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Preface

The branch of physics known as “classical mechanics” originated in the seven-
teenth century, but wasn’t called that until the discovery of quantum mechanics
in the 1920s. It was quantum mechanics that most profoundly changed our
understanding of how and why particles move as they do, and even what a particle
is. Quantum mechanics was so completely different that the word “classical” had
to be added to the older theory to make it clear which mechanics was meant. At
the same time, quantum mechanics was heavily inspired and influenced by the
formulations of classical mechanics by Lagrange and Hamilton dating back to the
eighteenth and nineteenth centuries.

Einstein’s theories of special relativity (1905) and general relativity (1915)
also had important impacts on classical mechanics, changing the laws of motion
primarily by revolutionizing our understanding of the spacetime arena in which
physics takes place. These theories have been viewed as either introducing a
new “relativistic mechanics” or more modestly as completing classical mechanics,
making it useful even for particles moving close to the speed of light and for
particles moving in strong gravitational fields.

Quantum mechanics, special relativity, and general relativity stand together as
the three pillars of modern physics. Classical mechanics integrates with all three
as a robust approximation framework that is both useful in practice for problem
solving – but also as an inspirational venue for developing basic intuition about
physics.

In the title of the book we have endowed our exposition of classical mechanics
with the word “modern,” because it is a modern approach in several ways. First, we
focus on the Lagrangian and Hamiltonian formulations of mechanics almost from
the outset, modern of course only relative to Newton’s formulation. Throughout
we emphasize the connections of these newer approaches to the development of
quantum mechanics – through contact with Feynman’s path-integral formulation of
quantum mechanics and the relations of Hamilton–Jacobi theory to Schrödinger’s
approach to wave mechanics. We also develop the subject of mechanics with
relativity in mind early on, integrating modern differential geometry notation in
the narrative and motivating the variational principle through arguments that come
naturally from special relativity. In particular, immediately after a compact review
of Newtonian particle mechanics in Chapter 1, special relativity is introduced
already in Chapter 2. Finally, the exposition is modern in that we use a tone
and physics mindset that is contemporary, often with an emphasis on the role of
symmetry as a guiding principle, and we draw on many examples from modern
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subjects and applications such as black holes, cosmology, atomic physics, particle
physics, magnetic trapping, orbital mechanics, and spaceflight.

Modern classical mechanics also stands strong on its own as a useful approx-
imation framework that addresses physics problems in regimes where quantum
mechanics and/or relativity come in as sub-leading effects. In many situations,
using quantum mechanics and/or relativity to study a physical system would be
tantamount to shooting a fly with a catapult. Roughly speaking, classical mechanics
works very well (i.e., agrees with experiments) for macroscopic objects that are
moving at speeds much less than the speed of light, and where gravity is not too
strong – and also where our experimental measurements are not too precise.

Take the motions of planets around the sun and moons around their planets, for
example. Motions within the solar system were the most important testing ground
for classical mechanics in the first place, and for nearly all purposes classical
mechanics in this domain works as well now as it ever did. We still use it to plot
the motion of spacecraft on their way to distant planets, for example – it would
be completely unnecessary to tackle a problem like that using the full apparatus
of quantum mechanics. The same can be said for the use of special and general
relativity, except for tiny but nevertheless important effects like the precession of
the planet Mercury’s perihelion or the rate of atomic clocks in Global Positioning
System (GPS) satellites around the earth.

Our book is first and foremost a textbook on classical mechanics and its
many uses, while also showing where its limitations lie – limitations as defined
by quantum mechanics as well as the relativity theories, and emphasizing the
inspirational role the subject played in the development of modern physics. To
accomplish these goals, the book is divided into three main parts. There are five
chapters in each part, where the fifth chapter is a “capstone chapter,” a special
unit that elaborates further on the boundaries of classical mechanics as presented
in the preceding four chapters and its connections to the three pillars of modern
physics.

In broad strokes, the first part of the book is about the Lagrangian formulation of
mechanics; the second part is about the various forces and symmetries that present
themselves on the mechanics stage; and the third part is about the Hamiltonian
formulation. The capstone chapter of the first part is a pedagogical exposition of
Feynman’s path-integral formulation of quantum mechanics and its connections
to modern classical mechanics; the capstone chapter of the second part discusses
general relativity and its relations to relativistic mechanics; and the capstone
chapter of the third part is about Hamilton–Jacobi theory, phase space, and the
connections to the wavefunction formulation of quantum mechanics.

This layout allows for different pathways through the book, depending on the
time available for a given class and the background preparation of the students.
The following diagram illustrates the conceptual connections and dependencies
between the various sections.

Based on this, we can identify several possible pathways that can be adopted in
a typical 15-week-long class.
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• Basic mechanics: For students who have had a basic calculus-based mechanics
course and are looking for a basic second course. Chapters 1, 2, 3, 4, 6.1 and 6.2,
7.1 to 7.4, 9.1 to 9.4.

• Lagrangian approach plus a bit more: For students who have had a robust
calculus-based mechanics course and are looking for a more sophisticated
second course. Chapters 2, 3, 4, 6, 7, 8, and 9.

• Traditional Lagrangian and Hamiltonian mechanics: For students who have
had a robust calculus-based mechanics course and are looking for a rather
traditional course on Lagrangian and Hamiltonian mechanics. Chapters 2, 3, 4,
6, 7, 9, 11, 12 or 13.

• Advanced mechanics: For students who have had a robust calculus-based
mechanics course and are looking for an advanced modern exposure to mechan-
ics. Chapters 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, one of 12, 13, or 14, optional reading 15.

In a 20-week timeframe, one can cover most if not all the chapters. This can also
be done naturally in a 14-week graduate-level course. Chapters 5, 10, and 12 to
15 can also serve as excellent directed reading material for students who complete
their second mechanics course but want to learn more advanced topics.

A Note about Notation
Throughout the book, we have attempted to accord, as much as possible, with
notational conventions that are commonly used in similar textbooks. However,
there is one place we have decided to adopt a notation that is instead more
consistent with more advanced graduate-level textbooks: components of vectors
are labeled by superscripts instead of subscripts. For example, the components
of a velocity vector v in spherical coordinates are written as v = (vr, vφ, vθ);
similarly, the components of a four-velocity vector u in Cartesian coordinates take
the form u = (ut, ux, uy, uz). This notation is conventional in differential geometry
and graduate-level textbooks so as to distinguish vectors from co-vectors – such as
the momentum co-vector and the gauge potential co-vector in electromagnetism.
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Given that our modern approach to the subject of mechanics incorporates the
language of special relativity from the outset, it is indeed natural to adopt the
“correct” differential geometry notation from the start. This also helps the reader
later on in transitioning to graduate-level coursework and research-level literature.
One pitfall of this notation is that it does require a bit of an initial learning curve
as the superscript might be confused with raising a variable to a power. We have
addressed this issue by choosing a different font for superscripts that represent
components – and generally making sure that we point out potential confusion
whenever the context does not make the interpretation obvious. Because of this,
we recommend that all users of this book are at least encouraged to read Chapter 2,
which covers special relativity, even if they are already familiar with the subject.
This chapter establishes the notation clearly and gets readers used to it quickly. We
have tested this in the classroom over many years and found that the adoption of
the notation can be rather smooth and seamless. One bonus advantage of the new
notation is that subscripts can be reserved to label particles or degrees of freedom,
needs that are very common in the subject of classical mechanics; and indeed, we
do so throughout the book. When all is said and done, we believe it is worthwhile
to introduce readers to the newer notation, and that it pays off quickly.

Each chapter ends with a list of problems arranged in the order that the topics
they cover appear in the chapter. And each problem is labeled by one, two, or
three stars, indicating the level of difficulty – one star being easiest and three being
hardest.
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v three-vector
v four-vector
r̂ unit vector
va three-vector component
vμ four-vector component
R̂ matrix

r, θ polar coordinates
ρ, ϕ, z cylindrical coordinates
r, φ, θ spherical coordinates: radial, azimuthal, latitude

T kinetic energy
U potential energy

−+++ spacetime signature
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T = 1
2 m

(
ẋ2 + ẏ2 + ż2) Cartesian

T = 1
2 m

(
ρ̇2 + ρ2ϕ̇2 + ż2) cylindrical

T = 1
2 m

(
ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

)
spherical

T = 1
2 mv2

rot + mvrot · (ω×r) + 1
2 mω2r2 − 1

2 m (ω · r)2 non-inertial

Frot = Fin−mω×(ω×r)rot
︸ ︷︷ ︸

centrifugal

−2 m (ω×vrot)rot
︸ ︷︷ ︸

Coriolis

−m (ω̇×r)rot
︸ ︷︷ ︸

Euler

fictitious forces

S = −m c2 ∫ dt
√

1 − v2

c2 + Q
∫

dt
(
−φ+A · v

c
)

charged particle

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= λlalk, alkq̇k + alt = 0 equations of motion

δS =
∫

dt
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt (Δqk) +

d
dt(L δt)

)
transformation

Q ≡ ∂L
∂q̇k

Δqk + L δt Noether charge

H = ∂L
∂q̇k

q̇k − L Hamiltonian

q̇k =
∂H
∂pk

, ṗk = − ∂H
∂qk

, ∂L
∂t = − dH

dt Hamiltonian equations

r = �2/G M m2

1+ε cosφ gravitational orbits

a = −G M m
2 E , ε =

√
1 + 2 E �2

G2M2m3 orbit relations

Vector identities

A · (B×C) = B · (C×A) = C · (A×B)
A× (B×C) = (A ·C)B− (A ·B)C

∇ · (fA) = f (∇ ·A) +A · (∇f)
∇× (fA) = f (∇×A) + (∇f)×A
∇ (A ·B) = (A · ∇)B+ (B · ∇)A+A× (∇×B) +B× (∇×A)
∇ · (A ·B) = (∇×A) ·B−A · (∇×B)
∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B · ∇)A− (A · ∇)B
∇× (∇×A) = ∇ (∇ ·A)−∇2A
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1 Newtonian Particle Mechanics

We begin our journey of discovery by reviewing the well-known laws of Newto-
nian mechanics. We set the stage by introducing inertial frames of reference and the
Galilean transformation that translates between them, and then present Newton’s
celebrated three laws of motion for both single particles and systems of particles.
We review the three conservation laws of momentum, angular momentum, and
energy, and illustrate how they can be used to provide insight and greatly simplify
problem solving. We end by discussing the fundamental forces of nature and which
of them are encountered in classical mechanics. All this is a preview to a relativistic
treatment of mechanics in the following chapter.

1.1 Inertial Frames and the Galilean Transformation

Classical mechanics begins by analyzing the motion of particles. Classical particles
are idealizations: they are point-like, with no internal degrees of freedom like
vibrations or rotations. But by understanding the motion of these ideal “particles”
we can also understand a lot about the motion of real objects, because we can often
ignore what is going on inside of them. The concept of “classical particle” can in
the right circumstances be used for objects all the way from electrons to baseballs
to stars to entire galaxies.

In describing the motion of a particle, we first have to choose a frame of
reference in which an observer can make measurements. Many reference frames
could be used, but there is a special set of frames, the non-accelerating, inertial
frames, in which the physics is particularly simple. Picture a set of three orthogonal
meter sticks defining a set of Cartesian coordinates drifting through space with no
forces applied. An inertial observer drifts with the coordinate system and uses it
to make measurements of physical phenomena. This inertial frame and inertial
observer are not unique, however: having established one inertial frame, any other
frame moving at constant velocity relative to it is also inertial, as illustrated in
Figure 1.1.

Two of these inertial observers, along with their personal coordinate systems,
are depicted in Figure 1.2: observer O describes positions of objects through a
Cartesian system labeled (x, y, z), while observer O′ uses a system labeled (x′, y′, z′).

3



4 1 Newtonian Particle Mechanics

Fig. 1.1 Various inertial frames in space. If one of these frames is inertial, any other frame moving at constant
velocity relative to it is also inertial.

z

y

x

y’

z’

x’

Fig. 1.2 Two inertial frames, Oand O′, moving relative to one another along their mutual x or x′ axes.

An event of interest to an observer is characterized by the position in space
at which the measurement is made – but also by the instant in time at which the
observation occurs, according to clocks at rest in the observer’s inertial frame. For
example, an event could be a snapshot in time of the position of a particle along its
trajectory. Hence, the event is assigned four numbers by observer O: x, y, z, and t
for time, while observer O′ labels the same event x′, y′, z′, and t′.

Without loss of generality, observer O can choose her x axis along the direction
of motion of O′, and then the x′ axis of O′ can be aligned with that axis as well, as
shown in Figure 1.2. It seems intuitively obvious that the coordinates of the event
are related by

x = x′ + Vt′, y = y′, z = z′, t = t′, (1.1)



5 1.2 Newton’s Laws of Motion

where we assume that the origins of the two frames coincide at time t′ = t = 0.
This is known as a Galilean transformation. Note that the only difference in
the coordinates is in the x direction, corresponding to the distance between the
two origins as each system moves relative to the other. This transformation – in
spite of being highly intuitive – will turn out to be incorrect, as we shall see
in the next chapter. But for now, we take it as good enough for our Newtonian
purposes.

If the coordinates represent the instantaneous position of a particle, we can write

x(t) = x′(t′) + Vt′, y(t) = y′(t′), z(t) = z′(t′), t = t′. (1.2)

We then differentiate this transformation with respect to t = t′ to obtain the
transformation laws of velocity and acceleration. Differentiating once gives

vx = v′x + V, vy = v′y, vz = v′z, (1.3)

where, for example, vx ≡ dx/dt and v′x ≡ dx′/dt′, and differentiating a second time
gives

ax = a′x, ay = a′y, az = a′z. (1.4)

That is, the velocity components of a particle differ by the relative frame velocity
in each direction, while the acceleration components are the same in every
inertial frame. Therefore one says that the acceleration of a particle is Galilean
invariant.

Henceforth, we assert that all statements of physics that we write are expressed
from the perspective of inertial observers – unless explicitly stated otherwise.
For this purpose, any inertial observer has a valid perspective and is no more
privileged than any other. This implies that all fundamental laws of physics we will
write should be unchanged between the perspectives of different inertial observers.
This equivalence of physics amongst inertial frames is called the principle of
relativity.

1.2 Newton’s Laws of Motion

In his Principia of 1687, Newton presented his famous three laws. The first of these
is the law of inertia:

I. If there are no forces on an object, then if the object starts at rest it will stay at
rest, or if it is initially set in motion, it will continue moving in the same direction
in a straight line at constant speed. �

Since this is a statement of physics – made by definition from the perspective of
any inertial observer – it should be compatible with the principle of relativity: all
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inertial observers can write this same statement. On the contrary, using the Galilean
velocity transformation, we see that if a particle has constant velocity in one inertial
frame then it has constant velocity in all inertial frames. Hence, to assure that
this statement can be written by any inertial observer and is hence compatible
with the principle of relativity, we use the Galilean transformations to connect the
perspectives of inertial reference frames.1 In practice, we can henceforth use this
first law of Newton to test whether or not our frame is inertial: if we remove all
interactions from a particle under observation, and if we then notice that when set
at rest the particle stays put and if tossed in any direction it keeps moving in that
direction with constant speed, we can conclude that the law of inertia is obeyed and
our frame is inertial.

An astronaut set adrift from her spacecraft in outer space, far from earth, or the
sun, or any other gravitating object, will move off in a straight line at constant
speed when viewed from an inertial frame. So if her spaceship is drifting without
power and is not rotating, the spaceship frame is inertial and onboard observers
will see her move away in a straight line. But if her spaceship is rotating, for
example, observers on the ship will see her move off in a curved path – the frame
inside a rotating spaceship is not inertial.

Now consider an inertial observer who observes a particle to which a force F is
applied. Then Newton’s second law states that

F =
dp
dt

, (1.5)

1 Alternatively, we can think of inertial frames as some yet-undefined set of reference frames for the principle
of relativity, then use this first law of Newton to define what inertial reference frames must be, along with the
associated Galilean transformations that connect them. A curious fact is that having identified an inertial frame
as one in which Newton’s first law is valid, which can be accomplished by purely local observations of the
motion of test particles, one finds that inertial frames are also those which are neither accelerating nor rotating
relative to the distant stars! It is hard to believe this is mere coincidence, but the reasons for it are not universally
agreed upon.



7 1.2 Newton’s Laws of Motion

where the momentum of the particle is p=mv, the product of its mass and velocity.
That is:

II. The time rate of change of a particle’s momentum is equal to the net force on
that particle. �

Newton’s second law tells us that if the momentum of a particle changes, there
must be a net force causing that change. Note that the second law gives us the
means to identify and quantify the effect of forces and interactions. By conducting a
series of measurements of the rate of change of momenta of a selection of particles,
we explore the forces acting on them in their environment. Once we understand the
nature of these forces, we can use this knowledge to predict the motion of other
particles in a wider range of circumstances – this time by deducing the effect of
such forces on rate of change of momentum.

Note also that dp/dt = mdv/dt = ma, so Newton’s second law can also be
written in the form F=ma, where a is the acceleration of the particle. The particle
is taken to have a fixed mass, independent of its position or velocity. The law
therefore implies that if we remove all forces from an object, neither its momentum
nor its velocity will change: it will remain at rest if started at rest, and move in a
straight line at constant speed if given an initial velocity. But that is just Newton’s
first law, so it might seem that the first law is just a special case of the second law!
However, the second law is not true in all frames of reference. An accelerating
observer will see the momentum of an object changing, even if there is no net
force on it. In fact, it is only inertial observers who can use Newton’s second
law, so the first law is not so much a special case of the second as a means
of specifying those observers for whom the second law is valid. Put differently,
Newton uses the first law to implicitly define the concept of inertial reference
frames.

Newton’s second law is the most famous fundamental law of classical mechan-
ics, and it must also be Galilean invariant according to our principle of relativity.
We have already shown that the acceleration of a particle is invariant and we also
take the mass of a particle to be the same in all inertial frames. So if F = ma is to
be a fundamental law, which can be used by observers at rest in any inertial frame,
we must insist that the force on a particle is likewise Galilean invariant. Newton’s
second law itself does not specify which forces exist, but in classical mechanics
any force on a particle (due to a spring, gravity, friction, or whatever) must be the
same in all inertial frames.

If the drifting astronaut is carrying a wrench, by throwing it away (say) in the
forward direction she exerts a force on it. During the throw the momentum of the
wrench changes, and after it is released it travels in some straight line at constant
speed.
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Of course, it is one thing to know Newton’s second law; it is quite another
thing to solve it to find a particle’s motion in a particular case, which may range
from easy to quite challenging. At the easy end of the spectrum is the case of
an object of mass m moving under the influence of a constant force, such as the
gravitational force F = mg on a particle in a uniform gravitational field g. If that
is the only force, the particle’s acceleration a will be constant, so its velocity v(t)
can be found by integrating a over time, and then its position r(t) can be found
by integrating v(t) over time. All this leads to the familiar equations of projectile
motion.

Finally, Newton’s third law states that

III. “Action equals reaction.” If one particle exerts a force on a second
particle, the second particle exerts an equal but opposite force back on the first
particle. �

We have already stated that any force acting on a particle in classical mechan-
ics must be the same in all inertial frames, so it follows that Newton’s third
law is also Galilean invariant: a pair of equal and opposite forces in a given
inertial frame transform to the same equal and opposite pair in another inertial
frame.

While the astronaut, drifting away from her spaceship, is exerting a force on the
wrench, at each instant the wrench is exerting an equal but opposite force back on
the astronaut. This causes the astronaut’s momentum to change as well, and if the
change is large enough her momentum will be reversed, allowing her to drift back
to her spacecraft in a straight line at constant speed when viewed in an inertial
frame.
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1.3 One-Dimensional Motion: Drag Forces

Before discussing the full rich possibilities of the three-dimensional motion of a
particle, we will begin with the simpler case of one-dimensional motion. In fact, if
the total force acting on a particle pulls or pushes it in one linear direction, say in
the x direction, and if the particle begins at rest or with some initial velocity that
happens also to be in this same x direction, then the particle will continue to move
in the x direction.

In general, the net force on a particle moving in one dimension might depend
upon the particle’s position, or its velocity, or time, or any combination of these
variables. In this section we will suppose that the net force on a particle depends
only upon its velocity, and not its position in space or the time. Then Newton’s
second law takes the form

F(v) = ma ≡ m
dv
dt

(1.6)

which is a first-order differential equation. This often makes the problem much
simpler than for position-dependent forces, which lead to second-order differential
equations.

Drag forces are prime examples of one-dimensional velocity-dependent forces.
They include air resistance on dropped baseballs, raindrops, and skydivers; they
also include the horizontal motion of automobiles or airplanes and water drag
on fish or submarines. By definition, drag forces act in opposition to an object’s
velocity through the fluid. For small objects moving sufficiently slowly, fluid flows
around an object smoothly in what is called laminar flow, giving rise to “viscous
drag,” where the drag force is proportional to the viscosity of the fluid, a measure
of how much of the fluid is pulled along with the object as it moves. An example
would be dropping a small ball into a vat of honey or molasses, both highly viscous
fluids. The viscous drag force is linear in the velocity, so has the form Fdrag = −bv,
where b is a constant.
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Example 1.1 A Bacterium with a Viscous Drag Force
The most important force on a non-swimming bacterium in a fluid is the viscous drag force F = −bv, where
v is the velocity of the bacterium relative to the fluid and b is a constant that depends on the size and shape
of the bacterium and the viscosity of the fluid – the minus sign means that the drag force is opposite to the
direction of motion. If the bacterium, as illustrated in Figure 1.3, gains a velocity v0 and then stops swimming,
what is its subsequent velocity as a function of time?

Fig. 1.3 A bacterium in a fluid. What is its motion if it begins with velocity v0 and then
stops swimming? Reprinted figure with permission from Guanglai Li, Lick-Kong
Tam, and Jay X. Tang, Amplified effect of Brownian motion in bacterial near-
surface swimming, PNAS, November 17, 2008 (Figure 1b). Copyright (2008) by
the American Physical Society. Figure 1b. DOI: https://doi.org/10.1103/PhysRevE
.84.041932

Let us assume that the fluid defines an inertial reference frame. Newton’s second law then leads to the
ordinary differential equation

m
dv
dt

= −b v ⇒ m ẍ = −b ẋ, (1.7)

where ẋ ≡ dx/dt and ẍ ≡ d2x/dt2. So Newton’s second law is a second-order differential equation in
position and time, but a particularly simple one that can be integrated at once to give a first-order differential
equation in v and t. Separating variables and integrating:∫ v

v0

dv
v
= − b

m

∫ t

0
dt, (1.8)

which gives ln(v)− ln(v0) = ln(v/v0) = −(b/m)t. Exponentiating both sides:

v = v0e−(b/m)t ≡ v0e−t/τ ⇒ a =
dv
dt

= − v0

τ
e−t/τ , (1.9)
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where τ ≡ m/b is called the “time constant” of the exponential decay. In a single time constant, i.e., when
t = τ , the velocity decreases to 1/e of its initial value; thereforeτ is a measure of how quickly the bacterium
slows down. The bigger the drag force (or the smaller the mass), the greater the deceleration.

An alternate way to solve the differential equation is to note that it is linear with constant coefficients, so
the exponential form v(t)= Aeαt is bound to work, for an arbitrary constant A and a particular constant
α. In fact, the constant α= − 1/τ , found by substituting v(t)= Aeαt into the differential equation
and requiring that it be a solution. In this first-order equation the constant A is the single required arbitrary
constant. It can be determined by imposing the initial condition v = v0 at t = 0, which tells us that
A = v0.

Now we can integrate once more to find the bacterium’s position x(t). If we choose the x direction as the
v0 direction, then v = dx/dt, so

x(t) = v0

∫ t

0
e−t/τ dt = v0τ

(
1 − e−t/τ

)
. (1.10)

The second integration constant is fixed by the bacterium’s starting position, x(0) = 0. As t → ∞, we see
that its position x asymptotically approaches the value v0τ . Note that given a starting position and an initial
velocity, the path of a bacterium is determined by the forces exerted on it. Figure 1.4 shows x(t) and v(t) for
the bacterium.

(b)(a)

Fig. 1.4 Position (a) and velocity (b) versus time for the bacterium. �

For larger and more quickly moving objects there comes a point where the
fluid no longer flows smoothly around the object, but becomes turbulent, churn-
ing around and shedding swirling eddies and vortices. The drag force is then
approximately proportional to the square of the object’s velocity through the fluid.
This is sometimes called inertial drag or Newtonian drag. Air in front of a
fast-moving baseball has no time to flow smoothly out of the way, but becomes
turbulent and retains this turbulence after the ball has already passed by. This is
the type of drag that normally happens all around us, including the drag force
on cars and airplanes moving at typical speeds. Doubling their velocity increases
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the drag force by a factor of four, so in the case of automobiles, for example,
designers are motivated to reduce the drag force by streamlining the shape of cars to
minimize the turbulence. This helps increase fuel efficiency and also the top speed
attainable.

Example 1.2 A ball of mass m and radius r is dropped from the top of a skyscraper. Find the height of the skyscraper if the
ball reaches the ground at a time t later.

In this case the drag force is quadratic over essentially the entire trip, so the equation of motion is

m
dv
dt

= mg − cv2, (1.11)

where c is the drag constant and we have taken the positive direction to be downward. Note that the net force
on the ball goes to zero as v →

√
mg/c, so there is a terminal velocity vT =

√
mg/c which the ball never

quite reaches as it falls. Initially, when v is small, the ball has downward acceleration a � g, and then a → 0
as v → vT =

√
mg/c. It is the existence of a terminal velocity that helps some cats survive when they

leap out of open windows in tall apartment buildings hoping to catch a bird, or even a very few people among
those whose parachutes have failed to open, or in one case a soldier who jumped without a parachute from
a plane in flames, preferring to take his chances in free fall rather than getting burned alive. Thanks to the
terminal velocity, the impact velocity of an object at the ground stays nearly the same no matter how high up
the object begins, assuming of course that the initial altitude is sufficiently great. Using the result v2

T = mg/c,
the v and t variables in F = ma can be separated to give

gt = g
∫ t

0
dt =

∫ v

0

dv
1 − v2/v2

T
. (1.12)

A particularly simple way to carry out the integration is to use the technique of partial fractions, beginning
with the identity

1
1 − z2 =

1
2

(
1

1 + z
+

1
1 − z

)
. (1.13)

So if we let z = v/vT , it follows that

gt =
vT

2
[ln(1 + z)− ln(1 − z)] =

vT

2
ln
(

1 + z
1 − z

)
, (1.14)

which gives t in terms of v, since v = vT z. We can invert this equation to find v as a function of t. The result is

v = vT

[
egt/vT − e−gt/vT

egt/vT + e−gt/vT

]
= vT tanh(gt/vT) (1.15)

in terms of a hyperbolic tangent function. From this result we can verify that v � gt for small t, using the
series expansion for exponentials ex = 1 + x + (1/2)x2 + ... for small x. We can also verify that v → vT

for large t, since then e−gt/vT → 0.
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So far so good. Now we can find how far the ball falls in a given time by integrating the last result over
time, and letting y be the distance fallen. That is:

y =
∫

dy = vT

∫ t

0
dt tanh(gt/vT) =

v2
T

g

∫
dq tanh q =

v2
T

g

∫
dq
(

sinh q
cosh q

)
, (1.16)

where we have defined q = gt/vT and used the identity tanh q = sinh q/ cosh q, where sinh and cosh are
the hyperbolic sine and cosine functions. The differential of cosh q is sinh qdq, so the integral is just the natural
logarithm of cosh q. So finally:

y =
(

v2
T

g

)
ln(cosh q) =

(
v2

T

g

)
ln(cosh gt/vT). (1.17)

This is how far the ball has fallen as a function of time. One can also invert this equation to find how long it
takes the ball to reach the ground in terms of its initial height. �

1.4 Oscillation in One-Dimensional Motion

The drag forces we have used so far are purely velocity-dependent forces in which
Newton’s second law becomes a first-order differential equation. In contrast, a
simple harmonic oscillator consists of a mass m attached to one end of a Hooke’s-
law spring exerting force F = −kx, where k (a positive constant) is the force
constant of the spring and x is the spring stretch. For such position-dependent
forces, Newton’s second law becomes a second-order differential equation. The
minus sign indicates that if x is positive, when the spring has been stretched, it will
pull the particle back toward equilibrium, and if x is negative, the spring has been
compressed, and it will push the particle back toward equilibrium. The importance
of this linear force extends far beyond the force exerted by an actual spring, because
very often it is a spring-like linear restorative force that is exerted when a particle is
displaced slightly from equilibrium under the influence of a wide variety of forces.
We will return to this point when we discuss energy a bit later.

If the only force on a particle moving in one dimension is due to a Hooke’s-law
spring, the equation of motion is

mẍ = −kx or mẍ + kx = 0, (1.18)

where each overdot means a time derivative, a notation due to Newton himself.
This is the famous simple harmonic oscillator (SHO) equation, a linear second-
order differential equation in x and t.

There are several ways to solve the equation. One way is to note that we
require a couple of linearly independent functions whose second derivatives are
the negatives of themselves, apart from constants; this suggests sines and cosines.
The general solution can then be written



14 1 Newtonian Particle Mechanics

x(t) = A cos(ωt) + B sin(ωt) or x(t) = C cos(ωt + ϕ), (1.19)

where ω =
√

k/m = 2πν with ν the frequency of oscillation, and where A and B
(or C and ϕ) are the two arbitrary constants needed in solutions of the second-order
differential equation. The constants C and ϕ can be found in terms of A and B,
or vice versa, using the trig identity cos(α + β) = cosα cosβ − sinα sinβ. The
second form of the solution is depicted in Figure 1.5, illustrating the meaning of
the constants C,ω, and ϕ.

Fig. 1.5 A simple harmonic oscillation x(t) = C cos(ω t + ϕ) for phase angleϕ = π/4. Shown is the
amplitude C. The period of oscillations is P = 2π/ω, andω = 2πν , where ν = 1/P is the
frequency andω is the angular frequency of oscillation.

Another method of solving the SHO equation is more formal but also provides
more insight. We can solve the equation in stages, integrating once to get a first-
order differential equation, called a “first integral of motion,” and then integrating
a second time to get the final solution x(t). This first integration can be carried out
by first multiplying the equation by a so-called “integrating factor” ẋ, giving

mẋẍ + kxẋ = 0 or
1
2

m
dẋ2

dt
+ kx

dx
dt

= 0. (1.20)

Multiplying by dt, we have (1/2)m d(ẋ2) + kxdx = 0, which is directly integrable
because each term contains only a single variable. Integrating this last equation:

1
2

mẋ2 +
1
2

kx2 = E, (1.21)

where E is the constant of integration. We recognize this as a conservation of energy
equation for the particle, the sum of its kinetic and potential energies. The kinetic
energy T = (1/2)mẋ2 depends on the particle’s velocity but not its position, and
the potential energy U = (1/2)kx2 depends on the particle’s position but not its
velocity. The sum is the total energy, a constant of the motion.
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Now we can separate the remaining variables x and t and integrate once more:∫
dt =

√
m
2

∫
dx√

E − (1/2)kx2
, (1.22)

again with only a single variable in each term. Substituting x=
√

2E/k cos θ and
integrating gives t= −

√
m/k θ + constant and then rearranging and using the fact

that cos(−θ) = cos(θ) it follows that

x(t) =
√

2E
k

cos(ωt + ϕ), (1.23)

where ω =
√

k/m and E and ϕ are the two necessary arbitrary constants. In
addition to showing that energy conservation is the first integral of motion, we have
found the amplitude of oscillation in terms of the energy E and force constant k.

Damped Oscillations
The simple harmonic oscillator is not damped. According to the solutions, once
excited it will oscillate forever. However, real oscillations eventually die out, which
means they must have additional forces exerted on them that cause them to decrease
their amplitude with time. A realistic force that does this in most situations is the
quadratic damping force Fdrag = −cv2, where c is a constant. It will continually
reduce the oscillator’s amplitude.

Adding this force to the oscillating object leads to the equation mẍ = −kx− cẋ2,
which is still a second-order differential equation, but with a new x2 term that is
nonlinear. Unfortunately, this nonlinearity makes the equation impossible to solve
in terms of elementary functions, so the tradition is to replace quadratic damping
with linear damping, which makes the full equation linear and easy to solve.
Even though linear damping is usually unrealistic, it at least leads to decaying
oscillations, which is more realistic than no damping at all.

A particular linearly damped oscillator consists of a mass m confined to move in
the x direction attached at one end to a Hooke’s-law spring of force constant k, and
which is also subject to the damping force −b v where b is a constant. That is, we
assume that the damping force is linearly proportional to the velocity of the mass
and in the direction opposite to its motion.

Newton’s second law then gives F = −kx − bẋ = mẍ, a second-order linear
differential equation equivalent to

ẍ + 2βẋ + ω2
0x = 0, (1.24)

where we let β ≡ b/2m and ω0 ≡
√

k/m to simplify the notation. Mathematically,
we are guaranteed a solution once we fix two initial conditions. These can be, for
example, the initial position x(0)= x0 and velocity v(0) = ẋ(0) = v0. Hence, our
solution will depend on two constants to be specified in the particular problem.
In general, each dynamical variable we track through Newton’s second law will
generate a single second-order differential equation, and so will require two initial
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conditions. This is the sense in which Newton’s laws provide us with predictive
power: fix a few constants using initial conditions, and physics will tell us the future
evolution of the system. For the example at hand, Eq. (1.24) is a linear differential
equation with constant coefficients, which can be solved by setting x ∝ eαt for
some α. Substituting this form into Eq. (1.24) gives the quadratic equation

α2 + 2βα+ ω2
0 = 0 with solutions α = −β ±

√
β2 − ω2

0. (1.25)

There are now three possibilities: (1) β > ω0, the “overdamped” solution; (2)
β = ω0, the “critically damped” solution; and (3), β < ω0, the “underdamped”
solution, all as illustrated in Figure 1.5.

(1) In the overdamped case the exponent α is real and negative, and so the
position of the mass as a function of time is

x(t) = A1eγ1t + A2eγ2t, (1.26)

where γ1 = −β +
√

β2 − ω2
0 and γ2 = −β −

√
β2 − ω2

0 . Here A1 and
A2 are arbitrary constants. The two terms are the expected linearly independent
solutions of the second-order differential equation, and the coefficients A1 and A2
can be determined from the initial position x0 and initial velocity v0 of the mass.
Figure 1.6(a) shows a plot of x(t).

(2) In the critically damped β = ω0 case the two solutions of Eq. (1.25)
merge into the single solution x(t) = A e−βt. However, a second-order differential
equation has two linearly independent solutions, so we need one more. This
additional solution is A′t e−βt for an arbitrary coefficient A′, as can be seen by
substituting this form into Eq. (1.24). The general solution for the critically damped
case is therefore

x = (A + A′t)e−βt, (1.27)

which has the two independent constants A and A′ determined from the initial
position x0 and velocity v0. Figure 1.6(b) shows a plot of x(t) in this case.

(3) In the underdamped case, the quantity
√

β2 − ω2
0 = i

√
ω2

0 − β2 is purely
imaginary, so

x(t) = e−βtRe (A1eiω1t + A2e−iω1t), (1.28)

where ω1 =
√

ω2
0 − β2 and we take only the real part of the solution, as indicated

by “Re.” It is mathematically legal to take only the real part of the solution since
the differential equation is real and linear in x: if the complex function x(t) solves
the differential equation, so will the real and imaginary parts of x(t) separately.1
We can use Euler’s identity

eiθ = cos θ + i sin θ (1.29)

1 You can convince yourself of this by plugging x(t) = xR(t)+ i xI(t) into the differential equation and extracting
two identical equations for xR(t) and xI(t) from the real and imaginary parts, respectively.
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(a)

t

t

t

(b)

(c)

Fig. 1.6 Motion of an oscillator if it is (a) overdamped, (b) critically damped, or (c) underdamped, for the special
case where the oscillator is released from rest (v0 = 0) at some position x0.

to write x in terms of purely real functions:

x(t) = e−βt(Ā1 cosω1t + Ā2 sinω1t), (1.30)

where Ā1 = A1 +A2 and Ā2 = i(A1 −A2) are real coefficients. We can also use the
identity cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ to write Eq. (1.30) in the form
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x(t) = A e−βt cos(ω1t + ϕ), (1.31)

where A=
√

Ā2
1 + Ā2

2 and ϕ= tan−1(−Ā2/Ā1). That is, the underdamped solu-
tion corresponds to a decaying oscillation with amplitude A e−βt. The arbitrary
constants A and ϕ can be determined from the initial position x0 and velocity v0
of the mass. Figure 1.6(c) shows a plot of x(t) in this case. If there is no damping
at all, we have b = β = 0 (and the oscillator is obviously “underdamped”). The
original Eq. (1.24) becomes the SHO equation ẍ + ω2

0x = 0 whose most general
solution is

x(t) = A cos(ω0t + ϕ). (1.32)

This gives away the meaning of ω0: it is the angular frequency of oscillation of a
simple harmonic oscillator, related to the oscillation frequency ν in cycles/second
by ω0 = 2πν. Note that ω1 <ω0; i.e., the damping reduces the oscillation frequency
in addition to damping the amplitude.

Whichever solution applies, it is clear that the motion of the particle is
determined by (a) the initial position x(0) and velocity ẋ(0), and (b) the forces
acting on it throughout its motion.

1.5 Resonance

If we “drive” a lightly damped spring–mass system with an oscillating force at
the right frequency we observe the phenomenon of resonance. Repeated small
stimulations of an oscillating system at its natural frequency of oscillation can
cause the oscillation amplitude to become large, especially if the damping is small.
In particular, consider adding a sinusoidal driving force F=F0 sinωt to the spring
force and the damping force acting upon a spring–mass system. Then Newton’s
law becomes

mẍ = Fspring + Fdamping + Fdriving = −kx − bẋ + F0 sinωt. (1.33)

We can change the driving frequency ω arbitrarily. So now we have three important
frequencies, the “natural” frequency ω0 =

√
k/m of an undamped spring–mass

system; the linear damped frequency ω1 =
√

ω2
0 − β2, where β= b/2m; and the

new driving frequency ω. There are various ways to apply this sinusoidal driving
force. One way is to hold the end of the spring which is not connected to the mass
m, and move it back and forth sinusoidally in the x direction, so its position on a
frictionless table as a function of time is X = A sinωt. Then the length of the spring
at any time is not x, but (x−X), so the force it exerts on m is Fspring = −k(x−X) =
−k(x − A sinωt). Newton’s second law then gives

mẍ = −k(x − A sinωt)− bv = −kx − bẋ + kA sinωt, (1.34)
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so

mẍ + bẋ + kx = F0 sinωt or ẍ + 2βẋ + ω2
0x = f0 sinωt, (1.35)

where F0 ≡ kA, β ≡ b/2m is the damping constant, and f0 ≡ F0/m. This
is the equation of a driven, linearly damped harmonic oscillator. Mathematically
speaking, the differential equation is still linear and of second order, but it has been
changed from a homogeneous to an inhomogeneous equation, due to the driving
force term on the right. The solution of this inhomogeneous equation is the sum of
the general (or “characteristic”) solution xc(t) of the homogeneous equation (i.e.,
the equation without the driving term on the right) and a particular solution xp(t)
of the full inhomogeneous equation

x(t) = xc(t) + xp(t). (1.36)

We have already found the general solution of the homogeneous equation. It is

xc(t) = Ae−βt cos(ω1t + ϕ0), (1.37)

where ω1 =
√
ω2

0 − β2 and the amplitude A and phase angle ϕ0 are the requisite
number of arbitrary constants for the second-order differential equation. Note that
this homogeneous term xc(t) gradually dies out, so it is often called the “transient”
solution, as illustrated in Figure 1.7.

Fig. 1.7 Transient solution of a forced, damped harmonic oscillator.

It is the other, “particular” solution xp(t) that wins out in the end, and it is called
the “steady state” solution

xp(t) = C sin(ωt + δ), (1.38)

where C and δ are constants to be determined. The complete solution is the sum of
the steady-state solution and the transient (characteristic) solution:

xp(t) = Ae−βt cos(ω1t + ϕ0) + C sin(ωt − δ). (1.39)
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The first term, the transient solution, dies away as time goes on, leaving the steady-
state solution with amplitude C.

How did we know the form of xp(t)? We could first try xp =C sinωt for some
constant C, in which the mass oscillates in synchrony with the driving force.
However, that cannot work, because the first-derivative term in the differential
equation converts the sine to a cosine, while every other term in the equation is
the sine, so there is no value of C for which the trial solution works. Another
possibility is to try the phase-shifted sine function xp(t) = C sin(ωt − δ), which
oscillates at the driving frequency but is phase-shifted by the angle δ.

Substituting this trial solution xp(t) = C sin(ωt−δ) into the differential equation
gives

C[(ω2
0 − ω2) sin(ωt − δ) + 2βω cosωt − δ] = f0 sinωt. (1.40)

Using the trig identities

sin(a ± b) = sin a cos b ± cos a sin b and cos(a ± b) = cos a cos b ∓ sin a sin b
(1.41)

we write

C[(ω2
0 − ω2)(sinωt cos δ − cosωt sin δ)

+ 2βω(cosωt cos δ + sinωt sin δ)] = f0 sinωt, (1.42)

which must hold at all times. Orthogonality of the sine and cosine functions implies
that the coefficients of each should independently vanish. For example, at times t
such that ωt = 0,π, 2π, etc., the sinωt terms all vanish, so the cosωt terms alone
must satisfy the equation. That is:

C[(−ω2
0 − ω2) sin δ + 2βω cos δ] = 0 (1.43)

at any one of the times mentioned above. But all of these quantities are independent
of time, so this expression must always be zero. Therefore the quantity inside the
square brackets vanishes. That is:

tan δ =
2βω

ω2
0 − ω2 =

(2β/ω0)(ω/ω0)

1 − (ω/ω0)2 . (1.44)

Notice that if the damping β → 0, it follows that tan δ → 0, so that the phase angle
δ → 0 as well. Then the mass moves back and forth in phase with the driving force.
This is also true for very low applied frequencies ω; as ω → 0, the phase angle
δ → 0. This means that if the driving force causes the spring to oscillate very
slowly back and forth, the mass on the other end of the spring will move back and
forth in phase with the driving force.

Figure 1.8 is a graph of the phase angle δ as a function of ω/ω0, the ratio of the
driving frequency to the natural frequency of the undamped spring for a particular
value of 2β/ω0. Note that the response of the system is π/2 out of phase with the
driving frequency if ω = ω0, and out of phase by the angle π if ω � ω0. It is
straightforward to work out the changes in shape of this graph depending upon
the value of 2β/ω0. Equation (1.42) must also be correct for all times such that
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Fig. 1.8 Graph of the phase angle δ between the driving frequency and the response frequency of the oscillator,
drawn for a particular value of the parameter 2β/ω0. As the parameter is made larger, the slope of the
graph becomes steeper nearω/ω0 = 1.

ωt = π/2, 3π/2, 5π/2, etc., when each cosωt term is zero. Only the sinωt terms
survive, so it follows that

C[(ω2
0 − ω2) cos δ + 2βω sin δ] = f0, (1.45)

so the constant C is

C =
f0

(ω2
0 − ω2) cos δ + 2βω sin δ

. (1.46)

We have already found tan δ, so noting that

tan δ =
sin δ

cos δ
=

sin δ√
1 − sin2 δ

, (1.47)

we get

sin δ =
2βω√

(ω2
0 − ω2)2 + 4β2ω2

. (1.48)

Substituting these into the previous equation for C, the final result for the amplitude
C as a function of the driving frequency ω is

C(ω) =
f0

(ω2
0 − ω2) cos δ + 2βω sin δ

=
f0√

(ω2
0 − ω2)2 + 4β2ω2

. (1.49)

Now we have found both the amplitude and the phase angle of the “particular”
(steady-state) solution xp(t) of the forced, damped oscillator:

xp(t) = C(ω) sin(ωt − δ(ω)), (1.50)

where C(ω) is given by Eq. (1.49) and the phase angle δ by Eq. (1.44).
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Fig. 1.9 Shape of the oscillation amplitude response of the system as a function ofω/ω0 for various damping
constants.

The shape of C(ω), the amplitude response, is especially interesting; it is
displayed in Figure 1.9 as a function of the ratio ω/ω0, for various damping
constants, as characterized by the ratio β/ω0. The curves show a resonance peak at
a frequency near, but not quite at, the natural frequency ω0 of the undamped spring–
mass system. Note that the curves are sharper for small damping than for large
damping. If the driving force frequency ω is close to the natural frequency ω0 the
response is large, especially if the drag is small. This is the resonance phenomenon.
The resonance frequency ωR is the frequency corresponding to the maximum in the
response curve C(ω). It is then given by

ωR =
√
ω2

0 − 2β2, (1.51)

which is easily found by setting dC(ω)/dω = 0. It is then easy to show that the
oscillation amplitude at resonance is

CR =
F0

2mβω1
, (1.52)

where ω1 =
√
ω2

0 − β2 is the frequency of the damped, undriven oscillator. Note
that CR is large if the damping β is small.

Resonance can be observed by repeated small pushes on a child on a swing at his
or her natural frequency of oscillation; or by driving a car at just the right speed on
a washboard road, especially when the car has no shock absorbers to damp out the
motion; or when tuning a radio, where incoming radio waves striking the antenna
can excite large oscillations in the radio’s electrical circuits if the frequency is just
right, but not otherwise, so you hear only the station you tuned for.
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1.6 Motion in Two or Three Dimensions

So far all of our examples have been restricted to one-dimensional motion. When
the motion is in two or three dimensions, the first step is to select an appropriate
coordinate system that fits the problem. For two-dimensional motion there are
Cartesian or plane polar coordinates, for example, and for three-dimensional
motion there are Cartesian, spherical, or cylindrical coordinates, the most common
choices among many others.

Having chosen a coordinate system, it is often convenient to express vector quan-
tities like position, velocity, acceleration, or force using unit vectors. Each unit
vector has unit length and points in one of the orthogonal directions corresponding
to the coordinates in the system. It follows that the dot product of any unit vector
with itself is unity, while the dot product of any unit vector with any other unit
vector in the same system is zero.

For Cartesian coordinates in two dimensions the unit vectors are x̂ and ŷ, where

x̂ · x̂ = 1, ŷ · ŷ = 1, x̂ · ŷ = ŷ · x̂ = 0. (1.53)

The position vector of a particle is then

r = xx̂+ yŷ (1.54)

and the particle’s velocity and acceleration vectors are

v =
dr
dt

= ẋx̂+ ẏŷ and a =
dv
dt

= ẍx̂+ ÿŷ. (1.55)

In differentiating r and v we differentiated their components, but did not have to
differentiate the unit vectors, because x̂ and ŷ are constants: neither the length of
these unit vectors nor their directions in space change with time. If plane polar
coordinates r, θ are chosen instead, the unit vectors are r̂ and θ̂, where

r̂ · r̂ = 1, θ̂ · θ̂ = 1, r̂ · θ̂ = θ̂ · r̂ = 0. (1.56)

Now whereas Cartesian unit vectors do not change with time, the plane polar unit
vectors generally do change as the particle moves, because their directions may
change. For example, if the particle moves in a circle around the origin, both unit
vectors r̂ and θ̂ change direction in space. In fact, their time derivatives are

dr̂
dt

= θ̇θ̂ and
dθ̂
dt

= −θ̇r̂. (1.57)

In plane polar coordinates the position vector of a particle is simply r = rr̂.
Therefore the velocity is

v =
dr
dt

= ṙr̂+ r ˙̂r = ṙr̂+ rθ̇ θ̂, (1.58)
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and the acceleration is

a =
dv
dt

= (r̈ − rθ̇2)r̂+ (rθ̈ + 2ṙθ̇)θ̂. (1.59)

This equation contains within it the well-known results that a particle circling the
origin at constant radius r and constant angular velocity θ̇ ≡ ω will have an inward
(“centripetal”) acceleration −rω2r̂ = −(v2/r) r̂, and a person walking outward ṙ >
0 on a steadily rotating carousel with angular velocity θ̇ > 0 will be accelerating
sideways, in the θ̂ direction. Much more on all of this in Chapter 9.

Of course, motion in all three dimensions requires three unit vectors, typically
for Cartesian, spherical, or cylindrical coordinates. These unit vectors are given in
Appendix A.

Example 1.3 A Slingshot on the Moon
Someday we may want to construct spacecraft or space colonies not on the earth or the moon but in space
itself, using mined metals and other materials lifted off the moon. The moon has the advantage of a much
smaller escape velocity than that of the earth, and no atmosphere to retard motion. Instead of using expensive
rockets and fuel, could it be possible to achieve the escape velocity from the airless moon by slinging containers
of material from its surface using a rapidly rotating boom? A sturdy boom of length R might swing around in a
horizontal plane on the moon’s surface about a central vertical axis at constant angular velocityω. A payload
container starting near the rotation axis of the boom might then slide with increasing speed out along the
length of the boom and then project outward at a very high velocity when it leaves the end of the boom.

payload

!

r

µ

Fig. 1.10 A boom with payload on the moon’s surface, rotating in a horizontal plane.

Plane polar coordinates are the obvious choice here, with r measured outward from the rotation axis and
θ the angle of the boom from some initial angle θ = 0 when the payload is released on the rotating boom
at a small initial radius r0, with ṙ0 = 0. The boom keeps swinging around at constant angular velocity, so the
angle of the payload is θ = ωt until it finally flies off the end of the boom (see Figure 1.10).

We assume the payload slides frictionlessly along the boom, so the radial force Fr = 0. The tangential
force is Fθ �= 0, which is the normal force of the boom on the payload, keeping it moving with constant
angular velocityω as it slides outward. Newton’s second law is then

F = Fθθ̂ = ma = m[(̈r − rω2)r̂ + (rθ̈ + 2ṙθ̇)θ̂], (1.60)
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so

r̈ − ω2r = 0 and Fθ = m(rθ̈ + 2ṙθ̇). (1.61)

The first equation is a linear, second-order differential equation with solution r = Aeωt + Be−ωt , where
A and B are arbitrary constants. We can find A and B from the given initial conditions at t = 0, which are
r = r0 and ṙ = 0. This gives A = B = r0/2, so

r = (r0/2)(eωt + e−ωt) ≡ r0 cosh ωt (1.62)

in terms of the hyperbolic cosine function. Then the velocity of the payload as a function of time, including
both the radial and tangential components, is

v = ṙ r̂ + rθ̇ θ̂ = r0ω sinh ωt r̂ + r0ω cosh ωt θ̂. (1.63)

We can find the payload velocity when it reaches the end of the boom. At that point R = r0 cosh ωtf ,
where tf is the time when this happens. Then cosh ωtf = R/r0 and sinh ωtf =

√
cosh2 ωtf − 1 =√

(R/r0)2 − 1), where we have used the identity 1 + sinh2 = cosh2. Substituting these results into the
expression for v:

v = ω

[√
R2 − r2

0 r̂ + Rθ̂
]

(1.64)

and from this we can find the speed of the payload as it flies off the end:

vf =
√

v2
r + v2

θ = ω
√

2R2 − r2
0 , (1.65)

which must equal or exceed the moon’s escape velocity. Finally, we can calculate the tangential force the boom
must exert upon the payload to keep θ = ω t, as a function of time and as a function of r:

Fθ = m(rθ̈ + 2ṙθ̇) = m(0 + 2ω2r0 sinh ωt) = 2mω2
√

r2 − r2
0 , (1.66)

which is greatest when r = R, at the tip of the boom. There will be an equal but opposite reaction force back
on the boom due to the payload, so the boom must be strong enough to withstand this tangential force at
its tip.

Putting in some numbers, the escape velocity on the moon is approximately 2.4 km/s, and we can choose
ω = 2π s−1 and r0 = 1 m. The radius of the boom must then be R � 270 m. �

1.7 Systems of Particles

Up to now we have concentrated on the dynamics of single particles. We will now
expand our horizons to encompass systems of an arbitrary number of particles. A
system of particles might be an entire solid object like a bowling ball, in which tiny
parts of the ball can be viewed as individual infinitesimal particles. Or we might
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have a liquid in a glass, or the air in a room, or a planetary system, or a galaxy of
stars, all made of constituents we treat as “particles.”

The location of the ith particle of a system can be identified by a position
vector ri extending from the origin of coordinates to that particle, as illustrated in
Figure 1.11. Using the laws of classical mechanics for each particle in the system,
we can find the laws that govern the system as a whole.

y

x

Fig. 1.11 A system of particles, with each particle identified by a position vector ri with i = 1, 2, 3.

Define the total momentum P of the system as the sum of the momenta of the
individual particles:

P =
∑

i
pi. (1.67)

Similarly, define the total force FT on the system as the sum of all the forces on all
the particles:

FT =
∑

i
Fi. (1.68)

It then follows that FT = dP/dt, just by adding up the individual Fi = dpi/dt
equations for all the particles. If we further split up the total force FT into Fext (the
sum of the forces exerted by external agents, like earth’s gravity or air resistance
on the system of particles that form a golfball) and Fint (the sum of the internal
forces between members of the system themselves, like the mutual forces between
particles within the golfball), then

FT = Fint + Fext = Fext, (1.69)

because all the internal forces cancel out by Newton’s third law. That is, for any
two particles i and j, the force of i on j is equal but opposite to the force of j on i.
Finally, we can write a grand second law for the system as a whole:

Fext =
dP
dt

, (1.70)

showing how the system as a whole moves in response to external forces.
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Now the importance of momentum is clear. For if no external forces act on the
collection of particles Fext = 0, their total momentum cannot depend upon time,
so P is conserved. Individual particles in the collection may move in complicated
ways, but they always move in such a way as to keep the total momentum constant.

Another useful quantity characterizing a system of particles is their center of
mass position RCM. Let the ith particle have mass mi, and define the center of
mass of the collection of particles as

RCM =

∑
i miri

M
, (1.71)

where M =
∑

i mi is the total mass of the system. We can write the position vector
of a particle as the sum ri = RCM + r′i, where r′i is the position vector of the
particle measured from the center of mass, as illustrated in Figure 1.12.

y

x

Fig. 1.12 A collection of particles, each with a position vector ri from a fixed origin. The center of mass RCM is
shown, and also the position vector r′i of the ith particle measured from the center of mass.

The velocity of the center of mass is

VCM =
dRCM

dt
=

∑
i mivi

M
=

P

M
, (1.72)

differentiating term by term, and using the fact that the particle masses are constant.
Again P is the total momentum of the particles, so we have proven that the center
of mass moves at constant velocity whenever P is conserved – that is, whenever
there is no net external force. In particular, if there is no external force on the
particles, their center of mass stays at rest if it starts at rest.

This result is also very important because it shows that a real object composed of
many smaller “particles” can be considered a particle itself: it obeys all of Newton’s
laws with a position vector given by RCM, a momentum given by P, and the only
relevant forces being the external ones. It relieves us of having to draw a distinct
line between particles and systems of particles. For some purposes we think of a
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star as composed of many smaller particles, and for other purposes the star as a
whole could be considered a single particle in the system of stars called a galaxy.

1.8 Conservation Laws

Using Newton’s laws we can show that under the right circumstances there are
as many as three dynamical properties of a particle that remain constant in time,
i.e., that are conserved. These properties are momentum, angular momentum,
and energy. They are conserved under different circumstances, so in any particular
case all of them, none of them, or only one or two of them may be conserved. As
we will see, a conservation law typically leads to a first-order differential equation,
which is generally much easier to tackle than the usual second-order equations
we get from Newton’s second law. This makes identifying conservation laws in a
system a powerful tool for problem solving and characterizing the motion. We will
see later in Chapter 6 that there are deep connections between conservation laws
and symmetries in Nature.

Momentum
From Newton’s second law in the form F= dp/dt it follows that if there is no net
force on a particle, its momentum p=mv is conserved, so its velocity v is also
constant. Conservation of momentum for a single particle simply means that a free
particle (a particle with no force on it) moves in a straight line at constant speed. For
a single particle, conservation of momentum is equivalent to Newton’s first law.

For a system of particles, however, momentum conservation becomes nontrivial,
because it requires the conservation of only total momentum P. When there are
no external forces acting on a system of particles, the total momentum of the
individual constituents remains constant, even though the momentum of each
single particle may change:

P =
∑

i
pi = constant. (1.73)

As we saw earlier, this is the momentum of the center of mass of the system if we
were to imagine the sum of all the constituent masses added up and placed at the
center of mass. This relation can be very handy when dealing with several particles.

Example 1.4 A Wrench in Space
We are sitting within a spaceship watching a colleague astronaut outside holding a wrench. The astronaut-
plus-wrench system is initially at rest from our point of view. The astronaut (of mass M) suddenly throws the
wrench (of mass m), with some unknown force. We then see the astronaut moving with velocity V. Without
knowing anything about the force with which she threw the wrench, we can compute the velocity of the
wrench. No external forces act on the system consisting of wrench plus astronaut, so its total momentum is
conserved:
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P = M V + m v = constant, (1.74)

where v is the unknown velocity of the wrench. Since the system was initially at rest, we know that P = 0
for all time. We then deduce

v = −M V
m

(1.75)

without needing to use Newton’s second law or any other differential equation. �

Example 1.5 Rockets
In the preceding example the astronaut gains velocity in a direction opposite to the direction in which she
throws the wrench, thereby conserving overall momentum. A rocket behaves exactly the same way, for exactly
the same reason, except the single throw of a wrench is replaced by the continuous exhaust of burned fuel
streaming out from the combustion chamber at the rear of the rocket. Figure 1.13 shows the rocket moving
to the right in gravity-free empty space; there are no external forces, so the total momentum of the rocket
plus expelled combustion gases must be conserved. At time t, shown in Figure 1.13(a), the rocket (including
onboard fuel) has mass m and velocity v. Slightly later, at time t +Δt, as shown in Figure 1.13(b), the rocket
has mass m + Δm (where Δm is negative, since the rocket has expelled some fuel in the exhaust) and
velocity v+Δv. In addition, there is now an exhaust mass−Δm = |Δm|, where−Δm is positive. Note
that our system of rocket plus exhaust has constant mass, which is essential here, because it only makes sense
to conserve momentum for a system in which the mass stays the same.

What is the velocity of the bit of exhaust |Δm| in the second figure? We will suppose that its velocity is
u relative to the rocket, called the exhaust velocity, directed in the backwards direction, and so in the inertial
frame in which we are viewing the rocket the rocket has velocity v (or v + Δv) to the right – it will make
no difference which we choose – so the bit of exhaust has velocity u − v to the left from our point of view.
(Note that if at some instant the rocket happens to be moving to the right at speed u relative to us, then the
bit of exhaust will be at rest in our frame; if the rocket is moving faster than u, the bit of exhaust will actually
be moving to the right, since u − v will be negative.)

(a)

(b)

time

m

m + Δm

t + Δt

v + Δv

v

u – v

–Δm = |Δm|

t

time

Fig. 1.13 A rocket and expelled exhaust (a) at time t and (b) at time t +Δt.
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We can now conserve momentum between times t and t +Δt. That is:

(m +Δm)(v +Δv)− (−Δm)(u − v) = mv. (1.76)

So

mΔv +ΔmΔv +Δm u = 0. (1.77)

Dividing by the brief time interval Δt and taking the limit Δt → 0, the doubly small term ΔmΔv goes
away in the limit, so we find that the equation of motion is

m(t)
dv
dt

= −u
dm
dt

. (1.78)

This looks very similar to Newton’s second law in the form mdv/dt = F, except that here the mass of the
rocket changes with time. The “force” term on the right is called the thrust of the rocket:

Thrust ≡ −u
dm
dt

, (1.79)

which is positive because the rocket mass is decreasing with time as its fuel is burned. The equation makes
intuitive sense: the thrust is proportional to both the exhaust velocity and the rate at which the fuel is burned.

We can now integrate the rocket’s equation of motion if we assume that the exhaust velocity u is constant.
First, multiply Eq. (1.78) by dt and divide by m: this removes t as a variable, and we are left with dv =

−udm/m. The remaining variables v and m have been separated, so we can integrate both sides:∫ v

v0

dv = −u
∫ m

m0

dm
m

, (1.80)

giving

v = v0 + u ln(m0/m), (1.81)

which is often called the rocket equation. If, for example, 90% of the initial mass of the rocket consists of fuel,
while only 10% is “payload,”then when all the fuel has burned the rocket has only 10% of its original mass, so
its velocity has increased by

v − v0 = u ln
(

m0

mpayload

)
= u ln

(
m0

0.1m0

)
� 2.30 u. (1.82)

By the end, the rocket is traveling faster than the fuel speed relative to the rocket. �

Finding the motion of a rocket is an example of a “variable mass” problem,
called that because the mass of the object of interest (the rocket in this case)
changes mass as time goes on. There are dozens of analogous problems, including
for example (i) a hailstone that gains mass with time, freezing and accreting water
molecules in the air as it falls; (ii) a jet aircraft whose mass increases as its wings ice
up while its mass decreases as fuel is burned; (iii) a railroad boxcar moving along a
horizontal track, open at the top and gaining mass as rain falls in, while losing mass



31 1.8 Conservation Laws

due to a hole in the bottom of the boxcar through which water is leaking. Note that
the total mass of the system does not change; it simply moves from one part of the
system to another.

(a)

(b)

Δmr

time t

t + Δttime

M

M + Δmr – Δm`

Fig. 1.14 A leaky open boxcar in a rainstorm. (a) At time t the boxcar is moving at velocity v and some raindrops of
massΔmr are about to fall in, with no horizontal component of velocity. (b) At time t +Δt the boxcar
is moving at velocity v +Δv. The raindropsΔmr have fallen in, and a quantity of waterΔm� has
leaked out, still moving with horizontal velocity v.

The technique for solving such problems is to use Newton’s second law F =
dp/dt in the form Δp = FΔt over the short time interval Δt for a system whose
mass is the same at time t+Δt as it was at time t. That is, we can only be confident
that F = dp/dt is valid if the system has fixed mass. So in the case of the boxcar, for
example, we draw two pictures (see Figure 1.14). The first at time t shows a boxcar
of mass M moving to the right at speed v plus a small quantity of rain of mass Δmr
falling with no horizontal velocity (its vertical velocity is irrelevant here). Thus,
the horizontal momentum of the system at time t is simply p0 = Mv. The second
picture is at time t +Δt, and shows a boxcar of mass M +Δmr −Δm�, indicating
that the boxcar has gained mass Δmr due to the falling rain, while losing mass Δm�

due to the leak. In this picture there is also a mass Δm�, the leaked mass, moving
to the right at speed v, because it “remembers” the speed it had just before it leaked
out by the law of inertia, Newton’s first law. The momentum of the entire system
at t + Δt is p1 = (M + Δmr −Δm�)(v + Δv) + Δm�v. Now if we pretend there
is no horizontal force on the system due to air resistance or friction with the tracks,
the total momentum of the fixed-mass system is the same at t+Δt as it was at time
t. Therefore, setting p1 = p0:

(M +Δmr −Δm�)(v +Δv) + Δm�v = Mv. (1.83)
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Now cancel the Mv terms, divide by Δt, and take the limit Δt → 0. The result is
the differential equation of motion of the boxcar:

M
dv
dt

= −λrv, where λr =
dmr
dt

. (1.84)

Here, λr is the rate at which rain is falling in. Note that this equation looks just
like the equation for the bacterium subject to a linear drag force. The cause of
the “drag” here is that the boxcar has to speed up the horizontal velocity of the
raindrops that fall in, and the rain reacts back upon the boxcar tending to slow it
down. Appearances may be deceiving, however, because in the boxcar problem
M changes with time unless the rate of rainfall happens to be exactly the same as
the rate of leakage. Nevertheless, we can solve the problem completely for v(t)
and then x(t) if we assume the rates of rainfall and leaking are both constants,
λr and λ� (see the Problems section at the end of this chapter). We can also find
the differential equation of motion if there is air resistance or friction by adding
nonzero forces to Δp = FΔt, and perhaps solve the equation exactly if F has a
sufficiently simple form.

Angular Momentum
Let a position vector r extend from an origin of coordinates to a particle, as shown
in Figure 1.15. The angular momentum of the particle is defined to be

� = r× p, (1.85)

the vector cross product of r with the particle’s momentum p. Note that in a given
inertial frame the angular momentum of the particle depends not only on properties
of the particle itself, namely its mass and velocity, but also upon our choice of
origin.

y
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z

Fig. 1.15 The position vector for a particle. Angular momentum is always defined with respect to a chosen point
from where the position vector originates.
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Using the product rule, the time derivative of � is
d�
dt

=
dr
dt

× p+ r× dp
dt

. (1.86)

The first term on the right is v × mv, which vanishes because the cross product
of two parallel vectors is zero. In the second term, we have dp/dt = F using
Newton’s second law, where F is the net force acting on the particle. It is therefore
convenient to define the torque N on the particle due to F as

N = r× F, (1.87)

so that

N =
d�
dt

. (1.88)

That is, the net torque on a particle is responsible for any change in its angular
momentum, just as the net force on the particle is responsible for any change in
its momentum. The angular momentum of a particle is conserved if there is no net
torque on it.

Sometimes the momentum p is called the “linear momentum” to distinguish it
from the angular momentum �. They have different units and are conserved under
different circumstances. The momentum of a particle is conserved if there is no net
external force and the angular momentum of the particle is conserved if there is no
net external torque. It is easy to arrange forces on an object so that it experiences
a net force but no net torque, and equally easy to arrange them so there is a net
torque but no net force. For example, if the force F is parallel to r, we have N = 0;
yet there is a nonzero force.

There is another striking difference between momentum and angular momentum.
In a given inertial frame, the value of a particle’s momentum p is independent
of where we choose to place the origin of coordinates. But because the angular
momentum � of the particle involves the position vector r, the value of � does
depend on the choice of origin. This makes angular momentum more abstract than
momentum, in that in the exact same problem different people at rest in the same
inertial frame may assign it different values depending on where they choose to
place the origin of their coordinate system.

The angular momentum of systems of particles is sufficiently complex and
sufficiently interesting to devote much of Chapter 12 to it. For now, we can simply
say that as with linear momentum, angular momentum can be exchanged between
particles in the system. The total angular momentum of a system of particles is
conserved if there is no net external torque on the system.

Example 1.6 A Particle in Two Dimensions Attached to a Spring
A block of mass m is free to move on a frictionless tabletop under the influence of an attractive Hooke’s-law
spring force F = −kr, where the vector r is the position vector of the particle measured from the origin. We
will find the motion x(t), y(t) of the ball and show that the angular momentum of the ball about the origin
is conserved.
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The vector r = x x̂ + y ŷ, where x and y are the Cartesian coordinates of the ball and x̂ and ŷ are unit
vectors pointing in the positive x and positive y directions, respectively. Newton’s second law −kr = mr̈
becomes

−k(xx̂ + yŷ) = m(̈xx̂ + ÿŷ), (1.89)

which separates into the two simple harmonic oscillator equations

ẍ + ω2
0 x = 0 and ÿ + ω2

0 y = 0, (1.90)

whereω0 =
√

k/m. It is interesting that the x and y motions are completely independent of one another in
this case; the two coordinates have been decoupled, so we can solve the equations separately. The solutions are

x = A1 cos(ω0t + ϕ1) and y = A2 cos(ω0t + ϕ2), (1.91)

showing that the ball oscillates simple harmonically in both directions.

y

x

Fig. 1.16 A two-dimensional elliptical orbit of a ball subject to a Hooke’s-law spring force,
with one end of the spring fixed at the origin. The spring’s rest length is zero.

The four constants A1, A2, ϕ1, ϕ2 can be evaluated in terms of the four initial conditions x0, y0, vx0 , vy0 .
The oscillation frequencies are the same in each direction, so orbits of the ball are all closed. In fact, the orbit
shapes are ellipses centered at the origin, as shown in Figure 1.16.a Note that in this two-dimensional problem,
the motion of the ball is determined by four initial conditions (the two components of the position vector and
the two components of the velocity vector), together with the known force throughout the motion. This is
what is expected for two second-order differential equations.

The spring exerts no torque on the ball about the origin, since the cross product of any vector with itself
vanishes, so N = r× F = r×−kr = 0. Therefore the angular momentum of the ball is conserved about
the origin. In this case, this angular momentum is given by

� = (x x̂ + y ŷ)× (m ẋ x̂ + m ẏ ŷ) = (m x ẏ − m y ẋ)ẑ, (1.92)
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so the special combination m x ẏ − m y ẋ remains constant for all time. That is certainly a highly nontrivial
statement.

The angular momentum is not conserved about any other point in the plane, because then the position
vector and the force vector would be neither parallel nor antiparallel. The angular momentum of a particle is
always conserved if the force is purely central, i.e., if it is always directly toward or away from a fixed point, as
long as that same point is chosen as origin of the coordinate system.

We still have not used the conservation of angular momentum in this problem to our advantage, because
we solved the full second-order differential equation. To see how we can tackle this problem without ever
needing to invoke Newton’s second law or any second-order differential equation, we need to first look at
another very useful conservation law, the conservation of energy. �

aRemember that the equation of an ellipse in the x–y plane can be written as

(x − x0)
2

a2
+

(y − y0)
2

b2
= 1, (1.93)

where (x0, y0) is the center of the ellipse, and a and b are the minor and major radii. One can show that Eq. (1.91) indeed satisfies this equation
for appropriate relations betweenϕ1,ϕ2, A1, A2 and x0, y0, a, b.

Energy
Energy is the third quantity that is sometimes conserved. Of momentum, angular
momentum, and energy, energy is the most subtle and most abstract, yet it is often
the most useful.

We begin by writing Newton’s law for a particle in the form FT = mdv/dt,
where FT is the total force on the particle. Dotting this equation with the particle’s
velocity v:

FT · v = mv · dv
dt

=
d
dt

(
1
2

mv2
)

≡ dT
dt

, (1.94)

where we have defined

T =
1
2

mv2 (1.95)

as the kinetic energy of the particle.4 If F is the force of gravity, for example, then
if the particle is falling vertically its velocity is parallel to F, so F · v is positive,
causing the kinetic energy of the particle to increase; and if the particle is rising,
its velocity is antiparallel to F, so F · v is negative, causing the kinetic energy of
the particle to decrease. If FT is the total force acting on the particle, the time rate
of change

4 In deriving Eq. (1.94), we have used the identity

v · dv
dt

= vx
dvx

dt
+ vy

dvy

dt
+ vz

dvz

dt
=

1
2

d
dt
(v2

x + v2
y + v2

z ) =
1
2

d(v2)

dt
. (1.96)
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dT
dt

= FT · v (1.97)

is called the net power input to the particle.

Example 1.7 Charged Particle in a Magnetic Field
The force exerted by a magnetic field B on a particle of electric charge q moving with velocity v is given by

FB = qv × B. (1.98)

What is the change in a particle’s kinetic energy if this is the only force acting on it?
Using the fact that the cross product of any two vectors is perpendicular to both vectors, it follows that

v · (v × B) = 0. Therefore, the kinetic energy of a particle moving in a magnetic field is constant in
time. Seen another way, the particle generally accelerates, but its acceleration a = q(v × B)/m is always
perpendicular to v, so the magnitude of v remains constant, and therefore the kinetic energy T = (1/2)mv2

remains constant as well. The particle may move along very complicated paths, but its kinetic energy never
changes. �

We can integrate Eq. (1.94) over time to find the change in a particle’s kinetic
energy as it moves from some point a to another point b. The result is

ΔT ≡ Tb − Ta =

∫ b

a
FT · v dt =

∫ b

a
FT · ds, (1.99)

since v ≡ ds/dt, where ds is the instantaneous displacement vector. At each
point on the path the vector ds is directed along the path, and its magnitude is
an infinitesimal distance along the path.

Now define the work W done by any one of the forces F acting on the particle,
as it moves from a to b, as the line integral (or path integral)

W =

∫ b

a
F · ds. (1.100)

Note from the dot product that it is only the component of F parallel to the path at
some point that does work on the particle. Figure 1.17 illustrates the setup.

We can then define the total work done on the particle by all of the forces F1,
F2, . . . to be

WT = W1 + W2 + · · · =
∫ b

a
F1 · · · ds+

∫ b

a
F2 · ds+ · · · (1.101)

so it follows from Eq. (1.99) that

WT = Tb − Ta, (1.102)

which is known as the work–energy theorem: the change in kinetic energy of a
particle is equal to the total work done upon it. If we observe that the kinetic energy
of a particle has changed, there must have been a net amount of work done upon it.
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y

x

a

b

Fig. 1.17 The work done by a force on a particle is the line integral
∫ b

a F · ds along the path traced by the particle.

Often the work done by a particular force F depends upon which path the particle
takes as it moves from a to b. The frictional work done by air resistance on a ball as
it flies from the bat to an outfielder depends upon how high it goes, that is, whether
its total path length is short or long. There are other forces, however, like the static
force of gravity, for which the work done is independent of the particle’s path. For
example, the work done by earth’s gravity on the ball is the same no matter how it
gets to the outfielder. For such forces the work depends only upon the endpoints a
and b. That implies that the work can be written as the difference5

Wa→b = −Ub + Ua (1.103)

between a potential energy function U evaluated at the final point b and the initial
point a.

A force F for which the work W=
∫ b

a F · ds between any two points a and b
is independent of the path is said to be conservative. There are several tests for
conservative forces that are mathematically equivalent, in that if any one of them
is true the others are true as well. The conditions are:

1 W =
∫ b

a F · ds is path independent.
2 The work done around any closed path is

∮
F · ds = 0.

3 The curl of the force function vanishes: ∇× F = 0.
4 The force function can always be written as the negative gradient of some scalar

function U: F = −∇U.

Often the third of these conditions makes the easiest test. For example, the curl of
the uniform gravitational force F = −mg ẑ is, using the determinant expression
for the curl:

∇× F =

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣∣∣∣∣∣ = 0, (1.104)

5 The reason for this choice of signs will soon become clear.
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since each component of F is zero or a constant. Therefore this force is conserva-
tive. That means it must have a potential energy given by the indefinite integral

U = −
∫

F · ds (1.105)

= −
∫
(−mgẑ) · ds = mg

∫
dz = mgz.

The work done by a conservative force is equal to the difference between two
potential energies, so it follows that the physics is exactly the same for a particle
with potential energy U(r) as it is for a potential energy U(r) + C, where C is any
constant. For example, the potential energy of a particle of mass m in a uniform
gravitational field g is Ugrav = mgh, where h is the altitude of the particle. The
fact that any constant can be added to U in this case is equivalent to the fact that
it doesn’t matter from what point the altitude is measured, as long as this is done
consistently throughout a problem. The motion of a particle is the same whether
we measure altitude from the ground or from the top of a building.

Not all forces are conservative: for example, the curl of the hypothetical force
F = αxyẑ, where α is a constant, is

∇× F =

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
0 0 αxy

∣∣∣∣∣∣
= x̂

∂

∂y
(α x y)− ŷ

∂

∂x
(α x y) = α(x x̂− y ŷ) �= 0, (1.106)

so this force is not conservative, and does not possess a potential energy function.
Typically both conservative (FC) and nonconservative forces (FNC) act on a

particle, so the total work done on it is

WT = WC + WNC = −Ub + Ua + WNC = T(b)− T(a) (1.107)

from the work–energy theorem equation (1.102), where now the potential energies
Ua and Ub are the total potential energies due to all of the conservative forces.
Rewriting this equation in the form

[Tb + Ub]− [Ta + Ua] = WNC, (1.108)

we can finally define the energy E of the particle as the sum of the kinetic and
potential energies:

E ≡ T + U. (1.109)

The change in a particle’s energy as it travels from a to b is therefore

ΔE = Eb − Ea = WNC, (1.110)
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the total work done by nonconservative forces. The energy is conserved, with Eb =
Ea, if only conservative forces act on the particle (that is, if WNC = 0).6

Example 1.8 A Child on a Swing
A child of mass m is being pushed on a swing. Suppose there are just four forces acting on her: (i) the normal
force of the seat; (ii) the hands of the pusher; (iii) air resistance; and (iv) gravity. What is the work done by each?

(i) As long as the normal force of the swing seat is perpendicular to the instantaneous displacement, the work
it does must be zero at all times, FN · ds = 0.

(ii) While the pusher is pushing, the force is in the direction of the displacement and F · ds > 0, so the work
it does is positive. The net work done over a complete cycle is also positive,

∮
F · ds > 0.

(iii) The work done by air resistance is negative, because air resistance is opposite to the direction of motion,
and hence F · ds < 0. The net work done by air resistance is therefore negative,

∮
F · ds < 0.

(iv) The work done by gravity is positive while she is descending, and negative while she is ascending; they
exactly cancel out over a complete cycle. That is, gravity is a conservative force, or

∮
F · ds = 0.

The only two forces that do a net amount of work on her over a complete cycle are the hands pushing (positive)
and air resistance (negative). Neither force is conservative, soΔE = Eb−Ea = WNC = Whands+Wair. If the
right-hand side is positive (the net work done by the pusher exceeds the magnitude of the (negative) net work
done by air resistance), her energy increases; but if Whands < |Wair|, her energy decreases. If the pusher stops
pushing, and if we could remove air resistance, then her energy would be conserved, continually oscillating
between kinetic energy (maximum at her lowest point) and gravitational potential energy (maximum at her
highest points). �

It is useful to expand the concept of energy beyond kinetic and potential energies
by regarding the work done by nonconservative forces as external sources or sinks
of the total energy. For example, in the case of the friction force, a decrease in
the “mechanical energy” T + U shows up in some other external form, such as
heat. That is, conservation of energy is more general than one might expect from
classical mechanics alone; in addition to kinetic and potential energies, there is
thermal energy, the energy of deformation, energy in the electromagnetic field,
and many other forms as well. Energy is a useful concept across many disparate
physical systems.

Example 1.9 A Particle Attached to a Spring Revisited
We want to demonstrate the power of conservation laws in solving the previous problem of a particle of mass
m confined to a two-dimensional plane and attached to a spring of force constant k (see Figure 1.16). The only
force law is Hooke’s law F = −kr. We can check that∇× F = 0, and then find that the potential energy
for this conservative force is

6 That, of course, is responsible for the term “conservative forces.”
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Ub − Ua = −
∫ b

a
F · dr = −k

∫ b

a
r · dr ⇒ U =

1
2

k r2. (1.111)

Fig. 1.18 A ball free to move in two dimensions subject to the spring force F = −k r. We
assume the spring has natural length r = 0.

The total energy is therefore

E =
1
2

m v2 +
1
2

k r2. (1.112)

The problem has rotational symmetry, so it is helpful to use polar coordinates. The velocity of the particle is

v = ṙ r̂ + r θ̇ θ̂, (1.113)

where r and θ are the polar coordinates (see Appendix A for a review of coordinate systems). We then have

E =
1
2

m
(

ṙ2 + r2θ̇2
)
+

1
2

k r2. (1.114)

Since E is a constant, this would be a very nice first-order differential equation for r(t) if we could get rid of
the pesky θ̇ term. Angular momentum conservation comes to the rescue. We know that

� = r × (m v) = m r r̂ × (ṙ r̂ + r θ̇ θ̂) = m r2 θ̇ ẑ = constant. (1.115)

We can then write

m r2 θ̇ = � ⇒ θ̇ =
�

m r2 (1.116)

with � a constant. Putting this back into Eq. (1.114):

E =
1
2

m ṙ2 +
�2

2 m r2 +
1
2

k r2, (1.117)

which is a first-order differential equation from which r(t) can be determined; after that we can find θ(t)
using Eq. (1.116). We have thus solved the problem without ever dealing with the second-order differential
equation arising from Newton’s second law. This is not particularly advantageous here, given that the original
second-order differential equations corresponded to harmonic oscillators. In general, however, tackling only
first-order differential equations is likely to be a huge advantage.

It is instructive to analyze the boundary conditions and conservation laws of this system. Newton’s
second law provides two second-order differential equations in two dimensions. Each differential equation
requires two boundary conditions to yield a unique solution, for a total of four required constants. If we
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use conservation laws instead, we know that both energy and angular momentum are conserved. Energy
conservation provides us with a single first-order differential equation requiring a single boundary condition.
But the value of energy E is another constant to be specified, so there are altogether two constants to fix using
energy conservation. Angular momentum conservation gives us another first-order differential equation, with
a single boundary condition plus the value � of the angular momentum itself, so there are another two
constants. The energy and angular momentum conservation equations together thus again require a total
of four constants to yield a unique solution. The four boundary conditions of Newton’s second law are directly
related to the four constants required to solve the problem using conservation equations. �

Example 1.10 Newtonian Central Gravity and its Potential Energy
Newton’s law of gravity for the force on a “probe” particle of mass m due to a “source” particle of mass M
is F = − (GMm/r2)r̂, where r̂ is a unit vector pointing from the source particle to the probe in spherical
coordinates. The minus sign means that the force is attractive, in the negative r̂ direction. We can check to see
whether this force is conservative by taking its curl.

In spherical coordinates, the curl of a vector F in terms of unit vectors in the r, θ, andφ directions is

∇× F =
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂/∂r ∂/∂θ ∂/∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣ , (1.118)

so the curl of F is

∇×
(
−GMm

r2 r̂
)

=
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂/∂r ∂/∂θ ∂/∂φ

−GMm/r2 0 0

∣∣∣∣∣∣ = 0. (1.119)

Therefore, Newton’s inverse-square gravitational force is conservative, and must have a corresponding poten-
tial energy function

U(r) = −
∫

F · dr = GMm
∫

dr
r2 = −G M m

r
+ constant, (1.120)

where by convention we ignore the constant of integration, which in effect makes U → 0 as r → ∞. �

Example 1.11 Dropping a Particle in Spherical Gravity
Armed with the potential energy expression due to a spherical gravitating body of mass M, we write the total
energy of a probe particle of mass m as

E = T + U(r) =
1
2

mv2 − G M m
r

, (1.121)

which is conserved. Suppose that the probe particle is dropped from rest some distance r0 from the center of
M, which we assume is so large, M � m, that it does not move appreciably as the small mass m falls toward
it. The particle has no initial tangential velocity, so it will fall radially with v2 = ṙ2. Energy conservation gives
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E =
1
2

mṙ2 − G M m
r

. (1.122)

The initial conditions are r = r0 and ṙ = 0, so it follows that

E = −GMm/r0. (1.123)

Equation (1.122) is a first-order differential equation in r(t). It is said to be a “first integral” of the second-
order differential equation F = ma, which in this case is

−GMm
r2 = m̈r. (1.124)

That is, if we want to find the motion r(t) it is a great advantage to begin with energy conservation, because
that equation already represents one of the necessary two integrations of F = ma. Solving Eq. (1.122) for ṙ,
we get

ṙ = ±
√

2
m

(
E +

GMm
r

)
= ±

√
2GM

(
1
r
− 1

r0

)
. (1.125)

We have to choose the minus sign, because when the particle is released from rest it will subsequently fall
toward the origin with ṙ < 0. Separating the variables r and t and integrating both sides:∫ r

r0

dr
√

r√
1 − r/r0

= −
√

2 G M
∫ t

0
dt = −

√
2 G M t. (1.126)

At this point we say that the problem has been reduced to quadrature, an old-fashioned phrase which
simply means that all that remains to find r(t) (or in this case t(r)) is to evaluate an indefinite integral, which
in the problem at hand is the integral on the left. If we are lucky, the integral can be evaluated in terms of
known functions, in which case we have an analytic solution. If we are not so lucky, the integral can at least be
evaluated numerically to any level of accuracy we need. See Chapter 14 on techniques of numerical integration.

An analytic solution of the integral in Eq. (1.126), using the substitution r = r0 sin2 θ, gives

t(r) =

√
r3

0

2 G M

[
π

2
− sin−1

√
r
r0
+

√
r
r0

√
1 − r

r0

]
(1.127)

from which we can find the time it takes to fall to r given some initial value r0. We cannot solve explicitly for
r(t) in this case, because the right-hand side is a transcendental function of r. Note that the constant r0 in this
equation is directly related to the energy E through Eq. (1.123).

The problem is much simplified if the particle falls from a great altitude to a much smaller altitude, so that
r  r0, in which case the first term in Eq. (1.127) is much bigger than the others. For example, the time it
takes an astronaut to fall from rest at radius r0 to the surface of an asteroid of radius R, where r0 � R, is
essentially

t =
π

2

√
r3

0

2GM
, (1.128)
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which is independent of R! This insensitivity to the asteroid radius is due to the fact that nearly all of the travel
time is spent at large radii, during which the astronaut is moving slowly. Changes in the asteroid radius R
affect the overall travel time very little, because the astronaut is falling so fast near the end. On the contrary,
the travel time is clearly quite sensitive to the initial position r0. �

Example 1.12 Potential Energies for Positive Power-Law Forces
A particle moves in one dimension subject to the power-law force F = − kxn, where the coefficient k is
positive, and n is a positive integer. Let us find the potential energy of the particle and also the maximum
distance xmax it can reach from the origin, in terms of its maximum speed vmax. The maximum distance is the
turning point of the particle, because as the particle approaches this position it slows down, stops at xmax,
and turns around and heads in the opposite direction.

The potential energy of the particle is the indefinite integral

U = −
∫

F(x)dx = −
∫

(−kxn)dx =
k

n + 1
xn+1 (1.129)

plus an arbitrary constant of integration, which we choose to be zero. Two of these potential energy functions,
one with odd n and one with even n, illustrate the range of possibilities, as shown in Figure 1.19. The case
n = 1, corresponding to a linear restoring force, corresponds to a Hooke’s-law spring, where k is the spring
constant and the potential energy is U = (1/2)kx2. In this case the lowest possible energy is E = 0, when
the particle is stuck at x = 0. There are two turning points for energies E > 0, one at the right and one at
the left.

Energy is conserved for any value of n, where

E =
1
2

mv2 +

(
k

n + 1

)
xn+1. (1.130)

The potential energy increases with increasing positive x, so the maximum speed of the particle is at the origin,
where x = 0 and E = (1/2)mv2

max. The speed goes to zero at the maximum value of x attainable, i.e., where
E = k xn+1

max /(n + 1). Eliminating E and solving for xmax, we find

xmax =

[
n + 1

2

(m
k

)]1/(n+1)

(vmax)
2/(n+1) . (1.131)

For the spring force, which corresponds to n = 1, xmax is directly proportional to vmax, so if we double the
particle’s velocity at the origin we double the maximum x it can achieve.

Note that the conservation of energy equation (1.130) can also be solved for v ≡ ẋ to give

ẋ = ±
√

2
m

(
E −

(
k

n + 1

)
xn+1

)
, (1.132)

which is a first-order differential equation. Dividing by the right-hand side and integrating over time
yields
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V

x

turning points

kinetic energy kinetic energy

Fig. 1.19 Potential energy functions for selected positive powers n. A possible energy E is
drawn as a horizontal line, since E is constant. The difference between E and U(x)
at any point is the value of the kinetic energy T. The kinetic energy is zero at the
turning points, where the E line intersects U(x). Note that for n = 1 there are two
turning points for E > 0, but for n = 2 there is only a single turning point. The
quadratic force with n = 2 has a cubic potential U = (1/3)kx3 which is positive
for x > 0 and negative for x < 0. Note that the slope of this potential is everywhere
positive except at x = 0, so the force on any particle at x �= 0 is toward the left,
since F = −dU/dx is then negative. So particles at positive x are pulled toward the
origin, while particles at negative x are pushed away from the origin.

∫
dx√

E − [k/(n + 1)]xn+1
= ±

√
2
m

∫
dt = ±

√
2
m

t + C, (1.133)

where C is a constant of integration. The problem has been reduced to quadrature.
For some values of n, the integral on the left can be evaluated in terms of standard functions; this includes

the cases n = 0 and+1, for example. For other values of n the integral can be evaluated numerically; that is,
there are algorithms such as “Simpson’s Rule”that can be implemented on a computer to provide a numerical
value for the integral, given numerical values of E, k, n, and the limits of integration. Note that conservation
of energy results in a first-order differential equation, so specifying the constant of integration C is equivalent
to specifying a single initial condition.

Rather than integrating Eq. (1.130), which leads to Eq. (1.133), we can differentiate the equation instead.
The time derivative of Eq. (1.130) is

0 = mẋẍ +
(

k
n + 1

)
(n + 1)xnẋ = 0, (1.134)

since dE/dt = 0. The velocity ẋ is not generally zero, so we can divide it out, leaving
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mẍ = −kxn, (1.135)

which we recognize as m a = F for the given force F = −kxn. That is, the time derivative of the energy
conservation first-order differential equation is simply F = m a, which is a second-order differential equation.
Often, energy conservation serves as a first integral of motion, halfway toward a complete solution of the
second-order equation F = m a. �

1.9 Collisions

Collisions are commonplace: billiard balls on a billiard table, nitrogen molecules in
the air, protons in a synchrotron, cars on the highway. Typically, colliding objects
exert very strong equal but opposite forces on one another during a short time
interval Δt, before and after which they hardly interact at all. It is true that there
are usually also external forces acting on the objects during this brief time interval,
such as gravity or the normal and frictional forces exerted by a pool table or road
surface. However, during the brief collision times Δt such external forces are
negligible compared with the internal smashing forces of one object on the other,
so we can safely neglect them. Therefore, to an excellent approximation the total
momentum of the colliding objects is conserved during the collision. And since
their momentum is conserved, the center of mass (CM) of the colliding objects
moves in a straight line at constant speed during the time just before, during, and
after the collision. There is therefore an inertial frame in which the CM of the
system stays at rest, called the center-of-mass (CM) frame. Analyzing the collision
in the CM frame can be particularly useful.

The velocity of the CM frame in the original frame, which we will call the “lab
frame,” is

VCM =
m0v0 + m1v1

m0 + m1
=

P

M
, (1.136)

where P is the total momentum and M is the total mass. Here m0 and m1 are the
masses of the initial particles, and v0 and v1 are their velocities in the original lab
frame. It is sometimes convenient to analyze the collision in the CM frame first,
then transform results to the lab frame, or vice versa, using this relative velocity to
transform between them.

In addition to momentum conservation, kinetic energy is sometimes also
conserved in collisions, at least to a good approximation. Such kinetic-energy-
conserving collisions are said to be elastic. Proton–proton collisions or ideal
billiard-ball collisions may be nearly elastic, for example. We think of the billiard
balls deforming slightly during such a collision, and then springing back to their
original shape; that is, their initial kinetic energy is temporarily converted into a
spring-like potential energy, and then returned to kinetic energy as soon as the
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balls separate. However, this is often just an approximation, although sometimes
a pretty good one, because some of their initial energy is turned into oscillations
within the balls themselves, which turns eventually into heat, robbing the balls of
their macroscopic kinetic or potential energies. If a collision does not conserve
macroscopic kinetic energy, it is said to be inelastic. And if the incident and target
particles in a collision stick together during the collision, so two particles become
one, that collision is said to be totally inelastic. A meteorite strikes the earth in a
totally inelastic collision; the sum of their macroscopic kinetic energies decreases
in the collision and the overall system becomes warmer to compensate.

There is an interesting special case, the elastic collision between two protons or
two billiard balls of equal mass, where there is a “target” ball m0 initially at rest,
and an “incident” ball m1 moving at velocity v1 toward its target in the “forward”
direction, as shown in Figure 1.20. After they collide, and relative to the forward
direction, ball m1 bounces off at angle θ with velocity v′

1, while ball m0 moves off
at angle ϕ with velocity v′

0. Conservation of momentum tells us that

mv1 = mv′
0 + mv′

1 so v1 = v′
0 + v′

1, (1.137)

while conservation of kinetic energy (for such an elastic collision) gives

1
2

m(v1)
2 =

1
2

m(v′0)2 +
1
2

m(v′1)2 so (v1)
2 = (v′0)2 + (v′1)2. (1.138)

before after

Fig. 1.20 A collision of equal-mass balls with ball 0 initially at rest. For an elastic collision, the two balls move at
right angles to one another after the collision.

Squaring the conservation of momentum equation (i.e., dotting it with itself)
gives

v1 · v1 ≡ (v1)
2 = (v′0)2 + 2v′

0 · v′
1 + (v′1)2. (1.139)

Comparing this last equation with the conservation of kinetic energy equation,
clearly v′

0 · v′
1 = 0, so the two balls must emerge from the collision in directions

perpendicular to one another, with θ + ϕ = 90◦. The only exception occurs for an
absolutely head-on collision in which the incident ball stops dead (with v′

1 = 0)
and all of its momentum and kinetic energy are transferred to ball m0.
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1.10 Forces of Nature

The hallmark of Newtonian mechanics – the relationship F = ma – is only one
part of a mechanics problem. To determine the dynamics of a particle, we also need
to know the left-hand side of the equation. That is, we need to specify the forces.
This is a separate requirement: we need to discover and learn about what forces are
present through experimentation and additional theoretical considerations. We may
then be tempted to ask the bold question: what are all of the possible forces that
can arise on the left-hand side of Newton’s second law? Surprisingly, this question
has a complete answer at the fundamental level, an exhaustive and finite catalogue
of possibilities.

To date, depending upon what one counts as a force, there are at most four
fundamental forces in Nature, and only two of the four can be used in classical
Newtonian mechanics. For the sake of completeness, let us list these four:

1 The electromagnetic force can be attractive or repulsive, and acts only on
particles that carry a certain mysterious attribute we call “electric charge.” This
force is relevant from subatomic length scales to planetary length scales, and
plays a role in virtually every physical setting.

2 The gravitational force is an omnipresent force in classical physics, which
acts on anything that has mass or energy. Gravity is by far the weakest of the
four forces, but at macroscopic length scales it is very noticeable nonetheless
if objects are essentially electrically neutral – so that the much stronger
electromagnetic force vanishes. To make things especially mysterious, our best
and current theory of gravity is Einstein’s theory of general relativity, and in this
theory gravity is not a force at all, but an effect of the curvature of space and
time. We will discuss this theory further in Chapter 10.

3 The weak force is subatomic in nature, acting only over very short distances,
around 10−15 m – a regime where it is essential to use quantum mechanics.
The weak force therefore plays no role in typical classical mechanics problems.
The weak force is important for understanding radioactivity, neutrinos, and
the Higgs boson particle. We have also learned that the weak force is closely
related to electromagnetism. The electromagnetic and weak forces collectively
are sometimes referred to as the electroweak force.

4 The strong force, which is also a force of subatomic relevance at around 10−18

m, binds quarks together and underlies nuclear energy. This is the strongest of all
the forces, but in spite of its great importance it is not directly relevant to classical
mechanics, since it arises in contexts requiring the use of quantum mechanics.

In summary, if we consider electromagnetism and the weak force to be two
aspects of a single electroweak force, and if we take Einstein’s point of view that
gravity is not in fact a force at all, then we are left with only two truly fundamental
forces, the electroweak and strong forces. If, however, we look at physics from
the point of view of the large-scale, classical world, the forces that matter in our
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day-to-day experience can be taken to be gravity and electromagnetism. That is,
in a setting where the strong and weak forces play a relevant dynamical role, the
framework of classical mechanics itself is typically already faltering and a full
extension to quantum mechanics is needed. And if we need to take account of
gravitational effects more subtle or much more exotic than Newtonian gravity, the
classical laws of motion have to be modified as well.

Hence, our classical mechanics world will deal primarily with Newtonian gravity
and electromagnetic forces. But what can we say about the friction and spring
forces encountered already in many examples, like the normal force, the tension
force in a rope, and a myriad of other force laws that make prominent appearances
on the left-hand side of Newton’s second law? The answer is that these are
all macroscopic effective forces, and are not fundamental. Microscopically, they
originate entirely from the electromagnetic force law. For example, when two
surfaces in contact rub against one another, the atoms at the interface interact
microscopically through Coulomb’s law of electrostatics. When we add a large
number of these tiny forces, we have an effective macroscopic force that we call
friction. The microscopic details can often, to a good approximation, be tucked
into one single parameter, the coefficient of friction. Similarly, the effect of a large
number of liquid molecules on a bacterium averages out into a simple force law,
F = −b v, where b is the only parameter left over from the detailed microscopic
interactions – which are once again electromagnetic in origin. Contact forces, as
they are called, are again not fundamental; they originate with the electromagnetic
force law.

The reader may rightfully be surprised that complicated microscopic dynamics
can lead to rather simple effective force laws – often described by a few
macroscopic parameters. This is a rather general feature of the natural laws. When
microscopic complexity is averaged over a large number of particles and length
scales, it is expected that the resulting macroscopic system is described through
simpler laws with fewer parameters. This is not supposed to be obvious, although
it may feel intuitive. Realization of its significance and implications in physics
underlies several physics Nobel prizes in the late twentieth century.1

1.11 Summary

So much for our brief survey of Newtonian particle mechanics. Particles obey
Newton’s laws of motion, and depending upon the nature of the forces on a particle,
one or another of momentum, angular momentum, and energy may be conserved.

1 The Nobel prize for the development of the renormalization group was awarded to Kenneth G. Wilson in 1982.
Wilson described most concisely and elegantly the idea that physics at large length scales can be sensitive to
physics at small length scales only through a finite number of parameters. However, the idea pervades other
major benchmarks of theoretical physics, such as the Nobel prizes of 1999 to Gerardus ’t Hooft and Martinus
J. G. Veltman and of 1965 to Sin-Itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman.
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The momentum of a particle is conserved if there is no net force on it, while the
angular momentum of the particle is conserved if there is no net torque on it. Energy
is conserved if all the forces acting are conservative and time independent; i.e., if
the work done by each force is independent of the path of the particle. Similar laws
apply to systems of particles.

Given the forces on a particle together with its initial position and velocity, a
classical particle moves along a single, precise path. That is the vision of Isaac
Newton: particles follow deterministic trajectories. When viewed from an inertial
frame, a particle moves in a straight line at constant speed unless a net force is
exerted on it, in which case it accelerates according to a = F/m.

We have required that the fundamental laws of mechanics obey what is called
the principle of relativity, which means that if a fundamental law is valid in one
inertial frame it is valid in all inertial frames. According to the principle, there is
no preferred inertial frame: the fundamental laws can be used by observers at rest
in any one of them. This physical statement can be translated into a mathematical
statement that given a mathematical transformation of coordinates and other
quantities from one frame to another, the fundamental equations should look the
same in all inertial frames. We have assumed that the Galilean transformation is
the correct transformation of coordinates, and have shown that Newton’s laws are
invariant under that transformation (provided that any particular force considered
is the same in all inertial frames). It is therefore consistent to take Newton’s laws
as fundamental laws of mechanics.

Then what is left to do in classical mechanics? First of all, since the time of
Newton extremely useful and elegant mathematical methods have been developed
that give us deep insights into mechanics and may allow us to solve whole
classes of problems more easily than with the methods discussed so far. These
include Chapter 3 on variational methods culminating in Lagrange’s approach to
mechanics in Chapter 4; also the relation between symmetries and conservation
laws as summarized by Noether’s theorem in Chapter 6; Hamilton’s equations as
presented in Chapter 11; and the Hamilton–Jacobi equation in Chapter 15. Then
there are a number of chapters on special cases and applications of classical
mechanics, including motion in central-force gravity in Chapter 7 and in electro-
magnetic fields in Chapter 8; motion as viewed in non-inertial frames of reference
in Chapter 9, rigid-body rotation in Chapter 12, motion of coupled oscillators in
Chapter 13, and chaotic motion in Chapter 14. Finally, to illustrate how classical
mechanics fits inside the larger world of physics, the path-integral approach
to quantum mechanics is discussed in capstone Chapter 5, and how Newtonian
physics emerges from quantum mechanics in a certain limit; also how Einstein’s
general theory of relativity describes the motion of particles subject to gravity in
capstone Chapter 10; and then how Schrödinger discovered his famous equation
of quantum mechanics using the Hamilton–Jacobi equation of classical mechanics
as a guide, in final capstone Chapter 15. But before all of this, we first introduce
special relativity in Chapter 2 and show how Einstein’s very simple postulates have
modified classical mechanics, especially for high-energy, fast-moving particles,
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and the revolution the theory has brought to our understanding of the arena in
which physics takes place.

Problems

Problem 1.1 A meter stick is at rest in a primed frame of reference, with one end at�
the origin and the other at x′ = 1.0 m. (a) Using the Galilean transformation find
the location of each end of the stick in the unprimed frame at a particular time t,
and then find the length of the meter stick in the unprimed frame. (b) Repeat for the
case that the stick is laid out along the positive y′ axis, with one end at the origin
and the other at y′ = 1.0 m. What is the length of the stick in the unprimed frame?

Problem 1.2 A river of width D flows uniformly at speed V relative to the shore.�
A swimmer swims always at speed 2V relative to the water. (a) If the swimmer
dives in from one shore and swims in a direction perpendicular to the shoreline
in the reference frame of the flowing river, how long does it take her to reach the
opposite shore, and how far downstream has she been swept relative to the shore?
(b) If instead she wants to swim to a point on the opposite shore directly across
from her starting point, at what angle should she swim relative to the direction of
the river flow, and how long would it take her to swim across?

Problem 1.3 The crews of two eight-man sculls decide to race one another on a river�
of width D that flows at uniform velocity V0. The crew of scull A rows downstream
a distance D and then back upstream, while the crew of scull B rows to a point on
the opposite shore directly across from the starting point, and then back to the
starting point. They begin simultaneously, and each crew rows at the same speed V
relative to the water, with V > V0. Who wins the race, and by how much time?

Problem 1.4 Passengers standing in a coasting spaceship observe a distant star at�
the zenith, i.e., directly overhead. If the spaceship then accelerates to speed c/100
where c is the speed of light, at what angle to the zenith (to three significant figures)
do the passengers now see the star?

Problem 1.5 (a) Snow is falling vertically toward the ground at speed v. (a) A bus��
driver is driving through the snowstorm on a horizontal road at speed v/3. At what
angle to the vertical are the snowflakes falling as seen by the driver? (b) Suppose
that the large windshield in the flat, vertical front of the bus has been knocked out,
leaving a hole of area A in the vertical plane. Given that N is the number of falling
snowflakes per unit horizontal area per unit time, if the bus moves at constant speed
v/3 to reach a destination at distance d, how many snowflakes fall into the bus
before the destination is reached? (c) To minimize the total number of snowflakes
that fall in, the driver considers driving faster or slower. What would be the best
speed to take?

Problem 1.6 The jet stream is flowing due east at velocity vJ relative to the ground.��
An aircraft is traveling at velocity vC in the northeast direction relative to the air.
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(a) Relative to the ground, find the speed of the aircraft and the angle of its motion
relative to the east. (b) Keeping the same speed vC relative to the air, at what angle
would the plane have to move through the air relative to the east so that it would
travel northeast relative to the ground?

Problem 1.7 The earth orbits the sun once per year in a nearly circular orbit of radius�
150×106 km. The speed of light is c = 3×105 km/s. Looking through a telescope,
we observe that a particular star is directly overhead. If the earth were quickly
stopped and made to move in the opposite direction at the same speed, at what
angle to the vertical would the same star now be observed?

Problem 1.8 A long chain is tied tightly between two trees and a horizontal force F0 is�
applied at right angles to the chain at its midpoint. The chain comes to equilibrium
so that each half of the chain is at angle θ from the straight line between the chain
endpoints. Neglecting gravity, what is the tension in the chain?

Problem 1.9 An object of mass m is subject to a drag force F = −kvn, where v is its��
velocity in the medium, and k and n are constants. If the object begins with velocity
v0 at time t = 0, find its subsequent velocity as a function of time.

Problem 1.10 A small spherical ball of mass m and radius R is dropped from rest into��
a liquid of high viscosity η, such as honey, tar, or molasses. The only appreciable
forces on it are gravity mg and a linear drag force given by Stokes’s law, FStokes =
−6πηRv, where v is the ball’s velocity, and the minus sign indicates that the drag
force is opposite to the direction of v. (a) Find the velocity of the ball as a function
of time. Then show that your answer makes sense for (b) small times; (c) large
times.

Problem 1.11 We showed in Example 1.2 that the distance a ball falls as a function���
of time, starting from rest and subject to both gravity g downward and a quadratic
drag force upward, is

y = (v2
T/g) ln(cosh(gt/vT)),

where vT is its terminal velocity. (a) Invert this equation to find how long it takes
the ball to reach the ground in terms of its initial height h. (b) Check your result in
the limits of small h and large h. (For part (b) it is useful to know the infinite series
expansions of the functions ex, (1 + x)n, and ln(1 + x) for small x.)

Problem 1.12 For objects with linear size between a few millimeters and a few meters�
moving through air near the ground, and with speed less than a few hundred
meters per second, the drag force is close to a quadratic function of velocity,
FD = (1/2)CDAρv2, where ρ is the mass density of air near the ground, A is the
cross-sectional area of the object, and CD is the drag coefficient, which depends
upon the shape of the object. A rule of thumb is that in air near the ground (where
ρ = 1.2 kg/m3), then FD � 1

4 Av2. (a) Estimate the terminal velocity vT of a
skydiver of mass m and cross-sectional area A. (b) Find vT for a skydiver with
A = 0.75 m2 and mass 75 kg. (The result is large, but a few lucky people have
survived a fall without a parachute. An example is 21-year-old Nicholas Alkemade,
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a British Royal Air Force tail gunner during World War II. On March 24, 1944
his plane caught fire over Germany and his parachute was destroyed. He had the
choice of burning to death or jumping out. He jumped and fell about 6 km, slowed
at the end by falling through pine trees and landing in soft snow, ending up with
nothing but a sprained leg. He was captured by the Gestapo, who at first did not
believe his story, but when they found his plane they changed their minds. He
was imprisoned, and at the end of the war set free, with a certificate signed by the
Germans corroborating his story.)

Problem 1.13 A damped oscillator consists of a mass m attached to a spring k, with�
frictional damping forces. If the mass is released from rest with amplitude A, and
after 100 oscillations the amplitude is A/2, what is the total work done by friction
during the 100 oscillations?

Problem 1.14 The solution of the underdamped harmonic oscillator is x(t) =�

Ae−βt cos(ω1t + ϕ), where ω1 =
√
ω2

0 − β2. Find the arbitrary constants A
and ϕ in terms of the initial position x0 and initial velocity v0.

Problem 1.15 An overdamped oscillator is released at location x = x0 with initial��
velocity v0. What is the maximum number of times the oscillator can subsequently
pass through x = 0?

Problem 1.16 There are thought to be three types of the particles called neutrinos:�
electron-type (νe), muon-type (νμ), and tau-type (ντ ). If they were all massless
they could not spontaneously convert from one type into a different type. But
if there is a mass difference between two types, call them types ν1 and ν2, the
probability that a neutrino starting out as a ν1 becomes a ν2 is given by the
oscillating probability P = S12 sin

2(L/λ), where S12 is called the mixing strength
parameter, which we take to be constant, L is the distance traveled by the neutrino,
and λ is a characteristic length, given in kilometers by

λ =
E

1.27Δ(m)2 ,

where E is the energy of the neutrino in units of GeV (1 GeV = 109 eV) and Δ(m)2

is the difference in the squares of the two masses in units of (eV)2. Neutrinos are
formed in earth’s atmosphere by the collision of cosmic-ray protons from outer
space with atomic nuclei in the atmosphere. The giant detector Super Kamiokande,
located deep underground in a mine west of Tokyo, saw equal numbers of electron-
type neutrinos coming (1) from the atmosphere above the detector; (2) from the
atmosphere on the other side of the earth, which pass through our planet on their
way to the detector. However, Super K saw more muon-type neutrinos coming
down from above than those coming up from below. This was strong evidence that
muon-type neutrinos oscillated into tau-type neutrinos (which Super K could not
detect) as they penetrated the earth, since it requires more time to go 13,000 km
through the earth than 20 km through the atmosphere above the mine. (a) Suppose
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(Δm)2 = 0.01 eV2 between νμ and ντ type neutrinos, and that the neutrino energy
is E = 5 GeV. What is λ? How would this explain the fewer number of muon
neutrinos seen from below than from above? (b) The best experimental fit is
(Δm)2 = 0.0022 eV2. Again assuming E = 5 GeV, what is λ? Make a crude
estimate of the ratio one might expect for the number of muon neutrinos from
below and from above.

Problem 1.17 The “quality factor” Q of an underdamped oscillator can be defined as��

Q = 2π
E

|ΔE| , (1.140)

where at some time E is the total energy of the oscillator and |ΔE| is the energy
loss in one cycle. (a) Show that Q � π/βP, where β is the damping constant and
P is the period of oscillation. Therefore if the damping increases, Q decreases. (b)
What is Q for a simple pendulum that loses 1% of its energy during each cycle? (c)
The quality factor also describes the sharpness of the resonance curve of a driven,
lightly damped oscillator. Show that to a good approximation Q � ω/(Δω), where
Δω is the angular frequency difference between the two locations on the amplitude
resonance curve for which the amplitude is 1/

√
2 that at peak resonance.

Problem 1.18 Consider the unit vectors x̂, ŷ, r̂, and θ̂ in a plane. (a) Find r̂ and θ̂ in�
terms of any or all of x̂, ŷ, x, and y. (b) Find x̂ and ŷ in terms of any or all of r̂, θ̂,
r, and θ.

Problem 1.19 The mass and mean radius of the moon are m = 7.35 × 1022 kg and�
R = 1.74 × 106 m. (a) From these parameters, along with Newton’s constant of
gravity G = 6.674 × 10−11m3/kg/s2, find the moon’s escape velocity in m/s. (b)
For a slingshot boom of length 50 m, what must be the minimum rotation frequency
ω to sling material off the moon, as described in Example 1.3? Take into account
both the radial and tangential components of the payload velocity when it comes
off the end of the boom. Assume payloads are initially set upon the boom at radius
r = 3 m and with ṙ = 0.

Problem 1.20 Ninety percent of the initial mass of a rocket is in the form of fuel. If�
the rocket starts from rest and then moves in gravity-free empty space, find its final
velocity v if the speed u of its exhaust is (a) 3.0 km/s (typical chemical burning),
(b) 1000 km/s, (c) c/10, where c is the speed of light. (d) If the exhaust velocity is
3.0 km/s, for how long can the rocket maintain the acceleration a = 10 m/s2?

Problem 1.21 A space traveler pushes off from his coasting spaceship with relative�
speed v0; he and his spacesuit together have mass M, and he is carrying a wrench
of mass m. Twenty minutes later he decides to return, but his thruster doesn’t work.
In another 40 minutes his oxygen supply will run out, so he immediately throws
the wrench away from the ship direction at speed vw relative to himself prior to
the throw. (a) What then is his speed relative to the ship? (b) In terms of given
parameters, what is the minimum value of vw required so he will return in time?
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Problem 1.22 An astronaut of mass M, initially at rest in some inertial frame in��
gravity-free empty space, holds n wrenches, each of mass M/2n. (a) Calculate her
recoil velocity v1 if she throws all the wrenches at once in the same direction with
speed u relative to her original inertial frame. (b) Find her final velocity v2 if she
first throws half of the wrenches with speed u relative to her original inertial frame,
and then the other half with speed u relative to the frame she reached after the first
throw. Compare v2 with v1 from part (a). (c) Then find her total recoil velocity vn
if she throws all n wrenches, one at a time and in the same direction, and each
with speed u relative to her instantaneous inertial frame just before she throws it.
(d) Find her total recoil velocity in the limit n → ∞, and compare with the rocket
equation.

Problem 1.23 We are planning to travel in a rocket for 6 months with acceleration 10��
m/s2, and with a final payload mass of 1000 tonnes (1 tonne = 1000 kg). (a) Using
a chemically fueled rocket with exhaust speed 3160 m/s, what must be the original
ship mass m0? Compare m0 with the mass of the observed universe. (Including so-
called “dark matter,” the mass density is approximately 6 × 10−30 g/cm3 and the
observed radius is of order 1010 light years.) (b) Redo part (a) if instead we use a
fuel that can be ejected at 3.16 ×107 m/s, about 10% the speed of light. (c) How
fast would this ship be moving at the end of 6 months? (d) How far will the ship
have gone by this time? Compare this distance with the distance to the star Alpha
Centauri, about 4 light years away.

Problem 1.24 A single-stage rocket rises vertically from its launchpad by burning���
liquid fuel in its combustion chamber; the gases escape with a net momentum
downward, while the rocket, in reaction, accelerates upward. The gravitational field
is g. (a) Pretending that air resistance is negligible, show that the rocket’s equation
of motion is

m
dv
dt

= −u
dm
dt

− mg,

where m is the instantaneous mass of the rocket at time t, v is its upward velocity,
and u is the speed of the exhaust relative to the rocket. (b) Assume that g and u
remain constant while the fuel is burning, and that fuel is burned at a constant rate
|dm/dt| = α. Integrate the rocket equation to find v(m). (c) Suppose that u = 4.4
km/s and that all the fuel is burned up in 1 minute. If the rocket achieves the escape
velocity from earth of 11.2 km/s, what percentage of the original launchpad mass
was fuel?

Problem 1.25 A rocket in gravity-free empty space has fueled mass M0 and exhaust��
velocity u equal to that of a first-stage Saturn V rocket (as used in sending men to
the moon): M0 = 3100 tons = 28 × 106 kg and u = 2500 m/s. The ship’s acceleration
is kept constant at 10 m/s2. (a) Find the initial rate of fuel ejection |dM/dt|t=0. (b)
After how many minutes will the ship mass be reduced to 1/e of its initial value?
(c) Suppose the ship accelerates as described for 20 minutes. What percentage of
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its initial mass is left? How many kilograms is this? What is the ship’s velocity at
this time?

Problem 1.26 Beginning at time t = 0, astronauts in a landing module are descending��
toward the surface of an airless moon with a downward initial velocity −|v0| and
altitude y = h above the surface. The gravitational field g is essentially constant
throughout this descent. An onboard retrorocket can provide a fixed downward
exhaust velocity u. The astronauts need to select a fixed exhaust rate λ = |dm/dt|
in order to provide a soft landing with velocity v = 0 when they reach the surface
at y = 0. (a) Explain briefly why Newton’s second law for the module during its
descent has the form

m(t)
dv
dt

= u
∣∣∣∣dm

dt

∣∣∣∣− m(t)g.

(b) Find the velocity v of the module as a function of time, in terms of |v0|, u, m0,λ,
and g. (c) During the descent its velocity is v = dy/dt, negative because it is
downward. Find an expression for y(t) in terms of |v0|, g, u,λ, m0, and h.

Problem 1.27 A space probe of mass M is propelled by light fired continuously from���
a bank of lasers on the moon. A mirror covers the rear of the probe; light from the
lasers strikes the mirrors and bounces directly back. In the rest frame of the lasers,
nγ photons are fired per second, each with momentum pγ = hνγ/c, where h is
Planck’s constant, c is the speed of light, and ν is the photon’s frequency. (a) Show
that in a short time interval Δt the change in the probe’s momentum is 2n′γp′γΔt,
where n′γ is the number of photons striking the mirror per second, and p′γ is the
momentum of each photon, both in the probe’s frame of reference. (b) The photons
are Doppler-shifted in the probe’s frame, so their frequency is only ν ′ ≈ ν(1−v/c),
where v is the velocity of the probe. Show also that n′γ = nγ(1−v/c), and then show
that the ship’s acceleration has the form a = α(1 − v/c)2, where α is a constant.
Express α in terms of M, nγ , and pγ . (c) Find an expression for the probe’s velocity
as a function of time. Briefly discuss the nature of this result as the probe travels
faster and faster.

Problem 1.28 A proposed interstellar ram-jet would sweep up deuterons in space,��
burn them in an onboard fusion reactor, and expel the reaction products out the
tail of the ship. In a reference frame instantaneously at rest relative to the ship,
deuterons, each of mass m, approach the ship at relative velocity v. They are burned,
and the burn products, with essentially the same total mass, are ejected from the
rear of the ship at velocity v+u. The ship mass M stays constant, the cross-sectional
area of the ship is A, and the number of deuterons per unit volume is n. (a) Find
dN/dt, the number of deuterons swept up per unit time, in terms of n, A, and v. (b)
Find dP/dt, the change in total momentum of the ship per unit time. (c) Show that
the velocity of the ship increases exponentially, with v = v0eαt, where v0 is the
ship’s initial velocity and α is a constant, which can be expressed in terms of given
parameters. Assume that u is constant.
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Problem 1.29 (a) An open railroad coal car of mass M is rolling along a horizontal�
track at velocity v0 when a coal chute suddenly dumps a load of coal of mass m into
the coal car, vertically in the frame of the ground. When the load of coal has come
to rest relative to the coal car, how fast is the coal car moving? (b) A similar coal
car, of mass M and velocity v0, has a covered hole in its bottom; when the cover
is suddenly opened, a mass m of coal falls onto the tracks. How fast is the coal car
then moving?

Problem 1.30 Half of a chain of total mass M and length L is placed on a frictionless�
tabletop, while the other half hangs over the edge. If the chain is released from rest,
what is the speed of the last link just as it leaves the tabletop?

Problem 1.31 A particle of mass m is free to move in one dimension between the�
coordinates x = 0 and x = 2π/k, where k is a positive constant. Within this range
the particle is subject to the force F = α sin(kx), where α is a constant. (a) If the
maximum value of the corresponding potential energy is α/k, what are the turning
points of the particle if its energy is E = α/2k? (b) Find the speed of the particle
as a function of x.

Problem 1.32 One end of a string of length � is attached to a small ball, and the other��
end is tied to a hook in the ceiling. A nail juts out from the wall, a distance d (d < �)
below the hook. With the string straight and horizontal, the ball is released. When
the string becomes vertical it meets the nail, and then the ball swings upward until
it is directly above the nail. (a) What speed does the ball have when it reaches this
highest point? (b) Find the minimum value of � such that the ball can reach this
point at all.

Problem 1.33 A rope of mass/length λ is in the shape of a circular loop of radius R. If�
it is made to rotate about its center with angular velocity ω, find the tension in the
rope. Hint: Consider a small slice of the rope to be a “particle.”

Problem 1.34 A particle is attached to one end of an unstretched Hooke’s-law spring�
of force constant k. The other end of the spring is fixed in place. If now the particle
is pulled so the spring is stretched by a distance x, the potential energy of the
particle is U = (1/2)kx2. (a) Now suppose there are two springs with the same
force constant that are laid end-to-end in the y direction, with a particle attached
between them. The other ends of the springs are fixed in place. Now the particle is
pulled in the transverse direction a distance x. Find its potential energy U(x). (b)
U(x) is proportional to what power of x in the limit of small x, and to what power
of x in the limit of large x?

Problem 1.35 A spherical pendulum consists of a bob of mass m on the end of a light��
string of length R hung from a point on the ceiling, and with a uniform gravitational
field g downward. The position of the bob can be specified by the polar angle θ of
the string (the angle of the string and bob from the vertical) and the azimuthal angle
ϕ (the angle of the string and bob from, say, the north as projected down onto a
horizontal base plane). (a) Show that the square of the velocity of the bob at any
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moment is v2 = R2(θ̇2 + sin2 θϕ̇2). Then, in terms of any or all of m, R, g, and
the two coordinates θ and ϕ and their first time derivatives: (b) find an expression
for the energy E of the bob and explain why it is conserved; (c) find an expression
for the angular momentum � of the bob about the vertical axis passing through the
point of support, and explain why it is conserved.

Problem 1.36 Consider an arbitrary power-law central force F(r) = −krnr̂, where k�
and n are constants and r is the radius in spherical coordinates. Prove that such a
force is conservative, and find the associated potential energy of a particle subject
to this force.

Problem 1.37 The potential energy of a mass m on the end of a Hooke’s-law spring of�
force constant k is (1/2)kx2. If the maximum speed of the mass with this potential
energy is v0, what are the turning points of the motion?

Problem 1.38 Planets have roughly circular orbits around the sun. Using the table�
below of the orbital radii and periods of the inner planets, how does the centripetal
acceleration of the planets depend upon their orbital radii? That is, find the
exponent n in a = con × rn. (Note that 1 A.U. = 1 astronomical unit, the mean
sun–earth distance.)

Planet Mean orbital radius (A.U.) Period (years)

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881

Problem 1.39 Four mathematically equivalent conditions for a force to be conserva-�
tive are given in the chapter. One condition is that a conservative force can always
be written as F = −∇U. Show then that each of the other three conditions is a
necessary consequence.

Problem 1.40 A rock of mass m is thrown radially outward from the surface of a��
spherical, airless moon of radius R. From Newton’s second law its acceleration is
r̈ = −GM/r2, where M is the moon’s mass and r is the distance from the moon’s
center to the rock. The energy of the rock is conserved, so (1/2)mṙ2 − GMm/r =
E = constant. (a) Show by differentiating this equation that energy conservation
is a first integral of F = mr̈ in this case. (b) What is the minimum value of E, in
terms of given parameters, for which the rock will escape from the moon? (c) For
this case what is ṙ(t), the velocity of the rock as a function of time since it was
thrown?

Problem 1.41 Consider a point mass m located a distance R from the origin, and a���
spherical shell of mass ΔM, radius a, and thickness Δa, centered on the origin.
The shell has uniform mass density ρ. (a) Find ΔM in terms of the other parameters
given, assuming Δa  a. Show that the gravitational potential energy of the point
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mass m due to the shell’s gravity is (b) −GΔMm/R for R > a; (c) a constant for
R < a. (d) Then show that if a mass distribution is spherically symmetric, the
gravitational field inside it is directed radially inward, and its magnitude at radius
R from the center is simply G M(R)/R2, where M(R) is the mass within the sphere
whose radius is R. That is, a shell whose radius is greater than R exerts no net
gravitational force on m.

Problem 1.42 A tunnel is drilled straight through a uniform-density nonrotating��
spherically symmetric airless asteroid of radius R. The tunnel is oriented along
the x axis, with x = 0 at the center of the asteroid and of the tunnel. Using the
results of the preceding problem, (a) show that if an astronaut of mass m steps into
one side of the tunnel she will experience a spring-like force F = −kx as she falls
through the tunnel. (b) Find k in terms of any or all of G and the mass M and radius
R of the asteroid. (c) Find the time it would take for her to oscillate from one end
of the tunnel to the other and back again, in terms of the same parameters.

Problem 1.43 Referring to the preceding problem, if a different straight tunnel is��
drilled through the same asteroid, where this time the tunnel misses the asteroid’s
center by a distance R/2, (a) how long would it take the astronaut to fall from one
end of the tunnel to the other and back, assuming no friction between the sides of
the tunnel and the astronaut? (b) Suppose that instead of falling through the tunnel,
she is given an initial tangential velocity of just the right magnitude to insert her
into a circular orbit just above the surface. How long will it take her to return to the
starting point in this case?

Problem 1.44 Estimate the radius of the largest spherical asteroid an astronaut could�
escape from by jumping.

Problem 1.45 A particle of mass m is subject to the central attractive force F = −kr,���
like that of a Hooke’s-law spring of zero unstretched length, whose other end is
fixed to the origin. The particle is placed at a position r0 and given an initial
velocity v0 that is not colinear with r0. (a) Explain why the subsequent motion
of the particle is confined to a plane containing the two vectors r0 and v0. (b) Find
the potential energy of the particle as a function of r. (c) Explain why the particle’s
angular momentum is conserved about the origin, and use this fact to obtain a
first-order differential equation of motion involving r and dr/dt. (d) Show that the
particle has both an inner and an outer turning point, and solve the equation for t(r),
where the particle is located at an outer turning point at time t = 0. (e) Invert the
result to find r(t) in this case.

Problem 1.46 A water molecule consists of an oxygen atom with a hydrogen atom on�
each side. The smaller of the two angles between the two OH bonds is 108◦. Find
the distance of the center of mass of a water molecule from the oxygen atom in
terms of the distance d between the oxygen atom and either hydrogen atom. The O
has 16 times the mass of each H.
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Problem 1.47 A solid semicircle of radius R and mass M is cut from sheet aluminum.�
Find the position of its center of mass, measured from the midpoint of the straight
side of the semicircle.

Problem 1.48 Star α, of mass m, is headed directly toward star β, of mass 3m, with�
velocity v0 as measured in β’s rest frame. (a) What is the velocity of their mutual
center of mass, measured in β’s frame? (b) How fast is each star moving in the CM
frame? (c) If the two stars merge upon colliding, how fast is the new star moving
in the CM frame?

Problem 1.49 (a) A neutron in a nuclear reactor makes a head-on elastic collision with�
a carbon nucleus, which is initially at rest and has 12 times the mass of a neutron.
What fraction of the neutron’s initial speed is lost in the collision? (b) Repeat part
(a) if instead the neutron collides head-on with a deuteron (mass twice that of the
neutron) within a heavy-water (D2O) molecule? (Carbon nuclei and deuterons can
both be used as moderators in a reactor, whose purpose is to moderate their speeds,
i.e., slow down neutrons, as slower neutrons are more likely to cause nuclear
fission.)

Problem 1.50 A neutron of mass m and velocity v0 collides head-on with a 235U�
nucleus of mass M at rest in a nuclear reactor, and the neutron is absorbed to form
a 236U nucleus. (a) Find the velocity vA of the 236U nucleus in terms of m, M,
and v0. (b) The 236U nucleus subsequently fissions into two nuclei of equal mass,
each emerging at angle θ to the forward direction. Find the speed vB of each final
nucleus in terms of given parameters. Use classical Newtonian physics to solve the
problem.

Problem 1.51 Two balls, with masses m1 and m2, both moving along the same straight�
line, strike one another head-on in a one-dimensional elastic collision. (a) Show
that the magnitude of the relative velocity between the two balls is the same before
and after the collision. (b) Also show that if a video were made of such a collision,
and then shown to an audience, the viewers could not be sure from the motion of
the balls whether the video were being run forward or backward in time. That is,
such collisions are said to be time-reversal invariant. (c) Would this time-reversal
invariance still be true if the collision were inelastic? Give an example.

Problem 1.52 Three perfectly elastic superballs are dropped simultaneously from rest��
at height h0 above a hard floor. They are arranged vertically, in order of mass,
with M1 >> M2 >> M3, where M1 is at the bottom. There are small separations
between the balls. When M1 strikes the floor it bounces back up elastically, striking
M2 on its way down. M2 then bounces back up, striking M3 on its way down. What
is the subsequent maximum altitude achieved by each ball? Hint: Analyze each
collision in the CM frame of that collision, which is essentially the rest frame of
the heavier ball because the other ball is so much lighter. Neglect the balls’ radii
and the small separations between them.
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Problem 1.53 Classical big-bang cosmological models. Consider a very large sphere���
of uniform-density dust of mass density ρ(t). That is, at any given time the density
is the same everywhere within the sphere, but the density decreases with time if the
sphere expands, or increases with time if the sphere contracts, so that the total mass
of the sphere remains fixed. At time t = 0 the sphere is all gathered at the origin,
with infinite density and infinite outward velocity, so it is undergoing a “big bang”
explosion. At some instant t0 after the big bang the density everywhere within the
sphere is ρ0 and the outward speed of a particular dust particle at radius r0 is v0.
Use Newton’s gravitational constant G and also the result found in Problem 1-41,
that in spherical symmetry only those mass shells whose radius r is less than the
radius of the particular dust particle exert a net force on the particle. Let Mr be
the (time-independent) total mass within radius r. (a) Find an expression for r(t),
the radius of the particle as a function of time, supposing that the particle has the
escape velocity. That is, the particle, in common with all particles in the sphere,
keeps moving outward but slows down, approaching zero velocity as r → ∞. (b)
Then consider the same model of spherically symmetric dust, except that instead
of having the escape velocity, each dust particle has at any moment a velocity less
than the escape velocity for that particle. This means that the energy of a particle
of mass m is negative, where

E =
1
2

mṙ2 − GMrm
r

(1.141)

and where r(t) is its distance from the center of the sphere. Show that in this case,
the time t(r) expressed in terms of r can be written

t(r) =
√

m
2|E|

∫ r
dr
√

r
α− r

(1.142)

and find the constant α in terms of G, Mr, m, and |E|. (c) To perform the integration,
substitute r = α sin2(η/2) ≡ (α/2)(1−cos η), where η is a new variable, and show
that

t =
(

α3

8GMr

)1/2

(η − sin η). (1.143)

(d) Make a table of t and r for a few values of η between 0 and 2π, and plot r(t) for
these values. The resulting shape is a cycloid, and the equations for t(η) and r(η)
are in fact the parametric equations for a cycloid. Note that this negative-energy
cosmological model begins with a “big bang” and ends with a “big crunch.” (e)
Finally, consider the same model of spherically symmetric dust, except that instead
of having the escape velocity or less, dust particles have at any moment a velocity
greater than the escape velocity. This means that the energy of a dust particle of
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mass m is positive. Using an approach analogous to that just used for negative-
energy cosmologies, show that in this case

t(r) =
√

m
2E

∫ r
dr
√

r
α+ r

(1.144)

and find the constant α in terms of G, Mr, m, and E. (f) Perform the integration by
substituting r=α sinh2(η/2) ≡ (α/2)(cosh η − 1), where η is a new variable and
sinh and cosh are hyperbolic sine and hyperbolic cosine functions, respectively.
(g) Then write the solution in parametric form, analogous to that just carried out
for negative-energy cosmologies. That is, give formulas for both t(η) and r(η) for
positive-energy cosmologies. (h) Make a table of t and r for several values of η,
and plot r(t) for these values. What is the ultimate fate of such a classical model
universe?

Problem 1.54 The Friedmann equations have played an important role in relativistic���
big-bang cosmologies. They feature a “scale factor” a(t), proportional to the
distance between any two points (such as the positions of two galaxies) that are
sufficiently remote from one another that local random motions can be ignored.
If a increases with time, the distance between galaxies increases proportionally,
corresponding to an expanding universe. If we model for simplicity the universe
as filled with pressure-free dust of uniform density ρ, the Friedmann equations for
a(t) are

ä = −4πGρ

3
a and ȧ2 =

8πGρ

3
a2 − kc2

R2
0

,

where G is Newton’s gravitational constant, c is the speed of light, R0 is the distance
between two dust particles at some particular time t0, and k = +1, −1, or 0. The
density of the dust is inversely proportional to the cube of the scale factor a(t), i.e.,
ρ = ρ0(a0/a)3, where ρ0 is the density when a = a0. Therefore

ä = −4πGρ0a3
0

3a2 and ȧ2 =
8πGρ0a3

0
3a

− kc2

R2
0

.

(a) Show that if we set the origin to be at one of the two chosen dust particles, then
if M is the total mass of dust within a sphere surrounding this origin out to the
radius of the other chosen particle, and if at arbitrary time t0 we set a0 = 1, then
the equations can be written

ä = −(GM/R3
0)

a2 and
1
2

ȧ2 − (GM/R3
0)

a
= − kc2

2R2
0
≡ ε,

where ε and M are constants.
(b) Show that the second equation is a first integral of the first equation. (c)

Compare these equations to the F = ma and energy conservation equations of a
particle moving radially under the influence of the gravity of a spherical moon of
mass M. (d) Einstein hoped that his general-relativistic equations would lead to
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a static solution for the universe, since he (like just about everyone before him)
believed that the universe was basically at rest. The Friedmann equations resulting
from his theory show that the universe is generally expanding or contracting,
however, just as a rock far from the earth is not going to stay there, but will
generally be either falling inward or on its way out. So Einstein modified his theory
with the addition of a “cosmological constant” Λ, which changed the Friedmann
equations for pressure-free dust to

ä = −(GM/R3
0)

a2 +
Λ

3
a and

1
2

ȧ2 − (GM/R3
0)

a
− Λ

6
a2 = ε.

Show that these equations do have a static solution, and find the value of Λ for
which the solution is static. (e) Show however (by sketching the effective potential
energy function in the second equation) that the static solution is unstable, so
that if the universe is kicked even slightly outward it will accelerate outward,
or if it is kicked even slightly inward it will collapse. A static solution is
therefore physically unrealistic. (Einstein failed to realize that his static solution
was unstable, and later, when Edwin Hubble showed from his observations at the
Mount Wilson Observatory that the universe is in fact expanding, Einstein declared
that introducing the cosmological constant was “my biggest blunder.”) (f) Suppose
the cosmological constant is retained in the equations, but the dust is removed so
that M = 0. Solve the equations for a(t) in this case. The solution is the de Sitter
model, an “inflationary” model of the expanding universe. What is the constant ε
for the de Sitter model? (g) Make a qualitative sketch of a(t) if both M and Λ are
positive constants. Of the terms containing M and Λ, which dominates for small
times? For large times?
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In this chapter we extend our review of mechanics to include Einstein’s special
theory of relativity. We will see that our previous Newtonian framework is a useful
description of the mechanical world only when speeds are much less than that of
light. We also use this chapter to introduce index notation and general technical
tools that will help us throughout the rest of the book. Then, in the following
chapter, we will show how relativity provides insights for an entirely different
formulation of mechanics – the so-called variational principle.

2.1 Einstein’s Postulates and the Lorentz Transformation

The most beautiful concepts in physics are often the simplest ones as well. In fact,
the stunningly beautiful, revolutionary insights of special relativity are based on
just two simple postulates proposed by Albert Einstein in 1905.

1. The principle of relativity: The fundamental laws of physics are valid in all
inertial frames of reference.

We already introduced this principle in Chapter 1: it applies equally well to both
Newtonian and relativistic physics.

There is a second, rather frugal postulate inspired by electromagnetism –
combined with the first, it leads to astounding conclusions that stretch one’s
imagination and intuition to the limit.

2. The universal speed of light: The speed of light is the same in all inertial
frames.

This second postulate follows from the assertion that Maxwell’s equations of
electromagnetism state a fundamental law of physics. Using the first postulate,
this implies that these equations are valid in all inertial frames. But we note that
Maxwell’s equations lead to the wave equation

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 − 1
c2

∂2φ

∂t2
= 0 (2.1)
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for the electric potential φ(t, x, y, z) in vacuum, where c is the speed of light; this is
in fact the wave equation for light.1 A convenient solution to the equation is given
by the plane wave

φ = φ0 cos(k (x − c t)), (2.2)

where φ0 is the amplitude and k is the wave number. Since Eq. (2.1) follows directly
from a fundamental law of physics, c is a fundamental physical scale in Nature. If
we track the position of a particular wavefront in this plane wave, say one of the
crests φ = φ0 with x − c t = 0, the wavefront then evolves according to x(t) = c t
from the point of view of an observer at rest in frame O. Now consider a different
inertial frame O′, moving in the positive x direction according to observers in O, as
shown in Figure 2.1 – Oand O′ are the exact same reference frames we introduced
in Chapter 1. According to the second postulate, the same wavefront would be seen
by O′ as moving with the same speed c along x′: x′(t′) = c t′.

z

y

x

y’

z’

x’

Fig. 2.1 Inertial frames Oand O′.

Panic ensues when we put these statements together with the Galilean transfor-
mation x = x′ + Vt between Oand O′ using Eq. (1.1); this gives

x = c t = x′ + Vt = c t′ + Vt = c t + Vt (2.3)

since t = t′ from Eq. (1.1). This can be true only if the relative frame velocity V is
zero!

To focus on the problem at hand, let us rephrase things in a slightly more general
language. Say observer O is tracking a particle along a general trajectory x(t). The
same particle is seen by O′ to evolve along x′(t′). A Galilean transformation tells
us that x(t) = x′(t′)+Vt′ . Taking the time derivative of both sides of this equation,
we find the usual velocity addition rule (1.3)

1 There is much more on the electric potential in Chapter 8.
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d
dt

=
d

dt′
:
[
x(t) = x′(t′) + Vt′

]
⇒ dx(t)

dt
=

dx′(t′)
dt′

+ V

⇒ vx = v′x + V, (2.4)

where vx = dx/dt, v′x = dx′/dt′, and we used t = t′ from Eq. (1.1). So if v′x = c,
then vx = c + V �= c for V �= 0, which contradicts the postulate, and we have a
problem: Galilean transformations are incompatible with a universal speed of light.
The second postulate can instead be seen as a restriction on the transformation rules
relating the coordinate systems of inertial observers.

The critical question is then: What are the correct transformation equations
relating the coordinates of O′ and O that replace the Galilean transformation?
Since the Galilean transformation arises intuitively from our basic sense of the
world around us, it had better be the case that it can still be viewed as a decent
approximation to the correct transformation, which we now set out to find.

As shown already in Figure 2.1, frames O and O′ are assigned coordinate labels
(t, x, y, z) and (t′, x′, y′, z′), respectively, such that O′ moves with velocity V in the
positive x direction as seen by observers at rest in frame O, with the x and x′ axes
aligned, and with the y′ axis parallel to the y axis and the z′ axis parallel to the z
axis. According to the Galilean transformation, the coordinates in Oare related to
those in O′ by (1.1)

x = x′ + Vt′, y = y′, z = z′, t = t′, (2.5)

while the coordinates in O′ are related to those in Oby the inverse transformation

x′ = x − Vt, y′ = y, z′ = z, t′ = t, (2.6)

which can be obtained from the first set simply by interchanging primed and
unprimed coordinates and letting V → −V.

Now the task at hand is to derive a replacement for the Galilean transformation,
one that is consistent with a universal speed of light. We begin by assuming that
the new transformation for x, y, z and inverse transformation for x′, y′, z′ have the
somewhat more general, but still linear, form

x = γx′ + ζt′, x′ = γ′x + ζ ′t, y = y′, z = z′, (2.7)

where γ, γ′, ζ, and ζ ′ are constants, independent of position or time. That is, we
have assumed for simplicity that the y and z transformations are the same as in the
Galilean transformation, that the origins of the two coordinate systems overlap at
zero time, and that the equations for x(x′, t′) and for x′(x, t) are still linear. We will
have to see if these assumptions are consistent with the speed of light postulate;
if not, we will have to try something more general still. Note that we have not
assumed that t is necessarily equal to t′.

Our goal now is to evaluate the constants γ, γ′, ζ, and ζ ′. We have four constants
to determine, hence we need four physical conditions. We can determine three of
the constants in terms of the fourth without ever invoking the second postulate.
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First of all, from the meaning of the relative frame velocity V, the origin of the
primed frame, (x′, y′, z′) = (0, 0, 0), must move with velocity V in the positive x
direction as measured in the unprimed frame; i.e., if x′ = 0, then x = Vt (condition
1). This forces ζ ′ = −Vγ′ in the second of Eqs. (2.7). We also want the origin of
the unprimed frame to move in the opposite direction with speed V as measured in
the primed frame; i.e., if x = 0, then x′ = −Vt′ (condition 2). This gives ζ = Vγ
in the first of Eqs. (2.7). Therefore we can write

x = γ(x′ + Vt′), x′ = γ′(x − Vt), y = y′, z = z′. (2.8)

Now the first postulate asserts that there is no preferred inertial frame of reference,
so from the symmetry this implies we must have γ′ = γ. Why is that?

Consider a clock A′ at rest at the origin of O′; it reads time t′ and it always sits
at x′ = 0. When it reads t′ = 1 s, its distance from the origin of O, according to O
observers, is x = γV(1 s), from the first equation above. Consider another clock A
at rest at the origin of O; it reads time t and it always sits at x = 0. When it reads t =
1 s, its distance from the origin of O′, from the point of view of O′, is x′ = −γ′V(1
s), from the second equation above: the minus sign simply reflects the fact that O
moves in the negative x′ direction from the point of view of O′. However, except for
this minus sign, which is related to the direction of travel, the distances moved by A
and B when each reads 1 s should be exactly the same, according to the egalitarian
first postulate. If they were different, it would allow us to say that one frame (say
the frame in which the distance moved was greater) was fundamentally “better”
than the other frame. This forces us to the conclusion that γ′ = γ (condition 3).

The transformation now becomes

x = γ(x′ + Vt′), x′ = γ(x − Vt), y = y′, z = z′ (2.9)

for some still undetermined value of γ. The Galilean transformation assumes γ = 1,
but as we have seen, this choice is inconsistent with a universal speed of light.

We now finally require that if x = c t then also x′ = c t′, corresponding to a
beam of light emitted from the mutual coordinate origins at the instant t = t′ = 0
when the origins coincide (condition 4, i.e., postulate 2). The beam moves in the x
directions of both frames with the same speed c, in which case the first two of Eqs.
(2.9) become

t = γ(1 + V/c)t′ and t′ = γ(1 − V/c)t. (2.10)

We can eliminate t′ by substituting the second equation into the first; this gives

t = γ2(1 + V/c)(1 − V/c)t = γ2(1 − V2/c2)t, (2.11)

so we must choose γ2 = (1 − V2/c2)−1. Finally, we need the positive square root
so that γ → 1 as V → 0, because as V → 0 the two sets of axes coincide. Therefore
the final results for x(t′, x′) and x′(t, x) are

x = γ(x′ + Vt′) and x′ = γ(x − Vt), where γ =
1√

1 − V2/c2
. (2.12)
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We can now find the transformation equations for t and t′. Substitute
x′ = γ(x − Vt) into the right-hand side of x = γ(x′ + Vt′); the resulting equation
can be solved for t′ to give

t′ = γ

(
t − Vx

c2

)
. (2.13)

We can instead eliminate x between the two equations and then solve for t to give

t = γ

(
t′ +

Vx′

c2

)
, (2.14)

which is the same as Eq. (2.13) if we interchange primed and unprimed coordinates
and let V → −V. Thus we have the amazing and profound result that there is no
longer an absolute time, the same in all frames. Relativity shows that time and
space have become closely intertwined.

The entire set of transformations from primed to unprimed coordinates can be
written in the compact form

c t = γ(c t′ + β x′),
x = γ(x′ + β c t′),
y = y′,
z = z′, (2.15)

where

β ≡ V/c and γ =
1√

1 − β2
. (2.16)

These equations are collectively called the Lorentz transformation or colloquially
Lorentz boost. We have used the product c t in the equations, instead of just t by
itself, so that the four coordinates c t, x, y, z all have the same dimension of length.
The inverse Lorentz transformation, for (c t′, x′, y′, z′) in terms of (c t, x, y, z), is the
same, with primed and unprimed coordinates interchanged and with β → −β. We
began with four constants γ, γ′, ζ, ζ ′ and found four conditions they must obey,
which determined all four in terms of the relative frame velocity V.

Having found the transformation by invoking the speed of light only in the x
direction, we can verify that the transformation works also for light moving in any
direction. Let a flashbulb flash from the mutual origins of frames O and O′ just as
the origins pass by one another. In the unprimed frame, the square of the distance
moved by the wavefront of light in time t is

x2 + y2 + z2 = c2t2. (2.17)

That is, the light flash spreads out spherically at speed c in all directions. Now,
using the Lorentz transformation of Eqs. (2.15), we can see how the flash moves in
the primed frame. Rewriting Eq. (2.17) in terms of primed coordinates, we have

[γ(x′ + βc t′)]2 + y′2 + z′2 = [γ(c t′ + βx′)]2, (2.18)
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which, with a little algebra, yields

x′2 + y′2 + z′2 = c2t′2. (2.19)

That is, the light flash also moves in all directions at speed c in frame O′. Therefore
the second postulate is obeyed for light moving in any direction, if we use the
Lorentz transformation to transform coordinates.

Let us observe the Lorentz transformation equation (2.15) for a while and note
some of its features.

• For V  c, i.e., when the two observers are moving with respect to one another
at a speed much less than that of light, we have β  1 and γ ∼ 1 to leading order
in β, and the Lorentz transformation equation (2.15) reduces to the Galilean
transformation (1.1). That’s a sanity check: our intuition led us to (1.1) because
our daily experiences involve mechanics at speeds much less than that of light.
Hence, we may still use Galilean transformations as long as we restrict ourselves
to problems involving slow speeds and as long as we don’t care about high-
precision measurements. Obviously, Maxwell’s equations involve light and so
require the use of the full and correct form of the transformation of coordinates,
the Lorentz transformations. This is why electromagnetism historically seeded
the development of relativity.

• There are two obvious novelties: the mixing of time and space, the coordinates
t and x, t′ and x′; and an interesting scale factor γ ≥ 1. Figure 2.2 shows a plot
of γ as a function of β, showing that γ changes no more than 1% from unity
for 0 ≤ β ≤ 0.1, or speeds up to about 10% of light. A rough rule of thumb is
then to require v < 0.1c for Newtonian mechanics. Note also the divergence as
V → c: the corresponding flip of the sign under the square root for V > c implies
an upper bound on speed β < 1 ⇒ V < c. Nature comes with a speed limit.

20% deviation
from Newtonian
mechanics
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Fig. 2.2 Graph of the γ factor as a function of the relative velocityβ. Note that γ ∼= 1 for nonrelativistic
particles, and γ → ∞ asβ → 1.
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Example 2.1 Rotation and Rapidity
Consider two observers Oand O′, stationary with respect to one another and with identical origins, but with
axes {x, y, z} and {x′, y′, z′} relatively rotated. Focus on a case where observer O’s coordinate system is
rotated with respect to O′’s by a positive angle θ about the z axis:

x = x′ cos θ + y′ sin θ, y = −x′ sin θ + y′ cos θ, z = z′. (2.20)

It is often convenient to write this transformation in matrix notation:⎛⎝ x
y
z

⎞⎠ =

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠⎛⎝ x′

y′

z′

⎞⎠ . (2.21)

In general, a rotation can be written as

r = R̂ · r′, (2.22)

for r =(x, y, z) and r′ = (x′, y′, z′), with R̂a 3× 3 rotation matrix satisfying the orthogonality condition
R̂

T · R̂= 1, as well as having the determinant |R̂| = 1. Here R̂
T

is the transpose matrix, the reflection
of R̂about its principal diagonal.

Interestingly, we can write a Lorentz boost in analogy to rotations, making its structural form more elegant
and transparent. To do so, we start by introducing a four-component “position vector”

r ≡ (c t, r) = (c t, x, y, z) , (2.23)

denoting an event in spacetime occurring at position (x, y, z) and time t. This is a natural notation, since
Lorentz transformations mix space and time coordinates; again, we use c t as the time component to give it
the same dimension of length as the other components.

Just as in Chapter 1, we represent three-vectors by non-italicized bold-face symbols (r for example). Four-
vectors, which have a time component as well as three spatial components, we represent by italicized bold-
faced symbols (r for example). Individual components are represented by italicized non-bold-face symbols
in both cases. The time component of r is also called the “zeroth” component of the four-vector, so that the
spatial components x, y, and z can still be called the first, second, and third components, just as they are for
the position three-vector.

We can now write the Lorentz boost in Eq. (2.15) as a matrix multiplication⎛⎜⎜⎜⎝
c t
x
y
z

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
γ γ β 0 0
γβ γ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c t′

x′

y′

z′

⎞⎟⎟⎟⎠ . (2.24)

Consider the parametrization

γ ≡ cosh ξ ≥ 1, (2.25)



70 2 Relativity

where ξ is called rapidity. Using the identity cosh2 ξ − sinh2 ξ = 1 one can easily show that

γ β = sinh ξ, (2.26)

so our Lorentz boost now becomes⎛⎜⎜⎜⎝
c t
x
y
z

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c t′

x′

y′

z′

⎞⎟⎟⎟⎠ , (2.27)

much like a rotation but with hyperbolic trigonometric functions instead, and with a sign flip. We say that
Lorentz transformations rotate time and space into one another.

We can write the most general Lorentz transformation in matrix notation as well:

r = Λ̂ · r′, (2.28)

for r = (c t, x, y, z) and r′ = (c t′, x′, y′, z′), with Λ̂ a general 4× 4 matrix satisfying the condition

Λ̂
T · η̂ · Λ̂ = η̂ (2.29)

as well as

|Λ̂| = 1, (2.30)

where η̂ is the 4× 4 matrix

η̂ =

⎛⎜⎜⎜⎝
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ . (2.31)

For a derivation of this general statement, see the Problems section at the end of this chapter. Notice
that

Λ̂ =

⎛⎜⎜⎜⎝
cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ (2.32)

satisfies Eqs. (2.29) and (2.30). Note also that η̂ is almost the identity matrix, but not quite, because of the
minus sign in the first entry. It is known as the metric of flat spacetime. Correspondingly, Λ̂ satisfies an
“almost” orthogonality condition (2.29). We will revisit these observations in the upcoming sections as we
develop our physical intuition for relativity. �



71 2.2 Relativistic Kinematics

2.2 Relativistic Kinematics

Kinematics deals with our description of motion, including the position, velocity,
and acceleration of particles, while stopping short of looking for causes of that
motion, which is the subject of dynamics. So we take up the essential topic of
relativistic kinematics here, and then go on to relativistic dynamics in the following
section.

Proper Time
Consider a particle moving in the vicinity of an observer O who describes its
trajectory by x(t), y(t), z(t). The observer can describe the location of the particle
in time and space using a position four-vector

r = (c t, x, y, z). (2.33)

If dt, dx, dy, and dz represent infinitesimal steps in the evolution of the particle, we
can also write the infinitesimal displacement four-vector as

dr = (c dt, dx, dy, dz). (2.34)

Observer Omay, for some yet mysterious reason, choose to compute the quantity

ds2 = drT · η̂ · dr = −c2dt2 + dx2 + dy2 + dz2. (2.35)

The first part of this expression uses matrix notation: η̂ is the 4 × 4 matrix from Eq.
(2.31), and the “T” label denotes the transpose operation on the column vector that
is dr: that is, a row vector drT multiplies the matrix η̂ which then multiplies the
column vector dr. To see why this quantity is interesting to compute, consider the
same quantity as computed by an observer O′ at rest in the primed frame. Equation
(2.28) prescribes that we must have

dr = Λ̂ · dr′ (2.36)

by taking the differential of both sides of Eq. (2.28). Substituting this into Eq.
(2.35), we get

ds2 = drT · η̂ · dr

= dr′T · Λ̂T · η̂ · Λ̂ · dr′ = dr′T · η̂ · dr′

= −c2dt′2 + dx′2 + dy′2 + dz′2, (2.37)

where we used Eq. (2.29). Comparing Eqs. (2.35) and (2.37), we now see that ds2

is an invariant under Lorentz transformations. Observers O and O′ use the same
form of the expression in their respective coordinate systems and get the same
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value for ds2. In general, quantities like ds2 that remain the same under Lorentz
transformations are said to be scalar invariants or Lorentz invariants.

The quantity ds2 has a special physical meaning. Imagine that observer O′

happens to be “riding” with the particle at the given instant in time she measures the
displacement four-vector dr′. Observer O′ would then see the particle momentarily
at rest, with dx′ = dy′ = dz′ = 0, since she is matching the particle’s velocity at
that instant: that is,

dr′ = (c dt′, 0, 0, 0). (2.38)

Now dt′ ≡ dτ is an advance in time on the watch of O′, i.e., a watch in the rest
frame of the particle. We then have from Eq. (2.37)

ds2 = −c2dτ 2, (2.39)

so the value of ds2 measures the period of an infinitesimal clock tick as measured
in the rest frame of our particle.2 The quantity τ is called the proper time of the
particle. It is a four-scalar; that is, observers in every frame can agree on the clock’s
tick rate in its own rest frame. Equation (2.39) also helps us relate the proper time
τ of the particle to the time t in the frame of reference of observer O, since we know
that

ds2 = −c2dτ 2 = −c2dt2 + dx2 + dy2 + dz2. (2.40)

Dividing this equation by dt2, we get

c2 dτ 2

dt2
= c2 − dx2

dt2
− dy2

dt2
− dz2

dt2
= c2 − v2, (2.41)

where v is the speed of the particle, from which we find that

dt = γ dτ , (2.42)

with γ = 1/
√

1 − β2 and β ≡ v/c. This implies that a time interval dτ in the rest
frame of the particle is perceived by observer Oas an interval dt > dτ . This effect
is known as time dilation: from the point of view of an inertial observer watching
some particle move with speed v, if the observer ages by (say) 10 s, the particle
may age by only 1 s from the observer’s perspective. We say the particle’s time
slows down (i.e., time intervals stretch out or dilate) as seen by observer O. Note
that this relation holds instantaneously, even when the particle is accelerating. At
every instant in time, its changing velocity results in changing time dilations with
respect to observer O.

2 Note that in four-dimensional spacetime the quantity ds2 can be positive, zero, or negative. It is positive for
space-like intervals, where the spatial distance between two events is greater than their time difference, dx2 +
dy2+dz2 > c2dt2, negative for time-like intervals, where the time difference is greater than the spatial distance,
and zero for null intervals, where the spatial and time differences are equal to one another, as along the path of
a light ray.
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We have learned that time is not at all a universal observable: it is a “malleable”
quantity, with two observers in different reference frames disagreeing about its rate
of advance. To talk about a notion of time that everyone agrees on in relativity, we
need to refer to proper time – the time as measured in the rest frame of a particular
reference observer or particle. For speeds that are small compared to the speed
of light, we have γ ∼ 1 in Eq. (2.42), and we recover the approximate Galilean
statement of universal time dt = dτ .

At this point we will use our current discussion to introduce a notation that will
be useful throughout the rest of the book. We have already started to appreciate the
elegance of lumping time and space together in a position four-vector, and we have
also demonstrated the use of matrix language in compactifying the notation. Putting
these technologies together, let us denote the four components of the position four-
vector as

r = (c t, x, y, z) ≡ (rt, rx, ry, rz), (2.43)

that is, with a “zeroth” time-like component rt = c t, as well as three spatial
components rx = x, ry = y, and rz = z. Note in particular the superscript notation
we adopt, which allows us to reserve vector subscripts to distinguish between
different particles. We then neatly denote the components of the position four-
vector of a single particle as rμ, where μ is an index that can take on the values,
in Cartesian coordinates, t, x, y, or z. We can then write the components of the
displacement four-vector dr as drμ. Let us now rewrite Eq. (2.35) in terms of this
new “index notation”:

ds2 =
∑
μ ∈

{t,x,y,z}

∑
ν ∈

{t,x,y,z}

drμη̂μνdrν , (2.44)

where we are representing the η̂ matrix by its components – η̂μν is the entry in the
η̂ matrix (2.31) in the μth row and νth column.3 The two sums in the expression
simply implement the usual matrix multiplication rule of multiplying rows against
columns. Note also that this expression is now in the form of a sum over numbers:
the quantities drμ, drν , η̂μν are just commutative numbers. Therefore we can write

ds2 =
∑
μ ∈

{t,x,y,z}

∑
ν ∈

{t,x,y,z}

drμη̂μνdrν =
∑
μ ∈

{t,x,y,z}

∑
ν ∈

{t,x,y,z}

drμdrν η̂μν

=
∑
μ ∈

{t,x,y,z}

∑
ν ∈

{t,x,y,z}

η̂μνdrμdrν . (2.45)

3 A note for readers with a more advanced background in differential geometry: in more advanced notation, a
distinction is made between upper and lower Lorentz indices – corresponding to mathematical objects in the
so-called tangent and co-tangent spaces of spacetime. In our notation, all vector quantities will be given in the
tangent space and hence we use exclusively superscripts for vector indices.
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As you can see, rewriting the sum symbol over and over becomes tedious. Indices
such as μ and ν are often summed over the t, x, y, and z components, so we adopt
the Einstein summation convention: any index that appears exactly twice in the
same term is assumed to be summed over unless explicitly stated otherwise. For
example, we may now write simply

ds2 = η̂μνdrμdrν (2.46)

with an implied sum over μ and over ν, since each index occurs exactly twice in
the same term. Here, rμ (and rν , where μ = 0, 1, 2, 3, ν = 0, 1, 2, 3) are the four
components of the four-dimensional position vector.

To say that ds2 is a Lorentz invariant means that

ds2 = η̂μνdrμdrν = η̂μ′ν′drμ
′
drν

′
, (2.47)

where primed indices refer to coordinates in the coordinate system of O′. Note that
the η̂μ′ν′s are the same as the corresponding η̂μνs (see Eq. (2.31)).

Now we can rewrite Eq. (2.36) in our new notation

drμ = Λ̂μ
ν′drν

′
. (2.48)

The components of the Lorentz matrix Λ̂ are represented by Λ̂
μ
ν′ at the μth row

and ν ′th column. The ν ′ index appears twice in the expression on the right-hand
side, so it is summed over: the sum implements the matrix multiplication Λ̂ · dr′.
Note that there is also a single index μ in each term; that index is not repeated –
it appears only once in each term and so is not summed over. For every possible
value of μ we have a different equation – for a total of four. These are the relations
for the four components of dr. If we encounter an expression with an index that
occurs more than twice in the same term, a mistake has been made!

Index notation takes some time to get used to, but it is worth it. It is powerful,
and the physics of relativity lends itself very naturally to this notation and language.
It is one of those things that requires practice to get the hang of, but once mastery
is achieved, it is difficult to remember how one got by in the past without it. As we
proceed with the discussion of relativity, we adopt this notation from the outset to
provide the reader with as much practice and exposure as possible.

Four-Velocity
Calculus is the natural language of motion: Newton invented differential calculus
to make the discussion of motion more natural and precise.4 Similarly, four-vector
notation is the natural language of relativity, because relativistic physics inherently
mixes time and space. One could proceed without the use of this mathematical
language of four-vectors, but that would come at the expense of unnecessarily
convoluting the discussion of the physics. It is important, however, to appreciate

4 Ironically, his masterpiece, the Principia, uses no calculus at all, because few of his readers would have
understood it: the Principia presents instead an exposition of mechanics in a rather awkward mathematical
language that often obscures the physics at hand, particularly to present-day observers familiar with calculus.
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where the physics starts and where it ends. The tool of four-vectors we will use
in this section is just that, a mathematical tool. It comes with layers of logic that
make the symmetries underlying relativity more transparent and hence guides us
to the next natural steps in the discussion. Throughout, we still need to rely on the
independent statements of physics, i.e., the postulates of relativity, including the
universality of the speed of light.

We start by looking for an observable quantity that relates to the ordinary
three-vector velocity, but which also fits more naturally into our new language
of relativity. We want a “four-velocity,” a quantity with four components whose
spatial components reduce to the usual three-velocity components at small speeds.
For this new quantity to be natural in relativity, it should transform under Lorentz
transformations in a simple way. Let u be the velocity four-vector, with components
uμ, where μ= t, x, y, z as usual. We then require that

uμ = Λ̂
μ
ν′uν

′
. (2.49)

Whatever uμ may be for observer O, it relates to uμ′ as seen by observer O′ by
this simple Lorentz transformation. It also needs to be related to our usual notion
of velocity – the rate of change of position per unit time. However, time is not a
universally invariant notion. The closest we can get to this concept is proper time,
so the obvious candidate for four-velocity is

uμ ≡ drμ

dτ
. (2.50)

In this expression drμ is the four-displacement of a particle observed by O, and dτ
is the advance in proper time of the particle in question – which both primed and
unprimed observers agree upon. Since drμ = Λ̂

μ
ν′drμ′ and dτ is invariant, we see

that this definition does lead to Eq. (2.49), as required. But how does it relate to
ordinary three-vector velocity? To see this, we need to write uμ explicitly in terms
of the coordinates of a fixed observer, say O:

uμ →
(

drt

dτ
,

drx

dτ
,

dry

dτ
,

drz

dτ

)
=

(
c

dt
dτ

,
dx
dτ

,
dy
dτ

,
dz
dτ

)
=

(
γc, γ

dx
dt

, γ
dy
dt

, γ
dz
dt

)
, (2.51)

where we used the time dilation relation obtained previously in Eq. (2.42):

dt = γ dτ . (2.52)

Note that γ = 1/
√

1 − v2/c2, where v is the speed of the particle as seen by O.
We now recognize the last three components of our four-vector as γ times the

ordinary velocity of the particle. We may write more compactly

uμ → ( γc, γv), (2.53)
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lumping the last three entries together. For a slow-moving particle, we have γ ∼ 1
and uμ∼ (c,v), so we have achieved our goal of embedding velocity into the four-
vector language.

What have we gained from this exercise? Well, we now know how the ordinary
velocity transforms under Lorentz transformations, as we shall see.

Example 2.2 The Transformation of Ordinary Velocity
We can now relate the ordinary velocity of the particle v as measured by observer O to the velocity v′ as
measured by O′. To see this, we go back to Eq. (2.49) and expand it in the explicit coordinates of Oand O′.
Let us set up the problem. A particle is moving around in spacetime, and observers Oand O′ are measuring
its trajectory. Frame O′ is moving with respect to Owith speed V in the positive x direction and their spatial
axes are otherwise aligned; we then have the Lorentz transformation matrix from (2.24):

Λ̂ =

⎛⎜⎜⎜⎝
γV γV βV 0 0

γVβV γV 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , (2.54)

where βV = V/c and γV = 1/
√

1 − β2
V . That is, in the context of this problem we have added the

subscript V to the β and γ that describe the transformation between primed and unprimed frames with
relative velocity V, to distinguish it from theβ andγ involving the velocity v of a particle in frameO, and the
β′ andγ′ involving the velocity v′ of the particle in frameO′. We can now write Eq. (2.49) in matrix notation:⎛⎜⎜⎜⎝

γc
γvx

γvy

γvz

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
γV γV βV 0 0

γVβV γV 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

γ′c
γ′vx′

γ′vy′

γ′vz′

⎞⎟⎟⎟⎠ . (2.55)

All that is left is a simple matrix multiplication to obtain the relativistic velocity addition law. From the first
row, we find

γ = γVγ
′

(
1 + βV

vx′

c

)
, (2.56)

which we can then use in the other three rows to get the velocity transformation

vx =
vx′ + V

1 + Vvx′/c2 ,

vy =
vy′

γV (1 + Vvx′/c2)
,

vz =
vz′

γV (1 + Vvx′/c2)
. (2.57)

Let us analyze the physical implications of these equations.
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• As a sanity check, we should first take the small-speed limit, for which Vvx′/c2  1 and γV ∼ 1; then

vx = vx′ + V,

vy = vy′ ,

vz = vz′ . (2.58)

These are the familiar Galilean addition of velocity rules we know very well. So far, so good.
• Now what happens when speeds become relativistic? First suppose that the particle is traveling

at the speed of light in the x′ direction in observer O’s frame, vx′ = c, vy′ = vz′ = 0. We then
have

vx =
c + V

1 + V/c
= c,

vy =
0

γ (1 + V/c)
= 0,

vz =
0

γ (1 + V/c)
= 0. (2.59)

At this point, we are justified in getting slightly emotional. This result is consistent with our original
postulates: a particle that travels at speed c in one inertial frame travels at speed c in all other inertial
frames as well.

• How about intermediate speeds, which bridge the gap between low speeds and the speed of light?
The simplest way to see the implication is to plot vx as a function of vx′ for fixed V. Figure 2.3 shows
such a plot. We now see explicitly how relativity caps speeds to be below that of light, just as we
hoped.

• It is also interesting to note that the relativistic velocity addition law has nontrivial structure in the y and z
directions, transverse to the relative motion of the two observers. This comes about from the ratio γ′/γ;
i.e., it is due to the fact that the tick rates of the two observers’clocks are different. Even though transverse
distances are not affected by a change of reference frame, velocity depends also on the duration of clock
ticks of each observer.

Note that without the use of four-vector language the derivation of these rather involved expressions for
velocities would have been more painful. The formalism helps us embed velocity into a structure that
transforms in a simple way under Lorentz transformations – given by Eq. (2.49). Yet, in explicit form, this rather
simple expression metamorphoses into the unfortunate result that is Eq. (2.57). The strategy now becomes
obvious: try to embed any physical quantity of interest into the language of four-vectors so that we get its
Lorentz transformation for free; then decompose the transformation law into its components to unravel the
physical implications.
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Fig. 2.3 The velocity vx as a function of vx′ for fixed relative frame velocity V = 0.5c. �

Example 2.3 Four-Velocity Invariant
Before we proceed to a similar treatment of momentum, let us introduce a simple technical exercise. We want
to compute the quantity uμuν η̂μν , in which the indicesμ and ν are repeated and hence are to be summed
over. It is an interesting quantity, since, writing in matrix notation:

uT · η̂ · u = v′T · Λ̂T · η̂ · Λ̂ · v′ = v′T · η̂ · v′, (2.60)

resulting in a Lorentz invariant, much like proper time. In index notation:

uμuν η̂μν = uμ
′

uν
′
η̂μ′ν′ . (2.61)

To compute this quantity, we write it in explicit form in terms of the ordinary velocity:

uμuν η̂μν = −γ2c2 + γ2 ((vx)2 + (vy)2 + (vz)2) = −γ2c2
(

1 − v2

c2

)
= −c2, (2.62)

which is obviously invariant, since the speed of light is the same in all inertial frames.
Now let us compute this same expression using a different technique. Since uμuν η̂μν is an invariant,

we can evaluate it in any inertial frame. In particular, we can choose a frame O′ that happens to be
instantaneously at rest with respect to the particle whose velocity is represented in the expression. In that
special frame we have vx′ = vy′ = vz′ = 0, and so we immediately get uμ

′
uν

′
η̂μ′ν′ = −c2. Therefore,

if we had been slightly more astute about things, we need not have done all our previous work in Eq. (2.62): by
simply observing that we have an invariant, we would jump to a more convenient reference frame – the rest
frame of the particle – and perform the computation there mentally. The moral: it pays to know your invariants.
�
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2.3 Relativistic Dynamics

We are now prepared to investigate relativistic dynamics, including the causes of
changes in motion and how such quantities as momentum, energy, and force are
changed in relativistic physics.

Four-Momentum
In classical mechanics the momentum of a particle is a three-vector, generally with
components in all three spatial directions. Can we find a four-vector related to this
classical momentum p = mv? Constructing it will help us learn how momentum
changes when we shift perspective from one inertial observer to another in a
fully relativistic context. This project turns out to be easy, because we have
already found an expression for the four-velocity. The natural choice for the four-
momentum is to multiply the four-velocity by m, the mass of the particle:

pμ = m uμ. (2.63)

However, we need to be slightly careful. To get the required simple transformation
rule

pμ = Λ̂
μ
ν′pν

′
(2.64)

from Eq. (2.49), we need the mass parameter m to be an invariant, m = m′. We do
not want to bias ourselves toward a physical assumption that has yet to come out
of the postulates of relativity. Hence, we need to justify this statement. Fortunately,
we have already seen a similar situation when we encountered the transformation
of time. There, we found that the notion of invariant time required a definition
of proper time, the time in the rest frame of the observed particle. We can then
safely adopt the same physical principle: we introduce the notion of rest mass, the
mass of a particle measured in its rest frame. Let us denote it by m and refer to
it as simply mass from here on; it is the only mass the particle has, the same in
all reference frames. This has often been a source of confusion, since primarily
for pedagogical reasons some physicists have said or written that mass increases
with velocity, with a “relativistic mass” mrel ≡ γm, where m is the rest mass. The
advantage of using the concept of a relativistic mass that increases with velocity
is that one can then still use the classical expression for the three-momentum,
p = mrelv, and explain why a massive particle cannot be pushed to the speed
of light, because its “mass” would then diverge in the limit v → c, making it harder
and harder to accelerate the particle. There are, however, very strong reasons not
to use this idea. A danger of the simple substitution is that one might be tempted to
conclude that substituting mrel for m works in general for relativistic dynamics,
which it most certainly does not. For example, it gives the wrong answer for
kinetic energy, and also for Newton’s second law in the form F = ma, except
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in the special case where the force exerted on the particle is perpendicular to its
velocity.

