.33.0

Libs: -L${libdir} -lsqlite3

Libs.private: -lm -ldl -lpthread

Cflags: -I${includedir}

You can use pkg-config to extract information in a form that you
can feed straight to gcc. In the case of a library like libsqlite3,
you want to know the library name (--libs) and any special C flags
(--cflags):
$ pkg-config sqlite3 --libs --cflags

https://www.freedesktop.org/wiki/Software/pkg-config/


Package sqlite3 was not found in the pkg-config
search path.

Perhaps you should add the directory containing
'sqlite3.pc'

to the PKG_CONFIG_PATH environment variable

No package 'sqlite3' found

Oops! That failed because it was looking in the host's sysroot and
the development package for libsqlite3 has not been installed
on the host. You need to point it at the sysroot of the target
toolchain by setting the PKG_CONFIG_LIBDIR shell variable:
$ export PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-

gnueabihf-gcc \

-print-sysroot)/usr/lib/pkgconfig

$ pkg-config sqlite3 --libs --cflags

-lsqlite3

Now the output is -lsqlite3. In this case, you knew that already,
but generally you wouldn't, so this is a valuable technique. The final
commands to compile would be 
the following:
$ export PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-

gnueabihf-gcc \

-print-sysroot)/usr/lib/pkgconfig

$ arm-cortex_a8-linux-gnueabihf-gcc $(pkg-config
sqlite3 --cflags --libs) \

sqlite-test.c -o sqlite-test

Many configure scripts read the information generated by pkg-
config. This can lead to errors when cross-compiling as we shall



see next.

Problems with cross-compil ing
sqlite3 is a well-behaved package and cross-compiles nicely, but
not all packages are the same. Typical pain points include the
following:

Home-grown build systems for libraries such as zlib that have a
configure script that does not behave like the Autotools
configure described in the previous section

Configure scripts that read pkg-config information, headers,
and other files from the host, disregarding the --host override

Scripts that insist on trying to run cross-compiled code

Each case requires careful analysis of the error and additional
parameters to the configure script to provide the correct
information, or patches to the code to avoid the problem altogether.
Bear in mind that one package may have many dependencies,
especially with programs that have a graphical interface using GTK
or Qt, or that handle multimedia content. As an example, mplayer,
which is a popular tool for playing multimedia content, has
dependencies on over 100 libraries. It would take weeks of effort to
build them all.

Therefore, I would not recommend manually cross-compiling
components for the target in this way, except when there is no



alternative or the number of packages to build is small. A much
better approach is to use a build tool such as Buildroot or the Yocto
Project or avoid the problem altogether by setting up a native build
environment for your target architecture. Now you can see why
distributions such as Debian are always compiled natively.

CMake
CMake is more of a meta build system in the sense that it relies on
an underlying platform's native tools to build software. On Windows,
CMake can generate project files for Microsoft Visual Studio and on
macOS, it can generate project files for Xcode. Integrating with the
principal IDEs for each of the major platforms is no simple task and
explains the success of CMake as the leading cross-platform build
system solution. CMake also runs on Linux, where it can be used in
conjunction with a cross-compiling toolchain of your choice.

To configure, build, and install a package for a native Linux operating
system, run the following commands:
$ cmake .

$ make

$ sudo make install

On Linux, the native build tool is GNU make so CMake generates
makefiles by default for us to build with. Oftentimes, we want to
perform out-of-source builds so that object files and other build
artifacts remain separate from source files.



To configure an out-of-source build in a subdirectory named _build,
run the 
following commands:
$ mkdir _build

$ cd _build

$ cmake ..

This will generate the makefiles inside a _build subdirectory within
the project directory where the CMakeLists.txt is located. The
CMakeLists.txt file is the CMake equivalent of the configure
script for Autotools-based projects.

We can then build the project out-of-source from inside the _build
directory and install the package just as before:
$ make

$ sudo make install

CMake uses absolute paths so the _build subdirectory cannot be
copied or moved once the makefiles have been generated or any
subsequent make step will likely fail. Note that CMake defaults to
installing packages into system directories such as /usr/bin even
for out-of-source builds.

To generate the makefiles so that make installs the package in the
_build subdirectory, replace the previous cmake command with the
following:
$ cmake .. -D CMAKE_INSTALL_PREFIX=../_build

We no longer need to preface make install with sudo because
we do not need elevated permissions to copy the package files into



the _build directory.

Similarly, we can use another CMake command-line option to
generate makefiles for cross-compilation:
$ cmake .. -D

CMAKE_C_COMPILER="/usr/local/share/x-
tools/arm-cortex_a8-linux-gnueabihf-gcc"

But the best practice for cross-compiling with CMake is to create a
toolchain file that sets CMAKE_C_COMPILER and
CMAKE_CXX_COMPILER in addition to other relevant variables for
targeting embedded Linux.

CMake works best when we design our software in a modular way
by enforcing 
well-defined API boundaries between libraries and components.

Here are some key terms that come up time and time again in
CMake:

target: A software component such as a library or executable.

properties: Include the source files, compiler options, and
linked libraries needed to build a target.

package: A CMake file that configures an external target for
building just as if it was defined within your CMakeLists.txt
itself.

For example, if we had a CMake-based executable named dummy
that needed to take a dependency on SQLite, we could define the
following CMakeLists.txt:



cmake_minimum_required (VERSION 3.0)

project (Dummy)

add_executable(dummy dummy.c)

find_package (SQLite3)

target_include_directories(dummy PRIVATE
${SQLITE3_INCLUDE_DIRS})

target_link_libraries (dummy PRIVATE
${SQLITE3_LIBRARIES})

The find_package command searches for a package (SQLite3 in
this case) and imports it so that the external target can be added as
a dependency to the dummy executable's list of
target_link_libraries for linking.

CMake comes with numerous finders for popular C and C++
packages including OpenSSL, Boost, and protobuf, making native
development much more productive than if we were to use just pure
makefiles.

The PRIVATE qualifier prevents details such as headers and flags
from leaking outside of the dummy target. Using PRIVATE makes
more sense when the target being built is a library instead of an
executable. Think of targets as modules and attempt to minimize
their exposed surface areas when using CMake to define your own
targets. Only employ the PUBLIC qualifier when absolutely
necessary and utilize the INTERFACE qualifier for header-only
libraries.

Model your application as a dependency graph with edges between
targets. This graph should not only include the libraries that your



application links to directly but any transitive dependencies as well.
For best results, remove any cycles or other unnecessary
independencies seen in the graph. It is often best to perform this
exercise before you start coding. A little planning can make the
difference between a clean, easily maintainable CMakeLists.txt
and an inscrutable mess that nobody wants to touch.

Summary
The toolchain is always your starting point; everything that follows
from that is dependent on having a working, reliable toolchain.

You may start with nothing but a toolchain—perhaps built using
crosstool-NG or downloaded from Linaro—and use it to compile all
the packages that you need on your target. Or you may obtain the
toolchain as part of a distribution generated from source code using
a build system such as Buildroot or the Yocto Project. Beware of
toolchains or distributions that are offered to you for free as part of a
hardware package; they are often poorly configured and not
maintained.

Once you have a toolchain, you can use it to build the other
components of your embedded Linux system. In the next chapter,
you will learn about the bootloader, which brings your device to life
and begins the boot process. We will use the toolchain we built in
this chapter to build a working bootloader for the BeagleBone Black.



Further reading
Here are a couple of videos that capture the state of the art on cross
toolchains and build systems at the time of writing:

A Fresh Look at Toolchains and Crosscompilers in 2020, by
Bernhard "Bero" Rosenkränzer: https://www.youtube.com/watch?
v=BHaXqXzAs0Y

Modern CMake for modular design, by Mathieu Ropert: 
https://www.youtube.com/watch?v=eC9-iRN2b04

https://www.youtube.com/watch?v=BHaXqXzAs0Y
https://www.youtube.com/watch?v=eC9-iRN2b04


Chapter 3 :  Al l  about
Boot loaders
The bootloader is the second element of embedded Linux. It is the
part that starts the system and loads the operating system kernel. In
this chapter, we will look at the role of the bootloader and, in
particular, how it passes control from itself to the kernel using a data
structure called a device tree, also known as a flattened device
tree or FDT. I will cover the basics of device trees, as this will help
you follow the connections described in a device tree and relate it to
real hardware.

I will look at the popular open source bootloader known as U-Boot
and show you how to use it to boot a target device, as well as how to
customize it so that it can run on a new device by using the
BeagleBone Black as an example.

In this chapter, we will cover the following topics:

What does a bootloader do?

The boot sequence

Moving from the bootloader to a kernel

Introducing device trees

U-Boot

Let's get started!



Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based host system with device-tree-compiler, git,
make, patch, and u-boot-tools or their equivalents installed.

The Crosstool-NG toolchain for BeagleBone Black from Chapter
2, Learning 
About Toolchains.

A microSD card reader and card.

A USB to TTL 3.3V serial cable

BeagleBone Black

A 5V 1A DC power supply

All the code that will be used in this chapter can be found in the
Chapter03 folder of this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

What does a boot loader do?
In an embedded Linux system, the bootloader has two main jobs: to
initialize the system to a basic level and to load the kernel. In fact,
the first job is somewhat subsidiary to the second, in that it is only

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


necessary to get as much of the system working as is needed to
load the kernel.

When the first lines of the bootloader code are executed, following a
power-on or a reset, the system is in a very minimal state. The
DRAM controller is not set up, so the main memory is not accessible.
Likewise, other interfaces are not configured, so storage that's
accessed via NAND flash controllers, MMC controllers, and so on is
unavailable. Typically, the only resources that are operational at the
beginning are a single CPU core, some on-chip static memory, and
the boot ROM.

System bootstrap consists of several phases of code, each bringing
more of the system into operation. The final act of the bootloader is
to load the kernel into RAM and create an execution environment for
it. The details of the interface between the bootloader and the kernel
are architecture-specific, but in each case, it has to do two things.
First, the bootloader has to pass a pointer to a structure containing
information about the hardware configuration. Second, it has to pass
a pointer to the kernel command line.

The kernel command line is a text string that controls the behavior of
Linux. Once the kernel has begun executing, the bootloader is no
longer needed and all the memory it was using can be reclaimed.

A subsidiary job of the bootloader is to provide a maintenance mode
for updating boot configurations, loading new boot images into
memory, and, maybe, running diagnostics. This is usually controlled



by a simple command-line user interface, commonly over a serial
console.

The boot sequence
In simpler times, some years ago, it was only necessary to place the
bootloader in non-volatile memory at the reset vector of the
processor. NOR flash memory was common at that time and, since
it can be mapped directly into the address space, it was the ideal
method of storage. The following diagram shows such a
configuration, with the Reset vector at 0xfffffffc at the top end
of an area of flash memory. The bootloader is linked so that there is
a jump instruction at that location that points to the start of the
bootloader code:



Figure 3.1 – NOR flash

From that point on, the bootloader code running in NOR flash
memory can initialize the DRAM controller so that the main memory
– the DRAM – becomes available and then copies itself into the
DRAM. Once fully operational, the bootloader can load the kernel
from flash memory into DRAM and transfer control to it.

However, once you move away from a simple linearly addressable
storage medium such as NOR flash, the boot sequence becomes a
complex, multi-stage procedure. The details are very specific to each
SoC, but they generally follow each of the following phases.

Phase 1 – ROM code



In the absence of reliable external memory, the code that runs
immediately after a 
reset or power-on has to be stored on-chip in the SoC; this is known
as ROM code. It is loaded into the chip when it is manufactured, and
hence the ROM code is proprietary and cannot be replaced by an
open source equivalent. Usually, it does not include code to initialize
the memory controller, since DRAM configurations are highly device-
specific, and so it can only use Static Random Access Memory
(SRAM), which does not require a memory controller.

Most embedded SoC designs have a small amount of SRAM on-
chip, varying in size from as little as 4 KB to several hundred KB:

Figure 3.2 – Phase 1 – ROM code

The ROM code is capable of loading a small chunk of code from one
of several pre-programmed locations into the SRAM. As an example,
TI OMAP and Sitara chips try to load code from the first few pages of



NAND flash memory, or from flash memory connected through a
Serial Peripheral Interface (SPI), or from the first sectors of an
MMC device (which could be an eMMC chip or an SD card), or from
a file named MLO on the first partition of an MMC device. If it's
reading from all these memory devices fails, then it tries reading a
byte stream from Ethernet, USB, or UART; the latter is provided
mainly as a means of loading code into flash memory during
production, rather than for use in normal operation. Most embedded
SoCs have ROM code that works in a similar way. In SoCs, where
the SRAM is not large enough to load a full bootloader such as U-
Boot, there has to be an intermediate loader called the secondary
program loader (SPL).

At the end of the ROM code phase, the SPL is present in the SRAM
and the ROM code jumps to the beginning of that code.

Phase 2 – secondary program
loader
The SPL must set up the memory controller and other essential parts
of the system in preparation for loading the Tertiary Program
Loader (TPL) into DRAM. The functionality of the SPL is limited by
the size of the SRAM. It can read a program from a list of storage
devices, as can the ROM code, once again using pre-programmed
offsets from the start of a flash device. If the SPL has filesystem
drivers built in to it, it can read well-known filenames, such as u-
boot.img, from a disk partition. The SPL usually doesn't allow for



any user interaction, but it may print version information and
progress messages, which you can see on the console. The
following diagram explains the phase 2 architecture:

Figure 3.3 – Phase 2 – SPL

The preceding diagram shows the jump from ROM code to SPL. As
the SPL executes within SRAM, it loads the TPL into DRAM. At the
end of the second phase, the TPL is present in DRAM, and the SPL
can make a jump to that area.



The SPL may be open source, as is the case with the TI x-loader
and Atmel AT91Bootstrap, but it is quite common for it to contain
proprietary code that is supplied by the manufacturer as a binary
blob.

Phase 3 – TPL
At this point, we are running a full bootloader, such as U-Boot, which
we will learn about a bit later in this chapter. Usually, there is a
simple command-line user interface that lets you perform
maintenance tasks, such as loading new boot and kernel images into
flash storage, and loading and booting a kernel, and there is a way
to load the kernel automatically without user intervention.

The following diagram explains the phase 3 architecture:



Figure 3.4 – Phase 3 – TPL

The preceding diagram shows the jump from SPL in SRAM to TPL in
DRAM. As the TPL executes, it loads the kernel into DRAM. We also
have the choice of appending an FDT and/or initial RAM disk to the
image in DRAM if we want. Either way, at the end of the third phase,
there is a kernel in memory, waiting to be started.

Embedded bootloaders usually disappear from memory once the
kernel is running and have no further part in the operation of the
system. Before that happens, the TPL needs to hand off control of
the boot process to the kernel.



Moving from the boot loader
to a kernel
When the bootloader passes control to the kernel, it has to pass
some basic information, which includes the following:

The machine number, which is used on PowerPC and Arm
platforms without support for a device tree, to identify the type of
the SoC.

Basic details of the hardware that's been detected so far,
including (at the very least) the size and location of the physical
RAM and the CPU's clock speed.

The kernel command line.

Optionally, the location and size of a device tree binary.

Optionally, the location and size of an initial RAM disk, called the
initial RAM file system (initramfs).

The kernel command line is a plain ASCII string that controls the
behavior of Linux by giving, for example, the name of the device that
contains the root filesystem. We will look at the details of this in the
next chapter. It is common to provide the root filesystem as a RAM
disk, in which case it is the responsibility of the bootloader to load
the RAM disk image into memory. We will cover how create initial
RAM disks in Chapter 5, Building a Root Filesystem.

The way this information is passed is dependent on the architecture
and has changed in recent years. For instance, with PowerPC, the



bootloader simply used to pass a pointer to a board information
structure, whereas with Arm, it passed a pointer to a list of A tags.
There is a good description of the format of A tags in the kernel
source in Documentation/arm/Booting.

In both cases, the amount of information that was passed was very
limited, leaving the bulk of it to be discovered at runtime or hard-
coded into the kernel as platform data. The widespread use of
platform data meant that each board had to have a kernel configured
and modified for that platform. A better way was needed, and that
way is the device tree. In the Arm world, the move away from A tags
began in earnest in February 2013 with the release of Linux 3.8.
Today, almost all Arm systems use device tree to gather information
about the specifics of the hardware platform, allowing a single kernel
binary to run on a wide range of those platforms.

Now that we've learned what a bootloader does, what the stages of
the boot sequence are, and how it passes control to the kernel, let's
learn how to configure a bootloader so that it runs on popular
embedded SoCs.

Introducing device t rees
If you are working with Arm or PowerPC SoCs, you are almost
certainly going to encounter device trees at some point. This section
aims to give you a quick overview of what they are and how they
work. We will revisit the topic of device trees repeatedly throughout
the course of this book.



A device tree is a flexible way of defining the hardware components
of a computer system. Bear in mind that a device tree is just static
data, not executable code. Usually, the device tree is loaded by the
bootloader and passed to the kernel, although it is possible to bundle
the device tree with the kernel image itself to cater for bootloaders
that are not capable of loading them separately.

The format is derived from a Sun Microsystems bootloader known as
OpenBoot, which was formalized as the Open Firmware
specification, which is IEEE standard IEEE1275-1994. It was used in
PowerPC-based Macintosh computers and so was a logical choice
for the PowerPC Linux port. Since then, it has been adopted at a
large scale by the many Arm Linux implementations and, to a lesser
extent, by MIPS, MicroBlaze, ARC, and other architectures.

I would recommend visiting https://www.devicetree.org for more
information.

Device tree basics
The Linux kernel contains a large number of device tree source files
in arch/$ARCH/boot/dts, and this is a good starting point for
learning about device trees. There are also a smaller number of
sources in the U-boot source code in arch/$ARCH/dts. If you
acquired your hardware from a third party, the dts file forms part of
the board support package, so you should expect to receive one
along with the other source files.

https://www.devicetree.org/


The device tree represents a computer system as a collection of
components joined together in a hierarchy, such as a tree. The
device tree begins with a root node, represented by a forward slash,
/, which contains subsequent nodes representing the hardware of
the system. Each node has a name and contains a number of
properties in the form name = "value". Here is a simple example:
/dts-v1/;

/{

    model = "TI AM335x BeagleBone";

    compatible = "ti,am33xx";

    #address-cells = <1>;

    #size-cells = <1>;

    cpus {

        #address-cells = <1>;

        #size-cells = <0>;

        cpu@0 {

            compatible = "arm,cortex-a8";

            device_type = "cpu";

            reg = <0>;

        };

    };

    memory@0x80000000 {

        device_type = "memory";

        reg = <0x80000000 0x20000000>; /* 512 MB
*/

    };

};



Here, we have a root node that contains a cpus node and a memory
node. The cpus node contains a single CPU node named cpu@0.
The names of these nodes often include an @, followed by an
address that distinguishes the node from other nodes of the same
type. @ is required if the node has a reg property.

Both the root and CPU nodes have a compatible property. The
Linux kernel uses this property to find a matching device driver by
comparing it with the strings that are exported by each device driver
in a of_device_id structure (more on this in Chapter 11,
Interfacing with Device Drivers).

IMPORTANT NOTE

It is a convention that the value of the compatible property is

composed of a manufacturer name and a component name, to
reduce confusion between similar devices made by different
manufacturers; hence, ti,am33xx and arm,cortex-a8. It is also

quite common to have more than one value for the compatible

property where there is more than one driver that can handle this
device. They are listed with the most suitable mentioned first.

The CPU node and the memory node have a device_type
property, which describes the class of device. The node name is
often derived from device_type.

The reg property



The memory and cpu nodes shown earlier have a reg property,
which refers to a range of units in a register space. A reg property
consists of two values representing the real physical address and the
size (length) of the range. Both are written as zero or more 32-bit
integers, called cells. Hence, the previous memory node refers to a
single bank of memory that begins at 0x80000000 and is
0x20000000 bytes long.

Understanding reg properties becomes more complex when the
address or size values cannot be represented in 32 bits. For
example, on a device with 64-bit addressing, you need two cells for
each:
/{

    #address-cells = <2>;

    #size-cells = <2>;

    memory@80000000 {

        device_type = "memory";

        reg = <0x00000000 0x80000000 0
0x80000000>;

    };

};

The information about the number of cells required is held in the
#address-cells and #size_cells properties in an ancestor
node. In other words, to understand a reg property, you have to look
backward down the node hierarchy until you find #address-cells
and #size_cells. If there are none, the default values are 1 for



each – but it is bad practice for device tree writers to depend on
defaults.

Now, let's return to the cpu and cpus nodes. CPUs have addresses
as well; in a quad core device, they might be addressed as 0, 1, 2,
and 3. That can be thought of as a one-dimensional array without
any depth, so the size is zero. Therefore, you can see that we have
#address-cells = <1> and #size-cells = <0> in the cpus
node, and in the child node, cpu@0, we assign a single value to the
reg property, reg = <0>.

Labels and interrupts
The structure of the device tree we've described so far assumes that
there is a single hierarchy of components, whereas there are, in fact,
several. As well as the obvious data connection between a
component and other parts of the system, it might also be connected
to an interrupt controller, to a clock source, and to a voltage
regulator. To express these connections, we can add a label to a
node and reference the label from other nodes. These labels are
sometimes referred to as phandles, because when the device tree
is compiled, nodes with a reference from another node are assigned
a unique numerical value in a property called phandle. You can see
them if you decompile the device tree binary.

Take, as an example, a system containing an LCD controller that can
generate interrupts and an interrupt-controller:



/dts-v1/;

{

    intc: interrupt-controller@48200000 {

        compatible = "ti,am33xx-intc";

        interrupt-controller;

        #interrupt-cells = <1>;

        reg = <0x48200000 0x1000>;

    };

    lcdc: lcdc@4830e000 {

        compatible = "ti,am33xx-tilcdc";

        reg = <0x4830e000 0x1000>;

        interrupt-parent = <&intc>;

        interrupts = <36>;

        ti,hwmods = "lcdc";

        status = "disabled";

    };

};

Here, we have the interrupt-controller@48200000 node with
a label of intc. The interrupt-controller property identifies it
as an interrupt controller. Like all interrupt controllers, it has an
#interrupt-cells property, which tells us how many cells are
needed to represent an interrupt source. In this case, there is only
one that represents the interrupt request (IRQ) number. Other
interrupt controllers may use additional cells to characterize the
interrupt; for example, to indicate whether it is edge or level
triggered. The number of interrupt cells and their meanings is
described in the bindings for each interrupt controller. The device



tree bindings can be found in the Linux kernel source, in the
Documentation/devicetree/bindings/ directory.

Looking at the lcdc@4830e000 node, it has an interrupt-
parent property, which references the interrupt controller it is
connected to, using the label. It also has an interrupts property,
which is 36 in this case. Note that this node has its own label, lcdc,
which is used elsewhere: any node can have a label.

Device tree include f i les
A lot of hardware is common between SoCs of the same family and
between boards using the same SoC. This is reflected in the device
tree by splitting out common sections into include files, usually with
the .dtsi extension. The Open Firmware standard defines
/include/ as the mechanism to be used, as in this snippet from
vexpress-v2p-ca9.dts:
/include/ "vexpress-v2m.dtsi"

Look through the .dts files in the kernel, though, and you will find
an alternative include statement that is borrowed from C; for
example, in am335x-boneblack.dts:
#include "am33xx.dtsi"

#include "am335x-bone-common.dtsi"

Here is another example from am33xx.dtsi:
#include <dt-bindings/gpio/gpio.h>

#include <dt-bindings/pinctrl/am33xx.h>



#include <dt-bindings/clock/am3.h>

Lastly, include/dt-bindings/pinctrl/am33xx.h contains
normal C macros:
#define PULL_DISABLE       (1 << 3)

#define INPUT_EN           (1 << 5)

#define SLEWCTRL_SLOW      (1 << 6)

#define SLEWCTRL_FAST       0

All of this is resolved if the device tree sources are built using the
Kbuild system, which runs them through the C preprocessor, CPP,
where the #include and #define statements are processed into
text that is suitable for the device tree compiler. This motivation is
illustrated in the previous example; it means that the device tree
sources can use the same definitions of constants as the kernel
code.

When we include files, using either syntax, the nodes are overlaid on
top of one another to create a composite tree in which the outer
layers extend or modify the inner ones. For example, am33xx.dtsi,
which is general to all am33xx SoCs, defines the first MMC
controller interface, like this:
mmc1: mmc@48060000 {

    compatible = "ti,omap4-hsmmc";

    ti,hwmods = "mmc1";

    ti,dual-volt;

    ti,needs-special-reset;

    ti,needs-special-hs-handling;

    dmas = <&edma_xbar 24 0 0



        &edma_xbar 25 0 0>;

    dma-names = "tx", "rx";

    interrupts = <64>;

    reg = <0x48060000 0x1000>;

    status = "disabled";

};

Note that status is disabled, meaning that no device driver
should be bound to it, and also that it has a label of mmc1.

Both the BeagleBone and the BeagleBone Black have a microSD
card interface attached to mmc1. This is why, in am335x-bone-
common.dtsi, the same node is referenced by its label; that is,
&mmc1:
&mmc1 {

    status = "okay";

    bus-width = <0x4>;

    pinctrl-names = "default";

    pinctrl-0 = <&mmc1_pins>;

    cd-gpios = <&gpio0 6 GPIO_ACTIVE_LOW>;

};

The status property is set to okay, which causes the MMC device
driver to bind with this interface at runtime on both variants of the
BeagleBone. Also, a reference to a label is added to the pin control
configuration, mmc1_pins. Alas, there is not sufficient space here to
describe pin control and pin multiplexing. You will find some
information in the Linux kernel source in the
Documentation/devicetree/bindings/pinctrl directory.



However, the mmc1 interface is connected to a different voltage
regulator on the BeagleBone Black. This is expressed in am335x-
boneblack.dts, where you will see another reference to mmc1,
which associates it with the voltage regulator via the vmmcsd_fixed
label:
&mmc1 {

    vmmc-supply = <&vmmcsd_fixed>;

};

So, layering the device tree source files like this gives us flexibility
and reduces the need for duplicated code.

Compil ing a device tree
The bootloader and kernel require a binary representation of the
device tree, so it has to be compiled using the device tree compiler;
that is, dtc. The result is a file ending with .dtb, which is referred to
as a device tree binary or a device tree blob.

There is a copy of dtc in the Linux source, in scripts/dtc/dtc,
and it is also available as a package on many Linux distributions.
You can use it to compile a simple device tree (one that does not use
#include) like this:
$ dtc simpledts-1.dts -o simpledts-1.dtb

DTC: dts->dts on file "simpledts-1.dts"

Be wary of the fact that dtc does not give helpful error messages
and makes no checks other than on the basic syntax of the



language, which means that debugging a typing error in a source file
can be a lengthy process.

To build more complex examples, you will have to use the Kbuild
kernel, as shown in Chapter 4, Configuring and Building the Kernel.

Like the kernel, the bootloader can use a device tree to initialize an
embedded SoC and its peripherals. This device tree is critical when
you're loading the kernel from a mass storage device such as a
QSPI flash. While embedded Linux offers a choice of bootloaders,
we will only cover one. We'll dig deep into that bootloader next.

U-Boot
We are going to focus on U-Boot exclusively because it supports a
good number of processor architectures and a large number of
individual boards and devices. It has been around for a long time
and has a good community for support.

U-Boot, or to give its full name, Das U-Boot, began life as an open
source bootloader for embedded PowerPC boards. Then, it was
ported to Arm-based boards and later to other architectures,
including MIPS and SH. It is hosted and maintained by Denx
Software Engineering. There is plenty of information available on it,
and a good place to start is https://www.denx.de/wiki/U-Boot. There
is also a mailing list at u-boot@lists.denx.de that you can subscribe
to by filling out and submitting the form provided at
https://lists.denx.de/listinfo/u-boot.

https://www.denx.de/wiki/U-Boot
mailto:u-boot@lists.denx.de
https://lists.denx.de/listinfo/u-boot


Building U-Boot
Begin by getting the source code. As with most projects, the
recommended way is to clone the .git archive and check out the
tag you intend to use – which, in this case, is the version that was
current at the time of writing:
$ git clone git://git.denx.de/u-boot.git

$ cd u-boot

$ git checkout v2021.01

Alternatively, you can get a tarball from ftp://ftp.denx.de/pub/u-boot.

There are more than 1,000 configuration files for common
development boards and devices in the configs/ directory. In most
cases, you can take a good guess regarding which to use, based on
the filename, but you can get more detailed information by looking
through the per-board README files in the board/ directory, or you
can find information in an appropriate web tutorial or forum.

Taking the BeagleBone Black as an example, we will find that there
is a likely configuration file named
configs/am335x_evm_defconfig and the text The binary
produced by this board supports ... Beaglebone Black in the
board's README file for the am335x chip,
board/ti/am335x/README. With this knowledge, building U-Boot
for a BeagleBone Black is simple. You need to inform U-Boot of the
prefix for your cross compiler by setting the CROSS_COMPILE make
variable, and then selecting the configuration file using a command

ftp://ftp.denx.de/pub/u-boot


of the make [board]_defconfig type. Therefore, to build U-Boot
using the Crosstool-NG compiler we created in Chapter 2, Learning
About Toolchains, you would type in the following:
$ source ../MELP/Chapter02/set-path-arm-cortex_a8-

linux-gnueabihf

$ make am335x_evm_defconfig

$ make

The results of the compilation are as follows:

u-boot: U-Boot in ELF object format, suitable for use with a
debugger

u-boot.map: The symbol table

u-boot.bin: U-Boot in raw binary format, suitable for running
on your device

u-boot.img: This is u-boot.bin with a U-Boot header added,
suitable for uploading to a running copy of U-Boot

u-boot.srec: U-Boot in Motorola S-record (SRECORD or
SRE) format, suitable for transferring over a serial connection

The BeagleBone Black also requires a secondary program loader
(SPL), as described earlier. This is built at the same time and is
named MLO:
$ ls -l MLO u-boot*

-rw-rw-r-- 1 frank frank  108260 Feb  8 15:24 MLO

-rwxrwxr-x 1 frank frank 6028304 Feb  8 15:24 u-
boot



-rw-rw-r-- 1 frank frank  594076 Feb  8 15:24 u-
boot.bin

-rw-rw-r-- 1 frank frank   20189 Feb  8 15:23 u-
boot.cfg

-rw-rw-r-- 1 frank frank   10949 Feb  8 15:24 u-
boot.cfg.configs

-rw-rw-r-- 1 frank frank   54860 Feb  8 15:24 u-
boot.dtb

-rw-rw-r-- 1 frank frank  594076 Feb  8 15:24 u-
boot-dtb.bin

-rw-rw-r-- 1 frank frank  892064 Feb  8 15:24 u-
boot-dtb.img

-rw-rw-r-- 1 frank frank  892064 Feb  8 15:24 u-
boot.img

-rw-rw-r-- 1 frank frank    1722 Feb  8 15:24 u-
boot.lds

-rw-rw-r-- 1 frank frank  802250 Feb  8 15:24 u-
boot.map

-rwxrwxr-x 1 frank frank  539216 Feb  8 15:24 u-
boot-nodtb.bin

-rwxrwxr-x 1 frank frank 1617810 Feb  8 15:24 u-
boot.srec

-rw-rw-r-- 1 frank frank  211574 Feb  8 15:24 u-
boot.sym

The procedure is similar for other targets.

Instal l ing U-Boot
Installing a bootloader on a board for the first time requires some
outside assistance. If the board has a hardware debug interface,



such as JTAG (Joint Test Action Group), it is usually possible to
load a copy of U-Boot directly into RAM and get it running. From that
point, you can use U-Boot commands so that it copies itself into flash
memory. The details of this are very board-specific and outside the
scope of this book.

Many SoC designs have a boot ROM built in that can be used to
read boot code from various external sources, such as SD cards,
serial interfaces, or USB mass storage. This is the case with the
am335x chip in the BeagleBone Black, which makes it easy to try
out new software.

You will need an SD card reader to write the images to a card. There
are two types: external readers that plug into a USB port, and the
internal SD readers that are present on many laptops. A device
name is assigned by Linux when a card is plugged into the reader.
The lsblk command is a useful tool for finding out which device
has been allocated. For example, this is what I see when I plug a
nominal 8 GB microSD card into my card reader:
$ lsblk

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT

sda           8:0    1   7.4G  0 disk

└─sda1        8:1    1   7.4G  0 part
/media/frank/6662-6262

nvme0n1     259:0    0 465.8G  0 disk

├─nvme0n1p1 259:1    0   512M  0 part /boot/efi

├─nvme0n1p2 259:2    0    16M  0 part

├─nvme0n1p3 259:3    0 232.9G  0 part

└─nvme0n1p4 259:4    0 232.4G  0 part /



In this case, nvme0n1 is my 512 GB hard drive and sda is the
microSD card. It has a single partition, sda1, which is mounted as
the /media/frank/6662-6262 directory.

IMPORTANT NOTE

Although the microSD card had 8 GB printed on the outside, it was
only 7.4 GB on the inside. In part, this is because of the different
units being used. The advertised capacity is measured in gigabytes,
109, but the sizes reported by software are in gibibytes, 230.
Gigabytes is abbreviated to GB, while gibibytes is abbreviated to
GiB. The same applies for KB and KiB and MB and MiB. In this
book, I have tried to use the right units. In the case of the SD card, it
so happens that 8 GB is approximately 7.4 GiB.

If I use the built-in SD card slot, I see this:
$ lsblk

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT

mmcblk0     179:0    1   7.4G  0 disk

└─mmcblk0p1 179:1    1   7.4G  0 part
/media/frank/6662-6262

nvme0n1     259:0    0 465.8G  0 disk

├─nvme0n1p1 259:1    0   512M  0 part /boot/efi

├─nvme0n1p2 259:2    0    16M  0 part

├─nvme0n1p3 259:3    0 232.9G  0 part

└─nvme0n1p4 259:4    0 232.4G  0 part /

In this case, the microSD card appears as mmcblk0 and the partition
is mmcblk0p1. Note that the microSD card you use may have been
formatted differently to this one, so you may see a different number



of partitions with different mount points. When formatting an SD
card, it is very important to be sure of its device name. You really
don't want to mistake your hard drive for an SD card and format that
instead. This has happened to me more than once. So, I have
provided a shell script in this book's code archive named
MELP/format-sdcard.sh, which has a reasonable number of
checks to prevent you (and me) from using the wrong device name.
The parameter is the device name of the microSD card, which would
be sdb in the first example and mmcblk0 in the second. Here is an
example of its use:
$ MELP/format-sdcard.sh mmcblk0

The script creates two partitions: the first is 64 MiB, formatted as
FAT32, and will contain the bootloader, while the second is 1 GiB,
formatted as ext4, which you will use in Chapter 5, Building a Root

Filesystem. The script aborts when it's applied to any drive greater
than 32 GiB, so be prepared to modify it if you are using larger
microSD cards.

Once you have formatted the microSD card, remove it from the card
reader and then re-insert it so that the partitions are auto mounted.
On current versions of Ubuntu, the two partitions should be mounted
as /media/[user]/boot and /media/[user]/rootfs. Now,
you can copy the SPL and U-Boot to it, like this:
$ cp MLO u-boot.img /media/frank/boot

Finally, unmount it:
$ sudo umount /media/frank/boot



Now, with no power on the BeagleBone board, insert the microSD
card into the reader. Plug in the serial cable. A serial port should
appear on your PC as /dev/ttyUSB0. Start a suitable terminal
program, such as gtkterm, minicom, or picocom, and attach to
the port at 115200 bits per second (bps) with no flow control.
gtkterm is probably the easiest to set up and use:
$ gtkterm -p /dev/ttyUSB0 -s 115200

If you get a permissions error, then you may need to add yourself to
the dialout group and reboot to use this port.

Press and hold the Boot Switch button (nearest to the microSD slot)
on the BeagleBone Black, power up the board using the external 5V
power connector, and release the button after about 5 seconds. You
should see some output, followed by a U-Boot prompt, on the serial
console:
U-Boot SPL 2021.01 (Feb 08 2021 - 15:23:22 -0800)

Trying to boot from MMC1

U-Boot 2021.01 (Feb 08 2021 - 15:23:22 -0800)

CPU  : AM335X-GP rev 2.1

Model: TI AM335x BeagleBone Black

DRAM:  512 MiB

WDT:   Started with servicing (60s timeout)

NAND:  0 MiB

MMC:   OMAP SD/MMC: 0, OMAP SD/MMC: 1

Loading Environment from FAT... *** Warning - bad
CRC, using default environment

<ethaddr> not set. Validating first E-fuse MAC

Net:   eth2: ethernet@4a100000, eth3: usb_ether



Hit any key to stop autoboot:  0

=>

Hit any key on your keyboard to stop U-Boot from autobooting with
the default environment. Now that we have a U-Boot prompt in front
of us, let's put U-Boot through its paces.

Using U-Boot
In this section, I will describe some of the common tasks that you
can use U-Boot 
to perform.

Usually, U-Boot offers a command-line interface over a serial port. It
provides a command prompt that is customized for each board. In
these examples, I will use =>. Typing help prints out all the
commands that have been configured in this version of U-Boot;
typing help <command> prints out more information about a
particular command.

The default command interpreter for the BeagleBone Black is quite
simple. You cannot do command-line editing by pressing the left or
right keys; there is no command completion by pressing the Tab key;
and there is no command history by pressing the up key. Pressing
any of these keys will disrupt the command you are currently trying
to type, and you will have to type Ctrl + C and start all over again.
The only line editing key you can safely use is the backspace. As an
option, you can configure a different command shell called Hush,



which has more sophisticated interactive support, including
command-line editing.

The default number format is hexadecimal. Consider the following
command as 
an example:
=> nand read 82000000 400000 200000

This will read 0x200000 bytes from offset 0x400000 from the start
of the NAND flash memory into RAM address 0x82000000.

Environment variables
U-Boot uses environment variables extensively to store and pass
information between functions and even to create scripts.
Environment variables are simple name=value pairs that are stored
in an area of memory. The initial population of variables may be
coded in the board configuration header file, like this:
#define CONFIG_EXTRA_ENV_SETTINGS

"myvar1=value1"

"myvar2=value2"

[…]

You can create and modify variables from the U-Boot command line
using setenv. For example, setenv foo bar creates the foo
variable with the bar value. Note that there is no = sign between the
variable name and the value. You can delete a variable by setting it
to a null string, setenv foo. You can print all the variables to the
console using printenv, or a single variable using printenv
foo.



If U-Boot has been configured with space to store the environment,
you can use the saveenv command to save it. If there is raw NAND
or NOR flash, then an erase block can be reserved for this purpose,
often with another being used as a redundant copy to guard against
corruption. If there is eMMC or SD card storage, it can be stored in a
reserved array of sectors, or in a file named uboot.env in a
partition of the disk. Other options include storing it in a serial
EEPROM connected via an I2C or SPI interface or non-volatile RAM.

Boot image format
U-Boot doesn't have a filesystem. Instead, it tags blocks of
information with a 64-byte header so that it can track the contents.
We prepare files for U-Boot using the mkimage command-line tool,
which comes bundled with the u-boot-tools package on Ubuntu.
You can also get mkimage by running make tools from within the
U-Boot source tree, and then invoke it as tools/mkimage.

Here is a brief summary of the command's usage:
$ mkimage

Error: Missing output filename

Usage: mkimage -l image

          -l ==> list image header information

       mkimage [-x] -A arch -O os -T type -C comp
-a addr -e ep -n name -d
data_file[:data_file...] image

          -A ==> set architecture to 'arch'

          -O ==> set operating system to 'os'

          -T ==> set image type to 'type'



          -C ==> set compression type 'comp'

          -a ==> set load address to 'addr' (hex)

          -e ==> set entry point to 'ep' (hex)

          -n ==> set image name to 'name'

          -d ==> use image data from 'datafile'

          -x ==> set XIP (execute in place)

       mkimage [-D dtc_options] [-f fit-
image.its|-f auto|-F] [-b <dtb> [-b
<dtb>]] [-i <ramdisk.cpio.gz>] fit-image

           <dtb> file is used with -f auto, it may
occur multiple times.

          -D => set all options for device tree
compiler

          -f => input filename for FIT source

          -i => input filename for ramdisk file

Signing / verified boot options: [-E] [-B size] [-
k keydir] [-K dtb] [ -c <comment>] [-p
addr] [-r] [-N engine]

          -E => place data outside of the FIT
structure

          -B => align size in hex for FIT
structure and header

          -k => set directory containing private
keys

          -K => write public keys to this .dtb
file

          -c => add comment in signature node

          -F => re-sign existing FIT image

          -p => place external data at a static
position



          -r => mark keys used as 'required' in
dtb

          -N => openssl engine to use for signing

       mkimage -V ==> print version information
and exit

Use '-T list' to see a list of available image
types

For example, to prepare a kernel image for an Arm processor, you
can use the 
following command:
$ mkimage -A arm -O linux -T kernel -C gzip -a

0x80008000 \ 
-e 0x80008000

-n 'Linux' -d zImage uImage

In this instance, the architecture is arm, the operating system is
linux, and the image type is kernel. Additionally, the compression
scheme is gzip, the load address is 0x80008000, and the entry
point is the same as the load address. Lastly, the image 
name is Linux, the image datafile is named zImage, and the image
being generated is named uImage.

Loading images
Usually, you will load images from removable storage, such as an
SD card or a network. SD cards are handled in U-Boot by the MMC
driver. A typical sequence that's used to load an image into memory
is as follows:
=> mmc rescan

=> fatload mmc 0:1 82000000 uimage



reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)

=> iminfo 82000000

## Checking Image at 82000000 ...

Legacy image found

Image Name: Linux-3.18.0

Created: 2014-12-23 21:08:07 UTC

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 4604936 Bytes = 4.4 MiB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK

The mmc rescan command re-initializes the MMC driver, perhaps
to detect that an SD card has recently been inserted. Next, fatload
is used to read a file from a FAT-formatted partition on the SD card.
The format is as follows:
fatload <interface> [<dev[:part]> [<addr>

[<filename> [bytes [pos]]]]]

If <interface> is mmc, as in our case, <dev:part> is the device
number of the MMC interface counting from zero, and the partition
number counting from one. Hence, <0:1> is the first partition on the
first device, which is mmc 0 for the microSD card (the onboard
eMMC is mmc 1). The memory location, 0x82000000, is chosen to
be in an area of RAM that is not being used at this moment. If we
intend to boot this kernel, we must make sure that this area of RAM
will not be overwritten when the kernel image is decompressed and
located at the runtime location, 0x80008000.



To load image files over a network, you must use the Trivial File
Transfer Protocol (TFTP). This requires you to install a TFTP
daemon, tftpd, on your development system and start running it.
You must also configure any firewalls between your PC and the
target board to allow the TFTP protocol on UDP port 69 to pass
through. The default configuration of TFTP only allows access to the
/var/lib/tftpboot directory. The next step is to copy the files
you want to transfer to the target into that directory. Then, assuming
that you are using a pair of static IP addresses, which removes the
need for further network administration, the sequence of commands
to load a set of kernel image files should look like this:
=> setenv ipaddr 192.168.159.42

=> setenv serverip 192.168.159.99

=> tftp 82000000 uImage

link up on port 0, speed 100, full duplex

Using cpsw device

TFTP from server 192.168.159.99; our IP address is
192.168.159.42

Filename 'uImage'.

Load address: 0x82000000

Loading:

##################################################
##########################################
##########################################
##########################################
##########################################
##########################################
##########################################
##########



3 MiB/s

done

Bytes transferred = 4605000 (464448 hex)

Finally, let's look at how to program images into NAND flash memory
and read them back, which is handled by the nand command. This
example loads a kernel image via TFTP and programs it into flash:
=> tftpboot 82000000 uimage

=> nandecc hw

=> nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size
0x400000

Erasing at 0x660000 -- 100% complete.

OK

=> nand write 82000000 280000 400000

NAND write: device 0 offset 0x280000, size
0x400000

4194304 bytes written: OK

Now, you can load the kernel from flash memory using the nand
read command:
=> nand read 82000000 280000 400000

Once the kernel has been loaded into RAM, we can boot it.

Booting Linux
The bootm command starts a kernel image running. The syntax is
as follows:



bootm [address of kernel] [address of ramdisk]
[address of dtb].

The address of the kernel image is necessary, but the addresses of
ramdisk and dtb can be omitted if the kernel configuration does
not need them. If there is dtb but no initramfs, the second
address can be replaced with a dash (-). This would look like this:
=> bootm 82000000 – 83000000

Plainly, typing a long series of commands to boot your board each
time it is powered up is not acceptable. Let's look at how to automate
the boot process.

Automating the boot with U-Boot scripts
U-Boot stores a sequence of commands in environment variables. If
the special variable named bootcmd contains a script, it is run at
power-up after a delay of bootdelay seconds. If you watch this on
the serial console, you will see the delay counting down to zero. You
can press any key during this period to terminate the countdown and
enter an interactive session with U-Boot.

The way that you create scripts is simple, though not easy to read.
You simply append commands separated by semicolons, which must
be preceded by a \ escape character. So, for example, to load a
kernel image from an offset in flash memory and boot it, you might
use the following command:
setenv bootcmd nand read 82000000 400000

200000\;bootm 82000000



We now know how to boot a kernel on a BeagleBone Black using U-
Boot. But how do we port U-Boot to a new board that has no BSP?
We'll cover that in the remainder of this chapter.

Port ing U-Boot to a new board
Let's assume that your hardware department has created a new
board called Nova that is based on the BeagleBone Black and that
you need to port U-Boot to it. You will need to understand the layout
of the U-Boot code and how the board configuration mechanism
works. In this section, I will show you how to create a variant of an
existing board – the BeagleBone Black – which you could go on to
use as the basis for further customizations. There are quite a few
files that need to be changed. I have put them together into a patch
file in the code archive in MELP/Chapter03/0001-BSP-for-
Nova.patch. You can simply apply that patch to a clean copy of U-
Boot version 2021.01 like this:
$ cd u-boot

$ patch -p1 < MELP/Chapter03/0001-BSP-for-
Nova.patch

If you want to use a different version of U-Boot, you will have to
make some changes to the patch for it to apply cleanly.

The remainder of this section will describe how the patch was
created. If you want to follow along step by step, you will need a
clean copy of U-Boot 2021.01 without the Nova BSP patch. The
main directories we will be dealing with are as follows:



arch: Contains code that's specific to each supported
architecture in the arm, mips, and powerpc directories. Within
each architecture, there is a subdirectory for each member of the
family; for example, in arch/arm/cpu/, there are directories for
the architecture variants, including amt926ejs, armv7, and
armv8.

board: Contains code that's specific to a board. Where there are
several boards from the same vendor, they can be collected
together into a subdirectory. Hence, the support for the am335x
EVM board, which the BeagleBone is based on, is in
board/ti/am335x.

common: Contains core functions, including the command shells
and the commands that can be called from them, each in a file
named cmd_[command name].c.

doc: Contains several README files describing various aspects of
U-Boot. If you are wondering how to proceed with your U-Boot
port, this is a good place to start.

include: In addition to many shared header files, this contains
the very important include/configs/ subdirectory, where you
will find the majority of the board configuration settings.

The way that Kconfig extracts configuration information from
Kconfig files and stores the total system configuration in a file
named .config will be described in some detail in Chapter 4,
Configuring and Building the Kernel. Each board has a default



configuration stored in configs/[board name]_defconfig. For
the Nova board, we can begin by making a copy of the configuration
for the EVM:
$ cp configs/am335x_evm_defconfig

configs/nova_defconfig

Now, edit configs/nova_defconfig and insert
CONFIG_TARGET_NOVA=y after CONFIG_AM33XX=y, as shown
here:
CONFIG_ARM=y

CONFIG_ARCH_CPU_INIT=y

CONFIG_ARCH_OMAP2PLUS=y

CONFIG_TI_COMMON_CMD_OPTIONS=y

CONFIG_AM33XX=y

CONFIG_TARGET_NOVA=y

CONFIG_SPL=y

[…]

Note that CONFIG_ARM=y causes the contents of
arch/arm/Kconfig to be included, and that CONFIG_AM33XX=y
causes arch/arm/mach-omap2/am33xx/Kconfig to be
included.

Next, insert CONFIG_SYS_CUSTOM_LDSCRIPT=y and
CONFIG_SYS_LDSCRIPT=="board/ti/nova/u-boot.lds" into
the same file after CONFIG_DISTRO_DEFAULTS=y, as shown here:
[…]

CONFIG_SPL=y

CONFIG_DEFAULT_DEVICE_TREE="am335x-evm"



CONFIG_DISTRO_DEFAULTS=y

CONFIG_SYS_CUSTOM_LDSCRIPT=y

CONFIG_SYS_LDSCRIPT="board/ti/nova/u-boot.lds"

CONFIG_SPL_LOAD_FIT=y

[…]

We are now done modifying configs/nova_defconfig.

Board-specific fi les
Each board has a subdirectory named board/[board name] or
board/[vendor]/[board name], which should contain the
following:

Kconfig: Contains the configuration options for the board.

MAINTAINERS: Contains a record of whether the board is
currently maintained and, if so, by whom.

Makefile: Used to build the board-specific code.

README: Contains any useful information about this port of U-
Boot; for example, which hardware variants are covered.

In addition, there may be source files for board-specific functions.

Our Nova board is based on a BeagleBone, which, in turn, is based
on a TI am335x EVM. So, we should make copies of the am335x
board files:
$ mkdir board/ti/nova

$ cp -a board/ti/am335x/* board/ti/nova



Next, edit board/ti/nova/Kconfig and set SYS_BOARD to
"nova" so that it will build the files in board/ti/nova. Then, set
SYS_CONFIG_NAME to "nova" as well so that it will use
include/configs/nova.h as the configuration file:
if TARGET_NOVA

config SYS_BOARD

        default "nova"

config SYS_VENDOR

        default "ti"

config SYS_SOC

        default "am33xx"

config SYS_CONFIG_NAME

        default "nova"

[…]

There is one other file here that we need to change. The linker script,
which has been placed at board/ti/nova/u-boot.lds, contains
a hard-coded reference to 
board/ti/am335x/built-in.o. Change it, as shown here:
{

    *(.__image_copy_start)

    *(.vectors)

    CPUDIR/start.o (.text*)

    board/ti/nova/built-in.o (.text*)

}

Now, we need to link the Kconfig file for Nova into the chain of
Kconfig files. First, edit arch/arm/Kconfig and insert source



"board/ti/nova/Kconfig" after source
"board/tcl/sl50/Kconfig", as shown here:
[…]

source "board/st/stv0991/Kconfig"

source "board/tcl/sl50/Kconfig"

source "board/ti/nova/Kconfig"

source "board/toradex/colibri_pxa270/Kconfig"

source "board/variscite/dart_6ul/Kconfig"

[…]

Then, edit arch/arm/mach-omap2/am33xx/Kconfig and add a
configuration option for TARGET_NOVA immediately after
TARGET_AM335X_EVM, as shown here:
[…]

config TARGET_NOVA

        bool "Support the Nova! board"

        select DM

        select DM_GPIO

        select DM_SERIAL

        select TI_I2C_BOARD_DETECT

        imply CMD_DM

        imply SPL_DM

        imply SPL_DM_SEQ_ALIAS

        imply SPL_ENV_SUPPORT

        imply SPL_FS_EXT4

        imply SPL_FS_FAT

        imply SPL_GPIO_SUPPORT

        imply SPL_I2C_SUPPORT



        imply SPL_LIBCOMMON_SUPPORT

        imply SPL_LIBDISK_SUPPORT

        imply SPL_LIBGENERIC_SUPPORT

        imply SPL_MMC_SUPPORT

        imply SPL_NAND_SUPPORT

        imply SPL_OF_LIBFDT

        imply SPL_POWER_SUPPORT

        imply SPL_SEPARATE_BSS

        imply SPL_SERIAL_SUPPORT

        imply SPL_SYS_MALLOC_SIMPLE

        imply SPL_WATCHDOG_SUPPORT

        imply SPL_YMODEM_SUPPORT

        help

          The Nova target board

[…]

All the imply SPL_ lines are necessary so that U-Boot builds
cleanly without errors.

Now that we have copied and modified the board-specific files for
our Nova board, let's move on to the header files.

Configuring header fi les
Each board has a header file in include/configs/ that contains
most of the configuration information. The file is named by the
SYS_CONFIG_NAME identifier in the board's Kconfig file. The
format of this file is described in detail in the README file, at the top
level of the U-Boot source tree. For the purposes of our Nova board,
simply copy include/configs/am335x_evm.h into



include/configs/nova.h and make a few changes, as shown
here:
[…]

#ifndef __CONFIG_NOVA_H

#define __CONFIG_NOVA_H

include <configs/ti_am335x_common.h>

#include <linux/sizes.h>

#undef CONFIG_SYS_PROMPT

#define CONFIG_SYS_PROMPT "nova!> "

#ifndef CONFIG_SPL_BUILD

# define CONFIG_TIMESTAMP

#endif

[…]

#endif  /* ! __CONFIG_NOVA_H */

Besides replacing __CONFIG_AM335X_EVM_H with
__CONFIG_NOVA_H, the only change that needs to be made is to
set a new command prompt so that we can identify 
this bootloader at runtime.

With the source tree fully modified, we are now ready to build U-Boot
for our 
custom board.

Building and test ing
To build U-Boot for the Nova board, select the configuration you
have just created:



$ source ../MELP/Chapter02/set-path-arm-cortex_a8-
linux-gnueabihf

$ make distclean

$ make nova_defconfig

$ make

Copy MLO and u-boot.img to the boot partition of the microSD
card you created earlier and boot the board. You should see an
output like this (note the command prompt):
U-Boot SPL 2021.01-dirty (Feb 08 2021 - 21:30:41

-0800)

Trying to boot from MMC1

U-Boot 2021.01-dirty (Feb 08 2021 - 21:30:41
-0800)

CPU  : AM335X-GP rev 2.1

Model: TI AM335x BeagleBone Black

DRAM:  512 MiB

WDT:   Started with servicing (60s timeout)

NAND:  0 MiB

MMC:   OMAP SD/MMC: 0, OMAP SD/MMC: 1

Loading Environment from FAT... *** Warning - bad
CRC, using default environment

<ethaddr> not set. Validating first E-fuse MAC

Net:   eth2: ethernet@4a100000, eth3: usb_ether

Hit any key to stop autoboot:  0

nova!>

You can create a patch for all these changes by checking them into
Git and using the git format-patch command:
$ git add .



$ git commit -m "BSP for Nova"

[detached HEAD 093ec472f6] BSP for Nova

12 files changed, 2379 insertions(+)

create mode 100644 board/ti/nova/Kconfig

create mode 100644 board/ti/nova/MAINTAINERS

create mode 100644 board/ti/nova/Makefile

create mode 100644 board/ti/nova/README

create mode 100644 board/ti/nova/board.c

create mode 100644 board/ti/nova/board.h

create mode 100644 board/ti/nova/mux.c

create mode 100644 board/ti/nova/u-boot.lds

create mode 100644 configs/nova_defconfig

create mode 100644 include/configs/nova.h

$ git format-patch -1

0001-BSP-for-Nova.patch

Generating this patch concludes our coverage of U-Boot as a TPL.
U-Boot can also be configured to bypass the TPL stage of the boot
process altogether. Next, let's examine this alternate approach to
booting Linux.

Falcon mode
We are used to the idea that booting a modern embedded processor
involves the CPU boot ROM loading an SPL, which loads u-
boot.bin, which then loads a Linux kernel. You may be wondering
if there is a way to reduce the number of steps, thereby simplifying
and speeding up the boot process. The answer is U-Boot Falcon



mode. The idea is simple: have the SPL load a kernel image directly,
missing out u-boot.bin. There is no user interaction and there are
no scripts. It just loads a kernel from a known location in flash or
eMMC into memory, passes it a pre-prepared parameter block, and
starts it running. The details of configuring Falcon mode are beyond
the scope of this book. If you would like to find out more information,
take a look at doc/README.falcon.

IMPORTANT NOTE

Falcon mode is named after the peregrine falcon, which is the fastest
bird of all, capable of reaching speeds of more than 200 miles per
hour in a dive.

Summary
Every system needs a bootloader to bring the hardware to life and to
load a kernel. U-Boot has found favor with many developers
because it supports a useful range of hardware and it is fairly easy to
port to a new device. In this chapter, we learned how to inspect and
drive U-Boot interactively from the command line over a serial
console. These command-line exercises included loading a kernel
over a network using TFTP for rapid iteration. Lastly, we learned how
to port U-Boot to a new device by generating a patch for our Nova
board.

Over the last few years, the complexity and ever-increasing variety
of embedded hardware has led to the introduction of the device tree



as a way of describing hardware. The device tree is simply a textual
representation of a system that is compiled into a device tree binary
(DTB), and which is passed to the kernel when it loads. It is up to the
kernel to interpret the device tree and to load and initialize drivers for
the devices it finds there.

In use, U-Boot is very flexible, allowing images to be loaded from
mass storage, flash memory, or a network, and then booted. Having
covered some of the intricacies of booting Linux, in the next chapter,
we will cover the next stage of the process as the third element of
your embedded project – the kernel – comes into play.



Chapter 4 :  Conf igur ing and
Bui ld ing the Kernel
The kernel is the third element of embedded Linux. It is the
component that is responsible for managing resources and
interfacing with hardware, and so affects almost every aspect of your
final software build. It is usually tailored to your particular hardware
configuration, although, as we saw in Chapter 3, All About
Bootloaders, device trees allow you to create a generic kernel that is
tailored to particular hardware by the contents of the device tree.

In this chapter, we will look at how to get a kernel for a board, and
how to configure and compile it. We will look again at Bootstrap, this
time focusing on the part the kernel plays. We will also look at device
drivers and how they pick up information from the device tree.

We will cover the following main topics:

What does the kernel do?

Choosing a kernel

Building the kernel

Booting the kernel

Porting Linux to a new board

Technical  requirements



To follow along with the examples, make sure you have the
following:

A Linux-based host system

The crosstool-NG toolchains from Chapter 2, Learning About
Toolchains

A microSD card reader and card

The microSD card with U-Boot installed from Chapter 3, All About
Bootloaders

A USB to TTL 3.3V serial cable

Raspberry Pi 4

A 5V 3A USB-C power supply

BeagleBone Black

A 5V 1A DC power supply

All of the code for this chapter can be found in the Chapter04 folder
from the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

What does the kernel  do?
Linux began in 1991 when Linus Torvalds started writing an
operating system for Intel 386- and 486-based personal computers.
He was inspired by the Minix operating system written by Andrew S.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Tanenbaum 4 years earlier. Linux differed in many ways from Minix;
the main difference being that it was a 32-bit virtual memory kernel
and the code was open source, later released under the GPL v2
license. He announced it on August 25, 1991, on the
comp.os.minix newsgroup in a famous post that began with the
following:



Hello everybody out there using minix—I'm doing a (free)
operating system (just a hobby, won't be big and professional
like GNU) for 386(486) AT clones. This has been brewing since
April, and is starting to get ready. I'd like any feedback on things
people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the filesystem (due to practical
reasons) among other things).

To be strictly accurate, Linus did not write an operating system,
rather he wrote a kernel, which is only one component of an
operating system. To create a complete operating system with user
space commands and a shell command interpreter, he used
components from the GNU project, especially the toolchain, the C
library, and basic command-line tools. That distinction remains today
and gives Linux a lot of flexibility in the way it is used.

The Linux kernel can be combined with a GNU user space to create
a full Linux distribution that runs on desktops and servers, which is
sometimes called GNU/Linux; it can be combined with an Android
user space to create the well-known mobile operating system, or it
can be combined with a small BusyBox-based user space to create
a compact embedded system.

Contrast this with the BSD operating systems, FreeBSD, OpenBSD,
and NetBSD, in which the kernel, the toolchain, and the user space
are combined into a single code base. By removing the toolchain,
you can deploy slimmer runtime images without a compiler or header
files. By decoupling user space from the kernel, you gain options in



terms of init systems (runit versus systemd), C libraries (musl
versus glibc), and package formats (.apk versus .deb).

The kernel has three main jobs: to manage resources, to interface
with hardware, and to provide an API that offers a useful level of
abstraction to user space programs, as summarized in the following
diagram:

Figure 4.1 − User space, kernel space, and hardware

Applications running in user space run at a low CPU privilege level.
They can do very little other than make library calls. The primary



interface between the user space and the kernel space is the C
library, which translates user-level functions, such as those defined
by POSIX, into kernel system calls. The system call interface uses
an architecture-specific method, such as a trap or a software
interrupt, to switch the CPU from low-privilege user mode to high-
privilege kernel mode, which allows access to all memory addresses
and CPU registers.

The system call handler dispatches the call to the appropriate
kernel subsystem: memory allocation calls go to the memory
manager, filesystem calls to the filesystem code, and so on. Some of
those calls require input from the underlying hardware and will be
passed down to a device driver. In some cases, the hardware itself
invokes a kernel function by raising an interrupt.

IMPORTANT NOTE

The preceding diagram shows that there is a second entry point into
kernel code: hardware interrupts. Interrupts can only be handled in a
device driver, never by a user space application.

In other words, all the useful things that your application does, it
does them through the kernel. The kernel, then, is one of the most
important elements in the system. So, it is important to understand
how to choose one – let's do that next.

Choosing a kernel



The next step is to choose the kernel for your project, balancing the
desire to always use the latest version of software against the need
for vendor-specific additions and an interest in the long-term support
of the code base.

Kernel development cycle
Linux is developed at a fast pace, with a new version being released
every 8 to 12 weeks. The way that the version numbers are
constructed has changed a bit in recent years. Before July 2011,
there was a three-number version scheme with version numbers that
looked like 2.6.39. The middle number indicated whether it was a
developer or stable release; odd numbers (2.1.x, 2.3.x, 2.5.x) were
for developers and even numbers were for end users.

From version 2.6 onward, the idea of a long-lived development
branch (the odd numbers) was dropped, as it slowed down the rate
at which new features were made available to the users. The change
in numbering from 2.6.39 to 3.0 in July 2011 was purely because
Linus felt that the numbers were becoming too large; there was no
huge leap in the features or architecture of Linux between those two
versions. He also took the opportunity to drop the middle number.
Since then, in April 2015 and March 2019, he bumped the major
from 3 to 4 and 4 to 5 respectively, again purely for neatness, not
because of any large architectural shift.

Linus manages the development kernel tree. You can follow him by
cloning the Git tree like so:



$ git clone
git://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git

This will check out into the subdirectory linux. You can keep up to
date by running the git pull command in that directory from time
to time.

Currently, a full cycle of kernel development begins with a merge
window of 2 weeks, during which Linus accepts patches for new
features. At the end of the merge window, a stabilization phase
begins, during which Linus produces weekly release candidates with
version numbers ending in -rc1, -rc2, and so on, usually up to -
rc7 or -rc8. During this time, people test the candidates and
submit bug reports and fixes. When all significant bugs have been
fixed, the kernel is released.

The code incorporated during the merge window has to be fairly
mature already. Usually, it is pulled from the repositories of the many
subsystem and architecture maintainers of the kernel. By keeping to
a short development cycle, features can be merged when they are
ready. If a feature is deemed not sufficiently stable or well developed
by the kernel maintainers, it can simply be delayed until the next
release.

Keeping a track of what has changed from release to release is not
easy. You can read 
the commit log in Linus' Git repository but, with roughly 10,000 or
more entries, it is 
not easy to get an overview. Thankfully, there is the Linux



KernelNewbies website, https://kernelnewbies.org, where you will
find a succinct overview of each version at
https://kernelnewbies.org/LinuxVersions.

Stable and long-term support
releases
The rapid rate of change of Linux is a good thing in that it brings new
features into the mainline code base, but it does not fit very well with
the longer life cycle of embedded projects. Kernel developers
address this in two ways, with stable releases and long-term
releases. After the release of a mainline kernel (maintained by Linus
Torvalds), it is moved to the stable tree (maintained by Greg Kroah-
Hartman). Bug fixes are applied to the stable kernel, while the
mainline kernel begins the next development cycle. Point releases of
the stable kernel are marked by a third number, 3.18.1, 3.18.2, and
so on. Before version 3, there were four release numbers, 2.6.29.1,
2.6.39.2, and so on.

You can get the stable tree by using the following command:
$ git clone

git://git.kernel.org/pub/scm/linux/kernel/
git/stable/linux-stable.git

You can use git checkout to get a particular version, for example,
version 5.4.50:
$ cd linux-stable

$ git checkout v5.4.50

https://kernelnewbies.org/
https://kernelnewbies.org/LinuxVersions


Usually, only the stable kernel is updated until the next mainline
release (8 to 12 
weeks later), so you will see that there is just one or sometimes two
stable kernels at https://www.kernel.org/. To cater to those users who
would like updates for a longer period of time and be assured that
any bugs will be found and fixed, some kernels are labeled long-
term and maintained for 2 or more years. There is at least one long-
term kernel release each year.

Looking at https://www.kernel.org/ at the time of writing, there are a
total of five long-term kernels: 5.4, 4.19, 4.14, 4.9, and 4.4. The
oldest has been maintained for nearly 5 years and is at version
4.4.256. If you are building a product that you will have to maintain
for this length of time, then the latest long-term kernel (5.4 in this
case) might well be a good choice.

Vendor support
In an ideal world, you would be able to download a kernel from
https://www.kernel.org/ and configure it for any device that claims to
support Linux. However, that is not always possible; in fact, mainline
Linux has solid support for only a small subset of the many devices
that can run Linux. You may find support for your board or System
on Chip (SoC) from independent open source projects such as
Linaro or the Yocto Project, or from companies providing third-party
support for embedded Linux, but in many cases, you will be obliged
to look to the vendor of your SoC or board for a working kernel.

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/


As we know, some vendors are better at supporting Linux than
others. My advice at this point is to choose vendors who give good
support or who, even better, take the trouble to get their kernel
changes into the mainline. Search the Linux kernel mailing list or
commit history for recent activity around a candidate SoC or board.
When upstream changes are absent from the mainline kernel, the
verdict as to whether a vendor offers good support is largely based
on word of mouth. Some vendors are notorious for releasing only
one kernel code drop before redirecting all their energies toward
their newer SoCs.

Licensing
The Linux source code is licensed under GPL v2, which means that
you must make the source code of your kernel available in one of the
ways specified in the license.

The actual text of the license for the kernel is in the COPYING file. It
begins with an addendum written by Linus that states that code
calling the kernel from user space via 
the system call interface is not considered a derivative work of the
kernel and so is not covered by the license. Hence, there is no
problem with proprietary applications running on top of Linux.

However, there is one area of Linux licensing that causes endless
confusion and debate: kernel modules. A kernel module is simply a
piece of code that is dynamically linked with the kernel at runtime,
thereby extending the functionality of the kernel. The GPL makes no
distinction between static and dynamic linking, so it would appear



that the source for kernel modules is covered by the GPL. But, in the
early days of Linux, there were debates about exceptions to this rule,
for example, in connection with the Andrew filesystem. This code
predates Linux and therefore (it was argued) is not a derivative work,
and so the license does not apply.

Similar discussions took place over the years with respect to other
pieces of code, with the result that it is now accepted practice that
the GPL does not necessarily apply to kernel modules. This is
codified by the kernel MODULE_LICENSE macro, which may take the
Proprietary value to indicate that it is not released under the
GPL. If you plan to use the same arguments yourself, you may want
to read through an oft-quoted email thread titled Linux GPL and
binary module exception clause?, which is archived at
https://yarchive.net/comp/linux/gpl_modules.html.

The GPL should be considered a good thing because it guarantees
that when we are working on embedded projects, we can always get
the source code for the kernel. Without it, embedded Linux would be
much harder to use and more fragmented.

Bui ld ing the kernel
Having decided which kernel to base your build on, the next step is
to build it.

Gett ing the source

https://yarchive.net/comp/linux/gpl_modules.html


All three of the targets used in this book, the Raspberry Pi 4,
BeagleBone Black, and the ARM Versatile PB, are well supported by
the mainline kernel. Therefore, it makes sense to use the latest long-
term kernel available from https://www.kernel.org/, which at the time
of writing was 5.4.50. When you come to do this for yourself, you
should check to see if there is a later version of the 5.4 kernel and
use that instead since it will have fixes for bugs found after 5.4.50
was released.

IMPORTANT NOTE

If there is a later long-term release, you may want to consider using
that one, but be aware that there may have been changes that mean
that the following sequence of commands does not work exactly as
given.

To fetch and extract a release tarball of the 5.4.50 Linux kernel, use
the following:
$ wget

https://cdn.kernel.org/pub/linux/kernel/v5
.x/linux-5.4.50.tar.xz

$ tar xf linux-5.4.50.tar.xz

$ mv linux-5.4.50 linux-stable

To fetch a later version, replace 5.4.50 after linux- with the
desired long-term release.

There is a lot of code here. There are over 57,000 files in the 5.4
kernel containing C source code, header files, and assembly code,
amounting to a total of over 14 million lines of code, as measured by

https://www.kernel.org/


the SLOCCount utility. Nevertheless, it is worth knowing the basic
layout of the code and to know, approximately, where to look for a
particular component. The main directories of interest are the
following:

arch: Contains architecture-specific files. There is one
subdirectory per architecture.

Documentation: Contains kernel documentation. Always look
here first if you want to find more information about an aspect of
Linux.

drivers: Contains device drivers – thousands of them. There is
a subdirectory for each type of driver.

fs: Contains filesystem code.

include: Contains kernel header files, including those required
when building 
the toolchain.

init: Contains the kernel startup code.

kernel: Contains core functions, including scheduling, locking,
timers, power management, and debug/trace code.

mm: Contains memory management.

net: Contains network protocols.

scripts: Contains many useful scripts, including the device
tree compiler (DTC) which I described in Chapter 3, All About
Bootloaders.



tools: Contains many useful tools, including the Linux
performance counters tool, perf, which I will describe in Chapter

20, Profiling and Tracing.

Over time, you will become familiar with this structure, and realize
that if you are looking for the serial port code of a particular SoC, you
will find it in drivers/tty/serial and not in
arch/$ARCH/mach-foo, because it is a device driver and not
something CPU architecture-specific.

Understanding kernel
configuration – Kconfig
One of the strengths of Linux is the degree to which you can
configure the kernel to suit different jobs, from a small, dedicated
device such as a smart thermostat to a complex mobile handset. In
current versions, there are many thousands of configuration options.
Getting the configuration right is a task in itself, but before we get
into that, I want to show you how it works so that you can better
understand what is going on.

The configuration mechanism is called Kconfig, and the build
system that it integrates with is called Kbuild. Both are documented
in Documentation/kbuild. Kconfig/Kbuild is used in a
number of other projects as well as the kernel, including crosstool-
NG, U-Boot, Barebox, and BusyBox.



The configuration options are declared in a hierarchy of files named
Kconfig, using a syntax described in
Documentation/kbuild/kconfig-language.rst.

In Linux, the top-level Kconfig looks like this:
mainmenu "Linux/$(ARCH) $(KERNELVERSION) Kernel

Configuration"

comment "Compiler: $(CC_VERSION_TEXT)"

source "scripts/Kconfig.include"

[…]

And the first line of arch/Kconfig is this:
source "arch/$(SRCARCH)/Kconfig"

That line includes the architecture-dependent configuration file,
which sources other Kconfig files, depending on which options are
enabled.

Having the architecture play such a prominent role has three
implications:

First, you must specify an architecture when configuring Linux by
setting ARCH=[architecture], otherwise, it will default to the
local machine architecture.

Second, the value you set for ARCH usually determines the value
of SRCARCH so you rarely need to set SRCARCH explicitly.

Third, the layout of the top-level menu is different for each
architecture.



The value you put into ARCH is one of the subdirectories you find in
the arch directory, with the oddity that ARCH=i386 and
ARCH=x86_64 both source arch/x86/Kconfig.

The Kconfig files consist largely of menus, delineated by the menu
and endmenu keywords. Menu items are marked by the config
keyword.

Here is an example, taken from drivers/char/Kconfig:
menu "Character devices"

[…]

config DEVMEM

    bool "/dev/mem virtual device support"

    default y

    help

      Say Y here if you want to support the
/dev/mem device.

      The /dev/mem device is used to access areas
of physical

      memory.

      When in doubt, say "Y".

[…]

endmenu

The parameter following config names a variable that, in this case,
is DEVMEM. Since this option is a bool (Boolean), it can only have
two values: if it is enabled, it is assigned to y, if it is not enabled, the
variable is not defined at all. The name of the menu item that is
displayed on the screen is the string following the bool keyword.



This configuration item, along with all the others, is stored in a file
named .config.

TIP

The leading dot (.) in .config means that it is a hidden file that will

not be shown by the ls command unless you type ls -a to show

all the files.

The line corresponding to this configuration item reads as follows:
CONFIG_DEVMEM=y

There are several other data types in addition to bool. Here is the
complete list:

bool: Either y or not defined.

tristate: Used where a feature can be built as a kernel
module or built into the main kernel image. The values are m for a
module, y to be built in, and not defined if the feature is not
enabled.

int: An integer value using decimal notation.

hex: An unsigned integer value using hexadecimal notation.

string: A string value.

There may be dependencies between items, expressed by the
depends on construct, as shown here:
config MTD_CMDLINE_PARTS

    tristate "Command line partition table
parsing"



    depends on MTD

If CONFIG_MTD has not been enabled elsewhere, this menu option is
not shown and so cannot be selected.

There are also reverse dependencies; the select keyword enables
other options if this one is enabled. The Kconfig file in
arch/$ARCH has a large number of select statements that enable
features specific to the architecture, as can be seen here for ARM:
config ARM

    bool

    default y

    select ARCH_CLOCKSOURCE_DATA

    select ARCH_HAS_DEVMEM_IS_ALLOWED

[…]

By selecting ARCH_CLOCKSOURCE_DATA and
ARCH_HAS_DEVMEM_IS_ALLOWED, we are assigning a value of y to
these variables so that these features are built statically into the
kernel.

There are several configuration utilities that can read the Kconfig
files and produce a .config file. Some of them display the menus
onscreen and allow you to make choices interactively. menuconfig
is probably the one most people are familiar with, but there are also
xconfig and gconfig.

To use menuconfig, you first need to have ncurses, flex, and
bison installed. The following command installs all these
prerequisites on Ubuntu:



$ sudo apt install libncurses5-dev flex bison

You launch menuconfig via the make command, remembering that,
in the case of the kernel, you have to supply an architecture, as
illustrated here:
$ make ARCH=arm menuconfig

Here, you can see menuconfig with the DEVMEM config option
highlighted previously:



Figure 4.2 − Selecting DEVMEM

The star (*) to the left of an item means that the driver has been
selected to be built statically into the kernel or, if it is an M, that it has
been selected to be built as a kernel module for insertion into the
kernel at runtime.



TIP

You often see instructions such as enable

CONFIG_BLK_DEV_INITRD, but with so many menus to browse

through, it can take a while to find the place where that configuration
is set. All configuration editors have a search function. You can
access it in menuconfig by pressing the forward slash key, /. In

xconfig, it is in the Edit menu, but make sure you leave off the

CONFIG_ part of the configuration item you are searching for.

With so many things to configure, it is unreasonable to start with a
clean sheet each time you want to build a kernel, so there is a set of
known working configuration files in arch/$ARCH/configs, each
containing suitable configuration values for a single SoC or a group
of SoCs.

You can select one with the make [configuration file name]
command. For example, to configure Linux to run on a wide range of
SoCs using the ARMv7-A architecture, you would type the following:
$ make ARCH=arm multi_v7_defconfig

This is a generic kernel that runs on various different boards. For a
more specialized application, for example, when using a vendor-
supplied kernel, the default configuration file is part of the board
support package; you will need to find out which one to use before
you can build the kernel.

There is another useful configuration target named oldconfig. You
use it when moving a configuration to a newer kernel version. This



target takes an existing .config file and prompts you with
questions about new configuration options. Copy .config from the
old kernel to the new source directory and run the make ARCH=arm
oldconfig command to bring it up to date.

The oldconfig target can also be used to validate a .config file
that you have edited manually (ignoring the text Automatically
generated file; DO NOT EDIT that occurs at the top;
sometimes it is OK to ignore warnings).

If you do make changes to the configuration, the modified .config
file becomes part of your board support package and needs to be
placed under source code control.

When you start the kernel build, a header file,
include/generated/autoconf.h, is generated, which contains
a #define for each configuration value so that it can be included in
the kernel source.

Now that we've settled on a kernel and learned how to configure it,
we will now go about identifying our kernel.

Using LOCALVERSION to identi fy
your kernel
You can discover the kernel version and release that you have built
using the make kernelversion and make kernelrelease
targets:



$ make ARCH=arm kernelversion

5.4.50

$ make ARCH=arm kernelrelease

5.4.50

This is reported at runtime through the uname command and is also
used in naming the directory where kernel modules are stored.

If you change the configuration from the default, it is advisable to
append your own version information, which you can configure by
setting CONFIG_LOCALVERSION. As an example, if I wanted to mark
the kernel I am building with the melp identifier and version 1.0, I
would define the local version in menuconfig like this:



Figure 4.3 – Appending to kernel release version

Running make kernelversion produces the same output as
before, but now if I run make kernelrelease, I see the following:
$ make ARCH=arm kernelrelease

5.4.50-melp-v1.0



That was a pleasant detour into kernel versioning, but now let's get
back to the business of configuring our kernel for compilation.

When to use kernel modules
I have mentioned kernel modules several times already. Desktop
Linux distributions use them extensively so that the correct device
and kernel functions can be loaded at runtime, depending on the
hardware detected and features required. Without them, every single
driver and feature would have to be statically linked into the kernel,
making it infeasibly large.

On the other hand, with embedded devices, the hardware and kernel
configuration are usually known at the time the kernel is built, and
therefore modules are not so useful. In fact, they cause a problem
because they create a version dependency between the kernel and
the root filesystem, which can cause boot failures if one is updated
but not the other. Consequently, it is quite common for embedded
kernels to be built without any modules at all.

Here are a few cases where kernel modules are a good idea in
embedded systems:

When you have proprietary modules, for the licensing reasons
given in the preceding section.

To reduce boot time by deferring the loading of non-essential
drivers.



When there are several drivers that could be loaded, and it would
take up too much memory to compile them statically. For
example, you have a USB interface that supports a range of
devices. This is essentially the same argument as is used in
desktop distributions.

Next, let's learn how to compile a kernel image with or without kernel
modules 
using Kbuild.

Compi l ing – Kbui ld
The kernel build system, Kbuild, is a set of make scripts that take
the configuration information from the .config file, work out the
dependencies, and compile everything that is necessary to produce
a kernel image. This kernel image contains all the statically linked
components, possibly a device tree binary, and possibly one or more
kernel modules. The dependencies are expressed in makefiles that
are in each directory with buildable components. For instance, the
following two lines are taken from drivers/char/Makefile:
obj-y += mem.o random.o

obj-$(CONFIG_TTY_PRINTK) += ttyprintk.o

The obj-y rule unconditionally compiles a file to produce the target,
so mem.c and random.c are always part of the kernel. In the
second line, ttyprintk.c is dependent on a configuration
parameter. If CONFIG_TTY_PRINTK is y, it is compiled as a built-in;



if it is m, it is built as a module; and if the parameter is undefined, it is
not compiled at all.

For most targets, just typing make (with the appropriate ARCH and
CROSS_COMPILE) will do the job, but it is instructive to take it one
step at a time. See the last section of Chapter 2, Learning about
Toolchains, for the meaning of the CROSS_COMPILE make variable.

Finding out which kernel target to
bui ld
To build a kernel image, you need to know what your bootloader
expects. This is a 
rough guide:

U-Boot: Traditionally, U-Boot has required uImage, but newer
versions can load 
a zImage file using the bootz command.

x86 targets: Requires a bzImage file.

Most other bootloaders: Require a zImage file.

Here is an example of building a zImage file:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-

linux-gnueabihf- zImage

TIP



The -j 4 option tells make how many jobs to run in parallel, which

reduces the time taken to build. A rough guide is to run as many jobs
as you have 
CPU cores.

There is a small issue with building a uImage file for ARM with multi-
platform support, which is the norm for the current generation of
ARM SoC kernels. Multi-platform support for ARM was introduced in
Linux 3.7. It allows a single kernel binary to run on multiple platforms
and is a step on the road toward having a small number of kernels
for all ARM devices. The kernel selects the correct platform by
reading the machine number or the device tree passed to it by the
bootloader. The problem occurs because the location of physical
memory might be different for each platform, and so the relocation
address for the kernel (usually 0x8000 bytes from the start of
physical RAM) might also be different.

The relocation address is coded into the uImage header by the
mkimage command when the kernel is built, but it will fail if there is
more than one relocation address to choose from. To put it another
way, the uImage format is not compatible with multi-platform
images. You can still create a uImage binary from a multi-platform
build, so long as you give the LOADADDR of the particular SoC you
are hoping to boot this kernel on. You can find the load address by
looking in arch/$ARCH/mach-[your SoC]/Makefile.boot and
noting the value of zreladdr-y:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-

linux-gnueabihf- LOADADDR=0x80008000



uImage

Regardless of which kernel image format we target, the same two
build artifacts are first created before the bootable image is
generated.

Build art i facts
A kernel build generates two files in the top-level directory: vmlinux
and System.map. 
The first, vmlinux, is the kernel as an ELF binary. If you have
compiled your kernel with debug enabled
(CONFIG_DEBUG_INFO=y), it will contain debug symbols that can be
used with debuggers such as kgdb. You can also use other ELF
binary tools, such as size to measure the length of each section
(text, data, and bss) that comprises the vmlinux executable:
$ arm-cortex_a8-linux-gnueabihf-size vmlinux

   text    data      bss      dec      hex      fi
lename

14005643   7154342   403160   21563145  1490709  v
mlinux

The dec and hex values are the total file size in decimal and
hexadecimal respectively.

System.map contains the symbol table in a human-readable form.

Most bootloaders cannot handle ELF code directly. There is a further
stage of processing that takes vmlinux and places those binaries in



arch/$ARCH/boot that are suitable for the various bootloaders:

Image: vmlinux converted to raw binary format.

zImage: For the PowerPC architecture, this is just a compressed
version of Image, which implies that the bootloader must do the
decompression. For all other architectures, the compressed
Image is piggybacked onto a stub of code that decompresses
and relocates it.

uImage: zImage plus a 64-byte U-Boot header.

While the build is running, you will see a summary of the commands
being executed:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-

linux-gnueabihf- \

zImage

  CC      scripts/mod/empty.o

  CC      scripts/mod/devicetable-offsets.s

  MKELF   scripts/mod/elfconfig.h

  HOSTCC  scripts/mod/modpost.o

  HOSTCC  scripts/mod/sumversion.o

[…]

Sometimes, when the kernel build fails, it is useful to see the actual
commands being executed. To do that, add V=1 to the command
line:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-

linux-gnueabihf- \

V=1 zImage



[…]

arm-cortex_a8-linux-gnueabihf-gcc -Wp,-
MD,drivers/tty/.tty_baudrate.o.d  -
nostdinc -isystem /home/frank/x-tools/arm-
cortex_a8-linux-gnueabihf/lib/gcc/arm-
cortex_a8-linux-gnueabihf/8.3.0/include -
I./arch/arm/include -
I./arch/arm/include/generated  -I./include
-I./arch/arm/include/uapi -
I./arch/arm/include/generated/uapi -
I./include/uapi -I./include/generated/uapi
-include ./include/linux/kconfig.h -
include ./include/linux/compiler_types.h -
D__KERNEL__ -mlittle-endian -Wall -Wundef
-Werror=strict-prototypes -Wno-trigraphs -
fno-strict-aliasing -fno-common -fshort-
wchar -fno-PIE -Werror=implicit-function-
declaration -Werror=implicit-int -Wno-
format-security -std=gnu89 -fno-dwarf2-
cfi-asm -fno-ipa-sra -mabi=aapcs-linux -
mfpu=vfp -funwind-tables -marm -Wa,-mno-
warn-deprecated -D__LINUX_ARM_ARCH__=7 -
march=armv7-a -msoft-float -Uarm -fno-
delete-null-pointer-checks -Wno-frame-
address -Wno-format-truncation -Wno-
format-overflow -O2 --param=allow-store-
data-races=0 -Wframe-larger-than=1024 -
fstack-protector-strong -Wno-unused-but-
set-variable -Wimplicit-fallthrough -Wno-
unused-const-variable -fomit-frame-pointer
-fno-var-tracking-assignments -
Wdeclaration-after-statement -Wvla -Wno-
pointer-sign -Wno-stringop-truncation -
Wno-array-bounds -Wno-stringop-overflow -
Wno-restrict -Wno-maybe-uninitialized -



fno-strict-overflow -fno-merge-all-
constants -fmerge-constants -fno-stack-
check -fconserve-stack -Werror=date-time -
Werror=incompatible-pointer-types -
Werror=designated-init -fmacro-prefix-
map=./= -Wno-packed-not-aligned    -
DKBUILD_BASENAME='"tty_baudrate"' -
DKBUILD_MODNAME='"tty_baudrate"' -c -o
drivers/tty/tty_baudrate.o
drivers/tty/tty_baudrate.c

[…]

In this section, we learned how Kbuild takes a precompiled
vmlinux ELF binary 
and converts it into a bootable kernel image. Next, we will look at
how we can compile device trees.

Compil ing device trees
The next step is to build the device tree, or trees if you have a multi-
platform build. The dtbs target builds device trees according to the
rules in arch/$ARCH/boot/dts/Makefile, using the device tree
source files in that directory. The following is a snippet from building
the dtbs target for multi_v7_defconfig:
$ make ARCH=arm dtbs

[…]

  DTC     arch/arm/boot/dts/alpine-db.dtb

  DTC     arch/arm/boot/dts/artpec6-devboard.dtb

  DTC     arch/arm/boot/dts/at91-kizbox2.dtb



  DTC     arch/arm/boot/dts/at91-nattis-2-natte-
2.dtb

  DTC     arch/arm/boot/dts/at91-
sama5d27_som1_ek.dtb

[…]

The compiled .dtb files are generated in the same directory as the
sources.

Compil ing modules
If you have configured some features to be built as modules, you can
build them separately using the modules target:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-

linux-gnueabihf- \

modules

The compiled modules have a .ko suffix and are generated in the
same directory as the source code, meaning that they are scattered
all around the kernel source tree. Finding them is a little tricky, but
you can use the modules_install make target to install them in
the right place. The default location is /lib/modules in your
development system, which is almost certainly not what you want. To
install them in the staging area of your root filesystem (we will talk
about root filesystems in the next chapter), provide the path using
INSTALL_MOD_PATH:
$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-

linux-gnueabihf- \

INSTALL_MOD_PATH=$HOME/rootfs modules_install



Kernel modules are put into the /lib/modules/[kernel
version] directory, relative to the root of the filesystem.

Cleaning kernel sources
There are three make targets for cleaning the kernel source tree:

clean: Removes object files and most intermediates.

mrproper: Removes all intermediate files, including the
.config file. Use this target to return the source tree to the state
it was in immediately after cloning or extracting the source code.
If you are curious about the name, Mr. Proper is a cleaning
product common in some parts of the world. The meaning of
make mrproper is to give the kernel sources a really good
scrub.

distclean: This is the same as mrproper, but also deletes
editor backup files, patch files, and other artifacts of software
development.

We've seen the kernel compilation steps and their resulting outputs.
Now let's build some kernels for the boards we have on hand.

Building a 64-bit  kernel for the
Raspberry Pi 4



Even though there is already support for the Raspberry Pi 4 in the
mainline kernel, I found the Raspberry Pi Foundation's fork of Linux
(https://github.com/raspberrypi/linux) to be more stable at the time of
writing. The 4.19.y branch of that fork is also more actively
maintained than that same fork's rpi-5.4.y branch. This situation
may change in the near future, but for now, let's stick with the
4.19.y branch.

Since the Raspberry Pi 4 has a 64-bit quad core ARM Cortex-A72
CPU, we will use a GNU toolchain from Arm that targets AArch64
GNU/Linux to cross-compile a 64-bit kernel for it. This prebuilt
toolchain can be downloaded from https://developer.arm.com/tools-
and-software/open-source-software/developer-tools/gnu-
toolchain/gnu-a/downloads:
$ cd ~

$ wget
https://developer.arm.com/-/media/Files/do
wnloads/gnu-a/10.2-2020.11/binrel/gcc-arm-
10.2-2020.11-x86_64-aarch64-none-linux-
gnu.tar.xz

$ tar xf gcc-arm-10.2-2020.11-x86_64-aarch64-none-
linux-gnu.tar.xz

$ mv gcc-arm-10.2-2020.11-x86_64-aarch64-none-
linux-gnu \

gcc-arm-aarch64-none-linux-gnu

gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu

was the current x86_64 Linux-hosted cross compiler targeting
AArch64 GNU/Linux at the time of writing. If downloading fails,

https://github.com/raspberrypi/linux


replace 10.2-2020.11 in the preceding commands with whatever
the current release version is now.

Next, install a couple of packages we need to fetch and build the
kernel:
$ sudo apt install subversion libssl-dev

Now that you have the requisite toolchain and packages installed,
clone the 4.19.y kernel repo one level deep in a directory named
linux and export some prebuilt binaries to a boot subdirectory:
$ git clone --depth=1 -b rpi-4.19.y

https://github.com/raspberrypi/linux.git

$ svn export
https://github.com/raspberrypi/firmware/tr
unk/boot

$ rm boot/kernel*

$ rm boot/*.dtb

$ rm boot/overlays/*.dtbo

Navigate to the newly cloned linux directory and build the kernel:
$ PATH=~/gcc-arm-aarch64-none-linux-gnu/bin/:$PATH

$ cd linux

$ make ARCH=arm64 CROSS_COMPILE=aarch64-none-
linux-gnu- \ bcm2711_defconfig

$ make -j4 ARCH=arm64 CROSS_COMPILE=aarch64-none-
linux-gnu-

When the build finishes, copy the kernel image, device tree blobs,
and boot parameters to the boot subdirectory:
$ cp arch/arm64/boot/Image ../boot/kernel8.img



$ cp arch/arm64/boot/dts/overlays/*.dtbo
../boot/overlays/

$ cp arch/arm64/boot/dts/broadcom/*.dtb ../boot/

$ cat << EOF > ../boot/config.txt

enable_uart=1

arm_64bit=1

EOF

$ cat << EOF > ../boot/cmdline.txt

console=serial0,115200 console=tty1
root=/dev/mmcblk0p2 rootwait

EOF

These preceding commands are all found in the script
MELP/Chapter04/build-linux-rpi4-64.sh. Note that the
kernel command line written to cmdline.txt must be all on one
line. Let's break these steps down into stages:

1. Clone the rpi-4.19.y branch of the Raspberry Pi Foundation's
kernel fork into a linux directory.

2. Export the contents of the boot subdirectory from the Raspberry
Pi Foundation's firmware repo to a boot directory.

3. Delete the existing kernel image(s), device tree blobs, and device
tree overlays from the boot directory.

4. From the linux directory, build the 64-bit kernel, modules, and
device tree for the Raspberry Pi 4.

5. Copy the newly built kernel image, device tree blobs, and device
tree overlays from arch/arm64/boot/ to the boot directory.



6. Write config.txt and cmdline.txt files out to the boot
directory for the Raspberry Pi 4's bootloader to read and pass to
the kernel.

Let's look at the settings in config.txt. The enable_uart=1 line
enables the serial console during boot, which is disabled by default.
The arm_64bit=1 line instructs the Raspberry Pi 4's bootloader to
start the CPU in 64-bit mode and load the kernel image from a file
named kernel8.img instead of the default kernel.img file for 32-
bit ARM.

Now, let's look at cmdline.txt. The console=serial0,115200
and console=tty1 kernel command-line parameters instruct the
kernel to output log messages to the serial console as our kernel
boots.

Building a kernel for the
BeagleBone Black
In light of the information already given, here is the complete
sequence of commands to build a kernel, the modules, and a device
tree for the BeagleBone Black, using the crosstool-NG ARM Cortex
A8 cross compiler:
$ cd linux-stable

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-
gnueabihf- mrproper

$ make ARCH=arm multi_v7_defconfig



$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-
linux-gnueabihf- zImage

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-
linux-gnueabihf- modules

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-
gnueabihf- dtbs

These commands are in the MELP/Chapter04/build-linux-
bbb.sh script.

Building a kernel for QEMU
Here is the sequence of commands to build Linux for the ARM
Versatile PB that is emulated by QEMU, using the crosstool-NG
v5TE compiler:
$ cd linux-stable

$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-
gnueabi- mrproper

$ make -j4 ARCH=arm CROSS_COMPILE=arm-unknown-
linux-gnueabi- zImage

$ make -j4 ARCH=arm CROSS_COMPILE=arm-unknown-
linux-gnueabi- modules

$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-
gnueabi- dtbs

These commands are in the MELP/Chapter04/build-linux-
versatilepb.sh script. In this section, we saw how to compile
kernels for our targets using Kbuild. Now, we will learn about booting
up the kernel.



Boot ing the kernel
Booting Linux is highly device-dependent. In this section, I will show
you how it works for the Raspberry Pi 4, BeagleBone Black, and
QEMU. For other target boards, you must consult the information
from the vendor or from the community project, if there is one.

At this point, you should have the kernel image files and the device
tree blobs for the Raspberry Pi 4, BeagleBone Black, and QEMU.

Booting the Raspberry Pi 4
Raspberry Pis use a proprietary bootloader provided by Broadcom
instead of U-Boot. Unlike previous Raspberry Pi models, the
Raspberry Pi 4's bootloader resides on an onboard SPI EEPROM
rather than on a microSD card. We still need to put the kernel image
and device tree blobs for the Raspberry Pi 4 on a microSD to boot
our 64-bit kernel.

To begin, you need a microSD card with a FAT32 boot partition
large enough to hold the necessary kernel build artifacts. The boot
partition needs to be the first partition on the microSD card. A
partition size of 1 GB is sufficient. Insert the microSD card into your
card reader and copy the entire contents of the boot directory to the
boot partition. Unmount the card and insert it into the Raspberry Pi
4. Connect your USB-to-TTL serial cable to the GND, TXD, and RXD
pins on the 40-pin GPIO header (https://learn.adafruit.com/adafruits-
raspberry-pi-lesson-5-using-a-console-cable/connect-the-lead). Next,

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/connect-the-lead


start a terminal emulator such as gtkterm. Lastly, power on the
Raspberry Pi 4 and you should see the following output on the serial
console:
[    0.000000] Booting Linux on physical CPU

0x0000000000 [0x410fd083]

[    0.000000] Linux version 4.19.127-v8+
(frank@franktop) (gcc version 10.2.1
20201103 (GNU Toolchain for the A-profile
Architecture 10.2-2020.11 (arm-10.16))) #1
SMP PREEMPT Sat Feb 6 16:19:37 PST 2021

[    0.000000] Machine model: Raspberry Pi 4 Model
B Rev 1.1

[    0.000000] efi: Getting EFI parameters from
FDT:

[    0.000000] efi: UEFI not found.

[    0.000000] cma: Reserved 64 MiB at
0x0000000037400000

[    0.000000] random: get_random_bytes called
from start_kernel+0xb0/0x480 with
crng_init=0

[    0.000000] percpu: Embedded 24 pages/cpu
s58840 r8192 d31272 u98304

[    0.000000] Detected PIPT I-cache on CPU0

[…]

The sequence will end in kernel panic because the kernel cannot
locate a root filesystem on the microSD card. Kernel panic is
explained later in this chapter.

Booting the BeagleBone Black



To begin, you need a microSD card with U-Boot installed, as
described in the 
Installing U-Boot section from Chapter 3, All About Bootloaders.
Insert the microSD card into your card reader and from the linux-
stable directory, copy the arch/arm/boot/zImage and
arch/arm/boot/dts/am335x-boneblack.dtb files to the boot
partition. Unmount the card and insert it into the BeagleBone Black.
Start a terminal emulator, such as gtkterm, and be prepared to
press the spacebar as soon as you see the U-Boot messages
appear. Next, power on the BeagleBone Black and press the space
bar. You should get a U-Boot prompt. Now enter the following
commands shown after the U-Boot# prompt to load Linux and the
device tree binary:
U-Boot# fatload mmc 0:1 0x80200000 zImage

reading zImage

7062472 bytes read in 447 ms (15.1 MiB/s)

U-Boot# fatload mmc 0:1 0x80f00000 am335x-
boneblack.dtb

reading am335x-boneblack.dtb

34184 bytes read in 10 ms (3.3 MiB/s)

U-Boot# setenv bootargs console=ttyO0

U-Boot# bootz 0x80200000 - 0x80f00000

## Flattened Device Tree blob at 80f00000

Booting using the fdt blob at 0x80f00000

Loading Device Tree to 8fff4000, end 8ffff587 ...
OK

Starting kernel ...

[ 0.000000] Booting Linux on physical CPU 0x0



[…]

Note that we set the kernel command line to console=ttyO0. That
tells Linux which device to use for console output, which in this case
is the first UART on the board, device ttyO0. Without this, we would
not see any messages after Starting the kernel..., and
therefore would not know whether it was working or not. The
sequence would end in a kernel panic, for reasons I will explain later
on.

Booting QEMU
Assuming that you have already installed qemu-system-arm, you
can launch it with the kernel and the .dtb file for the ARM Versatile
PB, as follows:
$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb
-kernel \ zImage

-append "console=ttyAMA0,115200" -dtb versatile-
pb.dtb

Note that setting QEMU_AUDIO_DRV to none is just to suppress error
messages from QEMU about missing configurations for the audio
drivers, which we do not use. As with the Raspberry Pi 4 and
BeagleBone Black, this will end with kernel panic and the system will
halt. To exit from QEMU, press Ctrl + A and then x (two separate
keystrokes). Now, let's discuss what kernel panic is.



Kernel panic
While things started off well, they ended badly:
[ 1.886379] Kernel panic - not syncing: VFS:

Unable to mount root fs on unknown-
block(0,0)

[ 1.895105] ---[ end Kernel panic - not syncing:
VFS: Unable to mount root fs on unknown-
block(0, 0)

This is a good example of kernel panic. Kernel panic occurs when
the kernel encounters an unrecoverable error. By default, it will print
out a message to the console and then halt. You can set the panic
command-line parameter to allow a few seconds before reboots
following a panic. In this case, the unrecoverable error is no root
filesystem, illustrating that a kernel is useless without a user space to
control it. You can supply a user space by providing a root
filesystem, either as a ramdisk or on a mountable mass storage
device. We will talk about how to create a root filesystem in the next
chapter, but first I want to describe the sequence of events that leads
up to panic.

Early user space
In order to transition from kernel initialization to user space, the
kernel has to mount a root filesystem and execute a program in that
root filesystem. This can be achieved via a ramdisk or by mounting a
real filesystem on a block device. The code for all of this is in



init/main.c, starting with the rest_init() function, which
creates the first thread with PID 1 and runs the code in
kernel_init(). If there is a ramdisk, it will try to execute the
program /init, which will take on the task of setting up the user
space.

If the kernel fails to find and run /init, it tries to mount a filesystem
by calling the prepare_namespace() function in
init/do_mounts.c. This requires a root= command line to give
the name of the block device to use for mounting, usually in this
form:
root=/dev/<disk name><partition number>

Or, in this form for SD cards and eMMC:
root=/dev/<disk name>p<partition number>

For example, for the first partition on an SD card, that would be
root=/dev/mmcblk0p1. If the mount succeeds, it will try to
execute /sbin/init, followed by 
/etc/init, /bin/init, and then /bin/sh, stopping at the first
one that works. The program can be overridden on the command
line. For a ramdisk, use rdinit=, and for a filesystem, use init=.

Kernel messages
Kernel developers are fond of printing out useful information through
liberal use of printk() and similar functions. The messages are
categorized according to importance, with 0 being the highest:



They are first written to a buffer, __log_buf, the size of which is two
to the power 
of CONFIG_LOG_BUF_SHIFT. For example, if
CONFIG_LOG_BUF_SHIFT is 16, then __log_buf is 64 KiB. You
can dump the entire buffer using the dmesg command.

If the level of a message is less than the console log level, it is
displayed on the console as well as being placed in __log_buf.
The default console log level is 7, meaning that messages of level 6



and lower are displayed, filtering out KERN_DEBUG, which is level 7.
You can change the console log level in several ways, including by
using the loglevel=<level> kernel parameter, or the dmesg -n
<level> command.

The kernel command l ine
The kernel command line is a string that is passed to the kernel by
the bootloader, via the bootargs variable in the case of U-Boot; it
can also be defined in the device tree or set as part of the kernel
configuration in CONFIG_CMDLINE.

We have seen some examples of the kernel command line already,
but there are many more. There is a complete list in
Documentation/kernel-parameters.txt. Here is a shorter list
of the most useful ones:

debug: Sets the console log level to the highest level, 8, to
ensure that you see all the kernel messages on the console.

init=: The init program to run from a mounted root
filesystem, which defaults to /sbin/init.

lpj=: Sets loops_per_jiffy to a given constant. There is a
description of the significance of this in the paragraph following
this list.

panic=: Behavior when the kernel panics: if it is greater than
zero, it gives the number of seconds before rebooting; if it is zero,



it waits forever (this is the default); or if it is less than zero, it
reboots without any delay.

quiet: Sets the console log level to silent, suppressing all but
emergency messages. Since most devices have a serial console,
it takes time to output all those strings. Consequently, reducing
the number of messages using this option reduces boot time.

rdinit=: The init program to run from a ramdisk. It defaults to
/init.

ro: Mounts the root device as read-only. Has no effect on a
ramdisk, which is always read/write.

root=: The device on which to mount the root filesystem.

rootdelay=: The number of seconds to wait before trying to
mount the root device; defaults to zero. Useful if the device takes
time to probe the hardware, but also see rootwait.

rootfstype=: The filesystem type for the root device. In many
cases, it is auto-detected during mount, but it is required for
jffs2 filesystems.

rootwait: Waits indefinitely for the root device to be detected.
Usually necessary with MMC devices.

rw: Mounts the root device as read-write (default).

The lpj parameter is often mentioned in connection with reducing
the kernel boot time. During initialization, the kernel loops for



approximately 250 ms to calibrate a delay loop. The value is stored
in the loops_per_jiffy variable and is reported like this:
Calibrating delay loop... 996.14 BogoMIPS

(lpj=4980736)

If the kernel always runs on the same hardware, it will always
calculate the same value. You can shave 250 ms off the boot time by
adding lpj=4980736 to the command line.

In the next section, we will learn how to port Linux to a new board
based on the BeagleBone Black, our hypothetical Nova board.

Port ing Linux to a new
board
Porting Linux to a new board can be easy or difficult, depending on
how similar your board is to an existing development board. In
Chapter 3, All About Bootloaders, we 
ported U-Boot to a new board, named Nova, which is based on the
BeagleBone Black. Very few changes need to be made to the kernel
code, so it is very easy. If you are porting to completely new and
innovative hardware, there will be more to do. We will delve 
deeper into the topic of additional hardware peripherals in Chapter
12, Prototyping with Breakout Boards.

The organization of architecture-specific code in arch/$ARCH differs
from one system to another. The x86 architecture is pretty clean
because most hardware details are detected at runtime. The



PowerPC architecture puts SoC and board-specific files into
subdirectory platforms. The ARM architecture, on the other hand, is
quite messy, in part because there is a lot of variability between the
many ARM-based SoCs. Platform-dependent code is put in
directories named mach-*, approximately one per SoC. There are
other directories named plat-*, which contain code common to
several versions of an SoC. In the case of the BeagleBone Black,
the relevant directory is arch/arm/mach-omap2. Don't be fooled
by the name though; it contains support for OMAP2, 3, and 4 chips
as well as the AM33xx family of chips that the BeagleBone uses.

In the following sections, I am going to explain how to create a
device tree for a new board and how to key that into the initialization
code of Linux.

A new device tree
The first thing to do is create a device tree for the board and modify it
to describe the additional or changed hardware of the Nova board. In
this simple case, we will just copy am335x-boneblack.dts to
nova.dts and change the model name to Nova as shown here:
/dts-v1/;

#include "am33xx.dtsi"

#include "am335x-bone-common.dtsi"

#include "am335x-boneblack-common.dtsi"

/ {

        model = "Nova";



        compatible = "ti,am335x-bone-black",
"ti,am335x-bone", "ti,am33xx";

};

[…]

We can build the Nova device tree binary explicitly like this:
$ make ARCH=arm nova.dtb

If we want the device tree for Nova to be compiled by make
ARCH=arm dtbs whenever an AM33xx target is selected, we could
add a dependency in arch/arm/boot/dts/Makefile as follows:
[…]

dtb-$(CONFIG_SOC_AM33XX) +=

    nova.dtb

[…]

We can see the effect of using the Nova device tree by booting the
BeagleBone Black, following the same procedure as in the Booting
the BeagleBone Black section, with the same zImage file as before,
but loading nova.dtb in place of am335x-boneblack.dtb. The
following highlighted output is the point at which the machine model
is printed out:
Starting kernel ...

[ 0.000000] Booting Linux on physical CPU 0x0

[ 0.000000] Linux version 5.4.50-melp-v1.0-dirty
(frank@franktop) (gcc version 8.3.0
(crosstool-NG crosstool-ng-1.24.0) ) #2
SMP Sat Feb 6 17:19:36 PST 2021

[ 0.000000] CPU: ARMv7 Processor [413fc082]
revision 2 (ARMv7), cr=10c5387d



[ 0.000000] CPU: PIPT / VIPT nonaliasing data
cache, VIPT aliasing instruction cache

[ 0.000000] OF: fdt:Machine model: Nova

[…]

Now that we have a device tree specifically for the Nova board, we
could modify it to describe the hardware differences between Nova
and the BeagleBone Black. There are quite likely to be changes to
the kernel configuration as well, in which case you would create a
custom configuration file based on a copy of
arch/arm/configs/multi_v7_defconfig.

Sett ing the board's compatible
property
Creating a new device tree means that we can describe the
hardware on the Nova board, selecting device drivers and setting
properties to match. But suppose the Nova board needs different
early initialization code than the BeagleBone Black, how can we link
that in?

The board setup is controlled by the compatible property in the
root node. This is what we have for the Nova board at the moment:
/ {

    model = "Nova";

    compatible = "ti,am335x-bone-black",
"ti,am335x-bone", "ti,am33xx";

};



When the kernel parses this node, it will search for a matching
machine for each of the values of the compatible property, starting
on the left and stopping with the first match found. Each machine is
defined in a structure delimited by DT_MACHINE_START and
MACHINE_END macros. In arch/arm/mach-omap2/board-
generic.c, we find 
the following:
#ifdef CONFIG_SOC_AM33XX

static const char *const am33xx_boards_compat[]
__initconst = {

    "ti,am33xx",

    NULL,

};

DT_MACHINE_START(AM33XX_DT, "Generic AM33XX
(Flattened Device Tree)")

    .reserve = omap_reserve,

    .map_io = am33xx_map_io,

    .init_early = am33xx_init_early,

    .init_machine = omap_generic_init,

    .init_late = am33xx_init_late,

    .init_time = omap3_gptimer_timer_init,

    .dt_compat = am33xx_boards_compat,

    .restart = am33xx_restart,

MACHINE_END

#endif

Note that the string array am33xx_boards_compat contains
"ti,am33xx", which matches one of the machines listed in the



compatible property. In fact, it is the only match possible, since
there are none for ti,am335x-bone-black or ti,am335x-bone.
The structure between DT_MACHINE_START and MACHINE_END
contains a pointer to the string array, and function pointers for the
board setup functions.

You may wonder why to bother with ti,am335x-bone-black and
ti,

am335x-bone if they never match anything? The answer is partly
that they are placeholders for the future, but also that there are
places in the kernel that contain runtime tests for the machine using
the of_machine_is_compatible() function; for example, in
drivers/net/ethernet/ti/cpsw-common.c:
int ti_cm_get_macid(struct device *dev, int slave,

u8 *mac_addr)

{

[…]

    if (of_machine_is_compatible("ti,am33xx"))

        return cpsw_am33xx_cm_get_macid(dev,
0x630, slave, mac_addr);

[…]

Thus, we have to look through not just the mach-* directories but
the entire kernel source code to get a list of all the places that
depend on the machine compatible property. In the 5.4 kernel,
you will find that there are still no checks for ti,
am335x-bone-black and ti,am335x-bone, but there may be in
the future.



Returning to the Nova board, if we want to add machine-specific
setup, we can add a machine in arch/arm/mach-omap2/board-
generic.c, like this:
#ifdef CONFIG_SOC_AM33XX

[…]

static const char *const nova_compat[] __initconst
= {

    "ti,nova",

    NULL,

};

DT_MACHINE_START(NOVA_DT, "Nova board (Flattened
Device Tree)")

    .reserve = omap_reserve,

    .map_io = am33xx_map_io,

    .init_early = am33xx_init_early,

    .init_machine = omap_generic_init,

    .init_late = am33xx_init_late,

    .init_time = omap3_gptimer_timer_init,

    .dt_compat = nova_compat,

    .restart = am33xx_restart,

MACHINE_END

#endif

Then we could change the device tree root node like this:
/ {

    model = "Nova";

    compatible = "ti,nova", "ti,am33xx";

};



Now, the machine will match ti,nova in board-generic.c. We
keep ti,am33xx because we want the runtime tests, such as the
one in drivers/net/ethernet/ti/cpsw-common.c, to
continue to work.

Summary
What makes Linux so powerful is the ability to configure the kernel
however we need to. The definitive place to get the kernel source
code is https://www.kernel.org/, but you will probably need to get the
source for a particular SoC or board from the vendor of that device
or a third party that supports that device. The customization of the
kernel for a particular target may consist of changes to the core
kernel code, additional drivers for devices that are not in mainline
Linux, a default kernel configuration file, and a device tree source
file.

Normally, you start with the default configuration for your target
board and then tweak it by running one of the configuration tools,
such as menuconfig. One of the things you should consider at this
point is whether the kernel features and drivers should be compiled
as modules or built in. Kernel modules are usually no great
advantage for embedded systems, where the feature set and
hardware are usually well defined. However, modules are often used
as a way to import proprietary code into the kernel, and also to
reduce boot time by loading non-essential drivers after booting.

https://www.kernel.org/


Building the kernel produces a compressed kernel image file named
zImage , bzImage, or uImage, depending on the bootloader you
will be using and the target architecture. A kernel build will also
generate any kernel modules (as .ko files) that you have
configured, and device tree binaries (as .dtb files) if your target
requires them.

Porting Linux to a new target board can be quite simple or very
difficult, depending on how different the hardware is from that in the
mainline or vendor-supplied kernel. If your hardware is based on a
well-known reference design, then it may be just a question of
making changes to the device tree or to the platform data. You may
well need to add device drivers, which we'll discuss in Chapter 11,
Interfacing with Device Drivers. However, if the hardware is radically
different from a reference design, you may need additional core
support, which is outside the scope of this book.

The kernel is the core of a Linux-based system, but it cannot work by
itself. It requires 
a root filesystem that contains the user space components. The root
filesystem can be 
a ramdisk or a filesystem accessed via a block device, which will be
the subject of the 
next chapter. As we have seen, booting a kernel without a root
filesystem results in 
kernel panic.



Addit ional  reading
The following resources have more information about the topics
introduced in 
this chapter:

So You Want to Build an Embedded Linux System? by Jay
Carlson: 
https://jaycarlson.net/embedded-linux/

Linux Kernel Development, Third Edition, by Robert Love

Linux Weekly News: https://lwn.net

BeagleBone Forum:
https://beagleboard.org/discuss#bone_forum_embed

Raspberry Pi Forums: https://www.raspberrypi.org/forums/

https://jaycarlson.net/embedded-linux/
https://lwn.net/
https://beagleboard.org/discuss#bone_forum_embed
https://www.raspberrypi.org/forums/


Chapter 5 :  Bui ld ing a 
Root Fi lesystem
The root filesystem is the fourth and final element of embedded
Linux. Once you have read this chapter, you will be able to build,
boot, and run a simple embedded Linux system.

The techniques I will describe here are broadly known as roll your
own or RYO. Back in the early days of embedded Linux, this was the
only way to create a root filesystem. There are still some use cases
where an RYO root filesystem is applicable, for example, when the
amount of RAM or storage is very limited, for quick demonstrations,
or for any case in which your requirements are not (easily) covered
by the standard build system tools. Nevertheless, these cases are
quite rare. Let me emphasize that the purpose of this chapter is
educational; it is not meant to be a recipe for building everyday
embedded systems: use the tools described in the next chapter for
this.

The first objective is to create a minimal root filesystem that will give
us a shell prompt. Then, using this as a base, we will add scripts to
start up other programs and configure a network interface and user
permissions. There are worked examples for both the BeagleBone
Black and QEMU targets. Knowing how to build the root filesystem
from scratch is a useful skill, and it will help you to understand what



is going on when we look at more complex examples in later
chapters.

In this chapter, we will cover the following topics:

What should be in the root filesystem?

Transferring the root filesystem to the target

Creating a boot initramfs

The init program

Configuring user accounts

A better way of managing device nodes

Configuring the network

Creating filesystem images with device tables

Mounting the root filesystem using NFS

Using TFTP to load the kernel

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system

A microSD card reader and card

The microSD card prepared for the BeagleBone Black from
Chapter 4, Configuring and Building the Kernel



zImage and DTB for QEMU from Chapter 4, Configuring and

Building the Kernel

A USB to TTL 3.3V serial cable

BeagleBone Black

A 5V 1A DC power supply

An Ethernet cable and port for NFS and TFTP

All of the code for this chapter can be found in the Chapter05 folder
from the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition

What should be in the root
f i lesystem?
The kernel will get a root filesystem, either as an initramfs
passed as a pointer from the bootloader or by mounting the block
device given on the kernel command line by the root= parameter.
Once it has a root filesystem, the kernel will execute the first
program, by default named init, as described in the Early user

space section in Chapter 4, Configuring and Building the Kernel.
Then, as far as the kernel is concerned, its job is complete. It is up to
the init program to begin starting other programs and bring the
system to life.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


To make a minimal root filesystem, you need these components:

init: This is the program that starts everything off, usually by
running a series of scripts. I will describe how init works in
much more detail in Chapter 13, Starting Up – The init Program.

Shell: You need a shell to give you a command prompt but, more
importantly, also to run the shell scripts called by init and other
programs.

Daemons: A daemon is a background program that provides a
service to others. Good examples are the system log daemon
(syslogd) and the secure shell daemon (sshd). The init
program must start the initial population of daemons to support
the main system applications. In fact, init is itself a daemon: it
is the daemon that provides the service of launching other
daemons.

Shared libraries: Most programs are linked with shared libraries
and so they must be present in the root filesystem.

Configuration files: The configuration for init and other
daemons is stored in a series of text files, usually in the /etc
directory.

Device nodes: These are the special files that give access to
various device drivers.

proc and sys: These two pseudo filesystems represent kernel
data structures as a hierarchy of directories and files. Many



programs and library functions depend 
on /proc and /sys.

Kernel modules: If you have configured some parts of your
kernel to be modules, they need to be installed in the root
filesystem, usually in /lib/modules/[kernel version].

In addition, there are the device-specific applications that make the
device do the job it is intended for, and also the runtime data files
that they generate.

