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Preface
The purpose of this text is to introduce the reader to the basic concepts of differential

geometry with a minimum of prerequisites. The only absolute requirement is a solid

background in single variable calculus, although somemathematical maturity would

also be helpful. All the material from multivariable calculus, linear algebra, and ba-

sic analysis that is needed in the study of elementary differential geometry has been

included. Many students who have completed a standard course in multivariable cal-

culus still struggle to grasp manifold theory. There are several factors contributing to

this; chief among them, at least in the author’s view, is the lack of integration of linear

algebra with calculus. Althoughmost texts on calculus of several variables introduce

the reader to matrices, few emphasize concepts such as linear transformations. The

latter are admittedly of little use to someone who is only interested in computing, say,

partial derivatives of amap, but they are a cornerstoneof both calculus anddifferential

geometry. These areas are concerned with retrieving information about a smoothmap

between Euclidean spaces from its derivative, and the derivative of such a map at a

point is essentially synonymous with the notion of linear transformation. We hope

that even the reader who is familiar with linear algebra will find it useful to have

access to this material should it prove necessary. It constitutes the core of the first

chapter. We emphasize this is not a course in linear algebra: only those topics that

will be needed in studying geometry are tackled. Furthermore, the presentation and

proofs of the material are carried out through the prism of calculus rather than in full

generality. For example, several properties that hold in general vector spaces are only

established for inner product spaces if their proof is shorter or easier in that context.

The remaining part of the chapter is devoted tometric properties of Euclidean spaces,

and to the notions of limits and continuity of maps between those spaces.

The second chapter introduces the reader to differentiation of maps between Eu-

clidean spaces, as well as to further concepts from linear algebra that are relevant to

inner product spaces. Special emphasis is given to vector fields and their Lie brackets.

The third chapter discusses the spaces that are studied in differential geometry,

namelydifferentiable manifolds. Instead of defining themabstractly, we only consider

submanifolds of Euclidean space, which, as geometers know, does not constitute – at

least in principle – a restriction. The reason for this is twofold: on the one hand, it is

muchmore intuitive to consider a surface in 3-space andmake the leap of imagination

to higher dimensions than to study an abstract topological space; on the other, the

abstract approach requires concepts fromgeneral topology, suchasparacompactness,

which lie outside the scope of this text.We next proceed to calculus onmanifolds, and

introduce the basic concepts of covariant derivatives, geodesics, and curvature.

Chapter 4 discusses integration of functions of several variables. We first look at

functions with domain in some Euclidean space, determine conditions for integrabil-

ity, and highlight some of the main tools available, such as Fubini’s theorem and the
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change of variable formula. The special cases of cylindrical and spherical change of

coordinates is discussed in detail. Several applications of multiple integrals to con-

cepts from physics are also examined.

Chapter 5 briefly introduces tensors and then discusses differential forms onman-

ifolds and their integration. This leads us to the modern formulation of Stokes’ theo-

rem, and how it unifies the classical versions of the fundamental theorem of Calculus,

Green’s theorem, andStokes’ theorem.Asapractical example,wediscusshowGreen’s

theorem explains the principle behind the polar planimeter, a device that calculates

the area of a plane region by merely tracing out its boundary.

Thenext chapter examinesmanifolds as spaceswhere adistance betweenany two

points can be defined; when the space is complete, this distance is given by the length

of the shortest curve joining the points. Further properties of these metric spaces are

discussed, and the chapter endswith an illustrationof howcurvature affects the shape

of space.

The last chapter examines all these concepts in the special case of hypersurfaces;

i.e., manifolds whose dimension is one less than that of the ambient Euclidean space.

In this setting, there are additional tools such as the Gauss map that provide further

insight into the structure of the space. Many features, in particular geodesics, convex-

ity, and curvature becomemore transparent in this context.We also briefly discuss the

geometry of some classical surfaces.
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1 Euclidean Space
We begin by exploring some of the properties of Euclidean space that will be needed

to study Calculus.They roughly fall into twocategories, algebraic and topological. The

former are closely related to the concept of vector spaces.

1.1 Vector spaces

As a set, k-dimensional Euclidean space consists of all k-tuples (a1, . . . , ak) of real
numbers ai, i = 1, . . . , k (the notation Euclidean space usually requires some addi-

tional structure aswe shall see in section 4;wewill, for now, ignore this out of laziness

and for lack of a better name). Terms such as “dimension” and “Euclidean” will be ex-

amined inmoredetail later in the chapter. Thenumber ai is called the i-th coordinateof

thepoint, and themapui : ℝk → ℝwhichassigns to apoint its i-th coordinate is called

the i-th projection. When k equals 2 or 3, ℝk can be visualized geometrically as the

plane or 3-space, with (a1, a2, a3) representing the point in 3-space whose orthogonal
projectiononto the x, y, and z-axes equalsa1 ,a2, anda3 respectively (theplanemaybe

identified with those points in ℝ3 with zero third coordinate). The motivation behind

the notation ℝk is that it is a kind of product of ℝ with itself k times: the cartesian

product A × B of two sets A and B is defined to be the set of all pairs (a, b) where a and
b range overA and B respectively, andℝk is then the productℝ×⋅ ⋅ ⋅×ℝ ofℝwith itself

k times.ℝk comes with two operations, addition+: ℝk × ℝk → ℝk, given by

(a1, . . . , ak) + (b1, . . . , bk) = (a1 + b1, . . . , ak + bk), ai ∈ ℝ,
and scalar multiplication ⋅ : ℝ × ℝk → ℝk,

c ⋅ (a1, . . . , ak) = (ca1, . . . , cak), c, ai ∈ ℝ.
We will mostly dispense with the dot in the scalar multiplication, and often abbrevi-

ate (a1, . . . , ak) by a. If one visualizes a point a in 3-space as a directed line segment

from the origin 0 to a, then the sum of a and b is the diagonal of the parallelogram

determined by a and b (unless a and b are parallel, in which case a + b is also

parallel).
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(a1, a2,0)a1

a2

a3

a = (a1, a2, a3)
b

a + b
Addition and

projections onto

the axes in ℝ3

Because of the properties of scalar addition and product in ℝ, one easily verifies thatℝk with these operations has the following structure:

Definition 1.1.1. A (real) vector space is a setV togetherwith twooperations+: V×V →
V and ⋅ : ℝ × V → V that satisfy for all u, v,w ∈ V, a, b ∈ ℝ:
(1) u + v = v + u;
(2) (u + v) + w = u + (v + w);
(3) There exists an element 0 ∈ V, called the zero vector, satisfying u + 0 = u for

all u;
(4) Any u in V has an additive inverse; i.e., an element −u such that u + (−u) = 0.
(5) (a + b) ⋅ u = a ⋅ u + b ⋅ u;
(6) a ⋅ (u + v) = a ⋅ u + b ⋅ v;
(7) 1 ⋅ u = u;
(8) a ⋅ (b ⋅ u) = (ab) ⋅ u
Elements of V are called vectors. As in ℝk, we will for the most part omit the dot in

scalar multiplication.

Examples 1.1.1. (i) Anm×n matrix A is a rectangular array ofmn real numbers orga-

nized inm rows and n columns:

A =

[[[[[[
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

]]]]]]
The element aij which lies on the i-th row and j-th column is referred to as the (i, j)-
th entry of A. The sum of two such matrices A and B is defined to be the matrix of

the same size whose (i, j)-th entry is aij + bij. Given c ∈ ℝ, cA is the matrix whose
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(i, j)-th entry equals caij. The collectionMm,n of allm × nmatrices is a vector space

under these operations. In fact, when m = 1, we recover ℝn. Much of the time,

though, wewill identifyℝn with columnmatrices (i.e., withMn,1) rather than with
row matrices.

(ii) The collection F (ℝ) of all functions f : ℝ → ℝ with addition and scalar multipli-

cation defined in the usual way,

(f + g)(x) = f (x) + g(x), (cf )(x) = cf (x), c, x ∈ ℝ, f , g ∈ F (ℝ),
is a vector space.

(iii) The collection C(ℝ) of continuous functions f : ℝ → ℝ is a vector space with the

operations from (ii).

Notice that a zero vector in a vector space V is necessarily unique: for if 0 and 0 are
two zero vectors, then 0 + 0 = 0 because 0 is a zero vector, and 0 + 0 = 0 because 0
is also one. A similar argument shows that a vector has a unique inverse. Furthermore,

for any v ∈ V, 0v = 0, since 0v = (0 + 0)v = 0v + 0v, and the conclusion follows by

adding the inverse of 0v to both sides.
Example (iii) above is a subset of (ii). This is a quite common occurrence: A

nonempty subset of a vector space V is called a subspace of V if it is a vector space

with the operations inherited from V. Clearly, a necessary condition forW ⊂ V to be

a subspace is that it be closed under addition and scalar multiplication; i.e., that the

sum of vectors inW is again inW, and similarly for scalar multiplication. It turns out

this is also a sufficient condition:

Proposition 1.1.1. A nonempty subset W of a vector space V is a subspace of V if

(1) v + w ∈ W for any v, w ∈ W, and

(2) cv ∈ W for any c ∈ ℝ, v ∈ W.

Proof. All the axioms for vector space, except possibly the existence of zero vector

and inverses, are satisfied because they hold for elements of V and therefore also for

elements of W . The remaining two axioms follow from closure under scalar multi-

plication: pick any v ∈ W; then 0 = 0v ∈ W . For the other axiom, observe that

0 = 0v = (1 − 1)v = v + (−1)v, and by uniqueness of inverses, −v = (−1)v. This
shows that −v ∈ W .

Examples 1.1.2. (i) The transpose AT of anm×nmatrixA is then×mmatrix obtained

by interchanging the rows and columns of A; i.e., the (i, j)-th element of AT is aji.

An n × nmatrix A is said to be symmetric (respectively skew-symmetric) if A = AT

(resp. A = −AT ). The easily checked identities

(A + B)T = AT + BT , (cA)T = cAT ,
imply that the set of symmetricmatrices and that of skew-symmetric ones are both

subspaces ofMn,n.
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(ii) The trace of an n × n matrix A is the sum trA = ∑n
i=1 aii of the elements on the

diagonal. The collection of matrices with trace equal to 0 is a subspace of Mn,n,
but those with trace any other number is not.

(iii) A linear combination of vectors v1 , . . . , vk ∈ V is a vector of the form c1v1 + ⋅ ⋅ ⋅ +
ckvk, where ci ∈ ℝ. The collection span{v1, . . . , vk} of all such linear combinations

is called the span of {v1, . . . , vk}. It follows immediately from Proposition 1.1.1 that

the span of a subset S ⊂ V is a subspace of V. For instance, if V = ℝ3, then the

span of {(1, 2, 0), (−1, 1, 2)} is the space{s(1,2, 0) + t(−1, 1,2) | s, t ∈ ℝ} = {(s − t,2s + t,2t) ∈ ℝ3 | s, t ∈ ℝ}.
Definition 1.1.2. Vectors v1 , . . . , vk ∈ V are said to be linearly dependent if there exist

scalars a1, . . . , ak, not all zero, such that a1v1 + ⋅ ⋅ ⋅ + akvk = 0. Otherwise, they are
said to be linearly independent.

For vectors v1, . . . , vk, the equation x1v1 + ⋅ ⋅ ⋅ + xkvk = 0 in the variables xi always has

the trivial solution x1 = ⋅ ⋅ ⋅ = xk = 0. In fact, the collection of solutions (x1, . . . , xk) is
a subspace of ℝk. The vi’s are linearly independent iff the trivial solution is the only

one.

Another way to characterize linear dependence is by means of linear combina-

tions (see Example 1.1.2 (iii)): A set {v1, . . . , vk} is linearly dependent if and only if one
of the vectors is a linear combination of the others. Indeed, if vi = ∑j ̸=i ajvj, then∑l xlvl = 0 for xl = al when l ̸= i, and xi = −1 ̸= 0. Conversely, if the set is linearly

dependent, then ∑ aivi = 0 for some scalars ai, with at least one of them, say aj,

different from zero. Then vj = −∑i ̸=j(ai/aj)vi is a linear combination of the others.

Notice that if a spanning set for a vector space is linearly dependent, then any

vector that is a linear combination of the others can be discarded, and the remaining

ones still span the space. The result is a minimal spanning set:

Definition 1.1.3. A basis of a vector space V is a linearly independent spanning set.

Examples 1.1.3. (i) Let ei, 1 ≤ i ≤ n, denote the point in ℝn with uj(ei) = 1 if i = j

and 0 otherwise (recall that uj is the j-th projection). The identity (a1, . . . , an) =∑i aiei implies that the ei are both independent and span ℝn. This is the so-called

standard basis ofℝn.

(ii) The collection of points (x, y, z) ∈ ℝ3 such that x + y + z = 0 is a subspace V

of ℝ3. The vectors u = (1, 0, −1) and v = (0,1, −1) belong to V, and are linearly

independent: the equation au + bv = 0 yields

a(1,0, −1) + b(0,1, −1) = (a, b, −a − b) = (0,0,0),
so that a = b = 0. They also span V, since (x, y, z) ∈ V iff z = −x − y; i.e., if and

only if

(x, y, z) = (x, y, x − y) = (x, 0, x) + (0, y, −y) = xu + yv.
Thus, they form a basis of V.
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Theorem 1.1.1. If {v1, . . . , vn} is a basis of V, then any subset of V that contains more

than n vectors is linearly dependent.

Proof. Let S = {u1, . . . ,uk} be a subset with k > n elements. If one of the ui is the zero
vector, then S is certainly linearly dependent (see Exercise 1.4), so we may assume

this is not the case. Since the vi span V, we may express u1 as a linear combination

u1 = ∑i aivi, where at least one of the scalar coefficients is nonzero. By renumbering

the basis elements if necessary, we may assume a1 ̸= 0, so that the above equation

can be solved for v1:
v1 = (1/a1)(u1 − a2v2 − ⋅ ⋅ ⋅ − anvn).

This implies that V is spanned by {u1, v2 , . . . , vn}. Continuing in this way, we can re-

place the v’s one by one with u’s. More precisely, suppose V has been shown to be

spannedby {u1 , . . . ,ul, vl+1 , . . . , vn}. Thenul+1 canbeexpressedas a linear combination

ul+1 = ∑
i≤l
biui + ∑

i>l
civi.

where at least one of the scalars is nonzero. We may assume one of the ci is nonzero,

for if they are all zero, then ul+1 is a linear combination of the u’s and S is then linearly
dependent. Renumbering the vectors if necessary, we may suppose that cl+1 ̸= 0, and

we can write vl+1 as a linear combination of {u1, . . . ,ul+1, vl+2 , . . . , vn}. This means the

latter set spans V. By induction, we conclude thatV is spanned by u1, . . . ,un. But then
any un+i is a linear combination of u1, . . . ,un, and the result follows.
Corollary 1.1.1. If {u1, . . . ,uk} and {v1 , . . . , vn} are two bases of V, then k = n.

Proof. Since the vi are linearly independent, Theorem 1.1.1 implies that n ≤ k. By

symmetry, k ≤ n.

Definition 1.1.4. If V has a basis consisting of n elements, the dimension dim V of V is

defined to be n.

A trivial vector space (one that consists of a single element, which is then necessarily

the zero vector) has no nonempty linearly independent spanning set.We therefore say

it has the empty set as basis, and its dimension is zero. Avector spacewithdimensionn

for some n is called a finite-dimensionalspace. Unless specified otherwise, wewill con-

cern ourselves here only with finite-dimensional vector spaces, even though it should

be noted that many spaces have infinite bases: for example, one such is the space of

all polynomials with the usual addition of polynomials and scalar multiplication. The

reader is invited to check that the collection {pk(x) | k = 0,1, . . . }, where pk(x) = xk, is

a basis of this space.

One particularly useful feature of bases is that they can be used to uniquely iden-

tify vectors:

Proposition 1.1.2. If B = {v1, . . . , vn} is a basis of V, then any v ∈ V can be written in

one and only one way as a linear combination of the basis elements.
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Proof. That v can be written as a linear combination follows from the fact that the vi
span V. That the expression is unique follows from linear independence: if ∑ aivi =∑ bivi, then∑(ai − bi)vi = 0, so that each ai − bi must be zero.

The uniqueness part of the above proposition enables us to make the following:

Definition 1.1.5. Let B = (v1, . . . , vn) be an ordered basis of V. The coordinate vector of
v = a1v1 + ⋅ ⋅ ⋅ + anvn ∈ V with respect to B is the element [v]B = [a1, . . . , an]T ∈ Mn,1.

For example, if V = ℝn, then the coordinate vector of v with respect to the standard

basis is just v itself,written as a column rather than a row. Amore interesting example

is the planeV with the ordered basis (u, v) fromExamples 1.1.3 (ii): Thevector (1, −1, 0)
belongs to V, and since it equals u − v, its coordinate vector in that basis is [1, −1]T.

Notice that the order in which the basis elements are listed is crucial. We will,

when referring to an ordered basis, dispense with braces when listing the elements,

and either use parentheses as in the above definition or no symbols at all.

1.2 Linear transformations

Definition 1.2.1. Amap L : V → W between vector spaces V andW is said to be linear

if it preserves the vector space operations; i.e., if

(1) L(u + v) = L(u) + L(v) for all u, v ∈ V;

(2) L(cu) = cL(u) for all c ∈ ℝ, u ∈ V.

When there is a single vector u in the argument, it is customary to write Lu instead of
L(u). Notice that the + on the right of the equality sign in (1) denotes the addition in

W, whereas the one on the left refers to addition in V. A similar observation involving

scalar multiplication holds for (2). If L is invertible, i.e., if there exists amap L−1 : W →
V such that L ∘ L−1 = 1W and L−1 ∘ L = 1V(1V is the identity map on V), then L is said

to an isomorphism; in this case V and W are said to be isomorphic. Observe that the

inverse of an isomorphism is again linear: given wi ∈ W, i = 1,2, there exist unique
vi ∈ V such that Lvi = wi. Then

L−1(w1 + w2) = L−1(Lv1 + Lv2) = L−1(L(v1 + v2)) = v1 + v2
= L−1w1 + L−1w2 ,

and a similar argument shows that L−1 preserves scalar multiplication. Isomorphic

vector spaces are identical as far as their algebraic structure is concerned, and can

thus be identified.

Examples 1.2.1. (i) The map []S : ℝn → Mn,1 that assigns to a point its coordinate
vector with respect to the standard basis (see Definition 1.1.5) is an isomorphism.

This formally justifies why we can use either row or column matrices to denote

elements ofℝn.
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(ii) More generally, the map Mm,n → Mn,m that sends a matrix to its transpose is an

isomorphism.

(iii) LetV beanyn-dimensional vector spacewithbasisB. As in (i),we see that themap

[]B : V → Mn,1 that assigns to a vector in V its coordinate vector with respect to

B is an isomorphism. Together with (i), this shows that any n-dimensional vector

space is isomorphic to ℝn. This isomorphism is not canonical, however, in the

sense that it depends on the chosen basis.

More generally, any two vector spaces of the same dimension are isomorphic: if{v1 , . . . , vn} is a basis of V, and {w1, . . . ,wn} is a basis of W, define L : V → W as

follows: given v ∈ V, it can be uniquely written as v = ∑ aivi for some choices

of ai ∈ ℝ. Set Lv = ∑aiwi. It is straightforward to check that L is a well-defined

linear transformation, and that it is entirely determined by the fact that Lvi = wi,

i = 1, . . . , n. In fact, if W is a vector space of any dimension, then for any vectors

wi ∈ W, i = 1, . . . , n, there exists a unique linear map L : V → W such that L(vi) =
wi for all i = 1, . . . , n, see Exercise 1.10. L will not, in general, be an isomorphism,

though.

(iv) Let C∞(ℝ) denote the space of functions from ℝ to itself that have derivatives of

any order. The map D : C∞(ℝ) → C∞(ℝ), Df = f , is linear. Why is it not an

isomorphism?

Linear maps between finite-dimensional Euclidean spaces are most conveniently ex-

pressed in terms of matrices. If A = [aij] is an m × n matrix, and B = [bij] is an n × k

matrix, the productmatrix is them × kmatrix AB whose (i, j)-th entry is∑n
l=1 ailblj. For

example,

[1 2 3] ⋅ [[[
1 2

0 1−1 0

]]] = [−2 4] , [1
2
] ⋅ [1 2] = [1 2

2 4
] .

One easily verifies that matrix multiplication has the following properties:

Proposition 1.2.1. For appropriately sized matrices A, B, C, and c ∈ ℝ,
(1) A(BC) = (AB)C;

(2) (A + B)C = AC + BC, and A(B + C) = AB + AC;

(3) c(AB) = (cA)B = A(cB).

The expression “appropriately sized” means that the matrices are assumed to have

the correct size for addition and multiplication; for instance, in the first identity, the

number of columns of A equals the number of rows of B, and the number of columns

of B equals the number of rows of C. Unlike scalar multiplication, though, AB ̸= BA

in general (even when both products make sense). There is nevertheless a matrix that
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plays the same role that 1 does in scalar multiplication: the n × n identity matrix

In =

[[[[[[
1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

]]]]]]
is the matrix whose (i, j)-th entry is 1 if i = j and 0 otherwise. It follows from the

definition of multiplication that if A is m × n, then AIn = A and if B is n × m, then

InB = B. A (necessarily square) n × n matrix A is said to be invertible if there exists a

matrixB such thatAB = BA = In. If suchaB exists (and in general it neednot), then it is

unique: indeed, if B and B are two such, then B = BIn = B(AB) = (BA)B = InB = B.

We then call B the inverse of A, and denote it A−1.

Examples 1.2.2. (i) The reader is invited to verify that the matrices

A = [1 1

2 1
] and B = [−1 1

2 −1]
satisfy AB = BA = I2, so that B = A−1.

(ii) The matrix

A = [0 0

1 0
]

is not invertible. Oneway of seeing this is by noting thatAA equals the zeromatrix

0 whose entries are all 0. If A did have an inverse, then we would have that A =

I2A = (A−1A)A = A−1(AA) = A−10 = 0, which is not true.

Matrix multiplication provides many examples of linear transformations:

Example 1.2.3. LetA be anm×nmatrix. For any u ∈ ℝn,AuT ∈ M1,m, so that (AuT )T ∈ℝm. By Proposition 1.2.1 (2), (3), and the fact that transposing is linear, left multiplica-

tion LA by A,

LA : ℝn → ℝm,
u → (AuT )T

is a linear transformation.Wewill shortly see that every linear transformationbetween

Euclidean spaces is of this form.

A word about terminology: left multiplication by Amay sound like a poor choice

of words, since LAu = uAT, so that LA is really right multiplication by the transpose

of A. Nevertheless, as observed earlier, it is customary to identify elements ofℝn with

column rather than rowmatrices, andwhen doing so, wemay write LAu = Au. We will

be deliberately vague as to which representation we use, but a general rule of thumb

is that an element ofℝn considered as a point is represented by a rowmatrix, whereas

an element considered as a vector is represented as a column.
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Definition 1.2.2. Let L : V → W be a linear transformation, and suppose B =

(u1, . . . ,un) and C = (v1 , . . . , vm) are ordered bases of V andW respectively. Thematrix

of L with respect to B and C is them × nmatrix

[L]B,C = [[Lu1]C ... ⋅ ⋅ ⋅ ... [Lun]C]
whose i-th column is the coordinate vector of Lui with respect to C, cf. Exam-

ples 1.2.1 (iii).

Example 1.2.4. Let Pn denote the (n + 1)-dimensional space of polynomials of degree≤ n with its standard basis S = {1, x, . . . , xn}, and consider the derivative operator

D : P2 → P1. If B is the basis {1, 1 + x} of P1, then D1 = 0, Dx = 1, and Dx2 = 2x =−2 ⋅ 1 + 2(1 + x). Thus,

[D]S,B = [0 1 −2
0 0 2

] .
The following result implies that any linear transformation is entirely determined by

its matrix with respect to any given bases; in fact, it says that once bases are fixed, the

vector space of all linear transformations from V toW is isomorphic to the space of

m × nmatrices, where dim V = n and dimW = m, see Exercise 1.16:

Theorem 1.2.1. Let L : V → W be a linear transformation, and supposeB = {u1, . . . ,un}
and C = {v1, . . . , vm} are bases of V and W respectively. Then for any u ∈ V,

[Lu]C = [L]B,C[u]B .
Proof. We begin by observing that if A is an m × n matrix with columns Ai, and u =

[x1 . . . xn]T ∈ ℝn, then by definition of matrix multiplication, Au = x1A1 + ⋅ ⋅ ⋅ + xnAn.

Now, if v = ∑ aivi ∈ V, then [v]B = [a1 . . . an]T , and together with Examples 1.2.1 (iii),

[Lv]C = [L (∑ aivi)]C = [∑ aiLvi]C = ∑ ai[Lvi]C = [L]B,C[v]B,
as claimed.

Corollary 1.2.1. (1) If A is the matrix of a linear transformation L : ℝn → ℝm with

respect to the standard bases, then L = LA (see Example 1.2.3).

(2) Let L : V1 → V2, T : V2 → V3 be linear, and Bi be a basis of Vi, 1 ≤ i ≤ 3. Then

[T ∘ L]B1,B3
= [T]B2,B3

[L]B1,B2
. In particular, if L : V1 → V2 is an isomorphism, then

[L−1]B2 ,B1
= [L]−1B1,B2

.

(3) (Change of basis) If B and C are bases of V, then [v]C = [1V]B,C[v]B for any v ∈ V.

Proof. (1)We denote by the same letterS the standard bases in both Euclidean spaces.

Recalling that a vector in Euclidean space equals its coordinate vector in the standard

basis, Theorem 1.2.1 implies that for any v ∈ ℝn,

Lv = [Lv]S = [L]S,S [v]S = Av = LAv.
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(2) Given u ∈ V1,

[(T ∘ L)u]B3
= [T(Lu)]B3

= [T]B2,B3
[Lu]B2

= [T]B2,B3
[L]B1 ,B2

[u]B1
.

The second statement follows by taking T = L−1, observing that L−1 ∘ L is the identity
map, and the matrix [1V1

]B,B of the identity map with respect to any basis B is the

identity matrix.

(3) is an immediate consequence of Theorem 1.2.1.

In light of Theorem 1.2.1 (3), we refer to [1V ]B,C as the change of basis matrix from the

basis B to C.

Examples 1.2.5. (i) Theorem 1.2.1 hasmany other applications that can be proved by

arguments similar to the ones used above. Suppose, for example, that L : V → V

is a linear transformation, and B, C are two bases of V. How are the matrices of L

with respect to the two bases related? To answer this, let v ∈ V, and observe that

[Lv]C = [(1V ∘ L ∘ 1V )v]C = [1V ]C,B[L]C,C[1V ]B,C[v]B ,
so that if P denotes the change of basis matrix [1V]B,C from B to C, then

[L]C,C = P−1[L]B,BP. (1.2.1)

For the sake of brevity, the matrix [L]B,B of L in a given basis B will often be

denoted by [L]B, so that (1.2.1) reads

[L]C = P−1[L]BP.
Two n×nmatrices A and B are said to be similar if there exists an invertible matrix

P such that A = P−1BP. This is easily seen to be an equivalence relation for the

class of all n × nmatrices (meaning (1) any A is similar to itself, (2) if A is similar

to B, then B is similar to A, and (3) if A is similar to B and B is similar to C, then A

is similar to C). (1.2.1) says that the matrices of a linear transformation L : V → V

with respect to two different bases are similar.

(ii) The set B = (v1 , v2, v3) where
v1 =

[[[
1

0

1

]]] , v2 =
[[[
2

1−1]]] , v3 =
[[[
0

1

1

]]] ,
is an ordered basis of ℝ3. Furthermore, e1 = (1/2)v1 + (1/4)v2 − (1/4)v3, e2 =

(−1/2)v1 + (1/4)v2 − (1/4)v3, and e3 = (1/2)v1 − (1/4)v2 + (1/4)v3, so that the
change of basis matrix from the standard basis S to B is

[1ℝ3]S,B = [[e1]B [e2]B [e3]B] = [[[
1
2

−1
2

1
2

1
4

1
4

−1
4−1

4
3
4

1
4

]]] .
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This means for example that the coordinate vector of [1 2 1]T in the basis B
equals [[[

1

2

1

]]]B

= [1ℝ3]B,S [[[
1

2

1

]]]S

=
[[[

1
2

−1
2

1
2

1
4

1
4

−1
4−1

4
3
4

1
4

]]][[[
1

2

1

]]] =
[[[
0
1
2
3
2

]]] ,
which reflects the fact that [1 2 1]T = (1/2)v2 + (3/2)v3.

Definition 1.2.3. The kernel or nullspace ker L of a linear map L : V → W is the set of

all v ∈ V that are mapped to 0 ∈ W by L. The image ImL of L is the collection of all

elements ofW that can be expressed as Lv for some v ∈ V. It is often denoted L(V).

It is easily seen that kernel and image are subspaces of V andW respectively.

Theorem 1.2.2. If L : V → W is linear, then dimV = dim ker L + dim Im L.

Proof. Let {u1, . . . ,uk} denote a basis of ker L, and {w1, . . . ,wr} one of Im L. For each

i = 1, . . . , r, choose some vi ∈ V such that Lvi = wi. The claim followsoncewe establish

that the set S = {u1, . . . ,uk, v1, . . . , vr} is a basis of V. To see that it spans V, take an

arbitrary element v ∈ V. By assumption, Lv = ∑i aiwi for some scalars ai. Since L(v −∑i aivi) = Lv−∑i aiwi = 0, the vector v−∑i aivi lies in the kernel of L and can therefore
be expressed as a linear combination of the ui. In other words, v lies in the span of S.

For linear independence, consider the equation

k∑
i=1

aiui +
r∑
j=1

bjvj = 0.
Applying L to both sides, and recalling that the first summand lies in the kernel of L,

we obtain∑ bjwj = 0. By linear independence of thewj, each bj must vanish. But then

only the first summand remains in the above equation, and by linear independence

of the ui, each ai = 0.

The dimension of the kernel of L is called the nullity of L, that of its image the rank of L.

Example 1.2.6. Let L : ℝ3 → ℝ3 be given by

L
[[[
x

y

z

]]] =
[[[

x + z

y + 2z

2x + y + 4z

]]] .
L is linear, since it is left multiplication by the matrix

A =
[[[
1 0 1

0 1 2

2 1 4

]]] .
The columns of A are the image via L of the standard coordinate vectors, and they are

linearly dependent: in fact, Le3 = Le1 + 2Le2. Thus, the image of L is spanned by the
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first 2 columns of A. Since they are linearly independent, L has rank 2. On the other

hand, [ x y z ]T belongs to the kernel of L iff x + z = 0, y + 2z = 0, and 2x + y + 4z = 0.

The last equation is just the sum of the second one with two times the first one, and

can be discarded. The first two equations enable us to express x and y in terms of z, so

that the kernel consists of all vectors of the form

[[[
−z−2z
z

]]] = z
[[[
−1−2
1

]]] , z ∈ ℝ,
and is therefore one-dimensional, as predicted by Theorem 1.2.2.

1.3 Determinants

Determinants play a crucial role in Linear Algebra, and by extension, in Calculus and

Differential Geometry. Their properties are closely related to those of permutations: let

Jn = {1, . . . , n}. A permutation of Jn is a bijection σ : Jn → Jn. It is often represented by[σ (1) σ (2) . . . σ (n)] .
For example,

σ = [2 4 1 3]
is the permutation of J4 such that σ (1) = 2, σ (2) = 4, σ (3) = 1, and σ (4) = 3. The

composition σ ∘ τ of two permutations σ and τ is again a permutation, denoted στ for

brevity, and the collection of all permutations of Jn is denoted Sn. It is easy to see that

Sn consists of n! elements, where

n! = n(n − 1)(n − 2) ⋅ ⋅ ⋅ 2,
since there are n possible choices in assigning the value of σ at, say, 1, then only n − 1
remaining choices for σ (2), and so on.

A transposition is a permutation that interchanges two elements and leaves all the

others fixed. We denote by (i, j) the transposition that interchanges i and j.

Lemma 1.3.1. Every permutation is a product of transpositions.

Proof. The term product in the statement actually means composition; it is suggested

by the notation in use. The argument will be by induction on n. For n = 1, there is

nothing to prove. So assume that every permutation of Jn−1 is a product of transposi-
tions, and consider σ ∈ Sn. Let k = σ (n). Define τ to be the transposition (k, n) if k ̸= n,

and the identity if k = n. Then τσ (n) = τ(k) = n, so τσ ∈ Sn−1 and by the induction

hypothesis, there exist transpositions τ1, . . . , τj such that τσ = τ1 ⋅ ⋅ ⋅ τj. Since τ equals
its own inverse,

σ = ττ1 ⋅ ⋅ ⋅ τj
as claimed.
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The argument explicitly yields an algorithm for expressing a permutation as a product

of transpositions. For example, the permutation

σ = [2 4 1 3]
consideredearlier canbewrittenas (3, 4)(3,1)(1,2). There is nounique representation
of a permutation as a product of transpositions, but the number of transpositions that

appear is either always even or always odd. To see this, consider the polynomial p in

n variables

p(x1, . . . , xn) = ∏
1≤i<j≤n

(xi − xj).
For example, when n = 3,

p(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).
Define a map

F : Sn × {±p} → {±p},
(σ , ±p) → ±∏

i<j
(xσ(i) − xσ(j)).

It is easily checked that F(id, ±p) = ±p, and F(στ , ±p) = F(σ , F(τ , ±p)) for any τ , σ ∈ Sn
(such a map is called an action of Sn on the set {±p}). Observe that for a transposition
τ , F(τ , p) = −p. Thus, if σ ∈ Sn can be represented as the product of an even number

of transpositions, then F(σ , p) = p, and consequently any other representation of σ

also involves an even number of transpositions.

Definition 1.3.1. A permutation is said to be even if it can be written as a product of an

even number of transpositions. A permutation that is not even is said to be odd. The

sign 𝜀(σ ) of σ is defined to be + 1 if σ is even, and −1 if it is odd.
A mapM : V1 × ⋅ ⋅ ⋅ × Vk → V from a Cartesian product of vector spaces Vi to a vector

spaceV is said to bemultilinear if it is linear in each component; i.e., if for any 1 ≤ i ≤ k

and vj ∈ Vj, j ̸= i, the map

Vi → V

v → M(v1 , . . . , vi−1 , v, vi+1 , . . . , vk)
is linear. A multilinear mapM is said to be alternating if

M(v1 , . . . , vi, . . . , vj, . . . , vk) = −M(v1 , . . . , vj, . . . , vi, . . . , vk),
for all 1 ≤ i < j ≤ k, vl ∈ Vl, l = 1, . . . , k; equivalently,M is alternating if and only if

M(v1 , . . . , vi . . . , vj, . . . , vk) = 0 whenever vi = vj for some 1 ≤ i < j ≤ k: clearly, if M is

alternating, then M evaluates to zero when applied to a list of vectors at least one of

which is repeated. Conversely, ifM evaluates to zero under these conditions, then

M(v1 , . . . , vi + vj, . . . , vi + vj, . . . , vk) = 0.
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By multilinearity, the expression on the left is a sum of four terms:M(v1, . . . , vi, . . . , vi,. . . , vk), which by assumption vanishes; a similar term with vj replacing vi which also
vanishes; and

M(v1 , . . . , vi, . . . , vj, . . . , vk) + M(v1 , . . . , vj, . . . , vi, . . . , vk).
Since this must equal zero, the claim follows.

With these preliminaries out of the way, we are able to prove the following:

Theorem 1.3.1. There exists a unique map det : (ℝn)n = ℝn × ⋅ ⋅ ⋅ × ℝn → ℝ satisfying

the following:

(1) det is multilinear;

(2) det is alternating;

(3) det(e1 , . . . , en) = 1.

Proof. We begin with uniqueness. Let vi = ∑k akiek, i = 1, . . . , n. Since det is multilin-

ear,

det(v1, . . . , vn) = det(a11e1 + ⋅ ⋅ ⋅ + an1en, . . . , a1ne1 + ⋅ ⋅ ⋅ + annen)
= ∑

σ

aσ(1)1 ⋅ ⋅ ⋅ aσ(n)n det(eσ(1), . . . , eσ(n)),
where the sum runs over all maps σ : Jn → Jn. Now, if σ is not one-to-one, i.e., if

σ (i) = σ (j) for some i ̸= j, then det(eσ(1) , . . . , eσ(n) ) = 0 because det is alternating. Thus,

the sum actually runs over all permutations of Jn. Finally, by properties (2), (3), and

the definition of the sign of a permutation, det(eσ(1), . . . , eσ(n)) = 𝜀(σ ). Summarizing, if

det is to satisfy the three properties listed, then

det([[[[
a11
...

an1

]]]] , . . . , [[[[
a1n
...

ann

]]]]) = ∑
σ∈Sn

𝜀(σ )aσ(1)1 ⋅ ⋅ ⋅ aσ(n)n , (1.3.1)

which establishes uniqueness. To determine existence, it is enough to show that the

above equation defines a map satisfying the three stated properties. For the first one,

we compute

det([[[[
a11
...

an1

]]]] , . . . , [[[[
a1i
...

ani

]]]] + c
[[[[
b1
...

bn

]]]] , . . . , [[[[
a1n
...

ann

]]]])
= det([[[[

a11
...

an1

]]]] , . . . , [[[[
a1i + cb1

...

ani + cbn

]]]] + ⋅ ⋅ ⋅ [[[[
a1n
...

ann

]]]])
= ∑

σ∈Sn
𝜀(σ )aσ(1)1 ⋅ ⋅ ⋅ (aσ(i)i + cbσ(i)) ⋅ ⋅ ⋅ aσ(n)n
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= ∑
σ∈Sn

𝜀(σ )aσ(1)1 ⋅ ⋅ ⋅ aσ(i)i ⋅ ⋅ ⋅ aσ(n)n + c ∑
σ∈Sn

𝜀(σ )aσ(1)1 ⋅ ⋅ ⋅ bσ(i) ⋅ ⋅ ⋅ aσ(n)n
= det([[[[

a11
...

an1

]]]] , . . . , [[[[
a1i
...

ani

]]]] , . . . [[[[
a1n
...

ann

]]]])
+ c det([[[[

a11
...

an1

]]]] , . . . , [[[[
b1
...

bn

]]]] , . . . , [[[[
a1n
...

ann

]]]]) ,
which shows that det is multilinear. For the second property, let τ ∈ Sn, and vi =[a1i . . . ani]T. Then, with notation as above, and noting that 𝜀2(τ) = 1, we have

det(vτ (1), . . . , vτ (n)) = ∑
σ∈Sn

𝜀(σ )aσ∘τ (1)1 ⋅ ⋅ ⋅ aσ∘τ (n)n
= 𝜀(τ) ∑

σ∈Sn
𝜀(σ )𝜀(τ)aσ∘τ (1)1 ⋅ ⋅ ⋅ aσ∘τ (n)n

= 𝜀(τ) ∑
σ∘τ∈Sn

𝜀(σ ∘ τ)aσ∘τ (1)1 ⋅ ⋅ ⋅ aσ∘τ (n)n
= 𝜀(τ) det(v1 , . . . , vn).

Notice that for the third equality, we used the fact that Sn = {σ ∘τ | σ ∈ Sn}. Taking τ to
be a transposition now shows that det is alternating. The last property is immediate.

IfA is ann×nmatrix,wedefine itsdeterminant to be thenumberdetA = det(a1, . . . ,an),
where ai is the i-th column of A. Thus, by (1.3.1),

det
[[[[
a11 . . . a1n
... ⋅ ⋅ ⋅ ...

an1 . . . ann

]]]] = ∑
σ∈Sn

𝜀(σ )aσ(1)1 ⋅ ⋅ ⋅ aσ(n)n. (1.3.2)

For example, in the case of a 2 × 2 matrix, S2 consists only of the identity and the

transposition (1,2), so that
det [a b

c d
] = ad − bc.

The definition given here is not very convenient for computing determinants of larger

matrices. In order to describe a different approach for n > 1, let us denote by Aij the

(n − 1) × (n − 1) matrix obtained by deleting row i and column j from A.

Theorem 1.3.2 (Expansion along the i-th row).

detA = (−1)i+1ai1 det Ai1 + ⋅ ⋅ ⋅ + (−1)i+nain detAin .



16 | 1 Euclidean Space

Proof. According to Theorem 1.3.1, it suffices to show that the function defined by the

right side of the above identity satisfies the three properties stated in the theorem. To

check linearity in the k-th column of A, let Ã denote the matrix obtained by adding

b ∈ ℝn to the k-th column of A, and Ā the one obtained by replacing the k-th column

of A by b. We must show that∑
j

(−1)i+j ãij det Ãij = ∑
j

(−1)i+jaij detAij + ∑
j

(−1)i+jāij det Āij. (1.3.3)

Now, if j ̸= k, then Ãij is obtained by adding (b1, . . . , bi−1 , bi+1, . . . , bn)T to a column of

Aij , whereas Āij is obtainedby replacing that columnby the samevector. Thus, det Ãij =

det Aij + det Āij; furthermore, aij = ãij = āij, so that

ãij det Ãij = aij detAij + āij det Āij, j ̸= k. (1.3.4)

When j = k on the other hand, Aik = Ãik = Āik, and ãik = aik + bk = aik + āik, so that

ãik det Ãik = aik detAik + āik det Āik . (1.3.5)

Identities (1.3.4) and (1.3.5) then imply (1.3.3). A similar argument shows that if B de-

notes the matrix obtained by multiplying the k-th column of A by c, then∑
j

(−1)i+jbij det Bij = c∑
j

(−1)i+jaij detAij .
This shows that the expansion along the i-th row is multilinear.

To see that the expansion is alternating, consider first the matrix B obtained by inter-

changing two adjacent columns fromA, say columns k and k + 1. Then for j ̸= k, k + 1,

Bij is obtained from Aij by interchanging two columns, so that det Bij = −det Aij, and

bij det Bij = aij det Bij = −aij detAij.
For the remaining two cases, observe that Ai(k+1) = Bik, Bi(k+1) = Aik, and similar

identities hold for lower case letters. Thus,

bik det Bik = ai(k+1) detAi(k+1), aik detAik = bi(k+1) det Bi(k+1).
However, the terms have opposite sign in the corresponding sums, since one is in

column k, and the other in column k + 1. Thus, det B = −detA. Finally, if B is ob-

tained by interchanging two non-adjacent columns i and j from A, it is also obtained

by interchanging adjacent columns an odd number of times: assuming, without loss

of generality, that i < j, interchange column iwith the column to its right j − i times in

succession, then interchange column j with the column to its left j − i − 1 times. This

shows that the sum is alternating.

It remains to check that the right side of the identity equals 1 when A is the n × n

identity matrix In. Since aij = 0 unless i = j, the only remaining term in the sum is

(−1)2iaii detAii = det In−1. Applying this repeatedly yields det In = det In−1 = ⋅ ⋅ ⋅ =
det I1 = 1.
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Theorem 1.3.3. If A is a square matrix, then detA = det(AT ).

Proof. Recall that for an n × nmatrix A,

detA = ∑
σ∈Sn

𝜀(σ )aσ(1)1 . . . aσ(n)n.
Now, if σ (i) = j, then i = σ−1(j), and aσ(i)i = ajσ−1(j). Furthermore, ajσ−1(j) occurs exactly

once for each integer j, so that

aσ(1)1 . . . aσ(n)n = a1σ−1(1) ⋅ ⋅ ⋅ anσ−1(n).
Finally, 𝜀(σ−1) = 𝜀(σ ) (since 𝜀(σ )𝜀(σ−1) = 𝜀(σ ∘ σ−1) = 𝜀(id) = 1), and the map that

assigns to each σ ∈ Sn its inverse is a bijection. Thus,

detA = ∑
σ−1∈Sn

𝜀(σ−1)a1σ−1(1) ⋅ ⋅ ⋅ anσ−1(n) = ∑
σ∈Sn

𝜀(σ )a1σ(1) ⋅ ⋅ ⋅ anσ(n)
= det(AT ).

Corollary 1.3.1 (Expansion along j-th column).

detA = (−1)1+ja1j det(A1j) + ⋅ ⋅ ⋅ + (−1)n+janj det(Anj).
Proof. LetB denote the transpose ofA. Thus, Bji is thematrix obtained by deleting row

j and column i from AT; i.e., it is the transpose of the matrix obtained by deleting row

i and column j from A. By Theorem 1.3.3, det Bji = detAij . Using Theorem 1.3.3 once

again, and expanding along the j-th row, we have

detA = det B = (−1)1+jbj1 det(Bj1) + ⋅ ⋅ ⋅ + (−1)n+jbjn det(Bnj)
= (−1)1+ja1j det(A1j) + ⋅ ⋅ ⋅ + (−1)n+janj det(Anj).

For example, to compute the determinant of the three by three matrix

A =
[[[
1 2 −1
0 1 2

1 4 1

]]] ,
we can expand along the second row (which has the only zero) to obtain

1det [1 −1
1 1

] − 2det [1 2

1 4
] = 2 − 2 ⋅ 2 = −2.

Better yet, the multilinear and alternating properties imply that adding a multiple of

a row to another row (or a multiple of a column to another column) does not change

the determinant. In the previous example, we may therefore subtract row 1 from row

3, and expand along the first column to get

detA = det
[[[
1 2 −1
0 1 2

0 2 2

]]] = 1det [1 2

2 2
] = −2.
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Even though the determinant of a sum is not the sum of the determinants, prod-

ucts are another matter:

Theorem 1.3.4. det(AB) = detA det B.

Proof. Suppose both matrices are n × n. As observed in the proof of Theorem 1.2.1, the

k-th column of AB equals

Abk = b1ka1 + ⋅ ⋅ ⋅ + bnkan,
where bk denotes the k-th column of B, and similarly, ai is the i-th column of A. Since

the determinant is multilinear and alternating, we obtain, just as in the proof of The-

orem 1.3.1,

det(AB) = det(b11a1 + ⋅ ⋅ ⋅ + bn1an, . . . , b1na1 + ⋅ ⋅ ⋅ + bnnan)
= ∑

σ

bσ(1)1 ⋅ ⋅ ⋅ bσ(n)n det(aσ(1), . . . ,aσ(n))
= ∑

σ

𝜀(σ )bσ(1)1 ⋅ ⋅ ⋅ bσ(n)n det(a1, . . . ,an)
= det B detA.

As a special case, if A is an invertible matrix, then det(A−1) = 1/ detA, since AA−1 = In
and the identity matrix has determinant 1. Another important consequence is that

similar matrices (see Example 1.2.5) have the same determinant. In particular, the

determinant of the matrix [L]B,B of a linear transformation L : V → V in a basis B
equals that of the matrix of L in any other basis. This justifies the following:

Definition 1.3.2. The determinant of a linear transformation L : V → V is the deter-

minant of the matrix [L]B,B of L with respect to any given basis B of V.

Determinants are often useful for, well, determining whether a linear map is an iso-

morphism:

Theorem 1.3.5. Let V be a finite-dimensional vector space. A linear transformation L :
V → V is an isomorphism if and only if det L ̸= 0.

Proof. If L is an isomorphism, then it has an inverse L−1, and the product

det L det(L−1) = det(L ∘ L−1) = det(1V) = 1, so L cannot have vanishing determinant.

If, on the other hand, L is not an isomorphism, then by Theorem 1.2.2, there exists

a nonzero v ∈ V such that Lv = 0. Let B = v1 , . . . , vn denote an ordered basis of V,

and write v as a linear combination ∑i civi of the basis elements. Notice that not all

coefficients vanish. Then

0 = [Lv]B = [L(∑
i

civi)]B = ∑
i

ci[Lvi]B .
This says that the columns [Lvi]B of the matrix [L]B,B of L in the basis B are linearly

dependent. But any squarematrix with linearly dependent columns (or rows) has van-

ishing determinant: Indeed, suppose A has linearly dependent columns ai (for rows,
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consider the transpose ofA instead). Then, one of the columns, say, aj, can be written
as a linear combination

aj = ∑
i ̸=j
αiai

of the others. By linearity of det in each column,

det A = det(a1, . . . ,aj, . . . ,an) = ∑
i ̸=j
αi det(a1, . . . ,ai, . . . , an).

Each determinant in this sum is the determinant of a matrix with two equal columns

(the i-th and the j-th). Such a determinant must vanish by the alternating property

(interchanging columns i and j changes the sign of the determinant, but the matrix

remains the same). This establishes the result.

The proof simplifies considerably if one uses the fact that given any nonzero v ∈ V,

there is a basis of V containing v (this will be proved in the next section). In fact, if L

is not an isomorphism, consider any nonzero vector in the kernel of L, and extend it

to a basis. Thematrix of L in that basis then has a zero column and therefore also zero

determinant.

Theorem 1.3.6. Let V be a finite-dimensional vector space. For any linear transforma-

tion L : V → V, there exists a linear map L̃ : V → V such that

L ∘ L̃ = (det L)1V .
In particular, if L is invertible, then L−1 = (1/det L)L̃, and if not, then L ∘ L̃ = 0.

Proof. Consider any ordered basis B of V and denote by A = (aij) the matrix of L with

respect to B. For each i and j between 1 and n = dimV, let Aij be the (n − 1) × (n − 1)

matrix obtained by deleting row i and column j from A, and define an n × n matrix

Ã = (ãij) by setting

ãij = (−1)i+j detAji .
A straightforward computation yields

AÃ = (det A)In. (1.3.6)

The result now follows if we let L̃ be the linear map whose matrix in the basis B
equals Ã.

The map L̃ constructed in the above proof will be called the linear map adjugate to L.

It can be constructed without using a basis, but this requires extra work.

1.4 Euclidean spaces

An elementary concept that is used throughout Calculus is the distance |a − b| be-
tween two points a and b in the real line. We now generalize this concept to ℝn. The
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(standard) inner product of a and b ∈ ℝn is the number

⟨a,b⟩ = n∑
i=1

ui(a)ui(b).
This is nothing but the entry of the 1 × 1 matrix aT ⋅ b. The vector space ℝn together

with this inner product is called n-dimensional Euclidean space. Some authors use

this terminology for a larger class of spaces, which we call inner product spaces, to be

introduced shortly. The norm of a is

|a| = ⟨a,a⟩1/2.
When n = 1, the norm of a is just its absolute value.

Theorem 1.4.1. If a, b, c ∈ ℝn, and a ∈ ℝ, then
(1) ⟨a,b⟩ = ⟨b,a⟩;
(2) ⟨aa + b, c⟩ = a⟨a,b⟩ + ⟨b, c⟩;
(3) |a| ≥ 0, and |a| = 0 if and only if a = 0;
(4) |aa| = |a||a|;
(5) (Cauchy-Schwarz inequality) |⟨a,b⟩| ≤ |a||b|;
(6) (Triangle inequality) |a + b| ≤ |a| + |b|.
Proof. The first four statements are obvious. For the Cauchy-Schwarz inequality, let

ai = ui(a), bi = ui(b). We may assume that b ̸= 0, since otherwise the conclusion is

trivial. Now,

0 ≤ ∑
i

(|b|2ai − ⟨a,b⟩bi)2
= |b|4 ∑ a2i + ⟨a,b⟩2∑ b2i − 2|b|2⟨a,b⟩∑ aibi

= |b|4 |a|2 + |b|2⟨a,b⟩2 − 2|b|2⟨a,b⟩2
= |b|2(|a|2 |b|2 − ⟨a,b⟩2).

Since |b|2 > 0, |a|2 |b|2 − ⟨a,b⟩2 ≥ 0, which is the desired inequality.

The triangle inequality is a direct consequence of the Cauchy-Schwarz inequality:|a + b|2 = ⟨a + b, a + b⟩ = |a|2 + |b|2 + 2⟨a,b⟩ ≤ |a|2 + |b|2 + 2|a||b|
= (|a| + |b|)2 .

Corollary 1.4.1. ||a| − |b|| ≤ |a − b| for a,b ∈ ℝn.

Proof. It is enough to show that |a| − |b| ≤ |a − b| (why?). But this follows from the

triangle inequality, since

|a| = |a − b + b| ≤ |a − b| + |b|.
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Definition 1.4.1. The operator norm of a linear transformation L : ℝn → ℝm is|L| = sup{|Lu| | |u| = 1},
where sup denotes the supremum or least upper bound of a set as introduced in Sec-

tion 1.7.

Notice that the norm of L is always a finite number: Ifu = ∑i aiei has norm 1, then each|ai| ≤ 1, so that |Lu| = |∑
i

aiLei| ≤ ∑
i

|ai||Lei | ≤ ∑
i

|Lei|,
and consequently |L| ≤ ∑i |Lei |.

It also follows from the definition that for all u ∈ ℝn,|Lu| ≤ |L||u|. (1.4.1)

More generally, an inner product on a vector space V is a map ⟨, ⟩ : V ×V → ℝ that

satisfies (1), (2), and (3) in Theorem 1.4.1. In this case, (V , ⟨, ⟩) is called an inner product
space. v, w ∈ V are said to be orthogonal if ⟨v,w⟩ = 0. Given a nonzero vector u ∈ V,

the projection of v ∈ V along u is the vector

proju v =
⟨u,v⟩⟨u,u⟩u.

Any v ∈ V decomposes uniquely as the sum

v = proju v + (v − proju v)

of a vector parallel to u (namely its projection along u) and a vector orthogonal to u.

v

u

projuv

v − projuv

A basis {v1, . . . , vn} of an inner product space is said to be orthonormal if ⟨vi, vj⟩ =

δij(the Kronecker delta δij is the symbol that equals 1 if i = j and 0 otherwise); in
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other words, a basis is orthonormal if it consists of unit vectors any two of which are

orthogonal.

The following theorem provides an algorithm for obtaining an orthogonal basis

from an arbitrary one. To get an orthonormal one, it only remains to divide each basis

element by its length.

Theorem 1.4.2 (Gram-Schmidt orthogonalization). Suppose {u1, . . . ,un} denotes a ba-
sis of an inner product space V. Then {v1, . . . , vn}, where

v1 = u1,
v2 = u2 − projv1 u2,
v3 = u3 − projv1 u3 − projv2 u3,
...

vn = un − n−1∑
i=1

projvi un,
is an orthogonal basis of V.

Proof. By construction, each vi is orthogonal to v1 , . . . , vi−1, so that any two of them

are orthogonal. Moreover,

ui = vi +
i−1∑
l=1

projvl ui ∈ span{v1, . . . , vi},
so that B = {v1 , . . . , vn} spans V. But then B is linearly independent, for otherwise a

strict subset of B would span V, contradicting the fact that dim V = n. Thus, B is an

orthogonal basis of V.

Example 1.4.1. Let u1 = [1 0 1]T, u2 = [2 1 0]T, and V the subspace of ℝ3

spanned by u1 and u2. Then proju1 u2 = (⟨u1,u2⟩/|u1|2)u1 = u1, and v2 = u2 − u1 =[1 1 −1]T is a vector in V orthogonal to u1. Thus, the vectors

w1 =
1√2 [[[

1

0

1

]]] , w2 =
1√3 [[[

1

1−1]]]
form an orthonormal basis of V. If we wish to extend this basis to an orthonormal

basis of ℝ3, we need only find a vector that does not belong to V, say, e3, and apply

the Gram-Schmidt process to it:

v3 = e3 − projw1
e3 − projw2

e3 = e3 −w1 + w2 =
[[[
−1/6
1/3
1/6 ]]] .

{w1,w2, v3/|v3 |} is then an orthonormal basis ofℝ3.
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One reason orthonormal bases are useful is that it is quite easy to compute coordinate

vectors in them:

Theorem 1.4.3. If {v1, . . . , vn} is an orthonormal basis of V, then for any v ∈ V,

v = ⟨v, v1⟩v1 + ⋅ ⋅ ⋅ + ⟨v, vn⟩vn.
Thus, the coordinate vector of v in the ordered basis (v1 , . . . , vn) has ⟨v, vi⟩ as i-th entry.
Proof. By assumption v = ∑ aivi for unique scalars a1, . . . , an. Taking the inner prod-
uct on both sides with vj yields

⟨v, vj⟩ = n∑
i=1

ai⟨vi, vj⟩ = n∑
i=1

ai δij = aj.
It is now easy to see that the Cauchy-Schwarz inequality is valid in any inner product

space: just replace ai in the proof by ⟨a, vi⟩, where v1, . . . , vn is an orthonormal basis,

and similarly for bi.

Definition 1.4.2. LetA be a nonempty subset of an inner product space V. The orthog-

onal complement of A is the set

A⊥ = {v ∈ V | ⟨v,a⟩ = 0 for every a ∈ A}.
Linearity of the inner product in each entry implies that A⊥ is a subspace ofV. For the
same reason, (span A)⊥ = A⊥.

In general, if W1,W2 are subspaces of a vector space V, then the setW1 + W2 ={v1 + v2 | vi ∈ Wi} is easily seen to be a subspace of V, called the sum of W1 andW2. If

W1 ∩ W2 = {0}, this sum is called a direct sum, and is denotedW1 ⊕W2. In this case,

any v ∈ W1⊕W2 can bewritten in one and only oneway as a sum of a vector inW1 and

a vector inW2: indeed if v = v1 + v2 = v1 + v2 with vi, vi ∈ Wi, then v1 − v1 = v2 − v2.
Since the left side is inW1 and the right side inW2, both terms vanish, and vi = vi as
claimed.

Proposition 1.4.1. If A is a nonempty subset of an inner product space V, then V =

(span A) ⊕ A⊥.

Proof. If v ∈ (span A) ∩ A⊥, then v is orthogonal to itself, and must then equal 0. It
therefore remains to show thatV ⊂ (span A) + A⊥ . Given v ∈ V, andanorthononormal

basis {v1, . . . , vk} of span A, write
v = u1 + u2, u1 =

k∑
i=1

projvi v, u2 = v − u1. (1.4.2)

By definition u1 ∈ span A. For any j = 1, . . . , k,
⟨u2, vj⟩ = ⟨v − k∑

i=1

projvi v, vj⟩ = ⟨v, vj⟩ − ⟨projvj v, vj⟩ = 0,



24 | 1 Euclidean Space

so that u2 is orthogonal to every vj and therefore to every element in span A; i.e.,

u2 ∈ A⊥ .

The (necessarily unique) vector u1 in (1.4.2) is called theorthogonal projectionof v onto
span A. WhenA consists of a single vector u, it coincides with what we defined earlier
as the projection of v along u.

Incidentally, we have in essence established the following:

Proposition 1.4.2. If A is a linearly independent subset of ℝn, then there exists a basis

of ℝn that contains A.

Proof. Let B denote a basis of A⊥. Then A ∪ B is a basis as in the statement.

It shouldbenoted that this is true in any vector space, since sucha space is isomorphic

to some Euclidean space. In fact, any two spaces with the same dimension are isomor-

phic, as observed in Examples 1.2.1 (iii). Such an isomorphism depends of course on

the choice of bases. More to the point, the above proposition can be proved without

introducing an inner product. The argument given here is, however, sufficient for our

purposes.

The following concept too does not require the existence of an inner product:

Definition 1.4.3. The dual space of a vector space V is the collection V∗ of all linear
maps V → ℝ.
An element ofV∗ is also called a one-formonV. These maps can be added in the usual

way, as well as multiplied by scalars, thereby inducing a vector space structure on V∗.
If B = {v1, . . . , vn} denotes a basis of V, then the map

V∗ → Mn,1,
α → [α(v1) ⋅ ⋅ ⋅ α(vn)]

is by definition linear, surjective, and has zero kernel. In particular, V∗ has the

same dimension as V and is therefore isomorphic to V. Although, as noted earlier,

isomorphisms between spaces of the same dimension depend in general on the

choice of bases, in this case there is a canonical one, provided V is an inner product

space:

Theorem 1.4.4. Let V bea finite-dimensional inner product space. Themap ♭ : V → V∗,
given by u♭(v) = ⟨u,v⟩, is an isomorphism.
Proof. The map is clearly linear, and since the spaces have the same dimension, it

suffices to check its kernel is zero. But if u ∈ ker ♭, then ⟨u,v⟩ = 0 for all v ∈ V, and in

particular, |u| = ⟨u,u⟩1/2 = 0, so that u = 0.

The expression u♭ reads “u flat”. ♭ and its inverse ♯ (the existence of which is guar-

anteed by Theorem 1.4.4) are called themusical isomorphisms associated to the inner

product. An important consequence of Theorem 1.4.4 is the following:
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Corollary 1.4.2. If V is a finite-dimensional inner product space, then for any α ∈ V∗,
there exists a unique u ∈ V such that

⟨u, v⟩ = α(v), v ∈ V .
Proof. u = α♯.

Examples 1.4.2. (i) If B = {v1, . . . , vn} is a basis of V, then there exists, for each

j = 1, . . . , n, a unique element αj ∈ V∗ satisfying αj(∑n
i=1 aivi) = aj. In fact,

the matrix of αj in the basis B is eTj , which also shows that the αj are linearly

independent. By dimension considerations, they form a basis of V∗, called the

basis dual to B. (It is also easy to see directly that they span V∗, since any α ∈ V∗

may be written as α = ∑n
i=1 α(vi)αi.) For example, if V = ℝn, then the basis of V∗

dual to the standard basis is u1 , . . . , un, because uj(∑i aiei) = aj. Superscripts are

traditionally used with dual elements.

(ii) A simple yet illustrative example of a musical isomorphism is the one correspond-

ing to the standard inner product ofℝn. If α is a one-form, and [α ] denotes its n×1
matrix in the standard basis, then, recalling that any vector is its own coordinate

vector in that basis, we have

α(v) = [α ]v = ⟨[α ]T , v⟩, v ∈ ℝn.
Thus, α♯ is the transpose of the matrix of α in the standard basis. For example, if

α : ℝ3 → ℝ is given by α(x, y, z) = 2x − 3y + z, then

α♯ = [[[
2−3
1

]]] .
It should be noted that the musical isomorphism ♭ maps the standard basis

of ℝn to its dual basis in the sense of (i). This is because the standard basis is

orthonormal, and the above claim holds in any inner product space: If v1, . . . , vn
is an orthonormal basis of an inner product space V, then

v♭j (
n∑
i=1

aivi) = ⟨vj, ∑
i

aivi⟩ = aj.
1.5 Subspaces of Euclidean space

We wish to take a closer look at subspaces of dimension 1 or n − 1 of ℝn, since these

represent all proper subspaces in the important special case when n = 3.

If V is a subspace of dimension n − 1, then its orthogonal complement V⊥ is one-
dimensional, and an element of V⊥ is called a normal vector of V. If n ̸= 0 is one

such, then any other is a multiple of it, and V consists of the set of all v ∈ ℝn such
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that ⟨v,n⟩ = 0. Equivalently, V is the kernel of left multiplication LnT by nT . If nT =[a1 . . . an], thenV consist of all v = [x1 . . . xn]T such that a1x1 + ⋅ ⋅ ⋅ + anxn = 0.

V is called a hyperplane (or plane when n = 3) through the origin.

An affine hyperplane of ℝn is a set of the form u + V, where V is a hyperplane

and u ∈ ℝn. In other words, it it the subspace V “parallel translated” by u. If u =[u1 . . . un]T and V has equation a1x1 + ⋅ ⋅ ⋅ + anxn = 0 as above, then the equation

of the affine hyperplane is{(x1, . . . , xn) | a1x1 + ⋅ ⋅ ⋅ + anxn = b}, where b = a1u1 + ⋅ ⋅ ⋅ + anun .
Indeed, the affine hyperplane consists of all points u + v, where ⟨v,n⟩ = 0. Letting

x = u + v, this is equivalent to the set of all x such that ⟨x−u,n⟩ = 0; setting xi = ui(x),
this correspondents to all [x1 . . . xn]T such that ∑ ai(xi − ui) = 0, as claimed.

Even though we are primarily interested in the cases when dimV = 1 or n − 1, a

similar approach can be adopted to describe a subspace V of dimension n − k for any
k: If {u1, . . . ,uk} is a basis of V⊥, then a ∈ ℝn belongs to V if and only if ⟨a,ui⟩ = 0 for

i = 1, . . . , k. Each of these equations represents a hyperplane, and V is then the inter-

section of these k hyperplanes. As above, we obtain an affine subspace by translating

V away from the origin.

A one-dimensional subspace V ofℝn is called a line through the origin. We could

describe it as an intersection of n − 1 hyperplanes, but when n is large, it is usually

more convenient to resort to a vector a that spans V. v ∈ ℝn belongs to V if and only

if v = ta for some t ∈ ℝ. Letting xi = ui(v), ai = ui(a), we obtain so-called parametric

equations of the line {(x1, . . . , xn) | x1 = ta1, . . . , xn = tan, t ∈ ℝ}. (1.5.1)

When all ai ̸= 0, one can eliminate the parameter t in (1.5.1) and describe the line by

the equation x1/a1 = ⋅ ⋅ ⋅ = xn/an.
As in the case of hyperplanes, one can parallel translate one-dimensional sub-

spaces to describe all possible lines. Thus, the line parallel to the one in (1.5.1) that

passes through p = (p1, . . . , pn) has parametric equations

x1 = p1 + ta1, . . . , xn = pn + tan, t ∈ ℝ,
which can be written (x1 − p1)/a1 = ⋅ ⋅ ⋅ = (xn − pn)/an if every ai ̸= 0.

Q

P
n
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Example 1.5.1. Suppose we are asked to find the distance from the point P = (1,2, −1)
to theplane x + y−z = 1 inℝ3. This distance equals the length |PQ|of the line segment

PQ, where Q is the point of intersection of the plane with the line passing through P

perpendicular to the plane. Since a vector normal to the plane is n = [1 1 −1]T ,
the line in question has vector equation

v = [[[
1

2−1]]] + t
[[[
1

1−1]]] .
Thus, a point on the line has coordinates (1 + t, 2 + t, −1 − t), and the intersection

with the plane occurs for the value of t for which

x + y − z = 1 + t + 2 + t + 1 + t = 1,
or t = −1. This means thatQ = (0, 1, 0). Elementary geometry implies that the distance

between vectors p and q inℝ3 is |q − p|, so that
|PQ| = ((0 − 1)2 + (1 − 2)2 + (0 − (−1))2)1/2 = √3.

We will later find another solution to this problem, one that uses Calculus.

1.6 Determinants as volume

Any two vectors a and b inℝ3 determine a linear mapℝ3 → ℝ,
u → det [a b u] ,

and thus an element of the dual space ofℝ3. ByCorollary 1.4.2, there is a unique vector

a × b ∈ ℝ3, called the cross product of a and b, such that

⟨a × b,u⟩ = det [a b u] , u ∈ ℝ3.
The following theorem is an immediate consequence of properties of the determinant:

Theorem 1.6.1. Given a, b, c ∈ ℝ3, t ∈ ℝ,
– b × a = −a × b;
– a × b is orthogonal to a and b;
– (ta) × b = a × (tb) = t(a × b);
– a × (b + c) = a × b + a × c.
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It is straightforward to compute the components of the vector a × b: for example, if

ai = ui(a) and bi = ui(b), then the first component equals

⟨a × b, e1⟩ = det [a b e1] = det
[[[
aT
bT
eT1

]]] = det
[[[
a1 a2 a3
b1 b2 b3
1 0 0

]]]
= det [a2 a3

b2 b3
] ,

and similar formulas hold for the other components, replacing e1 by e2 and e3. A
common way of writing these formulas is

a × b = det
[[[
e1 e2 e3
a1 a2 a3
b1 b2 b3

]]] ,
where the meaningless right side is meant to be “expanded” along the first row; i.e.,

a × b = det [a2 a3
b2 b3

] e1 − det [a1 a3
b1 b3

] e2 + det [a1 a2
b1 b2

] e3. (1.6.1)

Using the latter formula, it is straightforward to compute that the norm squared of a

cross product equals|a × b|2 = (a21 + a22 + a23)(b
2
1 + b22 + b23) − (a1b1 + a2b2 + a3b3)

2

= |a|2 |b|2 − ⟨a,b⟩2 = |a|2|b|2 − |a|2 |b|2 cos2 θ
= |a|2 |b|2 sin2 θ ,

with θ denoting the angle between a and b. Thus,

|a × b| = |a||b|| sin θ |. (1.6.2)

This means that |a × b| represents the area of the parallelogram spanned by a and b:
notice that the area equals that of a rectangle with same base length |a| and height|b|| sin θ |.

θ

|b sin θ |
b

a



1.6 Determinants as volume | 29

If, on the other hand, we take the two vectors to lie in the xy-plane, so that their

third component is zero, then by (1.6.1),

a × b = det [a1 a2
b1 b2

] e3 .
Combining this with the previous remark, we conclude: The absolute value of a 2 × 2

determinant equals the area of the parallelogramspanned by the columns (or the rows).

A similar interpretation exists for 3×3 determinants. If a, b, and c ∈ ℝ3, then the

volume of the parallelepiped

{aa + bb + cc | 0 ≤ a, b, c ≤ 1}
spanned by the three vectors equals the area of the base times the height. The former

is |a × b|, and the latter is |c|| cos θ |, where θ is the angle between a × b and c. Thus,
the volume equals |⟨a × b, c⟩| = |det [a b c] |,
so that the absolutevalue of a 3×3 determinant equals the volumeof the parallelepiped
spanned by the three columns (or rows). Incidentally, we define this to be also the

volume of the “open” (see the following section) parallelepiped {aa + bb + cc |
0 < a, b, c < 1}. This is because the open solid may be expressed as an increas-

ing union of “closed” ones together with continuity of volume: for example, (0,1) =∪∞i=1[1/n,1−1/n], so that the volumeor lengthof (0,1) equals limn→∞ 1−1/n−1/n = 1.

b

a × b

θ
|c cos θ |

c

a

Later, we will discuss volume in n-dimensional space. For now, the previous observa-

tions provide some justification for the following:

Definition 1.6.1. The volume of the (open or closed) parallelepiped in ℝn spanned by

the vectors a1, . . . , an ∈ ℝn is defined to be the absolute value of

det [a1 ⋅ ⋅ ⋅an] .
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1.7 Elementary topology of Euclidean spaces

A fundamental application of the inner product introduced in Section 1.3 is the con-

cept of distance: The distance between a and b ∈ ℝn is d(a,b) = |a − b|. The distance
function d satisfies the following properties for any a, b, c ∈ ℝn:

– d(a,b) = d(b, a);
– d(a,b) ≥ 0, and d(a,b) = 0 if and only if a = b;
– d(a,b) ≤ d(a, c) + d(c,b).
All these properties follow from corresponding properties of the norm; for example,

the third one is a consequence of the triangle inequality (and is actually responsible

for that name, since it says that in a triangle, the length of one side cannot exceed the

sum of the other two):

d(a,b) = |a − b| = |(a − c) + (c − b)| ≤ |(a − c)| + |(c − b)| = d(a, c) + d(c, b).
More generally, a set X together with a function d : X × X → ℝ that satisfies the

above three properties is called a metric space. Thus, every inner product space is a

metric space. Notice that the inner product itself is not essential, but rather the norm

associated to it.

Definition 1.7.1. A norm on a vector space E is a map || : E → ℝ such that for all

a,b ∈ E and α ∈ ℝ,
(1) |a| ≥ 0, and |a| = 0 if and only if a = 0;
(2) |a + b| ≤ |a + b|;
(3) |αa| = |α ||a|.
A normed vector space is a vector space together with a norm. It follows that any

normed space is a metric space if one defines the distance by d(a, b) = |a − b|. One
important example is the space of all linear transformations L : ℝn → ℝm with the

operator norm from Definition 1.4.1.

Definition 1.7.2. Let (X, d) be a metric space.

(1) The open ball of radius r > 0 around a is the set Br(a) of all points at distance less
than r from a;

(2) A set U ⊂ X is said to be a neighborhood of a ∈ X if U contains some open ball

around a; in this case, we say a is an interior point of U;
(3) A set V ⊂ X is said to be open if it is a neighborhood of each and every one of its

elements.

(4) A set C ⊂ X is said to be closed if its complement X \ C is open.

It follows from the definition that both X and the empty set are open. Being com-

plements of each other, they are also closed. Although we will mostly deal with the

case X = ℝn, it is useful, whenever possible, to state properties in terms of abstract
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metric spaces. Observe for example that any subset ofℝn becomesametric spacewhen

endowed with the restriction of the metric on ℝn.

The triangle inequality guarantees that open balls are indeed open: for if b ∈
Br(a), then 𝜀 := r − d(a,b) > 0, and the ball of radius 𝜀 around y is contained inside

Br(a). In fact, given c ∈ B𝜀(b), d(a, c) ≤ d(a,b) + d(b, c) < d(a,b) + 𝜀 = r.

Notice that a union of open sets is again open. Since the complement of a union is

the intersection of the complements, an arbitrary intersection of closed sets is closed.

The intersection of a finite number of open sets is open (and therefore a finite union

of closed sets is closed): if a ∈ Ui for i = 1, . . . , k and each Ui is open, then there exists

ri > 0 such that the ball of radius ri around a is contained inUi. Consequently the ball

of radius r around a, where r = min{r1, . . . , rk}, is contained in every Ui, and therefore

in their intersection. On the other hand, arbitrary intersections of open sets need not

be open: for example, the intersection of all open balls of radius 1/k, k ∈ ℕ, about a

point p ∈ ℝn, consists of the single point p, and one-point sets are closed.
Given real numbers a < b, the interval (a, b) is open in ℝ. Viewing the real line as

a subset of ℝ2 (i.e., identifying ℝ with ℝ × {0} ⊂ ℝ2) (a, b) × {0} is no longer open. In
order to be able to say that it is open as a subset ofℝ×{0}, we introduce the following:
Definition 1.7.3. LetAbe a subset of ametric space X. A subset B ofA is said tobe open

(resp. closed) in A or relative to A if B = U ∩ A, whereU is open (resp. closed) in X.

A A0

∂A Ᾱ

Definition 1.7.4. Let A ⊂ X.

(1) The interior A0, also denoted intA, of A is the set of all interior points of A.

(2) A point is said to be a boundary point of A if every neighborhood of that point

intersects bothA and the complement ofA. The boundary 𝜕A of A is the collection

of all boundary points of A.

(3) The closure of A is the set A = A ∪ 𝜕A.
(4) A is said to be bounded if it is contained in some metric ball (of finite radius).

It is clear thatA0 is open, 𝜕A andA are closed, and A0 ⊂ A ⊂ A. In fact,A0 is the largest

open set that is contained in A, and A is the smallest closed set that contains A, see

Exercise 1.20.
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Definition 1.7.5. An open cover O of A ⊂ X is a collection of open sets whose union

contains A. A subcollection of O is called a subcover if it is also a cover of A. A is said

to be compact if any open cover of A contains a finite subcover.

Any finite set is of course compact, but finiteness is not a requisite: If {an} is any
sequence of real numbers that converges to some a, then the set K = {a} ∪ {an | n ∈ ℕ}
is compact, since any open interval containing a will contain all but finitely many

elements of K.

Theorem 1.7.1. (1) Any compact set is closed;

(2) Any closed subset of a compact set is compact.

Proof. For (1), suppose K is compact. We will show that the complement of K is open.

Given a ∉ K, choose for every b ∈ K open ballsUb and Vb centered at b and a respec-

tively of small enough radius that they don’t intersect. By compactness of K, finitely

many of these, say, Ub1 , . . . ,Ubk cover K. Then Vb1 ∩ ⋅ ⋅ ⋅ ∩ Vbk is an open ball around a
that does not intersect any Ubj , j = 1, . . . , k, and therefore does not intersect K.
For (2), suppose C ⊂ K, where C is closed and K is compact, and consider an open

cover O of C. ThenO together with the complement of C is an open cover of K and we

may extract a finite subcover. If X \ C is a member of this subcover, remove it. What

remains is a finite subcollection of O that still covers C.

Compact sets are important enough towarrant a more concrete characterization. This

alternative description does not, however, hold in arbitrary metric spaces. Recall that

α ∈ ℝ is said to be an upper bound of a set A if α ≥ x for any x ∈ A, and the least

upper bound of A if it no larger than any other upper bound; i.e., if α ≤ β for any

upper bound β of A. In this case, we write α = supA. Notice that even though α itself

need not belong toA, any neighborhood of α must contain an element of A: for if, say,

(α −𝜀, α + 𝜀) did not intersect A for some 𝜀 > 0, then α −𝜀would be an upper bound of
A smaller than α . A key property of the real numbers is that any nonempty set of reals

that is bounded above has a least upper bound. Appendix A explores these concepts

in further detail.

A box or rectangle in ℝn is a cartesian product of n intervals. In the definition of

an open set, we could have replaced open metric balls by open boxes: the ball Br(p)
contains the open box

(p1 − r√n , p1 + r√n) × ⋅ ⋅ ⋅ × (pn − r√n , pn + r√n)
(with pi = ui(p)) centered at p, and this box in turn contains the ball Br/√n(p). In
particular, if U is any open set containing a point p, then there exists an open box

R centered at pwhich lies inside U. Conversely, if U is a set with the property that any

point of U admits an open box centered at that point which is contained in U, then

any p in U also admits an open ball centered at pwhich is contained in U, so that U is
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open. Our first goal is to show that a closed and bounded box is compact. We begin in

dimension one:

Theorem 1.7.2 (Heine-Borel). For any a < b, the interval [a, b] is compact.
Proof. Given an open cover O of [a, b], denote by A the set of all x ∈ [a, b] such that

[a, x] is covered by finitely many sets in O. Then a ∈ A, A is bounded above by b, and

so A has a least upper bound α ∈ [a, b]. We first observe that α ∈ A: indeed, α belongs

to some element U of O. Since α is the least upper bound of A, U must contain some

element x ∈ A. By assumption, [a, x] is then covered by finitely many sets in O, and
[x, α ] by one, namely U. Thus [a, α ] = [a, x] ∪ [x, α ] is also covered by finitely many

sets, and α ∈ A. We now conclude the proof by showing that α = b. If α < b, then the

set U above must contain some c ∈ (α , b), and the above argument shows that c ∈ A,

contradicting the fact that α is an upper bound.

ℝ
n

ℝ
k

p

K

U

V

U

Fig. 1.1: A tube about {p} × K contained in U

In order to show that a Cartesian product of compact sets is compact, we will need the

following:

Lemma 1.7.1 (the tube lemma). Suppose p ∈ ℝn, and K is a compact subset of ℝk. If

U is an open set in ℝn+k that contains {p} × K, then U contains V × K for some open

neighborhoodV of p inℝn.

Proof. For any a ∈ K, there exists an open box inside U that contains the point (p,a).
Such a box is a product Va × Wa of open boxes in ℝn and ℝk containing p and a
respectively. Now,K is compact, and is therefore coveredby finitelymanyWa1 , . . . ,Wal .
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If V = Va1 ∩ ⋅ ⋅ ⋅ ∩ Val , then V is an open neighborhood of p, and

V × K ⊂ V × ( l⋃
i=1

Wai) =
l⋃

i=1

(V ×Wai ) ⊂ l⋃
i=1

(Vai ×Wai)) ⊂ U,
as claimed. V × K is called a tube about {p} × K.
Notice that the set {p}×K in theabove lemma is compact ifK is: indeed, ifπ : ℝn×ℝk →ℝk denotes the projection onto the second factor, then π is an open map; i.e., π maps

open sets to open sets – in fact, π maps balls of a given radius onto balls of the same

radius. Thus, ifO is an open cover of {p} × K, then the sets π(U), U ∈ O, form an open

cover of K, and a finite subcover π(U1), . . . , π(Ul) of K may be chosen. This means that

U1 ∪ ⋅ ⋅ ⋅ ∪ Ul ⊃ {p} × K.

It is easily seen that compactness of K is essential in the tube lemma: if, for exam-

ple n = k = 1, p = 0, and K = ℝ, then U = {(x, y) | |xy| < 1} is an open subset of ℝ2

containing {0} × ℝ, but it cannot contain any tube around it.
{0} × ℝ

y = 1/x

y = −1/xU

Theorem 1.7.3. A Cartesianproduct of compact sets is compact. In particular, if ai < bi,

i = 1, . . . , n, then [a1, b1] × ⋅ ⋅ ⋅ × [an, bn] is compact.
Proof. The second statement follows from the first one together with Theorem 1.7.2.

For the first one, it is enough to show that A × B is compact whenever A and B are. Let

O denote an open cover of A × B. For each p ∈ A, the set {p} × B, being compact, can

be covered by a finite subcollectionOp ofO. By the tube lemma, the union of the sets

inOp contains Up ×B for some neighborhood Up of p, and A can be covered by finitely

many of these, say, Up1 , . . . ,Upl . But thenOp1 ∪ ⋅ ⋅ ⋅ ∪ Opl is a finite cover of A × B.

Theorem 1.7.4. A subset K ofℝn is compact if and only if it is closed and bounded.
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Proof. If K is compact, then it is closed by Theorem 1.7.1. It is also bounded, for if

p ∈ K, then the collection of balls Bk(p), k ∈ ℕ, is an open cover of K, and admits

a finite subcover. The ball of largest radius in that subcover contains K. Conversely,

suppose K is closed and bounded. Being bounded, it is contained inside some closed

rectangle. The latter is compact by Theorem 1.7.3. Since K is closed, it is compact by

Theorem 1.7.1.

By definition, if E is not compact, then there exists some open cover of E with no

finite subcover. However, if E lies in Euclidean space, there will alwaysbe a countable

subcover:

Theorem 1.7.5. If E ⊂ ℝn, then any open cover {Uα}α∈J of E has a countable subcover;

i.e., there exists a subset A of natural numbers, and a map f : A → J such that

E ⊂ ⋃
k∈A

Uf (k).
Proof. The argument uses the notion of countable set and dense set, both ofwhich are

examined in Appendix A. For each a ∈ E, choose some Uα that contains it. Since this

set is open, there exists some r > 0 such that theballBr (a) ⊂ Uα . The fact that rationals

are dense in ℝ (see Appendix A) is easily extended to ℚn being dense in ℝn. Thus,

there exists a ball Ba with center a ∈ ℚn and rational radius such that a ∈ Ba ⊂ Uα .

Butℚn × ℚ is countable, and therefore so is the collection

{Ba | a ∈ E} = {V1,V2, . . . }.
By assumption, each Vk is contained in some Uα . Choosing some such α and setting

α = f (k), we conclude that E ⊂ ⋃k Vk ⊂ ⋃k Uf (k).

The least upper bound of a set A of real numbers is also called the supremum ofA, and

is denoted supA. A similar notion can be introduced for lower bounds: the infimum or

greatest lower bound α = inf A ofA is a lower bound ofA (i.e., α ≤ x for any x ∈ A) that

is greater than or equal to any other lower bound of A. Notice that α is a lower bound

of A if and only if −α is an upper bound of −A = {−a | a ∈ A}. It easily follows that
inf A = − sup(−A), in the sense that if one of the two exists, then so does the other,

and they are equal. In particular, any nonempty set of real numbers that is bounded

below has a greatest lower bound.

A useful observation is that if A is closed, nonempty, and bounded above (re-

spectively below), then A contains its least upper bound (resp. greatest lower bound):

indeed, by definition, given any 𝜀 > 0, there must be a point x ∈ A such that

supA − 𝜀 < x ≤ supA,
since otherwise sup A − 𝜀 would be an upper bound of A. Thus, any open interval of

radius 𝜀 around supA contains points of A (as was just pointed out) and also points
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outside A (any y ∈ (supA, supA + 𝜀)), so that supA is a boundary point of A. But

closed sets contain their boundary points. The argument for infimum is similar.

The concepts of infimum and supremum also enable us to prove a property of

intervals that will be quite useful in the sequel:

Proposition 1.7.1. If I is an interval of real numbers, then any subset that is both open
and closed in I is either empty or equals all of I.

Proof. We argue by contradiction: suppose A is a nonempty subset of I that is both

open and closed, but there exists some c ∈ I that does not belong to A. Consider any

t0 ∈ A. Then t0 < c or t0 > c. The argument is similar in both cases, so we only consider

the former. Let

B = {t ∈ I | [t0, t] ⊂ A}.
ThenB is nonempty (since it contains t0 ), boundedabove (by c), andsoadmits a supre-

mum α . By definition, α is a boundary point of A. Since A is closed in I, A equals the

intersection of I with some closed set C, and α ∈ C: indeed, if some neighborhood of α

is contained in C, then certainly α ∈ C. Otherwise, every neighborhood of α contains

points outside C. It must also contain points in C since it contains points ofA ⊂ C. This

means α is a boundary point of C, and since C is closed, α ∈ C as claimed. But α also

belongs to I, because the latter is an interval that contains a point to the left of α (e.g.,

t0) and one to the right of it (e.g., c). Thus, α ∈ A = C ∩ I, and so α < c. A is open in I,

however, so there exists some 𝜀 > 0 such that (α , α + 𝜀) ∩ I ⊂ A. Thus, if β is any point

in the nonempty set (α , α + 𝜀) ∩ I, then [t0, β ] ⊂ A, contradicting the assumption that

α is an upper bound of B.

1.8 Sequences

The reader is already familiar with sequences of real numbers from Calculus. The

generalization to metric spaces is straightforward: A sequence in ametric space (X, d)
is a map from the set ℕ of natural numbers into X. The value of the map at k ∈ ℕ
is usually denoted ak (or some other letter such as pk) when X = ℝn, n > 1, and the

sequence itself by {ak} – althoughwewill oftenuse ak to denote either one when there
is no risk of confusion. When n = 1 or X is not Euclidean space, we use the regular

font ak instead of the bold one.

Definition 1.8.1. A sequence {ak} is said to converge to a if for any 𝜀 > 0, there is a

positive integer N such that d(ak,a) < 𝜀 whenever k ≥ N. In this case, a is called the

limit of the sequence, and we write ak → a or limk→∞ ak = a. If no such a exists, the

sequence is said to diverge. The sequence is said to be bounded if the set {ak | k ∈ℕ} of values is bounded; i.e., if there exists some R > 0 such that d(a1,ak) ≤ R for

all k.
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Another way to describe convergence ak → a is to say that any neighborhood of a
contains ak except perhaps for finitely many values of k. The one in the above defi-

nition is of course just the open ball of radius 𝜀 about a. This also justifies using the
terminology “the limit”, for a sequence can have atmost one limit: if a ̸= b, then these
two points admit disjoint neighborhoods (such as the open metric balls of radius half

the distance between them), and then both neighborhoods cannot contain ak for all
sufficiently large k. It also shows that any convergent sequence is bounded: there are

at most finitely many points of the sequence outside the ball of radius, say, 1 about

the limit, and a finite set is alway bounded: specifically, if ak ∈ B1(a) for all k ≥ N,

let R = max{1, d(a1,a), . . . , d(aN−1,a). Then d(ak,a) ≤ R for all k. It is also clear from

the above discussion that changing finitely many terms in a sequence does not affect

convergence; i.e., if ak and bk are two sequences such that ak = bk for all sufficiently

large k, then they either both converge to the same limit, or they both diverge.

We first consider convergence of sequences of real numbers, since it is very much

related to that of sequences in higher-dimensional Euclidean spaces. Even though the

reader is probably familiar with the contents of the following theorem from a previous

Calculus course, it has been included because its proof is often not covered there.

Theorem 1.8.1. Let {xk} and {yk} be sequences of real numbers that converge to x and y
respectively. Then

(1) xk + yk → x + y;

(2) cxk → cx for any c ∈ ℝ;
(3) xkyk → xy;

(4) If xk, x ̸= 0, then 1/xk → 1/x;
(5) If yk, y ̸= 0, then (xk/yk) → (x/y).
Proof. (1) Let 𝜀 > 0 be given. By assumption, there exist positive integers N1 and N2

such that |xk − x| < 𝜀/2 for all k ≥ N1, and |yk − y| < 𝜀/2 for all k ≥ N2. So, if N is the

largest of the two numbers N1 and N2, then for any k ≥ N,

|(xk + yk) − (x + y)| = |(xk − x) + (yk − y)| ≤ |xk − x| + |yk − y| < 𝜀
2
+

𝜀
2
= 𝜀.

(2) This is an immediate consequence of (3), taking yk = c for all k.

(3) Since {xk} converges, there exists some M > 0 such that |xk | ≤ M for all k. Choose

N1 so that |yk −y| < 𝜀/(2M) for k ≥ N1, andN2 so that |xk −x| < 𝜀/(2|y|) if k ≥ N2 (unless

y = 0, in which case take N2 = 1). If N is the larger of N1 and N2, then for k ≥ N,

|xkyk − xy| = |xk(yk − y) + y(xk − x)| ≤ |xk||yk − y| + |y||xk − x|.
The first term on the right side of the above inequality is smaller than 𝜀/2. The second
term is either zero (if y = 0) or less than 𝜀/2 (if y ̸= 0). In either case, the left side is

less than 𝜀, which establishes the claim.
(4) Take 𝜀 = |x|/2 in the definition of convergence of {xk} to conclude that there exists
N1 such that |xk | > |x|/2 whenever n ≥ N1. Next, for a given 𝜀 > 0, there existsN2 such
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that |xk − x| < 𝜀|x|2/2 whenever k ≥ N2. Let N = max{N1,N2}. If k ≥ N, then 1xk − 1

x

 = xk − x

xkx

 < 2|xk − x||x|2 < 𝜀.
(5) is an easy consequence of (3) and (4).

Examples and Remarks 1.8.1. (i) A sequence {ak} of real numbers is said to be in-

creasing (resp. decreasing) if ak ≤ ak+1 (resp. ak ≥ ak+1) for all k. An increasing

sequence that is bounded above converges: to see this, letα denote the supremum

of {ak | k ∈ ℕ}. Given 𝜀 > 0, there exists some N ∈ ℕ such that 0 ≤ α − aN < 𝜀.
Since the sequence is increasing, 0 ≤ α −ak ≤ α −aN < 𝜀 for all k ≥ N, and ak → α .

This also implies that a decreasing sequence that is bounded below converges to

the infimum of its set of values, because if {ak} is decreasing bounded below, then{−ak} is increasing and bounded above.
(ii) Another useful tool for proving convergence of a real sequence is the so-called

squeeze theorem: if ak ≤ bk ≤ ck, and both {ak} and {ck} converge to the same

limit L, then so does the middle sequence {bk}. To see this, let 𝜀 > 0, and choose

N1 such that |ak −L| < 𝜀whenever k ≥ N1. Similarly, letN2 be such that |ck −L| < 𝜀
for k ≥ N2. If k is larger than N = max{N1,N2}, then |bk − L| < 𝜀, because

−𝜀 < ak − L ≤ bk − L ≤ ck − L < 𝜀.
(iii) One of the simplest applications of (i) and (ii) is the so-called geometric sequence

rk, where 0 < r < 1. It is a decreasing sequence, bounded below by zero, and

therefore converges. This does not quite tell us what the limit is, but if rk → L,

then ak → L, where ak = rk+1: indeed, given 𝜀 > 0, choose N such that |rk − L| < 𝜀
fork > N; then |ak−L| = |rk+1−L| is also less than 𝜀 fork > N because k + 1 > k > N.

On the other hand, by Theorem 1.8.1 (2), ak → rL. Thus, L = rL, and since r ̸= 1,

L = 0. In conclusion, rk → 0.

We have, in fact, that rk → 0 for any r ∈ (−1, 1); indeed, we know that |r|k → 0.

By Theorem 1.8.1 (2), −|r|k → 0. Since −|r|k ≤ rk ≤ |r|k, the claim follows from the

squeeze theorem in (ii).

For the sake of convenience, wewill oftenabbreviate the sentence “There existsN ∈ ℕ
such that the statement P(k) is true whenever k ≥ N” by “P(k) is true for sufficiently

large k”. Now that we have some experience with real-valued sequences, let us look at

sequences in higher-dimensional Euclidean space.

Theorem 1.8.2. A sequence {ak} in ℝn converges to a iff ui(ak) → ui(a) in ℝ for i =

1, . . . , n.
Proof. If ak → a, then ui(ak) → ui(a) since |ui(ak) − ui(a)| ≤ |ak − a|. Conversely, if
ui(ak) → ui(a) for each i = 1, . . . , n, then given 𝜀 > 0, |ui(ak) − ui(a)| < 𝜀/√n for all i
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and sufficiently large k. But then

|ak − a| = ( n∑
i=1

|ui(ak) − ui(a)|2) 1
2 < 𝜀

for k large enough, which shows that ak → a.

Corollary 1.8.1. If {ak} and {bk} are sequences in ℝn that converge to a and b respec-

tively, then

(1) ak + bk → a + b;
(2) If ck → c ∈ ℝ, then ckak → ca;
(3) ⟨ak,bk⟩ → ⟨a,b⟩;
(4) |ak | → |a|.
Proof. The first three statements follow immediately from the previous two theorems.

The last one is a consequence of the third.

Sequences in compact sets have additional properties. Before describing one such, we

need some terminology: If {ak} is a sequence, and k1 < k2 < . . . is a strictly increasing
sequence of positive integers, then the sequence ak1 ,ak2 , . . . is called a subsequence

of ak (more formally, if f : ℕ → ℝn, f (k) = ak, is the function defining the sequence,

then a subsequence of f is a function f ∘g, where g : ℕ → ℕ is strictly increasing). Ele-

mentary examples are the subsequences {a2k} of even terms and {a2k−1} of odd terms.

It is an easy exercise to show that if a sequence converges, then any subsequence

converges to the same limit. In fact, we proved this directly for the subsequence {rk+1}
of {rk} in Examples and Remarks 1.8.1 (iii). The general case is similar.

Theorem 1.8.3. If K ⊂ ℝn is compact, then any sequence in K contains a convergent

subsequence.

Proof. Let A = {ak | k ∈ ℕ}. If A is a finite set, then there must be some a that equals

ak for infinitelymany k. This yields a constant subsequence.Wemay therefore assume

that A is infinite, and claim that there exists some a ∈ K with the following property:

every neighborhood of a intersects A \ {a} (a point with this property is called a limit
point ofA; notice that any neighborhood of a limit point a ofAmust contain infinitely

many elements of A: if it contained only finitely many, then we could find b ∈ A \ {a}
closest to a, and the open ball around a with radius |a − b| would no longer intersect
A \ {a}). To establish the claim, we argue by contradiction: suppose that every a in

K has a neighborhood that does not intersect A \ {a}. Apply this first to points in the

complement ofA: every point outside A (be it inK or outside of K) has a neighborhood

disjoint fromA, so that the complement ofA is open, andA is closed. By Theorem 1.7.1,

A is compact. Next, apply it to points inside A: every a ∈ A has an open neighborhood

Ua such that Ua ∩ A = {a}. Since A is infinite, this means that {Ua | a ∈ A} is an open

cover of Awith no finite subcover, contradicting compactness.
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Now that we have established the existence of a limit point a, we can construct in-

ductively a subsequence that converges to it. By assumption, there is an integer k1
such that ak1 ∈ B1(a). If kj is a given integer, then the ball B1/(j+1)(a) contains infinitely
many elements of A, and we may therefore choose an integer kj+1 > kj such that akj+1
belongs to it. The subsequence {akj} thus constructed satisfies |akj − a| < 1/j for all j,
and therefore converges to a.

Corollary 1.8.2. A bounded sequence inℝk has a convergent subsequence.

Proof. By assumption, the sequence lies inside some ball, and this ball has compact

closure, so Theorem 1.8.3 applies.

Example 1.8.1. Let r > 0, α ∈ ℝ, and ak = [rk cos(kα) rk sin(kα)]T ∈ ℝ2. If r > 1,

then {ak} diverges, because the sequence is unbounded: |ak| = rk. Suppose next that

r < 1. Since

0 ≤ |u1(ak)|, |u2(ak)| ≤ rk,
and rk → 0, |ui(ak)| → 0 for i = 1,2 by the squeeze theorem. But then ui(ak) → 0

because −|ui(ak)| ≤ ui(ak) ≤ |ui(ak).
Finally, when r = 1, the sequence will, in general, diverge, but must admit a conver-

gent subsequence by Corollary 1.8.2 because |ak| = 1.

There is an alternative characterization of convergent sequences, one that is often

useful because it does not explicitly involve a limit:

Definition 1.8.2. {ak} is said to be a Cauchy sequence if for any 𝜀 > 0, there exists an

integer N such that |ak − al| < 𝜀 for all k, l ≥ N.

If ak → a, then {ak} is Cauchy: given 𝜀 > 0 choose N so that |ak − a| < 𝜀/2 whenever

k ≥ N. If k, l ≥ N, then

|ak − al| = |(ak − a) + (a − al)| ≤ |ak − a| + |al − a| < 𝜀
2
+

𝜀
2
= 𝜀.

On the other hand, if {ak} is Cauchy, then it is bounded: there exists a positive integer
N such that |ak − al| < 1 whenever k, l ≥ N. But then the sequence is contained inside

the bounded set

B1(aN) ∪ {a1, . . . , aN−1}.
This, together with Corollary 1.8.2, implies:

Theorem 1.8.4. A sequence inℝn converges if and only if it is a Cauchy sequence.

Proof. We’ve already established that a convergent sequence is Cauchy, and that con-

versely, a Cauchy sequence {ak} in ℝn has a convergent subsequence, say, akj → a.
But then the sequence itself must converge to a: given 𝜀 > 0, choose N1 such that
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|ak − al| < 𝜀/2 whenever k, l ≥ N1, and choose N2 such that |a − akj | < 𝜀/2 if j ≥ N2. Let

N denote the larger of N1 and N2. Observing that kN ≥ N, we have|a − ak| ≤ |a − akN | + |akN − ak| < 𝜀
2
+

𝜀
2
if k ≥ N,

which establishes the claim.

There are metric spaces in which not every Cauchy sequence converges: consider for

example the setℚ of rational numbers with the distance function inherited as a subset

of the real numbers. If xn is the number representing the first n digits in the decimal

expansion of√2, then xn → √2 inℝ, and is therefore Cauchy. Each xn is rational, and
the sequence does not converge inℚ. A metric space in which every Cauchy sequence

converges is said to be complete. Notice that every closed subset of a complete metric

space is complete, andℚ is of course not closed in ℝ.
Given a sequence {am} inℝn, consider the sequence {sk} of partial sums, where

sk = a1 + ⋅ ⋅ ⋅ + ak.
Wesay the infinite series∑∞

m=1 am converges toL (andwrite∑∞
m=1 am = L) if limk→∞ sk =

L. The series is said to converge absolutely if the series of real numbers ∑m |am| con-
verges.

Completeness implies the following:

Theorem 1.8.5. An absolutely convergent series converges.

Proof. Let sk = a1 + ⋅ ⋅ ⋅ + ak, sk = |a1 | + ⋅ ⋅ ⋅ + |ak|. The claim will follow once we

show that {sk} is a Cauchy sequence. So let 𝜀 > 0. Since {sk} converges, it is Cauchy,
and there exists an integerN such that |sm−sl| < 𝜀wheneverm > l ≥ N. By the triangle

inequality, if m > l ≥ N,|sm − sl| = |al+1 + ⋅ ⋅ ⋅ + am| ≤ |al+1 | + ⋅ ⋅ ⋅ + |am| = |sm − sl| < 𝜀.
1.9 Limits and continuity

Recall from Section 1.8 that a is said tobe a limit point of a setA ⊂ ℝn if every neighbor-

hood of a intersects A\{a}. Maps fromA toℝm will be denoted in bold fontwhenm > 1

(provided they are not linear). If f : A → ℝm is a map, its component functions are the

maps f i = ui ∘ f : A → ℝ, i = 1, . . . ,m. The graph of f is the subset ofℝn+m that consists

of all (a, f (a)) as a ranges overA. IfB ⊂ A, define the image ofB as f (B) = {f (b) | b ∈ B}.
Finally, if C ⊂ ℝm, the pre-image of C is f−1(C) = {a ∈ A | f (a) ∈ C}.
Definition 1.9.1. Let A ⊂ ℝn, f : A → ℝm a map from A toℝm, and a a limit point of A.

We say the limit of f at a equals b ∈ ℝm, and write

limp→a f (p) = b, or f (p) → b as p → a,
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if for any 𝜀 > 0 there exists δ > 0 such that

|f (p) − b| < 𝜀 whenever 0 < |p − a| < δ , p ∈ A.
Notice that a need not belong to the domain A of f . An alternative characterization is

that for any 𝜀 > 0 there exists δ > 0 such that

f (Bδ (a) \ {a}) ⊂ B𝜀(b).
A useful way of determining limits is by means of the following:

Theorem 1.9.1. With notation as in Definition 1.9.1, the limit of f at a equals b if and

only if for every sequence {ak} in A, ak ̸= a, that converges to a, the sequence {f (ak)}
converges to b.

Proof. Suppose limp→a f (p) = b, and consider a sequence ak → a, ak ̸= a. Given𝜀 > 0, we must show that there exists some integer N such that |f (ak) − b| < 𝜀 for
k ≥ N. By hypothesis, for this 𝜀 there exists δ > 0 such that |f (p) − b| < 𝜀 whenever
0 < |p − a| < δ , p ∈ A. Since ak → a, there exists a positive integer N such that

0 < |ak − a| < δ when k ≥ N. Thus, for k ≥ N, |f (ak) − b| < 𝜀, and f (ak) → b.
Conversely, if the limit of f at a does not equal b, then there exists an 𝜀 > 0 such that

for every δ > 0, there exists some p ∈ A within distance less than δ from a such that|f (p) − b| ≥ 𝜀. Choose some such point ak for each δ = 1/k, k ∈ ℕ. Then {ak} is a
sequence that converges to a, and limk→∞ f (ak)) ̸= b.