The primary reason for taking mass to be a Lorentz invariant, i.e., the same
in all frames of reference, is that in four-dimensional spacetime, which is the
natural arena for relativity, the idea of mass increasing with velocity is out of
place and makes no sense. It is much better to write the three-momentum as
p = γmv, keeping γ in the equation explicitly rather than hiding it in a “relativistic
mass.” Then the reason it becomes harder and harder to accelerate a particle as
it approaches light speeds is not that the mass is increasing, but because there
is a γ factor in the true definition of momentum. The nonrelativistic definition
p = mv is only an approximation, valid for v << c. Newton’s second law in
the form F = dp/dt is still valid in relativity, if we take p = γmv to be the
correct expression for momentum.5 The four-momentum is then pμ = muμ, as
given already in Eq. (2.63).

Let us look at the components of this new quantity pμ and understand their
physical significance. Recalling that the four-vector velocity has components
(γc, γv), it follows that for a particle of mass m moving with velocity v with
β = v/c, the four-momentum is

pμ → (γmc, γmv), (2.65)

where we have collected the last three terms together into a traditional three-vector.
At low speeds this has the familiar form p ∼ (mc, mv) to linear order in v/c, with
the addition of the zeroth component mc.

Note that even though the velocity v of a particle is restricted to be v < c,
because of the γ factor there is no upper limit to the momentum of a particle. As
the speed of the particle gets ever closer to the speed of light, the momentum grows
without bound. So far, things look promising.

What is the meaning of the quantity γmc, the zeroth component of the
momentum four-vector? The first clue to its meaning is the fact that in Newtonian
mechanics, the momentum of a particle is conserved if there are no forces on it,
and that is true in all inertial frames. By the principle of relativity we want to
retain this property for relativistic particles as well, which means that the last three
components (called the spatial components) of the momentum four-vector should
be conserved in the absence of forces. However, when we Lorentz-transform the
spatial components of a four-vector in one frame, they become a mixture of space
and time components in another inertial frame. Therefore, to ensure conservation
of the spatial components in all frames means that the zeroth component (also

5 Einstein himself weighed in on this point. In a letter to L. Barnett (as quoted by L. B. Okun in his article “The
concept of mass” in Physics Today 42, p. 31, June 1989), Einstein wrote: “It is not good to introduce the concept
of the mass M = m/

√
1 − v2/c2 of a moving body for which no clear definition can be given. It is better to

introduce no other mass concept than the ‘rest mass’ m. Instead of introducing M it is better to mention the
expression for the momentum and energy of a body in motion.”
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called the time component) must be conserved as well! So the first component of
the momentum four-vector must also be some conserved quantity. What quantity
could it be?

A second clue to the meaning of γmc comes from evaluating it for nonrelativistic
velocities. Using the binomial series (see Appendix F)):

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)
3!

x3 + · · · , (2.66)

valid for |x| < 1, it follows that for nonrelativistic velocities v/c  1:

γmc = mc
(

1 − v2

c2

)−1/2
∼= 1

c

(
mc2 +

1
2

mv2
)

, (2.67)

keeping the first two terms in the binomial series. This quantity is indeed
conserved for a free nonrelativistic particle. We recognize the second term as the
nonrelativistic kinetic energy of the particle, which of course is conserved in the
absence of forces, while the first term is an invariant quantity proportional to the
particle’s mass.

Therefore we identify the zeroth component of the momentum four-vector as
E/c, where E is the energy of the particle. In Newtonian mechanics we traditionally
take the energy of a particle (subject to no forces or potential energies) to be zero
if it is at rest, but we now see that a particle at rest has the mass energy

E0 = mc2, (2.68)

and if the particle is moving, it also has the kinetic energy

T = E − E0 = (γ − 1)mc2, (2.69)

which is approximately (1/2)mv2 in the nonrelativistic limit v/c  1.
In summary, the momentum four-vector is actually an “energy–momentum”

four-vector, with components

pμ =

(
E
c

,p
)

, (2.70)

where E = γmc2 = mc2 + (γ − 1)mc2, in which the term mc2 is the particle’s
mass energy and the other term (γ − 1)mc2 is its kinetic energy. The momentum
of a particle becomes γmv instead of the usual mv, which for small speeds γ ∼ 1
agrees with our nonrelativistic notion of momentum.
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Example 2.4 Relativistic Dispersion Relation
We start with a technical exercise with interesting physical implications. We want to compute the relativistic
invariant

pμpν η̂μν = pμ
′

pν
′
η̂μ′ν′ , (2.71)

which has a similar structure to uμuν η̂μν = − c2. In fact, since the four-momentum pμ = muμ, we can
immediately write

pμpν η̂μν = −m2c2. (2.72)

Let us expand this expression in components as seen by an observer O. Using pμ = (E/c, p), we easily get

− E2

c2 + p2 = −m2 c2. (2.73)

Alternatively, we write

E(p) =
√
(m c2)2 + p2c2, (2.74)

where we have taken E > 0. This is the relativistic dispersion relation for a particle with mass m. In general,
a dispersion relation is a relation between energy and momentum, E(p). The nonrelativistic limit at low
speeds corresponds to p  mc, which gives, after expanding to leading order in p:

E(p) � mc2
(

1 +
1
2

p2c2

(m c2)2 + · · ·
)

= mc2 +
p2

2 m
+ · · · (2.75)

Once again, we see the contribution of the mass energy m c2 as well as the Newtonian kinetic energy term
T = p2/(2m) = (1/2)mv2. The full relativistic form of the dispersion relation (2.74) also allows us to
consider the opposite limit m → 0 (that is, p � mc), the case of a light or “massless” particle

E(p) � p c. (2.76)

In the strict limit m → 0, this expression becomes exact. Hence, we have to entertain the possibility of a
massless particle that carries energy by virtue of its momentum. Substituting E = γmc2 and p = γmv in this
expression, we also find that

γmc = γmv → v = c. (2.77)

Therefore we conclude that massless particles must travel at the speed of light. We can reverse the argument
and state that a particle with v = c ⇒ γ → ∞must have zero mass if it is to have finite energy E = γmc2.
Since light travels at speed c, there is perhaps a sense in which we can think of light as a bunch of massless
particles. Historically, this simple observation helped seed the foundations of quantum mechanics.

We think of energy as a more fundamental physical quantity than mass. It exists irrespective of whether a
particle has or does not have mass. Later on we will see, through a discussion of symmetries and conservation
laws, that energy is indeed more fundamental. We will also see that even massless particles gravitate; they
both cause and are affected by gravity. �
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Example 2.5 Decay into Two Particles
In particle and nuclear physics, many particles decay into two other particles. For example, the neutral pion
π0 decays into two photons γ: we writeπ0 → 2 γ. Figure 2.4 depicts a typical scenario. The initial particle
of mass m0 is shown in its rest frame; it has energy m0c2 and momentum zero. It subsequently decays into two
particles, with masses m1 and m2. These two final particles must move off in opposite directions to conserve
momentum. The process is then effectively one-dimensional, along the line of emission of the two particles.
As we will show, given the initial and final masses, conservation of energy and momentum are sufficient to
determine the energies, momenta, and speeds of each final particle. In relativity, just as in classical mechanics,
we can assume that particles decay so quickly that any reasonable external forces have insufficient time to
cause changes in momentum or energy during the very brief decay itself, so four-momentum is conserved.
The initial four-momentum is entirely that of the particle of mass m0:

pi =

(
E0

c
, 0, 0, 0

)
. (2.78)

The final four-momentum is the sum of two four-momenta:

pf =

(
E1

c
, p1

)
+

(
E2

c
, p2

)
, (2.79)

where we have aligned the x axis along the direction in which the two particles fly apart.

before

after

m1 m2

m0

Fig. 2.4 A particle of mass m0 decays into two particles with masses m1 and m2. Both energy
and momentum are conserved in the decay, but mass is not conserved in relativistic
physics. That is, m0 �= m1 + m2.

Since we need

pi = pf, (2.80)

we immediately see that both

E0 = E1 + E2 (2.81)
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and

0 = p1 + p2. (2.82)

The mass m0 is given and E0 as well, since

E0 = m0c2 (2.83)

for p0 = 0. The conservation law implies that the two particles emerge in opposite directions. Looking back
at Eqs. (2.81) and (2.82), we have four unknowns that describe the problem: E1, E2, and the magnitudes of the
momenta p1 and p2. Can we then unravel the kinematics of this problem only with the given particle masses?
Equation (2.81) gives us one relation. Equation (2.82) leads to p1 = p2 – the magnitudes of the momenta
must be the same – which is a second relation. We then need two additional conditions. These are the relations
E2 − p2c2 = m2c4 for each of the two emerging particles from Eq. (2.74). Hence, we know the problem is
solvable.a

It follows that

m2
2c4 = E2

2 − p2
2c2 = (m0c2 − E1)

2 − p2
1c2 (2.84)

using energy conservation for the first term and momentum conservation for the second term. Multiplying
out the right-hand side, we find that

m2
2c4 = m2

0c4 − 2m0c2E1 + E2
1 − p2

1c2 = m2
0c4 − 2m0c2E1 + m2

1c4. (2.85)

We can then solve this last equation for E1, giving

E1 =

(
m2

0 + m2
1 − m2

2

2m0

)
c2. (2.86)

Having found E1 in terms of known quantities, we can also find E2, both momenta, the particle velocities, and
other quantities as well, using the conservation laws along with E2 − p2c2 = m2c4.

In nuclear or particle physics, where two-particle decays are common, one usually uses energy units
in calculations. In energy units the energy of a particle is given in MeV (106 electronvolts), momenta
in MeV/c, and masses in MeV/c2. As a simple example, the π0 meson, with mass 135 MeV/c2, decays
into two photons, each massless. Therefore the energy of photon 1 as seen from the rest frame of the
meson is

E1 =

(
m2

0 + 0 − 0
2m0

)
c2 =

m0

2
c2 = 67.5 MeV (2.87)

and the magnitude of its momentum is p1 = E1/c = 67.5 MeV/c. �

aThe reader may worry about one more unknown in the full problem: the angle at which the two particles emerge back to back. But this
angle is undetermined because of the spherically symmetric attributes of the system: any angle is consistent with energy and momentum
conservation. Fixing the angle would require additional physical information about the natural laws underlying the decay process at
hand.
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Relativistic Collisions
Most of what we know about subatomic particles has come from high-energy
collisions of particles in accelerators like cyclotrons, linear accelerators, and
synchrotrons. In proton–proton collisions, for example, we can learn about the
nature of the forces between protons and their internal structures. We can also
create new particles by turning part of the kinetic energy of the initial protons
into the mass and kinetic energies of newly created particles. For example, we
can create single or multiple pions, proton–antiproton pairs, so-called “strange”
particles like the Λ hyperon and k meson, or the famous Higgs particle that endows
other particles with their masses.

Relativistic collisions are similar yet different from nonrelativistic collisions. In
nonrelativistic collisions it is the total mass and the total momentum of the colliding
objects that are each conserved. Mechanical energy (that is, kinetic energy plus
potential energy) is not necessarily conserved; some of the kinetic energy might
be converted into heat energy, for example, as in the totally inelastic collision of
two objects that stick together when they collide. But in relativistic collisions it is
the total energy and total momentum that are each conserved. Mass is no longer
separately conserved, and is instead counted as a portion of the total energy of the
system.

To be clear, let us contrast the totally inelastic collision of two particles as viewed
classically and as viewed relativistically, as seen in the lab frame, the frame in
which an incident particle collides with a target particle at rest. Classically: (i)
the total mass of the particles is conserved in the collision and (ii) the sum of their
momenta is also conserved. Their mechanical energy is not conserved: some of it is
lost in the collision and converted into other forms like heat energy. Relativistically,
each component of the energy–momentum four-vector is conserved in the collision.
That is: (i) the three-vector momentum is conserved, although we must be careful
to use the definition p = γmv for each particle (and not the classical approximation
p = mv) and (ii) the total energy of the system is conserved as well, counting both
kinetic energy and mass energy. The energy of each particle is

E = γmc2 ≡ (γ − 1)mc2 + mc2 ≡ kinetic energy + mass energy. (2.88)

The total mass is not conserved in relativity: when the particles warm up or
otherwise gain internal energy as a result of the collision their mass increases
proportionally. So when two hypothetical lumps of clay collide and stick together,
the net effect is that the sum of their initial momenta is equal to the final momentum
of the single combined lump, and the sum of their initial energies is equal to the
final energy of the single combined lump. The total kinetic energy of the individual
lumps before the collision is greater than the kinetic energy of the single combined
lump at the end, so kinetic energy has been lost, but the mass energy of the
final lump is greater than the sum of the masses of the initial lumps, so mass
energy has been gained, by just enough to compensate for the loss of kinetic
energy.
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Let us suppose particle 0, the “target,” of mass m0, is initially at rest, while
relativistic particle 1, of mass m1, is incident upon it. The result is a final particle
of mass M. From the conservation laws we have

p1 + p0 = pM so p1 = pM three-momentum conservation (2.89)

and

E1 + E0 = EM so E1 + m0c2 = EM energy conservation. (2.90)

In addition, each particle has three-momentum p = γmv and energy E = γmc2,
where γ = (1 − β2)−1/2 for that particular particle, so the ratio of these quantities
gives the velocity of the particle:

β =
v
c
=

pc
E

. (2.91)

Therefore, using the results of the conservation laws, the velocity of the final
particle M is given by

vM
c

=
pMc
EM

=
p1c

E1 + m0c2 =
VCM

c
. (2.92)

That is, we have noted that vM/c is also the velocity of the center of mass
VCM/c, since there is only one final mass, and that is its velocity. However,
even though the rest frame of the final particle is the center of mass frame,
this frame in relativistic physics is not literally the center of mass frame before
the collision. The center of mass of the two initial particles is defined to be
at position X = (m0x0 + m1x1)/(m0 + m1), so the velocity of this point is
V = (m0v0 + m1v1)/(m0 + m1) = (m1v1)/(m0 + m1). It is easy to show that
V �= vM except in the nonrelativistic limit. The rest frame of the final particle is,
however, always the zero momentum frame. The momentum of the final particle
is obviously zero, and so by momentum conservation the total momentum of
the initial particles must also be zero. Therefore the frame of the final particle
is sometimes called the “center of momentum frame” (a term invented so that
one can still label it the “CM” frame), although calling it the “zero momentum
frame” would be more enlightening. So we use the subscript “CM” from now on to
mean the zero momentum frame, and the corresponding velocity is as given above,
VCM/c = p1c/(E1 + m0c2).

Example 2.6 Threshold Energies
An especially useful example of a totally inelastic collision is one in which two particles collide and are barely
able to create one or more new particles. Given enough energy, for example, the collision of two protons can
result in two protons plus a proton–antiproton pair, p+ p → p+ p+(p+ p̄), where the antiproton p̄ has
the mass of a proton but the opposite electric charge. In the CM frame, the two initial protons come together
with equal but opposite momenta (and therefore equal but opposite velocities, since their masses are equal).
For small initial velocities they will not have enough kinetic energy to provide the mass energy of the (p, p̄)
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pair, so the pair cannot be formed. But if the total energy of each initial proton is 2mpc2, including both its
mass energy and kinetic energy, the pair can just barely be formed, in which case the final four particles will
all be at rest in the CM frame, with no energy left over to allow any of them to move. This is a totally inelastic
collision, with every bit of the initial kinetic energy turned into mass energy. So in the CM frame the minimum
initial kinetic energy required to create the pair is 2mpc2, half of which must be provided by each initial proton.
Any additional initial kinetic energy above this value will allow the final particles to have some kinetic energy
in addition to their mass energy.

Now let us return to the general case in which we are barely able to create one or more new particles. We
identify the final mass of the system as

∑
mf , the sum of all the final particle masses. We seek to find how

much initial energy E1 is required in the lab frame for an incident relativistic particle of mass m1 to create all
these final particles when it strikes the target particle of mass m0 at rest in the lab. This is what is meant by
the term threshold energy.

To find this energy we can use two important equalities. First, the total momentum four-vector PT is the
same before and after the collision, and that is true in both the lab and CM frames. Second, the scalar product
ημνPμT PνT must be the same in all inertial frames, including the lab and CM frames. The scalar product of any
two four-vectors is an invariant under Lorentz transformations.

The total momentum four-vector in the CM frame after the collision is

P(CM)
T =

(
E(CM)

T

c
, 0, 0, 0

)
=
(∑

mf c, 0, 0, 0
)

(2.93)

for the threshold energy, and this must be the same as it was before the collision by the conservation laws.
The total four-momentum vector in the lab frame, with particle 0 at rest and particle 1 with energy E1 before
the collision, is

P(LAB)
T =

(
E(LAB)

T

c
, p1, 0, 0

)
=

(
E1 + m0c2

c
, p1, 0, 0

)
(2.94)

the same after the collision according to conservation of the total four-momentum. The squares of these
four-momenta are also equal to one another, because they are invariant under Lorentz transformations. So
altogether we have

ημνP(CM)μ
T P(CM)ν

T = −
(∑

mf

)2
c2 (2.95)

in the CM frame (i.e., zero-momentum frame) and

ημνP(LAB)μ
T P(LAB)ν

T = −(E1 + m0c2)2/c2 + p2
1 = −2E1m0 − m2

0c2 + (E2
1/c2 − m2

1c2) (2.96)

in the lab frame. Here we have used the fact that for the incident particle in the lab, p2
1 = E2

1/c2 − m2
1c2.

Now, setting these squared four-momenta equal to one another:

−
(∑

mf

)2
c2 = −2E1m1 − m2

1c2 − m2
0c2, (2.97)
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and then solving for E1:

E1 = Ethresh =
[(
∑

mf )
2 − m2

0 − m2
1]c

2

2m1
. (2.98)

This is the threshold energy in the lab frame, where the incident particle of mass m1 strikes a target particle
of mass m0 at rest.

Now in particular, what about the creation of a (p, p̄) pair in (p, p) collisions? In that case there are four
final particles, each of mass mp, so

E1 = Ethresh =
(4mp)

2 − 2m2
p)c2

2mp
= 7mpc2, (2.99)

which is the minimum total energy of the incident proton in the lab frame required to produce the proton–
antiproton pair. The minimum kinetic energy of the incident proton in the lab is 6mpc2, its total energy minus
its mass energy. With this energy, the final four particles will all be at rest in the CM frame. Therefore, in the
lab frame all four particles will be moving together at the CM velocity in the forward direction. If the incident
proton has more energy than 7mpc2, the final particles will have some kinetic energy in the CM frame rather
than all just sitting there together at rest.

If all we are going to do is create two new particles, each of mass mp, why isn’t the kinetic energy required
just 2mpc2, and not 6mpc2? The reason of course is that there must be enough energy to keep the total three-
momentum the same after the collision as it was before. The final particles must be moving in the lab to
conserve three-momentum, so kinetic energy for this motion of all four particles must be provided by the
incoming proton. �

Colliders
In the example just presented we found the threshold energy required in the lab to
create new particles. Early accelerating machines, cyclotrons, synchrotrons, linear
accelerators, and others all used beams of particles of mass m1 and energy E1
incident upon target particles of mass m0 at rest. Antiprotons, antineutrons, and
many “strange” particles were discovered in this way. In the case of antiprotons,
for example, which had to be created with an accompanying proton,6 a minimum
energy of E1 = 7mpc2 for the incoming proton was required in the lab frame;
in practice, it required even higher energies to produce an appreciable number of
(p, p̄) pairs.

It did not escape the attention of particle physicists that if it were possible
to actually perform the experiments in the CM frame instead, with two protons
striking one another with equal but opposite momenta, then the minimum energy
of either initial proton required would be only E′

1 = 2mpc2 to produce a (p, p̄) pair.

6 The so-called “baryon number” has to be conserved. Many “heavy” particles are baryons, including the proton
and neutron, each of which has baryon number +1. Their antiparticles have baryon number −1. So if an
antibaryon is created, a baryon must also be created along with it so that the net baryon number before the
collision is the same after the collision.
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This would require a much less powerful accelerator. However, it would obviously
be very challenging to accelerate two beams moving in opposite directions, and
then aim the beams at one another, and finally have enough protons in the two
beams so that there would be a fighting chance that some of the protons moving
one way would strike an appreciable number of protons moving the other way and
cause the reaction to occur.

Nonetheless, particle physicists became strongly motivated to create even
heavier particles or particle pairs, so they knew they had to build “colliders,”
in which two beams of particles collided with one another head on. How much
advantage would there be in such machines?

Suppose we want to create some new particle or particles that are much, much
heavier than the colliding particles, so that the threshold energy using (p, p)
collisions in the lab frame would be

E1 = Ethresh =
((
∑

mf)
2 − m2

p − m2
p)c2

2mp
� (

∑
mf)

2c2

2mp
. (2.100)

That is, the threshold energy would be proportional to the square of the total
mass energy of the final particles. If the particle or particles we want to create
are suspected of having a total of 50 proton masses, for example, our traditional
machine would have to accelerate protons to energies of at least 1, 250mpc2, a huge
energy. But if we could do it in a collider instead, with two proton beams striking
one another head-on, each initial proton would need a minimum energy of only
about 25mpc2, 1/50th the energy required in the traditional machine. An enormous
improvement in feasibility and saving in costs!

Again, for (p, p) collisions, to create highly massive particles with
∑

mfc2 >>
mpc2 would require accelerating protons to an energy of at least (

∑
mf)

2c2/(2mp)
in a traditional machine, but only (

∑
mfc2)/2 in a collider. The ratio of these is

(E1)traditional machine

(E1)collider
�
∑

mf

mp
. (2.101)

The larger the total mass of final particles, the more advantageous are colliders over
traditional machines with stationary targets.

Photons and Compton Scattering
In his “miracle year” of 1905, Einstein not only published the theory of special
relativity; among other highly original papers he also proposed that light consists of
particles, later named “photons.” Photons travel at the speed of light and have zero
mass. In spite of being massless, they do have both energy and momentum, but we
clearly cannot use the formulas p = γmv and E = γmc2, because each expression
involves a product of γ, which is infinite for a particle traveling at the speed of
light, and m, which is zero. This makes no sense. However, the relationship

ημνpμpν = −E2/c2 + p · p = −m2c2 = 0 (2.102)
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does make sense for photons: it states in effect that the energy and momentum of a
photon are related by E = pc, where p is the magnitude of the three-momentum. We
know that a beam of light has energy; it also has momentum, as given by p = E/c.

Einstein proposed not only that light consists of particles we call photons, but
also that photons have wave-like properties, described by quantities like wave-
length and frequency as well as particle-like properties described by properties
like energy and momentum. We can translate between these two worlds of particle
properties and wave properties by using the relations p = h/λ, where λ is the
wavelength and h is Planck’s constant, and E = hν, where ν is the frequency. Then
from the equation −E2/c2 + p2 = 0 we find that −ν2/c2 + 1/λ2 = 0, or λν = c,
exactly what we would expect from wave theory for a wave traveling at the speed
of light.7

An important confirmation that photons with the properties just mentioned exist
came about in 1923, when A. H. Compton fired a beam of X-ray light at a graphite
target, which of course contained electrons. The electrons could be treated as
essentially free particles at the X-ray energies used. As X-rays scattered off these
electrons, they lost some of their energy, giving it to the electrons in inelastic
collisions. The energy loss meant that the X-rays would have a lower frequency
and larger wavelength according to Einstein’s equations E = hν = hc/λ, and
the frequency was measured in the lab as a function of the scattering angle of the
X-rays.

momentum conservation
triangle

photon

electron

Fig. 2.5 The Compton scattering process: a photon is incident on an electron and scatters off at an angle.

We can see how λ should change as a function of the scattering angle θ, as
illustrated in Figure 2.5. Let ν and ν ′ be the initial and final X-ray frequencies and
Ee the final electron energy. Compared with the X-ray energy, the initial energies
of the electrons are essentially zero. Then, in a photon–electron interaction, energy
conservation gives

hν + mec2 = hν ′ + Ee. (2.103)

7 Much later, in 1924, a French graduate student, Louis de Broglie, suggested in his doctoral dissertation that
the relationships E = hν and p = h/λ should apply to all particles, not just photons. Therefore particles like
electrons and protons would have wave-like properties as well as particle-like properties. Einstein was very
supportive of de Broglie’s idea. Much more on this in Chapter 5.
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From the conservation of the total three-momentum, and using the law of cosines:

p2
e =

(
hν
c

)2
+

(
hν ′

c

)2
− 2

(
hν
c

)(
hν ′

c

)
cos θ. (2.104)

The electron’s momentum and energy before the interaction are related by

p2
ec2 =E2

e − m2
ec4 = (hν − hν ′+mec2)2 − m2

ec4 = h2(ν − ν ′)2 + 2hmec2(ν − ν ′)
(2.105)

using the energy conservation equation above. Now the electron momentum pe can
be eliminated between the last two equations, resulting in

mec2(ν − ν ′) = hνν ′(1 − cos θ). (2.106)

Finally, by substituting ν = c/λ and ν ′ = c/λ′, we find the Compton scattering
result

λ′ − λ =
h

mec
(1 − cos θ) (2.107)

for the wavelength shift of photons scattered off electrons at angle θ. The photons
become redder, having transferred some of their energy to the electrons. The
larger the scattering angle θ, the more energy has been transferred, and the
redder the photons according to the formula. Compton’s measurements agreed in
detail, adding important support to the idea that light consists of photons with the
properties proposed by Einstein many years before.

Four-Force
We now seek a four-vector force that is responsible for changes in the four-
momentum of a particle. A “four-force” would allow us to reformulate Newton’s
second law for relativistic mechanics, since nonconservation of momentum in
Newtonian physics implies the presence of a force F = dp/dt. We would like
to transform this equation into four-vector language.

Let us label the four-vector force as fμ and propose that

fμ =
dpμ

dτ
, (2.108)

where each side of the equation is a four-vector. Once again we have differentiated
with respect to a four-scalar, the proper time, which is the same in all inertial frames.
Therefore observer O′ can write

Λ̂
μ′

μ fμ = Λ̂
μ′

μ

dpμ

dτ
⇒ fμ

′
=

dpμ′

dτ
(2.109)

to describe the same physics – with the implicit Lorentz transformation of our new
four-force fμ′

= Λ̂
μ′

μ fμ.
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A force law describing the nature of fμ is an independent statement of physics,
so one needs to check each component of fμ – its detailed form in terms of
the parameters of the particle and its environment – to see whether the Lorentz
transformation changes it beyond the expected fμ = Λ̂

μ
μ′ fμ′ . All inertial observers

should see the same physics, so this should not happen.
For now, we assume that whatever forces appear on the left-hand side of Eq.

(2.108) are indeed consistent with the postulates of relativity. We want instead to
focus on a much more urgent issue: what new physics does our reformulation of
Newton’s second law given by Eq. (2.108) add to the dynamics, on top of what we
already know from the Newtonian realm?

To see the implications of Eq. (2.108), we can write it explicitly in component
form:

( f t, f) = γ
d
dt

(γmc, γmv) , (2.110)

where we use the time dilation relation (2.52) to write dτ in terms of observer O’s
time differential dt, and collect the three spatial components of our four-vectors
into the usual three-vector notation. We look at the easy part first: the spatial
components are

f = γ
d
dt

(γmv) . (2.111)

Imagine that the particle is subject to no external forces, f = 0. We then have
momentum conservation

d
dt

(γmv) = 0, (2.112)

where again the momentum is p= γmv (and not the nonrelativistic approximation
p = mv).

Defining force F as the rate of change of p, we need to write

F ≡ d
dt

(γmv) . (2.113)

The quantity F corresponds to the force in Newtonian mechanics: it is the rate of
change of momentum as seen by a given observer. Looking back at Eq. (2.111), we
interpret the lower-case quantity f as

f = γF. (2.114)

That is, the spatial components of the four-force reduce to the usual three-force F
in the limit of small velocities.

Now, what is the meaning of the zeroth component of Eq. (2.110):

f t = γ
d
dt

(γmc)? (2.115)
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Recall that the energy of the particle is E = γmc2, so

f t =
d

dτ
(γmc) =

1
c

dE
dτ

. (2.116)

Earlier we showed that E and p obey E2 = m2c4 + p2c2, so differentiating this
equation with respect to τ gives

2E
dE
dτ

= 2
(
px dpx

dτ
+ py dpy

dτ
+ pz dpz

dτ

)
c2 ≡ 2

(
p · dp

dτ

)
c2, (2.117)

and so, using E = γmc2 and p = γmv:
dE
dτ

=
1

γmc2 (γmv · f) c2 = v · f ⇒ dE
dt

= F · v, (2.118)

which we recognize as the rate at which the force does work on the particle, i.e.,
the power input to the particle. This agrees with Newtonian mechanics.

In summary, the four components of the force four-vector are

f μ →
(
γ

1
c
v · F, γF

)
, (2.119)

where the zeroth component of the four-force is related to the rate at which the
energy flows in/out of the system. We have also learned how force must transform
under Lorentz transformations, since f is a four-vector and fμ′

= Λ̂
μ′

μ fμ.
So far, we have been led by the postulates of relativity to a modification of

the transformation rules that relate to the perspectives of inertial observers. We
then developed a mathematical language that naturally lends itself to Lorentz
transformations, and we discussed four-vectors and Lorentz invariants. Next, we
attempted to embed various physical quantities, such as velocity, momentum, and
force, into the language of four-vectors. In doing so, we wrote quantities that match
the corresponding Newtonian ones at low speeds, but are packaged in a manner that
easily determines how they change under Lorentz transformations. This led us to
a revised velocity addition law, to a new understanding of momentum and energy,
including a realization that mass is a form of energy, and finally to a revised concept
of force and of Newton’s second law of motion.

Dynamics in Practice
At this point it is useful to step back and think about mechanics in light of all the
new revisions we have discussed. We begin by revisiting the three laws of Newton
and fitting them into the postulates of relativity.

• Unchanged first law. There exists a class of observers – henceforth labeled
inertial observers – for whom the laws of physics are the same. Given one
inertial observer, another observer is inertial if their two frames have a constant
relative velocity. In an inertial frame, in the absence of forces, a particle will
move in a straight line at constant speed.
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• Revised second law. The rate of change of four-momentum is the four-force

f μ =
d

dτ
(muμ) =

dpμ

dτ
, (2.120)

where uμ= drμ/dτ and τ is proper time. In the absence of a four-force, energy
and momentum are conserved.

• Extended third law. For every four-force there is an equal but opposite four-force.
The spatial part of this statement ensures total momentum conservation for an
isolated system: for an isolated system of particles, action–reaction pairs cancel
so that the total force is zero and total momentum is conserved. We will see this
in more detail in a later chapter on systems of particles. The temporal part of
our new statement is about energy conservation for an isolated system: you can
see this from the fact that the first component of the four-force measures rate of
change of energy.

• New fourth law. The universal speed of light is a law of physics: light moves at
the same speed with respect to all inertial observers. This implies that the inertial
reference frames defined in the first law are connected to each other by Lorentz
transformations.

One can use these statements to study mechanics with speeds all the way up to that
of light. At low speeds we drop the new fourth law, Newton’s first and third laws
are unchanged, and we recover Newton’s second law as an approximation. Also,
Galilean transformations connect inertial reference frames. What then remains is
to complete the dynamical picture by incorporating specific forces consistent with
the postulates of relativity.

We can develop our physical intuitions by explicit examples, so we now proceed
with a few case studies.

Example 2.7 Uniformly Accelerated Motion
Consider a particle of mass m moving in one spatial direction, say along the x axis of an observer O, and
suppose that this particle is subjected to an external four-force

(f t , f) =
(
γ

1
c

v · F, γF
)

, (2.121)

with F a constant three-vector pointing in the positive x direction. Can such a constant force accelerate the
particle past the speed of light?

Writing the component of fμ = dpμ/dτ in the x direction, we get

γFx = γ
d
dt
(γmvx) . (2.122)

Simplifying, we have

Fx = m
d
dt
(γvx) , (2.123)
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which is a differential equation we can solve for vx . The left-hand side is a constant, and the velocity vx(t)
appears both explicitly and implicitly in the gamma factorγ = (1−(vx)2/c2)−1/2. Integrating Eq. (2.123)
with vx(0) = 0, we find

Fx

m
t =

vx√
1 − vx 2/c2

, (2.124)

which we can solve for vx(t):

vx(t)
c

=
Fx t/mc√

1 + (Fx t/mc)2
. (2.125)

We recognize a = Fx/m as the Newtonian acceleration, which is a constant in this case. Therefore, in terms
of a:

vx(t)
c

=
a t/c√

1 + (a t/c)2
. (2.126)

The factor at looks very familiar, but the square root in the denominator changes everything as time goes on.
At early times, when the particle has not yet acquired much speed, we have a t/c  1 and we recover the
Newtonian expression vx(t) = at. At large times, however, the denominator ensures that we do not violate
the upper speed limit

vx(t)
c

→ 1 (2.127)

as t → ∞. Figure 2.6(a) shows a plot of vx(t)with the corresponding tapering-off feature at large speeds.
We can also look at the particle’s trajectory, shown in Figure 2.6(b), by integrating

dx
dt

=
at√

1 + (at/c)2
(2.128)

with x(0) = 0 for a particle that starts at the origin. One finds that

x2 − c2t2 =
c4

a2 , (2.129)

so that in the c t–x plane, the shape is that of a hyperbola. We will revisit this in the following section when
we discuss Minkowski diagrams.
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(b)(a)

Fig. 2.6 Plots of relativistic constant-acceleration motion. (a) Shows vx(t), demonstrating
that vx(t) → c as t → ∞, i.e., the speed of light is a speed limit in Nature. The
dashed line shows the incorrect Newtonian prediction. (b) Shows the hyperbolic
trajectory of the particle on a c t–x graph. Once again the dashed trajectory is the
Newtonian prediction. �

Example 2.8 The Doppler effect is the shifting of frequencies of sound or light waves from the perspectives of observers
who are moving with respect to one another. We are most familiar with it in the context of sound (because
the speed of sound is much less than the speed of light), when for example we notice a change in the pitch
of the siren of an ambulance as it passes by. Sound propagates in some medium, whether air, liquid, or solid,
so that it has a particular fixed speed given by the properties of the particular medium in the medium’s rest
frame. Its speed is therefore not an invariant and will be subject to the velocity addition rule. Hence, the more
interesting scenario for relativity involves the Doppler effect for light, because in that case there is no medium
to provide a preferred frame of reference. We want to find how the frequency of light shifts as seen by different
moving observers.

Fig. 2.7 Observer O′ shooting a laser toward observer Owhile moving toward O.
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Consider our usual setup of observer O′ moving with a constant speed V along the positive x direction
toward another observer O, as shown in Figure 2.7. Observer O′ aims a laser beam of frequency ν′ (as seen
from O’s perspective) toward Oalong the x′ axis, and we want to find the frequency ν perceived by O; that
is, we seek the Lorentz transformation of frequency.

As mentioned earlier, in 1905 Einstein showed that light consists of particles now called photons, and that
the energy E and momentum p of a photon are each proportional to frequency, E = hν and p = E/c =
hν/c, where h is Planck’s constant. This means that the four-momentum of the laser beam is

pμ =

(
E
c

, p, 0, 0
)

=

(
h ν

c
,

h ν
c

, 0, 0
)

. (2.130)

All that is left to do is to write the Lorentz transformation pμ = Λ̂
μ

ν′pν
′

in explicit component form. That is:⎛⎜⎜⎜⎝
h ν/c
h ν/c

0
0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
γV γV βV 0 0

γVβV γV 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

h ν′/c
h ν′/c

0
0

⎞⎟⎟⎟⎠ , (2.131)

whereβV = V/c. This leads to

ν = γVν
′ + γVβVν

′, (2.132)

where Planck’s constant has dropped out of the equation. A little algebra then shows that

ν

ν′
=

√
1 + β

1 − β
> 1 approaching observers. (2.133)

This applies to the scenario where the laser beam is aimed from O′ toward Oas O′ moves in the positive x
direction – implicit in the fact that the x component of pμ in Eq. (2.130) is taken to be positive and it is assumed
that the beam does arrive atO. In short, this applies when the distance between the two observers is shrinking.
The frequency received is greater than the frequency emitted, ν > ν′, known as a blueshift, for obvious
reasons. To see the other possibility – i.e., Oand O′ moving away from each other – we can simply flip the
sign ofβ in this expression:

ν

ν′
=

√
1 − β

1 + β
< 1 receding observers. (2.134)

Now the distance between the two observers is increasing, and we find that the received frequency is less than
the emitted one: we say there has been a redshift.

Doppler shifts for light are an extremely useful tool in physics and technology, from determining the
speeds of stars in distant galaxies leading to Hubble’s discovery of the expanding universe, to the use of
frequency shifts in the GPS for location and navigation. If such special-relativistic effects were not included
in GPS navigation, there would be large errors in position measurements. Interestingly, it even turns out
to be equally essential for GPS to include additional effects due to earth’s gravity, as contained in Einstein’s
general theory of relativity. �
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Minkowski Diagrams
A particularly useful way to depict relativistic dynamics involves a visual tool
called a Minkowski diagram. Simply put, it is a plot of the trajectory of a particle
on a graph where the horizontal axis is one of the spatial directions and the vertical
axis represents time, or actually the product c t. Figure 2.8 shows an example.

Light cone

Particle
trajectory

An event

Light ray Light ray

Fig. 2.8 A point on a Minkowski diagram represents an event. A particle’s trajectory appears as a curve with a
slope that exceeds unity everywhere.

The trajectory of the particle appears as a line moving upward, forward in time.
It is sometimes referred to as the worldline of the particle. Light rays appear
on such a diagram as straight lines at 45◦, as shown in the figure. A tangent to
a trajectory corresponds to c/v, the inverse relative speed of the corresponding
particle. Notice that the worldline of the particle in the figure has a slope greater
than unity everywhere, since v/c < 1.

An isolated point on a Minkowski diagram corresponds to an event, since it has a
definite time and position. If two events can be connected by the physical trajectory
of a particle (whose slope is everywhere greater than unity), the two events are
said to be time-like separated. The physical implication is that the earlier event
can talk to the later event with physical signals involving matter or light. A quick
way to determine whether two events are time-like separated is to draw a forward-
pointing light cone wedge with its apex at the earlier event, as shown in Figure 2.9.
The other event should then lie within the light cone. We say that the two events
are causally connected; i.e., event A in the figure can cause event B. Event C lies
outside the light cone for B: reaching it requires signal propagation faster than
light, i.e., a curve that has at least some interval where its slope is less than unity.
Such events are said to be causally disconnected; we also say that events B and
C are space-like separated. Event C in the figure lies on the light cone of A. This
means that it can be reached from A with a light signal. A and C are then said to be
light-like separated.

There is an algebraic way to determine whether two events are light-like, space-
like, or time-like separated. If we look at the position four-vector Δr = (cΔt,Δr)
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A

B
C

Fig. 2.9 Three events on a Minkowski diagram. Events A and B are time-like separated; A and C are light-like
separated; and B and C are space-like separated.

pointing from one event to the other (see Figure 2.9), if the slope of this four-vector
on the corresponding Minkowski diagram is greater than unity, then the events are
time-like separated and we have

cΔt > |Δr| ⇒ −c2Δt2 + |Δr|2 < 0 ⇒ ΔrμΔrν η̂μν < 0. (2.135)

Similarly, we find

ΔrμΔrν η̂μν > 0 (2.136)

for space-like separated events, and

ΔrμΔrν η̂μν = 0 (2.137)

for light-like separated ones. It is also useful to extend this concept to any four-
vector, such as the velocity, momentum, and force four-vectors. For any such four-
vector, denoted by Aμ in general, we can write

AμAν η̂μν > 0 space-like
AμAν η̂μν < 0 time-like
AμAν η̂μν = 0 light-like (2.138)

Note in particular from Eqs. (2.62) and (2.72) that the momentum and velocity four-
vectors are time-like, while the force four-vector is space-like (see the Problems
section at the end of this chapter).

As an exercise in Minkowski diagram analysis, consider the trajectory of a
particle under the influence of a constant four-force, as encountered in Example 2.7.
From Eq. (2.129), we can now plot the profile of the worldline in Figure 2.10.

We see that the particle starts at rest with infinite slope (i.e., zero speed), then
speeds up and asymptotically reaches the speed of light at 45◦ slope in the figure.
We note that the slope is everywhere greater than unity, as expected.
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Fig. 2.10 The hyperbolic trajectory of a particle undergoing constant acceleration motion on a Minkowski diagram.

ct'
x'

Fig. 2.11 The grid lines of two observers labeling the same event on a spacetime Minkowski diagram.

Another use of Minkowski diagrams is to picture the relation between the
coordinate systems of two observers. The same set of events on a Minkowski
diagram can get labeled via different coordinates by different inertial observers.
Figure 2.11 shows the grid lines of observer O′, who happens to be moving with
speed V along the x axis of O. The ct′ axis is the worldline of observer O′ as seen
by O, since it is obtained by setting x′ = 0: after all, the ct axis of O is nothing
but the trajectory of its origin on the Minkowski diagram at x = 0. In the same
spirit, we see from Eq. (2.15) that the ct′ axis is a straight line with slope c/V. The
x′ axis is given by ct′ = 0 (as is the x axis of O, given by the ct = 0 condition);
from Eq. (2.15) we can see that it is a straight line with slope V/c. The ct′ and x′
axes are reflected images of each other across the light cone at the origin. The
figure shows a geometric realization of how an event gets labeled by the two
observers: each projects the event along her time and space axes, along ct and x
for O, and ct′ and x′ for O′. The reader is, however, cautioned in using concepts
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from Euclidean geometry on such a diagram for measuring distances. The vertical
axes here represent time! To measure the spacetime “distance” between two events
separated by say Δt and Δx, you want to use −c2Δt2+Δx2, not c2Δt2+Δx2. That
is, you want to use the Minkowski metric (2.31). Let us look at some examples
using Minkowski diagrams to develop our visual intuition of relativity.

Example 2.9 Time Dilation
Consider once again our two observers Oand O′. The Minkowski diagrams are shown in Figure 2.12 corre-
sponding to a relative velocity V = (3/5)c, i.e., observer O′ is moving in the positive x direction at (3/5)c
relative to O. In Figure 2.12(a), we show two events corresponding to two ticks of a clock carried by O. In
Figure 2.12(b), we show two events corresponding to two ticks of a clock carried byO′ instead. Let us focus on
Figure 2.12(a). O’s clock ticks are separated byΔt. Using Eq. (2.15) withΔx = 0, we have

c Δt′ = γ(c Δt − βΔx) ⇒ Δt′ = γΔt. (2.139)

The corresponding time intervalΔt′ observed in the primed frame is then greater thanΔt. To O′, this clock
is moving in the negative x′ direction and runs slow: this is the phenomenon of time dilation. Putting numbers
in with V = (3/5)c, we have Δt′ = γΔt = Δt/

√
1 − V2/c2 = (5/4)Δt. Figure 2.12(a) shows

the same conclusion graphically.
What if we reverse our perspective? Consider a clock carried by O′ instead, which ticks with intervalΔt′?

Figure 2.12(b) depicts the corresponding scenario. Algebraically, the tick events of O′’s clock have Δx′ = 0.
Using Eq. (2.15) once again, we now get

c Δt = γ(c Δt′ + βΔx′) ⇒ Δt = γΔt′. (2.140)

Observer Owill then perceive this clock-tick separation as Δt = (5/4)Δt′ > Δt′. To O, this clock is
moving in the positive x direction, and once again runs slow. In summary, from the standpoint of any inertial
observer, a moving clock runs slow by a factor of γ.

(b)(a)

ct

x'

x'

ct '

ct'

c�t

�x'

c�t '

c�t'

Fig. 2.12 The time dilation phenomenon. (a) Shows the scenario of a clock carried by
observer O. (b) Shows the case of a clock carried by O′. �
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Example 2.10 Length Contraction
Minkowski diagrams are shown in Figure 2.13 for a primed frameOand unprimed frameOcorresponding to a
relative velocity V = (3/5)c. Figure 2.13(a) depicts a scenario where observer O′ carries a meter stick along
with her. The dashed lines are the trajectories of the endpoints of the meter stick. If O′ wants to measure
the length of the stick, she must measure the locations of both ends at the same time t′. The corresponding
measurement is shown in Figure 2.13(a) through two events occurring at t′ = 0 at the endpoints. We then
have Δt′ = 0 and Δx′ = L0, where L0 is the rest length of the stick. If observer O is to measure the
length of the same stick, he must use two events at the endpoints of the stick simultaneously in his reference
frame, i.e., two events withΔt = 0 and some value ofΔx. Using Eq. (2.15) withΔt′ = 0 andΔx′ = L0,
one gets, after some straightforward algebra,Δx = L0/γ = (4/5)L0 < L0! The moving stick is therefore
shorter to O. This is the phenomenon of Lorentz contraction or length contraction. If we consider a stick
carried by Oinstead, the scenario is shown in Figure 2.13(b). This time the rest length of the stick is given by
Δx = L0; and it is O′ who perceives the stick moving, now in the negative x′ direction. Once again, we can
check that O′ measures a lengthΔx′ = (4/5)L0 < L0. Moving objects are contracted by a factor of 1/γ
along the direction of motion. In fact, relativity introduces more elaborate geometric aberrations of moving
objects, including a pseudorotation effect and preservation of circular shapes. We leave some of the discussion
to the Problem section at the end of the chapter.

(a) (b)

ct'
ct'

x'
L 0

L0

x'

�x'

Fig. 2.13 The phenomenon of length contraction. (a) Shows the scenario of a meter stick
carried by observer O′. The dashed lines depict the trajectories of the two endpoints
of the stick. (b) Shows the case of a stick carried by O. �

A crucial ingredient in the previous example is the realization that two events
which are simultaneous in one reference frame are not necessarily so in another:
this is known as the relativity of simultaneity. In the case at hand, the measure-
ments of the locations of the two endpoints of the stick are simultaneous to one
observer, and so can be used to read out the length of the stick. However, these
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same two measurements, as shown in the figure, are not simultaneous to the other
observer, and so cannot be used to read out the length of the stick as measured by
this other observer. We would never judge the length of a moving stick by measuring
its two endpoints at different times.

Example 2.11 The Twin Paradox
Relativity abounds with so-called “paradoxes”– thought experiments that appear at first to lead to conceptual
contradictions. However, they all invariably arise from one of several Newtonian traps. For example, one
common pitfall is that of simultaneity: in relativity, two events that are simultaneous in one reference frame
are not necessarily so in another. We saw this phenomenon at work in the previous example, leading to
geometric distortions. Yet – based on our Newtonian daily experiences – we have no intuition for this, because
we never encounter it in our normal experience. Often, once relativistic tinkering with the notion of time is
taken into account, paradoxes are quickly resolved. And in resolving each paradox, one’s intuition for relativity
develops a bit more.

In this example we focus on the classic twin paradox. The scenario goes as follows. John lives on earth and
tracks time with his wristwatch. His twin, Jane, is on a trek to a nearby star a distance D away. Jane will travel
along a straight path at constant speed V0 relative to John, then will turn around and come back with the
same constant speed. The question is: Who has aged more when John and Jane meet? Figure 2.14(a) shows a
Minkowski diagram of the setup with simultaneity lines according to John. If V0 is large enough, time dilation
effects will be important. There are three segments of the trip, two of which last for a period T1 to John, as
shown in the figure, and the middle segment lasting a period T0. The total time of the trip will be T0 + 2 T1 on
John’s wristwatch. We want to compare this to the time elapsed on Jane’s wristwatch during the same period.
We can immediately tell that T1 = D/V0. However, Jane’s clock rate will necessarily be slow in John’s rest
frame, because of time dilation. For the first and third segments of the trip, Jane’s speed is constant and we
simply have

T1 = γ0τ1, (2.141)

whereτ1 is the time elapsed on Jane’s wristwatch while T1 has elapsed on John’s; andγ0 =(1−V2
0/c2)−1/2.

Hence, T1 > τ1 and John ages more during these segments.
The second segment is trickier, since Jane is accelerating as she turns around to return to earth. Let us

assume, for simplicity, that Jane decelerates at a constant rate during the turnaround. From John’s perspective,
that is, from the perspective of observers at rest in his inertial frame, he can track what’s happening to Jane
using the relativistic form of Newton’s second law. For constant acceleration, this is a problem we have already
studied. We know Jane’s trajectory would be hyperbolic on a Minkowski diagram, as shown in Figure 2.14. We
also know that her velocity will be evolving as

v(t) =
a t√

1 + a2t2/c2
, (2.142)

where a is some negative constant acceleration and t = 0 is taken as the moment when she has zero speed
at the midpoint of the trip. Setting v(T0/2) = −V0, we can immediately deduce that
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(a) (b)

Fig. 2.14 Minkowski diagrams of the twin paradox. (a) Shows simultaneity lines according
to John. During the first and third part of the trip, a time 2 × T1 elapses on John’s
clock; during the middle part, Jane is accelerating uniformly and the time elapsed
is denoted by T0. (b) Shows simultaneity lines according to Jane, except for the two
dotted lines sandwiching the accelerating segment. Jane’s x′ axis is also shown for
two instants in time. The segment labeled T0 is excised away and borrowed from
John’s perspective, since Jane is not an inertial frame during this period. T′

1 and
T′

2, however, can be computed from Jane’s perspective. Notice how Jane’s x′ axis
must smoothly flip around during the time interval T0, as she turns around. Her
simultaneity lines during this period will hence be distorted and require general
relativity to fully unravel.

a T0

2
= −γ0V0, (2.143)

where T0 is the time it takes for Jane to change her speed from V0 to−V0 according to John, as shown in the
figure. How much time passes on Jane’s wristwatch during this period? At every instant in time, Jane is moving
with some speed v(t) and is subject to a time dilation effect

dt =
dτ√

1 − v(t)2/c2
. (2.144)

Substituting for v(t) from Eq. (2.142) and integrating over the period T0/2, we get
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sinh
a τ0

2 c
=

a T0

2 c
, (2.145)

where τ0 is the time elapsed on Jane’s wristwatch during the turnaround. Eliminating a by using Eq. (2.143),
we can then write

T0 =
(γ0V0/c)

sinh−1(γ0V0/c)
τ0 > τ0. (2.146)

We thus have full control over the computation from John’s perspective. We can tell that while Jane’s
wristwatch ticks for a period of

τ0 + 2 τ1 (2.147)

during the full trip, John’s clock ticks

T0 + 2 T1 =
(γ0V0/c)

sinh−1(γ0V0/c)
τ0 + 2 γ0τ1 (2.148)

during the same period. Hence, John ages more, since T0 > τ0 and T1 > τ1. Let us summarize the result.
The travel time

on John’s watch = T0 + 2 T1 =
2 γ0V0

|a| +
2 D
V0

, (2.149)

on Jane’s watch = τ0 + 2 τ1 =
2 c sinh−1(γ0V0/c)

|a| +
1
γ0

2 D
V0

, (2.150)

where we used T1 = D/V0 and T0 = 2 γ0V0/|a| to quote both results in terms of D (the distance of travel
according to John), a (Jane’s acceleration according to John), and V0 (Jane’s speed for most of the trip).
Notice that for small speeds V0  c, the two periods become approximately the same, as expected, since
sinh−1(γ0V0/c) � (γ0V0/c) and γ0 � 1.

Thus, Jane has aged less during the travel. This is fine and interesting until you try to reverse your
perspective. From Jane’s point of view, she was not moving. Instead, John traveled away while the star visited
her. Both John and the star traveled past Jane at speed V0 in the opposite direction, as in watching trees move
past you while you are driving a car. According to Jane, is it then John’s time that is dilated? Hence, by the
time the trek is over and the twins meet, would Jane expect that John has aged less during her travel period?
Since John and Jane can now meet and compare notes, only one of the two can be correct, and hence the
paradox.

The resolution lies in the realization that Jane is not at rest in any single inertial reference frame throughout
the trip, while John is. This is because Jane has to decelerate and turn around at the star to return to earth.
During the turnaround period, Jane is not an inertial observer, and John and Jane are not equivalent observers
as far as the laws of physics are concerned. For example, Jane can hold a pendulum and notice that it sways
while she is turning around to come back home. To find out the outcome from Jane’s perspective, we would
need to learn how to handle the point of view of accelerating observers; we need to know how space and
time are affected in Jane’s reference frame when she is decelerating. However, special relativity, including the
Lorentz transformation, time dilation, length contraction, and so on, stipulates that observers must be at rest
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in some non-accelerating, inertial frame. So what can we do? We might tackle the issue by envisioning an
infinite number of inertial frames whose velocities match Jane’s decelerating frame at specific times, work
out what happens in those frames, and translate the results back to Jane’s frame. Or we might use Einstein’s
general theory of relativity, which allows observers to be at rest in any frame whatsoever, accelerating or not.
Neither of these approaches is necessary, however, because we can immediately deduce that John’s conclusion
must be the correct one, since he is indeed inertial: Jane ages less. However, we can still analyze the problem
from Jane’s point of view, and we will do so using graphical methods. Figure 2.14(b) shows the same setup
with simultaneity lines according to Jane. The middle segment of the trek where Jane is not inertial has been
excised: for this period, we still need to rely on John’s perspective. We then take as given the result from
Eq. (2.146):

T0 =
(γ0V0/c)

sinh−1(γ0V0/c)
τ0 > τ0. (2.151)

The question is now to determine T′1 and T′2 as shown in the figure. T′1 corresponds to the time
elapsed on John’s wristwatch during the first segment according to Jane. Time dilation tells us that it is
given by

τ1 = γ0T′1 ⇒ T′1 =
τ1

γ0
, (2.152)

since John is doing the moving according to Jane. Note that this makes sense since Jane sees the distance D
contracted to D′ = D/γ0. So, her travel time must be τ1 = (D/γ0)/V0 = T1/γ0, as we found before
from John’s perspective. To find T′2 , we need to look at the figure and do a bit of geometry. The slope of Jane’s
x′ axis on the figure is±V0/c. We can then immediately read off

c T′2 =
V0

c
× D. (2.153)

Putting things together we find that the total time of the trip on John’s wristwatch from Jane’s
perspective is

2 T′1 + 2 T′2 + T0 =
2 τ1

γ0
+

2 V0D
c2 +

2 γ0V0

|a| =
2 D
γ2

0 V0
+

2 V0D
c2 +

2 γ0V0

|a|

=
2 D
V0

+
2 γ0V0

|a| , (2.154)

where we used τ1 = (D/γ0)/V0 and T0 = (2 γ0V0)/|a|. We see that the conclusion is identical to
John’s, Eq. (2.149): John ages more. From Jane’s perspective, we relied on her notion of simultaneity during
the first and third segments of the trip (computations of T′1 and T′2 ), during the intervals when Jane is an
inertial observer. However, we did borrow John’s conclusion about his and Jane’s clock rates (computation
of T0), since his perspective was the inertial one – a framework where the laws of special relativity can be
applied. During this acceleration phase, the laws of physics are altered from Jane’s perspective, and to carry
the computation of T0 from her reference frame requires us to learn how special relativity is modified in an
accelerated frame. We will see in Chapter 4 that the principle of equivalence plays a central role in such
settings. �
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2.4 Summary

In this chapter we have demonstrated how a simple principle, that of the uni-
versality of the speed of light in inertial frames and in vacuum, leads to a
radical reformulation of mechanics. We employed this principle to find new
transformation rules, the Lorentz transformations, that connect the perspectives of
inertial observers. We developed a natural mathematical language that mixes space
and time, the language of four-vectors. And embedding physics in this language
guided us to discover that time and space are malleable and observer-dependent
notions. We also found that the concepts of momentum and energy have to be
revised; and we developed a relativistic version of Newton’s laws and dynamics.
This framework allows us to study mechanics even when speeds are close to
that of light – all along also realizing that at sufficiently slow speeds, Newtonian
mechanics is a good approximation.

Problems

Problem 2.1 Time dilation and length contraction. Clock A is placed at the origin of�
the primed frame; it reads time t′ = 0 just as the origins of the primed and unprimed
frames coincide. At a later time t to observers in the unprimed frame, find from the
Lorentz transformation of Eqs. (2.15) (a) how far A has moved and (b) what time A
reads. This is an example of the fact that moving clocks run slow. A stick of length
L0 is placed at rest along the x′ axis of the primed frame. Observers in the unprimed
frame measure the position of both ends of the stick at the same time t to them as
the stick is moving along at speed V. (c) Using the Lorentz transformation, find the
length L ≡ (x2 − x1) of the stick in the unprimed frame, in terms of L0 and the
relative frame velocity V. Here x2 and x1 are the locations of each end of the stick,
as measured in the unprimed frame. The fact that L < L0 is an example of the fact
that moving lengths are contracted in their direction of motion. This phenomenon
is called the Lorentz contraction or the Lorentz–Fitzgerald contraction.

Problem 2.2 The invariance of transverse lengths. A stick of length L0 is placed at�
rest along the y′ axis of the primed frame, extending from y′ = y′1 to y′ = y′2.
Observers in the unprimed frame measure the position of both ends of the stick at
the same time t to them as the stick is moving along at speed V. Using the Lorentz
transformation of Eqs. (2.15), find the length L ≡ (y2 − y1) of the stick in the
unprimed frame, in terms of L0 and the relative frame velocity V. Here y2 and
y1 are the locations of each end of the stick, as measured in the unprimed frame.
The fact that L = L0 is an example of the fact that moving transverse lengths are
invariant under Lorentz transformations.

Problem 2.3 The relativity of simultaneity. Two clocks are placed at rest on the x′ axis�
of the primed frame, clock A at x′ = 0 and clock B at x′ = L0. They are therefore
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a distance L0 apart in their mutual (primed) rest frame. Observers in the unprimed
frame see both clocks moving at velocity V, B leading the way and A following it.
Then at some particular time t, unprimed observers measure the readings of t′A and
t′B of the two clocks. Show from the Lorentz transformation of Eqs. (2.15) that t′B
< t′A, and that in fact t′B = t′A − VL0/c2. This is an example of the fact that leading
clocks lag, i.e., that the clock leading the way reads a lesser time than the chasing
clock. It also shows that simultaneity is not universal but relative. In nonrelativistic
physics, if two events are simultaneous according to observers in one frame or
reference, they are simultaneous in all frames. That is not true in relativity.

Problem 2.4 A primed frame moves at V = (3/5)c relative to an unprimed frame.�
Just as their origins pass, clocks at the origins of both frames read zero, and a
flashbulb explodes at that point. Later, the flash is seen by observer A at rest in the
primed frame, whose position is x′, y′, z′ = (3 m, 0, 0). (a) What does A’s clock read
when A sees the flash? (b) When A sees the flash, where is she located according
to unprimed observers? (c) To unprimed observers, what do their own clocks read
when A sees the flash? Use the Lorentz transformation of Eqs. (2.15).

Problem 2.5 Synchronized clocks A and B are at rest in our frame of reference, a�
distance 5 light-minutes apart. Clock C passes A at speed (12/13)c bound for B,
when C, and also both A and B, read t = 0 in our frame. (a) What time does C read
when it reaches B? (b) How far apart are A and B in C’s frame? (c) In C’s frame,
when A passes C, what time does B read?

Problem 2.6 Two spaceships are approaching one another. According to observers in�
our frame, (a) the left-hand ship moves to the right at (4/5)c and the right-hand ship
moves to the left at (3/5)c. How fast is the right-hand ship moving in the frame of
the left-hand ship? (b) The left-hand ship moves to the right at speed (1 − ε)c and
the right-hand ship moves to the left at (1 − ε)c, where 0 < ε < 1. How fast is the
right-hand ship moving in the frame of the left-hand ship? Show that this speed is
less than c, no matter the value of ε within the range allowed.

Problem 2.7 Astronaut A boards a spaceship leaving earth for the star Alpha Centauri,�
4 light years from earth, while her friend B stays at home. The ship travels at speed
(4/5)c, and upon arrival immediately turns around and travels back to earth at the
same speed (4/5)c. (a) How much has A aged during the entire trip? (b) How much
has B aged during the time A has been gone?

Problem 2.8 Al and Bert are identical twins. When Bert is 24 years old he travels to��
a distant planet at speed (12/13)c, turns around, and heads back at the same speed,
arriving home at age 44. Al stays at home. (a) How old is Al when Bert returns? (b)
How far away was the planet in Al’s frame? (c) Why can’t Bert reasonably claim
that from his point of view it was Al who was moving, so that Al’s clocks should
be time dilated, making Al younger than Bert when they reunite?

Problem 2.9 The Global Positioning System (GPS) features 24 earth satellites�
orbiting at altitude 20,200 km above earth’s surface. Each satellite carries four
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highly precise atomic clocks; this precision is essential in allowing us to know
our positions on the ground within a few meters or less. Special relativistic time-
dilation effects, although tiny, must be taken into account. They are due to the speed
v of the satellites relative to a clock at rest in some appropriate inertial frame. Let
us take this reference clock to be a hypothetical clock at rest at the center of the
earth. (To call such a clock inertial is only an approximation, because the earth has
a small acceleration toward the sun and moon, which are themselves accelerating
toward the center of our galaxy, etc., etc.) (a) Find the special relativistic time-
dilation factor

√
1 − v2/c2 for clocks in a GPS satellite, expressed in the form

1 − ε, where ε is a very small number. (b) How much time would they lose in
1 year due to this effect? (There is a second relativistic effect on GPS clocks, as
described in Chapter 10, due not to their velocity but to their altitude in earth’s
gravity. Given information: mass and mean radius of the earth 5.98 × 1024 kg and
6370 km; Newton’s gravitational constant G = 6.674 × 10−11 m3/(kg s2).)

Problem 2.10 Incoming high-energy cosmic-ray protons strike earth’s upper atmo-�
sphere and collide with the nuclei of atmospheric atoms, producing a downward-
directed shower of particles, including (among much else) the pions π+,π−, and
π0. The charged pions decay quickly into muons and neutrinos:

π+ → μ+ + ν and π− → μ− + ν.

The muons are themselves unstable, with a half-life of 1.52 μs in their rest frame,
decaying into electrons or positrons and additional neutrinos. Nearly all muons
are created at altitudes of about 15 km and more, and then those that have not
yet decayed rain down upon the earth’s surface. Consider muons with speeds
(0.995 ± 0.001)c, with their numbers measured on the ground and in a balloon-
lofted experiment at altitude 12 km. (a) How far would such muons descend toward
the ground in one half-life if there were no time dilation? (b) What fraction of these
muons observed at 12 km would reach the ground? (c) Now take into account time
dilation, in which the muon clocks run slow, extending their half-lives in the frame
of the earth. What fraction of those observed at 12 km would make it to the ground?
(Such experiments supported the fact of time dilation.)

Problem 2.11 Suppose that in the distant future astronomers build a telescope so�
powerful they can see aliens on a planet that is 10 light years from earth. One day
they observe the aliens board a spaceship and blast off toward earth. According
to earth clocks, the ship and its alien crew arrive at the earth exactly 1 week later.
Assuming the velocity of the ship was constant during almost the entire trip, find
its velocity ratio β = v/c in earth’s frame, valid to three significant figures. (Note
that v/c < 1.)

Problem 2.12 A distant galactic nucleus ejects a jet of material at right angles (90◦)���
to our line of sight. We know the distance of the galaxy from the redshift of its
spectral lines, so we can calculate how far the jet has traveled in a given time
using the very small but growing angle between the galactic nucleus and the jet
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as observed through our telescope. From this information we can find the velocity
of the jet. Note that for such transverse motion it takes essentially the same time
for light from the jet to reach us from the end of its journey as it does from its
beginning, because it stays essentially the same distance from us throughout. But
now suppose the jet is ejected at some angle θ relative to our line of sight, so the
jet’s transverse velocity component is v⊥ = v sin θ and its velocity component
toward us is v‖ = v cos θ. And because the jet is getting closer to us, the time it
takes light to reach us from it becomes smaller and smaller. (a) In this case find
an equation for the jet’s apparent transverse velocity in the sky, defined as the
transverse distance moved divided by the time interval as observed on earth, and
show that this apparent velocity vapp can exceed the speed of light. (b) For a given
actual velocity v, find the angle θ that maximizes vapp, and then find the magnitude
of vapp in this case. (c) Evaluate such a maximal vapp for the case v = 0.99c. Such
apparent superluminal velocities have often been observed by astronomers, even
though no matter actually travels faster than light.

Problem 2.13 A bullet train of rest length 500 m is chugging along a straight track�
at speed (4/5)c when it enters a tunnel of length 400 m. Due to length contraction
in the frame of the tunnel, the train apparently briefly fits inside the tunnel all at
once. From the point of view of train passengers, however, it is the tunnel that
is contracted, with a length of only 400 m × 3/5 = 240 m, so the 500-m train
seemingly cannot fit inside all at once. The question is: Does the train fit inside the
tunnel all at once, or not? Explain.

Problem 2.14 A carrot-slicing machine consists of eight parallel blades spaced 5 cm��
apart, held together in a framework that allows all the blades to descend at once
upon an unsuspecting carrot laid out horizontally in the machine. The result is
several carrot pieces of length 5 cm, plus random bits left over at each end. Now
suppose that a carrot is made to move lengthwise at speed (4/5)c into the machine
just as the blades descend. The Lorentz contraction ensures that the carrot will be
shorter in the machine frame than in its rest frame, so there will be fewer carrot
pieces. Each of these non-end pieces will still have length 5 cm in the machine
frame because that is the spacing of the blades, so it appears they must be longer
than 5 cm when finally brought to rest. In fact, each should have rest length 5
cm/(3/5)c) = 8 1/3 cm. Now view the exact same procedure in the rest frame of
the carrot. Then it is the slicing machine that moves at (4/5)c, so it contracts as a
whole, and the distance between blades is Lorentz-contracted to 5 cm

√
1 − (4/5)2

= 3 cm. That is, it seems that it produces carrot pieces 3 cm long in their rest frame.
These conclusions (8 1/3 cm and 3 cm) cannot both be correct, since it is the same
carrot that was involved in both sets of reasoning. Which is the correct answer (if
either) and why is the other answer or answers wrong?

Problem 2.15 By differentiating the velocity transformation equations one can obtain��
transformation laws for acceleration. Find the acceleration transformations for the
x component ax, in terms of ax, vx, and V, the relative frame velocity.
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Problem 2.16 An electron moves at velocity 0.9c. How fast must it move to double�
its momentum?

Problem 2.17 An atomic nucleus starts at rest in the lab, and is then struck by two�
photons, one after the other, each with momentum pγ in the same direction. The
photons are absorbed in the nucleus. If the mass of the final (excited) nucleus is
M*, calculate its velocity.

Problem 2.18 Two particles make a head-on collision, stick together, and stop dead.�
The first particle has mass m and speed (24/25)c, and the second has mass M and
speed (5/13)c. Find M in terms of m.

Problem 2.19 Spaceship A, moving away from the earth at velocity (3/5)c, is sending�
messages to spaceship B, which left the earth earlier at speed (4/5)c in the same
direction. The messages sent by A are contained in pulses sent by a laser on A, with
the pulses separated by 100 fs in A’s frame of reference. As B receives the pulses,
what is the pulse separation according to the crew on B?

Problem 2.20 An alien vessel is detected approaching earth at (3/5)c. An intercepting�
probe is sent from earth at speed (4/5)c toward the vessel. As they approach one
another the probe uses a pulsed laser to send a message to the oncoming aliens,
where the time interval between pulses is 12 ps in the frame of the probe. What is
the time interval between pulses as observed by the aliens?

Problem 2.21 An organist on earth is playing Bach’s Toccata and Fugue in D Minor,�
which is being broadcast by a powerful radio antenna. Travelers in a spaceship
moving at speed v = (3/5)c away from the earth are listening in. In what key do
they hear the music?

Problem 2.22 The Andromeda galaxy (also known to astronomers by catalogue�
number M31) is in our local group of galaxies, about 2.5 million light years from
our own Milky Way (MW) galaxy (Figure 2.15). When using spectrometers to
measure the wavelengths of light emitted by stars in M31, astronomers find the
redshift to be Δλ/λ = −0.001001, where λ is the wavelength of the spectral
line in the laboratory, Δλ is the shift in wavelength, and the minus sign indicates
that Δλ < 0, corresponding to a blueshift. (a) If one assumes this change in
wavelength is due to the Doppler effect, how fast (km/s) is M31 approaching us?
(b) If this velocity were also M31’s velocity toward our galactic nucleus, and it did
not change with time, how long would it take M31 to collide with the MW? [In fact,
M31’s velocity toward the MW nucleus is less than the result calculated in part (a),
because the solar system is orbiting around our MW nucleus, with a component
of velocity directed toward M31, so in fact M31 is moving only about 110 km/s
toward our MW nucleus. We would also expect the M31/MW relative velocity of
approach to increase with time due to their mutual gravitational attraction. Taking
all this into account predicts they will collide in about 4 billion years.]
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Fig. 2.15 The M31 (Andromeda galaxy) referred to in Problem 2.22. Image credit: NASA/JPL-Caltech, from the
GALEX mission.

Problem 2.23 A proton moves in the x, y plane with velocity v = (3/5)c, at an angle��
of 45◦ to both the x and y axes. (a) Find all four components of the proton’s four-
vector velocity vμ and evaluate the invariant square of its components ημνvμvν . (b)
Find all four components of the proton’s four-vector velocity in a frame moving in
the positive x direction at velocity V = (4/5)c. (c) Evaluate explicitly the invariant
square of its components in this frame.

Problem 2.24 A particular pion π+ decays in 26 ns in its own rest frame. Suppose��
a particle accelerator produces the pion with total energy E = 100 mc2, where m
is its mass. (a) How far (in meters) will it travel before decaying? (b) A different
pion has a kinetic energy equal to its mass energy. If it travels a distance D before
decaying, find how long it lived in its own rest frame.

Problem 2.25 A photon of total energy E = 12, 000 MeV is absorbed by a nucleus�
of mass M0, originally at rest. Afterwards, the excited nucleus has mass M and is
moving at speed (12/13)c. Find its momentum in units MeV/c, and both M and M0
in units MeV/c2.

Problem 2.26 A team plans to accelerate a probe of mass 2.0 kg away from the far�
side of the moon by a bank of lasers that push the probe with constant force F in
the rest frame of the moon. What F would be required to accelerate the probe to
velocity 0.9c in 1 week?
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Problem 2.27 Show that the momentum and velocity four-vectors are both time-like,�
and that the force four-vector is space-like.

Problem 2.28 A wave equation for light is��

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 − 1
c2

∂2φ

∂t2
= 0,

where φ is a scalar potential. Show that the set of all linear transformations of
the spacetime coordinates that permit this wave equation to be written as we did
correspond to (i) four possible translations in space and time, (ii) three constant
rotations of space, and (iii) three Lorentz transformations. Collectively, these are
called the Poincaré transformations of spacetime.

Problem 2.29 Two spaceships with string “paradox.” Consider two spaceships, both��
at rest in our inertial frame, a distance D apart, one behind the other. There is
a light string of rest length D tied between them. Now the ships, both at the same
time in our frame, begin to accelerate uniformly to the right, with the string still tied
between them. The ships start at the same time and have the same acceleration, so
the distance between them, and therefore the length of the string, must be constant
in our frame. However, we know that a moving string should be Lorentz-contracted
in its direction of motion, by the usual factor

√
1 − β2. Therefore, does the “need”

of the string to become shorter in our frame cause it to break eventually, or does
the fact that its length remains the same in our frame mean that it will not break?
Explain which is correct. Hint: The “proper length” of an accelerating object can
be measured by observers in an inertial frame instantaneously comoving with the
object, that is, in an inertial frame that at some moment is at rest relative to the
object. This “paradox” was originally posed by E. Dewan and M. Beran in 1959
and later modified by J. S. Bell in 1987. As Bell describes in Chapter 9 of his book
Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press,
1987), some very good physicists have gotten the wrong answer, at least initially.

Problem 2.30 (a) Prove that the time order of two events is the same in all inertial���
frames if and only if they can be connected by a signal traveling at or below speed
c. (b) Suppose that in an unprimed inertial frame a particular signal from A to B
can travel at velocity v = 2c. Then find a relative velocity V with a primed frame
(where |V| < c) such that in the primed frame the same signal reaches B before it
was sent by A.

Problem 2.31 In the text we derived the Doppler formulae for light. Using the same��
strategy, find the relativistic Dopper formulae for waves traveling at speed v < c.
For example, the waves may be sound waves in some very stiff material whose
sound speed is a few percent that of c.

Problem 2.32 An algebraic expression is said to be Lorentz covariant if its form is�
the same in all inertial frames: the expression differs in two inertial frames O and
O′ only by putting prime marks on the coordinate labels. For example, AμημνBν =
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K is a Lorentz-covariant expression, where Aμ and Bν are four-vectors and K a
constant. Under the Lorentz transformation, AμημνBν = Aμ′

Λμ
μ′ημνBν′Λνν ′ =

Aμ′
ημ′ν′Bν′ = K, where we used ημ′ν′ = Λμ

μ′ημνΛ
ν
ν′ . Because the indices come

matched in pairs across a metric factor ημν , the expression preserves its structural
form. The quantity is also a Lorentz scalar: its value is unchanged under a Lorentz
transformation. Which of the following quantities are Lorentz scalars, given that K
is a constant and any quantity with a single superscript is a four-vector? (a) KAμημν ,
(b) Cμ = Dμ(AληλνBν), (c) KAμημνBληλσDνFσ.

Problem 2.33 Consider a Lorentz-covariant expression that is not a Lorentz scalar,�
Cλ=Kλh(AμημνBν), where h is any function of the quantity in parentheses.
Here, quantities with a single superscript are four-vectors. Under a Lorentz
transformation, AμημνBν is Lorentz covariant and is also a Lorentz scalar. Hence,
its form and value are unchanged, which means that the function h(AμημνBν) is
unchanged in form or value as well. The quantity Kμ, however, is a four-vector;
this means that it transforms as Kμ=Λμ

μ′Kμ′. The right-hand side of the equation for
Cλ transforms as a four-vector as a whole, which implies that Cλ also transforms
as a four-vector and observer O′ can write Cλ′

=Kλ′h(Aμ′
ημ′ν′Bν′). This quantity

is said to be a Lorentz vector (instead of a scalar), since it transforms as a four-
vector: that is, its components change, but through the well-defined prescription
for a four-vector. Which of the following quantities are Lorentz vectors, given that
K is a Lorentz scalar and any quantity with a single subscript or superscript is a
Lorentz vector? (a) K ημν , (b) Cλ=DμAλημνBν , (c) KAμημνBληλσDνFσ,

Problem 2.34 The concept of Lorentz covariance is important because it allows us to�
quickly determine the transformation properties of expressions under changes of
inertial reference frames. The principle of relativity requires that all laws of physics
are unchanged as seen by different inertial observers. Hence, we need to ensure
that expressions reflecting statements of a law of physics are Lorentz covariant,
i.e., that they retain their structural form under Lorentz transformations. A useful
application of this comes from the modified second law of dynamics:

fμ =
dpμ

dτ
.

Forces that we insert on the left-hand side of this equation must be Lorentz-
covariant expressions that transform as four-vectors. This ensures that observer
O′ can write simply

fμ
′
=

dpμ′

dτ
.

For example, we could write fμ = Kμ with a constant four-vector Kμ. (a) Is a
“relativistic spring law” fμ = −(0, kr) for some constant k a Lorentz-covariant
expression? (b) What about a modified spring law fμ = −Krμ = −k(c t, r)? (c)
What about Newtonian gravity F = −(k/r3)r? Is such a force covariant?
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Problem 2.35 Show that the most general Lorentz transformation can be written as a��
4 × 4 matrix Λ̂ satisfying

Λ̂T · η̂ · Λ̂ = η̂ and |Λ̂| = 1.

Since a Lorentz transformation is by definition a linear transformation of time and
space that preserves the speed of light, you simply need to show that these two
properties are necessary and sufficient for this. Note also that reflections get ruled
out by the second condition by choice.

Problem 2.36 A π0 meson with mass mπ = 135.0 MeV/c2 is created in the upper��
atmosphere when a cosmic-ray proton collides with a nitrogen nucleus. The mean
lifetime of π0s is 8.4 × 10−17 s; they almost always decay into two photons.
Suppose this particular pion has total energy E = 500 MeV and moves vertically
downward toward the ground, and also that it decays in three mean lifetimes into
two photons, one moving up and one moving down. (a) How far does the π0 move
relative to the ground from its creation until it decays? (b) Find the frequency of
each final photon measured in the frame of the ground.

Problem 2.37 A π− meson with mass mπ = 140.0 MeV/c2 is produced in a (p, p)�
collision in an accelerator. The pion subsequently decays into a muon and a muon-
type antineutrino, in the reaction π− → μ− + ν̄μ. The antineutrino has a nonzero
but very small mass, so in this calculation you can ignore it. The muon has a
mass energy of 105.7 MeV/c2. In the rest frame of the original pion, find (a) the
total energy and three-momentum of the muon and (b) the total energy and three-
momentum of the antineutrino.

Problem 2.38 The Higgs particle has a mass energy of 125 GeV/c2. Once created it��
decays very quickly into various sets of particles: for example, about 60% of the
time it decays into a (bb̄) quark–antiquark pair. Such b quarks have a mass energy
of about 4.2 GeV each. (The b quarks are also called “bottom” quarks, and the
reaction is written H → b + b̄ or simply H → bb̄ for short.) Suppose a particular
Higgs particle is moving at v = (4/5)c in the lab and that it decays into a (bb̄) pair
with the b quark moving in the forward direction and the b̄ quark moving in the
backward direction. Find the energy and momentum in the lab frame of (a) the b
quark and (b) the b̄ quark.

Problem 2.39 Tachyons are hypothetical (and so-far undetected) particles that always�
travel faster than light. (a) Show that all components of a tachyon’s momentum
four-vector are real if we assign the tachyon an imaginary mass, say m = im0,
where m0 is real. (b) Then show that the invariant square of the momentum
four-vector ημνpμpν is necessarily positive. Thus the world of particles could be
separated into three regimes: (i) ordinary massive particles, with ημνpμpν < 0;
photons or other possible massless particles, with ημνpμpν = 0; and tachyons, with
ημνpμpν > 0.
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Problem 2.40 Pion photoproduction. Positive π mesons can be created in the reaction�
γ + p → n + π+, in which an incoming photon strikes a proton at rest, forming
a neutron and a π+. (a) Find the threshold photon energy for this reaction given
the masses (in units MeV/c2), mp = 938; mn = 939.6; and mπ+ = 139.6. (b) For
this photon energy, how fast is the CM frame moving relative to the lab frame,
expressed in the form VCM/c? (c) What is the momentum of the initial photon in
the CM frame, expressed in units MeV/c?

Problem 2.41 Lambda (Λ0) baryons can be created in high-energy (p, p̄) collisions of��
protons and antiprotons in the reaction p+ p̄ → Λ0+k++ p̄, where k+ is a positive
k meson. (a) Find the minimum (i.e., threshold) energy required for the incident
antiproton if the target proton is at rest in the lab. The masses of the particles (in
MeV/c2) are p or p̄: 938.3; Λ0: 1115.7; and k+: 493.7. (b) Find the minimum energy
of each initial particle in a collider experiment, in which the total momentum is
zero. (c) Suppose that in the collider experiment the energy of each initial particle
is twice the minimum energy required. Find then how far the subsequent Λ0 will
travel in the collider detector before it decays, assuming the Λ0 lasts for a time 2.63
× 10−10 s (the mean lifetime of a Λ0) in its own rest frame, and also assuming that
the final antiproton is at rest in the lab.

Problem 2.42 Positive Sigma baryons Σ+ can be created along with positive k�
mesons k+ in high-energy collisions of protons with protons, in the reactions
p+ p → Σ++ k++ n, where n is a neutron. (a) Find the minimum (i.e., threshold)
energy required for the incident proton if the target proton is at rest in the lab. The
masses of the particles (in units MeV/c2) are p : 938.3; Σ : 1189.4; k+ : 493.7; and
n: 939.6. (b) Find the minimum energy of each proton required in a (p, p) collider
experiment, in which the total momentum is zero. (c) Find the velocity of the CM
(i.e., zero-momentum) frame in this experiment, relative to the lab frame in which
one initial proton is at rest, expressed as VCM/c.

Problem 2.43 Electrons (e−) and antielectrons (e+) (called positrons) each have mass�
energy 0.511 MeV. A positron can be created in an (e−, e−) collision as long as
an electron is created along with it, thus conserving both electric charge and lepton
number. (Electrons have lepton number +1 and positrons have lepton number −1.)
(a) In a linear accelerator in which high-energy electrons are incident upon other
electrons at rest in the lab, what is the minimum required energy of each of the
incident electrons, in MeV? (b) If two beams of electrons are instead fired at one
another in a collider with equal but opposite momenta, what now is the minimum
energy of each electron required to create a positron, in MeV?

Problem 2.44 (a) A photon of energy E0 strikes a free electron at rest in the lab.�
(“Free” here means the electron is not bound inside an atom.) Is it possible for
the photon to be absorbed by the electron? If so, find the energy and momentum
of the final electron. If not, explain why not. (b) A free electron of energy E0 is
moving in the lab. Is it possible for the electron to emit a photon, so that after the
emission there is a photon and an electron moving more slowly than before? If so,
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find the final energy and the momentum of both the photon and the electron. If not,
explain why not.

Problem 2.45 The quantity λC ≡ h/mec is called the “Compton wavelength” of�
the electron. (a) If a photon scatters off an electron at rest with scattering angle
θ = 45◦, what is the photon’s change of wavelength in terms of λC? (b) For what
scattering angle is the change of wavelength a maximum, and what is the change
of wavelength in that case?

Problem 2.46 Consider a relativistic elastic collision between two particles of equal��
mass, such as two protons. In the lab frame the target proton is at rest, and
the incident proton has three-vector velocity v. For nonrelativistic equal-mass
collisions the two protons emerge at right angles to one another, except for the
special case where one of the protons moves straight ahead while the other is at
rest. Is that also true for relativistic collisions? Prove that it is or that it is not. Hint:
Draw before-and-after pictures of the three-vector velocities for each proton in the
CM frame, and then transform to pictures in the lab frame.

Problem 2.47 A relativistic rocket. In Chapter 1 we derived the differential equation���
of motion of a nonrelativistic rocket, by conserving both momentum and total mass
over a short time interval Δt. That is, the momentum of the rocket at time t was
set equal to the sum of the momenta of the rocket and bit of exhaust at time t+Δt,
and similarly the mass of the rocket at t was set equal to the sum of the masses of
the rocket and bit of exhaust at time t +Δt. We can find the equation of motion of
a relativistic rocket in a similar way, except that the total mass is not conserved in
this case; it is now the total momentum and the total energy that are conserved. At
time t, let the rocket have mass m and velocity v; and at time t +Δt, let the rocket
have mass m+Δm (where Δm < 0) and velocity v+Δv, and let the bit of exhaust
have mass ΔM and backward velocity ū. Note that ΔM �= −Δm in relativistic
physics. (a) Show from the velocity transformation that the velocity u of the bit of
exhaust in the instantaneous rest frame of the rocket is given by

u =
ū + v

1 + ūv/c2 .

(b) By conserving momentum show that, to first order in changes in m, v, and M:

(Δm)v√
1 − v2/c2

+
mΔv

(1 − v2/c2)3/2 =
ΔMū√

1 − ū2/c2
.

(c) Then conserve energy, again keeping no terms beyond those with first-order
changes. Using both the conservation of momentum and conservation of energy
expressions, show that the terms with ΔM can be eliminated. Then the results of
problem (a) can be used to eliminate ū in favor of u, and by dividing through by
Δm and taking the limit Δm → 0, show that

m
dv
dm

+ u(1 − (v2/c2)) = 0,
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which is the relativistic rocket differential equation of motion. Show also that this
reduces to the equation for a classical rocket in the limit of small velocities.

Problem 2.48 By integrating the relativistic rocket differential equation of motion��
from the preceding problem, show that in terms of the ratio m/m0, the relative
rocket velocity v/c is given by

v
c
=

1 − (m/m0))
2u/c

1 + (m/m0))
2u/c ,

where m is the rocket mass at any time and m0 is its mass at time t = 0 when the
rocket starts from rest. We assume that the exhaust velocity u = constant.

Problem 2.49 Consider the special case of a relativistic “photon” rocket in which the��
exhaust consists of photons only. The photons might be produced by an onboard
laser or from the annihilation of particles and antiparticles carried with the rocket,
for example. (a) From the result given in the preceding problem, how fast would
the rocket be moving by the time it burned all its fuel, which was initially 90% of
the rocket’s mass? (b) Prove that for any given ratio of final to initial rocket mass,
photon rockets are more efficient than rockets whose exhausts consist of massive
particles, in that the final rocket velocity is greatest for photon rockets.

Problem 2.50 The captain of an interstellar photon-rocket spaceship wishes to main-��
tain a constant acceleration a in the instantaneous rest frame of the ship, since that
would provide a constant effective gravity for passengers. In that case, at what rate
|dm/dt| (as a function of time) should the ship’s mass decrease with time?

Problem 2.51 The transverse Doppler effect. In Example 2.8 we derived the relativis-��
tic Doppler formulas for light sources that move either directly toward or away
from the observer. Another possibility is that the source moves in a perpendicular
direction, transverse to the observer’s line of sight. In nonrelativistic physics there
is no Doppler effect in this case. Show that if a light source is at rest at the origin
of the primed frame, while moving at speed V in the x direction as seen by an
unprimed observer, then if the momentum of the photons is purely in the y direction
according to the observer, it follows that ν = ν′

√
1 − V2/c2. There is therefore a

relativistic redshift in the case of transverse motion, related to the fact that the
source’s time is dilated in the observer’s frame.



3 The Variational Principle

While Newton was still a student at Cambridge University, and before he had
discovered his laws of particle motion, the French mathematician Pierre de Fermat
proposed a startlingly different explanation of motion. Fermat’s explanation was
not for the motion of particles, however, but for light rays. In this chapter we
explore Fermat’s approach, and then go on to introduce techniques in variational
calculus used to implement this approach, and to solve a number of interesting
problems. We then show how Einstein’s special relativity and the principle of equiv-
alence help us demonstrate how variational calculus can be used to understand the
motion of particles. All this is to set the stage for applying variational techniques
to general mechanics problems in the following chapter.

3.1 Fermat’s Principle

Imagine that a ray of light leaves a light source at point a and travels to some
other given point b. Fermat proposed that out of all the infinite number of possible
paths that the ray might take between the two points, it actually travels by the path
of least time. For example, if there is nothing but vacuum between a and b, light
traveling at constant speed c takes the path that minimizes the travel time, which
of course is a straight line. Or suppose a piece of glass is inserted into part of an
otherwise air-filled space between a and b. Given that light has speed v = c/n
in any medium with index of refraction n, the minimum-time path in this case is
no longer a straight line: Fermat’s principle of least time predicts that the ray
will bend at the air–glass interface by an angle given by Snell’s law, as shown in
Figure 3.1.

More generally, a light ray might be traveling through a medium with index of
refraction n that can be a continuous function of position, n(x, y, z) ≡ n(r). In that
case the time it takes the ray to travel an infinitesimal distance ds is

dt =
distance

speed
=

ds
c/n(r)

, (3.1)

so the total time to travel from a to b by a particular path s is the integral

t =
∫

dt =
1
c

∫
n(r) ds. (3.2)

119
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The value of the integral depends upon the path chosen, so out of the infinite
number of possible paths the ray might take, we are faced with the problem of
finding the particular path for which the integral is a minimum. If we can find it,
Fermat assures us that it is the path the light ray actually takes between a and b.

a

b

Fig. 3.1 Light traveling by the least-time path between a and b, in which it moves partly through air and partly
through a piece of glass. At the interface the relationship between the angle θ1 in air, with index of
refraction n1, and the angle θ2 in glass, with index of refraction n2, is n1sinθ1 = n2sinθ2, known as
Snell’s law. This phenomenon is readily verified by experiment.

Fermat’s principle raises many questions, not least of which is: How does the ray
“know” that of all the paths it might take, it should pick out the least-time path?
In fact, a contemporary of Fermat named Claude Cierselier, who was an expert in
optics, wrote

. . . Fermat’s principle can not be the cause, for otherwise we would be attributing
knowledge to Nature: and here, by Nature, we understand only that order and lawfulness
in the world, such as it is, which acts without foreknowledge, without choice, but by a
necessary determination.

In Chapter 5 we will elaborate on the profound reason why a light ray follows the
minimum-time path. But in the meantime we focus on the general technique of
finding the path that minimizes a given integral, such as the integral given in Eq.
(3.2). The method is called the calculus of variations, or functional calculus, and
that is the primary topic of this chapter.

3.2 The Calculus of Variations

The general methods of the calculus of variations were first worked out in the 1750s
by the French mathematician Joseph-Louis Lagrange and the Swiss mathematician
Leonard Euler, a century after Fermat proposed his principle. As an example of
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setting up these methods, return to the problem of finding the minimum-time path
for a light ray traveling through a sheet of glass, as shown in Figure 3.1, except that
now we allow the index of refraction in the glass to depend upon the coordinate x
through the sheet, the horizontal axis in Figure 3.1. Let y be an axis perpendicular
to x. Then what is the path y(x) of the ray through the sheet?

The time to travel by any path is (using Eq. (3.2))

t =
1
c

∫
ds n(x), (3.3)

where ds is the distance between two infinitesimally nearby points along the
path and c is the speed of light in vacuum. From the Pythagorean theorem we
know that ds =

√
dx2 + dy2, so the time to travel by any path y(x) through the

sheet is

t =
1
c

∫
n(x)

√
dx2 + dy2 =

1
c

∫
n(x)

√
1 +

(
dy
dx

)2
dx

≡ 1
c

∫
n(x)

√
1 + y′2 dx. (3.4)

In this case the integrand depends on both x and the path slope y′(x). It is easy
to imagine that the index of refraction n might also depend upon a transverse
coordinate y, in which case the time for the ray to pass through the sheet of glass
would be

t =
1
c

∫
n(x, y)

√
1 + y′2 dx ≡

∫
F(x, y(x), y′(x)) dx, (3.5)

where the integrand F(x, y(x), y′(x)) = (1/c)n(x, y)
√

1 + y′2 depends upon all
three variables x, y(x), and y′(x). The calculus of variations shows us how to find
the particular path y(x) that minimizes this integral.

Example 3.1 Light Path Between Two Points in Glass
Consider first a very simple special case. Suppose the index of refraction n is constant throughout a sheet of
glass, and that the endpoint of a light ray at x = x0, y = y0 is directly across the sheet from the beginning
point at x = 0, y = y0. Then the time to penetrate the sheet is

t =
n
c

∫ x=x0 ,y=y0

x=0,y=y0

√
1 + y′2 dx. (3.6)

By inspection, we can see that t is minimized if y′ = 0 everywhere along the path, which is possible to arrange
because the beginning point and endpoint are both at y = y0. Therefore, according to Fermat’s principle, the
light path in this simple case is a straight line right through the sheet. No surprise here! �



122 3 The Variational Principle

More generally, Euler and Lagrange considered some arbitrary integral I of the
form

I =
∫

F(x, y(x), y′(x)) dx, (3.7)

and the problem they wanted to solve was to find not only paths y(x) that minimize
I, but also paths that maximize I, or otherwise make I stationary. A “stationary”
path is a particular path for which the integral I is nearly independent of slight
variations in the path. We will make this definition precise in what follows. As we
shall see, it is possible to have a stationary path that is neither a maximum nor a
minimum.

How do we go about making I stationary? Let us revisit the more familiar
problem of making an ordinary function stationary. Say we are given a function
f(x1, x2, . . .) ≡ f(xi) of a number of independent variables xi with i = 1, . . . , N,
and we are asked to find the stationary points of this function. For the simpler
case of a function with only two variables, we can visualize the problem as shown
in Figure 3.2. We have a curved surface f(x1, x2) over the x1–x2 plane, and we
are looking for special points (x1, x2) where the surface is “locally horizontal.”
These can correspond to minima, maxima, or saddle points, as shown in the figure.
Algebraically, we can phrase the general problem as follows. For every point
(x1, x2, . . .), we move away by a small arbitrary distance δxi:

xi → xi + δxi. (3.8)

We then seek a special point (x1, x2, . . .) where this shift does not change the
function f(xi) to linear order in the small shifts δxi. This is what we mean by
saying “locally horizontal.” Employing a Taylor expansion, we can then write (see
Appendix F)

f(xi) → f(xi + δxi) = f(xi) +
∂f
∂xj

δxj +
1
2!

∂2f
∂xjxk

δxjδxk + · · · (3.9)

Note that the j and k indices are repeated and hence summed over, using again the
Einstein summation convention of Chapter 2. If the function is to remain constant
up to linear order in δxi, we then need N conditions

∂f
∂xj

= 0 with j = 1, . . . , N; (3.10)

i.e., the slopes in all directions must vanish at the special point where the surface
plateaus. This is because the δxjs are arbitrary and independent, and the only way
for (∂f/∂xj )δxj to vanish for an arbitrary δxj is to have all the derivatives ∂f/∂xj
vanish.

The second-derivative terms involving ∂2f/∂xj∂xk tell us how the surface curves
away from the local plateau, whether the point is a minimum, maximum, or saddle
point. Equation (3.10) typically yields a set of algebraic equations that can be
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x2

x1

Fig. 3.2 A function of two variables f(x1, x2)with a local minimum at point A, a local maximum at point B, and a
saddle point at C.

solved for xi, identifying the point(s) of interest. Formally, we write the condition
to make a function f(x) stationary as

δf ≡ f(xi + δxi)− f(xi) = 0 to linear order in δxi

⇒ ∂f
∂xi

δxi = 0 ⇒ ∂f
∂xi

= 0. (3.11)

Example 3.2 Maximum of an Inverted Paraboloid
Consider the function

f(x, y) = −a[(x − x0)
2 + (y − y0)

2], (3.12)

where a, x0, and y0 are constants. What is the location of its maximum? We simply set both partial derivatives
equal to zero, so that the function is stationary in each of the two directions:

∂f
∂x

= −2a(x − x0) = 0,
∂f
∂y

= −2a(y − y0) = 0 (3.13)

and the maximum occurs at x = x0, y = y0. We could verify that this point is a maximum by taking second
derivatives, but that is obvious here by inspecting the function. �

The real problem now is to make stationary not just any arbitrary function, but
the integral I as given by Eq. (3.7). The quantity I is different from a regular
function as follows. A function f(x1, x2, . . .) takes as input a set of numbers
(x1, x2, . . .), and gives back a number. The quantity I, however, takes as input an
entire function y(x), and gives back a single number. Take the function f(x)= x2, for
example: if x= 3, then f(3)= 9 – one number in, one number out. But to calculate a
value for an integral I =

∫ b
a F(x, y(x), y′(x)) dx with (say) F(x, y(x), y′(x)) = y(x)2

and a = 0, b = 1, we have to substitute into it not a single number, but an entire
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path y(x). If, for example, y(x) = 5 x (hence with the boundary conditions y(0) = 0
and y(1) = 5), we would write

I =
∫ 1

0
(5 x)2dx =

25
3

x3
∣∣∣∣1
0
=

25
3

. (3.14)

The argument for I is then a path, an entire function y(x). To make this explicit, we
instead write I as

I[y(x)] =
∫ xb

xa

F(x, y(x), y′(x)) dx (3.15)

with square brackets around the argument: I is not a function, but is called a
functional, traditionally said to be a function of a function.

In general, a functional may take as argument several functions, not just one. But
for now let us focus on the case of a functional depending on a single function. The
question we want to address is then: how do we make such a functional stationary?
This means we are looking for conditions that identify a set of paths y(x) for which
the functional I[y(x)] is stationary or “locally horizontal.” To do this, we can build
upon the simpler example of making stationary a function. For any path y(x), we
look at a shifted path

y(x) → y(x) + δy(x), (3.16)

where δy(x) is a function that is small everywhere, but is otherwise arbitrary.
However, we require that at the endpoints of the integration in Eq. (3.15), the
shifts vanish; i.e., δy(a) = δy(b) = 0. This means that we do not perturb the
boundary conditions on trial paths that are fed into I[y(x)], because we only need to
find the path that makes stationary the functional amongst the subset of all possible
paths that satisfy the given fixed boundary conditions at the endpoints. We illustrate
this in Figure 3.3. In this restricted set of trial paths, our functional extremization
condition now looks very much like (3.11):

δI[y(x)] ≡ I[y(x) + δy(x)]− I[y(x)] = 0, (3.17)

to linear order in δy(x). We say: “the variation of the functional I is zero.” For a
function f(x1, x2, . . .), the condition amounted to setting all first derivatives of f to
zero. Hence, we need to figure out how to differentiate a functional! Alternatively,
we need to expand the functional I[y(x) + δy(x)] in δy(x) to linear order to identify
its “first derivative.”

Fortunately, we can deduce all the operations of functional calculus by thinking
of a functional in the following way. Imagine that the input to the functional, the
path y(x), is evaluated only on a finite discrete set of points:

a < x < b → x = a + n ε ≤ b, (3.18)

for n a non-negative integer and ε small (see Figure 3.4). In the limit ε → 0
with the upper bound n going to ∞, we recover the original continuum problem.
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Fig. 3.3 A path y(x) that can be used as input to the functional I[f(x)]. We look for that special path from which
an arbitrary small displacement δy(x) leaves the functional unchanged to linear order in δy(x). Note
that δy(a) = δy(b) = 0.

� b

2��

��
�2�

(x)

�

Fig. 3.4 The discretization of a smooth path. In functional calculus, the functional y(x) can be treated as a
collection of discrete points.

The functional is simply a function of a finite number of variables y(a), y(a + ε),
y(a + 2 ε), . . .. In the limit ε → 0, the set becomes infinitely dense. One can
therefore view a functional as a function of an infinite number of variables. We
can perform all needed operations on I in the discretized regime where I is treated
as a function, and then take the ε → 0 limit at the end of the day.

Effectively, we may think of x in y(x) as a discrete index yx. We then have
I[y(x)] → I(yx), a function with a large but finite number of variables yx, with
x ∈ {a, . . . , b} a finite set. A functional then becomes a much more familiar
animal: a function. The integral I may also depend upon y′(x), which can be written
in discretized form as y′(x) → (yx − yx−ε)/ε by the definition of the derivative
operation. We write it in shorthand as y′(x) → y′x, and the integration in Eq. (3.15)
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becomes a sum:
∫

dx →
∑

x ε. To summarize, we have a discretized form of our
original functional:

I =
∑

x
F(x, yx, y′x) ε. (3.19)

We can now apply the shifts yx → yx + δyx, which also implies y′x → y′x + δy′x,
where δy′x = (δyx − (δy)x−ε)/ε = d(δyx)/dx. We then need the analogue of Eq.
(3.11), or

δf =
∂f
∂xi

δxi = 0, (3.20)

with f → I and xi → yx. Starting from Eq. (3.19), we have

δI =
∑

x

(
∂F
∂yx

δyx +
∂F
∂y′x

δy′x
)
ε = 0. (3.21)

In the ε → 0 limit, we retrieve the integral form

δI[y(x)] =
∫ xb

xa

(
∂F

∂y(x)
δy(x) +

∂F
∂y′(x)

d
dx

(δy(x))
)

dx = 0. (3.22)

Integrating the second term by parts, we get∫ xb

xa

∂F
∂y′(x)

d
dx

(δy(x)) = δy(x)
∂F

∂y′(x)

∣∣∣∣xb

xa

−
∫ xb

xa

δy(x)
d
dx

(
∂F

∂y′(x)

)
dx, (3.23)

where the first term on the right vanishes because we have fixed the endpoints so
that δy(a) = δy(b) = 0. Therefore, Eq. (3.22) becomes

δI[y(x)] =
∫ xb

xa

(
∂F

∂y(x)
− d

dx

(
∂F

∂y′(x)

))
δy(x) dx = 0. (3.24)

This integral might be zero because the integrand is zero for all x, or because there
are positive and negative portions that cancel one another out. However, since
arbitrary smooth deviation functions δy(x) are permitted, the first alternative has
to be the right one. For example, if a < x0 < b and the integrand happens to
be positive from a to x0 and negative from x0 to b, so that by cancellation the
overall integral is zero, the deviation function δy(x) could be changed so that
δy(x)= 0 from x0 to b, which would force the integral to be positive. Therefore, the
requirement that the integral vanishes for arbitrary smooth functions δy(x) requires
that

∂F
∂y(x)

− d
dx

(
∂F

∂y′(x)

)
= 0, (3.25)

which is known as Euler’s equation. This equation was worked out by both
Euler and Lagrange at around the same time, but we will call it simply “Euler’s
equation” because we reserve the term “Lagrange equations” for essentially the
same equation when used in classical mechanics, as we shall see in Chapter 4.
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Example 3.3 The Straight Line
Consider the problem of finding the shortest distance between two points on a two-dimensional plane. We
need to minimize the expression

s =
∫

ds =
∫ √

dx2 + dy2 =

∫ xb

xa

√
1 +

(
dy
dx

)2

dx ≡
∫ xb

xa

√
1 + y′2 dx (3.26)

using Eq. (3.4) with n(x) = constant. In that case, F =
√

1 + y′2 in Eq. (3.7). Note that the integrand does
not depend upon either x or y(x) explicitly, so∂F/∂y = 0. Euler’s equation (3.25) then becomes simply

d
dx

(
∂F
∂y′

)
= 0, (3.27)

so that
∂F
∂y′

=
y′√

1 + (y′)2
= k, (3.28)

where k is a constant. Solving for y′:

y′ =
±k√
1 − k2

≡ m1, (3.29)

which defines the constant m1 in terms of the constant k. The integral of this equation is y = m1 x + m2,
where m2 is a constant of integration. That is, the shortest distance on a plane between two points is a
straight line (!), where the slope m1 and y-intercept m2 may be found by requiring the line to pass through
the endpoints a = (xa, ya(xa)) and b = (xb, yb(xb)).

Using the calculus of variations we have shown that among all smooth paths it is a straight line that makes
the distance stationary. In this case stationary means minimum, because all nearby paths are longer. We
showed earlier that minimizing the travel time of a light ray moving from a to b through a vacuum is equivalent
to minimizing the distance traveled, so we have now also (no surprise) found that the minimum-time path
for a light ray traveling in vacuum is a straight line. �

Note the following two important features of Euler’s equation (3.25).

• The derivatives with respect to y and y′ are partial, but the derivative with
respect to x is total. Suppose, for example, that F(x, y(x), y′(x)) = x y (y′)2. Then
∂F/∂y = (y′)2 x and ∂F/∂y′ = 2 x y y′, so Euler’s equation becomes

x (y′)2 − d
dx

(2 x y y′) = x (y′)2 − [2 y y′ + 2 x (y′)2 + 2 x y y′′] = 0. (3.30)

This is an ordinary differential equation whose solution y(x) is the path we are
looking for. That is, in the calculus of variations, Euler’s equation converts the
problem of finding which path makes a particular integral stationary into a
differential equation whose solution gives the path we want.

• The variables x and y in Euler’s equation do not have to represent Cartesian
coordinates. The mathematics has no idea what x and y represent, as long as they
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are independent of one another. So if an integral I has the form of Eq. (3.15), but
with x and y replaced by different symbols, the corresponding Euler’s equation
still holds. The total derivative occurring in the equation is always with respect
to whatever variable of integration is chosen in the problem, which is called the
independent variable. For example, if the integral to be made stationary has the
form

I[q(t)] =
∫

F(t, q(t), q′(t))dt, (3.31)

then the corresponding Euler equation is

∂F
∂q(t)

− d
dt

(
∂F

∂q′(t)

)
= 0. (3.32)

The variable t is therefore the independent variable, while q(t) is referred to as
the dependent variable, and q′(t) ≡ dq/dt.

3.3 Geodesics

The calculus of variations is best learned through examples. Let us proceed with
a sequence of explicit cases. One application is to find geodesics, which are the
stationary (usually shortest) paths between two points on a given surface.

Consider the problem of finding the shortest distance between two points on the
surface of a sphere. We can use the polar angle θ and the azimuthal angle ϕ as
the coordinates on a sphere (see Figure 3.5). If R is the radius of the sphere, an

Fig. 3.5 The coordinates θ andϕ on a sphere.
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infinitesimal distance in the θ direction is dsθ = R dθ and an infinitesimal distance
in the ϕ direction is dsϕ = R sin θdϕ. These two distances are perpendicular to
one another, so the distance squared between any two nearby points is the sum of
squares:

ds2 = R2dθ2 + R2 sin2 θdϕ2. (3.33)

There are two ways to write the total distance between two points, depending
upon whether we use ϕ or θ as the variable of integration. If we use ϕ, then

s = R
∫ b

a

√
θ′2 + sin2 θ dϕ, (3.34)

where θ′ = dθ/dϕ. The corresponding Euler equation is
∂F
∂θ

− d
dϕ

∂F
∂θ′

= 0, (3.35)

where F =
√
θ′2 + sin2 θ. Alternatively, we can write

s = R
∫ b

a

√
1 + sin2 θ ϕ′2 dθ, (3.36)

where ϕ′ = dϕ/dθ with the corresponding Euler equation
∂F
∂ϕ

− d
dθ

∂F
∂ϕ′ = 0, (3.37)

and where in this case F =
√

1 + sin2 θ ϕ′2. Both Euler equations are correct. Is
one easier to use than the other?

Example 3.4 Geodesics on a Sphere
In the first alternative, Eq. (3.35) results in a second-order differential equation, since the first term∂F/∂θ �=
0 and by the time all the derivatives are taken the second term includes a second derivative θ′′. The
second alternative, Eq. (3.37), is much easier to use, because in that case F =

√
1 + sin2 θ ϕ′2 is not an

explicit function of ϕ, so the first term in Euler’s equation vanishes. The quantity ∂F/∂ϕ′ must there-
fore be constant in θ, since its total derivative is zero. This leaves us with only a first-order differential
equation

∂F
∂ϕ′ =

sin2 θ ϕ′√
1 + sin2 θϕ′2

= k (3.38)

for some constant k. This can be solved forϕ′ and rearranged to give

ϕ′ = ± k csc2 θ√
1 − k2 csc2 θ

. (3.39)
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Then using the identity csc2 θ= 1 + cot2 θ and substituting q =α cot θ, where α = k/
√

1 − k2,
we have

ϕ = α

∫
dq√

1 − q2
= α sin−1 q + β, (3.40)

where α= ± (
√

1 − k2)/k and β is a constant of integration. Therefore the variables θ and ϕ are
related by

sin(ϕ− β) = q = α cot θ. (3.41)

We can better understand the meaning of this result by multiplying through by R cos θ and using the identity
sin(ϕ− β) = sin ϕ cos β − cos ϕ sin β, which gives

(cos β)y − (sin β)x = αz, (3.42)

where x = R sin θ cos ϕ, y = R sin θ sin ϕ, and z = R cos θ, which are the Cartesian coordinates on the
sphere. Equation (3.42) is the equation of a plane passing through the center of the sphere, which slices
through the sphere in a great circle. So we have found that the solutions of Euler’s equation are great-circle
routes, as illustrated in Figure 3.6(a).

Unless one endpoint is at the antipode of the other, there is a shorter distance and a longer distance along
the great circle that connects them. The shorter distance is a minimum path length under small deviations in
path, as is well known by airline pilots. The larger distance is a stationary path that is neither a minimum nor
a maximum under all small deviations in path. Paths that oscillate around this path are generally longer than
the great-circle route, while some paths pulled to one side of the great-circle route are shorter. Both kinds
are sketched in Figure 3.6(b). This behavior is typical of stationary paths that are neither absolute maxima nor
absolute minima relative to all neighboring paths: some neighboring paths lead to smaller values and others
lead to larger values of the integral I. In this case the set of all such paths represents a kind of saddle.

(a) (b)
shorter

longer

Fig. 3.6 (a) Great circles on a sphere are geodesics. (b) Two paths nearby the longer of
the two great-circle routes. �
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3.4 Brachistochrone

The brachistochrone (“shortest time”) problem was invented and solved a half
century before the work of Euler and Lagrange, and engaged some of the most
creative people in the history of physics and mathematics. The problem is to find
the shape of a track between two given points, such that a small block starting at
rest at the upper point – and sliding without friction down along the track under the
influence of gravity – arrives at the lower point in the shortest time. The two points
a and b, and shapes of possible tracks between them, are illustrated in Figure 3.7.

a

b

b

b

curve 4

curve 3

curve 2curve 1

Fig. 3.7 Possible least-time paths for a sliding block.

We can guess the qualitative shape of the shortest-time track by physical
reasoning. Of the four curves shown in Figure 3.7, it might seem that the straight
line 3 is the shortest-time path, since it is the path of shortest distance. However,
curve 2 has an advantage in that the block picks up speed more quickly, so that
its greater average speed may more than make up for the greater distance it has to
travel. Curve 1 permits the block to pick up speed still faster, but there is a risk
that the slightly increased average speed might not outweigh the greater distance
involved. There is no reason to choose curve 4, because a block will hardly get
going in the first place and it also has to travel relatively far. A track whose shape
is something like curve 2 should be the best choice.

To find the exact shape we choose coordinates as shown in Figure 3.7, with the
origin at the release point, the positive y axis extending downward, and the final
point designated by (xb, yb). The time to travel over a short distance is the distance
divided by the speed, so the overall time is

t =
∫

ds
v

, (3.43)
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where v is the varying speed of the block. The infinitesimal distance is again ds =√
dx2 + dy2. Since v changes in general along the track, we need to express it in

terms of the coordinates x and y to make sense of the integral. For this, we have
energy conservation, which gives

E =
1
2

mv2 + mg(−y) = 0, (3.44)

since y and v are both zero initially. (We have used −y in the potential energy
because we are measuring y positive downward; i.e., the potential −m g y decreases
for larger values of y.) For any given path, the time for the block to slide from
beginning to end can be expressed either as

t =
∫ √

1 + y′2√
2gy

dx, (3.45)

where y′ = dy/dx, or as

t =
∫ √

1 + x′2√
2gy

dy, (3.46)

where x′ = dx/dy. The Euler equation for the latter expression is

∂F
∂x

− d
dy

(
∂F
∂x′

)
= 0, (3.47)

which is the right one to use, because F is not an explicit function of x, so the first
term vanishes. Therefore

∂F
∂x′

=
1√
2gy

x′√
1 + x′2

= k, (3.48)

a constant. Solving for x′:

x′ =
±k

√
2gy√

1 − 2k2gy
≡
√

y
a − y

, (3.49)

where we have chosen the plus sign and defined a ≡ 1/(2k2g). Integrating over y:

x =

∫
dx =

∫
dy
√

y
a − y

, (3.50)

which can be evaluated using the substitution

y = a sin2 θ

2
=

a
2
(1 − cos θ), (3.51)

giving the result x = (a/2)(θ − sin θ), where we have chosen the constant of
integration so that x = 0 when y = 0 (at θ = 0), which is the release point. The
resulting parametric equations

x =
a
2
(θ − sin θ) (3.52)
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a b1
b2

��a��a/2

Fig. 3.8 A graph of a cycloid. If in darkness you watch a wheel rolling along a level surface, with a lighted bulb
attached to a point on the outer rim of the wheel, the bulb will trace out the shape of a cycloid. In the
diagram, the wheel is rolling along horizontally. For xb < (π/2)yb, the track may look like the
segment from a to b1; for xb > (π/2)yb, the segment from a to b2 would be needed. Note that the
size of the cycloids changes with a, which in turn depends on (xb, yb).

and

y =
a
2
(1 − cos θ) (3.53)

are the equations of a cycloid, as shown in Figure 3.8. The quantities a and the final
angle parameter θb can be determined from the coordinates (xb, yb) of the final
point, although this ordinarily requires the solution of a transcendental equation.
Only the first cycle of the cycloid is needed; if xb< (π/2)yb, the minimum-time
path is a piece of the left half of the cycle, as shown in Figure 3.8 (the segment from
point a to point b1); if xb > (π/2)yb, the right half of the cycle is needed as well
(the segment from a to b2). That is, if xb > (π/2)yb, the sliding particle actually
descends below yb, and then comes up to meet yb at the end. In either case the
particle begins by falling vertically when it leaves the origin, to get the maximum
possible initial acceleration. The cycloid has a vertical cusp at this point. The time
required to fall to the final point can be found by returning to Eq. (3.46) and
expressing x and y in terms of the parameter θ, according to Eqs. (3.52) and (3.53).
The result is simply

t =
√

a
2g

∫ θf

0
dθ =

√
a
2g

θf . (3.54)

In particular, if (xb, yb) = (πa/2, a), so that a complete half-cycle of the cycloid is
needed to connect the points, then θf = π and

t = π

√
a
2g

. (3.55)
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This is the time it would take a particle to slide from the rim to the bottom of a
smooth cycloidal bowl, where a is the depth of the bowl.1

Example 3.5 Fermat Again
We return to where we began the chapter, with Fermat’s principle of stationary time, illustrated in
Figure 3.9(a). Bringing to bear the calculus of variations, we can now find the path of a light ray in a medium
like earth’s atmosphere, where the index of refraction n is a continuous function of position. If a ray of light
from a star descends through the atmosphere, it encounters an increasing density and an increasing index of
refraction. We might therefore expect the ray to bend continuously, entering the atmosphere at some angle
θa and reaching the ground at a steeper angle θb. For simplicity, take the earth to be essentially flat over the
horizontal range of the ray and assume the index of refraction n = n(y) only, where y is the vertical direction.
The light travel time is then

t =
1
c

∫
n(y)

√
1 + y′2 dx =

1
c

∫
n(y)

√
1 + x′2 dy. (3.56)

That is, we can use either x or y as the variable of integration, whichever is more convenient. Here it is more
convenient to use y, because in that case Euler’s equation is

∂F
∂x

− d
dy

(
∂F
∂x′

)
= 0 (3.57)

in which∂F/∂x = 0, so

d
dy

(
∂F
∂x′

)
= 0 (3.58)

and
∂F
∂x′

=
n(y) x′√

1 + x′2
= k, (3.59)

1 A bit of history: on the afternoon of January 29, 1697, Sir Isaac Newton, who had left Cambridge the previous
year to become Warden of the Mint in London, returned to his London home from a hard day at the Mint to
find a letter from the Swiss mathematician Johann Bernoulli. The letter contained the unsolved brachistochrone
problem, published the previous June. A challenge had gone forth to mathematicians to solve the problem, and
they were given a time limit of 6 months to find the solution. Gottfried Wilhelm Leibniz, German mathematician
and archrival of Newton for recognition as the original inventor of calculus, solved the problem but asked that
the deadline be extended by an additional year so that everyone would have a chance to try it. Bernoulli agreed.
Although presented as a general challenge, Bernoulli specifically sent the problem to Newton, who had not seen
it before, to alert him to the problem and to try to stump him, thereby showing that he did not really understand
calculus as well as the continental mathematicians. Newton’s niece, Catherine Barton, was living with him
in London at the time. She later testified that “Sr I. N. was in the midst of the hurry of the great recoinage
and did not come home till four from the Tower very much tired, but did not sleep till he had solved it wch
was by 4 in the morning.” Newton sent off the solution that same morning to the Royal Society, and it was
published anonymously in the February issue of Philosophical Transactions. Bernoulli had no doubt who was
responsible, and wrote to a friend that it was “ex ungue Leonum” – “from the claws of the Lion.” Aside from
Newton, Leibniz, and Johann Bernoulli himself, the brachistochrone problem was solved by only two other
mathematicians at that time, Bernoulli’s older brother Jacob and the French mathematician de l’Hôpital. All
of the solutions were ad hoc, involving algorithms suited to the particular problem, but not necessarily easily
generalizable to a wider class of problems.
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(a) (b)

1
2
3

Fig. 3.9 (a) A light ray passing through a stack of atmospheric layers. (b) The same
problem visualized as a sequence of adjacent slabs of air of different index of
refraction.

a constant. The derivative x′ = dx/dy = tan θ(y), where θ(y) is the local angle of the ray relative to the
vertical, so the quantity x′/

√
1 + x′2 = sin θ(y). Therefore

n(y) sin θ(y) = k, (3.60)

a constant everywhere along the path. This result could also have been obtained immediately from Snell’s
law, by modeling the atmosphere as a large number of thin horizontal layers, where n is constant within each
layer, but with n increasing slightly as one passes from one layer to the layer just beneath it. Snell’s law is
obeyed at each boundary: for example, n1 sin θ1 = n2 sin θ2 as shown in Figure 3.1. However, the angle
θ2 at which the ray enters layer 2 is the same angle at which the ray leaves layer 2 at the boundary with
layer 3 (see Figure 3.9(b)). Therefore also n2 sin θ2 = n3 sin θ3, etc., so in the stack of layers it follows that
n(y) sin θ = constant. In the limit where the stack approaches an infinite number of layers of infinitesimal
thickness, we get Eq. (3.60). Given a function n(y), we can then find the specific path shape y(x) from θ(y)
(see the Problems section at the end of this chapter).

Note that the constancy of n sin θ allows us to predict the ray angle θb at the ground without knowing
the detailed index of refraction n(y) or the path of the ray! If we know the indices of refraction at the top of
the atmosphere na and at the ground nb, and the angle at which the ray enters the atmosphere θa (from the
true location of the star), we can find the angle at the ground θb – which is the angle at which a telescope
would observe the star – as

na sin θa = nb sin θb = constant. (3.61)
�
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3.5 Several Dependent Variables

We have so far considered problems with one independent variable (such as x) and
one dependent variable (such as y(x)). There are many additional problems that
require two or more dependent variables. For example, to find the shortest-distance
path between two given points in three-dimensional space, we would need both y
and z as well as x to describe an arbitrary path. Consider the more general functional

I[t, yi(x), yi
′(x)] =

∫ xb

xa

F(x, y1(x), . . . , yN(x), y′1(x), . . . , y′N(x)) dx (3.62)

with y1(x), y2(x), . . . , yN(x). We then have N dependent variables. The goal is to
make I stationary under variations in all of the functions yi(x) with i= 1, 2, . . . , N.
In the preceding section, the single function y(x) could be visualized as a path in
the two-dimensional x, y space; in the more general case, the N functions yi(x) can
be visualized as together defining a path in an (N + 1)-dimensional space, with
axes x, y1, y2, . . . , yN. For example, the distance between the two points (xa, ya, za)
and (xb, yb, zb) in three dimensions is

s =
∫

ds =
∫ √

dx2 + dy2 + dz2 =

∫ xb

xa

√
1 + y′2 + z′2 dx (3.63)

along a path described by y(x) and z(x), restricted to pass through the given
endpoints. The three-dimensional path that minimizes s is a problem in the calculus
of variations, and the integral is a simple case of the form written in Eq. (3.62).
Analogues to the Euler equations can readily be found in the (N + 1)-dimensional
case. Let the shift in the paths now be

yi(x) → yi(x) + δyi(x) (i = 1, . . . , N). (3.64)

Therefore the functions δyi(x) describe the deviations of the arbitrary path yi(x).
Looking back at Eq. (3.22), we note that the only difference is that we simply have
more than one function on which I depends. We can then immediately extend Eq.
(3.22) to

δI[y(x)] =
∫ b

a

(
∂F

∂yi(x)
δyi(x) +

∂F
∂yi′(x)

d
dx

(δyi(x))
)

dx = 0, (3.65)

where the index i is repeated and hence summed over. Applying the same technique
of integration by parts for every i:∫ b

a

∂F
∂yi′(x)

d
dx

(δyi(x)) = δyi(x)
∂F

∂yi′(x)

∣∣∣∣b
a

−
∫ b

a
δyi(x)

d
dx

(
∂F

∂yi′(x)

)
dx, (3.66)
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we find again that the first term on the right vanishes because δyi(xa) = δyi(xb) = 0
by construction. Therefore, Eq. (3.65) becomes

δI[y(x)] =
∫ b

a

(
∂F

∂yi(x)
− d

dx

(
∂F

∂yi′(x)

))
δyi(x)dx = 0, (3.67)

from which we get N copies of the original Euler equation:

∂F
∂yi(x)

− d
dx

(
∂F

∂yi′(x)

)
= 0 for i = 1, . . . , N. (3.68)

Note that, to deduce Eq. (3.68) from Eq. (3.67), we need to be sure that the yis
are independent variables so that the variations δyi are also independent. We are
now equipped to handle variational problems involving more than one dependent
function.

Example 3.6 Geodesics in Three Dimensions
From Eq. (3.63), the setup for the problem of finding geodesics in three dimensions, we have
F =

√
1 + y′2 + z′2, choosing x as the independent variable. Therefore, we use Eq. (3.68) with N = 2

and find
∂F
∂y

− d
dx

∂F
∂y′

= 0 and
∂F
∂z

− d
dx

∂F
∂z′

= 0, (3.69)

which reduce to
∂F
∂y′

=
y′√

1 + y′2 + z′2
= k1 and

∂F
∂z′

=
z′√

1 + y′2 + z′2
= k2, (3.70)

where k1 and k2 are constants. The equations can be decoupled by taking the sum of the squares of the two
equations to show that the denominator of each equation is constant, or equivalently y′2

+ z′2
= constant,

so from the equations it follows that y′ and z′ must themselves each be constants. Therefore the minimum-
length path has constant slope in both the x–y and x–z planes, corresponding to a straight line, as expected.
The constants can be determined by requiring the line to pass through the given endpoints. �

3.6 Mechanics from a Variational Principle

We now want to ask whether there is a general formulation of mechanics that
is based entirely on a variational principle. This may be true, in part because
both Newton’s second law and variational principles can lead to second-order
differential equations. Perhaps we can cast any classical mechanics problem in the
form of a statement about finding the stationary paths of some functional.

Motivated by the examples already explored, a natural starting point is to
extremize travel time. We start with the case of a free relativistic particle, and
require the formalism to be Lorentz invariant from the outset. After all, the
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variational principle – if it is to lead to a law of physics – should look the same in all
inertial frames. This immediately tells us to write the simple candidate functional

I =
∫

dτ , (3.71)

which is simply the proper time for a particle to travel between two fixed points
in spacetime. We propose that extremizing this quantity leads to the trajectory of a
free relativistic particle, equivalently described by

d
dt

(γ mv) = 0 (3.72)

from Eq. (2.120).
Armed with the techniques developed in the previous sections, we can check

whether this statement is correct. We write the functional in terms of the coordinate
system of some inertial observer Ousing coordinates (c t, x, y, z):

I =
∫

dτ =

∫
dt
γ

=

∫
dt
√

1 − ẋ2 + ẏ2 + ż2

c2 , (3.73)

where we used the time-dilation relation dt = γ dτ . We need to determine three
functions x(t), y(t), and z(t) that extremize the functional I whose independent
variable is t. We can imagine that the endpoints of the trajectory are fixed, and so
we have a familiar variational problem. We can then use Euler’s Eqs. (3.68) with

F =

√
1 − ẋ2

c2 − ẏ2

c2 − ż2

c2 (3.74)

and N = 3. We have three equations
∂F
∂x

− d
dt
∂F
∂ẋ

= 0,
∂F
∂y

− d
dt
∂F
∂ẏ

= 0,
∂F
∂z

− d
dt
∂F
∂ż

= 0, (3.75)

from which it is straightforward to show that
d
dt

(γẋ) = 0,
d
dt

(γẏ) = 0,
d
dt

(γż) = 0, (3.76)

which are consistent with Eq. (3.72). This is already very promising: we can
describe a free relativistic particle by extremizing the particle’s proper time.

Let us next look at the low-velocity regime of our functional. We write Eq. (3.73)
in an expanded form for β = v/c  1:

I �
∫

dt
(

1 − 1
2

v2

c2 + · · ·
)

. (3.77)

The first term is a constant and so does not affect a variational principle: Euler’s
equations involve derivatives of F and hence constant terms in F may safely be
dropped. The second term is quadratic in the velocity. We rewrite the functional as

I →
∫

dt
(

1
2

m
(
ẋ2 + ẏ2 + ż2)) . (3.78)
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In addition to dropping the constant shift term, we have also multiplied I from Eq.
(3.77) by −m c2 for convenience. This is a multiplication by a constant and hence,
once again, does not affect the Euler equations (3.68). It makes things a little more
suggestive, however: we are now extremizing the particle’s nonrelativistic kinetic
energy. If we now use Euler’s equations (3.68) with F = (1/2)mv2, we get the
familiar three differential equations

d
dt

(mv) = 0, (3.79)

as expected for a nonrelativistic particle. So far so good. We have the expected
results for free particles. But how about problems that involve forces?

3.7 Motion in a Uniform Gravitational Field

Shortly after developing his special theory of relativity, Einstein saw a beautiful
way to understand the effect of uniform gravitational forces, which he called the
principle of equivalence. He later said that it was “the happiest thought of my
life,” because it was a wonderfully simple but powerful idea that became a crucial
stepping stone to achieving his relativistic theory of gravity: general relativity.

The equivalence principle can be illustrated by experiments carried out in
two spaceships, one accelerating uniformly in gravity-free empty space and one
standing at rest in a uniform gravitational field, as shown in Figure 3.10. The
acceleration a of the first ship is adjusted to be numerically equal, but opposite in
direction, to the gravitational field g acting on the second ship. The equivalence

(a) (b)

Fig. 3.10 Two spaceships, one accelerating in gravity-free space (a) and the other at rest on the ground (b).
Neither observers in the accelerating ship nor those in the ship at rest on the ground can find out which
ship they are in on the basis of any experiments carried out solely within their ship.
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ship’s bow
a

ship’s stern

Fig. 3.11 A laser beam travels from the bow to the stern of the accelerating ship.

principle then claims that if observers in either one of the ships carry out any
experiment whatever that is confined entirely within their own ship, the results
cannot be used to determine which ship they are living in: the two situations are
equivalent. This is a statement inspired by observation – dating back to Galileo’s
Pisa tower experiment equating inertial and gravitational masses – which Einstein
then elevated to the stature of a principle of Nature.

We use the principle here to deduce two related effects of gravity that are not
contained in Newton’s theory: the gravitational frequency shift and the effect
of gravity on the rate of clocks. We start by considering a particular thought
experiment with light waves. An observer in the bow of the accelerating ship shines
a laser beam at another observer in the stern of the ship, as shown in Figure 3.11.
The experiment starts with the ship initially at rest. The laser emits monochromatic
light of frequency νem in the rest frame of the laser. We assume that the distance
traveled by the ship while the beam is traveling is very small compared with the
length h of the ship, so that the time it takes for the beam to reach the stern is
essentially t = h/c.

During this time the stern attains an additional small velocity v = at = ah/c.
This velocity is small compared with the speed of light, so the ship suffers no
appreciable length contraction.2 The stern observer is moving toward the source,
so will observe a blueshift due to the Doppler effect. The nonrelativistic Doppler
formula is given by Eq. (2.133), approximated for small V as

νob = νem

√
1 + V

c
1 − V

c
� νem

(
1 +

V
c

)
= νem

(
1 +

ah
c2

)
, (3.80)

and relates the observed frequency νob to the emitted frequency νem.3

2 More precisely, the ship’s length contraction would scale as V2/c2. The physical effect we focus on arises from
the Doppler shift, which is linear in V/c.

3 We used the binomial expansion to derive this result (see Appendix F).
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Now according to the equivalence principle, the same result will be observed
in the ship at rest in a uniform gravitational field if we substitute the acceleration
of gravity g for the rocket acceleration a. That is, if the observer at the top of the
stationary ship shines light with emitted frequency νem toward the observer at the
bottom, the bottom observer will see a blueshifted frequency

νob = νem(1 + gy/c2), (3.81)

where now we have used the symbol y for the altitude of the upper clock above
the lower clock. It is also true that the upper observer will see a redshift if he or
she looks at a light beam sent off by the lower observer. In neither case can we
blame the shift on Doppler, however, because neither observer is moving. Instead,
the shift in this case is due to a difference in altitude of the two clocks at rest in a
uniform gravitational field.

How can we explain the blueshift seen by the person in the stern, or bottom, of
the stationary ship? If we think of the laser atoms that radiate light at the top as
atomic clocks whose rate is indicated by the frequency of their emitted light, the
observer at the bottom will be forced to conclude that these top clocks are running
fast compared to similar clocks at the bottom of the ship. For suppose a clock at
the top of the ship has a luminous second hand that emits light of frequency νem.
In a time t = 1 s, the hand emits t/period = tνem = 1 s · νem wavelengths of
light. The observer at the bottom must collect all these wavelengths, since none of
them is created or destroyed in transmission. However, the frequency of the waves
observed at the bottom is increased by the factor (1 + gy/c2), as shown in Eq.
(3.81), which means that the observer at the bottom will collect all of these waves
in less than 1 s according to her own clock:

t′νob = 1 s · νem ⇒ t′ = 1 s ·
(

1 +
g y
c2

)−1
< 1 s. (3.82)

That is, the second hand of the clock at the top appears to advance by 1 s in less than
one second to the observer at the bottom, by the exact same factor. The observer at
the top agrees with this judgment. This upper observer sees a redshift when looking
at clocks at the bottom, so it is natural for a person at the top to believe that bottom
clocks run slower than top clocks.

If such atomic clocks at high altitude run faster, it must be true that all clocks up
high run faster, because they can be continuously compared with one another. And
if all stationary clocks at high altitude run fast compared with all stationary clocks
at lower altitude, we can conclude that time itself runs faster at higher altitude. That
is, for time intervals Δt:

Δthigh = Δtlow(1 + gy/c2). (3.83)

This is the time difference for two clocks at rest, but at different altitudes, in a
uniform gravitational field. Now let us expand the problem a bit by considering two
clocks at ground level, clock A at the origin (xA, yA)= (0, 0) and the other, clock
B, a distance xB away at (x, y) = (xB, 0). The two clocks have been synchronized
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Fig. 3.12 Clock C travels by an arbitrary path between stationary ground clocks A and B. The left-hand side shows
C leaving A when both clocks read zero. The right-hand side shows C arriving at B when B reads tf and C
reads τf . C must arrive at B when B’s clock reads tf , but C’s reading τf will depend upon what path C
takes in moving from A to B.

with one another, say by exploding a flashbulb halfway between them, and then
observers right beside each clock setting their clocks to t = 0 when the flash arrives.
Once synchronized, these two clocks remain synchronized because they remain in
the same rest frame and at the same altitude.

Now we picture a third clock C that starts out at ground level with (t, x, y) =
(0, 0, 0), right beside ground clock A. It initially reads the same time t = 0 as
ground clock A, and then moves by any path it likes, up and down, back and forth,
but it must finally end up right beside ground clock B, when B has (t, x, y) =
(tf, xB, 0), where tf stands for the final ground time when C arrives, as illustrated in
Figure 3.12. The time interval for the trip according to the two ground clocks has
therefore been Δt = tf, since clock A initially read t = 0.

Clock C ends up moving the net horizontal distance xB − 0 = xB, but its time
interval will most likely be different than tf, both because it has moved with a
nonzero velocity (and will therefore have run slow due to time dilation) and will
likely have explored various altitudes during its trip (and so will have run fast due
to the altitude effect on clocks as derived above). Therefore clock C ends up with
(t, x, y) = (τf, xB, 0), where τf is the final time it reads. Our goal is to find this final
time τf read by clock C, which will depend upon what path it takes on its journey
from A to B, and then find what particular path makes τf extreme for a given, fixed
value of tf, the reading on clock B when C arrives. Of course τf is just the total
proper time clock C gains in following a particular path from the origin at A to the
destination at B.

In an infinitesimal time dt according to either ground clock, clock C advances
by the proper time

dτ = dt(1 + gy/c2)
√

1 − v2/c2, (3.84)

with factors showing that it runs fast due to its altitude and slow due to its speed.
For a nonrelativistic particle moving near earth’s surface, both gh/c2 and v2/c2 are
very small, so
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dτ ∼= dt(1 + gy/c2)(1 − v2/2c2) ∼= dt(1 + gy/c2 − v2/2c2) (3.85)

using the binomial expansion (1 + z)n � (1 + nz) to obtain the first expression and
neglecting the product of two very small quantities to obtain the second expression.
Therefore, as clocks A and B advance from time t = 0 to the later time tf, with
these approximations clock C advances by

τf =

∫ tf

0
dt(1 + gy/c2 − v2/2c2). (3.86)

The Hafele–Keating Experiments
Both clock effects, the slowing due to velocity and the speeding up due to altitude,
have been tested many times, in different situations and using different kinds of
clocks. In 1971, J. C. Hafele and R. E. Keating tested both effects using human-
made atomic clocks. They began by assembling a set of four atomic clocks which
they carried with them on several consecutive commercial air flights traveling
eastward around the world. As they traveled they would register the speed and
altitude of the clocks as a function of time, using information provided by the
various flight captains. They had assembled a comparable set of atomic clocks
which remained in the laboratory at the U.S. Naval Observatory in Washington,
D.C., which they could compare with the traveling clocks at the end of their
trip. Of course, the stay-at-home clocks also moved throughout this time relative
to an inertial frame, because the earth’s surface steadily moved eastward due
to the earth’s rotation. For these two sets of clocks, the calculated net altitude
(gravitational) effect, the net velocity effect, and the overall net effect were (in
nanoseconds)

144 ± 14 altitude effect

−184 ± 18 velocity effect

−40 ± 23 net effect predicted. (3.87)

They could compare this net predicted effect with that of the stay-at-home clocks
when they returned home. The observed difference in time was −59±10 ns. So the
predicted vs. observed time differences were the same within experimental error.

Then after a week of comparing clocks and recuperating, Hafele and Keating
carried a comparable set of four atomic clocks westward around the world, again
using regularly scheduled commercial flights. The data now looked as follows (in
nanoseconds):

179 ± 18 altitude effect

96 ± 10 velocity effect

275 ± 21 net effect predicted. (3.88)

When they finally compared this net predicted effect with that of the stay-at-home
clocks when they returned home, the observed difference in time was 273 ± 7 ns,
in strong agreement with the calculated values for the traveling clocks. Note that
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their experiments tested both the equivalence principle and special relativistic time
dilation.

A Reinterpretation
Now notice that if m is the mass of clock C, the overall time effect of Eq. (3.89)
can also be written in the form

τf = tf −
1

mc2

∫ tf

0

(
1
2

mv2 − mgy
)

dt

= tf −
1

mc2

∫ tf

0
dt (T − U), (3.89)

where we recognize that T = (1/2)mv2 and U = mgy are the kinetic and potential
energies of clock C, if clocks A and B are at rest and have zero potential energy.

The value of τf depends not only upon the initial and final times 0 and tf, but also
upon the path the clock takes in getting from the beginning point to the endpoint.
So looking at the problem of the three clocks in a uniform gravitational field, where
clocks A and B are at rest on the ground and clock C has altitude y(t) and moves
with speed v(t), we have shown that the proper time interval read by clock C, as it
moves between the two given points while clocks A and B advance from time 0 to
time tf, is

τf = tf −
1

mc2

∫ tf

0
dt (T − U), (3.90)

where the integrand is now the difference between the kinetic and potential energies
of the upper clock. Some of the possible paths of clock C are illustrated in the
figure.

Let us now find that particular path of clock C which extremizes the proper time
τf as it travels between the two given points, starting at fixed time t = 0 and ending
at fixed time tf according to clock B. We know how to do this. Extremizing τ here
is the same as extremizing the functional

I ≡
∫ tf

0

(
1
2

mv2 − mgy
)

dt, (3.91)

with the integrand

F(x, ẋ, y, ẏ, z, ż) =
1
2

m(ẋ2 + ẏ2 + ż2)− mgy, (3.92)

since the tf term is a constant. Euler’s equations for the x, y, and z directions then
give, respectively:

ẍ = 0, ÿ = −g, and z̈ = 0. (3.93)

We immediately recognize these as the differential equations of motion resulting
from Newton’s second law F = ma for a particle in a uniform gravitational field.
The solutions of the equations are



145 3.8 Arbitrary Potential Energies

x = v0xt,

y = v0yt − 1
2

gt2,

z = 0, (3.94)

where v0x and v0y are easily found by requiring that (x, y)= (xB, 0) at the final time
tf. Furthermore, if we use these equations of motion to find the shape y(x) of the
path, we find it is a parabola, as expected for trajectories in a uniform gravitational
field.

Our goal of identifying a variational principle for the motion of a particle in a
uniform gravitational field has been successful. Without ever using Newton’s laws
we found the correct equations of motion by using the calculus of variations. There
remains the question: In finding the path that extremizes the proper time of the
moving particle, as we have done, is the proper time in fact a maximum, minimum,
or saddle point under local distortions in the path? This is left for a problem at the
end of the chapter. There is also the question whether extremizing the proper time
is still correct for any gravitational field, such as the inverse-square field around a
spherically symmetric mass. That question we postpone until Chapter 10. Finally,
the form of the functional we varied, as given in Eq. (3.91), namely the difference
between the kinetic and potential energies of the particle, is highly suggestive, an
idea worth exploring in the next section.

3.8 Arbitrary Potential Energies

We just reached the intriguing conclusion that the correct equations of motion for
a nonrelativistic particle of mass m in a uniform gravitational field can be found by
making stationary the functional

I =
∫

dt
(

1
2

m v2 − U
)

=

∫
dt (T − U), (3.95)

where

T ≡ 1
2

m v2 (3.96)

is the particle’s kinetic energy and

U = mgy (3.97)

is its gravitational potential energy. It was the difference between the kinetic and
gravitational potential energy that was needed in the integrand.

Can this approach be generalized? That is, suppose that a particle is subject to
an arbitrary conservative force F for which a potential energy U can be defined,
F = −∇U. Does the form
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I =
∫

dt
(

1
2

m v2 − U
)

=

∫
dt (T − U) (3.98)

still work? Do we still get the correct F = ma equations of motion?
Let us do a quick check, using Cartesian coordinates. Note that if U = U(x, y, z)

and T = T(ẋ, ẏ, ż), then the integrand in the variational problem, which we will
denote by L, is

L(x, y, z, ẋ, ẏ, ż) ≡ T(ẋ, ẏ, ż)− U(x, y, z) =
1
2

m v2 − U(x, y, z)

=
1
2

m
(
ẋ2 + ẏ2 + ż2)− U(x, y, z), (3.99)

since v2 = ẋ2 + ẏ2 + ż2. Writing out the three associated Euler equations, we get
the differential equations of motion

∂L
∂x

− d
dt
∂L
∂ẋ

= 0,
∂L
∂y

− d
dt
∂L
∂ẏ

= 0,
∂L
∂z

− d
dt
∂L
∂ż

= 0, (3.100)

where
∂L
∂x

= −∂U
∂x

= Fx and
d
dt
∂L
∂ẋ

=
d
dt

mẋ = mẍ, so Fx = mẍ, (3.101)

with similar results in the y and z directions. That is, we have derived the three
components of

−∇U = ma ⇒ F = ma (3.102)

as we hoped to find.
We have succeeded in showing that if all forces F in a problem are conservative,

so they can be described by a potential energy function U(x, y, z) with F= −∇U,
then Euler’s equation with integrand L ≡ T − U gives Newton’s laws of motion.
For conservative forces at least, and in Cartesian coordinates, Newton’s laws are
equivalent to a variational problem.

3.9 Summary

In this chapter we have shown that a variational principle – Fermat’s principle of
stationary time – can be used to find the paths of light rays. Such a variational
principle seems totally unlike the approach of Newton to finding the paths of
particles subject to forces. Yet we have shown that the associated calculus of
variations or functional calculus allows us to convert the problem of making
stationary a certain integral into a differential equation of motion. We applied these
techniques to solve several interesting problems.

We then went on to show that the relativistic and nonrelativistic mechanics
of a free particle can be understood from a variational principle, and extended
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that approach, using Einstein’s principle of equivalence, to find the motion of
nonrelativistic particles in uniform gravitational fields. The functional

I ≡
∫ tb

ta

(
1
2

mv2 − mgy
)

dt =
∫ tb

ta

(T − U) dt, (3.103)

where the integrand is the difference between the kinetic and gravitational potential
energies of the particle, gives the correct differential equations of motion for a
nonrelativistic particle.

Finally, we showed that an integrand of the form L ≡ T − U gives the
correct Newtonian equations of motion for any potential energy, i.e., for mechanics
problems in which all forces are conservative.

What is the meaning of this? Can the variational approach be generalized still
further? Can we do something similar for any mechanics problem? One involving
normal and tension forces? Or frictional forces? How about nonconservative
forces in general, which do not have potentials? In short, can we always find the
equations of motion of a particle through this program of extremizing an associated
functional? These are questions for Chapter 4.

Problems

Problem 3.1 Prove from Fermat’s principle that the angles of incidence and reflection�
are equal for light bouncing off a mirror. Use neither algebra nor calculus in your
proof! (Hint: The result was proven by Hero of Alexandria 2000 years ago.)

Problem 3.2 An ideal converging lens focuses light from a point object onto a point�
image. Consider only rays that are straight lines except when crossing an air–glass
boundary. Relative to the ray that passes straight through the center of the lens, do
the other rays require more time, less time, or the same time to go from O to I?
That is, in terms of Fermat’s principle, is the central path a local minimum, a local
maximum, or a stationary path that is neither a minimum nor a maximum?

Problem 3.3 Light focuses onto a point I from a point O after reflecting off a surface�
that completely surrounds the two points. The shape of the surface is such that all
rays leaving O (excepting the single ray which returns to O) reflect to I. (a) What
is the shape of the surface? (b) Pick any one of the paths. Is it a path of minimum
time, maximum time, or is it stationary but of neither minimum nor maximum time
for all nearby paths?

Problem 3.4 Consider the ray bouncing off the bottom of the surface in the preceding�
problem. Replace the surface at this point by an even more highly curved surface.
The ray still bounces from O to I. Is the ray now a path of minimum time, maximum
time, or is it stationary but of neither minimum nor maximum time? Compare with
nearby paths that bounce once but are otherwise straight. Suppose the paths must
bounce once but need not be segments of straight lines. What then?
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Problem 3.5 When bouncing off a flat mirror, a light ray travels by a minimum-time��
path. (a) For what shape mirror would the paths of all bouncing light rays take
equal times? (b) Is there a shape for which a bouncing ray would take a path of
greatest time, relative to nearby paths?

Problem 3.6 A hypothetical object called a straight cosmic string (which may have��
been formed in the early universe and may persist today) makes the r, θ space
around it conical. That is, set an infinite straight cosmic string along the z axis; the
two-dimensional space perpendicular to this, measured by the polar coordinates
r and θ, then has the geometry of a cone rather than a plane. Suppose there is a
cosmic string between earth and a distant quasi-stellar object (QSO). What might
we see when we look at this QSO? [Assume light travels in least-time paths (here
also least-distance paths) relative to nearby paths.]

Problem 3.7 Model earth’s atmosphere as a spherical shell 100 km thick, with index���
of refraction nt = 1.00000 at the top and nb = 1.00027 at the bottom. Is a light ray’s
final angle ϕf relative to the normal at the ground greater or less than its initial
angle ϕi relative to the normal at the top of the atmosphere? (Earth’s radius is R =
6400 km.) Assume the ray strikes the upper atmosphere at a 45◦ angle.

Problem 3.8 We seek to find the path y(x) that minimizes the integral I=
∫

f(x, y, y′)dx.�
Find Euler’s equation for y(x) for each of the following integrands f, and then
find the solutions y(x) of each of the resulting differential equations if the two
endpoints are (x, y) = (0, 1) and (1, 3) in each case. (a) f = ax + by + cy′2, (b)
f = ax2 + by2 + cy′2.

Problem 3.9 Find a differential equation obeyed by geodesics in a plane using polar��
coordinates r, θ. Integrate the equation and show that the solutions are straight
lines.

Problem 3.10 Find two first-order differential equations obeyed by geodesics in three-�
dimensional Euclidean space, using spherical coordinates r, θ,ϕ.

Problem 3.11 Two-dimensional surfaces that can be made by rolling up a sheet of���
paper are called developable surfaces. Find the geodesic equations on the following
developable surfaces and solve the equations. (a) A circular cylinder of radius R,
using coordinates θ and z. (b) A circular cone of half-angle α (which is the angle
between the cone and the axis of symmetry) using coordinates θ and �, where �
is the distance of a point on the cone from the apex. Hint: Find the distance ds
between nearby points on the surface in terms of �,α, dθ, and d�.

Problem 3.12 A torus can be defined by two radii: a large radius R running around the��
center of the torus, and a small radius r corresponding to a cross-sectional slice. Let
R live in the x, y plane. Then if ϕ is an angle relative to the x axis and lying in the
x, y plane, and θ is an angle within a cross-sectional slice, with θ = 0 corresponding
to the outermost radius of the torus R + r, then the Cartesian coordinates of points
on the torus are
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x = (R + r cos θ) sinϕ, y = (R + r cos θ) cosϕ, z = r sin θ.

(a) Find an expression for the distance ds between nearby points on the torus, using
the angles ϕ and θ as coordinates. (b) Find a second-order differential equation for
geodesics on the torus in terms of θ, θ′, and θ′′, where θ′ = dθ/dϕ, etc. (c) Show
that paths with constant θ = 0 or with constant θ = π are geodesics, but that a path
with constant θ = π/2 is not a geodesic.

Problem 3.13 Using Euler’s equation for y(x), prove that��

∂f
∂x

− d
dx

(
f − y′

∂f
∂y′

)
= 0.

This equation provides an alternative method for solving problems in which the
integrand f is not an explicit function of x, because in that case the quantity f −
y′∂f/∂y′ is constant, which is only a first-order differential equation.

Problem 3.14 A line and two points not on the line are drawn in a plane. A smooth��
curve is drawn between the two points and then rotated about the given line. This
is known as a surface of revolution. Find the shape of the curve that minimizes
the area generated by the rotated curve. A lampshade manufacturer might use this
result to minimize the material used to produce a lampshade of given upper and
lower radii.

Problem 3.15 The time required for a particle to slide from the cusp of a cycloid to���
the bottom was shown in Section 3.4 to be t = π

√
a/2g. Show that if the particle

starts from rest at any point other than the cusp, it will take this same length of time
to reach the bottom. The cycloid is therefore also the solution of the tautochrone, or
“equal-time” problem. Hint: The energy equation for the particle speed in terms of
y written in Section 3.4 must be modified to take into account the new starting
condition. [The tautochrone result was known to the author Herman Melville.
In the chapter entitled “The try-works” in Moby Dick, the narrator Ishmael, on
board the whaling ship Pequod, describes the great try-pots used for boiling whale
blubber: “Sometimes they are polished with soapstone and sand, till they shine
within like silver punchbowls. ... It was in the lefthand try-pot of the Pequod, with
the soapstone diligently circling around me, that I was first indirectly struck by the
remarkable fact, that in geometry all bodies gliding along the cycloid, my soapstone
for example, will descend from any point in precisely the same time.”]

Problem 3.16 Derive Snell’s law from Fermat’s principle.��

Problem 3.17 A lifeguard is standing on the beach some distance from the shoreline,�
when he hears a swimmer calling for help. The swimmer is some distance offshore
and also some lateral distance from the lifeguard. The lifeguard knows he can run
twice as fast as he can swim. To minimize the time it takes to reach the swimmer,
show that his path should consist of two line segments: relative to the shoreline, his
running path should be at angle θ1 and his swimming path should be at angle θ2,
where cos θ1 = 2 cos θ2.
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Problem 3.18 Describe the geodesics on a right-circular cylinder. That is, given two�
arbitrary points on the surface of a cylinder, what is the shape of the path of
minimum length between them, where the path is confined to the surface? Hint:
A cylinder can be made by rolling up a sheet of paper.

Problem 3.19 A particle falls along a cycloidal path from the origin to the final point��
(x, y) = (πa/2, a); the time required is π

√
a/2g, as shown in Section 3.4. How

long would it take the particle to slide along a straight-line path between the same
points? Express the time for the straight-line path in the form tstraight = ktcycloid,
and find the numerical factor k.

Problem 3.20 A unique transport system is built between two stations 1 km apart on�
the surface of the moon. A tunnel in the shape of a full cycloid cycle is dug, and
the tunnel is lined with a frictionless material. If mail is dropped into the tube at
one station, how much later (in seconds) does it appear at the other station? How
deep is the lowest point of the tunnel? (Gravity on the moon is about 1/6th that on
earth.)

Problem 3.21 A hollow glass tube is bent into the form of a slightly tilted rectangle,�
with rounded corners. Two small ball bearings are introduced into the tubes at the
upper left, at the highest point of the rectangle. One rolls clockwise and the other
counterclockwise down to the opposite corner at the bottom right, the lowest point
of the rectangle. The balls are started out simultaneously from rest, and note that
each ball must roll the same distance to reach the destination. The question is:
Which ball reaches the lower corner first, or do they arrive simultaneously? Why?

Problem 3.22 Assume earth’s atmosphere is essentially flat, with index of refraction�
n = 1 at the top and n = n(y) below, with y measured from the top, and the
positive y direction downward. Suppose also that n2(y) = 1 + αy, where α is a
positive constant. Find the light-ray trajectory x(y) in this case.

Problem 3.23 Suppose that earth’s atmosphere is as described in the preceding��
problem, except that n2(y) = 1 + αy + βy2, where α and β are positive constants.
Find the light-ray trajectory x(y) in this case.

Problem 3.24 Consider earth’s atmosphere to be spherically symmetric above the��
surface, with index of refraction n = n(r), where r is measured from the center
of the earth. Using polar coordinates r, θ to describe the trajectory of a light
ray entering the atmosphere from high altitudes, (a) find a first-order differential
equation in the variables r and θ that governs the ray trajectory; (b) show that
n(r)r sinϕ = constant along the ray, where ϕ is the angle between the ray and a
radial line extending outward from the center of the earth. This is the analogue of
the equation n(y) sin θ = constant for a flat atmosphere.

Problem 3.25 Using the result found in the preceding problem, and supposing that�
n2(r)= 1 + α/r2 (where α is a constant), find the light-ray trajectory expressed
either as r(θ) or θ(r).
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Problem 3.26 (a) Show that the pressure difference between two points in an��
incompressible liquid of density ρ in static equilibrium is ΔP = ρgs, where s
is the vertical separation between the two points and g is the local gravitational
field. (b) The liquid is caused to flow through a horizontal pipe of varying cross-
sectional area, so that its velocity depends upon position. In a particular section
of pipe of length s, the pipe is narrowing, so that the fluid’s acceleration has the
constant value a. Find the pressure difference ΔP between one end of the section
and the other, in terms of ρ and the change in the velocity squared (v2) between the
two ends of the section. Is the pressure larger or smaller at the narrower end of the
section? (The result is an example of the Bernoulli effect.)

Problem 3.27 The surface of a paraboloid of revolution is defined by z = a(x2 + y2),�
where a is a constant. Find the differential equation for a geodesic originating at
a point (x, y) = (x0, 0) with slope (dy/dx)0 = 0. Does the geodesic return to the
same point?

Problem 3.28 According to Einstein’s general theory of relativity, light rays are�
deflected as they pass by a massive object like the sun. The trajectory of a ray
influenced by a central, spherically symmetric object of mass M lies in a plane
with coordinates r and θ (so-called Schwarzschild coordinates); the trajectory must
be a solution of the differential equation

d2u
dθ2 + u =

3GM
c2 u2,

where u = 1/r, G is Newton’s gravitational constant, and c is the constant speed of
light. (a) The right-hand side of this equation is ordinarily small. In fact, the ratio
of the right-hand side to the second term on the left is 3GM/rc2. Find the numerical
value of this ratio at the surface of the sun. The sun’s mass is 2.0 × 1030 kg and
its radius is 7 × 105 km. (b) If the right-hand side of the equation is neglected,
show that the trajectory is a straight line. (c) The effects of the term on the right-
hand side have been observed. It is known that light bends slightly as it passes by
the sun and that the observed deflection agrees with the value calculated from the
equation. Near a black hole, which may have a mass comparable to that of the sun
but a much smaller radius, the right-hand side becomes very important, and there
can be large deflections. In fact, show that there is a single radius at which the
trajectory of light is a circle orbiting the black hole, and find the radius r of this
circle.

Problem 3.29 A clock is thrown straight upward on an airless planet with uniform��
gravity g, and it falls back to the surface at a time tf after it was thrown, according
to clocks at rest on the ground. (a) Using the clock’s motion as derived in Section
3.7, how much more time than tf will have elapsed according to this moving clock,
in terms of g, tf, and c, the speed of light? (b) Now suppose that instead of the freely
falling motion used in part (a), the moving clock has constant speed v0 straight up
for time tf/2 according to ground clocks, and then moves straight down again at the
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same constant speed v0 for another time interval tf/2, according to ground clocks.
How much more time than tf will have elapsed according to this moving clock,
in terms of v0, g, c, and tf? (c) Now find the value of v0, keeping g and tf fixed,
which maximizes the final reading of the moving clock described in part (b). Then
evaluate the final reading of this moving clock in terms of g, tf, and c, and show
that it is less than the final reading of the freely falling clock described in part (a).
[This is a particular illustration of the fact that the path which maximizes the proper
time is that of a freely falling clock, i.e., a clock that moves according to Newton’s
laws. The reader could choose some alternative motion for a clock, and show again
that as long as it returns to the beginning point at tf according to ground clocks, its
time will be less than that of the freely falling clock of part (a).]

Problem 3.30 A skyscraper elevator comes equipped with two weighing scales: the�
first is a typical bathroom scale containing springs that compress when someone
stands on it, and the second is the type often used in doctor’s offices, where weights
are adjusted to balance that of the patient. (a) A rider enters the elevator at the
ground floor and stands on the first scale; it reads 150 lbs. Use the principle of equiv-
alence to answer the following questions. (i) As the elevator accelerates upward,
will the scale read less than, more than, or equal to 150 lbs? (ii) When the elevator
reaches its maximum speed and continues rising at this speed, will the scale read
less than, more than, or equal to 150 lbs? (iii) And as the elevator comes to rest at
the top floor, what will it read? (b) The rider repeats the experiment, standing this
time on the second scale. What will it read during each portion of the trip?

Problem 3.31 A laser is aimed horizontally near the earth’s surface, a distance y0�
above the ground; a pulse of light is then emitted. (a) How far will the pulse fall
by the time it has traveled a distance L? (b) What is the value of L if the pulse falls
by 0.1 nm, roughly the diameter of a hydrogen atom?

Problem 3.32 Note that in the Hafele–Keating experiments the total error in the�
eastward and westward flights was comparable, ±23 and ±21 ns, respectively, but
that the percentage error was much greater for the eastward flights. (a) What is
the reason for that? What is the lesson one might draw for other experiments or
theoretical calculations? (b) Note also that in the calculated differences between the
traveling and stay-at-home clocks, the special-relativistic (velocity) effect is nega-
tive for the eastward flights and positive for the westward flights. Why was that?

Problem 3.33 A hypothetical planet has an equatorial circumference of 40,000 km, a�
gravity g = 10 m/s2, and completes one revolution every 24 h. Aircraft A circles
eastward around the equator at constant altitude 10 km, while aircraft B circles
westward around the equator, both at altitude 10 km, except for the brief takeoffs
and landings, each requiring 40 h to make the trip from home base back to home
base. Atomic clocks are carried on both planes and others are left at home. What
are the calculated differences between the traveling and stay-at-home clocks due
to (a) altitude effects, (b) velocity (special-relativistic) effects, and (c) the net
predicted effect, both for clocks carried on A and on B?
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A notable advance in mechanics took place nearly a century after Newton in the
work of the French mathematician and physicist Joseph-Louis Lagrange (1736–
1813). Lagrange invented no new fundamental physics, but rather looked at
mechanics in a very different way, using variational techniques that gave fresh
insight and provided powerful methods for finding differential equations of motion.

We already introduced variational principles in Chapter 3, and showed that they
can give the equations of motion of nonrelativistic particles subject to arbitrary
conservative forces. Although useful, that is not enough: now we need to see if
other kinds of forces can be included in the variational approach. In this chapter we
will find that forces of constraint can be included as well, which provides us with
deep insights into mechanics and also enormous simplifications in problem solving.
We will introduce Hamilton’s principle and the Lagrangian, concepts that are so
elegant we are encouraged to place them at the very heart of classical mechanics.
We are further encouraged to do so in the following chapter, the capstone chapter
to Part I of the book, where we show how they naturally emerge as we take the
classical limit of the vastly more comprehensive theory of quantum mechanics.

4.1 Nonconservative Forces

In our initial exploration at the end of Chapter 3 we permitted only conservative
forces, forces that can be derived from a potential energy function. Now what
about nonconservative forces, like air resistance and sliding friction? These forces
typically reduce the energy of a particle. For example, the force of friction Ff

acting on a block sliding along a tabletop typically does negative work on the
block, dW = Ff · ds < 0, since the direction of the frictional force is opposite to
that of the block’s displacement.

In the elegant techniques we will develop in this chapter, we will assume that no
such nonconservative forces act on our system. This will not be a serious problem,
however; nonconservative forces are typically macroscopic forces, caused by the
interactions of our system with vast numbers of molecules in the air or on a
surface; that is, nonconservative forces are typically not fundamental. It is possible
to include such forces in the variational methods of this chapter, but it is seldom
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worth it. If friction is important in a particular problem, it is safest to revert to using
F=ma and forget the elegance. If we reject nonconservative forces, what is left?

There is another important type of force which is neither conservative nor
nonconservative, as we shall now see.

4.2 Forces of Constraint and Generalized Coordinates

Suppose that a particular particle is free to move in all three dimensions, so three
coordinates are needed to specify its position. The coordinates might be Cartesian
(x, y, z), cylindrical (ρ,ϕ, z), spherical (r, θ,φ), as illustrated in Figure 4.1, or they
might be any other complete set of three (not necessarily orthogonal) coordinates.1

A different particle may be less free: it might be constrained to move on a
tabletop, or along a wire, or within the confines of a closed box, for example.
The constraint is enforced by a force of constraint. It is a normal force FN of the
tabletop on a particle that keeps the particle from falling to the ground, and it is
likewise the tension force FT in a supporting wire that ensures that a pendulum
bob moves in a circular arc as it swings back and forth. Such constraint forces
are neither conservative nor nonconservative. They are not conservative, because
their magnitudes are not functions of position only. For example, the tension in a
pendulum wire can depend not only upon the angle of the pendulum relative to
the vertical, but also upon how fast the bob is moving at that point, which depends
on how fast the bob is pushed before it is released to swing on its own. Also,
if (as is often the case) the force of constraint FC is always perpendicular to the
displacement of the particle δs, then FC does no work, and so neither adds nor
subtracts from the energy of the particle.

Sometimes the presence of a constraint means that fewer than three coordinates
are required to specify the position of the particle. So if the particle is restricted to
slide on the surface of a table, for example, only two coordinates are needed. Or
if the particle is a bead sliding along a frictionless hoop, we need only a single
coordinate, say the angle denoting the location of the bead along the hoop. In
contrast, if the particle is confined to move within a closed three-dimensional box,
the constraint does not reduce the number of coordinates required: we still need
three coordinates to specify the position of the particle inside the box.

A constraint that reduces the number of coordinates needed to specify the
position of a particle is called a holonomic constraint. The requirement that a
particle move anywhere on a tabletop is a holonomic constraint, for example,
because the minimum set of required coordinates is lowered from three to two,
from (say) (x, y, z) to (x, y). The requirement that a bead move on a wire in the
shape of a hoop is a holonomic constraint, because the minimum set of required

1 Note that in spherical coordinates the radius r is the distance from the origin, while in cylindrical coordinates ρ
is the distance from the vertical (z) axis.
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coordinates is lowered from three to one, from (say) cylindrical coordinates
(ρ,ϕ, z) to just ϕ. The requirement that a particle remains within a closed box is
nonholonomic, because a requirement that x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2
does not reduce the number of coordinates required to locate the particle.

Cartesian

y
x

z

cylindrical spherical

zz

Fig. 4.1 Cartesian, cylindrical, and spherical coordinates.

For an unconstrained single particle, three coordinates are needed; or if there is
a holonomic constraint, the number of coordinates is reduced to two or one. We
call a minimal set of required independent coordinates generalized coordinates
and denote them by qk, where k= 1 up to 3. For each generalized coordinate there
is a generalized velocity q̇k = dqk/dt. For example, for a bead on a fixed hoop,
one choice of generalized coordinates consists of the single coordinate q1 =ϕ, the
angle at which the bead is located along the hoop. The three cylindrical coordinates
ρ, ϕ, and z are not generalized coordinates in this case: there are two constraint
relations amongst the three coordinates which assure that the bead stays along
the hoop – i.e., r = constant and z = constant. Note that a generalized velocity
does not necessarily have the dimensions of length/time, just as a generalized
coordinate does not necessarily have the dimensions of length. For example, the
angle ϕ in cylindrical coordinates is dimensionless, and its generalized velocity ϕ̇
has dimensions of inverse time.

4.3 Hamilton’s Principle

The quantity

L = T − U (4.1)

is called the Lagrangian of the particle. As we just saw at the end of Chapter 3,
using the Lagrangian as the integrand in the variational problem gives us the correct
equations of motion, at least in Cartesian coordinates, for any conservative force.
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We now have an interesting proposal at hand: reformulate the equations of
motion of nonrelativistic mechanics, F = dp/dt, in terms of a variational principle
making stationary a certain functional. This has two benefits:

1. It is an interesting idea to think of dynamics as arising from making a certain
physical quantity stationary; we will appreciate some of these aspects in due
time, especially when we get to the chapters on the connections between
classical and quantum mechanics.

2. This reformulation provides powerful computational tools that can allow us to
solve complex mechanics problems with greater ease. The formalism also lends
itself more transparently to computer algorithms.

Having chosen a set of generalized coordinates qk for a particle, the integrand L
in the variational problem, the Lagrangian, can be written

L = T − U = L(t, q1, q2, . . . , q̇1, q̇2, . . .) = L(t, qk, q̇k), (4.2)

written in terms of the generalized coordinates, generalized velocities, and time.2
Given a mechanical system described by means of N dynamical generalized

coordinates labeled qk(t), with k = 1, 2, . . . , N, we define its action S[qk(t)] as
the functional of the time integral over the Lagrangian L, from a starting time ta to
an ending time tb:

S[qk(t)] =
∫ tb

ta

dt L(t, q1, q2, . . . , q̇1, q̇2, . . .) ≡
∫ tb

ta

dt L(t, qk, q̇k). (4.3)

It is understood that the particle begins at some definite position (q1, q2, . . .)a at
time ta and ends at some definite position (q1, q2, . . .)b at time tb. We then propose
that, for trajectories qk(t) where S is stationary – i.e., when

δS = δ

∫ tb

ta

L(t, qk, q̇k) dt = 0, (4.4)

the qk(t)s satisfy the equations of motion for the system with the prescribed
boundary conditions at ta and tb. This proposal was first enunciated by the Irish
mathematician and physicist William Rowan Hamilton (1805–1865), and is called
Hamilton’s principle.3 From Hamilton’s principle and our discussion of the
previous chapter, we deduce the N Lagrange equations

d
dt

∂L
∂q̇k

− ∂L
∂qk

= 0 (k = 1, 2, . . . , N). (4.5)

2 Here, we are assuming that the Lagrangian does not involve dependence on higher derivatives of qk, such as
q̈k. It can be shown that such terms lead to differential equations of the third or higher orders in time (see the
Problems section at the end of this chapter). Our goal is to reproduce traditional Newtonian and relativistic
mechanics involving differential equations that are no higher than second order.

3 It is also sometimes called the principle of least action or the principle of stationary action. This can be
confusing, however, because there is an older principle called the “principle of least action” that is quite
different.
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These then have to be the equations of motion of the system if Hamilton’s
principle is correct. Note that we need to express the Lagrangian in terms
of generalized coordinates qk since the variational principle assumes that the
perturbed variables in the functional are independent: if we were to use instead
all the variables describing the system, there could be constraint relations amongst
them implying that the corresponding variations in Eq. (3.67) (writing δy →
δq) are not independent and the corresponding Eqs. (3.68) or (4.5) do not then
follow.

Consider a general physical system involving only conservative forces and a
number of particles – constrained or otherwise. We are proposing that we can
describe the dynamics of this system fully through Hamilton’s principle, using the
Lagrangian L = T−U, the difference between the total kinetic energy and the total
potential energy of the system – written in terms of generalized coordinates. For
a single particle under the influence of a conservative force, and described with
Cartesian coordinates, we have already shown that this is indeed possible (see Eqs.
(3.101) through (4.1)). The question is whether we can extend this new technology
to more general situations with several particles, constraints, and described with
arbitrary coordinate systems. There are several issues we need to tackle in this
process:

1. Does changing the coordinate system in which we express the kinetic and
potential energies generate any obstacles to the formalism? The answer to this
is “no,” since the functional we extremize – which is the action – is a scalar
quantity: its value does not change under coordinate transformations qk → q′k

S =

∫
dt L(t, qk, q̇k) =

∫
dt L(t, q′k, q̇′k). (4.6)

The coordinate change simply relabels the stationary path of the functional;
that is, the path at the extremum transforms as qsol

k (t) → q′k
sol(t), where

q′k
sol(t) is the stationary path of S expressed in the new coordinates. Hence,

we can safely perform coordinate transformations as long as we always write
the Lagrangian as kinetic minus potential energy in our preferred coordinate
system.

2. Constraints provide for relations between the variables describing a mechanical
system, and so reduce their number to a minimal set of generalized coordinates.
This was the premise of the variational principle: the generalized coordinates
must be independent. Therefore, no constraint would interfere with the varia-
tional principle as long as we express L= T − U in terms of the generalized
coordinates. But constraints on the coordinates are due to forces in the system
that restrict the dynamics. For example, the normal force pushes upward to make
sure a block stays on the floor; likewise, the tension force in a rope constrains
the motion of a pendulum bob. Can we be certain that these forces should not
be included in the potential energy U that appears in L? To ensure that this is the
case, we need to ascertain that such constraint forces do no work, and hence do
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not have any net energetic contribution to U. This is not always easy to see. We
will demonstrate the mechanism at work through examples, and then identify
the general strategy.

3. Should we expect any obstacles to the formalism when we have more than one
particle? Do we simply add the kinetic and potential energies of all the particles?
With two or more particles, shouldn’t we worry about Newton’s third law? We
will see soon that the Lagrangian formalism incorporates Newton’s third law
through symmetries of the Lagrangian and indeed can handle many-particle
systems very well.