IMPORTANT NOTE

In some cases, you could condense most of the preceding programs
into a single, statically-linked program, and start the program instead
of init. For example, if your program was named /myprog, you

would add the following command to the kernel command line
init=/myprog. I have come across such a configuration only once,

in a secure system in which the fork system call had been disabled,

thus making it impossible for any other program to be started. The
downside of this approach is that you can't make use of the many
tools that normally go into an embedded system. You have to do
everything yourself.

The directory layout
Interestingly, the Linux kernel does not care about the layout of files
and directories beyond the existence of the program named by



init= or rdinit=, so you are free to put things wherever you like.
As an example, compare the file layout of a device running Android
to that of a desktop Linux distribution: they are almost completely
different.

However, many programs expect certain files to be in certain places,
and it helps us developers if devices use a similar layout, Android
aside. The basic layout of most Linux systems is defined in the
Filesystem Hierarchy Standard (FHS), which is available at
https://refspecs.linuxfoundation.org/fhs.shtml. The FHS covers all the
implementations of Linux operating systems, from the largest to the
smallest. Embedded devices tend to use a subset based on their
needs, but it usually includes the following:

/bin: Programs essential for all users

/dev: Device nodes and other special files

/etc: System configuration files

/lib: Essential shared libraries, for example, those that make up
the C library

/proc: Information about processes represented as virtual files

/sbin: Programs essential to the system administrator

/sys: Information about devices and their drivers represented as
virtual files

/tmp: A place to put temporary or volatile files

https://refspecs.linuxfoundation.org/fhs.shtml


/usr: Additional programs, libraries, and system administrator
utilities, in the 
/usr/bin, /usr/lib, and /usr/sbin directories, respectively

/var: A hierarchy of files and directories that may be modified at
runtime, for example, log messages, some of which must be
retained after boot

There are some subtle distinctions here. The difference between
/bin and /sbin is simply that the latter need not be included in the
search path for non-root users. Users of Red Hat-derived
distributions will be familiar with this. The significance of /usr is that
it may be in a separate partition from the root filesystem, so it cannot
contain anything that is needed to boot the system up.

The staging directory
You should begin by creating a staging directory on your host
computer where you can assemble the files that will eventually be
transferred to the target. In the following examples, I have used
~/rootfs. You need to create a skeleton directory structure in it, for
example, take a look here:
$ mkdir ~/rootfs

$ cd ~/rootfs

$ mkdir bin dev etc home lib proc sbin sys tmp usr
var

$ mkdir usr/bin usr/lib usr/sbin

$ mkdir -p var/log



To see the directory hierarchy more clearly, you can use the handy
tree command used in the following example with the -d option to
show only the directories:
$ tree -d

.

├── bin

├── dev

├── etc

├── home

├── lib

├── proc

├── sbin

├── sys

├── tmp

├── usr

│   ├── bin

│   ├── lib

│   └── sbin

└── var

    └── log

As we shall see, not all directories have the same file permissions
and the individual files inside a directory can have stricter
permissions than the directory itself.

POSIX f i le access permissions



Every process, which in the context of this discussion means every
running program, belongs to a user and one or more groups. The
user is represented by a 32-bit number called the user ID or UID.
Information about users, including the mapping from a UID to a
name, is kept in /etc/passwd. Likewise, groups are represented
by a group ID or GID with information kept in /etc/group. There is
always a root user with a UID of 0 and a root group with a GID of 0.
The root user is also called the superuser because, in a default
configuration, it bypasses most permission checks and can access
all the resources in the system. Security in Linux-based systems is
mainly about restricting access to the root account.

Each file and directory also has an owner and belongs to exactly one
group. The level of access a process has to a file or directory is
controlled by a set of access permission flags, called the mode of
the file. There are 3 collections of 3 bits: the first collection applies to
the owner of the file, the second to the members of the same group
as the file, and the last to everyone else – the rest of the world. The
bits are for read (r), write (w), and execute (x) permissions on the
file. Since 3 bits fit neatly into an octal digit, they are usually
represented in octal, as shown in the following diagram:



Figure 5.1 – File access permissions

There is a fourth preceding octal digit whose value has special
significance:

SUID (4): If the file is executable, it changes the effective UID of
the process to that of the owner of the file when the program is
run.

SGID (2): Similar to SUID, this changes the effective GID of the
process to that of the group of the file.

Sticky (1): In a directory, this restricts deletion so that one user
cannot delete files that are owned by another user. This is usually
set on /tmp and /var/tmp.

The SUID bit is probably used most often. It gives non-root users a
temporary privilege escalation to superuser to perform a task. A
good example is the ping program: ping opens a raw socket,
which is a privileged operation. In order for normal users to use
ping, it is owned by the user root and has the SUID bit set so that
when you run ping, it executes with UID 0 regardless of your UID.

To set this leading octal digit, use values of either 4, 2, or 1 with the
chmod command. For example, to set SUID on /bin/ping in your
staging root directory, you would prepend 4 to a mode of 755 like
so:
$ cd ~/rootfs

$ ls -l bin/ping

-rwxr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping



$ sudo chmod 4755 bin/ping

$ ls -l bin/ping

-rwsr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

Note that the second ls command shows the first 3 bits of the mode
to be rws, whereas previously they had been rwx. That s indicates
that the SUID bit is set.

File ownership permissions in the
staging directory
For security and stability reasons, it is vitally important to pay
attention to the ownership and permissions of the files that will be
placed on the target device. Generally speaking, you want to restrict
sensitive resources to be accessible only by the root user and run
as few programs using non-root users as possible. It is best to run
programs using non-root users so that if they are compromised by
an outside attack, they offer as few system resources to the attacker
as possible. For example, the device node called /dev/mem gives
access to system memory, which is necessary in some programs.
But, if it is readable and writeable by everyone, then there is no
security because everyone can access everything in memory. So,
/dev/mem should be owned by root, belong to the root group,
and have a mode of 600, which denies read and write access to all
but the owner.



There is a problem with the staging directory though. The files you
create there will be owned by you, but when they are installed on the
device, they should belong to specific owners and groups, mostly the
root user. An obvious fix is to change the ownership to root at this
stage with the commands shown here:
$ cd ~/rootfs

$ sudo chown -R root:root *

The problem is that you need root privileges to run the chown
command, and from that point onward, you will need to be root to
modify any files in the staging directory. Before you know it, you are
doing all your development logged on as root, which is not a good
idea. This is a problem that we will come back to later.

Programs for the root f i lesystem
Now, it is time to start populating the root filesystem with the
essential programs and the supporting libraries, configuration, and
data files that they need to operate. I will begin with an overview of
the types of programs you will need.

The init program
init is the first program to be run, and so it is an essential part of
the root filesystem. In this chapter, we will be using the simple init
program provided by BusyBox.

Shell



We need a shell to run scripts and to give us a command prompt so
that we can interact with the system. An interactive shell is probably
not necessary on a production device, but it is useful for
development, debugging, and maintenance. There are various shells
in common use in embedded systems:

bash: This is the big beast that we all know and love from
desktop Linux. It is a superset of the Unix Bourne shell with many
extensions or bashisms.

ash: Also based on the Bourne shell, it has a long history with
the BSD variants of Unix. BusyBox has a version of ash, which
has been extended to make it more compatible with bash. It is
much smaller than bash and hence it is a very popular choice for
embedded systems.

hush: This is a very small shell that we briefly looked at in
Chapter 3, All about Bootloaders. It is useful on devices with very
little memory. There is a version of hush in BusyBox.

TIP

If you are using ash or hush as the shell on the target, make

sure that you test your shell scripts on the target. It is very
tempting to test them only on the host, using bash, and then be

surprised that they don't work when you copy them to the target.

Next on the list is utilities.

Util it ies



The shell is just a way of launching other programs, and a shell
script is little more than a list of programs to run, with some flow
control and a means of passing information between programs. To
make a shell useful, you need the utility programs that the Unix
command line is based on. Even for a basic root filesystem, you
need approximately 50 utilities, which presents two problems. Firstly,
tracking down the source code for each one and cross-compiling it
would be quite a big job. Secondly, the resulting collection of
programs would take up several tens of megabytes, which was a
real problem in the early days of embedded Linux when a few
megabytes was all you had. To solve this problem, BusyBox was
born.

BusyBox to the rescue!
The genesis of BusyBox had nothing to do with embedded Linux.
The project was instigated in 1996 by Bruce Perens for the Debian
installer so that he could boot Linux from a 1.44 MB floppy disk.
Coincidentally, this was about the size of the storage on
contemporary devices, and so the embedded Linux community
quickly took it up. BusyBox has been at the heart of embedded Linux
ever since.

BusyBox was written from scratch to perform the essential functions
of those essential Linux utilities. The developers took advantage of
the 80:20 rule: the most useful 80% of a program is implemented in
20% of the code. Hence, BusyBox tools implement a subset of the
functions of the desktop equivalents, but they do enough of it to be
useful in the majority of cases.



Another trick BusyBox employs is to combine all the tools together
into a single binary, making it easy to share code between them. It
works like this: BusyBox is a collection 
of applets, each of which exports its main function in the form
[applet]_main. 
For example, the cat command is implemented in
coreutils/cat.c and exports cat_main. The main function of
BusyBox itself dispatches the call to the correct applet, based on the
command-line arguments.

So, to read a file, you can launch BusyBox with the name of the
applet you want to run, followed by any arguments the applet
expects, as shown here:
$ busybox cat my_file.txt

You can also run BusyBox with no arguments to get a list of all the
applets that have 
been compiled.

Using BusyBox in this way is rather clumsy. A better way to get
BusyBox to run the cat applet is to create a symbolic link from
/bin/cat to /bin/busybox:
$ ls -l bin/cat bin/busybox

-rwxr-xr-x 1 root root 892868 Feb 2 11:01
bin/busybox

lrwxrwxrwx 1 root root 7      Feb 2 11:01 bin/cat
-> busybox

When you type cat at the command line, BusyBox is the program
that actually runs. BusyBox only has to check the path to the



executable passed in via argv[0], which 
will be /bin/cat, extract the application name, cat, and do a table
lookup to match cat with cat_main. All this is done in
libbb/appletlib.c in this section of code (slightly simplified):
applet_name = argv[0];

applet_name = bb_basename(applet_name);

run_applet_and_exit(applet_name, argv);

BusyBox has over 300 applets, including an init program, several
shells of varying levels of complexity, and utilities for most admin
tasks. There is even a simple version of the vi editor so you can
change text files on your device. A typical BusyBox binary will only
enable several dozen applets.

To summarize, a typical installation of BusyBox consists of a single
program with 
a symbolic link for each applet, but it behaves exactly as if it were a
collection of 
individual applications.

Building BusyBox
BusyBox uses the same Kconfig and Kbuild system as the
kernel, so cross-compiling is straightforward. You can get the source
by cloning the BusyBox Git repo and checking out the version you
want (1_31_1 was the latest at the time of writing), as follows:
$ git clone git://busybox.net/busybox.git

$ cd busybox

$ git checkout 1_31_1



You can also download the corresponding TAR file from
https://busybox.net/downloads/.

Then, configure BusyBox by starting with the default configuration,
which enables pretty much all of the features of BusyBox:
$ make distclean

$ make defconfig

At this point, you probably want to run make menuconfig to fine-
tune the configuration. For example, you almost certainly want to set
the install path in Busybox Settings | Installation Options
(CONFIG_PREFIX) to point to the staging directory. Then, you can
cross-compile in the usual way. If your intended target is the
BeagleBone Black, use this command:
$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-

gnueabihf-

If your intended target is the QEMU emulation of a Versatile PB, use
this command:
$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-

gnueabi-

In either case, the result is the executable busybox. For a default
configuration build like this, the size is about 900 KiB. If this is too big
for you, you can slim it down by changing the configuration to leave
out the utilities you don't need.

To install BusyBox into the staging area, use the following command:
$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-

gnueabihf- install

https://busybox.net/downloads/


This will copy the binary to the directory configured in
CONFIG_PREFIX and create all the symbolic links to it.

Now we will look at an alternative to Busybox known as ToyBox.

ToyBox – an alternative to BusyBox
BusyBox is not the only game in town. In addition, there is ToyBox,
which you can find at http://landley.net/toybox/. The project was
started by Rob Landley, who was previously a maintainer of
BusyBox. ToyBox has the same aim as BusyBox, but with more
emphasis on complying with standards, especially POSIX-2008 and
LSB 4.1, and less on compatibility with GNU extensions to those
standards. ToyBox is smaller than BusyBox, partly because it
implements fewer applets. And its license is BSD rather than GPL
v2, making it compatible with operating systems that have a BSD-
licensed user space, such as Android. Hence, ToyBox ships with all
new Android devices. As of the recent 0.8.3 release, Toybox's
Makefile can build a full Linux system that boots to a shell prompt
given just the Linux and ToyBox sources.

Libraries for the root f i lesystem
Programs are linked with libraries. You could link them all statically,
in which case, there would be no libraries on the target device. But,
this takes up an unnecessarily large amount of storage if you have
more than two or three programs. So, you need to copy shared
libraries from the toolchain to the staging directory. How do you know
which libraries?

http://landley.net/toybox/


One option is to copy all of the .so files from the sysroot directory
of your toolchain. Instead of trying to predict which libraries to
include, just assume that your image will eventually need them all.
This is certainly logical and, if you are creating a platform to be used
by others for a range of applications, it would be the correct
approach. Be aware, though, that a full glibc is quite large. In the
case of a crosstool-NG build of glibc 2.22, the libraries, locales,
and other supporting files come to 33 MiB. Of course, you could cut
down on that considerably using musl libc or uClibc-ng.

Another option is to cherry-pick only those libraries that you require,
for which you need a means of discovering library dependencies.
Using some of our knowledge from Chapter 2, Learning about
Toolchains, we can use the readelf command for this task:
$ cd ~/rootfs

$ arm-cortex_a8-linux-gnueabihf-readelf -a
bin/busybox | grep "program interpreter"

[Requesting program interpreter: /lib/ld-linux-
armhf.so.3]

$ arm-cortex_a8-linux-gnueabihf-readelf -a
bin/busybox | grep "Shared library"

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libc.so.6]

The first readelf command searches the busybox binary for lines
containing program interpreter. The second readelf
command searches the busybox binary for lines containing Shared
library. Now, you need to find these files in the toolchain



sysroot directory and copy them to the staging directory.
Remember that you can find sysroot like this:
$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux-
gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

To reduce the amount of typing, I am going to keep a copy of that in
a shell variable:
$ export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-

gcc -print-sysroot)

If you look at /lib/ld-linux-armhf.so.3 in sysroot, you will
see that it is in fact a symbolic link:
$ cd $SYSROOT

$ ls -l lib/ld-linux-armhf.so.3

lrwxrwxrwx 1 chris chris 10 Mar 3 15:22 lib/ld-
linux-armhf.so.3 -> ld-2.22.so

Repeat the exercise for libc.so.6 and libm.so.6, and you will
end up with a list of three files and three symbolic links. Now, you
can copy each one using cp -a, which will preserve the symbolic
link:
$ cd ~/rootfs

$ cp -a $SYSROOT/lib/ld-linux-armhf.so.3 lib

$ cp -a $SYSROOT/lib/ld-2.22.so lib

$ cp -a $SYSROOT/lib/libc.so.6 lib

$ cp -a $SYSROOT/lib/libc-2.22.so lib

$ cp -a $SYSROOT/lib/libm.so.6 lib

$ cp -a $SYSROOT/lib/libm-2.22.so lib



Repeat this procedure for each program.

TIP

It is only worth doing this to get the very smallest embedded footprint
possible. There is a danger that you will miss libraries that are
loaded through dlopen(3) calls – plugins mostly. We will look at an

example with the name service switch (NSS) libraries when we
come to configure network interfaces later on in this chapter.

Reducing the size by stripping
Libraries and programs are often compiled with some information
stored in symbol tables to aid debugging and tracing. You seldom
need these in a production system. A quick and easy way to save
space is to strip the binaries of symbol tables. This example shows
libc before stripping:
$ file rootfs/lib/libc-2.22.so

lib/libc-2.22.so: ELF 32-bit LSB shared object,
ARM, EABI5 version 1 (GNU/Linux),
dynamically linked (uses shared libs), for
GNU/Linux 4.3.0, not stripped

$ ls -og rootfs/lib/libc-2.22.so

-rwxr-xr-x 1 1542572 Mar 3 15:22 rootfs/lib/libc-
2.22.so

Now, let's see the result of stripping the debug information:
$ arm-cortex_a8-linux-gnueabihf-strip

rootfs/lib/libc-2.22.so

$ file rootfs/lib/libc-2.22.so

rootfs/lib/libc-2.22.so: ELF 32-bit LSB shared
object, ARM, EABI5 version 1 (GNU/Linux),



dynamically linked (uses shared libs), for
GNU/Linux 4.3.0, stripped

$ ls -og rootfs/lib/libc-2.22.so

-rwxr-xr-x 1 1218200 Mar 22 19:57 rootfs/lib/libc-
2.22.so

In this case, we saved 324,372 bytes, or about 20% of the size of the
file before stripping.

TIP

Be careful about stripping kernel modules. Some symbols are
required by the module loader to relocate the module code, and so
the module will fail to load if they are stripped out. Use this command
to remove debug symbols while keeping those used for relocation:
strip --strip-unneeded <module name>.

Device nodes
Most devices in Linux are represented by device nodes, in
accordance with the Unix philosophy that everything is a file (except
network interfaces, which are sockets). A device node may refer to a
block device or a character device. Block devices are mass storage
devices, such as SD cards or hard drives. A character device is
pretty much anything else, once again, with the exception of network
interfaces. The conventional location for device nodes is the
directory called /dev. For example, a serial port may be represented
by the device node called /dev/ttyS0.



Device nodes are created using the program named mknod (short
for make node):
mknod <name> <type> <major> <minor>

The parameters to mknod are as follows:

name is the name of the device node that you want to create.

type is either c for character devices or b for a block device.

major and minor are a pair of numbers that are used by the
kernel to route file requests to the appropriate device driver code.
There is a list of standard major and minor numbers in the kernel
source in the Documentation/devices.txt file.

You will need to create device nodes for all the devices you want to
access on your 
system. You can do so manually using the mknod command as I will
illustrate here or 
you can create them automatically at runtime using one of the device
managers that I 
will mention later.

In a really minimal root filesystem, you need just two nodes to boot
with BusyBox: console and null. The console only needs to be
accessible to root, the owner of the device node, so the access
permissions are 600 (rw-------). The null device should be
readable and writable by everyone, so the mode is 666 (rw-rw-
rw-). You can use the -m option for mknod to set the mode when



creating the node. You need to be root to create device nodes, as
shown here:
$ cd ~/rootfs

$ sudo mknod -m 666 dev/null c 1 3

$ sudo mknod -m 600 dev/console c 5 1

$ ls -l dev

total 0

crw------- 1 root root 5, 1 Mar 22 20:01 console

crw-rw-rw- 1 root root 1, 3 Mar 22 20:01 null

You can delete device nodes using the standard rm command.
There is no rmnod command because, once created, they are just
files.

The proc and sysfs f i lesystems
proc and sysfs are two pseudo filesystems that give a window into
the inner workings of the kernel. They both represent kernel data as
files in a hierarchy of directories: when you read one of the files, the
contents you see do not come from disk storage; it has been
formatted on the fly by a function in the kernel. Some files are also
writable, meaning that a kernel function is called with the new data
you have written and, if it is of the correct format and you have
sufficient permissions, it will modify the value stored in the kernel's
memory. In other words, proc and sysfs provide another way to
interact with device drivers and other kernel code. The proc and



sysfs filesystems should be mounted on the directories called
/proc and /sys:
# mount -t proc proc /proc

# mount -t sysfs sysfs /sys

Although they are very similar in concept, they perform different
functions. proc has been part of Linux since the early days. Its
original purpose was to expose information about processes to the
user space, hence the name. To this end, there is a directory for
each process named /proc/<PID>, which contains information
about its state. The process list command, ps, reads these files to
generate its output. In addition, there are files that give information
about other parts of the kernel, for example, /proc/cpuinfo tells
you about the CPU, /proc/interrupts has information about
interrupts, and so on.

Finally, in /proc/sys, there are files that display and control the
state and behavior of kernel subsystems, especially scheduling,
memory management, and networking. The manual page is the best
reference for the files you will find in the proc directory, which you
can see by typing man 5 proc.

On the other hand, the role of sysfs is to present the kernel driver
model to the user space. It exports a hierarchy of files relating to
devices and device drivers and the way they are connected to each
other. I will go into more detail on the Linux driver model when I
describe the interaction with device drivers in Chapter 11, Interfacing
with Device Drivers.



Mounting fi lesystems
The mount command allows us to attach one filesystem to a
directory within another, forming a hierarchy of filesystems. The one
at the top, which was mounted by the 
kernel when it booted, is called the root filesystem. The format of
the mount command 
is as follows:
mount [-t vfstype] [-o options] device directory

The parameters of mount are as follows:

vfstype is the type of filesystem.

options is a comma-separated list of mount options.

device is the block device node the filesystem resides on.

directory is the directory you want to mount the filesystem on.

There are various options you can give after -o; have a look at the
manual page mount(8) for more information. As an example, if you
wanted to mount an SD card containing an ext4 filesystem in the
first partition onto the directory called /mnt, you would type the
following code:
# mount -t ext4 /dev/mmcblk0p1 /mnt

Assuming the mount succeeds, you would be able to see the files
stored on the SD card in the /mnt directory. In some cases, you can
leave out the filesystem type and let the kernel probe the device to
find out what is stored there. If mounting fails, you may first need to



unmount the partition in case your Linux distro is configured to
automount all the partitions on an SD card when it is inserted.

Looking at the example of mounting the proc filesystem, there is
something odd: there is no device node, such as /dev/proc, since
it is a pseudo filesystem and not a real one. But the mount
command requires a device parameter. Consequently, we have to
give a string where device should go, but it does not matter much
what that string is. These two commands achieve exactly the same
result:
# mount -t proc procfs /proc

# mount -t proc nodevice /proc

The procfs and nodevice strings are ignored by the mount
command. It is fairly common to use the filesystem type in place of
the device when mounting pseudo filesystems.

Kernel modules
If you have kernel modules, they need to be installed into the root
filesystem, using the modules_install kernel make target, as we
saw in Chapter 4, Configuring and Building the Kernel. This will copy
them into the directory called /lib/modules/<kernel version>
together with the configuration files needed by the modprobe
command.

Be aware that you have just created a dependency between the
kernel and the root filesystem. If you update one, you will have to



update the other.

Now that we know how to mount a filesystem from an SD card, let's
take a look at different options for mounting a root filesystem. The
alternatives (ramdisk and NFS) may surprise you, especially if you
are new to embedded Linux. A ramdisk protects the original source
image from corruption and wear. We'll learn more about flash ware in
Chapter 9, Creating a Storage Strategy. A network filesystem allows
more rapid development because file changes can propagate
instantly to the target(s).

Transferr ing the root
f i lesystem to the target
After having created a skeleton root filesystem in your staging
directory, the next task is to transfer it to the target. In the sections
that follow, I will describe three possibilities:

initramfs: Also known as a ramdisk, this is a filesystem image
that is loaded into RAM by the bootloader. Ramdisks are easy to
create and have no dependencies on mass storage drivers. They
can be used in fallback maintenance mode when the main root
filesystem needs updating. They can even be used as the main
root filesystem in small embedded devices, and they are
commonly used as the early user space in mainstream Linux
distributions. Remember that the contents of the root filesystem
are volatile, and any changes you make in the root filesystem at



runtime will be lost when the system next boots. You would need
another storage type to store permanent data such as
configuration parameters.

Disk image: This is a copy of the root filesystem formatted and
ready to be loaded onto a mass storage device on the target. For
example, it could be an image in the ext4 format ready to be
copied onto an SD card, or it could be in the jffs2 format ready
to be loaded into flash memory via the bootloader. Creating a
disk image is probably the most common option. There is more
information about the different types of mass storage in Chapter
9, Creating a Storage Strategy.

Network filesystem: The staging directory can be exported to
the network via an NFS server and mounted by the target at boot
time. This is often done during the development phase, in
preference to repeated cycles of creating a disk image and
reloading it onto the mass storage device, which is quite a slow
process.

I will start with ramdisk, and use it to illustrate a few refinements to
the root filesystem, such as adding usernames and a device
manager to create device nodes automatically. Then, I will show you
how to create a disk image and how to use NFS to mount the root
filesystem over a network.

Creat ing a boot in i t ramfs



An initial RAM filesystem, or initramfs, is a compressed cpio
archive. cpio is an old Unix archive format, similar to TAR and ZIP
but easier to decode and so requiring less code in the kernel. You
need to configure your kernel with CONFIG_BLK_DEV_INITRD to
support initramfs.

As it happens, there are three different ways to create a boot
ramdisk: as a standalone cpio archive, as a cpio archive
embedded in the kernel image, and as a device table that the kernel
build system processes as part of the build. The first option gives the
most flexibility because we can mix and match kernels and ramdisks
to our heart's content. However, it means that you have two files to
deal with instead of one, and not all bootloaders have the facility to
load a separate ramdisk. I will show you how to build one into the
kernel later.

Standalone initramfs
The following sequence of instructions creates the archive,
compresses it, and adds a U-Boot header ready for loading onto the
target:
$ cd ~/rootfs

$ find . | cpio -H newc -ov --owner root:root > 
../initramfs.cpio

$ cd ..

$ gzip initramfs.cpio

$ mkimage -A arm -O linux -T ramdisk -d
initramfs.cpio.gz uRamdisk



Note that we run cpio with the --owner root:root option. This
is a quick fix for the file ownership problem mentioned earlier, in the
File ownership permissions in the staging directory section. It makes
everything in the cpio archive have a UID and GID of 0.

The final size of the uRamdisk file is about 2.9 MB with no kernel
modules. Add to that 4.4 MB for the kernel zImage file and 440 KB
for U-Boot, and this gives a total of 7.7 MB of storage needed to boot
this board. We are a little way off the 1.44 MB floppy that started it all
off. If size was a real problem, you could use one of these options:

Make the kernel smaller by leaving out drivers and functions you
don't need.

Make BusyBox smaller by leaving out utilities you don't need.

Use musl libc or uClibc-ng in place of glibc.

Compile BusyBox statically.

Now that we have assembled an initramfs, let's boot the archive.

Booting the initramfs
The simplest thing we can do is to run a shell on the console so that
we can interact with the target. We can do that by adding
rdinit=/bin/sh to the kernel command line. The next two
sections show how to do that for both QEMU and the BeagleBone
Black.



Booting with QEMU
QEMU has the option called -initrd to load initramfs into
memory. You should already have, from Chapter 4, Configuring and
Building the Kernel, a zImage compiled with the arm-unknown-
linux-gnueabi toolchain and the device tree binary for the
Versatile PB. From this chapter, you should have created an
initramfs, which includes BusyBox compiled with the same
toolchain. Now, you can launch QEMU using the script in
MELP/Chapter05/run-qemu-initramfs.sh or using this
command:
$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb
\    
-kernel zImage

-append "console=ttyAMA0 rdinit=/bin/sh" \ 
-dtb versatile-pb.dtb

-initrd initramfs.cpio.gz

You should get a root shell with the prompt / #.

Booting the BeagleBone Black
For the BeagleBone Black, we need the microSD card prepared in
Chapter 4, Configuring and Building the Kernel, plus a root
filesystem built using the arm-cortex_a8-linux-gnueabihf
toolchain. Copy the uRamdisk you created earlier in this section to
the boot partition on the microSD card, and then use it to boot the



BeagleBone Black to the point where you get a U-Boot prompt.
Then, enter these commands:
fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb
fatload mmc 0:1 0x81000000 uRamdisk

setenv bootargs console=ttyO0,115200
rdinit=/bin/sh

bootz 0x80200000 0x81000000 0x80f00000

If all goes well, you will get a root shell with the prompt / # on the
serial console. After this is done, we will need to mount proc on
both platforms.

Mounting proc
You will find that on both platforms the ps command doesn't work.
This is because the proc filesystem has not been mounted yet. Try
mounting it:
# mount -t proc proc /proc

Now, run ps again and you will see the process listing.

A refinement to this setup would be to write a shell script that mounts
proc, and anything else that needs to be done at bootup. Then, you
could run this script instead 
of /bin/sh at boot. The following snippet gives an idea of how it
would work:
#!/bin/sh

/bin/mount -t proc proc /proc

# Other boot-time commands go here

/bin/sh



The last line, /bin/sh, launches a new shell that gives you an
interactive root shell prompt. Using a shell as init in this way is
very handy for quick hacks, for example, when you want to rescue a
system with a broken init program. However, in most cases, you
would use an init program, which we will cover later on in this
chapter. But, before this, I want to look at two other ways to load
initramfs.

Building an initramfs into the
kernel image
So far, we have created a compressed initramfs as a separate
file and used the bootloader to load it into memory. Some
bootloaders do not have the ability to load an initramfs file in this
way. To cope with these situations, Linux can be configured to
incorporate initramfs into the kernel image. To do this, change
the kernel configuration and set CONFIG_INITRAMFS_SOURCE to
the full path of the cpio archive you created earlier. If you are using
menuconfig, it is in General setup | Initramfs source file(s). Note
that it has to be the uncompressed cpio file ending in .cpio, not
the gzipped version. Then, build the kernel.

Booting is the same as before, except that there is no ramdisk file.
For QEMU, the command is like this:
$ QEMU_AUDIO_DRV=none \



qemu-system-arm -m 256M -nographic -M versatilepb
\

-kernel zImage \

-append "console=ttyAMA0 rdinit=/bin/sh" \

-dtb versatile-pb.dtb

For the BeagleBone Black, enter these commands at the U-Boot
prompt:
fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

setenv bootargs console=ttyO0,115200
rdinit=/bin/sh

bootz 0x80200000 – 0x80f00000

Of course, you must remember to regenerate the cpio file each time
you change the contents of the root filesystem and then rebuild the
kernel.

Building an initramfs using a
device table
A device table is a text file that lists the files, directories, device
nodes, and links that go into an archive or filesystem image. The
overwhelming advantage is that it allows you to create entries in the
archive file that are owned by the root user, or any other UID,
without having root privileges yourself. You can even create device
nodes without needing root privileges. All this is possible because
the archive is just a data file. It is only when it is expanded by Linux



at boot time that real files and directories get created, using the
attributes you have specified.

The kernel has a feature that allows us to use a device table when
creating an initramfs. You write the device table file and then
point CONFIG_INITRAMFS_SOURCE at it. Then, when you build the
kernel, it creates the cpio archive from the instructions in the device
table. At no point do you need root access.

Here is a device table for our simple rootfs, but missing most of
the symbolic links to BusyBox to make it manageable:
dir /bin 775 0 0

dir /sys 775 0 0

dir /tmp 775 0 0

dir /dev 775 0 0

nod /dev/null 666 0 0 c 1 3

nod /dev/console 600 0 0 c 5 1

dir /home 775 0 0

dir /proc 775 0 0

dir /lib 775 0 0

slink /lib/libm.so.6 libm-2.22.so 777 0 0

slink /lib/libc.so.6 libc-2.22.so 777 0 0

slink /lib/ld-linux-armhf.so.3 ld-2.22.so 777 0 0

file /lib/libm-2.22.so
/home/chris/rootfs/lib/libm-2.22.so 755 0
0

file /lib/libc-2.22.so
/home/chris/rootfs/lib/libc-2.22.so 755 0
0



file /lib/ld-2.22.so /home/chris/rootfs/lib/ld-
2.22.so 755 0 0

The syntax is fairly obvious:

dir <name> <mode> <uid> <gid>

file <name> <location> <mode> <uid> <gid>

nod <name> <mode> <uid> <gid> <dev_type> <maj>

<min>

slink <name> <target> <mode> <uid> <gid>

The dir, nod, and slink commands create a filesystem object in
the initramfs cpio archive with the name, mode, user ID, and
group ID given. The file command copies the file from the source
location into the archive and sets the mode, the user ID, and the
group ID.

The task of creating an initramfs device table from scratch is
made easier by a script in the kernel source code in
usr/gen_initramfs_list.sh, which creates a device table from
a given directory. For example, to create the initramfs device
table for the rootfs directory, and to change the ownership of all
files owned by user ID 1000 and group ID 1000 to user and group
ID 0, you would use this command:
$ bash linux-stable/scripts/gen_initramfs_list.sh

-u 1000 \ 
-g 1000

rootfs > initramfs-device-table



Using this script's -o option lets you create a compressed
initramfs file whose format depends on the file extension after -
o.

Note that the script only works with a bash shell. If you have a
system with a different default shell, as is the case with most Ubuntu
configurations, you will find that the script fails. Hence, in the
command given previously, I explicitly used bash to run the script.

The old initrd format
There is an older format for a Linux ramdisk, known as initrd. It
was the only format available before Linux 2.6 and is still needed if
you are using the MMU-less variant of Linux, uClinux. It is pretty
obscure and I will not cover it here. There is more information in the
kernel source in Documentation/initrd.txt.

Once our initramfs boots, then the system needs to start running
programs. The first program that runs is the init program. Let's
look at that next.

The in i t  program
Running a shell, or even a shell script, at boot time is fine for simple
cases, but really you need something more flexible. Normally, Unix
systems run a program called init that starts up and monitors other
programs. Over the years, there have been many init programs,



some of which I will describe in Chapter 13, Starting Up – The init
Program. For now, I will briefly introduce the init program from
BusyBox.

The init program begins by reading the configuration file,
/etc/inittab. Here is a simple example that is adequate for our
needs:
::sysinit:/etc/init.d/rcS

::askfirst:-/bin/ash

The first line runs a shell script, rcS, when init is started. The
second line prints the message Please press Enter to activate this
console to the console and starts a shell when you press Enter. The
leading - before /bin/ash means that it will become a login shell,
which sources /etc/profile and $HOME/.profile before giving
the shell prompt. One of the advantages of launching the shell like
this is that job control is enabled. The most immediate effect is that
you can use Ctrl + C to terminate the current program. Maybe you
didn't notice it before, but wait until you run the ping program and
find you can't stop it!

BusyBox init provides a default inittab if none is present in the
root filesystem. It is a little more extensive than the preceding one.

The script called /etc/init.d/rcS is the place to put initialization
commands that need to be performed at boot, for example, mounting
the proc and sysfs filesystems:
#!/bin/sh

mount -t proc proc /proc



mount -t sysfs sysfs /sys

Make sure that you make rcS executable like this:
$ cd ~/rootfs

$ chmod +x etc/init.d/rcS

You can try init out on QEMU by changing the -append
parameter like this:
-append "console=ttyAMA0 rdinit=/sbin/init"

For the BeagleBone Black, you need to set the bootargs variable
in U-Boot as shown here:
setenv bootargs console=ttyO0,115200

rdinit=/sbin/init

Now, let's take a closer look at the inittab read by init during
startup.

Start ing a daemon process
Typically, you would want to run certain background processes at
startup. Let's take the log daemon, syslogd, as an example. The
purpose of syslogd is to accumulate log messages from other
programs, mostly other daemons. Naturally, BusyBox has an applet
for that!

Starting the daemon is as simple as adding a line like this to
etc/inittab:
::respawn:/sbin/syslogd -n



respawn means that if the program terminates, it will be
automatically restarted; -n means that it should run as a foreground
process. The log is written to /var/log/messages.

IMPORTANT NOTE

You may also want to start klogd in the same way: klogd sends

kernel log messages to syslogd so that they can be logged to

permanent storage.

Next, we will learn how to configure user accounts.

Conf igur ing user accounts
As I have hinted already, it is not good practice to run all programs
as root, since if 
one program is compromised by an outside attack, then the whole
system is at risk. 
It is preferable to create unprivileged user accounts and use them
where full root is 
not necessary.

Usernames are configured in /etc/passwd. There is one line per
user, with seven fields of information separated by colons, which are,
in order, the following:

The login name

A hash code used to verify the password or, more usually, an x to
indicate that the password is stored in /etc/shadow



The user ID

The group ID

A comment field, often left blank

The user's home directory

The shell this user will use (optional)

Here is a simple example in which we have user root with UID 0
and user daemon 
with UID 1:
root:x:0:0:root:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/false

Setting the shell for user daemon to /bin/false ensures that any
attempt to log on with that name will fail.

Various programs have to read /etc/passwd in order to look up
usernames and UIDs, and so the file has to be world-readable. This
is a problem if the password hashes are stored in there as well,
because a malicious program would be able to take a copy and
discover the actual passwords using a variety of cracker programs.
Therefore, to reduce the exposure of this sensitive information, the
passwords are stored in /etc/shadow and x is placed in the
password field to indicate that this is the case. The file called
/etc/shadow only needs to be accessed by root, so as long as
the root user is not compromised, the passwords are safe. The
shadow password file consists of one entry per user, made up of



nine fields. Here is an example that mirrors the password file shown
in the preceding paragraph:
root::10933:0:99999:7:::

daemon:*:10933:0:99999:7:::

The first two fields are the username and the password hash. The
remaining seven fields are related to password aging, which is not
usually an issue on embedded devices. If you are curious about the
full details, refer to the manual page for shadow(5).

In the example, the password for root is empty, meaning that root
can log on without giving a password. Having an empty password for
root is useful during development but not for production. You can
generate or change a password hash by running the passwd
command on the target, which will write a new hash to
/etc/shadow. If you want all subsequent root filesystems to have
this same password, you could copy this file back to the staging
directory.

Group names are stored in a similar way in /etc/group. There is
one line per group consisting of four fields separated by colons. The
fields are here:

The name of the group

The group password, usually an x character, indicating that there
is no 
group password

The GID or group ID



An optional list of users who belong to this group, separated by
commas

Here is an example:
root:x:0:

daemon:x:1:

Now that we have learned how to configure a user account, let's see
how to add it to the root filesystem.

Adding user accounts to the root
f i lesystem
Firstly, you have to add to your staging directory the files
etc/passwd, etc/shadow, and etc/group, as shown in the
preceding section. Make sure that the permissions of etc/shadow
are 0600. Next, you need to initiate the login procedure by starting a
program called getty. There is a version of getty in BusyBox. You
launch it from inittab using the respawn keyword, which restarts
getty when a login shell is terminated. Your inittab should read
like this:
::sysinit:/etc/init.d/rcS

::respawn:/sbin/getty 115200 console

Then, rebuild the ramdisk and try it out using QEMU or the
BeagleBone Black as before.



Earlier in this chapter, we learned how to create device nodes using
the mknod command. Now, let's take a look at some easier ways to
create device nodes.

A better way of  managing
device nodes
Creating device nodes statically with mknod is quite hard work and
inflexible. There are other ways to create device nodes automatically
on demand:

devtmpfs: This is a pseudo filesystem that you mount over
/dev at boot time. 
The kernel populates it with device nodes for all the devices that
the kernel currently knows about, and it creates nodes for new
devices as they are detected at runtime. The nodes are owned by
root and have default permissions of 0600. Some well-known
device nodes, such as /dev/null and /dev/random, override
the default to 0666. To see exactly how this is done, take a look
at the Linux source file drivers/char/mem.c and see how
struct memdev is initialized.

mdev: This is a BusyBox applet that is used to populate a
directory with device nodes and to create new nodes as needed.
There is a configuration file, /etc/mdev.conf, which contains
rules for ownership and the mode of the nodes.



udev: This is the mainstream equivalent of mdev. You will find it
on desktop Linux and in some embedded devices. It is very
flexible and a good choice for higher-end embedded devices. It is
now part of systemd.

IMPORTANT NOTE

Although both mdev and udev create the device nodes

themselves, it is easier to just let devtmpfs do the job and use

mdev/udev as a layer on top to implement the policy for setting

ownership and permissions. The devtmpfs approach is the only

maintainable way to generate device nodes prior to user space
startup.

Let's look at some examples where we use these tools.

An example using devtmpfs
Support for the devtmpfs filesystem is controlled by the kernel
configuration variable CONFIG_DEVTMPFS. It is not enabled in the
default configuration of the ARM Versatile PB, so if you want to try
out the following using this target, you will have to go back to your
kernel configuration and enable this option. Trying out devtmpfs is
as simple as entering this command:
# mount -t devtmpfs devtmpfs /dev

You will notice that afterward, there are many more device nodes in
/dev. For a permanent fix, add this to /etc/init.d/rcS:



#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

If you enable CONFIG_DEVTMPFS_MOUNT in your kernel
configuration, the kernel will automatically mount devtmpfs just
after mounting the root filesystem. However, this option has no effect
when booting initramfs, as we are doing here.

An example using mdev
While mdev is a bit more complex to set up, it does allow you to
modify the permissions of device nodes as they are created. You
begin by running mdev with the -s option, which causes it to scan
the /sys directory looking for information about current devices.
From this information, it populates the /dev directory with the
corresponding nodes. If you want to keep track of new devices
coming online and create nodes for them as well, you need to make
mdev a hot plug client by writing to /proc/sys/kernel/hotplug.
These additions to /etc/init.d/rcS will achieve all of this:
#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

echo /sbin/mdev > /proc/sys/kernel/hotplug

mdev -s



The default mode is 660 and the ownership is root:root. You can
change this by adding rules in /etc/mdev.conf. For example, to
give the null, random, and urandom devices their correct modes,
you would add this to /etc/mdev.conf:
null root:root 666

random root:root 444

urandom root:root 444

The format is documented in the BusyBox source code in
docs/mdev.txt, and there are more examples in the directory
named examples.

Are stat ic device nodes so bad
after al l?
Statically created device nodes do have one advantage over running
a device manager: they don't take any time during boot to create. If
minimizing boot time is a priority, using statically-created device
nodes will save a measurable amount of time.

After devices are detected and their nodes are created, the next step
in the startup sequence is usually configuring the network.

Conf igur ing the network
Next, let's look at some basic network configurations so that we can
communicate with the outside world. I am assuming that there is an



Ethernet interface, eth0, and that we only need a simple IPv4
configuration.

These examples use the network utilities that are part of BusyBox,
and they are sufficient for a simple use case, using the old-but-
reliable ifup and ifdown programs. You can read the manual
pages for both to get the details. The main network configuration is
stored in /etc/network/interfaces. You will need to create
these directories in the staging directory:
etc/network

etc/network/if-pre-up.d

etc/network/if-up.d

var/run

For a static IP address, /etc/network/interfaces would look
like this:
auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

    address 192.168.1.101

    netmask 255.255.255.0

    network 192.168.1.0

For a dynamic IP address allocated using DHCP,
/etc/network/interfaces would look like this:
auto lo

iface lo inet loopback

auto eth0



iface eth0 inet dhcp

You will also have to configure a DHCP client program. BusyBox has
one named udchpcd. It needs a shell script that should go in
/usr/share/udhcpc/default.script. There is a suitable
default in the BusyBox source code in the
examples/udhcp/simple.script directory.

Network components for gl ibc
glibc uses a mechanism known as the name service switch
(NSS) to control the way that names are resolved to numbers for
networking and users. Usernames, for example, may be resolved to
UIDs via the file /etc/passwd and network services such as HTTP
can be resolved to the service port number via /etc/services. All
this is configured by /etc/nsswitch.conf; see the manual page,
nss(5), for full details. Here is a simple example that will suffice for
most embedded Linux implementations:
passwd:    files

group:     files

shadow:    files

hosts:     files dns

networks:  files

protocols: files

services:  files

Everything is resolved by the correspondingly named file in /etc,
except for the hostnames, which may additionally be resolved by a



DNS lookup if they are not in /etc/hosts.

To make this work, you need to populate /etc with those files.
Networks, protocols, and services are the same across all Linux
systems, so they can be copied from /etc in your development PC.
/etc/hosts should, at least, contain the loopback address:
127.0.0.1 localhost

The other files, passwd, group, and shadow, were described
earlier, in the Configuring user accounts section.

The last piece of the jigsaw is the libraries that perform the name
resolution. They are plugins that are loaded as needed based on the
contents of nsswitch.conf, meaning that they do not show up as
dependencies if you use readelf or ldd. You will simply have to
copy them from the toolchain's sysroot:
$ cd ~/rootfs

$ cp -a $SYSROOT/lib/libnss* lib

$ cp -a $SYSROOT/lib/libresolv* lib

Our staging directory is now complete, so let's generate a filesystem
from it.

Creat ing f i lesystem images
with device tables
We saw earlier, in the Creating a boot initramfs section, that the
kernel has an option to create initramfs using a device table.



Device tables are really useful because they allow a non-root user to
create device nodes and to allocate arbitrary UID and GID values to
any file or directory. The same concept has been applied to tools that
create other filesystem image formats, as shown in this mapping
from filesystem format to tool:

jffs2: mkfs.jffs2

ubifs: mkfs:ubifs

ext2: genext2fs

We will look at jffs2 and ubifs in Chapter 9, Creating a Storage

Strategy, when we look at filesystems for flash memory. The third,
ext2, is a format commonly used for managed flash memory
including SD cards. The example that follows uses ext2 to create a
disk image that can be copied to an SD card.

To begin with, you need to install the genext2fs tool on your host.
On Ubuntu, the package to install is named genext2fs:
$ sudo apt install genext2fs

genext2fs takes a device table file with the format <name>
<type> <mode> <uid> <gid> <major> <minor> <start>

<inc> <count>, where the meanings of the fields are as follows:

name:

type: One of the following:

f: A regular file



d: A directory

c: A character special device file

b: A block special device file

p: A FIFO (named pipe)

uid: The UID of the file

gid: The GID of the file

major and minor: The device numbers (device nodes only)

start, inc, and count: Allow you to create a group of device
nodes starting from the minor number in start (device nodes only)

You do not have to specify every file, as you do with the kernel
initramfs table. You just have to point at a directory—the staging
directory—and list the changes and exceptions you need to make in
the final filesystem image.

A simple example that populates static device nodes for us is as
follows:
/dev d 755 0 0 - - - - -

/dev/null c 666 0 0 1 3 0 0 -

/dev/console c 600 0 0 5 1 0 0 -

/dev/ttyO0 c 600 0 0 252 0 0 0 -

Then, you can use genext2fs to generate a filesystem image of 4
MB (that is 4,096 blocks of the default size, 1,024 bytes):
$ genext2fs -b 4096 -d rootfs -D device-table.txt

-U rootfs.ext2



Now, you can copy the resulting image, rootfs.ext2, to an SD
card or similar, which we will do next.

Booting the BeagleBone Black
The script called MELP/format-sdcard.sh creates two partitions
on the microSD card: one for the boot files and one for the root
filesystem. Assuming that you have created the root filesystem
image as shown in the previous section, you can use the dd
command to write it to the second partition. As always, when copying
files directly to storage devices like this, make absolutely sure that
you know which is the microSD card. In this case, I am using a built-
in card reader, which is the device called /dev/mmcblk0, so the
command is as follows:
$ sudo dd if=rootfs.ext2 of=/dev/mmcblk0p2

Note that the card reader on your host system may have a different
name.

Then, slot the micro SD card into the BeagleBone Black, and set the
kernel command line to root=/dev/mmcblk0p2. The complete
sequence of U-Boot commands is as follows:
fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

setenv bootargs console=ttyO0,115200
root=/dev/mmcblk0p2

bootz 0x80200000 – 0x80f00000



This is an example of mounting a filesystem from a normal block
device, such as an SD card. The same principles apply to other
filesystem types and we will look at them in more detail in Chapter 9,
Creating a Storage Strategy.

Mount ing the root
f i lesystem using NFS
If your device has a network interface, it is often useful to mount the
root filesystem over the network during development. It gives you
access to the almost unlimited storage on your host machine, so you
can add in debug tools and executables with large symbol tables. As
an added bonus, updates made to the root filesystem on the
development machine are made available on the target immediately.
You can also access all the target's log files from the host.

To begin with, you need to install and configure an NFS server on
your host. On Ubuntu, the package to install is named nfs-
kernel-server:
$ sudo apt install nfs-kernel-server

The NFS server needs to be told which directories are being
exported to the network; this is controlled by /etc/exports. There
is one line for each export. The format is described in the manual
page exports(5). As an example, to export the root filesystem on
my host, I have this:



/home/chris/rootfs *
(rw,sync,no_subtree_check,no_root_squash)

* exports the directory to any address on my local network. If you
wish, you can give a single IP address or a range at this point. There
follows a list of options enclosed in parentheses. There must not be
any spaces between * and the opening parenthesis. The options are
here:

rw: This exports the directory as read-write.

sync: This option selects the synchronous version of the NFS
protocol, which is more robust but a little slower than the async
option.

no_subtree_check: This option disables subtree checking,
which has mild security implications, but can improve reliability in
some circumstances.

no_root_squash: This option allows requests from user ID 0 to
be processed without squashing to a different user ID. It is
necessary to allow the target to correctly access the files owned
by root.

Having made changes to /etc/exports, restart the NFS server to
pick them up.

Now, you need to set up the target to mount the root filesystem over
NFS. For this to work, your kernel has to be configured with
CONFIG_ROOT_NFS. Then, you can configure Linux to do the mount
at boot time by adding the following to the kernel command line:



root=/dev/nfs rw nfsroot=<host-ip>:<root-dir> ip=
<target-ip>

The options are as follows:

rw: This mounts the root filesystem read-write.

nfsroot: This specifies the IP address of the host, followed by
the path to the exported root filesystem.

ip: This is the IP address to be assigned to the target. Usually,
network addresses are assigned at runtime, as we have seen in
the Configuring the network section. However, in this case, the
interface has to be configured before the root filesystem is
mounted and init has been started. Hence, it is configured on
the kernel command line.

IMPORTANT NOTE

There is more information about NFS root mounts in the kernel
source in
Documentation/filesystems/nfs/nfsroot.txt.

Next, let's boot an image complete with a root filesystem on QEMU
and a 
BeagleBone Black.

Testing with QEMU
The following script creates a virtual network between the network
device called tap0 on the host and eth0 on the target using a pair



of static IPv4 addresses and then launches QEMU with the
parameters to use tap0 as the emulated interface.

You will need to change the path to the root filesystem to be the full
path to your staging directory and maybe the IP addresses if they
conflict with your network configuration:
#!/bin/bash

KERNEL=zImage

DTB=versatile-pb.dtb

ROOTDIR=/home/chris/rootfs

HOST_IP=192.168.1.1

TARGET_IP=192.168.1.101

NET_NUMBER=192.168.1.0

NET_MASK=255.255.255.0

sudo tunctl -u $(whoami) -t tap0

sudo ifconfig tap0 ${HOST_IP}

sudo route add -net ${NET_NUMBER} netmask
${NET_MASK} dev tap0

sudo sh -c "echo 1 >
/proc/sys/net/ipv4/ip_forward"

QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb
-kernel ${KERNEL} -append
"console=ttyAMA0,115200 root=/dev/nfs rw
nfsroot=${HOST_IP}:${ROOTDIR}
ip=${TARGET_IP}" -dtb ${DTB} -net nic -net
tap,ifname=tap0,script=no

The script is available in MELP/Chapter05/run-qemu-
nfsroot.sh.



It should boot up as before, now using the staging directory directly
via the NFS export. Any files that you create in that directory will be
immediately visible to the target device, and any files created in the
device will be visible to the development PC.

Testing with the BeagleBone Black
In a similar way, you can enter these commands at the U-Boot
prompt of the 
BeagleBone Black:
setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

setenv npath [path to staging directory]

setenv bootargs console=ttyO0,115200 root=/dev/nfs
rw nfsroot=${serverip}:${npath}
ip=${ipaddr}

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

bootz 0x80200000 - 0x80f00000

There is a U-Boot environment file in
MELP/Chapter05/uEnv.txt, which contains all these commands.
Just copy it to the boot partition of the microSD card and U-Boot will
do the rest.

Problems with f i le permissions



The files that you copied into the staging directory will be owned by
the UID of the user you are logged on as, typically 1000. However,
the target has no knowledge of this user. What is more, any files
created by the target will be owned by users configured by the
target, often the root user. The whole thing is a mess.
Unfortunately, there is no simple way out. The best solution is to
make a copy of the staging directory and change ownership to UID
and GID to 0, using the sudo chown -R 0:0 * command. Then,
export this directory as the NFS mount. It removes the convenience
of having just one copy of the root filesystem shared between
development and target systems, but at least the file ownership will
be correct.

It's not uncommon in embedded Linux to link device drivers statically
into the kernel rather than load them dynamically from the root
filesystem as modules at runtime. So how do we reap the same
benefits of rapid iteration provided by NFS when modifying the
kernel source code or DTBs? The answer is TFTP.

Using TFTP to load the
kernel
Now that we know how to mount the root filesystem over a network
using NFS, you may be wondering if there is a way to load the
kernel, device tree, and initramfs over the network as well. If we
can do this, the only component that needs to be written to storage



on the target is the bootloader. Everything else could be loaded from
the host machine. It would save time since you would not need to
keep reflashing the target, and you could even get work done while
the flash storage drivers are still being developed (it happens).

The Trivial File Transfer Protocol (TFTP) is the answer to the
problem. TFTP is a very simple file transfer protocol, designed to be
easy to implement in bootloaders such as U-Boot.

To begin with, you need to install a TFTP daemon on your host. On
Ubuntu, the package to install is named tftpd-hpa:
$ sudo apt install tftpd-hpa

By default, tftpd-hpa grants read-only access to files in the
/var/lib/tftpboot directory. With tftpd-hpa installed and
running, copy the files that you want to copy to the target into
/var/lib/tftpboot, which for the BeagleBone Black, would be
zImage and am335x-boneblack.dtb. Then enter these
commands at the U-Boot command prompt:
setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

tftpboot 0x80200000 zImage

tftpboot 0x80f00000 am335x-boneblack.dtb

setenv npath [path to staging]

setenv bootargs console=ttyO0,115200 root=/dev/nfs
rw nfsroot=${serverip}:${npath}
ip=${ipaddr}

bootz 0x80200000 - 0x80f00000



You may find that the tftpboot command hangs, endlessly printing
out the letter T, which means that the TFTP requests are timing out.
There are a number of reasons why this happens, the most common
ones being the following:

There is an incorrect IP address for serverip.

The TFTP daemon is not running on the server.

There is a firewall on the server that is blocking the TFTP
protocol. Most firewalls do indeed block the TFTP port, 69, by
default.

Once you have resolved the problem, U-Boot can load the files from
the host machine and boot in the usual way. You can automate the
process by putting the commands into a uEnv.txt file.

Summary
One of the strengths of Linux is that it can support a wide range of
root filesystems, and so it can be tailored to suit a wide range of
needs. We have seen that it is possible to construct a simple root
filesystem manually with a small number of components and that
BusyBox is especially useful in this regard. By going through the
process one step at a time, it has given us insight into some of the
basic workings of Linux systems, including network configuration and
user accounts. However, the task rapidly becomes unmanageable as
devices get more complex. And, there is the ever-present worry that



there may be a security hole in the implementation that we have not
noticed.

In the next chapter, I will show you how using an embedded build
system can make 
the process of creating an embedded Linux system much easier and
more reliable. I will start by looking at Buildroot, and then go onto
look at the more complex, but powerful, Yocto Project.

Further reading
Filesystem Hierarchy Standard, Version 3.0 –
https://refspecs.linuxfoundation.org/fhs.shtml

ramfs, rootfs and initramfs, by Rob Landley, which is part of the
Linux source in Documentation/filesystems/ramfs-
rootfs-initramfs.txt

https://refspecs.linuxfoundation.org/fhs.shtml


Chapter 6 :  Select ing a Bui ld
System
In the preceding chapters, we covered the four elements of
embedded Linux and showed you, step by step, how to build a
toolchain, a bootloader, a kernel, and a root filesystem, before
combining them into a basic embedded Linux system. And there are
a lot of steps! Now, it is time to look at ways to simplify this process
by automating it as much as possible. We will look at how embedded
build systems can help and look at two of them in particular:
Buildroot and the Yocto Project. Both are complex and flexible tools,
and it would require an entire book to describe how they work in full.
In this chapter, I only want to show you the general ideas behind
build systems. I will show you how to build a simple device image to
get an overall feel of the system, and then how to make some useful
changes using the Nova board example from the previous chapters,
as well as the Raspberry Pi 4.

In this chapter, we will cover the following topics:

Comparing build systems

Distributing binaries

Introducing Buildroot

Introducing the Yocto Project

Let's get started!



Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based host system with a minimum of 60 GB of available
disk space

Etcher for Linux

A microSD card reader and card

A USB to TTL 3.3V serial cable

A Raspberry Pi 4

A 5V 3A USB-C power supply

An Ethernet cable and port for network connectivity

A BeagleBone Black

A 5V 1A DC power supply

All the code for this chapter can be found in the Chapter06 folder of
this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Comparing bui ld systems
I described the process of creating a system manually in Chapter 5,
Building a Root Filesystem, as the Roll Your Own (RYO) process. It

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


has the advantage that you are in complete control of the software,
and you can tailor it to do anything you like. If you want it to do
something truly odd but innovative, or if you want to reduce the
memory footprint to the smallest size possible, RYO is the way to go.
But, in the vast majority of situations, building manually is a waste of
time and produces inferior, unmaintainable systems.

The idea of a build system is to automate all the steps I have
described up to this point. 
A build system should be able to build, from upstream source code,
some or all of 
the following:

A toolchain

A bootloader

A kernel

A root filesystem

Building from upstream source code is important for a number of
reasons. It means that you have the peace of mind that you can
rebuild at any time, without external dependencies. It also means
that you have the source code for debugging, and also that you can
meet your license requirements to distribute the code to users where
necessary.

Therefore, to do its job, a build system has to be able to do the
following:



1. Download the source code from upstream, either directly from the
source code control system or as an archive, and cache it locally.

2. Apply patches to enable cross compilation, fix architecture-
dependent bugs, apply local configuration policies, and so on.

3. Build the various components.

4. Create a staging area and assemble a root filesystem.

5. Create image files in various formats, ready to be loaded onto the
target.

Other things that are useful are as follows:

1. Add your own packages containing, for example, applications or
kernel changes.

2. Select various root filesystem profiles: large or small, with and
without graphics or other features.

3. Create a standalone SDK that you can distribute to other
developers so that they don't have to install the complete build
system.

4. Track which open source licenses are used by the various
packages you 
have selected.

5. Have a user-friendly user interface.

In all cases, they encapsulate the components of a system into
packages, some for the host and some for the target. Each package



is defined by a set of rules to get the source, build it, and install the
results in the correct location. There are dependencies between the
packages and a build mechanism to resolve the dependencies and
build the set of packages required.

Open source build systems have matured considerably over the last
few years. There are many around, including the following:

Buildroot: This is an easy-to-use system using GNU Make and
Kconfig 
(https://buildroot.org).

EmbToolkit: This is a simple system for generating root
filesystems and 
toolchains, and is the only one so far that supports LLVM/Clang
out of the box (https://www.embtoolkit.org).

OpenEmbedded: This is a powerful system, which is also a core
component of the Yocto Project and others
(https://openembedded.org).

OpenWrt: This is a build tool oriented toward building firmware
for wireless routers (https://openwrt.org) that supports runtime
package management out of the box.

PTXdist: This is an open source build system sponsored by
Pengutronix (https://www.ptxdist.org).

The Yocto Project: This extends the OpenEmbedded core with
metadata, tools, and documentation, and is probably the most
popular system (https://www.yoctoproject.org).

https://buildroot.org/
https://www.embtoolkit.org/
https://openembedded.org/
https://openwrt.org/
https://www.ptxdist.org/
https://www.yoctoproject.org/


I will concentrate on two of these: Buildroot and the Yocto Project.
They approach the problem in different ways and have different
objectives.

Buildroot has the primary aim of building root filesystem images,
hence the name, although it can build bootloader and kernel images,
as well as toolchains. It is easy to install and configure and
generates target images quickly.

The Yocto Project, on the other hand, is more general in the way it
defines the target system, and so it can build complex embedded
devices. Every component is generated as a binary package, by
default, using the RPM format, and then the packages are combined
to make the filesystem image. Furthermore, you can install a
package manager in the filesystem image, which allows you to
update packages at runtime. In other words, when you build with the
Yocto Project, you are, in effect, creating your own custom Linux
distribution. Bear in mind that enabling runtime package
management also means provisioning and running your own
corresponding package repository.

Distr ibut ing binar ies
Mainstream Linux distributions are, in most cases, constructed from
collections of binary (precompiled) packages in either RPM or DEB
format. RPM stands for the Red Hat package manager and is used
in Red Hat, SUSE, Fedora, and other distributions based 
on them. Debian and Debian-derived distributions, including Ubuntu



and Mint, use 
the Debian package manager format known as DEB. In addition,
there is a lightweight format specific to embedded devices known as
the Itsy package format or IPK, which is based on DEB.

The ability to include a package manager on the device is one of the
big differentiators between build systems. Once you have a package
manager on the target device, you have an easy path to deploy new
packages to it and to update the existing ones. I will talk about the
implications of this in Chapter 10, Updating Software in the Field.

Introducing Bui ldroot
The current versions of Buildroot are capable of building a toolchain,
a bootloader, a kernel, and a root filesystem. It uses GNU Make as
the principal build tool. There is good online documentation at
https://buildroot.org/docs.html, including The Buildroot user manual
at https://buildroot.org/downloads/manual/manual.html.

Background
Buildroot was one of the first build systems. It began as part of the
uClinux and uClibc projects as a way of generating a small root
filesystem for testing. It became a separate project in late 2001 and
continued to evolve through to 2006, after which it went into a rather
dormant phase. However, since 2009, when Peter Korsgaard took
over stewardship, it has been developing rapidly, adding support for

https://buildroot.org/docs.html
https://buildroot.org/downloads/manual/manual.html


glibc-based toolchains and a greatly increased number of packages
and target boards.

As a matter of interest, Buildroot is also the ancestor of another
popular build system, OpenWrt (http://wiki.openwrt.org), which
forked from Buildroot around 2004. The primary focus of OpenWrt is
to produce software for wireless routers, and so the package mix is
oriented toward the networking infrastructure. It also has a runtime
package manager using the IPK format so that a device can be
updated or upgraded without a complete reflash of the image.
However, Buildroot and OpenWrt have diverged to such an extent
that they are now almost completely different build systems.
Packages built with one are not compatible with the other.

Stable releases and long-term
support
The Buildroot developers produce stable releases four times a year,
in February, May, August, and November. They are marked by Git
tags of the form <year>.02, <year>.05, <year>.08, and
<year>.11. From time to time, a release is marked for long-term
support (LTS), which means that there will be point releases to fix
security and other important bugs for 12 months after the initial
release. The 2017.02 release was the first to receive the LTS label.

Instal l ing

http://wiki.openwrt.org/


As usual, you can install Buildroot either by cloning the repository or
downloading an archive. Here is an example of obtaining version
2020.02.9, which was the latest stable version at the time of
writing:
$ git clone git://git.buildroot.net/buildroot -b

2020.02.9

$ cd buildroot

The equivalent TAR archive is available at
https://buildroot.org/downloads.

Next, you should read the System requirements section of The
Buildroot user manual, available at
https://buildroot.org/downloads/manual/manual.html, and make sure
that you have installed all the packages listed there.

Configuring
Buildroot uses the kernel Kconfig/Kbuild mechanism, which I
described in the Understanding kernel configuration section of
Chapter 4, Configuring and Building the Kernel. You can configure
Buildroot from scratch directly using make menuconfig (xconfig
or gconfig), or you can choose one of the 100+ configurations for
various development boards and the QEMU emulator, which you can
find stored in the configs/ directory. Typing make list-
defconfigs lists all the default configurations.

https://buildroot.org/downloads
https://buildroot.org/downloads/manual/manual.html


Let's begin by building a default configuration that you can run on the
Arm 
QEMU emulator:
$ cd buildroot

$ make qemu_arm_versatile_defconfig

$ make

IMPORTANT NOTE

You do not tell make how many parallel jobs to run with a -j option:

Buildroot will make optimum use of your CPUs all by itself. If you
want to limit the number of jobs, you can run make menuconfig

and look under the Build options.

The build will take half an hour to an hour or more, depending on the
capabilities of your host system and the speed of your link to the
internet. It will download approximately 220 MiB of code and will
consume about 3.5 GiB of disk space. When it is complete, you will
find that two new directories have been created:

dl/: This contains archives of the upstream projects that
Buildroot has built.

output/: This contains all the intermediate and final compiled
resources.

You will see the following in output/:

build/: Here, you will find the build directory for each
component.



host/: This contains various tools required by Buildroot that run
on the host, including the executables of the toolchain (in
output/host/usr/bin).

images/: This is the most important of all since it contains the
results of the build. Depending on what you selected when
configuring, you will find a bootloader, a kernel, and one or more
root filesystem images.

staging/: This is a symbolic link to sysroot of the toolchain.
The name of the link is a little confusing because it does not point
to a staging area, as I defined it in Chapter 5, Building a Root
Filesystem.

target/: This is the staging area for the root directory. Note
that you cannot use it as a root filesystem as it stands because
the file ownership and the permissions are not set correctly.
Buildroot uses a device table, as described in the previous
chapter, to set ownership and permissions when the filesystem
image is created in the image/ directory.

Running
Some of the sample configurations have a corresponding entry in the
board/ directory, which contains custom configuration files and
information about installing the results on the target. In the case of
the system you have just built, the relevant file is
board/qemu/arm-versatile/readme.txt, which tells you how



to start QEMU with this target. Assuming that you have already
installed qemu-system-arm, as described in Chapter 1, Starting

Out, you can run it using this command:
$ qemu-system-arm -M versatilepb -m 256 \

-kernel output/images/zImage \

-dtb output/images/versatile-pb.dtb \

-drive
file=output/images/rootfs.ext2,if=scsi,for
mat=raw \

-append "root=/dev/sda console=ttyAMA0,115200" \

-serial stdio -net nic,model=rtl8139 -net user

There is a script named MELP/Chapter06/run-qemu-
buildroot.sh in this book's code archive that includes that
command. When QEMU boots up, you should see the kernel boot
messages appear in the same Terminal window where you started
QEMU, followed by a login prompt:
Booting Linux on physical CPU 0x0

Linux version 4.19.91 (frank@franktop) (gcc
version 8.4.0 (Buildroot 2020.02.9)) #1
Sat Feb 13 11:54:41 PST 2021

CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ),
cr=00093177

CPU: VIVT data cache, VIVT instruction cache

OF: fdt: Machine model: ARM Versatile PB

[…]

VFS: Mounted root (ext2 filesystem) readonly on
device 8:0.

devtmpfs: mounted



Freeing unused kernel memory: 140K

This architecture does not have kernel memory
protection.

Run /sbin/init as init process

EXT4-fs (sda): warning: mounting unchecked fs,
running e2fsck is recommended

EXT4-fs (sda): re-mounted. Opts: (null)

Starting syslogd: OK

Starting klogd: OK

Running sysctl: OK

Initializing random number generator: OK

Saving random seed: random: dd: uninitialized
urandom read (512 bytes read)

OK

Starting network: 8139cp 0000:00:0c.0 eth0: link
up, 100Mbps, full-duplex, lpa 0x05E1

udhcpc: started, v1.31.1

random: mktemp: uninitialized urandom read (6
bytes read)

udhcpc: sending discover

udhcpc: sending select for 10.0.2.15

udhcpc: lease of 10.0.2.15 obtained, lease time
86400

deleting routers

random: mktemp: uninitialized urandom read (6
bytes read)

adding dns 10.0.2.3

OK

Welcome to Buildroot

buildroot login:



Log in as root, with no password.

You will see that QEMU launches a black window, in addition to the
one with the kernel boot messages. It is there to display the graphics
frame buffer of the target. In this case, the target never writes to the
framebuffer, which is why it appears black. To close QEMU, either
press Ctrl + Alt + 2 to get to the QEMU console and then type quit,
or just close the framebuffer window.

Targeting real hardware
The steps for configuring and building a bootable image for the
Raspberry Pi 4 are almost the same as for Arm QEMU:
$ cd buildroot

$ make clean

$ make raspberrypi4_64_defconfig

$ make

When the build finishes, the image is written to a file named
output/images/sdcard.img. The post-image.sh script and
the genimage-raspberrypi4-64.cfg configuration file used to
write the image file are both located in the board/raspberrypi/
directory. To write sdcard.img onto a microSD card and boot it on
your Raspberry Pi 4, follow these steps:

1. Insert a microSD card into your Linux host machine.

2. Launch Etcher.

3. Click Flash from file from Etcher.



4. Locate the sdcard.img image that you built for the Raspberry
Pi 4 and open it.

5. Click Select target from Etcher.

6. Select the microSD card that you inserted in Step 1.

7. Click Flash from Etcher to write the image.

8. Eject the microSD card when Etcher is done flashing.

9. Insert the microSD card into your Raspberry Pi 4.

10. Apply power to the Raspberry Pi 4 by way of the USB-C port.

Confirm that your Pi 4 booted successfully by plugging it into your
Ethernet and observing that the network activity lights blink. In order
to ssh into your Pi 4, you will need to add an SSH server such as
dropbear or openssh to your Buildroot image configuration.

Creating a custom BSP
Next, let's use Buildroot to create a Board Support Package (BSP)
for our Nova board using the same versions of U-Boot and Linux
from earlier chapters. You can see the changes I made to Buildroot
during this section in MELP/Chapter06/buildroot.

The recommended places to store your changes are as follows:

board/<organization>/<device>: This contains any
patches, binary blobs, extra build steps, configuration files for
Linux, U-Boot, and other components.



configs/<device>_defconfig: This contains the default
configuration for the board.

package/<organization>/<package_name>: This is the
place where you can put any additional packages for this board.

Let's begin by creating a directory to store changes for the Nova
board:
$ mkdir -p board/melp/nova

Next, clean the artifacts from any previous build, which you should
always do when changing configurations:
$ make clean

Now, select the configuration for the BeagleBone, which we are
going to use as the basis of the Nova configuration:
$ make beaglebone_defconfig

The make beaglebone_defconfig command configures
Buildroot to build an image targeting the BeagleBone Black. This
configuration is a good starting point, but we still need to customize it
for our Nova board. Let's start by selecting the custom U-Boot patch
we created for Nova.

U-Boot
In Chapter 3, All about Bootloaders, we created a custom bootloader
for Nova based on the 2021.01 version of U-Boot and created a
patch file for it, which you will find in MELP/Chapter03/0001-BSP-
for-Nova.patch. We can configure Buildroot to select the same
version and apply our patch. Begin by copying the patch file into



board/melp/nova, and then use make menuconfig to set the U-
Boot version to 2021.01, the patch file to
board/melp/nova/0001-BSP-for-Nova.patch, and the board
name to Nova, as shown in the following screenshot:



Figure 6.1 – Selecting custom U-Boot patches



We also need a U-Boot script to load the Nova device tree and the
kernel from the 
SD card. We can put the file into board/melp/nova/uEnv.txt. It
should contain these commands:
bootpart=0:1

bootdir=

bootargs=console=ttyO0,115200n8
root=/dev/mmcblk0p2 rw rootfstype=ext4
rootwait

uenvcmd=fatload mmc 0:1 88000000 nova.dtb;fatload
mmc 0:1 82000000 zImage;bootz 82000000 -
88000000

Note that despite the visible line wrapping, bootargs and uenvcmd
are each defined on single lines. rootfstype=ext4 rootwait is
part of bootargs, while bootz 82000000 - 88000000 is part of
uenvcmd.

Now that we've patched and configured U-Boot for our Nova board,
the next step is patching and configuring the kernel.

Linux
In Chapter 4, Configuring and Building the Kernel, we based the
kernel on Linux 5.4.50 and supplied a new device tree, which is in
MELP/Chapter04/nova.dts. Copy the device tree to
board/melp/nova, change the Buildroot kernel configuration to
Linux version 5.4, and change the device tree source to
board/melp/nova/nova.dts, as shown in the following
screenshot:





Figure 6.2 – Selecting the device tree source

We will also have to change the kernel series to be used for kernel
headers so that they match the kernel being built:

Figure 6.3 – Selecting custom kernel headers



Now that we've done this, let's build the system image, complete
with the kernel and 
root filesystem.

Build
In the last stage of the build, Buildroot uses a tool named genimage
to create an image for the SD card that we can copy directory to the
card. We need a configuration file to lay out the image in the right
way. We will name the file board/melp/nova/genimage.cfg and
populate it, as shown here:
image boot.vfat {

    vfat {

        files = {

            "MLO",

            "u-boot.img",

            "zImage",

            "uEnv.txt",

            "nova.dtb",

        }

    }

    size = 16M

}

image sdcard.img {

    hdimage {

    }

    partition u-boot {

        partition-type = 0xC

        bootable = "true"



        image = "boot.vfat"

    }

    partition rootfs {

        partition-type = 0x83

        image = "rootfs.ext4"

        size = 512M

    }

}

This will create a file named sdcard.img, which contains two
partitions named 
u-boot and rootfs. The first contains the boot files listed in
boot.vfat, while the second contains the root filesystem image
named rootfs.ext4, which will be generated by Buildroot.

Finally, we need to create a post-image.sh script that will call
genimage, and thus create the SD card image. We will put it in
board/melp/nova/post-image.sh:
#!/bin/sh

BOARD_DIR="$(dirname $0)"

cp ${BOARD_DIR}/uEnv.txt $BINARIES_DIR/uEnv.txt

GENIMAGE_CFG="${BOARD_DIR}/genimage.cfg" 
GENIMAGE_TMP="${BUILD_DIR}/genimage.tmp"

rm -rf "${GENIMAGE_TMP}"

genimage \

    --rootpath "${TARGET_DIR}" \

    --tmppath "${GENIMAGE_TMP}" \

    --inputpath "${BINARIES_DIR}" \

    --outputpath "${BINARIES_DIR}" \



    --config "${GENIMAGE_CFG}"

This copies the uEnv.txt script into the output/images directory
and runs genimage with our configuration file.

Note that post-image.sh needs to be executable; otherwise, the
build will fail at the end:
$ chmod +x board/melp/nova/post-image.sh

Now, we can run make menuconfig again and drill down into the
page. From that page, navigate down to Custom scripts to run
before creating filesystem images and enter the path to our
post-image.sh script, as shown in this screenshot:



Figure 6.4 – Selecting custom scripts to run after creating
filesystem images

Finally, you can build Linux for the Nova board just by typing make.
When it has finished, you will see these files (and some additional



DTBs) in the output/images/ directory:
nova.dtb      sdcard.img      rootfs.ext2        u

-boot.img

boot.vfat     rootfs.ext4     uEnv.txt           M
LO

rootfs.tar    bzImage

To test it, insert a microSD card into your card reader and use Etcher
to write 
output/images/sdcard.img out to an SD card, as we did for the
Raspberry Pi 4. There is no need to format the microSD beforehand,
as we did in the previous chapter, because genimage has created
the exact disk layout required.

When Etcher finishes, insert the microSD card into the BeagleBone
Black and power 
it on while pressing the Switch Boot button to force it to load from the
SD card. You should see that it boots up with our selected versions
of U-Boot, Linux, and with the 
Nova device tree.

Having shown that our custom configuration for the Nova board
works, it would be nice to keep a copy of the configuration so that
you and others can use it again, which you can do with this
command:
$ make savedefconfig

BR2_DEFCONFIG=configs/nova_defconfig

Now, you have a Buildroot configuration for the Nova board.
Subsequently, you can retrieve this configuration by typing in the



following command:
$ make nova_defconfig

We have successfully configured Buildroot. Now, what if you want to
add your own code to it? We'll learn how to do that in the next
section.

Adding your own code
Suppose there is a program that you have developed and that you
want to include it in the build. You have two options: first, you can
build it separately using its own build system, and then roll the binary
into the final build as an overlay. Second, you can create a Buildroot
package that can be selected from the menu and built like any other.

Overlays
An overlay is simply a directory structure that is copied over the top
of the Buildroot root filesystem at a later stage in the build process. It
can contain executables, libraries, and anything else you may want
to include. Note that any compiled code must be compatible with the
libraries that are deployed at runtime, which, in turn, means that it
must be compiled with the same toolchain that Buildroot uses. Using
the Buildroot toolchain is quite easy. Just add it to PATH:
$ PATH=

<path_to_buildroot>/output/host/usr/bin:$P
ATH

The prefix for the toolchain is <ARCH>-linux-. So, to compile a
simple program, you would do something like this:



$
PATH=/home/frank/buildroot/output/host/usr
/bin:$PATH

$ arm-linux-gcc helloworld.c -o helloworld

Once you have compiled your program with the correct toolchain,
you just need to install the executables and other supporting files
into a staging area, and then mark it as an overlay for Buildroot. For
the helloworld example, you might put it in the
board/melp/nova directory:
$ mkdir -p board/melp/nova/overlay/usr/bin

$ cp helloworld board/melp/nova/overlay/usr/bin

Finally, you set BR2_ROOTFS_OVERLAY to the path pointing at the
overlay. It can be configured in menuconfig with the System
configuration | Root filesystem overlay directories option.

Adding a package
Buildroot packages (over 2,000 of them) are stored in the package
directory, each in its own subdirectory. A package consists of at least
two files: Config.in, containing the snippet of Kconfig code
required to make the package visible in the configuration menu, and
a Makefile named <package_name>.mk.

IMPORTANT NOTE

Note that a Buildroot package does not contain the code, just the
instructions to get the code by downloading a tarball, doing git

pull or whatever is necessary to obtain the upstream source.



The makefile is written in a format expected by Buildroot and
contains directives that allow Buildroot to download, configure,
compile, and install the program. Writing a new package makefile is
a complex operation, and is covered in detail in The Buildroot user
manual: https://buildroot.org/downloads/manual/manual.html. Here is
an example that shows you how to create a package for a simple
program stored locally, such as our helloworld program.

Begin by creating the package/helloworld/ subdirectory with a
configuration file, Config.in, which looks like this:
config BR2_PACKAGE_HELLOWORLD

    bool "helloworld"

    help

      A friendly program that prints Hello World!
Every 10s

The first line must be of the BR2_PACKAGE_<uppercase package
name> format. This is followed by a bool and the package name, as
it will appear in the configuration menu, which will allow a user to
select this package. The help section is optional but usually a good
idea because it acts as self-documentation.

Next, link the new package to the Target Packages menu by editing
package/Config.in and sourcing the configuration file, as shown
here:
menu "My programs"

      source "package/helloworld/Config.in"

endmenu

https://buildroot.org/downloads/manual/manual.html


You could append this new helloworld package to an existing
submenu, but it's cleaner to create a new submenu, which only
contains our package, and insert it before menu "Audio and
video applications".

After inserting menu "My programs" into package/Config.in,
create a makefile, package/helloworld/helloworld.mk, to
supply the data needed by Buildroot:
HELLOWORLD_VERSION = 1.0.0

HELLOWORLD_SITE =
/home/frank/MELP/Chapter06/helloworld

HELLOWORLD_SITE_METHOD = local

define HELLOWORLD_BUILD_CMDS

    $(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C
$(@D) all

endef

define HELLOWORLD_INSTALL_TARGET_CMDS

    $(INSTALL) -D -m 0755 $(@D)/helloworld
$(TARGET_DIR)/usr/bin/helloworld

endef

$(eval $(generic-package))

You can find my helloworld package in this book's code archive in
MELP/Chapter06/buildroot/package/helloworld and the
source code for the program in MELP/Chapter06/helloworld.
The location of the code is hardcoded to a local pathname. In a more
realistic case, you would get the code from a source code system or
from a central server of some kind: there are details on how to do



this in The Buildroot user manual, and plenty of examples in other
packages.

License compliance
Buildroot is based on a piece of open source software, as are the
packages it compiles. At some point during the project, you should
check the licenses, which you can do by running the following:
$ make legal-info

The information is gathered into output/legal-info/. There are
summaries of the licenses used to compile the host tools in host-
manifest.csv and, on the target, in manifest.csv. There is
more information in the README file and in The Buildroot 

user manual.

We will revisit Buildroot again in Chapter 14, Starting with BusyBox
runit. Now, let's switch build systems and start learning about the
Yocto Project.

Introducing the Yocto
Project
The Yocto Project is a more complex beast than Buildroot. Not only
can it build toolchains, bootloaders, kernels, and root filesystems as
Buildroot can, but it can generate an entire Linux distribution for you
with binary packages that can be installed at runtime. The build



process is structured around groups of recipes, similar to Buildroot
packages but written using a combination of Python and shell script.
The Yocto Project includes a task scheduler called BitBake that
produces whatever you have configured, from the recipes. There is
plenty of online documentation at https://www.yoctoproject.org.

Background
The structure of the Yocto Project makes more sense if you look at
the background first. Its roots are in OpenEmbedded
(https://openembedded.org), which, in turn, grew out of a number of
projects to port Linux to various handheld computers, including the
Sharp Zaurus and the Compaq iPaq. OpenEmbedded came to life in
2003 as the build system for those handheld computers. Soon after,
other developers began to use it as a general build system for
devices running embedded Linux. It was developed, and continues
to be developed, by an enthusiastic community of programmers.

The OpenEmbedded project set out to create a set of binary
packages using the compact IPK format, which could then be
combined in various ways to create a target system and be installed
on the target at runtime. It did this by creating recipes for each
package and using BitBake as the task scheduler. It was, and is,
very flexible. By supplying the right metadata, you can create an
entire Linux distribution to your own specification. One that is fairly
well-known is the Ångström Distribution, but there are many others
as well.

https://www.yoctoproject.org/
https://openembedded.org/


At some time in 2005, Richard Purdie, then a developer at
OpenedHand, created a fork of OpenEmbedded, which had a more
conservative choice of packages, and created releases that were
stable over a period of time. He named it Poky after the Japanese
snack (if you are worried about these things, Poky is pronounced to
rhyme with hockey). Although Poky was a fork, OpenEmbedded and
Poky continued to run alongside each other, sharing updates and
keeping the architectures more or less in step. Intel bought
OpenedHand in 2008, and they transferred Poky Linux to the Linux
Foundation in 2010 when they formed the Yocto Project.

Since 2010, the common components of OpenEmbedded and Poky
have been combined into a separate project known as
OpenEmbedded Core, or just OE-Core.

Therefore, the Yocto Project collects several components, the most
important of which are as follows:

OE-Core: This is the core metadata, and is shared with
OpenEmbedded.

BitBake: This is the task scheduler, and is shared with
OpenEmbedded and 
other projects.

Poky: This is the reference distribution.

Documentation: This is the user's manuals and developer's
guides for 
each component.



Toaster: This is a web-based interface to BitBake and its
metadata.

The Yocto Project provides a stable base, which can be used as-is or
can be extended using meta layers, which I will discuss later in this
chapter. Many SoC vendors provide BSPs for their devices in this
way. Meta layers can also be used to create extended or just
different build systems. Some are open source, such as the
Ångström Distribution, while others are commercial, such as
MontaVista Carrier Grade Edition, Mentor Embedded Linux, and
Wind River Linux. The Yocto Project has a branding and
compatibility testing scheme to ensure that there is interoperability
between components. You will see statements such as "Yocto
Project compatible" on various web pages.

Consequently, you should think of the Yocto Project as the
foundation of a whole sector of embedded Linux, as well as being a
complete build system in its own right.

NOTE

You may be wondering about the name, Yocto. yocto is the SI prefix
for 10-24, 
in the same way that micro is 10-6. Why name the project Yocto? It
was partly to indicate that it could build very small Linux systems
(although, to be fair, so can other build systems), but also to steal a
march on the Ångström Distribution, which is based on
OpenEmbedded. An Ångström is 10-10. That's huge, compared to a
yocto!



Stable releases and supports
Usually, there is a release of the Yocto Project every 6 months: in
April and October. They are principally known by their code names,
but it is useful to know the version numbers of the Yocto Project and
Poky as well. Here is a table of the six most recent releases at the
time of writing:

 
       

Code name
 
      

 
       

Release date
 
      

 
       

Yocto version
 
      

 
    

Poky version
 
    

 
       

Gatesgarth
 
      

 
       

October 2020
 
      

 
       

3.2
 
      

 
    

24
 
    

 
       

Dunfell
 
      

 
       

April 2020
 
      

 
       

3.1
 
      

 
    

23
 
    

 
       

Zeus

 
       

October 2019

 
       

3.0

 
    

22



 
      

 
      

 
      

 
    

 
       

Warrior
 
      

 
       

April 2019
 
      

 
       

2.7
 
      

 
    

21
 
    

 
       

Thud
 
      

 
       

November 2018
 
      

 
       

2.6
 
      

 
    

20
 
    

 
       

Sumo
 
      

 
       

April 2018
 
      

 
       

2.5
 
      

 
    

19
 
    

The stable releases are supported with security and critical bug fixes
for the current release cycle and the next cycle. In other words, each
version is supported for approximately 12 months after the release.
In addition, Dunfell is the first LTS release of Yocto. The LTS
designation means that Dunfell will receive defect fixes and updates
for an extended period of 2 years. Consequently, the plan going
forward is to choose an LTS release of the Yocto Project every 2
years.



As with Buildroot, if you want continued support, you can update to
the next stable release, or you can backport changes to your
version. You also have the option of commercial support for periods
of several years with the Yocto Project from operating system
vendors, such as Mentor Graphics, Wind River, and many others.
Now, let's learn how to install the Yocto Project.

Instal l ing the Yocto Project
To get a copy of the Yocto Project, clone the repository, choosing the
code name as the branch, which is dunfell in this case:
$ git clone -b dunfell

git://git.yoctoproject.org/poky.git

It is good practice to run git pull periodically to grab the latest
bug fixes and security patches from the remote branch.

Read the Compatible Linux Distribution and Build Host Packages
sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-
yoctoprojectqs.html). Make sure that the essential packages for your
Linux distribution are installed on your host computer. The next step
is configuring.

Configuring
As with Buildroot, let's begin with a build for the QEMU Arm
emulator. Begin by sourcing a script to set up the environment:

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


$ source poky/oe-init-build-env

This creates a working directory for you named build/ and makes
it the current directory. All of the configuration, as well as any
intermediate and target image files, 
will be put in this directory. You must source this script each time you
want to work on this project.

You can choose a different working directory by adding it as a
parameter to 
oe-init-build-env; for example:
$ source poky/oe-init-build-env build-qemuarm

This will put you into the build-qemuarm/ directory. This way, you
can have several build directories, each for a different project: you
choose which one you want to work with through the parameter
that's passed to oe-init-build-env.

Initially, the build directory contains only one subdirectory named
conf/, which contains the following configuration files for this
project:

local.conf: This contains a specification of the device you are
going to build and the build environment.

bblayers.conf: This contains the paths of the meta layers you
are going to use. I will describe layers later on.

For now, we just need to set the MACHINE variable in
conf/local.conf to qemuarm by removing the comment
character (#) at the start of this line:



MACHINE ?= "qemuarm"

Now, we are ready to build our first image using Yocto.

Building
To actually perform the build, you need to run BitBake, telling it which
root filesystem image you want to create. Some common images are
as follows:

core-image-minimal: This is a small console-based system
that is useful for tests and as the basis for custom images.

core-image-minimal-initramfs: This is similar to core-
image-minimal but built as a ramdisk.

core-image-x11: This is a basic image with support for
graphics through an X11 server and the xterminal Terminal
app.

core-image-full-cmdline: This console-based system
offers a standard CLI experience and full support for the target
hardware.

By giving BitBake the final target, it will work backward and build all
the dependencies first, beginning with the toolchain. For now, we just
want to create a minimal image to see how it works:
$ bitbake core-image-minimal

The build is likely to take some time (probably more than an hour),
even with several CPU cores and prodigious amounts of RAM. It will



download about 10 GiB of source code, and it will consume about 40
GiB of disk space. When it is complete, you will find several new
directories in the build directory, including downloads/, which
contains all the source downloaded for the build, and tmp/, which
contains most of the build artifacts. You should see the following in
tmp/:

work/: This contains the build directory and the staging area for
the root filesystem.

deploy/: This contains the final binaries to be deployed on the
target:

deploy/images/[machine name]/: Contains the bootloader,
the kernel and the root filesystem images ready to be run on the
target.

deploy/rpm/: This contains the RPM packages that make up
the images.

deploy/licenses/: This contains the license files that are
extracted from each package.

When the build is done, we can boot the finished image on QEMU.

Running the QEMU target
When you build a QEMU target, an internal version of QEMU is
generated, which removes the need to install the QEMU package for
your distribution, and thus avoids version dependencies. There is a



wrapper script named runqemu we can use to run this version of
QEMU.

To run the QEMU emulation, make sure that you have sourced oe-
init-build-env, and then just type this:
$ runqemu qemuarm

In this case, QEMU has been configured with a graphic console so
that the login prompt appears in a black framebuffer, as shown in the
following screenshot:

Figure 6.5 – QEMU graphic console

Log in as root, without a password. To close QEMU, close the
framebuffer window.

To launch QEMU without the graphic window, add nographic to the
command line:
$ runqemu qemuarm nographic

In this case, close QEMU using the key sequence Ctrl + A and then
x.



The runqemu script has many other options. Type runqemu help
for more information.

Layers
The metadata for the Yocto Project is structured into layers. By
convention, each layer has a name beginning with meta. The core
layers of the Yocto Project are as follows:

meta: This is the OpenEmbedded core and contains some
changes for Poky.

meta-poky: This is the metadata specific to the Poky
distribution.

meta-yocto-bsp: This contains the board support packages for
the machines that the Yocto Project supports.

The list of layers in which BitBake searches for recipes is stored in
<your build directory>/conf/bblayers.conf and, by
default, includes all three layers mentioned in the preceding list.

By structuring the recipes and other configuration data in this way, it
is very easy to extend the Yocto Project by adding new layers.
Additional layers are available from 
SoC manufacturers, the Yocto Project itself, and a wide range of
people wishing to 
add value to the Yocto Project and OpenEmbedded. There is a



useful list of layers at http://layers.openembedded.org/layerindex/.
Here are some examples:

meta-qt5: Qt 5 libraries and utilities

meta-intel: BSPs for Intel CPUs and SoCs

meta-raspberrypi: BSPs for the Raspberry Pi boards

meta-ti: BSPs for TI Arm-based SoCs

Adding a layer is as simple as copying the meta directory to a
suitable location and adding it to bblayers.conf. Make sure that
you read the REAMDE file that should accompany each layer to see
what dependencies it has on other layers, as well as which versions
of the Yocto Project it is compatible with.

To illustrate the way layers work, let's create a layer for our Nova
board, which we can use for the remainder of this chapter as we add
features. You can view the complete implementation of the layer in
the code archive in MELP/Chapter06/meta-nova.

Each meta layer has to have at least one configuration file, named
conf/layer.conf, and it should also have the README file and a
license.

To create our meta-nova layer, perform the following steps:
$ source poky/oe-init-build-env build-nova

$ bitbake-layers create-layer nova

$ mv nova ../meta-nova

http://layers.openembedded.org/layerindex/


This will put you in a working directory named build-nova and
create a layer named meta-nova with a conf/layer.conf, an
outline README, and an MIT LICENSE in COPYING.MIT. The
layer.conf file looks like this:
# We have a conf and classes directory, add to

BBPATH

BBPATH .= ":${LAYERDIR}"

# We have recipes-* directories, add to BBFILES

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

            ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "nova"

BBFILE_PATTERN_nova = "^${LAYERDIR}/"

BBFILE_PRIORITY_nova = "6"

LAYERDEPENDS_nova = "core"

LAYERSERIES_COMPAT_nova = "dunfell"

It adds itself to BBPATH and the recipes it contains to BBFILES.
From looking at the code, you can see that the recipes are found in
the directories with names beginning with recipes- and have
filenames ending in .bb (for normal BitBake recipes) or .bbappend
(for recipes that extend existing recipes by overriding or adding to
the instructions). This layer has the name nova, was added to the
list of layers in BBFILE_COLLECTIONS, and has a priority of 6. The
layer's priority is used if the same recipe appears in several layers:
the one in the layer with the highest priority wins.

Now, you need to add this layer to your build configuration using the
following command:



$ bitbake-layers add-layer ../meta-nova

Make sure to run this command from your build-nova working
directory after sourcing that environment.

You can confirm that your layer structure is set up correctly like this:
$ bitbake-layers show-layers

NOTE: Starting bitbake server...

layer            path                             
  priority

==================================================
============

meta             /home/frank/poky/meta            
         5

meta-poky        /home/frank/poky/meta-
poky                5

meta-yocto-bsp   /home/frank/poky/meta-yocto-
bsp           5

meta-nova        /home/frank/meta-
nova                     6

Here, you can see the new layer. It has a priority of 6, which means
that we could override recipes in the other layers, which all have a
lower priority.

At this point, it would be a good idea to run a build using this empty
layer. The final target will be the Nova board but, for now, build for
the BeagleBone Black by uncommenting MACHINE ?=
"beaglebone-yocto" in conf/local.conf. Then, build a small
image using bitbake core-image-minimal, as you did
previously.



As well as recipes, layers may contain BitBake classes, configuration
files for machines, distributions, and more. I will look at recipes next
and show you how to create a customized image and how to create
a package.

BitBake and recipes
BitBake processes metadata of several different types, including the
following:

Recipes: Files ending in .bb. These contain information about
building a unit of software, including how to get a copy of the
source code, the dependencies of other components, and how to
build and install it.

Append: Files ending in .bbappend. These allow some details
of a recipe to be overridden or extended. A bbappend file simply
appends its instructions to the end of a recipe (.bb) file of the
same root name.

Include: Files ending in .inc. These contain information that is
common to several recipes, allowing information to be shared
among them. The files may be included using the include or
require keywords. The difference is that require produces an
error if the file does not exist, whereas include does not.

Classes: Files ending in .bbclass. These contain common
build information; for example, how to build a kernel or how to
build an autotools project. The classes are inherited and
extended in recipes and other classes using the inherit



keyword. The classes/base.bbclass class is implicitly
inherited in every recipe.

Configuration: Files ending in .conf. They define various
configuration variables that govern the project's build process.

A recipe is a collection of tasks written in a combination of Python
and shell script. The tasks have names such as do_fetch,
do_unpack, do_patch, do_configure, do_compile, and
do_install. You use BitBake to execute these tasks. The default
task is do_build, which performs all the subtasks required to build
the recipe. You can list the tasks available in a recipe using
bitbake -c listtasks [recipe]. For example, you can list
the tasks in core-image-minimal like this:
$ bitbake -c listtasks core-image-minimal

IMPORTANT NOTE

The -c option tells BitBake to run a specific task from a recipe

without having to include the do_ part at the beginning of the task's

name.

The do_listtasks task is simply a special task that lists all the
tasks defined within a recipe. Another example is the fetch task,
which downloads the source code for a recipe:
$ bitbake -c fetch busybox

To get the code for a target and all its dependencies, which is useful
when you want to make sure you have downloaded all the code for
the image you are about to build, use the following command:



$ bitbake core-image-minimal --runall=fetch

The recipe files are usually named <package-
name>_<version>.bb. They may have dependencies on other
recipes, which would allow BitBake to work out all the subtasks that
need to be executed to complete the top-level job.

As an example, to create a recipe for our helloworld program in
meta-nova, you would create a directory structure like this:
meta-nova/recipes-local/helloworld

├── files

│   └── helloworld.c

└── helloworld_1.0.bb

The recipe is helloworld_1.0.bb and the source is local to the
recipe directory in the files/ subdirectory. The recipe contains
these instructions:
DESCRIPTION = "A friendly program that prints

Hello World!"

PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM =
"file://${COMMON_LICENSE_DIR}/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {

    ${CC} ${CFLAGS} ${LDFLAGS} helloworld.c -o
helloworld



}

do_install() {

    install -d ${D}${bindir}

    install -m 0755 helloworld ${D}${bindir}

}

The location of the source code is set by SRC_URI. In this case, the
file:// URI means that the code is local to the recipe directory.
BitBake will search the files/, helloworld/, and helloworld-
1.0/ directories, relative to the directory that contains the recipe.
The tasks that need to be defined are do_compile and
do_install, 
which compile the source file and install it into the target root
filesystem: ${D} expands 
to the staging area of the recipe and ${bindir} to the default
binary directory; that is, 
/usr/bin.

Every recipe has a license, defined by LICENSE, which is set to
GPLv2 here. The file containing the text of the license and a
checksum is defined by LIC_FILES_CHKSUM. BitBake will terminate
the build if the checksum does not match, indicating that the license
has changed in some way. Note that the MD5 checksum value and
COMMON_LICENSE_DIR are on the same line, separated by a
semicolon. The license file may be part of the package or it may
point to one of the standard license texts in meta/files/common-
licenses/, as is the case here.



By default, commercial licenses are disallowed, but it is easy to
enable them. You need to specify the license in the recipe, as shown
here:
LICENSE_FLAGS = "commercial"

Then, in your conf/local.conf file, you would explicitly allow this
license, like so:
LICENSE_FLAGS_WHITELIST = "commercial"

Now, to make sure that our helloworld recipe compiles correctly,
you can ask BitBake to build it, like so:
$ bitbake helloworld

If all goes well, you should see that it has created a working directory
for it in tmp/work/cortexa8hf-neon-poky-linux-
gnueabi/helloworld/. You should also see that there is an RPM
package for it in
tmp/deploy/rpm/cortexa8hf_neon/helloworld-1.0-

r0.cortexa8hf_neon.rpm.

It is not part of the target image yet, though. The list of packages to
be installed is held in a variable named IMAGE_INSTALL. You can
append it to the end of that list by adding this line to
conf/local.conf:
IMAGE_INSTALL_append = " helloworld"

Note that there has to be a space between the opening double quote
and the first package name. Now, the package will be added to any
image that you bitbake:
$ bitbake core-image-minimal



If you look in tmp/deploy/images/beaglebone-yocto/core-
image-minimal-beaglebone-yocto.tar.bz2, you will see that
/usr/bin/helloworld has indeed been installed.

Customizing images via local.conf
You may often want to add a package to an image during
development or tweak it in other ways. As shown previously, you can
simply append to the list of packages to be installed by adding a
statement like this:
IMAGE_INSTALL_append = " strace helloworld"

You can make more sweeping changes via
EXTRA_IMAGE_FEATURES. Here is a short list that should give you
an idea of the features you can enable:

dbg-pkgs: This installs debug symbol packages for all the
packages installed in 
the image.

debug-tweaks: This allows root logins without passwords and
other changes that make development easier.

package-management: This installs package management
tools and preserves the package manager database.

read-only-rootfs: This makes the root filesystem read-only.
We will cover this in more detail in Chapter 9, Creating a Storage
Strategy.



x11: This installs the X server.

x11-base: This installs the X server with a minimal environment.

x11-sato: This installs the OpenedHand Sato environment.

There are many more features that you can add in this way. I
recommend that you look at the Image Features section of the Yocto
Project Reference Manual at
https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html,
and also read through the code in meta/classes/core-
image.bbclass.

Writ ing an image recipe
The problem with making changes to local.conf is that they are,
well, local. If you want to create an image that is to be shared with
other developers or to be loaded onto a production system, then you
should put the changes into an image recipe.

An image recipe contains instructions about how to create the image
files for a target, including the bootloader, the kernel, and the root
filesystem images. By convention, image recipes are put into a
directory named images, so you can get a list of all the images that
are available by using this command:
$ ls meta*/recipes*/images/*.bb

You will find that the recipe for core-image-minimal is in
meta/recipes-core/images/core-image-minimal.bb.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html


A simple approach is to take an existing image recipe and modify it
using statements similar to those you used in local.conf.

For example, imagine that you want an image that is the same as
core-image-minimal but includes your helloworld program
and the strace utility. You can do that with a two-line recipe file,
which includes (using the require keyword) the base image and
adds the packages you want. It is conventional to put the image in a
directory named images, so add the nova-image.bb recipe with
the following content to meta-nova/recipes-local/images:
require recipes-core/images/core-image-minimal.bb

IMAGE_INSTALL += "helloworld strace"

Now, you can remove the IMAGE_INSTALL_append line from your
local.conf and build it using this:
$ bitbake nova-image

This time, the build should proceed much more quickly because
BitBake reuses the products left over from building core-image-
minimal.

Not only does BitBake build images for running on a target device,
but it can also build an SDK for developing on a host machine.

Creating an SDK
It is very useful to be able to create a standalone toolchain that other
developers can install, avoiding the need for everyone in the team to
have a full installation of the Yocto Project. Ideally, you want the



toolchain to include development libraries and header files for all the
libraries installed on the target. You can do that for any image using
the populate_sdk task, as shown here:
$ bitbake -c populate_sdk nova-image

The result is a self-installing shell script in tmp/deploy/sdk:
poky-<c_library>-<host_machine>-<target_image>

<target_machine>-toolchain-<version>.sh

For the SDK built with the nova-image recipe, it is this:
poky-glibc-x86_64-nova-image-cortexa8hf-neon-

beaglebone-yocto-toolchain-3.1.5.sh

If you only want a basic toolchain with just C and C++ cross
compilers, the C library, and header files, you can run this instead:
$ bitbake meta-toolchain

To install the SDK, just run the shell script. The default install
directory is /opt/poky, but the install script allows you to change
this:
$ tmp/deploy/sdk/poky-glibc-x86_64-nova-image-

cortexa8hf-neon-beaglebone-yocto-
toolchain-3.1.5.sh

Poky (Yocto Project Reference Distro) SDK
installer version 3.1.5

==================================================
============

Enter target directory for SDK (default:
/opt/poky/3.1.5):

You are about to install the SDK to
"/opt/poky/3.1.5". Proceed [Y/n]? Y

[sudo] password for frank:



Extracting
SDK.......................................
.....done

Setting it up...done

SDK has been successfully set up and is ready to
be used.

Each time you wish to use the SDK in a new shell
session, you need to source the
environment setup script e.g.

$ . /opt/poky/3.1.5/environment-setup-cortexa8hf-
neon-poky-linux-gnueabi

To make use of the toolchain, first, source the environment and set
up the script:
$ source /opt/poky/3.1.5/environment-setup-

cortexa8hf-neon-poky-linux-gnueabi

TIP

The environment-setup-* script that sets things up for the SDK

is not compatible with the oe-init-build-env script that you

source when working in the Yocto Project build directory. It is a good
rule to always start a new Terminal session before you source either
script.

The toolchain generated by the Yocto Project does not have a valid
sysroot directory. We know this to be true because passing the -
print-sysroot option to the toolchain's compiler returns
/not/exist:
$ arm-poky-linux-gnueabi-gcc -print-sysroot

/not/exist



Consequently, if you try to cross compile, as I have shown in
previous chapters, it will fail, like this:
$ arm-poky-linux-gnueabi-gcc helloworld.c -o

helloworld

helloworld.c:1:10: fatal error: stdio.h: No such
file or directory

    1 | #include <stdio.h>

      |          ^~~~~~~~~

compilation terminated.

This is because the compiler has been configured to work for a wide
range of Arm processors, and the fine-tuning is done when you
launch it using the right set of flags. Instead, you should use the shell
variables that are created when you source the environment-
setup script for cross compiling. It includes the following:

CC: C compiler

CXX: C++ compiler

CPP: C preprocessor

AS: Assembler

LD: Linker

As an example, this is what we find that CC has been set to:
$ echo $CC

arm-poky-linux-gnueabi-gcc -mfpu=neon -mfloat-
abi=hard -mcpu=cortex-a8 -fstack-
protector-strong -D_FORTIFY_SOURCE=2 -
Wformat -Wformat-security -Werror=format-



security --
sysroot=/opt/poky/3.1.5/sysroots/cortexa8h
f-neon-poky-linux-gnueabi

So long as you use $CC to compile, everything should work fine:
$ $CC -O helloworld.c -o helloworld

Next, we will look at the license audit.

The l icense audit
The Yocto Project insists that each package has a license. A copy of
the license is placed in tmp/deploy/licenses/[package
name] for each package as it is built. In addition, a summary of the
packages and licenses used in an image are put into the <image
name>-<machine name>-<date stamp>/ directory. For nova-
image, which we just built, the directory would be named something
like this:
tmp/deploy/licenses/nova-image-beaglebone-yocto-

20210214072839/

This completes our survey of the two leading build systems for
embedded Linux. Buildroot is simple and quick, making it a good
choice for fairly simple single-purpose devices: traditional embedded
Linux, as I like to think of them. The Yocto Project is more complex
and flexible. Even though there is good support throughout the
community and industry for the Yocto Project, the tool still has a very
steep learning curve. You can expect it to take several months for



you to become proficient with Yocto, and even then, it will sometimes
do things that you don't expect.

Summary
In this chapter, you learned how to use both Buildroot and the Yocto
Project to configure, customize, and build embedded Linux images.
We used Buildroot to create a BSP with a custom U-Boot patch and
device tree specification for a hypothetical board based on the
BeagleBone Black. We then learned how to add our own code to an
image in the form of a Buildroot package. You were also introduced
to the Yocto Project, which we will cover in depth in the next two
chapters. In particular, you learned some basic BitBake terminology,
how to write an image recipe, and how to create an SDK.

Don't forget that any devices you create using these tools will need
to be maintained in the field for a period of time, often over many
years. Both the Yocto Project and Buildroot provide point releases
for about 1 year after the initial release, and the Yocto Project now
offers long term support for at least 2 years. In either case, you will
find yourself having to maintain your release yourself; otherwise, you
will be paying for commercial support. The third possibility, ignoring
the problem, should not be considered as an option!

In the next chapter, we will look at file storage and filesystems, and
at the ways that the choices you make there will affect the stability
and maintainability of your embedded 
Linux system.



Further reading
The following resources contain more information about the topics
that were introduced in this chapter:

The Buildroot user manual, Buildroot Association:
http://buildroot.org/downloads/manual/manual.html

Yocto Project documentation, Yocto Project:
https://www.yoctoproject.org/documentation

Embedded Linux Development Using the Yocto Project
Cookbook, by Alex González

http://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/documentation


Chapter 7 :  Developing with
Yocto
Bringing up Linux on unsupported hardware can be a painstaking
process. Luckily, Yocto provides Board Support Packages (BSPs)
to bootstrap embedded Linux development on popular single-board
computers such as the BeagleBone Black and Raspberry Pi 4.
Building on top of an existing BSP layer lets us quickly take
advantage of complex built-in peripherals such as Bluetooth and Wi-
Fi. In this chapter, we will create a custom application layer to do just
that.

Next, we will look at the development workflow that's enabled by
Yocto's extensible SDK. Modifying software running on a target
device usually means swapping out the SD card. Since rebuilding
and redeploying full images is too time-consuming, I will show you
how to use devtool to quickly automate and iterate over your work.
While doing so, you will learn how to save your work in your own
layers so that it does not get lost.

Yocto not only builds Linux images but entire Linux distributions. We
will discuss the reasons why you would do that before going through
the motions of assembling our own Linux distribution. The many
choices we will make include whether or not to add runtime package
management for rapid application development on the target device.



This comes at the cost of having to maintain a package database
and remote package server, which I will touch on last.

In this chapter, we will cover the following topics:

Building on top of an existing BSP

Capturing changes with devtool

Building your own distro

Provisioning a remote package server

Let's get started!

Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based host system with a minimum of 60 GB available
disk space

Yocto 3.1 (Dunfell) LTS release

Etcher for Linux

A microSD card reader and card

A Raspberry Pi 4

A 5V 3A USB-C power supply

An Ethernet cable and port for network connectivity

A Wi-Fi router



A smartphone with Bluetooth

You should have already built the 3.1 (Dunfell) LTS release of Yocto
in Chapter 6, Selecting a Build System. If you have not, then please
refer to the Compatible Linux Distribution and Build Host Packages
sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-
yoctoprojectqs.html) before building Yocto on your Linux host
according to the instructions in Chapter 6.

All the code for this chapter can be found in the Chapter07 folder of
this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Bui ld ing on top of  an
exist ing BSP
A Board Support Package (BSP) layer adds support for a particular
hardware device or family of devices to Yocto. This support usually
includes the bootloader, device tree blobs, and additional kernel
drivers needed to boot Linux on that specific hardware. A BSP may
also include any additional user space software and peripheral
firmware needed to fully enable and utilize all the features of the
hardware. By convention, BSP layer names start with the meta-
prefix, followed by the machine's name. Locating the best BSP for

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


your target device is the first step toward building a bootable image
for it using Yocto.

The OpenEmbedded layer index
(https://layers.openembedded.org/layerindex) is the best place to
start looking for quality BSPs. Your board's manufacturer or silicon
vendor may also offer BSP layers. The Yocto Project provides a BSP
for all variants of the Raspberry Pi. You can find the GitHub
repository for that BSP layer and all the other layers endorsed by the
Yocto project among the Yocto Project source repositories
(https://git.yoctoproject.org).

Building an exist ing BSP
The following exercises assume you have already cloned or
extracted the Dunfell release of Yocto to a directory named poky
within your host environment. Before proceeding, we also need to
clone the following dependency layers one level up from that poky
directory so that the layer and poky directories sit next to each
other:
$ git clone -b dunfell

git://git.openembedded.org/meta-
openembedded

$ git clone -b dunfell
git://git.yoctoproject.org/meta-
raspberrypi

Notice that the branch name of the dependency layers matches the
Yocto release for compatibility. Keep all three clones up to date and

https://layers.openembedded.org/layerindex
https://git.yoctoproject.org/


in sync with their remotes using periodic git pull commands. The
meta-raspberrypi layer is the BSP for all Raspberry Pis. Once
these dependencies are in place, you can build an image that's been
customized for the Raspberry Pi 4. But before we do that, let's
explore the recipes for Yocto's generic images:

1. First, navigate to the directory where you cloned Yocto:
$ cd poky

2. Next, move down into the directory where the recipes for the
standard images are:
$ cd meta/recipes-core/images

3. List the core image recipes:
$ ls -1 core*

core-image-base.bb

core-image-minimal.bb

core-image-minimal-dev.bb

core-image-minimal-initramfs.bb

core-image-minimal-mtdutils.bb

core-image-tiny-initramfs.bb

4. Display the core-image-base recipe:
$ cat core-image-base.bb

SUMMARY = "A console-only image that fully
supports the target device \

hardware."

IMAGE_FEATURES += "splash"

LICENSE = "MIT"

inherit core-image



Notice that this recipe inherits from core-image, so it's
importing the contents of core-image.bbclass, which we will
look at later.

5. Display the core-image-minimal recipe:
$ cat core-image-minimal.bb

SUMMARY = "A small image just capable of
allowing a device to boot."

IMAGE_INSTALL = "packagegroup-core-boot
${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

IMAGE_ROOTFS_EXTRA_SPACE_append =
"${@bb.utils.contains("DISTRO_FEATURES",
"systemd", " + 4096", "" ,d)}"

Like core-image-base, this recipe also inherits from the
core-image class file.

6. Display the core-image-minimal-dev recipe:
$ cat core-image-minimal-dev.bb

require core-image-minimal.bb

DESCRIPTION = "A small image just capable of
allowing a device to boot and \

is suitable for development work."

IMAGE_FEATURES += "dev-pkgs"

Notice that this recipe requires the core-image-minimal
recipe from the previous step. Recall that the require directive



works much like include. Also, notice that dev-pkgs is
appended to the list of IMAGE_FEATURES.

7. Navigate up to the classes directory under poky/meta:
$ cd ../../classes

8. Lastly, display the core-image class file:
$ cat core-image.bbclass

Notice the long list of available IMAGE_FEATURES at the top of
this class file, including the aforementioned dev-pkgs feature.

Standard images such as core-image-minimal and core-
image-minimal-dev are machine-agnostic. In Chapter 6,
Selecting a Build System, we built core-image-minimal for both
the QEMU Arm emulator and the BeagleBone Black. We could have
just as easily built a core-image-minimal image for the
Raspberry Pi 4. In contrast, a BSP layer includes image recipes
intended for a specific board or series of boards.

Now, let's take a look at the rpi-test-image recipe inside the
meta-rasberrypi BSP layer, to see how support for Wi-Fi and
Bluetooth is added to core-image-base for the Raspberry Pi 4:

1. First, navigate one level above the directory where you cloned
Yocto:
$ cd ../../..

2. Next, move down into the directory inside the meta-
raspberrypi BSP layer, which is where the image recipes for



the Raspberry Pis are:
$ cd meta-raspberrypi/recipes-core/images

3. List the Raspberry Pi image recipes:
$ ls -1

rpi-basic-image.bb

rpi-hwup-image.bb

rpi-test-image.bb

4. Display the rpi-test-image recipe:
$ cat rpi-test-image.bb

# Base this image on core-image-base

include recipes-core/images/core-image-base.bb

COMPATIBLE_MACHINE = "^rpi$"

IMAGE_INSTALL_append = " packagegroup-rpi-test"

Notice that the IMAGE_INSTALL variable has been overridden
so that it can append packagegroup-rpi-test and include
those packages on the image.

5. Navigate to the neighboring packagegroups directory under
meta-raspberrypi/recipes-core:
$ cd ../packagegroups

6. Lastly, display the packagegroup-rpi-test recipe:
$ cat packagegroup-rpi-test.bb

DESCRIPTION = "RaspberryPi Test Packagegroup"

LICENSE = "MIT"

LIC_FILES_CHKSUM =
"file://${COMMON_LICENSE_DIR}/MIT;md5=08
35ade698e0bcf8506ecda2f7b4f302"



PACKAGE_ARCH = "${MACHINE_ARCH}"

inherit packagegroup

COMPATIBLE_MACHINE = "^rpi$"

OMXPLAYER  =
"${@bb.utils.contains('MACHINE_FEATURES'
, 'vc4graphics', '', 'omxplayer', d)}"

RDEPENDS_${PN} = "\

    ${OMXPLAYER} \

    bcm2835-tests \

    rpio \

    rpi-gpio \

    pi-blaster \

    python3-rtimu \

    python3-sense-hat \

    connman \

    connman-client \

    wireless-regdb-static \

    bluez5 \

"

RRECOMMENDS_${PN} = "\

    ${@bb.utils.contains("BBFILE_COLLECTIONS",
"meta-multimedia", "bigbuckbunny-1080p
bigbuckbunny-480p bigbuckbunny-720p",
"", d)} \

    ${MACHINE_EXTRA_RRECOMMENDS} \

"

Notice that the connman, connman-client, and bluez5
packages are included in the list of runtime dependencies so that
Wi-Fi and Bluetooth are fully enabled.



Finally, let's build rpi-test-image for the Raspberry Pi 4:

1. First, navigate one level above the directory where you cloned
Yocto:
$ cd ../../..

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi

This sets up a bunch of environment variables and puts you in a
newly created build-rpi directory.

3. Then, add the following layers to your image:
$ bitbake-layers add-layer ../meta-

openembedded/meta-oe

$ bitbake-layers add-layer ../meta-
openembedded/meta-python

$ bitbake-layers add-layer ../meta-
openembedded/meta-networking

$ bitbake-layers add-layer ../meta-
openembedded/meta-multimedia

$ bitbake-layers add-layer ../meta-raspberrypi

The order in which you add these layers matters because the
meta-networking and meta-multimedia layers both depend
on the meta-python layer. If bitbake-layers add-layer or
bitbake-layers show-layers starts failing due to parse
errors, then delete the build-rpi directory and restart this
exercise from Step 1.

4. Verify that all the necessary layers have been added to the
image:



$ bitbake-layers show-layers

There should be a total of eight layers in the list: meta, meta-
poky, meta-yocto-bsp, meta-oe, meta-python, meta-
networking, meta-multimedia, and meta-raspberrypi.

5. Observe the changes that the preceding bitbake-layers
add-layer commands made to bblayers.conf:
$ cat conf/bblayers.conf

The same eight layers from the previous step should be assigned
to the 
BBLAYERS variable.

6. List the machines supported by the meta-raspberrypi BSP
layer:
$ ls ../meta-raspberrypi/conf/machine

Notice that there are raspberrypi4 and raspberrypi4-64
machine configurations.

