The OpenGL® Shading Language

Language Version: 4.40
Document Revision: 9
16-Jun-2014
Editor: John Kessenich, LunarG

Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost

Copyright (c) 2008-2014 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be re-formatted AS
LONG AS the contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of merchantability
or fitness for a particular purpose or non-infringement of any intellectual property. Khronos Group makes
no, and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy,
completeness, timeliness, and reliability of the specification. Under no circumstances will the Khronos
Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect, special or
consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with
these materials.

Khronos, OpenKODE, OpenKOGS, OpenVG, OpenMAX, OpenSL ES and OpenWF are trademarks of
the Khronos Group Inc. COLLADA is a trademark of Sony Computer Entertainment Inc. used by
permission by Khronos. OpenGL and OpenML are registered trademarks and the OpenGL ES logo is a
trademark of Silicon Graphics Inc. used by permission by Khronos. All other product names, trademarks,
and/or company names are used solely for identification and belong to their respective owners.

il

Table of Contents

| B U U5 o ¢ 10 Te15 (o) o DUUURERRR PR 1
1.1 ACKNOWIEAGIMENTS.ooviuieiiiiieei ettt ettt e e e e e e et e e e e e e e e ssssbaaaeeeeeesesssssssssssssnnnns 2
1.2 CRANEES. ..o euvieiie ettt ettt ettt ettt et et e et e bt eeab e et eeeabe e bt e enbeenseeenbe e bt e enbeenbeeeenbeeeennee 3

1.2.1 Changes since revision 8 of GLSL version 4.40..........ccceeoueeriieriieenieeeiiieeeiieeeeiieeenns 3
1.2.2 Changes since revision 7 of GLSL version 4.40...........coucuveeeeeiiueeeeeeeeciineeeeeeeeeeeeeeeen 3
1.2.3 Changes since revision 6 of GLSL version 4.40...........cooevveeeeeiveeeeeeeeiiiiieeeeeeeeeeeeeeen. 5
1.2.4 Summary of Changes from Revision 9 of GLSL Version 4.30........cccceeeveeevierveennnennns 5
1.3 OVRIVICW..uvvveiieeeeieiiiieeeee e e e eeeette et e e e ettt et e e e e e eeeeeataeeeeeeeesessataaaeeesesesessssssaeeasseseeessesreranes 8
1.4 EIrOr HANAIINE......coooiiiiiiiiiiieeeiie ettt e e ettt e e e e e e e eenntraneeeaee s 8
1.5 Typographical CONVENTIONS.uuvvveiieeiiiiiiiiieeieeeeeieiitireeeeeeeeeeienrrrrereeeeeeteeeeesseesessseeeeeeseeranes 9
O DS 0] deleF: 15 10) PO SRS 9

2 Overview of OpenGL Shading.........ccccuiieiiiiiieiiieciie et e e e senee e 10
N V) 4 (o, Gl a4 (0 YeT ot LT) PO 10
2.2 Tessellation CoNtrol PrOCESSOT.uuuviiiiiiiiiiiieiiiiieee ettt et e e e 10
2.3 Tessellation Evaluation PrOCESSOT.........uueiiiiiuiiieeeiiiieeeeieeee ettt 11
2.4 GCOMECITY PIOCESSOT ... uvvveiiiieeiieiiiiieieee e e e eeeeciieee et e e e eeeeettar e eeeeeeeeseettrareeeeeeeeeeesrersranrannnnnnnnns 11
2.5 Fragment PrOCESSOT......uuiiiuiiieiiiieeiieeeitte ettt e et e esiteeetteestteesibeeesabeessbeessbeesbteeeesnansaaeeeens 11
2.6 COMPULE PIOCESSOT.eiiiieitrrreiieeeeeieeiitereeeeeeeeeeetrreeeeeeeeeeaeetsrrreeeeeeeeesssrrrreeseeeeesnsasnreees 11

I 5 7. 1 (oF TSRO 13
3.1 Character Set and Phases of ComPilation............coccveiieeeueiiieiiiiieeeeeieeeeeeeeeeeee e eeeeans 13
3.2 SOUICE SEINES. ..eeeuireeeiieeiiieeiieeeiteeettee et eeeteeesteeessbeeessseeesaeeansaeesssaeeasssaeeesesnnnsseeessnnnssnes 14
I B o (<] 0] (0TS ST T o) S S UUUURRRRNt 15
3.4 COMMEBNLS.....ccoeiiiiieiieieeee e 20
R IR T o) (<=5 4T P TP U 21
3.0 KCYWOTAS. ..c.utiiiiiiieeiiieceieeeeitee ettt e ettt e ettt e et e e sttt e e e steeesaaeeesbeeessseeensseeessseessseeessseeessseeennseeans 21
3.7 LAENIITIETS. ..ceiiiieeiiiiiee ettt e ettt e e e e s ee bt te e e e eeeeeeeeeeeeeeeeerasseaaaaaannas 23
3.8 DEINITIONS. .vveeeeeuieiee e ettt e eeette et e eett e e e et e e e et e e e eeaaeeeeeeaaeeeeeeaseeeeeeraeeeeeeareeeeeesseeeeeeannnnnes 23

381 StALIC TUSC.uuuiiiiieiieee ettt et e et e e e et e e e ee e e e e eeear e e e e eearaeeeeeararaeees 24
3.8.2 Uniform and Non-Uniform Control FIOW.........cccceiiiiiiiiiiiiiiiiieeeeeee e 24
3.8.3 Dynamically Uniform EXPresSions.......eecuierierrieerieeniiienieeieenieeeseenieesveeseesseenseesnnes 24
4 VariableS and TYPES......ccoooueieiieeeeieeeeieee e eeeee e eeee e e ettt eeeeae e e eeeaeeeeeetaeeeeeeteeeeeenareeeeeeeannnnns 25
N T S 7 1S Toll Y1 1T T PSP 25
o I N Vo T« PRSP 29
Vo B S 1Yo (<o VT 29
O R I 0111515 o USSP RSSO 29
4.1.4 Floating-Point Variables.........cooouuvviiiiiiiiiiiieeee ettt 31
T I VA= Te] (0 4P 32
o R 11 & (o= SRR 32

il

4.1.7 OPAGUE TYPES..eeeuvteeeirieeiiieeiiee et eeiteeetteesitteesttessabeesstbeessteesabeeesaseeesseeeessnnseeeeeesnas 33

4.1.7.1 SAMPLETS. ...eiieiiieiiieeieeeie ettt ettt ettt e et e st e et e e saaeesatreeenbaeeennsaeeenreeenn 33

L N A 14 V. T T RSP 33
4.1.7.3 AtOMIC COUNLETS.....cooouvrreeieieeeeiieireeeeeeeeeeeeiitreeeeeeeeeeeesararreeseeeeeeessseereeeseeererreees 34

1.8 SEIUCTUTIES......coeeerrieeeiieeeeeeetteeee e e e e eeeeerr et e e e eeeeerataereeeseeseeasaaereeeseessesssssrrreeeseeeeennees 34