4. Where is Newton’s first law in this formalism? This is indeed an important
potential pitfall: one should always write the kinetic energy and potential energy
in L = T − U as seen from the perspective of an inertial observer. This is
because our contact with mechanics is through the reproduction of Newton’s
second law, F = ma – which is valid only in an inertial frame. Hence, the first
law is hidden in the prescription L = T − U, which must be expressed from an
inertial perspective.

The punchline of all this is that, for arbitrarily complicated systems with many
constraints and involving many particles interacting with conservative forces,
the Lagrangian formalism works, and is extremely powerful. Newton’s second
law follows from Hamilton’s principle, the third law arises, as we will see, from
symmetries of the Lagrangian, and the first law is respected by making sure that the
Lagrangian is written from the perspective of an inertial observer. It is important
to emphasize that the Lagrangian formalism does not introduce new physics. It
is a mathematical reformulation of mechanics, both nonrelativistic and relativistic.
What it does is give us powerful new technical tools to tackle problems with greater
ease and less work; a deeper insight into the laws of physics and how Nature
ticks; and, as we shall see later, how the classical world is linked to the quantum
realm.

Example 4.1 A Simple Pendulum
An inertial observer sees that a small plumb bob of mass m is free to swing back and forth in a vertical x–
z plane at the end of a string of length R. The position of the bob can be specified uniquely by its angle θ
measured up from its equilibrium position at the bottom, so we choose θ as the generalized coordinate, as
illustrated in Figure 4.2. The bob’s kinetic energy is

T =
1
2

m v2 =
1
2

m (ẋ2 + ẏ2 + ż2) =
1
2

m (ṙ2 + r2θ̇2 + ż2) =
1
2

m (R2θ̇2). (4.7)

We have introduced polar coordinates r and θ in the vertical x–z plane, and then implemented the constraint
equations r = R (with ṙ = 0) and y = 0 (with ẏ = 0). Its potential energy is U = mgh =

mgR(1 − cos θ), measuring the bob’s height h up from its lowest point. The Lagrangian of the bob is
therefore
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Fig. 4.2 The simple pendulum, with θ as the generalized coordinate.

L = T − U =
1
2

mR2θ̇2 − mgR(1 − cos θ). (4.8)

The constraint reduces the dynamics from three coordinates x, y, and z to only one, θ, a single degree of
freedom. The single Euler equation in this case is

∂L
∂θ

− d
dt
∂L

∂θ̇
= −mgR sin θ − d

dt

(
mR2θ̇

)
= 0, (4.9)

which reduces to the well-known “pendulum equation”

θ̈ + (g/R) sin θ = 0. (4.10)

Note that Eq. (4.9) (or (4.10)) is equivalent to τ = Iθ̈, where the torque τ = −mgR sin θ is taken about
the point of suspension (negative because it is opposite to the direction of increasing θ), and the moment of
inertia of the bob is I = m R2.

Note also two twists here. First, we switched from Cartesian to polar coordinates, which is no problem
in the Lagrangian formalism, since the action is a scalar quantity. Second, we implemented constraints
r = R, implying ṙ = 0, and y = 0, implying ẏ = 0. The former is responsible for holding the
bob at fixed distance from the pivot, due to the tension force in the rope. The latter keeps the bob in
the x–z plane. By implementing these constraints we reduced the problem from three to a single degree
of freedom. There are two forces acting on the bob: gravity and the tension in the rope. The Lagrangian
already accounts for the gravitational force through the gravitational potential energy. But what about the
tension force responsible for the r = R constraint? This tension in the rope does no work: it is always
perpendicular to the motion of the bob, and hence the work contribution T · dr = 0, where T is the
tension force and dr is the displacement of the bob. Thus, our potential energy U – related to work done
by a force – is simply the potential energy due to gravity alone, U = mgh. In general, whenever a contact
force remains perpendicular to the displacement of the particle, it can safely be ignored in constructing the
Lagrangian. Its impact on the problem comes instead through constraints that help identify a reduced set
of independent generalized coordinates. By using a single degree of freedom in the Lagrangian, the general
coordinate θ, we have taken care of the tension force as well – thus fully accounting for all the forces on
the bob. �
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Example 4.2 A Bead Sliding on a Vertical Helix
A bead of mass m is slipped onto a frictionless wire wound in the shape of a helix of radius R, whose symmetry
axis is oriented vertically in a uniform gravitational field, as shown in Figure 4.3. As always, we assume
the description is from an inertial frame’s perspective (unless explicitly stated otherwise). Using cylindrical
coordinatesρ, ϕ, z, the base of the helix is located at z = 0, ϕ = 0, and the angleϕ is related to the height
z at any point byϕ=αz, whereα is a constant with dimensions of inverse length. The gravitational potential
energy of the bead is U = mgz, and its kinetic energy is T = (1/2)mv2 = (1/2)m[ρ̇2 + ρ2ϕ̇2 + ż2].
However, the bead is constrained to move along the helix, so the bead’s radius is constant at ρ = R, and
(choosing z as the single generalized coordinate), ϕ̇ = αż. Therefore the kinetic energy of the bead is

T =
1
2

m v2 =
1
2

m (ẋ2 + ẏ2 + ż2) =
1
2

m (ρ̇2 + r2ϕ̇2 + ż2)

= (1/2)m[0 + α2R2 + 1]ż2, (4.11)

where we switched to cylindrical coordinates first and then implemented the two constraints ϕ = αz and
ρ = R. So the Lagrangian of the bead is

L = T − U =
1
2

m[1 + α2R2]ż2 − mgz (4.12)

in terms of the single generalized coordinate z and its generalized velocity ż. Two constraints reduced the
dynamics from three to only one degree of freedom. In Newtonian mechanics we need to take into account
the normal force of the wire on the bead as one of the forces in F = ma; however, the normal force appears
nowhere in the Lagrangian, because it does no work on the bead – it is always perpendicular to the bead’s
displacement. Once again, whenever a normal force is perpendicular to the displacement of a particle, we can
safely ignore it in setting up the Lagrangian of the particle. In this simple case, with a single normal force,
the simplification is not that impressive. However, in the more complicated scenarios we shall see later, the
advantages of using the Lagrangian approach, in which the normal force never appears, will become more
apparent. Lagrange’s method can save an enormous amount of effort.

Fig. 4.3 A bead sliding on a vertically oriented helical wire. �
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Example 4.3 Block on an Inclined Plane
A block of mass m slides down a frictionless plane tilted at angle α to the horizontal, as shown in Figure 4.4.
There is only a single degree of freedom here, say the distance X of the block from the bottom, measured along
the incline. The gravitational potential energy is mgh = mgX sin α. Using X as the generalized coordinate,
the velocity is Ẋ , and the Lagrangian of the block is

L = T − U =
1
2

mv2 − U =
1
2

mẊ2 − mgX sin α, (4.13)

which depends explicitly upon the single coordinate (X) and the single velocity (Ẋ). The Lagrange equation is

∂L
∂X

− d
dt
∂L
∂Ẋ

= −mg sin α− d
dt

mẊ = 0, or − mg sin α = mẌ , (4.14)

which is indeed the correct F = m a equation for the block along the tilted plane.

X
Y

Fig. 4.4 Block sliding down an inclined plane.

In this problem, we judiciously chose our only degree of freedom as X , the distance along the inclined
plane. If we had originally started with three coordinates, say X , Y , and Z, where Z is perpendicular to the
page, we would then set Z = 0 ⇒ Ż = 0 to confine the motion to the plane of the paper; then, we would
use the constraint Y = 0 ⇒ Ẏ = 0 since the block cannot sink into the inclined plane. We are then left
with a single degree of freedom, the general coordinate X . The Y = 0 constraint is associated with the normal
force that keeps the block on the incline. This normal force is always perpendicular to the displacement of the
block along the incline and thus does no work. So by writing the Lagrangian in terms of a single generalized
coordinate X we implicitly account for the normal force and only need to include the gravitational potential
energy in the Lagrangian. �

4.4 Generalized Momenta and Cyclic Coordinates

In Cartesian coordinates the kinetic energy of a particle is T = (1/2)m(ẋ2+ẏ2+ż2),
whose derivatives with respect to the velocity components are ∂L/∂ẋ = mẋ, etc.,
which are the components of momentum. So with generalized coordinates qk, it is
natural to define the generalized momenta pk as
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pk ≡
∂L
∂q̇k

. (4.15)

In terms of pk, the Lagrange equations become simply
dpk
dt

=
∂L
∂qk

. (4.16)

Now sometimes a particular coordinate ql is absent from the Lagrangian. Its
generalized velocity q̇l is present, but not ql itself. A missing coordinate is said
to be a cyclic coordinate or an ignorable coordinate.4 For any such coordinate
the Lagrange equation (4.16) tells us that the time derivative of the corresponding
generalized momentum is zero, so that particular generalized momentum is
conserved:

dpk
dt

=
∂L
∂qk

= 0. (4.17)

One of the first things to notice about a Lagrangian is whether there are any
cyclic coordinates, because any such coordinate leads to a conservation law that
is also a first integral of motion. This means that the equation of motion for that
coordinate is already half solved, in that it is only a first-order differential equation
rather than the second-order differential equation one typically gets for a noncyclic
coordinate.

Example 4.4 Particle on a Tabletop, with a Central Force

y

x

z

Fig. 4.5 Particle moving on a tabletop.

For a particle moving in two dimensions and subject to a central force, it is best to use polar coordinates (r, θ)
about the origin, as shown in Figure 4.5. The kinetic energy of the particle is

T =
1
2

m v2 =
1
2

m (ẋ2 + ẏ2 + ż2) =
1
2

m
[

ṙ2 + (rθ̇)2
]

, (4.18)

4 Neither “cyclic” nor “ignorable” is a particularly appropriate or descriptive name for a coordinate absent from
the Lagrangian, but they are nevertheless the conventional terms. In this book we will most often call any
missing coordinate “cyclic.”
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where we used the constraint ż = 0 related to the normal force being applied by the table onto the particle
vertically. This force does no work and hence does not appear explicitly in the Lagrangian.

We will assume here that any force acting on the particle is a central force, depending upon r alone, so the
potential energy U of the particle also depends upon r alone. The Lagrangian is therefore

L =
1
2

m(ṙ2 + r2θ̇2)− U(r). (4.19)

Our two degrees of freedom are r and θ and they are our generalized coordinates. We note right away that in
this case the coordinate θ is cyclic, so there must be a conserved quantity

pθ ≡ ∂L

∂θ̇
= mr2θ̇, (4.20)

which we recognize as the angular momentum of the particle. In Lagrange’s approach, pθ is conserved
because θ is a cyclic coordinate; in Newtonian mechanics, pθ is conserved because there is no torque on the
particle, since we assumed that any force is a central force. The Lagrange equations

− d
dt
∂L
∂ ṙ

=
∂L
∂r

and − d
dt
∂L

∂θ̇
=

∂L
∂θ

(4.21)

become

mrθ̇2 + m̈r = −∂U(r)
∂r

and − dpθ
dt

= − d
dt

(
m r2θ̇

)
= 0 (4.22)

or

m(̈r − rθ̇2) ≡ mar = Fr and m(rθ̈ + 2ṙθ̇)maθ = Fθ = 0, (4.23)

where the radial force is Fr = −∂U/∂r and the radial and tangential accelerations area

ar = r̈ − rθ̇2 and aϕ = rθ̈ + 2ṙθ̇. (4.24)

In Example 1.6 we found (using F = ma) the equations of motion of a particle of mass m in two dimensions
at the end of a spring of zero natural length and force constant k, with one end of the spring fixed. There we
used Cartesian coordinates (x, y). Now we are equipped to write the equations of motion in polar coordinates
instead. Equations (4.22) with U = (1/2)kr2 give

m(̈r − rθ̇2) = −kr and pθ = mr2θ̇ = constant. (4.25)

That is, since the Lagrangian is independent of θ, we immediately get the first integral of motion pθ =
constant. Eliminating θ̇ between the two equations, we find the purely radial equation

r̈ − (pθ)2

m2r3 + ω2
0 r = 0, (4.26)

whereω0 =
√

k/m is the natural frequency the spring–mass system would have if the mass were oscillating
in one dimension (which in fact it would do if the angular momentum pθ happened to be zero). Note that even
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though the motion is generally two-dimensional, Eq. (4.26) contains only r(t). We can then find a second
integral of motion because this equation has the form of a one-dimensional ma = F equation with

m̈r =
p2
θ

mr3 − mω2
0 r ≡ −dUeff

dr
= F(r). (4.27)

The effective potential energy Ueff can be found as

Ueff(r) = −
∫ r

F(r) dr = −
∫ r ( p2

θ

mr3 − mω2
0 r
)

dr =
p2
θ

2mr2 +
1
2

kr2 (4.28)

plus a constant of integration, which we might as well set to zero. Therefore, the second first integral of motion
is given by energy conservation in this one-dimensional system:b

1
2

mṙ2 +
(pθ)2

2mr2 +
1
2

kr2 =
1
2

mṙ2 + Ueff = constant = E. (4.29)

A sketch of Ueff is shown in Figure 4.6. Note that Ueff has a minimum, which is the location of an equilibrium
point (the value of r for which dUeff(r)/dr = 0 is of course also the radius for which r̈ = 0; see Eq. (4.27)). If r
remains at the minimum of Ueff , the mass is actually circling the origin. The motion about this point is stable
because the potential energy is a minimum there, so for small displacements from equilibrium the particle
oscillates back and forth about this equilibrium radius as it orbits the origin. In Section 4.9 we will calculate
the frequency of these oscillations. For now, we can write a closed-integral form of the full solution of the
problem by solving for ṙ in Eq. (4.29) and integrating:

Fig. 4.6 The effective radial potential energy for a mass m moving with an effective
potential energy Ueff =(pθ)2/2mr2 +(1/2)kr2 for various values of pθ, m, and k.

∫
dt =

∫
dr√

2 E/m − Ueff(r)
. (4.30)
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This example demonstrates the use of coordinate transformations in the Lagrangian formalism. In this
case, we see how useful it is to be able to change coordinates when solving problems in Lagrangian
mechanics. �

aNote how easy it is to get the expressions for radial and tangential accelerations in polar coordinates using this method. They are often found
in classical mechanics by differentiating the position vector r = rr̂ twice with respect to time, which involves rather tricky derivatives of the
unit vectors r̂ and θ̂.

bSee Example 1.9.

Example 4.5 The Spherical Pendulum
A ball of mass m swings on the end of an unstretchable string of length R in the presence of a uniform
gravitational field g. This is often called the “spherical pendulum,” because the ball moves as though it were
sliding on the frictionless surface of a spherical bowl. We aim to find its equations of motion.

The ball has two degrees of freedom:

(i) It can move horizontally around a vertical axis passing through the point of support, corresponding to
changes in its azimuthal angleφ. (On earth’s surface this would correspond to a change in longitude.)

(ii) It can also move in the polar direction, as described by the angle θ. (On earth’s surface this would
correspond to a change in latitude.)

These angles are illustrated in Figure 4.7. In spherical coordinates, the velocity squared is

v2 = ṙ2 + r2θ̇2 + r2 sin2 θφ̇2 = R2θ̇2 + R2 sin2 θφ̇2 (4.31)

using the constraint r = R. We are left with two degrees of freedom, with corresponding variables θ andφ.
We know once again that the tension force is always perpendicular to the displacement in this problem, and
so can be thrown away through the use of a constraint. Note that the velocities in the θ andφ directions are
vθ = Rθ̇ and vφ = R sin θφ̇, which are perpendicular to one another; therefore

Fig. 4.7 Coordinates of a ball hanging on an unstretchable string.
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T =
1
2

m v2 =
1
2

m R2(θ̇2 + sin2 θφ̇2). (4.32)

The altitude h of the ball, measured from its lowest possible point, is h = R(1− cos θ), so the potential
energy can be written

U = mgh = mgR(1 − cos θ). (4.33)

The Lagrangian is therefore

L = T − U =
1
2

mR2(θ̇2 + sin2 θφ̇2)− mgR(1 − cos θ). (4.34)

The derivatives of L are

∂L
∂θ

= mR2 sin θ cos θφ̇2 − mgR sin θ,
∂L

∂θ̇
= mR2θ̇, (4.35)

∂L
∂φ

= 0,
∂L

∂φ̇
= mR2 sin2 θ φ̇, (4.36)

and so the Lagrange equations are

∂L
∂θ

− d
dt
∂L

∂θ̇
= 0 and

∂L
∂φ

− d
dt

∂L

∂φ̇
= 0. (4.37)

Note thatφ is cyclic, so the corresponding generalized momentum is

pφ =
∂L

∂φ̇
= mR2 sin2 θ φ̇ = constant, (4.38)

which is an immediate first integral of motion. We identify pφ as the angular momentum about the
vertical axis.

Now since

∂L

∂θ̇
= mR2θ̇, (4.39)

the θ equation can be written

mR2θ̈ = mR2 sin θ cos θφ̇2 − mgR sin θ, (4.40)

so

θ̈ − sin θ cos θ φ̇2 +
( g

R

)
sin θ = 0. (4.41)

We can eliminate the φ̇2 term using φ̇ = pφ/(mR2 sin2 θ) from Eq. (4.38), to give

θ̈ −
( pφ

mR2

)2 cos θ
sin3 θ

+
( g

R

)
sin θ = 0, (4.42)

a second-order differential equation for the polar angle θ as a function of time.
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Do we have to tackle this differential equation head-on? Not if we can find another integral of motion
instead. We have already identified one first integral, the conservation of angular momentum (4.38) about
the vertical axis. Another first integral is energy conservation

E = T + U =
1
2

mR2(θ̇2 + sin2 θφ̇2) + mgR(1 − cos θ), (4.43)

valid because no work is being done on the ball aside from the work done by gravity, which is already
accounted for in the potential energy. By combining the two conservation laws (4.38) and (4.43), we can
eliminate φ̇ and write

E =
1
2

mR2θ̇2 +
(pφ)2

2mR2 sin2 θ
+ mgR(1 − cos θ) = constant (4.44)

or

E =
1
2

mR2θ̇2 + Ueff , (4.45)

where the “effective potential energy” is

Ueff =
(pφ)2

2mR2 sin2 θ
+ mgR(1 − cos θ). (4.46)

This effective potential energy Ueff is sketched in Figure 4.8. The second term is the actual gravitational
potential energy, while the first term is really a piece of the kinetic energy that has become a function of
position only, thanks to angular momentum conservation. We can then solve for θ̇ in Eq. (4.45), separate the
variables t and θ, and integrate to find

Fig. 4.8 A sketch of the effective potential energy Ueff for a spherical pendulum. A ball
at the minimum of Ueff is circling the vertical axis passing through the point of
suspension, at constant θ. The fact that there is a potential energy minimum at some
angle θ0 means that if disturbed from this value the ball will oscillate back and forth
about θ0 as it orbits the vertical axis.
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t(θ) =

√
mR2

2

∫ θ

θ0

dθ√
(E − mgR)− (pφ)2/(2mR2 sin2 θ) + mgR cos θ

. (4.47)

In summary, the constraint reduced the number of degrees of freedom – from three to two in this case.
The associated tension constraint force does no work, since it is perpendicular to the trajectory; we did not
need to include its contribution in the Lagrangian. There were only two generalized coordinates, and we were
able to solve the problem by finding two first integrals of motion. �

4.5 Systems of Particles

So far we have treated the motion of single particles only, described by at most
three generalized coordinates and three generalized velocities. But often we want to
find the motion of systems of particles, in which two or more particles may interact
with one another, like two blocks on opposite ends of a spring, or several stars
orbiting around one another. Can we still use the variational approach, by writing
down a Lagrangian that contains the total kinetic energy and the total potential
energy of the entire system?

Begin with a system of two particles, with masses m1 and m2, confined to move
along a horizontal frictionless rail. Figure 4.9 shows a picture of the system, where
we label the coordinates of the particles x1 and x2. We write an action for the system

S =

∫
dt
(

1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 − U(x2 − x1)

)
(4.48)

Fig. 4.9 Two interacting beads on a one-dimensional frictionless rail. The interaction between the particles
depends only on the distance between them.

where, in addition to the usual kinetic energy terms, there is some unknown
interaction between the particles described by a potential U(x2 − x1). Note that we
use the total kinetic energy, and we assume that the potential – hence the associated
force law – depends only upon the distance between the particles. We then have two
equations of motion with two generalized coordinates, x1 and x2, so that

d
dt

(
∂L
∂ẋ1

)
− ∂L

∂x1
= 0 ⇒ m1ẍ1 = − ∂U

∂x1
(4.49)
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and
d
dt

(
∂L
∂ẋ2

)
− ∂L

∂x2
= 0 ⇒ m2ẍ2 = − ∂U

∂x2
= +

∂U
∂x1

, (4.50)

where in the last step we used the fact that U = U(x2 − x1). The equations are
equivalent to Newton’s second law applied to each of the two particles: kinetic
energy is additive and each of its terms will generally give the ma part of Newton’s
second law for the corresponding particle. Hence, in multi-particle systems we
need to consider the total kinetic energy T minus the total potential energy. Terms
that mix the variables of different particles, such as U(x2−x1), will give the correct
forces on the particles as well. In this case, we see that the action–reaction pair,
∂U/∂x1 = −∂U/∂x2, comes out for free, and arises from the fact that the force
law depends only on the distance between the particles! That is, Newton’s third
law is naturally incorporated in the formalism and originates from the fact that
forces between two particles depend only upon the distance between the interacting
entities, and not (say) their absolute positions.

In such a case the total momentum of the system must be conserved, which is
easily verified simply by adding the two Eqs. (4.49) and (4.50), giving

d
dt
(m1ẋ1 + m2ẋ2) = 0. (4.51)

These results suggest that there must be a more transparent set of generalized
coordinates to use here, in which one of the new coordinates is cyclic, so that its
generalized momentum will be conserved automatically. These new coordinates
are the center of mass and relative coordinates

X ≡ m1x1 + m2x2

M
and x ≡ x2 − x1, (4.52)

where M = m1 + m2 is the total mass of the system. Note that X and x are simply
linear combinations of x1 and x2. Then in terms of X and x, it is straightforward to
show that the Lagrangian of the system has the form

L =
1
2

MẊ2 +
1
2
μẋ2 − U(x), (4.53)

where μ ≡ m1m2/M is called the reduced mass of the system (note that μ is in fact
smaller than either m1 or m2). Using this Lagrangian, it is obvious that the center
of mass coordinate X is cyclic, so the corresponding momentum

P =
∂L
∂Ẋ

= MẊ ≡ m1ẋ1 + m2ẋ2 (4.54)

is conserved; this is simply the conservation of the total momentum. The setup
easily extends to the case with an arbitrary number of particles – pairwise
interacting with forces that depend on the distance between them. Action–reaction
pairs would immediately arise realizing Newton’s third law, and the sum of all the
momenta would be conserved.
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This problem is also an example of reducing a two-body problem to an
equivalent one-body problem through a coordinate transformation. The motion of
the center of mass of the system is trivial: the center of mass just drifts along at
constant velocity. The interesting motion of the particles is their relative motion
x, which behaves as though it were a single particle of mass μ and position x(t)
subject to the potential energy U(x), with Lagrangian

L =
1
2
μẋ2 − U(x). (4.55)

This problem exemplifies the fact that coordinate transformations of the
Lagrangian can be a very powerful technique.

Example 4.6 Pulleys Everywhere

Fig. 4.10 A contraption of pulleys. We want to find the accelerations of all three weights. We
assume that the three pulleys have negligible mass so they have negligible kinetic
and potential energies.

Another classic set of mechanics problems involves pulleys, often lots of pulleys. Consider the setup shown
in Figure 4.10. Two weights, with masses m1 and m2, hang on the outside of a three-pulley system, while a
weight of mass M hangs on the middle pulley. We assume the pulleys and the connecting rope have negligible
mass, so their kinetic and potential energies are also negligible. We will suppose for now that all three pulleys
have the same radius R, but this will turn out to be of no importance. We want to find the accelerations of
m1, m2, and M. We construct a Cartesian coordinate system as shown in the figure, which remains fixed in the
inertial frame of the ground. First of all, note that there are three massive objects moving in two dimensions,
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so we might think that we have six variables to track, x1 and y1 for weight m1, x2 and y2 for weight m2, and X
and Y for weight M. We can then write the total kinetic energy

T =
1
2

m1 (ẋ2
1 + ẏ2

1) +
1
2

m2 (ẋ2
2 + ẏ2

2) +
1
2

M (Ẋ2 + Ẏ 2). (4.56)

But that is obviously overkill. We know the dynamics is entirely vertical, so we can focus on y1, y2, and Y only
and set ẋ1 = ẋ2 = Ẋ = 0. But that is still too much. There are only two degrees of freedom in this problem!
Just pick any two of y1, y2, or Y , and we can draw the figure uniquely, as long as we know the length of the
rope. Another way of saying this is to write

Length of rope = (H − y1) + 2 (H − Y) + (H − y2) + 3πR, (4.57)

where H is the height of the upper-pulley centers, as shown in the figure. We can therefore write in general

y1 + 2 Y + y2 = constant, (4.58)

which can be used to eliminate one of the three variables. We choose to get rid of Y , writing

Y = − y1 + y2

2
+ constant, (4.59)

which implies

Ẏ = − ẏ1 + ẏ2

2
. (4.60)

We can now write our kinetic energy in terms of two variables only, y1 and y2:

T =
1
2

m1 ẏ2
1 +

1
2

m2 ẏ2
2 +

1
2

M
(

ẏ1 + ẏ2

2

)2

. (4.61)

We next need the potential energy, which is entirely gravitational. We can write

U = m1g y1 + m2g y2 + M g Y

= m1g y1 + m2g y2 − M g
(

y1 + y2

2

)
+ constant, (4.62)

where the zero of the potential was chosen at the ground, and we can also drop the additive constant
term since it does not affect the equations of motion. In summary, we have a variational problem with the
Lagrangian

L = T − U =
1
2

m1 ẏ2
1 +

1
2

m2 ẏ2
2 +

1
2

M
(

ẏ1 + ẏ2

2

)2

− m1g y1 − m2g y2 + Mg
(

y1 + y2

2

)
. (4.63)

There are two dependent variables y1 and y2, so we have two equations of motion:

d
dt

(
∂L
∂ ẏ1

)
− ∂L

∂y1
= 0 ⇒ m1ÿ1 +

M
4
(̈y1 + ÿ2) = −m1g +

M g
2

(4.64)
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and

d
dt

(
∂L
∂ ẏ2

)
− ∂L

∂y2
= 0 ⇒ m2ÿ2 +

M
4
(̈y1 + ÿ2) = −m2g +

M g
2

. (4.65)

We can now solve for ÿ1 and ÿ2:

ÿ1 = −g +
4 m2g

m1 + m2 + 4 m1 m2/M
,

ÿ2 = −g +
4 m1g

m1 + m2 + 4 m1 m2/M
. (4.66)

Note that these accelerations have magnitudes less than g, as we might expect intuitively. We can also find Ÿ
from Eq. (4.60):

Ÿ = − ÿ1 + ÿ2

2
⇒ Ÿ = g − 2 (m1 + m2)g

m1 + m2 + 4 m1 m2/M
. (4.67)

The astute reader may rightfully wonder whether we have overlooked something in this treatment. We
never encountered the tension force of the rope on each of the masses! Consider the two tension forces T1

and T2 at the end of this (or any) massless rope. If we wanted to account for such forces in a Lagrangian, we
would need the associated energy, or work, they contribute to the system. Since the rope has zero mass, we
know that |T1| = |T2|. The two tension forces, however, point in opposite directions. When one end of the
rope moves byΔs1 > 0 parallel to T1, T1 does work W1 = |T1|Δs1. At the same time, the other end must
move the same distance Δs2 = Δs1. However, at this other end, the tension force points opposite to the
displacement, and the work is W2 = −|T2|Δs2 = −|T1|Δs1. The total work is W = W1 + W2 = 0.
Therefore, the tension forces along a massless rope will always contribute zero work, and hence cannot be
associated with energy in the Lagrangian. The constraint given by Eq. (4.57), which eliminated one of the
three variables, implements the physical condition that the rope has constant length. This is related to the
existence of tension in the rope: if the tension were zero, there would be no rope and hence the constraint
Δs1 = Δs2. Thus, the fact that there is no work associated with the tension is related to the use of the
constraint to reduce the problem to two generalized coordinates. �

Example 4.7 A Block on a Movable Inclined Plane
Let us return to the classic problem of a block sliding down a frictionless inclined plane, as in Example 4.2,
except that we will make things a bit more interesting: now the inclined plane itself is allowed to move.
Figure 4.11(a) shows the system. A block of mass m rests on an inclined plane of mass M: both the block and
the inclined plane are free to move without friction. The plane’s angle is denoted byα. The problem is to find
the acceleration of the block.

The observation deck is the ground, which is taken as an inertial reference frame. Note that the inclined
plane is not an inertial reference frame, because it will accelerate to the left as the block slides down. We set up
a convenient set of Cartesian coordinates, as shown in the figure. The origin is shifted to the top of the incline
at zero time to make the geometry easier to analyze. We start by identifying the degrees of freedom. At first,
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(a) (b)

Fig. 4.11 A block slides along an inclined plane. Both block and inclined plane are free to
move along frictionless contact surfaces. (a) The coordinate system used. (b) The
normal contact forces at the block–inclined plane interface.

we can think of the block and inclined plane as moving in the two dimensions of the problem. The block’s
coordinates could be denoted by x and y, and the inclined plane’s coordinates by X and Y . But we quickly
realize that this would be overkill: if we specify X , and how far down the top of the incline the block is located
(denoted by D in the figure), we can draw the figure uniquely. This is because the inclined plane cannot move
vertically, either jumping off the ground or burrowing into it (that’s one condition), so Y is unnecessary; and
the horizontal position x or vertical position y of the block is determined by X and D (these correspond to the
second condition that the block cannot sink through the incline). We then start with four coordinates, add
two conditions or restrictions, and we are left with two degrees of freedom. The choice of the two remaining
generalized coordinates is arbitrary, as long as the choice uniquely fixes the geometry. We will pick X and D,
although we might have chosen X and x, for example.

Next, we need to write the Lagrangian. The starting point for this is the total kinetic energy of the system:

T =
1
2

m
(

ẋ2 + ẏ2)+ 1
2

M
(

Ẋ2 + Ẏ 2) (4.68)

in the inertial frame of the ground. Note that we must begin by writing the kinetic energy in an inertial frame
before rewriting it in terms of the two degrees of freedom X and D alone. This requires a bit of geometry.
Looking back at the figure, we can write the two constraint conditions as

Y = 0, x = X + D cos α, and y = −D sin α. (4.69)

This implies

Ẏ = 0, ẋ = Ẋ + Ḋ cos α, and ẏ = −Ḋ sin α. (4.70)

We can now substitute these into Eq. (4.68) and get

T =
1
2

M Ẋ2 +
1
2

m Ẋ2 +
1
2

m Ḋ2 + m Ẋ Ḋ cos α. (4.71)
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Note that this result, in terms of the generalized coordinates and velocities, would have been very difficult
to guess, especially the ẊḊ term. Again, it is very important to start by writing the kinetic energy first in an
inertial frame, and often important to use Cartesian coordinates in this initial expression to be confident that
it has been done correctly.

We now need the potential energy of the system, which is entirely gravitational. The inclined plane’s
potential energy does not change. Since it is a constant, we need not add it to the Lagrangian: the Lagrange
equations of motion involve partial derivatives of L and, hence, a constant term in L is irrelevant to the
dynamics. In contrast, the block’s potential energy does change. We can choose the zero of the potential at
the origin of our coordinate system and write

U = m g y = −m g D sin α. (4.72)

The Lagrangian then becomes

L = T − U =
1
2

M Ẋ2 +
1
2

m Ẋ2 +
1
2

m Ḋ2 + m Ẋ Ḋ cos α+ m g D sin α. (4.73)

We observe immediately that X is cyclic, so its corresponding momentum is conserved. Note that the total
energy is also conserved. Therefore we can obtain the complete set of two first integrals of motion for our two
degrees of freedom.

Nevertheless, to illustrate a different approach, we will tackle the full second-order differential equations
of motion obtained directly from the Lagrange equations. Since we have two degrees of freedom X and D,
we’ll have two second-order equations. The equation for X is

d
dt

(
∂L
∂Ẋ

)
− ∂L

∂X
= 0 ⇒ (m + M)Ẍ + m D̈ cos α = 0, (4.74)

and the equation for D is

d
dt

(
∂L
∂Ḋ

)
− ∂L

∂D
= 0 ⇒ m D̈ + m Ẍ cos α = m g sin α. (4.75)

This is a system of two linear equations in two unknowns Ẍ and D̈. Separating the two algebraically, we find

Ẍ =
−mg cos α sin α

M + m sin2 α
and D̈ =

(M + m)g sin α
M + m sin2 α

. (4.76)

Since we want the acceleration of the block in our inertial reference frame, we need to find ẍ ≡ ax and
ÿ ≡ ay . Differentiating Eq. (4.70) with respect to time, we find

ax = ẍ = Ẍ + D̈ cos α and ay = ÿ = −D̈ sin α. (4.77)

Substituting our solution from Eqs. (4.76) into these, we have

ax =
Mg sin α cos α
M + m sin2 α

and ay = −(M + m)g sin2 α

M + m sin2 α
. (4.78)

It is always useful to look at various limiting cases to see if a result makes sense. For example, what ifα = 0,
i.e., what if the block moves on a horizontal plane? Both accelerations then vanish, as expected: if started at
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rest, both block and incline just stay put. Now what if the inclined plane is much heavier than the block, i.e.,
M � m? We then have

ax � g cos α sin α and ay � −g sin2 α, (4.79)

so that ay/ax � − tan α, which is what we would expect if the inclined plane were not moving appreciably.
Finally, if M = 0, then ax = 0 and ay = −g, so the block would fall straight down; this is exactly what
would happen if there were no inclined plane at all.

The most impressive aspect of this example is the absence of any normal forces from our computations!
With the traditional approach of problem solving, we would need to include several normal forces in the
computation, shown in Figure 4.11(b): the normal force exerted by the inclined plane on the block, the normal
force exerted by the ground on the inclined plane, and the normal force exerted by the block on the inclined
plane as a reaction force. The role of these normal forces is to hold the inclined plane on the ground and to
hold the block on the inclined plane. If we think of the contributions of the normal forces to the Lagrangian,
we would want to include some potential energy terms for them. But potential energy is related to work
done by forces. The normal force is often perpendicular to the direction of motion, and hence does no work,
N ·Δr = 0, where N is a normal force andΔr is the displacement of a contact point. Therefore, there is no
potential energy term to include in the Lagrangian to account for such normal forces. In our example, however,
this is not entirely correct. While it is true for the normal force exerted by the ground onto the inclined plane,
it is not true for the two normal forces acting between the block and the inclined plane. This is because the
inclined plane is moving as well and the trajectory of the block is not parallel to the incline! However, there
is another reason why this normal force is safely left out of the Lagrangian. These normal forces occur as an
action–reaction pair; and the displacement of the interface between the block and the incline is the same
for both forces, and hence the contributions to the total work or energy of the system from these two normal
forces cancel. As we saw from the previous example, such force pairs do not appear in the Lagrangian. The
computational step at the beginning, where we zeroed onto the degrees of freedom of the problem – going
from X , Y , x, and y to X and D – is in a sense the process of accounting for the normal forces in the Lagrangian
approach to the problem.

In Chapter 6, we will also learn of a way to force the inclusion of normal and tension forces in a Lagrangian
even when we need not do so – for the purpose of finding the magnitude of a normal or tension force if so
desired. For now, we are very happy to drop normal and tension forces from consideration. This can be a big
simplification for problem solving: fewer variables, fewer forces to consider, less work to do (no pun intended). �

4.6 The Hamiltonian

We will now prove an enormously useful consequence of the Lagrange equations
that will at the end look very familiar. First, take the total derivative of the
Lagrangian L(t, qk, q̇k) with respect to time t. There are many ways in which L
can change with time: it can change because of explicit dependence on t, but also
because of implicit dependence on t through the time dependence of one or more
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of the coordinates qk(t) or velocities q̇k(t). Therefore, from multivariable calculus
and the chain rule, we have

dL(qk, q̇k, t)
dt

=
∂L
∂t

+
∂L
∂qk

q̇k +
∂L
∂q̇k

q̈k, (4.80)

using the Einstein summation convention from Chapter 2. That is, since the index
k is repeated in each of the last two terms, a sum over k is implied in each term;
we have also used the fact that dq̇k/dt ≡ q̈k. Now, take the time derivative of the
quantity q̇k(∂L/∂q̇k); again, with implied sums over k:

d
dt

(
q̇k

∂L
∂q̇k

)
= q̈k

∂L
∂q̇k

+ q̇k
d
dt

(
∂L
∂q̇k

)
= q̈k

∂L
∂q̇k

+ q̇k
∂L
∂qk

, (4.81)

using the product rule. We have also used the Lagrange equations to simplify the
last term on the right. Note that this expression contains the same two summed
terms that we found in Eq. (4.80). Therefore, subtracting Eq. (4.81) from Eq. (4.80)
gives

∂L
∂t

− d
dt

(
L − q̇k

∂L
∂q̇k

)
= 0. (4.82)

Now define the Hamiltonian H of a particle to be

H ≡ q̇k pk − L, (4.83)

where we have already defined the generalized momenta to be pi = ∂L/∂q̇k, and
again a sum over k is implied. Equation (4.82) can be written

∂L
∂t

= −dH
dt

. (4.84)

This result is particularly interesting if L is not an explicit function of time, i.e., if
∂L/∂t = 0. It shows that if a Lagrangian L is not an explicit function of time, then
the Hamiltonian H is conserved.

What is the meaning of H? Suppose that the particle is free to move in three
dimensions in a potential U(x, y, z) without constraints, and that we are using
Cartesian coordinates. Then px = mẋ, py = mẏ, etc., so

∑
i q̇kpk = m(ẋ2 + ẏ2 + ż2).

Therefore

H = m(ẋ2 + ẏ2 + ż2)− 1
2

m(ẋ2 + ẏ2 + ż2) + U(x, y, z)

=
1
2

m(ẋ2 + ẏ2 + ż2) + U(x, y, z) = T + U = E, (4.85)

which is simply the energy of the particle. Therefore, since this Lagrangian does
not depend on time explicitly, this energy quantity is conserved, as expected.

Is H always equal to E = T+U? The answer is no, although very often it is. The
precise conditions for which H �= E are worked out in Section 4.7.
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Example 4.8 Bead on a Rotating Parabolic Wire
Suppose we bend a wire into the shape of a vertically oriented parabola defined in cylindrical coordinates by
z = αρ2, as illustrated in Figure 4.12: here z is the vertical coordinate, andρ is the distance of a point on the
wire from the vertical axis of symmetry. Using a synchronous motor, we can force the wire to spin at constant
angular velocity ω about its symmetry axis. Then we slip a bead of mass m onto the wire and we want to
determine its equation of motion – assuming that it slides without friction along the wire.

y

x

z

Fig. 4.12 A bead slides without friction on a vertically oriented parabolic wire forced to spin
about its axis of symmetry.

We first have to choose generalized coordinate(s) for the bead. The bead moves in three dimensions, but
because of the constraint confining the bead along the wire we need only a single generalized coordinate
to specify the bead’s position. For example, if we know the distance ρ of the bead from the vertical axis of
symmetry, we also know its altitude z, z = αρ2. And the bead also has no freedom to choose its azimuthal
angle, because the synchronous motor turns the wire around at a constant rate. Given its angle ϕ0 at time
t = 0, its angle at other times is constrained to beϕ = ϕ0 + ωt. Hence, we start with three coordinates
and, using two constraint conditions, we end up with just one degree of freedom. It is convenient to choose
the cylindrical coordinate ρ as the single generalized coordinate, although we could equally well choose the
vertical coordinate z.

In cylindrical coordinates the square of the bead’s velocity is the sum of squares of the velocities in the
ρ, ϕ, and z directions:

v2 = ρ̇2 + ρ2ϕ̇2 + ż2 = ρ̇2 + ρ2ω2 + (2αρρ̇)2, (4.86)

using the constraints ϕ̇ = ω = constant and z = αρ2 for the parabolic wire. The gravitational potential
energy is U = mgz = mgαρ2, so the Lagrangian becomes

L = T − U =
1
2

m[(1 + 4α2ρ2)ρ̇2 + ρ2ω2]− mgαρ2. (4.87)
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We implemented two constraints, ϕ̇ = ω and z = αρ2, and thus reduced the problem from three variables
to one, the radius ρ. The contact force that keeps the bead on the wire is the normal force associated with
these two constraints. We do not include its contribution to the Lagrangian, assuming that this normal force
has no contribution to the energy of the system. That this is correct is far from obvious in this case, since this
normal force does work! The normal force in this case is not perpendicular to the displacement. This work is
associated with the energy input by the motor to keep the wire turning at constant rate ω. Let us proceed
anyway, and revisit the issue at the end. The partial derivatives∂L/∂ρ̇ and∂L/∂ρ are easy to find, leading
to the Lagrange equation

∂L
∂ρ

− d
dt
∂L
∂ρ

= m[4α2ρρ̇2 + ρω2 − 2gαρ]− m
d
dt

[
(1 + 4α2ρ2)ρ̇

]
= 0, (4.88)

which results in a second-order differential equation of motion forρ:

(1 + 4α2ρ2)ρ̈+ 4α2ρρ̇2 + (2gα− ω2)ρ = 0. (4.89)

Are we stuck with having to solve this second-order differential equation? Are there no first integrals of
motion? The coordinate ρ is not cyclic, so pρ is not conserved. However, note that L is not an explicit function
of time, ∂L/∂t = 0, so the Hamiltonian H is conserved according to Eq. (4.84). Conservation of H gives us
a first integral of motion, so we are rescued: we do not have to solve the second-order differential equation
(4.89) after all, given that we have one degree of freedom and one first integral of motion.

The generalized momentum is pρ = ∂L/∂ρ̇ = m(1 + rα2ρ2)ρ̇, so the Hamiltonian is

H = ρ̇pρ − L = m(1 + 4α2ρ2)ρ̇2 − 1
2

m[(1 + 4α2ρ2)ρ̇2 + ρ2ω2] + mgαρ2

=
1
2

m[(1 + 4α2ρ2)ρ̇2 − ρ2ω2] + mgαρ2 = constant, (4.90)

which differs from the energy

E = T + U =
1
2

m[(1 + 4α2ρ2)ρ̇2 + ρ2ω2] + mgαρ2 (4.91)

by H − E = −mρ2ω2. Note that this difference changes as ρ changes; that is because even though H is
conserved, the energy E is not conserved, because the normal force of the wire does work on the bead.

Equation (4.90) is a first-order differential equation, which can be reduced to quadrature. Without going
that far, we can understand a good deal about the motion just by using Eq. (4.90), and noting that it has a
similar mathematical form to that of energy-conservation equations. That is, rewrite the equation as

H =
1
2

m(1 + 4α2ρ2)ρ̇2 + Ueff , (4.92)

where

Ueff =
1
2

m(−ρ2ω2) + mgαρ2 =
1
2

mρ2(2gα2 − ω2). (4.93)

This effective potential is quadratic in ρ, with the interesting feature that its sign depends upon how the
angular velocity ω of the wire is related to a critical angular velocity ωcrit ≡ (2g)1/2 α, as illustrated in
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Figure 4.13. Ifω < ωcrit, then Ueff rises with ρ, so the bead is stable at ρ = 0, the potential minimum. But
if ω > ωcrit, then Ueff falls off with increasing ρ, so ρ = 0 is an unstable equilibrium point in that case: if
the bead wanders even slightly from ρ = 0 at the bottom of the parabola, it will be thrown out indefinitely
far. The stability is neutral if ω = ωcrit, meaning that if placed at rest at any point along the wire, the bead
will stay at that point indefinitely; but if placed at any point and pushed outward it will keep moving outward,
or if pushed inward it will keep moving inward.

This example shows that although the Hamiltonian function H is often equal to E ≡ T + U, this is not
always so. Section 4.7 explains when and why they can differ. In any case, the Hamiltonian can be very useful,
because it provides a first integral of motion if L is not explicitly time dependent.

Fig. 4.13 The effective potential Ueff for the Hamiltonian of a bead on a rotating parabolic
wire with z=αρ2, depending upon whether the angular velocity ω is less than,
greater than, or equal to ωcrit =

√
2g α.

Once again, the Lagrangian formalism avoids dealing with contact forces and accounts for them through
constraints – simplifying the problem significantly. We leave it as an exercise for the reader to solve this
same problem using traditional force body diagram methods so as to appreciate the power of the Lagrangian
formalism. �

4.7 When is H �= E?

In Example 4.8 the Hamiltonian H was not equal to E. Why were they different,
and why was H conserved while E was not?

The definition H = q̇k∂L/∂q̇k − L (using the Einstein summation convention,
implying a sum over k in the first term on the right, since k is repeated in that term)
contains the Lagrangian L= T − U, where only the kinetic energy T depends upon
the generalized velocities q̇k. Therefore:
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H = q̇k
∂T
∂q̇k

+ U − T. (4.94)

Now let r(qk, t) be the position vector of the particle from some arbitrary origin
fixed in an inertial frame, in terms of the time and any or all of the generalized
coordinates qk. Then the velocity of the particle is

v =
dr(qk, t)

dt
=

∂r

∂t
+

∂r

∂ql
q̇l, (4.95)

because r can change with time either from an explicit time dependence or because
one or more of the generalized coordinates changes with time. Therefore its kinetic
energy is T = (1/2)mv2 = (1/2)mv · v, which is

T =
1
2

[
m
∂r

∂t
· ∂r
∂t

+ 2
∂r

∂t
· ∂r
∂ql

q̇l +
∂r

∂ql
q̇l ·

∂r

∂qm
q̇m

]
, (4.96)

where we have used a different dummy summation index m in the final factor to
distinguish it from the sum over l in the preceding factor. That is, by the Einstein
summation convention the final term above is actually the product of two sums,
one over l and one over m. Now we can take the partial derivative of T with respect
to a particular one of the generalized velocities q̇k:

∂T
∂q̇k

=
1
2

m
[

2
∂r

∂t
· ∂r

∂qk
+ 2

∂r

∂qk
· ∂r
∂ql

q̇l

]
, (4.97)

where there is a factor of two in the second term because q̇k occurs in both
summations in the last term of the expression for T. Therefore the sum

q̇k
∂T
∂q̇k

= m
[
∂r

∂t
· ∂r

∂qk
q̇k +

∂r

∂qk
q̇k ·

∂r

∂ql
q̇l

]
= 2T − m

∂r

∂t
·
[
∂r

∂t
+

∂r

∂qk
q̇k

]
= 2T − m

∂r

∂t
· dr

dt
, (4.98)

using Eqs. (4.96) and (4.97). The Hamiltonian H can therefore be written as

H = E − m
dr
dt

· ∂r
∂t

= E − p · ∂r
∂t

, (4.99)

where p is the momentum of the particle in the chosen inertial frame. If the
transformation r = r(qk, t) between the Cartesian coordinates r = (x, y, z) and
the generalized coordinates qk happens not to be an explicit function of time, i.e.,
if ∂r/∂t = 0, then the Hamiltonian is just T + U. This case occurs when there
are no constraints or when any constraints are fixed in space. But if the constraints
are moving, then the transformation r = r(qk, t) does generally depend upon time,
and so in the likely case that there is a component of ∂r/∂t in the direction of the
particle’s momentum p, the Hamiltonian is not equal to T + U.
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For the problem of the bead on a rotating parabolic wire, where the constraint is
obviously moving, the position vector of the bead can be taken to be r = (x, y, z) =
(r cosωt, r sinωt,αr2). In that case we found that H = T + U − mω2r2, and it is
easy to show that mω2r2 =p · ∂r/∂t, as required by Eq. (4.99). It is clear that E is
not conserved in this case because the rotating wire is continually doing work on
the bead. The wire exerts a force Fθ in the tangential direction, which causes work
to be done at the rate dW/dt = Fθvθ = Fθrω. From the elementary relationship
Nz = dLz/dt, with torque Nz = Fθr and angular momentum Lz = (r×p)z = mr2ω,
it follows that

dW
dt

= ω
d(mr2ω)

dt
= mω2 dr2

dt
, (4.100)

so that the work done by the wire is W = mω2r2 plus a constant of integration,
which depends upon the initial location of the bead. Thus the energy E = T+U of
the bead increases by the work done upon it by the wire, so that E minus the work
done must be conserved, and that difference E − mω2r2 = H.

Note that:

1. H is conserved if the Lagrangian L is not an explicit function of time.
2. H = E if the coordinate transformation r = r(qk, t) is not an explicit function

of time.

Therefore it is possible to have E = H, with both E and H conserved, or neither
conserved, and it is also possible to have E �= H, with both conserved, neither
conserved, or only one of the two conserved.

4.8 The Moral of Constraints

Let us summarize the steps we have used so far in setting up and preparing to solve
Lagrange’s equations.

1. Identify the degrees of freedom of each particle or object consistent with any
constraints, and choose an appropriate set of generalized coordinates qk for each.

2. Write the square of the velocity for each particle in terms of any convenient
coordinates, usually Cartesian coordinates, in some inertial reference frame.
Then re-express the kinetic energy in terms of the generalized coordinates qk,
the generalized velocities q̇k, and the time if needed; i.e., v2 = v2(qk, q̇k, t). Then
write the total kinetic energy T in terms of these variables.

3. Write the total potential energy in the form U=U(qk, t). Do not include any
contributions from constraint forces.

4. Write the Lagrangian L(t, q1, q2, . . . , q̇1, q̇2, . . .) = T − U.
5. Identify any cyclic coordinates in L; that is, identify any coordinate ql missing in

the Lagrangian, even though its corresponding generalized velocity q̇l is present.
In this case the corresponding generalized momentum pl ≡ ∂L/∂q̇l is conserved.
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This gives a highly valued first integral of motion, i.e., a differential equation
that is first order rather than second order.

6. If L is not an explicit function of time, then the Hamiltonian H ≡ q̇k pk − L is
conserved, providing another first integral of motion.

7. If there are more generalized coordinates in the problem than first integrals
identified in the preceding steps, then one or more of the Lagrange equations
of motion

∂L
∂qk

− d
dt

∂L
∂q̇k

= 0 (4.101)

must be used as well, to obtain a complete set of differential equations. That
is, if there are N generalized coordinates, we will generally need N mutually
independent differential equations whose solutions will give the coordinates as
functions of time. Some of these may be first-order equations, each correspond-
ing to a conserved quantity, while others may be second-order equations coming
from Eq. (4.101).

All these steps were justified: that the Lagrangian L = T − U accounts for all
conservative forces, that coordinate transformations at the Lagrangian level are
justified and in fact very useful, and that constraints assure that the generalized
coordinates are independent and a reduced set of degrees of freedom describes
the dynamics fully. As one gets used to the steps outlined above, many stages of
this algorithmic process become second nature and can be done mentally. With
practice, one looks at a complex mechanical system, writes down the Lagrangian
immediately on a single line, and in a few more lines, writes the equations of
motion! To get there, however, one needs to practice, practice, practice.

Why can we avoid constraint forces in the Lagrangian? We saw example after
example in which neglecting them works out fine. We see an emerging pattern.
Constraint forces implement restrictions on the dynamics between two objects in
contact. If both objects in question are part of the dynamical system (i.e., they both
contribute kinetic energy to the Lagrangian), these constraint forces must come in
equal and opposite pairs. Since the contact point is the same, this always implies
that such forces will not do work and hence need not appear in the Lagrangian. On
the contrary, if only one of the two objects is part of the dynamical system, the
other one must then have prescribed time evolution by definition: i.e., the ground
just sits there as a function of time, the pivot of the pendulum is fixed in position,
a parabolic wire – on which a bead is sliding – is rotating at a given constant
angular speed driven by a motor. In some of these cases, the constraint forces do no
work because they are perpendicular to the displacement. But it is easy to see this
statement in more generality: extend the Lagrangian to include the nondynamical
system – the ground, the parabolic wire connected to a motor – by adding their
constant kinetic energies to the Lagrangian. Then the constraint force becomes
part of an internal action–reaction pair, which we know does not contribute to
the Lagrangian! And the cost of adding the kinetic energy of the external agent
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to the Lagrangian is irrelevant: it is a constant shift to the Lagrangian since the
relevant dynamics is, by definition, prescribed. This, we now see, is one of the
central advantages of the Lagrangian formalism: We can drop all constraint forces
from the outset.

4.9 Small Oscillations about Equilibrium

We often find that a system of interest is at or near a state of stable equilibrium.
For example, a nearby chair rests on the floor, happily doing nothing. It is in a
minimal energy configuration relative to nearby configurations. If we bump the
chair it may wobble and slide a bit, and then quickly come to rest again in some
new equilibrium state. When we bumped the chair, we added energy to the system,
and the chair eventually dissipated this energy through friction and returned to a
minimal-energy, motionless state.

In general, many if not most mechanical systems can be accorded an energy of
the form

Constant× q̇2
k + Ueff(qk) = E, (4.102)

where the qks are the generalized coordinates and Ueff is an effective potential.
We have seen this in several examples. For simplicity, imagine we have only one
such coordinate, which we will call q. If the effective potential energy Ueff has
an extremum at some particular point q0, then that point is an equilibrium point
of the motion, so if placed at rest at q0 the particle will stay there. If q0 happens
to be a minimum of Ueff , as illustrated in Figure 4.14, q0 is a stable equilbrium

Fig. 4.14 An effective potential energy Ueff with a focus near a minimum. Such a point is a stable equilibrium
point. The dotted parabola shows the leading approximation to the potential near its minimum. As the
energy drains out, the system settles into its minimum, with the final moments being well
approximated by harmonic oscillatory dynamics.
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point, so that if the particle is displaced slightly from q0 it will oscillate back and
forth, never wandering far from that point. It is sometimes interesting to find the
frequency of small oscillations about an equilibrium point. We can often do this by
fitting the bottom of the effective potential energy curve to a parabola, which is the
shape of the potential energy of a simple harmonic oscillator. That is, by the Taylor
expansion, we write (see Appendix F))

Ueff(q) = Ueff(q0) +
dUeff

dq

∣∣∣∣
q0

(q − q0) +
1
2!

d2Ueff

dq2

∣∣∣∣
q0

(q − q0)
2 + · · · (4.103)

So if q0 is the equilibrium point, by definition the second term vanishes, and the
third term has the form (1/2)keff(q−q0)

2, like that for a simple harmonic oscillator
with center at q0, where the effective force constant is given by keff = U′′

eff(q0). The
frequency of small oscillations is therefore

ω =

√
keff
m

=

√
U′′
eff(q0)

m
. (4.104)

Note that this explains the pervasiveness of the harmonic oscillator in Nature:
systems will try to find their lowest-energy configurations by dissipating energy,
so often find themselves near the minima of their effective potentials.5 An example
will demonstrate.

Example 4.9 Particle on a Tabletop with a Central Spring Force
In Example 4.4 we considered a particle moving on a frictionless tabletop subject to a central Hooke’s-law
spring force. There is an equilibrium radius for given energy and angular momentum for which the particle
orbits in a circle of some radius r0. We now want to find the oscillation frequency ω for the mass about the
equilibrium radius if it were perturbed slightly from this circular orbit.

The effective potential in Example 4.4 was

Ueff =
(pϕ)2

2mr2 +
1
2

kr2 (4.105)

from Eq. (4.28); the first derivative of this potential is U′eff(r) = −(pϕ)2/mr3 + kr. The equilibrium value
of r is located where U′eff(r) = 0; namely, where r = r0 = ((pϕ)2/mk)1/4.

The second derivative of Ueff(r) is

U′′eff(r) =
3(pϕ)2

mr4 + k, (4.106)

so

U′′eff(r0) =
3(pϕ)2

m((pϕ)2/mk)
+ k = 3k + k = 4k = keff > 0. (4.107)

5 We focused for simplicity on a system with one degree of freedom. However, this conclusion generalizes
to an effective potential depending on an arbitrary number of degrees of freedom. Ueff(qk) is then a multi-
dimensional surface with generally a complex landscape of valleys and hills. We will revisit this scenario in
Chapter 13.
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From Eq. (4.104), the frequency of small oscillations about the equilibrium radius r0 is therefore

ω =

√
U′′eff(r0)

m
=

√
4k
m

= 2 ω0. (4.108)

That is, for the mass orbiting the origin and subject to a central Hooke’s-law spring force, the frequency of
small oscillations about a circular orbit is just twice what it would be for the mass if it were oscillating back
and forth about the center in one dimension.

We can also find the shape of the orbits, noting that the radial oscillations are small. The angular fre-
quency of rotation is ωrot = vφ/ro =(pϕ/mr0)/r0 = pϕ/(mr2

0), where vφ is the tangential component
of velocity. But the equilibrium radius is r0 =((pϕ)2/mk)1/4, so the angular frequency of rotation is
ωrot = pϕ/(mr2

0)= pϕ/[m
√

(pϕ)2/k] =
√

k/m =ω0, which is the same as the frequency of oscilla-
tion of the system as if it were oscillating in one dimension through the center. Therefore, the frequency of radial
oscillations (4.108) is just twice the rotational frequency, so the orbits for small oscillations are closed: that is,
the path retraces itself in every orbit, as shown in Figure 4.15. The small-oscillation path appears to be elliptical.
In fact, it is exactly elliptical, even for large displacements from equilibrium, as we already saw in Chapter 1
using Cartesian coordinates.

y

x

Fig. 4.15 The shape of the two-dimensional orbit of a particle subject to a central spring force,
for small oscillations about the equilibrium radius. �

4.10 Recap

We began the chapter by describing a conservative mechanical system by N gener-
alized coordinates qk(t), with k = 1, 2, . . . , N, and then defining the Lagrangian

L(t, q1, q2, . . . , q̇1, q̇2, . . .) = T − U (4.109)

as the difference between the kinetic and potential energies of the system,
expressed in terms of the generalized coordinates qk, generalized velocities q̇k, and
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time t. We then define the action S[qk(t)] of the system as the functional consisting
of the time integral over the Lagrangian L(t, q1, q2, . . . , q̇1, q̇2, . . .), from a starting
time ta to an ending time tb:

S[qk(t)] =
∫ tb

ta

dt L(t, q1, q2, . . . , q̇1, q̇2, . . .) ≡
∫ tb

ta

dt L(t, qk, q̇k), (4.110)

where it is understood that the particle or system of particles begins at some definite
position (q1, q2, . . .)a at time ta and ends at some definite position (q1, q2, . . .)b at
time tb.

Hamilton’s principle then proposes that, for trajectories qk(t) where the action S
is stationary – i.e., when

δS = δ

∫ tb

ta

L(t, qk, q̇k) dt = 0, (4.111)

the coordinates qk(t) satisfy the equations of motion for the system with the
prescribed boundary conditions at ta and tb. That is, the variational principle δS= 0
gives the Lagrange equations

d
dt

∂L
∂q̇k

− ∂L
∂qk

= 0 (k = 1, 2, . . . , N), (4.112)

which are the second-order differential equations of motion for the system.
We also defined the Hamiltonian of the system to be

H ≡ q̇k pk − L, (4.113)

where a sum over k is implied, and the generalized momenta pk are defined as

pk =
∂L
∂q̇k

. (4.114)

Then
∂L
∂t

= −dH
dt

, (4.115)

so if L is not an explicit function of time, it follows that the Hamiltonian is
conserved. In this case, and also when a coordinate is cyclic, we are led to first
integrals of motion – that is, first-order differential equations.

If the problem is simple, exact analytic solutions of the first- and second-order
differential equations may be possible. If not, we can always solve the equations
numerically on a computer. There is also a very common intermediate situation,
when one or more of the equations is too difficult to solve exactly, but approximate
analytic techniques can be used to find the answer as accurately as required.
Finding a sufficiently accurate approximate analytic technique to solve a particular
problem can be very entertaining, requiring as much creativity as setting up the
physical problem in the first place. One of the pleasures of doing physics is to find
a way, no holds barred, to solve a problem to the extent we need it solved, using
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back-of-the-envelope calculations, dimensional reasoning, approximate analytical
techniques, numerical calculations, or whatever it takes to get the job done.

Note that we have confined ourselves in this chapter to nonrelativistic motion.
Is it possible to generalize the action and the Lagrangian to provide the correct
equations of motion for relativistic particles? The answer is a somewhat qualified
“yes,” but we will have to postpone a discussion of this interesting topic until
Chapter 8, where we will find how to deal with relativistically correct electromag-
netic potential energies.

This chapter has concentrated on a primary cornerstone of the modern subject of
theoretical mechanics. It has presented a reformulation of mechanics by means of a
variational principle, where the central quantity is the Lagrangian. All of dynamics
is packaged into a single functional. Beyond the elegance of the approach, the
Lagrangian formalism gives us two additional benefits. First, by eliminating the
need to keep track of a myriad of forces, it helps us zero onto the relevant
mechanics and the associated differential equations; thus, it provides us a powerful
new technical tool for tackling complex mechanics problem. Second, as we shall
see in the next chapter, the formalism presents a natural conceptual bridge from
the classical to the quantum world. Historically, the Lagrangian and the related
Hamiltonian formalisms (see Chapter 11) played key roles in the development of
the subject of quantum mechanics and modern physics.

Problems

Problem 4.1 In Example 4.3, we found the equation of motion of a block on an�
inclined plane, using the generalized coordinate X, the distance of the block from
the bottom of the incline. Solve the equation for X(t) in terms of an arbitrary initial
position X(0) and velocity Ẋ(0).

Problem 4.2 A particle of mass m slides inside a smooth hemispherical bowl of�
radius R. Beginning with spherical coordinates r, θ, and ϕ to describe the dynamics,
select generalized coordinates, write the Lagrangian, and find the differential
equations of motion of the particle.

Problem 4.3 Example 4.2 featured a bead sliding on a vertically oriented helix of��
radius R. The angle θ about the symmetry axis was related to its vertical coordinate
z on the wire by θ=αz. There is a uniform gravitational field g vertically
downward. (a) Rewrite the Lagrangian and find the Lagrange equation, using θ
as the generalized coordinate. (b) Are there any conserved dynamical quantities?
(c) Write the simplest differential equation of motion of the bead, and go as far as
you can to solve analytically for θ as a function of time.

Problem 4.4 One end of a wire is tied to a point A on the ceiling and the other end is��
tied to a point on a ring of radius R and negligible mass. The ring therefore hangs
from the wire in a vertical plane and in a gravitational field g. A bead of mass m is
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threaded onto the ring so it can slide around the ring without friction. The lowest
point on the ring is then tied to a second wire whose opposite end is attached to
point B on the floor, where point B is directly beneath point A. The wires are then
drawn taut. If the ring and attached wires are made to twist sideways through an
angle ϕ away from equilibrium, a potential energy (1/2)κϕ2 is set up in the wire.
(a) Using angles θ and ϕ as generalized coordinates, where θ is the angle of the
bead down from the top of the ring, find the kinetic and potential energies of the
bead. (b) Find the equations of motion using Lagrange’s equations. Assume that
during the motion of the bead it remains entirely on one side of the ring, so it does
not meet the wires at θ = 0 and θ = π.

Problem 4.5 A particle moves in a cylindrically symmetric potential U(ρ, z). Use��
cylindrical coordinates ρ, ϕ, and z to parameterize the space.

(a) Write the Lagrangian for an unconstrained particle of mass m (using
cylindrical coordinates) in the presence of this potential.

(b) Write the Lagrange equations of motion for ρ, ϕ, and z.
(c) Identify any cyclic coordinates, and write a first integral corresponding to

each.

Problem 4.6 A particle of mass m slides inside a smooth paraboloid of revolution�
whose axis of symmetry z is vertical. The surface is defined by the equation z =
αρ2, where z and ρ are cylindrical coordinates, and α is a constant. There is a
uniform gravitational field g. (a) Select two generalized coordinates for m. (b) Find
T, U, and L. (c) Identify any ignorable coordinates, and any conserved quantities.
(d) Show that there are two first integrals of motion, and find the corresponding
equations.

Problem 4.7 Repeat the preceding problem for a particle sliding inside a smooth cone�
defined by z = αr.

Problem 4.8 A spring pendulum features a pendulum bob of mass m attached to one�
end of a spring of force constant k and unstretched length R. The other end of the
spring is attached to a fixed point on the ceiling. The pendulum is allowed to swing
in a plane. Use r, the distance of the bob from the fixed point, and θ, the angle of the
spring relative to the vertical, as generalized coordinates. (a) Find the kinetic and
potential energies of the bob in terms of the generalized coordinates and velocities.
(b) Find the Lagrangian. Are there any ignorable coordinates? (c) Are there any
conserved quantities? (d) Find a complete set of equations of motion, including as
many first integrals as possible.

Problem 4.9 A pendulum is constructed from a bob of mass m on one end of a light���
string of length D. The other end of the string is attached to the top of a circular
cylinder of radius R (R < 2D/π). The string makes an angle θ with the vertical, as
shown in Prob. 4.9, as the pendulum swings in the plane. There is a uniform gravity
g directed downward. (a) Find the Lagrangian of the bob, using θ as the generalized
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Prob. 4.9 A pendulum hanging from a cylinder.

coordinate. (b) Identify any first integrals of motion. (c) Find the frequency of small
oscillations about the stable equilibrium point.

Problem 4.10 A particle moves with a cylindrically symmetric potential energy�
U=U(ρ, z), where ρ,ϕ, z are cylindrical coordinates. (a) Write the Lagrangian
for an unconstrained particle of mass m in this case. (b) Are there any cyclic
coordinates? If so, what symmetries do they correspond to, and what are the
resulting constants of motion? (c) Write the Lagrange equation for each cyclic
coordinate. (d) Find the Hamiltonian H. Is it conserved? (e) Find the total energy
E. Is E = H? is E conserved? (f) Write the simplest (i.e., lowest-order) complete
set of differential equations of motion of the particle.

Problem 4.11 A plane pendulum is made with a plumb bob of mass m hanging��
on a Hooke’s-law spring of negligible mass, force constant k, and unstretched
length �0. The spring can stretch but is not allowed to bend. There is a uniform
downward gravitational field g. (a) Select generalized coordinates for the bob, and
find the Lagrangian in terms of them. (b) Write out the Lagrange equations of
motion. (c) Are there any conserved quantities? If so, write down the corresponding
conservation law(s). (d) If the bob is swinging back and forth, find the frequency of
small oscillations in the general case where the spring can change its length while
the bob is swinging back and forth.

Problem 4.12 Motion in a slowly changing uniform electric field. A particle of mass�
m and charge q moves within a parallel-plate capacitor whose charge Q decays
exponentially with time, Q = Q0e−t/τ , where τ is the time constant of the decay.
Find the equations of motion of the particle. Ignore the effect of any magnetic field
that may be generated from the changing eletric field.

Problem 4.13 A particle of mass m travels between two points x = 0 and x = x1 on�
earth’s surface, leaving at time t = 0 and arriving at t = t1. The gravitational field
g is uniform. (a) Suppose m moves along the ground (keeping altitude z = 0) at
steady speed. Find the total action S to go by this path. (b) Suppose instead that m
moves along the least-action parabolic path. Show that the action in this case is

S =
mx2

1
2t1

− mg2t31
24

and verify that it is less than the action for the straight-line path of part (a).



190 4 Lagrangian Mechanics

Problem 4.14 Suppose the particle of the preceding problem moves instead at��
constant speed along an isoceles triangular path between the beginning point and
the endpoint, with the high point at height z1 above the ground, at x = x1/2 and
t = t1/2. (a) Find the action for this path. (b) Find the altitude z1 corresponding to
the least-action path among this class of constant-speed triangular paths. (c) Verify
that the total action for this path is greater than that of the parabolic path of the
preceding problem.

Problem 4.15 A plane pendulum consists of a light rod of length R supporting a��
plumb bob of mass m in a uniform gravitational field g. The point of support of the
top end of the rod is forced to oscillate back and forth in the horizontal direction
with x = A cosωt. Using the angle θ of the bob from the vertical as the generalized
coordinate, (a) find the Lagrangian of the plumb bob. (b) Are there any conserved
dynamical quantities? (c) Find the simplest differential equation of motion of the
bob.

Problem 4.16 Solve the preceding problem if instead of being forced to oscillate in��
the horizontal direction, the upper end of the rod is forced to oscillate in the vertical
direction with y = A cosωt.

Problem 4.17 A particle of mass m on a frictionless tabletop is attached to one end��
of a light string. The other end of the string is threaded through a small hole in
the tabletop, and held by a person under the table. If given a sideways velocity
v0, the particle circles the hole with radius r0. At time t = 0 the mass reaches an
angle defined to be θ = 0 on the tabletop, and the person under the table pulls on
the string so that the length of the string above the table becomes r(t) = r0 − αt
for a period of time thereafter, where α is a constant. Using θ as the generalized
coordinate of the particle, find its Lagrangian, identify any conserved quantities,
find its simplest differential equation of motion, and get as far as you can using
analytic means alone toward finding the solution θ(t) (or t(θ)).

Problem 4.18 A rod is bent in the middle by angle α. The bottom portion is kept�
vertical and the top portion is therefore oriented at angle α to the vertical. A bead
of mass m is slipped onto the top portion and the bottom portion is forced by a
motor to rotate at constant angular speed ω about the vertical axis. (a) Define a
generalized coordinate for the bead and write down the Lagrangian. (b) Identify
any conserved quantity or quantities and explain why it (or they) are conserved.
(c) Find the generalized momentum of the bead and the Hamiltonian. (d) Are there
any equilibrium points of the bead? If so, are they stable or unstable?

Problem 4.19 A wire is bent into the shape of a cycloid, defined by the parametric��
equations x = A(ϕ + sinϕ) and y = A(1 − cosϕ), where ϕ is the parameter
(−π < ϕ < π), and A is a constant. The wire is in a vertical plane, and is spun
at constant angular velocity ω about a vertical axis through its center. A bead of
mass m is slipped onto the wire. (a) Find the Lagrangian of the bead, using the
parameter ϕ as the generalized coordinate. (b) Identify any first integral of motion
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of the bead. (c) Reduce the problem to quadrature. That is, show that the time t can
be expressed as an integral over ϕ.

��
Problem 4.20 Center of mass and relative coordinates. Show that for two particles
moving in one dimension, with coordinates x1 and x2, with a potential that depends
only upon their separation x2 − x1, the Lagrangian

L =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 − U(x2 − x1)

can be rewritten in the form

L =
1
2

MẊ2 +
1
2
μẋ′2 − U(x′),

where M = m1 + m2 is the total mass and μ = m1m2/M is the “reduced mass”
of the system, and X = (m1x1 + m2x2)/M is the center of mass coordinate and
x′ = x2 − x1 is the relative coordinate.

Problem 4.21 Two blocks of equal mass m, connected by a Hooke’s-law spring of�
unstretched length �, are free to move in one dimension. Find the equations of
motion of the system, using the relative and center of mass coordinates introduced
in the preceding problem.

Problem 4.22 A small block of mass m and a weight of mass M are connected by a���
string of length D. The string has been threaded through a small hole in a tabletop,
so the block can slide without friction on the tabletop, while the weight hangs
vertically beneath the tabletop. We can let the hole be the origin of coordinates,
and use polar coordinates r, θ for the block, where r is the block’s distance from the
hole, and z for the distance of the weight below the tabletop. (a) Using generalized
coordinates r and θ, write down the Lagrangian of the system of block plus weight.
(b) Write down a complete set of first integrals of the motion, explaining the
physical meaning of each. (c) Show that the first integrals can be combined to
give an equation of the form

E =
1
2
(M + m)ṙ2 + Ueff(r)

and write out an expression for Ueff(r). (d) Find the radius of a circular orbit of the
block in terms of constants of motion. (e) Now suppose the block executes small
oscillations about a circular orbit. What is the frequency of these oscillations? Is
the resulting orbit of the block open or closed? That is, does the perturbed orbit of
the block continually return to its former position or not?

Problem 4.23 Example 1.3 of Chapter 1 proposed that mined material on the moon��
might be projected off the moon’s surface by a rotating boom that slings the
material into space. Assume the boom rotates in a horizontal plane with constant
angular velocity ω, and let r, the distance of the payload from the rotation axis at
one end of the boom, be the single generalized coordinate. (a) Find the Lagrangian
for a bucket of material of mass m that moves along the boom. (b) Find its equation
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of motion. (c) Solve it for r(t), subject to the initial conditions r = r0 and ṙ = 0 at
t = 0. (d) If the boom has length R, find the radial and tangential components of
the bucket’s velocity, and its total speed, as it emerges from the end of the boom.
(e) Find the power input P = dE/dt into a bucket of mass m as a function of time.
Is the power input larger at the beginning or end of the bucket’s journey along the
boom? (f) Find the torque exerted by the boom on the bucket, as a function of the
position r of the bucket on the boom. There would be an equal but opposite torque
back on the boom, caused by the bucket, which might break the boom. At what
part of the bucket’s journey would this torque most likely break the boom? (g) If
R = 100 m and r0 = 1 m, what must be the rotational period of the boom so that
buckets will reach the moon’s escape speed as they fly off the boom?

Problem 4.24 Consider a vertical circular hoop of radius R rotating about its vertical���
symmetry axis with constant angular velocity Ω. A bead of mass m is threaded
onto the hoop, so is free to move along the hoop. Let the angle θ of the bead be
measured up from the bottom of the hoop.

(a) Write the Lagrangian in terms of the generalized coordinate θ. Are there any
first integrals of motion?

(b) Show that there are two equilibrium angles of the bead for sufficiently small
angular velocities Ω, but that there are four equilibrium angles if Ω is sufficiently
large.

(c) For each of these equilibrium angles, find out whether that position of the
bead is stable or unstable. That is, if the bead is displaced slightly from equilibrium,
does it tend to move back toward the equilibrium angle, or does it depart farther
and farther from it?

Problem 4.25 In certain situations, it is possible to incorporate frictional effects in a�
simple way into a Lagrangian problem. As an example, consider the Lagrangian

L = eγt
(

1
2

mq̇2 − 1
2

kq2
)

.

(a) Find the equation of motion for the system.
(b) Do a coordinate change s = eγt/2q. Rewrite the dynamics in terms of s.
(c) How would you describe the system?

Problem 4.26 Consider a particle moving in three dimensions with Lagrangian L =��
(1/2)m(ẋ2 + ẏ2 + ż2) + aẋ+ b, where a and b are constants. (a) Find the equations
of motion and show that the particle moves in a straight line at constant speed,
so that it must be a free particle. (b) The result of (a) shows that there must be
another reference frame (x′, y′, z′) such that the Lagrangian is just the usual free-
particle Lagrangian L′=(1/2)m(ẋ′2 + ẏ′2 + ż′2). However, L′ may also be allowed
an additive constant, which cannot show up in Lagrange’s equations. Find the
Galilean transformation between (x, y, z) and (x′, y′, z′) and find the velocity of the
new primed frame in terms of a and b.
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Problem 4.27 Consider a Lagrangian L′=L + df/dt, where the Lagrangian is L =�
L(qk, q̇k, t) and the function f = f(qk, t). (a) Show that L′ = L′(qk, q̇k, t), so that it
depends upon the proper variables. Show that this would not generally be true if f
were allowed to depend upon the q̇k s. (b) Show that L′ obeys Lagrange’s equations
if L does, by substituting L′ into Lagrange’s equations. Therefore, the equations
of motion are the same using L′ as using L, so the Lagrangian of a particle is not
unique. (This problem requires care in taking total and partial derivatives!)

Problem 4.28 Show that the function L′ given in the preceding problem must obey�
Lagrange’s equations if L does, directly from the principle of stationary action.
Lagrange’s equations do not have to be written down for this proof!

Problem 4.29 Consider the Lagrangian L′=mẋẏ − kxy for a particle free to move��
in two dimensions, where x and y are Cartesian coordinates, and m and k are
constants. (a) Show that this Lagrangian gives the equations of motion appropriate
for a two-dimensional simple harmonic oscillator. Therefore, as far as the motion of
the particle is concerned, L′ is equivalent to L=(1/2)m(ẋ2+ ẋ2)− (1/2)k(x2+y2).
(b) Show that L′ and L do not differ by the total time derivative of any function
f(x, y). Therefore, L′ is not a member of the class of Lagrangians mentioned in the
preceding problems, so there are even more Lagrangians describing a particle than
suggested before.

Problem 4.30 Consider a Lagrangian that depends on second derivatives of the��
coordinates

L = L(qk, q̇k, q̈k, t).

Through the variational principle, find the resulting differential equations of
motion.

Problem 4.31 A pendulum consists of a plumb bob of mass m on the end of a string��
that swings back and forth in a plane. The upper end of the string passes through a
small hole in the ceiling, and the angle θ of the bob relative to the vertical changes
with time as it swings back and forth. The string is pulled upward at constant rate
through the hole, so the length R of the pendulum decreases at a constant rate,
with dR/dt = −α. (a) Find the Lagrangian of the bob, using θ as the generalized
coordinate. (b) Find the Hamiltonian H. Is H equal to the energy E? Why or why
not? (c) Is either H or E conserved? Why or why not?

Problem 4.32 A spherical pendulum consists of a particle of mass m on the end of a�
string of length R. The position of the particle can be described by a polar angle θ
and an azimuthal angle ϕ. The length of the string decreases at the rate dR/dt =
−f(t), where f(t) is a positive function of time. (a) Find the Lagrangian of the
particle, using θ and ϕ as generalized coordinates. (b) Find the Hamiltonian H. Is
H equal to the energy? Why of why not? (c) Is either E or H conserved? Why or
why not?
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Problem 4.33 The Hamiltonian of a bead on a parabolic wire turning with constant��
angular velocity ω is

H =
1
2

m[(1 + 4α2r2)ṙ2 − r2ω2] + mgαr2,

where H is a constant. Reduce the problem to quadrature: that is, find an equation
for the time t is terms of an integral over r.

Problem 4.34 A bead of mass m is placed on a vertically oriented circular hoop of��
radius R that is forced to rotate with constant angular velocity ω about a vertical
axis through its center. (a) Using the polar angle θ measured up from the bottom
as the single generalized coordinate, find the kinetic and potential energies of the
bead. (Remember that the bead has motion due to the forced rotation of the hoop
as well as motion due to changing θ.) (b) Find the bead’s equation of motion using
Lagrange’s equation. (c) Is its energy conserved? Why or why not? (d) Find its
Hamiltonian. Is H conserved? Why or why not? Is E = H? Why or why not?
(e) Find the equilibrium angle θ0 for the bead as a function of the hoop’s angular
velocity ω. Sketch a graph of θ0 vs. ω. Notice that there is a “phase transition” at
a certain critical velocity ωcrit. (f) Find the frequency of small oscillations of the
bead about the equilibrium angle θ0, as a function of ω.

Problem 4.35 A wire is bent into the shape of a quartic function y = ax4 and oriented��
in a vertical plane, with x horizontal, y vertical, and a a positive constant. A bead of
mass m is threaded onto the wire, and the wire is then forced to rotate with constant
angular velocity Ω about the y axis. (a) Let x be the generalized coordinate for the
bead and find its Lagrangian. (b) Is the bead’s energy conserved? Why or why not?
(c) Is the bead’s angular momentum conserved about the vertical axis? Why or
why not? (d) Find the bead’s Hamiltonian. Is H conserved? Why or why not? (e) Is
E = H? Why or why not? (f) Given Ω > 0, are there any equilibrium positions of
the bead? (g) If so, is each stable or unstable? For any stable equilibrium position,
find the frequency ω of small oscillations about the equilibrium point, expressed as
a multiple of Ω.

Problem 4.36 In Example 4.8 we analyzed the case of a bead on a rotating parabolic�
wire. The energy of the bead was not conserved, but the Hamiltonian was:

H =
1
2

m(1 + 4α2r2)ṙ2 + “Ueff” = constant,

where

Ueff =
1
2

mr2(2gα2 − ω2).

There is an equilibrium point at r = 0 which is unstable if ω > ω0 ≡
√

2g α,
neutrally stable if ω = ω0, and stable if ω < ω0. Find the frequency of small
oscillations about r = 0 if ω < ω0.
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Problem 4.37 A wire bent in the shape of a hyperbolic cosine function y =��
a cosh(x/x0) is supported in a vertical plane, where x and y are the horizontal and
vertical coordinates, respectively, and a and x0 are positive constants. A bead of
mass m is threaded onto the wire and is free to slide without friction along it, and is
subject to uniform gravity g directed downward. (a) Find Lagrange’s equations for
the bead using x as the generalized coordinate, and (b) find the frequency of small
oscillations of the bead about the lowest point of the wire.

Problem 4.38 The wire described in the preceding problem is now forced to rotate��
about its vertical axis of symmetry with constant angular velocity Ω. (a) Find Ωc,
the critical value of Ω for which the equilibrium point at x = 0 is no longer a
stable equilibrium point, and find the values of x for which there is then a stable
equilibrium point for the bead. (b) Find the frequency of small oscillations of the
bead about each of any new equilibrium points.

Problem 4.39 One point on a horizontal circular wire C of radius R is attached to a���
thin, vertical axle which turns at constant angular velocity Ω about the vertical axis,
causing C to turn around with it. A bead of mass m moves without friction on C. (a)
Show that relative to C the bead oscillates like a pendulum. (b) Find the frequency
of small-amplitude oscillations of the bead in terms of any or all of R,Ω, and m.

Problem 4.40 A frictionless slide is constructed in the shape of a cycloid. The��
horizontal coordinate x and vertical coordinate y of the slide are given in parametric
form by

x = A(ϕ+ sinϕ) y = A(1 − cosϕ),

where A is a constant. Here the y coordinate is positive upward. The slide is
the portion of the cycloid with = −π ≤ ϕ ≤ π, with the bottom of the slide
corresponding to ϕ = 0. There is a uniform gravitational field g in the negative
y direction. (a) Find the Lagrangian of a small block of mass m moving along the
slide, using ϕ as the generalized coordinate. (b) The block will oscillate back and
forth near the bottom of the slide. Is its motion simple harmonic in the limit of small
amplitudes? If not, explain why not; if so, find the angular frequency of oscillation
ω in terms of any or all of A, m, and g.

Problem 4.41 A mass M1 is hung on an unstretchable string A, and the other end of���
string A is passed over a fixed, frictionless, nonrotating pulley P1, as shown in
Prob. 4.41. This other end of string A is then attached to the center of a second
frictionless, nonrotating pulley P2 of mass M2, over which is passed a second
nonstretchable string B, one end of which is attached to a hanging mass m1 while
the other end is attached to a hanging mass m2. Let X1(t) be the length of string A
beneath the center of pulley P1; X2(t) be the length of string A beneath the center
of P1; x1(t) be the length of string B beneath the center of pulley P2; and x2(t) be
the length of string B beneath the center of pulley P2. There is a uniform gravity
g downward. (a) Find the total kinetic energy of the system, in terms of X1, x1,
and the various masses. (b) Find the total potential energy of the system, measured
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Prob. 4.41 Three masses and two pulleys.

from the center of fixed pulley P1. (c) Find the Lagrangian of the system. (d) Find
the acceleration of mass M1 in terms of given quantities.

Problem 4.42 Consider a Lagrangian of the form�

L = mc2(1 −
√

1 − v2/c2)− U(x, y, z).

Show that the resulting Lagrange equations give Newton’s second law F = dp/dt
for a relativistic particle, if Fi = −∂U/∂xi.



5 From Classical to Quantum and Back

We come now to the first of our “capstone chapters,” in which we reflect upon
topics from the prior four chapters in the light of contemporary physics. In these
chapters we will illustrate how classical mechanics is related to modern physics,
especially quantum mechanics and general relativity. Classical mechanics played a
key role in developing modern physics in the first place, and in turn modern physics
has given us deeper insights into the meaning and validity of classical mechanics.

In the first four chapters of this book we have reviewed Newtonian mechanics
and Einstein’s extension of it into the relativistic regime; we have also introduced
variational calculus and used it to reformulate mechanics through Hamilton’s
principle of stationary action. However, classical mechanics, even extended into
the realm of special relativity, has its limitations. It arises as a special case of the
vastly more comprehensive theory of quantum mechanics. Where does classical
mechanics fall short, and why is it limited?

The key to understanding this is Hamilton’s principle. We will show how this
principle comes about as a special case of the larger quantum theory. And so, since
we can use Hamilton’s principle to derive classical mechanics, we will reach a good
understanding of when classical mechanics is valid and when we have to use the
full apparatus of quantum theory. In this chapter we aim to set classical mechanics
in context.

We begin with the behavior of waves in classical physics, and then show results
of some critical experiments that upset traditional notions of light as waves and
atoms as particles. We proceed to give a brief review of Richard Feynman’s sum-
over-paths formulation of quantum mechanics, which describes the actual behavior
of light and atoms, and then show that Hamilton’s principle emerges naturally in a
certain limiting case.

5.1 Classical Waves

A string with uniform mass per unit length μ is held in a horizontal position under
uniform tension T. What happens if we disturb the string? In particular, suppose
that at time t = 0 we give the string some particular profile y(x), and some
velocity distribution ∂y(x, t)/∂t|t=0, where x is the horizontal coordinate and y is
the transverse displacement (see Figure 5.1). Our goal is to find y(x, t), the shape of

197



198 5 From Classical to Quantum and Back

the string at any later time in the regime, where y is small compared to the string’s
full length.

Fig. 5.1 A transverse small displacement of a string, with y  l.

Consider a very small slice of string of length Δx and mass Δm = μΔx, as
shown in Figure 5.2. We ignore gravity, so the only forces acting on this piece are
the string tensions to the right and to the left of it. If the string is displaced from
equilibrium, the slice will generally be slightly curved. The two tension forces
on the right and left therefore pull in slightly different directions, as shown in
Figure 5.2, so the resulting unbalanced force causes Δm to accelerate. For small
vertical displacements, the horizontal component of T remains essentially constant
along the string, so Δm accelerates vertically, not horizontally.

Fig. 5.2 A small slice of string; the horizontal components of the tension are labeled as T and must add to zero
since the string does not move horizontally. The angles shown are exaggerated for clarity.
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Let the left-hand end of Δm be located at x0 and the right-hand end at x0 +Δx.
We can relate the slopes of the shape at x0 and x0 + Δx to the angles θL and θR
shown in the figure:

tan θL =
dy
dx

∣∣∣∣
x0

, tan θR =
dy
dx

∣∣∣∣
x0+Δx

. (5.1)

For small displacement y, the angles θL and θR are small, so that

θL � tan θL, θR � tan θR. (5.2)

Using Taylor series (see Appendix F)), the slopes of the string at the left and right
are related by

∂y
∂x

∣∣∣∣
x0+Δx

=
∂y
∂x

∣∣∣∣
x0

+
∂2y
∂x2

∣∣∣∣
x0

Δx + · · · (5.3)

If y(x) is smooth and Δx is sufficiently small, we can neglect all but these first two
terms. The vertical forces on the right-hand and left-hand sides of the slice Δm are

Fy(left) = T tan θL = T
∂y
∂x

∣∣∣∣
x0

and Fy(right) = −T tan θR = −T
∂y
∂x

∣∣∣∣
x0+Δx

,

(5.4)

with the force at the left upward and the force at the right downward. The net
vertical force on Δm is therefore

Fy
net = T

[
∂y
∂x

∣∣∣∣
x0+Δx

− ∂y
∂x

∣∣∣∣
x0

]
= T

∂2y
∂x2

∣∣∣∣
x0

Δx, (5.5)

using Eq. (5.3). The vertical acceleration of Δm is ∂2y/∂t2, the second derivative of
y with respect to time, keeping now the position x fixed. The left end of the slice of
string moves up and down vertically, with position y(x0, t), velocity ∂y/∂t|x0 , and
acceleration ∂2y/∂t2|x0 . Newton’s second law Fy

net = Δm a therefore becomes

T
∂2y
∂x2

∣∣∣∣
x0

Δx = Δm
∂2y
∂t2

∣∣∣∣
x0

= μΔx
∂2y
∂t2

∣∣∣∣
x0

, (5.6)

so
∂2y
∂x2 −

(μ
T

) ∂2y
∂t2

= 0. (5.7)

This is the wave equation of the string for small transverse displacements. It
represents an infinite number of F = ma equations, one for each value of x, for
the infinite number of infinitesimal slices of the string.

For a single particle, an initial position and initial velocity determine the future
position – given mass and forces – by solving ordinary differential equations. For
a string, an initial shape y(x, 0) and a velocity distribution ∂y/∂t|t=0 determine the
future shape y(x, t) – given the mass density μ and tension T – by solving a partial
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differential equation, which is the wave equation (5.7). It is most convenient to
rewrite the wave equation as

∂2y
∂x2 − 1

v2
∂2y
∂t2

= 0, (5.8)

where v is a constant whose role will become apparent soon. In this case, we have

v =

√
T
μ

. (5.9)

The wave equation is linear, which is a consequence of assuming that the
displacements are small. As a result, it satisfies the superposition principle: two
separate solutions of the equation can simply be added, and the result still satisfies
the wave equation. A solution of the wave equation (5.7) consists of any two
functions f(u) and g(u) of the combination u = x ± v t:

ysol = f(x + v t) + g(x − v t), (5.10)

as can easily be verified by substituting this expression into Eq. (5.8). This implies
that once y(x, 0) and y′(x, 0) are given, f and g are fixed. The wave equation simply
tells us that the profiles of f and g evolve in time, without distortion, at speed v
toward negative and positive x, respectively. An easy way to see this is to sketch
the two functions at two instants in time (see Figure 5.3).

x

f

x

g

Fig. 5.3 The time evolution of the f and g profiles as dictated by the wave equation.

Note also that the wave equation is real in addition to being linear. This means
that we can solve it with complex functions as well, with the real and imaginary
parts as separate solutions: the equation splits into a real part and an imaginary
part, each looking identical in form, applied to the real and imaginary parts of the
complex solution.

Classical waves propagate also in fluids like air or water, characterized by
macroscopic properties such as mass density and pressure. If a fluid is locally
perturbed, sound waves can be set up in which both the local density and pressure
oscillate, and the oscillations are propagated from the initial site throughout the
material. In the case of small-amplitude waves, the density of the material has the
form ρ = ρ0+Δρ and the pressure is p = p0+Δp, where ρ0 and p0 are the ambient
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density and pressure, and Δρ and Δp are the small perturbations that can propagate
from place to place. We won’t prove it here, but the disturbance Δρ obeys a similar
wave equation to (5.8), but in three dimensions:

∇2(Δρ)−
(ρ0

B

) ∂2(Δρ)

∂t2
= 0, (5.11)

where B is the bulk modulus of the material, a measure of the stiffness of the fluid
defined by

B ≡ 1
ρ0

dp
dρ

∣∣∣∣
ρ0

. (5.12)

The less the fractional change in density for a given pressure change, the greater
the stiffness, and the greater the bulk modulus. The differential operator ∇2 is the
Laplacian, which in Cartesian coordinates takes the form

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (5.13)

In the case of an infinite plane wave propagating in the x direction – that is,
Δρ(x, y, z, t) = Δρ(x, t) – the wave equation becomes

∂2(Δρ)

∂x2 −
( ρ

B

) ∂2(Δρ)

∂t2
= 0, (5.14)

which has the same form as the wave equation for a string (5.8) with speed

v =

√
B
ρ0

. (5.15)

Another well-known classical wave is the electromagnetic wave, a hallmark
of Maxwell’s equations of electrodynamics. In vacuum the equations can be
combined to produce a wave equation

∇2E− 1
c2

∂2E

∂t2
= 0 (5.16)

for the electric field E, with a similar equation for the magnetic field B. The
electric and magnetic fields propagate together at the speed of light v = c, so
Maxwell was able to achieve a grand synthesis of electricity, magnetism, and optics
by showing that light waves are in fact electromagnetic waves. Again, the one-
dimensional form of these equations, corresponding to an electromagnetic plane
wave propagating in the x direction, has the same form as waves on a string (5.8).
One difference here is that the electromagnetic wave equation is valid for any
classical electromagnetic wave, whatever its amplitude. No linear approximation
has to be made.

Among the infinite variety of solutions (5.10) to the one-dimensional wave
equation – whether for waves on a string, sound waves, or light waves – are
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sinusoidal traveling waves that propagate to the right or to the left. We write
(see Figure 5.4)

ysol = A0 sin
[
k
(

x ∓ ω

k
t
)
− ϕ

]
, (5.17)

where A0 is the amplitude of the wave, k is the wave number, ω is the angular
frequency, and ϕ is the phase angle. Notice that these solutions are indeed a
function of x ± v t as argued earlier in Eq. (5.10), with v = ω/k. The upper
(minus) sign corresponds to a wave traveling to the right, and the lower (plus)
sign corresponds to a wave traveling to the left. The wave number is related to the
wavelength λ by k = 2π/λ, and the angular frequency is related to the frequency ν
(i.e., cycles/s) by ω = 2πν. The phase angle simply displaces the sinusoidal shape
to the right (if ϕ is positive) or to the left (if ϕ is negative).

y

x

Fig. 5.4 A sinusoidal wave moving with speed v = ω/k.

For waves on a string, we have the wave speed given by v = ω/k =
√

T/μ; for
sound waves, we have v = ω/k =

√
B/ρ; and for light waves, v = ω/k = c, the

speed of light.
The intensity I of a plane wave is proportional to the square of its amplitude A0;

that is

I = KA2
0, (5.18)

where K is a constant that depends upon the type of wave. Intensity is the
energy/time passing through a unit area perpendicular to the wave velocity. For
sound waves, higher intensity is higher volume; for light waves, higher intensity
corresponds to brighter light.

The wave equation also has complex exponential traveling-wave solutions of the
form

y(x, t) = A0ei(kx∓ωt−ϕ), (5.19)
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which is simple to verify by substitution, but is quite obvious from the fact that the
real and imaginary parts of the complex exponential are given by Euler’s formula

eiθ = cos θ + i sin θ. (5.20)

So if we choose θ = kx ∓ ωt − ϕ, then y(x, t) is in fact the sum of two
sinusoidal traveling waves with the same amplitude, frequency, and wave number,
but differing in phase by π/2 (that is, the phase difference between the cosine
and sine functions). Complex exponential solutions are often used in part because
they are easier to work with mathematically (the derivative of an exponential is an
exponential, for example). Then we can always take the real (or imaginary) part
of the final result to get the physical result, which in classical physics corresponds
to an observable quantity and must therefore be real. In quantum mechanics, as
we will introduce in this chapter, the complex exponential form turns out to be the
natural form to use.

The intensity of a complex wave is proportional to the product of the wave
amplitude and the complex conjugate of the wave amplitude; this gives the real
quantity

I = Ky(x, t)y∗(x, t) = K
[
A0ei(kx∓ωt−ϕ)

] [
A∗

0e−i(kx∓ωt−ϕ)
]
= K|A0|2 (5.21)

as before.

Example 5.1 Two-Slit Interference of Classical Waves
When two or more traveling waves combine, we observe interference effects. Direct a plane sinusoidal wave
from left to right at a double-slit system, for example, as shown in Figure 5.5. For concreteness, let us focus on
the case of sound waves: the source would be a speaker. Only waves that pass through one of the slits make it
through to the right-hand side. The resulting wave is then detected on a detecting plane, which is a screen or
bank of detectors much farther along to the right – in this case an array of microphones. What will be observed
by the detectors? Using the complex exponential form of the solution given by Eq. (5.19) at the position of the
detector, we add the contributions from two slit sources by linear superposition:

ΔρT = Δρ1 +Δρ2 = A0

(
ei(ks1−ωt−ϕ) + ei(ks2−ωt−ϕ)

)
, (5.22)

where s1 is the distance of an observation point from slit 1 and s2 is the distance from slit 2. Here we have used
the fact that the wave number, frequency, and phase angle of each of the two contributions are the same (both
slit waves originate from the same source on the left after all). We have also assumed that the amplitude A0 of
each wave as it reaches the detector is the same, which is an excellent approximation as long as the detecting
plane is far away compared with the distance between the two slits (that is, we have s1 ∼ s2).

The total wave at the right is then

ΔρT = A0e−i(ωt+φ)
(

eiks1 + eiks2
)

. (5.23)
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(b)(a)

Fig. 5.5 Two paths for waves from slit system to detectors. We assume for simplicity that the
detecting plane is very far from the slit system compared with the distance between
the two slits, so the wave disturbances from each slit propagate essentially parallel
to one another.

The intensity of the wave at the detection point becomes

I = KΔρ∗T ΔρT = K|A0)|2 (e−iks1 + e−iks2
) (

eiks1 + eiks2
)

= 2K|A0)|2(1 + cos(k(s2 − s1))

= 4K|A0)|2 cos2(k(s2 − s1)/2), (5.24)

using the identities cos α = (eiα + e−iα)/2 and cos2(α/2) = (1/2)(1 + cos α). The difference
s2 − s1 of the path lengths from the two slits to a point on the detecting plane is

s2 − s1 = d sin θ, (5.25)

as shown in Figure 5.6(a), where θ is the angle between the two rays and the forward direction. The phase
difference between the two waves is Φ ≡ k(s2 − s1) = (2πd/λ) sin θ, so the intensity at an arbitrary
angle θ, in terms of the intensity I0 in the forward direction θ = 0, is

I(θ) = I0 cos2(Φ/2) where Φ =
2πd
λ

sin θ, (5.26)

as illustrated in Figure 5.6(b). There are alternating maxima and minima, with the maxima occurring at angles
θ for which nλ = d sin θ, with n = 0, ±1, ±2, . . . These are points along the detecting plane where the
sound volume is high – sandwiching points in between with zero or low volume. To discern this alternative
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pattern of intensity, we need to have λ ≤ d since sin θ ≤ 1. The pattern predicted by Eq. (5.26) is indeed
easily verified in the laboratory.

(a) (b)(a)

Fig. 5.6 (a) The relationship between s2 − s1, d, and θ. (b) The two-slit interference pattern.�

The interference pattern from this double-slit example is typical for all classical
waves. It is observed for light waves and sound waves alike, whenever two or more
waves combine in the same region of space. As we shall now see, this wave-like
behavior also helps us peek into the quantum nature of the world.

5.2 Two-Slit Experiments and Quantum Mechanics

According to Maxwell’s equations light is an electromagnetic wave, so if we direct
a beam of light at a double slit we should observe wave interference. But if we
direct a beam of atoms at a double slit, classical mechanics teaches us that we
should observe a bunch of atoms downstream of each slit, much like what would
happen if we tossed ball bearings at a pair of slits. Atoms are particles, after all, so
should not exhibit interference patterns. But what about actual experiments?

Light
Various light detectors can be used on the detecting plane, including photographic
film, photomultipliers, charge-coupled devices, and others, depending upon the
wavelength. If the wavelength of the light beam is smaller than the slit separation, a
fairly bright light source is used, and fairly long exposures are made (the meaning
of “fairly” here will soon become clear). The experimental intensities again show
alternating maxima and minima, with maxima occurring where nλ = d sin θ.
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But now crank the brightness of the light source way down, and observe what
happens over short time intervals. Instead of seeing very low-intensity light spread
over the detecting plane, as predicted by the interference formula (5.26), one finds
that at first the light arrives at apparently random discrete locations. If the detector
is a bank of photocells, for example, only certain cells will register the reception
of light, while others (even at locations where the intensity should be a maximum)
receive nothing at first. That is, light is seen to arrive in discrete lumps, or photons
(see Figure 5.7(a)).

(a) (b)

Fig. 5.7 (a) At very low-intensity light, individual photons appear to land on the screen randomly. (b) As the
intensity is cranked up, the interference pattern emerges. Reprinted by permission from Ch. Kurtsiever, T.
Pfau, and J. Mlynek, Nature 386, 150 (1997).

The remarkable fact is that even though the photons arrive one at a time at
the detectors, if we wait long enough, the large number of photons distribute
themselves among the detectors exactly as the interference formula predicts (see
Figure 5.7(b)). That is, in some sense light has both a particle nature (we observe
single particles only in the detectors) and a wave nature (when huge numbers
of photons have arrived at the detecting plane, the overall distribution shows the
interference pattern predicted by wave theory). And if we close off one of the two
slits, the pattern of photons shows no such interference.

By observing the number of photons arriving at the screen, and knowing the
intensity, the wavelength λ, and hence the frequency ν = c/λ of the light,
one finds that each photon must have an energy E = hν and a momentum
p = E/c = h/λ, where h is Planck’s constant, h = 6.627 × 10−34 J · s.
As we saw in Chapter 2, it was Albert Einstein in 1905 who first realized that
light is not a continuous, Maxwellian wave after all, but consists of discrete
photons, and that each photon is massless and has energy E = hν and momentum
p = h/λ.

The central puzzle is: If light consists of a stream of individual photons, so that
in the case of two slits each photon presumably goes through one slit or the other
slit and not both, how can they develop an interference pattern? How do photons
“know” whether two slits are open or only one?
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Atoms
Now project a beam of helium atoms at a pair of slits and observe their distribution
on the detecting plane. A double-slit system has slits of width a = 1 μm and slit
separation d = 8 μm. Each helium atom has mass m = 6.68 × 10−27 kg, and
each can be detected by various counters as a discrete particle, where the detecting
plane is a distance D = 1.95 m behind the slits. Our beam of helium atoms travels
at speeds between 2.1 and 2.2 km/s.

The atoms do arrive at the screen in discrete lumps, as expected, but the
distribution shows interference effects similar to what we observe with light!
Figure 5.8 shows the actual results of this experiment.
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Fig. 5.8 Helium atoms with speeds between 2.1 and 2.2 km/s reaching the rear detectors, with both slits open.
The detectors observe the arrival of individual atoms, but the distribution shows a clear interference
pattern as we would expect for waves! We see how the interference pattern builds up one atom at a time.
The first data set is taken after 5 min of counting, while the last is taken after 42 h of counting. Reprinted
by permission from Ch. Kurtsiever, T. Pfau, and J. Mlynek; see their article in Nature 386, 150 (1997).

The obvious question is: For helium atoms, as with photons, what exactly is
interfering? The beam intensity can be turned so low that there is at most a single
atom in flight at any given time, so atoms are not interfering with other atoms
– yet the interference pattern eventually emerges. Each atom must be interfering
with itself in some way. The interference distribution emerges only after many
atoms have been detected. We can carry out similar experiments with atoms
with different masses moving with different velocities. The results show that
the wavelength λ deduced from a particular interference pattern on the screen is
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inversely proportional to both the atomic mass m and the velocity v of the atoms.
That is:

λ = h/p, (5.27)

where p = mv is the momentum of the nonrelativistic atom and h again is Planck’s
constant. This is exactly the same relation between λ and p as for photons.1 If one
of the two slits is blocked off, so atoms can only penetrate one of the slits, the
two-slit interference pattern goes away.

Even though an atom is detected at a specific spot much like a classical particle,
the interference patterns show that an individual atom somehow “knows” whether
there are two slits open or only one. How does it know that? If both slits are open,
does it somehow probe both paths? Does it in some sense take both paths?

5.3 Feynman Sum-over-Paths

Thirty-one years ago, Dick Feynman told me about his “sum over histories” version of
quantum mechanics. “The electron does anything it likes,” he said. “It just goes in any
direction at any speed, . . . however it likes, and then you add up the amplitudes and it
gives you the wave function.” I said to him “You’re crazy.” But he wasn’t. – Freeman
Dyson, 1980.

According to the highly original American physicist Richard Feynman, the
answer to the question posed at the end of the preceding section is yes! In his sum-
over-paths formulation of quantum mechanics, atoms (or electrons or molecules or
photons or ball bearings or anything. . . ) do take all available paths between two
points. If both slits are open in the experiments we have described, the particle
goes through both slits. If one of the slits is closed, the particle goes through the
remaining open slit.

How do we predict what will be observed in each case? According to quantum
mechanics, there is no way we can tell where a particular photon or helium atom
will go. This is not because our measuring devices do not yet have sufficient
precision; it is because a particle does not have a definite position or momentum
at any given time, and it does not travel by any single classical path. The best we
can do is find the probability P that a particle will be observed at any particular
location. Nature itself keeps track of only probabilities: this is the concept of non
deterministic reality.

How do we find the probability distribution? Here are the rules of quantum
mechanics relevant to this task.

1 The wavelength λ = h/p is called the de Broglie wavelength, because it was in his doctoral dissertation that
the French physicist Louis de Broglie proposed that all particles have a wavelength λ = h/p. In the case of
photons, we can increase the momentum by increasing the frequency of the light, since p = h/λ = hν/c. In
the case of atoms, we can increase the momentum by increasing their velocity. And larger momentum leads to
shorter de Broglie wavelength.
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I. The probability P that a particle will be observed at a particular location is
given by the absolute square of a total complex probability amplitude AT to
arrive there:

P = |AT|2 ≡ A∗
TAT, (5.28)

where A∗
T is the complex conjugate of AT.

II. The total probability amplitude for a particle to go from a to b is simply the
sum of the probability amplitudes to go by every path available to it:

AT = A1 + A2 + · · · , (5.29)

where A1 is the amplitude for path 1, A2 is the amplitude for path 2, etc. We
sum over all possible paths with fixed endpoints a and b. This sum includes all
possible path trajectories between a and b with all possible momenta.2

III. The probability amplitude A to go from a source at a to a detector at b by some
particular path is given by

A = A(t0)eiφ, (5.30)

where A(t0) is the amplitude of the source when the particle leaves, and φ is a
phase that depends upon the path. This phase is the Lorentz-invariant quantity

φ =
1
�

∫ b

a
ημνpμdrν =

1
�

∫ b

a
(p · dr− Edt), (5.31)

where the coordinates at a are the initial position and time (x0, y0, z0, t0), and
the coordinates at b are the final position and time (xf, yf, zf, tf), for a particular
path.

These are the three simple rules for calculating the probability that a particle will
be detected at time t.

Note from Rule III that if a particular path from a source at a to a detector at d is
thought of as a sequence of path segments, for example, (1) (a → b), (2) (b → c),
(3) (c → d), then the phase φ, being an integral over the entire path from a to d, is
the sum of integrals for each segment of the path. That is, φ = φ1 +φ2 +φ3 + · · · ,
so the phase factor can be written

eiφ = ei(φ1+φ2+φ3+··· ) = eiφ1eiφ2eiφ3 . . . (5.32)

The amplitude to go by a particular path all the way from a source to a detector is
therefore

A = A(t0)eiφ1eiφ2eiφ3 . . . , (5.33)

the amplitude at the source multiplied by the product of phase factors for each
segment of the path.

2 The sums over all paths and momenta consist of two independent sums. The state of the particle is prescribed
at any given instant in time by specifying both its position and momentum independently. In the language we
will introduce in Chapter 11, the sum is carried out in phase space.
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Of all paths appearing in the sum (5.29), let us focus on a subset of interest – in
an effort to simplify our job. It can be shown that going beyond this subset does
not change the conclusion. We will consider only paths for which, at any instant in
time, the momentum p is parallel to the displacement dr, and the magnitudes of the
momentum p and energy E are constant all along the path. Furthermore, we will
fix the energy of the incoming particles. The probability amplitude that incoming
particles with definite E and momentum p are detected at some definite position on
the detection screen at time t – after going along a path of length s – then takes the
form

A(t) = A0e
i
�
(ps−Et) = A0eik s−iωt, (5.34)

where A0 is a constant. This expression can be obtained from Eq. (5.31), being
careful to recast the amplitude from one involving particles that start at a definite
position to one involving particles of definite energy. Here the magnitude of the
wave number three-vector k is k = 2π/λ = p/� and ω = 2πν = E/�, where
� ≡ h/2π. Note that both relationships p = h/λ and E = hν are valid for massless
photons as well as massive particles like helium atoms. This probability amplitude
can be displayed as a two-dimensional vector called a phasor in the complex
plane, as illustrated in Figure 5.9. The horizontal axis represents real numbers and
the vertical axis imaginary numbers. Points not on either axis represent complex
numbers with both real and imaginary parts. Placing the tail of the phasor at the
origin, the length of the phasor is |A0| and its angle with the real axis is the total
phase ks−ωt. Adding probability amplitudes from different paths of different path
lengths s translates then to adding phasors like two-dimensional vectors on a phasor
diagram, as show in Figure 5.10.

Fig. 5.9 A phasor A0eiφ drawn in the complex plane. The real axis is horizontal and the imaginary axis is vertical.
The absolute length of the phasor is |A0| and the angle between the phasor and the real axis is the phase
φ = ks − ωt. Hence, as t changes, the phasor rotates.
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(a) (b) (c)

(d) (e)

Fig. 5.10 The sum of two individual phasors with the same magnitudes |A0| but different phases. The result is a
phasor that extends from the tail of the first to the tip of the second, as in vector addition. The difference
in their angles in the complex plane is the difference in their phase angles. Shown are examples with
phase differences equal to (a) zero, (b) 45◦, (c) 90◦, (d) 135◦, (e) 180◦ .

The total probability amplitude for a monoenergetic beam of particles becomes,
using Eqs. (5.29) and (5.34):

AT = A0

(
ei(ks1−ωt) + ei(ks2−ωt) + · · ·

)
= A0e−iωt (eiks1 + eiks2 + · · ·

)
, (5.35)

where s1, s2, . . . are the lengths of the various paths considered from the subset of
the path we have focused on. These paths can zig-zag, go back and forth, in circles,
any way they like as long as there are no physical barriers to prevent them.

5.4 Helium Atoms and the Two Slits, Revisited

We can now derive the probability distribution for particles passing through a
double slit using the quantum rules. We will make a huge simplification for now,
allowing particles to move along just two paths from the source to a detector,
each path consisting of two straight-line segments joined at a slit, as illustrated
in Figure 5.11. We assume also that both the source and the detector are far from
the slit system, so the two paths from the source to the slits are essentially parallel
to one another, and the two paths from the slits to the detector are also essentially
parallel to one another.

The total probability amplitude is

AT = A0e−iωt (eiks1 + eiks2
)

, (5.36)
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detector

source

1

2

3

Fig. 5.11 Two paths from a source to a detector. Path 3 is possible but is not used in the text.

so the probability of observing a photon or atom at a particular detector is

P = A∗
TAT = |A0|2

(
e−iks1 + e−iks2

) (
eiks1 + eiks2

)
= 2|A0|2(1 + cos(k(s2 − s1))

= 4|A0|2 cos2(k(s2 − s1)/2). (5.37)

The probability that a particle is detected at arbitrary angle θ, in terms of the
probability P(0) of detecting it in the forward direction θ = 0, is therefore

P(θ) = P(0) cos2(Φ/2) where Φ = k(s2 − s1) =
2π
λ
(d sin θ), (5.38)

using the same trig identities we used earlier for classical waves, where we found an
intensity distribution I(θ)= I(0) cos2(Φ/2). Naturally enough, if the probabilities
of single-particle events obey the two-slit pattern, then if we collect a great many
particles the intensity will have the same distribution. The formula agrees with
the experimental results for photons or helium atoms as long as the de Broglie
wavelengths are not extremely small compared with the slit separation d. That is,
as long as we have λ < d but not too small. The interference pattern observed is
similar to that shown in Figure 5.8.

What do we see if the wavelength is extremely small? To understand this,
remember that λ = h/p; hence, smaller wavelengths correlate with larger momenta.
For a nonrelativistic particle we can achieve a large momentum p = mv by, for
example, increasing the mass: for instance, we can throw ball bearings at the two
slits instead of helium atoms (assuming the ball bearings are smaller than the width
of each slit of course). If we were to toss ball bearings at a double-slit system, we
expect bunches of balls to accumulate downstream of each slit, with no interference
pattern at all. It is true that some balls might nick the slit edges and be deflected
to one side or the other, yet we would certainly see no interference pattern. For
concreteness, consider an actual experiment with fast helium atoms. As before,
each slit has width a = 1 μm and the two slits are separated by a distance d = 8 μm.
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Each atom has a mass m = 6.68 × 10−27 kg, and each can be detected by various
counters as a discrete particle. For atoms with large velocities above 30 km/s, the
results of actual experiments with both slits open are shown in Figure 5.12. They
strike the screen with a bunch downstream of each slit, much like what we would
find if we tossed ball bearings at a much larger slit system. This corresponds to the
case where the de Broglie wavelength of the helium atoms λ = h/mv ∼ 10−11 m
is much smaller than the width of each slit a ∼ 10−6 m (the high momentum is
achieved by increasing the atoms’ speed, not the mass of the particles as when
considering ball bearings).
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Fig. 5.12 High-velocity helium atoms, with speeds above 30 km/s, reaching the rear detectors, with both slits
open. The detectors observe the arrival of individual atoms, and the distribution is what we would
expect for classical particles. Reprinted by permission from Ch. Kurtsiever, T. Pfau, and J. Mlynek, Nature
386, 150 (1997).

Whether we throw ball bearings, photons, or helium atoms, for sufficiently large
momenta the interference pattern disappears. That is, any particle that penetrated a
two-slit system would go through either one slit or the other, and for those going
through the top slit it would make no difference whether the bottom slit is open
or not, and for those going through the bottom slit it would make no difference
whether the top slit is open or not. The distribution with both slits open is simply
the sum of the distributions with only one slit open at a time.

So something else must be going on to explain why we do not see the two-slit
interference pattern of Eq. (5.38) when the momenta are large. To see the resolution
of this puzzle, we need to realize that the two-slit interference pattern is incomplete.
Because each individual slit has a finite width a, there is an infinite number of
nearby paths passing through each slit and we have ignored the effects of these
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(b)(a)

x

Fig. 5.13 (a) Path length as a function of position y within the slit. (b) The single-slit diffraction pattern.

additional paths. These have slightly different phases, so they interfere with one
another significantly, especially when λ < a.

Consider a narrow slice of a single slit of width dy (see Figure 5.13). If we
measure y up from the top of the slit, then s = s0 + y sin θ, where s0 is the distance
of the top of the slit from the detector, as shown in Figure 5.13(a). The amplitude
dA of all paths passing through the narrow slice of width dy will be proportional to
dy, so3

dA = (C dy) eiks0 ei(ky sin θ−ωt), (5.39)

where C is a constant. The total amplitude to reach the detector, passing through a
single slit of width a, is therefore

AT = C ei(ks0−ωt)
∫ a

0
dy eiky sin θ = C ei(ks0−ωt)

(
eika sin θ − 1

ik sin θ

)
. (5.40)

The probability is equal to the absolute square of AT:

P = A∗
TAT = |C|2

(
e−iky sin θ − 1
−ik sin θ

)(
eiky sin θ − 1

ik sin θ

)

=
2|C|2

k2 sin2 θ
(1 − cos(ka sin θ)) = 2|C|2a2

(
sin2 α

α2

)
, (5.41)

where α ≡ (ka sin θ)/2 and we have used the identity sin2 α = (1/2)(1− cos 2α).
Now (sin2 α)/(α2) → 1 as α → 0, which is the maximum value this ratio can
achieve. This distribution is called single-slit diffraction. The probability pattern in
this case is

3 To see this, note that if you double the size of dy, twice as many particles would go through dy – assuming
uniform flux of particles across the single slit.
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Fig. 5.14 The double slit with finite slit width a, with a screen at distance D. We can view the intensity on the
screen as a function of the transverse distance x.

P = Pmax

(
sin2 α

α2

)
where α ≡ ka sin θ

2
=

πa
λ

sin θ (5.42)

and is depicted in Figure 5.13(b). The distribution has a maximum in the middle
where α = 0, and the first minimum at each side corresponds to α = ±π. The
half-width of the central peak is therefore Δα = π, which occurs at an angle θ0 for
which sin θ0 = λ/a.

Let us start with λ small enough that the diffraction pattern has structure when
the angles are small, i.e., sin θ  1 and so sin θ ∼= θ. Let D be the distance from
the slit system to the detecting screen, and x be the distance on the screen from
the midpoint of the wave pattern on the screen, as shown in Figure 5.14. Now
x/D = tan θ ∼= θ if θ  1, so the central peak of the single-slit diffraction pattern
has a half-width on the screen of magnitude

Δx1/2 � Dθ =
Dλ

a
. (5.43)

Figure 5.15(a) illustrates the scenario. We see that the diffraction curves for the two
slits essentially overlap. In this case the overall probability distribution is simply
the product of the interference oscillation with the central diffraction envelope:

P = Pmax cos
2 β

(
sinα

α

)2
, (5.44)

where β ≡ πd sin θ/λ and α ≡ πa sin θ/λ. We have a familiar interference pattern
from Figure 5.6 or 5.8 modulated by an envelope from the single-slit diffraction
phenomenon. This is what we observe initially for photons or helium atoms – and
were able to understand using Feynman’s sum-over-paths formalism.
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Now keep the same pair of slits and the same distance to the detecting plane, but
decrease the beam wavelength by a factor of 20. That is, increase the momentum
of the photons or helium atoms (in an extreme case, throw ball bearings!). The
result is shown in Figure 5.15(b). The two peaks are now quite well separated.
Clearly, as the wavelength is further reduced, the pattern becomes closer and
closer to that corresponding to two bunches of particles formed downstream of
each of the two slits. We see that, summing over all paths properly according to
Feynman’s sum-over-paths prescription, we observe the transition from quantum
mechanics at longer de Broglie wavelengths to classical mechanics at shorter
wavelengths.

(b)(a)

Fig. 5.15 Interference/diffraction patterns for a double slit with a = d/4 and D = 1000d. The diffraction curves
serve as envelopes for the more rapidly oscillating interference pattern. (a) The pattern in the case
x1/2 = 10d, where x1/2 is the distance on the detecting plane between the center and the first
minimum of the diffraction envelope. The diffraction curves of the two slits strongly overlap in this case,
giving in effect a single diffraction envelope. (b) The pattern in the case x1/2 = d/2, showing that the
two diffraction patterns have become separated, with the first minimum due to each slit at the same
location in the center. This case corresponds to a wavelength smaller by a factor of 20 than the pattern
shown in (a).

Feynman’s sum-over-paths approach captures the full physics. The moral is that
at larger wavelengths, we discern the interference and diffraction patterns that are
the hallmarks of quantum mechanics, while at smaller wavelengths we recover our
classical physical intuition. The subtle addition of phases of amplitudes accounts
for the full picture.

Our conclusion from atomic-beam experiments is that helium atoms generally
behave like neither ball bearings nor sound waves: they are neither classical
particles nor classical waves, but retain some properties of each. They are detected
as localized units like particles, but they show interference patterns like waves. In
fact, we find that their particle and wave properties are related by p= h/λ≡ �k,
where h is Planck’s constant and � ≡ h/2π.
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5.5 The Emergence of the Classical Trajectory

Imagine the double slit of the previous section, but now without any barriers
between the source and the detector (see Figure 5.16): in that case we need to
consider an infinite number of paths between source and detector, with various
path lengths s(α), . . . Here α is a number that labels a path uniquely and s(α) is
the length of the corresponding path (conveniently arranging the labeling so that
paths with similar lengths have similar labels α). According to the quantum rules,
the total probability amplitude for the particle to be detected at time t is

AT = A0 e−iωt
∫

dα eiks(α), (5.45)

where we have again assumed that all of the magnitudes A0 (which may be complex
numbers) are equal. Suppose that the path lengths (and therefore the phases) are all
about the same for some particular set of paths. In that case the phasors associated
with each term in the set add up to give a large total amplitude, as shown in
Figure 5.17(a). If the path lengths are all quite different for another set of paths,
then those phasors tend to cancel one another out, as shown in Figure 5.17(b).

Since we know that there is a shortest path between source and detector, that of
the straight line, we know that the function s(α) has a minimum, say at α = α0,
corresponding to the straight-line path. It follows that

ds
dα

∣∣∣∣
α0

= 0. (5.46)

The Taylor series of s(α) about the point α0 is (see Appendix F)

s(α) = s(α+ 0) +
ds
dα

∣∣∣∣
α0

(α− α0) +
1
2!

d2s
dα2

∣∣∣∣
α0

(α− α0)
2 + · · · � s(α0),

(5.47)

b

a

Fig. 5.16 A sampling of paths between source and detector with no barrier in between.
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(b)(a)

Fig. 5.17 The sum of a large number of phasors: (a) that are about the same; (b) that differ by constant amounts.

so the values of s(α) are the same to first order in Δα ≡ α − α0, since α0 is
at the minimum of the function. This means that if the set of paths is nearby
the path of minimum length at α0, then the phases will all be about the same,
∼ eiks(α0), and the corresponding phasors will add up to give a large total as in
Figure 5.17(a). Otherwise, the phases of paths very different from the minimum
path will differ sufficiently from one another, so that the total phasor will be small,
as in Figure 5.17(b). In the case of a free particle, the shortest path is a straight
line, and the phase of nearby paths will be nearly the same, so the total probability
amplitude will be large. That is, if a free particle travels from a to b by a straight-
line path, the neighboring paths all have about the same length so their phases add
up constructively. But if the particle travels by some arbitrary path, the neighboring
paths differ more markedly in length from it, so the phases for these surrounding
paths tend to cancel one another out. The sum in Eq. (5.29) (or the integral in Eq.
(5.45)) is then dominated by the paths near the classical one, the straight line. While
all paths are accessible, the shortest classical trajectory dominates the amplitude
computation. This observation now justifies a previous assumption we made: in
the double- and single-slit cases, when we considered only straight-line paths that
kink at the slits, we were implicitly making use of this observation – these straight
paths are expected to dominate the amplitude computation because of the phase
cancellations for other paths.

Example 5.2 A Class of Paths Near a Straight-Line Path
Let sα0 be the shortest distance between the source and the detector, corresponding to a straight-line path.
We will sum the probability amplitudes for a certain subset of all paths near this path. These particular
alternate paths consist of a straight line with a kink in the middle, where the kink is a distance D = |n|D0

(n = ±1, ±2, . . .) from the straight line, as shown in Figure 5.18. If the paths have length sn, then by the
Pythagorean theorem

(sn/2)2 = (s0/2)2 + (nD0)
2. (5.48)
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Fig. 5.18 A class of kinked paths midway between a source and a detector. The straight line
is the shortest path, and the midpoint of the others is a distance D = |n|D0 from the
straight line, where n = ±1,±2, . . .

We will assume that |n|D0  s0, so using the binomial approximation (see Appendix F):

sn = s0

√
1 + (2nD0/s0)2 ∼= s0(1 + 2n2D2

0/s2
0). (5.49)

Therefore the probability amplitude to go by a particular path of length sn is proportional to

An ∝ eiks = eiks0 eiθn , (5.50)

where

θn =

(
2kD2

0

s0

)
n2 |n| = 0, 1, 2, . . . (5.51)

Note that θn is the angle of the associated phasor An with respect to that of the straight-line path. As a
particular case, suppose the phasor corresponding to the straight-line path is horizontal, and that 2kD2

0/s0 =

π/200. Then the angles θn are given in Table 5.1 for n = 0, n = ±1, n = ±2, . . . , n = ±25. The sum
of these phasors, all with the same length but in directions θn relative to the horizontal, will give the total
phasor for these paths.

Table 5.1 The amplitude phase angles in terms of the integer n that characterizes the corresponding paths

n θn n θn n θn n θn n θn

0 0◦ ±6 32.4◦ ±12 129.6◦ ±18 291.6◦ ±24 518.4◦
±1 0.9◦ ±7 44.1◦ ±13 152.1◦ ±19 324.9◦ ±25 562.5◦
±2 3.6◦ ±8 57.6◦ ±14 176.4◦ ±20 360.0◦ ±26 608.4◦
±3 8.1◦ ±9 72.9◦ ±15 202.5◦ ±21 396.9◦ ±27 656.1◦
±4 14.4◦ ±10 90.0◦ ±16 230.4◦ ±22 435.6◦ ±28 705.6◦
±5 22.5◦ ±11 108.9◦ ±17 260.1◦ ±23 476.1◦ ±29 756.9◦
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straight line
path

paths close
to straight line

Fig. 5.19 Phasors up to n= ± 25. The more distant paths wind up in spirals, contributing
very little to the overall phasor sum.

The phasors are drawn in Figure 5.19. Those corresponding to n = 0 through n = ± 5 are more or less
aligned, so the paths neighboring the straight-line path are enhancing it. As |n| increases the angles between
successive phasors gradually increase, so the phasors begin to loop around, winding up in tighter and tighter
spirals so they no longer make any important contribution to the total amplitude. The shape of these phasors
is called a Cornu spiral. The sum of all the phasors up to n = ± 25 is the long arrow shown. If we were
to include additional phasors we would not change this sum very much. It is the straight-line path and its
neighbors that contribute the most to the overall phasor, and therefore to the overall probability amplitude
for the atom to go from the source to the detector. The classical path is the straight-line path in this case, but
it is not the only path. �

How do we know that the classical path is not the only path that a particle takes?
The best way to show the importance of the other paths is to block them off. If
a highly collimated beam of particles travels from a source to a detecting screen,
detectors will find that the particles are confined to a narrow region on the screen,
in accord with the idea that the particles follow a straight-line path from source
to screen. Therefore, if we were to introduce a narrow slit at a location directly
between the source and the screen, it should make no difference, because according
to classical ideas the particles are taking only that path anyway. But it does make
a difference. With the narrow slit in place, the particles show a diffraction pattern
on the screen as in Figure 5.13(b). Therefore without the screen, particles must
be taking more than the straight-line path after all; in fact, according to quantum
mechanics, they take all paths from source to screen that are not blocked off by
some barrier.
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Example 5.3 How Classical is the Path?
The phase of a free particle involves the product ks = 2πs/λ. If the wavelength is very small, so that
s/λ � 1, then slight changes in s mean large changes in phase. The straight-line path between a and b is
the minimum-distance path, so we already know that is the classical path. Neighboring paths have almost the
same length, so they tend to add up in phase. But for a given path near the straight line, as the wavelength
becomes smaller and smaller, the phase 2πs/λ changes more and more, so the corresponding phasors tend
to spiral around and cancel out. That is, for very small wavelengths the set of mutually reinforcing paths
becomes more and more constrained, closer and closer to the straight line; in the limit s/λ � 1, nonclassical
paths become less and less important in the overall sum, so classical mechanics becomes a better and better
approximation to the true situation. Take, for example, an electron moving at speed v. Classical motion is valid
in the limit

s
λ
=

p s
h
=

mvs
h

� 1. (5.52)

An electron in a cathode-ray tube (such as an old-fashioned TV picture tube), with s = 0.5 m and v = 108

m/s, has the ratio

mvs
h

=
9.1 × 10−31 kg · 108 m/s · 0.5 m

6.6 × 10−34 J s
∼ 1011, (5.53)

so such an electron moves on a classical path (in a TV tube we obviously want the electrons to move along a
classical, deterministic path!).

But consider the electron in a hydrogen atom, where it has a typical speed of 106 m/s and a path length
from one side of the atom to the other of order 10−10 m. The ratio in this case is

mvs
h

=
9.1 × 10−31 kg · 106 m/s · 10−10 m

6.6 × 10−34 J s
∼ 0.1, (5.54)

so the path in this case is not at all classical, but quantum-mechanically fuzzy. The electron in hydrogen does
not move along a classical orbit anything like the motion of planets around the sun. However, the ratio for
earth orbiting the sun is

mvs
h

=
6 × 1024 kg · 3 × 104 m/s · 1.5 × 1011 m

6.6 × 10−34 J s
∼ 1073, (5.55)

which corresponds to supremely classical motion.
There are no sharp boundaries between classical and quantum behavior. All motion is really quantum

mechanical, but classical behavior can in certain cases be an excellent approximation. A quick check on
whether a system behaves classically amounts to the following: multiply the typical momentum and size
scales in the problem; if the product is much larger than the Planck constant, the system can be well
approximated classically. Otherwise, quantum mechanics is needed to describe it.a �

a In the case of particles striking the double-slit setup, the condition of classicality was that the slit width a is much larger than the de Broglie
wavelength,λ 
 a. From p = h/λ, this translates to p a � h as expected. The key here is to identify the correct length scale, in this case
the slit width a. A classical description through electromagnetic waves captures the quantum interference patterns as long as the intensity of
light is high (or the number of photons is large).
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5.6 Why Hamilton’s Principle?

For free particles, we have already shown that quantum-mechanical amplitudes in
Feynman’s sum-over-paths add up in phase near the classical shortest path, so that
in the limit of small de Broglie wavelengths one observes only the classical path.
What we have not done so far is to show how Hamilton’s principle comes about in
general. This is the central question, because Lagrange’s equations and all of the
dynamical results that flow from them can be derived from making the action

S =

∫ t

t0

L dt (5.56)

stationary. Where does this principle come from? And how does a classical particle
“know” that it should follow a stationary-action path?

To see the emergence of Hamilton’s principle, we start from Eq. (5.31):

A = A(t0) e
i
�

∫ b
a ημνpμdrν = A(t0) e

i
�

∫ b
a (p·ds−Edt), (5.57)

where E and p are the particle’s energy and momentum, and ds is the local
infinitesimal distance vector tangent to its path. We remind the reader that this
expression is for a particular path and one needs to sum over all possible paths
by adding these phases to construct the final amplitude. Consider a small time step
from some time t to t + Δt. We focus on the one-dimensional nonrelativistic case
for simplicity: the generalized coordinate is q and the corresponding generalized
momentum is p. The energy of the particle can then be written

E = K.E. + P.E. =
p2

2m
+ U(q), (5.58)

where U(q) is the potential energy. The corresponding amplitude ΔA then takes
the form

ΔA ∝ eiΔt
�
(p q̇−p2/2 m−U(q)), (5.59)

where we have written dq = q̇Δt for small Δt. Since the quantum prescription
involves summing over all paths between a and b, this involves integrating over all
q and p at every time step. So we will encounter the integral∫ ∞

−∞
dp eiΔt

�
(p q̇−p2/2 m−U(q)). (5.60)

Now

pq̇ − p2

2m
≡ −(p − mq̇)2

2m
+

mq̇2

2
, (5.61)

so we have to evaluate∫ ∞

−∞
dp e

iΔt
�

(
− (p−mq̇)2

2m +mq̇2
2 −U(q)

)
= e

iΔt
�

(
mq̇2

2 −U(q)
) ∫ ∞

−∞
dp e−iΔt

�

(p−mq̇)2
2m) . (5.62)



223 5.7 The Jacobi Action

This “Gaussian integral” in p can be evaluated explicitly:∫ ∞

−∞
dp e−iΔt

�

(p−mq̇)2
2m =

√
2πm�

iΔt
, (5.63)

so in terms of proportionalities:

ΔA ∝ eiΔt
�
((1/2)mq̇2−U(q)), (5.64)

which should look familiar. It is simply

ΔA ∝ eiΔt
�

L, (5.65)

where L is the Lagrangian of the system. Multiplying such phases together from a
to b to add the phasors from different small time steps then gives

ΔA ∝ e
i
�

∫ b
a Ldt = eiS/�, (5.66)

where now the action S=
∫ b

a Ldt appears in the phase. To obtain the full amplitude,
we still need to sum over all paths q(t) – so far we only considered a sum over all
possible momenta p(t). Hence, the total amplitude has the form

AT = constant ×
∑

paths q(t)
eiS/�. (5.67)

The path about which all the amplitudes tend to add up is the path corresponding to
motion near the extremum of the action S =

∫
dt L. This statement is nothing but

Hamilton’s principle from Section 4.3. Hence, we now understand more deeply
why Hamilton’s principle works: it emerges naturally from the sum-over-paths,
from the basic principles of quantum mechanics.

5.7 The Jacobi Action

Now, having shown how to derive Hamilton’s principle, the heart of classical
mechanics, from sum-over-paths quantum mechanics, what more can we learn
here? An answer is that we can also use the formalism of sum-over-paths to find
the shape of paths taken by light rays and by nonrelativistic massive particles.

Light Rays
When light passes from one medium to another, say air to a refractive medium like
glass, its frequency (i.e., the energy/photon) remains constant, but the wavelength
changes, because the velocity v=λν is less in glass than in air. If the medium has
index of refraction n, where n may depend upon position, the speed of light in the
medium is v = c/n, so with constant frequency the wavelength decreases by the
factor 1/n, and the wave number k = 2π/λ increases by the factor n. So whereas
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in vacuum ω/k = c (or k = ω/c), in a refractive medium k = ω/v = nω/c. The
quantum-mechanical amplitude for photons to travel by a particular path therefore
becomes

z = z(t0)eiφ, (5.68)

where

φ =

∫ b

a
kds − ω(t − t0) = (ω/c)

∫ b

a
nds − ω(t − t0). (5.69)

The corresponding phasors add up for paths near that path which extremizes the
phase

∫ b
a n ds. That is, they add up along the path that extremizes the optical path∫ b

a n ds. This is just Fermat’s principle of stationary time, since the time for light to
follow a particular path is

t =
∫ b

a
ds/v =

1
c

∫ b

a
n ds. (5.70)

According to Fermat, light “rays” take minimum-time paths between a and b.
According to Feynman, photons take all paths between a and b, but it is mainly
paths near the stationary path that contribute to the total amplitude.

Nonrelativistic Massive Particles
Up to now we have described the behavior of massive particles only when they are
free, in which case their classical paths are straight lines. The probability amplitude
for a path of length s in this case is

A = A0e(i/�)(ps−Et), (5.71)

where p and E are the momentum magnitude and energy, both constant along the
path; and s is the path length.

For nonrelativistic particles encountering forces as they move from a to b, this
expression cannot be correct, because even with a conserved energy E= T + U,
the magnitude of the momentum p =

√
2mT =

√
2m(E − U(r)) is not conserved

because the potential energy generally depends upon position. The expression for
the amplitude A = A0e(i/�)(ps−Et) therefore no longer makes sense, because p keeps
changing; it has to be replaced by its original form

A = A0e(i/�)(
∫ b

a p ds)−Et, (5.72)

where the varying momentum is integrated over the path between the source and
the detector, as dictated by Eq. (5.31). The total probability amplitude of the
particle beginning at point a and ending at point b at time t is therefore

AT = A0e−iEt/�
∑

e(i/�)
∫ b

a p ds, (5.73)

summing over all paths between a and b.
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For any particular path the integral is∫ b

a
p ds =

∫ b

a

√
2m(E − U(r)) ds. (5.74)

In the case of a free particle, the classical path is the path for which the product
ps is minimized, which means (because p is fixed in this case) that s is minimized
(which of course leads to a straight line). Now that potential energies have been
included, it is the integral

∫ b
a
√

E − U(r) ds that has to be minimized.
In classical mechanics the integral

J =

∫ b

a

√
E − U(r) ds (5.75)

is called the Jacobi action, named for the German mathematician Carl Gustav
Jacob Jacobi (1804–1851). Finding the path that makes J stationary is called the
Jacobi principle of stationary action: this is indeed the classical path between a
and b. Note that time does not appear in the Jacobi action, so making J stationary
provides the path shape, but not the dynamical equations of motion.

Without quantum mechanics, Jacobi’s principle seems quite mysterious. Why
should a particle choose that path that minimizes (or maximizes, or otherwise
makes stationary) the Jacobi action? Now we know why it works. According to
Feynman’s sum-over-paths, if the path s0 happens to be the one that minimizes J,
then nearby paths have nearly the same phase, so the corresponding phasors add up
to give a large result. But paths surrounding some other, arbitrary path have more
rapidly varying phases, so their phasors tend to cancel one another out. The integral∫ b

a
√

E − U(r) ds is simply the integral
∫ b

a p ds in disguise.

Example 5.4 Path Shape for Particles in Uniform Gravity
A nonrelativistic particle of mass m moves in a uniform gravitational field g. What is the shape of its classical
path?

The potential energy is U = mgy, so the Jacobi action is

J =
∫ b

a

√
E − mgy ds =

∫ b

a

√
E − mgy

√
dx2 + dy2. (5.76)

We can choose either x or y as the independent variable: it is easier to choose y, because then the integral has
the form

J =
∫ b

a

√
E − mgy

√
1 + (dx/dy)2dy =

∫ b

a
f(x, dx/dy, y)dy, (5.77)

where x is missing from f , and so x is a cyclic coordinate. Therefore, from Euler’s equation

∂f
∂x

− d
dy

∂f
∂x′

= 0, (5.78)
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it follows that we have a first integral∂f/∂x′ = constant along the stationary path. That is:√
E − mgy

(
x′√

1 + x′2

)
= α, a constant. (5.79)

Solving for x′:

x′ ≡ dx
dy

= ± α√
E − α2 − mgy

. (5.80)

Integrating both sides over y, choosing x = 0 and y = y0 at the point where the path is horizontal (i.e., where
x′ = dx/dy = ∞), and solving for y(x) gives

y(x) = y0 −
mgx2

4(E − mgy0)
(5.81)

which is a parabola, as we knew it would be all along.
The classical path for a particle moving in a uniform gravitational field is a parabola, but according to

quantum mechanics it is not the only path the particle takes. It actually takes all possible paths, but in the
classical limit, where the de Broglie wavelength is very small compared with any physical length in the
problem, the classical path is the only path for which the amplitudes of nearby paths all add up in phase. �

5.8 Summary

In summary, experiments with light and particle beams show the following
features.

• Light, as photons, and massive particles as well, have both a particle and a wave
nature. Their energy and momenta are related to their frequency and wavelength
by the de Broglie relations

E = hν and p = h/λ, (5.82)

where h is Planck’s constant.
• Photons, electrons, atoms, and all other particles are detected as discrete lumps

as though they were classical particles. If huge numbers of them are detected,
they have an apparently continuous distribution.

• High-energy particles (photons, electrons, atoms, etc.) sent through a double-slit
system appear to have the same bimodal distribution at the detecting plane as
that predicted for classical particles.

• Lower-velocity particles (lower-frequency photons, slower electrons and atoms)
show wave-like interference effects at the screen. Giving more speed to atoms
makes the interference oscillations tighter, until they become so tight they cannot
be separated, and they look just like the bimodal distribution predicted for
classical particles.
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• A particle takes all available paths from a source to a detector. The probability of
reaching the detector is equal to the absolute square of the sum of amplitudes to
travel by all possible paths. Near the classical path the amplitudes add up to give
a strong total amplitude, especially if the de Broglie wavelength of the particle
is small compared with the physical dimensions in an experiment.

• Fermat’s principle for light and the Jacobi principle of stationary action for
massive particles can be used to find particle path shapes. They follow from
the quantum rules.

• Hamilton’s principle, which we have used to find the dynamical equations of
motion of massive particles, also follows from the quantum-mechanical sum-
over-paths.

In Part I of this book we have encountered three strikingly different pictures of
the nature of classical motion.

(i) In the Newtonian picture, including the extension of this picture into the
relativistic regime, a massive particle moves along a path determined by its
initial position and velocity and the forces encountered along the way. The
particle knows nothing of the future, where it is going or how long it will take
to get there.

(ii) In the picture accompanying Hamilton’s principle, a massive particle moves
along a single path that makes stationary the action S, a functional that depends
upon the beginning points, endpoints, and potential energies encountered
along the path. Rather than specifying the initial position and velocity, as in
the Newtonian picture, with Hamilton’s principle we specify the initial and
final positions. A natural question for those with a Newtonian intuition is:
How does the particle “know” to choose that path which makes stationary the
action between given endpoints?

(iii) In the quantum-mechanical view, using the sum-over-paths formulation of
Feynman, a particle, massive or massless, takes all paths between given initial
and final points: that is how it “knows” the classical path. The probability that
it will reach the final point at a certain time is given by the absolute square
of a total complex probability amplitude, where the total amplitude is the sum
of the amplitudes for all possible paths. The amplitudes reinforce one another
along the path that makes stationary the action, especially if the de Broglie
wavelength of the particle is small compared with any physical dimensions
in the environment. Thus, Hamilton’s principle for massive particles emerges
naturally from quantum mechanics in the case of small-wavelength particles.
The picture of motion here is more “Darwinian” than deterministic: every path
is tried, but in the classical limit only the “fittest” (the stationary-action path)
survives. The determinism of Newton is discovered to be only an illusion,
emerging from the nondeterministic theory of quantum mechanics.
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Problems

Problem 5.1 Maxwell’s equations for the electric field E and magnetic field B are��

∇ ·E = 4πρ, ∇ ·B = 0, ∇×E = −1
c
∂B

∂t
, ∇×B =

4π
c
J+

1
c
∂E

∂t
,

where ρ is the charge density, J is the current density, and ε0 and μ0 are
(respectively) the permittivity and permeability of the vacuum, both constants.
Derive the vacuum wave equations for E and for B, and relate ε0 and μ0 to
the speed of electromagnetic waves c. Hint: You can use the vector identity
∇× (∇×A) = ∇(∇ ·A)−∇2A where A is any vector.

Problem 5.2 Photons of wavelength 580 nm pass through a double-slit system, where�
the distance between the slits is d = 0.16 nm and the slit width is a = 0.02 nm. If the
detecting screen is a distance D = 60 cm from the slits, what is the linear distance
from the central maximum to the first minimum in the diffraction envelope?

Problem 5.3 Photons are projected through a double-slit system. (a) What must be��
the ratio d/a of the slit separation to slit width, so that there will be exactly
nine interference maxima within the central diffraction envelope? (b) Is any
change observed on the detecting screen if the photon wavelength is changed
from λ0 to 2λ0? If so, what? (c) If 104 photons are counted within the central
interference maximum, about how many do you expect will be counted within the
last interference maximum that fits within the central diffraction envelope?

Problem 5.4 A beam of monoenergetic photons is directed at a triple-slit system,��
where the distance between adjacent slits is d, and the photon wavelength is
λ= d/2. Find the angles θ from the forward direction for which there are (a) inter-
ference maxima, (b) interference minima. (c) Then show that some maxima have
the same maximum probability as the central peak, but that others have a smaller
maximum. Find the ratio of the larger to the smaller maximum probabilities.

Problem 5.5 A beam of 10-keV photons is directed at a double-slit system and the�
interference pattern is measured on the detecting plane. The wavelength of these
photons is less than the slit separation. Then electrons are accelerated so their
(nonrelativistic) kinetic energies are also 10 keV; these electrons are then directed
at the same double-slit system, and their interference pattern is measured on the
same detecting plane. If the distance between two adjacent photon interference
maxima on the detecting screen is y0, what is the distance between two adjacent
electron interference maxima? (Note that the mass energy of an electron is 0.5
MeV.)

Problem 5.6 Consider a grating composed of four very narrow slits each separated�
by a distance d. (a) What is the probability that a photon strikes a detector centered
at the central maximum if the probability that a photon is counted by this detector
with a single slit open is r? (b) What is the probability that a photon is counted at
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the first minimum of this four-slit grating if the bottom two slits are closed? (From
Quantum Physics by John S. Townsend.)

Problem 5.7 Example 5.2 considered a set of kinked paths about a straight-line path.��
(a) Using the same set of alternative paths, suppose one considered the sum of
phasors about the path with n = 50 instead of the sum about the n = 0 straight-line
path. In particular, if one summed from n = 25 to n = 75, ±25 about n = 50, how
would the sum of phasors differ from the sum for paths about n = 0? What physical
conclusion can you draw from this? (b) Now returning to the set of kinked paths
about the straight-line n = 0 path, draw the phasor diagram if the wave number
k of the particle were doubled (i.e., if the de Broglie wavelength λ were halved).
What can be concluded about the physical difference between this case and that
used in Example 5.2?

Problem 5.8 Example 5.2 considers a particular class of paths near a straight-line��
path. A different class of paths consists of a set of parabolas of the form y =
nα(1 − x/x0)

2 fit to the endpoints of the straight line at (x, y) = (0, 0) and (x, y) =
(x0, 0). Here α is a (small) constant, and n = 0,±1,±2, . . . Let α = 0.1x0, and
draw a careful phasor diagram including enough integers n to see the Cornu spiral
behavior and obtain a good estimate of the sum of all these phasors.

Problem 5.9 Judge whether or not the following situations are consistent with�
classical paths. (a) A nitrogen molecule moving with average kinetic energy
〈3/2〉 kT at room temperature T = 300 K (where k is Boltzmann’s constant). (b)
A typical hydrogen atom caught in a trap at temperature T = 0.1 K. (c) A typical
electron in the center of the sun, at temperature T = 15 × 106 K.

Problem 5.10 (a) What condition would have to be met so that the motion of a 135-g�
baseball would be inconsistent with a classical path? Is this a potentially feasible
condition? (b) If we could adjust the value of Planck’s constant, how large would
it have to be so that the ball in a baseball game would fail to follow classical paths?

Problem 5.11 According to the Heisenberg indeterminacy principle Δx Δp≥ �, the�
uncertainty in position of a particle multiplied by the uncertainty in its momentum
must be greater than Planck’s constant divided by 2π. The neutrons in a particular
atomic nucleus are confined to be within a nucleus of diameter 2.0 fm (1 fm =
10−15 m). Can these neutrons be properly thought of as traveling along classical
paths? Explain.

Problem 5.12 Show from the Newtonian equations x = v0xt and y = y0 − (1/2)gt2�
for a particle moving in a uniform gravitational field g that the shape of its path is
a parabola, given by

y = y0 −
mgx2

4(E − mgy0)
, (5.83)

the same result we found using the Jacobi principle of least action.
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Problem 5.13 A particle of mass m can move in two dimensions under the influence��
of a repulsive spring-like force in the x direction, F = +kx. Find the shape of its
classical path in the x, y plane using the Jacobi action.

Problem 5.14 An object of mass m can move in two dimensions in response to the��
simple harmonic oscillator potential U = (1/2)kr2, where k is the force constant
and r is the distance from the origin. Using the Jacobi action, find the shape of the
orbits using polar coordinates r and θ; that is, find r(θ) for the orbit. Show that the
shapes are ellipses and circles centered at the origin r = 0.

Problem 5.15 A comet of mass m moves in two dimensions in response to the central���
gravitational potential U = −k/r, where k is a constant and r is the distance from
the sun. Using the Jacobi action and polar coordinates (r, θ), find the possible
shapes of the comet’s orbit. Show that these are (a) a parabola, if the energy of
the comet is E = 0; (b) a hyperbola, if E > 0; (c) an ellipse or a circle, if E < 0,
where in each case r = 0 at one of the foci.
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6 Constraints and Symmetries

An enormous advantage of using Lagrangian methods in mechanics is the simpli-
fications that can occur when a system is constrained or if there are symmetries of
some kind in the environment of the system. Constraints can be used to reduce the
number of generalized coordinates so that solutions become more practicable. In
this chapter we will illustrate this fact using the example of contact forces, and we
will demonstrate the use of Lagrange multipliers to learn about the contact forces
themselves.

Constraints are also typically associated with the breaking of symmetries.
Lagrangian mechanics allows us to efficiently explore the relationship between
symmetries in a physical situation and dynamical quantities that are conserved.
These properties are nicely summarized in a theorem by the German mathematician
Emmy Noether (1882–1935), and provide us with deep insight into the physics –
in addition to helping us make important technical simplifications while solving
problems.

We first discuss constraints and contact forces, and then symmetries and
conservation laws.

6.1 Contact Forces

A square block of mass M rests on a horizontal floor, as shown in Figure 6.1.
Newtonian mechanics tells us that the block experiences two forces: the downward
pull of gravity Mg and the upward push of the floor, called the normal force N. A
static scenario implies that N = Mg, so the forces sum to zero and there is no
acceleration. Hence, the normal force adjusts its strength as needed to counteract
the gravitational pull Mg. If the balance succeeds, the block stays put on the floor.
If, however, the normal push of the floor is not enough because the block is too
heavy, the floor would disintegrate and the block would fall through.

The normal force is an example of a contact force. It arises by virtue of the
physical contact between two objects. Contact forces are always electromagnetic
in origin. As two objects touch, the atoms at the contact interface push against
one another through electromagnetic forces. Each of these tiny pushes may be
negligible, but with 1023 atoms reinforcing the effect, we get a net, effective,
macroscopic force we call the contact force. Hence, contact forces are not

233
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(a) (b)

Fig. 6.1 (a) A block resting on the ground subject to the normal contact force that constrains it to horizontal
motion. (b) A bob pendulum involves the tension contact force in the rope that constrains the bob from
flying away.

fundamental: they are the sum of many complicated microscopic interactions.
However, we can often characterize them by a simple, effective, phenomenological
force “law.” The normal force, the tension force, and the friction force are all
examples. They really consist of intricate electromagnetic interactions between
large numbers of constituent atoms.

Our square block rests on the floor. The net effect of the contact force is to
constrain its vertical motion: the block can move only sideways and not up and
down. The dynamics of the center of mass of the box is now reduced to two degrees
of freedom from the original three. Similarly, the tension force in the rope of a bob
pendulum implements a constraint that assures that the bob at the end of the rope
does not fly way beyond a distance equal to the length of the rope. Many more such
contact forces translate into statements of constraints on the degrees of freedom.
In this section, we develop the technology of solving mechanics problems with
various types of constraints.

Consider a mechanical system parameterized by N coordinates qk, k= 1, . . . , N.
However, due to some constraint forces, there are P algebraic relations amongst
these coordinates, given by

Cl(q1, q2, . . . , qN, t) = 0, (6.1)

where l= 1, . . . , P. This means we have effectively N − P generalized coordinates
or degrees of freedom, instead of the nominal N. In our problem of the block on
the floor, for example, let us suppose that the floor is at z= 0. Then we can define
C= z, so that the single algebraic equation C= 0 implies that z = 0. We started
with N = 3 coordinates x, y, z; then we specified P= 1 constraint, the constraint
that z= 0, where z is the vertical direction and the center of mass of the block rests
at z = 0. We are then left with N − P = 3 − 1 = 2 degrees of freedom, x and y.

In tackling such situations with constraints, we have two choices. We could try
to use the P relations (6.1) to eliminate P of the qks, and write the Lagrangian in
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terms of N−P generalized coordinates. This is in a sense what we have been doing
so far. For the example of the block, we would write

L =
1
2

m
(
ẋ2 + ẏ2 + ż2)− m g z =

1
2

m
(
ẋ2 + ẏ2) . (6.2)

Alternatively, we may want to delay implementing the constraint. There are two
good reasons for this. First, it may be difficult or inconvenient to eliminate P qks
using the constraints (6.1). Second, we may be interested in finding the constraint
forces underlying these constraint relations. For example, we may want to find the
normal force on a block sliding along a curved rail; when this force vanishes, the
block is losing contact with the rail, and we would be able to determine this critical
point in the evolution.

Therefore we now focus on a method that delays the implementation of
the constraints in a mechanical problem, instead dealing with all N qks in the
problem. This requires a careful treatment, since the variational formalism assumes
independent qks: the qks must not have relations amongst them such as those given
by (6.1). Otherwise, in the process of extremizing the action we would get to the
step

δI =
∫ [

d
dt

(
− ∂L
∂q̇k

)
+

∂L
∂qk

]
δqkdt = 0, (6.3)

and, since the δqks are not independent due to (6.1), we cannot conclude that the
vanishing of the bracketed expression – that is the Lagrange equations of motion –
is necessary individually for every k.

Instead, let us consider a new Lagrangian defined as

L′ = L +
P∑

l=1

λlCl, (6.4)

where we have introduced P additional degrees of freedom labeled λl with l =
1, . . . , P, each multiplying a related constraint equation from (6.1). For example,
with the block on a horizontal floor, we would write

L′ =
1
2

m
(
ẋ2 + ẏ2 + ż2)− m g z + λ1z. (6.5)

We now assume that the constraint equations (6.1) are not satisfied a priori. We
then have N + P degrees of freedom: N qks and P λls. Correspondingly, we have
N+P equations of motion. For our example, we have N+P = 3+1 = 4 variables
remaining: x, y, z, and λ1.

The equations of motion for (6.4) are then

• P equations for the λls:

d
dt

(
∂L′

∂λ̇l

)
− ∂L′

∂λl
= z = 0 ⇒ ∂L′

∂λl
= 0 ⇒ Cl = 0. (6.6)
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These are simply the original constraints (6.1)! But they now arise dynamically
through the equations of motion and need not be implemented from the outset.
The P parameters labeled λl are called Lagrange multipliers. For our simple
example, we have a single Lagrange multiplier λ1 with the equation of motion
z = 0.

• N equations for the qks:

d
dt

(
∂L′

∂q̇k

)
− ∂L′

∂qk
= 0. (6.7)

In terms of the original L from (6.4), these look like

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
− λl

∂Cl
∂qk

= 0. (6.8)

Note the additional terms involving the λls (l is repeated and hence summed
over). We can rewrite these as

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= Fk ≡ λl

∂Cl
∂qk

, (6.9)

where we have defined the generalized constraint forces Fk that essentially
enforce the constraints onto the qk dynamics. For the block on the horizontal
floor problem these become

m ẍ = 0, m ÿ = 0, m z̈ = −mg + λ1. (6.10)

In this case it is obvious that λ1 is the normal force. More generally, how do we
relate the generalized constraint forces – and hence the λs – to the actual forces?
For every object i in the problem located at position ri, denote the total constraint
force acting on it by Fi. We also know the relations ri(qk, t) that connect the
position of every object to the generalized coordinates qk. Using all this, we can
relate the Lagrange multipliers to the constraint forces by noting that the right-
hand side of the new Lagrange equations must be given by

Fk = λl
∂Cl
∂qk

=
∂(λlCl)

∂qk
. (6.11)

Since λlCl is added to the Lagrangian, it should correspond to the energy or work
associated with the constraint forces Fc

i :

λlCl =

∫ ri

Fc
i · dr′i, (6.12)

where i sums over the various entities tracked by the Lagrangian with corre-
sponding position vectors ri. The prime on the measure dr′i is to avoid a variable
naming clash with the limit of the integral. Notice that if a force on a particle
Fc

i were conservative and if we were to write it in terms of a potential energy
Fc

i = −∇Uc, this would correspond to adding −UC(ri) to the Lagrangian
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as expected. Since we have a map between these position vectors and the
generalized coordinates ri(qk, t), we can write

λlCl =

∫ ri

Fc
i · dr′i =

∫ qk

Fc
i · ∂r

′
i

∂q′k
dq′k, (6.13)

where we used the chain rule and the fact that dt = 0, since the expression added
to the Lagrangian should be evaluated at a fixed time. We then have

Fk = λl
∂Cl
∂qk

=
∂(λlCl)

∂qk
= Fc

i · ∂ri
∂qk

. (6.14)

Once we determine the Lagrange multipliers λl, we can use this relation to read
off constraint forces Fc

i . For the example at hand, we have

λ1 = Fc · ∂r
∂z

= Fc
z = N. (6.15)

Hence λ1 is the normal force, as expected.
Before we apply this general and abstract treatment to particular examples, we

note that the method of constraints can easily be generalized a bit further. Looking
back at Eq. (6.3), we see that we only need the constraint to be in the form of a
variation. That is, we only need to add the constraint in the infinitesimal change of
the action or Lagrangian, not the Lagrangian itself as we did in Eq. (6.4). We write
instead

δI =
∫ (

d
dt

(
− ∂L
∂q̇k

)
+

∂L
∂qk

+ λlalk

)
δqkdt = 0, (6.16)

for some functions alk of qk and t. That is, if the constraints on the generalized
coordinates qk can be written in the form

alkδqk + altδt = 0, (6.17)

where alk and alt are arbitrary functions of qk and t, we can write the following set
of N + P equations of motion:

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= λlalk = Fk, (6.18)

alkq̇k + alt = 0. (6.19)

This is a useful generalization of the original formulation of the problem given by
Eq. (6.6) and (6.9) because in a particular case perhaps

∂alk
∂t

�= ∂alt
∂qk

. (6.20)

To see the further reach of this approach, note that if the constraints could be written
as before in terms of P algebraic relations Cl(t, q) = 0, we could write

0 = dCl =
∂Cl
∂qk

dqk +
∂Cl
∂t

dt = alkdqk + altdt, (6.21)
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reading off the needed alk and alt as functions of qk and t. However, in this special
class of constraints, we would have

∂alk
∂t

=
∂alt
∂qk

(6.22)

because of the commutativity of derivatives ∂2Cl/∂qk∂t = ∂2Cl/∂t∂qk. For the
example at hand, we would write

dz = 0 ⇒ a1z = 1, a1t = 0, (6.23)

with Eq. (6.22) satisfied as expected. Algebraic constraints of the form Cl(q, t)= 0
are called holonomic constraints, already discussed briefly in Chapter 4. The type
of constraints that cannot be expressed in this form but instead can be written in
variational form (6.17) are nonholonomic constraints. In either case, Eqs. (6.18)
and (6.19) give us a powerful recipe for investigating the problem of constraints.

In summary, when dealing with a mechanics problem involving constraints of
the form (6.17), we may choose to delay the implementation of the constraints in
an effort to extract any constraint forces acting on the system. To do so we would
need to solve a set of N + P differential equations given by (6.18) and (6.19). In
addition to finding qk(t), this procedure also leads to P Lagrange multipliers that
can be related to constraint forces through Eq. (6.14). Once again, the best way to
learn this technology is through examples.

Example 6.1 Rolling Down the Plane

Fig. 6.2 A hoop rolling down an inclined plane without slipping.

Consider a hoop of radius R and mass M rolling down an inclined plane, as shown in Figure 6.2. To describe
the hoop, we may prescribe three variables: a center of mass position in two dimensions r, and a rotational
angle θ:

r = xx̂ + yŷ, θ, (6.24)
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where the coordinate system is set up tilted, as shown in the figure. However, we know of two potential
constraints. First, the hoop is prevented from falling through the incline because of the normal force. This
contact force enforces the constraint

y = R ⇒ dy = 0. (6.25)

Furthermore, if there is friction involved, the hoop may roll down without slipping. This rolling without
slipping condition amounts to the constraint

dx = R dθ. (6.26)

At the end of the day, these two constraints suggest that the problem involves only 3 − 2 = 1 degree of
freedom, not three. The kinetic energy is

T =
1
2

M
(

ẋ2 + ẏ2)+ 1
2

MR2θ̇2 (6.27)

while the potential energy can be written as (dropping constant shifts)

U = −Mgx sin ϕ, (6.28)

where ϕ is the tilt of the incline. We may then proceed as usual by implementing the constraints (6.25)
and (6.26) from the outset. We arrive at the Lagrangian with a single degree of freedom, which we may choose
to be the x coordinate, so

L = T − U = Mẋ2 + Mgx sin ϕ. (6.29)

The equation of motion then tells us the acceleration down the incline:

ẍ =
g
2

sin ϕ. (6.30)

But what if we are interested in knowing the friction force, although we still do not care at all about the
normal force? This means we will implement the normal force constraint given by (6.25) from the outset,
eliminating the y coordinate, but we will delay implementing the frictional constraint given by (6.26). This
leaves us with two of the original coordinates, x and θ, and a new third degree of freedom, λ1, a Lagrange
multiplier that we can use to find the friction force. We then need three differential equations. Looking back
at (6.26) and mapping it onto the general form (6.19), we read off

a1θ = R, a1x = −1, a1t = 0. (6.31)

We then write the Lagrangian in terms of x and θ only:

L =
1
2

mẋ2 +
1
2

MR2θ̇2 + Mgx sin ϕ (6.32)

and use the modified equations of motion given by (6.18). This gives for the x direction

Mẍ − Mg sin ϕ = −λ1 = Fx (6.33)
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and for the θ direction

MR2θ̈ = λ1R = Fθ . (6.34)

We now have a set of three differential equations, given by (6.33), (6.34), and

Rθ̇ = ẋ, (6.35)

which follows from the constraint (6.26). Solving this system of equations, we get

ẍ =
g
2

sin ϕ, λ1 =
Mg
2

sin ϕ. (6.36)

The novelty, of course, is the determination ofλ1, which we can now relate to the friction force through

Fθ = λ1R =
MgR

2
sin ϕ = F · ∂r

∂θ
= F · ∂x

∂θ
x̂ = F · ∂(Rθ)

∂θ
x̂ = Fx R = τ . (6.37)

That is, the friction force(Mg sin ϕ)/2 supplies a torque equal to(MgR sin ϕ)/2. The method of Lagrangian
multipliers has allowed us to selectively extract forces of constraint in a mechanical problem – without
abandoning the elegant and powerful machinery of the Lagrangian formalism. �

Example 6.2 Stacking Barrels

m

Fig. 6.3 Two barrels stacked, one on top of the other. The lower barrel is stationary, while
the upper one rolls down without slipping.

Consider the problem of two cylindrical barrels, one on top of the other, as shown in Figure 6.3. The bottom
barrel is fixed in position and orientation, but the top one, of mass m, is free to move. It starts rolling down
from its initial position at the top, rolling without slipping due to friction between the barrels. The problem is
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to find the point along the lower barrel where the top barrel loses contact with it. That is, we need to find the
moment when the normal force acting on the top barrel vanishes.

We are tracking the motion of the top barrel. Hence, we have a priori three variables to keep track of, two
positions r and θ, and one rotational angleϕ:

r = rr̂, ϕ, (6.38)

where we use polar coordinates centered on the bottom barrel to track the position of the top barrel. A normal
force acting on the top barrel enforces the constraint

r = R + a. (6.39)

If the top barrel rolls without slipping, the friction force enforces an additional constraint

adϕ = Rdθ. (6.40)

The full kinetic energy in terms of r, θ,ϕ is

T =
1
2

m
(

ṙ2 + r2θ̇2
)
+

1
2

ma2ϕ̇2 (6.41)

and the potential energy is

U = m g r cos θ. (6.42)

Note that we included the rotational kinetic energy of the top, hoop-like barrel (whose endcaps have
negligible mass), given by 1

2 m a2ϕ̇2. Since we are only interested in the normal force, we implement the
frictional constraint (6.40) from the outset to eliminateϕ in favor of θ. We then get

L = T − U =
1
2

m
(

ṙ2 + r2θ̇2
)
+

1
2

mR2θ̇2 − m g r cos θ. (6.43)

We do not implement the normal force constraint (6.39), which we now write in the canonical form (6.17):

dr = 0. (6.44)

This means we will have three degrees of freedom: r, θ, and a Lagrange multiplier λ1 associated with
constraint (6.39). We can now read off the relevant coefficients of (6.19):

a1r = 1, a1θ = a1t = 0. (6.45)

The equations of motion follow from (6.18). For the r direction:

m̈r − mrθ̇2 + mg cos θ = λ1 = Fr = F · ∂r
∂r

= Fr = N (6.46)

while for the θ direction:

m r2θ̈ + m R2θ̈ − mgr sin θ = 0. (6.47)

The third and final equation follows from the constraint (6.39), which we now write as

ṙ = 0. (6.48)
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We may now proceed to solve this set of three differential equations. It is more elegant, however, to realize
that energy is conserved in this problem (since all forces acting are conservative), so we can write

E = T + U =
1
2

m
(
(R + a)2

θ̇2
)
+

1
2

mR2θ̇2 + mg(R + a) cos θ (6.49)

with r = R+ a from the constraint and where E is a constant. Arranging for the initial conditionsθ(0) = 0
and θ̇(0) = 0, we have E = m g (R + a). This implies

θ̇2 =
2g (R + a)

2 R2 + a2 + 2Ra
(1 − cos θ) . (6.50)

From Eq. (6.46), we have

−m (R + a) θ̇2 + m g cos θ = λ1 = N. (6.51)

And setting N = 0 at the moment when the top barrel loses contact with the bottom one, we find

θ̇2
c =

g cos θc

R + a
, (6.52)

where θc denotes the critical angle at which this condition is satisfied. Using Eq. (6.50), we find

cos θc =
2

3 + R2/(R + a)2 . (6.53)

There are two interesting limiting cases. If the top barrel is tiny, we have a/R  1, which leads to

cos θc =
1
2

. (6.54)

In contrast, taking the opposite regime a/R � 1, one finds

cos θc =
2
3

. (6.55)

�

Example 6.3 On the Rope
A classic problem is that of a bob pendulum consisting of a point mass m at the end of a rope of length l
swinging in a plane (see Figure 6.4). We would like to determine the tension in the rope as a function of the
angle θ. We start with two variables

r = rr̂ (6.56)

using a polar coordinate system centered at the pivot, as shown in the figure. Hence, our variables are r and θ.
However, we have a constraint enforced by the tension in the rope:

r = l ⇒ dr = 0 ⇒ a1r = 1, a1t = 0, (6.57)

which we immediately use to read off the relevant coefficients for (6.19). The kinetic energy is
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Fig. 6.4 A bob pendulum with one constraint given by the finite length of the rope.

T =
1
2

m
(

ṙ2 + r2θ̇2
)

(6.58)

while the potential energy is simply

U = −mgr cos θ. (6.59)

The Lagrangian becomes

L = T − U =
1
2

m
(

ṙ2 + r2θ̇2
)
+ mgr cos θ, (6.60)

where we keep track of both r and θ as independent degrees of freedom at the cost of introducing one
Lagrange multiplierλ1 associated with the constraint. The equation of motion for r comes from (6.18):

m̈r + mrθ̇2 − mg cos θ = λ1 = F · ∂r
∂r

= Fr = T , (6.61)

while that for θ is

d
dt

(
mr2θ̇

)
+ mgr sin θ = 0. (6.62)

Our three degrees of freedom are associated with three differential equations, and the third comes of course
from the constraint (6.57), which we now write as

ṙ = 0. (6.63)

This is enough to determine all three variables of interest. Once again, however, it is easier to use energy
conservation:

E = T + U =
1
2

m l2θ̇2 − m g l cos θ. (6.64)
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We start with initial conditions given by

θ(0) = θ0, θ̇(0) = 0 ⇒ E = −m g l cos θ0. (6.65)

We then have

θ̇2 =
2g
l
(cos θ − cos θ0) . (6.66)

This allows us to find the Lagrange multiplierλ1 in terms of θ:

λ1 = −mg cos θ + 2mg (cos θ − cos θ0) = −mg (cos θ − 2 cos θ0) = T , (6.67)

which is the tension in the rope. �

Example 6.4 A Rubber Wheel on a Road
A wheel of radius R rolls on a two-dimensional surface without slipping. If the wheel cannot skid in any
direction, we have an interesting problem containing constraints. Assuming that the wheel does not tip over,
we can describe its state by specifying the coordinates x, y on the plane, the orientation angleθmeasured from
the x axis, and the roll angle ϕ – as shown in Figure 6.5. Because of the rolling without slipping condition,
the roll angle can be related to x and y and hence can be eliminated from the outset:

R2dϕ2 = dx2 + dy2. (6.68)

y

x

Fig. 6.5 The coordinates used to describe the rolling rubber wheel.