7. Add the following line to your conf/local.conf file:
MACHINE = "raspberrypi4-64"

This overrides the following default in your conf/local.conf
file:
MACHINE ??= "qemux86-64"

Setting the MACHINE variable to raspberrypi4-64 ensures
that the image we're about to build works for the Raspberry Pi 4.



8. Now, append ssh-server-openssh to the list of
EXTRA_IMAGE_FEATURES in your conf/local.conf file:
EXTRA_IMAGE_FEATURES ?= "debug-tweaks ssh-

server-openssh"

This adds an SSH server to our image for local network access.

9. Lastly, build the image:
$ bitbake rpi-test-image

The build could take anywhere from minutes to hours to complete
the first time you run it, depending on how many CPU cores your
host environment has available. TARGET_SYS should be
aarch64-poky-linux, while MACHINE should be
raspberrypi4-64, since this image is targeting 64-bit for the
Arm Cortex-A72 cores in the Pi 4.

Once the image has finished building, there should be a file named
rpi-test-image-raspberrypi4-64.rootfs.wic.bz2 in the
tmp/deploy/images/raspberrypi4-64 directory:
$ ls -l tmp/deploy/images/raspberrypi4-64/rpi-

test*wic.bz2

Notice that rpi-test-image-raspberrypi4-
64.rootfs.wic.bz2 is a symbolic link pointing to the actual image
file in the same directory. An integer denoting the date and time of
the build is appended to the image filename before the wic.bz2
extension.



Now, write that image to a microSD card using Etcher and boot it on
your Raspberry Pi 4:

1. Insert a microSD card into your host machine.

2. Launch Etcher.

3. Click Flash from file from Etcher.

4. Locate the wic.bz2 image that you built for the Raspberry Pi 4
and open it.

5. Click Select target from Etcher.

6. Select the microSD card that you inserted in Step 1.

7. Click Flash from Etcher to write the image.

8. Eject the microSD card when Etcher is done flashing.

9. Insert the microSD card into your Raspberry Pi 4.

10. Apply power to the Raspberry Pi 4 by way of its USB-C port.

Confirm that your Pi 4 booted successfully by plugging it into your
Ethernet and observing that the network activity lights blink.

Control l ing Wi-Fi
In the previous exercise, we built a bootable image for the Raspberry
Pi 4 that includes working Ethernet, Wi-Fi, and Bluetooth. Now that
the device has booted and connected to your local network via
Ethernet, let's connect to a nearby Wi-Fi network. We will use



connman for this exercise since that is what the meta-
raspberrypi layer ships with out of the box. Other BSP layers rely
on different network interface configuration daemons such as
system-networkd and NetworkManager. Follow these steps:

1. The image we built has a hostname of raspberrypi4-64, so
you should be able to ssh into the device as root:
$ ssh root@raspberrypi4-64.local

Enter yes when you're asked if you want to continue connecting.
You will not be prompted for a password. If no host is found at
raspberrypi4-64.local, use a tool such as arp-scan to
locate the IP address of your Raspberry Pi 4 and ssh into that
instead of doing so by hostname.

2. Once you are in, verify that the Wi-Fi driver is on board:
root@raspberrypi4-64:~# lsmod | grep 80211

cfg80211              753664  1 brcmfmac

rfkill                 32768  6
nfc,bluetooth,cfg80211

3. Start connman-client:
root@raspberrypi4-64:~# connmanctl

connmanctl>

4. Turn on Wi-Fi:
connmanctl> enable wifi

Enabled wifi

Disregard "Error wifi: Already enabled" if the Wi-Fi is
already on.



5. Register connmanctl as the connection agent:
connmanctl> agent on

Agent registered

6. Scan for Wi-Fi networks:
connmanctl> scan wifi

Scan completed for wifi

7. List all the available Wi-Fi networks:
connmanctl> services

*AO
Wired                ethernet_dca6320a8e
ad_cable

    RT-
AC66U_B1_38_2G    wifi_dca6320a8eae_5254
2d41433636555f42315f33385f3247_managed_p
sk

    RT-
AC66U_B1_38_5G    wifi_dca6320a8eae_5254
2d41433636555f42315f33385f3547_managed_p
sk

RT-AC66U_B1_38_2G and RT-AC66U_B1_38_5G are Wi-Fi
network SSIDs for an ASUS router. Your list will look different.
The *AO part before Wired indicates that the device is currently
online via Ethernet.

8. Connect to a Wi-Fi network:
connmanctl> connect

wifi_dca6320a8eae_52542d41433636555f4231
5f33385f3547_managed_psk



Agent RequestInput
wifi_dca6320a8eae_52542d41433636555f4231
5f33385f3547_managed_psk

  Passphrase = [ Type=psk,
Requirement=mandatory ]

Passphrase? somepassword

Connected
wifi_dca6320a8eae_52542d41433636555f4231
5f33385f3547_managed_psk

Replace the service identifier after connect with your service
identifier or target network from the previous step. Substitute your
Wi-Fi passphrase for somepassword.

9. List the services again:
connmanctl> services

*AO
Wired                ethernet_dca6320a8e
ad_cable

*AR RT-
AC66U_B1_38_5G    wifi_dca6320a8eae_5254
2d41433636555f42315f33385f3547_managed_p
sk

    RT-
AC66U_B1_38_2G    wifi_dca6320a8eae_5254
2d41433636555f42315f33385f3247_managed_p
sk

This time, *AR appears before the SSID you just connected to,
indicating that this network connection is ready. Ethernet takes
precedence over Wi-Fi, so the device remains online over
Wired.



10. Exit connman-client:
connmanctl> quit

11. Unplug your Raspberry Pi 4 from the Ethernet, thereby closing
your ssh session:
root@raspberrypi4-64:~# client_loop: send

disconnect: Broken pipe

12. Reconnect to your Raspberry Pi 4:
$ ssh root@raspberrypi4-64.local

13. Start connman-client again:
root@raspberrypi4-64:~# connmanctl

connmanctl>

14. List the services again:
connmanctl> services

*AO RT-
AC66U_B1_38_5G    wifi_dca6320a8eae_5254
2d41433636555f42315f33385f3547_managed_p
sk

Observe that the Wired connection is now gone and that the Wi-
Fi SSID you connected to that was previously ready has now
been promoted to online.

The connman daemon saves your Wi-Fi credentials to a network
profile directory under /var/lib/connman, which persists on the
microSD card. This means that connman will automatically
reconnect to your Wi-Fi network when your Raspberry Pi 4 boots up.



There is no need to go through these steps again after power
cycling. You can leave your Ethernet unplugged if you like.

Control l ing Bluetooth
In addition to the connman and connman-client packages, the
meta-raspberrypi layer includes bluez5 for its Bluetooth stack.
All of these packages, as well as the requisite Bluetooth drivers, are
included in rpi-test-image, which we built for the Raspberry 
Pi 4. Let's get Bluetooth up and running and attempt to pair it with
another device:

1. Power up your Raspberry Pi 4 and ssh in:
$ ssh root@raspberrypi4-64.local

2. Next, verify that the Bluetooth drivers are on board:
root@raspberrypi4-64:~# lsmod | grep bluetooth

bluetooth             438272  9 bnep

ecdh_generic           24576  1 bluetooth

rfkill                 32768  6
nfc,bluetooth,cfg80211

3. Initialize the HCI UART driver for Bluetooth connectivity:
root@raspberrypi4-64:~# btuart

bcm43xx_init

Flash firmware /lib/firmware/brcm/BCM4345C0.hcd

Set Controller UART speed to 3000000 bit/s

Device setup complete

4. Start connman-client:



root@raspberrypi4-64:~# connmanctl

connmanctl>

5. Turn on Bluetooth:
connmanctl> enable bluetooth

Enabled Bluetooth

Disregard "Error bluetooth: Already enabled" if
Bluetooth is 
already on.

6. Exit connman-client:
connmanctl> quit

7. Start the Bluetooth CLI:
root@raspberrypi4-64:~# bluetoothctl

Agent registered

[CHG] Controller DC:A6:32:0A:8E:AF Pairable:
yes

8. Request the default agent:
[bluetooth]# default-agent

Default agent request successful

9. Power on the controller:
[bluetooth]# power on

Changing power on succeeded

10. Show information about the controller:
[bluetooth]# show

Controller DC:A6:32:0A:8E:AF (public)

Name: BlueZ 5.55

Alias: BlueZ 5.55



Class: 0x00200000

Powered: yes

Discoverable: no

DiscoverableTimeout: 0x000000b4

Pairable: yes

11. Start scanning for Bluetooth devices:
[bluetooth]# scan on

Discovery started

[CHG] Controller DC:A6:32:0A:8E:AF Discovering:
yes

…

[NEW] Device DC:08:0F:03:52:CD Frank's iPhone

…

If your smartphone is nearby and has Bluetooth enabled, it
should appear in the list as a [NEW] device. The
DC:08:0F:03:52:CD part next to Frank's iPhone is the
Bluetooth MAC address of my smartphone.

12. Stop scanning for Bluetooth devices:
[bluetooth]# scan off

…

[CHG] Controller DC:A6:32:0A:8E:AF Discovering:
no

Discovery stopped

13. If you have an iPhone open, go to Bluetooth under Settings so
that you can accept the pairing request from your Raspberry Pi 4.

14. Attempt to pair with your smartphone:
[bluetooth]# pair DC:08:0F:03:52:CD



Attempting to pair with DC:08:0F:03:52:CD

[CHG] Device DC:08:0F:03:52:CD Connected: yes

Request confirmation

[agent] Confirm passkey 936359 (yes/no):

Substitute your smartphone's Bluetooth MAC address for
DC:08:0F:03:52:CD.

15. Before entering yes, accept the pairing request from your
smartphone:





Figure 7.1 – Bluetooth pairing request

16. Enter yes to confirm the passkey:
[agent] Confirm passkey 936359 (yes/no): yes

[CHG] Device DC:08:0F:03:52:CD
ServicesResolved: yes

[CHG] Device DC:08:0F:03:52:CD Paired: yes

Pairing successful

[CHG] Device DC:08:0F:03:52:CD
ServicesResolved: no

[CHG] Device DC:08:0F:03:52:CD Connected: no

17. Connect to your smartphone:
[bluetooth]# connect DC:08:0F:03:52:CD

Attempting to connect to DC:08:0F:03:52:CD

[CHG] Device DC:08:0F:03:52:CD Connected: yes

Connection successful

[CHG] Device DC:08:0F:03:52:CD
ServicesResolved: yes

Authorize service

Again, substitute your smartphone's Bluetooth MAC address for
DC:08:0F:03:52:CD.

18. When prompted to authorize the service, enter yes:
[agent] Authorize service 0000110e-0000-1000-

8000-00805f9b34fb (yes/no): yes

[Frank's iPhone]#



Your Raspberry Pi 4 is now paired and connected to your
smartphone over Bluetooth. It should appear on your smartphone's
list of Bluetooth devices as BlueZ 5.55. The bluetoothctl
program has numerous commands and submenus. We've only just
scratched the surface. I recommend entering help and perusing the
self-documentation to get an idea of what you can do from the
command line. Like connman, the BlueZ Bluetooth stack is a D-Bus
service, so you can communicate with it programmatically over D-
Bus from Python or other high-level programming languages using
D-Bus bindings.

Adding a custom layer
If you are using a Raspberry Pi 4 to prototype a new product, then
you can quickly generate your own custom images by adding
packages to the list that's been assigned to the
IMAGE_INSTALL_append variable in conf/local.conf. While
this simple technique works, at some point, you are going to want to
start developing your own embedded application. How do you build
this additional software so that you can include it in your custom
images? The answer is that you must create a custom layer with a
new recipe to build your software. Let's get started:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi



This sets a bunch of environment variables and puts you back in
the 
build-rpi directory.

3. Create a new layer for your application:
$ bitbake-layers create-layer ../meta-gattd

NOTE: Starting bitbake server...

Add your new layer with 'bitbake-layers add-
layer ../meta-gattd'

This layer is named meta-gattd for the GATT daemon. Name
your layer whatever you like, but please adhere to the meta-
prefix convention.

4. Navigate up to the new layer directory:
$ cd ../meta-gattd

5. Examine the layer's file structure:
$ tree

.

├── conf

│   └── layer.conf

├── COPYING.MIT

├── README

└── recipes-example

    └── example

        └── example_0.1.bb

6. Rename the recipes-examples directory:
$ mv recipes-example recipes-gattd



7. Rename the example directory:
$ cd recipes-gattd

$ mv example gattd

8. Rename the example recipe file:
$ cd gattd

$ mv example_0.1.bb gattd_0.1.bb

9. Display the renamed recipe file:
$ cat gattd_0.1.bb

You want to populate this recipe with the metadata that's needed
to build your software, including SRC_URI and md5 checksums.

10. For now, just replace gattd_0.1.bb with the finished recipe I
have provided for you in MELP/Chapter07/meta-
gattd/recipes-gattd/gattd_0.1.bb.

11. Create a Git repository for your new layer and push it to GitHub.

Now that we have a custom layer for our application, let's add it to
your working image:

1. First, navigate one level above the directory where you cloned
Yocto:
$ cd ../../..

2. Clone your layer or my meta-gattd layer from GitHub:
$ git clone https://github.com/fvasquez/meta-

gattd.git

Replace fvasquez with your GitHub username and meta-
gattd with your layer's repo name.



3. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in
the 
build-rpi directory.

4. Then, add the newly cloned layer to the image:
$ bitbake-layers add-layer ../meta-gattd

Replace meta-gattd with the name of your layer.

5. Verify that all the necessary layers have been added to the
image:
$ bitbake-layers show-layers

There should be a total of nine layers in the list, including your
new layer.

6. Now, add the extra package to your conf/local.conf file:
CORE_IMAGE_EXTRA_INSTALL += "gattd"

CORE_IMAGE_EXTRA_INSTALL is a convenience variable that's
used to add extra packages to an image that inherits from the
core-image class, like the rpi-test-image does.
IMAGE_INSTALL is the variable that controls what packages are
included in any image. We cannot use IMAGE_INSTALL +=
"gattd" in conf/local.conf because it replaces the default
lazy assignment that's done in core-image.bbclass. Use
IMAGE_INSTALL_append = " gattd" or
CORE_IMAGE_EXTRA_INSTALL += " gattd" instead.



7. Lastly, rebuild the image:
$ bitbake rpi-test-image

If your software successfully builds and installs, it should be included
on the finished rpi-test-image-raspberrypi4-
64.rootfs.wic.bz2 image. Write that image to a microSD card
and boot it on your Raspberry Pi 4 to find out.

Adding packages to conf/local.conf makes sense during the
earliest stages of development. When you are ready to share the
fruits of your labor with the rest of your team, you should create an
image recipe and put your packages there. At the end of the
previous chapter, we went all the way and wrote a nova-image
recipe to add a helloworld package to core-image-minimal.

Now that we've spent a good amount of time testing newly built
images on actual hardware, it's time to turn our attention back to
software. In the next section we'll look at a tool that was designed to
streamline the tedious compile, test, and debug cycle we've grown
accustomed to while developing embedded software.

Captur ing changes with
devtool
In the previous chapter, you learned how to create a recipe for a
helloworld program from scratch. A copy-paste approach to
packaging recipes may work initially, but it soon becomes very



frustrating as your project grows and the number of recipes you need
to maintain multiplies. I'm here to show you a better way of working
with package recipes – both yours and those that are contributed to
upstream by some third party. It is called devtool and it is the
cornerstone of Yocto's extensible SDK.

Development workf lows
Before you get started with devtool, you want to make sure that
you're doing your work in a new layer instead of modifying recipes
in-tree. Otherwise, you could easily overwrite and lose hours and
hours of work:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-mine

This sets a bunch of environment variables and puts you in a new
build-mine directory.

3. Set MACHINE in conf/local.conf for 64-bit Arm:
MACHINE ?= "quemuarm64"

4. Create your new layer:
$ bitbake-layers create-layer ../meta-mine

5. Now, add your new layer:
$ bitbake-layers add-layer ../meta-mine



6. Check that your new layer was created where you want it to be:
$ bitbake-layers show-layers

There should be a total of four layers in the list; that is, meta,
meta-poky, 
meta-yocto-bsp, and meta-mine.

To get some first-hand experience with development workflows, you
are going to need a target to deploy to. That means building an
image:
$ devtool build-image core-image-full-cmdline

Building a full image takes a few hours the first time you do so.
When it's complete, go ahead and boot it:
$ runqemu qemuarm64 nographic

[…]

Poky (Yocto Project Reference Distro) 3.1.6
qemuarm64 ttyAMA0

qemuarm64 login: root

root@qemuarm64:~#

By specifying the nographic option, we can run QEMU directly in a
separate shell. This makes typing easier than having to cope with
the emulated graphics output. Log in as root. There is no
password. To exit QEMU when running in nographic mode, enter
Ctrl + A, followed by x, into the target shell. Leave QEMU running for
now because we need it for the subsequent exercises. You can SSH
into this VM with ssh root@192.168.7.2.

devtool supports three common development workflows:



Add a new recipe.

Patch the source built by an existing recipe.

Upgrade a recipe to fetch a newer version of the upstream
source.

When you initiate any of these workflows, devtool creates a
temporary workspace for you to make your changes. This sandbox
contains the recipe files and fetched source. When you are done
with your work, devtool integrates your changes back into your
layer so that the workspace can be destroyed.

Creating a new recipe
Let's say there is some open source software you want that no one
has submitted a 
BitBake recipe for yet. And let's say that software in question is the
lightweight bubblewrap container runtime. In this instance, you
could download a source tarball release of bubblewrap from
GitHub and create a recipe for it. That's exactly what devtool add
does.

First, devtool add creates a workspace with its own local Git
repository. Inside this new workspace directory, it creates a
recipes/bubblewrap directory and extracts the tarball contents
into a sources/bubblewrap directory. devtool knows about
popular build systems such as Autotools and CMake and will do its



best to figure out what kind of project this is (Autotools, in the case of
bubblewrap). It then uses parsed metadata and built package data
cached from previous BitBake builds to figure out the values of
DEPENDS and RDEPENDS, as well as what files to inherit and require.
Let's get started:

1. First, open another shell and navigate one level above the
directory where you cloned Yocto.

2. Next, set up your BitBake environment:
$ source poky/oe-init-build-env build-mine

This sets a bunch of environment variables and puts you back in
your build-mine working directory.

3. Then, run devtool add with the URL of the source tarball
release:
$ devtool add

https://github.com/containers/bubblewrap
/releases/download/v0.4.1/bubblewrap-
0.4.1.tar.xz

If everything goes according to plan, devtool add will generate
a recipe that you can then build.

4. Before you build your new recipe, let's take a look at it:
$ devtool edit-recipe bubblewrap

devtool will open
recipes/bubblewrap/bubblewrap_0.4.1.bb in an editor.
Notice that devtool has already filled in the md5 checksums for
you.



5. Add this line to the end of bubblewrap_0.4.1.bb:
FILES_${PN} += "/usr/share/*"

Correct any obvious mistakes, save any changes, and exit your
editor.

6. To build your new recipe, use the following command:
$ devtool build bubblewrap

7. Next, deploy the compiled bwrap executable to the target
emulator:
$ devtool deploy-target bubblewrap

root@192.168.7.2

This installs the necessary build artifacts onto the target emulator.

8. From your QEMU shell, run the bwrap executable that you just
built and deployed:
root@qemuarm64:~# bwrap --help

If you see a bunch of bubblewrap-related self-documentation,
then the build and deployment were successful. If you do not,
then use devtool to repeat the edit, build, and deploy steps until
you are convinced that bubblewrap works.

9. Once you are satisfied, clean up your target emulator:
$ devtool undeploy-target bubblewrap

root@192.168.7.2

10. Merge all your work back into your layer:
$ devtool finish -f bubblewrap ../meta-mine

11. Delete the leftover sources from the workspace:



$ rm -rf workspace/sources/bubblewrap

If you think others might benefit from your new recipe, then submit a
patch to Yocto.

Modifying the source bui l t  by a
recipe
Let's say you find a bug in jq, a command-line JSON preprocessor.
You search the Git repository at https://github.com/stedolan/jq and
find that no one has reported the issue. Then, you look at the source
code. It turns out that the fix requires just a few small code changes,
so you decide to patch jq yourself. That's where devtool modify
comes in.

This time, when devtool looks at Yocto's cached metadata, it sees
that a recipe already exists for jq. Like devtool add, devtool
modify creates a new temporary workspace with its own local Git
repository, where it copies the recipe files and extracts the upstream
sources. jq is written in C and located in an existing
OpenEmbedded layer named meta-oe. We need to add this layer,
as well as jq's dependencies, to our working image before we can
modify the package source:

1. First, delete a couple of layers from your build-mine
environment:
$ bitbake-layers remove-layer workspace

$ bitbake-layers remove-layer meta-mine

https://github.com/stedolan/jq


2. Next, clone the meta-openembedded repository from GitHub:
$ git clone -b dunfell

https://github.com/openembedded/meta-
openembedded.git ../meta-openembedded

3. Then, add the meta-oe and meta-mine layers to your image:
$ bitbake-layers add-layer ../meta-

openembedded/meta-oe

$ bitbake-layers add-layer ../meta-mine

4. Verify that all the necessary layers have been added to the
image:
$ bitbake-layers show-layers

There should be a total of five layers in the list; that is, meta,
meta-poky, meta-yocto-bsp, meta-oe, and meta-mine.

5. Add the following line to conf/local.conf because the onig
package is a runtime dependency of jq:
IMAGE_INSTALL_append = " onig"

6. Rebuild your image:
$ devtool build-image core-image-full-cmdline

7. Exit QEMU with Ctrl + A and x from your other shell and restart
the emulator:
$ runqemu qemuarm64 nographic

Like many patching tools, devtool modify uses your commit
messages to generate patch filenames, so keep your commit
messages brief and meaningful. It also automatically generates the
patch files themselves based on your Git history and creates a



.bbappend file with the new patch filenames. Remember to prune
and squash your Git commits so that devtool divides your work up
into sensible patch files:

1. Run devtool modify with the name of the package you wish
to modify:
$ devtool modify jq

2. Make your code changes using your preferred editor. Use the
standard Git add and commit workflow to keep track of what
you've done.

3. Build the modified sources using the following command:
$ devtool build jq

4. Next, deploy the compiled jq executable to the target emulator:
$ devtool deploy-target jq root@192.168.7.2

This installs the necessary build artifacts onto the target emulator.

If connecting fails, then delete the stale emulator's key, as shown
here:
$ ssh-keygen -f "/home/frank/.ssh/known_hosts"

\

-R "192.168.7.2"

Replace frank with your username in the path.

5. From your QEMU shell, run the jq executable that you just built
and deployed. If you can no longer reproduce the bug, then your
changes worked. Otherwise, repeat the edit, build, and deploy
steps until you are satisfied.



6. Once you are satisfied, clean up your target emulator:
$ devtool undeploy-target jq root@192.168.7.2

7. Merge all your work back into your layer:
$ devtool finish jq ../meta-mine

If the merge fails because the Git source tree is dirty, then
remove or unstage any leftover jq build artifacts and try
devtool finish again.

8. Delete the leftover sources from the workspace:
$ rm -rf workspace/sources/jq

If you think others might benefit from your patch(es), then submit
them to the upstream project maintainers.

Upgrading a recipe to a newer
version
Let's say you're running a Flask web server on your target device
and a new version of Flask has just been released. This latest
version of Flask has a new feature that you just can't wait to get your
hands on. Instead of waiting for the Flask recipe maintainers to
upgrade to the new release version, you decide to upgrade the
recipe yourself. You would think that would be as easy as bumping a
version number in a recipe file, but there are also md5 checksums
involved. Wouldn't it be great if the tedious process could be fully
automated? Well, guess what devtool upgrade is for?



Flask is a Python 3 library, so your image needs to include Python 3,
Flask, and Flask's dependencies before you can upgrade it. To
obtain all those, follow these steps:

1. First, delete a couple of layers from your build-mine
environment:
$ bitbake-layers remove-layer workspace

$ bitbake-layers remove-layer meta-mine

2. Next, add the meta-python and meta-mine layers to your
image:
$ bitbake-layers add-layer ../meta-

openembedded/meta-python

$ bitbake-layers add-layer ../meta-mine

3. Verify that all the necessary layers have been added to the
image:
$ bitbake-layers show-layers

There should be a total of six layers in the list; that is, meta,
meta-poky, 
meta-yocto-bsp, meta-oe, meta-python, and meta-mine.

4. Now, there should be lots of Python modules available for you to
use:
$ bitbake -s | grep ^python3

One of those modules is python3-flask.

5. Make sure python3 and python3-flask are being built and
installed on 
your image by searching for them both inside



conf/local.conf. If they are 
not there, then you can include them both by adding the following
line to your conf/local.conf:
IMAGE_INSTALL_append = " python3 python3-flask"

6. Rebuild your image:
$ devtool build-image core-image-full-cmdline

7. Exit QEMU with Ctrl + A and x from your other shell and restart
the emulator:
$ runqemu qemuarm64 nographic

IMPORTANT NOTE

At the time of writing, the version of Flask included with meta-

python was 1.1.1 and the latest version of Flask available on

PyPI was 1.1.2.

Now that all the pieces are in place, let's do the upgrade:

1. First, run devtool upgrade with the name of the package and
the target version to upgrade to:
$ devtool upgrade python3-flask --version 1.1.2

2. Before you build your upgraded recipe, let's take a look at it:
$ devtool edit-recipe python3-flask

devtool will open recipes/python3/python3-
flask_1.1.2.bb in 
an editor:
inherit pypi setuptools3



require python-flask.inc

There is nothing version-specific to change in this recipe, so save
the new file and exit your editor.

3. To build your new recipe, use this command:
$ devtool build python3-flask

4. Next, deploy your new Flask module to the target emulator:
$ devtool deploy-target python3-flask

root@192.168.7.2

This installs the necessary build artifacts onto the target emulator.

If connecting fails, then delete the stale emulator's key, as shown
here:
$ ssh-keygen -f "/home/frank/.ssh/known_hosts"

\

-R "192.168.7.2"

Replace frank with your username in the path.

5. From your QEMU shell, launch a python3 REPL and check
what version of Flask was deployed:
root@qemuarm64:~# python3

>>> import flask

>>> flask.__version__

'1.1.2'

>>>

If entering flask.__version__ in the REPL returns '1.1.2',
then the upgrade worked. If it does not, then use devtool to



repeat the edit, build, and deploy steps until you've figured out
what went wrong.

6. Once you are satisfied, clean up your target emulator:
$ devtool undeploy-target python3-flask

root@192.168.7.2

7. Merge all your work back into your layer:
$ devtool finish python3-flask ../meta-mine

If the merge fails because the Git source tree is dirty, then
remove or unstage any leftover python3-flask build artifacts
and try devtool finish again.

8. Delete the leftover sources from the workspace:
$ rm -rf workspace/sources/python3-flask

If you think others might also be anxious to upgrade their distros to
the latest version of a package, then submit a patch to Yocto.

Finally, we've arrived at the topic of how to build our own distro. This
feature is unique to Yocto and notably missing from Buildroot. A
distro layer is a powerful abstraction that can be shared across
multiple projects targeting different hardware.

Bui ld ing your own distro
At the start of the previous chapter, I told you that Yocto gives you
the ability to build your own custom Linux distribution. This is done
by way of a distro layer like meta-poky. As we have seen, you don't
need your own distro layer to build your own custom images. You



can go a long way without ever having to modify any of Poky's
distribution metadata. But if you want to alter distro policies (for
example, features, C library implementations, choice of package
manager, and so on), then you can choose to build your own distro.

Building your own distro is a three-step process:

1. Create a new distro layer.

2. Create a distro configuration file.

3. Add more recipes to your distro.

But before we get into the technical details of how to do that, let's
consider when it's the right time to roll your own distro.

When and when not to
Distro settings define the package format (rpm, deb, or ipk),
package feed, init system (systemd or sysvinit), and specific
package versions. You could create your own distro in a new layer
by inheriting from Poky and overriding what needs to change for your
distro. However, if you find yourself adding a lot of values to your
build directory's local.conf file aside from the obvious local
settings (such as relative paths), then it is probably time to create
your own distro from scratch.

Creating a new distro layer



You know how to create a layer. Creating a distro layer is no
different. Let's get started:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in
the build-rpi directory from earlier.

3. Delete the meta-gattd layer from your build-rpi
environment:
$ bitbake-layers remove-layer meta-gattd

4. Comment out or delete CORE_IMAGE_EXTRA_INSTALL from
conf/local.conf:
#CORE_IMAGE_EXTRA_INSTALL += "gattd"

5. Create a new layer for our distro:
$ bitbake-layers create-layer ../meta-mackerel

6. Now, add our new layer to the build-rpi configuration:
$ bitbake-layers add-layer ../meta-mackerel

The name of our distro is mackerel. Creating our own distro layer
enables us to keep distro policies separate from package recipes
(the implementation).

Configuring your distro



Create the distro configuration file in the conf/distro directory of
your 
meta-mackerel distro layer. Give it the same name as your distro
(for example, mackerel.conf).

Set the required DISTRO_NAME and DISTRO_VERSSION variables
in conf/distro/mackerel.conf:
DISTRO_NAME = "Mackerel (Mackerel Embedded Linux

Distro)"

DISTRO_VERSION = "0.1"

The following optional variables can also be set in mackerel.conf:
DISTRO_FEATURES: Add software support for these

features.

DISTRO_EXTRA_RDEPENDS: Add these packages to all
images.

DISTRO_EXTRA_RRECOMMENDS: Add these packages if
they exist.

TCLIBC: Select this version of the C standard
library.

Once you are done with those variables, you can define just about
any variable in 
conf/local.conf that you want for your distro. Look at other
distros' conf/distro directories, such as Poky's, to see how they
organize things or copy and use
conf/distro/defaultsetup.conf as a template. If you decide
to break your distro configuration file up into multiple include files,
make sure to place them in the conf/distro/include directory
of your layer.



Adding more recipes to your distro
Add more distro-related metadata to your distro layer. You will want
to add recipes for additional configuration files. These are
configuration files that have yet to be installed by an existing recipe.
More importantly, you will also want to add append files to customize
existing recipes and add their configuration files to your distro.

Runtime package management
Including a package manager for your distro images is great for
enabling secure over-the-air updates and rapid application
development. When your team works on software that revs multiple
times a day, frequent package updates is one way to keep
everybody in sync and moving forward. Full image updates are
unnecessary (only one package changes) and disruptive (reboot
required). Being able to fetch packages from a remote server and
install them on a target device is known as runtime package
management.

Yocto has support for different package formats (rpm and ipk) and
different package managers (dnf and opkg). The package format
you select for your distro determines which package manager you
can include on it.

To select a package format for our distro, you can set the
PACKAGE_CLASSES variable 



in your distro's conf file. Add this line to meta-
mackerel/conf/distro/mackerel.conf:
PACKAGE_CLASSES ?= "package_ipk"

Now, let's return to the build-rpi directory:
$ source poky/oe-init-build-env build-rpi

We are targeting the Raspberry Pi 4, so make sure MACHINE is still
set accordingly in conf/local.conf:
MACHINE = "raspberrypi4-64"

Comment out PACKAGE_CLASSES in your build directory's
conf/local.conf since our distro already selects package_ipk:
#PACKAGE_CLASSES ?= "package_rpm"

To enable runtime package management, append "package-
management" to the list of EXTRA_IMAGE_FEATURES in your build
directory's conf/local.conf:
EXTRA_IMAGE_FEATURES ?= "debug-tweaks ssh-server-

openssh package-management"

This will install a package database containing all the packages from
your current build onto your distro image. A prepopulated package
database is optional because you can always initialize a package
database on the target after your distro image has been deployed.

Lastly, set the DISTRO variable in your build directory's
conf/local.conf file to the name of our distro:
DISTRO = "mackerel"



This points your build directory's conf/local.conf file at our
distro configuration file.

Finally, we are ready to build our distro:
$ bitbake -c clean rpi-test-image

$ bitbake rpi-test-image

We are rebuilding rpi-test-image with a different package
format, so this will take a little while. The finished images are placed
in a different directory this time around:
$ ls tmp-glibc/deploy/images/raspberrypi4-64/rpi-

test-image*wic.bz2

Write the image to a microSD card using Etcher and boot it on your
Raspberry Pi 4. Plug it into your Ethernet and SSH in like you did
previously:
$ ssh root@raspberrypi4-64.local

If connecting fails, then delete the Pi's stale key, as shown here:
$ ssh-keygen -f "/home/frank/.ssh/known_hosts" \

-R "raspberrypi4-64.local"

Replace frank with your username in the path.

Once you have logged in, verify that the opkg package manager has
been installed:
root@raspberrypi4-64:~# which opkg

/usr/bin/opkg

A package manager isn't of much use without a remote package
server to pull it from. Let's look at that next.



Provis ioning a remote
package server
Setting up an HTTP remote package server and pointing your target
clients at it is easier than you might think. The client-side server
address configuration varies between package managers. We will
configure opkg manually on the Raspberry Pi 4.

Let's start with the package server:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in
the 
build-rpi directory.

3. Build the curl package:
$ bitbake curl

4. Populate the package index:
$ bitbake package-index

5. Locate the package installer files:
$ ls tmp-glibc/deploy/ipk

There should be three directories named aarch64, all, and
raspberrypi4_64 in ipk. The architecture directory is
aarch64, while the machine directory is raspberrypi4_64.



The names of these two directories will vary, depending on how
your image has been configured for building.

6. Navigate to the ipk directory, which is where the package
installer files are:
$ cd tmp-glibc/deploy/ipk

7. Get the IP address of your Linux host machine.

8. Start the HTTP package server:
$ sudo python3 -m http.server --bind

192.168.1.69 80

[sudo] password for frank:

Serving HTTP on 192.168.1.69 port 80
(http://192.168.1.69:80/) ...

Replace 192.168.1.69 with your Linux host machine's IP
address.

Now, let's configure the target client:

1. SSH back into your Raspberry Pi 4:
$ ssh root@raspberrypi4-64.local

2. Edit /etc/opkg/opkg.conf so that it looks like this:
src/gz all http://192.168.1.69/all

src/gz aarch64 http://192.168.1.69/aarch64

src/gz raspberrypi4_64
http://192.168.1.69/raspberrypi4_64

dest root /

option lists_dir /var/lib/opkg/lists



Replace 192.168.1.69 with your Linux host machine's IP
address.

3. Run opkg update:
root@raspberrypi4-64:~# opkg update

Downloading
http://192.168.1.69/all/Packages.gz.

Updated source 'all'.

Downloading
http://192.168.1.69/aarch64/Packages.gz.

Updated source 'aarch64'.

Downloading
http://192.168.1.69/raspberrypi4_64/Pack
ages.gz.

Updated source 'raspberrypi4_64'.

4. Try to run curl:
root@raspberrypi4-64:~# curl

The command should fail because curl is not installed.

5. Install curl:
root@raspberrypi4-64:~# opkg install curl

Installing libcurl4 (7.69.1) on root

Downloading
http://192.168.1.69/aarch64/libcurl4_7.6
9.1-r0_aarch64.ipk.

Installing curl (7.69.1) on root

Downloading
http://192.168.1.69/aarch64/curl_7.69.1-
r0_aarch64.ipk.

Configuring libcurl4.



Configuring curl.

6. Verify that curl was installed:
root@raspberrypi4-64:~# curl

curl: try 'curl --help' for more information

root@raspberrypi4-64:~# which curl

/usr/bin/curl

As you continue to work in the build-rpi directory from a Linux
host machine, you can check for updates from your Raspberry Pi 4:
root@raspberrypi4-64:~# opkg list-upgradable

Then, you can apply them:
root@raspberrypi4-64:~# opkg upgrade

This is faster than rewriting an image, swapping out the microSD
card, and rebooting.

Summary
I know that was a lot to absorb. And trust me – this is just the
beginning. Yocto is a never-ending rabbit hole that you don't climb
out of. The recipes and tools are constantly changing and much of
the documentation, while there is lots of it, is sadly out of date.
Luckily, there is devtool, which automates much of the tedium and
mistakes of 
copy-paste development away. If you use the tools provided for you
and continually save your work to your own layers, Yocto doesn't



have to be painful. Before you know it, you'll be rolling your own
distro layer and running your own remote package server.

A remote package server is just one way to deploy packages and
applications. We will learn about a few others later in Chapter 16,
Packaging Python. Despite the title, some of the techniques we'll
look at in that chapter (for example, conda and Docker) apply to any
programming language. While package managers are great for
development, runtime package management is not commonly used
on embedded systems running in production. We will look closely at
full image and containerized over-the-air update mechanisms in
Chapter 10, Updating Software in the Field.

Further reading
The following resources contain more information about the topics
that were introduced in this chapter:

Transitioning to a Custom Environment, Yocto Project:
https://www.yoctoproject.org/docs/transitioning-to-a-custom-
environment

Yocto Project Development Manual, by Scott Rifenbark:
https://www.yoctoproject.org/docs/latest/dev-manual/dev-
manual.html

Using Devtool to Streamline Your Yocto Project Workflow, by Tim
Orling: 
https://www.youtube.com/watch?v=CiD7rB35CRE

https://www.yoctoproject.org/docs/transitioning-to-a-custom-environment
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html
https://www.youtube.com/watch?v=CiD7rB35CRE


Using a Yocto build workstation as a remote opkg repository,
Jumpnow Technologies: https://jumpnowtek.com/yocto/Using-
your-build-workstation-as-a-remote-package-repository.html

https://jumpnowtek.com/yocto/Using-your-build-workstation-as-a-remote-package-repository.html


Chapter 8 :  Yocto Under the
Hood
In this chapter, we'll dive deeper into Yocto, embedded Linux's
premier build system. We will begin with a tour of Yocto's
architecture, taking you through the entire build workflow step by
step. Next, we'll look at Yocto's multi-layer approach and why it is a
good idea to separate metadata into different layers. As more and
more BitBake layers stack up inside your projects, problems will
inevitably arise. We will examine a number of ways to debug Yocto
build failures, including task logs, devshell, and dependency
graphs.

After taking apart the build system, we'll revisit the topic of BitBake
from the previous chapter. This time around, we'll cover more of the
basic syntax and semantics so that you can write your own recipes
from scratch. We'll look at real-world examples of BitBake shell and
Python code from actual recipe, include, and configuration files so
that you know what to expect when you begin to venture out into
Yocto's ocean of metadata.

In this chapter, we will cover the following topics:

Decomposing Yocto's architecture and workflow

Separating metadata into layers

Troubleshooting build failures



Understanding BitBake syntax and semantics

Let's get started!

Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based system host system with a minimum of 60 GB
available disk space

Yocto 3.1 (Dunfell) LTS release

You should have already built the 3.1 (Dunfell) LTS release of Yocto
in Chapter 6, 
Selecting a Build System. If you have not, then please refer to the
Compatible Linux Distribution and Build Host Packages sections of
the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-
yoctoprojectqs.html) before building Yocto on your Linux host
according to the instructions in Chapter 6.

Decomposing Yocto's
archi tecture and workf low
Yocto is a complex beast. Taking it apart is the first step toward
understanding it. The architecture of a build system can be

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


organized in terms of its workflow. Yocto gets its workflow from the
OpenEmbbedded project, which it is based on. Source materials
feed into the system as inputs by way of metadata in the form of
BitBake recipes. The build system uses this metadata to fetch,
configure, and compile the source code into binary package feeds.
These individual output packages are assembled inside a staging
area before the finished Linux image and SDK are generated,
complete with a manifest that includes a license for each package
that's on board:





Figure 8.1 – OpenEmbedded architecture workflow

Here are the seven steps of Yocto's build system workflow, as shown
in the 
preceding diagram:

1. Define layers for policy, machine, and software metadata.

2. Fetch sources from the source URI of a software project.

3. Extract the source code, apply any patches, and compile the
software.

4. Install the build artifacts into a staging area for packaging.

5. Bundle the installed build artifacts into a package feed for the root
filesystem.

6. Run QA checks on a binary package feed before submitting it.

7. Generate the finished Linux image and an SDK in parallel.

Except for the first and last steps, all of the steps in this workflow are
performed on a per-recipe basis. Code linting, sanitizing, and other
forms of static analysis may occur before or after compilation. Unit
and integration tests can run directly on the build machine, on a
QEMU instance acting as a stand-in for the target SoC, or on the
target itself. When a build completes, the finished image can then be
deployed to a group of dedicated devices for further testing. As the
gold standard for embedded Linux build systems, Yocto is a vital
component of the software CI/CD pipeline for many products.



The packages Yocto generates can be in either rpm, deb, or ipk
format. In addition to the main binary package, the build system
attempts to generate all of the following packages for a recipe by
default:

dbg: Binary files, including debug symbols

static-dev: Header files and static libraries

dev: Header files and shared library symlinks

doc: Documentation, including man pages

locale: Language translation information

Packages that would contain no files are not generated unless the
ALLOW_EMPTY 
variable is enabled. The set of packages to be generated by default
is determined by the PACKAGES variable. Both variables are defined
in meta/classes/packagegroup.bbclass, but their values can
be overridden by package group recipes that inherit from that
BitBake class.

Building an SDK enables a whole other development workflow for
manipulating individual package recipes. In the Capturing changes
with devtool section of the previous chapter, we learned how to use
devtool to add and modify SDK software packages so that we can
integrate them back into an image.

Metadata



Metadata is the input that goes into the build system. It controls what
gets built and how. Metadata is more than just recipes. BSPs,
policies, patches, and other forms of configuration files are also
metadata. Which version of a package to build and where to pull the
source code from are certainly forms of metadata. A developer
makes all these choices by naming files, setting variables, and
running commands. These configuration actions, argument values,
and their resulting artifacts are yet another form of metadata. Yocto
parses all of these inputs and transforms them into a complete Linux
image.

The first choice a developer makes with respect to building with
Yocto is what 
machine architecture to target. You do this by setting the MACHINE
variable in the 
conf/local.conf file for your project. When targeting QEMU, I
like to use 
MACHINE ?= "qemuarm64" to specify aarch64 as the machine
architecture. 
Yocto ensures that the correct compiler flags propagate from a BSP
down to the other build layers.

Architecture-specific settings are defined in files called tunes, which
are located in Yocto's meta/conf/machine/include directory,
and the individual BSP layers themselves. A number of BSP layers
are included with every Yocto release. We worked extensively with
the meta-raspberrypi BSP layer in the previous chapter. The
source for each BSP resides inside its own Git repository.



To clone Xilinx's BSP layer, which contains support for their Zynq
family of SoCs, use the following command:
$ git clone git://git.yoctoproject.org/meta-xilinx

This is just one example of the many BSP layers that accompany
Yocto. You won't need this layer for any of the subsequent exercises,
so feel free to discard it.

Metadata needs source code to act upon. BitBake's do_fetch task
can obtain recipe source files in a number of different ways. Here are
the two most prominent methods:

When someone else develops some software that you need, the
easiest way to get it is to tell BitBake to download a tarball
release of the project.

To extend someone else's open source software, simply fork the
repository on GitHub. BitBake's do_fetch task can then use Git
to clone the source files from a given SRC_URI.

If your team is responsible for the software, then you can choose to
embed it into your work environment as a local project. You can do
this either by nesting it as a subdirectory or defining it out-of-tree
using the externalsrc class. Embedding means that the sources
are tied to your layer repository and can't be easily used somewhere
else. 
Out-of-tree projects that use externalsrc require identical paths
on all building instances and sabotage reproducibility. Both of these



techniques are merely tools used to expedite development. Neither
should be used in production.

Policies are properties that are bundled together as a distribution
layer. These include things such as which features (systemd for
example), C library implementation 
(glibc or musl) and package manager are required by a Linux
distribution. Each distro layer has its own conf/distro
subdirectory. The .conf files inside that directory define the top-
level policies for a distribution or image. See the meta-poky
subdirectory for an example of a distro layer. This Poky reference
distribution layer includes .conf files for building default, tiny,
bleeding edge, and alternative flavors of Poky for your target device.
We covered this in the previous chapter, in the Building your own
distro section.

Build tasks
We already saw how BitBake's do_fetch task downloads and
extracts the source for a recipe. The next steps in the build process
are patching, configuring, and compiling said source code:
do_patch, do_configure, and do_compile.

The do_patch task uses the FILESPATH variable and a recipe's
SRC_URI variable to locate patch files and apply them to the
intended source code. The FILESPATH variable, found in
meta/classes/base.bbclass, defines the default set of



directories 
that the build system uses to search for patch files (Yocto Project
Reference Manual, 
https://www.yoctoproject.org/docs/current/ref-manual/ref-
manual.html#ref-tasks-patch). By convention, patch files have
names ending in .diff and .patch and reside in a subdirectory
below where the corresponding recipe file is located. This default
behavior can be extended and overridden by defining a
FILESEXTRAPATHS variable and appending file pathnames to the 
recipe's SRC_URI variable. After patching the source code, the
do_configure and 
do_compile tasks configure, compile, and link it:

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-tasks-patch




Figure 8.2 – Package feeds

When do_compile is done, the do_install task copies the
resulting files to a 
staging area where they are readied for packaging. There, the
do_package and 
do_package_data tasks work in tandem to process the build
artifacts in the staging area and divide them up into packages.
Before they are submitted to the package feeds area, the
do_package_qa task subjects package artifacts to a battery of QA
checks. These autogenerated QA checks are defined in
meta/classes/insane.bbclass. Lastly, the
do_package_write_* tasks create the individual packages and
send them to the package feeds area. Once the package feeds area
has been populated, BitBake is ready for image and SDK
generation.

Image generation
Generating an image is a multi-stage process that relies on several
variables to perform a series of tasks. The do_rootfs task creates
the root filesystem for an image. These variables determine what
packages get installed onto the image:

IMAGE_INSTALL: Packages to install onto the image

PACKAGE_EXCLUDE: Packages to omit from the image



IMAGE_FEATURES: Additional packages to install onto the image

PACKAGE_CLASSES: Package format (rpm, deb, or ipk) to use

IMAGE_LINGUAS: Languages (cultures) to include support
packages for

Recall that we added packages to the IMAGE_INSTALL variable
back in Chapter 6, Selecting a Build System, as part of the Writing
an image recipe section. The list of packages from the
IMAGE_INSTALL variable is passed to a package manager (dnf,
apt, or opkg) so that they can be installed on the image. Which
package manager gets invoked depends on the format of the
package feeds: do_package_write_rpm,
do_package_write_deb, or do_package_write_ipk. Package
installation happens regardless of whether a runtime package
manager is included on the target. If there is no package manager
onboard, then inessential files get deleted from the image at the end
of this package installation phase for hygiene purposes and to save
space.

Once package installation is complete, the package's post-
installation scripts are run. These post-installation scripts come
included with the packages. If all the post-installation scripts run
successfully, a manifest is written to and optimizations are performed
on the root filesystem image. This top-level .manifest file lists all
the packages that have been installed on the image. The default



library size and executable startup time optimizations are defined by
the ROOTFS_POSTPROCESS_COMMAND variable.

Now that the root filesystem has been fully populated, the do_image
task can begin image processing. First, all the pre-processing
commands defined by the IMAGE_PREPROCESS_COMMAND variable
get executed. Next, the process creates the final image output files.
It does this by launching a do_image_* task for every image type
(for example, cpio.lz4, ext4, and squashfs-lzo) specified in
the IMAGE_FSTYPES variable. The build system then takes the
contents of the IMAGE_ROOTFS directory and converts it into one or
more image files. These output image files are compressed when
the specified filesystem format allows for it. Lastly, the
do_image_complete task finishes the image by executing every
post-processing command defined by the
IMAGE_POSTPROCESS_COMMAND variable.

Now that we have traced through Yocto's entire build workflow end-
to-end, let's look at some best practices for structuring large projects.

Separat ing metadata into
layers
Yocto metadata is organized around the following concepts:

distro: OS features, including choice of C library, init system,
and 



window manager

machine: CPU architecture, kernel, drivers, and bootloader

recipe: Application binaries and/or scripts

image: Development, manufacturing, or production

These concepts map directly to actual byproducts of the build
system, thus offering us guidance when designing our projects. We
could rush to assemble everything inside a single layer, but that
would likely result in a project that is inflexible and unmaintainable.
Hardware inevitably gets revised, and one successful consumer
device quickly multiplies into a series of products. For these reasons,
it is better to adopt a multi-layered approach early on so that we end
up with software components that we can easily modify, swap out,
and reuse.

At a minimum, you should create individual distribution, BSP, and
application layers for every major project that you start with Yocto.
The distribution layer builds the target OS (Linux distro) that your
application(s) will run on. Frame buffer and window manager
configuration files belong in the distribution layer. The BSP layer
specifies the bootloader, kernel, and device tree needed for the
hardware to operate. The application layer contains the recipes
needed to build all the packages that comprise your custom
application(s).

We first encountered the MACHINE variable back in Chapter 6,
Selecting a Build System, when we performed our first builds with



Yocto. We looked at the DISTRO variable 
toward the end of the previous chapter, when we created our own
distribution layer. 
The other Yocto exercises in this book rely on meta-poky for their
distro layer. Layers are added to your build by inserting them into the
BBLAYERS variable within the 
conf/bblayers.conf file in your active build directory. Here is an
example of Poky's default BBLAYERS definition:
BBLAYERS ?= " \

  /home/frank/poky/meta \

  /home/frank/poky/meta-poky \

  /home/frank/poky/meta-yocto-bsp \

  "

Rather than edit bblayers.conf directly, use the bitbake-
layers command-line tool to work with project layers. Resist the
temptation to modify the Poky source tree directly. Always create
your own layer (for example, meta-mine) above Poky and make
your changes there. Here is what the BBLAYERS variable should
look like within the conf/bblayers.conf file in your active build
directory (for example, build-mine) during development:
BBLAYERS ?= " \

  /home/frank/poky/meta \

  /home/frank/poky/meta-poky \

  /home/frank/poky/meta-yocto-bsp \

  /home/frank/meta-mine \

  /home/frank/build-mine/workspace \



  "

workspace is a special temporary layer we encountered in the
previous chapter when we experimented with devtool. Every
BitBake layer has the same basic directory structure, regardless of
what type of layer it is. Layer directory names typically start with the
meta- prefix by convention. Take the following dummy layer, for
example:
$ tree meta-example

meta-example

├── classes

│   ├── class-a.bbclass

│   ├── ...

│   └── class-z.bbclass

├── conf

│   └── layer.conf

├── COPYING.MIT

├── README

├── recipes-a

│   ├── package-a

│   │   └── package-a_0.1.bb

│   ├── ...

│   └── package-z

│       └── package-z_0.1.bb

├── recipes-b

│   └── ...

└── recipes-c

    └── ...



Every layer must have a conf directory with a layer.conf file so
that BitBake can set up paths and search patterns for metadata files.
We looked closely at the contents of layer.conf back in Chapter

6, Selecting a Build System, when we created a meta-nova layer
for our Nova board. BSP and distribution layers may also have a
machine or distro subdirectory under the conf directory with
more .conf files. We examined the structure of the machine and
distro layers in the previous chapter, when we built on top of the
meta-raspberrypi layer and created our own meta-mackerel
distro layer.

The classes subdirectory is only needed for layers that define their
own BitBake classes. Recipes are organized by category, such as
connectivity, so recipes-a is actually a placeholder for recipes-
connectivity and so on. A category can contain one or more
packages, each with its own set of BitBake recipe files (.bb). The
recipe files are versioned by package release number. Again, names
such as package-a and package-z are merely placeholders for
real packages.

It's very easy to get lost in all these different layers. Even as you
become more proficient with Yocto, there will be many times when
you will find yourself asking how a particular file ended up on your
image. Or, more likely, where are the recipe files you need to modify
or extend to do what you need to do? Luckily, Yocto provides some
command-line tools to help you answer these questions. I
recommend that you explore recipetool, oe-pkgdata-util,



and oe-pkgdata-browser and familiarize yourself with them. You
could save yourself lots of hours.

Troubleshoot ing bui ld
fai lures
In the two preceding chapters, we learned how to build bootable
images for QEMU, our Nova board, and the Raspberry Pi 4. But
what happens when things go wrong? In this section, we will cover a
number of useful debugging techniques that should make the
prospect of wrangling Yocto build failures less intimidating.

To execute the commands in the subsequent exercises, you need to
activate a BitBake environment, as follows:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in the
build-rpi directory that we created in the previous chapter.

Isolat ing errors
So, your build failed, but where did it fail? You have an error
message, but what does it mean and where did it come from? Do not



despair. The first step in debugging is reproducing the bug. Once
you can reproduce the bug, you can narrow the problem down to a
series of known steps. Retracing those steps is how you spot the
malfunction:

1. First, look at the BitBake build error message and see if you
recognize any package or task names. If you're not sure what
packages are in your workspace, you can use the following
command to get a list of them:
$ bitbake-layers show-recipes

2. Once you have identified which package failed to build, then
search your current layers for any recipe or appends files related
to that package, like so:
$ find ../poky -name "*connman*.bb*"

The package to search for is connman in this instance. The
../poky argument in the preceding find command assumes
your build directory is adjacent to poky, like build-pi from the
previous chapter.

3. Next, list all the tasks available for the connman recipe:
$ bitbake -c listtasks connman

4. To reproduce the error, you can rebuild connman, as follows:
$ bitbake -c clean connman && bitbake connman

Now that you know the recipe and task where your build failed, you
are ready to move on to the next stage of debugging.



Dumping the environment
While you are debugging a build failure, you are going to want to see
the current values of the variables within BitBake's environment.
Let's start from the top and work our way down:

1. First, dump the global environment and search for the value of
DISTRO_FEATURES:
$ bitbake -e | less

Enter /DISTRO_FEATURES= (note the leading forward slash);
less should jump to a line that looks kind of like this:
DISTRO_FEATURES="acl alsa argp bluetooth ext2

ipv4 ipv6 largefile pcmcia usbgadget
usbhost wifi xattr nfs zeroconf pci 3g
nfc x11 vfat largefile opengl ptest
multiarch wayland vulkan pulseaudio
sysvinit gobject-introspection-data
ldconfig"

2. To dump busybox's package environment and locate its source
directory, use the following command:
$ bitbake -e busybox | grep ^S=

3. To dump connman's package environment and locate its working
directory, use the following command:
$ bitbake -e connman | grep ^WORKDIR=

A package's working directory is where its recipe task logs are
saved during 
BitBake builds.



In Step 1, we could have piped the output from bitbake -e into
grep, but less allows us to trace the evaluation of the variable
more easily. Enter /DISTRO_FEATURES without the trailing equal
sign in less to search for more occurrences of the variable. Hit n to
jump forward to the next occurrence and N to jump back to the
previous occurrence.

The same commands work for image as well as package recipes:
$ bitbake -e core-image-minimal | grep ^S=

In this case, the target environment to dump belongs to core-
image-minimal.

Now that you know where the source and task log files are, let's look
at some task logs.

Reading the task log
BitBake creates a log file for every shell task and saves it to a temp
folder in the package's working directory. In the case of connman,
the path to that temp folder looks sort of 
like this:
$ ./tmp/work/aarch64-poky-linux/connman/1.37-

r0/temp

The format of the log filenames is log.do_<task>.<pid>. There
are also symlinks with no <pid> at the end of their names, which
point to the latest log files for each task. The log files contain the



output of the task run, which in most cases is all the information you
need to debug the problem. If not, guess what you can do?

Adding more logging
Logging from Python is different from logging from Shell in BitBake.
To log from Python, you can use BitBake's bb module, which calls
out to Python's standard logger module, as shown here:
bb.plain -> none; Output: logs console

bb.note -> logger.info; Output: logs

bb.warn -> logger.warning; Output: logs console

bb.error -> logger.error; Output: logs console

bb.fatal -> logger.critical; Output: logs console

bb.debug -> logger.debug; Output: logs console

To log from shell, you can use BitBake's logging class, whose
source can be found at meta/classes/logging.bbclass. All
recipes that inherit base.bbclass automatically inherit
logging.bbclass. This means that all of the following logging
functions should already be available to you from most shell recipe
files:
bbplain -> Prints exactly what is passed in. Use

sparingly.

bbnote -> Prints noteworthy conditions with the
NOTE prefix.

bbwarn -> Prints a non-fatal warning with the
WARNING prefix.



bberror -> Prints a non-fatal error with the ERROR
prefix.

bbfatal -> Prints a fatal error and halts the
build.

bbdebug -> Prints debug messages depending on log
level.

According to the logging.bbclass source, the bbdebug function
takes an integer debug log level as its first argument:
# Usage: bbdebug 1 "first level debug message"

#        bbdebug 2 "second level debug message

bbdebug () {

    USAGE = 'Usage: bbdebug [123] "message"'

    …

}

Depending on the debug log level, a bbdebug message may or may
not go to the console.

Running commands from devshell
BitBake provides a development shell so that you can run build
commands manually in a more interactive environment. To get into a
devshell for building connman, use the following command:
$ bitbake -c devshell connman

First, this command extracts and patches the source code for
connman. Next, it opens a new Terminal in connman's source
directory with the environment correctly set up for building. Once
inside a devshell, you can run commands such as ./configure



and make or invoke the cross-compiler directly using $CC.
devshell is perfect for experimenting with values such as CFLAGS
or LDFLAGS, which get passed to tools such as CMake and
Autotools as command-line arguments or environment variables. At
the very least, you can increase the verbosity level of build
commands if the error messages you are reading aren't meaningful.

Graphing dependencies
Sometimes, the cause of the build error cannot be located inside the
package recipe files because the error actually occurred when
building one of the package's dependencies. To get a list of
dependencies for the connman package, use the following
command:
$ bitbake -v connman

We can use BitBake's built-in task explorer to display and navigate
dependencies:
$ bitbake -g connman -u taskexp

The preceding command launches the task explorer's graphical UI
after analyzing connman:

IMPORTANT NOTE

Some larger images, such as core-image-x11, have complex
package dependency trees that will likely crash the task explorer.





Figure 8.3 – Task explorer

Now, let's move away from the topic of builds and build failures and
immerse ourselves in the raw materials of the Yocto Project; that is,
BitBake metadata.

Understanding Bi tBake
syntax and semant ics
BitBake is a task runner. It is similar to GNU make in that respect,
except that it operates on recipes instead of makefiles. The
metadata in these recipes defines tasks in shell and Python. BitBake
itself is written in Python. The OpenEmbedded project that Yocto is
based on consists of BitBake and a large collection of recipes for
building embedded Linux distributions. BitBake's power lies in its
ability to run tasks in parallel while still satisfying inter-task
dependencies. Its layered and inheritance-based approach to
metadata enables Yocto to scale in ways Buildroot-based build
systems simply cannot.

In Chapter 6, Selecting a Build System, we learned about the five
types of BitBake metadata files; that is, .bb, .bbappend, .inc,
.bbclass, and .conf. We also wrote BitBake recipes for building a
basic helloworld program and nova-image image. Now, we will
look more closely at the contents of BitBake metadata files. We
know that tasks are written in a mix of shell and Python, but what



goes where and why? What language constructs are available to us,
and what can we do with them? How do we compose metadata to
build our applications? Before you can harness the full power of
Yocto, you need to learn to read and write BitBake.

Tasks
Tasks are functions that BitBake needs to run in sequence to
execute a recipe. Recall that task names start with the do_ prefix.
Here is a task from recipes-core/systemd:
do_deploy () {

    install ${B}/src/boot/efi/systemd-boot*.efi
${DEPLOYDIR}

}

addtask deploy before do_build after do_compile

In this example, a function named do_deploy is defined and
immediately elevated to a task using the addtask command. The
addtask command also specifies inter-task dependencies. For
instance, this do_deploy task depends on the do_compile task
completing, while the do_build task depends on the do_deploy
task completing. The dependencies expressed by addtask can only
be internal to the recipe file.

Tasks can also be deleted using the deltask command. This stops
BitBake from executing the task as part of the recipe. To delete the
preceding do_deploy task, use the following command:
deltask do_deploy



This deletes the task from the recipe, but the original do_deploy
function definition remains and can still be called.

Dependencies
To ensure efficient parallel processing, BitBake handles
dependencies at the task level. 
We saw just how addtask can be used to express dependencies
between tasks within a single recipe file. Dependencies between
tasks in different recipes also exist. In fact, these inter-task
dependencies are what we usually think of when we consider build-
time and runtime dependencies between packages.

Inter-task dependencies
Variable flags (varflags) are a means of attaching properties or
attributes to variables. They behave like keys in a hash map in the
sense that they let you set keys to values and retrieve values by their
keys. BitBake defines a large set of varflags for use in recipes and
classes. These varflags indicate what the components and
dependencies of a task are. Here are some examples of varflags:
do_patch[postfuncs] += "copy_sources"

do_package_index[depends] += "signing-
keys:do_deploy"

do_rootfs[recrdeptask] += "do_package_write_deb
do_package_qa"

The value that's assigned to a varflag's key is often one or more
other tasks. This means that BitBake varflags offer us another way to



expresses inter-task dependencies, different from addtask. Most
embedded Linux developers will probably never need to touch
varflags in their day-to-day work. I introduce them here so that we
can make sense of the following DEPENDS and RDEPENDS
examples.

Build-time dependencies
BitBake uses the DEPENDS variable to manage build-time
dependencies. The deptask varflag for a task signifies the task that
must complete for each item in DEPENDS before that task can be
executed (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-
manual/bitbake-user-manual.html#build-dependencies):
do_package[deptask] += "do_packagedata"

In this example, the do_packagedata task of each item in
DEPENDS must complete before do_package can execute.

Alternatively, you can bypass the DEPENDS variable and define your
build-time dependencies explicitly using the depends flag:
do_patch[depends] += "quilt-

native:do_populate_sysroot"

In this example, the do_populate_sysroot task belonging to the
quilt-native namespace must complete before do_patch can
execute. A recipe's tasks are often grouped together inside their own
namespace to enable this sort of direct access.

Runtime dependencies

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#build-dependencies


BitBake uses the PACKAGES and RDEPENDS variables to manage
runtime dependencies. The PACKAGES variable lists all the runtime
packages a recipe creates. Each of those packages can have
RDEPENDS runtime dependencies. These are packages that must be
installed for a given package to run. The rdeptask varflag for a
task specifies which tasks must be completed for every runtime
dependency before that task can be executed (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-
manual/bitbake-user-manual.html#runtime-dependencies):
do_package_qa[rdeptask] = "do_packagedata"

In this example, the do_package_data task of each item in
RDEPENDS must complete before do_package_qa can execute.

Similarly, the rdepends flag works much like the depends flag by
allowing you to bypass the RDEPENDS variable. The only difference
is that rdepends is enforced at runtime instead of build-time.

Variables
BitBake variable syntax resembles the make variable syntax. The
scope of a variable in BitBake depends on the type of metadata file
where a variable was defined. Every variable declared in a recipe file
(.bb) is local. Every variable declared in a configuration file (.conf)
is global. An image is just a recipe, so an image cannot affect what
happens in another recipe.

Assignment and expansion

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#runtime-dependencies


Variable assignment and expansion work like they do in shell. By
default, assignment occurs as soon as the statement is parsed and
is unconditional. The $ character triggers variable expansion.
Enclosing braces are optional and serve to protect the variable to be
expanded from characters immediately following it. Expanded
variables are usually wrapped in double quotes to avoid accidental
word splitting and globbing:
OLDPKGNAME = "dbus-x11"

PROVIDES_${PN} = "${OLDPKGNAME}"

Variables are mutable and normally evaluated at the time of
reference, not assignment, like in make. This means that if a variable
is referenced on the right-hand side of an assignment, then that
referenced variable is not evaluated until the variable on the 
left-hand side is expanded. So, if a value on the right-hand side
changes over time, then 
so does the value of the variable on the left-hand side.

Conditional assignment only defines a variable if it is undefined at
the time of parsing. This prevents reassignment when you don't want
that behavior:
PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto"

Conditional assignment is employed at the top of makefiles to
prevent variables that may have already been set by the build
system (for example, CC, CFLAGS, and LDFLAGS) from being
overwritten. Conditional assignment ensures that we don't append or
prepend to an undefined variable later on in a recipe.



Lazy assignment using ??= behaves identically to ?=, except that
the assignment is made at the end of the parsing process rather than
immediately (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-
manual/bitbake-user-manual.html#setting-a-weak-default-value):
TOOLCHAIN_TEST_HOST ??= "localhost"

What that means is that if a variable name is on the left-hand side of
multiple lazy assignments, then the last lazy assignment statement
wins.

Another form of variable assignment forces the right-hand side of the
assignment to be evaluated immediately at the time of parsing:
target_datadir := "${datadir}"

Note that the := operator for immediate assignment comes from
make, not shell.

Appending and prepending
Appending or prepending to variable or variable flags in BitBake is
easy. The following two operators insert a single space in-between
the value on the left-hand side and the value being appended or
prepended from the right-hand side:
CXXFLAGS += "-std=c++11"

PACKAGES =+ "gdbserver"

Note that the += operator means increment, not append, when
applied to integer as opposed to string values.

If you wish to omit the single space, there are assignment operators
that do that as well:

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#setting-a-weak-default-value


BBPATH .= ":${LAYERDIR}"

FILESEXTRAPATHS =. "${FILE_DIRNAME}/systemd:"

The single space versions of the appending and prepending
assignment operators are used throughout BitBake metadata files.

Overrides
BitBake offers an alternative syntax for appending and prepending to
variables. This style of concatenating is known as override syntax:
CFLAGS_append = " -DSQLITE_ENABLE_COLUMN_METADATA"

PROVIDES_prepend = "${PN} "

While it may not be obvious at first glance, the two preceding lines
are not defining new variables. The _append and _prepend
suffixes modify or override the values of existing variables. They
function more like BitBake's .= and =. than the += and =+ operators
in the sense that they omit the single space when combining strings.
Unlike those operators, overrides are lazy, so assignment does not
take place until all parsing completes.

Finally, let's look at a more advanced form of conditional assignment
involving the OVERRIDES variable defined in
meta/conf/bitbake.conf. The OVERRIDES variable is a colon-
separated list of conditions that you want satisfied. This list is used to
select between multiple versions of the same variable, each of which
is distinguished by a different suffix. The various suffixes match the
names of the conditions. Let's say the OVERRIDES list contains
${TRANSLATED_TARGET_ARCH} as a condition. Now, you can
define a version of a variable that is conditional on a target CPU



architecture of aarch64, such as the VALGRINDARCH_aarch64
variable:
VALGRINDARCH ?= "${TARGET_ARCH}"

VALGRINDARCH_aarch64 = "arm64"

VALGRINDARCH_x86-64 = "amd64"

When the TRANSLATED_TARGET_ARCH variable expands to
aarch64, the VALGRINDARCH_aarch64 version of the
VALGRINDARCH variable is selected over all the other overrides.
Selecting variable values based on OVERRIDES is cleaner and less
brittle than other methods of conditional assignment, such as
#ifdef directives in C.

BitBake also supports appending and prepending operations to
variable values based on whether a specific item is listed in
OVERRIDES (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-
manual/bitbake-user-manual.html#conditional-metadata). Here are
various real-world examples:
EXTRA_OEMAKE_prepend_task-compile =

"${PARALLEL_MAKE} "

EXTRA_OEMAKE_prepend_task-install =
"${PARALLEL_MAKEINST} "

DEPENDS = "attr libaio libcap acl openssl zip-
native"

DEPENDS_append_libc-musl = " fts "

EXTRA_OECONF_append_libc-musl = " LIBS=-lfts "

EXTRA_OEMAKE_append_libc-musl = " LIBC=musl "

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#conditional-metadata


Notice how libc-musl is a condition for appending string values to
the DEPENDS, EXTRA_OECONF, and EXTRA_OEMAKE variables. Like
the earlier unconditional override syntax for appending and
prepending to variables, this conditional syntax is also lazy.
Assignment does not occur until after the recipes and configuration
files have been parsed.

Conditionally appending and prepending to variables based on the
contents of OVERRIDES is complicated and can result in unwanted
surprises. I recommend getting lots of practice with conditional
assignment based on OVERRIDES before adopting these even more
advanced BitBake features.

Inline Python
The @ symbol in BitBake lets us inject and execute Python code
inside variables. An 
inline Python expression gets evaluated each time the variable on
the left-hand side 
of the = operator is expanded. An inline Python expression on the
right-hand side of 
the := operator is evaluated only once at parse-time. Here are some
examples of inline Python variable expansion:
PV = "${@bb.parse.vars_from_file(d.getVar('FILE',

False),d)[1] or '1.0'}"

BOOST_MAJ = "${@"_".join(d.getVar("PV").split(".")
[0:2])}"

GO_PARALLEL_BUILD ?=
"${@oe.utils.parallel_make_argument(d, '-p
%d')}"



Notice that bb and oe are aliases for BitBake and OpenEmbedded's
Python modules. Also, notice that d.getVar("PV") is used to
retrieve the value of the PV variable from the task's runtime
environment. The d variable refers to a datastore object that BitBake
saves a copy of the original execution environment to. This is largely
how BitBake shell and Python code interoperate with one another.

Functions
Functions are the stuff that BitBake tasks are made of. They are
written in either shell or Python and defined inside the .bbclass,
.bb, and .inc files.

Shell
Functions written in shell are executed as functions or tasks.
Functions that run as tasks usually have names that start with the
do_ prefix. Here is what a function looks like in shell:
meson_do_install() {

    DESTDIR='${D}' ninja -v ${PARALLEL_MAKEINST}
install

}

Remember to remain shell-agnostic when writing your functions.
BitBake executes shell snippets with /bin/sh, which may or may
not be a Bash shell, depending on the host distro. Avoid bashisms
by running the scripts/verify-bashisms linter against your
shell scripts.



Python
BitBake understands three types of Python functions: pure, BitBake
style, and anonymous.

Pure Python functions

A pure Python function is written in regular Python and called by
other Python code. By pure, I mean that the function lives exclusively
within the realm of the Python interpreter's execution environment,
not pure in the functional programming sense. Here is an example
from meta/recipes-connectivity/bluez5/bluez5.inc:
def get_noinst_tools_paths (d, bb, tools):

    s = list()

    bindir = d.getVar("bindir")

    for bdp in tools.split():

        f = os.path.basename(bdp)

        s.append("%s/%s" % (bindir, f))

    return "\n".join(s)

Notice that this function takes parameters just like a real Python
function. There are a couple more noteworthy things I would also like
to point out about this function. First, the datastore object is
unavailable, so you need to pass it in as a function parameter (the d
variable, in this instance). Second, the os module is automatically
available, so there is no need to import or pass it in.

Pure Python functions can be called by inline Python assigned to
shell variables using the @ symbol. In fact, that is precisely what



happens on the next line of this include file:
FILES_${PN}-noinst-tools = \

"${@get_noinst_tools_paths(d, bb,
d.getVar('NOINST_TOOLS'))}"

Notice that both the d datastore object and the bb module are
automatically available inside the inline Python scope after the @
symbol.

BitBake style Python functions

A BitBake style Python function definition is denoted by the
python keyword instead of Python's native def keyword. These
functions are executed by invoking bb.build.exec_func() from
other Python functions, including BitBake's own internal ones. Unlike
pure Python functions, BitBake style functions do not take
parameters. The absence of parameters isn't much of a problem
since the datastore object is always available as a global variable;
that is, d. While not as Pythonic, the BitBake style of defining
functions is predominant throughout Yocto. Here is a BitBake style
Python function definition from
meta/classes/sign_rpm.bbclass:
python sign_rpm () {

    import glob

    from oe.gpg_sign import get_signer

    signer = get_signer(d,
d.getVar('RPM_GPG_BACKEND'))

    rpms = glob.glob(d.getVar('RPM_PKGWRITEDIR') +
'/*')



    signer.sign_rpms(rpms,

                     d.getVar('RPM_GPG_NAME'),

                     d.getVar('RPM_GPG_PASSPHRASE'
),

                     d.getVar('RPM_FILE_CHECKSUM_D
IGEST'),

                     int(d.getVar('RPM_GPG_SIGN_CH
UNK')),

                     d.getVar('RPM_FSK_PATH'),

                     d.getVar('RPM_FSK_PASSWORD'))

}

Anonymous Python functions

An anonymous Python function looks much like a BitBake style
Python function, but it executes during parsing. Because they run
first, anonymous functions are good for operations that can be done
at parse-time, such as initializing variables and other forms of setup.
Anonymous function definitions can be written with or without the
__anonymous function name:
python __anonymous () {

    systemd_packages = "${PN} ${PN}-wait-online"

    pkgconfig = d.getVar('PACKAGECONFIG')

    if ('openvpn' or 'vpnc' or 'l2tp' or 'pptp')
in pkgconfig.split():

        systemd_packages += " ${PN}-vpn"

    d.setVar('SYSTEMD_PACKAGES', systemd_packages)

}

python () {



    packages = d.getVar('PACKAGES').split()

    if
d.getVar('PACKAGEGROUP_DISABLE_COMPLEMENTA
RY') != '1':

        types = ['', '-dbg', '-dev']

        if bb.utils.contains('DISTRO_FEATURES',
'ptest', True, False, d):

            types.append('-ptest')

        packages = [pkg + suffix for pkg in
packages

                    for suffix in types]

        d.setVar('PACKAGES', ' '.join(packages))

    for pkg in packages:

        d.setVar('ALLOW_EMPTY_%s' % pkg, '1')

}

The d variable within an anonymous Python function represents the
datastore for the entire recipe (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-
manual/bitbake-user-manual.html#anonymous-python-functions).
So, when you set a variable inside an anonymous function scope,
that value will be available to other functions by way of the global
datastore object when they run.

RDEPENDS revisited
Let's return to the subject of runtime dependencies. These are
packages that must be installed for a given package to run. This list

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#anonymous-python-functions


is defined in the package's RDEPENDS variable. Here is an
interesting excerpt from populate_sdk_base.bbclass:
do_sdk_depends[rdepends] =

"${@get_sdk_ext_rdepends(d)}"

And here is the definition of the corresponding inline Python function:
def get_sdk_ext_rdepends(d):

    localdata = d.createCopy()

    localdata.appendVar('OVERRIDES', ':task-
populate-sdk-ext')

    return localdata.getVarFlag('do_populate_sdk',
'rdepends')

There is quite a bit to unpack here. First, the function makes a copy
of the datastore object so as not to modify the task runtime
environment. Recall, that the OVERRIDES variable is a list of
conditions used to select between multiple versions of a variable.
The next line adds a condition of task-populate-sdk-ext to the
OVERRIDES list in the local copy of the datastore. Lastly, the function
returns the value of the rdepends varflag for the
do_populate_sdk task. The difference now is that rdepends is
evaluated using the _task-populate-sdk-ext versions of
variables, such as the following:
SDK_EXT_task-populate-sdk-ext = "-ext"

SDK_DIR_task-populate-sdk-ext = "${WORKDIR}/sdk-
ext"

I find this use of temporary OVERRIDES to be both clever and
terrifying.



BitBake syntax and semantics can seem daunting. Combining shell
and Python makes for an interesting mix of language features. Not
only do we now know how to define variables and functions, but we
can now also inherit from class files, override variables, and change
conditions programmatically. These advanced concepts appear
again and again in the .bb, .bbappend, .inc, .bbclass, and
.conf files and will become increasingly recognizable over time. As
we strive to achieve proficiency in BitBake and begin to stretch our
newfound abilities, mistakes are bound to occur.

Summary
Even though you can build just about anything with Yocto, it's not
always easy to tell what the build system is doing or how. There is
hope for us, though. There are command-line tools to help us find
where something came from and how to change it. There are task
logs we can read from and write to. There is also devshell, which
we can use to configure and compile individual things from the
command line. And if we divide our projects into multiple layers from
the outset, we are likely to get much more mileage out of the work 
we do.

BitBake's mix of shell and Python supports some powerful language
constructs, such as inheritance, overrides, and conditional variable
selection. That's both good and bad. It's good in the sense that
layers and recipes are completely composable and customizable. It's
bad in the sense that metadata in different recipe files and different



layers can interact in strange and unexpected ways. Combine those
powerful language features with the datastore object's ability to act
as a portal between the shell and Python execution environments,
and you have a recipe for countless hours of fun.

This concludes our in-depth exploration of the Yocto Project and the
first section of this book on the Elements of Embedded Linux. In the
next section of this book, we switch gears and examine System
Architecture and Design Decisions, beginning with Chapter 9,
Creating a Storage Strategy. We will get a chance to use Yocto
again in Chapter 10, Updating Software in the Field, when we
evaluate Mender.

Further reading
The following resources contain more information about the topics
that were introduced in this chapter:

Yocto Projects Overview and Concepts Manual, by Scott
Rifenbark: https://www.yoctoproject.org/docs/latest/overview-
manual/overview-manual.html

What I Wish I'd Known, Yocto Project:
https://www.yoctoproject.org/docs/what-i-wish-id-known

BitBake User Manual, by Richard Purdie, Chris Larson, and Phil
Blundell: https://www.yoctoproject.org/docs/latest/bitbake-user-
manual/bitbake-user-manual.html

https://www.yoctoproject.org/docs/latest/overview-manual/overview-manual.html
https://www.yoctoproject.org/docs/what-i-wish-id-known
https://www.yoctoproject.org/docs/latest/bitbake-user-manual/bitbake-user-manual.html


Embedded Linux Projects Using Yocto Project Cookbook, by Alex
Gonzalez



Sect ion 2:  
System Archi tecture and
Design Decis ions
By the end of Section 2, we will be able to make informed decisions
concerning the storage of programs and data, how to divide work
between kernel device drivers and applications, and how to initialize
the system.

This part of the book comprises the following chapters:

Chapter 9, Creating a Storage Strategy

Chapter 10, Updating Software in the Field

Chapter 11, Interfacing with Device Drivers

Chapter 12, Prototyping with Breakout Boards

Chapter 13, Starting Up – The init Program

Chapter 14, Starting with BusyBox runit

Chapter 15, Managing Power



Chapter 9 :  Creat ing a
Storage Strategy
The mass storage options for embedded devices have a great
impact on the rest of the system in terms of the robustness, speed,
and methods used for in-field updates. Most devices employ flash
memory in some form or another. Flash memory has become much
less expensive over the past few years as storage capacities have
increased from tens of megabytes to tens of gigabytes.

In this chapter, we will begin with a detailed look at the technology
behind flash memory, as well as how different memory organization
strategies affect the low-level driver software that has to manage it,
including the Linux memory technology device (MTD) layer.

For each flash technology, there are different choices when it comes
to the filesystem. I will describe those most commonly found on
embedded devices and complete the survey by providing a summary
of choices for each type of flash memory. Finally, we will consider
some techniques that make the best use of flash memory and draw
everything together into a coherent storage strategy.

In this chapter, we will cover the following topics:

Storage options

Accessing flash memory from the bootloader

Accessing flash memory from Linux



Filesystems for flash memory

Filesystems for NOR and NAND flash memory

Filesystems for managed flash

Read-only compressed filesystems

Temporary filesystems

Making the root filesystem read-only

Filesystem choices

Let's get started!

Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based host system with e2fsprogs, genext2fs, mtd-
utils, squashfs-tools, and util-linux or their
equivalents installed

The U-Boot source tree from Chapter 3, All About Bootloaders

A microSD card reader and card

A USB to TTL 3.3V serial cable

The Linux kernel source tree from Chapter 4, Configuring and
Building the Kernel

BeagleBone Black



A 5V 1A DC power supply

You should have already downloaded and built U-Boot for the
BeagleBone Black back in Chapter 3, All About Bootloaders. You
should have obtained the Linux kernel source tree from Chapter 4,
Configuring and Building the Kernel.

Ubuntu provides packages for most of the tools needed to create
and format various filesystems. To install the tools on an Ubuntu
20.04 LTS system, use the following command:
$ sudo apt install e2fsprogs genext2fs mtd-utils

squashfs-tools util-linux

The mtd-utils package includes mtdinfo, mkfs.jffs2,
sumtool, nandwrite, and the UBI command-line tools.

Storage opt ions
Embedded devices need storage that takes little power and is
physically compact, robust, and reliable over a lifetime of perhaps
tens of years. In almost all cases, this means solid-state storage.
Solid-state storage was introduced many years ago with read-only
memory (ROM), but for the past 20 years, it has been a flash
memory of some kind. There have been several generations of flash
memory in that time, progressing from NOR to NAND to managed
flash such as eMMC.

NOR flash is expensive but reliable and can be mapped into the
CPU address space, which allows you to execute code directly from



flash. NOR flash chips are low capacity, ranging from a few
megabytes to a gigabyte or so.

NAND flash memory is much cheaper than NOR and is available in
higher capacities, in the range of tens of megabytes to tens of
gigabytes. However, it needs a lot of hardware and software support
to turn it into a useful storage medium.

Managed flash memory consists of one or more NAND flash chips,
packaged with a controller that handles the complexities of flash
memory and presents a hardware interface similar to that of a hard
disk. The attraction is that it removes complexity from the driver
software and insulates the system designer from the frequent
changes in flash technology. SD cards, eMMC chips, and USB flash
drives fit into this category. Almost all of the current generations of
smartphones and tablets have eMMC storage, and this trend is likely
to progress with other categories of embedded devices.

Hard drives are seldom found in embedded systems. One exception
is digital video recording in set-top boxes and smart TVs, in which a
large amount of storage is needed with fast write times.

In all cases, robustness is of prime importance: you want the device
to boot and reach a functional state, despite power failures and
unexpected resets. You should choose filesystems that behave well
under such circumstances.

In this section, we will learn the difference between NOR and NAND
flash and consider our options when choosing a managed flash
technology.



NOR flash
The memory cells in NOR flash chips are arranged into erase blocks
of, for example, 128 KiB. Erasing a block sets all the bits to 1. It can
be programmed one word at a time (8, 16, or 32 bits, depending on
the data bus width). Each erase cycle damages the memory cells
slightly, and after a number of cycles, the erase block becomes
unreliable and cannot be used anymore. The maximum number of
erase cycles should be given in the data sheet for the chip but is
usually in the range of 100K to 1M.

The data can be read word by word. The chip is usually mapped into
the CPU address space, which means that you can execute code
directly from NOR flash. This makes it a convenient place to put the
bootloader code as it needs no initialization beyond hardwiring the
address mapping. SoCs that support NOR flash in this way have
configurations that provide a default memory mapping so that it
encompasses the reset vector of the CPU.

The kernel, and even the root filesystem, can also be located in flash
memory, avoiding the need for copying them into RAM, and thus
creating devices with small memory footprints. This technique is
known as eXecute In Place, or XIP. It is very specialized, and I will
not examine it further here. I have included some references at the
end of this chapter, in the Further reading section.

There is a standard register-level interface for NOR flash chips
called the Common Flash Interface or CFI, which all modern chips



support. The CFI is described in standard JESD68, which you can
get from https://www.jedec.org/.

Now that we have learned what NOR flash is, let's look at NAND
flash.

NAND flash
NAND flash is much cheaper than NOR flash and has a higher
capacity. First-generation NAND chips stored one bit per memory
cell in what is now known as a single-level cell (SLC) organization.
Later generations moved on to two bits per cell in multi-level cell
(MLC) chips and now to three bits per cell in tri-level cell (TLC)
chips. As the number of bits per cell increased, the reliability of the
storage decreased, requiring more complex controller hardware and
software to compensate for this. Where reliability is a concern, you
should make sure you are using SLC NAND flash chips.

As with NOR flash, NAND flash is organized into erase blocks
ranging in size from 16 KiB to 512 KiB and, once again, erasing a
block sets all the bits to 1. However, the number of erase cycles
before the block becomes unreliable is lower, typically as few as 1K
cycles for TLC chips and up to 100K for SLC. NAND flash can only
be read and written in pages, usually of 2 or 4 KiB. Since they
cannot be accessed byte by byte, they cannot be mapped into the
address space, so code and data have to be copied into RAM before
they can 
be accessed.

https://www.jedec.org/


Data transfers to and from the chip are prone to bit flips, which can
be detected and corrected using error-correction codes (ECCs).
SLC chips generally use a simple hamming code, which can be
implemented efficiently in software and can correct a single-bit error
in a page read. MLC and TLC chips need more sophisticated codes,
such as Bose-Chaudhuri-Hocquenghem (BCH), which can correct
up to 8-bit errors per page. These need hardware support.

The ECCs have to be stored somewhere, and so there is an extra
area of memory per page known as the out-of-band (OOB) area, or
the spare area. SLC designs usually have 1 byte of OOB per 32
bytes of main storage, so for a 2 KiB page device, the OOB is 64
bytes per page, and for a 4 KiB page, it is 128 bytes. MLC and TLC
chips have proportionally larger OOB areas, to accommodate for
more complex ECCs. The following diagram shows the organization
of a chip with a 128 KiB erase block and 2 KiB pages:



Figure 9.1 – OOB area

During production, the manufacturer tests all the blocks and marks
any that fail by setting a flag in the OOB area of each page in the
block. It is not uncommon to find that brand new chips have up to 2%
of their blocks marked bad in this way. Saving the OOB information
for analyzing before erasing the area can be useful when there is a
problem. Furthermore, it is within the specification for a similar
proportion of blocks to give errors on erase before the erase cycle
limit is reached. The NAND flash driver should detect this and mark it
as bad.

Once space has been made in the OOB area for a bad block flag
and ECC bytes, there are still some bytes left. Some flash
filesystems make use of these free bytes to store filesystem
metadata. Consequently, many parts of the system are interested in
the layout of the OOB area: the SoC ROM boot code, the bootloader,
the kernel MTD driver, the filesystem code, and the tools to create
filesystem images. There is not much standardization, so it is easy to
get into a situation in which the bootloader writes data using an OOB
format that cannot be read by the kernel MTD driver. It is up to you to
make sure that they all agree.

Access to NAND flash chips requires a NAND flash controller, which
is usually part of the SoC. You will need the corresponding driver in
the bootloader and kernel. The NAND flash controller handles the
hardware interface for the chip, transferring data to and from pages,
and may include hardware for error correction.



There is a standard register-level interface for NAND flash chips
known as the 
Open NAND Flash Interface or ONFI, which most modern chips
adhere to. See http://www.onfi.org/ for more information.

Modern NAND flash technology is complicated. Pairing NAND flash
memory with a controller is no longer enough. We also need an
interface to the hardware that abstracts most of the technical details,
such as error correction, away.

Managed flash
The burden of supporting flash memory in the operating system –
NAND in particular – becomes smaller if there is a well-defined
hardware interface and a standard flash controller that hides the
complexities of the memory. This is managed flash memory, and it is
becoming more and more common. In essence, it means combining
one or more flash chips with a microcontroller that offers an ideal
storage device with a small sector size, and that is compatible with
conventional filesystems. The most important types of chips for
embedded systems are Secure Digital (SD) cards and the
embedded variant known 
as eMMC.

MultiMediaCard and Secure Digital cards

The MultiMediaCard (MMC) was introduced in 1997 by SanDisk
and Siemens as a form of packaged storage using flash memory.
Shortly after, in 1999, SanDisk, Matsushita, and Toshiba created the

http://www.onfi.org/


Secure Digital (SD) card, which is based on MMC but adds
encryption and DRM (the "secure" part of the name). Both were
intended for consumer electronics such as digital cameras, music
players, and similar devices. Currently, SD cards are the dominant
form of managed flash for consumer and embedded electronics,
even though the encryption features are seldom used. Newer
versions of the SD specification allow smaller packaging (mini SD
and microSD, which is often written as uSD) and larger capacities:
high capacity SDHC up to 32 GB and extended capacity SDXC up to
2TB.

The hardware interface for MMC and SD cards is very similar, and it
is possible to use full-sized MMC cards in full-sized SD card slots
(but not the other way round). Early incarnations used a 1-bit Serial
Peripheral Interface (SPI); more recent cards use a 
4-bit interface.

There is a command set for reading and writing memory in sectors of
512 bytes. Inside the package is a microcontroller and one or more
NAND flash chips, as shown in the following diagram:



Figure 9.2 – SD card package

The microcontroller implements the command set and manages the
flash memory, performing the function of a flash translation layer, as
described later in this chapter. They are preformatted with a FAT
filesystem: FAT16 on SDSC cards, FAT32 on SDHC, and exFAT on
SDXC. The quality of the NAND flash chips and the software on the
microcontroller varies greatly between cards. It is questionable
whether any of them are sufficiently reliable for deep embedded use,
and certainly not with a FAT filesystem, which is prone to file
corruption. Remember that the prime use case for MMC and SD
cards is for removable storage on cameras, tablets, and phones.

eMMC

Embedded MMC or eMMC is simply MMC memory that's been
packaged so that it can be soldered on to the motherboard, using a
4- or 8-bit interface for data transfer. However, they are intended to
be used as storage for an operating system, so the components are
capable of performing that task. The chips are usually not
preformatted with any filesystem.

Other types of managed flash

One of the first managed flash technologies was CompactFlash
(CF), which uses a subset of the Personal Computer Memory Card
International Association (PCMCIA) hardware interface. CF
exposes memory through a parallel ATA interface and appears to the



operating system as a standard hard disk. They were common in
x86-based single board computers and professional video and
camera equipment.

One other format that we use every day is the USB flash drive. In
this case, memory is accessed through a USB interface and the
controller implements the USB mass storage specification, as well as
the flash translation layer and interface to the flash chip, or chips.
The USB mass storage protocol, in turn, is based on the SCSI disk
command set. As with MMC and SD cards, they are usually
preformatted with a FAT filesystem. Their main use case in
embedded systems is to exchange data with PCs.

A recent addition to the list of options for managed flash storage is
Universal Flash Storage (UFS). Like eMMC, it is packaged in a
chip that is mounted on the motherboard. It has a high-speed serial
interface and can achieve data rates greater than eMMC. It supports
a SCSI disk command set.

Now that we know what types of flash are available, let's learn how
U-Boot loads a kernel image from each of them.

Accessing f lash memory
from the boot loader
In Chapter 3, All About Bootloaders, I mentioned the need for the
bootloader to load kernel binaries and other images from various
flash devices, and to perform system maintenance tasks such as



erasing and reprogramming flash memory. It follows that the
bootloader must have the drivers and infrastructure needed to
support read, erase, and write operations on the type of memory you
have, whether it be NOR, NAND, or managed. I will use U-Boot in
the following examples; other bootloaders follow a similar pattern.

U-Boot and NOR flash
U-Boot has drivers for NOR CFI chips in drivers/mtd and utilizes
various erase commands to erase memory and cp.b to copy data
byte by byte, programming the flash cells. Suppose that you have
NOR flash memory mapped from 0x40000000 to 0x48000000, of
which 4 MiB, starting at 0x40040000, is a kernel image. Here, you
would load a new kernel into flash using these U-Boot commands:
=> tftpboot 100000 uImage

=> erase 40040000 403fffff

=> cp.b 100000 40040000 $(filesize)

The filesize variable in the preceding example is set by the
tftpboot command, to the size of the file just downloaded.

U-Boot and NAND flash
For NAND flash, you need a driver for the NAND flash controller on
your SoC, which you can find in the U-Boot source code in the
drivers/mtd/nand directory. You can use the nand command to
manage memory using the erase, write, and read sub-



commands. This example shows a kernel image being loaded into
RAM at 0x82000000 and then placed into flash, starting at the
0x280000 offset:
=> tftpboot 82000000 uImage

=> nand erase 280000 400000

=> nand write 82000000 280000 $(filesize)

U-Boot can also read files stored in the JFFS2, YAFFS2, and UBIFS
filesystems. nand write will skip blocks that are marked as bad. If
the data you're writing is for a filesystem, make sure that the
filesystem also skips bad blocks.

U-Boot and MMC, SD, and eMMC
U-Boot has drivers for several MMC controllers in drivers/mmc.
You can access raw data using mmc read and mmc write at the
user interface level, which allows you to handle raw kernel and
filesystem images.

U-Boot can also read files from the FAT32 and ext4 filesystems on
MMC storage.

U-Boot needs drivers to access NOR, NAND, and managed flash.
Which driver you should use depends on your choice of NOR chip or
the flash controller on your SoC. Accessing raw NOR and NAND
flash from Linux involves additional layers of software.



Accessing f lash memory
from Linux
Raw NOR and NAND flash memory is handled by the Memory
Technology Device subsystem, or MTD, which provides you with
basic interfaces to read, erase, and write blocks of flash memory. In
the case of NAND flash, there are also functions that handle the
OOB area and are used to identify bad blocks.

For managed flash, you need drivers to handle a particular hardware
interface. MMC/SD cards and eMMC use the mmcblk driver, while
CompactFlash and hard drives use the SCSI disk driver, sd. USB
flash drives use the usb_storage driver, together with the 
sd driver.

Memory technology devices
The MTD subsystem was started by David Woodhouse in 1999 and
has been extensively developed over the intervening years. In this
section, I will concentrate on the way it handles the two main
technologies, NOR and NAND flash.

MTD consists of three layers: a core set of functions, a set of drivers
for various types of chips, and user-level drivers that present the
flash memory as a character device or a block device, as shown in
the following diagram:



Figure 9.3 – MTD layers

The chip drivers are at the lowest level and interface with flash chips.
Only a small number of drivers are needed for NOR flash chips,
enough to cover the CFI standard and variations, plus a few non-
compliant chips, which are now mostly obsolete. For NAND flash,
you will need a driver for the NAND flash controller you are using;
this is usually supplied as part of the board support package. There
are drivers for about 40 of them in the current mainline kernel, in the
drivers/mtd/nand directory.

MTD partit ions
In most cases, you will want to partition the flash memory into a
number of areas, for example, to provide space for a bootloader, a
kernel image, or a root filesystem. In MTD, there are several ways to
specify the size and location of partitions, with the main ones being
as follows:

Through the kernel command line using
CONFIG_MTD_CMDLINE_PARTS

Via the device tree using CONFIG_MTD_OF_PARTS



With a platform-mapping driver

In the case of the first option, the kernel command-line option to use
is mtdparts, which is defined as follows in the Linux source code in
drivers/mtd/cmdlinepart.c:
mtdparts=<mtddef>[;<mtddef]

<mtddef> := <mtd-id>:<partdef>[,<partdef>]

<mtd-id> := unique name for the chip

<partdef> := <size>[@<offset>][<name>][ro][lk]

<size> := size of partition OR "-" to denote all
remaining

     space

<offset> := offset to the start of the partition;
leave blank

     to follow the previous partition without any
gap

<name> := '(' NAME ')'

Perhaps an example will help. Imagine that you have one flash chip
of 128 MiB that is to be divided into five partitions. A typical
command line would be this:
mtdparts=:512k(SPL)ro,780k(U-Boot)ro,128k(U-

BootEnv),

4m(Kernel),-(Filesystem)

The first element, before the colon, is mtd-id, which identifies the
flash chip, either by number or by the name assigned by the board
support package. If there is only one chip, as there is here, it can be
left empty. If there is more than one chip, the information for each is
separated by a semicolon. Then, for each chip, there is a comma-



separated list of partitions, each with a size in bytes, KiB (k) or MiB
(m), and a name in parentheses. The ro suffix makes the partition
read-only to MTD and is often used to prevent accidental overwriting
of the bootloader. The size of the last partition for the chip may be
replaced by a dash (-), indicating that it should take up all the
remaining space.

You can see a summary of the configuration at runtime by reading
/proc/mtd:
# cat /proc/mtd

dev: size erasesize name

mtd0: 00080000 00020000 "SPL"

mtd1: 000C3000 00020000 "U-Boot"

mtd2: 00020000 00020000 "U-BootEnv"

mtd3: 00400000 00020000 "Kernel"

mtd4: 07A9D000 00020000 "Filesystem"

There is more detailed information for each partition in
/sys/class/mtd, including the erase block size and the page size,
and it is nicely summarized using mtdinfo:
# mtdinfo /dev/mtd0

mtd0

Name:           SPL

Type:           nand

Eraseblock size:       131072 bytes, 128.0 KiB

Amount of eraseblocks:     4 (524288 bytes, 512.0
KiB)

Minimum input/output unit size: 2048 bytes

Sub-page size:        512 bytes



OOB size:        64 bytes

Character device major/minor:  90:0

Bad blocks are allowed:    true

Device is writable:   false

Another way of specifying MTD partitions is through the device tree.
Here is an example that creates the same partitions as the command
line example:
nand@0,0 {

#address-cells = <1>;

#size-cells = <1>;

partition@0 {

  label = "SPL";

  reg = <0 0x80000>;

};

partition@80000 {

  label = "U-Boot";

  reg = <0x80000 0xc3000>;

};

partition@143000 {

  label = "U-BootEnv";

  reg = <0x143000 0x20000>;

};

partition@163000 {

  label = "Kernel";

  reg = <0x163000 0x400000>;

};

partition@563000 {

  label = "Filesystem";



  reg = <0x563000 0x7a9d000>;

};

};

A third alternative is to code the partition information as platform data
in an mtd_partition structure, as shown in this example taken
from arch/arm/mach-omap2/board-omap3beagle.c
(NAND_BLOCK_SIZE is defined elsewhere as 128 KiB):
static struct mtd_partition

omap3beagle_nand_partitions[] = {

{

  .name = "X-Loader",

  .offset = 0,

  .size = 4 * NAND_BLOCK_SIZE,

  .mask_flags = MTD_WRITEABLE, /* force read-only
*/

},

{

  .name = "U-Boot",

  .offset = 0x80000;

  .size = 15 * NAND_BLOCK_SIZE,

  .mask_flags = MTD_WRITEABLE, /* force read-only
*/

},

{

  .name = "U-Boot Env",

  .offset = 0x260000;

  .size = 1 * NAND_BLOCK_SIZE,

},



{

  .name = "Kernel",

  .offset = 0x280000;

  .size = 32 * NAND_BLOCK_SIZE,

},

{

  .name = "File System",

  .offset = 0x680000;

  .size = MTDPART_SIZ_FULL,

},

};

Platform data is deprecated: you will only find it used in BSPs for old
SoCs that have not been updated to use a device tree.

MTD device drivers
The upper level of the MTD subsystem contains a pair of device
drivers:

A character device, with a major number of 90. There are two
device nodes per MTD partition number, N: /dev/mtdN (minor
number=N*2) and /dev/mtdNro (minor number=(N*2 + 1)). The
latter is just a read-only version of the former.

A block device, with a major number of 31 and a minor number of
N. The device nodes are in the form /dev/mtdblockN.

Let's look at the character device first since it is the most commonly
used of the two.

The MTD character device, mtd



The character devices are the most important: they allow you to
access the underlying flash memory as an array of bytes so that you
can read and write (program) the flash. It also implements a number
of ioctl functions that allow you to erase blocks and manage the
OOB area on NAND chips. The following list has been taken from
include/uapi/mtd/mtd-abi.h:

MEMGETINFO: Gets basic MTD characteristic information.

MEMERASE: Erases blocks in the MTD partition.

MEMWRITEOOB: Writes out-of-band data for the page.

MEMREADOOB: Reads out-of-band data for the page.

MEMLOCK: Locks the chip (if supported).

MEMUNLOCK: Unlocks the chip (if supported).

MEMGETREGIONCOUNT: Gets the number of erase regions: non-
zero if there are erase blocks of differing sizes in the partition,
which is common for NOR flash, 
rare on NAND.

MEMGETREGIONINFO: If MEMGETREGIONCOUNT is non-zero, this
can be used to get the offset, size, and block count of each
region.

MEMGETOOBSEL: Deprecated.

MEMGETBADBLOCK: This gets the bad block flag.

MEMSETBADBLOCK: This sets the bad block flag.



OTPSELECT: This sets OTP (one-time programmable) mode, if
the chip supports it.

OTPGETREGIONCOUNT: This gets the number of OTP regions.

OTPGETREGIONINFO: This gets information about an OTP
region.

ECCGETLAYOUT: Deprecated.

There is a set of utility programs known as mtd-utils for
manipulating flash memory that makes use of these ioctl
functions. The source can be found at git://git.infradead.org/mtd-
utils.git and is available as a package in the Yocto Project and
Buildroot. The essential tools are shown in the following list. The
package also contains utilities for the JFFS2 and UBI/UBIFS
filesystems, which I will cover later. For each of these tools, the MTD
character device is one of the following parameters:

flash_erase: Erases a range of blocks.

flash_lock: Locks a range of blocks.

flash_unlock: Unlocks a range of blocks.

nanddump: Dumps memory from NAND flash, optionally
including the OOB 
area. Skips bad blocks.

nandtest: Tests and performs diagnostics for NAND flash.

nandwrite: Writes (programs) data from a file into NAND flash,
skipping 



bad blocks.

TIP

You must always erase flash memory before writing new contents
to it: flash_erase is the command that does this.

To program NOR flash, you simply copy bytes to the MTD device
node using a file copy command such as cp.

Unfortunately, this doesn't work with NAND memory as the copy will
fail at the first bad block. Instead, use nandwrite, which skips over
any bad blocks. To read back NAND memory, you should use
nanddump, which also skips bad blocks.

The MTD block device, mtdblock
The mtdblock driver isn't used often. Its purpose is to present flash
memory as a block device you can use to format and mount a
filesystem. However, it has severe limitations because it does not
handle bad blocks in NAND flash, it does not do wear leveling, and it
does not handle the mismatch in size between filesystem blocks and
flash erase blocks. In other words, it does not have a flash
translation layer, which is essential for reliable file storage. The only
case where the mtdblock device is useful is for mounting read-only
file systems such as SquashFS on top of reliable flash memory such
as NOR.

TIP



If you want a read-only filesystem on NAND flash, you should use
the UBI driver, as described later in this chapter.

Logging kernel oops to MTD
A kernel error, or oops, is normally logged via the klogd and syslogd
daemons to a circular memory buffer or a file. Following a reboot, the
log will be lost in the case of a ring buffer, and even in the case of a
file, it may not have been properly written to before the system
crashed. A more reliable method is to write oops and kernel panics
to an MTD partition as a circular log buffer. You can enable it with
CONFIG_MTD_OOPS and add console=ttyMTDN to the kernel
command line, with N being the MTD device number to write the
messages to.

Simulating NAND memory
The NAND simulator emulates a NAND chip using system RAM. The
main use is for testing code that has to be NAND-aware without
access to physical NAND memory. In particular, the ability to
simulate bad blocks, bit flips, and other errors allows you to test code
paths that are difficult to exercise using real flash memory. For more
information, the best place to look is in the code itself, which
provides a comprehensive description of the ways you can configure
the driver. The code is in drivers/mtd/nand/nandsim.c. Enable
it with the CONFIG_MTD_NAND_NANDSIM kernel configuration.

The MMC block driver



MMC/SD cards and eMMC chips are accessed using the mmcblk
block driver. You 
need a host controller to match the MMC adapter you are using,
which is part of 
the board support package. The drivers are located in the Linux
source code in 
drivers/mmc/host.

MMC storage is partitioned using a partition table in exactly the
same way you would for hard disks; that is, by using fdisk or a
similar utility.

We now know how Linux accesses each type of flash. Next, we will
look at the problems intrinsic to flash memory and how Linux deals
with them, either by way of the filesystem or the block device driver.

Fi lesystems for f lash
memory
There are several challenges when it comes to making efficient use
of flash memory for mass storage: the mismatch between the size of
an erase block and a disk sector, the limited number of erase cycles
per erase block, and the need for bad block handling on NAND
chips. These differences are resolved by a flash translation layer,
or FTL.

Flash translat ion layers



A flash translation layer has the following features:

Sub allocation: Filesystems work best with a small allocation
unit, traditionally a 512-byte sector. This is much smaller than a
flash erase block of 128 KiB or more. Therefore, erase blocks
have to be subdivided into smaller units to avoid wasting large
amounts of space.

Garbage collection: A consequence of suballocation is that an
erase block will contain a mixture of good data and stale data
once the filesystem has been in use for a while. Since we can
only free up whole erase blocks, the only way to reclaim this free
space is to coalesce the good data into one place, and then
return the now empty erase block to the free list. This is known as
garbage collection, and it is usually implemented as a
background thread.

Wear leveling: There is a limit on the number of erase cycles for
each block. To maximize the lifespan of a chip, it is important to
move data around so that each block is erased roughly the same
number of times.

Bad block handling: On NAND flash chips, you have to avoid
using any block marked bad and also mark good blocks as bad if
they cannot be erased.

Robustness: Embedded devices may be powered off or reset
without warning, so any filesystem should be able to cope without
corruption, usually by incorporating a journal or a log of
transactions.



There are several ways to deploy the flash translation layer:

In the filesystem: As with JFFS2, YAFFS2, and UBIFS.

In the block device driver: The UBI driver, which UBIFS
depends on, implements some aspects of a flash translation
layer.

In the device controller: As with managed flash devices.

When the flash translation layer is in the filesystem or the block
driver, the code is part of the kernel and so it is open source,
meaning that we can see how it works and we can expect that it will
be improved over time. On the other hand, if the FTL is inside a
managed flash device, it is hidden from view and we cannot verify
whether it works as we would want. Not only that, but putting the FTL
into the disk controller means that it misses out on information that is
held at the filesystem layer, such as which sectors belong to files that
have been deleted and so do not contain useful data anymore. The
latter problem is solved by adding commands that pass this
information between the filesystem and the device. I will describe
how this works in the section on the TRIM command later on.
However, the question of code visibility remains. If you are using
managed flash, you just have to choose a manufacturer you can
trust.

Now that we know the motivation behind filesystems, let's look at
which filesystems are best suited for which types of flash.



Fi lesystems for NOR and
NAND f lash memory
To use raw flash chips for mass storage, you have to use a
filesystem that understands the peculiarities of the underlying
technology. There are three such filesystems:

JFFS2 (Journaling Flash File System 2): This was the first
flash filesystem for Linux and is still in use today. It works for
NOR and NAND memory, but is notoriously slow during mount.

YAFFS2 (Yet Another Flash File System 2): This is similar to
JFFS2, but specifically for NAND flash memory. It was adopted
by Google as the preferred raw flash filesystem on Android
devices.

UBIFS (Unsorted Block Image File System): This works in
conjunction with the UBI block driver to create a reliable flash
filesystem. It works well with both NOR and NAND memory, and
since it generally offers better performance than JFFS2 or
YAFFS2, it should be the preferred solution for new designs.

All of these use MTD as the common interface to flash memory.

JFFS2
The Journaling Flash File System had its beginnings in the
software for the Axis 2100 network camera in 1999. For many years,



it was the only flash filesystem for Linux and has been deployed on
many thousands of different types of devices. Today, it is not the best
choice, but I will cover it first because it shows the beginning of the
evolutionary path.

JFFS2 is a log-structured filesystem that uses MTD to access flash
memory. In a log-structured filesystem, changes are written
sequentially as nodes to flash memory. A node may contain changes
to a directory, such as the names of files created and deleted, or it
may contain changes to file data. After a while, a node may be
superseded by information contained in subsequent nodes and
becomes an obsolete node. Both NOR and NAND flash are
organized as erase blocks. Erasing a block sets all its bits to 1.

JFFS2 categorizes erase blocks into three types:

Free: This contains no nodes at all.

Clean: This only contains valid nodes.

Dirty: This contains at least one obsolete node.

At any one time, there is one block receiving updates, which is called
the open block. If power is lost or the system is reset, the only data
that can be lost is the last write to the open block. In addition, nodes
are compressed as they are written, increasing the effective storage
capacity of the flash chip, which is important if you are using
expensive NOR flash memory.

When the number of free blocks falls below a certain threshold, a
garbage collector kernel thread is started, which scans for dirty



blocks, copies the valid nodes into the open block, and then frees up
the dirty block.

At the same time, the garbage collector provides a crude form of
wear leveling because it cycles valid data from one block to another.
The way that the open block is chosen means that each block is
erased roughly the same number of times, as long as it contains
data that changes from time to time. Sometimes, a clean block is
chosen for garbage collection to make sure that blocks containing
static data that is seldom written are also wear-leveled.

JFFS2 filesystems have a write-through cache, meaning that writes
are written to the flash memory synchronously as if they have been
mounted with the -o sync option. While improving reliability, it does
increase the time to write data. There is a further problem with small
writes: if the length of a write is comparable to the size of the node
header (40 bytes), the overhead becomes high. A well-known corner
case is log files, produced, for example, by syslogd.

Summary nodes
There is one overriding disadvantage to JFFS2: since there is no on-
chip index, the directory's structure has to be deduced at mount-time
by reading the log from start to finish. At the end of the scan, you
have a complete picture of the directory structure of the valid nodes,
but the time taken is proportional to the size of the partition. It is not
uncommon to see mount times of the order of one second per
megabyte, leading to total mount times of tens or hundreds of
seconds.



Summary nodes became an option in Linux 2.6.15 for reducing the
time to scan during a mount. A summary node is written at the end of
the open erase block, just before it is closed. The summary node
contains all of the information needed for the mount-time scan,
thereby reducing the amount of data to process during the scan.
Summary nodes can reduce mount times by a factor of between two
and five, at the expense of an overhead of about 5% of the storage
space. They are enabled with the CONFIG_JFFS2_SUMMARY kernel
configuration.

Clean markers
An erased block with all its bits set to 1 is indistinguishable from a
block that has been written with 1s, but the latter has not had its
memory cells refreshed and cannot be programmed again until it is
erased. JFFS2 uses a mechanism called clean markers to
distinguish between these two situations. After a successful block
erase, a clean marker is written, either to the beginning of the block
or to the OOB area of the first page of the block. If the clean marker
exists, then it must be a clean block.

Creating a JFFS2 fi lesystem
Creating an empty JFFS2 filesystem at runtime is as simple as
erasing an MTD partition with clean markers and then mounting it.
There is no formatting step because a blank JFFS2 filesystem
consists entirely of free blocks. For example, to format MTD partition
6, you would enter these commands on the device:
# flash_erase -j /dev/mtd6 0 0

# mount -t jffs2 mtd6 /mnt



The -j option to flash_erase adds the clean markers, and
mounting with the jffs2 type presents the partition as an empty
filesystem. Note that the device to be mounted is given as mtd6, not
/dev/mtd6. Alternatively, you can give the block the
/dev/mtdblock6 device node. This is just a peculiarity of JFFS2.
Once mounted, you can treat it like any other filesystem.

You can create a filesystem image directly from the staging area of
your development system using mkfs.jffs2 to write out the files in
JFFS2 format, and sumtool to add the summary nodes. Both of
these are part of the mtd-utils package.

As an example, to create an image of the files in rootfs for a
NAND flash device with an erase block size of 128 KiB (0x20000)
and with summary nodes, you would use these two commands:
$ mkfs.jffs2 -n -e 0x20000 -p -d ~/rootfs -o

~/rootfs.jffs2

$ sumtool -n -e 0x20000 -p -i ~/rootfs.jffs2 -o
~/rootfs-sum.jffs2

The -p option adds padding at the end of the image file to make it a
whole number of erase blocks. The -n option suppresses the
creation of clean markers in the image, which is normal for NAND
devices, as the clean marker is in the OOB area. For NOR devices,
you would leave out the -n option. You can use a device table with
mkfs.jffs2 to set the permissions and the ownership of files by
adding -D [device table]. Of course, Buildroot and the Yocto
Project will do all this for you.



You can program the image into flash memory from your bootloader.
For example, if you have loaded a filesystem image into RAM at
address 0x82000000 and you want to load it into a flash partition
that begins at 0x163000 bytes from the start of the flash chip and is
0x7a9d000 bytes long, the U-Boot commands for this would be as
follows:
nand erase clean 163000 7a9d000

nand write 82000000 163000 7a9d000

You can do the same thing from Linux using the mtd driver, like this:
# flash_erase -j /dev/mtd6 0 0

# nandwrite /dev/mtd6 rootfs-sum.jffs2

To boot with a JFFS2 root filesystem, you need to pass the
mtdblock device on the kernel command line for the partition and a
rootfstype since JFFS2 cannot be 
auto-detected:
root=/dev/mtdblock6 rootfstype=jffs2

Shortly after JFFS2 was introduced, another log-structured
filesystem appeared.

YAFFS2
The YAFFS filesystem was written by Charles Manning, beginning in
2001, specifically 
to handle NAND flash chips at a time when JFFS2 did not.



Subsequent changes to handle larger (2 KiB) page sizes resulted in
YAFFS2. The website for YAFFS is https://www.yaffs.net.

YAFFS is also a log-structured filesystem that follows the same
design principles as JFFS2. The different design decisions mean
that it has a faster mount-time scan, simpler and faster garbage
collection, and has no compression, which speeds up reads and
writes at the expense of less efficient use of storage.

YAFFS is not limited to Linux; it has been ported to a wide range of
operating systems. It has a dual license: GPLv2, in order to be
compatible with Linux, and a commercial license for other operating
systems. Unfortunately, the YAFFS code has never been merged
into mainline Linux, so you will have to patch your kernel.

To get YAFFS2 and patch a kernel, you would use the following:
$ git clone git://www.aleph1.co.uk/yaffs2

$ cd yaffs2

$ ./patch-ker.sh c m <path to your link source>

Then, you can configure the kernel with CONFIG_YAFFS_YAFFS2.

Creating a YAFFS2 fi lesystem
As with JFFS2, to create a YAFFS2 filesystem at runtime, you only
need to erase the partition and mount it, but note that in this case,
you do not enable clean markers:
# flash_erase /dev/mtd/mtd6 0 0

# mount -t yaffs2 /dev/mtdblock6 /mnt

To create a filesystem image, the simplest thing to do is use the
mkyaffs2 tool from https://code.google.com/p/yaffs2utils using the

https://www.yaffs.net/
https://code.google.com/p/yaffs2utils


following command:
$ mkyaffs2 -c 2048 -s 64 rootfs rootfs.yaffs2

Here, -c is the page size and -s the OOB size. There is a tool
named mkyaffs2image that is part of the YAFFS code, but it has a
couple of drawbacks. Firstly, the page and OOB size are hard coded
in the source: you will have to edit and recompile if you have
memory that does not match the defaults of 2,048 and 64. Secondly,
the OOB layout is incompatible with MTD, which uses the first two
bytes as a bad block marker, whereas mkyaffs2image uses those
bytes to store part of the YAFFS metadata.

To copy the image to the MTD partition from a Linux shell prompt on
the target, follow these steps:
# flash_erase /dev/mtd6 0 0

# nandwrite -a /dev/mtd6 rootfs.yaffs2

To boot with a YAFFS2 root filesystem, add the following to the
kernel command line:
root=/dev/mtdblock6 rootfstype=yaffs2

While we are on the topic of filesystems for raw NOR and NAND
flash, let's look at one of the more modern options. This filesystem
runs on top of the UBI driver.

UBI and UBIFS
The Unsorted Block Image (UBI) driver is a volume manager for
flash memory that takes care of bad block handling and wear



leveling. It was implemented by Artem Bityutskiy and first appeared
in Linux 2.6.22. In parallel with that, engineers at Nokia were working
on a filesystem that would take advantage of the features of UBI,
which they called UBIFS; it appeared in Linux 2.6.27. Splitting the
flash translation layer in this way makes the code more modular and
also allows other filesystems to take advantage of the UBI driver, as
we shall see later on.

UBI
UBI provides an idealized, reliable view of a flash chip by mapping
physical erase blocks (PEB) to logical erase blocks (LEB). Bad
blocks are not mapped to LEBs and so are never used. If a block
cannot be erased, it is marked as bad and dropped from the
mapping. UBI keeps a count of the number of times each PEB has
been erased in the header of the LEB, and then changes the
mapping to ensure that each PEB is erased the same number of
times.

