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The present problem book is meant for high-school students
who intend to enter technical colleges. It contains more than
two thousand problems and examples covering all divisions
of high-school mathematics.

The main aim of the book is to help students to revise their
school knowledge of mathematics and develop a technique
in solving a variety of problems.

The book consists of nine chapters divided into sections,
each of which deals with a certain theme. The problems on
a definite theme are arranged in the order of increasing
difficulty, which makes it possible for a student to gradually
acquire the necessary techniques and experience in problem
solving. Thus, the problems are classified as far as possible.
Most of the problems were given at the entrance examinations
in various colleges to the USSR in recent years. All the
problems are supplied with answers, and some of them with
solutions or instructions. The words “Solution” and “Hint”
are replaced by the signs A and @ respectively. The list of
designations makes the use of the book more convenient.

All the contributors to the book have a long experience
as lecturers at preparatory courses of colleges, as teachers
at high schools specializing in physics and mathematics and
as examiners in mathematics.

The authors wish to express their gratitude to the lec-
turers of the Chair of Higher Mathematics at the Moscow
Institute of Physics and Engineering for their help in pre-
paring the manuscript and their useful remarks.

The authors
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List of Designations Accepted in the Book

N, the set of all natural numbers

Z,, the set of all nonnegative integers

Z, the set of all integers

@, the set of all rational numbers

R, the set of all real numbers
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(—o0; o0), an infinite interval, a number line

=>, sign of implication

<>, sign of equivalence

€, sign of membership relation

rn € N, the number n belongs to the set of natural numbers

c—, sign of inclusion

C — D, the set C is included into the set D, or C is a sub-

set of D

U, sign of union

C U D, union of the sets C and D

(@ — &; a 4+ &) — e, the neighbourhood of the point a

{a; b; ...}, a set consisting of the elements a, b, . ..

(a; b), an ordered pair

(a; b; ¢), an ordered triple

nl,( 1an n-iactorial, the product of the first » natural numbers

1 =1)

[z], the integral part of the number z

{z}, the fractional part of the number x

| z |, the modulus (absolute value) of the number z

(), (@), an infinite number sequence
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lim z, = a, the number a is the limit of the sequence (z,)

??;), the value of the function f at the point z
D (f), the domain of definition of the function f
E (f), the range of the function f
Az, an increment of the variable z
Af (xo), Af, an increment of the function f at the point z,
lim f (z) = b, the number b is a limit of the function f as
* ;: tends to a
f’ (o), the derivative of the function f at the point z,
log, decimal logarithm
In, natural logarithm (logarithm to the base e)
max f, the greatest value of the function f on the interval
[a¢ b]

[a; bl
min f, the least value of the function f on the interval
[a; b]

la; bl

f (z) dz, the general form of the antiderivatives of the

, function f (z)

S f (x) dz, the integral of the function f in the limits from
a

atobd
A € @, the point A belongs to the figure @
4 ¢ @, the point 4 does not belong to the figure @
@, N ®D,, the intersection of the figures ®@; and @,
VN, an empty set
@, >~ ®@,, the figures @, and @, are congruent (equal)
D, > @,, the figures ®; and @, are similar
4 (41), similarly (oppositely) directed
I, parallel
L, perpendicular
£, an angle, a dihedral angle, a trihedral angle
A, the magnitude (degree, measure) of the angle

N
(a, b), the magnitude of the angle between straight lines
(a, o), the magnitude of the angle between a line and a plane

(@, B), the magnitude of the angle between planes
B}, a straight line AB
B', a segment AB



{AB), a ray AB
| AB |, the length of the segment AB

—_
a, AB, a vector

—_
0, AA, a zero vector

PN
(a, b), the magnitude of the angle between two vectors

—
|a| =a, | AB| = | AB |, the length of a vector
(i, j, k) an orthogonal basis
a = (z, y, 2), a vector with coordinates z, y, z

a-b, ﬁgb, a scalar product of vectors



Chapter 1

RATIONAL EQUATIONS, INEQUALITIES
AND FUNCTIONS IN ONE VARIABLE

1.1. Linear Equations and Inequalities in One Variable.
A Linear Function

Solve the following equations:

1. Bz + 7) — (2 + 5) = 3.
z x z z |z z

ZytsTmtn T te=—"6

3. () 3z +1 = (4bx — 3) — (x — 4);
(b) 3z + 1 = (42 — 3) — (z — 5).

4. ax = a®. 5. (@ — 2) xz = a® — 4.

6. (a®> — 9) z = a® + 27,

Solve the following inequalities:

7. (a) Tx > 3; (b) —42 > 5; (¢) 5z + 6 << 3z — 8§;
(@) /2 +1 < 2/} 3 + 1/2.

8. (a) ax << 1; (b) ax > 1.

Solve the following systems of inequalities:

3$> 1, 2x<:|'[,
9. () { —z<3 O { —z>—1.6;
{ z>—1, 3r+2>0,
© 2z +1<5; { x4V 5<0.

10. Find all the values of z € N satisfying the inequality
o5z — 7 <2z + 8.

Solve the following equations:

M@ |z2—1|=3; (b) |z +2]=—1.

12. (a) |3 —2z|=a; ) |z—a|=2.

13. (a) |2 —3|=2—3; () |z—3|=3—u;
(€) |z —3 | = a.

14 |22 —1 | =12+3].

15. 2 —a|=|2z—4]|.

11



16. (a) |z —4 |+ |z+4]1=9; (b) |z—4]+
+lz+4]=8 ()lz—4l—lz+4]=8;
dJz+4]|—|xz—4]|=8.

17. |z =3 |+ |z+ 2| —|xz—4 ]| =3

18. At what values of a does the equation |2z 4+ 3| +
+ | 22 — 3 | = ax + 6 possess more than two roots?

Solve the following equations:

19. (@) |z |>a; b) Jz—1]|>—1; (c) Jz—1]|>1.

20. (a) |z | <a; (b) lz+2]<—2 () la+2]<2.

2. (a) |2z + 1| > (b) |20 4+ 3 | < 4a.

2. 11 —3z|—|z+ 2|2

2. lz+ 2|4+ ]Jxz—3]|>5.

Solve the following inequalities:

"l 22—1>3. |z+2]>1.

26. At what value of a is the function f (z) = (@ — 2) z +
+3a —4, x € (—o0; +00) (a) even; (b) odd?

27. At what value of a is the function f (z) = (¢ +.3) x +
-+ 5a, x € (—oo; oo) periodic?

28. Find the values of % for which the function f (z) =
=k —1)z+ k*— 3, 2 € (—o0; oo) (a) increases mo-
notonically; (b) decreases monotonically.

29. Determine the values of m for which the function y =
=(m?®—4)x+ |m|, x €(—oo; co) has an inverse.
Find the inverse function.

30. Given the linear function f (z). Prove that the furction
F () = f (f (z)) is also linear.

Construct the graphs of the following functions:

31. (a) y=2z, (b) y:—%—x.

32. ) y=2—2; (b) y=3—=x.

3. Q) y=2z—1; (b)) y =1 — 3z.

% @Qy=Jr—1;d)y=—lz+2]

3B. Qy=|1+2z|; (b)) y=—|—4x+ 2]

. y=llz—1]—21]. 37.y=]z+ 2]+ |xz—3].

12



38. y—|2x—|—1|—|2a:—2| 9. y=z+z]|

4. y=z+|z—1]+12=50

Construct the graphs of the following functions:
M.ziiz——L 42. |y|+z=—1.
3. |z |+ lyl=2 44 |ly—3|=lz—1]|
Indicate the points on the plane 20y which satisfy the following
inequalities:
45. y > z. 46.. y < —=x.
7. y>=|z|. 8. z> 1|yl
Indicate the points on the plane 2Oy which satisfy the following
equations:
9. y+|yl—z—|z|=0.
50. l[z+yl|l+|z—yl=4
5. |y |z == 52. |lz—y|+y=0.
53. Find the value of a for which the function y is continuous
at the point z = 0, if
2z41 for z< 0,
y={ —z+a for z>0.
54. Find the critical points of the function (a) y = | 3 +11;
y=lz+1|+z+1 (c)y=l= I+
+lz—1; y=lz—3]—]z+3]

Find the intervals of the monotonic increase and decrease
of the following functions:

55. () y =3 —z (b) y =42+ 1.

6. (@) y=2+]z—4; (b)y=3—|z|

7. @ y=—(lz+10 |+ |z —10]; () y=
=lz—4|—lz+5 (y=lz+4]—
—lz+3l+lz+2|—lc+1]+ 2]

Find the points of extremum of the following functions:

8. (@) y=]2r—1]; B)y=2—]3—4z]|.

M @y=I3%+2|+122—-3; Dy=lz+T7]|—
— 2|z —2].

13



60. y=2|z—1|—3|z+2]|+ =
6. y=|z—2 |4+ |z—al.
62. Find the values of a for which the function y possesses
a maximum at the point z = 2, if
z+1 for z<<2,
y={ a for z=2,
5—z for x>2.

Find the least and the greatest value of the function
Yy = |2z — a | on the interval [1; 2] (a 55 1; a = 2).

63.

1.2. Quadratic Equations and Inequalities.
A Quadratic Function

Solve the following equations and inequalities:

1. () 22 — T2 + 12 =0; (b) —2® 4+ 42 + 5 = 0;
(c) 622 — 5z +1 =0; (d) 32* + 10z + 3 = 0;
(e) 22 —2x —5=20; (f) 22> +xz—8=0.

2. (a) 22 — 3z —4>0; (b) 2> — 3z — 4 <0;
() 22 +4x +4>0; (d) 42 4 4z + 1< 0;
e 222 —zxz+5>0;, (f22—2+1<0.

3. Find solutions to the following systems:

222 —5z+2=0, 22— 2x—3=0,
(@) ! z—2<<0; { z+4+4>0;

r2—9>0, r2—6z+95=>0,
(c {z—4<0; ) {x2—25<0;

2+ 62 +9<0, z24+z2+8<<0,
(e) { 9% —5>0; (f {:c2+6:c+5=0;

{ lz—2]+]2z—=3|=1,

(&) \ 8132—974< 16322,

4. Suppose z, and z, are roots of the equation r*> + z —
— 7 =0. Find (a) 22 + z%; (b) o} + z}; (c) x} + 3
without solving the equation.

5. Given the equation az? + bz 4 ¢ = 0. Prove that if
z,, z, and z, are pairwise distinct real roots of this

equation, then a = b =¢ = 0.

14



6.

10.
11.
12.

13.

14,

15.

16.
17.

At what values of @ does the equation
@—3a+2)a2®2—(a*—5a+4)z+a—a>=0

possess more than two roots?

. The equation z%* 4+ px + ¢ =0, where p€Z, q€Z,

has rational roots. Prove that those roots are integers.

. Prove that the equation 22 + 2m + 1)z +2rn + 1 =

= (0 does not possess any rational rootsifm €Z,n €Z.
At what values of a does the equation 2z — (a® +
+ 8¢ — 1) x + a® — 4a = 0 possess roots of opposite
signs?

Find all the values of a for which the equation z? —
— az 4+ 1 = 0 does not possess any real roots.

At what values of k does the equation 22 + 2 (k — 1) z+
+ k 4+ 5 = 0 possess at least one positive root?
Find all the values of m for which both roots of the
equation 222 4- mx + m?> — 5 = 0 (a) are less than 1;
(b) exceed —1.

Find all the values of & for which one root of the equa-
tion 22 —(k 4+ 1) 2 + k2 -k — 8 = 0 exceeds 2 and
the other root is smaller than 2.

Suppose z, and z, are roots of the equation z2 +
+2(k—3)z+9=0 (x, % z,). At what values of k
do the inequalities —6 <<z; <<1 and —6 <z, <1
hold true?

Find all the values of % for which one root of the equa-
tion (k — 5) 22 — 2kx +k — 4 = 0 is smaller than 1
and the other root exceeds 2.

At what values of m is the inequality ma® — 9mz +
+ om + 1 > 0 satisfied for any z € R?

Find all the values of m for which every solution of the
inequality 1 <z < 2 is a solution of the inequality
22 —mx +1 <0.

Solve the following equations:

18.
19.
20.

21,

(@) 22 — |z | —2 =0; (b) 22 +5 |z | +4=0.
(@) 222 — |52 —2 | =0; (b)2*—|z—1]|=0.
(@ |22 +2—6|=22+2—6; (b) | 62% — 5z +
+1l=5z—622—1; (o) |2*+2a|=2*+a
d) |22 —z+5]| =2 — 22 —5.

@ 22—1]=24+3 (M) |22—1]=]z+ 3]

15



22,

23.

(a) |222 — 1| = 22 — 2z — 3;
(b) 1222 —1 | =]2*— 2z —3|.
|22 —3 |z |+ 2| = 2* — 22,

Solve the following inequalities:

24.

25.
26.

27.
28.

29,

30.

@ z2—|z|—12<0; b)22+2|2|—15=0;
()2 — 7|z | +10<0; d) 82+ |—2z|+1>0;
(d) 42* + 2 |z | + 0.25 < 0.

(a) 3> — |10z — 3 |>0; ) 22|z —2].

@ [x?+z2z—20 | <<a?4+2—20; b) [z —222|>
>222—z; (c) |2+ 62+ 8| —z>— 6z — 8.
(@ |22 —6|>4x+1; (b) [z—3|>]|22=3]|.
(a) |222 —2z —10 | > |2? — 8z — 22 |;

b) |22 =5z +4]|=222—=3 ||+ 1]

Find the domain of definition of the function (a) y=
=V =25 (b) y=2—V1—2% (c) y=V2*—4e+3;
@) y=1/V2+4z; () y=V16—22+V 22 +z; (f) y=
=V —lz|+1/V9—2

Prove that the function f(z) = ax? 4 bz + ¢, a # 0,
is not periodic.

31. At what values of a does the function f () = —z% +

32.

+ (@ — 1) z + 2 increase monotonically on the interval
(1; 2)?

Find the inverse of the function f (z) = z* — 6z 41
(a) on the interval (—oo; 3); (b) on the interval (5; 7).

Construct the graphs of the following functions:

33.

34.

35.

36.

37.

38.
16

(@ y=2% (b)y=(@—2%
)y=2@—=2?% dy=2@x—272—1.

(a) y = —2% (b) y = —(z + 1)%

() y=—0.5(x+1)2 ) y=2—0.5(+ 1>
(@ y=22+5z+6; (b)y=4dz®+4z+1;
(y=2>+z+1.

@ y=3c—a22—2; (b)y=2zr—2*—1;
(c)y=z—2*—1.

@y=22—4|z|+3 by=22+4]|z]|+3;
C)y=2—|z|—2%

@y=|a2+z|; b)y=—|22—2z]|



39.
40.
41.
42.

43.

44,

45.

46.

47.

48.

49.

@y=122=3|z|+2 b)) y=—]2>—|z|—86].
@y=Ilz|(@x—2); (b)y=0CB—2)|z+1].
y=|z*—4|—|22—9|.

Find the derivative of the function (a) y = z* — 6z +

+15; by y=—22—z+V5 (c)y=32+z+
4+ sin1; (d) y = —42®> — (tan 2) z + m;

(e) y=%x2 —zV3+2VE (f)y = —%:ﬁ + nx +
+ arctan 4; (g) y = (5z + 1)%; (h) y = —(0.5z — 4)%
Ay=a+lal; (y=(—1)2*—ax

At the indicated point z,, find the value of the derivative
of the function (a) y = 2* — 5z + 6, zo = 1;

(b) y = —2* + 3z, 2o = —2; (c) y=%x2—x,
zo=1; (@) y=—52"+z, 2 =0.

At the indicated point z,, determine the angle between
the abscissa axis and the tangent to the curve

(a)y=22"+z, z0=2; b)y= —2*+ 2z, 29 =3;
©@y=2+zV3 z=0

d) y =2x — 2%, zo = 1.5; (&) y = 3z + 4a2, =z, =

= —2.

At the indicated point M (z,; y,), set up an equation

of the tangent to the parabola (a) y = 322 — 62 + 1,

M 0; 1); (b)) y= —a%2 —4x+ 3, M (—1; 6.5);

() y =2 + 4z + 8, M (—2; 4).

At what value of a is the tangent to the parabola y =

= ar® + r — 3 at the point M (1; a — 2) parallel to

the straight line y = 22 — 1?

Two points with abscissas z; = a, z, = 3a, a % 0,

are given on the parabola y = z2. A secant is drawn

through those points. At what point of the parabola

is the tangent to it parallel to the secant?

Derive an equation of the tangent to the parabola
= —2z® + 162 — 31, which is parallel to the ab-

scissa axis.

Derive an equation of the tangent to the parabola

Yy = 22 4 8z, which is perpendicular to the axis of
ordinates.

2—-01521 17



50. Determine the values of k¥ at which the tangent to the
parabola y = 4x — 2® at the point M (1; 3) (a) is
a tangent to the parabola y = 2® — 6z + k; (b) cuts
the parabola y = 2> — 6z 4+ k& at two points.

Find the critical points of the following functions:
8. Q) y=2>—6z +1; (b)) y= —2+ 4z — 3;

() y=%x2+5a:; (d) y=—%x2—|—2.51:——%.
2. @) y=a*—|z|; b)y=—-222+|z+3]|
B. @y=]a2—6z+5; b)y=—|4+2;

c)y=|a*+2x+6|.

5. ) y=|22—4 |+ [z+3
dy=|a2—1]|+|22—-3]|

9. (y=z|2—2z]; By=@@&—5]|z—1];
©y=—@=—2)]z—2]|

56. Determine the intervals of the monotone decrease of
the function (a) y =2>—3x+1; (b) y = —a —
—4z+8; () y=052—|z]|;
(d) y=10.52% — | z]||.

57. Determine the intervals of the monotone increase of the
function (a) y =%x‘+ z—V2;, (b)y=—22*+
+8—3; (y=|lz—4|—2 @y=Ilz—

Determine the points of extremum of the following functions:

58. (@) y=2a* () y=—2a% (c)y=(z—1)%
@ y=—-2+2? (e) y=2"+ 2z + 100;
) y = —4a2® + z — 5.

59. @ y==zlzl; (b)y=12z+3
©y=@—=2)|z+1]

60. (@) y=2*—3|z|+2;, D)y=2>+3|z]|+2;
C)y=2*—|2—1]+ 3.

61. (a) y=|[2*—6 x|+ 8
b)y=|2*—|z—2|—14]|.

62. Q) y=]a?—1|— |22 —4|;
(b)yy=|2*—4|+ |2*—25]|.

18



Find the least and the greatest value of the functions in the

63.

64.

65.

66.

67.

indicated intervals:
(a) y = 322 — x + 5 on the interval [1; 2];
(b) y = —4a® + 5z — 8 on the interval [2; 3];
() y = 2* — 2z + 5 on the interval [—1; 2];
(d) y = —a® 4 62 — 1 on the interval [0; 4].
() y=2x*+ |z + 2| on the interval [—3; —1I;
(b) y=(x —3) |2 — x| on the interval [1; 4l;
() y=|2*—4|z|| on the interval [—1; 3].
Suppose z; and z, (z; * z,) are zeros of the function
f () = az® + bx + c. Prove that there is a point
Zo € (z1; x,), at which the derivative of the function
f (x) is zero.
The function f (z) = axz® + bx + ¢ is specified on the
interval [z,; z,], and f(z)) =f (z;) = 4, =z, 7 x,.
Prove that there is a point x4 € (z;; x,) at which the
derivative of the function f (x) is zero.
The function f (z) = az® + bxr + ¢, a 5= 0, is specified
on the interval [z;; z,]. Prove that there is a point
o € (z1; x,) such that f (z,) — f (z1) = ' (o) (x — zy).
Determine the abscissa of the point x,.

1.3. Inverse Proportionality

Solve the following equations-

1.

2.

(a)—=5 (b) == =0; (o) x+2 =a;
(d)l—z—_$—|=a.

@ =2 1)y +e=2E1,
© 2H —o @) S+ L=

z+3 z2—1 - (z—a) @—=1) *

Solve the following mequallties:

3.

2*

@ +>1 () =<1; (0) 3

7 >—1;
@) —5<-2 () 1>1
) S=>—t.
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1 1
4. (a) i ——>0;
1 1
b) = <75

—5 4 3
6. (2) | +2|\ L ) |x 2| >| 2x—1|

—b4z+-4 Ix—
(c) 2—6x-|—9 + —3 —12<0

@ s—2(1-1) < 2ozt

Construct the graphs of the following functions:
1

7. (2) y=— b)) y=—<;
© y=577: (D y=5
1 1
8. ) y=-7=37; (b)y=——|m.

1 2

9. @) y=2+—; (b) y=1—=;
© v=o37—7 @y=—3—7Z5.

10. (a) y__””_'H (b) y=2=L,

z+1 "’
2z—2 2
(© y=2; (@) y—55-
1 2
11. (a) y=2—m—; (b)y=——-1—|—_7-
1—
12. (a) y= +2 H (b)y— lx_l_sl .
ENEC TRy SRELES
13' (a) y= ()y_|‘7—'+3|_'1.
1 1
2—9 2
(b) y=— 3;_,_3 —z+—=7

15. Find the derivative of the function (a) yzé;

2 1 1
B y=—33 @ V=35 @ v=1=;
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16.

17.

18.

19.

20.

21.

2 1
(e) y=1—m; () y:—3+7$—_—1:

2z—3 | _ x—4
(2 Yy=—31> (h) Yy=4—37-

At the indicated point, find the value of the deriva-

tive of the function (a) y:%, zy=1;

1 2z —1
(b) Y=T27:2 %= -2 y= ;_1 ’
—3
z0=0; (@) y=1273, a=1.

At the indicated point z,, determine the angle be-
tween the z-axis and the tangent to the curve (a) y =

1 —2 1—2
== W=2 ) y=175, 2%=0 () y=—737,
—1
.‘E0=3; (d) y:ﬁll, Xy = —2;
1 1 2—3 1
€ y=——71—0» T=2; (f)y"—‘g;ﬁ%-m’
$0=—1.
At the indicated point P (z,; y,), derive an equation
of the tangent to the curve (a) y = —%, P(3; —1);
1 . . _ %3 . _3).
d) y=—2—, P(1; =1); (9 Y =1z121° p (O’ —’2') )
_lz—21 1 ) 1
@ v=-331 ~ =3 P (5 —5)

On the hyperbola y =:‘:__!_—:, find the point M at

which the tangent to that hyperbola (a) is parallel to
the straight line y = 2z + 1; (b) is perpendicular to

the straight line y = —%x — 3.

Show that the tangents drawn to the hyperbola y =
r—4 . e . . .

=73 at the points of its intersection with the axes

of coordinates are parallel to each other.
Set up an equation of the tangent to the hyperbola

9 .
y =;% , which passes through the origin of coor-

dinates.
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22.

23.

24.

azx+b
cxtd
tonic on any interval (z,; z,), provided that ad 5= b,
c#0, z = —dlc§ (2,; z,).

Find the greatest and the least value of the function
(a) y = (x — 3)/(x + 1) on the interval [0; 2];

(b) y = (2 + 1)/(x — 2) on the interval [—1; 1].
The function y = k/z, k > 0 is specified on the interval
[z,; z,]. Prove that there is a point z, € (z;; z,) such
that y (z;) — y (z1) = ¥’ (z0) (z; — ;). Find the coor-
dinates of the point z,.

Prove that the function y = is strictly mono-

1.4. Equations and Inequalities of Higher Degrees.

22

A Rational Function

. Solve the equation (a) (x — 1) (2® + 4z + 3) = 0;

(b) Rz +3)(x® —z+1) =0; (c) 2® 4+ 27 = 0;
d) 8*—1=0; () 2*—1+22—1=0;

) 2*+8+22—4=0; (g 22+1+2z+1=0
(h) 2*—8+x—2=0; @)+ 224+2+1=0;
G) 2®—a2*4+2z—1=0.

.

. The equation 2® + ax® 4 bz + ¢ = 0, where a, b, ¢

are integers, has a rational root z;. Prove that z; is an
integer and that ¢ is exactly divisible by z.
Find the rational roots of the equation (a) z® 4 2z® —

—z—2=0; (b)a®—2a22—8r+12=0;
(c) 28 — 92® + 272z — 27 =0; (d) 2® + 22— 3 = 0.
(e) 62® + 722 — 1 =10; (f) 22® + 22 + 52 — 3 = 0.

. Suppose z,, z,, z; are roots of the equation az® +

+ bz2+cx+d=0, a=*0. Prove that z, + z, +
+ x3d_/—~ —bla, m=xy + Tokz + T47, = cla, Ty =
= —d/a.

Given the equation z® 4+ pr + ¢ = 0. Find the sum of
the squares of its roots.

Solve the equation 2® + 3z — 3 = 0.

Solve the equation (a) (x — 1) (x 4+ 3) (x> — 2 — 6) =
=0; (b) (22— 3z + 2) (2 + 7z + 10) = 0;

() @®—2z—3) (2> —22+2)=0; (d) 22—z +
+1) (> —22x+3)=0; (e) 2* — 16 — bz (2> — 4) =
=0; (f)a*+ 12?2 +10+7z(2>+1) =0,



8.

The equation 2* + ax® + bx? + cx +d = 0, where
a, b, ¢, d are integers, has a rational root z;. Prove
that z; is an integer and that d can be divided by z,
without a remainder.

Find the rational roots of the equation (a) z* + 22 —

— 1622 — 22z +15=0; (b) 2* — T2® + 52% + 4=z +
+12=0; (c) z* + 2> — 52 —5=0; (d) 2* + 2® —
—1=0; () 62* —2® + 522 —2z—1=0.

Solve the following equations:

10.
11.

12.

13.

14.

15.

16.

17.

18.

(a) 228 — 52 +2=0; (b) 24 — 222 —3 = 0.
(a) (z — 1)4 + (z + 1)t = 16;
(b) (2 — 3)* + (22 — 5)* = 2.
(a) (2 + 22)* — 7 (2® + 22) + 6 = 0;
1 3 10

() g+ 28 —z+3  2P—z+7 °

(a) (x — a) z (z + a) (x + 2a) = 3a%;

(b) (6z + 5)2 3z + 2) (z + 1) = 35.

(a) 2% + 4/2* — 8 (x — 2/z) — 4 = 0;

(b) 4z* + 62® — 1022 — 9z + 9 = 0;

@ L =T @@ —6r—9p—o—tt— 92,
(a) =z2+ (:j_—z;)s= 11;

(b) (2> — 16) (x — 3)% + 922 = 0.

(a) 2* + 42z —1 =0; (b) 2* —4a2® —1 = 0;

(c) z* — 22% — 400z = 9999.

(a) (2® — 2z) — (2 + 2) a — 2a%z = O;

(b) (2 — a)? — 62% + 4x + 2a = 0.

z* — 42® — 1022 4 37z — 14 = 0, if it is known that
the left-hand side of the equation can be decomposed
into factors with integral coefficients.

Solve the following inequalities:

19.

(@ (z +2)(x—1)(x—3)>0;

®b) (z +2)z (z —1) (zx — 2) <O0;

() (z +4)° (x + 3)8 (z + 2)" (z — 18 <0,
@) (z +3)" (z —2) <0, neN.
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20. (a) 2% — 322 — 10z + 24> 0; (b) 2% + 4a?® + 5z +

+2<0; (c) 22® — 32> 4+ Tz — 3> 0.

21, (a) 2* — 32® + 22 + 32z — 2 > 0; (b) z* 4 62% +

+ 622 + 62 + 5 < 0.
22, (a) 3z* — 1022 + 3 > 0;

(b) 322 (x — 4)®? << 32 — 5 (z — 2)2.
23. (a) (@* —2)*+3 (x> —2) +2=>=0;

(b) z (x + 1) (z + 2) (x + 3) < 48.
24, (a) (zx +1)>21 4+ z);

(b) z* — 2® — 1022 + 22 + 4 < 0.

25. Prove that the polynomial P (z) = 2® — 2° + 22 —

— z + 1 is positive for any z € R.

26. Assume P (z) = aez” + a ™'+ ...+ amax + an
and Q (z) = bgx® + by '+ ...+ bz + b,, m¢€
€N, n€N, Q(z)s=0. Prove that the inequalities

P (z)/Q (x) >0 and P (z) Q (z) > 0 are equivalent.

Solve the following inequalities:

1 2 4 .
27. (a) — <=5 (b) %<Ii1 ;

r—2
1 1 1 1
() z+1 -—?< z—i R
z22—z41 3,7;_|_1 1
(d) —— += z— > 2z T %m—s

28 —222+4 542
(e) 221 3z12

1 1 1 1
(f) z+5 +2= te=s + z+7 >0.

>1;

1 1 .
28. (a) 12+I < 2$2+2$+3 ’
1 4 4 1 1
(b) z—1 z—2 + 1—3 T z—% <W ’
41—17 10z —13 —30 S5r—4
(c) —4 + 2z — 3 > x—-7 + 1—1 '

29, (a) 22+ —+5 (.1:—{—1)3 <= 4 ; (b) 224 ——% ( )2 <35.

@+t 128 |
30. (a) m 15

(b) 8— >4 (z— 7).
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31.

32.
34.

35.

36.

()25 (25) < 2

|8 —z|<z. 33. WJF’*“—_2>|$—1|.

Find the derivative of the function (a) y =% —6z21;
(b) y= —x3+—;,—x——2; (¢) y=a*—6243;

(@) y=—gat+25 (o) y=(@+2) (@ —a+5);

®) y=0B—2z)(x—2?); (g) y=(2*+z+2) (2*+ 22+ 3);
(h) y=z(z—1) (z—2) (z—3); () y=?ng;

. 1— 8 —
)] 1/=2—_|_';T§ (k) y———'H_—g;

414 21 3
M y=-2Es m) y=E00
(M) y=a5 4= (0) y=(2—32)%;

4 8 2114 \2
® y=(622—=+1)°; @ y=(ZI1)"s
(r) y=(zt—a3--522—2)8.
At the indicated point z,, calculate the value of the
derivative of the function (a) y=(22—3z+3)(22+

+.22—2), z,=0; (b) y=(x®—3z-+2)(zt+22+1),
ro=1; (c) y=@2—1)(22—4)(22=9), z, = —2;

5 3
(d) y=(xf_—2)2, zo=1 (@) y=q—ma—m =
1
() y=m'+—x§'j_—1—v o=—1; (8 y=(1+2%)x
x (5 —1/22), ry=a; (h)y:—ia—_{%, 2,=a; (i) [(z®+

tat ) (@—z+ P, 2=0; () y=z(z—1)(z—2) ...
... (x—n), 2,=0, neN,

At the given point P (z,; y,), set up an equation of
the tangent to the curve (a) y = ——;—ﬁ + 2% — z,
P@0;0); b) y=2>—322+2, P(0;2); (c) y=
=(@x—22@&+1), P(;2); d)y=2a2*—2*+1,
P (15 4); (e) y = (z —4)° (2z + 1), P(2; —40);
MHy=z—=, PU:0); (@ y=-n+2 P9I
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37. On the curve y = 2® — 3z + 2, find the points at
which the tangent is parallel to the straight line y = 3x.
38. At which point is the tangent to the graph of the func-

tion f (z) =-i—a:3 — —3—x2 — 9z 4 8 parallel to the bisec-

tor of the ﬁrst and the third quadrant?

39. At which points of the curve y = z3 + z — 2 is the
tangent to it parallel to the line y = 4z + 5?

40. Find a point on the curve y = 22 (r — 2)? at which the
tangent to it is parallel to the line y = 24z — 1.

41. Find a point on the curve y = 1/(1 + z?) at which the
tangent is parallel to the abscissa axis.

42. Show that any tangent to the curve y = 2° + 8z + 1
makes an acute angle with the z-axis.

Find the critical points of the following functions:
43. (a) y=2z3——3-x2+m— V'3;
(b) y=23—3%/3224+3392—3%/3;
() y=323—2245240.7; (d) y=(x+2)2(3z—1);
() y=2*+3z[; (f) y=|2°| — 9.

44, (a) y==x++1822—64x}-1; (b) y=3z4] 1623 622—
—T72z—3; (c) y=2+622+5; (d) y=—2+4|x|;
(e) y=at+8127).

5. (a) y=2-—2 233 (z41); (b) y=0.62"—1325+
1-108z—5; (c) y= (_—_x«+3xs)+5(——§xz)+
+4z—17; (d) y=—7—-—7z+n; (e) y=x2+-z—.

46. Find the intervals of the monotone decrease of the

function (a) y =2z3+ 322 — 122+ 15; (b) y=2at +-—%-x3—2;

2—3z42
©) y=2"—200°+1; (d) y=-S72t2.

47. Find the intervals of the monotone increase of the
function (a) y=ax3—522+3z—11; (b) y=—a34
+622—924-5; () y=0.2524+22—6; (d) y=ST2;

1— 2
©) y=ysie-
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48. Determine the points of extremum of the function

49.

50.

() y =2 +322 — 45z +1;, (b) y=-2—22+
+4r—3; (@Qy=|3z—1]|—=2% (@@y=
=(@x—123@+2); (e) y=(z+ 3)?((x—4)%
Oy=22+2%; @y=20
Find the absolute value of the difference between the
extrema of the function

y = a® + 322 — 3z + 1.
Find the least and the greatest value of the function
on the indicated intervals
(a) y = 2®* + 9z — 3 on the interval [—1; 0];
(b) y = 6z — 2® on the interval [—2; 1];
(¢) y = (z + 2)® (x — 1) on the interval [—1; 2];
(d) y = 2® — 5z* 4 52® + 4 on the interval [—1; 2];
(e) y = 322+ 414

e on the interval [—2; —1].

Investigate the behaviour of the following functions with

51.
53.
55.

57.
59.
61.

the aid of their derivatives and construct their graphs:

y=a22—322+4. 52 y= —zx(2* —4) — 3.
y=(x+ 2)?(x—1)>% 54. y = —z* + 22* + 8.
y=(x—13(@ + 12 56. y =z + 1/z.

T z
y=m—. 58. y=—z2—__—1—.
z3

3—a2

1
y=22+ 5. 60. y=
y=-£—+4x2.

1.5. Linear Systems of Equations and Inequalities

Solve the following systems of equations:

3z—y=0, z—2y=0,
L@ { —zty—0; O {Zx—4y=0;
(©) { 0.2—0.y=0, 0.z4y=0,
“10.2z+0.y=0; {az—&y=m
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I 0.xz4+0.y= —1,
e)

0-2+0.-y=2.
. 3z42y=1, 4x — 8y =3,
2- @ [ —z4-9y= —6; (b) { z—2y=3/4;
y—hzr=a,

3z+ y=—1,
(©) [9x+3y=——2; (d) {8x—2y:1.

3. At what values of & are the following systems of equa-
tions consistent:

kx4+y=2, kx -4y = 4,
(@) { r—y=3; z+ y=1;
3o+ (k—1) y=k+1,
@ | (k+1)z+y=32
4. Find all values of m for which the following systems
of equations have no solutions:

2z+ (Im2—2) y=3m,
(a) { zt+y=1;
m2z+ (2—m) y==m3 44,
(b) {mx-+(2m—1)y=m5—2;
2mz 4 y=6m2—5m 41,
( l z-+2my=0.
5. Find ¢ and d for which the system of equations
c+12z—(c+1)y=—c,
I @—Nz+O—2d)y=c+4

has the unique solution z =1, y = 1.
6. The ordered pair of numbers (1; 3) is one of the solu-
tions of the system of equations

[ ar—by=2a—»b,
(c+1)z+4cy=10—a-+3b.

Find the numerical values of a, b and c.
7. Find b €} such that the systems of equations

| 3z+y=a, l z—2y==a,
(a ar—y=y"b; ) ar+3y=>b
have at least one solution for any a € R.
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8. Find all a and b for which the following systems of
equations are equivalent:

{ax-1-2y=b+1, le-f y=a?+}2,
a

z+ y=3 z-43y=3.
9. At what values of £ does the system of equations
([ z+ky=3,
l kz+ 4y =6,

possess solutions simultaneously satisfying the in-
equalities x > 1 and y > 0?

10. At what values of a do the solutions of the system of
equations

[ —2z+y=a2—1,
3z +2y=2a2+4Ta+5
satisfy the inequality z} y + 3> 0?

Solve the following systems of equations:
3

4
1" e Fy—1 | zT2y—3 =4.75,
2z+y—1 z+42y—3 =~ 7"

—_ 2 —

2. (a) l lzl +y=14, ) { V@+yp2=5,

z+4-3 |yl =6; Viiz—y2=1.

13. Find z € N and y € N satisfying the equation 23z +
+ 31y = 1000.

14. On the plane zOy, indicate the points satisfying the
inequality (a) |z —y |<1; () Jz+y|>2;
©lzl—lyl=1 @lz|l+lyl<3;

@ lz—1+ly+11=2 @ lz+y|+
+le—yl<2.

15. On the plane 20y, indicate the points satisfying the
system of inequalities

y <9,
{ y+2z <11,
by x> 9,
Find all integral values of z and y satisfying this system.
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16. At what @ € R does the point (a; a?) lie in the interior
of the triangle formed at the intersection of the lines

y=z+1, y=3—1z, y=—2z°
Solve the following systems of equations:

17. z+4 y— z=0, 18. [ z=3t--2,
{ 2r— y+3z=9, y= —4t+41,
—3z+4y+2z2=11, z=4t—5,
4xr—3y—62z=75,
19. ( 2z24+3y+2z—1=0,
{ z—1  y4+1 2
1~ -2 6"
20, z4+2  y—1 23
{ —2 3 2 »
z+2y—224+6=0.

21. Given the system of equations
2 4 5
{ 32+ 5 y+5z=061,

zt+y+z="179.
(a) Find the value of the sum %y + %; (b) among all
natural solutions of the system, find the solution for
which z assumes the greatest value.

22. The inequalities f (—1) <1, f(1)> —1, f(3) < —4
are known to be satisfied for a certain function f (z) =
= azx® + bz + ¢, a %= 0. Determine the sign of the
coefficient a.

23. Represent the set {(z; y; 2)| |z | + |y | + |z | <1}
graphically and name the figure you have obtained.

1.6. Systems of Equations and Inequalities
in Several Higher-Degree Variables

Solve the following systems of equations:
1. (a) { 22 —zy+3y2+22—5S5y—4=0,

(b) { 2zy—y2+52+20=0, (c) { z2—4y2 =200,
3x+2y—3=0; z 2y = 100;
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(d)
2. (a)

(d)

)
(h)
3. (a)
(©
(d)
(e)
4. (a)

()

5. (a)

(b)

|
5
{
5
I
|
|
{
|
|
{
|
|
i

z2 4 9y | 62y — 6z — 18y — 40 =0,

z+30=2y.

SHU=5, 0) (5oy=5 O (=10,
{zy—-—‘! { zty=4;

L =13, (e) {zs+y3=7.

= zty=1;

_1___

z4 —17 () | =+ y°*=275,

T !x+y=5;

a:3—y3—63

zy

zt+y+ay=—11, (b) [ x2y—zy2=30,
22+ Y2y =13; { z+ay—y=13;
(z+0.2)2+(y+0.3)2 =1,

x+y=0.9;

z+y+=ly= 1/2

(z+v)z_

x3y+ z%y2 -+ Zzzy2+z’y’+zy‘ 30,

22y +zy+z+y+ayr=11.

222 xy—45y2=0, (b) ( z2—Szxy=16,
22+ 9y2=4; { 22y y2=3;
222+ %+ 3a=y+ 12, (@) [ z*4=zy2=10,
@+ —5 92 =T; l #Y—y=—3

10z2 4 5y2 — 22y — 38z — 6y + 41 =0,
3z2 — 2y2+ Sxy— 172z —6y + 20 =0;
y2 (x2—3)+zy+1=0,
y2 (3x2—6)+zy+2=0.
-—(:c—l—y 2)= —%, (b){

Lety—1)=9 +

oo

y _
+j—3
3
y

wl& &Iv
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7. (a) {yL— lzy| +2=0, (b) { |zy —2| =6—a2,

8.

10.

11.

8 —x2 = (z 4 2y)2; 24 3y =2zxy.

Find all pairs of numbers x and y for which the condi-
tions 2> —2zy +12 =0, 2> + 4> <<60 and z€Z
are simultaneously fulfilled.

Find natural solutions of the system

r=y-+2,
{ zy <17,
(y+1)/(x+2) < 1/2.
Find all values of a for which the set
x,y)|x2+y + 2z < 1}
n {(x9 I r—Yy + a }

contains only one point. Find that point.

Solve the equation (a) (z — 1) + (y + 5)? = 0;
(b) 2% + y* — 2z + 6y + 10 = 0;

© @+y—aP+@EH—1°+(+3?=0.

Solve the following systems of equations:

12.

13.

15.

17.

19.

32

(a) z+2y—z=5, (b) 2utv+w=6,
{3x—4y—§—z=1, {3u+20—i—w=9,
22+ Y2+ 22 =6; 3ud + 208 4 wd = 27,
zty+z=2, 14. ny+x+y=7,
{xy+yz+zx= —39, yz+y+z=—3,
a2 42 —22 =12, 1 z+x+z2=—35,

22— yz =14, 16. ( 22+ zy+y2=3,
{y2—1z=28, {y2+yz+z2=7,

2 —gy= —14. 22+ zz+ 22 =19,

zy+zz=8, 18. ( Sxylxz+y)=1,
{yz+xy=9, {7yz/(y—{—2)=1,

zz4yz= —1. 6zz =2+ 2.

bz +y24-222= —3, 20. ( y3=922— 27z 27,
{43:2—!—:1:2—{—222:1, {

8yz+y2+2z22=1.

23 =9y2 27y 4 27,
=922 272+ 27,



21. Find all triples of the integers (z; y; z) for which the
relation 5z + y? + 322 — 2yz = 30 is satisfied.

22. Hatch the set of points of the coordinate plane defined
by the system of inequalities

(a) { y 2z<0, (b) { 22+ y<0,
22+ y2—5<0; 2224 y—1<0.

23. Represent on the plane the set of points (z; y) whose
coordinates satisfy the systems of inequalities

(a) I 2y>a2, ®) ( y+22<0,
y<< — 222+ 3x; { —2z4+3>0,
y+1<0;

(c) l 24y >1
z2 4 y2<16.

Chapter 2

TRANSCENDENTAL FUNCTIONS, EQUATIONS
AND INEQUALITIES

2.1. Irrational Equations and Inequalities
Solve the following systems of equations:
1. Vet 1=a.
2.Vz+3=Va—=z.
3. Vit2z—z2=z-2.
4. (a) 11+ 2z=)22—1;
(b) 21+V 2z —T=uz;
©) 2V z+5=z+2;
(d) 3z— V18z +1+1=0.
5.(a) Vz+10+V2z—2=6;
(b) Vz—Vz+3=14;
(c) VI5—z+V3—z=6;
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0 VEE Ty
© Vizl+1—-V e[ =g

) Va2t+5z+3—Va2+5z—2=1.

@ V2r+3—Vz+1=1;

(b) V2z+3+Vz+1=5;

(¢) V2r—3+Vizi+1=4;

(d) Vet+4+V22+6=7;

(8) V2r—4—Vz+5=1;

) Voz+7—-V2z+3=V3z+4;

(@ Vatz+é+Varta+1=V2212219;
(h) Va2—9z424—1622—59z + 149= |5 —z].
. (a) a:—l— 121/2-64:0;

(b) V"+2 =z—8;

() (x—3)2 +3z—22=)22—3z+ 1;

(d) 2224-3z—5 Vm+3=0;

() zV/ 22415 — 2—v53/m;

z+1 a: 1__3.
(f)l/ :c-l—i 2

® 1/’+“+ l/i;‘i—

(h) V2—z+

.
b

Vz—z+3
(i) 4x2 + 1221/ 14+ 2=27 (1 +2).

VT—z+Vzr—3=a.
. Find the domain and the range of the function (a) y =
=V2—z+V1+z; (b) y=V — 422+ 4z + 3.




Solve the following equations:
0. /z2—2+ ¥ 4—z=2.

1. Va2 rax—2a=z+1.

12. V2z—1—z+a=0.

13. Vea—zV2Ffdd=a—u.
14. V:c Vz—a=a.

15. Vz+Va*+ 2a—3

—}—Vx—}— a+V2—2a+2e—ad=al 1—uz.
Solve the following inequalities:

6. (@— 1)V E—2—2>0. 17. )/ 25> —1.

18. Vi—z 12 >0.
19. 1—a) V22 1< 1.
20. Vzr1>V3—=z 2. Vz+2>Vz—a.
22, (a) V 24—10z >3 —4z;
(b) 2>V1 -2 (c) 2>V 24—z
@V w—t<3-T
o) Vi—V1T—2—V2—z>0.

23. (a) Vaertz—12<uz;
(b) 1=V 13+ 322 2x;

() Vr2+z>1—-2z; (d) b—z <V x>—2z.

24. Vz+3 >V.1:—1+Vx——2.
25. (a) <4

sz—3-—1
(b) 2=Vz+3 1.
z—1 3’

© Vazt+2—V5ze>4z—2;
@) Vz+1+1<<ba® ) 3z.

3%
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26 V 2%+ 2z —a?
z

27.
28.

29.

30

31.

32.

33.

34.

36

<1.

2@+V e +4z+3)<3(Vz+1+)z+3-2).

At what values,of p€Z is the function f(z)=}/ 2"
n €N, even?

Is there a constant number 7, T 40, such that the
equality f(z)=f(z+T) is satisfied for the function

J@=Vz—1
Find the derivative of the function (derive formulas
using the definition of the derivative) (a) y=1V =;

() y=3V7; (c) y=v"x.

Find the derivative of the function
@ y=Vaz—1/Vz (b) y=22V 3
© y=Vz@—Vz+1);

@) y=1+Vaz)(1+V 2z) (1+V 32);
) y={1+V2)/(1+V 22);

() y=V1—2% (g) y=(1—2112)
by y=Vz+Vz.

At the indicated point M (x¢; y,), calculate the value
of the derivative of the function (a) y = (2 + z + 2)32,

MA;8); ) y=V&+ Dilz—1), M(2;V3)
©y=VU—=21+ 2%, M (0; 1).

At the indicated point P (z,; y,), set up an equation
of the tangent to the curve

@ y@=Vaz P& 2),
) y@ =z—2Vz P(; —1);

3

(c) y () =3V 2%, P (—8; 12);

@y @) =V +1, P 9).

A tangent is drawn to the graph of the function y =

= (z 4+ 1) V z at the point where the slope is equal to 2;
the tangent does not pass through the origin. Find the
points at which that tangent cuts the coordinate axes.



35.

36.

37.

38.
39.

40.

41.

Find the critical points of the function

@) y=z—4Vz-+-V3; (b) y=V1z—1];
(c) y=V 22—6z+15; (d) y=V 22—6z;
@ y=@—NDVz; (O y=(1+2)Vz—1.

Find the intervals of the monotone increase of the func-
tion

@ y=Va—% (b y=VF2 7T,
(c) y=V22+4x—3; (d) y= —9

z .
Vz—3 '’
(e) y = 36z — 32 + 4V =5

Find the intervals of the monotone decrease of the
function

() y=V5—23; (b) y=V 25

(© y=V222—z+1;

@ y=smgrery #>0

@ y=2—+2Vat+2z—3Vz+1.

Prove that the inequality 2 z > 3 — 1/z is satisfied
for all z € (1; o).

On the indicated intervals, find the greatest and the
least value of the function

(a) f(z) =V 100—z2, z€[—6; 8];
(b) f(x)=2z+2Vx, z€[0; 4];
() f(z) =} (@ —22)%, z€[0; 3.

Find the points of extremum, as well as the greatest
and the least value of the function f (z) = (z — 1)? X

X V2% — 2z + 3 on the interval [0; 3].
Investigate the behaviour of the function (a) y =

=zVY2—12% (b) y= ;’/F— z and construct its
graph using its derivative.
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2.2. Systems of Irrational Equations and Inequalities

Solve the following systems of equations:

1. (a) T4 5
Vz—7  Vy+6 3
5,3 13,
V=7 = Vy+6 6~
(b) 4 _ 1 -1
Vaty—Ve—y Va—y—Vaty '
2 e 4 =2
Vaty—Va—y ' Vaty—Vz—y &~

x:y—l—l

(b) { ]/x+y+l/z+y_ 10

zy—2z—2y=2.

2. (a) { l/ a:+y +4 l/ix_l-_—;li —5,

r—y?

3. x_l_y_’_l//'z-l-y __12
zy = 15.

4 { YV T —2ay—3-0,

zV 22y = 2az.
5. At what values of a does the following system of equa-
tions possess a unique solution:

Vy=1Vz,

{ y=ax+1?

6. At what values of a is the following system of equations
consistent:
{ Vart2ay+y2+V 2 —2ay +y2=4,
Vatyr=a?
7. Solve the following system of inequalities:
{ Vi—3z>z,
Vaz+Vz—1<5.



Find the graphical solutions ot the following inequalities
and systems of inequalities:

8. Va—y=Vz+y. 9. 1+Vz=y.
10. y—2<< Vm,
[ y>2|=z|.
2.3. An Exponential and a Logarithmic Function,

Exponential and Logarithmic Equations,
Systems of Equations, and Inequalities

1. Which of the numbers (a) (2)"%; (b) (1.4)05;

2
() (0.8) 3; (d) (1.5)°% (o) (0.4)°% (f) (0.7)%4
(@) (4.8)7°% (h) (0, BNVE (1) (V3)%*;  (j) e
(k) (/2)VET;, (1) (w/7)- V31 exceed unity?

2. Which of the numbers z and y is greater in the inequality
(a) (0.8)* > (0.8)%; (b) (1.5)" < (1.5)%;
(€) (7.4)* > (74); (d) (1/5)* < (1/5)Y, =z, y €ER?

3. Which of the two numbers is greater, 23 or 3200?

4. Simplify the following expressions:

(a) 25%0es3; (b) elnn3; (¢c) Inab — In | b |;
1

(d) log, b2+ logaed; (e) 2'°%*%;
logs 25 |
(f) 10g2 5 b

(g) logs5-log,9-log;2; (h) V'Tog2 ,4;
(i) aV™%a _pV 1%
9. Find (a) logs 8, if logsy 3 = ¢, logs b = d;
(b) logy 40, if log 15 = ¢, log,, 50 = d;
(c) log (0.175)%, if log 196 = ¢, log 56 = d.
6. Prove that if ¢ = log;, 18, b = log,, 54, then
ab + 5 (@ —0b)=1.
7. Without resorting to tables, calculate

loga24  logs192
logye 2 loga2 °
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8. Prove that
log, (n + 1) > logp,; (n + 2),

for any natural » > 1.
9. Prove (without resort to tables) that log, 9 > log, 25.

Solve the following equations:
10. (a) 3*-5=7; (b) 3"¥*~4 = gax-2,
(c) 7"*2—7-7”*1—14-7°°'1+2-7°°=48;

x+5 x+17
(d) 228 = 47351, "(g) 32577 —(.25.128%3;

,

-2 1n1/e,
(f) 47 =5

3
Togx _ 1 .
(h) V— 4+logv-gx=?;
(i) 7+49.5" =51 9.7°%;

x+l +—

(]) 9*_9 2 =9 32:-1

&) Vo=V 0125 =43/3;
(1) 43/70.125)=3 = 2V =+1,
(g™ VA
1. (a) 452 —9.2"+2 1 8=0;
(b) 97~ —36-3"""%+3=0;

(© (/3 + (1} 3) 10 =84

12. (a) 415 L 9r =6,
(b) 257~ *H1y gPx-attl 34 452+

40



13.

14.

15.
16.

17.

18.

(c) 223‘:2 + 2x’+2x+2 — 25+le;

@ (Vsyz—7):ye6(Vsy2+1)=m.
(ﬂ) 3235' —9. 3x’+x+6 + 32(x+6) — 0;

(b) xz.zV-T-l-i—l 425 — 2V'm+i 1 z2.2%1,
(a) 4loge4 (x—3)+logy 5 _ 50;

(b) = =9.

log; (2% + 4z + 12) = 2.

(a) logs z + logy x + logy; z = 5.5;

(b) logy (3 — ) + log, (1 — 2) = 3;

(c) log (x — 3) + log (z + 6) = log 2 4 log 5;

(d) log (z — 4) + log (z + 3) = log (52 + 4);

() In (2®* +1) — 0.51n (2* 4+ 2z + 1) = 1n 3;

(f) log; (x — 2) + 2 logy (z* — 2) + log; (x — 2)~1=4;
(2) 2log; (z — 2) + log, (x — 4)* = O;

(h) log, (= —|— 2)2 4+ log, (x + 10)2 = 4 log, 3;

(i) log,—= —1—logz i B

log, (1-x)2

0)) 21032 +l°gz +1 =1;
(k) log, (53:—2)—2 log;V3z+1=1—1log, 4
(1) log (3z— 2)—2 = log (z+ 2) — log 50;
4 1]
(m) log? (1 + ?) +log2 (1 — TZ)
=2log? ( zil - 1) :

(a) log, 2+ log, 22 = 1;

(b) log,(z—1) —log, ;) z+3 =logs(z—a)?

+logy,2 (z—3); (c) log, (6z2+25z)=1+log, (ax+4a—2).
(a) logs z log, x log; x =1log, z log, x + log, x log; z

3
V3

1
+logs z log; z;  (b) (Ing ) log, z — log, =3
+log,V =.
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19.

20.

21.

22.

42

(a) log (10z2) logz = 1;
(b) 2B 2 log, V7 +3 — logia;

z

log, -5
(c) 2logyz+9log,3=10;
(d) log, (125z) log}. z =1;
(¢) log.V/ 5+ log, 5=+ logh V5
(f) log (logz)--log (log 23 —2) = 0;
(2) 10gsxr7 (94 122 + 422) = 4-— logyeis (622 + 23z + 21);
(h) log? (4 —z) -+ log (4—z) log (x + -;—)
—2 log? (x ++ %) =0.
(a) (x2log,27)logyz=1x+4;
(b) log,2—1log,z+47/6=0;
(c) 10go.5: 22 — 14 logyg, 2° + 40 logy V' 2 =0;
(d) 4logx V z+ 2 log,, 2% = 3 log,, z3;

2

(e) logsx (—i—) +logiz =1;
(5 (logyyri= 10) log (x2 — 3z -+ 2)
= (log (z—3)) log, yr1= 10— 2.

(a) logy (2a —z) + logg = 1

logx 2 log, 2 = log,s_42 i

logaz V-; a
logsx @

(b) + (logesx @) log 4 22=0.

(a) V14+logywz+V 3 +log,z=1;
(b) VI Togz 0= — L2 ;

T ogzz

(c) logy (x2+1)= VIOgVTc (2 (1+22))+ 4;
(d) VTog,z—0.5=1log,V z.



23.

24.

25.

26.

27.
28.
29.
30,

31.
32,
33.

(a) log (3*—2¢%) =2+ i— log 16 ——;— log 4;

(b) log, (logw:—{»%—l—g") = 2zx;

(c) logy (3*713x+28 ¢ -g-) —1log;0.2.

(a) log 2 + log (4°2 + 9) =1 + log (2% + 1);
(b) log (6-5* + 25-20%) = x + log 5.

(a) logy /g (4% — 6) — log; (2° — 2)® = 2;

(b) z (1 — log 5) = log (4 — 12);

(c) logy (4™ + 1) = z + log, (2*** — 6);
(d) logy (9* +9) =2 — logy (28 — 2-3%);
3

(e) log, (%——- 1) =r—2;

1\x 1 \x
log x+5
(a) (x__l_ ,1)103(x+1) 100 (x+1) (b) z 3 ___105+log x;
( ) 3103 * 54_xlog 3’ (d) logz (9_ 2x) — 1010g (3—x).
|g— 4|l082=-l0ex* _ 0 43,
(3xz_7.2x+3.9 _ 9 Vg) log (7_x) _
3.2log,¢(3x-2)‘i~2.3 _5.6

It is known that =9 is a root of the equation

logx(3x—2) logy2 (3x—2)

logs (22 + 15a%) —logx (a— 2) = logx —Sé_x—,
Find the other roots of this equation.
[1—1logysz| +-2 =13 —logy;s2].
log, (6-+Vz—|Vz—2])= —;—-—I— log, [Vz—|Vz - 2]|.
(8) 5%+ 12%=13%; (b) 3* +4*+5*=6%;
(¢) 2*=1—z; (d) log, (4—x)=z—3.
43



Solve the following systems of equations:

34 { 47 =128, { loge2z —logasy =3,
. (a) 58%-2-8 — 4, loges z + loggsy = 4
2x+y-1 "‘I" zx-yﬂ — 3’

(c) 1 x logs 2+ logs 2—-2 x logs 2—-y logs 2-2 1
7-3 v +3 ==
101+103 (x+v)=50’

35 0 { log s 4 tog(z -+ 1)~ 2 Iog’
D) z'%x% =logy (2 +y),

( 224 y2 = 65.

. log, (z+y)—logs (z—y) =1
36. (a) { xzj-y2=2; ? '
(3y2+1) loggz=1,

(b) { Z2P+10 =27,

(log, z -+ log y =1+ 1og, 9,
37. (a) { x+;=20; ¢
logz+logy =2,
{ log; 2+ loggy =2+ logs 2,

© 1 logyz +9) =2
4Vlog, x =14,

(d) { log,z+ 272 =4;
y+logz=1, zlogv =2,

©) [ w=001; O { zy =20;

2*.8 V=272,
® ) logo L 405 = - log 9y;
4\ -1

" { (logy (2y) —2) (loga ) =—1,

24y ="5a.



3. (a { 2 (log, = + log, y) =5,

zy=8;

log, y -+ log,z=2.5,
(b) ‘ z+y=a%+a.
[ a2y + y?/z =28,

39. logyz—log, y =15

=]

logzy—log:, (xy—2),
logy 22+ logs (z—y) =1.
9x2Hy _ 4(u2+x)/2

Vay=2.

4x/y 3y/x _ 16

|
{

i2. {[Va: V-V T-VE
\

40.

4.

z+y=4+V 12,
logx—21log2=1o0g (1+ 0.5y).

logs ( logzx)Hogi (10g1 y)=1.

43.

44.
xyz—
- Vg — gx/(2y)’
45, { ety _ =,
z y
Solve the following inequalities:
46. (a) log (22 — 2z — 2) < 0;
(b) log; (2 — 11z + 43) < 2;
(c) 2 — log, (z* +32) >0
(d) log, s 2=2 < 0;

(6) logs " T2 < 1; (9 log, E=<0.5;

—4a42
(8) 1032'5'—_'|_z—1—t—<1

(1) logs (£2) >—7-
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4.

48.

49.

50.

46

(a) log, (222 + 5z + 1) < 0;
5

(b) logy (24 22) > 0;
3

(c) logy (22— 4z 1 6) < —2;

3z—1 _ .
(d) lOgém <1,

35—a? 1
(e) logy.os ——=>—5-

(a) log; (22— 4) <log;(z+3);
(b) logy., (22 +2z—2) > log,. (z +3);
(c) logVr2—3z+4—1log) z+1>0;

(d) logy, (x4 1)<<log, (2—1);

26249
(6) logyy S5 Eort> < —log, (@ +1).

(a) log (xr—2)-+log (27 —2) < 2;
(b) log (z—1) + log (z—2) < log (z - 2);
(c) log,(2—x)+logy, (x—1) > log Vs 3;
(d) log,s (2z4-5) —log,s (16 —22)<C1;

(¢) log, (1-+ ) -+ log (1+F) =1;
2

(f) log; z— log; (22 —5)<log; 2— log; (z— 3);
(2) logys(z—1)+logys(z+1)+log s0—2)<1;

(h) log,* +log, (z—1)>>2.

(a) 2>5; (b) (5
(c) (1/2)log: (x2-2x-3) > ,1;
(d) 3108x (x3—3x+2) > 3;

6x+10-x2 27
(%) <%

log‘ .x—_

(e) © x2<1;
(f) (%)x’+2x<(1)£6—-x;
(g) 3VF>2

o



51.

52.

54,

95.
56.

~ 1— 1
() logtz + 3logz—4>0; (b) { bl < g

(c) logysx>log, 3 — 5— H

(d) (log, )t — (1og1 ) — 20 log, z + 148 < 0;

(e) (21og:z—3loggz—8) (2 logsx —3 logsz—6)>3;
(1) (log2z + 3log,z+ 1) (logix+3log,z-—3)<<5;
(g) (1.25)1-008:2* — (0.64) ' E VT,

(a) 28+ —21. (_;_) 2431 90,

(b) 0.15%1 < 0.8 +2.10%; (c) 2%+ 2% < 3;

() 393535116305 (6) rg < 2%

(f) 3logx+2< 310gx‘+5_2;

(2) (-;:)10”’—!—2 = 3.9 log(-x)

. (a) log, (4°—5-2*+2) > 2;

(b) log,; v (6% —36%) > —2;

21/2

(c) log,5 (5™ —1)log y5 7 >2;

. 2) log 4
(d) log (142 “)>%+log3.

3—2
@ 1 log, 2= <1
(b) VTogs (92 —3)<log, (s — ) ;
() VF+3F—2>9-3"

logllog2 ic:-26
(a) log,/s(log, (z2—5))>0; (b) 0.3 3 > 1.
(a) logys (Ve +3—2)>0;
(b) logy, (V5 —2—z+1)>—3.
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57.

58.

59.
60.

61.
62.

63.

64.

65. (a

66,

48

(a) zlogsx-2 >% ; (b) zllogx)1*-3logx+1 > 1000;
() }/ alogs VE>2,
(a) log, (x—1)+ log, z>2;

1 2
(b) 5_108a$+1+10gax< Lo<a<t;

3log, z+6
() ].Oga _|_2 > ’

(d) log, (1 —8a*)>2 (1 —z).

(a) loges(x—1)<2; (b) log,(z+2)>2.

(a) logy, (22 —52+6) <1; (b) loges (a2 —2) <1;

(c) loggess (923 48z 4 2) > 2; (d) logyety (22 +1)<1;

15
(e) logxm < —2.

(@) logy: (3—2z) >1; (b) logusis.(x+3) << 1.
log, 21-*" >,
le-2l

log () (x® —10z +22) > 0.

log, §

2_ g 2-18
(@) 1219772 <13 (b) |log, [

1 2+ 3
(@ “EEEL <o,

>1.