Furthermore, the wheel cannot move sideways, although it can make gradual turns. So there is indeed another
constraint in the problem. How can we quantify it? If we write the vector perpendicular to the wheel as k =

(sin θ, − cos θ), we want to say that the velocity of the wheel is always perpendicular to k:

k · (ẋ, ẏ) = 0 ⇒ ẋ sin θ − ẏ cos θ = 0. (6.69)
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Hence, we start with four variables minus two constraints, and end up with two degrees of freedom. The
orientation angle θ is a freedom we could actually take control of by steering the wheel by some external
mechanical method. This would amount to imposing a third constraint. For example, if we externally lock the
orientation so that θ̇= 0, Eq. (6.69) can be integrated and we have an algebraic relation between x and y.
With such a holonomic constraint, the problem now involves only a single degree of freedom: θ is fixed to
a constant, while x and y are related to each other algebraically; the wheel rolls in a straight line along a
single direction.

Suppose however we steer the wheel in pursuit of a moving target! Say we aim the wheel toward a running
person, with the wheel’s orientation thus determined by the line joining its position and the position of the
runner. This implies thatθ is not constant, but instead is generally given by a function of x, y, and t:θ(x, y, t).
In general, Eq. (6.69) becomes non-integrable, so we have a nonholonomic constraint. As seen in our general
treatment earlier, however, we can still handle this problem since our new constraint is in the form (6.17). We
write the Lagrangian of the wheel as the sum of its rotational and translational kinetic energies; and we then
use Eqs. (6.18) and (6.19). We leave the treatment as a problem for the reader. �

6.2 Symmetries and Conservation Laws: A Preview

At a very fundamental level, physics is about identifying patterns in Nature. The
field arguably begins with Tycho Brahe (1546–1601) – the first modern experimen-
tal physicist1 – and Johannes Kepler (1571–1630) – the first modern theoretical
physicist. In the sixteenth century, Brahe painstakingly accrued huge quantities
of astronomical data about the location of planets and stars with unprecedented
accuracy – using impressive observing instruments that he had designed and set
up in his castle. Kepler pondered for years over Brahe’s long tables until he could
finally identify patterns underlying planetary dynamics, summarized in what we
now call Kepler’s three laws. Later on, Isaac Newton (1643–1727) referred to these
achievements, among others, in his famous quote: “If I have seen further it is only
by standing on the shoulders of giants.”

Ever since, physics has always been about identifying patterns in numbers,
in measurements. And a pattern is simply an indication of a repeating rule, a
constant attribute within seeming complexity, an underlying symmetry. In 1918,
Emmy Noether published a seminal work that clarified the deep relations between
symmetries and conserved quantities in Nature. In a sense, this work organizes
physics into a clear diagram that gives us a bird’s eye view of the myriad of
branches of the field. Noether’s theorem, as it is called, can change the way one
thinks about physics in general. It is simple yet profound.

While one can study Noether’s theorem in the context of Newton’s formulation
of mechanics, the methods in that case are quite cumbersome. Studying Noether’s

1 Or perhaps the first modern observational astronomer.
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theorem using Lagrangian mechanics instead is an excellent demonstration of the
power of the newer formalism.

In the following section we begin by recounting the connections between
symmetries and conserved quantities already encountered in Chapter 4. We then
use the variational principle to develop a statement of Noether’s theorem, and go
on to prove it and demonstrate its importance through examples.

6.3 Cyclic Coordinates and Generalized Momenta

Already in Chapter 4 we defined a cyclic coordinate qk as a generalized coordinate
absent from the Lagrangian. The corresponding generalized velocity q̇k is present
in L, but not qk itself. For example, a particle free to move in three dimensions
x, y, z with uniform gravity in the z direction has Lagrangian

L =
1
2

m(ẋ2 + ẏ2 + ż2)− mgz, (6.70)

so both x and y are cyclic, but z is not. Then from Lagrange’s equations
d
dt

∂L
∂q̇k

− ∂L
∂qk

= 0 (6.71)

it follows that for each of the cyclic coordinates qk the generalized momentum

pk ≡
∂L
∂q̇k

(6.72)

is conserved, since dpk/dt= 0. So in this example, both px =mẋ and py =mẏ are
conserved, but pz is not.

Now the interesting question is: Why is a particular coordinate cyclic, from a
physical point of view? Why are x and y cyclic in our example, but z is not?

The answer is quite clear. The physical environment is invariant under displace-
ments in the x and y directions, but not under vertical displacements. Changes in
z mean that we get closer or farther from the ground, but changes in x or y make
no difference whatever. Everything looks exactly the same if we displace ourselves
horizontally. We say there is a symmetry under horizontal displacements, but not
under vertical displacements. So through Lagrange’s equations we see that the
momenta px, py are conserved but pz is not. Two symmetries, those in the x and
y directions, have led to two conserved quantities.

If a generalized coordinate qi is missing from the Lagrangian, that means there
is a symmetry under changes in that coordinate: the physical environment, whether
a potential energy or a constraint, is independent of that coordinate. And if the
environment possesses the symmetry, the corresponding generalized momentum
will be conserved. This is very important, not least because the equation of motion
for that coordinate will be only first order rather than second order, so becomes
much easier to solve.
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Example 6.5 A Star Orbiting a Spheroidal Galaxy
A particular galaxy consists of an enormous sphere of stars somewhat squashed along one axis, so it becomes
spheroidal in shape, as shown in Figure 6.6. A star at the outer fringes of the galaxy experiences the general
gravitational pull of the galaxy. Are there any conserved quantities in the motion of this star?

We can answer this question by identifying any symmetries in the environment of the star. There are no
translational symmetries; any finite translation takes one nearer or farther from the galaxy, so no component
of linear momentum is conserved.

Fig. 6.6 An elliptical galaxy (NGC 1132) pulling on a star at the outer fringes. Image credit:
Optical: NASA/ESA/STScI/M. West; X-ray: NASA/CXC/Penn State/G. Garmire.

There is, however, a symmetry under rotation about the squashed axis of the galaxy; if we imagine rotating
about that axis, the shape of the galaxy, and therefore its gravitational field, will be unchanged. Therefore we
expect that the angular momentum pϕ about this axis will be conserved. No other component of angular
momentum will be conserved, because if we rotate about any other axis, the galaxy will look different.
Therefore we expect conservation of angular momentum about a single axis only, and no conservation of
linear momentum in any direction.

Mathematically, using cylindrical coordinates (ρ, ϕ, z), the kinetic and gravitational potential energies
of the star are

T =
1
2

m(ρ̇2 + ρ2ϕ̇2 + ż2) and U = U(ρ, z), (6.73)

where the symmetric shape of the galaxy means that the gravitational potential depends on ρ and z, but
not ϕ. Therefore the Lagrangian L = T − U depends on ρ and z, but ϕ is cyclic. The corresponding
generalized momentum pϕ = ∂L/∂ϕ̇, which is in fact the angular momentum about the z axis, is therefore
conserved. �
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Example 6.6 A Charged Particle Moving Outside a Charged Rod
An infinite straight dielectric rod is oriented in the z direction, and given a uniform electric charge per unit
length. A point charge is free to move outside it, as shown in Figure 6.7. Are there any conserved quantities for
the motion of the particle?

y

x

z

Fig. 6.7 A charged particle moving near a charged rod.

This time the environment of the particle has two symmetries: a symmetry corresponding to a rotation
about the rod axis, and a symmetry corresponding to displacements in the z direction, along the rod axis. Ifϕ
is the angle about the rod in the x, y plane, then the generalized momentum pϕ, which is in fact the angular
momentum of the particle about the z axis, is conserved, because of symmetry under rotation. The generalized
momentum pz is also conserved, because of symmetry under displacement in the z direction; this is the linear
momentum of the particle in the z direction. The other components of linear momentum are not conserved,
and the other components of angular momentum are also not conserved, because there is no symmetry under
displacements in the x or y direction, or under rotations about any other axis.

Mathematically, the kinetic and potential energies in this case (using cylindrical coordinates) have
the form

T =
1
2

m(ρ̇2 + ρ2ϕ̇2 + ż2) and U = U(ρ). (6.74)

Therefore, when the Lagrangian L = T − U is assembled, both ϕ and z are cyclic, so the corresponding
generalized momenta pϕ, pz are conserved, as we already knew from our more “physical” analysis. �

6.4 A Less Straightforward Example

Consider the simple mechanics problem we described in Section 4.5. Two particles,
with masses m1 and m2, are constrained to move along a horizontal frictionless rail,
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as depicted in Figure 4.9. The action for the system is

S =

∫
dt
(

1
2

m1q̇2
1 +

1
2

m2q̇2
2 − U(q1 − q2)

)
, (6.75)

with some interaction between the particles described by a potential U(q1−q2) that
depends only on the distance between the particles.

Note that neither q1 nor q2 is cyclic, so it might seem that there are no
symmetries in this problem. However, let us consider a simple transformation of
the coordinates given by

q′1 = q1 + C, q′2 = q2 + C, (6.76)

where C is some arbitrary constant. So in this case, we have simply changed the
origin of coordinates, which should have no effect on the physics. We then have

q̇′1 = q̇1, q̇′2 = q̇2, (6.77)

so the kinetic terms in the action are unchanged under this transformation.
Furthermore, we also have

q′1 − q′2 = q1 − q2, (6.78)

implying that the potential term is also unchanged. The action then preserves its
overall structural form under the transformation

S →
∫

dt
(

1
2

m1(q̇′1)2 +
1
2

m2(q̇′2)2 − U(q′1 − q′2)
)

. (6.79)

This means that the equations of motion, written in the primed transformed
coordinates, are identical to the ones written in the unprimed original coordinates.
We can then say that the transformation given by (6.76) is a symmetry of our
system. Physically, we are simply saying that – since the interaction between the
particles depends only on the distance between them – a constant shift of both
coordinates leaves the dynamics unaffected. Indeed, we showed in Chapter 4 that
in this problem a simple linear transformation of coordinates to center-of-mass
and relative coordinates produced a cyclic coordinate, the position of the center of
mass. As a result, the momentum of the center of mass, that is the total momentum,
is conserved.

It is also useful to consider an infinitesimal version of such a transformation.
Assume that the constant C is small, C → ε; and write

q′k − qk = ε (6.80)

for k = 1, 2. We then say that the shift of the coordinates is a symmetry of
our system. To make these ideas more useful, in the next section we extend this
example by considering a general class of interesting transformations.
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6.5 Infinitesimal Transformations

We consider two types of infinitesimal transformations: direct and indirect.

Direct Transformations
A direct transformation deforms the generalized coordinates of a system as in

δqk(t) = q′k(t)− qk(t) ≡ Δqk(t, q). (6.81)

We use the notation Δ to label a direct transformation. Note that Δqk(t, q) is
possibly a function of time and all of the generalized coordinates in the problem.
In the example of Section 6.4, we used the special case Δqk(t, q)= constant. But it
need not be so. Figure 6.8(a) depicts a direct transformation: it is an arbitrary, but
small shift in the qks at fixed time. In the figure, a particular generalized coordinate
qk is shifted to slightly larger variable values for early times, and then to slightly
smaller variable values for later times.

(a) (b)

Fig. 6.8 The two types of transformations considered: (a) direct; (b) indirect.

Indirect Transformations
By contrast, an indirect transformation affects the generalized coordinates
indirectly – through the transformation of the time coordinate

δt(t, q) ≡ t′ − t. (6.82)

Note again that the shift in time is assumed to be small, and this shift can itself
depend on time. The small shifts in time then bring about small shifts in the
generalized coordinates, in which case they have been affected indirectly:

qk(t) = qk(t′ − δt) � qk(t′)−
dqk
dt′

δt � qk(t′)− q̇kδt, (6.83)
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where we have used a Taylor expansion in δt to linear order only, since δt is small
(see Appendix F). We also have used dqk/dt′ = dqk/dt since this term already
multiplies a power of δt: to linear order in δt, δt dqk/dt′ = δt dqk/dt ≡ δt q̇k. We
then see that shifting time results in a shift in the generalized coordinates

δqk = qk(t′)− qk(t) = q̇ δt(t, q). (6.84)

Compare with Eq. (6.81) and note that the coordinates are now evaluated at
different times. Figure 6.8(b) shows how we can think of this effect graphically:
a small change in time has caused a small change in the generalized coordinate
δqk(t).

Combined Transformations
In general, we want to consider a transformation that may include both direct and
indirect pieces. We write

δqk = q′k(t′)− qk(t) = q′k(t′) +
(
−qk(t′) + qk(t′)

)
− qk(t)

=
(
q′k(t′)− qk(t′)

)
+
(
qk(t′)− qk(t)

)
= Δqk(t′, q) + q̇ δt(t, q)

= Δqk(t, q) + q̇ δt(t, q), (6.85)

where in the last line we have equated t and t′ since the first term is already linear in
the small parameters. To specify a particular transformation, we could then provide
a set of functions

δt(t, q) and δqk(t, q), (6.86)

from which Eq. (6.85) determines Δqk(t, q). For N degrees of freedom, that
amounts to N + 1 functions of time and the qks. Let us look at a few
examples.

Example 6.7 Translations
Consider a single particle in three dimensions, described by the three Cartesian coordinates rx = x, ry = y,
and rz = z. We also have the time coordinate rt = c t. An infinitesimal constant spatial translation can be
realized by

δri(t, x) = εi , δt(t, x) = 0 ⇒ Δri(t, x) = δεi , (6.87)

where i = x, y, z, and the εi s are three small constants. A translation in space is then defined by

{δt(t, x) = 0, δri(t, x) = δεi} Translation in space. (6.88)

A constant translation in time would be given by

δri(t, x) = 0, δt(t, x) = δε ⇒ Δri(t, x) = −ṙiδε (6.89)
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for constant ε. Notice that for a translation purely in time, we need to require that the total shifts in
the ris – the δri(t, x)s – vanish. This then generates direct shifts, the Δris, to compensate for the
indirect effect on the spatial coordinates from the shifting of the time. A translation in time is then
defined by

{δt(t, x) = δε, δri(t, x) = 0} Translation in time. (6.90)
�

Example 6.8 Rotations
To describe constant rotations, we consider for simplicity a particle moving in two dimensions. We use the
coordinates rx = x and ry = y, and start by specifying

δt(t, x) = 0 ⇒ δri(t, x) = Δri(t, x), (6.91)

with i = x, y. Next, we look at an arbitrary rotation angle θ using Eq. (2.21):(
rx′

ry′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
rx

ry

)
. (6.92)

However, we need to focus on an infinitesimal version of this transformation: i.e., we need to consider small
angles δθ. Using cos δθ ∼ 1 and sin δθ ∼ δθ to first order in δθ, we then writea(

rx′

ry′

)
=

(
1 δθ

−δθ 1

)(
rx

ry

)
. (6.93)

This gives

δrx(t, x) = rx′(t)− rx(t) = δθ ry(t) = Δrx(t, x),

δry(t, x) = ry′(t)− ry(t) = −δθ rx(t) = Δry(t, x). (6.94)

We now have a less trivial transformation. Rotations can be defined by

{δt(t, x) = 0, δri(t, x) = δθ εi
j r

j(t)} Two-dimensional spatial rotation, (6.95)

where j is summed over 1 and 2. We have also introduced a useful shorthand: εi
j is the totally antisymmetric

matrix in two dimensions, given by

εx
x = εy

y = 0, εx
y = −εy

x = 1, (6.96)

which has allowed us to write the transformation in a more compact notation. �

aRecall that the Taylor series expansions of cos δθ and sin δθ are cos δθ= 1 − δθ2/2! +δθ4/4! − . . . and sin δθ= δθ −
δθ3/3! +δθ5/5! − . . . (see Appendix F for more).
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Example 6.9 Lorentz Transformations
To find the infinitesimal form of Lorentz transformations, we can start with the general transformation
equations (2.15) and take the velocity parameterβ= v/c to be small. We need to be careful, however, to keep
the leading-order terms in β in all expansions. Given our previous example, it is easier to map the problem
onto a rotation with hyperbolic trig functions and the rapidity ξ, which (as shown in Chapter 2) is⎛⎜⎜⎜⎝

c t
x
y
z

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c t′

x′

y′

z′

⎞⎟⎟⎟⎠ , (6.97)

where γ= cosh ξ, γβ= sinh ξ. For simplicity, let us consider a particle in one dimension, with two
relevant coordinates rt = c t and rx . We take the rapidity ξ → δξ to be small and use cosh δξ ∼ 1
and sinh δξ ∼ δξ to linear order in δξ. Using the same steps as in the previous example, we find

δrt(t, x) = δξ rx , δrx(t, x) = δξ rt . (6.98)

Using Eq. (6.85), we then have

Δrx(t, x) = δrx(t, x)− ṙx δrt(t, x)
c

= δξ rt − δξ

c
ṙx rx . (6.99)

Note that

sinh ξ = γβ ⇒ sinh δξ ∼ δξ ∼ β. (6.100)

The Lorentz transformations can then be defined by

{δrt = β rx , δrx = β rt , δry = δrz = 0} Lorentz transformation, (6.101)

where we added the effect on the transverse directions as well. �

6.6 Symmetry

We define a symmetry to be a transformation that leaves the action unchanged in
form. In the particular example of two interacting particles on a frictionless rail,
it was simple to see that the transformation was indeed a symmetry. Now that we
have a general class of transformations, we want to find a general condition that can
be used to test whether a particular transformation – possibly a complicated one –
is or is not a symmetry. We then need to look at how the action changes under a
general transformation: for a symmetry, this change should vanish. We start with
the usual form for the action:

S =

∫
dt L(q, q̇, t). (6.102)
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Then we apply a general transformation given by Δqk(t, q) and δt(t, q). It follows
that

δS =

∫
δ(dt) L +

∫
dt δ(L), (6.103)

where we have used the Leibniz product rule δ(ab)= (δa)b + a(δb), since δ
is an infinitesimal change. The first term is the change in the measure of the
integrand:

δ(dt) = dt
δ(dt)

dt
= dt

d
dt
(δt), (6.104)

where in the last part we exchanged the order of δ and d, since they commute.3 The
second term has two parts

δ(L) = Δ(L) + δt
dL
dt

. (6.105)

The first part is the change in L resulting from its dependence on the qks and q̇ks.
Hence, we labeled it as a direct change with a Δ. The second part is the change in
L to linear order in δt due to the change in t. This comes from changes in the qks
on which L depends, as well as changes in t directly, since t can make an explicit
appearance in L. This is an identical situation to the linear expansion encountered
for qk in Eq. (6.85): there is a part from direct changes in the degrees of freedom,
as well as a part from the transformation of time. Then, using multivariable
calculus:

Δ(L) =
∂L
∂qk

Δqk +
∂L
∂q̇k

Δ(q̇k) =
∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt

(Δqk) . (6.106)

Note that in the last term we exchanged the orders of Δ and d/dt. We can now put
everything together, so that

δS =

∫
dt
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt

(Δqk) + δt
dL
dt

+ L
d
dt
(δt)

)
=

∫
dt
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt

(Δqk) +
d
dt
(L δt)

)
. (6.107)

Now given L, δt(t, q), and δqk(t, q) (hence also Δqk(t, q)), we can substitute these
into Eq. (6.107) and check whether the expression vanishes. If it does vanish, we
conclude that the given transformation {δt(t, q), δqk(t, q)} is a symmetry of our
system. This shall be our notion of symmetry. A bit later, we will revisit this
statement and generalize it further. For now, this is enough to move on to the heart
of the topic, Noether’s theorem.

3 To see this, note that the commutativity of differentials follows from the general definition satisfied equally by
δ and d; that is, a differential is the limit of a difference, as in limε→0(xε − x).
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6.7 Noether’s Theorem

We start by simply stating the theorem:

Noether’s theorem: For every symmetry, i.e., for every set of transformations
{δt(t, q), δqk(t, q)} that leave the action unchanged, there exists a quantity that
is conserved under time evolution.

A symmetry implies a conservation law. This is important for two reasons:

• First, a conservation law identifies a rule in the laws of physics. Virtually
everything we have a name for in physics – mass, momentum, energy, charge,
etc. – is tied by definition to a conservation law. Noether’s theorem then states
that fundamental physics is founded on the principle of identifying symmetries.
If we want to know all the laws of physics, we need to ask: What are all the
symmetries in Nature? From there, we find conservation laws and associated
interesting conserved quantities. We can then study how these conservation laws
can sometimes be violated. This leads us to equations that can predict the future.
It’s all about symmetries.

• Second, conservation laws have the form
d
dt

(something) = 0 ⇒ something = constant. (6.108)

The “something” is typically a function of the degrees of freedom and the
first derivatives of the degrees of freedom. The conservation statement then
inherently leads to first-order differential equations. First-order differential
equations are much more pleasant than second or higher-order equations. Thus,
technically, finding the symmetries and corresponding conservation laws in a
problem helps a great deal in solving and understanding the physical system.

The easiest way to understand Noether’s theorem is to prove it, which is a
surprisingly simple exercise.

Proof of the Theorem
The premise of the theorem is that we have a given symmetry {δt(t, q),Δqk(t, q)}.
This then implies, using Eq. (6.107), that

δS = 0 =

∫
dt
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt

(Δqk) +
d
dt
(L δt)

)
. (6.109)

We know that this equation is satisfied for any set of curves qk(t) by virtue of the
assumption that {δt(t, q),Δqk(t, q)} constitutes a symmetry. And now comes the
crucial step: what if the qk(t)s satisfy the Lagrange equations of motion

d
dt

(
∂L
∂q̇k

)
=

∂L
∂qk

? (6.110)
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Of all possible curves qk(t), we pick the ones that satisfy the equations of motion.
Given this additional statement, we can rearrange the terms in δS to give

0 =

∫
dt

d
dt

(
∂L
∂q̇k

Δqk + L δt
)

. (6.111)

Since the integration interval is arbitrary, we then conclude that

d
dt

(Q) = 0, (6.112)

where

Q ≡ ∂L
∂q̇k

Δqk + L δt. (6.113)

Therefore we have a conserved quantity Q called the Noether charge.
Note a few important points:

• We used the equations of motion to prove the conservation law. However, we
did not use the equations of motion to conclude that a particular transformation
is a symmetry. The symmetry exists at the level of the action for any qk(t). The
conservation law exists for trajectories that satisfy the equations of motion.

• The proof identifies explicitly the conserved quantity through Eq. (6.113).
Knowing L, δt(t, q), and δqk(t, q) (hence also Δqk(t, q) from Eq. (6.85)), this
equation tells us immediately the conserved quantity associated with the given
symmetry.

This proof also highlights a way to generalize the original definition of symmetry.
All that was needed was to be able to write

δS =

∫
dt

d
dt

(K) , (6.114)

where K is some function that we can discover by using Eq. (6.107). If K turns out
to be a constant, we would get δS = 0 trivially, and we are back to the situation
just discussed. However, if K is nontrivial, we get (using Lagrange’s equations)

δS =

∫
dt

d
dt

(K) =
∫

dt
d
dt

(
∂L
∂q̇k

Δqk + L δt
)

, (6.115)

from which it follows from the definitions that

d
dt

(Q − K) = 0. (6.116)

Therefore the conserved quantity is Q − K rather than Q by itself. Since the
interesting conceptual content of a symmetry is its associated conservation law,
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we want to turn the problem on its back: we want to define a symmetry through a
conservation statement. So, here is a revised, more general statement:

{δt(t, q), δqk(t, q)} is a symmetry if

δS =

∫
dt

dK
dt

for some K. (6.117)

Noether’s theorem then states that for every such symmetry, there is a conserved
quantity given by Q − K.

To summarize, the general prescription is as follows:

1. Given a Lagrangian L and a candidate symmetry {δt(t, q), δqk(t, q)}, use Eq.
(6.107) to find δS. If δS =

∫
dt dK/dt for some K we are to determine,

{δt(t, q), δqk(t, q)} is indeed a symmetry.
2. If {δt(t, q), δqk(t, q)} is found to be a symmetry with some K, we can find an

associated conserved quantity Q − K, with Q given by Eq. (6.113).

The best way to understand all of this is to look at a few examples.

Example 6.10 Space Translations and Momentum
We start with the spatial translation transformation in a fixed ith direction, as in our previous example (6.87):

δri(t, x) = δεi , δt(t, x) = 0 ⇒ Δri(t, x) = δεi , (6.118)

whereδεi is a constant andδrk =Δrk , = 0 for k �= i (both i and k lie in the spatial directions). We next need
a Lagrangian to test this transformation. Consider first a free nonrelativistic particle whose Lagrangian is

L =
1
2

m ṙk ṙk . (6.119)

Substitute eqs. (6.118) and (6.119) into (6.107):

δS =
∫

dt
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dt
(Δqk) +

d
dt
(Lδt)

)
(6.120)

=

∫
dt
(

0 ·Δqk + mṙi d
dt
δεi +

d
dt
(0)
)

= 0 (no sum on i),

since δεi is a constant. Therefore K = constant, so we have a symmetry. To find the associated conserved
charge, we use Eq. (6.113) and find

Qi = mṙi δεi (no sum on i). (6.121)

We can repeat this for every i = x, y, z. We then have three charges for the three possible directions for
translation. Any overall additive or multiplicative constant is arbitrary, since it does not affect the statement
of conservation Q̇i = 0. Writing the conserved quantities as Pi instead, we can then state

Pi = mṙi . (6.122)
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That is, momentum is the Noether charge associated with the symmetry of spatial translational invariance. If
we have a physical system set up on a table and we notice that we can shift the table by any amount in any
of the three spatial directions without affecting the dynamics of the system, we can conclude that there is a
quantity – called momentum by definition – that remains constant in time.

We can then try to find the conditions under which this symmetry, and hence the conservation law, is
violated. For example, we can add a simple harmonic oscillator potential to the Lagrangian:

L =
1
2

mṙk ṙk − 1
2

k ri ri (no sum on i). (6.123)

Using Eq. (6.107), we now get

δS =
∫

dt
(
−k riδεi) �= ∫

d
dt
(K) (no sum on i). (6.124)

Hence, momentum is no longer conserved in the ith direction and we can write

Ṗi �= 0 ⇒ Ṗi ≡ Fi , (6.125)

thus introducing the concept of force. We now see that the existence or non-existence of forces in Newton’s
second law arises from the existence or non-existence of a certain symmetry in Nature.

Newton’s third law is also related to this idea: action–reaction pairs cancel each other, so that the total
force on an isolated system is zero and hence the total momentum is conserved. To see this, look back at the
two-particle system on a rail, described by the Lagrangian (6.75). Using once again Eq. (6.107) with δt = 0
and δqi = δε, we get

δS =
∫

dt
(
− ∂U
∂q1

δε+
∂U
∂q2

δε

)
= 0 (6.126)

since

∂

∂q1
U(q1 − q2) = − ∂

∂q2
U(q1 − q2). (6.127)

The forces on each particle are −∂U/∂q1 and −∂U/∂q2, which are equal in magnitude but opposite
in sign, since the potential energy has the form U(q1 − q2) – note the relative minus sign between
q1 and q2. These two forces form the action–reaction pair. The cancellation of forces arises because of
the dependence of the potential and force on the distance q1 − q2 between the particles – which is
what makes the problem translationally invariant as well. We now see that the third law is intimately
tied to the statement of translational symmetry. The associated conserved quantity determined from
Eq. (6.113) is

Pi = m1q̇1 + m2q̇2, (6.128)

and so the Noether charge is now the total momentum of the system, and it is conserved. �
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Example 6.11 Time Translation and the Hamiltonian
Next, let us consider time translational invariance. Due to its particular usefulness, we want to treat this
example with greater generality. We focus on a system with an arbitrary number of degrees of freedom labeled
by qk s, with a general Lagrangian L(q, q̇, t). We propose the transformation

δt = δε, δqk = 0. (6.129)

Therefore the degrees of freedom are left unchanged, but the time is shifted by a constantδε. This means that
we need a direct shift

δqk = 0 = Δqk + q̇kδt = Δqk + δε q̇k ⇒ Δqk = −δε q̇k (6.130)

to compensate for the indirect change in qk induced by the shift in time. We then use Eq. (6.107) to find that
the change in the action is

δS =
∫

dt
(
−δεq̇k

∂L
∂qk

− δεq̈k
∂L
∂q̇k

+ δε
dL
dt

)
. (6.131)

But we also know from multivariable calculus that
dL
dt

=
∂L
∂t

+
∂L
∂qk

q̇k +
∂L
∂q̇k

q̈k , (6.132)

so we can write simply

δS =
∫

dt
∂L
∂t
δε. (6.133)

In general, since L depends on the qk s as well as explicit ts, we need to consider the more restrictive condition
for symmetry δS = 0, i.e., we have K = constant. This implies that we have time translational symmetry if

∂L
∂t

= 0, (6.134)

i.e., if the Lagrangian does not depend on time explicitly. If this is the case, we then have a conserved quantity
given by Eq. (6.113):

Q = −δε q̇k
∂L
∂q̇k

+ δε L. (6.135)

Dropping the overall constant term−δε and rearranging:

Q → q̇k
∂L
∂q̇k

− L = H, (6.136)

which we recognize as the Hamiltonian H of the system, already introduced in Chapter 4.
Consider, for example, the two-particle problem in one dimension described by the Lagrangian (4.48). We

then find

H =
1
2

m1q̇2
1 +

1
2

m2q̇2
2 + U(q1 − q2), (6.137)
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which is obviously also the energy E = T+U in this case. As shown in Section 4.7 of Chapter 4, the Hamiltonian
H is equal to the energy E if the transformation r = r(qk , t), from the generalized coordinates to Cartesian
coordinates, is not an explicit function of time. Therefore, if the results of a series of experiments do not depend
upon when the experiments are performed, we expect that the Hamiltonian of the system will be conserved.
In many circumstances H = E, so we often say that invariance under displacements in time indicates that the
energy of the system is conserved. We can then look at dissipative effects involving loss of energy and learn
about new physics through the nonconservation of energy. �

Example 6.12 Rotations and Angular Momentum
Consider the problem of a nonrelativistic particle of mass m moving in two dimensions, in a plane labeled by
rx = x and ry = y. We add to the problem a central force with a Lagrangian of the form

L =
1
2

m ṙi ṙi − U(ṙi ṙi) summed on i, with i = x, y. (6.138)

Note that the potential depends only on the distance
√

riri of the particle from the origin of the coordinate
system. Rotations are described by Eq. (6.95). We can then use Eq. (6.107) to test for rotational symmetry,
where the change in the action is

δS =
∫

dt
(
∂U
∂ri Δri + m ṙi d

dt
(Δri)

)
=

∫
dt
(

2 U′δθ εij rirj + m δθ εij ṙi ṙj) . (6.139)

In the second line we wrote
∂U
∂ri =

∂U
∂u

∂u
∂ri =

∂U
∂u

(2 ri) = 2U′ri , (6.140)

where u ≡ riri , and where we have used the chain rule. We now want to show that δS = 0. Focus on the
first term in Eq. (6.139):

2 U′δθ εij rirj = 2 U′δθ εxy rx ry + 2 U′δθ εyx ry rx = 2 U′δθ rx ry − 2 U′δθ ry rx = 0. (6.141)

Let us do this one more time, with more grace and elegance:

2 U′δθ εij rirj = 2 U′δθ εjirj ri

= 2 U′δθ εjirirj

= −2 U′δθ εij rirj . (6.142)

In the second line, we just relabeled the indices i → j and j → i: since they are summed indices, it does not
matter what they are called. In the third line, we used the fact that multiplication is commutative rj ri = rirj .
Finally, in the third line, we used the property εij = −εji from Eq. (6.96). Hence, we have shown

2 U′δθ εij rirj = −2 U′δθ εij rirj ⇒ 2 U′δθ εij rirj = 0. (6.143)
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The key idea is that εij is antisymmetric in its indices while ri rj is symmetric under the same indices. The sum
of their product therefore cancels. The same is true for the second term in Eq. (6.139):

m δθ εij ṙi ṙj = −m δθ εij ṙi ṙj ⇒ m δθ εij ṙi ṙj = 0. (6.144)

We will use this trick occasionally later on in other contexts. We thus have shown that our system is rotational
symmetric:

δS = 0 ⇒ K = constant. (6.145)

We can then determine the conserved quantity using Eq. (6.113):

Q =
∂L
∂ ṙi Δri = m ṙiδθ εij rj . (6.146)

Dropping a constant term δθ, we write

l = m εij ṙirj = m (ṙx ry − ṙy rx) = (r × m v)z , (6.147)

i.e., this is the z-component of the angular momentum of the particle. As expected, it is perpendicular to the
plane of motion. Rotational symmetry implies conservation of angular momentum, and rotation about the z
axis corresponds to angular momentum along the z axis. �

Example 6.13 Lorentz and Galilean Boosts
How about a Lorentz transformation? Special relativity requires the Lorentz transformation to be a symmetry
of any physical system: it is not a question of whether it is a symmetry of any particular system – it better
be. We could then use Eq. (6.107), with Lorentz transformations, as a condition for sensible Lagrangians.
Noether’s theorem can be used to construct theories consistent with the required symmetries. In general, an
experiment would identify a set of symmetries in a newly discovered system. Then the theorist’s task is to build
a Lagrangian that describes the system; and a good starting point would be to ensure that the Lagrangian has
all the needed symmetries. We now see the power of Noether’s theorem: it allows us to mold equations and
theories to our symmetry needs.

Returning to Lorentz transformations, let us look at an explicit example and find the associated conserved
charge. We consider a relativistic system, say a free relativistic particle with action

S = −mc2
∫

dτ = −mc2
∫

dt

√
1 − ṙi ṙi

c2 . (6.148)

A particular Lorentz transformation is given by Eq. (6.101), which we can then substitute into Eq. (6.107) to
show that there is a symmetry. We will return to this case in the next example. For now, consider instead the
limit of small speeds, i.e., a nonrelativistic system with Galilean symmetry. We take a single free particle in
one dimension with Lagrangian

L =
1
2

mẋ2. (6.149)

The expected symmetry is Galilean, given by (1.1):
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x = x′ + Vt′, y = y′, z = z′, t = t′. (6.150)

We can then write the infinitesimal version

δt = δy = δz = 0, δx = −V t

⇒ Δt = Δy = Δz = 0 andΔx = −V t. (6.151)

Note that we want to think of this transformation near t ∼ 0, the instant in time when the two origins coincide,
to keep it as a small deformation for any V. Using Eq. (6.107), we then find

δS =
∫

dt m V ẋ. (6.152)

Before we become overly concerned by the fact that this quantity does not vanish, let us remember that all
that is needed is δS =

∫
dt dK/dt for some K . That is indeed the case:

δS =
∫

dt
d
dt
(m V x) . (6.153)

We then have

K = m V x + constant. (6.154)

This system does have Galilean symmetry. We look at the associated Noether charge, using Eq. (6.113):

Q =
∂L
∂ ẋ

Δx = m ẋ V t. (6.155)

But this is not the conserved charge: the conserved quantity is

Q − K = m ẋ V t − m V x = constant. (6.156)

Rewriting things, we have a simple first-order differential equation

ẋ t − x = constant. (6.157)

Integrating this gives the expected linear trajectory x(t)∝ t. Unlike momentum, energy, and angular
momentum, this conserved quantity Q − K is not given its own glorified name. Since Galilean (or the
more general Lorentz) symmetry is expected to be prevalent in all systems, this does not add any useful
distinguishing physics to a problem. Perhaps if we were to discover a fundamental phenomenon that breaks
Galilean/Lorentz symmetry, we could then revisit this conserved quantity and study its nonconservation. For
now, this conserved charge is relegated to second-rate status. �

Example 6.14 Lorentz Invariance
We now return to the case of Lorentz invariance. We saw in Chapter 2 that Lorentz transformations are a kind of
rotation in spacetime – using hyperbolic trigonometric functions. Let us start by writing infinitesimal Lorentz
transformations (6.101) in a more compact form along the lines of Eq. (6.95). We write
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δrμ = βεμν rληνλ = βεμν rν , (6.158)

whereμ and ν run over t and x only, and εμν is nonzero only for

εtx = +1, εxt = −1, (6.159)

as for the case of rotations. Note that we need the metric factorηνλ to flip the sign of the time transformation
to the correct form. This transformation corresponds to an infinitesimal boost in the rx = x direction. More
generally, Lorentz boosts can be in any of three spatial directions. By symmetry, we can guess that the most
general infinitesimal Lorentz boost and spatial rotation must have the form

δrμ = ωμν rληνλ Lorentz boosts and rotations, (6.160)

where μ and ν now run over t, x, y, and z; the ωμν s are a set of boost or rotational angle parameters that
satisfy the antisymmetry relation

ωμν = −ωνμ. (6.161)

For example, if all ωμν s are zero except for ωxy = −ωyx = δθ, we get rotation about the z axis as in Eq.
(6.95); in contrast, if all ωμν s are zero except for ωtx = −ωxt = β, we get Eq. (6.158). Correspondingly,
ωyz = −ωzy rotates about the x axis,ωxz = −ωzx rotates about the y axis,ωty = −ωyt boosts in the y
direction, andωtz = −ωzt boosts in the z direction. We then have a total of three rotations and three boosts
as needed, packaged into one antisymmetric matrixωμν .

Notice that we cannot have general Lorentz invariance without rotational invariance: otherwise, we can
always break the Lorentz boost symmetry by simply realigning the axes by a rotation. To see where the
requirement of Lorentz invariance leads us, consider the general change in the action given by Eq. (6.107):

δS =
∫

dτ
(

∂L
∂qk

Δqk +
∂L
∂q̇k

d
dτ

(Δqk) +
d

dτ
(L δτ)

)
, (6.162)

where we have traded the t dependence for a dependence on proper time τ instead, expecting that this will
make the analysis cleaner. This means that the action is

S =
∫

dτ L, (6.163)

and the dot in q̇k denotes a derivative with respect to τ . We can rearrange Eq. (6.162) into

δS =
∫

dτ
(

∂L
∂qk

δqk +
∂L
∂q̇k

d
dτ

(δqk)

)
, (6.164)

where we have used δτ = 0 (since proper time is unchanged under Lorentz transformations and rotations)
and hence δqk = Δqk + q̇kδτ = Δqk . Noting that qk → rμ, we can then write instead

δS =
∫

dτ
(

∂L
∂rμ

δrμ +
∂L
∂ ṙμ

d
dτ

(δrμ)
)

. (6.165)
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We can now read off the condition of Lorentz invariance. For example, consider any function of s ≡ rμrνημν ;
that is, say L contains a piece L → L(rμrνημν). We then get

∂L
∂rμ

δrμ =
∂L
∂s

∂s
∂rμ

δrμ =
∂L
∂s

2 rνημνδrμ =
∂L
∂s

2 rνημνωμαηαβ rβ = 0. (6.166)

The last statement follows because the product of xs is symmetric while the ωμν matrix is antisymmetric:
the argument is the same one we saw in Eq. (6.142). This mechanism of cancellation is so general that it will
apply whenever the Lagrangian depends on mathematical objects that are properly Lorentz contracted: there
are no “hanging” Lorentz indices, and pairs of Lorentz indicesμ and ν ar always summed over through ημν .
We can then easily build Lagrangians L out of rμs and drμ/dτ s, as long as we contract the indices properly.
The result is guaranteed to be Lorentz invariant. The simplest case is that of a free relativistic particle, for
which we have from Eq. (3.71) L = 1 – which obviously works. In Chapter 8, we will see the case of a charged
relativistic particle where the Lorentz invariant form of L will be less trivial. �

Example 6.15 Sculpting Lagrangians from Symmetry
What if we were to stipulate a particular symmetry and ask for all possible Lagrangians that fit the mold?
To be more specific, consider a one-dimensional system with a single degree of freedom, denoted by q(t).
We want to ask: What are all possible theories that can describe this system with the conditions that they
are Galilean invariant and invariant under time translations? Time translational invariance is easy to handle:
we need ∂L/∂t = 0. The Galilean symmetry, however, is obtained from Eq. (6.151) in the previous
example:

δt = 0 and δx = Δx = −V t. (6.167)

Substituting this into Eq. (6.107), we get

δS =
∫

dt
(
−∂L
∂x

V t − ∂L
∂ ẋ

V
)

=

∫
dt

d
dt

K . (6.168)

The question is to find the most general L that does the job for some K . This means we need

∂L
∂x

t +
∂L
∂ ẋ

= − d
dt

K ≡ d
dt

K̃ . (6.169)

Note also that we are not allowed to use the equations of motion while imposing the desired symmetry! Using
the chain rule with K̃(t, x, ẋ, ẍ, . . .), we can write

d
dt

K̃ =
∂K̃
∂t

+
∂K̃
∂x

ẋ +
∂K̃
∂ ẋ

ẍ + · · · . (6.170)

Comparing this to Eq. (6.169), we see that we need K̃(t, x) – a function of t and x only – since we know L is a
function of t, x, and ẋ only. Therefore we have

∂L
∂x

t +
∂L
∂ ẋ

=
∂K̃
∂t

+
∂K̃
∂x

ẋ. (6.171)
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We want a general form for L, yet K̃(t, x) is also arbitrary. Since the right-hand side is linear in ẋ, the left-hand
side must be linear as well. This implies we need L to be a quadratic polynomial in ẋ:

L = f1(x)ẋ2 + f2(x)ẋ + f3(x), (6.172)

with three unknown functions f1(x), f2(x), and f3(x). Note that no time dependence is allowed because of
time translational symmetry. Looking at the∂L/∂x term, we can immediately see that we need f1(x) = C1,
a constant independent of x: otherwise we generate a term quadratic in ẋ that does not exist on the right-hand
side of Eq. (6.171). Our Lagrangian now looks like

L = C1ẋ2 + f2(x)ẋ + f3(x). (6.173)

But the second term is irrelevant to the dynamics. This is because L will appear in the action integrated over
time, and this second term can be integrated out:∫

dt f2(x)ẋ =
∫

dt
d
dt
(F2(x)) = F2(x)|boundaries (6.174)

for some function F2(x) =
∫ x dξ f2(ξ). Hence the term does not depend on the shape of paths plugged

into the action functional and cannot contribute to the statement of stationarity – otherwise known as the
equation of motion. We are now left with

L → C1ẋ2 + f3(x). (6.175)

The condition (6.171) on L now looks like

∂f3(x)
∂x

t + 2 C1 ẋ =
∂K̃
∂t

+
∂K̃
∂x

ẋ. (6.176)

Picking out the ẋ dependences on either side, this implies

2 C1 =
∂K̃
∂x

,
∂f3(x)
∂x

t =
∂K̃
∂t

. (6.177)

Since we know that

∂2K̃
∂x∂t

=
∂2K̃
∂t∂x

, (6.178)

differentiating the two equations in (6.177) leads to the condition

∂2f3(x)
∂x2 = 0 ⇒ f3(x) = C2x + C3 (6.179)

for some constants C2 and C3. The Lagrangian is now

L = C1ẋ2 + C2x, (6.180)

where we set C3 = 0 since a constant shift of L does not affect the equation of motion. We can now solve for
K̃ as well if we want to, using (6.177):

K̃ = 2 C1x +
C2

2
t2 + constant. (6.181)
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Now, let us focus on the important point, which is Eq. (6.180). We write the constants C1 and C2 as C1 = m/2
and C2 = −m g:

L =
1
2

mẋ2 − m g x. (6.182)

That is, we have shown that the most general Galilean and time translation-invariant mechanics problem
in one dimension necessarily looks like a particle in uniform gravity.a We were able to derive the canonical
kinetic energy term and gravitational potential from a symmetry requirement. This is just a hint at the power
of symmetries and conservation laws in physics. Indeed, all the known forces of Nature can be derived from
first principles using symmetries!b �

aOr a uniform electrostatic potential or any other potential linear in x.
bSee for example Quantum Field Theory in a Nutshell by A. Zee, and references therein.

6.8 Some Comments on Symmetries

Let us step back for a moment and comment on several additional issues about
symmetries and conservation laws.

• If a system has N degrees of freedom, then the typical Lagrangian leads to
N second-order differential equations (provided the Lagrangian depends on at
most first derivatives of the variables). If we were lucky enough to solve these
equations, we would parameterize the solution with 2 N constants related to the
boundary conditions. If our system has M symmetries, it would then have M
conserved quantities. Each of the symmetries leads to a first-order differential
equation, and hence a total of M constants of motion. In total, the conservation
equations will give 2 M constants to parameterize the solution: M from the
constants of motion, and another M from integrating the first-order equations.
These 2 M constants would necessarily be related to the 2 N constants mentioned
earlier. What if we have M = N? The system is then said to be integrable. This
means that all one needs to do is write the conservation equations and integrate
them. We need not even consider any second-order differential equations to find
the solution to the dynamics. In general, we will have M ≤ N, and the closer
M is to N, the easier it will be to solve the given physical problem. As soon
as an experienced physicist sees a mechanics problem, he or she would first
count the degrees of freedom, and then instinctively look for the symmetries and
associated conserved charges. This immediately lays out a strategy for how to
tackle the problem, based on how many symmetries one has versus the number
of degrees of freedom.

• Noether’s theorem is based on infinitesimal transformations: symmetries that
can be built up from small incremental steps of deformations. There are other
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symmetries in Nature that do not fit this prescription. For example, discrete
symmetries are rather common. Reflection transformations, e.g., time reflection
t → −t or discrete rotations of a lattice, can be very important for understanding
the physics of a problem. Noether’s theorem does not apply to these. However,
such symmetries are also often associated with conserved quantities. Sometimes,
these are called topological conservation laws.

• Infinitesimal transformations can be catalogued rigorously in mathematics. A
large and useful class of such transformations fall under the general topic
of group theory, more particularly Lie groups. The Lie group catalogue
(developed by the French mathematician Élie Cartan) is exhaustive. Many if
not all of the entries in the catalogue are indeed realized in Nature in various
physical systems.

6.9 Summary

In this chapter we presented a technique that allows us to determine constraint
forces while working within the Lagrangian formalism. This involved the use
of Lagrange multipliers – additional degrees of freedom that one adds to the
action. This allows us to formulate a variational principle while being subject to
constraints. This approach turns out to be very useful beyond mechanics, from
thermodynamics to quantum field theory.

We also encountered a profound formulation of physics, Noether’s theorem, that
we can use to organize the subject in terms of a catalogue of symmetries in Nature
and corresponding conservation laws. Once again, this topic extends beyond the
realm of classical mechanics and pervades throughout our modern understanding
of physics.

Problems

Problem 6.1 A particle of mass m slides inside a smooth hemispherical bowl of radius��
R. Use spherical coordinates r, θ, and φ to describe the dynamics. (a) Write the
Lagrangian in terms of generalized coordinates and solve the dynamics. (b) Repeat
the exercise using a Lagrange multiplier. What does the multiplier measure in this
case?

Problem 6.2 A pendulum consisting of a ball at the end of a rope swings back and��
forth in a two-dimensional vertical plane, with the angle θ between the rope and the
vertical evolving in time. The rope is pulled upward at a constant rate so that the
length l of the pendulum’s arm is decreasing according to dl/dt = −α ≡ constant.
(a) Find the Lagrangian for the system with respect to the angle θ. (b) Write the
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corresponding equations of motion. (c) Repeat parts (a) and (b) using Lagrange
multipliers.

Problem 6.3 A particle of mass m slides inside a smooth paraboloid of revolution��
whose surface is defined by z = αρ2, where z and ρ are cylindrical coordinates.
(a) Write the Lagrangian for the three-dimensional system using the method of
Lagrange multipliers. (b) Find the equations of motion.

Problem 6.4 In certain situations, it is possible to incorporate frictional effects with-��
out introducing the dissipation function. As an example, consider the Lagrangian

L = eγt
(

1
2

mq̇2 − 1
2

kq2
)

. (6.183)

(a) Find the equation of motion for the system. (b) Make the coordinate change
s = eγt/2q, and rewrite the dynamics in terms of s. (c) How would you describe
the system?

Problem 6.5 A massive particle moves under the acceleration of gravity and without��
friction on the surface of an inverted cone of revolution with half angle α. (a)
Find the Lagrangian in polar coordinates. (b) Provide a complete analysis of the
trajectory problem. Do not integrate the final orbit equation, but explore circular
orbits in detail.

m

m

kr(t)

r(t)θ2 θ1

Problem 6.6 A toy model for our expanding universe during the inflationary epoch���
consists of a circle of radius r(t) = r0eωt where we are confined to the one-
dimensional world that is the circle. To probe the physics, imagine two point
masses of identical mass m free to move on this circle without friction, connected
by a spring of force constant k and relaxed length zero, as depicted in the figure
above.

(a) Write the Lagrangian for the two-particle system in terms of the common
radial coordinate r, and the two polar coordinates θ1 and θ2. Do not implement the
radial constraint r(t) = r0eωt yet.
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(b) Using a Lagrange multiplier for the radial constraint, write four equations
describing the dynamics. In this process, show that

a1r = 1, a1t = −ωr. (6.184)

(c) Consider the coordinate relabeling

α ≡ θ1 + θ2, β ≡ θ1 − θ2. (6.185)

Show that the equations of motion of part (b) for the two angle variables θ1 and θ2
can be rewritten in decoupled form as

α̈ = C1α̇, (6.186)

β̈ = C2β̇ + C3β, (6.187)

where C1, C2, and C3 are constants that you will need to find.
(d) Identify a symmetry transformation {δt, δα, δβ} for this system. Find the

associated conserved quantity. What would you call this conserved quantity?
(e) Then find α(t) and β(t) using Eqs. (6.186) and (6.187). Use the boundary

conditions

α(0) = α0, α̇(0) = 0, β(0) = 0, β̇(0) = C. (6.188)

What is the effect of the expansion on the dynamics? Note: This conclusion is the
same as in the more realistic three-dimensional cosmological scenario.

(f) Find the force on the particles exerted by the expansion of the universe. Write
this as a function of α(t), β(t), and r(t); then show that its limiting form for later
times in the evolution is given by

2 mω2 r(t). (6.189)

R

� r
k�

m
k


�


Problem 6.7 The figure above shows a mass m connected to a spring of force constant���
k along a wooden track. The mass is restricted to move along this track without
friction. The entire system is mounted on a toy wagon of zero mass resting on a
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track along a second frictionless beam. The wagon is connected by a spring of force
constant k′ to an axle about which the whole apparatus is spinning with constant
angular speed ω. The figure is a top-down view, with gravity pointing into the
page, and the rest length of each spring is zero. (a) First, write the Lagrangian of
the system in terms of the four variables r, θ, R, and Θ shown in the figure, without
implementing any constraints. (b) Identify two constraint equations. Implement
the one, keeping the two tracks perpendicular to one another in the result of part
(a) by eliminating R. Do not implement the constraint causing everything to spin at
constant angular speed ω. (c) Introducing a Lagrange multiplier for the constraint
having to do with the spin, write four differential equations describing the system.
(d) Identify the force on the mass m due to the spin of the system, and find all
conditions for which this force vanishes.

a

a

a

a

m1m1

m2

frictionless jointΩ

θ

Problem 6.8 Consider the system shown in the figure above. The particle of mass m2���
moves on a vertical axis without friction and the entire system rotates about this
axis with a constant angular speed Ω. The frictionless joint near the top assures that
the three masses always lie in the same plane, and the rods of length a are all rigid.
(Hint: Use the origin of your coordinate system at the upper frictionless joint.)

(a) Find the equation of motion in terms of the single degree of freedom θ. (b)
Using the method of Lagrange multipliers, find the torque on the masses m1 due to
the rotational motion. (c) Find a static solution in θ and identify the corresponding
angle in terms of m1, m2, g, a, and Ω. Consider some limits/inequalities in your
result and comment on whether they make sense. (d) Is the solution in part (c)
stable? If so, what is the frequency of small oscillations about the configuration?
(Hint: Use ξ = cos θ and work on the Lagrangian instead of the equation of
motion.)

Problem 6.9 Find the equations of motion for the example in the text of a wheel��
chasing a moving target using the nonholonomic constraint.
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Problem 6.10 Consider the example of the wheel from the example in the text, except���
that now we have no control over the wheel’s steering – except of course at time
zero. We start the wheel at some position on the plane, give it an initial roll ω0
and an initial spin θ̇0. Describe the trajectory, assuming that the wheel does not tip
away from the vertical.

Problem 6.11 Consider a particle of mass m moving in two dimensions in the x–y��
plane, constrained to a rail-track whose shape is described by an arbitrary function
y = f(x). There is no gravity acting on the particle.

(a) Write the Lagrangian in terms of the x degree of freedom only.
(b) Consider some general transformation of the form

δx = g(x), δt = 0, (6.190)

where g(x) is an arbitrary function of x. Assuming that this transformation is a
symmetry of the system such that δS = 0, show that it implies the following
differential equation relating f(x) and g(x):

g′

g
= − 1

2(1 + f′2)
d
dx

(
f′2
)

, (6.191)

where prime stands for derivative with respect to x (not t).
(c) Write a general expression for the associated conserved charge in terms of

f(x), g(x), and ẋ.
(d) We will now specify a certain g(x), and try to find the laws of physics obeying

the prescribed symmetry; i.e., for given g(x), we want to find the shape of the rail-
track f(x). Let

g(x) =
g0√

x
, (6.192)

where g0 is a constant. Find the corresponding f(x) such that this g(x) yields a
symmetry. Sketch the shape of the rail-track. (Hint: h(x) = f′2.)

Problem 6.12 One of the most important symmetries in Nature is that of scale��
invariance. This symmetry is very common (e.g., it arises whenever a substance
undergoes a phase transition), fundamental (e.g., it is at the foundation of the
concept of the renormalization group, for which a physics Nobel Prize was
awarded in 1982), and entertaining (as you will now see in this problem).

Consider the action

S =

∫
dt

√
hq̇2 (6.193)

of two degrees of freedom h(t) and q(t).
(a) Show that the following transformation (known as a scale transformation or

dilatation)

δq = αq, δh = −2αh, δt = αt (6.194)

is a symmetry of this system.
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(b) Find the resulting constant of motion.

Problem 6.13 A massive particle moves under the acceleration of gravity and without���
friction on the surface of an inverted cone of revolution with half angle α.

(a) Find the Lagrangian in polar coordinates.
(b) Provide a complete analysis of the trajectory problem. Use Noether charge

when useful.

Problem 6.14 For the two-body central-force problem with a Newtonian potential,��
the effective two-dimensional orbit dynamics can be described by the Lagrangian

L =
1
2
μ
(

ṙ2 + r2φ̇2
)
+

k
r
=

1
2
μ
(
ẋ2 + ẏ2)+ k√

x2 + y2
, (6.195)

where k > 0 and we have chosen to use Cartesian coordinates.
(a) Show that the equations of motion become

μẍ = −k
x

(x2 + y2)3/2 , μÿ = −k
y

(x2 + y2)3/2 . (6.196)

(b) Consider the rotation

δx = α y, δy = −α x, δt = 0 (6.197)

for small α. Show that this is a symmetry of the action.

Problem 6.15 In the previous problem show that the conserved Noether charge��
associated with the symmetry (6.197) is indeed the angular momentum |r × μv|,
which is naturally entirely in the z direction.

Problem 6.16 The two-body central-force problem we have been dealing with in��
the previous two problems also has another unexpected and amazing symmetry.
Consider the transformation

δx = −β

2
μ y ẏ, δy =

β

2
μ (2 x ẏ − y ẋ) , δt = 0 (6.198)

for some constant β. This horrific velocity-dependent transformation is a symmetry
if and only if the equations of motion (6.196) are satisfied – unlike other
symmetries we’ve seen where the equations of motion need not be satisfied. It
is said that it is an on-shell symmetry. Show that the change in the Lagrangian
resulting from this transformation is given by

δL = β μ k
d
dt

(
x√

x2 + y2

)
. (6.199)

Therefore, it’s a total derivative and generates a symmetry under our generalized
definition of a symmetry. (Hint: You will need to use Eqs. (6.196) to get this
result.)
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Problem 6.17 In the previous problem, show that the conserved charge associated�
with the symmetry is

Q ∝ μ2xẏ2 − μ2yẋẏ − μk
x√

x2 + y2
. (6.200)

Problem 6.18 The hidden symmetry of the previous few problems is part of a twofold��
transformation – one of which is given by Eqs. (6.198), and another similar one that
we have not shown. Together, they result in the conservation of a vector known as
the Laplace–Runge–Lenz vector

A = μv × (r× μv)− μk
r

r
. (6.201)

Show that (6.200) is the x-component of this more general vector quantity. (Hint:
You may find it useful to use the identity a× (b× c) = b(a · c)− c(a · b).)
Problem 6.19 Show using Eq. (6.201) that��

dA
dt

= 0. (6.202)

Draw an elliptical orbit in the x–y plane and show on it the Laplace–Runge–
Lenz vector A. The existence of this conserved vector quantity is the reason
why one can smoothly deform ellipses into a circle without changing the energy
of the system. Mathematically, this additional hidden symmetry implies that the
Newtonian problem is equivalent to a free particle on a three-dimensional sphere
embedded in an abstract four-dimensional world. It is believed that this is a
mathematical accident; no physical significance of this fourth dimension has yet
been identified...

m2

m1

x

g
l
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Problem 6.20 Consider a simple pendulum of mass m2 and arm length l having its��
pivot on a point of support of mass m1 that is free to move horizontally on a
frictionless rail.

(a) Find the Lagrangian of the system in terms of the two degrees of freedom x
and θ shown on the figure above. Do not assume small displacements. (b) Identify
two symmetries and the two corresponding conservation laws. Write two first-order
differential equations that describe the dynamics of the two degrees of freedom x
and θ. Correspondingly, write a single nasty integral for θ(t).
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In this chapter we describe motion caused by central forces, especially the orbits
of planets, moons, and artificial satellites due to central gravitational forces.
Historically, this is the most important testing ground of Newtonian mechanics.
In fact, it is not clear how the science of mechanics would have developed if the
earth had been covered with permanent clouds, obscuring the moon and planets
from view. And Newton’s laws of motion with central gravitational forces are still
very much in use today, such as in designing spacecraft trajectories to other planets.
Our treatment here of motion in central gravitational forces is followed in the next
chapter with a look at motion due to electromagnetic forces, which can also be
central in special cases, but are commonly much more varied, partly because they
involve both electric and magnetic forces.

Throughout this chapter we focus on nonrelativistic regimes. The setting where
large speeds are involved and gravitational forces are particularly large is the realm
of general relativity – where Newtonian gravity fails to capture the correct physics.
We explore such extreme scenarios in the capstone Chapter 10.

7.1 Central Forces

A central force on a particle is directed toward or away from a fixed point in three
dimensions and is spherically symmetric about that point. In spherical coordinates
(r, θ,φ) the corresponding potential energy is also spherically symmetric, U=U(r)
with no dependence on φ and θ.

For example, the sun, of mass m1 (the source), exerts an attractive central force

F = −G
m1 m2

r2 r̂ (7.1)

on a planet of mass m2 (the probe), where r is the distance between their centers and
r̂ is a unit vector pointing away from the sun (see Figure 7.1). The corresponding
gravitational potential energy is

U(r) = −
∫

F(r) dr = −G
m1 m2

r
, (7.2)

275
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with the choice U(∞) = 0. Similarly, the spring-like central force from a fixed
point (the source) on an attached (probe) mass is

F = −kr = −k r r̂ (7.3)

(a) (b) (c)

Fig. 7.1 Examples of central forces: (a) Newtonian gravity pulling a probe mass m2 toward a source mass m1; (b)
a three-dimensional spring fixed at one end; (c) a charge q1 pulling on a charge q2 through the
electrostatic force.

and has a three-dimensional spring potential energy

U(r) = −
∫

F(r) dr =
1
2

k r2, (7.4)

with U(0) = 0. And the Coulomb force

F =
q1 q2

4πε0r2 r̂ (7.5)

on a charge q2 (the probe) due to a central charge q1 (the source) has a Coulomb
potential energy

U(r) = −
∫

F(r) dr =
1

4πε0

q1 q2

r
, (7.6)

with U(∞)= 0. In all these cases, the force is along the direction of the line joining
the centers of the source point and the probe object, and the potential energy is a
function of the source–probe distance only.

The environment of a particle subject to a central force is invariant under
rotations about any axis through the fixed point at the origin, so the angular
momentum � of the particle is conserved, as we saw in Chapter 4. Conservation of
� also follows from the fact that the torque τ ≡ r×F= 0 due to a central force, if
the fixed point is chosen as the origin of coordinates. The particle therefore moves
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in a plane,1 because its position vector r is perpendicular to the fixed direction
of � = r × p (see Figure 7.2). Therefore, central-force problems are essentially
two-dimensional.

Fig. 7.2 Angular momentum conservation and the planar nature of central force orbits.

All this discussion assumes that the source of the central force is fixed in position:
the sun, or the pivot of the spring, or the source charge q1 are all at rest and lie at
the origin of our coordinate system. What if the source object is also in motion?
If it is accelerating, as is typically the case due to the reaction force exerted on it
by the probe, the source then defines a non-inertial frame, so Newton’s second law
cannot be used in that source frame. Let us then proceed to tackle the more general
situation, the so-called two-body problem involving two dynamical objects, both
moving around, pulling on each other through a force that lies along the line that
joins their centers.

7.2 The Two-Body Problem

We will now show that with the right choice of coordinates, the two-body problem
is equivalent to a one-body central-force problem. If we can solve the one-body
central-force problem, we can solve the two-body problem.

In the two-body problem there is a kinetic energy for each body and a mutual
potential energy that depends only upon the distance between them. There are
altogether six coordinates, three for the first body, r1 =(x1, y1, z1), and three for

1 The plane in which a particle moves can also be defined by two vectors: (i) the radius vector to the particle from
the force center and (ii) the initial velocity vector of the particle. Given these two vectors, as long as the central
force remains the only force, the particle cannot move out of the plane defined by these two vectors. We are
assuming that the two vectors are noncolinear; if r and v0 are parallel or antiparallel, the motion is obviously
only one-dimensional, along a radial straight line.
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the second, r2 =(x2, y2, z2), where all coordinates are measured from a fixed point
in some inertial frame (see Figure 7.3). The alternative set of six coordinates used
for the two-body problem are, first of all, three center-of-mass coordinates

Rcm ≡ m1r1 + m2r2

m1 + m2
, (7.7)

already defined in Section 1.3: the CM vector extends from an arbitrary fixed point
in some inertial frame to the center of mass of the bodies. There are also three
relative coordinates

r ≡ r2 − r1, (7.8)

where the relative coordinate vector points from the first body to the second, and
its length is the distance between them.

Fig. 7.3 The classical two-body problem in physics.

We can solve for r1 and r2 in terms of Rcm and r:

r1 = Rcm − m2

M
r and r2 = Rcm +

m1

M
r, (7.9)

where M = m1 +m2 is the total mass of the system. The total kinetic energy of the
two bodies, using the original coordinates for each, is2

T =
1
2

m1ṙ
2
1 +

1
2

m2ṙ
2
2, (7.10)

which can be re-expressed in terms of the new generalized velocities Ṙcm and ṙ.
The result is (see Problem 7.10)

T =
1
2

MṘ2
cm +

1
2
μṙ2, (7.11)

where

μ =
m1m2

M
(7.12)

2 Note that we adopt the linear algebra notation for a square of a vector V: V2 ≡ V ·V = |V|2 = V2.
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is called the reduced mass of the two-body system (note that μ is less than either
m1 or m2). The mutual potential energy is U(r), a function of the distance r between
the two bodies. Therefore the Lagrangian of the system can be written

L = T − U =
1
2

MṘ2
cm +

1
2
μṙ2 − U(r) (7.13)

in terms of Rcm, r, and their time derivatives. One of the advantages of the
new coordinates is that the coordinates Rcm=(Xcm, Ycm, Zcm) are cyclic, so the
corresponding total momentum of the system P=MṘcm is conserved. That is,
the center of mass of the two-body system drifts through space with constant
momentum and constant velocity.

The remaining portion of the Lagrangian is

L → 1
2
μṙ2 − U(r) =

1
2
μ(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)− U(r), (7.14)

which has the same form as that for a single particle of mass μ orbiting around
a force center at the origin, written in polar coordinates. We already know that
this problem is entirely two-dimensional, since the angular momentum vector is
conserved. We can then choose our spherical coordinates so that the plane of the
dynamics corresponds to θ = π/2. This allows us to write a simpler Lagrangian
with two degrees of freedom only:

L =
1
2
μ(ṙ2 + r2φ̇2)− U(r). (7.15)

We can then immediately identify two constants of the motion.
(i) L is not an explicit function of time, so the Hamiltonian H is conserved, which

in this case is also the sum of kinetic and potential energies:

E =
1
2
μ(ṙ2 + r2φ̇2) + U(r) = constant. (7.16)

(ii) The angle φ is cyclic, so the corresponding generalized momentum pφ, which
we recognize as the angular momentum of the particle, is also conserved:

pφ ≡ � = μ r2φ̇ = r (μrφ̇) = constant. (7.17)

This is the magnitude of the conserved angular momentum vector � = r × p,
written in our coordinate system, where p = μv.

With only two degrees of freedom remaining, represented by the coordinates r
and φ, the two conservation laws of energy and angular momentum together form
a complete set of first integrals of motion for a particle moving in response to a
central force or in a two-body problem. This means the problem is integrable. We
will proceed in the next section to solve for the motion explicitly in two different
ways.

Before we find the solution, however, let us note an interesting attribute of such
systems. Our original two-body problem collapsed into a two-dimensional one-
body problem described by a position vector r pointing from the source m1 to the
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probe m2. This position vector traces out the relative motion of the probe about
the source. Yet the source may be moving around and accelerating. Although it
may appear that one is incorrectly formulating physics from the perspective of a
potentially non-inertial frame – that of the source – this is not so. The elegance of
the two-body central force problem arises in part from the fact that the information
about the non-inertial aspect of the source’s perspective is neatly tucked into a
single parameter, μ: we are describing the relative motion of m2 with respect to
m1 by tracing out the trajectory of a fictitious particle of mass μ = m1m2/(m1 +
m2) about m1. Our starting-point Lagrangian of the two-body problem was written
from the perspective of a third entity, an inertial observer. Yet, after a sequence of
coordinate transformations and simplifications, we have found that the problem is
mathematically equivalent to describing the dynamics of an object of mass μ about
the source mass m1.

Note also that if we are in a regime where the source mass is much heavier than
the probe, m1 � m2, we have μ � m2. In such a scenario, the source mass m1 is
too heavy to be affected much by m2’s pull, so m1 essentially stays put in an inertial
frame, with m2 orbiting around it. In this regime we recover the naive interpretation
that one is tracing out the relative motion of a probe mass m2 from the perspective
of an inertial observer sitting with m1.

7.3 The Effective Potential Energy

We start by analyzing the dynamics qualitatively, and in some generality, using the
two conservation equations

E =
1
2
μ(ṙ2 + r2φ̇2) + U(r) and � = μr2φ̇. (7.18)

We have a choice to make: we can use these two equations to eliminate either the
time t or the angle φ. In this section we will be interested in using energy diagrams
to see whether the trajectories of the probe are bound or unbound, and how long it
takes the probe to move from one point to another. So we will first eliminate the
angle φ between the two equations. In the next section we will eliminate t instead,
which will allow us to find the orbital shapes.

From the angular momentum conservation equation we have φ̇= �/mr2, so
energy conservation gives

1
2
μṙ2 + Ueff(r) = E, (7.19)

where the effective potential energy is

Ueff(r) ≡
�2

2μr2 + U(r). (7.20)
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Angular momentum conservation has allowed us to convert the rotational portion
of the kinetic energy (1/2)μr2φ̇2 into a term �2/2μr2 that depends on position
alone, so it behaves just like a potential energy. Then the sum of this term and the
“real” potential energy U(r) (which is related to the central force F(r) by F(r)= −
dU(r)/dr) together form the effective potential energy. The extra term is often
called the “centrifugal potential”

Ucent(r) ≡
�2

2μr2 (7.21)

because its corresponding “force” Fcent= − dUcent/dr = + �3/μr3 tends to push
the orbiting particle away from the force center at the origin. By eliminating φ
between the two conservation laws, they combine to form an equation that looks
like a one-dimensional energy conservation law in the variable r. So as long as
we add in the centrifugal potential energy, we can use all our experience with
one-dimensional conservation-of-energy equations to understand the motion. In
general, we can tell that if our Ueff(r) has a minimum

U′
eff

∣∣
r=R

= − �2

μr3 + U′(r)
∣∣∣∣
r=R

= 0, (7.22)

the system admits circular orbits at r = R. Such an orbit would be stable if U′′
eff >

0, unstable if U′′
eff < 0, and critically stable if U′′

eff = 0:

U′′
eff

∣∣
r=R

= 3
�2

μr4 + U′′(r)
∣∣∣∣
r=R

⎧⎨⎩
> 0 stable
< 0 unstable
= 0 critically stable

. (7.23)

We can also determine whether the system admits bounded noncircular orbits –
where rmin < r < rmax – or unbounded orbits – where r can extend all the way
to infinity. Let us look at a couple of examples to see how the effective energy
diagram method can be very useful.

7.3.1 Radial Motion for the Central-Spring Problem

The effective potential energy of a particle in a central-spring potential is

Ueff(r) =
�2

2μr2 +
1
2

k r2, (7.24)

which is illustrated in Figure 7.4. At large radii the attractive spring force
Fspring =− dU(r)/dr = −k r dominates, but at small radii the centrifugal potential
takes over, and the associated “centrifugal force,” given by Fcent = −dUcent/dr =
�2/μr3, is positive for nonzero �, and therefore outward, an inverse-cubed strongly
repulsive force. To understand this effect, note that nonzero angular momentum
necessitates that the particle comes in from infinity off-center – aimed not directly
toward the origin r = 0: this leads to a minimum distance of approach as the
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particle “swings by” the center. From the perspective of the one-dimensional
effective potential treatment, this is manifested by a “centrifugal force” or an
angular momentum barrier.

Fig. 7.4 The effective potential for the central-spring potential for various angular momenta
l1 > l2 > l3 > l4 = 0. The turning points are shown as colored discs.

We can also tell that this system admits only bounded orbits for � �= 0: there is
a minimum and maximum value of r for the dynamics. In this case, we will see
that these bounded orbits are also closed. That is, after 2π’s worth of evolution in
φ, the probe again traces the same trajectory. To find the explicit shape of these
trajectories – which will turn out to be ellipses – we will need to integrate our
differential equations. We will come back to this in Section 7.4. For now, we can
already answer interesting questions such as the time required for the probe to
travel between two radii. Solving Eq. (7.19) (with Ueff = �2/2μr2 + k r2) for ṙ2

and taking the square root gives

dr
dt

= ±
√

2
μ

(
E − 1

2
k r2 − �2

2μr2

)
. (7.25)

Separating variables and integrating:

t(r) = ±
√

μ

2

∫ r

r0

r dr√
Er2 − k r4/2 − �2/2μ

, (7.26)

where we choose t = 0 at some particular radius r0. We have reduced the problem
to quadrature.

In fact, in this case the integral can be carried out analytically (see the Problems
section at the end of this chapter), so we can find the time it takes the probe to move
from any radius to any other radius.

Finally, for � = 0, the angular momentum barrier vanishes: this corresponds to a
particle that is aimed directly toward the origin. The corresponding motion is then
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entirely radial (that is, it is truly one-dimensional) and the particle oscillates back
and forth through the origin.

7.3.2 Radial Motion in Central Gravity

The effective potential energy of a particle in a central gravitational field is

Ueff(r) =
�2

2mr2 − GMm
r

, (7.27)

as illustrated in Figure 7.5. At large radii the inward gravitational force Fgrav =
−dU(r)/dr= − GMm/r2 dominates, but at small radii the centrifugal potential
takes over, and the associated “centrifugal force,” given by Fcent = −dUcent/dr =
�2/mr3, is positive, and therefore outward, an inverse-cubed strongly repulsive
force that pushes the planet away from the origin if it gets too close.

ellipse

parabola

hyperbola

radial

Fig. 7.5 The effective gravitational potential for various angular momenta l1 > l2 > l3 > l4 = 0. The turning
points are shown as colored discs.

Two very different types of orbit are possible in this potential: bound orbits
with energy E < 0, and unbound orbits with energy E ≥ 0. Bound orbits do not
escape to infinity. They include circular orbits with an energy Emin corresponding
to the energy at the bottom of the potential well, where only one radius is possible,
and there are orbits with 0 > E > Emin, where the planet travels back and forth
between inner and outer turning points while it is also rotating about the center. The
minimum radius rmin is called the periapse for orbits around an arbitrary object,
and specifically the perihelion, perigee, and periastron for orbits around the sun,
the earth, and a star. The maximum radius rmax is called the apoapse in general, or
specifically the aphelion, apogee, and apastron.

Unbound orbits are those with no outer turning point: these orbits extend out
infinitely far. There are orbits with E = 0 that are just barely unbound: in this case
the kinetic energy goes to zero in the limit as the orbiting particle travels infinitely
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far from the origin. And there are orbits with E > 0 where the particle still has
nonzero kinetic energy as it escapes to infinity. In fact, we will see in the next
section that orbits with energies E = Emin are circles, those with Emin < E < 0
are ellipses, those with E = 0 are parabolas, and those with E > 0 are hyperbolas.

Now we can tackle the effective one-dimensional energy equation in (r, t) to try
to obtain another first integral of motion. Our goal is to find r(t) or t(r), so we will
know how far a planet, comet, or spacecraft moves radially in a given length of
time, or how long it takes any one of them to travel between two given radii in its
orbit.

Solving Eq. (7.19) (with Ueff = �2/2μr2 − G m1m2/r) for ṙ2 and taking the
square root gives

dr
dt

= ±
√

2
μ

(
E +

GMμ

r
− �2

2μr2

)
, (7.28)

using the fact that m1m2 = Mμ. Separating variables and integrating:

t(r) = ±
√

μ

2

∫ r

r0

r dr√
Er2 + GMμr − �2/2μ

, (7.29)

where we have chosen t = 0 at some particular radius r0. We have reduced the
problem to quadrature. In fact, the integral can also be carried out analytically, so
we can calculate exactly how long it takes a planet or spacecraft to travel from one
radius to another in its orbit (see Problem 7.16).

7.4 The Shape of Central-Force Orbits

Now we will find the shape of the orbits for the time evolution determined above.
We will first eliminate the time t from the equations, leaving only r and φ. That is,
we will find a single differential equation involving r and φ alone, which will give
us a way to find the shape r(φ), the radius of the orbit as a function of the angle; or
φ(r), the angle as a function of the radius.

Beginning with the first integrals

E =
1
2

mṙ2 +
�2

2mr2 + U(r) and � = mr2φ̇, (7.30)

we have two equations in the three variables, r,φ, and t. When finding the shape
r(φ) we are not concerned with the time it takes to move from place to place, so we
eliminate t between the two equations. Solving for dr/dt from the energy equation
and dividing by dφ/dt from the angular momentum equation, we find that

dr
dφ

=
dr/dt
dφ/dt

= ±
√

2m
�2 r2

√
E − �2/2mr2 − U(r), (7.31)
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neatly eliminating t. Separating variables and integrating:

φ =

∫
dφ = ± �√

2m

∫ r dr/r2√
E − �2/2mr2 − U(r)

, (7.32)

reducing the shape problem to quadrature. Further progress in finding φ(r) requires
a choice of U(r).

7.4.1 Central Spring-Force Orbits

A Hooke’s-law spring force F = −kr pulls on a particle of mass m toward the
origin at r = 0. The force is central, so the particle moves in a plane with a potential
energy U = (1/2)kr2. What is the shape of its orbit? From Eq. (7.32):

φ(r) = ± �√
2m

∫ r dr/r2√
E − �2/2mr2 − (1/2)kr2

. (7.33)

Multiplying top and bottom of the integrand by r and substituting z = r2 gives

φ(z) = ± �

2
√

2m

∫ z dz/z√
−�2/2m + Ez − (k/2)z2

. (7.34)

From integral tables online or in a book, we find that∫ z dz/z√
a + bz + cz2

=
1√
−a

sin−1
(

bz + 2a
z
√

b2 − 4ac

)
, (7.35)

where a, b, and c are constants, with a < 0. In our case a = −�2/2m, b = E, and
c = −k/2, so

φ− φ0 = ± �

2
√

2m
1√

�2/2m
sin−1

(
bz + 2a

z
√

b2 − 4ac

)

= ±1
2
sin−1

(
Er2 − �2/m

r2
√

E2 − k�2/m

)
, (7.36)

where φ0 is a constant of integration. Multiplying by ±2, taking the sine of each
side, and solving for r2 gives the orbital shape equation

r2(φ) =
�2/m

E ∓ (
√

E2 − k�2/m) sin 2(φ− φ0)
. (7.37)

Note that the orbit is closed (since r2(φ+ 2π)= r2(φ)), and that it has a long axis
(corresponding to an angle φ where the denominator is small because the second
term subtracts from the first term) and a short axis (corresponding to an angle where



286 7 Gravitation

the denominator is large, because the second term adds to the first term). In fact,
the shape r(φ) is that of an ellipse with r = 0 at the center of the ellipse.3

The orbit is illustrated in Figure 7.6 for the case φ0 = 0 and with a minus sign
in the denominator. The effect of changing the sign or using a nonzero φ0 is simply
to rotate the entire figure about its center, while keeping the “major” axis and the
“minor” axis perpendicular to one another.

Fig. 7.6 Elliptical orbits due to a central spring force F = −kr.

7.4.2 The Shape of Gravitational Orbits

By far the most important orbital shapes are those for central gravitational forces.
This is the problem that Johannes Kepler wrestled with in his self-described “War
on Mars.” Equipped with the observational data on the positions of Mars from
Tycho Brahe, he tried one shape after another to see what would fit, beginning
with a circle (which didn’t work), various ovals (which didn’t work), and finally
an ellipse (which did). Now we can derive the shape by two different methods,
by solving the integral of Eq. (7.32), and (surprisingly enough!) by differentiating
Eq. (7.31).

By Direct Integration
For a central gravitational force the potential energy U(r) = −GMm/r, so the
integral for φ(r) becomes

3 A common way to express an ellipse in polar coordinates with r = 0 at the center is to orient the major
axis horizontally and the minor axis vertically, which can be carried out by selecting the plus sign in the
denominator and choosing φ0 = π/4. In this case the result can be written r2 = a2b2/(b2 cos2 φ+ a2 sin2 φ),
where a is the semi-major axis (half the major axis) and b is the semi-minor axis. In Cartesian coordinates
(x = r cosφ, y = r sinφ) this form is equivalent to the common ellipse equation x2/a2 + y2/b2 = 1.



287 7.4 The Shape of Central-Force Orbits

φ =

∫
dφ = ± �√

2m

∫
dr/r√

Er2 + GMmr − �2/2m
, (7.38)

which by coincidence is the same integral we encountered in Section 7.4.1 (using
there the variable z = r2 instead):∫

dr/r√
a + br + cr2

=
1√
−a

sin−1
(

br + 2a
r
√

b2 − 4ac

)
, (7.39)

where now a = −�2/2m, b = GMm, and c = E. Therefore

φ− φ0 = ± sin−1
(

GMm2 − �2

ε GMm2r

)
, (7.40)

where φ0 is a constant of integration and we have defined the eccentricity

ε ≡
√

1 +
2E�2

G2M2m3 . (7.41)

We will soon see the geometrical meaning of ε. Taking the sine of φ − φ0 and
solving for r gives

r =
�2/GMm2

1 ± ε sin(φ− φ0)
. (7.42)

By convention we choose the plus sign in the denominator together with φ0 = π/2,
which in effect locates φ = 0 at the point of closest approach to the center, the
periapse of the ellipse. This choice changes the sine to a cosine, so

r =
�2/GMm2

1 + ε cosφ
. (7.43)

This equation gives the allowed shapes of orbits in a central gravitational field.
Before identifying these shapes, we will derive the same result by a very different
method that is often especially useful!

By Differentiation
Returning to Eq. (7.31) with U(r) = −GMm/r:

dr
dφ

= ±
√

2m
�

r2

√
E − �2

2mr2 +
GMm

r
, (7.44)

we will now differentiate it. The result turns out to be greatly simplified if we first
introduce the inverse radius u = 1/r as the coordinate. Then

dr
dφ

=
d(1/u)

dφ
= − 1

u2
du
dφ

. (7.45)

Squaring this gives(
du
dφ

)2
≡ (u′)2 =

2m
�2

(
E − �2u2

2m
+ (GMm)u

)
. (7.46)



288 7 Gravitation

Differentiating both sides with respect to φ:

2u′u′′ = −2uu′ +
2GMm2

�2 u′. (7.47)

Then dividing out the common factor u′, since (except for a circular orbit) it is
generally nonzero, we find

u′′ + u =
GMm2

�2 . (7.48)

The most general solution of this linear second-order differential equation is the
sum of the general solution of the homogeneous equation u′′ + u = 0 and any
particular solution of the full (inhomogeneous) equation. The general solution of
the full equation can therefore be written in the form

u = A[1 + ε cosφ], (7.49)

where A = GMm2/�2. The shape of the orbit is therefore

r =
1
u
=

�2/GMm2

1 + ε cosφ
=

rp(1 + ε)

1 + ε cosφ
, (7.50)

where rp is the point of closest approach of the orbit to a fixed point called the
focus; and we have again chosen φ = 0 to be the point where r is a minimum,
namely the radius

rp ≡ �2/GMm2

1 + ε
. (7.51)

Equation (7.50) is the same as Eq. (7.43), the result we found previously by direct
integration, if, using Eq. (7.41), we identify

ε =

√
1 +

2E�2

G2M2m3 . (7.52)
Therefore, the orbit shapes are determined by two constants: either the energy E
and the angular momentum l, or alternatively the eccentricity ε and the point of
closest approach rp. We also have relations (7.51) and (7.52) to map from one set
of constants to the other. Even though this analysis has merely reproduced a result
we already knew, the “trick” of substituting the inverse radius works for inverse-
square forces, and will be a useful springboard later when we perturb elliptical
orbits.

The shapes r(φ) given by Eq. (7.50) are known as conic sections, since they
correspond to the possible intersections of a plane with a cone, as illustrated
in Figure 7.7. There are only four possible shapes: (i) circles, (ii) ellipses, (iii)
parabolas, and (iv) hyperbolas.

(i) For circles, the eccentricity ε = 0, so the radius r = rp, a constant independent
of angle φ. The focus of the orbit is at the center of the circle.
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circle
(i)

ellipse
(ii)

parabola
(iii)

hyperbola
(iv)

Fig. 7.7 Conic sections: circles, ellipses, parabolas, and hyperbolas.

(ii) For ellipses, the eccentricity must obey 0 < ε < 1. Note from the shape
equation that in this case, as with a circle, the denominator cannot go to zero,
so the radius remains finite for all angles. There are two foci in this case, and
rp is the closest approach to the focus at the right in Figure 7.8, where the
angle φ = 0. Note that the force center at r = 0 is located at one of the
foci of the ellipse for the gravitational force, unlike the ellipse for a central
spring force of Section 7.4.1, where the force center was at the center of the
ellipse.

The long axis of the ellipse is called the major axis, and half of this distance
is the semi-major axis, denoted by the symbol a. The semi-minor axis, half of
the shorter axis, is denoted by b. One can derive several properties of ellipses
from Eq. (7.43) in this case:

Fig. 7.8 An elliptical gravitational orbit, showing the foci, the semi-major axis a, the semi-minor axis b, the
eccentricity ε, and the periapse and apoapse.
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(a) The periapse and apoapse of the ellipse (the closest and farthest points of
the orbit from the right-hand focus) are given, in terms of a and ε, by

rp = a(1 − ε) and ra = a(1 + ε), (7.53)

respectively.
(b) The sum of the distances d1 and d2 from the two foci to a point on the

ellipse is the same for all points on the ellipse.4
(c) The distance between the two foci is 2aε, so the eccentricity of an ellipse

is the ratio of this interfocal distance to the length of the major axis.
(d) The semi-minor and semi-major axes are related by

b = a
√

1 − ε2. (7.54)

(e) The area of the ellipse is A = πab.
(f) The shape of the orbit is entirely determined through two parameters that

we can choose as the energy E and the angular momentum �, or as the
eccentricity ε and the periapse radius rp, or even as the sizes of the semi-
major and semi-minor axes a and b. Relations between these three pairs
of constants (see Eqs. (7.51), (7.52), (7.53), and (7.54)) allow us to switch
perspective as desired.

(iii) For parabolas, the eccentricity ε= 1, so r → ∞ as φ → ±π, and the shape
is as shown in Figure 7.9. One can show that every point on a parabola is
equidistant from a focus and a line called the directrix, also shown on the
figure.

(iv) For hyperbolas, the eccentricity ε > 1, so r → ∞ as cosφ → −1/ε. This
corresponds to two angles, one between π/2 and π, and one between −π/2
and −π, as shown in Figure 7.9.

Example 7.1 Orbital Geometry and Orbital Physics
Let us relate the geometrical parameters of a gravitational orbit to the physical parameters, the energy E and
angular momentum �. The relationships follow from Eqs. (7.51), (7.52), (7.53), and (7.54). We first consider
circles and ellipses, and then parabolas and hyperbolas.

For ellipses or circles, we may choose as geometrical parameters the eccentricity ε and semi-major axis
length a (alternatively, we could choose a and the semi-minor axis length b). We have a(1 − ε2) =

�2/GMm2, so the semi-major axis of an ellipse (or the radius of the circle) is related to the physical param-
eters by

a =
�2/GMm2

1 − ε2 =
�2/GMm2

1 − (1 + 2E�2/G2M2m3)
= −GMm

2E
, (7.55)

4 Therefore the well-known property of an ellipse, that it can be drawn on a sheet of paper by sticking two
straight pins into the paper some distance D apart, and dropping a loop of string over the pins, where the loop
has a circumference greater than 2D. Then sticking a pencil point into the loop as well, and keeping the loop
taut, moving the pencil point around on the paper, the resulting drawn figure will be an ellipse.
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Fig. 7.9 Parabolic and hyperbolic orbits.

depending upon E but not �. In summary, for ellipses and circles the geometrical parameters a, ε are related
to the physical parameters by

a = −GMm
2E

and ε =

√
1 +

2E�2

G2M2m3 . (7.56)

These can be inverted to give the physical parameters in terms of the geometrical parameters:

E = −GMm
2a

and � =
√

GMm2a(1 − ε2). (7.57)

Notice that E < 0, and the minimum energy, corresponding to a circular orbit, is given by

ε = 0 ⇒ Emin = −G2M2m3

2 �2 . (7.58)

For parabolas and hyperbolas, we choose as geometrical parameters ε and rp. We then have rp(1+ε) =

�2/GMm2, where ε = 1 for parabolas and ε > 1 for hyperbolas. So the geometric parameters (rp, ε) for
these orbits are given in terms of the physical parameters E and � by

rp =
�2

(1 + ε)GMm2 ε =

√
1 +

2E�2

G2M2m3 , (7.59)

and inversely

E =
GMm(ε− 1)

2rp
� =

√
GMm2rp(1 + ε) (7.60)

in terms of (rp, ε). Note that for parabolas the eccentricity ε = 1, so the energy E = 0. And for hyperbolas,
we must have E > 0 since ε > 1. �
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Fig. 7.10 The four types of gravitational orbits.

Finally, to summarize orbits in a purely central inverse-square gravitational field,
there are four, and only four, types of orbits possible, as illustrated in Figure 7.10.
There are circles (ε = 0), ellipses (0 < ε < 1), parabolas (ε = 1), and
hyperbolas (ε > 1), with the gravitating object at one focus. Ellipses and circles
are closed, bound orbits with negative total energy. Circles correspond to minimal-
energy orbits for given angular momentum. Hyperbolas and parabolas are open,
unbound orbits, which extend to infinity. Parabolic orbits have zero total energy,
and hyperbolic orbits have positive total energy.

Circles (with ε = 0) and parabolas (with E = 0) are so unique among the set of
all solutions that mathematically one can say that they form “sets of measure zero,”
and physically one can say that they never occur in Nature. The orbits of planets,
asteroids, and some comets are elliptical; other comets may move in hyperbolic
orbits. There are no other orbit shapes for a central gravitational field. There are, for
example, no “decaying” or “spiralling” purely gravitational orbits. There do exist
straight-line paths falling directly toward or away from the central object, but these
are really limiting cases of ellipses, parabolas, and hyperbolas. They correspond to
motion with angular momentum � = 0, so the eccentricity ε = 1. If the particle’s
energy is negative, it is the limiting case of an ellipse as ε → 1; if the energy is
positive, it is the limiting case of a hyperbola as ε → 1; and if the energy is zero, it
is a parabola with both ε = 1 and pφ = 0.

7.5 Bertrand’s Theorem

In the previous two sections we saw central potentials that admit bounded and
unbounded orbits, and we found a way to calculate the orbital shapes. Bounded
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orbits are of particular interest, since they can potentially close, and we showed that
the orbits are closed for both the central linear spring force and the central inverse-
squared gravitational force. That is, after a certain finite number of revolutions, the
probe starts tracing out its established trajectory – thus closing its orbit.

How general is this property of closure? What about the orbits due to other
central forces? A beautiful and powerful result of mechanics is a theorem due to J.
Bertrand, which states the following:

Bertrand’s theorem: The only central force potentials U(r) for which all bounded
orbits are closed are the following:

1. The gravitational potential U(r) ∝ −1/r.
2. The central-spring potential U(r) ∝ r2.

The theorem asserts that, of all possible functional forms for a potential U(r),
only two kinds lead to the interesting situation in which all bounded orbits are
closed! And these two potentials are just the ones we have treated in detail. The
theorem is not very difficult to prove: we leave it to the Problems section at the end
of this chapter.

So while it is interesting to find orbital shapes for other central forces, we know
from this theorem that in such cases the probe will not generally return to the same
point after completing one revolution.

7.6 Orbital Dynamics

As we saw already in Chapter 5, Kepler identified three rules that govern the
dynamics of planets in the heavens:

1. Planets move in elliptical orbits, with the sun at one focus.
2. Planetary orbits sweep out equal areas in equal times.
3. The periods squared of planetary orbits are proportional to their semi-major

axes cubed.

It took about a century to finally understand, through the work of Isaac Newton,
the physical origins of these three laws. Armed with new powerful tools in
mechanics, we have confirmed the first law of Kepler. To understand the second
and third, we will need to do a bit more work.

7.6.1 Kepler’s Second Law

There is an interesting consequence of angular momentum conservation for
arbitrary central forces. Take a very thin slice of pie extending from the origin
to the orbit of the particle, as shown in Figure 7.11. To a good approximation,
becoming exact in the limit as the slice gets infinitely thin, the area of the slice
is that of a triangle, ΔA = (1/2) (base × height) = (1/2)r(rΔφ) = (1/2)r2Δφ.
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If the particle moves through angle Δφ in time Δt, then ΔA/Δt = (1/2)r2Δφ/Δt,
so in the limit Δt → 0:

dA
dt

=
1
2

r2φ̇ =
μr2φ̇

2μ
=

�

2μ
= constant, (7.61)

Fig. 7.11 The area of a thin pie slice. The area of the light-shaded region comes with one additional power ofΔθ
compared to the area of the dark-shaded region – and hence can be neglected to leading order in small
Δθ.

since � is constant and we have used Eq. (7.18). Therefore this areal velocity, the
rate at which area is swept out by the orbit, remains constant as the particle moves.
This in turn implies that the orbit sweeps out equal areas in equal times. Between
t1 and t2, for example:

A =

∫ t2

t1

(
dA
dt

)
dt =

∫ t2

t1

(
�

2μ

)
dt =

(
�

2μ

)
(t2 − t1), (7.62)

which is the same as the area swept out between times t3 and t4 if t4 − t3 = t2 − t1.
We have therefore derived Kepler’s second law. Kepler himself did not know

why the law is true; the concepts of angular momentum and central forces had not
yet been invented.5 In the orbit of the earth around the sun, for example, the areas
swept out in any 31-day month, say January, July, or October, must all be the same.
To make the areas equal, in January, when the earth is closest to the sun, the pie
slice must be fatter than in July, when the earth is farthest from the sun. Note that
the tangential velocity r φ̇ must be greater in January to cover the greater distance
in the same length of time, which is consistent with conservation of the angular
momentum � = mr2φ̇ = mr × r φ̇.

Although it was first discovered for orbiting planets, the equal-areas-in-equal-
times law is also valid for particles moving in any central force, including asteroids,
comets, and spacecraft around the sun; the moon and artificial satellites around
the earth; and particles subject to a central attractive spring force or any central
force.

5 Kepler had effectively identified a symmetry in orbital dynamics through a conservation law, which we now
understand through Noether’s theorem of Chapter 6.
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7.6.2 Kepler’s Third Law

How long does it take planets to orbit the sun? And how long does it take the moon,
and orbiting spacecraft or other earth satellite to orbit the earth?

From Eq. (7.62) in Section 7.6.1, the area traced out in time t2 − t1 is A =
(�/2m)(t2 − t1). The period of the orbit, which is the time to travel around the
entire ellipse, is therefore

T = (2m/�)A = (2m/�)πab =
2mπa2

√
1 − ε2√

GMm2a(1 − ε2)
, (7.63)

since the area of the ellipse is A = πab = a2
√

1 − ε2, and � =
√

GMm2a(1 − ε2).
This expression for the period simplifies to give

T =
2π√
GM

a3/2. (7.64)

It is interesting that the period depends upon the semi-major axis of the orbit, but
not upon the eccentricity. Two orbits with the same semi-major axis have the same
period, even though their eccentricities are different. And we thus arrive at Kepler’s
third law: the periods squared of planetary orbits are proportional to their semi-
major axes cubed – that is, T2 ∝ a3.

Example 7.2 Halley’s Comet
Halley’s Comet is named after the English astronomer, mathematician, and physicist Sir Edmund Halley (1656–
1742), who was the first to determine that three comet sightings, separated from one another by about 76
years, were in fact visitations of the same object. The comet has been known as far back as 240 BC and probably
longer, and was thought to be an omen when it appeared in 1066, the year of the Norman conquest at the
Battle of Hastings. Mark Twain was born in 1835 at one of its appearances, and predicted (correctly) that he
would die at its next appearance in 1910. It last passed through the earth’s orbit in 1986 and will again in 2061.

From the comet’s current perioda of T = 75.3 years and observed perihelion distance rp = 0.586 AU
(which lies between the orbits of Mercury and Venus), we can calculate the orbit’s (a) semi-major axis a,
(b) aphelion distance ra, and (c) eccentricity ε. (Note that 1 AU is the length of the semi-major axis of earth’s
orbit, 1 AU = 1.5× 1011 m.)

(a) From Kepler’s third law, which applies to comets in bound orbits as well as to all planets and asteroids, we
can compare the period of Halley’s Comet to the period of earth’s orbit: TH/Te =(aH/ae)

3/2, so the semi-
major axis has length

aH = aE(TH/TE)
2/3 = 1 AU(75.3years/1year)2/3 = 17.8 AU. (7.65)

(b) The major axis therefore has length 2 × 17.8 AU = 35.6 AU, so the aphelion distance is at ra = 35.8 AU
− rp = 35.6 AU− 0.6 AU = 35.0 AU from the sun. Halley’s Comet retreats farther from the sun than the orbit
of Neptune.
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(c) The perihelion distance is rp = a(1 − ε), so the eccentricity of the orbit is

ε = 1 − rp/a = 0.967. (7.66)

The orbit is highly eccentric, as you would expect, since the aphelion is 36 times as far from the sun as the
perihelion.

The orbit of Halley’s Comet is inclined at about 18◦ to the ecliptic, i.e., at about 18◦ to the plane of earth’s
orbit, as shown in Figure 7.12. It is also retrograde: the comet orbits the sun in the opposite direction from
that of the planets, orbiting clockwise rather than counterclockwise looking down upon the solar system from
above the sun’s north pole.

Halley’s orbit

Jupiter’s orbitSaturn’s orbitUranus’s orbit
Neptune’s orbit

Pluto’s orbit

Fig. 7.12 The orbit of Halley’s Comet. �

aThe period has varied considerably over the centuries, because the comet’s orbit is easily influenced by the gravitational pull of the planets,
especially Jupiter and Saturn.

7.6.3 Minimum-Energy Transfer Orbits

What is the best way to send a spacecraft to another planet? Depending upon
what one means by “best,” many routes are possible. But almost always the
trajectory requiring the least fuel (assuming the spacecraft does not take advantage
of “gravitational assists” from other planets along the way, which we will discuss
later) is a so-called minimum-energy transfer orbit or “Hohmann” transfer orbit,
which takes full advantage of earth’s motion to help the spacecraft get off to a good
start.

Typically the spacecraft is first lifted into low-earth orbit (LEO), where it circles
the earth a few hundred kilometers above the surface. Then, at just the right time,
the spacecraft is given a velocity boost “Delta v” that sends it away from the earth
and into an orbit around the sun that reaches all the way to its destination. Once the
spacecraft coasts far enough from earth that the sun’s gravity dominates, the craft
obeys all the central-force equations we have derived so far, including Kepler’s
laws. In particular, it coasts toward its destination in an elliptical orbit with the sun
at one focus.



297 7.6 Orbital Dynamics

Suppose that in LEO the rocket engine boosts the spacecraft so that it ultimately
attains a velocity v∞ away from the earth. Then if the destination is Mars or one
of the outer planets, it is clearly most efficient if the spacecraft is aimed so that
this velocity v∞ is in the same direction as the earth’s velocity around the sun,
because then the velocity of the spacecraft in the sun’s frame will have its largest
possible magnitude, ve + v∞. The subsequent transfer orbit toward an outer planet
is shown in Figure 7.13. The spacecraft’s elliptical path is tangent to the earth’s
orbit at launch and tangent to the destination planet’s orbit at arrival, just barely
making it out to where we want it.

Sun

earth planet

Fig. 7.13 A minimum-energy transfer orbit to an outer planet.

First we will find out how long it will take the spacecraft to reach its destination,
which is easily found using Kepler’s third law. Note that the major axis of the
craft’s orbit is 2aC = re + rP, assuming the earth e and destination planet P move
in nearly circular orbits with radii re and rP, respectively. The semi-major axis of
the transfer orbit is therefore

aC =
re + rP

2
. (7.67)

From the third law, the period TC of the craft’s elliptical orbit obeys (TC/Te)
2 =

(aC/re)
3, in terms of the period Te and radius re of the earth’s orbit. The spacecraft

travels through only half of this orbit on its way from earth to the planet, however,
so the travel time is

T =
TC
2

=
1
2

(
re + rP

2re

)3/2
Te, (7.68)

which we can easily evaluate, since every quantity on the right is known.
Now we can outline the steps required for the spacecraft to reach Mars or an

outer planet.
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1. We first place the spacecraft in a circular “parking” orbit of radius r0 around the
earth. Ideally, the orbit will be in the same plane as that of the earth around the
sun, and the rotation direction will also agree with the direction of earth’s orbit.
Using F = ma in the radial direction centered on the earth, the speed v0 of the
spacecraft obeys

GMem
r2

0
= ma =

mv2
0

r0
, (7.69)

so v0 =
√

GMe/r0.
2. Then, at just the right moment, a rocket provides a boost Δv in the same

direction as v0, so the spacecraft now has an instantaneous velocity v0 + Δv,
allowing it to escape from the earth in the most efficient way. This will take the
spacecraft from LEO into a hyperbolic orbit relative to the earth, since we want
the craft to escape from the earth with energy to spare, as shown in Figure 7.14.
Then, as the spacecraft travels far away, its potential energy −GMem/r due to
earth’s gravity approaches zero, so its speed approaches v∞, where, by energy
conservation:

1
2

mv2
∞ =

1
2

m(v0 +Δv)2 − GMem
r0

. (7.70)

burn

Fig. 7.14 Insertion from a parking orbit into the transfer orbit.

Solving for v∞:

v∞ =
√
(v0 +Δv)2 − 2GMe/r0 =

√
(v0 +Δv)2 − 2v2

0. (7.71)

This is the speed of the spacecraft relative to the earth by the time it has
essentially escaped earth’s gravity, but before it has moved very far from earth’s
orbit around the sun.
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3. Now, if we have provided the boost Δv at just the right time, when the spacecraft
is moving in just the right direction, by the time the spacecraft has escaped from
the earth its velocity v∞ relative to the earth will be in the same direction as
earth’s velocity ve around the sun, so the spacecraft’s velocity in the sun’s frame
of reference will be as large as it can be for given v∞:

v = v∞ + ve =
√
(v0 +Δv)2 − 2v2

0 + ve. (7.72)

The earth has now been left far behind, so the spacecraft’s trajectory from here
on is determined by the sun’s gravity alone. We have given it the largest speed
v we can in the sun’s frame for given boost Δv, to get it off to a good start.

4. The velocity v just calculated will be the speed of the spacecraft at the perihelion
point of some elliptical Hohmann transfer orbit. What speed must this be for the
transfer orbit to have the desired semi-major axis a? We can find out by equating
the total energy (kinetic plus potential) of the spacecraft in orbit around the sun
with the specific energy it has in an elliptical orbit with the appropriate semi-
major axis a. That is:

E = T + U =
1
2

mv2 − GMm
r

= −GMm
2a

, (7.73)

where m is the mass of the spacecraft, M is the mass of the sun, r is the initial
distance of the spacecraft from the sun (which is the radius of earth’s orbit), and
a is the semi-major axis of the transfer orbit. Solving for v2, we find

v2 = GM
(

2
r
− 1

a

)
, (7.74)

which is known as the vis-viva equation.6 The quantities on the right are known,
so we can calculate v, which is the sun-frame velocity the spacecraft must
achieve.

Example 7.3 A Voyage to Mars
We will use this scenario to plan a trip to Mars by Hohmann transfer orbit. First, we can use Kepler’s third law to
find how long it will take for the spacecraft to arrive. The major axis of the spacecraft’s orbit is 2aC = re + rM,
assuming the earth and Mars move in nearly circular orbits. The semi-major axis is therefore

aC =
re + rM

2
=

1.50 + 2.28
2

× 108 km = 1.89 × 108 km. (7.75)

The spacecraft travels through only half of this complete elliptical orbit on its way out to Mars, so the travel
time isa

T = TC/2 =
1
2

(
1.89
1.50

)3/2

(1 year) = 258 days. (7.76)

6 Vis-viva means “living force,” a term used by the German mathematician Gottfried Wilhelm Leibniz in a now-
obsolete theory. The term survives only in orbital mechanics.
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Now we will find the boost required in LEO to insert the spacecraft into the transfer orbit. We will first find
the speed required of the spacecraft in the sun’s frame just as it enters the Hohmann ellipse. From the vis-viva
equation

v =

√
GM

(
2
r
− 1

a

)
= 32.7 km/s, (7.77)

using G = 6.67 × 10−11 m3/kg s2, M = 1.99 × 1030 kg, r = 1.50 × 108 km, and a = 1.89 × 108 km.
Compare this with the speed of the earth in its orbit around the sun,b ve =

√
GM/r = 29.7 km/s.

Now suppose the spacecraft starts in a circular parking orbit around the earth, with radius r0 = 7000 km,
corresponding to an altitude above the surface of about 600 km. The speed of the spacecraft in this orbit is
v0 =

√
GMe/r0 = 7.5 km/s. We then require that v∞, the speed of the spacecraft relative to the earth after

it has escaped from the earth, is v∞ = v − ve = 32.7 km/s− 29.7 km/s = 3.0 km/s. Solving finally forΔv
in Eq. (7.72), we find that the required boost for this trip is

Δv =
√

v2
∞ + 2v2

0 − v0

=
√

(3.0 km/s)2 + 2(7.5 km/s)2 − 7.5 km/s = 3.5 km/s. (7.78)

This boost of 3.5 km/s is modest compared with the boost needed to raise the spacecraft from earth’s
surface up to the parking orbit in the first place. Then, once the spacecraft reaches Mars, the rocket engine
must provide an additional boost to insert the spacecraft into a circular orbit around Mars, or even to allow
it to strike Mars’s atmosphere at a relatively gentle speed. This is because the spacecraft, when it reaches the
orbit of Mars in the Hohmann transfer orbit, will be moving considerably more slowly than Mars itself in the
frame of the sun. Note that the Hohmann transfer orbit will definitely take the spacecraft out to Mars’s orbit,
but there are only limited launch windows; we have to time the trip just right so that Mars will actually be at
that point in its orbit when the spacecraft arrives. �

a In his science fiction novel Stranger in a Strange Land, Robert Heinlein looks back on the first human journeys to Mars: “an interplanetary trip
… had to be made in free-fall orbits – from Terra to Mars, 258 Terran days, the same for return, plus 455 days waiting at Mars while the planets
crawled back into positions for the return orbit.”

bEarth’s speed around the sun actually varies from 29.28 km/s at aphelion to 30.27 km/s at perihelion. It is not surprising that the spacecraft’s
speed of 32.7 km/s exceeds ve ; otherwise it could not escape outwards toward Mars against the sun’s gravity.

Example 7.4 Gravitational Assists
There is no more useful and seemingly magical application of the Galilean velocity transformation of Chapter 1
than gravitational assists. Gravitational assists have been used to send spacecraft to destinations they could not
otherwise reach because of limited rocket-fuel capabilities, including voyages to outer planets like Uranus and
Neptune using gravitational assists from Jupiter and Saturn, and complicated successive visits to the satellites
of Jupiter, gravitationally bouncing from one to another.

Suppose we want to send a heavy spacecraft to Saturn, but it has only enough room for fuel to make it to
Jupiter. If the timing is just right and the planets are also aligned just right, it is possible to aim for Jupiter,
causing the spacecraft to fly just behind Jupiter as it swings by that planet. Jupiter can pull on the spacecraft,
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turning its orbit to give it an increased velocity in the sun’s frame of reference, sufficient to propel it out to
Saturn.

The key words here are “in the sun’s frame of reference,” because in Jupiter’s rest frame the trajectory
of the spacecraft can be turned, but there can be no net change in speed before and after the encounter.
When the spacecraft is still far enough from Jupiter such that Jupiter’s gravitational potential energy can
be neglected, the spacecraft has some initial speed v0 in Jupiter’s rest frame. As it approaches Jupiter, the
spacecraft speeds up, the trajectory is bent, and the spacecraft then slows down again as it leaves Jupiter, once
again approaching speed v0. In Jupiter’s own rest frame, Jupiter cannot cause a net increase in the spacecraft’s
speed because of energy conservation.

However, because of the deflection of the spacecraft, its speed can increase in the sun’s rest frame, and
this increased speed therefore gives the spacecraft a larger total energy in the sun’s frame, perhaps enough to
project it much farther out into the solar system.

Consider a special case to see how this works. Figure 7.15(a) shows a picture of a spacecraft’s trajectory in
the rest frame of Jupiter. The spacecraft is in a hyperbolic orbit about Jupiter, entering from below the picture
and being turned by (we will suppose) a 90◦ angle by Jupiter. It enters with speed v0 from below, and exits at
the same speed v0 toward the left. It has gained no energy in Jupiter’s frame. Figure 7.15(b) shows the same
trajectory drawn in the sun’s frame of reference. In the sun’s frame, Jupiter is moving toward the left with speed
vJ , so the spacecraft’s speed when it enters from beneath Jupiter (i.e., as it travels away from the sun, which is
much farther down in the figure) can be found by vector addition: it is vinitial =

√
v2

0 + v2
J , since v0 and vJ

are perpendicular to one another. However, the spacecraft’s speed when it leaves Jupiter is vfinal = v0 + vJ ,
since in this case the vectors are parallel to one another. Obviously vfinal > vinitial; the spacecraft has been
sped up in the sun’s frame of reference, so that it has more energy than before in that frame.

Clearly the trajectory must be tuned very carefully to get the right angle of flyby so that the spacecraft will
be thrown in the correct direction and with the correct speed to reach its final destination.

(a) (b)

Fig. 7.15 A spacecraft flies by Jupiter, in the reference frames of (a) Jupiter and (b) the sun.�
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7.7 The Virial Theorem in Astrophysics

We end this chapter with the virial theorem, which has wide applications through-
out classical mechanics and statistical mechanics, although here we emphasize
gravitational motion in astrophysical systems. Consider a collection of N point-
like nonrelativistic particles, where the ith particle is at position ri, has momentum
pi, and is subject to a net force Fi. Then define a quantity G ≡

∑
i pi · ri, whose

time derivative is
dG
dt

=
∑

i
ṗi · ri +

∑
i
pi · ṙi =

∑
i
Fi · ri +

∑
i

miṙi · ṙi, (7.79)

where in the second equality we have used Newton’s second law Fi = ṗi and the
fact that pi = mṙi for nonrelativistic particles.

The final term on the right is
∑

i miṙi · ṙi =
∑

i mivi ·vi =
∑

i miv2
i = 2T, twice

the total kinetic energy of the system. Therefore, so far we have found that
dG
dt

=
∑

i
Fi · ri + 2T. (7.80)

Our next step is to take the time average of each term in the equation, which we
denote by brackets < >. Then, by definition of the time average over a total time τ ,
the time average of dG/dt is〈

dG
dt

〉
≡ 1

τ

∫ τ

0

dG
dt

dt =
1
τ
[G(τ)− G(0)] =

〈∑
i
Fi · ri

〉
+ 2 〈T〉 . (7.81)

Now if all motions in a problem are periodic with period τ , then G(τ) = G(0),
so the left-hand side of the equation is zero. This is true for a single particle in
a circular or elliptical orbit in a central gravitational or spring force, for example,
if τ is the orbital period. Much more generally, suppose all motions are at least
bounded, with an upper limit to G. Then, over a long period of time, i.e., as τ
becomes very large, the left-hand side of the equation becomes negligible. In that
case

〈T〉 = −1
2

〈∑
i
Fi · ri

〉
(7.82)

for bounded systems in the limit of large times. This is the virial theorem.7
The theorem as written is valid for any number of nonrelativistic point particles,

subject to arbitrary forces. Now let us temporarily specialize to a single particle
subject to a conservative force, for which it is possible to write F= −∇U, where

7 The right-hand side of the equation is called the “virial of Clausius.” The term “virial” derives from the Latin
word vis, which has many meanings, including force, strength, power, and energy, among others.
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U is the corresponding potential energy. Furthermore, suppose that the force is
central, so F = −dU/dr. Then the virial theorem for that particle becomes

〈T〉 = −1
2
〈−∇U · r〉 = −1

2
〈(−dU/dr)r〉 . (7.83)

With a potential energy of the form U = αrn+1, corresponding to a central power-
law force F = −dU/dr = −α(n + 1)rn, we have

〈T〉 = −1
2
〈αrn · r〉 = −1

2
〈
αrn+1〉 = n + 1

2
〈U〉 . (7.84)

In particular, for a central gravitational force on an orbiting particle, like the earth
orbiting the sun, we have n = −2, so 〈T〉 = − 1

2 〈U〉 . It is easy to check that this
is correct for the circular orbit of a planet around the sun, where time averages
are unnecessary. It is not as easy to check for elliptical orbits, but the theorem still
holds.

Example 7.5 Gravitating Systems of Particles
Now consider N particles that pull on one another with central gravitational forces, so all forces on a particle
are due to other particles in the system. This might be a good approximation for the gravitational attractions
of stars on one another in a globular cluster, for example, or for entire galaxies attracting one another in a
cluster of galaxies like the Coma Cluster or the Virgo Cluster.

Let us start simply, by considering the case N = 3. The force of particle 2 on particle 1 is F12, and the force
of particle 1 on particle 3 is F31, and so on. Therefore counting all six interactions:

3∑
i=1

Fi · ri = F12 · r1 + F13 · r1 + F21 · r2 + F23 · r2 + F31 · r3 + F32 · r3. (7.85)

However, by Newton’s third law the force of particle 1 on particle 2 is equal but opposite to the force of particle
2 on particle 1, so for example F21 = −F12. Therefore we can write more simply

3∑
i=1

Fi · ri = F12 · (r1 − r2) + F13 · (r1 − r3) + F23 · (r2 − r3). (7.86)

Now (r1 − r2) is the vector that points directly from m2 to m1 and whose magnitude is the distance between
these two particles, so

F12 = −
(

dU12

dr

)
(r1 − r2)

|r1 − r2|
, (7.87)

the product of the magnitude of the force −dU12/dr and a unit vector pointing from m2 to m1. Here U12 =

−Gm1m2/r12 is the mutual gravitational potential energy between the two stars or galaxies, where r12 ≡
|r1 − r2|. Therefore we find the surprisingly simple result

F12 · (r1 − r2) = −
(

dU12

dr

)
r12 = −Gm1m2

r2
12

r12 = U12. (7.88)
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Summing the terms, the virial theorem for three gravitating particles is simply

〈T〉 = −1
2
〈U12 + U13 + U23〉 = −1

2
〈U〉 , (7.89)

where U is the total gravitational potential energy of the three particles. And by inspecting this derivation it is
clear that the number of particles in the system makes no difference! The virial theorem in the form just written
should apply regardless of the number of particles, as long as T is their total kinetic energy and U is their
total gravitational potential energy. If we have four particles, for example, we would have not three potential
energies but six, corresponding to all possible pairs, but they would still sum to the total potential energy.

The first evidence for the existence of so-called “dark matter” in the universe was found by the Swiss
astrophysicist Fritz Zwicky (1898–1974) in 1933, using the virial theorem in the context of the Coma Cluster of
galaxies. He estimated the masses of galaxies in the cluster by their brightness, their velocities by their Doppler
shifts,a and their distances apart by triangulation, knowing the distance of the cluster from us. In that way
he estimated the average kinetic energies of the galaxies and their mutual gravitational potential energies
as well. He found that the virial theorem was strongly violated, in that the apparent total kinetic energy was
many times greater than the magnitude of the apparent potential energy, suggesting that the cluster should
be flying apart, and could not be the more-or-less contained system it appeared to be. He reasoned, however,
that if there were additional unseen mass within the cluster, then the cluster’s total kinetic energy would scale
linearly with mass, while its potential energy, which contains two factors of m, would scale quadratically. So
a large amount of unseen matter in the cluster could bring the cluster into line with the virial theorem. This
unseen matter is what we now call “dark matter,” just as Zwicky did in 1933. �

aThe Doppler effect can give only the velocities parallel to our line of sight, say vz , while the other components of velocity are unknown. He
assumed random motions, however, after subtracting out the center-of-mass velocity of the cluster away from us due to the overall expansion
of the universe. Therefore on average one expects< v2 >=< v2

x > + < v2
y > + < v2

z >= 3 < v2
z >.

7.8 Summary

In this chapter we have treated in generality two-body problems involving a so-
called central force law – a force that depends only on the distance between the two
bodies and lies along the line joining them. This is a particularly important class
of problems for two reasons. First, it encompasses the dynamics due to two of the
most important forces of Nature: gravity and (as we shall see) the electrostatic force
as well. Second, it involves nontrivial dynamical situations where the problem can
be solved exactly through conservation laws. We will not be so lucky in most
situations in mechanics.

The Newtonian theory of gravity has been enormously successful in predicting
the motions of stars, planets, moons, comets, and spacecraft, even of entire galaxies
of stars. It has been the most important testing ground of Newtonian mechanics
itself. Nevertheless, in spite of its successes, the Newtonian theories of mechanics
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and gravitation fail the test of relativity, so must be replaced by a fully relativistic
theory when speeds are close to that of light, and when we probe distances
very close to large masses. A very brief introduction to that beautiful theory,
Einstein’s general theory of relativity, is presented in Chapter 10. Before we go
there, however, we need to understand the motion of particles in electromagnetic
fields and in non-inertial reference frames.

Problems

Problem 7.1 Two satellites of equal mass are each in a circular orbit around the earth.�
The orbit of satellite A has radius rA, and the orbit of satellite B has radius rB = 2rA.
Find the ratio of their (a) speeds, (b) periods, (c) kinetic energies, (d) potential
energies, (e) total energies.

Problem 7.2 Halley’s Comet passes through earth’s orbit every 76 years. Make a�
close estimate of the maximum distance Halley’s Comet gets from the sun.

Problem 7.3 Two astronauts are in the same circular orbit of radius R around the��
earth, 180◦ apart. Astronaut A has two cheese sandwiches, while Astronaut B has
none. How can A throw a cheese sandwich to B? In terms of the astronaut’s period
of rotation about the earth, how long does it take the sandwich to arrive at B? What
is the semi-major axis of the sandwich’s orbit? (There are many solutions to this
problem, assuming that A can throw the sandwich with arbitrary speeds.)

Problem 7.4 Suppose that the gravitational force exerted by the sun on the planets�
were inverse r-squared, but not proportional to the planet masses. Would Kepler’s
third law still be valid in this case?

Problem 7.5 Planets in a hypothetical solar system all move in circular orbits, and�
the ratio of the periods of any two orbits is equal to the ratio of their orbital radii
squared. How does the central force depend on the distance from this sun?

Problem 7.6 An astronaut is marooned in a powerless spaceship in circular orbit�
around the asteroid Vesta. The astronaut reasons that puncturing a small hole
through the spaceship’s outer surface into an internal water tank will lead to a
jet action of escaping water vapor expanding into space. Which way should the jet
be aimed so the spacecraft will most likely reach the surface of Vesta? Assume that
the initial orbital radius is much larger than the radius of Vesta. (In Isaac Asimov’s
first published story Marooned off Vesta, the jet was oriented differently, but the
ship reached the surface anyway.)

Problem 7.7 A thrown baseball travels in a small piece or an elliptical orbit before�
it strikes the ground. What is the semi-major axis of the ellipse? (Neglect air
resistance.)
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Problem 7.8 Assume that the period of elliptical orbits around the sun depends only�
upon G, M (the sun’s mass), and a, the semi-major axis of the orbit. Prove Kepler’s
third law using dimensional arguments alone.

Problem 7.9 A spy satellite designed to peer closely at a particular house every day�
at noon has a 24-h period, and a perigee of 100 km directly above the house. What
is the altitude of the satellite at apogee? (Earth’s radius is 6400 km.)

Problem 7.10 Show that the kinetic energy��

K.E =
1
2

m1ṙ
2
1 +

1
2

m2ṙ
2
2

of a system of two particles can be written in terms of their center-of-mass velocity
Ṙcm and relative velocity ṙ as

K.E. =
1
2

MṘ2
cm +

1
2
μṙ2,

where M = m1 + m2 is the total mass and μ = m1m2/M is the reduced mass of the
system.

Problem 7.11 Show that the shape r(ϕ) for a central spring-force ellipse takes the��
standard form r2 = a2b2/(b2 cos2 ϕ+ a2 sin2 ϕ) if (in Eq. (7.37)) we use the plus
sign in the denominator and choose ϕ0 = π/4.

Problem 7.12 Show that the period of a particle that moves in a circular orbit close�
to the surface of a sphere depends only upon G and the average density ρ of the
sphere. Find what this period would be for any sphere having an average density
equal to that of water. (The sphere consisting of the planet Jupiter nearly qualifies!)

Problem 7.13 (a) Communication satellites are placed into geosynchronous orbits;�
that is, they typically orbit in earth’s equatorial plane, with a period of 24 h. What
is the radius of this orbit, and what is the altitude of the satellite above earth’s
surface? (b) A satellite is to be placed in a synchronous orbit around the planet
Jupiter to study the famous “red spot.” What is the altitude of this orbit above the
“surface” of Jupiter? (The rotation period of Jupiter is 9.9 h, its mass is about 320
earth masses, and its radius is about 11 times that of earth.)

Problem 7.14 The perihelion and aphelion of the asteroid Apollo are 0.964 × 108 km�
and 3.473× 108 km from the sun, respectively. Apollo therefore swings in and out
through earth’s orbit. Find (a) the semi-major axis, (b) the period of Apollo’s orbit
in years, given earth’s semi-major axis aE = 149.6 × 106 km. (Apollo is only one
of many “Apollo asteroids” that cross earth’s orbit. Some have struck the earth in
the past, and others will strike it in the future unless we find a way to prevent it.)
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Problem 7.15 The time it takes for a probe of mass μ to move from one radius to��
another under the influence of a central spring force was shown in the chapter to be

t(r) = ±
√

μ

2

∫ r

r0

r dr√
Er2 − k r4/2 − �2/2μ

, (7.90)

where E is the energy, k is the spring constant, and � is the angular momentum.
Evaluate the integral in general, and find (in terms of given parameters) how long
it takes the probe to go from the maximum to the minimum value of r.

Problem 7.16 (a) Evaluate the integral in Eq. (7.29) to find t(r) for a particle moving��
in a central gravitational field. (b) From the results, derive the equation for the
period T = (2π/

√
GM)a3/2 in terms of the semi-major axis a for particles moving

in elliptical orbits around a central mass.

Problem 7.17 The sun moves at a speed vS = 220 km/s in a circular orbit of radius��
rS = 30, 000 light years around the center of the Milky Way galaxy. The earth
requires TE = 1 year to orbit the sun, at a radius of 1.50 × 1011 m. (a) Using this
information, find a formula for the total mass responsible for keeping the sun in its
orbit, as a multiple of the sun’s mass M0, in terms also of the parameters vS, rS, TE,
and rE. Note that G is not needed here! (b) Find this mass numerically.

Problem 7.18 The two stars in a double-star system circle one another gravitationally,��
with period P. If they are suddenly stopped in their orbits and allowed to fall
together, show that they will collide after a time P/4

√
2.

Problem 7.19 A particle is subjected to an attractive central spring force F = −kr.��
Show, using Cartesian coordinates, that the particle moves in an elliptical orbit,
with the force center at the center of the ellipse, rather than at one focus of the
ellipse.

Problem 7.20 Use Eq. (7.32) to show that if the central force on a particle is F = 0,��
the particle moves in a straight line.

Problem 7.21 Find the central force law F(r) for which a particle can move in a spiral��
orbit r = kθ2, where k is a constant.

Problem 7.22 Find two second integrals of motion for a particle of mass m in the��
case F(r) = −k/r3, where k is a constant. Describe the shape of the trajectories,
assuming that the angular momentum � >

√
km.

Problem 7.23 A particle of mass m is subject to a central force F(r) = −GMm/r2 −���
k/r3, where k is a positive constant. That is, the particle experiences an inverse-
cubed attractive force as well as a gravitational force. Show that if k is less than
some limiting value, the motion is that of a precessing ellipse. What is this limiting
value, in terms of m and the particle’s angular momentum?
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Problem 7.24 Find the allowed orbital shapes for a particle moving in a repulsive��
inverse-square central force. These shapes would apply to α-particles scattered by
gold nuclei, for example, due to the repulsive Coulomb force between them.

Problem 7.25 A particle moves in the field of a central force for which the potential��
energy is U(r) = krn, where both k and n are constants, positive, negative, or zero.
For what range of k and n can the particle move in a stable, circular orbit at some
radius?

Problem 7.26 A particle of mass m and angular momentum � moves in a central��
spring-like force field F = −kr. (a) Sketch the effective potential energy Ueff(r).
(b) Find the radius r0 of circular orbits. (c) Find the period of small oscillations
about this orbit, if the particle is perturbed slightly from it. (d) Compare with the
period of rotation of the particle about the center of force. Is the orbit closed or
open for such small oscillations?

Problem 7.27 Find the period of small oscillations about a circular orbit for a planet��
of mass m and angular momentum � around the sun. Compare with the period of
the circular orbit itself. Is the orbit open or closed for such small oscillations?

Problem 7.28 (a) A binary star system consists of two stars of masses m1 and m2��
orbiting about one another. Suppose that the orbits of the two stars are circles of
radii r1 and r2, centered on their center of mass. Show that the period of the orbital
motion is given by

T2 =
4π2

G(m1 + m2)
(r1 + r2)

3.

(b) The binary system Cygnus X-1 consists of two stars orbiting about their
common center of mass with orbital period 5.6 days. One of the stars is a supergiant
with mass 25 times that of the sun. The other star is believed to be a black hole with
mass about 10 times the mass of the sun. From the information given, determine
the distance between these stars, assuming that the orbits are circular.

Problem 7.29 A spacecraft is in a circular orbit of radius r about the earth. What is��
the minimum Δv the rocket engines must provide to allow the craft to escape from
the earth, in terms of G, ME, and r?

Problem 7.30 A spacecraft departs from the earth. Which takes less rocket fuel: to��
escape from the solar system or to fall into the sun?(Assume the spacecraft has
already escaped from the earth, and do not include possible gravitational assists
from other planets.)

Problem 7.31 After the engines of a 100 kg spacecraft have been shut down, the��
spacecraft is found to be a distance 107 m from the center of the earth, moving
with a speed of 7000 m/s at an angle of 45◦ relative to a straight line from the
earth to the spacecraft. (a) Calculate the total energy and angular momentum
of the spacecraft. (b) Determine the semi-major axis and the eccentricity of the
spacecraft’s geocentric trajectory.
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Problem 7.32 A 100 kg spacecraft is in circular orbit around the earth, with orbital��
radius 104 km and speed 6.32 km/s. It is desired to turn on the rocket engines to
accelerate the spacecraft up to a speed so that it will escape the earth and coast out
to Jupiter. Use a value of 1.5 × 108 km for the radius of earth’s orbit, 7.8 × 108

km for Jupiter’s orbital radius, and 30 km/s for the velocity of the earth. Determine
(a) the semi-major axis of the Hohmann transfer orbit to Jupiter; (b) the travel time
to Jupiter; (c) the heliocentric velocity of the spacecraft as it leaves the earth; (d)
the minimum Δv required from the engines to inject the spacecraft into the transfer
orbit.

Problem 7.33 The earth–sun L5 Lagrange point is a point of stable equilibrium that��
trails the earth in its heliocentric orbit by 60◦ as the earth (and spacecraft) orbit the
sun. Some gravity-wave experimenters want to set up a gravity-wave experiment
at this point. The simplest trajectory from earth puts the spacecraft on an elliptical
orbit with a period slightly longer than 1 year, so that when the spacecraft returns
to perihelion, the L5 point will be there. (a) Show that the period of this orbit is
14 months. (b) What is the semi-major axis of this elliptical orbit? (c) What is
the perihelion speed of the spacecraft in this orbit? (d) When the spacecraft finally
reaches the L5 point, how much velocity will it have to lose (using its engines) to
settle into a circular heliocentric orbit at the L5 point?

Problem 7.34 In Stranger in a Strange Land, Robert Heinlein claims that travelers to���
Mars spent 258 days on the journey out, the same for return, “plus 455 days waiting
at Mars while the planets crawled back into positions for the return orbit.” Show
that travelers would have to wait about 455 days, if both earth–Mars journeys were
by Hohmann transfer orbits.

Problem 7.35 A spacecraft approaches Mars at the end of its Hohmann transfer orbit.��
(a) What is its velocity in the sun’s frame, before Mars’s gravity has had an
appreciable influence on it? (b) What Δv must be given to the spacecraft to insert it
directly from the transfer orbit into a circular orbit of radius 6000 km around Mars?

Problem 7.36 A spacecraft parked in circular low-earth orbit 200 km above the��
ground is to travel out to a circular geosynchronous orbit, of period 24 h, where it
will remain. (a) What initial Δv is required to insert the spacecraft into the transfer
orbit? (b) What final Δv is required to enter the synchronous orbit from the transfer
orbit?

Problem 7.37 A spacecraft is in a circular parking orbit 300 km above earth’s surface.��
What is the transfer-orbit travel time out to the moon’s orbit, and what are the two
Δvs needed? Neglect the moon’s gravity.

Problem 7.38 A spacecraft is sent from the earth to Jupiter by a Hohmann transfer��
orbit. (a) What is the semi-major axis of the transfer ellipse? (b) How long does
it take the spacecraft to reach Jupiter? (c) If the spacecraft actually leaves from
a circular parking orbit around the earth of radius 7000 km, find the rocket Δv
required to insert the spacecraft into the transfer orbit.
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Problem 7.39 Find the Hohmann transfer-orbit time to Venus, and the Δvs needed���
to leave an earth parking orbit of radius 7000 km and later to enter a parking
orbit around Venus, also of r = 7000 km. Sketch the journey, showing the orbit
directions and the directions in which the rocket engine must be fired.

Problem 7.40 Consider an astronaut standing on a weighing scale within a spacecraft.�
The scale by definition reads the normal force exerted by the scale on the astronaut
(or, by Newton’s third law, the force exerted on the scale by the astronaut). By
the principle of equivalence, the astronaut can’t tell whether the spacecraft is (a)
sitting at rest on the ground in uniform gravity g, or (b) is in gravity-free space,
with uniform acceleration a numerically equal to the gravity g in case (a). Show
that in one case the measured weight will be proportional to the inertial mass of the
astronaut, and in the other case proportional to the astronaut’s gravitational mass.
So if the principle of equivalence is valid, these two types of mass must have equal
magnitudes.

Problem 7.41 In Bertrand’s theorem. Section 7.5, we stated a powerful theorem that���
asserts that the only potentials for which all bounded orbits are closed are Ueff ∝ r2

and Ueff ∝ r−1. To prove this theorem, let us proceed in steps. If a potential is to
have bound orbits, the effective potential must have a minimum since a bound orbit
is a dip in the effective potential. The minimum is at r = R given by

U′(R) =
�2

μR3 , (7.91)

as shown in Eq. (7.22). This corresponds to a circular orbit which is stable if

U′′(R) +
3
R

U′(R) > 0, (7.92)

as shown in Eq. (7.23). Consider perturbing this circular orbit so that we now
have an rmin and an rmax about r = R. Define the apsidal angle Δϕ as the angle
between the point on the perturbed orbit at rmin and the point at rmax. Assume
(R − rmin)/R  1 and (rmax − R)/R  1. Note that closed orbits require

Δϕ = 2π
m
n

(7.93)

for integer m and n and for all R.

• Show that

Δϕ = π

√
U′(R)

3 U′(R) + R U′′(R)
. (7.94)

Notice that the argument under the square root is always positive by virtue of
the stability of the original circular orbit.
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• In general, any potential U(r) can be expanded in terms of positive and negative
powers of r, with the possibility of a logarithmic term

U(r) =
∞∑

n=−∞

an
rn + a ln r. (7.95)

Show that, to have the apsidal angle independent of r, we must have U(r) ∝ r−α

for α < 2 and α �= 0, or U(r) ∝ ln r. Show that the value of Δϕ is then

Δϕ =
π√

2 − α
, (7.96)

where the logarithmic case corresponds to α = 0 in this equation.
• Show that if limr→∞ U(r) = ∞, we must have limE→∞Δϕ = π/2. This

corresponds to the case α < 0. We then must have

Δϕ =
π√

2 − α
=

π

2
, (7.97)

or α = −2, thus proving one of the two cases of the theorem.
• Show that for the case 0 ≤ α, we can consider limE→0Δϕ = π/(2 − α). This

then implies

Δϕ =
π√

2 − α
=

π

2 − α
, (7.98)

which leaves only the possibility α = 1, completing the proof of the theorem.

Problem 7.42 The luminous matter we observe in our Milky Way galaxy is only��
about 5% of the galaxy’s total mass: the rest is called “dark matter,” which
seems to act upon all matter gravitationally but in no other way. As a rough
approximation, we can therefore neglect luminous matter entirely as a source of
gravity in understanding the dynamics of the galaxy. Along with many other stars,
both much closer and much farther from the galactic center, we all circle about
the center of the galaxy with about the same velocity 220 km/s. Our solar system
in particular is 8.5 kiloparsecs (kpsc) from the galactic center (1 psc = 3.26 light
years). (a) From this information, how must the dark-matter density ρ for this range
of orbital radii depend upon r, the distance of an orbiting star from the galactic
center? (b) The dark-matter density in the vicinity of the sun is thought to be
ρ0 � 0.3 GeV/c2 per cm3. Assuming now that the radial dependence of density
ρ(r) found in part (a) is valid all the way to the center of the galaxy, what is the
total mass of dark matter within the orbit of our sun as a multiple of one solar
mass, where Msun = 2 × 1030 kg? (c) Suppose several rogue stars are in highly
noncircular orbits around the galactic center, perhaps as a result of collisions with
one another. Which (if any) of Kepler’s laws would then still be correct for these
stars? Explain. (d) Consider a proposal that the radial dependence of dark-matter
density as found in part (a) might still be valid for arbitrarily large distances from
the center. Show that in fact this is not possible, and explain why.
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Problem 7.43 Within the solar system itself it is often thought that the density of�
unseen dark matter is quite uniform, with mass density ρ0 � 0.3 GeV/c2 per cm3

(the mass equivalent of about one proton per three cubic centimeters). The sun
itself has mass M0 = 2 × 1030 kg. (a) What fraction of a solar mass within the
radius of earth’s orbit might one expect in the form of dark matter? (The average
radius of earth’s orbit is 150×106 km.) (b) Would Kepler’s second law still be valid
for orbits of comets within the solar system? Explain. (c) Would Kepler’s third law
still be valid for the planets?

Problem 7.44 Communications satellites are typically placed in orbits of radius rCS�
circling the earth once per day. The 24 or so GPS (Global Positioning System)
satellites are placed in one of six orbital planes, with each satellite circling the
earth twice per day. (a) Find the radius of their orbits as a fraction of rCS. (b) Low-
earth orbit satellites typically have orbital periods of about 90 minutes. Find their
radii as a fraction of rCS.

Problem 7.45 Trajectory specialists plan to send a spacecraft to Saturn requiring a���
gravitational assist by Jupiter. In Jupiter’s rest frame the spacecraft’s velocity will
be turned 90◦ as it flies by, as illustrated in Figure 7.15(a). (a) If the nearest point
on the spacecraft’s path is a distance of 2RJ = 140, 000 km from the center of
Jupiter, how fast (in km/s) is the spacecraft’s speed in Jupiter’s frame when it is
at this nearest point? (b) In Jupiter’s frame what is v0 (as shown in the figure),
the spacecraft’s speed (in km/s) both long before and long after its encounter with
Jupiter (but not so long before or after that its distance from the sun has changed
appreciably)? (c) Note that long after the encounter, in the sun’s frame the velocity
of the spacecraft is v0+vJ along the direction of Jupiter’s motion around the sun, as
illustrated in Figure 7.15(b). Is this velocity sufficient to take the spacecraft out to
the orbit of Saturn? Explain. (Useful data: Jupiter has mass MJ = 1.9×1027 kg and
radius RJ = 70, 000 km. Its average orbital radius and velocity around the sun are
about 780 ×106 km and 13 km/s, respectively. The average orbital radius of Saturn
is 1.4 × 109 km. Newton’s gravitational constant is G = 6.67 × 10−11 m3/(kg s2).)

Problem 7.46 Show that the virial theorem is correct for a planet in circular orbit�
around the sun.

Problem 7.47 Show that the virial theorem is correct for a particle of mass m free to��
move in a plane, and attached to one end of a Hooke’s-law spring exerting force
F = −kr, if the particle is in (a) a circular orbit, (b) an elliptical orbit.

Problem 7.48 Suppose that in studying a particular globular cluster containing 105��
stars, whose average mass is that of our sun, astronomers find that the total kinetic
energy of the stars is 10 times that of the magnitude of their total potential energy.
(a) Estimate the amount of dark matter in the cluster, expressed in solar masses. (b)
Then assume there is no such thing as dark matter, but that the potential energy
between two stars has the form U(r) = −αrn, where n �= −1. Is there a value of n
such that the virial theorem would be satisfied without dark matter?
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Problem 7.49 An object named “Oumuamua” entered the inner solar system in 2017,��
coming closest to the sun on Sept 9, 2017, at a distance 0.255 AU from the sun,
and with speed 87.7 km/s. (1 AU = 149, 598, 000 km is the average distance of the
earth from the sun.) It was first observed through a telescope on Hawaii, hence it
was given a Hawaiian name, which means “scout,” or “first distant messenger.” (a)
Find the eccentricity of the orbit. What is the orbit’s shape? (b) What was (and what
will be) the limiting speed of the object when it is very far from the sun? Express
the answer in meters/second and also in light years/million years. (c) If the object
left a newly forming star system 1000 light years away from us, how long ago
was the star system formed? (Although objects originating in the solar system can
sometimes achieve eccentricities slightly greater than unity, due to gravitational-
assist-type encounters with planets or other orbiting objects, the eccentricity of
Oumuamua is too large to have been achieved in this way. Therefore astronomers
believe that the object originated in another star system. There are probably many
of these objects entering our solar system every year, but Oumuamua was the first
we have observed.)

Problem 7.50 The cover of this book shows the paths of a number of stars orbiting a��
massive object named Sagittarius A-Star (Sgr A* for short) at the center of our
Milky Way galaxy. One of these stars, called “S2,” has an orbit whose period
is 16.05 years, a semi-major axis of 970 AU, and a periastron distance of 120
AU. Assuming that S2 follows a Keplerian elliptical orbit, what is its orbital (a)
eccentricity and (b) semi-minor axis? (c) Most importantly, according to these
observations, what is the mass of Sgr A*, expressed as a multiple of the mass
of the sun? (Note that 1 AU is the average distance of the earth from the sun.)

Problem 7.51 Using the observed characteristics of star S2’s orbit as given in the��
preceding problem, and assuming it moves in a Keplerian elliptical orbit, find the
speed of the star at periastron as a percentage of the speed of light. (b) If its orbit
happened to be oriented so that at periastron S2 was moving directly towards the
earth, by what factor would its light be blueshifted due to the Doppler effect?
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While gravity was the first of the fundamental forces to be quantified and at least
partially understood – beginning all the way back in the seventeenth century –
it took an additional 200 years for physicists to unravel the secrets of a second
fundamental force, the electromagnetic force. Ironically, it is the electromagnetic
force that is by far the stronger of the two, and at least as prevalent in our daily
lives. The fact that atoms and molecules stick together to form the matter we
are made of, the contact forces we feel when we touch objects around us, and
virtually all modern technological advances of the twentieth century, all these rely
on the electromagnetic force. In this chapter, we introduce the subject within the
Lagrangian formalism and demonstrate some familiar as well as unfamiliar aspects
of this fascinating fundamental force of Nature.

8.1 Gravitation Revisited

Before we dive headfirst into the topic of motion caused by electromagnetic forces,
which can be expressed in terms of electric and magnetic fields, we will begin by
describing the somewhat simpler notion of gravitational forces proportional to a
gravitational field.

In the preceding chapter we discussed Newtonian gravity as a force between two
particles of masses m and M, separated by distance r, as given by

F = −G
M m
r2 r̂. (8.1)

It would seem that a “source” mass M somehow reaches out through space to pull
on a “probe” mass m, in a kind of “action at a distance.”1 An alternative view,
conceived in the nineteenth century, is that the source M first sets up a gravitational
field g in the space surrounding it, where

g = −G
M
r2 r̂. (8.2)

Then, if a point probe particle m is placed in this field, it experiences a force

Fg = mg. (8.3)

1 And vice versa. Which is the source and which the probe is arbitrary.
314
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This force on m is obviously still given by Newton’s inverse-square law of gravity,
but there are a couple of advantages to introducing the field g. First, we no longer
have to swallow the idea of direct “action at a distance”: rather, m responds only
to the value of g at its own location.2 Second, if the probe particle m is removed,
and replaced by a different probe particle m′, we do not have to start from scratch
to calculate the force on it. The field at that point has not changed, so all we have
to do to calculate the force is multiply g by m′ instead of m.

If there is more than one source particle, the total gravitational field they
produce is just the vector sum of the gravitational fields due to each source
particle individually; that is, Newtonian gravitational fields add linearly, which is
often called the principle of superposition. For example, we may wish to find the
gravitational field due to an entire star. We conceptually divide up the star into
small bits, compute the field due to each bit, and sum up all these small vector
fields to account for the contribution from the entire star.

We can quantify the source mass distribution through a volume mass density
function ρM that is not necessarily constant. In terms of ρM, the gravitational field
obeys two differential equations, called the Newtonian gravitational field equations.
They are

∇ · g = −4πG ρM and ∇× g = 0. (8.4)

The first of these states that the divergence of g is proportional to the mass
density and is negative: the gravitational field points inward toward the source
mass (i.e., it is convergent rather than divergent). The second equation states that
the gravitational field has no curl, i.e., it is irrotational: it dives directly into its
sources, without added twists.

To see why this leads to the picture of gravity arising from (8.1), we can check
that for ρM=Mδ3(r), a source point mass M, one recovers the Newtonian force
between two masses M and m (8.1). Here δ3(r) is a three-dimensional delta
function, which is infinite at r = 0, zero elsewhere, and whose volume integral is
unity. The total mass of the source mass distribution is then∫

ρMdV = M
∫

δ3(r)dV = M, (8.5)

as expected. We then integrate the divergence equation from (8.4) over all space:∫
∇ · g dV = −4πG

∫
ρMdV. (8.6)

Then we use Gauss’s law while employing the spherical symmetry of the problem,
as depicted in Figure 8.1. This gives∫

∇ · g dV =

∮
g · dA =

∮
(gr̂) · (r2 sin θdθdϕ r̂) = 4πr2g = −4πG M, (8.7)

2 Similarly, mass m sets up its own gravitational field g proportional to m in the space around itself, which exerts
a force mg on M, which again is the same as Newton’s law of gravity. The idea is that point particles do not
feel the gravitational field they themselves produce, but only the field caused by other particles.
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Gaussian surface

Fig. 8.1 A Gaussian surface probing the gravity around a point mass.

where we have used a spherical Gaussian surface centered at the source mass. This
gives

g = −G M
r2 r̂ ⇒ Fg = Mg = −G M m

r2 r̂, (8.8)

as promised. Equations (8.3) and (8.4) are linear in g and ρM, so the gravitostatic
field from (say) two point masses can be correctly built up from this point mass
result by summing the fields from each individual point mass. And from this,
we can expand to three, four, or infinitely many point masses. Hence, Eqs. (8.3)
and (8.4) constitute an equivalent description of Newtonian gravity to that of (8.1)
and the force superposition principle.

Note also that Eqs. (8.4) are differential equations that satisfy the existence
and uniqueness theorem of differential equations: given a mass density ρM and
appropriate boundary conditions for g, there is a unique solution for g. We then
conclude that, armed with (8.1), we can in principle tackle any gravitostatic
problem involving any complicated mass distribution. Let us see how our moti-
vational problem of a probe inside a star could be handled using this general
methodology.

Example 8.1 Gravity Inside the Body of a Star
Consider a spherical star of radius R, mass M, and constant volume density ρ0 = M/(4πR3/3). We would
like to find the force felt by a small probe of mass m that penetrates the star. Starting from Eq. (8.4), we
integrate over a spherical Gaussian surface of radius r < R, as shown in Figure 8.2:∫

∇ · g dV = −4πG
∫

ρ0dV = −4πG ρ0

(
4
3
πr3

)
= −4πG M

r3

R3 . (8.9)

That is, only the fraction of the mass inside the sphere of radius r contributes. The left-hand side is handled
through Gauss’s law:
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∫
∇ · g dV =

∮
g · dA = 4πr2g. (8.10)

We then have

g = −G M
r

R3 r̂. (8.11)

Gaussian surface

Fig. 8.2 A Gaussian surface probing the gravity inside a star of uniform volume mass
density.

This gives a radial force on the probe of mass m:

Fg = −G m M
r

R3 r̂, (8.12)

which increases with r until we reach the surface at r = R. Note that Fg = 0 at the center of the star, and
Fg = −GmM/R2 r̂ at the star’s surface.

Outside the star, the computation proceeds in a similar manner except that the Gaussian surface now
encompasses the entire star mass. We then get the point particle result∫

∇ · g dV =

∮
g · dA = 4πr2g = −4πG m ⇒ g = −G M

r2 r̂. (8.13)

As far as gravity is concerned, the star looks like a point mass from the outside. Note that at the star surface
r = R, the two gravitostatic fields (8.11) and (8.13) match up. �

There is another enormously useful mathematical refinement in Newtonian
gravitation theory that has important counterparts in electromagnetism, as we
shall see in the next section. The gravitational field is irrotational, as expressed
mathematically by ∇× g = 0 . Combining that with the universal vector identity
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∇ × ∇ϕ = 0, valid for any scalar field ϕ, allows us to express any gravitational
field g in terms of a gravitational scalar potential ϕ by the equation

g ≡ −∇ϕg. (8.14)

That is, the gravitational field is the negative gradient of the gravitational scalar
potential. Then the requirement that ∇× g = 0 is automatically satisfied, and the
other field equation ∇ · g = −4πG ρM can now be written in the form

∇2ϕg = 4πGρM, (8.15)

a differential equation known as Poisson’s equation. Given a mass density ρM,
we can try to solve Poisson’s equation for the gravitational potential. If we are
successful, the gravitational field is then given by g = −∇ϕg and the force on a
probe m is F = mg.

This is the way in which gravitational fields are generally calculated for given
mass densities. We may be able to solve Poisson’s equation (a second-order partial
differential equation) analytically (i.e., in terms of known functions), which usually
requires that the mass distribution is quite symmetric. Or if we can’t solve it
analytically, in principle we can always solve it numerically with the help of a
digital computer. Then from ϕg we can find g, and from g we can find the force on
a probe mass m.

Before leaving Newtonian gravitational fields and potentials, we note in passing
that the Newtonian gravitational field equations, either for g or ϕg, are not rela-
tivistically invariant, and so cannot be the correct fundamental law of gravitation,
according to special relativity. This is seen most easily by noting that the spatial
and time coordinates are not treated comparably in the theory. For example,
the operator ∇2 in Poisson’s equation contains spatial derivatives but no time
derivatives. So if we were to use a Lorentz transformation to change Poisson’s
equation in one (unprimed) frame to a new (primed) frame, we would gain some
time derivatives in the new frame; therefore, the scalar potential in the new frame
would not obey Poisson’s equation. That field equation is therefore not covariant;
it would look different in different inertial frames, so could not be a fundamental
law of Nature. We return to the question of a relativistic theory of gravity in the
capstone Chapter 10.

8.2 The Lorentz Force Law

In the mid-nineteenth century, Scottish physicist James C. Maxwell (1831–1879)
combined the results of many experimental observations, having to do with cur-
rents, magnets, and even fuzzy cats, and formulated a set of equations describing a
new force law, the electromagnetic force. Maxwell’s equations can be written in
Gaussian units as
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∇ ·E = 4πρQ, ∇×E = −1
c
∂B

∂t
,

∇ ·B = 0, ∇×B =
4π
c
J+

1
c
∂E

∂t
. (8.16)

Here E and B are the space time-dependent electric and magnetic vector fields.
Through perfect vacuum they can relay a force between objects that carry an
attribute called electric charge. The quantities ρQ and J are the charge density
and current density of the charged stuff that is causing the corresponding E and
B fields. For example, a single, isolated, and stationary point particle of electric
charge Q located at a position r0 has charge and current densities

ρQ = Q δ3(r− r0), J = 0, (8.17)

where δ3(r − r0) is the three-dimensional delta function centered at r= r0. The
corresponding electric and magnetic fields are obtained from Maxwell’s equations
(8.16) as (with R ≡ r− r0)

E =
Q

|R|2 R̂, B = 0, (8.18)

known as the Coulomb field. This computation is very similar to the case of the
gravitostatic field of a point mass encountered in the previous section.

Another classic example is that of a charge Q moving with constant velocity v.
At a position R away from the charge, one finds the Biot–Savart magnetic field

B =
Qv ×R

c R3 . (8.19)

Given a probe particle of electric charge q in the presence of electric and
magnetic fields – generated by other nearby charges described by ρQ and J – the
force that the probe particle feels is given by

Fem = qE+
q
c
v ×B, (8.20)

known as the Lorentz force. For example, taking the environment of the probe as
consisting of the point charge Q of Eq. (8.17) and (8.18), the probe feels a force
given by

F =
q Q
|R|2 R̂, (8.21)

where R ≡ r− r0 and the probe charge q is located at r while the source charge Q
is located at r0 (see Figure 8.3).

This force law looks very familiar. Remember that the gravitational force
experienced by a probe mass m located at r in the vicinity of a source mass M
at r0 is given by

F = −G
m M
|R|2 R̂, (8.22)
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so instead of the product −G m M in Eq. (8.22), the strength of the electromagnetic
force is proportional to the product of the charges Q q as in Eq. (8.21). The rest,
the inverse-square distance law, is the same. This is not a coincidence: both forces
have a geometrical origin and are tightly constrained by similar symmetries of
Nature.

Fig. 8.3 The electrostatic Coulomb force between two charged particles.

Equations (8.16) consist of eight differential equations for the six field com-
ponents (Ex, Ey, Ez, Bx, By, Bz) tucked within E and B – sourced from some
charge distribution described by ρQ and J. An existence and uniqueness theorem
in the theory of differential equations guarantees that, given ρQ and J, Eqs.
(8.16) always determine E and B uniquely. In turn, each of the charges making
up ρQ and J experiences the Lorentz force (8.20) and evolves accordingly;
which in turn influences the electric and magnetic fields via (8.16). Hence,
we have a coupled set of differential equations for E, B, and the position
of the charges – equations that have to be solved simultaneously, at least in
principle.

In practice, this is a very hard problem. Fortunately, in many practical circum-
stances there is a clear separation of roles between the charges involved in the
electromagnetic interactions. Some of the charges – called the source charges
– have fixed and given dynamics and can be used to compute the electric and
magnetic fields in a region of interest: that is, given ρQ and J, we can use (8.16) to
find E and B. The remaining charges of interest are called probe charges. The
electromagnetic fields they generate are negligible compared to those from the
source charges, and their dynamics is described by the Lorentz force law (8.20)
with given E and B background fields from the sources. This approximation
scheme decouples the set of differential equations into two separate, more tractable,
sets: (i) we first find the background E and B fields from ρQ and J; (ii) then
determine the trajectory of probes in the given E and B – ignoring the effects of
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the probe on these background fields. In this text, we focus on the second problem:
the mechanics of probe charges in the background of given electric and magnetic
fields.

The task at hand is then the following. Given some E and B fields, we want
to study the dynamics of point charges using the Lagrangian formalism. That is,
we want to incorporate the Lorentz force law (8.20) into a Lagrangian – which
involves a variational principle.

We start by rewriting the background electric and magnetic fields in terms of new
fields that make the underlying symmetries of Maxwell’s equations more apparent.
From (8.16), we know that the magnetic field is divergenceless. This implies that
we can write

B = ∇×A, (8.23)

due to the identity ∇ · (∇ × V) = 0 for any vector field V – thus trading the B
field for a new vector field A called the vector potential. Using (8.16) also, we
can therefore write

∇×
(
E+

1
c
∂A

∂t

)
= 0, (8.24)

which implies that

E+
1
c
∂A

∂t
= −∇φ ⇒ E = −∇φ− 1

c
∂A

∂t
(8.25)

due to the general identity ∇ × ∇f = 0 for any function f – thus introducing a
new scalar field φ which we call the scalar potential. Hence, we have traded the
six fields in E and B for four fields in A and φ. The fact that we can do so is
a reflection of a deep and foundational symmetry underlying the electromagnetic
force law. Furthermore, given E and B, even A and φ are not unique! We can
apply the following transformations to A and φ without changing E and B – and
hence without affecting the force law and corresponding physics:

A → A+∇f, φ → φ− 1
c
∂f
∂t

, (8.26)

for any arbitrary function f(t, r). Thus, there is even less physical information
in A and φ than it may seem. In fact, one can show that when the dust settles
we are left with only two physical fields quantifying electrodynamics: from the
original six fields in E and B, to the four in A and φ, now to only two.
This remarkable symmetry of the theory is called gauge symmetry. Indeed,
it is possible to derive classical electromagnetism – Maxwell’s equations and
the Lorentz force law – based solely on the principles of relativity and gauge
symmetry.
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Example 8.2 Potentials of a Point Charge
The electromagnetic fields from a point charge were given in Eq. (8.18). We can now find the scalar and vector
potentials for a point charge – noting that the answer is not unique due to the gauge symmetry (8.26). Since
B = 0, we can choose

A = 0 (8.27)

satisfying Eq. (8.23). Note, however, that we could have chosen for A a vector field of the form A = ∇f for
an arbitrary function f because of the identity∇×∇f = 0. The A = 0 choice corresponds to the simplest
case, for which f = constant. To find the scalar potential φ we need to do more work. Starting from Eq.
(8.25):

E = −∇φ− 1
c
∂A
∂t

= −∇φ, (8.28)

we can integrate both sides along any path between two points a and b:∫ b

a
E · dr = −

∫ b

a
∇φ · dr = −

∫ b

a
dφ = −φ(rb) + φ(ra). (8.29)

This then gives

φ(R) =
q
R

(8.30)

up to an arbitrary constant, using (8.18). The easiest way to see this is to use a simple radial path of integration.
This potential is shown in Figure 8.4(a).

(a) (b)

Fig. 8.4 (a) The electric potential φ from a point charge; only the dependence on x and y
is shown. (b) The vector potential of a uniform magnetic field pointing out of the
page. �
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Example 8.3 Vector Potential for a Uniform Magnetic Field
Consider a region of space filled with a uniform magnetic field B = B0ẑ, where B0 is a constant, and arbitrary
static electric field E. We write E = −∇φ from Eq. (8.25) and look for a time-independent vector potential
A satisfying Eq. (8.23). Again, the choice is not unique. A particularly useful choice is

A =
1
2

B × r. (8.31)

We can verify that the curl of this vector potential is indeed B, as long as B is uniform. To do this, simply use
the vector identity

∇× (V1 × V2) = V1(∇ · V2)− V2(∇ · V1) + (V2 · ∇)V1 − (V1 · ∇)V2. (8.32)

For our case of a magnetic field pointing in the z direction, we then get

A = −1
2

Byx̂ +
1
2

Bxŷ. (8.33)

This is a vector field circling about the z axis counterclockwise, lying in the x–y plane (see Figure 8.4(b)). �

8.3 The Lagrangian for Electromagnetism

Maxwell wrote out his elegant equations based primarily on hundreds of exper-
iments carried out by many physicists on the behavior of electric charges and
currents, as well as the resulting concepts of electric and magnetic fields invented
by Michael Faraday and others. Maxwell presumed his equations to be valid in
some inertial frame of reference. Then one of his greatest achievements was to
demonstrate that the equations predict waves of electric and magnetic fields that
travel at the speed of light c, thus showing that light and electromagnetic waves are
one and the same, resulting in a tremendous unification of electricity, magnetism,
and optics in a single set of equations. This was the greatest single achievement of
nineteenth-century physics.3

Following publication of Maxwell’s equations in 1861, physicists entered a
decades-long period of confusion about which inertial frame it was in which
Maxwell’s equations are valid. As we saw already in Chapter 2, it was not until
Einstein published his theory of special relativity in 1905 that it was firmly
established that Maxwell’s equations are valid in all inertial frames, with the

3 The reader is referred to any good textbook on electromagnetism for the derivation of light waves from
Maxwell’s equations; see, for example, Classical Electrodynamics by Roald K. Wangsness.
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counterintuitive result that the speed of light must also be the same in all inertial
frames.

The question we now want to address is the following: if an inertial observer O
measures an electric field E and a magnetic field B, what are the electric field
E′ and magnetic field B′ as measured by an observer O′ – moving as usual
with constant velocity V along the common x or x′ axis? We assume that the
transformations relating these fields are linear in the fields, much like the Lorentz
transformation of four-position or four-velocity; we also expect that they are linear
in the relative velocity V. We start with expressions of the form

E′ = â1 ·E+ â2 ·B, B′ = â3 ·E+ â4 ·B, (8.34)

where the âi are four 3 × 3 matrices whose components can depend on V at
most linearly. We also require that the Lorentz force law (8.20) fits as the last
three components of a four-force (2.119), as seen from Chapter 2. With all these
conditions in place, one finds a unique solution for the âis. One can show that,
given E and B as measured by an inertial observer O, another inertial observer O′,
moving with respect to Owith velocity V, measures different electric and magnetic
fields E′ and B′ given by

E′ = γ

(
E+

V

c
×B

)
+ (1 − γ)

E ·V
V2 V, (8.35)

B′ = γ

(
B− V

c
×E

)
+ (1 − γ)

B ·V
V2 V. (8.36)

These rather complicated relations become greatly simplified when written in terms
of the potentials φ, A and φ′, A′. Introduce a four-vector

Aμ = (φ,A) . (8.37)

Then one can show that we have simply

Aμ′
= Λμ′

μ Aμ, (8.38)

where Λμ′
μ is the usual Lorentz transformation matrix of Chapter 2. Therefore the

information about the electromagnetic fields is now packaged in a four-vector field
Aμ that transforms in a simple manner under Lorentz transformations.

We are now ready to develop a variational principle for the electromagnetic
force law using Lorentz symmetry as a guiding principle. We start with the familiar
relativistic action for a free point mass m:

S = −m c2
∫

dτ = −m c2
∫

dt
√

1 − v2

c2 . (8.39)
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Now we want to add a term to this action such that the particle experiences the
Lorentz force law (8.20) as if it had a charge q in some background φ and A fields;
and this combined action must be Lorentz invariant.4 Looking back at the Lorentz
force law (8.20), noting in particular that it is linear in the particle velocity and
the background fields, there is only one Lorentz-invariant integral consistent with
these statements and Lorentz symmetry:∫

Aμημν
dxν

dτ
dτ ≡

∫
Aμημνdxν . (8.40)

Adding an appropriate multiplicative constant, we get the full action

S = −m c2
∫

dτ +
q
c

∫
Aμημνdxν . (8.41)

We can rewrite the second term in some particular (unprimed) frame:

q
c

∫
Aμημνdxν =

q
c

∫
Aμημν

dxν

dt
dt =

q
c

∫ (
−φ c dt +A · dr

dt
dt
)

= q
∫

dt
(
−φ+A · v

c

)
, (8.42)

so the full action becomes

S = −m c2
∫

dt
√

1 − v2

c2 + q
∫

dt
(
−φ+A · v

c

)
. (8.43)

We leave it as an exercise for the reader to check that the resulting equations of
motion from (8.41) reproduce the Lorentz force law (8.20):

dp
dt

=
d
dt

(γvmv) = q
(
E+

v

c
×B

)
= Fem. (8.44)

We thus have a Lagrangian formulation of the electromagnetic force.
In the nonrelativistic limit, the action (8.43) becomes

L =
1
2

mṙiṙi − qφ+
q
c
Aiṙi, (8.45)

with equations of motion

ma = qE+
q
c
v ×B, (8.46)

after dropping terms quadratic in v/c while keeping linear terms. This set of
nonrelativistic equations will be our focus in the next several examples.

4 In fact, as mentioned earlier in the book, Lorentz invariance of the action we are about to write was the guiding
principle for developing relativity and the associated Lorentz transformations. It may appear as a chicken-and-
egg problem; in reality, one should think of the Lorentz symmetry and gauge symmetry as the fundamental
requirements, with the physical consequences being relativity and electromagnetism.
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8.4 The Two-Body Problem, Once Again

Consider now the familiar two-body problem once again for electromagnetic rather
than gravitational interactions. Two point particles of masses m1 and m2, located
at r1 and r2, respectively, carry electric charges q1 and q2. Let us first roughly
estimate the relative importance of the various forces involved. Electromagnetic
fields propagate with the speed of light in vacuum. This implies that if the
particles are moving slowly compared to the speed of light, we may think of the
electromagnetic fields cast about them as propagating essentially instantaneously –
always reflecting their instantaneous positions. The electric field E from the point
charge q2 a distance r = |r1 − r2| away generates a force on q1 of the order
Fel = q1E ∼ q1q2/r2. If q2 is moving with a speed v2  c while q1 is moving
with v1  c, q1 experiences a magnetic force Fm ∼ q1v1B/c ∼ q1q2v1v2/c2 r2,
where we used the Biot–Savart law from (8.19). Accelerating charges radiate
electromagnetic energy which can add a level of complication. However, once
again, this effect is much smaller in our nonrelativistic regime. Finally, the two
masses interact gravitationally with a force of the order of Fg ∼ Gm1m2/r2. Putting
things together, we summarize

Fel : Fm : Fg ∼ q1q2

r2 :
q1q2v1v2

c2r2 :
Gm1m2

r2 . (8.47)

Since v1v2  c2, we see that the magnetic force between the charges is less than the
electric force by a factor v2/c2. To compare the electrical and gravitational forces,
consider the case of two electrons with mass m � 9× 10−28 g and charge q � 5×
10−10 esu. We get an estimate for Fe : Fg ∼ 1 : 10−43. Phrasing things gently, we
need not care about gravitational forces! Gravity normally becomes relevant only
when we are dealing with macroscopic quantities of electrically neutral matter.

The conclusion of all this is that, in the current nonrelativistic regime, we
care only about the electrostatic force acting between the two point charges! So,
using, (8.45) we can write the Lagrangian as

L =
1
2

m1ṙ
2
1 +

1
2

m2ṙ
2
2 − U(r), (8.48)

where U(r) = q1φ(r) and φ(r) is the scalar potential due to source charge q2 at the
location of the probe charge q1:

φ =
q2

|r1 − r2|
=

q2

r
. (8.49)

This gives the electric potential energy

U(r) =
q1q2

r
. (8.50)

We now have a familiar two-body problem with a central potential, so we can
import the entire machinery developed in Chapter 7. We will not repeat the analysis,
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but instead step through the main benchmarks. We first factor away the trivial
center-of-mass motion and write a Lagrangian for the interesting relative motion
tracked by r ≡ r1 − r2:

L =
1
2
μṙ2 − q1q2

r
, (8.51)

where μ = m1m2/(m1 + m2) is the reduced mass. This quickly leads to a one-
dimensional problem in the radial direction, with fixed energy

E =
1
2
μṙ2 + Ueff(r) (8.52)

and effective potential

Ueff(r) =
l2

2μr2 +
q1q2

r
, (8.53)

where l is the conserved angular momentum. All is very similar to the problem
of two point masses interacting gravitationally, except for the following important
observations:

• If q1q2 < 0, i.e., the charges are of opposite signs, the electric force between the
point particles is attractive. Our entire analysis of orbits and trajectories from
the gravitational analogue goes through with the simple substitution

−Gm1m2 → q1q2 (8.54)

in all equations. We will then find closed orbits consisting of circles and ellipses,
and open orbits consisting of parabolas and hyperbolas. For example, the radius
of a stable circular orbit is given by5

rp =
|G m1 m2|

2|E| → |q1q2|
2|E| . (8.55)

For a hydrogen atom with energy |E| � 13.6 eV, we find rp ∼ 10−10 m, a good
estimate for the size of the ground state of the atom.

• If q1q2 > 0, the electric force is repulsive. Unlike the gravitational force, the
electromagnetic force then allows for repulsive effects. Let us look at this case
more closely. When q1q2 > 0, the formalism developed in Chapter 7 still goes
through, except we need to be careful with certain signs. Figure 8.5 depicts
the effective potential of the problem, noting that the dip in the potential has
disappeared – signaling the absence of bound orbits.
The orbit trajectory becomes

r =
(
l2/G m1m2

)
(1/m1)

1 + ε cos θ
→

(
l2/q1q2m1

)
1 + ε cos θ

, (8.56)

5 See Eq. (7.59) with ε = 0.
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Fig. 8.5 The effective Coulombic potential between two charges of the same sign for various angular momenta
l1 > l2 > l3 > l4 = 0.

with eccentricity

ε =

√
1 +

2El2(
G2m2

1m2
2
)

m1
→

√
1 +

2El2(
q2

1q2
2
)

m1
. (8.57)

However, since q1q2 > 0, we see from Figure 8.5 that we necessarily have E >
0, and hence

ε > 1. (8.58)

This implies that now there are only hyperbolic trajectories. Obviously, with a
repulsive force, we may not have bound orbits. The interesting physics problem
becomes that of particle scattering.

8.5 Coulomb Scattering

Consider a point charge q1 projected with some initial energy from infinity onto
point charge q2, as shown in Figure 8.6. We say that the repulsive electrostatic
force from q2 “scatters” the probe of charge q1 at an angle that can be read off from
Eq. (8.56) as

r → ∞ ⇒ cos θ1,2 → −1
ε

, (8.59)

as depicted in the figure.
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Fig. 8.6 Hyperbolic trajectory of a probe scattering off a charged target.

The scattering angle Θ, as shown in the figure, is defined by

θ1 − θ2 = 2θ0 = π −Θ, (8.60)

which gives

cosΘ =
2El2/m1 − q2

1q2
2

2El2/m1 + q2
1q2

2
, (8.61)

using Eq. (8.57). It is convenient to write the angular momentum l in terms of
the so-called impact parameter b shown in the figure. Note that b would be the
distance of closest approach between the probe and the target if there were no force
between them. Looking at the initial configuration at r → ∞, we have the angular
momentum

l = m1v0b = b
√

2 m1E, (8.62)

where v0 is the initial speed of the probe, related to the constant energy

E =
1
2

mv2
0, (8.63)

evaluated here at initial infinite separation. We then get

cosΘ =
4 b2E2 − q2

1q2
2

4 b2E2 + q2
1q2

2
. (8.64)

Using the trigonometric identity

cot2 Θ

2
=

(1 + cosΘ)2

(1 − cosΘ)2 , (8.65)
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we can simplify this expression further to

cot
Θ

2
=

2 bE
q1q2

. (8.66)

This relation gives us the scattering deflection angle that a point charge q1 would
experience if projected from infinity with energy E and impact parameter b onto
another point charge q2. A scattering process such as this one is a powerful
experimental probe into atomic structure and was instrumental in discovering the
constituents of atoms. Put simply, one uses the electromagnetic force to poke into
the electrically charged universe of the atom – by throwing charged particles at it.

While the initial energy E of the probe can be controlled, the impact parameter
b is in practice impossible to measure on a per scattering atom basis. It is therefore
useful to describe scattering processes through a quantity called the scattering
cross-section. We focus on the change in the area within which a probe scatters in
relation to a change in the impact parameter, as shown in Figure 8.7.

Fig. 8.7 Definition of the scattering cross-section in terms of change in impact area 2πbdb and scattering area
2π sin ΘdΘ on the unit sphere centered at the target.

The scattering cross-section σ(Θ) is defined as the change in initial impact area
per change in scattering area on a unit sphere centered at the target:

σ(Θ) ≡
∣∣∣∣ 2πbdb
2π sinΘdΘ

∣∣∣∣ = b
sinΘ

∣∣∣∣ db
dΘ

∣∣∣∣ . (8.67)

We can then think of a stream of incident probe particles falling onto the target at
various unknown impact parameters b with a uniform distribution in b. Then σ(Θ)
is proportional to the probability of finding a scattered probe at an angle Θ on the
unit sphere centered at the target:

σ(Θ) ∝ Probability of scattering at angle Θ. (8.68)
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This probability can be measured by counting the number of particles scattered
per incident particle – without needing to know the impact parameter b for
every individual particle scattering. In the celebrated case of Coulomb scattering
described in this example, one gets, using Eq. (8.66), the so-called Rutherford
scattering cross-section6

σ(Θ) =
1
4

(
q2

1q2
2

2 E

)2

csc4 Θ

2
. (8.69)

As shown in Figure 8.8, this probability is sharply peaked in the forward, Θ = 0,
direction.

