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PREFACE

Computer programming has many faces. Fred Brooks paints the big picture in
The Mythical Man Month; his essays underscore the crucial role of management in
large software projects. At a finer grain, Steve McConnell teaches good programming
style in Code Complete. The topics in those books are the key to good software and
the hallmark of the professional programmer. Unfortunately, though, the workman-
like application of those sound engineering principles isn’t always thrilling — until
the software is completed on time and works without surprise.

About the Book

The columns in this book are about a more glamorous aspect of the profession:
programming pearls whose origins lie beyond solid engineering, in the realm of
insight and creativity. Just as natural pearls grow from grains of sand that have
irritated oysters, these programming pearls have grown from real problems that have
irritated real programmers. The programs are fun, and they teach important program-
ming techniques and fundamental design principles.

Most of these essays originally appeared in my ‘ ‘Programming Pearls’’ column in
Communications of the Association for Computing Machinery. They were collected,
revised and published as the first edition of this book in 1986. Twelve of the thirteen
pieces in the first edition have been edited substantially for this edition, and three new
columns have been added.

The only background the book assumes is programming experience in a high-level
language. Advanced techniques (such as templates in C++) show up now and then,
but the reader unfamiliar with such topics will be able to skip to the next section with
impunity.

Although each column may be read by itself, there is a logical grouping to the
complete set. Columns 1 through 5 form Part I of the book. They review program-
ming fundamentals: problem definition, algorithms, data structures and program veri-
fication and testing. Part II is built around the theme of efficiency, which is some-
times important in itself and is always a fine springboard into interesting program-
ming problems. Part III applies those techniques to several substantial problems in
sorting, searching and strings.
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One hint about reading the essays: don’t go too fast. Read them carefully, one per
sitting. Try the problems as they are posed — some of them look easy until you’ve
butted your head against them for an hour or two. Afterwards, work hard on the prob-
lems at the end of each column: most of what you learn from this book will come out
the end of your pencil as you scribble down your solutions. If possible, discuss your
ideas with friends and colleagues before peeking at the hints and solutions in the back
of the book. The further reading at the end of each chapter isn’t intended as a schol-
arly reference list; I’ve recommended some good books that are an important part of
my personal library.

This book is written for programmers. I hope that the problems, hints, solutions,
and further reading make it useful for individuals. The book has been used in classes
including Algorithms, Program Verification and Software Engineering. The catalog
of algorithms in Appendix 1 is a reference for practicing programmers, and also
shows how the book can be integrated into classes on algorithms and data structures.

The Code

The pseudocode programs in the first edition of the book were all implemented,
but I was the only person to see the real code. For this edition, I have rewritten all the
old programs and written about the same amount of new code. The programs are
available at

www . programmingpearls.com

The code includes much of the scaffolding for testing, debugging and timing the func-
tions. The site also contains other relevant material. Because so much software is
now available online, a new theme in this edition is how to evaluate and use software
components.

The programs use a terse coding style: short variable names, few blank lines, and
little or no error checking. This is inappropriate in large software projects, but it is
useful to convey the key ideas of algorithms. Solution 5.1 gives more background on
this style.

The text includes a few real C and C++ programs, but most functions are
expressed in a pseudocode that takes less space and avoids inelegant syntax. The
notation for i = [0, n) iterates { from O through n—1. In these for loops, left and
right parentheses denote open ranges (which do not include the end values), and left
and right square brackets denote closed ranges (which do include the end values).
The phrase function(i, j) still calls a function with parameters i and j, and array(i, j]
still accesses an array element.

This edition reports the run times of many programs on ‘‘my computer’’, a
400MHz Pentium II with 128 megabytes of RAM running Windows NT 4.0. I timed
the programs on several other machines, and the book reports the few substantial dif-
ferences that I observed. All experiments used the highest available level of compiler
optimization. I encourage you to time the programs on your machine; I bet that you’ll
find similar ratios of run times.
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To Readers of the First Edition

I hope that your first response as you thumb through this edition of the book is,
““This sure looks familiar.”” A few minutes later, I hope that you'll observe, “‘I've
never seen that before.”

This version has the same focus as the first edition, but is set in a larger context.
Computing has grown substantially in important areas such as databases, networking
and user interfaces. Most programmers should be familiar users of such technologies.
At the center of each of those areas, though, is a hard core of programming problems.
Those programs remain the theme of this book. This edition of the book is a slightly
larger fish in a much larger pond.