1 —1
(b) — Bl >0,
2 322 —2z—1
(0) B> 0; (&) Sy
(a) 25-2*—10* +5* > 25;

21
(b) logsz +log,— = > (logs ’}égw 0gs )

-

1
T STogs 19"
z+2

(c)

log,




Solve the following systems of inequalities:

67.

68.

69.

70.
71.
72.

V(xlgsuz—x) =0,
(a) | logos (- (ogs5—1))
25— 31> 0;

Vlog§1z—3log2z+2 =0
(b) log; (g(loga 5—1))

z—Vz—2>0.
1 8+logax 1 log?zx
(ﬁ) = (%)
Il<z<<t.

Which of the functions given below are even and
which are odd?
ax__a—x

(a) y=2'°"; (b) y=228 0 (o) y=E57,

_a *41
(d) y= a,x—l-a‘x H ( ) a>c—1"

1-|—x

(f) y=257 x+1, (8) y=In—
(h) y=log,(z-+V 22 +1).

Represent the function y = 3* as the sum of an even
and an odd function.

Given the function y = (1/2)sin=. Find the least posi-
tive period of that function. Is the function odd?
Find the inverse of the function y = (¢* — e™*)/2.

Construct the graphs of the following equations:

73.
75.

7.
79.
81.

83.

y =31, 74, y = log, (1 — z).
y=|log, (1 —=z)|. 76. y = log, (2 — x)2.

__llnz] _log._ 2
y——v. 78. y=x "x",
y=cellnxl 80, y=log, (22 —2x).

~log2 I 82. y=1log,sinz.

ly | = logz (—2).
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Find the derivatives of the following functions:

84.

85.

86.

87.

() y=3% (b) y=10% (c) y=1/2% (d) y=e*+e™
(6) y=2e*—e™; (f) y=3"+4% (g) y=2-10%
(h) y=ae%; (i) y==ale%; (i) y=V 2%

X
() y=e==5 (1) y=11.
(a) y=logsz; (b) y=1logyz+logysz; (c) y=logs) z;
(d) y=1log;2% (e) y=2z+Ingz;
(f) y=zlnz; (g) y=1n?z; (h) y=)Inz;
. 1—1 . 1
@) y="4Tmes O ¥=17-
At the point z,, find the value of the derivative of the
function (a) y = 4%, 2o = 2; (b) y =7, o = 1n 3;
() y=1In (2> — 4a), 2y = 5; (d) y =z In®>z, 2o =e.
At the indicated point K (zo; yo), set up an equation
of the tangent to the curve (a) y = €*; K (0; 1);
(b) y=1Inz, K (1; 0).

Find the critical points of the following functions:

88.

89.

90.

91.

(@) y=2"—2zIn241; (b) y =€ (—2® + 4z —1);
)y =e*(z2+ 5z +7); (d)y=zex—";

(e) y =% 4 (6 — 2a) e™™ + 6axz + cot 3;

() y = (0.2 + 2a +2)(5)"— (2eln 5) z + In 3;
(8) y = el — 2z + 1.

() y=1In(4x —2?); (b) y=In*z—61lnzx +5;

(c) y=41n3 — 16 In (2 4 3z) 4+ 0.5 (2 + 3x)2.

Determine the intervals of the monotone increase of the
function

f () = 0.3125 (1/2)3=*-8= 4 5 (In 2) (32 — 8z + 1).
Determine the intervals of the monotone decrease of
the function

f(x) = 2% 1n 27 — 62 In 27 4 (322 — 18z + 24) X

X In (22 — 6z + 8).



92,

93.

94,

95.

96.
97.

98.

Find the intervals of the increase and decrease of the

i x 3.
function (a) y =z—e -+ tan—’;—; (b) y= sz:E—l?T ;
(©) y=(2*—1)(2*—2).

Find the point of extremum of the function (a) y=
= (22 —2z) lnx-—%x’—l—4x+1; (b) y= (%2—.1:) Inz—
-—--2—2—{-1:—1.

Find the values of a and b for which the function f () =

=aln z 4+ bx® + x + 2 possesses extrema at the points

z; =1 and z, = 2.

In the indicated intervals, find the greatest and the

least value of the function (a) y = e~ (22 + 2 — 5),
9% 1 2-%

T€l—4 4; (b) y=T70—, zE€[—1; 25

() y=2-3%* — 4.3 + 2.3%, x € [—1; 1];

dy=|a2>+2r—3|+15lnz, =z€l[1/2;4].

At what value of x does the expression 2** — 1 4

+ 2/(2** + 2) assume the least value?

Solve the inequality f' (z) < g’ (z), if

@f@=z4+3n@—2),g@ =z+5In (x — 1),

(b) f(x) =e*™ — 3z, g (&) =5 (6 —z + 3).

Prove that the inequality (a) e* > 1 4 x;

(b) > 1In (1 + z) is valid for all z € (0; o).

Investigate the behaviours of the following functions with

99.

the aid of their derivatives and construct their graphs:
y=ze* 100. y = ln (z* + 1).

2.4. Transformation of Trigonometric Expressions

1.

&L*

Prove the identity (a) sin®a 4 cos® o + 3 sin?a X
sin? @ —tan® o

— = =~ — tan® a.
cos?a—cot?a

X cos?a = 1; (b)
Knowing that sin o + cos & = a, find
(a) |sina —cosa |; (b) cos*a + costa.

Given: tan o + cot @ = p. Find: (a) tan® a -+ cot® a;
(b) tan® o + cot? a.
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4. Find: (a) sin (%-—a) , if tana= ——%, 3—’2I<0t< 2m;
(b) cos (70° 4 @), if sin (40° + o) =b, 0° < o << 45°;
(c) sin (4P —v), if sin e = 12/13, cos p=8/17, sin y=
=4/5; O<a<<an/2, O<Pp<n/2 O0<y<<m/2;
(d) sin 3e, cos 3e, tan 3e, if cot a=4/3, n<<a<< —Z’- 3.

5. Given: a, B, y are the angles of a triangle. Prove the
equality sin a sin f — cos ¥y = cos a cos p.
6. Prove the identity (a) (cos @+ sin &)?= 14 sin? a;
. . noa) .,
(b) 1— sin o =2 sin? (T_—f') ;
1—2 sin? a
(©) =1;
2 cot (%—l—a)cos“‘ (%——a)
(d) 1—2sin2f  1—tanf |
1+4sin28 ~ 1-4+tanp °’
(e) tan (%—I—a) = Ldsin 20 ;

cos 20

cos o.—-sin a
(f) —So8etsIE o 20 sec 2
cCosoL—sina

(@) sin% a2 sin @ cos & —cost a
g tan 2 —1

) DD o s

(i) 3—4 cos 2a+ cos 4o =8 sint o;

=cos 2a;

(i) cost a=-:§-cos 4a—|——;—cos 2a+§ ;

(k) sint o+ costa =-§- (14 cos? 2a);

(1) 4 (sin® a+ cos® &) =143 cos? 2a;
[+2
2
7. Simplify the expression (a)

(m) 8 (sin8 -%‘--I—cos8 ) =1-6 cos? &} cost a.
sino-sin 3o |
cosa-tcos3a ’

(b) cos 4o —cos 200 | ) sin @ —3 sin 20t +4-sin 3o |
sin 2a. 4 sin 4a. ? ¢c0s o.—3 cos 2a.}cos 3o’
(d) 2 (sin 2a+4-2 cos2 . —1) .
cos o —sin @ —c¢os 3a-}+sin 3a °*
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9.

(e) cos——+ cos——+cos 67n ;

) cosO—l—cos7—|—cos—7——|— -|—cos6—37t

. Prove the identity

2 sin 2 i
(a) sin 2o} sin 4a — tan 20, cos &;

2 (cos a+cos 3a)
(b) costa —sin%a + sin 2a =]/ 2cos ( a—%)
(c) costa-+cos® +a) +cos? (5 — ) = 3,
(d) sin? &+ cos (€—a) cos (—g—l--a) = % :
(e) log,s [cos? (a—+P) - cos? (@ —f) —cos 2a cos 2f] = 0;
(f) f%&%% — cos 8a cot 4o = sin 8a;

(f) 16 sin 10° sin 30° sin 50° sin 70° = 1;
(h) sin? e cos4a-— =+ 33 32 cos 20— 16 cos 4o — 312 cos Bot;
(i) sin9a 4 3 sin 7a + 3sin 5o sin 3o = 8 sin 6 cos® o’

(j) tan (@—p)+ tan (B—7) + tan (y—a) =
— tan (¢ —B) tan (B—7) tan (y— );

(k) YV 1+sina—) 1—sina= 2sm——; 1fa€[ J

Given : sina 4 cosa=1.4, O<a<z. Find tanT.

10. The positive acute angles a, B, y satisfy the relations

11.

p 1 vy 1 3 o .
tan —2--_§cot , cot o = 7(3tan 5 1 cot 2), Find

the sum a+p+ 7.

Calculate without using tables: (a) cos292°30’;

(1) cosec 107~ Fsec 10°; (c) Le oz

(d) —2V/ 2sin10° (2sin 35° — s _is‘%‘gﬁ-) :

(e) cos? 73° -+ cos? 47° 4 cos 73° cos 47°;
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(f) sin 6°— sin 42° —sin 66° -+ sin 78°;

2 o __ 2 0
(2) cojinag T _C::s 25 Z° ; (h) 6cos40°— 8 cos?40°;

(i) tan®20° —33 tant 20° -+ 27 tan2 20° — 3;
(j) cot236° cot272°,

12. Excluding o from the relations, find the relationship
between z and y:

2 ) —
z=3cosa, ( 2 2cosa,

(a) {y=4sina, (b)iy=4cosz%;

© {V-a;:tana, d){ r=)1—sine,

7 — . . a a
Vy=seca; y=sin 5 +cos—5 .

2.5. Trigonometric Functions

1. Find the domain of definition of the functon (a) y=
1 4 1
=5 tan 2z; (b) y=>5 cot—;—; (c)y=m- ; (d)y= — =z
2. Find the range of the function (a) y=25in%+1;

(b) y=5cosz)/ 2+3; (c) y=4tanzcosz;
z .

(d) y=9cos3z— 12 cos? 3z; (e) y=cos4%—sin4 =3
(M y=tan?(z—7); (@) y=sinVz;
(h) y = cos (1 —;,:_—1) ; (i) y=cos(2sinz);
(j) y=-sin (log, x); (k) y=cos 2z —sin 2z;
(1) y=12 sin 2 45 cos z 1.
3. Find the greatest and the least value of the function
() y =acosx + bsinz +¢; (b) y=10cos? z —
— 6 sin x cos z + 2 sin? z.
4. Find the range of the function y=
fined on the set X =(0; n/2), z €X.

1 1
cos z sin z
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5. Find the least value of the function

y=2 (14 sin 3z sin 2z) — % (cos 4z + cos 6z).

6. Prove the function

y = sin 5z + sin 3z + Ssin rcos 2z, = €ER
is odd.

7. Prove that the function

x

y = cos 4z -} sin3 5 sin 2522, z €ER

is even.

8. Find the least positive period of the function

(a) y=sin3z; (b) y=tan2z+ 2sin3z; (c) y=cos%;

(d) y=cos?z; (e) y=sin(cosz); (f) y=cos(sinz)

3 . 2
(2) y=coszz—sin— z.

9. Prove that the function y = sin )/ z is not periodic.
10. At what values of n €Z does the function y =

11.

. . x . .
= sin nx/sm;— possess the number 4m as its period?

With the only use of the definition of an increasing
function prove that the function y = sin z increases

on the interval (O; %) .

Construct the graphs of the following functions:

12. (a) y=sin2z; (b) y= —sin

13.

x

53 (©) y=sin (2 —F) ;

(d) y=sinlz|; (e) y=|sinz|; ) y= |sinz| |

sinz °

(g) y=z+sinz; (h) y==zsinz; (i) y=cosec|z|;
(j) y=28m% (k) y=sin [arc sin (log,, 2)].

(a) y==cos (——;-); (b) y=-cos 2z;
(¢) y=cos (:c-i-%); (d) y=|cosz|; (e) y=secz.

8%



14.

15.

16.

17.

18.

19.

20.

26

() y=tan 3z; (b) y= —tan o ;
(c) y=tan (% -—x); (d) y=tan |z |;
(e) y=|tanz|; (f) y =tanzcot z.

Construct the graph of the equation (a) |y | = sin x;
(b) sin y = sin .
Find the derivative of the function (a) y=sinz—

—cosz; (b) y=tanz+cotz; (c) y=sin?r; (d) y=

=COS2 x; (e) y:%—tan3x; (f) y= %COtA x5 (g) y:

=sin 3z; (h) y=cos 1;5 ; (1) y=sin2(2z—1); () y=

sin z

=cos® (22 +17); (k) y= 1+cosz *

At the indicated point z,, find the value of the deri
vative of the function (a) y = sin z, z, = n/6;

(b) y = cos (—2zx), xo, = w/4; (¢) y = tanz — z,
zy = m/3.

At the indicated point A (z¢; y,), set up an equation
of the tangent to the curve (a) y=2sin%,

3 1
A (731.; 2); (b) y=cos?z, A (%, -2-);
(c) y=tan2z, A (—g—, 1) .
Find the greatest and the least value of the function

y = sin?xz — 20 cos ¢ + 1.
Prove that the function

f (z) =cos®z + cos? (-%—i—x) —COoS ZCoS (%—{—x)

is a constant, i.e. that it does not depend on z. Find
the value of that constant,



2.6. Inverse Trigonometric Functions

Find the domains of definition of the following functions:

1.

. Calculate (a) cos (3 arccos %) ; (b) sin (i

(a) y=arcsin (1 —z); (b) y=arccos (2 —%) i

(¢) y=arcsin (2z + 2?); (d) y =arccos 1_2:z2 :
(e) y=aresin (cosz); (f) y=arccos (sin*z).

. (a) y=arctan (1—2?); (b) y=arccot V z;

(c) y=arctan (log,z); (d) y=arccot (e*-e~).

. Find the range of the function (a) y=arcsin}/ z;

(b) y=arccos (— ; (¢) y=arctan % ;

1
Tf?)
(d) y=arccot (2z —z2).

. Prove the identity (a) sin (arcsin |z |)=|z|;

(b) cos (aresin z) =} 1— 2% (c) tan (arcsin r)=

=z/Y1—22, z€(—1; 1).

. Calculate (a) sin (2 arcsin i) ; (b) cos (2 arcsin i) ;

3 3

(c) tan (2 arcsin%) ; (d) sin (3 arcsin —:1,;) ;
1/6 3).

(e) sin (T arcsin

. Prove the identity (a) cos | arccos z | = x;

(b) sin (arccos z) =}/ 1 —a%; (c) tan (arccos z) =
=V 1—z¥z, z€[—1; 0)U(0; 1).

arce Si)
2 0591

. 1 17
(c) sin (Z arccos ﬁ)

. Prove the identity (a) tan | arctan z| = |z |;

(b) cos (arctan z) =1/V 1+ z%
(c) sin (arctan z)=z/)/ 12,
LY



9. Calculate (a) sin (2 arctan 3); (b) tan (2 arctan 3);

10.

11.

12.

13.

14.

15.
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(¢) sin (-;—arctan 3) ; (d) cos (.1

3 arctan 5) ;

(e) cos (%— arctan —2—74—) .

Prove the identity (a) cot | arccot = | ==z;

(b) tan (arccot z)=1/z, z~0;

(c) sin (arccot ) =1/Y 1 =3

(d) cos (arccot z) =z/V 1+ 2.

Prove that (a) arcsin z =arccos)/ 1— z2and arccos z=
=arcsin YV 1—2z2 for 0<<z<<1; (b) arcsinz=

x x
=arctan ——— and arccos z =arccot ———
Vi—z2 Vi—zt

for

1—z2
0 < z<<1; (c) arcsin z = arccot #— and arccos =
72
=arctan V—iz-z— for 0 <z<<1; (d) arctanz=
— arccot — — aresin —— =t — arecos —me—— and
z Vits? ViFz®

arccot z— arctan — — arcsin — —— — arccos ———

z Vita® Vitat
for z>0.

.3 12 5

Express (a) arcsin 7 (b) arccos = 13 (c) arctan o ;

(d) arccot —Z— in terms of all inverse trigonometric func-

tions.

Prove that (a) arcsin (—z)= —arcsin z, z€[—1; 1];
(b) arctan (—z)= —arctan z; (c)arccos (—z)=mx —
— arccos z, x € [—1; 1]; (d) arccot (—z) = — arccot z.

Express (a) arccos (—%) ; (b) arctan (——272) ;

(c) arccot (—2—74) in terms of all inverse trigonomet-

ric functions.

Prove that if z¢€[0; 1] and y €[0; 1], then

(a) arcsin z--aresin y=arccos () T—z* )/ 1 —y2 —ay).
(b) arccos z + arccos y =arccos (zy— ) 1 —22 Y 1—3?);



17..

18.

19.

20.

21.

(c) arcsin z— arcsin y =arcsin (z})/ 1—y2—yV 1—22);
(d) arccos z —arccos y =arcsin (y Y 1—22—z)/ 1—y2);
(e) arctan x + arctan y =arccot 1—a , >0, y>0;

+y
(f) arctan z —arctan y=arctan -———— 1 + z>0, y>0;
(g) arccot z— arccot y =arctan T-‘:/ , >0, y>0;
(h) arccot -+ arccot y = arccot % , >0, y>0.

Perform the indicated operations:

(a) arcs1n—-+arcs1n g ; (b) arccos oz 5 +arccos ?E:
(c) arctan 4—|—arctan 9; (d) arcsin -g-—arcsm 31; ;

(e) arccos = 13 —arccos 275 ; (f) arctan 4 —arctan 5;

(g) arccot 5 —arccot 4.

Prove that (a) arcsin z + arccos z = n/2, z € [—1; 1];
(b) arctan z + arccot x = z/2.

Solve the equation (a) 4 arcsin z + arccos z = m;
(b) 5 arctan z + 3 arccot z + 2n; (¢) arctan z -+

-+ arctan 2z + arctan 3r = m.

Find the integral values of £ at which the system of
equations

( arccos z + (aresin y)2 =k =2 e

(arcsin y)? arccos z = n4/ 16

possesses solutions and find those solutions.
Find the greatest and the least value of the function

f (z) = (arcsin z)® 4+ (arccos z)3.

Calculate (a) arcsin (sin 17031) ;

(b) arccos (sin (—%)) ; (c) arcsin (cos%n)

Construct the graphs of the following functions:

22,

(a) y=aresin (z—2); (b) y=arccos (%) ;
(c) y=aresin z2; (d) y= —arccos (—z?).
%9



23.

24.

25.

26.

27.

28.

29.
30.
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(a) y = arctan (z + 1); (b) y = arccot (3 — z);
(¢) y = arctan (22 — 1); (d) y = arccot (4 — z?).
(a) y = sin (arcsin z); (b) y = cos (arcsin z);

(¢) y = arcsin (sin z).

Using the formula for seeking the derivative of an
inverse function, prove that

(a) (arcsin z)’ =1/Y 1—a2, z€(—1; 1);

(b) (arccos z)’ = —1/Y 1 —22, z€(—1; 1);

(¢) (arctan z)’ = 1/(1 + z?); (d) (arccot z)’ =

= —1/(1 + 2%).

Find the derivative of the function

(a) y = arcsin (1 — z); (b) y = arccos (z + 2);

(c) y=aresin -325-—|—arccos 2z; (d) y==z arcsin ;

@ y=t T )y s

(g) y = arctan z?; (h) y = arccot 2%;

ey

14z °

At the indicated point z,, find the value of the derivative
of the function (a) y = 2 arcsin z, z, = / 3/2;

(b) y = —3 arccos z, zo = —) 2/2; (¢) y = arctan z?,
zo =1; (d) y = 2 arccot (22 — 3), zp = —1.

At the indicated point B (z,; Y,), derive an equation
of the tangent to the curve

(i) y = arcsin (sin z); (j) y=arcsin

(a) y=arcsin 3z, B (%, arcsin—g—) ;
z . n
(b) y=arctan 5 B (—2, ——-4—).
Find the critical points of the function (a) y = = +
+ arccos x + 1; (b) y = z arctan z.
Find the greatest and the least value of the function

. 1—z . .
y = arctan = " the interval [0; 1I.



2.7. Trigonometric Equations and Systems of Equations

Solve the following equations:

1. (a) sin x——-—, (b) sin (Zx—l—%):
(c) 2 sin z cos z— 3 sin 22 =0;

. T z . X 1
(d) sin —-€0s 5 —C0S & Sin 7=~ ;

(e) siny z=—1.
2. (a) cos z=0; (b) cos (3x~£) =1,

1 .
? ’

4___ 4 Z
(c) sin*—-—cos! 3

I . . n
— _ —_— = —":
(d) cos 7 C0s Z —sin < sin T

(e) cos z2=

3. 2 cos[:}c (sm z— 13+ == )J V3.

4. Find all values of the parameter a for which the equa-
tion cos £ = (@ — 1.5)/(2 — 0.5a¢) has a solution.
5. Find the critical points of the function (a) y =

=3sinz 4+ 2( —1); (b)y=cos2zx+ax—)3
Solve the following equations:

\ 1, T m\_ 2tanz
6. (a) tanz:W, (b) tan (5-—7) —1; ©) s =

—tan? z

n
tan — —tanx

4

14tan z tan%

7. (a) cot z=1; (b) cot (2x+£3‘-)=2; (c) cot (%_3)=
=—1; (d) tan =Y7-V2.
8. (a) cos (1.5n+z) =) 2 sin (z+ 1) cos z;

(b) 2 sin zcos x + 13 —2cosx — )/ 3sinz = 0;
(c) sin 2z = (cos £ — sin x)?;

=9; (d)

=V3.

61



(d) tan® 3z — 2 sind 3z = 0;
(e) 2tanzxcosx + 1 = 2 cos xr + tan z.
9. (a) sinz 4 cos®’x = 1/4; (b) 3 cosz = 2sin?z;
(c) 6 cos®z + 13 sin x = 12;
(d) 3cos?z — 4 cosx —sin?zx — 2 = 0;

(e) cost % =+ sinz < 5= 1;
(f) sinz _I_g_z_((:%;__:_l sin2 x =sin? 2.

10. (a) tan>z — 4 tanz + 3 = 0;
(b) 2tan z2—2 cot z=3; (¢)—5— V3 =4 tan z;

cos?z
( ) SIT_COt x+3.
11. (a) 2 cos z(cos z—)/ 8 tan z) =5;
(b) (cos — —sin —) (sec z4-tan z) =sin 7;— cos z;

(c) logy (3 sin ) — log, cos x — log, (1 — tan x) —

— log, (1 4 tan z) = 1.
12. (a) sin* 2z + cos* 2z = sin 2z cos 2z;

(b) sin* z + cos*z — 2 sin 2z 4 %sin2 2z = 0;

(c) sin* 2 + costz + sin 2z + a = 0;

1 2

(d) sifzcofiz T smzcoss —4=0:

(e) tan 5z + 2 sin 10z = 5 sin 5z.
13. (a) cos 2z — 3 sin x + 2 = 0;

(b) cos (10z + 12) + 4V 2 sin (5z + 6) = 4;

(c) 6 sin®z + 2sin%? 2z = 5; (d) a sin®z + cosz = 0.
14, Find the critical points of the function

@) f (@) =e3—V 4z2— 12z +9—4 sin® 3-;

(b) f(z)=sin23z+ 3V 22—4z+4+ cost;
(c) f(z)=2z—0.25 sin 4z + 0.5 sin 2z;
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(d) {1 (@) =log,3+z(1—V10)+(V2—2V5+

-+ cos z) sin z§

(@) 1@ =2V Z—1) (1 +cosz) — L sin 22 +

1
~+ (—ﬁ - 2) Z.
Solve the following equations:
15. (a) cos® x + cos* x — 4 cos2 = 0;

16.

17.

18.

19.

(b) 4cosxz (2 —3 s1n2 z) = —(1 + cos 2z);
0032 —3 cot (— - z) 3;
(d) 8costzx — 8cos2z —cosz + 1 =0.

(a) sinz = 5cosz; (b) sinzx — cosx = 0;

(c) tand3z— 14+ —5—

(c) sinz 4+ cosz = 0; (d) |sinxz | = sin z + 2 cos z;

(e) cos® x — 4 sin z cos z = 0.
(a) sin & + sin 2z = cos x + 2 cos? z;
(b) sin 2z — sin? x = 2 sin £ — 4 cos x;

(c) tan z + sin (n + z) = 2sin2;-;

(d) (1 + sin 2z) (cos z — sin £) = cos z + sin z;
(e) 3 (cos x — sin z) = 1 + cos 2z — sin 2z.

(a) sin®?z + 3 sinzcos z + 2 cos? z = 0;

(b) 2 cos® z + 3 sin 2z — 8 sin? z = 0;

(c) 3sin?z + 5 cos® z — 2 cos 2z — 4 sin 2z = 0;
(d) 2sin?x — 5 sin z cos z — 8 cos® z = —2;

(e) 1/cos x = 4 sin z + 6 cos z.

(a) sin® x + 4 cos® z = 0;

(b) sin? z (1 4+ tan z) = 3 sin z (cos z — sin z) + 3;

(c) sin* z + sin® x cos x + sin? z cos® z +
+ sin z cos® z + cost z = 1;

(d) (8a? + 1) sin® x — (4a% 4 1) sin z + 2a cos® z = 0.
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20.

Find the critical points of the function

(a) y = 3 cos 2z — 5 sin 2z -+ 4 cos 2;

(b) y = 8sin 2z + 6 cos? x + 17z + 1;

() y =cos® x — 3 cos x + 3x/8 — 3 sin 3;
(d) y = 8 (cos 2 — cos x) — sin x — 1/sin z;
() y = 9cot x — cot® z + tan 2.

Solve the following equations:

21.

22.

23.

@ %2 LA

-5 cosx—}—%sin r=—"—;
(b) V 3sinz+cosz=V2;
(c) sin5z=7 3 (1 +cos5z); (d) cosz + sinz=1;
(e) sinx—l—cosxcot%= —V'3;
(f) sin |z| tanSz=cosxz; (g) cosz—sinz=a;

(h) (sin 224V 3 cos 2z)2—5 = cos (i—2x) ;

6

(i) cosbz 4 tan2z+ cos bz tanz=1.
(a) tan 2z tan z = —1:
1—tan2z tanz ’

(b) tan 3z —tan 2z
1 tan 3z tan 2z

(c) 2 tan 3z — 3 tan 2z = tan? 2z tan 3z;
(d) cot x + cot 15° + cot (z + 25°) =
= cot 15° cot x cot (z + 25°).

(a) sinz+ tan—é—:O; (b) 1+cosz+tan-‘§-=0;
(c) tan 2z -+ cotx =4 sin 2z;

z . 53 z
(d) 1500t7+130s1nx=—5—tanT,

x

x
3 =4 tan & cot 5

(e) 5—5 cosz -+ 6 sin z tan

(f) 2sin? (x — -%) =2sin2z —tan z.



24. Are the equations
14cos2zx+sin2z=0 and 14-

1—tan?zr 4 2tanz
1+ tan2z 1-+tan2z

equivalent?

Solve the following equations:

25. (a) cos 3x = —2cos z; (b) cos 9z — 2 cos 62 = 2;
(c) cos 4x = cos? 3z.

26. (a) 3sin%=sin z; (b) sin6z+ 2 =2 cos4z;

(c) sin 3 z-1-3sinz=3 sin % ;

3n T

. b9 3 .
(d) sin (F+ 5 2)=2sin (F+3).
27. 3cosx + 3 sin z + sin 3z — cos 3x = 0.

28. (a) sin z-+sin %x:asin—%—;

(b) a?sin® 3z = sin’z, a > 0.

29. acosxz | bsinz =¢, a?+ b2=£0.
30. At what values of p does the equation )/ p cos z —
—2sinz =) 2+ 2—=p possess solutions?

31. Solve the equation (a) 2 cosz + 3 sin z = 2;
(b) sin x 4 cos x = a?; (c¢) sin 2x + 3 cos 2z = a;
(d) 2 cos? 6x — 9 sin® 6x -+ 4 sin 6x cos 6z = a + 5.
32. Find the critical points of the function

f (z) =sin 3z —{—% cos 3x— ax.
Solve the following equations:
33. (a) sinz-+sin (x + %) =0; (b) sin 4z —sin 2z=0;
x
2
(e) cos (3x — 4m) = sin (n — z),
(f) sin nx® == sin ;v (2 + 2x).
34. (a) sin (x — -%) —sin (x + ZT") =cos (a: + —’Z—) ;
(b) 1 + sin 2z = (sin 3z — cos 3z)?%;

(c) sin2z—cos2 z=cos— ; (d) cos2z—cos bz =0;
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(c) cos bz + cos 7x = cos (n + 6z);
(d) cos z — cos 3z = 2 J/ 3 sin? z;
(e) sin x -+ sin 3z + 4 cos3 z = 0;
(f) cos x — cos 2z = sin 3z;
(g) sin z + 2 sin 2x = —sin 3z;
(h) sin :i—rll—;;n 2z — 1.

35. (a) V§ sin 10z 4 sin 2z = cos 2x;
(b) cot zsin 2z— cos 2z =1;

(c) tan 2z cos 3z + sin 3z + }/ 2 sin 5z = 0;
(d) 2sin(x+%) +2cos (%—{-%) = 3sin(%—|——g—) +

5 (z ,om
+V3005 (T +'§) .
36. (a) sin z + sin 2z + sin 3z + sin 4z = 0;
(b) cos 92 — cos 7z + cos 3x — cos x = 0;
(¢) cos dbx — sin dx = sin 7Tx — cos Tx;
(d) sin 7z + cos? 2z = sin? 2z + sin ;
(e) cos 2z — sin 3z — cos 8z = sin 10z — cos 5z;
(f) sin x + sin 2z + sin 3z = 1 + cos ¢ + cos 2z;
(2) 5sin x + 6 sin 2z 4 5 sin 3z + sin 4z = 0;
(h) cosec x — cosec 2z = cosec 4x;
(i) sin a + sin (z — a) + sin (2z + a) =
= sin (z 4+ a) + sin (2z — a).
37. Find the critical points of the function

1 . 1 . 1 . 1 .
f (x) = sin 2z + - sin 4z + - sin 6z — sin 8.

Solve the following equations:
38. (a) tan 3z — tanz = 0; (b) tan z + tan 2z — tan 3z—=0.
39. (a) cos 3z cos 6x = cos 4z cos Tx;

(b) sin 2z sin 6z = cos z cos 3z;

(c) cos 3z sin 7x = cos 2z sin 8z;

(d) sin 5z cos 3z = sin 6z sin 2x;

(e) sin (nx—'r%) sin (nx_—_;“z_) —

L
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40.

41.

42.

43.

44.

45.

46.

47.

5%

(a) sin? z + sin? 2z = sin? 3x;
(b) cos® x + cos? 2z + cos? 3z -+ cos® 4xr = 2;
(c) sin 72+ sin 9:4::2[cos2 (T - x) —C0s? 211‘— 2x)J ;
(d) sin2?2z 4 sin2z=- 16
(a) sinx -+ sin 2z sin 3z = % cot % ;
(b) cos x -+ cos 22 + cos 3x = —0.5.
(a) sin® z cos 3z + cos® z sin 3z 4 0.375 = 0;
(b) cos® z cos 3z + sin® z sin 3z =V 2/4.

1

. K1
(a) sinz sin (?—x) sin (?—!—x):T,

(b) 8coszcos (%— x) cos (£+x)+1:0;

(c) tanztan (xJ— 3)tan( 2—;):]/5
(a) sin 3z =4sinx cos 2z; (b) sin 3zcosz= 1.5 tan z;
(c) tanzcot3z=4; (d) 6tan x-{—WE’?’x = tan 2z*

(e) sin z cos z sin 3z — cos 3z sin? x = 6 cot x.
(a) 2 sin 3z sinz + (3 2 — 1) cos 2z — 3;
(b) 2 cos 4z + 5 cos 2z — 1 = 2 sin? x;
(c) 2 + cos 4z = 5 cos 2z -+ 8 sin® x;
(d) tan®>z + cos 4z = 0; (e) tan x + cot x — cos 4r=3
(a) sin*z — 2 cos? x +- a% = 0;
(b) cos* x — sin®> x cos®? x — 3 sint x =
= 2 cos 2z — 2a cos 4z;

(c) cos® x — sin® z = = cos 2z.

8
(a) sin 2z — 12 (sin z — cos x) + 12 = 0;
1 1 . 5m
(b) sinz + . 3n =4sin (x+T) ’
sin (1’——-2—")
(c) 1+tanz =2} 2sinz;

(d) sin (x + 4) l; (1— sin z cos z);
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(e) sinz+ sin2zx 4 cosdz=0;

) sin—zx——i—cos lgz =)/ 2sin)/ z.

48. (a) asinz + tan 2z + 1 = 1/cos z;
(b) sin2z — 2}/ 2b(sinz—cosz) 41 --4b=0;
(c) sin®x -+ cos®z + asin (.1: + %) =0.

49. Find the critical points of the function
f () = 8¢ — 8 (sin & — cos x) — cos 2z + 1.

Solve the following equations:

50. (a) sin2z+ 2 tan2x +

;3 tanx—sinx—i—:—;:O;
(b) 8cosz+ 6sinzx—cos2z— T7=0;
(c) sin%z--sin* (i;—-l—i) + cost 2 =0.5 sin? 2z.

. (a) (cos——2smz) sinz -+ (1—|—sm——2(:osx) X

4
X cosz=0; (b) 3 sin 3z = cos4r— sin 9z —cos 10z.
52. (a) tanx+—1—cotx— ]/——— 1—1;
: 9 - cos?
(b) sin x+V§cosx=V2+cos2x+]/§sin2x.
—_—— 3 .
93. (a) V20052$—|- 2-_1/_1——_—}:7—_(;53—-2: 5

(b) Vsinz=V acosz.
(a) Vsinz+ 4 2cosz=0; (b) sinz+} cosz=0;
(¢) 2cosz =Y} 272 sin2z;

(d) V cos?z —cos? 3z = sin 2z;

(e) sinz+) 3cosz= ‘/0.5—|—cos (% - JE) ;

(f) 1—asinz 1+2asinz
1+4asinz 1—2asinz

55. (@) V' 1 + 4sinzcosz=cosz —sinz;

(b) V/ cos 2z— sin 4z = sin z— cos z;



1+ tan =z
© {—tanz

(d) 4sin3z+3=7"2sin3z+ 2;
(¢) V13— 18tanz=6tanz—3;
(f) V1 + 8sin 2z cos? 2z = 2sin (3x+%) )

Ry 3tanzx 3.
56. (a) 2V3 SIn x = —2781T.T——1— —V3,

=sinx -+ cosz;

(b) VV§cosa:+ sinz—2 4- ]/cot 3z + sin?2z —

.. 3z 1
= S1n —— =
2 + V2

57. Vcosz—1/2+V cosz}-1/3=a, a€R.
58. (a) log; tan z = (log; 4) log, (3 sin z);

sin z
.

(b) logy sin 2z = log, ]/—-5—
59 (a) zcos 2x -3 .20052 x —4:
(b) cot 2* =tan2*4- 2 tan 2**4;
(C) 23 sin 2x+2 =V;_
Solve the following systems of equations:
60. (a) { z-—y=06.5m7,
3cos2z—12cosy = —4;

(b) { x+y=%n1

sinz o,
siny =~ 7’

(c) [ cosx--cosy=a,
z-+y=nmnl4.

61. (a) ( sin3zcos2y-=2%—cos 3z sin 2y,

cos (x —y) = 0.5;

b

(&) sinxsiny:—lz—?o’,
COS Z COS Y = ——‘2—3;

1
Z
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(¢) tanx+tany:= 2,
{ coszcosy =0.5;
(d) ( sinzcosy=1/4,
dtanx =tany.
62. (a) [ tanzx—2siny= —2,
Stanz+ 2 siny = —4;
(b) { 4siny —6) 2cosxz=>5+4cos?y,

cos 2z =0;

(c) 1 __a+43
sine %Y=
sinzcos y = —%;

(d) { coisz —tany=2a+ 2,
tany + (a2 + 2a) cosz =0.
63. [ sin2(—2z)—(3—) 2)tan5y=(3Y2—1)/2,
{ (3—V/ 2) sin (— 2z) + tan25y = (3 )/ 2— 1)/2.

2.8. Trigonometric Inequalities

Solve the following inequalities:
1. (a) sin2z>0; (b) sin5<<O0;
. 1
(c) sin (a: -+ ) 5

() sin(2x—1)>——1_—; () sinz<< —1.

V2
2. (a) cos-—+ >0 (b) cos4x<<0; (c) cos (a:— —)>

(d) cos (%+-4—)< -——1/2—_—; (e) cosz>1.

3. (a) tan22z>0; (b) tan%<0;
(c) tan (x +%)>1;

(d) tan (3z—2) < V3.
70
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4. (a) cotz<<0; (b) cot (z— %)}1;

(c) cot (2x+%—) < —2.

5. (a) |sinz] >1/2; (b) |cosz| << 1/2; (c) |tan z|<1;
(d) Jeotz| <V 3.

. 1 .

6. (a) ?<s1nx<%; (b) —%<cosx< —%;
() —2<tanz<<3; (d) —4d<<cotz<<1l.5.

7. 2sin2z+} 3sinz—3>0.

8. cos2z+5cosx 4 3=>=0.

9. tan2z+ (2 —)/ 3) tanz—2) 3 <0.

10. cot2xz - cot z>0.

11. 2(V'2—1)sinz—2cos2z+2—) 2<0.

12. cosnx -} sin (nw—%) > 0.

13. cos3z sin 3z + cos 3z sind x << % .

14. cos z cos 2z cos 3z <<0.

z 1

int X 4 =
15. sin 3—{—cos 3>2.

16. sin6x+cos“x>%. 17. 8sin®x—cos®z > 0.

18. tanztan 3z << — 1. 19, 3sin 2z— 1 > sinz+ cosz.
20. sin 22>V 2sin2z+ (2—) 2) cos?z, 0 <z << 2a.
21. |sinz| >costz. 22. }'5—2sin2>6sinz—1.

23. 1 — cos z < tan z — sin .
24, Qt+sin?ax | 3(). geos® nx < 117.

Find the domain of definition of the following functions:
25. y=VsinVz. 26. y=V cosa.

27. y=arcsin . 28. y=arccos (2sinz).

2z
142
29. y = cot nx +} arccos 2*.

K4



30. Prove that the function y=sin22 increases monoto-
nically on the interval z¢ ( —a; —%) .

31. Prove that the function y=cos®z decreases monoto-
nically on the interval z¢€ (%, %n) .

tan zg Za
tan z; r °

32, Prove that if O<z, <z, <—“2— , then

Find the critical points of the following functions:

33. f(x)=2sinacosx+—1—0053x+Wa1_:_ﬁ.

4 f(x):(i_ coZa)slnzfc—I——31n(n+4x)_|_ (E’“_3)
+V 2a—a2+3.

35. f(s) = sinatan®y + (sina — 1) tanz 4 =2,

Chapter 3

PROBLEMS ON DERIVING EQUATIONS
AND INEQUALITIES

3.1. Problems on Motion

1. The train left station 4 for station B. Having travelled
450 km, which constitutes 75 per cent of the distance
between 4 and B, the train was stopped by a snow-drift.
Half an hour later the track was cleared and the engine-
driver, having increased the speed by 15 km per hour,
arrived at station B on time. Find the initial speed of
the train.

2. A motor-boat went down the river for 14 km and then
up stream for 9 km, having covered the whole way in
five hours. Find the speed of the river flow if the speed
of the boat in still water is 5 km/h.

3. In accordance with the schedule, the train is to travel
the distance between 4 and B, equal to 20 km, at a con-
stant speed. It travelled half a way with the specified
speed and stopped for three minutes; to arrive at point B
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on time, it had to increase its speed by 10 km/h for
the rest of the way. Next time the train stopped half-
way for five minutes. At what speed must it travel the
remaining half of the distance to arrive at point B in
accordance with the schedule?

. A cyclist left point A for point B and travelled at the
constant speed of 20 km/h. When he covered the dis-

tance of S%km, he was overtaken by a car, which left

point A fifteen minutes later and travelled at a constant
speed too. When the cyclist travelled another 25 km,
he encountered the car returning from B, where it
stopped for half an hour. Find the distance between A
and B.

. A boat goes down the river from point 4 to point B,
which is at the distance of 10 km from A4, and then
returns to A. If the actual speed of the boat is 3 km/h,
then it takes 2 h 30 min less for the boat to go from A
to B than from B to A. What should the actual speed
of the boat be for the distance from 4 to B to be covered
in two hours?

. The distance between 4 and B is 30 km. A bus left 4
and first travelled at a constant speed. Ten minutes
later a helicopter left 4 and flew along the highroad
to B. It overtook the bus in five minutes and continued
on its way to B. Without landing at B, the helicopter
turned back and again encountered the bus 20 minutes
after it left point 4. Determine the speeds of the bus
and the helicopter.

. A goods train left the town M for the town N at 5 a.m.
An hour and a half later a passenger train left M, whose
speed was 5 km/h higher than that of the goods train.
At 9 : 30 p.m. of the same day the distance between the
trains was 21 km. Find the speed of the goods train.
. If a steamer and a motor-launch go down stream, then
the steamer covers the distance from 4 to B 1.5 times
as fast as the motor-launch, the latter lagging behind
the steamer 8 km more each hour. Now if they go up
stream, then the steamer covers the distance from B
to A twice as fast as the motor-launch. Find the speeds
of the steamer and the motor-launch in still water.

. Point C is at a distance of 12 km from point B down the
river. A fisher left point A, which is somewhat farther
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10.

11.

12.

13.

14.

14

up the river than point B, for point C in a boat. He
arrived at C four hours later and covered the return
trip in six hours. Fixing a motor to the boat and thus
trebling its speed relative to the water, the fisher covered
the distance from 4 to B in 45 minutes. Determine the
speed of the river flow, considering it to be constant.
Two people left simultaneously two points: one left
point A for point B and the other left B for A. Each
of them walked at a constant speed and, having arrived
at the point of destination, went back at once. First
time they met 12 km from B, and the second time, six
hours after the first meeting, 6 km from A. Find the
distance between 4 and B and the speeds of the two
people.

Two aeroplanes, leaving simultaneously points 4 and B
and flying towards each other, meet at the distance of
a km from the midpoint of the distance AB. If the first
aeroplane left b hours later than the second, they would
meet at the midpoint of 4B. Now if the second aero-
plane left b hours later than the first, then they would
meet at a quarter of the way from B. Find the distance
AB and the speeds of the aeroplanes.

Two tourists left simultaneously point 4 for point B,
the first tourist covering each kilometre 5 minutes faster
than the second. After travelling a fifth of the way, the
first tourist returned to A, stopped there for ten minutes
and again started for B. The two tourists arrived at B
simultaneously. What is the distance between 4 and B
if the second tourist covered it in 2.5 hours?

Two cyclists left the same point simultaneously and
travelled in the same direction. The speed of the first
was 15 km/h and that of the second was 12 km/h. Half
an hour later, another cyclist left the same point and
travelled in the same direction. Some time later, he
overtook the second cyclist and another hour and a half
later he overtook the first cyclist. Find the speed of the
third cyeclist.

The smaller arc AB of the circle is I cm in length. At
the time moment ¢ = 0, the points P, and P, moving
along the circle are at the points 4 and B respectively.
If points P, and P, move towards each other along the
smaller arc, they will meet in #, seconds, and if they
move along the larger arc, then they will meet in ¢,



15.

16.

17.

18.

19.

seconds. Point P, completes the circle in a time needed
for P, to cover S cm. Find the length of the circle and
the speeds of the points P, and P,, considering the mo-
tion of the points along the circle to be uniform.

Two bodies, moving along a circle in the same direc-
tion, meet every 56 minutes. Had they moved at the
same speeds in the opposite directions, they would
meet every eight minutes. If, moving in the opposite
directions, the bodies are at the distance of 40 m from
each other along the arc at some moment of time, then
in 24 seconds, that distance will be 26 metres (the
bodies never meet during those 24 seconds). Find the
speeds of the bodies and the length of the circle.

The distance between points 4 and B located on a
straight highway is 15 km. A cyclist leaves 4 at a con-
stant speed of 8 km/h and a motor-cyclist leaves B and
travels in the same direction with a constant accelera-
tionof 2 km/h%. In what time interval after their start
will the distance between the cyclist and the motor-
cyclist be 750 m if they start simultaneously? The
initial speed of the motor-cyclist is zero.

The students went boating down the river at the distance
of 20km. Then they turned back and returned to the moor-
ings, having travelled for seven hours. On their return
trip, at the distance of 12 km from the moorings, they
encountered a raft, which passed the moorings at the
moment at which the students started boating. Deter-
mine the speed of the boat down stream and the speed
of the river flow.

Two ships started simultaneously from the port, one to
the north and the other to the east. Two hours later, the
distance between them turned out to be 60 km. Find
the speed of each ship, knowing that the speed of one
of them was 6 km/h higher than the speed of the other.
Points A, B and C are at the distances of 60, 55 and
56 km from point M respectively. Three people left
those points for point M simultaneously: the first per-
son started from point 4, the second from B and the
third fromYC. The first person covered the whole way
at a constant speed and arrived at M two hours before
the second and the third persons who arrived simultane-
ously. The second person, having travelled 40 km at
the same speed as the first, stopped for an hour. The
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20.

210

22,

23.

24.
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rest of the way he travelled at a speed which is less than
the speed of the third person by the same amount as
the speed of the third is less than that of the first. The
third person covered the whole way at a constant speed.
Determine the speeds of the first and the third person.
The road passes through points 4 and B. Simultaneously
and in the same direction a motor-cyclist started from A
(in the direction of B) and a cyclist started from B. The
motor-cyclist overtook the cyclist at the distance of
a km from B. Had they both left simultaneously A
for B, then, at the moment the motor-cyclist arrived
at B, the cyclist would be b km behind. Determine the
distance between A and B, the speeds of the motor-
cyclist and the cyclist being constant.

Two people started simultaneously from points 4 and B
towards each other. At the moment the person who start-
ed from A covered two-thirds of the way, the other
person was two km from the middle of the way. Find
the distance between 4 and B, if it is known that when
the person who started from B covered 3/16 of the way,
the first person was three km from the middle of the
way. The speeds of the two people were constant.
Two people left point 4 simultaneously. Twenty min-
utes later, the first person met a tourist travelling to 4,
while the second person met the tourist five minutes
later than the first. Ten minutes after the tourist met
the second person, he arrived at 4. The speeds of the
two people and the tourist were constant. Find the ratio
of the speeds of the two people.

A motor-cyclist left point 4 for point B. Two hours
later, a car left A for B and arrived at B at the same
time as the motor-cyclist. Had the car and the motor-
cycle started simultaneously from 4 and B travelling
towards each other, they would meet an hour and twenty
minutes after the start. How much time did it take
the motor-cyclist to travel from 4 to B?

The road passes through points 4 and B. A cyclist
started from A4 in the direction ot B. At the same time,
two pedestrians started from B, travelling at the same
speed, the first of them in the direction of point 4 and
the other in the opposite direction. The cyclist covered
the distance AB in half an hour and, keeping ahead,
overtook the second pedestrian, 1.2 hours after he met



25.

26.

27.

28.

29.

30.

the first pedestrian. Determine the time the cyclist
spent travelling from the point of departure to the
point of the meeting with the first pedestrian, the speeds
of the cyclist and the pedestrians being constant.

The towns A and B are on the river bank. It takes
a tugboat 13 hours to travel from 4 to B and back again,
and a motor-launch, whose actual speed is twice that
of the tugboat, covers the same distance in six hours.
How many times is the actual speed of the tughoat
higher than the speed of the river flow?

A motor-boat left point A travelling up stream, and at
the same time a raft left point B travelling down
stream. They met a hours later and then travelled on
without stops. Having reached B, the boat turned at
once and, on her way back, overtook the raft at point 4.
The actual speed of the boat is assumed to be constant.
How long did it take the raft and the boat to make
their trips?

Two pedestrians started simultaneously towards each
other and met each other 3 h 20 min later. How much
time will it take each of them to cover the whole dis-
tance if the first arrived at the place of departure of the
second five hours later than the second arrived at the
point of departure of the first?

Two cyclists started simultaneously from points 4
and B travelling towards each other; 1.6 hours later
the distance between them was 0.2 of the original dis-
tance. How many hours does it take each of them to
cover the distance AB if the first needs three hours less
to travel that distance than the second?

Three skiers cover the distance running at uniform
speeds; m minutes after the start, it remains for the
third skier to run the part of the distance, which the
first skier can run in » min and the second skier, in
p min. How many minutes does it take each skier to run
the whole distance if the speed of the third skier is
equal to half the sum of the speeds of the first two?
Two cars left points 4 and B simultaneously, travelling
towards each other; 16 hours after their meeting, the
car travelling from A arrived at B, and 25 hours after
their meeting, the car travelling from B arrived at A.
Hov; many hours did it take each car to cover the whole
trip
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31.

32.

3.2.

1.

78

A pedestrian and a cyclist left point A4 for point B at
the same time. Having reached point B, the cyclist
turned back and met the pedestrian an hour after the
start. After their meeting, the pedestrian continued his
trip to B and the cyclist turned back and also headed
for B. Having reached B, the cyclist turned back again
and met the pedestrian 40 minutes after their first
meeting. Determine what time it takes the pedestrian
to cover the distance between 4 and B.

Two cars left simultaneously points 4 and B and met
each other at noon sharp. If the first of them doubles its
speed and the second continues at the same speed, then
their meeting will occur 56 minutes earlier. Now if the
second car doubles its speed and the first continues at
the original speed, their meeting will occur 65 minutes
earlier. Determine the time of the meeting in the case
when both cars double their speed.

Problems on Percentage, Mixtures,
Numbers and Work

Three navvies dug a ditch of 216 m in four days work-
ing simultaneously. During one shift, the third navvy
digs as many metres more than the second as the second
digs more than the first. During five days, the third
navvy digs as many metres as the first digs during seven
d}:la\ys. How many metres does the first navvy dig per
shift?

At first only two galleries of the coal mine were oper-
ative, and some time later, the third gallery joined in.
As a result, the output of the mine became half as large
again. What, in per cent, is the capacity of the second
gallery as compared to that of the first, if it is known
that a four-months output of the first and the third
galleries was the same as the annual output of the
second gallery?

Three workers completed the job in 10 days, the third
worker having worked only the first three days. How
many days would it take every worker to do the job
if it is known that, working together, they did 37%
of the job for the first three days, and during five days
the first worker did the same amount that the second
worker did during four days?
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Working together, two workers did the whole job in
five days. Had the first worker worked twice as fast and
the second worker half as fast, it would take them four
days to complete the job. How much time would it
take the first worker alone to do the job?

Two scrapers of different capacity can do the job in six
hours if they work together. If the first scraper alone
worked for four hours and then the second scraper alone
worked for six hours, they would do 80% of the whole
job. How many hours would it take each scraper to
complete the job if they worked separately?

Three workers have to make 80 identical workpieces.
They are known to make 20 pieces an hour if they work
together. First, one worker began working alone and
made 20 pieces having worked more than three hours.
The remaining part of the job was done by the second
and the third worker who worked together. It took eight
hours to complete the job. How many hours would it
take the first worker to do the job if he worked alone
from the very beginning and to the end?

It takes six days for three ordinary ploughs and two
tractor ploughs working together to plough the field.
Three tractor ploughs would do the same job five days
sooner than nine ordinary ploughs. How many times
does the output of a tractor plough exceed that of an
ordinary plough?

Each of the three workers needs some time to do a cer-
tain job, and the third worker needing an hour less to com-
plete the job than the first worker. When they all work
together, they do the job in an hour. Now if the first
worker works for an hour alone, then it would take the
second worker four hours to complete the job. How soon
can each worker do the job?

Two excavators are operating. If the first excavator
worked alone, it would need eight hours more to com-
plete the job than if they both worked together. Now
if the second excavator worked alone, it would need
4.5 hours more to complete the job than they both
working together. What time would it take each exca-
vator to do the job if they worked separately?

For ¢ minutes one machine-tool produces d workpieces
more than the other. If it were possible to reduce the
time needed by each machine-tool to manufacture a
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workpiece by two minutes, then in ¢ minutes the first
machine-tool would produce 2d workpieces more than
the second. How many pieces does each machine-tool
produce in ¢ minutes?

Two pieces of the same fabric cost 91 roubles. When as
many metres from the first piece were sold as the second
piece contained originally and half as many metres
were sold from the second piece as the first piece con-
tained originally, the remainder of the first piece turned
out to contain 10 metres more than the remainder of
the second piece. How many metres did each piece con-
tain if a metre of the fabric costs 1 rouble and 40 ko-
pecks?

A fashion house got black, green and blue fabric, one
piece each colour. The cost of the pieces was the same
although the piece of the green fabric contained nine
metres less than the piece of the black fabric and six
metres more than the piece of the blue fabric. It is also
known that the cost of 4.5 metres of the black fabric is
equal to the cost of 3 metres of the green fabric and
0.5 metre of the blue fabric taken together. How many
metres did each piece contain?

A tank of 2400 cu m capacity is being filled with fuel.
The delivery of the pump discharging the tank is
10 cu m/min higher than the delivery of the pump filling
the same tank. As a result, eight minutes less time is
needed to discharge the tank to fill it up. Determine the
delivery of the pump filling the tank.

A reservoir is filled with water through two valves.
The first valve was open for a third of the time needed
for the second valve to fill the reservoir. Then the second
valve alone was open for half the time needed for the
first valve to fill the reservoir. As a result, the reservoir
was filled to 5/6 of its capacity. Both valves together
can fill up the reservoir in 2.4 hours. What time will
it take each valve separately to fill up the reser-
voir?

A tank of 425 cu m capacity has been filled with water
through two valves, the first valve having been opened
five hours longer than the second. Were the first valve
open as long as the second valve was actually open, and
were the second valve open as long as the first valve
was open, then the first valve would deliver half the
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amount of water delivered by the second valve; if the
two valves were open simultaneously, the tank would
be filled up in 17 hours. How long was the second valve
open?

Two turners and an apprentice are entrusted with a
rush order. The first turner needs three hours more to
cope with the job than the second turner and the appren-
tice would need working together. The second turner,
working alone, would need as much time as the first
turner and the apprentice working together. The second
turner, working alone, would spend eight hours less
than the double period of time the first turner would
spend working alone. How much time would the two
turners and the apprentice need to complete the task
if they worked all together?

Three workers of different skills did a certain job, the
first worker having worked six hours, the second four
hours and the third seven hours. Had the first worker
worked four hours, the second two hours and the third
five hours, they would do only two-thirds of the whole
job. How many hours would the workers need to com-
plete the job had they worked all together for the same
time period?

Four pipes are fixed to the reservoir. Through the first
three pipes the reservoir can be filled in 12 minutes;
through the second, the third and the fourth pipe it can
be filled in 15 minutes; and through the first and the
fourth pipe, in 20 minutes. How much time will it
take all the four pipes to fill up the reservoir?

One kind of iron ore contains 72% of iron and the other
contains 58%. A certain amount of the first kind of
ore is mixed with a certain amount of the second and
the resulting ore contains 62% of iron. If we take 15 kg
more ore of each kind than it was actually taken, we
shall obtain a kind containing p% of iron. How many
kilograms of the first and the second kind were taken
to form the first mixture?

A first vessel of six litres capacity was filled with four
litres of 70-per cent solution of sulphuric acid; a second
vessel of the same capacity was filled with three litres
of 90-per cent solution of sulphuric acid (per cent by
volume being meant). How many litres of solution
should be transferred from the second vessel to the first
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for a g-per cent solution of sulphuric acid to result in
the first vessel?

After two consecutive rises, the salary constituted
15/8 of the original value. What was the first rise, in
per ():ent, if the second rise was double the first (in per
cent)?

The deposit being at the bank from the beginning of
a year is known to increase by some per cent to the end
of the year (the percentage being different for various
banks). Some money, constituting three fifths of a cer-
tain amount was deposited at the beginning of the year
at the first bank, and the rest of the money was deposited
at the second bank. Towards the end of the year the sum
of the deposits equalled 590 monetary units, towards the
end of the second year it equalled 701 monetary units.
When calculations were performed, it turned out that
if, originally, three-fifths of the initial amount of money
had been deposited at the second bank and the remain-
ing part had been deposited at the first bank, then
towards the end of the year the sum of the deposits at
those banks would have been equal to 610 monetary
units. What would the sum of the deposits have been
towards the end of the second year in that case?

A litre of glycerin was poured out of a vessel filled up
with pure glycerin to the brim and a litre of water was
poured in. After the solution was mixed up, a litre of the
mixture was poured out again and a litre of water was
added. The resulting solution was mixed up again and
again a litre of the mixture was poured out and a litre
of water was added. As a result of these operations,
there was seven times as much water in the vessel (by
volume) as the remaining glycerin. How many litres
of glycerin and water turned out to be in the vessel as
a result of the operations performed?

One-tenth of the salt solution contained in a retort
was poured out into a test-tube. Then a part of the water
contained in the test-tube was vapourized by heating
and, as a result, the percentage of the salt in the test-tube
increased k% times. What was the original percentage
of the salt in the retort, if it is known that after the
content of the test-tube was poured into the retort, the
percentage of the salt in the retort increased by a per
cent?
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There are three pieces of a copper-tin alloy. The masses
of the pieces are in the ratio of 3 : 4 : 5. The percentage
of copper in the second piece is a times as large, and in
the first piece a times as small, as in the third piece.
After the three alloys were smelted together, a new alloy
of copper and tin was obtained, in which the percentage
of copper changed by p per cent as compared to the
percentage of copper in the third piece. What was the
original percentage of copper in the alloys?

The difference between the digits in a two-digit number
is equal to 2, and the sum of the squares of the same
digits is 52. Find the number.

If we divide a given two-digit number by the product
of its digits, we obtain 3 as a quotient and 9 as a remain-
der. Now if we subtract the product of the digits con-
stituting the number from the square of the sum of its
digits, we obtain the given number. Find it.

Find the three-digit number if it is known that the
sum of its digits is 17 and the sum of the squares of its
digits is 109. If we subtract 495 from this number, we
obtain a number consisting of the same digits written
in reverse order.

The sum of the cubes of the digits constituting a two-
digit number is 243 and the product of the sum of its
digits by the product of its digits is 162. Find the two-
digit number.

3.3. Problems on Deriving Inequalities and Systems

1.

2.

6%

of Inequalities. Problems on the Extremum

In a four-digit number, the sum of the digits in the
hundred’s place, ten’s place and unit's place is 14, the
sum of the digits in the thousand’s place and the unit’s
place is 9, the digit in the hundred’s place exceeds the
digit in the ten’s place by 4. Among all numbers satis-
fying the indicated conditions, find that for which the
sum of the product of the digit in the thousand’s place
by the digit in the unit’s place and the product of the
digit in the ten’s place by the digit in the hundred’s
place assumes the greatest value.

A Dboat sails down the river to the distance of 10 km
and then sails 6 km up the river. The velocity of the
river flow is 1 km/h. In what limits should the actual
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speed of the boat be for the whole trip to take from 3
to 4 hours?

. We have bought several identical books and albums and
payed 10 roubles 56 kopecks for the books and 56 kopecks
for the albums. There were six more books than the
albums. How many books have we bought if the cost
of a book exceeds by more than a rouble that of an
album?

. Two points began moving simultaneously from point A
along a straight line in the same direction: the first
point moved with a uniform acceleration, at the initial
velocity of 3 m/s and the acceleration 2 m/s?, the second
point moved uniformly. In what limits can the velocity
of the second point change so that the second point
should first leave behind the first point and then the
first point should overtake the second point at the
distance not greater than 10 m from A4?

. A student puts all his stamps into a new album. If
he puts 20 stamps on one page, the album will not be
enough, and if he puts 23 stamps on one page, then at
least one page remains empty. If we present the student
with one more album of the same kind whose every page
contains 21 stamps, he will have 500 stamps. How
many pages are there in the album?

. A group of students decided to buy a tape-recorder at
the price of 170-195 roubles. At the last moment, how-
ever, two of them refused to participate and, therefore,
the remaining students had to add one rouble each.
What was the price of the recorder?

. Several people were to take part in an excursion. At
the last moment, however, two of them refused to go
and, therefore, each of the remaining tourists had to
pay 3 roubles more for the excursion than it was planned
before (all the participants had to pay the same sum
of money). How much had each tourist to pay originally
if the excursion costs more than 70 roubles, but not
more than 75 roubles?

. A number of identical lorries were hired to transfer
goods from one place to another. Since the road was bad
because of some repairs, each lorry could take 0.5 ton
less than was planned and, therefore, four additional
lorries of the same kind were hired. The weight of the
goods transferred was larger than 55 tons but did not
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exceed 64 tons. How many tons of goods did each lorry
transfer?

. Points A and B are located on the same river so that

a raft sailing from 4 to B with the velocity of the river
flow covers the way from A4 to B in 24 hours. A motor-
launch covers the whole way from A to B and back again
in not less than 10 hours. If the speed of the motor-
launch in still water increased by 40%, then it would
take the motor-launch not more than seven hours to
cover the same way (from 4 to B and back again).
Find the time necessary for the motor-launch to sail
from B to A when its speed in still water is not in-
creased.

Thirty students took an examination and got the marks
2, 3, 4 and 5. The sum of the marks is equal to 93, the
threes being more than the fives and less than the fours.
Besides, the number of the fours was divisible by 10
and the number of the fives was even. How many marks
of every kind the 30 students got?

Limes and birches have been planted about the house,
their total number being 14. If we double the number of
the limes and increase by 48 the number of the birches,
then the birches will be greater in number. If we double
the number of the birches, without changing the number
of the limes, there will be more limes all the same. How
many limes and how many birches were planted?
Two cars go at constant speeds of 40 and 50 km/h along
two streets towards the crossing. The streets make the
angle of 60°. At the initial moment of time the cars
were at the distances of 5 and 4 km from the crossing
respectively. In what time will the distance between
them become the least?