Fig. 8.8 The Rutherford scattering cross-section. The graph shows log σ(Θ) as a function of log Θ.

It also depends strongly on the charges through a quartic power. Measuring the
cross-section σ(Θ), and given the initial probe energy E, we can for example
determine the charge of the target. A scattering process is effectively a way to
looking into atoms using charges – much like looking into say neutral biological
tissue using scattered light and a microscope.

Example 8.4 Snell Scattering
As an illustration of the concept of scattering cross-section, consider light scattered by a perfectly polished
bead whose surface acts like a mirror. The bead’s radius is R, as shown in Figure 8.9. We want to find the
scattering cross-section of this bead as parallel light falls on it.

6 It was the great twentieth-century experimental physicist Ernest Rutherford who derived this equation, and
used it to show by experiment that there is a tiny, heavy, positively charged nucleus at the heart of every atom.
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We start from Eq. (8.67). We then need to find b(Θ) using Snell’s law. Looking at the figure, note that

b(Θ) = R sin θ = R sin
(
π

2
− Θ

2

)
= R cos

(
Θ

2

)
. (8.70)

Using this in Eq. (8.67), we get

σ(Θ) =
1
4

b R csc
Θ

2
=

1
4

b R
sin θ

=
1
4

R2 =
1

4π

(
πR2) . (8.71)

Fig. 8.9 Scattering of light off a reflecting bead.

The total scattering cross-section is therefore

σT =

∫ 2π

0

∫ π

0
σ(Θ) sin ΘdΘdΦ = 4π

1
4π

(
πR2) = πR2, (8.72)

which is simply the cross-sectional area of the bead. This is because the scattering occurs on contact. As
the interaction of the in-falling probe with the target becomes more long-ranged, the total scattering cross-
section increases: the cross-section size seen by probes expands as the range of the interactions extends in
space. �

8.6 Motion in a Uniform Magnetic Field

Now we will consider a nonrelativistic point particle of mass m moving in some
given static magnetic field and with no electric fields present. The Lagrangian is
then given by Eq. (8.45):

L =
1
2

m
(
ẋ2 + ẏ2 + ż2)+ q

c
Aiṙi. (8.73)

If this background magnetic field B is uniform, say

B = Bẑ, (8.74)
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we can write a corresponding vector potential as

A = −1
2

Byx̂+
1
2

Bxŷ, (8.75)

as seen previously in Eq. (8.33). Using Eq. (8.45), the Lagrangian then becomes

L =
1
2

m
(
ẋ2 + ẏ2 + ż2)− q B

2 c
ẋy +

q B
2 c

ẏx, (8.76)

from which we can find the equations of motion

mẍ =
q B
c

ẏ, mÿ = −q B
c

ẋ, mz̈ = 0. (8.77)

The dynamics in the z direction is already decoupled. Setting the initial conditions

z(0) = 0, ż(0) = Vz, (8.78)

we find

z(t) = Vzt, (8.79)

so the particle moves in the magnetic field direction as though it were a free particle.
In the x and y directions, however, the motion is a bit more interesting. We can
easily integrate the ẍ and ÿ equations once to find

ẋ = ω0 (y − y0) , ẏ = −ω0 (x − x0) , (8.80)

where

ω0 ≡ q B
m c

, (8.81)

while x0 and y0 are constants of integration whose role will soon become apparent.
The new equations (8.80) suggest a change of variable

X ≡ x − x0, Y ≡ y − y0, (8.82)

to yield a somewhat simpler set of coupled equations

Ẋ = ω0Y, Ẏ = −ω0X. (8.83)

These can be decoupled by differentiating with respect to time:

Ẍ = −ω2
0X, Ÿ = −ω2

0Y, (8.84)

leading us to the familiar simple harmonic oscillator equations. We now see that
the point charge circles in the x, y plane about the point (x0, y0), as shown in
Figure 8.10(a). If X > 0, we have Ẏ < 0 with ω0 > 0. This implies that if q B > 0,
the circling is in the clockwise direction in the x–y plane, as seen looking down the
z axis.

Let us choose a particularly convenient set of initial conditions. First:

Y(0) = 0 ⇒ Ẋ(0) = 0, (8.85)
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(a) (b)

Fig. 8.10 (a) Top view of a charged particle in a uniform magnetic field. (b) The helical trajectory of the charged
particle.

since Ẋ = ω0Y. Next:

X(0) = R ⇒ Ẏ(0) = Vy = −ω0R ≡ C, (8.86)

since Ẏ = −ω0X, where we have denoted the radius of the circular trajectory as
“R.” We then find

X(t) = R cos (ω0t) , Y(t) = −R sin (ω0t) . (8.87)

In the original coordinates:

x(t)− x0 = R cos (ω0t) , y(t)− y0 = −R sin (ω0t) . (8.88)

As promised, this is a circle of radius R centered about (x0, y0), where(
x − x0

R

)2
+

(
y − y0

R

)2
= 1. (8.89)

Superimposing the x, y motion onto the dynamics in the z direction, we get the
celebrated helical trajectory depicted in Figure 8.10(b) of a charged particle in a
uniform magnetic field.

The radius R and initial speed Vy are not independent. Using Eqs. (8.81)
and (8.86), we can write

R =
m cVy

q B
, (8.90)

so it is clear that the radius of the circle is proportional to the initial speed in the
x–y plane, and also that the larger the B field, the tighter the radius. We can use this
setup to measure attributes of charged particles, such as their charge or speed, by
measuring the radius of their circular trajectory in known uniform magnetic fields.
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The phenomenon of charges circling in uniform magnetic fields was one of
the first tools used by particle physicists to identify and measure properties of
subatomic particles. Figure 8.11 shows a photograph from a bubble chamber.

Fig. 8.11 The tracks of charged particles in a bubble chamber of superheated liquid hydrogen at CERN. The tightly
coiled spirals are electrons or positrons (which coil in opposite directions); the straighter lines are more
massive particles. Courtesy Science & Society Picture Library / SSPL / Getty Images.

Fast-moving charged particles enter a chamber immersed in a known external
magnetic field. The box is filled with a superheated liquid,7 such as liquid hydrogen.
The incoming particles create a trail of bubbles as they pass through. The spirals
shown in the figure represent actual trajectories of electrons and other more exotic
subatomic particles!8 The spiral direction tells us the sign of the charge of the
unknown particle. The radius of the spiral can be related to the particle’s speed
using Eq. (8.90). As the particle moves through the fluid in the box, it loses
energy (and hence speed), and the radius of the spiral decreases. The device can
be used to measure the charge-to-mass ratio q/m of many subatomic particles.
This comparatively simple device was an important feature of the golden age
of experimental particle physics. Unfortunately, bubble chambers cannot directly
detect neutral particles like the π0 meson or Λ hyperon. They can, however, detect
electrically charged decay products such as the proton and negative pion in the

7 “Superheated” means that the liquid’s temperature is a bit above the boiling point. But unless there is a
disturbance somewhere in the liquid, such as energetic electrons produced by the ionization of atoms in the
liquid along the path of a relativistic charged particle passing through, there is no boiling, i.e., no bubbles start
to form.

8 Some of the trajectories are from particles that enter from outside, while others are due to the most energetic
electrons ejected from the bubble chamber’s fluid atoms, such as hydrogen.



336 8 Electromagnetism

decay Λ → p + π−, and from the observed energies and momenta of the decay
products learn a great deal about their neutral parent.9

Example 8.5 Crossed Electric and Magnetic Fields
Now we consider a nonrelativistic point charge q of mass m moving in the background of “crossed” uniform
electric and magnetic fields, given by

E = E0ŷ, B = B0ẑ. (8.91)

That is, the fields are perpendicular to one another. If we now place a positively charged particle at rest in
these fields and then let it go, where would you guess the particle would be found quite some time later? The
actual result can be surprising, but useful in building up one’s physical intuition. We will find the trajectory of
the particle by first finding the vector and scalar potentials. From the discussion of a uniform magnetic field
above, we can write

A =
1
2

B0xŷ − 1
2

B0yx̂, (8.92)

where we used Eq. (8.31). But we now also have a nontrivial electric static potential

φ = −
∫

E · ds = −E0y, (8.93)

choosing the zero at y = 0. The Lagrangian follows from Eq. (8.45), and is given by

L =
1
2

m
(

ẋ2 + ẏ2 + ż2)+ q E0y +
q

2 c
B0xẏ − q

2 c
B0yẋ. (8.94)

We next identify the canonical momenta

px =
∂L
∂ ẋ

= mẋ − q B0

2 c
y, py =

∂L
∂ ẏ

= mẏ +
q B0

2 c
x, pz = mż. (8.95)

Noting that the system is invariant under translations in the z direction, the momentum pz must be conserved,
so we can describe the evolution along the z axis as motion with constant speed:

ṗz = mz̈ = 0. (8.96)

Therefore we can focus on the two-dimensional evolution in the x–y plane by switching to an appropriate
inertial frame moving in the z direction along with the particle.

Looking for other constants of motion, we note that the Lagrangian is not an explicit function of time, so
the Hamiltonian

H = ẋ
∂L
∂ ẋ

+ ẏ
∂L
∂ ẏ

− L =
1
2

m
(

ẋ2 + ẏ2)− qE0y (8.97)

must also be conserved, where we have already eliminated the z motion, as described above.

9 Bubble chambers have long since been supplanted by other types of detectors, but none is better at showing off
multiple particle tracks.
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The energy of the particle is

E = K .E. + P.E. =
1
2

m
(

ẋ2 + ẏ2)+ qφ =
1
2

m
(

ẋ2 + ẏ2)− qE0y, (8.98)

equal to the Hamiltonian in this case, with both conserved. Note that the magnetic field does not appear in
the energy, consistent with the fact that the magnetic force does no work. We may have realized this from the
form of the magnetic force law

dEm

dt
= Fm · v = q

(v
c
× B

)
· v = 0, (8.99)

since the cross product of two vectors is perpendicular to both. The energy is a constant of motion and can be
used to help find the trajectory of the particle.

The equations of motion in the x and y directions then take the simple form

mv̇x − q B0

c
vy = 0, m_vy +

q B0

c
vx = q E0, (8.100)

and do very much reflect the presence of the magnetic field. We have written these equations in terms of the
velocity instead of the position, since they are easier to decouple. We now take the time derivative of the first
equation:

mv̈x − q B0

c
_vy = 0, (8.101)

and then use the second equation to eliminate v̇y :

v̈x +
q2B2

0

m2c2 vx − q2E0B0

m2c
= 0. (8.102)

This second-order linear equation is now fully decoupled and can easily be solved by using the form

vx(t) = A1 cos (ω0t + A2) + C, (8.103)

which is the sum of the general solution of the homogeneous equation (i.e., the differential equation without
the final term) and a particular solution of the full equation. Here A1 and A2 are integration constants, butω0

and C are constants determined by the differential equation. Substituting this expression into Eq. (8.102), we
find that

ω0 =
q B0

m c
, C =

E0

B0
c. (8.104)

Using Eq. (8.100), we can now find vy :

vy(t) = −A1 sin (ω0t + A2) . (8.105)

We have thus determined the velocity of the particle in terms of two constants of integration A1 and A2, which
can be used to fix the initial velocity at (say) time t = 0. Let us in fact choose vx(0) = vy(0) = 0, so the
particle starts at rest. Then we find

A1 = − E0

B0
c, A2 = 0 ; (8.106)
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or

vx(t) =
E0

B0
c (1 − cos ω0t) , vy(t) =

E0

B0
c sin ω0t. (8.107)

Integrating the velocities (8.107) with respect to time gives x(t) and y(t):

x(t) =
E0

B0

(
c t − c

ω0
sin ω0t

)
and y(t) =

E0c
B0ω0

(1 − cos ω0t) , (8.108)

where we have chosen any constants of integration to make x(0) = 0, y(0) = 0.
This is an interesting result. Note in particular the term linear in time. To unravel the shape of the

trajectory, we first note that the velocity vanishes periodically, with a period P = 2π/ω0, as seen from (8.107).
Furthermore, the y motion is bounded with amplitude E0c/(B0ω0), while the x motion is unbounded,
growing on average linearly in time due to the term x → E0c t/B0. Figure 8.12(a) shows the trajectory. We
see how both x and y oscillate with period P, with x advancing in discrete steps of E0c P/B0. While the circling
pattern about the magnetic field looks familiar, the drift in the x direction is somewhat counterintuitive, since
the electric field points not in the x direction, but in the y direction.

We can understand why this is happening by breaking the motion into stages. A positive charge starts
from rest at (say) x = y = 0, and then accelerates in the electric field direction (i.e., the y direction) due to
the force qE. But as the charge begins to move, the magnetic force takes hold, so the trajectory turns toward
the positive x direction. Then as the magnetic field continues to curve the trajectory around, the charge begins
to move back against the electric field direction (i.e., in the negative y direction), and so is slowed and brought
back to rest when y = 0. Then a new cycle begins: the electric field speeds up the charge and the previous
motion repeats itself, and so on, and so on. Between each cycle there is a cusp at y = 0.

For arbitrary initial conditions the motion is the sum of a drift velocity c E0/B0 to the right and the type of
circular motion previously described.

(a)

(b)

Fig. 8.12 The trajectory of a particle in uniform crossed electric and magnetic fields: (a) for
vx(0) = vy(0) = 0; (b) typical for other initial conditions. �
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Example 8.6 Mirror Mirror on the Wall
The previous two examples have taught us that probe charges spiral in a plane transverse to magnetic vector
fields. But both examples involved uniform fields. An interesting new twist enters when a charge q moves
in a non-uniform background field. Figure 8.13 shows a particularly interesting non-uniform magnetic field
profile. The field has axial symmetry, so we adopt cylindrical coordinatesρ,ϕ, and z, as depicted in the figure.
Because of this symmetry the magnetic field cannot depend onϕ. Furthermore, the figure indicates that we
want Bϕ = 0. We then have two components to worry about, Bρ(ρ, z) and Bz(ρ, z). But we know from
Maxwell’s equations that

∇ · B =
1
ρ

∂

∂ρ
(ρBρ) +

1
ρ

∂Bϕ

∂ϕ
+

∂Bz

∂z
= 0, (8.109)

where we have written the divergence in cylindrical coordinates.

Fig. 8.13 A non-uniform magnetic field profile with axial symmetry.

In our case, since Bϕ = 0, we have

∂

∂ρ
(ρBρ) = −ρ

∂Bz

∂z
. (8.110)

Integrating this equation, we find

ρBρ = −
∫ ρ

ρ′
∂Bz

∂z
dρ′ + f(z), (8.111)

with some arbitrary function f(z) arising from the ρ integration. To proceed further we make some simpli-
fications. We consider a non-uniformity in Bz along the z direction only – we want ∂Bz/∂z �= 0 and Bz

independent ofρ, with∂Bz/∂ρ = 0. Let us also arrange that f(z) = 0. These conditions can be achieved,
at least approximately, by a careful arrangement of magnets. We then have

ρBρ = −ρ2

2
∂Bz

∂z
⇒ Bρ(ρ, z) = −ρ

2
∂Bz

∂z
. (8.112)
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Therefore if we want ∂Bz/∂z > 0, for example, we must have a component of the magnetic field vector
pointing radially inward – with a larger radial component the farther away we are from the z axis, as depicted
in the figure. This configuration is known as a magnetic mirror.

We are now ready to tackle the problem of a point charge moving in this background magnetic field. We
expect that spiraling about the z axis will be part of the dynamics; but there is also a new effect to be expected
from the region where ∂Bz/∂z �= 0. To write the Lagrangian, we first need to find the potentials. With no
electric field and a static magnetic field, we can writeφ= 0, using Eq. (8.25). We are then left with Eq. (8.23),
written in cylindrical coordinates:(

1
ρ

∂Az

∂ϕ
− ∂Aϕ

∂z

)
ˆ̂ρ+

(
∂Aρ
∂z

− ∂Az

∂ρ

)
ϕ̂+

(
1
ρ

∂

∂ρ
(ρAϕ)−

∂Aρ
∂ϕ

)
ẑ

= Bρ(ρ, z)ˆ̂ρ+ Bz(z)̂z. (8.113)

The choice for A is not unique, so we need to make an educated guess. From the axial symmetry, we do
not want A to have any dependence upon ϕ. Furthermore, using the example of uniform magnetic fields
encountered in earlier examples, we expect that Aϕ may play a central role as A whirls around the magnetic
field. We therefore try

Aρ(ρ, z) �= 0, Aϕ(ρ, z) �= 0, Az = 0. (8.114)

Substituting these choices into Eq. (8.113), we get

∂Aρ
∂z

= 0,
∂Aϕ
∂z

= −Bρ(ρ, z),
1
ρ

∂

∂ρ
(ρAϕ) = Bz(z). (8.115)

We can then immediately guess the solution

Aϕ =
ρ

2
Bz(z), Aρ = 0, (8.116)

which implies that

∂Aϕ
∂z

=
ρ

2
∂Bz(z)
∂z

= −Bρ(ρ, z), (8.117)

as needed from (8.112), the no-magnetic-monopole condition encountered earlier. Hence, we have a good
choice for a vector potential describing the desired magnetic field:

A =
ρ

2
Bz(z)ϕ̂. (8.118)

We can now write the Lagrangian of a probe charge of mass m and charge q using Eq. (8.45):

L =
1
2

m
(
ρ̇2 + ρ2ϕ̇2 + ż2)+ q

c
ρ2

2
ϕ̇Bz(z), (8.119)

expressed in cylindrical coordinates. The absences ofϕ and of time from this Lagrangian imply the conserva-
tion of canonical angular momentum and the Hamiltonian, respectively. We find that the canonical angular
momentum is

pϕ = mρ2ϕ̇+
q

2 c
ρ2Bz(z) = constant, (8.120)
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and the Hamiltonian is

H =
1
2

m
(
ρ̇2 + ρ2ϕ̇2 + ż2) = constant, (8.121)

which is also the kinetic energy in this case. Therefore, the kinetic energy of the probe charge is conserved. As
discussed before, the magnetic force does no work: it can deflect and scramble the probe in complicated ways,
but it cannot change its energy – in this case the probe’s speed must remain constant. However, we have only
two constants of motion for three equations of motion, so the overall problem is not integrable, and we have
more work to do.

Next, we look at the equations of motion in theρ and z direction. We find

mρ̈ = mρϕ̇2 +
q
c
ρϕ̇Bz(z) (8.122)

and

m̈z =
q

2 c
ρ2ϕ̇

dBz

dz
. (8.123)

We can use Eq. (8.120) to eliminate ϕ̇ from these two equations. We first have

ϕ̇ =
pϕ − m ρ2ω0

m ρ2 =
pϕ

m ρ2 − ω0, (8.124)

where we have defined

ω0(z) ≡ q Bz(z)
2 m c

, (8.125)

which is the natural circling angular frequency of the probe about the magnetic field, often called the cyclotron
frequency, seen already in earlier examples. Note that this ω0 is z dependent. The ρ̈ and z̈ equations then
become

ρ̈ =
p2
ϕ − m2ω2

0ρ
4

m2ρ3 =

(
pϕ − m ρ2ω0

) (
pϕ + m ρ2ω0

)
m2ρ3 =

ϕ̇

m ρ

(
pϕ + m ρ2ω0

)
(8.126)

and

z̈ =
ω0

m
1
Bz

dBz

dz

(
pϕ − m ρ2ω0

)
= ρ2ω0ϕ̇

1
Bz

dBz

dz
. (8.127)

Note that, for uniform magnetic field dBz/dz = 0, choosing initial conditions such that pϕ = −m ρ2ω0

leads to ϕ̇ = −qBz/m c, ρ̈ = 0, and z̈ = 0 – i.e., the expected spiral motion about the axis of symmetry
with radiusρ. With a non-uniform magnetic field, we can now see why this system is called a magnetic mirror.
If we start the particle with ϕ̇ < 0 (for example by choosing pϕ ∼ −m ρ2ω0), as the particle travels from
the region near z = 0 toward the magnetic funnel of Figure 8.14, the non-uniformity in the magnetic field
enters through Eq. (8.127): this is a force in the negative z direction – assuming dBz/dz > 0 and ϕ̇ < 0 –
indicating that the probe is pushed back toward negative z. Meanwhile, Eq. (8.126) suggests that the probe
is pushed toward ρ = 0, focusing along the z axis. The problem, is however, somewhat more intricate than
this qualitative analysis may suggest: ω0 is in fact a function of z in the region where the magnetic field is
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changing, and indeed it increases as the particle penetrates this region. Our set of equations of motion, Eqs.
(8.124), (8.126), and (8.127), are tightly entangled.

To analyze the dynamics more quantitatively, it helps to make an approximation. We assume that the
probe experiences the changes in the magnetic field very slowly compared to the timescale associated with
its circling of the field lines. The latter faster time is determined byω0. Hence, at short timescales, the particle
behaves much like a probe in a uniform magnetic field – spiraling around the field lines – with this magnetic
field sampled from the vicinity of the probe. As the particle moves along the z direction, it samples larger and
larger values of magnetic field, which increasesω0 and hence the spinning frequency through Eq. (8.125). This
is known as an diabatic regime: a slowly changing background parameter gradually shifting the evolution
of a fast motion. We can arrange to be close to this regime by choosing

pϕ � −m ρ2ω0 ⇒ ϕ̇ � −q Bz

m c
, (8.128)

which starts the particle in a circular trajectory around the symmetry axis z at the spin rate we already know
from the case of a probe in a uniform magnetic field. We can then write the conserved Hamiltonian as

H � 1
2

mρ̇2 +
1
2

mż2 +
1
2

mρ2ϕ̇

(
−q Bz

m c

)
=

1
2

mρ̇2 +
1
2

mż2 + μBz , (8.129)

where in the last step we defined a new quantity called the magnetic moment of the circling probe:

μ ≡ −1
2

q
c
ρ2ϕ̇. (8.130)

The purpose of this juggling of terms is to show thatμ is approximately conserved in the adiabatic regime. To
see this, note that the Hamiltonian is conserved, so its time derivative is zero:

dH
dt

= mρ̇ρ̈+ mż̈z + μ̇Bz + μḂz = 0. (8.131)

Looking back at Eq. (8.126), we see that ρ̈ � 0 in this regime since pϕ � −m ρ2ω0. We then have

dH
dt

� mżρ2ω0ϕ̇
1
Bz

dBz

dz
+ μ̇Bz + μ

dBz

dz
ż = 0, (8.132)

where we used Eq. (8.127). In the last term, we used the chain rule to write

Ḃz =
dBz

dz
ż. (8.133)

Substituting for the magnetic moment in the first term of Eq. (8.132), we then get

dμ
dt

� 0 adiabatic regime. (8.134)

Since μ∼ρ2ϕ̇, this implies that the traditional angular momentum about the z axis is approximately
conserved. As the particle samples stronger magnetic fields, it must spin faster by increasing ϕ̇: as a result of
this adiabatic conservation statement, we must then have the particle focus toward the z axis by decreasingρ.
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Fig. 8.14 A probe particle bouncing off a region of non-uniform magnetic field. This
phenomenon is known as a magnetic mirror.

We can now easily determine the trajectory of the probe in theρ–z plane. We take the time derivative of
μ explicitly:

dμ
dt

� 0 ⇒ d(ρ2ϕ̇)

dt
� 0 ⇒ 2ρρ̇ϕ̇+ ρ2ϕ̈ � 0. (8.135)

Using Eq. (8.128), we get

2ρρ̇ϕ̇− 2ρ2ω̇0 � 0. (8.136)

Looking back at Eq. (8.125), we find

ω̇0 =
q Ḃz

2 m c
=

q ż
2 m c

dBz

dz
. (8.137)

Finally, substituting this and Eq. (8.128) into Eq. (8.136), we get

ρ̇

ż
= −1

2
ρ

1
Bz

dBz

dz
=

Bρ

Bz , (8.138)

using Eq. (8.112). This implies that the probe tracks the magnetic field lines as they curve towards the z axis,
all the while spinning faster and faster! That is, the number of field lines within an orbit remains constant in
the adiabatic limit.

Using Eq. (8.127), we already argued that the probe is pushed away from the region of increasing magnetic
field. In the Problems section at the end of this chapter, you will find the maximum extent to which the probe
penetrates the region of dense magnetic fields, before bouncing back. This mirror effect can be very useful
for trapping charged particles. If we arrange two such magnetic field profiles as in Figure 8.15, we have a
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(b)

(a)

rotation axis

trapping regiontrapping regiontrapping region

Fig. 8.15 (a) A magnetic bottle in the laboratory, used to trap charged particles. (b) Natural
magnetic bottles formed as parts of earth’s dipole magnetic field. They are an
essential ingredient in producing aurora phenomena near both poles.

magnetic bottle in which charged particles can bounce back and forth. Indeed, the magnetic field lines of
the earth create such a natural bottle, as shown in the figure. A plasma of space particles get trapped between
the north and south pole as they bounce back and forth. At the poles these rapidly moving charged particles
strike atoms in the atmosphere, raising atomic electrons to higher-energy states. When the electrons drop
back to lower-energy states, photons are released – putting on a marvelous show of colors in the skies known
as the aurora. �

Example 8.7 Ion Trapping
Imagine trapping a few ions – or even a single ion – in a small enclosure, poking it around, and observing the
intricate physics within it as it reacts to external perturbations. This is something that physicists do regularly
using the electromagnetic forces that rule the realm of atomic physics. While many such situations are most
interesting because of the quantum physics they allow one to probe, the basic trapping mechanism can be
understood using classical physics.

The task is to trap an ion of charge q using external electric and magnetic fields that we can tune arbitrarily.
The simplest arrangement perhaps would consist of purely electrostatic fields that we might generate by some
arrangement of charges placed far from the ion. This is however not the case, as clarified by the following
theorem.

Earnshaw’s theorem: It is not possible to construct a stable stationary point for a probe charge using only
electrostatic or only magnetostatic fields in vacuum.

To see this for the case of electrostatic fields, consider a region of space where the ion probe is to sit and where
we have some external electrostatic fields. There are no source charges in this region since these are far away
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from the trapping region, so we have∇ · E = 0. Then using E = −∇φ, we get Laplace’s equation for the
electric potentialφ:

∇2φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0. (8.139)

The potential energy of an ion of charge q is then U = qφ, which implies that ∇2U = 0. For trapping the
ion, we then need a minimum in this potential, which implies we need

∂2U
∂x2 > 0,

∂2U
∂y2 > 0,

∂2U
∂z2 > 0 while

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 = 0, (8.140)

which is obviously not possible! But a saddle surface – where say ∂2U/∂x2 < 0 while ∂2U/∂y2 > 0 and
∂2U/∂z2 > 0 – is the best one can do. However, even then the ion would quickly find a way down such a
potential, running away to infinity along the x axis.

There are several ways we might circumvent this unfortunate situation. One is to consider time-varying
electric fields. Imagine a saddle surface that is (say) spinning fast enough that every time the ion ventures a
little down the potential, it is quickly pushed back into the middle. For example, one can construct what is
known as a Paul trap. We leave this case to the Problems section at the end of this chapter. In this example,
we discuss instead the so-called Penning trap, which involves both electrostatic and magnetostatic fields.

The idea of the Penning trap is to begin with a uniform magnetic field

B = Bẑ (8.141)

which, as we now know, leads to a spiral trajectory of an ion, circling in the x–y plane with angular speed

ω0 =
qB
mc

. (8.142)

Therefore such an ion seems to be confined in the x and y directions, but not at all in the z direction. To confine
the ion in the z direction as well, we add an electrostatic field described by the electric potential

φ =
φ0

D2

(
z2 − x2 + y2

2

)
, (8.143)

where D is some length associated with the geometry of the system (see Figure 8.16). Note that this electric
potential satisfies, as it must, the Laplace equation

∇2φ = 0. (8.144)

The nonrelativistic Lagrangian for the ion of charge q then becomes, using Eq. (8.45):

L =
1
2

m
(

ẋ2 + ẏ2 + ż2)− q B
2 c

ẋy +
q B
2 c

ẏx − q
φ0

D2

(
z2 − x2 + y2

2

)
. (8.145)



346 8 Electromagnetism
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Fig. 8.16 The electric and magnetic fields for the Penning potential and the corresponding
effective potential. At the minimum, we have a stable circular trajectory. In general,
however, the radial extent will oscillate with frequency ω0.

It is advantageous to switch to cylindrical coordinates ρ, ϕ, and z given the symmetries of the potential.
We then get

L =
1
2

m
(
ρ̇2 + ρ2ϕ̇2 + ż2)+ q B

2 c
ρ2ϕ̇− q

φ0

D2

(
z2 − ρ2

2

)
. (8.146)

The dynamics in the z direction is then that of a simple harmonic oscillator

z̈ = −ω2
z z (8.147)

with

ω2
z =

2 qφ0

m D2 . (8.148)

Note that we would need

q φ0 > 0 (8.149)

to make sure the ion is trapped in the z direction. We can also write an “energy conservation” statement

1
2

mż2 +
1
2

mω2
z z2 = Ez = constant, (8.150)

for some constant Ez . To see this, multiply Eq. (8.147) by ż and integrate. For the ϕ equation of motion, one
gets the angular momentum conservation law

mρ2ϕ̇+
qB
2 c
ρ2 = pϕ = constant, (8.151)
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where pϕ denotes the angular momentum constant. Instead of looking at theρequation of motion, we realize
that the Hamiltonian is also conserved, since∂L/∂t = 0. Therefore

H =
1
2

m
(
ρ̇2 + ρ2ϕ̇2 + ż2)+ q

φ0

D2

(
z2 − ρ2

2

)
= constant. (8.152)

This allows us to write an effective potential for a one-dimensional problem in the radial direction ρ – akin
to the central force problem we have already seen:

1
2

mρ̇2 + Ueff(ρ) = H, (8.153)

where

Ueff(ρ) = Ez −
1
2

l ω0 c +
p2
ϕ

2 m ρ2 +
1
8

mρ2 (ω2
0 − 2ω2

z

)
(8.154)

and where we also eliminated ϕ̇ in favor of pϕ using Eq. (8.151). This potential is shown in Figure 8.16.
We identify a minimum at ρ = ρ0:

∂Ueff

∂ρ

∣∣∣∣
ρ0

= 0 ⇒ ρ2
0 =

2 pϕ
m

(
ω2

0 − 2ω2
z

)−1/2
, (8.155)

with the curvature near the minimum given by

∂2Ueff

∂ρ2

∣∣∣∣
ρ0

= m
(
ω2

0 − 2 ω2
z

)
> 0, (8.156)

which is positive, since typically the oscillation frequencyωz is much lower thanω0:

ωz  ω0. (8.157)

We may then write

ρ0 �
√

2 pϕ
m ω0

. (8.158)

At this critical radius, we can find the angular speed ϕ̇ using Eq. (8.151):

ϕ̇|ρ0
= −ω0

2
+

1
2

√
ω2

0 − 2 ω2
z � − ω2

z

2 ω0
≡ −ωm, (8.159)

where in the last step we used ωz  ω0. Therefore, ωm  ωz  ω0. The ion circles with radius
ρ0 in the x–y plane very slowly at frequency ωm, while oscillating a little bit faster in the z direction at
frequency ωz . To see the role of the third frequency ω0, we note that the general trajectory implied by the
effective potential shown in Figure 8.16 involves also radial oscillation. The frequency of this oscillation is given
by (8.156):

Ueff(ρ) � Ueff(ρ0) +
1
2

m
(
ω2

0 − 2 ω2
z

)
(ρ− ρ0)

2 , (8.160)
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which means thatρ oscillates with frequency
√

ω2
0 − 2 ω2

z � ω0. This is the third largest frequency in the
problem, tuned by the strength of the external magnetic field. The combined motion is shown in Figure 8.17.
It involves a slow circular trajectory in the x, y plane of large radius, on top of which is superimposed a
slightly faster vertical oscillation in the z direction; and on top of these are superimposed fast epicycles
with tight radii. This arrangement can in practice achieve ion trapping lasting for days. But eventually the
configuration is unstable, and other considerations, such as the leaking of energy through electromagnetic
radiation, invalidates the analysis. Electromagnetic trapping of charged particles is an extraordinarily difficult
problem.

Fig. 8.17 The full trajectory of an ion in a Penning trap. A vertical oscillation along the z axis
with frequency ωz is superimposed onto a fast oscillation of frequency ω0, while
the particle traces a large circle with characteristic frequency ωm. �

8.7 Relativistic Effects and the Electromagnetic Force

Our discussion of the dynamics of a probe charge in background electromagnetic
fields focused on the nonrelativistic regime, where the probe’s speed stays much
smaller than the speed of light. While this is an adequate approximation in many
situations, relativity and the speed of light are central to electromagnetism and there
are many interesting situations where relativistic effects play a central role. In this
section we revisit the problems of a probe in uniform electric and magnetic fields –
presenting a full relativistic treatment to illustrate some of the new features due to
relativity.
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Example 8.8 Probe in a Uniform Magnetic Field
We start with the example of a probe of charge q and mass m moving in the background of a uniform magnetic
field B. We already know that the Lagrangian of a free relativistic particle leads to the equations of motion

dp
dt

=
d
dt
(γ m v) = 0,

dE
dt

=
d
dt

(
γ m c2) = 0. (8.161)

When we add the term qA·v/c to the Lagrangian, we end up modifying the right-hand side of these equations
to give

d
dt
(γ m v) =

q
c

v × B,
dE
dt

=
d
dt

(
γ m c2) = 0, (8.162)

where B is a constant vector, and the electric field E = 0. The conservation of relativistic energyγ m c2 from
the second equation tells us that the speed of the particle is constant. This then allows us to immediately write
the first equation as

γ m
dv
dt

=
q
c

v × B ⇒ dv
dt

=
(q c

E

)
v × B. (8.163)

The coefficient q c/E is constant with constant energy E, so the trajectory of the probe is qualitatively the
same as in the nonrelativistic case, in that it still spirals around the direction of B. The difference is that the
angular frequency of rotation is now

ω0 =
q c
E

B. (8.164)

In the slow speed limit, we have

E = γ m c2 � m c2 +
1
2

m v2 � m c2, (8.165)

yielding the approximate angular frequency

ω0 �
q B
m c

, (8.166)

which is the expression we obtained earlier. As the speed of the probe approaches that of light, the denomina-
tor of Eq. (8.164) becomes larger than the nonrelativistic approximate counterpart. This implies that relativistic
effects make the spiraling angular frequency smaller compared to the nonrelativistic estimate. In the limit
v → c, we have E → ∞, implyingω0 → 0: the probe does not spiral at all. This would then be the case
for a hypothetical massless charged particle, but in fact there are no such particles.

The problem is more interesting than just portrayed. As is the case in all such situations, we ignored the
electromagnetic fields due to the probe charge itself. But as a spiraling particle accelerates, it radiates energy
by emitting electromagnetic waves and this leakage can become significant for a relativistic particle. The rate
of energy loss for a probe undergoing circular motion can be shown to be

dE
dt

=
2
3

q2

m2c3 γ
2
(

dp
dt

)2

, (8.167)

where we should note in particular the γ2 factor. As the probe speed is increased, the power loss to
electromagnetic radiation will quickly become sufficiently important that the electromagnetic fields from the
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probe cannot be ignored in determining its dynamics. Such effects are called back-reaction effects – the
probe’s own fields react back onto its dynamics. In this case, as energy is drained out of the probe faster and
faster, we expect that the probe will slow down – its spiraling radius getting smaller and smaller. We can write
a differential equation for the speed using Eq. (8.167):

d
dt

(
γ m c2) = 2

3
q4

m2c5 γ
2 (v × B)2

=
2
3

q4

m2c5 γ
2 (v2B2 − v · B

)
, (8.168)

where we used the vector identity

(a × b) · (c × d) = (a · c)(b · d)− (a · d)(b · c). (8.169)

If we choose a scenario where B is oriented such that v ·B = 0, perpendicular to the plane of circular motion,
we get

dγ
dt

=
2
3

q4B2

m3c7 γ
2v2 =

v
c2 γ

3 dv
dt

, (8.170)

where in the last step we used the chain rule on dγ/dt. We then end up with a differential equation for the
speed of the probe given by

dv
dt

=
2
3

q4B2

m3c5 v

√
1 − v2

c2 . (8.171)

One can find an exact solution to this equation and determine v(t). We can see from this that the characteristic
decay time for v is set by the combination m3c5/q4B2. However, this analysis is incomplete. In arriving at
this result, we assumed that the first of Eqs. (8.162) holds. But the outgoing electromagnetic waves carry
momentum and hence we may expect a modification of dp/dt as well. The full problem goes beyond the
scope of this book. �

Example 8.9 A Relativistic Probe in Crossed Uniform Electric and Magnetic Fields
Now we will look back at the problem of a probe particle of mass m and charge q moving in the background
of uniform electric and magnetic fields, E and B, which are perpendicular to one another, so E · B = 0. We
want to treat the full relativistic problem, where the probe’s speed may not be much smaller than that of light.
Along the same line of approach as in the previous example, we quickly arrive at the equations of motion

dp
dt

= qE +
q
c

v × B, (8.172)

where the momentum p = γ m v. This is a complicated problem, but it can be simplified significantly through
a physical trick. Knowing that these equations of motion are Lorentz invariant, we switch to a reference frame
in which the background field is either entirely electric or entirely magnetic. Let us assume that E < B, and
leave the opposite case as an exercise to the reader. Looking at the Lorentz transformations of the electric and
magnetic fields, Eqs. (8.35) and (8.36), we see that if we choose a reference frame – call it O′ – moving with
velocity

V
c
=

E × B
B2 , (8.173)
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then the primed electric and magnetic fields become

E′ = 0, B′ =
1
γ V

B, (8.174)

where we have used the vector identity

a × (b × c) = (a · c)b − (a · b)c. (8.175)

Note that requiring V < c implies that E < B, as needed. We have mapped the problem onto the previous
example, a probe moving in a uniform purely magnetic background field. This is because the equations of
motion of the probe in the new reference frame are simply

dp′

dt
= qE′ +

q
c

v′ × B′ =
q
c

v′ × B′, (8.176)

because the equations of motion are Lorentz invariant and do not change structural form under change of
inertial reference frame. From the perspective of this reference frame, the particle circles around the new
B′ field, which is a factor of γ smaller in magnitude than the original one. Switching back to the unprimed
reference frame, we then superimpose on this circling motion a drift perpendicular to E and B given by the
velocity V. Hence, the relativistic problem is qualitatively very similar to the nonrelativistic version – except
for a few factors ofγ here and there! �

8.8 Summary

In this chapter we have extended the Lagrangian formalism to include the full
effects of the electromagnetic force. In deriving the Lagrangian we once again
learned to appreciate the role and power of symmetry in physics – as Lorentz
symmetry closely guided us to the answer. We also encountered a new symmetry
principle, gauge invariance, which plays a central role in physics. We will revisit
the subject of gauge symmetry in the upcoming capstone Chapter 10.

Electromagnetism rules the technological world around us, and by tackling
several real-life situations involving electromagnetic fields, we started to get a feel
for the strange effects of electromagnetism: electric fields accelerate charges along
their field lines, while the peculiar velocity-dependent magnetic force does no work,
yet bends charges into helical trajectories.

Problems

Problem 8.1 Consider an infinite wire carrying a constant linear charge density λ0.��
Write the Lagrangian of a probe charge Q in the vicinity, and find its trajectory.

Problem 8.2 Consider the oscillating Paul trap potential��
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U(z, ρ) =
U0 + U1 cosΩt

ρ2
0 + 2 z2

0

(
2 z2 +

(
ρ2

0 − ρ2)) , (8.177)

written in cylindrical coordinates. (a) Show that this potential satisfies Laplace’s
equation. (b) Consider a point particle of charge Q in this potential. Analyze the
dynamics using a Lagrangian and show that the particle is trapped.

Problem 8.3 Show that the Coulomb gauge ∇·A = 0 is a consistent gauge condition.�

Problem 8.4 Find the residual gauge freedom in the Coulomb gauge.�

Problem 8.5 Show that the Lorentz gauge ∂μAνημν = 0 is a consistent gauge�
condition.

Problem 8.6 Find the residual gauge freedom in the Lorentz gauge.�

Problem 8.7 An ultrarelativistic electron with v ∼ c and momentum p0 enters a���
region between the two plates of a capacitor, as shown above. The plate separation
is d and a voltage V is applied to the plates.

(a) Show that
d
dt

(p0 cosα tan θ) = −e V
d

,

where θ is the time-dependent angle the electron makes with the horizontal axis
during its trek. (b) Write a differential equation for y(x), assuming that

1
c

d
dt

∼ d
dl

, (8.178)

where dl =
√

dx2 + dy2. (c) Find the trajectory y(x) by solving the differential
equation from part (b).
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Problem 8.8 Charged particles are accelerated through a potential difference V0��
before falling onto a lens consisting of an aperture of height y0 and thickness w,
as shown above.

There is a uniform electric field E1 and E2 on the left and right of the aperture,
respectively, as depicted. The figure also shows the trajectory of a charged particle
of charge q emerging a distance x1 from the aperture on the left and focusing a
distance x2 on the right. Assume V0 � E1x1 and E2x2, and x1 and x2 � y0. (a)
Using ∇ ·E = 0, show that inside the aperture we have

Ex � (E2 − E1)w, Ey � −E2 − E1

w
y.

(b) Show that
1
x1

+
1
x2

� E2 − E1

2 V0
, (8.179)

so that the aperture functions as a lens for charged particles.

Problem 8.9 A charged particle is circling a magnetic field that gradually increases��
in magnitude from B1 to B2 as the particle advances along the field lines. Show that
the particle will be reflected if

v0‖ ≤ v0⊥

√
B2

B1
− 1, (8.180)

where v0‖ and v0⊥ are the components of the particle’s velocity parallel and
perpendicular to the magnetic field.

Problem 8.10 A coaxial cable has a grounded center and a voltage V0 on the rim, as��
shown above.

A uniform magnetic field B0 lies along the cylindrical axis of symmetry.
Electrons propagate from the center to the rim. Find the mininum V0 so that current
can flow from the center to the rim.

Problem 8.11 Neutrons have zero charge but carry a magnetic dipole moment μ. As���
a result, they are subject to a magnetic force given by F = (μ · ∇)B. A beam of
neutrons with μ = μxx̂ is moving along the z direction into a region of magnetic
field B. Find a simple form for B capable of focusing the beam and preventing it
from dispersing. This means that small disturbances in the beam profile would not
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grow. Hint: For any vector field V satisfying ∇ ·V = 0, we can write V = ∇f for
a function f satisfying ∇2f = 0.

Problem 8.12 A magnetic monopole is a particle that casts out a radial magnetic��
field satisfying ∇ · B = 4πqmδ(r), where qm is the magnetic charge of the
monopole. A nonrelativistic electrically charged particle of charge q is moving
near a magnetic monopole of magnetic charge qm. (a) Show that the magnetic field
from the monopole takes the form

B =
qm
r2 r̂.

(b) Write the equations of motion of the electrically charged particle assuming that
the magnetic monopole remains stationary. (c) Find the constants of motion; in
particular show that the so-called Fierz vector

Z = r× p− q qm
r

r
(8.181)

remains constant.

Problem 8.13 Consider a charged relativistic particle of charge q and mass m moving���
in a cylindrically symmetric magnetic field with Bϕ = 0. (a) Show that this general
setup can be described with a vector potential that has one nonzero component
Aϕ(ρ, z). (b) Write the equations of motion in cylindrical coordinates. (c) Consider
circular orbits only and show that this implies that we need Bρ = 0. Then find the
form of Bz needed to achieve circular orbits.

Problem 8.14 For the previous problem, find the angular speed with which the��
particle spins about the magnetic field in terms of the radius of the circular orbit ρ
and other constants in the problem.

Problem 8.15 A cyclotron is made of sheet metal in the form of an empty tuna-fish�
can, set on a table with a flat side down and then sliced from above through
its center into two D-shaped pieces. The two “Dees” are then separated slightly
so there is a small gap between them. A high-frequency alternating voltage is
applied to the Dees, so they are always oppositely charged. At peak voltage there is
therefore an electric field in the gap from the positive to the negative Dee that can
accelerate charges across the gap. There is also a constant and uniform magnetic
field applied vertically, i.e., perpendicular to the Dees, supplied by a large external
electromagnet. Therefore after a charged particle has been accelerated across the
gap it enters a Dee, where it follows a semicircular path due to the magnetic field
and maintains constant speed because the electric field inside a Dee is negligible.
By the time the charged particle has completed a semicircle it arrives back at the
gap, but by now the charges on the two Dees have been reversed, so the particle
is again accelerated in the gap, entering the previous Dee and then executing a
larger semicircular path, this time because it is moving faster. As the particle moves
faster and faster the semicircular paths increase in radius, so in effect the particle
moves in a spiraling path until it reaches the outer edge of the machine, where by
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then it has achieved a very large kinetic energy due to the multiple accelerations
it has received by repeatedly passing through the gap. It is then deflected out
of the cyclotron where it causes a high-energy collision with other particles at
rest in the lab. (a) Assuming that the charged particle is nonrelativistic, show
that its kinetic energy by the time it reaches the outer radius R of the cyclotron
is T = q2B2R2/2mc2, where q and m are the particle’s charge and mass, B is
the magnetic field, and R is the outer radius of the cyclotron. (b) If we want
to accelerate protons to a kinetic energy of 16 MeV, what must be the applied
magnetic field B (in Gauss) if the diameter of the cyclotron is 1.52 cm? Protons
have mass energy mc2 = 938 MeV and charge q = 4.8× 10−10 esu. Note that 1 eV
= 1.602 ×10−12 ergs = 1.602 ×10−19 Joules. In Gaussian units, B is measured in
“Gauss” and in Standard International (SI) units, B is measured in “Teslas,” where
1 Tesla = 104 Gauss.

Problem 8.16 A nice feature of the cyclotron described in the preceding problem is��
that the alternating current frequency applied to the “Dees” is a constant ω =
qB/mc for nonrelativistic particles, regardless of their energy, so the circulating
particles will arrive at the gaps at just the right time. No matter the radius at which
a particle orbits, the time it takes to travel between two gap encounters is exactly
the same. (a) Show that this is no longer true for relativistic particles. Find a new
expression for ω in terms of q, B, m, c, and γ ≡ (1 − β2)−1/2 ≡ (1 − v2/c2)−1/2.
(b) How might one design an “isochronous cyclotron,” in which relativistic protons
will still reach the gaps at the correct time, with the same constant-frequency
alternating current applied to the Dees? (c) The TRIUMF isochronous cyclotron
has a proton outer orbital radius of 7.9 m, where the protons have a kinetic energy
of 510 MeV. What is the magnetic field strength at the outer orbit? (d) How fast are
these protons moving, expressed as a fraction of the speed of light?

Problem 8.17 Several problems are encountered in trying to scale up cyclotrons�
to produce increasingly energetic protons. One of them is that the external
magnets have to be made larger and larger, which is prohibitively expensive and
ultimately becomes completely unfeasible. A newer generation of machines called
synchrotrons were therefore invented in which protons can circulate at constant
radius, so the magnets only need to cover a much smaller area. (a) In that case,
how can relativistic protons be accelerated to higher and higher speeds if their
orbital radius remains constant? (b) The Large Hadron Collider (LHC) of CERN
(Organisation Européenne pour la Recherche Nucléaire) accelerates protons up to
total energies as large as 7.0 TeV (1 TeV = 103 GeV = 106 MeV), or perhaps even
larger. The circumference of the proton path is 27 km, lying in an underground
tunnel near Geneva, partly in Switzerland and partly in France. What magnetic
field B is required in this case?

Problem 8.18 Consider two inertial frames O and O′, where O′ is moving with�
velocity v relative to O. We split all three-vectors into components parallel and
perpendicular to the direction of the Lorentz boost, v: for example, we have
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E = E‖ +E⊥. Show that the Lorentz transformations of the electric and magnetic
fields given in the text, Eqs. (8.35) and (8.36), can be written instead as

E′
‖ =E‖, E′

⊥ = γ (E⊥ + ((v/c)×B)⊥),

B′
‖ =B‖, B′

⊥ = γ (B⊥ − (v/c ×E)⊥) .

Problem 8.19 We discovered in the text that the scalar and vector potentials are���
components of a four-vector Aμ = (φ,A). In this problem, we will take as
given the existence of this four-vector potential Aμ and, using the known Lorentz
transformation of a four-vector and the relations of Aμ to E and B, we want to
derive the Lorentz transformations of E and B. Consider two inertial frames O
and O′, where O′ is moving with velocity v relative to O. We split all three-vectors
into components parallel and perpendicular to the direction of the Lorentz boost,
v: for example, we have E = E‖ + E⊥. Note that the gradient vector can also be
decomposed as ∇ = ∇‖ +∇⊥. (a) First show that B′

‖ = B‖. (b) Show next that
∇′

‖ = γ (∇‖+(v/c2)(∂/∂t)). (c) Finally, show that B′
⊥ = γ (B⊥−((v/c)×E)⊥),

as in the previous problem.

Problem 8.20 In the previous problem, you derived the Lorentz transformations of���
the B field starting with the assumption that the scalar and vector potentials are
components of a four-vector Aμ = (φ,A). Using a similar approach, derive the
Lorentz transformation of the electric field E; show that you get E′

‖ = E‖ and
E′

⊥ = γ (E⊥+((v/c)×B)⊥). Note that this is a more involved computation than
in the previous problem.

Problem 8.21 Using the Lorentz transformations of the E and B fields, show that��
E2 − B2 is a Lorentz invariant; that is, show that E′2 − B′2 = E2 − B2.

Problem 8.22 Using the Lorentz transformations of the E and B fields, show that��
E ·B is a Lorentz invariant; that is, show that E′ ·B′ = E ·B.

Problem 8.23 Show that the action of a relativistic charged particle (8.43) is invariant��
under a gauge transformation.

Problem 8.24 Using Noether’s theorem, find the conserved quantity that results from���
the invariance of the action (8.43) under gauge transformation of the four-vector
potential. For this, consider an infinitesimal but arbitrary gauge transformation.

Problem 8.25 Derive the equations of motion resulting from the action of a relativis-��
tic charged particle (8.43) and verify that you get the Lorentz force law.

Problem 8.26 Show that Maxwell’s equations given by (8.16) imply the wave���
equations

∇2φ− 1
c2

∂2φ

∂t2
= −4πρQ (8.182)
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and

∇2A− 1
c2

∂2A

∂t2
= −4π

c
J. (8.183)

To do this, you will need the vector identity ∇×∇×A = ∇(∇ ·A)−∇2A. You
will also need to fix the gauge freedom using ∇ ·A + (1/c)∂φ/∂t = 0. The latter
is allowed due to the gauge symmetry discussed in the text.

Problem 8.27 Using the Lorentz transformation of the four-vector potential Aμ and�
the wave equations from the previous problem, deduce the Lorentz transformations
of charge density ρQ and current density J.

Problem 8.28 A relativistic particle with charge Q and mass M moves in the presence��
of a uniform electric field E = E0ẑ. The initial energy is K0 and the momentum is
p0 in the ŷ direction. Show that the trajectory in the y–z plane is described by

z =
K0 + M c2

Q E0
cosh

(
Q E0

p0c
y
)

. (8.184)

Problem 8.29 A relativistic particle of charge Q and mass M is moving in uniform��
circular motion bound by a radial potential. We learned from Eq. (8.167) that the
charge will lose energy to electromagnetic radiation. Assuming that this loss of
energy is slow, we can describe the particle as gradually spiraling toward r = 0
while maintaining constant angular momentum. Apply this treatment to the ground
state of the hydrogen atom, where the atomic radius is about 1 Å (10−10 m);
estimate the time it takes for the electron to crash into the nucleus. Are you
surprised? Why does this not happen?

Problem 8.30 A particle of charge Q and mass M moves through a region of��
uniform magnetic and gravitational fields described by constant field vectors B
and g, respectively. Show that the particle will have a drift velocity given by
M c(g ×B)/Q B2.

Problem 8.31 A particle of charge Q and mass M starts at the origin of the coordinate��
system with initial speed v0 in the ẑ direction. There are uniform electric and
magnetic fields E and B in the x̂ direction. Find the location of the particle when it
has reached one-half of its maximum value in z for the first time.



9 Accelerating Frames

As we saw in Chapter 1, Newton’s laws are valid only for observers at rest in an
inertial frame of reference. For example, Newton’s second law F = ma predicts
that a body of mass m will move in a straight line at constant velocity (a = 0) if
there is no net force F on it as seen from the perspective of an inertial observer. But
to an observer in a non-inertial frame, like an accelerating car or a rotating carnival
ride, the same object will generally move in accelerated curved paths even when
no forces act upon it.

The challenge is that we all live in non-inertial, accelerating reference frames,
even if we are standing still on the ground. The earth rotates about its axis while
also orbiting the sun; the sun orbits around the galactic center; our entire galaxy
is accelerating toward the constellation Orion; and so on. So it seems we cannot
use F = ma! How then can we do mechanics from the vantage point of actual,
non-inertial frames?

In many tabletop situations, the effects of the non-inertial perspective are small
and can be neglected. Yet even in these situations we often still need to quantify
how small these effects are. Furthermore, learning how to study dynamics from
the non-inertial vantage point turns out to be critical in understanding many other
interesting phenomena, including the directions of large-scale ocean currents, the
formation of weather patterns – including hurricanes and tornados, life inside
rotating space colonies or accelerating spacecraft, and rendezvousing with orbiting
space stations.

There is an infinity of ways a frame might accelerate relative to an inertial frame.
Two stand out as particularly interesting and useful:

• linearly uniformly accelerating frames, and
• rotating frames.

9.1 Linearly Accelerating Frames

Observers living inside a uniformly accelerating spaceship experience an effective
gravity attracting them toward the rear of the ship. If they hold up a ball and
let it go, it “falls,” or if they throw the ball, it also “falls,” while tracing out a
parabolic trajectory, as shown in Figure 9.1(a). Every experiment we try inside the
ship proceeds just as though there were real gravity directed toward the rear of the

358
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ship. This of course is just Einstein’s principle of equivalence, already introduced
in Chapter 3.

There are two ways to find the motion of objects in a uniformly accelerating
spaceship. We assume nonrelativistic motion throughout and therefore Galilean
transformation rules apply.

Inertial Perspective
The first approach is to work out a particle’s motion from the point of view of a
hypothetical observer at rest in some inertial frame outside the ship (who can use
Newton’s laws) and then translate this motion into the accelerating ship itself. For
example, take the case of the ball thrown sideways, from one cabin wall toward
the opposite wall. In the frame of an external inertial observer the ball moves in
a straight line at constant speed because there are no forces on it. Two pictures of
the ball are shown in Figure 9.1(b): when the ball is launched, and when it reaches
the opposite wall. It moves in a straight line at constant speed, and while doing so
the spaceship accelerates upward with acceleration as from the inertial observer’s
point of view. In Lagrangian language, the inertial observer writes

L = T − U =
1
2

m
(
ẋ2 + ẏ2) ⇒ ÿ = 0 (9.1)

for the ball, and hence y = y0 for all time. At a later time Δt when the ball
strikes the other wall of the ship, the ship has moved upward a distance (1/2)asΔt2
relative to the inertial observer, where as is the ship’s acceleration. Therefore, if y0
is the initial height of the ball from the cabin floor, relative to the ship the ball will
subsequently have height y0− (1/2)asΔt2. The ball strikes the opposite cabin wall
lower down than the point from where it was thrown. Therefore the ball has “fallen”
relative to the ship, and in fact its trajectory in the ship is parabolic. This behavior
is exactly as though there were a uniform effective gravity geff = as within the
ship, numerically equal to the ship’s acceleration, but directed toward the rear of
the ship.

Non-inertial Perspective
The second way to do mechanics inside the uniformly accelerating ship is to find
an equation analogous to F=ma that is valid in the accelerating frame, and then
solve the new equation to find the motion. The analogous equation in this case of
uniform acceleration is easy to find. Suppose the accelerating frame of the ship is
the primed frame and the external inertial frame is unprimed. The position vectors
of a particle are therefore related by (see Figure 9.1(b))

r = r′ +
1
2
ast2, (9.2)

where as is the acceleration of the ship relative to the inertial, unprimed frame, and
where we assume that the origins of the two frames coincide at time t = 0. By
differentiating this equation, the velocities of the particle are related by v = v′+ast
and the accelerations are related by a = a′ + as. That is, the acceleration of an
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(b)(a)
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Fig. 9.1 A ball is thrown sideways in an accelerating spaceship (a) as seen by observers within the ship, and (b) as
seen by a hypothetical inertial observer outside the ship. The position vectors r and r′ are also shown.

object as seen in the unprimed inertial frame is the vector sum of two accelerations:
the acceleration of the ship itself, plus the object’s acceleration relative to the ship.
Now Newton’s second law F=ma for an object of mass m is valid in the inertial
frame, where F is the sum of the forces acting on the object; we now know that
we can also write this in the form F = ma = m(a′ + as), or

F− mas = ma′. (9.3)

Note that if we define −mas to be a new “pseudoforce” Fpseudo = −mas, then
in the accelerating primed frame

F′ = ma′, (9.4)

where

F′ ≡ F− mas = F+ Fpseudo, (9.5)

the sum of the real forces F and the pseudoforce −mas. Therefore, in the example
at hand with the accelerating rocket, we have F = 0 but F′ �= 0; the non-inertial
observer wants to write Eq. (9.4) with F′ = 0 − mas = ma′, which implies
a′ = −as. Thus, the ball is seen by the non-inertial observer tracing out a parabolic
trajectory with constant acceleration −as.

It is often convenient to define an effective gravity

geff ≡ −as (9.6)

within the ship, so then the new pseudoforce is mgeff . In going over to a uniform
linearly accelerating frame we learn that we can use Newton’s second law for an
object, as long as we add an effective uniform gravitational force to all the real
forces acting on an object as in Eq. (9.5). In the Lagrangian approach, this implies
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that we need to consider the addition of a pseudoforce potential to the Lagrangian.
From the non-inertial perspective, we would need to write

L = T ′ − U ′, (9.7)

where T ′ is the kinetic energy as measured in the non-inertial frame, and the
potential U ′ is

U ′ = U + Upseudo, (9.8)

where U is any potential present in the inertial perspective, and Upseudo is the
potential energy from any pseudoforces. For the example at hand we can write

Upseudo = mgeffy′, (9.9)

which gives the new Lagrangian

L =
1
2

m
((

ẋ′
)2

+
(
ẏ′
)2
)
− mgeffy′, (9.10)

written in terms of the primed coordinates within the spaceship.

Example 9.1 Pendulum in an Accelerating Spaceship
Passengers in a uniformly accelerating spaceship construct a simple pendulum, with a string of length R
attached at its upper end to a fixed point in the ship, and a bob of mass m attached to its lower end, as shown
in Figure 9.2. An easy way to find the equation of motion of the pendulum is to use Lagrange’s equation in the
accelerating frame, which we can do as long as we add the pseudoforce mgeff to the bob in the form of an
effective potential energy Ueff = mgeff y = mgeff R(1 − cos θ′) acting on the bob, where θ′ is the angle of
the string relative to the “vertical” in the spaceship frame, and y is measured up from the lowest point of the
bob. The Lagrangian of the bob is therefore

y

Fig. 9.2 A simple pendulum in an accelerating spaceship.
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L = T′ − U′ =
1
2

mR2
(
θ̇′
)2

− mgeff R(1 − cos θ′) (9.11)

in terms of the generalized coordinate θ′. The Lagrange equation

∂L
∂θ′

− d
dt

∂L

∂θ̇′
= −mgeff R sin θ′ − d

dt
mR2θ̇′ = 0 (9.12)

then gives the usual pendulum equation θ̈′+(geff/R) sin θ′ = 0, so an experiment done inside a uniformly
accelerating frame without gravity gives the same results as the identical experiment done in an inertial frame
containing a uniform gravitational field. �

9.2 Rotating Frames

Consider a number of space colonists living on the inside of a cylindrical rotating
space colony, as illustrated in Figure 9.3. The colony is a long hollow tube of radius
R rotating about its symmetry axis with angular velocity ω, far from any gravitating
planet. Nevertheless, colonists find they are pressed against the inside of the rim, as
though there were an outward gravitational force. They can look overhead and see
other people living on other parts of the rim. If they toss a ball overhead, toward the
symmetry axis, the ball rises and then falls back. If they throw it harder, however, it
falls back, but to a point some distance away. Why do they experience an effective
outward gravity, and why does a thrown ball behave as it does?

A rotating frame might be a frame attached to a merry-go-round turning at
constant angular velocity or within a uniformly rotating space colony or placed
on the rotating earth. As with linearly accelerating frames, there are two ways to
deal with motion in rotating frames:

• Find the motion of an object as viewed from an external inertial frame in which
F = ma is valid, and then translate the results into the coordinates of the rotating
frame.

• Reformulate F = ma → F′ = ma′ so that it is valid in the rotating primed
coordinate system itself; then solve for the motion directly in the rotating frame,
without ever referring back to an inertial frame.

Inertial Perspective
We can find the motion of a space colonist or ball from the point of view of a
hypothetical external inertial observer who peers into the colony through a window
on an endcap of the cylinder. This inertial observer is able to use F=ma, so has
a way to predict the observed motions. The results can then be translated into
the rotating frame of the colony. For example, the hypothetical external inertial
observer looks at a colonist standing on the inside rim. As the colony turns, the
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R

Fig. 9.3 Space colonists living on the inside rim of a rotating cylindrical space colony.

colonist moves in a circle of radius R at angular velocity ω, and is therefore
accelerating toward the symmetry axis with centripetal acceleration acent = ω2R.
The inertial observer can use F = ma, so knows that there is some force causing
this inward acceleration; the force is the normal force N of the rim on the colonist’s
feet: we then have N = mω2R. If the colonist happens to be standing on a scale, the
reading of the scale is the normal force N, so the weight of the colonist is

N = mω2R = mgeff (9.13)

and the effective outward gravity at the colony rim is geff = ω2R. When the colonist
throws a ball, the ball is not in contact with anything, so the inertial observer
will see that the ball goes in a straight line at constant speed. Let us look more
quantitatively at a particular realization of this scenario as seen from the inertial
perspective.

Example 9.2 Throwing a Ball in a Rotating Space Colony
A cylindrical space colony of radius R rotates with period P. A colonist standing on the rim throws a ball straight
“up” toward the rotation axis with the particular speed v = 2πR/P. What is the path of the ball as seen by
the colonist? How long does it take the ball to fall back to the rim? And how far along the rim must the colonist
run, relative to the rim itself, to catch the ball?

Note that as seen by the inertial observer, the rim of the colony also moves with speed v = 2πR/P, the
circumference divided by the period. If the colonist throws the ball toward the rotation axis with this same
speed, then from the point of view of the outside inertial observer the ball moves at a 45◦ angle, as shown
in Figure 9.4(a). In the inertial frame the ball subsequently moves in a straight line at constant velocity, since
there is no force on it, so it intersects the rim one-quarter of the way around, as shown.

The ball’s speed in this frame is

v = (v2
x + v2

y)
1/2 =

√
2 (2πR/P) , (9.14)
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so the time required for the ball to reach (i.e., “fall to”) the rim is

t =
distance

speed
=

√
2R√

2(2πR/P)
=

P
2π

. (9.15)

During this time the rim itself turns a distance

d = speed × time =
2πR

P

(
P

2π

)
= R, (9.16)

so the ball strikes the rim a distance (2πR/4 − R)= (π/2 − 1)R = 0.57R from the colonist. This is how
far the colonist has to run to catch the ball, even though the ball was thrown vertically upward in the colony
frame. The trajectory of the ball as seen by the colonist is as shown in Figure 9.4(b). Note that it rises vertically
at the beginning, that its highest point is a distance R/

√
2 from the colony center, and that as it arrives at the

rim it falls vertically (i.e., perpendicular to the rim itself at that point), a distance 0.57R around the rim from
where it started.

If a ball is thrown upward only a short distance – if its initial speed in the colony is only a small fraction
of the colony’s rim speed – the ball will behave more nearly like a ball thrown on earth, rising almost straight
up and falling almost straight down with effective gravitational acceleration given by−ω2R.

(a) (b)

Fig. 9.4 Throwing a ball in a rotating space colony: (a) from the point of view of an external
inertial observer; (b) from the point of view of a colonist. �

Non-inertial Perspective
Is there an equation analogous to F = ma that we can apply directly in a rotating
frame? Much like the linearly accelerating case, the non-inertial perspective for
rotating frames requires the addition of pseudoforces to Newton’s second law.
However, the rotating scenario is significantly more involved and benefits from a
more general treatment than that explored by our particular example. We therefore
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relegate the discussion to a new section, treating the problem more generally –
considering pseudoforces for both uniformly and non-uniformly rotating frames.
After developing the formalism, we will come back to the space colony example –
as seen from the perspective of the colonists.

9.3 Pseudoforces in Rotating Frames

We begin by finding the velocity vin of a particle in an inertial frame in terms of
its velocity vrot in the rotating frame. This will allow us to write the Lagrangian
directly from the perspective of the non-inertial rotating observer.

Suppose some vector A is at rest in the rotating frame. We take A to be
perpendicular to the rotation axis, with its tail located at the rotation axis itself,
as shown in Figure 9.5(a). Then if the rotating frame turns through angle dϕ, the
change in A is dA, which is perpendicular to A in the limit of small dϕ. The
magnitude of dA is dA = Adϕ. In vector cross-product form, we can write

dA = dϕ×A, (9.17)

where the vector dϕ points out of the page for counterclockwise rotation, according
to the right-hand rule. Looking at Figure 9.5(b), we see that Eq. (9.17) actually
holds whether A is perpendicular to the rotation axis or not, and whether its tail is
at the rotation axis or not, since |dA| = |dϕ×A| = |dϕ||A| sin θ.

Now if A also changes in the rotating frame, say by the amount dArot, we have
to add dArot to the change due to frame rotation. That is:

dAin = dArot + dϕ×A (9.18)

is the total change in the vector A observed from the inertial frame. Dividing by
the small time interval dt during which the rotating frame turns by dϕ, we find

dA
dt

∣∣∣∣
in

=
dA
dt

∣∣∣∣
rot

+ ω×A, (9.19)

where ω = dϕ/dt is the instantaneous angular velocity of the rotating frame.1
Equation (9.19) relates the time rate of change of any vector A between the inertial
and rotating frames. Note also that ω need not be constant. We emphasize the
generality of the transformation between inertial and rotating frames by simply
writing the operator as

d
dt

∣∣∣∣
in

=
d
dt

∣∣∣∣
rot

+ ω×, (9.20)

where the operator can operate on any vector A.

1 More formally, we have divided a small change ΔA by a small change Δt and then taken the limit as Δt → 0.
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(out)

(a) (b)

Fig. 9.5 A vector that is constant in a rotating frame changes in an inertial frame: (a) simple two-dimensional
case; (b) general three-dimensional case.

In particular, let A = r, the position of the particle. Then dr/dt|in = vin is the
velocity of the particle measured in the inertial frame and dr/dt|rot = vrot is its
velocity in the rotating frame, so

vin = vrot + ω×r. (9.21)

The second term on the right is the velocity the particle would have in the inertial
frame if it were at rest in the rotating frame, a distance r from the axis.

We are now ready to write the Lagrangian from the perspective of the non-
inertial rotating frame. We begin with the Lagrangian of a single particle of mass
m, given by

L =
1
2

mv2 − U(r), (9.22)

with some arbitrary potential U(r). Recall that the Lagrangian must be written in
an inertial frame since the equations of motion we map onto, F = ma, constitute
Newton’s second law – written in an inertial frame. This means that the velocity v
that appears in the Lagrangian is vin. We then have

L =
1
2

mv2
in − U(r) =

1
2

m (vrot + ω×r)2 − U(r). (9.23)

The last form expresses the Lagrangian in terms of vrot. As such, it is most
convenient to take ω and r as vectors expressed in the rotating reference frame
as well – even though in principle the scalar products that appear within L are
invariant in this respect. We can now write
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1
2

m (vrot + ω×r)2 =
1
2

m (vrot)
2 + mvrot · (ω×r) +

1
2

m (ω×r)2

=
1
2

mv2
rot + mvrot · (ω×r)

+
1
2

mω2r2 − 1
2

m (ω · r)2 , (9.24)

where the last line was obtained by using the vector identity

(a× b) · (c× d) = (a · c) (b · d)− (b · c) (a · d) . (9.25)

So we have found that in a rotating frame the Lagrangian can be written in terms
of rotating coordinates as

L =
1
2

mv2
rot + mvrot · (ω×r) +

1
2

mω2r2 − 1
2

m (ω · r)2 − U(r). (9.26)

We can already see that from the perspective of the rotating frame, the kinetic
energy is not simply (1/2)mv2

rot. To explore the effects of the additional terms, we
need to look at the equations of motion in the rotating frame:

d
dt

(
∂L
∂ṙi

rot

)
=

∂L
∂ri

rot
, (9.27)

where all vectors in the Lagrangian are assumed written in terms of their com-
ponents in the rotating frame (i is x, y, or z). We emphasize this by labeling
the components of any vector in the rotating frame with the “rot” superscript or
subscript. For the left-hand side, we find that

d
dt

(
∂L
∂ṙi

rot

)
= m r̈i

rot + m (ω × vrot)
i + m

(
dω
dt

× r

)i
, (9.28)

where we have used vrot = dr/dt and allowed for the possibility that ω may vary
with time. To compute the right-hand side of Eq. (9.27), it is convenient to rewrite
the second term in the Lagrangian as

mvrot · (ω×r) = m r · (vrot × ω) , (9.29)

using the general vector identity a · (b× c) = b · (c× a) = c · (a× b) . This
helps in computing the spatial derivative of the Lagrangian more compactly:

∂L
∂ri

rot
= m (vrot × ω)i

rot + mω2ri
rot − m (ω · r)ωi − ∂U(r)

∂ri
rot

. (9.30)

Putting things together, we get the equation of motion in the rotating frame:

marot = mω2rrot − m (ω · r)ωrot − 2 m (ω × vrot)rot (9.31)

− m
(

dω
dt

× r

)
rot

−∇rotU(r).
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The first two terms on the right can be combined to give −mω× (ω × r)rot, using
the vector identity a × (b× c) = (a · c)b − (a · b) c . Then, defining the total
force acting in the rotating frame as

Frot = marot, (9.32)

it follows that

Frot = Fin−mω × (ω × r)rot︸ ︷︷ ︸
centrifugal

−2 m (ω × vrot)rot︸ ︷︷ ︸
Coriolis

−m (ω̇ × r)rot︸ ︷︷ ︸
Euler

, (9.33)

where Fin = −∇rotU(r) is the sum of the real forces acting in the inertial
frame. This implies that in the rotating frame the particle is subject to three new
pseudoforces in addition to real physical ones. These are labeled the centrifugal,
Coriolis, and Euler pseudoforces.

For notational simplicity, we will henceforth drop the “rot” labels on all the
above expressions. We start by looking more closely at the centrifugal pseudoforce

Fcen = −mω×(ω×r), (9.34)

named so because in the rotating frame it pushes the particle away from the axis
of rotation. Suppose for example the rotating frame turns counterclockwise, so the
vector ω points out of the page as in Figure 9.6. If r is measured directly out from
the rotation axis, then r is perpendicular to ω, so ω×r has magnitude ωr and points
to the right as shown. Then since ω is necessarily perpendicular to ω× r, the cross
product ω×ω×r has magnitude ω2r and points toward the rotation axis, as shown
in Figure 9.6(b). Finally, we have to multiply by −m, so Fcen has magnitude mω2r
and points away from the rotation axis. In vector form, since we have taken r to be
perpendicular to the rotation axis, we can write

Fcen = mω2r⊥, (9.35)

(out) (out)

Fig. 9.6 Construction of the centrifugal pseudoforce.
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where we have added a ⊥ subscript to emphasize that this relation is only valid
when r → r⊥ is perpendicular to ω. This is the familiar expression mv2/r, since
the tangential velocity of a particle at rest in the rotating frame is v = rω.

The second pseudoforce is the Coriolis pseudoforce2

FCor = −2 mω×vrot, (9.36)

which depends on the velocity of the particle (but not its position) in the rotating
frame, in contrast to the centrifugal pseudoforce that depends on the position of the
particle but not its velocity. The Coriolis pseudoforce only acts when the particle
is moving in the rotating frame, in any direction that is not parallel to ω. It tends
to deflect the particle’s path because ω×vrot is perpendicular to the direction of
motion at any instant.

The third and final pseudoforce is known as the Euler term:

F = −m
(

dω
dt

)
×r, (9.37)

which only acts if the rotating frame is speeding up or slowing down its rotation
rate, or if the axis of rotation is changing direction. In the rest of this chapter we
will assume that our rotating frame turns at a steady rate in the same direction, so
we will ignore this final term.

In summary, in uniformly rotating reference frames we have to add two
pseudoforces, Eqs. (9.34) and (9.36), to the real forces when using F = ma in
the rotating frame. Here Fcen depends on the particle’s position but not its velocity
in the rotating frame, and pushes the particle away from the axis of rotation. Also
FCor depends on the particle’s velocity in the rotating frame, but not its position,
and pushes the particle in a direction perpendicular to its direction of motion, unless
vrot is parallel to ω, in which case the Coriolis pseudoforce vanishes.

Example 9.3 Rotating Space Colonies Revisited
Colonists in a rotating cylindrical space colony live on the inside rim of the colony. To outside inertial observers,
a colonist standing on the rim travels in a circle of radius R, so accelerates toward the axis of rotation with
a = v2/R = Rω2. The force causing this acceleration is the normal force of the rim acting on the colonist’s
feet, N = mRω2, which is in fact by definition the colonist’s weight, since if the colonist were standing on
a scale, that is what the scale would read. To observers in the non-inertial rotating frame of the colony, the
normal force N is balanced by the pseudogravity mgeff = mRω2, i.e., the centrifugal pseudoforce (9.34), so in
the rotating frame the net force is zero, and the colonist remains at rest.

Any object moving within the colony feels both the centrifugal and the Coriolis pseudoforce – as seen
from the perspective of the colonists. Suppose that a colonist throws a ball tangent to the rim with speed Rω
in the direction opposite to the rim’s rotation direction. Then the ball is initially at rest in the inertial frame.
Neglecting any air resistance, we know that it will remain at rest in the inertial frame, because there are no

2 Named for the French engineer and mathematician Gustave-Gaspard Coriolis (1792–1843), who first under-
stood and explained the effects of this pseudoforce.
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real forces on it, as shown in Figure 9.7(a). From the colonist’s perspective, there should be no radial motion;
instead, the ball would appear to circle around parallel to the ground: the centrifugal pseudoforce mω2R
points outward and the Coriolis pseudoforce−2mω× v = −2mω(Rω) points inward. These combine to
give a net force mω2R inward, just enough to “cause” the correct inward accelerationω2R for circular motion.

(out)

(b)(a)

Fig. 9.7 Stroboscopic pictures of a ball thrown at speed v = Rω opposite to the direction of
rotation: (a) as seen in an inertial frame; (b) as seen in the colony. �

9.4 Pseudoforces on Earth

Every 24 h the earth makes a complete counterclockwise rotation as seen from a
point above the north pole, in a frame in which the sun is at rest. That is, it takes 24
h for the sun to return to its highest point in the sky.3 In the inertial frame in which
the distant stars are at rest, this translates into an angular velocity of

Ω = (2π/24 h× 3600 s/h)(366.5/365.5) = 7.292 × 10−5 s−1, (9.38)

where the factor (366.5/365.5) changes solar time into sidereal (i.e., star) time.
Sidereal time is the time it takes a distant star to return to its highest point in

the sky. Because of the earth’s orbit around the sun, its angular velocity is slightly
greater in the inertial frame of the stars than in the rotating frame of the earth around
the sun, as shown in Figure 9.8. The earth takes slightly less than 24 h to rotate once
relative to the stars. In what follows we will say for short that earth rotates with a
24-h period, although it is really about 0.3% less than that in the inertial frame of

3 This frame is not inertial because the sun moves with respect to the distant stars. The distant stars, however, do
present an excellent inertial frame.
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Fig. 9.8 The length of the day relative to the stars (sidereal time) is slightly longer than the length of the day
relative to the sun.

the distant stars. Let us now look at the effects of this angular velocity from the
perspective of the non-inertial frame that is the surface of the earth.

Centrifugal Pseudoforces
In earth’s rotating frame, the centrifugal pseudoforce acts upon every particle
within the body of the earth, causing the earth to bulge outward at the equator
into an oblate spheroidal shape, as shown in Figure 9.9(a). All particles are
subjected to a pseudoforce mΩ2ρ outward from the axis of rotation as well as a
gravitational force that is roughly toward the center. Here ρ is the distance from
the rotation axis. This effect is largest at the equator, where mΩ2ρ is about 0.3%
of the acceleration of gravity; it is therefore a small but not necessarily negligible
correction. If the earth were liquid, the shape of the surface in that case (called
the geoid) would be everywhere perpendicular to the vector sum of gravity and
the centrifugal pseudoforce (see Figure 9.9(b)), which together form an effective
gravity, geff =g − Ω2ρ, where ρ is the vector distance from the rotation axis.
There is no centrifugal force at the poles, so geff at that location is due entirely
to gravity. At the equator, geff is about 0.5% less than at the poles, for two reasons:
at the equator the centrifugal force is opposite to g, so cancels some of it, and since
earth bulges at the equator, an object placed there is farther from the center, and so
experiences less real gravity. A plumb bob hung from a point above the surface will
hang so that geff is parallel to the string. Therefore in the northern hemisphere the
string points not toward earth’s center, but to a point somewhat south of the center.

Coriolis Pseudoforces
Coriolis forces play an essential role in wind and weather patterns and ocean
circulation on earth. They also deflect the trajectories of artillery shells, aircraft,
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North

South

(a) (b)

Fig. 9.9 (a) The earth bulges at the equator due to its rotation, which produces a centrifugal pseudoforce in the
rotating frame. A plumb bob hanging near the surface experiences both gravitation and the centrifugal
pseudoforce. The earth’s bulge is shown greatly exaggerated. (b) The effective gravitational vector field
around the earth from the perspective of the earth’s rotating frame. The deformation of the pattern from
that of a central force is shown greatly exaggerated.

and missiles. We concentrate here on effects within a localized region, so we can
erect a local Cartesian system with the x, y plane on the surface (x to the east and y
to the north, as in most maps), and z vertically upward, as shown in Figure 9.10(a).
In these coordinates, the earth’s angular velocity is

Ω = Ω(ŷ cosλ+ ẑ sinλ), (9.39)

where λ is the latitude, which stays approximately constant for localized motion.
A particle has velocity components v=(ẋx̂ + ẏŷ + żẑ), so the Coriolis pseudo-
force is

FCor = −2mΩ×v

= 2mΩ [(sinλẏ − cosλż)x̂− sinλẋ ŷ + cosλẋ ẑ] . (9.40)

The most interesting special case is horizontal motion ż= 0 of the particle: the
horizontal components of FCor are then

FCor,horizontal = 2mΩsinλ(ẏ x̂− ẋ ŷ). (9.41)

Note that in terms of the polar angle θ of the plane, as shown in Figure 9.10(b), the
velocity of the particle is v = (ẋ, ẏ) = (v cos θ, v sin θ), so

FCor,hor. = 2mΩsinλv(sin θ x̂− cos θ ŷ) = −2mΩsinλv θ̂, (9.42)

where θ̂ is a unit tangent vector, positive in the counterclockwise sense as shown.
It follows that:
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Fig. 9.10 (a) A set of three Cartesian coordinates placed on the earth. (b) The horizontal coordinates x and y.
(c) A three-dimensional view of the coordinate system setup on the ground, showing the angular
velocity vector of the earth inclined toward the north.

1. FCor pushes moving objects toward the right of their direction of motion (i.e.,
in the −θ̂ direction) in the northern hemisphere, where sinλ > 0, and toward
the left (in the θ̂ direction) in the southern hemisphere, where sinλ < 0.

2. The magnitude of FCor is independent of the direction of motion; the Coriolis
pseudoforce pushes by the same amount whether the particle is headed north,
south, east, or west.

3. FCor is proportional to sinλ, so it is largest at the poles and zero at the equator.

Example 9.4 Coriolis Pseudoforces in Airflow
Coriolis pseudoforces make an enormous impact on large-scale airflows. If the earth were not rotating, warm
air would rise near the equator and spread out at high altitudes toward both poles, where it would cool off
and sink again, and then flow at low altitudes back to the equator. Therefore one would expect predominantly
southward flow near the ground in the northern hemisphere, and northward flow in the southern hemisphere.
The Coriolis effect profoundly changes this pattern. As the high-altitude air warmed over the equator flows
northward in the northern hemisphere, it is deflected to the right, i.e., eastward, by the Coriolis effect, and
part of it reaches only about 30◦ north latitude whereupon it sinks, and returns toward the equator flowing
northeast toward southwest. These flows are the well-known trade winds. In the southern hemisphere the
trade winds flow from southeast to northwest.

At mid-latitudes one frequently encounters westerly winds, blowing from west to east in both hemi-
spheres. They include the well-known jet stream that speeds up airliners flying east and slows them down
flying west. Such moving air masses experience Coriolis forces tending to deflect them toward the equator.
However, they are often quite steady, retaining their flow for many hours at a time. The reason is that the
air is normally warmer toward the equator, so the resulting higher pressures can counteract the Coriolis
effect and the winds keep flowing eastward. This idealized pattern of steady eastward motion is called
geostrophic flow.
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Air also tends to move from high-pressure to low-pressure regions in the atmosphere. In the absence of
Coriolis effects, air would tend to flow straight from one to the other, perpendicular to the isobars, the surfaces
of constant pressure. However, Coriolis forces tend to deflect inrushing winds to the right in the northern
hemisphere, as shown in Figure 9.11, which makes the air whirl counterclockwise around the low-pressure
region, as seen from above. This is the typical cyclonic pattern, characteristic of tornados and hurricanes in
the northern hemisphere. In the southern hemisphere the circulation is clockwise, because the Coriolis forces
then deflect inrushing winds to the left.

low airflow

isobars

Fig. 9.11 Inflowing air develops a counterclockwise rotation in the northern hemisphere. �

Coriolis effects are hard to observe in the laboratory (or a kitchen sink or
bathroom tub), because they are easily overwhelmed by other effects. Water
can swirl down a sink drain either clockwise or counterclockwise, depending
upon the shape of the sink and the rotation of the water before the drain is
opened. Supposedly, if one builds a symmetrical sink with negligible clockwise
or counterclockwise bias, fills the sink with water and lets it stand for several
hours so that it retains no memory of how it was filled, then the water will drain
out with a counterclockwise swirl in the northern hemisphere and a clockwise
swirl in the southern hemisphere. However, the story that the circulation of water
emptying down a drain on board a ship suddenly changes from counterclockwise
to clockwise as the ship steams south over the equator is an “old sailor’s tale,”
not least because the Coriolis pseudoforce is zero at the equator and negligible
nearby.
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Example 9.5 Foucault’s Pendulum
The French physicist Jean Leon Foucault (1819–1868) first publicly exhibited his famous pendulum in 1851
under the dome of the Pantheon in Paris. The 28-kg bob was supported by a wire 67 m long, resulting in
an oscillation period of just over 16 s. The plane of oscillation of the pendulum slowly rotated in the clockwise
sense as seen from above, completing a revolution in about 32 h.

If Foucault had mounted his pendulum at the north or south pole, the plane of oscillation would have
completed a revolution in just 24 h, since that plane is fixed in an inertial frame, with the earth turning under
the point of support once every 24 h, as shown in Figure 9.12. In the frame of the earth, the plane of oscillation
rotates because of the Coriolis pseudoforce acting on the bob, continually deflecting it slightly to the right,
and therefore in the clockwise sense in the northern hemisphere.

To analyze the problem, we arrange a non-inertial reference frame fixed with respect to the rotating earth
at some arbitrary latitude λ, as shown in Figure 9.13(a). A close-up of the system is shown in Figure 9.13(b),
along with the angular velocity vectorΩ and its components. In this coordinate system we have

rrot = (x, y, z) , vrot = (ẋ, ẏ, ż) , Ω = (−Ω cos λ, 0, Ω sin λ) . (9.43)

From Eq. (9.26), the Lagrangian is

L � 1
2

m
(

ẋ2 + ẏ2 + ż2)− m g z

− m Ω y ẋ sin λ+ m Ω x ẏ sin λ

+ m Ω z ẏ cos λ− m Ω y ż cos λ, (9.44)

where we have dropped all terms quadratic inΩ, since the rotation of the earth is a small effect and leading
linear terms inΩwill be sufficient. For small-angle oscillations of the pendulum, we further expect that z will
not change much compared with x and y; hence, we ignore terms involving two small quantities Ω and z or
ż. We thus get a simpler approximate Lagrangian of the form

South

Fig. 9.12 Foucault’s pendulum set up at the north pole.
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(a) (b)

Fig. 9.13 (a) Foucault’s pendulum set up at an arbitrary latitude λ. (b) The coordinate system
in the rotating frame of the earth set up to analyze the trajectory of the pendulum.

L � 1
2

m
(

ẋ2 + ẏ2 + ż2)− m g z

− m Ω y ẋ sin λ+ m Ω x ẏ sin λ. (9.45)

There is one more ingredient to the dynamics: the constraint that the mass is attached to a fixed-length string.
That is:

z =
√

R2 − x2 − y2 = R

√
1 − x2

R2 − y2

R2 � R
(

1 − x2

2 R2 − y2

2 R2

)
, (9.46)

for x, y  R, using the binomial approximation (see Appendix F). To leading order in the small parameters
Ω and x/R, y/R we can focus only on the x–y dynamics. We are then ready to write the relevant equations
of motion using this Lagrangian:

ẍ − (2Ω sin λ)ẏ + ω2
0 x = 0,

ÿ + (2Ω sin λ)ẋ + ω2
0 y = 0, (9.47)

whereω0 =
√

g/R is the small-amplitude angular frequency of oscillation of the pendulum. We would like
to solve these coupled linear differential equations for x(t), y(t).

We will solve them first in a special case, and then in general. At the north pole, where λ=π/2, we
already know the solution. The plane of oscillation is fixed in an inertial frame, as the earth turns with angular
velocityΩ beneath it, so the plane of oscillation rotates clockwise with angular velocityΩ as seen by a person
standing at the pole. Let the primed frame be the inertial frame and the unprimed frame be the frame of the
rotating earth. Then from the usual rotation transformation, the relation between the primed and unprimed
frames is
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(
x
y

)
=

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
x′

y′

)
. (9.48)

The first and second time derivatives are(
ẋ
ẏ

)
=

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
ẋ′

ẏ′

)
− Ω

(
sin Ωt − cos Ωt
cos Ωt sin Ωt

)(
x′

y′

)
(9.49)

and(
ẍ
ÿ

)
=

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
ẍ′

ÿ′

)
− 2Ω

(
sin Ωt − cos Ωt
cos Ωt sin Ωt

)(
ẋ′

ẏ′

)
− Ω2

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
x′

y′

)
. (9.50)

Substituting these into the equations of motion (9.47) (using sin λ = sin π/2 = 1) yields the equations

ẍ′ cos Ωt + ÿ′ sin Ωt + ω2
0(x′ cos Ωt + y′ sin Ωt) = 0, (9.51)

−ẍ′ sin Ωt + ÿ′ cos Ωt + ω2
0(−x′ sin Ωt + y′ cos Ωt) = 0, (9.52)

where we have neglected terms containingΩ2 compared withω2
0 , since the angular frequency of rotation of

the earth is much less than the angular frequency of oscillation of the pendulum.a

We can separate Eqs. (9.51) and (9.52) by multiplying (9.51) by cos Ωt and (9.52) by sin Ωt, and subtracting
the results. Then using the identity sin2 Ωt + cos2 Ωt = 1:

ẍ′ + ω2
0 x′ = 0. (9.53)

If instead we multiply Eq. (9.51) by sin Ωt and (9.52) by cos Ωt and add the results, then

ÿ′ + ω2
0 y′ = 0. (9.54)

These are simple-harmonic oscillator equations, showing that the pendulum moves in a fixed plane in the
inertial (primed) frame. For example, if the initial values y′0 and ẏ′0 are zero, Eq. (9.54) shows that ÿ′′0 is also
zero, so y′ remains zero. The pendulum begins its motion purely in the x′ directlon, and it subsequently remains
permanently in the x, z plane. And since this pendulum, which we have placed at the north pole, oscillates in
a fixed plane in the primed frame, it rotates with angular velocityΩ relative to the earth. The rotation period
is therefore T = 2π/Ω = 24 h.

Now looking back at the equations of motion (9.47), we see that they are exactly the same at arbitrary
latitude λ as they are at the north pole, except for Ω, which has to be replaced by Ω sin λ. So there is no
need to do the calculations over again; the period of rotation of the plane of oscillation at arbitrary latitude
must be

T = 2π/(Ω sin λ). (9.55)
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The latitude of the Pantheon in Paris is 48.85◦ north, so the rotation period of the first Foucault pendulum
was T = 24 h/(sin 48.85◦) = 24 h/0.753 = 31.9 h.

A Foucault pendulum in the southern hemisphere rotates counterclockwise instead of clockwise. At both
the north and south poles the period of rotation is 24 h, and at the equator it is T = 24 h/sin 0 = ∞ (i.e.,
the plane of oscillation doesn’t change), since there is no Coriolis pseudoforce there at all. �

aThe periods are 24 h vs. (typically) 16 s, soΩ2/ω2 ∼= 3.4 × 10−8.

9.5 Spacecraft Rendezvous and Docking

One of the least expected and delightful applications of the centrifugal and Coriolis
pseudoforces arises in the problem of rendezvousing with orbiting satellites. For
example, suppose an orbiting space station is in a circular orbit around the earth,
and a spacecraft is in the same circular orbit some distance behind, as shown in
Figure 9.14(a). The crew wants to rendezvous and dock with the station. In what
direction should the pilot fire the spacecraft’s thruster rocket so that the spacecraft
will catch up with it?

Or an astronaut on a spacewalk finds herself stranded some distance from an
orbiting space station with no tether and no fuel remaining in her portable rocket
thruster, as shown in Figure 9.14(b). She is carrying a wrench, however, and
decides that the only way to return to the station is to throw the wrench, giving
herself a reactive impulse sufficient to get her home. In which direction, and with
what speed, should she throw the wrench?

Or an astronaut tightening some bolts outside the space station accidentally
bobbles a wrench, so it starts drifting away, as shown in Figure 9.14(c). What is
the subsequent trajectory of the wrench? Is it gone forever?

These are related questions that can be answered most elegantly in the rotating
frame in which the space station is at rest. Since the station is rotating around the
earth, we must invoke the centrifugal and Coriolis pseudoforces as well as earth’s
gravity on the spacecraft, astronaut, and wrench.

Figure 9.15 shows the set of coordinates we will use. The object (spacecraft,
astronaut, or wrench) is initially at distance r0 from the center of the earth, and
then moves to a different position r, so that Δr = r−r0 is the vector displacement
of the object. We will superimpose a set of Cartesian axes for the object, with x to
the right, y upward, and z out of the page, such that r0 = r0ŷ. The object is initially
in a circular orbit, so

GMm
r2

0
= ma = mr0ω

2. (9.56)
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(b)

(c)

(a)(a)

Fig. 9.14 (a) A spacecraft trying to rendezvous and dock with a space station in circular orbit around the earth.
(b) A stranded astronaut trying to return to the space station by throwing a wrench. (c) An astronaut
accidentally lets a wrench escape from the station. What is its subsequent trajectory?

ISS

Fig. 9.15 Coordinates of the orbiting space station and object.

The angular velocity in its orbit is therefore

ω =

√
GM
r3

0
. (9.57)

Now consider both real forces and pseudoforces acting on the object in the
rotating frame in which the space station is at rest. These are the real inward grav-
itational force, the outward centrifugal pseudoforce, and the Coriolis pseudoforce.
Using unit vectors x̂, ŷ, and ẑ, we have
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ω = ωẑ, Δr = xx̂+ yŷ, and r = r0 +Δr = xx̂+ (r0 + y)ŷ, (9.58)

where we focus on the two-dimensional x–y plane: the dynamics in the z direction
will be decoupled from the x–y dynamics and is relatively uninteresting (see the
Problems section at the end of this chapter). Squaring the expression for r, we also
have

r2 = x2 + (r0 + y)2 = r2
0 + 2r0y + (x2 + y2). (9.59)

We can now put our Lagrangian together using Eqs. (9.26), (9.58), and (9.59):

L =
1
2

m
(
ẋ2 + ẏ2)

+ m (ẋx̂+ ẏŷ) · (ωẑ× (xx̂+ (r0 + y)ŷ))

+
1
2

mω2 (r2
0 + 2r0y + (x2 + y2)

)
+

G M m(
r2

0 + 2r0y + (x2 + y2)
)1/2 . (9.60)

Evaluating the vector products, we get a simplified form

L =
1
2

m
(
ẋ2 + ẏ2)+ mω (xẏ − yẋ − r0ẋ)

+
1
2

mω2r2
0

(
1 + 2

y
r0

+
x2

r2
0
+

y2

r2
0

)
+

G M m
r0

(
1 − y

r0
+

y2

r2
0
− x2

2 r2
0

)
, (9.61)

where we have used the binomial expansion (1+ ε)n ∼= 1+ n ε to first order in any
small quantity ε and consistently dropped terms of higher order than (x/r0)

2 and
(y/r0)

2. That is, we are assuming that the object’s distance from the space station
is small compared with r0, the distance of the space station from the center of the
earth. We can simplify this further using Eq. (9.57), giving

L =
1
2

m
(
ẋ2 + ẏ2)+ mω (xẏ − yẋ − r0ẋ) +

3
2

mω2r2
0

(
1 +

y2

r2
0

)
. (9.62)

Lagrange’s equations then provide the equations of motion

ẍ = 2ωẏ and ÿ = 3ω2y − 2ωẋ, (9.63)

which are coupled linear second-order differential equations. One way to decouple
them is to differentiate the second equation and substitute into it the first equation
to eliminate the variable x. That is:

d2(ẏ)
dt2

= 3ω2ẏ − 2ωẍ = 3ω2ẏ − 2ω (2ωẏ) = −ω2(ẏ), (9.64)
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which is the simple-harmonic oscillator equation in the variable ẏ! This equation
in ẏ has the usual general solution

ẏ = A′ cos(ωt + α), (9.65)

where A′ and α are constants. Then substituting this result into Eq. (9.63) above
gives

ẍ = 2ωA′ cos(ωt + α), (9.66)

which can be integrated once with respect to time to give

ẋ = 2A′ sin(ωt + α) + B′, (9.67)

where B′ is a constant of integration. We can then integrate the equations for ẏ and
ẋ one more time, to give the coordinates y and x as functions of time:

y = A sin(ωt + α) + D,
x = −2A cos(ωt + α) + Bωt + C, (9.68)

where A ≡ A′/ω and B ≡ B′/ω. We began with two second-order differential
equations, i.e., the F = ma equations in the x and y directions, so we should have
four arbitrary constants in the solution. However, we seem to have five, A, B, C, D,
and α. One of the five must therefore be superfluous, which we can track down by
substituting our results back into the original differential equations as a consistency
check. In particular, substituting our solutions back into Eq. (9.63) above, we must
have

ÿ = 3ω2y − 2ωẋ ⇒
−ω2A sin(ωt + α) = 3ω2(A sin(ωt + α) + D)

− 2ω(2Aω sin(ωt + α) + Bω), (9.69)

which is true for any value of A, but only if D = (2/3)B. Therefore we can
eliminate the constant D to give us the requisite number of arbitrary constants,
A, B, C, and α, each of which can be determined from the initial values of x, y, ẋ,
and ẏ at t = 0.

We now choose once and for all the initial position to be located at x(0) = y(0) =
0, which allows us to fix B and C in terms of A and α. In fact, B = −(3/2)A sinα
and C = 2A cosα. The solutions for x, y, ẋ, and ẏ then become

x/A = −2 cos(ωt + α)− (3/2) sinα(ωt) + 2 cosα,

y/A = sin(ωt + α)− sinα,

ẋ/A = 2ω sin(ωt + α)− (3/2)ω sinα,

ẏ/A = ω cos(ωt + α). (9.70)

To also determine A and α, we would need to fix ẋ(0) and ẏ(0). Let us now explore
the physical meaning of these equations by focusing on special cases.
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Example 9.6 Rendezvous with a Space Station?
Suppose that a space station is in a circular orbit around the earth at altitude h, so that it has an orbital radius
r0 = re + h, an angular velocityω =

√
GM/r3

0 , and an orbital period P = 2π/ω. A supply spacecraft is
in the same circular orbit a distance Δs behind the station, as shown in Figure 9.16. The spacecraft pilot can
clearly see the space station, and he intends to rendezvous and dock with it. Using the spacecraft thrusters,
he gives the spacecraft a Δv boost directly toward the station, expecting to rendezvous with it in a time of
aboutΔs/Δv.

towards earth

Fig. 9.16 The spacecraft trajectory in the inertial frame at t = 0.

What in fact happens? Figure 9.17 depicts what happens from the perspective of the station. From the
fourth equation of (9.70), the initial condition ẏ(0)= 0 means that the phase angle α= ± π/2. Then
using the third equation of (9.70), the condition that ẋ(0) < 0 means that we must choose the minus sign,
α = −π/2. The four equations then become

x/A = −2 sin ωt + (3/2)ωt, y/A = 1 − cos ωt,

ẋ/A = −2ω cos ωt + (3/2)ω, ẏ/A = ω sin ωt. (9.71)

Now we can find the constant A from the initial condition that ẋ(0) = −Δv. That is, ẋ(0) = −A(2ω −
(3/2)ω) = −A ω/2 = −Δv, so A = 2Δv

ω .
Using this result we can rewrite the four equations:

x = (2Δv/ω)[−2 sin ωt + (3/2)ωt], y = (2Δv/ω)[1 − cos ωt],

ẋ = 2Δv[−2 cos ωt + (3/2)], ẏ = 2Δv sin ωt. (9.72)

We now have everything we need to plot the trajectory y(x) of the spacecraft, as shown in Figure 9.17.
Although the spacecraft initially moves toward the station, it soon veers away, moving off to larger and larger
altitudes and then turning backwards, going away from the station. It keeps drifting backwards, and then
eventually returns to the station’s orbit, but at a position way behind the station itself.

How close does the spacecraft get to the station before veering off? We will plug in some typ-
ical numbers, setting ẋ = 0 for the spacecraft, at which point the spacecraft stops moving toward
the station. So from the third equation above we have ωt = cos−1(3/4)= 0.723. At that point
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ISS

towards Earth

at t=0
x

y

Fig. 9.17 Rendezvous with the space station? The bizarre trajectory, after starting off in the
desired direction.

x =(2Δv/ω)[−2 sin(0.723) + (3/2)(0.723)] = − 0.476Δv/ω before the spacecraft turns around
and heads away again from the station. If the altitude of the station is 280 km, its angular velocity is
ω=

√
GM/r3

0 = 1.164 × 10−3 s−1 and its orbital period is P = 2π/ω = 90 min. Then if Δv =

1.0 m/s is the speed given to the spacecraft by its thrusters, the spacecraft will move a distance Δx =

0.476(1.0)/(1.164 × 10−3) m = 411 m ahead of its starting point in the orbit, in the frame of the space
station. Therefore one might think that if the station is (say) only 400 m ahead of the spacecraft in their
mutual orbits, they would indeed make a rendezvous. However, the spacecraft also moves in the positive
y direction as it moves toward the station, increasing its altitude from the earth. In fact, when ẋ = 0,
y = (2Δv/ω)(1 − 3/4) = (1/2)(1.0)/(1.164 × 10−3) m = 430 m of additional altitude, and
so it will likely miss the station.

If the spacecraft does in fact miss the station, how long does it take it to return to its original orbital radius,
with y = 0? That would correspond to ωt = 2π, or time t = 2π/ω, which is the orbital period P of the
station.

What is going on here? What could explain this bizarre trajectory? Let us look instead at the events from
the point of view of the inertial frame in which the space station is in its circular orbit around the earth. Then
we know from Kepler’s first law that the trajectory of the spacecraft can only be an ellipse, and since the rocket
boost gives an extra velocity to the spacecraft in the same direction it was already moving, the elliptical orbit
will have its perigee at the point where the boost is made, and its apogee on the opposite side, as shown in
Figure 9.18. Note that the spacecraft spends almost all of its time outside the orbit of the station, and that
it returns once every orbital period. Furthermore, from Kepler’s third law, since the semi-major axis of the
spacecraft is somewhat larger than the radius of the station orbit, the period will be somewhat longer, in
agreement with the fact that the spacecraft drifts farther and farther behind the station. So the apparently
bizarre behavior of the trajectory in the station frame can be understood very well in the nonrotating, inertial
frame. However, the counterintuitive nature of the motion in the rotating frame would make it difficult for a
spacecraft pilot to rendezvous successfully, so help from radar and a computer would be useful even for an
experienced pilot.
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orbit of the spacecraft:
an ellipse

orbit of the ISS:
a circle

boost

Fig. 9.18 Rendezvous with the space station? The initial boost. �

Example 9.7 Losing a Wrench?
An astronaut tightening a bolt on the outside of the space station accidentally lets a wrench escape with an
initial velocity 1.0 m/s directly away from the earth. Is it lost forever? We again assume that the station is in a
90-min circular orbit above the earth, at an altitude of 280 km and an angular velocityω = 1.164 × 10−3

s−1.

x

y

towards earth

Fig. 9.19 Trajectory of a wrench in the rotating frame in which the space station is at rest.
The wrench is thrown from the station vertically, away from the earth. It returns
like a boomerang.
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The initial velocity components of the wrench are ẋ(0) = 0, ẏ(0) = 1.0 m/s, so from the third and
fourth equations of (9.70) we find that the phase angleα = 0. Therefore Eqs. (9.70) become

x = 2A(1 − cos ωt), y = A sin ωt,

vx = 2Aω sin ωt, vy = Aω cos ωt, (9.73)

where A ω = ẏ(0) = 1.0 m/s. We can now plot the trajectory using the equations for x(t) and y(t), with
A = (1.0 m/s)/ω = 0.859 km.

The result is shown in Figure 9.19. The wrench first moves away from the earth, then turns and lags behind
the station, then turns toward the earth and reaches a maximum distance 4A = 3.436 km behind the station.
It then turns around and approaches the station again, ultimately returning from below like a boomerang. It
returns when once again x = 0, y = 0, i.e., whenωt = 2π, or t = 2π/ω = T = 90 min. So to retrieve
the lost wrench, the astronaut should get beneath the station and wait for it to return 90 min later. It is lost
only temporarily.

Why does the wrench behave this way? It is easy to understand by considering what happens in
the nonrotating frame in which the station is orbiting the earth. In this inertial frame, the wrench
must move in the elliptical orbit shown in Figure 9.20. The station orbit is neither at the perigee or
apogee of the ellipse. Notice that the wrench first travels outside the station’s orbit, then crosses it again
and travels inside the station’s orbit until it returns to where it began, just as we saw in the rotating
frame.

orbit of the ISS:
a circle

orbit of the wrench:
an ellipse

wrench 
thrown here

perigee
apogee

Fig. 9.20 Trajectory of the wrench in the nonrotating frame where the station is in circular
orbit around the earth. �



386 9 Accelerating Frames

9.6 Summary

In this chapter we have developed the Lagrangian formalism (or equivalently New-
ton’s laws) from the perspective of certain types of non-inertial reference frames:
from the viewpoint of a linearly accelerating frame with uniform acceleration, and
from that of a rotating frame. The perspective of a rotating frame is of particular
practical importance: all tabletop experiments that use an observer at rest on the
ground of our planet fall into this category. We learned that the rotation of the earth
results in subtle but detectable and sometimes extremely important effects arising
from three pseudoforces, as seen from our non-inertial vantage point on the earth –
the centrifugal, the Coriolis, and the Euler pseudoforces; and we explored in some
detail the effects of the first two of these.

Generally, we can always add pseudoforces to the real forces in Newton’s
second law to use a non-inertial perspective that is often more convenient. But
it is important to remember that there is no new physics here: all phenomena can
be described through an inertial perspective using the unmodified Newton’s laws
without the addition of any pseudoforces. The addition of pseudoforces simply
amounts to a mathematical transformation of coordinates from an inertial to a non-
inertial one, which often simplifies the problem.

Problems

Problem 9.1 A satellite is in a polar orbit around the earth, passing successively over��
the north and south poles (see Figure 9.21). As we stand on the ground, what is the
motion of the satellite as we see it from our rotating frame?

Problem 9.2 The string on a helium balloon is attached inside a car at rest, as shown�
in Figure 9.22(a). If the car accelerates forward, does the balloon tilt forward or
backward? If a is the car’s acceleration and g is the gravitational field, what is the
balloon’s tilt angle from the vertical when it comes to equilibrium?

Problem 9.3 A cork floats in a fishtank half full of water; it is attached to the bottom�
of the tank by a stretched rubber band, as shown in Figure 9.22(b). If the tank and
contents are uniformly accelerated to the right, sketch the water surface, cork, and
rubber band after the water has stopped sloshing back and forth and the system has
come to equilibrium.

Problem 9.4 In the rotating frame of the earth, stars appear to orbit in circles, with a�
period of 24 h. Show that the centrifugal and Coriolis pseudoforces acting together
provide the net force needed in the rotating frame to cause a star to orbit as
described.
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S

N

Fig. 9.21 Path of a satellite in a polar orbit, shown in the rotating frame in which earth is at rest. Dashed lines
represent the equator and longitude lines.

(a) (b)

Fig. 9.22 (a) A balloon in a car. (b) A cork in a fishtank.

Problem 9.5 A cylindrical space colony rotates about its symmetry axis with period�
62.8 s. If the effective gravity felt by colonists standing on the inner rim is one earth
“gee,” what is the radius of the colony? What then is the percentage difference in
the effective gravity acting upon the head and on the feet of a 2-m-tall colonist?

Problem 9.6 (a) A uniformly rotating merry-go-round spins clockwise as seen from�
above. A rider stands at the rotation axis, and then slowly walks radially outward
toward the rim. How will the centrifugal and Coriolis pseudoforces affect her?
How will she have to lean to keep from falling over? (b) Now suppose the merry-
go-round is spinning up, starting from rest and spinning faster and faster in the
clockwise sense. The rider again starts at the center and walks outward. What new
effect will the rider notice, and how will that affect how she has to lean to avoid
falling?
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Problem 9.7 In Rendezvous with Rama by Arthur C. Clarke, observers inside a�
cylindrical spaceship view a waterfall, which originates at one of the endcaps
at a point halfway between the rotation axis and rim, and then “falls” to the
rim. The spaceship is rotating clockwise about its symmetry axis as seen in an
external inertial frame, looking along the entire spaceship axis at the waterfall in
the distance. Explain why the water does not fall straight as seen by people within
the ship. Which way does it bend?

Problem 9.8 A train runs around the inside of the outer rim of a cylindrical space��
colony of radius R and angular velocity ω along its symmetry axis. How would the
effective gravity on the passengers depend upon the train’s speed v relative to the
rim: (a) if the train travels in the rotation direction of the rim; (b) if it travels in the
opposite direction? (c) If you were designing a train system, which way would you
make the train run?

Problem 9.9 Why don’t we notice Coriolis effects when we walk, drive cars, or�
throw baseballs? In contrast, why may Coriolis effects be significant for long-range
artillery or moving air masses?

Problem 9.10 In 1914 there was a World War I naval battle between British and��
German battle cruisers near the Falkland Islands, at 52◦ south latitude (i.e., λ =
−52◦). Guns on the British ships fired 12-inch shells at German ships up to about
15 km distant. The great majority of the shells missed their targets, due to the
constant rolling of the ships, defensive maneuvers by the Germans, and perhaps
other factors. After the battle (which the British won), another possible reason was
offered: Coriolis deflections. The story goes that the British were used to battles
in the northern hemisphere, where projectiles deflect toward the right, and aimed
their guns incorrectly for the Falklands battle, where projectiles deflect toward the
left. There seems to be some controversy over whether or not Coriolis effects were
important in the battle. The purpose of this problem is to estimate their magnitude.

The British guns reportedly had a muzzle velocity of 823 m/s. (a) For a target
15 km away, and pretending there was no air resistance, what must have been the
elevation angle (the angle up from the horizontal) of the guns? Note that the guns
were apparently limited to elevation angles of 15◦ or less. (b) By about how much
would the shells have missed their target due to the sideways Coriolis effect? (Note
that if the British used gun-aiming tables appropriate for 52◦ north latitude, which
is appropriate for the North Atlantic, then the miss distance of the shells would
have been about twice as much as the southern hemisphere deflection alone.)

Problem 9.11 In World War I the German army set up an enormous cannon (which���
they called the “Paris gun”) to fire shells at Paris, 120 km away from the cannon
situated at a point NNE of Paris. The muzzle velocity was 1640 m/s. (a) Neglecting
both air resistance and the Coriolis effect, find two solutions for the elevation angle
of the gun, assuming the altitudes of the launching and target points were the same.
(b) With these same assumptions, for each of the two possible elevation angles, how
long would the shell have taken to reach its target, and what maximum altitude
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would it have achieved? Compare your results with the actual flight time 182 s
and maximum altitude 42 km. What do you think is the primary reason for the
large discrepancies? (c) With the same assumptions as in part (a), calculate the
Coriolis deflection of the shell aimed at Paris for the larger elevation-angle solution.
Be sure to include the Coriolis deflections due to both the horizontal and vertical
components of the shell’s velocity. This result might give at least a very rough
estimate for the actual Coriolis deflection. For simplicity, assume the shell began
traveling due south. Is its deflection toward the east or toward the west?

Problem 9.12 A satellite in low-earth orbit with a 90-min period passes over the north��
pole, headed south along the 0◦ line of longitude passing through Greenwich,
England. (a) What is its longitude when it reaches the latitude of Greenwich
(λ = 50◦)? (b) When it reaches the equator, what angle does its trajectory make
with the equator as seen by an observer on earth? (c) How close does it come to
passing over the south pole?

Problem 9.13 (a) Find the centrifugal acceleration of a particle on the earth’s surface�
at the equator, due to earth’s rotation, as a fraction of the gravitational field g at that
point. (b) Do the same for the centrifugal acceleration due to the motion of earth
around the sun. Note that this acceleration is small compared with that due to the
axial rotation.

Problem 9.14 Suppose we flatten and smooth out the ice at the south pole, and place��
a hockey puck at rest on the ice exactly at the pole. We then give it a small velocity,
initially along longitude 0◦. Pretend that there is no friction between the puck and
the ice, and that there is no air resistance either. (a) If it reaches a final point 90◦
longitude west when it is 100.0 m from the pole, what was its initial speed? (b) At
this final point, what is its speed relative to the ice? (c) What force or pseudoforce
is responsible for the increased speed?

Problem 9.15 A merry-go-round has a 5-m radius and rotates with a 10-s period. If��
one “gee” is the gravitational force/mass experienced by a person standing still on
the earth, how many gees are felt by a person walking from the center toward the
rim of the merry-go-round at velocity 1 m/s in a straight line, due to the Coriolis
pseudoforce? At what sideways angle is the person likely to lean while walking?
How many gees are felt when the person is standing 3 m from the center, due to
the centrifugal pseudoforce? At what angle is the person likely to lean backwards
at this point?

Problem 9.16 A ball is dropped from height h by someone standing still on the earth’s��
equator. (a) Does it fall to the east or west of a point just beneath the position from
which it was dropped? (b) When it strikes the ground, how far is the ball from the
point originally directly beneath it, in terms of g, h, and ω, earth’s angular velocity?
(Pretend there is no air resistance.) (c) Explain the direction found in (a) using
conservation of the ball’s angular momentum in the inertial frame in which earth
rotates toward the east.
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Problem 9.17 A ball at a point on the earth with latitude λ is thrown vertically upward��
to a small altitude h. (a) Does the ball fall to the east or west of its starting point?
(b) Show that the ball strikes the ground a distance (4/3)Ωg cosλ(2 h/g)3/2 from
its starting point. (c) Explain qualiltatively the ball’s path using conservation of
angular momentum in the inertial frame in which the earth rotates eastward.

Problem 9.18 Show that the usual formula P = 2π
√

R/g for the period of�
small-amplitude oscillations of a pendulum of length R becomes instead
P = 2π

√
R/g(

√
mI/mG) if the inertial and gravitational masses of the pendulum

bob differ. (Newton himself built pendulums with plumb bobs made of different
materials. He would swing two of them side by side, both with the same length R,
to see if he could detect a difference in period apart from experimental errors. He
could not. Nevertheless, it is interesting that he conceived of the possibility they
might be different.)

Problem 9.19 If an artillery shell is fired a short distance from a point on earth’s��
surface at latitude λ, with speed v0 and an angle of inclination α to the horizontal,
show that (pretending there is no air resistance) its lateral deflection when it strikes
the ground is

d = (4v3
0/g2)ω sinλ(sin2 α cosα),

where ω is the earth’s angular velocity.

Problem 9.20 An artillery shell is projected due north from a point at latitude λ at an��
angle of 45◦ to the horizontal, and aimed at a target whose distance is D, where D is
small compared with earth’s radius. (a) Show that due to the Coriolis pseudoforce,
and neglecting air resistance, the shell will miss its target by a distance

d =

(
2D3

g

)1/2

ω(sinλ− 1
3
cosλ),

where ω is earth’s angular velocity. (b) Evaluate this distance for λ = 30◦ and D =
50 km. (c) What is the physical reason for the deviation to the east near the north
pole, but to the west both on the equator and near the south pole?

Problem 9.21 In a rotating cylindrical space colony of radius R and angular velocity�
ω about its axis of rotation, a ball of mass m is thrown with speed v = ωR/2 from
a point halfway between the rotation axis and rim, in a direction exactly opposite
to the rotation direction, as seen by colonists. (a) State the nature of its subsequent
path in the inertial frame in which the cylinder is seen to rotate. (b) Sketch the ball’s
path in the rotating frame of the colony, and show that this path is predicted by the
pseudoforces acting upon it.

Problem 9.22 A ball is released from rest in the frame of a rotating cylindrical�
space colony, at a point halfway between the rotation axis and rim. (a) Sketch
the subsequent path of the ball as seen by an inertial observer who sees the colony
rotating counterclockwise with angular velocity ω. (b) If the colonist is directly
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“beneath” the ball when it is released (i.e., at the rim at a point along a line
connecting the rotation axis and release point), how far must the colonist run to
catch the ball, in terms of the colony radius R? Sketch the path of the ball as seen
by the colonist.

Problem 9.23 A cylindrical space colony of radius R rotates with angular velocity ω�
about its symmetry axis. A colonist standing on the rim throws a ball straight “up”
(i.e., aimed at the rotation axis) with speed v = Rω from the colonist’s point of
view. (a) Sketch the subsequent path of the ball as seen by an inertial observer to
whom the colony is rotating counterclockwise. Hint: First find the initial velocity
of the ball in the inertial frame. (b) Sketch the ball’s path as seen in the colony
frame. (c) How far around the rim must the colonist run to catch the ball?

Problem 9.24 For the film 2001 Space Odyssey, director Stanley Kubrick had a giant��
centrifuge constructed, of diameter 11.6 m. On the movie set, motors rotated the
centrifuge about a horizontal axis, like a Ferris wheel. This was the home for
fictional astronauts on their long journey to the planet Jupiter, providing artificial
gravity throughout the trip.

(a) In one scene, astronaut Dr. Frank Poole is seen jogging all the way around
the circumference of the centrifuge, requiring about 25 s to do so. What was the
rotational period of the centrifuge on the movie set, and how fast was he jogging?

(b) In the movie, it appears that Poole is jogging in a gravity approximately the
same as on earth. (No surprise!) Assuming that geffective = gearth while standing
at rest on the centrifuge rim, and that the centrifuge was actually rotating on the
spaceship en route to Jupiter, what would the rotational period of the centrifuge
have to be?

(c) Suppose the movie astronaut was 1.9 m tall. By what percentage less would
the artificial gravity be on his head than on his feet, just standing on the centrifuge
rim?

(d) Would it make any difference if the fictional astronaut were jogging in the
direction of rotation or opposite to it? If so, what would be the effect of jogging in
the two directions?

Problem 9.25 (a) Prove that there is no work done by the Coriolis pseudoforce acting�
on a particle moving in a rotating frame. (b) If the Coriolis pseudoforce were the
only force acting on a particle, what could you conclude about the particle’s speed
in the rotating frame?

Problem 9.26 Show that the formula dA = dθ × A for the change in an inertial��
frame of a vector A that is stationary in a rotating frame is still valid when A is
not perpendicular to Ω and when the tail of A is not situated at the rotation axis.

Problem 9.27 A well-known actor and television crew, filming a travel documentary,�
were driving south in Africa when they were approached by a local citizen as
they neared the equator. He offered (for a fee) to demonstrate the change in swirl
direction of water in a hand basin. They all walked a few minutes north of the
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equator, he filled the basin with water, removed a plug in a hole in the middle of
the basin, and sure enough, the water swirled counterclockwise as the water drained
out. They then walked a few minutes south of the equator, repeated the experiment,
and the water swirled clockwise this time as the water rushed out. It would have
been interesting to learn how much the local man made demonstrating his skill over
and over for equator-crossing tourists! How might the local man have produced the
result?

Problem 9.28 Prevailing winds in middle latitudes of the northern hemisphere are��
westerly, blowing from west to east at typical speed v. The tendency of the Coriolis
pseudoforce to deflect the path southward is typically balanced by a horizontal
pressure gradient that keeps the air flowing eastward. The pressure gradient is
related through the ideal gas law to the north–south temperature gradient, with
warmer air in the south. Find an expression for the wind speed in terms of the
temperature gradient ΔT/Δx, the latitude λ, the earth’s angular velocity Ω, and
any necessary gas constants. Estimate the typical temperature gradient and find
the typical flow velocity. Are the results reasonable? Would you expect prevailing
winds in comparable southern latitudes to be westerly or easterly?

Problem 9.29 The Gulf Stream flows northward off the Florida coast, so tends to be��
deflected eastward. This causes the water level to rise on the eastern side, since the
more stationary Atlantic waters cannot easily be moved aside. The higher waters on
the eastern side provide the higher pressures needed to counteract the Coriolis force,
so the stream is relatively undeflected. Looking northward, the stream looks as
shown in Figure 9.23, with a greatly exaggerated eastern rise. Using a thin vertical
slice of water and balancing the pressure and Coriolis forces upon it on the left
and right, find an expression for the slope dy/dx of the surface in terms of the
earth’s angular velocity ω, the latitude λ, the acceleration of gravity g, and the
stream velocity v. The westernmost islands of the Bahamas are only about 80 km
from the east coast of Florida. Between them the Gulf Stream flows somewhat in
excess of 1 m/s, and the sea level is about 0.5 m higher at the Bahamas. Are these
measurements consistent with your results?

W E

Fig. 9.23 Tilt of the northward-flowing Gulf Stream surface, looking north.
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Problem 9.30 A spherical asteroid of radius R and uniform density ρ rotates with���
angular velocity Ω about an axis through its center. Visiting astronauts drill a
smooth hole from one point on the equator clear through the asteroid’s center to
a point on the opposite side. (a) If an astronaut falls into one end of the hole, how
long does it take her to reach the opposite side? (b) During the trip she is pressed
against the side of the hole with force N. Find N in terms of W, her weight on the
asteroid’s surface at one of the poles, as a function of her distance r from the center
of the asteroid. Can N exceed W?

Problem 9.31 (a) Find the radius of a toroidal space colony spinning once every 2 min,�
if the effective gravity for colonists living within the torus is 10 m/s2. (b) Arriving
tourists dock at the central hub, and are then transported to the torus by an elevator
running through a “spoke” of the wheel. The elevator runs at constant speed, except
for brief periods of acceleration at the beginning and end, and requires 1 min for
the journey. Plot quantitatively the centrifugal and Coriolis accelerations of a rider
as a function of time while the elevator is running at constant speed, as a fraction
of 10 m/s2. Would the Coriolis acceleration be noticeable?

Problem 9.32 A cylindrical space station rotating with angular velocity Ω contains��
an atmosphere with molecular weight M and temperature T. Show that if p0 is
the atmospheric pressure at the rotation axis, the pressure at radius ρ is p =
p0 exp(MΩ2ρ2/2RT), where R is the ideal gas constant. If the station has a radius
100 m, an effective rim gravity 10 m/s2, and an oxygen atmosphere at temperature
300 K, what is the ratio of the rim pressure to that at the rotation axis? Would this
difference be important to inhabitants who travel from the rim to the axis?

Problem 9.33 An astronaut is stranded in space above the earth, in the same orbit as a
space station, but 200 m behind it. Both are circling 280 km above earth’s surface
in a 90-min orbit. The astronaut and spacesuit together have a mass of 100 kg. (a)
In what direction, and with what speed, can the astronaut throw a 1-kg wrench so
that the recoil will allow the astronaut to reach the vehicle and safety? (b) How
long will it take the astronaut to arrive? (c) Sketch the trajectory of the astronaut
and of the wrench after the throw, in the rest frame of the station, and then sketch
the trajectory of each in the nonrotating, inertial frame in which the station orbits
the earth.

Problem 9.34 Only the centrifugal and Coriolis pseudoforces act upon a particular���
projectile moving within a rotating cylindrical space colony of radius R. (a) Find
the differential equations of motion of the projectile in the rotating frame, using
Cartesian coordinates centered on the rotation axis. (b) Decouple and solve the
differential equations, to find expressions for x(t) and y(t) in terms of four arbitrary
constants of integration. (c) Evaluate the constants in terms of the initial conditions
x0, y0, vx0 , vy0 . (d) A colonist on the rim at (x0, y0) = (R, 0) throws a ball toward
the rotation axis with velocity (vx0 , vy0) = (−v0, 0). Find a general expression for
the time at which the ball returns to the rim, and show that in the limit as v0 becomes
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small, the time agrees with what you would expect in a uniform gravitational field
g = RΩ2.

Problem 9.35 A uniform electric charge density ρ fills a very long stationary cylinder.��
(a) Show from Gauss’s law

∮
E · dS = 4πqin that the electric field within the

cylinder is E = 2πρr, where r is the radius vector out from the symmetry axis.
Here qin is the charge within an appropriate Gaussian surface. (b) A uniform
magnetic field B = B0

ˆ̂z is created in the same region of space. Including the effects
both E and B, find an expression for the force exerted on a test charge q placed
within the cylinder. (c) Show that if the test charge has the proper charge/mass ratio
q/m, there exists a rotating frame in which the charge is bound to move just as in
part (b) with no electromagnetic fields at all. Find this ratio q/m, and the angular
velocity ω of the rotating frame.

Problem 9.36 Show that for the problem of a spacecraft rendezvous and docking��
discussed in the text, the dynamics in the z direction decouples from that in the
x–y plane. What is the equation of motion of the z coordinate?

Problem 9.37 Space visits for everyone? An alternative way to visit space has been���
proposed: a space station of mass m is tethered to one end of a long cable and the
other end of the cable is attached to a point on the earth’s equator, a distance R
from the center of the earth. In the rotating frame of the earth, three forces act on
the station: the centrifugal pseudoforce mrω2 outward, and earth’s gravity GMm/r2

and the cable tension T inward, where r is the distance of the station from the center
of the earth. As one goes to larger radii the centrifugal pseudoforce grows while
gravity decreases, so there must be a radius r0 where these forces balance, so that
the station will remain in place. Then one could ride an elevator up the cable and get
some spectacular views and experience zero gees without using any rocket fuel. (a)
Assuming T = 0, find the distance r0 from the earth’s center to the station where
the forces balance, in terms of G, M, and ω, the angular velocity of the earth’s
rotation. (b) Of course the cable will require some tension T(r) if an elevator is to
travel up and down along it. This might be achieved by placing the space station at
a somewhat greater distance r0 +Δr0 from the earth’s center, requiring a positive
downward tension force for it to stay in place. Let the cable have uniform mass per
unit length λ. Then show that the tension T(r) obeys the equation

dT
dr

= λ

(
GM
r2 − rω2

)
. (9.74)

(c) At what radius is the tension in the cable a maximum? (d) Find the tension
Ts in the cable just where it is attached to the space station. Assume here that
Δr0 << r0, and so keep only first-order terms in Δr0. Express your answer in
terms of m,ω, and Δr. (e) Find a general expression for the tension T(r) anywhere
along the cable, in terms of Ts,λ,ω, r0, G, M, and r. (f) In particular, what is the
cable tension at r = r0? (g) At what radius is the cable tension a minimum? (h)
Find the minimum value of Δr0 required, in terms of other given parameters, so
that the cable will never have a negative tension anywhere along its length, because
that would cause it to buckle.



10 From Black Holes to Random Forces

We have come now to the second capstone chapter in the book, in which we extend
some of the classical mechanics from the preceding four chapters into the context
of more recent developments in physics. We begin with gravitation, including some
of the ideas that led Einstein to go way beyond Newton’s nonrelativistic theory to
find a fully relativistic theory of gravitation. After years of strenuous efforts, his
work finally culminated in his stunningly original and greatest single achievement,
the general theory of relativity. He was able to predict three effects that could be
measured in the solar system, which he used to check his theory. We will cover all
three of these. Then we will introduce so-called “magnetic gravity,” which contains
the leading terms in general relativity in a form much like Maxwell’s equations
for electromagnetism. Next, we delve just a bit deeper into gauge symmetry in
Maxwell’s theory, partly because it deepens our understanding of electromagnetism
but also because gauge symmetry has played such a large role in physical theories
over the past many decades. Finally we introduce stochastic forces, which are not
fundamental forces but the result of huge numbers of small collisions.

10.1 Beyond Newtonian Gravity

By 1905 it was already clear to Albert Einstein that his special theory of
relativity was consistent with Maxwell’s electromagnetism, but not with Newton’s
gravitation. The fundamental problem is that while the equations of motion
F = − (GMm/r2)r̂ = ma for a probe particle m in central gravity are invariant
under the Galilean transformations1 of Chapter 1, they are not invariant under the
relativistic Lorentz transformations of Chapter 2. So if the equations are true in one
inertial frame of reference they cannot be true in another – using the correct Lorentz
transformations – and so could not be a fundamental law of physics according to
the principle of relativity.

There were several clues that gradually led him to the correct theory. One was
the apparently trivial fact that according to F= − (GMm/r2)r̂=ma, the mass

1 As just one indication of this, the distance r between M and m is not invariant under a Lorentz boost. As another,
Newton’s law of gravity seems to imply instantaneous communication between M and m, which is not possible
in a relativistic world. See examples in Chapter 6 for more details on how to explore the transformations and
symmetries of Lagrangians.
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m cancels out on both sides: all masses m have the same acceleration in a given
gravitational field according to Newton’s theory and experiments as well. This is
not as trivial as it seems, however, because the two ms have very different meanings.
The m in GMm/r2 is called the gravitational mass; it is the property of a particle
that causes it to be attracted by another particle. The m in ma is called the inertial
mass; it is the property of a particle that makes it sluggish, resistant to acceleration.
The fact that these two kinds of mass appear to be the same is consistent with
Newton’s theory, but not explained by it. Einstein wanted a natural explanation.

As discussed at the end of Chapter 3, this thinking helped to generate in
Einstein his “happiest thought,” the principle of equivalence. The equivalence of
gravitational and inertial masses is an immediate consequence of the equivalence
of (i) a uniformly accelerating frame without gravity and (ii) an inertial reference
frame containing a uniform gravitational field (see the Problems section at the
end of this chapter for more). Einstein therefore saw a deep connection between
gravitation and accelerating reference frames.

A second clue is the type of geometry needed within accelerating frames, as
shown in the following thought experiment.

Example 10.1 A Thought Experiment
A large horizontal turntable rotates with angular velocityω. A reference frame rotating with the turntable is
an accelerating frame, because every point on it is accelerating toward the center with rω2 = a. A colony of
ants living on the turntable is equipped with meter sticks to make measurements (see Figure 10.1). A second
colony of ants lives on a nonrotating horizontal glass sheet suspended above the turntable; these ants are
also equipped with meter sticks, and can make distance measurements on the glass while they are watching
beneath them the rotating ants making similar measurements directly on the turntable itself.

(b)(a)

Fig. 10.1 An ant colony measures the radius and circumference of its rotating home: (a) the
measuring sticks of the inertial ants from their perspective; (b) the measuring sticks
of the rotating ants as seen from the perspective of the inertial ants.
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Both ant colonies can measure the radius and circumference of the turntable, as shown in Figure 10.1.
The inertial ants on the glass sheet, looking down on the turntable beneath them, lay out a straight
line of sticks from the turntable’s center to its rim, and so find that the radius of the turntable (as mea-
sured on the glass sheet) is R0. They also lay meter sticks end-to-end on the glass sheet around the
rim of the turntable (as they see it through the glass), and find that the circumference of the turntable
(according to their measurements) is C0 = 2πR0, verifying that Euclidean geometry is valid in their inertial
frame.

The ants living on the turntable make similar measurements. Laying meter sticks along a radial line, they
find that the radius is R. Laying sticks end-to-end around the rim, they find that the circumference of the
turntable is C. Meanwhile the inertial ants, watching the rotating ants beneath them, find that the rotating-
ant meter sticks laid out radially have no Lorentz contraction relative to their own inertial sticks, because the
rotating sticks at each instant move sideways rather than lengthwise. So the inertial ants see that the rotating
ants require exactly the same number of radial sticks as the inertial ants do themselves; in other words, both
sets of ants measure the same turntable radius, R = R0.

However, the meter sticks laid out around the turntable rim by the rotating ants are moving with speed
v = R0ω in the direction of their lengths, and so will be Lorentz-contracted as observed in the inertial
frame. More of these meter sticks will be needed by the rotating ants to go around the rim than is required
by the inertial ants. Therefore it must be that the circumference C measured by the rotating ants is greater than
the circumference C0 measured by the inertial ants. Since the measured radius is the same, this means that
in the accelerating frame C > 2πR. The logical deduction that C > 2πR in the accelerating frame means
that the geometry actually measured in the rotating frame is non-Euclidean, since the measurements are in
conflict with Euclidean geometry. �

So this thought experiment shows that there appears to be a connection between
accelerating frames and non-Euclidean geometry. Now Euclidean geometry is
the geometry on a plane, while non-Euclidean geometries are the geometries on
curved surfaces. Draw a circle on the curved surface of the earth, for example,
such as a constant-latitude line in the northern hemisphere (see Figure 10.2). Then
the north pole is at the center of the circle. The radius of the circle is a line on the
sphere extending from the center to the circle itself; in the case of the earth, this is
a line of constant longitude.

Then it is easy to show that the circumference and radius obey C < 2πR. The
geometry on a two-dimensional curved space like the surface of the earth is non-
Euclidean. The opposite relationship holds if a circle is drawn on a saddle, with
the center of the circle in the middle of the saddle; in that case one can show that
C > 2πR, so that the geometry on a curved saddle is also non-Euclidean.

All this suggests a question: Are gravitational fields therefore associated with
curved spaces? Let us emphasize how special is the gravitational force in this
aspect. If we were to write Newton’s second law for a probe of gravitational and
inertial mass m near a larger mass M, we would get
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ma = −G
M m
r2 r̂, (10.1)

as we already know. Because the ms on both sides of this equation are the same,
they cancel, and we find

a = −G
M
r2 r̂. (10.2)

That is, all objects fall in gravity with the same acceleration, which depends only
on the source mass M and its location. In the absence of air resistance, elephants
and feathers fall with the same gravitational acceleration. Contrast this with the
Coulombic force

ma =
Q q
r2 r̂, (10.3)

where the probe has mass m and charge q, and the source has charge Q. We see
that m does not cancel out, and the acceleration of a probe under the influence of
the electrostatic force depends on the probe’s attributes: its mass and charge. This
dependence of a probe’s acceleration on its mass is generic to all force laws except
gravity! The gravitational acceleration is very special in that it has a universal
character – independent of the attributes of the object it acts upon. Hence, gravity
lends itself to be tucked into the fabric of space itself: all probes gravitate in the
same way, and thus perhaps we can think of gravity as an attribute of curved space
itself!

Fig. 10.2 Non-Euclidean geometry: the radius R and circumference C of a circle drawn on a sphere. Note that
C < 2πR since R0 < R and C = 2πR0.

The next thought experiment is an illustration of how this distortion of space due
to gravity can affect time as well.
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Example 10.2 Another Thought Experiment
Two clocks A and B are at rest in a uniform gravitational field g, with A on the ground and B at altitude h directly
above. At time t = t0 on A, A sends a light signal up to B, arriving at B at time t′0 according to B, as shown in
Figure 10.3. Later, when A reads t1, A sends a second light signal to B, which arrives at t′1 according to B. The
time interval on A is ΔtA = t1 − t0, and the time interval on B is ΔtB = t′1 − t′0, which is greater than
ΔtA, because from the principle of equivalence presented at the end of Chapter 7, high-altitude clocks run fast
compared with low-altitude clocks. Now notice that the light signals together with the two clock worldlines
form a parallelogram in spacetime. Two of the sides are the parallel vertical time-like world lines of the clocks
in the figure, and the other two are the slanted null lines, corresponding to light signals. In Euclidean geometry,
opposite sides of a parallelogram have the same length. But in the spacetime parallelogram of Figure 10.3,
the two parallel vertical lines, which are the clock worldlines, have time-like “lengths” (measured by clock
readings) cΔtA and cΔtB, which are not equal! Therefore when gravity is added to spacetime, the geometry
becomes non-Euclidean, and hence spacetime has in some sense become curved. If there were no gravity, the
high and low clocks would tick at the same rate, so the two clock worldlines would have the same time-like
length, and the parallelogram would obey the rules of Euclidean geometry, corresponding to a flat, Euclidean
spacetime. There is no notion of global time even within a fixed frame whenever gravity is around. It seems
then that gravity can curve spacetime.

A B

Fig. 10.3 Successive light rays sent to a clock at altitude h from a clock on the ground. Here
time is measured on the vertical axis, and altitude on the horizontal axis. �

As he learned from the work of Minkowski, Einstein knew that physics takes
place in the arena of four-dimensional spacetime. From the clues that (i) gravity
is related to accelerating reference frames, (ii) accelerating reference frames
are related to non-Euclidean geometries, and (iii) non-Euclidean geometries are



400 10 From Black Holes to Random Forces

realized on curved spaces, he became convinced that gravity is an effect of curved
four-dimensional spacetime.

Einstein’s quest to see how gravity is related to geometry ultimately led him
to the famous field equations of 1915. These equations showed how spacetime
geometry was affected by the particles and energy within it, and how curved
spacetime bends the trajectories of particles and energy. General relativity has
been summarized in a nutshell by the American physicist John Archibald Wheeler:
“Matter tells space how to curve; space tells matter how to move.”

10.2 The Schwarzschild Geometry

A presentation of Einstein’s field equations and a thorough discussion of their
solutions would take us very far afield! However, many interesting features of
the equations are contained in their most famous solution, the solution for the
curved spacetime in the vacuum surrounding a central spherically symmetric mass
M like the sun.2 The solution takes the form of a spacetime metric analogous to the
Minkowski metric of special relativity corresponding to flat spacetime. In spherical
coordinates (r, θ,φ), the flat Minkowski metric is

ds2 = −c2dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (10.4)

which, for example, we can use to measure physical distances and times. For
example, to compute the physical distance � between two points, we compute
� ≡

∫
ds along a line joining the two points, measuring both simultaneously, with

dt = 0.
Consider a probe of mass m in the vicinity of a spherically symmetric nonrotat-

ing star of mass M. The curved geometry surrounding such a mass was discovered
in 1915, shortly after Einstein published his theory, by the German physicist and
astronomer Karl Schwarzschild. Remarkably enough, Schwarzschild was a soldier
in the German army at the time, fighting in World War I. His metric was the first
nontrivial (i.e., non-flat spacetime) exact solution found of the field equations. He
published his solution later that same year, and died the following year of a disease
he contracted on the Russian front. The Schwarzschild metric is

ds2 = −
(

1 − 2M
r

)
c2dt2 +

(
1 − 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), (10.5)

where M ≡ GM/c2. Note that as M → 0 the spacetime becomes the flat
Minkowski metric (10.4). In the Schwarzschild metric, the star sits at the origin

2 Of course the sun is not quite spherically symmetric due to its rotation. But it is close enough for our
applications here.
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of the coordinates (r = 0) and the metric described the curved spacetime only for
r > R, where R is the radius of the star.

Schwarzschild’s metric contains the same spherical coordinates r, θ,φ and time t
as in Minkowski’s flat-space metric, so the meanings of the coordinates seem obvi-
ous. However, in reality their meanings are more subtle. In a general-relativistic
metric, as we have already mentioned, physical distances (those measured by
real meter sticks) correspond to integrals over space-like intervals, s =

∫
ds –

space-like means that ds2 > 0 in the metric; while physical times (those read by
real clocks) correspond to integrals over time-like intervals, s =

∫
ds – where

ds2 ≡ −c2dτ 2 < 0. Here dτ is the infinitesimal time interval read locally by a
clock tracing an infinitesimal time-like path in spacetime, and τ =

∫
dτ is the total

interval read by a clock carried along some finite path.
Take for example two points in the Schwarzschild geometry that are separated

purely radially, with identical values of θ ≡ θ0 and φ ≡ φ0. What is the
physical distance between them at some fixed time t0? We can label the two points
(t0, r1, θ0,φ0) and (t0, r2, θ0,φ0) where we will assume that r2 > r1 as shown in
Figure 10.4. Then for a radial distance between the two points at the fixed time t0,
we have dt = 0, dθ = 0, and dφ = 0, so the spacetime interval ds obeys

ds2 =

(
1 − 2M

r

)−1
dr2. (10.6)

Therefore the actual physical distance between the two points is not r2 − r1, but

Δs ≡
∫ r2

r1

ds =
∫ r2

r1

dr√
1 − 2M/r

. (10.7)

Fig. 10.4 Two spacetime points in the Schwarzschild geometry at Schwarzschild coordinate time t = t0. Later on,
we place two clocks at r1 and r2: the proper time intervalsΔτ1 andΔτ2 for the two clocks are also
shown.

Note that if M= 0 the spacetime reduces to flat Minkowski spacetime and the
physical distance between the two points really is r2 − r1, as we might expect. It is
also true that if both points have values of r � 2M, then the spacetime becomes
Minkowskian, and the physical distance between the two points approaches r2 −
r1. But if M �= 0 and r1 is not large compared with M, the spacetime is curved
and the physical distance between the two points is greater than r2 − r1. That is,
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the radii r2 and r1 are merely convenient coordinate labels and do not necessarily
represent measured physical distances. Note that we must assume that r > 2M
everywhere along the path; otherwise the integrand becomes imaginary and we are
in real trouble (we return later to the question of what happens if r ≤ 2M. In fact,
spacetime points with r = 2M = 2GM/c2 turn out to have a profound physical
significance, as we shall see.)

Now suppose instead that we have two spacetime points at the same spatial
locations (r0, θ0,φ0), but taking place at two different values of the time coordinate,
at t1 and t2. That is, the points might represent two successive events in the history
of a particle at rest. What is the physical time interval (the time interval read by
a clock) between these two events? Using dr = dθ = dφ = 0 in Eq. (10.5), we
have

ds2 = −c2dτ 2 = −c2
(

1 − 2M
r0

)
dt2, (10.8)

so

Δτ ≡ τ2 − τ1 =

∫ t2

t1

√
1 − 2M

r0
dt =

√
1 − 2M

r0
Δt, (10.9)

where Δt ≡ t2 − t1. Again, if M= 0 or if r0 → ∞, the spacetime is flat and the
physical time interval τ2 − τ1 reduces to t2 − t1. Now we understand the physical
meaning of the coordinate time t: it is the reading of clocks at rest far from the
central mass, i.e., with value of r0 such that r0 → ∞ (or more realistically r0 � M).
Clocks at rest at smaller values of r run at the slower rate

Δτ =

√
1 − 2M

r0
Δt < Δt. (10.10)

In fact, as long as r0 > 2M= 2GM/c2, where M is the central mass, the smaller
the radius at which a clock sits, the slower it runs. Again we get in serious trouble
if we try to imagine a clock at rest at some radius r ≤ 2M.

Example 10.3 Radial Light and Gravitational Redshifts
Picture two clocks at rest at different distances from some central mass. The first clock sits at distance r1 from
the center, and the second clock sits at the larger distance r2, as shown in Figure 10.4 above. We ourselves are
also at rest next to the second clock, and can watch the first clock through a telescope. As we watch the first
clock, does it appear to run at the same rate as our own clock at r2, or does it run fast or slow relative to our
own clock?

First we need to look at the propagation of a radial light beam from r1 to r2. As in special relativity, light
moves along null trajectories in spacetime, so that in the Schwarzschild geometry

ds2 = 0 = −c2
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 (10.11)
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for radially directed light. Solving for dr/dt:

dr
dt

= ±c
(

1 − 2M
r

)
, (10.12)

where we will now choose the plus sign since the light signals are traveling outward. It follows by integration
that the coordinate time required for light to travel outward from r1 to r2 is

t2 − t1 ≡
∫ t2

t1

dt =
∫ r2

r1

dr
1 − 2M/r

. (10.13)

The integral can be solved exactly (see the Problems section at the end of this chapter), but for now note that
if two successive light signals are sent from r1 to r2, the propagation time is the same for each. So if light with
wavelength λ1 is emitted at r1, one crest at t1 and the next crest at t1 + Δt1, then the two crests arrive at
r2 at times t2 and t2 + Δt2, where Δt2 = Δt1. The coordinate time differences are the same before and
after.

However, as we have seen, local rest clocks do not generally read coordinate times. If the initial time
interval between two wave crests at r1 isΔt1, then the rest clock at r1 reads a time interval

Δτ1 =

√
1 − 2M

r1
Δt1, (10.14)

and when the two wave crests arrive at r2 the local rest clock there reads a time interval

Δτ2 =

√
1 − 2M

r2
Δt2. (10.15)

In our caseΔt2 = Δt1, so the ratio of local clock rates is

Δτ2

Δτ1
=

√
1 − 2M/r2

1 − 2M/r1
. (10.16)

Now the wavelength of the light beam isλ1 = cΔτ1 when emitted at r1, andλ2 = cΔτ2 when received
at r2, so the ratio of the received and emitted wavelengths is the same as that for the time intervals:a

λ2

λ1
=

√
1 − 2M/r2

1 − 2M/r1
. (10.17)

This ratio is greater than one, since r2 > r1, so the light has undergone a redshift as it travels outward. This is
called the gravitational redshift and has been observed many times in light from our sun and other stars.
The shift is especially large for the light from white-dwarf stars, where the observed shift of well-known
spectral lines is used to measure the ratio of mass to radius for these stars. The gravitational redshift was
first measured on earth using gamma-ray photons emitted by atomic nuclei.
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Note that the gravitational redshift is infinite for light emitted by an object for which
2M/r ≡2GM/rc2 = 1. We will revisit this question.

It is also clear from the analysis that if an observer at rest at some smaller radius r1 views an emitter at
some larger radius r2, that observer will see a gravitational blueshift. As a rule of thumb, “falling” light gets
bluer, and “rising” light gets redder. �

aWe have assumed here that light moves at speed c according to measurements made using local clocks and meter sticks. This can be shown
from the results we have already derived (see the Problems section at the end of this chapter).

Example 10.4 Comparison with the Equivalence Principle
Let us compare two clocks at rest, one at r1 and the other at larger radius r2, in the weak-gravity limit, as shown
in Figure 10.4 previously. The exact ratio of their rates (with the same coordinate time interval Δt for each –
measured by the observer at r → ∞ is

Δτ2

Δτ1
=

√
1 − 2M/r2√
1 − 2M/r1

. (10.18)

In particular, for rest clocks near the earth (or anywhere in the solar system, for that matter), their distances
from any central mass easily satisfy r  2M, so we can use the binomial expansion for small 2 M/r yielding
(see Appendix F)

Δτ2

Δτ1
=

(
1 − 2M

r2

)1/2 (
1 − 2M

r1

)−1/2

(10.19)

�
(

1 − M

r2

)(
1 +

M

r1

)
�
[

1 +M

(
1
r1
− 1

r2

)]
,

where in the last equality we neglected the product of two small terms. Now suppose in addition that r2 =

r1 + h, where h  r1. Then

1
r2
=

1
r1 + h

=
1
r1

(
1 +

h
r1

)−1

=
1
r1

(
1 − h

r1

)
, (10.20)

so finally

Δτ2

Δτ1
= 1 +

Mh
r2

1
= 1 +

(
GM
r2

1 c2

)
h = 1 +

gh
c2 , (10.21)

where g = GM/r2
1 is the Newtonian gravitational field at r1. This is exactly the result we found previ-

ously from the principle of equivalence: clocks at higher altitude run fast compared with clocks at lower
altitude, by a factor (1 + gh/c2), where g is the local gravitational field, and h is the altitude difference
between the two clocks. That is, the principle of equivalence is built into general relativity. If experiments
showed that the principle of equivalence is false, then general relativity must be false as well. That has not
happened. �
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10.3 Geodesics in the Schwarzschild Spacetime

We now ask how a probe particle of mass m  M would move in the vicinity of the
source mass M responsible for the Schwarzschild metric (10.5). The answer to this
question is a natural extension of how we do it in special relativity: particles move
along trajectories which extremize proper time. Since ds2 = − c2dτ 2 along a time-
like worldline in both special and general relativity, we can extremize either

∫
ds or∫

dτ . Hence, according to general relativity, a massive particle subject to nothing
but gravity must move on time-like geodesics in four-dimensional spacetime – by
extremizing once again the functional

S = c
∫

dτ . (10.22)

From spherical symmetry we know that the geodesics will lie in a plane, which (as
usual) we take to be the equatorial plane θ = π/2, which leaves the two degrees
of freedom r and φ. Therefore we seek to find those paths that make stationary the
functional

S =

∫ √(
1 − 2M

r

)
c2dt2 −

(
1 − 2M

r

)−1
dr2 − r2dφ2

=

∫
dτ

√(
1 − 2M

r

)
c2 ṫ2 −

(
1 − 2M

r

)−1
ṙ2 − r2φ̇2, (10.23)

where ṫ = dt/dτ , ṙ = dr/dτ , and φ̇ = dφ/dτ . Note that while in nonrelativistic
physics the time t is an independent variable, and not a coordinate, in relativistic
physics the time t(τ) has become one of the coordinates, and the independent
variable is the proper time τ read by a clock carried along with the moving particle.
This calculus of variations problem is now a familiar one: the Lagrangian is the
square-root integrand in Eq. (10.23), and τ replaces t as the independent variable.

Before we proceed, there is a way to simplify things before making further
computations. Note first of all that (since ds2 = −c2dτ 2)(

1 − 2M
r

)
c2 ṫ2 −

(
1 − 2M

r

)−1
ṙ2 − r2φ̇2 = c2, (10.24)

a constant along the worldline of the particle. This fact can be used to help show
that making stationary the integral in Eq. (10.23) is equivalent to making stationary
the same integral, with the same integrand but with the square root removed (see
the Problems section at the end of this chapter). So our action becomes

S →
∫

dτ

[(
1 − 2M

r

)
c2 ṫ2 −

(
1 − 2M

r

)−1
ṙ2 − r2φ̇2

]
, (10.25)
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where the effective Lagrangian is the expression in brackets. Of our three coordi-
nates, t and φ are cyclic, so the corresponding generalized momenta are conserved,
giving us two first integrals of motion

pt =
∂L
∂ ṫ

= −2c2
(

1 − 2M
r

)
ṫ ≡ −2c2E,

pφ =
∂L
∂φ̇

= 2r2φ̇ ≡ 2L, (10.26)

where E and L are constants. For the third first integral we see that L is not an
explicit function of the independent variable τ , so the Hamiltonian is conserved.
However, it turns out that this is equivalent to Eq. (10.24), already in the form of a
first integral of motion.

We can now eliminate ṫ and φ̇ in Eq. (10.24) using Eq. (10.26), giving

ṙ2 − 2Mc2

r
+

L2

r2

(
1 − 2M

r

)
= c2(E2 − 1). (10.27)

This will look more familiar if we divide by two, multiply by the mass m of the
orbiting particle, recall that M≡ GM/c2, and write L≡ �/m:

1
2

mṙ2 − GMm
r

+
�2

2mr2

(
1 − 2GM

rc2

)
=

mc2

2
(E2 − 1) ≡ E, (10.28)

which has the familiar mathematical form of a one-dimensional conservation of
energy equation (!) in the radial direction

E =
1
2

mṙ2 + Ueff(r), (10.29)

where the effective potential is

Ueff(r) ≡ −GMm
r

+
�2

2mr2

(
1 − 2GM

rc2

)
. (10.30)

The first two terms of Ueff(r), which are by far the largest in familiar circum-
stances like the solar system, are exactly the same as the corresponding effective
potential for Newtonian gravity (7.27). If this were not true, the theory would
be dead in the water, because we know that Newtonian gravitation is extremely
accurate, at least within the solar system. Note then that Einstein’s gravity
predictions for our probe’s orbit can be approximated by those of Newtonian
gravity when we can drop the last term in the effective potential (10.30), or when

GM
rc2  1 ; (10.31)

that is, for small source masses or large distances from the source, which means
in either case “weak gravity.” In general, however, Einstein gravity can become
important in other regimes as well, ones involving even weak gravity under the
right circumstances.



407 10.3 Geodesics in the Schwarzschild Spacetime

Fig. 10.5 Effective potential for the Schwarzschild geometry for various angular momenta
l1 > l2 > l3 > l4 = 0.

In Newtonian mechanics, recall that the first term −GMm/r in Eq. (10.30) is
the gravitational potential and the second term �2/2mr2 is the angular momentum
barrier. The third new term is obviously relativistic, since it involves the speed
of light. It has the effect of diminishing the angular momentum barrier for small
r, and can make the centrifugal term attractive rather than repulsive, as shown
in Figure 10.5. This effect cannot be seen for the sun or most stars: coordinate
distances r where the last term of (10.30) induces important dynamical effects
lie within the body of the star – where the Schwarzschild metric cannot be used
to describe the curvature of spacetime. The relativistic term can however have
a small but observable effect on the inner planets, as we will show in the next
example.

Example 10.5 The Precession of Mercury’s Perihelion
By the end of the nineteenth century astronomers knew there was a problem with the orbit of Mer-
cury. In the sun’s frame, the perihelion of Mercury’s orbit does not keep returning to the same spot. The
perihelion slowly precesses, so that each time Mercury orbits the sun the perihelion occurs slightly later
than it did on the previous revolution. The main reason for this is that the other planets pull slightly
on Mercury, so the force it experiences is not purely central. Very accurate methods were worked out
to calculate the total precession of Mercury’s perihelion caused by the other planets, and although the
calculations explained most of the precession, Mercury actually precesses by 43 seconds of arc per century
more than the calculations predicted. Einstein was aware of this discrepancy when he worked on his general
theory, and was intensely curious whether the effects of relativity might explain the 43 seconds/century
drift.
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We begin with the conservation equations (10.26) and (10.29):

E =
1
2

mṙ2 − GMm
r

+
�2

2mr2

(
1 − 2GM

rc2

)
and L=

�

m
= r2φ̇. (10.32)

Using the chain rule, and again defining the inverse radius u = 1/r as coordinate, we have

ṙ ≡ dr
dτ

=
dr
du

du
dφ

dφ
dτ

= − 1
u2 u′

�

mr2 = − �

m
u′, (10.33)

where u′ ≡ du/dφ. Substituting this result into Eq. (10.32) gives

E =
�2

2m
(u′2 + u2)− GMmu − GM�2

mc2 u3. (10.34)

Then differentiating with respect toφ, we get a second-order differential equation for the orbital shape u(φ):

u′′ + u =
GMm2

�2 +
3GM

c2 u2, (10.35)

which is the same equation we found for the nonrelativistic Kepler problem except for the second term
on the right – which makes the equation nonlinear. We don’t have to solve the equation exactly, how-
ever, because the new term is very small. We can solve it to sufficient accuracy using what is called
first-order perturbation theory.

In first-order perturbation theory we assume a solution of the form u = u0+δu1, where (in our example)
u0 is the known exact solution of the linear equation without the new relativistic term, u1 is a correction
due to the relativistic term, and δ is a small dimensionless parameter which we are free to choose later. Our
goal is to find u1 and see whether the corrected solution leads to a precession of Mercury’s orbit. Substituting
u = u0 + δu1 into Eq. (10.35), we find that

u′′0 + u0 + δ(u′′1 + u1) =
GMm2

�2 +
3GM

c2 (u0 + δu1)
2. (10.36)

The function u0 obeys the nonrelativistic Kepler equation

u′′0 + u0 =
GMm2

�2 , (10.37)

with solution

u0 = A(1 + ε cos φ), (10.38)

where ε is the eccentricity of the classical elliptical orbit and A ≡ GMm2/�2, as shown in Chapter 7, where
� is Mercury’s angular momentum. We have chosen a constant of integration so that φ = 0 at perihelion
(minimum r, maximum u.) The part left over is

δ(u′′1 + u1) =
3GM

c2 (u0 + δu1)
2 =

3GM
c2 [A(1 + ε cos φ) + δu1]

2. (10.39)

The quantity GM/c2 has dimensions of length, and A has dimensions of inverse length, so the ratio GMA/c2

is dimensionless. The ratio is also very small if we choose M to be the sun’s mass and the angular momentum
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� to be that for Mercury’s orbit. Therefore this ratio is both dimensionless and small, so it makes sense to
choose

δ ≡ GMA
c2 , (10.40)

leaving us with

u′′1 + u1 = (3A)(1 + ε cos φ)2, (10.41)

where we have neglected additionalδ andδ2 terms on the right to keep everything in the differential equation
only through first-order terms in δ. In fact, it would be inconsistent to keep additional terms on the right,
because we have kept only terms through first order in δ on the left. Expanding what remains on the right:

u′′1 + u1 = 3A(1 + ε cos φ)2 = 3A
[

1 + 2ε cos φ+
ε2

2
(1 + cos 2φ)

]
, (10.42)

where we have used the identity cos2 φ = (1/2)(1 + cos 2φ). This gives us three linearly independent
terms on the right:

u′′1 + u1 = 3A
[(

1 +
ε2

2

)
+ 2ε cos φ+

ε2

2
cos 2φ

]
. (10.43)

Note that this equation is linear, and that its general solution is the sum of the solution of the homogeneous
equation (with zero on the right) and a particular solution of the full equation. We do not need the solution
of the homogeneous equation, however, because it is the same as that for the u0 equation, so contributes
nothing new. And (because of the linearity of the equation) the particular solution of the full equation is just
the sum of the particular solutions due to each of the three terms on the right, taken one at a time. That is,
u1 = u(1)

1 + u(2)
1 + u(3)

1 , wherea

u′′1 + u1 = 3A(1 + ε2/2) with solution u(1)
1 = 3A(1 + ε2/2),

u′′1 + u1 = 3A(ε2/2) cos 2φ with solution u(3)
1 = −(ε2A/2) cos 2φ,

u′′1 + u1 = 6Aε cos φ with solution u(2)
1 = 3εAφ sin φ. (10.44)

Altogether, the new contributions in first order add up to

u1 = 3A
[

1 +
ε2

2
− ε2

6
cos 2φ+ εφ sin φ

]
. (10.45)

The only term here that can cause a perihelion precession is the φ sin φ term, the so-called secular term,
since it is the only term that does not return to where it began after a complete revolution, i.e., as φ →
φ + 2π. The other terms can cause a slight change in orbital shape, but not a precession. So including the
secular term together with the zeroth-order terms, we write
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u � u0 + δu(2)
1 = A(1 + ε cos φ) + 3Aδ(εφ sin φ) = A(1 + ε cos φ) +

3GM
c2 A2εφ sin φ,

(10.46)

which is all we need for the purpose of tracing the precession to leading order. The perihelion corresponds to
the minimum value of r, or the maximum value of u, so at perihelion

du
dφ

= 0 = −Aε sin φ+
3GM

c2 A2ε(sin φ+ φ cos φ), (10.47)

which has a solution at φ = 0, but not at φ = 2π. So we look for a solution at φ = 2π + Δ for some
small Δ, where Δ represents the angle of precession. For small Δ, sin(2π + Δ) = sin Δ ∼= Δ and
cos(2π +Δ) ∼= 1 to first order inΔ. Therefore at the end of one revolution, Eq. (10.47) gives

0 = −AεΔ+
3GM

c2 A2ε[Δ + (2π +Δ)]. (10.48)

However, the Δs in the square-bracket term are small compared with 2π, so for consistency they must be
neglected. Then from Chapter 7 we find that

A = GMm2/�2 =
1

rp(1 + ε)
=

1
a(1 − ε2)

. (10.49)

Here rp = a(1 − ε), where rp is the perihelion and a is the semi-major axis of the elliptical orbit. So the
precession per revolution is then

Δ =
6πGMA

c2 =
6πGM

c2a(1 − ε2)
. (10.50)

The data for Mercury’s orbit is a = 5.8 × 1010 m, ε = 0.2056, and M = Msun = 2.0 × 1030 kg. The
result is

Δ = 5.04 × 10−7 radians/revolution. (10.51)

We can convert this result to seconds of arc/century, using the facts that Mercury orbits the sun every 88 days
and that there are 60× 60 = 3600 seconds of arc in one degree:

δ = 5.04 × 10−7 rad
rev

(
360 deg
2π rad

)(
3600 s

deg

)(
1 rev

88 days

)(
365 days

year

)(
100 years
century

)
= 43

seconds of arc
century

! (10.52)

After the extraordinary efforts and frequent frustrations leading up to his discovery of general relativity, here
was Einstein’s payoff. He had successfully explained a well-known and long-standing conundrum. Later he
wrote to a friend: “For a few days, I was beside myself with joyous excitement.”And in the words of his scientific
biographer Abraham Pais: “This discovery was, I believe, by far the strongest emotional experience in Einstein’s
scientific life, perhaps in all his life. Nature had spoken to him. He had to be right.” �

aSee the Problems section at the end of this chapter.
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Example 10.6 Bending of Light by the Sun
Light is massless, so is not affected by Newtonian gravity: a light beam moving past the sun should
not be bent according to classical physics. Using general relativity, however, the beam moves through
a curved spacetime, which may cause a deflection. To find out, we begin again with the Schwarzschild
metric:

ds2 = −(1 − 2M/r)c2dt2 + (1 − 2M/r)−1dr2 + r2(dθ2 + sin2 θdφ2), (10.53)

where now ds2 = 0, since (just as in the special relativity of Chapter 2) massless particles follow null paths in
spacetime. From symmetry considerations, a massless particle must still move in a plane defined by its initial
velocity vector and the center of the central mass. Therefore we can again take the effective Lagrangian of the
particle to be

L = (1 − 2M/r)c2 ṫ2 − (1 − 2M/r)−1 ṙ2 − r2φ̇2, (10.54)

but with two modifications. First, since the trajectory is null, from the metric we must set the effective
Lagrangian to be L = 0. Second, no longer can we take ṫ ≡ dt/dτ , ṙ ≡ dr/dτ , etc., because the
proper time interval is dτ = 0 for massless particles. However, we can let ṫ ≡ dt/dλ, ṙ ≡ dr/dλ, etc.,
whereλ is some other parameter along the path, called an “affine” parameter.

Using this Lagrangian we can find three first integrals of motion. Two of them follow from the fact that
both t andφ are cyclic coordinates:

ṫ =
α

1 − 2M/r
, φ̇ =

�

r2 , (10.55)

whereα and � are constants. The third comes from setting L = 0 and eliminating ṫ and φ̇ using the first two,
i.e.,

ṙ2 +
�2

r2 (1 − 2M/r) = α2. (10.56)

As with massive particles, we now define a new independent variable u ≡ 1/r; it is then straightforward to
show that ṙ = −�u′, where u′ ≡ du/dφ. Therefore

u′ 2 + u2(1 − 2Mu) = α2/�2. (10.57)

Differentiating with respect toφ:

u′′ + u = 3Mu2. (10.58)

IfM= 0 the spacetime is flat; in that case u′′+ u = 0 with general solution u = A cos(φ−φ0), where
A andφ0 are the two constants of integration. That is:

r cos(φ− φ0) = 1/A, (10.59)

the equation of a straight line, as expected. In particular, if we chooseφ0 = 0 the light beam moves in the y
direction and its point of closest approach to the origin is atφ = 0, with r = 1/A at that point.
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Now allow M �= 0. Returning to the full equation, we try the perturbation expansion

u = u0 + δu1, (10.60)

where u0 is the straight-line path we have already found for M= 0, u1 is a new function representing a
correction to the straight line, and δ is some small dimensionless number which we have the freedom to
select later on. That is, we assume that the new solution u includes only a small deviation from a straight-line
path. Substituting into the differential equation, we have

u′′0 + u0 + δ(u′′1 + u1) = 3M(u0 + δu1)
2. (10.61)

We have made no approximations so far. Now by definition u′′0 + u0 = 0, and for simplicity we choose to
define

δ =
3M

r0
≡ 3GM

r0c2 , (10.62)

where M is the sun’s mass and r0 is the distance of closest approach of the beam to the center of the sun,
which can be no smaller than the radius R of the sun itself. It is easy to verify that δ << 1, and that it is
dimensionless. Therefore to first order in δ (neglecting terms in δ2, etc.), we have

u′′1 + u1 = r0u2
0 = r0A2 cos2 φ = (1/2r0)(1 + cos 2φ), (10.63)

where δ has canceled out on both sides and we have used the trig identity cos2 φ = (1/2)(1 + cos 2φ).
This is an inhomogeneous linear differential equation, whose solution is the sum of the general solution of
the homogeneous equation u′′1 + u1 = 0 and a particular solution of the full equation. We can ignore the
general solution of the homogeneous equation, because that gives us nothing new: it is the straight-line path
we have already included in the equation for u0. It is straightforward to show that a particular solution of the
full equation is

u1 = (1/2r0)[1 − (1/3) cos 2φ]. (10.64)

Therefore to first order in the small quantity δ, the light-beam path is given by

u = u0 + δu1 = (1/r0) cos φ+
3GM
r0c2

1
2r0

[1 − (1/3) cos 2φ]. (10.65)

We are interested to see if this corresponds to a deflection as the beam passes by the sun. As the beam
approaches from far away, the initial radius is effectively infinite, so the initial value u = 0. The same is
true as the beam departs far from the sun. With the zeroth-order term alone, u vanishes if φ = ±π/2. So
we assume that with the full solution, u = 0 when φ = ±(π/2 + Δ), where Δ is a some very small
angle. Therefore (canceling a 1/r0)

0 = cos(π/2 +Δ) +

(
3GM
2r0c2

)
[1 − (1/3) cos 2(π/2 +Δ)]. (10.66)

Now

cos(π/2 +Δ) = (cos π/2) cos Δ− (sin π/2) sin Δ = − sin Δ ∼= −Δ (10.67)
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and

cos 2(π/2 +Δ) = cos π cos 2Δ− sin π sin 2Δ = − cos 2Δ ∼= −1, (10.68)

to first order in the small angleΔ, so we are left with

Δ =

(
2GM
r0c2

)
. (10.69)

Clearly Δ is the deflection of the beam as it approaches the near-point from infinity, and also the
deflection in the beam as it recedes to infinity, so the total deflection of the beam as it passes the sun is

2Δ =

(
4GM
r0c2

)
. (10.70)

If the closest approach of the beam is the sun’s “radius” R itself, the bending is

2Δ =

(
4GMS

Rc2

)
= 1.75 seconds of arc. (10.71)

This small bending was predicted by Einstein in 1915. The only way to detect it at that time was to wait for
a total solar eclipse, so that the apparent position of stars as their light is bent by the sun could be seen
and compared with their true positions in the sky. It was also necessary to wait until the end of the “Great
War,” so that expeditions to total solar eclipse sites could be undertaken. This was carried out by teams of
British astronomers in 1919, and Einstein’s prediction was verified. As newspapers picked up the story, Einstein
became world famous, and for the rest of his life and beyond he was an icon of science. Since that time
much more accurate measurements have been made, which agree with Einstein with a very high degree of
confidence. �

10.4 The Event Horizon and Black Holes

In Schwarzschild’s metric we have already noticed that the particular radius

R0 = 2M≡ 2GM/c2, (10.72)

where M is the central spherically symmetric mass, has special properties. At radius
R0, two of the metric coefficients are either zero or infinity. If we could place a
clock at rest at R0, it would appear from our equations that the clock would not
advance in time at all! An outward-directed light beam would have zero velocity
when emitted at R0, whether time is measured by local rest clocks or clocks at
infinity. Also, outward-directed light from R0 would suffer an infinite redshift.

Should we be concerned about these strange features? We only need to worry
about them if the Schwarzschild metric is valid at R0, which means that if we
calculate R0 from the value of the central mass, this particular radius is situated
in the vacuum outside the mass. That is, the Schwarzschild geometry is a solution
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of Einstein’s equations in vacuum, so if the calculated value of R0 lies inside the
central mass, i.e., at a radius where there is mass present, then the Schwarzschild
geometry is invalid there, so we don’t need to worry about these strange results. In
fact, R0 for the earth is just under 1 cm and R0 for the sun is about 3 km, far inside
the actual radii of those bodies.

However, it turns out that in the gravitational collapse of stars or galactic nuclei,
it is possible for massive objects to collapse to radii comparable to R0. For example,
highly massive stars reach a point in their evolution when the entire star collapses
and the outer layers then explode outwards to form a supernova, while the core
of the star may continue to collapse to R0 and beyond. The centers of galaxies,
including our own, can be a collecting point for millions or billions of stars, as well
as gas and dust, which can also collapse to radii comparable to R0.

Therefore it is necessary to make a careful analysis of the physics of light and
particles near R0. Some features are still controversial, while others seem to be well
established.

The event horizon of a spherical black hole is located at the coordinate radius R0.
This means that if we are in the vacuum at some radius R > R0 we can observe
events (through a telescope, for example) which take place at all points within our
radius, up until r → R0. In fact, we are unable to see events that take place at any
radius r ≤ R0, which is why R0 is called the event horizon. Any point at or within
R0 is “over the horizon” as far as we are concerned.