Since sequences have at most one limit, the limit of a function, if it exists, is also

unique. Furthermore, the properties of sequences imply the following:

Theorem 1.9.2. Let A ⊂ ℝn, f , g, h : A → ℝ, and a a limit point of A.
(a) If limp→a f (p) = L, and limp→a g(p) = M, then limp→a(f + g)(p) = L + M. A similar

property holds for fg and for f /g (the latter providedM ̸= 0).

(b) Let U be a neighborhood of a. If f (p) ≤ g(p) ≤ h(p) for all p in U \ {a}, and if

limp→a f (p) = limp→a h(p) = L, then limp→a g(p) = L.

Examples 1.9.1. (i) A polynomial of degree k on ℝn is a function f of the form

f = a0 +
k∑
j=1

∑
1≤i1 ,...,ij≤n

ai1...ij u
i1 ⋅ ⋅ ⋅ uij , a0, ai1 ...ij ∈ ℝ.

By Theorem 1.9.2, if f is a polynomial, then limp→a f (p) = f (a) for any a.
(ii) Let f : ℝ2 \ {0} → ℝ be given by f (x, y) = xy/(x2 + y2). Then 0 is a limit point of

the domain of f . If an = (1/n, 0) then an → 0 and f (an) = 0. If bn = (1/n, 1/n),
then bn → 0 but f (bn) = 1/2 for all n. Thus, f has no limit at 0. The graph of f

in ℝ3 intersects each plane ax + by = 0 containing the z-axis in two half-lines at

constant height −ab/(a2 + b2) above the planeℝ2 × {0}.



1.9 Limits and continuity | 43

f (x, y ) = xy
x 2 + y2

2x − y = 0

Fig. 1.2: The graph of the function from Examples 1.9.1 (ii)

Recall that the composition f ∘ g of maps f and g with appropriate domain and range

is defined by (f ∘ g)(a) = f (g(a)).

Corollary 1.9.1. Suppose a is a limit point of A ⊂ ℝn, f , g : A → ℝm. If limp→a f (p) = u
and limp→a g(p) = v, then for any c ∈ ℝ,

limp→a(f + g)(p) = u + v, limp→a c f (p) = c u, limp→a⟨f (p), g(p)⟩ = ⟨u,v⟩.
Furthermore, if h : B ⊂ ℝm → ℝl has limit r at u ∈ B, then

limp→a(h ∘ f ) = r.
Proof. The first statement follows from Theorem 1.9.1 and Corollary 1.8.1. The second

one is immediate from the definition of limit: Let ai → a. Since limp→a f (p) = u,
f (ai) → u. But limp→u h(p) = r, so (h ∘ f )(ai) → r, which implies the claimed limit.

The following fundamental concept is defined here in the context of Euclidean spaces,

since these remain ourmain focus. The reader should be aware, though, that the same

definition can be, and is used in arbitrary metric spaces. Furthermore, all the results

mentioned below that do not rely on the algebraic or order structures of ℝn hold in

these metric spaces.

Definition 1.9.2. Let a ∈ A ⊂ ℝn. A map f : A → ℝm is said to be continuous at a if for
every 𝜀 > 0, there exists some δ > 0 such that

f (Bδ (a) ∩ A) ⊂ B𝜀(f (a)).
f is said to be continuous on A if it continuous at every a ∈ A.
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If a is a limit point ofA, then f is continuous ata if and only if limp→a f (p) = f (a). As an
application, anypolynomial is continuous onall Euclidean spacebyExamples 1.9.1 (i).

If a is not a limit point of A, then f is automatically continuous at a. For example,

every sequence f : ℕ ⊂ ℝ → ℝn is continuous on its domain: no matter what f (k) is,
B1/2(k) ∩ ℕ = {k}, and so its image is contained in B𝜀(f (k)) for any 𝜀.
Proposition 1.9.1. f : A → ℝm is continuous at a ∈ A if and only if f (ak) → f (a) for
every sequence ak → a.

Proof. If a is a limit point of A, the claim follows from Theorem 1.9.1. Otherwise, we

have seen that the map is necessarily continuous at a; on the other hand, if ak → a,
then ak must equal a for k sufficiently large, so certainly f (ak) → f (a).

The above proposition, together with previous results, implies that continuity is well

behaved with respect to common operations on maps.

Theorem 1.9.3. Suppose f , g : A ⊂ ℝn → ℝm, h : B ⊂ ℝm → ℝl, c ∈ ℝ. If f and g are

continuous at a ∈ A, then so are f + g, c f , and ⟨f , g⟩. If h is continuous at f (a), then
h ∘ f is continuous at a.
Proof. This follows, as noted above, from corresponding properties of sequences. Al-

ternatively, one can use Corollary 1.9.1 when a is a limit point of A. If a is not a limit

point, then there is nothing to prove.

Examples 1.9.2. (i) A rational function is a quotient of two polynomials. Such a func-

tion is continuous on its domain.

(ii) Consider the function f : ℝ2 → ℝ given by

f (x, y) = {{{
xy2

x2+y2
, if (x, y) ̸= 0,

0, if (x, y) = 0.
By (i), f is continuous everywhere except perhaps at the origin. But |x| ≤ (x2 +

y2)1/2 and y2 ≤ x2 + y2, so that 0 ≤ f (x, y) ≤ (x2 + y2)1/2. Since the term on the

right goes to 0 as (x, y) → 0, so does f , and f is continuous everywhere.
(iii) Since det : Mn,n ≅ ℝn2 → ℝ is a polynomial, it is continuous everywhere. It

follows that the general linear groupGL(n), which by definition is the collection of

all invertible n × nmatrices, is open; this is because GL(n) = det−1(ℝ \ {0}).
Recall that for f : A ⊂ ℝn → ℝm, the pre-image f−1(U) of a set U ⊂ ℝm is the collection

of all points a in A such that f (a) ∈ U. One often useful characterization of continuity

is the following:

Theorem 1.9.4. A map f : A ⊂ ℝn → ℝm is continuous if and only if the preimage

f−1(U) of any open set U inℝm is open in A.

Proof. Suppose f is continuous, and U is open in ℝm. It must be shown that if a ∈
f−1(U), then there exists an open set V inℝn such that a ∈ V ∩ A ⊂ f−1(U). Since U is
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open, there exists an 𝜀 > 0 such that the open ball of radius 𝜀 about f (a) is contained
in U. Continuity of f means that there exists δ > 0 such that f (Bδ (a) ∩ A) ⊂ B𝜀(f (a)).
In other words, Bδ (a) ∩ A ⊂ f −1(B𝜀(f (a))) ⊂ f −1(U), so that f−1(U) is open in A.

Conversely, suppose open sets have open pre-images in A. Given a ∈ A and 𝜀 > 0,

f−1(B𝜀(f (a))) is then open in A, and thus equals U ∩A for some open setU inℝn. Since

a ∈ U, there exists δ > 0 such that the ball of radius δ around a is contained inside

U. But then Bδ (a) ∩A ⊂ U ∩A = f −1(B𝜀(f (a))), and f (Bδ (a) ∩A) ⊂ B𝜀(f (a)). This shows
that f is continuous at every a ∈ A.

Theorem 1.9.4 provides an easy proof of the fact that continuous maps send compact

sets to compact sets:

Theorem 1.9.5. If f : A ⊂ ℝn → ℝm is continuous, then f (K) is compact for every
compact set K contained in A.

Proof. Let {Uα } be an open cover of f (K). By Theorem 1.9.4, each f−1(Uα ) equals Vα ∩
A for some open set Vα in ℝn. Since K is compact, there exist finitely many indices

α1, . . . , αk such that K ⊂ Vα1
∪ ⋅ ⋅ ⋅ ∪ Vαk

. But then, f (K) ⊂ Uα1
∪ ⋅ ⋅ ⋅ ∪ Uαk

, and f (K) is
compact. Notice that we have used the fact, easily verified, that for any sets U and V,

f (f −1(U) ∪ f−1(V)) ⊂ U ∪ V.

Theorem 1.9.5 has the following immediate application, usually referred to as the ex-

treme value theorem:

Theorem 1.9.6. Let f : K ⊂ ℝn → ℝ be continuous. If K is compact, then there exist a,
b ∈ K such that f (a) ≤ f (p) ≤ f (b) for every p ∈ K. (The numbers f (a), f (b) are called
theminimum and maximum values, respectively, of f on K.)

Proof. Since f (K) is compact by Theorem 1.9.5, it is closed and bounded by Theo-

rem1.7.4. Being bounded, it has a least upper bound α , and being closed, it contains α ,

so that α = f (b) for some b ∈ K. This implies the second inequality in the theorem. The

first one is proved in a similar way. Alternatively, one can apply the above argument

to −f , since the maximum value of −f is the negative of the minimum value of f .

There is a stronger version of continuity that plays an important role in Calculus:

Definition 1.9.3. A map f : A ⊂ ℝn → ℝm is said to be uniformly continuous if for any𝜀 > 0, there exists a δ > 0 such that

f (Bδ (a) ∩ A) ⊂ B𝜀(f (a)) (1.9.1)

for any a ∈ A. Alternatively, for any 𝜀 > 0, there exists δ > 0 such that|f (a) − f (b)| < 𝜀, whenever |a − b| < δ , a, b ∈ A.
For f to be continuous, one needs to find for each 𝜀 > 0 and each a ∈ A some δ > 0

(whichusually dependsonboth 𝜀 anda) such (1.9.1) holds.When f is uniformly contin-

uous, for a given 𝜀 > 0 there exists some δ > 0whichworks for alla ∈ A. In particular,
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a uniformly continuous map is continuous at every point. The converse is not true:

for example, the function f : (0,∞) → (0,∞), where f (x) = 1/x, is continuous, but
not uniformly continuous. Intuitively, given a fixed 𝜀, the corresponding δ becomes

smaller and smaller as the point a approaches 0. Specifically, let 𝜀 = 1.We claim there

is no δ > 0 such that |1/a−1/b| < 1 for all a,b at distance less than δ from each other.

In fact, if δ ≥ 1, take a = 1/4,b = 1/2.a and b are less than δ apart, but 1/a−1/b = 2.

If δ < 1, let a = δ /4, b = δ /2. Then |a − b| < δ , but 1/a − 1/b = 2/δ > 2.

The obstruction in the above example is due to the fact that the domain of f is not

compact:

Theorem 1.9.7. If K ⊂ ℝn is compact, thenany continuousmap f : K → ℝm is uniformly

continuous.

Proof. Given 𝜀 > 0, there exists, for each a ∈ K, some δ (a) > 0 such that

f (Bδ (a)(a)) ⊂ B𝜀/2(f (a)),
by continuity of f . The collection of all Ua := Bδ (a)/2(a), as a ranges over K, is

an open cover of K, and therefore admits a finite subcover Ua1 , . . . ,Uak . Set δ :=
min{δ (a1)/2, . . . , δ (ak)/2} > 0.We claim that if a and b are points in K at distance less

than δ from each other, then |f (a) − f (b)| < 𝜀. To see this, observe that by assumption

a belongs to some Uai , and therefore|f (a) − f (ai)| < 𝜀
2
. (1.9.2)

On the other hand,

|b − ai| ≤ |b − a| + |a − ai| < δ +
δ (ai)
2

≤ δ (ai),
so that |f (b) − f (ai)| < 𝜀

2
. (1.9.3)

(1.9.2) and (1.9.3) together with the triangle inequality then yield the claim.

Examples and Remarks 1.9.1. (i) Let N be a norm on ℝn, not necessarily the stan-

dard one. We claim N is uniformly continuous. To see this, observe that if M =

max{N(ei) | 1 ≤ i ≤ n}, then
N(a) = N(∑

i

aiei) ≤ ∑
i

|ai|N(ei ) ≤ M(∑
i

|ai|) ≤ nMmax
i

{|ai|}
≤ nM|a|.

By the triangle inequality,|N(a) − N(b)| ≤ N(a − b) ≤ nM|a − b|,
which establishes the claim. One consequence is the following equivalence of

norms property for Euclidean space: given any norm N onℝn, there exist α , β > 0
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such that

α |a| ≤ N(a) ≤ β |a|, a ∈ ℝn. (1.9.4)

The second inequality has already been proved. For the first one, we may assume

that a ̸= 0. If α denotes the minimum valueof N on the compact unit sphere, then

N(a/|a|) ≥ α , so N(a) is indeed no less than α |a|.
(1.9.4) in turn has the following important consequence: Euclidean space is com-

pletewith respect to anynorm: thefirst inequality in (1.9.4) implies that a sequence

which is Cauchy in the N-norm is Cauchy in the Euclidean one, hence converges

in the Euclidean one. The second inequality then guarantees convergence in the

N-norm.

(ii) A linear transformation from a vector space to itself is also called an operator.

Consider the space of operators on ℝn, which we also identify with Mn,n in the

usual way. Let us denote the norm operator by N : Mn,n → ℝ for the moment, to

distinguish it from the Euclidean norm onMn,n = ℝn2 . It was shown in (i) that the

spaceof operators onℝn is complete in theoperatornorm.Wenow revert to theold

notation; i.e., |L|will denote the operator norm of L. By the proof of Theorem 1.8.5,

any absolutely convergent series converges.Wemay use this property to introduce

the exponential of a linear L : ℝn → ℝn. This concept will be useful in the next

chapter, as it provides further insight into a large class of vector fields. The reader

is assumed to be familiar with the fact that for a real number α , eα = ∑∞
k=0 α

k/k.
The discussion willmostly be framed in the context of n×nmatrices in view of the

isomorphism LA ↔ A between the two spaces togetherwith the fact that LA ∘ LB =
LAB for A,B ∈ Mn,n. First of all, notice that |AB| ≤ |A||B|, where |A| is defined to be|LA|: indeed, if u ∈ ℝn has unit norm, then by (1.4.1)|(AB)u| = |A(Bu)| ≤ |A||Bu| ≤ |A||B|.
Induction now implies that |Ak | ≤ |A|k . In particular, the exponential series

exp(A) = eA =
∞∑
k=0

Ak

k! , A ∈ Mn,n,
converges absolutely (to the real number e|A|), and therefore also converges. We

call eA the exponential of A. When n = 1, this is the usual exponential.

Absolute convergence also implies that|eA| ≤ e|A|.
Weemphasize again that if Lk denotes the composition of theoperator Lwith itself

k times, then, as noted earlier, the series

exp(L) = eL =
∞∑
k=0

Lk

k!
converges absolutely; if LhasmatrixA in the standardbasis, then eL hasmatrix eA.
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(iii) As a concrete example, let b ∈ ℝ, and
B = [0 −b

b 0
] .

We assume the reader is familiar with the series

cos x =
∞∑
k=0

(−1)k x2k

(2k)! , sin x =
∞∑
k=0

(−1)k x2k+1

(2k + 1)! ,
which converge for any real number x. A direct computation yields B2 = −b2I2,
and an easy induction implies that B2k = (−1)kb2kI2. Thus,

B2k = [(−1)kb2k 0

0 (−1k)b2k] ,
and multiplying the above expression by B yields

B2k+1 = (−1)kb2kB = [ 0 −(−1)kb2k+1
(−1)kb2k+1 ] .

This means that
k∑
i=0

Bi

i! = [sk −tk
tk sk

] ,
where sk and tk are the k-th partial sums for the above sin b and cos b series re-

spectively. In other words,

eB = [cos b − sin b
sin b cos b

] .
1.10 Exercises

1.1. Let ai, i = 1, . . . , n be real numbers. Determine which, if any, of the following sets

are subspaces of ℝn:

(i) {(x1, . . . , xn) | ∑n
i=1 aixi = 0};

(ii) {(x1, . . . , xn) | ∑n
i=1 aix

2
i = 0};

(iii) {(x1, . . . , xn) | ∑n
i=1 aixi = 1};

(iv) {(x1, . . . , xn) | (∑n
i=1 a

2
i )x1 + anx2 = 0}.

1.2. (a) Show that the collection Pn of all polynomials (with real coefficients) of de-

gree no larger than n is a subspace of the vector space of all real-valued functions.

(b) Prove that Pn has {1, x, x2, . . . , xn} as basis, and therefore has dimension n + 1.

(c) Show that {1,1 + x, 1 + x + x2, . . . , 1 + x + ⋅ ⋅ ⋅ xn} is also a basis of Pn. Find the
coordinate vector of a + bx + cx2 with respect to this basis.
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1.3. Prove that the vector space of all polynomials is infinite-dimensional, and exhibit

a basis for it.

1.4. Prove that any subset of a vector space that contains the zero vector is linearly

dependent.

1.5. Let V denote an n-dimensional vector space, and E ⊂ V a subset consisting of n

elements. Prove that E is linearly independent if and only if E spans V, and is in this

case a basis of V.

1.6. Determine whether the following sets form a basis of ℝ3:

(i) {(1,0, 1), (2,1,0), (4, 1, 2)};
(ii) {(1,0,1), (2,1,0)};
(iii) {(1,0,1), (2,1,0), (4, 1, 2), (1, 1, 1)};
(iv) {(1, 0,1), (2,1,0), (5, 1, 2)}.
1.7. Let L : ℝ3 → ℝ3 be given by

L
[[[
x

y

z

]]] =
[[[
x + 2y + 4z

y + z

x + 2z

]]] .
Find bases for the kernel and for the image of L.

1.8. Let Pn denote the space of polynomials of degree ≤ n with its standard basis{1, x, . . . , xn}. Find the matrix of the derivative operator D : Pn → Pn, Dp(x) := p(x),
with respect to this basis.

1.9. A set A ⊂ ℝn is said to be convex if it contains the line segment joining any two

points of A; i.e., a + t(b − a) ∈ A for all a,b ∈ A and t ∈ [0,1]. Show that if A is convex

and L : ℝn → ℝm is linear, then L(A) is also convex.

1.10. Let V be a vector space with basis {v1, . . . , vn}. Show that for any n elements

w1, . . . ,wn in somevector spaceW, there exists oneandonly one linear transformation

L : V → W such thatLvi = wi for i = 1, . . . , n. Prove that if the set {w1, . . . ,wn} is linearly
independent, then L is one-to-one, and if it is a basis, then L is an isomorphism.

1.11. (a) Show that if L : V → W is a linear transformation, then the kernel of L is a

subspace of V and the image of L a subspace ofW .

(b) Prove that L is one-to-one if and only if its kernel consists of the zero vector only.

1.12. SupposeL : V → W is a linear transformationbetween vector spaces of the same

dimension. Use Theorem 1.2.2 to show that the following statements are equivalent:

(i) L is one-to-one;

(ii) L is onto;

(iii) L is an isomorphism.
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1.13. A linear operator L on an inner product space V is said to be a linear isometry or

an orthogonal transformation if it preserves the inner product; i.e., if ⟨Lv, Lw⟩ = ⟨v,w⟩
for all v,w ∈ V.

(a) Show that L is a linear isometry if and only if L preserves norms; i.e., iff |Lv| = |v|
for all v ∈ V. Hint: ⟨v,w⟩ = 1

2
(|v + w|2 − |v|2 − |w|2).

(b) Prove that a linear isometry is an isomorphism.

(c) Show that a linear operator on an n-dimensional inner product space V is a linear

isometry if and only if its matrix Awith respect to any orthonormal basis satisfies

AAT = In.

1.14. Recall that the trace of an n × n matrix A is the sum trA = ∑i aii of its diagonal

elements.

(a) Show that tr(AB) = tr(BA). Hint:Write the (i, i)-th element of AB as∑k aikbki. Next

write the (k, k)-th element of BA as∑i bkiaik .

(b) Use Example 1.2.5 to show that similar matrices have the same trace. One may

therefore define the trace of a linear transformation L : V → V to be the trace of

its matrix with respect to any basis of V.

1.15. LetV be a (finite-dimensional) inner product space, and A a nonempty subset of

V. Prove that (A⊥)⊥ = span A.

1.16. The collectionL(V ,W) of all linear transformations L : V → W is a vector space

with the operations (L1 + L2)v = L1v + L2v, (aL)v = aLv for Li ∈ L(V ,W), a ∈ ℝ,
v ∈ V. Show that if V is n-dimensional with basis B andW m-dimensional with basis

C, then the map

L(V ,W) → Mm,n,
L → [L][B],[C]

which assigns to each linear transformation its matrix with respect to the given

bases is an isomorphism. This shows in particular that L(V ,W) has dimension

(dim V)(dimW).

1.17. Find the determinant of the matrix

[[[[[[
a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...

0 0 . . . ann

]]]]]]
whose elements below the diagonal are all zero.

1.18. Prove that adding a multiple of a column to another column (or a multiple of

a row to another row) of a matrix does not change its determinant. This allows us to

replace the matrix by one that has only one nonzero entry in some row or column and
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expand along that row or column. Use this to compute

det
[[[
1 2 3

1 3 4

2 1 2

]]] .
1.19. Prove (1.3.6). Show that the set U ⊂ ℝn2 of invertible matrices is open, and that

the map U → U which sends a matrix to its inverse is continuous.

1.20. Show that equality holds in the Cauchy-Schwarz inequality from Theorem 1.4.1

if and only if the vectors are linearly dependent.

1.21. Let V1, V2 be subspaces of V. Prove that dim(V1 + V2) = dim(V1) + dim(V2) −
dim(V1 ∩V2).Hint: Start out with a basis of V1 ∩V2, and extend it first to a basis of V1,

then to a basis of V2.

1.22. (a) Show that the interiorA0 of a subsetA of ametric space is equal to the union

of all open sets that are contained in A. In other words, A0 is the largest open set

contained in A.

(b) Prove that the closure Ā of A is equal to the intersection of all closed sets that

contain A; i.e., Ā is the smallest closed set that contains A.

1.23. Let A, B ⊂ ℝn.

(a) Show that (A ∩ B)0 = A0 ∩ B0, but that in general, (A ∪ B)0 ̸= A0 ∪ B0.

(b) Prove that A ∪ B = A ∪ B, but in general A ∩ B ̸= A ∩ B.

1.24. Determine the interior, boundary, and closure of the following subsets of ℝ2:

(a) {(x, y) | y ≥ x2};
(b) ℝ × {0};
(c) ℝ × ℚ;
(d) ℚ × ℚ.
(You may use the fact that any open interval in ℝ contains a rational number).

1.25. (a) Show that if a is a boundary point of a setA, then there exists a sequence in
A that converges to a.

(b) Prove that a set C is closed if and only if for any convergent sequence contained

in C, the limit of the sequence belongs to C.

1.26. Prove that a set A ⊂ ℝn is open if and only if A ∩ 𝜕A = 0, and closed if and only
if 𝜕A ⊂ A.

1.27. Show that a subset C of A is closed in A if and only if for any sequence in C that

converges in A, the limit of the sequence belongs to C.

1.28. For a subsetA of a metric space X, denote byAc the complementX \A ofA. Prove

that 𝜕A = A ∩ Ac.
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1.29. Let U be open in ℝn, f : U → ℝn a continuous map, and A a set whose closure

lies in U.

(a) Show that f (A) ⊂ f (A).

(b) Show that if f is a homeomorphism (i.e., f is one-to-one and its inverse is also

continuous), then f (𝜕A) = 𝜕f (A).
1.30. Let A be a nonempty subset of ℝn. Prove or disprove:

(i) Any boundary point of A is a limit point of A.

(ii) Any limit point of A is a boundary point of A.

(iii) Any boundary point of A that does not belong to A is a limit point of A.

(iv) Any limit point of A that does not belong to A is a boundary point of A.

(v) If A is closed, then it contains all its limit points.

(vi) If A contains all its limit points, then it is closed.

1.31. Give one or more examples of a set A ⊂ ℝn that

(i) is neither open nor closed;

(ii) is both open and closed;

(iii) has empty boundary;

(iv) has all ofℝn as boundary.

1.32. (a) Let f : [a, b] → ℝ be a continuous function. Show that the graph {(x, f (x)) |
a ≤ x ≤ b} is a closed subset ofℝ2. Give an example of a noncontinuous function

f : [a,b] → ℝwhose graph is not closed.

(b) Is the set A = {(x, sin(1/x) | 0 < x < 1} ⊂ ℝ2 closed? If not, find its closure. (A is

called the topologist’s sine curve).

1.33. Suppose {ak} is a convergent sequence in ℝn. Prove that any subsequence con-

verges to the same limit.

1.34. Determine whether the sequence

√2, √2 + √2, √2 + √2 + √2, . . .
converges. If it does converge, determine its limit.

1.35. Suppose {ak} is a sequence inℝn that satisfies

|ak+1 − ak | ≤ 1

2
|ak − ak−1|, k > 1.

Prove that the sequence converges.

1.36. Suppose Ck ⊂ ℝn, k = 1,2, . . . , is a sequence of nonempty compact sets with

Ck ⊃ Ck+1 for all k.

(a) Show that ∩∞k=1Ck ̸= 0.
(b) Prove, by means of an example, that the statement is in general false if the Ck are

not compact.
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1.37. The diameter of a bounded set A ⊂ ℝn is

diamA = sup{|a − b| | a, b ∈ A}.
Prove that if A is compact, then there exist a,b ∈ A such that |a − b| = diam A.

1.38. Given nonempty subsets A, B of ℝn, define the distance between A and B to be

the number d(A, B) = inf{|a − b| | a ∈ A, b ∈ B}.
(a) Give an example of two disjoint closed sets A and B with d(A, B) = 0.

(b) Prove that if A is compact and B is closed, then there exist a ∈ A and b ∈ B such

that d(A,B) = |a − b|.
1.39. Let U ⊂ ℝn, f : U → ℝ be uniformly continuous. Show that if U is bounded,

then so is f ; i.e., |f (a)| ≤ M for someM > 0.

1.40. Suppose U ⊂ ℝn, and f : U → ℝm is uniformly continuous. Show that if {ak}
is a Cauchy sequence in U, then {f (ak)} is also Cauchy. Show bymeans of an example

that the conclusion is not necessarily true if f is merely continuous.

1.41. A subset A ⊂ ℝn is said to be complete if any Cauchy sequence in A converges to

some point in A. Prove that if A is closed, then it is complete. Give examples that show

the above conclusion is not necessarily true if A is not closed.

1.42. Let U denote an open set in ℝ2, and f : U → ℝ a continuous function. Prove

that f cannot be one-to-one.

1.43. Determine whether or not the followingmaps are continuous:

(i) f : ℝ2 → ℝ, where
f (x, y) = {{{

x2y1/3

x2+y2
if (x, y) ̸= (0,0);

0 if (x, y) = (0,0).
(ii) f : ℝ2 → ℝ, where f (x, y) = max{x, y}.
(iii) f : ℝn → ℝ, where f (a) = |a|.
(iv) f : ℝn → ℝn, where

f (a) =
{{{a/√|a| if a ̸= 0;
0 if a = 0.

1.44. Show that any linear transformation L : ℝn → ℝm is absolutely continuous

on ℝn.

1.45. A separation of a metric space X is a pair U, V of nonempty disjoint open sets

whose union equals X. X is said to be connected if there is no separation of X.

(a) Prove that X is connected if and only if the only subsets of X that are both open

and closed are 0 and X.
(b) Show that a pair U, V of nonempty subsets of X whose union equals X form a

separation of X if and only if U ∩ V = U ∩ V = 0.
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1.46. (a) With the terminology fromExercise 1.45, supposeU andV form a separation

of X. Show that any connected subset of X is entirely contained in either U or V.

(b) Prove that if a subset of X is connected, then so is its closure.

1.47. (a) Let A ⊂ ℝn, f : A → ℝm a continuous map. Prove that f (A) is connected
if A is.

(b) A ⊂ ℝn is said to be path connected if given any p,q ∈ A, there exists a continuous

map c : [a,b] → A such that c(a) = p and c(b) = q. Show that if A is path

connected, then it is connected.

(c) Prove that the topologist’s sine curve E from Exercise 1.32 is connected but not

path connected. Hint: for connectivity, use part (a) and Exercise 1.46 (b). For path

connectivity, consider a point p in E that lies on the y-axis. Show that the image

of any continuous c : [a, b] → E with c(a) = p is contained inside the y-axis.

1.48. LetA ⊂ ℝn be connected, f : A → ℝm a continuousmap. Prove the intermediate

value theorem: If a,b ∈ A and c is a number between f (a) and f (b), then there exists

some x ∈ A such that f (x) = c.

1.49. Suppose that ∑∞
k=0 Ak = A, ∑∞

k=0 Bk = B are absolutely convergent series of n × n

matrices (or operators onℝn). Define

Ck =
k∑
i=0

AiBk−i.
The goal of this exercise is to establish that∑∞

k=0 Ck = AB.

(a) Let ak, bk, and ck denote the k-th partial sums of the series ∑Ai, ∑Bi, and ∑ Ci
respectively. Show that c2k − akbk = sk + tk, where

sk = ∑
0 ≤ i ≤ k

k + 1 ≤ j ≤ 2k

i + j ≤ 2k

AiBj, tk = ∑
0 ≤ i ≤ k

k + 1 ≤ j ≤ 2k

i + j ≤ 2k

AjBi.

(b) Prove that |sk | ≤ (∞∑
i=0

|Ai|) ( 2k∑
j=k+1

|Bj|) ,
and deduce that |sk| → 0.

(c) Prove a similar result for |tk|, and conclude that ∑∞
k=0 Ck = AB.

1.50. (a) Use Exercise 1.49 to prove if two n × nmatrices A and B commute (i.e., AB =

BA), then eA+B = eAeB = eBeA.

(b) Show that forA, B ∈ Mn, if B is invertible, then BeAB−1 = eBAB
−1

.
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1.51. (a) Prove that for any n × nmatrix A, eA is invertible, and (eA)−1 = e−A.
(b) Show that

exp [a −b
b a

] = ea [cos b − sin b
sin b cos b

] .
1.52. An n × nmatrix A is said to be skew-symmetric if A + AT = 0, and orthogonal if

AAT = In, see also Exercise 1.13. Show that the exponential of a skew-symmetric matrix

is orthogonal.

1.53. Let A ⊂ ℝn, f : A → ℝ a bounded function. Given B ⊂ A, define

mB(f ) = inf{f (b) | b ∈ B}, MB(f ) = sup{f (b) | b ∈ B}.
Denote by D the set of points in Awhere f is discontinuous.

(a) Show that for any 𝜀 > 0, the set

D𝜀 = {a ∈ A | MU(f ) −mU (f ) ≥ 𝜀 for any neighborhood U of A}
is contained inside D.

(b) Prove that D = ∪∞k=1D1/k .





2 Differentiation
In calculus of one variable, the derivative of a function f : A ⊂ ℝ → ℝ at an interior

point a of A is defined to be the number

f (a) = lim
h→0

f (a + h) − f (a)
h

,
provided the limit exists. It is geometrically interpretedas the slopeof the line that best

approximates the graph of f at (a, f (a)). This line, when parallel translated so that it

passes through the origin is the graph of the linear transformation L : ℝ → ℝ given

by Lh = f (a)h. The above equation can be rewritten in terms of L:

lim
h→0

f (a + h) − f (a) − Lh

h
= 0.

If we now replace numerator and denominator by their absolute values or norms,

then this expression makes sense even when f is a map between Euclidean spaces

of dimension higher than one. This is the approach we will adopt.

2.1 The derivative

Definition 2.1.1. Let f : A ⊂ ℝn → ℝm be a map. f is said to be differentiable at an

interior point a of A if there exists a linear transformation L : ℝn → ℝm such that

lim
h→0

|f (a + h) − f (a) − Lh||h| = 0. (2.1.1)

It is worth remarking that if such an L exists, it is unique: Indeed, ifM is another linear

transformation with the same property, then for any unit vector u ∈ ℝn, and 0 ̸= t ∈ ℝ,
|(L −M)u| = |(L −M)(tu)||tu|

=
|(L(tu) − f (a + tu) + f (a)) + (f (a + tu) − f (a) −M(tu|))||tu|≤ |f (a + tu) − f (a) − Lt(u)||tu| +

|f (a + tu) − f (a) −M(tu|)|tu| .
Letting t → 0, we see that |(L−M)u| is less than any positive number, so that Lu = Mu.
Since this is true for arbitrary unit u, L = M (recall that a linear transformation is

entirely determined by the image of basis vectors).

Definition 2.1.2. If f is differentiable at a, the derivativeDf (a) of f at a is defined to be
the linear transformation L from (2.1.1).
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Examples 2.1.1. (i) If L : ℝn → ℝm is a linear transformation, then L is differentiable

at any a ∈ ℝn, and DL(a) = L. This is clear, since when substituting in (2.1.1), the

numerator L(a + h) − L(a) − L(h) is identically zero.
(ii) A curve inℝn is a continuousmap c : I → ℝn, where I is an interval in the real line.

Let ci = ui ∘ c denote the i-th component function of c. It is a real-valued function
of one variable. Now, c is differentiable at an interior point t of I if and only if there
exists a linear transformation Dc(t) : ℝ → ℝn such that

lim
h→0

|c(t + h) − c(t) − Dc(t)h|
h

= 0.
This is equivalent to

lim
h→0

ci(t + h) − ci(t) − (ui ∘ Dc(t))h
h

= 0, i = 1, . . . , n.
But ci is an ordinary function, so that c is differentiable if and only if each compo-

nent function is differentiable in the usual sense, and in this case, the matrix of

Dc(t) is commonly referred to as the velocity vector

c(t) =
[[[[
c1(t)
...

cn(t)

]]]]
at t of the curve. Its norm is called the speed of the curve.

(iii) Let f : ℝn → ℝ, f (u) = |u|2, denote the square of the distance from the origin

function. For any a ∈ ℝn, the map La : ℝn → ℝ, where Lah = 2⟨a,h⟩, is linear. We

claim that Df (a) = La. In fact,

1|h| (f (a + h) − f (a) − Lah) =
1|h| (|a + h|2 − |a|2 − 2⟨a,h⟩) = |h|

clearly goes to zero as h → 0. This establishes the claim.

In order to seewhat thematrix of the linear transformationDf (a) looks like in general,
we need some terminology:

Definition 2.1.3. Let f : A ⊂ ℝn → ℝ be a real-valued function. The i-th partial

derivative Di f (a) of f at an interior point a of A is defined to be the limit

Di f (a) = lim
t→0

f (a + tei) − f (a)
t

, i = 1, . . . , n,
if it exists.

Notice that Di f (a) is just the derivative at 0 of the real-valued function of one variable
f ∘ ci, where t → ci(t) = a + tei is a parametrization of the line though a parallel to

the i-th axis. The graph of f ∘ ci is the intersection inℝn+1 of the graph of f with the the

plane through (a, 0) that is parallel to the i-th and the (n + 1)-th coordinate axes. We

will sometimes use the classical notation 𝜕f/𝜕xi for Di f .
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(a, 0)

(a, f (a))

c1

f c1◦

Thematrix ofDf (a) with respect to the standard bases is called the Jacobianmatrix of
f at a, and will be denoted [Df (a)].

Theorem 2.1.1. Suppose f : A ⊂ ℝn → ℝm is differentiable ata. If f i = ui∘f , i = 1, . . . ,m,
denote the component functions of f , then the partial derivatives Djf

i(a) exist, and the
Jacobianmatrix of f at a is

[Df (a)] =
[[[[[[
D1 f

1(a) D2 f
1(a) . . . Dn f

1(a)
D1 f

2(a) D2 f
2(a) . . . Dn f

2(a)
...

...
. . .

...

D1 f
m(a) D2 f

m(a) . . . Dn f
m(a)

]]]]]]
.

Thus, the i-th row of [Df (a)] is the Jacobianmatrix of f i at a.

Proof. For j = 1, . . . , n, define a curve rj in a neighborhood of 0 by

rj(t) = f (a + tej) − f (a) − Df (a)(tej).
Then |rj(t)|/t → 0 as t → 0, and by linearity of Df (a),

f (a + tej) − f (a)
t

= Df (a)(ej) +
rj(t)
t

.
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Taking the i-th component on both sides and letting t → 0, we obtain

Dj f
i(a) = ui ∘ Df (a)(ej).

The right side of this identity is the (i, j)-th entry of [Df (a)] by Definition 1.2.2 and

Theorem 1.2.1. This establishes the claim.

It is worth noting that thematrix of partial derivatives may exist without f being differ-
entiable: Consider the function f (x, y) = xy/(x2 + y2) from Example 1.9.1, and define it

to equal zero at the origin. Since f (x, 0) ≡ 0, D1f (0,0) = 0, and similarly D2f (0,0) = 0.

f , however, is not differentiable at 0. This follows from the fact that it has no limit at

that point (and is in particular discontinuous there), together with:

Theorem 2.1.2. If f : A ⊂ ℝn → ℝm is differentiable at an interior point a of A, then it

continuous at that point.

Proof. Define a map r from a neighborhood of 0 ∈ ℝn toℝm by

r(h) = f (a + h) − f (a) − Df (a)h.
Then |r(h)|/|h| → 0 as h → 0, and|f (a + h) − f (a)| = |Df (a)h + r(h)| ≤ |Df (a)h| + |r(h)| ≤ |Df (a)||h| + |r(h)|.
Since the last term on the right approaches 0 as h → 0, f is continuous at a.

It turns out that if the partial derivatives exist and are continuous, then f is differen-
tiable. Before arguing this, we introduce some terminology:

Definition 2.1.4. (1) f : A ⊂ ℝn → ℝm is said to be differentiable on A if there exists

an open set U containing A and a map g : U → ℝm that is differentiable at every

point of U and whose restriction g|A to A equals f .
(2) Suppose f is differentiable on an open set U. If for every u ∈ U and every 𝜀 > 0,

there exists δ > 0 such that |Df (p) − Df (u)| < 𝜀 whenever p ∈ U and |p − u| < δ ,

then f is said to be continuously differentiableon U, and we write f ∈ C1(U).

For example, according to the first part of the above definition, the absolute value

function f : ℝ → ℝ, f (t) = |t|, is differentiable on [0,∞). The following fact sheds

some light on the meaning of the second part:

Lemma 2.1.1. Suppose f is differentiable on an open set U. Then f is continuously dif-
ferentiable on U if and only if all partial derivatives Djf

i are continuous on U.

Proof. The statement easily follows from the string of inequalities:|Dj f
i(p) − Dj f

i(u)| ≤ |Df (p) − Df (u)|
≤ ∑

i

(∑
j

(Dj f
i(p) − Dj f

i(u))2) 1
2 .
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The first inequality holds because|Dj f
i(p) − Dj f

i(u)| = |⟨(Df (p) − Df (u))ej , ei⟩| ≤ |(Df (p) − Df (u))ej|≤ |Df (p) − Df (u)|.
For the second inequality, recall that if L is any linear transformation, then its norm|L| satisfies |L| ≤ ∑i |Lei |, cf. the paragraph following Definition 1.4.1. Thus,|Df (p) − Df (u)| ≤ ∑

i

|(Df (p) − Df (u))ei |
= ∑

i

(∑
j

⟨(Df (p) − Df (u))ei, ej⟩2) 1
2

= ∑
i

(∑
j

(Dj f
i(p) − Dj f

i(u))2) 1
2 .

Next, we drop the assumption of differentiability in the lemma:

Theorem 2.1.3. Let f map an open set U ⊂ ℝn to ℝm. Then f is continuously differen-
tiable on U if and only if the partial derivatives Dj f

i exist and are continuous on U.

Proof. In light of Lemma 2.1.1, it only remains to show that if the partial derivatives

exist and are continuous on U, then f is differentiable on U. We begin by considering

the case when f is a real-valued function f ; i.e., whenm = 1. So let a ∈ U, r > 0 small

enough that Br(a) ⊂ U. For h ∈ ℝn with |h| < r, set hi = ui(h), so that h = ∑ hiei. Define
u0 = 0, and uj = h1e1 + ⋅ ⋅ ⋅ + hjej for j = 1, . . . , n. Then

f (a + h) − f (a) =
n∑
i=1

(f (a + ui) − f (a + ui−1)) = n∑
i=1

(gi(hi) − gi(0)),
where gi(t) = f (a + ui−1 + tei). Notice that the line segment connecting a + ui−1 with
a + ui lies inside U, since its endpoints lie in Br(a) and the latter ball is convex. We

may therefore apply the ordinary mean-value theorem to gi, and conclude that there

exists ti ∈ (0, hi) such that
gi(hi) − gi(0) = hig


i (ti) = hiDi f (a + ui−1 + ti ei).

Let L : ℝn → ℝ denote the linear transformation whose matrix in the standard basis

has the partial derivatives of f at a as entries. Then|f (a + h) − f (a) − Lh||h| ≤ n∑
i=1

|Di f (a + ui−1 + ti ei) − Di f (a)||hi ||h|≤ ∑
i

|Di f (a + ui−1 + ti ei) − Di f (a)|.
Since the right sideof the inequality approaches0 ash → 0by continuity of thepartial
derivatives, this proves the claim whenm = 1. For general m, let L denote the linear
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transformation whose matrix in the standard basis has Djf
i(a) as (i, j)-th entry. Then

|f (a + h) − f (a) − Lh||h| =
(∑n

i=1(f
i(a + h) − f i(a) − Df i(a)h)2) 1

2|h|
approaches 0 as h → 0 by the one-dimensional case.

Remark 2.1.1. Continuity of the partial derivatives of a function is not a necessary

condition for the function to bedifferentiable. In the next section, it will be shown that

sums and compositions of differentiable functions are again differentiable. Assuming

this for now, consider first the function f : ℝ → ℝ given by

f (t) =
{{{t2 sin 1

t
if t ̸= 0,

0 if t = 0.
f is differentiable everywhere: f (0) = limh→0 h sin(1/h) = 0, since 0 ≤ |h sin(1/h)| ≤|h|, and f (t) = 2t sin(1/t) − cos(1/t) if t ̸= 0. However the limit of f  does not exist at
0. Consider now g : ℝ2 → ℝ, where g = f ∘ u1 + f ∘ u2. As a sum of compositions

of differentiable functions, g is differentiable everywhere. Nevertheless, D1g = f  ∘ u1
and D2g = f  ∘ u2 are not continuous at the origin.
2.2 Basic properties of the derivative

Many of the derivation techniques for real-valued functions of one variable carry over

to maps defined on Euclidean spaces. We begin with the following:

Theorem 2.2.1. Let U be open inℝn, c ∈ ℝ.
– If f , g : U → ℝm are differentiable at a ∈ U, then so are f + g, cf , and

D(f + g)(a) = D(f (a)) + D(g(a)), D(cf )(a) = cD(f )(a).
– If f , g : U → ℝ are differentiable at a ∈ U, then so are f ⋅ g, f/g (the latter provided

g(a) ̸= 0), and

D(f ⋅ g)(a) = f (a)Dg(a) + g(a)Df (a),
D(f/g)(a) = g(a)Df (a) − f (a)Dg(a)

g2(a) .
Proof. Notice that if the maps are known to be continuously differentiable, then the

statements follow immediately from the analogous ones for functions of one variable,

since by Theorem 2.1.3, it suffices to look at partial derivatives, which, as noted before,

are ordinary derivatives of functions of one variable. We will prove the first statement

in each item, and leave the others to the reader.
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For f + g, it must be shown that

lim
h→0

|(f + g)(a + h) − (f + g)(a) − (D(f (a)) + D(g(a)))h||h| = 0.
But this follows from the fact that the expression inside the limit is nonnegative and

bounded above by|f (a + h) − f (a) − Df (a)h||h| +
|g(a + h) − g(a) − Dg(a)h||h| ,

which goes to 0 as h → 0.
For f ⋅ g, we must show that

lim
h→0

|fg(a + h) − fg(a) − (f (a)Dg(a) + g(a)Df (a))h||h| = 0. (2.2.1)

Let

rf (h) = f (a + h) − f (a) − Df (a)h, rg(h) = g(a + h) − g(a) − Dg(a)h.
By assumption, |rf (h)|/|h|, |rg (h)|/|h| → 0 as h → 0. The expression inside the limit in

(2.2.1) is nonnegative and can be rewritten

1|h| |f (a + h)rg (h) + (f (a + h) − f (a))Dg(a)h + g(a)rf (h)|,
which is no larger than

|f (a + h)| |rg (h)||h| + |f (a + h) − f (a)||Dg(a)| + |g(a)| |rf (h)||h| .
The first and last term in this sum go to 0 as h → 0 as noted earlier, and the middle

termalso by continuity of f at a (notice that we also need continuity at a to ensure that
the first term goes to 0). This establishes (2.2.1).

Theorem 2.2.2 (The chain rule). Let f : U → ℝm, where U is an open subset of ℝn, be

differentiableat a ∈ U. Let V be a neighborhoodof f (a) inℝm, and supposeg : V → ℝk

is differentiable at f (a). Then g ∘ f is differentiable at a, and
D(g ∘ f )(a) = Dg(f (a)) ∘ Df (a)).

Proof. Set T = Df (a), S = Dg(f (a)). Begin by rewriting

g(f (a + h)) − g(f (a)) − (S ∘ T)h
as

S(f (a + h)− f (a)−Th) + g(f (a) + f (a + h)− f (a))−g(f (a))−S(f (a + h)− f (a)), (2.2.2)
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and let

rf (h) = f (a + h) − f (a) − Th,
rg (h) = g(f (a) + h) − g(f (a)) − Sh,
ρ(h) =

|rg (h)||h| if h ̸= 0, ρ(0) = 0.
By assumption, |rf (h)|/|h|, ρ(h) → 0 as h → 0. Finally, let

k(h) = f (a + h) − f (a) = rf (h) + Th,
which also goes to 0 as h → 0. Now, by (2.2.2),|g(f (a + h)) − g(f (a)) − STh||h| =

|S(rf (h)) + rg (k(h))||h|≤ |S(rf (h))||h| +
|rg (k(h))||h| ,

so it suffices to check that each of the last two terms goes to 0 as h → 0. But|S(rf (h))||h| ≤ |S| |rf (h)||h| → 0 as h → 0,
whereas |rg (k(h))||h| = ρ(k(h)) |k(h)||h| = ρ(k(h))

|rf (h) + Th||h|≤ ρ(k(h))(rf (h)|h| + |T|) → 0 as h → 0.
Recall fromExamples 2.1.1 (i) that the derivative of a linear transformation is the trans-

formation itself. We now generalize this result.

Definition 2.2.1. Let V ,Vi be vector spaces, 1 ≤ i ≤ k. A mapM : V1 × ⋅ ⋅ ⋅ × Vk → V is

said to bemultilinear if for every i = 1, . . . , k, and any choice of vj ∈ Vj, j ̸= i, the map

Vi → V ,
v → M(v1 , . . . , vi−1 , v, vi+1 , . . . , vk)

is linear.

Thus, the map obtained by fixing all but one arbitrary variable is linear.

Theorem 2.2.3. If M : ℝn1 × ⋅ ⋅ ⋅ × ℝnk → ℝm is multilinear, then M is continuously

differentiable on its domain, and

DM(a1, . . . ,ak)(b1, . . . ,bk) = k∑
i=1

M(a1, . . . ,ai−1,bi,ai+1 , . . . ,ak).
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Proof. For each l = 1, . . . , k, define𝚤l : ℝnl → ℝn1 × ⋅ ⋅ ⋅ × ℝnk ,
v → (a1, . . . ,al−1 , v,al+1 , . . . ,ak).

We may assume without loss of generality that m = 1. If i ≤ nl, then the (n1 + ⋅ ⋅ ⋅ +
nl−1 + i)-thpartial derivative ofM at (a1, . . . ,ak) equals the i-thpartial derivative ofM∘𝚤l
at al. ButM ∘ 𝚤l is linear, so this derivative equals the i-th entry of (the matrix of)M ∘ 𝚤l.
In particular, it is continuous, andM is continuously differentiable by Theorem 2.1.3.

Furthermore,

DM(a1 , . . . ,ak) = (M ∘ 𝚤1, . . . ,M ∘ 𝚤k),
and

DM(a1, . . . ,ak)(b1, . . . ,bk) = k∑
l=1

(M ∘ 𝚤l)bl
=

k∑
l=1

M(a1, . . . ,al−1,bl,al+1 . . . ,ak).
Corollary 2.2.1. The derivative of the inner product map ⟨, ⟩ : ℝn × ℝn → ℝ is given by

D⟨, ⟩(a1,a2)(b1,b2) = ⟨a1,b2⟩ + ⟨b1,a2⟩.
In particular, if ci : I → ℝn, i = 1, 2, are differentiable curves defined on a common

interval I, then the real-valued function ⟨c1, c2⟩ has derivative⟨c1, c2⟩(t) = ⟨c1(t), c2(t)⟩ + ⟨c1(t), c2(t)⟩.
Proof. The first identity is an immediate consequence of Theorem 2.2.3. The second

one follows from the first together with the chain rule: if c is the curve (c1, c2) inℝ2n,

then ⟨c1, c2⟩ = ⟨, ⟩ ∘ c, so that
⟨c1, c2⟩(t) = D⟨, ⟩(c1(t), c2(t))(c1(t), c2(t) = ⟨c1(t), c2(t)⟩ + ⟨c1(t), c2(t)⟩.

If f : U ⊂ ℝn → ℝ is differentiable on an open setU, its partial derivativesDif are again

real-valued functions on U. When the Dif are themselves differentiable, the second

partial derivatives of f are defined by

Dijf = Dj(Dif ), 1 ≤ i, j ≤ n.
This process can of course be iterated. We say f is of class Ck, and write f ∈ Ck(U), if
all partial derivatives of order k of f exist and are continuous on U. If this holds for

any k, we say f is smooth, and write f ∈ C∞(U). Our next theorem, which is usually

interpreted as saying that if f is of class C2, then Dijf = Djif , can be stated somewhat

more generally:
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Theorem 2.2.4. Suppose f is a real-valued function defined on an open set U ⊂ ℝn. If f ,

Di f , Dj f , and Dij f exist and are continuous on U, then Dji f exists on U, and equals Dij f .

Proof. Wemay, without loss of generality, assume that n = 2: for if a = (a1, . . . , an) ∈ U

and i < j, define 𝚤 : ℝ2 → ℝn,
(x, y) → (a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an).

Then Di f (a) = D1(f ∘ 𝚤)(ai, aj), and Dj(f ∘ 𝚤)(a) = D2 f (ai, aj). So let (a, b) ∈ U, and define

a real-valued function φ on a neighborhood of 0 ∈ ℝ2 by

φ(s, t) = [f (a + s, b + t) − f (a + s, b)] − [f (a, b + t) − f (a, b)].
Notice that if g(x) = f (x, b + t) − f (x, b), then φ(s, t) = g(a + s) − g(a). Applying the

mean value theorem to g on [a,a + s], there is an 𝜀1 ∈ (0,1) such that
φ(s, t) = sg(a + 𝜀1s) = s[D1 f (a + 𝜀1s,b + t) − D1 f (a + 𝜀1s, b)].

Next, apply the mean value theorem to y → D1 f (a + 𝜀1s, y) on [b, b + t] to conclude

that

φ(s, t) = stD12 f (a + 𝜀1s, b + 𝜀2t)
for some 0 < 𝜀1 , 𝜀2 < 1. Thus, if t ̸= 0,

f (a + s, b + t) − f (a + s, b)
t

− f (a, b + t) − f (a, b)
t

= sD12 f (a + 𝜀1s, b + 𝜀2t).
Taking the limit as t → 0 and using continuity of D12 f , we obtain

D2 f (a + s, b) − D2 f (a, b) = sD12 f (a + 𝜀1s, b).
Dividing this equation by s and letting s → 0 yields D21 f (a, b) = D12 f (a, b), again by
continuity of D12 f . This establishes the claim.

We end this section with the construction of a “bump” function that will be needed in

later chapters. Given r > 0, denote by Cr the open “cube” (−r, r)n inℝn.

Lemma 2.2.1. For any 0 < r < R, there exists a differentiable function φ : ℝn → ℝwith

the following properties:

(1) φ ≡ 1 on C̄r;

(2) 0 < φ < 1 on CR − C̄r, and
(3) φ ≡ 0 onℝn \ CR.
Proof. Let h : ℝ → ℝ be given by

h(x) =
{{{e−1/x, if x > 0,
0, otherwise.
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h is C∞ by l’Hospital’s rule. Define

f (x) =
h(R + x)h(R − x)

h(R + x)h(R − x) + h(x − r) + h(−x − r)
.

This expression makes sense because h(x − r) + h(−x − r) is nonnegative, and equals 0
only when |x| ≤ r, in which case h(R + x)h(R − x) > 0. Furthermore, f (x) = 1 if |x| ≤ r,

0 < f (x) < 1 if r < |x| < R, and f (x) = 0 if |x| ≥ R. Now let φ(a1, . . . , an) = Πn
i=1f (ai).

The support suppφ of a function φ : U ⊂ ℝn → ℝ is defined to be the closure of the

set {p ∈ U | φ(p) ̸= 0}. The function φ from the Lemma has its support in the closure

of CR, but since R is arbitrary, it is also true that there exists a function satisfying (1)

and (2), but with support in CR itself.

Theorem 2.2.5. Given any open set U inℝn and any compact subset K of U, there exists

a differentiable function φ : ℝn → ℝ such that

(1) 0 ≤ φ ≤ 1;

(2) φ ≡ 1 on K, and

(3) suppφ ⊂ U.

Proof. For each a ∈ K, choose R(a) > 0 such that the cube CR(a) := ∏n
i=1(ai −R, ai + R)

of radius R centered at a is contained inU. Since the collection of all cubes of the form
CR/2(a), with a ∈ K, covers K, there exist a1, . . . ,ak ∈ K and R1, . . . ,Rk > 0 such that

K ⊂ k⋃
i=1

CRi/2(ai).
Lemma 2.2.1 guarantees for any R > 0 the existence of a differentiable function φR onℝn that equals 1 on CR/2, has support in CR, and takes valuesbetween 0 and 1. For each
i between 1 and k, define a function φi by

φi(p) = φRi
(p − ai).

Then φi is identically 1 on CRi/2(ai), has support in CR(ai) ⊂ U, and takes values be-

tween 0 and 1. Thus,

φ := 1

k

k∑
i=1

φi

satisfies the conditions of the theorem.

We will later see that the compactness assumption on K may be dropped.

2.3 Differentiation of integrals

The sole purpose of this section is to establish a result that will be needed in a later

chapter: suppose f : [a, b] × [c, d] → ℝ is a continuous function. Integrating f with re-

spect to the first variable xover [a, b] defines a functionφ of y only,φ(y) = ∫b
a
f (x, y) dx,
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c ≤ y ≤ d. We wish to determine when φ is differentiable, and what its derivative
d
dy

∫b
a
f (x, y) dx is. It turns out that, loosely speaking,

d

dy
( b∫

a

f (x, y) dx) =

b∫
a

𝜕f𝜕y (x, y) dx
whenever the partial derivative 𝜕f/𝜕y = D2f is continuous. The latter condition is

actually sufficient but not necessary. Nevertheless, we will adopt it since it is not too

restrictive for our purposes.

Theorem 2.3.1. If f and D2f are continuous on [a,b] × [c, d], then the function
φ : [c, d] → ℝ,

y → b∫
a

f (x, y) dx
is differentiable on (c, d), and

φ (y0) =

b∫
a

D2f (x, y0) dx, y0 ∈ (c, d).
Proof. Fix y0 ∈ (c, d), and set

g(x, y) = f (x, y) − f (x, y0)
y − y0

.
Then

φ(y) − φ(y0)

y − y0
=

b∫
a

g(x, y) dx,
so that the theorem will follow once we establish that

lim
y→y0

b∫
a

g(x, y) dx = b∫
a

D2f (x, y0) dx. (2.3.1)

To prove this, let 𝜀 > 0. Using the fact that D2f is continuous, for each x0 ∈ [a, b] there
exists a δx0 > 0 such that

|D2f (x0, y) − D2f (x0, y0)| < 1

2

𝜀
b − a , provided |y − y0| < δx0 .

Again by continuity, there exists, for each x0 ∈ [a, b], a neighborhood Ux0
of x0 such

that |D2f (x, y) − D2f (x, y0)| < 𝜀
b − a

, x ∈ Ux0
, |y − y0| < δx0 .
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Next, choose some finite subcover {Ux1
, . . . ,Uxk

} of the cover {Ux | x ∈ [a, b]} of [a, b],
and set δ = min{δx1 , . . . , δxk }. it follows that|D2 f (x, y) − D2 f (x, y0)| < 𝜀

b − a , x ∈ [a, b], |y − y0| < δ . (2.3.2)

By themean value theorem, for any (x, y) ∈ [a, b]× [c, d], there is some s between y and

y0 such that g(x, y) = D2 f (x, s). (2.3.2) then implies

|g(x, y) − D2 f (x, y0)| < 𝜀
b − a

, x ∈ [a, b], |y − y0| < δ ,
and therefore 

b∫
a

g(x, y) dx − b∫
a

D2 f (x, y0) dx < 𝜀
whenever |y − y0| < δ . This proves (2.3.1).

2.4 Curves

In Examples 2.1.1 (ii), we introduced curves as continuous maps from an interval to

Euclidean space. In geometry, however, many concepts require smoothness. We will

therefore restrict ourselves to differentiable curves, or more precisely to the following

somewhat larger class, that we still simply call curves for convenience:

Definition 2.4.1. A map c : [a, b] → ℝn is said to be a curve if it is piecewise smooth;

i.e., if there exists a partition P : t0 = a < t1 < ⋅ ⋅ ⋅ < tk = b of [a, b] such that the

restriction of c to each subinterval (ti−1 , ti) is smooth.

If ci = ui ∘ c, so that c = [c1 ⋅ ⋅ ⋅ cn]T , we define
b∫
a

c := [∫b
a
c1 ⋅ ⋅ ⋅ ∫b

a
cn]T .

Thus, by the fundamental theorem of Calculus,

b∫
a

c =
n∑
i=1

ti∫
ti−1

c =
n∑
i=1

c(ti) − c(ti−1) = c(b) − c(a).
Lemma 2.4.1. If c : [a, b] → ℝn is a curve, then

| b∫
a

c| ≤ b∫
a

|c|.
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Proof. Define αi = ∫b
a
ci, i = 1, . . . , n. Then
| b∫
a

c|2 = ∑
i

(

b∫
a

ci)2 = ∑ αi

b∫
a

ci =

b∫
a

∑ αic
i.

By the Cauchy-Schwarz inequality,

∑ αic
i ≤ (∑ α2

i )
1/2(∑ ci2)1/2 = (| b∫

a

c|)|c|.
Thus,

| b∫
a

c|2 ≤ | b∫
a

c| ⋅ b∫
a

|c|,
and the claim now follows.

Our next goal is to define the length of a piecewise smooth curve c : [a, b] → ℝn.

To this end, associate to each partition (not necessarily the one from Definition 2.4.1)

P : t0 = a < t1 < ⋅ ⋅ ⋅ < tk = b of [a, b] the number

ℓ(P, c) = k∑
i=1

|c(ti) − c(ti−1)|,
which represents the sum of the distances between consecutive points c(t0),
c(t1), . . . , c(tn). This number should be no larger than the length of the curve, and

approaches it as the partition becomes finer, thereby motivating the following:

Definition 2.4.2. The length of a curve c : [a, b] → ℝn is

ℓ(c) = sup{ℓ(P, c) | P is a partition of [a, b]},
provided this number exists, and∞ otherwise.

c(t0)

c(t1)

c(t2)

c(ti−1)
c(ti)

c(tk)

c(tk−1)

Theorem 2.4.1. Any curve c : [a, b] → ℝn has finite length ℓ(c) = ∫b
a
|c|.
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Proof. Assume first that c is smooth. The result will follow once we establish that (1)ℓ(P, c) ≤ ∫b
a
|c| for any partition P of [a, b], and (2) given any 𝜀 > 0, there exists a

partition P such that ∫b
a
|c| ≤ ℓ(P, c) + 𝜀.

For the first assertion, consider a partition P : a = t0 < t1 < ⋅ ⋅ ⋅ < tk = b. Then by

Lemma 2.4.1,

ℓ(P, c) = ∑
i

|c(ti) − c(ti−1)| = ∑ | ti∫
ti−1

c| ≤ ∑ ti∫
ti−1

|c| = b∫
a

|c|.
For the second assertion, observe that c is uniformly continuous by compactness of

[a,b]. Given 𝜀 > 0, choose δ > 0 so that |c(x)−c(y)| < 𝜀/2(b−a) whenever |x− y| < δ ,

and consider any partition P : a = t0 < t1 < ⋅ ⋅ ⋅ < tk = b with ti − ti−1 < δ for all i. Then

|c(t) − c(ti)| < 𝜀
2(b − a)

and |c(t)| < |c(ti)| + 𝜀
2(b − a)

for all t ∈ [ti−1, ti]. It follows that
ti∫

ti−1

|c| < (|c(ti)| + 𝜀
2(b − a)

) (ti − ti−1)

=


ti∫

ti−1

c(ti) − c + c
 + 𝜀

2(b − a)
(ti − ti−1)

≤ 
ti∫

ti−1

c(ti) − c
 +


ti∫

ti−1

c
 + 𝜀

2(b − a) (ti − ti−1)
≤ ( ti∫

ti−1

|c(ti) − c|) + |c(ti) − c(ti−1)| + 𝜀
2(b − a)

(ti − ti−1)

≤ |c(ti) − c(ti−1)| + 𝜀
(b − a)

(ti − ti−1).
Adding these inequalities for each i then yields the second claim.

If c is only piecewise smooth, then the above argument holds over every sub-

interval on which c is smooth, and the result follows from the next lemma.

Lemma 2.4.2. If c : [a, b] → ℝn is a curve, then for any t0 ∈ [a, b], ℓ(c) = ℓ(c|[a,t0]) +ℓ(c|[t0 ,b]).
Proof. If P1 is a partition of the first sub-interval, and P2 one of the second, then P :=
P1 ∪ P2 is a partition of [a,b], so that

ℓ(P1, c|[a,t0]) + ℓ(P2, c|[t0 ,b]) = ℓ(P, c) ≤ ℓ(c).
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Since this is true for any partitions, ℓ(c) ≥ ℓ(c|[a,t0]) + ℓ(c|[t0 ,b]). On the other hand, if P
is a partition of [a,b], then the partition P obtained by adding t0 to P is finer than P,

and is a union of a partition P1 of [a, t0] and a partition P2 of [t0, b]. Henceℓ(P, c) ≤ ℓ(P, c) = ℓ(P1, c|[a,t0]) + ℓ(P2, c|[t0 ,b]) ≤ ℓ(c|[a,t0]) + ℓ(c|[t0 ,b]),
and since P was arbitrary, ℓ(c) ≤ ℓ(c|[a,t0]) + ℓ(c|[t0 ,b]). This establishes the result.
Definition 2.4.3. Let I and ̃I denote compact intervals in ℝ. A curve c̃ : ̃I → ℝn is

called a reparametrization of the curve c : I → ℝn if c̃ = c ∘ f , where f : ̃I → I is a

strictly monotone (i.e., either increasing or decreasing) bijection.

The reader can easily verify that the relation c ∼ c̃ if c̃ is a reparametrization of c is
an equivalence relation: i.e., c ∼ c for any c, c ∼ c̃ implies c̃ ∼ c, and if c1 ∼ c2,
c2 ∼ c3, then c1 ∼ c3. This divides the collectionof all such curves intodisjoint subsets
called equivalence classes, with two curves belonging to the same equivalence class if

and only if one is a reparametrization of the other. Two curves in the same class have

the same image, and in particular the same length. It turns out that any piecewise-

smooth curve admits a smooth reparametrization. In order to show this, we will need

the followingmulti-purpose lemma:

Lemma 2.4.3. Given a < b, there exists a smooth function f : ℝ → ℝ such that:

(1) f (t) = 0 if t ≤ a, 0 < f (t) < 1 if t ∈ (a, b), and f (t) = 1 if t ≥ b;

(2) f is strictly increasing on (a, b).
Proof. The result is actually an easy consequence of Theorem 2.2.5. Alternatively, de-

fine h : ℝ → ℝ by

h(t) =
{{{e

− 1
t−a

+ 1
t−b if t ∈ (a, b),

0 otherwise.

By l’Hospital’s rule, the left and right derivatives of h of any order exist and equal 0 at

a and b. Thus, h is differentiable onℝ and strictly positive on (a, b). Now let f be given

by:

f (t) =
∫t
a
h∫b

a
h
.

Proposition 2.4.1. Any curve c : [a, b] → ℝn admits a smooth reparametrization c̃ :
[a, b] → ℝn.

Proof. By assumption, there exist numbers a = t0 < t1 < ⋅ ⋅ ⋅ < tk = b such that the

restriction of c to each (ti−1, ti), i = 1, . . . , k, is smooth. By Lemma 2.4.3, there exist

functions fi : [a, b] → ℝ such that fi(t) = 0 if t ≤ ti−1, fi(t) = 1 if t ≥ ti, and fi is strictly

increasing on [ti−1, ti]. Define a function f on [a, b] by
f (t) = t0 +

k∑
i=1

(ti − ti−1)fi(t).
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f is a differentiable, strictly increasing function with f (ti) = ti for each i = 1, . . . , k.
The curve c̃ := c ∘ f is then a reparametrization of c which is smooth, since ui ∘ c̃ has
vanishing left and right derivative at any tj for i = 1, . . . , n, j = 1, . . . , k.
Definition 2.4.4. A curve c : [a, b] → ℝn is said to be regular if c(t) ̸= 0 for t ∈ [a, b].
A regular curve is said to be normal or parametrized by arc length if |c(t)| = 1 for all t.

Since a normal curve has unit speed, its length equals the length of the interval on

which it is defined. It follows from the proof of Proposition 2.4.1 that the smooth

reparametrization of a piecewise smooth curve is in general not regular. Regularity,

though, has one nice advantage:

Theorem 2.4.2. Every regular curve admits a reparametrization by arc length.

Proof. Let c : [a, b] → ℝn be a curve, and denote by L its length ℓ(c). Define a functionℓc : [a,b] → [0, L] by letting ℓc(t) equal to the length ℓ(c|[a,t]) of the restriction of c to
[a, t]. Since c is regular, ℓc(t) = |c(t)| > 0, so that ℓc admits a differentiable strictly

increasing inverse ℓ−1c . We claim that c̃ := c ∘ ℓ−1c : [0, L] → ℝn is normal. To see this,

notice that if f : [ã, b̃] → [a,b] is an increasing differentiable function, then
ℓc∘f (t) = t∫̃

a

|(c ∘ f )| = t∫̃
a

|c ∘ f |f  = f (t)∫
a

|c| = ℓc ∘ f (t).
Thus, ℓc̃ = ℓc∘ℓ−1c = ℓc ∘ ℓ−1c is the identity, and | ̃c(t)| = ℓc̃(t) = 1, as claimed.

We end this section witha couple of applications of differentiation that involve theuse

of curves. In order to state them, we need the following:

Definition 2.4.5. A subset E of ℝn is said to be path connected if any two points of E

can be joined by a curve that lies in E. It is said to be convex if it contains the line

segment joining any two of its points.

It is easy to see that a path connected set E is also connected in the sense of Exer-

cise 1.45: otherwise there would exist a separation X = U ∪ V of X, and for any curve

c : [a, b] → E, the connected set c[a, b] would have to lie entirely in U or in V. Thus,

therewould be no curve joining a point in U to one in V, contradicting the assumption

thatE is path connected. The converse is not true, however. The topologist’s sine curve

from Exercise 1.32 is connected but not path connected. For our purposes, however,

only path connectivity matters, so from now on, for the sake of brevity, a connected

set will mean a path connected one.

Lemma 2.4.4. Let c : [0, 1] → ℝn be a curve, and suppose its speed |c|does not exceed
α > 0. Then the distance |c(1) − c(0)| between its endpoints is less than or equal to α.



74 | 2 Differentiation

Proof. This is an easy consequence of Lemma 2.4.1:

|c(1) − c(0)| = | 1∫
0

c| ≤ 1∫
0

|c| ≤ 1∫
0

α = α .
Theorem 2.4.3. Let f : U ⊂ ℝn → ℝm be a differentiablemap.

(1) If U is connected and Df = 0 on U, then f is constant.
(2) If U is convex and |Df | ≤ M on U, then

|f (b) − f (a)| ≤ M|b − a| for all a,b ∈ U.
Proof. We begin with (1): Given a, b ∈ U, we must show that f (a) = f (b). Let c :
[0,1] → U be a curve that joins a to b, and assume for now that c is smooth. The

curve f ∘ c in ℝm has zero velocity everywhere, since by the chain rule, (f ∘ c) =

D(f ∘ c) = ((Df ) ∘ c) ∘ Dc. But a curve that has zero velocity is constant, since its

components are real-valued functions with vanishing derivative on an interval. Thus

f (a) = (f ∘c)(0) = (f ∘c)(1) = f (b). If c is merely piecewise-smooth, the same argument

shows that f ∘ c is constant on each subinterval where c is smooth, and again we

conclude that f (a) = f (b).
For (2), the curve c : [0, 1] → ℝn, where c(t) = a + t(b − a), lies in U, since it

parametrizes the line segment between its endpoints. Thus, the speed

|(f ∘ c)| = |((Df ) ∘ c) ∘ Dc| ≤ |(Df ) ∘ c||Dc| = |(Df ) ∘ c||b − a|
of the curve f ∘ c never exceedsM|b − a|, and the claim follows from Lemma 2.4.4. For

the inequality above, we used the fact that if L,M are linear transformations for which

the composition L ∘ M is defined, then |L ∘M| ≤ |L||M|. This is because
|(L ∘M)u| = |L(M(u))| ≤ |L||Mu| ≤ |L||M||u|

for any u by (1.4.1).

Finally, wemention a property of connected sets that will oftenbe useful in the future:

Theorem 2.4.4. Let E be a connected set. If A is a nonempty subset that is both open

and closed in E, then A = E.

Proof. This result is actually the object of Exercise 1.45. For the sake of completeness,

we provide an independent proof in the context of path connected sets. Fix some a ∈
A, and let b ∈ E be arbitrary. It must be shown that b ∈ A. Consider a curve c : [0, 1] →
E with c(0) = a and c(1) = b, and define I = {t ∈ [0, 1] | c(t) ∈ A}. I is nonempty

because it contains 0, and is open by continuity of c: in fact, if t0 ∈ I, then A is a

neighborhood of c(t0), and there exists some 𝜀 > 0 such that c(t) ∈ A for all t satisfying|t − t0| < 𝜀. We claim that I is also closed in [0,1]: suppose t0 is a boundary point of
I. Then for any natural number i, there exists ti ∈ I such that |ti − t0| < 1/i. Thus,
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ti → t0, and c(ti) → c(t0) by continuity of c. This implies that any neighborhood of

c(t0) contains points ofA, so that c(t0) belongs toA or is a boundary point of A. But A,

being closed in E, contains all its boundary points that lie in E, and so c(t0) ∈ A. This

shows that I is also closed. By Proposition 1.7.1, I = [0,1], and b ∈ A.

2.5 The inverse and implicit function theorems

Definition 2.5.1. A map f : U ⊂ ℝn → f (U) ⊂ ℝn is said to be a diffeomorphism of

class Ck (k ≥ 1) if it is of class Ck on U, and admits an inverse f−1 of class Ck on f (U).

The following theorem has many applications; it is yet another indication that the

behavior of a map is locally similar to that of its derivative:

Theorem 2.5.1 (Inverse function theorem). Suppose f : U ⊂ ℝn → ℝn is continuously

differentiable. If Df (a) is invertibleat some a ∈ U, then there exists a neighborhoodV of

a such that the restriction of f to V is a diffeomorphism of class C1 . Furthermore, given
p ∈ V, and q = f (p), D(f −1)(q) = (Df (p))−1.
The argument will use a property of completemetric spaces (recall that a metric space

is complete if every Cauchy sequence converges). It will only be applied in a very

specific context, namely for a closed subset C of Euclidean space, but its proof is the

same in the general setting. A map f : X → X from a metric space (X, d) into itself is
said to be a contraction if there exists C ∈ [0,1) such that

d(f (p), f (q)) ≤ C d(p, q), p, q ∈ X.
Notice that a contraction is always continuous; it is, in fact, uniformly continuous:

given 𝜀 > 0, take δ = 𝜀/C if C > 0 (if C = 0, any δ will do).

Lemma 2.5.1. If f : X → X is a contraction of a complete metric space, then f has a

unique fixed point; i.e., a point p such that f (p) = p.

Proof of lemma. Uniqueness is clear: if p and q are fixed points of f , then d(p, q) =

d(f (p), f (q)) ≤ C d(p, q), which can only happen if d(p, q) = 0; i.e., if p = q. For exis-

tence, let q be any point of X, and define a sequence recursively by x1 = q, xk+1 = f (xk).

Then d(xk, xk+1) ≤ C d(xk−1, xk), and using induction,
d(xk, xk+1) ≤ Ck−1 d(x1, x2).

It follows that form > n,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ⋅ ⋅ ⋅ + d(xm−1, xm)≤ (Cn−1 + Cn + ⋅ ⋅ ⋅ + Cm−2) d(x1, x2)
= Cn−1(1 + C + ⋅ ⋅ ⋅ + Cm−n−1) d(x1, x2)≤ Cn−1(

∞∑
k=0

Ck) d(x1, x2) = Cn−1
d(x1, x2)
1 − C .
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Since C < 1, Cn → 0, and {xn} is a Cauchy sequence, which must therefore converge

to some x. But f is continuous, so that

f (x) = f ( lim
n→∞ xn) = lim

n→∞ f (xn) = lim
n→∞ xn+1 = x,

which proves that x is a fixed point of f .

Proof of Theorem 2.5.1. To simplify notation, it may be assumed that a = f (a) = 0:
for the map F, where F(p) = f (p + a) − f (a), satisfies these conditions, and if F is a

diffeomorphism in a neighborhood of 0, then p → f (p) = F(p − a) + f (a), being a
composition of local diffeomorphisms, is one too. Similarly, Df (0) may be assumed to

be the identity I (replacing f , if need be, by p → (Df (0))−1 ∘ f (p), which by the chain
rule has the identity as derivative at 0). Thus, the associated map

g : U → ℝn,
p → p − f (p)

satisfies g(0) = 0 and Dg(0) = 0. Br will denote the closed ball of radius r centered at

0. Recalling that Df is continuous and that Df (0) = I, there exists r > 0 small enough

that |Dg(p)| = |I − Df (p)| < 1

2
, p ∈ Br.

Together with Theorem 2.4.3, this means that

|g(p) − g(q)| ≤ 1

2
|p − q|, p,q ∈ Br , (2.5.1)

and consequently,

|f (p) − f (q)| ≥ |p − q| − |g(p) − g(q)| ≥ 1

2
|p − q|, p,q ∈ Br . (2.5.2)

Notice that (2.5.2) already implies that f is one-to-one on Br. Next, we claim that f (Br)
contains Br/2. To see why, consider any q ∈ Br/2. In order to find some p ∈ Br that gets

mapped to q, observe that gq, where gq(p) = g(p) + q, sends Br to itself. But Br, being
closed, is complete, and by (2.5.1), gq is a contraction, since|gq(p) − gq(r)| = |g(p) − g(r)| ≤ 1

2
|p − r|.

By Lemma 2.5.1, gq has a unique fixed point p; i.e., gq(p) = p−f (p) + q = p, orq = f (p),
as claimed.

Set W = int(Br/2), V = f−1(W). Then the restriction f : V → W admits an inverse

f−1 : W → V. This inverse is certainly continuous, since by (2.5.2),|f −1(p) − f−1(q)| ≤ 2|p − q|.
We claim it is actually differentiable at any q0 ∈ W . To see this, let p0 = f−1(q0),
L = Df (p0), and rf the map defined by

rf (h) = f (p0 + h) − f (p0) − Lh,
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so that as usual,

f (p0 + h) = f (p0) + Lh + rf (h), where lim
h→0

|rf (h)||h| = 0.
Apply L−1 to both sides of the above identity to conclude that

h = L−1 (f (p0 + h) − f (p0)) − L−1(rf (h)). (2.5.3)

Set k = f (p0 + h) − f (p0). Then
f−1(q0 + k) − f−1(q0) = f−1(q0 + f (p0 + h) − f (p0)) − f−1(q0)

= f−1(f (p0 + h)) − p0
= h,

so that by (2.5.3) and the definition of k,

f−1(q0 + k) − f−1(q0) − L−1k = −L−1 ∘ rf (h).
This means that f is differentiable at q0 with derivative L−1, provided

lim
k→0

|L−1 ∘ rf (h)||k| = 0. (2.5.4)

To establish this identity, notice that the definition of k together with (2.5.2) implies

that |k| ≥ |h|/2, so that|L−1 ∘ rf (h)||k| ≤ |L−1 | |rf (h)||h| |h||k| ≤ 2|L−1| |rf (h)||h| .
By continuity of f−1, h → 0 when k → 0. This proves (2.5.4) and the differentiability

of f−1. It only remains to show that f−1 is continuously differentiable. But this is an
immediate consequence of the fact that thematrix ofD(f−1) is the inverse of thematrix
of Df , and inversion of matrices is a continuous map, see Exercise 1.19.

Examples 2.5.1. (i) The polar coordinatesof a point in the plane ℝ2 are (r, θ ), where
r equals the distance from the point to the origin, and θ is the angle between the

vector representing the point and e1. They are well defined for any point different
from the origin; in fact, in terms of Cartesian coordinates,

(r, θ )(x, y) = f (x, y) = (√x2 + y2, arctan y

x
+ c), (2.5.5)

if x ̸= 0. Here, c = 0, π , or 2π depending on which quadrant (x, y) lies, cf. Sec-
tion 4.6.1. When x = 0, θ = π/2 if y > 0, and 3π/2 if y < 0. The Jacobian matrix of

f is

Df (x, y) = [[
x

√x2+y2
y

√x2+y2
−y

x2+y2
x

x2+y2

]] ,
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which has determinant (x2 + y2)−1/2. By Theorem 2.5.1, f is invertible in a neigh-

borhood of any point p in its domain, with

(x, y) = f−1(r, θ ) = (r cos θ , r sin θ ).
The domain of the inverse can be taken to be (0,∞) × [a, a + 2π), a ∈ ℝ, with the
value of a depending on the point p. When p does not lie on the positive x-axis, it
is customary to take a = 0.

(ii) The spherical coordinates of a point (x, y, z) in ℝ3 are (ρ , θ ,φ), where ρ is the dis-

tance from the point to the origin, θ is the polar coordinate angle of the projection

(x, y) of the point in the plane, andφ is the angle between the vector representing

the point and e3.

ρ

θ

φ

(x, y, z)

(x, y)

Spherical coordinates (ρ , θ ,φ) of
the point (x, y, z) in ℝ3

ρ , θ , and φ are the components of the map f given by

f (x, y, z) = ((x2 + y2 + z2)1/2, arctan y

x
+ c, arccos z

(x2 + y2 + z2)1/2
)

(with c as above), and its inverse is

f−1(ρ , θ ,φ) = (ρ sin φ cos θ , ρ sinφ sin θ , ρ cosφ).
One easily computes that the Jacobian of f −1 has determinant −ρ2 sinφ, see Sec-
tion 4.6.2.

(iii) Although the inverse function theorem asserts that a map fromℝn to itself is one-

to-one in a neighborhood of any point where the derivative is one-to-one, the

converse is not true already for n = 1. For example, f : ℝ → ℝ, where f (x) = x3,

is globally one-to-one even though its derivative is zero at the origin. Of course,

even though a map may still be one-to-one with vanishing derivative at a point,

it cannot in that case be a diffeomorphism, since diffeomorphisms always have

invertible derivative.
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The inverse function theorem, which deals with maps from ℝn to ℝn, admits general-

izations to maps fromℝn toℝk, when k is larger or smaller than n. They are known as

the implicit function theorems. Before stating them, we need some terminology. If f is
differentiable, its rank at p is defined to be the rank of the linear map Df (p); i.e., the
dimension of the image Df (p)ℝn of the derivative at p. Since this image is spanned by

the columns Df (p)e1 , . . . ,Df (p)en of the Jacobian matrix, the rank equals the number

of linearly independent columns of the Jacobian. It turns out that the dimension of the

space spannedby the columnsof anm×nmatrixA equals that of the space spanned by

the rows of A: indeed, apply Theorem 1.2.2 to the linear transformation LA : ℝn → ℝm

to deduce that the former equals n − dim ker LA. The latter, on the other hand, equals

the dimension of the space spanned by a1, . . . , am, where ai denotes the transpose (so
it can be viewed as a vector) of the i-th row of the matrix. But for p ∈ ℝn,

Ap =
[[[[
⟨a1,p⟩

...⟨am,p⟩
]]]] ,

so that the kernel of LA coincides with the orthogonal complement of the row space.

By Proposition 1.4.1, the row space also has dimension n − dim ker LA, as claimed.

Theorem 2.5.2 (Implicit Function Theorem). Let U be a neighborhood of 0 in ℝn, f :
U → ℝk a continuously differentiable map with f (0) = 0. For n ≤ k, let 𝚤 : ℝn → ℝk

denote the inclusion 𝚤(a1, . . . , an) = (a1, . . . , an,0, . . . , 0),
and for n ≥ k, let π : ℝn → ℝk denote the projection

π(a1, . . . , ak, . . . , an) = (a1, . . . , ak).
(1) If n ≤ k and f has maximal rank (= n) at 0, then there exists a diffeomorphism g of

a neighborhood of 0 inℝk such that g ∘ f = 𝚤 in a neighborhoodof 0 ∈ ℝn.

(2) If n ≥ k and f has maximal rank (= k) at 0, then there exists a diffeomorphismh of
a neighborhood of 0 inℝn such that f ∘ h = π.

Proof. As usual, we denote the component functions ui ∘ f of f by f i. In order to prove
(1), observe that the k × nmatrix [Djf

i(0)] has rank n. By rearranging the component
functions f i of f if necessary (which amounts to composing f with an invertible trans-
formation, hence a diffeomorphism of ℝk), we may assume that the n × n submatrix

[Djf
i(0)]1≤i,j≤n is invertible. Define F : U × ℝk−n → ℝk by

F(a1, . . . , an, an+1, . . . , ak) := f (a1 , . . . , an) + (0, . . . , 0,an+1, . . . , ak).
Then F ∘ 𝚤 = f , and the Jacobian matrix of F at 0 is

[ [Dj f
i(0)]1≤i≤n 0

[Dj f
i(0)]n+1≤i≤k 1ℝk−n

] ,
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which has nonzero determinant. Consequently, F has a local inverse g, and g ∘ f =

g ∘F ∘𝚤 = 𝚤. This establishes (1). Similarly, in (2),wemay assume that the k×k submatrix

[Djf
i(0)]1≤i,j≤k is invertible. Define F : U → ℝn by

F(a1, . . . , an) := (f (a1 , . . . , an), ak+1, . . . , an).
Then f = π ∘ F, and the Jacobian of F at 0 is

[[Dj f
i(0)]1≤j≤k [Dj f

i(0)]k+1≤j≤n
0 1ℝn−k

] ,
which is invertible. Thus, F has a local inverse h, and f ∘ h = π ∘ F ∘ h = π .

The reason the above is called the implicit function theorem is that under certain

circumstances, given a differentiable map f : ℝn × ℝm → ℝn, the equation

f (p,q) = 0, p ∈ ℝn, q ∈ ℝm,
implicitly defines p as a function g(q) of q; i.e., for each q, there exists a unique g(q)
such that f (g(q), q) = 0, and the map g is differentiable; more precisely, we have:

Corollary 2.5.1 (Classical implicit function theorem). Let f be a continuously differen-
tiablemap from an open neighborhoodof (0,0) ∈ ℝn ×ℝm toℝn such that f (0,0) = 0.

If the matrix [Dj f
i(0,0)]1≤i,j,≤n is invertible, then there exist open neighborhoods V

of 0 ∈ ℝm, U of (0,0) ∈ ℝn × ℝm such that for every q ∈ V, there exists a unique p
satisfying (p,q) ∈ U and f (p,q) = 0. Furthermore, the map g : V → ℝn that assigns to

each q the unique p = g(q) such that f (g(q), q) = 0 is continuously differentiable.

Proof. By Theorem 2.5.2 (2), there exists a local diffeomorphism h such that f ∘h equals
the projection π1 : ℝn × ℝm → ℝn onto the first factor. If π2 is the projection onto the

second factor, then the inverse F of h was shown to satisfy π2 ∘ F = π2. This implies

that if f (p,q) = 0, then

0 = f (p,q) = f ∘ h ∘ F(p,q) = π1 ∘ F(p,q),
so that F(p, q) = (0,q); i.e., p = π1 ∘ F−1(0,q) = π1 ∘ h(0,q). This shows not only
uniqueness of p, but also existence and smoothness of g: let𝚤 : V → ℝn × ℝm,

q → (0,q).
Then themap g := π1 ∘ h ∘ 𝚤, being a composition of C1 maps, is continuously differen-

tiable, and

f (g(q), q) = f (π1(h(0,q)),q) = f (π1(h(0,q)), π2(h(0,q))
= (f ∘ h)(0,q)) = π1(0,q)
= 0.
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Examples and Remarks 2.5.1. (i) Define

f : ℝ × ℝ2 → ℝ,
(x, (y, z)) → (x − r)2 + y2 + z2 − r2,

with r > 0. The set of points (x, y, z) ∈ ℝ3 satisfying f (x, y, z) = 0 is a sphere

of radius r that passes through the origin. Since D1f (0,0) = −2r ̸= 0, a part of

the sphere containing the origin may be represented by the graph of a function

x = g(y, z), even though the whole sphere cannot. In fact, solving f (x, y, z) = 0 in

terms of x yields x = g(y, z) = r − √r2 − y2 − z2.
(ii) Although the classical implicit function theorem was stated at the origin, it is

straightforward to obtain a version of it that is valid at any point: specifically, if f
is a continuously differentiable map from a neighborhood of (p0,q0) ∈ ℝn ×ℝm toℝn such that f (p0,q0) = r0 ∈ ℝn, and if the matrix [Djf

i(p0, q0)]1≤i,j,≤n is invertible,
then there exists an open neighborhood V of q0 ∈ ℝm, and a continuously differ-

entiable map g : V → ℝm such that f (g(q), q) = r0.
To see this, observe that the map h, where h(p,q) := f (p + p0, q + q0) − r0,
satisfies the hypotheses of the implicit function theorem, so that there exists a

continuously differentiable map k : V0 → ℝn defined on a neighborhood V0 of

the origin in ℝm such that h(k(q),q) = 0. Then V := {q + q0 | q ∈ V0} is a
neighborhood of q0, and g : V → ℝn, where g(q) := k(q − q0) + p0, is the mapwe

are looking for, since

f (g(q),q) = f (k(q − q0) + p0, q) = h(k(q − q0),q − q0) + r0 = r0.
(iii) To illustrate (ii) above, suppose we are asked to show that there is a neighborhood

U of (1,0) in ℝ2, and a differentiable function f : U → ℝ satisfying

xf 2(x, y) + yf (x, y) − x2f 5(x, y) + y = 0, f (1,0) = 1.
Finding an explicit formula for f seems pretty much hopeless, so let us define

F : ℝ3 → ℝ by F(a1, a2, a3) = a2a
2
1 + a3a1 − a22a

5
1 + a3. Then F(1, 1,0) = 0, and

D1F(1, 1,0) = −3 ̸= 0, so there exists a function f on a neighborhood of (1,0) such
that

F(f (a2, a3), a2, a3) = a2f
2(a2, a3) + a3f (a2, a3) − a22f

5(a2, a3) + a3 = 0.
Substituting x for a2 and y for a3 shows this is the function we are looking for.

2.6 The spectral theorem and scalar products

In this section, we take a closer look at symmetric matrices since they pop up fre-

quently in calculus and differential geometry: for instance, to each point of a surface,
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one can associate a symmetric matrix that measures how curved the surface is at that

point. As another example, in the next section, we will use symmetric matrices to

classify extreme values of real-valued functions. The discussion will be couched in

terms of linear maps rather than matrices.

Recall that a linear map from a vector space V to itself is also called an operator

on V. IfV is an inner product space, there are several types of operators onV that play

a special role; we now introduce two of these:

Definition 2.6.1. A linear operator L on an inner product space V is said to be self-

adjoint if ⟨Lu, v⟩ = ⟨u,Lv⟩ for all u, v ∈ V. L is said to be skew-adjoint if ⟨Lu, v⟩ =−⟨u, Lv⟩ for all u, v ∈ V.

Proposition 2.6.1. Let V be an inner product spacewith ordered orthonormal basisB =

(u1, . . . ,un).
(1) If L is a linear operator on V, then the (i, j)-th entry of the matrix [L]B,B of L in the

basis B is ⟨ui, Luj⟩.
(2) L is self-adjoint if and only if [L]B,B is symmetric.

(3) L is skew-adjoint if and only if [L]B,B is skew-symmetric.

Proof. For (1), recall that the j-th column of the matrix of L in the basis B is the coor-

dinate vector [Luj]B of Luj in the basis B. By Theorem 1.4.3, the i-th entry of that vector

is ⟨ui, Luj⟩. For (2), if L is self-adjoint, then the matrix of L in B is symmetric by (1).

Conversely, if the matrix of L is symmetric, then by (1), ⟨Lui,uj⟩ = ⟨ui, Luj⟩ for all i and
j, and given u,v ∈ V,

⟨Lu, v⟩ = ⟨L(∑
i

⟨u,ui⟩ui) ,∑
j

⟨v,uj⟩uj⟩
= ∑

i,j
⟨u,ui⟩⟨v,uj⟩⟨Lui, uj⟩ = ∑

i,j
⟨u,ui⟩⟨v,uj⟩⟨ui, Luj⟩

= ⟨∑
i

⟨u,ui⟩ui, L(∑
j

⟨v,uj⟩uj)⟩ = ⟨u, Lv⟩,
so that L is self-adjoint. The proof of (3) is similar.

A third important type of operator that occurs in the presence of an inner product

can be formulated more generally in terms of a linear transformation between two

(possibly) different inner product spaces:

Definition 2.6.2. A linear transformation L : (V1, ⟨, ⟩1) → (V2 , ⟨, ⟩2) between two inner
product spaces of the same dimension is said to be a linear isometry if it preserves the

inner product; i.e., if ⟨Lu, Lv⟩2 = ⟨u, v⟩1, u, v ∈ V1.
Equivalently, L is a linear isometry if it preserves the norm of vectors. It follows that a

linear isometry has trivial kernel (for if Lu = 0, then |u| = |Lu| = 0, so u = 0), and is



2.6 The spectral theorem and scalar products | 83

therefore an isomorphism. Two inner product spaces with a linear isometry between

them are said to be isometric. Isometric spaces are essentially the same both from a

vector space perspective and from an inner product one. For example, it is easy to

check that if T : V → W is a linear isometry and L is a self-adjoint (respectively skew-

adjoint) operator onW, then T−1 ∘ L ∘ T is a self-adjoint (resp. skew-adjoint) operator

on V.

Proposition 2.6.2. Let V be an inner product spacewith orderedorthonormal basisB =

(u1, . . . ,un), and L an operator on V. Then L is an isometry if and only if its matrix P with
respect to B is orthogonal, meaning that P−1 = PT.

Proof. By Exercise 2.16, the isomorphism V → ℝn that maps a vector to its coordinate

vector in the basis B is a linear isometry, so that⟨u,v⟩ = [u]TB[v]B , u, v ∈ V .
Recall that the Kronecker delta δij is defined to be 1 when i = j and 0 otherwise. If L is

an isometry, then

δij = ⟨ui,uj⟩ = ⟨Lui, Luj⟩ = [Lui]TB[Luj]B .
The last term in the above identity is the (i, j)-th entry of PTP, which shows that P is

orthogonal.

Conversely, if PTP = In, then

δij = [Lui]TB[Luj]B = ⟨Lui, Luj⟩,
so that ⟨ui,uj⟩ = ⟨Lui, Luj⟩. Thus, given v,w ∈ V,

⟨Lv, Lw⟩ = ⟨L(∑
i

⟨v,ui⟩ui) , L(∑
j

⟨w,uj⟩uj)⟩
= ∑

i,j
⟨v,ui⟩⟨w,uj⟩⟨Lui, Luj⟩ = ∑

i,j
⟨v,ui⟩⟨w,uj⟩δij

= ∑
i

⟨v,ui⟩⟨w,ui⟩ = [v]TB[w]B

= ⟨v,w⟩,
which shows that L is an isometry.

For example, the operator on ℝ2 consisting of counterclockwise rotation by angle θ

about the origin is a linear isometry. This can be checked by either noticing that such

a rotation leaves the norm of vectors unchanged, or by recalling that thematrix of this

operator in the standard basis is

[cos θ − sin θ
sin θ cos θ

] ,
which is clearly orthogonal.
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Definition 2.6.3. A real number λ is said to be an eigenvalue of a linear operator L

on V if there exists some v ̸= 0 in V such that Lv = λ v. In this case, v is called an

eigenvector of L. When L is the operator on ℝn given by left multiplication LA by some

n × nmatrix A, its eigenvalues and eigenvectors are also often called the eigenvalues

and eigenvectors of A.

The reason why one requires v ̸= 0 in the above definition is that otherwise any λ

would always be an eigenvalue of every operator L, since L0 = λ0. With this restric-

tion, on the other hand, 0 is an eigenvalue of L if and only if L has nontrivial kernel,

or equivalently (at least if V is finite-dimensional) if and only if L is not an isomor-

phism. Notice also that if λ is an eigenvalue of L, then the collection of corresponding

eigenvectors becomes a subspace of V, once we add the vector 0 to it. It is called the

λ -eigenspace of L.

In general, an operator need not admit any eigenvalues. One such is a rotation by,

say,π/4 in theplane. The situation is entirely differentwhenL is self-adjoint, however:
Theorem 2.6.1. Any self-adjoint operator on an inner product spaceV admits an eigen-

value.

Proof. Let us assume for now that V is ℝn with the standard inner product, and let L

denote the operator. The function

f : ℝn → ℝ,
v → ⟨Lv, v⟩

is continuous (in fact, differentiable, being a composition of differentiable maps), and

therefore admits a maximum when restricted to the unit sphere Sn−1 by compactness

of the sphere. Denote by u a point of the sphere at which f takes on this maximum

value. We claim that u is an eigenvalue of L. To see this, it is enough to show that Lu
is a multiple of u, or equivalently, that Lu is orthogonal to v for any v orthogonal to u.
Notice that we only need to check this for any v of norm 1 orthogonal to u. Now, the
curve c : ℝ → Sn−1, where c(t) = cos tu + sin tv, has as image the great circle through

u and v, and passes through u at 0. Since f ∘ c is differentiable and has a maximum at

0, its derivative at 0 vanishes. But by the chain rule together with Corollary 2.2.1 and

the fact that the derivative of an operator is the operator itself,

(f ∘ c)(t) = ⟨L ∘ c, c⟩(t) = ⟨(L ∘ c)(t), c(t)⟩ + ⟨L(c(t)), c(t)⟩
= ⟨L(c(t)), c(t)⟩ + ⟨L(c(t)), c(t)⟩ = 2⟨L(c(t)), c(t)⟩.

Thus,

0 = (f ∘ c)(0) = 2⟨L(c(0)), c(0)⟩ = 2⟨Lu,v⟩,
which establishes the theorem in the case when V is Euclidean space. In the general

case, consider an orthonormal basis v1, . . . , vn of V. The map T : V → ℝn that maps a

vector to its coordinate vector in this basis is then a linear isometry, and as remarked
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earlier, T ∘ L ∘ T−1 is now a self-adjoint operator on Euclidean space. If u ∈ ℝn is a

λ -eigenvector of T ∘ L ∘ T−1, then v = T−1u is a λ -eigenvector of L, because

Lv = L ∘ T−1u = T−1(T ∘ L ∘ T−1u) = T−1(λu) = λ T−1u = λ v.
Theorem 2.6.2 (Spectral theorem). Let L be a self-adjoint operatoron an inner product

spaceV. ThenV has an orthonormal basis consisting of eigenvectors of L. Thematrix of

L with respect to this basis is diagonal, with the diagonal entries being the eigenvalues

of L.

Proof. The argument will be by induction on the dimension n of V. If n = 1, then any

unit vector in V is an eigenvector and forms an orthonormal basis. Assume the state-

ment holds for any space of dimension smaller than n, and consider an n-dimensional

inner product space V with self-adjoint operator L. By Theorem 2.6.1, L admits an

eigenvalue λ with corresponding eigenvector u, whichmay be assumed to have norm

1. Observe that L restricts to an operator on the subspace u⊥ of V consisting of all

vectors orthogonal to u; i.e., L(u⊥) ⊂ u⊥: indeed, if v ∈ u⊥, then

⟨Lv,u⟩ = ⟨v, Lu⟩ = ⟨v, λu⟩ = λ ⟨v,u⟩ = 0,
so that Lv ∈ u⊥ as claimed. Since L remains self-adjoint when restricted to u⊥, the
induction hypothesis asserts that this subspace admits an orthonormal basis of eigen-

vectors. Adding u to this set yields an orthonormal basis of V that consists of eigen-

vectors.

The last statement of the theorem is clear: if B = v1 , . . . , vn is a basis of V with

Lvi = λivi, then [Lvi]B is the vector in ℝn with λi in the i-th entry and 0 elsewhere, and

by definition, the matrix of L in B is

[[[[[[
λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

]]]]]]
.

The above theorem does not provide a constructive way of finding eigenvalues and

eigenvectors of a self-adjoint operator L. However, u is a λ -eigenvector of L iff Lu = λu;
this is equivalent to the equation

(L − λ1V)u = 0.
In other words, to determine the eigenvalues of L, it suffices to determine those values

of λ forwhich the operator L−λ1V has nontrivial kernel. The nonzero elements in that

kernel then correspond to the eigenvectors. Notice that L − λ1V has nontrivial kernel

if and only if its determinant is zero. We illustrate the procedure in the following:
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Example 2.6.1. Consider the operator L on ℝ3, where

L
[[[
x

y

z

]]] =
[[[

x + z

y + z

x + y + z

]]] .
Thus, L is left multiplication by the matrix

A =
[[[
1 0 1

0 1 1

1 1 1

]]] ,
and since A is symmetric, L is self-adjoint by Proposition 2.6.1. Now, expanding along

the first row, we obtain

det(L − λ1ℝ3 ) = det(A − λ I3) = det
[[[
1 − λ 0 1

0 1 − λ 1

1 1 1 − λ]]]
= (1 − λ ) ((1 − λ )2 − 1) − (1 − λ ) = (1 − λ ) ((1 − λ )2 − 2)
= (1 − λ )(1 − λ − √2)(1 − λ + √2).

Setting this determinant equal to zero implies that L has 1, 1 − √2, and 1 + √2 as

eigenvalues. To find an eigenvector corresponding to the eigenvalue 1, we must find a

nontrivial vector in the kernel of L − λ1ℝ3 with λ = 1. The equation (L − 1ℝ3 )u = 0 is

equivalent to (A − I3)u = 0; i.e., to

(A − I3)u =
[[[
0 0 1

0 0 1

1 1 0

]]][[[
x

y

z

]]] =
[[[
0

0

0

]]] .
Thus, x + y = z = 0, and the 1-eigenvectors are the nonzero multiples of [1 −1 0]T .

The same procedure works for λ = 1 − √2:
(A − (1 − √2)I3)u =

[[[
√2 0 1

0 √2 1

1 1 √2]]][[[
x

y

z

]]] =
[[[
0

0

0

]]] ,
which yields √2x + z = 0, √2y + z = 0, and x + y + √2z = 0. If one multiplies

the first two equations by 1/√2 and adds them, the resulting equation is the third

one, so the latter may be discarded. The solutions to the first two are all multiples

of [1 1 −√2]T. Repeating this procedure with λ = 1 + √2 yields all nontrivial

multiples of [1 1 √2]T as eigenvectors.
The polynomial det(A − λ In) whose roots are the eigenvalues ofA is called the charac-

teristic polynomialof A.
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Corollary 2.6.1. Any symmetricmatrix A is conjugate to a diagonal matrix D; i.e., there

exists an invertible matrix P such that D = P−1AP. In fact, P may be chosen to be

orthogonal.

Proof. As remarked already in the previous example, Proposition 2.6.1 applied to ℝn

with its standard basis S and leftmultiplication LA byA implies that the operator LA is

self-adjoint. By the spectral theorem, there exists an orthonormal basis B of eigenvec-

tors of LA, and in that basis, the matrix [LA]B of LA is some diagonal matrix D. (1.2.1)

now says that the matrices of LA in the two bases satisfy

D = [LA]B = P−1[LA]SP = P−1AP,
where P = [1ℝn]B,S is the change of basis matrix from B to S. This means that P has

as columns the vectors u1, . . . ,un of B, and thus, the (i, j)-th entry of PTP is uTi uj =⟨ui, uj⟩ = δij. In other words P is orthogonal.

Example 2.6.2. Consider the matrix A from Example 2.6.1. Normalizing the eigenvec-

tors of LA so they have length 1, the argument from the above corollary implies that

[[[
1 0 0

0 1 − √2 0

0 0 1 + √2]]] =
[[[[

1
√2

−1
√2 0

1
2

1
2

1

−√2
1
2

1
2

1
√2

]]]]A
[[[[

1
√2

1
2

1
2

−1
√2

1
2

1
2

0 1

−√2
1
√2

]]]] .
Observe that the order in which the eigenvalues appear in the diagonal matrix is the

same as the order in which the eigenvectors appear in the last matrix on the right.

Definition 2.6.4. A symmetric bilinear form or scalar product on a vector space V is a

map b : V × V → ℝ such that b(u, v) = b(v, u) and b(au + v,w) = a b(u,w) + b(v,w)
for all u, v,w ∈ V and a ∈ ℝ.
Notice that an inner product is just a symmetric bilinear form that is positive definite;

i.e., b(u,u) > 0 if u ̸= 0. b is said to be negative definite if −b is positive definite. A

bilinear form that is either positive definite or negative definite is said to be definite.