Three pipes are attached to the reservoir. The first
pipe pours in 30 cu m of water per hour. The second pipe
pours in 3V cu m of water less than the first pipe (0 <<
<V < 10), and the third pipe pours in 10V cu m an
hour more than the first pipe. First, the first and the
second pipes operated together and filled 0.3 of the
reservoir, and then all the three pipes operated together
and filled the rest 0.7 of the reservoir. At what value of V
will the filling of the reservoir be the quickest?

A pedestrian left point A for a walk, going with the
speed of v km/h. When the pedestrian was at the distance
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of 6 km from A4 a cyclist followed him, starting from A
and cycling at a speed 9 km/h higher than that of the
pedestrian. When the cyclist overtook the pedestrian,
they turned back and returned to A together, at the
speed of 4 km/h. At what v will the time spent by the
pedestrian on his stroll be the least?

A vessel of 5 litres capacity contains 2 litres of p-per
cent (by volume) salt solution. How many litres of
a 20-per cent solution of the same salt must be poured
into the vessel for the percentage of the salt in the vessel
to become the greatest?

There are three alloys. The first contains 45% of tin
and 55% of lead, the second contains 10% of bismuth,
40% of tin and 50% of lead, and the third contains
30% of bismuth and 70% of lead. They must be used
to produce a new alloy containing 15% of bismuth.
What is the greatest and the least percentage of lead
that can be contained in this new alloy?

A body began moving rectilinearly at the time moment
t = 0 at the initial velocity of 3 m/s. One second later,
the velocity of the body became equal to 4 m/s. Find the
acceleration of the body at the end of the first second and
the length of the path traversed by the body for the
first four seconds, if the velocity of the body changes
by the law v (t) = (at® + 2t + b).

Chapter 4

THE ANTIDERIVATIVE AND THE INTEGRAL

4.1. The Antiderivative. The Newton-Leibniz Formula

Find the antiderivatives of the following functions:

1.

@y=2 (b)y=—3z+1 () y==4(@2 —1).

2. (a) y= —a?; (b) y =2 — 4z —V3;

3.
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(c) y = 18 (3x + 2)2.
(a) y = z — 328 (b)y=%x+x5; (¢) y = 2 — x4
(d) y = Bz — &)1 (e) y = (1 — Sa)".
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8.

10.

11.

12,

1 1 —
@ y=2ri B y=og—2 () y=dot gy s

1 1
(d) y= A=z (+z¢°

@ vt 0 y=VE—1 @ =V P+

@ y=y/z—Vz+Vz (6) y=Vz+2

c@) y=2; ) y=— i (©) Y=g

3
(d) y=m.

1

1 1
c@ V=g O V=ggEn

1 . 2243
© ¥=agmyr D yv=0is
1 2
bl _ (et
© ¥=mran s @ ¥=Zqram -
4 . R
1—z241
() y=Y==H1
(@) y=2% (b) y=3"% (c) y=26"+ug;
(d) y=e% (e) y=‘ﬁ§£i;
eX —e %
) y=—7

(a) y=2sinz; (b) y=35in% ;
(¢) y = sin (z — =/3);
(d) y = —5 sin (10z + n/8).

(a) y=4cos(—z); (b) y=——2cos-%;

(c) y=cos (-—;——l—%), (d) y=2cos (7Tz—1).
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13. (a) y = sin?z; (b) y = —2 cos? 2z;
(c) y = 2cos zcos 5z; (d) y = 2 sin 4z sin Tx;
() y = 2sin 8z cos 3z; (f) y = 2 sin z cos 11z.

14. (a) y=?§z4—z; (b) y= - Zz H
sm’T

(c) y =tan?z; (d) y = cot® .

15. Find the antiderivative of the function f (z) whose
graph passes through the point M, (2o, yo), if
(@) f(x) =322 —2,M (2; 4); (b) f(x) =1 + cosz +
-+ cos 2z; M (0; 1); (c) f () = 3 cos £ — 2 sin z,
M (/25 1); (d) f (z) = e*/2, M (0; 3).

16. Find the derivative of the function (a) F(z)=

o

= S arcsin2zdz; (b) F ()= Y (sindt V¢4 4 1) dt.
1
17. Find the critical points of the function

(2) f(a:)=S[t(t—|—1)(t+2) (t -+ 3) —24] dt;
1

% 1
(b) f(:c)=%]/:?3———§-—|— g (%+%—cos2t—t2 ) dt;
1

(c) f(x)= 5 (sin2 t 4 sin2 2t -} sin2 3t — 1.5) dt;
2
@) f(z) = S (sin? 2t —2 cos? 2t + a) dt;
0
(e) f(z) = S (sin 3t — 3 sin ¢+ 0.5) dt.
0
18. Calculate the integral
-183 1
@ [V 2= Fdn o) [e@—1rd
3 =
Vert 2zd
(c) S s
V2



0
(d) S (arcsin (z + 1) + arccos (x4 1)) dz;
-2

3
(e) Si (arctanﬁl—-karccot zﬁ_:-T) dz.
19. Find the set of positive values of a satisfying the
a
equation $(3x2+4:c—-5) dr=a3—2.
0
20. Find all the values of a for which the inequality
1 (/3= 1 .
v .S (T Vz+1 _ﬁ-) dz < 4 is satisfied.
21. Find all the values of @ belonging to the interval
Q

[0, 2] and satisfying the equation Ssinxda::sin 2a..
J
z

22, Solve the equation

x
1.5z+1

_Si (8t2+2—: t+4) dt=

4.2. Calculating the Areas of Plane Figures

Find the areas of the figures bounded by the following curves:

l. @ y=z,z2=1,y=0; (b)y=2x,y=be, z=2;
(c)y =2z, y =4z, y=3;

(d) 3z —4y +11 =0, 4z 4 3y — 27 =0,
z+ 7y —13 =0.

2. )y=2*,z2=—4,y=0;b)y=2%y=9,z =0;
cyy=22+1,2z2=—-3, =6, y=0;
dy=—-3>—-2, z=1, 2=2, y = —1;

(e) y=4x—2*y=0;, ) y=22—5z+4,y=0.

. Q)y=2*—2z+3, z+y=5;
b)y=2—5—322% y="Tr —5;
(c)y=22—6zx+5 z=11 —y;
@y=2lyl=x
) y*=1—z, y=2z—1, z=0.
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. Find the area of the figure bounded by the parabola

y = —z? 4+ Tz — 12, a tangent to that parabola, pas-
sing through its vertex, and the coordinate axes.

. Find the area of the figure bounded by the parabola

y = 0.52> — 2z 4+ 2 and a tangent to that parabola
drawn at the points 4 (1; 1/2) and B (4; 2).

. Find the area of the figure bounded by the straight line

= —9z — 59 and the parabola y = 32% + ax + 1,
if the tangent to the parabola at the point z = —2
is known to make the angle arctan 6 with the z-axis.

. Find the area of the figure bounded by the parabola

y = ax? + 12z — 14 and the straight line y = 9z —
— 32, if the tangent drawn to the parabola at the point
z = 3 is known to make the angle n — arctan 6 with the
z-axis.

. The area of a curvilinear trapezoid bounded by the

curve y = 3z° -+ 2z and the straight lines x = a and
y = 0 is equal to unity. Find a.

. Find the values of ¢ for which the area of the figure

bounded by the curve y = 822 — z°, the straight lines
z = 1 and z = ¢ and the abscissa axis is equal to 16/3.

Find the areas of the figures bounded by the following curves:

10.

11.

12.

13.

(a) y=5/$7 !/=4,$=7;

b)y=1/(x—1), y=5—2z, (c) zy =5,

z+y=6 @z=|y—2| y=11-—2).

() y =8/2% y ==z, z=4;

(b) y = 4/x*, y = —4z, z = —2y;

(c) y = —1/z® y = 27, 16y = —=z.

Find the area of the figure bounded by the hyperbola
= —4/z, a tangent to that curve drawn at the point

z = 2 and the straight line z = 3.

Find the values of ¢ for which the area of the figure

bounded by the curves y = 4/2%?, z =1 and y=c¢

is equal to 2%.

Find the areas of the figures bounded by the following curves:

14.
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(@ y=Vz—1, y=3—=z, y=0; (b) y=22, z=y2
) y=Vz, y=V4—3z, y=0;
(d) y=—28, y=V=, y=8.



15.

16.

17.

18.

() y =4 — 2%, y = 2* — 2z;

b)) y=—a® 46z —2, y=2®—2z+ 4
cyy=222—24+1, y=(@&—T7)% =15, y=0.
@Qy=2a y=1z, y=0, z = 2;

(b) 3 —y=4/(x+2), y=2a*—1.5z +1;
(c)y=—222+5z+3,y +1=4/(x+ 1),
(d) y = —16z, y = —2®, y = 1;

(e) y =8/x% 2y = 2% y = —8z (x> —2);
) y = —1/z, y =22, 8y = 2.

(@ y =3 @ —1)(z—2),
z=2@y+1DVy—1), z=3, x=25;

(b) y=1+ 55— » ¥=1/(62).

At what values of a is the area of the figure bounded
by the curves y =1/z, y =1/(2z — 1), x =2 and

z = a equal toIn T/l*—g_?

Find the areas of the figures bounded by the following lines:

19. (a) y = 3%, = = log; 4, =z = log; 5, y = 0;

20.

21.

22,

23.

® y=(5)", 2=0, z=1, y=0;
Cy=2,z2=1,z=5,y=z—1;
dy=z4+1, y=3%2=2, z=4

(@ y=ce* y=e* 2=0; (b) y=e", y=ce"
z=1, (c)y=e=* y=z+1, z=25;
dy=lz—1],z=2,y=c¢"

Find the area of the figure bounded by the curve y =
= 9* 4 85 and the curve y = k-3~ + m passing
through the points C (0; 34) and D (1; 14).

Find the area of the figure bounded by the curve y =
= 25 4 16 and the curve y = b-5% + 4, whose tan-
gent at the point x = 1 is at an angle of arctan (40 1n 5)
to the z-axis.

Find the area of the figure bounded by the curve

y — 15 = e** and the curve y =7 S e* dz passing
through the point 4 (0, 10).
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Find the areas of the figures bounded by the following curves:

24, Q) y=sinz, y=0, 2 =0, z = 2x;
(b) y = sin 3z, x = n/12, z = n/6, y = 0;
(c)y=2cosz, r = —nlh, x =nl4, y = 0;
(d) y =cos 2z, x = —n/6, z = n/8, y = 0.

25. (@) y=V32 z=1, y=cosz, =0, y =0;
(b) y=sing, y=05, y=0, 2=0, 2 = 3;
(c) y=sinz,y =2V 2/3, z =0, z = arcsin (2)/ 2/3);
dDy=2—|1—2z|, y=sinz, =0, z=2.

26. (a) Find the value of & for which the area of the figure
bounded by the curves z = n/18, =z = k, y = sin bz
and the abscissa axis is equal to 1/6.

(b) At what value of d is the area of the figure bounded
by the curves y = cos 5z, y = 0, x = /30 and z = d
equal to 0.2?

Calculate the following integrals:

2 2
27. (a) {Vi—zdz; () S Vi—zdz.
0 &

2 1
28. S Inzdz. 29. S arcsin z dz.
1 0

Chapter 5
PROGRESSIONS AND NUMBER SEQUENCES

5.1. Progressions

1. The first term of the arithmetic progression is unity
and the common difference is 4. Is the number 10091
a term of that progression?

2. How many two-digit natural numbers are there which
are multiples of 7?

3. Find the sum of all three-digit natural numbers, which,
being divided by 5, leave a remainder equal to 4.

4. Find the arithmetic progression if the sum of all its
terms, except for the first term, is equal to —36, the
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10.

11.

12.

13.

14.

15.

sum of all its terms, except for the last term, is zero,
and the difference of the tenth and the sixth term is equal
to —16.

The sum of the first four terms of the arithmetic pro-
gression is 56. The sum of the last four terms is 112. Find
the progression if its first term is equal to 11.

The sum of all terms of the arithmetic progression,
except for the first term, is 99, and except for the sixth
term, 89. Find the progression if the sum of the first
and the fifth term is equal to 10.

How many terms of the arithmetic progression should
be taken for their sum to equal 91, if its third term is 9
and the difference of the seventh and the second term
is 20?

All terms of the arithmetic progression are natural
numbers. The sum of its nine consecutive terms, begin-
ning with the first, is larger than 200 and smaller than
220. Find the progression if its second term is equal to 12.
The sum of the first three terms of the arithmetic pro-
gression is 30 and the sum of the squares of the first
and the second term of the same progression is 116.
Find the first term of the progression if its fifth term is
known to be exactly divisible by 13.

Find the increasing arithmetic progression, the sum of
whose first three terms is 27 and the sum of their squares
is 275.

The product of the third and the sixth term of the arith-
metic progression is 406. The quotient of the division
of the ninth term by the fourth term of the progression
is equal to 2 and the remainder is —6. Find the first
term and the common difference of the progression.
The sum of three numbers is 0.6 (1) and the sum of the
reciprocals of those numbers, forming an arithmetic
progression, is 18. Determine the numbers.

The sum of the first seven consecutive terms of the
arithmetic progression is zero and the sum of their
squares is a2?. Find the progression.

The product of the second andthe twelfth term of the
arithmetic progression is equal to unity and the product
of the fourth and the tenth term of the same progression
is b. Find the seventh term of the progression.

The sum of the squares of the fifth and the eleventh
term of the arithmetic progression is 3 and the product
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17.

18.

19.

20.

21.

22.

23.

24.

25.
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of the second and the fourteenth term of the same pro-
gression is k. Find the product of the first and the
fifteenth term of the progression.

The sum of the squares of the fourth and the tenth term
of the arithmetic progression is b and the sum of the
squares of the fifth and the ninth term of the same pro-
gression is equal to 1. Determine the product of the
second and the twelfth term of the progression.

In an arithmetic progression S, =¢, Sq=p (Sa
being the sum of the first n terms of the progression).
Find §,4,.

The sum of the first » terms of the arithmetic progres-
sion is equal to half the sum of the next n terms of the
same progression. Find the ratio of the sum of the first
3n terms of the progression to the sum of its first n
terms.

Four different integers form an arithmetic progression.
One of these numbers is equal to the sum of the squares
of the other three numbers. Find the numbers.

A number of poles lie on the road 10 m from one another.
Beginning with one end, a worker transferred all the
poles, one by one, to the other end, covering for the
purpose a total of 1.44 km. How many poles were
there on the road?

Given p arithmetic progressions, each of which consists
of n terms. Their first terms are equal, respectively,
to1, 2,3, ..., p,and their differences are 1, 3, 5, . . .
..+ 2p — 1. Find the sum of the terms of all the
progressions.

The sixth term of the arithmetic progression is equal
to 3, and the common difference exceeds 1/2. At what
value of the difference of the progression is the product
of the first, the fourth and the fifth term the largest?
Determine the first term and the common ratio of the
geometric progression, the sum of whose first and third
tergbs is 40 and the sum of the second and fourth term
is 80.

Determine the sum of the first three terms of the geo-
metric progression, in which the difference between
the second and the first term is 6 and the difference
between the fourth and the third term is 54.

The sum of the first and the fourth term of the geomet-
ric progression is 18 and the sum of the second and



26.

27,

28.

29.

30.

31.

32.

33.
34,

35.

the third term is 12. Find the difference between the
third and the second term of the progression.

The sum of the first and the third term of the geometric
progression is 20 and the sum of its first three terms
is 26. Find the progression.

In a geometric progression, the sum of the first 18 terms
exceeds the sum of the first 10 terms by 4 and the sum
of the first seven terms of the same progression, added
to, the number B, is equal to the sum of the first fifteen
terms of the same progression. Find the common ratio
of the progression.

In a geometric progression, the sum of the first 109
terms exceeds the sum of the first 100 terms by 12.
Find the sum of the first nine terms of the progression
if the common ratio is equal to g.

A geometric progression consists of 1000 terms. The
sum of the terms occupying the odd places is S, and the
sum of the terms occupying the even places is S,. Find
the common ratio.

The sum of the first ten terms of the geometric progres-
sion is S; and the sum of the next ten terms (11th

through 20th) is S,. Find the common ratio.

In the increasing geometric progression, the sum of the
first and the last term is 66, the product of the second
and the last but one term is 128, and the sum of all
the terms is 126. How many terms are there in the
progression?

Three skaters whose speeds, in a certain order, form
a geometric progression, start in a race-course. Some
time later, the second skater leaves the first skater
behind having run 400 metres more than the first skater.
The third skater covers the distance run by the first
skater by the time he was overtaken by the second
skater in a time interval exceeding by 2/3 min the
time of the first skater. Find the speed of the first
skater.

Suppose S, is the sum of the first » terms of a geometric
progression. Prove that S, (S;;, — Sas) = (Sen — Sn)%
Find the common ratio of an infinitely decreasing geo-
metric progression if its sum is thrice that of its first
three terms.

The sum of an infinitely decreasing geometric progres-
sion is 3.5 and the sum of the squares of its terms is
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147/16. Find the sum of the cubes of the terms of that
progression.

The sum of the second and the eighth term of an infi-
nitely decreasing geometric progression is 325/128 and
the sum of the second and the sixth term, reduced by
65/32, is equal to the fourth term of that progression.
Find the sum of the squares of the terms of the progres-
sion.

The difference between the second and the sixth term
of an infinitely decreasing geometric progression is

8/(9Y'3) and the difference between the fourth and

the eighth term is 8/(27 /' 3). Find the ratio of the sum
of the squares of the terms to the sum of the cubes of
the terms of the same progression.

The sum of an infinitely decreasing geometric progres-
sion is 243 and the sum of its first five terms is 275.
Find the progression.

The sum of the terms of an infinitely decreasing geo-
metric progression is equal to the greatest value of the
function f (z) = 2® + 3z — 9 on the interval [—2; 3I,
and the difference between the first and the second
term is ' (0). Find the common ratio of the progression.
A certain number is inserted between the number 3
and the unknown number so that the three numbers
form an arithmetic progression. If we diminish the
middle term by 6, we get a geometric progression.
Find the unknown number.

The sum of three positive numbers constituting an arith-
metic progression is 15. If we add 1. 4, 19 to those num-
bers, respectively, we get a geometric progression.
Find the numbers.

Three positive numbers form an arithmetic progression.
The third number exceeds the first number by 14.
If we add the first number to the third and leave the
other two numbers unchanged, we obtain a geometric
progression. Find the numbers.

The first and the third term of an arithmetic progres-
sion are equal, respectively, to the first and the third
term of a geometric progression, and the second term
of the arithmetic progression exceeds the second term
of the geometric progression by 0.25. Calculate the
sum of the first five terms of the arithmetic progression
if its first term is equal to 2.



44.

45.

46.

47.

48.

49.

50'

51.

52,

Find a three-digit number whose consecutive numbers
form a geometric progression. If we subtract 792 from
this number, we get a number consisting of the same
digits written in the reverse order. Now if we increase
the second digit of the required number by 2, the digits
of the resulting number will form an arithmetic pro-
gression.

Three numbers form a geometric progression. If we di-
minish the third term by 64, then the resulting three
numbers will form an arithmetic progression. If we then
diminish the second term by 8, we get a geometric
progression. Determine the numbers.

Three numbers constitute a geometric progression. If
we add 8 to the second number, then these numbers will
form an arithmetic progression; if we then add 64 to
the third number, the resulting numbers will again
form a geometric progression. Find these three num-
bers.

Three numbers form a geometric progression. If we double
the middle number, we get an arithmetic progression.
Determine the common ratio of the given progres-
sion.

The sum of three numbers forming a geometric progres-
sion is 124. If we add 1 to the first number and subtract
65 from the third and leave the second number un-
changed, the resulting numbers will form an arithmetic

“progression. Find the indicated progressions.

Three numbers whose product is 125 are three consecu-
tive terms of a geometric progression and at the same
time the first, the third and the sixth term of an arithme-
tic progression. Find the numbers.

Find the sum of the infinitely decreasing geometric
progression whose third term, the triple product of the
first term by the fourth and the second term form, in the
indicated order, an arithmetic progression with the
difference equal to 1/8.

If we add 5, 6, 9 and 15, respectively, to four numbers
constituting an arithmetic progression, we get a geo-
metric progression. Find the numbers.

If we add 4, 21, 29 and 1, respectively, to four numbers
constituting a geometric progression, we get four num-
bers forming an arithmetic progression. Find the num-
bers.

7-01521 97



53. The sum of the first ten terms of the arithmetic progres-

sion is 155 and the sum of the first two terms of the
geometric progression is 9. Determine the progressions
if the first term of the arithmetic progression is equal
to the common ratio of the geometric progression and
the first term of the geometric progression is equal
to the difference of the arithmetic progression.

5.2. Number Sequences

2.

. Using the definition of the limit of a number sequence,

prove that

. 1 . . n—1 .

(€) lim —=0.

n
n—>oo 3

Prove that the sequence (z,), specified by the formula

xn=-1—_—H:J is bounded.
n

3. Which of the following sequences (r € N) are bounded:

1 1 1 —1)n+1
(@) 5 —s g e e (D) —2, =2,
' 2 2 2
2 =2 g @44 s 2
2

— ee e (d) 17 —21 3a '_'4’ ceey I, _(n+1)y ces

n 2

(e) cos1°, cos2°, cos3’, ..., cosn’, ...; (f) 0, 1,0, 3,

0,5, ...,0,2n—1, ...; () 1, —2, 4 —8, ...
—1 9n— 4 6 2n

ey (=270 5 (h) 2,

'3", ?, .-.,__zn_1, .

4. Is every bounded sequence convergent?
5. Give a definition of an unbounded sequence (without

using the prefix “un”).

6. Using the theorem on the limit of the sum of two con-
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vergent sequences, prove that

. n-+2 2=3n2\ o,
@) lim (35} +55) = =2
1

o T ()72 =0

n2



10.

11.

12.

13.

14.

15.

16,

T*

. The sequence (z, + y,) is known to be convergent. Are

the sequences (z,) and (y,) convergent?
Using the theorem on the limit of the product of two
convergent sequences, prove that

(a) lim (1+5n%) (1 —n-+n? -5

e nE(0F3) ’
(b) lim (15+%) (:J—rg)=15.

. The sequence (z,) is known to be convergent. Prove

that the sequence (—z,) is also convergent, and if

lim z, = a, then lim (—z,;) = —a.

n-+oo n-+o0o

Given: lim z, = a, lim y, = b. Prove that
n-—->oo n-»o00

lim (z, — y,) = a — b.

n-—->00

It is known that the sequence a,, n € N, is convergent
and the sequence b,, n € N, is divergent. What can
you say about the convergence of the sequences
(@) an + bn; (b) anby?

The sequences a, and b,, n € N, are divergent. Can
you assert that the sequences (a) a, + b, and (b) a,b,
are also divergent?

The sequences a,, and b,, n € N, are such that lim a,b, =

= 0. Does it follow that either lim a, = 0 c:lr lim b, =
n->o00 n-—-»o00

= 0?

Which of the following sequences are monotonic:

@ (eE5): ) ((—ymutl);

() (_g%) ; (d) (—4:—_';_7—) : (e) (n-9");
(i) 2+1/47)?

Prove that the sequence (

S5n
n+2

) is bounded and
increasing.
Prove that the sequence (41—-,‘:1) is bounded and
decreasing.
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17. The sequence (x,) converges to zero and the sequence
(yn) is arbitrary. Can we assert that the limit of the
sequence (x,y,) is zero?

Find the limits of the following sequences:

. (2n41) (n—3)
18. lim -~ ey

19. lim 22 =% 90, 1jm Zo—nH1

noo N6 noow 2—3n8
. (n+3)e
21 AT
. 3n(n—2)2 . —3af(—1)"
2. i Sy 2 00 S
. nsinn . 3ntlf4ntl
24, }LI‘I,IO—W. 25. iiﬂ—w.
26. lim -t (1 =1-2:3 ... (=1 m, =1, nEN).
. (n+3)4(n42)!
27. im=—— -
. 3n—1
28. 1111[2 3,,—_'_1—.
1 1 1
{fp et o+
29, lim —2> 9 Cld

1 1 1 °
""°°1+—2'+T+ o o

30. lim > (14+243+... +n).

preo

31. lﬂﬂ%(12+22+32+.“+n2)'

32. (a) iﬂ( 11.2 + 2%3 + 3%4 +"'+T('r?14717) ;
(b) ?111»12( 1%3 + 31-5 + 51-7 +"'+W_——1)1(—2n+ﬁ) ;
(© 7&2(1?2 —13 + 73 —%.5,+---+';T:¢F_
~m=hETT)

33. lim i, b0,

n-+00
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Chapter 6
ELEMENTS OF VECTOR ALGEBRA

6.1. Linear Operations on Vectors

1.

10.

11.

What condition should be satisfied by the vectors a
and b for the following relations to hold true: (a) | a+b|=
= Ia—bl (b)la+b|>]a—bl|;(c)lat+hb]|<

<|la—Db/[?
The nonzero vectors a, b and ¢ are related as b = 5a
and. ¢ = —2b. Determine (a) the angle between the

vectors a and ¢, (b) |a |/ |e¢|.

For what values of z does the inequality | (x — 2) a | <<
<< | 3a | hold true if a == 0?

Assume a == 0. For what valuesof xdo the conditions
|za |> |a| and (za + 3a) 14 a simultaneously hold
true?

The vectors a and b are noncollinear. Find the values of
z and y for which the vector equality 2u — v = w
holds true, if u = za + 2yb, v = —2ya + 3zb, w =
= 4a — 2b.

Given three nonzero vectors a, b and e, every two of
which are noncollinear. Find their sum if the vector
a + b is collinear with the vector ¢ and the vector
b -+ ¢ is collinear with the vector a.

Given three noncoplanar vectors a, b and ¢. Find the
numbers p and ¢ for which the vectors pa 4+ ¢b + ¢
and a 4+ pb + ge are collinear.

. The vectors a, b and ¢ are collinear and |¢ | < |b | <<

< |a|. Is the assertion (a + b + ¢) }4 a true?
The points 4, B and C are the vertices of a triangle,

— — —
AB = a, AC = b. Represent the vector 40, where O
is the point of intersection of the medians of the trian-
gle, in terms of the vectors a and b.

The points M and K are the midpoints of the sides
[BC] and [CD] of the parallelogram ABCD. Find the

vector AC if AM = a and AK =b.

What condition should be satisfied by the vectors a
and b for the vector a + b to bisect the angle between
the vectors a and b?
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12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
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The points A, B and C are the vertices of a triangle,

— —
AB = a, AC = b, [AD] is the bisector of the triangle.
Find the unit vector e, which is of the same direction

as the vector E
Given the points A4 (1; 3), B (2; 4) and C (5; 14).

—> —> —> —

Find: (a) | AB + AC |: (b) | AB — AC |.

At what values of z and y are the vectorsa = (z; —2: 5)
and b = (1; y; —4) collinear?

Find the coordinates of the vector p, collinear with
the vector q = (3; —4), if it is known that the vector p
makes an obtuse angle with the z-axis and | p | = 10.
Given three vectors: a = (3; —1), b = (1; —2) and
¢ = (—1; 7). Represent the vector p=a + b 4 ¢
in terms of the vectors a and b.

At what values of x and y are the points with the coordi-
nates A(2; 0), B (0; 2), C(0; 7) and D (z; y) the
successive vertices of the isosceles trapezoid ABCD?
M, and M, are the midpoints of the segments 4,B,

—_—

and A,B,. Find the vector M M, if it is known that

A4,(0;1;2), A4,(1;2;1), By (—1; —1; 3) and

B, (1; 0; 0).

Given four points: A4 (—2; —3;8), B(2;1;7),

C (1; 4; 5) and D (—T7; —4; 7). Prove that the vec-
—> —>

tors AB and CD are collinear.

—> —>

The vectors AB = —3i + 4k and AC = 5i — 2j + 4k
are the sides of the triangle ABC. Find the length of
the median AM.

(a) Find the vector b = (x; y; 2z), collinear with the
vector a = (2)'2; —1; 4) if | b | = 10.

(b) The vector x satisfies the following conditions: (1)
the vectors x and a = 6i — 8§ — 7.5k are collinear;
(2) the vector x makes an acute angle with the z-axis;
(3) | x| = 50. Find the coordinates of the vector x.
(c) The vector b, collinear with the vector a = (3;
—4; —12), makes an obtuse angle with the z-axis.
Find its coordinates knowing that | b | = 26.

Find the coordinates of the point M which lies on
the z-axis and is equidistant from the points 4 (1; 2; 3)
and B (—3; 3; 2).



23

24.
25.

26.

27.

28.

29.

30.

. A triangular pyramid is defined by the coordinates
of its vertices 4 (3; 0; 1), B (—1; 4; 1), C (5; 2; 3)
and D (0; —5; 4). Calculate the length of the vector

—_

AO if O is the point of intersection of the medians

of the triangle BCD.

Are the vectors a = (3/7; 1/2; —3/4), b = (—3/2; 6;

4/3) and ¢ = (9/8; —9/2; —1) coplanar?

Given three vectors: a = (3; —2; 1), b = (—1; 1; —2)

and ¢ = (2; 1; —3). Represent the vector d = (11;

—6; 5) in terms of the vectors a, b, e.

In the triangular prism ABCA,B,C, the diagonal CB,

is divided by the point M in the ratio | CM |/| MB, | =
—_—

= 2/3. Represent the vector AM in terms of the vectors

— —> —>
AA,, AB and AC.
Given |AA,| =12, |AB| =3, |AD | =4 in the
rectangular parallelepiped ABCDA,B,C,D,. Resolve

—_—
the unit vector e, which is of the same direction as ACy,

with respect to the rectangular basis i, j, k. The unit
vectors i, j, k are of the same directions as the vectors

= —

AD, AB and AA, respectively.

M, and M, are the respective points of intersection
of the medians of the faces ADB and BDC of the tetra-

— E—

hedron 4 BCD. Find the ratio | AC |/| M M, |.

Three forces are applied to a vertex of the cube, which
are 1, 2 and 3 in magnitude and are directed along the
diagonals of the faces of the cube meeting in that vertex.
Find the resultant of these three forces.

—_—

The vector OM is defined by the rectangular coordina-
tes of the points O (0; 0; 1) and M (c; B; 3). What
condition should be satisfied by the parameters o

—_
and B for the terminus of the vector OM to belong to
the sphere 2% + y2 + (z — 1)2 = 5?

6.2. The Scalar Product of Vectors

. Determine the angle between the vectors 2a and 1b,

g - 2
if a=(—4;2;4) and b= (/2; —)2; 0).

. At what value of z are the vectors a = (6; 0; 12) and
b = (—8; 13; z) perpendicular?

103



10.

11.

12.

13.

14.
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. Find the cosine of the angle between the vectors a + b

N\
anda—b,if |la|=2,|b| =1, (a, b) = 60°.
Find the cosine of the angle between the vectors p

2p +q=a,

P+ 2q=Dh,
if it is known that in a rectangular system of coordinates
the vectors a and b have the form a = (1; 1) and b =
= (1; —1).

Prove that the vector p = b (ac) — ¢ (ab) is perpendic-
ular to the vector a.

The vectors a, b and ¢ are such that a +b + ¢ = 0.
Calculate ab + be + ca knowing that |a | = 13, | b |=
=14 and | ¢ | = 15.

The triangle ABC is defined by the coordinates of its
vertices A4 (1; 1; 0), B (1;1; 2), C (3; 3; 1). Find
the angle of the triangle at the vertex A.

and q satisfying the system of equationsl

. The vertices of the triangle are at the points

A (3; —2; 1), B(3; 0; 2) and C (1; 2; 5). Find the
angle formed by the median BD and the base AC of the
triangle.

The triangle is defined by the coordinates of its vertices
A(1;1;2), B(3; 4;,2) and C (5; 6; 4). Find the
exterior angle of the triangle at the vertex B.

Two vertices of the triangle ABC are defined by the
coordinates A4 (1; 1; 3) and B (—1; 2; 5). The third
vertex, the point C, lies on the coordinate axis Oz.
Determine the relationship between the degree measure
of the angle a at the vertex 4 and the distance from the
point C to the plane Oxy.

Three points 4 (1; 0), B (0; 1) and C (5; 5) are defined
on the coordinate plane. Calculate the area of the
triangle ABC.

—> —>
The vectors AB = (3; —2; 2) and BC = (—1; 0; 2)
are the adjacent sides of a parallelogram. Find the

—> —>
angle between its diagonals AC and BD.
Prove that the points 4 (2; 4; —4), B (1; 1; —3),
C (—2; 0; 5) and D (—1; 3; 4) are the vertices of a
parallelogram and find the angle between its diagonals.
Prove that the points A4 (1; —1; 1), B (1; 3; 1),
C (4; 3; 1) and D (4; —1; 1) are the vertices of a



15.
16.

17.

18.

19.

20.

21.

22,

23.
24.

25.

rectangle. Calculate the length of its diagonals and
the coordinates of their point of intersection.

Find the vector b, which is collinear with the vector
a = (2; 1; —1) and satisfies the condition ab = 3.
Find the vector ¢, knowing that it is perpendicular to
the vectors a = (2; 3; —1) and b = (1; —2; 3) and
satisfies the condition ¢ (2i — j + k) = —6.
Calculate the coordinates of the vector e, which is
perpendicular to the vectors a =2j —k and b =
= —i 4+ 2j — 3k and makes an obtuse angle with
the y-axis, if e | =VT.

Given the vectorsa = (3; —1; 5) and b = (1; 2; —3).
Find the vector e, provided that it is perpendicular
to the z-axis and satisfies the conditions ea = 9 and
cb = —4,

The vectors a, b and ¢ are of the same length and pair-
wise form equal angles. Find the coordinates of the
vectorcifa=1i-+4§, b=3j+ k.

Two points A and B are given in the rectangular Car-
tesian system of coordinates Oxy on the curve y = 6/z

and are such that bjli = —2 and O_B?i = 3, where i is

a unit vector of the x-axis. Find the length of the vector
— —_

204 + 308B.

Find the vector a = (z; y; 2) making equal angles with
the vectors b = (y; —2z; 3z) and ¢ = (2z; 3z; —y),
if the vector a is perpendicular to the vector d =
=(1; —1;2), |a|=2V3 and the angle between
the vector a and the y-axis is obtuse.

At what values of z is the angle between the vectors
a=uzxi—3j—k and b = 2zi 4+ zj — k acute and
the angle between the vector b and the axis of ordi-
nates obtuse?

The points M, N, P and Q are located in space so that
(MN)_ (PQ), (MP)_ (NQ). Prove that (MQ)_ (NP).
Find the obtuse angle formed by the medians drawn
from the vertices of the acute angles of an isosceles
right-angled triangle.

— —>
Given the vectors AB =Db and AC = ¢, coinciding
with the sides of the triangle ABC. Represent by the
components b and ¢ the vector applied to the vertex B
of that triangle and coinciding with its altitude BM.
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27.

28.

31.

32,

33.

34.
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The triangle ABC is defined by the coordinates of the
vertices 4 (1; —2; 2), B (1; 4; 0) and C (—4; 1; 1).

_—

Find the vector BM, where the point M is the foot of
the altitude drawn from the vertex B.

The tetrahedron ABCD is defined by the coordinates
of its vertices D (1; 0; 0), 4 (3; —2; 1), B (3; 1; 5)
and C (4; 0; 3). Find the degree measure of the dihe-
dral angle formed by the lateral face ADC and the
plane of the base ABC.

Write the equation of the plane passing through three
given points M, (1; —1; 2), M, (0; 3; 0) and
M, (2; 1; 0).

. Write the equation of the plane passing through the
30.

points 4 (4; 0; 0) and B (0; 0; 4) parallel to the y-axis.
At what value of k¥ do the points 4 (1; 0; 3), B (—1;
3; 4), C (1; 2; 1) and D (k; 2; 5) lie in the same plane?
Given four points: 4 (1; —2; 2), B (1; 4; 0), C (—4:
1; 1), and D (—95; —5; 3). (a) Prove that these points
lie in the same plane; (b) calculate the angle between
the straight lines (AC) and (BD); (c) determine the
area of the quadrilateral ABCD.

Find the angle between the plane passing through the
points A4 (0; 0; 0), B(1; 1; 1), C(3; 2; 1) and the
plane passing through the points 4, B and D (3; 1; 2).
Given the equations of the planes 2z + 3y + 42 — 8 =
=0 and 4r +y + 3z — 6 = 0; p is a straight line
along which these planes intersect. Determine (a) the
cooordinates of the points of intersection of the line p
and the planes zOy and yOz; (b) the angle between the
line p and the plane 20z.

The edge of the cube ABCDA,B,C,D,, (44,) || (BB;) ||
(ccy) || (DD,), is 12 in length. The vertex B of the
cube coincides with the origin of the coordinates Oxysz,
and the points 4, C and B, lie on the Ox, Oy and Oz
axes respectively (in the positive direction). Points
E, F, and G, taken on the edges [44,] [B,C,] and [CD],
are such that | AE |/| EA, | = 1/3, | B,F, |/| F.Cy | =
=1/, | CG |/|GD | = 1/1. (a) Determine the coordi-
nates of the points £, F, and G;

(b) set up an equation of the plane (EF,G);

(c) find the distance between the point B; and the plane
(EF,G).



Chapter 7

PLANE GEOMETRY

7.1. Problems on Proving Propositions

1.

10.

M is the midpoint of the interval [AB]. Prove that
|CM | =4 | |AC | —|BC|| if CE€lABl, and

lem | = 1ACLE 1BCL Gt ¢ ¢ (4B) but C¢l4BI.

Five straight lines meeting at a point O are drawn in
the plane a. Prove that the sum of the angles, which
are not adjacent to each other and have a common
vertex O, is equal to .

. In the convex quadrilateral ABCD, the length of the

diagonal AC is equal to that of the side AD. Prove that
| BC | < | BD |.

Prove that in a trapezoid, whose diagonals are the
bisectors of the angles at one of the bases, three sides
are equal in length.

. Prove that the midpoints of the sides of a convex quad-

rilateral are the vertices of a parallelogram.

Suppose a and b (a > b) are the lengths of the bases
of a trapezoid. Prove that the segment connecting the
midpoints of the diagonals of the trapezoid is paral-
lel to its bases and the length of the segment is (a—b)/2.

. The bisectors of the interior angles are drawn in a

parallelogram. Prove that the points of intersection
of the bisectors are the vertices of a rectangle the length
of whose diagonal is equal to the difference between
the lengths of the neighbouring sides.

In the parallelogram ABCD, the point M is the mid-
point of the side CB, N is the midpoint of the side CD.
Prove that the straight lines (AM) and (AN) divide
the diagonal BD into three equal parts.

Prove that the bisector of the interior angle of a trian-
gle divides the opposite side into segments proportional
to the adjacent sides.

A straight line, parallel to the bases of the trapezoid,
is drawn through the point O of intersection of the di-
agonals. Prove that the point O bisects thesegment inter-
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cepted on the straight line by the nonparallel sides
of the trapezoid.

Prove that the sum of the distances from any point
belonging to a regular triangle to its sides is equal to
the length of its altitude.

Suppose p is half the perimeter, S is the area of the
triangle, and r is the radius of the inscribed circle.
Prove that r = S/p.

Assume that a, b and ¢ are the lengths of the sides of
a triangle, S is its area, and R is the radius of a circum-
scribed circle. Prove that R = abc/(4S).

Prove that in a right triangle the sum of the lengths
of the legs is equal to the sum of the lengths of the
diameters of the inscribed and the circumscribed circle.
Through a point 4, lying outside the ring, two straight
lines are drawn one of which touches the circle, serv-
ing as the boundary of the ring, at a point B, and the
other cuts that circle at points C and D, the point C
lying between 4 and D. Prove that IAD |-14AC | =
= | AB |*.

Prove that any point of a convex quadrllateral belongs
to at least one of the circles whose diameters are the
sides of the quadrilateral.

A quadrilateral M NPQ is inscribed into a circle, the diag-
onals of the former being mutually perpendicular and
meeting at a point F. A straight line passing through
the point F and the midpoint of the side NP cuts the
side MQ at a point H. Prove that FH is the altitude
of the triangle MFQ.

The squares ABDE and BCKF are constructed on the
sides AB and BC of the triangle ABC outside of it.
Prove that |DF | = 2 | BP |, where [BP] is the me-
dian of the triangle ABC.

Squares are constructed on the bases AB and CD of the
trapezoid ABCD, outside of it. Prove that the straight
line connecting the centres of the squares passes through
the point of intersection of the diagonals of the trape-
zoid.

Suppose a and b are the lengths of the sides of a parallel-
ogram, and d, and d, are the lengths of its diagonals.
Prove that d} 4 d3 = 2 (a® + b%).



7.2.

1.

11,
12.

13.

Construction Problems

Through a point A lying in the interior of the angle,
draw a straight line so that the point A would be the
midpoint of the segment intercepted on the straight
line by the sides of the angle.

Construct a triangle if its two sides and the median,
all emanating from a common vertex, are given.

Points A and B belong to one of the half-planes into
which the plane is divided by the straight line p. Find
a point on the line p, the sum of whose distances from
the points A and B is the least.

Construct the bisector of the angle whose vertex lies out-
side the sheet of paper.

A point D is given in the interior of the angle ABC with
an unattainable vertex B. Construct the straight line
(BD).

Construct the triangle proceeding from its medians.
Given two segments a and b in length. Construct the
segments whose lengths are (a) )/ ab; (b) V a® —ab-+ b2

(c) V a2—2ab +4b2,

Construct a triangle knowing its perimeter and two
angles.

Inscribe into a given circle a triangle similar to a given
triangle.

Given a circle with centre at a point O and a point 4
lying outside the ring bounded by that circle. (a) Con-
struct a tangent to the circle passing through the point
A; (b) through the point A draw a straight line cutting
the circle at points B and C so that | AC | =2 | AB |
(the point B lies between A and C).

Construct three circles, having an external tangency,
with centres at the vertices of the given triangle.
Points A and B belong to one of the half-planes into
which the plane is divided by the straight line p. (a)
Construct a circle passing through the points 4 and B
and touching the line p; (b) find the point C € p such
that the angle ACB is the greatest.

Through the given point of the plane lying outside
the given angle draw a straight line intercepting a
triangle of the specified perimeter on the angle.

109



7.3. Problems on Calculation
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In the triangle ABC, the side |AB| = ¢ =13 cm,
|BC|=a =14 cm, |AC | =b=15 cm. Deter-
mine: (a) the degree measure of the largest interior angle
of that triangle; (b) the area S; (c) the length &, of the
altitude BD; (d) the length r of the radius of the inscri-
bed circle; (e) the length R of the radius of the circum-
scribed circle; (f) the length I, of the bisector BE of
the angle B (E € [AC]); (g) the length m, of the median
BF; (h) the distance between the centres of the inscribed
and the circumscribed circle; (i) the distance between
the point G of intersection of the medians and the
centre of the circumscribed circle.

. Determine the area of the triangle if its base is a and

the angles at the base are equal to 30° and 45°.

. Given the lengths 6 cm and 3 cm of two sides of a trian-

gle. Find the length of the third side if half the sum
of the lengths of the altitudes dropped to the given
sides is equal to the length of the third side.

In a right triangle the legs are related as 3:2 and the
altitude divides the hypotenuse into segments one of
which is two metres longer than the other. Find the
length of the hypotenuse.

In the triangle ABC, |AB | = | BC |, the point O
is the point of intersection of the altitudes. Find £ ABC
if |OB| = |4AC|.

. A circle is inscribed into an isosceles triangle with the

vertex angle equal to 120° and a lateral side equal to a.
Find the radius of the circle.

The centre of the inscribed circle divides the altitude
of the isosceles triangle, dropped to the base, into
segments 5 cm and 3 cm in length, reckoning from the
vertex. Determine the lengths of the sides of the trian-
gle.

The inscribed circle touches the hypotenuse of the right
triangle at the point dividing the hypotenuse into
segments whose lengths are equal to two and three
units. Find the radius of the circle.

The legs of a right triangle are 15 dm and 20 dm in
length. Determine the distance from the centre of the
inscribed circle to the altitude dropped to the hypote-
nuse.
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Determine the angles of an isosceles triangle knowing
that the point of intersection of its altitudes belongs
to the inscribed circle.

A circle with radius equal to 4 cm is inscribed into
a triangle. One of the sides of the triangle is divided by
the point of tangency into segments 6 cm and 8 cm
in length. Find the lengths of the other sides of the
triangle.

The lateral side of an isosceles triangle is equal to
10 cm and the base to 12 cm. A circle is inscribed into
the triangle and tangents are drawn to it, which are
parallel to the altitude of the triangle and intercept
on it two small right triangles. Find the lengths of
the sides of these triangles.

From the centre of the circle inscribed into a triangle
with sides equal to 13, 14 and 15 another circle is drawn
whose radius is equal to 5. Find the lengths of the
chords intercepted by this circle on the sides of the
triangle.

Find the area of a right triangle if the radius of the
inscribed circle is r and the radius of the escribed cir-
cle, touching the hypotenuse and the extensions of the
legs, is R.

In a right triangle, the legs are 75 dm and 100 dm in
length. The foot of the altitude drawn from the vertex
of the right angle divides the hypotenuse into two
segments on which semicircles are constructed on the
same side as the given triangle. Determine the lengths
of the segments on the legs intercepted between these
circles.

On the side AB of the triangle ABC a point M is taken
such that | AM |/| MB | = 1/1. Calculate |CM | if
|AC | =6, |BC| =4, L ACB = 120°.

The median drawn to one of the lateral sides of an
isosceles triangle divides its perimeter into two parts
15 ¢cm and 6 cm in length. Find the lengths of the sides
of the triangle.

In the triangle ABC, | AB | = 2 cm, [BD] is a median,
| BD | =1 cm, £ BDA = 30°. Find the area of the
triangle ABC.

Find the area of the triangle whose sides are the medians
of the triangle with the area equal to S.
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The legs of a right triangle are b and ¢ in length. Find
the length of the bisector of the right angle.

In the triangle ABC, | AB| =3 cm, | AC | =5 cm,
£ BAC = 120°. Find the lengths of the bisector [BD]
and the segments [4D] and [CD].

Given in the triangle ABC: /B : ,C =1:3. The
bisector of the angle BAC divides the area of the
triangle in the ratio 2:1. Find the angles of the
triangle.

In the triangle ABC the angle 4 is twice the angle B
| AC| =0b, | AB| =c. Find | BC |.

In the right triangle ABC the length of the altitude
dropped from the vertex of the right angle to the hypot-
enuse is @ and the length of the bisector of the same
angle is b. Find the area of the triangle ABC.

In the isosceles triangle ABC, | AB | = | BC |, the
median AD and the bisector CE are mutually perpen-
dicular. Calculate the angle ADB.

In the triangle ABC, | AC | = 13cm, | AB | + | BC |=
= 22 cm, £ ABC = 60°. Find the lengths of the sides
[AB] and [BCI.

The sides of the parallelogram inscribed into a triangle
are 3 cm and 4 cm in length and the diagonal is 4 cm.
Find the lengths of the sides of the triangle if it is
known that the diagonals of the parallelogram are
respectively parallel to the lateral sides of the triangle
and the smaller side belongs to the base of the triangle.
The bisectors of the four angles are drawn in a parallel-
ogram with sides @ and b in length and an acute angle
o. Find the area of the quadrilateral whose vertices
are the points of intersection of the bisectors.

Regular triangles are constructed on the sides of the
square, in its exterior, and the vertices of the triangles
are consecutively connected. Determine the ratio of the
perimeter of the resulting quadrilateral to the perimeter
of the given square.

. Find the area of the isosceles trapezoid whose bases

are 10 cm and 26 cm in length and the diagonals are
perpendicular to the non-parallel sides.

One of the angles of the trapezoid is 30°, and the exten-
sions of the nonparallel sides (legs) meet at right angles.
Find the smaller leg of the trapezoid if its midline
is 10 cm and one of the bases is 8 cm.
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Find the length of the altitude of the trapezoid if its
bases are ¢ = 28 cm and b = 16 c¢cm, and the non-paral-
lel sides are ¢ = 25 ¢cm and d = 17 cm.

Find the area of the trapezoid whose bases are a and b
in length, @ > b, and the acute angles between the
larger base and the non-parallel sides are o and f.

An isosceles trapezoid 20 sq cm in area is circumscribed
about a circle with radius 2 cm. Find the lengths of
the sides of the trapezoid.

An isosceles trapezoid ABCD is circumscribed about a
circle with radius r; £ and K are the points of tangency
of that circle and the non-parallel sides of the trapezoid.
The angle between the base AB and the leg AD is 60°.
Find the area of the quadrilateral ABEK.

The centre of the circle inscribed into a right-angled
trapezoid is at the distances of 4 cm and 8 cm from
the end-points of its leg. Find the length of the midline
of the trapezoid.

The bases of the isosceles trapezoid are 21 cm and 9 cm
in length and the altitude is 8 cm. Determine the radius
of the circle circumscribed about the trapezoid.

The circle constructed on the base AD of the trapezoid
ABCD as a diameter passes through the midpoints of
the non-parallel sides AB and CD of the trapezoid
and touches the base BC. Find the angles of the trape-
zoid.

The bases of the trapezoid are ¢ and b in length. Find
the length of the segment, connecting the non-parallel
sides of the trapezoid, which is parallel to the bases
and bisects the area of the trapezoid.

In the trapezoid ABCD, [AD]| [BCl, | AD | = a,
| BC | = b, and O is the point of intersection of the
diagonals. Find the ratio of the area of the trapezoid to
the area of the triangle AOD.

Two circles with an external tangency are inscribed
into an acute angle of 60°. The radius of the smaller
circle is r. Find the radius of the larger circle.

The radius of the sector is R and that of the circle
inscribed into the sector is r. Calculate the area of the
sector.

Given two nonintersecting circles' with radii R and 2R.
Common_ tangents are drawn to them which meet at a
point A of the segment connecting the centres of the
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circles. The distance between the centres of the circles

is equal to 2R /3. Find the area of the figure bounded
by the segments of the tangents, intercepted between
the points of tangency, and the larger areas of the
circles connecting the points of tangency.

The bisector [4E] of the angle A cuts the quadrilateral
ABCD into an isosceles triangle ABE (| AB | = | BE |)
and a thombus AECD. The radius of the circle circum-
scribed about the triangle ECD is 1.5 times as large as
the radius of the circle inscribed into the triangle ABE.
Find the ratio of the perimeters of the triangles ECD
and ABE.

Inscribed into a semi-circle of radius R are two circles
touching each other, the semi-circle and its diameter.
The radius of one of them is r in length. Find the radius
of the other circle.

The circle inscribed into the triangle ABC touches its
sides AC and BC at points M and N respectively and
cuts the bisector BD at points P and Q. Find the ratio
of the areas of the triangles PQM and PQN if L A =
= n/4 and £ B = n/3.

Two circles with radii /2 cm and 1 cm meet at a point
A. The distance between their centres is 2 cm. The chord
[AC] of the larger circle cuts the smaller circle at a
point B and is bisected by that point. Find the length
of the chord [AC].

The diagonals of the convex quadrilateral make a
right angle, and the sum of their lengths is 6 cm. What
is the largest possible value of the area of the quadrila-
teral?

. At what value of the length of the altitude does the

right-angled trapezoid, with an acute angle of 45° and
the perimeter of 4 cm, have the largest area?

In the isosceles triangle ABC the angle at the base
AC is a, and the lateral side is a in length. The point D
is on the altitude BM and the sum of the squares of its
distances from the points A, B and C is the least as
compared to the other points of the segment BM. Find
the length of the segment MD.

Two sides of the parallelogram lie on the sides of
the given triangle, and oneof its verticesbelongsto the
third side. Under what conditions is the area of the
parallelogram the largest?



Chapter 8
SOLID GEOMETRY

8.1. A Straight Line, a Plane, Polyhedra.

1.

Solids of Revolution

Two right triangles lie in the mutually perpendicular
planes and have a hypotenuse in common. Find the dis-
tance between the vertices of the right angles of the
triangles if the legs of the triangles are 4 cm and 3 cm
in length.

Given a dihedral angle ¢ in magnitude. From a point
of its edge in one of its faces a segment is drawn mak-
ing an angle ¢y with that edge. What angle does the
segment make with the plane of the other face?

The legs AB and AC of a right triangle belong to the
faces o and P of an acute dihedral angle and make acute
angles ¢ and vy, respectively, with the edge of the di-
hedral angle. Determine the magnitude of the dihedral
angle.

The vertices A and B of the rectangle ABCD are at a
distance 8! each from the plane y, and the midpoint M
of the side [CD] belongs to the plane y. The diagonals AC
and BD of the rectangle meet at a point O. Find the
distance from the centre of the circle circumscribed
about the triangle AOB to the plane y if L ADB = ¢.
The vertices 4 and B of the regular triangle ABC are
at a distance 2 and the point C is at a distance equal
to m (b > m) from a certain plane f. At what distance
from the plane P is the centre of the circle inscribed into
the triangle ABC?

. The diagonal of the rectangular parallelepiped is equal

to I and makes an angle equal to o with the plane
of the base. Find the area of the lateral surface of the
parallelepiped if the area of its base is S.

. The angle between the diagonals of the base of the

rectangular parallelepiped is equal to «. The diagonal
of the parallelepiped makes an angle p with the plane
of the base. Find the altitude of the parallelepiped if
its volume is V.

. The bases of the parallelepiped are squares with a side

b, and all the lateral faces are rhombi. One of the ver-

115



10.

11.

12.

13.

14.

15.

16.

17.

116

tices of the upper base is equidistant from all the vertices
of the lower base. Find the volume of the parallelepiped.
Given the cube ABCDA,B,C.D,. M is the midpoint
of the edge 4,B; and the point N is the centre of the
face ABB;A,. Calculate the angle between the lines
MD and CN.

Given the cube ABCDA,B,C.D,. Calculate the angle
between the planes (BCB;) and (BC,M), where M is
the midpoint of the edge AD.

The edge of the cube ABCDA,B,C,D, isain length. Pis
the midpoint of the edge CC,, the point Q is the centre
of the face 44,B,B. The segment MN with its end-
points on the lines AD and A,B; cuts the line PQ and
is perpendicular to it. Find the length of the segment.
The diagonal of the lateral face of a regular triangular
prism, equal to ! makes an angle B with the plane of
the other lateral face. Find the volume of the prism.
An isosceles triangle with the vertex angle o and the
perimeter equal to p serves as the base of a right prism.
The angle between the diagonals of congruent (equal)
lateral faces of the prism, drawn from the same vertex,
is equal to . Find the volume of the prism.

A plane is drawn through the side of the lower base
of a regular triangular prism and the opposite vertex
of the upper base at an angle a to the plane of the base.
The area of the section of the prism formed by the plane
is equal to S. Find the volume of the cut-off triangular
pyramid.

Given the regular triangular prism 4BCA,B,C,, with
| BB, | = 2 | AC |. The points £ and F are the centres
of the faces 44,B,B and CC,B,B. The point P is the
centre of the base ABC and the point Q is the midpoint
of the edge CC,. Calculate the angle between the lines
EF and PQ.

The sides of the base of the regular triangular prism
ABCA,B,C, are a in length. The vertices M and N of
the regular tetrahedron M NPQ lie on the straight line
passing through the points C, and B, and the vertices P
and Q lie on the line 4,C. Find the volume of the prism.
The length of the side of the base of the regular triangu-
lar prism ABCA,B,C, is 3 and the altitude is 4 /3. The
vertex of the regular tetrahedron belongs to the segment
connecting the centres of the faces ABC and A,B,C,.
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The plane of the base of the tetrahedron coincides with
that of the face ABC of the prism, and the plane of one
of its lateral faces passes through the diagonal 4B,
of the lateral face of the prism. Find the length of the
edge of the tetrahedron.

The side of the base ABC of the regular triangular prism
ABCAB,C,isa. M and N are the midpoints of the edges
AC and A,B, respectively. The projection of the seg-

ment MN onto the line (BA4,) is equal to a/2 /6. Deter-
mine the altitude of the prism.

The length of each edge of the tetrahedron SABC is a.
Find the distance between (SA) and (BC).

. Find the volume of the regular triangular pyramid

whose lateral edge makes an angle o with the plane
of the base and is at the distance % from the middle
of the opposite side of the base.

The angle between the altitude of the regular triangular
pyramid and the apothem of the pyramid is o and
the length of the lateral edge of the pyramid is I. Find
the volume of the pyramid.

A perpendicular equal to b is dropped from the foot of
the altitude of aregular triangular pyramid to its lateral
face. Find the volume of the pyramid if the angle of
inclination of the lateral edge to the plane™of the base
is a.

Find the total surface of a regular triangular pyramid
from its given volume V and the angle o of inclination
of the lateral face to the plane of the base.

The base of a triangular pyramid whose all lateral
faces make the angle o with the plane of the base is a
regular triangle whose side is a in length. Find the
volume of the pyramid.

The bases of the truncated triangular pyramid
ABCA,B,C, are regular triangles whose sides are a and
b in length (@ > b). The lateral faces make the angle
with the plane of the lower base. Find the volume of
the polyhedron AB;C,CB.

The base of the pyramid SABC is a regular triangle
whose side is a in length. The edge SA4 is perpendicular
to the plane of the base. The lateral face SBC is at
an angle ¢ to the plane of the base. Determine the
area of the lateral surface of the pyramid if one of its
lateral faces is taken to be its base.
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Given the regular triangular pyramid SABC. A plane,
perpendicular to the lateral edge SA, is drawn through
the vertex C of the base of the pyramid. That plane
makes an angle whose cosine isequal to 2/3 with the plane
of the base. Find the cosine of the angle between the
lateral faces.

The line segment connecting the centre of the base of
a regular triangular pyramid with the midpoint of a
lateral edge is equal to the side of the base. Find the
angle between the adjacent lateral faces of the pyramid.
(a) In the trihedral angle SABC, £ ASB = §, L ASC =
=1y, £ BSC = a. The measure of the dihedral angle
at the edge AS is that of the angle A. Prove that cos o« =
= cos f cos y + sin P sin y cos A (the cosine theorem
for a trihedral angle); (b) find the magnitude of the
dihedral angle between the lateral faces of a regular
triangular pyramid if the magnitude of the dihedral
angle between a lateral face and the base is equal
to .

The altitude of a regular triangular pyramid is A in
length, and the magnitude of the dihedral angle formed
by the lateral faces is 2¢. Find the volume of the pyra-
mid.

A plane cuts a triangular pyramid into two polyhedra.
Find the ratio of the volumes of the polyhedra if it is
known that the secant plane divides three edges emanat-
ing from the same vertex of the pyramid in the ratios
1:2,1:2 and 2 :1, reckoning from the vertex.

The volume of a regular triangular pyramid is 1/6 of
the volume of the cube, the length of whose edge is
equal to that of the lateral edge of the pyramid. Find
the plane angle at the vertex of the pyramid.

The lateral edges of a regular quadrangular pyramid
are equal to ¢ and make an angle o with the plane of
the base. Find the area of the lateral surface and the
volume of the pyramid.

The side of the base of the regular quadrangular pyramid
SABCD is equal to 2 and the altitude is J/' 2. Find the
distance between the lateral edge SA and the diagonal
BD of the base.

Find the volume of a regular quadrangular pyramid,
the side of whose base is @ and the dihedral angle be-
tween the lateral faces is equal to a.
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Find the volume of a regular quadrangular pyramid the
length of whose lateral edge is equal to ! and the dihe-
dral angle formed by two opposite faces is equal to f.
In a regular quadrangular pyramid the side of the base
is a in length and the vertex plane angle is equal to the
angles of inclination of the lateral edges to the plane
of the base. Find the volume of the pyramid.

The base of the pyramid MABCD is a rhombus ABCD,
whose diagonal [AC] is a in length. The straight line
(DM) makes an angle oo with the plane of the base of
the pyramid, and |DM | = k. Find the area of the
total surface of the cube whose volume is equal to that
of the given pyramid, if it is known that the angle be-
tween the lines (DM) and (M B) isequal to y and /. MBC =
= / ABM.

The base of the pyramid is a rhombus whose diagonals
are 6 m and 8 m in length. The altitude of the pyramid
passes through the point of intersection of the diagonals
of the rhombus and is 1 m in length. Find the area of
the lateral surface of the pyramid.

The base of the pyramid SABCD is a square. The edge
SA is perpendicular to the base. The area of the base
is m times as small as the lateral surface. Find the
angles of inclination of the faces SCD and SBC to the
plane of the base.

The base of the quadrangular pyramid S4ABCD with
vertex S is a thombus and the altitude SO of the pyra-
mid passes through the point of intersection of the dia-
gonals of the rhombus. Calculate the dihedral angle
formed by the lateral face SAB and the base of the
pyramid if £ ASO = & and £ BSO = B.

The dihedral angle at the lateral edge of a regular quad-
rangular pyramid is equal to . Calculate the angle
between the lateral face of the pyramid and the plane
of the base.

In the regular quadrangular pyramid SABCD, the
angle between the lateral edge S4 and the plane of the
base ABCD is equal to the angle between the edge S4
and the plane of the face SBC. Calculate that angle.
When the lateral surface of a cylinder is developed, it
becomes a rectangle whose diagonal is equal to ¢ and
makes an angle o with the base. Find the volume of
the cylinder.
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The plane passing through the centre of the lower base
of the cylinder at an angle a° to the plane of the base
cuts the upper base along the chord, b in length, subtend-
ing the arc of B°. Find the volume of the cylinder.

The area of the total surface of the cone is S and the
angle at the vertex of the axial section is «. Find the
volume of the cone.

A regular triangle, whose side is a in length, is inscribed
into the base of acone. The section formed by the plane,
passing through the vertex of the cone and a side
of the triangle, and the surface of the cone is a regular
triangle. Find the volume of the cone.

plane drawn through the vertex of the cone cuts its
base along the chord whose length is equal to the
radius of the base. Determine the ratio of the volumes
of the resulting portions of the cone.

section is drawn in a given cone through its vertex
and at an angle f to the plane of its base. The plane of
the section is at a distance a from the centre of the
base of the cone. Determine the total surface of the
cone if the greatest angle between the generating lines
of the cone is equal to a.