Also, since light cannot escape from any radius r ≤ R0, we see nothing there,
which is why a massive spherically symmetric body whose radius has collapsed to
r ≤ R0 is called a “black hole.” Derivations of the properties of event horizons and
black holes require analyses far beyond the scope of this book, so we leave it to the
reader to pursue these fascinating topics.

Example 10.7 Representative Black Holes
Some black holes are the result of the gravitational collapse of a star. A giant star burns up its nuclear fuel
relatively quickly, and ultimately, when its internal heat is no longer sufficient to support it against gravity,
it collapses. The collapse reheats the star to such enormous temperatures that unburned nuclear fuels are
ignited explosively, heating the outer parts in reactions that blow them outward, burning so brightly that
the star is called a supernova. Meanwhile the inner core continues to collapse, and if it is heavy enough it
becomes a black hole. A famous example is Cygnus X1, about 6000 light years away from us, first observed in
the constellation Cygnus by an X-ray telescope. It is a black hole that is one member of a double-star system;
the other member is an “ordinary”supergiant. Material from the ordinary star is gradually pulled away by the
gravitational attraction of the black hole, and forms an “accretion disk” that orbits the black hole, a bit like
Saturn’s rings orbiting Saturn. Unlike Saturn’s rings, however, there is enormous friction within the accretion
disk, due to high-velocity collisions between particles in the disk. As a result, the disk is heated to millions of
degrees, hot enough that it emits the observed X-rays. Orbital analyses estimate that the mass of the black
hole is about 14.8 solar masses. This means that the radius of its event horizon is about 44 km, scaled linearly
up from the 3 km event-horizon radius of a single solar mass.
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More recently, pairs of black holes (called “black hole binaries”) have been detected from the
gravitational waves they emit as they orbit around one another. The first detection was on September 14,
2015: the two black holes had masses of approximately 29 solar masses and 36 solar masses, and were situated
about 1.3 billion light years away from us. They were detected by two LIGO (Laser Interferometer Gravitational-
Wave Observatory) instruments, located in Livingston, Louisiana and Hanford, Washington. Since then other
detections of black-hole binaries have been made in this way. Gravitational waves are ripples in the curvature
of spacetime, which propagate outwards from the source at the speed of light. As they are emitted by the
rotating black-hole binary, energy is lost from the system, so the black-hole orbits decay into orbits of smaller
and smaller radii and higher and higher rotational frequencies. Ultimately the two event horizons touch one
another, so that they merge into a single event horizon surrounding a single black hole. In the first event
observed, about three solar masses of energy were radiated outward in the gravitational waves, leaving a sin-
gle black hole of about 29+36−3 = 62 solar masses. The entire observation lasted about 0.2 s: during this
time the rotational frequency (and the frequency of the emitted gravitational waves) rose from frequencies of
a few cycles/second up to about 250 cycles/s. Translating these gravitational wave frequencies into sounds, the
signal could be heard as a kind of “chirp,”equivalent to what one would hear by running one’s finger from the
left end of a piano keyboard up to “middle C.”As LIGO continues to be tuned and improved, it is expected that
something like one or two events will be observed per month, most originating very far away in the universe.

Finally, there are also black holes in the nuclei of many galaxies, including our own. These are not the
remnant of single supernova explosions, but may have formed by gravitational collapse of especially dense
regions or a huge number of supernova explosions quite early in the history of the universe. They continue
to grow as more matter falls into them, while other matter condenses into stars that orbit these central
black holes to form the surrounding galaxies. The nucleus of our own Milky Way galaxy harbors a black
hole of approximately 4.5 million solar masses. It is located in the constellation Sagittarius, and is named
Sagittarius A*. Scaling up from a single solar mass, the event horizon of this black hole has a radius of about
13.5 million km: that is, the event horizon is less than one-tenth the distance of the earth from the sun,
within which there are 4.5 million solar masses. We observe the system by the light surrounding it, including
occasional flares, caused by the chaotic infall of dust, gas, and stars which are gradually increasing the mass of
the black hole. Dust clouds, gas clouds, and stars orbit the galactic nucleus. Our solar system is approximately
26,000 light years from the nucleus, in an orbit that takes some 225–250 million years to complete. So in the
4.5 billion years since our solar system was formed, we have completed approximately 18 orbits around the
black hole at the center of our galaxy. �

10.5 Magnetic Gravity

It is possible to capture the leading relativistic corrections to Newtonian gravity
using an analogy with electromagnetism. This is because a similar symmetry
principle – gauge symmetry – underlies both force laws. We start with Maxwell’s
equations from Chapter 8:
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∇ ·E = 4πρ, ∇×E = −1
c
∂B

∂t
,

∇ ·B = 0, ∇×B =
4π
c
J+

1
c
∂E

∂t
, (10.73)

where E and B are the electric and magnetic fields, and ρ and J are the charge and
current densities. Given E and B, the Lorentz force on a probe of charge q moving
with velocity v is

Fem = qE+
q
c
v ×B. (10.74)

We already encountered the Coulomb fields that solve Maxwell’s equations for a
point charge at rest:

E =
Q
r2 r̂, B = 0, (10.75)

and noted the similarity between the corresponding electrostatic force law and
Newtonian gravity:

Fem =
q Q
r2 r̂, Fg = −G

m M
r2 r̂. (10.76)

We are now ready to go beyond Newtonian gravity as described by the usual
gravitational field g (see discussion in Section 8.1). Inspired by the full form of
Eqs. (10.73) and (10.74), we propose an additional field, a magnetic gravitational
vector field b, such that

∇ · g = −4πG ρm, ∇× g = −1
c
∂b

∂t
,

∇ · b = 0, ∇× b = −4π G
c

Jm +
1
c
∂g

∂t
, (10.77)

where ρm is the volume mass density of some source mass distribution, and Jm is
the mass current density. The force law on a probe of mass m and velocity v then
turns out to be

Fg = mg + 4
m
c
v × b, (10.78)

which means that we now have a velocity-dependent gravitational force arising
from the motion of mass! This expression has the same form as the Lorentz force on
an electric charge, except for the substitution of mass for charge and the factor of 4
in the “magnetic” term. Notice that this “magnetic” term is also always multiplied
by a factor of v/c, so it is very small at nonrelativistic speeds. This modification
of Newtonian gravity is indeed correct to linear order in v/c. It can be derived
from general relativity, even though the derivation is a subtle one with regards to
truncating the corrections at the v/c linear level. This modified force law can be
used, for example, to understand a gravitational gyroscope precession effect which
has been verified experimentally.
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From our experience with electromagnetism, we know how to add to the
Lagrangian of a probe so that we reproduce this extended gravitational force law.
Namely, we write

L → L + m
∫

drμaνημν , (10.79)

where aν is a new gravitational four-vector potential field defined as

aμ = (a0,a) (10.80)

with

g = −∇a0 −
1
c
∂a

∂t
, b = ∇× a (10.81)

as expected.

Example 10.8 Black Strings
Picture an infinite straight string of constant linear mass density λ0 moving along its length at speed V, as
shown in Figure 10.6. That is, a mass currentλ0V – i.e., mass per unit time – flows along the extent of the wire.
It may represent a model for a so-called “black string” – a theorized configuration of mass which is infinite,
straight, and with constant mass density, but no tension. We want to find the force on a spaceship of mass M
and velocity v that has ventured nearby. Given the cylindrical symmetry of the mass configuration, to find g
we can integrate the first of Eqs. (10.77) over the volume of a cylinder centered on the string of (say) radius ρ
and height h: ∫

∇ · g dVol = −4πG
∫

ρm dV ⇒
∮

g · dA = −4πG λ0 h, (10.82)

Fig. 10.6 An infinite linear mass distribution moves upward with speed V while a probe of
mass M ventures nearby.
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where we have used Gauss’s theorem on the left-hand side of the equation, and the resulting surface integral
is over the lateral surface area of the cylinder. This gives

2πρ h g = −4πG λ0 h ⇒ g = −2 G
λ0

ρ
ˆ̂ρ. (10.83)

To find the magnetic gravitational vector field b, we integrate the last of Eqs. (10.77) over a disk centered on
the string of radius ρ through which the mass current protrudes:∫

(∇× b) · dA = −4π G
c

∫
Jm · dA ⇒

∮
b · dl = −4π G

c
λ0V, (10.84)

where we employed Stokes’s theorem on the left-hand side, and the resulting line integral is over a circle
around the black string. The right-hand side is simply the mass current, mass per unit time, passing through
the disk. Then

2πρ b = −4π G
c

λ0V ⇒ b = −2 G
c
λ0V
ρ

ϕ̂. (10.85)

We can now compute the force on the probe using Eq. (10.78). We find

Fg = mg +
4m

c
v × b = −2 G

m λ0

ρ
ˆ̂ρ− 8 G

c2

m λ0V
ρ

v × ϕ̂. (10.86)

The surprising result is that the second term, arising from the magnetic gravity effects, can generate a repulsive
force, since we can flip the sign of V at will by changing the direction of mass flow in the black string. However,
this is a small effect compared to the more familiar attractive first term. The reason for this is that the ratio
of the second to the first term scales as Vv/c2: we need to move the string matter and the probe very fast to
generate a repulsive magnetic gravitational force large enough to compete with the omnipresent attractive
effect of the first term. Indeed, as speeds approach c, the electromagnetic gravity framework we developed
in these last two examples breaks down and the full theory of general relativity is needed to reach correct
conclusions. �

10.6 Gauge Symmetry

The central symmetry of Maxwell’s equations, gauge symmetry, is one of the
most profound principles underlying the laws of Nature. Indeed, positing the
symmetry as a starting point is enough information to derive Maxwell’s equations
and the Lorentz force law. While this beautiful derivation is simple and elegant, it
requires either quantum mechanics or classical field theory to appreciate. However,
it is worthwhile noting that such gauge symmetry principles in fact underly all
known forces of Nature. As a brief exposition of the workings of this symmetry
principle in electromagnetism, we demonstrate here the process of “gauge fixing”
– a technique that can be very handy in practical problem solving in the classical
dynamics of probe charges.
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The gauge symmetry of electromagnetism was already described in Chapter 8:

φ → φ− 1
c
∂f
∂t

and A → A+∇f, (10.87)

where φ and A are the scalar and vector potentials and f(t, r) is any scalar function
of time and space. This gauge transformation is a symmetry because it has no effect
on the electric and magnetic fields

E = −∇φ− 1
c
∂A

∂t
, B = ∇×A, (10.88)

and so it also has no effect on any observed physics.
For given electric and magnetic fields, the transformation provides us with the

freedom to choose a variety of scalar and vector potentials. Given this freedom, it
is customary to fix the gauge so as to make the manipulation of the potentials more
convenient in a particular situation. For example, we may choose the so-called
static gauge

φ = 0 static gauge. (10.89)

We can see that this is always possible: imagine you begin with some φ and A such
that φ �= 0. Then apply a gauge transformation of φ and A, which we know does
not change the electromagnetic fields and the associated physics, such that

φ′ = φ− 1
c
∂f
∂t

= 0. (10.90)

That is, we must find a function f such that this equation is satisfied. For any φ, this
equation indeed has a solution f. This is a rather strange gauge choice since it sets
the electric scalar potential to zero. But this is entirely legal. Note that it does not
imply that the electric field is zero, since we still have

E = −1
c
∂A

∂t
(10.91)

in this gauge choice – but the scalar potential term in the Lagrangian (8.43) is
absent.

Another interesting aspect of gauge fixing is that, typically, the process does not
necessarily fix all of the gauge freedom. In the case of the static gauge, we can still
apply a gauge transformation f0 such that

φ′ = 0 → φ′′ = 0 = φ′ − 1
c
∂f0
∂t

= −1
c
∂f0
∂t

(10.92)

without changing the gauge condition that the electric potential is zero. We see
from this expression that this is possible if

∂f0
∂t

= 0, (10.93)
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that is, if the gauge transformation function f0 is time independent. Therefore some
of the original freedom of the gauge symmetry remains even after gauge fixing.
This is known as residual gauge freedom, for obvious reasons.

Another very common gauge choice is the Coulomb gauge

∇ ·A = 0, (10.94)

and there is also a Lorentz-invariant version known as the Lorentz gauge

∂Aμ

∂xν
ημν = 0. (10.95)

In this manner, depending on the details of the problem at hand, one can make the
gauge choice for which the Lagrangian of a probe particle becomes most easily
analyzed.

Example 10.9 Maxwell’s Equations Using the Lorentz Gauge
Maxwell’s equations are given at the beginning of Section 10.5 in terms of the electric and magnetic fields E
and B. They may be rewritten in terms of the scalar and vector potentials, using E = −∇φ − 1

c ∂A/∂t
and B = ∇ × A. The result is that two of the four Maxwell equations are satisfied automatically, and the
other two are

−∇2φ− 1
c
∂

∂t
∇ · A = 4πρ,

−∇2A − 1
c2

∂2A
∂t2 = −4π

c
J +∇

(
∇ · A +

1
c
∂φ

∂t

)
. (10.96)

Each of the two equations involves both φ and A, which makes them tricky to solve. But we can make a
gauge choice to simplify the equations. Notice that if we use the Lorentz gauge condition

∂φ

∂ct
+∇ · A = 0, (10.97)

we can eliminate A in favor ofφ in the first equation andφ in favor of A in the second equation, resulting in

∇2φ− 1
c2

∂2φ

∂t2 = −4πρ,

∇2A − 1
c2

∂2A
∂t2 = −4π

c
J. (10.98)

The two equations have now been decoupled, with one equation inφ and the other in A. We recognize each
as a wave equation, with sources consisting of the charge densityρ for theφ equation and the current density
J for the A equation.

Even more elegantly, using the four-vector potential A=(φ, A) and defining a current density four-
vector J = (ρc, J), the equations can be combined into a single wave equation (with four components)

∇2A = −(4π/c)J. (10.99)
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The use of the Lorentz gauge has allowed us to write the four Maxwell equations, in the fields E and B and
sources ρ and J, as a single second-order differential equation in the four-vector potential with the current
density four-vector as source. �

10.7 Stochastic Forces

Consider a particle of dust floating in the air, tracing an irregular trajectory as
it is bumped around by the air molecules around it. Or consider a bacterium
swimming against the random forces of water molecules around it; or a minuscule
spring with randomly fluctuating spring constant describing the forces between two
nanoparticles. Such random forces abound in physics and can significantly affect
the dynamics of tiny particles. Fundamentally, these are not new force laws: they
are indeed mostly electromagnetic in origin. However, they are characterized by a
level of randomness that requires us to treat them differently.

Randomness, or the lack of determinism in physics, arises from two possible
sources:

• Quantum mechanics portrays a probabilistic picture of the world. Every state of
a system is allowed, and all that Nature keeps track of is the likelihood of one
state or another. Hence, in quantum mechanics, degrees of freedom fluctuate
and we talk about the average values of measurements. Such fluctuations are
called quantum fluctuations. They are important to the dynamics whenever the
characteristic scale of the action – that is, the characteristic energy scale times
the characteristic timescale – is of order �.

• In the context of deterministic classical physics or probabilistic quantum
mechanics, a high-level complexity in the dynamics of a system can arise from
the involvement of a very large number of particles that are interacting through
complex nonlinear force laws. The 1025 molecules of air may each individually
be well described by classical deterministic trajectories, yet such a description
is in practice impossible and in essence undesirable. The complex interactions
between the molecules results in ergodic dynamics: an evolution that explores
the various possible configurations of the whole system in a pseudorandom
(often chaotic) pattern. The setup is then best quantified by average values of
observables and statistical fluctuations. Such fluctuations then originate from
complexity – whether within classical or quantum mechanics. Their size is
determined by a macroscopic parameter known as temperature: the higher
the temperature of the complex system, the larger the statistical fluctuations.
Fluctuations of this type are referred to as thermal fluctuations. If a probe
particle is tracked as it interacts with such an ergodic system – i.e., a dust
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particle in air – the probe’s dynamics is significantly affected by the background
complexity if the energy of the probe is of order kBT, where kB is called
“Boltzmann’s constant” and T is the temperature of the background.

Whether quantum or thermal in origin, the effect of fluctuations on the classical
dynamics of a probe or particle can be described in the same language. Let us focus
on the example of a dust particle floating in air – subject to thermal fluctuations.
The central idea is that there are two timescales in the problem. The background
system – in this case the air molecules – forms a large thermal reservoir whose
dynamics is not affected much by the dust particle; its dynamics is associated with
a very short timescale compared to the timescale of evolution of the dust particle.
In contrast, the latter can be treated classically, but is then subject to randomly
and quickly fluctuating forces from the background molecules. We are interested
in describing the trajectory of the dust particle in such a setting.

Let us say we have a dust particle of mass m – moving in one dimension for
simplicity – evolving according to the equation of motion

m ẍ = m v̇ = −α v + σf(t), (10.100)

where α v is an effective frictional force arising from the particle’s interaction with
the background fluid molecules and f(t) is a random force of the same origin
changing in time very quickly compared to the evolution of the x coordinate.
This problem is known as the Ornstein–Uhlenbeck process; a simpler form of
it without the α v frictional term is the celebrated Brownian motion problem
of Einstein. In fact, through a more fundamental statistic treatment, one can
derive the α v term from the effect of the background fluctuations. Looking at
this equation, we are immediately led to a couple of mathematical puzzles. First,
if f(t) is randomly fluctuating, we need to clarify what exactly we mean by
randomness. Second, we expect x(t) and v(t) to have zigzagging profiles, as shown
in Figure 10.7, which would make them very different from the nice differentiable
smooth functions we are used to in the differential equations normally encountered

Fig. 10.7 A stochastic evolution of the position of a particle subject to random forces.
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in mechanics. In fact, we may suspect that x(t) and v(t) are not strictly speaking
functions in the usual sense. Let us tackle each of these issues separately.

If f(t) is a randomly fluctuating variable, we can talk about its statistical moments
to describe it. For example, the average f(t) would be a well-defined quantity. We
may write for example

f(t) = 0 (10.101)

for a force fluctuating about a zero value. Here, by an average we mean a time
average over timescales much longer than the short timescale associated with the
fluctuations. Another quantity that quantifies the randomness of this force is

f(t0)(f(t0 + t)) = C(t). (10.102)

This quantity measures the correlation of fluctuations over time. Expecting that
the system is time translationally invariant on timescales of interest, we have
written the right-hand side as a function of t only, and not t0. Typically, C(t) is an
exponentially decaying function, implying that as we look at fluctuations at larger
separations in time t, they quickly appear more and more uncorrelated. The Fourier
transform of C(t) is known as the spectral density of the force

S(ω) =
1

2π

∫ ∞

−∞
e−iωtC(t)dt. (10.103)

A particularly interesting random force law arises when S(ω) is a constant
independent of ω. We then say that f(t) describes white noise: its spectral density
is frequency independent. From Eq. (10.103), this implies we must have

C(t) = δ(t). (10.104)

That is, the force fluctuations are totally uncorrelated over time, or the timescale
of fluctuations is essentially zero – much smaller than any other timescale in the
problem. This is an idealization that is strictly speaking unrealistic, but it turns out
to be a good approximation in many situations.

Now that we have a rigorous definition of the randomness of f(t), we need to
tackle the issue that x(t) and v(t) are not well-behaved “functions.” We have the
equation

v̇ = −α v + σf(t), (10.105)

where f(t) is meant to be a random white noise force – which is then expected to
lead to a jagged trajectory for the probe. Instead of this equation, we propose to
write

dV
dt

= −αV + σf(t) (10.106)

with the following caveat: the capitalized variable V(t) represents many velocities
of the probe in an ensemble of many realizations of the evolution. V(t) is not a
function, but a placeholder for many possible values of V(t) realized when the
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experiment is run many times – all measured at time t. Such an object is called
a stochastic process, and Eq. (10.106) is known as a stochastic differential
equation. It describes the evolution of an ensemble of systems under the influence
of a random force law.

Much like regular differential equations, one can develop mathematical machin-
ery to manipulate and solve such stochastic equations. All such techniques can
be derived by going back to the premise that a capitalized variable represents a
measurement in an ensemble with a given probability distribution inherited from
the random force f(t). Then basic statistical methods can be used to compute
statistical moments of (for example) V(t).

An important theorem of stochastic differential equations can help us solve Eq.
(10.106).

Theorem: The stochastic differential equation
dZ(t)

dt
= a(t)Z(t) + b(t)f(t) + c(t), (10.107)

where f(t) is a random noise, and Z(t) is a stochastic process with initial condition

Z(0) = C, (10.108)

where C is a process with a given probability distribution, is solved by

Z(t) = ϕ(t)
(

C +

∫ t

0

c(s)
ϕ(s)

ds +
∫ t

0

b(s)
ϕ(s)

f(s)ds
)

(10.109)

with

ϕ(t) = e
∫ t

0 a(s)ds. (10.110)

This is a powerful theorem that can be used to solve many stochastic differential
equations. The proof of the theorem is beyond the scope of this book. For now, we
want to use it to solve our physics problem described by Eq. (10.106).

Mapping Eq. (10.106) onto Eq. (10.107), we identify

Z(t) → V(t), a(t) → −α, b(t) → σ, c(t) → 0. (10.111)

We then have

ϕ(t) = e−α t. (10.112)

And we get the full solution

V(t) = e−α tC + σ

∫ t

0
e−α (t−s)f(s)ds. (10.113)

We can now use the statistical properties of the white-noise force given by Eqs.
(10.101), (10.102), and (10.104) to compute the statistical properties of the probe’s
velocity process V(t). For example, we immediately get

V(t) = e−α tC (10.114)
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and

V(s)V(t) = e−2αtC2 + σ2
∫ t

0

∫ s

0
e−α(s−s′)e−α(t−s′′)f(s′)f(s′′)ds′ds′′

= e−2αtC2 +
σ2

2α
e−α(t+s)

(
e2α min(t,s) − 1

)
. (10.115)

For concreteness, let us specify a specific boundary condition: let the initial velocity
C represent a process with probability distribution

Prob(C) = δ(c), (10.116)

implying we start with zero initial velocity with no statistical spread at all. We then
have

C = 0, C2 = 0. (10.117)

This then implies that

V(t) = 0, V(t)2 =
σ2

2α
(
1 − e−2α t) . (10.118)

We can compute higher moments of V(t) to check that V(t) has a Gaussian
probability profile, and hence is entirely quantified by these first two statistical
moments (see corresponding problem in the Problems section at the end of this
chapter). From this result, we see that as t → ∞, we have

V(t)2 → σ2

2α
(10.119)

exponentially in time. Hence, the initial zero velocity of the probe gets “fuzzed
out” along a Gaussian distribution which, at large times, has a standard deviation
of σ/

√
2α. Note that σ tunes the strength of the random forces, while α tunes the

strength of the frictional forces. The effect of the random forces is then to spread
the velocity of the probe from zero to a fixed range; and this range is larger for
smaller frictional forces!

From these results, we can also determine the statistical properties of the position
of the probe. We have

X(t) = X(0) +
∫ t

0
V(s)ds. (10.120)

Using Eqs. (10.115) and (10.120), we can easily find X(t) and X(s)X(t). We leave
this problem as an exercise for the reader and quote the result: for t → ∞, one
finds that the position of the probe is given by

X(t)2 → σ2

α2 t, (10.121)

with X(t) = 0. The probability distribution for X(t) is Gaussian with variance
X2 − X2 given by (10.121). This is because it is a sum of stochastic variables
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that are Gaussian, as implied by Eq. (10.120) (see Problem 10.21). This is the
celebrated random walk result of statistical physics. The probe evolves in time
like a random uncorrelated sequence of steps: if you divide t into N snapshots (say
each of fixed small duration δt = t/N), at each snapshot the probe goes one step left
or one step right with equal probability – resulting in a spread in position scaling
as

√
N ∝

√
t. This conclusion can easily be generalized to a dust particle evolving

in three dimensions.

Example 10.10 Entropic Force
As we just argued, the evolution of a dust particle floating around in air proceeds as a random walk, starting
at say x = 0 and, as shown by (10.121), expanding its average distance from the origin as

Δx(t) =
σ

α

√
t. (10.122)

This process is known as diffusion – with the diffusion constant D defined as

2 D ≡ σ2

α2 . (10.123)

It is as if there is a force pulling on the dust particle away from the origin. This “force” is unlike any other we
have seen so far: it has a statistical origin, and we call it an entropic force. The dust particle is more likely
to be found further away from the starting point as time progresses because it has access to more possible
configurations at larger distances from the origin than at smaller ones. To see this, note that the particle’s
position in the x direction has a Gaussian probability profile as alluded to earlier:a

P(x)dx =
1

Δx(t)
√

2 π
e−x2/2Δx(t)2

dx, (10.124)

which is the probability of finding the dust particle between x and x + dx. As time passes,Δx(t) becomes
larger and hence the probability profile spreads. If we were to think of a collection of dust particles evolving
in this way, the number of dust particles per unit length would be proportional to P(x). With time, the dust
particles are spreading out towards a uniform equilibrium configuration. This means the average spreading
space available to each dust particle scales as 1/P(x) (i.e., the inverse of the density). The number of
configurations available to each dust particle then increases as 1/P(x), as a function of x. We define the
entropy of any statistical system as

S ≡ kB ln[number of available statistical configurations], (10.125)

where kB is Boltzmann’s constant. Hence, for the problem at hand, we can say that the entropy of a single dust
particle is given by

S(x) = −kB ln P(x) + constants � kB
x2

2 Δx2 + S0, (10.126)

where S0 is an x-independent constant that will be irrelevant for our upcoming discussion.
As a general statement of statistical physics, an isolated system of fixed energy is most likely to be found

in a configuration that maximizes its entropy. An entropic force on a particle arises from this principle and can
be defined as
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F = T∇S, (10.127)

where T is the temperature of the whole system, and the entropy S of the particle depends on its position.
For example, equilibrium is reached when S becomes uniform (independent of the position of the particle)
and thus entropic forces that drive the system toward statistically more likely configurations vanish. In our
example, we have an entropic force acting on the dust particle given by

F = T
dS
dx

=
kBT
Δx2 x. (10.128)

This is a force that points away from the origin and results in the spreading or diffusion of dust particles into
the surrounding space. While the entropic force is not a force in the traditional sense of the term, its effect on
statistical dynamics is nevertheless very much force-like. �

aWe focus on the one-dimensional problem. In three dimensions, we have three copies of this probability distribution and the argument is
replicated three times.

10.8 Summary

In this capstone chapter we have sampled a selection of advanced topics that put
in perspective our discussions in the previous four chapters. We learned about the
corrections to Newtonian gravity as they arise in the context of a new revolutionary
formulation of gravitation – one that involves the warping of space and time
by mass and energy. We also elaborated on a fundamental symmetry of electro-
magnetism, the so-called gauge symmetry. Indeed, gauge symmetries underlie all
known forces of Nature, including the force of gravity. Finally, we also touched
upon another class of forces of a very different nature, entropic forces that drive
complex systems toward statistically more likely configurations. There are two
other fundamental forces that we have not explored in this capstone chapter: the
weak and strong forces. Both of these forces become strong and relevant only when
quantum mechanics is also necessary to capture the correct physics. Hence, neither
of these cases can be usefully explored within the realm of classical mechanics.

Problems

Problem 10.1 Verify the particular solutions given of the inhomogeneous first-order��
equations for the perihelion precession, as given in Eq. (10.34).

Problem 10.2 The metric of flat, Minkowski spacetime in Cartesian coordinates is��
ds2 = −c2dt2 + dx2 + dy2 + dz2. Show that the geodesics of particles in this
spacetime correspond to motion in straight lines at constant speed.
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Problem 10.3 The geodesic problem in the Schwarzschild geometry is to make��
stationary the functional S =

∫
I dτ , where

I =
√
(1 − 2M/r)c2 ṫ2 − (1 − 2M/r)−1ṙ2 − r2ϕ̇2,

with ṫ = dt/dτ , etc. Use this integrand in the Euler–Lagrange equations to show
that one obtains exactly the same differential equations of motion in the end if
the square root is removed; i.e., if we instead make stationary the functional S′ =∫

I2 dτ . You may use the fact that (1−2M/r)c2 ṫ2− (1−2M/r)−1ṙ2−r2dϕ̇2 = c2,
a constant along the particle path. The result is important because it is often much
easier to use I2 in the integrand rather than I.

Problem 10.4 Show that there are no stable circular orbits of a particle in the��
Schwarzschild geometry with radius less than 6GM/c2.

Problem 10.5 Show from the effective potential corresponding to the Schwarzschild��
metric that if Ueff can be used for arbitrarily small radii, there are actually two radii
at which a particle can be in a circular orbit. The outer radius corresponds to the
usual stable, circular orbit such as a planet would have around the sun. Find the
radius of the inner circular orbit, and show that it is unstable, so that if the orbiting
particle deviates slightly outward from this radius it will keep moving outward, and
if it deviates slightly inward it will keep moving inward.

Problem 10.6 Kepler’s second law for classical orbits states that planets sweep out��
equal areas in equal times. Is that still true in Schwarzschild spacetime, assuming
orbital radii r> 2GM/c2? (a) First suppose that “time” here means the coordinate
time t in Schwarzschild coordinates. (b) Then suppose instead that “time” means
the proper time τ of the planets themselves.

Problem 10.7 Earth’s orbit has a semi-major axis a = 1.496×108 km and eccentricity�
ε = 0.017. Find the general relativistic precession of the earth’s perihelion in
seconds of arc per century.

Problem 10.8 Sometimes more than one coordinate system can usefully describe the��
same spacetime geometry. This is true in particular for the Schwarzschild geometry
surrounding a spherically symmetric mass M. The usual Schwarzschild metric is

ds2 = −(1 − 2M/r)c2dt2 + (1 − 2M/r)−1dr2 + r2dΩ2, (10.129)

where M≡ GM/c2 and dΩ2 ≡ (dθ2+sin2 θdϕ2). The so-called “isotropic” metric,
describing exactly the same spacetime, has the form

ds2 = −(1 − 2M/r)c2dt2 + e2u(dr̄2 + r̄2dΩ2), (10.130)

with the same dt2 term, while the other terms contain a new radial coordinate r̄
instead of r, and where u = u(r̄). (a) Find r̄ in terms of r and M, choosing a
constant of integration so that r̄ → r as r → ∞. (b) What is an advantage of using
the isotropic metric?
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Problem 10.9 The geometry on the surface of a sphere is non-Euclidean, so the�
circumference C and radius R of a circle drawn on the sphere do not obey C = 2πR,
where for example the circumference is a constant-latitude path and the radius is
drawn on the sphere down from the north pole along a constant-longitude path.
Suppose we measure latitude by the angle, measured from the center of the sphere,
between the north pole and the constant-latitude path. (a) If the angle is 90◦, what is
the coefficient α in C = αR? (b) If in effect pi were 3.00000 instead of 3.14156. . . ,
what would be the angle in that case? (c) The feature that C < 2πR is a property of
a positively curved surface. In Euclidean geometry, given a line and a point exterior
to the line, there is one and only one line through the given point that is parallel to
the given line, parallel meaning that the two lines never meet. What is the analogue
statement for a positively curved surface?

Problem 10.10 Before the age of relativity, some people calculated that light would be��
deflected by the sun in a classical model in which light consists of particles of tiny
mass m moving at speed c, pulled by the sun’s Newtonian gravity. Find in that case
the approximate deflection of a light beam in terms of any or all of m, c, G, M, the
sun’s mass, and R, the distance of closest approach of the light beam from the sun’s
center. Compare your result with the actual deflection of light in the Schwarzschild
spacetime as derived in the chapter.

Problem 10.11 (a) Find the escape velocity dr/dτ of a particle of mass m starting from�
rest at radius r0 = 4GM/c2 in a Schwarzschild spacetime of mass M, where τ is
read on the particle’s own clock. (b) Then find the escape velocity dr/dτ of the
particle, starting at rest from the same point, where now τ is read on a clock that
remains at rest at r0.

Problem 10.12 Tachyons are hypothetical particles (never observed, at least so far)��
that always travel faster than light. Therefore in general relativistic spacetimes they
would follow space-like (rather than time-like or null) geodesics. Prove that the
deflection of such a particle in passing by the sun would be less than that for light.

Problem 10.13 Consider two concentric coplanar circles in the Schwarzschild metric�
surrounding the sun, with measured circumferences C1 and C2. In terms of C1 and
C2, find an expression for (a) the radial coordinate distance Δr between them, (b)
the radial measured distance between them.

Problem 10.14 The Robertson–Walker metrics���

ds2 = −c2dt2 + a(t)2
[

dr2

1 − k(r/R)2 + r2dθ2 + r2 sin2 θdϕ2
]

(10.131)

are applicable to universes that are both spatially homogenous and isotropic. That
is, they have no preferred positions or directions. The spacetimes also feature
a universal time t and a constant R with dimensions of length. There are three
possible choices for the constant k: k = 1, 0, or −1, which correspond to three-
dimensional spatial geometries that have constant positive curvature (k = +1),
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constant negative curvature (k = −1), or are flat (k = 0). Here a(t) is called
the “scale factor” of the universe; if a(t) grows with time distant galaxies become
farther apart, or if a(t) shrinks distant galaxies come closer together. The function
a(t) can be found using Einstein’s field equations of general relativity, given the
kind of matter, radiation, or other quantities that live in the universe. The result is
the “Friedmann” equations, in which the universe is filled with a material having
uniform mass density ρ and uniform pressure p; we can also add “dark energy” as
represented by the constant Λ. There are then two independent equations for a(t):

(1)
ȧ2

a2 +
kc2

a2 =
8
3
πGρ+

Λ

3
c2 (10.132)

and

(2)
2ä
a

+
ȧ2

a2 +
kc2

a2 =
8πGp

c2 + Λc2, (10.133)

where overdots represent time derivatives and G is Newton’s gravitational constant.
(a) First suppose the universe is spatially flat, with k = 0, and that the cosmological
constant Λ is also zero. Also suppose the energy density consists entirely of mass
density ρ, which decreases as the universe expands so that ρa(t)3 = ρ0a3

0, where
ρ0 and a0 are the current mass density and scale factor. In that case solve the
Friedmann equations to find a(t) in terms of t, G, ρ0, and a0. It is thought that this
is a good approximation to the situation for our universe in most of its history so
far. It is called the “matter-dominated” period. (b) Repeat part (a) except suppose
the energy density consists entirely of photons in thermal equilibrium, in which
case the energy density obeys ρa(t)4 = ρ0a4

0. This situation is thought to be a good
approximation for our universe for a hundred thousand years or so early on, and
is called the “radiation-dominated” period. (c) Finally, repeat part (a) for the case
k = 0, ρ = 0, p = 0, but Λ = constant > 0. This may be a good approximation to
our universe for a brief time after the big bang began; it is called the “inflationary”
period for reasons that will be apparent from the solution. It may also be a good
approximation for our universe in the distant future. (d) At the current time the
universe seems to be behaving as though it were driven by both dust-like matter and
the cosmological constant Λ. Sketch a graph of a(t) vs. t extending from times long
ago to times in the distant future, showing what happens as the universe gradually
transitions from one form of dominance to the other. Figure 10.8 shows a picture
of a narrow patch of the sky taken by the Hubble telescope: we see thousands of
galaxies moving away from us due to the expansion of the universe.

Problem 10.15 Inspired by Eqs. (10.77), write gravitational field vectors describing a��
gravitational wave of angular frequency ω propagating in vacuum in the positive z
direction, specifying both the “electric” and “magnetic” field vectors. Assume the
“electric” gravitational field amplitude is given by g0.
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Fig. 10.8 This picture was taken by the Hubble telescope over the course of 10 consecutive days. The image
contains about 10,000 galaxies located at a distance of about 13 billion light years. All the galaxies in the
picture are moving away from us because of the expansion of the universe. Credits: R. Williams (STScI),
the Hubble Deep Field Team and NASA Horizon Telescope Collaboration.

Problem 10.16 Show that there is exactly one radius at which a light beam can move��
in a circular orbit around a spherical black hole, and find this radius. Then show
that the orbit is unstable, by showing that a tangential beam beginning at a slightly
larger radius will spiral outward and never return, and a tangential beam beginning
at a slightly smaller radius will spiral into the black hole. Figure 10.9 shows the
first picture ever taken of a black hole, that of the supermassive black hole at the
center of the M87 galaxy.

Problem 10.17 Write the Lagrangian of a charged particle in terms of potentials in��
the case where we use the static gauge condition, and show that it appears to be
different from the Lagrangian in the absence of any gauge fixing. Then show that
even though the Lagrangian is different, the Lagrange equations of motion are the
same.

Problem 10.18 Show that for a Gaussian probability distribution��

p(x) =
e−

(x−x0)
2

2 a2

√
2π a2

,

all the moments are given by

〈(x − x0)
n〉 = 1 × 3 × 5 × (n − 1)× an (10.134)



432 10 From Black Holes to Random Forces

Fig. 10.9 The supermassive black hole at the center of the M87 galaxy. This is the first image of a black hole ever
captured. The black hole is 6.5 million times more massive than our sun and is 53 million light years away.
Image credit: Event Horizon Telescope Collaboration.

for even n, and are zero otherwise. Hence the Gaussian distribution is entirely
characterized by its mean x0 and deviation a.

Problem 10.19 (a) Show that for any probability distribution, if we compute the��
generating function Z(β) ≡

〈
eβ X〉 for arbitrary β and X being the stochatic

variable, we can compute all moments using

〈Xn〉 = lim
β→0

(
d

dβ

)n
Z(β).

(b) Use the generating function to compute the moments of a Gaussian stochastic
variable. (c) Use the generating function to compute the moments of a stochastic
variable with uniform probability distribution: p(x) = 1/(2a) for (x0 − a) ≤ x ≤
(x0 + a), and p(x) = 0 otherwise.

Problem 10.20 For the stochastic equation studied in the text, show that���

X(t)2 =
σ2

α2

(
t +

1
2α

e−2αt
)

→ σ2

α2 t. (10.135)

Problem 10.21 Using the generating function Z introduced in an earlier problem, show��
that: (a) If X is a stochastic variable with a Gaussian distribution with mean x0 and
variance σ2, then a + b X is a stochastic variable with a Gaussian distribution with
mean a + b x0 and variance b2σ2. (b) If X and Y are Gaussian stochastic variables
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with means x0 and y0 respectively, and variances σ2
X and σ2

Y, then X+Y is a Gaussian
stochastic variable with mean x0 + y0 and variance σ2

X + σ2
Y.

Problem 10.22 Show that if the initial condition C of the linear stochastic differential���
equation introduced in the text has a Gaussian distribution, so does the solution of
the stochastic differential equation. Hint: You might want to compute generating
functions as in previous problems.

Problem 10.23 Show that in the case of a particle executing a random walk as��
described by the statistical moments of its position computed in the text, the
probability function p(x, t) satisfies the so-called diffusion equation

∂p
∂t

= D
∂2p
∂x2 ,

where the constant D is called the diffusion coefficient.

Problem 10.24 From statistical mechanics, for each degree of freedom q of a free sys-�
tem in thermal equilibrium at temperature T, the corresponding thermal fluctuations
of q̇ are given by 〈

1
2

m q̇2
〉

=
k T
2

. (10.136)

Here m is the mass associated with the kinetic energy expression written in terms
of q. Mapping this setup on the random Brownian motion dynamics elaborated in
the text, find a relation between T, σ, and α; that is, a relation between temperature,
random force strength, and friction. This is a form of the fluctuation–dissipation
theorem.

Problem 10.25 A team of researchers has long tracked the path of a star named S2�
that orbits the supermassive black hole Sagittarius A∗ at the center of our Milky
Way galaxy. (The orbit is one of those shown on the cover of this book.) The
orbital period of S2 is 16.05 years, its semi-major axis is 970 AU, where 1 AU is
the average distance of the earth from the sun, and its orbital eccentricity is 0.88.
The mass of the central black hole is approximately 4 million solar masses, where
1 solar mass is 2 × 1030 kg. The researchers also found that the highly elliptical
orbit of S2 precesses by approximately 12 min of arc per revolution. Is this value
consistent with the predictions of general relativity for a Schwarzschild spacetime?

Problem 10.26 Suppose that the orbit of star S2, as described in the preceding��
problem, lies in a plane that is perpendicular to our line of sight. Then, at periastron,
when S2 is a distance 120 AU from the central black hole, there will be both
a transverse Doppler effect and a gravitational redshift for light from S2 to
earth. (a) Find the sum of these frequency shifts. (The result has been confirmed
by observations. The transverse Doppler effect is described in Problem 2.4.) (b)
Calculate the Schwarzschild radius (the Event Horizon radius) of the central Sgr
A∗ black hole, and compare it with the periastron distance of S2. (The actual Event
Horizon radius differs somewhat from the Schwarzschild radius because Sgr A∗ is
undoubtedly rotating.)
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In Chapter 3 we showed how mechanics can be reformulated in the language of a
variational principle and Lagrangians, powerful technologies that have helped us
unravel Newtonian dynamics more transparently and efficiently. These deep dives
into mathematical physics also inspired the development of quantum mechanics
many years later.

The Lagrangian L(qi, q̇i, t) of a system generally depends upon a set of general-
ized coordinates qi, the corresponding generalized velocities q̇i, and the time t. The
coordinates qi live in what is called a configuration space, the space described by
all of the qi. The Lagrangian obeys the Lagrange equations

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0, (11.1)

second-order differential equations, one for each of the coordinates. We also
introduced the generalized momentum pi ≡ ∂L/∂q̇i, and noted that if the
corresponding coordinate qi is missing from the Lagrangian (i.e., is “cyclic”
or “ignorable”) then the generalized momentum pi is conserved, which follows
directly from the corresponding Lagrange equation. The pi then allowed us to
define the Hamiltonian

H = q̇kpk − L(qi, q̇i, t), (11.2)

where, using the summation convention, q̇kpk ≡ q̇1p1 + q̇2p2 + · · · + q̇npn for a
system with n generalized coordinates. Often H turns out to be the total energy E
of the system, but not always. So it is natural to ask the question: “Of what use is
H itself, whether it is the energy or not?”

One reason why H can be important was presented in Chapter 3, based upon the
result that

dH
dt

= −∂L
∂t

. (11.3)

The Hamiltonian H is obviously conserved if L is not an explicit function of time.
This is certainly important, giving us a conservation law in some cases where we
might not otherwise suspect one. But this result only scratches the surface of the
meaning and usefulness of the Hamiltonian.

In fact, we will show in this chapter that there is a quite different framework
– known as the Hamiltonian formalism – that describes the same fundamental
physics as Newtonian mechanics or the Lagrange method. However, just as we
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found with the Lagrange method, the Hamiltonian description of mechanics gives
us a new perspective that opens up a deeper understanding of mechanics, is
sometimes advantageous in problem solving, and has also played a crucial role
in the emergence of quantum mechanics. Therefore, our goal in this chapter is
to develop the Hamiltonian formalism, to explore examples that elucidate the
advantages and disadvantages of this new approach, and to develop the powerful
related formalisms of canonical transformations, Poisson brackets, and Liouville’s
theorem.

As a first step along this path we take the seemingly innocuous step of rewriting
the Hamiltonian not as a function of the qis, q̇is, and t, the generalized coordinates,
velocities, and time, but as a function of the qis, pis, and t, the generalized
coordinates, momenta, and time. In effect we want to eliminate the velocities q̇i
in favor of the momenta pi in the Hamiltonian. This might seem to be a simple
task, but how exactly do we do it?

11.1 Legendre Transformations

The way to make the transformation is to use Legendre transforms.1 A Legendre
transform has many uses in physics. In addition to mechanics, it plays a particularly
prominent role in thermodynamics and statistical mechanics. We begin with a
general statement of the problem we wish to address.

Consider a function of two independent variables A(x, y) – presumably of some
physical importance – whose derivative

z =
∂A(x, y)

∂y
(11.4)

is a measurable quantity that may be more interesting than the original independent
variable y itself. For example, A(x, y) may be a Lagrangian L(q, q̇) and

pk =
∂L
∂q̇k

(11.5)

the momentum of a particle, a quantity that is conserved under certain circum-
stances, and therefore may be more interesting than the generalized velocity q̇k we
began with. We now want to eliminate the less important independent variable y in
A(x, y) in favor of the more important independent variable z:

y → z. (11.6)

Note that the independent variable x is just along for the ride here: we will not
mention it again until the end of this section.

1 Adrien-Marie Legendre (1752–1833) was a French mathematician and physicist who made a number of
important contributions to applied mathematics and mathematical physics.



439 11.1 Legendre Transformations

We may be tempted to accomplish our goal of eliminating y as follows: start with
Eq. (11.4), and invert it to get y(x, z); then substitute the result into A(x, y(x, z)) ≡
B(x, z), thus eliminating y and retrieving a function of x and z alone. However,
this naive approach throws away some of the information within A(x, y)! That is,
unfortunately, B(x, z) does not contain all the information in the original A(x, y). To
see this, consider an explicit example. Let

A(x, y) = x2 + (y − a)2 (11.7)

where a is some constant. Then

z =
∂A
∂y

= 2 (y − a) ⇒ y(x, z) =
z
2
+ a. (11.8)

Finally, eliminating y, we find that

A(x, y(x, z)) = x2 +
z2

4
≡ B(x, z), (11.9)

so we have eliminated y in favor of z. However, we have lost the constant a! We
would, for example, get the same B(x, z) for two different functions A(x, y) with
different constants for a. Thus, the naive substitution y → z loses information
present in the original function A(x, y). If A(x, y) were a Lagrangian, for example,
we could lose part of the dynamical information if we attempted to describe things
with the transformed functional. We need instead a transformation that preserves
all the information in the original function or functional.

The reason why the naive substitution does not work is simple. Our new
independent variable z = ∂A/∂y is a slope of A(x, y). Knowing the slope of a
function everywhere does not determine the function itself: we can still shift the
function around while maintaining the same slopes, as illustrated in Figure 11.1(a).
To delineate the shape of A(x, y), we need both its slopes and relevant intercepts of
the tangent lines that envelop A(x, y), as depicted in Figure 11.1(b).

Let us denote the intercepts of such straight lines by B(x, z), one for each slope2

z. At every y there is a slope z, as well as a corresponding intercept B(x, z). It is
now easy to see that given A(x, y) we can find B(x, z), and vice versa: geometrically,
we can see that given A(x, y) we can determine the envelope of straight lines, and
given the envelope of straight lines we can reconstruct the shape of A(x, y).

Algebraically, we can capture these statements by writing the negative of the
intercept of each straight line in Figure 11.2 as

B(x, z) = z y − A(x, y), (11.10)

where y(x, z) is viewed as a function of x and z by using

z =
∂A(x, y)

∂y
(11.11)

2 Note that if A(x, y) is not monotonic in y, we may get a multiple-valued function in z for B(x, z).
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(b)(a)

Fig. 11.1 (a) Two functions A(x, y), differing by a shift, whose naive transformation through y → z led to the
same transformed function B(x, z). (b) The envelope of A(x, y) consisting of slopes and intercepts
completely describes the shape of A(x, y).

to solve for y(x, z). The vertical coordinate is A(x, y), the slope is z = ∂A/∂y, the
horizontal coordinate is y, and the negative intercept is B. Therefore the equation
of the straight line is A(x, y) = z y + (−B(x, z)). All the information in A(x, y) can
hence be found in a catalogue of the slopes and intercepts of all the straight lines
tangent to the curve A(x, y).

Fig. 11.2 The Legendre transformation of A(x, y) as B(x, z).

This is the approach of Legendre to eliminating the variable y in favor of the
new variable z. As argued above, B(x, z) contains all the original information in the
function A(x, y). In short, instead of the naive substitution A(x, y(x, z)) → B(x, z)
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we started out with, we need to consider z y(x, z) − A(x, y(x, z)) → B(x, z). B(x, z)
is then known as the Legendre transformation of A(x, y).

Let us summarize the process. We start with a given function A(x, y) and then
replace y with

z =
∂A(x, y)

∂y
. (11.12)

We invert the latter equation to get y(x, z). Then we write the new Legendre
transform of A(x, y) as

B(x, z) = z y(x, z)− A(x, y(x, z)). (11.13)

This is actually easy to remember and use. When making a Legendre transform
from a function A(x, y) to a new function B(x, z), we set the new function B(x, z)
equal to the product of the independent variable y we intend to eliminate and
the new independent variable z that replaces it, and subtract from this product
the original function A(x, y). Note that this procedure looks very similar to how
we defined H back in Chapter 3, in that we began with L(qi, q̇i, t) and defined
H = q̇kpk − L(qi, q̇i, t). There are two differences, however. (i) In the case L → H
there is an additional passive variable t. This is no problem, however, because t
is just along for the ride, and is unaffected by the transformation. (ii) In the case
L → H we have N products q̇kpk summed on k = 1, 2, . . . , N instead of the single
product zy, where N is the number of degrees of freedom in the system. So in
the L → H case we are carrying out multiple Legendre transforms, one for each
product in the sum. The final result is a Hamiltonian H(qi, pi, t), a function of the
generalized coordinates, momenta, and time only, without generalized velocities
q̇i.

Now to return to the general case. We will show how easy it is to invert
a Legendre transformation, as for example converting a Hamiltonian back to a
Lagrangian. We note that

dB = zdy + ydz −
(
∂A
∂x

)
dx −

(
∂A
∂y

)
dy. (11.14)

Using the chain rule, we can also write

dB =

(
∂B
∂x

)
dx +

(
∂B
∂z

)
dz, (11.15)

so from (1.9), and Eqs. (1.11) and (1.12), we get

y =
∂B
∂z

(11.16)

and

−∂A
∂x

=
∂B
∂x

. (11.17)
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Hence, the process of the inverse Legendre transform goes as follows. Given
B(x, z), the inverse Legendre transform replaces z with y by starting from (11.16)

y =
∂B
∂z

, (11.18)

inverting it to get z(x, y), and substituting in Eq. (11.13), or

A(x, y) = z(x, y) y − B(x, z(x, y)) (11.19)

to retrieve A(x, y). The variables y and z are called the active variables, while x is
called the passive or spectator variable of the transform. All along, we also have
the relation between the derivative of passive variables given by Eq. (11.17).

Example 11.1 A Simple Legendre Transform
Let us compute properly the Legendre transform of the function we already encountered:

A(x, y) = x2 + (y − a)2. (11.20)

Start with the derivative, which is to become our new independent variable:

z =
∂A(x, y)
∂y

= 2 (y − a). (11.21)

Solving for y:

y(x, z) =
z
2
+ a. (11.22)

The Legendre transform of A(x, y) is then

B(x, z) = z y(x, z)− A(x, y(x, z)) = z
( z

2
+ a

)
−
(

x2 +
z2

4

)
=

1
4
(z + 2 a)2 − x2 − a2, (11.23)

demonstrating that we have now kept track of the original a dependence in the transform B(x, z). We can
also verify Eq. (11.17):

∂B
∂x

= −2 x = −∂A
∂x

. (11.24)

�

11.2 Hamilton’s Equations

We can now derive the celebrated Hamilton equations. We have already found
a way to write the Hamiltonian H = H(qi, pi, t) in terms of the generalized
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coordinates, momenta, and time, without generalized velocities. In Hamiltonian
theory the qs and ps are called the canonical coordinates and canonical momenta
of the system. For example, consider a one-dimensional simple harmonic oscillator
with the Lagrangian

L = T − U =
1
2

mẋ2 − 1
2

kx2. (11.25)

The corresponding momentum is px = ∂L/∂ẋ = mẋ, the linear momentum of the
particle. Then the Hamiltonian is

H = q̇kpk − L = ẋpx −
(

1
2

mẋ2 − 1
2

kx2
)

= mẋ2 −
(

1
2

mẋ2 − 1
2

kx2
)

=
1
2

mẋ2 +
1
2

kx2, (11.26)

a correct result, but not yet in canonical form. We need to eliminate ẋ, which we
can do simply by using ẋ = px/m, giving finally

H =
(px)2

2m
+

1
2

kx2 (11.27)

in terms of the canonical coordinate x and the corresponding canonical momentum
px. No velocities remain in H.

Now we are prepared to derive Hamilton’s equations. From our original
definition H = q̇kpk −L(qi, q̇i, t) (remember we are summing on k) we can take the
differential of H to get

dH = q̇kdpk + pkdq̇k −
∂L
∂qk

dqk −
∂L
∂q̇k

q̇k −
∂L
∂t

dt. (11.28)

The second and fourth terms on the right of this equation cancel one another
because by definition pi = ∂L/∂q̇i for each coordinate qi. Furthermore, the
Lagrange equation for qi is

∂L
∂qi

=
d
dt

∂L
∂q̇i

=
d
dt

pi = ṗi, (11.29)

so the third term on the right above can be rewritten in terms of ṗi, giving altogether

dH = q̇kdpk − ṗkdqk −
∂L
∂t

dt. (11.30)

Now there is a quite different way to write dH, using the fact that we have sworn
to express it in terms of the canonical variables alone, H = H(qi, pi, t). Taking the
differential in this case gives, from multivariable calculus:

dH(qi, pi, t) =
∂H
∂qk

dqk +
∂H
∂pk

dpk +
∂H
∂t

dt. (11.31)

We now have two expressions for dH, which we can compare with one another.
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Note that since the coordinates, momenta, and time are all independent variables,
the coefficients of dqi, dpi, and dt must be separately equal between the two
expressions for H. Therefore

∂H
∂qi

= −ṗi,
∂H
∂pi

= q̇i, and
∂H
∂t

= −∂L
∂t

. (11.32)

The first two of these equations are Hamilton’s equations of motion. Note
that whereas Lagrange’s approach provides us with N second-order differential
equations, one for each degree of freedom, Hamilton’s approach provides us with
2N first-order differential equations, two for each degree of freedom, along with a
transformation of the passive time derivatives, ∂H/∂t = −∂L/∂t.

Let us summarize this interesting transformation from second to first-order dif-
ferential equations. Given a Lagrangian with N degrees of freedom, we transform
it to a Hamiltonian

L(qk, q̇k, t) → H(qk, pk, t) (11.33)

with 2N independent degrees of freedom: the qks and the pks. To do this, we write

pk =
∂L
∂q̇k

, (11.34)

which gives the functions pk(q, q̇, t). We invert these functions to get q̇k(q, p, t) and
substitute in

H(q, p, t) = pkq̇k − L. (11.35)

The dynamics is now tracked by the variables qk(t) and pk(t). This 2N-dimensional
space is called phase space. The time evolution is described in phase space through
2N first-order differential equations

q̇k =
∂H
∂pk

, ṗk = − ∂H
∂qk

. (11.36)

Hamilton’s equations (11.36) consist of twice as many equations as the Lagrange
equations, but they are always first order rather than second order, and therefore
have certain advantages.

Let us emphasize once again that in order to use Hamilton’s equations, it is
essential to write the Hamiltonian function in terms of the generalized coordinates
qk and their canonical momenta pk! There must be no generalized velocities q̇k
remaining in H! It is a common mistake to write the Hamiltonian by its definition
H =

∑
i piq̇i − L(qk, q̇k, t) and forget to eliminate the q̇k in favor of the pk and qk

before using Hamilton’s equation ṗk = ∂H/∂qk. Doing this will give an incorrect
equation of motion.

In terms of analytic problem solving, Hamilton’s equations add to our arsenal of
techniques. However, the real advantages of Hamilton’s equations are not primarily
in analytic problem solving, but in the following:
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(i) They give insight into understanding motion, particularly in phase space.
The Hamiltonian framework gives us a qualitative bird’s-eye perspective of
dynamics without solving any differential equations at all.

(ii) They are more immediately appropriate for numerical solutions, a very
important advantage since relatively few problems in mechanics can be
solved exactly in terms of established functions. That is, they are more easily
implemented in computer algorithms than second-order differential equations,
resulting in more stable numerical solutions of complex systems.

(iii) They provide a natural bridge from classical to quantum mechanics, a bridge
that was exploited in very different ways by two originators of quantum
mechanics, the Austrian-born physicist Erwin Schrödinger (1887–1961) and
the German physicist Werner Heisenberg (1901–1976).

11.3 Phase Space

Figure 11.3 depicts a two-dimensional cross-section of a phase space. A point in
phase space is a complete description of the system at an instant in time. Any such
point may be viewed as a complete specification of the initial conditions at time
zero, and we evolve from this point along the 2N-dimensional vector field

{q̇1, ṗ1, q̇2, ṗ2, . . . , q̇N, ṗN} =

{
∂H
∂p1

,− ∂H
∂q1

,
∂H
∂p2

,− ∂H
∂q2

, . . . ,
∂H
∂pN

,− ∂H
∂qN

}
,

(11.37)

as shown in the figure.

initial conditions

Fig. 11.3 The two-dimensional cross-section of a phase space for a system. The flow lines depict Hamiltonian time
evolution.
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The initial state of the system then traces a smooth line in phase space as it
evolves into the future. Notice that this evolution is almost a gradient flow – that is
a flow along the gradient of a function, H. It is so except for a minus sign in half of
the terms of Eq. (11.37). This additional “twist” lies at the heart of dynamics. We
will revisit it at the end of this part of the book, along with the insight it gives us
into quantum mechanics.

Example 11.2 The Simple Harmonic Oscillator
Again, let us consider a particle of mass m moving in one dimension under the influence of a spring with force
constant k. As we have already shown, in the essential canonical form the Hamiltonian is

H(x, p) =
p2

2 m
+

1
2

kx2, (11.38)

which is also the energy in this case. Note that the generalized velocity ẋ is (correctly) absent from the
Hamiltonian. The equations of motion are now first order:

ẋ =
∂H
∂p

=
p
m

, ṗ = −∂H
∂x

= −kx. (11.39)

While already very simple, we can nevertheless implement this dynamics on a computer. More interestingly,
we can now visualize the evolution in an interesting way, as shown in Figure 11.4. From Eq. (11.35), we know
the Hamiltonian is conserved:

dH
dt

= −∂L
∂t

= 0. (11.40)

Fig. 11.4 The phase space of the one-dimensional simple harmonic oscillator.

Hence, the trajectories in phase space are contours of constant H. From Eq. (11.38), we see that these are ellipses
with semi-major and semi-minor axes as shown in the figure. Note also the direction of flow in phase space:
pick any point on an ellipse as an initial condition, and from the sign of p deduce the direction of flow as shown.
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An interesting aspect of this picture is that we are able to get a quick bird’s-eye view of the dynamics in the
space of all initial conditions. In this simple example, there are no interesting regions of the phase space that
result in qualitatively different evolutionary patterns. However, in a more complex system, a quick look at the
phase space can immediately identify interesting basins of initial conditions, as we shall see. Nevertheless,
the phase-space picture already constitutes a quick proof that all time developments of the simple harmonic
oscillator are necessarily closed and bounded. This means we expect that there is a period after which the time
evolution repeats itself; and also that the particle can never fly off to infinity. These statements are nontrivial,
particularly for more complex systems. Note also that drawing the phase space does not involve solving any
differential equations: it is simply the task of drawing contours of the algebraic expression given by H.

Now what if we want to solve our first-order differential equations (11.39) analytically? While their first-
order nature is welcome, the two equations are in fact coupled. To decouple them, we unfortunately need to
take a time derivative of the first equation of (11.39):

ẍ =
ṗ
m
= − k

m
x, (11.41)

bringing us back to the second-order differential equation that is the simple harmonic oscillator equation.
In this case, the Hamiltonian picture did not help us solve the time evolution beyond what the Lagrangian
formalism can do more easily. From that perspective it seems like a waste of time. But even in this simple case,
we learned about the geometry of the space of initial conditions through phase space, and as we shall see, we
developed a framework particularly suited for a numerical, computer-based solution of the dynamics.

As the systems of interest get more and more complicated, we will see more and more benefits from
analyzing it with the Hamiltonian formalism. We can think of the Hamiltonian picture as one of several
different ways of analyzing a system, each having advantages and disadvantages, and together these methods
make up a powerful arsenal of tools that help us understand complex dynamics. �

Example 11.3 A Bead on a Parabolic Wire
Consider a bead of mass m constrained to move along a vertically oriented parabolic wire in the presence of a
uniform gravitational field g, as shown in Figure 11.5. We write the Lagrangian as

L =
1
2

m
(

ẋ2 + ẏ2)− mgy, (11.42)

with the constraint

y =
x2

2
, (11.43)

which is the shape of the wire. Implementing the constraint, we get a Lagrangian with a single degree of
freedom:

L =
m
2

(
1 + x2) ẋ2 − mg

2
x2. (11.44)
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Fig. 11.5 A bead constrained to a parabola.

We expect a two-dimensional phase space, say parameterized by {x, px}, wherea

px =
∂L
∂ ẋ

= m
(

1 + x2) ẋ ⇒ ẋ =
px

m (1 + x2)
. (11.45)

We can then write the Hamiltonian in terms of x and px by eliminating ẋ:

H = px ẋ − L =
(px)2

2m (1 + x2)
+

mg
2

x2. (11.46)

Once again, since ∂L/∂t = 0, the Hamiltonian is conserved, as implied by Eq. (11.35). Thus, trajectories in
phase space follow contours of constant H. Figure 11.6 shows a plot of the contours of H in phase space. We
see a much richer structure of initial conditions than the case of the simple harmonic oscillator of the previous
example. In particular, we see the stable point at x = px = 0. And we note that the system spends a great
deal of time at the turning points xmin and xmax. Indeed, we can easily perform statistics on the figure to
determine the fraction of time the particle is near the turning points, find the maximum and even minimum
momentum, and determine various qualitative and quantitative aspects of the dynamics – all without
solving the equations of motion. We also note, as expected intuitively, that the orbits are all bounded and
closed.

The two first-order equations of motion are given by (Eqs. (11.36))

ẋ =
px

m (1 + x2)
(11.47)

and

ṗx = −mgx +
x(px)2

m (1 + x2)
2 . (11.48)
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stable point

Fig. 11.6 The phase space of the one-dimensional particle on a parabola.

Once again, these are coupled first-order differential equations. Attempting to decouple them leads
generically to second-order equations, the Lagrangian equations of motion. However, it is particularly easy
to code these first-order differential equations into a Runge–Kutta computer algorithm. �

aStrictly speaking, the canonical momentum naturally lives in the so-called “cotangent”space and its spacetime components should be denoted
by subscripts, not superscripts (which is reserved for vectors). We will not make this distinction here and we write canonical momenta as vectors
with superscripts. With a mostly positive metric convention, all expressions remain correct.

Example 11.4 A Charged Particle in a Uniform Magnetic Field
A particle of mass m and charge q moves around in three dimensions in the background of given electric and
magnetic fields. The Lagrangian was developed in Chapter 8 and is given by

L =
1
2

m
(

ẋ2 + ẏ2 + ż2)− qφ+
q
c

ẋAx +
q
c

ẏAy +
q
c

żAz , (11.49)

where φ(x, y, z, t) and A(x, y, z, t) are, respectively, the electric potential and the vector potential. To
transform to the Hamiltonian picture, we write the canonical momenta (see Eq. (11.34))

px =
∂L
∂ ẋ

= mẋ +
q
c

Ax ,

py =
∂L
∂ ẏ

= mẏ +
q
c

Ay ,

pz =
∂L
∂ ż

= mż +
q
c

Az , (11.50)

or more compactly

p = mv +
q
c

A ⇒ v =
p
m
− q

mc
A, (11.51)



450 11 Hamiltonian Formulation

where in the last step we solved for v in preparation for eliminating the v dependence in the Hamilto-
nian (11.35):

H = v · p − L =
1

2m

(
p − q

c
A
)2

+ qφ. (11.52)

In the Hamiltonian picture, the effect of the electromagnetic fields is then simply the shifting of the momenta
p → p − (q/c)A and the addition of the electric potential energy qφ.

As we saw in Chapter 8, the magnetic field is given in terms of the vector potential by B = ∇× A. For
a uniform magnetic field in the z direction, B = B0ẑ, we can write a vector potential (see Eq. (8.31))

A = −1
2

B0y x̂ +
1
2

B0x ŷ, (11.53)

which is given in the Coulomb gauge choice. Substituting this into Eq. (11.52) and noting that since∂L/∂t =
0 the Hamiltonian is conserved, we have

H =
1

2 m

(
px − q y B0

2 c

)2

+
1

2 m

(
py +

q x B0

2 c

)2

+
1

2 m
(pz)

2, (11.54)

describing the constant Hamiltonian contours in phase space. As expected, the dynamics in the z direction is
that of a free particle. In phase space, if we focus on the x–px cross-section, for example, we have off-center
ellipses as shown in Figure 11.7. In the (x, px) coordinates, the center is located at (−2 c py/q B0, q y B0/2 c)
and the radii are (

√
8 m c2H/q2B2

0,
√

2 m H). In the x–y plane, as we know, the particle would be circling
around. More interestingly, we have shifted circles of radius

R =

√√√√8 m c2

q2B2
0

(
H − (pz)

2

2 m

)
. (11.55)

Fig. 11.7 The flow lines in the x–px cross-section of phase space for a charged particle in a
uniform magnetic field. �
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11.4 Canonical Transformations

From the perspective of the Hamiltonian formalism, dynamics plays out in phase
space. Figure 11.8(a) shows a two-dimensional cross-section of a phase space. The
flow lines depict the time evolution of the system with various initial conditions.

(a) (b)

Fig. 11.8 (a) The flow lines in a given phase space. (b) The same flow lines as described by transforming
coordinates and momenta.

Based on our experience, we know that coordinate transformations can be very
useful when tackling problems in physics. What if we were to apply a coordinate
transformation directly in phase space:

qk → Qk(q, p, t), pk → Pk(q, p, t) ? (11.56)

To specify the full coordinate transformation in phase space, it then seems we
would need 2N functions. Such a general coordinate transformation would also
deform and distort the time-evolution flow pattern as illustrated in Figure 11.8(b).
In general, the new flow lines may not be Hamiltonian: by that we mean that the
elegant attribute of time evolution in phase space as one given by the twisted
gradients (i.e., Eq. (11.37)) of a function called the Hamiltonian may not persist
in {Q, P} space:

Q̇ �= ∂f
∂P

, Ṗ �= − ∂f
∂Q

(11.57)

for any arbitrary function f(Q, P). The more interesting transformations in phase
space are obviously those that preserve this structure of Hamiltonian dynamics,
because then the new canonical variables Q, P would be just as viable as the origi-
nal variables q, p. We therefore look for a subset of all possible transformations that
preserve Hamiltonian flow; that is, through which we obtain a new Hamiltonian
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H(q, p) → H̃(Q, P) (11.58)

such that

q̇k =
∂H
∂pk

, ṗk = − ∂H
∂qk

(11.59)

implies

Q̇k =
∂H̃
∂Pk

, Ṗk = − ∂H̃
∂Qk

. (11.60)

This is a nontrivial condition on the allowed transformations. We henceforth refer
to such transformations as canonical transformations.

Let us find the general attributes of such canonical transformations. The structure
of the Hamiltonian equations (11.59) and (11.60) proceeds from the variational
principle: the equations of motion are at the extremum of a single functional called
the action. If the Hamiltonian flow is to be preserved by a canonical transformation
of phase space, and the equations of motion in the old and new variables are to be
describing the same physical situation, we must require that the actions in the old
and new coordinates remain unchanged:

S[q, q̇, t] = S[Q, Q̇, t]. (11.61)

The action is the time integral of the Lagrangian, S =
∫

L dt, so this implies that

L(q, q̇, t) = L̃(Q, Q̇, t) +
dF
dt

, (11.62)

where the difference between the two Lagrangians can be a total time derivative of
an arbitrary function F. That is, as long as that function vanishes at early and late
times, the integral ∫ t1

t0

dt
dF
dt

= F(t1)− F(t0) = 0. (11.63)

In that case the time integral of dF/dt is inconsequential to the equations of motion.
Now since L(q, q̇) = q̇kpk − H and L̃(Q, Q̇, t) = Q̇kPk − H̃, we have

q̇kpk − H = Q̇kPk − H̃ +
dF(q, p, Q, P, t)

dt
. (11.64)

Note that so far we have assumed that q, p, Q, P, and t are all independent of one
another. Therefore the chain rule of multivariable calculus tells us that

dF
dt

=
∂F
∂t

+
∂F
∂qk

q̇k +
∂F
∂pk

ṗk +
∂F
∂Qk

Q̇k +
∂F
∂Pk

Ṗk. (11.65)

There are huge numbers of functions F we might use here. One particular class of
functions we might choose has the form

F → F1(q, Q, t), (11.66)
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a function of q, Q, and t only, so that we take q, Q, and t to be independent of one
another. Then, comparing both sides of Eq. (11.64), we must have

pk =
∂F1(q, Q, t)

∂qk
, Pk = −∂F1(q, Q, t)

∂Qk
, and H = H̃ − ∂F1

∂t
. (11.67)

To obtain the desired transformations Qk(q, p, t) and Pk(q, p, t), we need to invert
the first equation to get Qk(q, p, t); and use this in the second equation to get
Pk(q, p, t). Finally, we can use the third equation to solve for the desired new
Hamiltonian H̃. We will shortly show an example of this procedure.

We have therefore found that we can generate a canonical transformation
from {qk, pk} to {Qk, Pk} using any function of the form F1(q, Q, t) and its
derivatives. The function F1(q, Q, t) is called the generator of this canonical
transformation.

Example 11.5 Transforming the Simple Harmonic Oscillator
Consider once again the simple harmonic oscillator, with a particle of mass m free to move in one dimension,
connected to a spring with Hamiltonian

H =
p2

2 m
+

1
2

mω2q2, (11.68)

where ω=
√

k/m is the natural angular frequency and k is the spring constant. The phase space is
two-dimensional, parameterized by {q, p}. Let us apply the canonical transformation using the particular
generator

F1(q, Q, t) = q Q. (11.69)

From Eqs. (11.67), we immediately get

p = Q and P = −q, (11.70)

which can be inverted to give Q(q, p) = p and P(q, p) = −q. The transformation exchanges position
and momenta – except for the ubiquitous minus sign that is the hallmark of Hamiltonian dynamics. The new
Hamiltonian is then

H̃ =
p2

2 m
+

1
2

mω2q2 + 0 =
Q2

2 m
+

1
2

mω2P2, (11.71)

and the new equations of motion are

Q̇ =
∂H̃
∂P

= mω2P and Ṗ = −∂H̃
∂Q

= − Q
m

. (11.72)

This {Q, P} system is physically equivalent to the {q, p} system. We may say that, as far as dynamics is
concerned, coordinates and momenta can be mixed and even exchanged. They seem to be different facets of
the same overall physical information, somewhat like the mixing of energy and momentum when changing
inertial perspectives in relativistic dynamics. �
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How about a canonical transformation that is simply the identity transformation

pk = Pk, qk = Qk, (11.73)

and where F1 is not a function of time? Using Eqs. (11.67), we find

pk =
∂F1

∂qk
= Pk ⇒ F1 = Pkqk + f(Q) (11.74)

and so, using this result:

Pk = −∂F1

∂Qk
= − ∂f

∂Qk
⇒ f(Q) = −QkPk ! (11.75)

These results are inconsistent with our initial assumption that F1 is a function of qk,
Qk, and t only. Hence, it seems that F1(q, Q, t) cannot generate the simplest of all
transformations, the identity transformation! Obviously, the identity transformation
is canonical, hence we must have missed something in going from Eqs. (11.64)
and (11.65) to (11.66).

Let us go back to Eqs. (11.64) and (11.65). The generator F1(q, Q, t) is not the
only class of generators we can use to solve these equations. We start by writing

Q̇kPk = −QkṖk +
d
dt

(QkPk) (11.76)

using the product rule. Substituting this in Eq. (11.64), we get

q̇kpk − H = −QkṖk − H̃ +
d
dt

(QkPk + F1) . (11.77)
Writing a new generator

F2 = F1(q, Q, t) + QkPk, (11.78)

it is now straightforward to show that a generator of the form F2(q, P, t) has the
correct structure to satisfy Eq. (11.77) if

pk =
∂F2

∂qk
, Qk =

∂F2

∂Pk
, (11.79)

and

H = H̃ − ∂F2

∂t
. (11.80)

That is, we again compare both sides of Eq. (11.81) using (11.83) and (11.84).
Unlike F1(q, Q, t), however, the function F2(q, P, t) does include the identity
transformation. Consider

F2(q, P, t) = qkPk (11.81)

where k is summed over. Using Eqs. (11.79), we get

pk = Pk, Qk = qk, (11.82)

which is the sought-for identity transformation.
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This treatment also makes it clear that we can have two additional classes of
generators of canonical transformations: a generator F3(p, Q, t) and a generator
F4(p, P, t).

To find F3(p, Q, t), start by writing

q̇kpk = −qkṗk +
d
dt

(qkpk) (11.83)

and substitute in Eq. (11.64). We then need

F → F3(p, Q, t) (11.84)

with

qk = −∂F3

∂pk
, Pk = −∂F3

∂Qk
, (11.85)

and

H = H̃ − ∂F3

∂t
. (11.86)

To find F4(p, P, t) use both tricks (11.76) and (11.83) in (11.64). We then need

F → F4(p, P, t) (11.87)

with

qk = −∂F4

∂pk
, Qk =

∂F4

∂Pk
, (11.88)

and

H = H̃ − ∂F4

∂t
. (11.89)

This concludes the list of all possible canonical transformations. They are described
by four classes of generators F1(q, Q, t), F2(q, P, t), F3(p, Q, t), and F4(p, P, t). To
summarize, the transformations are found from these generators as follows:

For F1(q, Q, t) : pk = ∂F1/∂qk, Pk = −∂F1/∂Qk.
For F2(q, P, t) : pk = ∂F2/∂qk, Qk = ∂F2/∂Pk.
For F3(p, Q, t) : qk = −∂F3/∂pk, Pk = −∂F3/∂Qk.
For F4(p, P, t) : qk = −∂F4/∂pk, Qk = ∂F4/∂Pk.

(11.90)

And as always we have

H = H̃ − ∂F
∂t

. (11.91)

Notice the pattern in these equations: a coordinate and a momentum are paired
in each statement, i.e., pk with qk and Pk with Qk in F1(q, Q, t); and the rest are
obtained by exchanging within these pairs – along with a flip of a sign for every
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exchange. The four generators F1(q, Q, t), F2(q, P, t), F3(p, Q, t), and F4(p, P, t) are
related to each other by the so-called Legendre transformations:

F2(q, P, t) = F1(q, Q, t) + QkPk,

F3(p, Q, t) = F1(q, Q, t)− qkpk,

F4(p, P, t) = F1(q, Q, t) + PkQk − qkpk. (11.92)

Example 11.6 Identities
A particularly simply class of canonical transformations are the so-called “identities.”One can easily check the
following base transformations:

For F1(q, Q, t) = qk Qk ⇒ pk = Qk , Pk = −qk . (11.93)

For F2(q, P, t) = qk Pk ⇒ pk = Pk , Qk = qk . (11.94)

For F3(p, Q, t) = pk Qk ⇒ qk = −Qk , Pk = −pk . (11.95)

For F4(p, P, t) = pk Pk ⇒ qk = −Pk , Qk = pk . (11.96)

We see that the simplest nontrivial transformation for F1(q, Q, t) is the exchange of coordinates and momenta
(with a minus sign twist); for F2(q, P, t), it is the usual identity transformation; for F3(p, Q, t), it is a reflection
of both coordinates and momenta; and finally for F4(p, P, t), it is again an exchange of coordinates and
momenta. �

Example 11.7 Infinitesimal Transformations and the Hamiltonian
Infinitesimal transformations – those that are almost the identity – are often useful in physics as the building
blocks of larger transformations. Let us consider the class of infinitesimal canonical transformations

F2 = qk Pk + εG(q, P, t), (11.97)

where ε is taken as small, and G(q, P, t) is an unknown function. From Eq. (11.90), we get

pk = Pk + ε
∂G
∂qk

, Qk = qk + ε
∂G
∂Pk

. (11.98)

These transformations may look familiar. To see why, let us pretend we chose G(q, P, t) such that Pk = pk(t+
δt) and Qk = qk(t + δt) and ε = δt. That is, we transform the qk s and pk s to their values a very short
time later. We then get

Ṗk = −∂G(q, P, t)
∂qk

, q̇k =
∂G(q, P, t)

∂Pk
. (11.99)
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Since the Qk s and Pk s differ from the qk s and pk s by an amount of order ε, to linear order in ε we can write
these equations as

ṗk = −∂G(q, p, t)
∂qk

, q̇k =
∂G(q, p, t)

∂pk
. (11.100)

If we then identify

H(q, p, t) → G(q, P, t) (11.101)

we notice that these are simply the Hamilton equations of motion! Put differently, Hamiltonian evolution
is a canonical transformation with the infinitesimal generator of the transformation being the Hamiltonian
function itself! We can then view time evolution as a canonical transformation to coordinates an instant into
the future at every time step. �

Example 11.8 Point Transformations
Another interesting example is to transform the configuration-space coordinates q alone. These are called
“point transformations,”and they may or may not be canonical transformations as well. Consider the case of a
two-dimensional phase space and a coordinate transformation

Q = f(q). (11.102)

For this to be also a canonical transformation, we need to transform the associated momenta in a specific way.
We may use

F2 = f(q)P ⇒ p =
∂f
∂q

P. (11.103)

Hence, as long as we transform the momenta as

p =
∂f
∂q

P, (11.104)

we are guaranteed that the point transformation in this case is also canonical. �

11.5 Poisson Brackets

Identifying the Hamiltonian as a generator of infinitesimal canonical transforma-
tions suggests that the interesting structure of phase space lies in general canonical
transformations. We can view this in analogy to Lorentz symmetry in coordinate
space. We learned in Chapter 2 that the invariance of the metric or line element

ds2 = −c2dt2 + dx2 + dy2 + dz2 (11.105)
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under coordinate transformations plays a central role in defining Lorentz transfor-
mations, and the invariance of the laws of the physics under these transformations
was a founding principle of the laws of mechanics. In the Hamiltonian picture,
our playground is phase space instead of configuration (i.e., coordinate) space, and
canonical transformations play an equally central role in prescribing dynamics in
phase space, as we have just learned. What is then the invariant object in phase
space – the analogue of the “metric” – which is left invariant under canonical
transformations?

Fig. 11.9 The transformation of phase space under a canonical transformation. Area elements may get distorted in
shape, but the area of each element must remain unchanged.

Consider a 2N-dimensional phase space parameterized by {qk, pk}. A canonical
transformation generated by F1(qa, Qa) relabels phase space with {Qk, Pk}. Here,
qa is one of the many qks, and Qa is one of the Qks. Focus on this particular qa,pa
plane as shown in Figure 11.9. The line integral over a closed path of dF1 must
vanish because the path is closed; that is∮

dF1 = 0. (11.106)

But we can also write∮
dF1 =

∮ (
∂F1

∂qa
dqa +

∂F1

∂Qa
dQa

)
=

∮
(padqa − PadQa) = 0 (no sum over a) (11.107)

using Eq. (11.90). This implies∮
padqa =

∮
PadQa ⇒

∫
dpadqa =

∫
dPadQa (no sum over a), (11.108)
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where in the last step we have used Stokes’s theorem∮
ψdl =

∫
n̂×∇ψdA (11.109)

relating a line integral over a closed path in two dimensions to the area integral
over the area enclosed by the path for any ψ. This implies that∮

ψ(p)dq =

∫
dψ
dp

dpdq. (11.110)

To see this, write the infinitesimal path vector in phase space as dl = dq q̂+ dp p̂,
where q̂ and p̂ are unit vectors in the direction of increasing q and p, respectively,
and note that the orientation of the path is correlated with the orientation of the area
normal n̂ = p̂× q̂.

Since the closed path is arbitrary, and hence the enclosed area is arbitrary, Eq.
(11.108) implies that canonical transformations preserve area in phase space (see
Figure 11.9). Equivalently, the measure in phase space must be invariant:

dpadqa = dPadQa = Det
[
∂(Pa, Qa)

∂(pa, qa)

]
dpadqa (no sum over a) (11.111)

where on the right we have written the Jacobian of the corresponding canonical
transformation

Jacobian = Det
[
∂(Pa, Qa)

∂(pa, qa)

]
= 1 (no sum over a) (11.112)

which must equal unity if canonical transformations are to preserve phase space
area. We remind the reader that the transformation matrix ∂(A, B)/∂(x, y) with two
functions A(x, y) and B(x, y) is defined as

∂(A, B)
∂(x, y)

≡
(

∂A/∂x ∂A/∂y
∂B/∂x ∂B/∂y

)
. (11.113)

Now we introduce a new notation, the so-called Poisson bracket:3

{A, B}x,y ≡ Det
[
∂(A, B)
∂(x, y)

]
. (11.114)

This allows us to write Eq. (11.112) as

{Pa, Qa}qa,pa = 1 no sum over a. (11.115)

We can extend our argument to different combinations of qa, pa pairs in the full
2N-dimensional phase space (see the Problems section at the end of this chapter),
and we conclude that canonical transformations preserve phase space “volume”:

dq1dp1dq2dp2 · · · dqkdpk = dQ1dP1dQ2dP2 · · · dQkdPk. (11.116)

3 Named for the French mathematician and physicist Simeon Denis Poisson (1781–1840).
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We then write the Poisson bracket of two functions A(q, p) and B(q, p) in 2N-
dimensional phase space as

{A, B}q,p ≡ ∂A
∂qk

∂B
∂pk

− ∂A
∂pk

∂B
∂qk

, (11.117)

where we have now extended the definition to 2N dimensions by summing over
all two-dimensional subspaces labeled by qk, pk (since the index k is repeated in
this expression). One can now show that canonical transformations preserve this
generalized Poisson bracket. That is

{A, B}q,p = {A, B}Q,P. (11.118)

Therefore we have found that the equivalent of the metric invariant of Lorentz
transformations in phase space is the phase space integration measure (11.116),
or equivalently the differential operator from (11.117). Reversing the statement,
it is also possible to show that all phase space transformations that preserve the
measure (11.116), or equivalently the Poisson bracket (11.117), are canonical
transformations (see the Problems section at the end of this chapter). For example,
we can use the preservation of Poisson brackets as a test of the canonicality of a
transformation.

Example 11.9 Position and Momenta
Using (11.117), one can easily show that the Poisson brackets of the ps and qs are

{pa, qb}q,p =
∂pa

∂qk

∂qb

∂pk
− ∂pa

∂pk

∂qb

∂qk
= δab, (11.119)

where δab is the Kronecker delta. That is, pa and qb “Poisson commute”for a �= b; if a = b, the result is unity.
We can similarly see that

{qa, qb}q,p = {pa, pb}q,p = 0. (11.120)

Given a candidate canonical transformation Qk(q, p, t) and Pk(q, p, t), we can test for canonicality by
verifying that

{Pa, Qb}q,p = δab, {Qa, Qb}q,p = {Pa, Pb}q,p = 0, (11.121)

since

{Pa, Qb}q,p = {pa, qb}q,p, (11.122)

{Qa, Qb}q,p = {qa, qb}q,p,

{Pa, Pb}q,p = {pa, pb}q,p

for canonical transformations. �
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Example 11.10 The Simple Harmonic Oscillator Yet Again
Consider the simple harmonic oscillator from Eq. (11.68), with Hamiltonian

H =
p2

2 m
+

1
2

mω2q2. (11.123)

The structure of the Hamiltonian as a sum of squares suggests a transformation of the form

q(Q, P) ∝
√

2
m ω2 sin Q, p(Q, P) ∝

√
2 m cos Q, (11.124)

since the identity cos2 Q + sin2 Q = 1 would simplify the new Hamiltonian H̃. Let us try to transform to a
new Hamiltonian that looks like

H̃ = ωP. (11.125)

This would be interesting, since the equations of motion would then imply

Q̇ =
∂H̃
∂P

= ω, Ṗ = −∂H̃
∂Q

= 0, (11.126)

which can immediately be solved, yielding

Q(t) = ωt + Q0, P(t) = P0. (11.127)

To achieve this transformation, write

q(Q, P) =

√
2P

mω
sin Q, p(Q, P) =

√
2mωP cos Q (11.128)

according to Eq. (11.123). But is this a canonical transformation? If not, we would not have the evolution
equations given by (11.126). To test for canonicality, we check the Poisson bracket

{q, p}q,p = 1 = {q, p}Q,P =

{√
2P

mω
sin Q,

√
2mωP cos Q

}
Q,P

. (11.129)

Using the definition (11.117), we indeed verify, after some algebra, that this holds. Similarly, we can show that
{q, q}Q,P = {p, p}Q,P = 0. With these three statements, we conclude that the transformation (11.128)
is indeed canonical. Substituting the solution (11.127) in Eqs. (11.128), we find the solution in the original
variables

q(Q, P) =

√
2P0

mω
sin ωt + Q0, p(Q, P) =

√
2mωP0 cos ωt + Q0, (11.130)

which by now have become very familiar. We have thus demonstrated a new strategy for tackling a dynamical
system: first attempt to find/guess a canonical transformation to simplify the Hamiltonian; then verify the
canonicality using the Poisson bracket. Sometimes guessing at a strategic canonical transformation turns out
to be easier than tackling the original Hamiltonian in its full glory. �
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In the Problems section at the end of this chapter, we explore some of the
most important properties of Poisson brackets. In particular, one can show that
the following identities follow from definition (11.117):

1. Anticommutativity

{A, B}q,p = −{B, A}q,p. (11.131)

2. Distributivity

{A, b B + c C}q,p = b {A, B}q,p + c {A, C}q,p, (11.132)

where b and c are constants.
3. A modified notion of associativity

{AB, C}q,p = {A, C}q,p B + A {B, C}q,p . (11.133)

4. The Jacobi identity{
A, {B, C}q,p

}
q,p

+
{

B, {C, A}q,p

}
q,p

+
{

C, {A, B}q,p

}
q,p

= 0. (11.134)

These properties of the Poisson bracket are so central to its role in mechanics
that they can be used to define it: a bilinear operation that takes two functions of
canonical coordinates and momenta, that is, the Poisson bracket, and gives a third
in such a manner that it can be naturally used to describe time evolution in phase
space. In the final chapter we will also revisit the central role of the Poisson bracket
in transitioning from classical to quantum mechanics.

11.6 Poisson Brackets and Noether’s Theorem

We can also relate Poisson brackets to Noether’s theorem as introduced in
Chapter 6. First of all, the Poisson bracket can be used to write Hamilton’s
equations of motion as

q̇ = {q, H}q,p , ṗ = {p, H}q,p , (11.135)

as can easily be verified using (11.117). Note that this makes explicit the fact
that canonical transformations do not change the structural form of Hamilton’s
equations. More generally, we can write for any function A(q, p, t)

dA
dt

=
∂A
∂t

+
∂A
∂qk

q̇k +
∂A
∂pk

ṗk =
∂A
∂t

+ {A, H}q,p (11.136)

using the chain rule and Eqs. (11.135). If a function A(q, p, t) is conserved, we then
have

∂A
∂t

+ {A, H}q,p = 0. (11.137)
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The most common case is when A(q, p, t) = A(q, p) does not depend on time
explicitly; we then have the condition for the conservation of A as

{A, H}q,p = 0. (11.138)

We say that, if the function A “Poisson commutes” with the Hamiltonian, it is a
conserved quantity. Using this, it is possible to show that, if A(q, p) and B(q, p) are
conserved, so is their Poisson bracket {A(q, p), B(q, p)} (see the Problems section
at the end of this chapter). A more general statement also exists that applies to
the case where A and B depend explicitly on time. This means that if you have
two conserved quantities, you might be able to construct a third one, and then a
fourth one, and then a fifth, etc. by Poisson bracketing them with each other. This
can be a very powerful technique, specially if the system is exactly integrable.
Unfortunately, in many cases this strategy does not lead to new independent
conserved quantities.

Finally, the Poisson bracket also plays a natural role in canonical transformations.
For an infinitesimal transformation

F2 = qkPk + εG(q, P, t), (11.139)

we can write

δA =
∂A
∂qk

δqk +
∂A
∂pk

δpk =
∂A
∂qk

ε
∂G
∂pk

− ∂A
∂pk

ε
∂G
∂qk

= ε {A, G}q,p . (11.140)

In this expression, we have used the fact that ∂G/∂Pk � ∂G/∂pk, taking G(q, P, t)
to be the same as G(q, p, t): this is because the difference between p and P is linear
in ε and the derivatives of G appearing in the expression above are multiplied by ε
already. This means that, to linear order in ε, we can take p and P to be equivalent in
this expression. While the generator G(q, P, t) is strictly a function of P and not p,
in talking about such transformations of a function A(q, p, t), one calls G(q, p, t) the
“generator” of the transformation, bearing in mind that this is a correct statement
only in expressions already expanded to linear order in ε. We can then figure out
the transformation of a function A(q, p, t) under the action of a generator G by
computing the Poisson bracket of A and G.

Example 11.11 Translations, Once Again
Consider a two-dimensional phase space with a single q and a single p as the coordinates. We want to find
the transformation of a function A(q, p, t) under a transformation generated by G = p. We have

δA = ε {A, p} =
∂A
∂q

. (11.141)

Now, notice that if we were to infinitesimally translate the canonical coordinate as in q → q + ε, we would
have
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δA = A(q + ε)− A(q) = ε
∂A
∂q

, (11.142)

to leading order in ε. Comparing this to Eq. (11.141), we see that the generator G = p generates translations in
q. In a similar way, we can identify the generators of various useful transformations such as rotations. Notice
in particular that Eqs. (11.135) imply the generator of time translations is the Hamiltonian. �

An interesting thing happens if we take A(q, p, t), the subject of a transformation,
as the Hamiltonian of the physical system. We then have

δH = ε{H, G}. (11.143)

If the transformation generated by G is a symmetry of the Hamiltonian, we must
then have

δH = 0 = ε{H, G}, (11.144)

which implies that the bracket of H and G vanishes. As discussed earlier, this then
implies that G is a constant of motion. That is, the generator of a transformation that
leaves the Hamiltonian unchanged is nothing but the conserved quantity associated
with the symmetry it generates! For every transformation that is a symmetry, we
then have a conserved quantity – which we just identified as the generator of the
transformation. This is Noether’s theorem in Hamiltonian language. Looking at
the previous example, where we found that G = p generates translations, we see
that for a Hamiltonian that is translationally invariant we expect that the canonical
momentum p would be conserved.

Example 11.12 The Power of the Bracket
The Poisson bracket, as a bi-linear operator that takes two inputs and satisfies the four properties listed above,
carries within it a lot of the structure that underlies infinitesimal transformations, and in particular time
translations in phase space. To demonstrate this, imagine we are given a Hamiltonian of the form

H =
p2

2 m
+ U(q), (11.145)

with the equations of motion (11.135) expressed in terms of Poisson brackets. Beyond this, imagine we only
know the four properties of the bracket – and not for example its particular form given by (11.117); and we are
also given the “algebra” satisfied by the canonical coordinate and momentum

{q, p} = 1, {q, q} = {p, p} = 0, {q, C} = {p, C} = 0, (11.146)

where C is a constant independent of q and p. From Eqs. (11.135), we can write

q̇ = {q, H} =

{
q,

p2

2 m
+ U(q)

}
=

{
q,

p2

2 m

}
+ {q, U(q)} , (11.147)
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where we used the distributivity property of the bracket. For the first term, we have{
q,

p2

2 m

}
=

1
2 m

{q, p p} = − 1
2 m

{p p, q}

= − 1
2 m

{p, q} p − 1
2 m

p {p, q} = − p
m

{p, q} , (11.148)

where we used the anticommutativity and special associativity properties of the bracket. For the second term
in (11.147), we get

{q, U(q)} =

{
q,

∞∑
n=0

1
n!

U(n)
0 qn

}
, (11.149)

where we have used a Taylor expansion of U(q) around q = 0, and U(n)
0 is the nth derivative of U(q) at q = 0

(see Appendix F). Using again the properties of the bracket, we can simplify this to

{q, U(q)} = {q, U0}+ {q, q} × messy expression = {q, U0} , (11.150)

where in the last step we used the anticommutativity of the bracket to deduce that{q, q} = 0. We then get
the expected relation

q̇ =
p
m

(11.151)

using {q, p} = 1. We can similarly show that

ṗ = −∂U
∂q

(11.152)

as needed. Therefore, classical dynamics is captured by: (1) the four properties of the Poisson bracket; (2) the
algebra of the canonical coordinates and momenta; and (3) the form of the Hamiltonian in terms of canonical
coordinates and momenta. This observation will become very important when we discuss transitioning from
classical to quantum mechanics in Chapter 15. �

11.7 Liouville’s Theorem

Consider a set of initial conditions in phase space whose time evolution we wish to
trace, as illustrated in Figure 11.10.

Let ΔN denote the number of such initial conditions, and ΔV the volume of
phase space they occupy initially. The density of such initial conditions is then

ρ(q, p, t) =
ΔN
ΔV

. (11.153)

As time evolves, ΔN remains unchanged, since any state of the system cannot
suddenly disappear as we evolve forward in time. Furthermore, ΔV must remain
unchanged by the Hamiltonian evolution: Hamiltonian evolution is a canonical
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Fig. 11.10 A depiction of Liouville’s theorem: the density of states of a system evolves in phase space in such as way
that its total time derivative is zero.

transformation, and canonical transformations preserve phase space volume! The
shape of the volume element may get twisted and compressed as shown in the
figure, but the volume itself remains unchanged. This implies

dρ
dt

= 0 =
∂ρ

∂t
+ {ρ, H}q,p ⇒ ∂ρ

∂t
= −{ρ, H}q,p (11.154)

using Eq. (11.136). This is known as Liouville’s theorem:4 The density of states in
phase space remains constant in time. This powerful theorem plays an important
role in statistical mechanics and fluid dynamics. It also packages within it the seeds
of quantization, as we shall see at the end of the book. We leave further exploration
of Liouville’s theorem to the problems and to Chapter 15. In particular, there are
problems at the end which illustrate that Liouville’s theorem for particle points in
the phase plane maintain constant density as time goes on. The number of points
within a given area (or volume) in the phase plane remains constant, and so does
the area or volume. Therefore the density of points remains constant as well.

11.8 Summary

We arrived at several important results in this chapter. Perhaps the most important
are the Hamiltonian equations and the insights we can glean from exploring phase
space. The Lagrange equations, and now the Hamilton’s equations as well, offer
profound insights into classical mechanics, even though no new physics has been
introduced. That is, the Lagrange equations, which are typically second-order

4 Named for the French mathematician Joseph Liouville (1809–1882).
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ordinary differential equations, are built upon Newton’s laws of motion so do
not contain new physics. And now the Hamiltonian equations, which are first-
order differential equations, are similarly built upon Newton’s laws, so do not
contain any fundamentally different physics. However, each approach has given
us fresh insights, while also adding to our arsenal of techniques for solving specific
problems.

Problems

Problem 11.1 Find the Legendre transform B(x, z) of the function A(x, y) = x4 − (y +�
a)4, and verify that −∂A/∂x = ∂B/∂x.

Problem 11.2 In thermodynamics, the enthalpy H (no relation to the Hamiltonian H)�
is a function of the entropy S and pressure P such that ∂H/∂S = T and ∂H/∂P = V,
so that

dH = TdS + VdP,

where T is the temperature and V the volume. The enthalpy is particularly useful
in isentropic and isobaric processes, because if the process is isentropic or isobaric,
one of the two terms on the right vanishes. But suppose we wanted to deal with
isothermal and isobaric processes, by constructing a function of T and P alone.
Define such a function, in terms of H, T, and S, using a Legendre transformation.
(The defined function G is called the Gibbs free energy.)

Problem 11.3 In thermodynamics, for a system such as an enclosed gas, the internal�
energy U(S, V) can be expressed in terms of the independent variables of entropy
S and volume V, such that dU = TdS − PdV, where T is the temperature and P
the pressure. Suppose we want to find a related function in which the volume is to
be eliminated in favor of the pressure, using a Legendre transformation. (a) Which
is the passive variable, and which are the active variables? (b) Find an expression
for the new function in terms of U, P, and V. (The result is the enthalpy H or its
negative, where the enthalpy H is unrelated to the Hamiltonian H.)

Problem 11.4 The energy of a relativistic free particle is the Hamiltonian H =�� √
p2c2 + m2c4 in terms of the particle’s momentum and mass. (a) Using one of

Hamilton’s equations in one dimension, find the particle’s velocity v in terms of its
momentum and mass. (b) Invert the result to find the momentum p in terms of the
velocity and the mass. (c) Then find the free-particle Lagrangian for a relativistic
particle using the Legendre transform

L(v) = pv − H.

(d) Beginning with the same Hamiltonian, generalize parts (a), (b), and (c) to a
relativistic particle free to move in three dimensions.
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Problem 11.5 The Lagrangian for a particular system is�

L = ẋ2 + aẏ + bẋż,

where a and b are constants. Find the Hamiltonian, identify any conserved
quantities, and write out Hamilton’s equations of motion for the system.

Problem 11.6 A system with two degrees of freedom has the Lagrangian�

L = q̇2
1 + αq̇1q̇2 + βq2

2/2,

where α and β are constants. Find the Hamiltonian, identify any conserved
quantities, and write out Hamilton’s equations of motion.

Problem 11.7 Write the Hamiltonian and find Hamilton’s equations of motion for a�
simple pendulum of length � and mass m. Sketch the constant-H contours in the
θ, pθ phase plane.

Problem 11.8 (a) Write the Hamiltonian for a spherical pendulum of length � and��
mass m, using the polar angle θ and azimuthal angle ϕ as generalized coordinates.
(b) Then write out Hamilton’s equations of motion, and identify two first integrals
of motion. (c) Find a first-order differential equation of motion involving θ alone
and its first time derivative. (d) Sketch contours of constant H in the θ, pθ phase
plane, and use it to identify the types of motion one expects.

Problem 11.9 A Hamiltonian with one degree of freedom has the form�

H =
p2

2m
+

kq2

2
− 2aq3 sinαt,

where m, k, a, and α are constants. Find the Lagrangian corresponding to this
Hamiltonian. Write out both Hamilton’s equations and Lagrange’s equations, and
show directly that they are equivalent.

Problem 11.10 A particle of mass m slides on the inside of a frictionless vertically��
oriented cone of semi-vertical angle α. (a) Find the Hamiltonian H of the particle,
using generalized coordinates r, the distance of the particle from the vertex of the
cone, and ϕ, the azimuthal angle. (b) Write down two first integrals of motion, and
identify their physical meaning. (c) Show that a stable circular (constant-r) orbit
is possible, and find its value of r for given angular momentum pϕ. (d) Find the
frequency of small oscillations ωosc about this circular motion, and compare it with
the frequency of rotation ωcircle. (e) Is there a value of the tilt angle α for which the
two frequencies are equal? What is the physical significance of the equality?

Problem 11.11 A particle of mass m is attracted to the origin by a force of magnitude�
k/r2. Using plane polar coordinates, find the Hamiltonian and Hamilton’s equations
of motion. Sketch constant-H contours in the (r, pr) phase plane.

Problem 11.12 A double pendulum consists of two strings of equal length � and two��
bobs of equal mass m. The upper string is attached to the ceiling, while the lower
end is attached to the first bob. One end of the lower string is attached to the
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first bob, while the other end is attached to the second bob. Using generalized
coordinates θ1 (the angle of the upper string relative to the vertical) and θ2 (the
angle of the lower string relative to the vertical), find (a) the Lagrangian of the
system (Hint: It can be tricky to find the kinetic energy of the lower bob in
terms of the angles and their time derivatives. Use Cartesian coordinates initially;
then convert these to generalized coordinates), (b) the canonical momenta, (c)
the Hamiltonian in terms of the angles and their first derivatives. Are there any
constants of the motion? If so, what are they, and why are they constants? (Note
that to go on and find the motion of the system using Hamilton’s equations, one
must first write H(θ1, θ2, pθ1 , pθ1), without θ̇1 and θ̇2. This step, and the next step
of solving the equations, involves a lot of algebra. This illustrates the fact that in
somewhat complicated problems one could long since have written out Lagrange’s
equations and solved them, by the time one has even written out the Hamiltonian
in canonical form.)

Problem 11.13 A double Atwood’s machine consists of two massless pulleys, each of�
radius R, some massless string, and three weights, with masses m1, m2, and m3.
The axis of pulley 1 is supported by a strut from the ceiling. A piece of string of
length �1 is slung over the pulley, and one end of the string is attached to weight
m1 while the other end is attached to the axis of pulley 2. A second string of length
�2 is slung over pulley 2; one end is attached to m2 and the other to m3. The strings
are inextendible, but otherwise the weights and pulley 2 are free to move vertically.
Let x be the distance of m1 below the axis of pulley 1, and y be the distance of
m2 below the axis of pulley 2. (a) Find the Lagrangian L(x, y, ẋ, ẏ). (b) Find the
canonical momenta px and py, in terms of ẋ and ẏ. (c) Find the Hamiltonian of
the system in terms of x, y, ẋ, and ẏ. (Note that to go on and find the motion of
the system using Hamilton’s equations, one must first write H(x, y, px, py), without
ẋ and ẏ. This step, and the next step of solving the equations, involves a lot of
algebra. This illustrates the fact that in somewhat complicated problems one could
long since have written out Lagrange’s equations and solved them, by the time one
has even written out the Hamiltonian in canonical form.)

Problem 11.14 A massless unstretchable string is slung over a massless pulley. A�
weight of mass 2m is attached to one end of the string and a weight of mass m is
attached to the other end. One end of a spring of force constant k is attached beneath
m, and a second weight of mass m is hung on the spring. Using the distance x of
the weight 2m beneath the pulley and the stretch y of the spring as generalized
coordinates, find the Hamiltonian of the system. (a) Show that one of the two
coordinates is ignorable (i.e., cyclic). To what symmetry does this correspond? (b)
If the system is released from rest with y(0) = 0, find x(t) and y(t).

Problem 11.15 (a) A particle is free to move only in the x direction, subject to the�

potential energy U = U0e−αx2 , where α and U0 are positive constants. Sketch
constant-Hamiltonian curves in a phase diagram, including values of H with H <



470 11 Hamiltonian Formulation

U0, H = U0, and H > U0. (b) Repeat part (a) if U0 < 0 and α > 0, for values of H
including those with 0 > H > U0, H = 0, and H > 0.

Problem 11.16 A cyclic coordinate qk is a coordinate absent from the Lagrangian��
(even though q̇k is present in L). (a) Show that a cyclic coordinate is likewise
absent from the Hamiltonian. (b) Show from the Hamiltonian formalism that the
momentum pk canonical to a cyclic coordinate qk is conserved, so pk = α =
constant. Therefore one can ignore both qk and pk in the Hamiltonian. This led E. J.
Routh to suggest a procedure for dealing with problems having cyclic coordinates.
He carried out a transformation from the q, q̇ basis to the q, p basis only for the
cyclic coordinates, finding their equations of motion in the Hamiltonian form, and
then used Lagrange’s equations for the noncyclic coordinates. Denote the cyclic
coordinates by qs+1, . . . , qn, then define the Routhian as

R(q1, . . . , qn ; q̇1, . . . , q̇s ; ps+1, . . . , pn ; t) =
n∑

i=s+1

piq̇1 − L.

Show (using R rather than H) that one obtains Hamilton-type equations for the
n − s cyclic coordinates while (using R rather than L) one obtains Lagrange-type
equations for the noncyclic coordinates. The Hamilton-type equations are trivial,
showing that the momenta canonical to the cyclic coordinates are constants of
the motion. In this procedure one can in effect “ignore” the cyclic coordinates,
so “cyclic” coordinates are also “ignorable” coordinates.

Problem 11.17 Show that the Poisson bracket of two constants of the motion is itself��
a constant of the motion, even when the constants depend explicitly on time.

Problem 11.18 Prove the anticommutativity and distributivity of Poisson brackets by�
showing that (a) {A, B}q,p = −{B, A}q,p and (b) {A, B + C}q,p = {A, B}q,p +
{A, C}q,p.

Problem 11.19 Show that Hamilton’s equations of motion can be written in terms of�
Poisson brackets as

q̇ = {q, H}q,p , ṗ = {p, H}q,p .

Problem 11.20 A Hamiltonian has the form��

H = q1p1 − q2p2 + aq2
1 − bq2

2,

where a and b are constants. (a) Using the method of Poisson brackets, show that

f1 ≡ q1q2 and f2 ≡ 1
q1

(p2 + bq2)

are constants of the motion. (b) Then show that {f1, f2} is also a constant of the
motion. (c) Is H itself constant? Check by finding q1, q2, p1, p2 as explicit functions
of time.
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Problem 11.21 Show, using the Poisson bracket formalism, that the Laplace–Runge–���
Lenz vector

A ≡ p × L− mkr
r

is a constant of the motion for the Kepler problem of a particle moving in the
central inverse-square force field F = −k/r2. Here p is the particle’s momentum,
and L is its angular momentum. Hint: Write Lk = εklnxlpn and you might need to
use the identity εijkεilm = δjlδkm − δjmδkl.

Problem 11.22 A beam of protons with a circular cross-section of radius r0 moves��
within a linear accelerator oriented in the x direction. Suppose that the transverse
momentum components (py, pz) of the beam are distributed uniformly in momen-
tum space, in a circle of radius p0. If a magnetic lens system at the end of the
accelerator focuses the beam into a small circular spot of radius r1, find, using
Liouville’s theorem, the corresponding distribution of the beam in momentum
space. Here what may be a desirable focusing of the beam in position space has
the often unfortunate consequence of broadening the momentum distribution.

Problem 11.23 A large number of particles, each of mass m, move in response to a��
uniform gravitational field g in the negative z direction. At time t = 0, they are
all located within the corners of a rectangle in (z, pz) phase space, whose positions
are: (1) z = z0, pz = p0; (2) z = z0 + Δz, pz = p0; (3) z = z0, pz = p0 + Δp;
and (4) z = z0 +Δz, pz = p0 +Δp. By direct computation, find the area in phase
space enclosed by these particles at times (a) t = 0, (b) t = mΔz/p0, and (c)
t = 2mΔz/p0. Also show the shape of the region in phase space for cases (b) and
(c).

Problem 11.24 In an electron microscope, electrons scattered from an object of height��
z0 are focused by a lens at distance D0 from the object and form an image of height
z1 at a distance D1 behind the lens. The aperture of the lens is A. Show by direct
calculation that the area in the (z, pz) phase plane occupied by electrons leaving
the object (and destined to pass through the lens) is the same as the phase area
occupied by electrons arriving at the image. Assume that z0  D0 and z1  D1
(from Mechanics, 3rd edn, by Keith R. Symon).

Problem 11.25 Show directly that the transformation�

Q = ln

(
1
q
sin p

)
, P = q cot p

is canonical.

Problem 11.26 Show that if the Hamiltonian and some quantity Q are both constants��
of the motion, then the nth partial derivative of Q with respect to time must also be
a constant of the motion.
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Problem 11.27 Prove the Jacobi identity for Poisson brackets� {
A, {B, C}q,p

}
q,p

+
{

B, {C, A}q,p

}
q,p

+
{

C, {A, B}q,p

}
q,p

= 0.

Problem 11.28 (a) Find the Hamiltonian for a projectile of mass m moving in a�
uniform gravitational field g, using coordinates x, y. (b) Then find Hamilton’s
equations of motion and solve them.

Problem 11.29 (a) Find the Hamiltonian for a projectile of mass m moving in a force��
field with potential energy U(ρ,ϕ, z), where ρ,ϕ, z are cylindrical coordinates. (b)
Find Hamilton’s equations of motion. (c) Solve them as far as possible if U = U(ρ)
alone.

Problem 11.30 Consider a particle of mass m with relativistic Hamiltonian�
H=

√
p2c2 + m2c4 + U(x, y, z), where U is its relativistic potential energy. Find

the particle’s equations of motion.

Problem 11.31 We found Hamilton’s equations by starting with the Lagrangian�
L(qi, q̇i, t) and using a Legendre transformation to define the Hamiltonian
H(qi, pi, t). Now starting with the Hamiltonian and Hamilton’s equations, use
a reverse Legendre transformation to define L, and show that one obtains the
Lagrange equations.

Problem 11.32 Suppose that for some situations the coordinates p, q are canonical.�
Show that the transformed coordinates P = 1

2(p
2 + q2), Q = tan−1(q/p) are also

canonical.

Problem 11.33 Prove that if one makes two successive canonical transformations, the��
result is also canonical.

Problem 11.34 Prove that the Poisson bracket is invariant under a canonical transfor-�
mation.

Problem 11.35 A plane pendulum consists of a rod of length R and negligible mass��
supporting a plumb bob of mass m that swings back and forth in a uniform
gravitational field g. The point of support at the top end of the rod is forced to
oscillate vertically up and down with y = A cosωt. Using the angle θ of the rod
from the vertical as the coordinate, (a) find the Lagrangian of the bob. (b) Find the
Hamiltonian H. Is H = E, the energy? Is either one or both conserved? (c) Write
out Hamilton’s equations of motion.

Problem 11.36 A plane pendulum consists of a string supporting a plumb bob of mass��
m free to swing in a vertical plane and free to swing subject to uniform gravity g.
The upper end of the string is threaded through a hole in the ceiling and steadily
pulled upward, so the length of the string beneath the point in the ceiling is �(t) =
�0−αt, where α is a positive constant. (a) Find the Lagrangian of the plumb bob. (b)
Find its Hamiltonian H. Is H = E, the energy of the bob? (c) Write out Hamilton’s
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equations of motion. (d) Solve them assuming l(t) is changing slowly and the angle
of the pendulum remains small.

Problem 11.37 At time t = 0 a large number of particles, each of mass m, is strung��
out along the x axis from x = 0 to x = Δx, with momenta px varying from p = p0
to p = p0 + Δp. No forces act on the particles and they do not collide. (a) Show
that the points representing these particles fill a rectangle in the x, px phase plane,
and sketch it – identifying the four points at the corners of the rectangle with their
positions and momenta. (b) Sketch the locations of the same particles in the phase
plane some time t1 later, where t1 > mx0/p0. (c) What then is the shape of the area
on the phase plane occupied by all of these particles? (d) Prove that the area of the
occupied region at t1 is the same as it was at t = 0. (Note that if the number of
points and the area are both unchanged, then the average density of points is also
unchanged, in accord with the Liouville theorem.)

Problem 11.38 Any spherically symmetric function of the canonical coordinate and���
momentum of a particle can depend only on r2, p2, and r · p. Show that the
Poisson bracket of any such function f with a component of the particle’s angular
momentum is zero. In particular, show that {Lz, f} = 0, where Lz = (r× p)z.

Problem 11.39 Write the Hamiltonian of a free particle of mass m in a reference frame��
that is rotating uniformly with angular velocity ω with respect to an inertial frame.



12 Rigid-Body Dynamics

Watching a shoe tumble erratically as it flies through mid-air may be entertaining,
but – to anyone without a background in rigid-body dynamics – it can look quite
troubling. There is no net torque acting on the shoe, yet the rotational motion
looks and is rather complicated. However, with the powerful tools provided by
the Lagrangian formalism we are well equipped to tackle this subject, and go
beyond it to more complicated examples of rotational motion. We start with a
definition of a rigid body, and then proceed to introduce the Euler angles that can
be used to describe the orientation of an object in three-dimensional space. With
this scaffolding established, we can go on to describe torque-free dynamics, and
then full rotational evolution with nonzero torque. For simplicity, throughout this
chapter we restrict our discussion to nonrelativistic dynamics.

A rigid body is an object in which the distance between any two of its
constituent bits remains fixed. No bodies can be completely rigid in Nature,
however, because that would require instantaneous communication between all
of their parts. If a ball hits one end of a bat, the other end of the bat cannot
react immediately. In fact, we even know from special relativity that what might
be “immediate” in one frame of reference cannot be “immediate” in others, so
perfectly rigid bodies are impossible. Nevertheless, the concept of rigid bodies can
greatly simplify our description of how objects behave. A metal rod, a glass hoop,
a frisbee, all qualify as rigid bodies as long as we can ignore their tendency to bend
slightly or even break apart. Up to now, we have represented extended objects as
point bits located at their center of mass. In this chapter we will probe more deeply
and describe the dynamics of the orientation of the object in three-dimensional
space as it rotates, tumbles, or precesses.

12.1 Rotation About a Fixed Axis

We begin for simplicity with the case of rigid-body rotation about a fixed axis,
such as the rotation of a bicycle wheel about its axle with the bicycle held in place
(Figure 12.1). If the wheel is spinning about such a fixed axis with angular velocity
ω, then the velocity of any small bit of the wheel at some instant is v = ω × r,
where r is the vector extending from the axis to the bit. The angular momentum of
the individual bit of mass m, as defined in Chapter 1, is therefore

� ≡ r× p = r×mv = mr× (ω × r) = m[ω(r · r)− r(r · ω)], (12.1)
474
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where in the last step we used the vector identity A × (B × C) = B(A · C) −
C(A · B). Now suppose we orient the axis of rotation along the z direction so
that ω = ω ẑ and sum over all bits in the rotating body. Then the total angular
momentum of the body is

L ≡
∑

i

�i =
∑

i
mi[(ωẑ)(x2

i + y2
i + z2

i )− ri(ziω)]

=
∑

i
miω[(x2

i + y2
i + z2

i )ẑ− (xix̂+ yiŷ + ziẑ)(zi)]

=
∑

i
mi(x2

i + y2
i )ω ẑ+

∑
i

mi(−xizi)ω x̂+
∑

i
mi(−yizi)ω ŷ,

(12.2)

where we label each bit by a discrete index i and sum over all bits.

Fig. 12.1 Fixed-axis rotation of a bicycle wheel.

Notice that even though the angular velocity ω is in the z direction, the angular
momentum of the body generally has components in all three directions. In other
words, the angular momentum is not necessarily parallel to the angular velocity.
In this case, however, the components of L in the x̂ and ŷ directions are indeed
zero and the angular velocity is parallel to the angular momentum. This is because
we chose our coordinate system in a manner that makes the symmetry of the wheel
manifest. In particular, notice that the shape of the wheel remains unchanged if we
were to reflect in the x or y direction, x → −x or y → −y. This implies that, if
we take a bit of mass located at a certain value of x and z in our coordinate system,
it can be paired up with an equal bit of mass located at −x and z. Such pairs will
count the same in the sum above except for a minus sign. In other words, these two
bits will cancel each other out in the sum∑

i
mi(−xizi)ω =

∑
i

mi(−yizi)ω = 0. (12.3)
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So, given the setup, the angular momentum is parallel to the angular velocity, and
is given simply by

L = Iω, (12.4)

where the moment of inertia of the object is defined as

I ≡
∑

i
mi(x2

i + y2
i ) ≡

∑
i

mi(r2
⊥)i, (12.5)

where r2
⊥ is the square of the distance of a bit from the axis of rotation. If the

object is an infinitely thin wheel whose entire mass is located at the rim r = R, the
moment of inertia becomes Iring = MR2, where M is its mass and R its radius. If a
portion of the mass is located at smaller radii, however, as it is for a real wheel, the
moment of inertia will be less than MR2.

We can also find the kinetic energy T of a rigid body rotating about the fixed axis.
The speed of the ith bit as it circles the axis of rotation is vi = (r⊥)iω, so its kinetic
energy of rotation is Ti = (1/2)miv2

i = (1/2)mi(r⊥)2
i ω

2. The total kinetic energy
of the rigid body is therefore given by the familiar result

T =
∑

i
Ti =

1
2
∑

i
mi(r⊥)2

i ω
2 =

1
2

Iω2. (12.6)

Finally, it is also straightforward to show that the time rate of change of the angular
momentum is caused by the net torque N on the object, as given by the equation
N = dL/dt = Idω/dt. So overall, for objects that are symmetric about a fixed
axis of rotation, we find the familiar results L = Iω for the angular momentum,
T = 1

2 Iω2 for the kinetic energy, and N = dL/dt = Idω/dt for the net torque on
the object.

12.2 Euler’s Theorem

So far we have described only the very simple case of rotation of a rigid body
about a fixed axis. We will now consider rigid-body rotation in any circumstance
whatever. Figure 12.2 shows an arbitrarily shaped rigid body. The first task is to
describe the body’s position and orientation in space. Pick any point within it and
imagine that we tag it with a colored dot; the choice of this colored dot within the
body of the object is completely arbitrary. As the object tumbles around and moves
from place to place, we can describe the trajectory of the colored dot as a point
particle. But that is not enough to describe the state of the rigid body. In addition,
we need to describe its orientation about the colored dot. Hence, if we provide, for
any instant in time, the location of the colored dot and the orientation of the object
about the colored dot, we can reconstruct the state of the object at that instant. We
may then say that the state of a rigid body can be described by a combination of a
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translation and a rotation: a translation of a fixed point together with a rotation of
the object about this fixed point. Hence, we define the term tagged point: a fixed
point in the rigid body of our own choosing with respect to which the motion is
decomposed into translational and rotational parts.

tagged point

tagged point

Fig. 12.2 The evolution of a rigid body tracked by the trajectory traced by an arbitrary tagged point and the
changing orientation of the rigid body about this point.

That such a decomposition is always possible is the statement of a theorem
by the Swiss mathematician Leonard Euler: All spatial transformations that leave
distances unchanged must be a combination of a translation and a rotation.

While any point within a rigid body is satisfactory as a tagged point, there are
two especially convenient choices. If the rigid body has a fixed pivot – that is, if it
is like a pendulum swinging from a pivot – then a judicious choice for the tagged
point is the pivot point itself, as shown in Figure 12.3(a).

tagged point and fixed pivot

(a)

tagged point
and center of mass

(b)

Fig. 12.3 (a) A natural choice for a tagged point for a pivoted rigid body is the pivot point itself; this is particularly
useful when the pivot is at rest in an inertial reference frame. (b) When no appropriate pivot exists, the
center of mass is a natural choice for the tagged point.
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In contrast, if the object does not have an obvious pivot, the best choice for a
tagged point is the center of mass (CM) (see Figure 12.3(b))

Rcm =
∑

i

Δmiri
M

=
1
M

∫
r dm =

1
M

∫
ρ r dV, (12.7)

where the vector r is the distance of a point of mass dm from the CM. That is, we
have first divided the rigid body into small bits labeled by the index i located at
positions ri and the total mass is M =

∑
i Δmi. The sum is over all bits of the

rigid body, which in the continuum limit we can write as an integral of bits of mass
dm= ρ dV, where ρ is the volume mass density of the object. Note that the rigid
body might not have constant density; indeed, it realistically has a variable density
ρ(r).

Now, how do we describe the orientation of the object about the tagged point?

12.3 Rotation Matrices and the Body Frame

To describe the orientation of a rigid body, we will need to set up two different
coordinate systems. Figure 12.4 shows the lab frame coordinates – labeled x, y,
z – which typically is an inertial frame from which we watch a rigid body tumble
around and fly through space. The prime coordinate system – labeled x′, y′, z′
– is conventionally chosen to be fixed in the rigid body and is called the body
frame. That is, when the body tumbles around, so do the x′, y′, and z′ axes; if
we were sitting in the body frame and used the x′, y′, and z′ axes to describe our
observations, we would see the rigid body motionless while the rest of the world
tumbles around us.

rigid-body
frame 

lab frame

Fig. 12.4 The lab and body frame setups used to describe the orientation of a rigid body in three-dimensional
space. Also shown is a fixed vector k which will have different components (kx , ky , kz) and (kx′ , ky′ , kz′)
in the lab and body frame coordinate systems respectively – reflecting the orientation difference
between the two frames.



479 12.3 Rotation Matrices and the Body Frame

We henceforth will always label the body frame with primed coordinates, while
the lab frame will be labeled with unprimed coordinates. Note also that a vector,
like a position or velocity vector, will generally have very different components
when written in the lab versus body frame coordinates. For example, if we were
to use a position vector to pinpoint a fixed location in the rigid body relative to
its center of mass, this vector would tumble around with the body as seen from
the lab frame. So, its components in the lab frame would be time dependent.
But this same vector would appear fixed from the perspective of the body frame;
hence, its components with respect to the primed coordinate system would be time
independent.

To describe the orientation of a rigid body, we need to describe the orientation
of its body frame relative to the lab frame. This will involve rotations, and we
need three angles to describe a general rotation in three dimensions. Think of the
orientation of an airplane as shown in Figure 12.5(a), often characterized by its
pitch, roll, and yaw. We see that three independent numbers are needed to fully
describe the plane’s orientation, or that of any other rigid body. Another way to
see this is to realize that the orientation of an object can be fully described by
specifying the direction of its body frame z′ axis, and a single angle of rotation
about this z′ axis (see Figure 12.5(b)). Identifying the aim of the z′ axis requires
two numbers – say the two angles in spherical coordinates that define a ray parallel
to it, plus the single angle of rotation about the axis. Again we have three angles in
total.

Consider a rigid body oriented in a certain arbitrary way in space at a snapshot
in time, as shown in Figure 12.4. One way we can quantify the rigid body’s
orientation is by relating the components of some fixed vector between the lab
and body coordinate systems. Let the rotation be described by a 3 × 3 matrix R̂,
then we write the components of a fixed vector k as

ki′ = R̂
i′
jk

j. (12.8)

Here, kj are the components of the vector k = (kx, ky, kz) in the lab coordinate
system, and ki′ = (kz′ , ky′ , kz′) are the components of the same vector in the rotated
body coordinate system – the primed coordinates. We are also using the Einstein
summation convention and are therefore summing over the j index. Note that the
vector k is a fixed vector; however, it has two separate sets of components that are
different in general, one in the lab frame – denoted by unprimed labels (kx, ky, kz),
and one in the body frame – denoted by primed labels (kz′ , ky′ , kz′). Knowing the
relation between these components through Eq. (12.8) can be used to tell us how
the body coordinate system is oriented relative to the lab frame, and thus we learn
about the orientation of the rigid body. For example, consider the rotation matrix

R̂
i′
j → R̂z =

⎛⎝ cosαz sinαz 0
− sinαz cosαz 0

0 0 1

⎞⎠ , (12.9)
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with j representing a column index and i′ representing a row index. If this rotation
is to relate the components of a fixed vector between the lab frame and the body
frame of a rigid body, it implies that the body frame, and correspondingly the rigid
body, is to be viewed as rotated by an angle αz about the lab frame’s z axis.

axis of rotation

angle of rotation

roll

yaw

pitch

(b)(a)

Fig. 12.5 (a) The three orientational degrees of freedom of an airplane. (b) An alternative quantification of
orientation through the specification of body frame axis and an angle of rotation about this axis.

More generally, the defining property of a rotation is that it does not change the
length of vectors. That is, we need to ensure that

ki′ki′ = kiki, (12.10)

which implies that

ki′ki′ = R̂
i′
jk

jR̂
i′
kk

k = kjR̂
i′
jR̂

i′
kk

k, (12.11)

where we have rearranged the terms since they represent components of matrices
and vectors, i.e., numbers, that are commutative under multiplication. We must
then have

R̂
i′
jR̂

i′
k = δjk, (12.12)

where δjk is Kronecker’s delta. Note however that the first factor corresponds to the
components of the transpose of the R̂ matrix

R̂
i′
j = (R̂

T
) i′

j , (12.13)

where T stands for matrix transposition, where column and row indices are
exchanged on the right-hand side. We then have

R̂
i′
jR̂

i′
k = (R̂

T
) i′

j R̂
i′
k = (R̂

T · R̂)jk = δjk, (12.14)

noting that the sum over i′ amounts to matrix multiplication. We then need

R̂
T · R̂= 1 ; (12.15)
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that is, the matrix R̂ must be both orthogonal and normalized, i.e., orthonormal.
We note however that R̂ may also implement a reflection of the coordinates while
preserving distances and the statement of orthogonality. A reflection can be written
in matrix form as

R̂=

⎛⎝ −1 0 0
0 −1 0
0 0 −1

⎞⎠ . (12.16)

So we need to separate reflections from rotations. To do this, we define a rotation
matrix as one satisfying both the conditions

R̂
T · R̂= 1 and Det R̂= +1. (12.17)

The condition on the determinant rules out reflections. Equation (12.17) defines a
rotation in general.

We can then ask the mathematical question: What are all 3 × 3 matrices R̂

that satisfy the conditions (12.17)? This exercise leads to the following conclusion:
any such matrix is parameterized by three independent angular parameters. For
example, a rotation of the coordinates by an angle αz about the z axis is given by
Eq. (12.9). Similarly, rotations about the x and y axes are

R̂x =

⎛⎝ 1 0 0
0 cosαx sinαx
0 − sinαx cosαx

⎞⎠ , R̂y =

⎛⎝ cosαy 0 − sinαy
0 1 0

sinαy 0 cosαy

⎞⎠ ,

(12.18)

with angles αx about the x axis and angle αy about the y axis, respectively.
An arbitrary rotation is a product of three such matrices with three independent
parameters αx, αy, and αz. As required, a product of orthogonal matrices is
orthogonal, and the determinant of a product of matrices with unit determinants
has unit determinant. It can be shown that any rotation matrix can be written in this
product form. Note that rotation matrices are in general noncommuting; that is, for
two rotations R̂1 and R̂2, we have

R̂1 · R̂2 �= R̂2 · R̂1. (12.19)

It is easy to show, for example, that the order of rotations makes a difference when
twisting a book successively about two perpendicular axes.

Example 12.1 Rotations in Higher Dimensions
Consider D-dimensional space, where D ≥ 2. What would a rotation be in such a space of arbitrary dimen-
sions? The defining property for rotations still comes from requiring linear transformations that preserve
distances. Therefore, we can still use Eq. (12.17) as a condition on a D × D rotation matrix R̂. In the
commonplace world of three dimensions, we could have three rotations: one about each of the x, y, and z
axes. But looking at the form of the rotation matrix, we see that the orthogonality condition is satisfied by
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a cosine–sine mixing of two directions at a time. For example, for rotation about the z axis, we mix the x
and y axes using the familiar trigonometric functions, and orthogonality follows from cos2 + sin2 = 1. In
higher dimensions, we can still satisfy the orthogonality condition by mixing any two of the D directions of
the coordinates with the same cosine and sine pattern. That is, a general rotation in D dimensions is a product
of a number of rotations, each mixing two of the D-space dimensions. The number of different rotations in D
dimensions is then simply the number of independent ways we can pair up D axes. We then have

Number of independent angles in D dimensions =
D(D − 1)

2
. (12.20)

For example, for D = 2 we have only a single angle, as we know. For D = 3 we have three angles. But for
D = 9, we would have 9 × 8/2 = 36 different independent rotations – and not nine as we might have
guessed! �

We now have a plan for quantifying the orientation of a rigid body. We will use
rotation matrices that relate the components of fixed vectors between the lab and
the body frames. But first we must settle on a convention that fixes the particular
sequence of rotation matrices that we want to use.

12.4 The Euler Angles

An arbitrary orientation of a rigid body is represented by a 3 × 3 rotation matrix
that tells us how a fixed vector’s components in the lab frame are related to
the same vector’s components in the body frame. As discussed in the previous
section, such a rotation matrix is decomposable into a product of three independent
rotations. Therefore the orientation state of the object is described by three angular
parameters. This decomposition is not unique. For example, we might write

R̂(αx,αy,αz) = R̂x(αx) · R̂y(αy) · R̂z(αz) (12.21)

or even

R̂(α′
x,α′

y,α′
z) = R̂y(α

′
y) · R̂x(α

′
x) · R̂z(α

′
z), (12.22)

with a different set of angles α′
x, α′

y, and α′
z – yet yielding the same rotation. So we

need to establish a convention. If your name happens to be Euler, whose name
comes up frequently in this chapter,1 then the convention you introduce has a
greater chance of permanence. In fact, Euler made a choice that has stayed with

1 Leonhard Euler was easily the most prolific mathematician of all time. He was known by contemporaries as
“Analysis Incarnate.” A later biographer wrote that “Euler calculated without apparent effort, as men breathe,
or as eagles sustain themselves in the wind.” Toward the end of his life he became totally blind, but continued
to dictate mathematical papers to his wife while his grandchildren played on his knee.
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us ever since. So along with everyone else, we adhere to Euler’s convention and
the corresponding set of angles known as the Euler angles.

According to Euler, a general rotation is defined through three rotations

R̂(ϕ, θ,ψ) = R̂3(ψ) · R̂2(θ) · R̂1(ϕ) (12.23)

where we define, in order:

• First, rotate about the z axis by ϕ:

R̂1(ϕ) =

⎛⎝ cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞⎠ . (12.24)

• Second, rotate about the new x axis by θ:

R̂2(θ) =

⎛⎝ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞⎠ . (12.25)

• Third, rotate about the newest z axis by ψ:

R̂3(ψ) =

⎛⎝ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞⎠ . (12.26)

Figure 12.6 depicts three angles ϕ, θ, and ψ, known as the Euler angles. The
coordinate axes of the body frame are fixed within the rigid body and are labeled by
primed coordinates x′, y′, and z′; the orientation of these axes can then be described
with respect to the lab frame coordinates x, y, and z through the three Euler angles.
As the figure illustrates, this is a three-step prescription that takes us from x–y–z to
x′–y′–z′. The corresponding rotation matrix (12.23) relates the components of any
vector between the lab and body reference frames. The lab frame is also sometimes
referred to as the “lab axes” or the “space axes.”

Let us then put this machinery to use. Let R be the position vector of the tagged
point in the rigid body measured from the origin of the lab frame, as shown in
Figure 12.7.

If we pick any other point a in the rigid body we may denote its position vector
by ra, measured from the origin of the lab frame. As the body moves and tumbles
around, both R and ra will in general change in both direction and magnitude. Now
consider the position of this second point with respect to the tagged point: we call
this vector ra pointing from the tagged point. We have

ra = R+ ra. (12.27)

Now an interesting observation: the components of ra in the body frame, denoted
as (rx′

a , ry′
a , rz′

a ), are guaranteed to be time independent since ra is fixed with
respect to the body frame. This same vector in the lab frame, now with components
denoted as (rx

a, ry
a, rz

a), is in contrast generally time dependent, tracking how the
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1

2

3

Fig. 12.6 The Euler angles describing the orientation of a rigid body.

tagged point

Fig. 12.7 The decomposition of the position vector of a bit of the rigid body in terms of the position of the tagged
point R and the position of the bit with respect to the tagged point ra

′.

body tumbles around in space. Using the Euler angles, we can write a relation
between the components of ra as⎛⎝ rx′

a
r

y′
a
rz′

a

⎞⎠ = R̂(ϕ, θ,ψ).

⎛⎝ rx
a

r
y
a

rz
a

⎞⎠

⇒

⎛⎝ rx
a

r
y
a

rz
a

⎞⎠ =
[
R̂(ϕ, θ,ψ)

]T .

⎛⎝ rx′
a

r
y′
a
rz′

a

⎞⎠ , (12.28)
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where we transpose the rotation matrix to invert it, given that it is an orthogonal
matrix. Note that[

R̂(ϕ, θ,ψ)
]T

=
[
R̂1(ϕ)

]T .
[
R̂2(θ)

]T .
[
R̂3(ψ)

]T

= R̂1(−ϕ).R̂2(−θ).R̂3(−ψ). (12.29)

Given that the ri′
a s are always constant in time, we see that the time evolution of

the ri
a – which describes how the bits in the rigid body are moving in the lab frame

and hence how the rigid body is tumbling around – must be compensated by the
time evolution of the Euler angles ϕ, θ, and ψ. Hence, knowing ϕ(t), θ(t), and ψ(t)
can be used to deduce the exact orientation of the rigid body in three-dimensional
space as a function of time. Our ultimate goal is then to find equations of motion
that can be solved for these Euler angles as a function of time.

The usefulness of having vectors that are fixed in the body frame leads us to
introduce a notational convenience. A scripted font (rversus r) will always signify
that the vector is fixed with respect to the rigid body: as the rigid body moves and
tumbles around, r remains unchanged as seen from the perspective of an observer
at rest and tumbling with the rigid body. Hence, whenever we have components of
scripted vectors that are primed, as in ri′ , we may assume they are constant in time.

Equations (12.28) are central relations for quantifying the orientation of a rigid
body. If we learn how the Euler angles are evolving in time, we can construct
the time-dependent rotation matrix R̂(ϕ, θ,ψ); then, using any fixed vector in the
body, we can deduce from Eq. (12.28) how the components of this vector evolve
in the lab frame – thus tracking the orientation of the rigid body from the lab’s
perspective.2

12.5 Infinitesimal Rotations

Now that we know how to quantify the time-evolving orientation of a rigid body,
we next consider how to quantify the rate at which a rigid body might be spinning
about an arbitrary axis. We start by decomposing the rigid body’s motion into a sum
of a translation and a rotation. Let the position of the tagged point be denoted by R.
In a small time increment Δt, the tagged point translates by a small amount ΔR.
More interestingly, how can we describe the small angular rotation of the object
during this time interval? At the given instant in time, the rotation of the object
can be specified by prescribing an axis of rotation as shown in Figure 12.8, and a

2 Note that throughout our discussion the rotation matrices are used to rotate the coordinate system between lab
and body frames – as opposed to rotating vectors directly. This type of rotation is known as passive rotation –
where the rotations are applied to the coordinate system and as a result the components of fixed vectors change.
This is to be contrasted with active rotation – where the rotation is applied to the vector directly, not to the
coordinate system, and hence the components of the vector change because the vector itself is rotated. To avoid
confusion, we have used and will continue to use only passive rotations throughout.
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small rotation angle about it, Δα. The axis gives a direction in three-dimensional
space, and the angle a scalar number. We can represent this set of three numbers
by a vector ω: the direction of ω is along the instantaneous axis of rotation, and
its magnitude is defined as Δα/Δt. Naturally, this vector is called the angular
velocity vector. As the system evolves, the direction of the axis of rotation and
the rate of rotation can change; therefore, the vector ω generally evolves in both
direction and magnitude.

translation

axis of
rotation

Fig. 12.8 An infinitesimal evolution of a rigid body. The full motion of the rigid body is the sum of a small
displacement in the position of the tagged point plus an infinitesimal rotation about an axis through the
tagged point. The rotation portion can be described by an instantaneous axis of rotation and a rate of
spinω = Δα/Δt about this axis.ω is the angular velocity vector and is aligned along the axis of
rotation.

Consider an arbitrary point within the rigid body whose position is denoted by
r relative to a tagged point. We then have

r = R+ r, (12.30)

where r is the position of the point relative to the lab frame. Using Euler’s theorem,
the instantaneous axis of rotation goes through the tagged point as shown in the
figure. We can then write

dr
dt

=
dR
dt

+
dr
dt

. (12.31)

The V ≡ dR/dt part is the velocity of the tagged point. The more interesting
quantity is the second part that tells us about the instantaneous rotation of the rigid
body. As shown in Chapter 9, we have

v =
dr
dt

= ω × r (12.32)

from the lab perspective. The direction of v is conveniently obtained by the right-
hand rule of the cross product.
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Since the velocity dr/dt of every point in the rigid body can be decomposed,
as any velocity vector, into a vector Galilean sum of component velocities, the
angular velocity ω can also be decomposed into component angular velocities. For
example, we can write

ω = ω1 + ω2, (12.33)

where ω1 and ω2 describe a decomposition of the full angular velocity into two
others with different axes and magnitudes, as shown in Figure 12.9. The velocity
of the corresponding point in the rigid body is then

ω1 × r+ ω2 × r= v1 + v2. (12.34)

Addition is a commutative operation, so infinitesimal rotations are commutative.
However, once a finite rotation is built from many infinitesimal ones, such large
rotations no longer commute. Angular velocity describes a small change in angle
about an axis, however, per a small interval in time, so for such small rotations the
order of rotation doesn’t matter. That is why we can simply add angular velocity
vectors to obtain a total rate of spin.

Fig. 12.9 Combining angular velocities through vector addition. This is a commutative operation for infinitesimal
rotations, but is not commutativity for consecutive large rotations.

Now we will use the Euler-angle formalism to find the components of the angular
velocity vector.

Example 12.2 Angular Velocity Transformation
Consider the angular velocity vector ω that describes the instantaneous rate of rotation of a rigid body.
Remember that given ω at a snapshot in time, we know that the object of interest is spinning about the
direction of this vector at a rate ω. Hence, if we can find out the time evolution of the components of the
angular velocity vector from the lab perspective, we can reconstruct the rotational dynamics of the rigid body.
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As discussed above, we label the components of ω in the laboratory frame by (ωx , ωy , ωz); and those
in the rigid body frame by (ωx′ , ωy′ , ωz′). And we now know how to relate these given ϕ(t), θ(t), and
ψ(t). Note that the components ofω in either the body frame or the lab frame are not necessarily constant in
general. Depending how complicated is the motion of the rigid body, the angular velocity will evolve in time
in complicated ways in both perspectives. Since the orientation of the object is tracked by the Euler angles, it
should however be possible to write the angular velocity vector in terms of ϕ̇, θ̇, and ψ̇, the rates of change
of the Euler angles.

To do this, we divideω into three parts, as shown in Figure 12.10

ω = ω(I) + ω(II) + ω(III), (12.35)

where (I), (II), and (III) denote various rotation axes. The total is a sum over spins aligned with particular
axes. We can read off these individual spin rates from the figure as

ω(I) = ϕ̇ , ω(II) = θ̇ , ω(III) = ψ̇, (12.36)

each aligned as shown. We can now write the components of ω(I), ω(II), and ω(III) in the body frame, and
transform back to the laboratory frame. For example, we have⎛⎜⎝ ω(I)x′

ω(I)y′

ω(I)z′

⎞⎟⎠ = R̂(ϕ, θ, ψ) ·

⎛⎝ 0
0
ϕ̇

⎞⎠ =

⎛⎝ ϕ̇ sin θ sin ψ
ϕ̇ sin θ cos ψ
ϕ̇ cos θ

⎞⎠ . (12.37)

Fig. 12.10 The decomposition of an angular velocity vector into its Euler components.

Forω(II) we need to be more careful, since its components need to be rotated back to the laboratory only
partially. We have
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⎛⎜⎝ ω(II)x′

ω(II)y′

ω(II)z′

⎞⎟⎠ = R̂3(ψ) · R̂2(θ).

⎛⎝ θ̇

0
0

⎞⎠ =

⎛⎝ θ̇ cos ψ
−θ̇ sin ψ

0

⎞⎠ . (12.38)

Finally, forω(III), we have⎛⎜⎝ ω(III)x′

ω(III)y′

ω(III)z′

⎞⎟⎠ = R̂3(ψ) ·

⎛⎝ 0
0
ψ̇

⎞⎠ =

⎛⎝ 0
0
ψ̇

⎞⎠ . (12.39)

The total angular velocity vector is a sum of the three component vectors; in the body frame, this becomes

ω = (ωx′ , ωy′ , ωz′)

=
(
ϕ̇ sin θ sin ψ + θ̇ cos ψ, ϕ̇ sin θ cos ψ − θ̇ sin ψ, ϕ̇ cos θ + ψ̇

)
. (12.40)

It is also very useful to write the angular velocity vector in the laboratory frame coordinates. To do this, we can
use the relation (12.28). After some algebra, one finds that

ω = (ωx , ωy , ωz)

= (ψ̇ sin θ sin ϕ+ θ̇ cos ϕ, −ψ̇ sin θ cos ϕ+ θ̇ sin ϕ, ψ̇ cos θ + ϕ̇). (12.41)

Givenϕ(t), θ(t), andψ(t), we can then determine the angular velocity vector at any instant in time in the
laboratory and body frames. �

12.6 Angular Momentum

Having specified the orientation of a rigid body, and written its spin in terms of
Euler angles, we will now find an expression for its total angular momentum Ltot

as measured in the inertial frame of the laboratory. Summing over the angular
momenta of all bits in the body:

Ltot =
∑

i

�i =
∑

i

(ri × pi), (12.42)

where the position vector of the ith bit is ri = R + ri. Here, R is the position
vector from some origin in the lab frame to the tagged point in the body, and ri is
the position of the ith bit measured from the tagged point. The momentum pi of
the ith bit is

pi = mivi = mi (V + ṙi) = mi (V + ω × ri) , (12.43)
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in which V is the velocity of the tagged point in the lab frame and ω is the
instantaneous angular velocity of the rigid body. Altogether:

Ltot =
∑

i
ri × (mivi) =

∑
i
(R+ ri)× (V + ω × ri) rimi

= R× (MV) +R× (ω × MRcm) + MRcm ×V +
∑

i
miri × (ω × ri)

≡ L1 + L2 + L3 + L4, (12.44)

where Rcm is the position vector measured from the tagged point to the center of
mass:

∑
miri = MRcm. (12.45)

(Note the difference between this expression and the sum
∑

miri = MRcm, where
Rcm extends from the origin in the laboratory frame to the center of mass of the
body.) The scripted Rcm is a vector fixed in the body frame; its components in
the body frame must be constant in time. Now consider the two most common
situations, each of which will turn out to simplify our life a great deal.

(1) First, suppose the tagged point is the center of mass of the rigid body, so
R = Rcm, which implies that Rcm = 0. Therefore in this case we have L2 =
L3 = 0. We then also have V = Vcm, so

L1 = Rcm × (MVcm) , (12.46)

which is often called the orbital angular momentum. This term is independent of
any rotation of the rigid body itself; it would be the same if the entire rotating object
were condensed to a single point mass located at the center of mass.

(2) Alternatively, suppose the tagged point is a fixed pivot point, so then R =
constant, resulting in V = 0. In that case L1 = L3 = 0. It is also often convenient
to choose the origin of coordinates to be at the pivot point itself, in which case R =
0, which eliminates L2. This leaves only the purely rotational term L4 as the total
angular momentum of a rotating body with a fixed pivot point. Note however that
since the coordinates used to calculate L4 are not the same about the CM as they
are about some other fixed pivot point, L4 will be different in the two cases.

In summary, if our tagged point is the center of mass of the rigid body, there
are two kinds of angular momentum, the orbital angular momentum L1 =
Rcm × (MVcm) and the spin angular momentum L4 about the center of mass.
If our tagged point is instead a fixed pivot point which we choose as the origin
of coordinates, there is only one kind of angular momentum, the spin angular
momentum L4 about the pivot point.
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Now we have to understand the spin angular momentum, which we have written
as L4. We have

L4 =
∑

i
miri × (ω × ri)

=
∑

i
mi[ω

(
ri

2)− (ω · ri) ri]

=

∫
dm [ω

(
r2)− (ω · r) r], (12.47)

where in the second step we used the vector identity A× (B×C) = B(A ·C)−
C(A ·B) and in the last step we took the continuum limit

∑
i mi →

∫
dm for the

convenience of eliminating subscripts. Depending upon the shape of the rigid body,
we could let dm = ρdV, σdS, or λdl, where ρ,σ,λ, are, respectively, the volume,
surface, and linear mass densities of the rigid body.

Now we can write out the components of the spin angular momentum L4, which
we will now call simply “L,” assuming we have already accounted for any orbital
angular momentum. We then write

L =

∫
dm [ω

(
r2)− (ω · r) r]. (12.48)

This means that if the tagged point is the center of mass, the total angular
momentum is

Ltot = Rcm × (MVcm) + L, (12.49)

while if there is instead a fixed pivot point, we have simply

Ltot = L (12.50)

with no orbital angular momentum term.
Now let us look at this spin angular momentum more closely. From Eq. (12.48),

the x component of L in the lab frame, for example, is

Lx =

∫
dm[ωx(x2 + y2 + z2)− x(ωxx + ωyy + ωzz)]

=

[∫
dm(y2 + z2)

]
ωx +

[∫
dm(−xy)

]
ωy +

[∫
dm(−xz)

]
ωz, (12.51)

in which we have separated out the quantities that depend upon the shape, size, and
density distributions of the rigid body as given by the integrals shown, from the
angular velocity components ωx,ωy, and ωz in the lab frame. Similar expressions
can be written for Ly and Lz, so altogether

Lx = Ixxω
x + Ixyω

y + Ixzω
z,

Ly = Iyxω
x + Iyyω

y + Iyzω
z,

Lz = Izxω
x + Ixyω

y + Izzω
z, (12.52)
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which can most clearly be written in the form of a matrix equation:

L̂ = Î · ω̂, (12.53)

where the vectors L̂ and ω̂ are column matrices each consisting of three Cartesian
components, and Î is written as a 3 × 3 square symmetric matrix called the
moment of inertia matrix. That is:⎛⎝ Lx

Ly

Lz

⎞⎠ =

⎛⎝ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎞⎠⎛⎝ ωx

ωy

ωz

⎞⎠ , (12.54)

where the diagonal elements of Î are

Ixx =

∫
dm

(
y2 + z2) , Iyy =

∫
dm

(
x2 + z2) , Izz =

∫
dm

(
x2 + y2) ,

(12.55)

and the necessary off-diagonal elements are (since Î is symmetric)

Ixy =

∫
dm (−xy) , Ixz =

∫
dm (−xz) , Iyz =

∫
dm (−yz) , (12.56)

or more compactly

Iab =

∫
dm

(
r2δab − rarb) . (12.57)

Note that all these expressions are written in the lab frame, as suggested by the
unprimed indices on L, ω, and I. We can write similar expressions in the body
frame by simply “priming” all indices. Equation (12.53) is the general expression
that can be decomposed in component form in either coordinate system. In essence,
this equation factors away the angular velocities from the expression for angular
momentum. The rest, denoted as a “moment of inertia matrix” Î, depends only on
the way mass is distributed within the rigid body. Note also that, by inspection of
Eq. (12.57), we can see that the moment of inertia matrix is necessarily symmetric:
exchanging the row and column indices a and b does not change the expression.

Now let us find Î in a familiar case, the case of a thin hoop.

Example 12.3 A Hoop
Consider a hoop of radius R, mass M, and uniform mass density, which can model the bicycle wheel we
described at the beginning of the chapter. We want to compute the moment of inertia matrix for this rigid
body in the lab frame. First, we need to choose a tagged point and a coordinate system. One possibility is
shown on the left of Figure 12.11, where the tagged point is at the center of the hoop, and the coordinate axes
are aligned as shown. Given that this is an object extended along one dimension with some constant linear
mass densityλ, we start with a line integral obtained from Eq. (12.57):
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Iab =

∫
λ
(
r2δab − rarb) dl, (12.58)

where we used dm = λ dl, and the integral circles around the hoop with differential path length dl = R dθ,
with the linear mass density given byλ = M/(2π R).

The coordinates of the bits in the hoop are then traced by the angle θ:

rx = R cos θ, ry = R sin θ, rz = 0, (12.59)

which give

Ixx =
M

2π R

∫ 2π

0

(
R2 − R2 cos2 θ

)
R dθ =

MR2

2π
(2π − π) =

MR2

2
, (12.60)

Iyy =
M

2π R

∫ 2π

0

(
R2 − R2 sin2 θ

)
R dθ =

MR2

2π
(2π − π) =

MR2

2
, (12.61)

Izz =
M

2π R

∫ 2π

0

(
R2 − 0

)
R dθ = MR2 (12.62)

for the diagonal components.

Fig. 12.11 The computation of the moment of inertia of a hoop. The tagged point at the center;
the tagged point at the rim; the hoop inclined by an angle α off the x axis.

For the off-diagonal components, since the matrix is symmetric we only need to compute half of them:

Ixy = Iyx =
M

2π R

∫ 2π

0

(
R2 cos θ sin θ

)
R dθ = 0, (12.63)

Ixz = Izx =
M

2π R

∫ 2π

0
(0) R dθ = 0, (12.64)

Iyz = Izy =
M

2π R

∫ 2π

0
(0) R dθ = 0. (12.65)
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The moment of inertia matrix of the hoop about its center is therefore

Î =

⎛⎝ M R2/2 0 0
0 M R2/2 0
0 0 M R2

⎞⎠ . (12.66)

Notice how the symmetry of the hoop comes in to cancel the off-diagonal matrix elements – for the same
reason we encountered earlier when computing the angular momentum of the wheel and noticed that only
one sum survives in the result. In that case, we had fixed axis rotation, i.e., ω = ω ẑ, and the only relevant
part of the moment of inertia was labeled I, corresponding to Izz in the current more general treatment.

Another possible arrangement for the tagged point is shown in the middle diagram of Figure 12.11, with
the tagged point now located on the rim. Since the origin of the body axes is shifted, we need to recompute
the moment of inertia matrix. We still begin with

Iab =

∫
λ
(
r2δab − rarb) dl, (12.67)

but now rpoints from the rim to any arbitrary bit of the hoop. We can write

r= (rx , ry , rz) = (R cos θ, R sin θ + R, 0), (12.68)

which gives

r2 = 2R2 (1 + sin θ) , (12.69)

and we still have dl = Rdθ. Using similar calculations, we still find that

Ixz = Iyz = Ixy = 0, (12.70)

and we also still have

Iyy =
1
2

M R2. (12.71)

However, Îxx and Îzz are different from before:

Ixx =
3
2

MR2, Izz = 2 MR2. (12.72)

Intuitively, since the hoop is shifted along the y axis, more mass is displaced away from the x and z axes, so
that Ixx and Izz have increased.

To appreciate the role of the off-diagonal terms of the moment of inertia matrix, consider the scenario on
the right of Figure 12.11 – where the hoop is centered at the origin but it is tilted at an arbitrary angleα from
the x axis. Once again, our starting point is Eq. (12.67), but now we have

r= (rx , ry , rz) = (R cos α cos θ, R sin θ, −R sin α cos θ). (12.73)

The easiest way to see this is to realize that the new axes are related to the old ones by a rotation about the y
axis by angleα. We still have

r2 = R2 (12.74)
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just as in the first scenario, and we still have dl = R dθ, so we still find

Ixy = Izy = 0, (12.75)

but we now have

Izx =
1
2

M R2 sin α cos α. (12.76)

Notice that this component vanishes whenever the hoop is aligned with the axes, when
α= 0, π/2, 3π/2, 2π. For the diagonal components we find

Ixx =
1
2

M R2(2 − cos2 α), Iyy =
1
2

M R2, Izz =
1
2

M R2(2 − sin2 α). (12.77)

Once again, Iyy is unchanged. In all three cases, there is no change in the mass distribution as we look along
the y axis. However, both Ixx and Izz do change. In particular, note how these two components of the matrix
exchange roles betweenα = 0 andα = π/2, as the hoop lies in the x–y plane first then in the z–y plane.
Note also that if the hoop were rotating about the y axis with respect to this coordinate system, we would
have a changing angle α(t), which implies that the moment of inertia matrix would have time-dependent
components! �

From the previous example, we notice a couple of potential complications in
studying rigid body dynamics:

• If we were to compute the moment of inertia matrix in the lab frame, and if
the rigid body were to tumble around as we would expect and perhaps hope for,
the moment of inertia matrix would depend upon time as the mass distribution
itself varies with time. However, if we were to compute the moment of inertia
matrix in the body frame instead, the matrix would be constant in time, since
the mass distribution would then be fixed. Therefore it normally seems best
to compute the moment of inertia matrix in the body frame. This implies,
however, that we would need to write the component form of Eq. (12.53) in
primed coordinates, and so deal with components of angular velocity and angular
momentum expressed in the body frame. We would then need to use the rotation
matrix (12.23) to transform these components back to the lab frame. The cost of
writing the moment of inertia matrix in the body frame is therefore the occasional
need to transform between lab and body frames. Nevertheless, the benefits of this
approach normally outweigh the costs.

• Note that if the coordinate system is not neatly aligned with the symmetry axes,
as in the final part of the example of the hoop, there are nonzero off-diagonal
elements in the moment of inertia matrix. As we shall see in the next section,
if we can find a coordinate system whose axes are aligned with the natural
symmetry axes of the rigid body, the moment of inertia matrix will be diagonal.

Therefore, the lessons we draw from the previous examples are twofold: first, write
the moment of inertia matrix in the body frame instead of the lab frame; second,
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choose the orientation of the body frame axes so that the moment of inertia matrix
expressed in the body frame is diagonal.

12.7 Principal Axes

Our goal in this section is to elaborate on the most computationally beneficial
strategy for choosing the body frame of a rigid body. Our goal is to write the
moment of inertia matrix in this strategically chosen body frame so that most of
its entries are zero, and, by virtue of being expressed in a body frame, the matrix is
constant in time.

First, we want to fix the location of the origin of the body coordinate system.
The natural choice is the tagged point with respect to which the motion of the
rigid body was decomposed into translational and rotational parts. We are not done,
however. Within these criteria we can still orient our axes in infinitely many ways.
All these configurations are related to each other by rotations, which change the
time-independent moment of inertia matrix components by

Î → Â· Î · ÂT, (12.78)

where Â is a rotation matrix that reorients the body frame. We write it as Â instead
of R̂ to avoid confusion with the Euler rotation matrix that connects the body
frame to the lab frame. The matrix Â transforms one choice of body frame to
another. Since Î is a real symmetric matrix, we can use this freedom to orient
our axes so that the moment of inertia matrix is diagonal: we can always find an
orthogonal transformation Â – a rotation – that diagonalizes any real symmetric
matrix. This typically corresponds to aligning the axes with the symmetry axes of
the shape of the rigid body. So in practice we do not need to find a sometimes
hideous transformation to do the job if our rigid body has enough symmetries that
allow us to quickly guess at the appropriate orientation of the axes. This choice of
axes for our coordinate system is referred to as the choice of the principal axes.
Note that, given that the moment of inertia matrix is diagonal in the principal axes
frame, we must have in Eq. (12.57)∫

dm ra′ rb′ = 0 for a′ �= b′, in the principal axis frame. (12.79)

So from now on we will always compute the moment of inertia matrix in the
principal axes coordinate system of the body frame – with origin fixed at the tagged
point in the rigid body. We then write

Î =

⎛⎝ Ix′x′ 0 0
0 Iy′y′ 0
0 0 Iz′z′

⎞⎠ =

⎛⎝ I1 0 0
0 I2 0
0 0 I3

⎞⎠ , (12.80)
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where we will write x′ → 1, y′ → 2, and z′ → 3 to emphasize that these are
components in a special body coordinate system which diagonalizes the moment
of inertia matrix. We then need to compute only three moments of inertia, one along
each of the three principal axes. Therefore, the physical content of the moment of
inertia matrix is quantified by three independent numbers out of the six possible
independent ones for a general 3 × 3 symmetric matrix.

In summary, the components of the spin angular momentum expressed in the
body principal axes frame, obtained from Eq. (12.53), become

Lx′ = Ix′x′ω
x′ ⇒ L1 = I1 ω1, (12.81)

Ly′ = Iy′y′ω
y′ ⇒ L2 = I2 ω2, (12.82)

Lz′ = Iz′z′ω
z′ ⇒ L3 = I3 ω3, (12.83)

where L1, L2, L3 and ω1, ω2, ω3 are components of the angular momentum and
angular velocity in the body principal axes frame.

Example 12.4 Symmetry and Principal Axes
The off-diagonal components of the moment of inertia matrix come from∫

dm ra′ rb′ (12.84)

in Eq. (12.57) and so arise from any asymmetric mass distribution about the axis passing through the origin
and perpendicular to the a′ and b′ direction. Therefore, to diagonalize the inertia matrix one needs to align
the principal axes along the symmetry axes of the rigid body. Figure 12.12 shows several rigid bodies with
corresponding principal axes. Notice that the axes always orient along the symmetry axes of the object. In the
last example in the figure, however, given the asymmetries in the shape of the object, it is not obvious how
to orient the principal axes. So sometimes we need to rely on rigorous algebraic methods and diagonalize a
matrix directly. This is an approach of last resort, when we really do need to find the principal axes but can’t
identify them by inspection.

Fig. 12.12 The principal axes of various rigid bodies. �
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The techniques involved in diagonalizing the moment of inertia matrix illustrate
how to solve an eigenvalue problem, a type of problem very common in both
classical and quantum physics. From linear algebra, diagonalizing the matrix Î
amounts to solving the following determinant equation for the unknown I:∣∣∣∣∣∣

Ix′x′ − I Ix′y′ Ix′z′

Iy′x′ Iy′y′ − I Iy′z′

Iz′x′ Iz′y′ Iz′z′ − I

∣∣∣∣∣∣ = 0. (12.85)

This is a cubic equation in I; its three solutions are the three principal moments
of inertia. These three solutions are called the eigenvalues of the problem, and the
corresponding eigenvectors tell us the direction of the set of axes, i.e., the principal
axis frame. Let us look at an example.

Example 12.5 Diagonalizing the Moment of Inertia Matrix
A particular rigid body of mass M and radius R has a moment of inertia matrix

Î =

⎛⎝ 3/4 0 1/4
0 1/2 0

1/4 0 3/4

⎞⎠MR2 (12.86)

for some set of body axes x′, y′, z′. We want to find the principal moments of inertia and the directions of the
principal axes relative to the given set of axes. Note that the moment of inertia matrix is symmetric, so it can
be diagonalized. We then write∣∣∣∣∣∣

3/4 − I 0 1/4
0 1/2 − I 0

1/4 0 3/4 − I

∣∣∣∣∣∣ = 0, (12.87)

where we have divided out the MR2 term for convenience; we should however keep this in mind so that, at
the end, we multiply the solution for Iwe obtain by MR2. Expanding the determinant, we have

(1/2 − I)

∣∣∣∣ 3/4 − I 1/4
1/4 3/4 − I

∣∣∣∣ = (1/2 − I)
[
(3/4 − I)2 − 1/16

]
= (1/2 − I)(1 − I)(1/2 − I), (12.88)

so that the three principal moments of inertia are I1 = (1/2)MR2, I2 = (1/2)MR2, and I3 = MR2,
restoring the MR2 factor in I= 1/2 and I= 1. These are in fact the principal moments of inertia of a
hoop, as encountered earlier! Hence, this rigid body is indeed a hoop of mass M and radius R. We can also find
the principal axes in terms of the initial axes for any one of the principal moments, by substituting a principal
moment of inertia Iback into the three algebraic equations⎛⎝ 3/4 − I 0 1/4

0 1/2 − I 0
1/4 0 3/4 − I

⎞⎠
⎛⎜⎝ ax′

ay′

az′

⎞⎟⎠ = 0, (12.89)
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and finding the ratios of ax′ , ay′ , and az′ . If we select I= 1 for example, then the algebraic equations give
−ax′/4 + az′/4 = 0 and ay′ = 0. That is, the principal axis corresponding to MR2 contains an equal part
of the initial x′ and z′ axes and contains no part of y. In other words, to find the principal 3 axis we rotate the
initial coordinate system about the y′ axis by 45o. �

Evaluating the integrals involved in moments of inertia can be easy or compli-
cated. However, there are a couple of theorems that often help enormously. We will
first state and prove each theorem, and then apply them to the moments of inertia
of a hoop.

center of mass

Fig. 12.13 The effect of translating the origin of the principal axes from the center of mass of a rigid body to another
point, while keeping the axes parallel.

The parallel axis theorem: Suppose Icmi (with i = 1, 2, or 3) are known
moments of inertia for a rigid body about some principal axes that pass through
the center of mass of the body at the origin Ocm, and let Îa′b′ be entries in the
moment of inertia matrix about axes that are parallel to the principal axes but
instead have origin at a point O that is displaced from Ocm by a vector D, as shown
in Figure 12.13. We want to find Îa′b′ from the Ia′s.

Let s be the position vector of a bit of mass measured from the center of mass
Ocm of the rigid body as shown in the figure. We write

s= r+ D, (12.90)

where r is the position of this same bit as measured from the new origin O. Notice
how all these vectors are in scripted font as they represent vectors fixed in the
rigid body frame. Substituting (12.90) into the expression for moment of inertia
from (12.57), we get
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Ia′b′ =

∫
dm

(
(s2 + D2 − 2s · D)δa′b′ − sa′sb′ − Da′Db′sa′ Db′ + Da′sb′

)
.

(12.91)

Note that we must have

Icmi =

∫
dm

(
s2 − sisi) , (12.92)

where no sum over the repeated index i is implied. We also know from Eq. (12.79)
that ∫

dmsa′sb′ = 0 for a′ �= b′. (12.93)

This cancels the fourth term in Eq. (12.91) when a′ �= b′. Furthermore, since shas
its origin at the center of mass, we have∫

dms∝ scm = 0. (12.94)

This cancels all terms in Eq. (12.91) that are linear in sa′ . These three relations
simplify Eq. (12.91). We can now state the theorem: Let Icmi be the known moment
of inertia for a rigid body about some principal axes that pass through the center of
mass of the body at the origin Ocm, and let Ia′b′ be the moment of inertia matrix for
the body about axes that are parallel to the first axes but whose origin is located at O.
Also let the vector distance from Ocm to Obe given by the displacement vector D.
Then the diagonal components of the new (parallel) moment of inertia matrix are

Ia′a′ = Icma′ + MD2 − M Da′Da′ , (12.95)

with no sum on the index a′, and for the off-diagonal components we have

Ia′b′ = −MDa′Db′ for a′ �= b′. (12.96)

In arriving at these two relations, we used Eqs. (12.92), (12.93), and (12.94)
in (12.91). These two relations, Eq. (12.95) and Eq. (12.96), are known as the
parallel axis theorem. The theorem allows us to quickly compute the new
components of the moment of inertia tensor from the ones with respect to the
center of mass principal axes frame. Notice in particular that, if we were to shift
the axes along one of the parallel axes, Eq. (12.96) would always vanish since two
components of D would necessarily vanish; this implies that translating along a
principal axis leaves the moment of inertia in diagonal form. Hence, we have an
infinite family of principal axes frames, all related to one another by translations
along their axes.
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Example 12.6 Translating the Hoop
Let us apply the parallel axis theorem to compute the moment of inertia matrix for the hoop about its rim,
as carried out earlier by brute force (the case corresponding to the middle of Figure 12.11). For the diagonal
components we have

Ix′x′ = I1 + M R2 − 0 =
3
2

M R2, (12.97)

Iy′y′ = I2 + M R2 − M R2 =
1
2

M R2, (12.98)

Iz′z′ = I3 + M R2 − 0 = 2 M R2. (12.99)

And since the translation is along the y axis, the off-diagonal components remain zero. These results agree
with those of Eqs. (12.71) and (12.72). �

The perpendicular axis theorem for plane lamina: Plane lamina are idealized
rigid bodies confined to a plane, which we take to be the (x′, y′) plane. Then since
z′ = 0 for plane lamina, their principal moment of inertia elements are

Ix′x′ =

∫
dm

(
y′2
)

, Iy′y′ =

∫
dm

(
x′2
)

, Iz′z′ =

∫
dm

(
x′2 + y′2

)
,

(12.100)

while the off-diagonal elements are zero, since we assumed principal axes. Now it
is obvious from these equations that

Ix′x′ + Iy′y′ = Iz′z′ . (12.101)

This is the perpendicular axis theorem for plane lamina, where the lamina is in the
(x′, y′) plane. It is good to keep the perpendicular axis theorem in mind, because it
can save a lot of time and effort if the rigid body is sufficiently symmetric. Also,
many three-dimensional objects are sums over plane lamina, so the theorem is
more useful than one might think at first. See the Problems section at the end of
this chapter for more.

Example 12.7 Perpendicular Axis Theorem and the Hoop
We can apply the perpendicular axis theorem to our example of the hoop, where the x′ and y′ axes are in the
plane of the hoop and where z′ is the axis of symmetry perpendicular to the hoop. We took the hoop to be
infinitely thin, so it qualifies as a plane lamina. The moment of inertia in the z′ direction is Iz′z′ = I3 = MR2,
so by the perpendicular axis theorem the sum I1 + I2 = I3 = MR2. But it is clear from symmetry that
I1 = I2, so it follows that I1 = I2 = (1/2)MR2, just as we found earlier by direct calculation. �
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12.8 Torque

The net torque on a body is the cause of changes in its angular momentum, just
as the net force on the body is the cause of changes in its linear momentum. Let
us remind ourselves about how torques originate. We start by writing Newton’s
second law for every bit making up a rigid body:

Fi = miai = mi
dvi
dt

. (12.102)

We then cross both sides of this equation by the position vector of each bit ri and
sum over i: ∑

i
ri × Fi =

d
dt
∑

i
miri × vi =

dLtot

dt
, (12.103)

where we have explicitly indicated that the angular momentum in this expression
is the total angular momentum, which is a sum of spin angular momentum plus
orbital angular momentum, as described in Eqs. (12.49) and (12.49). On the left-
hand side the quantity is then defined as the torque:

Ntot ≡
∑

i
ri × Fi. (12.104)

Typically, in this sum, internal forces between the bits making up the rigid body
cancel pairwise due to Newton’s third law. So, we may write instead

Ntot =
∑

i
ri × Fext

i , (12.105)

where the Fext
i s account for external forces only. We then have a rotational

analogue of Newton’s second law useful for studying rotational dynamics:

Ntot =
dLtot

dt
. (12.106)

As for angular momentum, we can divide up the torque by splitting the dynamics
of the rigid body into a translational and a rotational part. Substituting ri = ri +R
into the definition of torque (12.105), we have

Ntot =
∑

i
ri × Fext

i +R× Fext
i = N+R× F, (12.107)

where the second term is the torque acting on the rigid body as a whole, which
involves the sum of all external forces. In the Lagrangian formalism the notion
of torque is often not directly encountered unless one is interested in unraveling
constraints through Lagrange multipliers. However, Eq. (12.106) can be a useful
parallel approach to understanding the dynamics of the rigid body.
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12.9 Kinetic Energy

When finding the Lagrangian for a rigid body, we first need to write its kinetic
and potential energies. We start by focusing on the kinetic energy. We set up our
laboratory coordinate system as shown in Figure 12.7 and divide up the rigid body
into bits of small mass Δmi. We denote the tagged point’s location by the position
vector R, so

ri = R+ ri (12.108)

for every bit of the rigid body. The velocity of a bit is then given by

vi = Ṙ+ ω × ri = V + ω × ri (12.109)

using Eq. (12.32), where V is the translational velocity of the tagged point. The
kinetic energy of the rigid body is simply the sum of the kinetic energies of all the
bits. That is:

Ttot =
1
2
∑

i
Δmiv

2
i =

1
2
∑

i
Δmi (V + ω × ri) · (V + ω × ri) . (12.110)

Note that this is written from an inertial perspective. Expanding this expression,
we identify three different parts

Ttot =
1
2

MV2 +
∑

i
miV · (ω × ri) +

1
2
∑

i
mi (ω × ri) · (ω × ri)

= T1 + T2 + T3, (12.111)

tagged point and fixed pivot

(a)

tagged point
and center of mass

(b)

Fig. 12.14 The two common choices for tagged points.