It is quite easy to construct examples of scalar products:

Example 2.6.3. Let B = {v1, . . . , vn} denote a basis of a vector space V. Any symmetric

matrix A induces a symmetric bilinear form b on V by defining

b(u,v) = [u]TBA[v]B , u, v ∈ V ,
where as usual we identify the 1×1 matrix [u]TBA[v]B on the right with its single entry.

The fact that b as defined above is bilinear follows immediately from properties of

matrix operations. Symmetry in turn follows from the fact that a 1 × 1 matrix is alway

symmetric, so that

b(u,v) = [u]TBA[v]B = ([u]TBA[v]B)T = [v]TBA
T [u]TTB = [v]TBA[u]B = b(v,u).
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It turns out that the above is essentially the only example possible:

Theorem 2.6.3. Let b denote a symmetric bilinear form on V. Given any basis B of V,

there exists a unique symmetric matrix A such that b(u, v) = [u]TBA[v]B for all u, v ∈ V.

Proof. Uniqueness is clear, because if v1, . . . , vn are the (ordered) basis vectors, then
the above formula implies that

b(vi, vj) = [vi]TBA[vj]B = eTi Aej = aij,
which also shows symmetry of A. To check existence, define the (i, j)-th entry of A to

be b(vi, vj). By linearity of b in each component, given u = ∑i xivi and v = ∑j yjvj,

b(u, v) = b(∑
i

xivi,∑
j

yjvj) = ∑
i,j
xib(vi, vj)yj = ∑

i,j
xiaijyj

= [u]TBA[v]B .
The theorem above can also be proved in a more elegant way, by observing that there

is a one-to-one correspondence between scalar products and self-adjoint operators on

an inner product space: If L is self-adjoint, then the formula

b(u,v) = ⟨Lu,v⟩ (2.6.1)

defines a scalar product. Conversely, given a symmetric bilinear form b on an inner

product space V, define L : V → V as follows: for u ∈ V, the map v → b(u, v) defines
an element of the dual space V∗, so that by Corollary 1.4.2, there is unique element

Lu ∈ V satisfying (2.6.1). The fact that L is linear and self-adjoint is immediate. The

theorem now follows by observing that

[u]TBA[v]B = ⟨u, Lv⟩.
The spectral theorem yields a convenient way of expressing scalar products: Se-

lect any basis B of V to obtain a matrix A such that b(u, v) = [u]TBA[v]B as in the

theorem. Since A is symmetric, there exists, by Corollary 2.6.1, a diagonal matrix D

and an orthogonal matrix Q (set Q equal to PT in the corollary) such that A = QTDQ.

Since Q is invertible, the vectors ui = ∑j qijvj, i = 1, . . . , n, form a basis C of V, and by
the change of basis formula,

[u]C = Q[u]B, u ∈ V .
Thus, if u = ∑i xiui, v = ∑j yjuj, and D is the diagonal matrix with entries λ1, . . . , λn,
then

b(u, v) = [u]TBA[v]B = [u]TBQ
TDQ[v]B = (Q[u]B)TD(Q[v]B) = [u]TCD[v]C

= ∑
i

λixiyi.
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In particular,

b(u,u) = ∑
i

λix
2
i ,

so that b is positive-(respectively negative-)definite if and only if all the eigenvalues of

A are positive (respectively) negative.

Example 2.6.4. Consider the symmetric bilinear form onℝ2 given by

b([x1
x2
] , [y1

y2
]) = 3x1y1 − x1y2 − x2y1 + 3x2y2.

The matrix of b in the standard basis is

A = [ 3 −1−1 3
] .

Its characteristic polynomial is

det(A − λ I2) = (3 − λ )2 − 1 = (4 − λ )(2 − λ ),
which has roots 4 and 2. Thus, b is positive definite. Using the same procedure as

that in the previous example, one easily computes that v1 = [1/√2 1/√2]T and

v2 = [−1/√2 1/√2]T are unit eigenvectors corresponding to the eigenvalues 2 and

4 respectively. If u = x1v1 + x2v2 and v = y1v1 + y2v2, then b(u, v) = 2x1y1 + 4x2y2.

2.7 Taylor polynomials and extreme values

Apoint a ∈ U ⊂ ℝn is said to be a critical pointof amap f : U → ℝm ifDf (a) : ℝn → ℝm

is either not ontoor does not exist. In this case, f (a) is called a critical valueof f . Notice
that if m = 1, then a is critical if and only if Df (a) = 0 or does not exist. If in addition,

n = 1, we recover the classical notion of critical point from one-variable Calculus.

In the case of a real-valued function f : U → ℝ, f is said to have a local maximum

(resp. minimum) at a if there exists a neighborhood V of a such that f (p) ≤ (resp. ≥
)f (a) for all p ∈ V. A point a where f has a local maximum or minimum is called an

extremum, and f (a) is then said to be an extreme value.

Theorem 2.7.1. If f : U ⊂ ℝn → ℝ has an extremum at a, then a is a critical point of f .

Proof. Let a be an extremum of f . We may assume that f is differentiable at a, for
otherwise the conclusion certainly holds. In particular, f is defined on some open

neighborhood of a. We wish to show that for any h ∈ ℝn, Df (a)h = 0. Choose a small

enough interval I around 0 such that the curve c : I → ℝn, where c(t) = a + th, has its
image inside U. Then the function g := f ∘ c : I → ℝ of one variable has an extremum

at 0, and being differentiable there,

0 = g(0) = (f ∘ c)(0) = Df (c(0))c(0) = Df (a)h.
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The converse is already false when n = 1, as the function x → x3 shows: 0 is a

critical point of f , but not an extremum. Recall that for functions of one variable, if

f (a) = 0, then a is a local minimum (resp. maximum) if f (a) > 0 (resp. < 0). Now, a

function defined onℝn does not have one second derivative if n > 1, but it does have

an n × nmatrix [Dijf (a)] of second partial derivatives, which is symmetric if f is C2. We

will see that if the corresponding symmetric bilinear form is positive (resp. negative)

definite, then f has a local minimum (resp. maximum) at a. In order to show this, we

first generalize Taylor polynomials to functions defined on Euclidean space.

Definition 2.7.1. Let f : U → ℝ be a function of class Ck on an open set U ⊂ ℝn. The

Taylor polynomial of degree k of f at a ∈ U is the function Pf ,a,k : ℝn → ℝ given by

Pf ,a,k =
k∑
j=0

1

j! ∑
1≤i1 ,...,ij≤n

Di1 ⋅⋅⋅ij f (a)u
i1ui2 ⋅ ⋅ ⋅ uij .

Thus, for p = (x1, . . . , xn) ∈ ℝn,

Pf ,a,k(p) =
k∑
j=0

1

j! ∑
1≤i1,...,ij≤n

Di1 ⋅⋅⋅ij f (a)xi1xi2 ⋅ ⋅ ⋅ xij ,
with D0f = f .

Example 2.7.1. If f : ℝ2 → ℝ is defined by f (x, y) = exy, then D1 f (x, y) = yexy,

D2 f (x, y) = xexy, D12 f (x, y) = D21 f (x, y) = (1 + xy)exy, D11 f (x, y) = y2exy, and

D22 f (x, y) = x2exy. Thus the Taylor polynomial of degree 2 of f at 0 is

Pf ,0,2(x, y) = 1 + xy.
Theorem 2.7.2 (Taylor’s theorem). Suppose f : U → ℝ is of class Ck+1 on the open set
U ⊂ ℝn, and let a ∈ U, 𝜀 > 0 small enough so that the closed ball of radius 𝜀 around a is
contained in U. Define a function r on this ball by setting

r(p) = f (a + p) − Pf ,a,k(p).
Then the remainder r satisfies

lim
p→0

r(p)|p|k = 0.
Proof. Fix any p = (x1, . . . , xn) ∈ ℝn of norm less than 𝜀. The curve c : [0,1] → ℝn,

c(t) = a + tp, has its image in U, so we have a well-defined function g := f ∘ c of class
Ck+1. By the chain rule,

g(t) = Df (c(t))c(t) =
n∑
i=1

Di f (c(t))xi,
and arguing inductively, we obtain

g(j)(t) = ∑
1≤i1 ,...,ij≤n

Di1 ⋅⋅⋅ij f (c(t))xi1 ⋅ ⋅ ⋅ xij
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for j = 1, . . . , k + 1. Taylor’s theorem for functions of one variable asserts that there

exists some t ∈ (0,1) such that
g(1) =

k∑
j=0

g(j)(0)

j! +
g(k+1)(t)

(k + 1)! ;
i.e.,

f (a + p) =
k∑
j=0

1

j! ∑
1≤i1 ,...,ij≤n

Di1 ⋅⋅⋅ij f (a)xi1 ⋅ ⋅ ⋅ xij + g(k+1)(t)

(k + 1)!
= Pf ,a,k(p) + r(p),

where

r(p) = 1

(k + 1)! ∑Di1⋅⋅⋅ik+1 f (a + tp)xi1 ⋅ ⋅ ⋅ xik+1 ,
and t = t(p) depends on p. It only remains to show that r(p)/|p|k → 0 as p → 0. But f
is of class Ck+1, so that each Di1⋅⋅⋅ik+1 f (a + tp) converges to the value of that function at
a. Furthermore, each |xi| ≤ |p|, so that|xi1 ⋅ ⋅ ⋅ xik+1 ||p|k ≤ min{|xi1 |, . . . , |xik+1 |}, (2.7.1)

and the right side goes to 0 as p → 0. This proves the assertion.

Remark 2.7.1. Since the right side of the inequality 2.7.1 is no larger than |p|, for each
sufficiently small neighborhood V of a, there exists a constant α that depends on f

and V such that |r(p)| < α |p|k+1 for all p such that a + p ∈ V. Furthermore, if C is any

compact set in U, uniform continuity of the derivatives of order k + 1 of f on C implies

that there exists β > 0 that depends on C and f such that|r(p,h)| := |f (p + h) − Pf ,p,k(h)| ≤ β |h|k+1 for all p,p + h ∈ C.
Definition 2.7.2. Let f : U ⊂ ℝn → ℝ be of class C2, and a an interior point of U. The

HessianHf (a) of f at a is the symmetric operator on ℝn given by left multiplication by

the matrix [Dijf (a)] of second derivatives of f at a. The Hessian form hf (a) of f at a is

the associated symmetric bilinear form

hf (a)(u, v) = uT
[[[[
D11 f (a) ⋅ ⋅ ⋅ D1n f (a)

... ⋅ ⋅ ⋅ ...

Dn1 f (a) ⋅ ⋅ ⋅ Dnn f (a)

]]]] v, u, v ∈ ℝn.
Observe that hf (a)(u,u) equals two times the term corresponding to j = 2 in the Taylor

polynomial of f at a. In particular, if a C2 function f has a critical point at a, then its

Taylor polynomial of order 2 at a is

Pf , a,2(u) = f (a) + 1

2
hf (a)(u, u).

This fact is used to prove the following:
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Theorem 2.7.3. Suppose f : U ⊂ ℝn → ℝ is of class C2, a ∈ U, and Df (a) = 0.

(1) If the Hessian form hf (a) of f at a is positive (resp. negative) definite, then f has a

local minimum (resp. maximum) at a.
(2) If the Hessian Hf (a) has at least one positive and one negative eigenvalues, then f

does not have a local maximum nor a local minimum at a. f is then said to have a
saddle point at a.

Proof. (1): We will consider the case when the Hessian is positive definite. The other

case follows by looking at −f . By assumption, the function u → hf (a)(u,u) assumes a

positive minimum value 2α when restricted to the unit sphere Sn−1, since the latter is
compact. Let 0 < 𝜀 < α . By Taylor’s theorem, there is δ > 0 such that for 0 < |u| < δ ,|r(u)||u|2 =

 f (a + u) − f (a)|u|2 − 1

2
hf (a) ( u|u| , u|u| ) < 𝜀. (2.7.2)

Thus, for sufficiently small |u| > 0,

f (a + u) − f (a)|u|2 > 1

2
hf (a)( u|u| , u|u| ) − 𝜀 ≥ α − 𝜀 > 0,

and f (a + u) > f (a) as claimed.

(2): By assumption, Hf (a) has some positive eigenvalue 2α . We will show that if w
is a corresponding eigenvector with small enough norm, then f (a + w) > f (a). It
then follows that f does not have a local maximum at a. So choose some 0 < 𝜀 < α .

By Taylor’s theorem, there exists δ > 0 such that (2.7.2) holds for any u such that

0 < |u| < δ . Now, if w is a 2α -eigenvector of the Hessian, then

hf (a)(
w|w| , w|w| ) = 1|w|2wTHf (a)w =

1|w|2wT2αw = 2α ,
so that for 0 < |w| < δ ,

f (a + w) − f (a)|w|2 > 1

2
hf (a)( w|w| , w|w| ) − 𝜀 = α − 𝜀 > 0.

The same argument applied to −f and any negative eigenvalue of Hf (a) implies that f

does not have a local minimum at a.

Examples 2.7.2. (i) Suppose we are asked to find and classify the critical points of

f : ℝ2 → ℝ, f (x, y) = x2 + y2 − 2x2y. The Jacobian matrix of f at (x, y) is
[Df ](x, y) = [2x − 4xy 2y − 2x2] = 2 [x(1 − 2y) y − x2] ,

and (x, y) is a critical point of f if and only if x = 0 or y = 1/2, and y = x2. Thus,

there are 3 critical points: the origin, and (±1/√2,1/2). The Hessian of f has as

matrix [2 − 4y −4x−4x 2
] .
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Fig. 2.1: z = x2 + y2 − 2x2y

At the origin, the matrix equals 2I2, so f has a local minimum there. At the other

two points, the Hessian becomes

[ 0 4
√2

4
√2 2

] and [ 0 − 4
√2− 4

√2 2
] .

The eigenvalue-finding procedure outlined in the previous section easily yields

the same eigenvalues 4 and −2 for both matrices. Thus, both points are saddle

points.

(ii) The classification of critical points in the previous example could also have been

done without explicitly finding the eigenvalues of the Hessian. This is because

for a 2 × 2 symmetric matrix A, the sign of the eigenvalues is easily determined:

since there is a diagonal matrix of eigenvalues that is similar toA, the determinant

of A is the product of the eigenvalues, and the trace equals the sum (this is of

course true for matrices of any size). Thus, if detA < 0, then the eigenvalues have

different signs, corresponding to a saddle point. If the determinant is positive,

both eigenvalues have the same sign, which coincides with the sign of the (1, 1)
element of the matrix: the reason being that both diagonal terms must have the

same sign (otherwise thedeterminant would not be positive) and their sum equals

the sum of the eigenvalues.

Summarizing, if f is a function of two variableswhichhas a as a critical point, and
if

A = [a b

b c
]

denotes the Hessian matrix at a, then
– f has a saddle point at a if detA < 0;

– f has a local minimum at a if det A > 0 and a > 0;

– f has a local maximum at a if detA > 0 and a < 0;
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Notice that if the determinant is positive, then a cannot vanish. This means that

the above covers all but one possibility, namely the determinant being zero. If

this is the case, then no conclusion can be made: for example, the function f

given by f (x, y) = x2y2 has a global minimum at the origin but its Hessian there is

zero. Taking its negative yields a function with amaximum at the origin with zero

Hessian. Finally, f , where f (x, y) = x3, has the whole y-axis as critical points with

vanishing Hessian, but none of them are maxima or minima.

2.8 Vector fields

From now on, differentiable maps will be assumed to be smooth (i.e., C∞) unless

specified otherwise.

One tends to visualize vectors in Euclidean space as arrows whose base point can

be assigned arbitrarily. When dealing with vector fields, it is more efficient to have

fixed base points. In order to specify a vector with base point at, say, p, we use the
following concept:

Definition 2.8.1.

The tangent space of ℝn at p ∈ ℝn is the collection

ℝn
p = {p} × ℝn = {(p,u) | u ∈ ℝn}.

Anelement ofℝn
p is calleda tangent vector atp.ℝn

p is a vector spacewith theoperations

(p,u) + (p,q) = (p,u + v), a(p,u) = (p, au), a ∈ ℝ,u, v ∈ ℝn.
There is a canonical isomorphism Ip : ℝn → ℝn

p that maps u to (p,u), u ∈ ℝn. For any

p,q ∈ ℝn, the map

Iq ∘ I−1p : ℝn
p → ℝn

q,
(p,u) → (q,u)

is an isomorphism between tangent spaces, called parallel translation.

Derivatives can be reformulated in terms of tangent spaces:

Definition 2.8.2. If f : U → ℝm is a differentiable map on an open set U ∈ ℝn, the

derivative of f at p ∈ U is the linear transformation

f∗p : ℝn
p → ℝm

f (p)

(p,u) → (f (p),Df (p)u). (2.8.1)

It is worth emphasizing that the only difference between f∗ and Df is one of nota-
tion: the former includes the base point of the vector, the latter doesn’t. In terms of
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the canonical isomorphism between Euclidean space and its tangent space at p, the
following diagram commutes:

ℝn
p

f∗p→ Rmf (p)

Ip
↑↑↑↑↑ ↑↑↑↑↑If (p)

U →
Df (p)

ℝm.
In order to avoid cumbersome notation, we will often denote (p, ei) by Di(p), and
(t,1) ∈ ℝt by D(t) when n = 1. Thus, the tangent vector (p, ∑ aiei) can also be written

as∑ aiDi(p). Furthermore, when it is clear that u belongs to the tangent space of, say,
p, we often write f∗u instead of f∗pu for brevity.

Definition 2.8.3. A vector field on an open set U ⊂ ℝn is a map X that assigns to each

p ∈ U a tangent vector X(p) ∈ ℝn
p at p.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 2.2: The vector field X = u2D1 − u1D2 in the plane

By definition, vector fields on U are in one-one correspondence with maps f : U →ℝn; for each p ∈ U, the value of X at p can be written as (p, f (p)) for a unique map

f : U → ℝn, and conversely, any such map defines a vector field X by the formula

X(p) = Ipf (p). We say the vector field is differentiable or smooth if f has that property.
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If the vector field X is represented by the map f , i.e., if X(p) = Ipf (p) for all p in

the domain, then

X = ∑
i

f iDi, f i = ui ∘ f .
For example, the position vector field P on ℝn, which is defined by P(p) = Ipp, can be
written P = ∑i u

iDi.

When f is a constantmap, the vector field is said to be parallel; equivalently, such

a vector field is obtained by parallel translating its value at any one point to every

other point.

It is useful to introduce a more general concept:

Definition 2.8.4. Let f : U ⊂ ℝn → ℝm be a map. A vector field along f is a map X
that assigns to each p ∈ U an element X(p) ∈ ℝm

f (p) of the tangent space of ℝm at

f (p). As above, such a field X is represented by a unique map g : U → ℝm, where

X(p) = (f (p), g(p)), and X is said to be smooth if g is.

A recurring example of such a vector field is the velocityfield or tangent field of a curve

c : I → ℝn: by definition it is the vector field ċ along c given by

ċ(t) = Ic(t)c(t), t ∈ I.
Alternatively,

ċ(t) = c∗tD(t).
For example, if c(t) = (cos t, − sin t), then

ċ(t) = − sin tD1 ∘ c(t) − cos tD2 ∘ c(t) = (u2D1 − u1D2) ∘ c(t).
Notice that if X is the vector field from Figure 2.2, then ċ = X ∘ c; i.e., the “restriction”
of X to the image of c is the velocity field of the curve.

Definition 2.8.5. An integral curve of a vector fieldX is a curve c that satisfies ċ = X ∘c.
It turns out that for any one point in the domain of a given vector field, there exists

an integral curve of that field that passes through the point. This remarkable fact is a

consequence of a basic theorem from the theory of ordinary differential equations, a

proof of which can be found for example in [9]. The relation between integral curves

and differential equations stems from the fact that if X is represented by f : U → ℝn,

then c is an integral curve of X if and only if c = f ∘ c; in terms of the components

xi = ui ∘ c and f i = ui ∘ f of c and f respectively, this is equivalent to the system of

ordinary differential equations (ODEs)

x1(t) = f 1(x1(t), . . . , xn(t))
...

xn(t) = f n(x1(t), . . . , xn(t))
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We state without proof the existence and uniqueness theorems for integral curves of

vector fields:

Theorem 2.8.1 (Existence of Solutions). Let f : U → ℝn be a differentiablemap,where

U is open inℝn. For any a ∈ U, there exists a neighborhoodW of a, an interval I around
0 ∈ ℝ, and a differentiablemapΨ : I ×W → U such that

(1) Ψ (0,u) = u, and
(2) DΨ (t,u)e1 = f ∘ Ψ (t,u)
for t ∈ I and u ∈ W.

Recalling that maps f : U → ℝn are in bijective correspondence with vector fields

X defined on U, Theorem 2.8.1 asserts that integral curves t → cu(t) := Ψ (t,u) exist
for arbitrary “initial conditions” cu(0) = u, that they depend smoothly on the initial

conditions, and that at least locally, they can be defined on a fixed common interval.

A mapΨ as in the above theorem is called a local flow of X.
In the same way, uniqueness of solutions of the above systemof differential equa-

tions implies uniqueness of integral curves:

Theorem 2.8.2 (Uniqueness of Solutions). If c, c̃ : I → U are two integral curves of a

vector field X with c(t0) = c̃(t0) for some t0 ∈ I, then c = c̃.

Our next aim is to group all local flows into a single one so that the corresponding

integral curves are defined on a maximal interval: For each a ∈ U, let Ia denote the

maximal open interval around0onwhich the (uniquebyTheorem2.8.2) integral curve

Ψa of X that equals a at 0 is defined.

Theorem 2.8.3. Given any vector field X on U ⊂ ℝn, there exists a unique open set

W ⊂ ℝ × U and a unique differentiablemapΨ : W → U such that

(1) Ia × {a} = W ∩ (ℝ × {a}) for all a ∈ U, and

(2) Ψ (t,a) = Ψa(t) if (t,a) ∈ W.

Ψ is called the flow ofX. By (2), {0} ×U ⊂ W, and (1), (2) of Theorem 2.8.1 are satisfied.

Proof. (1) determines W uniquely, while (2) does the same for Ψ . It thus remains to

show thatW is open, and thatΨ is differentiable.

Ia
a

ℝ

U

W

The domain W of a flow
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Fix a ∈ U, and let I denote the set of all t ∈ Ia for which there exists a neighborhood of

(t,a) contained inW onwhichΨ is differentiable.Wewill establish that I is nonempty,

open and closed in Ia, so that I = Ia by Proposition 1.7.1: I is nonempty because 0 ∈ I

by Theorem 2.8.1, and is open by definition. To see that it is closed, consider a point t0
in the closure ̄I of I; by 2.8.1, there exists a local flow Ψ  : I × V → U with 0 ∈ I and
Ψa(t0) ∈ V. Let t1 ∈ I be close enough to t0 that t0 − t1 ∈ I (recall that t0 belongs to
the closure of I) and Ψa(t1) ∈ V (by continuity of Ψa). Choose an interval I0 around

t0 such that t − t1 ∈ I for t ∈ I0. Finally, by continuity of Ψ at (t1,a), there exists a
neighborhood V of a such thatΨ (t1 × V) ⊂ V.
We claim that Ψ is defined and differentiable on I0 × V, so that t0 ∈ I: Indeed, if

t ∈ I0 and u ∈ V, then by definition of I0 and V, t − t1 ∈ I and Ψ (t1, u) ∈ V, so that
Ψ (t − t1,Ψ (t1, u)) is defined. The curve s → Ψ (s − t1,Ψ (t1,u)) is an integral curve of
X which equalsΨ (t1,u) at t1. By uniqueness,Ψ (t,u) = Ψ (t − t1,Ψ (t1,u)) is defined,
and Ψ is therefore differentiable at (t,u).
A vector field onU is said to be complete if its flowhas domain ℝ×U; i.e., if its integral
curves are defined for all time. The vector field on ℝ2 from Figure 2.2 is complete. The

vector field X on ℝ, with X(t) = −t2D(t), is not: for a ̸= 0, the maximal integral curve

ca of X with ca(0) = a is given by ca(t) = 1/(t + 1/a), since
̇ca(t) = −( 1

t + 1
a

)2

D( 1

t + 1
a

) = X( 1

t + 1
a

) = (X ∘ ca)(t).
Example 2.8.1. Consider a vector field X on ℝn of the form

X =
n∑
i=1

( n∑
j=1

aiju
j)Di, aij ∈ ℝ.

Notice that X(u) = Iu(Au), whereA is the square matrix (aij). Thus, c : I → ℝn is an in-

tegral curve of X if and only if c = Ac. Writing out this equation in components yields

a so-called linear system of ordinary differential equations with constant coefficients

x1(t) =
n∑
i=1

a1ixi(t)

...

xn(t) =
n∑
i=1

anixi(t)

where xi = ui ∘ c. We claim that X is complete. In fact, the integral curve of X that

passes through u ∈ ℝn at time 0 is given by

c : ℝ → ℝn,
t → etAu.
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Indeed, by Exercise 1.50,

c(t) = lim
h→0

c(t + h) − c(t)
h

= lim
h→0

e(t+h)Au − etAu
h

= (lim
h→0

ehA − In
h

) etAu

= A ⋅ c(t),
where the last line follows from the series definition of the exponential, cf. Examples

and Remarks 1.9.1 (ii).

For example, if X = u2D1 − u1D2 is the vector field from Figure 2.2, the associated

matrix is

A = [ 0 1−1 0
] ,

and by Examples and Remarks 1.9.1 (iii), the integral curve c ofX with c(0) = u is given
by

c(t) = Φ (t,u) = [ cos t sin t− sin t cos t
] ⋅ u,

whereΦ denotes the flow of X.

Definition 2.8.6. Let X denote a vector field along a curve c : I → ℝn, so that X(t) =
Ic(t)c1(t) for some curve c1 with the same domain as c. The covariant derivative ofX at

t ∈ I is the tangent vector

X(t) = Ic(t)c1(t) ∈ ℝn
c(t).

Thus, the covariant derivative of a vector field along a curve is again a vector field

along the same curve. For example, if P is the position vector field on ℝn and c is any
curve, then the velocity field of c can be written as

ċ = (P ∘ c). (2.8.2)

This is because (P ∘ c)(t) = Ic(t)c(t), so that

(P ∘ c)(t) = Ic(t)c(t) = ċ(t).
Definition 2.8.7. (1) Let X denote a vector field on U ⊂ ℝn. For p ∈ U, u ∈ ℝn

p, the

covariant derivative DuX of X with respect to u is defined to be

DuX := (X ∘ c)(0),
where c is any curve with ċ(0) = u.

(2) If f is a function on U, the derivative of f with respect to u is by definition the

number

u(f ) := (f ∘ c)(0),
with c as above.



100 | 2 Differentiation

It must of course be checked that this definition is independent of the particular curve

chosen. Let f : U → ℝn denote the map I−1 ∘ X representing X; i.e., X(p) = Ipf (p),
p ∈ U. Then for any curve c with ̇c(0) = u,

(X ∘ c)(0) = Ic(0)(f ∘ c)(0) = Ic(0)Df (p)c(0) = IpDf (p)I−1p u,
and thederivative is indeed independent of the curve. Theargument for thedirectional

derivative of a function is similar. Recalling that If (p) ∘ Df (p) = f∗p ∘ Ip, the right side
of the above equality may be rewritten as IpI−1f (p)f∗pu. The identity

DuX = IpI−1f (p)f∗pu, f = I−1 ∘ X, (2.8.3)

says that the covariant derivative of a vector field represented by amap f with respect
to a given tangent vector u at a point p is essentially the ordinary derivative f∗u. The
latter, however, is a vector based at f (p), and must therefore be parallel translated

back top. Similarly, if the tangent vector u equals Ipvwith v ∈ ℝn, then u(f ) = Df (p)v.
The motivation behind the somewhat strange notation u(f ) is that when u = Di(p),
then u(f ) equals the i-th partial derivative of f at p; i.e., Di(p)(f ) = Dif (p).

More generally, one can define covariant derivatives of vector fields along maps

by using the same equation as in Definition 2.8.7:

Definition 2.8.8. Let f : ℝn ⊃ U → ℝm, X a vector field along f . Given p ∈ U, u ∈ ℝn
p,

define the covariant derivative of X with respect to u to be DuX = (X ∘ c)(0), where c is
a curve in U with ċ(0) = u.

Of course, if f is the identity map, one recovers the original concept from Defini-

tion 2.8.7. On the other hand, if X is a vector field on ℝm and f : ℝn ⊃ U → ℝm, then

X ∘ f is a vector field along f , and by the above definition, Du(X ∘ f ) = (X ∘ f ∘ c)(0),
where c is a curve with ċ(0) = u. But f ̇∘c(0) = f∗u, so that

Du(X ∘ f ) = Df∗uX. (2.8.4)

Similarly, if φ : ℝm → ℝ, then
u(φ ∘ f ) = f∗u(φ). (2.8.5)

Examples 2.8.2. (i) The “coordinate vector field”Di is parallel, meaning that DuDi =

0 for any u. More generally, a vector field X defined on U ⊂ ℝn is parallel if and

only it is of the form

X = a1D1 + ⋅ ⋅ ⋅ + anDn, a1, . . . , an ∈ ℝ.
(ii) The position vector field P is represented by the identity map. Since the derivative

of the identity is the identity,

DuP = u
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for any vector u. Alternatively, this also follows directly from (2.8.2) together with

the definition of covariant derivative.

(iii) The accelerationof a curve c : I → ℝn is the vector field ċ along c. It follows from
the definition that ċ = Icc. In particular, c has zero acceleration if and only if c
is a constant vector v, and in this case c(t) = c(0) + tv; the image of c is a straight
line parallel to v.

(iv) The gradient of a function f : U ⊂ ℝn → ℝ is the vector field ∇f on U given by∇f (p) = Ip[Df (p)]T, p ∈ U. Alternatively,∇f = ∑
i

(Dif )Di.
The inner product in ℝn induces one in each tangent spaceℝn

p, by setting⟨Ipu,Ipv⟩ := ⟨u, v⟩, p,u, v ∈ ℝn.
This collection of inner products is called the standard flat Riemannian metric on ℝn.

As a first application, we shall derive a geometric interpretation of the gradient

vector field of a function f . When u is a unit vector (meaning u has norm 1), the deriva-

tive u(f ) is called the directional derivative of f in direction u. It measures how fast f

is changing along a curve that has u as velocity vector. If ∇f (p) ̸= 0, we claim that

(∇f/|∇f |)(p) is the direction of greatest increase of f at p, and −(∇f/|∇f |)(p) the direc-
tion of greatest decrease: indeed, for any unit u ∈ ℝn

p, if c is a curve with ċ(0) = u,

u(f ) = (f ∘ c)(0) = [Df (p)]c(0) = ⟨[Df (p)]T , c(0)⟩ = ⟨∇f (p),u⟩,
so that if θ denotes the angle between u and ∇f (p), then

u(f ) = ⟨∇f (p),u⟩ = |∇f (p)||u| cos θ = |∇f (p)| cos θ .
This expression is maximal when θ = 0, i.e., when u points in the direction of∇f , and
minimal when θ = π , which corresponds to the opposite direction. The level sets of

f : ℝn ⊃ U → ℝ are the sets f−1(c) = {p ∈ U | f (p) = c}, c ∈ ℝ. It follows from the above

that the gradient of f is alwaysorthogonal to these level sets; i.e., if c is a smooth curve

contained in a level set, then ⟨(∇f ) ∘c, ċ⟩ = (f ∘c) ≡ 0. For example, topographic maps

of a region usually feature curves connecting points at the same altitude. These curves

are the level curves (also called contour lines) of the altitude function, and traveling in

a direction perpendicular to themmeans you are following the path of steepest ascent

or descent.

Notice that for vector fields X, Y on U, ⟨X,Y⟩ is a function on U, if we let⟨X,Y⟩(p) = ⟨X(p),Y(p)⟩. In much the same way, given f : U → ℝ, define new

vector fields fX + Y and DXY on U by

(fX + Y)(p) := f (p)X(p) + Y(p), DXY(p) := DX(p)Y , p ∈ U.
Similarly, ifY is a vectorfieldonℝm , andX avectorfieldalong amap f : ℝn ⊃ U → ℝn,

the formula DXY(p) := DX(p)Y, for p ∈ U, defines a vector field along f .
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Theorem 2.8.4. Let X, Y denote vector fields on U ⊂ ℝn, f : U → ℝ, a ∈ ℝ. Given
p ∈ U, u ∈ ℝn

p,

(1) Du(aX + Y) = aDuX + DuY;
(2) Dau+vX = aDuX + DvX;
(3) Du(fX) = (u(f ))X(p) + f (p)DuX;
(4) DfXY = fDXY;
(5) Let X, Y denote vector fields along a map f : ℝn ⊃ U → ℝm, p ∈ U, u ∈ ℝn

p. Then

Du⟨X,Y⟩ = ⟨DuX,Y(p)⟩ + ⟨X(p),DuY⟩.
Proof. (1), (2), and (4) are left as easy exercises. For (3), let g = I−1X (as always, in the

sense that X(p) = Ipg(p)) . If c is a curve with ċ(0) = u, then

DufX = ((f ∘ c)(X ∘ c))(0) = Ip((f ∘ c)(g ∘ c))(0)
= Ip(f (p)(g ∘ c)(0) + (f ∘ c)(0)g(p))
= f (p)Ip(g ∘ c)(0) + (f ∘ c)(0)Ipg(p)
= f (p)DuX + (u(f ))X(p).

To prove (5), let c : I → U denote a curve with ċ(0) = u. ThenX∘c = Ic f and Y ∘c = Icg
for some curves f , g : I → ℝm. Since ⟨X,Y⟩ ∘ c = ⟨f , g⟩, Corollary 2.2.1 implies

Du⟨X,Y⟩ = ⟨f , g⟩(0) = ⟨f , g⟩(0) + ⟨f , g⟩(0)
= ⟨Ic f , Ic g⟩(0) + ⟨Ic f , Ic g⟩(0)
= ⟨DuX,Y(p)⟩ + ⟨X(p),DuY⟩.

The following is an immediate application of the above theorem together with Exam-

ples 2.8.2 (i):

Corollary 2.8.1. Let X be a vector field on U ⊂ ℝn, and write

X = ∑
i

XiDi, Xi = ⟨X,Di⟩, i = 1, . . . , n.
Then DuX = ∑i(u(Xi))Di(p) for any vector u ∈ ℝn

p, p ∈ U.

Example 2.8.3. Consider the vector fields X and Y inℝ2, where

X = u1 sin u2D1 + (1 + eu
2

)D2, Y =
u2

1 + (u1)2
D1 + 3D2.

By Theorem 2.8.4 and the fact that the Di are parallel,

DXY = u1 sin u2DD1
Y + (1 + eu

2

)DD2
Y

= u1 sin u2D1 ( u2

1 + (u1)2
)D1 + (1 + eu

2

)D2 ( u2

1 + (u1)2
)D1

= (−2(u1)2u2 sin u2
(1 + (u1)2)2

+
1 + eu

2

1 + (u1)2
)D1.



2.9 Lie brackets | 103

2.9 Lie brackets

If X is a vector field on an open set U in Euclidean space, one can associate to any

function f : U → ℝ a new function Xf by the formula

(Xf )(p) = X(p)(f ), p ∈ U.
Notice that if X̃ : U → ℝn denotes themap I−1 ∘X representing the vector fieldX, then
for f : U → ℝ,

Xf = Df (X̃). (2.9.1)

Indeed, if c denote the maximal integral curve of X with c(0) = p ∈ U, then

X(p)(f ) = (f ∘ c)(0) = Df (c(0))c(0) = Df (p)X̃(p).
An important special case of (2.9.1) is that the i-th component Xi of a vector field X =∑i X

iDi on U is given by

Xi = ⟨X,Di⟩ = ui ∘ X̃ = Dui(X̃) = Xui, (2.9.2)

since ui, being a linear map, equals Dui.

Given vector fields X, Y, and a function f , set XYf := X(Yf ).

Lemma 2.9.1. Let X and Y be vector fields on an open set U ⊂ ℝn. Then there exists a

unique vector field [X,Y] on U such that

D[X,Y]f = (XY − YX)f

for any function f on U. [X,Y] is called the Lie bracket of X and Y .

Proof. Write X = ∑i X
iDi, and similarly for Y. Then

XYf = ∑
j

X(YjDjf ) = ∑
i,j
XiDi(Y

jDjf )

= ∑
i,j
XiYjDij f + XiDiY

jDjf .
Thus,

(XY − YX)f = ∑
j

(∑
i

XiDiY
j − YiDiX

j)Djf .
Now, if v1 and v2 are two vectors in ℝn

p such that v1f = v2f for every function f , then

the vectors are equal: indeed, taking f = ui in (2.9.2) shows that the i-th components

of both vectors coincide. This proves uniqueness in the definition of the bracket. Ex-

istence is also clear: define

[X,Y] = ∑
j

(∑
i

XiDiY
j − YiDiX

j)Dj. (2.9.3)
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Together with Theorem 2.2.4, Lemma 2.9.1 immediately implies that [Di,Dj] = 0. It
turns out that the Lie bracket of two vector fields measures the amount by which their

flows fail to commute; specifically, we will see that if X has flowΦ and Y has flowΨ ,

then [X,Y] ≡ 0 if and only ifΦ t ∘Ψ s = Ψ s ∘Φ t for all s, t, whereΦ t(a) = Φ (t,a), etc.
But first, we state some general properties of the bracket:

Proposition 2.9.1. [X,Y] = DXY − DYX.

Proof.

DXY = ∑
j

(XYj)Dj = ∑
j

((∑
i

XiDiY
j))Dj = ∑

i,j
XiDiY

jDj,
and a similar expression holds for DYX. The claim now follows from (2.9.3).

More generally, we have:

Theorem 2.9.1. Let f : ℝn ⊃ U → ℝm. If X, Y are vector fields on U, then

f∗[X,Y] = DXf∗Y − DYf∗X.
Proof. Write X = ∑i X

iDi as usual, and similarly for Y. Then

f∗Y = ∑
j

Yjf∗Dj = ∑
i,j
(YjDj f

i)Di ∘ f ,
so that

DXf∗Y = ∑
k

XkDk (∑
i,j
(YjDj f

i)Di ∘ f)
= ∑

i,j,k
Xk[(DkY

j)(Dj f
i) + Yj(DkDj f

i)]Di ∘ f .
Thus,

DXf∗Y − DYf∗X = ∑
i,j,k
[Xk(DkY

j) − Yk(DkX
j)](Dj f

i)Di ∘ f
+ ∑

i,j,k
[XkYjDkj f

i − YkXjDkj f
i]Di ∘ f .

The second sum in the above identity vanishes, because

∑
j,k
XkYjDkj f

i − YkXjDkj f
i = ∑

j,k
XkYjDkj f

i − YjXkDjk f
i

= ∑
j,k
XkYj(Dkj f

i − Djk f
i) = 0.
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Therefore

DXf∗Y − DYf∗X = ∑
j,k
[Xk(DkY

j) − Yk(DkX
j)]f∗Dj

= ∑
j

(X(Yj) − Y(Xj))f∗Dj

= f∗∑
j

[DX(Y
jDj) − DY (X

jDj)] = f∗(DXY − DYX)

= f∗[X,Y].
Proposition 2.9.2. Let X, Y , Z denote vector fields on U ⊂ ℝn, f , g : U → ℝ, c ∈ ℝ.
Then

(1) [cX + Y , Z] = c[X,Z] + [Y ,Z];
(2) [Y ,X] = −[X,Y];
(3) [X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y]] = 0;

(4) [fX,Y]g = f [X,Y]g − (Yf )(Xg).
Proof. The first two properties are immediate. For (3), write

[X, [Y ,Z]]f = (XYZ − XZY − YZX + ZYX)f .
Writing out the other two remaining terms in the same way and summing, one easily

sees that all the terms cancel. To establish the last property, we compute

[fX,Y]g = fX(Yg) − Y((fX)g) = fXYg − Y(f (Xg))
= fXYg − (Yf )(Xg) − fYXg
= f [X,Y]g − (Yf )(Xg).

A vector space V togetherwith an operation [, ] : V×V → ℝ that satisfies the first three

properties of Proposition 2.9.2 is called a Lie algebra. The third property is known as

the Jacobi identity.

Let U ⊂ ℝn, X a vector field on U, and f : U → ℝn. For each p ∈ U, f∗X(p) is a
vector inℝn

f (p), but in general, this formula does not define a vector field on f (U), since
f may not be injective. If Y is a vector field on f (U), X and Y are said to be f -related if
f∗X = Y ∘ f .
Theorem 2.9.2. If Xi is f -related to Yi, i = 1, 2, then [X1,X2] is f -related to [Y1,Y2].

Proof. Wewill show that the i-th components of f∗[X1,X2] and [Y1,Y2] ∘ f coincide. By
(2.9.2), that of the latter equals

([Y1,Y2] ∘ f )ui = (Y1 ∘ f )Y2u
i − (Y2 ∘ f )Y1u

i,
which by (2.8.5) can be written

(f∗X1)Y2u
i − (f∗X2)Y1u

i = X1((Y2u
i) ∘ f ) − X2((Y1u

i) ∘ f )
= [X1,X2](u

i ∘ f )
= f∗[X1,X2]u

i,
thereby establishing the claim.
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Our next goal is to derive an alternative characterization of the bracket, one that in-

volves the flow of the first vector field. For this, we need the following:

Lemma 2.9.2. Let I be an interval containing 0. Then any function f : I → ℝ may be

written as f (t) = f (0) + tg(t), where g(0) = f (0).

Proof. Fix any t ∈ I, and define φ : [0, 1] → ℝ by φ(s) = f (st). Then

f (t) − f (0) = φ(1) − φ(0) =

1∫
0

φ (s) ds = t

1∫
0

f (st) ds = tg(t),
where g(t) = ∫1

0
f (st) ds.

Theorem 2.9.3. Given vector fieldsX, Y on an open set U ⊂ ℝn, and p ∈ U,

[X,Y](p) = lim
t→0

Φ −t∗Y(Φ t(p)) − Y(p)
t

,
whereΦ denotes the flow of X, andΦ t(q) := Φ (t,q), q ∈ U.

Proof. The plan is to show that the two vectors in the above identity have the same

components. The i-th component of the one on the left is([X,Y]ui) (p) = (X(p)Y − Y(p)X) (ui).
As usual, denote by Ỹ : U → ℝn the map I−1 ∘ Y representing the vector field Y. The
i-th component Zi of the right side prior to taking limits is

1

t
[ui ∘ DΦ −t(Φ t(p))(Ỹ(Φ t(p))) − ui ∘ Ỹ (p)]

=
1

t
[D(ui ∘Φ −t)(Φ t(p))(Ỹ(Φ t(p))) − ui ∘ Ỹ (p)]

by the chain rule and the fact thatDui = ui,ui being linear. Now, if h(t,p) = (ui∘Φ )(t,p),
then by the previous lemma, h(t,p) = ui(p) + tg(t,p), where g(0,p) = D1h(0,p) =

D1(u
i ∘Φ )(0,p). By Theorem 2.8.1 (2), the latter equals ui(X̃(p)), whichmay be written

as X(p)(ui). Setting gt(q) = g(t,q), we conclude that
ui ∘Φ −t = ui − tg−t, g0 = Xui.

Thus,

Zi =
1

t
[Dui(Φ t(p))(Ỹ (Φ t(p))) − ui(Ỹ(p))] − Dg−t(Φ t(p))(Ỹ(Φ t(p)))

=
1

t
[(ui ∘ Ỹ)(Φ t(p)) − ui(Ỹ(p))] − Dg−t(Φ t(p))(Ỹ(Φ t(p))).

Taking limits as t → 0 and recalling that t → Φ t(p) is the integral curve of X passing

through p at time 0, we deduce that the i-th component of the right side is

X(p)(ui ∘ Ỹ) − Dg0(p)(Ỹ(p)) = X(p)(Yui) − D(Xui)(p)Ỹ(p)
= X(p)(Yui) − Y(p)(Xui),

as claimed.
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(1,1) Φ1(1,1) Φ2(1,1)

X(Φ1(1,1))
X(Φ2(1, 1))c(2) = Φ−2∗X(Φ2(1, 1))

c(1)

c(0)

For X = u1D2 − u2D1, the bracket

[D1,X](1,1) equals c(0) = D2(1, 1),
where c(t) = Φ−t∗X(Φt(1, 1)), and Φ

is the flow of D1

Our last goal in this section is to use the above theorem and prove that the bracket of

two vector fields is identically zero if and only if their flows commute. We begin with

the following:

Lemma 2.9.3. Let U be an open set inℝn, f : U → f (U) ⊂ ℝn a diffeomorphism, and X
a vector field onU with flowΦ . ThenX is f -related to itself if and only if f ∘Φ t = Φ t ∘ f .
Here, as always,Φ t = Φ (t, ⋅).
Proof. Fix any q ∈ f (U), and consider the curve 𝛾, where

𝛾(t) = (f ∘Φ t ∘ f−1)(q).
The curve t → c(t) := (Φ t ∘ f−1)(q) = (f−1 ∘ 𝛾)(t) is by definition an integral curve of X,
so that

�̇� = f∗(ċ) = f∗ ∘ X ∘ c = (f∗ ∘ X ∘ f−1) ∘ 𝛾.
Thus, the vector field f∗ ∘ X ∘ f−1 has flow Ψ , where Ψ t = f ∘ Φ t ∘ f−1. The claim
follows, since X is f -related to itself if and only if f∗ ∘ X ∘ f−1 = X; i.e., if and only if

Φ t = f ∘Φ t ∘ f−1.

p

Ψs(p) Φt(p)

Φt ∘ Ψs(p) = Ψs ∘ Φt(p)

The flows Φ of X = u1D1 + u2D2 (in

blue) and Ψ of Y = u1D2 − u2D1 (in red)

commute
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Theorem 2.9.4. LetΦ andΨ denote the flows of X and Y . Then [X,Y] ≡ 0 if and only

if these flows commute; i.e.,Φ t ∘Ψ s = Ψ s ∘Φ t for all s, t.

Proof. IfΦ t ∘Ψ s = Ψ s ∘Φ t, then Y isΦ t-related to itself for every t by Lemma 2.9.3;

i.e.,Φ t∗Y = Y ∘ Φ t, and by Theorem 2.9.3,

[X,Y](p) = lim
t→0

Φ −t∗Y(Φ t(p)) − Y(p)
t

= lim
t→0

Y(p) − Y(p)
t

= 0

for every p. Conversely, suppose the vector fields have vanishing bracket, and for

any fixed p, consider the curve c in the tangent space ℝn
p of ℝn at p given by c(t) =

Φ −t∗Y(Φ t(p)). We will be done (again by the lemma) once we show that c(t) = c(0) =
Y(p) for all t; i.e., once we establish that c ≡ 0. Vanishing of the Lie bracket implies,
by Theorem 2.9.3, that c(0) = 0. But if q = Φ t(p) for any given fixed t, then using

Exercise 2.28, we obtain

c(t) = lim
h→0

c(t + h) − c(t)
h

= lim
h→0

1

h
[Φ −(t+h)∗ ∘ Y ∘Φ t+h(p) −Φ −t∗ ∘ Y ∘Φ t(p)]

= lim
h→0

1

h
Φ −t∗ [(Φ −h∗ ∘ Y ∘Φ h)(Φ t(p)) − Y(Φ t(p))]

= Φ −t∗ lim
h→0

1

h
[(Φ −h∗ ∘ Y ∘Φ h)(q) − Y(q)] = Φ −t∗c(0)

= 0.
More generally, given p ∈ ℝn, define a curve cp on an interval around 0 by

cp(t) = (Ψ −t ∘Φ −t ∘Ψ t ∘Φ t)(p).
If the bracket of X and Y is identically zero, then cp(t) = p for all t. When the bracket

is nonzero, the curve cp is no longer constant. In the exercises, however, the reader

is asked to show that cp(0) = 0. It can be shown that the acceleration of cp at 0

measures the bracket; specifically, for any smooth function f : U → ℝ defined on

a neighborhood U of p,
(f ∘ cp)(0) = 2[X,Y](p)(f ).

2.10 Partitions of unity

In this section, we introduce a concept that plays a key role both in the theory of

integration and that of manifolds.

Let A ⊂ ℝn. Recall that a collection C of (not necessarily open) subsets of ℝn is

said to be a cover of A if A is contained in the union of all the sets in C. C is said to be
locally finite if every a ∈ A admits a neighborhood that intersects only finitely many

sets in C.
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Definition 2.10.1. A partition of unity for A ⊂ ℝn is a collection Φ of differentiable

functions defined on some open set containing A such that

(1) 0 ≤ φ ≤ 1 for all φ ∈ Φ ;

(2) The collection {suppφ | φ ∈ Φ } is a locally finite cover of A;
(3) ∑φ∈Φ φ(a) = 1 for all a ∈ A.

Even thoughΦ may be an infinite collection, the sum in (3) makes sense because by

(2), onlyfinitelymanyφ arenonzeroon someneighborhood of anygivenpoint. In fact,

only finitely many φ are nonzero on any given compact set C ⊂ A: by (2), any p ∈ C

has a neighborhood on which only finitely many φ are not identically zero. Since C is

compact, it can be covered by finitely many such sets.

Theorem 2.10.1. Any A ⊂ ℝn admits a partition of unity Φ . Furthermore, if {Uα}α∈J is
an open cover of A, then Φ may be chosen to be subordinate to the cover; i.e., for any

φ ∈ Φ, there exists α ∈ J such that suppφ ⊂ Uα.

Proof. Both statementswill be consideredat the same time; inotherwords,weassume

some open cover{Uα }α∈J of A is given (if none is given, we take it to be {ℝn}). For each
a ∈ A, choose some Uα that contains it, and some bounded open neighborhood Va of

a whose closure is contained in Uα . The collection {Va | a ∈ A} is an open cover of A,

which, by Theorem 1.7.5, contains a countable subcover {V1,V2, . . . }. By construction,
for each i ∈ ℕ there exists some αi ∈ J such that Vi ⊂ Uαi

. We may now appeal

to Theorem 2.2.5 to assert the existence of smooth functions φ̃i : ℝn → ℝ, i ∈ ℕ,

satisfying

0 ≤ φ̃i ≤ 1, φ̃
i|Vi

≡ 1, supp φ̃i ⊂ Uαi
.

Set φ1 = φ̃1, and

φi = (1 − φ̃1) ⋅ ⋅ ⋅ (1 − φ̃i−1)φ̃i, i > 1.
Notice that suppφi ⊂ supp φ̃i ⊂ Uαi

, so that the collection of supports is subordinate

to the original cover. Furthermore, it is locally finite: given any a ∈ A, choose some

Vi that contains it. Then φ̃i equals 1 on Vi, and by definition, φk vanishes on Vi for all

k > i. Finally, an easy induction argument shows that

k∑
i=1

φi = 1 − (1 − φ̃1) ⋅ ⋅ ⋅ (1 − φ̃k), k ∈ ℕ,
so that on Vk (where 1 − φ̃k is identically zero),

∞∑
i=1

φi|Vk
=

k∑
i=1

φi|Vk
= 1 − 0 = 1.

Since the Vk cover A, ∑i φi is identically 1 on A.

Remarks 2.10.1. (i) The proof of the Theorem shows that when the cover {U1, . . . ,Uk}
of A is finite, the partition of unity Φ may be assumed to consist of the same
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number of elements; i.e.Φ = {φ1, . . . ,φk}, with suppφi ⊂ Ui. It also shows that in

general, the partition of unity is countable.

(ii) We are now in a position to prove the claim made is Section 2.2, that given any

open set U ⊂ ℝn, any p ∈ U, and any (not necessarily compact) neighborhood V

of p whose closure is contained in U, there exists a smooth function φ : ℝn → ℝ,
0 ≤ φ ≤ 1, that equals 1 on the closure on V and has its support inside U: indeed,

since {U, ℝn \ V} is an open cover of ℝn, there exists a partition of unity {ψ1,ψ2}
subordinate to this cover, with suppψ1 ⊂ U and suppψ2 ⊂ ℝn \V. Settingφ = ψ1

yields the claim: its support lies in U, and since ψ2 vanishes on V, φ must equal

1 there.

2.11 Exercises

2.1. Find the derivative of each of the followingmaps:

(1) f (x, y, z) = (xy)z;

(2) g(x, y, z) = x(y
z );

(3) h(x, y, z) = (x cos(yez), sin√x2 + z2 + 1).

(4) k(x, y, z,w) = ((x − y)e(z+w2), cos(sin(log y4 + z2 + 5)), 1/(x2 + y2 + z2 + w2 + 1)).

2.2. Let f : ℝ2 → ℝ be given by f (x, y) = x2y + cos ex+y, and c : ℝ → ℝ2 by c(t) =
(t − 1, t2 + 1).

(a) Use the chain rule to determine (f ∘ c)(t) and D(c ∘ f )(x, y);
(b) Check your answers in (a) by computing f ∘ c, c ∘ f and evaluating their derivatives

directly.

2.3. Suppose g : ℝ3 → ℝ has Jacobian matrix [1 1 1] at (1,1,0). Find Df (1,1,1),
if f (x, y, z) = g(x2, yz, x − y).

2.4. Suppose c : I → ℝn is a curve such that the position vector c(t) is always orthog-
onal to the velocity vector c(t). Show that the image of c lies in some sphere centered

at the origin.

2.5. Let f : ℝ2 → ℝ, and define g : ℝ2 → ℝ by g(r, θ ) = f (r cos θ , r sin θ ). Express the
partial derivatives of g in terms of those of f .

Many Calculus texts write these partial derivatives in polar coordinates as𝜕f𝜕r = 𝜕f𝜕x cos θ +
𝜕f𝜕y sin θ ,

and another expression for the derivative of f with respect to θ . Explain why, even

though the notation is suggestive, the formula is incorrect or at least ambiguous.

2.6. Answer the samequestionas in the previousproblem, but for a function f : ℝ3 →ℝ of 3 variables, and for spherical coordinates.
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2.7. If E is a vector space, and f : E → ℝm is a map, we say f is differentiable if

f ∘ L : ℝn → ℝm is differentiable for some isomorphism L : ℝn → E.

(a) Prove that this definition makes sense; i.e. it is independent of the choice of L.

(b) Explain why one recovers the usual concept of differentiability when E = ℝn.

(c) Show that any linear transformation T : E → ℝm is differentiable.

2.8. Let E be an inner product space. Prove that the function f : E → ℝ given by

f (u) = |u| is differentiable at any point other than the origin, and is not differentiable

at 0 (see Exercise 2.7). Find Df (u).

2.9. Let E be an inner product space, f : E → ℝ a function satisfying |f (u)| ≤ |u|α for
all u ∈ E and some α > 1. Show that f is differentiable at0 and findDf (0). (Notice that
the conclusion is false if α = 1 by Exercise 2.8.)

2.10. Determine whether f : ℝn → ℝ, where
f (a) =

{{{
sin |a|3
|a| if a ̸= 0

0 if a = 0,
is differentiable at the origin, and if yes, find Df (0).

2.11. Suppose f : ℝn → ℝm satisfies f (ta) = tf (a) for all a ∈ ℝn and t ∈ ℝ. Prove
that if f is differentiable at the origin, then f is linear. Hint: It is enough to show that

f = Df (0).

2.12. A function f : ℝn → ℝ is said to be homogeneous of degree k if f (ta) = tkf (a)
for all a ∈ ℝn, t ∈ ℝ, and some k ∈ ℕ. Show that if f is homogeneous of degree k and

differentiable, then

f =
1

k

n∑
i=1

uiDif .
2.13. Show, bymeansof anexample, that in anarbitrarymetric spaceX, a contraction

X → X does not necessarily have a fixed point (in this case, X cannot of course be

complete).

2.14. Let U denote a convex open set in ℝn, f : U → ℝm a differentiable map, and

a,b ∈ U. Prove the mean value theorem: For any u ∈ ℝm, there exists some c on the

line segment joining a and b such that

⟨u, f (b) − f (a)⟩ = ⟨u,Df (c)(b − a)⟩.
Hint: Set v = b − a, and apply the ordinary mean value theorem to g on [0,1], where
g(t) := ⟨u, f (a + tv)⟩.
2.15. (a) Show that the mean value theorem from Exercise 2.14 does indeed general-

ize the ordinary mean value theorem.
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(b) SupposeU is a convex open set inℝn,a,b ∈ U, f : U → ℝ adifferentiable function.

Prove that there exists some c on the line segment joining a and b such that

f (b) − f (a) = Df (c)(b − a) = ⟨∇f (c),b − a⟩.
2.16. Prove that a linear isometry of an inner product space has determinant ±1.
2.17. Show that if T : V → W is a linear isometry and L is a self-adjoint (respectively

skew-adjoint) operator on W, then T−1 ∘ L ∘ T is a self-adjoint (resp. skew-adjoint)

operator on V.

2.18. The orthogonal group O(n) ⊂ Mn,n is the collection of all n × n orthogonal ma-

trices. Suppose c : I → O(n) is a smooth curve with c(0) = In. Prove that c(0) is
skew-adjoint: c(0) + cT (0) = 0.

2.19. (a) Find the derivative of the determinant det : Mn,n ≅ ℝn2 → ℝ.
(b) The special linear group is the subset Sl(n) ⊂ Mn,n consisting of all matrices with

determinant 1. Suppose c : I → Sl(n) is a smooth curve with c(0) = In. Prove that

c(0) has trace equal to zero.

2.20. Prove that there exists a differentiable function f defined on some neighbor-

hood of (1, 0) ∈ ℝ2 satisfying x log f (x, y) + yf (x, y) = 0.

2.21. Find and classify all critical points of f , if f (x, y) = ex
2−y2+1.

2.22. Find and classify all critical points of f , where f is given by f (x, y) = (x2 −
y2)e−(x

2+y2)2 .

2.23. Show that the function f given by

f (x, y) = {{{
sin(xy)−xy
x2+y2

if (x, y) ̸= 0,
0 if (x, y) = 0

is continuous everywhere.Hint: Look at the Taylor polynomial of the function (x, y) →
sin(xy) at 0.

2.24. Recall from Chapter 1 that a polynomial of degree k on ℝn is a function f of the

form

f = a0 +
k∑
j=1

∑
1≤i1 ,...,ij≤n

ai1 ...ij u
i1 ⋅ ⋅ ⋅ uij , a0, ai1...ij ∈ ℝ.

Prove that the Taylor polynomial of degree k at any point of such a function f equals f .

2.25. Write 2x2 − y2 + 3xy − 1 as a polynomial in (x − 1) and (y + 1).

2.26. Let b denote a scalar product on ℝn, L the associated self-adjoint operator, so

that b(u,v) = ⟨Lu, v⟩. The quadratic form associated to b is the function f : ℝn → ℝ
defined by f (a) = b(a,a).
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(a) Show that the Jacobian matrix [Df (a)] of f at a equals 2(La)T.
(b) Prove that the Hessian of f is 2L.

(c) Part (a) implies that the set of critical points of f is the kernel of L, and in particular

the origin is always a critical point. Suppose the kernel is trivial, so that the origin

is the only critical point. Without using Theorem 2.7.3, show that the origin is an

absolute minimum if all eigenvalues of L are positive, an absolute maximum if

they are all negative, and a saddle point in all other cases.

2.27. A map f : ℝn ⊃ U → ℝn+k that has rank n at every point in U is called an

immersionofU intoℝn+k. An injective immersion is calledan imbedding if f−1 : f (U) →
U is continuous.

(a) Show that an immersion f : U → ℝn+k is always locally an imbedding; i.e., any

a ∈ U admits a neighborhoodV such that the restriction of f toV is an imbedding.

(b) Let c : (0,2π) → ℝ2 be given by c(t) = (sin t, sin 2t). The image of c is called a

lemniscate. Show that c is an injective immersion but not an imbedding.

2.28. If X is a vector field with flowΦ , define a mapΦ t by Φ t(p) = Φ (t,p), for all t
and p for which the formula makes sense. Prove thatΦ t ∘Φ s = Φ s ∘ Φ t = Φ t+s.
2.29. Let U be open in ℝn, p ∈ U, u = (p, v) ∈ ℝn

p.

(a) If X is a smooth vector field on U represented by the map g, show that DuX =

(p,Dg(p)v).
(b) If f : U → ℝ is smooth, show that the derivative of f in direction u (as defined in

Definition 2.8.7) equals Df (p)v.

2.30. Determine the velocity and acceleration vector fields of the curve c : I → ℝ3,

c(t) = (a cos t, a sin t, bt), a, b > 0, which parametrizes a helix.

2.31. Given a function f : ℝn → ℝ, extend the Hessian of f onℝn to any tangent space

by identifying both spaces in the usual way; i.e., for a ∈ ℝn, define H̃f : ℝn
a → ℝn

a by

H̃fIau = Hfu, u ∈ ℝn, and extend theHessian form similarly. For the sake of simplicity,

we denote H̃f by Hf again.

(a) Show that Hfu = Du∇f for u ∈ Tℝn.

(b) Given a,u ∈ ℝn, prove that hf (Iau, Iau) = (f ∘ c)(0), where c(t) = a + tu.

2.32. Suppose f : ℝn → ℝn is a smooth map such that |Df (p)u| = |u| for all p,u ∈ ℝn.

Prove that f is a diffeomorphism which preserves distances; i.e., |f (p) − f (q)| = |p − q|
for anyp,q ∈ ℝn.Hint: f preserves the lengthof curves, so it cannot increasedistances.
The same is true for any (a priori only local) inverse, so it cannot decrease them either.

2.33. Determine theflowof theposition vector field P = ∑i u
iDi. IsP a complete vector

field?
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2.34. This problem investigates integral curves of vector fields on ℝn of the form

X =
n∑
i=1

( n∑
j=1

aiju
j)Di, aij = aji ∈ ℝ,

without using Example 2.8.1.

(a) Prove that X(u) = (u,Au), where A = (aij) is a symmetric matrix, and that c : I →ℝn is an integral curve of X if and only if c = Ac.
(b) By the spectral theorem, there exists anorthogonalmatrixP andadiagonalmatrix

D =

[[[[[[
λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

]]]]]]
such that A = PDPT. Show that the integral curve c of X with c(0) = a ∈ ℝn is

given by

c(t) = P ⋅ [[[[[[
eλ1 t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...

0 0 . . . eλnt

]]]]]]
⋅ PTa.

In particular, X is complete.

2.35. Use the results of the previous exercise to find the integral curve c of the vector
field X, whereX = (u2 − u3)D1 + (u1 − u3)D2 + (u1 − u2)D3, if c(0) = [a1 a2 a3]T .
2.36. Show that ℝ3 is a Lie algebra with the cross product.

2.37. Let X be a parallel vector field onℝn.

(a) Prove that there exists some u ∈ ℝn such that X(p) = Ipu for all p ∈ ℝn.

(b) Show that a vector field Y satisfies [X,Y] ≡ 0 if and only if X(a + tu) = (Ia+tu ∘
I−1a )X(a) for all a ∈ ℝn, t ∈ ℝ. Interpret this geometrically.

2.38. Determine the flowΦ of the vector field Y, where

Y = −u3D1 − u4D2 + u1D3 + u2D4,
see Example 2.8.1. InterpretΦ t : ℝ4 → ℝ4 geometrically.

2.39. Consider the vector fields X, Y, Z on ℝ4 given by

X = −u2D1 + u1D2 + u4D3 − u3D4,
Y = −u3D1 − u4D2 + u1D3 + u2D4,
Z = −u4D1 + u3D2 − u2D3 + u1D4.

Prove that the set {aX + bY + cZ | a, b, c ∈ ℝ} is a 3-dimensional Lie algebra.
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2.40. Let X, Y denote vector fields on ℝn with flows Φ t and Ψ t respectively. Given

p ∈ ℝn, define a curve c on a neighborhood of 0 by

c(t) = (Ψ −t ∘Φ −t ∘Ψ t ∘Φ t)(p).
We have seen that if [X,Y] ≡ 0, then c(t) = p for all t. The object of this exercise is

to show that even when the bracket of X and Y is not zero (so that c is not a constant
curve), its derivative c(0) nevertheless vanishes. To see this, define maps Fi : U → ℝn

on a neighborhood U ⊂ ℝ2 of the origin by

F1(t, s) = (Ψ t ∘Φ s)(p),
F2(t, s) = (Φ −t ∘Ψ s ∘ Φ s)(p),
F3(t, s) = (Ψ −t ∘Φ −s ∘Ψ s ∘Φ s)(p).

(a) Prove that

F1∗D1 = Y ∘ F1, F2∗D1 = −X ∘ F2, F3∗D1 = −Y ∘ F3,
and that F1∗D2(0, s) = (X ∘ F1)(0, s).

(b) Notice that c(t) = F3(t, t), F2(0, t) = F1(t, t), and F3(0, t) = F2(t, t). Use the chain
rule to show that c(0) = 0.

2.41. Two Lie algebras (V1 , [, ]1) and (V2 , [, ]2) are said to be isomorphic if there exists

a vector space isomorphism L : V1 → V2 that preserves Lie brackets; i.e.,

L[u, v]1 = [Lu, Lv]2, u, v ∈ V1.
In this case, L is called a Lie algebra isomorphism. Show that the Lie algebras from

Exercises 2.36 and2.39 are isomorphic. Give anexampleof a 3-dimensional Lie algebra

that is not isomorphic to these. Thus, unlike vector spaces, Lie algebras of the same

dimension need not be isomorphic.

2.42. (a) Show that if L is a self-adjoint operator, then so is eL.

(b) Show that if L is a skew-adjoint operator, then eL is orthogonal.

2.43. This exercise generalizes the discussion from Example 2.8.1 regarding the sys-

tem of ODEs c = Ac to the case when A is no longer constant.

(a) Prove that exp : Mn,n ≅ ℝn2 → Mn,n is differentiable with derivative D exp(0)A =

exp(0)A = A at the origin.

(b) Show that if AB = BA, then D exp(B)A = exp(B)A = A exp(B).

(c) If A : ℝ → Mn,n is a smooth curve, prove that c : ℝ → Mn,n, where c(t) = exp(A(t)),
has derivative c(t) = A(t)c(t), provided A(t)A(t) = A(t)A(t) for all t.

(d) WithA as in (c), show that the systemof linearODEs c (t) = A(t)c(t) has as solution

c(t) = exp( t∫
0

A) c(0),
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provided A(s)A(t) = A(t)A(s) for all s, t. Here, the (i, j)-th entry of ∫t
0
A is

uij ∘ t∫
0

A =

t∫
0

uij ∘ A.
2.44. Use the results from the previous exercise to solve the system

x(t) = −x(t) − ty(t)
y(t) = tx(t) − y(t)

2.45. SupposeΦ : ℝ×ℝn → ℝn is differentiable. For each t ∈ ℝ, defineΦ t : ℝn → ℝn

byΦ t(a) = Φ (t,a),a ∈ ℝn. {Φ t}t∈ℝ is calledaone-parameter group of diffeomorphisms
of ℝn if

(1) Φ 0 = 1ℝn , and

(2) Φ s+t = Φ s ∘Φ t, s, t ∈ ℝ.
Prove that one-parameter groups are in 1-1 correspondence with complete vector fields

on ℝn.

2.46. Let C be a closed set inℝn, and f : C → ℝ a smooth function. Show that if U is

any open set containing C, then there exists a smooth function g : ℝn → ℝ, such that

g agrees with f on C, and the support of g lies in U. Show this is no longer necessarily

true if C is not assumed tobe closed. In particular, any smooth function that is defined

on a closed subset of Euclidean space is extendable to a smooth function on all of

Euclidean space.

2.47. LetX bea smoothvectorfieldonaclosedsetC ⊂ ℝn (as for functions, thismeans

that there exists a smooth vector field X̃ on some open set U containing C such that

the restriction of X̃ to C equals X). Show that X is extendable to a smooth vector field

on ℝn; i.e., there exists a smooth vector field on ℝn whose restriction to C equalsX.



3 Manifolds
Differential geometry arguably began with the study of surfaces in three-dimensional

Euclidean space. In this chapter, we give a precise meaning to theword “surface”, and

generalize this concept to higher dimensions.

3.1 Submanifolds of Euclidean space

Definition 3.1.1. A subsetM ⊂ ℝn+k is said to be an n-dimensional submanifoldofℝn+k

if each p ∈ M admits an open neighborhood U in ℝn+k and there exists a one-to-one

differentiable map h : ℝn ⊃ V → ℝn+k defined on some open set V, such that

(1) h has maximal rank (= n) everywhere;

(2) h(V) = U ∩M, and

(3) h−1 : U ∩M → V is continuous.

Thus, loosely speaking, an n-dimensional submanifold of ℝn+k is a subset M of ℝn+k

such that each point ofM has an open neighborhood (inM) that “looks like” an open

set in ℝn. In the terminology of Exercise 2.27, M is a submanifold if for any p ∈ M

there exists an imbedding of an open set in ℝn into ℝn+k whose image is an open

neighborhood of p inM. Condition (3) in the above definition is equivalent to requiring

that open sets in V get mapped by h to open sets ofM. A subsetM for which the first

two conditions hold but the third one does not is called an immersed submanifold.

The pair (V ,h) in the definition is called a local parametrization of M around p.
The inverse of aparametrization, ormoreprecisely, thepair (h(V), h−1) is calleda chart
of M around p. It is common practice to denote charts by (U, x), (V , y), and so on. A

collectionof charts whosedomains forman open cover ofM is called an atlasofM. For

the sake of brevity, and when there is no possible confusion about what the “ambient

space” ℝn+k is, we sometimes say that M is an n-dimensional manifold, or just an

n-manifold. The dimension is often implicitly specified by adding a superscript, as

in “Mn”.

Notice also that any submanifold ofℝn+k is a submanifold ofℝn+k+l for l ∈ ℕ if one

composes every parametrization with themapℝn+k toℝn+k+lwhich sends p to (p,0) ∈ℝn+k × ℝl. It is customary to choose the ambient space with the smallest dimension.

A 2-dimensional submanifold of ℝ3 is often called a surface. More generally, a

hypersurface is an (n − 1)-dimensional submanifold of ℝn for some n ∈ ℕ.

Any open set U in ℝn is a trivial example of a submanifold of ℝn, with the atlas{(U, 𝚤)}, where 𝚤 : U → ℝn is the inclusion map. More interesting manifolds are de-

scribed below:



118 | 3 Manifolds

Examples 3.1.1. (i) Let f : V → ℝ be a differentiable function on an open set V inℝ2. Then the graph

M = {(a, f (a)) | a ∈ V}
of f is a 2-dimensional submanifold of ℝ3: The map h : V → ℝ3, where h(a) =
(a, f (a)), is certainly one-to-one with maximal rank everywhere, and the set U in

the definition may be taken to be V × ℝ. In the same way, if V0 is open in V, then

h(V0) = M ∩ (V0 × ℝ) is open in M, so that h−1 is continuous. More generally, the
graph of a function defined on an open set inℝn is an n-dimensional submanifold

of ℝn+1.

x

y

z

x 0

Φ(x 0, t)

t
a b

y = f (x )

Fig. 3.1: Parametrizing a surface of revolution

(ii) If f : (a, b) → ℝ is a positive function, the surface of revolution obtained by

revolving the graph of f around the x-axis is the 2-dimensional submanifold ofℝ3

described by twoparametrizations h : (a, b)×(0, 2π) → ℝ3, and k : (a, b)×(𝜀, 2π +𝜀) → ℝ3, 0 < 𝜀 < 2π , both given by the same formula

h(x, t) = k(x, t) = (x, f (x) cos t, f (x) sin t).
The first parametrization covers the whole surface except for the original graph,

which is why a second one is needed. The Jacobian matrix of either equals

[[[
1 0

f (x) cos t −f (x) sin t
f (x) sin t f (x) cos t

]]] ,
which has rank 2, unless f is zero somewhere, but that was ruled out at the begin-

ning. This establishes the first condition; the other two are straightforward, and

left to the reader.
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0

Φp (q)

Vp

p

L − 1
p (q)

Fig. 3.2: A local parametrization of Sn(r) around p

(iii) The sphere Sn(r) = {p ∈ ℝn+1 | |p| = r} of radius r > 0 centered at the origin is

an n-dimensional submanifold ofℝn+1. A local parametrization (V ,h) around the
north pole ren+1 = (0, . . . , 0, r) is given by

h(a) = (a, √1 − |a|2), a ∈ V := Br(0) ⊂ ℝn.
The image of h is the open northern hemisphere. This parametrization can be

modified to yield one around any p ∈ Sn(r): Let Lp : ℝn+1 → ℝn+1 be any linear

isometry that maps p to ren+1 (for example, extend p/r to an orthonormal basis

u1, . . . ,un,p/r of ℝn+1, define Lp(ui) = ei for i ≤ n, Lp(p/r) = en+1, and extend

linearly; i.e., Lp maps the vector ∑n
i=1 aiui + an+1(p/r) to (a1, . . . , an+1)). If Vp de-

notes the set of all q ∈ p⊥ with norm less than r, then Lp maps Vp isometrically

onto the domain V of the parametrization (V ,h) above. The pair (V , hp) is now a

parametrization around p, if hp = L−1p ∘ h.
(iv) Although the above parametrizations are easy to visualize, they are not the most

efficient in the sense that a fairly large number of them is needed to cover the

whole sphere. It is possible to give an atlas with only two charts: stereographic

projectionx : Sn(r) \ {ren+1} → ℝn from the north pole ren+1 = (0, r) is the map that

q

Ψ (q)
Ψ (r )

r

Fig. 3.3: Stereographic projection from the north pole
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assigns to each q of Sn(r) distinct from the north pole the unique point where the

line from the north pole to q intersects the hyperplane ℝn × 0 = {(p,0) ∈ ℝn+1 |
p ∈ ℝn}.
To find the point of intersection, notice that the line through the north pole and

any other q ∈ Sn(r) can be parametrized by the curve

t → (0, r) + t(q − (0, r)) = tq + (0, (1 − t)r),
with 0 denoting the origin in ℝn. Its image intersects the equatorial hyperplane

when t = r/(r − un+1(q)), so that

x(q) = r

r − un+1(q) (u1(q), . . . , un(q)), q ∈ Sn(r) \ {ren+1}.
The inverse h : ℝn → Sn(r) of x is the parametrization given by

h(p) = 1|p|2 + r2
(2r2p, (|p|2 − r2)r), p ∈ ℝn.

Combining stereographic projection from the north pole with the one from the

south pole now yields an atlas of the sphere. The atlas is minimal in terms of

the amount of charts that are needed. A space admitting an atlas with only one

chart – as is the case of a sphere with one point deleted – is considered trivial.

This perspective will change once curvature is introduced.

(v) The curve c : (0, 2π) → ℝ2, with c(t) = (sin t, sin(2t)), parametrizes a lemniscate.

The image is an immersed submanifold M of ℝ2: the origin in the plane is the

point c(π), and the set c(3π/4, 5π/4) is not an open neighborhood of the origin in
M, since any such neighborhood must contain points c(t) for values of t arbitrarily
close to 0 and 2π .

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

Fig. 3.4: The lemniscate in (v)
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(vi) IfM is an n-manifold, then so is any open subsetU ofM: in fact, any parametriza-

tion (V , h) ofM aroundsomep ∈ U, when restricted toV∩h−1(U), is aparametriza-

tion of U around p.
(vii)IfMn ⊂ ℝk and Nm ⊂ ℝl are manifolds, then the Cartesian product

M × N = {(p,q) ∈ ℝk × ℝl | p ∈ M, q ∈ N}
is a (n+m)-dimensional submanifold of ℝk+l: any parametrizations h : ℝn ⊃ U →ℝk of M and k : ℝm ⊃ V → ℝl of N generate a parametrization h × k of M × N,

where h × k(a,b) = (h(a), k(b)).
There is a particularly useful and simple way of constructingmanifolds: q ∈ ℝk is said

to be a regular value of a map f : ℝn ⊃ U → ℝk if the derivative f∗ has maximal rank

at every p ∈ f−1(q).

Theorem 3.1.1. Let U be open inℝn+k, and f : U → ℝk. If a ∈ ℝk is a regular value of f
andM = f−1(a) is nonempty, then M is an n-dimensional submanifold ofℝn+k.

Proof. We shall construct a parametrization h around any p ∈ M. It may be assumed

first of all that a = 0, for if the result holds when a = 0, we may, in the general case,

apply it to g, where g(p) = f (p) − a. Similarly, pmay be assumed to be 0.
By the implicit function theorem, there exists a neighborhood W of 0 in ℝn+k and a

diffeomorphism Ψ : W → Ψ (W) ⊂ ℝn+k such that f ∘ Ψ equals the restriction toW

of the projection π2 : ℝn+k = ℝn × ℝk → ℝk onto the second factor. Let π1 denote

the projection onto the first factor ℝn, V = π1(W), 𝚤 : ℝn → ℝn × ℝk the inclusion𝚤(u) = (u,0), and define h : V → ℝn+k to be Ψ ∘ 𝚤. h is one-to-one of maximal rank,

being the composition of two maps that enjoy those properties. Furthermore,

f ∘ h = f ∘Ψ ∘ 𝚤 = π2 ∘ 𝚤 = 0,
so that h(V) ⊂ M.

W

π1

��

Ψ ��

π2
���

��
��

��
� ℝn+k

f
��

V

𝚤

�� h ���������� ℝk

We claim that h(V) = M ∩ Ψ (W); more generally, if V0 ⊂ V is open, we claim that

h(V0) = M ∩ (Ψ (π−11|W (V0))).
(If V is a subset of the domain U of a map f , the notation f|U refers to the restriction

of f to U; i.e., f|U := f ∘ 𝚥, where 𝚥 : U → V is the inclusion map.) Notice that since

Ψ (π−11|W(V0)) is open in ℝn+k, the claim, once established, will imply that hmaps open

sets to open sets in M, thereby concluding the proof.
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One inclusion is already clear:

h(V0) = Ψ ∘ 𝚤(V0) ⊂ Ψ (π−11|W(V0)),
and, of course, it is also contained in M, since h(V) is. Conversely, consider any q ∈
M ∩ (Ψ (π−11|W (V0))). Then q = Ψ (r) for some unique r ∈ π−11|W(V0), and π2(r) = (f ∘
Ψ )(r) = f (q) = 0. Thus,

r = ( ̃r,0) = 𝚤( ̃r)
for a unique ̃r = π1(r) ∈ V0, and q = Ψ (r) = h( ̃r) ∈ h(V0), as claimed.

Example 3.1.2. Given r > 0, the function f : ℝn+1 → ℝ, with f (a) = |a|2 − r2, has 0 as

regular value, since [Df (p)] = 2p ̸= 0 if p ∈ f−1(0) = Sn(r). This yields a shorter proof

of the fact that the sphere is a submanifold of Euclidean space.

Definition 3.1.2. Let M be an n-dimensional submanifold of Euclidean space ℝn+k.

The tangent space Mp of M at p ∈ M is the collection of velocity vectors ċ(0) of all
curves c : I → M defined on some open interval I containing 0 such that p = c(0).

Thus, Mp is a subset of ℝn+k
p . What is not immediately clear is that it is actually a

subspace:

Theorem 3.1.2. If M is an n-dimensional submanifold of ℝn+k, then Mp is an n-dimen-

sional subspace of ℝn+k
p for every p ∈ M.

Proof. Consider a parametrization (V , h) around p, V ⊂ ℝn. By composing h with a

translation if necessary, it may be assumed that 0 ∈ V, and that h(0) = p. If c : I → M

is a curve passing through p at 0, then, after restricting the domain of c if necessary,
h−1 ∘ c is a curve in V, and

ċ(0) = c∗0D(0) = (h ∘ h−1 ∘ c)∗0D(0) = h∗0(h−1 ∘ c)∗0D(0) = h∗0v,
where v = (h−1 ∘ c)∗0D(0) ∈ ℝn

0 is the velocity vector of the curve h−1 ∘ c in V. Thus,

Mp ⊂ h∗0ℝn
0. Conversely, if c is a curve in V with c(0) = 0, then h ∘ c is a curve in M

passing through p at 0, so that h∗(ċ(0)) ∈ Mp. We have therefore shown that

Mp = h∗ℝn
0. (3.1.1)

Since h has rank n, this concludes the proof.

If instead of parametrizations, the manifold is given by f−1(0), where 0 is a regular

value of f , the following description of tangent spaces holds:

Proposition 3.1.1. If M = f −1(a), where a is a regular value of the map f : ℝn+k ⊃ U →ℝk, then

Mp = ker f∗p
for any p ∈ M.
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Proof. Since both sides of the above identity are vector spaces of the same dimension

n, it suffices to show that one is contained in the other. So consider the velocity vector

u = ċ(0) ∈ Mp of a curve c inM at time 0. Since c(I) ⊂ M = f −1(a), f ∘ c ≡ a. Thus,

f∗pu = (f ∘ c)∗0D(0) = 0,
and u ∈ ker f∗p. This shows thatMp ⊂ ker f∗p, as claimed.

Examples 3.1.3. (i) If M is the graph of a function f : ℝn ⊃ U → ℝ, then M admits

the parametrization h : U → ℝn+1, h(a) = (a, f (a)). By (3.1.1), the tangent space of
M at h(a) is the image of h∗a. Now,

[Dh(a)] = [ 1ℝn

[Df (a)]] ,
so that Dh(a)ei = ei + Dif (a)en+1. It follows that

Mh(a) = span{Di(h(a)) + (Dif )(a)Dn+1(h(a)) | i = 1, . . . , n}.
Another way of describing the tangent space at h(a) is to notice thatM = g−1(0),
where g : ℝn+1 ⊃ U ×ℝ → ℝ is given by g(a1, . . . , an+1) = an+1 − f (a1 , . . . , an). Since

Dg(a1, . . . , an+1) = [−D1f (a1, . . . , an) . . . −Dnf (a1, . . . , an) 1] ,
0 is a regular value of g and Proposition 3.1.1 says that the tangent space is the

orthogonal complement of the gradient of g: for a,u ∈ ℝn+1,

⟨∇g(a), Iau⟩ = ⟨Dg(a)T ,u⟩ = Dg(a)u,
so that Iau is orthogonal to ∇g(a) if and only if u belongs to the kernel of Dg(a),
or equivalently Iau belongs to the kernel of g∗a. The reader should check that the
two descriptions of the tangent space agree.

(ii) IfM is the sphere of radius r centered at the origin inℝn+1, thenM = f−1(0), where
f (a) = |a|2 − r2. It was computed earlier that [Df (a)] = 2aT. This means that

kerDf (a) = {u ∈ ℝn+1 | aTu = ⟨a,u⟩ = 0} = a⊥,
and therefore

Sn(r)a = Iaa⊥.
(iii) Suppose h : ℝn ⊃ U → M and k : ℝm ⊃ V → N are local parametrizations ofM

and N respectively. The canonical isomorphism

ℝn
p × ℝm

q
≅→ (ℝn × ℝm)(p,q)((p,u), (q, v)) → ((p,q), (u, v))
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induces a canonical isomorphism Mp ×Nq ≅ (M ×N)(p,q) by means of the commu-

tative diagram ℝn
p × ℝm

q
h∗p×k∗q→ Mp × Nq

≅
↑↑↑↑↓ ↑↑↑↑↓≅

(ℝn × ℝm)(p,q) →
(h,k)∗(p,q)

(M × N)(p,q)
3.2 Differentiable maps on manifolds

Definition 3.2.1. Let Mn,Nl ⊂ ℝk be manifolds, 𝚤 : N → ℝk the inclusion map. A

map f : N → M is said to be differentiable or smooth if for every p ∈ N and any

parametrization (V , h) of N around p, the map𝚤 ∘ f ∘ h : V → ℝk

is differentiable.

Examples and Remarks 3.2.1. (i) The identity map 1M : M → M is differentiable,

since this is equivalent to requiring that every parametrization be differentiable

as a map into the ambient Euclidean space.

(ii) In the above definition, it suffices to check smoothness of 𝚤 ∘ f ∘ h for some

parametrization (V , h) around every p: If h̃ is another parametrization around

p, then locally 𝚤 ∘ f ∘ h̃ = (𝚤 ∘ f ∘ h) ∘ (h−1 ∘ h̃) which is a composition of smooth

maps by the following:

Theorem 3.2.1. Let (Vi,hi) be two parametrizations around p ∈ Mn. Then

h−12 ∘ h1 : ℝn ⊃ V1 ∩ h−11 (h2(V2)) → h−12 (h1(V1) ∩ h2(V2)) ⊂ ℝn

is a diffeomorphism.

Proof. The map is bijective, continuous, and has continuous inverse. Once we show

it is differentiable, it will follow by symmetry that the inverse is also differentiable,

since the inverse is obtained by interchanging the indices. It may be assumed, after

composingwith (necessarily differentiable) translations if need be, that p = 0 = hi(0).
The implicit function theorem guarantees the existence of diffeomorphisms Fi in a

neighborhood of 0 such that Fi ∘ hi = 𝚤, with 𝚤 : ℝn → ℝn+k mapping a to (a,0).
Furthermore, if π is the projection ℝn+k = ℝn × ℝk → ℝn onto the first factor, then

(π ∘ Fi) ∘ hi = π ∘ 𝚤 (3.2.1)

equals the identity 1Vi
on Vi, so that π ∘ Fi is a left inverse for hi. Thus,

h−12 ∘ h1 = π ∘ F2 ∘ h1, (3.2.2)

which is a composition of differentiable maps.
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(iii) The above theorem implies that if (V , h) is a local parametrization of M, then

h−1 is differentiable as a map from h(V) (which is a manifold, since it is open

in M). In other words, using the terminology of the previous section, charts are

differentiable maps.

If, however, we view a local parametrization of M as a map into Euclidean space,

then it admits no differentiable inverse (since the inverse is not defined on an open

set of the ambient Euclidean space). Nevertheless, the inverse may be extended to a

differentiable map on an open set:

Proposition 3.2.1. If (V ,h) is a local parametrizationofMn ⊂ ℝn+k, then there exists an

open set U ⊂ ℝn+k and a differentiablemap G : U → ℝn such that G ∘ h = 1V .

Proof. As usual, we may assume that V contains 0 ∈ ℝn and that h(0) = 0 ∈ ℝn+k. If

F is the diffeomorphism (guaranteed by the implicit function theorem) that satisfies

F ∘ h = 𝚤, set G = π ∘ F (with 𝚤 and π denoting the same maps used in the proof of the

above theorem). The statement then follows as in (3.2.1).

One useful property of manifolds is the existence of “bump functions” in a neighbor-

hood of any point:

Proposition 3.2.2. If (U, x) is a chart of Mn around p, then there exists a differentiable
function ψ : M → ℝ such that

(1) 0 ≤ ψ ≤ 1;

(2) ψ ≡ 1 on some neighborhood of p, and
(3) the support of ψ is contained in U.

Proof. By Theorem 2.2.5, there exists a smooth φ : ℝn → ℝ with values in [0,1],
support in x(U), that equals 1 in some neighborhood of x(p). ψ may now be taken

to equal φ ∘ x on U and zero outside U. This function is smooth because it is so in a

neighborhood of any point: if the point is in U, then the neighborhood may be taken

to be U; otherwise the point lies in the complement of the support of φ ∘ x, and this is
an open set on which the function vanishes.

Notice that (3.2.2) also yields a formula for the derivative of h−12 ∘ h1: even though the

inverse of h2 is not differentiable, a formula similar to the chain rule holds:

D(h−12 ∘ h1) = D(π ∘ F2) ∘ Dh1 = π ∘ DF2 ∘ Dh1.
Theabove considerations are in a sense a special case of the following theorem,which

roughly speaking, asserts that an n-dimensional manifold inℝn+k looks locally, up to

a diffeomorphism of the ambient space, like ℝn × {0} ⊂ ℝn × ℝk.

Theorem 3.2.2. M is an n-dimensional submanifold of ℝn+k if and only if for every p ∈
M, there exists an openneighborhoodU ofp in Rn+k and adiffeomorphismF : U → F(U)
such that

F(U ∩M) = F(U) ∩ (ℝn × {0}).
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Proof. Suppose M satisfies the above condition. We proceed to construct a param-

etrization (V , h) around anyp ∈ M. Letπ : ℝn+k = ℝn×ℝk → ℝn denote the projection,𝚤 : ℝn → ℝn × ℝk the map sending a to (a,0). If F is a diffeomorphism as in the

statement, define

V = π(F(U) ∩ (ℝn × {0)}), h = F−1 ∘ 𝚤.
h is one-to-one with maximal rank everywhere because F and 𝚤 have those properties.
Its inverse is continuous, for ifW is an open subset of V, then h(W) = M ∩F−1(W ×ℝk)

is open in M. Furthermore,

h(V) = F−1(𝚤(V)) = F−1((𝚤 ∘ π)(F(U) ∩ ℝn × {0}))
= F−1(F(U) ∩ ℝn × {0}) = F−1(F(U ∩M))

= U ∩M,
andM is therefore an n-manifold.

Conversely, supposeM is amanifold, p ∈ M, (V , h) a parametrization aroundp, so that
h(V) equals the intersection ofM with some open neighborhoodW of h(p) in ℝn+k. As

usual, we may assume that p = 0 ∈ ℝn, h(p) = 0 ∈ ℝn+k. By the implicit function

theorem, there exists a diffeomorphism F of a neighborhood of 0 in ℝn+k such that

F ∘ h = 𝚤.

Bnr (0)
V ℝn

ℝn

ℝk

h 𝚤
FU

W

M

Bn+kr (0)

For r > 0, Bnr (0) and Bn+kr (0) will denote the open balls of radius r around 0 inℝn andℝn+k respectively. Choose r small enough that Bnr (0) ⊂ V, that Bn+kr (0) is contained in

the image of F, and that U := F−1(Bn+kr (0)) is contained inW . Then Bnr (0) = h−1(U), so
that h(Bnr (0)) = U ∩M. We will denote the restriction F|U of F toU by F for simplicity.

Then F : U → F(U) is by definition a diffeomorphism, and

F(U ∩M) = F(h(Bnr (0))) = 𝚤(Bn
r (0)) = Bn+kr (0) ∩ (ℝn × {0})

= F(U) ∩ (ℝn × {0}).
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Recall that Theorem 3.1.1 provides a convenient way of constructing manifolds: if f :
U ⊂ ℝn+k → ℝk has 0 ∈ ℝk as a regular value, then the pre-image of 0, if nonempty,

is an n-manifold. Theorem 3.2.2 shows that every manifold is at least locally, if not

globally, obtainable in this way:

Corollary 3.2.1. M ⊂ ℝn+k is an n-dimensional manifold if and only if for every p ∈ M,

there exists a neighborhoodU of p inℝn+k, and a map f : U → ℝk having0 as a regular

value, such that

U ∩M = f −1(0).
Proof. Suppose M is a manifold. Given p ∈ M, there exists, by Theorem 3.2.2, a neigh-

borhood U of p in the ambient Euclidean space, and a diffeomorphism F : U → F(U)
such that U ∩M = U ∩ F−1(ℝn × {0}). It follows that if π2 : ℝn ×ℝk → ℝk is projection,

then f := π2 ∘F has 0 as regular value (being a composition of maps of maximal rank),

and U ∩M = f −1(0). The converse is left as an exercise.

A smoothmap f : M → N that has a differentiable inverse is called a diffeomorphism.

Definition 3.2.2. Let Mn ,Nl ⊂ ℝk be manifolds, f : M → N a smooth map. The

derivative of f at p ∈ M is the linear transformation f∗p : Mp → Nf (p) defined as

follows: if u = ċ(0) ∈ Mp for some curve c inM, then f∗pu = �̇�(0), where 𝛾 = f ∘ c.
The same argument used when defining the tangent space ofM shows that this does

not dependon theparticular choiceof curve. It is furthermore straightforward to check

that if g : N → P is also differentiable, then

(g ∘ f )∗p = g∗f (p) ∘ f∗p.
In particular, if h and k are parametrizations of M and N mapping 0 to p and f (p)
respectively, then the following diagram commutes:

Mp
f∗p→ Nf (p)

h∗0
↑↑↑↑↑ ↑↑↑↑↑k∗0ℝn
0 →

(k−1∘f ∘h)∗0
ℝl
0

Notice that using the alternative notation {0} × ℝk for the tangent space ofℝk at 0,

f∗p(p,Dh(0)u) = (f (p),D(f ∘ h)(0)u), u ∈ ℝn. (3.2.3)

In the special case of a function f : M → ℝ, there is a further concept which plays
an important role:

Definition 3.2.3. The differential of f : M → ℝ at p ∈ M is the linear map df (p) :
Mp → ℝ defined by df (p)u = (f ∘ c)(0), where c is any curve inM with ċ(0) = u.
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Thus df (p) is an element of the dual space ofMp. WhenM is Euclidean space,

df (p)(u) = u(f ) = ⟨∇f (p),u⟩,
where u(f ) is the derivative of f with respect to u as introduced in Definition 2.8.7. In

particular,

df (p) = ∑
i

Dif (p) dui(p),
which in classical notation reads

df = ∑
i

𝜕f𝜕xi dxi,
for n > 1, and

df = f (x) dx

when n = 1. More generally, in an arbitrary manifold,

df (p)u = I−1f (p)(f∗pu),
which incidentally also shows that the differential of f is independent of the curve

chosen in Definition 3.2.3.

It is useful to keep the notation for derivative of a function f in direction u in the

context of manifolds. Summarizing, we have:

df (p)u = u(f ), f : M → ℝ, p ∈ M, u ∈ Mp. (3.2.4)

We end this section with an application of Corollary 3.2.1 called the method of

Lagrange multipliers. Consider the following rather trivial problem: find the highest

and lowest points on the sphere S2 ⊂ ℝ3 of radius 1 centered at the origin. These

are of course the north and south poles respectively. Now, the height function, u3, has

gradient D3, and the poles are precisely those points where this gradient is orthogonal

to the tangent plane. Alternatively, S2 = f−1(0),where f = (u1)2 + (u2)2 + (u3)2−1, and
since ∇f spans the orthogonal complement of the tangent space of S2 at every point,∇u3 is a multiple of ∇f at those points where f has a maximum or minimum: indeed if

c is any curve in S2 that passes through, say, the highest point p at time 0, then⟨∇(u3)(p), ċ(0)⟩ = (u3 ∘ c)(0) = 0;
this says that the gradient of u3 is orthogonal to the tangent space at p.More generally,
we have the following:

Proposition 3.2.3. Let f : ℝn+k ⊃ U → ℝk be a map that has 0 as a regular value,

so that M = f −1(0) is an n-dimensional submanifold of ℝn+k. If a function g : U → ℝ,
when restricted to M, has a maximum or minimum at p ∈ M, then there exist λi ∈ ℝ,
i = 1, . . . , k, such that ∇g(p) = k∑

i=1

λi∇f i(p),
with f i := ui ∘ f .
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The numbers λi are called Lagrange multipliers.When k = 1, then f = f is real-valued,

and the identity becomes ∇g = λ∇f as in the example above.

Proof. Let u ∈ Mp, c : I → M a curve with ċ(0) = u. Then g ∘ c has a maximum or

minimum at 0, and

0 = (g ∘ c)(0) = ⟨∇g(p),u⟩.
Since u is arbitrary, ∇g(p) is orthogonal toMp. Now,∇f i(p) is also orthogonal toMp for

each i (recall that f i ∘ c ≡ 0) and they are linearly independent because f has maximal

rank on M. Thus, ∇f i(p) span the orthogonal complement of Mp, and the statement

follows.

Example 3.2.1. We will use Lagrange multipliers to prove that the geometric mean of

n positive numbers is no larger than its arithmetic mean; i.e.,

n√x1 ⋅ ⋅ ⋅ xn ≤ x1 + ⋅ ⋅ ⋅ + xn
n

, x1, . . . , xn > 0.
Consider the first quadrant U = {p | ui(p) > 0, i = 1, . . . , n} in ℝn, and for any fixed

c > 0, the function f = ∑i u
i − c : ℝn → ℝ. Let g = (u1 ⋅ ⋅ ⋅ un)1/n : U → ℝ. Notice

that g has no minimum on U, since g > 0 on U, and g(p) → 0 if ui(p) → 0. On the

other hand, g has amaximum on U ∩ f−1(0): it certainly has one on Ū ∩ f−1(0) which is
a closed and bounded set, hence compact. Since g is zero on the boundary of U, this

maximum lies in the interior of U. Thus, if the equation ∇g = λ∇f is satisfied at only

one point in U, that point must be the maximum.We compute

∇g = 1

n
(u1 ⋅ ⋅ ⋅ un) 1n −1 n∑

i=1

(u1 ⋅ ⋅ ⋅ ̂ui ⋅ ⋅ ⋅ un)Di,
where the accent “ ”̂ indicates the corresponding term is deleted. Similarly,∇f = ∑i Di,

so ∇g = λ∇f iff
1

n
(u1 ⋅ ⋅ ⋅ un) 1n −1u1 ⋅ ⋅ ⋅ ̂ui ⋅ ⋅ ⋅ un = λ , i = 1, . . . , n.

This can only hold if ui = uj for all i and j. In this case, their common value is c/n,
and the corresponding value of g is c/n = (u1 + ⋅ ⋅ ⋅ + un)/n. Since it occurs at a single
point, it must be the maximum, and the inequality is proved.

3.3 Vector fields on manifolds

Definition 3.3.1. A vector field on a manifoldMn is a map X which assigns to each p ∈
M an element X(p) ∈ Mp of the tangent space ofM at p, and the map is differentiable

in the following sense: for any p ∈ M and any parametrization (V , h) around p, there
exists a differentiable (in the usual sense) vector field X̃ on V such that

X ∘ h = h∗ ∘ X̃; (3.3.1)
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i.e., X(h(q)) = h∗qX̃(q) for every q ∈ V. Just as in the case of Euclidean space, vector

fields satisfying (3.3.1) for some map h are said to be h-related. If, as is the case for a
parametrization, h is invertible, we also write X = h∗ ∘ X̃ ∘ h−1.
Examples and Remarks 3.3.1. (i) (3.3.1) can be rephrased as saying that X is differ-

entiable if for any parametrization (V , h), the map (h)−1∗ ∘ X ∘ h is a differentiable

vector field on V ⊂ ℝn.

(ii) In Definition 3.3.1, it is enough to require that (3.3.1) hold for some parametrization

(V , h) around every p ∈ M. For if (U, k) is another parametrization around p, let
X̄ = k−1∗ ∘ X ∘ k. Then X ∘ k = k∗ ∘ X̄, and X̄ is differentiable, since locally

X̄ = (k−1 ∘ h)∗ ∘ X̃ ∘ (h−1 ∘ k)
is a composition of differentiable maps.

(iii) The coordinate vector fields associated to a chart (U, x) ofMn are the vector fields𝜕𝜕xi := x−1∗ ∘ Di ∘ x, i = 1, . . . , n (3.3.2)

on U. By (i) and (ii) they are differentiable, being h-related to Di, for the param-

etrization (x(U), h = x−1).
(iv) As an illustration of (iii), recall spherical coordinates from Examples 2.5.1, which

assign to each (x, y, z) ∈ ℝ3 with x ̸= 0 the point (ρ , θ ,φ), with
ρ(x, y, z) = (x2 + y2 + z2)1/2,
θ (x, y, z) = arctan

y

x
+ c,

φ(x, y, z) = arccos
z

(x2 + y2 + z2)1/2
,

where c depends on the quadrant where (x, y) ∈ ℝ2 lies, cf. Section 4.6.1. (As

observed earlier, they are actually defined onℝ3 \ {0}; we exclude the plane x = 0

only to have a unified formula). The map G with G1 = ρ , G2 = θ , and G3 = φ is a

local diffeomorphism of ℝ3 with inverse

G−1(a1, a2, a3) = (a1 cos a2 sin a3, a1 sin a2 sin a3, a1 cos a3).
Since for any a > 0, the sphere S2(a) of radius a centered at the origin equals

(G1)−1(a), the proof of Corollary 3.2.1 shows that the map x := (θ ,φ) is a chart
on any such sphere. In order to describe the coordinate vector fields 𝜕/𝜕φ, 𝜕/𝜕θ ,
notice that the inverse of the chart is the parametrization h, where

h = (a cos u1 sin u2, a sin u1 sin u2 , a cos u2);
i.e., h(s, t) = G−1(a, s, t). Thus, by (3.3.2),𝜕𝜕θ ∘ h = h∗D1 = −a sin u1 sin u2(D1 ∘ h) + a cos u1 sin u2(D2 ∘ h)

= −h2(D1 ∘ h) + h1(D2 ∘ h).
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Since hi ∘ h−1 = ui ∘ h ∘ h−1 = ui, composing the above identity with h−1 yields𝜕𝜕θ = −u2D1 + u1D2. (3.3.3)

The computations for 𝜕/𝜕φ are similar, only slightly more involved:𝜕𝜕φ ∘ h = h∗D2 = a cos u1 cos u2(D1 ∘ h) + a sin u1 cos u2(D2 ∘ h)− a sin u2(D3 ∘ h). (3.3.4)

Since u2 takes values in (0, π), its sine is nonnegative, so that
sin u2 = | sin u2| = ((cos u1 sin u2)2 + (sin u1 sin u2)2)1/2,

and the first function on the right side of (3.3.4) may be written

a cos u1 cos u2 =
(a cos u1 sin u2)(a cos u2)((a cos u1 sin u2)2 + (a sin u1 sin u2)2) 1

2

=
h1h3

((h1)2 + (h2)2)
1
2

.
Similarly,

a sin u1 cos u2 =
h2h3

((h1)2 + (h2)2)
1
2

, −a sin u2 = −((h1)2 + (h2)2)
1
2 ,

and therefore 𝜕𝜕φ ∘ h =
1

((h1)2 + (h2)2)
1
2

(h1h3(D1 ∘ h) + h2h3(D2 ∘ h)− ((h1)2 + (h2)2)(D3 ∘ h)),
or equivalently,𝜕𝜕φ =

1

((u1)2 + (u2)2)
1
2

(u1u3D1 + u2u3D2 − ((u1)2 + (u2)2)D3). (3.3.5)

𝜕𝜕θ𝜕𝜕φ Coordinate vector

fields on a sphere
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Notice that 𝜕/𝜕θ and 𝜕/𝜕φ aremutually orthogonal everywhere, and are orthonor-

mal along the equator.