Given the right triangular prism 4ABCA,B,C; in which
|AC | = 6, | AA, | = 8. A plane is drawn through the
vertex A cutting the edges BB, and CC, at points M
and N respectively. In what ratio does the plane divide
the volume of the prism if it is known that | BM | =
= | MB, | and AN is the bisector of the angle CAC,?

Problems on Combinations of Polyhedra
and Solids of Revolution

The volume of a regular triangular prism is equal to V.
A plane, cutting off a pyramid of volume W from the
prism, is drawn through the vertex of the base, parallel
to the opposite edge of that base, at an angle a to the
plane of the base. Find the altitude of the prism if
V> 3w.

A cube, with an edge equal to a, is inscribed into a
regular quadrangular pyramid so that its four vertices
are on the lateral edges and the other four vertices
are on the base of the pyramid. The lateral faces of



the pyramid make an angle o with the plane of the
base. Determine the volume of the pyramid.

. The base of the pyramid SABC is an isosceles triangle
ABC, | AB | = | AC | = a, £ ABC = ¢. The straight
line (4S) makes an angle o with the plane of the base
of the pyramid, the plane of the lateral face (BSC)
makes an angle f with the same plane, and /. SAC =
= / SAB. Find the volume of the pyramid KSLC
if it is known that the points K and L belong to the
edges [AS] and [BS] respectively and the area of the
triangle KSL is in the ratio of 4 : 25 with the area of
the triangle ABS.

. A cylinder is inscribed into a regular quadrangular
pyramid with the vertex plane angle &, the lower base
of the cylinder lying in the plane of the base of the
pyramid and the circumference of the upper base touch-
ing the lateral faces of the pyramid. Find the volume
of the pyramid if it is known that the altitude of the
cylinder is half that of the pyramid and the radius of
the base is equal to r.

. Determine the area of the lateral surface of the cone
inscribed into a regular triangular pyramid if the late-
ral edge of the pyramid is / in length and the lateral face
of the pyramid makes an angle o with the plane of the
base.

. Find the volume of the cone inscribed into a regular
triangular pyramid with a lateral edge I and the vertex
plane angle «.

. A truncated cone is inscribed into a regular triangular
truncated pyramid with the base dihedral angle «.
Determine the lateral surface of the cone if the apothem
of the lateral face of the pyramid is equal to the sum
of the radii of the bases of the cone and the radius of the
smaller base of the cone is equal to r.

. The base of the pyramid is a rhombus with a side a and
the acute angle a. A cone whose generatrix is at an
angle @ to the plane of the base, is inscribed into the
pyramid. Find the volume of the cone.

. A right prism whose base is a rhombus is circumscribed
about™a sphere. The longer diagonal of the prism makes
an angle with the plane of the base which is equal to a.
Calculate the acute angle of the rhombus.
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In the rectangular parallelepiped the lateral edge is ¢
in length and the sides of the rectangle serving as the
base are a and b in length. Through one of the vertices
of the upper base of the parallelepiped and the opposite
vertex of the lower base a plane is drawn parallel to the
diagonal of the rectangle serving as the base. Find the
radius of the sphere touching the indicated plane and
the plane of the lower base of the parallelepiped at the
point of intersection of its diagonals.

In a regular triangular pyramid, the vertex plane angle
is equal to o and the altitude of the pyramid is A in
length. Find the radius of the sphere circumscribed
about the pyramid.

The base of the triangular pyramid, whose altitude is
equal to &, is a right triangle with a leg equal to a and
the acute angle adjacent to that leg equal to a. The ver-
tex of the pyramid is mapped into the vertex of the
right angle of the triangle. Find the radius of the sphere
circumscribed about the pyramid.

Determine the volume of the ball circumscribed about
a regular triangular pyramid the side of whose base
is equal to @ and the lateral edges make an angle a
with the plane of the base.

The base of the pyramid is a rectangle with the angle
o between the diagonals. The lateral edges are at an
angle ¢ to the plane of the base. Find the volume of
the pyramid if the radius of the circumscribed ball
is R. The centre of the ball is outside the pyramid.
Find the altitude of a regular quadrangular pyramid if
it is known that the volume of the ball circumscribed
about the pyramid is equal to V and the perpendicular
dropped from the centre of the ball to its lateral face
makes an angle o with the altitude of the pyramid.
The centre of the ball is inside the pyramid.

The radius of the ball circumscribed about a regular
quadrangular pyramid is in the ratio 3 : 4 with the
side of the base of the pyramid. Calculate the angle
between the lateral face and the plane of the base of
the pyramid.

The base of the pyramid SABCD is a rectangle ABCD
in which (4B) || (CD), (BC)||(4D), |AB| =3,
| BC | = 4. All the lateral edges of the pyramid make
equal angles with the plane of the base. Calculate the
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angle between the lines (BS) and (CS) if the radius of
the sphere circumscribed about the pyramid is equal
to 6.5.

The base of the pyramid is an isosceles triangle whose
lateral sides are equal to b and the angle between them
is equal to o. Two lateral faces of the pyramid passing
through equal (congruent) sides of the base are perpen-
dicular to the base and the third face is at an angle a
to the base. Find the radius of the ball inscribed into
the pyramid.

The altitude of a regular triangular pyramid is % in
length and the radius of the circle inscribed into the
base of the pyramid is equal to r. A secant plane is
drawn through the midpoints of two sides of the base
and the vertex of the pyramid. Find the radius of the
sphere touching the base of the pyramid at the point
of intersection of its medians and the secant plane.
Each edge of the tetrahedron is 1 in length. Find the
radius of the sphere touching all the planes of the faces
of the tetrahedron.

The base of the pyramid is a rhombus with a side a and
the acute angle .. Each base dihedral angle is equal
to ¢. Find the volume of the ball inscribed into the
pyramid.

The side of the base of a regular quadrangular pyramid
is equal to a and the vertex plane angle is equal to a.
Find the area of the surface of the sphere inscribed into
the pyramid.

The angle between the planes of the base and of the
lateral face of a regular quadrangular pyramid is equal
to B and the area of the sphere inscribed into the pyra-
mid is equal to S. Find the area of the lateral surface
of the pyramid.

In a regular quadrangular pyramid each vertex plane
angle is equal to f§ and the radius of the ball touching
all the five planes of the faces of the pyramid is equal
to R. Find the volume of the pyramid.

A regular quadrangular truncated pyramid is circum-
scribed about a ball, the sides of the base of the pyramid
being in the ratio m : n. Determine the ratio of the
volumes of the pyramid and the ball.

Find the length of the radius of the ball touching the
base and the lateral edges of a regular quadrangular
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pyramid in which the side of the base is a in length
and the vertex plane angle is equal to 2f.

A ball with radius R is inscribed into a cone. From the
centre of the ball the generatrix of the cone is seen at
an angle a. Find the volume of the cone.

The sphere touches the plane of the base of a right cir-
cular cone at its centre. The plane making an angle y
with the altitude of the cone touches the sphere and
intercepts on the circumference of the base an arc with
an acute central angle o. Find the radius of the sphere
if the radius of the circumference of the base of the
cone is r.

Find the ratio of the volume of a right circular cone
to that of the ball inscribed into the cone if it is known
that the generatrix of the cone makes an angle o with
the plane of the base of the cone.

Find the angle between the generatrix and the base of
the truncated cone whose total surface is twice the
surface of the ball inscribed into it.

A truncated cone is circumscribed about a ball, the
area of the lower base of the cone being a times as
large as the area of its upper base. How many times
is the volume of the truncated cone greater than the
volume of the ball?

The ratio of the altitude of the cone to the radius of
the ball circumscribed about it is equal to ¢. Find the
ratio of the volumes of these solids.

A ball is inscribed into a regular quadrangular pyramid.
The apothem of the pyramid, equal to ! makes an
angle oo with the base of the pyramid. A cylinder is
inscribed into the ball. Determine the ratio of the
volume of the pyramid to that of the cylinder if the
altitude of the cylinder is equal to double the radius
of its base.

A regular triangular pyramid is inscribed into a ball
so that the plane of the base of the pyramid divides the
radius of the ball perpendicular to it in the ratio 3 : 7,
reckoning from the centre of the ball. Find the volume
of the cone inscribed into the pyramid. The radius of
the ball is equal to R.

. A regular quadrangular pyramid is inscribed into a

sphere of radius R, the base of the pyramid bisecting
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the radius perpendicular to it. Determine the area of
the surface of the sphere inscribed into the pyramid.
A right triangle A BC serves as the base of a right prism.
The radius of the circle circumscribed about it is equal
to r and the leg AC subtends an arc equal to 2f°. Through
the diagonal of the lateral face passing through the
other leg BC a plane is drawn at right angles to that
face, forming an angle B° with the plane of the base.
Determine the area of the section.

The base of a right prism is a rhombus with the acute
angle o, the altitude of the prism being longer than
the longer diagonal of the base. At what angle to the
plane of the base must we draw a secant plane to obain
a square in the section?

An isosceles trapezoid with the acute angle a circum-
scribed about a circle with radius r serves as the base
of a right prism. Through the lateral side of the lower
base and the opposite vertex of the acute angle of the
upper base a plane is drawn forming a dihedral angle
equal to f with the plane of the lower base. Determine
t}lle area of the section of the prism formed by that
plane.

In the regular triangular pyramid SABC the side of
the base ABC is equal to a and the vertex plane angle
is equal to . Find the area of the section drawn through
the vertex S parallel to the edge [AB] and forming an
angle y with the plane of the base 4BC.

The apothem of a lateral face of a regular triangular
pyramid is % in length. The pyramid is cut by a plane
equidistant from all its vertices. Find the area of the
resulting section if the lateral edge of the pyramid
makes an angle f with the plane of its base.

A lateral edge of a regular quadrangular pyramid is !
in length and the angle between the plane of a lateral
face and the plane of the base is equal to f. The pyramid
is cut by a plane equidistant from all its vertices. Find
the area of the resulting section.

The side of the base of a regular quadrangular pyramid
is a in length and its lateral edge makes an angle o
with the plane of the base. The pyramid is cut by a
plane passing through a vertex of the base at right
angles to the lateral edge emanating from the opposite
vertex of the base. Find the area of the section.
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A lateral face of a regular quadrangular pyramid is at
an angle o to the base. The radius of the sphere inscribed
into the pyramid is equal to r. Find the area of the
section of the pyramid passing through the centre of
the inscribed sphere parallel to the base of the pyramid.
In the regular quadrangular pyramid SABCD the
side of the base ABCD is a in length and the altitude is

2a V' 2 in length. A plane is drawn through the vertex
A parallel to the diagonal BD of the base of the pyra-
mid so that the angle between the line AB and that
plane is equal to n/6. Find the area of the section.
The base of the regular quadrangular pyramid SABCD
is a square ABCD whose side is a in length. The planes
of the lateral faces make an angle o with the plane of
the base of the pyramid. Points £ and F are taken on
the sides AD and BC such that | AE | = 2a/3 and
| CF | = a/3. The plane drawn through those points
makes an angle f with the plane of the base. Find the
area of the resulting section.

Among all regular triangular prisms with the volume
V find the prism with the least sum of the lengths of
all the edges. How long is the side of the base of that
prism?

A cylinder is inscribed into a cone with the altitude
H and the radius of the base R so that one of its bases
lies in the plane of the base of the cone and the cir-
cumference of the other base belongs to the lateral
surface of ‘the cone. What should the altitude of the
cylinder be for the volume to be the largest? Find
that greatest value of the volume.

Find the radius r of the base and the altitude % of the
right circular cone inscribed into a sphere with radius R
so that its volume is the greatest.

Find a cone of the least volume circumscribed about a
ball with radius R.

Find the altitude of the cone of the least volume cir-
cumscribed about a half-ball with radius R (the centre
of the base of the cone is at the centre of the ball).

A regular quadrangular pyramid is inscribed into a
sphere with radius R so that all its vertices belong to
the sphere. What should the altitude of the pyramid
be for its volume to be the greatest? Find that greatest
value of the volume.
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A regular hexagonal prism is inscribed into a cone
with the altitude H and the radius of the base R, so
that one of its bases lies in the plane of the base of the
cone and the vertices of the other base belong to the
lateral surface of the cone. What should the altitude
of the prism be for its volume to be the greatest? Find
that greatest value of the volume of the prism.

The angle between a lateral edge and the altitude of a
regular triangular pyramid is equal to ¢. A cylinder
is inscribed into the pyramid whose radius and the
altitude are of the same length r. One of the bases of
the cylinder has one point in common with each lateral
face of the pyramid and the other base lies in the plane
of its base. At what value of ¢ is the volume of the
pyramid the smallest?

A regular triangular pyramid is inscribed into a right
circular cone, the apothem of the lateral face of the
pyramid being equal to % in length and the lateral face
itself making an angle o with the plane of the base.
Through one of the lateral edges of the pyramid a plane
is drawn cutting the conical surface. Find the area
of the section of the cone formed by that plane if it
is known that that area is of the greatest value possible.

Volumes of Solids of Revolution

. A triangle rotates about the side which is a in length.

Determine the volume of the solid of revolution if the
adjacent angles are equal to o and .

Two isosceles triangles ABC and ADC lie on the same
side of the common base AC equal to b. Find the volume
of the solid produced by the rotation of the figure
ABCDA about the base AC if 4/ ACB = o, /. ACD =
=P (@ >P).

. The smaller side of the parallelogram is a in length,

the acute angle of the parallelogram is equal to a and
the angle between the smaller diagonal and the larger
side is equal to f. Find the volume of the solid produced
by rotating a parallelogram about its larger side.

. The figure bounded by the area of the parabolas y = a?

and y?> = x rotates about the abscissa axis. Calculate
the volume of the resulting solid.
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Find the volume of the figure resulting from rotation
about the axis of ordinates of a curvilinear trapezoid
whose boundary is defined by the equations y*> = z,
y=0,y=1and z = 0.

. Find the volume of the figure resulting from rotation

about the axis of abscissas of a curvilinear trapezoid
whose boundary is defined by the equations (a) y =
=|lz—1]—2], 2=0, =3, y=0; (b) y=
y=z|lz—2|,2=0,2=3,y=0; d) y =2 —
—3le|l+2,z=—1,z=2y=0;()y=V1-z
z=-3, z=1, y =0.

. The square rotates about an axis lying in its plane

and passing through only one of its vertices. At what
position of the square relative to the axis is the volume
of the resulting solid of revolution the greatest?

Chapter 9
MISCELLANEOUS PROBLEMS

9.1.

1.

L
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Problems in Algebra

Given two sets: M, = {1, 2} and M, = {a, 5}, a €R.
Find the sets A =M, UM, and B = M,  M,.
Prove that the product of three successive natural num-
bers is a multiple of 6.

Prove that the number 1110987654312 cannot be a
square of an integer.

Suppose m and n are coprime natural numbers (n > m).
Find the greatest common divisor, different from unity,
of the numbers 3n — m and 5n + 2m if it is known to
exist.

. There are young men and women in a group of gymnasts,

the men constituting more than 94%. What can be the
smallest number of gymnasts in the group?
Prove that log, 5 is not a rational number.

. Suppose a, b and ¢ are integers. Determine the sign of

a if it is known that the numbers (—6)2"+2q27+3p2"~1cn+5
and (—7)**q"p*"*c"-3 n € N are of the same sign.

. Calculate a* + b* 4 ¢* knowing that a +b 4+ ¢ =0

and a? + b2 4+ ¢ = 1.
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Prove that
() 24224304 2= ROEREED ey,

D) 5+ otot =222 e
Find the sum

(8) Sp=1+3+64 ... +20ED nen;

b S, =1®+22+3+4+...+n% neEN.

The product of two positive numbers is equal to unity.
Prove that the sum of those numbers is not smaller
than 2.
The product of n positive numbers is equal to unity.
Prove that the sum of those numbers is not smaller
than n.

Suppose z,, z,, Z3, ..., X, are positive numbers,
Zit+ Tt 23+ T S
Prove that " >/ Ty ZoZy .. . Ty

Prove the inequality n!<C ( n—é—i )n, neN, n>2,
Suppose x,, Zy, Zg, ..., Zn (n € N) are numbers of

the same sign exceeding —1. Prove that (1 + z;) X
X(1+a)... 0 +z)=21 4242, + ...+ z,.

. . 1 3 5 99 1
Prove the inequality: (a) -5 ... 0 <75’
1 3 5 2n—1 1
b) 57 F - TS Vit ' n€N;

1 3 5 99 1
© 2 7% 1w~
Prove that for any natural » > 1 the following inequal-
ity holds true:

1 1 1 13
Tz bt T
Prove that | sip na | < n | sin a | for any n € N.
Prove that (a) tan (—314°) >2 ; (b) IS <.
Suppose D, and D, are the domains of definition of the
functions f; (z) and f, (z) respectively. (a) Find the
domain D of the function f (z) = f, (z) + f, (2);

(b) Under what condition is the equality D = D, | D,
satisfied for the domain of the function f (z)?
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Find the value of f (2) if the equality 2f () — 3f (1/z)=
= z? is satisfied for any z 5= 0.

What curve is the graph of the function y = f (f (f (x)))
if f(x) =101 —z)?

Given the graph of the function y = f (z) (see p. 269,
Fig. 23). Construct the graph of the function (a) y =
= [f(.’l:) Iv

(b)y——(lf(x)l-l-f(x)) (C)y——(lf(x)l —1(2);
dy=7f(z]),@€y=7(=lz].

The function f (z) increases on the interval (a; b). Can
we assert that the function ¢ (z) = f* () increases on
the same interval?

The functions f, (z) and f, () are decreasing on the
interval (a; b). Prove that the function ¢ (z) = f, () +
+ f, (z) decreases on the interval (a; b).

The function f (z) is periodic with period T'. Prove that
the number 7; = nT, where n is any integer, n == 0,
is also a period of that function.

The functions f; (z) and f, () are defined on the entire
number axis and are not periodic. Can the function
¢ () = f; () f2 (x) be periodic?

The function f (z) is defined on the interval (—a; a).
Prove that (a) the function ¢, (z) = f (z) + f (—=2)
is even; (b) the function ¢, (z) = f () — f (—=z) is odd.
Prove that every function f (z) defined on the symmetric
interval (—a; a) can be represented as the sum of an
even and an odd function.

Prove that an even function cannot be strictly mono-
tonic.

Find the function which is defined on the entire number
axis and is even and odd at the same time.

The functions f, (z) and f, () are defined on the symmet-
ric interval (—a; a). (a) Prove that if f, (z) and f, (z)
are even functions then the functions ¢, (z) = f; (z) &=
+ f, () and @, (&) = 1 (2) /s (2) are even;

(b) prove that if f, (z) and f, (z) are odd functions then
the function ¢ (a:) =fi@) +fy(@) is odd and
94 (%) = f1 (2) 5 (z) is even;

(c) suppose f, (z) is an odd function and f, (z) is an
even function. Prove that ¢; (z) = f, (z) f, (z) is an
odd function.



33. Prove that the even function f (z) does not have an
inverse.

34. Prove that the periodic function f (x) does not have an
inverse.

9.2. Limit of a Function. Continuity

Find the following limits:

. z2—1 . 3—1
blim e 2 I o
3. lim zt — 622 —27
e EE R R
. 4 1—3z+a2 \-1 x4t —1
4. ilr?[( 22—zl 1—23 ) +3 28— 21 ]
. 3z 22241
5. lim . .
Xr00 ( 5z—1  224-2zx—1 )
. 23 z2
6. lim ( - :
o\ 32 3z—l—2)
. 2sin2z+sin z—1
7. xl_,l,?/ls 2sin?z—3sinz+41 *
. 1—cotdz
8. x&y};]/lb 2—cot z—cot3z *
2__Vz —V3z—2
9. lim Z=V2 10, lim 2=¥%==2
x—+1 V;"‘i x+2 z2—4
11, lim Y3=2=2
x1 2—z—1
12, lim YE=U=Vab 50, 4,
xX—>a
13, lim Y2=L | 14, lim YiE=—Vizz
xs1 YV z—1 x>0 Y1+z— Vi—z
. Vat+Vz ! 2y az -1
15. i{gl{[( %/c_t—{/; ) _z3/4—a1/4x‘/2+a1/211/‘—43/4] .

_..]/'2'1084 a}s
. 2% 2x_6
16. lim 5= e
. sin (z —n/3)
17. xl_fga 1—2cosz
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. tan®z—3tanz . A—4sinz
18. 1 i el
8 x—»Jl"[I/IB cos ($+ T[/6) : 19. x},ln/ﬁ cos 3z

20. lim si;lez . 21, lim sin 8z cot 3z.

x-+0 x>0

. (224-3z—1) tanr . asta2—2
2 - B limmeTny

. coszsinzr—tanzx . 1 —cos 5z
24. iirg z28in z . 25, }CE‘I)I_—SH——

.. 1—cos7(n—uz)
26. llm——m—, n:l, 2-

x—+J
27. lim sin (a4 2z) —2 sin (a4 ) 4-sina
. x-’O xg L]
28. lim Vi+tanz— Y 1+sinz
) x-0 = :
. Yif—y1—2z
29, alcil(l)l i .

30. Find the points of discontinuity of the function
z z2—1, if 2540,
@ 1@ =55 0 1@={" it oo,

(©) f@@=1+2"% (d) f(z)=(sinz)/z; (e) f(z)=
=z/cosx; (f) f(z)=[x].

31. Given the function f(x)=5) z—1+2}) 1—az. Is this
function continuous at the point z=1?

32. At what value of 4 is the following function continuous
at the point z = 2:
2 —

f(z)={ — 2 , if z£2,
A, if z=2?

9.3. The Derivative of a Function

1. Can we assert that the function ¢ (z) = f, () + fa (z)
does not have a derivative at the point z = z, if (a)
the function f, (z) possesses a derivative at the point
z, and the function f, (x) does not possess a derivative
at that point; (b) neither of the functions f; () and
f2 (x) has a derivative at the point x¢?

2. Can we assert that the function ¢ (z) = f, (2) f, (x)
does not have a derivative at the point z = z, if (a)
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the function f, (x) possesses a derivative at the point
zo and the function f, (z) does not possess a derivative
at the point zy; (b) neither of the functions f, (z) and
fs (x) possesses a derivative at the point z,?

. Prove that the derivative of an even differentiable

function is an odd function.

. Prove that the derivative of an odd differentiable

function is an even function.

. Prove that the derivative of a differentiable periodic

function is a periodic function with the same period.

. The differentiable function f (z) is such that f (0) = 0.

Prove that

lim 12 _ ¢ 0).

x>0

. The differentiable functions f (.7:) and g (z) are such

that f(0) = g (0) = 0, with g’ (0) 5= 0. Prove that

=@ _ ()
alclf? g@ 20 °

. Can we assert that if the function f (z) possesses a

maximum at the point z,, then in a certain, sufficiently
small, neighbourhood of that point, to the left of the
point xz¢, the function f (z) increases and to the right
of that point it decreases?

. Find all the values of a for which the function f (x)

does not possess critical points:
(a) f(z)=(a2—3a2) (cosz%— sinZ%)
+(a —1) z +sin 1;
. sin (w4 =z)
(b) f(2) = (a* —6a+8) =y
+ (a2 —Ta+12) (z—2V2);
(¢) f(z)=(4a—3)(z+1n5)+2(a—7)cot - sinz =,
Find the critical points of the function
y=2 sin2 = —|— sin + —;—,
whose coordinates satisfy the inequality z? — 10 <<
< —19.5z.
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11.

Find the critical points of the function

f (x) = 4a® — 62® cos 2a + 3z sin 2asin6a + } In (2a — a?).

12,

13.

14.

15.

16.

17.

18.

19.

9.4.
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Does f (z) decrease or increase at the point x = 1/2?
Does f (x) decrease or increase at the point z = sin 8
if f(x) = —2%3 + 2?sin 1.5 — z sin a sin 2a —

— 5 arcsin (a®> — 8a + 17)?

Find all the values of a for which the function

F@ = (4 EE 1) #—3e 415

{—a

decreases for all z € R.
Does the parameter b possess any values for which

the function f (z) = (1 — inb—Tld;—_bZ) 3+52+V6 is

increasing at every point of its domain of definition?
Find the difference between the greatest and the least

value of the function y = cos x —I—-;— cos 2z — %cos 3z.
On the graph of the function y = —;—,2_.1:ln z, where
z € [e71-%; 4 o0), find the point M (z, y) such that the
segment of the tangent to the graph of the function at
that point, intercepted between the point A and the
y-axis, is the shortest.

At what point M (x, y) of the graph of the function
y = e7IxI should a tangent be drawn for the area of the
triangle bounded by that tangent and the coordinate
axes be the greatest?

Prove that the curve y = z* + 32®> 4+ 2z does not
meet the straight line y = 22 — 1 and find the distance
between their nearest points.

At what value of ¢ does the equation ax? = In z possess
a single root?

Integral Calculus. Miscellaneous Problems

. Given the continuous periodic function f (z), z € R.

Can we assert that the antiderivative of that function
is a periodic function?



. The function f (z) is defined and continuous on the
interval [—a; al, with f(z) = —f (—z) for any z €
€ [—a; al. (a) Prove that every antiderivative F (z)
of the function f (z) is an even function;

a

(b) prove that S f(z)dz=0,

(c) calculate the integral |\ z°(arcsin z)? dz.

.LM"‘

. The even function f (z), f () == 0, is defined and contin-
uous on the interval [—a; a]. Which of its antideriva-
tives F (z) is an odd function?

. Ignder what condition does the value of the integral

g f (z) dx coincide with the value of the area of the

a

curvilinear trapezoid bounded by the curves y = f (),
z=a, z=0>b, y=0?

. The functionsy =1 + coszand y = 1 + cos (z — a),
where 0 << a << n/2, are given on the interval [0; =].
At what value of o is the figure bounded by the curves
y=1+4cosz, y=1+ cos (x—a),z = 0, equivalent
to the figure bounded by the curves y = 1 + cos (z—a),
y=1, z=n?

. At what values of the parameter a > 0 is the area of
the figure bounded by the curves z = a, y = 2%, y =
= 4" larger or equal to the area bounded by the curves
y=2*y=0,2=0, r =a?

. Find the critical points of the function f (z) if

x

(a) f(z) =14z S (In2¢+21n ) dt.

1
®) f@=z—Inz+ :f (%——2—200342) dz.
2

. On the interval [5m/4; 4n/3] find the least value of
the function
x
F@@)= | @sint+4cost)ar
571/4
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10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
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On the interval [5n/3; 7n/4] find the greatest value
of the function

x
F(z)= S (6 cos u— 2 sinu) du.
51/3
For the function f(z) =1 4+ 3*In 3 find the antide-
rivative F (z), which assumes the value 7 for x = 2.
At what values of x does the curve F (z) cut the abscissa
axis?
Prove the identity cos 2z = cos? x — sin® z by term-
wise differentiation of the identity sin 2x=2 sin x cos z.
At what positive values of @ do the graphs of the func-
tions f(z) =a |z + 1| and ¢ (z) = z + a% | z | meet
at three distinct points?
The graph of the function y = 1 — 3z% intersects at
two points a straight line passing at an angle ¢ to the
z-axis. Calculate the abscissa of the midpoint of the
segment connecting the orthogonal projections of the
points of intersection onto the r-axis.
Find all the values of ¢ for which the sum of the squares
of the roots of the equation z% 4 (sing — 1)z —

— -;— cos? ¢ = 0 is the greatest.

At what values of the parameter ¢ belonging to the
interval [m; 11:%/8] do the roots of the quadratic equa-
tion 22 + 27 sin 2a z + cos 2a = 0 exist and are
distinct?
At what values of the parameter a belonging to the
interval [7n/6; 7Tn/4] does the quadratic trinomial
(cot @) 22 + 2/ tan a z + tan @ assume only positive
values?
Find all the values of the parameter o« for which
the quadratic function (sin a) 2* 4+ (2cos a) z +
+ (cos a + sin «)/2 is the square of a linear function.
Find the values of b for which the equation
2 log, o5(bx + 28) = —logs (12 — 4z — 2®) has only
one solution.
At what values of a is any solution of the inequality
logs (22 —3z-17)
Tlog e AD |
also a solution of the inequality 2% + (5 — 2a) z<C 10a?



20.
21.

22,

23.

24,

25.

26.

Are the inequalities f (z) > g (z) and f' (z) > g’ (2)
equivalent?
Solve the following systems of equations:
(a) 2arctanz 4 y—e*=3,
{ 4arctanz—y— 2e*=0,
arctanz +y-+e*=3a41;
() (2z+Iny2—2sinz=0,
{ 3x—2Iny2+4sinz=17,
z-+1Iny?2+4sinz=3a-+ 2.

Depict on the coordinate plane zOy the set of points
whose coordinates satisfy the equation

24+ By + 1) 2+ (4y + y*) = + Sy — 5 = 0.

Find the numbers 4, B and C such that the function of
the form f () = Ax* 4+ Bx -+ C satisfies the conditions
1

1) =812 + (2 =33 [/ () dz = 5.
0

Find the numbers K, L and M such that the function

of the form f(z) = Ka? +L + Mz satisfies the con-
0
ditions £ (2) = 23, /' (0) =4 andS (z — 1) fl@)dz = 3.

Find the numbers P, Q and R such that the function of
the form f (z) = Pe* + Qe* + Rz satisfies the condi-

ll‘l4

tions f(0) = —1, ' (In 2) = 31, S[f (z) — Rzl dz =
0

=19.5.

Use graphical means to solve the system
r+y<2,
z+y=>1,
z>=0,

y =0,

for which the sum z = 2z + 3y assumes the greatest
value,
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27.

28.

29.
30.
31.

32.

33.

34.

35.

Find the least value of the function z® + 22y + 3y +
+ 2z — 3y — 5. At what values of z and y can this
least value be attained?

Construct the graph of the function
f(z)—_hm il Ix_,, , >0, neN.

Find the sum of the roots of the equation cos 4x + 6 =
= 7 cos 2z on the interval [0; 314].

Find the sum S; (z) =14+ 2 +2* 4+ ... + 2*® and
then the sum S, (z) =2z + 42®* + ... + 2n-2**"L.
A point 4 (z;, y,) with the abscissa z; = 1 and a point
B (z,, y,) with the ordinate y, = 11 are given in the
rectangular Cartesian system of coordinates Ozy on the
portion of the curve y = z?2 — 2z + 3 lying in the
first quadrant. Find the scalar product of the vectors
— —

0OA and OB.

In the rectangular Cartesian system of coordinates
Oxy a tangent is drawn to the curve y = 8/2% at the
point 4 (T, Yo), where z, = 2, and the tangent cuts
the x—ax1s at a pomt B. Find the scalar product of the
vectors AB and OB

At what values of ¢ do the vectors p = (¢ log, z;—6; 3)
and q = (log, z; 2; 2c¢ log, ) make an obtuse angle
for any z € (0; o0)?

Find all the values of o for which the vector a=
=(1; 3; sin 2a) makes an obtuse angle with the

z-axis if it is known that the vectors b=(tana;
—1; 2]/sin%) and ¢ (tan o; tan a;——-3———)

‘/sin %
are mutually orthogonal.

Tangents are drawn from the point A4 (1, 6) to the

circle z? + y? + 22z — 19 = 0. Derive the equations
of those tangents.




ANSWERS, HINTS, SOLUTIONS

Chapter 1

RATIONAL EQUATIONS, INEQUALITIES
AND FUNCTIONS IN ONE VARIABLE

1.1. Linear Equations and Inequalities in One Variable.
A Linear Function

1. {1}. 2. {—7}.3. (@) {c | c € R}; (b) B. 4. {a} for a 5= 0; {c | ¢ € R}
for a = 0. 5. {a 1 2} for a 5= 2; {c | c € R} for a = 2.

6. { “zﬁ";g } for a€(—o0i —3) U (=3 3) U (3 w);
fclc€R}fora = —3; & fora = 3. 7. (a) (3/7; ); (b) (—oo; —5/4);
(¢) (—oo; —T); (d) [3 + 2 V/3; o). 8. (a) [1/a; o) for a € (—oo; 0),
(—o0; o0) for a = 0, (—oo; 1/a] for a € (0; ); (b) (—oo; 1/a) for
a € (—oo; 0), & for a = 0, (1/a; o) for a € (0, l; 9. () (1/3; o);
(b) (—oo; m/2); (b) (—1; 21; (d) &. 10. {1; 2; 3; 4}. 11. (a) {—2; 4}.
A By the definition

x——i, if x—‘1>01
—(z—1), if z—1<0.

Therefore, the equation has two solutions: z — 1 = 3, z; = 4 and
—(z—1) =3, zg = —2;

12, (a) {3 — a;.3 -+ a} for a € [0; o), & for a € (—oo; 0);

(b) {a — 2; a + 2} for a € (—oo; o). 13. (a) [3; o0); (b) (—oo; 3I;

(c) {1.5}. 14. { — %; 4} . A The original equation is equivalent to

the equation |2z —1|2=|z+ 3|2 or 2z —1)2 — (z + 3)2 =
=2z —14+2+3)@2r—1—2z—3)=0. Solving it, we find
the roots. 15. (—oo; o) for a=4; {a/2 42} for a =+ 4.
16. (a) {—4.5; 4.5}). A 1st method. We seek the solution of the equa-
tion on three intervals: (1) —oo <z << —4, 2) —4 <z <4,
(3) 4 <<z << co. On the first interval the equation has the form
—(z — 4) 4+ (—1) (z + 4) = 9, whence we find that 2z = —9,
z = —4.5 is a root of the equation. On the second interval the equa-
tion has the form —(z — 4) +§(z + 4) = 9, whence weget 8 = 9
(a false equality) and, therefore, on the second interval the equation
has no roots. For the third interval we have (z — 4) + (z + 4) = 9 or
2z = 9; z = 4.5, the second root of the equation.

2nd method. The function f(z) = |z — 4| + |z + 4| is even.
Suppose x, = 0 is a root of the equation. Then —z, is also a root of the
equation. Solving now the equation —(z — 4) 4 (z 4 4) = 9 on the
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interval 0 << z < 4 and the equation (z — 4) + (x + 4) = 9 on the
interval 4 << z << o, we find the root z = 4.5. Since the function
f (z) is even, the second root of the equation is z = —4.5; (b) [—4; 4];
(¢) (—oo; —41; (d) [4; oo]. 17. {—6; 2}. 18. {0}. 19. (a) (—oo; o) for
a € (—o0;0), (—oo; —a) U (a; o) for a € [0; ). A For a € (—oo; 0)
the inequality holds for any real z since | 2 | > 0 (by the definition
of the absolute value of a number). For nonnegative values of a the
original inequality is equal to the collection of the inequalities

I'—z>a, if z<0;
z>a, if 2>0;

if we unite the solutions of the collection obtained, we get a complete
solution of the inequality; (b) (—oo; o0); (¢) (—oo; 0) U (2; o0).
20. (a) & for a € (—oo; 0]. (—a; a) for a € (0; ). A For positive
values of a the original inequality is equivalent to the system of
inequalities

{—x<a,
r<<a,

or to the inequality —a <z <a; (b) &; (c) (—4; 0).

21. (a) (—oo; oo); (b) [1.5; o). 22. [—0.75; 2.5]. 23. (—oo; —2) U
U (3; o). 24. (2; ). 25, (—oo; —3) U (—1; 0]. 26. (a) {2}; (b) {4.3}
27. {—3}. 28. (a) (1; o0); (b) (—oo; 1). 29, (—oo0; —2) U(—2;2) U
U(@2; o); (1/(m® —4) (x— | m|). 30. @ Consider the function
F (z) = k (kz + b) + b.

31 32, 33,
7 \
;i/\' Y
XY
: ly
o
4
0 1 o = 1
= x _
s 7 0 “x
3
-,
2
R/
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35,

34,

36.
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53. A Since the given function is defined in the neighbourhood of the
point z = 0 and y (0) = 1 at that point itself, it foﬁows that for this
function to be continuous at that point, it is necessary that
lin(l) @r+1) = lim(—z+a) =1, ie. a=1. 54 (a) {—1/3}.
X=>

x>0

A The interior points of the domain of definition of the function at
which the derivative is equal to zero or does not exist are called critical
points of the function. The given function is differentiable at every
point of its domain of definition (since it is defined throughout the
number axis, all its points are interior), except for the point z = 1/3
and, therefore, z = 1/3 is a critical point and the equation y' = 0
has no solutions; (b) (—oo; —1]. A Let us represent the given function
in the form

__{ 2z+2, if z>—1,
b= 0, if z<<—1.

On the interval (—1; oo) the derivative y’ = 2, at the point z = —1
the derivative does not exist, and at all points of the interval (—oo; —1)
the derivative y' = 0. Therefore, all the points of the ray (—oo; —1]
are critical; (¢) [—1; 1]; (d) (—oo; —3] U [3; o). 55. (a) Decreases on
(—o0; o); (b) increases on (—oo; +o0). 56. (a) Decreases on (—oo; 4),
increases on (4; o0); (b) increases on (—oo; 0); decreases on (0; o).
57. (a) Increases on [—oo; —10], decreases on (10; o); (b) decreases
on (—5; 4); (c¢) decreases on the intervals (—oo; —4), (—3; —2) and
(—1; 0); increases on the intervals (—4; —3), (—2; —1) and EO; 00).
58. (a) z = 1/2 is a point of minimum; (b) z = 3/4 is a point of maxi-
mum. 59. (a) x = —2/3 is a point of minimum; (b) z = 2 is a point of
maximum. @ Use the theorem on the sufficient condition for the
extremum of a function. 60. x = —2 is a point of maximum. 61. z = 2
is a point of minimum for a = 2. For other values of a the function
has no points of extremum. A Suppose a << 2 (for a > 2 the solution
is similar). Then all the points of the interval [a; 2] are critical but
the condition for an extremum is not fulfilled at any of them. In the
case a = 2 the function y = 2 | + — 2 | has a minimum at the point
z = 2 (at that point itself the function is nondifferentiable, but in the
neighbourhood of that point the function is differentiable; in the
left-hand neighbourhood the derivative is negative and in the right-
hand neighbourhood it is positive). 62. a € [3; o]. 63. ymin (1) =
=1—a, Ypax @) =2 —a for a € (—o0; 1); ymmn @) = a — 2;
Ymax (1) = a — 1 for a € (2; %); ymin (@ = 0, Ypax (2) = 2 — a,
a€(l; 1.5); Ymin (@ =0, yypax (1) =a—1 for a€ (1.5, 2);
Ymin (1:5) = 0; Umax (1) = Ymax (2) = 0.5 for a = 1.5.

1.2. Quadratic Equations and Inequalities.
A Quadratic Function

1. (a) {3, 4}; (b) {—1;5}; (¢) {1/3; 1/2); (d) {—1/3; —3}; (&) {1 = V'6};
—1 £ V5

(1) {_—4@}. 2. (a) (—oo; —1) U (4; o0);

(b) [—15 41 (c) (—o0; —2) U (—2; ); (d) {—12}; () (==00; o0);
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0 2. 3. () (172} ) {—1; 3} (©) (—eo; —3] UI3; 4);
@ -5 11U s @2 © 2025, 3]

4. (a) 5. @ Use the identity a2 4 xf = (z; + z5)% — 2 (zy2,);

(b) —22. @ Use the identity z3 4 28 = (z; + 29)® — 3 (myz) X
X (zy + z5); (c) 127. 6. {1}. 9. a € (0; 4). @ Solve the inequality
(a® — 4a)/2 < O ((a® — 4a)/2 = z,z,, Where z, and z, are roots of the
equation). 10. a € (—2; 2). 11. k € (—oo; —1]. A The quadratic equa-
tion has real roots if D = [2 (k — 1)]2> — 4 (kK + 5) = 0. The solution
of this inequality is (the union of the rays) (—oo; —1] U [4; o). For
these values of k the roots can be both positive, of different signs and
both negative. Let us find the values of k for which both roots are
negative. By the Vieta theorem, we have a system of inequalities

2 2= -2k —1) <0, 720 =k + 5> 0; its solution is the

ray [4; oo]. Thus, for all k € (—oo; —1), at least one root of the equa-

tion is positive. 12. (a) [ — @; — H_% ) U (_‘/1?’%,
7

l/;iQ] A Both roots =z and =z, of the function

f () = ax?® + bz + ¢, a > 0 are smaller than a certain number z,
if the following conditions are simultaneously fulfilled:

D=b2—4ac >0, m2—2.4(m2—5)>0,
—b/2a=ﬂ2”’<xo, or { —mla<1,
f(ze)>0 2424 mA4+m2—5>0.

Solving the system of inequalities, we get the answer;

o [V 5 LB (125, )

13. (—2; 3). 14. (6; 6.75). A The function f (z) = az? 4 bz + e,
a > 0, has roots z; and z,, confined between the numbers p and g,
if and only if the following conditions are fulfilled:

D=1b2—4ac>0, [2(k—3)2—4-9>0,
f(p)>0, f(9>0, or ) (—6)2+2(k—3)(—6)+9>0,
124+-2(k—3)-1+9>0,
—b<—(k—3)<1.

Solving this system, we get the answer. 15. (5; 24). 16. [0; 4/61).
17. (2.5; o). 18. (a) {—2; 2}. A The original’equation is equivalent
to the collection of the systems

{ 22—z —2=0, { 2 4z—2=0,
x>0 z<<0.

b
P="% =1

The solutions of the equation of the first system are z; = —1 and
zy = 2. The value of z; does not satisfy the inequality of this system
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and, therefore, we have here only one solution z = 2, Similarly, we
find the solution =z = —2 of the second system; (b) &.

19. (a) {(—5 = Y 4D/4 1/2; 2} () {(—1 + V5)/2}.

20. (a) ({—00, —3)] U [2; o0); (b) 31/3 1/2]; (¢) (—oo;5 —1] U [0; o0);
@) @. 21. (@) {1 = VID/2}; (b) {1 = V 17)/2}. 22. (a) O

(b) {(1 + ]/13)/3} 23. {—2/5; 2}. 24. (a) (—4; 4). A The original
inequality is equivalent to the collection of the systems of inequalities

{ 22— z—12 <0, { 224z —12 <0,
z=>=0; z<0.

The solutions of the first system are z € [0, 4), and of the second system.
z € (—4; 0). Uniting these solutions, we get the answer;

(b) (—o0; —3]1 UI3; o); (c) [—5; —2] UI2; 5]; (d) (—o0; o0);
(e) B. 25. (a) (—oo; —(5 + V'34)/3) U (V34 — 5)/3, 1/3) U (3; );
) [—2; 1]. 26. (a) (—oo; —5] U [4; o0); (b) (0; 1/2); (c) [—4; —2]
27. (a) (—oo; 1) U2+ V1If; ); (b) (=3, 0); U (1; 2).

28. (a) (—oo; —4) U(—3; (9 — 1/465)/6) U@© -+ V465)/6; oo)
(b) [—5/3; 5/3]. 29. (a) {0}; (b) [—1; 1]; (c) (—o0; 1] U[3; 0);
(d) (—oo; —4) U (0; ); (e) [—4; —-11 ul0; 41; () (—3; —11 U {0} U
Ul1; 3). 81. [5; ). 32. (a) 3— V8 Fx; (b) 3+ V8 z.

33, (a); (b) 83. (c); (d)

y y
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37. (c)
)

39. (a)

Pz

37. (a); (b)

38,

2

1

—2 =10
40.

yA

(b)

39,
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4,

42, (@) 2z —6; (b) —2z —1; (c) 6z + 1; (d) —8z — tan 2;
© = — V3 () —22/3 + m; (g) 10 5z + 1); () & — 2/2; (i) 2ax;
G) 2(a —1) z — a. 43. (@) —3; (b) 7; (c) 0; (d) 1. 44. (a) arctan 9;
(b) m — arctan 4; (c) m/3; (d) 37/4; (e) m — arctan 13. 45. (a) y =
=1 —6z; (b) y= —3z+ 3.5; (c) y=4. 46. 0.5. 47. (2a; 4a?).
A The ordinates of the points of the parabola with the abscissas
z, and z, are y; = a? and y; = 9a2. The equation of the straight line

passing through two points M (z;, ¥;) and M, (zg, ys) is “;a—_aa =
J—_—]
= ;;,‘,TL, or y = 4axr — 3a?. Thus, the straight line has the slope

k = 4a. Differentiating the function y = 2? and setting y’ (z,) =
= 2zy = k = 4a, we obtain z, = 2a, y, = (2a)? = 4a?. 48. y = 1.
49, y = —8. 50. (a) 17; (b) (—oo; 17). 51. (a) {3}; (b) {2}; (c) {—5};
(d) {5}. 52. (a) {—1/2; 0; 1/2}; (b) {—3; 1/4}. 53. (a) {1; 3; S5}
(b) {—4; —2; 0}; (c) {—1}. 54 (a) {—3; —2; 1/2;2}; ) [—V/3; —11 U

U{©} UI1; V3. 55. (a) {15 2}; (b) {1; 3}; (¢) {2}. 56. (a) (—oo; 1.5);
(b) (—2; o0); (c) (—oo; —1) and (0; 1); (d) (—oo0; —2), (—1; 0) and
(15 2). 57. (a) (—1.5; o0); (b) (—o0; 2); (¢) (—o0; —0.5);

(d) (—( + V17)/2; —1/2) and (( V17T — 1)/2; ). 58. (a) z =0
is a point of minimum; (b) z = 0 is'a point of maximum, (c) z =1
is a point of minimum; (d) z = —2is a point of maximum; (e) z = —1
is a point of minimum; (f) z = 1/8 is a point of maximum.

59. (a) The function has no points of extremum; (b) z = —1.5 is a
point of minimum; (c) 2 = —1 is a point of maximum; z = 0.5 is a
point of minimum. A We have y = —(z — 2) (z + 1) for z << —1,
and in this domain, y' = 1 — 2z, with y’ > 0 for all z € (—o0; —1);
y=(@—2(+1), ¥y =2c—1 for 2> —1, and y’ <0 for
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z € (—1; 1/2). At the point x = —1 the derivative of the function
does not exist (the point z = —1 is critical), but in its neighbourhood
the derivative of the function exists and changes sign from plus to
minus in the passage through that point. Consequently, z = —1 is

a point of maximum;y’ (1/2) =0 andy > 0 for z € (% ; 0 ) and,

therefore, x = 1/2 is a point of minimum. 60. (a) z = —1.5 and
z = 1.5 are points of minimum; 2 = 0 is a point of maximum;
(b) x = 0 is a point of minimum; (¢c) x = —0.5 is a point of minimum.
61. () 2= —4, 2= —2, =2, z = 4 are points of minimum;
z = —3,z =0, z = 3 are points of maximum; (b) z = (— V65 — 1)/2,
z = 4 are points of minimum; z = —0.5 is a point of maximum.
62. (a) The function has no points of extremum; (b) z = 0 is a point
of maximum. 63. (@) Ypin =y ) =7,  Ymax = ¥ (2) = 15;
(b) Ymax = y (2) = —14, ypoin = y (8) = —29; (¢) Ypax = ¥ (—1) =
=8, ymmn =¥ (1)) =4 (d) ymin =¥ (0) = —1, ymay =y (3) = 8.
64. (2) Umax = ¥ (—3) = 10, ymin = y (—1) = 2; (D) Jtn = y (1) =
= —2, Umax = ¥ (4) = 2;7(c) ymin = y (0) =0, x =Yy (2) =4
65. @ Prove that z; << —b/(2a) < z,. 66. @ Consider the function
¢ (2) = f (2) — A, for which z, and z, are zeros and use the equality
¢’ (z) = f' (£) and the hint given in the answer to problem 65 of this
section. 67. (z; 4 x4)/2.

1.3. Inverse Proportionality

1. (a) {1/5}; (b) &; (c) {4/a — 2} for a € (—oo; 0) U (0; o); I for
a=0; (d) {1/a + 2; —1/a + 2} for a € (0; ); & for a € (—oo; 0.
2. (@) {—2}; (b) &; () {—1; 3}; (d) {(a+ 3)/2} for a € (—oo; —1) U
U(—1; 3) U (3; »); & for a € {—1;3}. 3. (a) (0; 1); (b) (—oo; 0) U
Ul1; o); (c) (—oo; 1) U (2; o0); (d) [—3.5; —3); (e) (1 + a5 1) for
a € (—oo0; 0); & fora € {0}, (1; 1 + a) fora € (0; o); (f) (—oo, —1) U
UI—1 — a; o) for a € (—o0; 0); (—oo; —1) U (—1; o0) for a € {0},
(—o00; —1 — a] U (—1; o) fora € (0; o). 4. (a) (—oo; —3) U (1; );
(b) (— % H %) 5. (a) [1; 4) U (4; o). @ Factorize numerator of the
fraction; (b) (—oo; —3) U( -3, —%) « 6. (a) (—oo; —4] U [0; oo);
(b) (—oo; —4) U (8/7; 2) L{(Z; o). A Since the parts of the in-
equality are positive, it follows that for z == 0.5, and = 5= 2 it is
e —2]| |22 — 1]

5 < 3
last inequality and transferring all the terms into the left-hand part,
we get, after the transformations (use the formula for the difference of
squares), the inequality (72 — 8) (z 4 4) > 0, solving which, we
find the answer; i(c) (—oo; 11/4) U (7/2; o). @ Set |z —2|/|z— 3| =
=y, y=0; (d) (—o0; 2), a € (—o0; 0) U(2/3; o); (2, o) for
a € (0; 2/3); & for a € {2/3}.
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16. (a) —3; (b) 1/4; (c) —1; (d) —1. 17. (a) m/4; (b) arctan %;

(c) n—arctan —;—; (d) m—arctan 4; (e) m—arctan %— i () n—
—arctan 6. 18. (a) z—3y—6=0; (b) y+z=0;

(c) 4y — 5z + 6 = 0; (d) 36y 4 29z — 23 = 0.

19. (a) M, (0; —1); My (—2; 3); (b) My (—1/2; —3); My (—3/2; 5).
@ Use the condition of perpendicularity of the straight lines & ky =—1,
where k; and k, are angular coefficients. 20. @ Show that y’' (0) =
=y (4).21.y 4+ z = 0, 4 25y = 0. A The equation of the straight
line passing through the origin has the form y = kz. Suppose
M (zy; y,) is a point of the hyperbola through which the tangent passes.
Then, kzy = (zo + 9)/(zo + 5) and &k =y (z,) = —4/(zq + 5)2.
Eliminating & in these equations, we get 2§ + 18z, + 45 = 0, whence
we find zy = —15, zy3 = —3 and, respectively, &, = —1/25 and
ky = —1. 22, @ Investigate the sign of the derivative on the interval
and show that y’ (z,) 5= 0 for any z, € (;; zg). 23. (a) ypin (0) = —3,
Ymax (2) = —1/3; (b)) Ymax (—1) = 1/3,’ Yt (1) = —3.

24, zy = Vazg if 2 > 0, and z, = — Y 3z, if 2, < 0.

1.4. Equations and Inequalities of Higher Degrees.
A Rational Function

1. (@) {—3; —1; 1}; (b) {—3/2}; () {—3}; (d) {1/2}; (e) {1}; () {—2};
(@ {—1}; (h) {2}; @) {—1} () {1}. ® (a) — (k). Factorize the left-hand
side of the equation. 2. A Suppose z; = p/q, where p € Z, ¢ € N, and

3 2
p and g are coprime numbers. Then % + a % + b% +¢=0, or

p (p® + apq + bg®) = —cg®. The right-hand side of the last equality
is a multiple of g. The left-hand side is divisible by ¢ if and only if
g = 1, because p% 4+ apq -+ bq?is not divisible by g (two summands are
multiples of g and the third, p?, is not). Consequently, the last equa-
tion has the form p (p? + ap + b) = —e¢, and it follows that ¢ is
a multiple of p = ;. 3. (a) {—2; —1; 1}. A The constant term of the
given equation’is equal to —2 and, therefore, only the numbers +1, +2
can be rational roots. Substituting z = 1 into the equation, we get
18 + 2.43 — 1 — 2 = 0, i.e. 1 is a root of the equation. Factorizing
now the left-hand side, we get 2% — 13 4 222 — 2.12 — 2z} {1 =
=@—1N)@Et+z+)+2E—) e+ )—(@=—1)=

= (z — 1) (2® + 3z + 2) = 0. Solving the equation z2 4- 3z 4 2 =
= 0, we find the other roots of the original equation, (b) {—3, 2}.
Remark. The given equation has two equal roots: z = 2. Such roots
are called miltiple roots. The root x = 2 is a root of multiplicity 2;
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(©) {3}; (d) {1}; (e) {—1, —1/2, 1/3}. @ Set z = —1/y, (f) {1/2}.
Multiply the equation by 4 and set 2z = y. 4. @ Use the identity
a(@—x) (z — 29 (x — zg) = az® + b2 + cx + d. 5. —2p.

6. {‘V(Vﬁ+ 32— (V13 —3)/2). A Set 2=y — 1/y. Then

the equation assumes the form
1 1 1 1
s _3(y—— —)—3= —Z _3-90.
V-3 3(y y)+3 (y y) 3=0, or p® 7 3=0

Putting now y® = ¢t we arrive at an equation 2 — 3t — 1 = 0. This
equation hasrootst; = (V13 + 3)/2,t, = (3 — V/13)/2, (ts2, = —1).
Whence we get y, = %/ t; and

v 133 VB /35 VE
=yt 7 _"/ 3 1/‘/__7._

Use your skill to verify that 2, = ¥, — 1/} iy = z.

7. (@) {—3; —2; 1; 3); (b) {—5; —2; 1; 2}; (c) {(1 = V'13)/2}; (d) @;
(e) {—{2; 1; 2; 4}. @ Factorize the left-hand side of the equation;
(f) {—5; —2}, ® Decompose the polynomial z* + 1122 4 10 into
two factors. 8, @ See the solution of problem 2 of this section.
9. (a) {—5; —1; 1; 3}; (b) {2; 6}; (c) {—1}; (d) the equation does not
possess rational roots; (e) :1{/3_;_ 1/2}. @ Set z = —1/1,:;._ _
10. @) {—V'2, —1/V'2; /Y2, V'2}. @ Setz* = y; b) {— V3, V3}.
11. (a) {—1, 1}; (b) {2}. A Setting2z —3 =y -+ c (1) and 2z — 5 =
= y — ¢ (2), we get an equation (y 4 ¢)* 4 (y — ¢)* = 2. (3) The con-
stant ¢ can be found from equation (1) and (2): ¢ = 1. After the trans-
formations, equation (3) assumes the form y* 4 6y2 = 0. The latter
has a unique root y = 0. Then we have 2r —3 =1, z = 2.
Remark. By means of the substitution az 4 b, = y 4 ¢, az + by =
=y —¢, where ¢ = (b) — bg)/2, the equations of the form

(az + by)* +-"(az + bg)*=Fk can be reduced to biquadratic equations.
2. @ {(—1 — V7 —1—V2 —14+ VZ V7—1}. @ Set
B+ 2 =y, (b) {—1/2; 1). 13, (@) {(—a (1 + V13)/2;

(+a (VI3 —1)/21a€R}. @ Set 2 +az=y; _ _
b) {(—5— V21)/6, (V21 —5)/6). 14 @) {—V2 &— V18
V2, 44+ V18. A We set # — 2/z =y and then we have

2\8_ .4, . 2 4
x—;) =g +x“ 4 = y?, whence it follows that z +—z—’—

= y? 4 4. The original equation now assumes the form y2 — 8y = 0.
The roots of this equation are y; = 0 and y, = 8. Then, solving the
equations £ — 2/z = 0 and z — 2/z = 8, which can be reduced to
quadratic equations, we get the answer; (b) {—3/2, —(1 + V7)/4;
(VT —1)/4; 1}. @ Divide the equation by z* and put 2z — 3/z = y;
(c) {1/2; 2}. @ Cancel the fraction on the left-hand side of the equation
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by = + 1; (@) {—1; 9; (6 — V61)/2}; (6 4- V'61)/2). @ Divide the
equation_by z? and put z — 9/z = y. 15. (a) {(1 — V' 21)/2;

“ +']/21)/2}. A Subtracting 10z2/(z 4 5) from both parts of the
equation, we get, after the transformation, (z%/(z < 5))2 +

+ 102%/(x + 5) — 11 = 0. Assuming z%/(z + 5) =y, we get

y?2 + 10y — 11 = 0, whence we obtain y; = 1, y, = —11. Thus we
have two equations 22/(z + 5) = 1 and z%/(zx + 5) = —11, solving
which we get the answer (the second equation does not have real roots);
M) {—1 — V7; V7 —1}. @ Reduce the equation to the form

2 \2 22 22
(3=5) —65og—16=0, and st o=y,

16. (@) {—(1+V2vV2a—1/V3)(V2V2—1—1)/V3Z}. @ Reduce
the equation to  the orm (24 12 —2(x—1)2 =0,

—

) (—VEV 2V 2—1+1), Y2/ 2 VE—1—1)}. @ Set z=1/y;
(¢) {—9; 11}. ® Add 42°+4-400z+1 to both parts of the equation.
17. (a) {—e, a— V' a®+2, a+ Va?+2|a€R}. A Let us solve the
given equation for a. We have
 —(@24(Be2—2) 222 |
- hx - 2z ()

or

a= —‘(.’122+2)4;—(3x2—2) — @)

Solving now equations (1) and (2) for z, we get the answer,
) {(—1— _V3Fa —1+ V3+ta for a€[-3, —1),
(-1 — V3+a V3ifa—1;—1—VIi+ta Y1+a—1}for
a € [—1; ), & for a € (—oo; —3). A Let us solve the given equation
for a assuming z to be the parameter: a2 — 2( 22 — 1) a 4 24 — 622 +
+ 4z = 0;

a=22}+2z—2(1) or a=2a%—2z (2).

Solving equations (1) and (2) for z, we obtain z;,4 = —1 &+ V3+a,
25,4 = —1 = V1 a. The roots z; and z, are real if a € [—3; ),
and zg and z, are real if a € [—1; 00). 18. {(1 — V/29)/2; (6 — V'17)/2;
( + V29)/2; 5+ V17)/2). A We represent the left-hand part of
the equation as (22 + az + ¢) (z* + bz + d) = 0, or 24 + (a + b) 2® +
+ (ab + ¢ + d) 2 + (bc + ad) z + cd = 2* — 4a2® — 102® + 37z —
— 14. We have a system

a-tb=—4,
ab+t-c+d=—10,
be+ad=237,
cd=—14.

Since a, b, ¢ and d are integers, it follows from the last equation that
either ¢ = —1, d = 14 or ¢ = 2, d = —7. The system is completely

106



satisfied by the second pair of values of ¢ and d; for these values we get
a = —5and b = 1 for the other coefficients. Solving now the equations
22— 52+ 2=0 and 22 —z — 7 =0, we find the roots of the
original equation. 19. (a) (—2, 1) U (3; o). & For z € (3; o), all the
terms in the product are positive and, consequently, p (z) =
=(x+2) (z—1) (x—3) >0 for all z € (3; ); for z € (1; 3) the
term z — 3 is negative (alone), and each of the terms (z — 1) and
(z + 2) is positive. Therefore, ﬁ(z) <0 for « € (1; 3), and for
z € (—2; 1) the polynomial p (z) has two negative terms ((z — 3) and
}z — 1)) and one positive term (z 4 2). This means thatp (z) > 0
or z € (—2; 1); for 2 € (—oo; —2) all the three terms are negative
and, therefore, p (z) << 0 on this interval. Uniting the intervals,
where p (z) > 0, we get the answer; (b) (—2, 0) U (1; 2);

(c) [—4, —2] U {1}; (d) (—3; 2) for n = 2k — 1, k € N; (—o0; —3) U
U (—3;2) forn = 2k, & € N.20. (a) (—3;2) U (4; o0); (b) (—oo, —2]U
U {—1}; (¢) (1/2; o). 21. (a) (—oo; —1]1 U {1} U [2; 0); (b) (—5; —1).
22. () (—o0; — V3) U(—1/V3 1/V3) UV3E )

b @C—4V3 UGB 2+4V3. @ Set z —2 =y.

23. (@) (—o0; ). @ Set 22 —z=y; (b) (—B+ V33)/2;
(V33 —3)/2). @ Set 22+ 3z+1=y.

26 @) U+ V3—V3+2 V3 14+ V3+V3+2y3).