To simplify things further, it helps to choose a strategic tagged point in the
decomposition of the dynamics into translation and rotational parts. As mentioned
earlier, we consider two possible choices.
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The first choice is to locate R at the center of mass of the rigid body (see
Figure 12.14(a)):

R = Rcm. (12.112)

We then have

T1 =
1
2

MV2
cm, (12.113)

where Vcm is the linear velocity of the center of mass. Then

T2 = MV · (ω ×Rcm) . (12.114)

Often the center of mass dynamics will be trivial and we can change frames to the
CM frame while remaining inertial. In this case we have

Vcm = 0 ⇒ T1 = T2 = 0. (12.115)

Alternatively, locate R at a fixed pivot point (see Figure 12.14(b)):

R = constant ⇒ V = 0. (12.116)

We then immediately have

T1 = T2 = 0. (12.117)

In both scenarios we see that T1 = T2 = 0. We are then left with T3, where

T3 ≡ T =
1
2

∫
dm (ω × r) · (ω × r) , (12.118)

where we have also taken the continuum limit by replacing the sum over bits by an
integral. Naturally, we call it the spin kinetic energy. To simplify this expression
further, we make use of the two identities

a · (b× c) = b · (c× a) = c · (a× b) (12.119)

and

a× b = −b× a, (12.120)

which allow us to write

(ω × ri) · (ω × ri) = −ri · (ω × (ω × ri)) . (12.121)

We can then use the BAC–CAB rule

a× (b× c) = (a · c)b− (a · b) c (12.122)

to simplify things further:

(ω × ri) · (ω × ri) = −ri ·
(
(ω · ri)ω − ω2ri

)
= − (ω · ri)

2 + ω2ri
2. (12.123)
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Inserting this expression back into the original expression for T, we have

T =
1
2

∫
dm

(
ω2r2 − (ω · r)2

)
=

1
2
ωa

[∫
dm

(
r2δab − rarb)]ωb

=
1
2
ωa Iab ω

b =
1
2
ωT · Î · ω, (12.124)

where Î is the same moment of inertia matrix encountered earlier in Eq. (12.57).
Note that when this expression is expanded in component form we first need

to choose a coordinate system. For example, the expression above references
unprimed coordinates implying that the components ωa and Iab are written in the
lab frame. If written in terms of components in a body frame, we would instead
write

T =
1
2
ωa′ Ia′b′ ω

b′ . (12.125)

The two sets of components are of course related to each other by the Euler matrix
R̂ from (12.23). Notice also that T is unchanged in value when written in either
form; this is in contrast to angular momentum which, being a vector, will have
its components change when we transition between the lab and body frames. To
emphasize this point, we say that the spin kinetic energy is a scalar under rotations.

Another way to appreciate the scalar aspect of spin kinetic energy is to consider
what happens to it when we switch between two body frames; say, going from one
arbitrary body frame to a special principal axes one that diagonalizes the moment of
inertia matrix. As we know, this corresponds to a transformation of the components
of Î of the form

Î → Â · Î · ÂT, (12.126)

where Âis some rotation matrix (not the Euler matrix R̂ that connects lab and body
frames!). As a result of this, the components of the angular velocity vector undergo
the change

ω → Â· ω. (12.127)

We can then see that these transformations will have changed the spin kinetic
energy, since

T =
1
2
ωT · Î · ω → 1

2
ωT · ÂT · Â· Î · ÂT · Â· ω =

1
2
ωT · Î · ω. (12.128)

This means that choosing a body frame that diagonalizes the moment of inertia
matrix does not change the value of the spin kinetic energy. In particular, if we
were to use an Â that takes us to the principal axis frame, the spin kinetic energy
takes the simpler form
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T =
1
2

I1ω
2
1 +

1
2

I2ω
2
2 +

1
2

I3ω
2
3 =

L2
1

2 I1
+

L2
2

2 I2
+

L2
3

2 I3
, (12.129)

where Ii, ωi, and Li with i = 1, 2, 3 refer to components in the principal axes frame
as introduced earlier in the discussion of angular momentum.

Example 12.8 Kinetic Energy of a Hoop
Let us compute the spin kinetic energy of the hoop we introduced earlier using its center of mass as the tagged
point. The tagged point is at the center and the hoop is positioned as in the left picture of Figure 12.11. This
shall be our body frame, where we expect that the components of the moment of inertia matrix are constant
in time. We know that this is a principal axes system and we have

I1 = I2 =
1
2

M R2, I3 = M R2. (12.130)

To write the spin kinetic energy we now need to be careful: we need to express the components of the angular
velocity vector ω in the same body frame as well. Looking back at Eq. (12.40), we have the angular velocity
components in the body frame in terms of the Euler angles

ω1 = ϕ̇ sin θ sin ψ + θ̇ cos ψ, ω2 = ϕ̇ sin θ cos ψ − θ̇ sin ψ, ω3 = ϕ̇ cos θ + ψ̇. (12.131)

Putting things together in Eq. (12.129), we get

T =
1
4

M R2(θ̇2 + ϕ̇2 sin2 θ) +
1
2

M R2(ψ̇ + ϕ̇ cos θ)2, (12.132)

where we used cos2 + sin2 = 1 to simplify the expression. Notice that if the hoop is only spinning about the
3 axis, then ϕ̇ = θ̇ = 0, and the spin kinetic energy takes the more familiar form

Trot =
1
2

M R2ψ̇2. (12.133)
�

12.10 Potential Energy

Now we need to find the potential energy of a rigid body. We focus upon a uniform
gravitational potential energy, but the procedure is similar for any other potential
energy. In general, we divide the rigid body into bits as before and write the total
potential energy as the sum of the potential energies of the small bits:

U =
∑

i
ΔUi. (12.134)

For uniform gravity we have

U =
∑

i
Δmig hi =

∑
i
Δmig ri · ẑ = M gRcm · ẑ = M g H, (12.135)
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where H is the height of the center of mass. So as far as uniform gravity is
concerned, the rigid body behaves as if all its mass were concentrated at its center
of mass. We say that gravity pulls on the rigid body at its center of mass. This is
partly why splitting the dynamics of a rigid body into the translation dynamics of
the center of mass plus a rotational one about the center of mass can sometimes be
very useful.

A common situation in mechanics involves a force acting at a single point in the
rigid body. For example, imagine the center of a wooden plank resting on a rock,
with a child sitting on each end of the plank. If the plank is the object of interest,
we have three contact forces acting on it. Some contact forces can be viewed as
constraining the dynamics and can be included in a Lagrangian approach using
Lagrange multipliers. For example, the force from the rock that is the pivot is of this
type. However, the effect of the two children sitting on the plank is more usefully
accounted for by the appearance of their potential energies in the Lagrangian.

Example 12.9 A Hoop Hanging on a Spring
Consider the rather disturbingly complicated situation in which a hoop hangs on a spring, whose other end is
a pivot, as in Figure 12.15. The hoop has mass M and radius R, and the spring has spring constant k and zero
unstretched length. The system is hanging in uniform gravity, and we want to begin by finding the Lagrangian.
There are a total of six degrees of freedom: the location of the center of mass of the hoop X , Y , and Z; and the
orientation of the hoop described through the three Euler anglesϕ,θ, andψ. The Lagrangian isL= T−U,
as usual, where we have used the symbolLfor the Lagrangian to avoid confusion with angular momentum L.
We first need the total kinetic energy. Separating the motion of the hoop into the translation of its center of
mass plus a rotation about the center of mass, we have

Ttot =
1
2

M(Ẋ2 + Ẏ 2 + Ż2) +
1
4

M R2(θ̇2 + ϕ̇2 sin2 θ) +
1
2

M R2(ψ̇ + ϕ̇ cos θ)2, (12.136)

Fig. 12.15 A hoop hanging from a spring.
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where we used Eq. (12.132). The interesting part is the potential energy. For the contribution from gravitational
potential energy, we have

Ugrav = M g Z, (12.137)

tracking the location of the center of mass as just described. For the spring force, we realize we have a contact
force with the spring attached to a fixed point on the rim of the hoop. The potential energy contribution is
then

Uspring =
1
2

kb2, (12.138)

where b is the vector pointing from the origin to the point on the rim of the hoop where the spring is anchored.
The vector b, however, depends upon all six degrees of freedom: X , Y , Z,ϕ, θ, andψ. We can write

b = R + b, (12.139)

where R is the position vector of the center of mass and b points from the center of mass to the rim point
where the spring is attached. The prime on the latter vector reminds us that this vector is fixed with respect to
the rigid body. We can then write its constant components in the body frame as

b= (bx′ , by′ , bz′) = (0, R, 0), (12.140)

where we aligned the y′ axis of the body frame with the contact point of the spring. But we need the
components of this vector in the lab frame (bx , by , bz), where we know already that

R = (Rx , Ry , Rz) = (X , Y , Z), (12.141)

so that we can write, from Eq. (12.139):

b = (bx , by , bz) = (X + bx , Y + by , Z + bz). (12.142)

To find (bx , by , bz), we then use once again Eq. (12.28), which gives

b= (bx , by , bz)

= [R(cos θ cos ϕ sin ψ + cos ψ sin ϕ),

R(cos θ cos ϕ cos ψ − sin ϕ sin ψ),

− R (cos ϕ sin θ)]. (12.143)

From all this, we can now construct the spring potential energy (12.138):

Uspring =
1
2

k
(

X2 + Y 2 + Z2 + R2 + 2 R X (cos θ cos ϕ sin ψ + cos ψ sin ϕ)

+ 2 R Y (cos θ cos ϕ cos ψ − sin ϕ sin ψ)− 2 R Z cos ϕ sin θ) . (12.144)

The full Lagrangian is then

L= Ttot − Ugrav − Uspring. (12.145)

We leave it as an exercise for the reader to write out the six equations of motion for the system! �
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Example 12.10 The Angular Momentum of the Hoop Hanging on a Spring
A hoop of mass M and radius R is attached to a spring of force constant k at its rim, as shown in Figure 12.15.
We want to find the total angular momentum of the hoop with respect to the fixed point at which the other
end of the spring is attached. We know that we can split the angular momentum into two pieces:

Ltot = Lcm + L, (12.146)

where Lcm is the orbital angular momentum of the center of mass and L is the spin angular momentum about
the center of mass. Using the same six degrees of freedom from the previous example – X , Y , Z,ϕ, θ, andψ
– we can immediately write

Lcm = R × MṘ, (12.147)

where R = (X , Y , Z). For the spin part we need to do a little more work. We first write

L = (L1, L2, L3) = (I1ω1, I2ω2, I3ω3), (12.148)

where we express the spin angular momentum in the body principal axes frame. Using Eqs. (12.203) and
(12.130), we then get

L = (L1, L2, L3)

=

(
1
2

M R2(ϕ̇ sin θ sin ψ + θ̇ cos ψ),

1
2

M R2(−ϕ̇ sin θ cos ψ + θ̇ sin ψ),

M R2(ϕ̇ cos θ + ψ̇)

)
. (12.149)

In order to add this to Lcm from Eq. (12.147) to obtain Ltot as in Eq. (12.146), we first need to compute the
components of L in the lab frame. We do this using Eq. (12.28):

(Lx , Ly , Lz) = R̂ · (L1, L2, L3). (12.150)

We leave the remaining algebra as an exercise. One interesting aspect of the result, however, can be seen
without much effort. Because of the form of Eq. (12.148), whenever at least one of I1, I2, or I3 is different from
the other two – as in the case for the hoop – thenω is not proportional to L; that is, the angular momentum
vector is not parallel to the angular velocity vector. This implies that even if the angular momentum is
conserved, and therefore fixed in space, the axis of rotation of the rigid body determined by the direction of
ω is not necessarily fixed. We can have complex wobbling even when no torques act upon the rigid body! �

Example 12.11 Rolling, Fixed-Axis Rotation
Suppose that a rigid body is restricted to rotate about a fixed axis which is also a principal axis of the object.
This could be a barrel rolling down an incline or a two-dimensional pendulum, as shown in Figure 12.16. In
these scenarios, the rotational dynamics is significantly simplified. We need to track the evolution of only
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a single Euler angle. We may align the principal axes such that the body z′ axis is along the fixed axis of
rotation, and describe the rotation of the body by the angleψ. The rotational angular velocity is then always
aligned along the fixed axis and has a magnitude ψ̇. The angular momentum is also aligned with the same
axis:

L1 = L2 = 0, L3 = I3ω3 = I3ψ̇. (12.151)

The spin kinetic energy is simply

T =
1
2

I3ω
2
3 =

1
2

I3ψ̇
2 =

L2
3

2 I3
. (12.152)

The only component of the moment of inertia matrix that matters is I3, the inertia along the
fixed axis. Dynamics then changes the angular momentum in magnitude but not in direction. The
torque is

Ntot =
dLtot

dt
, (12.153)

which lies along the same fixed axis, and for the rotational piece we have

dL3

dt
= I3ω̇3 = I3α, (12.154)

where α= ψ̈ is the angular acceleration. The torque still needs to be determined by the forces on the
rigid body.

(b)(a)

Fig. 12.16 Examples of fixed axis rotations: (a) a barrel rolling down an incline, where the
fixed axis is the symmetry axis of the barrel; (b) an irregular pendulum swinging in
a plane, about a fixed axis directed through the pendulum. �



511 12.11 Torque-Free Dynamics Using Euler Angles

12.11 Torque-Free Dynamics Using Euler Angles

We now consider a deceptively simple scenario: torque-free motion. You might
throw a spinning vase of mass M at a friend as a gesture of discontent. Or a space
station might deploy a new satellite in the shape of a flying saucer, spinning about
its axis of symmetry. In neither case is there a net torque on the body due to gravity
or anything else. Decomposing the motion about the center of mass, the motion of
the CM is a simple problem in trajectory physics: in the absence of air resistance
the CM of the vase would follow a classic parabolic path, and the CM of the saucer
would follow an elliptical path about the earth. The interesting dynamics, however,
is the rotational motion about the center of mass. Take the vase for example: let us
assume that it has cylindrical symmetry so that we can write the components of the
moment of inertia matrix about its center of mass and in a principal axes frame in
terms of two variables

I1 = I2 ≡ I, I3. (12.155)

Hence, the x′ and y′ directions are transverse to the axis of symmetry of the vase,
as shown in Figure 12.17.

Fig. 12.17 The principal axes frame for the vase.

We want to find the Lagrangian of the vase, decomposing its motion as a
translation of the center of mass plus a rotation about the center of mass. Denoting
the position of the center of mass by X, Y, and Z, and labeling the vase’s orientation
using the Euler angles, we write the kinetic energy as

T =
1
2

M
(
Ẋ2 + Ẏ2 + Ż2)+ 1

2
I(θ̇2 + ϕ̇2 sin2 θ) +

1
2

I3(ψ̇ + ϕ̇ cos θ)2, (12.156)
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where we obtain the spin kinetic energy employing the same technique used in the
case of the hoop in Eq. (12.132). The potential energy is entirely due to gravity,
which acts in effect at the vase’s center of mass

U = M g Z, (12.157)

where Z is chosen as the vertical direction. We can now see that the Lagrangian
L = T − U separates into two decoupled systems: the center of mass dynamics
describing the evolution of X, Y, and Z and the rotational dynamics described by
the Euler angles. The center of mass dynamics is rather trivial, so we will focus on
the angular degrees of freedom to determine how the vase tumbles as its center of
mass traces a parabolic path.

We have a total of three equations of motion. For ψ, we have

I3
d
dt

(
ψ̇ + ϕ̇ cos θ

)
= 0, (12.158)

which is simply the conservation statement associated with the symmetry of
rotating about the ψ coordinate

pψ =
∂L

∂ψ̇
= I3

(
ψ̇ + ϕ̇ cos θ

)
= constant. (12.159)

Similarly, for ϕ, we get another conservation statement

d
dt

(
Iϕ̇ sin2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
cos θ

)
= 0, (12.160)

which implies

pϕ =
∂L
∂ϕ̇

= Iϕ̇ sin2 θ + pψ cos θ = constant. (12.161)

Again, ϕ is a cyclic coordinate of the system. Finally, for θ we get a more
complicated statement

Iθ̈ = Iϕ̇2 sin θ cos θ − pψϕ̇ sin θ. (12.162)

However, we have an additional conservation law: energy conservation, since the
system has time-translational invariance. The Hamiltonian becomes simply the
kinetic energy:

H =
1
2

Iθ̇2 +
1

2 I3
(pψ)2

+
1
2

I sin2 θϕ̇2 = constant, (12.163)

which means that we have three first-order differential equations for three angular
variables. Therefore, the problem can be reduced to quadrature, expressing all
variables in terms of integrals. First, we use Eq. (12.161) to solve for ϕ̇:

ϕ̇ =
pϕ

I sin2 θ
− pψ

I
cos θ

sin2 θ
. (12.164)
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We then substitute this into Eq. (12.159) and solve for ψ̇:

ψ̇ =
pψ

I3
− pϕ cos θ

I sin2 θ
− I3

I
pψ

cos2 θ

sin2 θ
. (12.165)

Finally, we substitute these into Eq. (12.163) for H:

H =
1
2

Iθ̇2 +
1

2 I3
(pψ)2

+
1
2

I sin2 θ

(
pϕ

I sin2 θ
− pψ

I
cos θ

sin2 θ

)2

, (12.166)

which we can solve for θ̇, then integrate to find θ(t). From this, we work backward
to find ϕ(t) and ψ(t) using Eqs. (12.164) and (12.165). We will come back to this
treatment later. For now, we will proceed to analyze the system using more physical
techniques.

First, note that the spin angular momentum of the vase must be conserved: this
is because gravity acts at its center of mass, and hence there is no torque about
this point. This implies that the spin angular momentum vector L about the center
of mass always points in the same direction and has the same magnitude. For
convenience, let us align our lab coordinate system so that L points along the z
axis, and the orientation of the vase is then described using the Euler angles starting
from this base configuration, as shown in Figure 12.18.

axis of rotation

�

symmetry axis

body
perspective

lab
perspective

Fig. 12.18 The angular momentum and angular velocity vectors of the tumbling vase. z′,ω, and τ lie in a plane.

In body frame coordinates we have

L1 = Iω1, L2 = Iω2, L3 = I3 ω3. (12.167)

Note that the proportionality constants I between L and ω in the x′ and y′ directions
are equal, which implies that these two vectors lie in the same plane as the z′
axis of the body frame. However, L and ω do not point in the same direction:
depending on whether I3 > I or I3 < I, the two vectors change relative position
while lying in the same plane with the z′ axis. Next, note from Eq. (12.159) that
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pψ is simply I3ω3. Therefore, L3 is constant and so is the z′ component of the
angular velocity. But L3 = L cos θ, where L is constant as well, so θ must be a
constant in time. These observations imply that from the body-frame perspective
L and ω can only rotate about the z′ axis while remaining coplanar with it. In
contrast, since L should appear fixed from the perspective of the lab, this implies
that – from the perspective of the lab – the z′ axis of the body and ω can only spin
around L while remaining coplanar. We have thus determined that the torque-free
motion may involve a tumble, with the body’s symmetry axis spinning about its
fixed angular momentum vector (see Figure 12.18).

Let us summarize the analysis. With our choice of aligning L with the lab’s
z axis, we have chosen our coordinate system in the lab judiciously so that θ is
a constant in time, and we have just argued that this is always possible because
of the conservation of angular momentum and the axial symmetry of the rigid
body. If the initial conditions are such that the axis of symmetry of the vase is not
aligned with its initial angular momentum, there ensues a tumbling motion about
the fixed angular momentum vector at a constant inclination angle. We now want
to determine (i) how fast the symmetry axis of the vase spins about L as seen from
the lab perspective and (ii) how fast L spins about the vase’s symmetry axis as seen
from the body frame’s perspective.

If θ is a constant fixed by the initial conditions, Eqs. (12.164) and (12.165)
immediately imply that both ψ̇ and ϕ̇ must be constants. Hence, the tumbling
happens at a constant spin rate. Using Eq. (12.28) and the fact that θ̇ = 0, we
can write the components of the angular velocity vector in the body frame as

ω = (ω1,ω2,ω3) = (ϕ̇ sin θ sinψ, ϕ̇ sin θ cosψ, ϕ̇ cos θ + ψ̇). (12.168)

This implies that ω is spinning about the z′ axis – as seen in the body frame – with
a spin rate ψ̇ (since the x′ and y′ components come with sinψ and − cosψ factors,
respectively). To find ψ̇, we need to look back at Eq. (12.165). Constant θ implies,
from Eq. (12.162), that

I ϕ̇ cos θ = pψ. (12.169)

Using this in Eq. (12.164), we quickly get

pϕ =
pψ

cos θ
, (12.170)

which we can then use in Eq. (12.165) to find that

ψ̇ =

(
1 − I3

I

)
pψ

I3
=

(
1 − I3

I

)
ω3. (12.171)

We have therefore determined the rate at which both L and ω spin about the z′ axis
in the body frame in terms of the spin rate of the rigid body about its symmetry
axis.



515 12.11 Torque-Free Dynamics Using Euler Angles

This effect can be seen for the earth itself. Treating the earth as a rigid oblate
spheroid3 with axial symmetry Î1 = Î2 = I, the symmetry axis of the planet is
slightly tilted away from its spin axis. The torque on the earth due to the moon and
sun are small, so from our perspective on the earth – the body frame’s perspective
– we should see the spin axis tumble or nutate around the symmetry axis at a rate
given by Eq. (12.171). Calculating values for I and I3 using measured radii of the
earth, this gives

ψ̇ � ω3

300
. (12.172)

Now 2π/ωz′ is one day long, so we find a predicted period of tumbling P =
2π/ψ̇ = 300 days. It turns out, however, that the earth is not really rigid: its
shape deforms slightly due to its elasticity. The measured tumbling period is
roughly P = 430 days instead, and is called the “Chandler wobble.” The difference
between the predicted 300 days and this measured value is accounted for by the
malleability of the planet.

It is also interesting to find the spin rate at which the symmetry axis tumbles
around the angular momentum vector as seen from the lab’s perspective. For this,
we need to look at the components of ω in the lab frame, given by Eq. (12.40) with
θ̇ = 0:

ω = (ωx,ωy,ωz) =
(
ψ̇ sin θ sinϕ, ψ̇ sin θ cosϕ, ψ̇ cos θ + ϕ̇

)
, (12.173)

which immediately tells us that this spin rate is given by ϕ̇ (given the sine and
cosine factors in the x and y components). From Eq. (12.169), we have

ϕ̇ =
1
I

pψ

cos θ
. (12.174)

But it is possible to write this in a simpler form. The magnitude of L is given by

L2 = I2
(
ϕ̇2 sin2 θ + θ̇2

)
+ I2

3

(
ψ̇ + ϕ̇ cos θ

)2
, (12.175)

where we evaluate it in the body frame: L2 being the squared length of a vector,
it is a scalar quantity that does not change between the body and lab perspectives.
Using the conservation laws from above, we can then see that

L2 = 2 H I + (pψ)2
(

1 − I
I3

)
, (12.176)

confirming that the magnitude of L is constant. Using the fact that L is aligned
along the z axis, one can show that this simplifies to

L =
I3pψ

cos θ
. (12.177)

3 A shape in which a sphere is somewhat compressed along its axis of rotation.
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We leave this step as an exercise to the reader. We then simply get

ϕ̇ =
L
I

, (12.178)

which is the spin rate at which the symmetry axis of the rigid body tumbles around
the angular momentum vector – as seen from the perspective of the lab.

12.12 Euler’s Equations of Motion and Stability

Now suppose we have a set of principal axes fixed in the body, with no restrictions
on the relative sizes of the principal moments of inertia. The components of angular
momentum of the rigid body for arbitrary rotations are then

L = I1ω1 + I2ω2 + I3ω3. (12.179)

Now we can take the time derivative of L, which will be different in the rotating
“body frame,” the frame in which the rigid body is instantaneously at rest, than in
the inertial “lab frame” or “space frame,” in which the rigid body is instantaneously
rotating with angular velocity ω. In Chapter 9 we showed how to translate the time
derivative of any vector A between these two reference frames. The result was(

dA
dt

)
lab

=

(
dA
dt

)
body

+ ω ×A, (12.180)

so translating the angular momentum L of the rigid body, and using the fact that
the time rate of change dL/dt is equal to the net torque Ntot acting on the body,
then

Ntot =

(
dL
dt

)
lab

=

(
dL
dt

)
body

+ ω × L. (12.181)

Now along the first principal axis, (dL1/dt)body = I1ω̇1 and

(ω × L)1 = (ω2L3 − ω3L2) = (ω2I3ω3 − ω3I2ω2) = (I3 − I2)ω2ω3, (12.182)

with similar results along the other two axes, so altogether

N1 = I1ω̇1 + (I3 − I2)ω2ω3,
N2 = I2ω̇2 + (I1 − I3)ω3ω1,
N3 = I3ω̇3 + (I2 − I1)ω1ω2, (12.183)

which are Euler’s equations for rigid-body motion.
An interesting application of the Euler equations is to investigate the stability

of rotation about the principal axes in the case where no external torque is being
applied. It is easy to see from the equations that in this case, if ω1 �= 0,ω2 = ω3 =
0, then ω1 remains constant and nonzero, and ω2 and ω3 remain zero. Nothing
changes. But this could never be done perfectly; inevitably if we try to spin the
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rigid body only about the first principal axis, it will have some small components
of rotation about the other principal axes as well. The question is: Is such a realistic
spin stable? That is, do the other components of rotation remain small, in which
case the rotation is stable, or do they grow, so that the rotation about the first
principal axis is unstable?

Let us suppose no net torque acts, that all three principal moments of inertia
I1, I2, I3 are different, and that ω1 is large and ω2 and ω3 are both small. Then the
product ω2ω3 in the first Euler equation is very small, so we can safely neglect
it. In that case I1ω̇1 � 0, so ω1 � constant. This simplifies the remaining Euler
equations, converting them to

I2ω̇2 + [(I1 − I3)ω1]ω3 � 0,
I3ω̇3 + [(I2 − I1)ω1]ω2 � 0, (12.184)

which are coupled linear equations. An easy way to decouple them is to differenti-
ate the first of these equations and substitute in the second, and to differentiate the
second and substitute in the first. After rearranging, the results are

ω̈2 +Ω2ω2 = 0 and ω̈3 +Ω2ω3 = 0, (12.185)

where

Ω2 ≡ [(I1 − I2)(I1 − I3)]ω
2
1

I2I3
. (12.186)

Now notice that Ω2 can be positive or negative, depending upon the relative sizes
of the principal moments of inertia. We have assumed (without loss of generality)
that the rigid body is rotating primarily about ω1, with small amounts of ω2 and
ω3. So if I1 is the largest moment of inertia or the smallest moment of inertia, then
either both (I1− I2) and (I1− I3) are positive or both are negative, so Ω2 is positive
and both the ω2 and ω3 equations are simple harmonic oscillator equations, with
solutions of the form sinΩt or cosΩt. This means that the axis of rotation moves
around the surface of a cone whose symmetry axis is the first principal axis, and
the half-angle of the cone is the small angle

α = arctan

(
(ω2)max

ω1

)
= arctan

(
(ω3)max

ω1

)
. (12.187)

This means the motion of the rigid body is stable, in that the angle α remains small,
and the spin axis of the rigid body stays always close to what we have called the
first principal axis. There is of course a third possibility, that I1 is the intermediate
moment of inertia, corresponding to either I2 > I1 > I3 or I3 > I1 > I2. In that
case Ω2 < 0, so that the solutions of the equations of motion are real exponentials.
In this case the angular velocities ω2 and ω3 will necessarily grow with time, and
so rotation about ω1 will be unstable. This can easily be seen by tossing an object
like a book or tennis racquet having three different principal moments of inertia. If
the book or racquet is spun about an axis which has the largest or smallest moment
of inertia, the motion will be quite stable. It keeps spinning about this axis or close
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to it. But if the book or racquet is thrown with a spin about its intermediate moment
of inertia axis the body axes depart quickly away from this initial axis, so that its
motion is unstable, and the object appears to tumble.

Example 12.12 A Graphical Picture of Torque-Free Motion
Let us revisit the torque-free rigid-body problem with I1 �= I2 �= I3 using a very interesting graphical
approach. Once again, the angular momentum and kinetic energy are conserved. The squared magnitude of
L can be written in body-frame components as

L2 = L2
1 + L2

2 + L2
3, (12.188)

using the usual principal axes decomposition. The kinetic energy can be written as

T =
L2

1

2 I1
+

L2
2

2 I2
+

L2
3

2 I3
. (12.189)

Both of these quantities must be constants in time. If we were to visualize the problem in angular momentum
space as in Figure 12.19, a constant L2 describes a sphere of radius L where the axes are L1, L2, and L3. The kinetic
energy, in contrast, describes an ellipsoid with radii 2 T I1, 2 T I2, and 2 T I3. Without loss of generality, we can
arrange that

I1 ≥ I2 ≥ I3, (12.190)

which implies that √
2 T I3 ≤ L ≤

√
2 T I1. (12.191)

L LL

(b)(a) (c)

Fig. 12.19 The surfaces of constant angular momentum and kinetic energy for a rigid body.
For torque-free dynamics, the angular momentum traces the intersection of the two
surfaces as seen from the body frame. We see that starting out a spin along the body
y′ axis (see the dot in (b)) is unstable; whereas the tumbling about the x′ and y′ is
stable in that the angular momentum circles the x′ and y′ axes, respectively.
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To see this, eliminate L1 or L3 between Eq. (12.188) and Eq. (12.189), and then use Eq. (12.190). Therefore the
minimum radius of the kinetic energy ellipsoid is always smaller than the radius of the angular momentum
sphere, while its maximum radius is always greater. This means that the two surfaces necessarily intersect.
The intersection is a curve (or a point in special cases) describing the allowed values for the components of
L. Therefore in general the angular momentum vector tumbles around as seen from the body perspective –
tracing interesting closed curves in this angular momentum space (see Figure 12.19). We can say even more
from this qualitative picture. Looking at the intersection curves between the two surfaces near each of the
three axes x′, y′, and z′, we see that starting with a configuration where the angular momentum is aligned
near the y′ axis leads to an unstable tumble! The tip of the angular momentum vector traces a large curve away
from the y′ axis, whereas for the x′ and z′ axes we get intersection curves encircling the corresponding axis –
describing a precession of the angular momentum vector. That is, the axis with moment of inertia inbetween
the smallest and largest – axis y′ – is unstable for tumbling under torque-free dynamics. You can test this
easily by throwing a book in the air – preferably not this one – starting a spin about each of three possible
symmetry axes of the book. The axis perpendicular to the book’s face is x′ – the one with largest angular
momentum – since the mass of the book is spread away from this axis most; the short side is perpendicular to
z′ – the one with the smallest angular momentum; and the long side is perpendicular to the unstable axis y′ .
This qualitative analysis confirms that the tumbling we explored quantitatively for a cylindrically symmetric
object is rather general: whenever the initial angular momentum vector is not aligned with the symmetry
axes, we should expect a tumbling motion. �

12.13 Gyroscopes

We are now ready to take on the full problem of a rigid body under the influence
of nonzero torques. This more complicated scenario lends itself to the powerful
technology of Lagrangian mechanics. The setup is as shown in Figure 12.20:

A cylindrically symmetric top is pivoted at one endpoint while spinning about
its axis of symmetry. Uniform gravity pulls on it as though it were all located at its
center of mass, and so causes a nonzero torque about the pivot point. We now have
a gyroscope.

The problem is surprisingly similar to the torque-free system we discussed
before. The difference is simply that we have translated the pivot from the center of
mass to the endpoint, so that the full motion is naturally described about the fixed
pivot. By the parallel axis theorem, I3 remains unchanged while I shifts:

I = I0 + M l2, (12.192)

where I0 is the moment of inertia about the direction transverse to the symmetry
axis about the center of mass, and l is the distance from the pivot to the center of
mass. The orientation of the body is described by the same Euler angles, and the
kinetic energy about the new pivot is simply given by Eq. (12.156):
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Fig. 12.20 A pivoted gyroscope under the influence of gravity.

T =
1
2

I(θ̇2 + ϕ̇2 sin2 θ) +
1
2

I3(ψ̇ + ϕ̇ cos θ)2, (12.193)

without the translational piece – which we also dropped in the previous discussion,
since the center of mass dynamics decoupled from the rotational motion. The
contact force at the pivot does no work and so, as usual, is left out of the Lagrangian.
It is accounted for implicitly by the fact that the pivot is fixed in the lab frame. The
total potential energy is once again entirely gravitational:

U = M g Z, (12.194)

where Z is the height of the center of mass of the gyroscope. As a function of the
orientation angle:

Z = −l cos θ, (12.195)

as can be seen from the figure. So as far as rotational dynamics is concerned, the
only change between the Lagrangian considered in the torque-free example earlier
and the current situation is the addition of the term +M g l cos θ to the Lagrangian.
Therefore the only equation of motion that changes is the θ equation, and we still
have the three conservation laws: one from each of Eq. (12.159) and Eq. (12.161):

pψ = I3

(
ψ̇ + ϕ̇ cos θ

)
, pϕ = Iϕ̇ sin2 θ + pψ cos θ, (12.196)

and a third from energy conservation, now including the contribution from
M g l cos θ:

H =
1
2

Iθ̇2 +
1

2 I3
(pψ)2

+
1
2

I sin2 θϕ̇2 + M g l cos θ. (12.197)
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We can now proceed using the same strategy, writing a decoupled differential
equation in θ by eliminating ψ̇ and ϕ̇ from the energy equation:

1
2
θ̇2 +

M g l
I

cos θ +

(
pϕ − pψ cos θ

)2

2 I2 sin2 θ
− 2 H I3 − (pψ)2

2 I I3
= 0. (12.198)

The g → 0 limit takes us back to the torque-free case given by Eq. (12.166). One
must then solve this differential equation for θ(t), from which one can determine
ψ(t) and ϕ(t) using the conservation equations (12.196).

To proceed, it is useful to change variables to

u = cos θ, (12.199)

so the differential equation for θ(t) then becomes

1
2

u̇2+
1
2

(
pϕ − u pψ

)2

I2 +
1
2

(
2 H I3 − (pψ)2

I I3
− 2 M g l

I
u

)(
u2 − 1

)
=0. (12.200)

If we turn off gravity, with g → 0, one can show that u̇ = 0 is a possible solution:
i.e., θ is constant, as already determined in the torque-free case, and we can also
align L with the lab z axis. Therefore, the new interesting physics coming from
the nonzero torque has to do with making the angle θ, the angle between the
angular momentum and the axis of symmetry, change with time. This phenomenon
is known as a nutation of the symmetry axis. As the gyroscope precesses around
the pivot point, its center of mass can also rise or fall.

The full solution to Eq. (12.200) can be written in terms of elliptic integrals.
However, it is more instructive to provide a qualitative analysis using energy
considerations. We can think of the fictitious problem of a particle of unit mass
moving in one dimension and whose position is denoted by −1 ≤ u ≤ 1, while Eq.
(12.200) provides an effective potential

Ueff(u)=
1
2

(
pϕ − u pψ

)2

I2 +
1
2

(
2 H I3 − (pψ)2

I I3
− 2 M g l

I
u

)(
u2 − 1

)
, (12.201)

where the total “energy’ is zero, as implied by the right-hand side of Eq. (12.200).
Therefore, the physics is hidden within the shape of this effective potential, in
its maxima and minima. Figure 12.21 shows a generic profile of this effective
potential. We have a polynomial cubic in u, and when u → ±∞ we find that

Ueff(u) → −M g l
I

u3, (12.202)

from which we deduce that Ueff(u) slopes downward for large positive u, and
slopes upward for large negative u, so gives the shape depicted in the figure.
Since the total energy is zero, the zeroes of the potential are turning points. The
polynomial can have one, two, or three zeroes. The physical region is given by
−1 ≤ u ≤ 1 along the u axis, since the total “energy” is zero. Different scenarios
are explored by adjusting the sizes of the various constant coefficients of the
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polynomial pϕ, pψ, H, I, I3, M, and l. But only four parameters matter, since we
can write the effective potential as Ueff(u) = d((a − u)2 + (b − c u)(u2 − 1)) for
constants a, b, c, and d.

3 2 1 1 2 3

50

100

150

200

250

- - -

nutation

Fig. 12.21 The effective potential of the gyroscope’s declination angle θ in terms of the variable u = cos θ. In the
case shown, two zeroes of the potential lie in the physical region−1 ≤ u ≤ 1 and correspond to
turning points: the gyroscope’s z′ axis nutates between two values of θ determined by these zeroes.
Meanwhile,ϕ andψ describe the gyroscope’s spin around the lab’s z axis and the gyroscope’s z′ axis,
respectively.

Figure 12.22 shows different possible nutation patterns hat can result depending
on the values of a, b, c, and d.

Interesting special cases can be investigated in more detail. One is the u =
constant scenario for all t. Another is to start off with u̇ = 0 at t = 0, i.e., the
gyroscope is released from rest. Yet another is for stable solutions near u = 1, when
θ � 0. We leave these various special cases to the Problems section at the end of
this chapter. The main message is always the same: the gyroscope precesses about
the vertical, instead of falling down; it hovers and nutates under the influence of the
gravitational torque. Another way to view this behavior is to say that the gyroscope
“wants” to always point in the same direction θ = 0; and when perturbed by (say)
nudging the pivot, it will oscillate about this direction instead of losing its balance.
Hence, gyroscopes can be used in navigation, to help encode in memory a direction
in space of particular interest, a reference ray.

12.14 Summary

In this chapter we took on the difficult problems of tumbling rigid bodies and
gyroscopes. We found that the potentially complex dynamics can readily be
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released from rest released with 
forward speed

released with
backward speed

Fig. 12.22 The nutation pattern of a gyroscope traced out by the gyroscope’s z′ axis. The spinning about the vertical
axis is the familiar tumble, or precession. But now we also have a superimposed nutation as gravity tries
to pull the z′ axis downward.

understood using the powerful tools of Lagrangian mechanics, conservation laws,
and Euler angles. The key is to focus on identifying the degrees of freedom, then
divide the motion into translation and rotational parts, using a judicious choice
for a tagged point. From that point on, the problem becomes algorithmic: write the
Lagrangian using Euler angles, determine the equations of motion and conservation
laws, and hope that the system is integrable. If not, one falls back on diagrammatic,
approximation, and/or numerical techniques, as usual. We showed that rigid bodies
generically have an axis about which they can tumble in a stable pattern that
typically involves both a precession and a nutation. And we also described the
motions of gyroscopes, which can be used to help orient objects on earth and in
space. They are used in submarines, surface vehicles, aircraft, and in space for
purposes of orientation and stability. The Hubble Space Telescope, for example,
has six onboard gyroscopes, of which three must be operating at any given time
to provide the stability required to take time images of distant objects anywhere in
the sky. If the telescope turns slightly, one or more of the gyroscopes can detect the
turn and signal other devices to bring the telescope back into line.

Problems

Problem 12.1 Three objects, starting from rest at the same altitude, roll without�
slipping down an inclined plane. One is a ring of mass M and radius R; another is
a uniform-density disk of mass 2M and radius R, and the last is a uniform-density
sphere of mass M and radius 2R. In what order do they reach the bottom of the
inclined plane?

Problem 12.2 A cylindrical pole is inserted into a frozen lake so the pole stands�
vertically. One end of a rope is attached to a point on the surface of the pole
near where it enters the ice, and the rope is then laid out in a straight line on the
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surface. An ice skater with initial velocity v0 approaches the opposite end of the
rope, moving perpendicular to the rope. As she reaches the rope she grabs it and
holds on, so the rope winds up around the pole. (a) When the rope is half wound
up, what is her speed, assuming there is no friction between the rope or herself and
the ice? (b) Has there been any change in her kinetic energy? If so, identify what
positive or negative work has been done on her, and by what source. (c) Has there
been any change in her angular momentum? If so, identify the source of the torque
done upon her.

Problem 12.3 Humanity collectively uses energy at the average rate of about 18�
terawatts. (a) At that rate, after 1 year how long would the length of the day
have increased if during that year we were able to power our activities purely by
harnessing the rotational kinetic energy of the earth? (The earth has moment of
inertia I = 0.33MR2 about the north–south polar axis.) (b) The moment of inertia
of a sphere is often given as I = (2/5)MR2. What is the primary reason why this is
incorrect for the earth?

Problem 12.4 In a supernova explosion, the core of a heavy star collapses and the�
outer layers are blown away. Before collapse, suppose the core of a given star has
twice the mass of the sun and the same radius as the sun, and rotates with period
20 days. The core collapses in a few seconds to become a neutron star of radius
20 km. (a) Estimate its new period of rotation. (b) Estimate the ratio of the final
rotational kinetic energy to the initial rotational kinetic energy of the core. What
could account for the change?

Problem 12.5 In some theoretical models of pulsars, which are rotating neutron stars,�
the braking torque slowing the pulsar’s spin rate is proportional to the nth power of
the pulsar’s angular velocity Ω; that is, Ω̇ = −KΩn, where K is a constant. (a) Find
a formula for the time rate of change of the pulsar period Ṗ in terms of P itself and
the constants n and K. (b) For the Vela and Crab pulsars, at least, the product PṖ =
constant. What is their braking index n?

Problem 12.6 Tidal effects of the moon on the earth have caused the earth’s rotation��
rate to slow, thus reducing the spin angular momentum of the earth, leading to an
increase in earth’s day by 0.1 s in the past 3800 years. This reduction has been
made up for by an increase in the orbital angular momentum of the moon around
the earth. Therefore how much farther is the moon now from the earth than it was
3800 years ago? (Note that the moment of inertia of the earth about its axis is
I = 0.33MR2 and that the mean earth–moon distance is 3.8 × 105 km.)

Problem 12.7 Compute the moment of inertia matrix of a solid circular cylinder of�
height H and base radius R, and of uniform mass density ρ = ρ0. In this expression,
the cylinder is arranged so that its symmetry axis is along the z axis and its top
cap sits on the x, y plane; i.e., the cylinder extends from z = −H to z = 0.
Compute all entries of the moment of inertia matrix with respect to the origin in
this configuration.
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Problem 12.8 A rod of length � and mass m is attached to a pivot on one end. The rim��
of a disk of radius R and mass M is attached to its other end in such a way that the
disk can pivot in the same plane in which the rod is restricted to swing. Find the
Lagrangian and equations of motion.

Problem 12.9 (a) Using Euler angles, write the constraint of rolling without slipping��
for a sphere of radius R moving on a flat surface. (b) Write the Lagrangian and
equations of motion using Lagrange multipliers. (c) Show that the rotational and
translational kinetic energies are independently conserved.

Problem 12.10 (a) Find the moment of inertia Izz of a thin disk of mass m and radius R�
about an axis through its center and perpendicular to the plane of the disk. (b) What
are Ixx and Iyy in this case? (c) A solid cylinder of mass M, radius R, and length L
can be considered to be a stack of disks. Use the parallel axis theorem to help find
the principal moments of inertia of the cylinder whose origin is at the center of the
cylinder.

Problem 12.11 A private plane has a single propeller in front, which rotates in the�
clockwise sense as seen by the pilot. Flying horizontally, the pilot causes the tail
rudder to extend out to the left from the plane’s flight direction. (a) If the plane
is ultralight and the propeller is large, heavy, and rotates fast, what is the primary
response of the plane? (b) If instead the plane is heavy and the propeller is small,
light, and rotates slowly, what then is the plane’s primary response?

Problem 12.12 A uniform-density cone has mass M, base radius R, and height H. Find��
its inertia matrix if the origin is at the center of the circular base in the x, y plane,
the axis of symmetry is along the z axis, and the apex of the cone is at positive z.

Problem 12.13 The Crab Nebula is a bright, reddish nebula consisting of the debris�
from a supernova explosion observed on earth in 1054 AD. The estimated total
power it emits, mostly in X-rays, UV, and visible light, is of order 1031 W. The
nebula harbors a pulsar in its center, which emits a pulsed light signal. Pulsars are
rotating neutron stars, having a mass comparable to that of the sun (2.0 × 1030

kg) but a radius of only about 10 km. The period between successive pulses (the
rotational period of the star) is P = 0.033091 s, which slowly increases with time,
dP/dt = 4.42×10−13 s/s. Is it possible that the decreasing rotational energy of the
star is the ultimate source of the energy observed in radiation?

Problem 12.14 A cylindrical space station is a hollow cylinder of mass M, radius R,��
and length D, and endcaps of negligible mass. It spins about its symmetry axis
(z axis) with angular velocity ω0. (a) Find its inertia matrix about its center. A
meteor of mass m and velocity v0, moving in the x direction, strikes the station
very near one of the endcaps, and bounces directly back with velocity −v0/2.
After the collision, find the station’s (b) CM velocity, (c) angular momentum, both
magnitude and direction. (d) Show that subsequently the symmetry axis of the
station rotates about the angular momentum vector, so the station wobbles as seen
by an outside inertial observer. Find the period of this rotation.
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Problem 12.15 (a) Find all elements of the principal moment of inertia matrix for a��
thin uniform rod of mass Δm and length D if the rod is oriented along the x axis
and the origin of coordinates is at the center of the rod. (b) Use the parallel axis
theorem, the perpendicular-axis theorem for thin lamina, and the result of part (a)
to find the principal moment of inertia matrix for a thin square of side D and total
mass ΔM that is perpendicular to the z axis, with the origin of coordinates at the
center of the square. (c) Find the principal moment of inertia matrix for a cube of
edge length D and mass M. (d) Find the moment of inertia for the cube about an
axis parallel to one of the axes in part (c) and which is oriented along the middle
of one face of the cube. (e) Find the moment of inertia for the cube about an axis
parallel to one of the axes in part (c) and which is oriented along the length of one
corner of the cube.

Problem 12.16 (a) Find the principal moments of inertia for a thin disk of mass Δm��
and radius R, if its mass density is uniform, the origin of coordinates is at the
center of the disk, the x and y axes are in the plane of the disk, and the z axis is
perpendicular to the disk. (b) Use this result to help find the principal moments
of inertia of a uniform-density sphere of mass M and radius R0, with origin at the
center of the sphere. (c) The moment of inertia for rotation about the symmetry
axis of a ring of mass Δm and radius r is I = Δmr2. Use this fact to help find the
moment of inertia about a symmetry axis for a thin spherical shell of mass ΔM and
radius R, with origin at the center of the shell. (d) Use the result of part (c) to find
the principal moments of inertia of a solid, uniform-density sphere of mass M and
radius R0. Compare with the result of part (b).

Problem 12.17 Prove that none of the principal moments of inertia of a rigid body can�
be larger than the sum of the other two.

Problem 12.18 (a) Find all elements of the moment of inertia matrix for a cube of�
mass M and edge length � using its principal axes. (b) Then find all elements of the
moment of inertia matrix for the cube if the axes have been turned by 45◦ about
the original z axis.

Problem 12.19 If the entire human race were to leave their current habitats, estimate�
how much the length of the day would be changed if (a) they gathered at the equator,
(b) they gathered at the poles.

Problem 12.20 Consider a square plane lamina with coordinate axes x, y in the plane�
with origin at the center of the square and which are perpendicular to edges of the
square. If the moment of inertia about each of these two axes is I0, what are the
moments of inertia about axes x′ and y′ in the plane turned about the z axis by a
30◦ angle relative to the original two axes?

Problem 12.21 In the text we found the total angular velocity vector in the body frame��
of a rigid body in terms of the Euler angles and their time derivatives:
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ω = (ωx′ ,ωy′ ,ωz′)

= (ϕ̇ sin θ sinψ + θ̇ cosψ, ϕ̇ sin θ cosψ − θ̇ sinψ, ϕ̇ cos θ + ψ̇).

Show then that in the laboratory frame:

ω = (ωx,ωy,ωz)

= (ψ̇ sin θ sinϕ+ θ̇ cosϕ,−ψ̇ sin θ cosϕ+ θ̇ sinϕ, ψ̇ cos θ + ϕ̇).

Problem 12.22 An equilateral triangle of mass M and sidelength L is cut from uniform-���
density sheet metal. (a) Draw the triangle along with the three perpendicular
bisectors, each of which extends from the middle of a side to the opposite vertex.
Show that each bisector has length

√
3L/2. (b) Explain why the center of mass of

the triangle must be located at the point where the three perpendicular bisectors
intersect. Let this point be the origin. (c) Let the z axis be perpendicular to the
triangle, the y axis be along one of the perpendicular bisectors, and the x axis be
perpendicular to both. Find the moment of inertia matrix for the triangle in these
coordinates.

Problem 12.23 Suppose for a given set of axes the moment of inertia matrix is�� (
m�2

24

)⎛⎝ 1 −1 0
−1 1 0
0 0 2

⎞⎠ . (12.203)

(a) Find the principal moments of inertia. (b) About what axis, and by what angle,
should the original coordinate axes be turned to arrive at the principal axes?

Problem 12.24 Using the rotation matrices appropriate for each of the three Euler��
angles, find the overall 3 × 3 rotation matrix for arbitrary rotations in terms of the
angles ϕ, θ, and ψ, applied in the prescribed order.

Problem 12.25 A rigid body has principal moments of inertia Ixx = I0, Iyy = Izz =���
2I0/3. (a) Find all elements of the moment of inertia matrix in a reference frame
that has been rotated by 30◦ about the z axis in the counterclockwise sense relative
to the initial axes. (b) In this new (primed) frame the moment of inertia matrix has
the form ⎛⎝ I′xx I′xy I′xz

I′yx I′yy I′yz
I′zx I′zy I′zz

⎞⎠ ,

where the nine entries were found in part (a). Now pretending that you do not
already know the answer, diagonalize this matrix to find the principal moments of
inertia (that is, subtract I from each of the diagonal elements in the matrix, and
then set the determinant of the resulting matrix equal to zero). This will give a
cubic equation in I, which when solved will give the three principal moments of
inertia.
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Problem 12.26 Show that any antisymmetric part of the moment of inertia matrix of�
a rigid body does not contribute to the body’s equations of motion. Therefore we
may safely assume that the moment of inertia matrix is symmetric.

Problem 12.27 (a) Write the Lagrangian for the Euler problem of a rigid body�
undergoing torque-free precession. (b) Write the equations of motion and show
that they agree with those in the text.

Problem 12.28 Write the six equations of motion for the Lagrangian of a hoop��
attached to a spring from the example in the text.

Problem 12.29 Show that the magnitude of the angular momentum vector for the��
torque-free rigid-body dynamics case is given by L = I3′pψ/ cos θ.

Problem 12.30 Show that u̇ = 0 if g = 0 from Eq. (12.200).�

Problem 12.31 Show that if�

I1 ≥ I2 ≥ I3

for a torque-free rigid body, then we have√
2 T I3 ≤ L ≤

√
2 T I1

Problem 12.32 Show that u→ 1 is a stable point for the gyroscope, and find the�
corresponding nutation. Show that there is a critical angular momentum pψ =
2
√

M gl I.

Problem 12.33 If we start a gyroscope at an angle u(0) = u0 with u̇(0) = 0 and��
nonzero ψ̇ but ϕ = 0, (a) show that the gyroscope nutates and find the maximum
angle u1 it reaches before bouncing back up. (b) Consider the can of a fast spin,
where p2

ψ � 2 M gl I; find approximate forms for the two nutation angles and
nutation frequency.

Problem 12.34 A rigid body has an axis of symmetry, which we designate as axis 1.��
The principal moment of inertia about this axis is I1, while the principal moments
of inertia about the remaining two principal axes are I2 = I3 ≡ I0 �= I1. (a) Write
the Euler equations of rotational dynamics in terms of I1, I0, and the three angular
velocities ω1,ω2,ω3. (b) Show that ω1 is constant. (c) Find a second-order linear
differential equation for ω2 and another for ω3. (d) Does either the magnitude or
direction of this precession depend upon whether the rigid body is prolate (like an
American football or rifle bullet) or oblate (like a saucer or frisbee)? (e) Prove that
the symmetry axis of the rigid body is coplanar with the angular velocity vector ω
and with the angular momentum vector L.

Problem 12.35 Using Euler’s equations, show that a rigid body rotating without��
applied torque has a total angular momentum whose magnitude is constant.

Problem 12.36 Find the product of two rotation matrices corresponding to successive��
rotations about (i) the x axis by angle α and (ii) the z axis by angle β, with (a) the
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x axis-rotation first, (b) the z axis-rotation first. (c) Then subtract the two results,
to illustrate the fact that rotations do not generally commute. (d) By expanding
sines and cosines for small angles up through terms of second order, illustrate the
fact that infinitesimal rotations do commute if second-order effects are counted as
negligible.

Problem 12.37 In 2004 a satellite was launched into a circular polar orbit, 642 km��
above the earth’s surface, containing an experiment called “Gravity Probe B.” The
satellite remained in orbit for 16 months, flying successively over the north pole,
the south pole, back over the north pole, etc. Four gyroscopes were on board,
consisting of nearly perfectly spherical, uniform-density, fused-quartz balls 1.9
cm in radius. All were made to spin at about 4200 rpm. Strenuous efforts were
made to reduce any torques on the gyroscopes to near zero, so any precession
or other drifts caused by them could be minimized. Then if Newton’s theory of
gravity were correct, the spin direction of the gyros would always point toward
the same place in the sky, some particular distant star, for example. According to
general relativity, however, there should be two very small drifts in the gyro spin
directions. First, there is the “geodetic effect” in which the spin direction should
drift slightly forward in the orbit (i.e., in the north–south direction), still in the
plane of the orbit. Second, there is the “frame dragging” effect, in which the spin
direction of the gyro should slowly drift in a direction perpendicular to the plane
of the orbit (i.e., in the east–west direction). It is only in polar orbit where the
predicted geodetic and frame-dragging effects are perpendicular to one another,
allowing both to be measured. The predictions from general relativity were that the
geodetic effect should lead to a drift of 6.6061 arcseconds/year, while the frame-
dragging effect should be 0.0392 arcseconds/year. The data showed a drift in the
plane of the orbit of 6.60 ± 0.0183 arcseconds/year and a perpendicular drift of
0.0372 ± 0.0072 arcseconds/year, in good agreement with the predictions. (a) The
density of fused quartz is 2.2 g/cm3. What were the principal moments of inertia of
each gyro? (b) When spun at 4200 rpm, what was the angular momentum of each
gyro? (c) What was its kinetic energy? (This was sufficient to destroy the entire
experiment if the gyro had touched its housing.) (d) Suppose a tiny torque acted on
one of the gyros, causing it to precess. Estimate the maximum torque allowable to
keep the precession within the quoted errors in drift rates given above.



13 Coupled Oscillators

In the preceding chapter on rigid-body motion we took a step beyond single-
particle mechanics to explore the behavior of a more complex system containing
many particles bonded rigidly together. Now we will explore additional sets of
many-particle systems in which the individual particles are connected by linear,
Hooke’s-law springs. These have some interest in themselves, but more generally
they serve as a model for a large number of coupled systems that oscillate
harmonically when disturbed from their natural state of equilibrium, such as
elastic solids, electric circuits, and multi-atom molecules. We will begin with the
oscillations of a few coupled masses and end with the behavior of a continuum of
masses described by a linear mass density. The mathematical techniques required
to analyze such coupled oscillators are used throughout physics, including linear
algebra and matrices, normal modes, eigenvalues and eigenvectors, and Fourier
series and Fourier transforms.

13.1 Linear Systems of Masses and Springs

Suppose we set two blocks, each of mass m, upon a frictionless horizontal surface.
Each block is attached to a stationary wall by a spring of force constant k, and the
two springs are attached together by a spring of force constant k′, all in a straight
line, as shown in Figure 13.1.

When the blocks are at rest the springs are unstretched. Let the displacements
of block 1 and block 2 from their equilibrium positions be denoted by x1 and x2,
respectively, each positive to the right. Our goal is to find the differential equations
of motion of each block, and then solve them to find x1(t) and x2(t). The Lagrangian
of the system is

L = T(ẋ1, ẋ2)− U(x1, x2)

=
1
2

m(ẋ2
1 + ẋ2

2)−
1
2

kx2
1 −

1
2

k′(x2 − x1)
2 − 1

2
kx2

2, (13.1)

taking into account the potential energy stored in each of the three springs (note
that the stretch in the middle spring is x2 − x1). Lagrange’s equations give

mẍ1 = −kx1 + k′(x2 − x1),
mẍ2 = −kx2 − k′(x2 − x1), (13.2)

530
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Fig. 13.1 A system of two blocks connected with springs and two walls.

which we could also have written down using F = ma for each block.
We want to solve these coupled equations to find x1(t) and x2(t), given the initial

conditions. The problem is that each equation involves both x1 and x2, so we have
to begin by decoupling them. Looking closely at the two equations, we note that if
we sum them we eliminate the terms with the difference x2 − x1, giving

m(ẍ1 + ẍ2) = −k(x1 + x2) (13.3)

in terms of the single variable x1 +x2. If instead we subtract the first equation from
the second, every resulting term contains only the difference x2 − x1:

m(ẍ2 − ẍ1) = −k(x2 − x1)− 2k′(x2 − x1)

= −(k + 2k′)(x2 − x1). (13.4)

That is, in terms of the new composite coordinates ξ1 ≡ x2 + x1 and ξ2 ≡ x2 − x1,
the equations become

mξ̈1 + kξ1 = 0 and mξ̈2 + (k + 2k′)ξ2 = 0, (13.5)

which are two decoupled simple harmonic oscillator equations. We then have
sinusoidal solutions with two angular frequencies ω1 and ω2. A mathematically
convenient way to write the solution is to extend ξ1 and ξ2 to the complex plane,
so that

ξ1 = c1eiω1t, ξ2 = c2eiω2t, (13.6)

where c1 and c2 are arbitrary complex constants. This is possible since Eq. (13.5)
are real and linear. Hence, we can take ξ1 = ξR

1 + i ξI
1 and ξ2 = ξR

2 + i ξI
2 as

complex functions – implying that their real and imaginary parts {ξR
1 , ξR

2 } and
{ξI

1, ξI
2} independently satisfy Eq. (13.5). Thus, we can write the solutions of (13.5)

through the complex functions given by (13.6) as long as we remember that the
physical solutions consist of the real parts only:

ξ1 = �
(
c1eiω1t) , ξ2 = �

(
c2eiω2t) , (13.7)

where the symbol � means that we take the real part of what follows. Given that c1
and c2 are complex, we achieve the requisite four arbitrary constants for solutions
of two second-order differential equations. Writing c1 ≡ A1 − i B1 and c2 ≡ A2 −
i B2 (using minus signs for later convenience), and recalling Euler’s identity eiθ =
cos θ + i sin θ, the physical solutions take the form
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ξ1 = �(ξ1) = A1 cosω1t + B1 sinω1t (13.8)

and

ξ2 = �(ξ2) = A2 cosω2t + B2 sinω2t, (13.9)

with four arbitrary (real) constants, which can be determined by the initial positions
and velocities. As is obvious, these are much more cumbersome to write than the
compact forms given by (13.6). We will henceforth work with solutions in the
complex plane and remember that, at the end of any algebraic manipulations we
can get to the physical solution by simply taking the real parts of ξ1 and ξ2.

Substituting (13.6) into the differential equations of motion (13.5), we find that

(k − mω2
1)c1 = 0 and ((k + 2k′)− mω2

2)c2 = 0, (13.10)

implying

ω1 =

√
k
m

, ω2 =

√
k + 2k′

m
(13.11)

if c1 �= 0 and c2 �= 0 in general.
Now consider two special cases.

1. Suppose that c2 = 0, so ξ2 = x2 − x1 = 0. In that case x1 = x2 = (c1/2)eiω1t, so
each block oscillates with the same frequency ω1, and with the same amplitude
c1/2. They oscillate in phase with one another, sliding back and forth on the
table together, so that the middle spring is never stretched or compressed, as
illustrated in Figure 13.2(a).

(a)

(b)

Fig. 13.2 The two normal modes of oscillation for the two-block system.

That is why the oscillation frequency ω1 =
√

k/m is independent of k′, and
why it is the same as the frequency each block would have if it were simply
oscillating on the end of a single spring of spring constant k. This motion is
called a normal mode of oscillation, in which both blocks oscillate with the
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same frequency. In fact, it is said to be the first normal mode, in which the
blocks have the same amplitude and the same phase.

2. Suppose instead that c1 = 0, so ξ1 = x1 + x2 = 0. In that case x2 =
−x1 = −(c2/2)eiω2t, so each block oscillates with the same frequency ω2 =√
(k + 2k′)/m and with equal but opposite amplitudes. That is, they move

alternately apart and together, with the center of the middle spring remaining
fixed, as illustrated in Figure 13.2(b). In effect, each block oscillates on the end
of an outer spring plus half of the middle spring. The force constant of a half-
spring is twice that of a full spring (because a half-spring is twice as stiff as
the corresponding full spring, since it stretches only half as much for a given
applied force). That is why the frequency in this case is ω2 =

√
(k + 2k′)/m.

This motion is the second normal mode of oscillation. The blocks move with the
same frequency in opposition to one another, with equal but opposite amplitudes
(i.e., they are 180o out of phase with one another).

With more general initial conditions with general c1 and c2, the evolution of x1
and x2 is a linear combination of these two normal modes. This method of solving
the differential equations of motion, to find the normal-mode frequencies and
relative amplitudes, involved the slightly clever guess that adding or subtracting
the original F = ma equations decouples them.

In this analysis, in decoupling the original differential equations we effectively
diagonalized a system of linear equations. This procedure is general and can be
developed best with the language of matrices in linear algebra. We will now discuss
the same problem but use linear algebra techniques instead that we can later employ
when generalizing to more complicated systems.

In a normal mode, by definition each block oscillates with the same frequency,
so we can simply try the solutions

x1 = b1eiωt, x2 = b2eiωt (13.12)

with the same frequency for each; and once again working in the complex plane
provided we remember to take the real parts to connect to the physical solutions.
Hence, b1 and b2 are complex constants. Substituting these into the original
equations of motion (13.2), we get

(−mω2 + (k + k′))b1 − k′b2 = 0,

−k′b1 + (−mω2 + (k + k′))b2 = 0, (13.13)

which in matrix form becomes(
(k + k′)− mω2 −k′

−k′ (k + k′)− mω2

)(
b1
b2

)
= 0, (13.14)

forming a pair of homogeneous equations in the unknown amplitudes. For arbitrary
frequencies, this symmetric matrix can be inverted, giving only the trivial solution
b1 = b2 = 0, where both blocks remain at rest at their equilibrium positions. But
from linear algebra we know that with just the right choice(s) of ω there are also
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nontrivial solution(s) if and only if the determinant of the coefficients vanishes, i.e.,
if and only if∣∣∣∣ (k + k′)− mω2 −k′

−k′ (k + k′)− mω2

∣∣∣∣ = (−mω2 + (k + k′))2 − k′2

= 0, (13.15)

since a symmetric matrix with zero determinant cannot be inverted. From this so-
called secular equation it follows that

−mω2 + (k + k′) = ±k′, (13.16)

with the two solutions

ω1 =

√
k
m

and ω2 =

√
k + 2k′

m
, (13.17)

the same results we found for the frequencies using the previous approach. We
have once again found the normal-mode frequencies, which are also called the
characteristic frequencies, eigenfrequencies, or frequency eigenvalues.

Now we can substitute the normal-mode frequencies one at a time into the
original differential equations of motion to find the relative amplitudes of the two
blocks. First, let ω = ω1 =

√
k/m. Then Eq. (13.14) become(
k′ −k′
−k′ k′

)(
b1
b2

)
= 0. (13.18)

These two equations are linearly dependent (one is simply a multiple of the other
in this case). Therefore the determinant of the matrix vanishes, ensuring that the
matrix cannot be inverted. The single independent equation is then solved by b1 =
b2. The two blocks slide back and forth in phase with equal amplitudes, just as we
found earlier. If instead we substitute ω = ω2 =

√
(k + 2k′)/m, then Eqs. (13.14)

become (
−k′ −k′
−k′ −k′

)(
b1
b2

)
= 0, (13.19)

so that b1 = −b2, where the two blocks slide in and out with equal but opposite
amplitudes. Note that we can find a single relation between b1 and b2 for each
normal-mode frequency – leading to 2 × 1 = 2 complex degrees of freedom in
total, or equivalently 4 real degrees of freedom. That makes sense, because we
originally had two second-order differential equations with the associated freedom
of two real boundary conditions per equation.

We can write normalized eigenvectors corresponding to each of the eigenfre-
quencies in the form

e(1) ≡
1√
2

(
1
1

)
(13.20)

for the first normal mode by choosing b2 = 1/
√

2 so that b2
1 + b2

2 = 1, and
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e(2) ≡
1√
2

(
−1

1

)
(13.21)

for the second normal mode, choosing b2 = 1/
√

2 once again. As a result, we have

eT
(1) · e(1) = eT

(2) · e(2) = 1, eT
(1) · e(2) = eT

(2) · e(1) = 0, (13.22)

where “T” stands for transpose. Note that each eigenvector has the correct relative
amplitudes of the two blocks for the corresponding normal mode. Each is also
normalized to unity, and the eigenvectors are mutually orthogonal. That we were
able to arrange for this is a general feature, as long as the matrix appearing in
Eq. (13.14) is real and symmetric.

The differential equations are linear, so any linear combination of the two
normal-mode solutions is also a solution. The most general solution of the
equations is an arbitrary linear combination of the two normal modes. We can write(

x1(t)
x2(t)

)
= c1e(1)eiω1t + c2e(2)eiω2t, (13.23)

where c1 and c2 are complex constants determined by the initial conditions. We
then say the eigenvectors form an orthonormal set and span the space of solutions.

Let us look at a particular case and see how we can build a full solution given
initial conditions. Say we have

� x1(0) = � x2(0) = 0, � ẋ1(0) = v1, � ẋ2(0) = v2 (13.24)

for some initial speeds v1 and v2. Note how to apply the boundary conditions on the
real parts of x1 and x2 only. Hence both blocks begin at their respective origins, but
each is given an initial kick. The subsequent motion of the two blocks will involve
both normal-mode frequencies and will appear to be rather erratic, in spite of the
fact that the motion is completely determined by the initial conditions. To find the
solution, we use Eqs. (13.23)) and (13.24) and arrive at

0 = �(c1)e(1) + �(c2)e(2),
(

v1
v2

)
= ω1 �(c1)e(1) + ω2 �(c2)e(2), (13.25)

where the second set of equations is obtained by differentiating (13.23) before
setting t to zero, and where the symbol � means that we take only the imaginary
part of what follows. We then have

�(c1) = �(c2) = 0 (13.26)

from the first set of equations, since e(1) and e(2) are linearly independent, and(
v1
v2

)
= ω1 �(c1)

1√
2

(
1
1

)
+ ω2 �(c2)

1√
2

(
−1
1

)
=

1√
2

(
ω1 �(c1)− ω2 �(c2)
ω1 �(c1) + ω2 �(c2)

)
(13.27)

from the second set. This leads us to the solution

�(c1) =
1√
2

v2 + v1

ω1
, �(c2) =

1√
2

v2 − v1

ω2
, (13.28)
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where again the symbol � means that we take only the imaginary part of what
follows. We have uniquely determined the complex constants c1 and c2 from the
given initial conditions. Putting all these together into Eq. (13.23), and taking the
real part to obtain the physical solution, we get

x1(t) → �(x1(t)) =
1
2

[(
v2 + v1

ω1

)
sinω1t −

(
v2 − v1

ω2

)
sinω2t

]
, (13.29)

x2(t) → �(x2(t)) =
1
2

[(
v2 + v1

ω1

)
sinω1t +

(
v2 − v1

ω2

)
sinω2t

]
. (13.30)

Hence we obtain the full erratic evolution of the system in terms of the initial
conditions. In particular, if we give only block 1 an initial velocity, i.e., if v2 = 0,
we have

x1(t) =
(v1

2

)[sinω1t
ω1

+
sinω2t
ω2

]
(13.31)

and

x2(t) =
(v1

2

)[sinω1t
ω1

− sinω2t
ω2

]
. (13.32)

It is easy to show that these equations for x1 and x2 can also be written as

x1,2 =
v1

2

[
sin(ω −Δω)t

ω −Δω
± sin(ω +Δω)t

ω +Δω

]
, (13.33)

where ω≡ (ω1 +ω2)/2 is the average of the two frequencies, and Δω≡
(ω2 − ω1)/2 is half their difference. The upper (plus) sign corresponds to x1
and the lower (minus) sign to x2.

Example 13.1 Weak Coupling and Strong Coupling
Suppose that the middle spring in the system just described is much weaker than the other two, with k′  k,
so that the coupling between the two blocks is weak. In that case we can approximateω2 using the binomial
expansion (see Appendix F):

ω2 =

(
k + 2k′

m

)1/2

=

√
k
m

(
1 +

2k′

k

)1/2
∼= ω1

(
1 +

k′

k

)
, (13.34)

soΔω ≡ (ω2 − ω1)/2 ∼= ω1k′/2k ∼= ωk′/2k.
Now becauseΔω is small, the phases (ω ±Δω)t in

x1,2 =
v1

2

[
sin(ω −Δω)t
ω −Δω

± sin(ω +Δω)t
ω +Δω

]
(13.35)

differ fromωt by only a small amount initially, but as time goes by theΔωt terms can change the phases in
the two terms entirely, so that although for small t the two terms in x1,2 are pretty much in phase, after a while
they can differ by π or more. The Δω terms in the denominators, however, which affect the amplitudes of



537 13.1 Linear Systems of Masses and Springs

each term, do not change with time, so never build up and are therefore much less important. So for k′/k  1,
we will neglect theΔω terms in the denominators, giving

x1,2
∼= v1

2ω
[sin(ω −Δω)t ± sin(ω +Δω)t], (13.36)

which can also be written in the more enlightening form

x1 =
v1

ω
cos(Δω t) sin ωt, (13.37)

x2 = − v1

ω
sin(Δω t) cos ωt, (13.38)

where we have used the trig identity

sin A ± sin B = 2 cos
(

A ∓ B
2

)
sin
(

A ± B
2

)
. (13.39)

Note that both x1 and x2 are products of a rapidly oscillating part sin ωt or cos ωt and a slowly oscillating
“envelope” cos(Δω t) or sin(Δω t). From the slowly oscillating factors we can see that x1 starts with large
amplitude and x2 begins with small amplitude, but by the time that Δωt = π/2 these have reversed, so
that now x2 has large swings and x1 only small ones. Then by the time Δω t = π the oscillations have
returned to where they began. The period of this motion is therefore

T =
π

Δω
=

2πk
ωk′

. (13.40)

That is, for weakly coupled oscillators the energy of oscillation is gradually exchanged from one to the other
and back again. This interesting passing of the torch from once oscillator to the other occurs for many weakly
coupled mechanical systems.

Now suppose the center spring is much stronger than the others, with k′ � k, corresponding to strong
coupling between the two blocks. Thenω2

∼= ω1
√

2 k′/k, so from Eq. (13.33) we have

x1,2 =
v1

2

[
sin ω1t
ω1

± sin ω2t
ω2

]
∼= v1

2ω1

[
sin ω1t ±

√
k

2k′
sin ω1

√
2k′

k
t

]
. (13.41)

Compared with the first term, the second term has much smaller amplitude and higher frequency. So in the
strong-coupling case, the two blocks basically slide back and forth together in phase with frequencyω1, but
superimposed on this motion is a small-amplitude, high-frequency oscillation in which the blocks move in
opposition to one another, caused by the stiff spring between them. �

Example 13.2 Coupled Pendulums
Two balls, each of mass m, are attached to two strings of equal length � to form side-by-side pendulums of
equal period. A weak spring k′ is attached to the two balls, as shown in Figure 13.3. When the pendula hang
down, the spring is unstretched. All oscillations are assumed to be in the same plane.

We want to find the motion of each ball in the small-amplitude limit, in which the angles θ1 and θ2 are
both very small. In that case the spring stretch is very nearly �(θ2 − θ1), and the gravitational potential
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energy of the first ball is mgh = mg�(1− cos θ1) ∼= mg�[1− (1−θ2
1/2)] = mg�θ2

1/2, with a similar
expression for the second ball. The Lagrangian of the small-amplitude system is therefore

L =
1
2

m�2θ̇2
1 +

1
2

m�2θ̇2
1 −

1
2

mg�θ2
1 −

1
2

mg�θ2
2 −

1
2

k′�2(θ2 − θ1)
2. (13.42)

Fig. 13.3 Two pendulums connected with springs.

Note that this Lagrangian is identical to the Lagrangian of the two-mass, three-spring problem we just
discussed, if we replace �θ1 and �θ2 by x1 and x2, and replace the constant quantity mg/� by k. That is, for
small displacements from equilibrium the gravitational force on each mass acts like a spring of force constant
mg/�. Therefore the behavior of the small-amplitude coupled pendulum is just like that of the two-mass,
three-spring problem. In particular, if the coupling spring k′ is very weak, we can start the first pendulum
mass swinging back and forth while the second pendulum is initially at rest; then after a while the motion
(and energy) is gradually transferred from the first pendulum to the second, so that the second pendulum
eventually swings back and forth while the first pendulum comes instantaneously to rest. This alternating
behavior would continue indefinitely were it not for friction, which eventually robs the system of its energy,
so that both pendulums come to rest.

In contrast, if k � mg/� the two pendulums are strongly coupled: they swing back and forth together,
upon which may be superimposed a small-amplitude, high-frequency oscillation between the two balls. �

Example 13.3 Three Blocks and Four Springs
Now suppose there are three blocks attached to four springs. Again, the springs are unstretched in the
equilibrium position, and the blocks are free to move in the horizontal direction only. The far end of each outer
spring is attached to a stationary wall. The displacements of the three blocks from equilibrium are x1, x2, x3,
positive to the right. For simplicity, suppose the blocks have equal mass m and all four springs have the same
force constant k, as shown in Figure 13.4. Now the Lagrangian is

L =
1
2

m(ẋ2
1 + ẋ2

2 + ẋ2
3)−

1
2

kx2
1 −

1
2

k(x2 − x1)
2 − 1

2
k(x3 − x2)

2 − 1
2

kx2
3 , (13.43)
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Fig. 13.4 Three blocks attached to two springs and walls.

taking into account the potential energy stored in each of the four springs. Lagrange’s equations then give

mẍ1 = −kx1 + k(x2 − x1),

mẍ2 = −k(x2 − x1) + k(x3 − x2),

mẍ3 = −kx3 − k(x3 − x2), (13.44)

which again could have been written using F = ma for each block.
As in the two-block case, these can be solved by writing x1 = b1eiωt , x2 = b2eiωt , x3 = b3eiωt , resulting

in the matrix equation⎛⎝ −mω2 + 2k −k 0
−k −mω2 + 2k −k

0 −k −mω2 + 2k

⎞⎠⎛⎝ b1

b2

b3

⎞⎠ = 0, (13.45)

which has a nontrivial solution only if the determinant of the coefficient matrix is zero. That is, the secular
equation is ∣∣∣∣∣∣

−mω2 + 2k −k 0
−k −mω2 + 2k −k

0 −k −mω2 + 2k

∣∣∣∣∣∣ = 0. (13.46)

Expanding about the top row:

(−mω2 + 2k)[(−mω2 + 2k)2 − k2] + k(−k(−mω2 + 2k)) = 0. (13.47)

Factoring:

(−mω2 + 2k)[(−mω2 + 2k)2 − 2k2] = 0, (13.48)

the product of a linear and a quadratic equation inω2, with altogether three solutions forω2. The first factor
is zero if

ω = ω1 =

√
2k
m

. (13.49)
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The second factor is zero if (−mω2 + 2k)2 = 2k2, i.e., −mω2 + 2k = ±
√

2k, which gives the other
two eigenfrequencies

ω2 =

√
(2 −

√
2)k

m
and ω3 =

√
(2 +

√
2)k

m
. (13.50)

As with the two-block problem, we can find the three normal-mode motions by solving for the eigenvectors:
we substituteω = ω1, ω2, ω3 in (13.45), giving us two linearly independent equations for three unknowns:
b1, b2, and b3. We find that

b2 = 0, b3 = −b1 for ω = ω1,
b3 = b1, b2 =

√
2 b1 for ω = ω2,

b3 = b1, b2 = −
√

2 b1 for ω = ω3.

(13.51)

It is clear that ω1 corresponds to the frequency when the center block remains at rest and the outer blocks
oscillate oppositely to one another, both moving outwards and then both moving inwards, etc. Each is
connected to two springs whose opposite ends stay at rest, so the frequency should be ω=

√
2k/m. The

eigenfrequency ω2 corresponds to the two outer blocks moving together in phase, with the middle block
moving in the same direction with a different amplitude; and the eigenfrequencyω3 corresponds to the two
outer blocks moving together in phase, with the middle block moving always in the opposite direction, and
with a different amplitude.

Finally, to write the orthonormal eigenvectors, we can use the normalization condition b2
1+b2

2+b2
3 = 1,

giving

e(1) =
1√

2

⎛⎝ 1
0
−1

⎞⎠ , e(2) =
1
2

⎛⎝ 1√
2

1

⎞⎠ , e(3) =
1
2

⎛⎝ 1
−
√

2
1

⎞⎠ (13.52)

for the corresponding eigenvaluesω1,ω2, andω3, respectively. The general solution is then given by⎛⎝ x1(t)
x2(t)
x3(t)

⎞⎠ = c1e(1)eiω1 t + c2e(2)eiω2 t + c3e(3)eiω3 t , (13.53)

where c1, c2, and c3 are complex constants to be determined from initial conditions, remembering that the
physical solution is obtained by taking the real part of the corresponding complex function. �

Example 13.4 No Walls
Now we return to the case of three equal-mass blocks, except that we remove the walls and outer springs, so
the three blocks are connected together linearly with only two springs, as shown in Figure 13.5.

The Lagrangian for this system is

L = T − U =
1
2

m(ẋ2
1 + ẋ2

2 + ẋ2
3)−

1
2

k(x2 − x1)
2 − 1

2
k(x3 − x2)

2, (13.54)
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from which Lagrange’s equations give

mẍ1 = k(x2 − x1),

mẍ2 = −k(x2 − x1) + k(x3 − x2) = k(x1 + x3)− 2kx2,

mẍ3 = −k(x3 − x2). (13.55)

Substituting

x1 = b1eiωt , x2 = b2eiωt , x3 = b3eiωt (13.56)

gives the set of algebraic equations⎛⎝ −m ω2 + k −k 0
−k −m ω2 + 2 k −k

0 −k −m ω2 + k

⎞⎠⎛⎝ b1

b2

b3

⎞⎠ = 0, (13.57)

Fig. 13.5 Three blocks attached with two springs.

so the secular determinant is∣∣∣∣∣∣
−m ω2 + k −k 0

−k −m ω2 + 2 k −k
0 −k −m ω2 + k

∣∣∣∣∣∣ = 0. (13.58)

Expanding about the top row, we get

(−m ω2 + k)[(−m ω2 + 2 k)(−m ω2 + k)− k2] + k[−k(−m ω2 + k)] = 0, (13.59)

which can be factored to give

−m ω2(−m ω2 + k)(−m ω2 + 3 k) = 0, (13.60)

with the three solutions

ω1 = 0, ω2 =

√
k
m

, ω3 =

√
3 k
m

. (13.61)

Substituting ω1 = 0 into (13.57), we find that b1 = b2 = b3, which means that all three blocks have zero
oscillation frequency and the same amplitude at all times: that is, there is no oscillation, and all blocks either
are at rest or are moving together at the same velocity. This is called a translational mode. Substituting in
ω2 instead gives b3 = − b1 and b2 = 0, so that the middle block remains at rest while the outer blocks
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move with equal amplitudes in opposition to one another. The frequencyω2 =
√

k/m makes sense in this
case, because in effect each outer block oscillates at the end of a single spring. Substituting in ω3, we find
that b2 = −2 b1 = −2 b3; that is, the outer blocks move in phase with one another, with the same
amplitude, while the center block moves in the opposite direction with twice the amplitude. Note that this
motion ensures that the center of mass always remains at rest. The frequencyω3 > ω1, because for a given
amplitude of an outer block, the spring is stretched the most if the central block moves in opposition. Finally,
the corresponding normalized eigenvectors become

e(1) =
1√

3

⎛⎝ 1
1
1

⎞⎠ , e(2) =
1√

2

⎛⎝ 1
0
−1

⎞⎠ , e(3) =
1√

6

⎛⎝ −1
2
−1

⎞⎠ , (13.62)

in terms of which one can write the most general solution. �

13.2 More Realistic Bound Systems

So far we have dealt only with masses attached to Hooke’s-law springs, which
of course are highly idealized systems. More generally, for macroscopic one-
dimensional mechanical motions there is often some sort of potential energy U(x)
between any two masses. If there is a minimum in U(x) at x0, as illustrated in
Figure 13.6, then in equilibrium the two masses are separated by the distance x0. If
they are slightly disturbed, they will oscillate back and forth about the equilibrium
point. Most often U(x) rises quadratically from the minimum, which is to say that
a parabola can be fit into the bottom of the potential well. In that case the small
oscillations will be harmonic, and it is as if a Hooke’s-law spring were attached to
the two masses.

Fig. 13.6 A general shape for a potential with a minimum. In the region near the minimum, the potential can be
well approximated by the dashed curve, corresponding to the leading Taylor-series terms.
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To see this, the Taylor-series expansion of U(x) about x0 is (see Appendix F)

U(x) = U(x0) +
dU(x)

dx

∣∣∣∣
x0

(x − x0) +
1
2

d2U(x)
dx2

∣∣∣∣
x0

(x − x0)
2 + . . . , (13.63)

where x − x0 is small. Since U(x) has a local minimum at x0, the second term
vanishes, and so U(x)− U(x0) has the form

U(x)− U(x0) =
1
2

k(x − x0)
2 + . . . (13.64)

of a Hooke’s-law spring potential for small-amplitude oscillations, where the
effective spring constant is the second derivative

k =
d2U(x)

dx2

∣∣∣∣
x0

, (13.65)

evaluated at the potential energy minimum. If the second derivative happens to be
zero at the minimum in U(x), then we cannot model the system by Hooke’s-law
springs, and the motion is not harmonic.

More generally, suppose we have a coupled system in which the generalized
coordinates are qi and the generalized velocities are q̇i. If the transformation
equations from Cartesian to generalized coordinates are not an explicit function
of time, then the kinetic energy can be written

T =
1
2
M̂jkq̇jq̇k, (13.66)

summed on j and k from 1 to N, where M̂jk is the symmetric N×N mass matrix.1
Furthermore, we choose our generalized coordinates so that qi = 0 for all i at
a minimum of the potential U(q1, q2, . . . , qN). Then, the potential energy for the
small displacements qi from equilibrium has the general form

U(q1, q2, . . . , qN) = U0 +

∣∣∣∣∂U
∂qj

∣∣∣∣
0

qj +
1
2

∣∣∣∣ ∂2U
∂qj∂qk

∣∣∣∣
0

qjqk + · · ·

� U0 +
1
2
K̂jkqjqk, (13.67)

where again we are using the Einstein summation convention on repeated indices.
The N × N spring matrix K̂jk, also a symmetric matrix, is then defined as

K̂jk ≡
∂2U

∂qj∂qk
. (13.68)

The Lagrangian takes the form

L = T − U =
1
2
M̂jkq̇jq̇k −

1
2
K̂jkqjqk, (13.69)

1 See the proof below.
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so
∂K
∂qi

= −1
2
K̂ikqk −

1
2
K̂kiqk = −K̂ikqk (13.70)

since K̂ik is symmetric. The calculation of ∂L/∂q̇i is similar, so the corresponding
Lagrange equations are

K̂jkqj + M̂jkq̈j = 0. (13.71)

These are N coupled second-order differential equations, with k = 1, 2, . . . , N. To
find the normal modes, we try solutions qj = bjeiωt, which converts the differential
equations into the algebraic equations

(K̂jk − ω2M̂jk)bj = 0 ⇒ (K̂− ω2M̂)b = 0, (13.72)

where K̂ and M̂ are N × N matrices. The sums and products implied by so-called
index notation on the left, together with the Einstein sum rule for repeated indices,
is exactly the process we go through in multiplying matrices in the matrix form of
the equation on the right. As in previous examples, there is a nontrivial solution
only if the secular equation |K̂ − ω2M̂| = 0 is satisfied, which gives N roots ω2

a ,
with a = 1, 2, . . . , N. In some cases two or more of these roots are equal, in which
case the system is said to be degenerate. Hence, we have solved the problem

(K̂− ω2
aM̂) e(a) = 0 (13.73)

for the N eigenvalues ωa and corresponding eigenvectors e(a), for a = 1, . . . , N.
Note that K̂ and M̂ are necessarily symmetric matrices. To see this, consider for

example the term

K̂jkqjqk (13.74)

that appears in the Lagrangian. We can always write

K̂jk =
1
2
(K̂jk + K̂kj) +

1
2
(K̂jk − K̂kj) ≡ K̂S

jk + K̂A
jk, (13.75)

where K̂S
jk and K̂A

jk are the symmetric and antisymmetric parts of the spring matrix

K̂S
jk = K̂S

kj, K̂A
jk = −K̂A

kj. (13.76)

But we may then write

K̂jkqjqk = K̂S
jkqjqk + K̂A

jkqjqk = K̂S
jkqjqk, (13.77)

showing that the antisymmetric part of K̂jk drops out of the Lagrangian. This is
because

K̂A
jkqjqk = K̂A

kjqkqj = −K̂A
jkqkqj = −K̂A

jkqjqk, (13.78)

where in the first step we exchanged the labeling j ↔ k, in the second step we
used the antisymmetry of K̂A

jk, and in the last step we used the commutativity
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of multiplication to write qkqj as qjqk: all this amounts to showing that this
antisymmetric piece is the negative of itself, implying it is zero. The same trick
can be employed with the term in the Lagrangian involving the mass matrix M̂jk.
Hence, without loss of generality, we may assume that both K̂jk and M̂jk, or the
corresponding matrices K̂ and M̂, are symmetric.

One can then show that since both K̂ and M̂ are real, symmetric matrices, and
because the kinetic energy is T ≥ 0, it follows that:

1. All eigenvalues ω2
a of (13.73) are real and positive. These can be found by

finding the roots of the polynomial that arises from the vanishing determinant
|(K̂− ω2M̂)| = 0.

2. The eigenvectors e(a), one for each ω2
a , are necessarily real and orthogonal with

respect to the mass matrix M̂ in the following sense:

eT
(a) · M̂ · e(b) = 0, (13.79)

for two or more nondegenerate eigenvalues, i.e., in those cases where the eigen-
values are different, ω2

a �= ω2
b . Note that “T ” stands for matrix transposition.

3. One can also show that, even when ω2
a = ω2

b for two eigenvalues, one can
choose the corresponding eigenvectors e(a) and e(b) to be orthogonal. In general,
we can also choose to normalize the eigenvectors such that one may write

eT
(a) · M̂ · e(b) = δab, (13.80)

where δab is the Kronecker delta (equal to 0 when a �= b, and equal to 1 when
a= b). The N eigenvectors are found by solving (13.73) for each eigenvalue.
With this normalization of the eigenvectors, they can be determined from the
spring matrix K̂ and the eigenvalues ω2

a using

K̂ · e(a) = ω2
a e(a). (13.81)

4. This set of orthonormal eigenvectors is guaranteed to span the space of all
possible solutions of the oscillating system. This means that one may write the
most general solution as a linear combination of the normal modes

qk(t) =
∑

a
ca

k e
k
(a)e

iωat, (13.82)

summing over a, but with no sum on the fixed component k. The ca
k are

complex constants to be determined from initial conditions, remembering that
the physical solution is obtained by taking the real part �(qk(t)).

The previous examples we tackled were essentially applications of this proce-
dure in disguise. In all these previous cases the mass matrix was proportional to
the identity

M̂ = m 1̂, (13.83)

where m was a common mass parameter. As a result, the secular equation took the
form |K̂− mω21̂| = 0. For finding the eigenvectors, we used
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(
K̂− mω21̂

)
e = 0. (13.84)

Acting on this from the left by eT·, and using the simpler normalization

eT · e = 1, (13.85)

we ended up solving for the eigenvector e using the equation

eT · K̂ · e = mω2 ⇒ K̂

m
· e = ω2e, (13.86)

which is the problem of diagonalizing the spring matrix K̂/m, or equivalently K̂.
All this corresponded to a special class of oscillation problems involving trivial
mass matrices. Our treatment in this section allows us now to handle more general
scenarios where the mass matrix is nontrivial. Let’s now see how to put this
technology into use in such cases.

Example 13.5 Longitudinal Vibrations of a Carbon Dioxide Model
Carbon dioxide is a linear molecule, with the carbon atom (of mass m and coordinate x2) in the middle and the
oxygen atoms (of mass M at coordinates x1 and x3) at the two ends, as shown in Figure 13.7. In a classical model
of the system one can find a potential energy between the carbon atom and an oxygen atom, and neglect any
interaction between the two oxygen atoms, which are relatively far apart. The potential energies are quadratic
near the minimum, so there is an effective force constant k, and the Lagrangian takes the effective form

L = T − U =
1
2

M(ẋ2
1 + ẋ2

3) +
1
2

mẋ2
2 −

1
2

k(x2 − x1)
2 − 1

2
k(x3 − x2)

2. (13.87)

Fig. 13.7 The layout of the carbon dioxide molecule.

At the scale of molecules, the motion of the atoms can, of course, only be understood properly using
quantum mechanics. However, the use of classical mechanics to describe oscillations of CO2 is still interesting,
as we shall see. Note that we have used Cartesian coordinates as the generalized coordinates such that
equilibrium corresponds to x1 = x2 = x3 = 0. We can now identify the mass and spring matrices from (13.87)
and (13.69):

M̂ =

⎛⎝ M 0 0
0 m 0
0 0 M

⎞⎠ , K̂ =

⎛⎝ k −k 0
−k 2 k −k

0 −k k

⎞⎠ . (13.88)
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We then need to solve the eigenvalue problem given by

(
K̂ − ω2M̂

)
b =

⎛⎝ k − ω2M −k 0
−k 2 k − ω2m −k

0 −k k − ω2M

⎞⎠⎛⎝ b1

b2

b3

⎞⎠ = 0. (13.89)

The secular determinant is∣∣∣∣∣∣
−Mω2 + k −k 0

−k −mω2 + 2k −k
0 −k −Mω2 + k

∣∣∣∣∣∣ = 0 (13.90)

for nontrivial solutions b. Expanding about the top row, we get

(−Mω2 + k)[(−mω2 + 2k)(−Mω2 + k)− k2] + k[−k(−Mω2 + k)] = 0, (13.91)

which can be factored to give

−mω2(−Mω2 + k)
(
−Mω2 + k

(
1 +

2 M
m

))
= 0, (13.92)

with the three solutions

ω1 = 0, ω2 =

√
k
M

, ω3 =

√
k
M

√
1 +

2 M
m

. (13.93)

Substitutingω = ω1 = 0 into Eq. (13.89), we find

b1 = b2 = b3. (13.94)

Hence, ω1 corresponds to no oscillation at all: the atoms all remain at rest or move together at constant
velocity. This solution corresponds to a translational degree of freedom, as we also saw in an earlier example.
Substitution ofω = ω2 =

√
k/M into Eq. (13.89) yields

b3 = −b1, b2 = 0. (13.95)

This is a normal mode of oscillation in which the carbon atom remains at rest at the center while the oxygen
atoms move in and out, in opposing directions, so the center of mass of the system remains at rest. This explains
why the carbon mass m does not appear in the frequency; its mass is irrelevant. Finally, substitution of ω =

ω3 =
√

k/M
√

1 + (2M/m) into Eq. (13.89) gives

b3 = b1,
b2

b1
= −2M

m
. (13.96)

This corresponds to the two oxygen atoms moving back and forth together, i.e., in phase, while the carbon
atom moves in the opposite direction by the distance required to keep the center of mass of the system at rest:
we have Mx1 + mx2 + Mx3 = Mx1 + m(−2M/m)x1 + Mx1 = 0.

Putting things together, we can write three orthonormal eigenvectors using the normalization condi-
tion (13.80). This now involves the mass matrix and amounts to the statement

M (b2
1 + b2

3) + m b2
2 = 1 (13.97)
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instead of b2
1 + b2

2 + b2
3 = 1. Therefore we find the normalized eigenvectors

e(1) =
1√

m + 2 M

⎛⎝ 1
1
1

⎞⎠ ,

e(2) =
1√
2 M

⎛⎝ 1
0
−1

⎞⎠ , e(3) =
1√

m + 2 M

⎛⎜⎝
√ m

2 M

−
√

2 M
m√ m

2 M

⎞⎟⎠ . (13.98)

The most general vibrational solution can then be written in terms of the last two eigenvectors⎛⎝ x1(t)
x2(t)
x2(t)

⎞⎠ =
1√
2 M

⎛⎝ c2
1

0
−c2

3

⎞⎠ ei ω2 t +
1√

m + 2 M

⎛⎜⎝ c3
1

√ m
2 M

−c3
2

√
2 M
m

c3
3

√ m
2 M

⎞⎟⎠ ei ω3 t , (13.99)

where the ca
k are complex constants to be determined from initial conditions. Again, remember that we can

connect to the physical solution by taking the real part of this expression.
Carbon dioxide is one of the most important greenhouse gases in our atmosphere. Light from the sun,

peaking in the visible range of the spectrum, enters the atmosphere; most of it then strikes earth’s surface
and is absorbed. The warm surface emits electromagnetic radiation characteristic of its temperature, in the
infrared rather than the visible. This radiation makes its way back up through the atmosphere, while some of
it is absorbed by atmospheric gases, including carbon dioxide, which have characteristic vibration frequencies
in the infrared. A CO2 molecule can absorb infrared photons with frequencies close to one of the normal-mode
frequencies of the molecule, exciting it into a higher-energy state. This absorbed energy is radiated away once
again, some reaching the ground, further heating the earth.

Electromagnetic radiation couples most strongly to oscillations in which the electric dipole moment of
the molecule changes with time. In a CO2 molecule the oxygen atoms at each end are slightly negative while
the carbon atom in the middle is slightly positive, which implies that in equilibrium the molecule has a
quadrupole moment but no dipole moment. In the first vibrational mode of CO2 the oxygen atoms move in
and out in opposition to one another, while the carbon atom remains at rest, which changes the quadrupole
moment of the molecule, but not the dipole moment, which remains zero. Therefore the first normal mode
of oscillation is only a very weak absorber (or emitter) of radiation. However, in the second normal mode the
oxygen atoms move in the same direction while the carbon atom moves in the opposite direction. Therefore
while the negative charge moves to the right (say) the positive charge moves to the left, and vice versa, giving
the molecule an ever-changing dipole moment. This second normal mode couples strongly to electromagnetic
radiation, and it is the most important absorber of infrared light in our atmosphere, and the most important
contributor to global warming.a �

aMethane (CH4) molecules are many times more effective infrared absorbers than CO2, but there are fewer methane molecules in the atmosphere,
and they degrade over time. Release of large quantities of natural gas (which is about 95% methane) into the atmosphere can nevertheless
cause important greenhouse effects.
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Example 13.6 Crossed Kinetic and Potential Energy Terms
As a next example, we consider a system that has a nondiagonal mass matrix and a nondiagonal spring-
constant matrix. We begin with a single particle of mass m connected to a network of springs so that the
equilibrium position of the particle is at the origin of our coordinate system. The Lagrangian of the particle is
given in Cartesian coordinates as

L =
1
2

m ẋ2 +
1
2

m ẏ2 +
1
2

m ż2 − 1
2

k
(

x2 + y2 + α z2 ) , (13.100)

where k andα are constants. Note that the spring constants are not the same in all three directions of space:
there is an asymmetry between the x–y plane and the z direction. This might, for example, be the result of
modeling an atom in a non-isotropic crystal lattice in which the effective springs in the z direction are stiffer
than the springs in the x and y directions, which would make α > 1. Furthermore, let us suppose that the
atom is subject to conditions that confine its motion to the plane z = x+ y, perhaps due to lattice defects.
Therefore our particle has only two degrees of freedom, requiring only two generalized coordinates, which we
take to be x and y. We then need to write also ż = ẋ + ẏ. Substituting into the Lagrangian, we find that

L =
m
2

(
2 ẋ2 + 2 ẏ2 + 2 ẋ ẏ

)
− k

2

(
β x2 + β y2 + 2 α x y

)
, (13.101)

where we define β = (1 + α). We see that the mass term now involves a nondiagonal term ẋ ẏ. We can
then identify the mass matrix as

M̂ =

(
2 m m
m 2 m

)
. (13.102)

We have chosen to define the mass matrix without the customary 1/2 factor in front of the kinetic energy
term, and the off-diagonal terms add up to 2 m, as required. The spring matrix takes the form

K̂ =

(
β k α k
α k β k

)
, (13.103)

also off-diagonal, so the eigenvalue problem is given by

|K̂ − ω2M̂| = 0 , (13.104)

which leads to the equation

(β k − 2 m ω2)2 − (α k − m ω2)2 = 0. (13.105)

This equation results in the two eigenvalues

ω2
1 =

k
m

and ω2
2 =

k
3 m

(1 + 2α). (13.106)

For the first eigenvalue we substitute in Eq. (13.73), writing e(1) as (b1, b2), and so find that

(α− 1)k b1 + (α− 1)k b2 = 0 ⇒ b1 = −b2. (13.107)
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For the second eigenvalue, we write again e(2) as (b1, b2), giving

k
3
(1 − α)b1 +

k
3
(α− 1)b2 = 0 ⇒ b1 = b2. (13.108)

We now need to normalize the two eigenvectors using the mass matrix. We first have e(1) = (b, −b), so

eT
(1) · M̂ · e(1) = 1 ⇒ 2 m b2 = 1 ⇒ b =

1√
2 m

. (13.109)

For the second eigenvector, we substitute e(2) = (b, b) in

eT
(2) · M̂ · e(2) = 1 ⇒ 6 m b2 = 1 ⇒ b =

1√
6 m

. (13.110)

We can now summarize the results. We have two normal modes of vibration. The first has frequency and
eigenvector

ω2
1 =

k
m

and e(1) =
1√
2 m

(1, −1) ; (13.111)

the second has frequency and eigenvector

ω2
2 =

k
3 m

(1 + 2α) and e(2) =
1√
6 m

(1, 1) . (13.112)

Therefore, ifα > 1, corresponding to stiffer springs in the z direction, it follows thatω2 > ω1, whereas
ifα< 1, corresponding to weaker springs in the z direction, we haveω2 < ω1. Ifα = 1 the two normal-
mode frequencies are equal, and the two normal modes are said to be “degenerate.” �

13.3 Vibrational Degrees of Freedom

How many normal modes of oscillation are there for a given system? Why does
carbon dioxide have two vibrational normal modes of oscillation? And why are
there three normal modes for three masses connected in a straight line by four
springs, with the outer two connected to stationary walls?

Suppose there are N particles, free to move only in one dimension. Then
we say there are N degrees of freedom, x1, x2, . . . , xN, which are the positions
measured along the single dimension of each particle. If instead the N particles
are allowed to move in two dimensions, there are then 2 N degrees of freedom,
x1, y1; x2, y2, . . . , xN, yN; and in three dimensions we have 3 N degrees of freedom.
So for a carbon dioxide molecule free to move only along one dimension, there are
three degrees of freedom. Rather than count by the x coordinate of each atom, we
could alternatively say that the one-dimensional motion of the center of mass of
the molecule counts for one degree of freedom, leaving two more corresponding to
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possible relative motions of the atoms, in particular the normal-mode oscillations.
Thus for one-dimensional motion of three particles:

3 degrees of freedom = (1 translational + 2 vibrational) degrees of freedom.

Any arbitrary motion of the molecule can be written as some linear combina-
tion of these three motions, just as any arbitrary motion can be specified by
x1(t), x2(t), x3(t).

Now suppose instead that the CO2 molecule is free to move in a plane. Including
now two coordinates for each atom, there are six degrees of freedom. There are two
translational degrees of freedom of the center of mass, in the x and y directions, plus
now a single rotational degree of freedom, corresponding to a rigid rotation of the
molecule in the x, y plane (i.e., about a z axis through the center of mass), plus the
vibrational modes. So for two-dimensional motion there must be three vibrational
modes:

6 degrees of freedom =
(2 translational + 1 rotational + 3 vibrational) degrees of freedom.

We have now learned that there must be a third vibrational mode for the CO2
molecule moving in a plane. This is a vibration in which the molecule bends, with
(say) the carbon atom moving in one direction while the two oxygen atoms move
in the opposite direction, while keeping the center of mass at rest and keeping the
angular momentum equal to zero (see Figure 13.8).

Fig. 13.8 The third vibrational mode of the CO2 molecule.

That is, any motion of the center of mass enters exclusively into the translational
degrees of freedom, and any net rotation (any rotation with a nonzero angular
momentum) enters into the rotational degree of freedom. The vibrational degrees
of freedom are what is left over.

If, finally, the same CO2 model is free to move in all three dimensions, there
must be nine degrees of freedom. Three of these are translational, in the x, y, and
z directions. We might think that there are now also three rotational degrees of
freedom, corresponding to rotation about the x, y, or z axis. However, there are
really only two: any rotation about an axis passing through all three atoms is
unobservable, so does not count. That leaves four vibrational degrees of freedom:
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the same two we found for one-dimensional motion, plus two bending oscillations.
If the molecule is strung out along the x axis, for example, in one bending
oscillation the carbon atom moves in the positive y direction while the two oxygen
atoms move in the negative y direction (keeping the CM at rest and keeping angular
momentum equal to zero), and then vice versa, oscillating back and forth. In the
other bending oscillation the carbon atom moves in the positive z direction while
the oxygens move in the negative z direction, and then vice versa, oscillating back
and forth. Any other bending oscillation is a linear combination of these two. So
for the CO2 molecule in three dimensions:

9 degrees of freedom =
(3 translational + 2 rotational + 4 vibrational) degrees of freedom.

Now return to the special case of three masses with four springs, with the outer
springs attached to rigid walls. How many vibrational modes do we expect? We
take the motion to be one-dimensional, not considering any bending motion of the
springs. There are then three degrees of freedom, x1, x2, x3. There are obviously no
rotational degrees of freedom; there is also no translational degree of freedom in
this case, because the center of mass of the system is not free to move as it likes,
due to the constraint of the walls. So in this case

3 degrees of freedom = 3 vibrational degrees of freedom.

That is, any motion x1, x2, x3 permitted by the constraints in this case can be written
as a linear combination of the three normal modes of oscillation alone.

13.4 The Continuum Limit

Now we imagine an infinite number of masses m connected by an infinite number
of springs k, as illustrated in Figure 13.9, and allow only longitudinal motions. We
can find the equations for such one-dimensional arrays, and then take the limit of
an infinite number of infinitesimal masses held together by an infinite number of
infinitesimal springs: that is, we can take the continuum limit of our system. This
is a good approximation to what happens in longitudinal oscillations of an elastic
material, which we would find by banging on one end of a long metal rod with a
hammer. We seek to find the sorts of oscillations set up in the rod.

Fig. 13.9 An infinite array of masses and springs.
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As before, let the coordinate of mass m be xi, measured positive to the right from
its equilibrium position. Then the system Lagrangian is

L = T − U =
∑

i

1
2

mẋ2
i −

1
2
∑

i
k(xi+1 − xi)

2, (13.113)

since the stretch in the spring connecting mass i with mass i + 1 is xi+1 − xi. The
Lagrange equation for mass m is then

mẍi − k(xi+1 − xi) + k(xi − xi−1) = 0, (13.114)

or

k(xi+1 − xi)− k(xi − xi−1) = mẍi, (13.115)

equivalent to F = ma for m. To take the continuum limit, we need the analogues
of force and mass for an essentially continuous elastic material like a thin metal
rod. The analogue of mass is the mass per unit length μ of the rod. So if a is the
equilibrium distance between any two consecutive masses in the spring–mass array,
the mass per unit length of the system is

μ =
m
a

. (13.116)

The analogue of force for the rod is the tension F in the rod, which can be related
to the rod’s Young’s modulus Y, defined as

Y =
stress

strain
, (13.117)

where the stress in the spring between the i + 1th and ith masses is the tension
F = k(xi+1 − xi), and the strain is the extension of the spring per unit length, equal
to (xi+1 − xi)/a. That is:

Y =
k(xi+1 − xi)

(xi+1 − xi)/a
= k a. (13.118)

We define the continuum limit as

a → 0 while m → 0 and k → ∞ such that μ and Y remain finite. (13.119)

Therefore dividing Eq. (13.114) by a and using m = μa and k = Y/a, we find

μẍi − (Y/a)[(xi+1 − xi)− (xi − xi−1)] = 0. (13.120)

In the limit of a continuous one-dimensional rod, the displacement of mass points
in the rod from their equilibrium positions depends upon both the time t and the
distance x of the point from some fixed origin within the rod. Let this displacement
from equilibrium be given by the continuous function η(t, x). That is, if every point
in the rod remains in its equilibrium position, then η(t, x) = 0. In the limit we can
identify

ẍi →
∂2η

∂t2

∣∣∣∣
xi

, (13.121)
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the second derivative of η(t, x) with respect to time alone, evaluated at the position
xi. Also, in the limit as a → 0:

(xi+1 − xi)

a
→ ∂η

∂x

∣∣∣∣
xi+a

and
(xi − xi−1)

a
→ ∂η

∂x

∣∣∣∣
xi

, (13.122)

the first derivatives of η(t, x) with respect to x alone, evaluated at two points
separated by the infinitesimal distance a. Then by Taylor’s series (see Appendix F):

∂η

∂x

∣∣∣∣
xi+a

=
∂η

∂x

∣∣∣∣
xi

+ a
∂2η

∂x2

∣∣∣∣
xi

+ · · · , (13.123)

so that in the limit a → 0, Eq. (13.120) becomes the wave equation

∂2η

∂x2 − μ

Y
∂2η

∂t2
= 0. (13.124)

Note that all parameters appearing in this equation, μ and Y, remain finite in
the continuum limit (13.119). The standard form for a one-dimensional wave
equation is

∂2η

∂x2 − 1
v2

∂2η

∂t2
= 0, (13.125)

where v is the phase velocity of the wave. Therefore longitudinal oscillations in a
continuous rod are solutions of a wave equation, in which the phase velocity of
waves is

v =
√

Y/μ (13.126)

in terms of the Young’s modulus and linear mass density of the rod. Physically,
these oscillations represent sound waves in the rod. The waves may be traveling
waves, as we could generate by banging on one end of the rod, or they may
be standing waves with the usual nodes and crests. This derivation of the wave
equation is however rather generic. It arises in many settings where a continuum
system is perturbed by a small amount. Much like the Taylor expansion of any
potential about its minimum leads generically to the simple harmonic oscillator,
the dynamics of small perturbations of many continuum systems leads to the wave
equation. For example, instead of restricting ourselves to longitudinal oscillations
of the continuous rod, we could also consider a long array of springs and masses
and pluck the array in the transverse direction. This leads to exactly the same wave
equation for small-amplitude motions, where now η(t, x) represents transverse
amplitudes such as one would find by plucking a guitar string.

Now we seek the eigenfrequencies and normal-mode solutions for oscillations
of a continuous one-dimensional rod. Instead of solving a set of coupled ordinary
differential equations, one for each of the finite number of masses connected to
other masses by springs, we have a single partial differential equation with the two
independent variables t and x.
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This single partial differential equation can be solved by separation of variables:
that is, we try solutions of Eq. (13.125) with the product form

η(t, x) = T(t)X(x), (13.127)

where T(t) and X(x) are arbitrary functions of their respective independent variable
t or x. Substituting this form into the differential equation gives

T(t)X(x)′′ =
1
v2 T̈X(x), (13.128)

where primes are derivatives with respect to x and dots are derivatives with respect
to t. Dividing the equation by η = T(t)X(x) and multiplying by v2 gives

v2 X(x)′′

X(x)
=

T̈
T

, (13.129)

so that the variables t and x have been separated. The left-hand side can be a
function of x but not t, while the right-hand side can be a function of t but not
x. The two variables are independent of one another, so we could vary t (say)
without changing x. In that case the right-hand side might change, but the left-
hand side cannot change. However, the two sides are equal to one another, so it
is impossible for only one of the two sides to change. The only way to resolve
this difficulty is for each side of the equation to be equal to the same constant.
Let this so-called separation constant be given as −q, where q > 0. (The reason
for the inequality will soon become clear.) This leaves us now with two ordinary
differential equations

T̈ + qT = 0 and X′′ + (q/v2)X = 0, (13.130)

each of which has the form of a simple harmonic oscillator equation. The T(t) and
X(x) equations have solutions

T(t) = Aeiωt + Be−iωt and X(x) = Ceikx + De−ikx, (13.131)

where A, B, C, D are arbitrary complex constants, ω =
√q and k = ω/v. Note that

if we had allowed q < 0 we would have had real exponential solutions, so that
amplitudes η would diverge as t → ±∞ and as x → ±∞. These we then reject on
physical grounds. To construct a solution with a given k, we can write

ηk(t, x) = T(t)X(x) = A Cei(kx+ωt) + B De−i(kx+ωt)

+ A De−i(kx−ωt) + B Cei(kx−ωt). (13.132)

The most general solution would be a linear superposition of modes like these with
various values of k – given that the wave equation is linear in η and hence the sum
of any two solutions is still a solution. We may then write in general

η(t, x) =
∑

k
ηL(k)eik(x+vt) + ηR(k)eik(x−vt), (13.133)
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where ηL(k) and ηR(k), called left and right moving modes respectively, are
complex functions. As we shall soon see, if the system size in infinite, the sum
over k is typically an integral instead. The corresponding representation is then
called a Fourier integral; the discrete version as given in Eq. (13.133) is instead
called a Fourier series.2 Here ηL(k) and ηR(k) are to be determined from initial
conditions3 – i.e., by specifying η(t = 0, x) and ∂η(t = 0, x)/∂x. Note however
that, to connect to a physical solution, we need to take the real part of Eq. (13.133).
We then end up with a superposition of sine and cosine functions with the same
arguments, using the Euler identity eiθ = cos θ + i sin θ.

Finally, notice that Eq. (13.133) has the form

η(t, x) = fL(x + v t) + fR(x − v t) (13.134)

with general functions fL and fR. You can verify this by substituting (13.134) into
the wave equation (13.125). We will next show how to find these functions fL and
fR in terms of initial conditions, using Fourier series or Fourier integrals. That is
the wave equation essentially tells us that, given an initial profile of η(t, x), the
disturbances propagate left and right at speed v.

Periodic Boundary Conditions
We now describe in some detail the technique of Fourier series. Fourier’s idea was
that many functions can be constructed by adding together different sine (or cosine)
waves with the appropriate wavelengths.

Suppose in particular that a real function f(θ) is periodic, with f(θ + 2π) = f(θ)
for all θ. Suppose also that f(θ) is Riemann integrable on every bounded interval,
meaning that f is bounded and is also piecewise continuous (i.e., continuous except
possibly at a finite number of points in any bounded interval). Then f(θ) can be
expanded in the Fourier series

f(θ) =
∞∑

n=−∞
aneinθ, (13.135)

where n can take all integer values (positive, negative, zero) and the an are numbers,
generally complex with an = a∗−n to assure that f is real. Alternatively:

f(θ) = b0/2 +
∞∑

n=1

(bn cos nθ + cn sin nθ), (13.136)

where the bn and cn are real constants, with n = 1, 2, 3, . . . We have translated
between the sine, cosine, and complex exponential form using einθ = cos nθ +
i sin nθ. The coefficients an are related to bn and cn by a0 = b0/2, an = (bn−icn)/2,
and a−n = (bn + icn)/2, where now n = 1, 2, 3, . . .

2 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist who was also a
government and academic administrator.

3 The wave equation satisfies the existence and uniqueness theorem of partial differential equations: given enough
initial conditions, a unique solution is guaranteed.
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We can calculate the an (and from them also bn and cn) by multiplying the einθ

series by e−imθ and integrating from −π to π, where m is a positive or negative
integer, or zero. That is:∫ π

−π
dθ f(θ)e−imθ =

∞∑
n=−∞

an

∫ π

−π
dθ ei(n−m)θ = 2πam, (13.137)

since ∫ π

−π
dθ ei(n−m)θ = 2π δnm =

{
0 if m �= n
2π if m = n . (13.138)

Here δnm is the Kronecker delta, equal to unity if n = m and zero otherwise.
Therefore we have found that

an =
1

2π

∫ π

−π
dθ f(θ)e−inθ, (13.139)

so also

bn =
1
π

∫ π

−π
dθ f(θ) cos nθ (n ≥ 0) (13.140)

and

cn =
1
π

∫ π

−π
dθ f(θ) sin nθ (n ≥ 1). (13.141)

Note that we have assumed that f(θ) is periodic in θ. However, this formalism
goes through as long as we are dealing with a finite system. If our function depends
upon a distance x rather than an angle θ, we can identify θ ≡ 2πx/L, where L is
some fixed size of the system. This is suited for example for a rod of length L in the
case of longitudinal waves, or a string of length L in the case of transverse waves,
where fixed boundary conditions are imposed at the two ends. That is, we can let
L be the periodicity of the solution, so even though the Fourier series solves the
wave equation for (hypothetical) previous or subsequent rods or strings of length
L, they really are not there, and we can ignore these repetitions. The boundary
conditions also have to be periodic, so only a countable infinity of frequencies or
wave numbers can satisfy them.

To reprise the exponential form of the series, if f(θ) is periodic and piecewise
continuous, with f(θ + 2π) = f(θ), then we can write

f(θ) =
∞∑

n=−∞
aneinθ where an =

1
2π

∫ π

−π
dθ f(θ)e−inθ. (13.142)
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Example 13.7 Waves on a Clamped Rod

Fig. 13.10 An initial displacement function in a rod.

We can use Fourier series to find longitudinal wave solutions on a thin metal rod of finite length L, with one
end at x = 0 and the other at x = L. The displacement functionη(t, x) along the rod must satisfy the wave
equation (13.125) subject to certain boundary conditions and initial conditions. We specify these as follows. We
clamp the ends of the rod, so thatη(t, x) remains zero at each end, so the boundary conditions areη(t, 0) =
0 and η(t, L) = 0. Furthermore, we initially distort the rod longitudinally so that η(0, x) = αx for
0 ≤ x ≤ L/2, andα(L − x) for L/2 ≤ x ≤ L, whereα is a constant. In other words, η = 0 initially at
both ends, increasing linearly to a maximum in the middle, as shown in Figure 13.10. We then release the rod
from rest, so that ∂η(t, x)/∂t|t=0 = 0. We could certainly express the general solution in terms of waves
traveling to the right and to the left, where fL(x + v t) and fR(x − v t) are expanded in Fourier modes as in
(13.142). However, it is simpler and more natural here to use sums over standing waves rather than traveling
waves, since from the boundary conditions there are fixed nodes at x = 0 and x = L. Standing wave
solutions are made from linear combinations of right and left-traveling waves. For example, using the identity
sin(A + B) = sin A cos B + cos A sin B, the sum

fL + fR = sin(kx + ωt) + sin(kx − ωt) = (sin kx cos ωt + cos kx sin ωt)

+ (sin kx cos ωt − cos kx sin ωt) = 2 sin kx cos ωt, (13.143)

which is a standing wave, oscillating in place. Here k andω are related byω/k = v, where v is fixed by the
wave equation. Other combinations of sines and cosines of position and time can be found by adding traveling
waves with different phases. For the problem at hand, however, the example we just found is exactly what is
needed, because the spatial dependence must involve sines, not cosines, since η(t, x) = 0 at x = 0. Also
the time dependence must involve cosines, not sines, because the amplitude is a maximum at t = 0, which
follows from the initial condition that the distortion is released from rest, so the distortion can only decrease,
not increase. Putting this all together in the framework of Fourier series, the solution must have the form

η(t, x) =
∞∑

n=1

cn sin nk0x cos nk0vt. (13.144)

where k0 is the smallest possible wave number allowed by the boundary conditions, corresponding to a half-
wavelength between x = 0 and x = L. In fact, there are two boundary conditions, η(t, x = 0) = 0
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and also η(t, x = L) = 0, so sin nk0L = 0, fixing k0 ≡ 2π/λ0 = π/L. The solution can therefore be
written

η(t, x) =
∞∑

n=1

cn sin
nπx

L
cos

nπvt
L

. (13.145)

where all we have left to do is find the Fourier coefficients cn needed to match the shape of the initial distortion
of the rod, η(0, x) = αx for 0 ≤ x ≤ L/2, andα(L − x) for L/2 ≤ x ≤ L. That is, at t = 0:

η(0, x) =
∞∑

n=1

cn sin
nπx

L
=

{
α x 0 ≤ x ≤ L/2
α (L − x) L/2 ≤ x ≤ L

. (13.146)

To find how much of each wavelength (or wave number k = 2π/λ) is required, multiply both sides of this
equation by sin(mπx/L), where m is an arbitrary positive integer, and then integrate from 0 to L. That is:

∞∑
n=1

cn

∫ L

0
dx sin

mπx
L

sin
nπx

L

= α

∫ L/2

0
dx x sin

mπx
L

+ α

∫ L

L/2
dx (L − x) sin

mπx
L

. (13.147)

All of these integrals are readily performed. The integral on the left is 0 if m �= n and equal to L/2 if m = n.
That is, the given sine functions are orthogonal, as we would expect for normal mode solutions. The integrals
on the right containing the product x sin mπx/L can be evaluated by parts.a The final result is

cm =

(
4αL
π2m2

)
×

⎧⎪⎪⎨⎪⎪⎩
0 m = 2, 4, 6, . . .

1 m = 1, 5, 9, . . .

−1 m = 3, 7, 11 . . .

(13.148)

Note that for the nonzero (odd m) modes, their amplitudes decrease like 1/m2. So if we add up the first few
modes we come quite close to reproducing the shape of the initial conditions. The more modes we add in, the
better fit we get. �

aSee the Problems section at the end of this chapter on how to do integrals like the one on the left.

Beyond Periodic Boundary Conditions
Now abandon the assumption that the longitudinal waves on a metal rod (or
transverse waves on a stretched string) are necessarily periodic. A hypothetical
stretched string might be (effectively) infinite,4 with a displacement function η(t, x)
for transverse waves. Or we can admit that a rod or string has finite length, but
we do not establish fixed boundary conditions at the ends, so there are now no
restrictions on frequencies or wave numbers like those we have seen so far.

4 “Effectively infinite” means here that any transverse displacement function η(t, x) on the string never reaches
either end of it in any time of interest to us.
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For example, we might distort a stretched string into the initial shape η(0, x) ≡
f(x), and then release the string from rest; we could then try to find η(t, x) for all
t > 0. It is very useful in problems like these to use Fourier transforms to solve
problems with a continuum of frequencies or wave numbers. No longer do the
frequencies of oscillation form a discrete infinity, but a continuous infinity instead;
all frequencies or wave numbers must be considered. In the discrete case we had
13.142 or (in terms of a distance x)

f(x) =
∞∑

n=−∞
ane2πinx/L and an =

1
2π

∫ L/2

−L/2
dx f(x)e−2πinx/L, (13.149)

which include a countable (n = 0,±1,±2, . . .) infinity of modes. Now in the
continuous case we have5

f(x) =
∫ ∞

−∞
dk a(k)eikx and a(k) =

1
2π

∫ ∞

−∞
dx f(x)e−ikx. (13.150)

The wave number k = 2π/λ, a continuous variable, has replaced the discrete
counting index n, and an integral over the continuous variable k has replaced the
sum over the discrete index n.

This pair of equations is called a Fourier transform pair. That is, a function f(x)
in position space is the Fourier transform of a function a(k) in wave-number space,
and vice versa. If we know either function we can find the other by performing
an integration. One can think of a(k) as a measure of the amplitude of sinusoidal
waves of wave number k required to sum up to the given f(x). In this case of Fourier
integrals we are adding up a continuous infinity of different wave numbers, which
is what allows us to sum them up to functions that are not periodic, as we shall see.

Example 13.8 A Single Square Bump
Consider a square bump of width A:

f(x) =
{

1 −A/2 < x < A/2
0 |x| > A/2

(13.151)

shown in Figure 13.11(a). Obviously f(x) is not periodic. The Fourier transform of f(x) is

a(k) =
1

2π

∫ A/2

−A/2
dx e−ikx =

1
2π

(
e−ikx

−ik

)∣∣∣∣A/2

−A/2

=
1

2π

(
eikA/2 − e−ikA/2

ik

)
=

A
2π

(
sin kA/2

kA/2

)
, (13.152)

shown in Figure 13.11(b).

5 Fourier transforms are often written in an alternative form, with the factor 1/
√

2π in front of both the k and x
integrals. As long as the product of these factors is 1/2π, any choice is possible.
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Fig. 13.11 (a) A square bump f(x). (b) Its Fourier transform a(k).

The pair of functions f(x) and a(k) have very nice physical interpretations in this case. Suppose that a
plane wave of sound moving vertically upward, strikes a solid horizontal plate at altitude h = 0, with a slit of
width A removed, as shown in Figure 13.12(a). Let x be the horizontal coordinate, and f(x) be the amplitude of
the wave at the position of the plate. This amplitude will have the form of a square bump, because it will have a
constant nonzero value where it passes through the slit, and zero where it is blocked by the plate. After striking
the slit, the emitted wave has a(k) �= 0 given by (13.152) for k transverse to the direction of propagation.
These nonzero horizontal modes mean that the waves diffract to the left and right, and this diffraction pattern
can be observed on the screen. The parts of the wave with large k will deflect more to the sides than parts
with small k.

(b)(a)

A
intensity

position

Fig. 13.12 (a) A plane sound wave moving upward toward a plate with a slit removed. (b)
Wave intensity on a distant screen.

The intensity of the sound wave on the screen is proportional to the square of the amplitude; that is, the
intensity is proportional to

I ∼ a(k)2 ∼ sin2 kA/2
(kA/2)2 , (13.153)
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as illustrated in Figure 13.12(b). Let us measure how far the diffraction pattern has spread out by finding the
width of the central diffraction peak. The central peak extends from kA/2 = −π to kA/2 = +π, so
Δk = 2 × 2π/A, which is a measure of the width of the wave in k-space. The width of the wave in position
space is the width of the slit, which is equal to A. So if we were to decrease A, the width of the slit, the position
space width decreases while the k space width increases. Note that the product isΔkΔx = 2 × 2π/A ×
A = 4π, independent of A. The more one tries to confine the beam in position space (by narrowing the slit),
the less confined the beam is in wave-number space, and vice versa. Narrow slits cause more diffraction than
wide ones. �

Example 13.9 Dirac Delta Function
Let us find the Fourier transform of the Dirac “delta function”

f(x) = δ(x − x0) = ∞ (x = x0)

= 0 (x �= x0), (13.154)

with ∫ ∞

−∞
dx δ(x − x0)g(x) = g(x0). (13.155)

Note that for g(x) = 1, we have ∫ ∞

−∞
dx δ(x − x0) = 1. (13.156)

The Fourier transform of f(x) = δ(x − x0) is then

a(k) =
1

2π

∫ ∞

−∞
dx e−ikx δ(x − x0) =

1
2π

e−ikx0 , (13.157)

and so the inverse Fourier transform returns us back to

δ(x − x0) =
1

2π

∫ ∞

−∞
dx eikx e−ikx0 =

1
2π

∫ ∞

−∞
dx eik(x−x0), (13.158)

a very useful representation of the delta function.
In particular, this expression for the delta function demonstrates the consistency of the Fourier transform

pair of integrals: as seen earlier, an arbitrary function f(x) can be expressed as the integral

f(x) =
∫ ∞

−∞
dk a(k)eikx (13.159)

and

a(k) =
1

2π

∫ ∞

−∞
dx′ f(x′)e−ikx′ , (13.160)
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using a variable x′ to avoid confusion with the variable x we will use in the next equation. Now substitute this
latter expression back into (13.159). This gives

f(x) =
1

2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ f(x′)e−ikx′

=
1

2π

∫ ∞

−∞
dx′ f(x′)

∫ ∞

−∞
dk eik(x−x′), (13.161)

exchanging the order of integration, which we assume is valid here.a However, using (13.158), we get

f(x) =
∫ ∞

−∞
dx′ f(x′)δ(x − x′) = f(x), (13.162)

demonstrating self-consistency. �

aA theorem named for the Italian mathematician Guido Fubini shows when this exchange is valid.

The Wave Equation, Revisited
Now we can apply Fourier transforms to find longitudinal waves on a thin rod
or transverse waves on a stretched string. Transverse waves y(t, x) are easier to
visualize, so we will discuss those here; the mathematics of longitudinal waves is
exactly the same. First, we take the Fourier transform of the entire wave equation

∂2y
∂x2 =

1
v2

∂2y
∂t2

. (13.163)

by multiplying through by eikx and integrating over x. That is:∫ ∞

−∞
dx

∂2y(t, x)
∂x2 eikx =

1
v2

∫ ∞

−∞
dx

∂2y(t, x)
∂t2

eikx. (13.164)

The integral on the left can be integrated twice by parts (each time integrating one
of the partial derivatives with respect to x); the integrated parts vanish because we
assume the string is so long that no disturbances y(t, x) reach the ends in times of
interest. The wave equation in k space then becomes

(−ik)2Y(t, k) =
1
v2

∂2Y(t, k)
∂t2

, (13.165)

where Y(t, k) is the Fourier transform of y(t, x):

Y(t, k) =
1

2π

∫ ∞

−∞
dx y(t, x)eikx. (13.166)

The differential equation for the Fourier transform Y(t, k) is an ordinary differential
equation in the dependent variable Y and independent variable t, which is a great
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simplification we shall now exploit.6 Equation (13.165) is just a simple harmonic
oscillator equation, with solution

Y(t, k) = A(k)eivkt + B(k)e−ivkt, (13.167)

where A(k) and B(k) are arbitrary functions of the wave number k. These can be
determined from initial conditions as usual.

At time t = 0, and using both of the two preceding equations, the initial values
of Y and ∂Y/∂t are

Y(0, k) = A(k) + B(k) =
1

2π

∫ ∞

−∞
dx y(0, x)eikx, (13.168)

∂Y
∂t

(0, k) = (ivk)[A(k)− B(k)] =
1

2π

∫ ∞

−∞
dx

∂y(0, x)
∂t

eikx. (13.169)

Let the initial conditions be the initial position and the initial velocity of every point
on the string:

y(0, x) ≡ f(x) and
∂y(0, x)

∂t
≡ g(x). (13.170)

Therefore

A(k) + B(k) =
1

2π

∫ ∞

−∞
dx f(x)eikx. (13.171)

and

(ivk)[A(k)− B(k)] =
1

2π

∫ ∞

−∞
dx g(x)eikx, (13.172)

which are two equations for the two unknown functions A(k) and B(k) in terms of
the initial positions f(x) and velocities g(x). Solving for A(k) and B(k), we find

A(k) =
1

4π

∫ ∞

−∞
dx

(
f(x) +

g(x)
ikv

)
eikx (13.173)

and

B(k) =
1

4π

∫ ∞

−∞
dx

(
f(x)− g(x)

ikv

)
eikx. (13.174)

We now have Y(t, k) in terms of the initial conditions f(x) and g(x):

Y(t, k) = A(k)eivkt + B(k)e−ivkt

=
1

4π

∫ ∞

−∞
dx
[

f(x)
(

eik(x+vt) + eik(x−vt)
)

+
g(x)
ikv

(
eik(x+vt) − eik(x−vt)

)]
. (13.175)

6 Note that the Fourier transform Y(t, k) of the displacement y(t, x) is unrelated to the Young’s modulus Y of an
elastic material, introduced earlier in this chapter.
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The final step is to find y(t, x) itself, by taking the inverse Fourier transform of
Y(t, k). That is:

y(t, x) =
∫ ∞

−∞
dk Y(t, k)e−ikx. (13.176)

The quantity Y(t, k) contains an integral over x, which we will now relabel as x′, to
avoid confusion with the x in y(t, x). Therefore

y(t, x) =
∫ ∞

−∞
dk Y(t, k)e−ikx

=
1

4π

∫ ∞

−∞
dk

∫ ∞

−∞
dx′

[
f(x′)

(
eik(x′+vt) + eik(x′−vt)

)
e−ikx

+
g(x′)
ikv

(
eik(x′+vt) − eik(x′−vt)

)
e−ikx

]
. (13.177)

Now invert the order of integration:

y(t, x) =
1

4π

∫ ∞

−∞
dx′ f(x′)

∫ ∞

−∞
dk

(
eik(x′−(x−vt) + eik(x′−(x+vt)

)
+

1
4πiv

∫ ∞

−∞
dx′ g(x′)

∫ ∞

−∞

dk
k

(
eik(x′−(x−vt) − eik(x′−(x+vt)

)
,

which is the sum of two expressions we will call yf and yg. The first term yf is
greatly simplified using Eq. (13.158). It becomes

yf =
1

4π

∫ ∞

−∞
dx′ f(x′)

∫ ∞

−∞
dk

(
eik(x′−(x−vt) + eik(x′−(x+vt)

)
=

1
2

∫ ∞

−∞
dx′ f(x′) [δ(x′ − (x − vt) + δ(x′ − (x + vt))]

=
1
2
[f(x − vt) + f(x + vt)], (13.178)

the sum of two terms, each of which has exactly the same shape (but half the
height) of the original shape f(x) of the string. The term f(x − vt) represents this
shape moving to the right with speed v, while the term f(x + vt) represents this
same shape moving to the left with speed v. In fact, if the string is released from
rest, then g(x) = 0, so these are the only terms present in the solution. Therefore if
we begin by pulling the very long string into a Gaussian shape, for example, and
then releasing it from rest, we will see two Gaussian shapes emerge, one moving
to the right and one to the left, each half the height of the original.

But now suppose we do not release the string from rest, so that g(x) �= 0. Then
we have to evaluate the second set of terms:

yg =
1

4πiv

∫ ∞

−∞
dx′g(x′)

∫ ∞

−∞

dk
k

(
eik(x′−(x−vt) − eik(x′−(x+vt)

)
. (13.179)



566 13 Coupled Oscillators

We can evaluate the k integrals as follows. We know that eiθ = cos θ+i sin θ, where
the cosine and sine are even and odd functions of their arguments, respectively.
These arguments are proportional to 1/k in each case, so the integrands containing
sine functions divided by k are even functions of k, while those containing cosine
functions divided by k are odd functions of k. The k integrals extend from −∞
to +∞, which is an even interval, so those integrals containing cosine functions
will vanish (because the integral from −∞ → 0 will cancel the integral from
0 → +∞.) This leaves only the sine integrals. Therefore

yg =
1

4πv

∫ ∞

−∞
dx′g(x′)

∫ ∞

−∞

dk
k
(
sin kX′

1 − sin kX′
2
)

,

where

X′
1 ≡ x′ − (x − vt) and X′

2 ≡ x′ − (x + vt). (13.180)

The remaining integrals are somewhat nontrivial. With some effort, or looking it
up in tables, we find ∫ ∞

−∞
dk

sin ak
k

=

⎧⎨⎩
π a > 0
0 a = 0
−π a < 0

. (13.181)

Therefore, we get

4πvyg = π

∫ ∞

x−vt
dx′ g(x′)− π

∫ x−vt

−∞
dx′ g(x′)

− π

∫ ∞

x+vt
dx′ g(x′) + π

∫ x+vt

−∞
dx′ g(x′)

= 2π
∫ ∞

x−vt
dx′ g(x′)− 2π

∫ ∞

x+vt
dx′ g(x′)

= 2π
∫ x+vt

x−vt
dx′ g(x′). (13.182)

In summary, we have found that at any time t > 0, the shape of the string is

y(t, x) = yf + yg

=
1
2
[ f(x − vt) + f (x + vt)] +

1
2v

∫ x+vt

x−vt
dx′ g(x′), (13.183)

given that f(x) is the initial shape of the string and that g(x) is the initial time
derivative of the shape. With the help of Fourier transform methods, we have found
a general expression for transverse waves on a very long string, in terms of the
initial conditions y(0, x) ≡ f(x) and ∂y(t, x)/∂t|t=0 ≡ g(x). The solution is equally
valid for longitudinal waves on a long, thin rod, which we have modeled by the
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continuum limit of an infinite number of springs connecting an infinite number of
infinitesimal masses.

Finally, let us note that Eq. (13.183) can be written as

y(t, x) =
(

1
2

f (x − vt) +
1
2v

∫ 0

x−vt
dx′ g(x′)

)

+

(
1
2

f (x + vt)] +
1
2v

∫ x+vt

0
dx′ g(x′)

)
. (13.184)

The first term is some function of x − vt while the second is a function of x + vt.
Hence, the general solution of the wave equation is a sum of left and right-moving
profiles, as verified earlier.

We have illustrated the very powerful methods of Fourier series and Fourier
transforms, the first used for finite rods or strings or for periodic displacements,
and the second used for infinite rods or strings, or for displacements that are not
periodic.

13.5 Summary

In this chapter, we developed general techniques that can be used to analyze a great
many systems, with arbitrary numbers of degrees of freedom, when perturbed near
an equilibrium point. We saw that the general solution is a linear superposition of
normal modes of vibrations, which can in turn be determined by solving a well-
defined eigenvalue problem. It is often possible to intuitively guess at these normal
modes and hence quickly unravel what otherwise might be complex dynamics. It
is difficult to overemphasize the importance of such harmonic motion in physics.
We also developed techniques to extend the oscillations of a discrete number of
coupled oscillators to the realm of continuous systems, which leads to waves and
wave equations. Wave equations of course are very useful and even essential in
understanding quantum-mechanical systems as well as classical systems. Small
oscillations, whether of discrete or continuous systems, play central roles in
virtually every branch of modern physics.

Problems

Problem 13.1 Two blocks, of masses m and M, are connected by a single spring of��
force constant k. The blocks are free to slide on a frictionless table. Beginning with
the Lagrangian, find the oscillation frequency of the system in terms of k and the
reduced mass μ ≡ mM/(m + M). Show that for the special case M = m, the
frequency is what you would expect when the center of the spring remains at rest.
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Problem 13.2 Two blocks, of masses m and 2m, are connected together linearly by��
three springs of equal force constants k. The outer springs are also attached to
stationary walls, while the middle spring connects the two masses. Find the normal-
mode frequencies.

Problem 13.3 Reconsider the problem of two equal-mass blocks and three springs, in��
a straight line with the outer springs attached to stationary walls. Now suppose the
outer springs have the same force constant k, while the central spring has force
constant 2k. Find the eigenfrequencies and eigenvectors.

Problem 13.4 A hypothetical linear molecule of four atoms is free to move in three�
dimensions. How many degrees of freedom are there? How many translational
modes? How many rotational modes? How many vibrational modes? Then suppose
instead that the four atoms are all in the same plane but not lined up, still free to
move in three dimensions. How many degrees of freedom are there in this case,
and how many are there of each kind of translational, rotational, and vibrational
modes?

Problem 13.5 Find the normal modes of oscillation for small-amplitude motions of��
a double pendulum (a lower mass m hanging from an upper mass M), where the
pendulum lengths are equal. Find the normal-mode frequencies and the amplitude
ratios of M and m in each case. Let the generalized coordinates be θ1, the angle of
the upper mass relative to the vertical, and θ2, the angle of the lower mass relative
to the vertical.

Problem 13.6 A uniform horizontal rod of mass m and length � is supported against��
gravity by two identical springs, one at each end of the rod. Assuming the motion is
confined to the vertical plane, find the normal modes and frequencies of the system.
Then find the motion in case just one end of the rod is displaced from equilibrium
and released from rest.

Problem 13.7 The voltage across a capacitor is VC = q/C, where C is the capacitance��
and q is the charge on the capacitor. The voltage across an inductor is VL = dI/dt,
where L is the inductance and I is the current through the inductor. A wire attached
to a capacitor whose charge is changing carries a current I = dq/dt. The net
voltage drop around any closed circuit is zero, so a simple electrical L, C circuit
obeys Lq̈ + q/C = 0, and so oscillates with frequency ω = 1/

√
LC. Find the
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normal-mode oscillation frequencies and eigenvectors for each of the two-loop
circuits shown above, in the case C1 = C2 ≡ C, L1 = L2 ≡ L, C12 = 2C, and
L12 = 2L.

Problem 13.8 The voltage across a capacitor is VC = q/C, where C is the capacitance��
and q is the charge on the capacitor. The voltage across an inductor is VL = dI/dt,
where L is the inductance and I is the current through the inductor. A wire attached
to a capacitor whose charge is changing carries a current I = dq/dt. The net voltage
drop around any closed circuit is zero, so a simple electrical L, C circuit obeys
Lq̈ + q/C = 0, and so oscillates with frequency ω = 1/

√
LC. Find the normal-

mode oscillation frequencies of the three-loop circuit shown above, for the case
C1 = C2 = C3 = C and L1 = L2 = L12 = L23 = L.

Problem 13.9 A block of mass M can move without friction on a horizontal rail. A��
simple pendulum of mass m and length � hangs from the block. Find the normal-
mode frequencies for small-amplitude oscillations.

Problem 13.10 A block of mass M can move without friction on a horizontal rail.��
A horizontal spring of force constant k connects one end of the block to a stationary
wall. A simple pendulum of mass m and length � hangs from the block. Find the
normal-mode frequencies for small-amplitude oscillations.

Problem 13.11 The techniques used in this chapter can be extended to two- and three-��
dimensional systems. For example, we can find the normal-mode oscillations of a
system of three equal masses m and three equal springs k in the configuration of an
equilateral triangle, as shown in Figure 13.13(a).

We will suppose the masses are free to move only in the plane of the triangle,
so there are 3 × 2 = 6 degrees of freedom for this system. (a) How many of these
modes are translational? rotational? vibrational? (b) Show that the mass matrix is
given by

M̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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(b)(a)

Fig. 13.13 (a) Three masses attached with identical springs and arranged at the corners of an equilateral triangle.
(b) Depiction of the stretching of one of the springs, along with two position vectors.

while the spring matrix takes the form

K̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
2 k −k −k 0 0 0
−k 2 k −k 0 0 0
−k −k 2 k 0 0 0
0 0 0 2 k −k −k
0 0 0 −k 2 k −k
0 0 0 −k −k 2 k

⎞⎟⎟⎟⎟⎟⎟⎠ .

(c) Find the normal modes of vibrations; note that the matrices are block diagonal
in that 3 × 3 sub-blocks do not mix. Note that, due to degeneracies, you will need
to make choices for picking orthonormal eigenvectors. Show that, for one choice,
the normal modes take the form shown in Figure 13.14.

Problem 13.12 In the previous problem, three degenerate normal modes were derived�
for the case of three equal masses at the vertices of an equilateral triangle, where
the springs form the sides of the triangle. Any other oscillation in which the
CM remains at rest and the system has no angular momentum must be a linear
combination of these three modes. In particular, consider an oscillation identical
to that of the second normal mode of the previous problem, except that it has
been rotated to the right by 120◦, so for example mass no. 2 at the lower right
now oscillates directly toward and away from the CM, rather than mass no. 1. By
symmetry with the second normal mode, this mode should be possible, and should
have the same frequency. Find the linear combination of the normal modes of the
previous problem which is equal to the oscillation described above.

Problem 13.13 Starting from the matrix equation���

(K̂ − ω2
i M̂)bi = 0, (13.185)
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(a)

(b)

(c)

Fig. 13.14 The three vibrational modes of the triangular molecule.

for the ith eigenvector, and knowing that K̂ and M̂ are symmetric and real, prove
the following statements: (a) bj

†M̂bj is real and positive definite (no sum over
j implied); (b) the eigenvalues ω2

i are real; (c) bj
†K̂bj is also real and positive

definite if the system is stable (no sum over j implied); (d) bi and bj are orthogonal
if ω2

i �= ω2
j ; (e) the eigenvectors bi are real up to a multiplicative constant.

Problem 13.14 (a) The “6–12” potential energy U(r) = −2a/r6 + b/r12, where a and�
b are positive constants, is sometimes used to approximate the potential energy
between two atoms in a diatomic molecule, where the atoms are separated by a
distance r. Find the effective force constant and the angular frequency of small
oscillations of a classical atom of mass m about the equilibrium point. (b) Repeat
part (a) for the “Morse” potential energy U(r) = De(1 − ea(r−r0))2, where De, a,
and r0 are constants.

Problem 13.15 Consider an infinite number of masses m connected in a linear array to��
an infinite number of springs k. In equilibrium the masses are separated by distance
a. Now allow small-amplitude transverse displacements of the masses, and take
the limit as a → 0, with an infinite number of infinitesimal masses and an infinite
number of infinitesimal spring constants, so that the shape of the array as a function
of time and space is given by η(t, x), where η is transverse to the direction of the
array in equilibrium. Show that if the amplitude is very small, then η(t, x) obeys
a linear wave equation, whose solutions can be traveling or standing transverse
waves.

Problem 13.16 (a) With the help of the trig identities��



572 13 Coupled Oscillators

sin(A ± B) = sinA cosB ± cosA sinB,
cos(A ± B) = cosA cosB ∓ sinA sinB,

prove the following results, often useful in Fourier analysis, where m and n are
positive integers with m �= n:

(i)
∫ π

−π
dθ sinmθ sin nθ = 0,

(ii)
∫ π

−π
dθ sinmθ cos nθ = 0,

(iii)
∫ π

−π
dθ cosmθ cos nθ = 0.

(b) Evaluate the same three integrals for the case m = n. (c) Evaluate the same
three integrals, for both m �= n and m = n, if the range of integration is (0,π)
instead of (−π,π).

Problem 13.17 A rod of length L is clamped at both ends x = 0, L so that the�
displacement function obeys η(t, 0) = η(t, L) = 0. Initially the displacement
function is η(0, x) = b sin2(πx/L) and ∂η(t, x)/{partial deriv}t|0 = 0, where
b is a positive constant. Find a Fourier-series representation of the solution of the
wave equation at all future times.

Problem 13.18 A rod of length L, with ends at (x = 0, L), has an initial displacement�
function η(0, x) = b for 0 ≤ x ≤ L/2 and η(0, x) = −b for L/2 ≤ x ≤ L, where b
is a positive constant. At time t = 0 the derivative of η(t, x) is ∂η(t, x)/∂t|0 = −v0
for 0 ≤ x ≤ L/2 and equal to +v0 for L/2 ≤ x ≤ L, where v0 is a positive
constant. Find a Fourier-series representation of the solution of the wave equation
at all future times using the doubling trick.

Problem 13.19 A rod of length L, with ends at (x = 0, L), has an initial displacement�
function η(0, 0) = η(0, L) = 0 and η(0, x) = b for 0 < x < L, where b is a positive
constant. (That is, η is discontinuous at the ends.) At time t = 0 the derivative of η
with respect to time is ∂η(t, x)/∂t = 0 for all x. Find a Fourier-series representation
of the solution of the wave equation at all future times, for points 0 < x < L.

Problem 13.20 One end of a rod of length L is held at x = 0 while the other end is�
stretched from x = L to x = (1+a)L, where a is a constant. In this way an arbitrary
point x in the rod is moved to (1 + a)x. Then at time t = 0 the rod is released. (a)
What is the initial value of the displacement function η(0, x)? (b) Find η(t, x). (c)
Show that the velocity at the left end of the rod is either 2av or −2av, alternating
between these values with a time interval L/v, where v is the wave velocity in the
rod. You might want to use the doubling trick from the text.
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Problem 13.21 An infinite rod has an initial square-pulse displacement function�
η(0, x) = C, a constant, for |x| ≤ b and η(0, x) = 0 for |x| > b. (a) Find the
displacement function η(t, x) at later times, assuming all mass points in the rod are
initially at rest. (b) Carry out a Fourier transform of η(0, x) to determine g(0, k),
which shows the degree to which various wavelengths make up the square pulse.

Problem 13.22 An infinite rod has an initial triangular-pulse displacement function��
η(0, x) = C − |x| for x < C, where C is a constant, and zero otherwise. (a) Find
the displacement function η(t, x) at later times, assuming all mass points in the rod
are initially at rest. (b) Carry out a Fourier transform of η(0, x) to determine g(0, k),
which shows the degree to which various wavelengths make up the triangular pulse.

Problem 13.23 An infinite rod has an initial Gaussian displacement function η(0, x) =��

Ae−x2/b2 , where A and b are constants. (a) Carry out a Fourier transform of η(0, x),
and show that the result is a Gaussian function in k space. (b) Then show that if the
Gaussian in position space is narrow (with b small), then the Gaussian in k space
is wide, and vice versa. (c) Define Δx as the distance between the two points on
the position-space Gaussian for which η(0, x) is half its maximum value. Similarly,
define Δk as the distance in k space between the two points on g(0, k) for which
g(0, k) is half its maximum value. Then find the product Δx · Δk, and show that
it is independent of b. Hint: The Fourier integrals can be evaluated by completing
the square in the exponents.

Problem 13.24 At the end of the chapter we derived a general expression for waves�
y(t, x) on a long string, in terms of the initial displacement y(0, x) ≡ f(x) and
velocity ∂y(0, x)/∂t ≡ g(x). Suppose that the initial displacement is y(0, x) = f(x),
where f(x) is some given function. (a) What g(x) would be required, in terms of
f(x), so that for any time t > 0, there is only a wave traveling to the right: y(t, x) =
f(x − vt)? (b) Find this g(x) in the special case that f(x) is the Gaussian function
f(x) = Ae−x2/b2 , where A and b are constants.

Problem 13.25 In the text we saw an example involving a nondiagonal mass matrix���
arising in the case of a single particle. In this problem, we will look at a similar
scenario for two particles. Consider two interacting particles of mass m1 and m2
constrained to move in one dimension described by the Lagrangian

L =
1
2

m1 q̇2
1 +

1
2

m2 q̇2
2 − U(q1 + q2).

The coordinates of the two particles are represented by q1 and q2 and the potential
energy function is given by U(Q) = αQ2/2 for some constant α. The novelty
here is that the potential between the two particles is not translationally invariant;
it does not depend on the distance between the particles, q ≡ q1 − q2. Instead, the
potential depends on the sum of the two coordinates Q ≡ q1 + q2. As a result, the
usual coordinate transformation from q1 and q2 to the center of mass coordinate
Qcm = (m1q1 +m2q2)/(m1 +m2) and the relative distance q = q1 − q2 is not very
useful. Instead, we want to transform to Q = q1 + q2 and q = q1 − q2. (a) Show
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that the Lagrangian in the Q and q coordinates takes the form

L =
1
8

M Q̇2 +
1
8

M q̇2 +
1
4

m Q̇ q̇ − U(Q),

where M ≡ m1 + m2 and m ≡ m1 − m2. (b) Find the eigenvalues and eigenvectors
of small oscillations. Elaborate briefly on the meaning of each normal mode.

Problem 13.26 Consider a particle of mass m moving in three dimensions but��
constrained to the surface of the paraboloid z = α ((x − 1)2 + (y − 1)2). The
particle is also subject to the spring potential U(x, y, z) = (1/2) k (x2 + y2). (a)
Show that the Lagrangian of the system is given by

L =
1
2

m ẋ2 (1 + 4α2)+ 1
2

m ẏ2 (1 + 4α2)+ 1
2

8 mα2ẋ ẏ − 1
2

k
(
x2 + y2)

to quadratic order in x, y, ẋ, and ẏ – assuming the displacement from the origin is
small. (b) Find the normal modes, eigenfrequencies, and eigenvectors.
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Deterministic evolution is a hallmark of classical mechanics. Given a set of exact
initial conditions, differential equations evolve the trajectories of particles into the
future and can exactly predict the location of every particle at any instant in time.
As famously written by the French mathematician and astronomer Pierre Simon de
Laplace (1749–1827):

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula
the movements of the greatest bodies of the universe and those of the tiniest atom; for
such an intellect nothing would be uncertain and the future just like the past would be
present before its eyes.1

Laplace’s universe was clock-like. Of course we now know that quantum mechan-
ics makes a precise and complete specification of initial conditions impossible,
and that the equations needed to solve for the future positions are fundamentally
probabilistic in nature. But even if the universe operated strictly according to
Newton’s laws, just as Laplace believed, in the real world it would never be
possible, with infinite precision, to know either the initial conditions or the exact
future motion. Neither measurements nor computer calculations can be perfectly
precise!

So what happens if our uncertainties in the initial position or velocity of a particle
are tiny? Does that mean that our uncertainties about the subsequent motion of
the particle are necessarily tiny as well? Or are there situations in which a very
slight change in initial conditions leads to huge changes in the later motion? For
example, can you really balance a pencil on its point? What has been learned
in relatively recent years is that, in contrast to Laplace’s vision of a clock-like
universe, deterministic systems are not necessarily predictable. Motion which is so
sensitive to initial conditions that it is hopeless to try to predict future motion is
said to be chaotic. For example, in the long run it turns out that even the future of
the solar system is unpredictable: the Newtonian gravitational forces between the
various planets and moons and asteroids and the sun add up to complex nonlinear
dynamics with all the necessary ingredients for chaos. But how then can we have

1 Laplace should have written: “. . . and all positions and velocities of all items of which nature is composed, . . . ”
so as to specify the complete set of initial conditions the intellect would need for the analysis.
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stable planetary orbits in such a system? What are the attributes of chaos and how
can we quantify it? We begin our discussion with the notion of integrability, which
ensures the absence of chaos.

14.1 Integrability

Consider a simple two-dimensional system consisting of a bob of mass m attached
to a spring of spring constant k and zero equilibrium length – as depicted in
Figure 14.1. The other end of the spring is kept fixed. For now, no gravity acts
on the bob.

Fig. 14.1 A bob of mass m attached to a spring moving in a two-dimensional plane. Initially, there is no gravity in
the problem.

The two degrees of freedom of the system can conveniently be chosen as the
polar coordinates r and θ of the bob. The Lagrangian is

L =
1
2

m
(

ṙ2 + r2θ̇2
)
− 1

2
k r2. (14.1)

The system is then symmetric under rotations as well as displacements in time.
From time displacement invariance, the energy is conserved:

E =
1
2

m
(

ṙ2 + r2θ̇2
)
+

1
2

k r2. (14.2)

Also, rotational invariance leads to angular momentum conservation:

� = m r2θ̇. (14.3)

This is a familiar system that we analyzed already in Chapter 7. Switching to the
Hamiltonian picture, the system is described in phase space by the coordinates
r, pr, θ, pθ, where
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pθ = m r2θ̇ = � (14.4)

and

pr = m ṙ. (14.5)

The Hamiltonian is the energy written in phase-space coordinates:

H =
p2

r
2 m

+
p2
θ

2 m r2 +
1
2

k r2 = E. (14.6)

This system is said to be integrable, where integrability is defined as follows. If a
system with N degrees of freedom – that is, with a 2 N-dimensional phase space –
has N conserved quantities that are in involution, the system is integrable.

So what is meant by “involution”? Let the conserved quantities of a system be
denoted by

Ci = Ci(q, p) (14.7)

for i = 1, . . . , N, each being a function of all 2 N phase-space coordinates in general.
These conserved quantities are said to be in involution if the Poisson brackets
vanish:

{Ci, Cj} = 0, (14.8)

for all i and j.
Let us apply this idea to the current example. We have two degrees of freedom

and a four-dimensional phase space. Our required two conserved quantities can be
C1 = H(r, pr, θ, pθ) and C2 = pθ. We can then check that {Ci, Cj} = 0. That is:

{H, pθ} =
∂H
∂r

∂pθ
∂pr

− ∂H
∂pr

∂pθ
∂r

+
∂H
∂θ

∂pθ
∂pθ

− ∂H
∂pθ

∂pθ
∂θ

= 0, (14.9)

since, as is easy to show, each term vanishes. Note also that we have
{H, H}= {pθ, pθ}= 0: the Poisson bracket of a function with itself is zero.
Therefore our system is integrable. This implies that we are guaranteed to succeed
in writing the solution to the equations of motion in the form of integrals. For
example, we can find r(t), pr(t), θ(t), pθ(t) for our system as follows. From
Hamilton’s equations

θ̇ =
∂H
∂pθ

=
pθ

m r2 , ṗθ = −∂H
∂θ

= 0, (14.10)

so that ∫
dθ = θ =

∫
pθ

m r2 dt, (14.11)

pθ = constant. (14.12)
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Also

ṙ =
∂H
∂pr

, ṗr = −∂H
∂r

, (14.13)

implying ∫
m r√

2 E m r2 − p2
θ − k m r4

dr =
∫

dt = t (14.14)

and ∫
dpr = pr =

∫ (
p2
θ

m r3 − k r
)

dt. (14.15)

We can start by integrating Eq. (14.14), which then allows us to find pr(t) and
θ(t) using Eqs. (14.15) and (14.11), respectively. And of course pθ is a constant
throughout, as implied by Eq. (14.12).

(a) (b) (c)

Fig. 14.2 (a) The r–pr –θ subspace of the phase space of the spring–mass system. A trajectory with pθ = 0 is
shown. Note that the θ = 0 plane is to be identified with the θ = 2 π plane. (b) A trajectory with
θ̇ =

√
k/m, which is preserved by the evolution, is shown. (c) A trajectory for a generic initial

condition is shown.

We now want to demonstrate how integrability implies nonchaotic evolution. In
phase space, the evolution of a mechanical system traces out a curve described by
qi(t) and pi(t). At every instant in time, the state of the system is a point in 2 N-
dimensional phase space. In our case, the phase space is four-dimensional, so it is
difficult to visualize from our three-dimensional point of view. However, we can
always take two- or three-dimensional cross-sections of the full four-dimensional
phase space. For example, Figure 14.2 shows a projection of the trajectory of the
bob into the r–pr–θ subspace. In this scenario, the picture is quite clear: the fourth
dimension of phase space is pθ, which remains constant through the evolution of
the bob’s motion. Hence, the trajectory is already confined to the pθ = constant
subspace and the projection in question is trivial. The figure shows trajectories
for three different initial conditions. For (a), we have pθ = 0, implying that the
bob oscillates radially. For (b), we have chosen θ̇=

√
k/m initially, which leads to
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circular motion, in which the spring force causes a purely centripetal acceleration.
Finally, for (c) we have the case of generic and arbitrary initial conditions. Hence,
we see that the trajectory is always confined to the surface of the cylinder shown
in the figure. However, notice that the z axis is an angular direction: θ = 2π is
to be identified with θ = 0. This implies that we need to glue the two ends of the
cylinder so that the shape of the surface where the trajectory lives is in fact a torus
(see Figure 14.3).

Fig. 14.3 A torus can be constructed by gluing the endpoints of a cylinder together.

(a) (b) (c)

Fig. 14.4 The trajectory of the bob in the x–px –y subspace. The initial conditions depicted correspond to the
pθ = 0 case in (a), where the motion lies along a line in the x–y plane; θ̇ =

√
k/m case in (b), where

the motion is a circle in the x–y plane; and the generic case in (c).

We can see this a little better if we switch to Cartesian coordinates and write the
Hamiltonian instead in terms of x, px, y, and py:

H =
p2

x
2 m

+
1
2

k x2 +
p2

y

2 m
+

1
2

k y2, (14.16)

which makes it clear that we simply have two decoupled harmonic oscillators with
the same angular frequency

√
k/m. Figure 14.4 shows the corresponding phase-

space picture in the x–px–y plane. We see the three different trajectories discussed
above as curves, once again, on a torus. Note that a torus has two noncontractible
cycles, as indicated in the figure.

The perspective in Cartesian coordinates also makes it clear how to think of
more general situations. In the current example, the two oscillators have the same
angular frequencies. Hence, when the trajectory winds once around the major cycle
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of the torus, it also winds once around the minor cycle. The resulting trajectory is
then closed. However, imagine a more general Hamiltonian of the form

H =
p2

x
2 m

+
1
2

mω2
1x2 +

p2
y

2 m
+

1
2

mω2
2 y2, (14.17)

where ω1 �= ω2. We still have two decoupled harmonic oscillators, but now they
have different frequencies. The system remains integrable, however; the energy
of each one-dimensional oscillator is separately conserved and thus we have two
conserved quantities for two total degrees of freedom. We can easily check that the
two energies are indeed in involution, as required for an integrable system. Now,
however, the trajectory in phase space can be much more interesting.

cycle B

cycle A

(b)(a)

Fig. 14.5 (a) The trajectory of the double oscillator in the x–px –y subspace when ν = ω1/ω2 = 1/3; the
trajectory lies on the surface of a torus as shown. Note that, in this case, cycle A of the torus is essentially
flat. (b) The scenario where ν is irrational.

Figure 14.5(a) shows the case where ω1/ω2 = 1/3. Each time the trajectory
winds three times around cycle A, it winds only once around cycle B. The full
trajectory is again closed, and it still lies on a torus. We can see that this pattern
will persist for any case where the ratio

ν =
ω1

ω2
(14.18)

is a rational number, i.e., a ratio of two integers. This ratio ν is called the winding
number of the trajectory. Conventionally one chooses to write ν such that ω1 <ω2,
so that 0≤ ν≤ 1. Figure 14.5(b) shows a qualitatively different behavior if the
winding number happens to be irrational: the trajectory never closes and densely
covers the surface of the torus as it evolves in time. Given enough time, the
trajectory can be shown to come as close as needed to any given point on the
torus.

For an integrable system in 2 N-dimensional phase space, the pattern we just
depicted is a general one: the trajectory of the system in phase space is confined to
the surface of an N dimensional torus. Hence the intersection of the N-subspaces
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defined by the conserved quantities Ci = Ci(q, p), with i = 1, . . . , N, is guaranteed
to be a torus in a 2 N − N = N-dimensional subspace. Such a torus, called an
N-torus, has N noncontractible cycles and can be imagined as an N-dimensional
hypercube with its opposing sides identified. The system is then characterized by
N angular frequencies, one for each noncontractible cycle. And depending on the
relation between these frequencies, the trajectory may close or may densely cover
the torus. The special coordinate system where the N-torus can be seen as an N-
dimensional hypercube is called the action angle perspective. This coordinate
system can always be constructed, provided the system is integrable. We will
discuss this topic in more detail later.

There is another technique for analyzing phase-space trajectories that is partic-
ularly useful when the system under consideration is not integrable. Since a 2 N-
dimensional phase-space picture is difficult to visualize for N > 1, one takes
snapshots of the trajectory in two-dimensional cross-sections of the full space.

Figure 14.6 illustrates the idea for constructing x–px maps for various cases of
the winding number ν. For our two-oscillator example, a point is drawn on the two-
dimensional map every time the trajectory crosses the y = 0 plane. For rational ν,
we end up with a discrete set of points circling the origin.

Fig. 14.6 The construction of the x–px map (Poincaré section) for the double oscillator. We see the process of
constructing the map from the perspective of the x–px –y subspace of phase space.

Figure 14.7(a) shows how the pattern of such points can be used to read off
the winding number ν. However, when ν is irrational, the points coalesce into
a closed curve as shown in Figure 14.7(b). Such curves are called KAM tori2
(even though they are cross-sections of higher-dimensional tori), while the two-
dimensional maps are called Poincaré sections. For integrable systems, Poincaré
sections consist of collections of closed loops and discrete points when we scan
over different initial conditions, as shown in Figure 14.8.

Something much more interesting happens when the mechanical system is not
integrable and hence is prone to chaos.

2 The name derives from the mathematicians Kolmogorov, Arnol’d, and Moser. We shall shortly describe an
important theorem they developed.
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Fig. 14.7 (a) A Poincaré section for rational winding number ν = a/b. Here, a and b can be read off from the
number of times we circle the central point and the number of points, respectively. (b) A Poincaré section
for irrational winding number.
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Fig. 14.8 A typical Poincaré section as we map out various initial conditions. (a) The case with rational winding
numbers for various initial conditions corresponding to different total energies. (b) The case with
irrational winding for similar initial conditions.

Consider a modified setup where we couple two equal-frequency harmonic
oscillators to each other as follows:

H =
p2

1
2 m

+
1
2

mΩ2q2
1 +

p2
2

2 m
+

1
2

mΩ2 q2
2 +

1
2 m3/2 q1q2

2 −
1

6 m3/2 q3
1. (14.19)

This system can be used to model the dynamics of a star in the axisymmetric
potential of a galaxy – with q1 being related to the radial location of the star from
the center of the galaxy while q2 is related to its angle of declination. This is named
the Hénon–Heiles system, and is known to be chaotic.

Figure 14.9(a) show a Poincaré section of the Hénon–Heiles dynamics. We see
that for certain initial conditions, the KAM tori have degenerated – implying that
the trajectory in the full phase space is no longer on the surface of a torus. To
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Fig. 14.9 (a) The x–px Poincaré section for the Hénon–Heiles system. (b) The same map when the system is
rendered integrable by a flip of a sign in the Hamiltonian.

contrast this with integrability, Figure 14.9(b) shows what happens if we flip a
single sign in the Hamiltonian of the Hénon–Heiles system. If we consider instead

H =
p2

1
2 m

+
1
2

mΩ2q2
1 +

p2
2

2 m
+

1
2

mΩ2 q2
2 +

1
2 m3/2 q1q2

2 +
1

6 m3/2 q3
1 (14.20)

(note the sign flip in the last term!), the dynamics becomes in fact integrable,
although that is far from obvious. Poincaré sections provide us with a rather elegant
technique to determine whether a system is chaotic (and hence non-integrable). It
turns out to be much more difficult to show that a system is integrable.

Our goal is to analyze what happens as an integrable system is turned into a
chaotic one. There are several ways to achieve chaos starting from an integrable
system. One technique is to add some significant nonlinear time-independent
couplings in the Hamiltonian all at once, as in the Hénon–Heiles case. A more
controlled approach is to add such a coupling, but to do so gradually. That is, add
a small nonlinear perturbation to an integrable system in the hope of observing
the onset of chaos as the perturbation is gradually increased. These all lead to
examples of conservative chaos: the Hamiltonian remains independent of time,
and energy is conserved. Alternatively, one can achieve chaotic dynamics by
adding dissipation and external time-dependent forces to a system. The latter
corresponds to dissipative chaos and is described in detail in Section 14.3. For
now we explore the case of conservative chaos.

14.2 Conservative Chaos

Consider our example from the previous section, the bob at the end of a spring,
with two modifications. We set the rest length of the spring equal to r0 instead of
zero, and we add uniform gravity so that the system is more like a pendulum:
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L =
1
2

m
(

ṙ2 + r2θ̇2
)
− 1

2
k (r − r0)

2 + m g r cos θ, (14.21)

where we have returned to polar coordinates. We plan to turn on the gravitational
effect gradually, tuning g from zero to higher values as we study the response of
the system through Poincaré sections. The energy

E =
1
2

m
(

ṙ2 + r2θ̇2
)
+

1
2

k (r − r0)
2 − m g r cos θ (14.22)

is still conserved, since the Hamiltonian is time independent. However, we have
lost rotational invariance, so the angular momentum is no longer conserved. We
therefore have only one of the two required conserved quantities needed for
an integrable system with two degrees of freedom. Indeed, a second conserved
quantity does not exist and the system is known to be chaotic.

To demonstrate the non-integrability of this system, we need to solve the
equations of motion numerically. Section 14.6 presents a brief discussion of handy
numerical techniques – including a fourth-order Runge–Kutta algorithm – to study
such a mechanical system on a computer. The first task is to write the dynamics
in terms of dimensionless variables and to identify the relevant external tunable
parameters. In this case, we first note that the natural scale for the radial coordinate
r is given by the spring’s rest length r0, so that we will let

R =
r
r0

, (14.23)

where the new radial coordinate R is dimensionless. We can use two of the other
parameters, k and m, to define a dimensionless time

T =

√
k
m

t, (14.24)

where T is dimensionless and measures the number of oscillation periods. Time
derivatives then convert as

d
dt

=

√
k
m

d
dT

. (14.25)

We can then rewrite the Lagrangian in terms of the dimensionless radius and
dimensionless time:

L =
1
2

(
Ṙ2 + R2θ̇2

)
− 1

2
(R − 1)2 + εR cos θ, (14.26)

where we have dropped an overall multiplicative constant (which does not affect
the equations of motion), where the overdots now mean d/dT, and where we have
defined the dimensionless perturbation parameter

ε ≡ m g
k r0

. (14.27)
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Now the idea is to begin with ε = 0, and then gradually increase this “control
parameter” ε to see how the dynamics is affected. From now on we will assume
that ε  1.

We start by considering a special set of initial conditions where θ is small and R
is near its static equilibrium length Req = 1 + ε. So we let

R = Req + x = 1 + ε+ x, cos θ � 1 − θ2

2
, (14.28)

where x  Req and θ  1. Substituting these into the Lagrangian, and expanding
to quadratic order in the small parameters x and θ, we find

L =
1
2

ẋ2 − 1
2

x2 +
1
2
(1 + ε)2θ̇2 − 1

2
ε(1 + ε)θ2. (14.29)

Therefore, as we may have expected, we have in effect two harmonic oscillators
with angular frequencies

ωx = 1, ωθ =

√
ε

1 + ε
. (14.30)

Within this restricted set of initial conditions – small angles and small radial
displacements – the curves on the Poincaré sections would be simply KAM tori.
The winding number

ν =
ωθ

ωx
=

√
ε

1 + ε
(14.31)

is in general irrational, except for special values of ε. Note that the treatment is
self-consistent since starting with small x and θ assures that x and θ stay small.

If we look beyond this very restricted set of initial conditions, the Poincaré
sections become much more interesting. For small but fixed perturbation ε, the
winding numbers of KAM tori for different initial conditions become functions of
the initial conditions, as depicted in Figure 14.10.

Shown are two KAM tori with different irrational winding numbers. Their
shapes are found to be slightly deformed from what they would have been had
we not turned on the perturbation. At the center is a single point – a KAM torus
of winding number ν = 1. For the θ–pθ section, this corresponds to stable vertical
oscillations at fixed θ = 0. Such central points on Poincaré sections are stable
tori, often called fixed points or elliptic points, around which other KAM tori are
arranged. As we scan over initial conditions moving between the two irrational
KAM tori shown in the figure, we will come upon the occasional rational winding
number case. In these regions of the Poincaré section, we discover the onset of
chaos.

The celebrated KAM theorem of Kolmogorov, Arnol’d, and Moser proves
that if a small perturbation is added to an integrable system, initial conditions
corresponding to irrational KAM tori in Poincaré sections are affected by minimal
deformations – with the dynamics remaining nonchaotic. However, tori with ratio-
nal winding numbers are expected to disintegrate into chaotic motion. The “more



586 14 Complex Systems

-0.4

-0.15

-0.10

-0.05

0.05

0.10

0.15

-0.2 0.2 0.4

Fig. 14.10 The θ–pθ Poincaré section for the bead–spring system with gravity. The winding numbers become
functions of the initial conditions.

rational” an irrational number, the more unstable it becomes as the perturbation is
increased. To understand this subtlety, we need to know that any irrational number
ν can be approximated by a continued fraction expansion, as in

ν = c1 +
1

c2 +
1

c3+
1

c4+···

, (14.32)

where the cis are unique integers. The more cis we need to achieve a prescribed
precision for approximating ν, the “less rational” is ν. The larger the cis, the faster
the sequence converges to the desired precision. In this sense, the most irrational
number corresponds to the minimum value for the cis: ci = 1. This corresponds
to ν=(

√
5 − 1)/2�0.618033988 . . ., which is the inverse of the golden mean or

golden ratio in mathematics.3 It would correspond to the most stable KAM torus
under perturbation.