O R BN v 1 TP PR R RSRRPRP 35
4.1.10 IMPLCIt CONVEISIONS.ceeerrrrrieeeeeeeiiiirrreeeeeeeeeessirrrrreeeeeeseiisrreeeesersrsrrnnneeeseeeess 39
Vo O O O U1 V5 1 S <) & U 40
A 1o010) 141U 42
4.3 Storage QUALTIETS.eevuiieiieiie ettt et ettt st e et e e st ebee et e e eneee 45
4.3.1 Default Storage QUAlIIET........c.eevuiiiiieiieeieeie et 46
4.3.2 Constant QUAITICT........cccueiiiiieiiiieccie ettt ettt e e re e e be e e e eeabaeeeeeeenaraaeeeeeaens 46
4.3.3 Constant EXPIESSIONS.cccivuieieeitrrieeeeitreeeeeeitreeeeeeiaeeeeeeieeeeeeeirreeeeeeeeeeeeesssssssssereeeeeens 47
4.3.4 INPUL VATIADIES.vviiiieiiiie et e e e e e eeeeas 47
4.3.5 Uniform VariablesS.......couueiiieiueiiiieeiiie ettt e et eeeaee e e e e aasaaaneeees 50
4.3.6 OULPUL VATTADIES.vviiiiiiiic ettt e e e e e e e eeaaeeeeeennaes 51
4.3.7 BUTTEr VarIables......uuvvviiiiiiiiiiiiiieeiic ettt e e e e e e e 53
4.3.8 Shared Variables.......cccuuvviiiiiiiiiiiieeeieee ettt eeee e e e e e e et ee e e e e e e s eeasaveeeeaees 54
4.3.9 INEIfaCe BIOCKS.cceiiiiiiiiiiiiiiie ettt e et e e e e s eeab e e e e eeeeeeeeeeeees 54
4.4 Layout QUALITICTS. . ccuveeeeereeeiiieeitiee ettt e ettt e et e e st e e eteeesbeeesabeeesnbeeessseeesseeesseessseesnsseesnssnnes 59
4.4.1 Input Layout QUALITIETS.cceiieeriiieeitieeeiieeeiee et et e e e e e re e e ebeeessreeessbeeesaaeennns 61
4.4.1.1 Tessellation Evaluation INDULS.........cccuuvvvieiiiiiiiiiiiiieeiee e eeeesaveeeeaeeaees 64
4.4.1.2 Geometry Shader INPULS........ccouviiiieiiiee et 66
4.4.1.3 Fragment Shader INPULS..........cecieeiiieiieeitieie ettt e e e 67
4.4.1.4 Compute Shader INPULS..........ccoovirieieeiiiiee et eeeee e eerae e e eeaeaa e 68

4.4.2 Output Layout QUALITIETS.cccuieiiiiiiieiiieiiecie ettt et ettt eeaee e 69
4.4.2.1 Transform Feedback Layout Qualifiers..........ccceeveeuieriieeiiieniieiieeiiee e 71
4.4.2.2 Tessellation Control OULPULS.........cceeuveereeiiureeeeeiieeeeeeeeeeeeereeeeeeeree e eeeeeeeeeeeeens 73
4.4.2.3 GEOMEITY OULIPULS.....coeeuvrrreieeeeeieiieitieeeeeeeeeeeeirrreeeeeeeeeeessaareeeeseseesesasereeeeeeeeennes 74
4.4.2.4 Fragment OUEPULS.........coooviiiiiiiiiiiii e 76

4.4.3 Uniform Variable Layout QUalifiers.........ccceeeiieriiiieriiiieiiie et 77
4.4.4 Subroutine Function Layout QUalifiers..........ccceeeriieriiieeiiiesiieeeiie e eiveee e 78
4.4.5 Uniform and Shader Storage Block Layout Qualifiers..........cccccueercveiervieeiiieesieeeenns 78
4.4.6 Opaque-Uniform Layout QUalifiers..........ccceeueeriiriiiinieiiieiee e 81
4.4.6.1 Atomic Counter Layout QUalifiers..........ccceeeeeiienieiiiienieeieeiiee e 82
4.4.6.2 Format Layout QUAlIfIers.........cccueeruieriiiiiieiiieiie ettt 83

4.5 Interpolation QUALITIETS.ccueieiieriieiiieiie ettt ettt et e e et e e e e e eneees 85
4.5.1 Redeclaring Built-in Interpolation Variables in the Compatibility Profile................. 86
4.6 Parameter QUALITIETS.ccoouviiiieiiiie et et e e e e eeaaee e e e e e e e e eaaeeeees 87