UBI accesses the flash memory through the MTD layer. As an extra
feature, it can divide an MTD partition into a number of UBI volumes,
which improves wear leveling in the following way: imagine that you
have two filesystems, one containing fairly static data, such as a root
filesystem, and the other containing data that is constantly changing.

If they are stored in separate MTD partitions, the wear leveling only
has an effect on the second one, whereas if you choose to store
them in two UBI volumes in a single MTD partition, the wear leveling
takes place over both areas of the storage, and the lifetime of the



flash memory is increased. The following diagram illustrates this
situation:

Figure 9.4 – UBI volumes

In this way, UBI fulfills two of the requirements of a flash translation
layer: wear leveling and bad-block handling.

To prepare an MTD partition for UBI, you don't use flash_erase as
with JFFS2 and YAFFS2. Instead, you use the ubiformat utility,
which preserves the erase counts that are stored in the PEB
headers. ubiformat needs to know the minimum unit of I/O, which
for most NAND flash chips is the page size, but some chips allow
reading and writing in subpages that are a half or a quarter of the
page size. Consult the chip data sheet for details and, if in doubt,
use the page size. This example prepares mtd6 using a page size of
2048 bytes:
# ubiformat /dev/mtd6 -s 2048



ubiformat: mtd0 (nand), size 134217728 bytes
(128.0 MiB),

1024 eraseblocks of 131072 bytes (128.0 KiB),

min. I/O size 2048 bytes

Then, you can use the ubiattach command to load the UBI driver
on an MTD partition that has been prepared in this way:
# ubiattach -p /dev/mtd6 -O 2048

UBI device number 0, total 1024 LEBs (130023424
bytes, 124.0 MiB),

available 998 LEBs (126722048 bytes, 120.9 MiB),

LEB size 126976 bytes (124.0 KiB)

This creates the /dev/ubi0 device node, through which you can
access the UBI volumes. You can use ubiattach on several MTD
partitions, in which case they can 
be accessed through /dev/ubi1, /dev/ubi2, and so on. Note that
since each LEB has 
a header containing the meta information used by UBI, the LEB is
smaller than the PEB by two pages. For example, a chip with a PEB
size of 128 KiB and 2 KiB pages would have an LEB of 124 KiB. This
is important information that you will need when creating a UBIFS
image.

The PEB-to-LEB mapping is loaded into memory during the attach
phase, a process that takes time proportional to the number of
PEBs, typically a few seconds. A new feature was added in Linux 3.7
called the UBI fastmap, which checkpoints the mapping to flash from



time to time and so reduces the attach time. The kernel configuration
option for this is CONFIG_MTD_UBI_FASTMAP.

The first time you attach to an MTD partition after a ubiformat,
there will be no volumes. You can create volumes using ubimkvol.
For example, suppose you have a 128 MiB MTD partition and you
want to split it into two volumes; the first is to be 32 MiB in size and
the second will take up the remaining space:
# ubimkvol /dev/ubi0 -N vol_1 -s 32MiB

Volume ID 0, size 265 LEBs (33648640 bytes, 32.1
MiB),

LEB size 126976 bytes (124.0 KiB), dynamic, name
"vol_1", alignment 1

# ubimkvol /dev/ubi0 -N vol_2 -m

Volume ID 1, size 733 LEBs (93073408 bytes, 88.8
MiB),

LEB size 126976 bytes (124.0 KiB), dynamic, name
"vol_2", alignment 1

Now, you have a device with two nodes: /dev/ubi0_0 and
/dev/ubi0_1. You can confirm this using ubinfo:
# ubinfo -a /dev/ubi0

ubi0

Volumes count: 2

Logical eraseblock size: 126976 bytes, 124.0 KiB

Total amount of logical eraseblocks: 1024
(130023424 bytes, 124.0 MiB)

Amount of available logical eraseblocks: 0 (0
bytes)

Maximum count of volumes 128



Count of bad physical eraseblocks: 0

Count of reserved physical eraseblocks: 20

Current maximum erase counter value: 1

Minimum input/output unit size: 2048 bytes

Character device major/minor: 250:0

Present volumes: 0, 1

Volume ID: 0 (on ubi0)

Type: dynamic

Alignment: 1

Size: 265 LEBs (33648640 bytes, 32.1 MiB)

State: OK

Name: vol_1

Character device major/minor: 250:1

-----------------------------------

Volume ID: 1 (on ubi0)

Type: dynamic

Alignment: 1

Size: 733 LEBs (93073408 bytes, 88.8 MiB)

State: OK

Name: vol_2

Character device major/minor: 250:2

At this point, you have a 128 MiB MTD partition containing two UBI
volumes of sizes 
32 MiB and 88.8 MiB. The total storage available is 32 MiB plus 88.8
MiB, which equals 120.8 MiB. The remaining space, 7.2 MiB, is
taken up by the UBI headers at the start of each PEB, and space is
reserved for mapping out blocks that go bad during the lifetime 
of the chip.



UBIFS
UBIFS uses a UBI volume to create a robust filesystem. It adds sub-
allocation and garbage collection to create a complete flash
translation layer. Unlike JFFS2 and YAFFS2, it stores index
information on-chip, so mounting is fast, although don't forget that
attaching the UBI volume beforehand may take a significant amount
of time. It also allows write-back caching as in a normal disk
filesystem, which means that writes are much faster, but with the
usual problem of potential loss of data that has not been flushed
from the cache to flash memory in the event of power down. You can
resolve this problem by making 
careful use of the fsync(2) and fdatasync(2) functions to force
a flush of file data at crucial points.

UBIFS has a journal for fast recovery in the event of power down.
The minimum size of the journal is 4 MiB, so UBIFS is not suitable
for very small flash devices.

Once you have created the UBI volumes, you can mount them using
the device node for the volume, such as /dev/ubi0_0, or by using
the device node for the whole partition plus the volume name, as
shown here:
# mount -t ubifs ubi0:vol_1 /mnt

Creating a filesystem image for UBIFS is a two-stage process: first,
you create a UBIFS image using mkfs.ubifs, and then embed it
into a UBI volume using ubinize.



For the first stage, mkfs.ubifs needs to be informed of the page
size with -m, the size of the UBI LEB with -e, and the maximum
number of erase blocks in the volume with -c. If the first volume is
32 MiB and an erase block is 128 KiB, then the number of erase
blocks is 256. So, to take the contents of the rootfs directory and
create a UBIFS image named rootfs.ubi, you would type the
following:
$ mkfs.ubifs -r rootfs -m 2048 -e 124KiB -c 256 -o

rootfs.ubi

The second stage requires you to create a configuration file for
ubinize, which describes the characteristics of each volume in the
image. The help page (ubinize -h) provides details about the
format. This example creates two volumes, vol_1 and vol_2:
[ubifsi_vol_1]

mode=ubi

image=rootfs.ubi

vol_id=0

vol_name=vol_1

vol_size=32MiB

vol_type=dynamic

[ubifsi_vol_2]

mode=ubi

image=data.ubi

vol_id=1

vol_name=vol_2

vol_type=dynamic

vol_flags=autoresize



The second volume has an auto-resize flag and so will expand to
fill the remaining space on the MTD partition. Only one volume can
have this flag. From this information, ubinize will create an image
file named by the -o parameter, with the PEB size as -p, the page
size as -m, and the sub-page size as -s:
$ ubinize -o ~/ubi.img -p 128KiB -m 2048 -s 512

ubinize.cfg

To install this image on the target, you would enter these commands
on the target:
# ubiformat /dev/mtd6 -s 2048

# nandwrite /dev/mtd6 /ubi.img

# ubiattach -p /dev/mtd6 -O 2048

If you want to boot with a UBIFS root filesystem, you will need to
provide these kernel command-line parameters:
ubi.mtd=6 root=ubi0:vol_1 rootfstype=ubifs

UBIFS completes our survey of filesystems for raw NOR and NAND
flash memory. Next, we'll look at filesystems for managed flash.

Fi lesystems for managed
f lash
As the trend toward managed flash technologies continues,
particularly eMMC, we need to consider how to use it effectively.
While they appear to have the same characteristics as hard disk
drives, the underlying NAND flash chips have the limitations of large



erase blocks with limited erase cycles and bad block handling. And,
of course, we need robustness in the event of losing power.

It is possible to use any of the normal disk filesystems, but we should
try to choose one that reduces disk writes and has a fast restart after
an unscheduled shutdown.

Flashbench
To make optimum use of the underlying flash memory, you need to
know the erase block size and page size. Manufacturers do not
publish these numbers as a rule, but it is possible to deduce them by
observing the behavior of the chip or card.

Flashbench is one such tool. It was initially written by Arnd Bergman,
as described in the LWN article available at
https://lwn.net/Articles/428584. You can get the code from
https://github.com/bradfa/flashbench.

Here is a typical run on a SanDisk 4 GB SDHC card:
$ sudo ./flashbench -a /dev/mmcblk0 --

blocksize=1024

align 536870912 pre 4.38ms on 4.48ms post 3.92ms
diff 332µs

align 268435456 pre 4.86ms on 4.9ms post 4.48ms
diff 227µs

align 134217728 pre 4.57ms on 5.99ms post 5.12ms
diff 1.15ms

align 67108864 pre 4.95ms on 5.03ms post 4.54ms
diff 292µs

https://lwn.net/Articles/428584
https://github.com/bradfa/flashbench


align 33554432 pre 5.46ms on 5.48ms post 4.58ms
diff 462µs

align 16777216 pre 3.16ms on 3.28ms post 2.52ms
diff 446µs

align 8388608 pre 3.89ms on 4.1ms post 3.07ms diff
622µs

align 4194304 pre 4.01ms on 4.89ms post 3.9ms diff
940µs

align 2097152 pre 3.55ms on 4.42ms post 3.46ms
diff 917µs

align 1048576 pre 4.19ms on 5.02ms post 4.09ms
diff 876µs

align 524288 pre 3.83ms on 4.55ms post 3.65ms diff
805µs

align 262144 pre 3.95ms on 4.25ms post 3.57ms diff
485µs

align 131072 pre 4.2ms on 4.25ms post 3.58ms diff
362µs

align 65536 pre 3.89ms on 4.24ms post 3.57ms diff
511µs

align 32768 pre 3.94ms on 4.28ms post 3.6ms diff
502µs

align 16384 pre 4.82ms on 4.86ms post 4.17ms diff
372µs

align 8192 pre 4.81ms on 4.83ms post 4.16ms diff
349µs

align 4096 pre 4.16ms on 4.21ms post 4.16ms diff
52.4µs

align 2048 pre 4.16ms on 4.16ms post 4.17ms diff
9ns



flashbench reads blocks of, in this case, 1,024 bytes just before
and just after various power-of-two boundaries. As you cross a page
or erase a block boundary, the reads after the boundary take longer.
The rightmost column shows the difference and is the one that is
most interesting. Reading from the bottom, there is a big jump at 4
KiB, which is the most likely size of a page. There is a second jump
from 52.4µs to 349µs at 8 KiB. This is fairly common and indicates
that the card can use multi-plane access to read two 4 KiB pages at
the same time. Beyond that, the differences are less well marked,
but there is a clear jump from 485µs to 805µs at 512 KiB, which is
probably the erase block's size. Given that the card being tested is
quite old, these are the sort of numbers you would expect.

Discard and TRIM
Usually, when you delete a file, only the modified directory node is
written to storage, while the sectors containing the file's contents
remain unchanged. When the flash translation layer is in the disk
controller, as with managed flash, it does not know that this group of
disk sectors no longer contains useful data and so it ends up copying
stale data.

In the last few years, the addition of transactions that pass
information about deleted sectors down to the disk controller has
improved this situation. The SCSI and SATA specifications have a
TRIM command, and MMC has a similar command named ERASE. In
Linux, this feature is known as discard.



To make use of discard, you need a storage device that supports it –
most current eMMC chips do – and a Linux device driver to match.
You can check this by looking at the block system queue parameters
in /sys/block/<block device>/queue/.

The ones of interest are as follows:

discard_granularity: The size of the internal allocation unit
of the device.

discard_max_bytes: The maximum number of bytes that can
be discarded in one go.

discard_zeroes_data: If 1, discarded data will be set to 0.

If the device or the device driver do not support discard, these values
will all be set to 0. As an example, these are the parameters you will
see from the 2 GiB eMMC chip on my BeagleBone Black:
# grep -s "" /sys/block/mmcblk0/queue/discard_*

/sys/block/mmcblk0/queue/discard_granularity:20971
52

/sys/block/mmcblk0/queue/discard_max_bytes:2199023
255040

/sys/block/mmcblk0/queue/discard_zeroes_data:1

More information can be found in the kernel documentation file; that
is, Documentation/block/queue-sysfs.txt.

You can enable discard when mounting a filesystem by adding the -
o discard option to the mount command. Both ext4 and F2FS
support it.



TIP

Make sure that the storage device supports discard before using the
-o discard mount option, as data loss can occur.

It is also possible to force discard from the command line
independently of how the partition is mounted using the fstrim
command, which is part of the util-linux package. Typically, you
would run this command periodically to free up unused space.
fstrim operates on a mounted filesystem, so to trim the root
filesystem, /, you would type the following:
# fstrim -v /

/: 2061000704 bytes were trimmed

The preceding example uses the verbose option, -v, so that it prints
out the number of bytes that have been potentially freed up. In this
case, 2,061,000,704 is the approximate amount of free space in the
filesystem, so it is the maximum amount of storage that could have
been trimmed.

Ext4
The extended filesystem, ext, has been the main filesystem for
Linux desktops since 1992. The current version, ext4, is very stable
and well-tested, and has a journal that makes recovering from an
unscheduled shutdown fast and mostly painless. It is a good choice
for managed flash devices, and you will find that it is the preferred



filesystem for Android devices that have eMMC storage. If the device
supports discard, you can mount with the -o discard option.

To format and create an ext4 filesystem at runtime, you would type
the following:
# mkfs.ext4 /dev/mmcblk0p2

# mount -t ext4 -o discard /dev/mmcblk0p1 /mnt

To create a filesystem image at build time, you can use the
genext2fs utility, available from http://genext2fs.sourceforge.net. In
this example, I have specified the block size with -B and the number
of blocks in the image with -b:
$ genext2fs -B 1024 -b 10000 -d rootfs rootfs.ext4

genext2fs can make use of a device table to set the file
permissions and ownership, as described in Chapter 5, Building a
Root Filesystem, with -D [file table].

As the name implies, this will actually generate an image in Ext2
format. You can upgrade to Ext4 using tune2fs as follows (details
of the command's options can be found in the tune2fs(8) manual
page):
$ tune2fs -j -J size=1 -O

filetype,extents,uninit_bg,dir_index \

rootfs.ext4

$ e2fsck -pDf rootfs.ext4

Both the Yocto Project and Buildroot use exactly these steps when
creating images in 
Ext4 format.

http://genext2fs.sourceforge.net/


While a journal is an asset for devices that may power down without
warning, it does add extra write cycles to each write transaction,
wearing out the flash memory. If the device is battery powered,
especially if the battery is not removable, the chances of an
unscheduled power down are small, so you may want to leave the
journal out.

Even with journaling, filesystem corruption can occur on unexpected
power loss. In many devices, holding down the power button,
unplugging the power cord, or pulling out the battery can result in
immediate shutdown. Due to the nature of buffered I/O, data being
written out to flash may be lost if the power goes out before the write
is done flushing to storage. For these reasons, it is good to run fsck
non-interactively on a user partition to check for and repair any
filesystem corruption before mounting. Otherwise, the corruption can
compound over time until it becomes a serious issue.

F2FS
The Flash-Friendly File System, known as F2FS, is a log-
structured filesystem designed for managed flash devices, especially
eMMC chips and SD cards. It was written by Samsung and was
merged into mainline Linux in 3.8. It is marked as experimental,
indicating that it has not been extensively deployed yet, but it seems
that some Android devices are using it.

F2FS takes into account the page and erase block sizes, and then
tries to align data on these boundaries. The log format provides



resilience in the face of power down and also provides good write
performance, in some tests showing a twofold improvement over
ext4. There is a good description of the design of F2FS in the kernel
documentation in Documentation/filesystems/f2fs.txt, and
there are references at the end of this chapter, in the Further reading
section.

The mkfs.f2fs utility creates an empty F2FS filesystem with the -
l label:
# mkfs.f2fs -l rootfs /dev/mmcblock0p1

# mount -t f2fs /dev/mmcblock0p1 /mnt

There isn't (yet) a tool you can use to create F2FS filesystem images
offline.

FAT16/32
The old Microsoft filesystems, FAT16 and FAT32, continue to be
important as a common format understood by most operating
systems. When you buy an SD card or USB flash drive, it is almost
certain to be formatted as FAT32 and, in some cases, the on-card
microcontroller is optimized for FAT32 access patterns. Also, some
boot ROMs require a FAT partition for the second-stage bootloader –
the TI OMAP-based chips, for example. However, FAT formats are
definitely not suitable for storing critical files because they are prone
to corruption and make poor use of the storage space.



Linux supports FAT16 through the msdos filesystem and both FAT32
and FAT16 through the vfat filesystem. To mount a device, say an
SD card, on the second MMC hardware adapter, you would type this:
# mount -t vfat /dev/mmcblock1p1 /mnt

IMPORTANT NOTE

In the past, there have been licensing issues with the vfat driver,
which may (or may not) infringe a patent held by Microsoft.

FAT32 has a limitation of 32 GiB on the device's size. Devices of a
larger capacity may be formatted using the Microsoft exFAT format,
and it is a requirement for SDXC cards. There is no kernel driver for
exFAT, but it can be supported by means of a user space FUSE
driver. Since exFAT is proprietary to Microsoft, there are bound to be
licensing implications if you support this format on your device.

That does it for read-write filesystems geared toward managed flash.
What about space-saving read-only filesystems? The choice is
simple: SquashFS.

Read-only compressed
f i lesystems
Compressing data is useful if you don't have quite enough storage to
fit everything in. Both JFFS2 and UBIFS do on-the-fly data
compression by default. However, if the files are never going to be
written, as is usually the case with the root filesystem, you can



achieve better compression ratios by using a read-only compressed
filesystem. Linux supports several of these: romfs, cramfs, and
squashfs. The first two are obsolete now, so I will only describe
SquashFS.

SquashFS
The SquashFS filesystem was written by Phillip Lougher in 2002 as
a replacement for cramfs. It existed as a kernel patch for a long time,
eventually being merged into mainline Linux in version 2.6.29 in
2009. It is very easy to use: you create a filesystem image using
mksquashfs and install it to the flash memory:
$ mksquashfs rootfs rootfs.squashfs

The resulting filesystem is read-only, so there is no mechanism for
modifying any of the files at runtime. The only way to update a
SquashFS filesystem is to erase the whole partition and program in a
new image.

SquashFS is not bad-block aware and so must be used with reliable
flash memory such as NOR flash. However, it can be used on NAND
flash as long as you use UBI to create an emulated, reliable MTD.
You have to enable the CONFIG_MTD_UBI_BLOCK kernel
configuration, which will create a read-only MTD block device for
each UBI volume. The following diagram shows two MTD partitions,
each with accompanying mtdblock devices. The second partition is
also used to create a UBI volume that is exposed as a third, reliable



mtdblock device, which you can use for any read-only filesystem
that is not bad-block aware:

Figure 9.5 – UBI volume

A read-only filesystem is great for immutable contents, but what
about temporary files that don't need to persist across reboots? This
is where a RAM disk comes in handy.

Temporary f i lesystems
There are always some files that have a short lifetime or have no
significance after a reboot. Many such files are put into /tmp, and so
it makes sense to keep these files from reaching permanent storage.

The temporary filesystem, tmpfs, is ideal for this purpose. You can
create a temporary RAM-based filesystem by simply mounting tmpfs:
# mount -t tmpfs tmp_files /tmp



As with procfs and sysfs, there is no device node associated with
tmpfs, so you have to supply a placekeeper string, which is
tmp_files in the preceding example.

The amount of memory used will grow and shrink as files are created
and deleted. The default maximum size is half the physical RAM. In
most cases, it would be a disaster if tmpfs grew to be that large, so
it is a very good idea to cap it with the -o size parameter. The
parameter can be given in bytes, KiB (k), MiB (m), or GiB (g), like
this, for example:
# mount -t tmpfs -o size=1m tmp_files /tmp

In addition to /tmp, some subdirectories of /var contain volatile
data, and it is good practice to use tmpfs for them as well, either by
creating a separate filesystem for each or, more economically, using
symbolic links. Buildroot does this like so:
/var/cache -> /tmp

/var/lock -> /tmp

/var/log -> /tmp

/var/run -> /tmp

/var/spool -> /tmp

/var/tmp -> /tmp

In the Yocto Project, /run and /var/volatile are tmpfs mounts
with symbolic links pointing to them, as shown here:
/tmp -> /var/tmp

/var/lock -> /run/lock

/var/log -> /var/volatile/log

/var/run -> /run



/var/tmp -> /var/volatile/tmp

It is not uncommon to load the root filesystem into RAM on
embedded Linux systems. That way, any damage to its contents that
may occur at runtime is not permanent. The root filesystem does not
need to reside on SquashFS or tmpfs to be protected, though; you
just need to make the root filesystem is read-only.

Making the root f i lesystem
read-only
You need to make your target device able to survive unexpected
events, including file corruption, and still be able to boot and achieve
at least a minimum level of functionality. Making the root filesystem
read-only is a key part of achieving this ambition because it
eliminates accidental overwrites. Making it read-only is easy: replace
rw with ro on the kernel command line or use an inherently read-
only filesystem such as SquashFS. However, you will find that there
are a few files and directories that are traditionally writable:

/etc/resolv.conf: This file is written by network configuration
scripts to record the addresses of DNS name servers. The
information is volatile, so you simply have to make it a symlink to
a temporary directory; for example, /etc/resolv.conf ->
/var/run/resolv.conf.

/etc/passwd: This file, along with /etc/group,
/etc/shadow, and 



/etc/gshadow, stores user and group names and passwords.
They need to 
be symbolically linked to an area of persistent storage.

/var/lib: Many applications expect to be able to write to this
directory and to keep permanent data here as well. One solution
is to copy a base set of files to a tmpfs filesystem at boot time
and then bind mount /var/lib to the new location. You can do
this by putting a sequence of commands such as these into one
of the boot scripts:
$ mkdir -p /var/volatile/lib

$ cp -a /var/lib/* /var/volatile/lib

$ mount --bind /var/volatile/lib /var/lib

/var/log: This is the place where syslog and other daemons
keep their logs. Generally, logging to flash memory is not
desirable because of the many small write cycles it generates. A
simple solution is to mount /var/log using tmpfs, making all
log messages volatile. In the case of syslogd, BusyBox has a
version that can log to a circular ring buffer.

If you are using the Yocto Project, you can create a read-only root
filesystem by adding IMAGE_FEATURES = "read-only-rootfs"
to conf/local.conf or to your image recipe.

Fi lesystem choices



So far, we have looked at the technology behind solid-state memory
and at the many types of filesystems. Now, it is time to summarize
the options that are available. In most cases, you will be able to
divide your storage requirements into these three categories:

Permanent, read-write data: Runtime configuration, network
parameters, passwords, data logs, and user data

Permanent, read-only data: Programs, libraries, and
configurations files that are constant; for example, the root
filesystem

Volatile data: Temporary storage; for example, /tmp

The choices for read-write storage are as follows:

NOR: UBIFS or JFFS2

NAND: UBIFS, JFFS2, or YAFFS2

eMMC: ext4 or F2FS

For read-only storage, you can use any of these, mounted with the
ro attribute. Additionally, if you want to save space, you could use
SquashFS. Finally, for volatile storage, there is only one choice:
tmpfs.

Summary
Flash memory has been the storage technology of choice for
embedded Linux from the beginning, and over the years, Linux has



gained very good support, from low-level drivers up to flash-aware
filesystems, with the latest being UBIFS.

As the rate at which new flash technologies are introduced
increases, it is becoming harder to keep pace with the changes at
the high end. System designers are increasingly turning to managed
flash in the form of eMMC, to provide a stable hardware and
software interface that is independent of the memory chips inside.
Embedded Linux developers 
are beginning to get to grips with these new chips. Support for TRIM
in ext4 and F2FS is well-established, and it is slowly finding its way
into the chips themselves. Also, the appearance of new filesystems
that have been optimized to manage flash, such as F2FS, is a
welcome step forward.

However, the fact remains that flash memory is not the same as a
hard disk drive. You have to be careful when you're minimizing the
number of filesystem writes – especially as the higher density TLC
chips may be able to support as few as 1,000 erase cycles.

In the next chapter, I will continue on the theme of storage options,
as I consider different ways to keep the software up to date on
devices that may be deployed to remote locations.

Further reading
The following resources contain further information about the topics
that were introduced in this chapter:



XIP: The past, the present... the future?, by Vitaly Wool:
https://archive.fosdem.org/2007/slides/devrooms/embedded/Vital
y_Wool_XIP.pdf

General MTD documentation: http://www.linux-
mtd.infradead.org/doc/general.html

Optimizing Linux with cheap flash drives, by Arnd Bergmann:
https://lwn.net/Articles/428584/

eMMC/SSD File System Tuning Methodology, Cogent
Embedded, Inc.: 
https://elinux.org/images/b/b6/EMMC-
SSD_File_System_Tuning_Methodology_v1.0.pdf

Flash-Friendly File System (F2FS), by Joo-Young Hwang:
https://elinux.org/images/1/12/Elc2013_Hwang.pdf

An F2FS teardown, by Neil Brown:
https://lwn.net/Articles/518988/

https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
http://www.linux-mtd.infradead.org/doc/general.html
https://lwn.net/Articles/428584/
https://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
https://elinux.org/images/1/12/Elc2013_Hwang.pdf
https://lwn.net/Articles/518988/


Chapter 10 :  Updat ing
Software in the Field
In previous chapters, we discussed various ways to build the
software for a Linux device and also how to create system images
for various types of mass storage. When you go into production, you
just need to copy the system image to the flash memory, and it is
ready to be deployed. Now, I want to consider the life of the device
beyond the first shipment.

As we move into the era of the Internet of Things, the devices that
we create are very likely to be connected together by the internet. At
the same time, software is becoming exponentially more complex.
More software means more bugs. Connection to the internet means
those bugs can be exploited from afar. Consequentially, we have a
common requirement to be able to update software in the field.
Software updates bring more advantages than fixing bugs, however.
They open the door to adding value to existing hardware by
improving system performance over time or enabling features.

In this chapter, we will cover the following topics:

From where do updates originate?

What to update

The basics of software updates

Types of update mechanism



OTA updates

Using Mender for local updates

Using Mender for OTA updates

Using balena for local updates

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system with a minimum of 60 GB of available
disk space

Yocto 3.1 (Dunfell) LTS release

Etcher for Linux

A microSD card reader and card

A Raspberry Pi 4

A 5V 3A USB-C power supply

A Wi-Fi router

Yocto is required for the Using Mender for local updates and Using
Mender for OTA updates sections of this chapter.

You should have already built the 3.1 (Dunfell) LTS release of Yocto
for Chapter 6, Selecting a Build System. If you have not, then refer to
the Compatible Linux Distribution and Build Host Packages sections



of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-
yoctoprojectqs.html) before building Yocto on your Linux host
according to the instructions from Chapter 6.

All of the code for this chapter can be found in the Chapter10 folder
of the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

From where do updates
or ig inate?
There are many approaches to software updates. Broadly, I
characterize them as 
the following:

Local updates, often performed by a technician who carries the
update on a 
portable medium such as a USB flash drive or an SD card and
has to access each system individually

Remote updates, where the update is initiated by the user or a
technician locally, but it is downloaded from a remote server

Over-the-air (OTA) updates, where the update is pushed and
managed entirely remotely, without any need for local input

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


I will begin by describing several approaches to software updates,
and then I will show an example using Mender (https://mender.io).

What to update
Embedded Linux devices are very diverse in their design and
implementation. However, they all have these basic components:

Bootloader

Kernel

Root filesystem

System applications

Device-specific data

Some components are harder to update than others, as summarized
in this diagram:

https://mender.io/


Figure 10.1 – Components of an update

Let's look at each component in turn.

Bootloader
The bootloader is the first piece of code to run when the processor is
powered up. The way the processor locates the bootloader is very
device-specific, but in most cases, there is only one such location,
and so there can only be one bootloader. If there is no backup,
updating the bootloader is risky: what happens if the system powers
down midway? Consequently, most update solutions leave the
bootloader alone. This is not a big problem, because the bootloader
only runs for a short time at power-on and is not normally a great
source of runtime bugs.



Kernel
The Linux kernel is a critical component that will certainly need
updating from time to time.

There are several parts to the kernel:

A binary image loaded by the bootloader, often stored in the root
filesystem.

Many devices also have a Device Tree Binary (DTB) that
describes hardware to the kernel, and so has to be updated in
tandem. The DTB is usually stored alongside the kernel binary.

There may be kernel modules in the root filesystem.

The kernel and DTB may be stored in the root filesystem, so long as
the bootloader has the ability to read that filesystem format, or it may
be in a dedicated partition. In either case, it is possible and safer to
have redundant copies.

Root f i lesystem
The root filesystem contains the essential system libraries, utilities,
and scripts needed to make the system work. It is very desirable to
be able to replace and upgrade all of these. The mechanism
depends on the filesystem implementation.

Common formats for embedded root file systems are the following:



Ramdisk, loaded from raw flash memory or a disk image at boot.
To update it, you just need to overwrite the ramdisk image and
reboot.

Read-only compressed filesystems, such as squashfs, stored in
a flash partition. Since these types of filesystem do not implement
a write function, the only way to update them is to write a
complete filesystem image to the partition.

Normal filesystem types: For raw flash memory, JFFS2 and
UBIFS formats are common, and for managed flash memory,
such as eMMC and SD cards, the format is likely to be ext4 or
F2FS. Since these are writable at runtime, it is possible to update
them file by file.

System applications
The system applications are the main payload of the device; they
implement its primary function. As such, they are likely to be updated
frequently to fix bugs and to add features. They may be bundled with
the root filesystem, but it is also common for them to be 
placed in a separate filesystem to make updating easier and to
maintain separation between the system files, which are usually
open source, and the application files, which are often proprietary.

Device-specif ic data



This is the combination of files that are modified at runtime and
includes configuration settings, logs, user-supplied data, and the like.
It is not often that they need to be updated, but they do need to be
preserved during an update. Such data needs to be stored in a
partition of its own.

Components that need to be
updated
In summary, then, an update may include new versions of the kernel,
root filesystem, and system applications. The device will have other
partitions that should not be disturbed by an update, as is the case
with the device runtime data.

The cost of software updates failing can be catastrophic. Secure
software updates are also a major concern within both enterprise
and home internet environments. Before we can ship any hardware,
we need to be able to update the software with confidence.

The basics of  sof tware
updates
Updating software seems, at first sight, to be a simple task: you just
need to overwrite some files with new copies. But then your
engineer's training kicks in as you begin to realize all the things that
could go wrong. What if the power goes down during the update?



What if a bug, not seen while testing the update, renders a
percentage of the devices unbootable? What if a third party sends a
fake update that enlists your device as part of a botnet? At the very
least, the software update mechanism must be:

Robust, so that an update does not render the device unusable

Fail-safe, so that there is a fallback mode if all else fails

Secure, to prevent the device from being hijacked by people
installing 
unauthorized updates

In other words, we need a system that is not susceptible to Murphy's
law, which states that if something can go wrong, then it will go
wrong, eventually. Some of these problems are non-trivial, however.
Deploying software to a device in the field is different from deploying
software to the cloud. Embedded Linux systems need to detect and
respond to mishaps like kernel panics or boot loops without any
human intervention.

Making updates robust
You might think that the problem of updating Linux systems was
solved a long time ago − we all have Linux desktops that we update
regularly (don't we?). Also, there are vast numbers of Linux servers
running in data centers that are similarly kept up to date. However,
there is a difference between a server and a device. The former
operates in a protected environment. It is unlikely to suffer a sudden



loss of power or network connectivity. In the unlikely event that an
update does fail, it is always possible to get access to the server and
use external mechanisms to repeat the install.

Devices, on the other hand, are often deployed at remote sites with
intermittent power and a poor network connection, which makes it
much more likely that an update will be interrupted. Then, consider
that it may be very expensive to get access to a device to take
remedial action over a failed update if, for example, the device is an
environmental monitoring station at the top of a mountain or
controlling the valves of an oil well at the bottom of the sea. In
consequence, it is much more important for embedded devices to
have a robust update mechanism that will not result in the system
becoming unusable.

The key word here is atomicity. The update as a whole must be
atomic: there should be no stage at which part of the system is
updated but no other parts. There must be a single, uninterruptible
change to the system that switches to the new version of the
software.

This removes the most obvious update mechanism from
consideration: that of simply updating individual files, for example, by
extracting an archive over parts of the filesystem. There is just no
way to ensure that there will be a consistent set of files if the system
is reset during the update. Even using a package manager such as
apt, yum, or zypper does not help. If you look at the internals of all
these package managers, you will see that they do indeed work by
extracting an archive over the filesystem and running scripts to



configure the package both before and after the update. Package
managers are fine for the protected world of the data center, or even
your desktop, but not for a device.

To achieve atomicity, the update must be installed alongside the
running system, and then a switch is thrown to move from the old to
the new. In later sections, we will describe two different approaches
to achieving atomicity. The first is to have two copies of the root
filesystem and other major components. One is live, while the other
can receive updates. When the update is complete, the switch is
thrown so that on reboot, the bootloader selects the updated copy.
This is known as a symmetric image update, or an A/B image
update. A variant of this theme is to use a special recovery mode
operating system that is responsible for updating the main operating
system. The guarantee of atomicity is shared between the
bootloader and the recovery operating system. This is known as an
asymmetric image update. It is the approach taken in Android prior
to the Nougat 7.x version.

The second approach is to have two or more copies of the root
filesystem in different subdirectories of the system partition, and then
use chroot(8) at boot time to select one of them. Once Linux is
running, the update client can install updates into the other root
filesystem, and then when everything is complete and checked, it
can throw the switch and reboot. This is known as an atomic file
update and is exemplified by OSTree.



Making updates fai l-safe
The next problem to consider is that of recovering from an update
that was installed correctly but that contains code that stops the
system from booting. Ideally, we want the system to detect this case
and to revert to a previous working image.

There are several failure modes that can lead to a non-operational
system. The first is a kernel panic, caused, for example, by a bug in
a kernel device driver, or being unable to run the init program. A
sensible place to start is by configuring the kernel to reboot a
number of seconds after a panic. You can do this either when you
build the kernel by setting CONFIG_PANIC_TIMEOUT or by setting
the kernel command line to panic. For example, to reboot 5 seconds
after a panic, you would add panic=5 to the kernel command line.

You may want to go further and configure the kernel to panic on an
Oops. Remember that an Oops is generated when the kernel
encounters a fatal error. In some cases, it will be able to recover
from the error, in other cases not, but in all cases, something has
gone wrong and the system is not working as it should. To enable
panic on Oops in the kernel configuration, set
CONFIG_PANIC_ON_OOPS=y or, on the kernel command line,
oops=panic.

A second failure mode occurs when the kernel launches init
successfully but for some reason, the main application fails to run.
For this, you need a watchdog. A watchdog is a hardware or



software timer that restarts the system if the timer is not reset before
it expires. If you are using systemd, you can use the built-in
watchdog function, which I'll describe in Chapter 13, Starting Up –
The init Program. If not, you may want to enable the watchdog
support built into Linux, as described in the kernel source code in
Documentation/watchdog.

Both failures result in boot loops: either a kernel panic or a
watchdog timeout causes the system to reboot. If the problem is
persistent, the system will reboot continually. To break out of the boot
loop, we need some code in the bootloader to detect the case and to
revert to the previous, known good, version. A typical approach is to
use a boot count that is incremented by the bootloader on each
boot, and that is reset to zero in user space once the system is up
and running. If the system enters a boot loop, the counter is not reset
and so continues to increase. Then, the bootloader is configured to
take remedial action if the counter exceeds a threshold.

In U-Boot, this is handled by three variables:

bootcount: This variable is incremented each time the
processor boots.

bootlimit: If bootcount exceeds the bootlimit, U-Boot
runs the commands in altbootcmd instead of bootcmd.

altbootcmd: This contains the alternative boot commands, for
example, to roll back to a previous version of the software or to
start the recovery-mode operating system.



For this to work, there must be a way for a user space program to
reset the boot count. We can do that using U-Boot utilities that allow
the U-Boot environment to be accessed at runtime:

fw_printenv: Prints the value of a U-Boot variable

fw_setenv: Sets the value of a U-Boot variable

These two commands need to know where the U-Boot environment
block is stored, for which there is a configuration file in
/etc/fw_env.config. For example, if the U-Boot environment is
stored at offset 0x800000 from the start of the eMMC memory, with
a backup copy at 0x1000000, then the configuration would look like
this:
# cat /etc/fw_env.config

/dev/mmcblk0 0x800000 0x40000

/dev/mmcblk0 0x1000000 0x40000

There is one final thing to cover in this section. Incrementing the boot
count on each boot and then resetting it when the application begins
to run leads to unnecessary writes to the environment block, wearing
out the flash memory and slowing down system initialization. To
prevent having to do this on all reboots, U-Boot has a further variable
named upgrade_available. If upgrade_available is 0, then
bootcount is not incremented. upgrade_available is set to 1
after an update has been installed so that the boot count protection
is in use only when it is needed.



Making updates secure
The final problem relates to the potential misuse of the update
mechanism itself. Your prime intention when implementing an update
mechanism is to provide a reliable automated or semi-automated
method to install security patches and new features. However, others
may use the same mechanism to install unauthorized versions of
software and so hijack the device. We need to look at how we can
ensure that this cannot happen.

The biggest vulnerability is that of a fake remote update. To prevent
this, we need to authenticate the update server before starting the
download. We also need a secure transfer channel, such as HTTPS,
to guard against tampering with the download stream. I will return to
this when describing OTA updates later on.

There is also the question of the authenticity of updates supplied
locally. One way to detect a bogus update is to use a secure boot
protocol in the bootloader. If the kernel image is signed at the factory
with a digital key, the bootloader can check the key before it loads
the kernel and refuses to load it if the keys do not match. So long as
the keys are kept private by the manufacturer, it will not be possible
to load a kernel that is not authorized. U-Boot implements such a
mechanism, which is described in the U-Boot source code in
doc/uImage.FIT/verified-boot.txt.

IMPORTANT NOTE

Secure boot: good or bad?



If I have purchased a device that has a software update feature, then
I am trusting the vendor of that device to deliver useful updates. I
definitely do not want a malicious third party to install software
without my knowledge. But should I be allowed to install software
myself? If I own the device outright, should I not be entitled to modify
it, including loading new software? Recall the TiVo set-top box,
which ultimately led to the creation of the GPL v3 license.
Remember also the Linksys WRT54G Wi-Fi router: when access to
the hardware became easy, it spawned a whole new industry,
including the OpenWrt project. See, for example, https://www.wi-
fiplanet.com/tutorials/article.php/3562391 for more details. This is a
complex issue that sits at the crossroads between freedom and
control. It is my opinion that some device manufacturers use security
as an excuse to protect their, sometimes shoddy, software.

Now that we know what is required, how do we go about updating
software on embedded Linux systems?

Types of  update mechanism
In this section, I will describe three approaches to applying software
updates: symmetric, or A/B, image update; asymmetric image
update, also known as recovery mode update; and finally, atomic file
update.

Symmetric image update

https://www.wi-fiplanet.com/tutorials/article.php/3562391


In this scheme, there are two copies of the operating system, each
comprising the Linux kernel, root filesystem, and system
applications. They are labeled as A and B in the following diagram:

Figure 10.2 – symmetric image update

Symmetric image updates work as follows:

1. The bootloader has a flag that indicates which image it should
load. Initially, the flag is set to A, so the bootloader loads OS
image A.

2. To install an update, the updater application, which is part of the
operating system, overwrites OS image B.

3. When complete, the updater changes the boot flag to B and
reboots.

4. Now the bootloader will load the new operating system.

5. When a further update is installed, the updater overwrites image
A and changes the boot flag to A, and so you ping-pong between



the two copies.

6. If an update fails before the boot flag is changed, the bootloader
continues to load the good operating system.

There are several open source projects that implement symmetric
image update. One is the Mender client operating in standalone
mode, which I will describe later, in the section on Using Mender for
local updates. Another is SWUpdate
(https://github.com/sbabic/swupdate). SWUpdate can receive
multiple image updates in a CPIO format package and then deploy
those updates to different parts of the system. It allows you to write
plugins in the Lua language to do custom processing. It has
filesystem support for raw flash memory that is accessed as MTD
flash partitions, for storage organized into UBI volumes, and for
SD/eMMC storage with a disk partition table. A third example is
RAUC, the Robust Auto-Update Controller,
(https://github.com/rauc/rauc). It too has support for raw flash
storage, UBI volumes, and SD/eMMC devices. The images can be
signed and verified using OpenSSL keys. A fourth example is fwup
(https://github.com/fwup-home/fwup) by long-time Buildroot
contributor Frank Hunleth.

There are some drawbacks to this scheme. One is that by updating
an entire filesystem image, the size of the update package is large,
which can put a strain on the network infrastructure connecting the
devices. This can be mitigated by sending only the filesystem blocks
that have changed by performing a binary diff of the new

https://github.com/sbabic/swupdate
https://github.com/rauc/rauc
https://github.com/fwup-home/fwup


filesystem with the previous version. The commercial edition of
Mender has support for such delta updates and delta updates are
still a beta feature in RAUC and fwup at the time of writing.

A second drawback is the need to keep storage space for a
redundant copy of the root filesystem and other components. If the
root filesystem is the largest component, it comes close to doubling
the amount of flash memory you need to fit. It is for this reason that
the asymmetric update scheme is used, which I describe next.

Asymmetric image update
You can reduce storage requirements by keeping a minimal recovery
operating system purely for updating the main one, as shown here:

Figure 10.3 – Asymmetric image update

To install an asymmetric update, do the following:



1. Set the boot flag to point to the recovery OS and reboot.

2. Once the recovery OS is running, it can stream updates to the
main operating system image.

3. If the update is interrupted, the bootloader will again boot into the
recovery OS, which can resume the update.

4. Only when the update is complete and verified will the recovery
OS clear the boot flag and reboot again, this time loading the new
main operating system.

5. The fallback in the case of a correct but buggy update is to drop
the system back into recovery mode, which can attempt remedial
actions, possibly by requesting an earlier update version.

The recovery OS is usually a lot smaller than the main operating
system, maybe only a few megabytes, and so the storage overhead
is not great. As a matter of interest, this is the scheme that was
adopted by Android prior to the Nougat release. For open source
implementations of asymmetric image update, you could consider
SWUpdate or RAUC, both of which I mentioned in the previous
section.

A major drawback of this scheme is that while the recovery OS is
running, the device is not operational. Such a scheme also does not
allow for updates of the recovery OS itself. That would require
something like A/B image updates, thus defeating the whole
purpose.



Atomic f i le updates
Another approach is to have redundant copies of a root filesystem
present in multiple directories of a single filesystem and then use the
chroot(8) command to choose one of them at boot time. This
allows one directory tree to be updated while another is mounted as
the root directory. Furthermore, rather than making copies of files
that have not changed between versions of the root filesystem, you
could use links. That would save a lot of disk space and reduce the
amount of data to be downloaded in an update package. These are
the basic ideas behind atomic file update.

IMPORTANT NOTE

The chroot command runs a program in an existing directory. The

program sees this directory as its root directory, and so cannot

access any files or directories at a higher level. It is often used to run
a program in a constrained environment, which is sometimes
referred to as chroot jail.

The OSTree project (https://ostree.readthedocs.org/en/latest/), now
renamed libOSTree, is the most popular implementation of this idea.
OSTree started around 2011 as a means of deploying updates to the
GNOME desktop developers, and to improve their continuous
integration testing
(https://wiki.gnome.org/Projects/GnomeContinuous). It has since
been adopted as an update solution for embedded devices. It is one
of the update methods available in Automotive Grade Linux (AGL),

https://ostree.readthedocs.org/en/latest/
https://wiki.gnome.org/Projects/GnomeContinuous


and it is available in the Yocto Project through the meta-update
layer, which is supported by Advanced Telematic Systems (ATS).

With OSTree, the files are stored on the target in the
/ostree/repo/objects directory. They are given names such
that several versions of the same file can exist in the repository.
Then, a given set of files are linked into a deployment directory,
which has a name such as /ostree/deploy/os/29ff9…/. This is
referred to as checking out, since it has some similarities to the way
a branch is checked out of a Git repository. Each deploy directory
contains the files that make up a root filesystem. There can be any
number of them, but by default, there are only two. For example,
here are two deploy directories, each with links back into the repo
directory:
/ostree/repo/objects/...

/ostree/deploy/os/a3c83.../

/usr/bin/bash

/usr/bin/echo

/ostree/deploy/os/29ff9.../

/usr/bin/bash

/usr/bin/echo

To boot from an OSTree directory:

1. The bootloader boots the kernel with an initramfs, passing on
the kernel command line the path of the deployment to use:
bootargs=ostree=/ostree/deploy/os/deploy/29ff9.

..



2. The initramfs contains an init program, ostree-init,
which reads the command line and executes the chroot to the
path given.

3. When a system update is installed, the files that have changed
are downloaded into the repo directory by the OSTree install
agent.

4. When complete, a new deploy directory is created, with links to
the collection of files that will make up the new root filesystem.
Some of these will be new files, some will be the same as before.

5. Finally, the OSTree install agent will change the bootloader's boot
flag so that on the next reboot, it will chroot to the new deploy
directory.

6. The bootloader implements the check on the boot count and falls
back to the previous root if a boot loop is detected.

Even though a developer can operate the updater or install the client
manually on a target device, eventually, software updates need to
happen automatically over the air.

OTA updates
Updating over-the-air (OTA) means having the ability to push
software to a device or group of devices via a network, usually
without any end user interaction with the device. For this to happen,
we need a central server to control the update process and a



protocol for downloading the update to the update client. In a typical
implementation, the client polls the update server from time to time
to check if there are any updates pending. The polling interval needs
to be long enough that the poll traffic does not take a significant
portion of the network bandwidth, but short enough that the updates
can be delivered in a timely fashion. An interval of tens of minutes to
several hours is often a good compromise. The poll messages from
the device contain some sort of unique identifier, such as a serial
number or MAC address, and the current software version. From
this, the update server can see if an update is needed. The poll
messages may also contain other status information, such as
uptime, environmental parameters, or anything that would be useful
for central management of the devices.

The update server is usually linked to a management system that will
assign new versions of software to the various populations of
devices under its control. If the device population is large, it may
send updates in batches to avoid overloading the network. There will
be some sort of status display where the current state of the devices
can be shown, and problems highlighted.

Of course, the update mechanism must be secure so that fake
updates cannot be sent to the end devices. This involves the client
and server being able to authenticate each other by an exchange of
certificates. Then the client can validate that the packages
downloaded are signed by the key that is expected.

Here are three examples of open source projects that you can use
for OTA updates:



Mender in managed mode

balena

Eclipse hawkBit (https://github.com/eclipse/hawkbit) in
conjunction with an updater client such as SWUpdate or RAUC

We will walk through the first two projects in detail, starting with
Mender.

Using Mender for  local
updates
So much for the theory. In the next two sections of this chapter, I
want to demonstrate how the principles I have talked about so far
work in practice. For these examples, I will use Mender. Mender
uses a symmetric A/B image update mechanism, with a fallback in
the event of a failed update. It can operate in standalone mode for
local updates, or in managed mode for OTA updates. I will begin with
standalone mode.

Mender is written and supported by mender.io (https://mender.io).
There is much more information about the software in the
documentation section of the website. I will not delve deeply into the
configuration of the software here since my aim is to illustrate the
principles of software updates. Let's begin with the Mender client.

Building the Mender cl ient

https://github.com/eclipse/hawkbit
https://mender.io/


The Mender client is available as a Yocto meta layer. These
examples use the Dunfell release of the Yocto Project, which is the
same one that we used in Chapter 6, Selecting a Build System.

Start by fetching the meta-mender layer as follows:
$ git clone -b dunfell

git://github.com/mendersoftware/meta-
mender

You want to navigate one level above the poky directory before
cloning the meta-mender layer so that the two directories are
located next to each other at the same level.

The Mender client requires some changes to the configuration of U-
Boot to handle the boot flag and boot count variables. The stock
Mender client layer has sub-layers for sample implementations of
this U-Boot integration that we can use straight out of the box, such
as metameta-mender-qemu and meta-mender-raspberrypi.
We will use QEMU.

The next step is to create a build directory and add the layers for this
configuration:
$ source poky/oe-init-build-env build-mender-qemu

$ bitbake-layers add-layer ../meta-
openembedded/meta-oe

$ bitbake-layers add-layer ../meta-mender/meta-
mender-core

$ bitbake-layers add-layer ../meta-mender/meta-
mender-demo

$ bitbake-layers add-layer ../meta-mender/meta-
mender-qemu



Then, we need to set up the environment by adding some settings to
conf/local.conf:
1 MENDER_ARTIFACT_NAME = "release-1"

2 INHERIT += "mender-full"

3 MACHINE = "vexpress-qemu"

4 INIT_MANAGER = "systemd"

5 IMAGE_FSTYPES = "ext4"

Line 2 includes a BitBake class, named mender-full, which is
responsible for the special processing of the image required to
create the A/B image format. Line 3 selects a machine named
vexpress-qemu, which uses QEMU to emulate an Arm Versatile
Express board, rather than the Versatile PB that is the default in the
Yocto Project. Line 4 selects systemd as the init daemon in place
of the default System V init. I describe init daemons in more
detail in Chapter 13, Starting Up – The init Program. Line 5 causes
the root filesystem images to be generated in ext4 format.

Now we can build an image:
$ bitbake core-image-full-cmdline

As usual, the results of the build are in
tmp/deploy/images/vexpress-qemu. You will notice some new
things in here compared to the Yocto Project builds we have done in
the past. There is a file named core-image-full-cmdline-
vexpress-qemu-grub-[timestamp].mender, and another
similarly named file that ends with .uefiimg. 
The .mender file is required for the next subsection: Installing an



update. The .uefiimg file is created using a tool from the Yocto
Project known as wic. The output is an image 
that contains a partition table and that is ready to be copied directly
to an SD card or 
eMMC chip.

We can run the QEMU target using the script provided by the
Mender layer, which will first boot U-Boot and then load the Linux
kernel:
$ ../meta-mender/meta-mender-qemu/scripts/mender-

qemu

[…]

[  OK  ] Started Mender OTA update service.

[  OK  ] Started Mender Connect service.

[  OK  ] Started NFS status monitor for NFSv2/3
locking..

[  OK  ] Started Respond to IPv6 Node Information
Queries.

[  OK  ] Started Network Router Discovery Daemon.

[  OK  ] Reached target Multi-User System.

         Starting Update UTMP about System
Runlevel Changes...

Poky (Yocto Project Reference Distro) 3.1.6
vexpress-qemu ttyAMA0

vexpress-qemu login:

If instead of a login prompt you see an error like:
mender-qemu: 117: qemu-system-arm: not found



Then install qemu-system-arm on your system and rerun the
script:
$ sudo apt install qemu-system-arm

Log on as root with no password. Looking at the layout of the
partitions on the target, we can see this:
# fdisk -l /dev/mmcblk0

Disk /dev/mmcblk0: 608 MiB, 637534208 bytes,
1245184 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512
bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: 15F2C2E6-D574-4A14-A5F4-
4D571185EE9D

Device          Start     End Sectors  Size Type

/dev/mmcblk0p1  16384   49151   32768   16M EFI
System

/dev/mmcblk0p2  49152  507903  458752  224M Linux
filesystem

/dev/mmcblk0p3 507904  966655  458752  224M Linux
filesystem

/dev/mmcblk0p4 966656 1245150  278495  136M Linux
filesystem

There are four partitions in all:

Partition 1: This contains the U-Boot boot files.

Partitions 2 and 3: These contain the A/B root filesystems: at
this stage, they 



are identical.

Partition 4: This is just an extension partition that contains the
remaining partitions.

Running the mount command shows that the second partition is
being used as the root filesystem, leaving the third to receive
updates:
# mount

/dev/mmcblk0p2 on / type ext4 (rw,relatime)

[…]

With the Mender client now on board, we can begin installing
updates.

Instal l ing an update
Now we want to make a change to the root filesystem and then
install it as an update:

1. Open another shell and put yourself back in the working build
directory:
$ source poky/oe-init-build-env build-mender-

qemu

2. Make a copy of the image we just built. This will be the live image
that we are going to update:
$ cd tmp/deploy/images/vexpress-qemu

$ cp core-image-full-cmdline-vexpress-qemu-
grub.uefiimg \



core-image-live-vexpress-qemu-grub.uefiimg

$ cd -

If we don't do this, the QEMU script will just load the latest image
generated by BitBake, including updates, which defeats the
object of the demonstration.

3. Next, change the hostname of the target, which will be easy to
see when it is installed. To do this, edit conf/local.conf and
add this line:
hostname_pn-base-files = "vexpress-qemu-

release2"

4. Now we can build the image in the same way as before:
$ bitbake core-image-full-cmdline

This time we are not interested in the .uefiimg file, which
contains a complete new image. Instead, we want to take only
the new root filesystem, which is in core-image-full-
cmdline-vexpress-qemu-grub.mender. The .mender file
is in a format that is recognized by the Mender client. The
.mender file format consists of version information, a header,
and the root filesystem image put together in a compressed .tar
archive.

5. The next step is to deploy the new artifact to the target, initiating
the update locally on the device, but receiving the update from a
server. Stop the emulator you started in the previous terminal
session by entering Ctrl + A then x to terminate it. Then boot
QEMU again with the newly copied image:



$ ../meta-mender/meta-mender-
qemu/scripts/mender-qemu \

core-image-live

6. Check that the network is configured, with QEMU at 10.0.2.15,
and the host at 10.0.2.2:
# ping 10.0.2.2

PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.

64 bytes from 10.0.2.2: icmp_seq=1 ttl=255
time=0.286 ms

^C

--- 10.0.2.2 ping statistics ---

1 packets transmitted, 1 received, 0% packet
loss, time 0ms

rtt min/avg/max/mdev = 0.286/0.286/0.286/0.000
ms

7. Now, in another terminal session, start a web server on the host
that can serve up the update:
$ cd tmp/deploy/images/vexpress-qemu

$ python3 -m http.server

Serving HTTP on 0.0.0.0 port 8000
(http://0.0.0.0:8000/) ...

It is listening on port 8000. When you are done with the web
server, type Ctrl + C to terminate it.

8. Back on the target, issue this command to get the update:
# mender --log-level info install \

> http://10.0.2.2:8000/core-image-full-cmdline-
vexpress-qemu-grub.mender



INFO[0751] Wrote 234881024/234881024 bytes to
the inactive partition

INFO[0751] Enabling partition with new image
installed to be a boot candidate: 3

The update was written to the third partition, /dev/mmcblk0p3,
while our root filesystem is still on partition 2, mmcblk0p2.

9. Reboot QEMU by entering reboot from the QEMU command line.
Note that now the root filesystem is mounted on partition 3, and
that the hostname has changed:
# mount

/dev/mmcblk0p3 on / type ext4 (rw,relatime)

[…]

# hostname

vexpress-qemu-release2

Success!

10. There is one more thing to do. We need to consider the issue of
boot loops. Using fw_printenv to look at the U-Boot variables,
we see the following:
# fw_printenv upgrade_available

upgrade_available=1

# fw_printenv bootcount

bootcount=1

If the system reboots without clearing bootcount, U-Boot should
detect it and fall back to the previous installation.

Let's test U-Boot's fallback behavior:



1. Reboot the target right away.

2. When the target comes up again, we see that U-Boot has
reverted to the 
previous installation:
# mount

/dev/mmcblk0p2 on / type ext4 (rw,relatime)

[…]

# hostname

vexpress-qemu

3. Now, let's repeat the update procedure:
# mender --log-level info install \

> http://10.0.2.2:8000/core-image-full-cmdline-
vexpress-qemu-grub.mender

# reboot

4. But this time, after the reboot, commit the change:
# mender commit

[…]

# fw_printenv upgrade_available

upgrade_available=0

# fw_printenv bootcount        

bootcount=1

5. Once upgrade_available is cleared, U-Boot will no longer
check bootcount, and so the device will continue to mount this
updated root filesystem. When a further update is loaded, the
Mender client will clear bootcount and set
upgrade_available once again.



This example uses the Mender client from the command line to
initiate an update locally. The update itself came from a server but
could just as easily have been provided on a USB flash drive or an
SD card. In place of Mender, we could have used the other image
update clients mentioned: SWUpdate or RAUC. They each have
their advantages, but the basic technique is the same.

The next stage is to see how OTA updates work in practice.

Using Mender for  OTA
updates
Once again, we will be using the Mender client on the device, but
this time operating it in managed mode, and in addition, we will be
configuring a server to deploy the update so that no local interaction
is needed. Mender provides an open source server for this. For
documentation on how to set up this demo server, see
https://docs.mender.io/2.4/getting-started/on-premise-installation.

The installation requires Docker Engine version 19.03 or later to be
installed. Refer to the Docker website at
https://docs.docker.com/engine/installation. It also requires Docker
Compose version 1.25 or later as described here:
https://docs.docker.com/compose/install/.

To verify which versions of Docker and Docker Compose you have
on your system, use these commands:
$ docker --version

https://docs.mender.io/2.4/getting-started/on-premise-installation
https://docs.docker.com/engine/installation
https://docs.docker.com/compose/install/


Docker version 19.03.8, build afacb8b7f0

$ docker-compose --version

docker-compose version 1.25.0, build unknown

The Mender server also requires a command-line JSON parser
called jq:
$ sudo apt install jq

Once all three are installed, then install the Mender integration
environment as shown:
$ curl -L \

https://github.com/mendersoftware/integration/arch
ive/2.5.1.tar.gz | tar xz

$ cd integration-2.5.1

$ ./demo up

Starting the Mender demo environment...

[…]

Creating a new user...

****************************************

Username: mender-demo@example.com

Login password: D53444451DB6

****************************************

Please keep the password available, it will not be
cached by the login script.

Mender demo server ready and running in the
background. Copy credentials above and log
in at https://localhost

Press Enter to show the logs.

Press Ctrl-C to stop the backend and quit.



When you run the ./demo up script, you will see that it downloads
several hundreds of megabytes of Docker images, which may take
some time, depending on your internet connection speed. After a
while, you will see that it creates a new demo user and password.
This means that the server is up and running.

With the Mender web interface now running on https://localhost/,
point a web browser at that URL and accept the certificate warning
that pops up. The warning appears because the web service is using
a self-signed certificate that the browser will not recognize. Enter the
username and password generated by the Mender server into the
login page.

We now need to make a change to the configuration of the target so
that it will poll our local server for updates. For this demonstration,
we map the docker.mender.io and s3.docker.mender.io
server URLs to the address localhost by appending a line to the
hosts file. To make this change with the Yocto Project, do the
following:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, create a layer with a file that appends to the recipe that
creates the hosts file, which is recipes-core/base-
files/base-files_3.0.14.bbappend. There is already a
suitable layer in MELP/Chapter10/meta-ota that you can
copy:
$ cp -a melp3/Chapter10/meta-ota .



3. Source the working build directory:
$ source poky/oe-init-build-env build-mender-

qemu

4. Add the meta-ota layer:
$ bitbake-layers add-layer ../meta-ota

Your layer structure should now contain eight layers including
meta-oe, meta-mender-core, meta-mender-demo, meta-
mender-qemu, and meta-ota.

5. Build the new image using the following command:
$ bitbake core-image-full-cmdline

6. Then make a copy. This will become our live image for this
section:
$ cd tmp/deploy/images/vexpress-qemu

$ cp core-image-full-cmdline-vexpress-qemu-
grub.uefiimg \

core-image-live-ota-vexpress-qemu-grub.uefiimg

$ cd -

7. Boot up the live image:
$ ../meta-mender/meta-mender-

qemu/scripts/mender-qemu \

core-image-live-ota

After a few seconds, you will see a new device appear on the
Dashboard of the web interface. This happens so quickly
because, for the purposes of demonstrating the system, the
Mender client has been configured to poll the server every 5



seconds. A much longer polling interval would be used in
production: 30 minutes is suggested.

8. See how this polling interval is configured by looking at the
/etc/mender/mender.conf file on the target:
# cat /etc/mender/mender.conf

{

    "InventoryPollIntervalSeconds": 5,

    "RetryPollIntervalSeconds": 30,

    "ServerURL": "https://docker.mender.io",

    "TenantToken": "dummy",

    "UpdatePollIntervalSeconds": 5

}

Notice the server URL in there as well.

9. Back in the web UI, click on the green check mark to authorize
the new device:





Figure 10.4 – Accept device

10. Then click on the entry for the device to see the details.

Now, we can once again create an update and deploy it – this time,
OTA:

1. Update the following line in conf/local.conf as shown:
MENDER_ARTIFACT_NAME = "OTA-update1"

2. Build the image once again:
$ bitbake core-image-full-cmdline

This will produce a new core-image-full-cmdline-
vexpress-qemu-grub.mender file in
tmp/deploy/images/vexpress-qemu.

3. Import this into the web interface by opening the Releases tab
and clicking on the purple Upload button in the lower-left corner.

4. Browse for the core-image-full-cmdline-vexpress-
qemu-grub.mender file in tmp/deploy/images/vexpress-
qemu and upload it:





Figure 10.5 – Upload an Artifact

The Mender server should copy the file into the server data store,
and a new artifact with the name OTA-update1 should appear under
Releases.

To deploy the update to our QEMU device, do the following:

1. Click on the Devices tab and select the device.

2. Click on the Create a Deployment for this Device option at the
bottom right of the device information.

3. Select the OTA-update1 artifact from the Releases page and
click on the Create Deployment with this Release button:





Figure 10.6 – Create a deployment

4. Click on the Next button in the Select target software and
devices step of 
Create a deployment.

5. Click on the Create button in the Review and create step of
Create a deployment to start the deployment.

6. The deployment should shortly transition from Pending to In
progress:





Figure 10.7 – In progress

7. After about 13 minutes, the Mender client should have written the
update to the spare filesystem image, and then QEMU will reboot
and commit the update. The web UI should then report Finished,
and now the client is running OTA-update1:





Figure 10.8 – Device updated successfully

Mender is neat and is used in many commercial products, but
sometimes we just want to deploy a software project to a small fleet
of popular dev boards as quickly as possible.

TIP

After a few experiments with the Mender server, you may want to
clear the state and start all over again. You can do that with these
two commands, entered in the integration2.5.1/ directory:

./demo down

./demo up

Rapid application development is where balena shines. We will
spend the rest of this chapter using balena to deploy a simple
Python application to a Raspberry Pi 4.

Using balena for local
updates
Balena uses Docker containers to deploy software updates. Devices
run balenaOS, a Yocto-based Linux distribution that comes with
balenaEngine, balena's Docker-compatible container engine. OTA
updates occur automatically by way of releases pushed from
balenaCloud, a hosted service for managing fleets of devices.



Balena can also operate in local mode so that updates originate from
a server running on your local host machine rather than the cloud.
We will stick to local mode for the following exercises.

Balena is written and supported by balena.io (https://balena.io).
There is much more information about the software in the Reference
section of the online Docs at balena.io. We won't dig into how balena
works since our goal is to deploy and automatically update software
on a small fleet of devices for fast development.

Balena provides prebuilt balenaOS images for popular dev boards
such as the Raspberry Pi 4 and BeagleBone Black. Downloading
these images requires a balenaCloud account.

Creating an account
The first thing you need to do even if you only intend to operate in
local mode is to sign up for a balenaCloud account. You do this by
visiting https://dashboard.balena-cloud.com/signup and entering your
email address and a password, as shown:

https://balena.io/
http://balena.io/
https://dashboard.balena-cloud.com/signup




Figure 10.9 – balenaCloud signup

Click the Sign up button to submit the form and once it is done
processing, you will be prompted to enter your profile details. You
may choose to skip this form, at which point you will enter the
balenaCloud dashboard under your new account.

If you sign out or your session expires, you can log back into the
dashboard by navigating to https://dashboard.balena-
cloud.com/login and entering the email address and password you
signed up with.

Creating an application
Before we can add a Raspberry Pi 4 to a balenaCloud account, we
first need to create 
an application.

https://dashboard.balena-cloud.com/login




Figure 10.10 – Create application

Here are the steps for creating an application for the Raspberry Pi 4
on balenaCloud:

1. Log in to the balenaCloud dashboard with your email address
and password.

2. Click on the Create application button in the upper-left corner,
under Applications, to open the Create application dialog.

3. Enter a name for your new application and select Raspberry Pi 4
for Default 
device type.

4. Click on the Create new application button in the Create
application dialog to submit the form.

The Application type defaults to Starter, which is fine for these
exercises. Your new application should appear in the balenaCloud
dashboard under Applications.

Adding a device
Now that we have an application on balenaCloud, let's add a
Raspberry Pi 4 to it:

1. Log in to the balenaCloud dashboard with your email address
and password.



2. Click on the new application we created.

3. Click on the Add device button from the Devices page:



Figure 10.11 – Add device

4. Clicking on the button will bring up the Add new device dialog.

5. Ensure that Raspberry Pi 4 is the selected device type. That
option should already be selected since you created the
application with Raspberry Pi 4 as the Default device type.

6. Ensure that balenaOS is the selected OS.

7. Ensure that the selected version of balenaOS is the latest. That
option should already be selected since Add new device
defaults to the latest available version of balenaOS, which it
designates as recommended.

8. Select Development as the edition of balenaOS. A development
image is required to enable local mode for better testing and
troubleshooting.

9. Select Wifi + Ethernet for Network Connection. You could
choose Ethernet only but auto-connecting to Wi-Fi is a very
convenient feature.

10. Enter your Wi-Fi router's SSID and passphrase in their respective
fields. Replace RT-AC66U_B1_38_2G in the following
screenshot with your Wi-Fi router's SSID:





Figure 10.12 – Add new device

11. Click the Download balenaOS button.

12. Save the zipped image file to your host machine.

We now have a microSD card image we can use to provision any
number of Raspberry Pi 4s for your application's test fleet.

The steps for provisioning a Raspberry Pi 4 from your host machine
should be familiar to you by now. Locate the balenaOS img.zip file
that you downloaded from balenaCloud and use Etcher to write it to
a microSD card. Insert the microSD card into your Raspberry Pi 4
and power it up by way of the USB-C port.

It will take a minute or two for the Raspberry Pi 4 to appear on the
Devices page of your balenaCloud dashboard:



Figure 10.13 – Devices

Now that we have connected a Raspberry Pi 4 to a balena
application, we need to enable local mode so that we can deploy



OTA updates to it from a nearby host machine rather than the cloud:

1. Click on your target Raspberry Pi 4 from the Devices page of
your balenaCloud dashboard. My device is named late-water.
Yours will have a different name.

2. Click on the down arrow next to the light bulb on the device
dashboard for your Raspberry Pi 4.

3. Select Enable local mode from the drop-down menu:





Figure 10.14 – Enable local mode

Once local mode is enabled, the Logs and Terminal panels are no
longer available in the device dashboard. The status of the device
changes from Online (for N minutes) to Online (local mode).

With local mode now enabled on our target device, we are almost
ready to deploy some code to it. Before we can do that, we need to
install the balena CLI.

Instal l ing the CLI
Here are the instructions for installing the balena CLI on a Linux host
machine:

1. Open a web browser and navigate to the latest balena CLI
release page at https://github.com/balena-io/balena-
cli/releases/latest.

2. Click on the latest ZIP file for Linux to download it. Look for a
filename of the form balena-cli-vX.Y.Z-linux-x64-
standalone.zip, substituting major, minor, and patch version
numbers for X, Y, and Z.

3. Extract the zip file contents to your home directory:
$ cd ~

$ unzip Downloads/balena-cli-v12.25.4-linux-
x64-standalone.zip

https://github.com/balena-io/balena-cli/releases/latest


The extracted contents are enclosed in a balena-cli directory.

4. Add the balena-cli directory to your PATH environment
variable:
$ export PATH=$PATH:~/balena-cli

Add a line like this to the .bashrc file in your home directory if
you want these changes to your PATH variable to persist.

5. Verify that the installation was successful:
$ balena version

12.25.4

The latest version of the balena CLI at the time of writing was
12.25.4.

Now that we have a working balena CLI, let's scan the local network
for the Raspberry Pi 4 we provisioned:
$ sudo env "PATH=$PATH" balena scan

Reporting scan results

-

  host:          01e9ff1.local

  address:       192.168.50.129

  dockerInfo:

    Containers:        1

    ContainersRunning: 1

    ContainersPaused:  0

    ContainersStopped: 0

    Images:            2

    Driver:            overlay2



    SystemTime:        2020-10-
26T23:44:44.37360414Z

    KernelVersion:     5.4.58

    OperatingSystem:   balenaOS 2.58.6+rev1

    Architecture:      aarch64

  dockerVersion:

    Version:    19.03.13-dev

    ApiVersion: 1.40

Notice the hostname of 01e9ff1.local and IP address of
192.168.50.129 in the scan output. The hostname and IP address
of your Raspberry Pi 4 will vary. Record these two pieces of
information because we will need them for the remaining exercises.

Pushing a project
Let's push a Python project to the Raspberry Pi over the local
network:

1. Clone a project for a simple "Hello World!" Python web server:
$ git clone https://github.com/balena-io-

examples/balena-python-hello-world.git

2. Navigate into the project directory:
$ cd balena-python-hello-world

3. Push the code to your Raspberry Pi 4:
$ balena push 01e9ff1.local

Substitute your device's hostname for the 01e9ff1.local
argument.



4. Wait for the Docker image to finish building and starting and let
the application run in the foreground so that it logs to stdout.

5. Issue a request to the web server at https://192.168.50.129 from
a web browser. Substitute your device's IP address for
192.168.50.129.

The web server running on the Raspberry Pi 4 should respond with
"Hello World!" and a line like the following should appear in the live
output from balena push:
[Logs]    [10/26/2020, 5:26:35 PM] [main]

192.168.50.146 - - [27/Oct/2020 00:26:35]
"GET / HTTP/1.1" 200 -

The IP address in the log entry should be that of the machine from
which you issued the web request. A new log entry should appear
every time you refresh the web page. To stop tailing the logs and
return to the shell, enter Ctrl + C. The container will continue running
on the target device and the "Hello World!" web server will continue
to service requests.

We can restart tailing the logs at any time by issuing the following
command:
$ balena logs 01e9ff1.local

Substitute your device's hostname for the 01e9ff1.local
argument.

The source code for this simple web server can be found in a file
named main.py within the project directory:
tree

https://192.168.50.129/


.

├── Dockerfile.template

├── img

│   ├── enable-public-URLs.png

│   └── log-output.png

├── README.md

├── requirements.txt

└── src

    └── main.py

Now let's make a slight modification to the project source code and
redeploy:

1. Open src/main.py in your favorite editor.

2. Replace 'Hello World!' with 'Hello from Pi 4!' and
save your changes. The following git diff output captures the
changes:
$ git diff

diff --git a/src/main.py b/src/main.py

index 940b2df..26321a1 100644

--- a/src/main.py

+++ b/src/main.py

@@ -3,7 +3,7 @@ app = Flask(__name__)

@app.route('/')

def hello_world():

-    return 'Hello World!'

+    return 'Hello from Pi 4!'

if __name__ == '__main__':

     app.run(host='0.0.0.0', port=80)



3. Push the new code to your Raspberry Pi 4:
$ balena push 01e9ff1.local

Substitute your device's hostname for the 01e9ff1.local
argument.

4. Wait for the Docker image to update. The process should be
much quicker this time around because of an intelligent caching
feature called Livepush that is unique to local mode.

5. Issue a request to the web server at https://192.168.50.129 from
a web browser. Substitute your device's IP address for
192.168.50.129.

The web server running on the Raspberry Pi 4 should respond with
"Hello from Pi 4!"

We can SSH into a local target device by IP address:
$ balena ssh 192.168.50.129

Last login: Tue Oct 27 00:32:04 2020 from
192.168.50.146

root@01e9ff1:~#

Substitute your device's IP address for 192.168.50.129. This is
not especially useful because the application is running inside a
Docker container.

To SSH into the container where the Python web server is running
and observe what it's doing, we need to include the service name in
the balena ssh command:
$ balena ssh 192.168.50.129 main

https://192.168.50.129/


root@01e9ff1:/usr/src/app# ls

Dockerfile  Dockerfile.template  README.md  requir
ements.txt  src

root@01e9ff1:/usr/src/app# ps -ef

UID        PID  PPID  C STIME TTY          TIME
CMD

root         1     0  0 00:26 pts/0    00:00:01
/usr/local/bin/python -u src/main.py

root        30     1  0 00:26 ?        00:00:00
/lib/systemd/systemd-udevd --daemon

root        80     0  2 00:48 pts/1    00:00:00
/bin/bash

root        88    80  0 00:48 pts/1    00:00:00 ps
-ef

#

The service name for this starter application is main as seen in the
live logs output.

Congratulations! You have successfully created a balenaOS image
and host development environment that you and your team can use
to iterate on project code and quickly redeploy to a target device.
This is no small feat. Pushing code changes in the form of a Docker
container is a common development workflow that full-stack
engineers are very accustomed to. With balena, they can now use
the techniques they are familiar with to develop embedded Linux
applications on actual hardware.

Summary



Being able to update the software on devices in the field is at the
very least a useful attribute, and if the device is connected to the
internet, it becomes an absolute must. And yet, all too often it is a
feature that is left until the last part of a project, on the assumption
that it is not a hard problem to solve. In this chapter, I hope that I
have illustrated the problems that are associated with designing an
effective and robust update mechanism, and also that there are
several open source options readily available. You do not have to
reinvent the wheel anymore.

The approach used most often, and also the one with the most real-
world testing, is the symmetric image (A/B) update, or its cousin, the
asymmetric (recovery) image update. Here, you have the choice of
SWUpdate, RAUC, Mender, and fwup. A more recent innovation is
the atomic file update, in the form of OSTree. This has good
characteristics in reducing the amount of data that needs to be
downloaded and the amount of redundant storage that needs to be
fitted on the target. Lastly, with the proliferation of Docker came the
desire for containerized software updates. This is the approach that
balena takes.

It is quite common to deploy updates on a small scale by visiting
each site and applying the update from a USB memory stick or SD
card. But, if you want to deploy to remote locations, or deploy at
scale, an over-the-air (OTA) update option will be needed.

The next chapter describes how you control the hardware
components of your system through the use of device drivers, both
in the conventional sense of drivers that are part of the kernel, and



also the extent to which you can control hardware from the user
space.



Chapter 11 :  Interfacing with
Device Dr ivers
Kernel device drivers are the mechanism through which the
underlying hardware is exposed to the rest of the system. As a
developer of embedded systems, you need to know how these
device drivers fit into the overall architecture and how to access
them from 
user space programs. Your system will probably have some novel
pieces of hardware, and you will have to work out a way of
accessing them. In many cases, you will find that there are device
drivers provided for you, and you can achieve everything you want
without writing any kernel code. For example, you can manipulate
GPIO pins and LEDs using 
files in sysfs, and there are libraries you can use to access serial
buses, including SPI (Serial Peripheral Interface) and I2C (Inter-
Integrated Circuit).

There are many places to find out how to write a device driver, but
few tell you why you would want to and the choices you have in
doing so. This is what I want to cover here. However, remember that
this is not a book dedicated to writing kernel device drivers, and that
the information given here is to help you navigate the territory but not
necessarily set up home there. There are many good books and
articles that will help you to write device drivers, some of which are
listed at the end of this chapter in the Further reading section.



In this chapter, we will cover the following topics:

The role of device drivers

Character devices

Block devices

Network devices

Finding out about drivers at runtime

Finding the right device driver

Device drivers in user space

Writing a kernel device driver

Discovering the hardware configuration

Let's get started!

Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based host system

A microSD card reader and card

A BeagleBone Black

A 5V 1A DC power supply

An Ethernet cable and port for network connectivity



All the code for this chapter can be found in the Chapter11 folder of
this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

The role of  device dr ivers
As I mentioned in Chapter 4, Configuring and Building the Kernel,
one of the functions of the kernel is to encapsulate the many
hardware interfaces of a computer system and present them in a
consistent manner to user space programs. The kernel has
frameworks designed to make it easy to write a device driver, which
is the piece of code that mediates between the kernel above and the
hardware below. A device driver may be written to control physical
devices such as a UART or an MMC controller, or it may represent a
virtual device such as the null device (/dev/null) or a ramdisk.
One driver may control multiple devices of the same kind.

Kernel device driver code runs at a high privilege level, as does the
rest of the kernel. It has full access to the processor address space
and hardware registers. It can handle interrupts and DMA transfers.
It can also make use of the sophisticated kernel infrastructure for
synchronization and memory management. However, you should be
aware that there is a downside to this; if something goes wrong in a
buggy driver, it can go really wrong and bring the system down.
Consequently, there is a principle that device drivers should be as
simple as possible by just providing information to applications

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


where the real decisions are made. You often hear this being
expressed as no policy in the kernel. It is the responsibility of user
space to set the policy that governs the overall behavior of the
system. For example, loading kernel modules in response to external
events, such as plugging in a new USB device, is the responsibility
of the user space program, udev, not the kernel. The kernel just
supplies a means of loading a kernel module.

In Linux, there are three main types of device driver:

Character: This is for an unbuffered I/O with a rich range of
functions and a thin layer between the application code and the
driver. It is the first choice when implementing custom device
drivers.

Block: This has an interface tailored for block I/O to and from
mass storage devices. There is a thick layer of buffering
designed to make disk reads and writes as fast as possible,
which makes it unsuitable for anything else.

Network: This is similar to a block device but is used for
transmitting and receiving network packets rather than disk
blocks.

There is also a fourth type that presents itself as a group of files in
one of the pseudo filesystems. For example, you might access the
GPIO driver through a group of files in 
/sys/class/gpio, as I will describe later on in this chapter. Let's
begin by looking in 
at these three basic device types in more detail.



Character devices
Character devices are identified in the user space by a special file
called a device node. This filename is mapped to a device driver
using the major and minor numbers associated with it. Broadly
speaking, the major number maps the device node to a particular
device driver, while the minor number tells the driver which
interface is being accessed. For example, the device node of the first
serial port on the Arm Versatile PB is named /dev/ttyAMA0, and it
has major number of 204 and minor number of 64. The device node
for the second serial port has the same major number, since it is
handled by the same device driver, but the minor number is 65. We
can see the numbers for all four serial ports from the directory listing
here:
# ls -l /dev/ttyAMA*

crw-rw---- 1 root root 204, 64 Jan 1 1970
/dev/ttyAMA0

crw-rw---- 1 root root 204, 65 Jan 1 1970
/dev/ttyAMA1

crw-rw---- 1 root root 204, 66 Jan 1 1970
/dev/ttyAMA2

crw-rw---- 1 root root 204, 67 Jan 1 1970
/dev/ttyAMA3

The list of standard major and minor numbers can be found in the
kernel documentation in Documentation/devices.txt. The list
does not get updated very often and does not include the ttyAMA
device described in the preceding paragraph. Nevertheless, if you



look at the kernel source code in drivers/tty/serial/amba-
pl011.c, you will see where the major and minor numbers are
declared:
#define SERIAL_AMBA_MAJOR 204

#define SERIAL_AMBA_MINOR 64

Where there is more than one instance of a device, as with the
ttyAMA driver, the convention for forming the name of the device
node is to take a base name, ttyAMA, and append the instance
number from 0 to 3 in this example.

As I mentioned in Chapter 5, Building a Root Filesystem, the device
nodes can be created in several ways:

devtmpfs: The device node is created when the device driver
registers a new device interface using a base name supplied by
the driver (ttyAMA) and an instance number.

udev or mdev (without devtmpfs): Essentially the same as with
devtmpfs, except that a user space daemon program has to
extract the device name from sysfs and create the node. I will
talk about sysfs later.

mknod: If you are using static device nodes, they are created
manually using mknod.

You may have the impression from the numbers I have used here
that both major and minor numbers are 8-bit numbers in the range 0
to 255. In fact, from Linux 2.6 onward, the major number is 12 bits



long, which gives valid numbers from 1 to 4,095, and the minor
number is 20 bits, from 0 to 1,048,575.

When you open a character device node, the kernel checks whether
the major and minor numbers fall into a range registered by a
character device driver. If so, it passes the call to the driver;
otherwise, the open call fails. The device driver can extract the minor
number to find out which hardware interface to use.

To write a program that accesses a device driver, you have to have
some knowledge of how it works. In other words, a device driver is
not the same as a file: the things you do with it change the state of
the device. A simple example is the pseudorandom number
generator, urandom, which returns bytes of random data every time
you read it. Here is a program that does just this (you will find the
code in MELP/Chapter11/read-urandom):
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

int main(void)

{

   int f;

   unsigned int rnd;

   int n;

   f = open("/dev/urandom", O_RDONLY);

   if (f < 0) {

      perror("Failed to open urandom");



      return 1;

   }

   n = read(f, &rnd, sizeof(rnd));

   if (n != sizeof(rnd)) {

      perror("Problem reading urandom");

      return 1;

   }

   printf("Random number = 0x%x\n", rnd);

   close(f);

   return 0;

}

The nice thing about the Unix driver model is that once we know that
there is a device named urandom, every time we read from it, it
returns a fresh set of pseudorandom data, so we don't need to know
anything else about it. We can just use standard functions such as
open(2), read(2), and close(2).

TIP

You could use the stream I/O functions known as fopen(3),

fread(3), and fclose(3) instead, but the buffering implicit in

these functions often causes unexpected behavior. For example,
fwrite(3) usually only writes to the user space buffer, not to the

device. You would need to call fflush(3) to force the buffer to be

written out. Therefore, it is best to not use stream I/O functions when
calling device drivers.

Most device drivers employ a character interface. Mass storage
devices are a notable exception. Reading and writing to disk requires



a block interface for maximum speed.

Block devices
Block devices are also associated with a device node, which also
has major and 
minor numbers.

TIP

Although character and block devices are identified using major and
minor numbers, they are in different namespaces. A character driver
with a major number of 4 is in no way related to a block driver with a

major number of 4.

With block devices, the major number is used to identify the device
driver and the minor number is used to identify the partition. Let's
look at the MMC driver on the BeagleBone Black as an example:
# ls -l /dev/mmcblk*

brw-rw---- 1 root disk 179, 0 Jan 1 2000
/dev/mmcblk0

brw-rw---- 1 root disk 179, 1 Jan 1 2000
/dev/mmcblk0p1

brw-rw---- 1 root disk 179, 2 Jan 1 2000
/dev/mmcblk0p2

brw-rw---- 1 root disk 179, 8 Jan 1 2000
/dev/mmcblk1

brw-rw---- 1 root disk 179, 16 Jan 1 2000
/dev/mmcblk1boot0



brw-rw---- 1 root disk 179, 24 Jan 1 2000
/dev/mmcblk1boot1

brw-rw---- 1 root disk 179, 9 Jan 1 2000
/dev/mmcblk1p1

brw-rw---- 1 root disk 179, 10 Jan 1 2000
/dev/mmcblk1p2

Here, mmcblk0 is the microSD card slot, which has a card that has
two partitions, and mmcblk1 is the eMMC chip, which also has two
partitions. The major number for the MMC block driver is 179 (you
can look it up in devices.txt). The minor numbers are used in
ranges to identify different physical MMC devices, and the partitions
of the storage medium that are on that device. In the case of the
MMC driver, the ranges are eight minor numbers per device: the
minor numbers from 0 to 7 are for the first device, the numbers from
8 to 15 are for the second, and so on. Within each range, the first
minor number represents the entire device as raw sectors, and the
others represent up to seven partitions. On eMMC chips, there are
two 128 KiB areas of memory reserved for use by a bootloader.
These are represented as two devices known as mmcblk1boot0
and mmcblk1boot1, and they have minor numbers of 16 and 24,
respectively.

As another example, you are probably aware of the SCSI disk driver,
known as sd, which is used to control a range of disks that use the
SCSI command set, which includes SCSI, SATA, USB mass storage,
and Universal Flash Storage (UFS). It has the major number 8 and
ranges of 16 minor numbers per interface (or disk). The minor



numbers from 0 to 15 are for the first interface with device nodes
named sda up to sda15, the numbers from 16 to 31 are for the
second disk with device nodes sdb up to sdb15, and so on. This
continues up to the 16th disk from 240 to 255 with the node name
sdp. There are other major numbers reserved for them because
SCSI disks are so popular, but we needn't worry about that here.

Both the MMC and SCSI block drivers expect to find a partition table
at the start of the disk. The partition table is created using utilities
such as fdisk, sfidsk, and parted.

A user space program can open and interact with a block device
directly via the device node. This is not a common thing to do,
though, and is usually only done to perform administrative operations
such as creating partitions, formatting a partition with a filesystem,
and mounting. Once the filesystem has been mounted, you interact
with the block device indirectly through the files in that filesystem.

Most block devices will have a kernel driver that works, so we rarely
need to write our own. The same goes for network devices. Just like
a filesystem abstracts the details of a block device, the network stack
eliminates the need to interact directly with a network device.

Network devices
Network devices are not accessed through device nodes, and they
do not have major and minor numbers. Instead, a network device is
allocated a name by the kernel, based on a string and an instance



number. Here is an example of the way a network driver registers an
interface:
my_netdev = alloc_netdev(0, "net%d",

NET_NAME_UNKNOWN, netdev_setup);

ret = register_netdev(my_netdev);

This creates a network device named net0 the first time it is called,
net1 the second time, and so on. More common names include lo,
eth0, and wlan0. Note that this is the name it starts off with; device
managers, such as udev, may change it to something different later
on.

Usually, the network interface name is only used when configuring
the network using utilities, such as ip and ifconfig, to establish a
network address and route. Thereafter, you interact with the network
driver indirectly by opening sockets and letting the network layer
decide how to route them to the right interface.

However, it is possible to access network devices directly from the
user space by creating a socket and using the ioctl commands
listed in include/linux/sockios.h. For example, this program
uses SIOCGIFHWADDR to query the driver for the hardware (MAC)
address (the code is in MELP/Chapter11/show-mac-
addresses):
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/ioctl.h>



#include <linux/sockios.h>

#include <net/if.h>

int main(int argc, char *argv[])

{

   int s;

   int ret;

   struct ifreq ifr;

   int i;

   if (argc != 2) {

      printf("Usage %s [network interface]\n",
argv[0]);

      return 1;

   }

   s = socket(PF_INET, SOCK_DGRAM, 0);

   if (s < 0) {

      perror("socket");

      return 1;

   }

   strcpy(ifr.ifr_name, argv[1]);

   ret = ioctl(s, SIOCGIFHWADDR, &ifr);

   if (ret < 0) {

      perror("ioctl");

      return 1;

   }

   for (i = 0; i < 6; i++)

      printf("%02x:", (unsigned
char)ifr.ifr_hwaddr.sa_data[i]);

   printf("\n");

   close(s);



   return 0;

}

This program takes a network interface name as an argument. After
opening a socket, we copy the interface name to a struct and pass
that struct in to the ioctl call on the socket, before printing out the
resulting MAC address.

Now that we know what the three categories of device drivers are,
how do we list the different drivers that are in use on our system?

Finding out about dr ivers at
runt ime
Once you have a running Linux system, it is useful to know which
device drivers have been loaded and what state they are in. You can
find out a lot by reading the files in 
/proc and /sys.

First of all, you can list the character and block device drivers that
are currently loaded and active by reading /proc/devices:
# cat /proc/devices

Character devices:

  1 mem

  2 pty

  3 ttyp

  4 /dev/vc/0

  4 tty

  4 ttyS



  5 /dev/tty

  5 /dev/console

  5 /dev/ptmx

  7 vcs

10 misc

13 input

29 fb

81 video4linux

89 i2c

90 mtd

116 alsa

128 ptm

136 pts

153 spi

180 usb

189 usb_device

204 ttySC

204 ttyAMA

207 ttymxc

226 drm

239 ttyLP

240 ttyTHS

241 ttySiRF

242 ttyPS

243 ttyWMT

244 ttyAS

245 ttyO

246 ttyMSM

247 ttyAML



248 bsg

249 iio

250 watchdog

251 ptp

252 pps

253 media

254 rtc

Block devices:

259 blkext

  7 loop

  8 sd

11 sr

31 mtdblock

65 sd

66 sd

67 sd

68 sd

69 sd

70 sd

71 sd

128 sd

129 sd

130 sd

131 sd

132 sd

133 sd

134 sd

135 sd

179 mmc



For each driver, you can see the major number and the base name.
However, this does not tell you how many devices each driver is
attached to. It only shows ttyAMA but it gives you no clue as to
whether it is attached to four real serial ports. I will come back to that
later when we look at sysfs.

Of course, network devices do not appear in this list, because they
do not have device nodes. Instead, you can use tools such as
ifconfig or ip to get a list of network devices:
# ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc
noqueue state

UNKNOWN mode DEFAULT

link/loopback 00:00:00:00:00:00 brd
00:00:00:00:00:00

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu
1500 qdisc

pfifo_fast state DOWN mode DEFAULT qlen 1000

link/ether 54:4a:16:bb:b7:03 brd ff:ff:ff:ff:ff:ff

3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
1500 qdisc

pfifo_fast state UP mode DEFAULT qlen 1000

link/ether aa:fb:7f:5e:a8:d5 brd ff:ff:ff:ff:ff:ff

You can also find out about devices attached to USB or PCI buses
using the well-known lsusb and lspci commands. There is
information about them in the respective manual pages and plenty of
online guides, so I will not describe them any further here.



The really interesting information is in sysfs, which is the next topic
we'll cover.

Gett ing information from sysfs
You can define sysfs in a pedantic way as a representation of
kernel objects, attributes, and relationships. A kernel object is a
directory, an attribute is a file, and a relationship is a symbolic link
from one object to another. From a more practical point of view,
since the Linux device driver model represents all devices and
drivers as kernel objects, you can see the kernel's view of the
system laid out before you by looking in /sys, as shown here:
# ls /sys

block class devices fs module

bus dev firmware kernel power

In the context of discovering information about devices and drivers, I
will look at three of these directories: devices, class, and block.

The devices – /sys/devices
This is the kernel's view of the devices that have been discovered
since boot and how they are connected to each other. It is organized
at the top level by the system bus, so what you see varies from one
system to another. This is the QEMU emulation of the Arm Versatile:
# ls /sys/devices

platform software system tracepoint virtual

There are three directories that are present on all systems:



system/: This contains devices at the heart of the system,
including CPUs and clocks.

virtual/: This contains devices that are memory-based. You
will find the memory devices that appear as /dev/null,
/dev/random, and /dev/zero in virtual/mem. You will find
the loopback device, lo, in virtual/net.

platform/: This is a catch-all for devices that are not connected
via a conventional hardware bus. This may be almost everything
on an embedded device.

The other devices appear in directories that correspond to actual
system buses. For example, the PCI root bus, if there is one,
appears as pci0000:00.

Navigating this hierarchy is quite hard, because it requires some
knowledge of the topology of your system, and the pathnames
become quite long and hard to remember. To make life easier,
/sys/class and /sys/block offer two different views of the
devices.

The drivers – /sys/class
This is a view of the device drivers presented by their type. In other
words, it is a software view rather than a hardware view. Each of the
subdirectories represents a class of driver and is implemented by a
component of the driver framework. For example, UART devices are
managed by the tty layer, and you will find them in
/sys/class/tty. Likewise, you will find network devices in



/sys/class/net, input devices such as the keyboard, the
touchscreen, and the mouse in /sys/class/input, and so on.

There is a symbolic link in each subdirectory for each instance of
that type of device pointing to its representation in /sys/device.

To take a concrete example, let's look at the serial ports on the
Versatile PB. First of all, we can see that there are four of them:
# ls -d /sys/class/tty/ttyAMA*

/sys/class/tty/ttyAMA0 /sys/class/tty/ttyAMA2

/sys/class/tty/ttyAMA1 /sys/class/tty/ttyAMA3

Each directory is a representation of the kernel object that is
associated with an instance of a device interface. Looking within one
of these directories, we can see the attributes of the object,
represented as files, and the relationships with other objects,
represented by links:
# ls /sys/class/tty/ttyAMA0

close_delay flags line uartclk

closing_wait io_type port uevent

custom_divisor iomem_base power xmit_fifo_size

dev iomem_reg_shift subsystem

device irq type

The link called device points to the hardware object for the device.
The link called subsystem points back to the parent subsystem,
/sys/class/tty. The remaining directory entries are attributes.
Some are specific to a serial port, such as xmit_fifo_size, 
while others apply to many types of device, such as the interrupt



number, irq, and the device number, dev. Some attribute files are
writable and allow you to tune parameters in the driver at runtime.

The dev attribute is particularly interesting. If you look at its value,
you will find 
the following:
# cat /sys/class/tty/ttyAMA0/dev

204:64

These are the major and minor numbers of this device. This attribute
is created when the driver registers this interface. It is from this file
that udev and mdev find the major and minor numbers of the device
driver.

The block drivers – /sys/block
There is one more view of the device model that is important to this
discussion: the block driver view that you will find in /sys/block.
There is a subdirectory for each block device. This example has
been taken from a BeagleBone Black:
# ls /sys/block

loop0 loop4 mmcblk0 ram0 ram12 ram2 ram6

loop1 loop5 mmcblk1 ram1 ram13 ram3 ram7

loop2 loop6 mmcblk1boot0 ram10 ram14 ram4 ram8

loop3 loop7 mmcblk1boot1 ram11 ram15 ram5 ram9

If you look into mmcblk1, which is the eMMC chip on this board, you
will see the attributes of the interface and the partitions within it:
# ls /sys/block/mmcblk1

alignment_offset ext_range mmcblk1p1 ro



bdi force_ro mmcblk1p2 size

capability holders power slaves

dev inflight queue stat

device mmcblk1boot0 range subsystem

discard_alignment mmcblk1boot1 removable uevent

The conclusion, then, is that you can learn a lot about the devices
(the hardware) and the drivers (the software) that are present on a
system by reading sysfs.

Finding the r ight  device
dr iver
A typical embedded board is based on a reference design from the
manufacturer with changes to make it suitable for a particular
application. The BSP that comes with the reference board should
support all of the peripherals on that board. But, then you customize
the design, perhaps by adding a temperature sensor attached via
I2C, some lights and buttons connected via GPIO pins, a display
panel via a MIPI interface, or many other things. Your job is to create
a custom kernel to control all of these, but where do you start looking
for device drivers that support all these peripherals?

The most obvious place to look is the driver support page on the
manufacturer's website, or you could ask them directly. In my
experience, this seldom gets the result you want; hardware
manufacturers are not particularly Linux-savvy, and they often give
you misleading information. They may have proprietary drivers as



binary blobs, or they may have source code but for a different
version of the kernel than the one you have. So, by all means try this
route. Personally, I will always try to find an open source driver for
the task in hand.

There may be support in your kernel already: there are many
thousands of drivers in mainline Linux and there are many vendor-
specific drivers in the vendor kernels. Begin by running make
menuconfig (or xconfig) and search for the product name or
number. If you do not find an exact match, try more generic
searches, allowing for the fact that most drivers handle a range of
products from the same family. Next, try searching through the code
in the drivers directory (grep is you friend here).

If you still don't have a driver, you can try searching online and
asking in the relevant forums to see if there is a driver for a later
version of Linux. If you find one, you should seriously consider
updating the BSP to use the later kernel. Sometimes, this is not
practical, and so it may have to think of backporting the driver to your
kernel. If the kernel versions are similar, it may be easy, but if they
are more than 12 to 18 months apart, then chances are that the code
will have changed to the extent that you will have to rewrite a chunk
of the driver to integrate it with your kernel. If all of these options fail,
you will have to find a solution yourself by writing the missing kernel
driver. However, this is not always necessary. We will look at this in
the next section.



Device dr ivers in user
space
Before you start writing a device driver, pause for a moment to
consider whether it is really necessary. There are generic device
drivers for many common types of devices that allow you to interact
with hardware directly from user space, without having to write a line
of kernel code. User space code is certainly easier to write and
debug. It is also not covered by the GPL, although I don't feel that is
a good reason in itself to do it this way.

These drivers fall into two broad categories: those that you control
through files in sysfs, including GPIO and LEDs, and serial buses
that expose a generic interface through a device node, such as I2C.

GPIO
General-Purpose Input/Output (GPIO) is the simplest form of
digital interface since it gives you direct access to individual
hardware pins, each of which can be in one of two states: either high
or low. In most cases, you can configure the GPIO pin to be either an
input or an output. You can even use a group of GPIO pins to create
higher level interfaces such as I2C or SPI by manipulating each bit in
software, a technique that is called bit banging. The main limitation
is the speed and accuracy of the software loops and the number of
CPU cycles you want to dedicate to them. Generally speaking, it is
hard to achieve timer accuracy better than a millisecond unless you



configure a real-time kernel, as we shall see in Chapter 21, Real-
Time Programming. More common use cases for GPIO are for
reading push buttons and digital sensors and controlling LEDs,
motors, and relays.

Most SoCs have a lot of GPIO bits, which are grouped together in
GPIO registers, usually 32 bits per register. On-chip GPIO bits are
routed through to GPIO pins on the chip package via a multiplexer,
known as a pin mux. There may be additional GPIO pins available
off-chip in the power management chip, and in dedicated GPIO
extenders, connected through I2C or SPI buses. All this diversity is
handled by a kernel subsystem known as gpiolib, which is not
actually a library but the infrastructure GPIO drivers used to expose
I/O in a consistent way. There are details about the implementation
of gpiolib in the kernel source in Documentation/gpio, and the
code for the drivers themselves is in drivers/gpio.

Applications can interact with gpiolib through files in the
/sys/class/gpio directory. Here is an example of what you will
see in there on a typical embedded board 
(a BeagleBone Black):
# ls /sys/class/gpio

export gpiochip0 gpiochip32 gpiochip64 gpiochip96
unexport

The directories named gpiochip0 through to gpiochip96
represent four GPIO registers, each with 32 GPIO bits. If you look in
one of the gpiochip directories, you will see the following:
# ls /sys/class/gpio/gpiochip96



base label ngpio power subsystem uevent

The file named base contains the number of the first GPIO pin in the
register, while ngpio contains the number of bits in the register. In
this case, gpiochip96/base is 96 and gpiochip96/ngpio is 32,
which tells you that it contains GPIO bits 96 to 127. It is possible for
there to be a gap between the last GPIO in one register and the first
GPIO in the next.

To control a GPIO bit from user space, you first have to export it from
kernel space, which you can do by writing the GPIO number to
/sys/class/gpio/export. This example shows the process for
GPIO 53, which is wired to user LED 0 on the BeagleBone Black:
# echo 53 > /sys/class/gpio/export

# ls /sys/class/gpio

export gpio53 gpiochip0 gpiochip32 gpiochip64
gpiochip96 unexport

Now, there is a new directory, gpio53, which contains the files you
need to control 
the pin.

IMPORTANT NOTE

If the GPIO bit is already claimed by the kernel, you will not be able
to export it in this way.

The gpio53 directory contains these files:
# ls /sys/class/gpio/gpio53

active_low direction power uevent

device edge subsystem value



The pin begins as an input. To change it to an output, write out to
the direction file. The file value contains the current state of the
pin, which is 0 for low and 1 for high. If it is an output, you can
change the state by writing 0 or 1 to value. Sometimes, the
meaning of low and high is reversed in hardware (hardware
engineers enjoy doing that sort of thing), so writing 1 to
active_low inverts the meaning of value so that a low voltage is
reported as 1 and a high voltage is reported as 0.

You can remove a GPIO from user space control by writing the GPIO
number to /sys/class/gpio/unexport.

Handling interrupts from GPIO
In many cases, a GPIO input can be configured to generate an
interrupt when it changes state, which allows you to wait for the
interrupt rather than polling in an inefficient software loop. If the
GPIO bit can generate interrupts, a file called edge exists. Initially, it
has the value called none, meaning that it does not generate
interrupts. To enable interrupts, you can set it to one of these values:

rising: Interrupt on rising edge

falling: Interrupt on falling edge

both: Interrupt on both rising and falling edges

none: No interrupts (default)

If you want to wait for a falling edge on GPIO 48, you must first
enable the interrupts:



# echo 48 > /sys/class/gpio/export

# echo falling > /sys/class/gpio/gpio48/edge

To wait for an interrupt from the GPIO, follow these steps:

1. First, call epoll_create to create the epoll notification facility:
int ep;

ep = epoll_create(1);

2. Next, open the GPIO and read out its initial value:
int f;

int n;

char value[4];

f = open("/sys/class/gpio/gpio48/value",
O_RDONLY | O_NONBLOCK);

[…]

n = read(f, &value, sizeof(value));

if (n > 0) {

     printf("Initial value value=%c\n",

           value[0]);

     lseek(f, 0, SEEK_SET);

}

3. Call epoll_ctl to register the GPIO's file descriptor with
POLLPRI as the event:
struct epoll_event ev, events;

ev.events = EPOLLPRI;

ev.data.fd = f;

int ret;

ret = epoll_ctl(ep, EPOLL_CTL_ADD, f, &ev);



4. Lastly, wait for an interrupt using the epoll_wait function:
while (1) {

     printf("Waiting\n");

     ret = epoll_wait(ep, &events, 1, -1);

     if (ret > 0) {

           n = read(f, &value, sizeof(value));

           printf("Button pressed: value=%c\n",
value[0]);

           lseek(f, 0, SEEK_SET);

     }

}

The complete source code for this program, as well as a Makefile
and GPIO configuration script, can be found inside the
MELP/Chapter11/gpio-int/ directory that's included with this
book's code archive.

While we could have used select and poll to handle interrupts,
unlike those other two system calls, the performance of epoll does
not degrade rapidly as the number of file descriptors being monitored
increases.

Like GPIOs, LEDs are accessible from sysfs. The interface,
however, is noticeably different.

LEDs
LEDs are often controlled though a GPIO pin, but there is another
kernel subsystem that offers more specialized control that's specific



for this purpose. The leds kernel subsystem adds the ability to set
brightness, should the LED have that ability, and it can handle LEDs
connected in other ways than a simple GPIO pin. It can be
configured to trigger the LED on an event, such as block device
access or just a heartbeat, to show that the device is working. You
will have to configure your kernel with the CONFIG_LEDS_CLASS
option and with the LED trigger actions that are appropriate to you.
There is more information on Documentation/leds/, and the
drivers are in drivers/leds/.

As with GPIOs, LEDs are controlled through an interface in sysfs in
the /sys/class/leds directory. In the case of the BeagleBone
Black, the names of the LEDs are encoded in the device tree in the
form of devicename:colour:function, as shown here:
# ls /sys/class/leds

beaglebone:green:heartbeat beaglebone:green:usr2

beaglebone:green:mmc0 beaglebone:green:usr3

Now, we can look at the attributes of one of the LEDs:
# cd /sys/class/leds/beaglebone\:green\:usr2

# ls

brightness max_brightness subsystem uevent

device power trigger

Note that leading backslashes are required by the shell to escape
the colons in the path.

The brightness file controls the brightness of the LED and can be
a number between 0 (off) and max_brightness (fully on). If the



LED doesn't support intermediate brightness, any non-zero value
turns it on. The file called trigger lists the events 
that trigger the LED to turn on. The list of triggers is implementation-
dependent. Here 
is an example:
# cat trigger

none mmc0 mmc1 timer oneshot heartbeat backlight
gpio [cpu0]

default-on

The trigger currently selected is shown in square brackets. You can
change it by writing one of the other triggers to the file. If you want to
control the LED entirely through brightness, select none. If you
set trigger to timer, two extra files will appear that allow you to
set the on and off times in milliseconds:
# echo timer > trigger

# ls

brightness delay_on max_brightness subsystem
uevent

delay_off device power trigger

# cat delay_on

500

# cat
/sys/class/leds/beaglebone:green:heartbeat
/delay_off

500

If the LED has on-chip timer hardware, the blinking takes place
without interrupting 



the CPU.

I2C
I2C is a simple low speed 2-wire bus that is common on embedded
boards, typically used to access peripherals that are not on the SoC,
such as display controllers, camera sensors, GPIO extenders, and
so on. There is a related standard known as system management
bus (SMBus) that is found on PCs, which is used to access
temperature and voltage sensors. SMBus is a subset of I2C.

I2C is a master-slave protocol, with the master being one or more
host controllers on the SoC. Slaves have a 7-bit address assigned
by the manufacturer (read the data sheet), allowing up to 128 nodes
per bus, but 16 are reserved, so only 112 nodes are allowed in
practice. The master may initiate read or write transactions with one
of the slaves. Frequently, the first byte is used to specify a register
on the slave, while the remaining bytes are the data that's read from
or written to that register.

There is one device node for each host controller; for example, this
SoC has four:
# ls -l /dev/i2c*

crw-rw---- 1 root i2c 89, 0 Jan 1 00:18 /dev/i2c-0

crw-rw---- 1 root i2c 89, 1 Jan 1 00:18 /dev/i2c-1

crw-rw---- 1 root i2c 89, 2 Jan 1 00:18 /dev/i2c-2

crw-rw---- 1 root i2c 89, 3 Jan 1 00:18 /dev/i2c-3



The device interface provides a series of ioctl commands that
query the host controller and send the read and write commands
to I2C slaves. There is a package named i2c-tools, which uses
this interface to provide basic command-line tools to interact with I2C
devices. The tools are as follows:

i2cdetect: This lists the I2C adapters and probes the bus.

i2cdump: This dumps data from all the registers of an I2C
peripheral.

i2cget: This reads data from an I2C slave.

i2cset: This writes data to an I2C slave.

The i2c-tools package is available in Buildroot and the Yocto
Project, as well as most mainstream distributions. So, as long as you
know the address and protocol of the slave, writing a user space
program to talk to the device is straightforward. The example that
follows shows how to read the first four bytes from the AT24C512B
EEPROM, which is mounted on the BeagleBone Black on I2C bus 0.
It has a slave address of 0x50 (the code for this is in
MELP/Chapter11/i2c-example):
#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/i2c-dev.h>

#define I2C_ADDRESS 0x50



int main(void)

{

   int f;

   int n;

   char buf[10];

   f = open("/dev/i2c-0", O_RDWR);

   /* Set the address of the i2c slave device */

   ioctl(f, I2C_SLAVE, I2C_ADDRESS);

   /* Set the 16-bit address to read from to 0 */

   buf[0] = 0; /* address byte 1 */

   buf[1] = 0; /* address byte 2 */

   n = write(f, buf, 2);

   /* Now read 4 bytes from that address */

   n = read(f, buf, 4);

   printf("0x%x 0x%x0 0x%x 0x%x\n",

   buf[0], buf[1], buf[2], buf[3]);

   close(f);

   return 0;

}

This program is like i2cget except that the address and register
bytes being read from are both hardcoded rather than passed in as
arguments. We can use i2cdetect to discover the addresses of
any peripherals on an I2C bus. i2cdetect can leave I2C
peripherals in a bad state or lock up the bus, so it's good practice to
reboot after using it. A peripheral's data sheet tells us what the
registers map to. With that information, we can then use i2cset to
write to its registers over I2C. These I2C commands can easily be



converted into a library of C functions for interfacing with the
peripheral.

IMPORTANT NOTE

There is more information about the Linux implementation of I2C in
Documentation/i2c/dev-interface. The host controller

drivers are in drivers/i2c/busses.

Another popular communication protocol is the Serial Peripheral
Interface (SPI), which utilizes a 4-wire bus.

SPI
The SPI bus is similar to I2C but is a lot faster by up to tens of MHz.
The interface uses four wires with separate send and receive lines,
which allow it to operate in full duplex. Each chip on the bus is
selected with a dedicated chip select line. It is commonly used to
connect to touchscreen sensors, display controllers, and serial NOR
flash devices.

As with I2C, it is a master-slave protocol, with most SoCs
implementing one or more master host controllers. There is a
generic SPI device driver, which you can enable through the
CONFIG_SPI_SPIDEV kernel configuration. It creates a device node
for each SPI controller, which allows you to access SPI chips from
the user space. The device nodes are named spidev[bus].
[chip select]:
# ls -l /dev/spi*



crw-rw---- 1 root root 153, 0 Jan 1 00:29
/dev/spidev1.0

For examples of using the spidev interface, please refer to the
example code in Documentation/spi.

So far, the device drivers we've seen all have longstanding upstream
support within the Linux kernel. Because these device drivers are all
generic (GPIO, LEDs, I2C, and SPI), accessing them from the user
space is straightforward. At some point, you will encounter a piece of
hardware that lacks a compatible kernel device driver. That hardware
may be the centerpiece of your product (for example, Lidar, SDR,
and so on). There may also be an FPGA in-between the SoC and
this hardware. Under these circumstances, you may have no other
recourse than to write your own kernel module(s).

Writ ing a kernel  device
dr iver
Eventually, when you have exhausted all the previous user space
options, you will find yourself having to write a device driver to
access a piece of hardware attached to your device. Character
drivers are the most flexible and should cover 90% of all your needs;
network drivers apply if you are working with a network interface and
block drivers are for mass storage. The task of writing a kernel driver
is complex and beyond the scope of this book. There are some
references at the end that will help you on your way. In this section, I
want to outline the options available for interacting with a driver – a



topic not normally covered – and show you the bare bones of a
character device driver.

Designing a character driver
interface
The main character driver interface is based on a stream of bytes, as
you would have with a serial port. However, many devices don't fit
this description: a controller for a robot arm needs functions to move
and rotate each joint, for example. Luckily, there are other ways to
communicate with device drivers than just read and write:

ioctl: The ioctl function allows you to pass two arguments to
your driver, 
and these can have any meaning you like. By convention, the
first argument is 
a command, which selects one of several functions in your driver,
while the second is a pointer to a structure, which serves as a
container for the input and output parameters. This is a blank
canvas that allows you to design any program interface you like.
It is pretty common when the driver and application are closely
linked and written by the same team. However, ioctl is
deprecated in the kernel, and you will find it hard to get any
drivers with new uses of ioctl accepted upstream. The kernel
maintainers dislike ioctl because it makes kernel code and



application code too interdependent, and it is hard to keep both of
them in step across kernel versions and architectures.

sysfs: This is the preferred way to do things now, with a good
example being the GPIO interface described earlier. The
advantages are that it is somewhat self-documenting, so long as
you choose descriptive names for the files. It is also scriptable
because the file's content is usually text strings. On the other
hand, the requirement for each file to contain a single value
makes it hard to achieve atomicity if you need to change more
than one value at a time. Conversely, ioctl passes all its
arguments in a structure, in a single function call.

mmap: You can get direct access to kernel buffers and hardware
registers by mapping kernel memory into user space, thus
bypassing the kernel. You may still need some kernel code to
handle interrupts and DMA. There is a subsystem that
encapsulates this idea, known as uio, which is short for user
I/O. There is more documentation in
Documentation/DocBook/uio-howto, and there are
example drivers in drivers/uio.

sigio: You can send a signal from a driver using the kernel
function named kill_fasync() to notify applications of an
event, such as input becoming ready or an interrupt being
received. By convention, the signal called SIGIO is used, but it
could be any. You can see some examples in the UIO driver,
drivers/uio/uio.c, and in the RTC driver,



drivers/char/rtc.c. The main problem is that it is difficult to
write reliable signal handlers in the user space, and so it remains
a little-used facility.

debugfs: This is another pseudo filesystem that represents
kernel data as files and directories, similar to proc and sysfs.
The main distinction is that debugfs must not contain
information that is needed for the normal operation of the system;
it is for debug and trace information only. It is mounted as mount
-t debugfs debug /sys/kernel/debug. There is a good
description of debugfs in the
Documentation/filesystems/debugfs.txt kernel
documentation.

proc: The proc filesystem is deprecated for all new code unless
it relates to processes, which was the original intended purpose
for the filesystem. However, you can use proc to publish any
information you choose. And, unlike sysfs and debugfs, it is
available to non-GPL modules.

netlink: This is a socket protocol family. AF_NETLINK creates
a socket that links the kernel space to the user space. It was
originally created so that network tools could communicate with
the Linux network code to access the routing tables and other
details. It is also used by udev to pass events from the kernel to
the udev daemon. It is very rarely used in general device drivers.



There are many examples of all of the preceding filesystems in the
kernel source code, and you can design really interesting interfaces
to your driver code. The only universal rule is the principle of least
astonishment. In other words, application writers who are using your
driver should find that everything works in a logical way, without any
quirks or oddities.

The anatomy of a device driver
It's time to draw some threads together by looking at the code for a
simple device driver.

Here is the start of a device driver named dummy, which creates four
devices that can be accessed through /dev/dummy0 to
/dev/dummy3:
#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/init.h>

#include <linux/fs.h>

#include <linux/device.h>

#define DEVICE_NAME "dummy"

#define MAJOR_NUM 42

#define NUM_DEVICES 4

static struct class *dummy_class;

Next, we will define the dummy_open(), dummy_release(),
dummy_read(), and dummy_write() functions for the character
device interface:



static int dummy_open(struct inode *inode, struct
file *file)

{

   pr_info("%s\n", __func__);

   return 0;

}

static int dummy_release(struct inode *inode,
struct file *file)

{

   pr_info("%s\n", __func__);

   return 0;

}

static ssize_t dummy_read(struct file *file,

char *buffer, size_t length, loff_t * offset)

{

   pr_info("%s %u\n", __func__, length);

   return 0;

}

static ssize_t dummy_write(struct file *file,

const char *buffer, size_t length, loff_t *
offset)

{

   pr_info("%s %u\n", __func__, length);

   return length;

}

After that, we need to initialize a file_operations structure and
define the 



dummy_init() and dummy_exit() functions, which are called
when the driver is loaded and unloaded:
struct file_operations dummy_fops = {

   .owner = THIS_MODULE,

   .open = dummy_open,

   .release = dummy_release,

   .read = dummy_read,

   .write = dummy_write,

};

int __init dummy_init(void)

{

   int ret;

   int i;

   printk("Dummy loaded\n");

   ret = register_chrdev(MAJOR_NUM, DEVICE_NAME,
&dummy_fops);

   if (ret != 0)

      return ret;

   dummy_class = class_create(THIS_MODULE,
DEVICE_NAME);

   for (i = 0; i < NUM_DEVICES; i++) {

      device_create(dummy_class, NULL,

                    MKDEV(MAJOR_NUM, i), NULL,
"dummy%d", i);

   }

   return 0;

}

void __exit dummy_exit(void)

{



   int i;

   for (i = 0; i < NUM_DEVICES; i++) {

      device_destroy(dummy_class, MKDEV(MAJOR_NUM,
i));

   }

   class_destroy(dummy_class);

   unregister_chrdev(MAJOR_NUM, DEVICE_NAME);

   printk("Dummy unloaded\n");

}

At the end of the code, the macros called module_init and
module_exit specify the functions to be called when the module is
loaded and unloaded:
module_init(dummy_init);

module_exit(dummy_exit);

The closing three macros named MODULE_* add some basic
information about the module:
MODULE_LICENSE("GPL");

MODULE_AUTHOR("Chris Simmonds");

MODULE_DESCRIPTION("A dummy driver");

This information can be retrieved from the compiled kernel module
using the modinfo command. The complete source code for the
driver can be found in the MELP/Chapter11/dummy-driver
directory, which is included with this book's code archive.