There is an intuitive way to understand why rational winding numbers are
seeds for chaotic dynamics: when the winding number is a rational number for
given initial conditions, the pattern in the Poincaré sections consists of a sequence
of disconnected dots, as shown earlier in Figure 14.8. This means that, as time
evolves, a small perturbation can constructively accumulate its effect on the
trajectory – as the latter traces over and over the same trajectory. Hence, the effect
of the perturbation grows with time and eventually the nonlinear effects from the
perturbation take over and destroy the potential KAM torus. However in a sense,
irrational winding numbers diffuse the effect of the perturbation as the trajectory
never traces back on itself, hence leading to stable tori.

3 The golden ratio φ ≡ 1.618033988 . . . is found as follows. Given two numbers a and b with a > b > 0, their
ratio is “golden” if a/b = (a + b)/a. This ratio was studied by both Pythagoras and Euclid, and has been
applied in architecture and elsewhere.
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The KAM theorem leads to very interesting conclusions. Most initial conditions
correspond to stable KAM tori – in the sense that most numbers between 0 and
1 are irrational. In contrast, there are an infinite number of rational numbers
between 0 and 1, and hence an infinite set of initial conditions that can lead
to chaos. In phase space, and for small perturbations, there are large basins or
regions of stable deterministic evolution. But even for the tiniest perturbation,
we are guaranteed that there also exists regions of phase space corresponding to
initial conditions leading to chaotic dynamics. In our example, for the smallest
gravitational perturbation of the pendulum, there are initial conditions at large
angles and large radial extents where the motion of the bead becomes chaotic. As
the nonlinear perturbation is tuned to even larger values, chaos takes over more
and more of the phase space, until we reach macroscopic chaos, where most of the
phase space describes chaotic evolution.

We can say a little more about the onset of chaos in regions of phase space where
rational winding numbers accumulate the effects of a weak nonlinear perturbation.

KAM torihyperbolic points

elliptic points

Fig. 14.11 The onset of chaos according to the Poincaré–Birkhoff theorem. A typical curve with rational winding
number ν = a/b is shown as it disintegrates into 2 b points, alternating between elliptic and
hyperbolic ones. The elliptic points seed to KAM tori around them, while the hyperbolic points seed
chaos in their vicinity.

Figure 14.11 shows a close-up of a chaotic region, and describes the pattern of
chaotic dynamics. This pattern is shown to be a general one through the Poincaré–
Birkhoff theorem: for a rational winding number of ν= a/b, one gets an integer
multiple of 2 b points along the would-be KAM torus – alternating between elliptic
points and hyperbolic points. The elliptic points are encircled by new tori as the
would-be KAM torus degenerates. For, say, 2 b total points, we get b elliptic points,
called also period b resonances. In contrast, the hyperbolic points seed fully chaotic
evolution. As one zooms onto hyperbolic regions, more elliptic regions may be
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found in a self-similar pattern. These patterns can be accorded fractal dimension,
defined and described in Appendix D.

So far, we have defined chaos as the absence of integrability. In this sense,
the small perturbation of our pendulum system renders the entire setup chaotic.
However, by looking at the details of the onset of chaos, we also saw that, for
different initial conditions, we may encounter basins of stability – specially when
the non-integrable nonlinearities are small. Thus, we have been visually identifying
regions of chaos in Poincaré sections as well as regions of KAM stability. It is
hence useful to introduce a more restrictive yet quantitative definition of chaos
that applies only in regions of phase space where KAM tori disintegrate and the
trajectory of the system does not live on the surface of any torus. A quantifiable new
definition of chaos goes as follows. Say we shift a given set of initial conditions by
a tiny amount and compute the coordinate distance d between the two trajectories

d2(t) =
∑

i

(
q′i(t)− qi(t)

)2 , (14.33)

where qi(t) is the trajectory resulting from the unshifted initial conditions and the
q′i(t) arises from the shifted one. If we find that, at long times, we have

d(t) ∝ eλt (14.34)

with λ> 0, we say that the corresponding initial conditions lead to chaotic
evolution. The quantity λ can then be computed and is known as the Lyapunov
exponent. Hence, regions of chaos in a Poincaré section can be labeled by
Lyapunov exponents. Extending this notion, if one finds that λ ≤ 0, we say that we
have attractor behavior – where the dynamics is attracted towards a stable torus in
phase space. Hence, you can imagine a contour map of λ onto a Poincaré section,
identifying chaotic initial conditions as well as nonchaotic ones.

Finally, let us connect our discussion of chaos to equilibrium statistical mechan-
ics – the microscopic framework that underlies thermodynamics. In equilibrium
statistical mechanics, there exists the central notion of ergodic evolution. One
typically has a system with a very large number of degrees of freedom (say of the
order of Avogadro’s number) plus typically some nonlinear interactions between
these degrees of freedom (whether weak or strong). The evolution of the system in
phase space is said to be ergodic if, given enough time, the trajectory of the system
comes arbitrarily close to any point in phase space. Indeed, chaotic dynamics shares
this feature with ergodic evolution: in the domains of phase space where chaos
ensues, the trajectory comes as close as you like to any point in the region, given
enough time. Hence, chaos implies ergodicity. The reverse is not true however.
One can have an integrable system with irrational winding numbers that lead to
trajectories on the N-torus that exhibit ergodicity on the surface of the torus. While
chaos is sufficient and often present in statistical mechanics systems, it is not
necessary.
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14.3 Dissipative Chaos

So far we have looked only at energy-conserving systems. However, chaos is also
observed in systems in which energy is not conserved. As a first step in constructing
an example, we begin with a simple pendulum, a nonlinear, energy-conserving
system, in which a bob of mass m swings back and forth in a plane, on the end of
a string (or massless rod) of length �. The equation of motion is

d2θ

dt2
+

g
�
sin θ = 0, (14.35)

which is linear in the limit of small amplitudes θ, but is generally nonlinear yet
integrable (given that there exists one conserved quantity in a two-dimensional
phase space). We have taken θ = 0 when the bob is at its lowest point. The mass
appeared in both terms, so has dropped out. Such nonlinear dynamical equations
can generate complicated solutions. However, this simple pendulum does not
exhibit chaos as expected; it is not extraordinarily sensitive to initial conditions –
small changes in initial conditions generally lead to small changes in the resulting
solution.

Now write the simple pendulum equation using a dimensionless time T, by
letting t =

√
�/g T. The equation then becomes

d2θ

dT2 + sin θ = 0. (14.36)

The corresponding motion in two-dimensional θ, pθ phase space is shown in
Figure 14.12. The paths are closed. We can solve the pendulum equation analyt-
ically, although not in terms of simple functions. The first integral of motion is the
dimensionless energy

E(θ, θ̇) =
1
2
θ̇2 + (1 − cos θ). (14.37)

For small E the motion is represented by circles centered about the points with
θ = ±2nπ, with n = 0, 1, 2, . . ., and the periods are independent of the amplitude.
The circles morph into ovals for somewhat larger energies, and the periods increase
with amplitude. When E > 2 the oscillations are replaced by continuous rotation
about the origin (the pendulum is then swinging round and round either clockwise
or counterclockwise). All these curves lie on a torus as we now know. Each of the
two curves forming the boundary between the oscillating and rotating regimes is
called a separatrix.

The first integral of motion can itself be integrated in terms of elliptic functions.
The result is a solution θ(T) determined by the initial conditions, which is what we
expect; but also the motion is not particularly sensitive to initial conditions except
near the separatrix. Even here we know the motion will turn out to be either very
large-amplitude oscillations or rotations that barely make it all the way around
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Fig. 14.12 Phase-space diagram for a simple pendulum.

in the same direction. The system is not yet complicated enough to exhibit truly
chaotic behavior.

Now add linear damping to the system, so that the equation of motion becomes

d2θ

dT2 + 2γ
dθ
dT

+ sin θ = 0. (14.38)

The equation can be solved exactly, and a typical phase-space plot of the solution
is shown in Figure 14.13(a). Note that there is a point “attractor” at the origin; all
solutions with γ > 0 eventually become zero-amplitude, zero-velocity solutions,
approaching the origin in phase space, which is the attractor. Energy of course is no
longer conserved, the system is not integrable, but there is still no sign of chaotic
behavior.

Now add a sinusoidal forcing function, which might be supplied by causing the
support point of the pendulum to move up and down periodically. The equation of
motion then becomes

d2θ

dT2 + 2γ
dθ
dT

+ sin θ = ξ cosωt = ξ cosΩT, (14.39)

where ω is the driving frequency and Ω = ω
√

�/g is a dimensionless driving
frequency. ξ measures the strength of the oscillating forcing function. A typical
solution for a weak driving force (with ξ very small) is shown in Figure 14.13(b).
It approaches what is called a limit cycle, which is the dotted phase-plane path in
the figure. In this case the attractor is the dotted path, which is a one-dimensional
curve.

There are now three parameters, γ, ξ, and Ω, with solutions depending upon all
three. The equation is nonlinear, so except in restricted ranges of parameter space
the solutions can be found only by numerical methods. First, suppose that ξ is small,
and that θ and θ̇ are both small initially. Then we expect that θ will remain small,
and so the differential equation becomes approximately
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Fig. 14.13 Phase-space diagram for (a) a linearly damped pendulum, with a point attractor at the origin, (b) a
damped oscillator with a small driving force, with a limit cycle attractor corresponding to the
steady-state solution, after transients have died out.

d2θ

dT2 + 2γ
dθ
dT

+ θ = ξ cosΩT, (14.40)

which is a linear damped, driven oscillator equation, which is exactly solvable. The
solution is the sum of a damped oscillator (the “transient” solution) and a steady-
state solution, which oscillates at frequency Ω but is generally out of phase with
the driving force. In the long run the transient dies out, leaving a pendulum that
swings back and forth with low amplitude and the same frequency as the driver,
but out of phase with it, so that

θ(t) = A cos(ΩT − δ), (14.41)

where δ is the phase angle between the driver and the bob’s motion. There is no
chaotic behavior. The amplitude and phase angle are

A =
ξ√

Ω4 − 2(1 − 2γ2)Ω2 + 1
and δ = tan−1 2γΩ

1 − Ω2 . (14.42)

Now suppose we gradually increase the driver strength ξ. Eventually there will
be departures from linearity; that is, with sin θ �= θ. At first one finds changes
in the amplitude shape and also small admixtures of higher-frequency modes of
oscillation, still with no chaotic behavior. But as the driving strength increases still
further, eventually very interesting behaviors take place. For example, the solutions
may begin to exhibit bifurcations in frequency, in which the pendulum may
oscillate alternately at one frequency and another, as illustrated in Figure 14.14.
As the driving force is cranked up further, there may be further bifurcations. The
solutions are still not chaotic, however; although not as regular as for very small
driving strengths, there is not the apparent complete randomness observed in
chaotic solutions. Eventually, however, as the driving force parameter ξ is raised
still further, the solutions become chaotic.

As we learned earlier, one can use Poincaré sections or maps to characterize
the motion of nonlinear systems and the onset of chaos. In the Poincaré section
for the pendulum, one draws the θ axis horizontally, and the pθ axis vertically.
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Fig. 14.14 Steady-state motion of a driven, damped pendulum for somewhat larger driving parameters ξ, showing
period doubling, in which the pendulum alternates between two frequencies, called a bifurcation.

Then once each cycle of the driver one plots the state of the pendulum on this
diagram. That is, at that particular cycle the pendulum will be at some particular
angle and will have some particular value of pθ, so the state of the pendulum is
mapped onto a single point in phase space. This process is repeated once each
cycle. Figure 14.15 shows the Poincaré map exhibiting the hallmark features of
chaos, now in a dissipative setting. As we can see, if the motion (after transients
have died out) becomes perfectly regular (as it will in the linear regime), the entire
plot becomes a single point in phase space, repeated ad infinitum at this same single
point. But in the nonlinear regime there will be some scatter in the points, which
may repeat in several or many points. In the chaotic regime the points may seem
to cover vast regions in phase space, while other regions are still free of points.
As shown in the diagram, the points seem to cover a wandering, two-dimensional
portion of the plane. Closer inspection reveals that they do not cover the two-
dimensional region quite densely, however. It turns out that the dimension of the
points is neither one-dimensional (as in a line) or two-dimensional (as in a region
of the plane) but somewhere in between. The dimensions are then said to be fractal,
as discussed in Appendix D. Note the regions in which the points tend to cluster;
these are attractors. However, these points have fractal dimensions, so are said to
be strange attractors.

Alternatively, we can study the system through a new analysis tool known as
a bifurcation diagram. Such a diagram is equally interesting, but serves a quite
different purpose. In a bifurcation diagram one plots the strength of the control
parameter (we have been using the driving strength parameter ξ as the control
parameter in our discussion of the pendulum) on the horizontal axis, and the long-
term pendulum amplitude on the vertical axis. In this way the bifurcation diagram
shows the linear regime, and where the solutions begin to bifurcate (alternating
between one frequency and another), and where chaos sets in. Figure 14.16
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Fig. 14.15 Typical Poincaré map for a driven, damped pendulum that has become chaotic. There are still attractors,
regions where the Poincaré points cluster, but they do not have integer dimensions, being somewhere
between one-dimensional (as in a limit cycle) and two-dimensional (densely covering a region of the
two-dimensional diagram).
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Fig. 14.16 A bifurcation diagram for a driven, damped pendulum, for certain initial conditions. The horizontal axis
represents the strength ξ of the driver, and the vertical axis measures the long-term response
(amplitude) of the pendulum. For very weak driving strengths the pendulum responds with a single
steady-state amplitude. As ξ is increased, there are eventually “pitchfork bifurcations” in which the
pendulum alternates between two frequencies. Additional bifurcations take place as ξ is increased still
further. Eventually chaos develops, where the amplitudes become unpredictable. There are, however,
occasionally small regions of relative stability (nonchaotic behavior) for various special values of ξ.

illustrates a bifurcation diagram for the driven pendulum. Note that each point
in the space is the result of a numerical solution of the equations with different
control parameter ξ, with both of the other parameters kept constant, and every
point corresponding to the same initial conditions for the pendulum. In the figure
we have used the initial conditions (θ0) = 0, (pθ)0 = 0.
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14.4 The Logistic Map

So far we have explored properties of nonlinear differential equations, such as
F = ma for nonlinear forces F. Chaos is also observed in solutions of nonlinear
difference equations, which often exhibit many of the same properties and are
easier to solve. Indeed, we will see in Section 14.6 that we can map a large class of
differential equations arising in dynamics onto difference equations – in an attempt
to solve a system numerically using a computer. A particularly interesting example
of a difference equation is the logistic equation, or logistic map

xn+1 = αxn(1 − xn), (14.43)

where 0 ≤ xn ≤ 1 and where the constant “control parameter” α is in the range
0 < α < 4. The map is nonlinear due to the x2

n term on the right. It is also iterative:
by choosing an initial value for x1 for the right-hand side we can calculate x2 from
the equation, and then from x2 we can calculate x3, and so on. So the logistic
equation becomes dynamical if we suppose that x changes once in every standard
time interval. The map has been used to model the population growth and decline
of a colony of animals, for example. If members of the colony reproduce once
each year, then after each year we let n advance by unity. Note that for very small
xn we have xn+1 =αxn, so early on, x grows approximately exponentially, as it
might if there is plenty of food. But then the colony eventually outgrows its food
supply, so begins to die off in accord with the second term on the right, −αx2

n. In
the population model the quantity x can be taken to be the ratio of the number
of animals in the colony to the “carrying capacity,” the largest number of animals
possible in the colony, consistent with the limitation 0 ≤ xn ≤ 1. The question is,
how does xn evolve, and is there eventually a stable population as n → ∞?

We can solve the logistic equation graphically with the help of Figure 14.17(a),
which plots xn+1 on the vertical axis and xn on the horizontal axis, for the special
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Fig. 14.17 The values of xn+1 vs. xn for the logistic map. Shown are two ways to iterate values.
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case α = 2. Shown is the continuous parabola y = αx(1 − x); every iteration of
the logistical map must have a value xn that is somewhere on this parabola. So we
begin with an arbitrary (small) value of x1, say x1 = 0.1, as shown. We note the
value of x2 on the vertical axis where the line from x1 intersects the parabola, which
is x2 = 0.18. Then we start over with this value of x2 on the horizontal axis, project
it up to the parabola to find x3 = 0.2952, x4 = 0.4161, x5 = 0.4859, x6 = 0.4996,
etc., asymptotically approaching x∞ = 0.5. This technique works, but there is a
faster and more visual way to find the successive values of xn, as illustrated in
Figure 14.17(b). In addition to the parabola, we draw the straight line xn+1 = xn,
tilted at 45◦. Now as before, we draw the vertical line denoting x1, which intersects
the parabola at vertical height x2. Then we “reflect” this original, vertical line off
the parabola into a horizontal line which remains at height x2. So then the horizontal
line intersects the tilted 45o line at x2. There follow alternate vertical and horizontal
“reflections” off the tilted line; every time a horizontal line intersects the tilted line,
we can read off a new value of xn. In this case, the value of x eventually settles
down to a steady-state “fixed point” at xn+1 = xn = 0.5, which is the intersection
point between parabola and line. Note that the population represented by xn grows
steadily at first, and then levels out, asymptotically approaching x∞ = 0.5.
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Fig. 14.18 Faster growth, withα = 2.9.

Now let the initial population growth be faster, with α = 2.9. We begin again
with the same initial population, x1 = 0.1, as shown in Figure 14.18(a). After
the faster initial growth, the plot now develops a “cobweb” appearance, with xn
varying from larger to smaller values and back again, decreasing in amplitude
to an “attractor” at x = 0.655 . . ., which is where the tilted 45◦ line intersects
the parabola. (An “attractor” is a point, line, region, . . . toward which solutions
of an equation evolve.) Therefore in this case, as shown in Figure 14.18(b),
the population begins by growing quickly, and then overshoots where it will
eventually settle, and subsequently oscillates about this equilibrium value with
ever-decreasing amplitude.

It is very interesting to make similar plots for various values of α. If there is a
sufficiently small control parameter, α < 1, corresponding to a low reproduction
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rate in a population, then xn → 0 as n → ∞: the animal colony ultimately goes
extinct. Graphically, when the slope of the parabola near the origin is less than one:

d
dx

(α x (1 − x))0 = α < 1, (14.44)

the only intersection point between the 45◦ line and the parabola is at the origin.
If 1 < α < 3, the population grows and ultimately reaches a nonzero steady-state
fixed point, as we showed above for the cases α = 2 and α = 2.9. The solution
oscillates for a time before settling down. Graphically, we now have an nontrivial
intersection point between the parabola and the 45◦ line. In general, the intersection
point is given by

α x (1 − x) = x ⇒ x = 1 − 1
α

, (14.45)

and hence the sequence converges eventually to this value.
Now consider a case for which α > 3, say α = 3.1. Then the graph of xn+1

vs. xn is shown in Figure 14.19(a). The solution never does settle down to a fixed
value of xn, but oscillates forever between x = 0.558 and x = 0.765, as shown in
Figure 14.19(b). In this case xn repeats itself every second oscillation, so is said to
be in a period-2 cycle. There are alternating boom and bust years for the population
being described. Graphically, one needs to consider f(f(x)), where f(x) = α x (a−x)
is the right-hand side of Eq. (14.43).
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Fig. 14.19 The case withα = 3.1.

More complicated behaviors await us for still larger values of α. If α = 3.5,
for example, the comparable diagrams are shown in Figure 14.20(a) and (b). Now
the cycle repeats itself every four generations, so is a period-4 cycle. This kind of
doubling behavior keeps occurring as α is gradually increased, to give a period-8
cycle, a period-16 cycle, and so on.

Computer simulations reveal that the value of α for which a new doubling, called
a bifurcation, occurs is as given in the table below:
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Fig. 14.20 The case withα = 3.5.

α1 = 3.0000 period 2 begins
α2 = 3.449 . . . period 4 begins
α3 = 3.54409 . . . period 8 begins
α4 = 3.5644 . . . period 16 begins
. . .
α∞ = 3.569946 period ∞ begins

The spacing between successive bifurcations becomes smaller and smaller, so that
the αk converge to a limiting value α∞. Now if we take the ratios

rk ≡
αk − αk−1

αk+1 − αk
, (14.46)

we find from the above numbers that the ratio is 4.722 for k = 2, 4.682 for k = 3,
and so on; as k → ∞, the ratio is

r∞ = limk→∞
αk − αk−1

αk+1 − αk
≡ δ = 4.669 201 609..., (14.47)

called Feigenbaum’s number. The remarkable thing about Feigenbaum’s number
δ = 4.669 . . . is its universal property. The same number is obtained for any
system that undergoes the same kind of period-doubling behavior for maps with
a quadratic maximum. In other ways the systems may be quite different, but this
number is independent of the specific map involved.

Another remarkable thing happens if 3.569946 < α < 4. We then enter a regime
in which there is a mixture of order and chaos. In the chaotic regions the value of x
no longer repeats itself at all. Figure 14.21 shows the plot of xn+1 vs. xn for α = 3.9,
for example.

Finally, we can construct a bifurcation diagram for the logistic map by carrying
out a large number of computer calculations for various control parameters α, as
shown in Figure 14.22(a). The horizontal axis is the value of α, and the vertical axis
shows the long-term value of x for that value of α. So for α< 3.0 there is a unique
long-term value of x; above α= 3 the bifurcations begin. Above α= 3.569946
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Fig. 14.21 Nonrepeating “populations” x for a control parameterα = 3.9.
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Fig. 14.22 (a) Bifurcation diagram for the logistic map, plotting the “population” x as a function of the control
parameterα. (b) The Lyapunov exponents as a function ofα.

the diagram displays a chaotic regime. In this regime there are no fixed long-
term values of x. Also the slightest change in the initial value of x will likely
make an enormous difference in the final outcome. Interpreting the diagram as
an application of population growth and decline, we can say that for a moderate
growth rate of 1 ≤ α ≤ 3.0, there is only a single ultimate number of animals
in the colony. For 3.0 < α < 3.449 . . ., the ultimate number of animals keeps
changing each year between two possible results, called period doubling. In one
year the number of animals might be at the high end, too high for all to survive, so
the following year the number falls to the lower value. But then the food is adequate
for the animals to not only survive but to have offspring, so the number bounces
back to the higher value. As α is increased in the range 3.449 < α < 3.569946,
there are further bifurcations, so there are always an even number 4, 8, 16, . . . of
possible numbers of animals, cycling from one to another from year to year. Then
for most of the range α > 3.569946 there is no repetition whatever from year to
year. This is the chaotic regime. There are still “windows” of periodicity within
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this region, which can be seen from the figure. Notice also that the special points at
which bifurcation emerges are also where the Lyapunov exponents vanish, as can
be seen from Figure 14.22(b).

As we see, the complex visual patterns that one often generates in studying chaos
can be quantitatively analyzed and classified using various techniques. Another
useful notion that commonly arises in the analysis of chaotic systems is that of
fractal dimension. For this, the reader is referred to Appendix D for further reading.

14.5 Perturbation Techniques

In many situations, the dynamics of a physical system divides into two sectors with
qualitatively different roles: one sector involves well-understood and integrable
dynamics; the other is a small nonlinear effect that perturbs the otherwise tractable
situation. For example, consider a one-dimensional simple harmonic oscillator
perturbed by a small quadratic term as in

q̈ + ω2q + ε q3 = 0, (14.48)

written in terms of the degree of freedom q(t). The two constants ω and ε
parameterize the equation. In the limit where ε → 0, the system describes a
harmonic oscillator with angular frequency ω. The term proportional to ε adds a
nonlinearity, and we want to focus on the regime where the effect of ε is small.
More concretely, we want

ω2 � ε q(t)2, (14.49)

so that the last term in Eq. (14.48) is negligible. This is achieved by taking ε small,
but also by ensuring that q(t) does not become too big. If this scenario is realized,
we can study the dynamics of the system using a myriad of approximation tech-
niques that are often collectively and broadly referred to as classical perturbation
theory. Here, we describe a couple of the most common approaches.

In case we have ε = 0 in Eq. (14.48), we know that q(t) would be a combination
of sines and cosines. Taking the boundary condition

q(0) = A, q̇(0) = 0, (14.50)

we get in particular

q(t) = q0(t) = A cos ω t, (14.51)

where we have labeled the solution with a zero subscript to emphasize that it
corresponds to the special case without the nonlinear force term in Eq. (14.48) , i.e.,
when ε= 0. The next step is to devise a controlled scheme where one computes
small corrections to (14.51), induced by the ε-dependent nonlinear term in the
equation of motion. For this purpose, it is very helpful if we were to identify a
dimensionless small parameter that controls the importance of these corrections. As
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it currently stands, a statement like ε  1 is meaningless as ε is not dimensionless:
indeed, ε q2 has units of frequency squared, as can be seen from (14.48). First, we
rescale time to absorb the angular frequency ω: s ≡ ω t. s is then dimensionless
and the equation of motion becomes

q̈ + q +
ε

ω2 q3 = 0, (14.52)

where q̈ now stands for d2q/ds2 instead of d2q/dt2. Next, we write Q ≡ q/A,
where A is the amplitude of the harmonic oscillation from Eq. (14.51). Q is then
dimensionless and the equation of motion becomes

Q̈ + Q +
εA2

ω2 Q3 = 0. (14.53)

Here both Q and time have been turned into dimensionless variables. So we now
see that we should define

ε ≡ εA2

ω2 (14.54)

as the small dimensionless perturbation parameter. We then have the rescaled
equation of motion

Q̈ + Q + εQ3 = 0, (14.55)

where we are interested in the regime with ε  1, so that the last term of the
equation is considered a small perturbation to the harmonic oscillator. We still need
to make sure that the resulting Q(s) does not grow much more than order unity,
since this could make the last term large even for ε  1. In terms of dimensionless
variables, the solution given by Eq. (14.51) takes the form

Q0(s) = cos s, (14.56)

with Q0(0) = 1 and Q̇0(0) = 0. Assuming ε  1, we might expect that the
solution to (14.55) is close to Eq. (14.56), differing from it by a small amount. In
this spirit, we write

Q(s) = Q0(s) + εQ1(s) + ε2Q2(s) + · · · =
∞∑

n=0

εnQn(s), (14.57)

where Qn(s) for n > 0 are functions of time yet to be determined. These are meant
to be successively more refined corrections to the zeroth-order solution Q0(s). We
then substitute (14.57) into the equation of motion (14.55) and expand. The key to
this technique is that we expect that the resulting expression holds for any value
of ε. This in turn implies that all terms in the resulting equation with no powers
of ε should cancel among themselves, and that all terms with a single power of ε
should also cancel among themselves, and the same for terms involving ε2, and so
forth... We saw a similar approach in Chapter 10 where we studied the precession of
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planetary orbits due to small general relativistic corrections to Newtonian gravity.
In the current situation, the terms without ε give

Q̈0 + Q0 = 0. (14.58)

Then canceling the terms multiplied by a single power of ε leads to

Q̈1 + Q1 = −Q2
0. (14.59)

For order ε2 we find

Q̈2 + Q2 = −2 Q0Q1, (14.60)

and we can continue in this manner for higher powers of ε. Thus we see a pattern
emerging: at each order in ε we must solve an equation of the form

Q̈n + Qn = Fn(s) (14.61)

for Qn(s), with n = 1, 2, 3, . . .; Fn(s) is always constructed from the previous
solutions in the sequence, Qm(s) with m = 0, . . . , n − 1. For example, we have
F1(s) = −Q0(s)2 from (14.59); and F2(s) = −2 Q0(s)Q1(s) from (14.60).
Equation (14.61) is known as the forced harmonic oscillator, where Fn(s) plays
the role of an external time-dependent force. This differential equation can readily
be solved using Green function methods,4 and leads to the general solution

Qn(s) =
∫ s

0
Fn(s′) sin (s − s′) ds′, (14.62)

which corresponds to the boundary conditions

Qn(0) = 0, Q̇n(0) = 0, (14.63)

so that we still preserve the original boundary conditions on the full solution
Q(0) = 1 and Q̇(0) = 0. Hence, we now have an algorithm for successively
computing more refined corrections to Q0(s), building up towards the solution of
the full equation of motion given by (14.55).

Using (14.62), we then get from (14.59)

Q1(s) = −
∫ s

0
Q0(s′)2 sin (s − s′) ds′ =

1
6
(−3 + 2 cos s + cos 2s) . (14.64)

From this, using (14.57), we can reconstruct a solution to our original equation
(14.48) to first order in ε as

q(t) = A cos ωt − ε
A3

2ω2

(
1 − 2

3
cos ωt − 1

3
cos 2ωt

)
, (14.65)

where we have restored the result in terms of the original variables.

4 Green functions.
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Fig. 14.23 The solution of the nonlinear equation using first-order perturbation theory. The dotted–dashed line
describes the unperturbed scenario. The dashed line is the accurate solution obtained through numerical
integration. The solid line depicts the result from first-order perturbation theory discussed in the text.
We see how the errors accumulate as time progresses and the perturbation technique eventually falters.

Figure 14.23 shows a graph of q(t), comparing the first-order solution given
by (14.65) to a high-accuracy numerical solution. We see that our technique yields
decent results for small enough times, but errors accumulate over time, and perhaps
higher-order corrections in ε are needed to do better. However, this technique
does not guarantee that any truncated approximation of the series (14.57) will
provide sufficient accuracy. In many cases, as exemplified in the Problems section
at the end of this chapter, the scheme falters and leads to poor approximations
for sufficiently long times. There are various improvements that one can apply to
the method to make things more robust and useful. One common improvement
involves expanding other parameters in the original equation of motion in powers
of ε as well. In this example, we might consider solutions with a shifted angular
frequency

Ω = ω + ω1 ε+ ω2 ε+ · · · , (14.66)

instead of ω. The suggestion is that a good approximate solution is a function of
Ω t. The constants ω1, ω2, . . . are then determined by substituting the series (14.57)
in (14.55) as before – but replacing s with Ω s/ω; then expanding and matching
powers of ε as usual. This approach can work quite well and will be explored in
the Problems section at the end of this chapter.
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14.6 Numerical Techniques

There are relatively few mechanics problems that can be solved exactly, problems
that can be associated with closed-form analytical solutions. The vast majority of
interesting physical situations involve complex nonlinear dynamics, like the ones
encountered in this chapter. It is often jokingly said that physicists only know how
to solve the harmonic oscillator – everything else they either treat as a perturbation
of the oscillator or handle through numerical computational techniques. This is not
far from reality, so it is important for a modern physicist to be fluent in the use of
basic numerical methods.

When using a numerical approach to solve a physics problem, it can be easy
to lose sight of the physics. As modern numerical techniques get more involved
and sophisticated, we can have a “tail wagging the dog” scenario, where more
effort and time is spent on technique than on the underlying physics. At the other
extreme, a “black box” phenomenon can emerge where the physicist uses the
technology without knowing how it works under the hood – and this can lead to
incorrect physical interpretations of numerical results. All this can also be present
in the context of cherished analytical approaches, but it is more likely to be an
issue with numerical approaches because of the complexities involved and the
additional elaborate electronic layer between results and input. Hence, while it
is important to have a command of powerful numerical techniques, one needs to
use them with care – as yet another tool out of many, always keeping a focus on
the physics. For example, given a particular system, one should start by taking
certain simplifying limits in which one can solve these cases analytically. Then,
once analytical methods have been exhausted, implement carefully crafted and
reliable numerical techniques – keeping track of numerical errors in the results. The
numerical results must then be subjected to (1) sanity checks against the analytical
special limits, (2) repeated computations with different hardware systems, and
(3) internal numerical testing that for example checks against conservation laws
and other physical constraints on the solution. Computational physics lies, in a
sense, between theory and experiment: on the one hand, it builds upon a theoretical
hypothesis to understand a physical system; on the other hand, it generates data just
as experiments do and hence should be controlled for reproducibility, robustness,
and systematic and statistical errors.

In this section we collect several key numerical techniques useful in mechanics
and physics in general. We focus on techniques for computing the roots and
extrema of functions, integration methods, and strategies for solving differential
equations. Each topic can be handled by a wide array of methods and approaches,
but we will focus in each case on discussing a single technique that is both powerful
and suitable for use in many situations. The techniques will be described in some
detail, but to keep things concise the mathematical proofs will not be presented.
The reader is referred to the Further Reading section.
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Roots and Extremization
A common problem that one encounters in physics involves finding the roots of a
set of functions

Fi(r) = 0, for i = 1, . . . , N, (14.67)

where we consider a system of N equations that depend on N variables r =
(x1, x2, . . . , xN). Solutions to this set of equations are points r0, if any, where all the
N functions vanish. For the simplest N = 1 case, one wants to find the roots of a
single function depending on a single variable. One of the most versatile algorithms
for solving this problem numerically is known as the Newton–Raphson method.
This requires that we compute, analytically or numerically, the derivatives of the
functions

Jij =
∂Fi
∂xj . (14.68)

The approach relies on starting with a guess for r0 and iteratively zeroing onto the
solution by perturbing the guess. The method generally works best if the initial
guess is close to the final solution, and there are methods to improve the quality of
the initial guess. These might involve bracketing techniques, for example, where
one coarsely scans over r to find windows where the functions Fi flip signs. Let
us assume that a good guess has been identified, and let us call it r0. The Newton–
Raphson algorithm then proceeds as follows:

1. Solve the linear algebra problem

Ĵ0 · δx = −F0 (14.69)

for δx – where we have written the derivatives from (14.68) evaluated at r0 as
an N × N matrix Ĵ0, and F0 is the vector whose components are the functions
Fi evaluated at the guess r0. To find δx, one needs to invert Ĵ, hence this matrix
cannot be singular. A common approach to finding δx is to use a numerical LU
decomposition of Ĵ.5

2. Modify your guess as follows:

r0 → r0 + δx. (14.70)

3. Iterate over steps 1 and 2 until F0 approaches zero to the desired level of
accuracy.

Figure 14.24 shows the algorithm at work for the case where N = 1. As you can
see, the idea is to use the local slope of the function to shoot toward a point where
the function crosses zero.

In certain special circumstances this algorithm can fail miserably. For example,
if a guess lands near an extremum during an iteration, the Ĵ would become very
small or vanish!

5 From linear algebra, a matrix M̂ can be LU decomposed as M̂ = L̂ · Û, where L̂ is lower triangular and Û is
upper triangular.



605 14.6 Numerical Techniques
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Fig. 14.24 The Newton–Raphson algorithm for root finding for the one-dimensional case. The root, indicated by a
star, is zeroed onto by successive steps 1, 2, 3, etc.

There is a particular root-finding problem that arises commonly enough in
physics for special attention to be warranted: the problem of finding the roots of a
polynomial. Consider the polynomial of degree N of the form

p(x) =
N∑

n=0

anxn. (14.71)

To find the roots p(x) = 0 of this polynomials, it can be shown that one needs to
solve the linear algebra problem

det
[
Â− x 1̂

]
= 0, (14.72)

where the N × N matrix Â is given by

Â =

⎛⎜⎜⎜⎜⎜⎝
− aN−1

aN
− aN−2

aN
− aN−32

aN
· · · − a11

aN
− a0

aN
1 0 0 · · · 0 0
0 1 0 · · · 0 0

. . . 0 0
0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠ . (14.73)

The eigenvalues of Â are the roots of the polynomial. There are many well-tested
efficient algorithms to find the eigenvalues of a matrix numerically, so the problem
is straightforward to tackle.

Another class of problems that we often encounter in physics involves finding
the extrema of a function instead of its roots. Suppose we have a function f(r) of
N dependent variables, and we want to find where the function has minima. The
straightforward approach is to start with a guess r0 and move in the direction of the
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local slope of f so as to decrease the value of the function. And we want to repeat
this process as we slide down valleys of f and land in a minimum. The challenge
is that the convergence to a minimum might be slow. For example, if the function
has a long narrow valley, a naive algorithm might slalom back and forth in the
valley – instead of heading down the narrow ditch towards the minimum more
directly. The algorithm known as the conjugate gradient method is an attempt at
moving down the slopes of the function in a smarter way so as to avoid long zigzags
toward the minima. The method starts with a good guess, one that lies in a narrow
window where we know we will find a minimum. As in the discussion of root
finding, bracketing techniques might be used to start with a decent guess. In this
case, bracketing would involve scanning over r to find islands where the function’s
value somewhere within the island is less than all of its values on the boundaries.
We then call the guess r0 and define

g0 = h0 = −∇f(r0). (14.74)

We then proceed as follows:

1. We compute step i + 1 of the algorithm from step i, starting from i = 0:

ri+1 = ri + λhi, (14.75)

where we find the value of λ that minimizes f along hi. We can do this by
scanning upward over λ starting from 0 until the function starts increasing
instead of decreasing.

2. We then compute the next values of g and h as follows:

gi+1 = −∇f(ri+1) and hi+1 = gi+1 + γihi, (14.76)

where we define

γi =
gi+1 · (gi+1 − gi)

gi · gi
. (14.77)

3. Steps 1 and 2 are then repeated until a value of i is reached that identifies the
minimum to the desired accuracy. This can be assessed by comparing the change
in subsequent steps f(ri+1)− f(ri).

Notice that at each step one moves toward lower values of f almost along the
decreasing slope of the function – hence the “gradient” in the name of the method.
The movement is done along a vector hi that is the gradient of the function but
shifted “sideways” to avoid being trapped zigzagging in narrow valleys. The gi
and hi vectors are chosen so that they satisfy

gi · gj = gi · hj = 0 (14.78)

for j < i; that is, they are mutually orthogonal. So from (14.76), we see that
one always moves in a direction orthogonal to the gradient in the previous step.
Figure 14.76 shows how this technique accelerates convergence to the minimum
in the dangerous scenario in which one lands in a narrow valley.
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Fig. 14.25 The conjugate gradient algorithm in a narrow valley in successive steps 1, 2, 3, etc.

Integration
Integration is ubiquitous in physics, and one often has to resort to numerical
methods to handle complicated integrals. We start with the case of one-dimensional
integration. While there are many numerical techniques that we might discuss, we
focus on one that is powerful and well-established, that of Gaussian quadratures.
Consider an integral of the form

I =
∫ b

a
W(x)f(x)dx, (14.79)

where we have written the integrand as a product of two functions, W(x) and f(x).
The function W(x) is meant to be a factor that we will specify to identify different
algorithmic classes, and f(x) is whatever is left to make the integrand what it is
supposed to be. The idea is that W(x) can be the singular part of the integrand, and
for given W(x) we can employ a method of discretizing the integral into a sum that
is best adapted to the singular behavior of the integrand. The Gaussian quadrature
method writes the numerical result of the integral as

I �
N−1∑
i=0

wif(xi), (14.80)

where the wis are called weights and the xis are called the abscissa. Here N
is the order of the approximation. As we shall see, all these parameters are
determined from special polynomial functions. It can be shown mathematically that
the Gaussian quadrature method, given by expression (14.80) at fixed order N, can
approximate the integral of interest well if the function f(x) can be approximated
to a desired level of accuracy by a polynomial of degree 2 N − 1 in the integration
interval (a, b).

To determine the weights, abscissa, and order, we proceed as follows. Let pk(x)
be a set of orthonormal polynomials such that their orthogonality is given by∫ b

a
W(x)p∗k(x)pl(x)dx = 0 (14.81)
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for k �= l. Note that the limits of the integration a and b, and the function W(x), are
all the same as in the integral of interest given by Eq. (14.79). Each polynomial is
of degree k:

pk(x) =
k∑

n=0

ak
nxn, (14.82)

where ak
n are constants. We start by fixing an order N for the integration, determined

by trial and error so as to achieve a desired level of numerical accuracy for the
integral (14.79). That is, we use the algorithm for N and N + 1, and we look at
the difference in the results; if the difference is less than the desired accuracy, we
can pick N; otherwise, we compare N + 1 and N + 2, and so forth... Given N, the
abscissa xi are the N roots of the polynomial pN(x) = 0.

The weights wi are then given by

wi =
aN

N
aN−1

N−1

∫ b
a W(x)p∗N−1(x)pN−1(x)dx

pN−1(xi)p′N(xi)
. (14.83)

Therefore, we now have a full accounting of all the parameters appearing in Eq.
(14.80).

(a)

(b)

Fig. 14.26 The trapezoidal technique for numerical integration in (b) contrasted with the Riemann-sum approach
in (a).

For example, if the integral of interest has no singularities to remove, and if
the integration limits are a= − 1 and b= 1, we might choose the polynomials to
be the Legendre polynomials, with W(x)= 1, since the Legendre polynomials do
satisfy the orthonormality relation (14.81) for given W(x), a, and b (see Appendix E
for a brief discussion of Legendre polynomials and other special polynomials
we mention below). This method is significantly better than, for example, the
trapezoidal technique where almost all the wis are taken equal and the xis are evenly
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spaced in the interval (a, b) (see Figure 14.26). One often finds that N = 5 or
N = 6 is enough to achieve good results. The technique is most powerful when the
integrand has singularities yet the integral is finite. For example, if the singularity
in the integrand can be shifted to x = ±1 with a coordinate transformation, and we
have (a, b) = (−1, 1) once again, we might use

W(x) =
1√

1 − x2
; (14.84)

and we would then correspondingly choose the Chebyshev polynomials for the
roots and weights. For more general singularities so that

W(x) = (1 − x)α(1 + b)β (14.85)

with α,β > −1 is better suited, one can use the Jacobi polynomials. Note that all
these assume an integration interval (a, b) = (−1, 1) which we are typically able
to arrange by a proper coordinate transformation. In contrast, for (a, b) = (0,∞),
one can use W(x) = exp(−x) along with Laguerre polynomials; and for (a, b) =
(−∞,∞), take W(x) = exp(−x2) with Hermite polynomials. In general, given a
desired W(x), one can numerically construct a set of orthonormal polynomials that
work well; but this can sometimes be computationally complex and costly.

For multi-dimensional integrals, the most interesting algorithm is based on a
Monte-Carlo technique. Consider the N-dimensional integral∫ b1

a1

∫ b2

a2

· · ·
∫ bN

aN

dx1 dx2 · · · dxN f(x1, x2, . . . , xN). (14.86)

Using a combination of one-dimensional integration techniques is usually pro-
hibitively costly and error prone. Instead, one can use the following efficient tech-
nique. The integration region describes an N-dimensional hypercube delineated
by (a1, b1), (a2, b2), . . . , (aN, bN). The integral is computing an N + 1-dimensional
volume that lies under the surface f. Find the minimum and maximum of f, fmin,
and fmax, within the integration intervals; imagine an N+1-dimensional hypercube
constructed from the N-dimensional one plus an N + 1th direction constrained
between fmin and fmax. The function f fits nicely in this N+1-dimensional hypercube.
Proceed then as follows:

• Generate M random points in the N + 1-dimensional hypercube.
• Let us label each of these M points as xa

i , where i = 1, 2, . . . , M and a =
1, 2, . . . , N + 1. For each point, evaluate the function f, the integrand of the
integral, at xa

i for a = 1, 2, . . . , N and call it fi. Find the fraction of points for
which fi > xN+1

i . Call this fraction κ.
• The integral is then approximated by κ× V, where V is the volume of the N+ 1-

dimensional hypercube.

The algorithm is really a simple one. We find the fraction of random points
that would fall under the function f, then estimate the volume under the function
f by multiplying this fraction by the volume of the hypercube which encloses the
function. This is an efficient algorithm that works pretty well in many cases.
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Differential Equations
Time evolution in mechanics is generically described by a set of differential
equations. In the Lagrangian formulation, these equations are solved by the path
that extremizes the action given boundary conditions. Consequently, one approach
to numerically solve for the time evolution of a physical system is to find the
extremum of the action functional numerically. While this approach can work, in
practice integrating the differential equations of motion is often more fruitful. So,
we will focus on a class of computational techniques used to integrate differential
equations efficiently.

Lagrange equations of motion are second-order differential equations. These
are generally more difficult to handle than first-order ones. Fortunately, the
Hamiltonian formulation writes the time evolution of a system in terms of first-
order differential equations – at the cost of double the degrees of freedom. Hence,
a typical problem encountered in physics is that of solving a set of coupled first-
order differential equations. We write these as follows:

dz
dt

= f(t, z). (14.87)

where z(t) is a 2 N-dimensional vector whose components are the canonical
coordinates and momenta; f is typically constructed from derivatives of the
Hamiltonian. We will describe the Rosenbrock method of integrating this set of
coupled equations. The idea is to iteratively advance in time in steps Δt from an
initial time t0; at each step, we compute z(t) from data from the previous step and
the form of f . The most naive thing we can do is write Δz = f Δt and advance
z → z + Δz. This typically results in large errors as we advance in time, and
requires extremely small time steps Δt that render the approach computationally
inefficient. The idea of the Rosenbrock method is to sample the f at various
moments in time between time t and t +Δt in a manner to minimize accumulated
error. The result is a class of algorithm that can be summarized by the following:

z(t +Δt) = z(t) +
N∑

i=1

ai ki, (14.88)

where N is the order of the algorithm, the ais are constants to be determined, and
the kis are given by

ki = Δt f

⎛⎝t + αiΔt, z+
i−1∑
j=1

αijkj

⎞⎠ , (14.89)

where the αij are constants to be determined and

αi =
i−1∑
j=1

αij. (14.90)
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The constants ai and αij parameterize the algorithm. The essence of the technique
is to sample f at a sequence of N points near time t and position z, and construct
a weighted sum of these samples to advance z to the next time step. Depending
on the values of N, ai, and αij, we obtain different algorithms. These values are
typically computed using various mathematical approximation methods and they
are tabulated in the literature. One typically sees tables arranged as follows:

0 0 0 0 · · ·
α2 α21 0 0 · · ·
α3 α31 α32 0 · · ·
...

...
...

... . . .
αN αN1 αN2 . . .

a1 a2 . . . aN

The simplest case is known as the Euler method, given by the boring table

0 0
1

which is in practice very error prone. A workhorse of mechanics is the fourth-order
Runge–Kutta, given by the table

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

There are numerous other alternatives that the reader may look up in the literature;
but for many practical purposes, fourth-order Runge–Kutta works very well. One
important aspect of using any of these algorithms is to estimate the error that
accumulates in each iteration. You can do that by computing a time step with two
different algorithms, and comparing the results. If the difference is less than the
error you can tolerate, you can continue or even try increasing the time step to
speed things up; otherwise, you want to decrease the time step and repeat the test
until the accuracy is acceptable. This technique is often termed “adaptive” and
there are pairs of tables of coefficients designed to be used in this approach.

Finally, one issue that one sometimes encounters is poor convergence or stiffness
of the evolution, where the time steps get stuck near domains of f where f might
not be very well behaved. In these situations, one can use the implicit algorithms
that generalize (14.89) to

ki = Δt f

⎛⎝t + αiΔt, z+
N∑

j=1

αijkj

⎞⎠ . (14.91)
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Note the change in the upper limit of the sum. This means we now have nonzero
αij for j > i, which makes solving for ki more tricky. For example, the implicit
trapezoidal algorithm is given by

0 0 0
1 1/2 1/2

1/2 1/2

and works decently in many situations. In all these algorithms, a critical role is
played by the size of Δt, the time step one uses in each iteration. The larger this
step, the faster the algorithm and the more error prone it is. The smaller the time
step, the slower the algorithm and the more accurate it becomes. Hence, there is an
art in choosing the right Δt that one learns by trial and error; as mentioned above,
employing adaptive time steps can be a powerful and efficient approach.

14.7 Summary

In this chapter, we explored the concepts of integrability and chaos. We developed
techniques to analyze dynamics in phase space that allow one to unravel and
quantify complexity in dynamics. For integrable systems, trajectories in phase
space live on tori. Once, however, nonlinear effects kick in, integrability is lost and
dynamics becomes chaotic and highly sensitive to initial conditions. We learned
to analyze such situations using Poincaré maps and Lyapunov exponents. We
demonstrated interesting phenomena such as period doubling, bifurcations, and
fractal dimension. In the process, we connected to an important modern tool in
analyzing mechanics, that of computer simulations of complex systems.

Problems

Problem 14.1 Consider the equation of motion�

d2u
dϕ2 + u − 1

p
= 3λ u2, (14.92)

where p and λ are constants. Find the solution using perturbation theory to first
order in the small parameter λ. Assess whether your approximate solution is a
good one by solving the problem using numerical techniques and comparing with
your result from the first-order perturbation method.

Problem 14.2 Using numerical methods, solve the differential equation�

dq
dt

= −α q + β. (14.93)
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Compare your results with the exact solution as a function of the discrete time
step you use, and the order/method of the algorithm you adopt. Try in particular
contrasting fourth-order Runge–Kutta with another algorithm of your choosing.

Problem 14.3 Consider the logistic map discussed in the text. To gauge the density�
of bifurcations, one uses a measure of distance between fixed points as follows.
Define d = x∗ − (1/2) as the distance between the fixed point 1/2 and the nearest
fixed point to it – labeled x∗n. That is, you first find the r value corresponding to a
convergence at value x = 1/2, then you identify the closest fixed point x∗ to 1/2 at
this value of r, and compute the distance d. For example, at first period doubling,
we have d1 = 0.3090 . . .; then, after the second, we have d2 = −0.1164 . . . We
then define the parameter γ as

γ = lim
n→∞

− dn
dn+1

. (14.94)

Using numerical methods, compute γ and verify that it is given by γ =
2.502907 . . .

Problem 14.4 Consider a particle in a Newtonian potential V(r) = −k/r + ε/rn for��
some integer n. Using the alternate variable u = 1/r, (a) show that the radial
equation of motion can be put into the form

d2u
dϕ2 + u =

1
p
+ nκ un+1m, (14.95)

where

p ≡ �2

μ k
and κ ≡ μ k

�2 . (14.96)

Here, μ is the reduced mass and � is the angular momentum. (b) We want to find
u(ϕ), the shape of the trajectory. Write numerical code that solves this equation,
taking as input μ, k, ε, n, and �. Study various scenarios, including (1) n = 2 and ε
large, and (2) n = 3 with ε small.

Problem 14.5 Consider the one-dimensional harmonic oscillator with angular fre-��
quency ω perturbed by the small nonlinear potential ε q4. (a) Find the solution
using the perturbation technique introduced in the text to first order in the
small perturbation. (b) Improve your solution from part (a) by implementing the
technique outlined at the end of Section 14.5, writing a solution with angular
frequency Ω = ω + ε ω1. That is, your solution now depends on s = Ωt instead of
s = ωt. Fix ω1 so that you cancel a term in the solution that is not periodic.

Problem 14.6 The celebrated Lorenz attractor is described by the differential equa-�
tions

dx
dt

= −σ x + σ y,
dy
dt

= −x z + α x − y,
dz
dt

= x y − β z (14.97)
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and is used to described chaotic fluid dynamics involving heat flow. It is param-
eterized by α, β, and σ. (a) Solve this system of equations numerically and plot,
for example, x vs. y and z vs. y. Determine the onset of chaos by testing super-
sensitivity to initial conditions.

Problem 14.7 Consider the recursion relation��

xn+1 = xn + yn, yn+1 = a yn − b cos(xn + yn), (14.98)

where a and b are constants; this system is known as the standard map. Analyze
the system as we did for the logistic map in the text. In particular, explore regions
of the parameter space where (1) a = 1 and (2) a = 1/2 while varying b: (3) b = 6
near point (3, 3).

Problem 14.8 Show that the standard map of the previous problem described by�

xn+1 = xn + yn, yn+1 = a yn − b cos(xn + yn) (14.99)

can be obtained by discretizing time in the Hamiltonian equations of motion of
the following physical system: a planar pendulum in the absence of gravity that is
periodically kicked in a fixed direction with a fixed force. The phase space would
be described by θ(t), the pendulum’s angle from the vertical, and its canonical
momentum pθ(t) – which you will need to map to the discrete sequence given by
xn and yn.

Problem 14.9 Consider the variant of the standard map described by the recursion��
relation

yn+1 = yn + k sin xn xn+1 = xn + yn+1, (14.100)

where k is a constant. (a) Study the distortion of the KAM tori as k is taken from
k = 0 to k = 0.6. (b) Analyze the system when k = 0.9716. Compute the “winding
number” Ω ≡ limn→∞(xn − x1)/n as a function of k.

Problem 14.10 Consider the map given by��

xn+1 = xneα (1−xn) (14.101)

used to study population growth limited by disease. Analyze the system as done
for the logistic map in the text, identifying the onset of chaos and bifurcations, if
any. Consider in particular values of α = 1.5, 2, 2.7.

Problem 14.11 Consider the map given by��

xn+1 = α sin(π xn), (14.102)

where 0 < α < 1. Analyze the system as was done for the logistic map in the text,
identifying the onset of chaos and bifurcations, if any. Compute the parameter δ
introduced in the text.

Problem 14.12 Consider the two-dimensional recursion���

xn+1 = yn + 1 − α x2
n, yn+1 = β xn (14.103)
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introduced by Hénon to describe chaotic behavior in the trajectories of asteroids.
Study the sequence for α = 1.4 and β = 0.3 with the initial condition x0 =
0.63135448 and y0 = 0.18940634. Explore the parameter space for interesting
features.

Problem 14.13 Consider the two-dimensional map described by the recursions�

θn+1 = θn + 2π
β3/2

r3/2
n

, rn+1 = 2 rn − rn−1 − α
cos θn

(rn − β)2 (14.104)

parameterized by the constants α and β. This system arises in analyzing Saturn’s
rings produced by the influence of one of its moons, Mimas. θ and r refer to the
angular position and radius of a particle in the ring – averaged over a period of
Mimas. (a) Verify numerically that a volume element in r–θ is preserved by the
recursion. (b) Plot (rn cos θn, rn sin θn) and identify bands of rn where one has stable
trajectories.

Problem 14.14 Consider the logistic map analyzed in the text. Divide the range��
(0, 1) into N equal intervals and numerically compute the probabilities pk that the
recursion lands in the kth interval. Then compute the entropy

S ≡ −
N∑

k=1

pk ln pk.

Do this so as to build up the function S(α) for the range 2.8 < α < 4. Plot the
function and correlate with the conclusions in the text.

Problem 14.15 Consider a magnetic compass needle with moment of inertia I and��
magnetic dipole moment μ, free to rotate in the x–y plane. Denote the polar angle
by θ. A time-dependent external magnetic field B = B0 cos ωt x̂ applies a torque
given by μ × B on the needle. (a) Write the equation of motion for θ. (b) Solve
for θ(t) numerically and generate a Poincaré map by plotting discrete points θ(t =
2πn/ω) for integer n. Verify the onset of chaos for 2 B0μ/I > ω2.

Problem 14.16 Consider the two-dimensional map��

xn+1 = α

(
xn −

1
4
(xn + yn)

2
)

, yn+1 =
1
α

(
yn +

1
4
(xn + yn)

2
)

(14.105)

that approximates the chaotic scattering behavior of a projectile off a region near
the origin where it collides with a bunch of targets. Fix α = 5 and y0 to some small
value near the origin. Then start with a bunch of values for x0 near the origin but
positive, and compute the number of steps S(x0) it takes for the projectile to leave
the collision basin, say when xn < −5. Plot S(x0).

Problem 14.17 Consider the so-called circle map for the angular variable���

θn+1 = θn + r − κ sin θn. (14.106)
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Note that we have θ ∼ θ + 2π. This system can approximately describe a damped
driven pendulum with angle θ. (a) First consider the case where κ = 0. Using
θ0 = 2π × 0.2 and r = 2π k where k is the ratio of two integers, check that the
motion is periodic. Then try r = 2π/

√
2 and check periodicity. You can study

periodicity by computing the “winding number”

w = lim
k→∞

1
2π k

k−1∑
n=0

(θn+1 − θn).

For periodic or almost periodic motion, we would have w → r/(2π). (b) Now
consider κ = 1/2 with 0 < r < 2π, and explore what happens to the periodicity of
the motion by computing w. (c) Study the case where κ = 1. Plot w(r).
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While the Lagrangian formulation describes classical dynamics through second-
order differential equations, and the Hamiltonian formulation describes it through
first-order differential equations, a third formalism known as the Hamilton–Jacobi
technique encapsulates the dynamics in a single partial differential equation. This
method is conceptually very useful, albeit not necessarily advantageous for solving
problems. Even though these three formalisms are essentially equivalent, each has
its own advantages and disadvantages in problem solving, for insight into classical
mechanics, and for how classical mechanics and quantum mechanics are related.

In this final chapter we introduce Hamilton–Jacobi theory along with its special
insights into classical mechanics, and then go on to show how Erwin Schrödinger
used the Hamilton–Jacobi equation to learn how to write his famous quantum-
mechanical wave equation. In doing so we will have introduced the reader to
two of the ways classical mechanics served as a stepping stone to the world of
quantum mechanics. Back in Chapter 5 we showed how Feynman’s sum-over-
paths method is related to the principle of least action and the Lagrangian, and
here we will show how Schrödinger used the Hamilton–Jacobi equations to invent
wave mechanics. These two approaches, along with a third approach developed by
Werner Heisenberg called “matrix mechanics,” turn out to be quantum-mechanical
analogues of the classical mechanical theories of Newton, Lagrange, Hamilton, and
Hamilton and Jacobi, in that they are describing the same thing in different ways,
each with its own advantages and disadvantages.

15.1 Hamilton–Jacobi Theory

Recall that in Chapter 11 we introduced canonical transformations, in which one
set of canonical coordinates qi and momenta pi is transformed to a new set
Qi and Pi. Such a transformation is the key to developing the Hamilton–Jacobi
technique. In particular, the strategy for finding the single partial differential
equation describing a system is to find a canonical transformation such that the
transformed Hamiltonian H̃ vanishes:

H̃(Q, P, t) = H(q, p, t) +
∂F2

∂t
= 0 (15.1)

617
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for all values of the variables. Here, F2(q, P, t) is the generator of the transforma-
tion, as introduced in Chapter 11.

In Hamilton–Jacobi theory it is traditional to use the symbol S as the name of
the generator, rather than F2, and to call it Hamilton’s principle function. Then
the old and new qs and ps are related by

pi =
∂S
∂qi

, Qi =
∂S
∂Pi

, (15.2)

so S(q, P, t) satisfies the partial differential equation

H
(

q,
∂S
∂qi

, t
)
+

∂S
∂t

= 0. (15.3)

This is the Hamilton–Jacobi equation. To form the Hamilton–Jacobi equation for
a particular problem, we begin by finding the Hamiltonian, and then replace any
momentum pi that occurs within H by ∂S/∂qi, where S = S(q, P, t).

Now, given our condition that H̃ = 0 identically, it follows that the Qis and Pis
are constants, since from Hamilton’s equations

Q̇i =
∂H̃
∂Pi

= 0, Ṗi = − ∂H̃
∂Qi

= 0. (15.4)

Example 15.1 The One-Dimensional Simple Harmonic Oscillator
We illustrate the Hamilton–Jacobi method by finding the motion of a one-dimensional simple harmonic
oscillator, for which the original Hamiltonian is

H(q, p, t) =
p2

2 m
+

1
2

k q2. (15.5)

Hamilton’s principle function S must then satisfy the Hamilton–Jacobi equation

1
2 m

(
∂S
∂q

)2

+
1
2

k q2 +
∂S
∂t

= 0. (15.6)

A partial differential equation of the form (15.3) for a function S of N qis and time t leads to a solution with
N + 1 constants of integration. In the example of the one-dimensional harmonic oscillator we have N = 1,
so we expect two constants of integration in the solution to Eq. (15.6). Since shifting S by a constant does not
change the Hamilton–Jacobi equation (15.3), one of the N+ 1 integration constants is simply this freedom to
shift S by a constant. Hence, we are left with N nontrivial integration constants. In the example at hand, this
is just a single constant of integration.

We can solve Eq. (15.6) by separation of variables:

S = f(q) + g(t), (15.7)
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giving

1
2 m

(
df
dq

)2

+
1
2

k q2 +
dg
dt

= 0. (15.8)

Separating the terms that can depend only upon space from those that can depend only upon time, this implies
that

1
2 m

(
df
dq

)2

+
1
2

k q2 = constant = − dg
dt

. (15.9)

Labeling this single integration constant as C1, we find that

g(t) = −C1t,

f(q) =

√
k m
2

(
q

√
2C1

k
− q2 +

2C1

k
arcsin

q√
2C1/k

)
, (15.10)

where we have dropped the integration constant corresponding to the shift freedom in S. This gives

S(q, P, t) = −C1t

+

√
k m
2

(
q

√
2C1

k
− q2 +

2C1

k
arcsin

q√
2C1/k

)
. (15.11)

Then, using Eqs. (15.2) we have

p =
∂S
∂q

=
√

k m

√
2C1

k
− q2, so

p2

2m
+

k
2

q2 = C1. (15.12)

Now we know that the new momentum P is a constant, and that C1 is a constant as well. Therefore it is possible
to simply identify them. That is, we choose P = C1. Then it is clear from the second equation above that the
orbits in phase space are closed ellipses, as expected for a simple harmonic oscillator, and also that C1 = P is
the energy E of the system. That is, we have identified the constant of integration C1 with the new (constant)
canonical momentum, and found that these quantities also turn out to be the conserved energy.

The other relation in Eqs. (15.2) gives

Q =
∂S
∂P

=

(√
m
k

arcsin
q√
2E/k

− t

)
= constant. (15.13)

If we let

t0 ≡ −Q, (15.14)

then

q(t) =

√
2 E
k

sin

√
k
m
(t − t0), (15.15)
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so that q = 0 at time t = t0, and we have the sinusoidal motion we expected. Using Eq. (15.12) we can also
find,

p(t) =
√

2 m E cos

√
k
m
(t − t0). (15.16)

This is a rather perverse way of solving the simple harmonic oscillator problem! Yet as we shall now see, the
techniques give us a new and useful perspective on mechanics. �

One illustration of the conceptual usefulness of the Hamilton–Jacobi approach
can be seen by taking the total derivative of S(q, P, t) with respect to time:

dS
dt

=
∑

i

∂S
∂qi

q̇i +
∂S
∂t

=
∑

i
piq̇i − H, (15.17)

where we used Eqs. (15.2) and (15.3). Note that the right-hand side is nothing but
the Lagrangian

dS
dt

= L ⇒ S =

∫
dt L, (15.18)

implying that it is the action which is the generator of canonical transformations
that take us from any given coordinates (qi, pi) to new ones where the Hamiltonian
simply vanishes. Note also that this S is the action evaluated at the equation of
motion. For the example of the one-dimensional harmonic oscillator, we can write

S =

∫
dt L =

∫
dt
(

1
2

mq̇2 − 1
2

k q2
)

=

∫
dq
q̇

(
1
2

mq̇2 − 1
2

k q2
)

=

∫
dq

m
p

(
1

2 m
p2 − 1

2
k q2

)
(15.19)

and use Eq. (15.12) to eliminate p and obtain (15.11).
Clearly any well-behaved function of the Cis is also a constant, so we can write

the solution to Eq. (15.3) in terms of an alternative set of constants C′
i = C′

i(C).
Since the new constant momenta Pi are necessarily functions of the Cis (or
equivalently the C′

is), we see that we can always choose our new momenta to be
any functions we like of the constants of integration. For example, we can choose
them identically equal to a particular set of constants of integration Pi = C′

i.
In general, the partial differential equation (15.3) is difficult to solve analytically.

Yet a solution may exist in principle. Whenever it is possible to write the solution
analytically, there exists a coordinate system (qi, pi) in which Hamilton’s principle
function S takes the form

S = S(1)(q1, C1, C2, . . . , t) + S(2)(q2, C1, C2, . . . , t)

+ S(3)(q3, C1, C2, . . . , t) + · · ·+ S(N)(qN, C1, C2, . . . , t), (15.20)
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leading to a separable system. Each of the S(i)(qi, C1, C2, . . . , t) is then found by
direct integration, where the Cis are the constants of integration, just as we saw in
the example above. We then have N relations

pi =
∂S(i)

∂qi
= pi(qi, C1, C2, . . . , t) (15.21)

describing curves in each qi–pi plane. If we choose the Pis such that Pi = Ci, this
implies that the constant Pis are algebraic functions of the qis and pis. And since
these are canonical momenta, they are constants of motion that satisfy {Pi, Pj}= 0.
Hence, we have N conserved quantities that are said to be “in involution.” So
separable Hamilton–Jacobi equations imply that the system at hand is integrable,
as discussed in Chapter 14.

Integrable systems are delicate and rare, so in practice the Hamilton–Jacobi
method is seldom useful in finding the trajectory of a system. In fact, even when a
system is known to be integrable, finding the particular coordinate system in which
the Hamilton–Jacobi partial differential equation is separable may be prohibitively
difficult.

15.2 Hamilton’s Characteristic Function

Now specialize to problems in which the Hamiltonian is not an explicit function
of time. This of course is not always the case, but it was true for the simple
harmonic oscillator problem solved in the preceding section. Then the Hamilton–
Jacobi equation can be written

H
(

q,
∂S
∂qi

)
= −∂S

∂t
, (15.22)

so we can separate the spatial and time parts of S; that is, we can write

S(qi, t) = W(qi)− Et, (15.23)

where E is the separation constant and W(qi), which depends on coordinates only,
is called Hamilton’s characteristic function.

This then leads to the time-independent equation

H
(
∂W
∂qi

, qi

)
= E, (15.24)

which is a first-order partial differential equation in which the momenta pi in H are
replaced by ∂W/∂qi. The separation constant E is in fact the energy of the system.
This differential equation is often called the time-independent Hamilton–Jacobi
equation.
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Example 15.2 Plumb Bob on a Spring
As an illustration of using Hamilton’s characteristic function W, consider the problem from Chapter 14, a plumb
bob on the end of a spring confined to oscillate and swing in two dimensions. The bob has mass m and is
attached by a spring of force constant k to a fixed point. The rest length of the spring is zero, and we suppose
that there is no gravity. The Hamiltonian is given by

H =
p2

r

2 m
+

p2
θ

2 m r2 +
1
2

k r2, (15.25)

where we adopt polar coordinates and describe phase space with the coordinates r, pr , θ, and pθ . Since the
Hamiltonian does not depend on time explicitly, the energy of this system is conserved. To obtain the partial
differential equation satisfied by Hamilton’s characteristic function W(r, PR , θ, PΘ), we write

pr →
∂W
∂r

, pθ → ∂W
∂θ

(15.26)

in the Hamiltonian and so find that

1
2 m

(
∂W
∂r

)2

+
1

2 m r2

(
∂W
∂θ

)2

+
1
2

k r2 = C1 ≡ E, (15.27)

where it is clear that the first constant C1 is in fact the conserved energy E. This equation is separable in the
given coordinate system. To see this, write

W(r, PR, θ, PΘ) = W(1)(r, PR, PΘ) + W(2)(θ, PR, PΘ), (15.28)

so that

r2
(

dW(1)

dr

)2

+

(
dW(2)

dθ

)2

+ m k r4 = 2 m r2E. (15.29)

Then separation of the variables r and θ gives two ordinary differential equations(
dW(1)

dr

)2

+
l2

r2 + m k r2 = 2 m E and
(

dW(2)

dθ

)2

= l2 = constant. (15.30)

Note that we have labeled the new constant of integration l – suggestively identifying it as the angular
momentum. The second equation of (15.30) can be integrated immediately, giving

W(2)(θ, PR, PΘ) = l θ + shift constant. (15.31)

As usual, the new constant momenta PR and PΘ are generally functions of the constants of integration, which
we have labeled E and l. And we are free to choose PR(E, l) and PΘ(E, l). From the first differential equation
of (15.30), we find that

W(1)(r, PR, PΘ) =
∫ √

2 m E − m k r2 − l2

r2 dr, (15.32)
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which is a rather unpleasant integral that can be evaluated in terms of inverse sines and inverse tangents.
But we need not worry about its explicit form if we are interested in the trajectory of the bob in phase space.
From (15.26), we find

pr =

√
2 m E − m k r2 − l2

r2 , pθ = l. (15.33)

Therefore, the orbit of the plumb bob in phase space is identified in the r–pr and θ–pθ planes. To find the
time dependences r(t), pr(t), θ(t), and pθ(t), let us choose PR = E and PΘ = l so that we have:

R =
∂W
∂PR

=
∂W
∂E

= ω1(t + t1), Θ =
∂W
∂PΘ

=
∂W
∂ l

= ω2(t + t2), (15.34)

whereω1,ω2, t1, and t2 are constants. �

Now let us further specialize the time-independent Hamilton–Jacobi equation
to a single particle of mass m whose Cartesian coordinates are x, y, z, and whose
potential energy is U(x, y, z). Then we have

1
2m

[(
∂W
∂x

)2
+

(
∂W
∂y

)2
+

(
∂W
∂z

)2
]
+ U(x, y, z) = E, (15.35)

so

(∇W)2 = 2m(E − U). (15.36)

As we shall see later in the chapter, this form of the time-independent Hamilton–
Jacobi equation proves to be extremely useful in making the transition to quantum
mechanics.

There is yet another but related approach to tackling dynamics. It is sometimes
useful when dealing with dynamical systems which have constant energy. In this
approach, we look for a generator G2(q, P, t) of a canonical transformation such
that the new Hamiltonian H̃ does not contain any of the new coordinates Qi –
instead of finding F2(q, P, T) that leads to a Hamiltonian that identically vanishes.
This implies that we will have

Ṗi = − ∂H̃
∂Qi

= 0 (15.37)

and thus the new momenta Pi are constants. We then get

Q̇i =
∂H̃
∂Pi

= constant ≡ ωi(P) ⇒ Qi(t) = ωi(P)t + ti, (15.38)

with N integration constants ti. We therefore have the relation

H̃(P) = H(q, p) +
∂G2

∂t
= constant, (15.39)
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and since H(q, p) is a constant, G2 must be of the form

G2(q, P, t) = −αt + W(q, P) (15.40)

for a constant α. We also have the transformation relations

pi =
∂G2

∂qi
=

∂W
∂qi

, Qi =
∂G2

∂Pi
=

∂W
∂Pi

. (15.41)

Therefore W(q, P) must satisfy the partial differential equation

H
(

q,
∂W
∂qi

, t
)
− α = H̃(P) = constant. (15.42)

Alternatively, we can write

H
(

q,
∂W
∂qi

)
= C1, (15.43)

where C1 is a constant. Solving this partial differential equation leads to N − 1
additional constants of integration C2, . . . , CN (one of the N total constants is
simply a constant shift of W). Along with C1, these consist of N integration
constants. As before, we also have the freedom to choose the new momenta Pi
as any functions of the Cis. Note also that C1 is simply the conserved value
of the Hamiltonian, often being the energy. Taking the direct time derivative of
Hamilton’s characteristic function W, we can write

dW
dt

=
∑

i

∂W
∂qi

q̇i =
∑

i
piq̇i. (15.44)

15.3 Action Angle Variables

As described in Chapter 14, a theorem by Liouville states that if a system with
N degrees of freedom is integrable, its phase-space trajectory is necessarily
confined to the surface of an N-dimensional torus. The dynamics involves N-
angular frequencies of the trajectory along each of the N noncontractible cycles
of the torus. We saw in Chapter 14 that irrational winding numbers, i.e., irrational
ratios of angular frequencies, lead to dense tracks of evolution on the torus. The
method of Hamilton’s characteristic function discussed above can be a handy tool
to determine these frequencies without the need to solve for the details of the
dynamics.

To apply the technique, imagine we are to employ a canonical transformation
generator W(q, P) that leads to the Hamiltonian H̃(Pi), with all the Qis being
cyclic as described above. Furthermore, we assume separability in the coordinates
(qi, pi). As argued above, separability implies that the trajectory in each qi–pi plane
decouples and is described by functions
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pi = pi(qi, C1, C2, . . . , CN), (15.45)

where the Cis are constants of integration. These curves in each qi–pi plane are
closed, since they are projections of a trajectory confined to the surface of an N-
torus. We now choose the Pis as follows:

Pi =
1

2π

∮
pi(qi, C1, C2, . . . , CN) dqi, (15.46)

where the integrals are taken along the closed trajectories in each qi–pi plane. This
gives a specific choice of functions Pi(Ci) as our new momenta. Conventionally,
these momenta are labeled Ji instead of Pi and they are called action angle
variables. Their canonical pairs, the Qis, are labeled Θi to emphasize they are
angular in character, since their evolution is given by

Θi(t) = ωi(J1, J2, . . .)t + ti. (15.47)

Hence, in a time 2π/(ωi), each Θi increases by 2π and hence must wrap like an
angle. We then have

ωi(J1, J2, . . .) = Θ̇i(t) =
∂H̃
∂Ji

. (15.48)

If we can write the constant Hamiltonian in terms of the action angle variables Ji,
we can then read off the angular frequencies of the integrable trajectory by simple
differentiation.

Example 15.3 Plumb Bob on a Spring Revisited
To demonstrate these ideas we return to the example of the bob on a spring. The action angle variables are

PR = JR =
1

2 π

∮
pr dr, PΘ = JΘ =

1
2 π

∮
pθdθ. (15.49)

The integrals are along closed paths in the r–pr and θ–pθ planes. From the second expression, we immedi-
ately get

JΘ = pθ , (15.50)

since pθ is constant. The first expression requires more effort:

JR =
1

2 π

∮ √
2 m E − m k r2 − l2

r2 dr, (15.51)

where the limits are between a maximum and a minimum value of r if we multiply the integral by two. These
can be obtained from the turning points, the points where pr = 0 in Eq. (15.33):

rmin,max =
E
k

√
1 ∓

√
1 − k p2

θ

m E2 . (15.52)
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We can then write

JR = 2 × 1
2 π

∫ rmax

rmin

√
2 m E − m k r2 − l2

r2 dr. (15.53)

This definite integral is easy to evaluate if we use the alternate variable

u =
k2r2/E2)− 1

1 − (k p2
θ/m E2)

. (15.54)

After some algebra, we find that

JR =
√

k m

(
1 −

√
k
m

l
E

)
. (15.55)

Equations (15.50) and (15.55) allow us to write the Hamiltonian in terms of the action angle variables JR and JΘ:

H̃ =

√
k
m
(JR + JΘ). (15.56)

Using Eq. (15.48) we then find the two angular frequencies of motion on the phase-space torus

ωR = ωΘ =

√
k
m

, (15.57)

as expected. The corresponding angle variables R and Θ are the natural angle coordinates along the two
noncontractible cycles of the two-dimensional torus. Since the winding number, the ratio of the frequencies,
is an integer (in this case simply unity), the orbits of the bead are closed. �

15.4 Adiabatic Invariants

Action angle variables are particularly useful in studying a class of mechanics
problems involving adiabatic dynamics. We already introduced the idea of
adiabatic dynamics and adiabatic invariants back in Chapter 8, where we discussed
the orbits of charged particles in a slowly varying magnetic field. To illustrate
adiabatic dynamics here, let us focus on cases with a single degree of freedom, and
hence a two-dimensional phase space. We consider a system that exhibits periodic
motion, then make one of the constant parameters, call it A, vary very slowly over
a duration of a period of the system, A → A(t). For example, our system might
be a pendulum consisting of a plumb bob at the end of a cord threaded through a
hole, and, as the pendulum oscillates, the cord is slowly pulled up (see Figure 15.1).
The parameter A(t) is then the time-varying length of the pendulum. If T denotes
the period of the unperturbed system, slowly varying can be defined through the
relation

Ȧ
A
 1

T
. (15.58)
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Fig. 15.1 A two-dimensional pendulum with its rope being pulled slowly.

Hence, the length of the pendulum cord does not change much over the period of
a single oscillation of the bob. Note that this system is not conservative: energy is
not conserved, as the external agent does work in varying the parameter A(t) (i.e.,
the work done by the person pulling the cord in our example). We can still formally
consider a canonical transformation that takes us from the original (θ, pθ) phase-
space coordinates to a new angle and action angle coordinates Θ, JΘ. Of course,
we do not expect that Θ will be linear in time and that JΘ is constant – given the
time dependence in the Hamiltonian. We define

JΘ ≡ 1
2π

∮
pθ dθ (15.59)

as usual, and employ Hamilton’s characteristic function W(q, JΘ, A(t)), where we
have now explicitly indicated that W depends on time through its dependence on
A(t). We still have the general relations

pθ =
∂W
∂θ

, Θ =
∂W
∂JΘ

. (15.60)

It is useful to switch pictures and go between the same set of coordinates (θ, pθ) →
(Θ, JΘ), employing instead a generator of the first kind F1(θ,Θ, A(t)) instead of
W, which is of the second kind W = F2(θ, JΘ, A(t)). W and F1 are related by a
Legendre transformation

F1 = W −Θ JΘ. (15.61)

Note also that Hamilton’s characteristic function is given by

W =

∫
pθ dθ. (15.62)

We then observe the following: if the system undergoes a full oscillation, Θ → Θ+
2π, W must change as W → W+2π JΘ given (15.60). We then see from Eq. (15.61)
that F1 → F1, i.e., F1 must be a periodic function in Θ. This fact will help us prove
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that, in the adiabatic regime, JΘ remains approximately constant. To see this, note
that the new Hamiltonian is given by the standard canonical transformation relation

H̃ = H(pθ(Θ, JΘ), θ(Θ, JΘ), A(t)) +
∂F1

∂t
= H(JΘ, A(t)) + Ȧ

∂F1

∂A
. (15.63)

In writing this expression, we noted that the Hamiltonian, when expressed in the
Θ and JΘ coordinates, depends only on JΘ – this functional property of H being
unchanged by the time dependence of the external parameter A(t). We can then
write

J̇Θ = −∂H̃
∂Θ

= −Ȧ
∂2F1

∂Θ∂A
. (15.64)

Therefore, due to the time dependence of A(t), the action angle variable is not
strictly constant in time. However, if we look at the change in JΘ over a full period
of the system, we can write

〈
J̇Θ
〉
≡ 1

2π

∫ 2π

0
J̇Θ dΘ = − 1

2π

∫ 2π

0
Ȧ
∂2F1

∂Θ∂A
dΘ, (15.65)

where we have defined the average of J̇Θ over a period of oscillation as
〈
J̇Θ
〉
.

Since, by assumption, Ȧ does not vary much over a period of the system, we can
take it out of the integral and we have instead

〈
J̇Θ
〉
� − Ȧ

2π

∫ 2π

0

∂

∂Θ

(
∂F1

∂A

)
dΘ = 0, (15.66)

since F1 is periodic in Θ. Hence, we conclude that the action angle variable is
on average approximately constant in an adiabatic scenario. We say that JΘ is an
adiabatic invariant.

Let us apply this conclusion to tackling the problem of a pendulum swinging in
a plane, whose cord is being slowly pulled up through a hole. The Lagrangian for
small angles θ is given by

L =
1
2

m l2θ̇2 − 1
2

m g l θ2, (15.67)

yielding the Hamiltonian

H =
p2
θ

2 m l2
+

1
2

m g l θ2. (15.68)

We then make the length of the cord vary slowly with time, l → l(t):

H =
p2
θ

2 m l(t)2 +
1
2

m g l(t) θ2. (15.69)
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The action angle variable is given by

JΘ =

∮
pθ dθ =

√
2H(t)m l(t)

∮ √
1 − m g l(t)

2 H(t)
θ2dθ, (15.70)

where we have explicitly indicated that H(t) is not a constant in time. We can
evaluate this integral using a change of variable θ → α, so that m g l(t)θ2/2 H(t) =
sin2 α, with

JΘ = 2 H(t)
√

l/g
∮

cos2 α dα = 2π H(t)
√

l(t)/g, (15.71)

where we used the fact that
∮
cos2 α dα=

∫ 2π
0 cos2 α dα=π, corresponding to

one full cycle. This action angle variable is then approximately constant when l(t)
changes adiabatically:

H(t)

√
l(t)
g

= constant. (15.72)

Noting that the angular frequency of the pendulum is ω =
√

g/l, we conclude that

H(t)
ω(t)

= constant. (15.73)

As one pulls the cord very slowly, that is, adiabatically, l(t) becomes smaller and
thus ω(t) becomes larger. Equation (15.73) implies that the energy of the system
increases correspondingly. This means that the amplitude of oscillations increases,
since the energy of a harmonic pendulum is proportional to the square of the
oscillation amplitude.1

Example 15.4 Particle in Slowly Varying Magnetic Field
As another illustration of the technique of adiabatic invariants, consider the example of a particle of mass
m and electric charge q moving in a uniform magnetic field B pointing in the z direction. In Chapter 11 we
tackled this problem in the Hamiltonian formalism. Using cylindrical coordinates ρ, ϕ, and z, we have the
Hamiltonian

H =
p2
ρ

2 m
+

p2
ϕ

2 m ρ2 +
p2

z

2 m
− q2B2

8 m
ρ2. (15.74)

1 In the quantum version of this problem, the cord is pulled over timescales much longer than the timescale
associated with transition between the levels of the simple harmonic oscillator. The adiabatic process then
amounts to having the pendulum locked in a given level of the quantum oscillator. The system does not
transition in or out of the initial level as long as the process is slow enough, shifting the energy of the system
gradually with the shifting of the space between energy levels that results from an adiabatic change in frequency.
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For simplicity, let us suppress the trivial dynamics in the z direction. The action angle variable associated with
ϕ is

J =
∮

pϕ dϕ. (15.75)

Without loss of generality, we know that the particle will orbit at constant radius ρ around the z axis. Its
angular frequency is

ω = −q B
m

= ϕ̇. (15.76)

This implies that

ϕ̇ = − ∂H
∂pϕ

=
pϕ

m ρ2 = ω = −q B
m

. (15.77)

Hence, we have

pϕ = −q Bρ2 = constant. (15.78)

The action angle variable then becomes

J = −2 π q B ρ2. (15.79)

Next, consider the scenario where we adiabatically tune the external magnetic field B → B(t). We then
expect J to be approximately constant:

q B(t)ρ(t)2 = constant =
q B(t)

m
m ρ(t)2 = ρ(t)× m ρ(t)ω(t) = L, (15.80)

where here L is the angular momentum of the particle about the origin. So as we tune B(t), the radius and
angular frequency of the particle change in such a way as to keep the angular momentum constant. For
example, if B(t) increases, so willω(t), which implies the radius of the circular trajectory decreases. Another
way to look at this is to say

B(t)π ρ(t)2 = constant = Φ, (15.81)

whereΦ is the magnetic flux through the circular trajectory of the particle. Therefore the fluxΦ is an adiabatic
invariant. �

15.5 Early Quantum Theory

As mentioned in Chapter 5, in 1905 Einstein proposed that the photoelectric effect
suggests that light consists of “quanta,” later called photons, which have both
a particle nature and a wave nature. The wave nature of photons is described
by properties like wavelength λ and frequency ν, while their particle nature is
described by properties like momentum p and energy E. The two worlds of particles
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and waves for photons are related by E = hν and p = h/λ, where h is Planck’s
constant, introduced by Max Planck in 1901.

Then in 1924, in his doctoral dissertation, the French student Louis de Broglie
proposed that if light (long considered a wave) could have particle properties, why
shouldn’t massive particles (electrons, protons, chairs, etc.) have wave properties?
In fact, he proposed that the same relationships E= hν and p = h/λ should apply
to massive particles as to massless photons. Einstein for one was intrigued by
de Broglie’s idea, and over the next few years, the wave nature of particles was
confirmed for electrons by the experiments of Davisson, Germer, and others.

When it came to atoms, it had already been shown by Niels Bohr in 1915
that to explain atomic spectra, which consist of discrete wavelengths, one needs
to postulate discrete energies for the electrons in atoms. Bohr had suggested that
electrons can only orbit the nuclei at particular radii, and that the discrete energies
needed are associated with these radii. Using his particle waves, de Broglie showed
that the particular radii in hydrogen atoms correspond to circular orbits for which
there is a whole number of electron wavelengths. In the ground state, there is one
complete wavelength in traversing the circular orbit, in the first excited state there
are two complete wavelengths, etc. And the energy difference between these two
orbits, calculated from classical physics, corresponds to the correct frequency of a
photon radiated as the electron falls from the first excited state to the ground state,
using ΔE = hν.

Another important step was the statement of the “indeterminacy principle” or
“uncertainty principle” by the German physicist Werner Heisenberg, that if Δx is
the uncertainty in a particle’s position at some time, and Δp is the uncertainty in
its momentum at the same time, then ΔxΔp ≥ �/2, where � = h/2π. In classical
physics one can in principle learn both x and p to any degree of accuracy at the
same time, but not so in the new quantum physics.

Physicists soon developed what is now called the “old quantum theory,” using
a mixture of classical ideas and de Broglie wavelengths. In particular, they used
phase-space pictures and Liouville’s theorem. Recall that in Section 11.7, we
learned from Liouville’s theorem that evolution in phase space preserves phase-
space volume. For example, if a small phase-space area in two-dimensional phase
space were to be squeezed along the position axis through time evolution, it would
then have to expand along the momentum axis: the area must remain constant
in time. This suggests that there is a natural “incompressibility” of information
in phase space, respected by Hamiltonian evolution, and obeying Heisenberg’s
principle.

Quantum evolution necessitates Liouville’s theorem, and Liouville’s theorem
may be viewed as hinting at phase-space quantization. This does not mean that
Liouville’s theorem necessarily implies a notion of discretization of phase space;
but it certainly would be consistent with such an idea. These observations did not
evade the founders of quantum mechanics. Indeed, a semiclassical quantization
scheme was developed based on such observations by Bohr first, and then later
by Wentzel, Kramers, Brillouin, Jeffreys, and Sommerfeld. To understand the
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idea, let us go back to the one-dimensional simple harmonic oscillator example
of Chapter 11. We have a Hamiltonian of the form

H = E =
p2

2 m
+

1
2

k x2 (15.82)

and trajectories in phase space are ellipses, as shown in Figure 11.4. Consider the
area of such an ellipse:

Area = π

√
2 E
k
√

2 m E = 2π E
√

m
k
=

2π E
ω

. (15.83)

Let us now propose that phase space must be discretized, so that

Area � n × h, (15.84)

where n is an integer and h is Planck’s constant. We would then have

E = n �ω. (15.85)

Comparing this to the quantum-mechanical expression for the energy states:

E = �ω

(
n +

1
2

)
� n �ω, (15.86)

where we have taken the regime n � 1. We see that, at large quantum level
number n, the semiclassical proposition given by Eq. (15.84) leads to the correct
quantization of energy. We do however miss the ground-state energy �ω/2, and
need to consider only large values of n.

Emboldened by this success, we may then propose the general semiclassical
quantization scheme

Area =

∮
p dq = n h, (15.87)

where the integral is over any of the cycles of the phase-space torus, assuming
periodic trajectories. This is a rather good approximation for quantum systems and
quantization, as long as we focus on large quantum numbers. For example, let us
look at the example of the particle on a parabola from Chapter 11. The energy is
given by

E =
p2

x
2 m (1 + x2)

+
m g
2

x2 (15.88)

and the phase-space trajectories are shown Figure 11.6. We can then write

px = m (1 + x2)ẋ (15.89)
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and construct the area of a closed curve as

Area = 4
∫ x0

0
pxdx = 4 m

∫ x0

0
(1 + x2)ẋ dx

= 4
∫ x0

0

√
E − m g x2

2

√
2 m (1 + x2) dx. (15.90)

But note that the energy and the largest distance x0 are related:

E =
m g
2

x2
0 ⇒ x0 =

√
2 E
m g

. (15.91)

Applying now the quantization scheme (15.87), we get

n h = 4
∫ √

2 E/m g

0

√
E − m g x2

2

√
2 m (1 + x2) dx. (15.92)

We can express this result in terms of elliptic functions Eand K:

n h =
1

3
√

2 m g
×

[(2 E − m g)E(−2 E/m g) + (2 E + m g)K(−2 E/m g)] . (15.93)

This is useful because these elliptic functions satisfy many properties and have
well-known asymptotic expansions. Expecting that large quantum level number
corresponds to large energy, we can then take the large E limit of this expression,
which gives

2
3 m g

E3/2 � n h ⇒ E ∼ n2/3 (15.94)

for n � 1. A plot of this function is shown in Figure 15.2.

200 400 600 800 1000

Fig. 15.2 Energy levels of a particle on a parabola.

While we expect this result to be only an approximation, the method did allow
us to tackle a rather complicated quantum mechanics problem with relatively little
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effort. More importantly, the connection between Liouville’s theorem and phase-
space quantization is rather beautiful and good for developing our intuition of
quantum mechanics.

15.6 Optics: From Waves to Rays

Although it might at first seem irrelevant to Hamilton–Jacobi methods in mechan-
ics, and to quantum ideas as well, we will now look into the relationship between
two well-known approaches to optics, namely ray optics (or “geometrical” optics)
and wave optics. Ray optics is very useful in tracing the behavior of light as it
passes through lenses or bounces off mirrors, for example; the rays obey Fermat’s
principle of stationary time, as discussed in Chapter 3. In contrast, wave optics is
required to understand such phenomena as interference and diffraction. What is the
relationship between ray optics and wave optics?

In Chapter 5 we showed that small-amplitude transverse waves on a stretched
rope obey the wave equation

∂2y
∂x2 − 1

v2
∂2y
∂t2

= 0, (15.95)

where y(x, t) is the transverse displacement of the rope and v is the speed of the
wave, which is related to the rope’s tension T and mass per unit length μ by v =√

T/μ. A solution of the equation for fixed wave number k = 2π/λ, frequency
ω = 2πν, and amplitude A is

y = Aei(kx−ωt), (15.96)

which describes a wave traveling toward positive x with speed v = ω/k = λν. As
always, we can retrieve a physical wave by taking only the real part of the solution.

Maxwell’s equations of electromagnetism can be used to derive the wave
equation for what is called the scalar potential ϕ, which for one dimension and
in vacuum is

∂2ϕ

∂x2 − 1
c2

∂2ϕ

∂t2
= 0, (15.97)

where c is the speed of light. That is, according to Maxwell, light is an electromag-
netic wave traveling at speed c. He thus unified electricity, magnetism, and optics,
the great synthesis of the nineteenth century.

In three dimensions, the linear wave equation becomes

∇2ϕ− 1
v2

∂2ϕ

∂t2
= 0, (15.98)
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where in Cartesian coordinates

∇2 ≡ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (15.99)

A solution of the three-dimensional wave equation is the plane wave

ϕ = ϕ0ei(k0·r−ωt) = Aei(k0xx+k0yy+k0zz−ωt), (15.100)

where now the wave number k0 has magnitude |k0| = 2π/λ0, and also a direction,
the direction in which the wave is propagating.

If ϕ represents a light wave in a medium with fixed index of refraction n, then
the velocity of the wave is v = c/n, and the wave equation becomes

∇2ϕ− n2

c2
∂2ϕ

∂t2
= 0, (15.101)

with solutions

ϕ = ϕ0ei(k·r−ωt), (15.102)

where k points in the direction of the wave propagation, and has magnitude
|k| = nk0. For the same frequency ω as in vacuum, the wavelength is shorter
in the medium, with λ = 2π/|k| = λ0/n.

More generally, the index of refraction n(r) depends upon position, as for exam-
ple in earth’s atmosphere, where n is larger near the ground than at higher altitudes.
If n(r) changes only slowly with position, we have the case of geometrical optics,
the language of light rays we discussed already in Chapter 3. So in that case we try
a modified solution of the form

ϕ = eA(r)+iko(L(r)−ct). (15.103)

The real, slowly varying functions A(r) and L(r) are related to the amplitude and
phase of the wave, respectively. The function L(r) is called the optical path length
or eikonal of the wave. It is the actual physical distance covered by the wave
weighted by the local index of refraction. So now we substitute this trial solution
into the wave equation to find equations governing the amplitude and phase
functions A(r) and L(r). Applying the gradient operator to the given expression
for ϕ:

∇ϕ = ϕ∇(A + ik0L), (15.104)

so then taking the divergence of this gradient, we have the Laplacian

∇2ϕ ≡ ∇ · ∇ϕ = ϕ[∇2(A + ik0L) + (∇(A + ik0L)2]. (15.105)

Substituting this into the wave equation, we find terms that are real and terms that
are imaginary. However, we chose both A(r) and L(r) to be real, so to satisfy the
wave equation the real terms and the imaginary terms must vanish separately. These
terms require, respectively, that

∇2A + (∇A)2 + k2
0(n2 − (∇L))2) = 0 (15.106)
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and

∇2L + 2∇A · ∇L = 0. (15.107)

These equations are exact, but they are also coupled, nonlinear equations that we
have no realistic hope of solving analytically. However, we can now make the
geometrical optics approximation. We suppose that the wavelength of light is
very small compared with the distances the light travels or distances over which
n changes appreciably, That is certainly the case for visible light passing through
earth’s atmosphere, for example, but not so much for radio waves with wavelengths
many kilometers long. This means that the two terms proportional to k2

0 = 4π2/λ2
0

threaten to dominate all others, making that equation invalid, unless the quantity
n2 − (∇L)2 � 0. That is, in the geometrical optics limit we require that the eikonal
L obey

(∇L)2 = n2, (15.108)

called the eikonal equation. Given an index of refraction n(r), we can try to solve
this nonlinear first-order differential equation to find the eikonal function L(r).
Surfaces of constant L are the wave fronts of the wave; the wave itself propagates
in a direction normal to the wave fronts.

Example 15.5 The Eikonal for a Flat Atmosphere
A plane wave of light from a distant star approaches the earth. Let us find the eikonal for this wave, entering
the atmosphere at high altitude, and descending to the ground. Without loss of generality we can orient
coordinates so that the wave lies in the x, y plane, where x is the horizontal axis and y the vertical axis, which
is zero at high altitude where n = 1; then n increases as the wave moves downward. We will assume the
atmosphere is essentially flat. Then the eikonal equation becomes

(∇L)2 =

(
∂L
∂x

)2

+

(
∂L
∂y

)2

= n2(y). (15.109)

We try separation of variables, with L(x, y) = f(x) + g(y). Substituting, we find(
df
dx

)2

= n2(y)−
(

dg
dy

)2

, (15.110)

where the left side can depend only on x, and the right side can depend only on y. Therefore, since they are
equal, each side must equal the same constant, which we will call C2. Therefore(

df
dx

)2

= C2, with solution f = Cx (15.111)

and (
dg
dy

)2

= n2 − C2, with solution g =
∫ √

n2 − C2 dy (15.112)



637 15.7 Schrödinger’s Wave Mechanics

where we have neglected additive constants, since they will play no role in the physics. Our solution for the
eikonal is therefore

L(x, y) = Cx +
∫

dy
√

n2(y)− C2, (15.113)

where we can in principle evaluate the integral if we know n(y). However, as we shall now see, we can
understand everything about the direction of the associated light ray without performing this integration
at all.

In the language of geometrical optics, light paths are represented by light “rays,” which trace paths that
are perpendicular to the wave front of the light waves in the small-wavelength limit. Then since the gradient
of the wave fronts is perpendicular to the wave fronts themselves, the direction of a light ray is in the direction
of the gradient of these wave-front eikonals L. In the example we have been discussing, this is in the direction
of∇L, where

∇L = x̂
(
∂L
∂x

)
+ ŷ

(
∂L
∂y

)
= C x̂ +

√
n2(y)− C2 ŷ. (15.114)

Now it is easy to find the angle θ of a light ray relative to the vertical. Simply note that this angle is
determined by

tan θ =
|∇Lx|
|∇Ly|

=
C√

n2(y)− C2
=

C/n(y)√
1 − C2/n2(y)

, (15.115)

but also

tan θ =
sin θ
cos θ

=
sin θ√

1 − sin2 θ
, (15.116)

so clearly

n(y) sin θ = C = constant, (15.117)

which is just Snell’s law of geometrical optics applied to successive horizontal slices of the atmosphere. We
already noted this result in Chapter 3, in discussing minimum-time light rays. In particular, if a ray enters the
top of the atmosphere at angle θ0 relative to the vertical, then it will strike the ground at the steeper angle
sin θground = sin θ0/nground. �

15.7 Schrödinger’s Wave Mechanics

In 1924 the particle–wave ideas of de Broglie became a hot topic of discussion
all over Europe, including physicists in both of the physics departments in Zürich.
One of these departments was at the University of Zürich, whose chair was Peter
Debye, and the other was at the E.T.H., the same department in which Einstein
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had earned his doctorate many years before.2 The two departments held a weekly
joint colloquium. Felix Bloch was a graduate student at the University of Zürich,
and Erwin Schrödinger was a faculty member at the E.T.H. As Bloch wrote many
years later:3

Once at the end of a colloquium I heard Debye saying something like: “Schrödinger, you
are not working right now on very important problems anyway. Why don’t you tell us
some time about that thesis of de Broglie, which seems to have attracted some attention?”
So in one of the next colloquia, Schrödinger gave a beautifully clear account of how de
Broglie associated a wave with a particle and how he could obtain the quantization rules
of Niels Bohr and Sommerfeld by demanding that an integer number of waves should be
fitted along a stationary orbit. When he had finished, Debye casually remarked that this
way of talking was rather childish. As a student of Sommerfeld he had learned that, to
deal properly with waves, one had to have a wave equation. It sounded quite trivial and
did not seem to make a great impression, but Schrödinger evidently thought a bit more
about the idea afterwards. Just a few weeks later he gave another talk in the colloquium
which he started by saying: “My colleague Debye suggested that one should have a wave
equation; well I have found one!” And then he told us essentially what he was about to
publish under the title “Quantization as Eigenvalue Problem” as the first paper of a series
in the Annalen der Physik. I was still too green to really appreciate the significance of
this talk, but from the general reaction of the audience I realized that something rather
important had happened, and I need not tell you what the name of Schrödinger has meant
from then on. Many years later, I reminded Debye of his remark about the wave equation;
interestingly enough he claimed that he had forgotten about it and I am not quite sure
whether this was not the subconscious suppression of his regret that he had not done it
himself. In any event, he turned to me with a broad smile and said: “Well, wasn’t I right?”

So how can one go about finding a wave equation for de Broglie waves?
The first step is to show that de Broglie wavelengths for typical classical particles

are exceedingly small. Take a 1-g particle moving at 1 cm/s, for example. Its
momentum is p = mv = 10−5 kg m/s, so its de Broglie wavelength is λ = h/p =
6.6 × 10−34 J · s/ 10−5 kg m/s = 6.6 × 10−29 m, much, much smaller than the size
of an atom. This immediately reminds us of the eikonal approximation in optics.
For small wavelengths of light, small compared with any physical barriers in a
situation or of distances over which the index of refraction changes appreciably,
we can replace the wave nature of light with the trajectory of light rays, which
travel on definite paths. Such rays remind us of the paths of classical particles, yet
they arise from a wave theory. Is it possible that classical particles are to de Broglie
waves as light rays are to light waves? In other words, is it possible that classical
mechanics is the eikonal approximation to a wave theory of matter?

There is an encouraging sign that this idea might work. As shown in the
preceding section, the eikonal equation of geometrical optics is (∇L)2 = n2,
relating the phase L to the index of refraction. There is the strikingly similar version

2 E.T.H. stands for Eidgenössische Technische Hochschule, rendered in English as the Swiss Federal Institute of
Technology or simply ETH Zürich.

3 Reproduced from Physics Today 29(12), 23 (1976), with the permission of the American Institute of Physics.
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of the Hamilton–Jacobi equation, (∇W)2 = 2m(E − U), for a particle of mass m,
total energy E, and potential energy U, related to Hamilton’s characteristic function
W for the case where the Hamiltonian is not an explicit function of time. Here W is
analogous to L and 2m(E − U) is analogous to n.

To derive ray optics from wave optics, we began with the wave equation

∇2ϕ− n2

c2
∂2ϕ

∂t2
, (15.118)

then wrote a general solution of the form

ϕ = eA(r)+ik0(L(r)−ct). (15.119)

Finally, after making the eikonal approximation, we found a differential equation
for L(r):

(∇L)2 = n2, (15.120)

called the eikonal equation.
So now for wave mechanics, let us try working backwards. We already have an

analogue for the eikonal equation, the time-independent Hamilton–Jacobi equation

(∇W)2 = 2m(E − U) (15.121)

in terms of Hamilton’s characteristic function W.
Now backing up a step, the solution ψ of some hoped-for wave equation for

particles would have the form

ψ = eA(r)+iα(W(r)−βt), (15.122)

where A(r) is related to the amplitude of the wave and α and β are constants.
Requiring dimensional consistency shows that β must have the dimensions of
energy, since W has the dimensions of energy × time, and α must have dimensions
of 1/(energy × time), since exponents must be dimensionless overall. As a trial, we
will therefore try setting β = E, the energy of the particle, and α = 1/�, where
at this point � is some unknown constant with dimensions of action, i.e., energy ×
time. So we rewrite the wave function as

ψ = eA(r)+ i
�
(W(r)−Et). (15.123)

Now we take the final step backward, by trying to find a wave equation which has
the solution we have just written. First, take derivatives of the trial solution with
respect to x:
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∂ψ

∂x
=

(
∂A
∂x

+
i
�

∂W
∂x

)
ψ, (15.124)

∂2ψ

∂x2 =

(
∂2A
∂x2 +

i
�

∂2W
∂x2

)
ψ +

(
∂A
∂x

+
i
�

∂W
∂x

)
∂ψ

∂x
(15.125)

=

[
∂2A
∂x2 +

i
�

∂2W
∂x2 +

(
∂A
∂x

+
i
�

∂W
∂x

)2
]
ψ.

Now if we use the eikonal approximation, where (as with light waves) the most
important term is (∂W/∂x)2ψ in the case of very short wavelengths, we have

∂2ψ

∂x2 = − 1
�2

(
∂W
∂x

)2
ψ. (15.126)

Adding in similar terms for derivatives in the y and z directions:

∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2 ≡ ∇2ψ ≈ −1
�

2
(∇W)2ψ = −2m

�2 (E − U(r))ψ. (15.127)

The derivative of our trial solution with respect to time is
∂ψ

∂t
= − i

�
Eψ. (15.128)

So if we now combine the spatial derivatives and time derivative of ψ to obtain
a nonrelativistic wave equation for particles, note there is only one way to do it.
Multiplying the result for ∇2ψ by −�

2/2m, we have

− �
2

2m
∇2ψ = (E − U(r))ψ (15.129)

and multiplying the time derivative by i�, we have

i�
∂ψ

∂t
= Eψ. (15.130)

Combining these results, we get

− �
2

2m
∇2ψ + U(r)ψ = i�

∂ψ

∂t
, (15.131)

which is Schrödinger’s equation, first presented at that colloquium in Zürich.
Note some interesting features of the equation. First, unlike the wave equations

we have met before, it contains only a single derivative with respect to time, but
second derivatives with respect to space. We can trace this fact back to the relation
E = p2/2m for a nonrelativistic particle; E came from the time derivative and p
came from spatial derivatives.

Second, the equation contains the imaginary number “i” explicitly. We have
often used imaginary numbers for mathematical convenience in solutions of the
wave equation or other fundamental equations of physics, but this is the first time
an imaginary number has appeared explicitly in a fundamental equation itself.
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Third, what is the meaning of the wave function ψ? What is it that is waving?
Clearly ψ is an amplitude, but an amplitude of what exactly? This question was to
worry Schrödinger for the rest of his life, and Einstein and others as well, and even
today is a matter of some controversy. We have developed a standard version that
works superbly well in practice, but there remain physicists who question it.

Let us at least test the equation in a simple case, that of a free particle (with
U(r) = 0) moving in one dimension. Then the equation becomes

− �
2

2m
∂2ψ

∂x2 = i�
∂ψ

∂t
. (15.132)

We try the plane wave ψ(x, t) = ψ0ei(kx−ωt), which solves the equation if
�

2k2/2m = �ω. For a wave, ω = 2πν, so the right-hand side is 2π�ν, which
is the energy E = hν of the particle according to de Broglie, if we set the constant
� ≡ h/2π. Then the left-hand side is

�
2k2

2m
=

�
2(2π/λ)2

2m
=

(h/λ)2

2m
=

p2

2m
(15.133)

using the other de Broglie relation p = h/λ. This is of course the kinetic energy
of a classical free particle, the only energy it has. So the solution is consistent with
both the de Broglie relations and classical particle mechanics.

Now let us begin with quantum mechanics according to Schrödinger, and see
how classical mechanics emerges from it as a special case. We will substitute the
very general wave form

ψ = eA(r)+ i
�
(W(r)−Et) (15.134)

into the Schrödinger equation, and see what happens. The derivative of ψ with
respect to time is

∂ψ

∂t
= − i

�
Eψ. (15.135)

The gradient of ψ is

∇ψ =

(
∇A +

i
�
∇W

)
ψ (15.136)

so then the Laplacian is

∇2ψ = ∇ · ∇ψ (15.137)

=

[
∇2A +

i
�
∇2W +

(
∇A +

i
�
∇W

)2
]
ψ

=

(
∇2A +

i
�
∇2W + (∇A)2 − 1

�2 (∇W)2 +
2i
�
∇A · ∇W

)
ψ.

Substituting into Schrödinger’s equation, we find

(∇W)2 + 2m(U − E) = i�(∇2W + 2∇A · ∇W) + �
2(∇2A + (∇A)2). (15.138)
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Now note that if we let � → 0, the entire right-hand side goes away, leaving us with
the Hamilton–Jacobi equation! That is, if � were equal to zero, Schrödinger’s equa-
tion would reduce to classical mechanics. However, even though Planck’s constant
is very small by everyday standards, it is not zero, so Schrödinger’s equation is
describing a more general theory than classical mechanics.

There is an alternative way to set the right-hand side equal to zero. With the
same sort of arguments used earlier in this section, we can show that the right-
hand side becomes negligible in the short-wavelength limit. That is, beginning with
quantum mechanics as expressed by the Schrödinger equation, classical mechanics
is the short-wavelength limit of quantum mechanics. Said another way, classical
mechanics is the eikonal approximation to quantum mechanics.

15.8 Quantum Operators and the Bracket

There is yet another way to approach quantum mechanics, beginning with a
formalism of classical mechanics introduced back in Chapter 11. The Poisson
bracket was a convenient tool we introduced then to make Hamilton’s equations
of motion and canonical transformations more concise and transparent. We defined
the bracket as

{A, B}q,p ≡ ∂A
∂qk

∂B
∂pk

− ∂A
∂pk

∂B
∂qk

, (15.139)

i.e., a certain combination of derivatives with respect to the canonical coordinates
and momenta. Hamilton’s equations then took the form

q̇k = {qk, H}q,p , ṗk = {pk, H}q,p . (15.140)

Conservation laws and canonical transformations could also be written in terms of
this bracket, as shown in Eqs. (11.136) and (11.140). We also learned there that the
Poisson bracket satisfies the following four identities.

1. Anticommutativity: {A, B}q,p = −{B, A}q,p
2. Distributivity: {A, b B + c C}q,p = b {A, B}q,p + c {A, C}q,p
3. A modified notion of associativity: {AB, C}q,p = {A, C}q,p B + A {B, C}q,p
4. The Jacobi identity: {A, {B, C}q,p}q,p+{B, {C, A}q,p}q,p+{C, {A, B}q,p}q,p = 0

Let us now think of the Poisson bracket as some abstract bilinear mathematical
operation involving two inputs – with the associated four properties of the operator
listed above as defining properties. That is, we are not to think of the bracket as
necessarily taking functions of canonical coordinates and momenta as inputs and
then computing some derivatives of these functions as in Eq. (15.139). Instead,
we allow for any other realization of the operator – as long as its four properties
above hold. We will then represent this more abstract notion of the Poisson bracket
by square brackets [·, ·] instead of the curly brackets with subscripts {·, ·}p,q. As
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an example, we can propose another representation of the bracket as a bi-linear
operator that takes as inputs matrices. That is:

[Â, B̂] = Â · B̂− B̂ · Â, (15.141)

where Â and B̂ are matrices and the dot implies matrix multiplication. The bracket
operation is now the so-called commutator of the matrices. One can show that this
realization of the bracket operation satisfies all four defining properties (see the
Problems section at the end of this chapter), so we say it is a valid representation
of the bracket. And we can indeed find other valid representations as well – all
satisfying the four defining properties.

The reason this is interesting is the following: the abstract structure of the
bracket, a bi-linear operator with the four properties listed above and nothing
more, captures the essence of dynamics when used to describe time evolution as
in Eq. (15.140). As we saw, a great deal of mechanics, from equations of motion
to canonical transformations of phase space, can be neatly written using these
brackets. For example, inspired by Eq. (15.140), suppose we posit a crazy new
theory of the time evolution of some matrices based on the representation of the
bracket given by Eq. (15.141). That is:

dÂ
dt

∼
[
Â, Ĥ

]
. (15.142)

Then this new theory will inherit a lot of the hallmark features of mechanics:
evolution would be dictated by a Hamiltonian (some matrix Ĥ in this case) that
acts as the generator of time translations, constants of motion would correlate with
symmetries of this Hamiltonian, a familiar phase-space picture might be developed,
and many attributes of dynamics that we often take for granted would be encoded
in our new theory of matrices for free. This might not sound terribly useful or too
hypothetical, but it is indeed how the process of canonical quantization led some
physicists from classical mechanics to quantum mechanics.

The canonical quantization prescription dictates that classical coordinates and
momenta should be elevated to the stature of abstract operators: mathematical
entities that can “act” on a vector space that represents the different states of the
physical system. We can think of these operators as matrices, but they don’t have
to be. For a single particle, the classical variables q(t) and p(t) are then thought of
as the q̂(t) and p̂(t) operators4

q(t) → q̂(t), p(t) → p̂(t), (15.143)

where we use hats on the variables to emphasize that they are now general
operators. The vector space these operators act upon is proposed to be the space
of all states of the single particle.5 When an operator acts on such a vector state it

4 This is known as the Heisenberg picture, where operators are time dependent instead of the vectors they act on.
5 If it helps, one can think of these operators as n × n matrices, and the vectors they act upon as n-component

column matrices representing the various states of the particle. Note however that, for a matrix representation
of position and momentum in this case, n must be strictly infinite.
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gives another vector state. Then we assume the following central prescription that
helps convert classical equations to quantum equations:

{·, ·}p,q → 1
i �

[·, ·], (15.144)

where i =
√
−1 is there by convention, and � is Planck’s constant we encountered

in the first capstone chapter (Chapter 5). In particular, this implies that

{q, p}p,q = 1 ⇒ [q̂, p̂] = i �. (15.145)

We then take the bracket of two operators to be their commutator, as given by Eq.
(15.141) for matrices. For example, we have [q̂, p̂] = q̂p̂− p̂q̂. As mentioned earlier,
this representation of the bracket can be shown to be a valid one. The time evolution
of the particle, classically given by Eq. (15.140), will then be described by the
evolution of the operators

i �
dq̂
dt

= [q̂, Ĥ], i �
dp̂
dt

= [p̂, Ĥ], (15.146)

where the Hamiltonian operator Ĥ is to be constructed from the classical Hamil-
tonian of the particle by replacing qs and ps with their corresponding operator
incarnations.6 The next step is to connect how the time evolution of these operators
translates to evolution of the particle state – in particular, the evolution of its
position and momentum. This in turn requires us to define the physical meaning of
“acting” with an operator upon a state vector of the particle. Once these potholes are
filled in, the road to quantizing a classical system is paved through the procedure
just outlined.

In this story, the canonical quantization prescription motivates and provides a
roadmap for transitioning from the classical to the quantum. However, it is also
important to appreciate that classical mechanics does not imply quantum mechan-
ics: there are a lot of additional new ideas not inherent to classical mechanics –
from the introduction of abstract operators for position and momentum, to the
use of a vector space describing states of a physical system. These new ideas
need to be added to make quantum mechanics emerge from classical mechanics.
Yet, it is very instructive to see how the seeds of quantization are already sown
in the mathematical landscape of classical mechanics; and they are made more
transparent with the language of Poisson brackets and Hamiltonian evolution.

It is worthwhile noting that the quantum commutator that finds its origin and
inspiration in the classical Poisson bracket is related to one of the most celebrated
taglines of quantum mechanics: the Heisenberg uncertainty principle. In its
most common incarnation, this principle asserts that the uncertainties in knowing
the position and momentum of a particle are correlated. In the quantum world
of competing realities, the results of measurements of position and momentum
randomly fluctuate and one can at most know the likelihood of one measurement

6 Note that there can be ambiguities in this prescription given that q̂ and p̂ do not commute – but this is a matter
beyond this textbook.
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outcome over another. Hence, a measurement of the position q of a particle is
associated with an uncertainty denoted by Δq, which is essentially the standard
deviation of multiple attempts at measuring the position of the particle with the
same setup. Similarly, one has a quantum uncertainty for the particle’s momentum
p, denoted as Δp. The Heisenberg uncertainty principle notes that we must then
have

ΔqΔp ≥ �

2
, (15.147)

correlating the two uncertainties. This statement can be derived from the commu-
tator [q̂, p̂] = i � in quantum mechanics, which we learned in turn is inspired from
the classical Poisson bracket {q, p} = 1. If we were to imagine importing (15.147)
into classical phase space, we might think of it as saying that area in phase
space is “quantized” in units of �/2. That is, one cannot locate a point in phase
space that is smaller than a cell of area �/2. This fits nicely with the classical
Liouville theorem in which phase-space area is preserved under time evolution.
The Liouville theorem hints at a notion of “incompressibility” of area in phase
space, which agrees well with Heisenberg’s principle of minimal phase-space
area. Once again, we see that there are well-hidden imprints of the quantum in
Hamiltonian classical mechanics.

Example 15.6 The Quantum Harmonic Oscillator
As an example of the prescription of canonical quantization, let us develop the case of the simple harmonic
oscillator. We start with a classical Hamiltonian with a single degree of freedom

H =
p2

2 m
+

1
2

k q2 (15.148)

for a particle of mass m attached to a spring of spring constant k. To “quantize” this system, we elevate q and
p to q̂ and p̂ satisfying

[̂q, p̂] = i �, [̂q, q̂] = 0, [̂p, p̂] = 0, (15.149)

using the {}p,q → []/i� prescription. And we write the new Hamiltonian operator as

Ĥ =
p̂2

2 m
+

1
2

k q̂2. (15.150)

We can then describe the evolution of these operators by

i �
dq̂
dt

= [̂q, Ĥ] = i �
p̂
m

(15.151)

for q̂(t), where in the last equality we used the first three properties of the Poisson bracket: anticommutation,
distributivity, and modified associativity. For example, we have[

q̂,
p̂2

2 m

]
=

1
2 m

[̂q, p̂p̂] = − 1
2 m

[̂p̂p, q̂] = − 1
2 m

[̂p, q̂]̂p − 1
2 m

p̂[̂p, q̂] = i �
p̂
m

. (15.152)



646 15 Seeds of Quantization

Notice that we did not need any particular representation of the bracket operator; its abstract properties
and (15.149) was all that we used. Similarly, we get

i �
dp̂
dt

= [̂p, Ĥ] = −i � k q̂. (15.153)

At the operator level, this looks like the familiar restoring effect of a spring force. To describe the actual
evolution of the quantum particle under the influence of the spring force we would next need to define the
state-vector space of the particle on which these operators act. This vector space is to describe the various
possible states of the particle as vectors – and hence the particle’s position and momentum are to be extracted
from such a state vector. We would also need to define the meaning of an operator acting on a state – which
is related to the postulate of measurement in quantum mechanics. The Poisson bracket machinery gets us a
long way into the quantum world of this particle, but we still have a long way to go to complete the quantum
picture. And that will require a different textbook. �

15.9 A Hint at Quantum Time Evolution

There is a way to understand classical time evolution of physical systems in a
manner that ties nicely into their quantum counterpart. As we learned earlier,
Hamilton’s equations of motion take the form

q̇ = {q, H}, ṗ = {p, H}, (15.154)

written in terms of the Poisson bracket. For simplicity, we focus on the case
of a two-dimensional phase space but the discussion can easily be extended to
general 2 N-dimensional phase space. These equations can be solved formally and
in general with a series expansion in time. We start by writing

q(t) = q(t0 +Δt) = q(t0) + q̇(t0)Δt +
1
2!

q̈(t0)Δt2 + · · · , (15.155)

Taylor expanding q(t) about an initial time t0 (see Appendix F). Assuming conver-
gence of this series for given Δt, we then need to compute the time derivatives of
q(t) evaluated at t = t0. From (15.154), we can write

q̇(t0) = {q, H}0, (15.156)

where the result of the bracket is to be evaluated at t = t0. But we then also have

q̈ =
d
dt
{q, H} = {q̇, H}+ {q, Ḣ}. (15.157)

We also know that
dH
dt

=
∂H
∂t

. (15.158)
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For simplicity, let us assume that the Hamiltonian does not depend on time
explicitly, so that ∂H/∂t = 0. We then have

q̈ = {q̇, H} = {{q, H}, H}, (15.159)

where we used (15.154) to eliminate q̇. This implies that we have

q̈(t0) = {{q, H}, H}0, (15.160)

with the subscript once again indicating that the expression is to be evaluated at
t = t0 after the Poisson brackets are computed. Similarly, one can derive

d3q(t0)
dt

= {{{q, H}, H}, H}0, (15.161)

and more generally

dnq(t0)
dt

= {{{q, H}, H}, . . . , H}0, (15.162)

where we would have n nested Poisson brackets and n occurrences of H. We now
see that one can find q(t) using Eq. (15.155) by computing the coefficients of the
Taylor expansion in terms of nested Poisson brackets with the Hamiltonian – all
evaluated at t = t0 (see Appendix F). We then write

q(t0 +Δt) = q(t0) + {q, H}0Δt +
1
2!
{{q, H}, H}0Δt2 + · · · (15.163)

A similar treatment can be undertaken for computing the canonical momentum
p(t0+Δt). In principle, Eq. (15.163) is a complete solution in the form of an infinite
series, but in practice it is not a very useful expression for solving Hamiltonian time
evolution. However, the expression allows us to define how a system time-evolves
in quantum mechanics. As we transition from the classical to the quantum, we learn
that we need to replace Poisson brackets with commutators, as in {., .} → [., .]/i �.
This translates to

q̂(t0 +Δt) = q̂(t0) + (−i)
Δt
�
[q̂, Ĥ] + (−i)2 1

2!
Δt2

�2 [[q̂, Ĥ], Ĥ] + · · · (15.164)

Formally, this is written as

q̂(t0 +Δt) = e
i
�

ĤΔtq̂(t0)e−
i
�

ĤΔt, (15.165)

where one defines the exponential operator as

e−
i
�

ĤΔt =
∞∑

n=0

1
n!

(
−i Ĥ
�

)n

(15.166)
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through a Taylor-like expansion. One can then show (see the Problems section at
the end of this chapter) that Eqs. (15.165) and (15.166) indeed lead to (15.164).
Hence, we see a direct connection between evolution in classical phase space, and
time evolution of operators in quantum mechanics. Once again, the Lagrangian
and Hamiltonian formulations of classical mechanics provide the foundations and
proper guidance to lead us to quantum mechanics.

15.10 Summary

In this concluding chapter we began by developing Hamilton–Jacobi theory, in
which motion of systems is found not by solving second-order or first-order
ordinary differential equations, as in Lagrangian or Hamiltonian mechanics, but by
solving a partial differential equation. We then explored the method of adiabatic
invariants, which is very useful in practice, as there is often a hierarchical
separation of time scales in physical situations, with a fast motion superimposed
on a slow one. This was followed by a brief exploration of some of the early
semiclassical ideas and schemes to address quantum phenomena, as in the so-
called “old quantum theory,” ideas developed and promoted by such physicists as
Bohr, de Broglie, Wentzel, Kramers, Brilliouin, Jeffreys, and Sommerfeld, which
helped prepare the way for the full quantum mechanics. We then showed at some
length how de Broglie’s proposal that particles have a wave nature led Schrödinger,
with his thorough understanding of optics and Hamilton–Jacobi theory, to develop
his famous wave equation. Finally, we described the canonical quantization
prescription for developing the quantum version of a classical system – where
we saw that the Hamiltonian formulation and Poisson brackets play a central role.
This quantization procedure was due initially to Heisenberg and then developed
further by him and many others as well. Historically, Heisenberg’s so-called
matrix mechanics came first, soon followed by Schrödinger’s wave mechanics
– it was Schrödinger who subsequently showed that the two formulations were
different ways of understanding the same theory. Feynman’s path-integration
approach, as already discussed in Chapter 5, was a third and unique way of viewing
quantum theory; it came a quarter-century later. Each of the three fundamental
approaches to quantum mechanics has its own advantages and disadvantages for
problem solving and for insight into the theory, just as the various formulations
of classical mechanics, due to Newton, Lagrange, Hamilton, Jacobi, and others,
have each provided their own insights and techniques. In this book we have
tried to demonstrate that all three fundamental approaches to quantum mechanics
have emerged in large part from different formulations of classical mechan-
ics, and that in turn our understanding of the limits and meaning of classical
mechanics have benefited from the quantum theory to which they all helped
give rise.
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Problems

Problem 15.1 A ball of mass m is dropped from rest above the surface of an airless�
moon in essentially uniform gravity g. (a) If y is the vertical axis, show that the
Hamilton–Jacobi equation for the ball is

1
2m

(
∂S
∂y

)2
+ mgy +

∂S
∂t

= 0,

where S is Hamilton’s principal function. (b) Then show that

S = ± 2
√

2
3g
√

m
(C − mgy)3/2 − Ct,

where C is a constant. (c) Then show, using a judicious choice of constants, that
the equation of motion of the ball can be written as

y = y0 −
1
2

g(t − t0)2.

Problem 15.2 Starting from rest at time t = 0 and at altitude h0, a block of mass��
M slides down a frictionless plane inclined at angle α to the horizontal. There is a
uniform gravitational field g directed vertically downward. (a) Write the Hamilton–
Jacobi equation for the block. (b) Solve the equation to find Hamilton’s principal
function S. (c) Find the equation of motion s(t) for the block, where s is the distance
along the incline, measured from the top of the incline.

Problem 15.3 A spaceship drifts in gravity-free space. If its velocity is v0 in the�
positive x direction at time t = 0, find its subsequent motion using the Hamilton–
Jacobi method.

Problem 15.4 A projectile is fired in a uniform gravitational field g with initial speed��
v0 and angle θ0 relative to the horizontal. Note that the Hamiltonian is

H =
p2

x
2m

+
p2

y

2m
+ mgy.

Find the projectile’s motion x(t) and y(t) using the Hamilton–Jacobi method.

Problem 15.5 A block m can slide along a frictionless tabletop in the x, y plane,��
subject to the forces exerted by one spring that lies along the x axis and has
force constant k1, and another spring that lies along the y axis and has force
constant k2. Assume the motions of m are so small that the springs remain
essentially perpendicular to one another. Write the Hamiltonian, the Hamilton–
Jacobi equation, and solve the equation to find the motions x(t) and y(t) of the
block.

Problem 15.6 A thin, stiff metal ring of radius R is placed in a vertical plane, and��
made to spin with constant angular velocity ω about a vertical axis that passes
through the center of the ring. A bead of mass m is free to slide around the
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ring, with its position defined by its angle θ up from the bottom of the ring.
(a) Find the Hamiltonian of the bead and write out the corresponding Hamilton–
Jacobi equation. (b) Show that Hamilton’s principal function can be separated into
S = Sθ(θ) + St(t), and find St(t) explicitly and Sθ(θ) as an integral over a function
of θ.

Problem 15.7 The Hamiltonian for a particle of mass m, with arbitrary initial position���
and velocity, and subject to an inverse-square attractive force, can be written

H =
p2

r
2m

+
p2
θ

2mr2 − k
r

,

where k is a positive constant. (a) Write the Hamilton–Jacobi equation for the
particle. (b) By separating variables, show that Hamilton’s principal function can
be written in the form

S = Sr + Sθ + St = Sr + C1t + C2θ,

where C1 and C2 are constants, and Sr depends only upon r. (c) Write an expression
for Sr in the form of an integral over r. (d) The new coordinate Qr = ∂S/∂C2 =
∂(Sr+Sθ)/∂C2α, a constant, since the new coordinates in Hamilton–Jacobi theory
are necessarily constants. Take this partial derivative (right through the integral
sign!) to show that (with an appropriate choice of signs)

θ − α =

∫
C2dr

r2
√
−2mC1 + 2mk/r − C2

2/r2
.

(e) Evaluate the integral with the help of the substitution u = 1/r; then find
an expression for r(θ). This gives the possible orbital shapes: circles, ellipses,
parabolas, and hyperbolas.

Problem 15.8 Using the action angle variables approach, find the oscillation fre-�
quency of a one-dimensional simple harmonic oscillator of mass m and force
constant k.

Problem 15.9 Using the action angle variables approach, find the frequencies of���
oscillation of a planet orbiting the sun, for both the radial and angular motions.
What is the consequence of the fact that these frequencies turn out to be the same?
You might need to use contour integration to evaluate an integral.

Problem 15.10 A particle of mass m moves in one dimension subject to a force F of�
constant magnitude, but directed toward the left for positive x and to the right for
negative x. Thus the potential energy has the form U = k|x| for some constant k.
Using action angle variables, find the frequency of oscillation as a function of the
particle’s energy.

Problem 15.11 As an example of adiabatic invariance, consider the preceding problem��
in the case where the magnitude of the force F is slowly changed, i.e., slow
relative to the oscillation period of the particle. Which (if any) of the following
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quantities remain constant in the adiabatic limit: (a) the oscillation amplitude? (b)
the frequency of oscillation? (c) the energy?

Problem 15.12 A particle of mass m can move along the positive x axis only, subject�
to a constant force to the left. That is, there is an impenetrable wall at x = 0
preventing it from reaching negative x, and for positive x there is a constant force
attracting the particle back towards the origin. Find the possible energy levels of
the particle according to the “old quantum theory.”

Problem 15.13 A particle of mass m can move along the positive x axis only, subject�
to a Hooke’s-law spring force F = − kx. That is, there is an impenetrable wall at
x = 0 preventing it from reaching negative x, and for positive x there is a spring
force attracting the particle back towards the origin. Find the allowed energies of
the particle according to the “old quantum theory.” Compare these energy levels
with those for a particle moving anywhere on the x axis subject to a spring force
F = −kx attracting it to x = 0.

Problem 15.14 A particle of mass m is confined to move inside a cubic box of side�
length L, with potential energy zero. Find the allowed energies of the particle
according to the “old quantum theory.”

Problem 15.15 One end of a spring of rest length zero and force constant k is attached��
to a fixed point while the other end is attached to a ball of mass m, which is
otherwise free to move as it likes in three-dimensional space. Find the allowed
energies of the system according to the “old quantum theory.”

Problem 15.16 From the classical point of view, the electron in a hydrogen atom��
moves under the influence of a central attractive force F = −e2/r2 caused by
the proton nucleus. According to “old quantum theory,” the phase integrals over r
and θ are given by ∮

pr dr = n1h and

∮
pθ dθ = n2h,

where pr and pθ are the classical canonical momenta, h is Planck’s constant, and n1
and n2 are positive integers. Show that according to old quantum theory there are
only a discrete set of possible energy levels, given by

En = − me4

2n2�2 ,

where � ≡ h/2π and n = n1 + n2.

Problem 15.17 If a quantum-mechanical particle has definite energy E we can write��
its wave function in the form Ψ(r, t) = ψ(r)e−iEt/�. (a) Substitute this into the full
Schrödinger equation to show that the time-independent Schrödinger equation for
ψ(r) may be written

∇2ψ +
2m
�2 (E − U)ψ = 0,
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where both ψ and U are functions of position. (b) A particle of mass m is trapped
inside a one-dimensional box of width L. The potential energy of the particle is
zero for 0 < x < L and infinite otherwise. The wave function of the particle is zero
outside the box and at x = 0, L. According to the one-dimensional Schrödinger
equation, the lowest-energy “eigenfunction” ψ1 for the particle is ψ1 = A sinπx/L,
where A is a constant. Find the corresponding energy eigenvalue E1. (c) Find
all other energy eigenfunctions ψn of the particle, and the corresponding energy
eigenvalues En.

Problem 15.18 A particle of mass m is trapped inside a three-dimensional box of side��
length L. The potential energy of the particle is zero for 0 < x < L, 0 < y < L,
0 < z < L and infinite otherwise. Possible energy “eigenfunctions” ψn(x, y, z)
of the particle are zero outside the box and at every face. The lowest-energy
eigenfunction ψ1 for the particle is ψ1 = A sin(πx/L) sin(πy/L) sin(πz/L), where
A is a constant. (a) Find the corresponding energy eigenvalue E1. (b) Find all other
energy eigenfunctions ψn and corresponding energy eigenvalues En in terms of
the “quantum number” n. (c) Compare these allowed energy values with those
predicted by the “old quantum theory,” showing that they agree in the limit of large
n.

Problem 15.19 The lowest-energy (i.e., “ground state”) eigenfunction of the electron���
in a hydrogen atom is spherically symmetric. (a) Using the time-independent
Schrödinger equation, find this eigenfunction in terms of the radius r of the electron
from the nucleus as origin. (b) Find also the electron’s corresponding energy
eigenvalue.

Problem 15.20 The ground-state wave function of a one-dimensional simple har-��
monic oscillator of mass m and force constant k is the Gaussian function ψ(x) =

Ae−αx2 , where A is a normalization constant (adjusted to make
∫
ψ∗ψdx = 1) and

α is also a constant. (a) Using Schrödinger’s equation, find α in terms of m, k, and
� ≡ h/2π. (b) Find the energy eigenvalue for this wave function, in terms of the
same constants. (c) Compare with the energy predicted for this ground state by the
“old quantum theory.”

Problem 15.21 The angular momentum vector of a particle of mass m is written��
as L = r × p. Find the Poisson brackets of any two components of the
angular momentum vector in Cartesian coordinates. Do this using the explicit
representation of the Poisson bracket as derivatives with respect to canonical
coordinates and momenta. Show that the result is given by {Lx, Ly} = Lz,
{Ly, Lz} = Lx, and {Lz, Lx} = Ly (i.e., cyclic permutations of (xyz)). This is known
as the angular momentum algebra.

Problem 15.22 (a) Repeat the previous problem but instead use only the four proper-�
ties of the Poisson bracket and the facts that {x, px} = {y, py} = {z, pz} = 1 while
the other brackets of positions and momenta vanish. (b) Write the quantum version
of this algebra using the quantization scheme described in the chapter.
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Problem 15.23 Using Eq. (11.140), find the generator of the transformation that can�
translate a function of the canonical momentum f(p) by p → p + ε.

Problem 15.24 Using Eq. (11.140), show that if we use G= ε Lx as a generator of a��
transformation (where Lx is the x component of the angular momentum), we end
up rotating the components of the position vector r by an infinitesimal angle ε
about the x axis. Show this by applying the generator onto an arbitrary function
of position A(r). Similarly, find the generators that rotate the position vector about
the y and z axes.

Problem 15.25 Inspired by the previous problem, find the generators that rotate the��
momentum vector p about the x, y, and z axes by infinitesimal angles.

Problem 15.26 Compute the Poisson bracket of any components of position or��
momentum with any component of angular momentum. Use the Poisson bracket
representation as derivatives with respect to canonical coordinates and momenta.

Problem 15.27 Repeat the previous problem but use only the four properties of�
the Poisson bracket and the particular Poisson brackets between the components
of the position and momentum vectors. From this, deduce the corresponding
commutation relations in quantum mechanics.

Problem 15.28 Find the generator that performs a Galilean boost in the x direction��
by an infinitesimal speed ε. Do this using Eq. (11.140), working backwards and
considering expected effects of the transformation on the position and momentum
of a particle.

Problem 15.29 (a) Find the generator that performs an infinitesimal scale transforma-���
tion, where r′ = (1 + ε)r, and similarly for momentum. (b) Find the brackets of
this generator with the components of angular momentum of a particle.

Problem 15.30 Show that���

q̂(t0 +Δt) = e
i
�

ĤΔtq̂(t0)e−
i
�

ĤΔt, (15.167)

where we define

e−
i
�

ĤΔt =
∞∑

n=0

1
n!

(
−i Ĥ
�

)n

, (15.168)

implies

q̂(t0 +Δt) = q̂(t0) + (−i)
Δt
�
[q̂, Ĥ] + (−i)2 1

2!
Δt2

�2 [[q̂, Ĥ], Ĥ] + · · · (15.169)

Do this by showing the pattern for the first few terms only.
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A Coordinate Systems

In solving physics problems, it is often necessary to make a judicious choice
of coordinate system from the outset. Using the “wrong” coordinate system that
does not take advantage of the symmetries offered by the problem can easily
lead to unnecessarily complicated algebra and intractable differential equations.
Three coordinate systems arise most frequently in physics problems: Cartesian
coordinates – most useful in problems with planar symmetry, cylindrical coor-
dinates – most useful in problems with cylindrical symmetry, and spherical
coordinates – for problems with spherical symmetry. In this appendix, we describe
each of these three coordinate systems.

A.1 Cartesian Coordinates

We label a point in space in Cartesian coordinates by x, y, and z, as shown in
Figure A.1. The position vector then takes the form

r = x x̂+ y ŷ + z ẑ, (A.1)

where x̂, ŷ, and ẑ are mutually orthogonal unit-normalized basis vectors that span
the vector space in three dimensions. Any vector W can be decomposed into
components as follows:

W = Wxx̂+Wyŷ +Wzẑ. (A.2)

The Cartesian basis vectors are constant as we move around in x, y, and z. The line
element takes the form

dr = dx x̂+ dy ŷ + dz ẑ. (A.3)

The area element is written as

dA = ±dydz x̂± dxdz ŷ ± dxdy ẑ, (A.4)

while the volume element is

dVol = dxdydz. (A.5)

The gradient of a function f(x, y, z) takes the form

∇f =
∂f
∂x

x̂+
∂f
∂y

ŷ +
∂f
∂z

ẑ. (A.6)
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z

y

x

Fig. A.1 Cartesian coordinate system.

Given that the basis vectors are constant, the divergence, curl, and Laplacian take
very simple forms. We get

divW = ∇ ·W =
∂Wx

∂x
+

∂Wy

∂y
+

∂Wz

∂z
, (A.7)

curlW=∇×W=

(
∂Wz

∂y
− ∂Wy

∂z

)
x̂+

(
∂Wx

∂z
− ∂Wz

∂x

)
ŷ+

(
∂Wy

∂x
− ∂Wx

∂y

)
ẑ,

(A.8)

where A(x, y, z) is an arbitrary vector field. And

∇2f =
∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2 . (A.9)

A.2 Cylindrical Coordinates

We label a point in space in cylindrical coordinates by ρ, ϕ, and z, as shown in
Figure A.2.

These are related to the Cartesian coordinates by

x = ρ cosϕ, y = ρ sinϕ (A.10)

or

ρ =
√

x2 + y2, tanϕ =
y
x

(A.11)

with z unchanged. The position vector then takes the form

r = ρ ρ̂+ z ẑ. (A.12)
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z

y
x

Fig. A.2 Cylindrical coordinate system.

We write ρ̂, ϕ̂, and ẑ for the mutually orthogonal unit-normalized basis vectors that
span the vector space. In particular, we have

ρ̂× ϕ̂ = ẑ, ϕ̂× ẑ = ρ̂, ẑ× ρ̂ = ϕ̂. (A.13)

We can also relate these basis vectors to those used in Cartesian coordinates:

ρ̂ = cosϕ x̂+ sinϕ ŷ, ϕ̂ = − sinϕ x̂+ cosϕ ŷ (A.14)

or

x̂ = cosϕ ρ̂− sinϕ ϕ̂, ŷ = sinϕ ρ̂+ cosϕ ϕ̂. (A.15)

This means that any vector W can be decomposed into components as follows:

W = Wρρ̂+Wϕϕ̂+Wzẑ. (A.16)

The basis vectors in cylindrical coordinates are not constant as we change ϕ;
they remain constant only when we move in ρ and z. We then have the nonzero
derivatives

∂ρ̂

∂ϕ
= ϕ̂ (A.17)

and
∂ϕ̂

∂ϕ
= −ρ̂. (A.18)

The line element takes the form

dr = dρ ρ̂+ ρdϕ ϕ̂+ dz ẑ. (A.19)

The area element is

dA = ±ρ dϕdz ρ̂± dρdz ϕ̂± ρ dρdϕ ẑ, (A.20)



660 A Coordinate Systems

while the volume element is

dVol = ρ dρdϕdz. (A.21)

The gradient of a function f(ρ,ϕ, z) is

∇f =
∂f
∂ρ

ρ̂+
1
ρ

∂f
∂ϕ

ϕ̂+
∂f
∂z

ẑ. (A.22)

The divergence, curl, and Laplacian take more complicated forms arising
from (A.17) and (A.18). We get

divW ≡ ∇ ·W =
1
ρ

∂

∂ρ
(ρWρ) +

1
ρ

∂Wϕ

∂ϕ
+

∂Wz

∂z
, (A.23)

curlW ≡ ∇×W =

(
1
ρ

∂Wz

∂ϕ
− ∂Wϕ

∂z

)
ρ̂+

(
∂Wρ

∂z
− ∂Wz

∂ρ

)
ϕ̂

+

(
1
ρ

∂

∂ρ
(ρWϕ)− 1

ρ

∂Wρ

∂ϕ

)
ẑ, (A.24)

where W(ρ,ϕ, z) is an arbitrary vector field. Finally:

∇2f =
1
ρ

∂

∂ρ

(
ρ
∂f
∂ρ

)
+

1
ρ2

∂2f
∂ϕ2 +

∂2f
∂z2 . (A.25)

In two dimensions, the cylindrical coordinate system can be collapsed onto the
ρ–ϕ subspace to represent the Polar coordinate system. All formulae in this
section go through by simply dropping the z coordinate dependence throughout. To
accord with common conventions, two-dimensional polar coordinates are denoted
in this text by r and θ, instead of ρ and ϕ.

A.3 Spherical Coordinates

We label a point in space in spherical coordinates by r, φ, and θ, as shown in
Figure A.3.

These are related to the Cartesian coordinates by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (A.26)

or

r =
√

x2 + y2 + z2, tan θ =

√
x2 + y2

z
, tanφ =

y
x

. (A.27)

The position vector then takes the simple form

r = r r̂. (A.28)
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z

y

x

Fig. A.3 Spherical coordinate system.

We write r̂, θ̂, and φ̂ for the mutually orthogonal unit-normalized basis vectors that
span the vector space. In particular, we have

r̂× θ̂ = φ̂, θ̂ × φ̂ = r̂, φ̂× r̂ = θ̂. (A.29)

We can also relate these basis vectors to those used in Cartesian coordinates:

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ, (A.30)

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ, (A.31)

φ̂ = − sinφ x̂+ cosφ ŷ (A.32)

or

x̂ = sin θ cosφ r̂+ cos θ cosφ θ̂ − sinφ φ̂, (A.33)

ŷ = sin θ sinφ r̂+ cos θ sinφ θ̂ + cosφ φ̂, (A.34)

ẑ = cos θ r̂− sin θ θ̂. (A.35)

This means that any vector W can be decomposed into components according to

W = Wrr̂+Wφφ̂+Wθθ̂. (A.36)

The basis vectors in spherical coordinates are not constant as we move in space.
We have the nonzero derivatives

∂r̂

∂θ
= θ̂,

∂r̂

∂φ
= sin θ φ̂ (A.37)
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∂θ̂

∂θ
= −r̂,

∂θ̂

∂φ
= cos θ φ̂ (A.38)

and
∂φ̂

∂φ
= − sin θ r̂− cos θ θ̂. (A.39)

All other derivatives are zero. The line element then takes the form

dr = dr r̂+ r dθ θ̂ + r sin θ dφ φ̂. (A.40)

The area element is written as

dA = ±r2 sin θ dθdφ r̂± r sin θ drdφ θ̂ ± r drdθ φ̂, (A.41)

while the volume element is

dVol = r2 sin θ drdθdφ. (A.42)

The gradient of a function f(r, θ,φ) is

∇f =
∂f
∂r

r̂+
1
r
∂f
∂θ

θ̂ +
1

r sin θ

∂f
∂φ

φ̂. (A.43)

The divergence, curl, and Laplacian take more complicated forms arising
from (A.37), (A.38), and (A.39). We get

divW ≡ ∇ ·W =
1
r2

∂

∂r
(
r2Wr)+ 1

r sin θ

∂

∂θ

(
sin θWθ

)
+

1
r sin θ

∂Wφ

∂φ
,

(A.44)

curlW ≡ ∇×W =

(
1

r sin θ

∂

∂θ

(
sin θWφ

)
− ∂Wθ

∂φ

)
r̂

+
1
r

(
1

sin θ

∂Wr

∂φ
− ∂

∂r
(
rWφ

))
θ̂

+
1
r

(
∂

∂r
(
rWθ

)
− ∂Wr

∂θ

)
φ̂, (A.45)

where W(r, θ,φ) is an arbitrary vector field. Finally, the Laplacian takes the form

∇2f =
1
r2

∂

∂r

(
r2 ∂f
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)
+

1
r2 sin2 θ

∂2f
∂φ2 . (A.46)



B Integral Theorems

When analyzing dynamics in three space dimensions, we often encounter integrals
over volumes, areas, and curves and relations between them. These geometrical
integral relations come in three flavors that we will elaborate on here. All three
are closely related, and can be unified within the proper mathematical language of
differential geometry. Here we take each on its own and outline the proofs. These
proofs help us understand the physical and geometrical meaning of the integral
relations between volumes, areas, and curves.

B.1 Green’s Theorem

Consider the line integral over a closed two-dimensional curve C:∮
C

U dx + V dy, (B.1)

for arbitrary functions U(x, y) and V(x, y). We start by assuming the curve has the
shape shown in Figure B.1, where the left and right edges are vertical. We will now
show that ∮

C

U dx + V dy =

∫ ∫
A

(
−∂U

∂y
+

∂V
∂x

)
dx dy. (B.2)

Notice that this equation relates the integral around the curve to an integral over
the area enclosed by the curve. For now, we make the statement regarding curves
of the form depicted in Figure B.1; and then we will show that this generalizes to
a curve of any shape.

Let us start with the first term in (B.2) expressed as an integral over dx. On the
left-hand side we get∮

C

U dx =

∫
−U(x, y2(x)) dx + U(x, y1(x)) dx, (B.3)

where the minus sign in the first term comes from the fact that the top part of
the curve is oriented in the negative x direction. We also note that there are no
contributions from the vertical segments of the curve, since dx = 0 on these parts.
Now let us look at the first term of the right-hand side of (B.2). We have
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Fig. B.1 Proof of Green’s theorem for a curve with vertical sides.∫ ∫
−∂U

∂y
dy dx =

∫
(−U(x, y2(x)) + U(x, y1(x))) dx, (B.4)

where we performed the integral over dy. We see that this equals the expression
in (B.3). Similarly, we can show that∮

C

V dy =

∫ ∫
∂V
∂x

dxdy, (B.5)

this time by performing the integral over dx on the right-hand side. We thus have
shown the relation (B.2) for the type of curves that have vertical left and right
edges. For more general curves, we can slice the curve into parts that do have
vertical edges, as shown in Figure B.2.

Applying our integral relation to each closed curve, and adding the results, we
get (B.2) for any curve: this is because the vertical segments that splice the larger
area come in pairs oriented in opposite directions. This means that they would
cancel on the left-hand side of (B.2), so that we are left with the line integral only
on the outer rim. And obviously the sum of the areas on the right add up for the full
enclosed area by the general curve. Hence, we have a general statement in (B.2) that
applies to any closed two-dimensional curve. This relation is known as Green’s
theorem.

B.2 Stokes’s Theorem

Consider a general vector field B(x, y, z) in three dimensions. Stokes’s theorem
states that ∮

C

B · dl =
∫ ∫

A

(∇×B) · dA, (B.6)
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Fig. B.2 When the curve is more complicated, we can divide the relevant enclosed area into parts where each
obeys Green’s theorem, as proven in the text. The sum of the integrals reproduces Green’s theorem for
the full area as contributions from vertical edges cancel.

relating the line integral of the vector field over an arbitrary curve to the integral of
its curl over any surface area bounded by the curve – as shown in Figure B.3.

The orientation of the curve determines the direction of the area element dA by
the right-hand rule: curl the finger of your right hand along the chosen orientation
of the curve, then your thumb tells you how to orient dA for the surface.

To prove this theorem, let us start by assuming that B = Bzẑ. We also assume
that the surface bounded by the curve can be described by one-to-one functions
x(y, z), y(x, z), and z(x, y). We will come back to this restriction at the end and
show that we can extend the theorem to more general surface shapes.

y

x

z

Fig. B.3 Proof of Stokes’s theorem for a curve and area of a particular well-behaved form.
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We start with the left-hand side of (B.6). We have∮
C

Bz(x, y, z)dz =
∮

Bz(x, y, z(x, y))
(
∂z
∂x

+
∂z
∂y

)
, (B.7)

where we used the chain rule

dz =
∂z
∂x

+
∂z
∂y

. (B.8)

Note that the curve over which we integrate the right-hand side is the projection of
the three-dimensional curve Conto the x–y plane. Now, let us look at the right-hand
side of (B.6). We have∫ ∫

A

(∇×B) · dA =

∫ ∫ (
−∂Bz

∂y
∂z
∂x

+
∂Bz

∂x
∂z
∂y

)
dxdy, (B.9)

where we used the outward normal area element dA:

dA = −∂z
∂x

x̂− ∂z
∂y

ŷ + dxdyẑ. (B.10)

We can now make use of Green’s theorem (B.2) with

U = Bz(x, y, z(x, y))
∂z
∂x

, V = Bz(x, y, z(x, y))
∂z
∂y

. (B.11)

We then have
∂U
∂y

=

(
∂Bz

∂y
+

∂Bz

∂z
∂z
∂y

)
∂z
∂x

+ Bz ∂2z
∂x∂y

(B.12)

and
∂V
∂x

=

(
∂Bz

∂x
+

∂Bz

∂z
∂z
∂x

)
∂z
∂y

+ Bz ∂2z
∂y∂x

. (B.13)

When we subtract this second relation from the first, all terms cancel except the
two shown in (B.9). By Green’s theorem, we then have (B.9) equal to∫ ∫

A

(∇×B) · dA =

∮
Bz(x, y, z(x, y))

∂z
∂x

dx + Bz(x, y, z(x, y))
∂z
∂y

dy, (B.14)

where the curve over which we integrate the right-hand side is once again the
projection of the three-dimensional curve Conto the x–y plane. Therefore, we have
proven Stokes’s theorem for B = Bzẑ. We can repeat this procedure for B = Bxx̂,
and then again for B = Byŷ. Since Stokes’s theorem is linear in B, we can then
add all three realizations of the theorem in the x, y, and z directions to conclude
that (B.6) is valid for any arbitrary vector field B.

We now come to the assumption that the shape of the surface in Stokes’s theorem
is one-to-one in all three directions. Physically, this means that the shadows of
the surface onto the x–y, y–z, and z–x planes are “clean” or “simple”: that is,
the shadows of different parts of the surface do not overlap. If we have a more
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complicated surface like the one shown in Figure B.4, where the surface folds on
itself, all we need to do is divide up the surface in “simple” parts that satisfy the one-
to-one criterion we assumed, and we can apply the theorem to each segment. We
can then add up the segments, since, as in the case of Green’s theorem, boundaries
between segments come in oppositely oriented pairs that cancel – so that we
recover a line integral over the full curve; and the area integrals just sum up to
the full area integral as needed. We thus conclude that Stokes’s theorem works for
any arbitrary vector field, any arbitrary three-dimensional curve, and any arbitrarily
shaped surfaces as long as the boundary of the surface is the corresponding curve
on the left-hand side of (B.6).

y

x

z

Fig. B.4 When the area bounded by the curve is more complicated, we can divide it into parts for which our proof
of Stokes’s theorem applies. The sum of the integrals then implies Stokes’s theorem for the general area,
since the contributions from the additional bounding curves cancel.

B.3 Divergence Theorem

The divergence theorem relates the integral of any vector field B(x, y, z) over a
closed surface to the volume integral of its divergence∮

A

B · dA =

∫ ∫ ∫
V

∇ ·B dVol, (B.15)

where the volume Vis the one enclosed by the surface Aas shown in Figure B.5.
The convention is that dA is oriented such that it points outward from the

enclosed volume.
To prove this theorem, let us start by assuming that B = Bzẑ. We also assume

that the closed surface is such that any lines parallel to the x, y, or z axes intersect
the surface only at two points at most. This basically means that the surface does
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y

x

z

Fig. B.5 Proof of the divergence theorem of a class of simple volumes.

not have strange protrusions. We will come back at the end and remove these two
assumptions and show that the theorem applies in general.

We start from the right-hand side of (B.15):∫ ∫ ∫
V

∇ ·B dVol =
∫ ∫ ∫

∂Bz

∂z
dxdydz

=

∫ ∫
(Bz(x, y, z1(x, y))− Bz(x, y, z2(x, y))) dxdy, (B.16)

where we performed the integration over dz as shown in Figure B.5. The left-hand
side of (B.15) is ∮

A

B · dA =

∮
BzdAz, (B.17)

with

dA = ∓∂z
∂x

x̂∓ ∂z
∂y

ŷ ± dxdyẑ, (B.18)

where the upper sign is for cap 1 with its normal pointing upward, and the lower
sign is for cap 2 with its normal pointing downward. We then have∮

A

B · dA =

∫
(Bz(x, y, z1(x, y))− Bz(x, y, z2(x, y))) dxdy, (B.19)

accounting for both caps. This matches with what we had in (B.16), and hence
we have proved the theorem. We can now repeat the procedure for B = Bxx̂ and
B = Byŷ; and in the case of Stokes’s theorem, we can add the three statements for
three different directions to conclude that the theorem works for any vector field B.

Finally, we can address the assumption that the surface is “simple,” with no
protrusions. For a general surface like the one shown in Figure B.6, we divide up
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the surface into parts that fit our criteria, as shown. We then apply the divergence
theorem to each part and sum. On the left side of (B.15), areas that separate
different regions come in pairs with opposing normal vectors and hence will cancel;
this leaves the area integral over the outside area only. On the right-hand side, the
different volume integrals add up to the full volume integral. We thus conclude that
the divergence theorem holds for any surface and its enclosed volume, and for any
vector field.

y

x

z

Fig. B.6 When the volume has a more complicated shape, we can divide it up into regions for which our proof of
the divergence theorem applies. Adding up the integrals reproduces the divergence theorem for the
general volume, since contributions for areas that slice the volume cancel.



C Dimensional Reasoning

Dimensional reasoning is a powerful tool that can help us learn how one quantity
depends upon others. The secret is that in classical mechanics, both sides of an
equation must have the same dimensions of mass M, length L, and time T. All other
quantities can be expressed in terms of these three. For example, the dimensions of
momentum (which we will write as [p], with square brackets) are ML/T, and the
dimensions of energy are [E] = ML2/T2.

Suppose we hold up a ball, drop it from rest, and then seek to find its momentum
when it strikes the ground. The first step is to ask “what would the momentum likely
depend upon?” Using physical intuition, it seems reasonable that the momentum
might depend upon the ball’s mass m, the height h from which it is dropped,
and the acceleration of gravity g. We are not sure how it depends upon these
quantities, however. The next step is to compare dimensions. The dimensions are
[p] = ML/T, [m] = [M], [g] = L/T2, and [h] = L. The only way to get the “M” in
momentum is to suppose that p is directly proportional to m, because neither g nor h
contains a dimension of mass. Then the only way to get the 1/T in momentum is to
suppose that p is proportional to √g. The product m√g has dimensions (M/T)

√
L,

which only needs to be multiplied by
√

h to achieve the correct dimensions for
momentum. That is, the momentum when the ball strikes the ground must have the
dependence

p = k m
√

gh, (C.1)

where k is some dimensionless constant. Dimensional reasoning alone cannot give
us this constant, so in fact we still do not know what the momentum of the ball is
when it reaches the ground. What we do know, however, is that if the momentum
at the ground of a particular dropped ball is p0, the momentum at the ground of a
similar ball dropped from twice the height will be

√
2 p0, or the momentum of a

ball dropped on the moon from the original height will be p0/
√

6, since gravity on
the moon is only one-sixth that on earth.

Note that this particular problem is easily solved exactly using F = ma,
giving the same equation while providing the value k =

√
2. Dimensional

analysis, however, also works in much more complicated problems where the
proportionality constant may be more difficult to find.

In general, we can solve such problems by writing a general relation such as

p = k mαgβhγ , (C.2)
670
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where α, β, and γ are constants to be determined. We then expand everything in
terms of mass, length, and time:

ML
T

∼ Mα Lβ

T2β Lγ , (C.3)

yielding simple equations for α, β, and γ:

1 = α, 1 = β + γ, −1 = −2β, (C.4)

confirming that α = 1, β = 1/2, and γ = 1/2.

Example C.1 Flow Rate of Molasses Through a Narrow Pipe
By flow rate, we mean the volume/second (with dimensions [flow rate] = L3/T) that passes though a pipe.
We expect that this depends upon the radius of the pipe, with [r] = L, since a wider pipe should allow more
fluid to flow than a narrower one. It should also depend upon friction within the fluid itself, and between the
fluid and sides of the pipe. Friction in a fluid is characterized by its viscosityη, with dimensions [η] = M/LT ,
and with values that can be found in tables.a The greater the viscosity, the greater the friction, and the lower
the flow rate should be: molasses or honey (with high viscosity) should flow more slowly than a light oil
(with low viscosity). Finally, the flow rate should also depend upon how hard one pushes on the fluid; i.e., the
pressure difference ΔP between one end of the pipe and the other. More precisely, it should depend upon
the pressure difference/unit length of pipe, since it makes sense that the viscous friction must be overcome
by the pressure gradient within the pipe.b The dimensions of pressure are [force/area] = (ML/T 2]/L2 =

M/(LT 2), so the dimensions of pressure per unit length are [ΔP/�] = M/(L2T 2).
Now we can formally calculate, using dimensional analysis, how the volume per second of the flow

depends upon r, η, and ΔP/�, by taking arbitrary powers of each and finding the powers by matching
dimensions on both sides. That is:

flow volume/s = k rαηβ(ΔP/�)γ , (C.5)

where k is a dimensionless constant. Therefore dimensionally:

L3

T
= Lα

(
M
LT

)β ( M
L2T 2

)γ

. (C.6)

We match exponents in turn for M, L, and T . That is:

mass: 0 = β + γ, length: 3 = α− β − 2γ, time: − 1 = −β − 2γ. (C.7)

From the first of these we learn thatγ = −β, so then from the third equation we find thatγ = −β = 1.
Finally, the second equation tells us that α = 3 + β + 2γ = 4. Thus the equation for the flow rate
through a pipe is

flow volume/s = k
(
ΔP/�
η

)
r4. (C.8)

Again, dimensional analysis alone cannot tell us the numerical value of the dimensionless number k. However,
we have learned a lot. Most spectacularly, we have learned that the flow rate of a highly viscous fluid is not
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proportional to the cross-sectional area of the pipe, but to the fourth power of the radius: a pipe of twice the
radius will transport 16 times the volume of fluid. This formula corresponds to what is called Poiseuille flow,
and an exact analytic calculation shows that the constant k = 6π.

We have carried out the dimensional analysis here in a rather formal way; one can often speed up the
process without using arbitrary powers likeα, β, and γ. Note from Eq. (C.8) that the flow rate must depend
upon the ratio (ΔP/�)/η to cancel out the dimension of mass, so we can rewrite Eq. (C.8) as

L3

T
= Lα

(
M

L2T 2 × LT
M

)γ

= Lα
(

1
LT

)γ

, (C.9)

from which it is clear that γ = 1 to obtain the needed 1/T dimension, and so thenα = 4 to obtain L3. �

aThe viscosity η of a fluid can be measured in principle by placing the fluid between two parallel metal plates of area A that are separated by
a distance d. When one plate is kept fixed while the other is moved parallel to the fixed plate with constant velocity v, the drag force on the
moving plate is observed to have magnitude F = ηAv/d. From this formula one can see that the dimensions ofη are M/LT .

b In this problem we are assuming smooth, so-called laminar flow, which is nonturbulent. High-viscosity fluids (like molasses) that move slowly
in narrow pipes are less likely to become turbulent. Turbulent flow is more complicated and depends on additional parameters.

C.1 A Few Exercises

1. The velocity of some waves on the surface of a lake depends upon gravity g
and the wavelength λ as long as the depth h of the lake satisfies h >> λ,
corresponding to what is called “deep water waves.” If we were to increase
the wavelength by a factor of two, by what factor would the wave velocity be
changed?

2. Capillary waves on the surface of a liquid come about because of the liquid’s
surface tension σ, which has dimensions M/T2. The velocity of capillary waves
depends upon σ and also upon the wavelength λ and mass density ρ of the liquid.
Two capillary waves on the same liquid have wavelengths λ1 and λ2 = 2λ1.
What is the ratio of their velocities?

3. The Planck length �p depends upon Planck’s constant � (with dimensions of
energy × time), Newton’s constant of gravity G, and the speed of light c. If
Planck’s constant were twice as large as it actually is, how would that affect �p?
Taking the proportionality constant to be unity, how large is �p numerically in
SI units?

4. Two very flat parallel metal plates, with a vacuum between and surrounding
them, are attracted to one another by what is called the Casimir force. The force
is proportional to the area A of each plate, and also depends upon the distance
d between the plates, the speed of light c, and Planck’s constant �, which has
dimensions of energy × time. If the distance d were halved, would the Casimir
force increase or decrease? By what factor?
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5. When a nuclear explosion takes place, the resulting fireball expands quickly
through the surrounding air, heating more and more air with time t. The radius
of the fireball depends on the energy E0 of the explosion, the density ρ of the air,
and time t. Given data for one fireball (say, the first such fireball at the Trinity site
near Alamogordo, New Mexico on July 16, 1945), if in a subsequent explosion
near ground level the fireball radius had become twice as large in the same time
t, by what factor would the energy E of the second explosion exceed E0?



D Fractal Dimension

A single point in a 2N-dimensional phase space has zero dimensions, a curve in
phase space has dimension d = 1, a surface has dimension d = 2, and so on. For
example, the attractor of a damped pendulum is a point at θ = 0, pθ = 0, so has
d = 0 dimensions. If the attractor for a system is a limit cycle, that attractor has
d = 1, etc. Now it is interesting to find the dimensionality of the set of points
in a Poincaré map corresponding to a chaotic system. Surprisingly, it turns out
that not all attractors have integer dimensionality. They may instead have fractal
dimensions, which means simply that they have non-integer dimensions.

To show this, we first need a general definition of dimensionality. The definition
uses what is called “box counting.” Given a set of points in 2N dimensions, we
begin by covering the points with M small 2N-dimensional “cubes” of edge length
ε, where 2N is the phase-space dimension. Then using natural logarithms, we can
define the dimension d of the set of points by

d = limε→0
lnM(ε)

ln(1/ε)
. (D.1)

We will test this definition for two well-known special cases.

1. First, suppose we have a point attractor. We only need a single small box to cover
a point, so M(ε) = 1 for any ε, i.e., for a box of any size. Then ln(M) = ln 1 = 0,
which gives d = 0, which is correct for a zero-dimensional set.

2. Now suppose we have an attractor which is a limit cycle. Covering the limit
cycle in squares of side ε, as illustrated in Figure D.1, we require N(ε) ∼ �/ε,
where � is the length of the closed curve. In that case

d = limε→0
ln(�/ε)

ln(1/ε)
=

ln(�) + ln(1/ε)
ln(1/ε)

= 1, (D.2)

since as ε → 0 the first term in the numerator becomes negligible compared
with the second term. So far, so good.

A more exotic case is that of the Cantor set, shown in Figure D.2. Begin with
the points in a line segment extending from 0 to 1, as shown in the topmost picture.
Then in the next step remove the middle third of the line, leaving two line segments;
then the middle third of each of these two, and so on. We label the sets of points
by n = 0 (the original line segment), n = 1 (just below it), n = 2, and so on. Note

674



675 D Fractal Dimension

Fig. D.1 Covering a limit cycle with squares of side ε.

Fig. D.2 The Cantor set, in which successive middle thirds of lines are removed. In the limit of an infinite number
of steps, the dimension of the remaining points is not an integer.

then that at the nth step M(ε) = 2n and ε = 1/3n. Therefore the dimension of the
set of points remaining in the limit n → ∞ is

d = limε→0
ln 2n

ln 3n = limε→0
n ln2
n ln3

=
ln2
ln3

=
0.693147...
1.09861...

= 0.63092..., (D.3)

so this set of points has a fractal dimension, greater than that of a point, but less
than that of a line.



E A Brief on Special Polynomials

In many areas of physics, one often encounters various sets of special polynomials
that satisfy interesting and useful properties. These typically arise in trying to solve
certain differential equations, and they often have deep connections to various
disciplines of mathematics such as group theory. One celebrated class of special
polynomials is named after its discoverer, the French mathematician Adrien-Marie
Legendre, and arises as solutions to the differential equation

d
dx

(
(1 − x2)

dPn(x)
dx

)
+ n (n + 1)Pn(x) = 0, (E.1)

which in turn is encountered when solving Poisson’s equation in spherical coor-
dinates. Here n is an integer, n = 0, 1, 2, . . ., and the solutions Pn(x) are known
as Legendre polynomials – a set of polynomials that truncate to order n. The
Legendre polynomials are orthogonal to one another, and with conventional
normalization satisfy ∫ 1

−1
Pm(x)Pn(x) dx =

2
2 n + 1

δmn. (E.2)

Hence, we say that Pm is orthogonal to Pn for m �= n. Here are the first few
polynomials in the sequence:

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(
3 x2 − 1

)
P3(x) =

1
2
(
5 x3 − 3 x

)
, P4(x) =

1
8
(
35 x4 − 30 x2 + 3

)
. (E.3)

More generally, we can generate the sequence using the Rodrigues formula

Pn(x) =
1

2nn!
dn

dxn (x
2 − 1)n. (E.4)

Legendre polynomials satisfy numerous other relations and form a complete set;
this means that, with the help of the orthogonality relation (E.2), one can express
any real function as a (possibly infinite) sum of Legendre polynomials with real
coefficients, much like one can generate a Fourier decomposition of a function in
terms of sines and cosines. This works for any function f(x) with finitely many
discontinuities in the interval −1 < x < 1, with coefficients an given by

676



677 E A Brief on Special Polynomials

f(x) =
∑
n=0

anPn(x), an =
2 n + 1

2

∫ 1

−1
f(x)Pn(x) dx, (E.5)

as long as the integral is finite.
There are other sets of special polynomials like the Legendre polynomials

with similar useful properties: orthogonality, completeness, satisfying numerous
mathematical identities, and arising as solutions to interesting and useful differ-
ential equations. Amongst this set and in addition to the Legendre polynomials,
one encounters in physics the Chebyshev polynomials (e.g. Poisson equation
in elliptic coordinates), the Jacobi polynomials (e.g. combining quantum spins),
the Laguerre polynomials (e.g. the hydrogen atom in quantum mechanics),
the Hermite polynomials (e.g. the quantum harmonic oscillator), the Bessel
polynomials (e.g. Poisson equation in cylindrical coordinates, electromagnetism),
and variations of these. As we saw in the text, all these also arise in quadrature
algorithms for numerical integration. The reader is referred to the Further Reading
section for more information on this rich subject.



F Taylor Series

A Taylor series is a technique for writing a function as a series expansion in
its derivatives about a point. It was introduced by English mathematician Brook
Taylor, and is used extensively in physics as an approximation technique. Generally,
a Taylor series of a function takes the form

f(x) =
∞∑

n=0

1
n!

dnf
dx

∣∣∣∣
x=x0

(x − x0)
n, (F.1)

where the expansion is carried out around a point of our choosing, say x = x0. This
infinite series is not guaranteed to converge to f(x), however. If there is a finite
value r such that the infinite Taylor series converges to f(x) for |x− x0| < r, we say
that f(x) is analytic at x0 with radius of convergence r. If the radius of convergence
is infinite, the function f(x) is said to be entire. A celebrated entire function is the
exponential

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + · · · (F.2)

The logarithm, in contrast, is analytic about x = 1 but not entire – it has a radius of
convergence equal to one:

ln x = ln(1 − y) = −y − 1
2

y2 − 1
3

y3 + · · · , (F.3)

where we have written the expansion in terms of y = 1 − x for convenience.
Therefore one must be careful when using Taylor series. Even when a Taylor series
is formally convergent, it might not equal the function being expanded. Consider
f(x) = e−1/x2 , for example. Its Taylor series about the origin is well defined, but is
equal to zero! This f(x) is therefore not analytic, even though it is smooth.

In physics we often use the Taylor series as an approximation scheme by
truncating the infinite series to the first few terms. For example, we write

ex � 1 + x + O(x2) (F.4)

by dropping terms with powers x2 or higher – in a regime where presumably |x| 
1 so that higher-order terms are smaller. A particularly useful truncated expansion
of this type that we commonly encounter in physics problems involves

f(x) = (1 + x)n, (F.5)
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where |x|  1 and n is a constant. For integer n, we have an exact finite polynomial
known as the binomial expansion:

(1 + x)n =
n∑

k=0

(
n
k

)
xk, (F.6)

where (
n
k

)
=

n!
(n − k)! k!

. (F.7)

We could think of this as a special Taylor-series expansion about x = 0 that
truncates after a finite number of terms. For any n – even when non-integer, the
Taylor-series expansion would still be well defined with radius of convergence
equal to one. And for |x|  1, we can often keep the first few terms to a very good
approximation, and write

(1 + x)n � 1 + n x +
n (n − 1)

2!
x2 + O(x3). (F.8)

In most physical situations, these first three terms are often enough to achieve
a desired level of accuracy. In many situations, even keeping only the first two
terms can be adequate. In general, the idea is to truncate the expansion at the
point where one captures the leading small effects from x, and drop any subleading
contributions.

F.1 A Few Exercises

1. (a) Find the first three terms in the series expansion of sin θ about θ = 0, using
the Taylor series. (b) Find this series instead given the series for ex and also
Euler’s formula for ex in terms of sin x and cos x. (c) Find sin 0.025, including
three terms in the expansion.

2. Repeat all three parts of Exercise 1 for cos θ.
3. Find approximate values for (1.004)3.5 and (0.994)−3.
4. Find a power series for 4(1 − x3)/

√
2 + x2 for small x, valid through terms of

order x3.
5. Using three terms in its expansion, find an approximate value of ln(x) for x =

1.025.
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