v

4.7 Precision and Precision QUAlIfIErS.........cceceeviiiiiiiiiiieciiic et 87

4.7.1 Range and PreCiSION.....cuieiuierieeiieriieeieesiie et esite et eteeeteesseessbeensaesnseessseeessseeeensseens 87
4.7.2 Precision QUALITIETS.ccouviiiieiieie ettt et eeaee e e e e e e e e e aaeeeeeas 88
4.7.3 Default Precision QUAITIETS..........coovvviiiieiieieeceiiee e 89
4.7.4 Available Precision QUAalifiersS........c.ueiieeiuiiiiiiiiiiie e e 90
4.8 Variance and the Invariant QUAlIfIer............cooovvvviiiiiiiiiieieee e 90
4.8.1 The Invariant QUATTICT...........eeieeiiiie ettt eere e e et e e e eere e e e e e e e e e e eaaaannans 90
4.8.2 Invariance of Constant EXPreSSIONS.......cccuvvvvieeiiiiiiiiiriieeieeeeeeeieeeevevesnneeeeeeee e e e 91
4.9 The Precise QUAITICT.......ccciuiiiiieciiie e ettt e ettt e e e aaeeeeas 91
4.10 MemoOry QUALITIELS. ...ccuieiiiieiieeiie ettt ettt et ettt e et e tte e e nbteeeennaeeeenneas 94
4.11 Order and Repetition of QuUalifiCation.............eecveeruieriiieriieeiieie e 97
Operators and EXPIESSIONS.eeeeeivreeeeeiireeeeeeiteeeeeeeiteeeeeeeseeeeeeiseeeeeeeareeeeessseeeeeesreeeeenseeeeeeens 98
I B 0 0TS 10 TSRS 98
5.2 ATTAY OPEIALIONS. ...eeeeurrieeeeeireeeeeeitteeeeeeieeeeeeeiteeeeeesaeeeeeeeseeeeeestaeeeeeatseseeeessseeeeeeeeeeeenannnnes 99
5.3 FUNCHION CAlIS....cccuiiiiiiiiieie et eee e e et e e e e e e e et eeeeeeeeeeeeeeeenannnnes 99
I O 00 11510 0110 4~ RO 99
5.4.1 Conversion and Scalar CONSIUCLOTS.coiveurrrerieeeeeeieiiirereeeeeeeeeeeeeeeeeeeeeereraraaaaa—. 99
5.4.2 Vector and Matrix CONSIIUCIOTS.uvvvvvieeieeiiiiiireeieeeeeeeeieirreeeeeeeeeeeinresssrannnnnnnnnnns 100
5.4.3 Structure CONSIIUCLOTS.ceeiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 102
5.4.4 ATTAY CONSIUCTOTIS. ..uuvvrrurererererrrrreresessrsrsssssesssrsesrsseasaseeea.———————————————serrrneeesesnrnns 103
5.5 Vector and Scalar Components and Length.............cooovvvvviiiiiiiiiiiiiiiiieeeeceeeeeeeeeee e 103
5.6 MatriX COMPONENLS.....uvveiviiieieieieiieeiieeeeeeeieeeiitreeeeeeeesesitatereeeesesssssatareeeeeessssssratrreeeesesess 105
5.7 Structure and A1ray OPEIAtIONS..........eeeeeiureeeeeireeeeeeitreeeeeeitreeeeeeiareeeeeeareeeeeirreeeeesrreaeeeeens 105
5.8 ASSIZIIMEILS.eeiuiieuiieriieetieeieetteetteettesteebeestteebeesseeesbeeseeenseenseesnseanseeanseeansaeeeansseesansees 106
5.9 EXPIESSIONS. . eeurieuiieeiieeiieniieetieeteestteseteeteeesteeseessseenseessseenseesnseenseessseeanssseesnnsseeennsseesnnses 107
5.10 Vector and Matrix OPEIAtiONS...........coevuveeeeerureeeeeireeeeeeieeeeeeeiareeeeeeseeeeeersreeeeenirreeeeeeeens 110
5.11 Out-0f-BOUNAS ACCESSES......uvvvieeeeireieeeeieeeeeeeite e eeetee e e eeiee e e e ee e e e eeeaaeeeeeeaareeeeeeeeeaeeaens 111
Statements aNd SEIUCKUTE........ooouvviiieeiiiee ettt eeee e e et e e e eeaaae e e e eeaaeeeeeeaeeeeeenanneeeas 112
6.1 Function DefINItiONS......cuuuveeiiiiiiiiiiiieieeiee et e e e e eeettrr e e e e e eeeaarereeeeeeessenasrrreeeeeeeas 113
6.1.1 Function Calling CONVENTIONS.veeerureeeieiieeiieeeieieeeieeesieeesieeesseeessseeessseeessnnsneeeens 116
6.1.2 SUDTOULINES. ...vvvvveiieiieeiiieieiee ettt e e ee et eeee e e e s eeeabbaeeeeeeeeessesssbeneeeeseseeeeeneeees 117
AN Y] (<115 1o) s WO 118
(O I (1S3 7215 o) s VTR U PP PO RRRRR R 119
0.4 JUINIPS. ..ottt ettt ettt et e e e et e et e bt e e et e e st e e eab e e e nabeeenareas 120
BUilt-10 VATTADIES.veeiiiiiiiececiieee ettt e et e e e eeate e e e eeaaeeeeeeaeeeeeeeennnnes 122
7.1 Built-In Language Variables.........cccueeeiiiuviieeeiiiieeeeiieee et eeeee e eeevaeeeee e e e e eeeeeeeeeennns 122
7.1.1 Compatibility Profile Built-In Language Variables............cccccoevvvvvvnniiieeeiiiniiiinnnnns 131
7.2 Compatibility Profile Vertex Shader Built-In INPULS.........vevveviiiiiiiiiiiiiieeeeeeeeeeiieann 134
7.3 BUilt-In CONSEANTS.cccvvviiieiiiiieeeeteeeeeetee e e ettt eeeette e e eee e e e eeaeeeeeeearaaeeeeeeeeeeeeeeeeeennnnnees 135

7.3.1 Compatibility Profile Built-In CONSIANTS........ceevtteiitieiiieeieiieeieeeeeeeeeeeeeeeeeeeees 137

7.4 Built-In UnifOrm State........ccueeiiieiuiiiiieiiie ettt e e e e e e e e ennanes 137
7.4.1 Compatibility Profile State.........ccooveiiieiiiiiieiiiiieeeeieee e e 137

8 BUilt-1N FUNCHIONS.vviiiiiiiiiieeeieiec ettt e et e e e e e e e e et e e e e e e eeeenansaaaaaeeeeeeens 141
8.1 Angle and Trigonometry FUNCHIONS.coiiiiiiiiiiiiieeieieeiieeeee et 142
8.2 EXponential FUNCHONS.cooouvvviiiieieeieeiiieeiee ettt e e e et e e e e e e e enaaaaeeeeeeeeseennnns 144
8.3 ComMMON FUNCHONS.......ccoouuvviiiiieeeeieeiiiieeeee e e e eeette e e e e e e e eeaaaeeeeeeeesesssaaaeeeesseeeeeeeeeeeeaaaes 145
8.4 Floating-Point Pack and Unpack FUNCHONS...........cccuvveiiiiiiiiiiiiiieeeeeee e 150
8.5 GEOMELIIC FUNCLIONS. .. .uvveviiiiiiiieiiiiieiiie ettt e e e e e e e ettt e e e e s sesaaaaeeeeeeeeeeeeseeaaasaanaes 153
8.0 MaAtriX FUNCHONS.cceiiiieiiiiiiiieeee ettt e e eeeat ettt e e e e e e e aaaaeeeeeessesssaaaseeeeseeseessesessaaaes 155
8.7 Vector Relational FUNCHIONS.c..vviiieiiiiieeieiieee et ettt e et e e et e e e eeareeeeeeeennns 157
8.8 INte@Er FUNCHIONS.vviiiieuiiiieeeiieieeeetee e e ettt eeette e e e et eeeeaae e e eeeaeeeeeetaeeeeeeareeeeeeeennnsnnes 159
8.9 TEeXtUIE FUNCHONS.ecciiiriieeeetiieeeeeite e eetee ettt e e e et e e e eeetaeeeeeetaeeeeeeaaeeeeeeaneeeeeeraeaeenns 161
8.9.1 Texture QUErY FUNCHONS.coouviieeeeireeeeeeeeeeeeeteeeeeeetee e e et e e e e e e e eeaaaeeeeeeeeaeeeeas 162

8.9.2 Texel LoOKUDP FUNCHIONS.coouveiieeiieie et eeeieeee et eeee e et e e e eaaeaeeeeeeas 165

8.9.3 Texture Gather FUNCHONS.cccuvviiiieieeee et e e e e 171

8.9.4 Compatibility Profile TeXture FUNCLIONS..........uvvvieieieiiiiiiieeeeeeee e 174

8.10 Atomic-Counter FUNCHONS.coocuuveriiiieieiieiiiieeeee e eeeeiire e e e seeraree e e e e e e e eensanaes 176
8.11 Atomic MemOTY FUNCHIONS.cciiiiiiiiiiiiiiiieece ettt e e e e e e e e e e e e e e e e e e eeeeeeeeaeaes 176
8.12 IMAZe FUNCHOMS. .. .veeiiiieiiiieetiee et e ettt ettt e e e st e e e et eesateeessbee e saeeessssaeaeeennssseeaeeans 177
8.13 Fragment ProcesSing FUNCHIONS.uuvvviiiiiiiiiiiriiiiieeee ettt et seeaaraeeee e 181
8.13.1 Derivative FUNCHIONS. .. .uuuviiiiiiiiieiiiiieieee ettt eeeeiite e e e e e e e e e e e e e e eeeeaaeeaaaaaaanes 181
8.13.2 Interpolation FUNCHONS.cocuiiiieeiiieeeeeiiee ettt eetee e e e e e et e e e e aaaeeeees 182