When the module is loaded, the dummy_init() function is called.
You can see the point at which it becomes a character device when
is makes the call to register_chrdev, passing a pointer to



struct file_operations, which contains pointers to the four
functions that the driver implements. While register_chrdev tells
the kernel that there is a driver with a major number of 42, it doesn't
say anything about the class of driver, and so it will not create an
entry in /sys/class.

Without an entry in /sys/class, the device manager cannot create
device nodes. So, the next few lines of code create a device class,
dummy, and four devices of that class called dummy0 to dummy3.
The result is that the /sys/class/dummy directory is created when
the driver is initialized, containing subdirectories dummy0 to dummy3.
Each of the subdirectories contains a file, dev, that contains the
major and minor numbers of the device. This is all that a device
manager needs to create device nodes: /dev/dummy0 to 
/dev/dummy3.

The dummy_exit() function has to release the resources claimed
by dummy_init(), which here means freeing up the device class
and major number.

The file operations for this driver are implemented by
dummy_open(), dummy_read(), dummy_write(), and
dummy_release(), and they are called when a user space
program calls open(2), read(2), write(2), and close(2),
respectively. They just print a kernel message so that you can see
that they were called. You can demonstrate this from the command
line using the echo command:
# echo hello > /dev/dummy0



dummy_open

dummy_write 6

dummy_release

In this case, the messages appear because I was logged onto the
console, and kernel messages are printed to the console by default.
If you are not logged onto the console, you can still see the kernel
messages by using the dmesg command.

The full source code for this driver is less than 100 lines, but it is
enough to illustrate how the linkage between a device node and
driver code works; how the device class is created, allowing a device
manager to create device nodes automatically when the driver is
loaded; and how the data is moved between the user and kernel
spaces. Next, you need to build it.

Compil ing kernel modules
At this point, you have some driver code that you want to compile
and test on your target system. You can copy it into the kernel
source tree and modify makefiles to build it, or you can compile it as
a module out of tree. Let's start by building out of tree.

You will need a simple makefile that uses the kernel build system to
do all the hard work:
LINUXDIR := $(HOME)/MELP/build/linux

obj-m := dummy.o

all:



     make ARCH=arm CROSS_COMPILE=arm-cortex_a8-
linux-gnueabihf- \

     -C $(LINUXDIR) M=$(shell pwd)

clean:

     make -C $(LINUXDIR) M=$(shell pwd) clean

Set LINUXDIR to the directory of the kernel for your target device
that you will be running the module on. The obj-m := dummy.o
code will invoke the kernel build rule to take the source file,
dummy.c, and create a kernel module, dummy.ko. I will show you
how to load kernel modules in the next section.

IMPORTANT NOTE

Kernel modules are not binary compatible between kernel releases
and configurations: the module will only load on the kernel it was
compiled with.

If you want to build a driver in the kernel source tree, the procedure
is quite simple. Choose a directory appropriate to the type of driver
you have. The driver is a basic character device, so I would put
dummy.c in drivers/char. Then, edit the makefile in the directory,
and add a line to build the driver unconditionally as a module, as
follows:
obj-m += dummy.o

Alternatively, you can add the following line to build it unconditionally
as a builtin:
obj-y += dummy.o



If you want to make the driver optional, you can add a menu option to
the Kconfig 
file and make the compilation conditional on the configuration option,
as I described 
in Chapter 4, Configuring and Building the Kernel, in the
Understanding kernel configuration section.

Loading kernel modules
You can load, unload, and list modules using the simple insmod,
lsmod, and rmmod commands, respectively. Here, they are loading
the dummy driver:
# insmod /lib/modules/4.8.12-yocto-

standard/kernel/drivers/dummy.ko

# lsmod

Tainted: G

dummy 2062 0 - Live 0xbf004000 (O)

# rmmod dummy

If the module is placed in a subdirectory in
/lib/modules/<kernel release>, you can create a modules
dependency database using the depmod -a command, like so:
# depmod -a

# ls /lib/modules/4.8.12-yocto-standard

kernel   modules.alias   modules.dep   modules.sym
bols



The information in the modules.* files is used by the modprobe
command to locate a module by name rather than its full path.
modprobe has many other features, all of which are described on
the modprobe(8) manual page.

Now that we have written and loaded our dummy kernel module,
how do we get it to talk to some real piece of hardware? We need to
bind our driver to that hardware either by way of the device tree or
platform data. Discovering hardware and linking that hardware to a
device driver is the topic of the next section.

Discover ing the hardware
conf igurat ion
The dummy driver demonstrates the structure of a device driver, but
it lacks interaction with real hardware since it only manipulates
memory structures. Device drivers are usually written to interact with
hardware. Part of that is being able to discover the hardware in the
first place, bearing in mind that it may be at different addresses in
different configurations.

In some cases, the hardware provides the information itself. Devices
on a discoverable bus such as PCI or USB have a query mode,
which returns resource requirements and a unique identifier. The
kernel matches the identifier and possibly other characteristics with
the device drivers and marries them up.



However, most of the hardware blocks on an embedded board do
not have such identifiers. You have to provide the information
yourself in the form of a device tree or as C structures known as
platform data.

In the standard driver model for Linux, device drivers register
themselves with the appropriate subsystem: PCI, USB, open
firmware (device tree), platform device, and so on. The registration
includes an identifier and a callback function, called a probe
function, that is called if there is a match between the ID of the
hardware and the ID of the driver. For PCI and USB, the ID is based
on the vendor and the product IDs of the devices; for device trees
and platform devices, it is a name (a text string).

Device trees
I gave you an introduction to device trees in Chapter 3, All About
Bootloaders. Here, I want to show you how the Linux device drivers
hook up with this information.

As an example, I will use the Arm Versatile board,
arch/arm/boot/dts/versatile-ab.dts, for which the
Ethernet adapter is defined here:
net@10010000 {

   compatible = "smsc,lan91c111";

   reg = <0x10010000 0x10000>;

   interrupts = <25>;

};



Pay special attention to the compatible property of this node. This
string value will reappear later in the source code for the Ethernet
adapter. We will learn more about device trees in Chapter 12,
Prototyping with Breakout Boards.

The platform data
In the absence of device tree support, there is a fallback method of
describing hardware using C structures, known as the platform data.

Each piece of hardware is described by struct
platform_device, which has a name and a pointer to an array of
resources. The resource's type is determined by flags, which include
the following:

IORESOURCE_MEM: This is the physical address of a region of
memory.

IORESOURCE_IO: This is the physical address or port number of
I/O registers.

IORESOURCE_IRQ: This is the interrupt number.

Here is an example of the platform data for an Ethernet controller
taken from arch/arm/machversatile/core.c, which has been
edited for clarity:
#define VERSATILE_ETH_BASE 0x10010000

#define IRQ_ETH 25

static struct resource smc91x_resources[] = {



[0] = {

   .start = VERSATILE_ETH_BASE,

   .end = VERSATILE_ETH_BASE + SZ_64K - 1,

   .flags = IORESOURCE_MEM,

},

[1] = {

   .start = IRQ_ETH,

   .end = IRQ_ETH,

   .flags = IORESOURCE_IRQ,

},

};

static struct platform_device smc91x_device = {

  .name = "smc91x",

  .id = 0,

  .num_resources = ARRAY_SIZE(smc91x_resources),

  .resource = smc91x_resources,

};

It has a memory area of 64 KB and an interrupt. The platform data
has to be registered with the kernel, usually when the board is
initialized:
void __init versatile_init(void)

{

   platform_device_register(&versatile_flash_devic
e);

   platform_device_register(&versatile_i2c_device)
;

   platform_device_register(&smc91x_device);

   […]



The platform data shown here is functionally equivalent to the
previous device tree source, except for the name field, which takes
the place of the compatible property.

Linking hardware with device
drivers
In the preceding section, you saw how an Ethernet adapter is
described using a device tree and using platform data. The
corresponding driver code is in
drivers/net/ethernet/smsc/smc91x.c, and it works with
both the device tree and platform data. Here is the initialization code,
once again edited for clarity:
static const struct of_device_id smc91x_match[] =

{

   { .compatible = "smsc,lan91c94", },

   { .compatible = "smsc,lan91c111", },

   {},

};

MODULE_DEVICE_TABLE(of, smc91x_match);

static struct platform_driver smc_driver = {

   .probe = smc_drv_probe,

   .remove = smc_drv_remove,

   .driver = {

      .name = "smc91x",

      .of_match_table =
of_match_ptr(smc91x_match),



   },

};

static int __init smc_driver_init(void)

{

   return platform_driver_register(&smc_driver);

}

static void __exit smc_driver_exit(void)

{

   platform_driver_unregister(&smc_driver);

}

module_init(smc_driver_init);

module_exit(smc_driver_exit);

When the driver is initialized, it calls
platform_driver_register(), pointing to struct
platform_driver, in which there is a callback to a probe
function, a driver name, smc91x, and a pointer to struct
of_device_id.

If this driver has been configured by the device tree, the kernel will
look for a match between the compatible property in the device
tree node and the string being pointed to by the compatible structure
element. For each match, it calls the probe function.

On the other hand, if it was configured through platform data, the
probe function will be called for each match on the string pointed to
by driver.name.

The probe function extracts information about the interface:



static int smc_drv_probe(struct platform_device
*pdev)

{

   struct smc91x_platdata *pd =
dev_get_platdata(&pdev->dev);

   const struct of_device_id *match = NULL;

   struct resource *res, *ires;

   int irq;

   res = platform_get_resource(pdev,
IORESOURCE_MEM, 0);

   ires platform_get_resource(pdev,
IORESOURCE_IRQ, 0);

   […]

   addr = ioremap(res->start, SMC_IO_EXTENT);

   irq = ires->start;

   […]

}

The calls to platform_get_resource() extract the memory and
irq information from either the device tree or the platform data. It is
up to the driver to map the memory and install the interrupt handler.
The third parameter, which is zero in both of the previous cases,
comes into play if there is more than one resource of that particular
type.

Device trees allow you to configure more than just basic memory
ranges and interrupts. There is a section of code in the probe
function that extracts optional parameters from the device tree. In
this snippet, it gets the register-io-width property:



match =
of_match_device(of_match_ptr(smc91x_match)
, &pdev->dev);

if (match) {

   struct device_node *np = pdev->dev.of_node;

   u32 val;

   […]

   of_property_read_u32(np, "reg-io-width", &val);

   […]

}

For most drivers, specific bindings are documented in
Documentation/devicetree/bindings. For this particular
driver, the information is in
Documentation/devicetree/bindings/net/smsc911x.txt.

The main thing to remember here is that drivers should register a
probe function and enough information for the kernel to call probe,
as it finds matches with the hardware it knows about. The linkage
between the hardware described by the device tree and the device
driver is done through the compatible property. The linkage
between platform data and a driver is done through the name.

Summary
Device drivers have the job of handling devices, usually physical
hardware but sometimes virtual interfaces, and presenting them to
the user space in a consistent and useful way. Linux device drivers
fall into three broad categories: character, block, and network. Of the



three, the character driver interface is the most flexible and
therefore, the most common. Linux drivers fit into a framework
known as the driver model, which is exposed through sysfs. Pretty
much the entire state of the devices and drivers is visible in /sys.

Each embedded system has its own unique set of hardware
interfaces and requirements. Linux provides drivers for most
standard interfaces, and by selecting the right kernel configuration,
you can get a working target board very quickly. This leaves you with
the non-standard components, for which you will have to add your
own device support.

In some cases, you can sidestep the issue by using generic drivers
for GPIO, I2C, and so on, and write user space code to do the work.
I recommend this as a starting point, as it gives you the chance to
become familiar with the hardware without writing kernel code.
Writing kernel drivers is not particularly difficult, but you do you need
to code carefully so as not to compromise the stability of the system.

So far, I have talked about writing the kernel driver code; if you go
down this route, you will inevitably want to know how to check
whether it is working correctly and detect any bugs. I will cover that
topic in Chapter 19, Debugging with GDB.

The next chapter is all about user space initialization and the
different options you have for the init program, from the simple
BusyBox to more complex systems.



Further reading
The following resources contain further information about the topics
that were introduced in this chapter:

Linux Kernel Development, 3rd Edition, by Robert Love

Linux Weekly News: https://lwn.net/Kernel

Async IO on Linux: select, poll, and epoll, by Julia Evans:
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--
and-epoll

Essential Linux Device Drivers, 1st Edition, by Sreekrishnan
Venkateswaran

https://lwn.net/Kernel
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll


Chapter 12 :  Prototyping
with Breakout Boards
Custom board bring-up is what embedded Linux engineers are
called on to do time and time again. A consumer electronics
manufacturer wants to build a new device and, more often than not,
that device needs to run Linux. The process of assembling the Linux
image typically starts before the hardware is ready, and is done
using prototypes that are wired together from development and
breakout boards. Peripheral I/O pins need to be muxed into device
tree bindings for working communications. Only then can the task of
coding middleware for an application begin.

Our goal in this chapter is to add a u-blox GPS module to the
BeagleBone Black. This requires reading schematics and data
sheets so that necessary modifications to the device tree source can
be generated using Texas Instruments' SysConfig tool. Next, we will
wire up a SparkFun GPS Breakout board to the BeagleBone Black
and probe the connected SPI pins with a logic analyzer. Lastly, we
will compile and run test code on the BeagleBone Black so that we
can receive NMEA sentences from the ZOE-M8Q GPS module over
SPI.

Rapid prototyping with real hardware involves lots of trial and error.
In this chapter, we will get hands-on experience with soldering and
assemble a test bench to study and debug digital signals. We will



also revisit device tree source, but this time, we will pay special
attention to the pin control configurations and how to utilize them to
enable external or onboard peripherals. With a full Debian Linux
distribution at our disposal, we can use tools such as git, gcc,
pip3, and python3 to develop software directly on the BeagleBone
Black.

In this chapter, we will cover the following topics:

Mapping schematics to the device tree's source

Prototyping with breakout boards

Probing SPI signals with a logic analyzer

Receiving NMEA messages over SPI

Let's get started!

Technical  requirements
To follow along with the examples in this chapter, make sure you
have the following:

A Linux-based host system

A Buildroot 2020.02.9 LTS release

Etcher for Linux

A microSD card reader and card

A USB to TTL 3.3V serial cable



A BeagleBone Black

A 5V 1A DC power supply

An Ethernet cable and port for network connectivity

A SparkFun model GPS-15193 Breakout

A row (12 or more pins) of straight breakaway headers

A soldering iron kit

Six male to female jumper wires

A U.FL GNSS antenna

You should have already installed the 2020.02.9 release of Buildroot
in Chapter 6, Selecting a Build System. If you have not, then refer to
the System requirements section of the The Buildroot user manual
(https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions 
from Chapter 6.

A logic analyzer helps with troubleshooting and understanding SPI
communications. 
I will be using the Saleae Logic 8 for demonstration purposes. I
realize Saleae products are prohibitively expensive ($399 and up),
so if you do not already own a Saleae logic analyzer, you can still get
through this chapter without one. There are more affordable low-
speed alternatives
(http://dangerousprototypes.com/docs/Bus_Pirate) that are sufficient
for SPI and I2C debugging, but I won't cover them in this book.

https://buildroot.org/downloads/manual/manual.html
http://dangerousprototypes.com/docs/Bus_Pirate


All the code for this chapter can be found in the Chapter12 folder of
this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Mapping schematics to the
device t ree's source
Because the BeagleBone Black's Bill Of Materials (BOM), PCB
design files, and schematics are all open source, anyone can
manufacture a BeagleBone Black as part of their consumer product.
Since the BeagleBone Black is intended for development, it contains
several components that may not be needed for production, such as
an Ethernet cable, a USB port, and a microSD slot. As a dev board,
the BeagleBone Black may also be missing one or more peripherals
needed for your application such as sensors, an LTE modem, or an
OLED display.

The BeagleBone Black is built around Texas Instruments' AM335x, a
single core 32-bit ARM Cortex-A8 SoC with dual Programmable
Real-Time Units (PRU). There is a more expensive Wireless variant
of the BeagleBone Black made by Octavo Systems that swaps out
Ethernet with a Wi-Fi and Bluetooth module. The BeagleBone Black
Wireless is also open source hardware, but at some point, you may
want to design your own custom PCB around the AM335x.
Designing a daughterboard (known as a "cape") for the BeagleBone
Black is also an option.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


For our purposes, we will integrate a u-blox ZOE-M8Q GPS module
into a networked device. If you need to transfer lots of packets from
a local network to and from the cloud, then running Linux is a
sensible choice since it has an extremely mature TCP/IP network
stack. The BeagleBone Black's ARM Cortex-A8 CPU meets the
requirements (enough addressable RAM and a memory
management unit) for running mainstream Linux. This means our
product can benefit from security and bug fixes that have been made
to the Linux kernel.

In Chapter 11, Interfacing with Device Drivers, we looked at an
example of how to bind an Ethernet adapter to a Linux device driver.
Binding peripherals is done with device tree source or C structs
known as platform data. Over the years, using device tree source
has become the preferred means of binding to Linux device drivers,
especially on ARM SoCs. For these reasons, the examples in this
chapter only involve device tree source. Like U-Boot, compiling
device tree source into DTBs is also part of the Linux kernel build
process.

Before we can start modifying the device tree source, we need to get
acquainted with the schematics for the BeagleBone Black and
SparkFun ZOE-M8Q GPS Breakout.

Reading schematics and data
sheets



The BeagleBone Black has 2 x 46 pin expansion headers for I/O.
These headers include UART, I2C, and SPI communications ports,
in addition to numerous GPIOs. Most GPS modules, including ours,
can send NMEA data over serial UARTs or I2C. Even though many
user space GPS tools, such as gpsd, only work with modules
connected via serial, I chose a GPS module with an SPI interface for
this project. The BeagleBone Black has two SPI buses available. We
only need one of these SPI buses to connect the u-blox ZOE-M8Q.

I chose SPI over UART and I2C for two reasons: UARTs are scarce
on many SoCs and needed for things such as Bluetooth and/or a
serial console; I2C drivers and hardware can have serious bugs.
Some I2C kernel drivers are so poorly implemented that the bus
locks up when there are too many connected peripherals talking.
The I2C controllers found in Broadcom SoCs, such as the one in the
Raspberry Pi 4, are notorious for glitching when peripherals attempt
to perform clock stretching.

Here is a map of the pins on the BeagleBone Black's P9 expansion
header:



Figure 12.1 – P9 expansion header SPI ports

Pins 17, 18, 21, and 22 are assigned to the SPI0 bus. Pins 19, 20,
28, 29, 30, 31, and 42 are assigned to the SPI1 bus. Notice that pins
42 and 28 duplicate the functionality of pins 19 and 20 for SPI1. We
can only utilize one pin for either SPI1_CS1 and SPI1_CS0. Any
duplicate pins should be disabled or repurposed. Also, notice that
SPI1 has CS0 and CS1 pins, whereas SPI0 only has a CS0 pin. CS
stands for chip select. Since each SPI bus is a master-slave
interface, pulling a CS signal line low typically selects which
peripheral to transmit to on the bus. This kind of negative logic is
known as "active low".



Here is a block diagram of the BeagleBone Black's SPI1 bus with
two peripherals attached:

Figure 12.2 – SPI1 bus



If we look at the Beagle Bone Black's schematic
(https://github.com/beagleboard/beaglebone-
black/blob/master/BBB_SCH.pdf), we will 
see that four pins (28 to 31) on the P9 expansion header are labeled
for SPI1:

https://github.com/beagleboard/beaglebone-black/blob/master/BBB_SCH.pdf


Figure 12.3 – P9 expansion header schematic

The extra SPI1 pins (19, 20, and 42) and all of the SPI0 pins (17, 18,
21, and 22) have been repurposed for I2C1, I2C2, and UART2 on



the schematic. This alternate mapping is the result of pin mux
configurations defined within the device tree source files. To route
the missing SPI signal lines from the AM335x to their respective
target pins on the expansion header, the proper pin mux
configurations must be applied. Pin muxing can be done at runtime
for prototyping but should transition to compile time before the
finished hardware arrives.

In addition to CS0, you will notice that the SPI0 bus also has SCLK,
D0, and D1 lines. SCLK stands for SPI clock and is always
generated by the bus master, which is the AM335x in this case. Data
transmitted over the SPI bus is synchronized to this SCLK signal.
SPI supports much higher clock frequencies than I2C. The D0 data
line corresponds to master in, slave out (MISO). The D1 data line
corresponds to master out, slave in (MOSI). While both D0 and D1
can be assigned to either MISO or MOSI in software, we will stick
with these default mappings. SPI is a full-duplex interface, which
means that both the master and selected slave can send data at the
same time.

Here is a block diagram showing the directions of all four SPI
signals:



Figure 12.4 – SPI signals

Now, let's turn our attention away from the BeagleBone Black to the
ZOE-M8Q. We'll start with the ZOE-M8 series data sheet, which can
be downloaded from u-blox's product page at https://www.u-
blox.com/en/product/zoe-m8-series. Jump to the section describing
SPI. It says that SPI is disabled by default because its pins are
shared with the UART and DDC interfaces. To enable SPI on the
ZOE-M8Q, we must connect the D_SEL pin to the ground. Pulling
down D_SEL converts the two UART and two DDC pins into four SPI
pins.

Locate the schematic for the SparkFun ZOE-M8Q GPS Breakout by
selecting the "Documents" tab from the product page at
https://www.sparkfun.com/products/15193. Searching for the D_SEL
pin reveals that it is on the left-hand side of the jumper labeled JP1.
Closing the jumper connects D_SEL to GND, thereby enabling SPI:

https://www.u-blox.com/en/product/zoe-m8-series
https://www.sparkfun.com/products/15193


Figure 12.5 – D_SEL jumper and SPI connectors on the GPS
breakout

The connectors for the CS, CLK, MOSI, and MISO pins are co-
located with 3.3V and GND. Closing the jumper and attaching the
headers to the six pins will require some soldering.

Always check the pin ratings when interconnecting chips or modules.
The JP2 jumper on the GPS Breakout connects the SCL/CLK and
SDA/CS pins to 2.2kΩ pull up resistors. The AM335x data sheet
says these output pins are 6mA drivers, so enabling their weak
internal pull ups adds 100µA of pull up current. The ZOE-M8Q has
an 11kΩ pull up on the same pins, adding 300µA at 3.3V. The 2.2kΩ
I2C pull ups on the GPS Breakout add another 1.5mA for a total of
1.9mA of pull up current, which is okay.



Returning to Figure 12.1, notice that the BeagleBone Black supplies
3.3V from pins 3 and 4 of its P9 expansion header. Pins 1 and 2 and
43 to 46 are tied to GND. In addition to connecting the four SPI lines
on the GPS Breakout to pins 17, 18, 21, and 22, we will also wire the
GPS module's 3.3V and GND to pins 3 and 43 on the BeagleBone
Black's P9 expansion header.

Now that we have some idea of how to connect the ZOE-M8Q, let's
enable the SPI0 bus on Linux, which is running on the BeagleBone
Black. The quickest way to do this is to install a prebuilt Debian
image from BeagleBoard.org.

Instal l ing Debian on the
BeagleBone Black
BeagleBoard.org provides Debian images for their various dev
boards. Debian is 
a popular Linux distribution that includes a comprehensive set of
open source software packages. It is a massive effort with
contributors from all over the world. Building Debian for the various
BeagleBoards is unconventional by embedded Linux standards
because the process does not rely on cross-compilation. Rather than
attempting to build Debian for the BeagleBone Black yourself, simply
download a finished image directly from BeagleBoard.org.

To download the Debian Buster IoT microSD card image for the
BeagleBone Black, issue the following command:

http://beagleboard.org/
http://beagleboard.org/
http://beagleboard.org/


$ wget https://debian.BeagleBoard.org/images/bone-
debian-10.3-iot-armhf-2020-04-06-
4gb.img.xz

10.3 was the latest Debian image for AM335x-based BeagleBone
boards at the time of writing. The major version number of 10
indicates that 10.3 is a Buster LTS release of Debian. Since Debian
10.0 was originally released on July 6, 2019, it should receive
updates for up to 5 years from that date.

IMPORTANT NOTE

If possible, download version 10.3 (also known as Buster) rather
than the latest Debian image from BeagleBoard.org for the exercises
in this chapter. The BeagleBone bootloader, kernel, DTBs, and
command-line tools are in constant flux, so the instructions may not
work with a later Debian release.

Now that we have a Debian image for the BeagleBone Black, let's
write it out to a microSD card and boot it. Locate the bone-debian-
10.3-iot-armhf-2020-04-06-4gb.img.xz file that you
downloaded from BeagleBoard.org from Etcher and write it out to a
microSD card. Insert the microSD card into your BeagleBone Black
and power it up with a 5V power supply. Next, plug the Ethernet
cable from the BeagleBone Black into a free port on your router with
an Ethernet cable. When the onboard Ethernet lights start blinking,
your BeagleBone Black should be online. Internet access allows us
to install packages and fetch code from Git repos from within Debian.

http://beagleboard.org/
http://beagleboard.org/
http://beagleboard.org/


To ssh into the BeagleBone Black from your Linux host, use the
following code:
$ ssh debian@beaglebone.local

Enter temppwd at the debian user's password prompt.

IMPORTANT NOTE

Many BeagleBone Blacks come with Debian already installed on the
onboard flash, so they will still boot, even without a microSD card
inserted. If the BeagleBoard.org Debian Buster IoT Image

2020-04-06 message is displayed before the password prompt,

then the BeagleBone Black was booted from the Debian 10.3 image
on the microSD. If a different Debian release message is displayed
before the password prompt, then verify whether or not the microSD
card is properly inserted.

Now that we're on the BeagleBone Black, let's look at what SPI
interfaces are available.

Enabling spidev
Linux comes with a user space API that provides read() and
write() access to 
SPI devices. This user space API is known as spidev and is
included in the Debian Buster image for the BeagleBone Black. We
can confirm this by searching for the 
spidev kernel module:
debian@beaglebone:~$ lsmod | grep spi



spidev                 20480  0

Now, list the available SPI peripheral addresses:
$ ls /dev/spidev*

/dev/spidev0.0  /dev/spidev0.1  /dev/spidev1.0  /d
ev/spidev1.1

The /dev/spidev0.0 and /dev/spidev0.1 nodes are on the
SPI0 bus, while the 
/dev/spidev1.0 and /dev/spidev1.1 nodes are on the SPI1
bus. We only need the SPI0 bus for this project.

U-Boot loads overlays on top of the device tree for the BeagleBone
Black. We can select which device tree overlays to load by editing U-
Boot's uEnv.txt configuration file:
$ cat /boot/uEnv.txt

#Docs: http://elinux.org/Beagleboard:U-
boot_partitioning_layout_2.0

uname_r=4.19.94-ti-r42

.

.

.

###U-Boot Overlays###

###Documentation:
http://elinux.org/Beagleboard:BeagleBoneBl
ack_Debian#U-Boot_Overlays

###Master Enable

enable_uboot_overlays=1

###

.

.



.

###Disable auto loading of virtual capes
(emmc/video/wireless/adc)

#disable_uboot_overlay_emmc=1

#disable_uboot_overlay_video=1

#disable_uboot_overlay_audio=1

#disable_uboot_overlay_wireless=1

#disable_uboot_overlay_adc=1

.

.

.

###Cape Universal Enable

enable_uboot_cape_universal=1

Confirm that the enable_uboot_overlays and
enable_uboot_cape_universal environment variables are both
set to 1. A leading # means that anything after that character in the
line is commented out. For this reason, U-Boot ignores all the
disable_uboot_overlay_<device>=1 statements shown in the
preceding code. This configuration file is applied to U-Boot's
environment, so any changes that are saved to /boot/uEnv.txt
require a reboot to take effect.

IMPORTANT NOTE

The audio overlay conflicts with the SPI1 bus on the BeagleBone
Black. Uncomment disable_uboot_overlay_audio=1 in

/boot/uEnv.txt if you wish to enable communications over SPI1.



To list the device tree overlays U-Boot has loaded, use the following
commands:
$ cd /opt/scripts/tools

$ sudo ./version.sh | grep UBOOT

UBOOT: Booted Device-Tree:[am335x-boneblack-uboot-
univ.dts]

UBOOT: Loaded Overlay:[AM335X-PRU-RPROC-4-19-TI-
00A0]

UBOOT: Loaded Overlay:[BB-ADC-00A0]

UBOOT: Loaded Overlay:[BB-BONE-eMMC1-01-00A0]

UBOOT: Loaded Overlay:[BB-NHDMI-TDA998x-00A0]

The cape universal feature
(https://github.com/cdsteinkuehler/beaglebone-universal-io) is unique
to the AM3358 version of Debian. It provides access to nearly all of
the BeagleBone Black's hardware I/O without us having to modify
the device tree source or rebuild the kernel. Different pin mux
configurations are activated at runtime using the config-pin
command-line tool.

To view all the available pingroups, use the following code:
$ cat /sys/kernel/debug/pinctrl/*pinmux*/pingroups

To view just the SPI pingroups, use the following code:
$ cat /sys/kernel/debug/pinctrl/*pinmux*/pingroups

| grep spi

group: pinmux_P9_19_spi_cs_pin

group: pinmux_P9_20_spi_cs_pin

group: pinmux_P9_17_spi_cs_pin

group: pinmux_P9_18_spi_pin

https://github.com/cdsteinkuehler/beaglebone-universal-io


group: pinmux_P9_21_spi_pin

group: pinmux_P9_22_spi_sclk_pin

group: pinmux_P9_30_spi_pin

group: pinmux_P9_42_spi_cs_pin

group: pinmux_P9_42_spi_sclk_pin

Assigning only one pin to a pingroup is unusual. Normally, all the SPI
pins (CS, SCLK, D0, and D1) for a bus are muxed together in the
same pingroup. We can confirm this strange one-to-one pin to group
relationship by looking at the device tree source, which is located
inside the /opt/source/dtb-4.19-ti/src/arm directory on the
Debian image.

The am335x-boneblack-uboot-univ.dts file in that source
directory contains the following includes:
#include "am33xx.dtsi"

#include "am335x-bone-common.dtsi"

#include "am335x-bone-common-univ.dtsi"

That .dts file, together with the three included .dtsi files, define
the device tree source. The dtc tool compiles these four source files
into a am335x-boneblack-uboot-univ.dtb file. U-Boot also
loads device tree overlays on top of this cape universal device tree.
These device tree overlays have .dtbo as their file extension.

Here is the pingroup definition for pinmux_P9_17_spi_cs_pin:
P9_17_spi_cs_pin: pinmux_P9_17_spi_cs_pin {

pinctrl-single,pins = <

     AM33XX_IOPAD(0x095c, PIN_OUTPUT_PULLUP |
INPUT_EN | MUX_MODE0) >; };



The pinmux_P9_17_spi_cs_pin group configures pin 17 on the
P9 expansion header to act as a CS pin for the SPI0 bus.

Here is the P9_17_pinmux definition, where
pinmux_P9_17_spi_cs_pin is referenced:
/* P9_17 (ZCZ ball A16) */

P9_17_pinmux {

     compatible = "bone-pinmux-helper";

     status = "okay";

     pinctrl-names = "default", "gpio", "gpio_pu",
"gpio_pd", "gpio_input", "spi_cs", "i2c",
"pwm", "pru_uart";

     pinctrl-0 = <&P9_17_default_pin>;

     pinctrl-1 = <&P9_17_gpio_pin>;

     pinctrl-2 = <&P9_17_gpio_pu_pin>;

     pinctrl-3 = <&P9_17_gpio_pd_pin>;

     pinctrl-4 = <&P9_17_gpio_input_pin>;

     pinctrl-5 = <&P9_17_spi_cs_pin>;

     pinctrl-6 = <&P9_17_i2c_pin>;

     pinctrl-7 = <&P9_17_pwm_pin>;

     pinctrl-8 = <&P9_17_pru_uart_pin>;

};

Notice that the pinmux_P9_17_spi_cs_pin group is one of nine
different ways P9_17_pinmux can be configured. Since spi_cs is
not the default configuration for that pin, the SPI0 bus is initially
disabled.

To enable /dev/spidev0.0, run the following config-pin
commands:



$ config-pin p9.17 spi_cs

Current mode for P9_17 is:     spi_cs

$ config-pin p9.18 spi

Current mode for P9_18 is:     spi

$ config-pin p9.21 spi

Current mode for P9_21 is:     spi

$ config-pin p9.22 spi_sclk

Current mode for P9_22 is:     spi_sclk

Rerun the config-pin commands and prefix them with sudo if you
encounter permissions errors. Enter temppwd as password for the
debian user. There is a config-spi0.sh script containing these
four config-pin commands under 
MELP/Chapter12 in the book code archive.

Debian comes with Git installed, so you can clone this book's
repository to fetch the archive:
$ git clone

https://github.com/PacktPublishing/Masteri
ng-Embedded-Linux-Programming-Third-
Edition.git MELP

To enable /dev/spidev0.0 upon booting your BeagleBone Black,
use the 
following command:
$ MELP/Chapter12/config-spi0.sh

The sudo password is the same as the debian login prompt.

The Linux kernel source comes with a spidev_test program. I
have included a copy of this spidev_test.c source file, which I



obtained from https://github.com/rm-hull/spidev-test, in this book's
code archive, under MELP/Chapter12/spidev-test.

To compile the spidev_test program, use the following
commands:
$ cd MELP/Chapter12/spidev-test

$ gcc spidev_test.c -o spidev_test

Now, run the spidev_test program:
$ ./spidev_test -v

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF F0 0D  |
......@....?..................?.

RX | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00  |
................................

The -v flag is short for --verbose and displays the contents of the
TX buffer. This version of the spidev_test program defaults to
using the /dev/spidev0.0 device, so no --device argument
needs to be passed in to select the SPI0 bus. The full-duplex nature
of SPI means that the bus master receives data while transmitting. In
this case, the RX buffer contains all zeros, implying that no data was
received. In fact, there is no assurance that any of the data in the TX
buffer was even sent.

https://github.com/rm-hull/spidev-test


Use a jumper wire to connect pin 18 (SPI0_D1) to pin 21 (SPI0_D0)
on the BeagleBone Black's P9 expansion header, as shown here:





Figure 12.6 – SPI0 loopback

The map of the P9 expansion header is oriented so that the header
is on the left-hand side of the BeagleBone Black when the USB port
is at the bottom. The jumper wire from SPI0_D1 to SPI0_D0 forms a
loopback connection by feeding MOSI (master out) into MISO
(master in).

IMPORTANT NOTE

Don't forget to rerun the config-spi0.sh script after rebooting or

power cycling your BeagleBone Black to re-enable the
/dev/spidev0.0 interface.

Rerun the spidev_test program with your loopback connection in
place:
$ ./spidev_test -v

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF F0 0D  | ......@.......................

RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF F0 0D  | ......@.......................

The contents of the RX buffer should now match the contents of the
TX buffer. We have verified that the /dev/spidev0.0 interface is
fully functional. For more on runtime pin muxing, including the origins



of the BeagleBone Black's device tree and overlays, I recommend
reading https://cdn-learn.adafruit.com/downloads/pdf/introduction-to-
the-beaglebone-black-device-tree.pdf.

Customizing the device tree
BeagleBoard.org's cape universal device tree is great for
prototyping, but a tool such 
as config-pin is not suitable for production. When we ship a
consumer device, we know what peripherals are included. There
should be no hardware discovery involved 
in the boot process aside from reading a model and revision number
from an EEPROM. U-Boot can then decide what device tree and
overlays to load based on that. Like choosing kernel modules, the
contents of the device tree are decisions best made at compile time,
not runtime.

Eventually, we will need to customize the device tree source for our
custom AM335x board. Most SoC vendors, including Texas
Instruments, provide interactive pin mux 
tools for generating device tree source. We will use Texas
Instruments online SysConfig tool to add a spidev interface to our
Nova board. We already customized the device tree for the Nova
back in the Porting Linux to a new board section of Chapter 4,
Configuring and Building the Kernel, and again in Chapter 6,
Selecting a Build System, when we learned how to create a custom

https://cdn-learn.adafruit.com/downloads/pdf/introduction-to-the-beaglebone-black-device-tree.pdf


BSP for Buildroot. This time, we will add to the am335x-
boneblack.dts file instead of just copying it verbatim.

Visit https://dev.ti.com and create an account if you do not already
have one. You will need a myTI account to access the online
SysConfig tool.

To create a myTI account, follow these steps:

1. Click the Login / Register button in the top-right corner of the
landing page.

2. Fill out the New user form.

3. Click the Create account button.

To launch the SysConfig tool, follow these steps:

1. Click the Login / Register button in the top-right corner of the
landing page.

2. Log in by entering your email address and password under
Existing myTI user.

3. Click on the SysConfig Launch button under Cloud tools.

The Launch button will take you to the SysConfig start page at
https://dev.ti.com/sysconfig/#/start, which you can bookmark for
quicker access. SysConfig lets us save our working designs to the
cloud so that we can revisit them later.

To generate a SPI0 pinmux configuration for the AM335x, follow
these steps:

https://dev.ti.com/
https://dev.ti.com/sysconfig/#/start


1. Select AM335x from the Device menu under Start a new
Design.

2. Leave the default Part and Package menu selections of Default
and ZCE for the AM335x as-is.

3. Click the Start button.

4. Select SPI from the left sidebar.

5. Click the ADD button to add an SPI to your design:



Figure 12.7 – Adding an SPI peripheral

6. Rename MySP1 to SPI0 by typing that into the Name field.

7. Select SPI0 from the Use Peripheral menu:



Figure 12.8 – Selecting SPI0

8. Select Master SPI with 1 chip select from the Use Case menu:



Figure 12.9 – Master SPI with 1 chip select

9. Uncheck the CS1 checkbox to remove that item.



10. Click on devicetree.dtsi under Generated Files to view the
device tree source.

11. Select Pull Up from the Pull Up/Down menu for Signals:



Figure 12.10 – Pull up signals



Notice what this did to the displayed device tree source. All
instances of 
PIN_INPUT have been replaced with PIN_INPUT_PULLUP.

12. Uncheck the Rx checkboxes for D1, SCLK, and CS0 since those
pins are outputs from the AM335x master, not inputs:



Figure 12.11 – Unchecking the Rx boxes



The D0 pin corresponds to MISO (master in, slave out), so leave
Rx checked for that pin. The spi0_sclk, spi0_d1, and
spi0_cs0 pins should now be configured as
PIN_OUTPUT_PULLUP in the device tree source. Recall that SPI
CS signals are usually active low, so a pullup is required to keep
that line from floating.

13. Click on the floppy icon for devicetree.dtsi to save the
device tree source file to your machine.

14. Click Save As from the File menu in the top-left corner to save
your design.

15. Give your design file a descriptive name such as nova.syscfg
and click SAVE.

16. The contents of the .dtsi file you saved to your machine should
look like this:

&am33xx_pinmux {

      spi0_pins_default: spi0_pins_default {

           pinctrl-single,pins = <

                AM33XX_IOPAD(0x950,
PIN_OUTPUT_PULLUP | MUX_MODE0) /* (A18)
spi0_sclk.spi0_sclk */

                AM33XX_IOPAD(0x954,
PIN_INPUT_PULLUP | MUX_MODE0) /* (B18)
spi0_d0.spi0_d0 */

                AM33XX_IOPAD(0x958,
PIN_OUTPUT_PULLUP | MUX_MODE0) /* (B17)
spi0_d1.spi0_d1 */



                AM33XX_IOPAD(0x95c,
PIN_OUTPUT_PULLUP | MUX_MODE0) /* (A17)
spi0_cs0.spi0_cs0 */

           >;

      };

      […]

};

I omitted the optional sleep pin settings because we won't need
them. If we compare the hexadecimal pin addresses shown in the
preceding code with the addresses of those same SPI0 pins in
am335x-bone-common-univ.dtsi, we'll see that they match
exactly.

The SPI0 pins in am335x-bone-common-univ.dtsi were all
configured as follows:
AM33XX_IOPAD(0x095x, PIN_OUTPUT_PULLUP | INPUT_EN

| MUX_MODE0)

Use of the INPUT_EN bitmask suggests that all four SPI0 pins in the
cape universal device tree are configured as inputs, as well as
outputs, when in fact only spi0_ds0 at 0x954 needs to function as
an input.

The INPUT_EN bitmask is one of many macros defined in the
/opt/source/dtb-4.19-ti/include/dt-

bindings/pinctrl/am33xx.h header file, which can be found on
the Debian Buster IoT image:
#define PULL_DISABLE            (1 << 3)

#define INPUT_EN                (1 << 5)



[…]

#define PIN_OUTPUT              (PULL_DISABLE)

#define PIN_OUTPUT_PULLUP       (PULL_UP)

#define PIN_OUTPUT_PULLDOWN     0

#define PIN_INPUT               (INPUT_EN |
PULL_DISABLE)

#define PIN_INPUT_PULLUP        (INPUT_EN |
PULL_UP)

#define PIN_INPUT_PULLDOWN      (INPUT_EN)

More TI device tree source macros are defined in the
/opt/source/dtb-4.19-ti include/dt-

bindings/pinctrl/omap.h header file:
#define OMAP_IOPAD_OFFSET(pa, offset)   (((pa) &

0xffff) - (offset))

[…]

#define AM33XX_IOPAD(pa,
val)           OMAP_IOPAD_OFFSET((pa),
0x0800) (val)

Now that we have properly muxed the SPI0 pins, copy and paste the
generated device tree source into our nova.dts file. Once this new
spi0_pins_default pingroup has been defined, we can
associate that pingroup with the spi0 device node by overriding it,
as follows:
&spi0 {

     status = "okay";

     pinctrl-names = "default";

     pinctrl-0 = <&spi0_pins_default>;

     […]



}

The & symbol before the device node name means we are referring
to, and thereby modifying, an existing node in the device tree rather
than defining a new one.

I have included the finished nova.dts file in this book's code
archive, inside the 
MELP/Chapter12/buildroot/board/melp/nova directory.

To build a custom Linux image with this device tree for our Nova
board, follow these steps:

1. Copy MELP/Chapter12/buildroot over your Buildroot
installation:
$ cp -a MELP/Chapter12/buildroot/* buildroot

This will either add a nova_defconfig file and
board/melp/nova directory or replace the ones from
MELP/Chapter06/buildroot.

2. cd to the directory where you installed Buildroot:
$ cd buildroot

3. Delete all the previous build artifacts:
$ make clean

4. Get ready to build an image for our Nova board:
$ make nova_defconfig

5. Build the image:
$ make



Once the build has finished, the image is written to a file named
output/images/sdcard.img. Use Etcher to write that image to a
microSD card. See the Targeting real hardware section of
Introducing Buildroot in Chapter 6, Selecting a Build System, to learn
how to do this. When Etcher is done flashing, insert the microSD into
your BeagleBone Black. There is no SSH daemon included with the
root filesystem, so you will need to attach a serial cable to log in.

To log into the BeagleBone Black via a serial console, follow these
steps:

1. Plug the USB to TTL 3.3V serial cable from your Linux host to the
J1 header on the BeagleBone Black. Make sure the black wire on
the FTDI end of the cable connects to pin 1 on J1. A serial port
should appear on your Linux host as /dev/ttyUSB0.

2. Start a suitable terminal program, such as gtkterm, minicom,
or picocom, and attach it to the port at 115200 bits per second
(bps) with no flow control. gtkterm is probably the easiest to set
up and use:
$ gtkterm -p /dev/ttyUSB0 -s 115200

3. Apply power to the BeagleBone Black via the 5V barrel
connector. You should see U-Boot output, kernel log output, and
eventually a login prompt on the serial console.

4. Log in as root with no password.

Scroll up or enter dmesg to view the kernel messages during boot.
Kernel messages like the following confirm that the spidev0.0



interface was successfully probed via the binding we defined in
nova.dts:
[    1.368869] omap2_mcspi 48030000.spi:

registered master spi0

[    1.369813] spi spi0.0: setup: speed 16000000,
sample trailing edge, clk normal

[    1.369876] spi spi0.0: setup mode 1, 8 bits/w,
16000000 Hz max --> 0

[    1.372589] omap2_mcspi 48030000.spi:
registered child spi0.0

The spi-tools package was included with the root filesystem for
testing purposes. The package consists of the spi-config and
spi-pipe command-line tools.

Here is the usage for spi-config:
# spi-config -h

usage: spi-config options...

  options:

    -d --device=<dev>  use the given spi-dev
character device.

    -q --query         print the current
configuration.

    -m --mode=[0-3]    use the selected spi mode:

             0: low idle level, sample on leading
edge,

             1: low idle level, sample on trailing
edge,

             2: high idle level, sample on leading
edge,



             3: high idle level, sample on
trailing edge.

    -l --lsb={0,1}     LSB first (1) or MSB first
(0).

    -b --bits=[7...]   bits per word.

    -s --speed=<int>   set the speed in Hz.

    -r --spirdy={0,1}  consider SPI_RDY signal (1)
or ignore it (0).

    -w --wait          block keeping the file
descriptor open to avoid speed reset.

    -h --help          this screen.

    -v --version       display the version number.

And here is the usage for spi-pipe:
# spi-pipe -h

usage: spi-pipe options...

  options:

    -d --device=<dev>    use the given spi-dev
character device.

    -s --speed=<speed>   Maximum SPI clock rate
(in Hz).

    -b --blocksize=<int> transfer block size in
byte.

    -n --number=<int>    number of blocks to
transfer (-1 = infinite).

    -h --help            this screen.

    -v --version         display the version
number.

I won't utilize spi-tools in this chapter, relying instead on
spidev-test and a modified version of that same program that I



call spidev-read.

We have now gone as far with the device tree source as we are
going to go in this book. While DTS is extremely versatile, it can also
be very frustrating. The dtc compiler is not very smart, so a lot of
device tree source debugging happens at runtime using modprobe
and dmesg. Forgetting a pullup or misconfiguring an input as an
output when pin muxing can be enough to prevent a device from
probing. Wi-Fi/Bluetooth modules with SDIO interfaces are
especially challenging to bring up.

With SPI out of the way, it is now time to get up close and personal
with the GPS module. We will return to the topic of the generic
spidev interface when we have finished wiring up the SparkFun
ZOE-M8Q GPS Breakout.

Prototyping with breakout
boards
Now that we have SPI working on the BeagleBone Black, let's turn
our attention back 
to the GPS module. Before we can wire up the SparkFun ZOE-M8Q
GPS Breakout, we need to do some soldering. Soldering requires
desk space, materials, and a considerable time investment.

To perform the soldering for this project, you will need the following
items:



A soldering iron (adjustable temperature) with a conical tip

Any one of the following: a silicone car dashboard anti-slip mat, a
silicone baking mat, or a ceramic tile

A fine (0.031-inch gauge) electrical rosin core solder

A soldering iron stand

A wet sponge

A wire cutter

Safety glasses

A Helping Hands tool, along with a magnifying glass and an LED
light

An X-Acto #2 knife with a #2 blade or #1 knife with a #11 blade

These items are nice to have but not necessary:

An insulated silicone soldering mat

solder wick

A brass sponge

Sticky tack or some similar putty-like adhesive

Dental tools kit

Needle nose pliers

Tweezers

Most of these items come bundled together with the SparkFun
Beginner Tool Kit, but they can be purchased elsewhere at a lower



cost. If you are new to soldering, I also recommend obtaining some
scrap PCBs to practice on before operating on the ZOE-M8Q. The
holes on the SparkFun GPS Breakout are small and require a
steady, delicate touch. A Helping Hands tool with a magnifying glass
and alligator clips helps tremendously. Some sticky tack can also
hold a breakout board in place on a hard, flat surface while you apply
solder. When done, use an X-Acto knife to scrape off any excess
sticky tack on or near the contacts.

Even if you are new to electronics, I encourage you to take the
plunge and learn to solder. It might take a couple of days of
frustration before you get the hang of it, but the satisfaction you get
from building your own circuits is well worth it. I recommend reading
MightyOhm's free Soldering is Easy comic book by Mitch Altman and
Andie Nordgren to get started.

Here are some of my own helpful soldering tips. Wiping your
soldering tip with a brass sponge keeps it free from troublesome
oxidation. Use an X-Acto knife to scrape off any stray blobs of solder
from PCBs. Use a hot iron to melt and play with some solder on your
silicone mat to get accustomed to its properties. Lastly, always wear
safety glasses when handling hot solder so none gets in your eyes.

Closing the SPI jumper
We located the D_SEL pin on the SparkFun GPS Breakout
schematic on the left-hand side of a jumper named JP1. Tying the
D_SEL pin to GND on the right-hand side of the jumper switches the



ZOE-M8Q from I2C to SPI mode. The two SPI jumper pads already
have some solder on them. We need to heat the pads so that we can
move that solder around.

Flip the breakout board over to see the jumpers. Notice that the JP1
jumper is labeled SPI on the center left of the board:

Figure 12.12 – Jumpers

To close the SPI jumper, do the following:

1. Plug in and heat your soldering iron to 600 °F.

2. Hold the GPS Breakout in place with the alligator clips from your
Helping Hands.



3. Position your Helping Hands magnifying glass and LED light so
that you can clearly see the SPI jumper.

4. Place the soldering tip on the left and right pads of the SPI
jumper until the solder melts, forming a bridge between the two
pads.

5. Feel free to add some more solder if necessary.

6. Use the tip of your soldering iron to melt and lift off any excess
solder from the jumper pads.

Very little solder is needed to close the jumper. If the solder starts to
smoke, turn down the temperature of your iron. Once the SPI jumper
is closed, serial and I2C communications are disabled on the ZOE-
M8Q. The FTDI and I2C pin labels on the top side of the breakout
board no longer apply. Use the SPI pin labels on the underside of the
board.

TIP

Use the side of the tip (also known as "the sweet spot"), not the very
tip of the iron, for best results.

We don't need to repeat this same soldering procedure for the JP2
because the pads 
are already bridged on that jumper. JP2 has a separate pad for each
of the two 2.2kΩ 
I2C pull up resistors. Notice that the JP2 is directly above JP1 and
labeled I2C on the breakout board.

Now that the SPI jumper is closed, let's attach the GNSS antenna.



Attaching the GNSS antenna
A ceramic or Molex adhesive GNSS antenna helps the ZOE-M8Q
obtain a GPS fix. U.FL connectors are fragile and should be handled
with care. Lay the breakout board flat on a hard surface and use a
magnifying glass to ensure proper placement of the antenna.

To attach the GNSS antenna to the U.FL connector, follow these
steps:

1. Align the cable so that the female connector and the end rests
evenly across the surface of the male connector on the board.

2. Place your finger lightly on top of the stacked connectors to make
sure the female connector is not teetering.

3. Examine the two stacked connectors from above to make sure
they are centered on top of one another.

4. Use the center of your finger to press down firmly on the center of
the connector, until you feel the two connectors lock together in
place.

Now that the antenna is attached, we are ready to attach the SPI
header.

Attaching the SPI header
We will use six male to female jumper wires to connect the SparkFun
GPS Breakout to 



the BeagleBoard Black. The male ends of the jumper wires plug into
the P9 expansion header on the BeagleBone Black. The female
ends plug into a row of straight breakaway headers that we will
solder onto the breakout board. Through-hole soldering with the
header pins in place can be difficult, because the pins leave little
room in the holes for the solder and tip to slide in. That is why I
recommend fine gauge (0.031 inches or smaller) solder for this
project.

If you are inexperienced with handling small electronic components,
you should first practice soldering some straight breakaway headers
onto a scrap PCB. A little extra preparation could save you from
damaging and having to replace your expensive ZOE-M8Q GPS
module. A proper solder joint should flow around the header pin and
fill the hole, forming a volcano-shaped mound. The solder joint
needs to touch the metal ring around the hole. Any gaps between
the pin and the metal ring will likely result in a bad connection.

To ready the SparkFun GPS Breakout so that you can attach the SPI
header, follow 
these steps:

1. Break off a row of eight header pins.

2. Break off a row of four header pins.

3. Insert the row of eight through the SPI holes on the underside of
the breakout board.

4. Insert the row of four through the holes opposite the SPI row on
the underside 



of the breakout board. This header only serves to keep the board
stable while 
you're soldering.

5. Hold the GPS Breakout in place with the alligator clips from your
Helping Hands.

6. Position your Helping Hands magnifying glass and LED light so
that you can clearly see the row of eight FTDI and I2C holes on
the top side of the breakout board.

7. Plug in and heat your soldering iron to 600 to 650 °F for lead-
based solder or 650 to 700 °F for lead-free solder.

Perform the following steps for the six holes on the top side of the
breakout board labeled SDA, SCL, GND, 3V3, RXI, and TXO:

1. Apply a very small ball of solder to the tip of the hot iron to help
prep the joint.

2. Heat the header pin and the edge of the metal ring around the
hole by touching them with the tip of the iron.

3. With the tip of the iron still in place, feed solder into the joint until
the hole is filled.

4. Pull the melted solder up slowly with the tip of the iron to form a
mound.

5. Scrape any stray blobs of solder off with an X-Acto knife and use
solder wick to remove any accidental solder bridges between
holes.



6. Clean off any black oxidation that forms on the tip of the iron with
either a wet or brass sponge.

Repeat these steps until all six pins have been soldered into their
holes. When finished, the top side of the breakout board should look
like this:

Figure 12.13 – Solder joints



Note that the jumper wires have already been attached in this photo,
even though we haven't gotten to them yet. The two holes labeled
NC in the row of eight do not require soldering because they are not
connected to anything.

Connecting the SPI jumper wires
Flip the breakout board so that the underside is visible again. By
doing this, we can attach the jumper wires. Use a black or gray wire
for GND and a red or orange wire for 3V3 to avoid mixing them up
and damaging your breakout board. It also helps to use different
colors for the other wires so that we don't get the SPI lines confused.

Here are what the female ends of my six jumper wires look like when
inserted into the header pins on the underside of the breakout board:



Figure 12.14 – Female ends of the SPI jumper wires

To connect the male ends of the SPI jumper wires to the P9
expansion header on the BeagleBone Black, follow these steps:

1. Disconnect the power from the BeagleBone Black.



2. Connect the GND wire from the GPS to pin 1 on P9.

3. Connect the CS wire from the GPS to pin 17 on P9.

4. Connect the CLK wire from the GPS to pin 22 on P9.

5. Connect the 3V3 wire from the GPS to pin 3 on P9.

6. Connect the MOSI wire from the GPS to pin 18 on P9.

7. Connect the MISO wire from the GPS to pin 21 on P9.

As a rule, it is best to connect the GND wire first before any of the
other wires. This protects the BeagleBone's I/O lines from any
electrostatic discharge that may have built up on the GPS Breakout.

The male ends of the six jumper wires should look like this when
connected:





Figure 12.15 – Male ends of the SPI jumper wires

The gray wire connected to pin 1 is GND and the yellow wire
connected to pin 3 is 3V3 in my case. The blue wire connected to pin
18 is MOSI on my GPS Breakout. Be careful not to plug the 3V3 wire
into either of the VDD_5V pins that are just below the VDD_3V3 pins
on P9, as you could destroy your breakout board.

To enable the SPI0 bus on the BeagleBone Black and power up the
GPS Breakout, follow these steps:

1. Insert the Debian Buster IoT microSD card into your BeagleBone
Black.

2. Apply power the BeagleBone Black by connecting the 5V power
supply.

3. Connect your BeagleBone Black to the internet by plugging the
board into a port on your router with an Ethernet cable.

4. SSH into your BeagleBone Black as debian:
$ ssh debian@beaglebone.local

5. The password is temppwd.

6. Navigate to the directory for this chapter, which can be found in
this book's archive:
$ cd MELP/Chapter12

7. Enable the /dev/spidev0.0 interface:
$ sudo ./config-spi0.sh



Navigate to the spidev-test source directory and run the
spidev_test program back-to-back a few times:
debian@beaglebone:~$ cd MELP/Chapter12/spidev-test

$ ./spidev_test

$ ./spidev_test

Pressing the up arrow key saves us from having to retype the
previous command. On the second attempt, you should see an
NMEA string starting with $GNRMC in the RX buffer:
$ ./spidev_test

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

RX | 24 47 4E 52 4D 43 2C 2C 56 2C 2C 2C 2C 2C 2C
2C 2C 2C 2C 4E 2A 34 44 0D 0A 24 47 4E 56
54 47 2C  |
$GNRMC,,V,,,,,,,,,,N*4D..$GNVTG,

If you see an NMEA sentence in your RX buffer like the one shown
here, then everything has gone according to plan. Congratulations!
The hardest parts of this project are now over. The rest is "just
software", as we like to say in the industry.

If no NMEA sentences (https://en.wikipedia.org/wiki/NMEA_0183)
are being received by spidev_test from the GPS module, here
are some questions we should ask ourselves:

1. Is the cape universal device tree loaded?

Run the version.sh script under /opt/scripts/tools with
sudo to 

https://en.wikipedia.org/wiki/NMEA_0183


verify this.

2. Did we run the config-spi0 script without errors?

Rerun config-spi0 with sudo if you encounter permissions
errors. Any subsequent No such file or directory errors
imply that U-Boot failed 
to load the cape universal tree.

3. Is the power LED on the breakout board lighting up red?

If not, then 3V3 is not connected, so the GPS Breakout is not
powering on. If you have a multimeter, then you can use that to
determine whether the GPS Breakout is indeed receiving 3.3 V
from the BeagleBone Black.

4. Is the GND jumper wire from the GPS Breakout connected to pin
1 or 2 on P9?

The GPS Breakout will not operate with proper grounding.

5. Are there any loose jumper wires on either end?

All four of the remaining wires (CS, SCLK, MISO, and MOSI) are
essential for a working SPI interface.

6. Are the MOSI and MISO jumper wires swapped on either end?

Like swapping the TX and RX lines on a UART, this mistake is
notoriously easy to make. Color coding our jumper wires helps
but labeling them with their names using tape is even better.

7. Are the CS and SCLK jumper wires swapped on either end?



Choosing distinct colors for our jumper wires helps us avoid
mistakes like these.

If the answers to all these questions check out, then we are now
ready to attach the logic analyzer. If you do not have a logic
analyzer, then I suggest you reinspect the JP1 jumper and all six
solder joints. Make sure the JP1 jumper pads are properly joined. Fill
in any gaps between header pins and their surrounding metal rings.
Remove any excess solder that could be shorting two adjacent pins
together. Add some solder to joints where it may be lacking. Once
you are satisfied with this rework, reconnect the jumper wires and
reattempt this exercise. With some luck, the results will be better or
different this time.

Successful completion of this exercise concludes all the soldering
and wiring required for this project. If you are anxious to see the
finished product in action, you can skip the next section and jump
straight to the Receiving NMEA messages over SPI section. Once
you have NMEA data streaming from the GPS module to a terminal
window, we can pick up where we left off here and continue learning
about SPI signals and digital logic.

Probing SPI s ignals wi th a
logic analyzer
Even if you succeeded in receiving NMEA from your GPS module,
you should attach a logic analyzer such as the Saleae Logic 8 if you



have one. Probing the SPI signals helps us understand how the SPI
protocol works and acts as a powerful debugging aid when things go
wrong. In this section, we will use a Saleae Logic 8 to sample the
SPI signals between the BeagleBone Black and ZOE-M8Q. If
something is noticeably off with any of the four SPI signals, then a
logic analyzer should make that mistake readily apparent.

The Saleae Logic 8 requires a laptop or desktop computer with a
USB 2.0 port. The Saleae Logic 1 software is available for Linux,
Mac OS X, and Windows. There is an installdriver.sh script
that comes with the Linux version of Logic that grants the software
permission to access the device. Find that script in the Logic
installation's Drivers directory and run it from the command line so
that you do not need to launch Logic with sudo every time. Create a
shortcut to the Logic executable in the installation folder and place
it on your desktop or launch bar for quicker access.

Once the Logic 1 software has been installed on your system,
connect to the device with the high-speed USB cable that came with
it. Launch the Logic application and wait a moment for the software
to connect to and configure the device. When the Logic window says
it is Connected at the top, then we are ready to start wiring up our
test bench. Press down on the wide end of each test clip with your
thumb to extend the grabbers and let go to clasp the pin. Use
magnification to read the labels next to the through-holes and ensure
the test clips are firmly wrapped around their respective pins.



To assemble a SPI test bench with the Saleae Logic 8, follow these
steps:

1. Connect the nine-pin cable harness to the logic analyzer. Align
the cable harness so that the gray lead points at the ground
symbol and the black lead points at the 1 are on the underside of
the logic analyzer, as shown here:



Figure 12.16 – Saleae Logic 8



2. Attach test clips to the ends of the gray, orange, red, brown, and
black leads. Each test clip has two metal pins that can be
inserted into the connector at the end of a lead. Only connect one
of these pins to a lead. The black, brown, red, and orange leads
correspond to the first four channels in the logic analyzer. The
gray lead always connects to GND.

3. Disconnect your BeagleBone Black from the 5V power supply so
that it is off.

4. Pull the female ends of all the jumper wires except for 3V3 from
the header pins we soldered onto the GPS Breakout.

5. Grab the CS pin on the GPS Breakout with the clip on the orange
lead.

6. Grab the SCLK pin on the GPS Breakout with the clip on the red
lead.

7. Grab the GND pin on the GPS Breakout with the clip on the gray
lead.

8. Skip the NC and 3V3 pins because we are not probing those.

9. Grab the MOSI pin on the GPS Breakout with the clip on the
black lead.

10. Grab the MISO pin on the GPS Breakout with the clip on the
brown lead.

11. Reconnect the female ends of the jumper wires to the header
pins we soldered onto the GPS Breakout. If the jumper wires are
already connected, then just slide the female ends up the header



pins a bit and attach the test clips. Push the female ends down
onto the pins so that they do not slip off easily. The finished
assembly should look something like this:





Figure 12.17 – Test clips attached for probing

The yellow jumper wire is 3V3 in my case, so no test clip is
attached to it. The blue jumper wire is MOSI, which is probed by
the black lead from the logic analyzer.

12. Reconnect your BeagleBone Black to the 5V power supply. The
GPS Breakout should power up and the onboard power LED
should light up red.

To configure the Logic 8 so that it samples on four SPI channels,
follow these steps:

1. Launch the Logic application and wait for it to connect to the logic
analyzer over the USB port.

2. Click on the + sign in the Analyzers pane to add an analyzer:

Figure 12.18 – Add Analyzer



3. Select SPI from the Add Analyzer pop-up menu.

4. Click the Save button in the Analyzer Settings dialog:

Figure 12.19 – Analyzer Settings

CPOL and CPHA stand for clock polarity and clock phase. A CPOL
of 0 means the clock is low when inactive, while a CPOL of 1
means the clock is high when inactive. A CPHA of 0 means data
is valid on a clock leading edge, while a CPHA 
of 1 means data is valid on a clock trailing edge. Four different
SPI modes are available: mode 0 (CPOL = 0, CPHA = 0), mode 1
(CPOL = 0, CPHA = 1), mode 2 (CPOL = 1, CPHA = 1), and
mode 3 (CPOL = 1, CPHA = 0). The ZOE-M8Q defaults to SPI
mode 0.



5. Click on the cog button next to Channel 4 on the left sidebar to
bring up the Channel Settings pop-up menu:

Figure 12.20 – Hide This Channel

6. Select Hide This Channel from the Channel Settings
menu.

7. Repeat steps 5 and 6 for Channels 5, 6, and 7 so that only
Channels 0 to 3 are visible.

8. Click on the cog button next to Channel 0 (MOSI) on the left
sidebar to bring up the Channel Settings pop-up menu.



9. Select 4x from the Channel Settings menu:

Figure 12.21 – Enlarging the channel

10. Repeat steps 8 and 9 for Channels 1 to 3 (MISO, CLOCK, and
ENABLE) to make those signal graphs larger.

11. Click on the button to the right of the cog button for Channel 3
(ENABLE) on the left sidebar to bring up the Trigger
Settings pop-up menu. ENABLE corresponds to SPI CS, so
we want sampling to start upon receipt of an event from that
channel.

12. Select the falling edge symbol as the trigger from the Trigger
Settings menu:



Figure 12.22 – Selecting the falling edge trigger

13. Click on the up/down arrow symbol on the Start button in the
top-left corner to set the speed and duration of the sampling.

14. Lower the speed to 2 MS/s and set the duration to 50
Milliseconds:

Figure 12.23 – Lowering the speed and duration



As a rule of thumb, the sample rate should be at least as four times
as fast as the bandwidth. By this measure, a 1 MHz SPI port
requires a minimum sample rate of 4 MS/s. Since spidev_test
sets the speed of the SPI port to 500 kHz, then a sample rate of 2
MS/s should be just enough to keep up. Undersampling results in an
irregular CLOCK signal. The SPI ports on the BeagleBone Black can
operate as fast as 16 MHz. In fact, 16 MHz is the speed spi0.0
defaults to in our custom nova.dts, as shown by dmesg.

To capture an SPI transmission from the BeagleBone Black, hit the
Start button in the top-left corner. If the CS signal is behaving
correctly, your capture should not start until you run the
spidev_test program.

Upon executing spidev_test from the debian@bealglebone
terminal, sampling should trigger and a graph similar to the following
should appear in the Logic window:



Figure 12.24 – spidev_test transmission



Use the scroll wheel on your mouse to zoom in and out of any
interesting segments of the signal graphs. Notice that the ENABLE
graph on Channel 3 drops low whenever data is sent by the
BeagleBone Black on Channel 0 (MOSI). The CS signal for SPI is
normally active low, so the ENABLE graph jumps high when no
data is being transferred. If the ENABLE graph stays high, then no
more data is sent to the GPS module because that peripheral never
gets enabled on the SPI bus.

Here is a closeup of an interesting segment of the MOSI graph on
Channel 0:

Figure 12.25 – MOSI segment

Notice that the recorded 0x40 0x00 0x00 0x00 0x00 0x95 byte
sequence matches the contents of the default TX buffer for
spidev_test. If you see this same byte sequence on Channel 1
instead, then the MOSI and MISO wires could be swapped
somewhere in 
your circuit.



Here is the tail end of the SPI transfer:

Figure 12.26 – End of spidev_test transmission



Notice that the last two bytes on Channel 0 (MOSI) of this segment
are 0xF0 and 0x0D, just like in the default TX buffer. Also, notice that
the CLOCK signal on Channel 2 oscillates for a regular number of
cycles whenever a byte is transferred. If the CLOCK signal looks
irregular, then either the data being sent is getting dropped or
garbled or your sample rate isn't fast enough. The signal graph for
Channel 1 (MISO) remains high throughout this session since no
NMEA message is received from the GPS module on the first SPI
transfer.

If the signal on Channel 3 (ENABLE) settles on the logic 0 state, this
suggests that the pin being probed was muxed without the PULL_UP
bit being set. The PULL_UP bit acts like a pull up resistor holding the
line high when the CS signal is inactive, hence the term "active low".
If you see what looks like a CLOCK signal on a channel other than 2,
then either we probed the wrong pin or swapped SCLK with another
wire somewhere. If the signal graphs match the images in the last
three figures, then we have succeeded in verifying that SPI is
operating as intended.

We now have another powerful tool in our embedded arsenal.
Besides SPI, the Logic 8 can also be used to probe and analyze I2C
signals. We will use it again in the next section to examine NMEA
messages that are received from the GPS module.

Receiving NMEA messages
over SPI



NMEA is a data message format supported by most GPS receivers.
The ZOE-M8Q outputs NMEA sentences by default. These
sentences are ASCII text, starting with the $ character, followed by
comma-separated fields. Raw NMEA messages are not always easy
to read, so we will use a parser to add helpful annotations to the data
fields.

What we want to do is read the stream of NMEA sentences from the
ZOE-M8Q out of the /dev/spidev0.0 interface. Since SPI is full-
duplex, this also means writing to /dev/spidev0.0, although we
can simply write the same 0xFF value over and over again. There is
a program called spi-pipe that is designed to do this sort of thing.
It is part of the spi-tools package, along with spi-config.
Rather than relying on spi-pipe, I chose to modify spidev-test
so that it streams the ASCII input from the GPS module to stdout.
The source for my spidev-read program can be found in this
book's code archive, inside the MELP/Chapter12/spidev-read
directory.

To compile the spidev_read program, use the following
commands:
debian@beaglebone:~$ cd MELP/Chapter12/spidev-read

$ gcc spidev_read.c -o spidev_read

Now, run the spidev_read program:
$ ./spidev_read

spi mode: 0x0

bits per word: 8



max speed: 500000 Hz (500 KHz)

$GNRMC,,V,,,,,,,,,,N*4D

$GNVTG,,,,,,,,,N*2E

$GNGGA,,,,,,0,00,99.99,,,,,,*56

$GNGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2E

$GNGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2E

$GPGSV,1,1,00*79

$GLGSV,1,1,00*65

$GNGLL,,,,,,V,N*7A

[…]

^C

You should see a spurt of NMEA sentences once every second. Hit
Ctrl + C to cancel the stream and return to the command-line
prompt.

Let's capture these SPI transfers with the Logic 8:

1. Click on the up/down arrow symbol on the Start button in the
top-left corner to change the duration of the sampling.

2. Set the new duration to 3 seconds.

3. Click the Start button in the top-left corner.

4. Run the spidev_read program again.

The Logic software should stop capturing after 3 seconds and a
graph similar to the following should appear in the Logic window:



Figure 12.27 – spidev_read transmissions

We can clearly see the three spurts of the NMEA sentences on
Channel 1 (MISO) precisely 1 second apart from each other.

Zoom in to get a closer look at one of these NMEA sentences:



Figure 12.28 – NMEA sentence segment



Notice that the data on MISO channel now coincides with drops in
the ENABLE signal and oscillations on the CLOCK signal. The
spidev_read program only writes 0xFF bytes out to MOSI, so
there is no activity on Channel 0.

I have included a NMEA parser script written in Python, along with
the spidev_read source code. That parse_nmea.py script
depends on the pynmea2 library.

To install pynmea2 on the BeagleBone Black, use the following
command:
$ pip3 install pynmea2

Looking in indexes: https://pypi.org/simple,
https://www.piwheels.org/simple

Collecting pynmea2

  Downloading
https://files.pythonhosted.org/packages/88
/5f/a3d09471582e710b4871e41b0b7792be836d63
96a2630dee4c6ef44830e5/pynmea2-1.15.0-py3-
none-any.whl

Installing collected packages: pynmea2

Successfully installed pynmea2-1.15.0

To pipe the output of spidev_read into the NMEA parser, use the
following command:
$ cd MELP/Chapter12/spidev-read

$ ./spidev_read | ./parse_nmea.py

The parsed NMEA output looks as follows:
<RMC(timestamp=None, status='V', lat='',

lat_dir='', lon='', lon_dir='',



spd_over_grnd=None, true_course=None,
datestamp=None, mag_variation='',
mag_var_dir='') data=['N']>

<VTG(true_track=None, true_track_sym='',
mag_track=None, mag_track_sym='',
spd_over_grnd_kts=None,
spd_over_grnd_kts_sym='',
spd_over_grnd_kmph=None,
spd_over_grnd_kmph_sym='', faa_mode='N')>

<GGA(timestamp=None, lat='', lat_dir='', lon='',
lon_dir='', gps_qual=0, num_sats='00',
horizontal_dil='99.99', altitude=None,
altitude_units='', geo_sep='',
geo_sep_units='', age_gps_data='',
ref_station_id='')>

<GSA(mode='A', mode_fix_type='1', sv_id01='',
sv_id02='', sv_id03='', sv_id04='',
sv_id05='', sv_id06='', sv_id07='',
sv_id08='', sv_id09='', sv_id10='',
sv_id11='', sv_id12='', pdop='99.99',
hdop='99.99', vdop='99.99')>

<GSA(mode='A', mode_fix_type='1', sv_id01='',
sv_id02='', sv_id03='', sv_id04='',
sv_id05='', sv_id06='', sv_id07='',
sv_id08='', sv_id09='', sv_id10='',
sv_id11='', sv_id12='', pdop='99.99',
hdop='99.99', vdop='99.99')>

<GSV(num_messages='1', msg_num='1',
num_sv_in_view='00')>

<GSV(num_messages='1', msg_num='1',
num_sv_in_view='00')>

<GLL(lat='', lat_dir='', lon='', lon_dir='',
timestamp=None, status='V', faa_mode='N')>

[…]



My GPS module was unable to see any satellites or acquire a fixed
position. This could be due to any number of reasons, such as
choosing the wrong GPS antenna or no clear line-of-sight to the sky.
If you are experiencing similar failures, that is okay. RF is
complicated and the goal of this chapter was only to prove we could
get SPI communications with the GPS module working. Now that
we've done that, we can begin to experiment with alternate GPS
antennas and more of the ZOE-M8Q's advanced features, such as
its support for the much richer UBX message protocol.

With NMEA data now streaming out to the terminal, our project is
finished. We succeeded in verifying that the BeagleBone Black can
communicate with the ZOE-M8Q over SPI. If you skipped over the
Probing SPI signals with a logic analyzer section, now is a good time
to resume with that exercise. Like I2C, SPI is supported by most
SoCs, so it is worth getting familiar with, especially if your application
requires high-speed peripherals.

Summary
In this chapter, we learned how to integrate a peripheral with a
popular SoC. To do that, we had to mux pins and modify the device
tree source using knowledge gleaned from data sheets and
schematics. Without finished hardware in hand, we had to rely on a
breakout board and do some soldering so that the part could be
wired together with a dev board. Lastly, we learned how to use a
logic analyzer to verify and troubleshoot electrical signals. Now that



we have working hardware, we can begin to develop our embedded
application.

The next two chapters are all about system startup and the different
options you have for the init program, from the simple BusyBox
init to more complex systems such as System V init, systemd,
and BusyBox's runit. Your choice of init program can have a big
impact on the user experience of your product, both in terms of boot
times and fault tolerance.

Further reading
The following resources provide more information about the topics
that were introduced in this chapter:

Introduction to SPI Interface, by Piyu Dhaker:
https://www.analog.com/en/analog-dialogue/articles/introduction-
to-spi-interface.html

Soldering is Easy, by Mitch Altman, Andie Nordgren, and Jeff
Keyzer: https://mightyohm.com/blog/2011/04/soldering-is-easy-
comic-book

SparkFun GPS Breakout (ZOE-M8Q and SAM-M8Q) Hookup
Guide, by Elias the Sparkiest:
https://learn.sparkfun.com/tutorials/sparkfun-gps-breakout-zoe-
m8q-and-sam-m8q-hookup-guide

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://mightyohm.com/blog/2011/04/soldering-is-easy-comic-book
https://learn.sparkfun.com/tutorials/sparkfun-gps-breakout-zoe-m8q-and-sam-m8q-hookup-guide


Chapter 13 :  Start ing Up –
The in i t  Program
We looked at how the kernel boots up to the point where it launches
the first program, init, in Chapter 4, Configuring and Building the

Kernel. In Chapter 5, Building a Root Filesystem, and Chapter 6,
Selecting a Build System, we looked at creating root filesystems of
varying complexity, all of which contained an init program. Now, it
is time to look 
at the init program in more detail and discover why it is so
important to the rest of 
the system.

There are many possible implementations of init. I will describe
the three main ones in this chapter: BusyBox init, System V init,
and systemd. For each one, I will give an overview of how it works
and the types of systems it suits best. Part of this is balancing the
trade-off between size, complexity, and flexibility. We will learn how
to launch a daemon using both BusyBox init and System V init.
We will also learn how to add a service to systemd that does the
same.

In this chapter, we will cover the following topics:

After the kernel has booted

Introducing the init programs



BusyBox init

System V init

systemd

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system

Buildroot 2020.02.9 LTS release

Yocto 3.1 (Dunfell) LTS release

You should have already installed the 2020.02.9 LTS release of
Buildroot for Chapter 6, Selecting a Build System. If you have not,
then refer to the System requirements section of The Buildroot user
manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions
from Chapter 6.

You should have already built the 3.1 (Dunfell) LTS release of Yocto
for Chapter 6, Selecting a Build System. If you have not, then refer to
the Compatible Linux Distribution and Build Host Packages sections
of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-
yoctoprojectqs.html) before building Yocto on your Linux host
according to the instructions from Chapter 6.

https://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


All of the code for this chapter can be found in the Chapter13 folder
from the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

After the kernel  has booted
We saw in Chapter 4, Configuring and Building the Kernel, how the
kernel bootstrap code seeks to find a root filesystem, either
initramfs or a filesystem specified by root= on the kernel
command line, and then executes a program that, by default, is
/init for initramfs and /sbin/init for a regular filesystem.
The init program has root privilege, and since it is the first
process to run, it has a process ID (PID) of 1. If, for some reason,
init cannot be started, the kernel will panic.

The init program is the ancestor of all other processes, as shown
here by the pstree command running on a simple embedded Linux
system:
# pstree -gn

init(1)-+-syslogd(63)

        |-klogd(66)

        |-dropbear(99)

        `-sh(100)---pstree(109)

The job of the init program is to take control of the boot process in
user space and set it running. It may be as simple as a shell
command running a shell script—there is an example of this at the

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


start of Chapter 5, Building a Root Filesystem—but in the majority of
cases, you will be using a dedicated init daemon to perform the
following tasks:

During boot, after the kernel transfers control, the init program
starts other daemon programs and configures system parameters
and other things needed to get the system into a working state.

Optionally, it launches a login daemon, such as getty, on
terminals that allow 
a login shell.

It adopts processes that become orphaned as a result of their
immediate parent terminating and there being no other processes
in the thread group.

It responds to any of the init's immediate children terminating
by catching the SIGCHLD signal and collecting the return value to
prevent them from becoming zombie processes. I will talk more
about zombies in Chapter 17, Learning About Processes and
Threads.

Optionally, it restarts those daemons that have terminated.

It handles the system shutdown.

In other words, init manages the life cycle of the system from
bootup to shutdown. There is a school of thought that says init is
well placed to handle other runtime 
events, such as new hardware and the loading and unloading of
modules. This is what systemd does.



Introducing the in i t
programs
The three init programs that you are most likely to encounter in
embedded devices are BusyBox init, System V init, and
systemd. Buildroot has options to build all three with BusyBox init
as the default. The Yocto Project allows you to easily choose
between System V init and systemd with System V init as the
default. While Yocto's Poky-tiny distribution ships with BusyBox
init, most other distribution layers do not.

The following table gives some metrics to compare the three:



(*) BusyBox init is part of BusyBox's single executable, which is
optimized for size 
on disk.

(**) Based on the Buildroot configuration of systemd.

Broadly speaking, there is an increase in flexibility and complexity as
you go from BusyBox init to systemd.

BusyBox in i t



BusyBox has a minimal init program that uses a configuration file,
/etc/inittab, 
to define rules to start programs at bootup and to stop them at
shutdown. Usually, 
the actual work is done by shell scripts, which, by convention, are
placed in the 
/etc/init.d directory.

init begins by reading /etc/inittab. This contains a list of
programs to run, one per line, with this format:
<id>::<action>:<program>

The role of these parameters is as follows:

id: This is the controlling terminal for the command.

action: This includes the conditions to run this command, as
shown in the following list.

program: This is the program to run.

The actions are as follows:

sysinit: Runs the program when init starts before any of the
other types 
of actions.

respawn: Runs the program and restarts it if it terminates. It is
typically used to run a program as a daemon.

askfirst: This is the same as respawn, but it prints the
message Please press Enter to activate this



console to the console, and it runs the program after Enter has
been pressed. It is used to start an interactive shell on 
a terminal without prompting for a username or password.

once: Runs the program once but does not attempt to restart it if
it terminates.

wait: Runs the program and waits for it to complete.

restart: Runs the program when init receives the SIGHUP
signal, indicating that it should reload the inittab file.

ctrlaltdel: Runs the program when init receives the
SIGINT signal, usually as a result of pressing Ctrl + Alt + Del on
the console.

shutdown: Runs the program when init shuts down.

Here is a small example that mounts proc and sysfs and runs a
shell on a 
serial interface:
null::sysinit:/bin/mount -t proc proc /proc

null::sysinit:/bin/mount -t sysfs sysfs /sys

console::askfirst:-/bin/sh

For simple projects in which you want to launch a small number of
daemons, and perhaps start a login shell on a serial terminal, it is
easy to write the scripts manually. This would be appropriate if you
are creating a roll your own (RYO) embedded Linux. However, you
will find that handwritten init scripts rapidly become
unmaintainable as the number of things to be configured increases.



They are not very modular and so need updating each time a new
component is added or removed.

Buildroot ini t  scripts
Buildroot has been making effective use of BusyBox init for many
years. Buildroot has two scripts in /etc/init.d/ named rcS and
rcK. The first one runs at bootup and iterates over all the scripts in
/etc/init.d/ with names that begin with a capital S followed by
two digits, and runs them in numerical order. These are the start
scripts. The rcK script is run at shutdown and iterates over all the
scripts beginning with a capital K followed by two digits and runs
them in numerical order. These are the kill scripts.

With this in place, it becomes easy for Buildroot packages to supply
their own start and kill scripts, using the two-digit number to impose
the order in which they should be run, and so the system becomes
extensible. If you are using Buildroot, this is transparent. If not, you
could use it as a model for writing your own BusyBox init scripts.

Like BusyBox init, System V init relies on shell scripts inside
/etc/init.d and an /etc/inittab configuration file. While the
two init systems are similar in many ways, System V init has
more features and a much longer history.

System V in i t



This init program was inspired by the one from Unix System V and
so dates back to the mid-1980s. The version most often found in
Linux distributions was written initially by Miquel van Smoorenburg.
Until recently, it was the init daemon for almost all desktop and
server distributions and a fair number of embedded systems as well.
However, in recent years, it has been replaced by systemd, which I
will describe in the next section.

The BusyBox init daemon I have just described is just a trimmed-
down version of System V init. Compared to BusyBox init,
System V init has two advantages:

Firstly, the boot scripts are written in a well-known, modular
format, making it easy to add new packages at build time or
runtime.

Secondly, it has the concept of runlevels, which allow a
collection of programs to be started or stopped in one go when
switching from one runlevel to another.

There are eight runlevels, numbered from 0 to 6, plus S:

S: Runs startup tasks

0: Halts the system

1 to 5: Available for general use

6: Reboots the system



Levels 1 to 5 can be used as you please. On desktop Linux
distributions, they are conventionally assigned as follows:

1: Single user

2: Multi-user without network configuration

3: Multi-user with network configuration

4: Not used

5: Multi-user with graphical login

The init program starts the default runlevel given by the
initdefault line in /etc/inittab as follows:
id:3:initdefault:

You can change the runlevel at runtime using the telinit
[runlevel] command, which sends a message to init. You can
find the current runlevel and the previous one using the runlevel
command. Here is an example:
# runlevel

N 5

# telinit 3

INIT: Switching to runlevel: 3

# runlevel

5 3

Initially, the output from the runlevel command is N 5, indicating
that there is no previous runlevel, because the runlevel has not
changed since booting and the current runlevel is 5. After changing



the runlevel, the output is 5 3, showing that there has been 
a transition from 5 to 3.

The halt and reboot commands switch to runlevels 0 and 6,
respectively. You can override the default runlevel by giving a
different one on the kernel command line as 
a single digit from 0 to 6. For example, to force the runlevel to be
single user, you would append 1 to the kernel command line, and it
would look something like this:
console=ttyAMA0 root=/dev/mmcblk1p2 1

Each runlevel has a number of scripts that stop things, called kill
scripts, and another group that starts things, the start scripts. When
entering a new runlevel, init first runs the kill scripts in the new
level, and then the start scripts in the new level. Daemons that are
currently running and that have neither a start script nor a kill script
in the new runlevel are sent a SIGTERM signal. In other words, the
default action on the switching runlevel is to terminate daemons
unless told to do otherwise.

In truth, runlevels are not used that much in embedded Linux: most
devices simply boot to the default runlevel and stay there. I have a
feeling that it is partly because most people are not aware of them.

TIP

Runlevels are a simple and convenient way to switch between
modes, for example, from production to maintenance mode.



System V init is an option in Buildroot and the Yocto Project. In
both cases, the init scripts have been stripped of any bash shell
specifics, so they will work with the BusyBox ash shell. However,
Buildroot cheats somewhat by replacing the BusyBox init program
with System V init and adding an inittab that mimics the
behavior of BusyBox. Buildroot does not implement runlevels, except
that switching to levels 0 or 6 halts or reboots the system.

Next, let's look at some of the details. The following examples are
taken from the Yocto Project 3.1 release. Other distributions may
implement the init scripts a little differently.

ini t tab
The init program begins by reading /etc/inttab, which
contains entries that define what happens at each runlevel. The
format is an extended version of the BusyBox inittab that I
described in the preceding section, which is not surprising because
BusyBox borrowed it from System V in the first place.

The format of each line in inittab is as follows:
id:runlevels:action:process

The fields are shown here:

id: A unique identifier of up to four characters.

runlevels: The runlevels for which this entry should be
executed. This was left blank in the BusyBox inittab.



action: One of the keywords given in the following paragraph.

process: The command to run.

The actions are the same as for BusyBox init: sysinit,
respawn, once, wait, restart, ctrlaltdel, and shutdown.
However, System V init does not have askfirst, which is
specific to BusyBox.

As an example, this is the complete inittab supplied by the Yocto
Project target core-image-minimal for the qemuarm machine:
# /etc/inittab: init(8) configuration.

# $Id: inittab,v 1.91 2002/01/25 13:35:21 miquels
Exp $

# The default runlevel.

id:5:initdefault:

# Boot-time system configuration/initialization
script.

# This is run first except when booting in
emergency (-b) mode.

si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.

~~:S:wait:/sbin/sulogin

# /etc/init.d executes the S and K scripts upon
change

# of runlevel.

#

# Runlevel 0 is halt.

# Runlevel 1 is single-user.

# Runlevels 2-5 are multi-user.



# Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

# Normally not reached, but fallthrough in case of
emergency.

z6:6:respawn:/sbin/sulogin

AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0

# /sbin/getty invocations for the runlevels

#

# The "id" field MUST be the same as the last

# characters of the device (after "tty").

#

# Format:

# <id>:<runlevels>:<action>:<process>

#

1:2345:respawn:/sbin/getty 38400 tty1

The first entry, id:5:initdefault, sets the default runlevel to
5. The next entry, si::sysinit:/etc/init.d/rcS, runs the rcS
script at bootup. There will be more about this later. A little further on,
there is a group of six entries beginning with
l0:0:wait:/etc/init.d/rc 0. They run the /etc/init.d/rc
script each time there is a change in the runlevel. This script is



responsible for processing the start and 
kill scripts.

Toward the end of inittab, there is an entry that runs a getty
daemon to generate 
a login prompt on /dev/ttyAMA0 when entering runlevels 1
through 5, thereby allowing you to log on and get an interactive shell:
AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0

The ttyAMA0 device is the serial console on the Arm Versatile
board we are emulating with QEMU; it will be different for other
development boards. There is also an entry to run getty on tty1,
which is triggered when entering runlevels 2 through 5. This is a
virtual console, which is often mapped to a graphical screen if you
have built your kernel with CONFIG_FRAMEBUFFER_CONSOLE or
VGA_CONSOLE. Desktop Linux distributions usually spawn six getty
daemons on virtual terminals 1 to 6, which you can select with the
key combination Ctrl + Alt + F1 through Ctrl + Alt + F6, with virtual
terminal 7 reserved for the graphical screen. Ubuntu and Arch Linux
are notable exceptions since they use virtual terminal 1 for graphics.
Virtual terminals are seldom used on embedded devices.

The /etc/init.d/rcS script that is run by the sysinit entry
does little more than entering the runlevel, S:
#!/bin/sh

[…]

exec /etc/init.d/rc S



Hence, the first runlevel entered is S, followed by the default runlevel
of 5. Note that runlevel S is not recorded and is never displayed as a
prior runlevel by the runlevel command.

The init .d scripts
Each component that needs to respond to a runlevel change has a
script in /etc/init.d to perform the change. The script should
expect two parameters: start and stop. I will give an example of
this later.

The runlevel-handling script, /etc/init.d/rc, takes the runlevel it
is switching to as 
a parameter. For each runlevel, there is a directory named
rc<runlevel>.d:
# ls -d /etc/rc*

/etc/rc0.d /etc/rc2.d /etc/rc4.d /etc/rc6.d

/etc/rc1.d /etc/rc3.d /etc/rc5.d /etc/rcS.d

There you will find a set of scripts beginning with a capital S followed
by two digits, and you may also find scripts beginning with a capital
K. These are the start and kill scripts, respectively. Here is an
example of the scripts for runlevel 5:
# ls /etc/rc5.d

S01networking S20hwclock.sh S99rmnologin.sh
S99stop-bootlogd

S15mountnfs.sh S20syslog



These are in fact symbolic links back to the appropriate script in
init.d. The rc script runs all the scripts beginning with a K first,
adding the stop parameter, and then runs those beginning with an
S, adding the start parameter. Once again, the two-digit code is
there to impart the order in which the scripts should run.

Adding a new daemon
Imagine that you have a program named simpleserver that is
written as a traditional Unix daemon; in other words, it forks and runs
in the background. The code for such 
a program is in MELP/Chapter13/simpleserver. You will need
an init.d script such as this, which you will find in
MELP/Chapter13/simpleserver-sysvinit:
#! /bin/sh

case "$1" in

      start)

           echo "Starting simpelserver"

           start-stop-daemon -S -n simpleserver -a
/usr/bin/simpleserver

           ;;

     stop)

           echo "Stopping simpleserver"

           start-stop-daemon -K -n simpleserver

           ;;

     *)

           echo "Usage: $0 {start|stop}"



           exit 1

esac

exit 0

start-stop-daemon is a helper function that makes it easier to
manipulate background processes such as this. It originally came
from the Debian installer package, dpkg, but most embedded
systems use the one from BusyBox. It starts the daemon with the -S
parameter, making sure that there is never more than one instance
running at any one time. To stop a daemon, you use the -K
parameter, which causes it to send a signal, SIGTERM by default, to
indicate to the daemon that it is time to terminate.

To make simpleserver operational, copy the script to the target
directory called 
/etc/init.d/simpleserver and make it executable. Then, add
links from each of the runlevels that you want to run this program
from; in this case, only the default runlevel of 5:
# cd /etc/init.d/rc5.d

# ln -s ../init.d/simpleserver S99simpleserver

The number 99 means that this will be one of the last programs to
be started. Bear in mind that there may be other links beginning with
S99, in which case the rc script will just run them in lexical order.

It is rare in embedded devices to have to worry too much about
shutdown operations, but if there is something that needs to be
done, add kill links to levels 0 and 6:
# cd /etc/init.d/rc0.d



# ln -s ../init.d/simpleserver K01simpleserver

# cd /etc/init.d/rc6.d

# ln -s ../init.d/simpleserver K01simpleserver

We can circumvent runlevels and ordering for more immediate
testing and debugging of init.d scripts.

Start ing and stopping services
You can interact with the scripts in /etc/init.d by calling them
directly. Here is an example using the syslog script, which controls
the syslogd and klogd daemons:
# /etc/init.d/syslog --help

Usage: syslog { start | stop | restart }

# /etc/init.d/syslog stop

Stopping syslogd/klogd: stopped syslogd (pid 198)

stopped klogd (pid 201)

done

# /etc/init.d/syslog start

Starting syslogd/klogd: done

All scripts implement start and stop, and they should also
implement help. Some implement status as well, which will tell
you whether the service is running or not. Mainstream distributions
that still use System V init have a command named service to
start and stop services, which hides the details of calling the scripts
directly.



System V init is a simple init daemon that has served Linux
admins for decades. While runlevels offer a greater degree of
sophistication than BusyBox init, System V init still lacks the
ability to monitor services and restart them if needed. As System V
init starts to show its age, most popular Linux distributions have
moved on to systemd.

systemd
systemd, https://www.freedesktop.org/wiki/Software/systemd/,
defines itself as a system and service manager. The project was
initiated in 2010 by Lennart Poettering and Kay Sievers to create an
integrated set of tools for managing a Linux system based around an
init daemon. It also includes device management (udev) and
logging, among other things. systemd is state of the art and is still
evolving rapidly. It is common on desktop and server Linux
distributions and is becoming popular on embedded Linux systems
too, especially on more complex devices. So, how is it better than
System V init for embedded systems?

The configuration is simpler and more logical (once you
understand it). Rather than the sometimes convoluted shell
scripts of System V init, systemd has unit configuration files
that are written in a well-defined format.

There are explicit dependencies between services, rather than a
two-digit code that merely sets the sequence in which the scripts

https://www.freedesktop.org/wiki/Software/systemd/


are run.

It is easy to set the permissions and resource limits for each
service, which is important for security.

It can monitor services and restart them if needed.

Services are started in parallel, potentially reducing boot time.

A complete description of systemd is neither possible nor
appropriate here. As with System V init, I will focus on the
embedded use cases with examples based on the configuration
produced by the Yocto Project 3.1 release, with systemd version
244. 
I will give a quick overview, and then show you some specific
examples.

Building systemd with the Yocto
Project and Buildroot
The default init daemon in the Yocto Project is System V. To select
systemd, add this line to your conf/local.conf:
INIT_MANAGER = "systemd"

Buildroot uses BusyBox init by default. You can select systemd
though menuconfig by looking in the System configuration | Init
system menu. You will also have to configure the toolchain to use
glibc for the C library, since systemd does not support uClibc-
ng or musl. In addition, there are restrictions on the version and



configuration of the kernel. There is a complete list of library and
kernel dependencies in the README file in the top level of the
systemd source code.

Introducing targets, services, and
units
Before I describe how systemd works, I need to introduce these
three key concepts:

unit: A configuration file that describes a target, a service, and
several other things. Units are text files that contain properties
and values.

service: A daemon that can be started and stopped, very much
like a System V init service.

target: A group of services, similar to, but more general than, a
System V init runlevel. There is a default target that is the
group of services that are started at 
boot time.

You can change states and find out what is going on using the
systemctl command.

Units
The basic item of configuration is the unit file. Unit files are found in
three different places:



/etc/systemd/system: Local configuration

/run/systemd/system: Runtime configuration

/lib/systemd/system: Distribution-wide configuration

When looking for a unit, systemd searches the directories in that
order, stopping as soon as it finds a match, and allowing you to
override the behavior of a distribution-wide unit by placing a unit of
the same name in /etc/systemd/system. You can disable a unit
completely by creating a local file that is empty or linked to
/dev/null.

All unit files begin with a section marked [Unit], which contains
basic information and dependencies. As an example, here is the
Unit section of the D-Bus service,
/lib/systemd/system/dbus.service:
[Unit]

Description=D-Bus System Message Bus

Documentation=man:dbus-daemon(1)

Requires=dbus.socket

In addition to the description and a reference to the documentation,
there is a dependency on the dbus.socket unit expressed through
the Requires keyword. This tells systemd to create a local socket
when the D-Bus service is started.

Dependencies in the Unit section are expressed through the
Requires, Wants, and Conflicts keywords:



Requires: A list of units that this unit depends on that are
started when this unit is started.

Wants: A weaker form of Requires; the units listed are started
but the current unit is not stopped if any of them fail.

Conflicts: A negative dependency; the units listed are stopped
when this one is started and, conversely, if one of them is started,
this one is stopped.

These three keywords define outgoing dependencies. They are
used mostly to create dependencies between targets. There is
another set of dependencies called incoming dependencies, which
are used to create links between services and targets. In other
words, outgoing dependencies are used to create the list of targets
that need to be started as the system goes from one state to
another, and incoming dependencies are used to determine the
services that should be started or stopped in any particular state.
Incoming dependencies are created by the WantedBy keyword,
which I will describe in the upcoming section on Adding your own
service.

Processing the dependencies produces a list of units that should be
started or stopped. 
The Before and After keywords determine the order in which they
are started. The order of stopping is just the reverse of the start
order:

Before: Start this unit before the units listed.



After: Start this unit after the units listed.

In the following example, the After directive makes sure that the
web server is started after the network subsystem is started:
[Unit]

Description=Lighttpd Web Server

After=network.target

In the absence of the Before or After directive, the units will be
started or stopped in parallel with no particular ordering.

Services
A service is a daemon that can be started and stopped, equivalent
to a System V init service. A service is a type of unit file with a
name ending in .service, for example, lighttpd.service.

A service unit has a [Service] section that describes how it should
be run. Here is the relevant section from lighttpd.service:
[Service]

ExecStart=/usr/sbin/lighttpd -f
/etc/lighttpd/lighttpd.conf -D

ExecReload=/bin/kill -HUP $MAINPID

These are the commands to run when starting the service and
restarting it. There are 
many more configuration points you can add here, so refer to the
manual page for systemd.service(5).

Targets



A target is another type of unit that groups services (or other types
of units). A target 
is a metaservice in that respect and also serves as a synchronization
point. A target 
only has dependencies. Targets have names ending in .target, for
example, 
multi-user.target. A target is a desired state that performs the
same role as System V init runlevels. For example, this is the
complete unit for multi-user.target:
[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

AllowIsolate=yes

This says that the basic target must be started before the multi-user
target. It also says that since it conflicts with the rescue target,
starting the rescue target will cause the multi-user target to be
stopped first.

How systemd boots the system
Now, we can see how systemd implements the bootstrap. systemd
is run by the kernel as a result of /sbin/init being symbolically
linked to /lib/systemd/systemd. It runs the default target,



default.target, which is always a link to the desired target, such
as multi-user.target for a text login or graphical.target
for a graphical environment. For example, if the default target is
multi-user.target, you will find this symbolic link:
/etc/systemd/system/default.target ->

/lib/systemd/system/multi-user.target

The default target may be overridden by passing system.unit=
<new target> on 
the kernel command line. You can use systemctl to find out the
default target, as shown here:
# systemctl get-default

multi-user.target

Starting a target such as multi-user.target creates a tree of
dependencies that bring the system into a working state. In a typical
system, multi-user.target depends on basic.target, which
depends on sysinit.target, which depends on the services that
need to be started early. You can print a text graph using
systemctl list-dependencies.

You can also list all the services and their current state using the
following:
# systemctl list-units --type service

You can do the same for targets using the following:
# systemctl list-units --type target

Now that we've seen the dependency tree for the system, how do we
insert an additional service into this tree?



Adding your own service
Using the same simpleserver example as before, here is a
service unit, which you will find in
MELP/Chapter13/simpleserver-systemd:
[Unit]

Description=Simple server

[Service]

Type=forking

ExecStart=/usr/bin/simpleserver

[Install]

WantedBy=multi-user.target

The [Unit] section only contains a description so that it shows up
correctly when 
listed using systemctl and other commands. There are no
dependencies; as I said, it 
is very simple.

The [Service] section points to the executable and has a flag to
indicate that it forks. If it were even simpler and ran in the
foreground, systemd would do the daemonizing for us and
Type=forking would not be needed.

The [Install] section creates an incoming dependency on
multi-user.target 
so that our server is started when the system goes into the multi-
user mode.



Once the unit is saved in
/etc/systemd/system/simpleserver.service, 
you can start and stop it using the systemctl start
simpleserver and sytemctl stop simpleserver commands.
You can also use systemctl to 
find its current status:
# systemctl status simpleserver

simpleserver.service - Simple server

  Loaded: loaded
(/etc/systemd/system/simpleserver.service;
disabled)

  Active: active (running) since Thu 1970-01-01
02:20:50 UTC; 8s ago

Main PID: 180 (simpleserver)

  CGroup: /system.slice/simpleserver.service

          └─180 /usr/bin/simpleserver -n

Jan 01 02:20:50 qemuarm systemd[1]: Started Simple
server.

At this point, it will only start and stop on command, as shown here.
To make it persistent, you need to add a permanent dependency to a
target. This is the purpose of the [Install] section in the unit; it
says that when this service is enabled, it will become dependent on
multi-user.target, and so will be started at boot time. You
enable it using systemctl enable, like this:
# systemctl enable simpleserver

Created symlink from
/etc/systemd/system/multiuser.target.wants



/simpleserver.service to
/etc/systemd/system/simpleserver.service.

Now, you can see how services add dependencies without having to
keep on editing target unit files. A target can have a directory named
<target_name>.target.wants, which can contain links to
services. This is exactly the same as adding the dependent unit to
the [Wants] list in the target. In this case, you will find that this link
has been created:
/etc/systemd/system/multi-

user.target.wants/simpleserver.service ->
/etc/systemd/system/simpleserver.service

If this is an important service, you might want to restart it if it fails.
You can accomplish that by adding this flag to the [Service]
section:
Restart=on-abort

Other options for Restart are on-success, on-failure, on-
abnormal, on-watchdog, on-abort, or always.

Adding a watchdog
Watchdogs are a common requirement in embedded devices: you
need to take action if a critical service stops working, usually by
resetting the system. On most embedded SoCs, there is a hardware
watchdog, which can be accessed via the /dev/watchdog device
node. The watchdog is initialized with a timeout at boot, and then
must be reset within that period, otherwise the watchdog will be



triggered, and the system will reboot. The interface with the
watchdog driver is described in the kernel source in
Documentation/watchdog and the code for the drivers is in
drivers/watchdog.

A problem arises if there are two or more critical services that need
to be protected 
by a watchdog. systemd has a useful feature that distributes the
watchdog between multiple services.

systemd can be configured to expect a regular keepalive call
from a service and take action if it is not received, creating a per-
service software watchdog. For this to work, 
you have to add code to the daemon to send the keepalive
messages. It needs to 
check for a non-zero value in the WATCHDOG_USEC environment
variable, and then call sd_notify(false, "WATCHDOG=1")
within this time (a period of half of the watchdog timeout is
recommended). There are examples in the systemd source code.

To enable the watchdog in the service unit, add something like this to
the 
[Service] section:
WatchdogSec=30s

Restart=on-watchdog

StartLimitInterval=5min

StartLimitBurst=4

StartLimitAction=reboot-force



In this example, the service expects a keepalive call every 30
seconds. If it fails to be delivered, the service will be restarted, but if
it is restarted more than four times in 5 minutes, systemd will force
an immediate reboot. Once again, there is a full description of these
settings in the systemd.service(5) manual page.

A watchdog like this takes care of individual services, but what if
systemd itself fails, the kernel crashes, or the hardware locks up? In
those cases, we need to tell systemd to use the watchdog driver:
just add RuntimeWatchdogSec=NN to
/etc/systemd/system.conf.systemd, which will reset the
watchdog within that period, and so the system will reset if systemd
fails for some reason.

Implications for embedded Linux
systemd has a lot of features that are useful in embedded Linux,
including many that I have not mentioned in this brief description,
such as resource control using slices (which are described in the
manual pages for systemd.slice(5) and systemd.resource-
control(5)), device management (udev(7)), and system logging
facilities (journald(5)).

You have to balance that with its size: even with a minimal build of
just the core components, systemd, udevd, and journald, it is
approaching 10 MiB of storage, including the shared libraries.



You also have to keep in mind that systemd development follows
the kernel and glibc closely, so it will not work on a kernel and
glibc more than a year or two older than the release of systemd.

Summary
Every Linux device needs an init program of some kind. If you are
designing a system that only has to launch a small number of
daemons at startup and remains fairly static after that, then BusyBox
init is sufficient for your needs. It is usually a good choice if you
are using Buildroot as the build system.

If, on the other hand, you have a system that has complex
dependencies between 
services at boot time or runtime, and you have the storage space,
then systemd would be the best choice. Even without the
complexity, systemd has some useful features in the way it handles
watchdogs, remote logging, and so on, so you should certainly give it
serious thought.

Meanwhile, System V init lives on. It is well understood, and there
are init scripts already in existence for every component that is
important to us. It remains the default init for the Yocto Project
reference distribution (Poky).

In terms of reducing boot time, systemd is faster than System V
init for a similar workload. However, if you are looking for a very



fast boot, neither beats the simple BusyBox init with minimal boot
scripts.

In the next chapter, we will look closely at a lesser-known init
system that is well 
suited for embedded Linux systems. BusyBox runit offers the
power and flexibility 
of systemd without the added complexity and overhead. If Buildroot
is your choice 
of build system and BusyBox init does not meet your needs, then
there are many good reasons to consider BusyBox runit instead.
We will learn what those reasons are and get more hands-on
experience with Buildroot in the process.

Further reading
systemd System and Service Manager:
https://www.freedesktop.org/wiki/Software/systemd/

There are a lot of useful links at the bottom of the page at the
preceding URL.

https://www.freedesktop.org/wiki/Software/systemd/


Chapter 14 :  Start ing wi th
BusyBox runi t
In the previous chapter, we looked at the classic System V init and
state-of-the-art systemd programs. We also touched on BusyBox's
minimal init program. Now, it is time to look at BusyBox's
implementation of the runit program. BusyBox runit strikes a
sensible balance between the simplicity of System V init and the
flexibility of systemd. For this reason, the full version of runit is
used in popular modern Linux distributions like Void. While systemd
may dominate the cloud, it is usually overkill 
for many embedded Linux systems. BusyBox runit offers
advanced features such as service supervision and dedicated
service logging without the complexity and overhead 
of systemd.

In this chapter, I will show you how to divide your system up into
separate BusyBox runit services, each with its own directory and
run script. Next, we will see how check scripts can be used to force
some services to wait for other services to start. Then, we will add
dedicated logging to a service and learn how to configure log
rotation. Finally, we close with an example of one service sending a
signal to another by writing to a named pipe. Unlike System V init,
BusyBox runit services start concurrently rather than sequentially,
which can speed up boot times dramatically. Your choice of init



program has a noticeable impact on the behavior and user
experience of your product.

In this chapter, we will cover the following topics:

Getting BusyBox runit

Creating service directories and files

Service supervision

Depending on other services

Dedicated service logging

Signaling a service

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system

Etcher for Linux

A microSD card reader and card

A USB to TTL 3.3V serial cable

A Raspberry Pi 4

A 5V 3A USB-C power supply

You should have already installed the 2020.02.9 LTS release of
Buildroot for Chapter 6, Selecting a Build System. If you have not,



then refer to the System requirements section of The Buildroot user
manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions
from Chapter 6.

All of the code for this chapter can be found in the Chapter14 folder
of the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Gett ing BusyBox runi t
To prepare the system for this chapter, we need to do the following:

1. Navigate to the directory where you cloned Buildroot for Chapter
6, Selecting a Build System:
$ cd buildroot

2. Check to see if runit is provided by BusyBox:
$ grep Runit package/busybox/busybox.config

# Runit Utilities

BusyBox runit was still an available option in the Buildroot
2020.02.9 LTS release at the time of writing. Revert to that tag if
you can no longer find BusyBox runit in a later release.

3. Undo any changes and delete any untracked files or directories:
$ make clean

$ git checkout .

$ git clean –-force -d

https://buildroot.org/downloads/manual/manual.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Note that git clean --force will delete the Nova U-Boot
patch and any other files that we added to Buildroot in previous
exercises.

4. Create a new branch named busybox-runit to capture your
work:
$ git checkout -b busybox-runit

5. Add BusyBox runit to a default configuration for the Raspberry
Pi 4:
$ cd configs

$ cp raspberrypi4_64_defconfig
rpi4_runit_defconfig

$ cd ..

$ cp package/busybox/busybox.config \ 
board/raspberrypi/busybox-runit.config

$ make rpi4_runit_defconfig

$ make menuconfig

6. From the main menu, drill down into the Toolchain | Toolchain
type submenu and select External toolchain:



Figure 14.1 – Selecting External toolchain

7. Back out one level and drill down into the Toolchain submenu.
Select the Linaro AArch64 toolchain, then back out another level
to return to the main menu:



Figure 14.2 – Selecting the Linaro AArch64 toolchain

8. BusyBox should already be selected as the init system but you
can confirm that by navigating to the System configuration | Init
system submenu and observing that BusyBox is selected



instead of systemV or systemd. Back out of the Init system
submenu up to the main menu.

9. From the main menu, drill down into the Target packages |
BusyBox configuration file to use? text field under BusyBox:

Figure 14.3 – Selecting a BusyBox configuration file to use



10. Replace the package/busybox/busybox.config string value
in that text field with board/raspberrypi/busybox-
runit.config:

Figure 14.4 – BusyBox configuration file to use?

11. Exit out of menuconfig and choose Yes if asked to save your
new configuration. Buildroot saves the new configuration to a file
named .config by default.



12. Update configs/rpi4_runit_defconfig with the new
location of the BusyBox configuration:
$ make savedefconfig

13. Now let's start configuring BusyBox for runit:
$ make busybox-menuconfig

14. Once inside busybox-menuconfig, you should notice a
submenu called Runit Utilities. Drill down into that submenu and
select all of the options on that menu page. The chpst,
setuidgid, envuidgid, envdir, and softlimit utilities are
command-line tools that are frequently referenced by service run
scripts, so it is best to include them all. The svc and svok
utilities are holdovers from daemontools so you can choose to
opt out of them if you feel so inclined:



Figure 14.5 – Runit Utilities



15. From the Runit Utilities submenu, drill down into the Default
directory for services text field.

16. Enter /etc/sv in the Default directory for services text field:

Figure 14.6 – Default directory for services

17. Exit out of busybox-menuconfig and choose Yes when asked
to save your new configuration. Like the menuconfig option,
busybox-menuconfig only saves your new BusyBox
configuration to a .config file in an output directory. By default,



the BusyBox output directory is output/build/busybox-
1.31.1 in the 2020.02.9 LTS version of Buildroot.

18. Save your changes to board/raspberrypi/busybox-
runit.config:
$ make busybox-update-config

19. BusyBox includes an inittab file for its init program in
Buildroot's package/busybox directory. This configuration file
instructs BusyBox init to start user space by mounting various
filesystems and linking file descriptors to stdin, stdout, and
stderr device nodes. In order for BusyBox init to transfer
control to BusyBox runit, we need to replace the following lines
in package/busybox/inittab:
# now run any rc scripts

::sysinit:/etc/init.d/rcS

These lines need to be replaced with their BusyBox runit
equivalents:
# now switch over to runit

null::respawn:runsvdir /etc/sv

20. We also need to remove the following lines from BusyBox's
inittab:
# Stuff to do before rebooting

::shutdown:/etc/init.d/rcK

No replacement line is needed for the deleted ::shutdown
command since BusyBox runit automatically terminates the



processes it supervises prior to reboot.

You now have new configs/rpi4_runit_defconfig and
board/raspberrypi/busybox-runit.config files as well as a
modified package/busybox/inittab file that you can use to
enable BusyBox runit on a custom Linux image for the Raspberry
Pi 4. Commit those three files to Git so that your work is not lost.

To build your custom image, use the following commands:
$ make rpi4_runit_defconfig

$ make

When the build is complete, a bootable image is written to an
output/images/sdcard.img file. Flash this image onto a
microSD card using Etcher, insert it into your Raspberry Pi 4, and
power it up. The system won't do much besides boot because there
are no services in /etc/sv for runsvdir to start yet.

To play around with BusyBox runit, attach a serial cable to your
Raspberry Pi 4 and 
log in as root with no password. We did not add connman to this
image so enter 
/sbin/ifup -a to bring up the Ethernet interface:
# /sbin/ifup -a

[  187.076662] bcmgenet: Skipping UMAC reset

[  187.151919] bcmgenet fd580000.genet:
configuring instance for external RGMII
(no delay)

udhcpc: started, v1.31.1



udhcpc: sending discover

[  188.191465] bcmgenet fd580000.genet eth0: Link
is Down

udhcpc: sending discover

[  192.287490] bcmgenet fd580000.genet eth0: Link
is Up - 1Gbps/Full - flow control rx/tx

udhcpc: sending discover

udhcpc: sending select for 192.168.1.130

udhcpc: lease of 192.168.1.130 obtained, lease
time 86400

deleting routers

adding dns 192.168.1.254

We will examine the structure and layout of runit service
directories in the next section.

Creat ing service director ies
and f i les
runit is a reimplementation of the daemontools process
supervision kit. It was created by Gerrit Pape as a replacement for
System V init and other Unix init schemes. At the time of
writing, the two best sources of information on runit were Pape's
website (http://smarden.org/runit/) and Void Linux's online
documentation.

BusyBox's implementation of runit differs from standard runit
mostly in terms of 

http://smarden.org/runit/


self-documentation. For example, sv --help makes no mention of
the sv utility's start and check options, which are in fact
supported by BusyBox's implementation. The source code for
BusyBox runit can be found in BusyBox's
output/build/busybox-1.31.1/runit directory. You can also
browse the latest version of the BusyBox runit source code online
at https://git.busybox.net/busybox/tree/runit. If there are any bugs in,
or features missing from, BusyBox's implementation of runit, you
can fix or add them by patching Buildroot's busybox package.

The Arch Linux distribution supports using BusyBox runit
alongside systemd for simple process supervision. You can read
more about how to do that on the Arch Linux Wiki. BusyBox defaults
to init and the steps for replacing BusyBox init with runit are
not documented. For these reasons, rather than replacing BusyBox
init with runit, I will instead show you how to use BusyBox
runit to add service supervision to BusyBox init.

Service directory layout
The following is a quote from the Void Linux distribution's original
documentation (now deprecated) on runit:

https://git.busybox.net/busybox/tree/runit


"A service directory requires only one file, an executable named
run which is expected to exec a process in the foreground."

In addition to the requisite run script, a runit service directory can
also contain a finish script, a check script, and a conf file. A
finish script is run on service shutdown or process stop. The run
script sources a conf file to set any environment variables prior to
their use inside run.

The /etc/sv directory, like the BusyBox init /etc/init.d
directory, is conventionally where runit services are stored. Here is
a list of BusyBox init scripts for a simple embedded Linux system:
$ ls output/target/etc/init.d

S01syslogd  S02sysctl   S21haveged  S45connman  S5
0sshd  rcS

S02klogd    S20urandom  S30dbus     S49ntp      rc
K

Buildroot supplies these BusyBox init scripts as part of the
packages for various daemons. In the case of BusyBox runit, we
have to produce these start scripts ourselves.

Here is the list of BusyBox runit services for the same system:
$ ls -D output/target/etc/sv

bluetoothd  dbus   haveged  ntpd  syslogd

connmand    dcron  klogd    sshd  watchdog

Each BusyBox runit service has its own directory with an
executable run script inside of it. The BusyBox init scripts that are
also on the target image will not run on startup because we removed



::sysinit:/etc/init.d/rcS from inittab. Unlike init
scripts, run scripts need to run in the foreground not the background
in order to work with runit.

The Void Linux distribution is a treasure trove of runit service files.
Here is a Void run script for sshd:
#!/bin/sh

# Will generate host keys if they don't already
exist

ssh-keygen -A >/dev/null 2>&1

[ -r conf ] && . ./conf

exec /usr/sbin/sshd -D $OPTS 2>&1

The runsvdir utility starts and monitors the collection of services
defined under the 
/etc/sv directory. For that reason, the run script for sshd needs to
be installed as 
/etc/sv/sshd/run so that runsvdir can find it on startup. It also
must be made executable or BusyBox runit won't be able to start
it.

Contrast the contents of /etc/sv/sshd/run with this excerpt from
Buildroot's 
/etc/init.d/S50sshd:
start() {

      # Create any missing keys

      /usr/bin/ssh-keygen -A

      printf "Starting sshd: "

      /usr/sbin/sshd



      touch /var/lock/sshd

      echo "OK"

}

sshd runs in the background by default. The -D option forces sshd
to run in the foreground. runit expects you to preface foregrounded
commands with exec in your run scripts. The exec command
replaces the current program in the current process. The end result
is that the ./run process started from /etc/sv/sshd becomes the
/usr/sbin/sshd -D process without forking:
# ps aux | grep "[s]shd"

  201 root     runsv sshd

  209 root     /usr/sbin/sshd -D

Notice that the sshd run script sources a conf file for the $OPTS
environment variable. If no conf file exists inside /etc/sv/sshd,
then $OPTS is undefined and empty, which in this case happens to
be fine. Like most runit services, sshd does not need a finish
script to release any resources prior to system shutdown or reboot.