(v) A vector field X on M and a function f : M → ℝ can be combined to yield a new

vector field fX, by setting (fX)(p) := f (p)X(p), p ∈ M. They can also be combined

to form a new function Xf , where (Xf )(p) := X(p)(f ).

The following proposition generalizes the fact that coordinate vector fields are differ-

entiable.

Proposition 3.3.1. A map p → X(p) ∈ Mp is a vector field (in the sense that X is

differentiable) if and only if for any p ∈ M there exists a chart (U, x) of M around p
such that

X|U = ∑
i

f i
𝜕𝜕xi

for some differentiable functions f i on U.

Proof. The restriction to U of the map X is smooth iff in terms of the above chart, the

map x∗ ∘ X ∘ x−1 is differentiable on V = x(U); i.e., iff it can be written as ∑i f
iDi for

smooth functions f i on V. This is equivalent to requiring that

X|U ∘ x−1 = x−1∗ (∑
i

f iDi) = ∑
i

(f i ∘ x−1)x−1∗ Di;
i.e.,

X|U = ∑
i

f i
𝜕𝜕xi ,

by (3.3.2).

There is another, sometimes more useful way of determining differentiability:

Theorem 3.3.1. Let M denote an n-dimensional submanifold ofℝn+k. A map X that as-

signs to each p ∈ M a vector X(p) ∈ Mp is a vector field (once again, in the sense that

the map is differentiable) if and only if for any p ∈ M there exists a vector field Y on an

open neighborhood U of p in ℝn+k such that the restrictions of both vector fields agree

on the induced neighborhood of p in M: i.e., Y|M∩U = X|M∩U.

Proof. Suppose X is a vector field onM, and consider a parametrization (V ,h) around
some p ∈ M. As usual, we may assume to simplify matters that p = 0 = h(0). Thus,
the map X̃ = (h−1)∗ ∘ X ∘ h is differentiable on V. Write X̃ = ∑i f

iDi, where f
i are

differentiable functions on V, and extend X̃ to a vector field Ỹ on V × ℝk by setting

Ỹ = ∑
i

(f i ∘ π)Di,
with π : V × ℝk → V denoting projection. Observe that if 𝚤 : V → V × ℝk maps a ∈ V

to (a,0), then
Ỹ ∘ 𝚤 = 𝚤∗ ∘ X̃|V .
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By Theorem 3.2.2, there exists a diffeomorphism G on a neighborhood U0 of 0 in ℝn+k

such that

h = G ∘ 𝚤,
U0 ∩ (ℝn × {0}) = 𝚤(V), and

G−1(U ∩M) = G−1(U) ∩ (ℝn × {0}),
withU denoting G(U0).

h

𝚤

G

ℝn

ℝk ℝn

ℝkM

U

U0

V

Define a vector field Y on U by setting Y = G∗ ∘ Ỹ ∘ G−1. We claim Y satisfies the

conclusion of the theorem. Indeed,

Y ∘ h = G∗ ∘ Ỹ ∘ G−1 ∘ h = G∗ ∘ Ỹ ∘ 𝚤 = G∗ ∘ 𝚤∗ ∘ X̃ = h∗ ∘ X = X ∘ h.
Thus, the restrictions of X and Y to h(V) agree. Since h(V) = (G ∘ 𝚤)(V) = U ∩ M, the

claim follows.

For the converse, let p ∈ M, which as usual may be assumed to be 0. By assumption,

there exists an open neighborhood U of p in ℝn+k, and a vector field Y on U such

that the restrictions of X and Y to M ∩ U agree. It must be shown that there exists a

parametrization (V , h) ofM with p ∈ h(V) such that h−1∗ ∘ X ∘ h is differentiable.
Now, by Theorem 3.2.2, after restricting U if necessary, there exists a diffeomorphism

F : U → F(U) with the property that

F(U ∩M) = F(U) ∩ (ℝn × {0}).
Furthermore, if π : ℝn×ℝk → ℝn is projection, if 𝚤 : ℝn → ℝn×ℝk maps a to (a,0) and
V = (π ∘ F)(U ∩M), then (V , h), where h = F−1 ∘ 𝚤, is a parametrization ofM around p.
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h

𝚤
π

F

ℝn

ℝn

ℝkM

U

V

Define X̄ = F∗ ∘ Y ∘ F−1. X̄ is differentiable and its restriction to ℝn × {0} maps by

construction each p to a vector tangent toℝn. Thus, there exists a vector field X̃ on V

such that X ∘ 𝚤 = 𝚤∗ ∘ X̃: indeed, if X̄ = ∑i g
iDi, then each gi is smooth, and therefore so

is the map X̃ = ∑(gi ∘ 𝚤)Di. This in turn shows that X is differentiable, since

h∗ ∘ X̃ = (F−1 ∘ 𝚤)∗ ∘ X̃ = F−1∗ ∘ X̄ ∘ 𝚤 = Y ∘ F−1 ∘ 𝚤 = Y ∘ h = X ∘ h.
Either the definition of differentiable vector field or the characterization given in The-

orem 3.3.1 can now be used to extend the concept of flow to vector fields onmanifolds.

As in Euclidean space, an integral curve of a vector field X on a manifoldM is a curve

c : I → M such that ċ = X ∘ c. Theorem 3.3.1 immediately implies the existence

and uniqueness of integral curves, and thus of local flows. If one prefers to use the

definition, it suffices to observe that locally, a vector field on amanifold is h-related to
one in Euclidean space for some parametrization h, and appeal to the following:

Proposition 3.3.2. Let X, X̃ be h-related vector fields, h∗ ∘ X̃ = X ∘ h.
(1) If c is an integral curve of X̃, then h ∘ c is an integral curve of X.
(2) If Ψ̃ t ,Ψ s are flows of X̃, X respectively, then h ∘ Ψ̃ t = Ψ t ∘ h.
Proof. If c is an integral curve of X̃, then

h ̇∘c = h∗ċ = h∗ ∘ X̃ ∘ c = (X ∘ h) ∘ c = X ∘ (h ∘ c),
which is the first claim. The second claim is then clear: for any p ∈ M, the curve t →
h ∘ Ψ̃ t(p) is by (1) an integral curve of X passing through h(p) at t = 0, and so is

t → Ψ t ∘ h(p). They are therefore one and the same.

The work needed to group local flows into a single global one was already done in the

proof of Theorem 2.8.3. Even though it was stated in the setting of Euclidean space, the

argument makes no use of that setting,andworks equallywell in themoregeneral one

ofmanifolds.We restate it for future reference. Forp ∈ M, let Ip denote the largest open

interval on which the integral curve Ψp passing through p at time 0 is defined.
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Theorem 3.3.2. If X is a vector field on a manifold M, there exists a unique open set

W ⊂ ℝ ×M and a unique differentiablemapΨ : W → M such that

(1) Ip × {p} = W ∩ (ℝ × {p}) for all p ∈ M, and

(2) Ψ (t,p) = Ψp(t) for (t,p) ∈ W.

ThemapΨ in the above theorem is called the flow of the vector field X, as opposed to
a flow, or a local flow, which refers to a restriction ofΨ to a subset of its domain. As in

Euclidean space,X is said tobe complete if its flowhasdomainℝ×M, or equivalently, if

its integral curves are defined on all ofℝ. It turns out that any vector field on a compact

manifold is complete. In order to show this, we will need the following extension

theorem:

Theorem 3.3.3. Let c : [a, b) → M be an integral curve of a vector field X on M. If

there exists a sequence {tk} in [a, b) that converges to b for which {c(tk)} converges to
some p ∈ M, then c may be extended to a continuous curve on [a, b]; i.e., the curve
c̄ : [a, b] → M, with c̄(t) = c(t) if t < b and c̄(b) = p, is continuous. Furthermore, if
𝛾 : I → M is the maximal integral curve of X with 𝛾(b) = p, then I contains [a, b] and
the restriction of 𝛾 to [a,b] equals c̄.
Proof. By using a chart around p as in Theorem 3.3.1, we may translate the situation

to Euclidean space. So assume M = ℝn and p = 0. Suppose the curve c̄ from the

statement is not continous. Then there exists a sequence rk → b such that {c(rk)} does
not converge to 0; i.e., there exists δ > 0 such that for any N ∈ ℕ, |c(rk)| > δ for

some k > N. Let 𝜀 ∈ (0, δ ). By passing to subsequences if necessary, we may assume|c(tk)| < 𝜀 and c(rk) > δ for all k. The contradiction arises, roughly speaking, from the

fact that |tk − rk| → 0 but |c(tk) − c(rk)| does not, so that the speed |ċ| of c and hence

the norm ofX is unbounded on a compact neighborhood of the origin. More precisely,

we construct subsequences as follows: set k1 = 1, and choose some k̃1 ∈ ℕ such that

rk̃1 > tk1 (such a k̃1 exists since otherwise {rk} would not converge to b). For the same

reason, there exists some k2 > k1 with tk2 > rk̃1 . Continue in this fashion to obtain

subsequences {tki} and {r ̃ki} that converge to b and satisfy tki < rk̃i
< tki+1 for all i. Now,|c(tki)| < 𝜀 < δ , but |c(r ̃ki )| > δ , so that by continuity |c(t)| must equal δ for some

t ∈ (tki, rk̃i). If si denotes the supremum of all such t, then |c(si)| = δ by continuity

again.

The length of the restriction of c to [tki , si] satisfies
si∫
tki

|ċ| ≥ |c(si) − c(tki)| ≥ |c(si)| − |c(tki)| ≥ δ − 𝜀
by the triangle inequality. Thus, for any natural numberm,

m∑
i=1

si∫
tki

| ̇c| ≥ m(δ − 𝜀). (3.3.6)



136 | 3 Manifolds

Since c[tki , si] is contained in the closure Bδ (0) of the ball of radius δ about the origin,

this means that the portion of c that lies inside it has unbounded length. But this is

impossible, because the norm of X is bounded on the compact Bδ (0): specifically, if|X| ≤ M on Bδ (0), then | ̇c(t)| = |X(c(t))| ≤ M for t ∈ [tki , si], and
m∑
i=1

si∫
tki

| ̇c| ≤ M∑
i

(si − tki) ≤ M(b − a),
which contradicts (3.3.6). This shows that c is extendable to a continuous curve c̄ :
[a, b] → M by setting c̄(b) = 0. Furthermore,

lim
t→b−

X(c̄(t)) = lim
t→b−

̇c̄(t) = X(0) (3.3.7)

by continuity of X and ̄c.
Consider the curve 𝛾1 : I → M that equals c̄ on [a,b] and 𝛾 on I \ [a, b]. This curve
is continuous and differentiable (with �̇�1 = X ∘ 𝛾1) everywhere except perhaps at b.
To show smoothness at b (and thereby conclude the proof of the theorem), let {tk} be
any sequence in [a, b) that converges to b. By the mean value theorem, there exists

sk ∈ (tk, b) such that
(ui ∘ 𝛾1)(b) − (ui ∘ 𝛾1)(tk)

b − tk = (ui ∘ 𝛾1)(sk).
But �̇�1(sk) = ̇c̄(sk) → X(0) by (3.3.7). Similarly, if b < sk < tk and tk → b, then

�̇�1(sk) = �̇�(sk) → X(0). This shows that (ui ∘ 𝛾1)(b) exists. The same argument then

applies to derivatives of higher order to show that 𝛾1 is smooth at b.

Corollary 3.3.1. Any vector field on a compact manifold is complete; i.e., its integral

curves are defined on all ofℝ.
Proof. Let X denote a vector field on a compact manifold M, and c the maximal in-

tegral curve of X with c(0) equal to some p ∈ M. It is enough to show that [0,∞)

is contained in the domain of c; the same argument applied to the integral curve

t → c(−t) of −X then shows that (−∞,0] is also contained in the domain. With this

in mind, let I denote the set of all t ∈ [0,∞) such that c is defined on [0, t). Then I is by
definition a nonempty open interval in [0,∞). Theorem 3.3.3 implies I is also closed.

By Proposition 1.7.1, I = [0,∞).

The Lie bracket of vector fields on a manifoldM is defined in exactly the same way it

was done for Euclidean space, and all relevant theorems proved in Section 2.9 carry

over to the manifold setting. In fact, the Lie bracket of X and Y at a point p ∈ M

depends only on the values of these fields in a neighborhood of p, and if we take this
neighborhood to be the domain of a chart (U, x), then the vector fields X̃ and Ỹ on

x(U), where X̃ = x∗ ∘X|U ∘x−1 (and similarly for Ỹ) are h-related toX and Y, if h = x−1.
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By Theorem 2.9.2, the restriction of the bracket to U is given by

[X,Y]|U = h∗ ∘ [X̃, Ỹ] ∘ x.
For example, the Lie bracket of coordinate vector fields is always zero, since these

fields are related to the standard coordinate vector fields Di in Euclidean space.

3.4 Lie groups

The material in this section will not be used in the sequel, and the reader may skip it

without loss of continuity. It has been included because it describes a large class of

examples of manifolds, which, in addition, possess a rich additional structure. It also

illustrates many of the techniques we developed for vector fields.

In modern algebra, a group is a pair (G, ⋅), where G is a nonempty set, and ⋅ : G ×
G → G is a map, called the group product, satisfying the following properties:

(1) a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c for all a, b, c ∈ G;

(2) There exists an element e ∈ G such that a ⋅ e = e ⋅ a = a for all a ∈ G;

(3) For any a ∈ G there exists an element a−1 ∈ G such that a ⋅ a−1 = a−1 ⋅ a = e.

e is called the identity element, a−1 the inverse of a. We will often write ab instead

of a ⋅ b. Examples of groups are plentiful: the set of nonzero reals with the usual

multiplication is one. Any vector space is a group with vector addition. So is the set

GL(n) of all n× n invertible matrices with the usual matrix multiplication. In the latter

case, the identity element is the identity matrix In.

Definition 3.4.1. Let G be a group that admits in addition a manifold structure. If the

group product G × G → G and the inverse map G → G (which sends a to a−1) are
differentiable, then G is called a Lie group.

The three examples given earlier are Lie groups: vector addition in a vector space E is

differentiable as a bilinear map on E × E, and in the other cases, the group product is

differentiablebecause it is the restrictionof abilinearmap toanopen subset of a vector

space. The inverse maps are also easily seen to be differentiable; in the case of GL(n)

for example, this follows from the alternative formula for the inverse of a matrix given

in the proof of Theorem 1.3.6. Another important example is the following subgroup

of GL(n) (a subgroup of a group G is a subset that is a group in its own right with the

restriction of the group product in G):

Proposition 3.4.1. The orthogonal group O(n) = {A ∈ Mn | AAT = In} is a Lie group of
dimension n(n − 1)/2.
Proof. Denote by Sn the subspace ofMn that consists of all symmetric matrices. Sn has

as basis the set {Aij | 1 ≤ i ≤ j ≤ n}, where Aij has entries 1 in the (i, j) and (j, i) slots,
and zero elsewhere. Its dimension equals the number of elements in the set of all pairs

(i, j) where 1 ≤ i ≤ j ≤ n. This is just 1 + 2 + ⋅ ⋅ ⋅ + n = n(n + 1)/2.
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Next, consider the map f : GL(n) → Sn given by f (A) = AAT . We claim it has maximal

rank at any A ∈ f−1(In), so that by Theorem 3.1.1, O(n) = f −1(In) is a manifold of

dimension n2 − n(n + 1)/2 = n(n − 1)/2. Now, f is the restriction to GL(n) of the

composition m ∘ 𝚤, where 𝚤 : Mn → Mn × Mn is given by 𝚤(A) = (A, AT ), and m denotes

the multiplication map m : Mn × Mn → Mn, m(A, B) = AB. But 𝚤 is linear, and m is

bilinear, so the results from Chapter 2 imply that for A ∈ GL(n),M ∈ Mn,

Df (A)M = Dm(A, AT ) ∘ D𝚤(A)M = Dm(A, AT ) ∘ 𝚤(M)

= Dm(A, AT )(M,MT ) = m(A,MT ) + m(M, AT )

= AMT + MAT .
This means that for A ∈ O(n), Df (A) is onto Sn: indeed, given a symmetric matrix S, if

M = (1/2)SA, then
Df (A)M =

1

2
A(SA)T +

1

2
SAAT =

1

2
(ST + S) = S.

Thus,O(n) is a manifold. It is a Lie group because the product and inverse map are the

composition of the corresponding smooth operations on GL(n) with the differentiable

inclusion map of O(n) into the open subset GL(n) ofMn.

Given an element a in a Lie group G, define left translationby a to be the map

La :G → G,
b → ab.

It is differentiable, being the composition of the group product with the map 𝚤a : G →
G × G, 𝚤a(b) = (a, b), and is in fact a diffeomorphism of G with inverse La−1 . Notice also

that La ∘ Lb = Lab for a, b ∈ G.

Definition 3.4.2. A vector field X on a Lie group G is said to be left-invariant if it is

Lg-related to itself for any g ∈ G; i.e.,

Lg∗X = X ∘ Lg , g ∈ G.
Recall that the collection of all vector fields onG is a (infinite-dimensional) Lie algebra

with the Lie bracket of vector fields, cf. Proposition 2.9.2. It follows from the definition

that the bracket of two left-invariant vector fields is again left-invariant, so that the

collection g of all such vector fields is also a Lie algebra. This one, though, is finite-

dimensional. In fact, we have the following:

Theorem 3.4.1. TheLie algebra g of a Lie groupG is a vectorspace naturally isomorphic
to Ge.

Proof. Define h : g → Ge by h(X) = X(e) for X ∈ g. This map is clearly linear. If

h(X) = X(e) = 0, then for any g ∈ G, X(g) = Lg∗X(e) = 0, so h has trivial kernel. To
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see that it is onto, consider an arbitrary u ∈ Ge. Define a vector field X on G by setting

X(g) = Lg∗u. X is left-invariant, since for any a, b ∈ G,

La∗X(b) = La∗Lb∗v = L(ab)∗u = X(ab) = X ∘ La(b).
Furthermore, hX = u by construction. This completes the argument.

We next investigate integral curves of left-invariant vector fields. Given groups G,H, a

group homomorphism fromG toH is amap f : G → Hwhich preserves groupproducts;

i.e., f (ab) = f (a)f (b) for all a, b ∈ G. Any homomorphism maps the identity element

e ∈ G to the identity e ∈ H, because f (e) = f (e ⋅ e) = f (e) ⋅ f (e); multiplying both sides

by f (e)−1 then yields f (e) = e. This in turn implies that f (a−1) = f (a)−1 for any a ∈ G.

In the following theorem, ℝ is the Lie group with the usual addition.

Theorem 3.4.2. Any smooth Lie group homomorphism c : ℝ → G is the integral curve

passing through e at 0 of the left-invariant vector field X withX(e) = ċ(0). The integral
curve of X that passes through g ∈ G at 0 is Lg ∘ c.

Conversely, if c is an integral curve of X ∈ g with c(0) = e, then c : ℝ → G is a Lie

group homomorphism. In particular, left-invariant vector fields are complete.

Proof. Let c : ℝ → G be a homomorphism, and fix any t0 ∈ ℝ. The curve 𝛾 : ℝ → G

given by 𝛾(t) = c(t + t0) satisfies 𝛾(t) = c(t0)c(t) = Lc(t0)c(t). Thus if X ∈ g is the
left-invariant vector field that equals ċ(0) at e, then

ċ(t0) = �̇�(0) = Lc(t0)∗ċ(0) = Lc(t0)∗X(e) = X(c(t0)).
This shows that c is indeed the integral curve of X that passes through e at 0. Further-

more, if g ∈ G and c1 = Lg ∘ c, then c1(0) = g and

ċ1(t) = Lg∗ċ(t) = Lg∗X(c(t)) = X(Lg ∘ c(t)) = X(c1(t)).
Conversely, let c : (a, b) → G be the maximal integral curve of some X ∈ g passing
through e at 0. Given t, ̃t ∈ ℝ such that t, ̃t, t + ̃t ∈ (a, b), wemust have c(t + ̃t) = c(t)c( ̃t)
because the curves t → c(t + ̃t) and t → c(t)c( ̃t) are both integral curves of X and they

agree at 0. It only remains to show that (a, b) = ℝ. But if, say, b < ∞, choose b̃ ∈ (0, b);
the curve c̃ : (a + b̃, b + b̃) → G defined by c̃(t) = c(b̃)c(t − b̃) is an integral curve of X
that coincides with c at b̃, and must therefore coincide with c everywhere. Thus, the
domain of cmay be extended beyond b, contradicting our assumption.

Example 3.4.1. Let us illustrate these various concepts for the orthogonal group G =

O(n) introduced earlier. For the sake of brevity, the identity matrix In will be denoted

by e. We begin with the Lie algebra of G, which may be identified with Ge. By Propo-

sition 3.1.1, 𝚤∗Ge = ker f∗e, where f : GL(n) → Mn is given by f (M) = MMT , and𝚤 : G → GL(n) denotes inclusion. We already computed that Df (A)M = AMT + MAT ,

so that

Ge = ker f∗e = {IeM | M + MT = 0}
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is isomorphic to the space of skew-symmetric matrices. The left-invariant field X with

X(e) = IeM is given by

X(A) = LA∗eX(e) = LA∗e
IeM = IADLA(e)M = IA(AM), A ∈ G

since LA : Mn → Mn is linear, so thatDLA(e) = LA. The integral curve c of X that passes

through e at time 0 has as expression c(t) = exp(tM) by the theorem, since c : ℝ → G

is a homomorphism with ċ(0) = IeM. Notice that c does indeed have its image in G,

because

c(t)c(t)T = exp(tM) exp(tMT ) = exp(t(M + MT )) = exp(0) = e

by Exercise 1.50. It follows that the integral curve of X that passes through A at time

zero is t → A exp(tM).

Next, we investigate the Lie bracket [X,Y] forX,Y ∈ gwithX(e) = IeM and Y(e) =
IeN. Since [X,Y] ∈ g,

[X,Y](A) = IA(AI−1e [X,Y](e)), A ∈ G,
so that we need only identify [X,Y](e) = DX(e)Y − DY(e)X. Now, the curve c, where
c(t) = e + tM, has velocity vector IeM at 0, so that (DXY)(e) = (Y ̇∘c)(0). Furthermore,

(Y ∘ c)(t) = Ic(t)(c(t)N) = Ic(t)((e + tM)N), which implies (DXY)(e) = Ie(MN). The Lie

bracket is therefore given by

[X,Y](e) = Ie(MN − NM), X(e) = IeM, Y(e) = IeN.
In the computation of theLie bracket, nowhere did weuse the fact thatX andY belong

to the Lie algebra of O(n). The same argument shows that the above formula actually

holds for the Lie algebra of GL(n) whose Lie algebra is isomorphic toMn. Notice also

that GL(1) is justℝ \ {0}with ordinary multiplication.

Remark 3.4.1. The exponential map onMn is extendable to theLie algebra g of any Lie

groupG: givenX ∈ g, defineexp(X) = cX(1),where cX is the integral curveofX passing

through the identity at time 0. It follows that this integral curve is given by t → exp(tX)
for all t: to see this, let t0 ∈ ℝ, and consider the curve 𝛾, where 𝛾(t) = cX(t0t). Then

�̇�(t) = t0ċX(t0t) = (t0X ∘ cX)(t0t) = (t0X ∘ 𝛾)(t),
so that 𝛾 is the integral curve of t0X through e at time 0. By uniqueness, 𝛾 = ct0X . Thus,
cX(t0) = 𝛾(1) = exp(t0X). Since t0 was arbitrary, the claim follows.

exp : g → G shares many of the properties of the matrix exponential map. For

example, exp(−X) = (expX)−1: the term on the left equals, by the above, cX(−1),
whereas the one on the right is cX(1)−1. But cX is a homomorphism, so e = cX(0) =
cX(1 − 1) = cX(1) cX(−1), which means that cX(−1) is the inverse of cX(1).

More generally, recall that for A, B ∈ Mn, if AB = BA, then exp(A + B) =

expA expB. By the above example, identifying Mn with the Lie algebra of GL(n),

this says that for X,Y ∈ g, exp(X + Y) = exp(X) exp(Y) whenever [X,Y] = 0. This is
also true in arbitrary Lie algebras. A proof is outlined in Exercise 3.22.
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3.5 The tangent bundle

The main concepts – derivatives and vector fields – introduced in the last three sec-

tions involved maps taking values in tangent spaces. These tangent spaces can be

grouped together to form a new manifold, and the corresponding maps become dif-

ferentiable in the process. If Mn is a submanifold of ℝn+k, define the tangent bundle

TM ofM to be

TM = ⋃
p∈M

Mp.
Each tangent space Mp is a subset of ℝn+k

p = {p} × ℝn+k ⊂ ℝn+k × Rn+k, so that the

tangent bundle ofM is contained in Euclidean space of dimension 2(n + k).

Theorem 3.5.1. The tangent bundle TM of Mn is a 2n-dimensional manifold.

Proof. Any parametrization (U,h) ofM induces one of TM: Define

F : U × ℝn → TM,
(q,u) → (h(q),Dh(q)u).

The first n + k component functions of F are those of h, and hence are differentiable.
So are the last n + k, since

un+k+j ∘ F(q, u) = n∑
i=1

Dih
j(q)ui.

Thus,F is differentiable, and has maximal rank because h has. It remains to show that

F−1 is continuous. So consider a convergent sequence

(h(pn),Dh(pn)un) → (h(p),Dh(p)u)
in the image of F. It must be shown that pn → p and un → u. The first sequence
converges by continuity of h−1. Since h is continuously differentiable, this, in turn,

implies that

Dh(pn) → Dh(p), (3.5.1)

in the sense that |Dh(pn) − Dh(p)| → 0 with the norm from Definition 1.4.1. By Propo-

sition 3.2.1, there exists an open set V ⊂ ℝ2(n+k) and a smooth map G : V → ℝn+k such

that G ∘ h = 1U . Applying DG(p) to (3.5.1), we then obtain

DG(p)Dh(pn) → 1ℝn+k . (3.5.2)

Now, |un − u| ≤ |un − DG(p)Dh(pn)un| + |DG(p)Dh(pn)un − u|.
Thefirst termon the right is no larger than |1ℝn+k −DG(p)Dh(pn)||un|, which goes to zero
by (3.5.2) (weare implicitly usinghere the fact that {un } is bounded,which follows from
convergence of {Dh(pn)un} and {Dh(pn)}). The second term can be written|DG(p)Dh(pn)un − DG(p)Dh(p)u| ≤ |DG(p)||Dh(pn)un − Dh(p)u|,
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which also goes to zero since Dh(pn)un → Dh(p)u by hypothesis. This shows that F−1
is continuous.

One could also have argued Theorem 3.5.1 in terms of charts instead of parametriza-

tions. The reader is invited to check that a chart (U, x) ofM induces a chart (π−1(U), x̄)
of TM where

x̄ = (x, dx1 , . . . , dxn) ∘ π . (3.5.3)

Given a smooth map f : M → N between manifolds M and N, we define a map

f∗ : TM → TN between their tangent bundles by setting

f∗u = f∗pu, if u ∈ Mp.
Corollary 3.5.1. If f : M → N is differentiable, then so is f∗ : TM → TN.

Proof. It must be shown that if (U × ℝn, F) is a parametrization of TM as in Theo-

rem 3.5.1, then f∗ ∘ F is differentiable in the usual sense. But

(f∗ ∘ F)(p,u) = f∗(h(p),Dh(p)u) = ((f ∘ h)(p),D(f ∘ h)(p)u)
by (3.2.3), which establishes the claim.

The bundle projection πM : TM → M is the map that sends a vector to its base point;

i.e., any v ∈ TM belongs to some Mp for a unique p ∈ M, and πM(v) is defined to be

this p. It is an easy exercise to show that πM is differentiable. WhenM = ℝn,

Tℝn = ⋃
p∈ℝn

ℝn
p = ⋃

p∈ℝn

{p} × ℝn = ℝn × ℝn,
so that the bundle projection is the projection π1 : ℝn×ℝn → ℝn onto the first factor. If

π2 is the projection onto the second factor, then u = Ipv ∈ Tℝn if and only if π1(u) = p
and π2(u) = v. In general, notice that for f : N → M, the diagram

TN
f∗→ TM

πN
↑↑↑↑↓ ↑↑↑↑↓πM
N →

f
M

commutes.

Corollary 3.5.2. A vector field X onM is differentiable as a map X : M → TM.

Proof. X is differentiable if X ∘ h is smooth for any local parametrization (U, h) ofM.

But this is immediate from (3.3.1).

Definition 3.5.1. Let N, M denote manifolds, f : N → M ⊂ ℝn+k a map. A vector field

along f is a differentiable map X : N → TM that assigns to each p ∈ N a vector
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X(p) ∈ Mf (p); i.e., X is a differentiable map for which the diagram

TM

πM

��
N

X
����������

f
�� M

commutes.

The above definition clearly generalizes that of vector fields along maps between Eu-

clidean spaces given in Chapter 2.

Remark 3.5.1. Any vector field X onN induces a vector field along f : N → M, namely

p → f∗pX(p). Similarly, any vector field Y on M induces one along f , namely Y ∘ f .
In general, given X as above, there need not exist any vector field Y on M such that

f∗X = Y ∘ f (i.e., such thatX and Y are f -related). If f∗p is one-to-one at p ∈ N however,

then f is one-to-one on a neighborhood of p by the inverse function theorem; thus,

there exists a neighborhood U of p and a vector field X̃ on f (U) that is f -related to X
(namely, X̃ = f∗X ∘ (f|U)−1). Smoothness ofX in the definition above is then equivalent

to smoothness of X̃.

3.6 Covariant differentiation

In Definition 2.8.7, we introduced the covariant derivative DuX of a vector field X in

Euclidean space ℝn with respect to a vector u ∈ ℝn
p. We wish to extend this concept

to a vector field X on a manifoldM ⊂ ℝn. Merely adopting the same formula does not

work, because althoughDuX ∈ ℝn
p, it need not belong to the tangent space ofM at p.

The best we can do is to project this vector back ontoMp. This can be done using the

Riemannian metric on ℝn: there is a decomposition

ℝn
p = Mp ⊕M⊥

p

ofℝn
p as a direct sum of the tangent space ofM at that point with its orthogonal com-

plement, and any u ∈ ℝn
p has a corresponding unique decomposition

u = u⊤ + u⊥ ∈ Mp ⊕M⊥
p ,

thus inducing maps ⊤ : ℝn
p → Mp, ⊥ : ℝn

p → M⊥
p , that project u onto u⊤ and u⊥

respectively.M⊥
p is called the normal space ofM at p.

Definition 3.6.1. IfM is a submanifold ofℝn,X a vector field on some open setU ⊂ M,

p ∈ U, and u ∈ Mp, the covariant derivative of X with respect to u is

∇uX := (DuX)⊤. (3.6.1)
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More generally, as in the Euclidean setting, the same formula defines the covariant

derivative of a vector field X along a map f : N → M with respect to some u ∈ Np .

Such an X will sometimes be called a vector field in M along f to emphasize the fact

that X takes values in the tangent bundle ofM rather than that of the ambient space.

In particular, ifX is a vector field inM along a curve c : I → M, its covariant derivative

at t is

(∇DX)(t) := ∇D(t)X = (X(t))⊤. (3.6.2)

Likewise, given vector fieldsX,Y onM, one obtains a new vector field∇XY by defining

(∇XY)(p) = ∇X(p)Y. It must, of course, be checked that ∇XY is differentiable. For this,

we will use the following:

Theorem 3.6.1. If Mn is a submanifold ofℝn+k, then for any p ∈ M, there exists an open

neighborhoodU ofp inℝn+k, and (differentiable) vector fieldsN1, . . . ,Nk onU such that

N1(q), . . . ,Nk(q) form an orthonormal basis of the normal space ofM at each q ∈ U ∩M.

Proof. By Corollary 3.2.1, there exists a neighborhood U of p such that U ∩M = f −1(0)
for some map f : U → ℝk that has 0 as regular value. Since the tangent space ofM at

any point of U equals the kernel of f∗ at that point, and since u ∈ ker f∗q if and only if
0 = Duf

i = ⟨∇f i(q),u⟩ for i = 1, . . . , k (see Examples 2.8.2 (iv)), it follows that the vector

fields ∇f i on U are linearly independent vector fields that span the normal space ofM

at every point of U ∩M. Apply the Gram-Schmidt orthogonalization process (Theorem

1.4.2), observing that if X and Y are differentiable, then so is projX Y, to obtain differ-
entiable fields N1, . . . ,Nk on U that form an orthonormal basis of the normal space of

M at each q ∈ U ∩M.

To see that∇XY is differentiable ifX and Y are, recall that the lattermay be extended to

anopenneighborhoodU of anyp (Theorem3.3.1). This neighborhoodmaybeassumed

to be the one in Theorem 3.6.1. Then DXY is differentiable on U, and so is

DXY − k∑
i=1

⟨DXY ,Ni⟩Ni.
But by definition this vector field equals ∇XY at any point of U ∩ M. This shows that∇XY is smooth.

The exact same argument shows that if X is a vector field on N and Y is a vector

field along f : N → M, then the vector field ∇XY along f is smooth.

The properties of covariant derivatives in Euclidean space that were established

in Chapter 2 also hold on manifolds:

Theorem 3.6.2. Let X, Y denote vector fields on an open subset U of a manifold M,

f : U → ℝ, a ∈ ℝ. Given p ∈ U, u ∈ Mp,

(1) ∇u(aX + Y) = a∇uX + ∇uY;
(2) ∇au+vX = a∇uX + ∇vX;
(3) ∇ufX = u(f )X(p) + f (p)∇uX;
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(4) ∇fXY = f∇XY;
(5) ∇XY − ∇YX = [X,Y];
(6) Given g : N → M, v ∈ TN, ∇v(X ∘ g) = ∇g∗vX;
(7) Let X, Y denote vector fields in M along a map f : N → M, p ∈ N, u ∈ Np . Then

u⟨X,Y⟩ = ⟨∇uX,Y(p)⟩ + ⟨X(p), ∇uY⟩.
Proof. These properties follow from the corresponding ones in Euclidean space that

were established in Theorem 2.8.4, together with linearity of the projection ⊤ for the

first four. In the same way, (6) is a consequence of (2.8.4). To prove the identity (5),

consider any p ∈ M, and extend the vector fields X and Y to a neighborhood of p in

the ambient Euclidean space. Then [X,Y](p) = DX(p)Y −DY(p)X. But the left side of this
identity is tangent toM. Thus,

[X,Y](p) = (DX(p)Y − DY(p)X)⊤ = ∇X(p)Y − ∇Y(p)X.
For the last one, notice that since Y(p) is tangent toM,⟨DuX,Y(p)⟩ = ⟨(DuX)⊤ + (DuX)⊥,Y(p)⟩ = ⟨(DuX)⊤,Y(p)⟩

= ⟨∇uY(p),Y(p)⟩,
with a similar identity holding for the other term. The claim then follows from Theo-

rem 2.8.4.

Definition 3.6.2. A vector field X in M along a curve c : I → M is said to be parallel if

∇DX = 0.
Notice that if X and Y are parallel along c, then ⟨X,Y⟩ is a constant function by part

(7) of Theorem 3.6.2. In particular, parallel vector fields have constant norm.

Theorem 3.6.3. Let c : [0, a] → M be a curve in a manifoldMn ⊂ ℝn+k. Then

(1) For any u ∈ Mc(0), there exists one and only one parallel field X along c such that
X(0) = u.

(2) The (well-defined by (1)) map Mc(0) → Mc(a) which sends u ∈ Mc(0) to X(a), where
X is the parallel field along c with X(0) = u is a linear isometry, called parallel

translation along c.

Proof. The image of c can be broken up into finitely many pieces, each of which lie

in an open set admitting an orthonormal basis of vector fields normal to M. Since it

suffices to prove the theorem for each such piece, wemay assume thewhole image lies

in such a set, so that there exist vector fields N1, . . . ,Nk such that {Ni ∘ c(t) | 1 ≤ i ≤ k}
is an orthonormal basis ofM⊥

c(t) for each t ∈ [0, a]. A vector field X along c is parallel
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iff

0 = ∇DX = X − ∑
j

⟨X,Nj ∘ c⟩Nj ∘ c
= X −∑

j

(⟨X,Nj ∘ c⟩ − ⟨X, (Nj ∘ c)⟩)Nj ∘ c
= X + ∑

j

⟨X, (Nj ∘ c)⟩Nj ∘ c.
Writing X = ∑XiDi ∘ c in components, with Xi = ⟨X,Di ∘ c⟩, and doing the same forNj,

the above equation becomes a system of ordinary differential equations

Xi + ∑
j,l
Xl(Nl

j ∘ c)(Ni
j ∘ c) = 0, i = 1, . . . , n + k.

This system is linear, in the sense that a sum of two solutions as well as a scalar

multiple of a solution are again solutions. The theory of linear differential equations

then guarantees the existence of a unique collection Xi of solutions defined on [0, a]
with initial conditions Xi(0) = ui, where ui = ⟨u,Di ∘ c(0)⟩. The second part of Theo-

rem 3.6.3 is an immediate consequence of the remark preceding the statement of the

theorem.

Covariant derivative in

terms of parallel translation

c(b)

X(b)

X(t0)

c(t0)

c(t1)

X(t1)

(∇DX)(b)

Conversely, covariant derivatives can be expressed in terms of parallel translation:

Theorem 3.6.4. Let c : [0, a] → M be a curve in a manifold Mn ⊂ ℝn+k, and X a vector

field inM alongc. For b ∈ (0, a), letXb denote the parallelvector field alongc that equals
X(b) at b. Then

(∇DX)(b) = lim
t→b

Xt(b) − X(b)
t − b

.
Proof. By Theorem 3.6.3, there exist parallel vector fields Yi in M along c such that

Y1(t), . . . ,Yn(t) form a basis of Mc(t) for each t ∈ [0,a]. Thus, X = ∑i fiYi for smooth

functions fi : [0, a] → ℝ, and the left side of the above identity can be written as
(∇DX)(b) = ∑

i

f i (b)Yi(b).
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By definition of Xt, Xt(b) = ∑i fi(t)Yi(b), so that the right side reads

lim
t→b

Xt(b) − X(b)
t − b

= ∑
i

lim
t→b

fi(t) − fi(b)
t − b Yi(b).

Comparing both expressions now implies the claim.

The above theorem roughly says that in order to compute the covariant derivative of

X at b, one parallel translates for each t close to b the vector X(t) to the tangent space
ofM at c(b). This yields a curve in the vector space Mc(b), and its derivative at b is the

desired vector.

Example 3.6.1. Let us explore parallel translation along a parametrized circle of lati-

tude in the sphere M = S2(1). The circle at height a ∈ (−1,1) may be parametrized by

c : ℝ → M, where

c(t) = (b cos t, b sin t, a), b := √1 − a2.
The vector fields X, Y along c, with

X =
1| ̇c| ċ = −(sin)D1 ∘ c + (cos)D2 ∘ c,

Y = −a(cos)D1 ∘ c − a(sin)D2 ∘ c + bD3 ∘ c,
form an orthonormal basis of the tangent space of the sphere at c(t), which, together
with the unit normal vector field

N = b(cos)D1 ∘ c + b(sin)D2 ∘ c + aD3 ∘ c
yield an orthonormal basis of the tangent space ofℝ3 at c(t). Since X = −(cos)D1 ∘ c −
(sin)D2 ∘ c, and ⟨X,N⟩ = −b, we deduce

∇DX = X − ⟨X,N⟩N
= (− cos + b2 cos)D1 ∘ c + (− sin + b2 sin)D2 ∘ c + abD3 ∘ c
= aY ,

where the last equality uses the fact that b2 − 1 = −a2. Similarly,

∇DY = −aX.
Thus, the vector fields X and Y are parallel only when the circle in question is a great

circle (namely, the equator, corresponding to a = 0). In this case, parallel translation

along c from c(0) to c(2π) = c(0) is the identity. In general, any vector field Z in M

along cmay be expressed as

Z = fX + gY , f := ⟨Z,X⟩, g := ⟨Z,Y⟩,
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so that Z is parallel when

0 = ∇D(fX + gY) = f X + afY + gY − agX.
This yields the system of linear differential equations

f  − ag = 0, g + af = 0,
which may be written as

[f 
g
] = A[f

g
] , A = [ 0 a−a 0

] .
By Example 2.8.1, it admits as general solution

[f (t)
g(t)

] = etA [f (0)
g(0)

] = [ cos(at) sin(at)− sin(at) cos(at)
][f (0)

g(0)
] .

In other words, the parallel field Z along c with “initial condition” Z(0) = c1X(0) +
c2Y(0) is given by

Z(t) = (c1 cos(at) + c2 sin(at))X(t) + (c2 cos(at) − c1 sin(at))Y(t).
Thus, parallel translation along c from c(0) to c(2π) = c(0) consists of rotation by an-
gle2πa. lnparticular, andas remarkedearlier, parallel translationalong the equator is

the identity.Wewill see that curvature, a concept to be soon introduced, is responsible

for parallel translation along closed curves differing from the identity.

pX(2π) X(0)

X(π)

Parallel translation along the circle

of latitude through p results in a

rotation about the origin by angle π

in S2p when p has height 1/2.

3.7 Geodesics

A fundamental concept in differential geometry is that of curves of shortest length

between two points in a manifold. Such curves (or rather certain parametrizations of

such curves) are called geodesics.
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Definition 3.7.1. A curve c : I → M is said to be a geodesic if its acceleration is

everywhere orthogonal toM; i.e., if∇Dċ = (ċ)⊤ = 0.
Thus, from the surface’s point of view, geodesics are those curves that have no accel-

eration. In particular, they have constant speed | ̇c|:|ċ|2 = ⟨ċ, ̇c⟩ = 2⟨∇Dċ, ċ⟩ = 0.
Geodesics are also invariant under linear reparametrizations: if c is a geodesic and
t → φ(t) := at + b, a, b ∈ ℝ, then so is c ∘ φ: in fact,

c ̇∘φ = (c ∘ φ)∗D = c∗ ∘ φ∗D = φ c∗(D ∘ φ) = aċ ∘ φ ,
so that by Theorem 3.6.2,∇D(c ̇∘φ) = a∇D(ċ ∘ φ) = a∇φ∗Dċ = a2(∇Dċ) ∘ φ (3.7.1)

also vanishes. In particular, any nonconstant geodesic admits a reparametrization by

arc length which is again a geodesic. The latter is called a normal geodesic. A similar

definition canbemade forEuclidean space itself: a curve c inℝn is said tobeageodesic

if ċ ≡ 0; equivalently, c has vanishing acceleration. It is easy to see that c is a geodesic
inℝn if and only if c(t) = p + tu for some p,u ∈ ℝn.

Theorem 3.7.1. For any p ∈ M and any v ∈ Mp, there exists a unique geodesic cv such
that cv(0) = p and ̇cv(0) = v.

Proof. Any p ∈ M has a neighborhood U on which there exists an orthonormal basis

Ni of vector fields normal toM. The geodesic equation in U then readṡc − ∑
i

⟨Ni ∘ c, ċ⟩Ni ∘ c = 0.
Since ⟨Ni ∘ c, ċ⟩ = ⟨Ni ∘ c, ̇c⟩ − ⟨(Ni ∘ c), ̇c⟩ = −⟨(Ni ∘ c), ̇c⟩,
this equation can be rewritten

ċ + ∑
i

⟨(Ni ∘ c), ċ⟩Ni ∘ c = 0. (3.7.2)

IfMn ⊂ ℝn+l, let ck = uk ∘ c as usual, and Nk
i = ⟨Ni,Dk⟩. (3.7.2) is then equivalent to the

second order linear system

ck


+
l∑

i=1

n+l∑
j=1

(N
j
i
∘ c)(Nk

i ∘ c)cj = 0, k = 1, . . . , n + l. (3.7.3)

Standard results from the theory of ordinary differential equations now guarantee the

existence of an interval I containing 0, and solutions ck : I → ℝ of (3.7.3) satisfying

arbitrary initial conditions ck(0) = uk(p) and ck(0) = v(uk).
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It should be noted that the systemof equations (3.7.3)is not linear, so that the solutions

need not be defined on the whole real line.

Example 3.7.1 (Geodesics on the sphere). LetM = Sn(r) ⊂ ℝn+1. Example 3.6.1 implies

that for n = 2 and r = 1 the equatorial curve t → (cos t, sin t, 0) is a geodesic. More
generally, consider any p ∈ M, and recall that the tangent space ofM at p is just Ipp⊥.
Let u ∈ ℝn+1 be a unit vector orthogonal to p, and define cu : ℝ → M by

cu(t) = (cos
t

r
)p + (sin

t

r
)ru.

We claim that cu is the geodesic in M with cu(0) = p, ċu(0) = Ipu. Indeed, cu =−(1/r2)cu, so that ̇cu = Icuc

u is orthogonal to M. This means that cu is a geodesic

in the sphere, and the initial conditions are easily verified.

Implicit in the proof of Theorem 3.7.1 is the fact that a geodesic c “depends smoothly”
on initial conditions c(0) and ċ(0). This is also implied by the following fact, whichwe

next establish: the velocity fields of geodesics are integral curves of a certain vector

field on TM. To see this, recall that if Mn ⊂ ℝn+l, then TM ⊂ M × ℝn+l ⊂ ℝ2(n+l) is a

2n-dimensional manifold. If π : TM ⊂ M × ℝn+l → M and π2 : TM → ℝn+l denote the

projections onto the two factors, then any point u ∈ TM can be written

u = (π(u), π2(u)) = Iπ (u)π2(u). (3.7.4)

Given a curve c : I → M, its velocity field ċ : I → TM is a curve in TM with

ċ(t) = (c(t), c(t)) = Ic(t)c(t) ∈ Mc(t).
Repeating the above process yields a curve c̈ : I → T(TM) given by

c̈(t) = (ċ(t), c(t), c(t)) = Iċ(t)(c(t), c(t)) ∈ (TM) ̇c(t).
As usual, we denote by cv the geodesic with initial tangent vector v. Define a map

S : TM → T(TM) by S(v) = c̈v(0).

Theorem 3.7.2. (1) Themap S is differentiable; i.e., S is a vector field on TM, called the

geodesic spray of M.

(2) c is a geodesic in M if and only if ċ is an integral curve of S.

Proof. We first show that S is differentiable at any p ∈ M. Denote byU a neighborhood

of p on which there exists an orthonormal basis N1, . . . ,Nl of unit normal fields toM.

We claim that the restriction of S to TU is given by

v → Iv (I−1π (v)v, −∑
i

⟨∇vNi, v⟩I−1π (v)Ni ∘ π(v)) , (3.7.5)

so that S is smooth at p. To see this, denote by S̃ the local vector field determined by

(3.7.5). If 𝛾 is an integral curve of S̃, and c = π ∘ 𝛾, then
�̇� = S̃ ∘ 𝛾 = I𝛾 (I−1c 𝛾, −∑

i

⟨∇𝛾Ni, 𝛾⟩I−1c Ni ∘ c) . (3.7.6)
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On the other hand, 𝛾 = (c, π2 ∘ 𝛾), so that
�̇� = (𝛾, c, (π2 ∘ 𝛾)) = I

𝛾
(c, (π2 ∘ 𝛾)). (3.7.7)

Comparing with the first part of (3.7.6), we deduce that

c = I−1c 𝛾, or equivalently, 𝛾 = Icc = ċ. (3.7.8)

The latter just says that 𝛾 is the velocity field of the curve c inM. Comparing the second

part of the expressions for �̇� in (3.7.6) and (3.7.7) yields

(π2 ∘ 𝛾) = −∑
i

⟨∇
𝛾
Ni, 𝛾⟩I−1c Ni ∘ c.

Now, by (3.7.4) and (3.7.8),

(π2 ∘ 𝛾) = (I−1c ∘ 𝛾) = (I−1c ∘ ċ) = c,
so that

ċ = Icc = −∑
i

⟨∇
𝛾
Ni, 𝛾⟩Ni ∘ c = −∑

i

⟨∇ċNi, ċ⟩Ni ∘ c.
This is just the geodesic equation (3.7.2) for c.
Summarizing, integral curves of S̃ are velocity fields of geodesics of M. Thus, for any

v ∈ TU, S̃(v) = S̃( ̇cv(0)) = c̈v(0), and S̃ is the restriction of S to TU, as claimed. This

shows that S is differentiable. The second statement of the theorem was established

in the course of proving the first one.

The concept of geodesic spray provides with yet a third way of describing geodesics,

one which is both useful and important: we shall construct a differentiable map exp

fromanopen subset ofTM toM that for each v ∈ TMmaps the ray t → tv in the tangent
space Mπ (v) to the geodesic cv in M. For this, recall that by Theorem 3.3.2, there exists

anopen subsetW ofℝ×TM containing {0}×TM, andadifferentiablemapΨ : W → TM

(namely, the flow of the geodesic spray vector field) such that for any u ∈ TM, if Ψu
denotes the curve t → Ψ (t,u), then the geodesic cu in direction u equals π ∘Ψu. Let

T̃M = {u ∈ TM | (1,u) ∈ W}.
Notice that T̃M is open in TM (because W is), and contains a neighborhood of the

zero section of M (the zero section is defined as the image of the zero vector field Z,
Z(p) = 0 ∈ Mp for p ∈ M).

Definition 3.7.2. The exponential map ofM is the map exp : T̃M → M given by

exp(u) = (π ∘ Ψ )(1,u) = cu(1).
For p ∈ M, let M̃p = T̃M ∩Mp, and denote by expp the restriction of exp to M̃p. Recall

also the isomorphism Iu between Euclidean space and its tangent space at any point
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u. It can be written as Iu(v) = �̇�v(0), where 𝛾v(t) = u + tv. For a manifold M, given

p ∈ M, the tangent space Mp is both a vector space and a manifold, so Mp also has a

tangent space at any u ∈ Mp. In the same vein, we introduce a canonical isomorphism

Iu betweenMp and its tangent space at u by the formula above. The second statement

in the following theorem then says that up to this isomorphism, the derivative expp∗0
of expp at the origin Z(p) = 0 inMp is just the identity.

Theorem 3.7.3. (1) cv(t) = exp(tv) for any v ∈ TM;

(2) exp is differentiable, and for p ∈ M, v ∈ Mp, expp∗ IZ(p)v = v.

Proof. For the first statement, notice that if t0 belongs to the domain of cv, then the

curve t → 𝛾(t) := cv(t0t) is a geodesic (being a linear reparametrization of cv) with
initial velocity �̇�(0) = t0ċv(0) = t0v, and by uniqueness, 𝛾 = ct0v. Thus,

Ψ t0v(1) = Ψv(t0), (t0, v) ∈ W ,
so that

exp(t0v) = π ∘Ψ t0v(1) = π ∘ Ψv(t0) = cv(t0)

for any t0 in the domain of cv, thereby establishing (1). For (2), let𝚤1 : T̃M → W ,
u → (1,u).

Then exp, being a composition π ∘Ψ ∘ 𝚤1 of differentiable maps, is also smooth. Finally,

if 𝛾v denotes the ray t → tv in the tangent space Mπ (v), and 0 the origin there, then

�̇�v(0) = I0v, so that

v = ̇cv(0) = expp∗(�̇�v(0)) = expp∗ I0v.
In particular, for every p ∈ M, expp has maximal rank at the origin inMp. The inverse

function theorem then implies:

Corollary 3.7.1. For any p ∈ M, there exists a neighborhoodU of the origin in Mp such

that expp maps U diffeomorphically onto a neighborhood of p in M.

Remark 3.7.1. There is a stronger version of Corollary 3.7.1 that will be used later on.

Consider the map (π , exp) : T̃M → M × M, (π , exp)(v) = (π(v), exp(v)), where π is

the bundle projection. We have already seen that any local chart (U, x) ofM around a

point p ∈ M induces a chart (π−1(U), x̄) of TM around π−1(p), where

x̄ = (x, dx1 , . . . , dxn) ∘ π ,
cf. (3.5.3). It also induces one ofM ×M around (p,p), namely x × x. Now, if v = (p,u) ∈
TM ⊂ M × ℝn+k, then π(p, u) = p; i.e., π is projection onto the first factor. This means

that the matrix of the derivative of (π , exp) in the corresponding basis of coordinate
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vector fields at any point of the zero section has the same top n rows as the 2n × 2n

identity matrix I2n. Furthermore, we claim that𝜕𝜕x̄n+j (0p) = (𝚤∗ ∘ I0p
)
𝜕𝜕xj (p),

where 𝚤 : Mp → TM is inclusion and 0p denotes the zero vector in Mp. If we accept

this claim for the moment, then Theorem 3.7.3 (2) implies that

exp∗
𝜕𝜕x̄n+j (0p) = (exp∗ ∘𝚤∗ ∘ I0p

)
𝜕𝜕xj (p) = expp∗

I0p

𝜕𝜕xj (p) = 𝜕𝜕xj (p),
so that the matrix of (π , exp)∗ has the form

[In 0∗ In
] .

Here all four entries are n × nmatrices, with In the identity and 0 the zero matrix.

To verify the claim, consider the ray 𝛾j : ℝ → Mp with 𝛾j(t) = t 𝜕/𝜕xj(p). Then
(𝚤 ∘ 𝛾j)∗D(0) = 2n∑

i=1

D(0)(x̄i ∘ 𝚤 ∘ 𝛾j) 𝜕𝜕x̄i (0p).
For i ≤ n, ̄xi ∘ 𝚤 ∘ 𝛾j is the constant map xi(p), whereas

(x̄n+i ∘ 𝚤 ∘ 𝛾j)(t) = dxi(t
𝜕𝜕xj (p)) = t

when i = j and 0 otherwise. Thus, (𝚤 ∘ 𝛾j)∗D(0) = (𝜕/𝜕x̄n+j)(0p). The claim now follows,

since by definition, (𝚤 ∘ 𝛾j)∗D(0) = (𝚤∗ ∘ I0p
)𝜕/𝜕xj(p).

In conclusion, the derivative has maximal rank at each point of the zero section

Z, so that (π , exp) is a diffeomorphism in a neighborhood of each Z(p), p ∈ M.

Furthermore, the map itself is one-to-one when restricted to the zero section, since

(π , exp)Z(p) = (p,p). It can be shown that under these conditions, (π , exp) is actually
one-to-one on a neighborhood of the zero section. The proof of this last fact involves

technical details outside the scope of this text. We nevertheless summarize this for

future use: (π , exp) : T̃M → M × M maps a neighborhood of the zero section in TM

diffeomorphically onto a neighborhoodof the diagonal Δ = {(p,p) | p ∈ M} in M ×M.

3.8 The second fundamental tensor

Recall that given vector spaces V andW, a mapM : Vk → W is said to be multilinear

if it is linear in each component; i.e. if for any (k − 1)-tuple (v1, . . . , vk−1) ∈ Vk−1 and
any i ∈ {1, . . . , k}, the map T ∘ 𝚤i,v1,...,vk−1 : V → W is linear, where𝚤i,v1,...,vk−1 : V → Vk ,

u → (v1 , . . . , vi−1 ,u, vi, . . . , vk−1).
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We adopt the convention that V0 = ℝ. For l = 0 or 1, a multilinear map T : Vk → Vl is

called a tensor of type (k, l) on V.
Definition 3.8.1. Let l = 0 or 1. A tensor field of type (k, l) on a manifoldM is a map T

such that for each p ∈ M, T(p) : (Mp)
k → (Mp)

l is a tensor of type (k, l) on the tangent

space of M at p. T is furthermore assumed to be smooth in the sense that for vector

fields X1, . . . ,Xk on M the function (if l = 0) or the vector field (if l = 1) T(X1, . . . ,Xk),

given by

T(X1, . . . ,Xk)(p) = T(p)(X1(p), . . . ,Xk(p)), (3.8.1)

is smooth in the usual sense.

For example, on any manifold M, the map p → g(p), where g(p) denotes the inner
product on the tangent space of M at p, is a tensor field of type (2, 0), called the first
fundamental tensor field of M.

We will denote by XM the vector space of vector fields on M, and by (XM)0 the

vector space of all functions f : M → ℝ. Thus, any tensor field T of type (k, l) defines
a multilinear map T : (XM)k → (XM)l via (3.8.1). This map is actually linear over

functions: given f : M → ℝ,
T(X1, . . . , fXi, . . . ,Xk) = fT(X1, . . . ,Xi, . . . ,Xk). (3.8.2)

It turns out that this property characterizes tensor fields:

Theorem 3.8.1. A multilinear map T : (XM)k → (XM)l is a tensor field if and only if it

is linear over functions; i.e., if and only if it satisfies (3.8.2).

Proof. The condition is necessary by the above remark. Conversely, suppose T is

multilinear and linear over functions. We claim that if Xi(p) = Yi(p) for all i, then
T(X1, . . . ,Xk)(p) = T(Y1, . . . ,Yk)(p). To see this, assume for simplicity that k = 1 and

l = 0, the general case being analogous. It suffices to establish that if X(p) = 0, then
T(X)(p) = 0: indeed, if X and Y are as above, then X − Y is a vector field that vanishes

at p, so that T(X)(p) − T(Y)(p) = T(X − Y)(p) = 0.

So consider a chart (U, x) around p, and write X|U = ∑ f i 𝜕/𝜕xi with f i(p) = 0. By

Proposition 3.2.2, there exists a functionφ onM with support inU, that equals one on

a neighborhood of p and takes values in [0,1]. Define vector fields Xi onM by setting

them equal to φ 𝜕/𝜕xi on U and to 0 outside U. Each Xi is differentiable on M: its

restriction to U is given by a differentiable vector field, and if q lies outside U, there is
an open neighborhood of q on whichXi is identically zero, implying that Xi is smooth

at q. Similarly, let gi be the functions that equal φf i on U and 0 outside U. Notice that∑ giXi = φ2X, because ∑i g
iXi = ∑i g

iφ 𝜕/𝜕xi = φ2 ∑i f
i 𝜕/𝜕xi = φ2X on U, and both

fields are zero outside U. Thus, X = φ2X + (1 −φ2)X = ∑i g
iXi + (1 −φ2)X. Recalling

that gi(p) = 0 and φ(p) = 1, we conclude that

(TX)(p) = (∑
i

gi(p)(TXi)(p)) + (1 − φ2(p))(TX)(p) = 0,
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establishing the claim.Wemay therefore define for each p ∈ M amultilinearmap T(p)
by

T(p)(u1, . . . , uk) := T(X1, . . . ,Xk)(p)

for any vector fields Xi with Xi(p) = ui. The map p → T(p) is clearly smooth.

LetMn ⊂ ℝn+k be a submanifold of Euclidean space, and consider the map S : X(M) ×
X(M) → X(ℝn+k)|M from the Cartesian product of the space of vector fields onM with

itself to the space of vector fields on ℝn+k restricted toM given by

S(X,Y) = (DXY)⊥ = DXY − ∇XY . (3.8.3)

S is bilinear, and linear over functions in the first component by properties of the

covariant derivative. Furthermore, S is symmetric, because

S(X,Y) − S(Y ,X) = (DXY − DYX)⊥ = [X,Y]⊥ = 0,
since the bracket of fields tangent toM is a field tangent toM by Theorem 2.9.3. Thus,

it is also linear over functions in the second component, and in light of Theorem 3.8.1,

the formula

S(x, y) = (DXY)⊥(p), x, y ∈ Mp, p ∈ M, (3.8.4)

whereX and Y are any vector fields onM that equal x and y at p, defines a tensor field
onM, called the second fundamental tensor ofM. It isworth emphasizing that thefields

X and Y only need to be defined in a neighborhood of the point being considered: just

as in theproof of Theorem3.8.1, ifU is thedomainof a chart aroundp,X is a vectorfield

onU, andφ a nonnegative functionwith support inU that equals 1 on a neighborhood

of p, then the field X̃ that equals φX on U and zero outside U is a vector field on M

that equals X on a neighborhood of p.

Definition 3.8.2. Let u denote a vector orthogonal to Mp. The second fundamental

tensor with respect to u is the self-adjoint linear transformation Su : Mp → Mp given

by

Sux = −(DxU)⊤, x ∈ Mp,
whereU is any locally defined normal vector field toM withU(p) = u (here, normal to

M means that U(q) ⊥ Mq for all q in the domain of U).

The above does not depend on the particular extensionU because it is tensorial in U:
If f : M → ℝ is a function, then

(Dv(fU))⊤ = (vf )U⊤ + f (p)(DvU)⊤ = f (p)(DvU)⊤,
sinceU is normal toM, so thatU⊤ is zero. Another way of seeing this is to consider the
associated symmetric (as we will see in a moment) bilinear form onMp given by

(x, y) → ⟨Sux, y⟩, x, y ∈ Mp, (3.8.5)
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which is called the second fundamental formwith respect to u. If Y is a local extension

of y, then ⟨Sux, y⟩ = −⟨DxU , y⟩ = −Dx⟨U ,Y⟩ + ⟨U(p),DxY⟩ = ⟨u, S(x, y)⟩,
which, once again, only depends on the value ofU at the point p. This also shows that
the second fundamental form is symmetric as claimed.

Example 3.8.1. Consider the sphere M = Sn(r) ⊂ ℝn+1 of radius r. One of the two

unit normal fields is N = (1/r)P, where P is the position vector field. The second

fundamental tensor at p is given by

S(x, y) = (DxY)⊥ = ⟨DxY , 1r P(p)⟩1r P(r)
= (x⟨Y ,P⟩ − ⟨Y(p),DxP⟩) 1r2P(p)
= −⟨y,DxP⟩ 1r2P(p),

so that by Examples 2.8.2 (ii),

S(x, y) = −1
r
⟨x,y⟩n, (3.8.6)

where n is the outward-pointing unit normal N(p). Thus, for any y ∈ Mp,

⟨Snx, y⟩ = ⟨n, S(x, y)⟩ = −1
r
⟨x,y⟩,

which implies

Snx = −1
r
x, x ∈ Mp. (3.8.7)

3.9 Curvature

Definition 3.9.1. The curvature tensor ofM is the tensor field R of type (3,1) given by

R(v,w)z = SS(w,z)v − SS(v,z)w, v,w, z ∈ Mp, p ∈ M,
where S denotes the second fundamental tensor ofM.

Since S is a tensor field, it is clear that R is one also.

Example 3.9.1 (Curvature tensor of a sphere). Let M = Sn(r) denote the sphere of ra-

dius r centered at the origin. The second fundamental tensor S ofM is given by (3.8.6),

and for the outer unit normal vector n, Snv = −1
r
v. Thus,

R(v,w)z = SS(w,z)v − SS(v,z)w = S− 1
r
⟨w,z⟩nv − S− 1

r
⟨v,z⟩nw

=
1

r2
(⟨w, z⟩v − ⟨v, z⟩w) .
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There is another characterization of the curvature tensor that is often useful. First,

though, observe that if X, Y, and Z are vector fields on an open set U ⊂ ℝn, then

(DXDY − DYDX − D[X,Y])Z = 0. (3.9.1)

To see this,writeZ = ∑i f
iDi, and recall that the coordinate vector fieldsDi are parallel.

Thus,

(DXDY − DYDX − D[X,Y])Z = ∑
i

((XY − YX − [X,Y])f i)Di

= 0

by definition of the Lie bracket. In light of the following theorem, (3.9.1) just says that

the curvature tensor of Euclidean space is identically zero; i.e., Euclidean space is flat.

Theorem 3.9.1. For vector fields X, Y , Z on a manifold M,

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.
Proof. For the sake of clarity, we will sometimes write D⊥XY instead of (DXY)⊥, and
similarly for ⊤. With this in mind, notice that∇X∇YZ = ∇X(D⊤YZ) = D⊤X(DYZ − S(Y , Z)) = D⊤XDYZ + SS(Y,Z)X.
Thus, the right side of the identity in the statement equals

D⊤XDYZ + SS(Y,Z)X − D⊤YDXZ − SS(X,Z)Y − D⊤[X,Y]Z
= (DXDY − DYDX − D[X,Y])

⊤Z + SS(Y,Z)X − SS(X,Z)Y
= SS(Y,Z)X − SS(X,Z)Y
= R(X,Y)Z,

as claimed.

More generally, we have the following:

Theorem 3.9.2. Let f : N → M be differentiable,U,V vector fields on N, andX a vector

field along f . Then

R(f∗U , f∗V)X = ∇U∇VX − ∇V∇UX − ∇[U,V]X.
Proof. The statement being a local one, we may work in the domain U of a chart on

M with coordinate vector fields Xi. The restriction of any vector field along f to f−1(U)
may be written as ∑i h

iXi ∘ f for some functions hi : f−1(U) → ℝ. Since both sides of

the identity we are proving are tensorial, we need only consider vector fields of the

form Xi ∘ f ; i.e., we may assume that there exist vector fields Ũ, Ṽ, and X̃ on U such

that f∗U = Ũ ∘ f , f∗V = Ṽ ∘ f , and X = X̃ ∘ f on f −1(U). Thus, on f−1(U),
R(f∗U , f∗V)X = R(Ũ ∘ f , Ṽ ∘ f )X̃ ∘ f = [R(Ũ , Ṽ)X̃] ∘ f

= [∇Ũ∇Ṽ X̃ − ∇Ṽ∇ŨX̃ − ∇[Ũ,Ṽ ]X̃] ∘ f .
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By repeated use of Theorem 3.6.2 (6), the first term on the above line may be rewritten

as: [∇Ũ∇Ṽ X̃] ∘ f = ∇Ũ∘f∇Ṽ X̃ = ∇f∗U∇Ṽ X̃ = ∇U(∇Ṽ X̃ ∘ f )
= ∇U∇f∗VX̃ = ∇U∇V(X̃ ∘ f )
= ∇U∇VX,

and a similar expression holds for the second term. Finally, the last termmay, in view

of Theorem 2.9.2, be rewritten as follows:(∇[Ũ,Ṽ]X̃) ∘ f = ∇[Ũ,Ṽ ]∘f X̃ = ∇f∗[U,V]X̃ = ∇[U,V](X̃ ∘ f ) = ∇[U,V]X.
This establishes the result.

Proposition 3.9.1. The following identities hold for vector fields X, Y , Z, U on M:

(1) R(X,Y)Z = −R(Y ,X)Z;
(2) R(X,Y)Z + R(Y ,Z)X + R(Z,X)Y = 0;
(3) ⟨R(X,Y)Z,U⟩ = −⟨R(X,Y)U ,Z⟩, and
(4) ⟨R(X,Y)Z,U⟩ = ⟨R(Z,U)X,Y⟩.
Proof. (1) is an immediate consequence of the definition. Since R is a tensor field, and

is therefore linear over functions, it is enough to prove the identities for coordinate

vector fields, or more generally, for vector fields with vanishing Lie brackets. Thus,∇XY = ∇YX, R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ,
with similar identities holding for the other terms. (2) now easily follows. For (3), it is

enough to show that ⟨R(X,Y)V ,V⟩ = 0 for any vector fieldV, since this will imply that

0 = ⟨R(X,Y)(Z + U),Z + U⟩
= ⟨R(X,Y)Z,Z⟩ + ⟨R(X,Y)U ,U⟩ + ⟨R(X,Y)Z,U⟩ + ⟨R(X,Y)U , Z⟩
= ⟨R(X,Y)Z,U⟩ + ⟨R(X,Y)U ,Z⟩.

Now, ⟨∇X∇YZ,Z⟩ = X⟨∇YZ,Z⟩ − ⟨∇YZ, ∇XZ⟩
=
1

2
XY⟨Z,Z⟩ − ⟨∇YZ, ∇XZ⟩,

so that ⟨R(X,Y)Z,Z⟩ = 1

2
(XY − YX)⟨Z,Z⟩ = 1

2
[X,Y]⟨Z,Z⟩ = 0

because [X,Y] = 0.
The last identity can be derived from the other three:⟨R(X,Y)Z,U⟩ = −⟨R(Y ,X)Z,U⟩ by (1)

= ⟨R(X,Z)Y ,U⟩ + ⟨R(Z,Y)X,U⟩ by (2). (3.9.2)
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Similarly, ⟨R(X,Y)Z,U⟩ = −⟨R(X,Y)U ,Z⟩ by (3)
= ⟨R(Y ,U)X,Z⟩ + ⟨R(U ,X)Y ,Z⟩ by (2). (3.9.3)

Adding (3.9.2) and (3.9.3) implies⟨2R(X,Y)Z,U⟩ = ⟨R(X,Z)Y ,U⟩ + ⟨R(Z,Y)X,U⟩ + ⟨R(Y ,U)X,Z⟩
+ ⟨R(U ,X)Y ,Z⟩. (3.9.4)

Swapping X with Z and Y with U in (3.9.4) yields⟨2R(Z,U)X,Y⟩ = ⟨R(Z,X)U ,Y⟩ + ⟨R(X,U)Z,Y⟩ + ⟨R(U ,Y)Z,X⟩
+ ⟨R(Y ,Z)U ,X⟩. (3.9.5)

Finally, applying (1) and (3) to each term on the right side of (3.9.5) yields the right side

of (3.9.4). This proves (4).

Let p ∈ M, E a 2-dimensional subspace of Mp. If v and w form a basis of E, then|v|2 |w|2 − ⟨v,w⟩2 > 0 by the Cauchy-Schwartz inequality and Exercise 1.20. The sec-

tional curvature of E is the number

KE =
⟨R(v,w)w, v⟩|v|2 |w|2 − ⟨v,w⟩2 (3.9.6)

To see that this definition does not depend on the particular basis, denote by k the

curvature form of R; i.e., the map k : XM × XM → ℝ, where k(X,Y) = ⟨R(X,Y)Y ,X⟩.
Notice that if RS denotes the curvature tensor of the unit sphere, then the correspond-

ing curvature form kS is precisely the denominator of (3.9.6) by Example 3.9.1, and

KE =
k(v,w)
kS(v,w) .

Suppose u = a11v + a12w and v = a21v + a22w form another basis of E. A straightfor-

ward computation shows that

k(u, v) = (detA)2k(v,w),
where

A = [a11 a12
a21 a22

]
is the transition matrix between the two bases. Since this identity does not depend on

the particular curvature tensor, it also holds for kS, andwe conclude that the sectional

curvature is indeed well-defined. Furthermore, if v and w are orthonormal, then

KE = ⟨R(v,w)w, v⟩.
Thus, for example, the sectional curvature of any plane tangent to a sphere of radius r

is 1/r2. We therefore say that the sphere of radius r has constant curvature 1/r2. More
generally, a space of constant curvature κ ∈ ℝ is a space where every plane has sec-

tional curvature κ . As remarked earlier, Euclidean space has constant zero curvature.
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3.10 Sectional curvature and the length of small circles

There is also a more geometric interpretation of the sectional curvature KP of a plane

P ⊂ Mp. Suppose {v,w} is an orthonormal basis of Mp, and consider the variation

V : [0, a] × [0, 2π ] → M by geodesics, where

V(t, s) = expp[t(cos sv + sin sw)].
When M is 2-dimensional, then for small t, the image of Vt, where Vt(s) = V(t, s), is
the set of points at distance t from p. By abuse of notation, Vt will be called the circle

of radius t, and Vs, where Vs(t) = V(t, s), a “radial” geodesic. The length of the circle
of radius t is

L(t) =

2π∫
0

|V̇t(s)|ds.
V̇t(s) is also Ys(t), where Ys is the vector field Ys(t) = V∗D2(t, s) along the geodesic Vs.

Radial geodesics Vs and “circles” Vt

of points at constant distance from p

Vs0 Vs1

Vt1

Vt0 p

In order to estimate |Ys|, we will need the following
Lemma 3.10.1. Let Y be a vector field along a curve c. If Ei is the parallel vector field
along c that equals Y (i)(0) when t = 0, then

Y(t) =
k∑
i=0

ti

i!Ei(t) + Z(t),
where Z is a vector field along c satisfying |Z(t)|/tk → 0 as t → 0.

Proof. Choose a basis F1, . . . , Fn of orthonormal parallel fields along c, so that Y =∑ flFl, where fl = ⟨Y , Fl⟩. By Taylor’s theorem,

fl(t) =
k∑
i=1

ti

i! f (i)l (0) + o(tk),
with o(tk) designating some expression that,whendivided by tk, goes to zero as t → 0.

Thus,

Y(t) = ∑
i,l
( ti
i! f (i)l (0) + o(tk)) Fl(t).

The claim now follows, since Ei = ∑l f
(i)
l
(0)Fl.
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We will use the Lemma with k = 3: by definition, Ys(0) = 0, and

Y s(0) = ∇D1
V∗D2(0, s) = ∇D2

V∗D1(0, s) = − sin s v + cos sw,
since V∗D1(0, s) = cos s v + sin sw. In order to compute Y s (0), notice that by Theo-
rem 3.9.2,

R(V∗D2,V∗D1)V∗D1 = ∇D2
∇D1

V∗D1 − ∇D1
∇D2

V∗D1− ∇[D2,D1]
V∗D1

= −∇D1
∇D2

V∗D1 = −∇D1
∇D1

V∗D2.
Thus, Y s = −R(Ys , V̇s)V̇s, and since Ys(0) = 0, Y s (0) = 0 also. It remains to evaluate

Y (3) = −(R(Ys, V̇s)V̇s) at 0. To do so, consider a basis Ei of parallel fields along Vs and

write Ys = ∑ fiEi in terms of this basis. Then

Y (3)
s (0) = −∑(fiR(Ei, V̇s)V̇s)(0)

= −∑
i

(fi(0)(R(Ei , V̇s)V̇s)(0) + f i (0)(R(Ei , V̇s)V̇s)(0))
= −∑ f i (0)R(Ei , V̇s)V̇s(0) = −R(Y s (0), V̇s(0))V̇s(0)

since fi(0) = 0. Lemma 3.10.1 now implies that Ys may be written as

Ys(t) = tE1(t) +
t3

3!E3(t) + Z(t),
where E1(0) = ws := − sin s v + cos sw, E3(0) = −R(ws , vs)vs, and vs := cos s v +

sin sw. Furthermore, |Z(t)|/t3 → 0 as t → 0. It follows that

|Ys|2(t) = t2 − 2t4

3! KP + ( t3
3!)2 |R(ws, vs)vs|2 + |Z|2(t) + 2t⟨E1,Z⟩(t)

+
2t3

3! ⟨E3,Z⟩(t)
= t2 (1 − 2t2

3! KP − g(t)) ,
where g is a function such that g(t)/t2 → 0 as t → 0. Since (1−x)1/2 = 1− (x/2) + o(x),

we obtain for t > 0

|Ys(t)| = t (1 − 2t2

3! KP − g(t))1/2
= t (1 − t2

3!KP + o(t2))
= t − t3

3!KP + o(t3). (3.10.1)

We are now able to state ourmain result,which roughly says thatM has positive (resp.

negative) sectional curvature at p ∈ M if and only if small circles centered at p have

smaller (resp. larger) circumference thancircles of the same radius inEuclidean space:
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Theorem 3.10.1. Let M be a manifold, p a point in M, and P a plane in Mp. For t > 0,

denote by Ct the “circle” in M obtained by exponentiating the circle of radius t centered

at the origin in P. Then the length of Ct is

L(Ct) = 2πt (1 − KP

3! t2 + o(t2)) .
In particular, the sectional curvature of P is

KP = lim
t→0

6

t2
(1 − L(Ct)

2πt
) .

Proof. This is immediate from (3.10.1), since L(Ct) = ∫2π
0

|Ys(t)|ds as remarked earlier.

Even though the above formula for the sectional curvature is more qualitative than

anything, there are some special cases where it can be used to actually evaluate the

curvature:

Example 3.10.1. Consider a sphere of radius r > 0.A geodesic of length t < πr is an arc

of a circle with radius r and central angle t/r. Elementary trigonometry implies that Ct
has length 2πr sin(t/r). Thus, any plane has curvature

K = lim
t→0

6
t − sin(t/r)

t3
=

1

r2

after applying l’Hospital’s rule three times.

C t

r

t

A
B

t/r
the circle C t has radius
AB = r sin t

r
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3.11 Isometries

Maps that preserve the inner product play a fundamental role in differential geometry:

Definition 3.11.1. Amap f : M → N between manifolds is said to be isometric if for all

p ∈ M and v,w ∈ Mp, ⟨f∗v, f∗w⟩ = ⟨v,w⟩. An isometric diffeomorphism is called an

isometry.

Equivalently, f : M → N is isometric if |f∗v| = |v| for all v ∈ TM: indeed, if f preserves
norms, then it must preserve inner products, for

⟨f∗u, f∗v⟩ = 1

2
(|f∗(u + v)|2 − |f∗u|2 − |f∗v|2)

by linearity of f∗. The converse is also clear. In particular, f∗p : Mp → Nf (p) is injective

in this case, and dimM ≤ dim N.

If f : ℝn → ℝn is an isometry, and M is a submanifold of ℝn, then the image

N := f (M) is also amanifold, and the restriction f : M → N is an isometry: in fact, any

local parametrization h ofM induces a local parametrization f ∘ h of N, so that N is a

submanifold. Since the inner product on the tangent bundle ofM is the restriction of

that onℝn, the restriction of f toM is clearly an isometry. The isometries of Euclidean

space are called Euclideanmotions, and are easy to describe:

Proposition 3.11.1. f : ℝn → ℝn is a Euclideanmotion if and only if it is the composition

of an orthogonal transformation A with a translation v → v + a by some vector a; i.e.,
f (v) = Av + a.

Proof. Clearly, compositions of orthogonal transformations with translations are

isometries: If f (v) = Av + a, then for u = Ipv ∈ ℝn
p,|f∗u| = |Df (p)v| = |Av| = |v| = |u|.

Conversely, suppose f is a Euclidean motion. Notice first of all that f preserves dis-
tances between points: by hypothesis, |f ̇∘c| = |f∗ ∘ ̇c| = | ̇c|, so that ℓ(f ∘ c) = ℓ(c), and
f preserves the length of curves. Thus, if c is the line segment from p to q, then f ∘ c is
a curve from f (p) to f (q) of length |p − q|. This implies that |f (p) − f (q)| ≤ |p − q| for
any p,q. But f −1 is also an isometry, so by the same reasoning,

|f−1(f (p)) − f −1(f (q))| ≤ |f (p) − f (q)| ≤ |p − q|,
and all terms in the above inequality are the same; i.e., f preserves distances as

claimed.

If a = f (0), and g : ℝn → ℝn denotes the map given by g(p) = f (p) − a, then Dg = Df ,
so that g is also an isometry. In particular,

|g(v)| = |g(v) − g(0)| = |v − 0| = |v|,
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and it only remains to show that g is linear. But if g preserves norms, it also preserves

inner products, because

⟨g(v), g(w)⟩ = 1

2
(|g(v)|2 + |g(w)|2 − |g(v) − g(w)|2)

=
1

2
(|v|2 + |w|2 − |v − w|2)

= ⟨v,w⟩.
It follows that for any a ∈ ℝ and z ∈ ℝn,

⟨g(av + w) − ag(v) − g(w), z⟩ = ⟨g(av + w) − ag(v) − g(w), g(g−1(z))⟩
= ⟨g(av + w), g(g−1(z))⟩− a⟨g(v), g(g−1(z))⟩ − ⟨g(w), g(g−1(z))⟩
= ⟨av + w, g−1(z)⟩ − a⟨v, g−1(z)⟩− ⟨w, g−1(z)⟩
= 0.

Now take z = g(av + w) − ag(v) − g(w) in the above equation to deduce that g(av +

w) − ag(v) − g(w) = 0. Thus, g is linear, as claimed.

We’ve already remarked that if Mn is a submanifold of ℝn+k and f is a Euclidean mo-

tion, then the restriction f : M → f (M) of f to M is an isometry. It is by no means

true that every isometry of M with another manifold is the restriction of a Euclidean

motion: for example, let M = (0,2π) × {0} ⊂ ℝ2. Then M is isometric to a circle of

unit radius with one point removed via f , where f (t, 0) = (cos t, sin t), but f is not
a Euclidean motion. We shall, however, see in a later chapter that if k = 1 and f also
preserves the second fundamental form, then it is the restrictionof aEuclideanmotion

(this is also truewhen k > 1 under additional assumptions). In order todo so, wemust

first investigate how covariant derivatives behave under isometric maps. This will in

fact lead us to an alternative expression for the covariant derivative, one which is of

interest in its own right.

Let X, Y, and Z denote vector fields on M. Since Z is tangent to M, ⟨∇XY ,Z⟩ =⟨DXY ,Z⟩. Thus, by Theorem 3.6.2,

X⟨Y ,Z⟩ = ⟨DXY ,Z⟩ + ⟨Y ,DXZ⟩. (3.11.1)

In the same way, but also using Proposition 2.9.1,

Y⟨Z,X⟩ = ⟨DYZ,X⟩ + ⟨Z,DYX⟩
= ⟨DYZ,X⟩ + ⟨Z,DXY⟩ − ⟨Z, [X,Y]⟩, (3.11.2)

and

Z⟨X,Y⟩ = ⟨DXZ,Y⟩ + ⟨[Z,X],Y⟩ + ⟨X,DYZ⟩ − ⟨X, [Y ,Z]⟩. (3.11.3)
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Adding the first two equations (3.11.1), (3.11.2), and subtracting the third (3.11.3) yields

X⟨Y ,Z⟩ + Y⟨Z,X⟩ − Z⟨X,Y⟩ = 2⟨DXY ,Z⟩ + ⟨X, [Y ,Z]⟩ − ⟨Y , [Z,X]⟩− ⟨Z, [X,Y]⟩,
so that

⟨DXY ,Z⟩ = ⟨∇XY , Z⟩ = 1

2
{X⟨Y ,Z⟩ + Y⟨Z,X⟩ − Z⟨X,Y⟩

+ ⟨Z, [X,Y]⟩ + ⟨Y , [Z,X]⟩ − ⟨X, [Y ,Z]⟩}. (3.11.4)

Notice that (3.11.4) actually characterizes the covariant derivative ∇XY, since for any
p ∈ M one can find a local orthonormal basis Zi of vector fields in a neighborhood of

p inM, and ∇X(p)Y = ∑
i

⟨∇X(p)Y , Zi(p)⟩Zi(p).
Now, (3.11.1) actually holds for vector fields along maps. In particular, given a map

f : N → M and vector fields X̃, Ỹ, Z̃ on N,

X̃⟨f∗Ỹ , f∗Z̃⟩ = ⟨∇X̃f∗Ỹ , f∗Z̃⟩ + ⟨f∗Ỹ , ∇X̃f∗Z̃⟩.
Furthermore, by Theorem 2.9.1,

f∗[X̃, Ỹ] = ∇X̃f∗Ỹ − ∇Ỹ f∗X̃.
Thus, the same argument that lead to (3.11.4) yields the following generalization of it:

⟨∇X̃f∗Ỹ , f∗Z̃⟩ = 1

2
{X̃⟨f∗Ỹ , f∗Z̃⟩ + Ỹ⟨f∗Z̃, f∗X̃⟩ − Z̃⟨f∗X̃, f∗Ỹ⟩

+ ⟨f∗Z̃, f∗[X̃, Ỹ]⟩ + ⟨f∗Ỹ , f∗[Z̃, X̃]⟩ − ⟨f∗X̃, f∗[Ỹ , Z̃]⟩}. (3.11.5)

The next lemma essentially identifies the tangential component of a vector field along

an isometric map:

Lemma 3.11.1. Given an isometric map f : N → M, there exists, for any vector field X
along f , a unique vector field XT along f such that XT = f∗X̃ for some vector field X̃ on

N, and ⟨X, f∗Ỹ⟩ = ⟨XT, f∗Ỹ⟩
for any vector field Ỹ on N.

fX̃(t)

X(t)

XT(t)
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Proof. We shall construct XT locally. Given p ∈ N, consider an orthonormal basis X̃i

of vector fields in a neighborhood U of p in N, and set

φi = ⟨X, f∗X̃i⟩ : U → ℝ.
The restriction Ỹ|U toU of a vector field Ỹ on N then equals∑i⟨Ỹ , X̃i⟩X̃i, and

f∗Ỹ|U = ∑
i

⟨Ỹ, X̃i⟩f∗X̃i.
Thus, ⟨X, f∗Ỹ⟩ = ∑

i

⟨Ỹ , X̃i⟩⟨X, f∗X̃i⟩ = ⟨∑
i

φiX̃i, Ỹ⟩,
and we may take XT

|U = f∗X̃, where X̃ = ∑i φiX̃i.

For uniqueness, if Z = f∗Z̃ satisfies ⟨Z, f∗Ỹ⟩ = ⟨XT , f∗Ỹ⟩ for every vector field Ỹ on U,

then ⟨Z̃, Ỹ⟩ = ⟨Z, f∗Ỹ⟩ = ⟨XT, f∗Ỹ⟩ = ⟨X̃, Ỹ⟩,
so that ⟨Z̃ − X̃, Ỹ⟩ = 0 for any such Ỹ. Now take Ỹ = Z̃ − X̃ to conclude that Z̃ = X̃, and
therefore also Z = XT.

The next theorem roughly says that covariant derivatives are preserved under isomet-

ric maps:

Theorem 3.11.1. Suppose f : N → M is isometric, and X, Y are vector fields on N. Then

(∇Xf∗Y)T = f∗∇XY .
Proof. Notice that although the same notation is used in the equation above, the co-

variant derivative on the left is the one on M, and the one on the right is that on N.

It must be shown that ⟨∇Xf∗Y , f∗Z⟩ = ⟨∇XY ,Z⟩ for any vector field Z on N. The first

inner product is given by (3.11.5), if one deletes all tildes in that equation. Since f is
isometric, all f∗ on the right side of that identity may be dropped. What remains is the

right side of (3.11.4), thereby establishing the claim.

Suppose furthermore thatN andM have the same dimension. Theabove theorem then

says that ∇Xf∗Y = f∗∇XY (3.11.6)

for any vector fieldsX and Y onN. This implies that ifX is a parallel vector field along

a curve c in N, then f∗X is a parallel vector field along f ∘ c. In particular, f maps a

geodesic c in N to a geodesic f ∘ c in M; equivalently, expM ∘ f∗ = f ∘ expN . Moreover,
by Theorem 3.9.2, f preserves the curvature tensors in the sense that f∗RN(X,Y)Z =

RM(f∗X, f∗Y)f∗Z for any vector fields X, Y, Z on N. This, of course, also implies that

the sectional curvature of a plane P ⊂ TN equals that of f∗(P) ⊂ TM. Summarizing, we

have proved:
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Theorem 3.11.2. Suppose f : N → M is an isometric map between manifolds of the

same dimension. Then

(1) expM ∘ f∗ = f ∘ expN.
(2) f∗RN(X,Y)Z = RM(f∗X, f∗Y)f∗Z for any vector fields X, Y , Z on N.

(3) The sectional curvature of a plane P ⊂ TN equals that of f∗(P) ⊂ TM.

Example 3.11.1. Consider the cylinder M = {(x, y, z) | x2 + y2 = r2} of radius r > 0

in ℝ3. Given any α ∈ ℝ, the map hα : (rα , r(α + 2π)) × ℝ → M, where hα (u, v) =

(r cos(u/r), r sin(u/r), v) is a local parametrization of M. Its image is all of M except

for a line parallel to the z-axis. M can therefore be covered by two parametrizations

corresponding to judiciously chosen values of α . The domain of hα is an open subset

ofℝ2 and has constant sectional curvature zero. Furthermore, the two vector fields

hα∗D1(u, v) = − sin u

r
D1 ∘ hα (u, v) + cos

u

r
D2 ∘ hα (u, v),

hα∗D2(u, v) = D3 ∘ hα (u, v),
are everywhere orthonormal, so that hα is isometric. It follows that M is flat. The

geodesics ofM are the images of the geodesics in the plane and are therefore helices

inM.

hα

Isometries can be useful in identifying geodesics ofM: Suppose N is a manifold con-

tained inM.N is said tobe totallygeodesic inM if every geodesic ofN is also a geodesic

ofM. For example, Sn × {0} is totally geodesic in Sn+1 ⊂ ℝn+2 (but not in ℝn+2).

Proposition 3.11.2. Let M be a manifold and f : M → M an isometry. If the fixed point

set N = {p ∈ M | f (p) = p} of f is a manifold, then it is totally geodesic in M.

Proof. Consider any p ∈ N and u ∈ Np. Denote by cu the geodesic ofM with ċu(0) = u.
Since f is an isometry, f ∘ cu is also a geodesic, and f ̇∘cu(0) = f∗u = u because u ∈ Np
and f∗ is the identity on Np. By uniqueness of geodesics, f ∘ cu = cu, and cu has its
image contained in N. By Theorem 6.1.1, it is also a geodesic in N. Since geodesics

are uniquely determined by their tangent vector at the origin and u was arbitrary, the
result follows.

The above proposition provides for example another way of describing geodesics on

spheres: We may first of all assume the sphere is centered at the origin, since trans-

lations are isometries, and thus map geodesics to geodesics. So let p ∈ M = Sn(r),
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u ∈ ℝn+1 a unit vector orthogonal to p, so that Ipu ∈ Mp. We wish to describe the

geodesic starting at p with initial tangent vector Ipu.
If E is a subspace ofℝn+1, recall that reflection in E is the linear transformation of

Euclidean space that maps v + w ∈ E ⊕ E⊥ = ℝn+1 to v − w. It is an isometry because

v ⊥ w, so that |v + w| = |v − w|. Reflection in the plane P spanned by p and u is

then an isometry of Euclidean space which maps M to itself, so that its restriction to

M is an isometry of M. Furthermore, the fixed point set of this restriction is the great

circle P ∩ M on the sphere, and this circle is therefore totally geodesic. Since this is

true for any point p ∈ M and unit vector in the tangent space at p, all great circles are
the images of geodesics. As seen earlier, the geodesic above may be parametrized by

t → (cos(t/r))p + (sin(t/r))(ru).
3.12 Exercises

3.1. Let R, h > 0. An open cone with base R and height h is the subset of ℝ3 obtained

by rotating the half-open line segment{(t, 0, (−h/R)t + h) | 0 ≤ t < R}
joining (0,0, h) and (R, 0, 0) about the z-axis. Notice that the line segment contains the

first point but not the second.

(a) Show that even though a cone is commonly called a surface, it is not a submani-

fold ofℝ3.

(b) If the tip (0, 0,h) of the cone is removed, is the resulting set a manifold?

3.2. Recall that a hypersurface is a manifold with dimension one less than that of the

ambient Euclidean space.

(a) Let f : ℝn+k ⊃ U → ℝk. Show that if 0 is a regular value of f , then 0 is a regular

value of each ui ∘ f , i = 1, . . . , k. Conclude that f−1(0) is the intersection of k

hypersurfaces.

(b) Suppose f1, . . . , fk : U → ℝ all have 0 as regular value, and setMi = f−1i (0). Show

that M = ∩ki=1Mi is an n-dimensional manifold of ℝn+k if and only if the vectors∇f1(p), . . . , ∇fk(p) are linearly independent for every p ∈ M.

3.3. Prove the “if” part of Corollary 3.2.1: M ⊂ ℝn+k is an n-dimensional manifold if

for every p ∈ M, there exists a neighborhood U of p in ℝn+k, and a map f : U → ℝk

having 0 as a regular value, such that U ∩M = f−1(0).

3.4. LetMn be amanifold, (U, x) a chart ofM around some p ∈ M. Show that { dxi(p) |
i = 1, . . . , n} is the basis ofM∗

p dual to {𝜕/𝜕xi(p)}.
3.5. Let f : ℝn → ℝ be given by f (a) = |a|2.
(a) Find df .

(b) Find dg, where g := f|Sn−1.
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3.6. Let f , g : M → ℝ, φ : ℝ → ℝ. Prove that
(a) d(f + g) = df + dg.

(b) d(fg) = f dg + g df .

(c) d(φ ∘ f ) = (φ  ∘ f ) df .
3.7. If r, θ denote polar coordinates on the plane, express dr and dθ in terms of du1

and du2.

3.8. Determine df , if f : ℝ3 → ℝ is given by:

(a) f (x, y, z) = cos ex
2y+z.

(b) f (a) = ⟨p,a⟩ for some p ∈ ℝ3.

3.9. A differential 1-form on a manifoldM is just a tensor field of type (1,0).

(a) Letα beadifferential 1-formonM, and (U, x) a chart ofM. Prove that the restriction

of α to U can be written

α|U = ∑
i

αi dx
i

for some functions αi : U → ℝ. How is αi defined?

(b) Use the first fundamental tensor field ofM to show that there is a one-to-one cor-

respondence between differential 1-forms and vector fields on M, see also Corol-

lary 1.4.2.

3.10. Let M be a manifold, f : M → ℝ, and (U, x) a chart ofM, so that the restriction

of df to U can be written

df|U = ∑
i

df ( 𝜕𝜕xi) 𝜕𝜕xi = ∑
i

𝜕𝜕xi (f ) 𝜕𝜕xi .
Show that 𝜕/𝜕xi(f ) = Di(f ∘ x−1) ∘ x.
3.11. (a) Use the method of Lagrange multipliers to determine the maximum of g =∑n

i=1 u
iun+i : ℝ2n → ℝ on the manifold f−1(0), where

f = ( n∑
i=1

(ui)2 − 1, n∑
i=1

(un+i)2 − 1) : ℝ2n → ℝ2.
(b) Given any (x1 , . . . , xn, y1, . . . , yn) ∈ ℝn × ℝn with∑ x2i , ∑ y2i ̸= 0, the point

p = (
x1

(∑ x2
i
)1/2

, . . . , xn
(∑ x2

i
)1/2

, y1/(∑ y2i )
1/2, . . . , yn/(∑ y2i )

1/2)

belongs to f−1(0). Use this to give another proof of the Cauchy-Schwarz inequality
from Theorem 1.4.1.

3.12. Given a manifold M, the bundle projection is the map π : TM → M that maps

u ∈ TM to p, if u ∈ Mp. Show that the bundle projection is differentiable.
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3.13. An n-dimensional manifoldM is said to be parallelizable if its tangent bundle is

diffeomorphic toM × ℝn by means of a diffeomorphism f whichmakes the diagram

TM
f ��

π
����������� M × ℝn

π1

��
M

commute. Here, π is the bundle projection, and π1 is projection onto the first factor.

Show thatM is parallelizable if and only if it admits n vector fields which are linearly

independent at every point of M. Conclude that every Lie group is parallelizable. In

contrast, it can be shown that a 2-dimensional sphere is not parallelizable; in fact,

every vector field on it must vanish somewhere.

3.14. Let M, N be manifolds. Given p ∈ M, define 𝚥p : N → M × N by 𝚥p(q) = (p,q).
Similarly, for q ∈ N, define 𝚤q : M → M × N by 𝚤q(p) = (p,q).
(a) Prove that the map 𝚤q∗ + 𝚥p∗ : Mp × Nq

≅→ (M × N)(p,q) given by (𝚤q∗ + 𝚥p∗)(u, v) =𝚤q∗u + 𝚥p∗v, is an isomorphism.

(b) Show that the isomorphism from (a) has as inverse (πM∗(p,q), πN∗(p,q)), where πM :
M × N → M and πN : M × N → N denote the projections.

3.15. Let (U, x) denote a chart onM. Show that if X is a vector field on U, then

X = ∑
i

dxi(X) 𝜕𝜕xi .
Conclude that dxi is a tensor field on U (i.e., that it is differentiable).

3.16. Show that if (U, x) and (V , y) are two charts ofM, then on U ∩ V,𝜕𝜕xi = ∑
j

(Di(u
j ∘ y ∘ x−1) ∘ x) 𝜕𝜕yj .

Notice that according to Exercise 3.10, this is equivalent to𝜕𝜕xi = ∑
j

𝜕yj𝜕xi 𝜕𝜕yj .
3.17. Let X be a vector field on ℝn with flow Φ t. Define a map F : U → ℝn on a

neighborhood U of the origin by

F(a1 , . . . , an) = Φ a1
(0, a2, . . . , an).

(a) Show that F∗D1 = X ∘ F.ť
(b) Show that F∗Di(0) = Di(0) for i > 1.

(c) Let M be a manifold, p ∈ M, and X a vector field on M with X(p) ̸= 0. Prove that
there exists a chart (U, x) around p such that

X|U =
𝜕𝜕x1 .
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3.18. Let X be a vector field on a manifold M that vanishes outside a compact set.

Show that X is complete.

3.19. Let a < b denote two regular values of f : ℝn → ℝ. Suppose that f−1(a) and
f−1(b) are nonempty, so that they are (n − 1)-dimensional manifolds. Prove that if

f−1[a,b] is compact and contains no critical points of f , then f−1(a) is diffeomorphic

to f−1(b). Hint: Consider a vector field X that equals ∇f/|∇f | on f−1[a, b] and vanishes
outside a compact set. X is then complete by Exercise 3.18, so that Φ b−a is defined,
whereΦ t is the flow of X.

3.20. Recall that Mm,n ≅ ℝmn denotes the space of all m × n matrices. The goal of

this exercise is to show that the subsetMm,n(k) consisting of all matrices of rank k is a

submanifold ofℝmn with dimension k(m + n − k).
(a) Show that if M ∈ Mm,n has rank at least k, then there exist elementary matrices

P ∈ Mm,m and Q ∈ Mn,n such that

PMQ = [A B

C D
]

where A is an invertible k × kmatrix, B ∈ Mk,n−k, C ∈ Mm−k,k, and D ∈ Mm−k,n−k.
(b) Let A be a nonsingular k × kmatrix. Prove that

[A B

C D
] ∈ Mm,n

has rank k if and only if D = CA−1B. Hint: the matrix

[A B

0 −CA−1B + D
] = [ Ik 0−CA−1 Im−k

][A B

C D
]

has the same rank as [A B

C D
] .

(c) GivenM0 ∈ Mm,n(k), choose elementary matrices P and Q such that

PM0Q = [A0 B0
C0 D0

]
with A0 invertible. There exists an open neighborhood V of A0 in Mk,k such that

every A in V is invertible. Denote by U the open neighborhood of M0 in Mm,n(k)
consisting of all matrices of the form

M = P−1 [A B

C D
]Q−1,

with A ∈ V, B ∈ Mk,n−k, C ∈ Mm−k,k, and D ∈ Mm−k,n−k.
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Identify Rk(m+n−k) = Rk
2+k(n−k)+k(m−k) with the subspace of Mm,n that consists of all

matrices of the form

[A B

C 0
] , A ∈ Mk,k, B ∈ Mk,n−k, C ∈ Mm−k,k.

If

π : Rmn → ℝk(m+n−k)

[A B

C D
] → [A B

C 0
]

denotes projection, define

x : U → ℝk(m+n−k)

M → π(PMQ). (3.12.1)

Show that the collection of all (U, x) in (3.12.1) defines an atlas onMm,n(k).

3.21. Letm : G × G → G denote the multiplication map on a Lie group G.

(a) Show that for (v, 0) ∈ Ge × Ge,m∗(v,0) = v.
(b) Suppose c1 and c2 are two curves in G that pass through e at time zero. Show that

if c(t) = c1(t) ⋅ c2(t), then
ċ(0) = ċ1(0) + ċ2(0).

3.22. Suppose G is a Lie group, X,Y ∈ g with flowsΦ t and Ψ t respectively.

(a) Prove that (Φ t ∘Ψ t)(e) = Ψ t(e) ⋅Φ t(e).

(b) Let cX denote the integral curve of X ∈ g that passes through e at time 0. Show

that if [X,Y] = 0 for X,Y ∈ g, then cX(t) ⋅ cY (t) = cY (t) ⋅ cX(t) for all t.
(c) Suppose X,Y ∈ g have vanishing bracket. Use Exercise 3.21 toprove that the curve

cX ⋅ cY : ℝ → G is a homomorphism with velocity vector X(e) + Y(e) at zero.
Conclude that exp(X + Y) = exp(X) exp(Y).

3.23. If g is an element of a Lie group G, conjugation by g is the diffeomorphism τg :
G → G given by τga = gag−1, a ∈ G. Its derivative at the identity is therefore an

isomorphism τg∗e : Ge → Ge. In analogy with GL(n), the space of all isomorphisms of

Ge ≅ g with itself is denoted GL(g), and is a Lie group under composition. Themap

Ad : G → GL(g),
g → Adg = τg∗e

is called the adjoint representationof G.

(a) Prove that Ad is a Lie group homomorphism.

(b) Suppose G = GL(n), and identify g with Mn. Show that for A ∈ G and M ∈ g,
AdA M = AMA−1. In particular, Ad is differentiable. It can be shown that the ad-

joint representation in any Lie group is differentiable.
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(c) The derivative of Ad at the identity is denoted ad : g → Mn(g). Prove that for

X,Y ∈ g, adX(Y) = [X,Y] when G = GL(n). It can be shown that this identity is

valid in any Lie group.