8.14 NOISE FUNCHIOMNS. . .eeeeiveieeeeiieeeeeeieee e eeete e eett et e ee et e e e eeeaeeeeeeaaeeeeeeaseeeeeeaseeeeeesseeeeennnnnes 183
8.15 Geometry Shader FUNCHIONS.coooiuviiiiiiieiie et eeeee ettt e et eeeeeeeeeeennas 184
8.16 Shader Invocation Control FUNCHONS.ccuveiieeiirieeecieeeeeceieeee et eeeiveeeeeeveeeeeeeenens 186
8.17 Shader Memory Control FUNCHIONS...........ccovvvieeeeiieieeeeiieeeeeeieeee e eeeiaeeeeeeeeeeeeeeennns 187

9 Shading Language Grammar for Core Profile............cceecvieiiieniiiniieiiieiieeieeeeee e 189
10 NOIMAtive RETEIEICES.iiiiiiiieiiiiieiiiee ettt e e e e e e e e et e e e e e e e eeennnns 205

vi

1 Introduction

This document specifies only version 4.40 of the OpenGL Shading Language. It requires VERSION
to substitute 440, and requires #version to accept only 440. If #version is declared with a smaller
number, the language accepted is a previous version of the shading language, which will be supported
depending on the version and type of context in the OpenGL API. See the OpenGL Graphics System
Specification, Version 4.4, for details on what language versions are supported.

Previous versions of the OpenGL Shading Language, as well as the OpenGL ES Shading Language, are
not strict subsets of the version specified here, particularly with respect to precision, name-hiding rules,
and treatment of interface variables. See the specification corresponding to a particular language version
for details specific to that version of the language.

All OpenGL Graphics System Specification references in this specification are to version 4.4.

1 Introduction

Acknowledgments

This specification is based on the work of those who contributed to past versions of the OpenGL
Language Specification, the OpenGL ES 2.0 Language Specification, and the following contributors to
this version:

Pat Brown, NVIDIA

Jeff Bolz, NVIDIA

Frank Chen

Pierre Boudier, AMD

Piers Daniell, NVIDIA
Chris Dodd, NVIDIA

Nick Haemel, NVIDIA
Jason Green, TransGaming
Brent Insko, Intel

Jon Leech

Bill Licea-Kane, AMD
Daniel Koch, TransGaming
Graeme Leese, Broadcom
Barthold Lichtenbelt, NVIDIA
Bruce Merry, ARM

Robert Ohannessian

Tom Olson, ARM

Acorn Pooley, NVIDIA
Christophe Riccio, AMD
Kevin Rogovin

Ian Romanick, Intel

Greg Roth, Nvidia

Graham Sellers, AMD
Dave Shreiner, ARM
Jeremy Sandmel, Apple
Robert Simpson, Qualcomm
Eric Werness, NVIDIA
Mark Young, AMD

1 Introduction

1.2 Changes

1.2.1 Changes since revision 8 of GLSL version 4.40

Minor editorial changes for consistency with the OpenGL ES language specification.

u : i : i 1 U

Bug 11702: Errors for reserved symbols are clarified: “gl ” in a GLSL name is an error, use of
i i . utive double u i

“GL_” in a preprocessor (macro) name is an error. Use of consecutive double underscores is

reserved, but not an error.

Bug 11987: Allow array-of-array constructors and initialized variables to have any dimension
unsized (not just the outer dimension) and get their size from the content of the constructor or
initializer.

Bug 12032: Be clear that float[3][2] means (logically) float([3][2]), not (float[3])[2].

Bug 11734: Add g/l MaxCombinedShaderOutputResources and mark
gl MaxCombinedlmageUnitsAndFragmentOutputs as deprecated.

Bug 12112: Allow link-time or compile-time error when non-g/_InvocationID is used for a
tessellation control shader per-vertex output.

Bug 12101: Compile-time error to resize an array to a smaller size than it's already been indexed
with earlier in the shader.

Bug 11527: Add missing patch as an interface-block qualifier. This was always the intent. Also
be clear they are only for outputs of tessellation control shaders and inputs of tessellation
evaluation shaders.

Bug 11856: Clarifications on switch statements: The switch's “{ }” form a nested name scope,
and case/default can't be nested in deeper “{ }” than that scope. Removed the rule about having
no statement between a label and the end of the switch statement; existing compiler errors for
this can turn into a warning.

Bug 11180: Clarify behavior of frexp() and ldexp() at boundary conditions.
Bug 10802: Mark gl MaxGeometryVaryingComponents as deprecated.
Bug 11635: State in more places that == and != don't apply to opaque types.

1.2.2 Changes since revision 7 of GLSL version 4.40

Bug 10440: Clarify that a name collision between members of two anonymous blocks, or
between a variable and a member of an anonymous block is an error.

Bug 11009: Removed packed from the reserved word list.

Bug 11299: Fixed textureOffset for sampler2DArrayShadow to take a ivec2 (not a vec2) for
the offset.

Bug 11209: It is a compile-time error to use the same block name for more than one block
declaration in the same interface within one shader, even if the block contents are identical.

Bug 11100: Simplify statement of what is written by EmitStreamVertex() to just say all built-in
and user-defined output variables.

1 Introduction

Bug 11096: gl SampleMask can be sized to be no larger than the implementation-dependent
maximum sample-mask.

Bug 10812: Missing text: Added the phrase “a pair of 16-bit signed integers” when describing
unpackSnorm2x16.

Bug 10804: When a uniform layout location is used, it is not required that all declarations of that
name include the location; only that those that include a location use the same location.

Bug 11001: Remove extraneous “g” from some gsampler..shadow types.

Bug 10990: Remove old contradictory text requiring interpolation qualifiers to match cross
stage; they must only match within a stage.

Bug 9999: Editorial: add explanatory text about optimizing in section 4.4.2.4 about fragment
output layout qualifiers: “This potentially includes skipping shader execution if the fragment is
discarded because it is occluded and the shader has no side effects.”

Bug 10485: It is only geometry shaders whose input is sized by the input primitive layout
declaration.

Bug 10903. Clarify that members of structures cannot be declared as atomic counter types.
Put missing storage qualifiers in component examples.

Bug 11457. Add missing “SHARED” to the layout _qualifier id grammar in section 9. This was
already correctly reflected in the body of the specification.

Bug 11392. Clarify that comments do eliminate new lines (but don't change the line count) and

that the preprocessing character set is bigger than the character set used in the resulting stream of
GLSL tokens.

Bug 7343. Clarify interactions between comments, new lines, and preprocessing by explicitly
listing the logical phases of compilation.

Bug 11362: When counting locations consumed, clarify that the outer array level for geometry
shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation inputs is
first removed before counting.

Bug 10737: State more clearly which types are illegal for inputs and outputs.

Bug 11178: Correct function overloading examples, which were from a different revision of the
spec. than the current rules.