Service configuration
The init scripts that Buildroot includes in its packages are BusyBox
init scripts. These init scripts need to be ported to BusyBox
runit and installed to different directories under
output/target/etc/sv. Rather than patch each package
individually, I find it easier to bundle all the service files in a rootfs



overlay or umbrella package outside of the Buildroot tree. Buildroot
enables out-of-tree customizations by way of the BR2_EXTERNAL
make variable, which points to a directory containing the
customizations.

The most common way to get Buildroot into a br2-external tree
is to embed it in the top level of a Git repo as a submodule:
$ cat .gitmodules

[submodule "buildroot"]

     path = buildroot

     url = git://git.buildroot.net/buildroot

     ignore = dirty

     branch =
15a05e6d5a875759d217d61b3c7b31ec87ea4eb5

Embedding Buildroot as a submodule simplifies the maintenance of
any packages that you add or patches that you apply to Buildroot.
The submodule is pinned to a tag so that any out-of-tree
customizations remain stable until Buildroot is purposely upgraded.
Notice that commit hash for the above buildroot submodule is
pinned to the 2020.02.9 tag for that Buildroot LTS release:
$ cd buildroot

$ git show --summary

commit 15a05e6d5a875759d217d61b3c7b31ec87ea4eb5
(HEAD -> busybox-runit, tag: 2020.02.9)

Author: Peter Korsgaard <peter@korsgaard.com>

Date:   Sun Dec 27 17:55:12 2020 +0100

    Update for 2020.02.9

    



    Signed-off-by: Peter Korsgaard
<peter@korsgaard.com>

To run make when buildroot is a subdirectory of the parent
BR2_EXTERNAL directory we need to pass some additional
arguments:
$ make -C $(pwd)/buildroot BR2_EXTERNAL=$(pwd)

O=$(pwd)/output

Here is the directory structure Buildroot recommends for a br2-
external tree:
+-- board/

|   +-- <company>/

|       +-- <boardname>/

|           +-- linux.config

|           +-- busybox.config

|           +-- <other configuration files>

|           +-- post_build.sh

|           +-- post_image.sh

|           +-- rootfs_overlay/

|           |   +-- etc/

|           |   +-- <some file>

|           +-- patches/

|               +-- foo/

|               |   +-- <some patch>

|               +-- libbar/

|                   +-- <some other patches>

+-- configs/

|   +-- <boardname>_defconfig

+-- package/



|   +-- <company>/

|       +-- package1/

|       |    +-- Config.in

|       |    +-- package1.mk

|       +-- package2/

|           +-- Config.in

|           +-- package2.mk

+-- Config.in

+-- external.mk

+-- external.desc

Notice where the custom rpi4_runit_defconfig and busybox-
runit.config 
files you created in the previous section would be inserted into this
tree. According to Buildroot's guidelines, those two configs are
supposed to be board-specific files. <boardname>_defconfig is
prefixed with the name of the board the image is being configured
for. busybox.config goes in a corresponding
board/<company>/<boardname> directory. Also notice that the
rootfs_overlay/etc directory where your custom BusyBox
inittab would go is board-specific as well.

Since all the service configuration files for BusyBox runit reside in
/etc/sv, it might seem reasonable to commit them all to a board-
specific rootfs overlay. In my experience, this solution quickly
becomes too inflexible. Oftentimes there is a need to configure more
than one image for the same board. For instance, a consumer
device may have separate development, production, and



manufacturing images. Each image contains distinct services, so
configuration needs to vary between images. For these reasons,
service configuration is best done at the package level, not the board
level. I use out-of-tree umbrella packages 
(one package for each type of image) to configure services for
BusyBox runit.

At the top-level, a br2-external tree must contain
external.desc, external.mk, and Config.in files. An
external.desc file contains some basic metadata describing the
br2-external tree:
$ cat external.desc

name: ACME

desc: Acme's external Buildroot tree

Buildroot sets the BR2_EXTERNAL_<name>_PATH variable to the
absolute path of the br2-external tree so that variable can be
referenced in Kconfig and makefiles. The desc field is an optional
description made available as the BR2_EXTERNAL_<name>_DESC
variable. Substitute <name> with ACME according to this
external.desc. An external.mk file typically only contains a
single line referencing the BR2_EXTERNAL_<name>_PATH variable
defined in external.desc:
$ cat external.mk

include $(sort $(wildcard
$(BR2_EXTERNAL_ACME_PATH)/package/acme/*/*
.mk))



That include line tells Buildroot where to search for external
package .mk files. The locations of the corresponding Config.in
files for the external packages are defined in the top-level
Config.in file for the br2-external tree:
$ cat Config.in

source
"$BR2_EXTERNAL_ACME_PATH/package/acme/deve
lopment/Config.in"

source
"$BR2_EXTERNAL_ACME_PATH/package/acme/manu
facturing/Config.in"

source
"$BR2_EXTERNAL_ACME_PATH/package/acme/prod
uction/Config.in"

Buildroot reads the br2-external tree's Config.in file and adds
the package recipes contained therein to the top-level configuration
menu. Let's fill in the rest of Buildroot's br2-external tree
structure with the development, manufacturing, and
production umbrella packages:
├── configs

│   ├── supergizmo_development_defconfig

│   ├── supergizmo_manufacturing_defconfig

│   └── supergizmo_production_defconfig

└── package

    └── acme

        ├── development

        │   ├── Config.in

        │   ├── development.mk



        │   ├── haveged_run

        │   ├── inittab

        │   ├── ntpd.etc.conf

        │   ├── sshd_config

        │   ├── sshd_run

        │   └── user-tables.txt

        ├── manufacturing

        │   ├── apply-squash-update

        │   ├── Config.in

        │   ├── haveged_run

        │   ├── inittab

        │   ├── manufacturing.mk

        │   ├── mfg-profile

        │   ├── sshd_config

        │   ├── sshd_run

        │   ├── test-button

        │   ├── test-fan

        │   ├── test-gps

        │   ├── test-led

        │   └── user-tables.txt

        └── production

            ├── Config.in

            ├── dcron-root

            ├── download-apply-update

            ├── inittab

            ├── ntpd.etc.conf

            ├── ota.acme.systems.crt

            ├── production.mk

            └── user-tables.txt



If you compare this directory tree with Buildroot's previous one, you
can see that <boardname> has been replaced with supergizmo
and <company> has been replaced with acme. You can think of an
umbrella package as an image overlay on top of some common
base image. That way, all three images can share the same U-Boot,
kernel, and drivers so that their changes only apply to user space.

Consider what packages need to be included on a device's
development image for it to be effective. At a minimum, developers
expect to be able to ssh into the device, execute commands with
sudo, and edit onboard files with vim. Additionally, they want to be
able to trace, debug, and profile their programs using tools such as
strace, gdb, and perf. None of that software belongs on a
device's production image for security reasons.

Config.in for the development umbrella package selects
packages that should only be deployed to an in-house developer's
preproduction hardware:
$ cat package/acme/development/Config.in

config BR2_PACKAGE_DEVELOPMENT

     bool "development"

     select BR2_PACKAGE_HAVEGED

     select BR2_PACKAGE_OPENSSH

     select BR2_PACKAGE_SUDO

     select BR2_PACKAGE_TMUX

     select BR2_PACKAGE_VIM

     select BR2_PACKAGE_STRACE

     select BR2_PACKAGE_LINUX_TOOLS_PERF



     select BR2_PACKAGE_GDB

     select BR2_PACKAGE_GDB_SERVER

     select BR2_PACKAGE_GDB_DEBUGGER

     select BR2_PACKAGE_GDB_TUI

     help

       The development image overlay for Acme's
SuperGizmo.

The different service scripts and configuration files get written to the
output/target directory during the install step of the package
build process. Here is the relevant excerpt from
package/acme/development/development.mk:
define DEVELOPMENT_INSTALL_TARGET_CMDS

     $(INSTALL) -D -m 0644 $(@D)/inittab
$(TARGET_DIR)/etc/inittab

     $(INSTALL) -D -m 0755 $(@D)/haveged_run
$(TARGET_DIR)/etc/sv/haveged/run

     $(INSTALL) -D -m 0755 $(@D)/sshd_run
$(TARGET_DIR)/etc/sv/sshd/run

     $(INSTALL) -D -m 0644 $(@D)/sshd_config
$(TARGET_DIR)/etc/ssh/sshd_config

endef

Buildroot <package>.mk files contain <package>_BUILD_CMDS
and <package>_INSTALL_TARGET_CMDS sections. This umbrella
package is named development so the install macro for it is
defined as DEVELOPMENT_INSTALL_TARGET_CMDS. The
<package> prefix needs to match the <package> suffix in the
config BR2_<package> line of the package's Config.in file or
the macro names will result in package build errors.



The haveged/run and sshd/run scripts are installed to the
/etc/sv directory on the target. The custom inittab needed to
start runsvdir is installed to /etc on the target. Unless these files
are installed in their right place with their intended permissions,
BusyBox runit cannot start the haveged or sshd services.

haveged is a software random number generator meant to alleviate
low-entropy conditions in the Linux /dev/random device. Low-
entropy conditions can block sshd from starting because the SSH
protocol relies heavily on random numbers. Some newer SoCs may
not yet have kernel support for their hardware random number
generators. Without also running haveged on these systems, sshd
can take several minutes to begin accepting connections after
booting.

Running haveged under BusyBox runit is quite simple:
$ cat package/acme/development/haveged_run

#!/bin/sh

exec /usr/sbin/haveged -w 1024 -r 0 -F

The production and manufacturing umbrella packages
superimpose different sets of packages and services onto the image.
The production image includes tools for downloading and
applying software updates. The manufacturing image includes
tools that factory technicians would use to provision and test the
hardware. BusyBox runit is also a good fit for both of those use
cases.



Config.in for the production umbrella package selects
packages that are needed for periodic over-the-air software updates:
$ cat package/acme/production/Config.in

config BR2_PACKAGE_PRODUCTION

     bool "production"

     select BR2_PACKAGE_DCRON

     select BR2_PACKAGE_LIBCURL

     select BR2_PACKAGE_LIBCURL_CURL

     select BR2_PACKAGE_LIBCURL_VERBOSE

     select BR2_PACKAGE_JQ

     help

       The production image overlay for Acme's
SuperGizmo.

Forced OTA updates are often undesirable in development and
manufacturing environments, so these packages are excluded from
those images. The production image includes a download-
apply-update script that uses curl to query an OTA server for a
newly available software update. A public SSL certificate is also
included onboard so curl can verify the authenticity of the OTA
server. The dcron daemon is configured to run download-apply-
update every 10 to 20 minutes with some noise to avoid the
stampeding herd. If a newer update is available, the script then
downloads the image, verifies it, and applies it to the microSD card
before rebooting. Here is the relevant excerpt from
package/acme/production/production.mk:
define PRODUCTION_INSTALL_TARGET_CMDS



     $(INSTALL) -D -m 0644 $(@D)/inittab
$(TARGET_DIR)/etc/inittab

     $(INSTALL) -D -m 0644 $(@D)/dcron-root
$(TARGET_DIR)/etc/cron.d/root

     $(INSTALL) -D -m 0775 $(@D)/download-apply-
update $(TARGET_DIR)/usr/sbin/download-
apply-update

     $(INSTALL) -D -m 0644 $(@D)/ota.acme.com.crt
$(TARGET_DIR)/etc/ssl/certs/ota.acme.com.c
rt

     $(INSTALL) -D -m 0644 $(@D)/ntpd.etc.conf
$(TARGET_DIR)/etc/ntp.conf

endef

Build the production image cd to the root of the br2-external
tree and issue the following commands:
$ make clean

$ make supergizmo_production_defconfig

$ make

The steps for building the development and manufacturing
images for the Acme SuperGizmo differ only in the choice of
defconfig. The three defconfigs are almost identical except for the
last line, which is either BR2_PACKAGE_DEVELOPMENT=y,
BR2_PACKAGE_PRODUCTION=y, or
BR2_PACKAGE_MANUFACTURING=y depending on the choice of
image. The three umbrella packages are meant to be mutually
exclusive so do not select more than one umbrella package for
inclusion in the same image or you are likely to encounter
unexpected results.



Service supervis ion
Once we have created service directories with run scripts under
/etc/sv and ensured that BusyBox init starts runsvdir,
BusyBox runit handles all the rest. That includes starting,
stopping, monitoring, and restarting all the services under its control.
The runsvdir utility starts a runsv process for each service
directory and restarts a runsv process if it terminates. Because run
scripts run their respective daemons in the foreground, runsv
expects run to block so that when run exits, runsv will restart it
automatically.

Service auto-restart is desirable during system startup because run
scripts can crash. This is especially true under BusyBox runit
where services start virtually simultaneously instead of one after the
other. For instance, a service may fail to start when a dependent
service or essential system resource (such as a GPIO or device
driver) is not yet available. In the next section, I will show you how to
express dependencies between services so that your system startup
sequence remains deterministic.

Here are the runsv processes running on our simple embedded
Linux system:
# ps aux | grep "[r]unsv"

  177 root     runsvdir /etc/sv

  179 root     runsv ntpd

  180 root     runsv haveged

  181 root     runsv syslogd



  182 root     runsv dcron

  185 root     runsv dbus

  187 root     runsv bluetoothd

  192 root     runsv watchdog

  195 root     runsv connmand

  199 root     runsv sshd

  202 root     runsv klogd

Notice that the runsvdir /etc/sv command in the inittab
does not execute until PID 177. The process with PID 1 is
/sbin/init, which is just a symbolic link pointing to
/bin/busybox. PIDs 2 to 176 (not shown) are all kernel threads
and system services so their commands appear inside square
brackets when displayed by ps. Square brackets mean that a
process does not have an actual command line associated with it.
Since connmand and bluetoothd both depend on D-Bus to start,
runsv may have restarted either service multiple times before D-
Bus is up and running:
# pstree -a

init

  |-getty -L 115200 ttyS0

  |-hciattach /dev/ttyAMA0 bcm43xx 921600 flow -
60:81:f9:b0:8a:02

  |-runsvdir /etc/sv

  |   |-runsv ntpd

  |   |   `-ntpd -u ntp -c /etc/ntp.conf -U 60 -g
-n

  |   |       `-{ntpd}

  |   |-runsv haveged



  |   |   `-haveged -w 1024 -r 0 -F

  |   |-runsv syslogd

  |   |   `-syslogd -n -O /var/data/log/messages -
b 99 -s 1000

  |   |-runsv dcron

  |   |-runsv dbus

  |   |   `-dbus-daemon --system --nofork --
nopidfile --syslog-only

  |   |-runsv bluetoothd

  |   |   `-bluetoothd -E --noplugin=* -n

  |   |-runsv watchdog

  |   |   `-watchdog -T 10 -F /dev/watchdog

  |   |-runsv connmand

  |   |   `-connmand -n

  |   |-runsv sshd

  |   |   `-sshd -D

  |   `-runsv klogd

  |       `-klogd -n

  `-wpa_supplicant -u

Some services require a connection to the internet before they can
start. This can delay service start by several seconds due to the
asynchronous nature of DHCP. Since connmand manages all the
network interfaces on this system, these services in turn depend on
connmand. If the IP address of the device changes due to switching
between networks or renewal of the DHCP lease, many of these
same services may need to be restarted. Fortunately, BusyBox
runit offers a way to restart services easily from the command line.



Control l ing services
BusyBox runit provides an sv command-line tool for managing
and inspecting services:
# sv --help

BusyBox v1.31.1 () multi-call binary.

Usage: sv [-v] [-w SEC] CMD SERVICE_DIR...

Control services monitored by runsv supervisor.

Commands (only first character is enough):

status: query service status

up: if service isn't running, start it. If service
stops, restart it

once: like 'up', but if service stops, don't
restart it

down: send TERM and CONT signals. If ./run exits,
start ./finish

     if it exists. After it stops, don't restart
service

exit: send TERM and CONT signals to service and
log service. If they exit,

     runsv exits too

pause, cont, hup, alarm, interrupt, quit, 1, 2,
term, kill: send

STOP, CONT, HUP, ALRM, INT, QUIT, USR1, USR2,
TERM, KILL signal to service

The help message for sv explains what the up, once, down, and
exit commands do. It also illustrates how the pause, cont, hup,
alarm, interrupt, quit, 1, 2, term, and kill commands map



directly to POSIX signals. Notice that the first character of each
command is enough to invoke it.

Let's experiment with various sv commands using ntpd as our
target service. Your status times will vary from mine depending on
how long you wait between commands:

1. Restart the ntpd service:
# sv t /etc/sv/ntpd

# sv s /etc/sv/ntpd

run: /etc/sv/ntpd: (pid 1669) 6s

The sv t command restarts a service and the sv s command
gets its status. 
The t is short for term so sv t sends a service the TERM signal
before restarting it. The status message says that ntpd has been
running for 6 seconds since restarting.

2. Now let's see what happens to the status when we use sv d to
stop the 
ntpd service:
# sv d /etc/sv/ntpd

# sv s /etc/sv/ntpd

down: /etc/sv/ntpd: 7s, normally up

This time, the status message says that ntpd has been down for
7 seconds since it was stopped.

3. Start the ntpd service back up:
# sv u /etc/sv/ntpd

# sv s /etc/sv/ntpd



run: /etc/sv/ntpd: (pid 2756) 5s

The status message now says that ntpd has been running for 5
seconds since starting. Notice that the PID is higher than before
because the system has been running for some time since ntpd
was restarted.

4. Do a one-off start of ntpd:
# sv o /etc/sv/ntpd

# sv s /etc/sv/ntpd

run: /etc/sv/ntpd: (pid 3795) 3s, want down

The sv o command is like sv u except that the target service
does not restart again if it stops. You can confirm that by sending
a KILL signal to the ntpd service using sv k /etc/sv/ntpd
and observing that the ntpd service goes down and stays down.

Here are the long forms of the sv commands we covered:
# sv term /etc/sv/ntpd

# sv status /etc/sv/ntpd

# sv down /etc/sv/ntpd

# sv up /etc/sv/ntpd

# sv once /etc/sv/ntpd

If a service needs conditional error or signal handling, you can define
that logic inside a finish script. A service finish script is optional
and executes whenever run exits. A finish script takes two
arguments: $1, an exit code from run, and $2, the least significant
byte of the exit status as determined by the waitpid system call.
The exit code from run is 0 when run exits normally and -1 when



run exits abnormally. The status byte is 0 when run exits normally
and the signal number when run is terminated by a signal. If runsv
is unable to start run, then the exit code is 1 and the status byte is
0.

A service that detects IP address changes could restart network
services by shelling out to sv t. This is similar to what ifplugd
does except that ifplugd triggers on Ethernet link state instead of
IP address changes. Such a service could be as simple as a shell
script comprised of a single while loop that continuously polls all
the network interfaces. You can also issue sv commands from a run
or finish script as a way to communicate between services. I will
show you how to do that in the next section.

Depending on other
services
I mentioned how some services like connmand and bluetoothd
require D-Bus. D-Bus is a message system bus that enables publish-
subscribe interprocess communication. The Buildroot package for D-
Bus provides a system dbus-daemon and a reference libdbus
library. The libdbus library implements the low-level D-Bus C API
but higher-level bindings to libdbus exist for other languages like
Python. Some languages also offer alternative implementations of
the D-Bus protocol that do not depend on libdbus at all. D-Bus



services such as connmand and bluetoothd expect the system
dbus-daemon to already be running before they can start.

Start dependencies
The official runit documentation recommends using sv start to
express dependencies on other services under the control of runit.
To make sure D-Bus is available before connmand starts, you
should define your /etc/sv/connmand/run accordingly:
#!/bin/sh

/bin/sv start /etc/sv/dbus > /dev/null || exit 1

exec /usr/sbin/connmand -n

sv start /etc/sv/dbus attempts to start the system dbus-
daemon if it is not already running. The sv start command is like
sv up except that it will wait up to however many seconds are
specified by the -w argument or SVWAIT environment variable for
the service to start. The default maximum wait time when no -w
argument or SVWAIT environment variable is defined is 7 seconds. If
the service is already up, it returns an exit code of 0 for success. An
exit code of 1 indicates failure causing /etc/sv/connmand/run to
exit prematurely without starting connmand. The runsv process that
monitors connmand will continue trying to start the service until it
eventually succeeds.

Here is our corresponding /etc/sv/dbus/run, which I derived
from Void's:



#!/bin/sh

[ ! -d /var/run/dbus ] && /bin/install -m755 -g 22
-o 22 -d /var/run/dbus

[ -d /tmp/dbus ] || /bin/mkdir -p /tmp/dbus

exec /bin/dbus-daemon --system --nofork --
nopidfile --syslog-only

Contrast that with the following excerpt from Buildroot's
/etc/init.d/S30dbus:
# Create needed directories.

[ -d /var/run/dbus ] || mkdir -p /var/run/dbus

[ -d /var/lock/subsys ] || mkdir -p
/var/lock/subsys

[ -d /tmp/dbus ] || mkdir -p /tmp/dbus

RETVAL = 0

start() {

    printf "Starting system message bus: "

    dbus-uuidgen --ensure

    dbus-daemon --system

    RETVAL=$?

    echo "done"

    [ $RETVAL -eq 0 ] && touch
/var/lock/subsys/dbus-daemon

}

stop() {

    printf "Stopping system message bus: "

    ## we don't want to kill all the per-user
$processname, we want

    ## to use the pid file *only*; because we use
the fake nonexistent



    ## program name "$servicename" that should be
safe-ish

    killall dbus-daemon

    RETVAL=$?

    echo "done"

    if [ $RETVAL -eq 0 ]; then

        rm -f /var/lock/subsys/dbus-daemon

        rm -f /var/run/messagebus.pid

    fi

}

Notice how much more complex Buildroot's version of the D-Bus
service script is. Because runit runs the dbus-daemon in the
foreground, there is no need for lock or pid files and all the
ceremony associated with those. You might presume that the
preceding stop() function makes for a good finish script except
that in the case of runit, there is no dbus-daemon to kill or pid or
lock files to delete. Service finish scripts are optional in runit
so they should only be reserved for meaningful work.

Custom start dependencies
If a check exists in the /etc/sv/dbus directory, sv runs this script
to check whether or not the service is available. A service is
considered to be available if check exits with 0. The check
mechanism enables you to express additional postconditions for a
service being available besides a running process. For example, just
because connmand has started does not mean that a connection to



the internet has necessarily been established. check scripts ensure
that a service completes what it was intended to do before other
services can start.

To verify whether Wi-Fi is up or not, you could define the following
check:
#!/bin/sh

WIFI_STATE=$(cat /sys/class/net/wlan0/operstate)

"$WIFI_STATE" = "up" || exit 1

exit 0

By installing the preceding script to /etc/sv/connmand/check,
you make Wi-Fi a requirement for the connmand service to start.
That way, when you issue sv start /etc/sv/connmand, the
command only returns an exit code of 0 if the Wi-Fi interface is up
even if connmand is running.

You can execute check scripts without starting a service using the
sv check command. Like sv start, if check exists in the service
directory, sv runs this script to determine whether or not the service
is available. A service is considered available if check exits with 0.
sv will wait up to 7 seconds for check to return with an exit code of
0. Unlike sv start, if check returns a nonzero exit code, sv does
not attempt to start the service.

Putt ing i t  al l  together



We have seen how the sv start and check mechanisms enable
us to express start dependencies between services. Combining
these features with finish scripts enables us to construct process
supervision trees. For example, a service that acts as a parent
process could call sv down to bring down its dependent child
services when it stops. This advanced level of customization is what
I believe makes BusyBox runit so powerful. You can tailor your
system to behave just how you want it to using only simple, well-
defined shell scripts. To learn more about supervision trees, I
recommend the literature on Erlang fault tolerance.

Dedicated service logging
A dedicated service logger only logs the output coming from a single
daemon. Dedicated logging is nice because diagnostic data for
different services is distributed across separate log files. The
monolithic log files generated by centralized system loggers such as
syslogd are often hard to untangle. Both forms of logging have
their purpose: dedicated logging excels at readability and centralized
logging offers context. Your services can each have their own
dedicated loggers and still write to syslog so you sacrifice neither.

How does i t  work?
Because service run scripts run in the foreground, adding a
dedicated logger to a service only involves redirecting standard



output from a service's run to a log file. You enable dedicated
service logging by creating a log subdirectory inside the target
service directory with another run script inside of it. This additional
run is for the service's logger, not the service itself. When this log
directory exists, a pipe is opened from the output of the run process
in the service directory to the input of the run process in the log
directory.

Here is a possible service directory layout for sshd:
# tree etc/sv/sshd

etc/sv/sshd

|-- finish

|-- log

|   `-- run

`-- run

More precisely, when the BusyBox runit runsv process
encounters this service directory layout, it does several things in
addition to starting sshd/run and sshd/finish if and when
necessary:

1. Creates a pipe

2. Redirects standard out from run and finish to the pipe

3. Switches to the log directory

4. Starts log/run

5. Redirects the standard input of log/run to read from the pipe



runsv starts and monitors sshd/log/run just like it starts and
monitors sshd/run. Once you add a logger for sshd, you'll notice
that sv d /etc/sv/sshd only stops sshd. To stop the logger, you
must enter sv d /etc/sv/sshd/log unless you add that
command to the /etc/sv/sshd/finish script.

Adding dedicated logging to a
service
BusyBox runit provides an svlogd logging daemon for use in
your log/run scripts:
# svlogd --help

BusyBox v1.31.1 () multi-call binary.

Usage: svlogd [-tttv] [-r C] [-R CHARS] [-l
MATCHLEN] [-b BUFLEN] DIR...

Read log data from stdin and write to rotated log
files in DIRs

-r C       Replace non-printable characters with C

-R CHARS   Also replace CHARS with C (default _)

-t         Timestamp with @tai64n

-tt        Timestamp with yyyy-mm-
dd_hh:mm:ss.sssss

-ttt       Timestamp with yyyy-mm-
ddThh:mm:ss.sssss

-v         Verbose

Notice that svlogd requires one or more DIR output directory paths
as arguments.



To add dedicated logging to an existing BusyBox runit service, do
the following:

1. Create a log subdirectory inside the service directory.

2. Create a run script inside the log subdirectory.

3. Make that run script executable.

4. Use exec to run svlogd inside run.

Here is an /etc/sv/sshd/log/run script from Void:
#!/bin/sh

[ -d /var/log/sshd ] || mkdir -p /var/log/sshd

exec chpst -u root:adm svlogd -t /var/log/sshd

Since svlogd will write sshd log files to /var/log/sshd, we first
need to create that directory if it does not already exist. For sshd log
files to persist, you may need to modify your inittab to mount
/var to a writable flash partition on boot up before starting
runsvdir. The chpst -u root:adm portion of the exec ensures
that svlogd runs with root user and adm group privileges and
permissions.

The -t option prefixes each line written to the log file with a TAI64N-
formatted timestamp. While TAI64N timestamps are precise, they
are not the most human-readable. The other timestamp options
svlogd provides are -tt and -ttt. Some daemons write their own
timestamps to standard out. To avoid writing lines with confusing



double timestamps, simply omit -t or any of its variants from your
log/run svlogd command.

You may be tempted to add a dedicated logger to the klogd and
syslogd services. Resist that temptation. klogd and syslogd are
system-wide logging daemons and 
they are both very good at what they do. There is really no point in
logging what a 
logger is doing unless it is malfunctioning and you need to debug it.
If you develop a service that logs to both stdout and syslog,
make sure to exclude timestamps from the syslog message text.
The syslog protocol includes a timestamp field for you to embed
timestamps.

Each dedicated logger runs in its own separate process. The extra
overhead needed to support these additional logger processes is
something to consider when designing your embedded system. If
you intend to use BusyBox runit to supervise numerous services
on a resource-constrained system, be selective about which services
to add dedicated logging to, otherwise responsiveness may suffer.

Log rotat ion
svlogd rotates log files automatically using a default of 10 log files
each up to 1 million bytes in size. Recall that these rotated log files
are written out to one or more DIR output directories paths passed
into svlogd as arguments. Of course, these rotation settings are



configurable, but before I get into that, let me explain how log
rotation works.

Let's assume that svlogd somehow knows about two values named
NUM and SIZE. NUM is the number of log files to retain. SIZE is the
maximum size of a log file. svlogd appends log messages to a log
file named current. When the size of current reaches SIZE
bytes, then svlogd rotates current.

To rotate the current file, svlogd will do the following:

1. Close the current log file.

2. Make current read-only.

3. Rename current to @<timestamp>.s.

4. Create a new current log file and start writing to it.

5. Count the number of existing log files besides current.

6. Delete the oldest log file if count is equal to or exceeds NUM.

<timestamp> used to rename the current log file that is being
rotated out is the timestamp at the time of file rotation, not creation.

Now observe the descriptions of SIZE, NUM, and PATTERN here:
# svlogd --help

BusyBox v1.31.1 () multi-call binary.

[Usage not shown]

DIR/config file modifies behavior:

sSIZE - when to rotate logs (default 1000000, 0
disables)



nNUM - number of files to retain

!PROG - process rotated log with PROG

+,-PATTERN - (de)select line for logging

E,ePATTERN - (de)select line for stderr

These settings are read from a DIR/config file if it exists. Notice
that a SIZE of 0 disables log rotation and is not the default. Here is a
DIR/config file that causes svlogd to keep up to 100 log files
each up to 9,999,999 bytes in size for a total of roughly 1 GB in
rotating logs written to one output directory:
s9999999

n100

If multiple DIR output directories are passed to svlogd, then
svlogd logs to all of them. Why would you want to log the same
messages to more than one directory? The answer is that you don't
log the same messages to multiple directories. Since every output
directory has its own config file, you use pattern matching to select
which messages to log to which output directory.

Assuming PATTERN of length N, if a line in DIR/config starts with
+, -, E, or e, svlogd matches the first N characters of each log
message against PATTERN accordingly. The + and - prefixes apply
to current and the E and e prefixes apply to standard error.
+PATTERN selects and -PATTERN filters out matching lines for
logging to current. EPATTERN selects and ePATTERN filters out
matching lines for alerting to standard error.



Signal ing a service
Earlier, in the Start dependencies section, I showed how the sv
command-line tool can be used to control a service. Later on, I
demonstrated how the sv start and sv down commands can be
used inside run and finish scripts to communicate between
services. You may have already guessed that runsv is sending
POSIX signals to the run processes that it supervises when an sv
command executes. But what you may not have known is that the
sv tool controls its target runsv process over a named pipe. The
named pipes supervise/control and optionally
log/supervise/control are opened so that other processes can
send commands to runsv. Signaling a service is easy with sv
commands, but if you want to, you can bypass sv entirely and write
control characters directly to the control pipe(s).

The runtime directory layout of a service with no dedicated logging
looks like this:
# tree /etc/sv/syslogd

/etc/sv/syslogd

|-- run

`-- supervise

    |-- control

    |-- lock

    |-- ok

    |-- pid

    |-- stat



    `-- status

The control file under /etc/sv/syslogd is the service's named
pipe. The pid and stat files contain the live PID and status values
(run or down) of the service. The supervise subdirectory and all
of its contents are created and populated by runsv syslogd when
the system starts up. If a service includes a dedicated logger, runsv
will generate a supervise subdirectory for that as well.

The following control characters (t, d, u, and o) map directly to short
forms of sv commands (term, down, up, and once) we have
already encountered:

t term: Sends the process a TERM signal before restarting the
service.

d down: Sends the process a TERM signal followed by a CONT
signal and does not restart it.

u up: Starts a service and restarts it if process exits.

o once: Tries to start a service for up to 7 seconds and does not
restart it afterward.

1: Sends the process a USR1 signal.

2: Sends the process a USR2 signal.

Control characters 1 and 2 are of special interest because they
correspond to user-defined signals. It is up to the service on the
receiving end to decide how to respond to USR1 and USR2 signals. If
you are the developer tasked with extending a service, you can do



that by implementing signal handlers. Two user-defined signals may
not seem like much to work with, but if you combine these distinct
events with updates written to a configuration file(s) you can achieve
a lot. User-defined signals have the added advantage of not needing
to stop or terminate a running process like the STOP, TERM, and
KILL signals do.

Summary
This chapter was a deep dive into a lesser-known init system that I
feel is largely underappreciated. Like systemd, BusyBox runit can
enforce complex dependencies between services both during boot
and at runtime. It just does it in a much simpler and I would argue
more Unix-like way than systemd does. Plus, nothing beats
BusyBox runit when it comes to boot times. If you are already
using Buildroot as your build system, then I strongly encourage you
to consider BusyBox runit for your device's init system.

We covered a lot of ground in our exploration. First, you learned how
to get BusyBox runit onto your device and start it using Buildroot.
Then I showed you how you can assemble and configure services
together in different ways using out-of-tree umbrella packages. Next,
we experimented with a live process supervision tree before delving
into service dependencies and ways to express them. After that, I
showed you how to add a dedicated logger and configure log
rotation for a service. Lastly, I described how services can write to
existing named pipes as a way to send signals to each other.



In the next chapter, I will turn my attention to the power management
of Linux systems with the aim of showing how to reduce energy
consumption. This will be especially useful if you are designing
devices that run on battery power.

Further reading
Here are the various resources mentioned throughout the chapter:

The Buildroot user manual:
http://nightly.buildroot.org/manual.html#customize

runit documentation by Gerrit Pape: http://smarden.org/runit/

Void Handbook: https://docs.voidlinux.org/config/services

Adopting Erlang by Tristan Sloughter, Fred Hebert, and Evan
Vigil-McClanahan:
https://adoptingerlang.org/docs/development/supervision_trees

http://nightly.buildroot.org/manual.html#customize
http://smarden.org/runit/
https://docs.voidlinux.org/config/services
https://adoptingerlang.org/docs/development/supervision_trees


Chapter 15 :  Managing
Power
For devices operating on battery power, power management is
critical: anything we can do to reduce power usage will increase
battery life. Even for devices running on mains power, reducing
power usage has benefits in reducing the need for cooling and
energy costs. In this chapter, I will introduce the four principles of
power management:

Don't rush if you don't have to.

Don't be ashamed of being idle.

Turn off things you are not using.

Sleep when there is nothing else to do.

Putting these into more technical terms, the principles mean that the
power management system should endeavor to reduce the CPU
clock frequency. During idle periods, it should choose the deepest
sleep state possible; it should reduce the load by powering down
unused peripherals and it should be able to put the whole system
into a suspended state while ensuring power state transitions are
quick.

Linux has features that address each of these points. I will describe
each one in turn, with examples and advice on how to apply them to
an embedded system in order to make optimum use of power.



Some of the terminologies of system power management are taken
from the Advanced Configuration and Power Interface (ACPI)
specification: terms such as C-states and P-states. I will describe
these as we get to them. The full reference to the specification is
given in the Further reading section.

In this chapter, we will specifically cover the following topics:

Measuring power usage

Scaling the clock frequency

Selecting the best idle state

Powering down peripherals

Putting the system to sleep

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based system

Etcher for Linux

A microSD card reader and card

A USB to TTL 3.3V serial cable

A BeagleBone Black

A 5V 1A DC power supply



An Ethernet cable and port for network connectivity

All of the code for this chapter can be found in the Chapter15 folder
from the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Measuring power usage
For the examples in this chapter, we need to use real hardware
rather than virtual. This means that we need a BeagleBone Black
with working power management. Unfortunately, the BSP for the
BeagleBone that comes with the meta-yocto-bsp layer does not
include the necessary firmware for the Power Management IC
(PMIC), so we will use 
a pre-built Debian image instead. The missing firmware might exist
in the meta-ti layer, but I did not investigate that. The procedure
for installing Debian on the BeagleBone Black is the same as what
we covered in Chapter 12, Prototyping with Breakout Boards, except
for the Debian version.

To download the Debian Stretch IoT microSD card image for the
BeagleBone Black, issue the following command:
$ wget https://debian.beagleboard.org/images/bone-

debian-9.9-iot-armhf-2019-08-03-4gb.img.xz

10.3 (aka Buster) was the latest Debian image for AM335x-based
BeagleBones at the time of writing. We will use Debian 9.9 for the

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


exercises in this chapter because the Linux kernel included with
Debian 10.3 is missing some power management features. When
the Debian Stretch IoT image to a microSD card is done
downloading, use Etcher to write it to a microSD card.

IMPORTANT NOTE

If possible, download version 9.9 (aka Stretch) of Debian rather than
the latest Debian image from BeagleBoard.org for the exercises

in this chapter. The CPUIdle driver is missing from version 10.3 of
Debian so the menu and ladder CPUIdle governors are missing

from that version of the distribution. If version 9.9 is no longer
available or supported, then download and try 
a newer version of Debian than 10.3 from BeagleBoard.org.

Now, with no power on the BeagleBone board, insert the microSD
card into the reader. Plug in the serial cable. A serial port should
appear on your PC as /dev/ttyUSB0. Start a suitable terminal
program, such as gtkterm, minicom, or picocom, and attach to
the port at 115200 bps (bits per second) with no flow control.
gtkterm is probably the easiest to set up and use:
$ gtkterm -p /dev/ttyUSB0 -s 115200

If you get a permissions error, then you may need to add yourself to
the dialout group and reboot to use this port.

Press and hold the Boot Switch button (nearest to the microSD slot)
on the BeagleBone Black, power up the board using the external 5V
power connector, and release the button after about 5 seconds. You



should see U-Boot output, kernel log output, and eventually a login
prompt on the serial console:
Debian GNU/Linux 9 beaglebone ttyS0

BeagleBoard.org Debian Image 2019-08-03

Support/FAQ:
http://elinux.org/Beagleboard:BeagleBoneBl
ack_Debian

default username:password is [debian:temppwd]

beaglebone login: debian

Password:

Log in as the debian user. The password is temppwd as shown in
the preceding screenshot.

IMPORTANT NOTE

Many BeagleBone Blacks come with Debian already installed on the
onboard flash so they will still boot even without a microSD card
inserted. If the BeagleBoard.org Debian Image 2019-08-03

message is displayed before the password prompt, then the
BeagleBone Black probably booted from the Debian 9.9 image on
the microSD. If a different Debian release message is displayed
before the password prompt, then verify whether or not the microSD
card is properly inserted.

To check which version of Debian is running, run the following:
debian@beaglebone:~$ cat /etc/os-release

PRETTY_NAME="Debian GNU/Linux 9 (stretch)"

NAME="Debian GNU/Linux"

VERSION_ID="9"



VERSION="9 (stretch)"

ID=debian

HOME_URL="https://www.debian.org/"

SUPPORT_URL="https://www.debian.org/support"

BUG_REPORT_URL="https://bugs.debian.org/"

Now check whether the power management is working:
debian@beaglebone:~$ cat /sys/power/state

freeze standby mem disk

If you see all four states, everything is working fine. If you see only
freeze, the power management subsystem is not working. Go back
and double-check the previous steps.

Now we can move on to measuring power usage. There are two
approaches: external and internal. Measuring power externally, from
outside the system, we just need an ammeter to measure the current
and a voltmeter to measure the voltage, and then multiply the two
together to get the wattage. You can use basic meters that give a
readout, which you then note down. Or they can be much more
sophisticated and combine data logging so that you can see the
change in power as the load changes millisecond by millisecond. For
the purposes of this chapter, I powered the BeagleBone from the
Mini USB port and used 
a cheap USB power monitor of the type that costs a few dollars.

The other approach is to use the monitoring systems that are built
into Linux. You will find that plenty of information is reported to you
via sysfs. There is also a very useful program called PowerTOP,
which gathers information together from various sources and



presents it in a single place. PowerTOP is a package for both the
Yocto Project and Buildroot. It is also available for installation on
Debian.

To install PowerTop on the BeagleBone Black from Debian Stretch
IoT, run the following:
debian@beaglebone:~$ sudo apt update

[…]

debian@beaglebone:~$ sudo apt install powertop

Reading package lists... Done

Building dependency tree       

Reading state information... Done

Suggested packages:

  laptop-mode-tools

The following NEW packages will be installed:

  powertop

0 upgraded, 1 newly installed, 0 to remove and 151
not upgraded.

Need to get 177 kB of archives.

After this operation, 441 kB of additional disk
space will be used.

Get:1 http://deb.debian.org/debian stretch/main
armhf powertop armhf 2.8-1+b1 [177 kB]

Fetched 177 kB in 0s (526 kB/s)

Don't forget to plug your BeagleBone Black into Ethernet and update
the list of available packages before installing PowerTOP.

Here is an example of PowerTOP running on the BeagleBone Black:



Figure 15.1 – PowerTOP overview



In this screenshot, we can see that the system is quiet, with only
3.5% of CPU usage. 
I will show more interesting examples later, in the Using CPUFreq
and The CPUIdle driver subsections of this chapter.

Now that we have a way to measure power consumption, let's look
at one of the biggest knobs we have to manage power in an
embedded Linux system: the clock frequency.

Scal ing the c lock f requency
Running for a kilometer takes more energy than walking. In a similar
way, maybe running the CPU at a lower frequency can save energy.
Let's see.

The power consumption of a CPU when executing code is the sum
of a static component, caused by gate leakage current, among other
things, and a dynamic component, caused by the switching of the
gates:

Pcpu = Pstatic + Pdyn

The dynamic power component is dependent on the total
capacitance of the logic gates being switched, the clock frequency,
and the square of the voltage:

Pdyn = CfV2

From this, we can see that changing the frequency by itself is not
going to save any power because the same number of CPU cycles
have to be completed in order to execute a given subroutine. If we



reduce the frequency by half, it will take twice as long to complete
the calculation, but the total power consumed due to the dynamic
power component will be the same. In fact, reducing the frequency
may actually increase the power budget because it takes longer for
the CPU to enter an idle state. So, in these conditions, it is best to
use the highest frequency possible so that the CPU can go back to
idle quickly. This is called the race to idle.

IMPORTANT NOTE

There is another motivation to reduce frequency: thermal
management. It may become necessary to operate at a lower
frequency just to keep the temperature of the package within
bounds. But that is not our focus here.

Therefore, if we want to save power, we must be able to change the
voltage that the CPU core operates at. But for any given voltage,
there is a maximum frequency beyond which the switching of the
gates becomes unreliable. Higher frequencies need higher voltages,
and so the two need to be adjusted together. Many SoCs implement
such a feature: it is called Dynamic Voltage and Frequency
Scaling, or DVFS. Manufacturers calculate optimum combinations of
core frequency and voltage. Each combination is called Operating
Performance Point, or OPP. The ACPI specification refers to them
as P-states, with P0 being the OPP with the highest frequency.
Although an OPP is a combination of a frequency and a voltage, it is
most often referred to by the frequency component alone.



A kernel driver is needed to switch between P-states. Next, we will
look at that driver and the governors that control it.

The CPUFreq driver
Linux has a component named CPUFreq that manages the
transitions between OPPs. It is part of the board support for the
package for each SoC. CPUFreq consists of drivers in
drivers/cpufreq/, which make the transition from one OPP to
another, and a set of governors that implement the policy of when to
switch. It is controlled per-CPU via the
/sys/devices/system/cpu/cpuN/cpufreq directory, with N
being the CPU number. In there, we find a number of files, the most
interesting of which are as follows:

cpuinfo_cur_freq, cpuinfo_max_freq, and
cpuinfo_min_freq: The current frequency for this CPU,
together with the maximum and minimum, measured in KHz.

cpuinfo_transition_latency: The time, in nanoseconds, to
switch from one OPP to another. If the value is unknown, it is set
to -1.

scaling_available_frequencies: A list of OPP
frequencies available on this CPU.

scaling_available_governors: A list of governors available
on this CPU.



scaling_governor: The CPUFreq governor currently being
used.

scaling_max_freq and scaling_min_freq: The range of
frequencies available to the governor in KHz.

scaling_setspeed: A file that allows you to manually set the
frequency when the governor is userspace, which I will describe
at the end of this subsection.

The governor sets the policy to change the OPP. It can set the
frequency between the 
limits of scaling_min_freq and scaling_max_freq. The
governors are named 
as follows:

powersave: Always selects the lowest frequency.

performance: Always selects the highest frequency.

ondemand: Changes frequency based on the CPU utilization. If
the CPU is idle less than 20% of the time, it sets the frequency to
the maximum; if it is idle more than 30% of the time, it
decrements the frequency by 5%.

conservative: Like ondemand, but switches to higher
frequencies in 5% steps rather than going immediately to the
maximum.

userspace: Frequency is set by a user space program.



The default governor when Debian starts up is performance:
$ cd /sys/devices/system/cpu/cpu0/cpufreq

$ cat scaling_governor

performance

To switch to the ondemand governor, which is the governor we
should use for the exercises in this chapter, run the following
command:
$ sudo cpupower frequency-set -g ondemand

[sudo] password for debian:

Setting cpu: 0

Enter temppwd when prompted for a password.

The parameters the ondemand governor uses to decide when to
change OPP can be viewed and modified via
/sys/devices/system/cpu/cpufreq/ondemand/. Both
ondemand and conservative governors take into account the
effort required to change frequency and voltage. This parameter is in
cpuinfo_transition_latency. These calculations are for
threads with a normal scheduling policy; if the thread is being
scheduled in real time, they will both immediately select the highest
OPP so that the thread can meet its scheduling deadline.

The userspace governor allows the logic of selecting the OPP to
be performed by a user space daemon. Examples include cpudyn
and powernowd, although both are orientated toward x86-based
laptops rather than embedded devices.



Now that we know where the runtime details about the CPUFreq
driver are located, let's look at how to define the OPPs at compile
time.

Using CPUFreq
Looking at the BeagleBone Black, we find that the OPPs are coded
in the device tree. Here is an extract from am33xx.dtsi:
cpu0_opp_table: opp-table {

     compatible = "operating-points-v2-ti-cpu";

     syscon = <&scm_conf>;

     […]

     opp50-300000000 {

           opp-hz = /bits/ 64 <300000000>;

           opp-microvolt = <950000 931000 969000>;

           opp-supported-hw = <0x06 0x0010>;

           opp-suspend;

     };

     […]

     opp100-600000000 {

           opp-hz = /bits/ 64 <600000000>;

           opp-microvolt = <1100000 1078000
1122000>;

           opp-supported-hw = <0x06 0x0040>;

     };

     […]

     opp120-720000000 {

           opp-hz = /bits/ 64 <720000000>;



           opp-microvolt = <1200000 1176000
1224000>;

           opp-supported-hw = <0x06 0x0080>;

     };

     […]

     oppturbo-800000000 {

           opp-hz = /bits/ 64 <800000000>;

           opp-microvolt = <1260000 1234800
1285200>;

           opp-supported-hw = <0x06 0x0100>;

     };

     oppnitro-1000000000 {

           opp-hz = /bits/ 64 <1000000000>;

           opp-microvolt = <1325000 1298500
1351500>;

           opp-supported-hw = <0x04 0x0200>;

     };

};

We can confirm that these are the OPPs in use at runtime by viewing
the available frequencies:
$ cd /sys/devices/system/cpu/cpu0/cpufreq

$ cat scaling_available_frequencies

300000 600000 720000 800000 1000000

By selecting the userspace governor, we can set the frequency by
writing to scaling_setspeed, and so we can measure the power
consumed at each OPP. These measurements are not very
accurate, so do not take them too seriously.



First, with an idle system, the result is 70mA @ 4.6V = 320 mW. This
is independent of the frequency, which is what we would expect
since this is the static component of the power consumption of this
particular system.

Now, I want to know the maximum power consumed at each OPP by
running a compute-bound load such as this:
# dd if=/dev/urandom of=/dev/null bs=1

The results are shown in the following table, with Delta power being
the additional power usage above the idle system:

These measurements show the maximum power at the various
OPPs. But it is not a fair test because the CPU is running at 100%,
and so it is executing more instructions at higher frequencies. If we



keep the load constant but vary the frequency, then we find 
the following:

This shows a definite power saving at the lowest frequency, in the
order of 15%.

Using PowerTOP, we can see the percentage of time spent in each
OPP. The following screenshot shows the BeagleBone Black running
a light load using the ondemand governor:



Figure 15.2 – PowerTOP Frequency stats

In most cases, the ondemand governor is the best one to use. To
select a particular governor, you can either configure the kernel with
a default governor, for example,
CPU_FREQ_DEFAULT_GOV_ONDEMAND, or you can use a boot script
to change the governor at boot time. There is an example System V
init script in MELP/Chapter15/cpufrequtils taken from
Debian.

For more information on the CPUFreq driver, take a look at files in
the Documentation/cpu-freq directory of the Linux kernel
source tree.



In this section, we were concerned about the power used when the
CPU is busy. In the next section, we will look at how to save power
when the CPU is idle.

Select ing the best id le state
When a processor has no more work to do, it executes a halt
instruction and enters 
an idle state. While idle, the CPU uses less power. It exits the idle
state when an event 
such as a hardware interrupt occurs. Most CPUs have multiple idle
states that use 
varying amounts of power. Usually, there is a trade-off between the
power usage and the latency, or the length of time, it takes to exit the
state. In the ACPI specification, they are called C-states.

In the deeper C-states, more circuitry is turned off at the expense of
losing some state, and so it takes longer to return to normal
operation. For example, in some C-states the CPU caches may be
powered off, and so when the CPU runs again, it may have to reload
some information from the main memory. This is expensive, and so
you only want to do this if there is a good chance that the CPU will
remain in this state for some time. The number of states varies from
one system to another. Each takes some time to recover from
sleeping to being fully active.

The key to selecting the right idle state is to have a good idea of how
long the CPU is going to be quiescent. Predicting the future is



always tricky, but there are some things that can help. One is the
current CPU load: if it is high now, it is likely to continue to be so in
the immediate future, so a deep sleep would not be beneficial. Even
if the load is low, it is worth looking to see whether there is a timer
event that expires soon. If there is no load and no timer, then a
deeper idle state is justified.

The part of Linux that selects the best idle state is the CPUIdle
driver. There is a good deal of information about it available in the
Documentation/cpuidle directory inside the Linux kernel source
tree.

The CPUIdle driver
As with the CPUFreq subsystem, CPUIdle consists of a driver that is
part of the BSP and a governor that determines the policy. Unlike
CPUFreq, however, the governor cannot be changed at runtime and
there is no interface for user space governors.

CPUIdle exposes information about each of the idle states in the
/sys/devices/system/cpu/cpu0/cpuidle directory, in which
there is a subdirectory for each of the sleep states, named state0
to stateN. state0 is the lightest sleep and stateN the deepest.
Note that the numbering does not match that of the C-states and that
CPUIdle does not have a state equivalent to C0 (running). For each
state, there are these files:

desc: A short description of the state



disable: An option to disable this state by writing 1 to this file

latency: The time the CPU core takes to resume normal
operation when exiting this state, in microseconds

name: The name of this state

power: The power consumed while in this idle state, in milliwatts

time: The total time spent in this idle state, in microseconds

usage: The count of the number of times this state was entered

In the case of the AM335x SoC on the BeagleBone Black, there are
two idle states. Here is the first:
$ cd /sys/devices/system/cpu/cpu0/cpuidle

$ grep "" state0/*

state0/desc:ARM WFI

state0/disable:0

state0/latency:1

state0/name:WFI

state0/power:4294967295

state0/residency:1

state0/time:1023898

state0/usage:1426

This state is named WFI, which refers to the ARM halt instruction,
Wait For Interrupt. The latency is 1 microsecond because it is just a
halt instruction, and the power consumed is given as -1, which
means that the power budget is not known (by CPUIdle at least).
Now, this is the second state:



$ cd /sys/devices/system/cpu/cpu0/cpuidle

$ grep "" state1/*

state1/desc:mpu_gate

state1/disable:0

state1/latency:130

state1/name:mpu_gate

state1/power:0

state1/residency:300

state1/time:139156260

state1/usage:7560

This one is named mpu_gate. It has a higher latency of 130
microseconds. The idle states may be hardcoded into the CPUIdle
driver or presented in the device tree. Here is an extract from
am33xx.dtsi:
cpus {

     cpu@0 {

           compatible = "arm,cortex-a8";

           enable-method = "ti,am3352";

           device_type = "cpu";

           reg = <0>;

.

.

.

           cpu-idle-states = <&mpu_gate>;

     };

     idle-states {

           mpu_gate: mpu_gate {

                compatible = "arm,idle-state";



                entry-latency-us = <40>;

                exit-latency-us = <90>;

                min-residency-us = <300>;

                ti,idle-wkup-m3;

           };

      };

}

CPUIdle has two governors:

ladder: This steps idle states down or up, one at a time,
depending on the time spent in the last idle period. It works well
with a regular timer tick but not with 
a dynamic tick.

menu: This selects an idle state based on the expected idle time.
It works well with dynamic tick systems.

You should choose one or the other depending on your configuration
of NO_HZ, which I will describe at the end of this section.

Once again, user interaction is via the sysfs filesystem. In the
/sys/devices/system/cpu/cpuidle directory, you will find two
files:

current_driver: This is the name of the cpuidle driver.

current_governor_ro: This is the name of the governor.

These show which driver and which governor are being used. The
idle states can be shown in PowerTOP on the Idle stats tab. The



following screenshot shows a BeagleBone Black using the menu
governor:

Figure 15.3 – PowerTOP Idle stats

This shows that when the system is idle, it is mostly going to the
deeper mpu_gate idle state, which is what we would want.

Even with the CPU fully idling, most Linux systems are still
configured to wake up periodically on receipt of a system timer
interrupt. To save more power, we need to configure the Linux kernel
for tickless operation.

Tickless operation



A related topic is the tickless, or NO_HZ, option. If the system is truly
idle, the most likely source of interruptions will be the system timer,
which is programmed to generate 
a regular time tick at a rate of HZ per second, where HZ is typically
100. Historically, Linux uses the timer tick as the main time base for
measuring timeouts.

And yet it is plainly wasteful to wake the CPU up to process a timer
interrupt if no timer events are registered for that particular moment.
The dynamic tick kernel configuration option,
CONFIG_NO_HZ_IDLE, looks at the timer queue at the end of the
timer processing routine and schedules the next interruption at the
time of the next event, avoiding unnecessary wake-ups and allowing
the CPU to be idle for long periods. In any power-sensitive
application, the kernel should be configured with this option enabled.

While the CPU consumes much of the power in an embedded Linux
system, there are other components of the system that can also be
powered down for energy savings.

Powering down per ipherals
The discussion up to now has been about CPUs and how to reduce
power consumption when they are running or idling. Now it is time to
focus on other parts of the system peripherals and see whether we
can achieve power savings here.



In the Linux kernel, this is managed by the runtime power
management system or runtime pm for short. It works with drivers
that support runtime pm, shutting down those that are not in use and
waking them again when they are next needed. It is dynamic and
should be transparent to user space. It is up to the device driver to
implement the management of the hardware, but typically, it would
include turning off the clock to the subsystem, also known as clock
gating, and turning off core circuitry where possible.

The runtime power management is exposed via a sysfs interface.
Each device has 
a subdirectory named power, in which you will find these files:

control: This allows user space to determine whether runtime
pm is used on this device. If it is set to auto, then runtime pm is
enabled, but by setting it to on, the device is always on and does
not use runtime pm.

runtime_enabled: This reports that runtime pm is enabled,
disabled, or, if control is on, it reports forbidden.

runtime_status: This reports the current state of the device. It
may be active, suspended, or unsupported.

autosuspend_delay_ms: This is the time before the device is
suspended. -1 means waiting forever. Some drivers implement
this if there is a significant cost to suspending the device
hardware since it prevents rapid suspend/resume cycles.



To give a concrete example, I will look at the MMC driver on the
BeagleBone Black:
$ cd

/sys/devices/platform/ocp/481d8000.mmc/mmc
_host/mmc1/mmc1:0001/power

$ grep "" *

async:enabled

autosuspend_delay_ms:3000

control:auto

runtime_active_kids:0

runtime_active_time:14464

runtime_enabled:enabled

runtime_status:suspended

runtime_suspended_time:121208

runtime_usage:0

So, runtime pm is enabled, the device is currently suspended, and
there is a delay of 3000 milliseconds after it was last used before it
will be suspended again. Now I read a block from the device and see
whether it has changed:
$ sudo dd if=/dev/mmcblk1p3 of=/dev/null count=1

1+0 records in

1+0 records out

512 bytes copied, 0.00629126 s, 81.4 kB/s

$ grep "" *

async:enabled

autosuspend_delay_ms:3000

control:auto

runtime_active_kids:0



runtime_active_time:17120

runtime_enabled:enabled

runtime_status:active

runtime_suspended_time:178520

runtime_usage:0

Now the MMC driver is active and the power to the board has
increased from 320 mW to 500 mW. If I repeat it again after 3
seconds, it is once more suspended, and the power has returned to
320 mW.

For more information on runtime pm, look in the Linux kernel source
code at Documentation/power/runtime_pm.txt.

Now that we know what the runtime pm is and what it does, let's see
it in action.

Putt ing the system to s leep
There is one more power management technique to consider:
putting the whole system into sleep mode with the expectation that it
will not be used again for a while. In the Linux kernel, this is known
as system sleep. It is usually user-initiated: the user decides that
the device should be shut down for a while. For example, I shut the
lid of my laptop and put it in my bag when it is time to go home.
Much of the support for system sleep in Linux comes from the
support for laptops. In the laptop world, there are usually two
options:

Suspend



Hibernate

The first, also known as suspend to RAM, shuts everything down
except the system memory, so the machine is still consuming a little
power. When the system wakes up, the memory retains all the
previous state, and my laptop is operational within a few seconds.

If I select the hibernate option, the contents of the memory are
saved to the hard drive. The system consumes no power at all, and
so it can stay in this state indefinitely, but on wake-up, it takes some
time to restore the memory from disk. Hibernate is very seldom used
in embedded systems, mostly because the flash storage tends to be
quite slow on read/write, but also because it is intrusive to the flow of
work.

For more information, look at the kernel source code in the
Documentation/power directory.

The suspend-to-RAM and hibernate options map to two of the four
sleep states supported by Linux. We'll look at these two types of
system sleep and the rest of the ACPI power states next.

Power states
In the ACPI specification, the sleep states are called S-states. Linux
supports four sleep states (freeze, standby, mem, and disk),
which are shown in the following list along with the corresponding
ACPI S-state ([S0], S1, S3, S4):



freeze ([S0]): Stops (freezes) all activity in user space, but
otherwise the CPU and memory are operating as normal.

The power-saving results from the fact that no user space code is
being run. ACPI does not have an equivalent state so S0 is the
closest match. S0 is the state for 
a running system.

standby (S1): Just like freeze, but additionally takes all CPUs
offline except the boot CPU.

mem (S3): Powers down the system and puts the memory in the
self-refresh mode. Also known as suspend to RAM.

disk (S4): Saves the memory to the hard disk and powers down.
Also known as suspend to disk.

Not all systems have support for all states. To find out which are
available, read the /sys/power/state file as shown:
# cat /sys/power/state

freeze standby mem disk

To enter one of the system sleep states, you just write the desired
state to /sys/power/state.

For embedded devices, the most common need is to suspend to
RAM using the mem option. For example, I can suspend the
BeagleBone Black like this:
# echo mem > /sys/power/state

[ 1646.158274] PM: Syncing filesystems ...done.



[ 1646.178387] Freezing user space processes ...
(elapsed 0.001 seconds) done.

[ 1646.188098] Freezing remaining freezable tasks
... (elapsed 0.001 seconds) done.

[ 1646.197017] Suspending console(s) (use
no_console_suspend to debug)

[ 1646.338657] PM: suspend of devices complete
after 134.322 msecs

[ 1646.343428] PM: late suspend of devices
complete after 4.716 msecs

[ 1646.348234] PM: noirq suspend of devices
complete after 4.755 msecs

[ 1646.348251] Disabling non-boot CPUs ...

[ 1646.348264] PM: Successfully put all
powerdomains to target state

The device powers down in less than a second and then power
usage drops down to below 10 milliwatts, which is the limit of
measurement of my simple multimeter. But how do I wake it up
again? That is the next topic.

Wakeup events
Before you suspend a device, you must have a method of waking it
again. The kernel tries to help you here: if there is not at least one
wakeup source, the system will refuse to suspend with the following
message:
No sources enabled to wake-up! Sleep abort.



Of course, this means that some parts of the system have to remain
powered on even during the deepest sleep. This usually involves the
Power Management IC (PMIC), the real-time clock (RTC), and
may additionally include interfaces such as GPIO, UART, 
and Ethernet.

Wakeup events are controlled through sysfs. Each device in
/sys/device has a subdirectory named power containing a
wakeup file that will contain one of these strings:

enabled: This device will generate wakeup events.

disabled: This device will not generate wakeup events.

(empty): This device is not capable of generating wakeup events.

To get a list of devices that can generate wakeups, we can search
for all devices where wakeup contains either enabled or
disabled:
$ find /sys/devices/ -name wakeup | xargs grep

"abled"

In the case of the BeagleBone Black, the UARTs are wakeup
sources, so pressing a key on the console wakes the BeagleBone:
[ 1646.348264] PM: Wakeup source UART

[ 1646.368482] PM: noirq resume of devices
complete after 19.963 msecs

[ 1646.372482] PM: early resume of devices
complete after 3.192 msecs

[ 1646.795109] net eth0: initializing cpsw version
1.12 (0)



[ 1646.798229] net eth0: phy found : id is :
0x7c0f1

[ 1646.798447] libphy: PHY 4a101000.mdio:01 not
found

[ 1646.798469] net eth0: phy 4a101000.mdio:01 not
found on slave 1

[ 1646.927874] PM: resume of devices complete
after 555.337 msecs

[ 1647.003829] Restarting tasks ... done.

We've seen how to put a device to sleep then wake it up with an
event from a peripheral interface like a UART. What if we want a
device to wake itself up without any outside interaction? This is
where the RTC comes into play.

Timed wakeups from the real-t ime
clock
Most systems have an RTC that can generate alarm interruptions up
to 24 hours in the future. If so, the /sys/class/rtc/rtc0
directory will exist. It should contain the wakealarm file. Writing a
number to wakealarm will cause it to generate an alarm that
number of seconds later. If you also enable wakeup events from
rtc, the RTC will resume a suspended device.

For example, this rtcwake command would put the system in
standby with the RTC waking it up after 5 seconds:
$ sudo su –

# rtcwake -d /dev/rtc0 -m standby -s 5



  rtcwake: assuming RTC uses UTC ...

  rtcwake: wakeup from "standby" using /dev/rtc0
at Tue Dec  1 19:34:10 2020

[  187.345129] PM: suspend entry (shallow)

[  187.345148] PM: Syncing filesystems ... done.

[  187.346754] Freezing user space processes ...
(elapsed 0.003 seconds) done.

[  187.350688] OOM killer disabled.

[  187.350789] Freezing remaining freezable tasks
... (elapsed 0.001 seconds) done.

[  187.352361] Suspending console(s) (use
no_console_suspend to debug)

[  187.500906] Disabling non-boot CPUs ...

[  187.500941] pm33xx pm33xx: PM: Successfully put
all powerdomains to target state

[  187.500941] PM: Wakeup source RTC Alarm

[  187.529729] net eth0: initializing cpsw version
1.12 (0)

[  187.605061] SMSC LAN8710/LAN8720
4a101000.mdio:00: attached PHY driver
[SMSC LAN8710/LAN8720]
(mii_bus:phy_addr=4a101000.mdio:00,
irq=POLL)

[  187.731543] OOM killer enabled.

[  187.731563] Restarting tasks ... done.

[  187.756896] PM: suspend exit

Since the UARTs are also a wakeup source, pressing a key on the
console will wake up the BeagleBone Black before the RTC
wakealarm expires:
[  255.698873] PM: suspend entry (shallow)



[  255.698894] PM: Syncing filesystems ... done.

[  255.701946] Freezing user space processes ...
(elapsed 0.003 seconds) done.

[  255.705249] OOM killer disabled.

[  255.705256] Freezing remaining freezable tasks
... (elapsed 0.002 seconds) done.

[  255.707827] Suspending console(s) (use
no_console_suspend to debug)

[  255.860823] Disabling non-boot CPUs ...

[  255.860857] pm33xx pm33xx: PM: Successfully put
all powerdomains to target state

[  255.860857] PM: Wakeup source UART

[  255.888064] net eth0: initializing cpsw version
1.12 (0)

[  255.965045] SMSC LAN8710/LAN8720
4a101000.mdio:00: attached PHY driver
[SMSC LAN8710/LAN8720]
(mii_bus:phy_addr=4a101000.mdio:00,
irq=POLL)

[  256.093684] OOM killer enabled.

[  256.093704] Restarting tasks ... done.

[  256.118453] PM: suspend exit

The Power button on the BeagleBone Black is also a wakeup source
so you can use that to resume from standby in the absence of a
serial console. Make sure to press the Power button and not the
Reset button, which is next to it, otherwise the board will reboot.

This concludes our coverage of the four Linux system sleep modes.
We learned how to suspend a device to the mem or standby power
states then wake it up via an event from a UART, RTC, or the Power



button. While the runtime pm in Linux was created mostly for
laptops, we can leverage this support for embedded systems that
also run on battery power.

Summary
Linux has sophisticated power management functions. I have
described four 
main components:

CPUFreq changes the OPP of each processor core to reduce
power on those that are busy but have some bandwidth to spare,
and so allow the opportunity to scale the frequency back. OPPs
are known as P-States in the ACPI specification.

CPUIdle selects deeper idle states when the CPU is not
expected to be woken up for a while. Idle states are known as C-
States in the ACPI specification.

Runtime pm will shut down peripherals that are not needed.

System sleep modes will put the whole system into a low power
state. They are usually under end user control, for example, by
pressing a standby button. System sleep states are known as S-
States in the ACPI specification.

Most of the power management is done for you by the BSP. Your
main task is to make sure that it is configured correctly for your
intended use cases. Only the last component, selecting a system



sleep state, requires you to write some code that will allow the end
user to enter and exit the state.

The next section of the book is about writing embedded applications.
We will start 
with packaging and deploying Python code and dig deeper into the
containerization techniques that were introduced in Chapter 10,
Updating Software in the Field, when we evaluated balena.

Further reading
Advanced Configuration and Power Interface Specification, UEFI
Forum, 
Inc.:
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan
22.pdf

https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf


Sect ion 3:  
Wri t ing Embedded
Appl icat ions
Section 3 shows the reader how to use the embedded Linux platform
to create a working device for their applicationw. The section starts
with a survey of various Python packaging and deployment options
to assist with the iterative development of your application. We then
learn how to make effective use of the Linux process and threads
model and how to manage memory in a resource-constrained
device.

This part of the book comprises the following chapters:

Chapter 16, Packaging Python

Chapter 17, Learning About Processes and Threads

Chapter 18, Managing Memory



Chapter 16 :  Packaging
Python
Python is the most popular programming language for machine
learning. Combine that with the proliferation of machine learning in
our day-to-day lives and it is no surprise that the desire to run Python
on edge devices is intensifying. Even in this era of transpilers and
WebAssembly, packaging Python applications for deployment
remains an unsolved problem. In this chapter, you will learn what
choices are out there for bundling Python modules together and
when to use one method over another.

We start with a look back at the origins of today's Python packaging
solutions, from the built-in standard distutils to its successor,
setuptools. Next, we examine the pip package manager, before
moving on to venv for Python virtual environments, followed by
conda, the reigning general-purpose cross-platform solution. Lastly,
I will show you how to use Docker to bundle Python applications
along with their user space environment for rapid deployment to the
cloud.

Since Python is an interpreted language, you cannot compile a
program into a standalone executable like you can with a language
such as Go. This makes deploying Python applications complicated.
Running a Python application requires installing a Python interpreter
and several runtime dependencies. These requirements need to be



code-compatible for the application to work. That requires the
precise versioning of software components. Solving these
deployment problems is what Python packaging is all about.

In this chapter, we will cover the following main topics:

Retracing the origins of Python packaging

Installing Python packages with pip

Managing Python virtual environments with venv

Installing precompiled binaries with conda

Deploying Python applications with Docker

Technical  requirements
To follow along with the examples, make sure you have the following
packages installed on your Linux-based host system:

Python: Python 3 interpreter and standard library

pip: Package installer for Python 3

venv: Python module for creating and managing lightweight
virtual environments

Miniconda: Minimal installer for the conda package and virtual
environment manager

Docker: Tool for building, deploying, and running software inside
containers



I recommend using Ubuntu 20.04 LTS or later for this chapter. Even
though Ubuntu 20.04 LTS runs on the Raspberry Pi 4, I still prefer to
develop on an x86-64 desktop PC or laptop. I choose Ubuntu for my
development environment because the distribution maintainers keep
Docker up to date. Ubuntu 20.04 LTS also comes with Python 3 and
pip already installed since Python is used extensively throughout
the system. Do not uninstall python3 or you will render Ubuntu
unusable. To install venv on Ubuntu, enter the following:
$ sudo apt install python3-venv

IMPORTANT NOTE

Do not install Miniconda until you get to the section on conda

because it interferes with the earlier pip exercises that rely on the

system Python installation.

Now, let's install Docker.

Gett ing Docker
To install Docker on Ubuntu 20.04 LTS, we need to do the following:

1. Update the package repositories:
$ sudo apt update

2. Install Docker:
$ sudo apt install docker.io

3. Start the Docker daemon and enable it to start at boot time:
$ sudo systemctl enable --now docker



4. Add yourself to the docker group:
$ sudo usermod -aG docker <username>

Replace <username> in that last step with your username. I
recommend creating your own Ubuntu user account rather than
using the default ubuntu user account, which is supposed to be
reserved for administrative tasks.

Retracing the or ig ins of
Python packaging
The Python packaging landscape is a vast graveyard of failed
attempts and abandoned tools. Best practices around dependency
management change often within the Python community and the
recommended solution one year may be a broken nonstarter the
next. As you research this topic, remember to look at when the
information was published and do not trust any advice that may be
out of date.

Most Python libraries are distributed using distutils or
setuptools, including all the packages found on the Python
Package Index (PyPI). Both distribution methods rely on a
setup.py project specification file that the package installer for
Python (pip) uses to install a package. pip can also generate or
freeze a precise list of dependencies after 
a project is installed. This optional requirements.txt file is used



by pip in conjunction with setup.py to ensure that project
installations are repeatable.

distut i ls
distutils is the original packaging system for Python. It has been
included in the Python standard library since Python 2.0.
distutils provides a Python package of the same name that can
be imported by your setup.py script. Even though distutils still
ships with Python, it lacks some essential features, so direct usage
of distutils is now actively discouraged. setuptools has
become its preferred replacement.

While distutils may continue to work for simple projects, the
community has moved on. Today, distutils survives mostly for
legacy reasons. Many Python libraries were first published back
when distutils was the only game in town. Porting them to
setuptools now would take considerable effort and could break
existing users.

setuptools
setuptools extends distutils by adding support for complex
constructs that make larger applications easier to distribute. It has
become the de facto packaging system within the Python
community. Like distutils, setuptools offers a Python package



of the same name that you can import into your setup.py script.
distribute was an ambitious fork of setuptools that eventually
merged back into setuptools 0.7, cementing the status of
setuptools as the definitive choice for Python packaging.

setuptools introduced a command-line utility known as
easy_install (now deprecated) and a Python package called
pkg_resources for runtime package discovery and access to
resource files. setuptools can also produce packages that act as
plugins for other extensible packages (for example, frameworks and
applications). You do this by registering entry points in your
setup.py script for the other overarching package to import.

The term distribution means something different in the context of
Python. A distribution is a versioned archive of packages, modules,
and other resource files used to distribute a release. A release is a
versioned snapshot of a Python project taken at a given point in
time. To make matters worse, the terms package and distribution are
overloaded and often used interchangeably by Pythonistas. For our
purposes, let's say that a distribution is what you download, and a
package is the module[s] that gets installed and imported.

Cutting a release can result in multiple distributions, such as a
source distribution and one or more built distributions. There can be
different built distributions for different platforms, such as one that
includes a Windows installer. The term built distribution means that
no build step is required before installation. It does not necessarily
mean precompiled. Some built distribution formats such as Wheel



(.whl) exclude compiled Python files, for example. A built
distribution containing compiled extensions is known as a binary
distribution.

An extension module is a Python module that is written in C or
C++. Every extension module compiles down to a single dynamically
loaded library, such as a shared object (.so) on Linux and a DLL
(.pyd) on Windows. Contrast this with pure modules, which must be
written entirely in Python. The Egg (.egg) built distribution format
introduced by setuptools supports both pure and extension
modules. Since a Python source code (.py) file compiles down to a
bytecode (.pyc) file when the Python interpreter imports a module
at runtime, you can see how a built distribution format such as Wheel
might exclude precompiled Python files.

setup.py
Say you are developing a small program in Python, maybe
something that queries 
a remote REST API and saves response data to a local SQL
database. How do you package your program together with its
dependencies for deployment? You start by defining a setup.py
script that setuptools can use to install your program. Deploying
with setuptools is the first step toward more elaborate automated
deployment schemes.



Even if your program is small enough to fit comfortably inside a
single module, chances are it won't stay that way for long. Let's say
that your program consists of a single file named follower.py, like
so:
$ tree follower

follower

└── follower.py

You could then convert this module into a package by splitting
follower.py up into three separate modules and placing them
inside a nested directory also named follower:
$ tree follower/

follower/

└── follower

    ├── fetch.py

    ├── __main__.py

    └── store.py

The __main__.py module is where your program starts, so it
contains mostly top-level, user-facing functionality. The fetch.py
module contains functions for sending HTTP requests to the remote
REST API and the store.py module contains functions for saving
response data to the local SQL database. To run this package as a
script, you need to pass the -m option to the Python interpreter as
follows:
$ PYTHONPATH=follower python -m follower

The PYTHONPATH environment variable points to the directory where
a target project's package directories are located. The follower



argument after the -m option tells Python to run the __main__.py
module belonging to the follower package. Nesting package
directories inside a project directory like this paves the way for your
program to grow into a larger application made up of multiple
packages each with its own namespace.

With the pieces of your project all in their right place, we are now
ready to create 
a minimal setup.py script that setuptools can use to package
and deploy it:
from setuptools import setup

setup(

    name='follower',

    version='0.1',

    packages=['follower'],

    include_package_data=True,

    install_requires=['requests', 'sqlalchemy']

)

The install_requires argument is a list of external
dependencies that need to be installed automatically for a project to
work at runtime. Notice that I did not specify what versions of these
dependencies are needed or where to fetch them from in my
example. I only asked for libraries that look and act like requests
and sqlalchemy. Separating policy from implementation like this
allows you to easily swap out the official PyPI version of a
dependency with your own in case you need to fix a bug or add a
feature. Adding optional version specifiers to your dependency



declarations is fine, but hardcoding distribution URLs within
setup.py as dependency_links is wrong in principle.

The packages argument tells setuptools what in-tree packages
to distribute with a project release. Since every package is defined
inside its own subdirectory of the parent project directory, the only
package being shipped in this case is follower. I am including
data files along with my Python code in this distribution. To do that,
you need to set the include_package_data argument to True so
that setuptools looks for a MANIFEST.in file and installs all the
files listed there. Here are the contents of the MANIFEST.in file:
include data/events.db

If the data directory contained nested directories of data we wanted
to include, we could glob all of them along with their contents using
recursive-include:
recursive-include data *

Here is the final directory layout:
$ tree follower

follower

├── data

│   └── events.db

├── follower

│   ├── fetch.py

│   ├── __init__.py

│   └── store.py

├── MANIFEST.in

└── setup.py



setuptools excels at building and distributing Python packages
that depend on other packages. It is able to do this thanks to
features such as entry points and dependency declarations, which
are simply absent from distutils. setuptools works well with
pip and new releases of setuptools arrive on a regular basis.
The Wheel build distribution format was created to replace the Egg
format that setuptools originated. That effort has largely
succeeded with the addition of a popular setuptools extension for
building wheels and pip's great support for installing wheels.

Instal l ing Python packages
with pip
You now know how to define your project's dependencies in a
setup.py script. But how do you install those dependencies? How
do you upgrade a dependency or replace it when you find a better
one? How do you decide when it is safe to delete a dependency you
no longer need? Managing project dependencies is a tricky
business. Luckily, Python comes with a tool called pip that can help,
especially in the early stages of your project.

The initial 1.0 release of pip arrived on April 4, 2011, around the
same time that 
Node.js and npm were taking off. Before it became pip, the tool was
named pyinstall. pyinstall was created in 2008 as an
alternative to easy_install, which came bundled with



setuptools at the time. easy_install is now deprecated and
setuptools recommends using pip instead.

Since pip is included with the Python installer and you can have
multiple versions of Python installed on your system (for example,
2.7 and 3.8), it helps to know which version of pip you are running:
$ pip --version

If no pip executable is found on your system, that probably means
you are on Ubuntu 20.04 LTS or later and do not have Python 2.7
installed. That is fine. We will merely substitute pip3 for pip and
python3 for python throughout the rest of this section:
$ pip3 --version

If there is python3 but no pip3 executable, then install it as shown
on Debian-based distributions such as Ubuntu:
$ sudo apt install python3-pip

pip installs packages to a directory called site-packages. To find
the location of your site-packages directory, run the following
command:
$ python3 -m site | grep ^USER_SITE

IMPORTANT NOTE

Note that the pip3 and python3 commands shown from here on

out are only required for Ubuntu 20.04 LTS or later, which no longer
comes with Python 2.7 installed. Most Linux distributions still come
with pip and python executables, so use the pip and python

commands if that is what your Linux system already provides.



To get a list of packages already installed on your system, use this
command:
$ pip3 list

The list shows that pip is just another Python package, so you could
use pip to upgrade itself, but I would advise you not to do that, at
least not in the long term. I'll explain why in the next section when I
introduce virtual environments.

To get a list of packages installed in your site-packages directory,
use the following:
$ pip3 list --user

This list should be empty or much shorter than the list of system
packages.

Go back to the example project from the last section. cd into the
parent follower directory where setup.py is located. Then run
the following command:
$ pip3 install --ignore-installed --user .

pip will use setup.py to fetch and install the packages declared by
install_requires to your site-packages directory. The --
user option instructs pip to install packages to your site-
packages directory rather than globally. The --ignore-
installed option forces pip to re-install any required packages
already present on the system to site-packages so that no
dependencies go missing. Now list all the packages in your site-
packages directory again:



$ pip3 list --user

Package    Version  

---------- ---------

certifi    2020.6.20

chardet    3.0.4    

follower   0.1      

idna       2.10     

requests   2.24.0   

SQLAlchemy 1.3.18   

urllib3    1.25.10

This time, you should see that both requests and SQLAlchemy
are in the package list.

To view details on the SQLAlchemy package you likely just installed,
issue the following:
$ pip3 show sqlalchemy

The details shown contain the Requires and Required-by fields.
Both are lists of related packages. You could use the values in these
fields and successive calls to pip show to trace the dependency
tree of your project. But it's probably easier to pip install a
command-line tool called pipdeptree and use that instead.

When a Required-by field becomes empty, that is a good indicator
that it is now safe to uninstall a package from your system. If no
other packages depend on the packages in the deleted package's
Requires field, then it's safe to uninstall those as well. Here is how
you uninstall sqlalchemy using pip:
$ pip3 uninstall sqlalchemy -y



The trailing -y suppresses the confirmation prompt. To uninstall
more than one package at a time, simply add more package names
before the -y. The --user option is omitted here because pip is
smart enough to uninstall from site-packages first when 
a package is also installed globally.

Sometimes you need a package that serves some purpose or
utilizes a particular technology, but you don't know the name of it.
You can use pip to perform a keyword search against PyPI from the
command line but that approach often yields too many results. It is
much easier to search for packages on the PyPI website
(https://pypi.org/search/), which allows you to filter results by various
classifiers.

requirements.txt
pip install will install the latest published version of a package,
but often you 
want to install a specific version of a package that you know works
with your project's code. Eventually, you will want to upgrade your
project's dependencies. But before 
I show you how to do that, I first need to show you how to use pip
freeze to fix 
your dependencies.

Requirements files allow you to specify exactly which packages and
versions pip should install for your project. By convention, project

https://pypi.org/search/


requirements files are always named requirements.txt. The
contents of a requirements file are just a list of pip install
arguments enumerating your project's dependencies. These
dependencies are precisely versioned so that there are no surprises
when someone attempts to rebuild and deploy your project. It is
good practice to add a requirements.txt file to your project's
repo in order to ensure reproducible builds.

Returning to our follower project, now that we have installed all
our dependencies and verified that the code works as expected, we
are now ready to freeze the latest versions of the packages that pip
installed for us. pip has a freeze command that outputs the
installed packages along with their versions. You redirect the output
from this command to a requirements.txt file:
$ pip3 freeze --user > requirements.txt

Now that you have a requirements.txt file, people who clone
your project can install all its dependencies using the -r option and
the name of the requirements file:
$ pip3 install --user -r requirements.txt

The autogenerated requirements file format defaults to exact version
matching (==). For example, a line such as requests==2.22.0
tells pip that the version of requests to install must be exactly
2.22.0. There are other version specifiers you can utilize in a
requirements file, such as minimum version (>=), version exclusion
(!=), and maximum version (<=). Minimum version (>=) matches
any version greater than or equal to the right-hand side. Version



exclusion (!=) matches any version except the right-hand side.
Maximum version matches any version less than or equal to the
right-hand side.

You can combine multiple version specifiers in a single line using
commas to 
separate them:
requests >=2.22.0,<3.0

The default behavior when pip installs the packages specified in a
requirements file is to fetch them all from PyPI. You can override
PyPI's URL (https://pypi.org/simple/) with that of an alternate Python
package index by adding a line such as the following to the top of
your requirements.txt file:
--index-url http://pypi.mydomain.com/mirror

The effort required to stand up and maintain your own private PyPI
mirror is not insubstantial. When all you need to do is fix a bug or
add a feature to a project dependency, it makes more sense to
override the package source instead of the entire package index.

TIP

Version 4.3 of the Jetpack SDK for the NVIDIA Jetson Nano is based
on Ubuntu's 18.04 LTS distribution. The Jetpack SDK adds extensive
software support for the Nano's NVIDIA Maxwell 128 CUDA cores,
such as GPU drivers and other runtime components. You can use
pip to install a 

GPU-accelerated wheel for TensorFlow from NVIDIA's package
index:

https://pypi.org/simple/


$ pip install --user --extra-index-url

https://developer.download.nvidia.com/compute/redist/jp/v43
tensorflow-gpu==2.0.0+nv20.1

I mentioned earlier how hardcoding distribution URLs inside
setup.py is wrong. 
You can use the -e argument form in a requirements file to override
individual 
package sources:
-e

git+https://github.com/myteam/flask.git#eg
g=flask

In this example, I am instructing pip to fetch the flask package
sources from my team's GitHub fork of pallets/flask.git. The
-e argument form also takes a Git branch name, commit hash, or
tag name:
-e git+https://github.com/myteam/flask.git@master

-e
git+https://github.com/myteam/flask.git@51
42930ef57e2f0ada00248bdaeb95406d18eb7c

-e git+https://github.com/myteam/flask.git@v1.0

Using pip to upgrade a project's dependencies to the latest versions
published on PyPI is fairly straightforward:
$ pip3 install --upgrade –user -r requirements.txt

After you have verified installing with pip:requirements.txt that
the latest versions of your dependencies do not break your project,
you can then write them back out to the requirements file:

https://developer.download.nvidia.com/compute/redist/jp/v43


$ pip3 freeze --user > requirements.txt

Make sure that freezing did not overwrite any of the overrides or
special version 
handling in your requirements file. Undo any mistakes and commit
the updated requirements.txt file to version control.

At some point, upgrading your project dependencies will result in
your code breaking. A new package release may introduce a
regression or incompatibility with your project. The requirements file
format provides syntax to deal with these situations. Let's say you
have been using version 2.22.0 of requests in your project and
version 3.0 is released. According to the practice of semantic
versioning, incrementing the major version number indicates that
version 3.0 of requests includes breaking changes to that library's
API. You can express the new version requirements like this:
requests ~= 2.22.0

The compatible release specifier (~=) relies on semantic versioning.
Compatible means greater than or equal to the right-hand side and
less than the next version major number (for example, >= 1.1 and
== 1.*). You have already seen me express these same version
requirements for requests less ambiguously as follows:
requests >=2.22.0,<3.0

These pip dependency management techniques work fine if you
only develop a single Python project at a time. But chances are you
use the same machine to work on several Python projects at once,
each potentially requiring a different version of the Python



interpreter. The biggest problem with using only pip for multiple
projects is that it installs all packages to the same user site-
packages directory for a particular version of Python. This makes it
very hard to isolate dependencies from one project to the next.

As we'll soon see, pip combines well with Docker for deploying
Python applications. You can add pip to a Buildroot- or Yocto-based
Linux image but that only enables quick onboard experimentation. A
Python runtime package installer such as pip is ill-suited for
Buildroot and Yocto environments where you want to define the
entire contents of your embedded Linux image at build time. pip
works great inside containerized environments such as Docker
where the line between build time and runtime is often blurry.

In Chapter 7, Developing with Yocto, you learned about the Python
modules available to you in the meta-python layer and how to
define a custom layer for your own application. You can use the
requirements.txt files generated by pip freeze to inform the
selection of dependencies from meta-python for your own layer
recipes. Buildroot and Yocto both install Python packages in a
system-wide manner, so the virtual environment techniques we are
going to discuss next do not apply to embedded Linux builds. They
do, however, make it easier to generate accurate
requirements.txt files.



Managing Python vir tual
environments 
wi th venv
A virtual environment is a self-contained directory tree containing a
Python interpreter for a particular version of Python, a pip
executable for managing project dependencies, and a local site-
packages directory. Switching between virtual environments tricks
the shell into thinking that the only Python and pip executables
available are the ones present in the active virtual environment. Best
practice dictates that you create a different virtual environment for
each of your projects. This form of isolation solves the problem of
two projects depending on different versions of the same package.

Virtual environments are not new to Python. The system-wide nature
of Python installations necessitates them. Besides enabling you to
install different versions of the same package, virtual environments
also provide an easy way for you to run multiple versions of the
Python interpreter. Several options exist for managing Python virtual
environments. A tool that was immensely popular only 2 years ago
(pipenv) has since languished by the time of writing. Meanwhile, a
new contender has arisen (poetry) and Python 3's built-in support
for virtual environments (venv) is starting to see more adoption.

Venv has been shipping with Python since version 3.3 (released in
2012). Because it only comes bundled with Python 3 installations,
venv is incompatible with projects that require Python 2.7. Now that



support for Python 2.7 officially ended on January 1, 2020, this
Python 3 limitation is less of a concern. Venv is based on the
popular virtualenv tool, which is still maintained and available on
PyPI. If you have one or more projects that still require Python 2.7
for one reason or another, then you can use virtualenv instead of
venv to work on those.

By default, venv installs the most recent version of Python found on
your system. If you have multiple versions of Python on your system,
you can select a specific Python version by running python3 or
whichever version you want when creating each virtual environment
(The Python Tutorial, https://docs.python.org/3/tutorial/venv.html).
Developing with the most recent version of Python is usually fine for
greenfield projects but unacceptable for most legacy and enterprise
software. We will use the version of Python 3 that came with your
Ubuntu system to create and work with 
a virtual environment.

To create a virtual environment, first decide where you want to put it,
and then run the venv module as a script with the target directory
path:

1. Ensure venv is installed on your Ubuntu system:
$ sudo apt install python3-venv

2. Create a new directory for your project:
$ mkdir myproject

3. Switch to that new directory:
$ cd myproject

https://docs.python.org/3/tutorial/venv.html


4. Create the virtual environment inside a subdirectory named
venv:
$ python3 -m venv ./venv

Now that you have created a virtual environment, here is how you
activate and verify it:

1. Switch to your project directory if you haven't already:
$ cd myproject

2. Check where your system's pip3 executable is installed:
$ which pip3

/usr/bin/pip3

3. Activate the project's virtual environment:
$ source ./venv/bin/activate

4. Check where your project's pip3 executable is installed:
(venv) $ which pip3

/home/frank/myproject/venv/bin/pip3

5. List the packages that came installed with the virtual
environment:
(venv) $ pip3 list

Package       Version

------------- -------

pip           20.0.2

pkg-resources 0.0.0  

setuptools    44.0.0



If you enter the which pip command from within your virtual
environment, you will see that pip now points to the same
executable as pip3. Prior to activating the virtual environment, pip
probably did not point to anything because Ubuntu 20.04 LTS no
longer comes with Python 2.7 installed. The same can be said for
python versus python3. You can now omit the 3 when running
either pip or python from within your virtual environment.

Next, let's install a property-based testing library named
hypothesis into our existing virtual environment:

1. Switch to your project directory if you haven't already:
$ cd myproject

2. Reactivate the project's virtual environment if it is not already
active:
$ source ./venv/bin/activate

3. Install the hypothesis package:
(venv) $ pip install hypothesis

4. List the packages now installed inside the virtual environment:
(venv) $ pip list

Package          Version

---------------- -------

attrs            19.3.0

hypothesis       5.16.1

pip              20.0.2

pkg-resources    0.0.0  

setuptools       44.0.0



sortedcontainers 2.2.2

Notice that two new packages were added to the list besides
hypothesis, attrs and sortedcontainers. hypothesis
depends on these two packages. Let's say you had another Python
project that depended on version 18.2.0 instead of version 19.3.0 of
sortedcontainers. Those two versions would be incompatible
and thus conflict with each other. Virtual environments allow you to
install both versions of the same package, 
a different version for each of the two projects.

You may have noticed that switching out of a project directory does
not deactivate its virtual environment. Don't worry. Deactivating a
virtual environment is as easy as this:
(venv) $ deactivate

$

This puts you back in the global system environment where you
have to enter python3 and pip3 again. You have now seen
everything you need to know to get started with Python virtual
environments. Creating and switching between virtual environments
is common practice now when developing in Python. Isolated
environments make it easier to keep track of and manage your
dependencies across multiple projects. Deploying Python virtual
environments to embedded Linux devices for production makes less 
sense, but can still be done using a Debian packaging tool called
dh-virtualenv (https://github.com/spotify/dh-virtualenv).

https://github.com/spotify/dh-virtualenv


Instal l ing precompi led
binar ies wi th conda
conda is a package and virtual environment management system
used by the Anaconda distribution of software for the PyData
community. The Anaconda distribution includes Python as well as
binaries for several hard-to-build open source projects such as
PyTorch and TensorFlow. conda can be installed without the full
Anaconda distribution, which is very large, or the minimal Miniconda
distribution, which is still over 256 MB.

Even though it was created for Python shortly after pip, conda has
evolved into 
a general-purpose package manager like APT or Homebrew. Now, it
can be used to package and distribute software for any language.
Because conda downloads precompiled binaries, installing Python
extension modules is a breeze. Another one of conda's 
big selling points is that it is cross-platform, with full support for
Linux, macOS, 
and Windows.

Besides package management, conda is also a full-blown virtual
environment manager. Conda virtual environments have all the
benefits we have come to expect from Python venv environments
and more. Like venv, conda lets you use pip to install packages
from PyPI into a project's local site-packages directory. If you
prefer, you can use conda's own package management capabilities



to install packages from different channels. Channels are package
feeds provided by Anaconda and other software distributions.

Environment management
Unlike venv, conda's virtual environment manager can easily juggle
multiple versions of Python, including Python 2.7. You will need to
have Miniconda installed on your Ubuntu system to do the following
exercises. You want to use Miniconda instead of Anaconda for your
virtual environments because Anaconda environments come with
lots of preinstalled packages, many of which you will never need.
Miniconda environments are stripped down and allow you to easily
install any of Anaconda's packages should you have to.

To install and update Miniconda on Ubuntu 20.04 LTS, do the
following:

1. Download Miniconda:
$ wget

https://repo.anaconda.com/miniconda/Mini
conda3-latest-Linux-x86_64.sh

2. Install Miniconda:
$ bash Miniconda3-latest-Linux-x86_64.sh

3. Update all the installed packages in the root environment:
(base) $ conda update --all

Your fresh Miniconda installation comes with conda and a root
environment containing a Python interpreter and some basic



packages installed. By default, the python and pip executables of
conda's root environment are installed into your home directory. The
conda root environment is known as base. You can view its location
along with the locations of any other available conda environments
by issuing the following command:
(base) $ conda env list

Verify this root environment before creating your own conda
environment:

1. Open a new shell after installing Miniconda.

2. Check where the root environment's python executable is
installed:
(base) $ which python

3. Check the version of Python:
(base) $ python --version

4. Check where the root environment's pip executable is installed:
(base) $ which pip

5. Check the version of pip:
(base) $ pip --version

6. List the packages installed in the root environment:
(base) $ conda list

Next, create and work with your own conda environment named
py377:

1. Create a new virtual environment named py377:



(base) $ conda create --name py377 python=3.7.7

2. Activate your new virtual environment:
(base) $ source activate py377

3. Check where your environment's python executable is installed:
(py377) $ which python

4. Check that the version of Python is 3.7.7:
(py377) $ python --version

5. List the packages installed in your environment:
(py377) $ conda list

6. Deactivate your environment:
(py377) $ conda deactivate

Using conda to create a virtual environment with Python 2.7
installed is as simple as 
the following:
(base) $ conda create --name py27 python=2.7.17

View your conda environments again to see whether py377 and
py27 now appear in the list:
(base) $ conda env list

Lastly, let's delete the py27 environment since we won't be using it:
(base) $ conda remove --name py27 –all

Now that you know how to use conda to manage virtual
environments, let's use it to manage packages within those
environments.



Package management
Since conda supports virtual environments, we can use pip to
manage Python dependencies from one project to another in an
isolated manner just like we did with venv. As a general-purpose
package manager, conda has its own facilities for managing
dependencies. We know that conda list lists all the packages
that conda has installed in the active virtual environment. I also
mentioned conda's use of package feeds, which are called
channels:

1. You can get the list of channel URLs conda is configured to fetch
from by entering this command:
(base) $ conda info

2. Before proceeding any further, let's reactivate the py377 virtual
environment you created during the last exercise:
(base) $ source activate py377

(py377) $

3. Most Python development nowadays happens inside a Jupyter
notebook, so let's install those packages first:
(py377) $ conda install jupyter notebook

4. Enter y when prompted. This will install the jupyter and
notebook packages along with all their dependencies. When
you enter conda list, you'll see that the list of installed
packages is much longer than before. Now, let's install some



more Python packages that we would need for a computer vision
project:
(py377) $ conda install opencv matplotlib

5. Again, enter y when prompted. This time, the number of
dependencies installed 
is smaller. Both opencv and matplotlib depend on numpy, so
conda installs that package automatically without you having to
specify it. If you want to specify an older version of opencv, you
can install the desired version of the package 
this way:
(py377) $ conda install opencv=3.4.1

6. conda will then attempt to solve the active environment for this
dependency. Since no other packages installed in this active
virtual environment depend on opencv, the target version is easy
to solve for. If they did, then you might encounter 
a package conflict and the reinstallation would fail. After solving,
conda will prompt you before downgrading opencv and its
dependencies. Enter y to downgrade opencv to version 3.4.1.

7. Now let's say you change your mind or a newer version of
opencv is released that addresses your previous concern. This
is how you would upgrade opencv to the latest version provided
by the Anaconda distribution:
(py377) $ conda update opencv

8. This time, conda will prompt you to ask whether you want to
update opencv and its dependencies for the latest version. This



time, enter n to cancel the package update. Instead of updating
packages individually, it's often easier to update all the packages
installed in an active virtual environment at once:
(py377) $ conda update --all

9. Removing installed packages is also straightforward:
(py377) $ conda remove jupyter notebook

10. When conda removes jupyter and notebook, it removes all
of their dangling dependencies as well. A dangling dependency is
an installed package that no other installed packages depend on.
Like most general-purpose package managers, conda will not
remove any dependencies that other installed packages still 
depend on.

11. Sometimes you may not know the exact name of a package you
want to install. Amazon offers an AWS SDK for Python called
Boto. Like many Python libraries, there is a version of Boto for
Python 2 and a newer version (Boto3) for Python 3. To search
Anaconda for packages with the word boto in their names, enter
the following command:
(py377) $ conda search '*boto*'

12. You should see boto3 and botocore in the search results. At
the time of writing, the most recent version of boto3 available on
Anaconda is 1.13.11. To view details on that specific version of
boto3, enter the following command:
(py377) $ conda info boto3=1.13.11



13. The package details reveal that boto3 version 1.13.11 depends
on botocore (botocore >=1.16.11,<1.17.0), so installing
boto3 gets you both.

Now let's say you've installed all the packages you need to develop
an OpenCV project inside a Jupyter notebook. How do you share
these project requirements with someone else so that they can
recreate your work environment? The answer may surprise you:

1. You export your active virtual environment to a YAML file:
(py377) $ conda env export > my-

environment.yaml

2. Much like the list of requirements that pip freeze generates,
the YAML that conda exports is a list of all the packages installed
in your virtual environment together with their pinned versions.
Creating a conda virtual environment from an environment file
requires the -f option and the filename:
$ conda env create -f my-environment.yaml

3. The environment name is included in the exported YAML, so no -
-name option is necessary to create the environment. Whoever
creates a virtual environment from my-environment.yaml will
now see py377 in their list of environments when they issue
conda env list.

conda is a very powerful tool in a developer's arsenal. By combining
general-purpose package installation with virtual environments, it
offers a compelling deployment story. conda achieves many of the



same goals Docker (up next) does, but without the use of containers.
It has an edge over Docker with respect to Python due to its focus on
the data science community. Because the leading machine learning
frameworks (such as PyTorch and TensorFlow) are largely CUDA-
based, finding GPU-accelerated binaries is often difficult. conda
solves this problem by providing multiple precompiled binary
versions 
of packages.

Exporting conda virtual environments to YAML files for installation
on other machines offers another deployment option. This solution is
popular among the data science community, but it does not work in
production for embedded Linux. conda is not one of the three
package managers that Yocto supports. Even if conda was an
option, the storage needed to accommodate Minconda on a Linux
image is not a good fit for most embedded systems that are
resource-constrained.

If your dev board has an NVIDIA GPU such as the NVIDIA Jetson
series, then you really want to use conda for onboard development.
Luckily, there is a conda installer named Miniforge
(https://github.com/conda-forge/miniforge) that is known to work on
64-bit ARM machines like the Jetsons. With conda onboard, you
can then install jupyter, numpy, pandas, scikit-learn, and
most of the other popular Python data science libraries out there.

https://github.com/conda-forge/miniforge


Deploying Python
appl icat ions wi th Docker
Docker offers another way to bundle Python code with software
written in other languages. The idea behind Docker is that instead of
packaging and installing your application onto a preconfigured server
environment, you build and ship a container image with your
application and all its runtime dependencies. A container image is
more like a virtual environment than a virtual machine. A virtual
machine is a complete system image including a kernel and an
operating system. A container image is a minimal user space
environment that only comes with the binaries needed to run your
application.

Virtual machines run on top of a hypervisor that emulates hardware.
Containers run directly on top of the host operating system. Unlike
virtual machines, containers are able to share the same operating
system and kernel without the use of hardware emulation. Instead,
they rely on two special features of the Linux kernel for isolation:
namespaces and cgroups. Docker did not invent container
technology, but they were the first to build tooling that made them
easy to use. The tired excuse of works on my machine no longer
flies now that Docker makes it so simple to build and deploy
container images.

The anatomy of a Dockerf i le



A Dockerfile describes the contents of a Docker image. Every
Dockerfile contains a set of instructions specifying what environment
to use and which commands to run. Instead of writing a Dockerfile
from scratch, we will use an existing Dockerfile for a project
template. This Dockerfile generates a Docker image for a very
simple Flask web application that you can extend to fit your needs.
The Docker image is built on top of an Alpine Linux, a very slim
Linux distribution that is commonly used for container deployments.
Besides Flask, the Docker image also includes uWSGI and Nginx for
better performance.

Start by pointing your web browser at the uwsgi-nginx-flask-
docker project on GitHub (https://github.com/tiangolo/uwsgi-nginx-
flask-docker). Then, click on the link to the python-3.8-alpine
Dockerfile from the 
README.md file.

Now look at the first line in that Dockerfile:
FROM tiangolo/uwsgi-nginx:python3.8-alpine

This FROM command tells Docker to pull an image named uwsgi-
nginx from the tiangolo namespace with the python3.8-
alpine tag from Docker Hub. Docker Hub is a public registry where
people publish their Docker images for others to fetch and deploy.
You can set up your own image registry using a service such as
AWS ECR or Quay if you prefer. You will need to insert the name of
your registry service in front of your namespace like this:
FROM quay.io/my-org/my-app:my-tag

https://github.com/tiangolo/uwsgi-nginx-flask-docker


Otherwise, Docker defaults to fetching images from Docker Hub.
FROM is like an include statement in a Dockerfile. It inserts the
contents of another Dockerfile into yours so that you have something
to build on top of. I like to think of this approach as layering images.
Alpine is the base layer, followed by Python 3.8, then uWSGI plus
Nginx, and finally your Flask application. You can learn more about
how image layering works by digging into the python3.8-alpine
Dockerfile at https://hub.docker.com/r/tiangolo/uwsgi-nginx.

The next line of interest in the Dockerfile is the following:
RUN pip install flask

A RUN instruction runs a command. Docker executes the RUN
instructions contained in the Dockerfile sequentially in order to build
the resulting Docker image. This RUN instruction installs Flask into
the system site-packages directory. We know that pip is
available because the Alpine base image also includes Python 3.8.

Let's skip over Nginx's environment variables and go straight to
copying:
COPY ./app /app

This particular Dockerfile is located inside a Git repo along with
several other files and subdirectories. The COPY instruction copies a
directory from the host Docker runtime environment (usually a Git
clone of a repo) into the container being built.

The python3.8-alpine.dockerfile file you are looking at
resides in a docker-images subdirectory of the
tiangolo/uwsgi-nginx-flask-docker repo. Inside that

https://hub.docker.com/r/tiangolo/uwsgi-nginx


docker-images directory is an app subdirectory containing a Hello
World Flask web application. This COPY instruction copies the app
directory from the example repo into the root directory of the Docker
image:
WORKDIR /app

The WORKDIR instruction tells Docker which directory to work from
inside the container. In this example, the /app directory that it just
copied becomes the working directory. If the target working directory
does not exist, then WORKDIR creates it. Any subsequent non-
absolute paths that appear in this Dockerfile are hence relative to the
/app directory.

Now let's see how an environment variable gets set inside the
container:
ENV PYTHONPATH=/app

ENV tells Docker that what follows is an environment variable
definition. PYTHONPATH is an environment variable that expands into
a list of colon-delimited paths where the Python interpreter looks for
modules and packages.

Next, let's jump a few lines down to the second RUN instruction:
RUN chmod +x /entrypoint.sh

The RUN instruction tells Docker to run a command from the shell. In
this case, the command being run is chmod, which changes file
permissions. Here it renders the
/entrypoint.sh executable.



The next line in this Dockerfile is optional:
ENTRYPOINT ["/entrypoint.sh"]

ENTRYPOINT is the most interesting instruction in this Dockerfile. It
exposes an executable to the Docker host command line when
starting the container. This lets you pass arguments from the
command line down to the executable inside the container. You can
append these arguments after docker run <image> on the
command line. If there is more than one ENTRYPOINT instruction in
a Dockerfile, then only the last ENTRYPOINT is executed.

The last line in the Dockerfile is as follows:
CMD ["/start.sh"]

Like ENTRYPOINT instructions, CMD instructions execute at container
start time rather than build time. When an ENTRYPOINT instruction is
defined in a Dockerfile, a CMD instruction defines default arguments
to be passed to that ENTRYPOINT. In this instance, the /start.sh
path is the argument passed to /entrypoint.sh. The last line in 
/entrypoint.sh executes /start.sh:
exec "$@"

The /start.sh script comes from the uwsgi-nginx base image.
/start.sh starts Nginx and uWSGI after /entrypoint.sh has
configured the container runtime environment for them. When CMD is
used in conjunction with ENTRYPOINT, the default arguments set by
CMD can be overridden from the Docker host command line.



Most Dockerfiles do not have an ENTRYPOINT instruction, so the last
line of a 
Dockerfile is usually a CMD instruction that runs in the foreground
instead of default arguments. I use this Dockerfile trick to keep a
general-purpose Docker container running for development:
CMD tail -f /dev/null

With the exception of ENTRYPOINT and CMD, all of the instructions in
this example python-3.8-alpine Dockerfile only execute when
the container is being built.

Building a Docker image
Before we can build a Docker image, we need a Dockerfile. You may
already have some Docker images on your system. To see a list of
Docker images, use the following:
$ docker images

Now, let's fetch and build the Dockerfile we just dissected:

1. Clone the repo containing the Dockerfile:
$ git clone https://github.com/tiangolo/uwsgi-

nginx-flask-docker.git

2. Switch to the docker-images subdirectory inside the repo:
$ cd uwsgi-nginx-flask-docker/docker-images

3. Copy python3.8-alpine.dockerfile to a file named
Dockerfile:
$ cp python3.8-alpine.dockerfile Dockerfile



4. Build an image from the Dockerfile:
$ docker build -t my-image .

Once the image is done building, it will appear in your list of local
Docker images:
$ docker images

A uwsgi-nginx base image should also appear in the list along
with the newly built my-image. Notice that the elapsed time since
the uwsgi-nginx base image was created is much greater than the
time since my-image was created.

Running a Docker image
We now have a Docker image built that we can run as a container.
To get a list of running containers on your system, use the following:
$ docker ps

To run a container based on my-image, issue the following docker
run command:
$ docker run -d --name my-container -p 80:80 my-

image

Now observe the status of your running container:
$ docker ps

You should see a container named my-container based on an
image named my-image in the list. The -p option in the docker
run command maps a container port to a host port. So, container



port 80 maps to host port 80 in this example. This 
port mapping allows the Flask web server running inside the
container to service 
HTTP requests.

To stop my-container, run this command:
$ docker stop my-container

Now check the status of your running container again:
$ docker ps

my-container should no longer appear in the list of running
containers. Is the container gone? No, it is only stopped. You can still
see my-container and its status by adding the -a option to the
docker ps command:
$ docker ps -a

We'll look at how to delete containers we no longer need a bit later.

Fetching a Docker image
Earlier in this section, I touched on image registries such as Docker
Hub, AWS ECR, and Quay. As it turns out, the Docker image that we
built locally from a cloned GitHub repo is already published on
Docker Hub. It is much quicker to fetch the prebuilt image from
Docker Hub than to build it yourself on your system. The Docker
images for the project can be found at
https://hub.docker.com/r/tiangolo/uwsgi-nginx-flask. To pull the same

https://hub.docker.com/r/tiangolo/uwsgi-nginx-flask


Docker image that we built as my-image from Docker Hub, enter the
following command:
$ docker pull tiangolo/uwsgi-nginx-

flask:python3.8-alpine

Now look at your list of Docker images again:
$ docker images

You should see a new uwsgi-nginx-flask image in the list.

To run this newly fetched image, issue the following docker run
command:
$ docker run -d --name flask-container -p 80:80

tiangolo/uwsgi-nginx-flask:python3.8-
alpine

You can substitute the full image name (repo:tag) in the preceding
docker run command with the corresponding image ID (hash)
from docker images if you prefer not to type out the full image
name.

Publishing a Docker image
To publish a Docker image to Docker Hub, you must first have an
account and log in to it. You can create an account on Docker Hub
by going to the website, https://hub.docker.com, and signing up.
Once you have an account, then you can push an existing image to
your Docker Hub repository:

1. Log in to the Docker Hub image registry from the command line:

https://hub.docker.com/


$ docker login

2. Enter your Docker Hub username and password when prompted.

3. Tag an existing image with a new name that starts with the name
of your repository:
$ docker tag my-image:latest <repository>/my-

image:latest

Replace <repository> in the preceding command with the
name of your repository (the same as your username) on Docker
Hub. You can also substitute the name of another existing image
you wish to push for my-image:latest.

4. Push the image to the Docker Hub image registry:
$ docker push <repository>/my-image:latest

Again, make the same replacements as you did for Step 3.

Images pushed to Docker Hub are publicly available by default. To
visit the web page for your newly published image, go to
https://hub.docker.com/repository/docker/<repository>/my-image.
Replace <repository> in the preceding URL with the name of
your repository (same as your username) on Docker Hub. You can
also substitute the name of the actual image you pushed for my-
image:latest if different. If you click on the Tags tab on that web
page, you should see the docker pull command for fetching that
image.

Cleaning up



We know that docker images lists images and docker ps lists
containers. Before we can delete a Docker image, we must first
delete any containers that reference it. To delete 
a Docker container, you first need to know the container's name or
ID:

1. Find the target Docker container's name:
$ docker ps -a

2. Stop the container if it is running:
$ docker stop flask-container

3. Delete the Docker container:
$ docker rm flask-container

Replace flask-container in the two preceding commands with
the container name or ID from Step 1. Every container that appears
under docker ps also has an image name or ID associated with it.
Once you have deleted all the containers that reference an image,
you can then delete the image.

Docker image names (repo:tag) can get quite long (for example,
tiangolo/uwsgi-nginx-flask:python3.8-alpine). For that
reason, I find it easier to just copy and paste an image's ID (hash)
when deleting:

1. Find the Docker image's ID:
$ docker images

2. Delete the Docker image:
$ docker rmi <image-ID>



Replace <image-ID> in the preceding command with the image ID
from Step 1.

If you simply want to blow away all the containers and images that
you are no longer using on your system, then here is the command:
$ docker system prune -a

docker system prune deletes all stopped containers and
dangling images.

We've seen how pip can be used to install a Python application's
dependencies. You simply add a RUN instruction that calls pip
install to your Dockerfile. Because containers are sandboxed
environments, they offer many of the same benefits that virtual
environments do. But unlike conda and venv virtual environments,
Buildroot and Yocto both have support for Docker containers.
Buildroot has the docker-engine and docker-cli packages.
Yocto has the meta-virtualization layer. If your device needs
isolation because of Python package conflicts, then you can achieve
that with Docker.

The docker run command provides options for exposing operating
system resources to containers. Specifying a bind mount allows a file
or directory on the host machine to be mounted inside a container for
reading and writing. By default, containers publish no ports to the
outside world. When you ran your my-container image, you used
the -p option to publish port 80 from the container to port 80 on the
host. The --device option adds a host device file under /dev to an



unprivileged container. If you wish to grant access to all devices on
the host, then use the --privileged option.

What containers excel at is deployments. Being able to push a
Docker image that can then be easily pulled and run on any of the
major cloud platforms has revolutionized the DevOps movement.
Docker is also making inroads in the embedded Linux space thanks
to OTA update solutions such as balena. One of the downsides of
Docker is the storage footprint and memory overhead of the runtime.
The Go binaries are a bit bloated, but Docker runs on quad-core 64-
bit ARM SoCs such as the Raspberry Pi 4 just fine. If your target
device has enough power, then run Docker on it. Your software
development team will thank you.

Summary
By now, you're probably asking yourself, what does any of this
Python packaging stuff have to do with embedded Linux? The
answer is not much, but bear in mind that the word programming
also happens to be in the title of this book. And this chapter has
everything to do with modern-day programming. To succeed as a
developer in this day and age, you need to be able to deploy your
code to production fast, frequently, and in a repeatable manner. That
means managing your dependencies carefully and automating as
much of the process as possible. You have now seen what tools are
available for doing that with Python.



In the next chapter, we will look in detail at the Linux process model
and describe what a process really is, how it relates to threads, how
they cooperate, and how they are scheduled. Understanding these
things is important if you want to create a robust and maintainable
embedded system.

Further reading
The following resources have more information about the topics
introduced in this chapter:

Python Packaging User Guide, PyPA:
https://packaging.python.org

setup.py vs requirements.txt, by Donald Stufft:
https://caremad.io/posts/2013/07/setup-vs-requirement

pip User Guide, PyPA: https://pip.pypa.io/en/latest/user_guide/

Poetry Documentation, Poetry: https://python-poetry.org/docs

conda user guide, Continuum Analytics:
https://docs.conda.io/projects/conda/en/latest/user-guide

docker docs, Docker Inc.:
https://docs.docker.com/engine/reference/commandline/docker

https://packaging.python.org/
https://caremad.io/posts/2013/07/setup-vs-requirement
https://pip.pypa.io/en/latest/user_guide/
https://python-poetry.org/docs
https://docs.conda.io/projects/conda/en/latest/user-guide
https://docs.docker.com/engine/reference/commandline/docker


Chapter 17 :  Learning about
Processes and Threads
In the preceding chapters, we considered the various aspects of
creating an embedded Linux platform. Now, it is time to start looking
at how you can use the platform to create a working device. In this
chapter, I will talk about the implications of the Linux process model
and how it encompasses multithreaded programs. I will look at the
pros and cons of using single-threaded and multithreaded
processes, as well as asynchronous message passing between
processes and coroutines. Lastly, I will look at scheduling and
differentiate between timeshare and real-time scheduling policies.

While these topics are not specific to embedded computing, it is
important for a designer of any embedded device to have an
overview of these topics. There are many good references on the
subject, some of which I will list at the end of this chapter, but in
general, they do not consider the embedded use cases. Due to this, I
will be concentrating on the concepts and design decisions rather
than on the function calls and code.

In this chapter, we will cover the following topics:

Process or thread?

Processes

Threads



ZeroMQ

Scheduling

Let's get started!

Technical  requirements
To follow along with the examples in this chapter, make sure the
following software is installed on your Linux-based host system:

Python: Python 3 interpreter and standard library

Miniconda: Minimal installer for the conda package and virtual 
environment manager

See the section on conda in Chapter 16, Packaging Python, for
directions on how to install Miniconda if you haven't already. The
GCC C compiler and GNU make are also needed for this chapter's
exercises, but these tools already come with most Linux
distributions.

All the code for this chapter can be found in the Chapter17 folder of
this book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Process or thread?

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Many embedded developers who are familiar with real-time
operating systems (RTOS) consider the Unix process model to be
cumbersome. On the other hand, they see a similarity between an
RTOS task and a Linux thread, and they have a tendency to transfer
an existing design using a one-to-one mapping of RTOS tasks to
threads. I have, on several occasions, seen designs in which the
entire application is implemented with one process containing 40 or
more threads. I want to spend some time considering whether this is
a good idea or not. Let's begin with some definitions.

A process is a memory address space and a thread of execution, as
shown in the following diagram. The address space is private to the
process, so threads running in different processes cannot access it.
This memory separation is created by the memory management
subsystem in the kernel, which keeps a memory page mapping for
each process and reprograms the memory management unit on
each context switch. I will describe how this works in detail in
Chapter 18, Managing Memory. Part of the address space is
mapped to a file that contains the code and static data that the
program is running, as shown here:



Figure 17.1 – Process

As the program runs, it will allocate resources such as stack space,
heap memory, references to files, and so on. When the process
terminates, these resources are reclaimed by the system: all the
memory is freed up and all the file descriptors are closed.

Processes can communicate with each other using inter-process
communication (IPC), such as local sockets. I will talk about IPC
later on.