3.24. Prove that on a compact manifold, the exponential map at any point is defined

on the whole tangent space; equivalently, any geodesic has all of ℝ as its domain.

3.25. A geodesic vector field on amanifoldM is a vector fieldX that satisfies ∇XX ≡ 0.
(a) Prove that X is geodesic if and only if its integral curves are geodesics in M.

(b) Let X be a vector field on an open set U ⊂ ℝn represented by f : U → ℝn, so that

X(p) = Ipf (p). Show that X is geodesic if and only if

⟨∇f i, f ⟩ ≡ 0, 1 ≤ i ≤ n.
In particular, any parallel vector field on U is geodesic. Are these the only ones?

Hint: Consider P/|P| on ℝn \ {0}, where P is the position vector field.

3.26. A vector field X on a manifoldM is called a Killing field if its flow {Φ t} consists
of local isometries ofM.

(a) Show thatX is Killing if and only if for any vector field Y that isΦ t-related to itself

for all t, ⟨Y ,Y⟩ is constant.
(b) Show that in (a) the condition of beingΦ t-related to itself is equivalent to [X,Y] ≡

0.
(c) Show that X is Killing if and only ⟨DuX,u⟩ = 0 for all u ∈ TM; equivalently, the

operator u → DuX onMp is skew-adjoint for all p ∈ M.

3.27. Let M2 be a 2-dimensional submanifold of ℝ3, n a unit normal vector field to

M in a neighborhood of p ∈ M, and S the second fundamental tensor field of M with

respect to n.
(a) Show that R(x, y)z = ⟨Sy, z⟩Sx − ⟨Sx, z⟩Sy for x,y, z ∈ Mp.

(b) Prove that if x andy formanorthonormal basis ofMp , then the sectional curvature

K(p) ofM at p is given by

K(p) = ⟨Sx, x⟩⟨Sy,y⟩ − ⟨Sx,y⟩2.
(c) Let (U, x) be a chart ofM around p, and consider the six functions on U given by

E = ⟨ 𝜕𝜕x1 , 𝜕𝜕x1⟩ F = ⟨ 𝜕𝜕x1 , 𝜕𝜕x2⟩ G = ⟨ 𝜕𝜕x2 , 𝜕𝜕x2⟩
l = ⟨S 𝜕𝜕x1 , 𝜕𝜕x1⟩ n =⟨S 𝜕𝜕x1 , 𝜕𝜕x2⟩ m = ⟨S 𝜕𝜕x2 , 𝜕𝜕x2⟩

Prove that the sectional curvature onU is given by the functionK : U → ℝ, where
K =

lm − n2
EG − F2

.
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Fig. 3.5: A catenoid

3.28. Let M2 be a 2-dimensional submanifold of ℝ3, n and S as in Exercise 3.27. The

mean curvature ofM at a point p ∈ M is the trace of S(p). A surface is said tobeminimal
if its mean curvature is zero everywhere.

Let a > 0. The image of the map h : [0,2π ] × ℝ → ℝ3, where

h(u, v) = (a cosh v

a
cos u, a cosh v

a
sin u, v),

is called a catenoid. A catenoid can be simulated by dipping two circles in a soapy

solutionandpulling themslowly apart. Compute the curvature of a catenoidand show

that it is a minimal surface.

3.29. Since S1 is a submanifold of ℝ2, S1 × S1 is in a natural way a submanifold ofℝ4 = ℝ2 × ℝ2, called a flat torus, and denoted T2.

(a) Show that T2 is indeed flat; i.e., its curvature is identically zero.

(b) Let 0 < r < R. Prove that the map h : [0,2π ] × [0,2π ] → ℝ3, where

h(u, v) = ((R + r cos u) cos v, (R + r) cos u) sin v, r sin u) ,
is an immersion, and that its image M is an (imbedded) 2-dimensional submani-

fold ofℝ3.M is also called a torus.

(c) Show thatM and T2 are diffeomorphic but not isometric.

3.30. Given a,b, c > 0, consider the ellipsoid

M2 = {(x, y, z) ∈ ℝ3 | x2
a2

+
y2

b2
+
z2

c2
= 1}

in ℝ3.

(a) Show that

N =
u1

a2
D1 +

u2

b2
D2 +

u3

c2
D2

is a vector field normal toM.



3.12 Exercises | 175

(b) Let p = (x, y, z) ∈ M, and denote by s the second fundamental form ofM at pwith
respect toN(p)/|N(p)|. Prove that

s(x, y) = ( x2

a4
+
y2

b4
+
z2

c4
)− 1

2(x1y1
a2

+
x2y2
b2

+
x3y3
c2

),
for x = ∑3

i=1 xiDi(p), y = ∑3
i=1 yiDi(p).

(c) Show that the sectional curvature ofM at p = (x, y, z) equals
K = [abc( x2

a4
+
y2

b4
+
z2

c4
)]−2 .

3.31. Given a, b, c > 0, consider the hyperboloid

M2 = {(x, y, z) ∈ ℝ3 | x2
a2

+
y2

b2
− z2

c2
= 1}

inℝ3.

(a) Show that

N =
u1

a2
D1 +

u2

b2
D2 − u3

c2
D2

is a vector field normal toM.

(b) Let p = (x, y, z) ∈ M, and denote by s the second fundamental form ofM at pwith
respect toN(p)/|N(p)|. Prove that

s(x, y) = ( x2

a4
+
y2

b4
+
z2

c4
)− 1

2(x1y1
a2

+
x2y2
b2

− x3y3
c2

),
for x = ∑3

i=1 xiDi(p), y = ∑3
i=1 yiDi(p).

(c) Show that the sectional curvature ofM at p = (x, y, z) equals
K = −[abc( x2

a4
+
y2

b4
+
z2

c4
)]−2 .

3.32. Describe three mutually orthogonal geodesics (i.e., their tangent vectors are

orthogonal at the points of intersection) on the ellipsoid from exercise 3.30.

3.33. Let 0 ≤ a < b, and f : (a, b) → ℝ be a smooth function. If a = 0, suppose that f

is extendable to a with f (n)(a) = 0 for all n.

(a) Show that M = {(x1, . . . , xn) ∈ ℝn | xn = f ((x21 + ⋅ ⋅ ⋅ + x2n)
1/2)} is an (n − 1)-

dimensional submanifold ofℝn.

(b) Let A denote the annulus {u ∈ ℝn−1 | a < |u| < b}. Show that for u ∈ A, the curve

t → (tu, f (|tu|)) is, after reparametrization, a geodesic ofM.

3.34. A more general surface of revolution than the one introduced in Section 3.1 is

that generated by a curve rather thanby the graph of a function: let c = (c1,0, c2) : I →
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ℝ3 denote a curve in the x-z plane. Its image, when rotated about the z-axis, generates

a surfaceM which can be parametrized by h : I × [0, 2π ] → ℝ3, with

h(u, v) = (c1(u) cos v, c1(u) sin v, c2(u)).
(a) Show that any meridian t → h(t, v0), v0 ∈ [0,2π ], is a geodesic.
(b) Let 𝛾 : [0, 2π ] → M denote a parallel; i.e, 𝛾(t) = h(u0, t) for some u0 ∈ I. Prove

that 𝛾 is a geodesic if and only if u0 is a critical point of c1. Geometrically, this

means that the tangent line to c is vertical at the point c(u0) where c intersects the
parallel circle.

(c) If c is given by

c(t) = (t,0, − h
R
t + h), t ∈ (0,R), h > 0,

so that the image of c is a line segment joining (0,0, h) to (R, 0,0), then the result-
ing surface is a cone, and by (b), parallels are not geodesics. Determine explicitly

the geodesic of M that points in the parallel direction (i.e., the geodesic whose

initial tangent vector equals that of some parallel 𝛾 in (b)). Hint: Show first that

the cone is flat.



4 Integration on Euclidean space
We have postponed the subject of integration until now because our aim is to not

only integrate real-valued functions on Euclidean space, but also differential forms on

manifolds. The latter are particularly suited to formulate Stokes’ theorem. We begin

with the former, which closely parallels integration of single-variable functions.

4.1 The integral of a function over a box

Recall that a partition P of an interval [a,b] ⊂ ℝ is just a finite subset of [a, b] that
contains the endpoints of the interval. This subset is then ordered: a = t0 < t1 < ⋅ ⋅ ⋅ <
tk = b, and each [ti−1, ti], i = 1, . . . , k, is referred to as a subinterval of the partition.

Given partitions Pi of [ai, bi], i = 1, . . . , n, the product P = P1 × ⋅ ⋅ ⋅ × Pn is called a

partition of the box A = [a1, b1] × [a2, b2] × ⋅ ⋅ ⋅ × [an, bn] ⊂ ℝn. If Pi partitions [ai, bi]
into ki subintervals, then P partitions A into k1k2 ⋅ ⋅ ⋅ kn boxes, which will be called

the subboxes of P. Each subbox is then a Cartesian product J1 × ⋅ ⋅ ⋅ × Jn, where Ji is a

subinterval of the partition Pi. By abuse of notation, we write B ∈ P if B is a subbox of

P. Definition 1.6.1 implies that the volume of A equalsΠn
i=1(bi − ai).

Just as the integral ∫b
a
f of a nonnegative function f is meant to represent the area

under the graph of f between a and b, the integral ∫
A
f of a nonnegative function f of

n variables will be interpreted as the volume of the (n + 1)-dimensional solid that lies

under the graph of f and above A. In the same vein, we begin by approximating this

volume by sums of volumes of boxes.

Let A be a box as above, P a partition of A, and f a bounded real-valued function

whose domain contains A. For each B ∈ P, set

mB(f ) = inf{f (b) | b ∈ B}, MB(f ) = sup{f (b) | b ∈ B}.
The lower and upper sums of f for P are respectively given by

L(f , P) = ∑
B∈P

mB(f ) vol(B), U(f , P) = ∑
B∈P

MB(f ) vol(B).
Of course L(f , P) ≤ U(f , P), but a stronger property holds. A partition P̃ is said to be a

refinement of P if P ⊂ P̃. Two easy but important observations are in order: firstly, if P̃

refines P, then L(f , P) ≤ L(f , P̃) and U(f , P̃) ≤ U(f , P). To establish the first inequality,

notice that any B ∈ P equal a union of subboxes B̃1, . . . , B̃k of P̃, so that
mB(f ) vol(B) = mB(f )

k∑
i=1

vol(B̃i) ≤ k∑
i=1

mB̃i
(f ) vol(B̃i).

(The last inequality follows from the fact mB(f ) ≤ mB̃i
(f ) since B̃i ⊂ B). The sum over

all B in P of the left side is L(f , P), and the corresponding sum of the right side equals

L(f , P̃). The argument for upper sums is similar.
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The second observation is that given any two partitions of A, there exists one that

refines both: indeed, if P = P1 × ⋅ ⋅ ⋅ × Pn and P̃ = P̃1 × ⋅ ⋅ ⋅ × P̃n are the two partitions,

then (P1 ∪ P̃1) × ⋅ ⋅ ⋅ × (Pn ∪ P̃n) is one such refinement.

Fig. 4.1: A lower sum for (x, y) → x2 on [−2,2] × [−2,2],
using a partition with squares of side length 1.

Fig. 4.2: The corresponding upper sum.

Proposition 4.1.1. For any two partitions P and P̃ of a box A, L(f , P) ≤ U(f , P̃).
Proof. If P̄ is a refinement of both P and P̃, then

L(f , P) ≤ L(f , P̄) ≤ U(f , P̄) ≤ U(f , P̃).
By Proposition 4.1.1, the supremum L(f ,A) of the collection of lower sums of f for all

possible partitions of A exists, and is called the lower integral of f over A. Similarly,

the infimum U(f , A) of all upper sums exists, and is called the upper integral of f over

A. Again by the proposition, we always have that L(f , A) ≤ U(f ,A). Furthermore, by a

fundamental property of suprema – see Appendix A, given any 𝜀 > 0, there exists a

partition P for which L(f , P) > L(f ,A) − 𝜀. A similar property holds for infima.
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Definition 4.1.1. Let f be a bounded function on a box A. f is said to be integrable over
A if the lower and upper integrals of f over A are equal. In this case, their common

value is defined to be the integral of f over A, denoted ∫
A
f .

The following is often a useful tool in deciding whether or not a function is integrable:

Theorem 4.1.1. Let f denote a bounded function over a box A. f is integrable over A if

and only if for any 𝜀 > 0, there exists a partitionP of A such that U(f , P) − L(f , P) < 𝜀.
Proof. Suppose f is integrable over A, and 𝜀 > 0 is given. There exists a partition P

of A such that U(f , P) < U(f ,A) + 𝜀/2. Similarly, there exist a partition P of A with

L(f , P) > L(f ,A) − 𝜀/2. Since U(f , A) = L(f , A), U(f , P) − L(f , P) < 𝜀. Thus, if P̃ refines

both P and P, then

U(f , P̃) − L(f , P̃) ≤ U(f , P) − L(f , P) < 𝜀.
Conversely, suppose that for any 𝜀 > 0, there exists a partition P ofA such thatU(f , P)−
L(f , P) < 𝜀. Then the nonnegative number U(f ,A) − L(f ,A) is less than 𝜀 for any 𝜀 > 0,

and must therefore equal 0; i.e, f is integrable.

Examples and Remarks 4.1.1. (i) Let c ∈ ℝ, and f : ℝn → ℝ denote the constant

function f (a) = c, a ∈ ℝn. Then for any box B, mB(f ) = MB(f ) = c, so that for

any partition P of A, L(f , P) = U(f , P) = c ⋅ vol(A). f is therefore integrable, and∫
A
f = c ⋅ vol(A).

(ii) Consider the function f : ℝ2 → ℝ given by f (x, y) = xy, and the square A =

[0, 1]×[0,1]. DenotebyPn thepartitionofA inton2 squares of equal sides; i.e.,Pn ={(i/n, j/n) | 0 ≤ i, j ≤ n}. If Bij denotes the subsquare [(i − 1)/n, i/n] × [(j − 1)/n, j/n],
then theminimum of f onBij occurs at the lower left corner ((i−1)/n, (j−1)/n), and
the maximum at the upper right corner (i/n, j/n), so thatmBij

(f ) = (i − 1)(j − 1)/n2
andMBij(f )

= ij/n2. Thus,
L(f , Pn) = n∑

i,j=1

(i − 1)(j − 1)

n4
=

1

n4

n∑
j=1

(j − 1)n(n − 1)
2

=
n2(n − 1)2

4n4

=
1

4
(1 − 1

n
)2,

and similarly,

U(f , Pn) = n∑
i,j=1

ij

n4
=
1

4
(1 +

1

n
)2.

It follows that U(f , Pn) − L(f , Pn) = 1/n, and f is integrable by Theorem 4.1.1.

Furthermore, L(f , Pn) ≤ 1/4 ≤ U(f , Pn) for all n, so that ∫A f = 1/4.
(iii) Let A = [0,1] × [0,1] as in (ii), and f : ℝ2 → ℝ given by f (x, y) = 1 if x and y are

both rational, and 0 otherwise. Given any partition P of A, an arbitrary box B of

P will contain points whose coordinates are rational, and points with at least one
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irrational coordinate. Thus,mB(f ) = 0 and MB(f ) = 1. This implies that L(f , A) =
L(f , P) = 0 and U(f , A) = U(f , P) = 1, so that f is not integrable.

(iv) A word about notation: It is common practice, when given a specific formula for

a function, to include that formula in the integral. For example, the integral of

the function f in (ii) is also denoted ∫
A
xy dx dy, or ∫

A
u1u2 du1 du2. This is rather

unfortunate since du1 is really the differential of the function u1 and has a com-

pletely different meaning here. Nevertheless, this practice is so widespread that

we will conform to it.

Theorem 4.1.2. Suppose f and g are integrable over A.
(1) If f ≤ g, then ∫

A
f ≤ ∫

A
g;

(2) If m andM are lowerandupper bounds respectivelyof f onA, thenm vol(A) ≤ ∫
B
f ≤

M vol(A);

(3) |f | is integrable, and | ∫
A
f | ≤ ∫

A
|f |;

(4) f + g is integrable, and ∫
A
(f + g) = ∫

A
f + ∫

A
g;

(5) Given c ∈ ℝ, cf is integrable, and ∫
A
cf = c∫

A
f .

Proof. If f ≤ g, then L(f , P) ≤ L(g, P) for any partition P ofA. Thefirst statement follows
by taking suprema over all partitions of A. The second one follows from the first, since

f is squeezed in between the constant functions m and M. For the third one, observe

first that for any box B,|f |(a) − |f |(b) ≤ MB(f ) −mB(f ), a,b ∈ B. (4.1.1)

This inequality is (tediously) verified on a case by case basis: for example, suppose

f (a) ≤ 0 ≤ f (b). ThenMB(f ) ≥ 0, and|f (a)| − |f (b)| = −f (a) − f (b) ≤ −f (a) ≤ −mB(f ) ≤ MB(f ) −mB(f ).
Fixing an arbitrary b in (4.1.1) and taking the supremum over all a ∈ B implies that

MB(|f |) − |f |(b) ≤ MB(f ) −mB(f ), or equivalently, that|f |(b) ≥ MB(|f |) − (MB(f ) −mB(f )), b ∈ B.
Finally, taking the infimum over all b ∈ B and rearranging terms yields

MB(|f |) −mB(|f |) ≤ MB(f ) −mB(f ).
Thus, given any partition P of A, we have

U(|f |, P) − L(|f |, P) ≤ U(f , P) − L(f , P).
It now follows from Theorem 4.1.1 that |f | is integrable whenever f is. The inequality| ∫

A
f | ≤ ∫

A
|f | is obtained by applying the first assertion of the theorem to−|f | ≤ f ≤ |f |.

The last two statements – like the others – have proofs that are similar to those for

functions of one variable, and are left as an exercise.

In the context of Theorem 4.1.2, it is also true that a product of integrable functions is

integrable, as well as a quotient (provided the bottom function is nonzero). This turns

out to be an immediate consequence of results from the next section.
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4.2 Integrability and discontinuities

Our next goal is to characterize those functions that are integrable, and define inte-

gration over regions that are more complicated than boxes. This, in turn, will lead us

to seek a more general concept of integral.

Definition 4.2.1. A set A ⊂ ℝn is said to have measure zero if for any 𝜀 > 0, A can be

covered by a countable collection B1, B2, . . . of open boxes with∑∞
i=1 vol(Bi) < 𝜀.

Since a closed box has the same volume as its interior, a set of measure zero may

also be covered by a countable collection of closed boxes satisfying the above volume

condition. The converse is easily verified, so that one may replace open by closed in

the definition. Given a collection {Bi} of boxes, we will refer to the number ∑i vol(Bi)

(if it exists) as the total volume of the collection. This is just for convenience’s sake,

since already for a finite collection, the total volume will in general be larger than the

volume of the union if the boxes intersect.

Examples 4.2.1. (i) Any countable set of points has measure zero: if a1,a2, . . . is a
sequence and 𝜀 is a positive number, let Bi be a box of volume smaller than 𝜀/2i
containing ai. Then this collection has total volume less than 𝜀. For example, the

setℚ of rationals has measure zero.

(ii) A countable union of sets Ai of measure zero has measure zero: given 𝜀 > 0, cover

each Ai by boxes Bi1,Bi2, . . . such that ∑j vol(Bij) < 𝜀/2i. The collection {Bij | i, j =
1,2, . . . } is then a countable cover of ∪Ai (see Appendix A), and may therefore be

arranged into a sequenceC1 ,C2, . . . . There are, of course,manyways todo this, but

if ∑ vol(Ci) converges, then any rearrangement also converges to the same limit,

since the convergence is absolute. To see that it does converge, let k ∈ ℕ. Then

there exists an integer l such that all the terms C1, . . . , Ck appear in the sequences
B1i through Bli, i = 1, . . . ,∞. Thus,

vol(C1) + ⋅ ⋅ ⋅ + vol(Ck) ≤ ∞∑
i=1

vol(B1i) + ⋅ ⋅ ⋅ + ∞∑
i=1

vol(Bli)

< 𝜀
2
+ ⋅ ⋅ ⋅ + 𝜀

2l< 𝜀.
Thismeans that the sequenceof partial sums is bounded aboveby 𝜀, and therefore∑∞
i=1 vol(Ci) ≤ 𝜀.

(iii) A (non-degenerate) box does not have measure zero. This may seem an obvious

statement, but with only the definition towork with, it does require an argument.

To see this, it suffices to consider a closed box A. Suppose B1,B2, . . . is a collection
of boxes covering A. We claim that ∑ vol(Bi) ≥ vol(A). Indeed, A is compact, so

a finite subcollection, which we may rename as B1, . . . ,Bk, covers A. This sub-
collection defines a partition P of A; namely, P consists of all points whose i-th
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coordinate is either the beginning or the end point of the projection of someBj ∩A
onto the i-th coordinate axis. Specifically, if Bj ∩ A = Πn

i=1[a
j
i
, bj

i
], then

P = {(x1, . . . , xn) | for each i = 1, . . . , n, xi = aj
i
or bj

i
for some j}.

By construction, any box in the partition P is contained in each of the Bj it inter-

sects, and the union of these boxes equals A, so that

∑
i

vol(Bi) ≥ k∑
i=1

vol(Bi) ≥ ∑
B∈P

vol(B) = vol(A).
This establishes the assertion, for if A had measure zero, then by the above in-

equality, A would have volume less than any positive number 𝜀, and would then

be a degenerate box.

(iv) The collection of all irrational numbers between 0 and 1 does not have measure

zero: if it did, then by (i) and (ii), the interval [0,1] would have measure zero,

contradicting (iii).

(v) Wewill later see that aball of radius r inℝn has volume knr
n, where kn is a constant

depending onn, see alsoExercise 4.25. Assuming this,we coulduseopenor closed

balls instead of boxes in the definition of measure zero, since

[−r, r]n ⊂ Br√n(0) ⊂ [−r√n, r√n]n.
Remark 4.2.1. The type of construction referred to in part (iii) of the above examples

will be usedmany times. One variant of it is worth emphasizing: IfB1, . . . ,Bk are boxes
contained in a larger box B, then there exists a partition P of B such that each Bi is a

union of subboxes of P. The proof is the same as the one used in (iii).

Now that the preliminaries have been dealt with, we are in a position to characterize

those functions that are integrable. In light of our work with upper and lower sums, it

shouldn’t come as a surprise to learn that they are the ones with not too many jumps.

Specifically:

Theorem 4.2.1. Let f : A → ℝ denote a function that is bounded on the closed box A.

Then f is integrable over A if and only if the set of discontinuities of f has measure zero.

Proof. Denote by D the set of points where f is discontinuous, and for δ > 0, by Dδ

the set of all a ∈ A such that MU(f ) − mU(f ) ≥ δ for any neighborhood U of a. Then
Dδ ⊂ D for any δ , and D = ∪∞i=1D1/i by Exercise 1.53.
Suppose first that f is integrable. To show that D has measure zero, it suffices to show

that each D1/k has measure zero. Now, given any partition P of A, D1/k may be written

as a union

D1/k = (D1/k ∩ ⋃
B∈P

B0)⋃(D1/k ∩ ⋃
B∈P

𝜕B)
of two sets, the second of which has measure zero. Thus, given 𝜀 > 0, it suffices to

produceapartitionP ofA forwhich thoseboxes that intersectD1/k in their interiorhave
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total volume less than 𝜀. We claim that any partition P ofA for which U(f , P)−L(f , P) <𝜀/kwill do. Indeed, denote by C the collection of boxes in P that intersect D1/k in their
interior. ThenMB(f ) − mB(f ) ≥ 1/k for each B ∈ C, so that∑

B∈C
vol(B) ≤ k ⋅ ∑

B∈C
(MB(f ) −mB(f )) vol(B)

≤ k ⋅ ∑
B∈P

(MB(f ) − mB(f )) vol(B) = k(U(f , P) − L(f , P))
< 𝜀,

and D1/k has measure zero, as claimed.

Conversely, supposeDhasmeasure zero. Given 𝜀 > 0,wemust exhibit apartitionP ofA

satisfyingU(f , P)−L(f , P) < 𝜀. LetM beanupperbound of |f | onA, andset δ := 𝜀/(2M +

vol(A)). Cover D by open boxes Bi with ∑i vol(Bi) < δ . Similarly, for each a ∈ A \ D,
choose some box Ca that contains a in its interior and satisfies MCa

(f ) − mCa(f ) < δ .

The two collections yield a cover of A. Choose a finite subcover, and a partition P of

A such that each subbox in P is contained in one of the boxes from the subcover, see

Remark 4.2.1.

If B is a subbox contained in some Bi, then (MB(f ) − mB(f )) vol(B) < 2M vol(B), and if

B is contained in some Ca, then (MB(f ) − mB(f )) vol(B) is less than δ vol(B). Thus,

U(f , P) − L(f , P) < 2Mδ + δ vol(A) = 𝜀.
We are now in a position to integrate over regions that are more general than boxes:

Definition 4.2.2. The characteristic function χA of a bounded set A ⊂ ℝn is defined by

χA(a) = 1 if a ∈ A and χA(a) = 0 otherwise.

A is said to be Jordan-measurable if ∫
B
χA exists, with B denoting some box that

contains A. In this case, the value of this integral is called the n-dimensional volume

of A.

Remark 4.2.2. If A is a bounded Jordan-measurable set of measure zero, then it has

zero volume: consider any partition P of some box B containing A. The infimum of χA
on any subbox of Pmust be zero, since the only other possibility is 1. The latter is ruled

out, for it would imply that the subbox is contained in A, contradicting the fact that A

has measure zero. Thus L(χA, P) = 0 for any P, and the claim follows.

Notice, however, that there exist bounded sets of measure zero which are not

Jordan-measurable. One such is A = ℚ ∩ [0,1] ⊂ ℝ.
Definition 4.2.3. A bounded f : A → ℝ is said to be integrable over A if ∫

B
f ⋅ χA exists,

with B denoting any box containing A. The value of this integral is denoted ∫
A
f .

Clearly, the above definition does not depend on the particular box B, and f is inte-

grable if ∫
B
f ⋅ χA exists for some box B containing A.

Theorem 4.2.2. A bounded set A is Jordan-measurable if and only if the boundary of A

has measure zero.
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Proof. If B is a closed box whose interior contains A, then the restriction of χA toB has

exactly the boundary of A as its set of discontinuities, since any neighborhood of a

point on the boundary contains points of A (where χA equals 1) and points outside A

(where it equals zero). The claim now follow from Theorem 4.2.1.

Examples 4.2.2. (i) Any region in ℝ2 whose boundary is (the image of) a bounded

curve is Jordan-measurable: let c : [0, b] → ℝ2 be a piecewise-smooth curve

parametrizing the boundary, and let L = ∫b
0
|c| denote its length. Given 𝜀 > 0,

we must find a cover of the boundary by rectangles with total volume (which we

call area in dimension 2) less than 𝜀. So let n be an integer large enough so that

(n + 1)/n2 < 𝜀/9L2. Since the function f : [0, b] → ℝ given by f (t) = ∫t
0
|c| is

continuous, there exists a partition t0 = 0 < t1 < ⋅ ⋅ ⋅ < tn = b of [0, b] such that

f (ti) = iL/n, 0 ≤ i ≤ n; i.e., the portion of the curve joining the points pi−1 = c(ti−1)
and pi = c(ti) has length L/n. In particular, the distance between these two is no

larger than L/n, so that any point on the boundary is at distance less than or equal
to L/n from some pi. It follows that the collection C of squares centered at pi with
sides of length 3L/n covers C, and

∑
S∈C

vol(S) = (n + 1)
9L2

n2
< 𝜀,

which establishes the claim.

(ii) One would hope that any bounded open set in ℝn is Jordan-measurable. This is

not the case, however, even in dimension 1, a fact that will lead us to generalize

the concept of integral in order to avoid these exceptions. One such is obtained by

arranging all rational numbers in (0, 1) in a sequence x1, x2, . . . , and setting
Ui = (xi − 1

2i+2
, xi + 1

2i+2
) ∩ (0,1), U = ∪∞i=1Ui.

Notice that U is open, so that its boundary 𝜕U is disjoint from U. Furthermore,𝜕U ⊂ [0,1], since any x ∉ [0,1] has a neighborhood (namely (−∞,0) or (1,∞))

that does not intersect [0, 1], and therefore does not intersect U either. Thus, 𝜕U ⊂
[0,1]\U. Conversely, if x ∈ [0, 1]\U, then any neighborhood of x intersects bothU
(since it must contain some rational) and the complement of U (since it contains

x). Thus, 𝜕U = [0, 1] \ U, and [0, 1] equals the disjoint union of U and 𝜕U. This
means that 𝜕U does not have measure zero: indeed,

vol(U) ≤ ∑
i

vol(Ui) ≤ ∞∑
i=1

1

2i+1
=
1

2
,

so that if 𝜕U could be covered by intervals of total length less than 1/2, then
[0,1] could be covered by intervals of total length smaller than 1, contradicting

Examples 4.2.1 (iii).

(iii) LetU,V denote open sets inℝn. Amap h : U → V is said tobe a homeomorphism if

it is bijective, continuous, and has continuous inverse. If h is a homeomorphism
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and A ⊂ U is a compact Jordan-measurable set, then so is h(A). The compact-

ness property was proved in Chapter 1. The Jordan-measurability can be seen as

follows: the fact that h is a homeomorphism easily implies that h(𝜕A) = 𝜕h(A).
The restriction of h to A is uniformly continuous. Thus, for any 𝜀 > 0, there exists

some δ > 0 such that any ball of radius δ centered at a point of 𝜕A is mapped by

h into a ball of radius 𝜀 centered at a point of 𝜕h(A). The claim now follows from

Examples 4.2.1 (v); alternatively, one could avoid any mention of volume of balls

by rephrasing continuity in terms of boxes.

In order to avoid the awkward situation frompart (ii) in the above example, wewill use

partitions of unity when the region of integration is an open set. Let f be a function

with open domain U that is bounded in some neighborhood of any point in U, and

suppose the set of discontinuities of f has measure zero. Let {Ui} denote an admissible
open cover of U (meaning that each Ui is contained in U), and Φ = {φj} a countable
partition of unity subordinate to the cover. An arbitrary φ ∈ Φ is zero outside some

compact set in U, so that φ |f | is integrable on any closed box that contains U. Sup-

pose that the series ∑i ∫U φ |f | converges. Since | ∫U φif | ≤ ∫
U
φi|f |, this in turn implies

absolute convergence of∑i ∫U φif . Now,∑φi ≡ 1, so it is tempting to define ∫
U
f as the

sum of this series. It must first be checked, though, that a different partition of unity

Ψ = {ψj} produces the same sum. This is not difficult to show, for if φ ∈ Φ , then∫
U
φf = ∫

U
∑j ψjφf . Furthermore, each point in the support of φ has a neighborhood

onwhich only finitelymanyψj are nonzero. Since the support is compact, only finitely

many ψj are nonzero on it. Thus,

∫
U

φf =
∞∑
j=1

∫
U

ψjφf ,
and consequently,

∞∑
i=1

∫
U

φif =
∞∑
i=1

∞∑
j=1

∫
U

ψjφif .
Applying this identity to |f | shows that the convergence is absolute. Similarly,

∞∑
j=1

∫
U

ψjf =
∞∑
j=1

∞∑
i=1

∫
U

ψjφif .
Absolute convergence implies that the order of summation may be interchanged (see

Examples 4.2.1 (ii)), so that ∑
φ∈Φ

∫
U

φf = ∑
ψ∈Ψ

∫
U

ψ f .
Notice that the sum is not only independent of the partition of unity, it is also inde-

pendent of the open cover to which it is subordinate, since this cover was not used in

the argument.



186 | 4 Integration on Euclidean space

Lemma 4.2.1. LetU ⊂ ℝn be anopenbounded set, f : U → ℝa function that is bounded

and has a set of discontinuities of measure zero. Given any admissible open cover of U

and partition of unity {φi}i∈ℕ subordinate to this cover, the series

∞∑
i=1

∫
U

φi|f |
converges, and the sum is independent of the particular cover and partition of unity

chosen.

Proof. Let B denote a closed box that contains U. Each φi|f | extends to a function (de-
noted in the sameway) onBwhich is smoothoutsideU by setting it equal to zero there.

If M denotes an upper bound of |f | on U, the partial sums of the series are bounded

above, because

n∑
i=1

∫
U

φi|f | = ∫
U

n∑
i=1

φi|f | = ∫
B

n∑
i=1

φi|f | ≤ ∫
B

|f | ≤ M vol(B).
Thus, the series converges. Independence of the cover and partition of unity was es-

tablished earlier.

Definition 4.2.4. Let f : U → ℝ, whereU and f satisfy the hypotheses of Lemma 4.2.1.

The generalized integral of f over U is defined to be the number

∫
U

f := ∞∑
i=1

∫
U

φif ,
where {φi} is any partition of unity subordinate to some admissible open cover of U.

Of course, if this definition is to be of any value, it should coincide with the old one

when the region of integration is Jordan-measurable.

Theorem 4.2.3. If f is a bounded function which is integrable over some bounded

Jordan-measurable set A, then the original ∫
A
f coincides with the generalized one from

Definition 4.2.4.

Proof. Let Φ = {φ1,φ2, . . . } be a partition of unity for A, 𝜀 > 0, and ∫
A
f denote the

original integral. The claim follows once we show that there exists a natural number

N such that  ∫
A

f − k∑
j=1

∫
A

φjf
 < 𝜀 for all k ≥ N.

So consider a box B that contains A, and let M denote an upper bound of |f | on B.

Since 𝜕A is compact and has measure zero, there exist boxes B1, . . . ,Bk ⊂ B covering𝜕Awith total volume less than 𝜀/M. Take a partition P of B where each Bi is a union of

subboxes of P (see Remark 4.2.1), and denote by C the union of the subboxes of P that
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lie inside A. Then

vol(A \ C) ≤ k∑
i=1

vol(Bi) < 𝜀
M

.
Furthermore, by compactness of C, the collection of all φ ∈ Φ that are not identically

zero on C is finite. This means that there exists an integer N such that for k ≥ N, the

restriction of φk to C is zero, and therefore, ∫A φkf = ∫
A\C φkf . But then for any k ≥ N,∫A f − k∑

j=1

∫
A

φjf

 =
∫A (f − k∑

j=1

φjf) ≤ ∫
A

f −
k∑
j=1

φjf


= ∫

A

(1 − k∑
j=1

φj) |f | ≤ M∫
A

(1 − k∑
j=1

φj)
= M ∫

A

∑
j>k

φj ≤ M ∫
A\C

1 = M vol(A \ C)
< 𝜀.

As before, we define the volume vol(A) of A ⊂ ℝn to be ∫
A
1. Thus, the volume of

a bounded Jordan-measurable set coincides with the original notion of volume,

but Lemma 4.2.1 now guarantees that any bounded open set, even a non Jordan-

measurable one (see Examples 4.2.2), has a well-defined volume.

Remarks 4.2.3. (i) The proof of Theorem 4.2.3 shows that ifA is a Jordan-measurable

bounded set, then for any 𝜀 > 0 there exists a compact Jordan-measurable subset

C of A such that vol(A \ C) < 𝜀.
(ii) If U is open in ℝn, and f , g : U → ℝ are equal everywhere except on a set of

measure zero, then f is integrable on U if and only if g is, and in that case, both

integrals are equal. This is because h = f − g vanishes except on a set of measure

zero and is therefore integrable. Thus, if f is integrable, then so is g = f − h, and

vice-versa.

4.3 Fubini’s theorem

Anybox B inℝm+n decomposes as a productB1×B2 = π1(B)×π2(B) ⊂ ℝm×ℝn of boxes,

with πi denoting the orthogonal projection ofℝm ×ℝn onto each factor, i = 1, 2. Given
f : B → ℝ, each x ∈ B1 induces a function fx : B2 → ℝ by setting fx(y) = f (x, y). As an
elementary example, let B = [0, 2] × [0,2], and f (x, y) = (x + 1)y2. Then f0(x) = y2 and

f1(x) = 2y2.

Supposenext that for eachx ∈ B1, fx is integrable onB2. This yields anew function

g on B1 by setting g(x) = ∫
B2
fx . This expression is commonly denoted ∫

B2
f (x, y) dy. In

the above example,
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Fig. 4.3: Cross-sectional areas ∫B2 f (x, y)y for x = 1

and x = 0.

∫
B2

f (x, y) dy = 2∫
0

(x + 1)y2 dy = (x + 1)
y3

3

y=2y=0
=
8(x + 1)

3
.

If this function g is integrable over B1, its integral is called an iterated integral,

and is denoted ∫
B1

∫
B2
f (x, y) dy dx. In our example, the reader can verify that this

integral equals 32/3, and that reversing the order of integration (that is, evaluating∫
B2
∫
B1
f (x, y) dx dy instead) yields the same result. This is no coincidence. Fubini’s

theorem implies that for continuous f , both iterated integrals are equal, and further-

more equal the integral ∫
B
f of the original function over B, thereby substantially

simplifying the evaluation of these integrals. The theorem actually holds for arbitrary

integrable functions, although the statement becomes more complicated because

iterated integrals do not always exist.

Recall that abounded function f : B → ℝ always admits lowerandupper integrals

L(f , B), U(f , B), regardless of whether it is integrable. Also recall that a partition P of

B1 × B2 induces partitions Pi = πi(P) of Bi, i = 1,2, and P = P1 × P2.
Lemma 4.3.1. Let B1 and B2 denote rectangles inℝm and ℝn respectively, and f : B1 ×
B2 → ℝ be a bounded function. For each x ∈ B1, define fx : B2 → ℝ by fx(y) = f (x, y),
and denote by g1 : B1 → ℝ the functiongivenby g1(x) = L(fx ,B2). Then for any partition
P of B,

L(f , P) ≤ L(g1, P1) ≤ U(g1, P1) ≤ U(f , P),
where P1 = π1(P) is the induced partitionof B1.

Proof. Observe that if Si are subboxes of Pi, i = 1,2, and x ∈ S1, then

mS1×S2 (f ) ≤ m{x}×S2 (f ) = mS2
(fx).

Consequently,

∑
S2∈P2

mS1×S2 (f ) vol(S2) ≤ ∑
S2∈P2

mS2
(fx) vol(S2) = L(fx , P2) ≤ g1(x).
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Since this holds for every x ∈ S1,∑
S2∈P2

mS1×S2 (f ) vol(S2) ≤ mS1
(g1),

so that

L(f , P) = ∑
S1×S2

mS1×S2 (f ) vol(S1 × S2)

= ∑
S1∈P1

( ∑
S2∈P2

mS1×S2 (f ) vol(S2)) vol(S1) ≤ ∑
S1∈P1

mS1
(g1) vol(S1)

= L(g1, P1).
(4.3.1)

Next, if h1 : B1 → ℝ is given by h1(x) = U(fx , P2), then a similar argument, using h1
instead of g1, shows that U(h1, P1) ≤ U(f , P). But g1 ≤ h1, so that

U(g1, P1) ≤ U(f , P).
This, together with (4.3.1), yields the claim.

Remarks 4.3.1. (i) With minor modifications, the proof of the lemma shows that

L(f , P) ≤ L(h1, P1) ≤ U(h1, P1) ≤ U(f , P),
where h1 is the function that was used in the proof, h1(x) = U(fx , P2).

(ii) Define, for each y ∈ B2, a function fy : B1 → ℝ by fy(x) = f (x, y), and denote by

g2, h2 : B2 → ℝ the functions given by

g2(y) = L(fy,B1), h2(y) = U(fy ,B1).
Arguments similar to those used in the proof of the lemma imply that

L(f , P) ≤ L(g2, P2) ≤ U(g2, P2) ≤ U(f , P),
and

L(f , P) ≤ L(h2, P2) ≤ U(h2, P2) ≤ U(f , P).
Theorem 4.3.1 (Fubini’s Theorem). Suppose f : B1 × B2 ⊂ ℝm × ℝn → ℝ is integrable.

Then, with notation as in Lemma 4.3.1 and the remark following it, the functions gi, hi
are integrable on Bi, and

∫
B1×B2

f = ∫
Bi

gi = ∫
Bi

hi, i = 1, 2.
In particular if f is continuous, then

∫
B1×B2

f = ∫
B1

∫
B2

f (x, y) dy dx = ∫
B2

∫
B1

f (x, y) dx dy.
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Proof. We limit ourselves to establishing ∫
A×B f = ∫

B1
g1 in the first identity, since they

are all proved in essentially the same way. By Lemma 4.3.1,

L(f ,B) ≤ L(g1,B1) ≤ U(g1,B1) ≤ U(f ,B).
But f is integrable, so L(f ,B) = U(f , B), and the claim follows.

For the second identity, observe that if f is continuous, then so is fx for any x ∈ B1,

and

g1(x) = L(fx ,B2) = ∫
B2

fx = ∫
B2

f (x, y) dy.
Therefore, ∫

B1×B2

f = ∫
B1

g1 = ∫
B1

∫
B2

f (x, y) dy dx.
Using g2 instead of g1 shows that the order of integration may be reversed.

Examples 4.3.1. (i) The function f , where f (x, y) = 2x3ex
2y, is integrable over R =

[0,1] × [0, 1] since it is continuous. Trying to evaluate the iterated integral∫1
0
∫1
0
2x3ex

2y dx dy doesn’t look auspicious. If we reverse the order of integration,

however, then
1∫
0

2x3ex
2y dy = 2xex

2yy=1y=0 = 2x(ex
2 − 1),

so that ∫
R
f = ∫1

0
2x(ex

2 − 1) dx = ex
2 − x210 = e − 2.

(ii) It may well happen that a function is integrable, but one of the iterated integrals

does not exist: consider

f : [0,1] × [0,1] → ℝ,
(x, y) → {{{{{{{

1 if x = y = 0,

0 if x or y is irrational,
1
n

if y is rational and x = m
n

̸= 0,

wherem, n are integers with no common factor and n > 0.We claim that the set of

discontinuities of f is (ℚ∩[0, 1])×[0,1], so that f is integrable. To see this, consider
a point (x0, y0) in this set, with x0 = p/q. If y0 is irrational, then f (x0 , y0) = 0,

but f (x0, yk) = 1/q for any sequence {yk} of rationals that converges to y0. This
shows that f is discontinuous at that point. If y0 is rational, then f (x0, y0) ̸= 0

but any neighborhood of (x0, y0) contains points where f vanishes, so again f is

discontinuous there. Next, we check that f is continuous at any other point; i.e.,

at any (x0, y0) with x0 irrational. So consider a sequence (xk, yk) → (x0, y0). If xk is
rational for only finitely many k, then for large enough k, f (xk, yk) = 0 = f (x0 , y0).
Otherwise, there exists a subsequence xkn = pn/qn of {xk} consisting of rationals. It
is not difficult to prove that in this case, qn → ∞ (see Examples and Remarks (ii)
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in Appendix A), so that f (xkn , ykn) is either zero or 1/qn, and in any case converges
to zero. Since those terms that are not in the subsequence are mapped to zero, f is

indeed continuous at (x0, y0).
Thus, f is integrable, and its integral is zero, since any lower sum is. However, if

x = m/n is a nonzero rational, then fx(y) = 1/n when y is rational and 0 other-

wise, so that fx is not integrable and ∫10 f (x, y) dy does not exist. The other integral∫1
0
f (x, y) dx does, however, exist, and equals zero: this is clear if y is irrational,

since fy is then identically zero, and follows from the example in Appendix A

mentioned above when y is rational.

Fubini’s theorem is applicable to regions that are more general than boxes: The j-th

coordinate plane in ℝn, j = 1, . . . , n, is the set Πj of all points a ∈ ℝn with uj(a) = 0. It

is canonically isomorphic withℝn−1 via𝚤j : ℝn−1 → Πj,
(a1, . . . , an−1) → (a1, . . . , aj−1, 0,aj, . . . , an−1),

and we routinely identify the two. Define the projection πj of ℝn onto the j-th coordi-

nate plane by πj(a) = (u1(a), . . . , uj−1(a), uj+1(a), . . . , un(a)). A nonempty set E ⊂ ℝn is

said to be projectable if there exists a compact Jordan-measurable set Ẽ ⊂ ℝn−1, some

j ∈ {1, . . . , n} and continuous functions gi : Ẽ → ℝ, i = 1,2, such that
E = {a ∈ ℝn | πj(a) ∈ Ẽ and (g1 ∘ πj)(a) ≤ uj(a) ≤ (g2 ∘ πj)(a)}.

Geometrically speaking, a projectable set E consists of the region lying between the

graphs of two functions defined on the projection of E onto some coordinate plane.

Notice that such a set is entirely determined (and we say it is generated) by j, Ẽ, g1,

and g2.

ES

EB

ET

1

1

Projectable set with
g (x, y) = x + y ,

g (x, y − x − y ,
Ẽ = B̄ ( ) ⊂ ℝ , j
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Lemma 4.3.2. A projectable set is Jordan-measurable.

Proof. The claim follows from Theorem 4.2.2 once we establish that the boundary of

E has measure zero. So suppose E is generated by j, Ẽ, g1, and g2. We may assume

without loss of generality that j = n. Now, the boundary of E decomposes as a union

of three compact overlapping sets, a “top” ET = {(x, g2(x)) | x ∈ Ẽ}, a “bottom” EB ={(x, g1(x)) | x ∈ Ẽ}, and a “side” ES = {(x, xn) | x ∈ 𝜕E, g1(x) ≤ xn ≤ g2(x)}.
Consider first the top. Let 𝜀 > 0, and choose some box B ⊂ ℝn−1 that contains Ẽ. Since
g2 is uniformly continuous on the compact set Ẽ, there exists some δ > 0 such that|g2(a) − g2(b)| < 𝜀/(4 vol(B)) whenever a,b ∈ Ẽ are at a distance less than δ from each

other. Next, divideB into subboxesB1 , . . . , Bk of diameter less thanδ , andchoose some

ai ∈ Bi, i = 1, . . . , k. Then the sets
Bi × [g2(ai) − 𝜀

3 vol(B)
, g2(ai) + 𝜀

3 vol(B)
], i = 1, . . . , k

form a collection of n-dimensional boxes covering ET with total volume∑i 2𝜀 vol(Bi)/
(3 vol(B)) = 2𝜀/3 < 𝜀. A similar argument shows that thebottomEB canalsobe covered

by boxes with arbitrarily small total volume.

It remains to consider the side ES. Set

m = min{g1(x) | x ∈ 𝜕Ẽ}, M = max{g2(x) | x ∈ 𝜕Ẽ}.
Let 𝜀 > 0. Since Ẽ is Jordan-measurable, there exist (n−1)-dimensional boxes ̃B1 , . . . , B̃l
covering the boundary of Ẽ with total volume less than 𝜀/(M − m) (at least if m < M.

If m = M, then g1 ≡ g2 equal a constant α , and ES = 𝜕Ẽ × {α} certainly has measure

zero). Then

ES ⊂ l⋃
i=1

B̃i × [m,M],
and ∑i vol(B̃i × [m,M]) < 𝜀.
Proposition 4.3.1. SupposeE ⊂ ℝn is projectable, generatedby j, Ẽ, g1 , and g2. For each

x = (x1, . . . , xn−1) ∈ Ẽ, define fx : [g1(x), g2(x)] → ℝ by

fx(t) = f (x1, . . . , xj−1 , t, xj, . . . , xn−1).
If f : E → ℝ is integrable, then

∫
E

f = ∫̃
E

̃f , where ̃f (x) = g2(x)∫
g1(x)

fx, x ∈ Ẽ.
Proof. For simplicity of notation, assume that j = n. Consider any box B = [a1, b1] ×⋅ ⋅ ⋅ × [an, bn] that contains E, and define g : B → ℝ by setting it equal to f inside E, and
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zero otherwise. If B̃ = πn(B) ⊂ ℝn−1, then by Fubini’s theorem,

∫
E

f = ∫
B

g = ∫̃
B

(bn∫
an

g(x, t) dt) dx = ∫̃
E

(bn∫
an

g(x, t) dt) dx

= ∫̃
E

(g2(x)∫
g1(x)

f (x, t) dt) dx

= ∫̃
E

̃f .
Examples 4.3.2. (i) Suppose we wish to find the volume of the 3-dimensional region

R that lies inside the cylinder x2 + y2 = 9 and between the planes z = 1 and

y + z = 5. Let D denote the disk {(x, y) | x2 + y2 ≤ 9} inℝ2. Then

R = {(x, y, z) | (x, y) ∈ D and 1 ≤ z ≤ 5 − y},
so that

vol(R) = ∫
D

( 5−y∫
1

dz) dy dx = ∫
D

(4 − y) dy dx.
Now, D itself is projectable; in fact,

D = {(x, y) | −3 ≤ x ≤ 3, −√9 − x2 ≤ y ≤ √9 − x2},
and

vol(R) =

3∫
−3

√9−x2∫
−√9−x2

(4 − y) dy dx = 3∫
−3

8√9 − x2 dx
= 8(x

2
√9 − x2 + 9

2
arcsin

x

3
)3−3 = 36π .

(ii) We have so far dealt with integration over bounded regions. More generally, if

A ⊂ ℝn and f : A → ℝ, we define
∫
A

f = lim
k→∞

∫
A∩[−k,k]n

f ,
provided the sequence on the right converges.

As a simple application that will be used in the proof of Sard’s theorem, suppose

A ⊂ ℝn = ℝ × ℝn−1 is a set such that its intersection At = A ∩ ({t} × ℝn−1) with
each hyperplane u1 = t, t ∈ ℝ, has ((n − 1)-dimensional) volume zero. Then A

has volume zero. To see this, notice first of all that by the above definition, Amay

be assumed to be bounded: indeed, if the claim holds for bounded sets, and A is
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an unbounded set satisfying the above hypothesis, then vol(A ∩ [−k, k]n) = 0 for

every k, and so is the limit as k → ∞. So consider a box B = [a1, b1] × B1 in ℝn

that contains A. Then

vol(A) = ∫
A

1 = ∫
B

χA =

b1∫
a1

( ∫
B1

χAt
) dt

is zero since by assumption each ∫
B1
χAt

= 0.

(ii) In Section 1.6, we defined the volume of the parallelepiped P spanned by

x1, . . . , xn ∈ ℝn to be the absolute value of the determinant of the matrix that

has x1, . . . , xn as columns. This may be rephrased as follows:notice that P = L(B),

where B = [0,1]n, and L : ℝn → ℝn is the linear transformation determined by

Lei = xi, i = 1, . . . , n. The above formula for the volume of P may therefore be

written as

vol L(B) = |det L| ⋅ vol(B). (4.3.2)

For the sake of consistency, it must be checked that this definition coincides with

the definition of volume as an integral. We will establish, somewhat more gener-

ally, that (4.3.2) holds for any box B = [a1, b1] × ⋅ ⋅ ⋅ × [an, bn] in ℝn. First of all,

notice that L may be assumed to be an isomorphism, since otherwise both sides

of the above identity vanish. Next, since any isomorphism is a composition of ele-

mentary transformations (see Appendix B) and the determinant of a composition

is the product of the determinants, it is enough to prove (4.3.2) for elementary

transformations. Recall that these transformations come in three flavors:

(1) Lei = ej, Lej = ei for some 1 ≤ i < j ≤ n, and Lek = ek if k ̸= i, j;
(2) There exists 1 ≤ i ≤ n and α ̸= 0 such that Lei = αei , and Lej = ej for j ̸= i;

(3) There exist distinct i, j ∈ {1, . . . , n}, α ∈ ℝ, such that Lei = ei + αej, and
Lek = ek when k ̸= i.

If L is of type 1, then L(B) is obtained by interchanging edges i and j in B, and both

have the same volume because the latter equals the product of the lengths of its

edges. Since |det L| = 1, (4.3.2) holds in this case. If L is of type 2, then L(B) is

a box that has the same edges as B except for the i-th one, which has length |α |
times that of B; but α = det L, so again (4.3.2) is true in this case. Finally, if L is

of type 3, then by what was established for type 1, we may assume that Lei = ei if
i ̸= n − 1 and Len−1 = en−1 + αen. Set

B1 = [a1, b1] × . . . [an−2, bn−2], B2 = [an−1, bn−1] × [an, bn],
so that B = B1 × B2. By Fubini’s theorem,

vol L(B) = ∫
L(B1×B2)

1 = ∫
B1×L(B2)

1 = vol B1 ⋅ vol L(B2),
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and since det L = 1, it remains to show that B2 and L(B2) have the same volume;

i.e., that (4.3.2) holds for a type 3 elementary transformation L : ℝ2 → ℝ2. But if

B = [a, b] × [c, d], then L(B) is the projectable region
L(B) = {(x, y) | a ≤ x ≤ b, αx + c ≤ y ≤ αx + d},

and

vol L(B) =

b∫
a

( αx+d∫
αx+c

1)dx =

b∫
a

(d − c) = vol B.
4.4 Sard’s theorem

Recall from the section on Taylor polynomials that a ∈ U ⊂ ℝn is said to be a critical

point of a map f : U → ℝm if Df (a) : ℝn → ℝm is either not onto or does not

exist, and that in this case, f (a) is called a critical value of f . As an application of

Fubini’s theorem, we discuss a remarkable result of Sard, which asserts that the set of

critical values of a Ck map f : U ⊂ ℝn → ℝm has measure zero, if k is large enough

(depending on n and m). This is of course not surprising (and not difficult to prove)

when n < m: after all, even in the worst case scenario when f has maximal rank

everywhere, the set of critical values is all of f (U), which is locally an immersed n-

dimensional submanifold of ℝm. Our approach of the argument follows that of [11].

It has the advantage of being relatively short, but comes at additional cost, namely f
will be assumed to have continuous partial derivatives of any order.

Theorem 4.4.1 (Sard). Let U ⊂ ℝn, and f : U → ℝm a C∞ map; i.e., the component

functions ui ∘ f have continuous partial derivatives of any order. Then the set of critical
values of f has measure zero.

Proof. The argument will be by induction on the dimension n of the domain, begin-

ning with n = 0. Recall that the zero-dimensional space ℝ0 = {0}, so the statement is

true in this case. Assume then that the statement holds in dimensions less than n.

Denote by C the set of critical points of f , and by Ck the subset consisting of those

points where all partial derivatives of (the components of) f of order ≤ k vanish, k ≥ 1.

Thus, C ⊃ Ck ⊃ Ck+1, k ∈ ℕ. Wewill repeatedly make use of the following observation:

in order to show that a given set f (A) has measure zero, it is enough to show that

every point in A admits a neighborhood V such that f (V ∩A) has measure zero. This is

because the resulting cover of A contains a countable subcover by Theorem 1.7.5, and

a countable union of measure zero sets has measure zero.

Claim 1: f (C \ C1) has measure zero. To see this, consider p ∈ C \ C1. By assumption,

Dif
j(p) ̸= 0 for some 1 ≤ i, j ≤ n. It may be assumed that i = j = 1, since interchanging

twocoordinates in the domain or in the range of f amounts to composing f on the right
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or on the left with a diffeomorphism F; in the former case, f ∘ F has the same critical

values as f , and in the latter case, (F ∘ f )(C) has measure zero if and only if f (C) has
measure zero. Now, the map h : U → ℝn given by

h(a) = (f 1(a), a2, . . . , an), ai = ui(a),
has rank n at p: indeed, its Jacobian at that point is a matrix whose entries below

the diagonal all vanish, so that its determinant equals the product of the diagonal

elements, namely D1f
1(p) ̸= 0. By the inverse function theorem, there exists a neigh-

borhood V of p in U such that the restriction h : V → h(V) is a diffeomorphism. Set

g := f ∘ h−1 : h(V) → ℝm. Since h is a diffeomorphism, the set A of critical values of g
coincides with the set of critical values of the restriction of f to V; i.e., A = f (V ∩ C),

and it remains to show that A has measure zero. Notice that u1 ∘ h = f 1, so that

u1 ∘ g = u1 ∘ f ∘ h−1 = f 1 ∘ h−1 = u1 ∘ h ∘ h−1 = u1.
In other words, g maps each hyperplane u1 = constant into itself. Denote by gα the
restriction of g to the (portion of the) hyperplane

Hα = {p ∈ U | u1(p) = α}, α ∈ ℝ.
Observe that for each p ∈ Hα ,

(1) the Jacobian matrix of g at p has eT1 as its first row, and
(2) Dig

j(p) = Dig
j
α (p) for all i, j ̸= 1.

The latter statement says that if gα is viewed as a map from ℝn−1 ≅ Hα to itself, then

the Jacobian of gα at p is obtained by deleting the first row and column from that of g
at p:

Dg(p) =
[[[[[[
1 0 . . . 0∗
... Dgα (p)∗

]]]]]]
Together with the former, this means that the columns of [Dg(p)] are linearly depen-
dent if and only if those of [Dgα (p)] are: for if Mi denotes the i-th column of the first

matrix, and Mi
α that of the second, then the first entry of the column vector ∑ aiM

i is

a1. Thus, if∑ aiM
i = 0, then a1 = 0 and∑ aiM

i = ∑i>1 aiM
i ∈ ℝm. This vector has zero

as its first entry, and deleting this entry yields ∑i aiM
i−1
α = 0 ∈ ℝm−1. Summarizing,

p ∈ Hα is a critical point of gα iff it is a critical point of g. According to our induction
hypothesis, the set of critical values of gα has measure zero, so that the intersection

of the set of critical values of g with each hyperplane uj = α has measure zero. By

Examples 4.3.2 (ii), A itself then has measure zero.

Claim 2: f (Ck \ Ck+1) has measure zero for k ≥ 1. Given any p ∈ Ck \ Ck+1, we shall once
again exhibit an open neighborhood V of p such that f (V ∩ Ck) has measure zero. By
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assumption, there exists a partial derivative of (a component function of) f of order k,
which we denote by φ, such that φ(p) = 0 but Diφ(p) ̸= 0 for some i between 1 and n.

As before, the map h : U → ℝn, given by

h(a) = (a1, . . . , ai−1,φ(a), ai+1, . . . , an),
has rank n at p and there exists a neighborhood V of p on which the restriction h :
V → h(V) is a diffeomorphism. Set once again g = f ∘ h−1 : h(V) → ℝm. Since φ

vanishes when restricted to V ∩ Ck, h(V ∩ Ck) lies in the coordinate hyperplane ui = 0.

If g0 denotes the restriction of g to this hyperplane, then every point of h(V ∩ Ck) is

a critical point of g0 because V ∩ Ck is contained in the set of critical points of f . By
the induction hypothesis, the critical values of g0 form a set of measure zero. Thus,

f (V ∩ Ck) = g0(h(V ∩ Ck)) has measure zero, as claimed.

Claim 3: f (Ck) has measure zero if k is large enough. To see this, consider a box B =

Πn
i=1[ai, bi] with edges of common length R = bi − ai small enough that B is contained

inU. It suffices to show that if k > (n/m)−1, then f (Ck ∩B) hasmeasure zero. Applying

Remark 2.7.1 to each component function of f , we see that there exists β > 0 such that|R(x, h)| := |f (x + h) − f (x)| ≤ β |h|k+1, x ∈ Ck ∩ B, x + h ∈ B. (4.4.1)

Given any natural number l > 1, partition each [ai, bi] into l intervals of equal length
R/l. The corresponding partition of B consists of ln subboxes with diameter√nR/l. Let
x ∈ Ck ∩ B, and B̃ be a subbox containing x. Then any other point in B̃ ∩ Ck is of the

form x + h, where |h| ≤ √nR/l. It follows from (4.4.1) that f (B̃ ∩ Ck) is contained in

a box centered at f (x) with all sides of common length 2β (√nR/l)k+1. Since this box
lives in ℝm, it has volume α/lm(k+1), where α is a constant that does not depend on l.

Thus, f (B ∩ Ck) is contained in ln boxes with total volume

V ≤ αln−m(k+1).
The exponent of l is a negative integer, so that V can be made arbitrarily small by

choosing l large enough. As observed earlier, this implies that f (Ck) has measure zero.

To conclude, set C0 := C. If k > (n/m) − 1, then

f (C) = ( k⋃
i=1

f (Ci−1 \ Ci)) ∪ f (Ck)
is a finite union of sets of measure zero. This completes the proof.

Remark 4.4.1. Sard’s theorem holds more generally for maps between manifolds: A

subset A of a manifoldMk is said to have measure zero if A can be written as a count-

able union ∪An where each An lies in the domain of some chart (Un, xn), and xn(An)

has measure zero in ℝk. Now, if f : M → N is a C∞ map between manifoldsM and N,

then for any charts (U, x) ofM and (V , y) of N, the set of critical values of y ∘ f ∘x−1 has
measure zero. It follows that the set of critical values of f has measure zero.



198 | 4 Integration on Euclidean space

4.5 The change of variables theorem

For functions of a single variable, the chain rule implies the well-known change of

variables theorem:

If g : [a, b] → ℝ is continuously differentiable, and f is a continuous function whose

domain contains g([a, b]), then
g(b)∫
g(a)

f =

b∫
a

(f ∘ g)g. (4.5.1)

The proof is easy: if F is an antiderivative of f , then F ∘ g is an antiderivative of (f ∘
g)g, so that both sides equal F(g(b)) − F(g(a)). Before stating the generalization of

this theorem to higher dimensions – let alone proving it, which turns out to be much

more involved – we observe that it may be reformulated as follows:

∫
g(a,b)

f = ∫
(a,b)

(f ∘ g)|g|, (4.5.2)

at least if g is one-to-one. Indeed, g is then either increasing, in which case g ≥ 0 and

both identities are the same, or decreasing, so that g(a, b) = (g(b), g(a)), g ≤ 0, and

both sides of (4.5.2) are the negative of those in (4.5.1).

The higher-dimensional analogue of (4.5.2) is given by the following:

Theorem 4.5.1. Let U ⊂ ℝn be bounded, and suppose g : U → ℝn is a continuously

differentiable map, which is injective on an open subset whose complement in U has

measure zero. If f : g(U) → ℝ is integrable, then

∫
g(U)

f = ∫
U

(f ∘ g)| detDg|.
The proof will be handled in a series of steps. First of all, U may be assumed to be

open and g injective on U by Remarks 4.2.3 (ii) together with the fact that the image

g(A) of a set A of measure zero has measure zero if g is continuous and A lies in some

compact set, see Exercise 4.3. Similarly, by Sard’s theorem, we may suppose that the

Jacobian determinant of g is nowhere zero. Next, we point out two observations that

will be used repeatedly in the proof:

Observation 4.5.1. The class of maps g for which the theorem holds is closed under

composition.
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To see this, let g1 : U → ℝn, g2 : V → ℝn, where g1(U) ⊂ V. If the claim is true for

each of these maps, then

∫
(g2∘g1)(U)

f = ∫
g2(g1(U))

f = ∫
g1(U)

(f ∘ g2)|det Dg2|
= ∫

U

(f ∘ g2 ∘ g1)|((det Dg2) ∘ g1)|det Dg1|
= ∫

U

(f ∘ g2 ∘ g1)| detD(g2 ∘ g1)|.
Observation 4.5.2. It suffices to prove that for any a ∈ U, there exists an open neigh-

borhoodW ⊂ U of a for which the theorem holds.

Indeed, if the statement is true in this case, then there exists an admissible open

cover {Wk | k ∈ A ⊂ ℕ} of U such that the theorem holds on eachWk. Then {g(Wk) |
k ∈ A} is an admissible open cover of g(U). If {φk | k ∈ A} is a partition of unity

subordinate to {g(Wk) | k ∈ A}, then again by hypothesis,
∫

g(Wk)

φkf = ∫
Wk

(φkf ) ∘ g|det Dg|. (4.5.3)

Now, φk vanishes outside g(Wk), so that, since g is injective, φk ∘ g is zero outsideWk

(and in particular, {φk ∘g | k ∈ A} is a partition of unity subordinate toU). Thus, (4.5.3)
becomes ∫

g(U)

φkf = ∫
U

(φkf ) ∘ g| detDg|. (4.5.4)

As noted above, the collection {φk ∘ g | k ∈ A} is a partition of unity subordinate to U.

The definition of the generalized integral then implies that

∫
g(U)

f = ∑
k∈A

∫
g(U)

φkf = ∑
k∈A

∫
U

(φk ∘ g)(f ∘ g)| detDg| = ∫
U

(f ∘ g)| detDg|.
Now that these observations are out of the way, we proceed with the proof of the

change of variables formula by first considering constant functions. Since the integral

of a constant function c over a set is c times thevolume of the set, it suffices to consider

the constant function 1:

Lemma 4.5.1. Let U be open inℝn, g : U → ℝn a one-to-one continuouslydifferentiable

map with nowhere zero Jacobian determinant. Then

vol g(U) = ∫
g(U)

1 = ∫
U

| detDg|.
Proof. We proceed by induction on n. The case n = 1 follows from (4.5.2), so assume

the claim holds in dimension n − 1. By Observation 4.5.2, it suffices to establish the
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result for some neighborhood of an arbitrary point a ∈ U. Furthermore, we may sup-

pose that [Dg(a)] = In: if the lemma is valid for maps with Jacobian matrix equal to

the identity at a, then it must hold for the map Dg(a)−1 ∘ g. On the other hand, it is

also true for the linear transformation Dg(a) by Examples and Remarks 4.3.2 (iv). By

Observation 4.5.1, it then holds for g = Dg(a) ∘ (Dg(a)−1 ∘ g).
In order to use the induction hypothesis, we rewrite g as a composition f ∘ h as fol-

lows: let π1 : ℝn = ℝn−1 × ℝ → ℝn−1 denote projection, and define h : U → ℝn

by h = (π1 ∘ g, un); i.e., for x = (x1, . . . , xn), h(x) = (g1(x), . . . , gn−1(x), xn). Since
Dg(a) = 1ℝn, Dh(a) = 1ℝn and h is invertible in some neighborhood W of a. Set
W̃ = h(W), and define f : W̃ → ℝn by f = (π1 , gn ∘ (h|W)−1). Then onW

f ∘ h = (π1 ∘ h, gn) = (π1 ∘ g, gn) = g.
Furthermore,

Df (h(a)) = Df (h(a)) ∘ Dh(a) = Dg(a) = 1ℝn ,
so that f is injective with Jacobian matrix of rank n on some neighborhood V of h(a).
Set U = h−1(V), restrict h to U and f to V. Then h : U → V, f : V → f (V) are
diffeomorphisms, g|U = f ∘h, and it suffices, by the twoobservations above, to establish

the claim for f and h on open boxes containing h(a) and a respectively. We begin with

h: consider an open box B = B1 × (an, bn) ⊂ U containing a, where B1 = π1(B). By Ex-

amples 4.2.2 (iii) and Exercise 1.29,h(B× [an , bn]) and h(B×{t}) are Jordan-measurable,

and Fubini’s theorem implies

∫
h(B)

1 =

bn∫
an

( ∫
h(B1×{t})

1 dx) dt. (4.5.5)

Now, for each t ∈ (an, bn), the map ht : B1 → ℝn−1, where ht(x) = (π1 ∘ g)(x, t), is
injective, and

[Dh(x, t)] = [[[[[[
∗

Dht(x)
...∗

0 . . . 0 1

]]]]]]
,

so that detDht(x) ̸= 0. By the induction hypothesis,

∫
ht(B1)

1 dx = ∫
B1

|Dht|dx = ∫
B1

|Dh(x, t)|dx.
But ht(B1) = h(B1 × {t}), so that (4.5.5) now yields

∫
h(B)

1 =

bn∫
an

(∫
B1

|Dh(x, t)|dx)dt = ∫
B

|Dh|.
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This proves the claim for h, and we now turn our attention to f . Let B = B1 × (an, bn)
be a box in ℝn−1 × ℝ, and for each x ∈ B, define fx : (an, bn) → ℝ by fx(t) = f n(x, t) =
(gn ∘ h−1)(x, t). Since f (x, t) = (x, fx(t)),

[Df (x, t)] = [[[[[[
0

In−1
...
0∗ . . . ∗ f x(t)

]]]]]]
,

and in particular, | detDf (x, t)| = |f x(t)|. Now,
f (B) = ⋃

x∈B1
{x} × fx(an, bn),

so that ∫
f (B)

1 = ∫
B1

( ∫
fx(an ,bn)

1 dt) dx = ∫
B1

( ∫
(an ,bn)

|f x(t)| dt)
= ∫
B1

( bn∫
an

|det Df (x, t)|dt) dx
= ∫

B

|det Df |.
This completes the proof of the lemma.

Proof of Theorem 4.5.1. By Observation 4.5.2, it suffices to show that for any a ∈ U,

there exists a neighborhoodW ⊂ U ofa such that the theoremholds onW . So consider

an open box B that contains g(a), and letW = g−1(B). If P is a partition of B, then

L(f , P) = ∑̃
B∈P

mB̃(f ) vol(B̃) = ∑̃
B∈P

mB̃(f ) ∫̃
B0

1

= ∑̃
B∈P

mB̃(f ) ∫
g−1(B̃0)

(1 ∘ g)|detDg|
= ∑̃

B∈P
∫

g−1(B̃0)

(mB̃(f )) ∘ g| detDg|
≤ ∫

W

(f ∘ g)|det Dg|,
and therefore ∫g(W)

f ≤ ∫
W
(f ∘ g)| detDg|. A similar argument using U(f , P) instead

of L(f , P) and MB̃(f ) instead of mB̃(f ) implies that the inequality holds in the other

direction. Thus, ∫
g(W)

f = ∫
W

(f ∘ g)| detDg|.
This shows that the theorem holds forW and establishes the result.
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Example 4.5.1. Consider the integral ∫
A
(x − y)/(x + y) dx dy, where A denotes the

region bounded by the square with vertices (1,0), (3/2,1/2), (2, 0) and (3/2, −1/2).
Although it can be evaluated with Fubini’s theorem (notice that the region is pro-

jectable), the computation is lengthy.

11

1

A

g(A)

g

Alternatively, observe that g : ℝ2 → ℝ2, where g(x, y) = (x − y, x + y), is an isomor-

phism, so we may apply the change of variables theorem to the function f (u, v) = u/v
to obtain ∫

A

x − y

x + y
dx dy = ∫

A

(f ∘ g) = 1|detDg| ∫
A

(f ∘ g)| detDg|
=

1|det Dg| ∫
g(A)

f .
Now, the Jacobian determinant of g equals 2, and A is bounded by the lines x − y = 1,

x − y = 2, x + y = 1, and x + y = 2. Thus, g(A) = [1,2] × [1,2], and
∫
A

x − y
x + y

dx dy =
1

2

2∫
1

( 2∫
1

u

v
du) dv = 1

2

2∫
1

u ln 2 du =
3

4
ln2.

4.6 Cylindrical and spherical coordinates

As an application of the results from the previous section, we discuss some changes

of variables that are useful when working with regions that exhibit radial or spherical

symmetry.

4.6.1 Cylindrical coordinates

Polar coordinates inℝ2 are given by the map (r, θ ) : ℝ2 \ {0} → ℝ2, where r assigns to

a point p its distance to the origin 0, and θ is the angle in [0,2π) between the positive
x-axis and the line segment0p. The polar angle θ requires some care inwriting down,
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because tan is only invertible when restricted to an interval of length π . Formally, r =√(u1)2 + (u2)2, whereas

θ =

{{{{{{{{{{{{{{{{{{{

arctan(u2/u1) if u1 > 0,u2 ≥ 0,

π/2 if u1 = 0 and u2 > 0,

π + arctan(u2/u1) if u1 < 0,

3π/2 if u1 = 0 and u2 < 0,

2π + arctan(u2/u1) if u1 > 0 and u2 < 0.

Polar coordinates extend to cylindrical coordinates in ℝ3 via (r, θ , u3) : {(x, y, z) ∈ℝ3 | (x, y) ̸= (0,0)} → ℝ3.

z

rθ

(x, y, z)

(x, y)

Cylindrical coordinates

They are particularly useful when working with surfaces that are invariant under ro-

tation about the z-axis. If V ⊂ ℝ3 is a region that can be expressed as U in cylindrical

coordinates, then V = g(U), where g is the inverse of cylindrical coordinates,

g : [0,∞) × [0, 2π) × ℝ → ℝ3,
(r, θ , z) → (r cos θ , r sin θ , z).

g is injective on (0,∞) × [0, 2π) × ℝ and differentiable on (0,∞) × (0,2π) × ℝ with

Jacobian

[Dg(r, θ , z)] = [[[
cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

]]] .
Thus, if V ⊂ ℝ3 is expressed as U in cylindrical coordinates, i.e., if V = g(U), and if f
is integrable on V, then

∫
V

f = ∫
U

(f ∘ g)(r, θ , z)r dr dθ dz. (4.6.1)
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Integration in polar coordinates is a special case of the above: suppose f is a function

of 2 variables defined on a region V in the plane. Since the inverse h of polar coor-

dinates (r, θ ) equals π1 ∘ g|ℝ2×{0}, where π1 = (u1, u2) : ℝ3 → ℝ2 is projection, we

have

[Dh(r, θ )] = [cos θ −r sin θ
sin θ r cos θ

] .
Thus, if V ⊂ ℝ2 is expressed as U in polar coordinates, i.e., if V = g(U), and if f is

integrable on V, then ∫
V

f = ∫
U

(f ∘ g)(r, θ )r dr dθ . (4.6.2)

Examples 4.6.1. (i) A right circular cone of height h and radius R is the surface (the

term is used loosely here) in ℝ3 obtained by rotating the line segment

{(t,0, (−h/R)t + h) | 0 ≤ t ≤ R}
joining (R, 0, 0) and (0, 0, h) about the z-axis.

A cone with base radius R and

height h

x

z

(R, 0, 0)

(0, 0, h)

y

The volume of this cone (or rather the volume of the 3-dimensional region

bounded by the cone and the plane z = 0) is therefore equal to volA, where

A = {(x, y, z) | 0 ≤ √x2 + y2 ≤ R, 0 ≤ z ≤ − h
R
√x2 + y2 + h}.

Thus, the interior A0 of A can be expressed as g(U), where U is the projectable

region

U = {(r, θ , z) | 0 ≤ r < R, 0 ≤ θ < 2π , 0 < z < h(1 − r

R
)}.
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By Fubini’s and the change of variables theorems,

vol(A) = vol(A0) = vol(g(U)) = ∫
g(U)

1 = ∫
U

r dz dr dθ

=

2π∫
0

R∫
0

h(1− r
R
)∫

0

r dz dr dθ = 2π

R∫
0

(rh − r2
h

R
)dr

=
πR2h

3
.

(ii) Suppose we are asked todetermine thearea of theplanar region R bounded by the

curve (x2 + y2)3 = (x2 − y2)2. This region is better visualized in polar coordinates,
where the equation of the curve becomes

r6 = (r2 cos2 θ − r2 sin2 θ )2 = r4 cos2(2θ ), or r = | cos 2θ |
since r ≥ 0.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Fig. 4.4: r = | cos 2θ |

The curve is invariant under reflection in both coordinate axes (that is, the equa-

tion is unchanged when θ is replaced by −θ or by π − θ ), and represents the

boundary of a 4-leaved rose. For example, the leaf

A = {(r, θ ) | −π
4

≤ θ ≤ π

4
, 0 ≤ r ≤ cos 2θ }

in the region −π/4 ≤ θ ≤ π/4 starts out at the origin when θ = −π/4, and r

increases until it reaches a maximum of 1 at θ = 0, which corresponds to the

point (1,0) in Cartesian coordinates. This is the bottomhalf of the leaf, and the top
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is obtained by reflecting in the x-axis. Reflection in the y-axis yields a second leaf.

Finally, notice that the curve is also invariant under reflection in the line y = x

because the equation is unchangedwhen θ is replaced by π/2−θ . Said reflection
then reveals the two remaining leaves.

− 1.0 − 0.5 0.5 1.0

− 1.0

− 0.5

0.5

1.0

Fig. 4.5: r = | cos 2θ | in polar coordinates

Thus,

area(R) = ∫
R

1 ⋅ r dr dθ = 4∫
A

r dr dθ = 4

π/4∫
−π/4

cos 2θ∫
0

r dr dθ

= 4

π/4∫
−π/4

1

2
cos2(2θ ) dθ =

π/4∫
−π/4

(1 + cos 4θ ) dθ = [θ +
1

4
sin 4θ ]π/4−π/4

=
π

2
.

4.6.2 Spherical coordinates

Like cylindrical coordinates, spherical coordinates generalize polar ones, but in a dif-

ferent direction. Denote by arccos : [−1, 1] → [0,π ] the inverse of the restriction of

cos to the interval [0,π ]. Let ρ : ℝ3 → ℝ denote the distance function to the origin,

ρ(x) = |x|, and φ : ℝ3 \ {0} → [0, π ] the angle with the positive z-axis,
φ(x) = arccos(⟨x,e3⟩/|x|), x ∈ ℝ3 \ {0}.
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Thus,

x = (π(x), ρ(x) cosφ(x)),
where π : ℝ3 = ℝ2 × ℝ → ℝ2 is projection onto the x-y plane. Since π(x) ∈ ℝ2, it may

be expressed in polar coordinates ; in fact, r(π(x)) = ρ(x) sinφ(x), so that

x = (ρ(x) cos θ (π(x)) sinφ(x), ρ(x) sin θ (π(x)) sinφ(x), ρ(x) cosφ(x)). (4.6.3)

ρ

θ

φ

(x, y, z)

(x, y)

Spherical coordinates

Spherical coordinates are given by the map (ρ , θ ,φ) : ℝ3 \ {0} → ℝ3, with ρ , φ as

above, and θ the same function from cylindrical coordinates. If

g : [0,∞) × [0, 2π) × [0,π ] → ℝ3,
(a1, a2, a3) → a1(sin a3 cos a2, sin a3 sin a2, cos a3),

then (4.6.3) says that (ρ , θ ,φ) is invertible with inverse g. g has Jacobian matrix

[Dg(ρ , θ ,φ)] = [[[
sin φ cos θ −ρ sinφ sin θ ρ cosφ cos θ

sinφ sin θ ρ sinφ cos θ ρ cosφ sin θ

cosφ 0 −ρ sinφ ]]] ,
which has determinant −ρ2 sinφ . Thus, if V = g(U) and f is integrable over V, then

∫
V

f = ∫
U

(f ∘ g)(ρ , θ ,φ)ρ2 sin φ dρ dθ dφ . (4.6.4)

Examples and Remarks 4.6.1. (i) Suppose we are asked to determine the volume of

the ‘ice cream cone’ consisting of the region V bounded by the sphere x2 + y2 +

z2 = R2 and the cone z = √x2 + y2. First of all, notice that in spherical coordinates,

the sphere and cone have equations ρ = R and φ = π/4 respectively (more

generally the equationφ = α , α ∈ (0, π) describes a conewith tip at the origin and
axis the z-axis). This means that V0 = g(U), where U = (0,R) × [0,2π) × [0, π/4),
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so that

volV = volV0 = ∫
g(U)

1 = ∫
U

ρ2 sinφ dρ dφ dθ

=

2π∫
0

π/4∫
0

R∫
0

ρ2 sinφ dρ dφ dθ = 2π
R3

3

π/4∫
0

sinφ dφ

= 2π
R3

3
(1 − √2

2
).

Notice that the volume of the wholeball is obtained by replacing the upper bound

of π/4 in the last integral with π , which results in 4πR3/3.
(ii) More generally, one can compute the volume of the ball Bn(R) of radius R > 0

around0 inℝn as follows:first of all, notice that the diffeomorphism g : ℝn → ℝn,

g(x) = Rx, maps Bn(1) onto Bn(R). Thus, by the change of variables theorem,

vol(Bn(R)) = ∫
Bn(1)

|detDg| = ∫
Bn(1)

Rn = Rn vol(Bn(1)). (4.6.5)

Next, write Bn(1) = {(x,a) | x ∈ B2(1),a ∈ ℝn−2, |a|2 + |x|2 ≤ 1}, and express

B2(1) in polar coordinates to obtain with (4.6.5)

vol(Bn(1)) =

2π∫
0

1∫
0

vol(Bn−2(√1 − r2))r dr dθ

= 2π

1∫
0

(1 − r2)
n−2
2 vol(Bn−2(1))r dr

= 2π vol(Bn−2(1))

1∫
0

(1 − r2)
n−2
2 r dr

=
2π

n
vol(Bn−2(1)).
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An easy induction argument together with (4.6.5) then yields

vol B2n+1(R) =
πn2n+1R2n+1

(2n + 1)(2n − 1) ⋅ ⋅ ⋅ 5 ⋅ 3 , vol B2n(R) =
πnR2n

n! .
(iii) Spherical coordinates in ℝ3 can be extended in exactly the same way to ℝ4:

change the notation forφ toφ1, and define φ2 : ℝ4 \ {0} → [0, π ] by
φ2(x) = arccos(⟨x, e4⟩/|x|), x ∈ ℝ4 \ {0}.

Then x = (π(x), ρ(x) cosφ2(x)), where ρ denotes the distance function to the

origin in ℝ4 and π : ℝ3 × ℝ → ℝ3 the projection. Using 3-dimensional spherical

coordinates for π(x), we obtain

x = (ρ cos θ sin φ1 sin φ2, ρ sin θ sinφ1 sinφ2, ρ cosφ1 sin φ2, ρ cosφ2)(x).
A straightforward if tedious induction argument now yields spherical coordinates

(ρ , θ ,φ1 , . . . ,φn−2) : ℝn \ {0} → ℝn on ℝn with inverse g, where

g(ρ , θ ,φ1, . . . ,φn−2) = ρ(cos θ sinφ1 ⋅ ⋅ ⋅ sinφn−2 , sin θ sin φ1 ⋅ ⋅ ⋅ sinφn−2,
cosφ1 sinφ2 ⋅ ⋅ ⋅ sinφn−2 , . . . , cosφn−2), (4.6.6)

and

| detDg|(ρ , θ ,φ1, . . . ,φn−2) = ρn−1 sinn−2 φn−2 sin
n−3 φn−3 ⋅ ⋅ ⋅ sinφ1. (4.6.7)

This provides an alternative method for deriving the volume of a ball in ℝn, see

Exercise 4.25.

(iv) Recall that for a continuous function f of one variable, the improper integral ∫∞
a

f

is defined to be limx→∞ ∫x
a
f , provided the limit exists, in which case the improper

integral is said to converge. Similarly, ∫a−∞ f = limx→−∞ ∫a
x
f , and if both exist, we

define ∫∞−∞ f = ∫a−∞ f + ∫∞
a

f (notice that the particular value of a is irrelevant).

Consider the function f givenby f (x) = e−x
2

. Even though f has an antiderivative F,

it is well known that there is no formula for F other than F(x) = ∫x
a
e−t

2

for some a ∈ℝ. Nevertheless, we will compute explicitly ∫∞−∞ f . First of all, observe that ∫∞
0

f

exists, because e−x
2 ≤ 1/x2 for large x, and ∫∞

a
1/x2 dx converges. Furthermore,∫∞−∞ f = limR→∞ ∫ℝ−R f since f is even. If SR = [−R, R] × [−R, R], then

( R∫
−R

f)2 = ( R∫
−R

e−x
2

dx)( R∫
−R

e−y
2

dy) = ∫
SR

e−(x
2+y2) dx dy (4.6.8)

by Fubini’s theorem. Let BR denote the disk of radius R centered at the origin.

Observe that if g(x, y) = e−(x
2+y2), then limR→∞ ∫

BR
g = limR→∞ ∫

SR
g in the sense
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that if one exists, then so does the other and the two are equal: indeed, SR/√2 ⊂
BR ⊂ S2R, and |g| ≤ e−R

2

on S2R \ BR. Similarly, |g| ≤ e−R
2/2 on BR \ SR/√2, so that

∫
BR

g − ∫
SR/√2

g ≤ e−R
2/2R2(π − 2) R→∞→ 0,

and ∫
S2R

g − ∫
BR

g ≤ e−R
2

R2(4 − π) R→∞→ 0,
thereby proving the claim. Using polar coordinates,

∫
BR

g =

2π∫
0

R∫
0

e−r
2

r dr dθ = π(1 − e−R
2

),
so that by (4.6.8),

∞∫
−∞

e−x
2

dx = ( lim
R→∞

∫
BR

g)
1
2 = √π .

4.7 Some applications

Before discussing applications of integration to concepts from physics, we observe

that if f : [a, b] → ℝ is integrable, then its integral may be evaluated by considering

only partitions Pn of [a,b] into n subintervals
Inj = [a + (j − 1)

b − a
n

, a + j
b − a

n
]

of equal length l(Inj ) = (b − a)/n. If xnj is any point in Inj , the expression
n∑
j=1

f (xnj ) l(I
n
j )

is called a Riemann sum of f for Pn. Since this sum is sandwiched between L(f , Pn) and
U(f , Pn), and the latter two sequences converge to the integral of f ,

b∫
a

f = lim
n→∞

n∑
j=1

f (xnj ) l(I
n
j ).

The same is of course true for integrals of functions of more than one variable, if one

considers partitions by boxes of the same size. This turns out to be useful in defining

physical concepts as limits of “approximations”.
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4.7.1 Mass

Consider a body occupying a region E in 3-space, made of a not necessarily homoge-

nous material. Its density ρ(r) at an interior point r ∈ E is

ρ(r) = lim
𝜀→0

mass(B𝜀(r))
vol(B𝜀(r))

,
provided the limit exists. We assume that the density is defined everywhere and is,

in fact, continuous. In order to evaluate the mass of the whole body, we begin by

approximating it with Riemann sums. Suppose first that E is a box, and consider a

partition Pn of E by n3 boxes of equal size B1, . . . ,Bn3 , obtained by partitioning each

side of the box into n subintervals. If n is large enough that each Bi is very small, the

continuity of ρ ensures that for any ri ∈ Bi, ρ(ri) vol(Bi) is a fair approximation of the

mass of Bi. Thus,∑n3

i=1 ρ(ri) vol(Bi) is an approximation to the massm of the body, and

it is expected that the approximation gets better as n is larger. Since this is a Riemann

sum of the continuous function ρ for Pn, its limit as n → ∞ equals the integral of ρ

over E, and we define the massm of the body to equal

m = ∫
E

ρ .
This is easily extended to a more general body, by enclosing E inside some box and

integrating ρχE over the box. The above formula is therefore still valid.

4.7.2 Center of mass

When trying to place a two-dimensional rigid object such as a tray on the tip of a thin

vertical rod, a little experimentation shows that there is one and only one point on the

object which, when in contact with the rod, leaves the object balanced. This point is

called the center of mass of the object, and can be defined more generally for a three-

dimensional body. In order to determine this point, the concept of torque is useful.

In physics, the torque τ of a force F is a vector that measures the tendency of

that force to rotate an object about an axis or a point. If the point where the torque is

measured is located at the origin, and the object is at the end of a lever arm at position

r, then the magnitude of the torque is experimentally determined to be proportional

to both the lengthof the lever arm and to themagnitude of the component of the force

orthogonal to the arm. In otherwords, if θ is the anglebetween F and r, themagnitude

of the torque is proportional to |r||F| sin θ . This is also the magnitude of r × F, and the
torque is therefore defined to be

τ = r × F.
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r
θ

F

|F| sin θ

If we now have a discrete system of point masses mi at positions ri, i = 1, . . . , n, then
the center ofmass of the system is that pointRwith respect towhich the total torqueof

gravity on the point masses is zero, so that rotationally speaking, the system behaves

as though all mass were concentrated at the center of mass. Since the torque due to

the i-th object is (ri−R)×−migk, where g is the gravitational constant, the total torque
is ∑i(ri − R) × −migk. Setting this equal to zero implies that the vector ∑i mi(ri − R) is
parallel to k. If this is to hold for any rotation of the system about its center of mass,

then the vector itself must be zero, since this amounts to replacing k by an arbitrary

vector. Thus, the center of mass is located at

R =
1

M
∑
i

miri,
whereM = ∑i mi is the total mass.

The above discussion for discrete mass distributions generalizes to continuous

mass distributions: consider a solid occupying a Jordan-measurable region E in space,

with possibly variable density ρ . Assume first that E is a box, and partition it into

subboxes Bi of equal size, i = 1, . . . , n3. If ri denotes the center of gravity of Bi and Bi
is small enough, we approximate the mass of Bi by ρ(ri)ΔV, where ΔV is the common

volume of the subboxes. Denoting by R the position vector of the center of mass, the

torquedue toBi experienced at the center ofmass is approximately (ri−R)×ρ(ri)ΔVgk.
Eliminating gk as above, we see that the vector ∑i(ri − R)ρ(ri)ΔV must go to zero as

n → ∞. Its three components are limits of Riemann sums, and if R = [ ̄x ȳ ̄z]T ,
then the first component equals ∫

E
(x − x̄)ρ(x, y, z) dx dy dz. Setting this equal to zero

and doing the same with the other components, we obtain for the coordinates of the

center of mass

x̄ =
1

M
∫
E

xρ(x, y, z) dx dy dz,
ȳ =

1

M
∫
E

yρ(x, y, z) dx dy dz,
̄z = 1

M
∫
E

zρ(x, y, z) dx dy dz.
The same argument used in discussing the mass of an object shows that the above

identities hold for any Jordan-measurable body E, not just box-like ones.
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When the object is homogeneous, that is, when the density is constant, the center

of mass is called the centroid.

Example 4.7.1. Let us find the centroid of a solid hemisphere E of radius a. Since the

density is constant, the mass M equals density times the volume of E, and the first

coordinate of the centroid is

̄x = 1

vol(E)
∫
E

x dx dy dz =
3

2πa3
∫
E

x dx dy dz,
with similar formulae for the other coordinates. Assuming the solid is the Northern

hemisphere of a sphere centered at the origin, we would expect, by symmetry, that

x̄ = ȳ = 0. This is indeed the case: using spherical coordinates,

∫
E

x dx dy dz =

2π∫
0

π/2∫
0

a∫
0

(ρ sinφ cos θ ) ⋅ ρ2 sin φ dθ dφ dρ

=

2π∫
0

cos θ dθ

π/2∫
0

sin2 φ dφ

a∫
0

ρ3 dρ

= 0

because the first integral on the second to last line vanishes. A similar calculation

yields ȳ = 0. Finally,

∫
E

z dx dy dz =

2π∫
0

π/2∫
0

a∫
0

(ρ cosφ) ⋅ ρ2 sin φ dθ dφ dρ

= 2π

π/2∫
0

sinφ cosφ dφ

a∫
0

ρ3 dρ = 2π
sin2 φ

2

π/20

ρ4

4

a0
=
πa4

4
,

so that ̄z = (3a)/8.
4.7.3 Moment of inertia

According toNewton’ssecond law, a forcemust be applied to an objectmoving along a

straight line inorder to change its velocity. ThemagnitudeF of the force is proportional

to the object’s acceleration a, and the constant of proportionality is the massm of the

object: F = ma.

A similar law holds for objects that are rotating about an axis. In this case, torque

has to be applied in order to change the object’s angular velocity: recall that if the
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object is at distance r from the axis, and F is the (norm of the) component of the force

tangent to the object’s circular path, then the amount of torquemeasured at the axis

is τ = rF. Now, ifm denotes the object’smass, then its acceleration is a = F/m, and its
angular acceleration is α = a/r = F/(mr). Therefore, the applied torque

τ = (mr2)α

is proportional to the angular acceleration. The constant of proportionality, I = mr2,

is called themoment of inertia of the object about the axis.

The discussion generalizes to discrete mass distributions and continuous ones in

exactly the same way as was done for the center of mass. Thus, the moment of inertia

of a solid body occupying a region E with density ρ about an axis is given by

I = ∫
E

ρr2 , (4.7.1)

where r : E → [0,∞) is the distance function to the axis.

Example 4.7.2. Let us find the moment of inertia of a solid ball with constant density

and radius a about any axis through its center. By symmetry, the ball may be assumed

to be centered at the origin and the axis is the z-axis. Using spherical coordinates,

and denoting by ρ̃ the density of the ball to avoid confusion with the spherical

coordinate ρ ,

I = ∫
{(x,y,z)|x2+y2+z2≤a2}

̃ρ (x2 + y2) dx dy dz

= ̃ρ 2π∫
0

a∫
0

π∫
0

(ρ2 sin2 φ) ⋅ ρ2 sinφ dφ dρ dθ = 2π ̃ρ a∫
0

ρ4 dρ

π∫
0

sin3 φ dφ

= 2π ̃ρ ⋅ a5
5

⋅ 4
3
.

Since ̃ρ is constant, the massm of the ball equals (4/3)πa3 ̃ρ , so themoment of inertia

may also be written as I = (2/5)ma2.
4.8 Exercises

4.1. Prove the last two assertions of Theorem 4.1.2.

4.2. Prove or disprove:
(a) If f is a bounded function on A ⊂ ℝn and |f | is integrable on A, then so is f .
(b) If U is open in ℝn and f : U → ℝ is continuous at some p ∈ U, then f is integrable

on Br(p) for small enough r > 0.

(c) If A ⊂ ℝn has measure zero, then A is bounded.

(d) If A ⊂ ℝn has measure zero, then the boundary of A has measure zero.
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4.3. Let A be a compact set of measure zero in ℝn. Show that if g : ℝn → ℝk is

continuous, then g(A) has measure zero inℝk.

4.4. It was shown in Remark 4.2.2 that if A ⊂ ℝn is Jordan-measurable and has mea-

sure zero, then it has volume zero. Show that the converse is also true, so that for

Jordan-measurable sets, the two concepts are equivalent.

4.5. Show that any compact submanifold of ℝn has measure zero inℝn.

4.6. A ⊂ ℝn is said to have content zero if for any 𝜀 > 0, there exists a finite cover{B1, . . . ,Bk} of A by boxes with∑i vol(Bi) < 𝜀.
(a) Show that if A is compact and has measure zero, then it has content zero.

(b) Give examples of sets of measure zero that do not have content zero.

4.7. Let f : U → ℝn be a function which is integrable over some box A = Πn
i=1[ai, bi] in

U. For each positive integer k, consider the partition Pk of A obtained by partitioning

each [ai, bi] into k intervals of equal length, and choose some point aB in each subbox
B ∈ Pk. Prove that

lim
k→∞

∑
B∈Pk

f (aB) vol(B) = ∫
A

f .
4.8. Prove that if U is a bounded open set in ℝn, then there exists a sequence of

smooth functions fk : ℝn → ℝ such that

lim
k→∞

∫
Rn

fk = vol(U).
4.9. Given f : [a, b] → ℝ, define g : [a, b] × [c, d] → ℝ by g(x, y) = f (x). Using only

the definition of integral, show that g is integrable if and only f is, and if it is, then∫
[a,b]×[c,d] g = (d − c) ∫

[a,b] f .

4.10. Let U be an open set in ℝn, and suppose f : U → ℝ is integrable on U and

continuous at some p ∈ U.

(a) If Cr(p) denotes the cube

[u1(p) − r/2, u1(p) + r/2] × ⋅ ⋅ ⋅ × [un(p) − r/2, un(p) + r/2]
with sides of length r centered at p, show that

lim
r→0+

1

vol(Cr(p))
∫

Cr (p)

f = f (p).
(b) Prove that

lim
r→0+

1

vol(Br(p))
∫

Br (p)

f = f (p).
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4.11. Let A ⊂ ℝn be compact, connected, and Jordan-measurable. If f : A → ℝ is

continuous, show that there exists some a ∈ A such that

∫
A

f = f (a) ⋅ vol(A).
4.12. Let f : [a, b] × [c, d] → ℝ be continuous.

(a) If g(x, t) = ∫t
c
f (x, y) dy, find D1G and D2G.

(b) If h(s, t) = ∫s
a
g(x, t) dx = ∫s

a
(∫t
c
f (x, y) dy) dx, find D12h.

4.13. Let f : [0, 1] × [0, 1] → ℝ be continuous. Prove that

1∫
0

(

x∫
0

f (x, y) dy) dx = 1∫
0

(

1∫
y

f (x, y) dx) dy.
4.14. Let A denote a Jordan-measurable set in ℝn, and B = A × [0,1] ⊂ ℝn+1. Given

u ∈ ℝn,define

Bu = {a + t(u + en+1) | a ∈ A, t ∈ [0,1]} ⊂ ℝn+1.
Thus, B = B0 is a right solid cylinder over A of height 1, and Bu is a slanted cylinder

over A of the same height. Prove that vol Bu = vol B for any u ∈ ℝn.

4.15. (a) Define f : (0, 1) → ℝ by

f (x) = −n, x ∈ (1 − 1

n
,1 − 1

n + 1
).

Show that limx→1 ∫(0,x) f exists, but ∫(0,1) f does not.
(b) Prove that if f : (0, 1) → ℝ is continuous, then limx→1 ∫(0,x) f exists if and only if∫

(0,1) f does, and if they do exist, then they coincide. Give an example of a contin-

uous f : (0, 1) → ℝ that is not integrable over (0,1).
4.16. Define f : [0,1] × [0, 1] → ℝ by

f (x, y) = {{{1 if x is rational,

y otherwise.

(a) Show that ∫1
0
∫1
0
f (x, y) dy dx exists, and find it.

(b) Prove that ∫1
0
∫1
0
f (x, y) dx dy does not exist.

(c) Show that f is not integrable over its domain.

4.17. Explainwhyonemayassume that the Jacobiandeterminant of g is nowhere zero
in the proof of the change of variables theorem.

4.18. Prove that Euclidean motions preserve volume; i.e., if f : ℝn → ℝn is a Eu-

clidean motion, and A ⊂ ℝn is Jordan-measurable, then vol(f (A)) = vol(A).
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4.19. Let f : ℝn → ℝn be continuously differentiable.

(a) Suppose that | detDf (p)| > 1 for some p. Show that vol(f (Br(p))) > vol(Br(p)) for
sufficiently small r > 0.

(b) More generally, prove that if |detDf (p)| ̸= 0, then

|detDf (p)| = lim
r→0+

vol(f (Br (p)))
vol(Br(p))

.
4.20. Evaluate ∫

A
f , if f (x, y) = cos x

x+y
and A ⊂ ℝ2 is the region inside the triangle

with vertices (0,0), (0, 1), and (1, 0).Hint:Use the change of variables u = x, v = x + y.

4.21. The set of points (x, y) in the plane satisfying (x2 + y2 − y)2 −x2 − y2 = 0 is called

a cardioid. Sketch this curve and determine the area of the region it encloses.

4.22. Useanappropriate changeof variables to evaluate∫
A
f , if f (x, y) = sin(2x2 + y2),

and A = {(x, y) ∈ ℝ2 | y ≥ 0, 2x2 + y2 ≤ 2}.
4.23. Evaluate once again the volume of the cone from Examples 4.6.1 (i), but using

spherical coordinates rather than cylindrical ones.

4.24. Determine the volume of the region in ℝ3 that is bounded by the paraboloid

z = x2 + y2 and the sphere x2 + y2 + z2 = 2.

4.25. (a) Use induction and integration by parts to show that

π∫
0

sin2n+1 x dx =
2n+1n!

(2n + 1)(2n − 1) ⋅ ⋅ ⋅ 5 ⋅ 3 ,
π∫
0

sin2n x dx = π
(2n − 1)(2n − 3) ⋅ ⋅ ⋅ 5 ⋅ 3

2nn! .
(b) Use (4.6.7) to prove that the volume of a ball Bn(R) of radius R inℝn is given by

vol B2n+1(R) =
πn2n+1R2n+1

(2n + 1)(2n − 1) ⋅ ⋅ ⋅ 5 ⋅ 3 , vol B2n(R) =
πnR2n

n! .
4.26. Let ai > 0, 1 ≤ i ≤ n. Use an appropriate change of variables to evaluate the

volume of the region in ℝn bounded by the ellipsoid

{(x1, . . . , xn) ∈ ℝn | n∑
i=1

x2i
a2
i

= 1}.
4.27. The gamma function is defined by

Γ (x) =

∞∫
0

tx−1e−t dt, 0 < x < ∞.
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(a) Show that this improper integral converges for all x > 0. (Notice that if x < 1, the

integral is also improper at 0; i.e., it must be shown that

a∫
0

tx−1e−t dt := lim
𝜀→0+

a∫
𝜀
tx−1e−t dt

converges for some and hence all a > 0).

(b) Show that Γ (1) = 1.

(c) Use the change of variables t = u2 and Examples and Remarks 4.6.1 (iv) to prove

that Γ (1/2) = √π .
(d) Use integration by parts to show that Γ (x + 1) = xΓ (x), and deduce that Γ (n) =

(n − 1)! for all n ∈ ℕ.

(e) In Examples and Remarks 4.6.1 (ii), a formula was derived for the volume

vol(Bn(R)) of a ball of radius R in ℝn. There were actually two formulas, one

for even n and the other for odd n. Prove that they can be unified into one by

means of the gamma function:

vol(Bn(R) =
2Rnπn/2

nΓ (n/2) .
4.28. (a) Let f : ℝ → ℝ be given by

f (x) =
{{{1 if |x| ≤ 1,

1
x2

if |x| ≥ 1.
Show that limr→∞ ∫r−r f exists.

(b) Let g : ℝ2 → ℝ be given by

g(x) =
{{{1 if |x| ≤ 1,

1
|x|2 if |x| ≥ 1.

Show that limr→∞ ∫
[−r,r]×[−r,r] g does not exist.