Bug 10593: Clarify that within a declaration, if inout is used, neither in nor out may be used,
and none of these can be repeated.

Bug 11052: Make type matching across compilation units in the same program apply to all
declared variables (not just those statically used, etc.)

Bug 10941: When accessing the same packed buffer across multiple stages in the same program,
it either works or you get a link error.

1 Introduction

1.2.3 Changes since revision 6 of GLSL version 4.40
Deprecation
+ Bug 384: Noise is now
o defined to return 0, and
o deprecated (not removed).
Changes
+ Bug 10628: Subroutine arrays now require the index to be dynamically uniform.

+ Bug 10440: Refine the link-time error: Within an interface, all declarations of the same global
name must be for the same object and must match in type and in whether they declare a variable
or member of a block with no instance name.

» Bug 10713: Update the offset/align example in section 4.4.5 to adhere to the std140 alignment
requirements.

+ A few other examples corrected.
+ Changed
o gl MaxComputeAtomicCounterBuffers to 8, and
o gl MaxCombinedTexturelmageUnits to 96.
Clarifications

+ Bug 10655: Clarification that opaque types (e.g., samplers) can be in a uniform (e.g., member in
a struct), not just a non-aggregate uniform variable.

+ Bug 10659: Be even more clear that blocks generally cannot be redeclared as a way to size an
unsized array contained in the block.

« Bug 10735: Clarify that sampler type declarations can have precision qualifiers.
« Bug 10682: Clarify that built-in functions with veid return or out arguments are not included in
in the set of constant expressions.
1.2.4 Summary of Changes from Revision 9 of GLSL Version 4.30
Deprecations

* The built-in noise*() functions are deprecated. They are not removed, but are defined to return
0.

* Built-in constant g/ MaxCombinedImageUnitsAndFragmentQOutputs is deprecated.
» Built-in constant g/ MaxGeometryVaryingComponents is deprecated.

Changes
« Incorporate the ARB_enhanced layouts extension, which adds

o compile-time constant expressions for layout qualifier integers

1 Introduction

o new offset and align layout qualifiers for control over buffer block layouts
o add lecation layout qualifier for input and output blocks and block members

o new component layout qualifier for finer-grained layout control of input and output
variables and blocks

o new xfb_buffer, xfb_stride, and xfb_offset layout qualifiers to allow the shader to control
transform feedback buffering.

Bug 10530: To be consistent with ES, include sample types as valid in a precision statement.
Note the defaults are irrelevant, as precision qualifiers are not required or have any meaning.

Bug 10628: Subroutine arrays now require the index to be dynamically uniform.
Changed

o gl MaxComputeAtomicCounterBuffers to 8, and

o gl MaxCombinedTexturelmageUnits to 96.

Bug 11009: Removed packed from the reserved word list.

Bug 112009: It is a compile-time error to use the same block name for more than one block
declaration in the same interface within one shader, even if the block contents are identical.

Bug 11096: gl _SampleMask can be sized to be no larger than the implementation-dependent
maximum sample-mask.

Bug 10804: When a uniform layout location is used, it is not required that all declarations of that
name include the location; only that those that include a location use the same location.

Bug 11052: Make type matching across compilation units in the same program apply to all
declared variables (not just those statically used, etc.)

Bug 10941: When accessing the same packed buffer across multiple stages in the same program,
it either works or you get a link error.

Bug 11734: Add gl MaxCombinedShaderOutputResources.

Bug 12112: Allow link-time or compile-time error when non-g/_InvocationiD is used for a
tessellation control shader per-vertex output.

Bug 12101: Compile-time error to resize an array to a smaller size than it's already been indexed
with earlier in the shader.

Bug 11527: Add missing patch as an interface-block qualifier. This was always the intent. Also
be clear they are only for outputs of tessellation control shaders and inputs of tessellation
evaluation shaders.

Clarifications and Typographical Errors

Editorial: Added layout qualifier table for non-opaque type and interface layout qualifiers.

Editorial changes around compute shader group sizes for language consistency within the spec.
and extensions.

Bug 10327: Editorial: Say character set is subset of Unicode, in UTF-8 encoding.

1 Introduction

Bug 11299: Fixed textureOffset for sampler2DArrayShadow to take a ivec2 (not a vec2) for
the offset.

Bug 10440: Clarify that a name collision between members of two anonymous blocks or a
variable and a member of an anonymous block is an error.

Bug 10655: Clarification that opaque types (e.g., samplers) can be in a uniform (e.g., member in
a struct), not just a non-aggregate uniform variable.

Bug 10659: Be even more clear that blocks generally cannot be redeclared as a way to size an
unsized array contained in the block.

Bug 10682: Clarify that built-in functions with void return or out arguments are not included in
in the set of constant expressions.

Bug 11100: Editorial: Simplify statement of what is written by EmitStreamVertex() to just say
all built-in and user-defined output variables.

Bug 10812: Missing text: Added the phrase “a pair of 16-bit signed integers” when describing
unpackSnorm2x16.

Bug 11001: Remove extrancous “g” from some gsampler shadow types.

Bug 10990: Remove old contradictory text requiring interpolation qualifiers to match cross
stage; they must only match within a stage.

Bug 9999: Editorial: add explanatory text about optimizing in section 4.4.2.4 about fragment
output layout qualifiers: “This potentially includes skipping shader execution if the fragment is
discarded because it is occluded and the shader has no side effects.”

Bug 10485: Clarify it is only geometry shaders whose input is sized by the input primitive layout
declaration.

Bug 10903. Clarify that members of structures cannot be declared as atomic counter types.
Put missing storage qualifiers in component examples.

Bug 11457. Add missing “SHARED” to the layout qualifier id grammar in section 9. This was
already correctly reflected in the body of the specification.

Bug 11392. Clarify that comments do eliminate new lines (but don't change the line count) and
that the preprocessing character set is bigger than the character set used in the resulting stream of
GLSL tokens.

Bug 7343. Clarify interactions between comments, new lines, and preprocessing by explicitly
listing the logical phases of compilation.

Bug 11362: When counting locations consumed, clarify that the outer array level for geometry
shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation inputs is
first removed before counting.

Bug 10737: State more clearly which types are illegal for inputs and outputs.

Bug 11178: Correct function overloading examples, which were from a different revision of the
spec. than the current rules.

1.3

1.4

1 Introduction

+ Bug 10593: Clarify that within a declaration, if inout is used, neither in nor out may be used,
and none of these can be repeated.

* Minor editorial changes for consistency with the OpenGL ES language specification.

» Bug 11702: Errors for reserved symbols are clarified: “gl ” in a GLSL name is an error, use of
“GL_” in a preprocessor (macro) name is an error. Use of consecutive double underscores is
reserved, but not an error.

» Bug 11987: Allow array-of-array constructors and initialized variables to have any dimension
unsized (not just the outer dimension) and get their size from the content of the constructor or
initializer.

« Bug 12032: Be clear that float[3][2] means (logically) float([3][2]), not (float[3])[2].