A thread is a thread of execution within a process. All processes
begin with one thread that runs the main() function and is called
the main thread. You can create additional threads, for example,



using the pthread_create(3) POSIX function, which results in
multiple threads executing in the same address space, as shown in
the following diagram:

Figure 17.2 – Multiple threads

Being in the same process, the threads share resources with each
other. They can read and write the same memory and use the same
file descriptors. Communication between threads is easy, as long as
you take care of the synchronization and locking issues.

So, based on these brief details, you can imagine two extreme
designs for a hypothetical system with 40 RTOS tasks being ported



to Linux.

You could map tasks to processes and have 40 individual programs
communicating through IPC, for example, with messages being sent
through sockets. You would greatly reduce memory corruption
problems since the main thread running in each process is protected
from the others, and you would reduce resource leakage since each
process is cleaned up after it exits. However, the message interface
between processes is quite complex and, where there is tight
cooperation between a group of processes, the number of messages
might be large and become a limiting factor regarding the
performance of the system. Furthermore, any one of those 40
processes may terminate, perhaps because of a bug causing it to
crash, leaving the other 39 to carry on. Each process would have to
handle the fact that its neighbors are no longer running and recover
gracefully.

At the other extreme, you could map tasks to threads and implement
the system as a single process containing 40 threads. Cooperation
becomes much easier because they share the same address space
and file descriptors. The overhead of sending messages is reduced
or eliminated, and context switches between threads are faster than
between processes. The downside is that you have introduced the
possibility of one task corrupting the heap or the stack of another. If
any of the threads encounters a fatal bug, the whole process will
terminate, taking all the threads with it. Finally, debugging a complex
multithreaded process can be a nightmare.



The conclusion you should draw is that neither design is ideal and
that there is a better way to do things. But before we get to that
point, I will delve a little more deeply into the APIs and the behavior
of processes and threads.

Processes
A process holds the environment in which threads can run: it holds
the memory mappings, the file descriptors, the user and group IDs,
and more. The first process is the init process, which is created by
the kernel during boot and has a PID of one. Thereafter, processes
are created by duplication in an operation known as forking.

Creating a new process
The POSIX function to create a process is fork(2). It is an odd
function because, for each successful call, there are two returns: one
in the process that made the call, known as the Parent, and one in
the newly created process, known as the Child, as shown in the
following diagram:



Figure 17.3 – Forking

Immediately after the call, the child is an exact copy of the parent: it
has the same stack, the same heap, the same file descriptors, and it
executes the same line of code – the one following fork. The only
way the programmer can tell them apart is by looking at the return
value of fork: it is zero for the child and greater than zero for the
parent. Actually, the value that's returned to the parent is the PID of
the newly created child process. There is a third possibility, which is



that the return value is negative, which means that the fork call
failed and there is still only one process.

Although the two processes are mostly identical, they are in separate
address spaces. Changes that are made to a variable by one will not
be seen by the other. Under the hood, the kernel does not make a
physical copy of the parent's memory, which would be quite a slow
operation and consume memory unnecessarily. Instead, the memory
is shared but marked with a copy-on-write (CoW) flag. If either
parent or child modifies this memory, the kernel makes a copy and
then writes to the copy. This makes it an efficient fork function that
also retains the logical separation of process address spaces. I will
discuss CoW in Chapter 18, Managing Memory.

Now, let's learn how we can terminate a process.

Terminating a process
A process may be stopped voluntarily by calling the exit(3)
function or, involuntarily, by receiving a signal that is not handled.
One signal in particular, SIGKILL, cannot be handled, so it will
always kill a process. In all cases, terminating the process will stop
all threads, close all file descriptors, and release all memory. The
system sends a signal, SIGCHLD, to the parent so that it knows this
has happened.

Processes have a return value that is composed of either the
argument to exit, if it terminated normally, or the signal number if it



was killed. The chief use for this is in shell scripts: it allows you to
test the return value from a program. By convention, 0 indicates
success and any other values indicate a failure of some sort.

The parent can collect the return value with the wait(2) or
waitpid(2) functions. This causes a problem: there will be a delay
between a child terminating and its parent collecting the return value.
In that period, the return value must be stored somewhere, and the
PID number of the now dead process cannot be reused. A process
in this state is known as a zombie, which is displayed as state Z
in the ps and top commands. As long as the parent calls wait or
waitpid whenever it is notified of a child's termination (by means of
the SIGCHLD signal; refer to Linux System Programming, by Robert
Love and O'Reilly Media or The Linux Programming Interface, by
Michael Kerrisk, No Starch Press for details on handling signals).
Usually, zombies exist for too short a time to show up in process
listings. They will become a problem if the parent fails to collect the
return value because eventually, there will not be enough resources
to create any more processes.

The program in MELP/Chapter17/fork-demo illustrates process
creation 
and termination:
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>



int main(void)

{

      int pid;

      int status;

      pid = fork();

      if (pid == 0) {

          printf("I am the child, PID %d\n",
getpid());

          sleep(10);

          exit(42);

      } else if (pid > 0) {

          printf("I am the parent, PID %d\n",
getpid());

          wait(&status);

          printf("Child terminated, status %d\n",
WEXITSTATUS(status));

      } else

          perror("fork:");

      return 0;

}

The wait function blocks until a child process exits and stores the
exit status. When you run it, you will see something like this:
I am the parent, PID 13851

I am the child, PID 13852

Child terminated with status 42

The child process inherits most of the attributes of the parent,
including the user and group IDs, all open file descriptors, signal
handling, and scheduling characteristics.



Running a different program
The fork function creates a copy of a running program, but it does
not run a different program. For that, you need one of the exec
functions:
int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg,
...);

int execle(const char *path, const char *arg,

      ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execvpe(const char *file, char *const argv[],

      ..., char *const envp[]);

Each takes a path to the program file to load and run. If the function
succeeds, the kernel discards all the resources of the current
process, including memory and file descriptors, and allocates
memory to the new program being loaded. When the thread that
called exec* returns, it returns not to the line of code after the call
but to the main() function of the new program. There is an example
of a command launcher in MELP/Chapter17/exec-demo: it
prompts for a command, such as /bin/ls, and forks and executes
the string you enter. Here is the code:
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>



#include <sys/types.h>

#include <sys/wait.h>

int main(int argc, char *argv[])

{

      char command_str[128];

      int pid;

      int child_status;

      int wait_for = 1;

      while (1) {

          printf("sh> ");

          scanf("%s", command_str);

          pid = fork();

          if (pid == 0) {

                /* child */

                printf("cmd '%s'\n", command_str);

                execl(command_str, command_str,
(char *)NULL);

                /* We should not return from
execl, so only get

                  to this line if it failed */

                perror("exec");

                exit(1);

          }

          if (wait_for) {

                waitpid(pid, &child_status, 0);

                printf("Done, status %d\n",
child_status);

          }

      }



      return 0;

}

Here is what you will see when you run it:
# ./exec-demo

sh> /bin/ls

cmd '/bin/ls'

bin etc lost+found proc sys var

boot home media run tmp

dev lib mnt sbin usr

Done, status 0

sh>

You can terminate the program by typing Ctrl + C.

It might seem odd to have one function that duplicates an existing
process and another that discards its resources and loads a different
program into memory, especially since it is common for a fork to be
followed almost immediately by one of the exec functions. Most
operating systems combine the two actions into a single call.

There are distinct advantages to this, however. For example, it
makes it very easy to implement redirection and pipes in the shell.
Imagine that you want to get a directory listing. This is the sequence
of events:

1. You type ls in the shell prompt.

2. The shell forks a copy of itself.

3. The child execs /bin/ls.



4. The ls program prints the directory listing to stdout (file
descriptor 1), which is attached to the terminal. You will see the
directory listing.

5. The ls program terminates, and the shell regains control.

Now, imagine that you want the directory listing to be written to a file
by redirecting the output using the > character. Now, the sequence is
as follows:

1. You type ls > listing.txt.

2. The shell forks a copy of itself.

3. The child opens and truncates the listing.txt file and uses
dup2(2) to copy the file descriptor of the file over file descriptor
1 (stdout).

4. The child execs /bin/ls.

5. The program prints the listing as it did previously, but this time, it
is writing to listing.txt.

6. The ls program terminates, and the shell regains control.

IMPORTANT NOTE

There was an opportunity in step 3 to modify the environment of
the child process before executing the program. The ls program

does not need to know that it is writing to a file rather than a
terminal. Instead of a file, stdout could be connected to a pipe

so that the ls program, still unchanged, can send output to



another program. This is part of the Unix philosophy of combining
many small components that each do a job well, as described in
The Art of Unix Programming, by Eric Steven Raymond and
Addison Wesley, especially in the Pipes, Redirection, and Filters
section.

So far, the programs we've looked at in this section all run in the
foreground. But what about programs that run in the background,
waiting for things to happen? Let's take a look.

Daemons
We have encountered daemons in several places already. A
daemon is a process that runs in the background, owned by the
init process, and not connected to a controlling terminal. The steps
to create a daemon are as follows:

1. Call fork to create a new process, after which the parent should
exit, thus creating an orphan that will be re-parented to init.

2. The child process calls setsid(2), creating a new session and
process group that it is the sole member of. The exact details do
not matter here; you can simply consider this a way of isolating
the process from any controlling terminal.

3. Change the working directory to the root directory.

4. Close all file descriptors and redirect stdin, stdout, and
stderr (descriptors 0, 1, and 2) to /dev/null so that there is



no input, and all output is hidden.

Thankfully, all of the preceding steps can be achieved with a single
function call; 
that is, daemon(3).

Inter-process communication
Each process is an island of memory. You can pass information from
one to another in two ways. Firstly, you can copy it from one address
space to the other. Secondly, you can create an area of memory that
both can access and share the data of.

The first is usually combined with a queue or buffer so that there is a
sequence of messages passing between processes. This implies
copying the message twice: first to a holding area and then to the
destination. Some examples of this are sockets, pipes, and message
queues.

The second way requires not only a method of creating memory that
is mapped to two (or more) address spaces at once, but it is also a
means of synchronizing access to that memory, for example, using
semaphores or mutexes.

POSIX has functions for all of these. There is an older set of APIs
known as System V IPC, which provides message queues, shared
memory, and semaphores, but it is not as flexible as the POSIX
equivalents, so I will not describe them here. The manual page on
svipc(7) gives an overview of these facilities, and there are more



details in The Linux Programming Interface, by Michael Kerrisk, and
Unix Network Programming, Volume 2, by W. Richard Stevens.

Message-based protocols are usually easier to program and debug
than shared memory, but are slow if the messages are large or there
are many of them.

Message-based IPC
There are several options for message-based IPC, all of which I will
summarize as follows. The attributes that differentiate one from the
other are as follows:

Whether the message flow is uni- or bi-directorial.

Whether the data flow is a byte stream with no message
boundary or discrete messages with boundaries preserved. In the
latter case, the maximum size of a message is important.

Whether messages are tagged with a priority.

The following table summarizes these properties for FIFOs, sockets,
and message queues:



The first form of message-based IPC we will look at is Unix sockets.

Unix (or local) sockets

Unix sockets fulfill most requirements and, coupled with the
familiarity of the sockets API, are by far the most common
mechanism.

Unix sockets are created with the AF_UNIX address family and
bound to a pathname. Access to the socket is determined by the
access permission of the socket file. As with internet sockets, the
socket type can be SOCK_STREAM or SOCK_DGRAM, the former
giving a bidirectional byte stream and the latter providing discrete
messages with preserved boundaries. Unix socket datagrams are
reliable, which means that they will not be dropped or reordered. The
maximum size for a datagram is system-dependent and is available



via /proc/sys/net/core/wmem_max. It is typically 100 KiB or
more.

Unix sockets do not have a mechanism to indicate the priority of a
message.

FIFOs and named pipes

FIFO and named pipe are just different terms for the same thing.
They are an extension of the anonymous pipe that is used to
communicate between parent and child processes when
implementing pipes in the shell.

A FIFO is a special sort of file, created by the mkfifo(1)
command. As with Unix sockets, the file access permissions
determine who can read and write. They are unidirectional, which
means that there is one reader and usually one writer, though there
may be several. The data is a pure byte stream but guarantee the
atomicity of messages that are smaller than the buffer associated
with the pipe. In other words, writes less than this size will not be
split into several smaller writes, so you will read the whole message
in one go as long as the size of the buffer on your end is large
enough. The default size of the FIFO buffer is 64 KiB on modern
kernels and can be increased using fcntl(2) with
F_SETPIPE_SZ, up to the value in /proc/sys/fs/pipe-max-
size, which is typically 1 MiB. There is no concept of priority.

POSIX message queues



Message queues are identified by a name, which must begin with a
forward slash, /, and contain only one / character: message queues
are actually kept in a pseudo filesystem of the mqueue type. You
create a queue and get a reference to an existing queue through
mq_open(3), which returns a file descriptor. Each message has a
priority, and messages are read from the queue based on priority
and then on the age order. Messages can be up to
/proc/sys/kernel/msgmax bytes long.

The default value is 8 KiB, but you can set it to be any size in the
range of 128 bytes to 1 MiB by writing the value to
/proc/sys/kernel/msgmax. Since the reference is a file
descriptor, you can use select(2), poll(2), and other similar
functions to wait for activity in the queue.

Refer to the Linux mq_overview(7) man page for more details.

Summary of message-based IPC
Unix sockets are used the most often because they offer all that is
needed, except perhaps message priority. They are implemented on
most operating systems, so they confer maximum portability.

FIFOs are less frequently used, mostly because they lack an
equivalent to a datagram. On the other hand, the API is very simple,
since it provides the normal open(2), close(2), read(2), and
write(2) file calls.

Message queues are the least commonly used of this group. The
code paths in the kernel are not optimized in the way that socket



(network) and FIFO (filesystem) calls are.

There are also higher-level abstractions such as D-Bus, which are
moving from mainstream Linux to embedded devices. D-Bus uses
Unix sockets and shared memory under the surface.

Shared memory-based IPC
Sharing memory removes the need to copy data between address
spaces but introduces the problem of synchronizing accesses to it.
Synchronization between processes is commonly achieved using
semaphores.

POSIX shared memory

To share memory between processes, you must create a new area
of memory and then map it to the address space of each process
that wants access to it, as shown in the following diagram:



Figure 17.4 – POSIX shared memory

Naming POSIX shared memory segments follows the pattern we
encountered with message queues. The segments are identified by
names that begin with a / character and have exactly one such
character:
#define SHM_SEGMENT_NAME "/demo-shm"

The shm_open(3) function takes the name and returns a file
descriptor for it. If it does not exist already and the O_CREAT flag is
set, then a new segment is created. Initially, it has a size of zero. You



can use the (misleadingly named) ftruncate(2) function to
expand it to the desired size:
int shm_fd;

struct shared_data *shm_p;

/* Attempt to create the shared memory segment */

shm_fd = shm_open(SHM_SEGMENT_NAME, O_CREAT |
O_EXCL | O_RDWR, 0666);

if (shm_fd > 0) {

    /* succeeded: expand it to the desired size
(Note: dont't

   do this every time because ftruncate fills it
with zeros) */

    printf("Creating shared memory and setting
size=%d\n",

            SHM_SEGMENT_SIZE);

    if (ftruncate(shm_fd, SHM_SEGMENT_SIZE) < 0) {

        perror("ftruncate");

        exit(1);

    }

    […]

} else if (shm_fd == -1 && errno == EEXIST) {

    /* Already exists: open again without O_CREAT
*/

    shm_fd = shm_open(SHM_SEGMENT_NAME, O_RDWR,
0);

    […]

}

Once you have a descriptor for the shared memory, you map it to the
address space of the process using mmap(2) so that threads in



different processes can access the memory:
/* Map the shared memory */

shm_p = mmap(NULL, SHM_SEGMENT_SIZE, PROT_READ |
PROT_WRITE,

            MAP_SHARED, shm_fd, 0);

The program in MELP/Chapter17/shared-mem-demo provides an
example of using a shared memory segment to communicate
between processes. Here is the main function:
static sem_t *demo_sem;

[…]

int main(int argc, char *argv[])

{

      char *shm_p;

      printf("%s PID=%d\n", argv[0], getpid());

      shm_p = get_shared_memory();

      while (1) {

          printf("Press enter to see the current
contents of shm\n");

          getchar();

          sem_wait(demo_sem);

          printf("%s\n", shm_p);

          /* Write our signature to the shared
memory */

          sprintf(shm_p, "Hello from process
%d\n", getpid());

          sem_post(demo_sem);

      }

      return 0;



}

The program uses a shared memory segment to communicate a
message from one process to another. The message is Hello
from process string, followed by its PID. The
get_shared_memory function is responsible for creating the
memory segment, if it does not exist, or getting the file descriptor for
it if it does. It returns a pointer to the memory segment. Notice that
there is a semaphore to synchronize access to the memory so that
one process does not overwrite a message from another.

To try it out, you need two instances of the program running in
separate terminal sessions. In the first terminal, you will see
something like this:
# ./shared-mem-demo

./shared-mem-demo PID=271

Creating shared memory and setting size=65536

Press enter to see the current contents of shm

Press enter to see the current contents of shm

Hello from process 271

Because this is the first time the program is being run, it creates the
memory segment. Initially, the message area is empty, but after one
run through the loop, it contains the PID of this process, which is
271. Now, you can run a second instance in another terminal:
# ./shared-mem-demo

./shared-mem-demo PID=279

Press enter to see the current contents of shm

Hello from process 271



Press enter to see the current contents of shm

Hello from process 279

It does not create the shared memory segment because it exists
already, and it displays the message that it contains already, which is
the PID of the other program. Pressing Enter causes it to write its
own PID, which the first program would be able to see. By doing this,
the two programs can communicate with each other.

The POSIX IPC functions are part of the POSIX real-time
extensions, so you need to link them with librt. Oddly, the POSIX
semaphores are implemented in the POSIX threads library, so you
need to link to the pthreads library as well. Hence, the compilation
arguments are as follows when you're targeting Arm Cortex-A8
SoCs:
$ arm-cortex_a8-linux-gnueabihf-gcc shared-mem-

demo.c -lrt -pthread \

-o arm-cortex_a8-linux-gnueabihf-gcc

This concludes our survey of IPC methods. We will revisit message-
based IPC again when we cover ZeroMQ. Now, it is time to look at
multithreaded processes.

Threads
The programming interface for threads is the POSIX threads API,
which was first defined in the IEEE POSIX 1003.1c standard (1995)
and is commonly known as pthreads. It is implemented as an
additional part of the libpthread.so C library. There have been



two implementations of pthreads over the last 15 years or so:
LinuxThreads and Native POSIX Thread Library (NPTL). The
latter is much more compliant with the specification, particularly
regarding the handling of signals and process IDs. It is pretty
dominant now, but you may come across some older versions of
uClibc that use LinuxThreads.

Creating a new thread
The function you can use to create a thread is
pthread_create(3):
int pthread_create(pthread_t *thread, const

pthread_attr_t *attr,

      void *(*start_routine) (void *), void *arg);

It creates a new thread of execution that begins in the
start_routine function and places a descriptor in pthread_t,
which is pointed to by thread. It inherits the scheduling parameters
of the calling thread, but these can be overridden by passing a
pointer to the thread attributes in attr. The thread will start
executing immediately.

pthread_t is the main way to refer to the thread within the
program, but the thread can also be seen from outside using a
command such as ps -eLf:
UID PID PPID LWP C NLWP STIME TTY TIME CMD

...



chris 6072 5648 6072 0 3 21:18 pts/0 00:00:00
./thread-demo

chris 6072 5648 6073 0 3 21:18 pts/0 00:00:00
./thread-demo

In the preceding output, the thread-demo program has two
threads. The PID and PPID columns show that they all belong to the
same process and have the same parent, as you would expect. The
column marked LWP is interesting, though. LWP stands for Light
Weight Process, which, in this context, is another name for a
thread. The numbers in that column are also known as Thread IDs
or TIDs. In the main thread, the TID is the same as the PID, but for
the others, it is a different (higher) value. You can use a TID in
places where the documentation states that you must give a PID, but
be aware that this behavior is specific to Linux and is not portable.
Here is a simple program that illustrates the life cycle of a thread (the
code is in MELP/Chapter17/thread-demo):
#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <sys/syscall.h>

static void *thread_fn(void *arg)

{

      printf("New thread started, PID %d TID
%d\n",

          getpid(), (pid_t)syscall(SYS_gettid));

      sleep(10);

      printf("New thread terminating\n");

      return NULL;



}

int main(int argc, char *argv[])

{

      pthread_t t;

      printf("Main thread, PID %d TID %d\n",

          getpid(), (pid_t)syscall(SYS_gettid));

      pthread_create(&t, NULL, thread_fn, NULL);

      pthread_join(t, NULL);

      return 0;

}

Note that, in the thread_fn function, I am retrieving the TID using
syscall(SYS_gettid). Prior to glibc 2.80, you had to call Linux
directly through a syscall because there was no C library wrapper
for gettid().

There is a limit to the total number of threads that a given kernel can
schedule. The limit scales according to the size of the system, from
around 1,000 on small devices up to tens of thousands on larger
embedded devices. The actual number is available in
/proc/sys/kernel/threads-max. Once you reach this limit, fork
and pthread_create 
will fail.

Terminating a thread
A thread terminates when any of the following occurs:

It reaches the end of its start_routine.



It calls pthread_exit(3).

It is canceled by another thread calling pthread_cancel(3).

The process that contains the thread terminates, for example,
because of a thread calling exit(3), or the process receiving a
signal that is not handled, masked, 
or ignored.

Note that if a multithreaded program calls fork, only the thread that
made the call will exist in the new child process. Fork does not
replicate all threads.

A thread has a return value, which is a void pointer. One thread can
wait for another to terminate and collect its return value by calling
pthread_join(2). There is an example of this in the code for
thread-demo, as we mentioned in the preceding section. This
produces a problem that is very similar to the zombie problem
among processes: the resources of the thread, such as the stack,
cannot be freed up until another thread has joined with it. If threads
remain unjoined, there is a resource leak in the program.

Compil ing a program with threads
The support for POSIX threads is part of the C library in the
libpthread.so library. However, there is more to building
programs with threads than linking the library: there must be
changes to the way the compiler generates code to make sure that



certain global variables, such as errno, have one instance per
thread rather than one for the whole process.

TIP

When building a threaded program, you must add the -pthread

switch to the compile and link stages. However, you don't have to
also use -lpthread for the link stage, as you might expect if you

use -pthread.

Inter-thread communication
The big advantage of threads is that they share the address space
and can share memory variables. This is also a big disadvantage
because it requires synchronization to preserve data consistency in
a manner similar to memory segments shared between processes
but with the provision that, with threads, all memory is shared. In
fact, threads can create private memory using thread local storage
(TLS), but I will not cover that here.

The pthreads interface provides the basics necessary to achieve
synchronization: mutexes and condition variables. If you want more
complex structures, you will have to build them yourself.

It is worth noting that all the IPC methods we described earlier – that
is, sockets, pipes, and message queues – work equally well between
threads in the same process.



Mutual exclusion
To write robust programs, you need to protect each shared resource
with a mutex lock, and make sure that every code path that reads or
writes the resource has locked the mutex first. If you apply this rule
consistently, most of the problems should be solved. The ones that
remain are associated with the fundamental behavior of mutexes. I
will list them briefly here but will not go into too much detail:

Deadlock: This occurs when mutexes become permanently
locked. A classic situation is the deadly embrace, in which two
threads each require two mutexes and have managed to lock one
of them but not the other. Each thread blocks, waiting for the lock
the other has, and so they remain as they are. One simple rule
for avoiding the deadly embrace problem is to make sure that
mutexes are always locked in the same order. Other solutions
involve timeouts and back-off periods.

Priority inversion: The delays caused by waiting for a mutex
can cause a real-time thread to miss deadlines. The specific case
of priority inversion happens when a high priority thread becomes
blocked, waiting for a mutex locked by a low priority thread. If the
low priority thread is preempted by other threads of intermediate
priority, the high priority thread is forced to wait for an unbounded
length of time. There are mutex protocols called priority
inheritance and priority ceiling that resolve the problem at the
expense of greater processing overhead in the kernel for each
lock and unlock call.



Poor performance: Mutexes introduce minimal overhead to the
code, as long as threads don't have to block on them most of the
time. If your design has a resource that is needed by a lot of
threads, however, the contention ratio becomes significant. This
is usually a design issue that can be resolved using finer grained
locking or a different algorithm.

Mutexes are not the only way to synchronize between threads. We
witnessed how two processes can use a semaphore to notify each
other back when we covered POSIX shared memory. Threads have
a similar construct.

Changing condit ions
Cooperating threads need to be able to alert one another that
something has changed and needs attention. This is called a
condition, and the alert is sent through a condition variable, or
condvar.

A condition is just something that you can test to give a true or
false result. A simple example is a buffer that contains either zero
or some items. One thread takes items from the buffer and sleeps
when it is empty. Another thread places items into the buffer and
signals the other thread that it has done so because the condition
that the other thread is waiting on has changed. If it is sleeping, it
needs to wake up and do something. The only complexity is that the



condition is, by definition, a shared resource, so it must be protected
by a mutex.

Here is a simple program with two threads. The first is the producer:
it wakes every second and puts some data into a global variable
before signaling that there has been a change. The second thread is
the consumer: it waits on the condition variable and tests the
condition (that there is a string in the buffer of nonzero length) each
time it wakes up. You can find the code in
MELP/Chapter17/condvar-demo:
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <unistd.h>

#include <string.h>

char g_data[128];

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void *consumer(void *arg)

{

      while (1) {

          pthread_mutex_lock(&mutx);

          while (strlen(g_data) == 0)

               pthread_cond_wait(&cv, &mutx);

          /* Got data */

          printf("%s\n", g_data);

          /* Truncate to null string again */

          g_data[0] = 0;



          pthread_mutex_unlock(&mutx);

      }

      return NULL;

}

void *producer(void *arg)

{

      int i = 0;

      while (1) {

          sleep(1);

          pthread_mutex_lock(&mutx);

          sprintf(g_data, "Data item %d", i);

          pthread_mutex_unlock(&mutx);

          pthread_cond_signal(&cv);

          i++;

      }

      return NULL;

}

Note that when the consumer thread blocks on the condvar, it does
so while holding a locked mutex, which would seem to be a recipe
for deadlock the next time the producer thread tries to update the
condition. To avoid this, pthread_condwait(3) unlocks the mutex
after the thread is blocked, and then locks it again before waking it
and returning from the wait.

Part i t ioning the problem



Now that we have covered the basics of processes and threads and
the ways in which they communicate, it is time to see what we can
do with them.

Here are some of the rules I use when building systems:

Rule 1: Keep tasks that have a lot of interaction together: It is
important to minimize overheads by keeping closely inter-
operating threads together in one process.

Rule 2: Don't put all your threads in one basket: On the other
hand, try and keep components with limited interaction in
separate processes, in the interests of resilience and modularity.

Rule 3: Don't mix critical and noncritical threads in the same
process: This is an amplification of Rule 2: the critical part of the
system, which might be a machine control program, should be
kept as simple as possible and written in a more rigorous way
than other parts. It must be able to continue, even if other
processes fail. If you have real-time threads, by definition, they
must be critical and should go into a process by themselves.

Rule 4: Threads shouldn't get too intimate: One of the
temptations when writing a multithreaded program is to
intermingle the code and variables between threads because it is
an all-in-one program and easy to do. Keep the threads modular,
with well-defined interactions.

Rule 5: Don't think that threads are free: It is very easy to create
additional threads, but there is a cost, not least in terms of the
additional synchronization necessary to coordinate their activities.



Rule 6: Threads can work in parallel: Threads can run
simultaneously on a multicore processor, giving higher
throughput. If you have a large computing job, you can create
one thread per core and make maximum use of the hardware.
There are libraries to help you do this, such as OpenMP. You
should probably not be coding parallel programming algorithms
from scratch.

The Android design is a good illustration. Each application is a
separate Linux process that helps modularize memory management
and ensures that one app crashing does not affect the whole system.
The process model is also used for access control: a process can
only access the files and resources that its UID and GIDs allow it to.
There are a group of threads in each process. There is one to
manage and update the user interface, one to handle signals from
the operating system, several to manage dynamic memory allocation
and freeing up Java objects, and a worker pool of at least two
threads for receiving messages from other parts of the system using
the Binder protocol.

To summarize, processes provide resilience because each process
has a protected memory space, and when the process terminates,
all resources, including memory and file descriptors, are freed up,
reducing resource leaks. On the other hand, threads share
resources and can communicate easily through shared variables and
can cooperate by sharing access to files and other resources.
Threads give parallelism through worker pools and other
abstractions, which is useful in multicore processors.



ZeroMQ
Sockets, named pipes, and shared memory are the means by which
inter-process communication take place. They act as the transport
layers for the message passing process that makes up most non-
trivial applications. Concurrency primitives such as mutexes and
condition variables are used to manage shared access and
coordinate work between threads running inside the same process.
Multithreaded programming is notoriously difficult, and sockets and
named pipes come with their own set of gotchas. A higher-level API
is needed to abstract the complex details of asynchronous message
passing. Enter ZeroMQ.

ZeroMQ is an asynchronous messaging library that acts like a
concurrency framework. It has facilities for in-process, inter-process,
TCP, and multicast transports, as well as bindings for various
programming languages, including C, C++, Go, and Python. Those
bindings, along with ZeroMQ's socket-based abstractions, allow
teams to easily mix programming languages within the same
distributed application. Support for common messaging patterns
such as request/reply, publish/subscribe, and parallel pipeline is also
built into the library. The zero in ZeroMQ stands for zero cost, while
the MQ part stands for message queue.

We will explore both inter-process and in-process message-based
communication using ZeroMQ. Let's start by installing ZeroMQ for
Python.



Gett ing pyzmq
We are going to use ZeroMQ's official Python binding for the
following exercises. I recommend installing this pyzmq package
inside a new virtual environment. Creating a Python virtual
environment is easy if you already have conda on your system.
Here are the steps for provisioning the necessary virtual environment
using conda:

1. Navigate to the zeromq directory containing the examples:
(base) $ cd MELP/Chapter17/zeromq

2. Create a new virtual environment named zeromq:
(base) $ conda create –-name zeromq python=3.9

pyzmq

3. Activate your new virtual environment:
(base) $ source activate zeromq

4. Check that the version of Python is 3.9:
(zeromq) $ python –-version

5. List the packages that have been installed in your environment:
(zeromq) $ conda list

If you see pyzmq and its dependencies in the list of packages, then
you are now ready to run the following exercises.

Messaging between processes



We will begin our exploration of ZeroMQ with a simple echo server.
The server expects a name in the form of a string from a client and
replies with Hello <name>. The code is in
MELP/Chapter17/zeromq/server.py:
import time

import zmq

context = zmq.Context()

socket = context.socket(zmq.REP)

socket.bind("tcp://*:5555")

while True:

    # Wait for next request from client

    message = socket.recv()

    print(f"Received request: {message}")

    # Do some 'work'

    time.sleep(1)

    # Send reply back to client

    socket.send(b"Hello {message}")

The server process creates a socket of the REP type for its
response, binds that socket to port 5555, and waits for messages. A
1-second sleep is used to simulate some work being done in-
between the time when a request is received and a reply is sent
back.

The code for the echo client is in
MELP/Chapter17/zeromq/client.py:
import zmq

def main(who):

    context = zmq.Context()



    #  Socket to talk to server

    print("Connecting to hello echo server…")

    socket = context.socket(zmq.REQ)

    socket.connect("tcp://localhost:5555")

    #  Do 5 requests, waiting each time for a
response

    for request in range(5):

        print(f"Sending request {request} …")

        socket.send(b"{who}")

        # Get the reply.

        message = socket.recv()

        print(f"Received reply {request} [
{message} ]")

if __name__ == '__main__':

    import sys

    if len(sys.argv) != 2:

        print("usage: client.py <username>")

        raise SystemExit

    main(sys.argv[1])

The client process takes a username as a command-line argument.
The client creates 
a socket of the REQ type for requests, connects to the server process
listening on port 5555, and begins sending messages containing the
username that was passed in. Like socket.recv() in the server,
socket.recv() in the client blocks until a message arrives in the
queue.



To see the echo server and client code in action, activate your
zeromq virtual environment and run the planets.sh script from
the MELP/Chapter17/zeromq directory:
(zeromq) $ ./planets.sh

The planets.sh script spawns three client processes called Mars,
Jupiter, and Venus. We can see that the requests from the three
clients are interleaved because each client waits for a reply from the
server before sending its next request. Since each client sends five
requests, we should receive a total of 15 replies from the server.
Message-based IPC is remarkably easy with ZeroMQ. Now, let's use
Python's built-in asyncio module, along with ZeroMQ, to do in-
process messaging.

Messaging within processes
The asyncio module was introduced in version 3.4 of Python. It
adds a pluggable
event loop for executing single-threaded concurrent code using
coroutines. Coroutines (also known as green threads) in Python are
declared with the async/await syntax, which has been adopted
from C#. They are much lighter-weight than POSIX threads and work
more like resumable functions. Because coroutines operate in the
single-threaded context of an event loop, we can use pyzmq in
conjunction with asyncio for in-process socket-based messaging.



Here is a slightly modified version of an example of coroutines taken
from the 
https://github.com/zeromq/pyzmq repository:
import time

import zmq

from zmq.asyncio import Context, Poller

import asyncio

url = 'inproc://#1'

ctx = Context.instance()

async def receiver():

    """receive messages with polling"""

    pull = ctx.socket(zmq.PAIR)

    pull.connect(url)

    poller = Poller()

    poller.register(pull, zmq.POLLIN)

    while True:

        events = await poller.poll()

        if pull in dict(events):

            print("recving", events)

            msg = await pull.recv_multipart()

            print('recvd', msg)

async def sender():

    """send a message every second"""

    tic = time.time()

    push = ctx.socket(zmq.PAIR)

    push.bind(url)

    while True:

        print("sending")

https://github.com/zeromq/pyzmq


        await push.send_multipart([str(time.time()
- tic).encode('ascii')])

        await asyncio.sleep(1)

asyncio.get_event_loop().run_until_complete(

    asyncio.wait(

        [

            receiver(),

            sender(),

        ]

    )

)

Notice that the receiver() and sender() coroutines share the
same context. The inproc transport method specified in the url
part of the socket is meant for inter-thread communications and is
much faster than the tcp transport we used in the previous
example. The PAIR pattern connects two sockets exclusively. Like
the inproc transport, this messaging pattern only works in-process
and is intended for signaling between threads. Neither the
receiver() or sender() coroutines returns. The asyncio event
loop alternates between the two coroutines, suspending and
resuming each on blocking or completing I/O.

To run the coroutines example from your active zeromq virtual
environment, use the following command:
(zeromq) $ python coroutines.py

sender() sends timestamps to receiver(), which displays them.
Use Ctrl + C to terminate the process. Congratulations! You have



just witnessed in-process asynchronous messaging without the use
of explicit threads. There is much more to say and learn about
coroutines and asyncio. This example was only meant to give you
a taste of what is now possible with Python when paired with
ZeroMQ. Let's leave single-threaded event loops behind for the time
being and get back to the subject of Linux.

Schedul ing
The second big topic I want to cover in this chapter is scheduling.
The Linux scheduler has a queue of threads that are ready to run,
and its job is to schedule them on CPUs as they become available.
Each thread has a scheduling policy that may be time-shared or real-
time. The time-shared threads have a niceness value that increases
or reduces their entitlement to CPU time. The real-time threads have
priority in that a higher priority thread will preempt a lower one. The
scheduler works with threads, not processes. Each thread is
scheduled regardless of which process it is running in.

The scheduler runs when any of the following occurs:

A thread is blocked by calling sleep() or another blocking
system call

A time-shared thread exhausts its time slice

An interruption causes a thread to be unblocked, for example,
because of 
I/O completing



For background information on the Linux scheduler, I recommend
that you read the chapter on process scheduling in Linux Kernel
Development, 3rd edition, by Robert Love.

Fairness versus determinism
I have grouped the scheduling policies into two categories: time-
shared and real-time. Time-shared policies are based on the
principal of fairness. They are designed to make sure that each
thread gets a fair amount of processor time and that no thread can
hog the system. If a thread runs for too long, it is put to the back of
the queue so that others can have a go. At the same time, a fairness
policy needs to adjust to threads that are doing a lot of work and give
them the resources to get the job done. Time-shared scheduling is
good because of the way it automatically adjusts to a wide range of
workloads.

On the other hand, if you have a real-time program, fairness is not
helpful. In this case, you want a policy that is deterministic, which
will give you at least minimal guarantees that your real-time threads
will be scheduled at the right time so that they don't miss 
their deadlines. This means that a real-time thread must preempt
time-shared threads. Real-time threads also have a static priority
that the scheduler can use to choose between them when there are
several of them to run at once. The Linux real-time scheduler
implements a fairly standard algorithm that runs the highest priority
real-time thread. Most RTOS schedulers are also written in this way.



Both types of thread can coexist. Those requiring deterministic
scheduling are scheduled first, and any remaining time is divided
between the time-shared threads.

Time-shared pol icies
Time-shared policies are designed for fairness. From Linux 2.6.23
onward, the scheduler that's been used has been the Completely
Fair Scheduler (CFS). It does not use timeslices in the normal
sense of the word. Instead, it calculates a running tally of the length
of time a thread would be entitled to run if it had its fair share of CPU
time, and it balances that with the actual amount of time it has run
for. If it exceeds its entitlement and there are other time-shared
threads waiting to run, the scheduler will suspend the thread and run
a waiting thread instead.

The time-shared policies are as follows:

SCHED_NORMAL (also known as SCHED_OTHER): This is the
default policy. The vast majority of Linux threads use this policy.

SCHED_BATCH: This is similar to SCHED_NORMAL, except that
threads are scheduled with a larger granularity; that is, they run
for longer but have to wait longer until they are scheduled again.
The intention is to reduce the number of context switches for
background processing (batch jobs) and reduce the amount of
CPU cache churn.



SCHED_IDLE: These threads are run only when there are no
threads from any other policy that are ready to run. It is the
lowest possible priority.

There are two pairs of functions you can use to get and set the policy
and priority of a thread. The first pair takes a PID as a parameter and
affects the main thread in a process:
struct sched_param {

      ...

      int sched_priority;

      ...

};

int sched_setscheduler(pid_t pid, int policy,

      const struct sched_param *param);

int sched_getscheduler(pid_t pid);

The second pair operates on pthread_t and can change the
parameters of the other threads in a process:
int pthread_setschedparam(pthread_t thread, int

policy,

      const struct sched_param *param);

int pthread_getschedparam(pthread_t thread, int
*policy,

      struct sched_param *param);

See the sched(7) man page for more on thread policies and
priorities. Now that we know what time-shared policies and priorities
are, let's talk about niceness.

Niceness



Some time-shared threads are more important than others. You can
indicate this with the nice value, which multiplies a thread's CPU
entitlement by a scaling factor. The name comes from the function
call, nice(2), which has been part of Unix since the early days. A
thread becomes nice by reducing its load on the system or moving in
the opposite direction by increasing it. The range of values is from
19, which is really nice, to -20, which is really not nice. The default
value is 0, which is averagely nice, or so-so.

The nice value can be changed for SCHED_NORMAL and
SCHED_BATCH threads. To reduce niceness, which increases the
CPU load, you need the CAP_SYS_NICE capability, which is
available to the root user. See the capabilities(7) man page
for more information on capabilities.

Almost all the documentation for functions and commands that
change the nice value (nice(2) and the nice and renice
commands) talk in terms of processes. However, it really relates to
threads. As we mentioned in the preceding section, you can use a
TID in place of a PID to change the nice value of an individual
thread. One other discrepancy in the standard descriptions of nice
is this: the nice value is referred to as the priority of a thread (or
sometimes, mistakenly, a process). I believe this is misleading and
confuses the concept with real-time priority, which is a completely
different thing.

Real-t ime pol icies



Real-time policies are intended for determinism. The real-time
scheduler will always run the highest priority real-time thread that is
ready to run. Real-time threads always preempt timeshare threads.
In essence, by selecting a real-time policy over a timeshare policy,
you are saying that you have inside knowledge of the expected
scheduling of this thread and wish to override the scheduler's built-in
assumptions.

There are two real-time policies:

SCHED_FIFO: This is a run to completion algorithm, which
means that once the thread starts to run, it will continue until it is
preempted by a higher priority real-time thread, it is blocked in a
system call, or until it terminates (completes).

SCHED_RR: This a round robin algorithm that will cycle between
threads of the same priority if they exceed their time slice, which
is 100 ms by default. Since Linux 3.9, it has been possible to
control the timeslice value through
/proc/sys/kernel/sched_rr_timeslice_ms. Apart from
this, it behaves in the same way as SCHED_FIFO.

Each real-time thread has a priority in the range of 1 to 99, with 99
being the highest.

To give a thread a real-time policy, you need CAP_SYS_NICE, which
is given only to the root user by default.

One problem with real-time scheduling, both in terms of Linux and
elsewhere, is that a thread that becomes compute bound, often



because a bug has caused it to loop indefinitely, will prevent real-
time threads of a lower priority from running along with all the
timeshare threads. In this case, the system becomes erratic and may
lock up completely. There are a couple of ways to guard against this
possibility.

First, since Linux 2.6.25, the scheduler has, by default, reserved 5%
of its CPU time for non-real-time threads so that even a runaway
real-time thread cannot completely halt the system. It is configured
via two kernel controls:

/proc/sys/kernel/sched_rt_period_us

/proc/sys/kernel/sched_rt_runtime_us

They have default values of 1,000,000 (1 second) and 950,000 (950
ms), respectively, which means that every second, 50 ms is reserved
for non-real-time processing. If you want real-time threads to be able
to take 100%, then set sched_rt_runtime_us to -1.

The second option is to use a watchdog, either hardware or
software, to monitor the execution of key threads and take action
when they begin to miss deadlines. I mentioned watchdogs in
Chapter 13, Starting Up – The init Program.

Choosing a pol icy
In practice, time-shared policies satisfy the majority of computing
workloads. Threads that are I/O-bound spend a lot of time blocked



and always have some spare entitlement in hand. When they are
unblocked, they will be scheduled almost immediately. Meanwhile,
CPU-bound threads will naturally take up any CPU cycles left over.
Positive nice values can be applied to the less important threads and
negative values to the more important ones.

Of course, this is only average behavior; there are no guarantees
that this will always be the case. If more deterministic behavior is
needed, then real-time policies will be required. The things that mark
out a thread as being real time are as follows:

It has a deadline by which it must generate an output.

Missing the deadline would compromise the effectiveness of the
system.

It is event-driven.

It is not compute-bound.

Examples of real-time tasks include the classic robot arm servo
controller, multimedia processing, and communication processing. I
will discuss real-time system design later in Chapter 21, Real-Time
Programming.

Choosing a real-t ime priori ty
Choosing real-time priorities that work for all expected workloads is a
tricky business and a good reason to avoid real-time policies in the
first place.



The most widely used procedure for choosing priorities is known as
Rate Monotonic Analysis (RMA), after the 1973 paper by Liu and
Layland. It applies to real-time systems with periodic threads, which
is a very important class. Each thread has a period and a utilization,
which is the proportion of the period it will be executing. The goal is
to balance the load so that all the threads can complete their
execution phase before the next period. RMA states that this can be
achieved if the following occur:

The highest priorities are given to the threads with the shortest
periods.

The total utilization is less than 69%.

The total utilization is the sum of all the individual utilizations. It also
makes the assumption that the interaction between threads or the
time spent blocked on mutexes and the like is negligible.

Summary
The long Unix heritage that is built into Linux and the accompanying
C libraries provides almost everything you need in order to write
stable and resilient embedded applications. The issue is that for
every job, there are at least two ways to achieve the end you desire.

In this chapter, I focused on two aspects of system design:
partitioning into separate processes, each with one or more threads
to get the job done, and scheduling those threads. I hope that I shed



some light on this and have given you the basis to study them
further.

In the next chapter, I will examine another important aspect of
system design: 
memory management.

Further reading
The following resources provide further information about the topics
that were introduced in this chapter:

The Art of Unix Programming, by Eric Steven Raymond

Linux System Programming, 2nd edition, by Robert Love

Linux Kernel Development, 3rd edition, by Robert Love

The Linux Programming Interface, by Michael Kerrisk

UNIX Network Programming, Volume 2: Interprocess
Communications, 2nd Edition, by W. Richard Stevens

Programming with POSIX Threads, by David R. Butenhof

Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment, by C. L. Liu and James W. Layland, Journal of
ACM, 1973, vol 20, no 1, pp. 46-61



Chapter 18 :  Managing
Memory
This chapter covers issues related to memory management, which is
an important topic for any Linux system but especially for embedded
Linux, where system memory is usually in limited supply. After a brief
refresher on virtual memory, I will show you how to measure memory
usage, how to detect problems with memory allocation, including
memory leaks, and what happens when you run out of memory. You
will have to understand the tools that are available, from simple tools
such as free and top, to complex ones such as mtrace and
Valgrind.

We will learn the difference between kernel and user space memory,
and how the kernel maps physical pages of memory to the address
space of a process. Then we will locate and read the memory maps
for individual processes under the proc filesystem. We will see how
the mmap system call can be used to map a program's memory to a
file, so that it can allocate memory in bulk or share it with another
process. In the second half of this chapter, we will use ps to
measure per-process memory usage before moving on to more
accurate tools such as smem and ps_mem.

In this chapter, we will cover the following topics:

Virtual memory basics



Kernel space memory layout

User space memory layout

The process memory map

Swapping

Mapping memory with mmap

How much memory does my application use?

Per-process memory usage

Identifying memory leaks

Running out of memory

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system with gcc, make, top, procps,
valgrind, and smem installed

All of these tools are available on most popular Linux distributions
(such as Ubuntu, Arch, and so on).

All of the code for this chapter can be found in the Chapter18 folder
in the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Vir tual  memory basics
To recap, Linux configures the memory management unit (MMU) of
the CPU to present a virtual address space to a running program
that begins at zero and ends at the highest address, 0xffffffff,
on a 32-bit processor. This address space is divided into pages of 4
KiB by default. If 4 KiB pages are too small for your application, then
you can configure the kernel to use HugePages, reducing the
amount of system resources needed to access page table entries
and increasing the Translation Lookaside Buffer (TLB) hit ratio.

Linux divides this virtual address space into an area for applications,
called user space, and an area for the kernel, called kernel space.
The split between the two is set by a kernel configuration parameter
named PAGE_OFFSET. In a typical 32-bit embedded system,
PAGE_OFFSET is 0xc0000000, giving the lower 3 gigabytes to user
space and the top gigabyte to kernel space. The user address space
is allocated per process so that each process runs in a sandbox,
separated from the others. The kernel address space is the same for
all processes, as there is only one kernel.

Pages in this virtual address space are mapped to physical
addresses by the MMU, which uses page tables to perform the
mapping.

Each page of virtual memory may be unmapped or mapped as
follows:



Unmapped, so that trying to access these addresses will result in
a SIGSEGV.

Mapped to a page of physical memory that is private to the
process.

Mapped to a page of physical memory that is shared with other
processes.

Mapped and shared with a copy on write (CoW) flag set: a write
is trapped in the kernel, which makes a copy of the page and
maps it to the process in place of the original page before
allowing the write to take place.

Mapped to a page of physical memory that is used by the kernel.

The kernel may additionally map pages to reserved memory regions,
for example to access registers and memory buffers in device
drivers.

An obvious question is this: why do we do it this way instead of
simply referencing physical memory directly, as a typical RTOS
would?

There are numerous advantages to virtual memory, some of which
are described here:

Invalid memory accesses are trapped and applications are
alerted by SIGSEGV.

Processes run in their own memory space, isolated from other
processes.



Efficient use of memory through the sharing of common code and
data, for example, in libraries.

The possibility of increasing the apparent amount of physical
memory by adding swap files, although swapping on embedded
targets is rare.

These are powerful arguments, but I have to admit that there are
some disadvantages as well. It is difficult to determine the actual
memory budget of an application, which is one of the main concerns
of this chapter. The default allocation strategy is to over-commit,
which leads to tricky out-of-memory situations, which I will also
discuss later in the Running out of memory section. Finally, the
delays introduced by the memory management code in handling
exceptions—page faults—make the system less deterministic, which
is important for real-time programs. I will cover this in Chapter 21,
Real-Time Programming.

Memory management is different for kernel space and user space.
The upcoming sections describe the essential differences and the
things you need to know.

Kernel  space memory
layout
Kernel memory is managed in a fairly straightforward way. It is not
demand-paged, which means that for every allocation using



kmalloc() or similar function, there is real physical memory. Kernel
memory is never discarded or paged out.

Some architectures show a summary of the memory mapping at
boot time in the kernel log messages. This trace is taken from a 32-
bit Arm device (a BeagleBone Black):
Memory: 511MB = 511MB total

Memory: 505980k/505980k available, 18308k
reserved, 0K highmem

Virtual kernel memory layout:

    vector  : 0xffff0000 - 0xffff1000  (   4 kB)

    fixmap  : 0xfff00000 - 0xfffe0000  ( 896 kB)

    vmalloc : 0xe0800000 - 0xff000000  ( 488 MB)

    lowmem  : 0xc0000000 - 0xe0000000  ( 512 MB)

    pkmap   : 0xbfe00000 - 0xc0000000  (   2 MB)

    modules : 0xbf800000 - 0xbfe00000  (   6 MB)

      .text : 0xc0008000 - 0xc0763c90  (7536 kB)

      .init : 0xc0764000 - 0xc079f700  ( 238 kB)

      .data : 0xc07a0000 - 0xc0827240  ( 541 kB)

       .bss : 0xc0827240 - 0xc089e940  ( 478 kB)

The figure of 505,980 KiB available is the amount of free memory the
kernel sees when it begins execution but before it begins making
dynamic allocations.

Consumers of kernel space memory include the following:

The kernel itself, in other words, the code and data loaded from
the kernel image file at boot time. This is shown in the preceding
kernel log in the .text, .init, .data, and .bss. segments



The .init segment is freed once the kernel has completed
initialization.

Memory allocated through the slab allocator, which is used for
kernel data structures of various kinds. This includes allocations
made using kmalloc(). They come from the region marked
lowmem.

Memory allocated via vmalloc(), usually for larger chunks of
memory than is available through kmalloc(). These are in the
vmalloc area.

Mapping for device drivers to access registers and memory
belonging to various bits of hardware, which you can see by
reading /proc/iomem. These also come from the vmalloc area,
but since they are mapped to physical memory that is outside of
main system memory, they do not take up any real memory.

Kernel modules, which are loaded into the area marked
modules.

Other low-level allocations that are not tracked anywhere else.

Now that we know the layout of memory in kernel space, let's find
out how much memory the kernel is actually using.

How much memory does the
kernel use?



Unfortunately, there isn't a precise answer to the question of how
much memory the kernel uses, but what follows is as close as we
can get.

Firstly, you can see the memory taken up by the kernel code and
data in the kernel log shown previously, or you can use the size
command, as follows:
$ arm-poky-linux-gnueabi-size vmlinux

text data bss dec hex filename

9013448 796868 8428144 18238460 1164bfc vmlinux

Usually, the amount of memory taken by the kernel for the static
code and data segments shown here is small when compared to the
total amount of memory. If that is not the case, you need to look
through the kernel configuration and remove the components that
you don't need. An effort to allow building small kernels known as
Linux Kernel Tinification had been making good progress until the
project stalled, and Josh Triplett's patches were eventually removed
from the linux-next tree in 2016. Now, your best bet at reducing
the kernel's in-memory size is Execute-in-Place (XIP) where you
trade RAM for flash (https://lwn.net/Articles/748198/).

You can get more information about memory usage by reading
/proc/meminfo:
# cat /proc/meminfo

MemTotal: 509016 kB

MemFree: 410680 kB

Buffers: 1720 kB

Cached: 25132 kB

https://lwn.net/Articles/748198/


SwapCached: 0 kB

Active: 74880 kB

Inactive: 3224 kB

Active(anon): 51344 kB

Inactive(anon): 1372 kB

Active(file): 23536 kB

Inactive(file): 1852 kB

Unevictable: 0 kB

Mlocked: 0 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 509016 kB

LowFree: 410680 kB

SwapTotal: 0 kB

SwapFree: 0 kB

Dirty: 16 kB

Writeback: 0 kB

AnonPages: 51248 kB

Mapped: 24376 kB

Shmem: 1452 kB

Slab: 11292 kB

SReclaimable: 5164 kB

SUnreclaim: 6128 kB

KernelStack: 1832 kB

PageTables: 1540 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 254508 kB



Committed_AS: 734936 kB

VmallocTotal: 499712 kB

VmallocUsed: 29576 kB

VmallocChunk: 389116 kB

There is a description of each of these fields on the manual page
proc(5). The kernel memory usage is the sum of the following:

Slab: The total memory allocated by the slab allocator

KernelStack: The stack space used when executing kernel
code

PageTables: The memory used to store page tables

VmallocUsed: The memory allocated by vmalloc()

In the case of slab allocations, you can get more information by
reading /proc/slabinfo. Similarly, there is a breakdown of
allocations in /proc/vmallocinfo for the vmalloc area. In both
cases, you need detailed knowledge of the kernel and its
subsystems in order to see exactly which subsystem is making the
allocations and why, which is beyond the scope of this discussion.

With modules, you can use lsmod to find out the memory space
taken up by the code and data:
# lsmod

Module Size Used by

g_multi 47670 2

libcomposite 14299 1 g_multi

mt7601Usta 601404 0



This leaves the low-level allocations, of which there is no record, and
that prevents us from generating an accurate account of kernel
space memory usage. This will appear as missing memory when we
add up all the kernel and user space allocations that we know about.

Measuring kernel space memory usage is complicated. The
information in /proc/meminfo is somewhat limited and the
additional information provided by /proc/slabinfo and
/proc/vmallocinfo is difficult to interpret. User space offers
better visibility into memory usage by way of the process memory
map.

User space memory layout
Linux employs a lazy allocation strategy for user space, only
mapping physical pages of memory when the program accesses it.
For example, allocating a buffer of 1 MiB using malloc(3) returns a
pointer to a block of memory addresses but no actual physical
memory. A flag is set in the page table entries such that any read or
write access is trapped by the kernel. This is known as a page fault.
Only at this point does the kernel attempt to find a page of physical
memory and add it to the page table mapping for the process. It is
worthwhile demonstrating this with a simple program,
MELP/Chapter18/pagefault-demo:
#include <stdio.h>

#include <stdlib.h>

#include <string.h>



#include <sys/resource.h>

#define BUFFER_SIZE (1024 * 1024)

void print_pgfaults(void)

{

     int ret;

     struct rusage usage;

     ret = getrusage(RUSAGE_SELF, &usage);

     if (ret == -1) {

           perror("getrusage");

      } else {

           printf("Major page faults %ld\n",
usage.ru_majflt);

           printf("Minor page faults %ld\n",
usage.ru_minflt);

     }

}

int main(int argc, char *argv[])

{

     unsigned char *p;

     printf("Initial state\n");

     print_pgfaults();

     p = malloc(BUFFER_SIZE);

     printf("After malloc\n");

     print_pgfaults();

     memset(p, 0x42, BUFFER_SIZE);

     printf("After memset\n");

     print_pgfaults();

     memset(p, 0x42, BUFFER_SIZE);

     printf("After 2nd memset\n");



     print_pgfaults();

     return 0;

}

When you run it, you will see output like this:
Initial state

Major page faults 0

Minor page faults 172

After malloc

Major page faults 0

Minor page faults 186

After memset

Major page faults 0

Minor page faults 442

After 2nd memset

Major page faults 0

Minor page faults 442

There were 172 minor page faults encountered after initializing the
program's environment and a further 14 when calling
getrusage(2) (these numbers will vary depending on the
architecture and the version of the C library you are using). The
important part is the increase when filling the memory with data: 442
- 186 = 256. The buffer is 1 MiB, which is 256 pages. The second
call to memset(3) makes no difference because all the pages are
now mapped.

As you can see, a page fault is generated when the kernel traps an
access to a page that has not been mapped yet. In fact, there are
two kinds of page faults: minor and major. With a minor fault, the



kernel just has to find a page of physical memory and map it to the
process address space, as shown in the preceding code. A major
page fault occurs when the virtual memory is mapped to a file, for
example, using mmap(2), which I will describe shortly. Reading from
this memory means that the kernel not only has to find a page of
memory and map it in but also has to fill it with data from the file.
Consequently, major faults are much more expensive in terms of
time and system resources.

While getrusage(2) offers useful metrics on minor and major
page faults within 
a process, sometimes what we really want to see is an overall
memory map of a process.

The process memory map
Each running process in user space has a process map that we can
inspect. These memory maps tell us how a program's memory is
allocated and what shared libraries it is linked to.

You can see the memory map for a process through the proc
filesystem. As an example, here is the map for the init process,
PID 1:
# cat /proc/1/maps

00008000-0000e000 r-xp 00000000 00:0b 23281745
/sbin/init

00016000-00017000 rwxp 00006000 00:0b 23281745
/sbin/init



00017000-00038000 rwxp 00000000 00:00
0        [heap]

b6ded000-b6f1d000 r-xp 00000000 00:0b 23281695
/lib/libc-2.19.so

b6f1d000-b6f24000 ---p 00130000 00:0b 23281695
/lib/libc-2.19.so

b6f24000-b6f26000 r-xp 0012f000 00:0b 23281695
/lib/libc-2.19.so

b6f26000-b6f27000 rwxp 00131000 00:0b 23281695
/lib/libc-2.19.so

b6f27000-b6f2a000 rwxp 00000000 00:00 0

b6f2a000-b6f49000 r-xp 00000000 00:0b 23281359
/lib/ld-2.19.so

b6f4c000-b6f4e000 rwxp 00000000 00:00 0

b6f4f000-b6f50000 r-xp 00000000 00:00
0        [sigpage]

b6f50000-b6f51000 r-xp 0001e000 00:0b 23281359
/lib/ld-2.19.so

b6f51000-b6f52000 rwxp 0001f000 00:0b 23281359
/lib/ld-2.19.so

beea1000-beec2000 rw-p 00000000 00:00
0        [stack]

ffff0000-ffff1000 r-xp 00000000 00:00
0        [vectors]

The first two columns show the start and end virtual addresses and
the permissions for each mapping. The permissions are shown here:

r: Read

w: Write

x: Execute



s: Shared

p: Private (copy on write)

If the mapping is associated with a file, the filename appears in the
final column, and columns three, four, and five contain the offset
from the start of the file, the block device number, and the inode of
the file. Most of the mappings are to the program itself and the
libraries it is linked with. There are two areas where the program can
allocate memory, marked [heap] and [stack]. Memory allocated
using malloc comes from the former (except for very large
allocations, which we will come to later); allocations on the stack
come from the latter. The maximum size of both areas is controlled
by the process's ulimit:

Heap: ulimit -d, default unlimited

Stack: ulimit -s, default 8 MiB

Allocations that exceed the limit are rejected by SIGSEGV.

When running out of memory, the kernel may decide to discard
pages that are mapped to a file and are read-only. If that page is
accessed again, it will cause a major page fault and be read back in
from the file.

Swapping
The idea of swapping is to reserve some storage where the kernel
can place pages of memory that are not mapped to a file, freeing up



the memory for other uses. It increases the effective size of physical
memory by the size of the swap file. It is not a panacea: there is a
cost to copying pages to and from a swap file, which becomes
apparent on a system that has too little real memory for the workload
it is carrying and so swapping becomes the main activity. This is
sometimes known as disk thrashing.

Swap is seldom used on embedded devices because it does not
work well with flash storage, where constant writing would wear it out
quickly. However, you may want to consider swapping to
compressed RAM (zram).

Swapping to compressed memory
(zram)
The zram driver creates RAM-based block devices named
/dev/zram0, /dev/zram1, and so on. Pages written to these
devices are compressed before being stored. With compression
ratios in the range of 30% to 50%, you can expect an overall
increase in free memory of about 10% at the expense of more
processing and a corresponding increase in power usage.

To enable zram, configure the kernel with these options:
CONFIG_SWAP

CONFIG_CGROUP_MEM_RES_CTLR

CONFIG_CGROUP_MEM_RES_CTLR_SWAP

CONFIG_ZRAM



Then, mount zram at boot time by adding this to /etc/fstab:
/dev/zram0 none swap defaults zramsize=<size in

bytes>,

swapprio=<swap partition priority>

You can turn swap on and off using these commands:
# swapon /dev/zram0

# swapoff /dev/zram0

Swapping memory out to zram is better than swapping out to flash
storage, but neither technique is a substitute for adequate physical
memory.

User space processes depend on the kernel to manage virtual
memory for them. Sometimes a program wants greater control over
its memory map than the kernel can offer. There is a system call that
lets us map memory to a file for more direct access from user space.

Mapping memory wi th mmap
A process begins life with a certain amount of memory mapped to
the text (the code) and data segments of the program file, together
with the shared libraries that it is linked with. It can allocate memory
on its heap at runtime using malloc(3) and on the stack through
locally scoped variables and memory allocated through alloca(3).
It may also load libraries dynamically at runtime using dlopen(3).
All of these mappings are taken care of by the kernel. However, a
process can also manipulate its memory map in an explicit way
using mmap(2):



void *mmap(void *addr, size_t length, int prot,
int flags,

int fd, off_t offset);

This function maps length bytes of memory from the file with the
fd descriptor, starting at offset in the file, and returns a pointer to
the mapping, assuming it is successful. Since the underlying
hardware works in pages, length is rounded up to the nearest
whole number of pages. The protection parameter, prot, is a
combination of read, write, and execute permissions and the flags
parameter contains at least MAP_SHARED or MAP_PRIVATE. There
are many other flags, which are described in the mmap manpage.

There are many things you can do with mmap. I will show some of
them in the 
upcoming sections.

Using mmap to al locate private
memory
You can use mmap to allocate an area of private memory by setting
MAP_ANONYMOUS in the flags parameter and setting the file
descriptor fd to -1. This is similar to allocating memory from the
heap using malloc, except that the memory is page-aligned and in
multiples of pages. The memory is allocated in the same area as that
used for libraries. In fact, this area is referred to by some as the
mmap area for this reason.



Anonymous mappings are better for large allocations because they
do not pin down the heap with chunks of memory, which would make
fragmentation more likely. Interestingly, you will find that malloc (in
glibc at least) stops allocating memory from the heap for requests
over 128 KiB and uses mmap in this way, so in most cases, just using
malloc is the right thing to do. The system will choose the best way
of satisfying the request.

Using mmap to share memory
As we saw in Chapter 17, Learning About Processes and Threads,
POSIX shared memory requires mmap to access the memory
segment. In this case, you set the MAP_SHARED flag and use the file
descriptor from shm_open():
int shm_fd;

char *shm_p;

shm_fd = shm_open("/myshm", O_CREAT | O_RDWR,
0666);

ftruncate(shm_fd, 65536);

shm_p = mmap(NULL, 65536, PROT_READ | PROT_WRITE,

MAP_SHARED, shm_fd, 0);

Another process uses the same calls, filename, length, and flags to
map to that memory region for sharing. Subsequent calls to
msync(2) control when updates to memory are carried through to
the underlying file.



Sharing memory via mmap also offers a straightforward way to read
from and write to device memory.

Using mmap to access device
memory
As I mentioned in Chapter 11, Interfacing with Device Drivers, it is
possible for a driver to allow its device node to be memory mapped
and share some of the device memory with an application. The exact
implementation is dependent on the driver.

One example is the Linux framebuffer, /dev/fb0. FPGAs such as
the Xilinx Zynq series are also accessed as memory via mmap from
Linux. The framebuffer interface is defined in
/usr/include/linux/fb.h, including an ioctl function to get
the size of the display and the bits per pixel. You can then use mmap
to ask the video driver to share the framebuffer with the application
and read and write pixels:
int f;

int fb_size;

unsigned char *fb_mem;

f = open("/dev/fb0", O_RDWR);

/* Use ioctl FBIOGET_VSCREENINFO to find the
display

dimensions and calculate fb_size */

fb_mem = mmap(0, fb_size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);



/* read and write pixels through pointer fb_mem */

A second example is the streaming video interface, Video 4 Linux,
version 2, or V4L2, which is defined in
/usr/include/linux/videodev2.h. Each video device has a
node named /dev/videoN, starting with /dev/video0. There is
an ioctl function to ask the driver to allocate a number of video
buffers that you can mmap into user space. Then, it is just a question
of cycling the buffers and filling or emptying them with video data,
depending on whether you are playing back or capturing a video
stream.

Now that we have covered memory layout and mapping, let's look at
memory usage starting with how to measure it.

How much memory does my
appl icat ion use?
As with kernel space, the different ways of allocating, mapping, and
sharing user space memory make it quite difficult to answer this
seemingly simple question.

To begin, you can ask the kernel how much memory it thinks is
available, which you can do using the free command. Here is a
typical example of the output:
   total used free shared buffers cached

Mem: 509016 504312 4704 0 26456 363860

-/+ buffers/cache: 113996 395020



Swap: 0 0 0

At first sight, this looks like a system that is almost out of memory
with only 4,704 KiB free out of 509,016 KiB: less than 1%. However,
note that 26,456 KiB is in buffers and 
a whopping 363,860 KiB is in caches. Linux believes that free
memory is wasted memory; the kernel uses free memory for buffers
and caches with the knowledge that they can be shrunk when the
need arises. Removing buffers and cache from the measurement
provides true free memory, which is 395,020 KiB: 77% of the total.
When using free, the numbers on the second line marked -/+
buffers/cache are the important ones.

You can force the kernel to free up caches by writing a number
between 1 and 3 to 
/proc/sys/vm/drop_caches:
# echo 3 > /proc/sys/vm/drop_caches

The number is actually a bitmask that determines which of the two
broad types of caches you want to free: 1 for the page cache and 2
for the dentry and inode caches combined. Since 1 and 2 are
different bits, writing a 3 frees both types of caches. The exact roles
of these caches are not particularly important here, only that there is
memory that the kernel is using but that can be reclaimed at short
notice.

The free command tells us how much memory is being used and
how much is left. It neither tells us which processes are using the



unavailable memory nor in what proportions. To measure that, we
need other tools.

Per-process memory usage
There are several metrics to measure the amount of memory a
process is using. I will begin with the two that are easiest to obtain:
the virtual set size (VSS) and the resident memory size (RSS),
both of which are available in most implementations of the ps and
top commands:

VSS: Called VSZ in the ps command and VIRT in top, this is the
total amount 
of memory mapped by a process. It is the sum of all the regions
shown in 
/proc/<PID>/map. This number is of limited interest since only
part of the virtual memory is committed to physical memory at
any time.

RSS: Called RSS in ps and RES in top, this is the sum of
memory that is mapped to physical pages of memory. This gets
closer to the actual memory budget of the process, but there is a
problem: if you add the RSS of all the processes, you will get an
overestimate of the memory in use because some pages will be
shared.

Let's learn more about the top and ps commands.



Using top and ps
The versions of top and ps from BusyBox provide very limited
information. The examples that follow use the full version from the
procps package.

The ps command shows VSS (VSZ) and RSS (RSS) with the
options -Aly, or you can use a custom format that includes vsz and
rss, as shown here:
# ps -eo pid,tid,class,rtprio,stat,vsz,rss,comm

PID TID CLS RTPRIO STAT VSZ RSS COMMAND

1   1   TS -Ss 4496 2652 systemd

[…]

205 205 TS -Ss 4076 1296 systemd-journal

228 228 TS -Ss 2524 1396 udevd

581 581 TS -Ss 2880 1508 avahi-daemon

584 584 TS -Ss 2848 1512 dbus-daemon

590 590 TS -Ss 1332 680  acpid

594 594 TS -Ss 4600 1564 wpa_supplicant

Likewise, top shows a summary of the free memory and memory
usage per process:
top - 21:17:52 up 10:04, 1 user, load average:

0.00, 0.01, 0.05

Tasks: 96 total, 1 running, 95 sleeping, 0
stopped, 0 zombie

%Cpu(s): 1.7 us, 2.2 sy, 0.0 ni, 95.9 id, 0.0 wa,
0.0 hi



KiB Mem: 509016 total, 278524 used, 230492 free,
25572 buffers

KiB Swap: 0 total, 0 used, 0 free, 170920 cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
COMMAND

595 root 20 0 64920 9.8m 4048 S 0.0 2.0 0:01.09
node

866 root 20 0 28892 9152 3660 S 0.2 1.8 0:36.38
Xorg

[…]

These simple commands give you a feel of the memory usage and
provide the first indication that you have a memory leak when you
see that the RSS of a process keeps 
on increasing. However, they are not very accurate in the absolute
measurements of memory usage.

Using smem
In 2009, Matt Mackall began looking at the problem of accounting for
shared pages in process memory measurement and added two new
metrics called unique set size, or USS, and proportional set size,
or PSS:

USS: This is the amount of memory that is committed to physical
memory and is unique to a process; it is not shared with any
others. It is the amount of memory that would be freed if the
process were to terminate.



PSS: This splits the accounting of shared pages that are
committed to physical memory between all the processes that
have them mapped. For example, if an area of library code is 12
pages long and is shared by six processes, each will accumulate
two pages in PSS. Thus, if you add the PSS numbers for all
processes, you will get the actual amount of memory being used
by those processes. In other words, PSS is the number we have
been looking for.

Information about PSS is available in /proc/<PID>/smaps, which
contains additional information for each of the mappings shown in
/proc/<PID>/maps. Here is a section from such a file that
provides information on the mapping for the libc code segment:
b6e6d000-b6f45000 r-xp 00000000 b3:02 2444

/lib/libc-2.13.so

Size: 864 kB

Rss: 264 kB

Pss: 6 kB

Shared_Clean: 264 kB

Shared_Dirty: 0 kB

Private_Clean: 0 kB

Private_Dirty: 0 kB

Referenced: 264 kB

Anonymous: 0 kB

AnonHugePages: 0 kB

Swap: 0 kB

KernelPageSize: 4 kB

MMUPageSize: 4 kB



Locked: 0 kB

VmFlags: rd ex mr mw me

Note that the RSS is 264 KiB, but because it is shared between
many other processes, the PSS is only 6 KiB.

There is a tool named smem that collates information from the
smaps files and 
presents it in various ways, including as pie or bar charts. The
project page for smem is https://www.selenic.com/smem/. It is
available as a package in most desktop distributions. However, since
it is written in Python, installing it on an embedded target requires a
Python environment, which may be too much trouble for just one
tool. To help with this, there is a small program named smemcap
that captures the state from /proc on the target and saves it to a
TAR file that can be analyzed later on the host computer. It is part of
BusyBox, but it can also be compiled from the smem source.

Running smem natively, as root, you will see these results:
# smem -t

PID User Command Swap USS PSS RSS

610 0 /sbin/agetty -s ttyO0 11 0 128 149 720

1236 0 /sbin/agetty -s ttyGS0 1 0 128 149 720

609 0 /sbin/agetty tty1 38400 0 144 163 724

578 0 /usr/sbin/acpid 0 140 173 680

819 0 /usr/sbin/cron 0 188 201 704

634 103 avahi-daemon: chroot hel 0 112 205 500

980 0 /usr/sbin/udhcpd -S /etc 0 196 205 568

[...]

https://www.selenic.com/smem/


836 0 /usr/bin/X :0 -auth /var 0 7172 7746 9212

583 0 /usr/bin/node autorun.js 0 8772 9043 10076

1089 1000 /usr/bin/python -O /usr/ 0 9600 11264
16388

--------------------------------------------------
------------

53 6 0 65820 78251 146544

You can see from the last line of the output that in this case, the total
PSS is about a half 
of the RSS.

If you don't have or don't want to install Python on your target, you
can capture the state using smemcap, again as root:
# smemcap > smem-bbb-cap.tar

Then, copy the TAR file to the host and read it using smem -S,
although this time there is no need to run as root:
$ smem -t -S smem-bbb-cap.tar

The output is identical to the output we get when running smem
natively.

Other tools to consider
Another way to display PSS is via ps_mem
(https://github.com/pixelb/ps_mem), which prints much the same
information but in a simpler format. It is also written 
in Python.

https://github.com/pixelb/ps_mem


Android also has a tool that displays a summary of USS and PSS for
each process, named procrank, which can be cross-compiled for
embedded Linux with a few small changes. You can get the code
from https://github.com/csimmonds/procrank_linux.

We now know how to measure per-process memory usage. Let's say
we use the tools 
just shown to find the process that is the memory hog in our system.
How do we then 
drill down into that process to figure out where it is going wrong?
That is the topic of the next section.

Ident i fy ing memory leaks
A memory leak occurs when memory is allocated but not freed when
it is no longer needed. Memory leakage is by no means unique to
embedded systems, but it becomes an issue partly because targets
don't have much memory in the first place and partly because they
often run for long periods of time without rebooting, allowing the
leaks to become 
a large puddle.

You will realize that there is a leak when you run free or top and
see that free memory is continually going down even if you drop
caches, as shown in the preceding section. You will be able to
identify the culprit (or culprits) by looking at the USS and RSS per
process.

https://github.com/csimmonds/procrank_linux


There are several tools to identify memory leaks in a program. I will
look at two: mtrace and valgrind.

mtrace
mtrace is a component of glibc that traces calls to malloc, free,
and related functions, and identifies areas of memory not freed when
the program exits. You need to call the mtrace() function from
within the program to begin tracing and then at runtime, write a path
name to the MALLOC_TRACE environment variable in which the trace
information is written. If MALLOC_TRACE does not exist or if the file
cannot be opened, the mtrace hooks are not installed. While the
trace information is written in ASCII, it is usual to use the mtrace
command to view it.

Here is an example:
#include <mcheck.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

    int j;

    mtrace();

    for (j = 0; j < 2; j++)

        malloc(100); /* Never freed:a memory leak
*/

    calloc(16, 16); /* Never freed:a memory leak
*/



    exit(EXIT_SUCCESS);

}

Here is what you might see when running the program and looking at
the trace:
$ export MALLOC_TRACE=mtrace.log

$ ./mtrace-example

$ mtrace mtrace-example mtrace.log

Memory not freed:

-----------------

    Address Size Caller

0x0000000001479460 0x64 at /home/chris/mtrace-
example.c:11

0x00000000014794d0 0x64 at /home/chris/mtrace-
example.c:11

0x0000000001479540 0x100 at /home/chris/mtrace-
example.c:15

Unfortunately, mtrace does not tell you about leaked memory while
the program runs. It has to terminate first.

Valgrind
Valgrind is a very powerful tool used to discover memory problems
including leaks and other things. One advantage is that you don't
have to recompile the programs and libraries that you want to check,
although it works better if they have been compiled with the -g
option so that they include debug symbol tables. It works by running
the program in an emulated environment and trapping execution at



various points. This leads to the big downside of Valgrind, which is
that the program runs at a fraction of normal speed, which makes it
less useful in testing anything with real-time constraints.

IMPORTANT NOTE

Incidentally, the name is often mispronounced: it says in the Valgrind
FAQ that the grind part is pronounced with a short i, as in grinned
(rhymes with tinned) rather than grind (rhymes with find). The FAQ,
documentation, and downloads are available at https://valgrind.org.

Valgrind contains several diagnostic tools:

memcheck: This is the default tool, and it detects memory leaks
and general misuse of memory.

cachegrind: This calculates the processor cache hit rate.

callgrind: This calculates the cost of each function call.

helgrind: This highlights the misuse of the Pthread API,
including potential deadlocks, and race conditions.

DRD: This is another Pthread analysis tool.

massif: This profiles the usage of the heap and stack.

You can select the tool you want with the -tool option. Valgrind
runs on the major embedded platforms: Arm (Cortex-A), PowerPC,
MIPS, and x86 in 32-bit and 64-bit variants. It is available as a
package in both the Yocto Project and Buildroot.

https://valgrind.org/


To find our memory leak, we need to use the default memcheck tool,
with the -–leak-check=full option to print the lines where the
leak was found:
$ valgrind --leak-check=full ./mtrace-example

==17235== Memcheck, a memory error detector

==17235== Copyright (C) 2002-2013, and GNU GPL'd,
by Julian Seward et al.==17235==Using
Valgrind-3.10.0.SVN and LibVEX; rerun with
-h for copyright info

==17235== Command: ./mtrace-example

==17235==

==17235==

==17235== HEAP SUMMARY:

==17235== in use at exit: 456 bytes in 3 blocks

==17235== total heap usage: 3 allocs, 0 frees, 456
bytes allocated

==17235==

==17235== 200 bytes in 2 blocks are definitely
lost in loss record

1 of 2==17235== at 0x4C2AB80: malloc (in
/usr/lib/valgrind/vgpreload_memcheck-
linux.so)

==17235== by 0x4005FA: main (mtrace-example.c:12)

==17235==

==17235== 256 bytes in 1 blocks are definitely
lost in loss record

2 of 2==17235== at 0x4C2CC70: calloc (in
/usr/lib/valgrind/vgpreload memcheck-linux
so)

==17235== by 0x400613: main (mtrace-example.c:14)



==17235==

==17235== LEAK SUMMARY:

==17235== definitely lost: 456 bytes in 3 blocks

==17235== indirectly lost: 0 bytes in 0 blocks

==17235== possibly lost: 0 bytes in 0 blocks

==17235== still reachable: 0 bytes in 0 blocks

==17235== suppressed: 0 bytes in 0 blocks

==17235==

==17235== For counts of detected and suppressed
errors, rerun with: -v==17235== ERROR
SUMMARY: 2 errors from 2 contexts
(suppressed: 0 from 0)

The output from Valgrind shows that two memory leaks were found
in mtrace-example.c: a malloc at line 12 and a calloc at line
14. The subsequent calls to free that are supposed to accompany
these two memory allocations are missing from the program. Left
unchecked, memory leaks in a long-running process may eventually
result in the system running out of memory.

Running out of  memory
The standard memory allocation policy is to over-commit, which
means that the kernel will allow more memory to be allocated by
applications than there is physical memory. Most of the time, this
works fine because it is common for applications to request more
memory than they really need. This also helps in the implementation
of fork(2): it is safe to make a copy of a large program because



the pages of memory are shared with the copy on write flag set. In
the majority of cases, fork is followed by an exec function call,
which unshares the memory and then loads a new program.

However, there is always the possibility that a particular workload will
cause a group of processes to try to cash in on the allocations they
have been promised simultaneously and so demand more than there
really is. This is an out of memory situation, or OOM. At this point,
there is no other alternative but to kill off processes until the problem
goes away. This is the job of the out of memory killer.

Before we get to that, there is a tuning parameter for kernel
allocations in /proc/sys/vm/overcommit_memory, which you
can set to the following:

0: Heuristic over-commit

1: Always over-commit; never check

2: Always check; never over-commit

Option 0 is the default and is the best choice in the majority of cases.

Option 1 is only really useful if you run programs that work with large
sparse arrays and allocate large areas of memory but write to a
small proportion of them. Such programs are rare in the context of
embedded systems.

Option 2, never over-commit, seems to be a good choice if you are
worried about running out of memory, perhaps in a mission or safety-
critical application. It will fail allocations that are greater than the



commit limit, which is the size of swap space plus the total memory
multiplied by the overcommit ratio. The over-commit ratio is
controlled by 
/proc/sys/vm/overcommit_ratio and has a default value of
50%.

As an example, suppose you have a device with 512 MB of system
RAM and you set 
a really conservative ratio of 25%:
# echo 25 > /proc/sys/vm/overcommit_ratio

# grep -e MemTotal -e CommitLimit /proc/meminfo

MemTotal: 509016 kB

CommitLimit: 127252 kB

There is no swap, so the commit limit is 25% of MemTotal, as
expected.

There is another important variable in /proc/meminfo, called
Committed_AS. This is the total amount of memory that is needed
to fulfill all the allocations made so far. I found the following on one
system:
# grep -e MemTotal -e Committed_AS /proc/meminfo

MemTotal: 509016 kB

Committed_AS: 741364 kB

In other words, the kernel had already promised more memory than
the available memory. Consequently, setting overcommit_memory
to 2 would mean that all allocations would fail regardless of
overcommit_ratio. To get to a working system, 



I would have to either install double the amount of RAM or severely
reduce the number of running processes, of which there were about
40.

In all cases, the final defense is oom-killer. It uses a heuristic
method to calculate 
a badness score between 0 and 1,000 for each process and then
terminates those with the highest score until there is enough free
memory. You should see something like this in the kernel log:
[44510.490320] eatmem invoked oom-killer:

gfp_mask=0x200da,

order=0, oom_score_adj=0

...

You can force an OOM event using echo f > /proc/sysrq-
trigger.

You can influence the badness score for a process by writing an
adjustment value to 
/proc/<PID>/oom_score_adj. A value of -1000 means that the
badness score can never be greater than zero and so it will never be
killed; a value of +1000 means that it will always be greater than
1,000 and so it will always be killed.

Summary
Accounting for every byte of memory used in a virtual memory
system is just not possible. However, you can find a fairly accurate
figure for the total amount of free memory, excluding that taken by



buffers and the cache, using the free command. By monitoring it
over a period of time and with different workloads, you should
become confident that it will remain within a given limit.

When you want to tune memory usage or identify sources of
unexpected allocations, there are resources that give more detailed
information. For kernel space, the most useful information is in
/proc: meminfo, slabinfo, and vmallocinfo.

When it comes to getting accurate measurements for user space,
the best metric is PSS, 
as shown by smem and other tools. For memory debugging, you can
get help from 
simple tracers such as mtrace, or you have the heavyweight option
of the Valgrind memcheck tool.

If you have concerns about the consequence of an OOM situation,
you can fine-tune the allocation mechanism via
/proc/sys/vm/overcommit_memory and you can control the
likelihood of particular processes being killed though the
oom_score_adj parameter.

The next chapter is all about debugging user space and kernel code
using the GNU debugger and the insights you can gain from
watching code as it runs, including the memory management
functions I have described here.

Further reading



The following resources have further information on the topics
introduced in this chapter:

Linux Kernel Development, 3rd Edition, by Robert Love

Linux System Programming, 2nd Edition, by Robert Love

Understanding the Linux VM Manager by Mel Gorman:
https://www.kernel.org/doc/gorman/pdf/understand.pdf

Valgrind 3.3 - Advanced Debugging and Profiling for Gnu/Linux
Applications by J Seward, N. Nethercote, and J. Weidendorfer

https://www.kernel.org/doc/gorman/pdf/understand.pdf


Sect ion 4:  
Debugging and Opt imizing
Performance
Section 4 teaches the reader how to make effective use of the many
debug and profiling tools that Linux has to offer in order to detect
problems and identify bottlenecks. Chapter 19 focuses solely on the
traditional approach of watching code execution through a debugger,
which in Linux's case is the GNU Debugger (GDB). Chapter 20
examines various profilers and tracers, beginning with top then
moving on to perf, until eventually progressing all the way down to
strace.

This part of the book comprises the following chapters:

Chapter 19, Debugging with GDB

Chapter 20, Profiling and Tracing

Chapter 21, Real-Time Programming



Chapter 19 :  Debugging with
GDB
Bugs happen. Identifying and fixing them is part of the development
process. There are many different techniques for finding and
characterizing program defects, including static and dynamic
analysis, code review, tracing, profiling, and interactive debugging. I
will look at tracers and profilers in the next chapter, but here I want to
concentrate on the traditional approach of watching code execution
through a debugger, which in our case is the GNU Project
Debugger (GDB). GDB is a powerful and flexible tool. You can use it
to debug applications, examine the postmortem files (core files) that
are created after a program crash, and even step through kernel
code.

In this chapter, we will cover the following topics:

The GNU debugger

Preparing to debug

Debugging applications

Just-in-time debugging

Debugging forks and threads

Core files

GDB user interfaces



Debugging kernel code

Technical  requirements
To follow along with the examples, make sure you have the
following:

Linux-based host system with a minimum of 60 GB of available
disk space

Buildroot 2020.02.9 LTS release

Yocto 3.1 (Dunfell) LTS release

Etcher for Linux

MicroSD card reader and card

USB to TTL 3.3V serial cable

Raspberry Pi 4

5V 3A USB-C power supply

Ethernet cable and port for network connectivity

BeagleBone Black

5V 1A DC power supply

You should have already installed the 2020.02.9 LTS release of
Buildroot for Chapter 6, Selecting a Build System. If you have not,
then refer to the System requirements section of the The Buildroot
user manual (https://buildroot.org/downloads/manual/manual.html)

https://buildroot.org/downloads/manual/manual.html


before installing Buildroot on your Linux host according to the
instructions from Chapter 6.

You should have already installed the 3.1 (Dunfell) LTS release of
Yocto for Chapter 6, Selecting a Build System. If you have not, then
refer to the Compatible Linux Distribution and Build Host Packages
sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-
yoctoprojectqs.html) before installing Yocto on your Linux host
according to the instructions from Chapter 6.

All of the code for this chapter can be found in the Chapter19 folder
of the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

The GNU debugger
GDB is a source-level debugger for compiled languages, primarily C
and C++, although there is also support for a variety of other
languages, such as Go and Objective-C. You should read the notes
for the version of GDB you are using to find out the current status of
support for the various languages.

The project website is https://www.gnu.org/software/gdb/ and it
contains a lot of useful information, including the GDB user manual,
Debugging with GDB.

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
https://www.gnu.org/software/gdb/


Out of the box, GDB has a command-line user interface that some
people find off-putting, although in reality, it is easy to use with a little
practice. If command-line interfaces are not to your liking, there are
plenty of frontend user interfaces to GDB, and I will describe three of
them later in this chapter.

Prepar ing to debug
You need to compile the code you want to debug with debug
symbols. GCC offers two options for this: -g and -ggdb. The latter
adds debug information that is specific to GDB, whereas the former
generates information in an appropriate format for whichever target
operating system you are using, making it the more portable option.
In our particular case, the target operating system is always Linux,
and it makes little difference whether you use -g or -ggdb. Of more
interest is the fact that both options allow you to specify the level of
debug information, from 0 to 3:

0: This produces no debug information at all and is equivalent to
omitting the -g or -ggdb switch.

1: This produces minimal information, but includes function
names and external variables, which is enough to generate a
backtrace.

2: This is the default and includes information about local
variables and line numbers so that you can perform source-level
debugging and single-step through the code.



3: This includes extra information which, among other things,
means that GDB can handle macro expansions correctly.

In most cases, -g suffices: reserve -g3 or -ggdb3 if you are having
problems stepping through code, especially if it contains macros.

The next issue to consider is the level of code optimization. Compiler
optimization tends to destroy the relationship between lines of
source code and machine code, which makes stepping through the
source unpredictable. If you experience problems such as this, you
will most likely need to compile without optimization, leaving out the
-O compile switch, or using -Og, which enables optimizations that do
not interfere with debugging.

A related issue is that of stack-frame pointers, which are required by
GDB to generate a backtrace of function calls up to the current one.
On some architectures, GCC will not generate stack-frame pointers
with the higher levels of optimization (-O2 and above). If you find
yourself in a situation where you really have to compile with -O2, but
still want backtraces, you can override the default behavior with -
fno-omit-frame-pointer. Also look out for code that has been
hand-optimized to leave out frame pointers through the addition of -
fomit-frame-pointer: you may want to temporarily remove
those bits.

Debugging appl icat ions



You can use GDB to debug applications in one of two ways: if you
are developing code to run on desktops and servers, or indeed any
environment where you compile and run the code on the same
machine, it is natural to run GDB natively. However, most embedded
development is done using a cross toolchain, and hence you want to
debug code running on the device but control it from the cross-
development environment, where you have the source code and the
tools. I will focus on the latter case, since it is the most likely
scenario for embedded developers, but I will also show you how to
set up a system for native debugging. I am not going to describe the
basics of using GDB here since there are many good references on
that topic already, including the GDB user manual and the suggested
Further reading section at the end of the chapter.

Remote debugging using
gdbserver
The key component for remote debugging is the debug agent,
gdbserver, which runs on the target and controls execution of the
program being debugged. gdbserver connects to a copy of GDB
running on the host machine via a network connection or a serial
interface.

Debugging through gdbserver is almost, but not quite, the same as
debugging natively. The differences are mostly centered around the
fact that there are two computers involved and they have to be in the



right state for debugging to take place. Here are some things to look
out for:

At the start of a debug session, you need to load the program you
want to debug on the target using gdbserver, and then
separately load GDB from your cross toolchain on the host.

GDB and gdbserver need to connect to each other before a
debug session can begin.

GDB, running on the host, needs to be told where to look for
debug symbols and source code, especially for shared libraries.

The GDB run command does not work as expected.

gdbserver will terminate when the debug session ends, and
you will need to restart it if you want another debug session.

You need debug symbols and source code for the binaries you
want to debug on the host, but not on the target. Often, there is
not enough storage space for them on the target, and they will
need to be stripped before deploying to the target.

The GDB/gdbserver combination does not support all the
features of natively running GDB: for example, gdbserver
cannot follow the child process after a fork, whereas native
GDB can.

Odd things can happen if GDB and gdbserver are from
different versions of GDB, or are the same version but configured
differently. Ideally, they should be built from the same source
using your favorite build tool.



Debug symbols increase the size of executables dramatically,
sometimes by a factor of 10. As mentioned in Chapter 5, Building a
Root Filesystem, it can be useful to remove debug symbols without
recompiling everything. The tool for the job is strip from the
binutils package in your cross toolchain. You can control the strip
level with these switches:

--strip-all: This removes all symbols (default).

--strip-unneeded: This removes symbols not required for
relocation processing.

--strip-debug: This removes only debug symbols.

IMPORTANT NOTE

For applications and shared libraries, --strip-all (the default)

is fine, but when it comes to kernel modules, you will find that it
will stop the module from loading. Use --strip-unneeded

instead. I am still working on a use case for –-strip-debug.

With that in mind, let's look at the specifics involved in debugging
with the Yocto Project and Buildroot.

Sett ing up the Yocto Project for
remote debugging
There are two things to be done to debug applications remotely
when using the Yocto Project: you need to add gdbserver to the



target image, and you need to create an SDK that includes GDB and
has debug symbols for the executables that you plan to debug.

First, to include gdbserver in the target image, you can add the
package explicitly by adding this to conf/local.conf:
IMAGE_INSTALL_append = " gdbserver"

In the absence of a serial console, an SSH daemon also needs to be
added so that you have some way to start gdbserver on the target:
EXTRA_IMAGE_FEATURES ?= "ssh-server-openssh"

Alternatively, you can add tools-debug to
EXTRA_IMAGE_FEATURES, which will add gdbserver, native gdb,
and strace to the target image (I will talk about strace in the next
chapter):
EXTRA_IMAGE_FEATURES ?= "tools-debug ssh-server-

openssh"

For the second part, you just need to build an SDK as I described in
Chapter 6, Selecting a Build System:
$ bitbake -c populate_sdk <image>

The SDK contains a copy of GDB. It also contains a sysroot for the
target with debug symbols for all the programs and libraries that are
part of the target image. Finally, the SDK contains the source code
for the executables. For example, looking at an SDK built for the
Raspberry Pi 4 and generated by version 3.1.5 of the Yocto Project,
it is installed by default in /opt/poky/3.1.5/. The sysroot for
the target is /opt/poky/3.1.5/sysroots/aarch64-poky-
linux/. The programs are in /bin/, /sbin/, /usr/bin/, and



/usr/sbin/, relative to the sysroot, and the libraries are in
/lib/ and /usr/lib/. In each of these directories, you will find a
subdirectory named .debug/ that contains the symbols for each
program and library. GDB knows to look in .debug/ when searching
for symbol information. The source code for the executables is
stored in 
/usr/src/debug/, relative to the sysroot.

Sett ing up Buildroot for remote
debugging
Buildroot does not make a distinction between the build environment
and that used for application development: there is no SDK.
Assuming that you are using the Buildroot internal toolchain, you
need to enable these options to build the cross GDB for the host and
to build gdbserver for the target:

BR2_PACKAGE_HOST_GDB, in Toolchain | Build cross gdb for
the host

BR2_PACKAGE_GDB, in Target packages | Debugging,
profiling and 
benchmark | gdb

BR2_PACKAGE_GDB_SERVER, in Target packages | Debugging,
profiling and benchmark | gdbserver



You also need to build executables with debug symbols, for which
you need to enable BR2_ENABLE_DEBUG, in Build options | build
packages with debugging symbols.

This will create libraries with debug symbols in
output/host/usr/<arch>/sysroot.

Start ing to debug
Now that you have gdbserver installed on the target and a cross
GDB on the host, you can start a debug session.

Connecting GDB and gdbserver
The connection between GDB and gdbserver can be through a
network or serial interface. In the case of a network connection, you
launch gdbserver with the TCP port number to listen on and,
optionally, an IP address to accept connections from. In most cases,
you don't care which IP address is going to connect, so you can just
provide the port number. In this example, gdbserver waits for a
connection on port 10000 from any host:
# gdbserver :10000 ./hello-world

Process hello-world created; pid = 103

Listening on port 10000

Next, start the copy of GDB from your toolchain, pointing it at an
unstripped copy of the program so that GDB can load the symbol
table:
$ aarch64-poky-linux-gdb hello-world



In GDB, use the target remote command to make the connection
to gdbserver, giving it the IP address or hostname of the target
and the port it is waiting on:
(gdb) target remote 192.168.1.101:10000

When gdbserver sees the connection from the host, it prints the
following:
Remote debugging from host 192.168.1.1

The procedure is similar for a serial connection. On the target, you
tell gdbserver which serial port to use:
# gdbserver /dev/ttyO0 ./hello-world

You may need to configure the port baud rate beforehand using
stty(1) or a similar program. A simple example would be as
follows:
# stty -F /dev/ttyO0 115200

There are many other options to stty, so read the manual page for
more details. It is worthwhile noting that the port must not be being
used for anything else. For example, you can't use a port that is
being used as the system console.

On the host, you make the connection to gdbserver using target
remote plus the serial device at the host end of the cable. In most
cases, you will want to set the baud rate of the host serial port first,
using the GDB command set serial baud:
(gdb) set serial baud 115200

(gdb) target remote /dev/ttyUSB0



Even though GDB and gdbserver are now connected, we are not
ready to set breakpoints and start stepping through source code yet.

Setting the sysroot
GDB needs to know where to find debug information and source
code for the program and shared libraries you are debugging. When
debugging natively, the paths are well known and built in to GDB, but
when using a cross toolchain, GDB has no way to guess where the
root of the target filesystem is. You have to provide this information.

If you built your application using the Yocto Project SDK, the
sysroot is within the SDK, and so you can set it in GDB like this:
(gdb) set sysroot

/opt/poky/3.1.5/sysroots/aarch64-poky-
linux

If you are using Buildroot, you will find that the sysroot is in
output/host/usr/<toolchain>/sysroot, and that there is a
symbolic link to it in output/staging. So, for Buildroot, you would
set the sysroot like this:
(gdb) set sysroot

/home/chris/buildroot/output/staging

GDB also needs to find the source code for the files you are
debugging. GDB has a search path for source files, which you can
see using the show directories command:
(gdb) show directories

Source directories searched: $cdir:$cwd



These are the defaults: $cwd is the current working directory of the
GDB instance running on the host; $cdir is the directory where the
source was compiled. The latter is encoded into the object files with
the tag DW_AT_comp_dir. You can see these tags using objdump
--dwarf, like this, for example:
$ aarch64-poky-linux-objdump --dwarf ./helloworld

| grep DW_AT_comp_dir

[…]

<160> DW_AT_comp_dir : (indirect string, offset:
0x244): /home/chris/helloworld

[…]

In most cases, the defaults, $cdir and $cwd, are sufficient, but
problems arise if the directories have been moved between
compilation and debugging. One such case occurs with the Yocto
Project. Taking a deeper look at the DW_AT_comp_dir tags for a
program compiled using the Yocto Project SDK, you may notice this:
$ aarch64-poky-linux-objdump --dwarf ./helloworld

| grep DW_AT_comp_dir

<2f> DW_AT_comp_dir : /usr/src/debug/glibc/2.31-
r0/git/csu

<79> DW_AT_comp_dir : (indirect string, offset:
0x139): /usr/src/debug/glibc/2.31-
r0/git/csu

<116> DW_AT_comp_dir : /usr/src/debug/glibc/2.31-
r0/git/csu

<160> DW_AT_comp_dir : (indirect string, offset:
0x244): /home/chris/helloworld

[…]



Here, you can see multiple references to the directory
/usr/src/debug/glibc/2.31-r0/git, but where is it? The
answer is that it is in the sysroot for the SDK, so the full path is
/opt/poky/3.1.5/sysroots/aarch64-poky-linux

/usr/src/debug/glibc/2.31-r0/git. The SDK contains
source code for all of the programs and libraries that are in the target
image. GDB has a simple way to cope with an entire directory tree
being moved like this: substitute-path. So, when debugging
with the Yocto Project SDK, you need to use these commands:
(gdb) set sysroot

/opt/poky/3.1.5/sysroots/aarch64-poky-
linux

(gdb) set substitute path
/usr/src/debug/opt/poky/3.1.5/sysroots/aar
ch64-poky-linux/usr/src/debug

You may have additional shared libraries that are stored outside the
sysroot. In that case, you can use set solib-search-path,
which can contain a colon-separated list of directories to search for
shared libraries. GDB searches solib-search-path only if it
cannot find the binary in the sysroot.

A third way of telling GDB where to look for source code, for both
libraries and programs, is to use the directory command:
(gdb) directory /home/chris/MELP/src/lib_mylib

Source directories searched:
/home/chris/MELP/src/lib_mylib:$cdir:$cwd



Paths added in this way take precedence because they are
searched before those from sysroot or solib-search-path.

GDB command fi les
There are some things that you need to do each time you run GDB,
for example, setting the sysroot. It is convenient to put such
commands into a command file and run them each time GDB is
started. GDB reads commands from $HOME/.gdbinit, then from
.gdbinit in the current directory, and then from files specified on
the command line with the -x parameter. However, recent versions
of GDB will refuse to load .gdbinit from the current directory for
security reasons. You can override that behavior by adding a line
such as this to $HOME/.gdbinit:
set auto-load safe-path /

Alternatively, if you don't want to enable auto-loading globally, you
can specify a particular directory like this:
add-auto-load-safe-path /home/chris/myprog

My personal preference is to use the -x parameter to point to the
command file, which exposes the location of the file so that I don't
forget about it.

To help you set up GDB, Buildroot creates a GDB command file
containing the correct sysroot command in
output/staging/usr/share/buildroot/gdbinit. It will
contain a line similar to this one:
set sysroot

/home/chris/buildroot/output/host/usr/aarc



h64-buildroot-linux-gnu/sysroot

Now that GDB is running and can find the information it needs, let's
look at some of the commands we can perform with it.

Overview of GDB commands
GDB has many more commands, which are described in the online
manual and in the resources mentioned in the Further reading
section. To help you get going as quickly as possible, here is a list of
the most commonly used commands. In most cases, there is a short
form for the command, which is listed in the following tables.

Breakpoints

These are the commands for managing breakpoints:



Running and stepping

These are commands for controlling the execution of a program:

Getting information



These are commands for getting information regarding the
debugger:

Before we can begin stepping through a program inside a debug
session, we first need to set an initial breakpoint.

Running to a breakpoint
gdbserver loads the program into memory and sets a breakpoint at
the first instruction, and then waits for a connection from GDB. When



the connection is made, you enter into a debug session. However,
you will find that if you try to single-step immediately, you will get this
message:
Cannot find bounds of current function

This is because the program has been halted in code written in
assembly, which creates the runtime environment for C/C++
programs. The first line of C/C++ code is the main() function.
Supposing that you want to stop at main(), you would set a
breakpoint there and then use the continue command
(abbreviation c) to tell gdbserver to continue from the breakpoint at
the start of the program and stop at main():
(gdb) break main

Breakpoint 1, main (argc=1, argv=0xbefffe24) at
helloworld.c:8 printf("Hello, world!\n");

(gdb) c

At this point, you may see the following:
Reading /lib/ld-linux.so.3 from remote target...

warning: File transfers from remote targets can be
slow. Use "set sysroot" to access files
locally instead.

With older versions of GDB, you may instead see this:
warning: Could not load shared library symbols for

2 libraries, e.g. /lib/libc.so.6.

In both cases, the problem is that you have forgotten to set the
sysroot! Take another look at the earlier section on sysroot.



This is all very different to starting a program natively, where you just
type run. In fact, if you try typing run in a remote debug session,
you will either see a message saying that the remote target does not
support the run command, or in older versions of GDB, it will just
hang without any explanation.

Extending GDB with Python
We can embed a full Python interpreter into GDB to extend its
functionality. This is done by configuring GDB using the --with-
python option prior to building. GDB has an API that exposes much
of its internal state as Python objects. This API allows us to define
our own custom GDB commands as scripts written in Python. These
extra commands may include useful debugging aids such as
tracepoints and pretty printers that are not built into GDB.

Building GDB with Python support

We have already covered Setting up Buildroot for remote debugging.
There are some additional steps needed to enable Python support
inside GDB. At the time of writing, Buildroot only supports
embedding Python 2.7 inside GDB, which is unfortunate, but better
than no support for Python at all. We cannot use a toolchain
generated by Buildroot to build GDB with Python support because it
is missing some necessary thread support.

To build cross GDB for the host with Python support, perform the
following steps:

1. Navigate to the directory where you installed Buildroot:



$ cd buildroot

2. Copy the configuration file for the board you wish to build an
image for:
$ cd configs

$ cp raspberrypi4_64_defconfig
rpi4_64_gdb_defconfig

$ cd ..

3. Clean previous build artifacts from the output directory:
$ make clean

4. Activate your configuration file:
$ make rpi4_64_gdb_defconfig

5. Begin customizing your image:
$ make menuconfig

6. Enable use of an external toolchain by navigating to Toolchain |
Toolchain type | External toolchain and selecting that option.

7. Back out of External toolchain and open the Toolchain
submenu. Select a known working toolchain, such as Linaro
AArch64 2018.05, as your external toolchain.

8. Select Build cross gdb for the host from the Toolchain page
and enable both TUI support and Python support:



Figure 19.1 – Python support in GDB



9. Drill down into the GDB debugger Version submenu from the
Toolchain page and select the newest version of GDB available
in Buildroot.

10. Back out of the Toolchain page and drill down into Build
options. Select build packages with debugging symbols.

11. Back out of the Build options page and drill down into System
Configuration and select Enable root login with password.
Open Root password and enter a non-empty password in the
text field:



Figure 19.2 – Root password

12. Back out of the System Configuration page and drill down into
Target packages | Debugging, profiling and benchmark.



Select the gdb package to add gdbserver to the target image.

13. Back out of Debugging, profiling and benchmark and drill
down into Target packages | Networking applications. Select
the dropbear package to enable scp and ssh access to the
target. Note that dropbear does not allow root scp and ssh
access without a password.

14. Add the haveged entropy daemon, which can be found under
Target packages | Miscellaneous so that SSH is available
quicker upon booting.

15. Add another package to your image so you have something to
debug. I chose the bsdiff binary patch/diff tool, which is written
in C and can be found under Target packages | Development
tools.

16. Save your changes and exit Buildroot's menuconfig.

17. Save your changes to your configuration file:
$ make savedefconfig

18. Build the image for the target:
$ make

A readymade rpi4_64_gdb_defconfig file for the Raspberry Pi 4
can be found in the code archive for this chapter if you wish to skip
the previous menuconfig steps. Copy that file form
MELP/Chapter19/buildroot/configs/ to your
buildroot/configs directory and run make on that if you prefer.



When the build is done, there should be a bootable sdcard.img file
in output/images/ that you can write to a microSD card using
Etcher. Insert that microSD into your target device and boot it.
Connect the target device to your local network with an Ethernet
cable and locate its IP address using arp-scan. SSH into the
device as root and enter the password that you set when
configuring your image. I specified temppwd as the root password
for my rpi4_64_gdb_defconfig image.

Now, let's debug bsdiff remotely using GDB:

1. First, navigate to the /usr/bin directory on the target:
# cd /usr/bin

2. Then, start bdiff with gdbserver, as we did with helloworld
earlier:
# gdbserver :10000 ./bsdiff pcregrep pcretest

out

Process ./bsdiff created; pid = 169

Listening on port 10000

3. Next, start the copy of GDB from your toolchain, pointing it at an
unstripped copy of the program so that GDB can load the symbol
table:
$ cd output/build/bsdiff-4.3

$ ~/buildroot/output/host/bin/aarch64-linux-gdb
bsdiff

4. In GDB, set the sysroot like this:
(gdb) set sysroot ~/buildroot/output/staging



5. Then, use the command target remote to make the connection to
gdbserver, giving it the IP address or hostname of the target
and the port it is waiting on:
(gdb) target remote 192.168.1.101:10000

6. When gdbserver sees the connection from the host, it prints the
following:
Remote debugging from host 192.168.1.1

7. We can now load Python command scripts such as tp.py into
GDB from <data-directory>/python and use these
commands like so:
(gdb) source tp.py

(gdb) tp search

In this case, tp is the name of the tracepoint command and
search is the name of a recursive function in bsdiff.

8. To show the directory where GDB searches for Python command
scripts, execute the following command:
(gdb) show data-directory

The Python support in GDB can also be used to debug Python
programs. GDB has visibility into CPython's internals that the
standard pdb debugger for Python does not. It can even inject
Python code into a running Python process. This enables the
creation of powerful debugging tools, like this Python 3 memory
analyzer (https://github.com/facebookincubator/memory-analyzer)
from Facebook.

https://github.com/facebookincubator/memory-analyzer


Native debugging
Running a native copy of GDB on the target is not as common as
doing it remotely, but it is possible. As well as installing GDB in the
target image, you will also need unstripped copies of the executables
you want to debug and the corresponding source code installed in
the target image. Both the Yocto Project and Buildroot allow you to
do this.

IMPORTANT NOTE

While native debugging is not a common activity for embedded
developers, running profile and trace tools on the target is very
common. These tools usually work best if you have unstripped
binaries and source code on the target, which is half of the story I am
telling here. I will return to this topic in the next chapter.

The Yocto Project
To begin with, add gdb to the target image by adding this to
conf/local.conf:
EXTRA_IMAGE_FEATURES ?= "tools-debug dbg-pkgs"

You need the debug information for the packages you want to
debug. The Yocto Project builds debug variants of packages, which
contain unstripped binaries and the source code. You can add these
debug packages selectively to your target image by adding
<package name>-dbg to your conf/local.conf. Or, you can
simply install all debug packages by adding dbg-pkgs to
EXTRA_IMAGE_FEATURES, as just shown. Be warned that this will



increase the size of the target image dramatically, perhaps by
several hundreds of megabytes.

The source code is installed in /usr/src/debug/<package
name> in the target image. This means that GDB will pick it up
without needing to run set substitute-path. If you don't need
the source, you can prevent it from being installed by adding this to
your conf/local.conf file:
PACKAGE_DEBUG_SPLIT_STYLE = "debug-without-src"

Buildroot
With Buildroot, you can tell it to install a native copy of GDB in the
target image by enabling this option:

BR2_PACKAGE_GDB_DEBUGGER in Target packages |
Debugging, profiling and benchmark | Full debugger

Then, to build binaries with debug information and to install them in
the target image without stripping, enable the first and disable the
second of these two options:

BR2_ENABLE_DEBUG in Build options | Build packages with
debugging symbols

BR2_STRIP_strip in Build options | Strip target binaries

That's all I have to say about native debugging. Again, the practice is
uncommon on embedded devices because the extra source code
and debug symbols add bloat to the target image. Next, let's look at
another form of remote debugging.



Just- in- t ime debugging
Sometimes, a program will start to misbehave after it has been
running for a while, and you would like to know what it is doing. The
GDB attach feature does exactly this. I call it just-in-time debugging.
It is available with both native and remote debug sessions.

In the case of remote debugging, you need to find the PID of the
process to be debugged and pass it to gdbserver with the --
attach option. For example, if the PID is 109, you would type this:
# gdbserver --attach :10000 109

Attached; pid = 109

Listening on port 10000

This forces the process to stop as if it were at a breakpoint, allowing
you to start your cross GDB in the normal way and connect to
gdbserver. When you are done, you can detach, allowing the
program to continue running without the debugger:
(gdb) detach

Detaching from program:
/home/chris/MELP/helloworld/helloworld,
process 109

Ending remote debugging.

Attaching to a running process by PID is certainly handy, but what
about multi-process or multithreaded programs? There are
techniques for debugging those types of programs with GDB as well.



Debugging forks and
threads
What happens when the program you are debugging forks? Does
the debug session follow the parent process or the child? This
behavior is controlled by follow-fork-mode, which may be
parent or child, with parent being the default. Unfortunately,
current versions (10.1) of gdbserver do not support this option, so
it only works for native debugging. If you really need to debug the
child process while using gdbserver, a workaround is to modify the
code so that the child loops on a variable immediately after the fork,
giving you the opportunity to attach a new gdbserver session to it
and then to set the variable so that it drops out of the loop.

When a thread in a multithreaded process hits a breakpoint, the
default behavior is for all threads to halt. In most cases, this is the
best thing to do as it allows you to look at static variables without
them being changed by the other threads. When you recommence
execution of the thread, all the stopped threads start up, even if you
are single-stepping, and it is especially this last case that can cause
problems. There is a way to modify the way in which GDB handles
stopped threads, through a parameter called scheduler-locking.
Normally it is off, but if you set it to on, only the thread that was
stopped at the 
breakpoint is resumed and the others remain stopped, giving you a
chance to see what the thread alone does without interference. This



continues to be the case until you turn scheduler-locking off.
gdbserver supports this feature.

Core f i les
Core files capture the state of a failing program at the point that it
terminates. You don't even have to be in the room with a debugger
when the bug manifests itself. So, when you see Segmentation
fault (core dumped), don't shrug; investigate the core file and
extract the goldmine of information in there.

The first observation is that core files are not created by default, but
only when the core file resource limit for the process is non-zero. You
can change it for the current shell using ulimit -c. To remove all
limits on the size of core files, type the following command:
$ ulimit -c unlimited

By default, the core file is named core and is placed in the current
working directory of the process, which is the one pointed to by
/proc/<PID>/cwd. There are a number of problems with this
scheme. Firstly, when looking at a device with several files named
core, it is not obvious which program generated each one.
Secondly, the current working directory of the process may well be in
a read-only filesystem, there may not be enough space to store the
core file, or the process may not have permissions to write to the
current working directory.



There are two files that control the naming and placement of core
files. The first is 
/proc/sys/kernel/core_uses_pid. Writing a 1 to it causes the
PID number of the dying process to be appended to the filename,
which is somewhat useful as long as you can associate the PID
number with a program name from log files.

Much more useful is /proc/sys/kernel/core_pattern, which
gives you a lot more control over core files. The default pattern is
core, but you can change it to a pattern composed of these meta
characters:

%p: The PID

%u: The real UID of the dumped process

%g: The real GID of the dumped process

%s: The number of the signal causing the dump

%t: The time of dump, expressed as seconds since the Epoch,
1970-01-01 00:00:00 +0000 (UTC)

%h: The hostname

%e: The executable filename

%E: The path name of the executable, with slashes (/) replaced
by exclamation marks (!)

%c: The core file size soft resource limit of the dumped process



You can also use a pattern that begins with an absolute directory
name so that all core files are gathered together in one place. As an
example, the following pattern puts all core files into the
/corefiles directory and names them with the program name and
the time of the crash:
# echo /corefiles/core.%e.%t >

/proc/sys/kernel/core_pattern

Following a core dump, you would find something like this:
# ls /corefiles

core.sort-debug.1431425613

For more information, refer to the manual page, core(5).

Using GDB to look at core f i les
Here is a sample GDB session looking at a core file:
$ arm-poky-linux-gnueabi-gdb sort-debug

/home/chris/rootfs/corefiles/core.sort-
debug.1431425613

[…]

Core was generated by `./sort-debug'.

Program terminated with signal SIGSEGV,
Segmentation fault.

#0 0x000085c8 in addtree (p=0x0, w=0xbeac4c60
"the") at sort-debug.c:41

41 p->word = strdup (w);

This shows that the program stopped at line 41. The list command
shows the code in 



the vicinity:
(gdb) list

37 static struct tnode *addtree (struct tnode *p,
char *w)

38 {

39 int cond;

40

41 p->word = strdup (w);

42 p->count = 1;

43 p->left = NULL;

44 p->right = NULL;

45

The backtrace command (shortened to bt) shows how we got to
this point:
(gdb) bt

#0 0x000085c8 in addtree (p=0x0, w=0xbeac4c60
"the") at sort-debug.c:41

#1 0x00008798 in main (argc=1, argv=0xbeac4e24) at
sort-debug.c:89

This is an obvious mistake: addtree() was called with a null
pointer.

GDB began as a command-line debugger and many people still use
it this way. Even though LLVM project's LLDB debugger is gaining in
popularity, GCC and GDB remain the prominent compiler and
debugger for Linux. So far, we have focused exclusively on GDB's
command-line interface. Now we will look at some frontends to GDB
with progressively more modern user interfaces.



GDB user interfaces
GDB is controlled at a low level through the GDB machine interface,
GDB/MI, which can be used to wrap GDB in a user interface or as
part of a larger program, and it considerably extends the range of
options available to you.

In this section, I will describe three that are well suited to debugging
embedded targets: 
the Terminal User Interface (TUI), the Data Display Debugger
(DDD), and Visual 
Studio Code.

Terminal User Interface
Terminal User Interface (TUI) is an optional part of the standard
GDB package. The main feature is a code window that shows the
line of code about to be executed, together with any breakpoints. It is
a definite improvement on the list command in command-line mode
GDB.

The attraction of TUI is that it just works without any extra setup, and
since it is in text mode, it is possible to use over an SSH terminal
session, for example, when running gdb natively on a target. Most
cross toolchains configure GDB with TUI. Simply add -tui to the
command line and you will see the following:



Figure 19.3 – TUI

If you still find TUI lacking and prefer a truly graphical frontend to
GDB, the GNU project also offers one of those
(https://www.gnu.org/software/ddd).

Data Display Debugger
Data Display Debugger (DDD) is a simple standalone program that
gives you a graphical user interface to GDB with minimal fuss and
bother, and although the UI controls look dated, it does everything
that is necessary.

The --debugger option tells DDD to use GDB from your toolchain,
and you can use the -x argument to give the path to a GDB

https://www.gnu.org/software/ddd


command file:
$ ddd --debugger arm-poky-linux-gnueabi-gdb -x

gdbinit sort-debug

The following screenshot shows off one of the nicest features: the
data window, which contains items in a grid that you can rearrange
as you wish. If you double-click on a pointer, it is expanded into a
new data item and the link is shown with an arrow:



Figure 19.4 – DDD



If neither of these two GDB frontends is acceptable because you are
a full stack web developer accustomed to working with the latest
tools in your industry, then we still have you covered.

Visual Studio Code
Visual Studio Code is a very popular open source code editor from
Microsoft. Because it is an Electron application written in TypeScript,
Visual Studio Code feels more lightweight and responsive than full-
blown IDEs such as Eclipse. There is rich language support (code
completion, go to definition, etc.) for many languages by way of
extensions contributed by its large community of users. Remote
cross GDB debugging can be integrated into Visual Studio Code
using extensions for CMake and C/C++.

Install ing Visual Studio Code
The easiest way to install Visual Studio Code on an Ubuntu Linux
system is to use snap:
$ sudo snap install --classic code

Before we can create a C/C++ project that we can deploy to the
Raspberry Pi 4 and debug remotely, we first need a toolchain.