4.29. Reprove Theorem 2.3.1 by using the methods from this chapter; i.e., show that

if f ,D2f : [a, b] × [c, d] → ℝ are continuous, then the function

φ : [c, d] → ℝ,
y → b∫

a

f (x, y) dx
is differentiable on (c, d) and

φ (y0) =

b∫
a

D2f (x, y0) dx, y0 ∈ (c, d).
Hint: φ(y) = ∫b

a
( ∫y

c
D2f (x, t) dt + f (x, c)) dx. Notice also that the hypotheses may be

somewhat weakened.
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4.30. This exercise uses Sard’s theorem to show that any smooth map f : ℝn ⊃ U →ℝm can be “approximated” by an immersion if m ≥ 2n; more specifically, given any𝜀 > 0, there exists an m × n matrix A = (aij) with |aij| < 𝜀 for all i and j, such that the

map

U → ℝm

x → f (x) + Ax

is an immersion. Recall from Exercise 3.20 that the collection Mm,n(k) of all m × n

matrices of rank k is a manifold of dimension k(m + n − k). Define

gk : U ×Mm,n(k) → Mm,n
(u,B) → B − [Df (u)].

(a) Show that ifm ≥ 2n and k < n, then the dimension of the domain of gk is less that
that of its image.Hint: the function t → t(m + n − t) is increasing if t < n < m.

(b) Show that the image of gk has measure zero under the assumptions from part (a),

and prove the claim made at the beginning of the exercise.

(c) Show that if f : ℝn ⊃ U → ℝm is smooth, with U bounded and m ≥ 2n, then for

any 𝜀 > 0 there exists an immersion g : U → ℝm such that |g(x) − f (x)| < 𝜀 for all
x ∈ U.

This result can be used in proving the so-called “Whitney imbedding theorem”

which states that any n-dimensional manifold M can be imbedded in ℝ2n+1 (see

for example [14]); i.e., there exists an injective map f : M → ℝ2n+1 of maximal

rank everywhere with continuous inverse. In particular f (M) is a submanifold ofℝ2n+1 (any parametrization h of M generates a parametrization of f ∘ h of f (M))

which is diffeomorphic toM (via f ), so thatM itself maybe considered tobe sitting

inside ℝ2n+1 regardless of the dimension of the original Euclidean space it is a

submanifold of.

It should be noted that manifolds can be defined as abstract sets that are not

contained in Euclidean space. Whitney’s theorem asserts that our definition is

equivalent to that one.





5 Differential Forms
Now that we are familiar with integration on Euclidean space, we would like to trans-

late this to manifolds. Functions will be replaced by more exotic objects called dif-

ferential forms. Their main advantage lies in that they have the change of variables

formula built-in, once the concept of orientation is introduced. We begin by recalling

the more general concept of tensor field.

5.1 Tensors and tensor fields

Definition 5.1.1. Let V be a vector space. Given k ∈ ℕ, a k-tensor on V is a multilinear

map T : Vk → ℝ, where Vk denotes the k-fold Cartesian product of V with itself.

The collection Tk(V) of all k-tensors on V is clearly a vector space under the usual

addition of maps and scalar multiplication. For example, T1(V) is just the dual space
V∗. By convention, T0(V) is defined to beℝ. An inner product on V is a 2-tensor (with

some additional properties).

Remark 5.1.1. k-tensors are actually a special case of what we defined to be tensors in
Chapter 3; i.e., what we call ak-tensor here is just a tensor of order (0,k) in the previous
terminology.We will only deal with this particular subset in this chapter.

Definition 5.1.2. The tensor product of T ∈ Tk(V) with T̃ ∈ Tl(V) is the (k + l)-tensor

T ⊗ T̃ given by

(T ⊗ T̃)(v1 , . . . , vk+l) = T(v1, . . . , vk) ⋅ T̃(vk+1, . . . , vk+l), vi ∈ V .
The followingproperties are easy consequences of thedefinition, and their verification

is left to the reader: for tensors Ti, a ∈ ℝ,
(T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3);
T1 ⊗ (T2 + T3) = T1 ⊗ T2 + T1 ⊗ T3;
(T1 + T2) ⊗ T3 = T1 ⊗ T3 + T2 ⊗ T3;

a(T1 ⊗ T2) = (aT1) ⊗ T2 = T1 ⊗ (aT2),
whereof course the tensors being added in the secondand third identities are assumed

to have the same order. In view of the first property, either side will be denoted T1 ⊗
T2 ⊗T3. Observe, though, that the tensor product is, in general, not commutative; i.e.,
T1 ⊗ T2 need not equal T2 ⊗ T1.

Tensor products yield explicit bases for the spaces Tk(V):
Theorem 5.1.1. Let v1, . . . , vn denote a basis of V. If α1 , . . . , αn ∈ V∗ = T1(V) is the dual
basis (i.e., α i(vj) = δij), then{αi1 ⊗ ⋅ ⋅ ⋅ ⊗ αik | 1 ≤ i1, . . . , ik ≤ n}
is a basis of Tk(V), which therefore has dimension nk.
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Proof. Set Ti1⋅⋅⋅ik = T(vi1 , . . . , vik ) ∈ ℝ. We claim that

T =
n∑

i1 ,...,ik=1
Ti1⋅⋅⋅ik α

i1 ⊗ ⋅ ⋅ ⋅ ⊗ αik ,
which will show that the set in the statement indeed spans Tk(V). In order to establish
the claim, it suffices to check that both sides agree when evaluated on basis elements,

since both are multilinear: for if wi = ∑j aijvj andM is any k-tensor, then

M(w1 , . . . ,wk) = M(
n∑

j1=1

a1j1vj1 , . . . , n∑
jk=1

akjkvjk )

=
n∑

j1 ,...,jk=1
a1j1 ⋅ ⋅ ⋅ akjkM(vj1 , . . . , vjk ),

so that M is entirely determined by what it does to basis vectors. Now, αi(vj) = δij, so

that

n∑
i1 ,...,ik=1

Ti1⋅⋅⋅ik α
i1 ⊗ ⋅ ⋅ ⋅ ⊗ αik (vj1 , . . . , vjk )

=
n∑

i1 ,...,ik=1
Ti1⋅⋅⋅ikα

i1 (vj1 ) ⋅ ⋅ ⋅ αik (vjk ) = Tj1 ⋅⋅⋅jk

= T(vj1 , . . . , vjk ),
thereby establishing the claim. Linear independence is similar: suppose that∑ ai1 ⋅⋅⋅ik α

i1 ⊗ ⋅ ⋅ ⋅ ⊗ αik = 0. As in the last calculation, given any j1, . . . , jk ∈ {1, . . . , n},
applying both sides to vj1 , . . . , vjk yields aj1 ⋅⋅⋅jk = 0. This concludes the proof of the

theorem.

As in Chapter 3, we define a k-tensor field on amanifoldMn to be a map T that assigns

to each p ∈ M a k-tensorT(p) ∈ Tk(Mp) which is smooth in the sense that for any vector

fields X1, . . . ,Xk onM, the function T(X1, . . . ,Xk) which assigns to p ∈ M the number

T(p)(X1(p), . . . ,Xk(p)) is smooth in the usual sense. If (U, x) is a local chart ofM, then

the restriction of T to U is smooth if and only if the functions

Ti1⋅⋅⋅ik := T(
𝜕𝜕xi1 , . . . , 𝜕𝜕xik ) : U → ℝ, 1 ≤ i1, . . . , ik ≤ n

are differentiable . In fact, they must by definition be differentiable if T is smooth.

Conversely, if these functions are differentiable, and xi denotes as usual ui ∘ x, then
T|U =

n∑
i1 ,...,ik=1

Ti1⋅⋅⋅ik dx
i1 ⊗ ⋅ ⋅ ⋅ ⊗ dxik

is smooth because each dxi is: recall that, given any vector field X on U, X =∑i dx
i(X)𝜕/𝜕xi (see Exercise 3.15), so that dxi(X) is indeed a differentiable function

on U.
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The collection of all k-tensor fields onM is clearly a vector space, denoted Tk(M).

Definition 5.1.3. Let f : M → N be a differentiable map, T a k-tensor field on N, k > 0.

The pullback of T by f is the k-tensor field f ∗T onM given by

(f∗T)(p)(v1 , . . . , vk) = T(f (p))(f∗v1, . . . , f∗vk), p ∈ M, vi ∈ Mp.
A zero-tensor field on N is just a function h : N → ℝ. In this case, we define f∗h to
equal h ∘ f .

The followingproperties of the pullback are easily verified and left as an exercise:

Proposition 5.1.1. Let f : M → N be a differentiablemap betweenmanifoldsM and N,

S, T k-tensor fields on N, R an l-tensor field on N, and h : N → ℝ a function. Then

(1) f ∗(aS + bT) = af ∗S + bf∗T, a, b ∈ ℝ,
(2) f∗(R ⊗ S) = f∗R ⊗ f∗S,
(3) f∗(hT) = (h ∘ f ) f∗T.
Example 5.1.1. A Riemannian metric on M is a 2-tensor field g on M such that g(p)
is an inner product on Mp for all p ∈ M. The standard Riemannian metric on ℝn is

g = ∑i du
i ⊗ dui . This is the inner product we’ve been using all along on each tangent

space, since by definition g(Di,Dj) = δij, so that {Di | i = 1, . . . , n} is an orthonormal

basis when evaluated at any point. IfM ⊂ ℝn, the standard Riemannianmetric onM is𝚤∗g, where 𝚤 : M → ℝn is the inclusion map and g is the standard Riemannian metric

on Euclidean space. Again, it is by definition the restriction to each Mp of the inner

product on ℝn
p, and coincides with the first fundamental tensor field onM defined in

Chapter 3.

Remark 5.1.2. In physics, tensors are usually defined in a more convoluted way. For

(relative) simplicity, we only discuss Cartesian tensors; i.e., tensors defined on Eu-

clidean space ℝn. Consider two ordered bases vi and wj ofℝn, and let T be a tensor of

orderk onℝn in our senseof theword.DenotebyTi1 ...ik = T(vi1 , . . . , vik ) the components

ofT in the first basis, and by T̃j1...jk = T(wj1
, . . . ,wjk

) the components of the same tensor

in the second one. If L = [Lij] is the change of basis matrix, then

T̃j1...jk = T(wj1
, . . . ,wjk

) = T(∑
i1

Lj1 i1vi1 , . . . , ∑
ik

Ljkikvik )

= ∑
i1 ,i2,...,ik

Lj1 i1Lj2 i2 ⋅ ⋅ ⋅ Ljk ikT(vi1 , . . . , vik ),
so that

T̃j1...jk = ∑
i1 ,i2 ,...,ik

Lj1 i1Lj2 i2 ⋅ ⋅ ⋅ Ljkik Ti1 ...ik . (5.1.1)

A Cartesian tensor of order k is then traditionally defined as an “object” determined

by nk components in any given “coordinate system” (meaning basis), such that com-

ponents in different coordinate systems are related by (5.1.1). Needless to say, such a

condition can be quite difficult to check in a given instance.
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5.2 Alternating tensors and forms

Recall from Chapter 1 that a k-tensor T on a vector space V is said to be alternating or

skew-symmetric if

T(v1, . . . , vi, . . . , vj, . . . , vk) = −T(v1 , . . . , vj, . . . , vi, . . . , vk),
for all 1 ≤ i ̸= j ≤ k, vl ∈ V, l = 1, . . . , k, and symmetric if the above equation holds

with the minus sign removed. It is easily seen that any 2-tensor T can be written as a

sum Ts + Ta of a symmetric tensor Ts and an alternating one Ta: set

Ts(x, y) = 1

2
((T(x, y) + T(y, x)), Ta(x, y) = 1

2
(T(x, y) − T(y, x)),

for x, y ∈ V. Both symmetric and alternating parts can be generalized to k-tensors for

arbitrary k. We only outline the latter, since we are particularly interested in alternat-

ing tensors for now: given a k-tensor T, define a new tensor Ta by

Ta(v1, . . . , vk) = 1

k! ∑
σ∈Sk

𝜀(σ )T(vσ(1) , . . . , vσ(k)), v1, . . . , vk ∈ V ,
with the terminology fromChapter 1: Sk denotes the set of permutations on k elements,

and 𝜀(σ ) is the sign of the permutation σ . Notice that for k = 2, the formula coincides

with the 2-tensor Ta defined earlier. We claim that Ta is alternating. To see this, let τ

denote the transposition (i, j). Since Sk = {σ ∘ τ | σ ∈ Sk},
Ta(v1 , . . . , vj, . . . , vi, . . . , vk) = Ta(vτ (1), . . . , vτ (i), . . . , vτ (j), . . . , vτ (k))

=
1

k! ∑
σ∈Sk

𝜀(σ )T(v(σ∘τ )(1) , . . . , v(σ∘τ )(k))
= − 1

k! ∑
σ∈Sk

𝜀(σ )𝜀(τ)T(v(σ∘τ )(1) , . . . , v(σ∘τ )(k))
= − 1

k! ∑
σ∈Sk

𝜀(σ ∘ τ)T(v(σ∘τ )(1) , . . . , v(σ∘τ )(k))
= − 1

k! ∑
σ∈Sk

𝜀(σ )T(vσ(1) , . . . , vσ(k))
= −Ta(v1 , . . . , vi, . . . , vj, . . . , vk).

The collection of all alternating k-tensors on V is a vector space denoted Λk(V). Its

elements are called k-forms. The followingproperties are easily proven, and their ver-

ification is left to the reader:

Proposition 5.2.1. (1) If α ∈ Λk(V), then αa = α. In particular, for any tensor T on V,

(Ta)a = Ta;

(2) The map Tk(V) → Λk(V) which sends T to Ta is linear; i.e., (S + T)a = Sa + Ta,

(cT)a = cTa for all S, T ∈ Tk(V), c ∈ ℝ;
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(3)

(S ⊗ (T1 + T2))a = (S ⊗ T1)a + (S ⊗ T2)a,
((T1 + T2) ⊗ S)a = (T1 ⊗ S)a + (T2 ⊗ S)a,

c(S ⊗ T)a = (cS ⊗ T)a = (S ⊗ cT)a

for all T, T1, T2 ∈ Tk(V), S ∈ Tl(V), c ∈ ℝ;
Since the tensor product of two forms is, in general, no longer alternating, we modify

it as follows:

Definition 5.2.1. Given α ∈ Λk(V), β ∈ Λl(V), their wedge product or exterior product

is the (k + l)-form α ∧ β ∈ Λk+l(V) given by

α ∧ β =
(k + l)!
k! l! (α ⊗ β )a .

The reason for including the factorial term in the definition of the wedge product will

be revealed shortly. Notice that if α , α1 , α2 ∈ Λk(V), β ∈ Λl(V), and c ∈ ℝ, then
(α1 + α2) ∧ β = α1 ∧ β + α2 ∧ β ,
β ∧ (α1 + α2) = β ∧ α1 + β ∧ α2 ,

c(α ∧ β ) = (cα) ∧ β = α ∧ (cβ ).
by the third statement in Proposition 5.2.1. It is also true that (α ∧ β ) ∧ 𝛾 = α ∧ (β ∧ 𝛾),
but a fewmore properties are needed in order to prove this:

Lemma 5.2.1. For α1 , . . . , αk ∈ Λ1(V) = T1(V), σ ∈ Sk,

(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a =
1

k! ∑
σ∈Sk

𝜀(σ )ασ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ(k),
(ασ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ(k))a = 𝜀(σ )(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a ,

(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a = ((α1 ⊗ ⋅ ⋅ ⋅ αk−l)a ⊗ αk−l+1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a

= (α1 ⊗ ⋅ ⋅ ⋅ αk−l ⊗ (αk−l+1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a)a .
In particular, (Sa ⊗ T)a = (S ⊗ Ta)a = (S ⊗ T)a for all S ∈ Tk(V), T ∈ Tl(V).

Proof. For the first identity, observe that

(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a(v1 , . . . , vk) = 1

k! ∑
σ∈Sk

𝜀(σ )α1(vσ(1)) ⋅ ⋅ ⋅ αk(vσ(k))

=
1

k! ∑
σ∈Sk

𝜀(σ )(ασ−1 (1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ−1(k))(v1 , . . . , vk).
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Furthermore, a permutation has the same sign as its inverse, so that

(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a =
1

k! ∑
σ∈Sk

𝜀(σ )ασ−1 (1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ−1(k)

=
1

k! ∑
σ−1∈Sk

𝜀(σ−1)ασ−1 (1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ−1(k)

=
1

k! ∑
σ∈Sk

𝜀(σ )ασ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ(k).
For the second identity, we have by the one just proved,

(ασ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ(k))a =
1

k! ∑
τ∈Sk

𝜀(τ)α (τ ∘σ)(1) ⊗ ⋅ ⋅ ⋅ ⊗ α (τ ∘σ)(k)

= 𝜀(σ ) 1
k! ∑

τ∈Sk
𝜀(τ ∘ σ )α (τ ∘σ)(1) ⊗ ⋅ ⋅ ⋅ ⊗ α (τ ∘σ)(k)

= 𝜀(σ ) 1
k! ∑

τ ∘σ∈Sk
𝜀(τ ∘ σ )α (τ ∘σ)(1) ⊗ ⋅ ⋅ ⋅ ⊗ α (τ ∘σ)(k)

= 𝜀(σ )(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk)a .
The two equalities in the third identity are proved in the same way, so we only argue

the first one:

[(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk−l)a ⊗ αk−l+1 ⊗ ⋅ ⋅ ⋅ ⊗ αl]a

=
1

(k − l)! ∑
σ∈Sk−l

𝜀(σ )(ασ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ(k−l) ⊗ αk−l+1 ⊗ ⋅ ⋅ ⋅ ⊗ αl)a

=
1

(k − l)! ∑
σ∈Sk−l

𝜀2(σ )(α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk+l)a

= (α1 ⊗ ⋅ ⋅ ⋅ ⊗ αk+l)a ,
using the second identity on the third line. Finally, the last statement follows from

the third identity, since the map T → Ta is linear and each k-tensor T is a linear

combination of basis elements of the form αi1 ⊗ ⋅ ⋅ ⋅ ⊗ αik by Theorem 5.1.1.

The final statement in the above Lemma also implies that the wedge product is asso-

ciative, meaning:

Theorem 5.2.1. If α ∈ Λk(V), β ∈ Λl(V), and 𝛾 ∈ Λm(V), then

(α ∧ β ) ∧ 𝛾 = α ∧ (β ∧ 𝛾) = (k + l + m)!
k! l!m! (α ⊗ β ⊗ 𝛾)a.



5.2 Alternating tensors and forms | 227

Proof.

(α ∧ β ) ∧ 𝛾 = (k + l + m)!
(k + l)!m! ((α ∧ β ) ⊗ 𝛾)a

=
(k + l + m)!
(k + l)!m! (k + l)!

k! l! ((α ⊗ β )a ⊗ 𝛾)a
=
(k + l + m)!
k! l!m! (α ⊗ β ⊗ 𝛾)a .

Asimilar argument shows that α∧(β ∧𝛾) also equals the last term in theabove identity.

In view of theabove theorem, wewriteα∧β ∧𝛾 for (α ∧β )∧𝛾 or α∧(β ∧𝛾), and similarly

for products of higher order. Notice that the first two identities from Lemma 5.2.1,

together with associativity of the wedge product, immediately imply

α1 ∧ ⋅ ⋅ ⋅ ∧ αk = ∑
σ∈Sk

𝜀(σ ) ασ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ασ(k)

ασ(1) ∧ ⋅ ⋅ ⋅ ∧ ασ(k) = 𝜀(σ ) α1 ∧ ⋅ ⋅ ⋅ ∧ αk

(5.2.1)

for α1, . . . , αk ∈ Λ1(V), σ ∈ Sk. The second identity, in particular, lets us identify a

basis of Λk(V):

Theorem 5.2.2. Let v1 , . . . , vn denote a basis of V, and α1 , . . . , αn ∈ Λ1(V) the dual

basis. Then the set {αi1 ∧ ⋅ ⋅ ⋅ ∧ αik | 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n}
is a basis of Λk(V), which therefore has dimension (nk), where(n

k
) =

n!
k!(n − k)! = n(n − 1) ⋅ ⋅ ⋅ (n − k + 1)

k! .
Proof. If α ∈ Λk(V), then α is a k-tensor, and by Theorem 5.1.1,

α =
n∑

i1 ,...,ik=1
αi1 ...ik α

i1 ⊗ ⋅ ⋅ ⋅ ⊗ αik .
Thus,

α = αa =
n∑

j1,...,jk=1
αj1 ...jk (α

j1 ⊗ ⋅ ⋅ ⋅ ⊗ αjk )a

=
1

k! n∑
j1 ,...,jk=1

αj1 ...jkα
j1 ∧ ⋅ ⋅ ⋅ ∧ αjk .

Let i1 < i2 < ⋅ ⋅ ⋅ < ik denote j1, . . . , jk written in increasing order. Then αj1 ∧ ⋅ ⋅ ⋅ ∧ αjk =±αi1 ∧⋅ ⋅ ⋅∧αik by (5.2.1), and the collection in the statement of the theorem spans Λk(V).

To see that it is linearly independent, suppose that∑
1≤j1<⋅⋅⋅<jk≤n

αj1 ...jk α
j1 ∧ ⋅ ⋅ ⋅ ∧ αjk = 0. (5.2.2)
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Observe that if i1 < ⋅ ⋅ ⋅ < ik, then

αj1 ∧ ⋅ ⋅ ⋅ ∧ αjk (vi1 , . . . , vik ) = ∑
σ∈Sk

𝜀(σ )αj1 (vσ(i1 )) ⋅ ⋅ ⋅ αjk (vσ(ik )), (5.2.3)

where Sk denotes all the permutations of {i1, . . . , ik}. Since αjl (vil ) = δiljl , the only

nonzero terms in this sum are those for which σ (il) = jl, l = 1, . . . , k, in which case

they equal 𝜀(σ ). In particular, as sets, {i1, . . . , ik} = {σ (i1), . . . , σ (ik)} = {j1, . . . , jk}. But
i1 < ⋅ ⋅ ⋅ < ik and j1 < ⋅ ⋅ ⋅ < jk, so all terms vanish except when i1 = j1 , . . . , ik = jk,

and the sum then equals 1. Thus, for any i1 < ⋅ ⋅ ⋅ < ik, applying both sides of (5.2.2) to

vi1 , . . . , vik yields
0 = ∑

1≤j1<⋅⋅⋅<jk≤n
αj1 ...jk α

j1 ∧ ⋅ ⋅ ⋅ ∧ αjk (vi1 , . . . , vik ) = αi1 ...ik ,
which establishes linear independence.

To conclude the proof, it remains to show that the dimension is (n
k
) as claimed. The

size of the basis is the number of distinct k elements chosen from a set of n elements

written in increasing order. Now the number of distinct ordered sets of k elements is

n(n − 1) ⋅ ⋅ ⋅ (n − k + 1), since there are n choices for the first one, n − 1 for the second,
and so on. Since there are k! ways of ordering a given set of k elements, the claim

follows.

The theorem says in particular that Λn(V), where n is the dimension of V, is one-

dimensional. This we already knew of course from Theorem 1.3.1: on ℝn, any n-form

is amultiple of the determinant, so Λn(ℝn) is one-dimensional. A choice of basis for V

induces an isomorphism ofV withℝn, which in turn induces one ofΛn(V) withΛn(ℝn).

Observe also that if {𝜀i} is the basis ofℝn∗ dual to {ei}, then𝜀1 ∧ ⋅ ⋅ ⋅ ∧ 𝜀n = det . (5.2.4)

Indeed, the form on the left equals c times det for some c ∈ ℝ. Thus,𝜀1 ∧ ⋅ ⋅ ⋅ ∧ 𝜀n(e1, . . . , en) = c ⋅ det(e1, . . . , en) = c.
But by (5.2.3), the term on the left equals 1. The factorials in the definition of the wedge

product were chosen in order for (5.2.4) to hold.

Definition 5.2.2. An orientation on an n-dimensional vector space V is a choice of a

nonzero ω ∈ Λn(V). Given any two nonzero ω1,ω2 ∈ Λn(V),ω1 = c ⋅ω2 for some c ̸= 0.

If c > 0, we sayω1 and ω2 determine the same orientation. Otherwise, they determine

opposite orientations.

Clearly, there are only two possible orientations on a given vector space. The standard

orientationonℝn is theone induced by the determinant. In an orientedvector spaceV ,

ifω ∈ Λn(V) induces the given orientation, an ordered basis (v1 , . . . , vn) ofV (i.e., an n-

tuple consisting of basis elements) is said to be positivelyoriented if ω(v1 , . . . , vn) > 0.
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The following result deals with decomposableelements of Λk(V); i.e., elements of

the form α1 ∧ ⋅ ⋅ ⋅ ∧ αk, where αi ∈ V∗ (as opposed to a sum of such terms):

Corollary 5.2.1. Let V be an n-dimensional vector space, vi ∈ V, αj ∈ V∗, 1 ≤ i, j ≤ k ≤
n. Then

(1) (α1 ∧ ⋅ ⋅ ⋅ ∧ αk)(v1 , . . . , vk) = det(αi(vj));
(2) α1 ∧ ⋅ ⋅ ⋅ ∧ αk ̸= 0 if and only if α1, . . . , αk are linearly independent;

(3) There is a bijective correspondence between one-dimensional decomposable sub-

spaces of Λk(V) and k-dimensional subspaces of V.

Proof. For (1), (5.2.1) implies that

(α1 ∧ ⋅ ⋅ ⋅ ∧ αk)(v1 , . . . , vk) = ∑
σ∈Sk

𝜀(σ )ασ(1) (v1) ⋅ ⋅ ⋅ ασ(k)(vk) = det(αi(vj)

by definition of the determinant.

For (2), if α1 , . . . , αk are linearly dependent, then one of them, say α1, is a linear com-

bination∑ cjα
j of the others. But then

α1 ∧ ⋅ ⋅ ⋅ ∧ αk =
k∑
j=2

cjα
j ∧ α2 ∧ ⋅ ⋅ ⋅ ∧ αk = 0

since αj appears twice in each term inside the summation. On the other hand, if they

are linearly independent, then they can be extended to a basis of V∗, and by Theo-

rem 5.2.2, α1 ∧ ⋅ ⋅ ⋅ ∧ αk is one of the corresponding basis elements of Λk(V). Being a

basis element, it cannot be zero.

For the third statement, the correspondence

span{α1 ∧ ⋅ ⋅ ⋅ ∧ αk} ←→ span{α1, . . . , αk}
where α1, . . . , αk are linearly independent in V∗ is a bijective one between one-

dimensional decomposable subspaces of Λk(V) and k-dimensional subspaces of V∗

by (2). The claim follows in view of the isomorphism between a space and its dual.

Let us return for a moment to the topic of orientation. Suppose that in addition to

an orientation, V is endowed with an inner product. If (v1 , . . . , vn) is a positively ori-
ented orthonormal basis of V, then there exists a unique n-form α on V such that

α(v1 , . . . , vn) = 1; in fact, α = α1 ∧ ⋅ ⋅ ⋅ ∧ αn, where α1, . . . , αn is the basis of V∗ dual
to v1 , . . . , vn. α is called the volume form of V. The reason we used a definite rather

than indefinite article for volume form is because α(w1 , . . . ,wn) = 1 for any positively

oriented orthonormal basis (w1, . . . ,wn) of V, whichmeans that such an α is unique:

Theorem 5.2.3. Let V be an n-dimensional vector space.

(1) If v1 , . . . , vn is a basis of V, and α ∈ Λn(V), then

α(w1 , . . . ,wn) = det(aij)α(v1 , . . . , vn),
for any wi = ∑j aijvj ∈ V.
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(2) Suppose that in addition, V is oriented and endowed with an inner product. If ω is

the corresponding volume form, then for any positively oriented orthonormal basis

w1, . . . ,wn of V, ω (w1 , . . . ,wn) = 1.

Proof. Define an n-form β on ℝn by

β ([[[[
b11
...

bn1

]]]] , . . . , [[[[
b1n
...

bnn

]]]]) = α(∑
i

bi1vi, . . . ,∑
i

binvi),
for bij ∈ ℝ, 1 ≤ i, j ≤ n. By Theorem 1.3.1, β = c ⋅ det for some c ∈ ℝ, and

c = c ⋅ det(e1, . . . , en) = β (e1 , . . . , en) = α(v1 , . . . , vn).
Thus,

α(w1 , . . . ,wn) = β ([[[[
a11
...

an1

]]]] , . . . , [[[[
a1n
...

ann

]]]]) = det(aij)α(v1 , . . . , vn),
which establishes the first claim. For the second one, let ω = ω1 ∧ ⋅ ⋅ ⋅ ∧ ωn, and

B = (v1, . . . , vn) the positively oriented orthonormal basis of V dual to (ω1, . . . ,ωn).

If C is the basis (w1, . . . ,wn), then by what was just proved,

ω(w1 , . . . ,wn) = det[1V]C,B ⋅ ω(v1 , . . . , vn) = det[1V ]C,B ,
and it remains to show this determinant equals 1. Now, [1V ]C,B is also the matrix with

respect to B of the operator L which maps vi towi, i = 1, . . . , n, because
[wi]B = [1V]C,B[wi]C = [1V ]C,B ei, i = 1, . . . , n,

on the one hand, and [wi]B = [L]Bei by definition of L on the other. But L maps an

orthonormal basis to another one, so it is a linear isometry. In particular, [L]B[L]
T
B = In,

which implies that (det L)2 = 1, so that det L = ±1. Summarizing, ω(w1, . . . ,wn) = ±1.
Finally, ω(w1, . . . ,wn) > 0 since C is positively oriented, so it must equal one. This

completes the proof.

2-forms on V possess an additional property, which in turn has several consequences

explored in the exercises:

Proposition 5.2.2. Given any nonzero form α ∈ Λ2(V), there exists a basis α
1 , . . . , αn of

Λ1(V) such that

α = α1 ∧ α2 + α3 ∧ α4 + ⋅ ⋅ ⋅ + α2k−1 ∧ α2k.
Proof. It suffices to construct a basis v1, . . . , vn of V such that

α(v2i−1 , v2i) = 1 if i ≤ k, α(vi, vj) = 0 if i or j > k, or if |j − i| > 1,
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since the dual basis will then satisfy the claim. We argue by induction on the dimen-

sion ofV. If the dimension is 1, there is nothing to prove, so assume the claim is true in

all dimensions less than n. Since α ̸= 0, there exist v1,w2 ∈ V such that α(v1 ,w2) ̸= 0.

If v2 = w2/α(v1 ,w2), then α(v1 , v2) = 1. Let W be the subspace of V spanned by v1
and v2, and define

Z = {v ∈ V | α(v, v1) = α(v, v2) = 0}.
By construction, Z is a subspace ofV that intersectsW in the zero vector only. Further-

more, Z has dimension at least n − 2: indeed, Z = ker β 1 ∩ ker β 2, where β i ∈ V∗ is
given by β i(v) = α(v, vi), i = 1,2, v ∈ V, and each kernel has dimension n− 1, see also
Exercise 1.21. By that same exercise,

dim Z = dim ker β 1 + dim ker β 2 − dim(ker β 1 + ker β 2)≥ dim ker β 1 + dim ker β 2 − dim V

= n − 2.
SinceW is two-dimensional and Z ∩W = {0}, V = W ⊕ Z. The result now follows by

the induction hypothesis applied to the restriction of α to Z.

Even though the tensor product is not commutative, i.e., S ⊗ T need not equal T ⊗ S,

the wedge product is “almost” commutative:

α ∧ β = (−1)klβ ∧ α , α ∈ Λk(V), β ∈ Λl(V). (5.2.5)

This is easily seen by writing both forms in terms of a basis and using (5.2.1), see

Exercise 5.5.

Examples 5.2.1. (i) Let α ∈ Λ1(V), β ∈ Λ2(V) . Then α ∧ β = β ∧ α , and for any

x, y, z ∈ V,

(α ∧ β )(x, y, z) = 1

2
[α(x)β (y, z) − α(x)β (z, y) − α(y)β (x, z) + α(y)β (z, x)
+ α(z)β (x, y) − α(z)β (y, x)]

= α(x)β (y, z) + α(y)β (z, x) + α(z)β (x, y)
=↻ (α ⊗ β )(x, y, z),

where ↻ denotes cyclic summation: given a 3-tensor T,↻ T(x, y, z) = T(x, y, z) + T(y, z, x) + T(z, x, y).
(ii) Let α , β ∈ Λ 1(V) = V∗. Recall from Corollary 5.2.1 (2) that if α ̸= 0 and α ∧ β =

0, then β ∈ span{α}. The following generalization is known as Cartan’s lemma:

Suppose α1 , . . . , αk ∈ V∗ are linearly independent. If β 1, . . . , β k ∈ V∗ satisfy

k∑
i=1

αi ∧ β i = 0,
then each β i ∈ span{α1 , . . . , αk}. Furthermore, if β i = ∑j aijα

j, then aij = aji.
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To see this, extend the αi ’s to a basis α1 , . . . , αn of V∗, and write

β i =
k∑
j=1

aijα
j +

n∑
j=k+1

bijα
j.

Then

0 =
k∑
i=1

αi ∧ β i = ∑
1≤i<j≤k

(aij − aji)αi ∧ αj + ∑
i≤k<j

bijα
i ∧ αj,

and the claim follows from linear independence of the αi ∧ αj, i < j.

5.3 Differential forms

The same procedure used in going from tensors to tensor fields (or from vectors to

vector fields) can be applied to forms. The result is not, however, traditionally called

a “form field”:

Definition 5.3.1. A differential k-form, or simply a differential form, on a manifold M

is a map ω that assigns to each p ∈ M an elementω(p) of Λk(Mp). ω is assumed to be

smooth in the sense that for any vector fields X1, . . . ,Xk onM, the function

ω(X1, . . . ,Xk) : M → ℝ,
p → ω(p)(X1(p), . . . ,Xk(p))

is differentiable.

Since a differential form is a tensor field, the results established for tensor fields

hold in this context as well. Thus, for example, smoothness may be rephrased by

requiring that for any p ∈ M, there be a chart (U, x) around p such that the functions

ω(𝜕/𝜕xi1 , . . . , 𝜕/𝜕xik ) are differentiable on U. Furthermore, if we denote these functions

by ωi1 ...ik , then the restriction of ω toU is given by

ω|U = ∑
1≤i1<⋅⋅⋅<ik≤n

ωi1 ...ik dx
i1 ∧ ⋅ ⋅ ⋅ ∧ dxik .

Similarly, the collection of all differential k-forms on M is a vector space, denoted

Λk(M). Finally, Proposition 5.1.1 implies that given f : M → N, α , β k-forms on N,𝛾 an l-form on N, h : ℕ → ℝ, and real numbers a, b,
f ∗(aα + bβ ) = af∗α + bf∗β ,

f∗(α ∧ 𝛾) = f∗α ∧ f∗𝛾,
f∗(hα) = (h ∘ f ) f ∗α . (5.3.1)

There is one construction that is specific to forms as opposed to general tensor fields:

let us agree to call a function on M a differential 0-form. Taking differentials of func-
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tions is then a linear map d : Λ0(M) → Λ1(M). We now extend it to an operator

d : Λk(M) → Λk+1(M) for any nonnegative integer k as follows: let α be a differential

k-form, p ∈ M. In order to define dα(p), consider a chart (U, x) ofM around p. Then as
noted earlier, the restriction of α to U may be written as α|U = ∑1≤i1<⋅⋅⋅<ik≤n αi1 ...ik dx

i1 ∧⋅ ⋅ ⋅ ∧ dxik . Define

( dα)|U := ∑
1≤i1<⋅⋅⋅<ik≤n

dαi1 ...ik ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik . (5.3.2)

It must be checked that this formula is independent of the chosen chart. To see this,

we first claim that d satisfies the following properties at p:
(1) dα(p) ∈ Λk+1(Mp);

(2) if α = β on some neighborhood of p, then dα(p) = dβ (p);
(3) d(aα + bβ )(p) = a dα(p) + bdβ (p), a,b ∈ ℝ, β ∈ Λk(M);

(4) d(α ∧ β )(p) = dα(p) ∧ β (p) + (−1)kα(p) ∧ dβ (p), β ∈ Λl(M);

(5) d( df )(p) = 0 for f ∈ Λ0(M).

The first three items follow directly from (5.3.2). To prove the fourth one, it suffices to

check it in the case thatα = f dxi1 ∧⋅ ⋅ ⋅∧ dxik andβ = g dxj1∧⋅ ⋅ ⋅ dxjl by the linearity of d
established in (3). Furthermore, the identity certainly holds if α and/or β are functions

(i.e., zero forms). Define 𝛾 = dxj1 ∧ ⋅ ⋅ ⋅ dxjl , so that β = g𝛾. Then
d(α ∧ β )(p) = d(fg dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik ∧ 𝛾)(p)

= ( df (p)g(p) + f (p) dg(p)) ∧ ( dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik ∧ 𝛾)(p)
= ( df ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p) ∧ (g𝛾)(p)
+ (−1)k(f dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p) ∧ ( dg ∧ 𝛾)(p)

= dα(p) ∧ β (p) + (−1)kα(p) ∧ dβ (p).
The last identity can be seen by writing ( df )|U = ∑i 𝜕/𝜕xi(f ) dxi, so that

d( df )(p) = (∑
i

d(
𝜕𝜕xi f ) ∧ dxi) (p) = ∑

i,j
(( 𝜕𝜕xj 𝜕𝜕xi f )dxj ∧ dxi) (p)

= ∑
j<i

(( 𝜕𝜕xi 𝜕𝜕xj − 𝜕𝜕xj 𝜕𝜕xi f )dxj ∧ dxi) (p)
= 0.

We can now justify the claim made earlier that the definition of d does not depend

on the chosen chart: indeed, suppose d̃ is the operator obtained by using a different

chart. It suffices to show that

d̃(f dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik ) = df ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik

for any function f by linearity of d̃. But d̃f = df and d̃ satisfies properties (1) through

(5), so that

d̃(f dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik ) = df ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik + f d̃( dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )
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by (4). It remains to show that the last term in the above identity is zero. But again by

(4), this term is a sum over j of expressions of the form

± dxi1 ∧ ⋅ ⋅ ⋅ ∧ d̃( dxij ) ∧ ⋅ ⋅ ⋅ ∧ dxik ,
and d̃( dxij ) = 0 by (5). This shows that d is well defined.

Theorem 5.3.1. There exists a unique linear map d : Λk(M) → Λk+1(M), k = 0,1,2, . . . ,
called the exterior derivative operator, that satisfies

(1) d(α ∧ β ) = ( dα) ∧ β + (−1)kα ∧ ( dβ ), α ∈ Λk(M),

(2) d ∘ d = 0, and

(3) for f ∈ Λ0(M), df is the differential of f .

Proof. Existence has already been established. For uniqueness, it suffices to show that

a linear map as in the statement necessarily satisfies the five properties listed earlier in

the definition of d. All but the second property are clear. So let d̃ be a map satisfying

the conditions of the statement, and suppose that α = β on a neighborhoodU of p. Set𝛾 = α − β . Then 𝛾|U ≡ 0, and we must show that d̃𝛾(p) = 0. To see this is so, consider

a neighborhood V of pwhose closure lies in U, and a function φ with values between

zero and one, which equals 1 on V and has support in U. Then 𝛾 = (1 − φ)𝛾, so that
d̃𝛾(p) = d(1 − φ)(p) ∧ 𝛾(p) + (1 − φ)(p) d̃𝛾(p) = 0.

In the case of ℝn, the definition we gave of exterior derivative is intrinsic, but on

a generic manifold it is somewhat unsatisfactory to rely on a definition in terms of

charts. The following property, which could have been used as a definition, seeks to

remedy this:

Theorem 5.3.2. For α ∈ Λk(M), Xi ∈ XM, i = 0, . . . , k,
dα(X0 , . . . ,Xk) =

k∑
i=0

(−1)iXi(α(X0, . . . , X̂i, . . . ,Xk))
∑
i<j
(−1)i+jα([Xi,Xj],X0, . . . , X̂i, . . . , X̂j, . . . ,Xk).

(We use X̂i to indicate that Xi does not appear in the list).

Proof. We prove the identity for k = 1, the general case being similar; i.e., we will

show that

dα(X,Y) = X(α(Y)) − Y(α(X)) − α([X,Y]).
We first establish that the right side of the above equation is tensorial in X and Y. It
is certainly linear over vector fields, so that by Theorem 3.8.1 we only need to check

linearity over functions. Now, for f : M → ℝ, replacing X by fX in the last two terms
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(the first one is trivially linear) on the right yields−Y(α(fX)) − α [fX,Y] = −Y(f (αX)) − α [fX,Y]
= −(Yf )α(X) − fY(αX) − α(f [X,Y] − (Yf )X)
= −f (Y(α(X)) − α [X,Y]),

which shows that it is indeed tensorial in the first argument. Since α is skew-symmet-

ric, it is also tensorial in the second argument. In light of this, the identity need only

be established for coordinate vector fields. So let (U, x) be a chart. Then the restriction
of α toU equals∑l α(𝜕/𝜕xl) dxl , so that

dα|U = ∑
l

d(α 𝜕𝜕xl ) ∧ dxl = ∑
k,l

𝜕𝜕xk (α 𝜕𝜕xl) dxk ∧ dxl

= ∑
k<l

( 𝜕𝜕xk (α 𝜕𝜕xl ) − 𝜕𝜕xl (α 𝜕𝜕xk )) dxk ∧ dxl.
This means that

dα ( 𝜕𝜕xi , 𝜕𝜕xj) =
𝜕𝜕xi (α 𝜕𝜕xj ) − 𝜕𝜕xj (α 𝜕𝜕xi ) ,

which is the desired identity for coordinate vector fields.

Another important property of the exterior derivative is that it commutes with pull-

backs:

Theorem 5.3.3. Let M, N be manifolds with exterior derivative operators dM and dN

respectively. Given a map f : M → N, f∗ ∘ dN = dM ∘ f∗.
Proof. Having emphasized the fact that the two exterior derivative operators live in

different spaces, we omit the superscript for brevity. Let us first consider the case of

a zero-form h : N → ℝ; it must be established that f∗ dh = d(h ∘ f ). This is nothing
more than the chain rule together with an exercise in notation, once we recall from

Chapter 3 that by definition, given q ∈ N, u ∈ Nq,

dh(q)u = I−1h(q)(h∗qu).
Indeed, for p ∈ M and v ∈ Mp,

f∗ dh(p)(v) = dh(f (p))(f∗pv) = I−1(h∘f )(p)h∗(f∗pv) = I−1(h∘f )(p)((h ∘ f )∗pv)
= d(h ∘ f )(p)(v),
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as claimed. In the general case, linearity of both sides in the identity allows us to only

consider a k-form on N of type h dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik . Then

d(f∗h dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik ) = d ((h ∘ f )f ∗ dxi1 ∧ ⋅ ⋅ ⋅ ∧ f∗ dxik )
= d ((h ∘ f ) df∗xi1 ∧ ⋅ ⋅ ⋅ ∧ df∗xik )
= d(h ∘ f ) ∧ df∗xi1 ∧ ⋅ ⋅ ⋅ ∧ df∗xik since d ∘ d = 0

= f∗ dh ∧ f∗ dxi1 ∧ ⋅ ⋅ ⋅ ∧ f∗ dxik

= f∗( dh ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )

= f∗ d(h dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik ).
This completes the proof of the Theorem.

5.4 Integration on manifolds

Our goal in this section is to define the integral of a form of degree k on a differentiable

manifold of dimension k. The form will always be assumed to have compact support,

and themanifold will need to be endowed with an orientation, in the followingsense:

Definition 5.4.1. An n-dimensional manifold M is said to be orientable if it admits a

nowhere-zero n-form.

Given any two nowhere-zero n-formsω1 and ω2 onM
n, there exists a function f : M →ℝ, which is either positive everywhere or negative everywhere, such that ω1 = fω2.

The two forms are said to be equivalent if f > 0. Thus, the collection of all non-zero n-

forms splits into two disjoint subsets, called equivalence classes. An orientation ofM

is a choice of one of these two classes. Clearly, an orientable manifold has exactly two

orientations, and the property of being orientable may be thought of as being able to

orient all tangent spaces in a continuousmanner. The standard orientationofℝn is the

equivalence class containing du1 ∧⋅ ⋅ ⋅∧ dun. This is oftendescribed as the orientation

induced by du1 ∧ ⋅ ⋅ ⋅ ∧ dun.

Proposition 5.4.1. M is orientable if and only if it admits an atlas consisting of charts

whose transition functions have positive Jacobian determinant; i.e, for (U, x) and (V , y)
in the atlas, detD(y ∘ x−1) > 0 if U ∩ V ̸= 0.
Proof. Suppose M is orientable, and consider an n-form ω on M which vanishes

nowhere. Choose any atlas of M. By reordering the components of the coordinate

maps, if necessary, it may be assumed that for any chart (U, x), fx := ω(𝜕/𝜕x1, . . . ,𝜕/𝜕xn) > 0. Since ω , when restricted to U, equals fx dx
1 ∧ ⋅ ⋅ ⋅ ∧ dxn, we have for

overlapping charts (U, x) and (V , y),
1

fy
ω = dy1 ∧ ⋅ ⋅ ⋅ ∧ dyn =

fx
fy
dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn
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on U ∩ V. By Theorem 5.2.3, fx/fy = detD(y ∘ x−1), and the latter is therefore positive.
Conversely, suppose there exists an atlas {(Uα , xα )} whose transition functions have

positive Jacobian. Consider a partition of unity {φi} subordinate to the atlas, and for

each i choose a chart (Ui, xi) in the atlas that contains the support of φi. Define forms

ωi onM by

ωi(p) =
{{{φi(p) ( dx1i ∧ ⋅ ⋅ ⋅ ∧ dxni ) (p), if p ∈ Ui

0 otherwise.

Then the formω = ∑i ωi cannot vanish anywhere, because if q ∈ Uj, thenω(q) applied
to the n-tuple (𝜕/𝜕x1j , . . . , 𝜕/𝜕xnj ) of vector fields at q is a sum of nonnegative terms, at

least one of which is positive (namely ωi(q) for any i such that φi(q) > 0).

One example of nonorientable manifold is the Möbius strip described in Chapter 7.

Given manifoldsMi with orientations respectively induced by n-forms ωi, i = 1,2,
a diffeomorphism f : M1 → M2 is said to be orientation-preserving if f ∗ω2 induces

the same orientation of M1 as ω1. An orientation of M also induces an orientation

of any open subset U of M, namely the one defined by 𝚤∗ω , where ω represents the

orientation of M and 𝚤 : U → M denotes the inclusion map. A chart (U, x) of an
oriented manifold M is said to be positive if x : U → x(U) is orientation-preserving
for the standard orientation of ℝn.

In order to define integration of an n-form on a manifold Mn, we begin with the

special caseM = ℝn:

Definition 5.4.2. Let ω denote an n-form with compact support on ℝn, U ⊂ ℝn. The

integral of ω over U is defined to be the ordinary integral over U of the function

ω(D1, . . . ,Dn).

In other words, if we write ω = f du1 ∧ ⋅ ⋅ ⋅ ∧ dun, then ∫
U
ω = ∫

U
f .

Next, suppose Mn is an oriented manifold, (U, x) a positive chart of M, and ω an

n-form onM with support in U. Define

∫
M

ω = ∫
U

ω := ∫
x(U)

(x−1)∗ω , (5.4.1)

with the last integral as in Definition 5.4.2. It must be checked that this definition

makes sense; i.e., that it does not depend on the particular chart. This is essentially

due to the change of variables theorem:

Theorem 5.4.1. If (U, x) and (V , y) are positive charts on Mn, and ω is an n-form with

compact support in U ∩ V, then
∫

x(U∩V)

(x−1)∗ω = ∫
y(U∩V)

(y−1)∗ω .
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Proof. First of all, observe that∫
x(U∩V)

(x−1)∗ω = ∫
x(U∩V)

ω ∘ x−1 (x−1∗ D1, . . . , x−1∗ Dn)
= ∫
x(U∩V)

ω ∘ x−1 ( 𝜕𝜕x1 ∘ x−1, . . . , 𝜕𝜕xn ∘ x−1)
= ∫
x(U∩V)

[ω ( 𝜕𝜕x1 , . . . , 𝜕𝜕xn)] ∘ x−1,
and similarly for the term involving y, so that the identity to be established becomes

∫
x(U∩V)

ω ( 𝜕𝜕x1 , . . . , 𝜕𝜕xn) ∘ x−1 = ∫
y(U∩V)

ω ( 𝜕𝜕y1 , . . . , 𝜕𝜕yn) ∘ y−1.
Now, by Exercise 3.16, 𝜕𝜕yi = ∑

j

(Di(u
j ∘ x ∘ y−1) ∘ y) 𝜕𝜕xj .

Together with Theorem 5.2.3, this yields

ω ( 𝜕𝜕y1 , . . . , 𝜕𝜕yn) = (detD(x ∘ y−1) ∘ y)ω ( 𝜕𝜕x1 , . . . , 𝜕𝜕xn) .
But then by the change of variables theorem,

∫
y(U∩V)

ω ( 𝜕𝜕y1 , . . . , 𝜕𝜕yn) ∘ y−1
= ∫
y(U∩V)

detD(x ∘ y−1)ω ( 𝜕𝜕x1 , . . . , 𝜕𝜕xn) ∘ y−1
= ∫
y(U∩V)

detD(x ∘ y−1) [ω ( 𝜕𝜕x1 , . . . , 𝜕𝜕xn) ∘ x−1] ∘ x ∘ y−1
= ∫
x(U∩V)

ω ( 𝜕𝜕x1 , . . . , 𝜕𝜕xn) ∘ x−1.
This establishes the claim.

Notice how the above proof used the fact that both charts were positive.

The general case (when the form does not have support inside the domain of a

single chart) uses a partition of unity:

Definition 5.4.3. Letω denote an n-form with compact support onMn, and {(Ui, xi)} a
countable atlas with subordinate partition of unity {φi}. For each i, define an n-form

ωi by ωi = φiω on Ui and ωi = 0 outside Ui. The integral of ω over M is∫
M

ω = ∑
i

∫
M

ωi.
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The proof that this definition does not depend on the chosen partition of unity is

similar to that in Chapter 4, but more straightforward since the sum is a finite one.

Examples and Remarks 5.4.1. (i) LetM2 be a surface – i.e., a two-dimensional man-

ifold – in ℝ3. Any chart (U, x) ofM induces a unit vector field N on U orthogonal

toM, namely

N =
1| 𝜕

𝜕x1 × 𝜕
𝜕x2 | 𝜕𝜕x1 × 𝜕𝜕x2 .

If (V , y) is another chart, then by Exercise 3.16,𝜕𝜕xi = ∑
j

(Di(u
j ∘ y ∘ x−1) ∘ x) 𝜕𝜕xj ,

so that 𝜕𝜕x1 × 𝜕𝜕x2 = det (D(y ∘ x−1) ∘ x) 𝜕𝜕y1 × 𝜕𝜕y2 .
It follows that positive charts determine the same unit normal field on the inter-

section of their domains. Thus, an orientable surface admits a global unit normal

field. Conversely, ifM admits a unit normal fieldN, then it is orientable: the 2-form
ω onM, given by ω(X,Y) = det(N,X,Y) is nowhere zero. We will later generalize

this to hypersurfaces.

(ii) The volume form of an oriented n-manifold M is the n-form η on M such that

η(p)(u1 , . . . , un) = 1 for any positively oriented orthonormal basis (u1, . . . , un)
of Mp, p ∈ M. It is well-defined by Theorem 5.2.3. In fact, if α is any n-form in-

ducing the orientation, then f α , where f (p) = 1/α(p)(u1, . . . , un) for any positive
orthonormal basis (u1, . . . ,un) ofMp, is the volume formofM. WhenM is compact,

its volume is ∫
M
η .

(iii) By Theorem 1.4.4, there is a bijection ♭ : XM → Λ1(M) given by X♭(Y) = ⟨X,Y⟩ for
vector fieldsX,Y onM, see also Exercise 3.9. It is customary in physics to consider

so-called ‘line integrals of vector fields in ℝn along oriented curves’. This can be

interpreted in the present context as follows: letM be a one-dimensional oriented

manifold in ℝn, X a vector field on some open set U containingM, so that X♭ is a
one-form on U. If 𝚤 : M → ℝn denotes inclusion, then 𝚤∗X♭ is a one-form on M,

and the line integral of X along the curve is defined to be ∫
M
𝚤∗X♭. This, in turn,

is easily extendible to the case when the image of the curve c : I → ℝn is not a

manifold: define the integral of X along c to be ∫
I
c∗X♭.

Inphysics, a commonkindof vectorfield is a forcefieldF, which,whenacting ona
body of massm, produces an acceleration ċ satisfying F(c(t)) = m ċ(t) according
to Newton’s second law of motion. The work W done by F in moving the object

from c(a) to c(b) is defined to be ∫
[a,b] c

∗F♭. The kinetic energy of the object at time

t is K(c(t)) = (1/2)m|ċ|2. It follows that the work done by the force equals the
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change in kinetic energy:

W = ∫
[a,b]

c∗F♭ =
b∫
a

F♭(ċ) =
b∫
a

⟨mċ, ċ⟩ = m

2

b∫
a

| ̇c|2
= K(c(b)) − K(c(a)).

(iv) Let ω denote the one-form onℝ2 \ {0} given by

ω =
−u2((u1)2 + (u2)2)1/2 du1 + u1((u1)2 + (u2)2)1/2 du2 .

If 𝚤r : S1(r) → ℝ2 is the inclusion map from the circle of radius r and center

the origin into the plane, then 𝚤∗r ω is the volume form of S1(r) for the induced

(counterclockwise orientation): indeed the metric dual

ω ♯ =
−u2((u1)2 + (u2)2)1/2D1 +

u1((u1)2 + (u2)2)1/2D2

of ω is tangent to all circles (being orthogonal to the position vector field), has

length 1, and ω(ω ♯) is easily computed to equal one.

The curve c : (0, 2π) → ℝ2, c(t) = (r cos t, r sin t), is a parametrization of S1(r) \ {re1},
and

ċ = −r sin D1 ∘ c + r cos D2 ∘ c = rω ♯ ∘ c.
Thus, the volume of S1(r) equals

∫
S1(r)

𝚤∗r ω =

2π∫
0

ω(ċ) =
2π∫
0

rω(ω ♯) =

2π∫
0

r = 2πr,
as expected.

5.5 Manifolds with boundary

The upper half-spaceHn is the set of all pointsp ∈ ℝn such that un(p) ≥ 0. Even though

it is closed in ℝn, we extended the notion of differentiability to maps defined on sets

such as these; namely, a map is differentiable on Hn if it is extendable to amap that is

smooth on some open set containing Hn.

In order to discuss Stokes’ theorem, we need the following concept, which gener-

alizes that of manifold:

Definition 5.5.1. A subsetM ⊂ ℝn+k of Euclidean space is said to be an n-dimensional

manifold with boundary if every point p ∈ M admits a neighborhood U in ℝn+p with

either one of the following properties:
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(1) There exists an open set V inℝn, a one-to-one differentiable map h : V → ℝn+k of

maximal rank everywhere such that

– h(V) = U ∩M, and

– h−1 is continuous;
(2) There exists an open set V in Hn, a one-to-one differentiable map h : V → ℝn+k of

maximal rank everywhere such that

– h(V) = U ∩M,

– h−1 is continuous, and
– (un ∘ h−1)(p) = 0.

h is called a local parametrizationofM, and its inverse a chart.

Whenall points ofM satisfy thefirst condition, one recovers theusual definitionof

a manifold. It is important to realize that if a point p satisfies the second condition for

some parametrization h, then it satisfies it for every parametrization: for if there were

some other parametrization h̃ of the first type, with, say, h̃(a) = p and un(a) ̸= 0, then

f := h−1 ∘ h̃would be amap ofmaximal rank on a neighborhood of a inℝn. The image

of arbitrarily small open neighborhoods of a would not be open in ℝn, contradicting

the inverse function theorem.

f
a

f (a)

In viewof this,wemaydefine theboundary 𝜕M ofM to be the set of all points satisfying

the second condition. A word of caution is in order here: even though the notation

is the same, the boundary of a manifold M need not coincide with the topological

boundary of the setM as defined in Chapter 1, see Exercise 5.24.

One of the simplest examples of manifold with boundary is a closed metric ball

in ℝn. The boundary sphere is then also a manifold, with dimension lower by 1. This

is always the case:

Proposition 5.5.1. Let M be an n-dimensional manifold with boundary. If 𝜕M is non-

empty, then it is an (n − 1)-dimensional manifold.

Proof. Consider p ∈ 𝜕M. Any parametrization h : U → h(U) of a neighborhood h(U)
of p inM induces a parametrization h̃ of a neighborhood of p in 𝜕M: Let Ũ = {u ∈ ℝn |
un(u) = 0}. Ũ is naturally identified with a subset of ℝn−1 = ℝn−1 × {0} ⊂ ℝn, and the

restriction h̃ of h to Ũ is differentiable, has maximal rank, and has continuous inverse

because h enjoys these properties.
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In light of the above proposition, if p ∈ 𝜕M, then the tangent space of 𝜕M at p is well

defined. It is also convenient to have a notion of tangent space ofM itself at p. In order
to do so, consider a parametrization h with h(a) = p. Let h̃ be an extension of h to

an open set in ℝn, and define Mp = h̃∗(ℝn
a). It must of course be checked that this is

independent of the extension. If h̄ is another extension of h, choose a neighborhood
U of a in ℝn small enough so that both extensions are defined on U. Then h̄−1 ∘ h̃ is

the identity on U ∩ Hn, and therefore the same is true for the derivative D(h̄−1 ∘ h̃) on
the intersection of U with the interior of Hn. Choosing any sequence ak ∈ U ∩ (Hn)0

converging to a, we have that D(h̄−1 ∘ h̃)(a) is the identity by continuity, and thus,

D(h̄)(a) = D(h̃)(a) as claimed. We will for convenience’s sake denote either by Dh(a).
Consider any p ∈ 𝜕M and parametrization h of a neighborhood of p. Since Mp

has dimension n, and (𝜕M)p is a subspace ofMp of dimension n − 1, there are exactly

two unit vectors in Mp orthogonal to (𝜕M)p. If x = h−1, then they cannot lie in the

kernel of dxn(p) because this kernel is precisely (𝜕M)p. Thus, there is one, and only

one unit vector n ∈ Mp orthogonal to (𝜕M)p with n(xn) < 0. n is called the outward

unit normal at p. This procedure can be done at any point of 𝜕M, and the resulting

map N : 𝜕M → TM which assigns to each element in the boundary the outward unit

normal vector is called the outward unit normal field. This field can be used to induce

an orientation of the boundary of M. In order to do so, we introduce the following

terminology:

Definition 5.5.2. Let X be a vector field on a manifoldM. Interior multiplication by X
is the map i(X) : Λk(M) → Λk−1(M) given by

(i(X)α)(X1, . . . ,Xk−1) = α(X,X1, . . . ,Xk−1), X1, . . . ,Xk−1 ∈ XM.
Suppose now thatM is an oriented manifold with boundary, with orientation induced

by some nowhere-zero n-form ω . If N is the outward unit normal field, then i(N)ω is

a nowhere-zero form on 𝜕M, and thus induces an orientation on 𝜕M. This orientation

is said to be the one induced byM. Notice that if η is the volume form ofM, then i(N)η
is the volume form of 𝜕M.

As a simple example, consider the closed disk D of radius 1 about the origin inℝ2.

It is a 2-dimensional manifold with boundary. The open ball has a natural orientation

as anopen set inℝ2 , namely that inducedby thedeterminant. The inducedorientation

on the boundary S1 is the one induced by the (restriction of the) one-form ω from

Examples and Remarks 5.4.1 (iii), and is usually referred to as the counterclockwise

orientation.

Another important special case is that of a one-dimensionalmanifoldwithbound-

ary. For simplicity, let us consider the case when M1 is parametrized by a curve c :
[0, a] → M with | ̇c| ≡ 1. 𝜕M is a zero-dimensional manifold consisting of c(0) and
c(1). Since a zero-form is a function, two nowhere zero forms induce the same orien-

tation on 𝜕M if they both have the same sign when evaluated at each point. Thus, an

orientation is an assignment of a sign to each point in the boundary. If ċ represents



5.6 Stokes’ theorem | 243

the orientation ofM, then the induced orientation of 𝜕M is (c(1),+), (c(0), −), because
the outward unit normal is ċ(1) at c(1) and −ċ(0) at c(0).

If α is zero-form on an oriented compact zero-dimensional manifold M ={a1, . . . ,ak}, define ∫
M

α := k∑
i=1

sign(ai)α(ai),
where sign denotes the sign induced by the orientation. The reader is invited to verify

that with this notation, ifM = [a,b] ⊂ ℝwith the standard orientation, and f : M → ℝ
is a zero-form, then the Fundamental Theorem of Calculus reads∫

M

df = ∫
𝜕M

𝚤∗f ,
where 𝚤 : 𝜕M → M denotes inclusion (recall that for a zero-form f , 𝚤∗f = f ∘ 𝚤 is the
restriction of f to 𝜕M).

5.6 Stokes’ theorem

In the previous section, we rewrote the Fundamental Theorem of Calculus as∫
M

df = ∫
𝜕M

𝚤∗f .
Thegeneralization tohigherdimensions is knownasStokes’ Theorem. Perhapsunsur-

prisingly, the key ingredients in its proof consist of the above theorem and Fubini’s.

Theorem 5.6.1 (Stokes’ Theorem). Let M be an oriented n-dimensional manifold with

boundary, ω an (n − 1)-formwith compact support in M. Then∫
M

dω = ∫
𝜕M

𝚤∗ω ,
with 𝚤 : 𝜕M → M denoting inclusion.

Proof. By definition of the integral and the fact that ω can be written as a finite sum

of forms each of which has support inside some chart, it may be assumed that there is

a local positive parametrization h : Hn ⊃ U → M whose image contains the support

of ω .

By Theorem 5.3.3, ∫
M
dω = ∫

U
h∗ dω = ∫

U
dh∗ω . Now,

h∗ω =
n∑
i=1

f i du1 ∧ . . . dun−1 ∧ dun+1 ∧ ⋅ ⋅ ⋅ ∧ dun,
where f i = h∗ω(D1, . . . ,Di−1 ,Di+1, . . . ,Dn). By Theorem 5.3.3,∫

M

dω = ∫
U

dh∗ω = ∫
U

∑
i

(−1)iDi f
i,



244 | 5 Differential Forms

since dh∗ω = (∑i(−1)iDi f
i) du1 ∧ ⋅ ⋅ ⋅ ∧ dun. Extend f i to smooth functions on Hn by

setting them equal to zero outside U, and denote them both by the same symbol. We

consider two possibilities:

Supposefirst thath(U) does not intersect theboundary ofM. Then 𝚤∗ω , and its integral
over the boundary ofM vanish. Consider a box B = [a1, b1]× ⋅ ⋅ ⋅ × [an, bn] that contains
U in its interior. Since the support of ω is compact, it may be assumed that an > 0;

i.e., the boxdoes not intersect the boundary ofHn. IfBi denotes the lower-dimensional

box [a1, b1] × ⋅ ⋅ ⋅ × [ai−1, bi−1] × [ai+1, bi+1] × . . . [an, bn], then Fubini’s theorem and the

fundamental theorem of Calculus imply that ∫
B
Dif

i = ∫
Bi
gi, where

gi(u1, . . . , un−1) = f i(u1, . . . , ui−1 , bi, ui, . . . , un−1)− f i(u1, . . . , ui−1 , ai, ui, . . . , un−1).
But then gi is identically zero, since f i vanishes on theboundary of thebox. This proves

the theorem in this case.

Suppose next that h(U) does intersect the boundary ofM. As before, extend h∗ω to all

of Hn by setting it equal to zero outside U, and enclose it in a box B = [a1, b1] × ⋅ ⋅ ⋅ ×
[0, bn] large enough so that U is contained in (a1, b1) × ⋅ ⋅ ⋅ × [0, bn). We will, as above,

denote by Bi the lower-dimensional box obtained by deleting the i-th edge of B. If h̄
denotes the restriction of h to the boundary 𝜕Hn of Hn, then

h̄∗𝚤∗ω = f n0 du
1 ∧ ⋅ ⋅ ⋅ ∧ dun−1 ,

where

f n0 (u
1 , . . . , un−1) = f n(u1, . . . , un−1,0),

see also Examples and Remarks 4.1.1 (iv) regarding notation. Now, the volume form on𝜕Hn = ℝn−1 × {0} induced by Hn is given by

μ = i(−Dn) du
1 ∧ ⋅ ⋅ ⋅ ∧ dun

=
n∑
j=1

μ (D1, . . . ,Dj−1 ,Dj+1, . . . ,Dn) du
1 ∧ ⋅ ⋅ ⋅ ∧ duj−1 ∧ duj+1 ∧ ⋅ ⋅ ⋅ ∧ dun.

The only non-vanishing term in this sum occurs when j = n, so that

μ = μ (D1, . . . ,Dn−1) du
1 ∧ ⋅ ⋅ ⋅ ∧ dun−1

= du1 ∧ . . . dun(−Dn,D1, . . . ,Dn−1) du
1 ∧ ⋅ ⋅ ⋅ ∧ dun−1

= (−1)n du1 ∧ ⋅ ⋅ ⋅ ∧ dun−1 .
Thus, ∫

𝜕M
𝚤∗ω = ∫

Bn

(−1)nf n(u1, . . . , un−1, 0)du1 . . . dun−1 . (5.6.1)

On the other hand, we have, as before,

∫
M

dω =
n∑
i=1

(−1)i+1 ∫
B

Di f
i =

n∑
i=1

(−1)i+1 ∫
Bi

gi.
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Since gi = 0 for i < n,

∫
M

dω = (−1)n+1 ∫
Bn

(f n(u1, . . . , un−1, bn)
− f n(u1 , . . . , un−1,0))du1 . . . dun−1
= ∫
Bn

(−1)nf n(u1, . . . , un−1, 0) du1 . . . dun−1.
Comparing with (5.6.1) now completes the proof.

Examples and Remarks 5.6.1. (i) If Mn is a manifold without boundary, then∫
M
dω = 0 for any n-form with compact support inM.

(ii) The compact support hypothesis in Stokes’ theorem cannot be removed: consider

for example the interior of a unit disk M2 = {(a, b) ∈ ℝ2 | a2 + b2 < 1}, and the

2-form α = du1 ∧ du2 on M. We have α = d(u1 du2), so if Stokes’ theorem were

to hold, then by (i), the integral of α over M would vanish. By the definition of

integral, however, ∫
M
α equals the area π ofM2.

(iii) Consider the one-form

ω =
−u2

(u1)2 + (u2)2
du1 +

u1

(u1)2 + (u2)2
du2

on ℝ2 \ {(0,0)}. It is related to the polar angle function θ which is defined onℝ2 \ {(a,0) | a ≥ 0}. In fact, in each of the four open quadrants in the plane, θ can

be written as arctan(u2/u1) + c, where c is some constant depending on the quad-

rant, cf. Section 4.6.1. A direct computation shows that d(arctan(u2/u1))) = ω .

There is, however, no zero-form f definedonall ofℝ2 such that df = ω : otherwise,

with 𝚤 : S1 → ℝ2 denoting the inclusion of the circle S1 with radius 1 around the

origin, we would have that

∫
S1

𝚤∗ω = ∫
S1

𝚤∗( df ) = ∫
S1

d(𝚤∗f ) = 0

by (i). On the unit circle, however, this one-form coincides with that from Exam-

ples 5.4.1 (iii), so that ∫
S1
𝚤∗ω = 2π . A differential form ω is said to be closed if

dω = 0, and exact if ω = dα for some form α of degree one less. Since d ∘ d = 0,

any exact form is closed, but this example shows the converse is false in general.

It also illustrates yet again how Stokes’ theorem can fail without the compact-

ness assumption: if M denotes the manifold with boundary that consists of the

closed unit disk about the origin with the origin deleted, then ∫𝜕M 𝚤∗ω = 2π , but∫
M
dω = 0, since ω is closed.

(iv) The form 𝚤∗ω on 𝜕M is by definition just the restriction of ω to the boundary. For

this reason, Stokes’ theorem is often stated simply as ∫
M
dω = ∫𝜕M ω .
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5.7 Classical versions of Stokes’ theorem

We present some classical theorems found in multivariable calculus texts that are all

special cases of Stokes’ theorem. Since most books do not use differential forms, each

statement needs some degree of reinterpretation.

Theorem 5.7.1 (Green’s Theorem). Suppose M ⊂ ℝ2 is a compact 2-dimensional mani-

fold with boundary, with the usual orientation. If P and Q are differentiable, then

∫
𝜕M

P dx + Q dy = ∬
M

(D1Q − D2P) dA.
Proof. As observed in Examples and Remarks 5.4.1 (ii), the left side is interpreted in

physics as the line integral along 𝜕M of the vector field F = PD1 + QD2. In the present

context, the identity means

∫
𝜕M

𝚤∗(P du1 + Qdu2) = ∫
M

(D1Q − D2P) du
1 ∧ du2 .

This is precisely Stokes’ theorem for the 1-form ω = F♭ = P du1 + Q du2.

Before stating the second theorem, two more concepts must be defined: first of all, if

M is an oriented 2-dimensional manifold in ℝ3, the positive unit normal fieldN ofM is

the unit normal field (out of two) such that the restriction of i(N) du1 ∧ du2 ∧ du3 to

M equals the volume form η ofM. Extend the determinant and cross product to each

tangent space via the canonical isomorphism Iu : ℝ3 → ℝ3
u. If N = ∑NiDi, then for a

positive local orthonormal basis X1, X2 of vector fields on M,

1 = η(X1,X2) = du1 ∧ du2 ∧ du3(N,X1,X2) = det [N X1 X2]
= ⟨N,X1 × X2⟩
= (N1 du2 ∧ du3 + N2 du3 ∧ du1 + N3 du1 ∧ du2)(X1,X2),

where the last equalitywasobtainedby expanding thedeterminant along thefirst row.

Thus, the volume form of an oriented 2-dimensional submanifold of ℝ3 with positive

unit normal N = ∑i N
iDi is

η = N1 du2 ∧ du3 + N2 du3 ∧ du1 + N3 du1 ∧ du2 .
The second concept is that of the curl of a vector field. The curl of F = ∑i F

iDi is the

vector field

curl F = (D2F
3 − D3F

2)D1 + (D3F
1 − D1F

3)D2 + (D1F
2 − D2F

1)D3,
cf. also the exercises for a more motivating definition.
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With this in mind, the classical Stokes’ theorem may now be stated as follows:

Theorem 5.7.2 (Stokes’ theorem). Let M2 ⊂ ℝ3 denote a compact oriented 2-dimen-

sional submanifold ofℝ3 with boundary and positiveunit normal fieldN. If F is a differ-
entiable vector field on an open set inℝ3 containingM, then

∫
M

⟨curlF,N⟩dS = ∫
𝜕M

⟨F, dc⟩.
Proof. The right side is standard notation for the line integral of F along the boundary.
Thus, if F = ∑i F

iDi, and ω = F♭ = ∑i F
i dui is the dual 1-form, then the identity that

needs to be established is ∫
M

⟨curl F,N⟩ η = ∫
𝜕M

𝚤∗ω ,
where η is the volume form of M. In view of our version of Stokes’, it must then be

shown that ⟨curl F,N⟩η = dω . Notice that for orthonormal vector fields Xi onM,

det [⟨F,N⟩N X1 X2] = det [F X1 X2] (5.7.1)

since ⟨F,N⟩N is the component of F orthogonal to TM = span{X1,X2}. Thus,⟨curl F,N⟩ η(X1,X2) = det [⟨curlF,N⟩N X1 X2]
= det [curl F X1 X2] .

Writing out this last expression yields

((D2F
3 − D3F

2) du2 ∧ du3 + (D3F
1 − D1F

3) du3 ∧ du1

+ (D1F
2 − D2F

1) du1 ∧ du2)(X1,X2),
which is precisely dω(X1,X2).

Thenext result involves yet another concept commonlyused inphysics: thedivergence

of a vector field X = ∑i X
iDi in ℝ3 is the function div X = D1X

1 + D2X
2 + D3X

3. It

can actually be defined for vector fields on a manifold of arbitrary dimension, and is

explored further in the exercises.

Theorem 5.7.3 (Divergence theorem). Let M be a compact 3-dimensional manifold

with boundary inℝ3, with positiveunit normal fieldN. If F is a differentiablevector field
onM, then ∫

M

div F dV = ∫
𝜕M

⟨F,N⟩ dS.
Proof. The identity to be established is

∫
M

div F du1 ∧ du2 ∧ du3 = ∫
𝜕M

⟨F,N⟩η ,
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where η denotes the volume form of the boundary. If F = ∑i F
iDi, let

ω = F1 du2 ∧ du3 + F2 du3 ∧ du1 + F3 du1 ∧ du2,
so that dω = div F du1 ∧ du2 ∧ du3. Now, by (5.7.1), given vector fields Xi on 𝜕M,⟨F,N⟩ η(X1,X2) = det [⟨F,N⟩N X1 X2] = det [F X1 X2]

= (F1 du1 ∧ du2 + F2 du3 ∧ du1

+ F3 du1 ∧ du2)(X1,X2)

= 𝚤∗ω(X1,X2),
so that ⟨F,N⟩η = 𝚤∗ω , and the identity is once again that from Stokes’ theorem.

The above theorems provide physical interpretations for the notions of curl and diver-

gence. Consider for example a fluid with constant density ρ in a region of 3-space. If v
is the velocity field of the fluid, F = ρv, and N a unit field, then ⟨F,N⟩ represents the
rate of flow (in the physical sense, not to be confused with the flow of a vector field)

per unit area in directionN. Ifa is a point in the fluid,Br(a) the set of points at distance
less than r from a, let

mr = inf{div F(b) | b ∈ Br(a)}, Mr = sup{div F(b) | b ∈ Br(a)}.
Denote by Sr(a) the sphere of radius r centered at a. By the divergence theorem,

mr ≤ 1

vol(Br(a))
∫

Br(a)

div F =
1

vol(Br(a))
∫

Sr(a)

⟨F,N⟩η ≤ Mr,
so that

div F(a) = lim
r→0

1

vol(Br(a))
∫

Sr (a)

⟨F,N⟩η .
In this case, the divergence may be interpreted as the net rate of outward flowper unit

volume at a. a is called a source if div F(a) > 0, and a sink if it is negative. A fluid is

said to be incompressible if it has everywhere vanishing divergence. More generally,

the reader is asked to show in the exercises that a vector field on ℝn has everywhere

vanishing divergence if and only if the (mathematical) flowΦ t of the vector field pre-

serves volumes; i.e.,Φ ∗
t ω = ω for all t, whereω is the volume form ofℝn.

The curl has a similar interpretation, but in terms of rotation of a fluid. This is also

discussed in the exercises.

Examples 5.7.1. (i) One of Maxwell’s equations in electromagnetism is

curlH = J,
where H denotes the magnetizing field and J the current density. It can be used

to prove Ampère’s law, which states that if C is a closed curve, then the current I
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crossing any surfaceM bounded by C is

I = ∫
C

⟨H, dc⟩.
To see this, let M be a 2-dimensional manifold with boundary 𝜕M = C. As in the

case of a fluid, ⟨J,N⟩ represents the current per unit area that crosses a surface
orthogonal to N. Then, by Stokes’ theorem, the current crossing M is

I = ∫
M

⟨J,N⟩ dS = ∫
M

⟨curlH,N⟩ dS = ∫
C

⟨H, dc⟩.
(ii) Yet another of Maxwell’s equations is that if E is the electric field created by a

charge distribution with charge density ρ , then div E = ρ/𝜀0, where 𝜀0 is a univer-
sal constant. One can use it to prove Gauss’s law, which says that ifM is a compact

3-dimensional manifold with boundary 𝜕M, then the total electric charge inside𝜕M (i.e., in M) is

Q = 𝜀0 ∫
𝜕M

⟨E,N⟩dS.
Indeed, by the divergence theorem and the definition of Q,

Q = ∫
M

ρ dV = 𝜀0 ∫
M

div E = 𝜀0 ∫
𝜕M

⟨E,N⟩dS.
5.7.1 An application: the polar planimeter

The fundamental theorem of Calculus and its generalization, Stokes’ theorem, illus-

trate how the behavior of a function on an open set is controlled by its behavior on

the boundary of that set. This has some important practical applications: One such is

an instrument, called a planimeter, that calculates the area of the region bounded by

a simple closed curve in the plane. It does so by merely tracing the boundary curve.

There are several types of planimeters. The first one was invented in 1814 in Bavaria,

and the one we discuss here, the polar planimeter, was created by Jakob Amsler in

1856. Although the underlying principle relies on Green’s theorem, it seems that this

was only established almost a century later, cf. [10, 3].

Our planimeter consists of a pole that is fixed at the origin in the plane. A pole

armwhich can rotate about the pole is attached to it, and at the end of the pole arm is

a pivot connected to the tracer arm. The tracer arm terminates in a wheel that is per-

pendicular to the arm, so that the wheel can only roll about the pivot. It can, however,

also slide if moved parallel to the arm. The wheel then traces out the boundary curve

by alternatively rolling and sliding, but only the rolling part is recorded.

In order to simplify the computations, our planimeter has both arms of equal

length R. Thus, the curve that is traced has to lie within a disk of radius 2R about

the pole. We will see that if l is the total distance the wheel has rolled after tracing the
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Fig. 5.1: A polar planimeter [1]

boundary curve, then the area A of the region enclosed by the curve is

A = lR.

pole

pivot

(f 1, f 2)(x, y)
pole

arm
tracer

arm
wheel
(x, y)

Simple geometry dictates that if the wheel is at a given point (x, y), there are exactly
two possible locations for the pivot; these aremutual reflections in the line connecting

the pole to the wheel. One way to see this is that the pivot must lie at one of the two

intersections of circles with radius R, the first one centered at the origin and the other

at (x, y).
In order tofind the coordinates (f 1, f 2) of the pivotM, we use the figure below, and

denote by
→
QM the vector version of the point M − Q. Thus, |→QM|2 = R2 − (x2 + y2)/4,

and
→
QM is orthogonal to

→
OP = [x y].

M = (f 1, f 2)(x, y)
n

P = (x, y)
Q = (x/2, y/2)

O = (0, 0)
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There are twopossibledirections for this orthogonal vector, andwechoosea coun-

terclockwise rotation by π/2. This transforms [x y] into [−y x], so that
→
QM = (R2 − (x2 + y2)/4

(x2 + y2)
)1/2 [−y x] ,

and since
→
OM =

→
OQ +

→
QM, the coordinates of the pivot M are

f 1(x, y) = 1

2
[x − y(4R2 − x2 − y2

x2 + y2
)1/2] ,

f 2(x, y) = 1

2
[y + x(4R2 − x2 − y2

x2 + y2
)1/2] .

It immediately follows that→
MP =

1

2
[x + y ( 4R2−x2−y2

x2+y2
)1/2 y − x ( 4R2−x2−y2

x2+y2
)1/2] ,

and performing once again a counterclockwise rotation by π/2, we see that the unit
normal vector field orthogonal to the tracer arm

→
MP is n = PD1 + D2, where

P(x, y) = 1

2R
[−y + x(4R2 − x2 − y2

x2 + y2
)1/2] ,

Q(x, y) = 1

2R
[x + y(4R2 − x2 − y2

x2 + y2
)1/2] .

Now, the total distance that the wheel has rolled is the line integral of n along the

boundary curveof the regionM, andaccording toGreen’s theorem, this integral equals

∫
M

(D1Q − D2P) du
1 ∧ du2 .

But

D1Q(x, y) = 1

2R
+ yD1g(x, y), D2P(x, y) = − 1

2R
+ xD2g(x, y), (5.7.2)

where

g(x, y) = (4R2 − x2 − y2
x2 + y2

)1/2 .
A straightforward calculation yields that

D1g(x, y) = − 4R2x

(x2 + y2)3/2(4R2 − x2 − y2)1/2
.

Since the formula for g is symmetric in x and y, D2g is obtained by interchanging x

and y in the formula for D1g. Thus yD1g(x, y) = xD2g(x, y), and (5.7.2) implies that the

integrand in Green’s theorem is D1Q − D2P = 1/R. This means that the distance the

wheel has rolled equals the area ofM divided by R, as claimed.
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5.8 Closed forms and exact forms

Recall that a differential form α onM is said tobe closed if dα = 0, and exact if there is

some form β such that dβ = α . Every exact form is closed, but not every closed form is

exact, cf. Examples and Remarks 5.6.1 (iii). We will show, however, that a closed form

is always locally exact.

Remark 5.8.1. A one-form α on a Riemannian manifold is exact if and only if its dual

vector field is the gradient of some function: the equation α = df is equivalent to

α♯ = ∇f . Alternatively, for a vector field X, X = ∇f if and only if X♭ = df .

This concept is important enough in physics to warrant its own terminology: a

force (i.e., a vector field) F is said to be conservative if there is some function f such

that F = ∇f . In this case, the function P = −f is called a potential energy function for
f . Such a function is only defined up to an additive constant (if P is a potential energy,

then so is P + c for any constant c), but this is usually irrelevant, since one is mostly

interested in the change in potential energy. In fact, the reason such forces are called

conservative is that they satisfy the conservation of energy law: the sum of potential

and kinetic energy is constant.

To see why, recall fromExamples and Remarks 5.4.1 (ii) that if an object of massm

moves along a curve c : [a, b] → M under the action of a (not necessarily conservative)

force F, then its kinetic energy at c(t) is K(c(t)) = (m| ̇c(t)|2)/2 and the work done by F
in moving the object from c(a) to c(b) is

W = ∫
c
Fb = K(c(b)) − K(c(a)).

If in addition F is conservative, then the work also equals

W = ∫
c
Fb = ∫

c
−dP = P(c(a)) − P(c(b)),

so that (P + K)(c(a)) = (P + K)(c(b)), as claimed.

A typical example of a conservative force is the gravitational force: an object of

mass M that is placed at the origin in 3-space exerts a gravitational force on nearby

objects. The force acting on an object of massm located at a ∈ ℝ3 \ {0} is
F(a) = −GMm|a|3 P(a),

where G is a universal constant and P denotes the position vector field P = ∑i u
iDi.

Thus,

F = ∇(GMm|P| ) ,
as a straightforward calculation shows.
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Denote by Zk(M) the space of all closed k-forms on M, and by Bk(M) that of exact k-

forms. Bk(M) is a subspace of Zk(M). In general, if W is a subspace of a vector space

V, the quotient space V/W is the collection of all elements of the form v + W, v ∈ V.

Two elements v1 + W and v2 + W are said to be equal if v1 − v2 ∈ W . V/W inherits a

vector space structure from the operations in V, if we define

(v1 + W) + (v2 + W) = (v1 + v2) + W , c(v + W) = (cv) + W ,
for vi ∈ V, c ∈ ℝ. It must be checked that these operations are well defined: for

example, if v1 + W = v2 + W, then for any v3, the identity

(v1 + W) + (v3 + W) = (v2 + W) + (v3 + W)

must hold. The left side is v1 + v3 + W, whereas the right side equals v2 + v3 + W .

Since v1 + v3 − (v2 + v3) = v1 − v2 lies in W, both sides indeed agree. A similar

argumentworks for scalarmultiplication. In fact,with theseoperations, theprojection

V → V/W which maps v to v + W is a linear transformation that is by construction

surjective and has W as kernel, so that if V is finite-dimensional, then V/W has di-

mension dim V − dimW .

Definition 5.8.1. Given a positive integer k, the k-th de Rham cohomology space of M

is Hk(M) = Zk(M)/Bk(M). H0(M) is defined as Z0(M).

The reader is invited to verify that ifM is connected, thenH0(M) ≅ ℝ, see Exercise 5.22.
Even though determining cohomology spaces can, in general, be challenging, there is

one case that can already be settled:

Proposition 5.8.1. If M is a compact, oriented n-dimensional manifold without bound-

ary, n > 0, then Hn(M) ̸= 0.

Proof. Letω be the volume form ofM. ω is closed because there are no (n + 1)-forms.

By definition, if (U, x) is any positive chart ofM, then∫x(U)(x−1)∗ω > 0. Thus, ∫
M
ω > 0,

so thatω cannot be exact (if ω = dα , then ∫
M
ω = ∫𝜕M α = 0 because the boundary is

empty).

Our next goal is to show that the pullback of f : M → N induces a linear transfor-

mation f∗ : Hk(N) → Hk(M). In general, if Wi is a subspace of Vi, i = 1,2, then
any linear transformation L : V1 → V2 that maps W1 to W2 induces a linear map

L : V1/W1 → V2/W2: define L(v + W1) = (Lv) + W2. One only needs to check that this

definition makes sense, because linearity follows from linearity of the original map.

But if u + W1 = v + W1, then u − v ∈ W1, so that Lu − Lv = L(u − v) ∈ W2; i.e.,

Lu + W2 = Lv + W2, and the map is well defined.

Proposition 5.8.2. A differentiable map f : M → N induces linear transformations

f∗ : Hk(N) → Hk(M) for all k.
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Proof. ByTheorem5.3.3, thepullback f∗ : Λk(N) → Λk(M)maps closed forms to closed

forms, and exact forms to exact forms. The first property means that f∗ restricts to a
map f∗ : Zk(N) → Zk(M), and the second one implies the claim by the remark before

the Proposition.

By definition of the pullback, if f : M1 → M2 and g : M2 → M3, then g ∘ f : M1 → M3

has as pullback

(g ∘ f )∗ = f∗ ∘ g∗ : Hk(M3) → Hk(M1).
One consequence is that diffeomorphic manifolds have isomorphic cohomology

spaces: the pullback 1∗M of the identity map 1M : M → M is the identity on the

cohomology of M, so that if f : M → N is a diffeomorphism, then f∗ ∘ f−1∗ = 1Hk(N)

and f−1∗ ∘ f∗ = 1Hk (M). Thus, f∗ is an isomorphism with inverse f−1∗.
An equivalent formulation is that if two manifolds have different cohomology,

then they are not diffeomorphic. It turns out that a much stronger property holds. In

order to state it, we will need the following:

Definition 5.8.2. Two maps f , g : M → N are said to be homotopic if there exists a

map H : M × [0, 1] → N such that H ∘ 𝚤0 = f and H ∘ 𝚤1 = g, where 𝚤t : M → M × [0,1]
maps p ∈ M to (p, t), 0 ≤ t ≤ 1. In this case, H is called a homotopybetween f and g.

Roughly speaking, a homotopy smoothly deforms f into g by a “curve of maps” t →
H ∘ 𝚤t joining f to g. Two spaces M and N are said to be homotopy equivalent if there

exist maps f : M → N and g : N → M such that g ∘ f and f ∘ g are homotopic to the

identity maps on the two spaces. Spaces that are diffeomorphic are of course homo-

topy equivalent, but the latter concept is much weaker: for example, ℝn is homotopy

equivalent to the one point subset consisting of the origin. In fact, if f : ℝn → {0}
maps everything to the origin, and g : {0} → ℝn is inclusion, then f ∘ g is the identity
on {0}, whereas g ∘ f is homotopic to the identity onℝn viaH : ℝn× [0,1] → ℝn, where

H(p, t) = (1 − t)p. In general, a manifold that is homotopy equivalent to a one point

subset is said to be contractible; alternatively,M is contractible if the identity map on

M is homotopic to a constant map (i.e., to one that maps all ofM to a single point).

Let πM and t denote the projections of the product M × [0,1] onto the factors, so
that (πM∗, t∗) : (M × [0, 1])(p,t0) → Mp × [0, 1]t0 is an isomorphism, cf. Exercise 3.14.

Denote by D̃ the vector field on M × [0,1] given by D̃(p, t0) = (πM∗ , t∗)−1(p,t0)(0,D(t0)).
Alternatively, D̃(p, t0) = 𝚥p∗D(t0), where 𝚥p : [0,1] → M × [0, 1] maps t0 to (p, t0).
Lemma 5.8.1. Any ω ∈ Λk(M× [0,1]) can be uniquelywrittenas ω = ω1 + dt∧χ, where
ω1 and χ are k and (k −1)-forms onM × [0, 1] respectively such that i(D̃)ω1 = i(D̃)χ = 0.

Proof. Because of the isomorphism (πM∗ , t∗), it suffices to check that if a vector space

V decomposes asW × ℝ, then any ω ∈ Λk(V) can be uniquely written as ω1 + α ∧ η ,

where i(t)ω1, i(t)η = 0 for t ∈ ℝ and α ∈ ℝ∗ \ {0}. But this is clear, since if α1, . . . , αn is
a basis ofW∗, then α1, . . . , αn, α is a basis of V∗.
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Writing ω = ω1 + dt ∧ χ ∈ Λk(M × [0, 1]) as in Lemma 5.8.1, define a linear operator

I : Ak(M × [0,1]) → Ak−1(M) by

Iω(p)(v1, . . . , vk−1) = 1∫
0

χ (p, t)(𝚤t∗v1, . . . , 𝚤t∗vk−1) dt. (5.8.1)

Proposition 5.8.3. If ω is a k-form onM × [0,1], then 𝚤∗1ω − 𝚤∗0ω = d(Iω) + I( dω).

Proof. Let (U, x) be a chart onM, so that (U × [0,1])(x̄, t)) is a chart onM× [0, 1], where
x̄ = x ∘πM. By Lemma 5.8.1, the restriction of ω can be written as a sumof terms of two

types:

(1) f dx̄i1 ∧ ⋅ ⋅ ⋅ ∧ dx̄ik for some function f on U, and

(2) f dt ∧ d ̄xi1 ∧ ⋅ ⋅ ⋅ ∧ d ̄xik−1 .
Since I is linear, it suffices to consider the case whenω is one of the above types.

If ω is of type 1, then

dω = (terms not involving dt) + (𝜕f/𝜕t) dt ∧ d ̄xi1 ∧ ⋅ ⋅ ⋅ ∧ d ̄xik .
Now, for any t ∈ [0,1], πM ∘ 𝚤t = 1M, so that 𝚤∗t d ̄xi = d(x̄i ∘ 𝚤t) = dxi, and

I( dω)(p)( 𝜕𝜕xj1 , . . . , 𝜕𝜕xjk )
=

1∫
0

𝜕f𝜕t (p, t)( d ̄xi1 ∧ ⋅ ⋅ ⋅ ∧ d ̄xik )(p, t)(𝚤t∗ 𝜕𝜕xj1 , . . . , 𝚤t∗ 𝜕𝜕xjk ) dt

=

1∫
0

𝜕f𝜕t (p, t)( dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p)( 𝜕𝜕xj1 , . . . , 𝜕𝜕xjk ) dt

= ( 1∫
0

𝜕f𝜕t (p, t) dt)( dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p)( 𝜕𝜕xj1 , . . . , 𝜕𝜕xjk ).
Thus,

I( dω)(p) = (f (p, 1) − f (p, 0))( dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p)
= 𝚤∗1ω(p) − 𝚤∗0ω(p),

which proves the result in this case, since Iω = 0.

Suppose now that ω is of type 2; then 𝚤∗1ω = 𝚤∗0ω = 0 because 𝚤∗t0 dt = 0 for any t0. On
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the other hand,

I( dω)(p) = I( n∑
l=1

𝜕f𝜕x̄l dx̄l ∧ dt ∧ dx̄i1 ∧ ⋅ ⋅ ⋅ ∧ dx̄ik)(p)
= I( − n∑

l=1

𝜕f𝜕x̄l dt ∧ dx̄l ∧ dx̄i1 ∧ ⋅ ⋅ ⋅ ∧ dx̄ik)(p)
= −∑

l

( 1∫
0

𝜕f𝜕x̄l (p, t) dt)( dxl ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p),
while

d(Iω)(p) = d([ 1∫
0

f (p, t) dt]dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik)(p)
= ∑

l

𝜕𝜕xl( 1∫
0

f (p, t) dt)( dxl ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p)

= ∑
l

( 1∫
0

𝜕f𝜕x̄l (p, t) dt)( dxl ∧ dxi1 ∧ ⋅ ⋅ ⋅ ∧ dxik )(p),
so that I( dω) + d(Iω) = 0.

Theorem 5.8.1. If f0, f1 : M → N are homotopic, then the induced linear maps f∗0 , f∗1 :
Hk(N) → Hk(M) are equal for every k.

Proof. Let H : M × [0, 1] → N be a homotopy, with H ∘ 𝚤j = fj, j = 0,1. Then for any

closed k-form ω on N,

f ∗1ω − f∗0 ω = (𝚤∗1 − 𝚤∗0)H∗ω = ( dI + I d)H∗ω = dIH∗ω + IH∗ dω = dIH∗ω

is exact, so that f ∗1ω + Bk(M) = f∗0 ω + Bk(M).

Corollary 5.8.1. If M is contractible, then Hk(M) = {0} for all k ≥ 1.

Proof. If M is contractible, then there is a point p0 ∈ M such that the constant map

f : M → M, f (p) = p0, is homotopic to the identity map 1M of M. By Theorem 5.8.1,

1∗M , f∗ : Hk(M) → Hk(M) are equal. But 1∗M is the identity map on Hk(M), whereas

f∗ω = 0 for any ω ∈ Λk(M) if k ≥ 1 because f∗ = 0.

In particular, a compact oriented manifold of positive dimension n cannot be con-

tractible, since its n-th cohomology is nontrivial.

Corollary 5.8.2 (Poincaré Lemma). Let α be a closed k-form on a manifold M, k ≥ 1.

Then any p ∈ M has a neighborhood on which the restriction of α is exact.

Proof. Let (V , h) be a local parametrization ofM withh(0) = p, and 𝜀 > 0 small enough

that B𝜀(0) ⊂ V. Then U = h(B𝜀(0)) is a contractible neighborhood of p. If 𝚤 : U → M
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denotes inclusion, then the restriction 𝚤∗α of α toU is a closed form on a contractible

manifold, and is therefore exact by the previous corollary.

We emphasize again that the conclusion of the Poincaré Lemma is local: the 2-formω

from Examples and Remarks 5.6.1 (iii) is the differential of the polar angle function θ

in a neighborhood of any point, even though it is not exact.

5.9 Exercises

5.1. Prove that a k-tensor (k > 1) T on V is alternating if and only if

T(. . . , v, . . . , v, . . . ) = 0, v ∈ V .
5.2. Given a k-tensor T on V, define Ts by

Ts(v1 , . . . , vk) = 1

k! ∑
σ∈Sk

T(vσ(1), . . . , vσ(k)),
for vi ∈ V. Show that Ts is a symmetric k-tensor. Is it true that T = Ts + Ta?

5.3. Prove Proposition 5.1.1.

5.4. Prove that if α is alternating, then αa = α , and conclude that for any k-tensor T,

(Ta)a = Ta.

5.5. Show that α ∧ β = (−1)klβ ∧ α for α ∈ Λk(V) and β ∈ Λl(V). Hint: It is enough to

show this for α = α1 ∧ ⋅ ⋅ ⋅ ∧ αk and β = β 1 ∧ ⋅ ⋅ ⋅ ∧ β l, where αi, β j ∈ V∗.

5.6. Prove that any form on V is decomposable ifV has dimension ≤ 3. Show that this

is false if dim V ≥ 4. Hint:Use Proposition 5.2.2.

5.7. Prove that α ∈ Λ2(V) is decomposable if and only if α ∧ α = 0.Hint:Use Proposi-

tion 5.2.2.

5.8. LetV be an n-dimensional vector space. Show that any n-form onV is the volume

form of some inner product and some orientation on V. Are the inner product and

orientation unique?

5.9. Show that ifW is a subspace of V, then the operation

c(v + W) = (cv) + W , c ∈ ℝ, v ∈ V ,
on the set V/W = {v + W | v ∈ V} is well defined; i.e., if ui + W = vi + W, then

(cui) + W = (cvi) + W . What is the zero vector in the space V/W?

5.10. Let V be an n-dimensional oriented inner product space. This exercise con-

structs an isomorphism ⋆ : Λk(V) → Λn−k(V), k = 1, . . . , n − 1, called the Hodge star
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operator, that preserves decomposable elements. In particular, it shows that every

element in Λn−1(V) ≅ Λ1(V) = V∗ is decomposable.

Recall that a linear transformation is entirely determined by its values on a basis.

So let v1, . . . , vn be a positively oriented orthonormal basis, α1 , . . . , αn its dual basis,

and ω = α1 ∧ ⋅ ⋅ ⋅ ∧ αn ∈ Λn(V) the volume form of V.

(a) Show that for any basis element

α ∈ B = {αi1 ∧ ⋅ ⋅ ⋅ ∧ αik | 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ n}
of the induced basis B ofΛk(V), there exists a uniqueβ ∈ Λn−k(V) such that α∧β =

ω . Define ⋆α = β and extend linearly to all Λk(V). Hint: β or −β belongs to the

induced basis of Λn−k(V).
(b) Prove that ⋆ ∘ ⋆ = (−1)k(n−k)1Λk(V)

. In particular, ⋆ is an isomorphism.

(c) Prove that if α is decomposable, then so is ⋆α . Hint: a decomposable α corre-

sponds to a k-dimensional subspaceW ofV. Consider its orthogonal complement.

(d) Show that ⋆ does not depend on the particular choice of basis.

5.11. Let V be a vector space with basis {v1, v2, v3}. According to Exercise 5.10, every
element of Λ2(V) is decomposable. If αi is the basis dual to vi, write α1 ∧α2 + α2 ∧α3 +
α1 ∧ α3 as a decomposable element.

5.12. Let V be an oriented n-dimensional inner product space with volume form ω

and musical isomorphisms ♯, ♭. Given v1 , . . . , vn−1 ∈ V, define their cross product to be
the vector

v1 × ⋅ ⋅ ⋅ × vn−1 := (⋆(v♭1 ∧ ⋅ ⋅ ⋅ ∧ v♭n−1))♯ ∈ V .
Here, ⋆ is the Hodge star operator from Exercise 5.10.

(a) Show that ⟨v1 × ⋅ ⋅ ⋅ × vn−1,u⟩ = ω(v1, . . . , vn−1 ,u), u ∈ V.

(b) Prove that when V = ℝ3 with the standard inner product and orientation, this

definition coincides with the usual cross product.

5.13. Recall that the musical isomorphisms in ℝn extend naturally to each tangent

spaceand its dual, and thus establisha bijective correspondencebetween vector fields

and 1-forms. The same is true for vector fields and one-forms on a manifold. Similarly,

ifMn is an oriented manifold, then the Hodge star operator from Exercise 5.10 on each

tangent space induces a bijective correspondence ⋆ : Λk(M) → Λn−k(M).

(a) The gradient of f : M → ℝ is the vector field ∇f on M given by (df )♯. Show that if

M = ℝn, this coincides with the usual definition of gradient.

(b) Given a vector field X on an oriented manifoldM, the divergence of X is the func-

tion div X = ⋆ d ⋆ X♭. Prove that whenM = ℝn and X = ∑i X
iDi, then

divX = ∑
j

Dj(X
j).
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(c) Suppose X is a vector field onℝ3. The curl ofX is the vector field curlX = (⋆ dX♭)♯.
Show that if Xi = ⟨X,Di⟩, then

curl X = (D2X
3 − D3X

2)D1 + (D3X
1 − D1X

3)D2 + (D1X
2 − D2X

1)D3.
5.14. Let X, Y denote vector fields onℝ3, f : ℝ3 → ℝ. Prove the following identities:
(a) curl(X + Y) = curl(X) + curl(Y) (see previous exercise for the definition of curl).

(b) curl(fX) = f curl X + ∇f × X.
(c) div(fX) = f divX + ⟨∇f ,X⟩.
(d) div(X × Y) = ⟨curlX,Y⟩ − ⟨curlY ,X⟩.
(e) div curlX = 0.

(f) curl ∇f = 0.

5.15. The next two problems examine in more detail the concept of divergence; they

show, in particular, that a vector field X has vanishing divergence if and only if its

flowΦ t preserves the volume form ω ; i.e.,Φ ∗
t ω = ω for all t. For simplicity, we limit

ourselves to the caseM = ℝn.

The Lie derivativeof a k-formα with respect to a vector fieldX is the k-form LXα defined

by

LXα(p) = lim
t→0

1

t
(Φ ∗

t ω(p) − ω(p)) ,
whereΦ t denotes the flow of X.
This problem shows that the divergence of X satisfies LXω = (div X)ω , where ω is

the volume form of ℝn. The next problem deals with the statement about vanishing

divergence.

(a) Show thatΦ ∗
t ω = (det DΦ t)ω . Thus, LXω(p) = f (0)ω(p), where

f (t) = detM(t), M(t) = DΦ t(p).
(b) Use the chain rule to prove that f (t) = ∑i⟨M

i (t), ei⟩, where Mi denotes the i-th

column ofM.

(c) LetΦ : ℝn+1 ⊃ U → ℝn be given byΦ (t,q) = Φ t(q). Show that

M
i (t) = D(DΦ (t,p)ei)e1 = D(DΦ (t,p)e1)ei,

so that

M
i (t) = D(π2(X ∘Φ (t,p)))ei,

where π2 : Tℝn = ℝn × ℝn → ℝn denotes projection. Conclude that LXω =

(div X)ω .

5.16. This problem uses notation and results from the previous one.

(a) Show that if the volume form ω of ℝn is invariant under the flow Φt of a vector

field X (in the sense thatΦ ∗
t ω = ω), then the divergence of X is identically zero.

(b) Conversely, suppose that a vector field with flow Φt has zero divergence. Given

p ∈ ℝn, consider as before f (t) = det(DΦt )(p), so that f (0) = 0. Prove that f (t) = 0
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for all t, and conclude thatΦ ∗
t ω = ω .Hint:Use an argument similar to that in the

last part of the proof of Theorem 2.9.4.