A The original inequality is equivalent to the inequality p (z) =
= g* — 42 — 622 — 4z 4+ 1 << 0. We factorize the polynomial on
the left-hand side of the inequality, for which purpose we solve the
equation p (z) = 0. Since z = 0 does not satisfy the given equation,
it follows that it is equivalent to the equation 22 + 1/z2 —

— 4 (z+ 1/2) — 6 = 0. Setting now z + 1/z =y, we obtain an
equation y? — 4y — 8 = 0, whose roots are y, = 2 (1 + }/3) and
ya=2 (1 — V3). The polynomial p (z) can now be represent-
ed as (2 —2 1+ VHz+1)(2—2(1— V3)z+1). Here
#? —2 (1 — ¥3) z + 1 > 0for any 2 € R and, therefore, the original
inequality is equivalent to the inequality 22 — 2 (1 + V3) z + 1 >
> 0 whose solutions are given in the answer; (b) (—1 — V3,
B— VID/2) U(V3—1, 3+ V17)/2). @ When you factorize
the left-hand part of the inequality, make use of the substitution
y =z — 2/z. 25. A We have

pE=@@—Dz[st@+z+1)+1]+1 1)

p@=00—2a)+ 21— 7% + 2t %)
It follows from (1) that p (z) > 0 for z € (—oo; 0] U[1; o), and
from (2) that p (z) > 0 for = € (0; 1). Thus, p (z) > 0 for any z € R.
26. A The function f (z) = g—% is defined throughout the number

axis, except for the points zp, £ € N, k¥ << n, which are zeros of the

polynomial Q (z). Suppose z, is one of the solutions of the inequality
f (z) > 0. Then P (z,) and Q (z,) are numbers of the same sign and,
consequently @ (z,) = P (z,) Q (z,) > 0, i.e. z, is also one of the
solutions of the inequality ¢ (z) = P (2) Q (z) > 0. {For z = zp, the
value of the function ¢ (z3) is equal to zero and the values of z; do not
satisfy the inequality ¢ (z) > 0.) Thus, all solutions of the inequality

or
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f (z) > 0 are also solutions of the inequality ¢ (z) > 0 (because of the
arbitrariness of the choice of the number z,). We can prove by analogy
that if z, is some solution of the inequality ¢ (z) > 0, then this number
z, is also a solution of the inequality f (z) > 0 (P (:co{ and Q (z,) are
numbers of the same sign). If P (z) and @ (z) assume values of different
signs for all z from the domain of the function f (z), then the inequalities
f (x) > 0 and ¢ (z) > 0 have no solutions, i.e. these inequalities are
also equivalent. 27. (a) (—2; 0) U (2;- ). A The inequality

2 1 z 4+ 2 . . . .
o) Pimley ) > 0 is equivalent to the inequality
(z + 2) z —2) z > 0; solving it by the method of intervals, we get
the answer; (b) (=1, 2); (¢) (—oo; —1) U (0, 1/2] U (1; 2);
(d) (1; 5/3) U (2; 7/3) U (3; ). @ Reduce the left-hand part of the
inequality to the form z + 1/(z — 1) + z + 1/(z — 3); (e) (—2; —1) U
U [0; 1] U [2;-00); (D) (—7; —¥37) U (—5; 0) U (5; ¥'37) U (7; o).
28. (a) (—1;0). @ Set 22 + z = y; (b) (—o0; —2) U (—1;1) U (2;3) U
U (4; 6) U (7; o). A Let us transform the left-hand side of the in-

equality
1 1 1 1
(o= M =)
_ 4 _ 3 ;
T 22 —5z+4+6 22—b5z-}4 ™

Setting now z? — 5z 4 5 =y, we get (after transformations) an
y? — 30y + 209
(y—1Dw+1)
v+ ~1Z w—1) (y —11) (y — 19) > 0; the solution of the last
inequality is (—oo; —1) U (1; 11) U (19; o). Solving then the col-

lection of the inequalities
22—z 5S<—1, I<2a?—5z+5<1
and 2% — 5z 4+ 5> 19,

we get the answer; (¢) (—oo; 1) U (3/2; 5/2) U (7/2; 4). 29. (a) (—1/2; 1);
(b) [—2, 1]. @ See the solution of problem 15 of this section.

30. (4) (07 1/3) U (3; ). @ Reduce the left-hand part of the inequality
to the form (z+ 1/3 + 2)*/(z + 1/z) and set z + 1z =1y;

® [—@+ VB2 —1] Ul — V5)/20) U [(VE—1)/2 1] U
UNY5+1)/2; ). @ Set z—1/z=y. 31. (—o0; —6) U
U6 —6 V26)/5; —4) U(—4, 0) U (6+ 671 26)/5).

©®. Represent .the right-hand part of the inequality in the form
(x-— 6)/(z + 6) + (= + 6)/(z — 6). 32. [0; V2]

33. [—1; —2 V'2; —3) U (1; 3]. 34. (a) 32> — 12z; (b) 1/3 — 322
(c) 42® — 6; (d) 322 — 22%; (e) 322+ 2z 4 3, (f) 322 — 8z + 3;
(8 42+ 92 + 142+ 7; (b)) (z —1) (z —2) (z —3) +
+zr—2)@z—3)+z@@—1)(z—3)tz@x—1) (x—2);

) 1 —=2/(1+29% () @@ — 2z —2)/2+ 2%

(k) (223 4+ 922 — 3)/(z + 3)%; () (22* + 423 — 4z + 4)/(z + 1)3;
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(m) (228 — 922 — 24z + T)/(z — 4)% (n) 32+ t/(1 — zY);

() —90 (2 — 32)%; (p) 32 (3z + 1/z?) (62® — &/z + 1)7;

(@) —@z (2 + 1))/ — 1)% (1) 8 (42° — 32* + 102) X

X (2% — 2® + 527 — 2)7. 35. (a) 12; (b) 0; (c) 60; (d) 7; (e) 0; (f) 1/23
(2 15a2 + 2/a® — 1; (h) —1/(1 + a%); () 0; () (=)™ nl.
36.(a)y=—z;(b)y —2=0;(c)y= —3z+ 5 (D) y = —11z — T,
() y=44z—84 (f) y=2zr—2; (@) y=—4z+ 7.

37. (— V2;2+ V2 and (V' 2 2 — V2). 38. (—2; 52/3) and
(5; —197/6). 39. (1; 0) and (—1; —4). 40. (3; 9). 41. (05 1). 42. @ Show
that the inequality 52¢ + 8 > 0 holds for any = € R. 43. (a) {1/3; 1/2};
(b) {//3}; (c) the function has no ecritical points; (d) {—2; —4/9};
(e) €1 03; () {V/3}. 44. (2) {2} (b) (—3; —2; 1}: (0) {O}; () (=15 05 1};
) {0}. 45. (@) —v3 1{3}; (b) {—3; —2; 2; 3};

© {6 — V52 B+ V52 (@) {—15 1} (o) {2}. 46. () (=2, 1),
(b) (—o0; —1/4); (¢) (— V125 0) and (0, V'12), (d) (— V'2, 1) and
(—1, V2. 47. (a) (—oo; 1/3) and (3; o0); (b) (1; 3); (¢) (0; o0);
@ (—2 — V3; —1)and (—1; V3 — 2); () (—oo; —1) and (1; ).
48. (a) z = —5 is a point of maximum, z = 3 is a point of minimdm;
(b) the function has no points of extremum; (c) z = 1/3 is a point of
minimum, z = 1 is a point of maximum; (d) # = —5/4'is a point
of minimum; (¢) z = —3 and z = 4 are points of minimum; z = 1/2 is
a point of maximum; (f) z =1 is a point of minimum; (g) z = 0 is
a point of minimum. 49. 8 V2. 50. (3) ymin =y (—1) = —13,
tmax =¥ @ =3, ) vam =y (= VDH=—4V2 Ymax=
=y () =5 © vmm=v U4 =855 ymx=19@ =64

d =y (—1) = -7, =y (1) = 5 =y (—2) =
E__)S;/ér:lnymaxyi_ y)(—i) 2 31{max y (1) (©) Ymm y (—2)

51, On the intervals (—oo; 0) V{
and (2; oo] the function in- 4
creases, on the interval (0; 2)
it decreases; x = 0 is a point
of maximum, z=2 is a
point of minimum.
-1 0 2 X
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52. On the intervals
(—oo0; —2/V3) and
(2/V3; oo) the function
decreases, on the interval
(—2/V3;, 2/V3) it in-
creases; z= —2/Y3 is a
point of minimum; z = 2/ '3
is a point of maxi-
mum; y (—2/V3) = —3 —
— 16/BV3); v (2/V3) =
= —3 + 16/3V3).

53. On the intervals
(—oo; —2) and (—1/2; 1)
the function decreases, on

the intervals( —2; — _;_)

and (1; oo) it increases;

z = —2and z = 1arepoints
of minimum, z= —1/2 is
a point of maximum,
y (=2) =y (1) = 0,

v (—1/2) = s1l16.

54. On the intervals
(—oo; —1) and (0; 1) the
function increases, on the
intervals (—1; 0) and (1; oo)
it decreases; r = —1 and
z =1 are points of maxi-
mum, z = 0 is a point of
minimum; y (—1) =y (1)=
=9, y(0) =8.



55. On the intervals (—oo;
—1) and (—-;-; ) the
function increases, on the
interval (—1; —%) it de-
creases; z= —1 is a point
of maximum, r=—1/5isa
point of minimum; y (—1)=
=0. y(—1/5)= —864/3125.

56. On the intervals
(—oo; —1) and (1; oo) the
function increases, on the
intervals (—1; 0) and (0; 1)
it decreases; z = —1 is a
point of maximum, z = 1 is
a point of minimum.
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57. On the intervals
(—oo; —1) and (1; oo) the
function decreases, on the
interval (—1; 1) it increases;

= —1 is a point of mini-
mum, z = 1 is a point of
maximum.

58. The function decreases
on the intervals (—oo; —1),
(—1; 1) and (1; o).

59. On the intervals
(—oo; —1) and (0; 1) the
function decreases, on the
intervals (—1; 0) and (1; oo)
it increases; z = —1 and
z =1 are points of mini-
muim.



60. On the intervals
(—oo; —3) and (3; oo) the
function decreases, on the

intervals = (—3; — V3),
(— V3 ¥/3)and (13 3) \\
it increases; z. = —3 is a N

point of minimum, x = 3 is
a point of maximum;
y(—3)=29, y(3) = —9.

61. On the intervals (—oo; 0)
and (0; 1/2) the function
decreases, on the interval
(1/2; o) it increases; z = 1/2
is a point of minimum;
y (1/2) = 3.
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1.5. Linear Systems of Equations and Inequalities

1. (@) {(0; 0)); (b) |{(c, c/2) 1 c €ERY; (c) {(cs, €d) | &1 €ER, 3 €R};
(@ {(;0) | c €R}; () . 2. (2) {(1; —1)}; ) {(8/4 + 2¢, ¢) | c € R};
(c) &5 (d) {(c; 4c — 1/2) | ¢ € R} for a € {—1/2} and & for a ¢{—1/2}.
3. (@) (—o0; —1) U (—1; o0); (b) k € R; (c) (—o0; —2) U (—2; o).
4. (a) {—2/3}; (b) {1}; (c) {—1/2}. 5. {(0; 0)}. 6. {(0; O; 9/4); (2; —1; 1)}.
A Substituting the solution ({; 3) into the system and taking into
account the necessary condition for indeterminacy of the system of
equations, we obtain a system of equations for a, b and ¢:

a—3b=2a—0», a= —2p,

c+14+3c=10—a-+}3b, <= { 4c=9-5b,

a/(c41)= —b/c b(c—1)=0.
This system has two solutions; (0; 0; 9/4) and (2; —1; 1). We can make
sure by veritl,ication that for these values of 2, b and ¢ the condition

a —_ 2a—b . . .

P T S 10—aT3 is satisfied (in the second equation of
the system the coefficients are nonzero), i.e. the sufficient condition for
indeterminacy of' the original system of equations is fulfilled.
7. () {3); (b) {9/4}. 8. {(—2, —7)}. A The second system of equations
has a unique solution (z,; y,). Therefore, the systems are equivalent
if the first system of equations has a unique solution (z,; y,). Let us
find this solution. Since z, + y, = 3 and z, 4+ 3y, = 3, we find that
zo = 3 and y, = 0 when we solve the system of these equations. Sub-
stituting these values of the variables into the first equation of the
second system, we get a2 = 4. Consequently, a; = —2 and a, = 2.
The substitution a; = —2, r = 3, y = 0 into the first equation of the
first system yields —2.3 + 2.0 = b + 1, b = —7. The value ¢ = 2
will not do in this case since then the first system of equations will have
an infinite number of solutions. 9. (—2; 4). 10. (—1 — V3; o).
11. {(—1; 4)}. @ Set 1/2z + y — 1) = u and 1/(/1: + 2y —3) =v.
12. (a) {(3; 1); (—3/2; 5/2); (—9; —5); (9/2; —1/2)};
(b) {(—3; —2); (—2; —3); (3; 2); (2; 3)}. 13. {(30; 10)}. A Suppose we
are given an equation az -+ by = c, where a, b and ¢ are integers,
a and b being coprime, and we have to find all integral z and y satisfy-
ing this equation. We assume that by some means (say, by means of
selection) we have found one integer solution: z = o, y = B. Sub-
stituting these values into the equation, we get an identity ax -+ bp =
= ¢. Subtracting this identity, term-by-term, from the given equation
and transforming the result, we obtain a (x — o) + b (y — B) = 0,
ar=ao. — b (y — B), z = o — (b (y — B))/a. For z to be an integer,
it is necessary and sufficient that the expression (b (y — B))/a be
an integral number (o is an integer), i.e. y — B must be divisible by a.
Designating the integral quotient from the division of y — B by a as ¢,
t€7Z, we get y= P -+ at and then x = oo — bt. Thus, all solutions
can be described by the formulas r = o — b¢, y =B + at, t€ 7.
Let us write the solutions of the given problem in the form z = o — 31¢,
y=Pp + 23t, t € Z, and find some special solution (=; B). We rewrite
the original equation in the form 23z = 1000 — 31y and solve it with
respect to r: z = 43 — y -+ (11 — 8y)/23. It follows from this notation
that (11 — 8y)/23 must be an integer, i.e. (11 — 8y)/23 = u, u € Z,
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14. (d)
14. (c)

169



or 8y = 11 — 23u. Now we can find y: y = (11 — 24u + u)/8 =
=1 — 3u + (u + 3)/8. Setting u = —3, we get a special solution
Bp=1—3(—3) =10 and o = 43 — 10 — 3 = 30. Thus, the solu-
tion of the given equation has the form = = 30 — 31¢, y = 10 --.23¢,
t € Z. Solving the system of inequalities 30 — 31¢ > 0 and 10 -+
-+ 23t > 0 in integers, we find that t = 0, i.e. z = 30, y = 10.

18, {(2:2); (3;2); (4;2)}

vA

0 1 5 x

16. (—(1 + V13)/2; —2). 17. {(1; 2; 3)}. 18. &. 19. {(2; —3; 6)}.
20. {(—2t—2; 3t+1; 2t+3)|t€ER}). @ Set —(z+ 2)/2=
= (y —1)/3 = (z — 3)/2 = t. 21. (a) 25. A 1st method. We multiply
the equations of the system by a and p (¢f = 0) and sum them up:

203 + B) z + (4a/5 + B) y + (5a/6 + PB) z = 61a - T9P.

We require that the following equalities should hold simultaneously:
20/3 4+ B =0, 4a/5 + p = 2/5; 5a/6 + p = 1/2. Then we have
S = 2y/5 + 2/2 = 61a + T9B. The values of & and P can be found
from the system of equations

2a./34+p =0,

4a/54p =2/5,

50u/6 B —1/2.
This system is consistent and has a solution a =3, f = —2; S =
=61.-3 — 79:2 = 25.
2nd method. Let us represent the original system of equations in the

form
2z/34 4y/5= 61— 5z/6,
{ z-ty=79—:z
and solve it with respect to z, y, assuming z to be known. Multiplying
the second equation by —2/3 and adding it to the first equation, we

obtain
(4-3)v=(o-32)-(3-3) -

2 25  z 2 z
B3 FITE g
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Now we find S = 2y/5 + z/2 = 25 — 2/2 + 3/2 = 25;
(b) {(27; 10; 42)}. A Since, by the hypothesis, z, y and z are natural
numbers, it follows that x = 3k, y = 5! and z = 6m, where k€ N
le N, m € N. The system of equations can now be represented in the
form

{ 41-4-5m =61 —2k,

51-+6m="T79—3k.

Hence we find I = 29 — 3k and m = 2k — 11. The greatest value of
k € N satisfying the system of inequalities

k>0,
{ 29—3k>0,
2k—11>0
is £ = 9. Now we can find the solution of the system: z = 3.9 = 27,
y=(29—3-95=10, z=16(2-9 —11) = 42. 22, ¢ <O.
® Exclude b and ¢ from the system of inequalities. 23. A regular
octahedron

z
1
\
\
=,
/'/ ~ ~
//"’ 0 I/ ~
-1 1 ! 1y
/
1 /
/
X /
—1

1.6. Systems of Equations and Inequalities
in Several Higher-Degree Variables

1. (a) {(—4/9; 20/9); (2; D};  (b) {(—1; 3);  (71/21; —25/T)};
(c) {(51; 24.5)}. @ Factorize the left-hand part of the first equation of
the system; (d) {(—19.6; 5.2); (—14; 8)}. @ Represent the left-hand
part of the first equation of the system in the form (z + 3y)®> —
— 6 (z + 3y) — 40 and set z + 3y = t. 2. (a) {(2; 3); (3; 2)}. A Using
the converse of the Vieta theorem, we get a quadratic e(ﬂxation

12 — 5t + 6 = 0, whose roots are ¢, = 2 and t, = 3. The given
system possesses a remarkable property: if it has one solution (t;; £,),
then the ordered pair of numbers (¢,; ¢,) is also its solution. Thus,
the set of solutions of the originai system is {(2; 3); (3; 2)}:
®) {(4; —1); (1, —4)}. @ Set —y = z; (c) {(1; 3); (3; 1)}. @ Use the
identity 2zy = (z -+ 1)? — (22 + y?); (e) {(—1/2; —1/3); (1/3; 1/2)}.
® Set 1/z = u, —1/y = v; () {(—1; 2); (2; —1)}. A Using the identity
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(x+y3=2a4 y®*+ 3zy (z + y), we find zy: 13 =74 32y-1 =
=> zy = —2. Thus, the given system is equivalent to the system

{ 3+y=1-
xy=——2.

Solving now the auxiliary quadratic equation 2 — ¢t — 2 = 0, we
find all solutlons of the original system, %) {(1;2); 2; 1)} @ Use the
%uallty z+y #+ 44 27— 2z to find Ty = z;
(@ {35 2); (2; 3), (h) {(—1;_—4); (4 1)} 3. (a) ((—3; 4); (4 —3));
(b) {64 V28 —54 V28); (56— V28 —5— V28); (5 2);
(—2, —5)} (©) {(0.6; 0.3); (0.4; 0.5)}; (@) {(—1; 2); (—1/4; —1/4)};
@ {(2_1); (15 2); (6G+ V2D/2; 56— V—i)/2), (6 — V21/2;
6+ V21)/2)}. @Set z+ y=u, zy = v, and then —u + v =z
wv = t. 4 () {(—@25+ 5 V61)/9; 5+ V61)/9; (5 V61 — 25)/9;
(5 — V'61)/9); (—6; —4/3); (3/2; 1/3)}. A Setting z = yt, we reduce
the first equation of the system to the form y® (2t2 + t — 45)= 0
Solving this equation, we find ¢; = 9/2 and ¢, = —5 (y = 0 does not
satisfy the system). Thus, the orlglnal system of equations is equivalent
to the collection of the systems

{ 2z+9y2 =4, { 2z+9y2=4,
z=9y/2, z=—2Jy,

solving which we get. the answer; (b) {(—1; 3); (1;—3); (16/ V11, 1/ V 11);

(—16/V 11, —1/ Y'11)}. @ Multiply the first equation of the system
by 3 and the second equation by —16 and add the results. Then set

z =yt () {(1; 2); (—1; =2 (V' V2 (=V3% — V)

o (visom ~Tmove):
(V%; :/rvs—s—-u); e, -}

5. (a) {(2; 1)}. A Multiplying the second equation of the system by 2
and then by —2 and adding it to the first equation, we get a system of
equations which is equivalent to the original system:

({ 1622 8zy+ y*—T72z—18y+81=0, )
423 —12zy+9y2 — 4z+ 6y+ 1=0

(bz+ y)?—18(4z+ y)+81=0, 4zt y=9,
<~ ({(2:&:—3y)’—- 2(2z—3y)+ 1=0 ) <:( 2z—3y=1 ).

It is easy to find the solution of this system (the system being linear):

2; 1)}; (b) {(0; 1/ ; (05 — 1/ s (15 05 (—1 —1
55( (a) %%2/% )—{3/7) (}/_.':’:))} (. Multl]‘){;)thé equ)atl(ons and st)a}t z+y=t

M (@ 6; (1 3 7. @ {2V2:— V2 (—2V2 VI
() {(V6 VE3); (— V6 — V6/3)). 8 {3; 7/2); (—3; —7/2)}.
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9. {(3; 1)}. 10. a = —1. The required point is (0, —1). 11. (a) {(1; —5)}.
() {(1; —3)} (©) {(—3; 1)} for a € {—2}; & for a ¢ {—2}.

12. (@) {(2; 1; —1); (31/15; 17/15; —2/3)}; (b) {(1; 2; 2); (2; 1; 1)}.

18 16 2 ) (25 1);(3+2V1—7¥ VAT, —1); (3_2‘/1—7;
3+ V17 | _1)}.

2 ’

14. {(3; 1; —2); (—5; —3; 0)}. @ In the first equation of the system

express y in terms of z and substitute it into the second equation.
15. {(3; 5; —1); (—3; —5; 1)}.

16. {(2; —1; 3) (=2 4 —3) ( = % ) ;

7. R
TV yi V13

7 5 1 }
= —— — ). 17, {(—4 —3; 1}; (4 3; —1)}.
(=7 5 ) ( b ( »
18.{ %;%;%)}.oReduce the equations of the system to the form
sty g 1,1 wyhz o L1 atz o 11
zy ~5——x+y’ Yz _'7_y ‘_z’ 2z Mﬁ_x_}—z'

19. {(—1;1;0); (1; —1;0)}.  20. {(3; 3; 3)}.
21. {(1; 5; 0); (1; —5; 0); (—1; 5; 0); (—1; —5; 0)}. ® Set y — z = .
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23, (a)

A

23, (b) 23. (c)
yA A
g -
(~1-1) (1) ¥
0
(=3;-9)

174



Chapter 2

TRANSCENDENTAL FUNCTIONS, EQUATIONS
AND INEQUALITIES

2.1. Irrational Equations and Inequalities

1. {a® — 1} for a € [0; ), & for a € (—oo; 0). 2. {(a — 3)/2} for
a€[—3; ), & for a € (—oo; —3). 3. {3}. 4. (a) {—3}. A We set
Y22 =z =y >0 and then we have z = 22" — 32, and the original
equation is equivalent to the system

{ 11+2@22—y%) =y,
y=0.

The solution of the system is y = 5. Now we can find z = 22 — 5% =
= —3; gb) {28}; (c) {4); (d) {O; 4/3}. 5. (a) {6}. A The permissible
values of the variable r in the given equation are z € [2; o0). Multi-
plying both parts of the equation by Vz+ 10-— Yz —2+£0
(with due account of the indicated restrictions), we get the system

Vz+10—yVz—2=2,
Vz+10+ Vz—2=6.

Now we subtract the first equation from the second: Vz—2=2;
hence we find: z—2=22, z=6. Remark. Since z-+10> z—2 in the

domain of definition of this equation, we have Vz+10> }z—2

— 2

md VEFI>0; (1) 23 © (—1) @ (12 @ {— (3¢ )
2 N
%(%—a) } for a€(0; 1], @ for a€(—oo; 0] U (1, o0); (f) {—6,
1.} @ Multiply both parts of the equation by V z*+5z-+3-+

+ Va2 52—2. 6.(a){—1; 3}. A Ist method. The original equation
is equivalent to the equation

V2z+3=14+ Vz+1. (1)
We square both parts of equation (1) and single out the radical:
z41=2Vz+1. 2)

We solve equation (2) by the method explained in the solution of
problem 4 (a): we set }z + 1 = y > 0 and pass to the system

{ y2=2y’
y=0
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and hence find the roots: #;, = —1, z, = 3. Since we have squared
equation (1), the roots of equation (2) must be checked. Verification
shows that they both satisfy the original equation.

2nd method. Let us multiply both parts of the equation by the

expression conjugate to the left-hand side of the equation }/2.1: + 3+

+ V'z + 1 (in the domain of definition of the equation (z => —1) this
expression is nonzero). As a result we get a system of equations with

respect to Y2z +3>0and Vz -+ 1>0,

V2z+3—Vazti=t,
Ve2z 34+ VzFi=z+2,

from which it is sufficient to find Yz 1 (V2z4+3> Vz 1+ 1 >
> 0) in the domain of definition. We have an equation 2 'z + 1 =
= z -+ 1, which we solve by the method described above;;(b) {3};

(© {2} (d) {5}; (e) {20}; () {—4/3}; (g) {—1;0}. @ Setz® + z 4 1 = y;
(h) {5}. 7. (a) {16}. ® Set }'z = y; (b) {9); (c) {—3; 6}. @ Set
V2 =3z + 7=y; () (—9/2; 3}; (e) {1}. @ Set Vzy/ a® + 15 =
=y; () (5/3}. @ Set V(= + )/(z — 1) = y; (2) {54/3} for a = 0,
(—oo; 0) U (0; o) for a=0; (h) {1}. @ Set Y2—z +3 =y;
(i) {3;9 (9 — V97)/8). @ Set Y14 z =y and solve the equation
4z 4 12zy — 27y> = 0 for z. 8. {56+ ay8—a*2) forac
€12; 2V2], B forag (—o0;2) U (2 V'2; ). ASuppose Y7 —z =
= u, YV z—3 = v. We have a system of equations

u+tv=a,
T—z+z—3=u?+tv2=4 (=0, v>0)

solving this system by means of the substitution u = a — v, we
obtain
v=(a— V 8—a?)/2; ve==(a+ V' 8—a?)/2.

For the equation to have real roots, the following system of inequalities
must be satisfied:

{ uy=(a+ V8—a2)/2, { us=(a— Y 8—a?)/2;

| 8—a2>0,
l a—V8=az>0.

The values a € [2; 2 ]/ 2] are the solution of the system. Now we can
find the answer: z —3=1% z=3-+ 12 =5+a) 8 — a?/2.
9. @ D@ =[—1;2; E@ =I[V3 V6l. @ To find the set of
values of the function, solve the equation Y2 —z + Y1 +z=y
and find D (y); (b) D (y) = [—1/2; 3/2]; E (y) = [0; 2]. 10. {3}.
A Setting yz —2=u>0, Y% —z=0v>0, we get a system
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of equations

utv=2,
{ u4—|—v4=2.
Raising the first equation to the fourth degree and taking the second
equation into account, we obtain uv (2 (v + v)2 — uv) = 7, and
since u -+ v =2, we have (uv)? — 8 (uv) + 7 = 0, whence we get
(uv); = 1; (uv)y = 7. Furthermore, to find the solutions of the original
equation, we have to solve two systems of equations:

{ utv=2, { utv=2,
uw=1, w="7.
The first system has a solution u = v = 1. Now we ebtain }/z — 2 =
=u=1, z=23. The second systera has mo real selutioms.
11. {(2a + 1)/(a — 2)} for a € (—oo0; 1/3] U (2; o), & for a € (1/3; 2].
A The original equation is equivalent to the system

{ 224 ar—2a=(z+41)?,

z4+1>0.

Solving the equation of the system and selecting the values of « for
which the inequality £ + 1 > 0 is satisfied, we get the answer.

12. (a+1+ V2aa+1— V2 foracl0;1/2], s + 1+ V 2a}
for a € (1/2; o), & for a € (—o0; 0). 13. (—o0; 0) for a = 0; {0; 3a/4}
for a € (0, ), & for a € (—oo; 0). 14. {a® 4 a; a® — a + 1} for
a€[0; 1], {a® + a} for a € (1; o), & for a € (—oo; 0). 15. {0} for
a=1, & fora 5= 1. 16. {—1} U [2; ). 17. (0.5; 2]. 18. [—V'3; 0) U
U (0; 2]. 19. [—0.5; ) for a € [1; o0), [—0.5; —0.5 (1 — 1/(1 — a)?)
for a € (—oo; 1). 20. (1; 3]. 21. [—2; oo) for a € [—2; o), & for
a € (—ooj —2). 22. (a) (—5/8; 2.4]. A Suppose V24 — 10z = y > 0;
then z = 0.1 (24 — y?). The original inequality is equivalent to the
system

4 2
{ y>3— 0 (=),
y=0.
The solution of this system are the values of y satisfying the inequality
0 <y < 5.5. Solving now the inequality 0 << y'24 — 10z < 5.5,
we get the answer; (b) (V5 — 1)/2; 1]; (c) (3; 4.8]; (d) (1; 2/V3l.
® Set 1/z =t; (e) (V13 — 5)/2, 1]. 23. (a) [3; 12); (b) [—2; o0);
© (6 — VT3)6; o); () (83 o). 24 [ 2 % Ve ) .
25. (a) [3/2; 2) U (2; 26). @ Multiply the numerator aud the denomina-

tor of the fraction by Y2z — 3 + 1; (b) (—=2; 1) U (1; ). @ Multi-

ply both parts of the inequality by 2 + 'z + 3; (c) [0; 1/2). A Only
z > 0 can be solutions of the given inequality. Multiplying both parts
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of the inequality by V& + 2 +_ ) 5z > 0 and transferring all its
terms to the right-hany side, we get the inequality

0> (he—2){(1F Vet2+ V5a). )

Theterm (1 + V' &+ 2 4 V 5¢) is positive and, therefore, inequality
(1) 1is satisfied if 42 — 2 < 0, i.e. < 1/2. It remains t'o so(llve the
system of inequalities
{ s>=>0,
e<i/2;

(d) (1/2; o). 26. [—4; 0) U (4; 6). A The given inequality can only
be satisfied by those values of z for which 24 4 2z — 22 > 0 and
« 3= 0. Hence we obtain two intervals: [—4; 0) and (0; 6]. It is evident
that £ € [—4; 0) are solutions of the inequaiity since at these values of
» the left-hand part of the inequality is negative and the right-hand

part is positive. For the second interval we have V24 + 2z — 23 < z
or (after squaring both parts of the inequality) 22 — z —{12 > 0, whence
we got £€ (—oo; —3) U (4 o0).; Consequently, (—oo; —3) f
N (0; 6)] = &, (4; ) N (0; 6] = (4; 6]. 27.qlu-1; —3/4]. A Setting
K: + 1+ V&+ 3=y, we reduce the original inequality to the
rm y* — 3y + 2 < 0. Solving it, we find 1 < y<2 or 1 <
< Vz+ 1+ V=z+ 3 <2, which Is equivalent to the system

( Veti+Vatix1,
’( Vet+i+Veti<e,
s>—1.

Let us solve the first inequality of the system. Squaring it and trans-

forming, we get an lnequalit¥ 2y &* + 43 4 3 > —3 — 2z, whose
right-hand side is negative for & > —1 and the left-hand side is
nonnegative. Therefore, all & € [—1} oo) are solutions of this inequality.
After squaring and collecting terms, the second inequality assumes the

form V2 + 4z + 3 < —az. It can have solutions only for —1 < z €
< 0. Squaring the inequality, we get 43 + 3 < 0, or z << —3/4. Taking
the first inequality into account, we get the answer. 28. 2k, k€ Z. 29. No,

there is not. 30. (a) 1/2V®). A f' (8)= Lmo _____V'"“:""‘/;=

buv0 Az(Vzt+Az+V3z) A=0 VatAs+ Vs Vet Vs
2 1;— (the function f(z)= Ve is continuous at the point s,

L J
z>0 and, therefore, Alimo (Vataz+ Va)=2Va) (b) 11y s8¢
® Use the identity 3/ a— 3/ b =(a—b)/(}/ a3+ ab+ ¥ ) (c) 114} .
® Use the identity } a—¥b=(a—b)/((} a+ VD) (V &+ V).
31. (a) (1/2 V&) (1+1/z); (b) 55 Vz/2; (¢) 3.52% Vamei-+1/(2 V&)
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@ U+ V2+ V32 V42 Va2V G+ ViR Ve @ d—
—V2IeVz(+ V2P B —2/ VI—a% @ —4U-2) VPV
(D) (12 Va+Va) A+1/2 V). 32 () & () —V3/3; (o) 0.
3. 2—4y+4 =0, b) y+ 1 =20 () y + z2—4&= 0.
(d) y —3z+3=0.34 (0; 4/27) and (—2/27; 0). 35. (a) {4};
(b) {1}; (c) {3}; (d) the function has no critical points; (e) {1/3}; (f) the
function has no critical points. 36. (a) (4; oo); (b) (1/2; o0);
© (V7 =2 ); (d) (0;9) U (9 ); (e) (0, 9). 37.(a) (—oo; 2.5);
(b) (1; 2); (c) (—o0; 1/4); (e) (0; ) (e) (0; 1). 38. A Let us consider the
function f (z) = 2 Yz + 1/z — 3. Its derivative f (z) = 1/ Vz —
— 1/2® exists on the given interval and is positive everywhere; f (1) = 0.

Consequently, f (z) > 0 on that interval and this means that 2 V& >
> 1/z — 8. Remark. The proof can be carried out by elementary

hniques, ti = 5 — 1)3(2 1)/=.
5 e = b= m Y L e
— —61
() maxf(@)=f() =8, minf(s) =70 =0 () maxf(s)=
[0:4) [034) 03]
=f@3) =709, min f (z) = f (0) = f (2) = 0. 40. The point = = 1

is point of minimum of the function, which does not have points of
maximum; max 1 @=1f (B = 4V, [rglg!ll f @=fd)=0.
3 }

YA
1k

0

1V2 x

41, (@) The pointz = 1 is a =V2\-1
point of minimum, z=14 is a
point of maximum;

(b) the point z = 8/27 is a point
of maximum, z = 0 is a point of
minimum.
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2.2. Systems of Irrational Equations
and Inequalities

1. (a) {(16; 30)}. @ Set 1/Vz—T7=u, 1/Vy+6=v; (b) {(41; 40)}.
2. (a) {(¢; c—1) | c€R, except for c¢=1/2}; (b) {—1/2; —2/5); (5;
9}. 3. {(V 3V108+9/2 V 3 V109—9)/2); (—5; —3)). ® Reduce
the first equation of the system to the form z3—y3+ V28— yi=
=12 for z—y >0 and 22—y2— V22— y3=12 for z—y < 0. 4. {(0;
a4V a313)} for a € (—oo; V'3), {(0; o+ V& F3); (0;—a— ¥V ai—3);
(0; Va®—3—a)} for a€[V3; ). 5. {—1/4) U [0; o). 6. [2;

7

-

x

-1 0 1
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2.3. An Exponential and a Logarithmic Functions,
Exponential and Logarithmic Equations,
Systems of Equations and Inequalities

{. The numbers given in (b), (c), (e), (i), (), (k), (1) exceed unity.
2. (@) y>z; D) y>a; (¢) z>y; (d) z>y. 3. 2300 < 3200 4 2800 —
=(28)100 8100 3200 _(32)100-Q100;  copgequently, 9100 > 8100,
4.(2) 9;(b) In 3; (¢) In|a|;(d) 4 loge | & |; () 3; (f) 2; () 15 (h) 2;
(i) 0. A avl°3ab=(av‘°‘ab) 1/ Viegeb_pViogys 4, hence,

pVI%%es_y Viogya . 5. (a) 3(1— c— d); (b) (5—d)/(2(c— 24+ cd+1));

(c) 5¢ — 6d — 4. A Let us represent the decimal fraction 0.175 as an
ordinary fraction; 0.175 = 175/1000 = 7/40 = 7/(22.10). Thus,
log 0.175 = log 7 — 2 log 2 — 1. The problem reduced to finding
log 2 and log 7. We have log 196 = log 22-72 = 2log 2 + 2log 7 =
=c (1), log56 = log 23.7 =3 log 2 + log 7= d (2). Solving the
system of equations (1) and (2) with respect to log 2 and log 7, we get
log 2 = (2d — c}/lx, log 7 = (3¢ — 2d)/4; therefore, log (0.175)% =
og2 —1) =5 —6d —4 6. A We have

=4 (log7 —2
__logs18  14-21oga3
log;s 18= log, 12~ 24 1logs 3 and
loga, 54= loga54 _ 1+431logs 3

logg24 = 3+logy,3 °’
and, therefore, putting logg 3=z, we obtain

442 1430 142 1432
ab+5(6—b)=5"r 5 +5( 5Fz 3tz )
_ 6834 5e 445 (—atHl) 45046 _

- (z42) (z+3) T+ (z4+3)

7. A Setting logg 12 = a and taking into account that 1/logy, 2 =
= logy 23-12 =a + 3, logg24 =1+ a, log, 196 = a + and
1/logis 2 = a, we have, for the given expression, }a + 1) (a4 3) —
—-aia+4)=3. 8. A Evidently, (n 4+ 1)/n =1 4+ 1/n >
>(@m+2)/(n+1) =14+ 1/(n + 1). Using the properties of a
logarithmic function, we have (for n > 1)

1 2
logn n':i > logni1 n-": > logn,1 :—1_1—, or logn (n41)—

—logn n > logn,; (n42)—logn,.; (1), whence we immediately get

log, (n + 1) > logp 4y (n + 2), (logn n = logp4y (n + 1) = 1).
9."A Since 27 > 5. we have log, 27 > log, 25. But log, 27 =
= log,s 3% = log,s 32 = log, 9; consequently, log, 9 > log, 25.

10. (@) {5 + logs 7}; (b) {8/7); (c) {0} (d) (2] i_vm; (e) {10};
® {1} @ €1/ V3% B {5} @) {0); () {loge.s O/V B} (k) {—0.2; 3};
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@ {3}; (m) {10}; 11. (a) {—1; 1}. A Setting 2**+2 = ¢, we reduce the
original equation to the form t> — 9t 4+ 8 = 0. Solving this quadratic
equation, we %et t; = 1, t, = 8. Thus, the original equation is equiva-
lent to the collection of the equations 2x*+2 = ¢, = 1, 2%?%2 = ¢, = 8,
The first equation has no solutions (22 + 2 5« 0 for any = € R), the
second exponential equation 2**+2 = 23 can be reduced to the quadratic
equation z? 4 2 = 3, whose solutions are z; =1 and z, = —1;

b {—V2 —1;1; V2}. @ Set 3**~1=t; (c) {20}; (@) {%} ® Set

V=2 _y qo, (a) {logs/a2; 2 logs/s2}. ® Divide the equation
by 4* and put (3/2)*=t; (b) {1— V'3; 0; 2; 1+ V'3}. @ Divide the
equation by 92*~***1 and put (5/3)2*~**+tl=¢; (c) (1— V3; 1+
+ V3 (@) {log /== 6 0}. 13. (a) {—2; 3). A Set 3=y,

3x+6 —yp, The original equation assumes the form u?—2uv4-1v2=0
or (u—v)2=0; hence it follows that 3**=3x+¢, Solving the expo-

nential equation, we get the answer; (b) {2; 4}. @ Setting 2V 2%+1 —
=y, 2*=3, we obtain z3y/2+4 z=2y-+} 23z/4 or (23/4—1) (2y—3z)=0.
Hence we have z3/4—1=0=>2y= —2 (extraneous root), z3=2 or
oV 25 +T+1 _ox /T T=2—1=>2,=0 (extraneous root), z,—=4.
14. (a) {11}. A Let us transform the left-hand side of the equation:
410864(x—3)+loga5 =410‘¢3(x—3)(210325), —53 (41034(x—3))1ls=25 (1_3)1I8.
Now we have 25(z—3)1/8=50, £—3=2%, zx=11; (b) {4). 15.
{—3; —1}. 16. (a) {27}; (b) {—1}. A We reduce the equation to
the form

logg (3— ) (1 — z) = log,23, 1)
or, after the transformations, to 22 — 4z — 5 = 0. The last equation
has the roots z = —1 and = = 5. Since equation (1) is not equivalent
to the original equation, it is necessary to verify the roots obtained.
Verification shows that the root z = 5 of the quadratic equation does
not satisfy the original equation; (c) {4}; (d) {8}; (e) {2}; (f) {3}
@ {3; 3+ V2). @ Take into consideration that logs (z — 4)° ==
=2logglz—41; W) {—11; —6 — VT, =6+ V'T; —1}; () 3%
() (—17 ® () () ) @) (V2 V6. @ Use the identity
log® a = log? (1/a).

1 _1_
17 @ 1 -2 T o ae 0, 4VE U WYE 1)U
), & for the other a € R; (b) {(3a + 3)/(7 — a)} for a € (3; 7), & for
ag¢ (3;7); (c) {(2e — 1)/6} for a € (—oo; —12) U (1/2; ); & for
a € [—12; 1/2]. A The original equation is equivalent to the system
6234 25r =2az+ 8a —4,
6234252 >0,
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Solving the equation of the system, we find that sy = —4 (extraneous
root since the inequality of the system is not satisfied), 3 =
= (2a — 1)/6. Then, solving the inequality 6 ((2a — 1)/6)3 4
+ 25 ((2a — 1)/6) > 0, we find the permissible values of the param-
eter. 18. (a) {1; 60}. A For z = 1 both parts of the equation vanish;
consequently, z = 1 is a root of the equation. Let us now seek the roots
of the equation assuming that z = 1 (both parts of the eq;:ation turn
into zero onlf for z = 1). For that purpose, we multiply the equation
by 1/(logs = log, z log; 2):
1 = 1/logy = + 1/logs £ + 1/log; » = log, 3 + log, 4 + log, 5.

Solving now the equation log, 3-4.5 = 1, we find the other root
£ =60; (b) {1; V' 3/8}). @ Reduce the equation to the form

-% logez —loggz-logszr — 3 logsz =0 1)

and verify that z = 1 is a root of that equation; then reduce equation
(1) to the form log, 3 — 6log,2 — 2 =10 and find other roots.

19. (a) {1/10; V'10}; (b) {1/2; 4}; (c) {3; 3%); (d) {1/625; 5}; (e) £/ B; 5).
@ Setlog, V5 =t; (f) {10}; (2) {—1/4}. ® Set logs,y, (2z + 3) = ¢;
() {0; 7/4; (3 + V'24)/2}. @ Set log (4 — 2) = u, log (z + 1/2) =v
and factor the polynomial u? + uv — 203,

20, (a){2}; @ log, 27-log, z=1log, 27/10g, 9 =1og, 27=3/2:(b){1//%; 8}.
® Set log,z=t; (¢) {1/V'2; 1; 4}. A Using the formula logy M=
__logo M

Tog, N’ we transform the left-hand side of the equation:
a

logss8 ,, logss? logs V=
14 logs 162 +40 logs 42

log, %

_ 2log,z 42logse |, 20log, =

" logaz—1 loggs+4 ' logaz-+2 °
Assuming now that log, z = ¢, we reduce the equation to the form
t (22 — 3t —2) =0, wixose roots are t;y = 0, t, = —1/2 and t3 = 2.
Then, solving the equations logy z = ¢, (n = 1, 2, 3) and verifying
these roots by means of direct substitution into the original equation,
we get the answer; (d)¥{1/8; 1; 4}; (&}7{1/9;71;"3}; (D7(5}.
21, (@) fa—1; a+1}torae (13 V2) UV 2) U (2 o), {3} for
a=2;(b) fa¥}forac (0, 1/V2 U{/VZ 1D U1 o). 22. (a) {25},
® Putl 3+logpaz=15 b (/9% © (V A+ V52 e Put
log, (z* + 1) = t; (d) {2}. ® Put Vlog,'z = 1. 23. (2).{3}: (b) {1/3};
(©) {3; 10}. 24. (a) {2; 4}; (b) {lo~, (3/5); log, (2/5)}.°25. (a) {2}; (b) {2};
(©) {0}; (@) {—1, 2};7e)2{2}; (N {—log, 3}. 26. (a){—9/10; 99};
(b) {1/10% 10%); (c) {1000}; (d) {0}. 27. {1/10; 2; 1000}. 28. {0.2;16}.
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29. {2}. @ Put 2!0Bw(3%=2) _ | 3108x2(3%-2) — ;, and solve the
equation 3u? — 5uv + 202 = 0 with respect to u (or v). 30. 15 for
a € {3}. 3. [1/5; o). 32. {1/16} Ul4; ). A If we setyz —
— | Vz— 2| =y, then we can reduce the original equation to the
form log, Vy + 6=1log, V2|y| or 242 —y — 6 =0, whose
roots are y; = 2 and y, = —3/2. Taking this into account, we have:
MVz—|Vz—2|=p=2=Vzr—2=|Vz—-2|=

=224 @ Vi—|Vr—2=p=-32=2Vz=12=
= z = 1/16. Uniting the solutions obtained, we find the answer.
33. (a) {2). A We establish by means of selection that z = 2 is a
root of the equation. Let us prove that the original equation has no
other roots. We reduce the equation to the form (5/13)* -+ (12/13)* =
= { and assume that it has a solution: z << 2. We consider two expo-
nential functions: y; = (5/13)* and y, = (12/13)*. They are decreas-
ing, and, therefore, for the values z << 2 we have (5/13)* > (5/13)2 and
(12/13) > (12/13)2. Adding these inequalities together, we get
(5/13)® + (12/13)* > (5/13)2 + (12/13)2 = 1, and this means that
the given equation does not have roots smaller than 2. We can prove
by analogy that the equation does not have roots exceeding 2; (b) {3};
(c) {0). @ To prove the uniqueness of the solution, investigate the
behaviour of the functions y = 2% and y = 1 — z on the intervals
(—o0; 0) and (0; oo); (d) {3}. 34. (a) {(2; 3/2); (b) {(I a |%%/%; | a |"2/%),
for a == 0, | & | == 1; (c) {(1/2; 1/2)}. 35. (a) {(9/2, 1/2)}; (b) {8; 1}.
36. (a) {(3/2; 1/2)}. @ Take logarithms of the second equation of the
system to the base 2; (b) {(}/'3; —1); (/'3; 1)}. 37. () {(18; 2); (2; 18)};
(b) {(20; 9)}; (e) {(3; 6); (6; 3)}; (d) {(4 —1/2)}. @ Set logs z = u,
4-v = w; (d) {(0.1; 2); (100; —1)}. @ Take! logarithms of the second
equation of the system to the base 10; (f) {(2; 10); (10; 2)}; (2) {(2; 1/6)};
(b) {(9a/2; a/2); (a/2; 9a/2)} fora € (0; 1) U (1; o). 38. (a) {(2; 4); (4; 2)}.
@ In the first equation of the system set log,. y = s; (b) {a2; a); (a; a?)}
for a € (0; 1) U (1; o), {((@ + 1)% —(a + 1)); (—(a + 1); (a + 1)?)}
for a € (—oo; —2) U(—2; —1), & for a€ {—2; 1} Ul—1; Ol
39. {(3; 9); (9; 3)}. 40. {(3; 2)}. 4. {(—2; —2); (2; 2)}. 42. {(12; 4)}.
43. {(5; 1/2)}. 44. {(64; 1/4)}. 45. {(—2; 4)}. ® When solving the system,
take into account that y € N. 46. (8) [—1;1 — V3 Ul + V3; 3l
A The original inequality is equivalent to the system of inequalities

{ 3 —22z—2>0,
23 —22—2<1.

The solution of the first inequality is z € [—oo; 1 — V3) U
v+ ]/ 3; o), and of the second, z € [—1; 3]. The intersection of
these sets of solutions is the set of values z ¢ [—1; 1 — V3) U
U@+ V3 3Lk ()7 95 (0 [—4 —3) U©; 1) (@) (4; 6);

(e) (—oo; —2) U(—1/2; oo); () [—2; —2/3); () [0; 2— V2) U
U@+ VE 6l () (3/4 4/3). 47.) (a) (—oo; —2.5) U (0; oo);
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®) (1 =VE =2 U O VZ—1; © (—=i 2— VU
U@+ V3 o) (d) (—o0; —2) U (B/8; )5 (o) [—7; — ¥35) U
U [5; V'35). 48. (a) (2; 7). A Since one and the same number, exceed-
ing unity, serves as the base of the logarith '1s of the left-hand and
right-hand sides of the inequality, the original inequality is equivalent
to the system

{ 2r—4>0,

z+3>2r—4,
solving which, we get the answer; (b) (— V'5; —2) U (1; V'5). @ The
original inequality is equivalent to the system
{ 234+2—2>0,

2tr—2<z+3;
M (—1;1) U@ ); () [ — V5Y/2; 1 + V5)/2]. @ Reduce the
ceft-hand side of the inequality to the form log, (z + 1)-%;

© (—1; 1 +2 V2. 49. (@) 2; 7) U(22; 27). A The original ine-
quality is equivalent to the system

z—2>0,
{ 27T—z>0,
log (z—2) (27 —2) < 2»

whic . ‘n turn, is equivalent to the system of incq.alities

{2 <z<<27,
0 <(x—2)(27—=z) < 100,

solving which, we get the answer; (b) (2; 4); (c) (1; 11/10); (d) [—1; 4);
© (=4 —1 — V31 U @O V3—1L () (3 5 @@ (25 5);
(h) (—o0; —1) U (2; ).50. (logy 5; o0); (b) (—1; )i (¢) (1 — V'5; —1) U
UG 1 + VB) () (—oo; 0) U35 0); (e) (25 00); () (—oo; —8) U
U (4 o0); (g) [0; o0) for a € (—oo; 0), ((a logs 2)% o) for a € [0; o0).
51. (a) (0; 10-¢] U [10, o). A Setting log z = ¢, we get an inequality
t2 4 3t — 4 > 0, which is equivalent to the collection of inequalities
[t<—4 or log z < —4,
t>1, logz>1,

solving which, we get the answer; (b) (0; 1/2) Ul V'2; «). @ Set
log; z = t; (c) (0; 1) U(V3; 9); (d) (1/16; 1/8) U (8; 16). @ Set
loggz=t; () (0; 1/ V271 U [1/3: V243] U [27; ). @ Set
2logiz — 3 logs o — 7= 1; () (1/46: 1/4) U (4/2; 2); (@) (©; 4/2) U

U (32; o0). 52. (a) [‘_log,ﬁ; oo ] @® Set 2=+ = ¢ > (0;
F3) 2
(b) (—1; ). @ Set 10 = ¢>0; (c) (log; (3 — V5)/2;
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log, 3+ V5)/2); (d) (~co3 1 —log; ¥/5]. @ Set 333 m t > 0;
(e) (—oo; 0) U (logy 3; oo); (f) (0.01; ). @ Set 318*+2 = ¢~ 0,
@ (—oo; —1) U(—0.4; 0). @ Set 218(-%) — ¢~ 0,

53. (a) (loga 5+ V'33) —1; o0); (b) (—oo, 0] Ullogs 5; 1);
(c) (logy (V2 + 1); logs 3). @ Setlog (5% — 1) = #; (d) (—0; 0) U
U (0; o). 54. (a) [2; +oo); (b) [28/3; 0); (c) llogs (83/19); o).
55. (@) (—3; — V8) U(VE; 8); (b) (—1/2; 2). 56. (a) [—3; 1);
®) (—4 (14 V1D/2). 57. (a) (0; 2) U (4 oo); (b) (1000; oo);
(c) (0; 1/4] U I4; o). 58. (a) (1 + VT + 4a¥/2; oo) for a € (1; o);
(; (0 + V1 F 4a?)/2) for a € (0; 1). A It is necessary to consider the
cases a > 1 and 0 < a << 1. If a > 1, then the original inequality is
equivalent to the system

{ 2>1,
z(z—1)> ad.

The roots of the quadratic trinomial z2 — z — % are z; =

s: 1+ V 1+ 4a%)/2and zy = (1 + VY 1F 4a?)/2, and the solutions
of the second me uality of the system are z € (—oo; a:l) Y (zg; o).
But z; < 0 and, therefore, the solution of the system is #hie interval
(zg; o) (zg > 1 for a > 1). We can, by analogy, consider the case
when 0 << a << 1. We have a system

{ s>1,
28 —g—al¥ <O0.

The solutions of the second inequality of the system are z € (215 zg).
With the first inequality of the system taken into account, we get

z € (15 zg); (b) (0; a®) U (a%; a?) U (1/a; 0); (c) (1/a; a¥) for a € (1; o),
(a%; 1/a) for a € (0; 1); (d) log, (4 + V16 + a?); 3 log, 2) for a €
€ (0; 1), log, (4+ V16 + a?); ) for a € (1; ). 59. (a) (3; 4) U
U (5; o). A The original inequality is equivalent to the collection
of the systems

z—3>1, I<z—3<{,
0<z—1<(z—3)% z—1>(z—3)3>0.

The right-hand system has solutions = € (5; o), and the second systemn,
z € (3; 4);funiting these solutions, we get the answer; (b) (1; 2)

60. (@) (0; 1/2) U (1; 2) U 3; 6); () (—3; —2) U(—1; 0) U (1; 3);
(¢) (—4/3; —23/22); (d) (—2; —3/2) U l—1; 31, () (1/5; 1/2).

61. (a) (—3; —1); () (0; (V13 —3)/2) U(1; ). 62. [—1; 1/2) U
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UL 2) U2 7/2). 63. 35— V3) U (T; ). 64 (a) (1; 2%
(b) (0; 3) U (4; 6) U (6; 12) U (14; o). 65. (a) (0; 4); (b) [2, 4);
(c) (1/2, 4); (d) (1; 2). 66. (a) (0; 2). ® Reduce the inequality to the
form (2= — 1) (25 — 5%) > 0; (b) (1/ V'5; 1) U (3; o). ® Reduce the in-
equality to the form ((logsz —1) (2logs = + 1))/(logsz> 0; (¢c) (—1; oo).

67. {8). ® Prove that log.s (179(103,5—1)) <0; (b) {4). 68. (0; 1/a%)

for ae(i o), (0; a’L for a€(0; 1). 69. The functions given in (a),
(b), () are even, given in (c), (d), (e), (g), (h) are odd.
70, 3*— (3v=-|-3-==)/2+(3vc 3-x)/2. A Suppose f;(z)=fi(—z) and

fa'z)= —fa(—z). Then 3*=fi(2)+fa(z) (1), and 3*=f1(—2)+
+ fo(—2) =f1 () —fa (x) (2). Solving the system of equations (1)

and (2) for f, (z) and fs (z), we get ,1=3"-l; 3% and /s (z)=3x—;3—=.

74. T=2xn; no, it is not. 72. y=In (z+ Y1 + 23).

73.

74. 750

vA

o

x\
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76,

80,
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81.

82,

2n| 5nf2

n /2

vA

—3n/2 |

N T

83,
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84. (a) 3% In 8; (b) 10%in 10; (c) %‘— In %; (d) e*—e~%; (o) 2e%4-o-%;

(f) 3*In3+44%In4; (g) 10* (14-21n10); (h) e=(14-2); (i)e~*(1 —z);
() VZIn V2 (k) e~ 5" (322 —102); (b) 2e%/(1+2)3. 85. (a)
1/(z1n 3); (b) (1/z) (1/In 2 — 1/ln 3); (c) 1/2z In 5); (d) 5/(z In 7);
@1+1/z @Olnz+1; @ Rl () 1/@z Vinz); (i)
—2z(1+n2%; () 1+ 22—22Ine)(z(1+ 252 86. (a)
321n2; (b) —1/3; () 1.2; (A)3.87. (@ y==2-+1; () y=
=z —1. 8. (a) {0}; (b) {—1; 3}; () {—2; —1} (@ {—1/2; 1};
(e) {—In a} for a € (0; o), for a € (—oo; 0] the function has no critical
points. A Differentiating the derivative and equating it to zero, we
get an equation e2* — (@ — 3)e~* — 3a = 0, whence we have
e® = —3 and e~* = a. The first equation has no real solutions, and
the second has z = — In a if a > 0. For a< 0, the second equation has
no real roots either; (f) {logo,, (—a)} for a € (—oo; 0); for a € [0; )
the function has no critical points; (g) {0; In 2}. 89, (a) {2}; (b) {e%};)
(c) {—4; 1}. 90. (2/3; 4/3) and (2; ). 9. 3 — V1 F 1/(3e); 2) and
(4; 3+ V1 + 1/(3e)). 92. (a) Increases on (—oo; 0); decreases on
(0; o); (b) increases on (e; ), decreases on (0; 1) and (1; e); (c) in-
creases on (logy (3/2); oo), decreases on (—oo; logg (3/2)). 93. (a) z = 1
is a point of maximum; z = e is a point of minimum; (b) the function

has no points of extremum. 94. {—2/3; —1/6}. A f' (2) = % + 2bz 4
+ 1, ' (1) = f' (2) = 0; consequently, we have a system

¢+25= -—1,
{ 6/244b=—1.

Solving it for a and b, we find that a = —2/3, b = —1/6. Thus, we
havef (z) = —2/(3z) — 2/3 4+ 1, and make sure by verification that
at the points z = 1 and z = 2 the derivative changes sign.

95. (a) max y=y(—4)="Te% min y=y(—2)= —3e3;
b) max y=y((2)=17/(4In2), min y=y (0)=2/(ln2
¢) max y=y(1)=24, min y=y(0)=0;

()[ m]v y(1) [ ilily y(

d) max =y(4)=214+3In2, min y=y(1)=0.
( )“m nl y@)=21+ ' in
96. 0. 97. (a) (3.5; ); (b) (—In 2; In 2). 98. (a) A Let us consider the
function f(z) =e* —z —1. We have f (2) =e*—1>0 for
z € (0; o), f (0) = 0, consequently, f (z) = O for all z belonging to the
indicated interval. (b) @ Investigate the sign of the derivative of
the function F () = s — In (1 + z) on the given interval.
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2.4. Transformation of Trigonometric Expressions

2. (a) V2—a% (b) 1—(a3—1)%/2. @ sinta+costa=(sindc

+cos? a)3—2 (sin & cos x)¥=1—2 ((a3—1)/2)3. 3. (a) p?*—2;
(b) p—3p. 4. (a) (4 V34+3)/10; (b) (V3T —0%)—b)/2. A Setting
40°+a=p, we get cos(70°+a)=-cos (30°+B)=(13/2)cosp—
—(1/2) sin B. Since 0° << <<45°, we have cos >0 and, therefore,
cos f= Y 1—=03. The final result is cos(30°+4B)= V'3 (1—b3)/2—b/2;
(c) 1073/1105. @ sin (@ -+ P — y) =sin (a+P) cos y—cos (¢+P)siny=
=sin o cos p cos y-+cosa sin p cos y —eos & cos ff sin y-|-sin a sin f sin y;
(d) —117/425; 44/125; —117/44. @ sin 3a=3sina cos? a—sinta=
=3sina—4sinta, cos3ae=3costa—3sintacosa=4costa—3cosa
tan 3 sin8az 3sinacosia~sinta 3Jtana—tanda
AN O = s 3a  cos'a—Jsin'Geosa  1—3tania

the equality atp=n-~—y. 7. (a) tan2az; (b) —tana; (c) tan2a;

. 5. @ Use

T
2 sin -

(d) coseca; () ~~1/2. A cos —2ﬂ+cos —41‘-+cos —61=——7—x
7 7 7 F13
2!’“7
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X (coa %—I—cos 4Tn+c0367n) =

B (sin -3Tn—sin %) —+ (Sin —E),;‘——sin §7£) - (sin n—Sin-i—n)*
L
2 sin -
—sin 7 1
== (f) 1. ® Reduce the expression to the form
2 sin —
7
. 13 . n
sin <= n—sin (_H)
p . 8. (g) A We have 16sin 10°sin 30° sin 50° X
2 sin E

X sin 60° =16 cos 80° cos 60° cos 40° cos 20° = 8 cos 80° cos 60° cos 40° X
0 o3 o 3 [} o
2 cos 20° sin 20 — 4 cos 80° cos 60° 2 sin 40° cos 40 — 2 cos 60° X

sin 20° sin 20°
25in80°cos80° , 1 8in160° _sin (180°—160°) .
sm20° 22 sm2or — smae b W @ Use

the formulas 2cos?a=1+4cos2a, 2sin?a=1—cos2a; (k) ® 1+

+sina=(sin (¢/2) +cos («/2))3. 9. 1/3. A sinafcosa=
2 tan (/2 1 —tan? (/2

- 1+tan§ (é‘ /)2) + i ((a //2)) —1.4; Hence we get 2.4 tan? (a/2)—

—2tan (@/2)+0.4=0, tan («/2)=1/3 and tan (a/2)=1/2. The value

tan (@/2)=1/2 does not fulfill the condition 0 < /2 < /8 (tan (n/8)=

=VY2—-1<1/2). 10. n. A It follows from the hypothesis that

0<a+4PB+7y<<3n/2, 0<£_{—Y<£-, tan%tan—\z’-<1 (@, B, ¥

being positive acute angles) and, therefore, we can make the fol-
lowing transformations:

-1—cot i—}- 2
Boigmy 372 @ 2
B+ tan D) -+ tan ) 3tan D) —+cot 5
tan D) = B = 1 % D) =
1—tant tan-X 1——cot =
22 37 2% tanZpoot &
an - cot
=cotgz—,
i.e. tan ﬁ_;v —cot %=0, whence it follows that
. B+7) Lo @ B+vy_ _  _ot+Bty
sm( D) sin D) cos 3 cos (——2 )— o8 ——5—— =0,
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which is only possible for +B+Y % (it ‘s clear from the
hypothesis that 0<<——F7F-—- @ H3+? Z , e a+ﬁ+7=u).

1. @ (V2=v32)/2. ® cos 292°30' — sin 22°30° = Y/ (T —cos 45°)/2

_ 2(%—c0510°—¥sin10°)
(b) 4 A cosec 10°— Y 3sec 10°= =

sin 10° cos 10°
__ 4sin (30°—10°) . = 2 cos 40°—cos 20°
sin 20° =& © V3 A sin 20° -
__c0840°—2sin 30°sin 10° _ sin50°—sind0° 2¢0s30°sin20° V3
sin 20° =7 sin20° T 8in20° !

(d 4 A —2Y?2 (2sin 35° sinl10°—sin 5°—2 cos 5° cos 40°) =
= —2 V2 (cos 25°—sin 5° — cos 35° —2 cos 45°) = —2 V2 (2in 30° X
Xsin 5°—sin 5°— V2)=4; () 3/4. A cos? 73°4-cos? 47°+
+c0873° cos 47° =0.5 (1+4-cos 146° 41 -4 (cos 94° 4 cos 26°) 4 cos 120°) =
=0.5 (3/24-2 cos 60° cos 34° — cos (180° — 146°)) = {/2. 3/2 == 3/4;
(f) —1/2. A (sin 6°—sin 66°) - (sin 78° —sin 42°) =2 eos 60° sin 18°—

— 0 o o
2 sin 30° cos 36°— sin 18°—sin 540 — 2603 36°8in 18 e

36° 36° 72 1 cos 187
2 cos sin sin 72°
=TT 2c0s18 2cosi® 3¢ ® —1/V% W 4

(i) 0. @ tan?20° = (1 — cos 40°)/(1 4 cos 40°); () 1/5.

2 790 . cos,08°cos 36° o
A (cot? 36° cot? 72°—1)-1 —1+_—sin3 365 5ind 72° ; ; (c(s)t 36° X
1 -2 8in 36°
, V2 4 cot 36° cot® 72 LS 4
X 00t T2 ——zmems = 1 — cOt? 36° cotd 72° T m =1
—4 cot?36°-cot2,72°. We have an uahty cot2 36° cot2 72° =
=1—4 cot? 36° cot? 72° or 5cot? 36° cotz 7 °=1, whence we get the
answer. 12. (a) =z2/9-+4y%/16=1; (b) y= 4——.1:3; () y—z=1;
(d) 2243 =2.