Install ing a toolchain
We will use Yocto to build an SDK for the Raspberry Pi 4. This SDK
will include a toolchain that targets the Raspberry Pi 4's 64-bit Arm
cores. We already used Yocto to build a 64-bit Arm image for the



Raspberry Pi 4 in the Building an existing BSP section of Chapter 7,
Developing with Yocto.

Let's use that same poky/build-rpi output directory from that
chapter to build a new core-image-minimal-dev image and the
corresponding SDK for that image:

1. First, navigate one level above the directory where you cloned
Yocto.

2. Next, source the build-rpi build environment:
$ source poky/oe-init-build-env build-rpi

3. Edit conf/local.conf so that it includes the following:
MACHINE ?= "raspberrypi4-64"

IMAGE_INSTALL_append = " gdbserver"

EXTRA_IMAGE_FEATURES ?= "ssh-server-openssh
debug-tweaks"

The debug-tweaks feature eliminates the need for a root
password so that command-line tools such as scp and ssh can
be used to deploy and run newly built binaries from the host to
the target.

4. Then, build the development image for the Raspberry Pi 4:
$ bitbake core-image-minimal-dev

5. Use Etcher to write the resulting core-image-minimal-dev-
raspberrypi4-64.wic.bz2 image from
tmp/deploy/images/raspberrypi4-64/ to a microSD card
and boot it on your Raspberry Pi 4.



6. Plug your Raspberry Pi 4 into your local network over Ethernet
and use arp-scan to locate the IP address of your Raspberry Pi
4. We will need this IP address later when Configuring CMake for
remote debugging.

7. Lastly, build the SDK:
$ bitbake -c populate_sdk core-image-minimal-

dev

IMPORTANT NOTE

Never use debug-tweaks in production images. An automated

CI/CD pipeline for OTA software updates is essential, but great
care must be taken to ensure that development images do not
accidentally leak out to production.

We now have a self-extracting installer named poky-glibc-
x86_64-core-image-minimal-dev-aarch64-

raspberrypi4-64-toolchain-3.1.5.sh in the
tmp/deploy/sdk directory under poky/build-rpi that we can
use to install this newly built SDK on any Linux development
machine. Find the SDK installer in tmp/deploy/sdk and run it:
$ ./poky-glibc-x86_64-core-image-minimal-dev-

aarch64-raspberrypi4-64-toolchain-3.1.5.sh

Poky (Yocto Project Reference Distro) SDK
installer version 3.1.5

==================================================
===============

Enter target directory for SDK (default:
/opt/poky/3.1.5):



You are about to install the SDK to
"/opt/poky/3.1.5". Proceed [Y/n]? Y

[sudo] password for frank:

Extracting
SDK.......................................
...................done

Setting it up...done

SDK has been successfully set up and is ready to
be used.

Each time you wish to use the SDK in a new shell
session, you need to source the
environment setup script e.g.

$ . /opt/poky/3.1.5/environment-setup-aarch64-
poky-linux

Notice that the SDK was installed to /opt/poky/3.1.5. We won't
source environment-setup-aarch64-poky-linux as
instructed, but the contents of that file will be used to populate the
upcoming project files for Visual Studio Code.

Install ing CMake
We will use CMake to cross-compile the C code we will be deploying
and debugging on the Raspberry Pi 4. To install CMake on Ubuntu
Linux, execute the following command:
$ sudo apt update

$ sudo apt install cmake

CMake should already have been installed on your host machine as
part of Chapter 2, Learning about Toolchains.

Creating a Visual Studio Code project



Projects built with CMake have a canonical structure that includes a
CMakeLists.txt file and separate src and build directories.

Create a Visual Studio Code project named hellogdb in your home
directory:
$ mkdir hellogdb

$ cd hellogdb

$ mkdir src build

$ code .

The last code . command will launch Visual Studio Code and open
the hellogdb directory. A hidden .vscode directory containing
settings.json and launch.json for a project also gets created
when you launch Visual Studio Code from a directory.

Install ing Visual Studio Code extensions
We need to install the following Visual Studio Code extensions to
cross-compile and debug code with the toolchain from our SDK:

C/C++ by Microsoft

CMake by twxs

CMake Tools by Microsoft

Click on the Extensions icon on the left edge of the Visual Studio
Code window, search for these extensions in the marketplace, and
install them. Once they are installed, your Extensions sidebar
should look something like this:



Figure 19.5 – Extensions



Now we will use CMake to integrate the toolchain that came with the
SDK we built to cross-compile and debug our hellogdb project.

Configuring CMake
We need to populate CMakeLists.txt and cross.cmake to
cross-compile the hellogdb project with our toolchain:

1. First, copy MELP/Chapter19/hellogdb/CMakeLists.txt to
the hellogdb project folder in your home directory.

2. From inside Visual Studio Code, click on the Explorer icon in the
upper-left corner of the Visual Studio Window to open the
Explorer sidebar.

3. Click on CMakeLists.txt in the Explorer sidebar to view the
file's contents. Notice that the project's name is defined as
HelloGDBProject and the IP address of the target board is
hardcoded as 192.168.1.128.

4. Change that to match the IP address of your Raspberry Pi 4 and
save the CMakeLists.txt file.

5. Expand the src folder and click on the New File icon in the
Explorer sidebar to create a file named main.c inside the
hellogdb project's src directory.

6. Paste the following code into that main.c source file and save it:
#include <stdio.h>

int main() {

    printf("Hello CMake\n");

    return 0;



}

7. Copy MELP/Chapter19/hellogdb/cross.cmake to the
hellogdb project folder in your home directory.

8. Lastly, click on cross.cmake in the Explorer sidebar to view the
file's contents. Notice that the sysroot_target and tools
paths defined in cross.cmake point to the /opt/poky/3.1.5
directory where we installed the SDK. Also notice that the values
of the CMAKE_C_COMPILE, CMAKE_CXX_COMPILE and
CMAKE_CXX_FLAGS variables were derived directly from the
environment setup script included with the SDK.

With these two files in place, we are almost ready to build our
hellogdb project.

Configuring project settings for building
Now, let's configure the settings.json file for the hellogdb
project to use CMakeLists.txt and cross.cmake for building:

1. With the hellogdb project open in Visual Studio Code, hit Ctrl +

Shift + P to bring up the Command Palette field.

2. Enter >settings.json in the Command Palette field and
select Preferences: Open Workspace Settings (JSON) from
the list of options.

3. Edit the .vscode/settings.json for hellogdb so that it
looks something like this:
{



    "cmake.sourceDirectory":
"${workspaceFolder}",

    "cmake.configureArgs": [

        "-
DCMAKE_TOOLCHAIN_FILE=${workspaceFolder}
/cross.cmake"

    ],

    "C_Cpp.default.configurationProvider": "ms-
vscode.cmake-tools"

}

Notice the reference to cross.cmake in the definition of
cmake.configureArgs.

4. Hit Ctrl + Shift + P to bring up the Command Palette field again.

5. Enter >CMake: Delete Cache and Configuration in the
Command Palette field and execute it.

6. Click on the CMake icon on the left edge of the Visual Studio
Window to open the CMake sidebar.

7. Click on the HelloGDBProject binary in the CMake sidebar to
build it:



Figure 19.6 – Building HelloGDBProject

If you configured everything correctly, the contents of the Output
pane should look 
like this:



[main] Building folder: hellogdb HelloGDBProject

[build] Starting build

[proc] Executing command: /usr/bin/cmake --build
/home/frank/hellogdb/build --config Debug
--target HelloGDBProject -- -j 14

[build] [100%] Built target HelloGDBProject

[build] Build finished with exit code 0

Now that we've used Visual Studio Code to build an executable
binary targeting 64-bit Arm, let's deploy it to the Raspberry Pi 4 for
remote debugging.

Configuring launch settings for remote
debugging
Now, let's create a launch.json file so that we can deploy the
HelloGDBProject binary to the Raspberry Pi 4 and debug it
remotely from within Visual Studio Code:

1. Click on the Run icon on the left edge of the Visual Studio Code
window to open the Run sidebar.

2. Click on Create a launch.json file on the Run sidebar and select
C++ (GDB/LLDB) for the environment.

3. Select Default Configuration from the list of options when
prompted for a C/C++ debug configuration type.

4. Add or edit the following fields in the "(gdb) Launch"
configuration within .vscode/launch.json as follows:
"program":

"${workspaceFolder}/build/HelloGDBProjec
t",



"miDebuggerServerAddress":
"192.168.1.128:10000",

"targetArchitecture": "aarch64",

"miDebuggerPath":
"/opt/poky/3.1.5/sysroots/x86_64-
pokysdk-linux/usr/bin/aarch64-poky-
linux/aarch64-poky-linux-gdb",

5. Replace the 192.168.1.128 address in
miDebuggerServerAddress with the IP address of your
Raspberry Pi 4 and save the file.

6. Set a breakpoint in main.c at the first line of the body of the
main() function.

7. Click on the new build_and_debug – Utility in the Run sidebar
to send the HelloGDBProject binary to the Raspberry Pi 4 and
start it with gdbserver.

If the Raspberry Pi 4 and launch.json file were set up correctly,
then the contents of the Output pane should look like this:
[main] Building folder: hellogdb build_and_debug

[build] Starting build

[proc] Executing command: /usr/bin/cmake --build
/home/frank/hellogdb/build --config Debug
--target build_and_debug -- -j 14

[build] [100%] Built target HelloGDBProject

[build] Process ./HelloGDBProject created; pid =
552

[build] Listening on port 10000



Click on the (gdb) Launch button in the upper-left corner of the
Visual Studio Code window. GDB should hit the breakpoint we set in
main.c and a line like the following should appear in the Output
pane:
[build] Remote debugging from host 192.168.1.69,

port 44936

This is what Visual Studio Code should look like when GDB hits the
breakpoint:



Figure 19.7 – GDB remote debugging



Hit the blue Continue button hovering up top, and the following lines
should appear in the output pane:
[build] Hello CMake

[build]

[build] Child exited with status 0

[build] [100%] Built target build_and_debug

[build] Build finished with exit code 0

Congratulations! You have successfully integrated an SDK built with
Yocto into Visual Studio Code using CMake to enable GDB remote
debugging on a target device. This 
was no small feat, but now that you've seen how it's done, you can
do the same for your own projects.

Debugging kernel  code
You can use kgdb for source-level debugging, in a manner similar to
remote debugging with gdbserver. There is also a self-hosted
kernel debugger, kdb, that is handy for lighter-weight tasks such as
seeing whether an instruction is executed and getting the backtrace
to find out how it got there. Finally, there are kernel Oops messages
and panics, which tell you a lot about the cause of a kernel
exception.

Debugging kernel code with kgdb



When looking at kernel code using a source debugger, you must
remember that the kernel is a complex system, with real-time
behaviors. Don't expect debugging to be as easy as it is for
applications. Stepping through code that changes the memory
mapping or switches context is likely to produce odd results.

kgdb is the name given to the kernel GDB stubs that have been part
of mainline Linux for many years now. There is a user manual in the
kernel DocBook, and you can find an online version at
https://www.kernel.org/doc/htmldocs/kgdb/index.html.

In most cases, you will connect to kgdb over the serial interface,
which is usually shared with the serial console. Hence, this
implementation is called kgdboc, which is short for kgdb over
console. To work, it requires a platform tty driver that supports I/O
polling instead of interrupts, since kgdb has to disable interrupts
when communicating with GDB. A few platforms support kgdb over
USB, and there have been versions that work over Ethernet but,
unfortunately, none of those have found their way into mainline
Linux.

The same caveats regarding optimization and stack frames apply to
the kernel, with the limitation that the kernel is written to assume an
optimization level of at least -O1. You can override the kernel
compile flags by setting KCFLAGS before running make.

These, then, are the kernel configuration options you will need for
kernel debugging:

https://www.kernel.org/doc/htmldocs/kgdb/index.html


CONFIG_DEBUG_INFO is in the Kernel hacking | Compile-time
checks and compiler options | Compile the kernel with
debug info menu.

CONFIG_FRAME_POINTER may be an option for your
architecture and is in the Kernel hacking | Compile-time
checks and compiler options | Compile the kernel with frame
pointers menu.

CONFIG_KGDB is in the Kernel hacking | KGDB: kernel
debugger menu.

CONFIG_KGDB_SERIAL_CONSOLE is in the Kernel hacking |
KGDB: kernel debugger | KGDB: use kgdb over the serial
console menu.

In addition to the zImage or uImage compressed kernel image, the
kernel image must be in ELF object format so that GDB can load the
symbols into memory. This is the file called vmlinux that is
generated in the directory where Linux is built. In Yocto, you can
request that a copy be included in the target image and SDK. It is
built as a package named kernel-vmlinux, which you can install
like any other, for example, by adding it to the IMAGE_INSTALL list.

The file is put into the sysroot boot directory, with a name such as
this:
/opt/poky/3.1.5/sysroots/cortexa8hf-neon-poky-

linux-gnueabi/boot/vmlinux-5.4.72-yocto-
standard



In Buildroot, you will find vmlinux in the directory where the kernel
was built, which is in output/build/linux-<version
string>/vmlinux.

A sample debug session
The best way to show you how it works is with a simple example.

You need to tell kgdb which serial port to use, either through the
kernel command line or at runtime via sysfs. For the first option,
add kgdboc=<tty>,<baud rate> to the command line, as shown
here:
kgdboc=ttyO0,115200

For the second option, boot the device up and write the terminal
name to the 
/sys/module/kgdboc/parameters/kgdboc file, as shown here:
# echo ttyO0 >

/sys/module/kgdboc/parameters/kgdboc

Note that you cannot set the baud rate in this way. If it is the same
tty as the console, then it is set already. If not, use stty or a
similar program.

Now you can start GDB on the host, selecting the vmlinux file that
matches the 
running kernel:
$ arm-poky-linux-gnueabi-gdb ~/linux/vmlinux



GDB loads the symbol table from vmlinux and waits for further
input.

Next, close any terminal emulator that is attached to the console:
you are about to use it for GDB, and if both are active at the same
time, some of the debug strings might get corrupted.

Now, you can return to GDB and attempt to connect to kgdb.
However, you will find that the response you get from target
remote at this time is unhelpful:
(gdb) set serial baud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

Bogus trace status reply from target: qTStatus

The problem is that kgdb is not listening for a connection at this
point. You need to interrupt the kernel before you can enter into an
interactive GDB session with it. Unfortunately, just typing Ctrl + C in
GDB, as you would with an application, does not work. You have to
force a trap into the kernel by launching another shell on the target,
via SSH, for example, and writing g to /proc/sysrq-trigger on
the target board:
# echo g > /proc/sysrq-trigger

The target stops dead at this point. Now you can connect to kgdb
via the serial device at the host end of the cable:
(gdb) set serial baud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0



0xc009a59c in arch_kgdb_breakpoint ()

At last, GDB is in charge. You can set breakpoints, examine
variables, look at backtraces, and so on. As an example, set a break
on sys_sync, as follows:
(gdb) break sys_sync

Breakpoint 1 at 0xc0128a88: file fs/sync.c, line
103.

(gdb) c

Continuing.

Now the target comes back to life. Typing sync on the target calls
sys_sync and hits 
the breakpoint:
[New Thread 87]

[Switching to Thread 87]

Breakpoint 1, sys_sync () at fs/sync.c:103

If you have finished the debug session and want to disable kgdboc,
just set the kgdboc terminal to null:
# echo "" > /sys/module/kgdboc/parameters/kgdboc

Like attaching to a running process with GDB, this technique of
trapping the kernel and connecting to kgdb over a serial console
works once the kernel is done booting. But what if the kernel never
finishes booting because of a bug?

Debugging early code



The preceding example works in cases where the code you are
interested in is executed when the system is fully booted. If you need
to get in early, you can tell the kernel to wait during boot by adding
kgdbwait to the command line, after the kgdboc option:
kgdboc=ttyO0,115200 kgdbwait

Now, when you boot, you will see this on the console:
[ 1.103415] console [ttyO0] enabled

[ 1.108216] kgdb: Registered I/O driver kgdboc.

[ 1.113071] kgdb: Waiting for connection from
remote gdb...

At this point, you can close the console and connect from GDB in the
usual way.

Debugging modules
Debugging kernel modules presents an additional challenge
because the code is relocated at runtime, and so you need to find
out at what address it resides. The information is presented through
sysfs. The relocation addresses for each section of the module are
stored in /sys/module/<module name>/sections. Note that
since ELF sections begin with a dot (.), they appear as hidden files,
and you will have to use ls -a if you want to list them. The
important ones are .text, .data, and .bss.

Take as an example a module named mbx:
# cat /sys/module/mbx/sections/.text

0xbf000000



# cat /sys/module/mbx/sections/.data

0xbf0003e8

# cat /sys/module/mbx/sections/.bss

0xbf0005c0

Now you can use these numbers in GDB to load the symbol table for
the module at those addresses:
(gdb) add-symbol-file /home/chris/mbx-

driver/mbx.ko 0xbf000000 \

-s .data 0xbf0003e8 -s .bss 0xbf0005c0

add symbol table from file "/home/chris/mbx-
driver/mbx.ko" at

.text_addr = 0xbf000000

.data_addr = 0xbf0003e8

.bss_addr = 0xbf0005c0

Everything should now work as normal: you can set breakpoints and
inspect global and local variables in the module just as you can in
vmlinux:
(gdb) break mbx_write

Breakpoint 1 at 0xbf00009c: file /home/chris/mbx-
driver/mbx.c, line 93.

(gdb) c

Continuing.

Then, force the device driver to call mbx_write, and it will hit the
breakpoint:
Breakpoint 1, mbx_write (file=0xde7a71c0,

buffer=0xadf40 "hello\n\n",

length=6, offset=0xde73df80)

at /home/chris/mbx-driver/mbx.c:93



If you already use GDB to debug code in user space, then you
should feel right at home debugging kernel code and modules with
kgdb. Let's look at kdb next.

Debugging kernel code with kdb
Although kdb does not have the features of kgdb and GDB, it does
have its uses, and being selfhosted, there are no external
dependencies to worry about. kdb has a simple command-line
interface that you can use on a serial console. You can use it to
inspect memory, registers, process lists, and dmesg and even set
breakpoints to stop at a certain location.

To configure your kernel so that you can call kdb via a serial
console, enable kgdb as shown previously, and then enable this
additional option:

CONFIG_KGDB_KDB, which is in the KGDB: Kernel hacking |
kernel debugger | KGDB_KDB: Include kdb frontend for
kgdb menu

Now, when you force the kernel into a trap, instead of entering into a
GDB session, you will see the kdb shell on the console:
# echo g > /proc/sysrq-trigger

[ 42.971126] SysRq : DEBUG

Entering kdb (current=0xdf36c080, pid 83) due to
Keyboard Entry

kdb>



There are quite a few things you can do in the kdb shell. The help
command will print all of the options. Here is an overview:

Getting information:

ps: This displays active processes.

ps A: This displays all processes.

lsmod: This lists modules.

dmesg: This displays the kernel log buffer.

Breakpoints:

bp: This sets a breakpoint.

bl: This lists breakpoints.

bc: This clears a breakpoint.

bt: This prints a backtrace.

go: This continues execution.

Inspect memory and registers:

md: This displays memory.

rd: This displays registers.

Here is a quick example of setting a breakpoint:
kdb> bp sys_sync

Instruction(i) BP #0 at 0xc01304ec (sys_sync)

is enabled addr at 00000000c01304ec, hardtype=0
installed=0



kdb> go

The kernel returns to life and the console shows the normal shell
prompt. If you type sync, it hits the breakpoint and enters kdb
again:
Entering kdb (current=0xdf388a80, pid 88) due to

Breakpoint @0xc01304ec

kdb is not a source-level debugger, so you can't see the source
code or single-step. However, you can display a backtrace using the
bt command, which is useful for getting an idea of program flow and
call hierarchy.

Looking at an Oops
When the kernel performs an invalid memory access or executes an
illegal instruction, a kernel Oops message is written to the kernel
log. The most useful part of this is the backtrace, and I want to show
you how to use the information there to locate the line of code that
caused the fault. I will also address the problem of preserving Oops
messages if they cause the system to crash.

This Oops message was generated by writing to the mailbox driver
in MELP/Chapter19/mbx-driver-oops:
Unable to handle kernel NULL pointer dereference

at virtual address 00000004

pgd = dd064000

[00000004] *pgd=9e58a831, *pte=00000000,
*ppte=00000000



Internal error: Oops: 817 [#1] PREEMPT ARM

Modules linked in: mbx(O)

CPU: 0 PID: 408 Comm: sh Tainted: G O 4.8.12-
yocto-standard #1

Hardware name: Generic AM33XX (Flattened Device
Tree)

task: dd2a6a00 task.stack: de596000

PC is at mbx_write+0x24/0xbc [mbx]

LR is at __vfs_write+0x28/0x48

pc : [<bf0000f0>] lr : [<c024ff40>] psr: 800e0013

sp : de597f18 ip : de597f38 fp : de597f34

r10: 00000000 r9 : de596000 r8 : 00000000

r7 : de597f80 r6 : 000fda00 r5 : 00000002 r4 :
00000000

r3 : de597f80 r2 : 00000002 r1 : 000fda00 r0 :
de49ee40

Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA ARM
Segment none

Control: 10c5387d Table: 9d064019 DAC: 00000051

Process sh (pid: 408, stack limit = 0xde596210)

The line of the Oops that reads PC is at mbx_write+0x24/0xbc
[mbx] and tells you most of what you want to know: the last
instruction was in the mbx_write function of a kernel module
named mbx. Furthermore, it was at offset 0x24 bytes from the start
of the function, which is 0xbc bytes long.

Next, take a look at the backtrace:
Stack: (0xde597f18 to 0xde598000)

7f00: bf0000cc 00000002



7f20: 000fda00 de597f80 de597f4c de597f38 c024ff40
bf0000d8 de49ee40 00000002

7f40: de597f7c de597f50 c0250c40 c024ff24 c026eb04
c026ea70 de49ee40 de49ee40

7f60: 000fda00 00000002 c0107908 de596000 de597fa4
de597f80 c025187c c0250b80

7f80: 00000000 00000000 00000002 000fda00 b6eecd60
00000004 00000000 de597fa8

7fa0: c0107700 c0251838 00000002 000fda00 00000001
000fda00 00000002 00000000

7fc0: 00000002 000fda00 b6eecd60 00000004 00000002
00000002 000ce80c 00000000

7fe0: 00000000 bef77944 b6e1afbc b6e73d00 600e0010
00000001 d3bbdad3 d54367bf

[<bf0000f0>] (mbx_write [mbx]) from [<c024ff40>]
(__vfs_write+0x28/0x48)

[<c024ff40>] (__vfs_write) from [<c0250c40>]
(vfs_write+0xcc/0x158)

[<c0250c40>] (vfs_write) from [<c025187c>]
(SyS_write+0x50/0x88)

[<c025187c>] (SyS_write) from [<c0107700>]
(ret_fast_syscall+0x0/0x3c)

Code: e590407c e3520b01 23a02b01 e1a05002
(e5842004)

---[ end trace edcc51b432f0ce7d ]---

In this case, we don't learn much more, merely that mbx_write was
called from the virtual filesystem function, _vfs_write.

It would be very nice to find the line of code that relates to
mbx_write+0x24, for which we can use the GDB command
disassemble with the /s modifier so that it shows source and



assembler code together. In this example, the code is in the mbx.ko
module, so we load that into gdb:
$ arm-poky-linux-gnueabi-gdb mbx.ko

[…]

(gdb) disassemble /s mbx_write

Dump of assembler code for function mbx_write:

99 {

0x000000f0 <+0>: mov r12, sp

0x000000f4 <+4>: push {r4, r5, r6, r7, r11, r12,
lr, pc}

0x000000f8 <+8>: sub r11, r12, #4

0x000000fc <+12>: push {lr} ; (str lr, [sp, #-4]!)

0x00000100 <+16>: bl 0x100 <mbx_write+16>

100 struct mbx_data *m = (struct mbx_data *)file-
>private_data;

0x00000104 <+20>: ldr r4, [r0, #124] ; 0x7c

0x00000108 <+24>: cmp r2, #1024 ; 0x400

0x0000010c <+28>: movcs r2, #1024 ; 0x400

101 if (length > MBX_LEN)

102 length = MBX_LEN;

103 m->mbx_len = length;

0x00000110 <+32>: mov r5, r2

0x00000114 <+36>: str r2, [r4, #4]

The Oops told us that the error occurred at mbx_write+0x24. From
the disassembly, we can see that mbx_write is at address 0xf0.
Adding 0x24 gives 0x114, which is generated by the code on line
103.



IMPORTANT NOTE

You may think that I have got the wrong instruction because the
listing reads 0x00000114 <+36>: str r2, [r4, #4]. Surely,

we are looking for +24, and not +36? Ah, but the authors of GDB are

trying to confuse us here. The offsets are displayed in decimal, not
hex: 36 = 0x24, so I got the right one after all!

You can see from line 100 that m has the type struct mbx_data *.
Here is the place where that structure is defined:
#define MBX_LEN 1024

struct mbx_data {

    char mbx[MBX_LEN];

    int mbx_len;

};

So, it looks like the m variable is a null pointer, and that is what is
causing the Oops. Looking at the code where m is initialized, we can
see that there is a line missing. With the driver modified to initialize
the pointer, as shown highlighted in the following code block, it works
fine, without the Oops:
static int mbx_open(struct inode *inode, struct

file *file)

{

    if (MINOR(inode->i_rdev) >= NUM_MAILBOXES) {

        printk("Invalid mbx minor number\n");

        return -ENODEV;

    }



    file->private_data = &mailboxes[MINOR(inode-
>i_rdev)];

    return 0;

}

Not every Oops is this easy to pinpoint, especially if it occurs before
the contents of the kernel log buffer can be displayed.

Preserving the Oops
Decoding an Oops is only possible if you can capture it in the first
place. If the system crashes during boot before the console is
enabled, or after a suspend, you won't see it. There are mechanisms
to log kernel Oops and messages to an MTD partition or to
persistent memory, but here is a simple technique that works in
many cases and needs little prior thought.

So long as the contents of memory are not corrupted during a reset
(and usually they are not), you can reboot into the bootloader and
use it to display memory. You need to know the location of the kernel
log buffer, remembering that it is a simple ring buffer of text
messages. The symbol is __log_buf. Look this up in System.map
for the kernel:
$ grep __log_buf System.map

c0f72428 b __log_buf

Then, map that kernel logical address into a physical address that U-
Boot can understand by subtracting PAGE_OFFSET and adding the
physical start of RAM. PAGE_OFFSET is almost always



0xc0000000, and the start address of the RAM is 0x80000000 on
a BeagleBone, so the calculation becomes c0f72428 -
0xc0000000 + 0x80000000 = 80f72428.

Now you can use the U-Boot md command to show the log:
U-Boot#

md 80f72428

80f72428: 00000000 00000000 00210034 c6000000
........4.!.....

80f72438: 746f6f42 20676e69 756e694c 6e6f2078
Booting Linux on

80f72448: 79687020 61636973 5043206c 78302055
physical CPU 0x

80f72458: 00000030 00000000 00000000 00730084
0.............s.

80f72468: a6000000 756e694c 65762078 6f697372
....Linux versio

80f72478: 2e34206e 30312e31 68632820 40736972 n
4.1.10 (chris@

80f72488: 6c697562 29726564 63672820 65762063
builder) (gcc ve

80f72498: 6f697372 2e34206e 20312e39 6f726328
rsion 4.9.1 (cro

80f724a8: 6f747373 4e2d6c6f 2e312047 302e3032
sstool-NG 1.20.0

80f724b8: 20292029 53203123 5720504d 4f206465 ) )
#1 SMP Wed O

80f724c8: 32207463 37312038 3a31353a 47203335 ct
28 17:51:53 G

IMPORTANT NOTE



From Linux 3.5 onward, there is a 16-byte binary header for each
line in the kernel log buffer that encodes a timestamp, a log level,
and other things. There is a discussion about it in the Linux weekly
news entitled Toward more reliable logging, at
https://lwn.net/Articles/492125/.

In this section, we examined how kernel code can be debugged at
the source level using kgdb. Then we looked at setting breakpoints
and printing backtraces inside the kdb shell. Lastly, we learned how
to read kernel Oops messages either from a console using dmesg or
the U-Boot command line.

Summary
Knowing how to use GDB for interactive debugging is a useful tool in
the embedded system developer's tool chest. It is a stable, well-
documented, and well-known entity. It has the ability to debug
remotely by placing an agent on the target, be it gdbserver for
applications or kgdb for kernel code, and although the default
command-line user interface takes a while to get used to, there are
many alternative frontends. The three I mentioned were TUI, DDD,
and Visual Studio Code. Eclipse is another popular frontend that
supports debugging with GDB by way of the CDT plugin. I will refer
you to the references in the Further reading section for information
on how to configure CDT to work with a cross toolchain and connect
to a remote device.

https://lwn.net/Articles/492125/


A second and equally important way to approach debugging is to
collect crash reports and analyze them offline. In this category, we
looked at application core dumps and kernel Oops messages.

However, this is only one way of identifying flaws in programs. In the
next chapter, I will talk about profiling and tracing as ways of
analyzing and optimizing programs.

Further reading
The following resources have further information on the topics
introduced in this chapter:

The Art of Debugging with GDB, DDD, and Eclipse, by Norman
Matloff and Peter 
Jay Salzman

GDB Pocket Reference, by Arnold Robbins

Python Interpreter in GNU Debugger, by crazyguitar:
https://www.pythonsheets.com/appendix/python-gdb.html

Extending GDB with Python, by Lisa Roach:
https://www.youtube.com/watch?v=xt9v5t4_zvE

Cross-compiling with CMake and VS Code, by Enes ÖZTÜRK:
https://enes-ozturk.medium.com/cross-compiling-with-cmake-
and-vscode-9ca4976fdd1

Remote Debugging with GDB, by Enes ÖZTÜRK: https://enes-
ozturk.medium.com/remote-debugging-with-gdb-b4b0ca45b8c1

https://www.pythonsheets.com/appendix/python-gdb.html
https://www.youtube.com/watch?v=xt9v5t4_zvE
https://enes-ozturk.medium.com/cross-compiling-with-cmake-and-vscode-9ca4976fdd1
https://enes-ozturk.medium.com/remote-debugging-with-gdb-b4b0ca45b8c1


Getting to grips with Eclipse: cross compiling:
https://2net.co.uk/tutorial/eclipse-cross-compile

Getting to grips with Eclipse: remote access and debugging:
https://2net.co.uk/tutorial/eclipse-rse

https://2net.co.uk/tutorial/eclipse-cross-compile
https://2net.co.uk/tutorial/eclipse-rseS


Chapter 20 :  Prof i l ing and
Tracing
Interactive debugging using a source-level debugger, as described in
the previous chapter, can give you an insight into the way a program
works, but it constrains your view to a small body of code. In this
chapter, we will look at the larger picture to see whether the system
is performing as intended.

Programmers and system designers are notoriously bad at guessing
where bottlenecks are. So if your system has performance issues, it
is wise to start by looking at the full system and then work down,
using more sophisticated tools as you go. In this chapter, I'll begin
with the well-known top command as a means of getting an
overview. Often the problem can be localized to a single program,
which you can analyze using the Linux profiler, perf. If the problem
is not so localized and you want to get a broader picture, perf can
do that as well. To diagnose problems associated with the kernel, I
will describe some trace tools, Ftrace, LTTng, and BPF, as a means
of gathering detailed information.

I will also cover Valgrind, which, because of its sandboxed execution
environment, can monitor a program and report on code as it runs. I
will complete the chapter with a description of a simple trace tool,
strace, which reveals the execution of a program by tracing the
system calls it makes.



In this chapter, we will cover the following topics:

The observer effect

Beginning to profile

Profiling with top

The poor man's profiler

Introducing perf

Tracing events

Introducing Ftrace

Using LTTng

Using BPF

Using Valgrind

Using strace

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system

Buildroot 2020.02.9 LTS release

Etcher for Linux

A Micro SD card reader and card



A Raspberry Pi 4

A 5 V 3A USB-C power supply

An Ethernet cable and port for network connectivity

You should have already installed the 2020.02.9 LTS release of
Buildroot for Chapter 6, Selecting a Build System. If you have not,
then refer to the System requirements section of The Buildroot user
manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions
from Chapter 6.

All of the code for this chapter can be found in the Chapter20 folder
from the book's GitHub repository:
https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

The observer effect
Before diving into the tools, let's talk about what the tools will show
you. As is the case in many fields, measuring a certain property
affects the observation itself. Measuring the electric current in a
power supply line requires measuring the voltage drop over a small
resistor. However, the resistor itself affects the current. The same is
true for profiling: every system observation has a cost in CPU cycles,
and that resource is no longer spent on the application.
Measurement tools also mess up caching behavior, eat memory

https://buildroot.org/downloads/manual/manual.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


space, and write to disk, which all make it worse. There is no
measurement without overhead.

I've often heard engineers say that the results of a profiling job were
totally misleading. That is usually because they were performing the
measurements on something not approaching a real situation.
Always try to measure on the target, using release builds of the
software, with a valid dataset, using as few extra services as
possible.

A release build usually implies building fully optimized binaries
without debug symbols. These production requirements severely
limit the functionality of most profiling tools.

Symbol tables and compile f lags
Once our system is up and running, we will hit a problem right away.
While it is important to observe the system in its natural state, the
tools often need additional information to make sense of the events.

Some tools require special kernel options. For the tools we are
examining in this chapter, this applies to perf, Ftrace, LTTng, and
BPF. Therefore, you will probably have to build and deploy a new
kernel for these tests.

Debug symbols are very helpful in translating raw program
addresses into function names and lines of code. Deploying
executables with debug symbols does not change the execution of
the code, but it does require that you have copies of the binaries and



the kernel compiled with debug information, at least for the
components you want to profile. Some tools work best if you have
these installed on the target system: perf, for example. The
techniques are the same as for general debugging as I discussed in
Chapter 19, Debugging with GDB.

If you want a tool to generate call graphs, you may have to compile
with stack frames enabled. If you want the tool to attribute addresses
with lines of code accurately, you may need to compile with lower
levels of optimization.

Finally, some tools require instrumentation to be inserted into the
program to capture samples, so you will have to recompile those
components. This applies to Ftrace and LTTng for the kernel.

Be aware that the more you change the system you are observing,
the harder it is to relate the measurements you make to the
production system.

TIP

It is best to adopt a wait-and-see approach, making changes only
when the need is clear, and being mindful that each time you do so,
you will change what you are measuring.

Because the results of profiling can be so ambiguous, start with
simple, easy-to-use tools that are readily available before reaching
for more complex and invasive instruments.

Beginning to prof i le



When looking at the entire system, a good place to start is with a
simple tool such as 
top, which gives you an overview very quickly. It shows you how
much memory is being used, which processes are eating CPU
cycles, and how this is spread across different cores and times.

If top shows that a single application is using up all the CPU cycles
in user space, then you can profile that application using perf.

If two or more processes have a high CPU usage, there is probably
something that is coupling them together, perhaps data
communication. If a lot of cycles are spent on system calls or
handling interrupts, then there may be an issue with the kernel
configuration or with a device driver. In either case, you need to start
by taking a profile 
of the whole system, again using perf.

If you want to find out more about the kernel and the sequencing of
events there, use Ftrace, LTTng, or BPF.

There could be other problems that top will not help you with. If you
have multi-threaded code and there are problems with lockups, or if
you have random data corruption, then Valgrind plus the Helgrind
plugin might be helpful. Memory leaks also fit into this category; I
covered memory-related diagnosis in Chapter 18, Managing
Memory.

Before we get into these more-advanced profiling tools, let start with
the most rudimentary one that is found on most systems, including
those in production.



Prof i l ing wi th top
The top program is a simple tool that doesn't require any special
kernel options or symbol tables. There is a basic version in BusyBox
and a more functional version in the procps package, which is
available in the Yocto Project and Buildroot. You may also want to
consider using htop, which has functionally similar to top but has a
nicer user interface (some people think).

To begin with, focus on the summary line of top, which is the
second line if you are using BusyBox and the third line if you are
using top from procps. Here is an example, using BusyBox's top:
Mem: 57044K used, 446172K free, 40K shrd, 3352K

buff, 34452K cached

CPU: 58% usr 4% sys 0% nic 0% idle 37% io 0% irq
0% sirq

Load average: 0.24 0.06 0.02 2/51 105

PID PPID USER STAT VSZ %VSZ %CPU COMMAND

105 104 root R 27912 6% 61% ffmpeg -i track2.wav

[…]

The summary line shows the percentage of time spent running in
various states, as shown in this table:



In the preceding example, almost all of the time (58%) is spent in
user mode, with a small amount (4%) in system mode, so this is a
system that is CPU-bound in user space. The first line after the
summary shows that just one application is responsible: ffmpeg.
Any efforts toward reducing CPU usage should be directed there.

Here is another example:
Mem: 13128K used, 490088K free, 40K shrd, 0K buff,

2788K cached



CPU: 0% usr 99% sys 0% nic 0% idle 0% io 0% irq 0%
sirq

Load average: 0.41 0.11 0.04 2/46 97

PID PPID USER STAT VSZ %VSZ %CPU COMMAND

92 82 root R 2152 0% 100% cat /dev/urandom

[…]

This system is spending almost all of the time in kernel space (99%
sys), as a result of cat reading from /dev/urandom. In this
artificial case, profiling cat by itself would not help, but profiling the
kernel functions that cat calls might.

The default view of top shows only processes, so the CPU usage is
the total of all the threads in the process. Press H to see information
for each thread. Likewise, it aggregates the time across all CPUs. If
you are using the procps version of top, you can see a summary
per CPU by pressing the 1 key.

Once we have singled out the problem process using top, we can
attach GDB to it.

The poor man's prof i ler
You can profile an application just by using GDB to stop it at arbitrary
intervals to see what it is doing. This is the poor man's profiler. It is
easy to set up and is one way of gathering profile data.

The procedure is simple:



1. Attach to the process using gdbserver (for a remote debug) or
GDB (for a 
native debug). The process stops.

2. Observe the function it stopped in. You can use the backtrace
GDB command 
to see the call stack.

3. Type continue so that the program resumes.

4. After a while, press Ctrl + C to stop it again, and go back to step
2.

If you repeat steps 2 to 4 several times, you will quickly get an idea
of whether it is looping or making progress, and if you repeat them
often enough, you will get an idea of where the hotspots in the code
are.

There is a whole web page dedicated to this idea at
http://poormansprofiler.org, together with scripts that make it a little
easier. I have used this technique many times over the years with
various operating systems and debuggers.

This is an example of statistical profiling, in which you sample the
program state at intervals. After a number of samples, you begin to
learn the statistical likelihood of the functions being executed. It is
surprising how few you really need. Other statistical profilers are
perf record, OProfile, and gprof.

Sampling using a debugger is intrusive because the program is
stopped for a significant period while you collect the sample. Other

http://poormansprofiler.org/


tools can do this with much lower overhead. One such tool is perf.

Introducing perf
perf is an abbreviation of the Linux performance event counter
subsystem, 
perf_events, and also the name of the command-line tool for
interacting with 
perf_events. Both have been part of the kernel since Linux
2.6.31. There is plenty of useful information in the Linux source tree
in tools/perf/Documentation as well as at
https://perf.wiki.kernel.org.

The initial impetus for developing perf was to provide a unified way
to access the registers of the performance measurement unit
(PMU), which is part of most modern processor cores. Once the API
was defined and integrated into Linux, it became logical to extend it
to cover other types of performance counters.

At its heart, perf is a collection of event counters with rules about
when they actively collect data. By setting the rules, you can capture
data from the whole system, just the kernel, or just one process and
its children, and do it across all CPUs or just one CPU. It is very
flexible. With this one tool, you can start by looking at the whole
system, then zero in on a device driver that seems to be causing
problems, an application that is running slowly, or a library function
that seems to be taking longer to execute than you thought.

https://perf.wiki.kernel.org/


The code for the perf command-line tool is part of the kernel, in the
tools/perf directory. The tool and the kernel subsystem are
developed hand in hand, meaning that they must be from the same
version of the kernel. perf can do a lot. In this chapter, I will
examine it only as a profiler. For a description of its other
capabilities, read the perf man pages and refer to the
documentation mentioned at the start of this section.

In addition to debug symbols, there are two configuration options we
need to set to fully enable perf in the kernel.

Configuring the kernel for perf
You need a kernel that is configured for perf_events, and you
need the perf command cross-compiled to run on the target. The
relevant kernel configuration is CONFIG_PERF_EVENTS, present in
the General setup | Kernel Performance Events and Counters
menu.

If you want to profile using tracepoints—more on this subject later—
also enable the options described in the section about Ftrace. While
you are there, it is worthwhile enabling CONFIG_DEBUG_INFO as
well.

The perf command has many dependencies, which makes cross-
compiling it quite messy. However, both the Yocto Project and
Buildroot have target packages for it.



You will also need debug symbols on the target for the binaries that
you are interested in profiling; otherwise, perf will not be able to
resolve addresses to meaningful symbols. Ideally, you want debug
symbols for the whole system, including the kernel. For the latter,
remember that the debug symbols for the kernel are in the vmlinux
file.

Building perf with the Yocto
Project
If you are using the standard linux-yocto kernel, perf_events
is enabled already, so there is nothing more to do.

To build the perf tool, you can add it explicitly to the target image
dependencies, or you can add the tools-profile feature. As I
mentioned previously, you will probably want debug symbols on the
target image as well as the kernel vmlinux image. In total, this is
what you will need in conf/local.conf:
EXTRA_IMAGE_FEATURES = "debug-tweaks dbg-pkgs

tools-profile"

IMAGE_INSTALL_append = "kernel-vmlinux"

Adding perf to a Buildroot-based image can be more involved
depending on the source of our default kernel configuration.

Building perf with Buildroot



Many Buildroot kernel configurations do not include perf_events,
so you should begin by checking that your kernel includes the
options mentioned in the preceding section.

To cross-compile perf, run the Buildroot menuconfig and select
the following:

BR2_LINUX_KERNEL_TOOL_PERF in Kernel | Linux Kernel
Tools

To build packages with debug symbols and install them unstripped
on the target, select these two settings:

BR2_ENABLE_DEBUG in the Build options | build packages
with debugging symbols menu

BR2_STRIP = none in the Build options | strip command for
binaries on target menu

Then, run make clean, followed by make.

Once you have built everything, you will have to copy vmlinux into
the target 
image manually.

Profi l ing with perf
You can use perf to sample the state of a program using one of the
event counters and accumulate samples over a period of time to
create a profile. This is another example of statistical profiling. The



default event counter is called cycles, which is a generic hardware
counter that is mapped to a PMU register representing a count of
cycles at the core clock frequency.

Creating a profile using perf is a two-stage process: the perf
record command captures samples and writes them to a file
named perf.data (by default), and then perf report analyzes
the results. Both commands are run on the target. The samples
being collected are filtered for the process and children of a
command you specify. Here is an example of profiling a shell script
that searches for the linux string:
# perf record sh -c "find /usr/share | xargs grep

linux > /dev/null"

[ perf record: Woken up 2 times to write data ]

[ perf record: Captured and wrote 0.368 MB
perf.data (~16057 samples) ]

# ls -l perf.data

-rw------- 1 root root 387360 Aug 25 2015
perf.data

Now you can show the results from perf.data using the perf
report command. There are three user interfaces you can select
on the command line:

--stdio: This is a pure-text interface with no user interaction.
You will have to launch perf report and annotate for each
view of the trace.

--tui: This is a simple text-based menu interface with traversal
between screens.



--gtk: This is a graphical interface that otherwise acts in the
same way as --tui.

The default is TUI, as shown in this example:

Figure 20.1 – perf report TUI

perf is able to record the kernel functions executed on behalf of the
processes because it collects samples in kernel space.



The list is ordered with the most active functions first. In this
example, all but one are captured while grep is running. Some are
in a library, libc-2.20, some are in a program, busybox.nosuid,
and some are in the kernel. We have symbol names for program and
library functions because all the binaries have been installed on the
target with debug information, and kernel symbols are being read
from /boot/vmlinux. If you have vmlinux in a different location,
add -k <path> to the perf report command. Rather than
storing samples in perf.data, you can save them to a different file
using perf record -o <file name> and analyze them using
perf report -i <file name>.

By default, perf record samples at a frequency of 1,000 Hz using
the cycles counter.

TIP

A sampling frequency of 1,000 Hz may be higher than you really
need and 
may be the cause of the observer effect. Try with lower rates; 100 Hz
is enough for most cases, in my experience. You can set the sample
frequency using 
the -F option.

This is still not really making life easy; the functions at the top of the
list are mostly low-level memory operations, and you can be fairly
sure that they have already been optimized. Fortunately, perf



record also gives us the ability to crawl up the call stack and see
where these functions are being invoked.

Call graphs
It would be nice to step back and see the surrounding context of
these costly functions. You can do that by passing the -g option to
perf record to capture the backtrace from each sample.

Now, perf report shows a plus sign (+) where the function is part
of a call chain. You can expand the trace to see the functions lower
down in the chain:



Figure 20.2 – perf report (call graphs)

IMPORTANT NOTE

Generating call graphs relies on the ability to extract call frames from
the stack, just as is necessary for backtraces in GDB. The
information needed to unwind stacks is encoded in the debug
information of the executables, but not all combinations of
architecture and toolchains are capable of doing so.



Backtraces are nice, but where is the assembler, or better yet, the
source code, for 
these functions?

perf annotate
Now that you know which functions to look at, it would be nice to
step inside and see the code and to have hit counts for each
instruction. That is what perf annotate does, by calling down to a
copy of objdump installed on the target. You just need to use perf
annotate in place of perf report.

perf annotate requires symbol tables for the executables and
vmlinux. Here is an example of an annotated function:



Figure 20.3 – perf annotate (assembler)

If you want to see the source code interleaved with the assembler,
you can copy the relevant source files to the target device. If you are
using the Yocto Project and build with the dbg-pkgs extra image
feature, or have installed the individual -dbg package, then the
source will have been installed for you in /usr/src/debug.



Otherwise, you can examine the debug information to see the
location of the source code:
$ arm-buildroot-linux-gnueabi-objdump --dwarf

lib/libc-2.19.so | grep DW_AT_comp_dir

<3f> DW_AT_comp_dir :
/home/chris/buildroot/output/build/hostgcc
-initial-4.8.3/build/arm-buildroot-linux-
gnueabi/libgcc

The path on the target should be exactly the same as the path you
can see in 
DW_AT_comp_dir.

Here is an example of annotation with the source and assembler
code:



Figure 20.4 – perf annotate (source code)

Now we can see the corresponding C source code above cmp r0
and below the str r3, [fp, #-40] instruction.

This concludes our coverage of perf. While there are other
statistical sampling profilers, such as OProfile and gprof, that
predate perf, these tools have fallen out of favor in recent years, so
I chose to omit them. Next, we will look at event tracers.



Tracing events
The tools we have seen so far all use statistical sampling. You often
want to know more about the ordering of events so that you can see
them and relate them to each other. Function tracing involves
instrumenting the code with tracepoints that capture information
about the event, and may include some or all of the following:

A timestamp

Context, such as the current PID

Function parameters and return values

A callstack

It is more intrusive than statistical profiling and it can generate a
large amount of data. The latter problem can be mitigated by
applying filters when the sample is captured and later on when
viewing the trace.

I will cover three trace tools here: the kernel function tracers Ftrace,
LTTng, and BPF.

Introducing Ftrace
The kernel function tracer Ftrace evolved from work done by Steven
Rostedt and many others as they were tracking down the causes of
high scheduling latency in real-time applications. Ftrace appeared in
Linux 2.6.27 and has been actively developed since then. There are



a number of documents describing kernel tracing in the kernel
source in Documentation/trace.

Ftrace consists of a number of tracers that can log various types of
activity in the kernel. Here, I am going to talk about the function
and function_graph tracers and the event tracepoints. In Chapter

21, Real-Time Programming, I will revisit Ftrace and use it to show
real-time latencies.

The function tracer instruments each kernel function so that calls
can be recorded and timestamped. As a matter of interest, it
compiles the kernel with the -pg switch to inject the instrumentation.
The function_graph tracer goes further and records both the
entry and exit of functions so that it can create a call graph. The
event tracepoints feature also records parameters associated with
the call.

Ftrace has a very embedded-friendly user interface that is entirely
implemented through virtual files in the debugfs filesystem,
meaning that you do not have to install any tools 
on the target to make it work. Nevertheless, there are other user
interfaces if you prefer: trace-cmd is a command-line tool that
records and views traces and is available in Buildroot
(BR2_PACKAGE_TRACE_CMD) and the Yocto Project (trace-cmd).
There is a graphical trace viewer named KernelShark that is
available as a package for the Yocto Project.

Like perf, enabling Ftrace requires setting certain kernel
configuration options.



Preparing to use Ftrace
Ftrace and its various options are configured in the kernel
configuration menu. You will need the following as a minimum:

CONFIG_FUNCTION_TRACER from the Kernel hacking | Tracers
| Kernel Function Tracer menu

For reasons that will become clear later, you would be well advised
to turn on these options as well:

CONFIG_FUNCTION_GRAPH_TRACER in the Kernel hacking |
Tracers | Kernel Function Graph Tracer menu

CONFIG_DYNAMIC_FTRACE in the Kernel hacking | Tracers |
enable/disable function tracing dynamically menu

Since the whole thing is hosted in the kernel, there is no user space
configuration to 
be done.

Using Ftrace
Before you can use Ftrace, you have to mount the debugfs
filesystem, which by convention goes in the /sys/kernel/debug
directory:
# mount -t debugfs none /sys/kernel/debug

All the controls for Ftrace are in the
/sys/kernel/debug/tracing directory; there is even a mini



HOWTO in the README file there.

This is the list of tracers available in the kernel:
# cat /sys/kernel/debug/tracing/available_tracers

blk function_graph function nop

The active tracer is shown by current_tracer, which initially will
be the null 
tracer, nop.

To capture a trace, select the tracer by writing the name of one of the
available_tracers to current_tracer, and then enable
tracing for a short while, as shown here:
# echo function >

/sys/kernel/debug/tracing/current_tracer

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# sleep 1

# echo 0 > /sys/kernel/debug/tracing/tracing_on

In that one second, the trace buffer will have been filled with the
details of every function called by the kernel. The format of the trace
buffer is plain text, as described in
Documentation/trace/ftrace.txt. You can read the trace
buffer from the trace file:
# cat /sys/kernel/debug/tracing/trace

# tracer: function

#

# entries-in-buffer/entries-written:
40051/40051   #P:1

#



#                     _-----=> irqs-off

#                    / _----=> need-resched

#                   | / _---=> hardirq/softirq

#                   || / _--=> preempt-depth

#                   ||| /     delay

# TASK-PID   CPU#   ||||   TIMESTAMP   FUNCTION

#   | |       |     ||||       |          |

sh-361 [000] ...1 992.990646: mutex_unlock <-
rb_simple_write

sh-361 [000] ...1 992.990658: __fsnotify_parent <-
vfs_write

sh-361 [000] ...1 992.990661: fsnotify <-vfs_write

sh-361 [000] ...1 992.990663: __srcu_read_lock <-
fsnotify

sh-361 [000] ...1 992.990666: preempt_count_add <-
__srcu_read_lock

sh-361 [000] ...2 992.990668: preempt_count_sub <-
__srcu_read_lock

sh-361 [000] ...1 992.990670: __srcu_read_unlock
<-fsnotify

sh-361 [000] ...1 992.990672: __sb_end_write <-
vfs_write

sh-361 [000] ...1 992.990674: preempt_count_add <-
__sb_end_write

[…]

You can capture a large number of data points in just one second—
in this case, over 40,000.

As with profilers, it is difficult to make sense of a flat function list like
this. If you select the function_graph tracer, Ftrace captures call



graphs like this:
# tracer: function_graph

#

# CPU  DURATION            FUNCTION CALLS

# |     |   |               |   |   |   |

0) + 63.167 us   |              } /*
cpdma_ctlr_int_ctrl */

0) + 73.417 us   |            } /*
cpsw_intr_disable */

0)               |            disable_irq_nosync()
{

0)               |              __disable_irq_nosy
nc() {

0)               |                __irq_get_desc_l
ock() {

0)   0.541 us    |                  irq_to_desc();

0)   0.500
us    |                  preempt_count_add
();

0) + 16.000 us   |                }

0)               |                __disable_irq()
{

0)   0.500 us    |                  irq_disable();

0)   8.208 us    |                }

0)               |                __irq_put_desc_u
nlock() {

0)   0.459
us    |                  preempt_count_sub
();

0)   8.000 us    |                }



0) + 55.625 us   |              }

0) + 63.375 us   |            }

Now you can see the nesting of the function calls, delimited by
braces, { and }. At the terminating brace, there is a measurement of
the time taken in the function, annotated with a plus sign (+) if it
takes more than 10 µs and an exclamation mark (!) if it takes more
than 100 µs.

You are often only interested in the kernel activity caused by a single
process or thread, 
in which case you can restrict the trace to the one thread by writing
the thread ID to 
set_ftrace_pid.

Dynamic Ftrace and trace f i l ters
Enabling CONFIG_DYNAMIC_FTRACE allows Ftrace to modify the
function trace sites at runtime, which has a couple of benefits. Firstly,
it triggers additional build-time processing of the trace function
probes, which allows the Ftrace subsystem to locate them at boot
time and overwrite them with NOP instructions, thus reducing the
overhead of the function trace code to almost nothing. You can then
enable Ftrace in production or near-production kernels with no
impact on performance.

The second advantage is that you can selectively enable function
trace sites rather than tracing everything. The list of functions is put



into available_filter_functions; there are several tens of
thousands of them. You can selectively enable function traces as
you need them by copying the name from
available_filter_functions to set_ftrace_filter and
then stop tracing that function by writing the name to
set_ftrace_notrace. You can also use wildcards and append
names to the list. For example, suppose you are interested in tcp
handling:
# cd /sys/kernel/debug/tracing

# echo "tcp*" > set_ftrace_filter

# echo function > current_tracer

# echo 1 > tracing_on

Run some tests and then look at trace:
# cat trace

# tracer: function

#

# entries-in-buffer/entries-written:
590/590   #P:1

#

#                     _-----=> irqs-off

#                    / _----=> need-resched

#                   | / _---=> hardirq/softirq

#                   || / _--=> preempt-depth

#                   ||| /     delay

#  TASK-PID   CPU# ||||   TIMESTAMP  FUNCTION

#    | |       |   ||||       |         |



dropbear-375 [000] ...1 48545.022235: tcp_poll <-
sock_poll

dropbear-375 [000] ...1 48545.022372: tcp_poll <-
sock_poll

dropbear-375 [000] ...1 48545.022393: tcp_sendmsg
<-inet_sendmsg

dropbear-375 [000] ...1 48545.022398: tcp_send_mss
<-tcp_sendmsg

dropbear-375 [000] ...1 48545.022400:
tcp_current_mss <-tcp_send_mss

[…]

The set_ftrace_filter function can also contain commands, for
example, to start and stop tracing when certain functions are
executed. There isn't space to go into these details here, but if you
want to find out more, read the Filter commands section in
Documentation/trace/ftrace.txt.

Trace events
The function and function_graph tracers described in the
preceding section record only the time at which the function was
executed. The trace events feature also records parameters
associated with the call, making the trace more readable and
informative. For example, instead of just recording that the kmalloc
function has been called, a trace event will record the number of
bytes requested and the returned pointer. Trace events are used in
perf and LTTng as well as Ftrace, but the development of the trace
events subsystem was prompted by the LTTng project.



It takes effort from kernel developers to create trace events, since
each one is different. They are defined in the source code using the
TRACE_EVENT macro; there are over a thousand of them now. You
can see the list of events available at runtime in
/sys/kernel/debug/tracing/available_events. They are
named subsystem:function, for example, kmem:kmalloc. Each
event is also represented by a subdirectory in
tracing/events/[subsystem]/[function], as demonstrated
here:
# ls events/kmem/kmalloc

enable filter format id trigger

The files are as follows:

enable: You write a 1 to this file to enable the event.

filter: This is an expression that must evaluate to true for the
event to be traced.

format: This is the format of the event and parameters.

id: This is a numeric identifier.

trigger: This is a command that is executed when the event
occurs using the syntax defined in the Filter commands section of
Documentation/trace/ftrace.txt.

I will show you a simple example involving kmalloc and kfree.
Event tracing does not depend on the function tracers, so begin by
selecting the nop tracer:



# echo nop > current_tracer

Next, select the events to trace by enabling each one individually:
# echo 1 > events/kmem/kmalloc/enable

# echo 1 > events/kmem/kfree/enable

You can also write the event names to set_event, as shown here:
# echo "kmem:kmalloc kmem:kfree" > set_event

Now, when you read the trace, you can see the functions and their
parameters:
# tracer: nop

#

# entries-in-buffer/entries-written:
359/359   #P:1

#

#                      _-----=> irqs-off

#                     / _----=> need-resched

#                    | / _---=> hardirq/softirq

#                    || / _--=> preempt-depth

#                    ||| /     delay

#   TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#      | |       |   ||||       |         |

     cat-382   [000] ...1  2935.586706:
kmalloc:call_site=c0554644 ptr=de515a00

        bytes_req=384 bytes_alloc=512

        gfp_flags=GFP_ATOMIC|GFP_NOWARN|GFP_NOMEMA
LLOC

     cat-382   [000] ...1  2935.586718: kfree:
call_site=c059c2d8 ptr=(null)



Exactly the same trace events are visible in perf as tracepoint
events.

Since there is no bloated user space component to build, Ftrace is
well-suited for deploying to most embedded targets. Next, we will
look at another popular event tracer whose origins predate those of
Ftrace.

Using LTTng
The Linux Trace Toolkit (LTT) project was started by Karim
Yaghmour as a means of tracing kernel activity and was one of the
first trace tools generally available for the Linux kernel. Later,
Mathieu Desnoyers took up the idea and re-implemented it as a
next-generation trace tool, LTTng. It was then expanded to cover
user space traces as well as the kernel. The project website is at
https://lttng.org/ and contains a comprehensive user manual.

LTTng consists of three components:

A core session manager

A kernel tracer implemented as a group of kernel modules

A user space tracer implemented as a library

In addition to those, you will need a trace viewer such as Babeltrace
(https://babeltrace.org) or the Eclipse Trace Compass plugin to
display and filter the raw trace data on the host or target.

https://lttng.org/
https://babeltrace.org/


LTTng requires a kernel configured with CONFIG_TRACEPOINTS,
which is enabled when you select Kernel hacking | Tracers |
Kernel Function Tracer.

The description that follows refers to LTTng version 2.5; other
versions may be different.

LTTng and the Yocto Project
You need to add these packages to the target dependencies to
conf/local.conf:
IMAGE_INSTALL_append = " lttng-tools lttng-modules

lttng-ust"

If you want to run Babeltrace on the target, also append the
babeltrace package.

LTTng and Buildroot
You need to enable the following:

BR2_PACKAGE_LTTNG_MODULES in the Target packages |
Debugging, profiling and benchmark | lttng-modules menu

BR2_PACKAGE_LTTNG_TOOLS in the Target packages |
Debugging, profiling and benchmark | lttng-tools menu

For user space trace tracing, enable this:



BR2_PACKAGE_LTTNG_LIBUST in the Target packages |
Libraries | Other, enable lttng-libust menu

There is a package called lttng-babletrace for the target.
Buildroot builds the babeltrace host automatically and places it in
output/host/usr/bin/babeltrace.

Using LTTng for kernel tracing
LTTng can use the set of ftrace events described previously as
potential tracepoints. Initially, they are disabled.

The control interface for LTTng is the lttng command. You can list
the kernel probes using the following:
# lttng list --kernel

Kernel events:

-------------

writeback_nothread (loglevel: TRACE_EMERG (0))
(type: tracepoint)

writeback_queue (loglevel: TRACE_EMERG (0)) (type:
tracepoint)

writeback_exec (loglevel: TRACE_EMERG (0)) (type:
tracepoint)

[…]

Traces are captured in the context of a session, which in this
example is called test:
# lttng create test

Session test created.



Traces will be written in /home/root/lttng-
traces/test-20150824-140942

# lttng list

Available tracing sessions:

1) test (/home/root/lttng-traces/test-20150824-
140942) [inactive]

Now enable a few events in the current session. You can enable all
kernel tracepoints using the --all option, but remember the
warning about generating too much trace data. Let's start with a
couple of scheduler-related trace events:
# lttng enable-event --kernel

sched_switch,sched_process_fork

Check that everything is set up:
# lttng list test

Tracing session test: [inactive]

    Trace path: /home/root/lttng-traces/test-
20150824-140942

    Live timer interval (usec): 0

=== Domain: Kernel ===

Channels:

-------------

- channel0: [enabled]

Attributes:

      overwrite mode: 0

      subbufers size: 26214

      number of subbufers: 4

      switch timer interval: 0

      read timer interval: 200000



      trace file count: 0

      trace file size (bytes): 0

      output: splice()

Events:

      sched_process_fork (loglevel: TRACE_EMERG
(0)) (type: tracepoint) [enabled]

      sched_switch (loglevel: TRACE_EMERG (0))
(type: tracepoint) [enabled]

Now start tracing:
# lttng start

Run the test load, and then stop tracing:
# lttng stop

Traces for the session are written to the session directory, lttng-
traces/<session>/kernel.

You can use the Babeltrace viewer to dump the raw trace data in text
format. In this case, I ran it on the host computer:
$ babeltrace lttng-traces/test-20150824-

140942/kernel

The output is too verbose to fit on this page, so I will leave it as an
exercise for you to capture and display a trace in this way. The text
output from Babeltrace does have the advantage that it is easy to
search for strings using grep and similar commands.

A good choice for a graphical trace viewer is the Trace Compass
plugin for Eclipse, which is now part of the Eclipse IDE for the C/C++
developer bundle. Importing the trace data into Eclipse is
characteristically fiddly. Briefly, you need to follow these steps:



1. Open the Tracing perspective.

2. Create a new project by selecting File | New | Tracing project.

3. Enter a project name and click on Finish.

4. Right-click on the New Project option in the Project Explorer
menu and 
select Import.

5. Expand Tracing, and then select Trace Import.

6. Browse to the directory containing the traces (for example,
test-20150824-140942), tick the box to indicate which
subdirectories you want (it might be kernel), and click on Finish.

7. Expand the project and, within that, expand Traces[1], and then
within that, double-click on kernel.

Now, let's switch gears away from LTTng and jump headfirst into the
latest and greatest event tracer for Linux.

Using BPF
BPF (Berkeley Packet Filter) is a technology that was first
introduced in 1992 to capture, filter, and analyze network traffic. In
2013, Alexi Starovoitov undertook a rewrite of BPF with help from
Daniel Borkmann. Their work, then known as eBPF (extended
BPF), was merged into the kernel in 2014, where it has been
available since Linux 3.15. BPF provides a sandboxed execution
environment for running programs inside the Linux kernel. BPF



programs are written in C and are just-in-time (JIT) compiled to
native code. Before that can happen, the intermediate BPF bytecode
must first pass through a series of safety checks so that a program
cannot crash the kernel.

Despite its networking origins, BPF is now a general-purpose virtual
machine running inside the Linux kernel. By making it easy to run
small programs on specific kernel and application events, BPF has
quickly emerged as the most powerful tracer for Linux. Like what
cgroups did for containerized deployments, BPF has the potential to
revolutionize observability by enabling users to fully instrument
production systems. Netflix and Facebook make extensive use of
BPF across their microservices and cloud infrastructure for
performance analysis and thwarting distributed denial of service
(DDoS) attacks.

The tooling around BPF is evolving, with BPF Compiler Collection
(BCC) and bpftrace establishing themselves as the two most
prominent frontends. Brendan Gregg was deeply involved in both
projects and has written about BPF extensively in his book BPF
Performance Tools: Linux System and Application Observability,
Addison-Wesley. With so many possibilities covering such a vast
scope, new technology such as BPF can seem overwhelming. But
much like cgroups, we don't need to understand how BPF works to
start making use of it. BCC comes with several ready-made tools
and examples that we can simply run from the command line.



Configuring the kernel for BPF
BCC requires a Linux kernel version of 4.1 or newer. At the time of
writing, BCC only supports a few 64-bit CPU architectures, severely
limiting the use of BPF in embedded systems. Fortunately, one of
those 64-bit architectures is aarch64, so we can still run BCC on a
Raspberry Pi 4. Let's begin by configuring a BPF-enabled kernel for
that image:
$ cd buildroot

$ make clean

$ make raspberrypi4_64_defconfig

$ make menuconfig

BCC uses LLVM to compile BPF programs. LLVM is a very large
C++ project, so it needs a toolchain with wchar, threads, and other
features to build.

TIP

A package named ply (https://github.com/iovisor/ply) was merged

into Buildroot on January 23, 2021, and should be included in the
2021.02 LTS release of Buildroot. ply is a lightweight, dynamic

tracer for Linux that leverages BPF so that probes can be attached
to arbitrary points in the kernel. Unlike BCC, ply does not rely on

LLVM and has no required external dependencies aside from libc.

This makes it much easier to port to embedded CPU architectures
such as arm and powerpc.

https://github.com/iovisor/ply


Before configuring our kernel for BPF, let's select an external
toolchain and modify raspberrypi4_64_defconfig to
accommodate BCC:

1. Enable use of an external toolchain by navigating to Toolchain |
Toolchain type | External toolchain and selecting that option.

2. Back out of External toolchain and open the Toolchain
submenu. Select the most recent ARM AArch64 toolchain as
your external toolchain.

3. Back out of the Toolchain page and drill down into System
configuration | /dev management. Select Dynamic using
devtmpfs + eudev.

4. Back out of /dev management and select Enable root login
with password. Open Root password and enter a non-empty
password in the text field.

5. Back out of the System configuration page and drill down into
Filesystem images. Increase the exact size value to 2G so that
there is enough space for the kernel source code.

6. Back out of Filesystem images and drill down into Target
packages | Networking applications. Select the dropbear
package to enable scp and ssh access to the target. Note that
dropbear does not allow root scp and ssh access without a
password.

7. Back out of Network applications and drill down into
Miscellaneous target packages. Select the haveged package so



programs don't block waiting for 
/dev/urandom to initialize on the target.

8. Save your changes and exit menuconfig.

Now, overwrite configs/raspberrypi4_64_defconfig with
your menuconfig changes and prepare the Linux kernel source for
configuration:
$ make savedefconfig

$ make linux-configure

The make linux-configure command will download and install
the external toolchain and build some host tools before fetching,
extracting, and configuring the kernel source code. At the time of
writing, the raspberrypi4_64_defconfig from the 2020.02.9
LTS release of Buildroot still points to a custom 4.19 kernel source
tarball from the Raspberry Pi Foundation's GitHub fork. Inspect the
contents of your raspberrypi4_64_defconfig to determine
what version of the kernel you are on. Once make linux-
configure is done configuring the kernel, we can reconfigure it for
BPF:
$ make linux-menuconfig

To search for a specific kernel configuration option from the
interactive menu, hit / and enter a search string. The search should
return a numbered list of matches. Entering a given number takes
you directly to that configuration option.



At a minimum, we need to select the following to enable kernel
support for BPF:
CONFIG_BPF=y

CONFIG_BPF_SYSCALL=y

We also need to add the following for BCC:
CONFIG_NET_CLS_BPF=m

CONFIG_NET_ACT_BPF=m

CONFIG_BPF_JIT=y

Linux kernel versions 4.1 to 4.6 need the following flag:
CONFIG_HAVE_BPF_JIT=y

Linux kernel versions 4.7 and later need this flag instead:
CONFIG_HAVE_EBPF_JIT=y

From Linux kernel version 4.7 onward, add the following so that
users can attach BPF programs to kprobe, uprobe, and tracepoint
events:
CONFIG_BPF_EVENTS=y

From Linux kernel version 5.2 onward, add the following for the
kernel headers:
CONFIG_IKHEADERS=m

BCC needs to read the kernel headers to compile BPF programs, so
selecting 
CONFIG_IKHEADERS makes them accessible by loading a
kheaders.ko module.

To run the BCC networking examples, we also need the following
modules:



CONFIG_NET_SCH_SFQ=m

CONFIG_NET_ACT_POLICE=m

CONFIG_NET_ACT_GACT=m

CONFIG_DUMMY=m

CONFIG_VXLAN=m

Make sure to save your changes when exiting make linux-
menuconfig so that they get applied to output/build/linux-
custom/.config before building your BPF-enabled kernel.

Building a BCC toolkit  with
Buildroot
With the necessary kernel support for BPF now in place, let's add
the user space libraries and tools to our image. At the time of writing,
Jugurtha Belkalem and others have been working diligently to
integrate BCC into Buildroot but their patches have yet to be
merged. While an LLVM package has already been incorporated into
Buildroot, there is no option to select the BPF backend needed by
BCC for compilation. The new bcc and updated llvm package
configuration files can be found in the MELP/Chapter20/ directory.
To copy them over to your 2020.02.09 LTS installation of Buildroot,
do the following:
$ cp -a MELP/Chapter20/buildroot/* buildroot

Now let's add the bcc and llvm packages to
raspberrypi4_64_defconfig:
$ cd buildroot



$ make menuconfig

If your version of Buildroot is 2020.02.09 LTS and you copied the
buildroot overlay from MELP/Chapter20 correctly, then there
should now be a bcc package available under Debugging,
profiling and benchmark. To add the bcc package to your system
image, perform the following steps:

1. Navigate to Target packages | Debugging, profiling and
benchmark and 
select bcc.

2. Back out of Debugging, profiling and benchmark and drill
down into Libraries | Other. Verify that clang, llvm, and LLVM's
BPF backend are all selected.

3. Back out of Libraries | Other and drill down into Interpreter
languages and scripting. Verify that python3 is selected so that
you can run the various tools and examples that come bundled
with BCC.

4. Back out of Interpreter languages and scripting and select
Show packages that are also provided by busybox under
BusyBox from the Target packages page.

5. Drill down into System tools and verify that tar is selected for
extracting the 
kernel headers.

6. Save your changes and exit menuconfig.



Overwrite configs/raspberrypi4_64_defconfig with your
menuconfig changes again and build the image:
$ make savedefconfig

$ make

LLVM and Clang will take a long time to compile. Once the image is
done building, use Etcher to write the resulting
output/images/sdcard.img file to a micro SD card. Lastly, copy
the kernel sources from output/build/linux-custom to a new
/lib/modules/<kernel version>/build directory on the
root partition of the micro SD card. This last step is critical because
BCC needs access to the kernel source code to compile BPF
programs.

Insert the finished micro SD into your Raspberry Pi 4, plug it into
your local network with an Ethernet cable, and power the device up.
Use arp-scan to locate your Raspberry Pi 4's IP address and SSH
into it as root using the password you set in the previous section. I
used temppwd for the root password in the
configs/rpi4_64_bcc_defconfig that I included with my
MELP/Chapter20/buildroot overlay. Now, we are ready to gain
some firsthand experience of experimenting with BPF.

Using BPF tracing tools
Doing almost anything with BPF, including running the BCC tools
and examples, requires root privileges, which is why we enabled



root login via SSH. Another prerequisite is mounting debugfs as
follows:
# mount -t debugfs none /sys/kernel/debug

The directory where the BCC tools are located is not in the PATH
environment, so navigate there for easier execution:
# cd /usr/share/bcc/tools

Let's start with a tool that displays the task on-CPU time as a
histogram:
# ./cpudist

cpudist shows how long tasks spent on the CPU before being
descheduled:



Figure 20.5 – cpudist

If instead of a histogram you see the following error, then you forgot
to copy the kernel sources to the micro SD card:



modprobe: module kheaders not found in modules.dep

Unable to find kernel headers. Try rebuilding
kernel with CONFIG_IKHEADERS=m (module) or
installing the kernel development package
for your running kernel version.

chdir(/lib/modules/4.19.97-v8/build): No such file
or directory

[…]

Exception: Failed to compile BPF module <text>

Another useful system-wide tool is llcstat, which traces cache
reference and cache miss events and summarizes them by PID and
CPU:



Figure 20.6 – llcstat

Not all BCC tools require us to hit Ctrl + C to end. Some such as
llcstat take a sample period as a command-line argument.

We can get more specific and zoom in on specific functions using
tools such as funccount, which takes a pattern as a command-line
argument:

Figure 20.7 – funccount

In this instance, we are tracing all kernel functions containing tcp
followed by send in their names. Many BCC tools can also be used
to trace functions in user space. That requires either debug symbols



or instrumenting the source code with user statically defined
tracepoint (USDT) probes.

Of special interest to embedded developers are the hardirqs tools,
which measure the time spent in the kernel servicing hard interrupts:

Figure 20.8 – hardirqs

Writing your own general-purpose or custom BCC tracing tools in
Python is easier than you might expect. You can find several
examples to read and fiddle with in the
/usr/share/bcc/examples/tracing directory that comes with
BCC.

This concludes our coverage of Linux event tracing tools: Ftrace,
LTTng, and BPF. All of them require at least some kernel



configuration to work. Valgrind offers more profiling tools that operate
entirely from the comfort of user space.

Using Valgr ind
I introduced Valgrind in Chapter 18, Managing Memory, as a tool for
identifying memory problems using the memcheck tool. Valgrind has
other useful tools for application profiling. The two I am going to look
at here are Callgrind and Helgrind. Since Valgrind works by running
the code in a sandbox, it can check the code as it runs and report
certain behaviors, which native tracers and profilers cannot do.

Callgrind
Callgrind is a call graph-generating profiler that also collects
information about processor cache hit rate and branch prediction.
Callgrind is only useful if your bottleneck is CPU-bound. It's not
useful if heavy I/O or multiple processes are involved.

Valgrind does not require kernel configuration, but it does need
debug symbols. 
It is available as a target package in both the Yocto Project and
Buildroot 
(BR2_PACKAGE_VALGRIND).

You run Callgrind in Valgrind on the target like so:
# valgrind --tool=callgrind <program>



This produces a file called callgrind.out.<PID>, which you can
copy to the host and analyze with callgrind_annotate.

The default is to capture data for all the threads together in a single
file. If you add the --separate-threads=yes option when
capturing, there will be profiles for each of the threads in files named
callgrind.out.<PID>-<thread id>, for example,
callgrind.out.122-01 and callgrind.out.122-02.

Callgrind can simulate the processor L1/L2 cache and report on
cache misses. Capture the trace with the --simulate-cache=yes
option. L2 misses are much more expensive than L1 misses, so pay
attention to code with high D2mr or D2mw counts.

The raw output from Callgrind can be overwhelming and difficult to
untangle. A visualizer such as KCachegrind
(https://kcachegrind.github.io/html/Home.html) can help you navigate
the mountains of data Callgrind collects.

Helgrind
Helgrind is a thread-error detector for detecting synchronization
errors in C, C++, and Fortran programs that include POSIX threads.

Helgrind can detect three classes of errors. Firstly, it can detect the
incorrect use of the API. Some examples are unlocking a mutex that
is already unlocked, unlocking a mutex that was locked by a different
thread, or not checking the return value of certain pthread
functions. Secondly, it monitors the order in which threads acquire

https://kcachegrind.github.io/html/Home.html


locks to detect cycles that may result in deadlocks (also known as
the deadly embrace). Finally, it detects data races, which can
happen when two threads access a shared memory location without
using suitable locks or other synchronization to ensure single-
threaded access.

Using Helgrind is simple; you just need this command:
# valgrind --tool=helgrind <program>

It prints problems and potential problems as it finds them. You can
direct these messages to a file by adding --log-file=
<filename>.

Callgrind and Helgrind rely on Valgrind's virtualization for their
profiling and deadlock detection. This heavyweight approach slows
down the execution of your programs, increasing the likelihood of the
observer effect.

Sometimes the bugs in our programs are so reproducible and easy
to isolate that a simpler, less invasive tool is enough to quickly debug
them. That tool more often than not is strace.

Using strace
I started the chapter with a simple and ubiquitous tool, top, and I will
finish with another: strace. It is a very simple tracer that captures
system calls made by a program and, optionally, its children. You can
use it to do the following:

Learn which system calls a program makes.



Find those system calls that fail, together with the error code. I
find this useful 
if a program fails to start but doesn't print an error message or if
the message is 
too general.

Find which files a program opens.

Find out which syscalls a running program is making, for
example, to see whether it is stuck in a loop.

There are many more examples online; just search for strace tips
and tricks. Everybody 
has their own favorite story, for example,
https://alexbilson.dev/posts/strace-debug/.

strace uses the ptrace(2) function to hook calls as they are
made from user space to the kernel. If you want to know more about
how ptrace works, the manual page is detailed and surprisingly
readable.

The simplest way to get a trace is to run the command as a
parameter to strace, as shown here (the listing has been edited to
make it clearer):
# strace ./helloworld

execve("./helloworld", ["./helloworld"], [/* 14
vars */]) = 0

brk(0)                                  = 0x11000

uname({sys="Linux", node="beaglebone", ...}) = 0

https://alexbilson.dev/posts/strace-debug/


mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0xb6f40000

access("/etc/ld.so.preload", R_OK)      = -1
ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=8100,
...}) = 0

mmap2(NULL, 8100, PROT_READ, MAP_PRIVATE, 3, 0) =
0xb6f3e000

close(3)                                = 0

open("/lib/tls/v7l/neon/vfp/libc.so.6",
O_RDONLY|O_CLOEXEC) = -1

ENOENT (No such file or directory)

[...]

open("/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3,

"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0$`\
1\0004\0\0\0"...,

512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1291884,
...}) = 0

mmap2(NULL, 1328520, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_DENYWRITE,

3, 0) = 0xb6df9000

mprotect(0xb6f30000, 32768, PROT_NONE)  = 0

mmap2(0xb6f38000, 12288, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x137000)
= 0xb6f38000

mmap2(0xb6f3b000, 9608, PROT_READ|PROT_WRITE,



MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =
0xb6f3b000

close(3)

[...]

write(1, "Hello, world!\n", 14Hello, world!

    )         = 14

exit_group(0)                           = ?

+++ exited with 0 +++

Most of the trace shows how the runtime environment is created. In
particular, you can see how the library loader hunts for libc.so.6,
eventually finding it in /lib. Finally, it gets to running the main()
function of the program, which prints its message and exits.

If you want strace to follow any child processes or threads created
by the original process, add the -f option.

TIP

If you are using strace to trace a program that creates threads, you

almost certainly want to use the -f option. Better still, use -ff and -

o <file name> so that the output for each child process or thread

is written to a separate file named <filename>.<PID | TID>.

A common use of strace is to discover which files a program tries
to open at startup. You can restrict the system calls that are traced
through the -e option, and you can write the trace to a file instead of
stdout using the -o option:
# strace -e open -o ssh-strace.txt ssh localhost



This shows the libraries and configuration files ssh opens when it is
setting up 
a connection.

You can even use strace as a basic profile tool. If you use the -c
option, it accumulates the time spent in system calls and prints out a
summary like this:
# strace -c grep linux /usr/lib/* > /dev/null

% time     seconds  usecs/call     calls    errors
syscall

------ ----------- ----------- --------- ---------
----------

78.68    0.012825         1       11098      18   
 read

11.03    0.001798         1        3551           
 write

10.02    0.001634         8         216      15   
 open

  0.26    0.000043         0         202          
  fstat64

  0.00    0.000000         0         201          
  close

  0.00    0.000000         0          1           
  execve

  0.00    0.000000         0          1       1   
  access

  0.00    0.000000         0          3           
  brk

  0.00    0.000000         0         199          
  munmap



  0.00    0.000000         0          1           
  uname

  0.00    0.000000         0          5           
  mprotect

  0.00    0.000000         0         207          
  mmap2

  0.00    0.000000         0         15       15  
  stat64

  0.00    0.000000         0          1           
  getuid32

  0.00    0.000000         0          1           
  set_tls

------ ----------- ----------- --------- ---------
-----------

100.00    0.016300                 15702      49
total

strace is extremely versatile. We have only scratched the surface
of what the tool can do. I recommend downloading Spying on your
programs with strace, a free zine by Julia Evans available at
https://wizardzines.com/zines/strace/.

Summary
Nobody can complain that Linux lacks options for profiling and
tracing. This chapter has given you an overview of some of the most
common ones.

When faced with a system that is not performing as well as you
would like, start with top and try to identify the problem. If it proves

https://wizardzines.com/zines/strace/


to be a single application, then you can use perf record/report
to profile it, bearing in mind that you will have to configure the kernel
to enable perf and you will need debug symbols for the binaries
and kernel. If the problem is not so well localized, use perf or BCC
tools to get a system-wide view.

Ftrace comes into its own when you have specific questions about
the behavior of the kernel. The function and function_graph
tracers provide a detailed view of the relationship and sequence of
function calls. The event tracers allow you to extract more
information about functions, including the parameters and return
values. LTTng performs a similar role, making use of the event trace
mechanism, and adds high-speed ring buffers to extract large
quantities of data from the kernel. Valgrind has the advantage of
running code in a sandbox and can report on errors that are hard to
track down in other ways. Using the Callgrind tool, it can generate
call graphs and report on processor cache usage, and with Helgrind,
it can report on thread-related problems.

Finally, don't forget strace. It is a good standby for finding out
which system calls a program is making, from tracking file open calls
to finding file pathnames and checking for system wake-ups and
incoming signals.

All the while, be aware of, and try to avoid, the observer effect; make
sure that the measurements you are making are valid for a
production system. In the next chapter, I 



will continue with this theme as we delve into the latency tracers that
help us quantify the real-time performance of a target system.

Further reading
I highly recommend Systems Performance: Enterprise and the
Cloud, Second Edition, and BPF Performance Tools: Linux System
and Application Observability, both by Brendan Gregg.



Chapter 21 :  Real-Time
Programming
Much of the interaction between a computer system and the real
world happens in real time, and so this is an important topic for
developers of embedded systems. I have touched on real-time
programming in several places so far: in Chapter 17, Learning About
Processes and Threads, we looked at scheduling policies and
priority inversion, and in Chapter 18, Managing Memory, I described
the problems with page faults and the need for memory locking. Now
it is time to bring these topics together and look at real-time
programming in some depth.

In this chapter, I will begin with a discussion about the characteristics
of real-time systems, and then consider the implications for system
design, at both the application and kernel levels. I will describe the
real-time PREEMPT_RT kernel patch, and show how to get it and
apply it to a mainline kernel. The final sections will describe how to
characterize system latencies using two tools: cyclictest and
Ftrace.

There are other ways to achieve real-time behavior on an embedded
Linux device, for instance, using a dedicated microcontroller or a
separate real-time kernel alongside the Linux kernel in the way that
Xenomai and RTAI do. I am not going to discuss these here because



the focus of this book is on using Linux as the core for embedded
systems.

In this chapter, we will cover the following topics:

What is real time?

Identifying sources of non-determinism

Understanding scheduling latency

Kernel preemption

The real-time Linux kernel (PREEMPT_RT)

Preemptible kernel locks

High-resolution timers

Avoiding page faults

Interrupt shielding

Measuring scheduling latencies

Technical  requirements
To follow along with the examples, make sure you have the
following:

A Linux-based host system with a minimum of 60 GB of available
disk space

Buildroot 2020.02.9 LTS release

Yocto 3.1 (Dunfell) LTS release



Etcher for Linux

A microSD card reader and card

BeagleBone Black

A 5 V 1 A DC power supply

An Ethernet cable and port for network connectivity

You should have already installed the 2020.02.9 LTS release of
Buildroot for Chapter 6, Selecting a Build System. If you have not,
then refer to the System requirements section of 
The Buildroot user manual
(https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions
from Chapter 6.

You should have already installed the 3.1 (Dunfell) LTS release of
Yocto for Chapter 6, Selecting a Build System. If you have not, then
refer to the Compatible Linux Distribution and Build Host Packages
sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/briefyoctoprojectqs/brief-
yoctoprojectqs.html) before installing Yocto on your Linux host
according to the instructions from Chapter 6.

What is real  t ime?
The nature of real-time programming is one of the subjects that
software engineers love to discuss at length, often giving a range of

https://buildroot.org/downloads/manual/manual.html
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contradictory definitions. I will begin by setting out what I think is
important about real time.

A task is a real-time task if it has to complete before a certain point in
time, known as the deadline. The distinction between real-time and
non-real-time tasks is shown by considering what happens when you
play an audio stream on your computer while compiling the Linux
kernel. The first is a real-time task because there is a constant
stream of data arriving at the audio driver, and blocks of audio
samples have to be written to the audio interface at the playback
rate. Meanwhile, the compilation is not real-time because there is no
deadline. You simply want it to complete as soon as possible;
whether it takes 10 seconds or 10 minutes does not affect the quality
of the kernel binaries.

The other important thing to consider is the consequence of missing
the deadline, which can range from mild annoyance through to
system failure or, in the most extreme cases, injury or death. Here
are some examples:

Playing an audio stream: There is a deadline in the order of
tens of milliseconds. 
If the audio buffer underruns, you will hear a click, which is
annoying but you will get over it.

Moving and clicking a mouse: The deadline is also in the order
of tens of milliseconds. If it is missed, the mouse moves
erratically and button clicks will be lost. If the problem persists,
the system will become unusable.



Printing a piece of paper: The deadlines for the paper feed are
in the millisecond range, which if missed may cause the printer to
jam, and somebody will have to go and fix it. Occasional jams are
acceptable, but nobody is going to buy a printer that keeps on
jamming.

Printing sell-by dates on bottles on a production line: If one
bottle is not printed, the whole production line has to be halted,
the bottle removed, and the line restarted, which is expensive.

Baking a cake: There is a deadline of 30 minutes or so. If you
miss it by a few minutes, the cake might be ruined. If you miss it
by a lot, the house may burn down.

A power-surge detection system: If the system detects a
surge, a circuit breaker has to be triggered within 2 milliseconds.
Failing to do so causes damage to the equipment and may injure
or kill someone.

In other words, there are many consequences to missed deadlines.
We often talk about these different categories:

Soft real-time: The deadline is desirable but is sometimes
missed without the system being considered a failure. The first
two examples in the previous list are examples of this.

Hard real-time: Here, missing a deadline has a serious effect.
We can further subdivide hard real-time into mission-critical
systems, in which there is a cost to missing the deadline, such as
the fourth example, and safety-critical systems, in which there is



a danger to life and limb, such as the last two examples. I put in
the baking example to show that not all hard real-time systems
have deadlines measured in milliseconds or microseconds.

Software written for safety-critical systems has to conform to various
standards that seek to ensure that it is capable of performing reliably.
It is very difficult for a complex operating system such as Linux to
meet those requirements.

When it comes to mission-critical systems, it is possible, and
common, for Linux to be used for a wide range of control systems.
The requirements of the software depend on the combination of the
deadline and the confidence level, which can usually be determined
through extensive testing.

Therefore, to say that a system is real-time, you have to measure its
response times under the maximum anticipated load and show that it
meets the deadline for an agreed proportion of the time. As a rule of
thumb, a well-configured Linux system using a mainline kernel is
good for soft real-time tasks with deadlines down to tens of
milliseconds, and a kernel with the PREEMPT_RT patch is good for
soft and hard real-time mission-critical systems with deadlines down
to several hundreds of microseconds.

The key to creating a real-time system is to reduce the variability in
response times so that you have greater confidence that the
deadlines will not be missed; in other words, you need to make the
system more deterministic. Often, this is done at the expense of
performance. For example, caches make systems run faster by



making the average time to access an item of data shorter, but the
maximum time is longer in the case of a cache miss. Caches make a
system faster but less deterministic, which is the opposite of what we
want.

TIP

It is a myth of real-time computing that it is fast. This is not so; the
more deterministic a system is, the lower the maximum throughput.

The remainder of this chapter is concerned with identifying the
causes of latency and the things you can do to reduce it.

Ident i fy ing sources of  non-
determinism
Fundamentally, real-time programming is about making sure that the
threads controlling the output in real time are scheduled when
needed and so can complete the job before the deadline. Anything
that prevents this is a problem. Here are some problem areas:

Scheduling: Real-time threads must be scheduled before others,
and so they must have a real-time policy, SCHED_FIFO or
SCHED_RR. Additionally, they should have priorities assigned in
descending order, starting with the one with the shortest
deadline, according to the theory of rate monotonic analysis that I
described in Chapter 17, Learning About Processes and
Threads.



Scheduling latency: The kernel must be able to reschedule as
soon as an event such as an interrupt or timer occurs, and not be
subject to unbounded delays. Reducing scheduling latency is a
key topic later on in this chapter.

Priority inversion: This is a consequence of priority-based
scheduling, which leads to unbounded delays when a high-
priority thread is blocked on a mutex held by a low-priority thread,
as I described in Chapter 17, Learning About Processes and
Threads. User space has priority inheritance and priority ceiling
mutexes; in kernel space, we have RT-mutexes, which implement
priority inheritance, and I will talk about them in the section on the
real-time kernel.

Accurate timers: If you want to manage deadlines in the region
of low milliseconds or microseconds, you need timers that match.
High-resolution timers are crucial and are a configuration option
on almost all kernels.

Page faults: A page fault while executing a critical section of
code will upset all timing estimates. You can avoid them by
locking memory, as I shall describe later on.

Interrupts: They occur at unpredictable times and can result in
an unexpected processing overhead if there is a sudden flood of
them. There are two ways to avoid this. One is to run interrupts
as kernel threads, and the other, on multi-core devices, is to
shield one or more CPUs from interrupt handling. I will discuss
both possibilities later.



Processor caches: These provide a buffer between the CPU
and the main memory and, like all caches, are a source of non-
determinism, especially on multi-core devices. Unfortunately, this
is beyond the scope of this book, but you may want to refer to the
references at the end of the chapter for more details.

Memory bus contention: When peripherals access memory
directly through a DMA channel, they use up a slice of memory
bus bandwidth, which slows down access from the CPU core (or
cores) and so contributes to non-deterministic execution of the
program. However, this is a hardware issue and is also beyond
the scope of this book.

I will expand on the most important problems and see what can be
done about them in the next sections.

Understanding schedul ing
latency
Real-time threads need to be scheduled as soon as they have
something to do. However, even if there are no other threads of the
same or higher priority, there is always a delay from the point at
which the wake-up event occurs—an interrupt or system timer—to
the time that the thread starts to run. This is called scheduling
latency. It can be broken down into several components, as shown
in the following diagram:



Figure 21.1 – Scheduling latency

Firstly, there is the hardware interrupt latency from the point at which
an interrupt is asserted until the interrupt service routine (ISR)
begins to run. A small part of this is the delay in the interrupt
hardware itself, but the biggest problem is due to interrupts being
disabled in software. Minimizing this IRQ off time is important.

The next is interrupt latency, which is the length of time until the ISR
has serviced the interrupt and woken up any threads waiting on this
event. It is mostly dependent on the way the ISR was written.
Normally, it should take only a short time, measured in
microseconds.

The final delay is the preemption latency, which is the time from the
point that the kernel is notified that a thread is ready to run to that at
which the scheduler actually runs the thread. It is determined by
whether the kernel can be preempted or not. If it is running code in a



critical section, then the rescheduling will have to wait. The length of
the delay is dependent on the configuration of kernel preemption.

Kernel  preemption
Preemption latency occurs because it is not always safe or desirable
to preempt the current thread of execution and call the scheduler.
Mainline Linux has three settings for preemption, selected via the
Kernel Features | Preemption Model menu:

CONFIG_PREEMPT_NONE: No preemption.

CONFIG_PREEMPT_VOLUNTARY: This enables additional checks
for requests 
for preemption.

CONFIG_PREEMPT: This allows the kernel to be preempted.

With preemption set to none, kernel code will continue without
rescheduling until it either returns via a syscall back to user
space, where preemption is always allowed, or it encounters a
sleeping wait that stops the current thread. Since it reduces the
number of transitions between the kernel and user space and may
reduce the total number of context switches, this option results in the
highest throughput at the expense of large preemption latencies. It is
the default for servers and some desktop kernels where throughput
is more important than responsiveness.



The second option enables explicit preemption points, where the
scheduler is called if the need_resched flag is set, which reduces
the worst-case preemption latencies at the expense of slightly lower
throughput. Some distributions set this option on desktops.

The third option makes the kernel preemptible, meaning that an
interrupt can result in an immediate reschedule so long as the kernel
is not executing in an atomic context, which I will describe in the
following section. This reduces worst-case preemption latencies and,
therefore, overall scheduling latencies to something in the order of a
few milliseconds on typical embedded hardware.

This is often described as a soft real-time option, and most
embedded kernels are configured in this way. Of course, there is a
small reduction in overall throughput, but that is usually less
important than having more deterministic scheduling for embedded
devices.

The real-t ime Linux kernel
(PREEMPT_RT)
There is a long-standing effort to reduce latencies even further that
goes by the name 
of the kernel configuration option for these features, PREEMPT_RT.
The project 
was started by Ingo Molnar, Thomas Gleixner, and Steven Rostedt
and has had contributions from many more developers over the



years. The kernel patches are at
https://www.kernel.org/pub/linux/kernel/projects/rt, and there is a wiki
at https://wiki.linuxfoundation.org/realtime/start. An FAQ, albeit out of
date, can also be found at
https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions.

Many parts of the project have been incorporated into mainline Linux
over the years, including high-resolution timers, kernel mutexes, and
threaded interrupt handlers. However, the core patches remain
outside of the mainline because they are rather intrusive and (some
claim) only benefit a small percentage of the total Linux user base.
Maybe one day the whole patch set will be merged upstream.

The central plan is to reduce the amount of time the kernel spends
running in an atomic context, which is where it is not safe to call the
scheduler and switch to a different thread. Typical atomic contexts
are when the kernel is in the following states:

Running an interrupt or trap handler.

Holding a spin lock or is in an RCU-critical section. Spin locks
and RCU are kernel-locking primitives, the details of which are
not relevant here.

Between calls to preempt_disable() and
preempt_enable().

Hardware interrupts are disabled (IRQs off).

The changes that are part of PREEMPT_RT fall into two main areas:
one is to reduce the impact of interrupt handlers by turning them into

https://www.kernel.org/pub/linux/kernel/projects/rt
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kernel threads, and the other is to make locks preemptible so that a
thread can sleep while holding one. It is obvious that there is a large
overhead in these changes, which makes average-case interrupt
handling slower but much more deterministic, which is what we are
striving for.

Threaded interrupt handlers
Not all interrupts are triggers for real-time tasks, but all interrupts
steal cycles from real-time tasks. Threaded interrupt handlers allow a
priority to be associated with the interrupt and for it to be scheduled
at an appropriate time, as shown in the following diagram:



Figure 21.2 – In-line versus threaded interrupt handlers

If the interrupt handler code is run as a kernel thread, there is no
reason why it cannot be preempted by a user space thread of higher
priority, and so the interrupt handler does not contribute toward
scheduling latency of the user space thread. Threaded interrupt
handlers have been a feature of mainline Linux since 2.6.30. You
can request that an individual interrupt handler be threaded by
registering it with request_threaded_irq() in place of the
normal request_irq(). You can make threaded IRQs the default
by configuring the kernel with
CONFIG_IRQ_FORCED_THREADING=y, which makes all handlers
into threads unless they have explicitly prevented this by setting the
IRQF_NO_THREAD flag. When you apply the PREEMPT_RT patches,
interrupts are, by default, configured as threads in this way. Here is
an example of what you might see:
# ps -Leo pid,tid,class,rtprio,stat,comm,wchan |

grep FF

PID TID CLS RTPRIO STAT COMMAND WCHAN

3 3 FF 1 S ksoftirqd/0 smpboot_th

7 7 FF 99 S posixcputmr/0 posix_cpu_

19 19 FF 50 S irq/28-edma irq_thread

20 20 FF 50 S irq/30-edma_err irq_thread

42 42 FF 50 S irq/91-rtc0 irq_thread

43 43 FF 50 S irq/92-rtc0 irq_thread

44 44 FF 50 S irq/80-mmc0 irq_thread

45 45 FF 50 S irq/150-mmc0 irq_thread

47 47 FF 50 S irq/44-mmc1 irq_thread



52 52 FF 50 S irq/86-44e0b000 irq_thread

59 59 FF 50 S irq/52-tilcdc irq_thread

65 65 FF 50 S irq/56-4a100000 irq_thread

66 66 FF 50 S irq/57-4a100000 irq_thread

67 67 FF 50 S irq/58-4a100000 irq_thread

68 68 FF 50 S irq/59-4a100000 irq_thread

76 76 FF 50 S irq/88-OMAP UAR irq_thread

In this case, which is a BeagleBone running linux-yocto-rt, only
the gp_timer interrupt was not threaded. It is normal that the timer
interrupt handler is run inline.

IMPORTANT NOTE

The interrupt threads have all been given the default SCHED_FIFO

policy and a priority of 50. It doesn't make sense to leave them at the

defaults, however; now is your chance to assign priorities according
to the importance of the interrupts compared to real-time user space
threads.

Here is a suggested order of descending thread priorities:

The POSIX timers thread, posixcputmr, should always have
the highest priority.

Hardware interrupts associated with the highest-priority real-time
thread.

The highest-priority real-time thread.

Hardware interrupts for the progressively lower-priority real-time
threads, followed by the thread itself.



The next highest priority real-time thread.

Hardware interrupts for non-real-time interfaces.

The soft IRQ daemon, ksoftirqd, which on RT kernels is
responsible for running delayed interrupt routines and, prior to
Linux 3.6, was responsible for running the network stack, the
block I/O layer, and other things. You may need to experiment
with different priority levels to achieve a balance.

You can change the priorities using the chrt command as part of
the boot script, using a command such as this:
# chrt -f -p 90 `pgrep irq/28-edma`

The pgrep command is part of the procps package.

Now that we've been introduced to the real-time Linux kernel by way
of threaded interrupt handlers, let's dig deeper into its
implementation.

Preemptible kernel  locks
Making the majority of kernel locks preemptible is the most intrusive
change that PREEMPT_RT makes, and this code remains outside of
the mainline kernel.

The problem occurs with spin locks, which are used for much of the
kernel locking. A spin lock is a busy-wait mutex that does not require
a context switch in the contended case, and so it is very efficient as
long as the lock is held for a short time. Ideally, they should be



locked for less than the time it would take to reschedule twice. The
following diagram shows threads running on two different CPUs
contending the same spin lock. CPU 0 gets it first, forcing CPU 1 to
spin, waiting until it is unlocked:

Figure 21.3 – Spin lock

The thread that holds the spin lock cannot be preempted since doing
so may make the new thread enter the same code and deadlock
when it tries to lock the same spin lock. Consequently, in mainline
Linux, locking a spin lock disables kernel preemption, 
creating an atomic context. This means that a low-priority thread that
holds a spin lock can prevent a high-priority thread from being
scheduled, a condition otherwise known 
as priority inversion.

IMPORTANT NOTE

The solution adopted by PREEMPT_RT is to replace almost all spin

locks with RT-mutexes. A mutex is slower than a spin lock, but it is
fully preemptible. Not only that, but RT-mutexes implement priority
inheritance and so are not susceptible to priority inversion.



We now have an idea of what's in the PREEMPT_RT patches. So,
how do we go about getting them?

Gett ing the PREEMPT_RT
patches
The RT developers do not create patch sets for every kernel version
because of the amount of porting effort involved. On average, they
create patches for every other kernel. The most recent kernels that
are supported at the time of writing are as follows:

5.10-rt

5.9-rt

5.6-rt

5.4-rt

5.2-rt

5.0-rt

4.19-rt

4.18-rt

4.16-rt

4.14-rt

4.13-rt

4.11-rt



IMPORTANT NOTE

The patches are available at
https://www.kernel.org/pub/linux/kernel/projects/rt.

If you are using the Yocto Project, there is an rt version of the
kernel already. Otherwise, it is possible that the place you got your
kernel from already has the PREEMPT_RT patch applied. If not, you
will have to apply the patch yourself. Firstly, make sure that the
PREEMPT_RT patch version and your kernel version match exactly;
otherwise, you will not be able to apply the patches cleanly. Then,
you apply it in the normal way, as shown 
in the following command lines. You will then be able to configure the
kernel with CONFIG_PREEMPT_RT_FULL:
$ cd linux-5.4.93

$ zcat patch-5.4.93-rt51.patch.gz | patch -p1

There is a problem in the previous paragraph. The RT patch will only
apply if you are using a compatible mainline kernel. You are probably
not, because that is the nature of embedded Linux kernels.
Therefore, you will have to spend some time looking at failed
patches and fixing them, and then analyzing the board support for
your target and adding any real-time support that is missing. These
details are, once again, outside the scope of this book. If you are not
sure what to do, you should request support from the kernel vendor
that you are using and on kernel developer forums.

https://www.kernel.org/pub/linux/kernel/projects/rt


The Yocto Project and
PREEMPT_RT
The Yocto Project supplies two standard kernel recipes: linux-
yocto and the latter having the real-time patches already applied.
Assuming that your target is supported by the Yocto kernels, you just
need to select linux-yocto-rt as your preferred kernel and
declare that your machine is compatible, for example, by adding
lines similar to these to your conf/local.conf:
PREFERRED_PROVIDER_virtual/kernel = "linux-yocto-

rt"

COMPATIBLE_MACHINE_beaglebone = "beaglebone"

So, now that we know where to get a real-time Linux kernel, let's
switch gears and talk about timing.

High-resolut ion t imers
Timer resolution is important if you have precise timing requirements,
which is typical for real-time applications. The default timer in Linux
is a clock that runs at a configurable rate, typically 100 Hz for
embedded systems and 250 Hz for servers and desktops. The
interval between two timer ticks is known as a jiffy and, in the
examples given previously, is 10 milliseconds on an embedded SoC
and 4 milliseconds on a server.

Linux gained more accurate timers from the real-time kernel project
in version 2.6.18, and now they are available on all platforms,



provided that there is a high-resolution timer source and device
driver for it—which is almost always the case. You need to configure
the kernel with CONFIG_HIGH_RES_TIMERS=y.

With this enabled, all the kernel and user space clocks will be
accurate down to the granularity of the underlying hardware. Finding
the actual clock granularity is difficult. The obvious answer is the
value provided by clock_getres(2), but that always claims a
resolution of 1 nanosecond. The cyclictest tool that I will
describe later has an option to analyze the times reported by the
clock to guess the resolution:
# cyclictest -R

# /dev/cpu_dma_latency set to 0us

WARN: reported clock resolution: 1 nsec

WARN: measured clock resolution approximately: 708
nsec

You can also look at the kernel log messages for strings like this:
# dmesg | grep clock

OMAP clockevent source: timer2 at 24000000 Hz

sched_clock: 32 bits at 24MHz, resolution 41ns,
wraps every 178956969942ns

OMAP clocksource: timer1 at 24000000 Hz

Switched to clocksource timer1

The two methods provide rather different numbers, for which I have
no good explanation, but since both are below 1 microsecond, I am
happy.



High-resolution timers can measure variations in latency with
sufficient accuracy. Now, let's look at a couple of ways to mitigate
such non-determinism.

Avoiding page faul ts
A page fault occurs when an application reads or writes to memory
that is not committed to physical memory. It is impossible (or very
hard) to predict when a page fault will happen, so they are another
source of non-determinism in computers.

Fortunately, there is a function that allows you to commit all the
memory used by the process and lock it down so that it cannot
cause a page fault. It is mlockall(2). These are its two flags:

MCL_CURRENT: This locks all pages currently mapped.

MCL_FUTURE: This locks pages that are mapped in later.

You usually call mlockall during the startup of the application with
both flags set to lock all current and future memory mappings.

TIP

MCL_FUTURE is not magic, in that there will still be a non-

deterministic delay when allocating or freeing heap memory using
malloc()/free() 

or mmap(). Such operations are best done at startup and not in the

main control loops.



Memory allocated on the stack is trickier because it is done
automatically, and if you call a function that makes the stack deeper
than before, you will encounter more memory-management delays.
A simple fix is to grow the stack to a size larger than you think you
will ever need at startup. The code would look like this:
#define MAX_STACK (512*1024)

static void stack_grow (void)

{

      char dummy[MAX_STACK];

      memset(dummy, 0, MAX_STACK);

      return;

}

int main(int argc, char* argv[])

{

      […]

      stack_grow ();

      mlockall(MCL_CURRENT | MCL_FUTURE);

      […]

The stack_grow() function allocates a large variable on the stack
and then zeroes it out to force those pages of memory to be
committed to this process.

Interrupts are another source of non-determinism we should guard
against.

Interrupt shielding



Using threaded interrupt handlers helps mitigate interrupt overhead
by running some threads at a higher priority than interrupt handlers
that do not impact real-time tasks. If you are using a multi-core
processor, you can take a different approach and shield one or more
cores from processing interrupts completely, allowing them to be
dedicated to real-time tasks instead. This works either with a normal
Linux kernel or a PREEMPT_RT kernel.

Achieving this is a question of pinning the real-time threads to one
CPU and the interrupt handlers to a different one. You can set the
CPU affinity of a thread or process using the taskset command-
line tool, or you can use the sched_setaffinity(2) and
pthread_setaffinity_np(3) functions.

To set the affinity of an interrupt, first note that there is a subdirectory
for each interrupt number in /proc/irq/<IRQ number>. The
control files for the interrupt are in there, including a CPU mask in
smp_affinity. Write a bitmask to that file with a bit set for each
CPU that is allowed to handle that IRQ.

Stack growing and interrupt shielding are nifty techniques for
improving responsiveness, but how can you tell whether they are
actually working?

Measuring schedul ing
latencies



All the configuration and tuning you may do will be pointless if you
cannot show that your device meets the deadlines. You will need
your own benchmarks for the final testing, but I will describe here
two important measurement tools: cyclictest and Ftrace.

cycl ictest
cyclictest was originally written by Thomas Gleixner and is now
available on most platforms in a package named rt-tests. If you
are using the Yocto Project, you can create a target image that
includes rt-tests by building the real-time image recipe like this:
$ bitbake core-image-rt

If you are using Buildroot, you need to add the
BR2_PACKAGE_RT_TESTS package in the Target packages |
Debugging, profiling and benchmark | rt-tests menu.

cyclictest measures scheduling latencies by comparing the
actual time taken for sleeping to the requested time. If there was no
latency, they would be the same, and the reported latency would be
0. cyclictest assumes a timer resolution of less than 1
microsecond.

It has a large number of command-line options. To start with, you
might try running this command as root on the target:
# cyclictest -l 100000 -m -n -p 99

# /dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 1.14 1.06 1.00 1/49 320



T: 0 ( 320) P:99 I:1000 C: 100000 Min: 9 Act: 13
Avg: 15 Max: 134

The options selected are as follows:

-l N: This loops N times (the default is unlimited).

-m: This locks memory with mlockall.

-n: This uses clock_nanosleep(2) instead of
nanosleep(2).

-p N: This uses the real-time priority N.

The result line shows the following, reading from left to right:

T: 0: This was thread 0, the only thread in this run. You can set
the number of threads with parameter -t.

(320): This was PID 320.

P:99: The priority was 99.

I:1000: The interval between loops was 1,000 microseconds.
You can set the interval with the -i N parameter.

C:100000: The final loop count for this thread was 100,000.

Min: 9: The minimum latency was 9 microseconds.

Act:13: The actual latency was 13 microseconds. The actual

latency is the most recent latency measurement, which only
makes sense if you are watching cyclictest as it runs.

Avg:15: The average latency was 15 microseconds.



Max:134: The maximum latency was 134 microseconds.

This was obtained on an idle system running an unmodified linux-
yocto kernel as a quick demonstration of the tool. To be of real use,
you would run tests over a 24-hour period or longer while running a
load representative of the maximum you expect.

Of the numbers produced by cyclictest, the maximum latency is
the most interesting, but it would be nice to get an idea of the spread
of the values. You can get that by adding -h <N> to obtain a
histogram of samples that are up to N microseconds late. Using this
technique, I obtained three traces for the same target board running
kernels with no preemption, with standard preemption, and with RT
preemption while being loaded with Ethernet traffic from a flood
ping. The command line was as shown here:
# cyclictest -p 99 -m -n -l 100000 -q -h 500 >

cyclictest.data

Then, I used gnuplot to create the three graphs that follow. If you
are curious, the 
data files and the gnuplot command script are in the code archive,
in MELP/Chapter21/plot.

The following is the output generated with no preemption:



Figure 21.4 – No preemption

Without preemption, most samples are within 100 microseconds of
the deadline, but there are some outliers of up to 500 microseconds,
which is pretty much what you would expect.

This is the output generated with standard preemption:



Figure 21.5 – Standard preemption

With preemption, the samples are spread out at the lower end, but
there is nothing beyond 120 microseconds.

Here is the output generated with RT preemption:



Figure 21.6 – RT preemption



The RT kernel is a clear winner because everything is tightly
bunched around the 20-microsecond mark, and there is nothing later
than 35 microseconds.

cyclictest, then, is a standard metric for scheduling latencies.
However, it cannot help you identify and resolve specific problems
with kernel latency. To do that, you need Ftrace.

Using Ftrace
The kernel function tracer has tracers to help track down kernel
latencies—that is what it was originally written for, after all. These
tracers capture the trace for the worst-case latency detected during a
run, showing the functions that caused the delay.

The tracers of interest, together with the kernel configuration
parameters, are as follows:

irqsoff: CONFIG_IRQSOFF_TRACER traces code that disables
interrupts, recording the worst case.

preemptoff: CONFIG_PREEMPT_TRACER is similar to
irqsoff, but traces the longest time that kernel preemption is
disabled (only available on preemptible kernels).

preemptirqsoff: Combines the previous two traces to record
the longest time either irqs and/or preemption are disabled for.

wakeup: Traces and records the maximum latency that it takes
for the highest-priority task to get scheduled after it has been



woken up.

wakeup_rt: This is the same as wakeup but only for real-time
threads with the SCHED_FIFO, SCHED_RR, or SCHED_DEADLINE
policies.

wakeup_dl: This is the same but only for deadline-scheduled
threads with the SCHED_DEADLINE policy.

Be aware that running Ftrace adds a lot of latency, in the order of
tens of milliseconds, every time it captures a new maximum, which
Ftrace itself can ignore. However, it skews the results of user space
tracers such as cyclictest. In other words, ignore the results of
cyclictest if you run it while capturing traces.

Selecting the tracer is the same as for the function tracer we looked
at in Chapter 20, Profiling and Tracing. Here is an example of
capturing a trace for the maximum period with preemption disabled
for a period of 60 seconds:
# echo preemptoff >

/sys/kernel/debug/tracing/current_tracer

# echo 0 >
/sys/kernel/debug/tracing/tracing_max_late
ncy

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# sleep 60

# echo 0 > /sys/kernel/debug/tracing/tracing_on

The resulting trace, heavily edited, looks like this:
# cat /sys/kernel/debug/tracing/trace



# tracer: preemptoff

#

# preemptoff latency trace v1.1.5 on 3.14.19-
yocto-standard

# ------------------------------------------------
------------

# latency: 1160 us, #384/384, CPU#0 | (M:preempt
VP:0, KP:0, SP:0 HP:0)

# -----------------

# | task: init-1 (uid:0 nice:0 policy:0 rt_prio:0)

# -----------------

# => started at: ip_finish_output

# => ended at: __local_bh_enable_ip

#

#

#     _------=> CPU#

#     / _-----=> irqs-off

#     | / _----=> need-resched

#     || / _---=> hardirq/softirq

#     ||| / _--=> preempt-depth

#     |||| / delay

# cmd pid ||||| time | caller

# \ / ||||| \ | /

init-1 0..s. 1us+: ip_finish_output

init-1 0d.s2 27us+: preempt_count_add <-
cpdma_chan_submit

init-1 0d.s3 30us+: preempt_count_add <-
cpdma_chan_submit

init-1 0d.s4 37us+: preempt_count_sub <-
cpdma_chan_submit



[…]

init-1 0d.s2 1152us+: preempt_count_sub <-
__local_bh_enable

init-1 0d..2 1155us+: preempt_count_sub <-
__local_bh_enable_ip

init-1 0d..1 1158us+: __local_bh_enable_ip

init-1 0d..1 1162us!: trace_preempt_on <-
__local_bh_enable_ip

init-1 0d..1 1340us : <stack trace>

Here, you can see that the longest period with kernel preemption
disabled while running the trace was 1160 microseconds. This
simple fact is available by reading
/sys/kernel/debug/tracing/tracing_max_latency, but
the previous trace goes further and gives you the sequence of kernel
function calls that led up to that measurement. The column marked
delay shows the point on the trail where each function was called,
ending with the call to trace_preempt_on() at 1162us, at which
point kernel preemption is once again enabled. With this information,
you can look back through the call chain and (hopefully) work out
whether this is a problem or not.

The other tracers mentioned work in the same way.

Combining cycl ictest and Ftrace
If cyclictest reports unexpectedly long latencies, you can use the
breaktrace option to abort the program and trigger Ftrace to
obtain more information.



You invoke breaktrace using -b<N> or --breaktrace=<N>,
where N is the number of microseconds of latency that will trigger the
trace. You select the Ftrace tracer using -T[tracer name] or one
of the following:

-C: Context switch

-E: Event

-f: Function

-w: Wakeup

-W: Wakeup-RT

For example, this will trigger the Ftrace function tracer when a
latency greater than 100 microseconds is measured:
# cyclictest -a -t -n -p99 -f -b100

We now have two complementary tools for debugging latency
issues. cyclictest detects the pauses and Ftrace provides the
details.

Summary
The term real-time is meaningless unless you qualify it with a
deadline and an acceptable miss rate. When you have these two
pieces of information, you can determine whether or not Linux is a
suitable candidate for the operating system and, if so, begin to tune
your system to meet the requirements. Tuning Linux and your



application to handle real-time events means making it more
deterministic so that the real-time threads can meet their deadlines
reliably. Determinism usually comes at the price of total throughput,
so a real-time system is not going to be able to process as much
data as a non-real-time system.

It is not possible to provide mathematical proof that a complex
operating system such as Linux will always meet a given deadline,
so the only approach is through extensive testing using tools such as
cyclictest and Ftrace and, more importantly, using your own
benchmarks for your own application.

To improve determinism, you need to consider both the application
and the kernel. When writing real-time applications, you should
follow the guidelines given in this chapter about scheduling, locking,
and memory.

The kernel has a large impact on the determinism of your system.
Thankfully, there has been a lot of work on this over the years.
Enabling kernel preemption is a good first step. If you still find that it
is missing deadlines more often than you would like, then you might
want to consider the PREEMPT_RT kernel patches. They can
certainly produce low latencies, but the fact that they are not in the
mainline yet means that you may have problems integrating them
with the vendor kernel for your particular board. You may instead, or
in addition, need to embark on the exercise of finding the cause of
the latencies using Ftrace and similar tools.



That brings me to the end of this dissection of embedded Linux.
Being an engineer of embedded systems requires a very wide range
of skills, which includes a low-level knowledge of hardware and how
the kernel interacts with it. You need to be an excellent system
engineer who is able to configure user applications and tune them to
work in an efficient manner. All of this has to be done with hardware
that is, often, only just capable of carrying out the task. There is a
quotation that sums this up: An engineer can do for a dollar what
anyone else can do for two. I hope that you will be able to achieve
this with the information I have presented during the course of this
book.

Further reading
The following resources have further information about the topics
introduced in 
this chapter:

Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications by Giorgio Buttazzo

Multicore Application Programming by Darryl Gove
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