5.17. The spectral theorem describes a canonical form for self-adjoint operators on

an inner product space V. This problemdescribes one for skew-adjoint operators; i.e.,

operators L satisfying ⟨Lu, v⟩ = −⟨Lv,u⟩ for any u, v ∈ V.

Let V be an inner product space, and o(V) the space of skew-adjoint operators

on V.

(a) Prove that the map o(V) → Λ2(V) that assigns to L ∈ o(V) the element α ∈ Λ2(V)

given by α(v,w) = ⟨Lv,w⟩, is an isomorphism.

(b) Use Proposition 5.2.2 to show that for any L ∈ o(V), there exists an orthonormal

basis in which the matrix of L has the form

[[[[[[[[[

0 −λ1 0 0 ⋅ ⋅ ⋅
λ1 0 0 0 . . .
0 0 0 −λ2 ⋅ ⋅ ⋅
0 0 λ2 0 . . .
...

...
...

...
. . .

]]]]]]]]]
with the last row and column consisting of zeros if the dimension of V is odd.

5.18. An (orthonormal) moving frame on ℝn is an orthonormal basis of vector fields

X1, . . . ,Xn on ℝn. The term “basis” is of course an abuse of notation; what is really

meant is that when evaluated at any point, these vector fields form a basis of the

tangent space at that point. Moving frames were introduced by E. Cartan to study the

geometry of manifolds.

Let X1, . . . ,Xn denote a moving frame onℝn. Given p ∈ ℝn and 1 ≤ i, j ≤ n, the mapℝn
p → ℝ
u → ⟨∇uXi,Xj(p)⟩

is linear, and thus defines a one-form ωj
i
(p) on ℝn

p. The n
2 forms ωj

i
are called the

connection forms ofℝn in the moving frame.

(a) Show that ω
j
i = −ωi

j .

(b) Let X
j
i
= ⟨Xi,Dj⟩. By definition,∇XXi = ∑

k

ωk
i (X)Xk = ∑

k,j
ωk
i (X)X

j
k
Dj.

Use this to prove that dXj
i
= ∑k ω

k
i X

j
k
.

(c) Let ω1, . . . ,ωn denote the one-forms that are dual to the moving frame: ωi = X♭
i ,

so that ωi = ∑j X
j
i du

j. Prove the structural equations ofℝn:

dωi = −∑
k

ωk
i ∧ ωk (5.9.1)

dω
j
i
= ∑

k

ωk
i ∧ ω

j

k
. (5.9.2)
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5.19. A Riemannian manifold is a pair (M, g), whereM is a manifold and g a Rieman-

nian metric on M, cf. Example 5.1.1. Although we have mostly been using the metric

induced from the ambient Euclidean space, there are many other interesting exam-

ples: given κ ∈ ℝ, denote by Uκ the open set

Uκ =
{{{ℝn, if κ ≥ 0;{a ∈ ℝn | |a|2 < 1

|κ | , if κ < 0}.
Show that the tensor field gκ on Uκ , where

gκ (a) =
4

(1 + κ |a|2)2 n∑
i=1

dui ⊗ dui, a ∈ Uκ ,
is a Riemannian metric.

Notice thatwhen κ = 0,we recover standardEuclidean space,which is flat. In general,

one can define the curvature tensor of a Riemannian metric in the same way we did

for themetric induced fromEuclidean space. The same is true for isometries, and as in

Euclidean space, the curvature tensor is preserved under isometries. Thenext exercise

shows that when κ > 0, (Uκ , gκ ) has constant curvature κ . This turns out tobe true also
when κ < 0.

5.20. If (M1, g1) and (M2, g2) are Riemannian manifolds (see Exercise 5.19), an isome-

try between them is a diffeomorphism f : M1 → M2 such that f∗g2 = g1; i.e.,

g2(f∗pu, f∗pv) = g1(u, v), p ∈ M1, u, v ∈ M1p.
When this is the case, the two Riemannian manifolds are said to be isometric. Notice

that when the metrics are those induced by the ambient Euclidean space, this defini-

tion coincides with the usual one.

Prove that when κ > 0, the Riemannian manifold (Uκ , gκ ) from Exercise 5.19 is iso-

metric to a sphere of radius 1/√κ with a point removed (and therefore with constant

curvature κ) in ℝn+1 with the usual metric. Hint: Consider stereographic projection.

5.21. In Examples and Remarks 5.4.1 (ii), we defined the integral of a 1-form ω ∈
Λk(ℝn) along a curve c : I → ℝn to be

∫
c
ω = ∫

I

c∗ω .
Let ω be a 1-form on a connected open set U in ℝn, and consider the following three

statements:

(1) ω is exact in U.

(2) If c1 and c2 are curves in U with the same beginning and endpoints, then ∫c1 ω =∫c2 ω .
(3) If c is a closed curve (i.e., beginning and endpoints coincide) in U, then ∫c ω = 0.
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(a) Prove that 1 implies 2.

(b) Conclude that all three statements are equivalent. Hint: to show that 2 implies 1,

fix any p ∈ U, and define a function f onU by f (a) = ∫c ω , where c is any curve in
U beginning at p and ending at a. Show thatω = df .

5.22. Recall that the 0-th cohomology space ofM is

H0(M) = Z0(M) = {f : M → ℝ | df = 0}.
Prove that ifM is connected, then H0(M) ≅ ℝ.
5.23. Let a ∈ ℝn, r > 0, andM be the n-dimensional manifold with boundary Br(a).
Show that every closed k-form onM is exact.

5.24. Give examples of manifolds with boundary where the manifold boundary does

not coincide with the topological boundary of the setM fromChapter 1. Is one of these

boundaries always contained in the other?

5.25. Let M, N be open sets in ℝn whose topological boundaries are smooth (n − 1)-

dimensional manifolds, so that M̄ and N̄ are manifolds with boundaries 𝜕M and 𝜕N
respectively.

(a) Show that if N̄ ⊂ M, then ∫𝜕N ω = ∫𝜕M ω for any closed (n − 1)-form ω . (It should

really be the pullback of ω by the respective inclusion maps, of course). Hint:

apply Stokes’ theorem to M̄ \ N.
(b) Show that if

ω =
−u2

(u1)2 + (u2)2
du1 +

u1

(u1)2 + (u2)2
du2 ,

then ∫𝜕M ω = 2π , with M the region pictured below. Hint: see Examples and

Remarks 5.6.1 (iii).

M

(c) Prove that ifM is the region above but translated so that it no longer contains the

origin, then ∫𝜕M ω = 0.
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5.26. The higher-dimensional version of the 1-form ω on ℝ2 \ {0} from part (b) in the

previous problem is the 2-form

Ω =
1((u1)2 + (u2)2 + (u3)2) (u1 du2 ∧ du3 + u2 du3 ∧ du1 + u3 du1 ∧ du2)

on ℝ3 \ {0}.
(a) Show that Ω is closed.

(b) Extend the concepts of determinant and cross product to the tangent space of ℝ3

at any point p by means of the canonical isomorphism Ip : ℝ3 → ℝ3
p. Show that

for α = u1 du2 ∧ du3 + u2 du3 ∧ du1 + u3 du1 ∧ du2,

α(p)(u, v) = det [P(p) u v] = ⟨P(p),u × v⟩, p ∈ ℝ3 \ {0}, u, v ∈ ℝ3
p,

where P = ∑i u
iDi is the position vector field.

(c) Conclude that if μ is the volume form of S2(r) and 𝚤 : S2(r) → ℝ3 \ {0} denotes the
inclusion map, then

μ = r2𝚤∗Ω , so that ∫
S2(r)

𝚤∗Ω = 4π .
Why does this imply that Ω is not exact?

(d) Let M be a bounded, open set in ℝ3 whose topological boundary 𝜕M is a smooth

manifold. Show that the integral of Ω over 𝜕M equals zero if M̄ does not contain

the origin, and 4π otherwise.

5.27. Let α be the 1-form onℝ3 given by

α = ln((u2)2 + 1) du1 + u1u2u3 du2 − (u2)2eu
1u2 du3 ,

and M the manifold with boundary consisting of the upper hemisphere of the unit

sphere centered at the origin, oriented so that the position vector field is the positive

unit normal field. If 𝚤 : M → ℝ3 denotes inclusion, determine ∫
M
𝚤∗ dα . Hint: Direct

computation is difficult, and applying Stokes’ theorem isn’t easy either. The integral

of α along the boundary 𝜕Mmay, however, be computed by applying Stokes’ theorem

to anymanifold that has 𝜕M as boundary.

5.28. Suppose that a is a regular valueof f : ℝ3 → ℝ, and thatM = f−1(a) ̸= 0, so that
M is a 2-dimensional manifold. Let α be the 2-form onℝ3 given by

α = D1f du
2 ∧ du3 + D2f du

3 ∧ du1 + D3f du
1 ∧ du2.

Show that if 𝚤 : M → ℝ3 is inclusion, then 𝚤∗α is a nowhere-zero 2-form on M, so

that the latter is orientable. In fact, prove that (1/|∇f |)𝚤∗α is the volume form of this

orientation. Hint: the 2-form α from Exercise 5.26 (b) is the special case when f (x) =
(1/2)|x|2.
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5.29. The divergence of a vector field on ℝn was defined in Exercise 5.13 for arbitrary

n. Formulate and prove a divergence theorem in ℝn.

5.30. The Laplacianof f : ℝn → ℝ is the function Δ f = div∇f . f is said to be harmonic
if its Laplacian is identically zero.

LetM be a connected, compact 3-dimensional manifoldwith boundary inℝ3, f : M →ℝ a harmonic function.

(a) Show that ∫𝜕M⟨∇f ,N⟩ η = 0.

(b) Prove that ∫
𝜕M

⟨f∇f ,N⟩ η = ∫
M

|∇f |2 du1 ∧ du2 ∧ du3.
Conclude that the only harmonic functions f onM that satisfy

∫
𝜕M

⟨f∇f ,N⟩ η = 0

are the constant ones.

5.31. Let f , g : ℝ3 → ℝ be differentiable, and M ⊂ ℝ3 a compact 3-dimensional

manifold with boundary. Prove Green’s identities:

∫
M

(⟨∇f , ∇g⟩ + fΔ g) du1 ∧ du2 ∧ du3 = ∫
𝜕M

f ⟨∇g,N⟩ η ;
∫
M

(fΔ g − gΔ f ) du1 ∧ du2 ∧ du3 = ∫
𝜕M

⟨f∇g − g∇f ,N⟩ η .
5.32. (a) Prove that g : ℝ3 \ {0} → ℝ, where g(p) = 1/|p|, is harmonic.

(b) Suppose f : ℝ3 → ℝ is harmonic on some open setU, and consider p0, r > 0 such

that Br(p0) ⊂ U. Show that for any 0 < r < r,

1

4πr2
∫

𝜕B
r
(p0)

f η =
1

4πr2
∫

𝜕Br(p0)

f η ,
by applying Green’s second identity (Exercise 5.31) to f and g on themanifold with

boundary Br(p0) \ Br (p0). Conclude that
f (p0) =

1

4πr2
∫

𝜕Br(p0)

f η .
This identity is known as themean value theorem for harmonic functions.

(c) Prove themaximum principle for harmonic functions: If f is harmonic on a closed

and bounded region K ⊂ ℝ3, then the maximum and minimum of f occur on the

(topological) boundary of K. Hint:We may assume f is not constant. If, say, the

maximum were to occur at an interior point p0, this would contradict the mean

value theorem.
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5.33. LetX be a vector field onℝ3, andω = X♭ the dual 1-form.Given a ∈ ℝ3, consider

any plane P through a and a unit vector n perpendicular to P. As usual, we identify n
with a vector in the tangent space at a. Show that if Sr denotes the circle of radius r

centered at a that lies in P, then

⟨curlX(a),n⟩ = lim
r→0

1

πr2
∫
Sr

𝚤∗ω .
Here 𝚤 denotes the inclusion map of the circle in the disk of radius r in P, and the disk

is oriented so that n is the positive unit normal.

IfX represents the velocity field of a fluid inℝ3, interpret the above identity in terms of

rotation of the fluid about an axis. Which axis direction measures maximal rotation?

A fluid with zero curl everywhere is said to be irrotational.





6 Manifolds as metric spaces
In this chapter, we endow any connected manifold M with a distance function (see

Section 1.8). This distance is not the restriction of the standard distance in the ambi-

ent Euclidean space, but rather the length of the shortest path in the space between

two points, provided such a path exists. It tuns out that the open sets this distance

generates coincide with the open sets of M induced by the ambient space: i.e., those

of the form U ∩M, where U is open in the ambient space. We begin by taking a more

detailed lookat geodesics, since they represent thekind of curveshaving this property.

6.1 Extremal properties of geodesics

One aim of this section is to establish the fact that geodesics are locally length-

minimizing; i.e., if c is a geodesic that is short enough, then it is (modulo repa-

rametrization) the shortest curve between its endpoints. This is clearly not true in

general for arbitrarily long geodesics, since for example on a sphere, any geodesic

only minimizes up to the antipodal point. In order to state this more precisely, we

need to introduce the following concept: If c : [0,a] → M is a curve in M ⊂ ℝn, a

variation of c is a map V : [0,a] × [−𝜀, 𝜀] → M such that if Vs : [0, a] → M denotes the

curve Vs(t) = V(t, s) for |s| ≤ 𝜀, then V0 = c.
Notice that ∇DV̇s(t) = ∇D1

V∗D1(t, s). In fact, if 𝚤s : ℝ → ℝ2 is given by 𝚤s(t) = (t, s),
then Vs = V ∘ 𝚤s, so that

V̇s = V∗𝚤s∗D = V∗D1 ∘ 𝚤s,
and ∇DV̇s = ∇D(V∗D1 ∘ 𝚤s) = ∇𝚤s∗DV∗D1 = ∇D1∘𝚤sV∗D1 = (∇D1

V∗D1) ∘ 𝚤s.
Lemma 6.1.1. If V is a variation, then ∇D1

V∗D2 = ∇D2
V∗D1.

Proof. This is, after deciphering notation, just the fact that mixed partial derivatives

are equal. First of all, it is enough to show that DD1
V∗D2 = DD2

V∗D1. Now,

V∗D2(t0, s0) = IV(t0 ,s0)DV(t0, s0)e2 = IV(t0 ,s0)
[[[[
D2V1

...

D2Vn

]]]] (t0, s0),
so that

DD1
V∗D2 = IV

[[[[
D1D2V1

...

D1D2Vn

]]]] = IV
[[[[
D2D1V1

...

D2D1Vn

]]]] = DD2
V∗D1.

Recall that we defined the inner product on the tangent space of ℝn at a point p to be

theone forwhich the canonical isomorphismIp : ℝn → ℝn
p becomesa linear isometry.
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Given a manifoldM and p ∈ M, the tangent space Mp is also an inner product space,

and we can, in the same way, define for any v ∈ Mp a canonical inner product on (Mp)v
by requiring that Iv : Mp → (Mp)v be a linear isometry. The following result may

then be interpreted as saying that the derivative of the exponential map at a point is

“radially” isometric. Its kernel is orthogonal to the radial direction.

Lemma 6.1.2 (The Gauss lemma). Let p ∈ M, v ∈ M̃p ⊂ Mp in the domain M̃p of expp.

Consider the ray φv : ℝ → Mp in direction v, φv(t) = tv, and let u = φ̇v(1) ∈ (Mp)v . If

w ∈ (Mp)v, then ⟨expp∗ u, expp∗w⟩ = ⟨u,w⟩.
Proof. We may assume v ̸= 0, for otherwise u = 0, and the statement is trivial.

Consider the variation

V : [0,1] × [−𝜀, 𝜀] → M,
(t, s) → expp (t(v + sI−1v w))

of cv, where 𝜀 is chosen small enough that V is defined. Each Vs is a geodesic, so that(∇D1
V∗D1) (t, s) = (∇DV̇s) (t) = 0.

Furthermore, the tangent vector field of Vs has constant norm equal to

|V̇s(0)| = |V∗D1(0, s)| = |v + sI−1v w|.
Since the partial derivative of ⟨V∗D1,V∗D2⟩with respect to t equals

D1⟨V∗D1,V∗D2⟩ = ⟨∇D1
V∗D1,V∗V2⟩ + ⟨V∗D1, ∇D1

V∗D2⟩
= ⟨V∗D1, ∇D1

V∗D2⟩ = ⟨V∗D1, ∇D2
V∗D1⟩

=
1

2
D2⟨V∗D1,V∗D1⟩,

we deduce that

D1⟨V∗D1,V∗D2⟩(t, s) = 1

2
D2(|v|2 + 2s⟨v, I−1v w⟩ + s2|I−1v w|)

= ⟨v, I−1v w⟩ + 2s|I−1v w|,
which becomes ⟨v, I−1v w⟩when s = 0. Now,⟨v, I−1v w⟩ = ⟨Ivv,w⟩ = ⟨u,w⟩,
so that the function

t → ⟨V∗D1,V∗D2⟩(t,0)
has constant derivative ⟨u,w⟩ on [0,1]. But it vanishes at the origin (because

V∗D2(0,0) = 0), so that ⟨V∗D1,V∗D2⟩(t,0) = t⟨u,w⟩. (6.1.1)
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On the other hand, the very definition of V implies that⟨V∗D1,V∗D2⟩(1, 0) = ⟨expp∗ u, expp∗w⟩.
Comparing this expression with (6.1.1) now yields the statement.

Consider a curve 𝛾 : I → Mp. If 𝛾(t) ̸= 0, we may write �̇�(t) = �̇�r(t) + �̇�θ (t), with

�̇�r =
1|𝛾|2 ⟨�̇�, I𝛾𝛾⟩I𝛾𝛾 and �̇�θ = �̇� − �̇�r.

�̇�r and �̇�θ are called the radial and polar components of �̇� respectively. Notice that they

are mutually orthogonal, because⟨�̇�θ , �̇�r⟩ = ⟨�̇�, �̇�r⟩ − ⟨�̇�r, �̇�r⟩
=

1|𝛾|2 ⟨�̇�, I𝛾𝛾⟩2 − 1|𝛾|4 ⟨�̇�, I𝛾𝛾⟩2⟨I𝛾𝛾, I𝛾𝛾⟩
= 0,

since ⟨I
𝛾
𝛾, I
𝛾
𝛾⟩ = |𝛾|2 by definition of the inner product on the “double” tangent space

(Mp)𝛾(t). When 𝛾 is a ray φv, i.e., 𝛾(t) = tv for some v ∈ Mp, then �̇� = �̇�r, and 𝛾 is

length-minimizing. The following lemma says that this property is preserved under

the exponential map:

Lemma 6.1.3. Let p ∈ M, and consider a vector v in the domain M̃p of expp. Denote by

φv : [0,1] → M̃p the ray from 0 to v, φv(t) = tv. If 𝛾 : [0,1] → M̃p is any (piecewise-

smooth) curve with 𝛾(0) = φv(0) = 0 and 𝛾(1) = φv(1) = v, then

L(exp ∘𝛾) ≥ L(exp ∘φv).
Inequality is strict if there is some t0 ∈ [0,1] for which the polar component of �̇� at t0
does not vanish under the exponential map; i.e., if expp∗ �̇�θ (t0) ̸= 0.

Proof. We may assume, by Proposition 2.4.1, that 𝛾 is differentiable, and that both v
and 𝛾(t) are nonzero for t ∈ [0, 1]. By the Gauss Lemma,| expp∗ �̇�|2 = | expp∗ �̇�r|2 + | expp∗ �̇�θ |2 ≥ | expp∗ �̇�r|2 = |�̇�r|2 . (6.1.2)

Now, |𝛾| = |�̇�r|, because|𝛾| = ⟨𝛾, 𝛾⟩1/2 = ⟨𝛾, 𝛾⟩|𝛾| =
⟨I
𝛾
𝛾, �̇�⟩|𝛾| = |�̇�r|.

Thus,

L(expp ∘𝛾) = 1∫
0

| expp∗ �̇�| ≥ 1∫
0

|�̇�r| = 1∫
0

|𝛾| = |𝛾(1)| = |v|
= L(expp ∘φv).

The last assertion of the lemma is clear, since the inequality in (6.1.2) is strict on some

interval around t0 if expp∗ �̇�θ (t0) ̸= 0.



270 | 6 Manifolds as metric spaces

φv
𝛾

exp ∘φv exp ∘𝛾

The following theorem is a mathematical formulation of the first sentence in this sec-

tion:

Theorem 6.1.1. Let p ∈ M, and choose 𝜀 > 0 so that expp : U𝜀 → expp(U𝜀) is a
diffeomorphism, where U𝜀 = {v ∈ Mp | |v| < 𝜀} is the open ball of radius 𝜀 centered
at 0 ∈ Mp. For v ∈ U𝜀, denote as usual by cv : [0,1] → M the geodesic in direc-

tion v, cv(t) = expp(tv). Then for any piecewise-smooth curve c : [0,1] → M with

c(0) = cv(0) = p and c(1) = cv(1) = q, the length of c is at least as great as that of cv,
and is strictly greater unless c equals cv up to reparametrization.

Proof. For u ∈ U𝜀, let φu be the ray t → tu. Suppose first that the image of c is con-
tained inside expp(U𝜀), so that there exists a lift 𝛾 of c in U𝜀; i.e., c = expp ∘𝛾, 𝛾(0) = 0,
𝛾(1) = v. By Lemma 6.1.3, L(c) ≥ L(cv). We claim that if c is not a reparametrization

of cv, then for some t ∈ [0, 1], �̇� is not radial (and therefore L(c) > L(cv) by the same

lemma): Otherwise,

L(𝛾) =

1∫
0

|�̇�| = 1∫
0

|�̇�r| = 1∫
0

|𝛾| = |𝛾(1)| (6.1.3)

as in the proof of Lemma 6.1.3. On the other hand, there exists t0 ∈ (0,1) such that

𝛾(t0) ∉ {sv | s ∈ [0,1]}. Then
L(𝛾) = L(𝛾|[0,t0]) + L(𝛾|[t0 ,1]) ≥ |𝛾(t0)| + |𝛾(1) − 𝛾(t0)| > |𝛾(1)|,

which contradicts (6.1.3). This establishes the result if the image of c lies in expp(U𝜀).
Next, suppose c is not entirely contained inside expp(U𝜀), and let b = sup{t | c[0, t] ⊂
expp(U𝜀)}. There must exist some t0 ∈ (0, b) such that v0 := (expp |U𝜀

)−1c(t0) has norm
greater than that of v. Then

L(c) ≥ L(c|[0,t0]) ≥ |v0 | > |v| = L(cv).
A geodesic c is said to be minimal if its length is equal to the distance between its

endpoints. Theorem 6.1.1 asserts that for each p ∈ M, there exists an 𝜀 > 0 such that

all geodesics of length less than 𝜀 emanating from p are minimal.

It is alsoworth noting that any curve c that is minimal in the above sense is neces-
sarily a geodesic: if t0 is a point in the domain of c, then the restriction of c to [t0, t0 + 𝜀]
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is also minimal whenever t0 + 𝜀 lies in the domain of c, and by Theorem 6.1.1, it is a

geodesic. Since t0 is arbitrary, the claim follows.

6.2 Jacobi fields

The previous section indicates that the exponential map expp at p ∈ M plays a funda-

mental role in the geometry of M. It turns out that its derivative can be conveniently

expressed in terms of certain vector fields along geodesics emanating from p. But first
aword on notation: if c is a curve inM and Y a vector field along c, we have in the past
used the notation Y  to denote the covariant derivative of Y along c in the ambient

Euclidean space, and Y ⊤ = ∇DY to denote the corresponding covariant derivative in

M. This notation becomes cumbersome when taking second derivatives. Furthermore,

we also wish to use the superscripts ⊤ and ⊥ to describe components of vector fields

tangent and orthogonal to c respectively rather than toM. With this in mind, we intro-

duce the following

Notation: Until further notice, the covariant derivative ∇DY of a vector field Y along

a curve c inM will also be denoted by Y .

Definition 6.2.1. Let c be a geodesic in M. A vector field Y along c is called a Jacobi

field along c if
Y  + R(Y , ċ) ̇c = 0.

Notice that the collection Jc of Jacobi fields along c is a vector space that contains ċ.
It turns out that the subspace of Jacobi fields orthogonal to ċ is the one of interest to
us: If X and Y are Jacobi, then

⟨Y ,X⟩ = −⟨R(Y , ċ) ̇c,X⟩ = −⟨R(X, ċ)ċ, Y⟩ = ⟨X,Y⟩.
Thus, ⟨X,Y⟩−⟨Y ,X⟩must be constant, since its derivative is ⟨X,Y⟩−⟨Y ,X⟩ = 0. In

particular, ⟨Y , ċ⟩ = ⟨Y , ċ⟩ = ⟨Y , ċ⟩−⟨Y , ċ⟩ is constant, so that for a normal geodesic,
the tangential component Y⊤ of Y is given by

Y⊤ = ⟨Y , ċ⟩ċ = (a + bt)ċ, a = ⟨Y , ċ⟩(0), b = ⟨Y , ̇c⟩(0),
and satisfies the Jacobi equation. It follows that the component Y⊥ = Y − Y⊤ of Y
orthogonal to ċ is also a Jacobi field.

Proposition 6.2.1. Let c : I → M be a geodesic, t0 ∈ I. For any v,w ∈ Mc(t0) there exists

a unique Jacobi field Y along c with Y(t0) = v and Y (t0) = w.

Proof. Let X1, . . . ,Xn be parallel fields along c with Xn = ċ, and such that X1(t0), . . . ,
Xn−1(t0) form an orthonormal basis of ċ(t0)⊥. Any vector field Y along c can then be
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expressed as

Y = ∑
i

f iXi, f i =
{{{⟨Y ,Xi⟩, for i ≤ n − 1,⟨Y , Xn

|Xn|2 ⟩, for i = n.

Since Xi is parallel, Y  = ∑ f iXi. Furthermore, R(Xi, ċ)ċ = ∑n−1
j=1 h

j
i
Xj, where h

j
i
=⟨R(Xi, ċ)ċ,Xj⟩, so that R(Y , ċ)ċ = ∑n−1

i,j=1 f
ih

j
iXj. The Jacobi equation then translates into

n−1∑
j=1

(f j + n−1∑
i=1

f ihj
i
)Xj = 0, f n = 0,

or equivalently, since the Xi are linearly independent everywhere and hni =⟨R(Xi, ċ)ċ, ċ⟩ = 0,

f j +
n−1∑
i=1

f ihj
i
= 0, j = 1, . . . , n.

This is a homogeneous systemof n linear second-order equations,which has a unique

solution given initial values for f j and f j at t0; in our case, we have f j(t0) = ⟨v,Xj(t0)⟩,
f j(t0) = ⟨w,Xj(t0)⟩ (j < n), f n(t0) = ⟨v, (ċ/|ċ|2)(t0)⟩, and f n(t0) = ⟨w, (ċ/| ̇c|2)(t0)⟩,
thereby establishing the result.

The existence part of Proposition 6.2.1 implies that the linear map

Jc → Mc(t0) ×Mc(t0),
Y → (Y(t0),Y (t0))

is onto. The uniqueness part implies it has trivial kernel. In other words, it is an iso-

morphism, and the space Jc of Jacobi fields along c has dimension 2n.

Example 6.2.1. Let Mn be a space of constant curvature κ , and let cκ , sκ denote the

solutions of the differential equation

f  + κf = 0

with cκ (0) = 1, cκ (0) = 0, sκ (0) = 0, sκ (0) = 1.Thus, cκ (t) = cos√κt if κ > 0, 1 if

κ = 0, cosh√−κt if κ is negative, whereas sκ is obtained by replacing cos, 1, and cosh
by sin, 1ℝ, and sinh respectively. Consider a normal geodesic c : [0,b] → M. Given

v,w ∈ Mc(0) orthogonal to ċ(0), the Jacobi field Y along c with Y(0) = v and Y (0) = w
is given by

Y = cκE + sκF,
where E and F are the parallel fields along c with E(0) = v and F(0) = w: Indeed,
Y  = cκ E + sκ F = −κY = −R(Y , ċ)ċ, so that Y is a Jacobi field, and clearly satisfies the

initial conditions at 0.

Jacobi fields essentially arise out of variations where all curves are geodesics: If V :
[0, a] × I → M is a variation of c with V(t,0) = c(t) for t ∈ [0, a], the variational vector
field of V is the vector field Y along c given by Y(t) = V∗D2(t,0).
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Proposition 6.2.2. Let c : [0,a] → M be a geodesic. If V is a variation of c through
geodesics – meaning that Vs is a geodesic for each s, then the variational vector field

of V is Jacobi along c. Conversely, let Y be a Jacobi field along c. Then there exists a

variationV of c through geodesics whose variational vector field equals Y .

Proof. Given a variation V of c through geodesics, define vector fields X̃ and Ỹ along

V by X̃ = V∗D1, Ỹ = V∗D2. By assumption, ∇D1
X̃ = 0, so that

R(Ỹ , X̃)X̃ = ∇D2
∇D1

X̃ − ∇D1
∇D2

X̃ = −∇D1
∇D2

X̃
= −∇D1

∇D2
V∗D1 = −∇D1

∇D1
V∗D2

= −∇D1
∇D1

Ỹ .
When s = 0, the above expression becomes R(Y , ċ)ċ = −Y , and Y is Jacobi.

Conversely, suppose Y is a Jacobi field along c, and set v := Y(0),w := Y (0). Let 𝛾
be a curve with �̇�(0) = v, and X,W parallel fields along 𝛾withX(0) = ċ(0),W(0) = w.
Since t(X(0) + sW(0)) belongs to the domain of exp𝛾(0) for 0 ≤ t ≤ a and small enough

s, there must exist 𝜀 > 0 small enough so that t(X(s) + sW(s)) belongs to the domain

of exp
𝛾(s) for (t, s) ∈ [0, a] × (−𝜀, 𝜀). Consider the variation

V : [0, a] × (−𝜀, 𝜀) → M,
(t, s) → exp𝛾(s) t(X(s) + sW(s))

of c. Now, the curves t → V(t, s) are geodesics, so thevariational vector fieldZ is Jacobi
along c. Moreover, V(0, s) = 𝛾(s), so that Z(0) = �̇�(0) = v. Finally,

Z(0) = ∇D1(0,0)V∗D2 = ∇D2(0,0)V∗D1 = W(0) = w,
becauseV∗D1(0, s) = X(s) + sW(s), andX,W areparallel along𝛾. ByProposition6.2.1,

Z = Y.

p
v

w

v + sw

Mp

M
expp v

expp(v + sw)

A geodesic variation of
t → expp tv
initial point. The corre-

Y
vanishes at t
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In the special case when Y(0) = 0, the variation from Proposition 6.2.2 becomes

V(t, s) = expc(0) t(ċ(0) + sw). It is the image via the exponential map of a variation of

the line segment t → tċ(0) inMp by rays from the origin. The Jacobi field Y with initial

conditions Y(0) = 0, Y (0) = w is given by

Y(t) = expc(0)∗(tItċ(0)w). (6.2.1)

Definition 6.2.2. If c : [a, b] → M is a geodesic, t0 ∈ (a, b] is said to be a conjugate

point of c if there exists a nontrivial Jacobi field Y along c that vanishes at a and t0.

Conjugate points correspond to critical points of the exponential map: our next result

implies that for p ∈ M and u ∈ Mp, u is a critical point of expp if and only if 1 is a

conjugate point of the geodesic t → expp(tu).

Theorem 6.2.1. Let p ∈ M, u ∈ Mp, c : [0, a] → M the geodesic t → expp(tu), and
t0 ∈ (0, a]. The vector spaceJ t0

c of all Jacobi fields Y along c that vanish at 0 and t0 has
the same dimension as the kernel of the derivative of expp at t0u.

Proof. Any Jacobi field Y along c with Y(0) = 0 has the form

Y(t) = expp∗(tu)(tItuY (0))

by (6.2.1). Thus, if Y ∈ J t0
c , then

Y(t0) = expp∗(t0It0uY
(0)) = 0,

and It0uY
(0) ∈ ker expp∗(t0u). The map

L : J t0
c → ker expp∗(t0u),
Y → It0uY

(0)

is linear and has trivial kernel since any Jacobi field Y with Y(0) = Y (0) = 0 is trivial.

It is also onto, for if v lies in the kernel of the derivative of expp at t0u, then the Jacobi
field Y along cwith Y(0) = 0 and Y (0) = I−1t0uv vanishes at t0 by (6.2.1), so that Y ∈ J

t0
c

and LY = v. L is therefore an isomorphism, and the theorem follows.

Example 6.2.2. IfMn is a spaceof constant curvature κ andc : [0,∞) → M is anormal

geodesic inM, then by Example 6.2.1, any Jacobi field Y along c with Y(0) = 0 can be

written as Y = sκE, where E is a parallel field and sκ (t) = t if κ = 0, sin√κt if κ > 0,

and sinh√−κt if κ < 0. Normal geodesics therefore have no conjugate points if κ ≤ 0,

and have kπ/√κ , k ∈ ℕ, as conjugatepoints when κ > 0. In the latter case, the images

via c of the critical points alternate between c(0) and its antipode.

More generally, we have the following:

Theorem 6.2.2. In a manifold M with nonpositive curvature, geodesics have no conju-

gate points.
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Proof. Let Y denote a Jacobi field along a geodesic in M. We will show that the norm

of Y is a convex function. Since a convex nonnegative function that vanishes at two

points vanishes everywhere, the statement will follow.

Specifically, we claim that if Y(t) ̸= 0, then |Y |(t) ≥ 0. To see this, observe that |Y | =⟨Y ,Y⟩1/2 = ⟨Y ,Y ⟩/|Y |. If K(t) denotes the curvature of the plane spanned by the

tangent vector of the geodesic at t and by Y(t), then K ≤ 0 so that

|Y | = |Y |(|Y  |2 + ⟨Y ,Y ⟩) − ⟨Y ,Y ⟩2/|Y ||Y |2
=

1|Y |3 (|Y |2 |Y |2 − K|Y |4 − ⟨Y ,Y ⟩2)
≥ 1|Y |3 (|Y |2 |Y |2 − ⟨Y ,Y ⟩2),

and the last expression is nonnegative by the Cauchy-Schwartz inequality.

6.3 The length function of a variation

Let c : [0, a] → M be a normal geodesic, and V : [0, a] × I → M a variation of c,
where I is anopen interval containing0. In this section,we discuss the length function

L : I → ℝ of the variation, with L(s) denoting the lengthof the curve Vs,Vs(t) = V(t, s).
It turns out that when the variation has fixed endpoints, then c is shorter than nearby
curves in the variation, provided it has no conjugate points. Y : [0, a] → TM will

denote the variational vector field of V, Y(t) = V∗D2(t,0), and Y⊥ = Y − ⟨Y , ċ⟩ċ its
component orthogonal to the geodesic.

Lemma 6.3.1. With notation as above,

L(0) = ⟨Y , ċ⟩|a0, (6.3.1)

L(0) = ( a∫
0

|Y ⊥|2 − ⟨R(Y⊥, ċ) ̇c,Y⊥⟩) + ⟨∇D2
V∗D2(t,0), ċ(t)⟩|a0. (6.3.2)

In particular, if V has fixed endpoints (meaning V(0, s) = c(0), V(a, s) = c(a) for all s),
then

L(0) = 0, (6.3.3)

L(0) =

a∫
0

|Y ⊥|2 − ⟨R(Y⊥, ċ) ̇c,Y⊥⟩. (6.3.4)

Proof. By definition, L(s) = ∫a
0
|V∗D1|(t, s) dt. Since V∗D1 is continuous and has con-

stant norm 1 when s = 0, compactness of [0,a] implies thatV∗D1 is nonzero on [0,a]×
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(−𝜀, 𝜀) for some 𝜀 > 0. This means that L is differentiable at 0, and by Theorem 2.3.1,

L(s) =

a∫
0

D2|V∗D1|(t, s) dt = a∫
0

D2⟨V∗D1,V∗D1⟩
2|V∗D1| (t, s) dt

=

a∫
0

⟨∇D2
V∗D1,V∗D1⟩|V∗D1| (t, s) dt = a∫

0

⟨∇D1
V∗D2,V∗D1⟩|V∗D1| (t, s) dt.

Note that for the second equality above, we used the fact |a| = ⟨a,a⟩1/2 and the chain
rule. When s = 0, |V∗D1| ≡ 1, and⟨∇D1

V∗D2,V∗D1⟩(t,0) = ⟨Y , ċ⟩(t) = ⟨Y , ċ⟩(t),
so that L(0) = ⟨Y , ċ⟩|a0, which establishes (6.3.1). For (6.3.2), we have

L(s) =

a∫
0

D2 (⟨∇D1
V∗D2,V∗D1⟩|V∗D1| ) (t, s) dt,

and the integrand equals

⟨∇D2
∇D1

V∗D2,V∗D1⟩ + ⟨∇D1
V∗D2, ∇D2

V∗D1⟩|V∗D1| − ⟨∇D1
V∗D2,D1⟩2|V∗D1|3 =⟨∇D2

∇D1
V∗D2,V∗D1⟩ + |∇D1

V∗D2|2|V∗D1| − ⟨∇D1
V∗D2,D1⟩2|V∗D1|3 .

When s = 0, this expression becomes⟨∇D2
∇D1

V∗D2(t, 0), ċ(t)⟩ + |∇D1
Y |2(t) − ⟨∇D1

Y , ċ⟩2(t).
Now, |∇D1

Y |2 = |∇D1
(Y⊥ + ⟨Y , ċ⟩ċ) |2 = |∇D1

Y⊥ + D1(⟨Y , ċ⟩)ċ|2
= |∇D1

Y⊥|2 + (D1⟨Y , ċ⟩)2 (since ⟨∇D1
Y⊥, ċ⟩ = D1⟨Y⊥, ċ⟩ = 0)

= |∇D1
Y⊥|2 + ⟨∇D1

Y , ċ⟩2,
so that

L(0) =

a∫
0

(⟨∇D2
∇D1

V∗D2, ċ⟩ + |Y ⊥|2) .
Furthermore, ∇D2

∇D1
V∗D2(t,0) = ∇D1

∇D2
V∗D2(t,0) − (R(ċ,Y)Y)(t),

and since ⟨∇D1
∇D2

V∗D2(t, 0), ċ(t)⟩ = D1⟨∇D2
V∗D2(t,0), ċ(t)⟩, we obtain

L(0) = ( a∫
0

|Y ⊥|2 − ⟨R(ċ,Y)Y , ċ⟩) + ⟨∇D2
V∗D2(t,0), ċ(t)⟩|a0.
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The symmetries of the curvature tensorand the fact that ⟨R( ̇c ,Y)Y , ċ⟩ = ⟨R(ċ, Y⊥)Y⊥, ċ⟩
now yield (6.3.2).

IfV has fixed endpoints, thenV∗D2(0, s),V∗D2(a, s),Y(0) and Y(a) all vanish, thereby
establishing (6.3.3) and (6.3.4).

Wewill need amore general version of the lemma. Let I be an open interval containing

0. A piecewise smooth variation of a smooth curve c : [0, a] → M is a continuous map

V : [0, a] × I → M for which there exists a partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tl = a of [0, a]
such that each Vi := V|[ti−1 ,ti]×I is a variation of c|[ti−1,ti], i = 1, . . . , l. A piecewise smooth

vector field along c is a piecewise smooth curve Y : [0, a] → TM such that Y(t) ∈ Mc(t)
for all t. If V is a piecewise smooth variation of c, then by assumption, the mapV∗D2 :
[0,a]×I → TM, whereV∗D2|[ti−1,ti]×I = Vi∗D2, is continuous. It then induces a piecewise

smooth vector field Y along c, withY(t) = V∗D2(t,0). Even thoughY is not, in general,

differentiable at ti, Y  may be extended to a not necessarily continuous vector field on

[0,a] by defining Y (ti) = limt→t+
i
Y i (t). Notice that even though ∇D1

V∗D2(ti, s) may

not exist, ∇D2
V∗D2(ti, s) does. As before, set Y⊥ = Y − ⟨Y , ċ⟩ċ, L(s) = L(Vs), where

Vs(t) = V(t, s).
Proposition 6.3.1. Let c : [0, a] → M be a normal geodesic, and V : [0, a] × I → M a

piecewisesmoothvariationof c. Thenequations (6.3.1) through (6.3.4) fromLemma 6.3.1

hold.

Proof. With notation as above, if Li : I → ℝ denotes the length function of Vi, i =

1, . . . , l, then L = ∑i Li. The lemma then implies that

L(0) =
l∑

i=1

Li (0) =
l∑

i=1

⟨Y , ċ⟩|titi−1 = ⟨Y , ċ⟩|a0,
and

L(0) =
l∑

i=1

Li (0)

=
l∑

i=1

[ ti∫
ti−1

|Y ⊥|2 − ⟨R(Y⊥, ċ)ċ,Y⊥⟩ + ⟨∇D2
V∗D2(t, 0), ċ(t)⟩|titi−1]

= ( a∫
0

|Y ⊥|2 − ⟨R(Y⊥, ċ) ̇c,Y⊥⟩) + ⟨∇D2
V∗D2(t,0), ċ(t)⟩|a0.

The last two identities in the statement follow just as in the Lemma.

Proposition 6.3.2. Let c : [0, a] → M be a normal geodesic without conjugate points.

If V : [0,a] × I → M is a variation of c with fixed endpoints, then for sufficiently small s,
L(Vs) ≥ L(V0) = L(c), and strict inequality holds provided Vs is not a reparametrization

of c.
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Proof. Let 𝛾 : ℝ → Mp denote the ray t → tċ(0) in the tangent spaceatp = c(0), so that
c = exp ∘𝛾|[0,a]. Since c has no conjugate points, expp has maximal rank at each 𝛾(t)

and is therefore a diffeomorphism in a neighborhood of 𝛾(t). By compactness of [a, b],
there exists a partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tl = a of the interval and open setsU1, . . . ,Ul

in Mp such that 𝛾[ti−1, ti] ⊂ Ui and expp : Ui → exp(Ui) is a diffeomorphism for each

i from 1 to l. By Lemma 1.7.1, there exists for each i some 𝜀i > 0 such that V([ti−1, ti] ×
(−𝜀i , 𝜀i)) ⊂ exp(Ui). Let 𝜀 = min{𝜀1, . . . , 𝜀l} > 0, and define Ṽ : [0, a] × (−𝜀, 𝜀) → Mp by

Ṽ(t, s) = (expp|Ui
)−1(V(t, s)) if t ∈ [ti−1, ti]. Each Ṽs, where Ṽ(s) = Ṽ(t, s), is then a curve

in Mp from 0 to ̇c(0). Since Vs = exp ∘Ṽs, the claim follows from Lemma 6.1.3.

It is in general not true, though, that a geodesic without conjugate points is minimal.

The cylinder M = {(x, y, z) ∈ ℝ3 | x2 + y2 = 1} provides many examples: If a,b >
0 and a2 + b2 = 1, then by Example 3.11.1, the curve c : [0,2π/a] → M, c(t) =

(cos(at), sin(at), bt), is a normal geodesic joining (1, 0,0) to (1,0,2πb/a), and sinceM
is flat, c has no conjugatepoints by Theorem 6.2.2. Themeridian t → (1,0, t) also joins
the endpoints of c andhas length2πb/a < 2π/a. Thepropositiononly guarantees that
c will be shorter than sufficiently nearby curves in a variation with fixed endpoints.

c

The geodesic c
has no conjugate
points, but is not
minimal

6.4 The index form of a geodesic

Let c : [0,a] → M denote a normal geodesic. In this section, we introduce a sym-

metric bilinear form on the space Vc of piecewise smooth vector fields along c that
are orthogonal to c and vanish at its endpoints. This form is closely related to the

existence of conjugate points of c. As a first application, we will show that a geodesic

does not minimize length past its first conjugate point; specifically, if c : [0,a] → M

has a conjugatepoint in (0, a), then there exist curves inM joining c(0) to c(a) that are
shorter than c and arbitrarily close to it.
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Proposition 6.4.1. Let c : [0, a] → M be a normal geodesic, and Vc the (infinite-

dimensional) vector space of all piecewise smooth vector fields Y along c such that⟨Y , ċ⟩ = 0 and Y(0) = 0, Y(a) = 0. Then there exists a unique symmetric bilinear

form I onVc such that if V is a variation of c with fixed endpoints that has Y ∈ Vc as

variational vector field, then

I(Y ,Y) = L(0),
where L denotes the length function of V. I is called the index form of c.

Proof. Uniqueness follows from the fact that I is determined by its restriction to the

diagonal Δ = {(Y , Y) | Y ∈ Vc} in Vc × Vc, because I(Y ,Z) = 1/2(I(Y + Z,Y +

Z) − I(Y ,Y) − I(Z,Z)) for any Y, Z ∈ Vc. Existence follows from (6.3.4), which implies

that

I(Y ,Z) = a∫
0

(⟨Y ,Z⟩ − ⟨R(Y , ċ) ̇c,Z⟩) . (6.4.1)

This formula also shows that I is indeed symmetric and bilinear.

Notice that any piecewise smooth vector field Y along c is the variational vector field
of some piecewise smooth variation V of c, namely

V(t, s) = exp(sY(t)), (6.4.2)

where of course, s is chosen small enough so that the exponential map is defined.

Proposition 6.4.2. Let c : [0, a] → M be a normal geodesic, Y ,Z ∈ Vc. If Z is differen-

tiable, then

I(Y ,Z) = − a∫
0

⟨Y ,Z + R(Z, ċ)ċ⟩. (6.4.3)

In particular, if Z is a Jacobi field, then

I(Y , Z) = 0. (6.4.4)

Proof. By assumption, there exists a partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tl = a of [0, a] such
that Y is differentiable on [ti−1, ti], 1 ≤ i ≤ l. Since ⟨Y ,Z⟩(t) = ⟨Y ,Z⟩(t) + ⟨Y ,Z⟩(t)
if t ̸= ti,

a∫
0

⟨Y ,Z⟩ = l∑
i=1

( ti∫
ti−1

⟨Y ,Z⟩) − a∫
0

⟨Y ,Z⟩
=

l∑
i=1

⟨Y ,Z⟩|titi−1 − a∫
0

⟨Y ,Z⟩ = ⟨Y ,Z⟩|b0 − a∫
0

⟨Y ,Z⟩
= − a∫

0

⟨Y ,Z⟩,
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because Y vanishes at the endpoints. Substituting this expression in (6.4.1) and using

the identity ⟨R(Y , ċ)ċ,Z⟩ = ⟨R(Z, ̇c)ċ,Y⟩ now yields (6.4.3); the latter immediately

implies (6.4.4).

Remark 6.4.1. The index form extends to the larger space of all piecewise smooth

vectorfields along c (not necessarily zero at the endpoints) by the same formula (6.4.1) .

The proof of Proposition 6.4.2 shows that for vector fields Y, Z in this larger space,

I(Y ,Z) = ⟨Y ,Z⟩|a0 − a∫
0

⟨Y ,Z + R(Z, ċ)ċ⟩, (6.4.5)

if Z is differentiable, and

I(Y ,Z) = ⟨Y ,Z⟩|a0 (6.4.6)

if in addition Z is Jacobi. We will refer to it as the extended index form of c.

Theorem 6.4.1. If c : [0, a] → M is a normal geodesic with a conjugate point t0 < a,

then there exists a variation V of c with fixed endpoints such that the curves Vs, where

Vs(t) = V(t, s), are shorter than c for sufficiently small s. In particular, c is not a minimal
geodesic.

Proof. By assumption, there exists a Jacobi field Z along c with Z(0) = 0, Z(t0) = 0.
Let E denote the parallel vector field along c that equals −Z(t0) at t0, and define Y :=
φE ∈ Vc, where φ : [0,a] → [0, 1] is some function satisfying φ(0) = φ(a) = 0,

φ(t0) = 1, cf. Lemma 2.2.1. For each r > 0, define Zr ∈ Vc by

Zr(t) =
{{{Z(t) + rY(t) if t ≤ t0,
rY(t) if t ≥ t0.

Let I0 denote the extended index form (in the sense of Remark 6.4.1) of the restriction

of c to [0, t0]. Then
I(Zr,Zr) = I0(Zr,Zr) + a∫

t0

(⟨rY , rY ⟩ − ⟨R(rY , ċ)ċ, rY⟩) ,
and recalling that Y(t0) = −Z(t0),

I0(Zr,Zr) = I0(Z,Z) + 2I0(rY , Z) + I0(rY , rY)
= ⟨Z,Z⟩|t00 + 2r⟨Y ,Z⟩|t00 + r2I0(Y , Y)
= −2r|Z|2(t0) + r2I0(Y ,Y),

so that

I(Zr ,Zr) = −2r|Z|2(t0) + r2I(Y ,Y) = r(−2|Z|2(t0) + rI(Y , Y)).
Z(t0) ̸= 0 since Z is not identically zero, so the above expression is negative for

sufficiently small r > 0. By Proposition 6.4.1 and (6.4.2), the length function L of the
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corresponding variation (t, s) → exp(sZr(t)) satisfies L(0) < 0, and the length of

c = V0 is then a strict local maximum.

The kernel of a bilinear form b on a vector space E is defined to be the set

ker b = {u ∈ E | b(u, v) = 0 for all v ∈ E}.
It is clearly a subspace of E. Even though the vector space Vc is infinite-dimensional,

the kernel of the index form has finite dimension:

Lemma 6.4.1. If c : [0, a] → M is a normal geodesic, then the kernel of the index form I

of c consists of all Jacobi fields Y ∈ Vc.

Proof. By (6.4.4), every Jacobi field Y ∈ Vc belongs to the kernel of I. Conversely,

suppose that Z lies in the kernel, and consider a partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tl = a

of [0, a] such that each Zi := Z|[ti−1,ti] is differentiable. If φi : [ti−1, ti] → ℝ is a smooth

function that vanishes at the endpoints and is positive elsewhere, i = 1, . . . , l, define a
vector field Yi = φi(Zi + R(Zi, ċ)ċ) along ci := c|[ti−1,ti], and Y ∈ Vc by Y|[ti−1,ti] = Yi. Let

Ii denote the extended index form of ci. Since each Zi is differentiable, (6.4.3) implies

that

0 = I(Y ,Z) = l∑
i=1

Ii(Yi,Zi) = − l∑
i=1

ti∫
ti−1

⟨Yi,Zi + R(Zi, ċ)ċ⟩
= − l∑

i=1

ti∫
ti−1

φi |Zi + R(Zi, ċ)ċ|2 ,
so that each Zi is Jacobi. To see that Z itself is a Jacobi field, it suffices to show that it

is differentiable at ti, i = 1, . . . , l − 1. This in turn will follow once we establish that

Zi (ti) = Zi+1(ti), since a Jacobi field is uniquely determined by its value and the value

of its derivative at any one point. To do so, fix some i, denote by E the parallel field

along c with E(ti) = Zi+1(ti) − Zi (ti), and let φ : [0, b] → ℝ be a smooth nonnegative

function that equals 1 at ti and has its support inside (ti−1, ti+1). If X := φE ∈ Vc, then

0 = I(X,Z) = Ii(X|[ti−1,ti],Zi) + Ii+1(X|[ti,ti+1],Zi+1)
= ⟨Zi+1(ti) − Zi (ti),Zi (ti)⟩ − ⟨Zi+1(ti) − Zi (ti),Zi+1(ti)⟩
= −|Zi+1(ti) − Zi (ti)|2,

so that Z is indeed Jacobi.

We are now able to characterize geodesics without conjugate points in terms of the

index form:

Theorem 6.4.2. Anormal geodesic chas no conjugate points if andonly if its index form
is positive definite onVc.
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Proof. Notice that if c has no conjugate points, then I(X,X) ≥ 0 for any X ∈ Vc:

indeed, if I(X,X) < 0, then the curves Vs in the variation (t, s) → V(t, s) := exp(sX(t))
would be shorter than c for small s, contradicting Proposition 6.3.2. Next, suppose

I(X,X) = 0. We must show that X is identically zero. But for any Y ∈ Vc,

0 ≤ I(X + tY ,X + tY) = t(tI(Y ,Y) + 2I(X,Y)),
which is only possible if I(X,Y) = 0. Thus, X is Jacobi by the Lemma, and since c has
no conjugate points, X ≡ 0.
Conversely, assume I is positive definite onVc. c cannot have a conjugatepoint t0 < b

by Theorem 6.4.1. Nor can it have b as conjugatepoint, for otherwise there would exist

a nonzero Jacobi field Y ∈ Vc, and I(Y , Y) = 0 by the Lemma.

Remarks 6.4.2. (i) Given p,q ∈ M, it is tempting to view the collection Ωp,q of all
piecewise smooth curves from p to q as a manifold. We have not defined infinite-

dimensional manifolds, and are therefore not in a position to formalize this, but

the analogy is nevertheless suggestive: a ‘point’ in this manifold is a curve c from
p to q, a ‘curve’ through the point is a variation of c, and its ‘tangent vector’ at the
point is the variational vector field. Thus, the tangent space of the point isVc. The

length function L : Ωp,q → ℝ assigns to each point c the length of c, and (6.3.3)

says that geodesics are ‘critical points’ of L. The index form then corresponds to

the ‘Hessian’ of L.

(ii) Recall the extended index form of a geodesic c introduced in Remark 6.4.1. In the

space of all piecewise smooth vector fields along c, Jacobi fields minimize this

extended index form in the following sense: suppose c : [0,a] → M has no

conjugate points. Notice that for any u ∈ Mc(0) and v ∈ Mc(a) there exists a unique

Jacobi field Y along c with Y(0) = u and Y(a) = v, because the linear map

Jc → Mc(0) ×Mc(a) ,
Y → (Y(0),Y(a))

has trivial kernel and is then an isomorphism (since both spaces have the same

dimension). We claim that ifX is a vector field along cwithX(0) = Y(0) andX(a) =
Y(a), then

I(X,X) ≥ I(Y ,Y),
and inequality is strict provided X ̸= Y. In fact, if X − Y ̸= 0, then it is a nontrivial
element ofVc, and by Theorem 6.4.2,

0 < I(X − Y ,X − Y) = I(X,X) + I(Y ,Y) − 2I(X,Y).
The claim follows from this inequality once we observe that I(X,Y) = I(Y ,Y). The
latter identity, in turn, holds because by (6.4.6),

I(X,Y) = ⟨X,Y ⟩|a0 = ⟨Y ,Y ⟩|a0 = I(Y ,Y).
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6.5 The distance function

A manifoldM is said to be connected if any two points of M can be joined by a curve

lying in the manifold. Notice that regardless of whether or not it is connected, a man-

ifold is always locally connected, by which we mean that any point has a connected

neighborhood, namely the domain of an appropriate chart about the point.

Unless specified otherwise, all spaces will be assumed to be connected. Given p,
q ∈ M, let Ωp,q denote the collection of all curves c : [0,1] → M with c(0) = p and

c(1) = q. As usual, L(c) is the length of c.

Definition 6.5.1. The distance between p and q is the number

d(p,q) = inf{L(c) | c ∈ Ωp,q}.
The distance is well defined, since it is the infimum of a nonempty set (by connect-

edness of M) bounded below (by zero). It is not true, in general, that the infimum is

a minimum; i.e., there need not exist a curve from p to q whose length equals the

distance between them (consider for example M = ℝn \ {0}, any nonzero p, and
q = −p). If such a curve exists, however, then the (length of the) restriction of c to
any subinterval [t1, t2] ⊂ [0, 1] also realizes the distance between the corresponding

endpoints, so that by Theorem 6.1.1, c is a geodesic.

Theorem 6.5.1. (M, d) is a metric space. Furthermore, the open sets in the metric space
coincide with the usual open sets; i.e., U ⊂ M is open in (M, d) if and only if U = V ∩M

for some open set V in Euclidean space.

Proof. The first axiom for ametric space, d(p,q) = d(q,p) for all p and q is clear, since
c is a curve from p to q if and only if −c, where −c(t) = c(1 − t), is a curve from q to p,
and the two have the same length. The triangle inequality d(p, r) ≤ d(p,q) + d(q, r)
for any three points p, q, and r is also easy to see: given any 𝜀 > 0, there exists a

curve c1 from p to q with length smaller than d(p, q) + 𝜀/2, and similarly a curve

c2 from q to r with length less than d(q, r) + 𝜀/2. Then c, where c(t) = c1(2t) for
0 ≤ t ≤ 1/2 and c(t) = c2(2t − 1) for 1/2 ≤ t ≤ 1, is a curve from p to r of length less
than d(p,q) + d(q, r) + 𝜀. This implies that d(p, r) ≤ d(p,q) + d(q, r) + 𝜀 for any𝜀 > 0, and the triangle inequality follows.

The last condition that must be satisfied is d(p,q) ≥ 0, and d(p,q) = 0 if and only

p = q. The first part is clear, as is the fact that d(p,p) = 0. So assume d(p,q) = 0. By

Theorem 6.1.1, there exists 𝜀 > 0 such that expp maps the open ball U𝜀 = {v ∈ Mp ||v| < 𝜀} of radius 𝜀 centered at the origin in the tangent space at p diffeomorphically

onto V = expp(U𝜀). Furthermore, any curve originating at p that leaves V has length

greater than 𝜀, so that q ∈ V. But then there exists a shortest curve from p to qwhich is
a geodesic of length |(expp|U𝜀

)−1q|. Thus, (expp|U𝜀
)−1q = 0 ∈ Mp, and q = p as claimed.

It remains to establish that U ⊂ M is open in the usual sense if and only if it is open

in the metric space (M, d). The latter, we recall, means that for any p ∈ U there exists
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𝜀 > 0 such that BM𝜀 (p) ⊂ U, where

BM𝜀 (p) = {q ∈ M | d(p,q) < 𝜀}.
We denote by B𝜀(p) = {q ∈ ℝn+k | |q − p| < 𝜀} the corresponding distance ball in

Euclidean space. Suppose first that U ⊂ M is open in the usual sense. Given p ∈ U,

there exists r > 0 such that Br(p) ∩ M ⊂ U. But for q ∈ M, d(p,q) ≥ |p − q|, so that
BMr (p) ⊂ Br(p) ∩M ⊂ U, and U is open in (M, d). For the converse, it is enough to show
that BMr (p) is open in the usual sense for any p ∈ M and r > 0. This will in turn follow

from the fact that the distance function dp : M → [0,∞) from p, dp(q) := d(p,q), is
continuous, since BMr (p) = d−1p [0, r). To show this, we must establish that if {qi} is a
sequence inM converging to q, then d(p,qi) → d(p,q). Now,

d(p,q) − d(q,qi) ≤ d(p,qi) ≤ d(p,q) + d(q,qi)
by the triangle inequality, so it is actually enough to show that d(p,pi) → 0 if pi → p.
If U𝜀 is as above, and pi → p, then pi ∈ expp(U𝜀) for large enough i, and d(p,pi) =|(expp|U𝜀

)−1pi|. The claim then follows from the continuity of |(expp|U𝜀
)−1|.

The second statement in the above theorem essentially says that even though the

distance on M is not the same as that of the ambient space, any map f : M → ℝk is

continuous in the usual sense if and only if it is continuous as a map from the metric

space (M, d).
Corollary 6.5.1. If U𝜀 = {v ∈ Mp | |v| < 𝜀} is a neighborhoodof the origin in Mp onwhich

expp is a diffeomorphism, then expp(U𝜀) = BM𝜀 (p).

Proof. It is clear that the left side is contained in the right one, since any point in

expp(U𝜀) can be joined to p by a geodesic of length smaller than 𝜀. To show that they

are equal, we only need to establish that expp(U𝜀) is both open and closed, and apply
Theorem2.4.4, sinceBM𝜀 (p) is connected (recall that anyq ∈ BM𝜀 (p) canbe joined topby
means of a curve of length smaller than 𝜀, so that this curve lies entirely in BM𝜀 (p)). By
assumption, (expp|U𝜀

)−1 is continuous, so that expp(U𝜀) is open. To see that it is closed,
consider a boundary point q of expp(U𝜀) in BM𝜀 (p) and a sequence {qi} contained in

expp(U𝜀) that converges to q, see also Exercise 1.27. The sequence vi := (expp|U𝜀
)−1(qi),

being bounded, contains a subsequence {vij } that converges to some v ∈ Ū𝜀. Now, |vi| =
d(p,qi) → d(p,q), so the subsequence also converges in norm to d(p,q). This means

that |v| = d(p,q) < 𝜀, and v ∈ U𝜀. We then have that qij = expp(vij ) → expp(v), and
since qi → q, expp(v) = q. This shows that expp(U𝜀) is closed in BM𝜀 (p) and concludes
the argument.

We will shortly see that the conclusion of the above corollary is still true under the

much weaker assumption that expp is defined on U𝜀. When there is no danger of con-

fusingM with the ambient Euclidean space, we will denote BM𝜀 (p) by B𝜀(p).
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Proposition 6.5.1. Let W denote a neighborhoodof the zero section in TM such that the

restriction of (π , exp) to W is a diffeomorphism onto its image, cf. Remark 3.7.1. Given

p ∈ M, choose 𝜀 > 0 small enough that B𝜀(p) × B𝜀(p) ⊂ (π , exp)(W). Then

d(q1,q2) = | ((π , exp)|W)−1 (q1,q2)|, q1,q2 ∈ B𝜀/3(p) × B𝜀/3(p).
In particular, d2 : M × M → ℝ is differentiable on a neighborhood U of the diagonal

Δ = {(p,p) | p ∈ M} in M × M, and the distance function d itself is differentiable on

U \ Δ .
Proof. Given p ∈ M, Up

𝜀 will denote the open ball of radius 𝜀 centered at the origin

in Mp. Notice that if q1 ∈ B𝜀/3(p), then expq1 (U
q1
2𝜀/3) ⊂ B2𝜀/3(q1) ⊂ B𝜀(p), so that

the restriction of expq1 to U
q1
2𝜀/3 is a diffeomorphism onto its image B2𝜀/3(q1) by the

corollary above. But if q2 ∈ B𝜀/3(p), then it also belongs to B2𝜀/3(q1), so that

d(q1,q2) = | (expq1|Uq1
2𝜀/3

)−1 q2| = | ((π , exp)|W)−1 (q1,q2)|.
The remaining assertions then follow from the fact that in an inner product space, the

norm function is differentiable away from the origin, see Exercise 2.8.

It is in general not true, however, that the distance function is smooth everywhere

outside the diagonal: consider for example M = S1. One of the possible two normal

geodesics emanating from p = (1, 0) is c, where c(t) = (cos t, sin t). Then c minimizes

up to time π , so that

d(p, c(t)) = {{{ L(c|[0,t] = t if t < π ,
L(c|[t,2π ] = 2π − t if t > π .

We leave it as an exercise to show that this implies that the distance function squared

d2 : S1 × S1 → ℝ is not differentiable exactly on the anti-diagonal {(q, −q) | q ∈ S1}.
6.6 The Hopf-Rinow theorem

Recall that a metric space is said to be complete if every Cauchy sequence in the space

converges. One of the most striking results that relates metric and differential geo-

metric properties of a manifold is the Hopf-Rinow theorem, which roughly says that

completeness as a metric space is equivalent to geodesics being defined for all time;

the latterproperty is of course equivalent to completeness of the geodesic spray vector

field introduced in Section 3.7.

Fix a point p in a manifoldM, and for 𝜀 > 0, denote by U𝜀 ⊂ Mp the open ball of

radius 𝜀 centered at the origin in the tangent space at p.

Definition 6.6.1. The injectivity radius at p is defined as

injp = sup{r > 0 | expp : Ur → Br(p) is a diffeomorphism},
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provided the set on the right is bounded above, and as ∞ if it is unbounded. The

injectivity radius of a subset A ⊂ M is defined as

injA = inf{injp | p ∈ A}.
Examples and Remarks 6.6.1. (i) WhenM = ℝn, injp = ∞ for every p.
(ii) OnM = ℝn \ {0}, injp = |p|. The injectivity radius ofM itself is zero.

(iii) On the sphere of radius r, the injectivity radius is πr at any point, and therefore

so is the injectivity radius of the whole sphere.

(iv) If q ∈ Br(p), where r ≤ injp, then there exists a unique normal geodesic from p to

q of length equal to d(p,q): in fact, q ∈ Br(p), where r = (d(p,q) + injp)/2 < r,

because d(p, q) ≤ ( d(p, q) + injp)/2. Furthermore, r < r, so that expp : Ur →
Br (p) is a diffeomorphism.

Lemma 6.6.1. The injectivity radius of a (nonempty) compact set is positive.

Proof. Suppose, to the contrary, that A is a compact set with zero injectivity radius.

Then there exists a sequence {pk} ⊂ A such that injpk → 0. This in turnmeans that for

each natural number k, there exists some vk ∈ Mpk with |vk | → 0 but vk lies outside
the open setW on which (π , exp) : W → π(W) × exp(W) is a diffeomorphism. Now,

A is compact, so after passing to a subsequence if necessary, it may be assumed that{pk} converges to some p ∈ A. Then {vk} converges to the zero vector inMp, and since

vk lies in the closed set TM \W, so does the zero vector. This contradicts the fact that

W is a neighborhood of the zero section.

Most of the work required in proving the Hopf-Rinow theorem is contained in the

following:

Proposition 6.6.1. Let p ∈ M. If expp is defined on U𝜀, then there exists a minimal

geodesic joining p to any q ∈ B𝜀(p).

Proof. Denoteby I the set of all r ∈ (0, 𝜀) forwhich there exists aminimal geodesic from

p to any point in the closure of Br(p). I is an interval by definition, and is nonempty

because the injectivity radius at p is positive. We will show that I = (0, 𝜀) by arguing
that it is both open and closed in (0, 𝜀). This will prove the proposition, since B𝜀(p) =∪r∈(0,𝜀)Br(p).
To see that it is closed, assume (0, δ ) ⊂ I for some δ > 0. We must show that δ ∈ I;

i.e., that for any q at distance ≤ δ from p, there exists a geodesic c : [0,1] → M from p
to q with length L(c) = d(p,q). So choose some sequence {qk} ⊂ Bδ (p) that converges
to q. By assumption, there exists for each k a minimal geodesic ck : [0,1] → M from

p to qk. Now, | ̇ck(0)| = L(ck) = d(p,qk) < δ , so that {ċk(0)} is contained inside the

compact setUδ , and some subsequence {ċki(0)} converges to, say, v ∈ Uδ . The geodesic

c : [0,1] → M, where c(t) = expp(tv), joins p to q because

q = lim
i→∞

qki = lim
i→∞

exp(ċki(0)) = exp(lim
i→∞

̇cki(0)) = exp(v).
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Furthermore, its length satisfies

L(c) = |v| = lim
i→∞

| ̇cki (0)| = lim
i→∞

d(p,qki) = d(p,q)
by continuity of the distance function. This shows that I is closed.

To see that it is open, assume (0, δ ] ⊂ I. Notice that the closure of Bδ (p) must then be

compact: indeed, by continuity of expp, expp(Uδ ) is contained in Bδ (p), and being

compact, is closed. But it also contains Bδ (p), and must therefore also contain its

closure. Thus, Bδ (p) = expq(Uδ ) is compact. By Lemma 6.6.1, the injectivity radius

α of Bδ (p) is positive. We claim that if 0 < β < min{α , 𝜀 − δ }, then δ + β ∈ I, thereby

implying that I is open. To establish the claim, consider a point q ∈ Bδ+β (p) \ Bδ (p),
and a sequence ck : [0, 1] → M of curves from p to q with length ≤ d(p,q) + 1/k.
The intermediate value theorem guarantees the existence of a parameter value tk for

which d(p, ck(tk)) = δ . By compactness of Bδ (p), we may assume after passing to a

subsequence if necessary that rk := ck(tk) converges to some r, which, by continuity
of distance, lies at distance δ from p. Now,

d(p,q) + 1

k
≥ L(ck) = L(ck|[0,tk]) + L(ck|[tk,1]) ≥ d(p, rk) + d(rk,q), (6.6.1)

so that

d(p,q) ≥ d(p, r) + d(r,q). (6.6.2)

Indeed, if d(p,q)were smaller than d(p, r) + d(r, q), then d(p,q) < d(p, r) + d(r,q)−2𝜀
for some 𝜀 > 0, and thus, for all large enough k,

d(p,q) + 1

k
< d(p, r) + d(r,q) − 𝜀. (6.6.3)

But then (6.6.1) and (6.6.3) would imply that

d(p, rk) + d(rk,q) < d(p, r) + d(r,q) − 𝜀,
which contradicts the fact that {rk} converges to r. Thus, (6.6.2) holds, and together

with the triangle inequality, we obtain

d(p,q) = d(p, r) + d(r,q). (6.6.4)

By assumption, there exists a minimal geodesic c1 : [0, δ ] → M from p to r. Further-
more, d(r,q) = d(p,q) − d(p, r) ≤ δ + β − δ = β is less than the injectivity radius of

Bδ (p), and since the latter set contains r, there exists a minimal geodesic c2 : [δ , δ +

d(r,q)] → M from r to q. The a priori only piecewise geodesic c : [0,δ + d(r,q)] → M,

where c(t) = c1(t) when t ≤ δ , and c(t) = c2(t) when t ≥ δ , is a curve from p to q
whose length realizes the distance between its endpoints by (6.6.4). It must therefore

be a geodesic; i.e., ċ1(δ ) = ċ2(δ ). This completes the proof.
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Remark 6.6.1. We reiterate a fact observed in the proof of the proposition: if expp is

defined on U𝜀, then the closure Br(p) of Br(p) is compact for any r ∈ (0, 𝜀): indeed,
continuity of the exponential map implies that expp(Ur) is compact, hence closed, and

must therefore contain Br(p). But it must also be contained inside Br(p) by continuity
of expp again, so the two sets are equal.

Theorem 6.6.1. The following statements are equivalent in a connected Riemannian

manifold M:

(1) M is complete as a metric space.

(2) For all p ∈ M, expp is defined on all of Mp.

(3) For some p ∈ M, expp is defined on all of Mp.

(4) Any bounded set of M (with respect to the distance d) has compact closure.

Furthermore, completeness of M implies that any two points p and q of M can be joined

by a geodesic of length d(p,q).
Proof. 1⇒ 2: Let S denote the geodesic spray on TM (see Theorem 3.7.2), and 𝛾 : I →
TM a maximal integral curve of S, so that c := π ∘ 𝛾 is a geodesic with ċ = 𝛾. To show
that I = ℝ, it is enough to show that it is closed, since it is already open. So consider a

sequence {tk} ⊂ I, tk → t0 ∈ ℝ. The sequence {c(tk)} is then a Cauchy sequence in M,

because | ̇c| is constant equal to some a > 0, so that

d(c(tk), c(tl)) ≤ 
tl∫
tk

|ċ|  = a|tk − tl|,
and the Cauchy property for {c(tk)} follows from that for {tk}. By assumption, {c(tk)}
converges and is therefore contained in some compact set K ⊂ M. But then {𝛾(tk)} lies
in the compact set {v ∈ TM | π(v) ∈ K and |v| = a}, and has therefore a convergent

subsequence. By Theorem 3.3.3, t0 ∈ I.

2⇒ 3: Immediate.

3⇒4: IfA is bounded, then it is contained inside some closedmetricball of sufficiently

large radius centered at p. The latter is compact by Remark 6.6.1, so that Ā is also

compact.

4 ⇒ 1: We already observed in Chapter 1 that any Cauchy sequence is bounded. It

therefore lies inside a compact set by hypothesis, and thus admits a convergent sub-

sequence. Then the sequence itself converges as shown in the proof of Theorem 1.8.4.

To complete the proof of the theorem, it suffices to show that the second statement

implies that any two points of M can be joined by a minimal geodesic. This is an

immediate consequence of Proposition 6.6.1.
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6.7 Curvature comparison

One of the most active areas of research in Riemannian geometry is the interaction

between the shape of a space and its curvature. What can one say about the manifold

if its curvature is known? Although this topic is too vast and complex to allow for a

comprehensive account here, we wish to establish a couple of results that hint at the

beauty of this subject.

In this section we will see that the larger the curvature of a space, the earlier

conjugate points appear along geodesics. This fact will be derived by comparing the

index form in spaces where the curvature of one is larger than that of the other. As an

application, a complete space with curvature bounded below by a positive constant

must be compact. The construction used in the proof also shows how the metric is

determined by the curvature.

Denote by Xc the vector space of all piecewise-smooth vector fields along a curve

c. LetM, M̃ denotemanifolds of the samedimension n, c : [0, b] → M (resp. ̃c : [0, b] →
M̃) a normal geodesic in M (resp. M̃), and p = c(0), p̃ = c̃(0) their respective starting
points. Suppose 𝚤 : Mp → Mp̃ is a linear isometry mapping ċ(0) to ̇c̃(0). If Pt : Mp →
Mc(t) and P̃t : M̃p̃ → M̃c̃(t) denote parallel translation along c and c̃ respectively, define
a mapΦ : Xc → Xc̃ by setting

(ΦX)(t) = (P̃t ∘ 𝚤 ∘ P−1t )X(t) = (P̃t ∘ 𝚤 ∘ P−t)X(t), X ∈ Xc ,
with P−t = P−1t denoting parallel translation along −c from Mc(t) to Mp. Notice that

Φċ = ̇c̃ and that if X is parallel along c, thenΦX is the parallel field along ̃c where
ΦX(0) = 𝚤X(0).

Let Z1, . . . ,Zn = ċ denote an orthonormal basis of parallel vector fields along c,
so that Z̃1, . . . , Z̃n, with Z̃i = ΦZi, is one along c̃. Any piecewise smooth vector field X
along c may then be written as X = ∑i φiZi, with φi = ⟨X,Zi⟩ piecewise smooth. By

construction,ΦX = ∑i φiZ̃i.

Φ

𝚤
P−t P̃t

M̃p̃

ċ(0)

X(t)

P−t(X(t))P−t(X(t)) (𝚤 ∘ P−t)(X(t))

(ΦX)(t))

Mp
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It follows immediately that if X⊥c denotes the subspace of Xc consisting of all those

orthogonal to c, andVc the subspace consisting of all the elements in X⊥c that vanish
at the endpoints, thenΦ mapsXc isomorphically ontoXc̃, and the same is true for the

corresponding subspaces. Furthermore, Φ commutes with covariant differentiation,

since

(ΦX) = ∑
i

φ 
i Z̃i = Φ (X). (6.7.1)

In order to state our next result,we introduce some terminology: for each t ∈ [0, b], let
Φ t : Mc(t)) → M̃c̃(t) be the linear isometry P̃t ∘ 𝚤 ∘ P−1t . Thus, (ΦX)(t) = Φ t(X(t)) for any
vector field X along c.

Proposition 6.7.1. Suppose that for any t ∈ [0,b] and for any 2-plane Et ⊂ Mc(t) con-

taining ċ(t), the sectional curvature KEt
of Et is greater than or equal to that of Φ t(Et).

Then

I(X,X) ≤ I(ΦX,ΦX), X ∈ X⊥c .
In particular, if c̃ has a conjugate point, then so does c.

Proof. Given X ∈ Xc, define functions K, K̃ : [0, b] → ℝ by letting K(t) denote the

sectional curvature of the plane spanned by ċ(t) and X(t), and similarly, letting K̃(t)

denote the curvature of the image of that plane viaΦ t. We then have

I(X,X) = b∫
0

|X|2 − K|X| ≤ b∫
0

|X|2 − K̃|X| = b∫
0

|(ΦX)|2 − K̃|ΦX|
= I(ΦX,ΦX),

as claimed. Notice that we used both (6.7.1) and the fact thatΦ is a linear isometry.

Remarks 6.7.1. (i) The same argument shows that if the curvature of each plane Et in

the statement of Proposition is less than or equal to that ofΦ (Et), then I(X,X) ≥
I(ΦX,ΦX) for every X ∈ X⊥c .

(ii) The hypothesis of the Proposition is clearly satisfied if there exists a constant κ

such that KM ≥ κ ≥ KM̃.

The diameter of a bounded metric space M is defined to be

diamM = sup{d(p,q) | p,q ∈ M}.
For example, a sphere of constant curvature κ > 0 has diameter π/√κ .
Theorem 6.7.1. If M is complete and has sectional curvature K ≥ κ > 0, then its diam-

eter is no larger than π/√κ . In particular, M is compact.

Proof. Recall from Example 6.2.2 that on the sphere M̃ of constant curvature κ , any

normal geodesichasπ/√κ as conjugatepoint. Proposition6.7.1 andTheorem6.4.1 then

imply that any geodesic of M with length greater than π/√κ is not minimal, so that
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diamM ≤ π/√κ . Compactness of M follows from completeness and the Hopf-Rinow

theorem.

As a final application, we adapt the construction used at the beginning of the section

to prove a result of E. Cartan that illustrates how the curvature locally determines

the metric. Let 𝚤 : Mp → M̃p̃ be a linear isometry, and U ⊂ Mp a neighborhood of

0 ∈ Mp on which expp : U → V := expp(U) is a diffeomorphism. By restricting U

further if necessary, we may assume that the exponential map of M̃ at p̃ maps 𝚤(U)
diffeomorphically onto its image. Set

f = expp̃ ∘ 𝚤 ∘ (expp|U)−1 : V → M̃.
Next, we define a map Φ : TV → Tf (V) that sends each Mq to M̃f (q), q ∈ V, as

follows: given any q ∈ V, denote by c the unique minimal geodesic from p to q, and
by c̃ the geodesic t → expp̃(t ⋅ 𝚤ċ(0)). If P and P̃ are parallel translation along c and ̃c
respectively, then the restriction Φ : Mq → M̃f (q) of Φ to Mq is given by P̃ ∘ 𝚤 ∘ P−1.
This is essentially themapΦ used earlier, but acting on individual vectors rather than

vector fields. Notice thatΦ covers f , in the sense that the diagram

TV
Φ→ Tf (V)

π
↑↑↑↑↓ ↑↑↑↑↓π̃
V →

f
f (V)

commutes, with π and π̃ denoting the respective tangent bundle projections.

Theorem 6.7.2. With notation as above, suppose that

⟨R(x,y)u, v⟩ = ⟨R̃(Φx,Φy)Φu,Φv⟩, x, y,u, v ∈ Mq, q ∈ V .
Then f is an isometry, and f∗p = 𝚤.
Proof. By construction, f : V → f (V) is a diffeomorphism and f∗p = 𝚤. To see that f
is isometric, fix an arbitrary q ∈ V and u ∈ Mq. It must be shown that |f∗u| = |u|. So
consider the minimal geodesic c : [0, t0] → V from p to q, and the unique Jacobi field
Y along c with Y(0) = 0, Y(t0) = u, cf. Exercise 6.2. Let E1, . . . ,En denote a basis of
parallel orthonormal fields along c with En = ċ. The fields Ẽi, where Ẽi(t) = ΦEi(t),
then form a basis of parallel orthonormal fields along c̃ by definition ofΦ , and Ẽn = ̇c̃.
If fi = ⟨Y ,Ei⟩, i = 1, . . . , n, so that Y = ∑i fiEi, then the Jacobi condition for Y reads

f j + ∑
i

fi⟨R(Ei,En)En, Ej⟩ = 0, j = 1, . . . , n.
This implies that the vector field Ỹ := ΦY is then also Jacobi, because Ỹ = ∑i fiẼi, and⟨R(Ei, En)En ,Ej⟩ = ⟨R(Ẽi, Ẽn)Ẽn , Ẽj⟩.
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By definition ofΦ , |Ỹ (t)| = |Y(t)| for all t, so the theorem is proved once we establish

that Ỹ(t0) = f∗qu = f∗qY(t0). But both Y and Ỹ vanish at 0, so that by (6.2.1),

Y(t) = expp∗ (tItċ(0)Y (0)) ,
and similarly,

Ỹ(t) = expp̃∗ (tIt ̇c̃(0)Ỹ (0)) = expp̃∗ (tIt ̇c̃(0)𝚤Y (0)) .
Thus,

Ỹ (t) = expp̃∗ (It ̇c̃(0)t𝚤Y (0)) = (expp̃∗ ∘It ̇c̃(0) ∘ 𝚤 ∘ I−1tċ(0) ∘ exp−1p∗)Y(t)
= (expp̃∗ ∘𝚤∗ ∘ exp−1p∗)Y(t)
= f∗c(t)Y(t),

as claimed. This concludes the proof. Notice that we have actually shown that Φ is

the derivative of f , since for every Jacobi field Y as above, Ỹ = ΦY and Ỹ = f∗Y.

Remark 6.7.2. The above theorem shows that any two spacesM and M̃ with the same

constant curvature κ are locally isometric; i.e., for any p inM, there exists a neighbor-

hood U of p and an isometry f : U → f (U) ⊂ M̃. Such an f need not be extendable to
all ofM, though. For example,ℝ2 and S1 × S1 ⊂ ℝ4 are both flat and therefore locally

isometric, but not globally, since one is compact and the other is not.

6.8 Exercises

6.1. (a) Let Y be a Jacobi field along a geodesic c, and f an affine function; i.e., a

function of the form f (t) = at + b, a, b ∈ ℝ. Show that c ∘ f is a geodesic, and that
Y ∘ f is a Jacobi field along c ∘ f .

(b) Notice that for any function f , not necessarily affine, c ∘ f has (part of) the same
image as c. Explain why c ∘ f is no longer a geodesic if f is not affine.

6.2. Prove that if t0 is not a conjugate point of a geodesic c : [a,b] → M, then for any

v ∈ Mc(a) and w ∈ Mc(t0), there exists exactly one Jacobi field Y along c with Y(a) = v
and Y(t0) = w.

6.3. Suppose V is a variation of c : [0, b] → M with fixed endpoints, such that all the

curves Vs are geodesics. Show that the length function of V is constant and that b is a

conjugate point of c.

6.4. Recall fromChapter 3 that a Killingfield onM is a vector field whoseflowconsists

of isometries of M. Prove that the restriction of a Killing field to any geodesic is a

Jacobi field along that geodesic. Hint:Perhaps the easiest way to see this is to consider

the flow Φ s of the Killing field, and consider the variation (t, s) → Φ s(c(t)) of the
geodesic c.
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6.5. Let c : [0,b] → M be a geodesic in amanifold with sectional curvature K, and V a

(nonconstant) variation of c with fixed endpoints. Prove that if K ≤ 0, then the length

of Vs is larger than that of c if s is small enough. Show by means of an example that

this does not necessarily imply that c is a minimal geodesic.

6.6. Let E denote a parallel vector field along a geodesic c : [0,b] → M that is orthog-

onal to ċ. Choose an interval I around0 small enough that the geodesic s → exp(sE(t))
is defined on I for all t ∈ [0, b], and consider the variation V : [0, b] × I → M of c given
by V(t, s) = exp(sE(t)). Prove that if M has positive curvature, then L(Vs) < L(c) for
small s and ifM has negative curvature, then L(Vs) > L(c). Interpret this fact in terms

of the lengths of circles of latitude compared to that of the equator on a sphere.

6.7. Let M denote the n-dimensional sphere of radius r, c : [0, a] → M a normal

geodesic, and E the vector space of Jacobi fields along c that vanish at 0.
(a) Give an explicit formula for I(Y1,Y2) in terms of ⟨u1,u2⟩ if Yi ∈ Ewith Yi(0) = ui.
(b) Show that the index form is negative definite on E if a ∈ (πr/2, πr).
6.8. Show that the distance function d : M ×M → ℝ is continuous; i.e., show that if

pi → p and qi → q, then d(pi,qi) → d(p,q).
6.9. Prove the claim made in the proof of Proposition 6.6.1: given p ∈ M,

B𝜀(p) = ∪r∈(0,𝜀)Br(p).
6.10. Let M̃,M denote manifolds with distance functions d̃ and d respectively. Show

that if f : M̃ → M is isometric, then d̃(p,q) ≥ d(f (p), f (q)) for all p, q ∈ M̃. Deduce

that if f is an isometry, then it is distance-preserving; i.e., d̃(p,q) = d(f (p), f (q)) for all
p, q ∈ M̃. R. Palais has shown that the converse is also true: any distance-preserving

map between manifolds is an isometry.

6.11. (a) According to Palais’ result mentioned in the exercise above, any distance-

preserving map f : ℝn+1 → ℝn+1 in Euclidean space is a Euclidean motion. Prove

this directly.

Hint: The map x → f (x) − f (0) preserves norms. Adapt the proof of Proposition

3.11.1 to conclude it is an orthogonal transformation.

(b) Let f : Sn → Sn be distance-preserving. Show that f is the restriction of an orthog-

onal transformation.

Hint: Extend f radially toℝn+1.

6.12. Show that for M = S1, the distance function squared d2 : M × M → ℝ is not

differentiable exactly on the circle {(p, −p) | p ∈ S1}.
6.13. Give examples showing that a manifold in which any two points can be joined

by a minimal geodesic is not necessarily complete.
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6.14. LetMn be a manifold inℝn+k.

(a) Show that a Cauchy sequence in M is Cauchy as a sequence in ℝn+k (i.e., with

respect to the Euclidean distance).

(b) Prove that ifM is closed in ℝn+k, then it is complete.

6.15. (a) Give examples showing that the converse to part (b) in the previous problem

does not hold; i.e, there exist complete manifolds that are not closed as a subset

of the ambient Euclidean space.

(b) Show that ifM is a subset ofℝn that is completewith the restriction of thedistance

function from ℝn (i.e., d(p, q) = |p − q| for p,q ∈ M), then M is closed in the

ambient Euclidean space.

6.16. Suppose f : M → N is a diffeomorphism. IfM is complete, is it always true that

N is also complete? What if, in addition, f is an isometry?

6.17. M is said to be a Riemannian homogeneous space if its group of isometries acts

transitively on M; i.e., given p,q ∈ M, there exists an isometry ofM that maps p to q.
(a) Give several examples of such spaces.

(b) Prove that a Riemannian homogeneous space is necessarily complete.

6.18. A ray in M is a normal geodesic c : [0,∞) → M that minimizes distance for all

time; i.e., d(c(0), c(t)) = t for all t ≥ 0.

(a) Prove that ifM is complete and noncompact, then for any p ∈ M, then there exists

a ray c with c(0) = p. Hint: Consider a sequence qn ∈ M with d(p,qn) > n, n ∈ℕ, and minimal normal geodesics cn from p to qn. The sequence ċn(0) has some
convergent subsequence. If v is the limit, consider the geodesic in direction v.

(b) Show by means of an example that completeness is necessary in part (a).

6.19. A point p ∈ M is said to be a poleofM if every normal geodesic emanating from

p is a ray (see previous exercise). Let f : ℝn+1 → ℝ be the function given by

f = un+1 − n∑
i=1

(ui)2,
and consider the paraboloidM = f−1(0). Show that the origin is a pole ofM. Are there

any other poles?

6.20. A line in M is a normal geodesic c : (−∞,∞) → M that minimizes distance for

all time; i.e., d(c(t0)c(t1)) = |t0 − t1| for all t0, t1.
(a) IfM admits a line, it must of course be noncompact. Show bymeans of examples,

however, that there exist noncompact complete manifolds that admit no lines.

This contrasts with rays, which exist in any noncompact, complete manifold, cf.

Exercise 6.18.

(b) Recall from Chapter 5 that a given space can have different metrics, in the sense

that there are diffeomorphisms which are not isometries. For example, the right
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circular cylinder

S1 × ℝ = {(x, y, z) | x2 + y2 = 1, z ∈ ℝ}
is diffeomorphic to the hyperboloid N = {(x, y, z) | x2 + y2 − z2 = 1}, but not
isometric. Show however, that any completemanifoldM diffeomorphic to S1 × ℝ
admits a line. Hint: Let f : S1 × ℝ → M be a diffeomorphism, and consider a

sequence of normal minimal geodesics cn inM from f (1,0, −n) to f (1,0, n), n ∈ ℕ.

Each cn must intersect f (S1 × {0}) for a unique value tn ∈ ℝ of its parameter. Show

that the sequence ċn(tn) has a convergent subsequence. If u is the limit of this

subsequence, consider t → exp(tu).

f (S1 × {0})
c1

̇c1(t1) ̇c2(t2)

c2

6.21. Recall that the diameter of M is diam(M) = sup{ d(p,q) | p,q ∈ M} if this set is
bounded above, and∞ otherwise.

(a) Show that ifM is complete, then diam(M) < ∞ if and only ifM is compact.

(b) Prove that ifM is compact, then there exist p,q ∈ M such that d(p,q) = diam(M).

6.22. Suppose M is a complete manifold, and denote by T1M = {u ∈ TM | |u| = 1}
the unit tangent sphere bundle ofM. If π : TM → M is the tangent bundle projection,

define

s : T1M → ℝ+ ∪ {∞},
v → sup{t > 0 | d(π(v), exp(tv)) = t}.

Roughly speaking, s(v) is the largest parameter value for which the geodesic cv in
direction v is minimal.

The tangential cut locus of p ∈ M is

Cp = {s(v)v | v ∈ Mp ∩ T1M, s(v) < ∞},
and the cut locus of p ∈ M is C(p) = expp(Cp). Determine the tangential cut locus and

the cut locus at a generic point p ∈ M, if
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(a) M = ℝn;

(b) M = Sn;

(c) M = S1 × ℝ.
6.23. With the notation and terminology from Exercise 6.22, show that for p,q ∈ M,

q lies in the cut locus of p if and only if p lies in the cut locus of q.

6.24. With the notation and terminology from Exercise 6.22, show that the distance

d(p, C(p)) from a point to its cut locus equals the injectivity radius injp at that point.

Hint: Notice that

d(p,C(p)) = inf{s(v) | v ∈ T1M ∩Mp}.
Argue by contradiction to rule out the possibilities d(p,C(p)) > injp and d(p,C(p)) <
injp.

This fact can be used to prove that in general, the function inj : M → ℝ+ ∪ {∞} is
continuous.

6.25. A subset A of a manifold M is said to be convex if any p,q ∈ A can be joined

by some geodesic c contained in A, with length L(c) = d(p,q). If, in addition, this

geodesic is unique, then A is said to be strongly convex.

(a) Show that any convex subset of Sn is either all of Sn or else is contained in some

hemisphere.

(b) Prove that for any manifold M and p ∈ M there exists 𝜀 > 0 such that the metric

ball B𝜀(p) of radius 𝜀 about p is strongly convex.Hint: see Proposition 6.5.1.

6.26. This exercise examines the gradient and Hessian of the distance function from

a point.

(a) Prove that forp ∈ M, there exists 𝜀 > 0 such that thedistance functionq → d(p,q)
from p is smooth onW := B𝜀(p) \ {p}. Is it differentiable on all of B𝜀(p)?

(b) Let f denote the restriction of this function to W, f (q) = d(p,q), q ∈ W, and

c : [0,1] → W a (necessarily minimal) geodesic fromp to q. If u ∈ Mq and cu is the
geodesic u → exp(tu), prove that there exists a variation V : [0,1] × (−δ , δ ) → W

of c such that Vs is the minimal geodesic from p to cu(s) if δ is small enough.

(c) Let L denote the length function of V, L(s) = length of Vs . Show that⟨∇f (q),u⟩ = (f ∘ cu)(0) = L(0) = ⟨ċ(1),u⟩,
so that ∇f (q) = ċ(1), and

hf (q)(u,u) = (f ∘ cu)(0) = L(0) = ⟨Y ,Y ⟩(1),
where Y is the Jacobi field along c with Y(0) = 0, and Y(1) = u.

6.27. Let p ∈ M, 𝜀 > 0 such that the square of the distance function d2 : M ×M → ℝ,
when restricted to B𝜀(p)×B𝜀(p), is differentiable. Denote this restriction by f . The goal
of this problem is to determine the gradient ∇f and the Hessian Hf of f .
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q

u ũ

q̃
c

cu cũ

cu(s0) cũ(s0)Vs0

Let q, q̃ ∈ B𝜀(p), c : [0, 1] → B𝜀(p) the geodesic from q to q̃ with length d(q, q̃),
and u ∈ Mq, ũ ∈ Mq̃. If cu, cũ denote the geodesics in direction u and ũ respec-

tively, strong convexity (see Exercise 6.25) guarantees the existence of a variation V :
[0,1] × (−δ , δ ) → B𝜀(p) of c by geodesics, with Vs minimal from cu(s) to cũ(s), |s| < δ ,

provided δ is small enough. Then

⟨∇f (q, q̃), (u, ũ)⟩ = D(u,ũ)f = h(0),
where h(s) = L(Vs).

(a) Use this to show that ∇f (q, q̃) = 2(− ̇c(0), ċ(1)).
(b) Use the variation from above to show that for q, q̃ ∈ B𝜀(p),

Hf (q, q̃)(u, ũ) = 2(−Y (0),Y (1)), u ∈ Mq, ũ ∈ Mq̃,
where Y is the Jacobi field along c with Y(0) = u, Y(1) = ũ.
Deduce that the Hessian form hf of f satisfies

hf (q, q̃)((u, ũ), (u, ũ)) = 2⟨Y ,Y ⟩|10.
(c) Compute the gradient, Hessian, and Hessian form of g, where g is the square of

the distance function from p, g(q) = d2(p,q), on B𝜀(p). Hint: An easy way to do

this is to notice that g = f ∘ 𝚤p, where 𝚤p : M → M ×M maps q to (p,q).
6.28. This problem, which uses concepts and results from Exercises 6.25 and 6.27,

explores a result of J. H. C. Whitehead; namely, for any point p in a manifoldM, there

exists some 𝜀 > 0 such that every metric ball Bδ (q) contained in B𝜀(p) is strongly
convex.

(a) Let 𝜀0 > 0 such that the closure K of the ball of radius 𝜀0 centered at p is compact,

and consider the compact set

C = {(u,v) ∈ TM × TM | |u| = |v| = 1, π(u) = π(v) ∈ K},
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where π : TM → M is the bundle projection. For (u, v) ∈ C, denote by Yuv the

Jacobi field along t → exp(tv) with Yuv(0) = 0, Y uv(0) = u. Use the fact that⟨Yuv,Y uv⟩(0) = |u|2 = 1

to show that there exists 𝜀 ∈ (0, 𝜀0) such that ⟨Yuv,Y uv⟩|t0 > 0 for any 0 < t ≤ 𝜀 and
(u, v) ∈ C.

(b) Prove that for any p ∈ M, there exists some positive 𝜀 such that
(1) B𝜀(p) is strongly convex, and the square of the distance function onM, when

restricted to B𝜀(p) × B𝜀(p), is differentiable.
(2) For any q ∈ B𝜀(p) and any geodesic c : [0,1] → B𝜀(p) with c(0) = q, if Y

is a Jacobi field along c with Y(0) = 0, Y (0) ̸= 0, then ⟨Y ,Y ⟩|t0 > 0 for all

t ∈ (0, 1].Hint: Z = 1
|Y(0)|Y is a Jacobi field satisfying Z(0) = 0, |Z(0)| = 1.

p

q

ctc(t)

ċ(t)

r

r

B (p)

Bδ (q)

(c) Show that Whitehead’s result holds for the 𝜀 obtained in (b), as follows: let q ∈
B𝜀(p) and δ > 0 such that Bδ (q) ⊂ B𝜀(p). Since a convex subset of a strongly

convex set is strongly convex, it suffices to show that the ball of radius δ about q
is convex. Denote by h : B𝜀(p) → ℝ the distance function from q squared, h(r) =
d2(q, r). Given r1, r2 ∈ Bδ (q), there is a unique geodesic c : [0,1] → B𝜀(p) with
c(0) = r1, c(1) = r2. Prove that

(h ∘ c)(t) = 2bh(c(t))(ċ(t), ̇c(t)) = 2⟨Yt,Y t ⟩|10,
where bh is the Hessian form of h, and Y is the Jacobi field along the minimal

geodesic ct : [0, 1] → B𝜀(p) joining q to c(t), with Yt(0) = 0, Yt(1) = ċ(t). In
particular, h ∘ c is a convex function. Deduce that (h ∘ c)(t) < δ 2 for all t, and

conclude that Bδ (q) is convex.

6.29. Amanifold is said to be locally symmetric if its curvature tensor is parallel; i.e.,

if for any geodesic c and parallel fields Xi along c, 1 ≤ i ≤ 3, R(X1,X2)X3 is a parallel

field along c.
(a) Prove that a space of constant curvature is locally symmetric.

(b) Let M be a locally symmetric space, c a normal geodesic in M. Show that there

exists an orthonormal basis of parallel vector fields Ei along c, 1 ≤ i ≤ n, with
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En = ̇c, and constants λi such that R(Ei, ċ) ̇c = λiEi. Notice that λi is the sectional
curvature of the plane spanned by ċ(t) and Ei(t).

(c) Prove that Y is a Jacobi field along c if and only if

Y =
n∑
i=0

fiEi, where fi satisfies f i + λifi = 0.
6.30. The definition of distance that was used for a manifoldM,

d(p,q) = inf{L(c) | c : [0,1] → M, c(0) = p, c(1) = q},
makes sense for more general connected subsets of Euclidean space that are not man-

ifolds, see for example [6].

(a) Show that the boundary of any square in ℝ2 is a well-defined metric space with

the distance above, and that the open sets in the metric space coincide with the

usual open sets as in Theorem 6.5.1.

(b) Denote by L0 the line segment inℝ2 connecting the origin to (1,0), by Ln the line
segment connecting the origin to (cos(1/n), sin(1/n)), n ∈ ℕ, and letM = ∪∞n=0Ln,
together with the above distance. Prove that the open sets in M are not the usual

ones. Hint: consider metric balls centered about, say, (1/2,0).

(0, 0) (1,0)

(cos 1, sin 1)





7 Hypersurfaces

7.1 Hypersurfaces and orientation

A hypersurface is an n-dimensional submanifold of ℝn+1 for some n. The case n = 2,

which corresponds to surfaces in 3-dimensional space, was historically the first to

be studied. Most of the concepts introduced in Chapter 3 are easier to understand

and work with when the manifold’s dimension is one less than that of the ambient

Euclidean space.

The most useful way of describing a hypersurface is by means of Corollary 3.2.1,

which we recall in the present context:

Proposition 7.1.1. Mn ⊂ ℝn+1 is a hypersurface if and only if any p ∈ M admits a

neighborhood U ⊂ ℝn+1 and a function f : U → ℝ having 0 as a regular value, such

thatM ∩ U = f−1(0).

For example, in the above situation, the vector field ∇f is normal – i.e., orthogonal –

toM onM ∩U: by Proposition 3.1.1, given q ∈ M ∩U,Mq = ker f∗q, and the latter is just∇f (q)⊥.
Proposition 7.1.2. A hypersurface is orientable if and only if it admits a unit length

normal vector field.

Proof. If the hypersurface is orientable, it admits an orientation. Let ω denote the

standard volume form on ℝn. IfX1, . . . ,Xn−1 is a local positive basis of vector fields on
U ⊂ M, there is a unique unit normal field N on U such that (i(N)ω)(X1, . . . ,Xn−1) =
ω(N,X1, . . . ,Xn−1) > 0. Since this can be done in a neighborhood of any point, N is

globally defined. Conversely, if N is a unit normal field on M, then the map which

assigns tox1, . . . , xn−1 ∈ Mp the valueω(p)(N(p), x1, . . . , xn−1) is a nowhere-zero (n−1)-
form onM; i.e., an orientation.

(x , y )

(x , y , g(x , y ))

(x , y )

(x , y , g(x , y ))

The darker half M ∩ U of M is
the graph of a function g of two
variables; it equals wheref−

f (x, y, z) = z − g(x, y).

M

M ∩ U

x

y

z
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In light of the above, we may call the normal vector field an orientation ofM. Clearly,

if M is orientable, then it has two possible orientations, namely N and −N, where
N is any unit normal field. A large class of orientable hypersurfaces is given by the

collection of functions f : ℝn+1 → ℝ that have zero as regular value, since each

M = f−1(0) is a hypersurface with orientation N = ∇f/|∇f |.

Fig. 7.1: A Möbius strip

One example of a non orientable surface is the Möbius strip. It can be described as the

image of the map

h : (−1/2, 1/2) × [0,2π ] → ℝ3

(r, θ ) → (2 cos θ + r cos
θ

2
,2 sin θ + r cos

θ

2
, r sin θ

2
).

h is not, strictly speaking, a parametrization, but it is one locally, since it has max-

imal rank everywhere. More precisely, restrict h to (−1/2,1/2) × (0,2π), and define

k : (−1/2, 1/2) × (−π , π) → ℝ3 by the same formula. h and k are both parametriza-

tions whose images cover the strip M. One obtains normal vector fields along these

parametrizations by setting

Nh =
𝜕𝜕x1 × 𝜕𝜕x2 ,

where x = h−1, and using a similar formula for Nk. Notice that both fields agree on

the intersection (−1/2, 1/2)× (0, π) of their domains, since they are given by the same
formula. They do not, however, combine to give us a well-defined normal field onM,

because, for example,

h( − r, 3π
2

) = k(r, −π
2
), butNh( − r, 3π

2
) = −Nk(r, −π2 ),

as is easily checked.

The Möbius strip is often realized by taking a long rectangular strip of paper. If

one glues the shorter sides together so that the top vertices (and similarly the bottom

ones) coincide, one obtains a cylinder. To obtain the Möbius strip instead, the shorter

sides are glued in the opposite direction, so that the top left vertex is identified with

the bottom right one, and similarly the bottom left is glued to the top right vertex. From

a differential geometric perspective, though, this surface is different from the one we
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described earlier: the paper strip was not stretched or bent, so it is flat, whereas the

parametrized strip has negative curvature, as we shall soon see.

𝜕
𝜕x1

𝜕
𝜕x2

𝜕
𝜕x1 × 𝜕

𝜕x2

p

M

Normal vector induced

by a chart x at a point

p ∈ M.