One section from old Column 4 on implementing binary search grew into new
Column 5 on testing, debugging and timing. Old Column 11 grew and split into new
Columns 12 (on the original problem) and 13 (on set representations). Old Column
13 described a spelling checker that ran in a 64-kilobyte address space; it has been
deleted, but its heart lives on in Section 13.8. New Column 15 is about string prob-
lems. Many sections have been inserted into the old columns, and other sections were
deleted along the way. With new problems, new solutions, and four new appendices,
this edition of the book is 25 percent longer.

Many of the old case studies in this edition are unchanged, for their historical
interest. A few old stories have been recast in modern terms.

Acknowledgments for the First Edition

I am grateful for much support from many people. The idea for a
Communications of the ACM column was originally conceived by Peter Denning and
Stuart Lynn. Peter worked diligently within ACM to make the column possible and
recruited me for the job. ACM Headquarters staff, particularly Roz Steier and Nancy
Adriance, have been very supportive as these columns were published in their original
form. I am especially indebted to the ACM for encouraging publication of the
columns in their present form, and to the many CACM readers who made this
expanded version necessary and possible by their comments on the original columns.

Al Aho, Peter Denning, Mike Garey, David Johnson, Brian Kemighan, John Lin-
derman, Doug Mcllroy and Don Stanat have all read each column with great care,
often under extreme time pressure. I am also grateful for the particularly helpful com-
ments of Henry Baird, Bill Cleveland, David Gries, Eric Grosse, Lynn Jelinski, Steve
Johnson, Bob Melville, Bob Martin, Arno Penzias, Marilyn Roper, Chris Van Wyk,
Vic Vyssotsky and Pamela Zave. Al Aho, Andrew Hume, Brian Kernighan, Ravi
Sethi, Laura Skinger and Bjarne Stroustrup provided invaluable help in bookmaking,
and West Point cadets in EF 485 field tested the penultimate draft of the manuscript.
Thanks, all.
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Acknowledgments for the Second Edition

Dan Bentley, Russ Cox, Brian Kernighan, Mark Kernighan, John Linderman,
Steve McConnell, Doug Mcllroy, Rob Pike, Howard Trickey and Chris Van Wyk
have all read this edition with great care. I am also grateful for the particularly helpful
comments of Paul Abrahams, Glenda Childress, Eric Grosse, Ann Martin, Peter Mcll-
roy, Peter Memishian, Sundar Narasimhan, Lisa Ricker, Dennis Ritchie, Ravi Sethi,
Carol Smith, Tom Szymanski and Kentaro Toyama. I thank Peter Gordon and his
colleagues at Addison-Wesley for their help in preparing this edition.

Murray Hill, New Jersey J.B.
December, 1985
August, 1999
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parT: PRELIMINARIES

These five columns review the basics of programming. Column 1 is the history of
a single problem. A combination of careful problem definition and straightforward
programming techniques led to an elegant solution. The column illustrates the central
theme of this book: thinking hard about a real case study can be fun and can also lead
to practical benefits.

Column 2 examines three problems, with an emphasis on how algorithmic insights
can yield simple and effective code. Column 3 surveys the crucial role that the struc-
ture of data can play in software design.

Column 4 introduces program verification as a tool for writing correct code. Veri-
fication techniques are used extensively as we derive subtle (and fast) functions in
Columns 9, 11 and 14. Column 5 shows how we implement those abstract programs
in real code: we use scaffolding to probe a function, to bombard it with test cases, and
to measure its performance.
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coLuMN I: CRACKING THE OYSTER

The programmer’s question was simple: ‘“How do I sort a disk file?”’ Before I
tell you how I made my first mistake, let me give you a chance to do better than I did.
‘What would you have said?

1.1 A Friendly Conversation

My mistake was to answer his question. I gave him a thumbnail sketch of how to
implement a Merge Sort on disk. My suggestion that he dig into an algorithms text
met with less than enthusiasm — he was more concerned about solving the problem
than furthering his education. I then told him about a disk sorting program in a popu-
lar programming book. The program consisted of about two hundred lines of code in
a dozen functions; I estimated that implementing and testing the code would have
taken the programmer at most a week.

I thought that I had solved his problem, but his hesitation led me back to the right
track. The conversation then went something like this, with my questions in italics.

Why do you want to write your own sort at all? Why not use a sort provided by

your system?

I need the sort in the middle of a large system, and for obscure technical reasons, I

can’t use the system file-sorting program.