« Bug 11856: Clarifications on switch statements: The switch's “{ }” form a nested name scope,
and case/default can't be nested in deeper “{ }” than that scope. Removed the rule about having
no statement between a label and the end of the switch statement; existing compiler errors for
this can turn into a warning.

« Bug 11180: Clarify behavior of frexp() and ldexp() at boundary conditions.
+ Bug 11635: State in more places that == and != don't apply to opaque types.

Overview
This document describes The OpenGL Shading Language, version 4.40.

Independent compilation units written in this language are called shaders. A program is a set of shaders
that are compiled and linked together, completely creating one or more of the programmable stages of the
OpenGL pipeline. All the shaders for a single programmable stage must be within the same program. A
complete set of programmable stages can be put into a single program or the stages can be partitioned
across multiple programs. The aim of this document is to thoroughly specify the programming language.
The OpenGL Graphics System Specification will specify the OpenGL entry points used to manipulate and
communicate with programs and shaders.

Error Handling

Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases. Compile-time errors must be returned for lexically or grammatically
incorrect shaders. Other errors are reported at compile time or link time as indicated. Code that is “dead”
must still be error checked. For example:

1.5

1.6

1 Introduction

if (false) // changing false to true cannot uncover additional errors
statement; // statement must be error checked regardless

Typographical Conventions

Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

Deprecation

The OpenGL Shading Language has deprecated some features. These are clearly called out in this
specification as “deprecated”. They are still present in this version of the language, but are targeted for
potential removal in a future version of the shading language. The OpenGL API has a forward
compatibility mode that will disallow use of deprecated features. If compiling in a mode where use of
deprecated features is disallowed, their use causes compile-time or link-time errors. See the OpenGL
Graphics System Specification for details on what causes deprecated language features to be accepted or
to return an error.

2 Overview of OpenGL Shading

21

2.2

The OpenGL Shading Language is actually several closely related languages. These languages are used
to create shaders for each of the programmable processors contained in the OpenGL processing pipeline.
Currently, these processors are the vertex, tessellation control, tessellation evaluation, geometry,
fragment, and compute processors.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex, tessellation control, tessellation evaluation, geometry, fragment, or
compute.

Most OpenGL state is not tracked or made available to shaders. Typically, user-defined variables will be
used for communicating between different stages of the OpenGL pipeline. However, a small amount of
state is still tracked and automatically made available to shaders, and there are a few built-in variables for
interfaces between different stages of the OpenGL pipeline.

Vertex Processor

The vertex processor is a programmable unit that operates on incoming vertices and their associated data.
Compilation units written in the OpenGL Shading Language to run on this processor are called vertex
shaders. When a set of vertex shaders are successfully compiled and linked, they result in a vertex shader
executable that runs on the vertex processor.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that require
knowledge of several vertices at a time.

Tessellation Control Processor

The tessellation control processor is a programmable unit that operates on a patch of incoming vertices
and their associated data, emitting a new output patch. Compilation units written in the OpenGL Shading
Language to run on this processor are called tessellation control shaders. When a set of tessellation
control shaders are successfully compiled and linked, they result in a tessellation control shader
executable that runs on the tessellation control processor.

The tessellation control shader is invoked for each vertex of the output patch. Each invocation can read
the attributes of any vertex in the input or output patches, but can only write per-vertex attributes for the
corresponding output patch vertex. The shader invocations collectively produce a set of per-patch
attributes for the output patch. After all tessellation control shader invocations have completed, the output
vertices and per-patch attributes are assembled to form a patch to be used by subsequent pipeline stages.

Tessellation control shader invocations run mostly independently, with undefined relative execution order.
However, the built-in function barrier() can be used to control execution order by synchronizing
invocations, effectively dividing tessellation control shader execution into a set of phases. Tessellation
control shaders will get undefined results if one invocation reads a per-vertex or per-patch attribute

10

2.3

24

2.5

2.6

2 Overview of OpenGL Shading

written by another invocation at any point during the same phase, or if two invocations attempt to write
different values to the same per-patch output in a single phase.

Tessellation Evaluation Processor

The tessellation evaluation processor is a programmable unit that evaluates the position and other
attributes of a vertex generated by the tessellation primitive generator, using a patch of incoming vertices
and their associated data. Compilation units written in the OpenGL Shading Language to run on this
processor are called tessellation evaluation shaders. When a set of tessellation evaluation shaders are
successfully compiled and linked, they result in a tessellation evaluation shader executable that runs on
the tessellation evaluation processor.

Each invocation of the tessellation evaluation executable computes the position and attributes of a single
vertex generated by the tessellation primitive generator. The executable can read the attributes of any
vertex in the input patch, plus the tessellation coordinate, which is the relative location of the vertex in the
primitive being tessellated. The executable writes the position and other attributes of the vertex.

Geometry Processor

The geometry processor is a programmable unit that operates on data for incoming vertices for a primitive
assembled after vertex processing and outputs a sequence of vertices forming output primitives.
Compilation units written in the OpenGL Shading Language to run on this processor are called geometry
shaders. When a set of geometry shaders are successfully compiled and linked, they result in a geometry
shader executable that runs on the geometry processor.

A single invocation of the geometry shader executable on the geometry processor will operate on a
declared input primitive with a fixed number of vertices. This single invocation can emit a variable
number of vertices that are assembled into primitives of a declared output primitive type and passed to
subsequent pipeline stages.

Fragment Processor

The fragment processor is a programmable unit that operates on fragment values and their associated
data. Compilation units written in the OpenGL Shading Language to run on this processor are called
fragment shaders. When a set of fragment shaders are successfully compiled and linked, they result in a
fragment shader executable that runs on the fragment processor.

A fragment shader cannot change a fragment's (x, y) position. Access to neighboring fragments is not
allowed. The values computed by the fragment shader are ultimately used to update framebuffer memory
or texture memory, depending on the current OpenGL state and the OpenGL command that caused the
fragments to be generated.

Compute Processor

The compute processor is a programmable unit that operates independently from the other shader
processors. Compilation units written in the OpenGL Shading Language to run on this processor are
called compute shaders. When a set of compute shaders are successfully compiled and linked, they result
in a compute shader executable that runs on the compute processor.

11

2 Overview of OpenGL Shading

A compute shader has access to many of the same resources as fragment and other shader processors,
including textures, buffers, image variables, and atomic counters. It does not have any predefined inputs
nor any fixed-function outputs. It is not part of the graphics pipeline and its visible side effects are
through changes to images, storage buffers, and atomic counters.

A compute shader operates on a group of work items called a work group. A work group is a collection
of shader invocations that execute the same code, potentially in parallel. An invocation within a work
group may share data with other members of the same work group through shared variables and issue
memory and control barriers to synchronize with other members of the same work group.

12

3 Basics

3.1

Character Set and Phases of Compilation

The source character set used for the OpenGL shading languages is Unicode in the UTF-8 encoding
scheme. After preprocessing, only the following characters are allowed in the resulting stream of GLSL
tokens:

The letters a-z, A-Z, and the underscore (_).
The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (*), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and
question mark (?).

A compile-time error will be given if any other character is used in a GLSL token.

There are no digraphs or trigraphs. There are no escape sequences or uses of the backslash beyond use as
the line-continuation character.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any of these combinations is simply referred to as a new line.