2.5. Trigonometric Functions

1. (a) D(y)=ngZ(——n/4+nn/2; n/4+nn/2); (b) D(y):mlijZ (3nn;
3n(n+1));  (c) D(y)=néJZ (wn—a/2; in4-0/2); (d) D(y=
=néJZ (nn; n(n+1). 2. (@) E@)=[—1; 3]; (b) E(y)=[—2; 8

() E @) = (—4 4; (@ E(y) =I[-3]3% (e E@ =I[-1 1];
() E @ =10, ); @) E @ =I[—1; 1; (h) E (v) =[co_s 1; 1]
() E@) =l[cos2 1 () E @) =[—1;1 @ E @) =[—V2 V2
1) E (y) = [—12; 14].

3. (a) maXy—Vtﬂ bttc; memy—-c— Va*F 2. A We transform
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the given function as follows: c-+acosz+bsin's=7Y ai b8 X

a b - —_—
X | =——=———= co ———— sin c= 24 b2 sin .
( Vo cos z+ Vo si _z)+ Va*+b¥sin(z+@)+¢
It is evident that the function y assumes the least value if sin (¢ + z) =
= —14, and the greatest value if sin (z + ¢) = 1; (b) max y = 11,

xER
mi"zly=1. ® y=500+cos2r) —3sin2z + (1 — cos 22) =
x€
= 4 co8 2z — 38in 2z + 6. 4. ]2 Y'2; ). 5. mil'l2 y = 1. @ Reduce

x€
the function to the form y = (sin 3z 4 sin 2z)2 4 1. 6. @ Prove
that the product of an even and an odd function (sin z cos 2z) is an
odd function, and then prove that the sum of three odd functions is
an odd function. 7. @ Prove that the product of two odd functions
(sin? &xlz) sin z) is an even function; then prove that the sum of three
even functions is an even function. 8. (a) 2n/3. A Suppose that the
constant number 7T 5 0 is a period of the given function. Then,
sin3z=3sin3(z+ T) or 2cos (3.1:—!— E%T) sin§21'= 0 for any
z € R. This is evidently possible if sin (37/2) = 0, i.e. 37/2 = an,
n € Z. And since we have to find the least positive number 7, this
number can be found from the equation 37/2 = n (n = 1); (b) 2m.
® Represent the function in the form y = (sin z + sin 2z +
+ sin 5z)/cos 2z; (c) 4m; (d) n. @ cos? z = 1/2 + (cos 22)/2; (e) 2m;
() m; (2) 70n. 9. ® Show that the conditions of the definition of a
periodic function are not fulfilled for this function. 10, {—2, —1; 1, 2}.
2y . Ty — Tt

11. @ Prove that cos 57— sin =~ > 0 for any =z, z4€
€ (O;%), zq > 11
12, (a)
y
1 m
T T RT
2 2 2
12, (b)
Y,
1—
3an
7 2
Zan  2n_3x % 0 T
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J
_2n _zx |o /= 51 4m\'x
3 6 3 6 3
12, (a)

y

| 1 !

I i

1 4 1
—2n - 0 n 2n| x

e
12, (g)
y +
v
/
// inx
11 S|

20N ’-\ N *://—

—2n -m~_/]0 ™ __"2n X
//
Z
/
/
/

/

13%
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12, ()

Bl

12, (i)

YA

12. (i)
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12, (k)
17

=Y

(=)
Nt ——

3n _m |0x
£3x 1 4\/
13. (d)
y
1
31 _x 0] z 3 x
2 2 2 2
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13, (e)

14, (a)
5
I
14, (b)
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14, (c)

Bl

-t

14. (e)
I
|
[
|
|
|
n —n _1
2
(f)

14,
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16. (a) cos z -+ sin z; (b) —(4 cos 2z/sin? 2z); (c) sin 2z; (d) —sin 2z;
(e) tan®gz (tan?z 4+ 1); (f) —cot®z (cot?z + 1); (g) 3 cos 3z;
(h) (—1/V2) sin (z/V'2); (i) 2 sin (42 — 2); () [—3 cos? (z? + 2) X
X sin (22 + 2)] @z + 1); (k) 1/(1 + cos 7). 17. (a) V'3/2; (b) —2
() 3. 18. @) y—2=0; (b) y —12=anlb —z; (c) y — 1

= 4 (zx — n/8). 19. max y = 21; mm y = —19. 20. 3/4. Smce

’ (z) = 0 for any z E [R it follows that f () = const, and the value
of the constant can be found by substituting any value of z, say,
z=0

2.6. Inverse Trigonometric Functions

1. (@ D (y) =10, 2l; (b) D@ =12 6] (© D) =[—1—VZ
V2 — 11 () D (y) = (—o0; o); (€) D (y) = (—o0; ); () D (y) =
= (—oo; o0). ® To find the domain of definition of the function
y = arc sin f (z) (y = arccos f (x)). solve the inequality | f (2) | < 1.
2. (a D@y = (—oo, °°), () D (y) = [0, o); (c) D (y) = (O, “oo);
(d) D (y) = (—o0; o). 3. (a) E( [0 n/2], (b) E () = (/25 nl;
(c) E (y) = . n/2), (d) E (y) n/4° 4. (a) A Setting |z | = ¢,
where z ¢ |—1: 1] a 0; 1], we get, by the deﬁmtlon,
sin (arcsin ¢) = t = I z l, (b) A Suppose arcsin z = a, with

o € [—n/2; n/2]. (1)

Thus, we have to find the value cosa if sina=z. From the prin-
cipal identity sin?a-}+cos?a =1 or cos3 ¢ =1—z? we have | cosa | =

= }J/1—23 And since the values of o satisty condition (1), it
200



follows that cosa=—-cos(arcsinz)=V1—=2% (c) A Since tana=
—sin afcos @, we have tan a=—tan (arcsin z)=z/Y1—z% for

z€(—1,1). 5. (@) 4V?2/9. A Suppose arcsinz=a. Then

3
sin (2 arcsin %) —sin2e=2sinccos a=2-(1/3) Y1—1/9=4 V2/9;

(b) 7/9; (c) 4 V'2/7; (d) 23/27. A sin(3arcsin(1/3))=sin3a=3sina—
—4 sin® @ =(3/3)—4-1/27=23/27; () V' 2/4. A 1f we introduce the
designation arcsin }/63/8=p, then we have sin p=}/63/8, cosp=

=V 1—63/64=1/8. Now we can find cos(p/2)=V (1+cosf)/2=
= VO/16=(3/4) (B/2€ (0, m/4)); by the formula sin (B/4)=

=V (1 —cos (B/2))/2 we find sin (— arcsin l/ 1—-3/4 _
=l/§=T . 6. (b) A Suppose

arccos z=a, a € [0; xn]. 1)

From the principal identity we have sin3a=1—2z* or |sine|=
—]/1—-:’ or, by virtue of (1), sina=sin(arccosz)=V 1—2%;
(c) tana=sina/cosa= V1—z8/z, z€[—1, 0) U (0; 1)]. 7. (a) —11/16.
A Let us introduce the designation arccos(1/4)=c. Then we have

11
—_ $ o — = —— e e — H
cos (3 arccos (1/4))=cos 3a =4 cos &« — 3 cos & A 16’

(b) 2/3; (c) 1/4. 8. (b) A Suppose arctan z=a, a€(—mn/2; /2).
en tana—=z and, taking (1) into account, we find cosa=

=1/Y 1+ tan? a =1/ Y1+ 2* from the identity tan® c--1=1/cos?c.
9. (a) 3/5. A Let us introduce the designation arctan 3=a, tana=3.
Then we get sin (2 arctan 3)=sin 2a=2 tan /(14 tan? @)=

—=2.3/143%)=3/5 (b) —3/4 (c) V(10— V10)/20. A sin (2/2)=
= Vi=cosap =Vt —-1/Vit92=V (VO -1)2 V0=
=V (10— y10)/20; (d) V 26+ V' 26)/52 (e) 3/V10. 10. (b) A Sup-

pose arctan z = o; cota =z. Then tana = {fcot o = 1/z.
(a) A Assume arcsin z = arccos y (which s possible since
0 < 1). Then cos (arccos y) = cos (arcsin 7), y = V' 1 — =3, l.e.

arcsin z = arccos V1 — 2% 12. (a) arccos (4/5); arctan (3/4);
arccot (4/3); (b) arcsin (5/13); arctan 55/12), arccot (12/5),
(c) arcsin (5/13); arccos (12/43); arccot (12/5); (d) arcsin (4/5);
arccos (3/5) arctan (4/3). 13. (a) A We set arcsin (—2) = a, a €
€[—n/2; n/2] Then we have sin @ = —z or —si: @ = sin (—a) = z,
whence it follows that —o = arcsin z or o = arcsin (l—:c) =
== —arcsin z; (¢) A Assume arccos (—z) = o, o € [0; m]. Then
cosa = —zx OfF —cosa =cos(n —a) =z. Since 0 < n —aa << 7,
we have n — o = arccos z, i.e. o = arccos (—z) = 5 — arccos z.
14. (a) = — arcsin (2 1/2/3), n — arctan 2 V'2; arccot (— V' 2/4);
n — arceot (V 274); — arccos (1/3); (b) arcsin (-—-7/25;
—arccos (24/25); —arccot (24/7), —arctan (7/24); (¢) n — arcsin (24/25);
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arccos (—7/25); n — arctan (24/7); n — arccos (7/25); n — arccot (7/24).
15. (a) A Since 0 < z < 1,0 < y < 1, it follows that 0 < arcsin z <<
< n/2; 0 < arcsin y << n1/2 and 0 < arcsin z -+ arcsin y << n. There-
fore, we can write the equation arcsin z -+ arcsin y = arccos z,
whence we have cos (arcsin xr + arcsin y) = cos (arccos z), z =
= V1 — 2 Y1 —y® —zy; (d A Since 0 < arccos z < n/2 and
—n/2 < —arccos y << 0, we have —n/2 < arccos z — arccos y <<
< n/2 and we can write the equation arccos x — arccos y = aresin z.
Hence it [ollows that sin (arccos z — arccos y) = sin (arcsin z) or

t=y VIi—=2— 2z V1— 4% (h) A We have 2> 0, y > 0 and,
therefore, 0 << arccot z << n/2, 0 << arccot y < m/2, 0 < arccot z -+
—+ arccot y < m, and we have an equation arccot z 4 arccot y =
= arccot z or cot (arccot x -+ arccot y) = cot (arccot z). Using the
formula cot (@ + B) = (cot & cot p — 1)/(cot o + cot B), we obtain
z= (zy — 1)/(z + y). 16. (a) arccos (—16/65); (b) arccos (—3/5);
(c) arccot (—19/9); (d) — arcsin (3/5); (e) — arcsin (36/325);
(f) —arctan (1/21); (g) —arctan (1/21). 17. (a) A We introduce the
designation arcsin z -+ arccos z = o. Since —mn/2 < arcsin z << 7/2,
0<<arccosz < m, we have —n/2 < a << 3n/2; since sin a =
= sin (arcsin # + arccos z) = zz + VY1 — 22 Y1 — 22 = 1, it fol-
lows tbat o = m/2; (b) suppose arctan z -+ arccot z = f; since
—n/2 << arctan x < /2, 0 << arccot z < m, it follows that —n/2 <
<< B << 3m/2. Since sin B = sin (arctan z + arccot ) = z®/(1 + 2?) +
+ 1/(1 + 2? = 1, we have B = n/2. 18. (a) §1/2}; () {1); (c) {1}.
19. i = 2; {(cos (n*/4); 1); (cos (n?/4); —1)}). 20. max¥f (z) =

[—-111]
(—1) = 7n/8; mi}l] f(x) = f (1/2) = n3/32. A Since arcsin x +
—13
+ arccos £ = n/2, we can, putting arccos r = ¢, reduce the original

: ]
function to the form %(St’ —%ut -+ “T) The function f (¢)
1
assumes the least value at t = % r = ——,)) , and the greatest value
at t =g (z = —1). 21. (a) —3n/7. A From the definition of the

inverse function y = arcsin z it follows that arcsin (sin z) = z if
z € [—n/2; n/2]. To be able to apply this formula, we make the trans-
formation sin (10 n/7) =[sin (n + 35%/7) = —sin (37/7) = sin (—3x/7).

Thus we have arcsin (sin 10n/7) = arcsin (sin (—3n/7) =
= —3n/7 (—3n/7 > —n/2); (b) 117/18; (c) —n/5.
22, (a) 22, (b)
vh vh
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25. (a) Suppose f () = sin &. Then, by the formula for the derivative
of the inverse function g’ (z) == FE@

1 1 1
T F(arcsinz) cos(arcsing) iz '

(g (z) = arcsin z), we find

(arcsin z)’

(b) the proof is similar to that carried out in (a); (c) suppose f (z) =
= tan z, g () = arctan z; we have

1
r__ e 2 .
(arctan z)’ = 7 (arctan z)—cos (arctan x)
— 1 — i .
" tan?(arctan z)+1" 1422’

(d) the proof is similar to that carried out in (¢). 26. (a) — 1/} 2z—z?;
) —1/VI—(zF2) (g) 1/Vi—a2—2/V1—4z% (d) arcsinz+
/ '1-:—2; o _z+(arccosa:)1£ ——z“; n :
te V =4 () z2 1/1—:5“ 2 (arccos z)? 1/1—.1:’
(8) 2z/(1+4=2%; () —(2*1In2)/(14-4%); (i) cosz/|cosz |;
(G) —1/(1+2) V2z(1—2)). 27. (8) 4 (b) 3V2; (c) 1.5; (d) 0.8.
28, (a) y = 15z/4 — 3/4 4+ arcsin (3/5); (b) y = z/4 + 1/2 — ml4.
29. (a) {0}; (b) {0}. A The given function is differentiable at any point
z € R and, therefore, only those values of z, at which y’ (z,) = 0 can
be its critical 1x;oints. Differentiating, we get y’ (z) = arctan z 4
+ z/(1 + 2?). The equation arctan z 4 z/(1 + 22) = 0 has the unique
solution z = 0 (the function (f (z) = y' (z) being odd and assuming
only positive values for all z > 0). 30.[0'13ax y =y (0) = n/4;

min y =y (1) = 0.
[0;1]

2.7. Trigonometric Equations and Systems of Equations
1. (@) {mn+ (—)"2n/6|neZ}); (b) {mn+ /8| n¢ Zgl;

(c) {nn/2'| n € Z}. @ The original equation is equivalent to the equa-
tion sin 2z = 0; (ld) {2nn + (—1)® 2 arcsin (1/4) + 2#/3 | n € Z}.
® Represent the left-hand side of the equation in the form

2
sin (z/2— n/3); (e){% ¢n—12 | neN } . A We reduce the original

equation to the equation V'z = 2nn — n/2, which has solutions if
2nn — n/2 > 0 or n > 1/4. But since n € Z, the last inequality can
be only satisfied for n € N. 2. sa) {nn + n/2 | n € Z}; (b) {2nn/3 +
+ 7n/18 | n € Z}; (c) {2nin &= 2n/3 | n € 7}. @ sind(z/2) — cost (z/2) =
= —cos z; (d) {2nn = arccos (n/4) — n/6 | n € Z}. @ Represent the
left-hand side of the equation in the form cos (z + n/6);

@) {£V2an | n€Zy. 8. {nn + (—1)"*1n/4 | n € Z}. @ Show that
the equation sin z — 13 4+ V'2/2 = 12k — 1 has a solution only for
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b= —{ and the equation sins — 13 + ﬁ/z = 12k 4+ 1 does not
have solutions for k € Z.

4, [—1, 7/3]. ® Solve the inequality |(a—1.5)/(2—0.5a) | <<1.
5. (a) {2an + (n—nrccos -2—)

3 nEZ}; (b) {n—zn+(_21)n><

nez} for ag¢[—2, 2]. The function has no critical

.. a
X arcsin 3

points if a ¢ [—2, 2]. 6. (a) {nn-+}=/6 | n € Z}; (b) {2ntn—37/14 | n € Z};
(c) {322 —l—% arctan5|n€ Z} . @ tan2r=2 tan z/(1 —tan2 z);
(d) {mn—n/12 | n€ Z}. ® Represent the left-hand side of the equation
in the form tan(n/i—a). 7. (&) (anta/kin€zy & {F+

n€Z}; () (ant3n2+61ne2 @ {nnt
+arccot (V7—V2) lnez}. 8. (a) {nn, 2nn + 3n/4|neZ);
®) nnaf6; 2tz | ne 2y © (G~ Ty |nez);

1 i
—I-? arccot 2 -

wmn  2nn 1 1 . .
(d) { 3~ —g = g arccos V3 ne Z} s (e) {mn+mn/4; 2nn +
/3| n€ 2} 9. (a) {nn + (—1)®+H35/6 | n € Z); (b) {2nn + /3 | n €
€ Z}; (c) {mn + (—1)» arcsin (2/3) | n € 2}; (d) {2nn + 2x/3 | n € Z};
(e) {n (5n + 2);+ n/2; 5mn|n€Z); () {nn, 2nn + n/6 | ne Z}.
10. (a) {nn -+ n/4; nn + arctan 3 | n € Z}; (b) {nn — arctan (1/2);
nin+ arctan 2| n € Z}; (c¢) {nn + n/6; nn 4+ /3| ne€Z};

(d) {mn + 3x/4; nn + arccot 2 | n € Z}. 11. () {~n + (—1)n*3 % | n€

€Z}; (b) {mn + (—1)® n/4 | n€ Z}; (e) {2nn + arctan (1/2) | n € Z}.
A Using the formulas for the logarithms of a product and a quotient,
we reduce the equation to the form

lo 3sinz
81 Cos z (1 —tan z) (1] tan 2)

Solving now the equation with respect to tan z, we obtain (tan z); =
= —2 and (tan z); = 1/2. Since, as a result of the transformations,
we have obtained an equation which is not equivalent to the given
equation, verification must be carried out. Only those values of z can
be solutions of the original equation for which the following system of
inequalities is consistent:

=1 or 3tanz=2(1—tanlz).

sinz >0,
cosz>0,
1—tan >0,
14tanz2>0.

The solutions of the equation tan z = —2 do not satisfy the inequal-
ity 1 4 tan z > 0 of the system and are, therefore, extraneous.

206



The equation tan . = 1/2 has solutions z = =k + arctan (1/22,
k € Z. Verifying them by means of the substitution into the inequal-
ities sin z > 0 and cos z > 0, we find that the inequalities hold for

k=2n, n€Z.
12. (a) {nn/2+7/8 | n € Z}; (b) {‘-‘22+ arcsin2(2— §)lnEZ};
3 1

@ { G+ arcsin (1 — V3F22) Ine 2} for ae[ —25 1]
nez}; @ {5

ne Z} . 13. (a) {nn+(_1)n arcsin 1/32——3| ne

(=1

& for a ¢ [—3/2; 1/2]; (d) {%_H_i)nuf_z

2nn 1 1
5 =+ 5 arccos 7

ez}; (b) {nn/5—|—(—1)" n/20——§-lne Z}; (c) {an/2+ /4 | n €T}

Use the equality 2sin?2z=1—cos2z; (d) {2nn +
1— V1+4a?
2a

va

n€Zj for a+0, {nn+m/2|n€Z) for

=+ arccos

a=0. 14. (a) {n/2—|—2nn | n€ —N; i;)-; —n/2 4 2nm | m € N}.

A After the simplest transformations, the given function can be
represented in the form f (z) = 2cosz — |22 — 3| + % — 2. It
can be seen that it is differentiable everywhere except for the point
z = 3/2, i.e. this point is critical. We have f (z) = 2 cos z + 2z +
+e3—5 for 2<<3/2, f(x) =2cosx — 2z + 3+ 1 for =z > 3/2.
We can find other critical points by differentiating the function and
equating the derivative to zero (taking the inequality into account);

b) {(@/2 + 2num)/6 | m =1, 0, —1, —2, .. 2;% (—n/2 4 27n)
In=3,4.5 ...;0) {n @n+1)/2| n€z); @) {2nn & 3n/4 | n €
€ Z}. A The given function is differentiable at every point belonging
to the interval (—oo; oo). Differentiating the function and equating
the derivative to zero, we get an equation 2 cos® z + (V2 — 2Y/5)X
X cos z — /10 = 0. Hence we obtain cos z = }/'5 (the set of solu-
tions of this equation is empty) and cos z = —2/ V2= z = 2an =+

+ 3n/4; n€7Z; (o) “"“"“Zu +an|n€z} 15. (@) {n n + 1)

| n € Z). A Taking into account that 2 cos® (z/2) = 1 + cos z, we
reduce the equation to the form cos® z + cos2z — 2 (cosz + 1) = 0
or (cos z + 1) (cos2 z — 2) = 0. Thus we have two equations: 1
~+ cos z = 0, whose solution is —z = 2nn + =, n € Z, and cos® z —
— 2 = 0, which has no solutions; (b) {nn + n/2; 2nn + n/3; 2nn +
=+ (n — arccos (2/3)) | n € Z}; (¢) {nn — n/4; mn £ /3| n€T}.
® Make use of the identity 1/cos? z — 1 = tan2? z and reduce the
equation to the form (tan z + 1) (tan? z — 3) = 0; (d) {2nn; 270 +
+ 2n/3; 2mn 4 arccos ((—1 =+ V'5)/4)| n € Z}. 16. (a) {nn + arctan5
| n € Z}. A The two sides of the equation do not vanish simultaneous-
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y for any s; dividing the \(itlmtion by cos z, we get an equation
sin z/cos 8 == tan z = 5, which is equivalent to the given equation.
The solutifons of the latter equation can be found from the formula
rz=nn- arctan 5, n € Z; () {nn + w/d|n€Z}; (c) {nn — nl4
| n € Z}; (d) SZnn — ald; 2mn + /2 | n € Z}; (e) {nn + n/2; mn +
~+ arctan (1/4) | n € Z}; 17. (a) {«n + m/4; 2m;n + 2n/3 | n € Z};
(b) {mn + arctan 2 | n € Z}; (c) {2nn; nn + nw/h | n € Z}; (d) {nn —
— nl4; an | n € Z}; (e) {nn -+ n/4 | n € 7). ® Reduce the right-hand
side of the equation to the form (cos z — sin 2)2 4 cos? z — sin? z.
18. (a) {nn — n/4; nn — arctan 2 | n € Z}. A Since sin z and cos =z
do not vanish at the same value of z, we can divide the equation by
cos? z. We get an equation

tan®?z + 3'anz 4+ 2 =10 (1)

which is equivalent to the original .:juation. From (1) we get equations
tan £ = —1 and tan z = —2, whose solutions can be found from
the familiar formulas; (b) {nn + n/4; nn — arctan (1/4) | n € Z%;
(¢) {nn + nl4; nn 4 arctan (3/5) | n € Z}; (d) {nn -+ arctan 2;
nin — arctan (374) | n € Z}. ® Represent the right-hand side of the
equation in the form —2 (sin? z 4 cos? "’)f, () {nn — nl/4; nn +
+ arctan 5 | n € Z}. 19. (a) {nn —arctany 4| n € Z}; (b) {An =
—~nl4; in = n/3 | n € Z}). A We transform}/t—he right-hand ssde of
the equation as follows: 3 sinz (cosz — sin2) + 3 = 3 sin £ X
X c0s z — 3 sin? z + 3 (sin? 2 4 cos?2) = 3 cos z Ssln z- cos z). We
have got an equation sin? z (1 4 tan z) = 3 eos? z (1 4 tan z), o
(1 + tan 2) (tan* z — 3) = 0, whose solution reduces to that of the
equationstan z = —1,tan 2 =} 3andtan z = — V'3, (c) {nn/2 | n¢
€ Z}. ® Represent the right-hand side of the eguation in the form
1 = (sin® 2 4 cos? z)¥ = sin? = + 2 sin® ¢ cos°z -+ cost z; (b)

{wn/2 | n € Z) for a = 0; {mn -+ arctan 2la;
-1+ '461""16“2 nEZ} for « = 0. 20, (v J%
—_ % arctan -g—l n¢ Z} H (b) {mn-+arctan(6x V3) IneZ)

nin- arctan 5
() {nn+(—~1)"T1a/6|n € Z}; (d) {nn—arctan (1/2)|n € Z}; (e) {nn+

+n/8ln€Z). 21. (a) {2n; 2nn+ta/3|n€Z); (b) {Znn—l—%- ,
n . 2nn  m . 2:nn | 27 1.
20+ - nEZ}, © S —g [ nez};

(d) {2nn; 2nn+4-5/2|n € Z}; (e) {2nn-+5n/3|n € Z}; (f) {—1%—. %—x

X @n+1); T (—2n)in € N} : (@) {2nn i arceos —2— 7

a
~5 11"}
fora€l~ V2% Vi @ foragl— V% V2 () {mnt{3|nez} ;
(i) {n/4|n € T, except for n—4k-2, k€ 7). 2. (a) {i‘?’l—f—zl nez,
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except for n=1-3m, m¢ 7/,}; (b) @; (c) {nnlnc 7). A The origi-
nal equation is equivalent to the equation
2 (tan 3z — tan 2z) = tan 2z (1 4 tan 3z tan 2z). (1)

Now we seek the values of = for which 1 4 tan 3z tan 2z = 0. The
last equation is equivalent to the equation cos z/(cos 2z cos 3z) = 0.
It turns out that this equation has no solutions since if cos z = 0,
then cos 3z = 0 as well. Consequently, equation (1) can be divided
by 1 4 tan 3z tan 22 %= 0; we have

tan 3z —tan 2z
2T tandstandy —'202s or 2tanz

2tanz
1—tan2z
Solving the equation tan z = 0, we get z = zn, n € Z, and after
verifying that the conditions z = nik/2 + m/4 and z == nk/3 -+ /6,
k € Z are satisfied, we find that z = mn, n € Z, is a solution of the
original equation; (d) {90°n + 25°| n € Z}. 23. (a) {2nn | n € Z}.

@ Use the identity sin r =2 tan %/(i -+ tan? %); (b) {2nn —

, or tanz=0,

—n/2| n€7Z}. @ Use the identity cosz = (1 — tan? —”2‘—)/(1 +

Htant Z); () {nn £ /6; W2 + 70 | n € Z); (@) (2nn = 2 arctan 5

| n€Z}; (e) {2nn]+,2 arctan 3; 2znn 4 2 arctan V'3/11 | n €Z};
(fz &:{m + n/4 | n € Z}. 24. No, they are not. A The sets of solutions
of the first equation {nn — n/4; nin 4+ /2 | n € Z} and of the second
equation {nn — n/4 | n € Z} do not coincide and, therefore, the
equations are not equivalent. Remark. The identities

sina=2tan—“2-/(1+tan’%) and wsa:i—(tan’%)/(1+

-+ tans %) hold when cosa == —1. 25. (a) {nn+4mn/2; =nn+

+ n/3| n€Z). A Since cos 3z = 4 cos® z — 3 cos z, the original
equation is equivalent to the equation cos z (4 cos? x — 1) = 0, or
cos z (cos 2z - 1/2) = 0, solving which we get the answer; (b) {nn/3 +
-+ x/6, 2nn/3 & 21/9 | n € Z}. ® Reduce the equation to the form

co8 3 (3z) — 4 cos? 3z = 0 and set cos 3z = ¢; (c) {un;% :1::-[—2- | n€

€ Z}. @ Reduce the equation to the form 2 cos 2 (2z) = 1 + cos 3 (2z)
and set cos 2z =1¢. 26. (a) {3nn|n € Z}.

® Use the identity sin z=3sin %—4 sin® %; (b) {%, %—}-
F)

— +1
=" 45

+(—1)" 1/6; 2nn-n/2|n € Z). @ Use the identities sin (-;‘I— at

ne ‘Z.} 3 (c) {2nn, 4nn 4-27/3|n€Z); (d) {nn-
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. n_ 3 . kL z N
—sm(u—f—-fx):smS(—l‘-—-T) and set 5=z =V

27. {nn—n/4ln€Z). 28. (a) 2an|n€Z} for {2un, 4nn +

iZarccos—-_i-:t—Z/l*is-lneZ} for a € [—5/4, 1], {2sm, 4nn +

Véa+5—1
&

=+ 2arccos ne Z} for a€ (13 5]. A Factoring sin%
by the formula for the sine of a triple angle, we {get an equation

sin % (2 cos —;—+3—4 sin’—‘;-—a) =0 or

in = 3 L 2 _1—a)=
sin 3 (4cos 2+2cOs2 1 a) 0. 1)

Thus we have a collection of two equations:

sin —;— =0,
2 % L f—a=
-4cos 2 +2cos P {—a=0.

The equation sin (z/2) = 0 has a solution z = 2an, n € Z, for any
a € R. Putting cos (z/2) = ¢, we get a quadratic equation for #:

44242t — 1 —a = 0; 2)
equation (2) can have solutions only for those values of a ¢ R for
which t€[—1; 1]. We seek the roots of equation (2): #;=(—1—

— V4a+5)/4; tg=(—1+ V'4a+D5)/4. Then, solving the inequalities
—1<t; <0 and —1<<t3<<1, we find that the root #; of equation
(2) exists if a€[—5/4, 1], and t3 if a€[—5/4; 5]. Consequently,
the equation  cos(z/2) = & has solutions =z = 4nn +

+ 2 arccos —:—1_4—‘/4“_&, n€Z, for ac[—5/4; 1], and the equa-
V bda+5—1
_-4‘-— ’ nEZ’

for a € [—5/4; 5]. Taking into consideration that equation (2) has
two solutions on the interval [—5/4; 1], we get the answer;

tion cos -;—=ta has solutions z=4nn + 2arccos

(b) {mn|necZ} for a€(0, 1/3), {nn, nn + %arccos 1—;;“— ne Z}
for a€(1/3; 1), {nn, nn + %arccos i;%‘- 7 qn =+ % arccos X
% (_ 1;4 )‘nEZ} for ag[1; o). 29. {Znn'd:arccos—Va:Tb’—}-

210



+arctan%‘nEZ} for c2<<a?4-b2, g for ¢2>a%4b3. A Since
a®+4-b2 == 0, we divide the equation by 7} a® b2 and get an
eqguation

a b . ¢
Cos

_——_]/a’-{—b’ $+—]/a’+b3 sin z=_—}/m ’ @)

equivalent to the original equation. The numbers a/ ]/a?+ba and
b/V a®Fb® do not exceed umity in absolute value, and satisfy the

(vate )+ (i
Vot Voo
a/V a*Fbi=cos @ and b/ a®+b:=sin ¢.

Equation (1) now assumes the form
€08 z cos @} sin z sin ¢ = cos (z — @) =¢/ Y a¥ b2, (2)

2
identity ) =1. We can, therefore, put

Equation (2) has a solution if
le/ Va2 <1 or c2<<a®4b2.
Then we get
z—@=2nk + arccos (¢/ Y a®-b?), k€Z. (3)

The value of the auxiliary argument ¢ can be found from the system
of equations

a
G Vare
in .——._b_°
R ==

¢ = 27um | arctan %, m € Z. (We assume here that a > 0; the
case a = 0 reduces the original equation to the simplest equation
b sin z =¢; now if a <<0, we can make the coefficient in cos z positive
by multipiying the equation by —1.) Substituting the value of ¢
we have obtained into equation (3), we find

c
Vain

z=2n(m-k) 4 arccos ~+arctan %

or

Z=2nn + arccos +arctan-% , n€EZ,

c
Vet
since (m-k)€Z. Remark. If we suppose that a/} a®-b3=sin V,
b/V a2+ b2=cos , then equation (2) assumes the form sin (z-}y)=
=c/Va*F0b2 30. [V5—1;2]. 3i. (a) {2ﬂ:n + arccos 1/21_3 +
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P)
+arctan—§-|nez}, (b) {Zunj:arccos%—l—% nEZ} fora¢

€l—V% VA plor ac(—o0i—VDUWE @) (o) {an x5 x
a —— —
— VA —_ o
% ne } for a€[—V10; V10), @
for a € (—oo; —KE)U(]/F); ). A Dividing the given equation
by V1233 = /10 and setting 3/} 10=cos@; 1/Y 10=sin@, we

obtain cos 2z cos ¢+ sin 2z sin ¢ = cos (2z— @) =a/ Y10, where ¢=
=arctan (1/3). The equation cos(2z—@)=a/)/ 10 has a solution if

la/ Y10I<1 or — Y 10<a<< V' 10. Thus we have h—arctan%:

X arccos

1 1
+7 arctan?

=2nn:i:arccos—1%,nez, for |a] < Y10. Hence we find the

answer; (d) {.nTn =+ 1—12- arccos %—-}-—1% arctan % I ne Z}

for ae[ —1/1—2377——17 ; I/T—” ], [7.] for ae(—oo;

— V1371 —17
2

las sin26z=

) U ( ]/1527—17 ;oo), ® Make use of the formu-

1—0;)3 12z , i-l__cgs_m_z_, sin 6z cos 6z =

2nn 1

1 . a 1 4
=—5-sin 12z. 32, + 3 arccos —3 arctan ik € Z} for

a€[—>5; 5]); for a¢[—>5; 5] the function has no critical points.
n o 4nin

8. @) {an—f[nez}s © {mn, F+5|nez}s © {2+
+3 Bt Lalnez)s @ {(|rez)s @ {G+5s

un—|—3Tu| neZ } ® Reduce the equation to the form cos3z+4

cos2 6z =

+cos (%+z)=o; 6 {m (—1+ VEATIR2In€T, 1€T,).
%4. () (ant+/Aln€ 2y (b) nikin€ 2y © {Tg+rs 2an

izT“ nez}; @) {mn; 2nn £ n/BInETY; (o) {mn—mnfh; nnt

+/2n € 7Y () {%’-‘ s mn+n/d; 2nn—n/2ln € z} ; () {run/21n€D);

n T [ 3n
W) (ntainezy. 3. @ [T+ T+ |nez).
® Reduce the equation to the form sini0z = sin (n/4—2z);
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(b) {zo1zo € R, except for zy=mnn, n€ Z}; () {nn/5; nn + 3n/8|n€Z).
@ Reduce the equation to the form sin 2z cos 3x+2iln3zcosz:z +

(Vo]
+ V3sin52=0; (d) {4an+161n; 8’;” i’; ; 8’;" -I—-%InEZ}.

® Reduce the right-hand side of the %quation to the form
= z , =X = z ]
2V3 eos (F+5—5)=2V3 con (F—37)
36. (a) {2nn/5, nn-+-n/2; 2nnt-5 | n € Z}.
® Reduce the equation to the form (sinz-sin4z)+(sin2z-
z

+sin3z)=2sin—g—:c (cos—g~$+008 3 )=0; (b) {%, -‘;—"_'_
%lnEZ}; (© {nn+%; T+ nEZ}; @) {%"-4-1;
rerdi @ (e

un+3Tu- l ne Z} 3 (f) {nn+n/2, in4-(—1)" n/6; 2nn + 25/3|n € Z};

KLY T PkLi
3 H(—1" g

(g) {7n/2; 2nn + 2n/3|n € Z}; (h) {% (2n+41)In € Z, except for n=
=Tl—4, ZEZ} . A We transform the equation:

1 1 + 1 _ 2sin3zcosz
sinz = sin2z ' sin4z = 2sinzcoszsinér ’
sin 4z —sin 3z =0; 2sin% cos—;- z=0.

From the solutions of the last equation we must choose those for
which sin z 5= 0, sin 2z £ 0, sin 4z 5= 0. We have: sin (z/2) = 0,
z = 2nk, k € Z is an extraneous solution, the denominators of all
fractions of the original equation turn into zero; next we have

cos (7z/2) = 0, z= m (2n + 1)/7.
We exclude from this solution the values of n for which z = nm/4
(this is sufficient, since all solutions of the equations sin z = 0,
sin 2z = 0 are solutions of the equation sin 4z = 0). We have an
equation n 2n +1)/7T=nm/4 or Tm=8n+ 4 m=n+ (n +
+ 4)/7. Thus, if (n + 4)/7 = I, 1 € Z, then there are integral m for
which the equation becomes meaningless. We finally have z =
=n 2n + 1)/7, n €7, except for n = Tl — 4, 1€ Z; (i) (—oo; o)

forac{kn | k€ Z},{Znn -+ arccos HZVS 'n € Z} for a € (—oo; o0).

nEZ} .

37. {ninl4+n/8; nin £5/3| n€ Z). 38. (2) {nn | n €Z); (b) {‘%
(sinz sin 3z )isinz'z __sin2¢  sin2s
A \Cosz " cos3z ) T cos2z  cosZz  coszcos 3z

sin 2z (cos z cos 3z —cos 2z)
€08 & cos 2z’cos 3z

= —tanz tan 2z tan 3z=0.
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Solving the equation, we find thatz; = nn, n € 7; 2, = —-, m € 7,

nm

2
and zy = nl/3, I € Z. The equation z = nl/3 is a consequence of the
equation z = nn and the equation z = nm/2 (for m = 2p, p € 7).
The odd values of m yield extraneous solutions. Thus we have z =
= nn/3, n€ 7. 39. (a) {nn/10 | n € Z}. A The original equation is
equivalent to the equation (cos 3z 4 cos 9z)/2 = (cos 3z - cos 11z)/2
or cos 9z — cos 11z = 0. Transforming the difference of the cosines
of two angles into a product, we get an equation 2 sin z sin 10z = 0,
which yields solutions z = nk, z = nn/10, k, n € 7. Taking into
account that the solutions of the first equation are also solutions of
the second (for k¥ = 10n), we get the answer;

(b) {l;._'r_’é_-, "T"_hio nGZ}; () {nn; nn/54m/0|n€ T}
@ {an; B4-Z|nez}s @  fa—ppsnt|nez}

40. (a) {“T" in = -

n EZ} . A Multiplying the given equa-

tion by 2 and applying the identity 1 — cos & = 2 sin? %—, we reduce

the equation to the form 2 sin? 2z — (cos 2z — cos 6z) = 0. Trans-
forming then the difference of the cosines into a product of sines, we
obtain: 2 sin? 2z — 2 sin 2z sin 4z = 0, sin? 2z (1 — 2 cos 2z) = 0.
From the last equation we get z: z = mn/2 and z = mn 4 n/6,
n € 7Z;

nn n nn T 2nn
& {F+7: T+

CICNCSE I

2n 1 3 2nn
‘5 neZ}, (d) {nni—?arccosz— nEZ}.ld. (a){ 7 +
-|——f;— nGZ} . ® Reduce the equation to the form

oz . Lz, . T . -
2sin - sin z+2 sin - sin 2z+2sin 5 sin 3z =cos 3

and transform the left-hand part using the formula 2 sin a sin f =
= cos (@ — P) — cos (@ + B); (b) {2nn/T | n € Z, except for n = Tk,

k€ 7). @ Multiply the equation by 2sin —“2‘— . 42, (a) {n_4n + (—1)n+ %

ne€ Z}. A The original equation is equivalent to the equation

sin z cos 3z (1 — cos 2z) + cos z sin 3z (1 4 cos 27) = —3/4, or
(sin z cos 3z 4 cos z sin 32) 4 cos 2z (sin 3z cos z — cos 3z sin z) =
= —3/4 or sin 4z + (sin 4z)/2 = —3/4. Now we get an equation
sin 4z = —1/2, whose solution yields the answer; (b) {nn + n/8 | n €

€ 7). 43. (@) {’% +(—tnRlne z}. AWe decompose the left-hand
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side of the equation into a sum of trigonometric functions:

1 . . n 1 . 2
5 sinz (2sm (i;——z) sin (—3—+z) ):-—2- sin z (cos2x—cos§n)

1 . . . . . .
=7 (2 sin z cos 2z-}sin z)=—i— (sin 3z —sin z-}sin z)= 811143_75 )
i . . 1 1
Solving now the equation sin 3r= 5 4=, we get the answer;

(b) 2nn/3 £ 2n/9|n € Z}; (c) {nn/3—mn/9\n € Z}. 44. (a) {mn; nn

LablneZy (D) {mn, anLaBlneZy (o) {un;!:-;—x

ne Z} . @ Reduce the given equation to the form

X arccos ( —-—2—)

sin z ¢os 3z —cos z sin 3z X 1 113,
cos z sin 3z =3 (@) {nn & 5 arccos (—T) Pk
+ -;—arccos -;— ne Z} ; () {nin4-n/2|n€Z). 45. (a) {nn + n/8|n¢€
€7}, (b) {nnExn/6ln€Z}; (c) {nwn/24n/s; nnt-n/2|n€7}.

@ 8sind z=(1—cos 2z)*, (d) l‘;——l—%; nni% X

X arccos 1_52:1_ ne€ Z} . @ Apply the formulas tan?z=

=(1—cos 2x)/(1+}cos 2z), cos4x=2cos?2z—1; (e) {nn—l—i ;

%r_z_+ (—21)" arcsin 1/52—1 nEZ}. 4. (a) {nni%x
X arccos (3—2 YV 3—a?) nGZ}, a€[—V2 V2, g for a¢

= 1 7
¢I—vVZ Ve _nz_n_ =k - arecos ——r | n€ Z} for

a€ (=0, =g U [ 53 ). o for ac(—3/8, 112 (© tani2+
+a/AInET} for a(—oo; 6] U (& +oo) { B+ B alx
X arccos (a——7)|nEZ} for a€ (6; oo]. 47. (a) {m(4n+1)/2;

nn(2n 4+ 1) | n € Z}. A Setting sin z — cos z = y, we find (sin z —
— cos )2 = 1 — sin 2z = y2 or sin 22z = 1 — y2. The original equa-
tion assumes the form 2 4 12y — 13 =0=y;, =1, y, = —13.
We thus get two equations: sin z — cos z = y; = 1, whose solutions
are z; = %t 2n + 1), z, = n (4n + 1)/2, n € Z, and sin z — cos z =

= yy,=—13, which has no solutions; (b) { nn — n_4_; %’.‘ + (_1)n+1%
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ne€ Z}. @ Reduce the equation to the form 1/sin z + 1/cos z =
= —2/V2 (sin z + cos :c) and set sin# 4+ cos z = y;
(c) {2nn+-—; 2J'm—|— 12 T 2nn— 152 TneE Z}; (d) {2nn; 2nn4

+n/2In€Z); (e) {Znn———z—; nn———+(—i)" arcsm( 1}2—
—1) nEZ} . ® Reduce the given equation to the form sinz (14
+ sinz) 4+ cos z (1 — sin?2 2) = (1 + sin z) (sin £ 4+ cosz —
sin z-cos z) = 0; (f) {(4nn + #:/2)2; (4nn + 14m/6)2|n € Z,;
(4mtm —57/6)2 |m € NI}. 48. (a) {27n|n €7} for a€{—1}U(—2(V 2—1);
2 (V3+1)), {Znn, 2un;|:( — arceos 1/_)-;-,l nEZ} for a€
€(—o0; —)U(=1; —2(V2—DIUI2(V2+1); oo), ®). {2rin—
—-n/4|nE'Z} for b€(—oo; OU(; o), {2rn—mn/4; 2mn +
=+ arccos (2b—1)—n/4|n € Z} for b€ [0; 1], (c) {nn—-—n/4|n€2} for
a€(—oo; —3/VHU—1/VE o), fan—T; Zr 4 LS00
X arcsin (a Y242)|n€Z for a€ [-%, -—-—2].49. {27in; 2nn-+

+n/2|n€Z}). 50. (a) {2nn-+-5n/6|n€Z}. A We solve the original
equation for tan z (sinz is assumed to be the parameter)

tanx:(———]-?-g—.—il/—z sina:——? /2. 1)

The equation obtained has solutions if sin x = 1/2; then tan z =
= —4/Y/3 and we arrive at a system of equations

sinz=1/2.

tanz—= —L

_‘/go

From the first equation of the system we have z; = 2nn -+ a/6 and
z, = 2nn -+ 5n/6, n € 7. The second equation is satisfied only by the
values of z5; (b) {27n; 27n + /2 | n € Z; (¢) {2nn — w/h | n €
@ Reduce the equation to the form cos? 2z + sind (z/2 + n/8) = 0
and then solve the system of equations
{ cos2z=0,
sin (z/24n/8) =

51. (a) {2n (1 +4n) In€7}. A Simple transformatlons reduce the
equation to the form

sin 5—Z+cos z=2, )
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Since sin (52/4) < 1, cos z < 1, for equation (1) to hold it is neces-
sary that the equations cos x = 1 and sin (5z/4) = 1 hold simulta-
neously. Thus we have a system of equations

r=2nk,

5z/hb=mn/242nl,
where k, ! are some integers. Excluding z from the system, we arrive
at an equation 4l =5k — 1, or I =k + kT_i The last equation

has an integer solution if (k — 1)/4 = n, n € 7. We finally get:
k=4n+1,n€7, and z = 25 (4n + 1); (b) {nn/3; 2nn — /2 | n €

€ Z7}. -
52. (a) {un—arctan—i—- nn-—arctani'ne Z} .]/—1——1=
: 6’ 3 * cos?z

7T 2%
=|tan.t|; (b) n!_EJZ [Znn——-é—, 2ﬂn+—3— .

® V 24cos 22+ V3 sin 2z=2|cos (z—n/6)|. 53. (a) {n = 1/6|n€T}.
A Only those values of z can be solutions of the given equation for
which cos 2z > —1/4. Squaring the equation and performing trans-
formations, we get an equation 8 cos? 2r 4 10 cos2z — 7 =0,
which },'ields: cos 2z = —T7/4 and cos 2z = 1/2. The equation cos 2z =
= —7/4 has no solutions, and the solution of the second equation is
a solution of the original equation (cos 2z = 1/2 > — 1/4); (b) {2nn -
+ arctana | n € Z} for a € (0; o) {n (2n + 1) + arctan e | n € 7}

fora € (—o0;0), {nn | n€ 7) for a = 0. 54. (a) {2nn+%u'nez}.

sin z = VY 2cos?z,
_ _ leosz <0.
Solving the equation Y2 sin? z + sinz —) 2 = 0 of the system,
we arrive at an equation sin z = 1//2. The solutions of the last
equation are z = 2nn - /4 (which is extraneous since the ineguality
of the system is not satisfied) and z = 2nn + 3n/4, n € 7, satisfying
all the conditions of the system;

(b){2nn) arccos 1/5;—1 n€ Z}; (c) {2ntn 4 n/8; 2nn — 3n/8 | n € Z};
@) {nn/2; in + /61 n€T7Y; () {2nn + n/2; 2nn — n/6 | n € 7);
(f) (—oo; oo) for a = 0;{nn | n € 7} for a € (—oo; o). 55. (a) {2nn;
2ntn — /21 n€Z); (b) {2nn + 3n/8; 2nn + Tn/8; 2mnn + m;
nn + w4 | n€ 7). @ Reduce the equation to the form (sin 2z}
-+ cos 2z) (1 — cos 2z — sin 2z) = 0 and take into consideration
the condition sin z — cos z > 0;

(¢) {2nn; in—=m/hlneZ); (d) {_,.‘31_'_(_1)7“'1_;"8_
n n
nez}; ) {2nn—|——12—; Bt — -

A The original equation is equivalent to the system {

nEW-} H
nEZ}.

(e) { nin-} arctan —:23-
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56. (a) {2nn+%—; -i— ::z+—f’§ n

m€eZ} (b) {lmn—!—-iﬁin nEZ}. 57. {Znn:!:arccos (%+%x

X(a—s—i)z) nEZ} for ae["/E; %‘i], @ for

a¢ [V5/8; (2 V2+ V3)/VE]. 58. (a) {2nn-arccos (1/3)In €Z}.
A Having transformed the right-hand part of the equation

log, (3 sin x)
log, 5

n, 1€Z, except for 1=3m-2,

(log; 4) log, (3sin z)= =log; (3 sin z),

we get an equation logg tan z = log; 3 sin z, which is equivalent

to the system { ta.m ¢=3sinz,
sin z >0.

we obtain cos z = 1/3 (sin z = 0), whence we find that z; = 2nn

+ arccos (1/3) and =z, = 2mn — arccos (1/3), n € Z. The second

solution (z,) does not satisfy the inequality of the system; (b) {2nn +

. Solving the equation of the system,

-} arccos Tif)l n € 'Z}. 59. (a) {mn | n€ 7}
® Reduce the equation to the form 22 €08*x-1_3.90088%__, 4pq

st 2005 p; (b) (logs (an/h+w/B)n€7e @ {1 1

P g wn—

—-:-t——; nn-|-1—72:rc nEN}. 60. (a) {(2nniarccos—‘£5;—_6—+

12
-l-ﬁ;n ; 2nniarccoslf—5—';:§),n€Z}? (b) {(“"+'n_; %_

ne Z}; () {(2nniarccosm+%; _’8"__23,,:,:

—an)

a
= arccos S oos (A/B) 1) )

& for a€ (—oo; ——2005-2—) U (2cos

nE'Z} for aE[—Zcos%; 2c0s—ng—],
-I-St—; oo) . 61. (a) {(%X

x(n+4k);|:21—:;—|—t5m arcsin20; X (n—6k) = Tt (—5‘)" x

X arsin 22 ) | n, kez} for a€(—oc0; 0], @ for a€(0; oo);
® {(= (nt 5 ) 455w (5 —n)+5)s (= (3 +0)+5
ﬂ(%—n)-l-%)'k, nEZ}; (c) {(%+nm; n(2n—m)+
+i4‘-)|m, nez}; @ {(2un+%; 2kt ; (2nn+—7—g'—;
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2nk+—43“—); (Zun——ﬁ- 2nk+—) (2nn+5T“; k-
-!—é;—) ’n, keZ} . 62. (a) {(mn—mn/4; am4-(—1)m n/6)|n, m€T};

(b) {(2mn £%35/h; umA-(—1)™ /6)ln, mETY  (c) {(2nn+-;—;

25tk 4 arccos ( = )) n, ke 7:} for a€(—3; 3], (Guntmn/2:
2nk); (2ntn—m/2; 1w (2k+1))|n, k€7Z) for a= —3, & for a€(—oo;
—3)U(3; oo); (d) {(Znniarccos%; nk —arctan (a+2)) :

n, ke’Z’} for a€(—oo;
n, kEZ}

n, kE'Z}

forrk'eeg(—i- 1. 63 {(——+(—1)h+l . T“‘;‘X

vz

2.8. Trigonometric Inequalities

1. (a) (nn; nin + =/2), n € Z;
(b) (4mtn + 2n; 4nn 4+ 4m), n € 7;

2
(c) [2nn+1—72 7 2“"+1—2 n], n€7Z;

(d) (nn — n/8 4 1/2; nn 4 5n/8 4 1/2), n € Z;

(&) {—n/2 + 2nn | n € 7).

2. (a) (6mn — 3n/2; 6mn + 3n/2), n € Z;

) (nn/2 + x/8; nn/2 + 3n/8), n € Z;

(c) [2nn — n/6; 2nn + w/2], n € Z;

(d) (4nn 4 3n/2 — 1/2; 4nn + 50/2 — 1/2), n € Z;

() {2nn | n € 7). 3. (a) (nn/2; nn/2 + n/4), n € T;

(b) (4nn — 2m; 4mn), n€7; (c) [nn — n/12; nn + n/6), n € 7;
(d) (nn/3 — n/6 + 2/3; nn/3 — «/9 + 2/3), n € 7.

4 (a) (nn + n/2; nn 4 n), n € 7; (b) (nn + n/4; wn 4+ n/2], n €2;
(c) (%n__'_%___;_ arccot 2; nTn—l——g—) , nEZ.

5. (@) (nn + 7/6; nin 4+ 57/6), n € Z; (b) (nr + n/3; nmn + 2x/3),
n € Z; (c) [nn — n/4; nn 4 n/4], n € Z; (d) (nn + n/6; nn + 5x/6),
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(2nn -+ arccos e nk —arctan a)

—3]U[1; o), {(Znn -+ arccos i; nk —arctan (a—|—2))

for a€ (—3; —1], {(2un -+ arccos ——- +2 ; mk—arctan a)
nn

n, kEZ}

X arctan




n€7. 6. (a) [2nn 4+ arcsin (1/3); 2nn 4+ n/6) U (2nn + 5x/6;
2ntn 4 m — aresin (1/3)], n € Z; (b) [2nn 4 n — arccos (1/4); 2nn +
-+ 21/3) U (2nn + 4n/3; 2nn 4 ;t 4 arccos (1/4)], n € Z;

(c) (nn — arctan 2; nn - arctan 3), n € 7;

(d) [nn + arccot 1.5; nn + m — arccot 4], n € Z.

7. (/3 + 2nn; 2n/3 + 2mn), n € Z. 8. [2nn — 20/3; 2nn + 2n/3],
n€Z. 9. (nn — arctan 2; nn 4+ n/3), n € Z. 10. (nn; nn 4+ n/2] Y
U [nn 4+ 3n/4; n(n + 1)), n€ 2.

11. (—n/4 + 2nn; n/6 4 2nn) U (5n/6 + 2nn; 5n/4 + 2nn), n € Z.
12. (2n —1/8; 2n 4+ 7/8), n € Z. @ cos nz = sin (/2 — mnz).

13. (-f;—n-l-%%; atnr?) (n2+1) —I—--;Z), n€ 2. ® Show that cos® zsin 3z}
-+ cos 3z sind z =(3/4) sin 4z. 14. {n/24nn} | [nn—n/4; in—x/6] U
U [wn+-n/6; nn-+m/4], n€7Z; @ cos zcos 2z cos 3z=cos 2z X
% cos 2z-;—cos 4z __cos 2z (2 cos? 22z+cos 2z—1) . 15. {R}, excopt for
z=23n/4+3nn/2, n€Z. 16. (—n/8+mnn/2; =n/84mnn/2), n€ Z.

. _ [ 1—cos2z \3 1+4cos2z\3_ 5, 3
© sm“z+cos°z._( 5 ) -}-( 3 ) =gTg o8 bz,

17. (nn-l—-%- arccos %; n (n-l—i)—-%— arecos —%-), n€Z. @ 8sin® z—
—cos® z=(2 sin? z—cos? z) (4 sin® z-4-2 sin? z-cos? z-}-cost z). Prove
that 4 sintz-42sin?zcos?z4costz>0 for any z€R. 18. (mn—
—n/k; an—mnl6) U (int-n/8; mntn/h), n€Z. 19. (2nn—-‘4'—+
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- arcsin 2 ;/2 H 2nn+—3;li——arcsin

) 8] (ﬂ 2n+1); 2nn4
+3Tn) , n€Z. ® Set sin z-}cos 2=y. 20. (arctan (Vi-—i);

14‘-) U (n+arctan(1/§—i); 5—2-) 21. (un—l—arcsin _1/—_52;—_1_;

7 (n+1)—arcsin 1/52—1) , n€Z. 22, [2nn—Tn/6; 2mn-+x/6],
n€Z. 23, (n)h+nn; n/2+nn), n€Z. 24. (n+1/4; n+3/4), n€Z,

95. [dnn® (n+1)3), n€Z,. 26. [—]/ %; ]/ _iz—]u
[ ]/ Gnt1); — -—-—(4n——i)] []/ (4n—1) 3

]/ I (4n-|-1)] neN. 27. [—1/3; 1]. 28. [—n/B+nn; n/6+nn],

n€Z. 29. (—oo; 0), except for = —n, n€N. 32. ® Investigate
the sign of the derivative of the function y=(tan z)/z on the
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interval z¢ (0; m/2). 33. {nn; nn 4 % arccos (—1—+-228'££) ne Z}
for a€(0; n/6] U [57/6; 4), {nn|n€Z} for a€(n/6, 5xn/6). 34.
{nn, nn 4+ -%— arccos -2_—30Sa—InEZ } for ac [—1; %—],

{nn|neZ}fora€ (% ; 3] « 35, {nn + arctan Vcosec a—1 | n€ 7}

for a€[2; m) U (2x; 8); for a [n; 2] the function has no critical
points.

Chapter 3

PROBLEMS ON DERIVING EQUATIONS
AND INEQUALITIES

3.1. Problems on Motion

1.60km/h. 2, 2km/h. 3. 60 km/h. 4. 39:—2- km. 5. 4 km/h. 6. 40 km/h, 120

km/h. 7. 36 or 64 km/h. 8. 20 km/h, 12km/h. 9. 1 km/h. 10. 30 km, 6 km/h,
4 km/h. A Suppose S is the required distance, »; and v, are the speeds
of the persons travelling from points A and B respectively. The dis-
tances covered by the two people in equal time intervals are related as
their speeds. Proceeding from this fact, we get a system of equations

S—12 _ v 12+S—6 _ v
12~ v? S—1276 "

Excluding v,/vg from these equations, we get an equation $2 — 30.S =
= 0, whence we find that S = 30. The speeds of the travellers can
be found from the equations S 4 6 = 6v;, S — 6 = 6vg. 11. 8a km,

g—‘; km/h,s—‘; km/h. 12. 10 km. 13. 18 kim/h. 14, I (ts/t, + 1) om;

2 (811 2a) ______IS___

t (Ita+(S+1) ty) s+ S+t
15 m/min; 280 m. 16. (8 =V 7)/2h, 4.5h,3.5h, 9.5h, 8+ 127)/2 h.
17. 10 km/h, 3 km/h. 18.‘/1; km/h, 24 'km/h! 19. 5 s::;/l_h, 4 km/h.
20. 0.5 (b + V5% + 4ab) km 21. (10 +V/52) km, (V52 & 2) km.
22. 15: 8. 23. 4 h. 24. 18 min. 25. /10 times. A Suppose S is the

distance between points A and B, u is the actual speed of the tugboat,
v is the speed of the river flow. We derive a system of equations:

s s s s
u-tv + u—v =13, 2utv + 2u—v =6.

cm/s; cm/s. 15. 20 m/min;

221



Setting u/fv=z, u=zv and dividing the first equation by the sec-
. 285z | 4Sz 13
ond, we get an equation 1 16" whence we find z.

26. a(Y'2+41)h. 27. 10 and 5 h. 28. 3 and 6 h, or () 145—1)/6h

andl/_!ééﬁ-ﬂh. 2. m<p+2r2+2np min, m(p+§,f+2np iy

ﬂi"—:f—j;)—:‘ﬂ’- min. 30, 36 b, 45 h. A We find tho time ¢ that
cars travelled until they met, for which purpose we set up a
system of equations:

161)1 = v.t, 251)2 = Ulto

Dividing the first equation by the second, we get (v;/vg)? = 25/16
or vy/vg = 5/4, and now it is easy to find ¢ 31. 3 h. 32,10 h 29 min.
A Suppose S is the distance between points A and B, v; and v, are
the speeds of the first and the second car respectively, ¢ is the speed
at which the cars travelled until they met. We have the following
system of equations:

13

S=(v1+vs)t, S=(2v1+}vg) (t—%), S =(v1+ 2vy) ("‘1—2)’

from which we have

v+ vs ____1_ 2v14vp 1 vi+205 1
S Tt S T t—14/15? S — t—13/12°
Adding together the last two equations and taking the first equation

. .3 1 1 .
into account, we get an equation 5= t—14/15+ PO which,

after simple transformations, assumes the form 30¢2—121t+91 =
=0, whence we have ¢; = 1 (extraneous solution) and 2= 182/60.
If we double the speeds of both cars, then the time that they
travelled until they met is

r=— =
T 2(witve) T

Subtracting this result from 12, we get the answer.

la R
—2——1 h 31 min.

3.2. Problems on Percentages, Mixtures,
Numbers and Work

1. 15 m. 2. 60%. 3. 25 days, 20 days, 30 days.
4. 10 days. 5. 10 h, 15 h. 6. 16 h. 7. Six times.

8. 3h, 6b, 2h. 9. 14h, 10.5h. 10. % [2 (t4d)— V 212 F4d?],
41 [2 (t—d)— V' 2t2+4d?]. The prohlem has a solution if > 4d > 0.
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11. 40 m, 25 m. 12. 45 metres of black fabric, 36 metres of green fabric
and 30 metres of blue fabric. 13. 50 m3/min. 14. 4.8 h; 4.8 h or 4 h;
6 h. 15. 15 h. A Suppose z is the time period for which the second
valve was open, p, and ps are the speeds of water flow through the
first and the second valve respectively. Then we have a system

P1(z 4 5) + paz = 425, 2pz = py (x4 5), (p1+ po) 17 = 425.
From the second and the third equation we get

z+5 | 0z

3%+5 ' PP 73F5 ¢

Substituting these expressions into the first equation, we find 322 —
— 41z — 60 = 0, whence it follows that z =15 (x = —4/3
is an extraneous root). 16. 2 h. 17. 6 h. 18. 10 min. 19.
@ (30p — 1950))/(434 — 75) kg, (5 (30p — 1950))/(434 — 7p) kg.
The problem has a solution for 62 << p << 65. 20. (49 — 280)/(90 — g)
litres. The problem has a solution for 70 << ¢ << 76 -g— 24, 25%.
22, 749 monetary units. 23. 0.25 litre of glycerin, 1.75 litres of water.
2. 9;‘1'1‘ a%. 25. 12p/(4a? — Ta + 3)%; 12a%p/(4a? — Ta + 3)%,
12ap/(4a® — Ta -} 3)%. 26. 64; 46. 27. 63. 28. 863. 29. 36; 63.

p1=25

3.3. Problems on Deriving Inequalities and Systems
of Inequalities. Problems on the Extremum

1. 7842, 2, [4; 8 + V' 61)/3]. 3. 8. 4. (3; 5]. 5. 12. 6. 180 roubles.
A Suppose z roubles is the initial payment of each student, y is the
number of students in the group, then 170 << zy << 195, 2y = (z + 1)
X (y — 2). This equation yields z = (y — 2)/2. Substituting this
value of z into the system of inequalities, we find that 1 + V3l <
< y <1+ V391. Since y is a natural number, the last system of
inequalities is satisfied by two numbers: 19 and 20. All conditions
of the problem are fulfilled only at y = 20, + = 9, and, therefore,
zy = 9-20 == 180. 7. 9 roubles. 8. 3 t. 9. 6 h. A Suppose S is the
distance between points A and B, u is the actual speed of the motor-
launch, v is the speed of the river flow. Then we have the following
system of equations and inequalities:

S S S S S

7—24’ utv + u—v =10, 1.4u+tv + 1.4u—v ST
We have to determine S/(u — v). Assuming that u/v = z by the
meaning of the problem z > 1), we transform the inequalities:

S 1 1 S 1 1 -
T( =51 T =1 ) =10, T[ Tae 1 | T4e—1 J<7'
Since S/v = 24 and z > 1, the transformations lead to a system of
inequalities, which is equivalent to the original system:

52% — 242 — 5 < 0, 1.9622 — 9.6z — 1 > 0.