The cross product can be generalized to Euclidean spaces of arbitrary dimension, and

provides further insight into the concept of orientation. Givenanynvectors v1 , . . . , vn ∈ℝn+1, the map

u → det(v1 , . . . , vn,u)
is a one-form onℝn+1, and by Corollary 1.4.2, there exists a uniquew ∈ ℝn+1 such that

⟨w,u⟩ = det(v1 , . . . , vn ,u).
This vector w is denoted v1 × ⋅ ⋅ ⋅ × vn, and is called the cross product of v1, . . . , vn, cf.
also Exercise 5.12. By the properties of the determinant, the cross product is nonzero

if and only if the vectors are linearly independent, it changes sign whenever vi is
interchanged with vj (i ̸= j), and v1 × ⋅ ⋅ ⋅ × vn ⊥ vi for 1 ≤ i ≤ n. Given p ∈ ℝn+1, the

canonical isomorphism Ip : ℝn+1 → ℝn+1
p extends this cross product to any tangent

space.

Now, if M is a hypersurface, then any local parametrization h = x−1 : U → M of

M induces an orientation of the manifold h(U), since the vector field

nh := ( 1| 𝜕
𝜕x1 × ⋅ ⋅ ⋅ 𝜕

𝜕xn |) 𝜕𝜕x1 × ⋅ ⋅ ⋅ × 𝜕𝜕xn
is a unit normal field on h(U). If M is oriented, the parametrization h is said to be

consistentwith the orientation if nh represents the given orientation. Notice that if h is
not consistent with the orientation, then interchanging any two component functions

of h yields a consistent parametrization.

Evidently, M is orientable if and only if it admits an atlas such that any two

parametrizations h and k in the atlas satisfy nh = nk on the intersection of their

domains. In the exercises, the reader is asked to show directly that this is equivalent

to our previous criterion for orientability, namely requiring that the Jacobian matrix

D(h−1 ∘ k) has positive determinant.
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7.2 The Gauss map and the second fundamental form

We now associate to each oriented hypersurface Mn a map 𝛾 : M → Sn which keeps

track of how curvedM is inℝn+1. LetMn be an oriented hypersurface with unit normal

field n, and denote by π2 : Tℝn+1 = ℝn+1×ℝn+1 → ℝn+1 the projection onto the second

factor. Thus, π2 is the left inverse of Ip for any p ∈ ℝn+1: π2 ∘ Ip = 1ℝn+1 . The Gauss

map of the oriented hypersurface is defined to be

𝛾 = π2 ∘ n : M → Sn. (7.2.1)

Loosely speaking, the Gauss map assigns to each point ofM the unit normal vector at

that point, parallel translated back to the origin. The image of the Gauss map therefore

measures howmuch the hypersurface differs from a hyperplane:

Examples 7.2.1. (i) A hyperplane in ℝn+1 is a subset of the form M = {p ∈ ℝn+1 |⟨p,u⟩ = a}, where u is any fixed nonzero element of ℝn+1, and a is some real

number. When a = 0,M is the n-dimensional subspace u⊥. When a ̸= 0, it is the

subspace u⊥ parallel translated to any p0 ∈ M. Indeed, ⟨p − p0,u⟩ = 0 if and only

if ⟨p,u⟩ = ⟨p0,u⟩, and the latter equals a if p0 ∈ M. The Gauss map of such a

hyperplane has a single point as image, namely u/|u| (or its negative, depending
on the orientation).

(ii) If M2 ⊂ ℝ3 denotes the cylinder {(x, y, z) ∈ ℝ3 | x2 + y2 = 1} with the outward

orientation, then the Gauss map of M is given by 𝛾(x, y, z) = (x, y). In particular,

its image consists of the equator in S2.

(iii) Let M2 ⊂ ℝ3 be the paraboloid consisting of all (x, y, z) satisfying z = x2 + y2.

M = g−1(0), where g : ℝ3 → ℝ, g(x, y, z) = x2 + y2 − z, has zero as regular value.

By the discussion from the previous section, the normalized gradient of g yields

a unit normal field

n =
1√1 + 4((u1)2 + (u2)2)

(2u1D1 + 2u2D2 − D3) .
Since M = {(p, |p|2) ∈ ℝ2 × ℝ | p ∈ ℝ2}, the Gauss map of M for this orientation

may be described as

𝛾 : M ⊂ ℝ2 × ℝ → S2 ⊂ ℝ2 × ℝ,
(p, |p|2) → 1√1 + 4|p|2 (2p, −1).

It is clear from the formula that the image of 𝛾 is contained in the open southern

hemisphere of S2. The image is actually the whole open hemisphere: indeed, the

function t → 2t/(√1 + 4t2) is easily seen to be a diffeomorphism from ℝ onto

(−1,1): in fact, it has positive derivative everywhere so that it is strictly increasing.
By the inverse function theorem, it is a diffeomorphism onto its image; finally, it
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approaches 1 as t → ∞, and is an odd function. This establishes the claim. In

particular, the map

f : ℝ2 → B1(0) ⊂ ℝ2,
p → 2√1 + 4|p|2 p

sends the plane onto the open disk of radius 1 centered at the origin (it is, in fact,

a diffeomorphism). The claim follows, since the projection of 𝛾(p, |p|2) onto the
xy-plane is precisely f (p).

(iv) For the sphere Sn(r) = {p ∈ ℝn+1 | |p| = r} of radius r > 0, the Gauss map is given

by

𝛾 : Sn(r) → Sn(1),
p → 1

r
p,

or its negative, depending on the orientation. In particular, it is onto.

The trivial fact that the Gauss map of a sphere is surjective generalizes as follows:

Theorem 7.2.1. Let f : ℝn+1 → ℝ be a function that has α ∈ ℝ as a regular value, and

suppose that M = f−1(α) is nonempty. If M is compact, then the image of its Gauss map

is the whole sphere.

Proof. Although there are some technical details that must be dealt with, the idea of

the proof is simple: orient M so that its unit normal field points “outward”. Given v ∈
Sn, consider a hyperplane {q | ⟨q,v⟩ = β } orthogonal to v that is sufficiently far away

(i.e., β large) that it does not intersect the hypersurface. Parallel translate it until it

hits M. At the point p of intersection, this hyperplane will coincide with the tangent

plane at p, so that 𝛾(p) = v.

v

p {q | ⟨q, v⟩ = α}

{q | ⟨q, v⟩ = β > α}

M

Showing the Gauss map is onto:
moving a hyperplane orthogonal
to v ∈ Sn until it “touches” M.
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Now, for the proof proper: If Mα denotes the set of all p such that f (p) < α , and

Mα the set of those satisfying f (p) > α , then the complement ℝn+1 \ M of M equals

the disjoint union of Mα and Mα . Notice that one of these must be compact, and the

other noncompact. They cannot both be compact, since the ambient space isn’t. If

they were both noncompact, we could choose some ball B containing M. ℝn+1 \ B
would then contain at least one point from Mα and one from Mα ; being connected,

it would also contain some continuous curve joining the two. This contradicts the

intermediate value theorem, which guarantees that any such curve must intersectM.

Wemay,without loss of generality, assume thatMα is compact. Given v ∈ Sn, let q ∈ M

be a point where the function g, g(p) = ⟨p,v⟩, takes on its maximum value when

restricted toM. By the method of Lagrange multipliers,∇f (q) = λ∇g(q) = λ Iqv

for some λ ∈ ℝ.
In order to conclude that (∇f/|∇f |)q = Iqv, weonlyneed to show that λ ≥ 0 (notice that

λ is nonzerobyassumption). To see this, observe that for any t > 0, ⟨q + tv, v⟩ > ⟨q, v⟩,
so q + tv ∉ M, and it either belongs to Mα or else to Mα for all t > 0. Since Mα is

compact, it must belong to the latter. Therefore,

t
h→ f (q + tv) − f (q)

t
> 0, t ̸= 0,

and

0 ≤ lim
t→0

h(t) = ⟨∇f (q),Iqv⟩ = λ ,
which establishes the claim.

Forahypersurface, the second fundamental tensor is uniqueup to sign, since there are

exactly two unit normal vectors at any point, with one being the negative of the other.

When the hypersurface is oriented by a unit normal vector field n, any sign ambiguity

disappears, andwe define the second fundamental tensor to be S = Sn. The next result

says that up to parallel translation, the second fundamental tensor equals minus the

derivative of the Gauss map:

Theorem 7.2.2. Let n denote the unit normal field onM determinedby someorientation

of the hypersurface M, and 𝛾 : M → Sn the corresponding Gauss map. If S denotes the

second fundamental tensor of M, then

π2 ∘ S = −π2 ∘ 𝛾∗.
Proof. The argument is essentially an exercise in notation: for p ∈ M, x ∈ Mp, let c be
a curve in M with ċ(0) = x. By Definitions 2.8.6 and 2.8.7,

Sx = −Dxn = −Ip(π2 ∘ n ∘ c)(0) = −Ip(𝛾 ∘ c)(0),
so that

(π2 ∘ S)x = −(𝛾 ∘ c)(0) = −π2(𝛾∗ċ(0)) = −(π2 ∘ 𝛾∗)x.
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The fact that the second fundamental tensor equals, up to sign, the derivative of the

Gauss map, suggests that it provides a measure of how much the surface curves. For

example, a manifold is said to be totally geodesic if its second fundamental tensor

vanishes. For a hypersurface M, this means that the Gauss map has zero derivative,

so that, if M is connected, the map is constant by Theorem 2.4.3. in other words, the

unit normal field n is parallel, and M is contained in a hyperplane: given p ∈ M,

M ⊂ {p + q | q ⊥ π2(n(p))}.
One can also consider a weaker condition: a point p ∈ M is said to be umbilical

if the second fundamental tensor at p is a multiple of the identity, andM itself is said

to be totally umbilic if every point ofM has that property; i.e., if there is a function f :
M → ℝ such that Sv = f (p)v for all v ∈ Mp and p ∈ M. Thus, a totally umbilicmanifold

is one that “curves equally in all directions”. What is remarkable is that in this case,

the function f is actually constant. This is implicit in the proof of the following:

Theorem 7.2.3. A totallyumbilic connected hypersurface is part of a sphere or a hyper-

plane.

Proof. Wefirst show that the function f : M → ℝ in the definition of umbilic manifold

is constant. Denote, as usual, by n the unit normal field ofM. Thus,

DXn = −SX = −fX
for any field X onM; given fields Y and Z,⟨DXDYn, Z⟩ = X⟨DYn, Z⟩ − ⟨DYn,DXZ⟩ = X⟨−fY ,Z⟩ + f ⟨Y ,DXZ⟩

= −(Xf )⟨Y ,Z⟩ − f ⟨DXY ,Z⟩ − f ⟨Y ,DXZ⟩ + f ⟨Y ,DXZ⟩
= −(Xf )⟨Y ,Z⟩ − f ⟨DXY ,Z⟩.

Using (3.9.1), we obtain

0 = ⟨DXDYn − DYDXn − D[X,Y]n, Z⟩
= −(Xf )⟨Y ,Z⟩ − f ⟨DXY ,Z⟩ + (Yf )⟨X,Z⟩ + f ⟨DYX,Z⟩
+ f ⟨[X,Y],Z⟩

= ⟨(Yf )X − (Xf )Y ,Z⟩.
Since Z is arbitrary, (Yf )X − (Xf )Y must vanish. Choosing linearly independent X and

Y then implies that Xf ≡ 0 for any vector field X on M, and since M is connected, f

must equal a constant λ ∈ ℝ.
Recall from Examples 2.8.2 (ii) that the position vector field P on ℝn+1, P(a) = Iaa,
satisfies DXP = X. Thus, if X is a vector field onM, then

DX(n + λP) = −λX + λX = 0,
and the vector field n + λP is parallel. Parallel translating this field back to the origin,

we conclude that the map π2 ∘ n + λπ2 ∘ P is a constant map a for some a ∈ ℝn+1.
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In other words, 𝛾(p) + λp = a for all p ∈ M, where 𝛾 is the Gauss map of M. The

case when λ is zero was discussed earlier, and corresponds to a hyperplane. If λ ̸= 0,

dividing by it and taking norms in the last identity yields

|p − 1

λ
a| = 1

λ
, p ∈ M,

so thatM is contained in the sphere of radius 1/λ centered at (1/λ )a.
7.3 Curvature of hypersurfaces

Let M denote an oriented hypersurface in ℝn+1 with unit normal field n and second

fundamental tensor S = Sn. In addition to those that we have already encountered,

there are several other notions of curvature associated to M at each point of the hy-

persurface: The principal curvatures at p ∈ M are the eigenvalues of S(p). The mean
curvature is defined to be (1/n) times the trace of S. The determinant of S(p) is called
the Gaussian curvature at p. Notice that unlike the sectional curvature, the first two
(and also the third one ifM is odd-dimensional) change sign if one chooses the oppo-

site orientation. Unless otherwise specified, the word curvature by itself will always

refer to the sectional curvature.

The definition of the curvature tensor R implies that

R(x, y)z = ⟨Sy, z⟩Sx − ⟨Sx, z⟩Sy, x, y, z ∈ Mp, p ∈ M,
so that the curvature form k from Chapter 3 is given by

k(x, y) = ⟨R(x, y)y, x⟩ = ⟨Sx,x⟩ ⋅ ⟨Sy, y⟩ − ⟨Sx,y⟩2. (7.3.1)

We say M has positive curvature at p ∈ M if every plane in Mp has positive sectional

curvature. When n = 2, this is the same as saying thatM has positive Gaussian curva-

ture at p, since the sectional curvature of the only tangent plane equals the Gaussian
curvature. M is said to be positively curved or to have positive curvature if this holds

for every p ∈ M. Obvious modifications yield the notions of nonnegative curvature,

negative curvature, and nonpositive curvature.

One consequence of (7.3.1) is the following:

Theorem 7.3.1. M haspositivecurvature atp if andonly if the second fundamental form
is definite at p.

Proof. Recall from Section 2.6 that the second fundamental form is definite if and only

if the eigenvalues of S are all positive or all negative; equivalently, the map

Mp ×Mp → ℝ
(x, y) → ⟨Sx, y⟩
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or its negative (that is, replacing S by −S) is an inner product on Mp. So assume that

M has positive curvature at p. If S has only one eigenvalue λ at p, then λ ̸= 0, for

otherwise k = 0. Then S = λ1Mp
is definite. If S has more than one eigenvalue, choose

unit eigenvectors xi corresponding to distinct eigenvalues λi, i = 1,2. (7.3.1) implies

that

0 < k(x1, x2) = λ1 ⋅ λ2.
Thus the product of any two eigenvalues is positive, whichmeans that all eigenvalues

have the same sign.

Conversely, suppose the second fundamental form is definite. Then the map (x, y) →⟨Sx,y⟩ or its negative is an inner product. The Cauchy-Schwarz inequality for either

case implies that the right side of (7.3.1) is positive for linearly independent x and y,
and the claim follows.

Theorem 7.3.2. There are no compact hypersurfaces of nonpositive curvature.

Proof. Let M be a compact hypersurface in ℝn+1. The square of the distance to the

origin function f , f (p) = |p|2, must assume a maximum at some p0 in the compact

setM. We will show thatM has positive curvature at p0. In view of Theorem 7.3.1, it is

enough to show that the second fundamental form is definite at that point. Now, the

vector n = (1/|p0|)Ip0p0 is a unit normal toM, because if u ∈ Mp0 , and c is any curve
inM with c(0) = p0 and ċ(0) = u, then

0 = (f ∘ c)(0) = 2⟨c(0), c(0)⟩ = 2⟨ċ(0), Ip0p0⟩ = 2|p0|⟨u,n⟩.
Furthermore,

0 ≥ (f ∘ c)(0) = 2(⟨c, c⟩(0) + |c(0)|2),
so that ⟨c, c⟩(0) ≤ −|u|2. But

⟨c, c⟩(0) = ⟨∇D(0)ċ, Ip0p0⟩ = |p0|⟨∇D(0)c, n⟩ = −|p0 |⟨Snu,u⟩,
and consequently ⟨Snu,u⟩ ≥ |u|2/|p0|2 as claimed.

A symmetric bilinear form b on an inner product space V is said to be semi-definite if

either b(v, v) ≥ 0 for all v ∈ V or b(v, v) ≤ 0 for all v ∈ V. In the exercises, the reader

is asked to show thatM has nonnegative curvature at a point if and only if the second

fundamental form is semi-definite at that point.

In order to formulate our next result more concisely, we introduce the following

concept: the Laplacian of a function f is the function Δ f = trHf , where Hf is the

Hessian of f , and tr is the trace. To avoid the notation from becoming cumbersome,

we will identify the tangent space of Euclidean space at a point with Euclidean space

itself via the usual projection π2 : Tℝn+1 → ℝn+1. Thus, the gradient of f becomes the

vector-valued map [Df ], and the Hessian of f satisfies

Hf (p)x = Dx∇f , x ∈ ℝn+1,
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where of course the x on the right side is to be interpreted as Ipx. To see this, it suffices

to verify the identity for x = ei, since both sides are linear in x. Now,

Dei∇f = Di[Df ](p) = c(0),
where

c(t) = [Df (p + tei)] = [D1f (p + tei), . . . ,Dn+1f (p + tei)].
Consequently,

c(0) = [Di1f , . . . ,Di(n+1)f ](p) = Hf (p)ei,
as claimed.

Theorem 7.3.3. Let Mn = f−1(0) ⊂ ℝn+1, where 0 is a regular value of f , and p ∈ M,

x, y ∈ Mp. Denote by S, s,H,G the second fundamental tensor, second fundamental form,

mean curvature, and Gaussian curvature respectively of M with respect to the standard

orientation of M. Then

– Sx = − 1
|∇f |(p) (Hfx)⊤;

– s(x, y) = − 1
|∇f |(p)hf (x, y);

– H(p) = 1
n|∇f |(p) ( hf (∇f ,∇f )

|∇f |2 (p) − Δ f (p));
– G(p) = 1

|∇f |n(p) detH
⊤
f (p);

– If x and y forman orthonormalbasis of a planeP ⊂ Mp, then the sectional curvature

of P is

KP =
1|∇f |2(p) det [hf (x, x) hf (x, y)

hf (x, y) hf (y, y)] .
Proof.

Sx = −Dx ( 1|∇f |∇f) = −x ( 1|∇f |) (∇f )⊤(p) − 1|∇f |(p) (Dx∇f )⊤
= − 1|∇f |(p) (Dx∇f )⊤ = − 1|∇f |(p) (Hfx)⊤.

This establishes thefirst identity. Theothers follow from thedefinitions of thedifferent

types of curvature, together with (7.3.1) and the identity just proved.

There is a useful alternative formula for the Gaussian curvature in the above proposi-

tion. In order to derive it, we need the following:

Lemma 7.3.1. Let L : V → V be a linear transformation on an (n + 1)-dimensional

inner product space V. Let W be an n-dimensional subspace of V and π : V → W the

orthogonal projectionontoW; i.e., ifx = x1 + x2 ∈ W⊕W⊥, thenπx = x1. The restriction
π ∘ L|W of π ∘ L to W is then an operator onW. Its determinant is given by

det(π ∘ L|W) = ⟨L̃x, x⟩,
where x is a unit vector inW⊥, and L̃ is the linearmap adjugate to L (see Theorem1.3.6).
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Proof. Extend x to an ordered orthonormal basis B = {x, v1, . . . , vn} ofV. Then the last
n vectors form an orthonormal basis B1 of W, and the (i, j)-th entry of the matrix of

π ∘ L|W with respect to this basis is⟨πLvj , vi⟩ = ⟨Lvj − ⟨Lvj, x⟩x,vi⟩ = ⟨Lvj, vi⟩,
so that the determinant of π ∘ L|W equals the determinant of the matrix obtained by

deleting the first row and column of [L]B. On the other hand, ⟨L̃x, x⟩ is the (1,1) entry
of [L̃]B, which by definition of L̃, is that same determinant.

The lemma, togetherwith the formula forG fromTheorem7.3.3now immediately imply

the following:

Proposition 7.3.1. With the hypothesesof Theorem 7.3.3, the Gaussian curvature ofM is

given by

G =
1|∇f |n+2 ⟨H̃f∇f , ∇f ⟩.

An important special case occurs when the function f is a quadratic form. As before,

we have identified in the next result Euclidean space with its tangent space at a given

point.

Proposition 7.3.2. Suppose L is a self-adjoint operator on ℝn+1. Denote by b the asso-

ciated scalar product, b(x, y) = ⟨Lx, y⟩, and by f the corresponding quadratic form,

f (x) = b(x, x). Consider a regular value a of f , and the corresponding hypersurface

M = f −1(a). Given p ∈ M,

(1) ∇f (p) = 2Lp;
(2) Hf = 2L, hf = 2b;

(3) G(p) = det L
|Lp|n+2 a;

(4) If x and y forman orthonormal basisof a planeP ⊂ Mp, then the sectional curvature

of P is

KP =
1|Lp|2 det [b(x, x) b(x, y)

b(x,y) b(y, y)] .
Proof. Let x ∈ ℝn+1, and consider the ray cx , cx(t) = p + tx. Then⟨∇f (p),x⟩ = xf = (f ∘ cx)(0).
Now,

(f ∘ cx)(t) = b(p + tx,p + tx) = b(p,p) + 2tb(p,x) + t2b(x,x),
so that ⟨∇f (p), x⟩ = 2b(p,x) = 2⟨Lp,x⟩, which establishes (1).
For (2), observe that (1) implies Dif (p) = 2⟨Lp,ei⟩, so that Djif (p) = c(0), where

c(t) = 2⟨L(p + tej), ei⟩ = 2(⟨Lp,ei⟩ + t⟨Lej, ei⟩).
Thus, Djif (p) = 2⟨Lej, ei⟩. Since these are the respective entries of the matrices of

Hf (p) and 2L in the standard basis, both transformations coincide. The formula for the
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hessian form is immediate, and the one for sectional curvature follows from Theorem

7.3.3. Finally, by Proposition 7.3.1 together with (1) and (2),

G(p) = 1|∇f (p)|n+2 ⟨H̃f∇f , ∇f ⟩(p) = 1|2Lp|n+2 ⟨(̃2L)(2L)p,2Lp⟩
=

det(2L)

2n+2|Lp|n+2 ⟨2Lp,p⟩ = det L|Lp|n+2 a.
Notice that if the quadratic form b is definite, then M has positive curvature. If it is

merely semi-definite, thenM has nonnegative curvature by Exercise 7.17.When n = 2,

the surfaces of the type considered in Proposition 7.3.2 are called quadrics. The reader

is invited to classify them in the exercises.

Fig. 7.2: The ellipsoid x2 + 2
3
y2 + 1

2
z2 = 1.

Fig. 7.3: The hyperboloid x2 + y2 − z2 = 1.
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Example 7.3.1. When n = 2, the Gaussian curvature and the sectional curvature coin-

cide. In order to compute the latter, one can therefore use Proposition 7.3.2(3) without

having to explicitly find a basis for the tangent space:

– The ellipsoid (x2/a2) + (y2/b2) + (z2/c2) = 1 is the surface {x ∈ ℝ3 | ⟨Lx,x⟩ = 1},
where the matrix of L : ℝ3 → ℝ3 in the standard basis is

[L] =
[[[

1
a2

0 0

0 1
b2

0

0 0 1
c2

]]] .
The formula for the Gaussian curvature then implies that the curvature at (x, y, z)
equals

K(x, y, z) = [abc( x2
a4

+
y2

b4
+
z2

c4
)]−2.

– Thehyperboloid (x2 /a2) + (y2/b2)−(z2/c2) = 1differs from theellipsoid in that the

last diagonal entry of [L] has its sign reversed. The curvature is therefore given by

K(x, y, z) = −[abc( x2
a4

+
y2

b4
+
z2

c4
)]−2.

7.4 The fundamental theorem for hypersurfaces

We have already remarked in Chapter 3 that if F is a rigid motion of Euclidean space,

and M is a submanifold, then the restriction of F to M is an isometry with F(M). We

also noticed that the converse is not true, that is, an isometry f : M1 → M2 between

submanifolds need not be the restriction of a rigid motion. In this section, we show it

is nevertheless true for hypersurfaces, provided f preserves in addition the second

fundamental form (it is also true for more general submanifolds, under additional

hypotheses). Specifically:

Theorem 7.4.1. Let Mi denote oriented hypersurfaces inℝn+1 with unit normal fields ni
and second fundamental tensors Si, i = 1,2. Suppose that f : M1 → M2 is an isometry,

and that

S2f∗x = f∗S1x, x ∈ M1p, p ∈ M1.
If M1 is connected, then there exists a rigid motion F of ℝn+1 such that f = F ∘ 𝚤, where𝚤 : M1 → ℝn+1 denotes inclusion.

Proof. Notice first that F, if it exists, is, up to sign, entirely determined by f : indeed,
F(x) = Ax + b for some orthogonal transformation A and b ∈ ℝn+1. Fix any p ∈ M1.

Then F(p) = Ap + b = f (p), so that b must equal f (p) − Ap. Furthermore, DF(p) =
A, so that A must, up to parallel translation, equal f∗p on M1p. Denoting as usual by

π2 the projection from Tℝn+1 to ℝn+1, it follows that A(π 2n1(p)) = ±π 2n2(f (p)). This
completely determines the operator A on ℝn+1, and together with the condition on b,
determines F.
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With this in mind, define F as above; i.e., consider the orthogonal transformation A

determined by

A(π 2n1(p)) = π 2n2(f (p)), A(π 2x) = π 2f∗x for x ∈ M1p,
and the rigid motion F, where

F(x) = Ax + f (p) − Ap.
The result will follow once we show that the map G := F−1 ∘ f is the identity on M1.

In fact, sinceM1 is connected, it suffices to show that G ∘ c = c for any curve c in M1

with c(0) = p. By construction, G(p) = p (and G∗p is the identity on the tangent space
ofM1 at p), so (G ∘ c)(0) = c(0), and we only need to show that (G ∘ c) = c.
So choose an orthonormal basis xi ofM1p, and let Xi denote the parallel field along c
with Xi(0) = xi. By (3.11.6), the fields Yi := G∗Xi are parallel and orthonormal along

G ∘ c. Moreover, Yi(0) = Xi(0) because G∗p is the identity. Now, ċ = ∑i⟨ċ,Xi⟩Xi, and

G ̇∘c = ∑
i

⟨G∗ċ,Yi⟩Yi = ∑
i

⟨G∗ ċ,G∗Xi⟩Yi = ∑
i

⟨ċ,Xi⟩Yi,
so that if Xi = π 2Xi and Yi = π 2Yi, then

c = ∑
i

⟨ċ,Xi⟩Xi, (G ∘ c) = ∑
i

⟨ċ,Xi⟩Yi.
It therefore remains to show that Xi = Yi for 1 ≤ i ≤ n. First, observe thatM := F−1(M2)

is a manifold isometric to M2 with unit normal n := F−1∗ ∘ n2 ∘ F. Set Xn+1 = n1 ∘ c,
Yn+1 = n ∘ G ∘ c, so that {Xi}1≤i≤n+1 and {Yi}1≤i≤n+1 are orthonormal bases of ℝn+1

c andℝn+1
G∘c respectively. Now,

Xi = ∑
j

gijXj, Yi = ∑
j

hijYj, where gij = ⟨Xi ,Xj⟩, hij = ⟨Yi ,Yj⟩.
Since Xi and Yi are parallel for i ≤ n, gij ≡ hij ≡ 0 when i, j ≤ n. In the case that

j = n + 1,we use the fact that f preserves the second fundamental form: The condition

S2f∗x = f∗S1xmeans that Df∗xn2 = f∗Dxn1. Thus,

DG∗xn = DG∗x(F
−1
∗ ∘ n2 ∘ F) = F−1∗ DG∗x(n2 ∘ F) = F−1∗ DF∗∘G∗xn2

= F−1∗ Df∗xn2 = F−1∗ ∘ f∗Dxn1
= G∗Dxn1 .

Now take x = ċ in the above identity to conclude that Y n+1 = G∗X
n+1. It follows that

hi n+1 = ⟨Y i ,Yn+1⟩ = −⟨Yi,Y n+1⟩ = −⟨G∗Xi,G∗X
n+1⟩

= −⟨Xi,X
n+1⟩ = ⟨X

i ,Xn+1⟩
= gi n+1
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for all i ≤ n. But this also implies equality when i = n + 1, because for any i and j,

gij + gji = ⟨X
i ,Xj⟩ + ⟨Xi,X

j ⟩ = ⟨Xi,Xj⟩ = 0,
and similarly for hij.

Summarizing, we have established that

Xi = ∑
j

gijXj, Yi = ∑
j

gijYj.
Let Zi = Xi − Yi. Then Zi satisfies the system of ordinary differential equations

Zi = ∑
j

gijZj, Zi(0) = 0.
The constant vector fields Zi ≡ 0 satisfy this system. By uniqueness of solutions, Zi ≡
0; i.e. Xi ≡ Yi.

Example 7.4.1. Let c : (a, b) → ℝ2 denote a regular curve with no self-intersections

(i.e., c is one-to-one, so thatM = c(a, b) is a – perhaps only immersed – submanifold

of ℝ2), which we may assume is parametrized by arclength. Choose the unit normal

vector field n along c so that det(c,π 2 ∘ n) ≡ 1, and denote by S the corresponding

second fundamental tensor. The curvature of c is

κ = ⟨Sċ, ċ⟩.
The curvature is, therefore, up to sign, equal to the norm of the second fundamental

tensor. It is also, up to sign, the norm of the acceleration:

⟨Sċ, ċ⟩ = −⟨n, ̇c⟩ = ⟨n, ċ⟩ = ±| ̇c|,
since ċ ⊥ ċ. In the exercises, the reader is asked to show that a circle of radius r has|κ | = 1/r. This means that going out along the normal line to c(t) at distance 1/|κ(t)|
(in the appropriate direction) and drawing a circle centered there with radius equal

to that distance yields the circle that best approximates c at t. It is called the circle of
curvature at t.

Now, suppose ci : (a, b) → ℝ2, i = 1,2, are two curves parametrized by arc length

with no self-intersections. Then the map f : c1(a, b) → c2(a, b), where f = c2 ∘ c−11 , is

an isometry. The above theorem says that f extends to a rigid motion of the plane if

and only if the curves have the same curvature; i.e., κ2 ∘ f = κ1.
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7.5 Curvature in local coordinates

Although a coordinate-free approach is preferable, it is not always feasible. In this

section, we compute the matrix of the second fundamental tensor of a hypersurface

Mn with respect to a basis of coordinate vector fields. In the case n = 2, the formulas

are simple enough to obtain a reasonable expression for the sectional curvature.

Consider a chart (U, x) with coordinate vector fields 𝜕/𝜕xi = x−1∗ Di ∘ x and corre-

sponding unit normal field

n =
×ni=1 𝜕

𝜕xi×ni=1 𝜕
𝜕xi


toM on U. Define n × nmatrix-valued maps s, g, on U by

sij = ⟨S 𝜕𝜕xi , 𝜕𝜕xj⟩ , gij = ⟨ 𝜕𝜕xi , 𝜕𝜕xj⟩ .
As usual, let n = π 2 ∘ n. We begin by finding an expression for s:

sij = ⟨S 𝜕𝜕xi , 𝜕𝜕xj⟩ = −⟨D𝜕/𝜕xin, 𝜕𝜕xj⟩ = ⟨D𝜕/𝜕xi 𝜕𝜕xj ,n⟩
= ⟨(Dx−1∗ Di

𝜕𝜕xj ) ∘ x,n⟩ = ⟨(DDi
( 𝜕𝜕xj ∘ x−1)) ∘ x,n⟩

= ⟨(DDi
x−1∗ Dj) ∘ x,n⟩ = ⟨(D(Dx−1ej)ei) ∘ x,n⟩

by (2.8.3). By symmetry of s,

sij = ⟨(D2x−1eiej) ∘ x,n⟩. (7.5.1)

Alternatively, in terms of a parametrization h = x−1,

sij ∘ h = ⟨D2heiej,n ∘ h⟩. (7.5.2)

We emphasize that the first term on the right side of the equality sign in (7.5.1) is

the map fromU toℝn+1 that sends p to (Dk)((x(p))ej, where k = Dx−1ei : x(U) → ℝn+1.

s is not, in general, the matrix of S in the basis of coordinate vector fields, unless the

latter are orthonormal. To find this matrix, we use the following:

Lemma 7.5.1. Suppose L : V → V is a linear map on an inner product space V with

basis B = {v1 , . . . , vn}. If A denotes the matrix with (i, j) entry aij = ⟨Lvi, vj⟩, and B the

one with (i, j) entry bij = ⟨vi, vj⟩, then the matrix of L with respect to B is [L]B = (AB−1)T.
In particular, if L is self-adjoint, then [L]B = B−1A.

Proof. If lij is the (i, j)-th entry of the matrix of L in the given basis, then

aij = ⟨Lvi, vj⟩ = ⟨∑
k

lkivk, vj⟩ = ∑
k

lkjbkj,
so that A = [L]TBB, and the claim follows. If in addition L is self-adjoint, then A is a

symmetric matrix. B is always symmetric, and it is easy to see that B−1 must then also

be symmetric. Thus, (AB−1)T = B−1TAT = B−1A.
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As an immediate consequence, we obtain:

Proposition 7.5.1. The matrix of S in the basis {𝜕/𝜕xi} equals g−1s, where
sij = ⟨(D2x−1eiej) ∘ x,n⟩, gij = ⟨ 𝜕𝜕xi , 𝜕𝜕xj ⟩.

The proposition may of course be stated alternatively in terms of a parametrization h
using (7.5.2). This is in fact the way it is done in the following application:

Corollary 7.5.1. If M2 ⊂ ℝ3 is locally parametrized by (U,h), then the sectional curva-
ture of M at p = h(a) is

K(p) =
det⟨(D2heiej)(a), n(p)⟩
det⟨Dhei,Dhej⟩(a) =

det⟨(D2heiej)(a), n(p)⟩|Dhe1 × Dhe2|2(a) .
Proof. By (7.3.1), K = det S, and the first part of the identity follows from the proposi-

tion, together with (7.5.2). For the second part, if θ denotes the angle between the two

coordinate vector fields, then

det⟨Dhei,Dhej⟩ = |Dhe1|2 |Dhe2 |2 − ⟨Dhe1,Dhe2⟩2
= |Dhe1|2 |Dhe2 |2 − |Dhe1 |2|Dhe2 |2 cos2 θ
= |Dhe1|2 |Dhe2 |2 sin2 θ
= |Dhe1 × Dhe2 |2

by (1.6.2).

Example 7.5.1. Consider the surface M2 ⊂ ℝ3 consisting of the graph of a function

f : U ⊂ ℝ2 → ℝ; i.e,M = {(x, y, f (x, y)) | (x, y) ∈ U}. There is a natural parametrization

h : U → ℝ3 of all ofM given by h(a) = (a, f (a)) for a ∈ U.

Dhe1 and Dhe2 are the columns of the matrix

[Dh] = [[[
1 0

0 1

D1f D2f

]]] ,
so that

D2hei =
[[[

0 0

0 0

D1if D2if

]]] .
It follows that

(D2hei)ej =
[[[

0

0

Dijf

]]] , n ∘ h =
1√1 + (D1f )
2 + (D1f )

2

[[[
−D1f−D2f

1

]]] .
By Proposition 7.5.1, we have

s ∘ h =
1

(1 + |∇f |2)1/2 [D11f D12f

D21f D22f
] , g ∘ h = [1 + (D1f )

2 D1fD2f

D1fD2f 1 + (D2f )
2] ,
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and by Corollary 7.5.1, the sectional curvature ofM is given by

K ∘ h =
detHf

(1 + |∇f |2)2 . (7.5.3)

In particular, the curvature and the determinant of the Hessian of f have the same

sign. It is worth noting that this equation can also be derived fromTheorem 7.3.3 if one

writesM = h−1(0), where h(x, y, z) = f (x, y) − z.

7.6 Convexity and curvature

We have already encountered the notion of convexity in two of its forms: convexity of

a function, and convexity of a set. There is a third one, which applies to hypersurfaces

and is closely related to curvature. In order to introduce it, consider a hypersurface

Mn ⊂ ℝn+1, a point p ∈ M, and a unit vector n ⊥ Mp. The two half-spaces at p are the

sets

H+
u = {q ∈ ℝn+1 | ⟨π2(n), q − p⟩ ≥ 0}, and

H−
n = {q ∈ ℝn+1 | ⟨π2(n), q − p⟩ ≤ 0}.

Here, π2 : Tℝn+1 → ℝn+1 is the usual projection. Notice that the intersection of the two

half-spaces at any p ∈ M is the “affine space” p + π2(Mp), whichmay be construed as

a visual representation of the tangent space at p. The ambient space itself is the union

of these half-spaces.M is said to be convex if it is contained in one of the half-spaces at

every point ofM. This notion of convexity differs from the one given in Definition 2.4.5

which applies to arbitrary sets, not just hypersurfaces. It can, however, be shown that

a compact, connected hypersurface M is convex if and only if the region consisting of

all points “inside” and onM is convex in the previous sense of the word.

More generally, M is said to be convex at p ∈ M if there exists a neighborhood

U of p in ℝn+1 such that U ∩ M is contained in one of the half-spaces at p. A convex

hypersurface is therefore convex at any of its points, but the converse is not true in

general: for example, the hypersurface inℝ2 parametrized by h : (0,2π) → ℝ2, where

h(t) = (t cos t, t sin t), is convex at every point, yet fails to be globally so, see Figure 7.4.
Convexity is closely related to curvature; to seehow, recall aproperty of the second

fundamental tensor that was touched upon previously: let n be a unit vector orthogo-
nal toMp, and S the second fundamental tensor with respect to n. Given x ∈ Mp,⟨Sx, x⟩ = ⟨n, ċ(0)⟩, (7.6.1)

where c denotes any curve in M with ċ(0) = x. This is because if n is a local normal

unit field toM that equals n at p, then

⟨Sx,x⟩ = −⟨Dxn, ċ(0)⟩ = ⟨n(p), ċ(0)⟩.
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Fig. 7.4: A locally, but not globally,
convex curve

Theorem 7.6.1. If a hypersurface is convex at p, then the sectional curvatures are non-
negative at p.

Proof. Let n denote a unit vector orthogonal toMp, S the second fundamental tensor

with respect to n. According to Exercise 7.17, it suffices to show that S is semi-definite.

Byhypothesis, there exists aneighborhoodU ofp inEuclidean space such thatM∩U is

contained either inH+
n or inH

−
n . Suppose the former holds. Wewill show that ⟨Sx,x⟩ ≥

0 for any x ∈ Mp. To see this, let f : ℝn+1 → ℝ be given by

f (q) = ⟨π2(n), q − p⟩.
The gradient of f is the parallel vector field onℝn+1 that equals n at p. If c is any curve
inMwith ċ(0) = x ∈ Mp, then f ∘c is nonnegative in a neighborhood of 0, and vanishes
at 0. In particular, f has aminimumat 0, so that (f ∘c)(0) ≥ 0.Now, (f ∘c) = ⟨∇f ∘c, ċ⟩,
and

(f ∘ c) = ⟨∇f ∘ c, ċ⟩ = ⟨∇f ∘ c, ċ⟩
since the gradient of f is parallel. Thus, by (7.6.1),

0 ≤ (f ∘ c)(0) = ⟨n, ċ(0)⟩ = ⟨Sx, x⟩,
as claimed. The case when M ∩ U is contained in H−

n is similar, except that f ∘ c now
has a maximum at 0, so that ⟨Sx, x⟩ = (f ∘ c)(0) ≤ 0.

The converse is, in general, not true: for example, the right cylinder in ℝ3 over the

sine curve inℝ2 can be parametrized by (s, t) → (s, sin s, t). Corollary 7.5.1 implies that

the surface is flat, even though it is clearly not convex. Amore striking example can be

found in Exercise 7.24. The converse does hold, however, under stronger assumptions:

Theorem 7.6.2. Let Mn be a hypersurface. If the sectional curvatures are positive at

some point, then M is convex at that point.

Proof. Let n denote a unit normal field toM in a neighborhood of a point pwhere the
curvature is positive. By Theorem 7.3.1, the second fundamental form S with respect
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to n(p) is definite, and we may assume, without loss of generality, that it is positive

definite. Consider the function f defined in some connected neighborhood of p by

f (q) = ⟨q − p, π2(n(p))⟩. If c is any regular curve in M passing through p at t = 0,

then (f ∘ c)(0) = ⟨π2(n(p)), c(0)⟩ = 0, and as in the proof of the previous theorem,

(f ∘c) = ⟨Sċ(0), ċ(0)⟩which is positive by assumption. Thus, f ∘c has aminimum at 0,

so that all points ofM close enough topwill lie in the half-space H+
n(p). This completes

the argument.

Example 7.6.1. If we visualize the tangent plane of a hypersurface M in ℝn+1 at p as

the affine subspace p + π2(Mp) (which is the intuitive interpretation for n = 2), then

convexity at p is equivalent to saying that in a neighborhood of p,M lies on one side

of this affine plane. Thus, if a hypersurface does not have curvature ≥ 0 at some point,

then it must cross its tangent plane there. This implies in particular something about

the shape of minimal hypersurfaces: namely, they must cross their tangent plane at

every point wherenot all curvatures vanish. Indeed, if the hypersurface does not cross

its tangent space somewhere, then the second fundamental tensor is semi-definite

there. Since the trace is zero, the tensor itself must vanish.

7.7 Ruled surfaces

A ruled surface in ℝ3 is a hypersurface parametrized by a map h of the form h(s, t) =
c1(s) + tc2(s), where c1 and c2 are curves inℝ3. Notice that the curves hs, wherehs(t) =
h(s, t) are straight lines; they are called the rulings of the surface. Since

Dh(s, t)e1 = c1(s) + tc2(s), Dh(s, t)e2 = c2(s),
the two vectors above must be linearly independent for all s, t if h is to be a parame-

trization. This will be the case (for small t at least) if for example c1(s) and c2(s) are
linearly independent. An interesting feature of these surfaces is that they are always

nonpositively curved:

Proposition 7.7.1. The sectional curvature of a ruled surface is given by

(K ∘ h)(s, t) = − ⟨c1(s), c2(s) × c2(s)⟩2|(c1(s) + tc2(s)) × c2(s)|4 .
Proof. Notice that if ht denotes the map s → h(s, t), then the formula we aim to estab-

lish becomes

K ∘ ht = − ⟨c1, c2 × c2⟩2|(c1 + tc2) × c2|4 .
The unit normal field determined by the parametrization is

n ∘ ht = Dhe1 × Dhe2|Dhe1 × Dhe2 | = (c1 + tc2) × c2|(c1 + tc2) × c2| .
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Now, D2he2e2 = 0, so the matrix ⟨D2heiej,n ∘ h⟩ has determinant
det⟨D2heiej,n ∘ h⟩ = −⟨D2he1e2, n ∘ h⟩2 = −⟨c2, (c1 + tc2) × c2⟩2|(c1 + tc2) × c2|2 ,

and by Corollary 7.5.1,K ∘ ht = −⟨c2, (c1 + tc2) × c2⟩2/|(c1 + tc2) × c2|4. The definition
of the cross-product implies that ⟨x × y, z⟩ = ⟨y × z, x⟩ for x, y, z ∈ ℝ3. Thus,

⟨(c1 + tc2) × c2, c2⟩ = ⟨c2 × c2, c1 + tc2⟩ = ⟨c2 × c2, c1⟩
since c2 ⊥ c2 × c2, and the result follows.
There are two special cases worth mentioning:

(1) c1 ≡ 0. t must then be different from zero, and c1 is a constant curve p. M is a

generalized cone over c2 with vertex p deleted. The cone is flat.

(2) c2 ≡ 0. Now c2 is a constant x and M is a generalized cylinder over c1 with axis

parallel to x. Again,M is flat.

c1

Ruled surface with

c1 constant
Ruled surface with c2 =
constant x

c2
x

c1

These special cases having been dealt with, we will assume that c1 and c2 are regular
and parametrized by arc length. We may also normalize c2 so that it lies on the unit

sphere. In this case, c2 is called the directrix. The formula for the curvature simplifies

substantially if we assume that ⟨c1, c2⟩ ≡ 0. Although it is not immediately obvious,

it turns out this may always be done; i.e., c2 may be replaced, if necessary, by another

curve 𝛾2 satisfying ⟨c1, 𝛾2⟩ ≡ 0. Under these assumptions, we have that

|(c1 + tc2) × c2|2 = |c1 + tc2|2|c2|2 − ⟨c1 + tc2, c2⟩2
= |c1 |2 + t2|c2 |2 − ⟨c1, c2⟩2 = |c1 |2|c2|2 + t2 − ⟨c1, c2⟩2
= t2 + |c1 × c2|2.

Now, c2 is orthogonal to c1, c2, and the same is true for c1 × c2. Assuming linear inde-
pendence of c1, c2, it follows that c1 × c2 and c2 are orthogonal to a common plane,

and therefore linearly dependent. Thus, c1 × c2 = ⟨c1 × c2, c2⟩c2 = ⟨c2 × c2, c1⟩c2; i.e.,
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|c1 × c2|2 = ⟨c1, c2 × c2⟩2, and the formula for the curvature becomes
K ∘ h = − |c1 × c2|2

(t2 + |c1 × c2|2)2 . (7.7.1)

Notice that since c1 and c2 are assumed to be linearly independent, the curvature is

strictly negative.

Fig. 7.5: A helicoid

One example of a ruled surface is the Möbius strip from Section 4.1, with

h(s, t) = (cos s, sin s, 0) + t(cos(s/2), sin(s/2), sin(s/2)). Another is the hyperboloid
(x/a)2 + (y/b)2 − (z/c)2 = 1 from Section 4.3, which may be parametrized by

h(s, t) = (a cos s, b sin s, 0) + t(−a sin s, b cos s, c). One that we have not encountered
before is the helicoid: For any s ∈ ℝ, consider the Euclidean motion ks ofℝ3, where

ks(x, y, z) = [[[
cos s − sin s 0

sin s cos s 0

0 0 1

]]][[[
x

y

z

]]] +
[[[
0

0

s

]]] .
ks is called a glide rotationas it rotates a point by angle s around the z-axis and trans-
lates it by s along that same axis. The so-called orbit {ks(p) | s ∈ ℝ} of a point p is a

helix. The helicoid itself is just the orbit of the whole x-axis; i.e., h(s, t) = ks(t,0,0).
According to (7.7.1), the curvature of the helicoid is

K ∘ h(s, t) = − 1

(1 + t2)2
,
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which only depends on the distance |t| from the point h(s, t) to the z-axis. The helicoid
is actually related to the catenoid introduced in Exercise 3.28. Both are minimal sur-

faces, and either one can be smoothly and isometrically deformed into the other via

F, where

F(θ , s, t) = (cos θ sinh t sin s + sin θ cosh t cos s, − cos θ sinh t cos s

+ sin θ cosh t sin s, s cos θ + t sin θ ).
When θ = 0, one obtains the parametrization of the helicoid above rotated by −π/2:

F(0, s, t)T = [[[
sinh t sin s

sinh t(− cos s)
s

]]] =
[[[
0 1 0−1 0 0

0 0 1

]]] ks(sinh t,0,0)T .
Similarly, θ = π/2 yields the catenoid. For each fixed θ0, the map (s, t) → F(θ0, s, t)
parametrizes a minimal surface. Notice that

F(θ , s, t) = cos θ F(0, s, t) + sin θ F(π
2
, s, t),

see also Exercise 7.25.

7.8 Surfaces of revolution

Surfaces of revolution, where the graph of a function of one variable is rotated about

an axis, were introduced in Examples 3.1.1. It is convenient to allow for more general

curves than just graphs. For clarity of notation in the sometimes rather complicated

formulas that follow, we will use subscripts rather than superscripts to denote the

component functions of the curve.

Definition 7.8.1. Let 𝛾 = (𝛾1, 0, 𝛾2) : (a, b) → ℝ3 denote a curve whose image lies in the

x-z plane. The surface of revolutionM with profile curve 𝛾 is the surface parametrized

by h : (a, b) × [0,2π) → ℝ3, where

h(u, v) = (𝛾1(u) cos v, 𝛾1(u) sin v, 𝛾2(u)).
Thus, the surface is obtained by rotating the image of 𝛾 about the z axis. The curves

u → h(u, v) and v → h(u, v) are calledmeridians and parallels respectively. Themerid-

ian u → h(u, v0) is the profile curved rotated by angle v0, and the parallel v → h(u0, v)
is the circle obtained by rotating the point 𝛾(u0) about the z-axis.

The coordinate fields 𝜕
𝜕xi = h∗ ∘ Di ∘ h−1 are determined by the vector fields

h∗D1(u, v) = 𝛾1(u) cos v(D1 ∘ h)(u, v) + 𝛾1(u) sin v(D2 ∘ h)(u, v)
+ 𝛾2(u)(D3 ∘ h)(u, v)

h∗D2(u, v) = −𝛾1(u) sin v(D1 ∘ h)(u, v) + 𝛾1(u) cos v(D2 ∘ h)(u, v) (7.8.1)
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along h. The latter are just the tangent fields to the meridians and parallels. Notice

that the second one is parallel to the x-y plane and that they are mutually orthogonal.

Their cross-product h∗D1×h∗D2, yields, afternormalizing, a unit normal fieldN along

h given by

N(u, v) = 1

(𝛾12 + 𝛾22)1/2(u)(𝛾2(u) cos vD1 + 𝛾2(u) sin vD2

− 𝛾1(u)D3) ∘ h(u, v). (7.8.2)

Theorem 7.8.1. The sectional curvature of the surface of revolution parametrized by h
is

K ∘ h =
(𝛾1𝛾2 − 𝛾2𝛾1 )𝛾2𝛾1(𝛾12 + 𝛾22)2 .

In particular, if 𝛾 is parametrized by arc-length, then K ∘ h = −𝛾1 /𝛾1.
Proof. Using (7.8.2), the covariant derivatives of the unit normal field alongmeridians

and parallels are given by

DD1
N =

𝛾1𝛾2 − 𝛾2𝛾1
(𝛾12 + 𝛾22)3/2 h∗D1, DD2

N =
𝛾2𝛾1(𝛾12 + 𝛾22)1/2 h∗D2.

Thus, the coordinate vector fields are eigenvector fields at each point ofM of the sec-

ond fundamental tensor, with corresponding principal curvatures

λ1 =
𝛾1𝛾2 − 𝛾2𝛾1
(𝛾12 + 𝛾22)3/2 , λ2 =

𝛾2𝛾1(𝛾12 + 𝛾22)1/2 . (7.8.3)

Since the sectional (andGaussian) curvature is theproduct of theprincipal curvatures,

the result follows.When 𝛾 is parametrized by arc length,∑i 𝛾i 𝛾i = 0, so that

K ∘ h =
𝛾1𝛾2𝛾2 − 𝛾1 𝛾22𝛾1 =

𝛾1(−𝛾1𝛾1 ) − 𝛾1 (1 − 𝛾12)𝛾1 = −𝛾1𝛾1 . (7.8.4)

A

B

C
θ

Fig. 7.6: A tractrix
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Example 7.8.1. Consider an object located at (a,0), a > 0, in the plane, attached to a

rope of length a whose other end is held by someone standing initially at the origin

(0,0). A tractrix (from the Latin verb “trahere” – to draw) is the path traced by the

object as it is being pulled by the person walking along the y-axis.

Denoting by 𝛾 = (𝛾1, 𝛾2) the parametrization by arc-length of the tractrix with 𝛾(0) =

(a,0), we see from the figure that

a ≡ AB =
AC

cos θ
= −AC𝛾1 = −𝛾1𝛾1 ,

with the minus sign being due to the fact that

𝛾1 = ⟨𝛾, e1⟩ = |𝛾| cos(π − θ ) = − cos θ .
Thus, 𝛾1 = −(1/a)𝛾1, and 𝛾1(t) = ae−t/a. Furthermore,

1 = |𝛾|2(t) = (ae−t/a)2 + 𝛾22(t),
so that 𝛾2(t) = ±√1 − (ae−t/a)2. If the person walks along the positive portion of the

y-axis, the tractrix is then given by

𝛾(t) = (ae−t/a, t∫
0

√1 − (ae−s/a)2 ds), t ≥ 0.
The surface of revolution generated by the tractrix is called a pseudosphere.The name

was coined in 1868 by the Italian mathematician Eugenio Beltrami who proposed it

as a model of non-Euclidean geometry. By (7.8.4), this pseudosphere has constant

negative curvature K = −1/a2.
One appealing feature of surfaces of revolution is that, in contrast to general sur-

faces, geodesics are readily described. Notice first that any meridian is the image of

a geodesic. This follows from Proposition 3.11.2, since it is (part of) the fixed point set

of reflection in the plane that contains the meridian and the z-axis. For parallels, the

situation is different: we claim that c, where c(t) = h(u0, t), is a geodesic if and only if
u0 is a critical point of 𝛾1. To see this, notice that ċ = −α cos D1 ∘c−α sin D2 ∘c, where
α := 𝛾1(u0). On the other hand, c is a geodesic if and only if N ∘ c and ċ are linearly
dependent. Comparing with (7.8.2) now yields the claim.

The other geodesics can be described by means of the following

Theorem 7.8.2 (Clairaut). Let c : I → Mdenote a normal geodesic inM,andρ = h−1∘c :
I → ℝ2. If α(t) = ∢(ċ(t),h∗(D2 ∘ρ )(t)) is the angle between ċ(t) and the parallel through
c(t), and if r = ((u1)2 + (u2)2)1/2 denotes the distance from a point to the z-axis, then

(r ∘ c) cos α is constant.

Conversely, if c is a curve parametrized by arc length for which (r ∘ c) cos α is constant,

and c is not a parallel, then c is a geodesic.
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Fig. 7.7: A pseudosphere

Proof. We will, as we did with c, denote with a subscript the component functions

ρi = ui ∘ ρ , i = 1, 2, of ρ . We will also abbreviate h∗(Di ∘ ρ ) by h∗Di ∘ ρ . Then
ċ = ρ 1h∗D1 ∘ ρ + ρ 2h∗D2 ∘ ρ
= ((𝛾1 ∘ ρ1) cos ρ2 − (𝛾1 ∘ ρ1)(sin ρ2)ρ 2)D1 ∘ c
+ ((𝛾1 ∘ ρ1) sin ρ2 + (𝛾1 ∘ ρ1)(cos ρ2)ρ 2)D2 ∘ c + ρ 1(𝛾2 ∘ ρ1)D3 ∘ c

= ((𝛾1 ∘ ρ1) cos ρ2)D1 ∘ c + ((𝛾1 ∘ ρ1) sin ρ2)D2 ∘ c + (𝛾2 ∘ ρ1)D3 ∘ c.
Now, (7.8.1) implies

(h∗D2 ∘ ρ ) = −((𝛾1 ∘ ρ1) sin ρ2)D1 ∘ c + ((𝛾1 ∘ ρ1) cos ρ2)D2 ∘ c,
so that ⟨ċ,h∗D2 ∘ ρ⟩ = ⟨ċ, (h∗D2 ∘ ρ)⟩ = 0,
and ⟨ċ,h∗D2 ∘ ρ⟩ is constant. But the latter also equals| ̇c||h∗D2 ∘ ρ | cos α = |𝛾1 ∘ ρ1| cos α = (r ∘ c) cos α .
Conversely, if (r ∘ c) cos α is constant, then by the above calculation⟨ċ,h∗D2 ∘ ρ⟩ = ⟨ċ,h∗D2 ∘ ρ⟩ − ⟨ċ, (h∗D2 ∘ ρ)⟩ = −⟨ċ, (h∗D2 ∘ ρ )⟩ = 0.
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Now, ċ is orthogonal to ċ because c is parametrized by arc length. It follows that at

any t0 where ċ(t0) and h∗D2 ∘ ρ(t0) are linearly independent, ċ(t0) is orthogonal to
the surface; i.e., (∇Dċ)(t0) = 0. On the other hand, if ċ(t0) and h∗D2 ∘ ρ(t0) are linearly
dependent, then there exists a sequence tn → t0 such that ċ(tn) and h∗D2 ∘ ρ (tn) are
linearly independent, for otherwise cwould be ameridian. Then (∇Dċ)(tn) = 0, and by

continuity, so is (∇Dċ)(t0).
Clairaut’s theorem yields a fairly complete qualitative description of the geodesics on

M. Let us illustrate this in the case whenM is a paraboloid of revolution; specifically,

the image of the curve c is the the set {(x, 0, x2) | x ≥ 0}. All the meridians are the

(images of the) geodesics emanating from the vertex 0. Since none of these intersect,
any such geodesic c : [0,∞) → M is a ray; i.e., c is the shortest curve from the vertex

to c(t) for any t > 0. Assume then that c : (−∞,∞) → M is a geodesic that is not a

meridian. Consider the lowest point on the image of c. The existence of such a point

is discussed in Exercise 7.10. Since the distance to the z-axis increases with height, at

this lowest point, r ∘ c is minimal and the angle α is zero. After reparametrizing c if
necessary, we may assume this occurs at t = 0, so that

(r ∘ c)(t) cos α(t) = (r ∘ c)(0) =: k.
Since no parallel is a geodesic, (r ∘ c)(t) > (r ∘ c)(0) for t > 0, and c rises; i.e., u3 ∘ c
increases. We claim (u3 ∘ c)(t) → ∞ as t → ∞. To see this, let c0(t) denote the point
on the (image of the) profile curve 𝛾 that lies on the same parallel as c(t); i.e., c0(t) is
obtained by rotating c(t) about the z-axis by an angle−𝛾2(t). Thus,

c0 = h(ρ1, 0) = (𝛾1 ∘ ρ1,0, 𝛾2 ∘ ρ1) = 𝛾 ∘ ρ1,
and ċ0 = ρ 1 �̇� ∘ ρ1. The claim follows once we show that ρ1 is unbounded. Assuming c
is parametrized by arc length, the speed of c0 is|ċ0| = ρ 1 = ⟨ċ,h∗D1 ∘ ρ⟩ = | ̇c||h∗D1 ∘ ρ | sin α = sin α

= (1 − k2

(𝛾1 ∘ ρ1)2 )1/2 , (7.8.5)

since

sin α = (1 − cos2 α)1/2 = (1 − k2

(r ∘ c)2)1/2
= (1 − k2

(r ∘ c0)2)1/2

and r ∘ c0 = 𝛾1 ∘ ρ1. Differentiating (7.8.5) yields
ρ 1 = (1 − k2

(𝛾1 ∘ ρ1)2)−1/2 k2(𝛾1 ∘ ρ1)−3(𝛾1 ∘ ρ1)ρ 1.
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Now, 𝛾1 and 𝛾1 are both positive in our case, so ρ 1 and ρ 1 have the same sign. Further-
more, ρ 1(0) = 0 and ρ 1(t) > 0 for small t > 0. By themean value theorem, ρ 1(t) > 0 for

all t > 0: otherwise, letting t0 denote the infimum of those t > 0 such that ρ1(t) ≤ 0,

we have that ρ 1(t0) ≤ 0, and ρ 1(t) > 0 for all t < t0. This is impossible, since the mean

value theorem guarantees the existence of some t ∈ (0, t0) satisfying
ρ 1 (t) =

ρ 1(t0) − ρ 1(0)
t0

≤ 0,
and therefore, ρ 1(t) is also nonpositive. Thus, ρ


1, ρ 1 > 0 always; i.e., ρ1 is a convex

function, hence unbounded. This establishes the claim.

Notice also that reflection R in the plane containing the meridian through c(0) is
an isometry thatmust leave the image of c invariant: R∘c|[0,∞) is a geodesic with initial

tangent vector − ̇c(0), so that by uniqueness, it must equal t → c(−t).
Further examples are explored in the exercises.

7.9 Exercises

7.1. Suppose h and k are two overlapping parametrizations – in the sense that their

images have nonempty intersection – ofMn ⊂ ℝn+1 with inverses x and y respectively,
and consider a point p = h(a) ∈ M in the common image. Show that for any u ∈ ℝn+1

p ,

det(
𝜕𝜕x1 (p), . . . , 𝜕𝜕xn (p), u)
= det[D(k−1 ∘ h)](a) det( 𝜕𝜕y1 (p), . . . , 𝜕𝜕yn (p),u).

Conclude that M is orientable if and only if it admits an atlas with the property that

det(k−1 ∘ h) > 0 for any two overlapping parametrizations h, k in the atlas.
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7.2. Show that an n × n invertible matrix is symmetric if and only if its inverse is

symmetric.

7.3. With the terminology from Example 7.4.1, determine the curvature of

(a) a straight line in ℝ2;

(b) a circle of radius r > 0 inℝ2.

7.4. This long exercise is meant to clarify the remark made in Example 7.4.1, which

asserts that the circle of curvature of a curve c at a point c(t0) is the circle that best
approximates the curve at that point. The underlying idea is that there is one, and

only one, circle that passes throughany threenon-colinearpoints. Letting thosepoints

approach c(t0) results in this limit circle.

The circle of

curvature at

the vertex of a

parabola

So let c : [a, b] → ℝ2 denote a regular curve parametrized by arc length, and t0 ∈ (a, b)
be a point where c(t0) ̸= 0.
(a) Show that any three points on the curve that are sufficiently close to c(t0) cannot

be colinear; i.e., they cannot lie on a common line.

One outline of a proof: Suppose, to the contrary, that c(ti) are colinear for t1 <
t2 < t3. The mean value theorem then implies that there exist s1 ∈ (t1, t2) and
s2 ∈ (t2, t3) satisfying c(s1) = c(s2).

c(s)

c(t3)

c(t1)

c(t2)

c(s1)

c(s2)

Now, c has its image in S1 and cannot be ontoS1 if s1 and s2 are close enough; i.e.,

if the ti are close enough to t0, 1 ≤ i ≤ 3. If s ∈ (s1, s2) is such that c(s) is furthest
away from c(si), show that c(s) = 0. This is impossible if the ti are sufficiently

close to t0.
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(b) Let ti, 1 ≤ i ≤ 3, be as in part (a) so that the c(ti) are not colinear, and consider the
center p123 of the unique circle that passes through these three points. Prove that
there exist s1, s2 ∈ (t1, t3) such that⟨c(s1), c(s1) − p123⟩ = 0, (7.9.1)⟨c(s2), c(s2) − p123⟩ = −|c(s2)|2 = −1. (7.9.2)

Hint: the function t → |c(t) − p123|2 has the same value at each ti, so its derivative
must vanish at some r1 ∈ (t1, t2) and r2 ∈ (t2, t3). By the same reasoning, its second

derivative vanishes at some point in (r1 , r2).
(c) Show that there exists a unique point p ∈ ℝ2 satisfying⟨c(t0), c(t0) − p⟩ = 0,⟨c(t0), c(t0) − p⟩ = −1.

Compare these equations with (7.9.1) to conclude that as ti → t0, 1 ≤ i ≤ 3, the

unique circle passing through c(t1), c(t2), and c(t3) approaches a circle passing
through c(t0). Furthermore, the latter circle has curvature equal to the curvature

of c at t0, and its centerp lies on the line through c(t0 ) perpendicular to the tangent
line to c at c(t0).

7.5. Let c : [a, b] → ℝ2 be a regular curve parametrized by arc length. Prove that the

curvature κ of c satisfies
κ = det [c c] .

Hint: The right side of the above equation equals, up to sign, the area of the parallel-

ogram spanned by c and c.

7.6. Even for simple curves, parametrization by arc length can be difficult to obtain

(try using the formula from Exercise 7.5 to compute the curvature of a parabola). This

problem generalizes that formula to regular curves that are not parametrized by arc

length. If c : [a, b] → ℝ2 is such a curve, let s(t) = ∫t
a
|c|, so that c̃ : c ∘ s−1 is the

reparametrization of c by arc length. The curvature κ(t) of c at t ∈ (a, b) is defined to

be the curvature of c̃ at s(t). Show that

κ =
1|c|3 det [c c] .

Compute the curvature of the parabola y = x2.

7.7. The concepts discussed in the previous exercises generalize in part to curves inℝ3. Even though these are no longer hypersurfaces, they are important enough in

classical differential geometry to warrant at least cursory mention.

So let c : [a,b] → ℝ3 be a regular curve parametrized by arc length. Define T :=
c. Notice that T is actually a map into S2, even though we often identify it with the

velocity vector field ċ of the curve. The curvature of c is the function

κ = |T|.
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Thus, unlike plane curves, the curvature is always nonnegative – essentially because

we can no longer appeal to the orientation of ℝ2. When κ(t) ̸= 0, define the principal

normal N at t by

N(t) = 1|T|(t)T(t),
so that

T = κN.
Finally, the binormal is by definition

B(t) = T(t) × N(t),
so that when κ(t) ̸= 0, the vectors T(t), N(t), and B(t) form a positively oriented or-

thonormal basis of ℝ3.

(a) Show that B is a multiple of N. We may therefore define a function τ by the

equation

B = −τN.
τ is called the torsion of c.

(b) Prove that N = −κT + τB. The three identities

T = κN
N = −κT + τB
B = −τN

are called the Serret-Frénet formulas.

It can be shown that given continuous functions κ , τ : [a, b] → ℝwith κ > 0, there

exists one and only one (up to a rigid motion ofℝ3) curve in 3-space parametrized

by arc length that has κ as curvature and τ as torsion. This should be compared

with Example 7.4.1which asserts a similar property for plane curves involving only

the curvature.

7.8. (a) Prove that any two surfaces in ℝ3 with the same constant curvature κ are

locally isometric. Hint: Use Theorem 6.7.2.

(b) Show that there exist (noncomplete) surfaces of revolution with constant curva-

ture 1 that are not round spheres. These are not totally umbilic, however, and

therefore do not contradict the fundamental theorem for submanifolds.

7.9. Consider a surface of revolution, and suppose that there is a point p = 𝛾(t0) on the

profile curve 𝛾where the distance 𝛾1 to the z-axis has a strict local minimum. Thus, the

parallel N through p is (the image of) a geodesic. Assume without loss of generality

that 𝛾 is pointing upward, and choose t1 < t0 close enough to t0 that 𝛾1|(t1,t0) is strictly
decreasing. Set q = 𝛾(t1), and α ∈ (0, π/2) the angle with cos α = 𝛾1(t0)/𝛾1(t1). Show
that the twogeodesics emanating fromq at angleα with the parallel increase in height

for all time, and come arbitrarily close to N without ever reaching it.
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totally geodesic meridian N

geodesic c

7.10. As in the previous exercise, assume 𝛾 is pointing upward. Let p ∈ M, α ∈
(0, π/2), and set k := r(p) cos α . Denote by c one of the two geodesics from p that

make an angleα with the parallel 𝜕
𝜕x2 . The previous exercise investigated the behavior

of c when k is a local minimum value of 𝛾1. This problem explores the case when k is

not a critical value of 𝛾1; for instance,M could be the paraboloid discussed earlier, but

inverted so that its vertex is the highest point. LetN denote the first parallel abovep at
distance k from the z-axis. Show that c hits N tangentially and then winds back down.

The image of c is invariant under reflection in the plane containing the meridian

through the point where c hits N, so that c passes again through p at an angle α with

the parallel.

7.11. LetM2 be a surface in ℝ3, p ∈ M, andU a neighborhood of the origin inMp such

that expp : U → expp(U) ⊂ M is a diffeomorphism. By means of a linear isometry

Mp ≅ ℝ2, introduce polar coordinates ( ̃r, ̃θ ) on Mp \ L, where L is some ray from the

origin. If V denotes expp(U \ L), then
x = (r, θ ) := ( ̃r, ̃θ ) ∘ (exp−1p )|V

defines a chart on V. The object of this exercise is to derive a formula for the curvature

K in terms of the “polar” chart x.
For the sake of brevity, we denote the coordinate vector fields 𝜕/𝜕r and 𝜕/𝜕θ by 𝜕r

and 𝜕θ respectively.
(a) Prove that ∇𝜕r𝜕r = 0, ⟨𝜕r, 𝜕r⟩ = 1, and ⟨𝜕r, 𝜕θ ⟩ = 0.

(b) Let G = ⟨𝜕θ , 𝜕θ ⟩. Show that

G2K = ⟨D𝜕r𝜕r , 𝜕r × 𝜕θ ⟩⟨D𝜕θ 𝜕θ , 𝜕r × 𝜕θ ⟩ − ⟨D𝜕r𝜕θ , 𝜕r × 𝜕θ ⟩2.
(c) Identify all vector fields in the identity above with their coordinate vector fields

in the standard basis; i.e., identify 𝜕r with the column matrix whose transpose is
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[⟨𝜕r,D1⟩ ⟨𝜕r,D2⟩ ⟨𝜕r,D3⟩], etc. Use properties of the cross product to show that

G2K = det
[[[
(D𝜕r𝜕r)T𝜕Tr𝜕Tθ ]]] ⋅ det[[[

(D𝜕θ 𝜕θ )T𝜕Tr𝜕Tθ ]]] − det([[[
(D𝜕r𝜕θ )T𝜕Tr𝜕Tθ ]]])

2 ,
and deduce that

G2K =det
[[[
⟨D𝜕r𝜕r ,D𝜕θ 𝜕θ ⟩ ⟨D𝜕r𝜕r, 𝜕r⟩ ⟨D𝜕r𝜕r , 𝜕θ ⟩⟨𝜕r,D𝜕θ 𝜕θ ⟩ 1 0⟨𝜕θ ,D𝜕θ 𝜕θ ⟩ 0 G

]]]
− det

[[[
⟨D𝜕r𝜕θ ,D𝜕r𝜕θ ⟩ ⟨D𝜕r𝜕θ , 𝜕r⟩ ⟨D𝜕r𝜕θ , 𝜕θ ⟩⟨𝜕r,D𝜕r𝜕θ ⟩ 1 0⟨𝜕θ ,D𝜕r𝜕θ ⟩ 0 G

]]] .
(d) Show that

G2K = G(⟨D𝜕r𝜕r,D𝜕θ 𝜕θ ⟩ − ⟨D𝜕r𝜕θ ,D𝜕r𝜕θ ⟩) + 1

4
(D𝜕rG)2.

(e) Prove that
1

2
D𝜕rD𝜕rG = ⟨D𝜕rD𝜕θ 𝜕r , 𝜕θ ⟩ + ⟨D𝜕r𝜕θ ,D𝜕r𝜕θ ⟩,

and

0 = D𝜕θ ⟨D𝜕r𝜕r, 𝜕θ ⟩ = ⟨D𝜕θ D𝜕r𝜕r, 𝜕θ ⟩ + ⟨D𝜕r𝜕r ,D𝜕θ 𝜕θ ⟩.
Conclude that ⟨D𝜕r𝜕r ,D𝜕θ 𝜕θ ⟩ − ⟨D𝜕r𝜕θ ,D𝜕r𝜕θ ⟩ = −1

2
D𝜕rD𝜕rG.

(f) Combine (d) and (e) to obtain

4KG2 = −2GD𝜕rD𝜕rG + (D𝜕rG)
2.

This last identity may be rewritten as

K = −D𝜕rD𝜕r√G√G . (7.9.3)

Observe that integral curves of 𝜕r are the normal geodesics originating from p. Let
v be a unit vector in Mp, 𝛾v the ray t → tv in Mp, and cv = exp ∘𝛾v the geodesic
with initial tangent vector v. The restriction 𝜕 ̃θ ∘ 𝛾v of the polar coordinate vector
field 𝜕 ̃θ on Mp is t → tItvw, where w is a unit vector orthogonal to v. Since the
polar coordinate fields onMp and onM are expp-related,𝜕θ ∘ cv(t) = expp∗ tItvw,
cf. also (6.2.1). In other words, 𝜕θ ∘ cv is one of the two Jacobi fields J orthogonal
to cv satisfying J(0) = 0, |J(0)| = 1. Thus, (7.9.3) says that in nonnegative (resp.

nonpositive) curvature, this Jacobi field has concave (resp. convex) norm, see also

Exercise 7.12.
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7.12. Recall that a function f : I → ℝ defined on an interval I is said to be convex if its

graph lies below any secant line; explicitely, for a, b ∈ I with a < b,

f ((1 − s)a + sb) ≤ (1 − s)f (a) + sf (b), s ∈ [0,1].
When the inequality above is strict for all s ∈ (0,1) (and all a < b), f is said to be

strictly convex. f is said to be concave if −f is convex.
f (a)

a

f (b)

b(1 − s)a + sb

f ((1 − s)a + sb)

(1 − s)f (a) + sf (b)
A convex function

(a) Show that a convex function is necessarily continuous. Prove that if f is C2, then

f is convex if and only if f  ≥ 0, and that if f  > 0, then f is strictly convex.

(b) A function f : ℝn+1 → ℝ is said to be convex or concave if the restriction f ∘ c of
f to any geodesic c of ℝn+1 has that property. Prove that if this is the case, then

M = f−1(a) has nonnegative curvature for any regular value a of f .
(c) If f : ℝn+1 → ℝ is convex, show that the set f−1(−∞, a) is convex for any a ∈ ℝ.
(d) Prove that any convex, bounded function f : ℝn+1 → ℝ is constant.

7.13. Prove that the graph of f : U ⊂ ℝ2 → ℝ has nonnegative curvature if f is either

convex or concave (see Exercise 7.12).

7.14. Let f : (a, b) → ℝ. Show that the cylinder over the graph of f (i.e., the hypersur-

face parametrized by (s, t) → (s, f (s), t)) is flat.
7.15. Show that if thehypersurfaceM is positively curved atp, then it is strictly convex
at that point: i.e., there is a neighborhoodU of p inM such thatU∩{p + π2(Mp)} = {p}.
7.16. Use Exercise 7.15 to show that any hypersurface with positive curvature is ori-

entable. Is this still true for nonnegative curvature?

7.17. Suppose b is a semi-definite symmetric bilinear form on an inner product space

(V , ⟨, ⟩). The eigenvalues of the associated self-adjoint operator L, where ⟨Lv,w⟩ =

b(v,w), are then either all nonnegative or all nonpositive.
(a) Write V = V0 ⊕V1, whereV0 is the kernel of L, and V1 its orthogonal complement,

and let π : V → V1 denote the projection. Show that b(v,w) = b(πv, πw) for all v
and w in V. Conclude that

b(v, v) ⋅ b(w,w) ≥ b2(v,w), v,w ∈ V .
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(b) Show that M has nonnegative curvature at a point if and only if the second fun-

damental form is semi-definite at that point.

7.18. A quadric inℝ3 is a set of the form p−1(0), where p is a polynomial of degree ≤ 2;

i.e.,

p(x1, x2, x3) = 3∑
i,j=1

aijxixj +
3∑
i=1

bixi + c.
(a) Show that there exists a linear isometry L ofℝ3 and Ai,Bi,C ∈ ℝ such that

L(M) = {(x1, x2, x3) | 3∑
i=1

Aix
2
i + Bixi + C = 0}.

(b) Prove that there exists a translation T ofℝ3 such that

TL(M) = {(x1, x2, x3) | 3∑
i=1

pi(xi) + 𝛾 = 0},
where each pi has the form pi(xi) = αix

2
i or pi(xi) = βixi; i.e., each Bi in (a) may be

assumed to be zero if the corresponding Ai is nonzero.

(c) Show that a nonempty quadric is isometric to

– an ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1,

a hyperboloid of one sheet

x2

a2
+
y2

b2
− z2

c2
= 1,

or a hyperboloid of two sheets

x2

a2
+
y2

b2
− z2

c2
= −1,

if none of the Ai vanish;

– an elliptic paraboloid

z =
x2

a2
+
y2

b2
,

or a hyperbolic paraboloid

z =
x2

a2
− y2

b2
,

if exactly one Ai = 0, but the corresponding Bi ̸= 0;

– a line, or a cylinder over a line, parabola, ellipse, or hyperbola in the x-y plane

otherwise.

7.19. Prove that a surface M2 ⊂ ℝ3 with negative curvature has no umbilical points.

Hint: There is a one sentence proof.
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7.20. Let L be a self-adjoint operator on ℝ3, and suppose that

M = {x ∈ ℝ3 | ⟨Lx,x⟩ = 1}
is nonempty. Assume also that 1 is a regular value of x → ⟨Lx, x⟩, so that M is a

manifold (and a quadric).

(a) Show that x ∈ M is umbilical if and only if

det [Lx Lu u] = 0 for all u ⊥ Lx.
(b) Use (a) to prove that a 2-dimensional sphere (which corresponds to L being a

multiple of the identity) is totally umbilic.

(c) Suppose L has 2 distinct eigenvalues λ1 > 0 and λ2, where the λ2-eigenspace is 2-

dimensional. Show that there exist at least two points ±x ofM that are umbilical.

Hint: x will be an eigenvector.

7.21. Let M2 be an oriented surface in ℝ3, with unit normal n and corresponding

second fundamental tensor S. A curve c in M is called a line of curvature if ċ(t) is an
eigenvector of S at c(t) for all t.
(a) Suppose P is a plane that intersectsM orthogonally (in the sense that if c parame-

trizes P ∩M, then n ∘ c is tangent to the plane). Show that c is a line of curvature,
and that the corresponding principal curvature is the curvature of c. Notice that
this again proves that a sphere is totally umbilic.

(b) Part (a) shows that the meridians in a surface of revolution are lines of curvature.

Prove that parallels are also lines of curvature. Hint: the restriction of n to the

parallel makes a constant anglewith the axis of revolution.

(c) Let f : ℝ → ℝ be a smooth, even function with f (0) = 0, and M the surface of

revolution obtained by revolving the curve t → (t,0, f (t)), t ≥ 0 about the z-axis.

Show that the origin is umbilical.

7.22. Both Exercise 7.20 and 7.21 imply that ifM is the ellipsoid of revolution

x2 + y2

a2
+
z2

c2
= 1,

then the points ±(0, 0, c) on the axis of revolution are umbilical. In order to find any

other possible umbilics, it is convenient to work with the description we gave of a

surface of revolution.

(a) Suppose theprofile curve𝛾 = (𝛾1, 0, 𝛾2) canbeexpressedas thegraphof a function
x = f (z) in the x-z plane; i.e., 𝛾1 = f , 𝛾2(s) = s. Show that the principal curvatures

from (7.8.3) become

λ1 =
−f 

(1 + (f )2)3/2
, λ2 =

1

f (1 + (f )2)1/2
,

whenever f ̸= 0. Thus, umbilical points correspond to those values of s for which

(ff  + (f )2)(s) + 1 = 0, and occur in (possibly degenerate) parallels.
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(b) Prove that there are no other umbilics on the ellipsoid of revolution. This contrasts

with the generic ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 which admits exactly four

umbilics if a, b, and c are all distinct.

7.23. Show that the paraboloid

z =
x2

a2
+
y2

b2

has two umbilical points if a ̸= b and only one (the vertex) if a = b.

7.24. A parabolic umbilic on a surface M in ℝ3 is a point where both principal cur-

vatures are zero (in [4] such a point is said to be planar). In particular, the point is

umbilical, and the sectional curvature and second fundamental form vanish there.

Show that on the surface given by the graph of f , where f (x, y) = xy2 − x3, the origin is

a parabolic umbilic. It is often called amonkey saddle because it has three downward

slopes emanating from it, two for the legs and one for the tail.

Fig. 7.8: A “monkey saddle”

7.25. Recall that h1, with h1(s, t) = (t cos s, t sin s, s), parametrizes a helicoid, and that

h2, where h2(u, v) = (cosh v cos u, cosh v sin u, v), yields a catenoid.
Prove that both surfaces are locally isometric. Hint: reparametrize the catenoid by h̃2,
where

h̃2(s, t) = h2(s, arccosh√1 + t2),
and consider h̃2 ∘ h−11 .

7.26. LetM = {(x, y, z) ∈ ℝ3 | ez cos x = cos y}.
(a) Show thatM is an orientable 2-dimensional manifold.

(b) Prove that M may be described as follows: given k, l ∈ ℤ, consider the open

squares

S1k,l = (−π
2
+ 2kπ , π

2
+ 2kπ) × (−π

2
+ 2lπ , π

2
+ 2lπ),
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and

S2k,l = {(x + π , y + π) | (x, y) ∈ S1k,l}.
Then M consists of the graph of f , where f (x, y) = ln(cos y/ cos x), over each of

these squares, togetherwith the vertical lines that pass through the vertices of the

squares. M is called Scherk’s surface. It is named after the 19th century German

mathematician who discovered it.

(c) Show thatM is a minimal surface.

Fig. 7.9: Scherk’s surface

7.27. The image of h, where

h(u, v) = 1

2
(u(1 − u2

3
+ v2), v(1 +

v2

3
− u2), u2 − v2)),

is called Enneper’s surface. h is not strictly speaking a parametrization (and its image

M is not amanifold) because it is not one-to-one.Nevertheless,M is locally amanifold.

(a) Show thatM is a minimal surface.

(b) Prove thatM has strictly negative curvature

(K ∘ h)(u, v) = − 4

93
(1 + u2 + v2)4.

Fig. 7.10: Enneper’s surface



Appendix A
In this appendix, we review some basic properties of real numbers that are used

throughout the text but are usually not discussed in detail in Calculus or other

lower level math courses. This is by no means a comprehensive overview; rather,

it emphasizes those features – such as the rationals being countable and dense –

that provide interesting examples and counterexamples, particularly in the theory of

limits and integration.

Recall that there is a nested sequence ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ, with ℕ = {1,2, . . . }
denoting the natural numbers,ℤ = {. . . , −2, −1, 0, 1,2, . . . } the integers, andℚ = {p/q |
p ∈ ℤ, q ∈ ℕ} the rationals. A real number that is not rational is said to be irrational.

Definition. α ∈ ℝ is said to be an upper bound (resp. a lower bound) of A ⊂ ℝ if for

any a ∈ A, α ≥ a (resp. ≤ a). An upper bound is said to be the least upper bound or

supremum of A if it is less than or equal to any other upper bound of A. It is denoted

supA. Similarly, a lower bound of A is called the greatest lower bound or infimum if it

greater or equal to any other lower bound. The infimum of A, if it exists, is denoted

inf A.

It is clear from the definition that infimum and supremum, if they exist, are unique.

Notice that if we set −A = {−a | a ∈ A}, then A is bounded above by α if and only if−A is bounded below by −α . Furthermore, α is less than or equal to any other upper

bound of A if and only if −α is greater than or equal to any other lower bound of −A;
i.e., − supA = inf(−A), provided one of them exists. The supremum of a set may, or

may not, belong to it; for example, the supremum of the interval (0,1) is 1, which
does not lie in the open interval. Indeed, 1 is an upper bound, and by definition, if

α is any upper bound of (0, 1), then α ≥ 1; i.e., 1 = sup(0, 1). When the supremum

does belong to the set, it is called the maximum. Similar considerations apply to the

infimum, which is called theminimum when it belongs to the set.

A useful criterion for determining the least upper bound of a set is the following:

α ∈ ℝ is the least upper bound of A if and only if

(1) α is an upper bound of A, and

(2) for any 𝜀 > 0, there exists some a ∈ A such that α − 𝜀 < a.

To see this, suppose first that α = supA. Condition (1) is then verified by definition. If

(2) were not, then there would exist some 𝜀 > 0 such that α − 𝜀 is greater than or equal
to any element of A. But this would mean that α − 𝜀 is an upper bound of A which is

smaller that the least upper bound. Thus, (2) is also verified. Conversely, suppose α

satisfies both conditions (1) and (2). To establish that α = supA, we only need to show

that if β is an upper bound of A, then α ≤ β . So suppose that β is an upper bound of

A but β < α . Take 𝜀 = α − β > 0 in (2) to deduce that there exists some a ∈ A with

α − 𝜀 = β < a. This contradicts the fact that β is an upper bound of A.
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A similar characterization with inequalities reversed applies to the infimum: a

lower bound α of A is the greatest lower bound if and only if for any 𝜀 > 0, there is

some a ∈ A satisfying a < α + 𝜀.
A fundamental property of real numbers is the following:

Completeness Axiom. Every nonempty subset of ℝ that is bounded above has a least

upper bound.

Notice that by the above discussion, the completeness axiom can also be phrased as:

every nonempty subset of real numbers that is bounded below has a greatest lower

bound.

Let us examine some consequences of the completeness axiom:

Theorem (Well-ordering Principle). Every nonempty subset of the natural numbers has

a smallest element (i.e., a minimum).

Proof. Let A be a nonempty set of natural numbers. Being bounded below (by 0), A

has an infimum α . We claim α ∈ ℕ: suppose α is not a natural number. Using the fact

that α is the greatest lower bound of A, there exists a ∈ A such that α < a < α + 1/2.
Since α ̸= a, the number 𝜀 = a − α is positive, and there exists ã ∈ A such that

α < ã < α + 𝜀 = a < α + 1/2. This is impossible, because both a and ã are natural

numbers, so their distance cannot be less than 1/2. Thus, α ∈ ℕ, and must therefore

also belong to A: otherwise there would exist a natural number in A at distance less

than 1/2 from α , which again is impossible.

The next result is an extremely useful tool for proving properties involving natural

numbers:

Theorem (Mathematical Induction). Suppose P(n) is a statement for each n ∈ ℕ such

that

(1) P(1) is true, and

(2) for any k ∈ ℕ, P(k + 1) is true whenever P(k) is.

Then P(n) is true for all n ∈ ℕ.

Proof. We argue by contradiction: suppose P(n) is not true for all n, so that the set A

of all n ∈ ℕ for which P(n) is not true is nonempty. By the well-ordering principle, A

has a smallest element k ∈ A ⊂ ℕ. By (1), k > 1, so that k − 1 ∈ ℕ, and P(k − 1) is true.
This contradicts (2), since P(k) is false.

Theorem (Archimedean Principle). If a and b are real numbers with a > 0, there exists

n ∈ ℕ such that na > b.

Proof. Let usfirst rephrase the statement: sincea > 0,b/a ∈ ℝ, andwemust show that

there exists some n ∈ ℕ that is larger than b/a. In other words, the Archimedean prin-

ciple just asserts that the set of natural numbers is not bounded above.Onceagain, the

argument will be by contradiction. Supposeℕ is bounded above. By the completeness
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axiom,ℕ has a least upper bound α . Since α is the smallest upper bound, there must

exist some natural number n such that α − 1 < n ≤ α . The first inequality says that α

is less than the natural number n + 1, which is a contradiction.

Our next endeavor is to compare the sizes of different sets of numbers. For finite sets,

this is straightforward: setsA and B are said tohave the same cardinality if there exists

a bijection (i.e., a one-to-one and onto)map f : A → B. It is therefore natural to extend

this definition to infinite sets, and we do so. Strange things happen in the process,

however. For example, intuitively, ℤ should have at least twice as many elements asℕ, since ℤ = ℕ ∪ (−ℕ) ∪ {0}. Nevertheless both sets have the same cardinality: it is

easy to check that the map f : ℤ → ℕ, where f (n) = 2n + 1 if n ≥ 0, and f (n) = −2n if
n < 0, is a bijection.

Definition. A set A is said to be countable if there exists a one-to-one map f : A → ℕ.

Thus, any finite set is countable, but so is the set of all integers. A useful alternative

characterization of countability is the following: A is countable if and only if there

exists a surjective f : ℕ → A. Indeed, if f : ℕ → A is surjective, we may construct a

one-to-one map g : A → ℕ by defining g(a) to be any one element in f −1(a) = {n ∈ℕ | f (n) = a}. Conversely, if A is countable, and g : A → ℕ is one-to-one, we obtain a

surjective map f : ℕ → A by setting f (n) = a if a is the (necessarily unique) element

of A such that g(a) = n, and f (n) = a0 for some fixed a0 ∈ A if there is no a ∈ A with

g(a) = n.

Since by definition, a map f : ℕ → A is a sequence, we may write any countable

set A as A = {a1, a2, . . . }, where an = f (n). More generally, ℕ may be replaced in the

above discussion by any countably infinite set (i.e., any set with the same cardinality

asℕ).

Proposition. A countable union of countable sets is countable.

Proof. If Ei, i ∈ ℕ, is countable, we may write Ei = {xi1, xi2 , . . . }. Define f : ∪∞i=1Ei → ℕ
by f (xij) = 2i3j. f is one-to-one, for if f (xij) = f (xkl), then 2i3j = 2k3l, and 2i−k = 3l−j.
This can only hold if i = k and j = l.

It follows that theCartesian product A×B of countable setsA and B is again countable:
if A = {a1, a2, . . . }, then A × B = ∪∞i=1{ai} × B is a countable union of countable sets. In

particular,

Theorem. The setℚ of rational numbers is countable.

Proof. The map f : ℤ × ℕ → ℚ, f (m, n) = m/n, is onto.
A set which is not countable is said to be uncountable. There are many such:

Theorem. The interval (0, 1) is uncountable. In particular, the set of irrational numbers
between 0 and 1 is uncountable.
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Proof. Any number a ∈ (0, 1) admits a decimal expansion

a = .a1a2a3 ⋅ ⋅ ⋅ = ∞∑
i=1

ai
10i

, ai ∈ {0,1,2, . . . , 9}.
In fact, for any b > 0, let [b] denote the unique n ∈ ℕ∪{0} such that n ≤ b < n + 1; i.e.,

[b] is the largest integer smaller than or equal to b (specifically, [b] = sup{n ∈ ℕ | n ≤
b} – notice that the least upper bound of a set of integers, if it exists, is an integer, so

the supremum is in fact amaximum). It is not hard to check that in the formula above,

an may be taken to be [10(10n−1a − [10n−1a])]. The reason we write “may be taken”

is that this decimal expansion need not be unique; e.g., 0.5 = 0.499999 . . . . This,
however, is the only way in which the expansion can fail to be unique: more precisely,

suppose a = ∑(ak/10k) = ∑(bk/10k) = b, and let i be the smallest integer such that

ai ̸= bi; assuming without loss of generality that ai > bi, we must have ai = bi + 1,

ak+i = 0 and bk+i = 9 for all k ≥ 1. To see this, observe that

0 = 10i
∞∑
k=1

ak − bk
10k

=
∞∑
k=i

ak − bk
10k−i

= ai − bi +
∞∑
k=1

ak+i − bk+i
10k

. (A.1)

Now, ai − bi is an integer between 1 and 9, whereas the last series in the above expres-
sion satisfies in absolute value∞∑k=1 ak+i − bk+i

10k

 ≤ ∞∑
k=1

|ak+i − bk+i|
10k

≤ ∞∑
k=1

9

10k
= 1.

Thus, if the expression in (A.1) is to equal zero, then ai−bi must equal 1 and ak+i−bk+i =−9, as claimed.

Now, suppose that (0,1) is countable, so that (0,1) = {a1, a2, . . . }, with ai = .ai1ai2 . . . .
The contradiction will arise once we exhibit some b ∈ (0, 1) that is not equal to any ai.
So set b = .b1b2 . . . , where bi = 1 if aii = 2 and bi = 2 otherwise. Then b differs in its

i-th digit from that of ai. Since the only numbers that appear in the decimal expansion

of b are 1 and 2, this expansion is unique, so that b is not equal to any ai. This shows

that (0,1) is uncountable.
The assertion that the set A of irrationals between 0 and 1 is uncountable is now clear:

if it were countable, then (0, 1) would be the union of two countable sets, namely A

and the set of rationals between 0 and 1, and would then also be countable.

Theorem. For any real numbers a < b, the interval (a, b) contains infinitely many ratio-
nal and infinitely many irrational numbers.

Proof. We first show that the interval contains at least one rational and one irrational,

beginningwith rational: itmay beassumed that a > 0, fork + a > 0 if k is a sufficiently

large natural number, and if r is a rational between k + a and k + b, then r − k is

one between a and b. We must find natural numbers m, n such that a < m/n < b, or

equivalently, such that na < m < nb. This in turn requires that nb − na > 1. So choose
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any n ∈ ℕ with n > 1/(b − a), 1/a (which is possible by the Archimedean principle).

If na ∈ ℕ, then r = (na + 1)/n is a rational between a and b. If na ∉ ℕ, consider the

set E of all natural numbers no larger than na. Since na > 1, E is nonempty, and being

bounded above admits a supremum k0. Furthermore, k0 ∈ ℕ, so it is strictly smaller

than na, and

na < k0 + 1 < na + 1 < nb.
Wemay then take r to equal (k0 + 1)/n.
To exhibit an irrational, let α ∈ (a, b) ∩ ℚ (the existence of such an α has just been

established), anduse theArchimedean Principle tofindN ∈ ℕ such that√2/N < b−α .
Then α + √2/N is an irrational in (a, b).
To see that there are infinitely many rationals, let α1 ∈ (a, b)∩ℚ, and construct induc-
tively an infinite sequence of distinct rationals by choosing some αn+1 ∈ (a, αn) ∩ ℚ. A
similar argument shows that there are infinitely many irrationals.

The Theorem says that the closure ofℚ is the whole real line. This is often expressed

by saying thatℚ is dense inℝ.
Examples and Remarks. (i) Given any positive number a, there exists an increasing

sequence {bn} of rationals with limn→∞ bn = a. In fact, writing a as an infinite

decimal a = a1.a2 . . . with a1 ∈ ℕ∪ {0}, and ai ∈ {0,1, . . . , 9} for i > 1, define bn =

a1.a2 . . . an. {bn} is clearly an increasing sequence, and it converges to a because

a−bn < 9/10n+1. This shows, in particular, that the completeness axiom does not

hold for the rational numbers: if a as above is irrational, then the set {x ∈ ℚ | x <
a} is bounded above, but its supremum a does not lie inℚ.

(ii) Let f : (0,1) → ℝ be given by f (x) = 0 if x is irrational, f (x) = 1/q if x = p/q is
rational, andp, q have no common factors. Then f is continuous at every irrational

point and discontinuous elsewhere; i.e., f has a countable number of discontinu-

ities. In fact, if x0 is rational, there exists a sequence {xn} of irrationals converging
to x0 (for example, let xn be an irrational number in (x0 −1/n, x0)∩ (0, x0)), so that
f (xn) = 0 does not converge to f (x0). Next, suppose x0 is irrational. It is enough

to show that if xn → x0, xn ∈ ℚ ∩ (0,1), then f (xn) → 0; i.e., if xn = pn/qn,
then qn → ∞. Suppose not. Then there exists N ∈ ℕ such that for any M ∈ ℕ,

qn ≤ N for some n ≥ M. In other words, there exists a subsequence {qnk} whose
terms are all less than or equal to N. This means that the subsequence {pnk/qnk }
can only take on the values 1/N, 2/N, . . . , (N − 1)/N. Since x0 does not equal any
of these values, this subsequence does not converge to x0, and hence neither does

the original one.





Appendix B
The basic aim of this section is to show that any invertible linear transformation is a

finite composition of certain elementary ones. It has been relegated to an appendix

because it is only used in the proof of the change of variables theorem for integrals.

Nevertheless, it has several useful applications to rank and systems of linear equa-

tions.

Definition B.1. A linear map L : ℝn → ℝn is said to be an elementary transformation if

it belongs to one of the following groups:

– type 1: there exist indices 1 ≤ i < j ≤ n such that Lei = ej, Lej = ei, and Lek = ek
for k ̸= i, j;

– type 2: there exists 1 ≤ i ≤ n, a ̸= 0, such that Lei = aei, and Lek = ek for k ̸= i;

– type 3: there exist 1 ≤ i, j ≤ n, i ̸= j, a ∈ ℝ, such that Lei = ei + aej, and Lek = ek
for k ̸= i.

Thematrix of anelementary transformationwith respect to the standardbasis is called

an elementary matrix.

It is clear from the definition that an elementary transformation is an isomorphism,

and that its inverse is an elementary transformation of the same type. It follows that

an elementary matrix is invertible, and its inverse is an elementary matrix of the same

type. Properties of elementary transformations yield corresponding properties for el-

ementary transformations, and vice-versa. The reader may wish to keep this in mind

since we will usually only outline properties of one rather than of both.

Thus, an elementary matrix is of

– type 1 if it is obtained by interchanging two columnsof the n×n identity matrix In,

– type 2 if it is obtained by multiplying a column of In by a nonzero scalar, and

– type 3 if it is obtained by adding amultiple of one columnof In to another column.

These three operations are called elementary column operations. Replacing columns

by rows, one obtains three types of elementary row operations. It is straightforward

to check that an elementary matrix of a given type is also obtained by performing an

elementary row operation of that type on In.

Given anm×nmatrix A, we will denote byAi its i-th row, and byA
j its j-th column.

Notice that if ei is the i-th coordinate vector in the standard basis written as a column,

then Ai = eTi A, and Aj = Aej.
One can also perform elementary row or column operations on any matrix. This

is actually equivalent to multiplying that matrix by an elementary one:

Proposition B.1. Let B denote the matrix obtained by performing an elementary row

(resp. column) operation on A ∈ Mm,n, and E the elementary matrix obtained by per-

forming that same operation on Im (resp. In ). Then B = EA (resp. AE).
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Proof. One has to check the claim for each type of operation. We illustrate this for a

row operation of type 2, and leave the others as an exercise: let E denote the elemen-

tary matrix obtained by interchanging rows i and j of In. Then the i-th row of EA is

(EA)i = EiA = eTj A = Aj = Bi,
as claimed, and by symmetry, (EA)j = Bj. If, on the other hand, k ̸= i, j, then

(EA)k = EkA = eTk A = Ak = Bk,
so that EA = B, as claimed.

Proposition B.2. Multiplying a matrix by an elementary one does not affect its rank.

Proof. Recall that the rank of A is the rank of the linear transformation LA. If E is an

elementary matrix, then

rank(EA) = rank(LE ∘ LA) = dim LE(LA(ℝn)) = dim LA(ℝn) = rank(LA)

= rank(A)

since LE is an isomorphism. Similarly, the nullity of LAE = LA ∘ LE equals the nullity of
LA, so that by Theorem 1.2.2, AE and A have the same rank.

Next, we show that any matrix A can be transformed by means of finitely many ele-

mentary row and column operations into a diagonal matrix (i.e. aij = 0 if i ̸= j) with

diagonal entries 1 or zero. By the Proposition, the number of 1’s equals the rank of the

matrix. The proof is best illustrated by means of an example:

Example B.1. Let

A =
[[[
1 2 3 1

2 1 1 1

1 −1 1 0

]]] .
Subtract 2 times row 1 from row 2, and subtract row 1 from 3 to obtain

[[[
1 2 3 1

0 −3 −5 −1
0 −3 −2 −1]]] .

Subtract row 2 from row 3 to get

[[[
1 2 3 1

0 −3 −5 −1
0 0 3 0

]]] .
Next, divide row 2 by -3 and row 3 by 3:

[[[
1 2 3 1

0 1 5
3

1
3

0 0 1 0

]]] .
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Subtract 2 times the first column from the second, 3 times the first column from the

third, and one time the first column from the fourth:

[[[
1 0 0 0

0 1 5
3

1
3

0 0 1 0

]]] .
The final step consists in subtracting 5/3 times the second column from the third and

1/3 times the second column from the fourth. The result is

[[[
1 0 0 0

0 1 0 0

0 0 1 0

]]] .
Theorem B.1. Let A be an m × n matrix of rank r. Then a finite number of elementary

row and column operations transforms A into the m × n matrix B, where bij = 0 if i ̸= j,

bii = 1 if i ≤ r, and bii = 0 if i > r.

Proof. If A has rank zero, then it is the zero matrix, and it is already in the desired

form. So assume A ̸= 0. The proof will be by induction on the number m of rows

of A. Suppose m = 1. By assumption, there exists a nonzero element in A. By inter-

changing columns if necessary, wemay assume it appears in the first column, so that

A = [a1 a2 . . . an], with a1 ̸= 0. Multiplying the first column by 1/a1, and sub-

tracting ai times the first column from the i-th one for i = 2, . . . , n establishes the claim.
Next, assume the theorem holds for any matrix with k rows, and let A be a (k + 1) × n
matrix. Since A ̸= 0, some aij ̸= 0. Interchange rows 1 and i, and columns 1 and j to

move aij into the first row and first column. Divide the first row (or column) by aij to

obtain a matrix with 1 in the first row and column. Now subtract a1j times the first

column from the j-th one for j = 2, . . . , n, and subtract ai1 times the first row from the

i-th one for i = 2, . . . , k + 1. The net result is now a matrix of the form

[[[[[[
1 0 . . . 0

0
... B

0

]]]]]]
,

whereB is k×(n−1). Finally, applying the induction hypothesis toB, one can transform
it by means of finitely many elementary operations into a diagonal matrix of the

specified form.

Corollary B.1. Every isomorphism L : ℝn → ℝn is a finite composition of elementary

transformations.

Proof. Let A denote the matrix of L with respect to the standard basis, so that L =

LA (see Example 1.2.3). Then A is invertible and can be transformed into the identity
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matrix In by means of a finite sequence of elementary row and column operations.

Thus, by Proposition B.1, there exist elementarymatrices E1 , . . . , Ek andE1 , . . . , El such
that

E1E2 ⋅ ⋅ ⋅ EkAE1E2 ⋅ ⋅ ⋅ El = In.
Multiply both sides of the above identity on the left by E−1k ⋅ ⋅ ⋅ E−11 and on the right by

El
−1 ⋅ ⋅ ⋅ E1−1 to obtain

A = E−1k ⋅ ⋅ ⋅ E−11 El
−1 ⋅ ⋅ ⋅ E1−1.

Since the inverse of an elementarymatrix is elementary,A equals a product of elemen-

tary matrices. But then

LA = LE−1
k
∘ ⋅ ⋅ ⋅ ∘ LE

1
−1

equals a composition of elementary transformations, as claimed.
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