In general, the language’s use of this character set is case sensitive.
There are no character or string data types, so no quoting characters are included.
There is no end-of-file character.
More formally, compilation happens as if the following logical phases were executed in order:
1. Source strings are concatenated to form a single input. All provided new lines are retained.

2. Line numbering is noted, based on all present new lines, and does not change when new lines are
later eliminated.

3. Wherever a backslash ('\') occurs immediately before a new line, both are eliminated. (Note no
white space is substituted, allowing a single token to span a new line.) Any newly formed
backslash followed by a new line is not eliminated; only those pairs originally occurring after
phase 1 are eliminated.

4. All comments are replaced with a single space. (Note that '//' style comments end before their
terminating new lines and white space is generally relevant to preprocessing.)

5. Preprocessing is done, resulting in a sequence of GLSL tokens, formed from the character set
stated above.

6. GLSL processing is done on the sequence of GLSL tokens.

13

3.2

3 Basics

Details that fully define source strings, comments, line numbering, new line elimination, and
preprocessing are all discussed in upcoming sections. Sections beyond those describe GLSL processing.

Source Strings

The source for a single shader is an array of strings of characters from the character set. A single shader
is made from the concatenation of these strings. Each string can contain multiple lines, separated by new
lines. No new lines need be present in a string; a single line can be formed from multiple strings. No new
lines or other characters are inserted by the implementation when it concatenates the strings to form a
single shader. Multiple shaders can be linked together to form a single program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new lines that have been processed,
including counting the new lines that will be removed by the line-continuation character (\).

Lines separated by the line-continuation character preceding a new line are concatenated together before
either comment processing or preprocessing. No white space is substituted for the line-continuation
character. That is, a single token could be formed by the concatenation by taking the characters at the end
of one line concatenating them with the characters at the beginning of the next line.

14

3.3

3 Basics

float £\
00;
// forms a single line equivalent to “float foo;”

AN} ”

// (assuming '\' is the last character before the new line and “o0o” are

// the first two characters of the next line)

Preprocessor

There is a preprocessor that processes the source strings as part of the compilation process. Except as
noted below, it behaves as the C++ standard preprocessor (see section 10 “Normative References”).

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension
#version

#line

The following operators are also available
defined
##

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new
line. Preprocessing does not change the number or relative location of new lines in a source string.
Preprocessing takes places after new lines have been removed by the line-continuation character.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause a diagnostic
message and make the implementation treat the shader as ill-formed.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

15

3 Basics

_ LINE
_ FILE
_ VERSION

__LINE _ will substitute a decimal integer constant that is one more than the number of preceding new
lines in the current source string.

__FILE _ will substitute a decimal integer constant that says which source string number is currently
being processed.

___VERSION _ will substitute a decimal integer reflecting the version number of the OpenGL shading
language. The version of the shading language described in this document will have ~ VERSION
substitute the decimal integer 440.

By convention, all macro names containing two consecutive underscores () are reserved for use by
underlying software layers. Defining such a name in a shader does not itself result in an error, but may
result in unintended behaviors that stem from having multiple definitions of the same name. All macro
names prefixed with “GL_" (“GL” followed by a single underscore) are also reserved, and defining such a
name results in a compile-time error.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++ preprocessors.
Expressions following #if and #elif are further restricted to expressions operating on literal integer
constants, plus identifiers consumed by the defined operator. Character constants are not supported.
The operators available are as follows.

Precedence Operator class Operators Associativity
1 (highest) | parenthetical grouping O) NA
2 unary defined Right to Left
+ -~
3 multiplicative * | % Left to Right
4 additive + - Left to Right
5 bit-wise shift < >> Left to Right
6 relational < > <= >= Left to Right
7 equality = I= Left to Right
8 bit-wise and & Left to Right
9 bit-wise exclusive or A Left to Right
10 bit-wise inclusive or | Left to Right
11 logical and && Left to Right
12 (lowest) logical inclusive or [Left to Right

16

3 Basics

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

Two tokens in a macro can be concatenated into one token using the token pasting (##) operator, as is
standard for C++ preprocessors. The result must be a valid single token, which will then be subject to
macro expansion. That is, macro expansion happens only after token pasting. There are no other number
sign based operators (e.g., no # or #@), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the C+
+ preprocessor, not those in the OpenGL Shading Language.

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the
processor targeted by the shader.

#error will cause the implementation to put a compile-time diagnostic message into the shader object’s
information log (see section 7.12 “Shader and Program Queries” in the OpenGL Graphics System
Specification for how to access a shader object’s information log). The message will be the tokens
following the #error directive, up to the first new line. The implementation must then consider the shader
to be ill-formed.

#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of this language. No
implementation may use a pragma whose first token is STDGL.

#pragma optimize (on)
#pragma optimize (off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma

#pragma debug (on)
#pragma debug (off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

Shaders should declare the version of the language they are written to. The language version a shader is
written to is specified by

#version number profileg.

where number must be a version of the language, following the same convention as __ VERSION __ above.
The directive “#version 440” is required in any shader that uses version 4.40 of the language. Any
number representing a version of the language a compiler does not support will cause a compile-time
error to be generated. Version 1.10 of the language does not require shaders to include this directive, and
shaders that do not include a #version directive will be treated as targeting version 1.10. Shaders that

17

3 Basics

specify #version 100 will be treated as targeting version 1.00 of the OpenGL ES Shading Language.
Shaders that specify #version 300 will be treated as targeting version 3.00 of the OpenGL ES Shading
Language.

If the optional profile argument is provided, it must be the name of an OpenGL profile. Currently, there
are three choices:

core
compatibility
es

A profile argument can only be used with version 150 or greater. If no profile argument is provided and
the version is 150 or greater, the default is core. If version 300 is specified, the profile argument is not

optional and must be es, or a compile-time error results. The Language Specification for the es profile is
specified in The OpenGL ES Shading Language specification.

Shaders for the core or compatibility profiles that declare different versions can be linked together.
However, es profile shaders cannot be linked with non-es profile shaders or with es profile shaders of a
different version, or a link-time error will result. When linking shaders of versions allowed by these rules,
remaining link-time errors will be given as per the linking rules in the GLSL version corresponding to the
version of the context the shaders are linked under. Shader compile-time errors must still be given strictly
based on the version declared (or defaulted to) within each shader.

Unless otherwise specified, this specification is documenting the core profile, and everything specified for
the core profile is also available in the compatibility profile. Features specified as belonging specifically
to the compatibility profile are not available in the core profile.

There is a built-in macro definition for each profile the implementation supports. All implementations
provide the following macro:

#define GL core profile 1

Implementations providing the compatibility profile provide the following macro:

#define GL compatibility profile 1

Implementations providing the es profile provide the following macro:

#define GL_es profile 1

The #version directive must occur in a shader before anything else, except for comments and white space.

18

3 Basics

By default, compilers of this language must issue compile-time lexical and grammatical errors for shaders
that do not conform to this specification. Any extended behavior must first be enabled. Directives to
control the behavior of the compiler with respect to extensions are declared with the #extension directive

#extension extension name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following
behavior Effect
require Behave as specified by the extension extension_name.