This system is consistent for z = 5. Then we obtain

s s 4.1
w—v v z—1 =2 5—1 =6.

18. 11 twos, 7 threes, 10 fours, 2 fives. A Suppose z is the number of
twos, y is the number of threes, z is the number of fours and ¢ is the
number of fives. We have a system

z+y+z2z+4+t=30,2x +3y+74+3t=093, y>t=2m,
y<‘=10k, mEZ., keZ.o'.

Substituting the value of = from the first equation, z = 30 —
— (y + z+ t), into the second equation, we obtain: y + 3t =
= 33 — 2z. Hence we find z. It follows from the hypothesis that z
can only assume the values 0, 10, 20, 30.

The value z = 0 will not do since the inequality y << 0 loses
sense; z = 20 and z = 30 will not do either since then the inequality
33 — 2z > 0 is not satisfied. Hence z = 10. Furthermore, we have
y = 13 — 3t > t, whence we get 0 << ¢ << 3.25. For ¢t = 0 we have
¥ = 13 > 3z (which does not satisfy the condition of the problem).
Consequently, ¢t = 2 and y = 13 — 6 = 7, and then we find z =
= 30 — (7 + 10 + 2) = 11. 14, 11 limes, 5 birches. A Suppose z
is the number of birches and y is the number of limes. We have a system
of inequalities

sty>14, 2y<z+18 2z2<ye

Adding the third inequality to the second, we get z - y << 18. Thus
three cases are possible here: 2 -y =15, 2+ y=16and z 4+ y =
= 47. Let us consider these cases:

(1) if y = 15 — z, then

2(15—z)<z4-18,

9 < 15—z = 4<<T <5,

Since z is a natural number, we see that this case is impossible,
(2) if y = 16 — z, then

2(16—z) < 7418, 2 1.
27 < 16—z =4z <e<iz;
z = 5 satisfies the system, y = 16 — 5 = 11;
3) for y=17—=z
2(17—z) <z} 18, 1 2
% <il—z =53 <<y

As in the first case, there are no natural z here which can satisfy
the system of inequalities. Thus, only one case is possible, when

z =25,y = 1i. 12, 5—1,;— min. 13. 2—: 3/h. A Suppose S is the volume
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of the reservoir (S > 0), then

t ()= 0.38 N 0.78
304 (30—3v) T 304 (30 —3v)+ (304 10v)

S 1 7
=7 (5= tw77)-
We find the derivative of the function ¢ (v):
S / 1 49

10 ( (20—v)2 (904 7v)?

25 .
"7— E (11 10)1

), t’ (v)=0 for U=—272’

t' (V)=

at the point v = 25/7 the derivative changes sign (at the point on
the left the values of the derivative are negative and on the right
they are positive) and, therefore, at the point v = 25/7 the function
¢ (v) has a minimum. 14. 6 km/h. @ Determine whether the function
t (v) = 6/v + 2/3 + 0.25v (2/3 + 6/v), v > 0, where ¢ (v) is the full
time of the travel of the pedestrian, has an extremum. 15. 0 litres
if p € (20; 100]; [0, 3] litres if p € {20}; 3 litres if p € (0; 20). 16. 62.5
and 55%. A Suppose we have taken z kg of the first alloy, y kg of
the second and z kg of the third. Since the resulting alloy contains
15% of bismuth, we have an equation 3z 4+ y — 32 = 0, with z 5= 0
and z > z. The percentage of lead in the new alloy is equal to

4
s Motiosttls 5 ta—tes 5 MTT
plz)= z+y+z ~ 2 22—z ~ 2 2_1’

z
0<%<1.

The function p (z/z) assumes the greatest and the least value at the
end-point of the interval: for z/z = 0 and for 2/z = 1. 17. 0 m/s?,

4
11 %m. ® To find the distance, use the formula S =S | v (&) | dt.
0

Chapter 4
THE ANTIDERIVATIVE AND THE INTEGRAL

4.1. The Antiderivative. The Newton-Leibniz Formula

1. @ 2c+C; (b)) z—1.522+C; () Qzc —1)2+C. 2. (a) C —
— 233; (b) %3 — 222 — Y3z+C; () 23z + 23 + C.
3. (a) 0.5z — 0.75z% + C;
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- A
(b) %2+%-+C; (c) %—%—4—0; (d) (8z—4)101/3034-C; (e) C—

—(1—52)8/40. 4. (a) C—1/z, (b)—%z”—%—l—c; (c) 222 —

2(2x 1)""0 ) (1+$2)2 +C. 5. (a) ﬁ+0~ (h)%x Vz—
—2 4G () S E Y Fre @z (5Ve—gVatoiz )+
© = @+2) VaTa+c; (f)wﬁ%c. 6.@21n |z |4C;

(b) C—iln lzl; (¢) —In|i1—z|4+C; (d) .Z_'lnlzm__1 |4c.
z+1 1t 11
7. (a) lnl +C5 () Inlala+1) 14C. @ tp=t

© 1n| |+c @) In|=*+32 |+C. @ o =TT =
=t 8 @ arctan o-+C; (b) arctan 5+C. @ zﬂ—zu -

1 4?41
@2 ; (c) 3arctan z—1/24C. @ x2(1+12)=1+z3+

;7 @ In]z|+2arctanz4C. @ x((xi_l-l-t)::) — (-t:x—i‘—:)i;k xe —

1 2
—:c_+ 1422°

(%N

=z X
1
T
9. (a) 4arcsin x4 C; (b) % arccos 2z C;

. 1 1+x Vi—zt41 1 1
(c) arcsinz+ ln —|-C ® g —]/1—::;2+1—$2_

|

1/1 ‘I‘ ) ( _z‘l‘m) . 10. (a) 2%/1n 24-C; (b) —3-*/In 3-}-C;
() (e‘x+x2)/2-|-C; (d) C—e%; (€) (% —e=%)/2+C; (f) (6% e=%)/21C.
11. (a) C—2cos z; (b) C—6cos =; (¢) C—cos (z—%) :

) %cos (10z+ %)+C. 12. (@) 4sinz+C; (b) C—10sin—<-;

(c) 2sin (i+£) +¢; ) %Sin(h—i)—i—c. 13. (a)% sanx_I_C.
o sinte= iR, ), WL (g Zsindedt

-16- sin6zx + C @ 2coszcosdr = cos 4x+cos 6z; (d) l sin 3z —

1 . 1
—prsin 11z+4C; () — 5 cos 5.1:— 71 08 11z+4C; (1) -17) cos 10z —
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—112003 12z+C. 14. (a)% tan 4z C; (b) =4 cot—g-—l—C; (c) tanz—=
—z-+4+C. @ Use the identity 1-tan? z=1/cos2z; (d) C —cot z—=z.
15. (a) #—2. A F(z)=S(3z3—2)dz=x3——2z+C. We have
F(2)=28—2.24+-C=4, whence we get C=0; (b) z+sinz+
+ (1/2) sin 2z + 1; (c) 3sin z 4 2cosz — 2; (d) 2ex/2 4 1.
16. (a) arcsin®z, (b) sin®z Y14zt 17. (a) {—4, 1}). @ [ (¥)=

—2 @) @+ @+ —2% O {FH+T[re} @ {F+F

P %I ne Z} . (d) {mn/2 4 (1/4) arccos(2a—1)/3 | n€Z) for

a€(—1, 2], for a ¢ [1; 2] the function has no critical points; (e) {mn-
+(—1)"n/6|n € Z}. 18. (a) —33 —43—; (b) 0; (c) 1; (d) m; (e) 2a.
19. {%, 2}. 20. (0; 4). 20, {=/2; Tn/6; 37/2; 14m/6}. 22. {—1/4}.

4.2, Calculating the Areas of Plane Figures

1. (a) 1/2; (b) 4; (c) 9/8. @ Carry out the integration with respect to
the variable y; (d) 25/2. @ To find the limits of integration, solve the
systems of equations:

3x—4y=—1U, {3x—4y=-—11, z+Ty=13,
4z 3y =27, z+Ty=13; 4z~ 3y =27,

2. (a) 6—;‘; (b) 18; (c) 90; (d) 8; (e) 3—: S(f) 45. 3. (@) 45 (b) &

(c) 57 % ® Calculate the area of the figure in the new system

of coordinates, obtained from the old system by means of the transla-
tion r (0; —4); (d) 1/6; (e) 37/48. 4. 19/24. 5. 9/8. 6. 0.5. 7. 125/2.

8. {£V2/3}. 9.{—1; 3/8 — Y/ 17). @ Consider the cases ¢ <1 and
¢> 1. 10. (a) 23 — 5 1n238; (b)—z-—ln 2 () 12 — 51n 5; () (215 —

—3)/2 + In (V5 — 1)/2. 11. (a)4; (b) 3; (c) 23275/4. 12. 4 In (3/2)—
— 1.5. 13. {1/4; 49/4}. @Consider the cases ¢ < 4 and ¢ > 4. 14. (a)

7/6; (b) 1/3; (c) 8/9; (d) 548/3. 15. (a) 9; (b) z-g-; (c) 35 2—54 16. (a) 1/3 +
+1n 2; (b) 13/3—41n2; (c) 16.5 — 81In2; (d) 48 In2 — 11.25;
(€) 20/3; () 1n 2. 17. (a) 4 — In 3; (b)%ln%’i. 18. {(12—2V/21)/5; 8}.
A The curves y = 1/z and y = 1/(2z — 1) meet at the point Oy (1; 1)
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(this follows from the solution of the equation 1/z = 1/(2z — 1)). Let
us consider the possible cases of location of the curve z = a: 1/2 <
<a<i,1<<a<<2anda>2.(1) If 1/2 < a < 1, then the area of
the figure (see the figure) is equal to the sum of the areas of the fi-
gures EO,F and A0,B:

¥

2

i
ln o= S (== )d’+§ (+—z=r)e=

1 1

Integrating the right-hand part, we get

4 _ 1. [2s—4 [t 1 2 2
1“"1/_3'“21 7 132 lnl2z—1 L
1 1. 2a—1 1, 4

or

RV T e @
The right-hand side of equation (1) is the area of the curvilinear

triangle EOF (ln 211//33 > 0) . Next we have a?/(2a—1)=12/5,

5a® — 24a 4 12 = 0; (2)

= (12 — 2y 21)/5, ay = (12 + 2}/ 21)/5. We find that the condi-
:ilon 152 <a<lis fulfilled only by the root a;,

(2) Under the conditions 1 < a << 2, the straight line z = a does
not exist (it is established that in the case 1/2 << a << 1, the area of
the given figure is larger than the area of the curvilinear triangle A0B).

(3) In the case a > 2, the area of the given figure is equal to the
area of the figure ABCD:

anig=_§ (%—2:;—1_1—)@. 3)
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After integrating the right-hand side of the resulting equation and
transforming it, we obtain 15a® — 128a 4 64 = 0; a3 =8, a, =
= 8/15. The value of a, does not satisfy the inequality ¢ > 2 and is,
therefore, extraneous. Thus, 1}h_e_ condition of the problem is satisfied
by the values a € {(12 — 2}/ 21)/5; 8}. 19. (a) logge; (b) log, e;
(c) (30 —81n2)/In2; (d) 8 51 — 1/(81 1n 3)).

20. (a) 2¢® + 1; (b) Se" — 4)/e%; (c) 33/2 + e-5;

(d) e — 2. 21. 360/(In 8) — 162. @ To find the values of k and m,
solve the system of equations

kE+m= 34 3% 4 m=14.

4
22, 41035—9—. ® To find the coefficient b, solve the equation
27

tan (arctan 40 In 5)=b5 In 5. 23. 3.5—12 In % 2% () 4 ® S=
2n (1 2%

= S | sinz | dz= S sin z dz+ S (—sinz)dz; (b) 1/(3 V2); ()2 V2

0 0 14
(@) (V24 V3)/4. 25. (a) n V3/12+4sin1—1/2; (b) 1+ n/3—cos3—
—V3 () (V?23) arcsin (2V?2/3)—-2/3; (d) 24cos2.

2. (a) {—n/18, /9). @ Consider the cases— + <k <

n 7 E 7 . .
1—8<k<—6—, (b) {—36 , T} . 27, (a) . A Since the integrand

and

function y= J'4—2? is nonnegative on the interval [0; 2], the
value of the required integral is numerically equal to the area of
the figure bounded by the curves y= V4—z3, z=0, z=2, y=0,
which is a quarter of a circle of radius 2 (see the figure). Thus,

the value of the integral is m.28/4=ug; (b) 2&“——%[i o I—

N3 2

= Sapc =S —-S (see the figure). 28. 2In2 —1. ATl =

cg = :X :c — ?fgm (see the figure). Let us find the areas of
the l{}gures OABC and ABDO. Since OABC is a rectangle, we have
SoaBc = 2| BC |, and | BC | = In 2; therefore, Soopc = 21In2.
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The area of the curvilinear trapezoid ABDO can be found by integrat-
ing the function x = e¥ in the limits from O to In 2 (the ordinates of
the points O and A respectively):
vh In 2
> SaBpo= g eVdy=e®2—1=1,
0

We finally have I = 21n 2 — 1. 29. n/2 — 1.
AThe value of the integral is equal to the
area S of the hatched figure (see the figure).
We find that area:

wf2 /2
S=S 1dy-—g sinydy=%—1.
0 0

Chapter 5
PROGRESSIONS AND NUMBER S£QUENCES

5.1. Progressions

1. No, it isnot. ® Show that the equation 1 + 4 (n — 1) = 10091 has
no integer solutions. 2. 13. 3. 99270. 4. 16, 12, 8,..., — 16, —20.
ASuppose g, is the first term of the progression, d is its common differ-
ence. We derive a system of equations:

a;+ae+...+apatay1=0,
az+ag+ ...+ ap1+an= —36,
a19—ag= —16.
From the third equation we have (a; + 9d) — (a; + 5d) = —16; d =
= —4. Subtracting the second equation of the system from the first,
we get a; — a, = 36 or —d (n — 1) = 36, — (—4) (n — 1) = 36 and
n = 10. To find a,, we transform the left-hand side of the first equation:

al+an—l (n__,i)= a1+a1——4(9—1) 9=0; a1=16.

2 2
5.11,13,15, ..., 29,31.6.1,3,5, ..., 17,19.7.7.8. 8,12, 16, . ..
A From the hypothesis we have a system
ay=a;+d=12,
200 <21 %.9 < 920,

From the equation of the system, we express a, in terms of ¢ and sub-
stitute it into the inequality 200 << ((2 (12 — d) + 84d)/2) 9 < 220.
After the transformations, we get 32,—7 <d< 42%. Since all the terms
of the progression are natural numbers, the common difference d of the
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progression must be an integer. The last inequality is satisfied by d=

1. ,4
77 42-77)) Then we
find the first term of the progression: a; = 12 — 4 = 8. 9. —4. 10.
5;9;13; ... .11. a; = 4; d= 5. 12. 1/9, 1/6, 1/3. A Suppose z, y, 3
are the required numbers; we have a system of equations

f z+y+z=06 (1) = % ;

=4 (there are no other integers on the interval( 3

P L ti=ts,
I 1 1 2

—_ =
z 'z y

.

(1/z; 1/y; 1/3 here are the consecutive terms of the progression.) Sub-
tracting the third equation of the system from the second, we get
y = 1/6. Substituting this value of y into the first and the second equa-
tion of the system, we obtain a system
z-+2=4/9,
(@+2)/(z2) =12,
whose solutions can be found by means of the substitution z = 4/9 — z
into its second equation. 13. —3a/V/28, —24/ V28, —a/ V28, .. .;
3a/ V28, 24/ V28, al V28, . .. . 14 {+ V 250 — 9/4} for b € [1; o).
A From the hypothesis we have a system of equations
aza;3=1,
@ a19= b.
Since a, = a; + 64, it follows that a; = a, — 6d and we can reduce
the system obtained to the form
(a;—5d) (a;+5d) =1, { a3 —25d2 =1,
(8, —3d) (a;+3d)=b a?—9d2=b,
whence we find that d> = (b — 1)/16 and a} = (256 — 9)/16; a, =
= + V/25b — 9/4. Since the inequalities d% > 0, a? >0 must be
satisfied, the following inequalities must hold true simultaneously:
b —1>0 (1) and 256 — 9 > 0. (2

Solving the system of linear inequalities (1) and (2), we find that b €
€ [1; oo). For other values of the parameter b, the system of equations
has no real solutions, i.e. there is no arithmetic progression whose
terms are real numbers. 15. (116k — 39)/90 for & ¢ [—6, 3/2]. -16.
(34 — 296)/10 for b € [1; 9/4). 17. —(p + q). 18. 6.

A We have al-;a,, n= a"“j“”‘ n by the hypothesis, whence
we obtain a;+4 a,,=% (2n+1+ 8an)- Now we can find the required
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relation:
(a1+a3n)3n | ay4an ne 3(a1+ asn)? —6 20, +d(Bn—1) 6
2 T2 " apmtam 2a+d(nt-2n—1)

19. —1;0; 1; 2. A Suppose ¢ — d, a, a -+ d and a + 2d are the required
numbers. We assume that the progression is increasing. Then we have
an equation, which we solve for a:

(a—d)*+a®+(a+d)*=(a+2d), 3a®—a+2d*—2d=0;
a=(1+ V —2%d*+24d+1)/6. )

Real solutions exist if

—24d*—2%d+4+1>0 or 12_24’ 168 <d<12+214/168 )

There are only two integers in this interval, 0 and 1. We reject 0 since,
by the hypothesis, all the required numbers are different. For
d = 1 we find from (1) thata=0,a —d= —1;a+d = +1, a
+ 2d = 2. 20. 13. 21. (np/2) (1 + np). 22. 2.4. 23, a; = 8, ¢ = 2.

[ J—
24. 39 or —10.5. 25. +4.26. 2,6, 18,...;18,6,2, ... .27, I/A/B
28. 12/q1%, 29, S,/S;. A By the hypothesis we have a system

{ ar+agt ...+ ag99=35y,
az-tast ...+ 81900 ="S3.

We multiply the denominator by the common ratio g of the progres-
sion:
019+ a3q + . . .+ ggeed = a3 + a5 + . . . + @900 = S1g.

Solving then the equation S,= S;q, we get the answer. 30. &'/ S,/S;.
31. 6. A Suppose g, is the first term of the progression, g¢.is its common
ratio and n is the number of the terms. Then we have a system of equa-
tions

a + alq".l =66,
a{qﬂ-l = 1287
a; {(1—q®)
R 126,
T—qy — 128

Multiplying the first equation of the system by a; and taking into
account that ajgn-!= 128, we get a} — 66a; + 128 = 0; (ay), = 64
and (a;)q == 2. Furthermore, we find from the second equation that
(g™-Y); = 1/32 and (g"-1), = 32. Since q" = (¢q"-?) % we can substi-
tute tile values of a; and g"-* we have obtained into the third equation
of the system and find the common ratio of the progression g; = 1/2,
g3 = 2. The progression being increasing, the common ratio g, is
extraneous. Solving now the equation 27-! = 32 = 25, we get the
answer. 32. 600 m/min. A Suppose v,, v, and;vs (m/min)are, respec-
tively, thespeeds of the first, the second and the third skater. It follows
from the hypothesis that v << v; << vy, i.e. v} = vyv3. Furthermore,
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we have a system of equations

{ vet = v1t+ 400,
vyt =vy (¢-1+2/3),

where ¢ is the time during which the second skater ran a circle more
than the first. Excluding ¢ from these equations, we get (va — v;) vg/
l(vy — vg) =.(12 — vyws)/(vi — vg) = v, = 600. 33. @ Sap — S, =
= ntt o Gngs + oot Gay = Gpzg (L — U — 9, Son —
— Sgn = agpq1 (1 — qM/(1 — ). 34. V/2/3. 35. 1029/38. A Suppose
the sequence ay, ag, . .., a,, ..., is a geometric progression. We

shall show that the sequence a®, ok, ..., af, ..., k€N, isalso a
geometric progression. Indeed, since ;45 = a;q, 1 € N, it follows that

a{‘ = aqu and a;‘ _H/a} =gk =const,

independent of the ordinal number of the term i of the progression.
Thus, the sequences of the squares and the cubes of the terms of an
infinitely decreasing progression are also infinitely decreasing progres-
sions. We therefore, have a system of equations

e _
=
4 _
o= 147116,

solving which, we find a; = 3, ¢ = 1/7 (for that purpose, it is
sufficient to square the first equation and divide it by the second
equation). Substituting now the values of a; and ¢ obtained into
the formula o} /(1 — ¢%), we get tilfe answer. 86. 100/3. 37. (3Y3—
—1)/2V3) or —(3V3 + 1)/(2V3). 38. 405, — 270, 180, .. ..
39. 2/3.40. 27 or 3. 41. 2; 5; 8. 42. 7; 14; 21. 43. 2.5 or 22.5.
44, 931. 45. 4, 20, 100; 4/9, 52/9, 676/9. 46. 4, 12, 36; 4/9, —20/9,
100/9. 47. 2 + V3. 48. 4, 20, 100 and 5, 20, 35; 100, 20, 4 and 101,
20, —61. 49. 5, 5, 5; 10/3, 5, 15/2. 50. 2. 51. 3, 6, 9, 12. 52. 1, 4, 16,

2 2
64. 53. 2, 5, 8, ...;3,6,12,...and2—25,?,8763, . -5-,235,6—62,

5.2. Number Sequences

1. A (a) Let us choose arbitrarily a positive number & and show that
we can find for it a natural N such that the inequality

1ih—0l<e W)

holds for all numbers n > N. After transformations, we get an in-
equality n > 1/e. If the number n is larger than 1/e, then inequality (1)
holds true, i. e. we can take N equal to [1/e] where [1/e] is the inte-
gral part of the number 1/e. Thus, we have shown the existence of the
number N such that inequality (1) holds for any n > N = [1/e] and
have completed the proof. Remark. We can take as N any natural
number exceeding 1/e; (b) @ Show that N can be taken equal to
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[(2 — e)/e], where e > 0; (c) @ Make use of the proof of the assertion
lim ¢g" =0, 0 <g <1. 2. A 1st method. The sequence (z,) is said

n-—+00

to be bounded if there are two numbers m and M such that the in-
equality m << z, << M holds true for any » € N. We shall prove the
existence of the numbers m and M for the given sequence. All the terms
of the sequence with the general term (1 + 1(—1)")/n2 are nonnegative
(27)3=2?f0r n=2k, k€ N) and,
therefore, we can take as m any negative number or zero (say, m =
= —2). Unity, for instance, can serve as M. Indeed, zgp., = 0 << 1

(top-1 = 0 for n = 2k — 1; 29, =

and zgp= o < 1 for any k € N. Consequently, —2 <{ z, << 1 for any
n € N and this means that the given sequence is bounded.

2nd method. Since every convergent sequence is bounded (the
necessary condition for the convergence of a sequence), we can

infer, having established that lim w = 0, that the
n-»o00 n

given sequence is bounded. 3. The sequences enumerated in

(@), (b), (¢), (¢) and (h). 4. No, the sequence (z,), z, = (—1)",

for instance, is bounded, but it has no limit. 5. The sequence (z,) is

said to be unbounded if, for any number L > 0, there is at least

one number n such that [z, | > L.6. (a) @ Find lim 212,74

n-»00 n——i

. 2—3n | . - 1\n . n—1 .
nlir:: g Ew e (b) ® Find 7{11?0 (7) and kglo gy o 7. No, in
general. For example, z,=(—1)? y=(—1)"*1. 8, (a) ® Find

. A—n+tn? . 44583 . _1_)
nl-lg ——— and iiglo B3 b) @ Fmdnlfi (15+ - and

—7
lim———=. 9. A The limit of the sequence (z,), z, =c¢z,, where
T e

¢ is a constant, exists: lim cz, =c, lim =z,. Setting c=—1, we
n-+oo n-»o0o
get lim (—z,)= —lim z, = —a. 10. A Since lim y,=>, it fol-
n-»oo n-»oo n-+0o
lows that lim (—y,;)= —b (see the solution of the preceding prob-
n-—oc

lem). Applying the theorem on the limit of the sum ’of two con-
vergent sequences, we obtain

lim (zp+(—yn))=lim zp+lim (—yy)
n-oo n-00 n->00

=lim 2z, —lim y,=a—b.
n-—>o0o n-—»>00

11. (a) It diverges; (b) it can be either convergent or divergent. For

example, (1) ¢, = 1/n, b, = (—1)?; lim a,b, = 0, i.e. the sequence
n->00

a,b, converges; (2) a, = (n + 1)/n, b, = (—1)®, in this case the

sequence a,b, has no limit. 12. (a) No, we cannot; (b) no, we cannot.
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For example, a, = (—1)*, b, = (—1)"*!, and then a, + b, = 0,
lim (a, +8,) =0; apb, = (—1)2"*1= —1 and lim ayb, =
n-—>00 n->00

14-(—1)n 1—(—D"
=— 1.13. No, it does not. For example, a,,= +(2 ) , b= (2 ) H
these two sequences are divergent. 14. The sequences enumerated in
(a), (¢), (@), (f), (h), (i). 15. A All terms of the sequence (z,), z, =

n

n4-2
< 1, we have 5n/(n + 2) << 5-1. Thus we have 0 < r, < 5 for any
n € N, i.e. the given sequence is bounded. To prove the second asser-
tion, we consider the difference

oot — 5 (n4-1) 5n 5.2
MTIRTRINDF2 T nt2 . (3 (n+2)
which is positive for any n € N and, consequently, the given sequence
increases. 16. ® Show that 1 < z, < 1.5 and that z,4; — z, < 0.
17. No, we cannot, for example, if z, = 1/n, y = (—1)"n, then the

sequence z,y, = (—1)® has no limit. 18. 2.A Let us consider two se-
quences (z,) and (y,),

,are positiveand, consequently, z,> 0,andsince n/(n + 2) <

2n-4-1 n—3 s s el 13 _
T =— ) and yn—m and find their limits: 1}1!?0 Tn=
-1 2n4+1 ki n(24+1/n) n 24-1/n l 240 —9
= e = A2y SR T 2 T )R T T

1 2
(since lim — =0 and lim = ) By analogy, we find the

n-—>00 n-+>oo

limit of the sequence y,: lim y,=1. Applying then the theorem
n—>00

on the limit of the pro uct of two convergent sequences, we get

s__
the answer. 19. 0. @ Reduce the expression -E”:;T: to the form
—4InS
1715_'_% and apply the theorem on the limit of the product

of an infinitely small sequence by a bounded sequence. 20. —5/3.
21. 1/5. 22. 1/27. 23. —3/4. 24. 0. @ Reduce the expression

nsinn 1 sinn
] to the form T e and show that the sequence
sinn . n!
(w) 18 bounded. 25, 4. 26. 0. @ m——
nl n! 1

= TmED—nl = (n-|-1—1)=_n_’ 27. 0. 28.1.29. 3/4. 30. 3/2.

@ 112434 ... tn=n(nt+1)/2. 31. 4/3. @ 124284 .. tni=

1 1 1
n(n-H1) @n-H1)/6. 32 (2) 1. @ —e=—r——mr s (B) 172
(c) 1/2. @ Use the results of the preceding problems (a) and (b) and
apply the theorem on the limit of the difference of two convergent se-
guences. 33. 1if | b | > 1;0if | b | =1; —1if0< | b | < 1.
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Chapter 6
ELEMENTS OF YECTOR ALGEBRA

6.1. Linear Operations on Vectors

1. (a) The vectors a and b must be mutually perpendicular; (b) the
angle between the vectors a and b must be acute; (c/) the angle between
the vectors a and b must be obtuse. 2. (a) =; (b) 1/10. 3. z € (—1; 5).
® The original inequality is equivalent to the inequality | z — 2| X
Xlal]<3l|alor|z—2|<3. 4 z¢€ (—3; —1]U[4; ). ® Solve
the system of inequalities

lz1>1,
z +3>0.

5. z = 10/7, y = 4/7. 6. 0. A By the hypothesis, a + b = Ac and
b+ ¢ = pa, where A, p are some numbers different from zero. Exclud-
ing b from these equations, we arrive at an equality (un + 1) a =
= (A + 1) ¢, which is only possible for p = —1 and A = —1 (the
vectors a and ¢ are noncollinear). Consequently, a-+b = —e¢ and
a+b+4+e=0.7.p=1, ¢g=1. A It follows from the collinearity
of the vectors pa + ¢b+ ¢ and a -+ pb + ge that (p —A)a +
+ (@—pM) b+ (1 —Ag) ¢ = 0. The last equality is only possible
when f —A=0,g—pr=0,1—Ag =0 (A« 0). Solving the sys-
tem of these equations, we get the answer. 8. It is true if |a | >

> |b+e]. 9. A0=(a+by/3. 10. (2/3) (a+b). A We have
— — —
AC = AB + 4D,

_ = > ] —>
AB+BM=AB++ AD=a, (1)
—_ = —> | —>

AD+DK=AD++ AB=b. @)

Adding together equations (1) and (2), we obtain
3 —> — 33— — 2
?(AB+AD)=7AC=a+b, whence AC=§(a+h).

Iblat-lalb 100

1. ja|=|b|. 12, ————"— 13, 13; (b 109.

lal=1b|. 12 S e (a) (b) V109,

14. {(—5/4; 8/5)} 15. p = (—6; 8). 16. p = 2a — 3b. Since the vec-

tors p, a and b are coplanar, we have p = Aa 4 pb. The last equation

can be rewritten in the form p = (3; 4) = A (3; —1) + p (1; —2).
Hence we get a system of equations with respect to A and p:

3=3M\+ By
{ b= —A—2p,
solving which, we get: A = 2, p = —3; consequently, p = 2a — 3h.

, p=
17. {(2; 9); (7; 0)}; @ Consider separately the cases (BC) || (AD) and
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(4B) || (CD). 18. (1.5; 1; —2). 10. @ Show that (D = —24F. 20.
V8. 21. (a) 4V'2; —2; 8), (—4VZ; 2; —8); (b) (—24; 32; 30); (c)
—6; 8; 24). 22. M (—1; 0; 0). @ Use the equality | MA | = MB I,
where MA = (1 — z; 2; 3) and MB = (—3 —az; 3; 2). 23. V/51/3.

® 40 = AB + (1/3) (BC + BD). 24. Yes, they are. 25. d = 2a —
— 3b + ¢. @ Represent the vector d in the form d = Aa + pb + ve
and from the system of equations

3}»—}L+2V=11,
{ —2A4-p+v=—86,
A—2p—3v=5
—_
find the coefficients A, p, v. 26, %AA;-F—:;- E{—%A_C) o A_1l>l=

— 2 —> 4 3 12 —  —
=AC+75 CBy. 21. {zitzit gk - A We have AC,=4D +

—_ —
-+ AB + AA;=4i }-3j 4 12k; consequent-
_9 e
ly, |4C1| = V4+3+122 =13 and
—
AC, 4 ., 3 12
e=— =73 l+1—3' j+"1§ k.28.3:1.
| 4C4|

@ Prove that the required ratio is equal
to the ratio of the lengths of the vectors

—
EC and EM, (E being the midpoint
of the segment BD). 29. 5. A We
introduce the rectangular basis Ozyz
by superimposing O with the point

of application of the forces (see the figure), with oM € Ozz, ON € Oyz
and 0—1?6 Ozy. Suppose IOW | =1, IO—JVI = 2 and léf | =3,
then OM = (/Y% 0;4/V2),0N = (0; V% V) and 0P = @IV 2
3/1/2; 0). The sum of these vectors is the vector of the resultant of these
forces p=@/VE 5/VE 3V (pi=) SEBEI_ g
30. a24-p2=1.

6.2. The Scalar Product of Vectors

1. 3n/4. 2. 4.3. 3/ V21. A We have (a+b) (a—b)=|a+h||a—
—b | cos ¢; hence
la|2—|b|?

YV (@+b): V (a—b)

cos p=
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2% 1
V221121 2.2.1.cos 60° J/ 22 12—2.2.1-008 60°
3 3
REES
4.—4/5. A Solving the system of equations with respect to p and q, we
find: p= (1/3) (2a —b) = (1/3; 1), ¢ = (1/3) 2b — a) = 1/3; —1);

since_ pg=|p||q]|cos(p, q, we have cos(p, q) = (1/9 — 1)/
/(Y 10/9)>= —4/5. 5. @ Prove that ap = 0. 6. —295. A Squaring the
equality a 4+ b +-¢=0, we get |a|2 4+ | b |2 + | e |2+
+ 2 (ab + be - ca) = 0. Hence we have ab 4 be + ca =
=—(lalz+|b 24| ¢ (/2= — (132 + 142 + 153)/2 = —295,
7. arccos (1/3). @ Determine the angle between the vectors AB and
—_— —

AC. 8. /4. 9. arccos (5/)/39). @ Find the angle between the vectors

Zi? and B_’E’

10 a=arccos¢—5— 11.9/2. @ S =-1- |Z§| lza %
’ 3 V(z_3)a+2 * . . ABC™ 7
- e
X sin 4, sinﬁ.—:}/1_c052}1_—_l/-1_ AB-AC ) .

— —
_ | AB| AC |
3
12. arccos (—1/1—0-) . @ Show that the required angle is equal

—  —> —>  —>
to the angle between the vectors AB+ BC and BC — AB. 13. arccos X
X (631). Y 6441).
14.| AC | = 5;0 (5/2;1;1). 15. (1;1/2; —1/2). ASupposeb = (=, ¥, 2).
Then it follows, from the condition of collinearity, that z/2 = y/1 =
= —z/l = torz =2t y =tz = —t¢. Substituting the last equality
into the scalar product ab = 3, we find that ¢ = 1/2. 16. (—3; 3; 3).
17. (4/V3); —1/V'3; —2/V'3). 18. (2; —3; 0). 19. (1; 0; 1); (—1/3;
4/3; —1/3). A If we suppose that ¢ = (z; y; z), then we get
lel=lal=|bl=V2=VZF 7+ 6

By the hypothesis, the angles ¢ between the vectors are identical and,
therefore,

__ab 1 ac a4y _ 1
COSe=a T2 MTaT e 2 —2 @

and
be _y—l-z__i_. .
Biiel 2z 2 ©

Solving the system of equations (1), (2), (3), we get the answer. 20.
5. 21. (2; —2; —2). 22. 2 ¢ (— oo; 0). ® Find the values of z for

which the inequalities ab > 0, be << 0, where ¢ = (0; 1; 0), hold si-
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multaneously. 23. @ Find ﬁbﬁ, where ]
— — — = —> —

MQ = MP + PQ, NP = NQ + QP.

24. arccos (—4/5). A In the isosceles right
triangle ABC (see the figure) we have
|AC| = | AB |, [BM,] and [CM,] being M,
the medians,

— ] —> —>
BM,=— AC—AB,
— | —> — A M c

cM 3=7 AB—AC.
Multiplying scalarly the two last vector equalities and taking into

account that Zﬁ J_A_Ci we find

— — 5 —> —  — —
BM,;-CMy==" | AB |?cos 9= —(AC?*+-AB?%/2= —| AB |
—>
25.BM=|:—clzoc—b. A We have (see the B
figure)
—> —>
BM=AM—b, ()
where AM = ye (y being some real number). c
Since the vector B is perpendicular to the M
—
vector ¢, we have BM-¢ = 0. Consequently,
ye2 — b-e =0, i.e. y =b-¢/| ¢ |2 Substituting the obtained y into

equation (1), we get the answer. 26. (—20/7; —30/7; 10/7). @ Use the

solution of problem 25. 27. arccos (2/}/29). @ Using the result of
problem 25, we find

—> 14 1 8 —>
BM1=(T, 9 —3), DMgy=(2; —2; 1);

—> —>
BM,-DM,
cosYV=—5——— -
| BM,| | DM, |
28. 2z + 2y + 32 — 6 = 0. A The equation of a plane, in its gen-
eral form, is
ax + by + ¢z 4+ d = 0. 1)

Substituting, in turn, the coordinates of the points M,, M,, M, into
equation (1), we obtain a system of equations

a—b+42c= —d,
{3b= —d,
2a+b=—d,

solving which, we find ¢ = —d/3, b = —d/3, ¢ = —d/2. For these
values of the coefficients a, b and ¢ equation (1) assumes the form
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—d 2z + 2y + 3z — 6) = 0. Cancelling by (—d) (@ = 0), we get the
required equation. 29. z 4 z — 4 = 0. A Suppose n = (a; b; ¢) is a
vector normal to the plane o passing through the point 4 (4; 0; 0).
Since the plane « is parallel to the y-axis, the vector n is Eerpendicular
to any vector, which is parallel to the y-axis, say, to the vector j =
= (0; 1; 0). Hence it follows that nj = b = 0, i.e. the equation of the
plane o has the form a (z — 4) + cz=0o0r q; (x —4) + z = 0, where
a; = a/c. Substituting the coordinates of the point B into the last
equation, we get ¢; (0 — 4) + 4 = 0, a; = 1, whence it follows that

243 —4=0.30. —1.4 If D € (ABC), then the vectors AB, AC,

—> — — —
AD are coplanar and, therefore, AD = AAB + pAC, where at least
one of the coefficients (A, p) is nonzero. In the coordinate form, this
equation can be written as (k — 1; 2; 2) = & (—2; 3; 1) + p (0; 2; —2).
From this we get a system of equations

—2A=k—1,
{ 3},+2p,=2,
A—2p=2,

from which we find that A =1and k= —2A 4+ 1= —2 4+ 1 = —1.
Remark. We can also solve the problem by first writing the equation
of the plane (4BC) (see the solution of problem 28) and then substi-
tuting into that equation the coordinates of the point D. 31. @ (a) See
the solution of problem 30; (b) @/2; (c) 21 V' 10/2. @S, gcp = (1/2)
— .
| AC | | BD |. 32. nt/3. @ To find the angle between the planes (4 BC)
and (4BD), determine the angle between the vectors n; and ng, which
are normal to the planes (4BC) and (ABD). 33. (a) 4 (1; 2; 0);
B (0; 0; 2). A Setting z = 0 in the system of equations
- 2243y 42—8=0, )
4dz+y+3z2—6=0,
we find the abscissa and the ordinate of the point A of intersection of
the straight line p and the plane 20y, i.e. we find thatz = 1 and y = 2.
Similarly we find the coordinates of the point B (we must put z = 0
in system (1)); (b) arcsin (2/3). ® We can calculate the required angle
—_—
BA
—:>—n—, where B_X = (1; 2; —2) and
|BA||n
n = (0; 1; 0) isa vector normal to the plane 0z (¢) is the angle between
—_—
the vectors BA and n). 34. (a) E (12; 0; 3); F, (0; 6; 12); G (6; 12; 0);
(b) 7z + 5y + 6z — 102 = 0; (c) 3)/10/11. ® The equation of the
straight line passing through the point B, at right angles to the plane
(EF1G) has the form #) = y_—5—2 = z—-612 (the vector (z; y; z — 12)
being collinear with the vector (7; 5; 6)). Determine the coordinates
of the point M of intersection of that line and the plane (EF;G) and
find the distance | ByM | by the formula | B\M | =V (zg, — z)® +

+ (yB‘ - ylil)2 + (ZB‘ - zM)z‘
240
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Chapter 7
PLANE GEOMETRY

7.1. Problems on Proving Proportions

1. A (1) C € [AB). Supposing that C € [AM], we have

|AC |+ | CM|=|AM|and | BC|=|CM |+ | MB|=
=|CM|+ 1AM |.

Excluding | AM | from these equalities, we find that |CM | =
= || AC | — | BC||/2. By analogy, we can consider the case when
C¢c[MB]l; (2) C ¢ [AB). Suppose C € [BD), where D¢ (4B).
Then | MC|=|MB|+ |BC| and
| AC|=| AM |+ | MC|=| MB |+
+ | MC |. Excluding | MB | from these
equalities, we find that | MC | =
=(| AC | + | BC |)/2. The case when
C€lA, E), where E € (AB), can be
treated by analogy. 2. @ Use the prop-
erty of vertical angles. 3. A Draw
(AF) 1 (CD) (see the figure). The straight c

line (AF) is the axis of symmetry o
the triangle ACD and cuts [BD] at a A
point O. Hence, it follows that | OC | = A

=| 0D |. From the inequality of the
triangles we find that | OB | 4+ | O0C | >
>| BC |, but | OB | 4+ |0C | =
B

B

F

]

| OB| + | OD | = | BD | and, there-
fore, | BD| > | BC |. 4. @ Use the
property of alternate angles at parallel
straight lines.

5. A The segments [KL] and [MN]
(see the figure) are the midlines of the
triangles ABC and ADC; consequently,
[KLT] || [AC]1| [MN]. We can simi-
larly prove that [KN] | [LM], and this N M
means that KLMN is a parallelogram.

0

6. A Let us draw the midline [MN] of the trapezoid ABCD (see the
figure). It cuts the diagonals AC and BD of the trapezoid at points E
and F, which are the midpoints of the respective diagonals (which
follows from the Thales theorem for the angles BAC and BDC). Con-
sequently, [EF] || [AD]. Next we find the length of the segment [EF];
[{MF] is the median of the triangle ABD, [ME] is the median of the
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B

c
ST N\,
E F\
D
triangle ABC and, therefore, it follows from the equation | MF | =
= | ME |+ | EF |, or al2 = | EF | -+ b/2, that | EF | = (a — b)/2.

7. ASquose [CF) is the bisector of
the angle BCD, [DP) is the bisector

P
A T £ 4 of the angle ADC (see the figure).
PO S
. Since BCD -+ ADC = n, we have
AN N )
FCD + MDC = n/2, and hence it
N RS
h = Y follows that CMD = n/2 and, there-

A\
fore, LMN = zn/2. (The angle CMD
and LMN are vertical). We can prove by analogy that / LKN is
a right angle, and since (4E) | (CF), we infer that KLMN is a
rectangle. .

Let us now find the length of the diagonal [KM]. The triangles
ABE and CDF are congruentsl AB|=|CD|, L.B= /D, |BE]| =
= | DF |; the last equality follows from the fact that the bisectors
BK and DM of the triangles in question are the altitudes of those

A

triangles, and this means that | AB | = |BE | = |CD | = | DF ).
It follows from the congruence of those
triangles .that | KE| = | MC | and so

KECM is a parallelogram. Consequently,
| KM |=| EC| = | BC|—|BE | =
—|BC| — | AB|.

8. A Suppose E and F are the points of
intersection of the straight lines (4 M) and
(AN) with the diagonal BD (see the fig-
ure). It follows from the similarity of the
triangles AFB and DFN (the angles AFB

N N
and DFN being vertical, FND="BAF),

B M C
LS
A D
E
|DF| _ |DN] _ i _
that TBFI = 148 — 2.Thus, |DF|=
B = (1/3) | BD |.

By analogy (consider the similarity
of the triangles BEM and AED) we
find that |BE|=(1/3) | BD |, and,

A D c

consequently, |EF|=(1/3) | BD | as well,
ie. |BE|=|EF|=|FD|. 9. & Let
us draw (CE) || (BD) 2BD being the
bisector), E=(4B) N (CE) gu

(see the figure).
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i AN N N N
Hence we get |BE|=|BC| (ABD=BEC —DBC=RBCE
and, therefore, the triangle CBE is isosceles). Furthermore, we
| AB| | BE| {4AB| _ | BC|
(4D = 1¢CD] or 4D~ 1¢DT 10. A From the
similarity of the triangles ABD and MBO (see the figure) we have

II 104]‘; I‘ = : ?)ﬁ' ll , and from the similarity of the triangles ACD
|ON |

and OCN we have = B (o]

NCTRANUZAN
_10cl L. 10C| _ |0B|

“T74acr "™ TAcr T DB M %) N
since A BOC-~ /A AOD | AC | =

oC|

|

|
_q.140] | DB|
='*TorT> rosr 't
| 0D | B
0B | ) and, therefore,
|OM |  |ON |
| AD| — | AD|
11. Suppose O is an arbitrary Aq
point lying in the interior of a G
regular triangle 4BC (see the fig-
ure), and assume that | OC,|==, 0
| Ay | =y, |0By |=1, | AB|—=a. z
We seek the area of the triangle A B c
ABC as the sum of the areas 1
of the triangles AO0B, BOC, AOC:

SApc = %za—!——z— ya—I-E za; on the other hand, Spc=a? V 3/4

have

or | OM |=|ON |.

We have an equality a® }/3/4 =%a(z—|—-y+z) or z+ ytz=
=a V/3/2=h, where & is the length of the altitude of the triangle
ABC. 12. A Suppose | BC |=a,
|AC|=b, |AB|=c (see the
figure). Then S=Sspc=Sa0B+
1
+SpoctSaoc=5 1041 | at
44108, 1 b+ | 0, | ; and
since | OCy |=| OA, |=| OBy | =T,
it follows that S=r“—+'2’+—‘ = A By b c

=rp, whence we find that r=S/p.
13. A The area S of the triangle ABC can be found by the for-

mula S=(1/2)ab sin €, where C is the magnitude of the angle
opposite to the side AB. We draw the diameter AC, of the circle
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circumscribed about the triangle ABC. The angles BC;1A and ACB,
inscribed into that circle, are such that sin ¢ =sin ¢, and, therefore,

| AB | =c=2RsinC.

C

Ay

. A c 1
Consequently, sin C =R and S =3 ab 3B

By

8

Ci “A

aos

whence it follows that R=E. 14. A Using the property of the seg-

ments of tangents to

a circle drawn from the same point, we have:

| A,C|=| CB, | =r (A,CB,0 being a square), | 4,8 | = | BC, | and
| ByA | = | ACy | (see the figure). Hence

A Ve find that | BC |=|4,B |+ r,

| AC| = | ABy | + r (r being the radius

D

of the inscribed circle). Adding these
equalities together, we get
|BC|+14AC]| =
2r+14,B|+ 4B, | =
=2r+|BC |+ 1CA|=2r+ | 4B,
and since the length of the hypotenuse
of a right triangle is equal to the diam-

eter of the circle circumscribed about
that triangle, it follows that | BC | 4

+]AC | = 2r + 2R. 15. A Let us connect the point B with the
points C and D by line segments (see the figure). The triangles

N\
ABC and ABD are similar (@ = ADB, the angle A being common)

and, therefore, :;:g—} = :—%%I- , whence it

follows that | AB |2 = | AD |-| AC |.
16. A Suppose ABCD is a convex quadrangle
(see the figure). We draw perpendiculars from
the vertices A and C to the diagonal BD and
obtain four right triangles AEB, BFC, CFD
and AED. All the points of the triangle
AEB belong to the circle constructed on the
side AB as a diameter (. E = /2, the angle
being inscribed). Presenting similar arguments
for the other three triangles, we infer that
any point of the quadrangle belongs to at
least one of the circles whose diameters are
the sides of the quadrangle ABCD. 17. @



PR AN\ A\
Prove that MPN = MFH, PNQ = PM(Q. 18. A Rotation of the
triangle DBF about the point B through the angle of 90° (see the

figure) carries the point D into the point D, and the point # into the
point F; coinciding with the point C. At the same time, | D,C | =
= |DF|, and D, € (AB). Since | AB| = | BD | = | BD, | (as the
lengths of the sides of a square) and | AP | = | PC | (by the hypothe-
sis), it follows that [BP] is the median
of the triangle 4D,C, and this means

that | BP | =-%- |chl=%| DF| or

|DF|=2|BP|. 19. @ Prove that
under the homothetic transformation
with centre 0 = [AC] N [BD] with the
ratio of similitude k = — | CD |/| AB |,
the square constructed on [AB] will go
into a square constructed on [CD]. 20. A
Since d; = a + band d; = a — b (see the figure), we can square
these equalities and add them together to obtain

ldi1?=1a|®*+ | b|*>+ 2a-b,
|dg1?=1]a|®+ ! b|* — 2a-b,
d} + df = 2 (a® + b?).

7.2. Construction Problems

1. @ Construct a parallelogram such that point 4 is the intersection
of the diagonals. 2. @ Construct a triangle with sides a, b, 2m, where
a, b, m are the lengths of the given
sides and the median, respectively.
3. A Having constructed a point
B; (see the figure), symmetric with
respect to the point B about p,
and having connected it by a straight
line with the point 4, we get a point
C €p- N (ABy), which satisfies the
requirements of the problem , since
the inequality [|BC| + | AC | =
= | BC |+ | AC | = | AB, | <
< | ByCy |+ ACy | is satisfied for any

Oe——f——nD
)

S
O
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other point C,€ p. 4. A Let us take points 4; and C, on the sides
of the angle ABC (see the figure) and construct the bisectors of the
angles 4, and C, of the triangle 4,BC,, which meet at a point 0;.

c

c
C2

N B
/,

2

Since the bisectors of a triangle meet at the same point, the point 0,
belongs to the bisector of the angle B.

By analogy, we find a point O,, which is the intersection point of
the bisectors in the triangle A,BC,. The straight line (0,0,) is the re-
quired line since it contains the bisector of the angle B. 5. @ Con-
struct a triangle 4,BC; (4, € (AB), C, € (BC)), such that the point D
is the intersection point of the altitudes. 6. @ Construct a triangle
using three sides whose lengths constitute 2/3 of the lengths of the giv-
en medians and prove that the doubled lengths of the medians of the
resulting triangle are the sides of the required triangle. 7. (a) @ Prove

that if | AB|=a, | BC|=b (see the

D figure) and the radius of the semicircle

|40 | = (a+b)/2, then |DB|=
=V ab (IDB1LIAC]). (b) @ Construct

A

the line segments ¢=|a —b| and
o d = Vab and then the segment z =
A B c =1/a2--ab+b2= V'(a——b)z—l—ab=

=V ¢+ d& (as the hypotenuse of a
right triangle with legs of lengths ¢ and

d). (c) @ Construct the line segments c = |a —b | and d = b3
and ‘then the required segment z = }¢ 1 d°. 8. @ Construct an

arbitrary triangle ABC from the given angles A and B, find its peri-
meter p and consider the triangle 4,B,C;, homothetic to the triangle
ABC, with the ratio of similitude k£ = pl/ , where p; is the perimeter
of the required triangle with centre at the vertex A (or at the vertices
B or C). Prove that 4,B;C, satisfies all the conditions of the problem.
9. ® Prove that the ratio of the radii of the circles circumscribed about
similar triangles is equal to the ratio of the similar sides. 10. (a) @
Using the segment [0A] as a diameter, construct a circle and prove
that the straight lines passing through the point A and the intersec-
tion points of the circles are tangents to the given circle. (b) @ To find
the segment | AC |, use the equation | AK |* = | AC |-| AB |, where
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AK] is a segment of the tangent drawn from the point A to the given
circle (K being the point of tangency) (see problem 15 in 7.1). 1{.
@ Find the radii R, R,, R; of the circles from the system of equations

T Ri+R:=a,
{ R8+R3=b7
Rs+ Ry =c,

where a, b, ¢ are the lengths of the sitles of the given triangle. 12. (a)
A We draw a straight line (4 B) (see the figure); K =:(4B) () p. Using

B

A

Cz K C, 14

the equation | KC|2= | KB || AK| to construct the segment
| KC | (see the solution of problem 10b of this section) and .laymg
off that segment on both sides of the point K, we get two points C;
and C,. The circles passing through the points 4, B, C;-and A4, B, C,
are the required circles. Remark. 1f [AB] || p, then there is only one
circle satisfying the requirements of the problem. (b) @ Prove that
this property is inherent in the following points: the point of tangency

of the circle of the smaller radius, if [AB] ¥ p; points C; and C,
of tangency of two circles of the

same radius, if [AB] | p; the point K

of tangency of a single circle, if

[AB]| p. 13. @ Lay off the se§- A

ments | AB | = | BC | = p/2 A
(p being the given qerimeter) on ,
the sides of the angle ABC (see D
the figure), inscribe into the given
angle a circle touching the sides

of the angle at points A and C and B
draw a tangent to that circle from
the given point K. The triangle
A(BC; is the required triangle (prove this using the property of;
segments of tangents drawn to a circle from the same point).

7.3. Problems on Calculation

Cq c

1. (a) B = arccos (5/13) = arcsin (12/13). @ Use the cosine theorem;
(b) 84 sq cm. ® Apply Heron's formula: S = Vp (p —a) (p — b) X
X (p —c¢), where p = 0.5 (@ + b+ ¢c); (¢) | BD | = hy, = 11.2 cm;
(d) 4 cm.

® See problem 12 .in 7.4; (e) 65/8 cm. @ See problem 13 in 7.:

(f) 28 V13/9 cm. A SABC=SABE+SCBE=S; S=§-acsinﬁ=

1 B 1 B 2 B .
=3 cly sin T+? alp sin 7= lb=-;-% 08 5 (cosB +1=
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=2 cos? %) i () —‘/'25'0—5' cm. A We introduce a rectangular sys-

tem of coordinates such that the origin coincides with the vertex A
(see the figure), and the abscissa axis is chosen so that the side AC
should belong to that axis. In that system of coordinates the vertices

y B(6,6;11,2)

0,

P

A(00) D E F c(150) x

4 and C have the coordinates 4 (0, 0), C (15, 0). Let us find the coor-
dinates of the point B. Its ordinate y 5 is numerically equal to the alti-
tude hy, = 11.2 cm, and the abscissa can be found from the relation
ki +1AD |2 =¢? | AD|=zp=6.6, F (7.5; 0). Now we have

| BF | =mp=V (er—2z8)*+ (yr —yp)* = V' 505/2;
(b) V/65/8 cm. A The required distance d can be found from the formu-

la d =V("‘01— T0,)® + (yo,— ¥0,)? Where zo, and yo, are the
coordinates of the centre of the circumscribed circle and zo, and yo,
are the coordinates of the centre of the inscribed circle. Let us deter-

mine the coordinates] zp, = b/2 = 7.5, yo, = r=14; yo, =
= VR* — (b/2)*= 25/8, z(, = rcot (A/2) = 7 (cos A = 33/65). It is
now easy to find d. (i) Y 265/24. A Since the coordinates of the centre
of the circumscribed circle are known: 0, (7.5; 25/8), it follows that
in order to find | GO, | it is necessary to determine the coordinates of
— —
the point G. L_e>t us find them. The vectors BF and BG are collinear,
— —
i.e. BG = ABF, with A = 2/3. We have: BF = (0.9; —11.2) and

—_
BG = (0.6; —22.4/3). Suppose z; and y, are the abscissa and the
ordinate of the point G respectively. Then zg — zp = z5 — 6.6 =
= 0.6 and yg — ygp =Vyg — 11.2 = —22.4/3, whence it follows
-that z; =7.2 and y; = 11.2/3 = 56/15. From the formula

]/(zG — :::C,‘)2 — (yg — yo‘)2 we find the distance | GO; |. 2. a® X

X (V3 —1)/4.3. 4 cm. 4. 5.2 m. 5. n/4 or 3n/4. 6. a V3 (2 —V 3)/2.
7. 10 cm, 10 cm, 12 cm. 8. 1. 9. 1 dm. 10. arccos (2/3), arccos (2/3),
n — 2 arccos (2/3). 11. 13 cm, 15 cm. 12. 3; 4; 5. 13. 6. 14. Rr. A Sup-
pose a, b are the lengths of the legs, ¢ is the length of the hypotenuse.
Then p = (a + b + ¢)/2 and it is easy to notice thata + b 4 ¢ = 2R.
Consequently,} p = R, and since S = pr, it follows that S|= Rr.

15. 27 dm, 64 dm. 16. }/'7. 17, 10 cm, 10 cm, 1 cm. 18. (V'3 + V' 15)/4
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sq cm. 19. 3S/4. A Suppose O is the intersection point of the medians
[AN], [BF], [CM] of the triangle ABC. On the ray [BF) beyond the
point F, we lay off a point P so

that | PF | = | OF |, and connect g c

the poinis 4 and P by a line seg-
ment. The lengths of the sides of
the triangle AOP are respectively
equal to 2| AN |/3, 2| CM |/3,
2| BF |/3. Therefore, the required
area is given by the relation

S13: (2/3)2. 20. be}V2/(b + o). A FE D
2. 3yY7/2 cm, 1.5 cm, 3.5 cm.
22. n/6, /3, n/2.23. Vb (b F o).
24.  a?b?/(2a2 — b?). 25. @/2 +
arccos }/5/8. 26. 7 cm, 15 cm.

27. 6 cm, 9 cm, 3}34/2 cm.
28. (1/2) (@ — b2 sin a.

29. V2+ V3. 30. 216 sq cm.
31.2 cm. 32. 15cm. @ Draw (CE)||
|l (AB) in the trapezoid ABCD (see
the figure) and find the length of the
altituide CF of the trianglg ECD.
1, sinosin

B. 5@ =" S ETh

@ Extend the nonparallel sides of
the trapezoid ABCD till they inter-
sect at the point E (see the figure)
and find the area of the trapezoid as
the difference between the areas B c
of the triangles AED and BEC.
34. 2 cm, 5 cm, 5 cm, 8 cm.
35. (9V/3/4) r®. @ Prove that the
quadrangle ABEK is a trapezoid.

36. 18‘;5 cm.37.85/8 cm. AFrom | E

the vertex B we draw a perpen-
dicular to the base A D till it meets
the circle at the point F (see the
figzure). The segment [CF] is a
diameter of the circle circum- F
scribed about the trapezoid ABCD

N
(the angle FBC = n/2 is an inscribed angle). It follows from the
similarity of the triangles AEB and FED, that

|BE| _ | AE| _ 1ED|

Tzp 1~ TR T VEFI=1AE | 1355y
-9 1 -9\ 4
55 (M) =T
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Then, from the right triangle FBC we find| FC | and R:

| re1=yTEFEFTBCE=)/ (845 ) 100

__ 8 __ | CF| 85

=3 and R= 5 =g ¢m
3}?. 5:;1/1?, 7n/12. @ Prove that the trapezoid ABCD is isosceles and
that the length of its midlineis | AD | 1/3/2. 39. V (a® F 59)/2. A Sup-
pose | BC|=1b, | AD | =a, | EF | = z, and the altitudes of the
trapezoids EBCF and AEFD are hy and h, respectively (see the figure).
B_V the hypotheSls, SEBCF' = SABCD/2 and SAEF = SABCD/2 or
by (z + b)/2 = (aF b) (hy + hy)/4
and hy(x+a)/2 = (a+ b) X

C
i X (kg + hy)/4. Let us transform
y these equations:
Ef 4 2 a+b |
o kb zyb D
A D 2h3 . a—-I—-b (2)
hi+hy — zt+a

Adding together equations (1)and (2) we get 2=(a-b) (;—_1':-}-

1 . .
—I-m—) , solving which we get the answer. 40. ((a-}-b)/a)2.
A We draw [CE] || [BD] (see the figure). The areas of the triangles

ABC and CDE are equal since | BC | = | DE | = b, and their alti-
B c
[o]
A F D E

tudes are equal to the altitude of the trapezoid [CF]. Consequently,
the trapezoid ABCD is equivalent to the triangle ACE. The triangles
ACE and AOD are similar and, therefore, )

Sace _Sapcp _ 1AE|® _ (a+Db)?

Saop  Saop | AD |2 a?

41. 3r. 42. R® arcsin r
— T

calculate the area S of the sector by the formula S = R2a/2. 43,
5R? (2 V3 + 5m)/6. 44. 1/3. 45. (Rr/(R + 2r)?) [3R — 2r +

+ V8 (RE—_2Rn]. 46. V' 2 — V/3/V/3. A Since BD is the bisector
of the angle ABC, it follows that [PQ] is the diameter of the inscribed
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circle and the triangles POM and PQON
are right triangles (see the figure)
PR PN

(PNQ = PMQ = n/2). Suppose the arc
PN is of z rad, NMQ is of y rad. Then

AN
DBC = (y —2)/2 = /6, and y + z = m;
hence we find that z = n/3, y = 2n/3

RS PN

and PQN = n/6 and QPN = n/3. Let
PN )

us find the angles MQP and MPQ, A bm c
PN
ACB = 1t — (n/3 4+ n/4) = 5xn/12, and
suppose the arc MN is of z rad and the arc MQPN is of ¢t rad.
Then (¢ — 2)/2 = 5n/12, t + z = 2n. From these ecquations we
2n 7

n
3R

find z = 7n/12 and then the difference y — z =

a
Thus, QPM = % Setting | PQ | = 1, we find Spgopy and Spgon:
SPQA;”:l‘ 1 sin — cos LI sin - ;
2 24 24 4 12
SpQN=iSil] Z cosiz-l— sin-f'—
2 6 6 4 3
and obtain the required relation:
sin —=- —_—
- 12 :Vz___‘/g
sin —g— V3

r 19
(h . i_]/1—"°~"'—6‘_Vz_vg).
ere sin 12'— P) = )

47. VY 7/2. AWe introduce the rectangular system of coordinates Ozxy
so that the origin coincides with the centre of the larger circle and
the abscissa axis contains the line segment connecting the centres of
the circles [00;] (see the figure).