Give a compile-time error on the #extension if the extension extension name
is not supported, or if all is specified.

enable Behave as specified by the extension extension_name.
Warn on the #extension if the extension extension_name is not supported.

Give a compile-time error on the #extension if all is specified.

warn Behave as specified by the extension extension name, except issue warnings
on any detectable use of that extension, unless such use is supported by other
enabled or required extensions.

If all is specified, then warn on all detectable uses of any extension used.

Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

19

3 Basics

The initial state of the compiler is as if the directive

fextension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.
#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are constant integer expressions. After processing this directive
(including its new line), the implementation will behave as if it is compiling at line number /ine and source
string number source-string-number. Subsequent source strings will be numbered sequentially, until
another #line directive overrides that numbering.

Comments

Comments are delimited by /* and */, or by / and a new line. The begin comment delimiters (/* or /) are
not recognized as comment delimiters inside of a comment, hence comments cannot be nested. A /*
comment includes its terminating delimiter (*/). However, a // comment does not include (or eliminate)
its terminating new line.

Inside comments, any byte values may be used, except a byte whose value is 0. No errors will be given
for the content of comments and no validation on the content of comments need be done.

Removal of new lines by the line-continuation character (\) logically occurs before comments are
processed. That is, a single-line comment ending in the line-continuation character (\) includes the next
line in the comment.

// a single-line comment containing the next line \
a = Db; // this is still in the first comment

20

3 Basics

3.5 Tokens
The language, after preprocessing, is a sequence of GLSL tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator

R
3.6 Keywords

The following are the language's keywords and (after preprocessing) can only be used as described in this
specification, or a compile-time error results:

attribute const uniform varying buffer shared
coherent volatile restrict readonly writeonly
atomic_uint

layout

centroid flat smooth noperspective

patch sample

break continue do for while switch case default
if else

subroutine

in out inout

float double int void bool true false

invariant precise

discard return

mat2 mat3 mat4 dmat2 dmat3 dmat4
mat2x2 mat2x3 mat2x4 dmat2x2 dmat2x3 dmat2x4
mat3x2 mat3x3 mat3x4 dmat3x2 dmat3x3 dmat3x4
mat4x2 mat4x3 matd4x4 dmatdx2 dmatdx3 dmatdx4
vec2 vec3 vecd ivec2 ivec3 ivecd bvec2 bvec3 bvecd dvec2 dvec3 dvecd

uint uvec2 uvec3 uvecd

21

3 Basics

lowp mediump highp precision
sampler1D sampler2D sampler3D samplerCube
sampler1DShadow sampler2DShadow samplerCubeShadow
sampler1DArray sampler2DArray
sampler1DArrayShadow sampler2DArrayShadow
isampler1D isampler2D isampler3D isamplerCube
isampler1DArray isampler2DArray
usampler1D usampler2D usampler3D usamplerCube
usampler1DArray usampler2DArray
sampler2DRect sampler2DRectShadow isampler2DRect usampler2DRect
samplerBuffer isamplerBuffer usamplerBuffer
sampler2DMS isampler2DMS usampler2DMS
sampler2DMSArray isampler2DMSArray usampler2DMSArray
samplerCubeArray samplerCubeArrayShadow isamplerCubeArray usamplerCubeArray
imagelD iimagelD uimagelD
image2D iimage2D uimage2D
image3D iimage3D uimage3D
image2DRect iimage2DRect uimage2DRect
imageCube iimageCube uimageCube
imageBuffer iimageBuffer uimageBuffer
imagelDArray iimagelDArray uimagelDArray
image2DArray iimage2DArray uimage2DArray
imageCubeArray iimageCubeArray uimageCubeArray
image2DMS iimage2DMS uimage2DMS
image2DMSArray iimage2DMSArray uimage2DMSArray
struct
The following are the keywords reserved for future use. Using them will result in a compile-time error:
common partition active
asm
class union enum typedef template this

resource

22

3.7

3.8

3 Basics

goto

inline noinline public static extern external interface
long short half fixed unsigned superp

input output

hvec2 hvec3 hvecd fvec2 fvec3 fvecd

sampler3DRect

filter

sizeof cast

namespace using

In addition, all identifiers containing two consecutive underscores () are reserved for use by
underlying software layers. Defining such a name in a shader does not itself result in an error, but may
result in unintended behaviors that stem from having multiple definitions of the same name.

Identifiers

Identifiers are used for variable names, function names, structure names, and field selectors (field
selectors select components of vectors and matrices similar to structure members, as discussed in section
5.5 “Vector and Scalar Components” and section 5.6 “Matrix Components”). Identifiers have the form

identifier
nondigit
identifier nondigit
identifier digit

nondigit: one of
_abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
digit: one of
0123456789

Identifiers starting with “gl are reserved for use by OpenGL, and may not be declared in a shader; this
results in a compile-time error. However, as noted in the specification, there are some cases where
previously declared variables can be redeclared, and predeclared "gl " names are allowed to be
redeclared in a shader only for these specific purposes. More generally, it is a compile-time error to
redeclare a variable, including those starting “gl ”.

Definitions

Some language rules described below depend on the following definitions.

23

3.8.1

3.8.2

3.8.3

3 Basics

Static Use

A shader contains a static use of (or static assignment to) a variable x if, after preprocessing, the shader
contains a statement that would read (or write) x, whether or not run-time flow of control will cause that
statement to be executed.

Uniform and Non-Uniform Control Flow

When executing statements in a fragment shader, control flow starts as uniform control flow; all fragments
enter the same control path into main(). Control flow becomes non-uniform when different fragments
take different paths through control-flow statements (selection, iteration, and jumps). Control flow
subsequently returns to being uniform after such divergent sub-statements or skipped code completes,
until the next time different control paths are taken.

For example:

main ()
{
float a = ...;// this is uniform flow control
if (a < b) { // this expression is true for some fragments, not all
e // non-uniform flow control
} else {
. // non-uniform flow control
}
.7 // uniform flow control again

Other examples of non-uniform flow control can occur within switch statements and after conditional
breaks, continues, early returns, and after fragment discards, when the condition is true for some
fragments but not others. Loop iterations that only some fragments execute are also non-uniform flow
control.

This is similarly defined for other shader stages, based on the per-instance data items they process.

Dynamically Uniform Expressions

A fragment-shader expression is dynamically uniform if all fragments evaluating it get the same resulting
value. When loops are involved, this refers to the expression's value for the same loop iteration. When
functions are involved, this refers to calls from the same call point.

This is similarly defined for other shader stages, based on the per-instance data they process.

Note that constant expressions are trivially dynamically uniform. It follows that typical loop counters
based on these are also dynamically uniform.

24

4 Variables and Types

4.1

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=).

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL Shading Language is type safe. There are some implicit conversions between types.
Exactly how and when this can occur is described in section 4.1.10 “Implicit Conversions” and as
referenced by other sections in this specification.

Basic Types
The OpenGL Shading Language supports the following basic data types, grouped as follows.

Transparent types

Type Meaning

void for functions that do not return a value

bool a conditiona