To find | AC |, we determine the

coordinates of the points 4 and C. yA
The equations of the circles with
centres at the points O and O

have the forms / VA(-\
2+ y? = (V2)? (1) 0y

and o g i‘
(z — 22+ 2 =1. (2
The system of equations (1) and g A

(2) has two solutions, one of which
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(z = 5/4, y = V/7/4) defines the coordinates of the point A. Suppose
7 and y, are the coordinates of the point C. Then zz = (x4 + z¢)/2,
yp = (ya + yc)/2. We have a system of equations

e (S (VT

solving which, we find: zo = 13/16, yo = —7 V7/16. Now we have
|AC 1=V (za—2c)*+(ya—yc)

—V (3-By () <y T

48. %sq cm. A Suppose z is the length of one of the diagonals; then

the length of the other is 6 — z. The area of the convex quadrangle,
whose diagonals are mutually perpendicular, is half the product of
the lengths of these diagonals: S (z) = z (6 — 2)/2, z € [0, 6]. Thus,
the largest possible value of the area of the quadrangle coincides with
the greatest value of the function S (z) on the interval [0; 6]. Since
S’ () = 0 for z = 3 (a point of maximum) and S (0) = S (6) = 0,
the function S (z) attains its largest value at the point z = 3:

max S (z) = S (3) = 9/2sq cm. 49. 2 (Y2 — 1). @ Half the sum

€ [0; 6]
gf t[he__ lengths of the bases of the trapezoid is equal to (4 — (1 +
+ V'2) 2)/2, where z is the length of the altitude. 50. (a sin a)/3. 51.
The area of the parallelogram is the largest if one of its sides coincides
with the midline of the triangle.
Chapter 8

SOLID GEOMETRY

8.1. A Straight Line, a Plane, Polyhedra, Solids of Revolution

1. 12/2/50r }/337/5 cm. 2. arcsin (sin @ Sin ). A Let us denote the
planes of the faces of the dihedral angle at the edge (VM) by o and B
(see the figure). We have: 4 € (NM),

a Feg NI AN
o [AB] € 0. (NM, AB) =4, (o, B) = o.
We introduce a rectangular Dbasis
"~~~ (i, j, k) at the point 4 so that i | (N3),

—
v A -7 i.L(NM), k {4 (N3) and jLB.
-~ Suppose e is a unit vector of the

—_—
A same direction as the vector AB.
Let us express the unit vector e in
terms of the components (i, j, k),
_ e = cos ¢ sin Pi 4 sin ¢ sin YPj +
—_ cosy k. Next we have
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AN\ n AN é
sim ¢, p)=sin (5 — (& D) A
A\ A A
=cos (e, j)=e-j=sin@siny. 1 \ﬂk b1
\
3. arccos (cot @ cot ). The prob-
lem is solvable if cot ¢ cot p < 1. N "‘-\\*\
4. 21 (3 + tan? ﬁ , 0. @ Consider 8 N Tt — e
two cases: (1) the points A and B s
lie on the same side of the plane y; 2 L—m——
(2) the points lie on different sides T~ _\

of the plane y. 5. (m + 2h)/3;
@h — )3 /3. 6. 20 sin ot x A °

X V2s+ 122232 a. 7.3/ 2V tan? B/sin a. 8. b3/ /2. 9. arccos (5/3Y/6).
A Suppose | A4; | = 2, then from the right triangles NPC and MPD
—
(see the figure) we find that | NC | = y/6 and | MD | = 3. Let us con-
. L —> —> — —> —
mder_i;he vector equality NC = NM -+ MD + DC or NC — MD =
—
= NM + DC. Squaring this equality, we get

— —> — —> — — —>—>
| NC 24| MD |3—2NCMD=| NM |*+]| DC |*-+2NMDC
or 6+9—2)6-3cosp=1-4+0 (NM L DC), where ¢ =

PR 5
= (N?, Jl?b). Solving the equation cos ¢ = 5/_6-’ we get the answer,

10. arccos (1/3). A We introduce
a rectangular basis i, j, k with B c
the origin at jthe vertex B of the L
cube (see the figure). The required
angle between the {)lanes (BCBy)
and (BC;M) is equal to the angle
between the strai%ht linés perpen-
dicular to those planes. Let us find
the vectors normal to these planes.
It is evident that the vector
n, | (BCB;) has the coordinates
(1; 0; 0). Assume that nyg=(a; b; c)
is a vector normal to the plane

(BCuM). Then ny-BC; = -0 and
n,-B_IIl> = 0. The vectors BC; and

BM have the coordinates 0; 1; 1) and (1; 1/2; 0) respectively.
We have equations

btc=0,
{ a+%=0.
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Setting ¢ = 2, we get b = —2 and a = 1; thus, n, = (1; —2; 9).
Next we determine the angle between the vectors n; and ny:
S
ny-ng=| ng || ng | cos(ny, my),

oy 4440(—2402 1
Ing [ |mg| 1.3 —3-

cos (ng, Ng)=

Since 1/3 > 0, the angle between the vectors is equal to the angle
between the straight lines parallel to these vectors and, consequently,
to the required angle between the planes (BCB,) and (BC,M). Remark.

We can take the vector (¢/2; —c; ¢), (¢ 5= 0), as n,. 11. a}/29/3.
12. 13 sin? /3 cos? p — sin? p/3.

p3sina I/Sin 0‘;5 sin a;—ﬁ
16 (11 sin (@/2))° sin (B/2)

13.

14. V(S cos o)® tan a/}/27. 15. arccos (}/3/4). @ Determine the
angle between the straight lines AC and PQ, using the equality
—> > —> —> — = — —
PQ.CA = | PQ || CA |cos ¢, where PQ = QC + (CA + CB)/3 and
@ is the required angle. 16. a®)/3/8. @ Prove that (MN)1 (PQ). 17.
3V 24 V3. A All angular dimen-
1 By sions are known in a regular tetra-
101 hedron, in particular, a is the mag-
nitude of tge dihedral angle formed
N by a lateral face and the plane of
A the base; sin o = 2}/ 2/3; cos a=
= 1/3. Suppose ABCAB;C; is a
regular triangular prism (see ‘the
S figure). We have: | AB| =3,
/I\ | AA; | = 47’3, MSN is a lateral
face of the regular tetrahedron,
/ [AB;] € (MSN), O and O, are the
/ \ centres of the triangles ABC and
B A4B¢C, respectively. We introduce

o
l
|
|

4

x|

. . PR

the designation NOB = ¢ and

k a rectangular basis (i, j; k) at the

e N point A such that i {4 [B4),

M AN i k t4 [44)); i L (ABBy). Let us

designate the unit vectors as e

and n: e 41 [AB;) and n | (MSN).

The unit vectors e and n can be represented in the basis (i, j, k)
as follows:

\O
N
L\
\
]

3 ., 4 (i . .
e=_l/E |-|-—V—1_9-k, n=(isin@4jcos @)sina-tkcosa.
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From the hypothesis [4B;] € (MSN)= n.e=4/(3 I/Tg) — 1/?37?9 X
X (2 V/'2/3) sin ¢ = 0. By the last formula we find: sin ¢ = }/2/3;
cos ¢ =.1/Y/'3. From the triangles OBK and A KN we find the length
of the segment [ON], and from the triangle OSN we find the length
of the edge | SN | of the tetrahedron. 18. o/ V'2; a/(2)6).

19. a/ V2. 20. 2k% V'3/ (27 sin? a cos a).
21. (V3Btan?a)/ V(Gtana 12 22, (V'3/4) b3 (4tana +
+1)3/2 cot2a. 23. %/3 Y Vecota (cos2 %/cosa) .24, (a® tana)/24,

(a® tan @)/8, « € (0, n/2). @ Consider two cases: (1) the orthogonal
projection of the vertex onto the plane of the base of the pyramid coin-
cides with the centre of the circle inscribed into the regular triangle,
and (2) the orthogonal projection of the vertex onto the plane of the
base of the pyramid coincides with the centre of the circle touching
one of the sides of the regular triangle and the extensions of its other
2__p2 2__p2
two sides. 25. Eﬁz—g—b—)tan a, %—)tan a, ac(0;n/2). @V, g (C1CB=

=VABCA BiCy — VAA ByCy* Calculate the volume VABCA ByC of
151014 1 1 1

the given truncated pyramid as the difference of the volumes of the
pyramids SABC and SA;B{Cy and use the instruction given in the

answer to the preceding problem. 26. (V'3/4) (1 + 2 tan @) a?;

(V'3/4) (tan ¢ + sec @ + 1) a% @€(0; n/2). 27. 4/7. 28. arccos 7/15.
@ Prove that the length of a lateral edge of the pyramid is double the

_ 3
length of the side of the base. 29. (b) arcco: ! 32605 ?
the magnitude of the plane angleadjacent to the base of a lateral face
by @ and the magnitude of the required angle by . By the cosine law,
for a trihedral angle formed by the adjacent lateral faces and the base,
we find two equalities

. A We denote

. K . T
€0S Q.= COS O COS —§—+sm @ sin —5- cos ?,

n .
€08 —5=== cos? a-}sin2 a cos VP,

from which it follows that cosxp=%——§’—cos2 @. 30. (V'3/4) 1% x

X (3tanz @—1), @€ (/6; 7/2). 31. 25/2. A Suppose (40) L (BSC),
O\ 1 1
@:q), BSC =a (see the figure). Then VSABC=§-7 | CS | X

. 1 1 .
X | BS | sina | AS | sing, VSA1B101=§'§ | C1S | | B1S | sina X
X | A1S | sin 9. Hence we have
Vsapicr: Vsape=(A1S | [BiS || CiS ) : (1 AS | | BS | 1CS ).
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Substituting the numerical vales, we obtain

Vsapc—Vga,p,c, _4+2d+2)@41)—1-1-2

VsaiBicy 1.1.2
32. m/2. ® Use the solution of problem 31.

33. 2a%2cosa V1+snZa; (a%/3)sin2a cosa. 34. 1.
35 V2 o8 208 (e/2)
) 6

VY —cosa
36. (413 sin? % cos %)/ (3(1+4sin? B)3/2), B €(0; m).

=5
==

, a€(n/2; m).

V V541 s 3 /" ak? sinasiny \2
37. — 38, 6( Tm) ’

3 s - -
ak? sinasiny |2
6(,/ 6 sin|la—y| ), asky. 39. 26 sq m.

—1
2m °
42. arccos ()Y —cosa), a€(n/2; m). Use the cosine law for a tri-
hedral angle. 43. arctan }/'3/2. 44. (a®/87m) sin 2a cos a.

40. arctan -

41. arctan () cot® et cot?f).

p
3 cot — tana
B, B2
8 sinSE
2
§ sin—- s (1——sin %)
46. .
. a . a
3(1+smT) msin —-
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g, AV, . 233

ad. . —.
27 10243 V3

naﬁtan% (1+sin %) 7

49. . 50, —

1

~

cos —;i cos?
8.2. Problems on Combinations of Polyhedra
and Solids of Revolution

14
V3 (4144/' cot a)2/3 2. (a® (2 tan a)® cot? @)/6.

3. For ae(o;%J, Be (0; %] , a==p there are two solu-

N 14 14 i Loac Ln
tions: ST ) and s Ta—pT’ for a € (0, —2—J, Be (0, 5],
. 14 4q3
=Bt iont —————; =—— sin?
a=f there is one solution TCETOR here V 75 sin P X
nlssingg

. . 32r® Y cosa ul? cos o
X cos ¢ sina sin P. 4. a 5'1.|_3cos2ar.' : 9

X

3sin >
1+2 ? ?
x1/ = 5 T ey & g Siw e tan @.9. 2arcsin (tana),

b (V40?0 F c% (a2+b%) - 2ab) 3h
s /4). 10, .
%€ n/. 1 c(@F ) - M TserT
a € ( 0; -?;- n) .

A Since the pyramid SABC (see the figure) is regular, the centre of
the sphere circumscribed about it is on the straight line (S0) (| SO | =
= h), lying in the plane (4SS,),
where S; is the point of inter-
section of the line (SO) and the
sphere. Connecting the point 4

with S; by a line segment, we
get a right triangle [SAS,

(;1 = %‘- as an inscribed angle

resting on the diameter SS§,).
Suppose | §S;|=2R, | BC| = z;

then | A0 | = z/V/'3, and from

. |084] _ 40|
the proportion [40] — 103]

we have %3 = h (2R — h)-
Since the triangle A0S is right-
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angled, we have | AS |2 = 22/3 4 h2. We can now find | AS |

|AS*41SCI12—2]| AS||SC]| cos a =122 (|AS| =| S8C)),
| AS |2=22%/(2(1—cos@)) or —’”2—-—-—-_’”1_”,2
2(1—cosa) ~ 3 !
2 2(]—
whence we have L—M. Solving now the equation

3 1+42cosa

2h3 (1 —cos @) V hZ cos? o.+ a?
1+2cosa 2cosa

@ The centre of the circumscribed sphere liesat the point of intersec-
tion of the plane, perpendicular to the altitude of the pyramid and
passing throu%h its midpoint, and the straight line perpendicular
to the plane of the base of the pyramid and passing through the mid-
point of the hypotenuse of the triangle lying at the base of the pyramid.

3 — ¢ g 4 pgintdpsintosing, @ €(; nfd).
9 V3 sind 22 3 ’ ‘

3 ;.
15. l/i‘—v sin®a o€ (n/4; m/2). 16. {arcsin (2/V5); m/4}.

*T¥costa’
. 309 3 .
17. arccosﬁ; arccos —-} A Since the lateral edges of the

13

pyramid SA BCD make equal angles
with the plane of the base (see the
figure), the orthogonal projection O,
of the vertex S of the pyramid onto
the plane of the base (ABCD) is the
centre of the circle circumscribed
about the rectangle ABCD. The
section of the circumscribed sphere
formed by the plane of the base
(ABCD) of the pyramid is a circle
circumscribed about the rectangle
ABCD. Consequently, the centre O
of the circumscribed sphere belongs
to the straight line (SO;). The
triangle ASC is equilateral since
S PN
SAC = SCA. The side [AC] of the
base of this triangle is also the dia-
gonal of the rectangle ABCD and

therefore, | AC |= Y| AB|> + | BC |> = 5. Since the centre of the
:ghere circumscribed about the pyramid belongs to the plane (4SC),
e

radius R of the circle circumscribed about the triangle ASC is
equal to 6.5. From the right triangle 400, we have

14C |2
4

=h (2R—h), we get the answer. 12.

[1 801 |=R|*=R2— ’

2
| SO, |=R + ]/Rz— Mf'-:ﬁ.sis.
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1f the centre O of the circumscribed sphere belongs to the pyramid
SABCD, the radical must be preceded by the plus sign. The length of
the lateral edge can be found from the right triangle AS0;: | AS | =

=V 80,2+ |0C; = V' 162.5. By the cosine law we find, from
the triangle BSC, that

| BS |°+1CS 12— BC |2 _309 S 309
31BS 1105 =350 BSC=arccosge.

If the centre O of the sphere does not belong to the pyramid
SABCD, the radical must be preceded by the minus sign, and then

/N
COS (BSC)=

/' :
BSC = qu — arccos ( —-%) = arccos % . 18, _—M—&— .
2 ( 1+ cos 5 )
ASuppose the point O is the centre of a ball inscribed into the pyramid
SABC (see the figure), in which | AC | = | AB | = b, (SA) 1 (ABC),

(ALS) is the bisector plane of the dihedral angle formed by the non-
parallel faces ASC and ASB. By
o N 8

the hypothesis, BAC = ALS = a.
The point O € (ALS) and (OL) is
the bisector of the angle ALS. The
projection of the point O onto the
plane of the base, which will be de- B
signated as O;, belongs to the
bisector (AL) of the angle CAB,
and the projection of the inscribed 4
ball onto the plane of the base K
is the large circle of the ball with c
centre at Oy, touching the sides AB
and AC of the triangle ABC. Let
us denote the point of tangency of that circle and the side AC by K,
and then | 0;K | = | 00y | = r, where r is the radius of the in-
scribed ball.

From the right triangle 00,L we find | O;L | = r cot(a/2).Further-
more, we have |AO;| = |AL | — | O,L ] =1b cos («/2) —
— rcot (2/2). From the right triangle 40;K we get a relation

| 01K | =r = | A0, |sin (@/2)
= (b cos (a/2) — r cot (&/2)) sin («/2),

solving which for r we get the answer. 19, hr/(V % I 4h? + r). ® Con-
sider two cases of location of the centre of the sphere with respect to
the plane of the base of the pyramid. 20. {1/2/6; 1/ }/6}.@ When sol-
ving the problem, bear in mind that there are five spheres touching all
the planes of the faces of any triangular pyramid: the sphere inscribed
into the pyramid and four spheres each of which touches one of the
faces of the pyramid and the extensions of its three other faces. 21.

3
Eg—sinsa tan® 2-(2. @ Find the volume V of the pyramid, the area S of

~

the full surface of the pyramid, and from the equation V = (1/3) rS
17+ 259



nta2cosa
1+sina
® To find the radius r of the sphere, use the formula r = % tan 22,
where ¢ is the magnitude of the angle between the plane of one of
the nonparallel faces and the plane of the base of the pyramid.
S cot? (B/2) 4R® (1+4tan (B/2)2 B . 4R
23. mcosB 24 { 3 1—tan(p/2) cot 53 —3
(1 —tan (B/2)) B or f ceq: ;
T tan (5/2) cot ?} . @ Consider two cases: (1) the ball is
inscribed into the pyramid and (2) the ball touches the base of the

pyramid and the extensions of the nonparallel faces. 25. —IzTX

2 2 3
<™ +mn-+n 26 a V cos 2P 27 nR

determine the radius r of theinscribed ball. 22. , o € (0; m/2).

X

tan® o tan 2ct.

mn -7 esinpryz T 3
> T 1 3 % 3
28. rcos - tan ( ) ) - 29. — tana cot® 5 . 30. arccos (1/y5).

3. (a+ Va+1)/(2Va). 32. 22— q)/4, q€(0; 2). 33. 42 X

3n
o 1183nR®  63TnR3
5 - 34. { 200" 12000 } A Suppose the regular

triangular pyramid ABCD is incsribed into a ball of radius R with
centre at the IiOiIlt 0. The vertices of the pyramid belong to the sur-
face of the ball and the altitude of the pyramid [DO,;], where 0, is
the centre of the equilateral triangle ABC, belongs to the diameter
of the given ball. Note that the figure in question has the plane of
symmetry (DAD,), where D is the intersection of (DO,) and the sur-
face of the ball. We have | 0D | = | OA | = R. By the hypothesis,
| 00, | = 0.3R, | D;0, | = 0.7R. From the similarity of the right
triangles AD,0, and ADO, we find that | 40, |2 = | D;0¢| | DO, | =
= 1.3R-0.7R = 0.91R2. The line segment [101A] is the radius of the
circle circumscribed about the triangle 4 BC; then the radius r of the
inscribed circle can be found by the formula r = | 40, |/2. Let us
calculate the volume V; of the cone inscribed into the pyramid:

Vi = (nr2/3) | DOy | = 1183nR?/12 000,

The conditions of the problem are also satisfied by the pyramid with
vertex at the point D,. In thatcase, the volume V, of theconeis equal
to 637 mR3/12 000.

35. {nR2 (64— V7)/2; R (12-2—3 V15) } . 36. 2r2 sin B.

X tan a cot®

37. arccos(tan—ozi) . @ Show that the diagonal of the square

resulting in the section of the prism has the length equal to that of the
lower diagonal of the rhombus. 38. 4r?/(sin « cos f). @ Prove that
the area of the section of the prism Sgec and the area of the trapezoid
lying at the base of the prism are related as Sgec cos p = S.
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39 a2 sin P sin (y £+ V)
4 l/§ sin2 y sin? (a/2)

2 o . o
a?sin @sin (v —) for ye(¥; @), a€(0; 2n/3), 0 in the other

4 V'3 sin? y sin? (a/2)

tan (a/2) 2 sin (a/2)

cases; here =arccos [ ———— , =arccos [ ————
s @ (Tys ) = ()

for yel[e; m/2l; @€ (0; 2n/3),

® When solving the problem, take into account that vy € (0; n/2).

40. {(3 V/'3/4) k2 cos? y; (V/'3/4) k2cosvy; (V/3/2) k2cosy V13 cos? v},

where “cosy=1/V1+4tan?p. @ When solving the problem, bear

in mind that any triangular pyramid has 7 planes equidistant from
2 cos? 2

l_'_c::szﬁﬁ S x (?l—l—cc?sgﬁ)} . 42, a?(1—cot2a) X

Xsina, a€[n/4; 7/2). @ Determine the lengths of the diagonals d,

its vertices. 41. {1

and d, of the section and calculate the area S of the section by the for-
2 -
mula S = d,d,/2. 43. ,41:20‘. 44. 302/ 2/5. ALet us introduce a rectan-
si
gular basis (i, j, k) at the point 4 as shown in the figure. Suppose

C1AC = a. We consider the unit vector n perpendicular to the plane
N\
of the section 4B,C;D,. By the hypothesis, (n, j) = 120°, and the
vector n can be represented in the basis (i, j, k) as follows:
= — sin a cos 45° i — sin o cos 45° j 4 cos ak.

Furthermore, we have

VAN 1
(n})=cos (n, i)=l'—?= —sin o cos 45° = o =45°,

After simple calculations, we find from the triangles ASC and AC,C
that| AC;| = 8a/5, | A0 | = |00, | = aV/2/2, | SO, | = 3a}/2/2. From
the simillarity of the triangles SBD and SB;D;. we find that
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| ByD; | = 3a}/ 2/4. Now we obtain S = (1/2) | ACy | | ByDy |. 45. If
the orthogonal projection of the section belongs to the smaﬂer of the
two parts of the base of the pyramid into which the secant plane di-
vides the base, then the area of the section is given by the formula

___a*sina sina cos f kA
S_Qsin(oc-i—ﬁ) (2+ sin (@ -+ B) )’ 66[0’ 2]'

If the orthogonal projection of the section belongs to the larger part
of the base, then

2 s .
2a? sin o (1+2smacosﬁ

“9sin(a+p) \ sin (a4 B)

____a*sina 1 sina cos p n
T 9sin(f—a) (2—- sin(p—a) ) , Be [arccot (3tan a); ?]

) , PE€I0; arctan (3 tan a)],

JR—
46. " / % A Suppose z is the length of the side of the base

of the prism and H is the length of the lateral edge. Then v=
2
2 V3 or H =4__v
4 V322 _
of all the edges of the prism: S=3H-+6z=6z-+4 V 3v/2%. Thus,
we have a function

S(z)=6z+4 ]/ﬁv/:cz, z €(0; o),

whose least value on the indicated interval is to be found. Let us
find the critical points of the function S (z). We have

S’ (z)=6—8 V3v/z3=0, z=Y4V/V3;

=H . Let us find the sum of the lengths

3
S’ (z) <0 on the interval (o; VAV/ V3) (S(z) decreases) and

3
S’ (z)>0 on the interval (V 4V/ 3, o) (S(z) increases). Con-
3

sequently, for 2=V 4V/ V3 the function § (r) has a minimum coin-
ciding with its least value on the interval (0, oo) being considered.

2
47. 5 /_m_zl;_f{ @ Find the largest value of the function V (z)=
— 2
=nR2:c( HH x) on the interval z€[0; H] (= being the length

of the altitude of the cylinder). 48. 2 V2R/3; 4R/3. @ JFind the
values of h, h€[0; 2R] for which the function V(h)—_—%—(ZR—h)

assumes the largest value on the indicated interval (r* = k (2R — h)).
49. The cone with the radius of the base equal to R }/2 and the alti-
tude equal to 4R. A Supposer, H, ¢ are the radius of the base of the
cone, the length of its altitude and the magnitude of the angle of
inclination of the generatrix to the plane of the base respectively. We
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have:

¢ — — ? .
r=R cot 2 H—rtanq)_RcotTtantp,

RS P

V(p)= 3 tan q>cot3T,

oco0.3).

We introduce a new variable ¢ = tan (¢/2) and differentiate the
function obtained. Then we have

3
V(t)=££§R—"(1—_ita)t—“ te(, 1),
onR®  2(2t2—1)

3 (I—e)2s

We have V' (1/1/2) = 0 at the point ¢t = 1/Y'2, V' (t) < 0 on the
interval (0; 1/1/2), and V' (f) > 0 on the interval (1/}/2; 1), i.e.
at the point ¢ = 1/)/2 the function V (z) has a minimum coinciding
with its least value on the indicated interval ¢ € (0; 1). Next we find:

r=R V2 and H=R-V§M=4R. 50. R V3. 5l iR;

V' (@)=

1—1/2 3
64 H 3
g;; R3. 52. 3 2 ;/3 R®H. 53. w/h. 54, k?sin 20 for a«c¢
€ (arccot—i- ; __n_) ik’ (143 cos® a) for @€ ( 0; arccoti]
2 2/ 2 ’ 2 ]°

AWhen the cone is cut . .
by the plane passing through its vertex, an isosceles triangle results

in the section whose areais S; § = %l’ sin @, where / is the length

of the generatrix of the cone, lﬂ is the magnitude of the angle between
the generatrices along which the plane cuts the conical surface. Since
the Iength of the generatrix is equal to the length of the lateral edge
of the pyramid, inscribed into that cone, the area of the section is
a function of the angle @ with ¢ € (0; =) in the general case.

The largest value of ¢ is the angle y in the axial section of the cone
and, therefore, when investigating the sign of the derivative of the

function S’ (9) = —2-12 cos @, we have two possibilities: (1) if y €
€ (0; n/2), then cos @ > 0 and S (¢) increases on this interval and

attains its greatest value at ¢ = y; in that case, Spax =-;—l2 sin y;
(2) if y € [7/2; m), then cos ¢ < 0, and ¢ = n/2 is a point of maximum
of the function ;S (p) .and, therefore, Spay = I%/2 in this case.
Suppose P is the magnitude of the angle between the lateral edge
of the pyramid and the plane of the base, & is the length of its altitude.
We have: hcotP = 2hcota or cot f = 2cot o and kh = ksina.
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Let us find now the length of the generatrix of the cone (of the lateral
edge of the pyramid): I = h/sin p. We can now find the expression
for the area of the section:

1 h 2, 1 . .
Ssec=7 (m_nﬁ—) smcp=—2—kzsmza(i—i—4cot2a)smq>.

The magnitude of the angle y in the axial section of the cone is
less than m/2 if §> n/4, i.e. 2cot a<<1 or o€ (arccot% ; %) 5
in this case

Smax= % k2 sin? a2 cot ff = 2k2? sin? a cot o = k2 sin 2a.

Now if 0 <P << m/4, i.e. for a€ (0, arccot (1/2)],

2
k2 sin? o0 (1 44 cot? a)=k7 (1+3cos? ),

8.3. Volumes of Solids of Revolution
nad sin? a sin? P
3sin? (2 }+P)

na® sin? o sin (a4 B)
sin f :

nb3 9 9
2. W(tan o —tan? f).

3.

4. 3n/10. 5. =m/5. 6. (a) Sn. AV=
3 1 3

= S(llx—i | —2|)2dz=n S(—x-i—i—z)?dx—l—n S (z—1—
0 0 1
dz=

—2)2 n(x;—1)3 1—I— n(x;—3)3 lj:5n. We have used the
relations | f (z) |2=(f (x))? and
—1, 2 €(—o0; 1),
| z—1]—2= { z—3, x€[1; oo);

(b) 327t/3. A The volume V will be found with due account of the
fact that

27 z€ (_oo; —1)1

Jz—1|—|z+1 l={ —2z, ze[—1; 1),
—2, z€[1; ).
3 -1 1
V=n V( lz—1]—|z+1]|)2dz== S 4ddz+4m S4x2d:t-|-:rl: S 4dz;
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(c) 18xn/5; (d) 2.1m; (e) 8m. 7. The diagonal of a square is perpen-
dicular to the axis of revolution. @ Denoting the length of the side
of the square by a, and the magnitude of the angle formed by one
of the sides of the square and the axis of revolution, by «, show that
the volume of the resulting solid of revolution is equal to

na® (sin o -+ cos a).

Chapter 9
MISCELLANEOUS PROBLEMS

9.1. Problems in Algebra

1. A={1;2,0a; 5}, if as£1, a=£2, a5 A={1; 2; 5}, if
a=1,ora=2 0ra=5 B=g, if as=1 or a % 2; B = {1},
ifa=1; B = {2}, if a = 2. 2. @ Prove that among three consecutive
natural numbers one number is a multiple of 2 and one number is
a multiple of 3. 3. @ Show that the square of any integer cannot have
the digit 2 in the units place. 4. 11. 5. 17. 6. A Let us assume the con-
trary, 1.e. logy 5 = m/n, where m, n € N. Then 2m/% = 5 or 2m = 5n,
which is impossible since 2™ is an eVen number for any m € N, and
57 is an odd number for any n € N. Thus, our assumption is wrong
and, therefore the number logy 5 is not rational. 7. a << 0. 8. 1/2.
A atF b bt = (a2 b2 ot — 2 (ab)? = (1 —c2? + cb —

— 2 (22 — 1)/2)? = 2% — 2¢® + 1 — 24 + 2% — 1/2 = 1/2.

9. () A We carry out the proof by mathematical induction. For n = 1

we have 12= ! '2'3 , i.e. the inequality holds true. Let us now assume
that the formula holds for n = k and prove its validity for n = & 4 1.
Since

124224324 ... +kz___k (k+125(2k+1)

4o k) (et = EEED D gy
_ ) (-2 @k43)
- 6

, it follows that (124224

and this means that the formula is wvalid
for any n€ N, (b) ® Carry out the proof by mathematical induction.

10. (a) n(n-l—ig (n42)

. @ Note that
Sn=—g 1424243434 ... +nttn)

= (42434 ... )24 34 . nY),
18—01521 265



and make use of the result of problem 9 (a); (b) (» (» 4+ 1)/2)2. A Let
us write n obvious identities:

(14 1)8 = 28 = 1% & 4.13.4 + 61212 - 4.1.13 + 14,
(24 1)4 =3¢ = 28 | 4.28.1 + 62212  4.2.13 | 14,
(B4 1)% = 4% = 3% - 4.35.4 } 6.32.12 + 4.3.13 } 19,

(n+0Dt=n*~+4-n%1+ 6-n212 4 4.n-13 4 14,
Adding together all the » raws and collecting like terms, we get
n+1)4=4@13+28+334 ... +n® 4 6 (124 22 4+ 32 4 ...
ooty +40+2+ o+ 0+ 0+ 1),
whence we have .

P42+ ... fnd= ((n-|—1)4—
420D ).

6n (n+1) (2n+1)
6

After simple transformations of the right-hand side, we get the answer.
11. A Suppose zy = 1, then y = 1/x. We have to prove that 4 > 2
provided tEat xz -+ 1/x = A. Let us consider the diiference 4 — 2 =
=z + 1/2 — 2 = (z — 1)%z; this difference is non-negative for all
z > 0; consequently, 4 > 2. 12. A We have zyjzpz3 ... z, = 1,

z;>0, i=1,2, ..., n. Let us prove that z; 4 z, -z ...
eve. F+ 2y >n, with 2y + 23 + 23 + . . . + z, > n, if the numbers
Ty, Zg, gy - - .5 Zn are not all identical. We carry out the proof by

induction. For n = 1, 2 the assertion is true (if n = 1, then z; = 1
and 1 > 1; for n = 2 the truth of the assertion follows from the solu-
tion of the preceding problem).

Let us assume that the assertion is true for n = k > 2, i.e. that
the inequality z; + z, + z3 + . .. + z > k is valid, if zjzez5 . . -
... 2y =1 and prove that 3 + 2z, + 23+ ... F+ 2p1 =k + 1,
if 22925 . . . 2p41 = 1. Suppose that not all the terms z;, z,, . . .
.« ., Tp4 are identical (inthecase zy = zg =23 = ... =z, =1
the proof is obvious z; + z3 + ... + zx4; = k + 1). Then, among
the terms, there can be found numbers both larger and smaller than
unity (all the terms cannot be smaller than unity since in that case
their product is smaller than unity). We assume that z; > 1 and
Thp1 << 1. We have (Ill’k_'.l) Zoxg . . - zp = 1. Setting T1Zp41 = Y1
we obtain y;z,7; . . . 2 = 1. Since the product of & positive numbers
is equal to unity, their sum (according to the supposition of induction)
is not smaller than k:

Y1 +xat+ 23+ .0 Fap =k
whence we have
zyFxgt x4+ .o+ Tpga
=W+axstaz+ ...+ —ntat g
Zk—yn+ot o =Ek+1)—1—zzpp+ 2+ 2
=k4+ 1+ @ — 1D A —z).
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And since z; > 1 and 234, << 1, it follows that (zp1; — 1) (1 — ) >
> 0 and, therefore,

e 2 N -7 T PN - SR
=E+D+ @ —DA—z)>k4 1.
This completes the proof of the assertion of the problem. 13. A Suppose
Zit 22+ 23+ ... F2n
n

=a, 111/Fa:1.1:2x3 .. Zp=b.
From the last equality we have

n
1/ XL T2 %3 Zn __ 2 S T In _
V/b R Nk B ey SR st B

Since the product of n positive numbers is equal to unity, it follows
(see problem 12) that their sum is not smaller than =, i.e.

Z1 g T2 Zn
b+b+... 5 =N

Multiplying both sides of the inequality by » and dividing by n, we
obtain

a =

_atot . do
n ,

and that is what we had to prove. Remark. The equality sign occurs
only in the case when %‘— == =.,..=2 =1, i.e. when all the

numbers z;, i =1, 2, 3, ..., n are equal. 14. A’ Using the result
of the preceding problem, we have

Val=Y1.23 ... n
14243+ ... 40 (+Dr n1
< = = .
n 2n 2
Raising both parts of the last inequality to the nth degree, we get the
original inequality. 15. A We prove the inequality using mathematical
induction. For n = 1 we have 1 4+ 2; > 1 + z;. We have one of the

relations, “>" or “=": consequently, the assertion is true. Suppose the
inequality holds for n = k, k € N. Let us prove that it also holds for

n="k-+1, ie.
A+ ) (I +29) o oo (1 + 2p) (1 + 2p40)
=0tz + s+ .. 4 ) + 2
Replacing the sum 1 + z; 4+ 23+ ... + z, on the right-hand
side of the inequality by the product (1 + ;) (1 + z5) ... (1 4 z)
(the inequality becomes stronger) and transferring all the terms of the
inequality into the left-hand side, we obtain an obvious inequality

[+ z) 1+ 29 ... 1+ z) — 1] 2441 > 0. Remark. For z; =
= 2y = ... =z, = z, the original inequality assumes the form

1+2">14 nr, z> —1
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(Bernoully’s inequality). 16. (a) A Assume —- - T 8 To= ,,
2

2
6 100 t_2 3 _ 4 99 _ 100
3 4

4 o
and -3~—...—-—H3.Slnce——< 3‘,...,m<m,
we have 113 < ILII, =

7 101 2 3’
LI consequently, II <;<i
101 ’ q Y 1 l/ m 10 .
have proved the assertion. (b) @ Carry out the proof by induction.
(c) ® Setn = 50 in the inequality in (b) and use the inequality
1 1 1 . . ;
— < ——— = —. 17. @ Carry out the proof by induction. 18. A
Vist Vi 12 v P v
We carry out the proof by induction. For » = 1 the assertion is true:
| sin & | << | sin o |. Assume that the inequality | sin ko | << k|sina |
is satisfied for n = k. Let usprove that | sin (¢ + 1) o | < (K + 1) | X
X sin a | for n = k | 1. Using the formula for the sine of the sum
of two angles and the inequalities |a +d|<<|a|+ b/,
fcosa| <1, |coska| <1, we obtain

| sin (k + 1) o | = | sin ko cos « - cos ko sin o |
< |sinkacoso | -+ | cos ko sin o | < | sin kot | 4 | sin a |.

And since |sinka | <<k |sina | by the supposition of induction,
we have |sin (k+ 1) a|<|sinka |+ |sina|<<k]|sina ]|+
+ |sina| = (k+ 1) lislnal. 19. (a) A Since tan a > a
. ltae 140
for a € (0; n/2) and —, —%

for 0 <b<a<1, we have
tan (—314°) = tan 46° = tan (45°4-1°)

kLS L 3
_ 1+tan——180 1+—180 1+_180 e

11 I3 3 59"
t—tanggy -9z -y

(b) A Suppose ABCD is a curvilinear trapezoid bounded by the

lines y=1/z, z=5, =7 and
y=0 (see the figure). Then,

/| 7
In i:S ﬁ . But Sagep <
5 z
3 1

B < SapBias+Sacipip =5 X

Cy Dy i _ 1i
c X1+ 3 X1= ) (here |AB| =
A % ’ =1/5, | AA,| = | A,D| =1,
0 5 6 7 x  1CA4|=1/6), i.e. In =<

268



<%—I—%=i—3(i)- . 20. (a) D=D, N Ds; (b) il D, and D; coincide.

21. —7/4. @ Substitute z = 2 and z = 1/2 in the given equality and
exclude f (1/2) from the numerical equalities. 22. The straight line
y = z with the points O (0; 0) and 4 (1; 1) excluded.

23, 23, (a)
y 17
P S— 1
» / |
I 0/1 2 X —2 0 1 2 x
—
23, (¢)
23, (b)
y
y
1T / 1
— o[ TRl = o 1t 2°x
23, (d) 23, (e)
yA y

—2 —1‘\0 /1 2 'x —1

24. No, we cannot. The function f (z) = z, for instance, increases on
the interval (—1; 0) and the function ¢ (z) = z® decreases on that
interval. 25. A Since for any z;, z, € (a; b) and such that z, > z,,
fi @1) > f1 (z9) and fy (z1) > [, (zo) 1t follows that fy (z1) + fp (1) >
>, (29) + fg (z3) OF @ (z1) > @ (z5), and this means that the function
@ (z) decreases on that interval. 26. @ Carry out the proof by induction.
27. Yes, it can. For instance, if f; (z) =z — V22 - 1 and f, () =
=z+ Y22+ 1, then ¢ (2) = —1 is a periodic function, whose
period is any number 7 € R, except for T = 0. 28. @ Use the defini-
tions of an even and an odd function. 29. @ Use the assertions of the
preceding problem. 30. A Suppose f (z) is an even function defined
on an interval (—a, a) and z € (—a, a). Then, by the definition,
—z € (—a; a) as well. Let us assume that z > 0. Then —z < z,
and, by virtue of the strict monotonicity, either f (—z) << f (z) (the
function is strictly increasing) or f(—z) > f (z) (the function is
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strictly decreasing). On the other hand, the function f () being even,
we have f (—z) = f (z), which fact leads to a contradiction. 31. f (z) =
= 0. A By the definition of an even function, we have f (z) = f (—2),
and by the definition of an odd function, f (z) = —f (—z). Conse-
quently, f (—z) = —f (—=z), which is only possible for f (—z) = 0,
but then f (z) = f (—z) = 0 as well, and this means that the required
function assumes zero values for all z € R. 32. (a)-(c). @ The proofs
of these theorems follow directly from the definitions of an even and
an odd function. 33. A Since, by the hypothesis, { (x) is an even func-
tion, it follows that y = f (2) = f (—xz), i.e. the function assumes one
and the same value y at least at two points. Consequently, the corre-
spondence between D (f) and E (f) is irreversible. 34. @ Prove that the
equality f (x) = f (x + T) is responsible for the irreversibility of the
correspondences between D (f) and E (f).

9.2. Limit of a Function. Continuity

T S S | R
1. 2/3. A olcin;mzhm =lim PP

21 9 (z—1) (x—l——;—) =y
= % . 2. 3/2. @ Factor the numerator and the denominator of the
fraction. 3. —7.2. 4.1 3. @ Simplify the expression in brackets.
5.1, 2. A Since lim — =0, we obtain

e 3 2
i (2 ) v !
un M =1lm
T\ Bz—1 P2z —1 o\ 5 4 1_[__2__1
v y: 'y
3 24 y2 3
= li . = .2=1.2,
;Lr%( 5—y 142y—y? ) 5

by setting z = 1/y. 6. 2/9. 5 Add the fractions together and set r =
= 1/y. 7. —3. @ Factor the numerator and the denominator of the
fraction. 8. 3/4. 9. 3.

2__ 3 __ - -
b i S LD i Vi Ve
1 . z—V 3z—2 . 22— (3z—2) .
0.7 A BT G et VD
—lim (z—2)(z—1) — lim z—1 _
T a2 (2—2)(2+2) (z+V32—2)  xs2 (z+2)(z+ V3z=2)
:_—1__=L 1. L A limM:
CFr2(2+2 16 2" ot Vo—z—1

_n G—z—&(V2—z4b . Ve—ztt1 _ 1
S 22— (V5=24+2) xo1 Vo—zt2z 2~
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12, —————. @ Multiply the numerator and the denominator
4a Va—b

- _ 3
of the fraction by Vz—b+4 Va—b. 13. o A lm} ://x -
x> z—1

)P LYVatt) V@Yt 3y,

=lim = = .

st @—O)(Vatl)  at Vatt 2
® Multiply the numerator and the denominator of the fraction
by (VI+a)+ VIi—a) G UTor+ Vi—eyVitz+ V(i—x)*)
15. a%. A Let us simplify the expression in brackets. Setting 3/ a =
Y z=y (to make the transformations more convenient) we obtam

( b2-|-y? )- 2by
b—y —by2+ b2y —bs
b—y 2by 1

TP T 00 by
And since V218 “=;/a=§, the expression in braces assumes the
form b—y—b=—y= —3 z. Then we find the limit:

lim (—y/ z)8=1im 22 = a2,
x—>a X1

16. 8. A We set 2*¥/2=y, and then we have

2 ——
P S i L
m = = 1l1m
x>2 - -2 12 Tl y—2
9 2 _oix vy 4
—2 2) (y2—2
lim )(Zt; W2 lim (y2) (s —2) =428,
y->2 y->2
17, ——
. V§ L]
z @ n
‘ sin (z—T) . 2sin (T_T) cos( 3 _6—)
A lim T—2cos 2 lim
x-»—g- x—»% 2 (cOs 3 —co0s x)
z @ z @ z @
N sin (—f—T) cos (7—'6_) o cos ( 3 —-6—)
= llm = 11
n x_n x i) (_. -
x_,__2sm(2 6)Sm(2+6 x> 2sin 2+6)
cos 0 1 1
n o, n 3 3
2sin (T_l__G—) V3 14
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n
tan z | tan? z—tan2 —
tan3z—3 ta ( 3 )
18. —2. A lim ——""0% _ lim =

x-»% cos (x+%) x»-’3i cos (z+%)

tan z sin (x—l—%’-) sin (x-——g—)

= lim
19 T

n 2 2
ol -+ —p- ) CO8® x CO8*® ——
x> 3 Ccos ( + 6 ) 3

in (a4 2
=4 li],Itl( _meen (H_ 3 ))=4.V§-4(—§)=—24.

cos? z
x-»—a—
2 . 1—4sin?z 4(025—sin?z)
19. V3’ A xllﬂ% cos 3z —xl->n/6 4cosz(cos?z — 0.75)

X 1 2 . sin2z 2 sm2x
=i (w7) R ‘f-‘; Allm—5 —lIn% %
Setting 2z=y, we obtain lim Sl; T —lim 22 1. Multiplying

x>0 -0

the limits 2/5 and 1, we get the answer. 21. 8/3. Deduce the ex-
pression sin 8z cot 3z to the form — sin 8z —.—3L0033x, calculate
3 8r sin3z

sin 8. 3
the limits lxm 18xx Im(; sm‘gx , alcms cos 3z and apply the
theorem on the limit of the product of a finite number of functions
22+ 3r— _
having a limit at a given point. 22. —1/2. @ B tan z =

2 _ .
- (;)st)sa_piz) Sl:x . 23. 5. @ Set z—1=y and use the fact

that lim SV _ 1. 24 —1.25. 25/6. 26. 0 for n—=1; 4.9 for n=2.

-0
27. —sma ® Transform the e‘(pressmn [sin (a+2z)—sin (a+ x)] —
—sin (a+z)4sine into a product. 28. 1/4.

A lim Vi4+tanz— V1+sinz —1jm __(U+tana)—(1+sinz)

%0 = T 2s023 (Y 1T tanst Vitsing)
—lim tan z (1 —cos? z) —lim sind z %
xs0 23(14cosz)(VIttanz+ V1tsinzg) =xs0 2

1 1

cos z (14 cos z) (Y 1Ftan z+ Y 1Fsin z) TAAFDA+D

—1— .29, 1/2. A We represent the given function f(z) in the form
_ViFe— Y= _yifa—1 1—y1—2z

j(x)_ z+xa z_i_zg ;_l_;g .
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Now we can calculate the limits:

Y itaz—1
=1 14 22—1
T w0 ale+0) (VAT 2P+ V 1+ a2 +1)
=1im 3 z 3 =Y,
x>0 (z41) (V 1+ 222+ ¥V 1+2241)
. L o 1—Y1—=22
AR E=ln s
=1lim 1—(—29)
T a0 st (+YT—22)(1+ V1—22)
2 2

i — 1
=}cl—I»I(l)(1+x)(1-|—%/1—2x)(1+ Vi—2z) 10+DA+HD) 27
Next we find HI% f(x)=1in(1) fl(x)+1in(1) fa (x)=0+%=%.

30. (a){ —3; 3}; (b) {0}; (c) {0}; (d) {0}; (e) {n/2-+ nn|n€ Z}; (f) {nIn€ Z}.
31. No, it is not. 32. 4.

9.3. The Derivative of a Function

1. (a) We can; (b) we cannot. 2. (a) We cannot; the function f (z) = z,
for instance, is differentiable at the point z, = 0, and the function

fa (z) = | z | is not, nevertheless, ¢ () = z | z | is differentiable at
the point z, = 0; (b) we cannot. @ Consider the functions f; (z) =
= f, (z) = | z{. 3. A Suppose f (z) is a differentiable even function.

Then, f' (2) = —f (—2),l.e.iff (z) = (?r(x), then ¢ (z) = —¢ (—2).
and that is what we had to prove. 4. @ The solution of this problem
is similar to that of problem 3. 5. A Suppose f (z) is a differentiable
periodic function with period T. Then f (z) = f (z = T), i.e. if
' () = @ (z), thenf (z = T) = ¢ (z = T), and this means that ¢ (2)
is a periodic function with period 7. 6. A Since f (0) = 0, we have

@) _ f@—10)

L f=) . f@)—f0)
z z—0 and ;E% =L‘_£no z—0 =10
7. A We represent the relation é ((i; in the form
f@)—f0)
f@ __ a—0_
F@ T Z@=g0)
z—0
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(this is legitimate since f(0)=g (0)=0). Then

f(z)—1(0)
li f (x) 1 z—0
) €@ a0 £@—¢(0) '
r—0
and since the limits limﬂx)—_—% and lim %gw) exist

x>0
and are equal to ' (0) and g’ (0) = 0 respectively, we have

f (@) —1(0) . f@—fO)
lim 2@ e =0 ilfﬁ z—0 __ o
200 8@ L @20 | g@——¢O g0
z—0 m z—0

x>0

8. We cannot. The function f () = 2 — #? 2—|—sin-j—£-) , for instance,

has a maximum at the point z = 0, for z 5= 0 and f (0) = 2 but its

derivative /' (z) does not retain sign in any sufficiently small neigh-

bourhood of the point z =10.9. (a) a € (0; 1) U (1; 4). A The given

function is differentiable throughout the number axis and, therefore,

gnldy thos;a points at which f' (z) = 0 can be its critical points. Let us
nd f (z):

7 (x)=%(a—1) (a—2) (-—sin —;-)+(a—1).

It is evident that if a = 1, then f’ (z) = 0 for any z € R, i.e. every
point z € R is critical. Let us consider the equation f' (r) = 0 or

(@a—2)sins =2, as1. This equation has no solutions if
2

|2/(@a—2)| >1andas1,i.e.ifa € (0; 1) U (1; 4), and this means
that /' (z) == 0 for these values of a and the function has no critical
points; (b) a € [2; 4) U (4; o). @ Show that the given function has
no critical points for the values of a for which the equation 1/cos? z =
= (a — 3)/I()a — 2), a % 4, has no solutions; (c) a € (—oo; —4/3) U
UIl2; o). 10. {—6n; —9n/2; 0}. 11. {cos 1 cos 3; sin 1 sin 3}, it
increases. A We note, first of all, that the parameter a must satisfy the
inequality In (2¢ — a2) > 0. But

In@e—ad>0<=>21 —a2>1<>a=1.
Thus, a = 1; then
f (z) = 42® — 6z% cos 2 + 3z sin 2 sin 6,
f () = 122* — 12z cos 2 + 3 sin 2 sin 6.

Solving the quadratic equation 4z? — 4z cos 2 -~ sin 2 sin 6 = 0, we
find the critical points: z; = cos 1 cos 3, z, = sin 1 sin 3. To decide
whether the function f increases or decreases for z = 0.5, we must
determine the sign of the number f’ (0.5). We have ' (0.5) = 3 (1 +
-+ sin 2-sin 6) — 6 cos 2 > 0 since the expression in the parentheses
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is positive and cos 2 < 0. 12. It decreases. 13. [—4; (3— V' 21)/2]1 U
U (; oo). 14, [—7; —1) U [2; 3]. 15. Zz. @ Prove that the given
function has a period 2n and find its largest and least values on the
interval [0; 2n]. 16. M (e~%/3; — V' 2e-4/%). @ Find the least value
of the function I2 (z) = 22 (1 + %(ln z + 1)’) on the half-interval

[e-2.8; oo) (I being the length of the segment of the tangent to the
given curve intercepted between the point M and the y-axis).
17. M; (1; e-Y), M, (—1; e1). @ Find the coordinates of the point M,

(z > 0) and use the fact that the function y = e 1*! is even. 18. 1/V/5.
@ Show that the equation z* 4- 32% + 2z = 2z — 1 has no roots.
Derive the equation of the tangent to the given curve parallel to the

straight line y = 2z — 1. 19. (—oo; 0] U{i?ﬁ} . @ Show that for

a > 0 the curves y; = az® and y, = In = can have only one point
in common if they touch each other (at the point of tangency y; (z) =
= yj (z) in that case) and for @ << 0 these curves are sure to intersect
at only one point z, (consider the behaviour of these functions on the
intervals (0; z,) and (z,, 1l).

9.4. Integral Calculus. Miscellaneous Problems

1. No, we cannot. For instance, f (x) = 1 + cos z is a periodic function
and F (z) = g (1 + cos z) dz = z + sin z 4 ¢ is a nonperiodic func-
tion. 2. (a) A By the definition, F’ (z) = f (z). But § (z) is an odd

YA

By

Ay

0 1

function. Consequently, F (z), is an even function (see problem 3 in
9.3); (b) @ Use the assertion made in (a); (c) 0. @ Prove that the
function f (z) = 26 (arcsin x)7 is odd on the interval [—1, 1]. 3. The
antiderivative F (z) isodd if F (0) = 0.4.f () = 0ifa < b;f (2) <O
ifa > b (for all z € [a; b]). 5. {n/3}. A Suppose S4,p,c, is the area
of the figure bounded by the linesy = 1 + cos z, y = 1 + cos (z — a),
z =0, and S,,p,c, 13 the areaof the figure bounded by the lines
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y=1, y=1-+cos(x —a) and z = n. Then we have
x

SA13101= ‘ [(14cos z) — (14 cos (z —a))] dx

ot

o

and
ft

S asbacs= S 1=+ cos (e @] de.

xg

Let us find the limits of integration z; and z,: from the equation
1+ cosz =14 cos (z — a) we find z; = «/2, and from the equa-
tion 1 = 1 + cos (z — ) wefind z = a 4 /2. Calculating now the
integrals, we find

Sa,pc, =28in (@/2) —sina  and  S,,pc,=1—sina

The figures A;B;C; and A;B,C; being equal, we have 2 sin (2/2) —
— sin 0. =1 —sin a or sin (2/2) = 1/2. Solving the equation sin (a/2) =
1/2 and taking into account the restriction 0 << a << /2, we get the
answer. 6. [logy 3; ). 7.(a){e-1}. @ f () =1+ In®z+ 2Inz;
) {-2— %i—g—[nu’}. 8. —2% V3+3/2+4+1/V3.
A Differentiating F (z), we obtain F’ (z) = 3sinz + 4 cos r.
F’ () < 0 on the interval (5m/4; 4mn/3) since sin z and cos z assume
only negative values (z belongs to the third quarter) and, therefore,
F (z) assumes the least value at the point z = 4n/3. Calculating the
&/3

integral S (3sint + 4 cos t) dt, we get the answer. 9. 3 /3 —

S5n/h

—2V2—1.10. F(z) =34z —4; {(1). 11. A If f; (2) = f» (2)
on some set D, and f, and f, are differentiable at all points of the
domain D, then f; (z) = f; (z). We have (sin 2z)' = (2 sin z cos 2)’,
or 2cos2z =2 (cosz —sin®z), or cos2z = cos® zx — sin?z.
12. (1; (1 + V/5)/2. @ Find the roots of the equation f (z) = @ ()
on the intervals (—oo; —1), [—1; 0) and [0; o). 13. —(tan ¢)/6.
A The equation of the straight line cutting the given parabola has
the form y = (tan @) z 4+ b, where b is some constant. From the con-
dition that the straight line cuts the parabola at two points follows
the consistency of the system of equations

{ y=1—2322,
y=xtan ¢4 b.

Eliminating y from this system, we arrive at a quadratic equation
22 —I—%(tan ?) z_.%..}.%:O, whose roots z; and =z, are the

abscissas of the intersection points of the straight line and the
parabola. The midpoint of the segment connecting the points of

276



Z14 22
2

x14- 22 = — (tan ¢)/3 (the Vieta theorem), we have zy= — (tan ¢)/6.
14. {2an—n/2|n€Z}. 15. ac (9n/8; 11xn/8]. 16. [7n/6; 5Sm/4).
17. {2an-+n/4; 2n+1) n—arctan2|nc Z}. A Suppose (sinc) 22+
+ (2 cos @) :::—I——cos'o‘_gﬂ=(ka:—|—b)2 for any x€R. Then the

following equalities must hold simultaneously:
k?=sin a, sina > 0.

intersection can be found by the formula z,= , and since

2kb=2 cos a,
e — cosa—gsma 0.

Multiplying the first and the third equality term-by-term and squaring
the second equality, we get

coso+sina
2 9
Let us eliminate k2b2 in these relations. Then we have sin? a

-+ sin @ cos @ — 2 cos? o = 0 or (since the last equation is homogene-
ous) tan® o + tana — 2 = 0. Now we have

k22 =sina k2b2 =cos2 a.

tana; = 1, tanog = —2;
a1=nm+% , Qg=nm—arctan2, m € 7Z.

cos a-|sin @
2

we must take m = 2n in the first series of solutions and m = 2n } 1

in the szcond series. Finally we find that for « = 2nn + n/4 or a =

= (2n + 1) n — arctan 2 the given quadratic function is the square

of a linear function. 18. (—oo; —14) U {4} U[14/3; x). @ Since

the original equation is equivalent to the system

{ bz+28=12— 4z — 22, 1)
12—4z—22= —(2+6) (z—2) >0, (2)
the given equation can have a unique solution if: (1) the roots z; and
z4 of equation (1) are equal and satisfy inequality (2); (2) provided the

roots of equation (1) are different (r3 > z;) and at least one of the
following systems is consistent:

For the inequalities sin &« > 0 and > 0 to hold true,

{x1<—6, or $2>2,
—b<za<2 —b<z <2
(3) for r; = —6 and —6 < zy3 << 42 or z3 = 2 and —6 << 2; << 2.

19. [5/2; o). A The solution of the inequality
logg (22 —32+7)
logs (3z+2)

<1
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is the union of the intervals z € (—2/3; —1/3) U (1; 5). For cvery
solution of the inequality to be a solution of the inequality 22 -+
+ (5 — 2a) z < 10a, the zeros z; and z; of the [unction f (x) =
= 2% + (5 — 2a) z — 10a must satisfy the incqualities z; << —2/3
and z, = 5, i.e. the inequalities f (—2/3) << 0 and f (5) << 0 must hold
simultaneously. We shall get the answer solving the system of in-
equalities
{ (—2/3)24 (5--2a) (—2/3)— 102 <0,
524 (5—2a) 5—10a < 0.

20. No they are not in the general case. @ Consider the example:

1/z > z for all z € (0; 1), but the inequality (1/z)’ > z’ does not

hold on this interval. 21. (a) {(tan a;

2; 1n (2a — 1))} fora € (1/2; n/2), for a

vh ¢ (1/2; a/2); (b)) {1, es z:n + (—1)n

31’05i)n (@ + 1)(l r_li_E )Z); (1; —t}é“;f nn +

_ (—1)® arcsin (@ 4 1) | n€ Z)} fora €

y=xt1. [ 9 0], & for a [ —2, 0. 22. The

solution is given in the figure. @ Repre-

sent the left-hand side of the equation in

-1 the form (z + ay + b) (22 + cxy + dy?)

and, having determined the coefficients

a, b, ¢, d, reduce it to the form (zr —

y+ 1) (22 4+ 4zy + 5y%) = 0. 23. 4 =

7, B= —6, C=3. A We find the

relationship between the coefficients

A, B, C. From the hypothesis we have: [’ (x) = 24z 4 B, f (1) =

=24 + B =38, F@ 41 @ =4-224B-24 C + 24 = 33,
1

‘. (Az? + Bz + C)dz = L: + TB +C= -%— . We shall get the answer

[}
4 |

w(ilon we solve the system of equations
2A4B=38,
{ 6A+42B+C =33,
A3+ B[24C=17/3.
2. K=3,L=1, M=05.25 P =25; Q= —6, R=23;26. (0; 2).
A In the system of coordinates 20y we find the set of points satisfying

all the inequalities of the system (the hatched figure in the given
figure). We put z = 2z + 3y, z = 0 in the equation and construct the
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straight line y = —22/3. For any value of ¢, the line 2z 4+ 3y = ¢
is parallel to the line 2z + 3y = 0 and, with an increase in ¢, it will be
displaced upwards. The greatest value of ¢, for which this line has
points in common with the domain of solutions of the given systein,
is the value for which this line passes through the point 4 with the
coordsillzates z2=0, y=2 (for ¢ = 6). 27. —73/8. For z = —9/4,
y = 5/4.

A 222 2y By — By —5 = (2 (- )+ G 1))
— 3 =By 5= ety 142 (12— 2 o)
25 5\2 73
—5—b=Gtr++2 (1-7) —5.

Hence it follows that the least value is equal to —73/8 and
is attained at z+y+1=0, y—5/4=0, i.e. = —9/4,
y = 5/4. 28. The solution is given in the figure. @ Calculate
the respective limits for 0 <=z << 1,

z=1 and z > 1. 29. 4950n. @ Prove vA
that the roots of the equation form an
arithmetic progression and that the ==
equation has 100 roots on the inter-
22042 1 -
val [0, 314]. 30. Sl (.‘C) = —.‘122——1_ 0 1 X
or |z] =1, Si=n+4+1 for |z|=1; ) D
Salz) = 2z (nx?™*1 — (n+1) 2274 1)
2= (@ — 1)
for |z} #£1, Se=n(n+1) for z=1;
Se= —nn+1) forz=—1

® To find the sum S; (z), use the formula for the sum of the first n
terms of a geometric progression, and to find S, (z), use the
equality S{ (z) = S, (#). 31. 26. A We find the coordinates of the

vectors OA and 0_1)-2 Since y; = 2} — 2z; 4 3, we have y; = 2 and

the vector O_Z =(1—0;2—0) = (1; 2). We determine the abscissa
of the point B: :

23— 2z +3 =y, =11, 23 — 22, —8=0; 25 =4 or oy = —2.
And since the point B lies in the first quarter, it has the coordinates

z = 4, y = 11 and, therefore, 0? = (4; 11). Next we find 07-0_5=
=14+ 2.11 = 26. 32. 3. 33. (—4/3; 0]. A Sincep-q=]p|-1q| X

X cos @) and [ p| >0, | q] > 0, the angle between the vectors p

PN
and q is obtuse if cos (p, @) << Oorp-q << 0. We havep-q = ¢ log? » +
-+ 6c log, x — 12. Setting log, z = ¢, we arrive at the following
roblem: at what values of ¢ does the inequality ct2 +- 6ct — 12 << 0
Eold for any ¢t € R? Evidently, for ¢ = 0 the inequality —12 < 0 is
true for any ¢ € R. If ¢ % 0, then for these conditions to be fulfilled,
the following incqualities must be satisfied simultaneously:

{ c <0,
(6¢)2+ 48¢ < 0.
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Solving this system of inequalities, we get ¢ € (—4/3; 0); adding
¢ = 0 to these values, we get the answer. 34. {n (4 + 1) — arc tan 2;
7 (4n + 2) —arctan2 | n € 7}. A From the hypothesis, we have

a system
tan2a —tana—6=0,
sin 2o <0,
sin (a/2) > 0.
Solving the equation of the system for tan o, we get tan @ = 3 and

tan & = —2. For tan @ = 3 the inequality sin 2a << 0 is not satisfied.
Therefore, o = nk — arc tan 2. We seek the integral values of &

for which the inequality sin% > 0 is satisfied. We introduce the
designation arctan 2 = 2f:

sin (%"——-B) =sin u_zk cos f—cos n_zk sin f > 0.

Suppose k = 2I, 1€ Z. Then cossnlsinp = (—1)!*sinP >0 if
z=2n+1,nez.1fk=2z+1,zez,thensin(u+—2’3)cosp=

= (—1)! cos p > 0 for I = 2n, n € Z. Thus, the inequality sin %> 0
is satisfied if « = n (2 2n 4 1)) — arctan2 or & = (2-2n 4 1) 5w —
—arctan2. 35. z —2y 411 =0, 224y —8=0. A Suppose
K (zy, y,) is a point of the circle through which the tangent to the
circle (z + 1) 4- y2 = 20 with centre at the point O (—1; 0) passes.

— —>
The vectors AK = (zy — 1, yp — 6) and OK = (z, + 1, y,) are

— —>
mutually perpendicular and, therefore AX — OK = 0 or (z, — 1) X
X (zo + 1) + (yo — 6) yo = 0. We have a system of equations

{ 23+ y§—Obyo—1=0,
2+ y3+ 22— 19=0.

Subtracting the second equation from the first, we get z, = 9 — 3y,.
Substituting this value of z, into the first equation, we get an equation
y3 — 6y, + 8 = 0, whose roots are yo; = 4, yos = 2. Thus, the points

on the circle through which the tangents pass have the coordinates
Kg(—3; 4) and K, (3; 2). We get the answer using the formula

T—ZxA _._Y—Ya
TK—ZA  Yk—Yya '
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