What exactly are you sorting? How many records are in the file? What is the

Jormat of each record?

The file contains at most ten million records; each record is a seven-digit integer.

Wait a minute. If the file is that small, why bother going to disk at all? Why not
Jjust sort it in main memory?

Although the machine has many megabytes of main memory, this function is part
of a big system. Iexpect that I'll have only about a megabyte free at that point.

Is there anything else you can tell me about the records?

Each one is a seven-digit positive integer with no other associated data, and no
integer can appear more than once.

The context makes the problem clearer. In the United States, telephone numbers
consist of a three-digit ‘‘area code’” followed by seven additional digits. Telephone

3
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calls to numbers with the ‘‘toll-free’” area code of 800 (the only such code at the time)
were not charged. A real database of toll-free telephone numbers includes a great deal
of information: the toll-free telephone number, the real number to which calls are
routed (sometimes several numbers, with rules on which calls go where when), the
name and address of the subscriber, and so on.

The programmer was building a small corner of a system for processing such a
database, and the integers to be sorted were toll-free telephone numbers. The input
file was a list of numbers (with all other information removed), and it was an error to
include the same number twice. The desired output was a file of the numbers, sorted
in increasing numeric order. The context also defines the performance requirements.
During a long session with the system, the user requested a sorted file roughly once an
hour and could do nothing until the sort was completed. The sort therefore couldn’t
take more than a few minutes, while ten seconds was a more desirable run time.

1.2 Precise Problem Statement

To the programmer these requirements added up to, ‘‘How do I sort a disk file?”’
Before we attack the problem, let’s arrange what we know in a less biased and more
useful form.

Input: A file containing at most n positive integers, each less than n, where
n=10". It is a fatal error if any integer occurs twice in the input. No
other data is associated with the integer.

Output: A sorted list in increasing order of the input integers.

Constraints: At most (roughly) a megabyte of storage is available in main memory;
ample disk storage is available. The run time can be at most several
minutes; a run time of ten seconds need not be decreased.

Think for a minute about this problem specification. How would you advise the pro-

grammer now?

1.3 Program Design

The obvious program uses a general disk-based Merge Sort as a starting point but
trims it to exploit the fact that we are sorting integers. That reduces the two hundred
lines of code by a few dozen lines, and also makes it run faster. It might still take a
few days to get the code up and running.

A second solution makes even more use of the particular nature of this sorting
problem. If we store each number in seven bytes, then we can store about 143,000
numbers in the available megabyte. If we represent each number as a 32-bit integer,
though, then we can store 250,000 numbers in the megabyte. We will therefore use a
program that makes 40 passes over the input file. On the first pass it reads into mem-
ory any integer between 0 and 249,999, sorts the (at most) 250,000 integers and writes
them to the output file. The second pass sorts the integers from 250,000 to 499,999,
and so on to the 40" pass, which sorts 9,750,000 to 9,999,999. A Quicksort would be
quite efficient for the main-memory sorts, and it requires only twenty lines of code (as
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we’ll see in Column 11). The entire program could therefore be implemented in a
page or two of code. It also has the desirable property that we no longer have to
worry about using intermediate disk files; unfortunately, for that benefit we pay the
price of reading the entire input file 40 times.

A Merge Sort program reads the file once from the input, sorts it with the aid of
work files that are read and written many times, and then writes it once.

< >

Work
Files

many
L Merge | 1 <>
Sort

The 40-pass algorithm reads the input file many times and writes the output just once,
using no intermediate files.

Multipass| 1
Sort

3
3

We would prefer the following scheme, which combines the advantages of the previ-
ous two. It reads the input just once, and uses no intermediate files.

Sort

We can do this only if we represent all the integers in the input file in the available
megabyte of main memory. Thus the problem boils down to whether we can repre-
sent at most ten million distinct integers in about eight million available bits. Think
about an appropriate representation.

1.4 Implementation Sketch

Viewed in this light, the bitmap or bit vector representation of a set screams out to
be used. We can represent a toy set of nonnegative integers less than 20 by a string of
20 bits. For instance, we can store the set {1, 2, 3, 5, 8, 13} in this string:

01110100100001000000

The bits representing numbers in the set are 1, and all other bits are 0.

In the real problem, the seven decimal digits of each integer denote a number less
than ten million. We’ll represent the file by a string of ten million bits in which the
i™ bit is on if and only if the integer i is in the file. (The programmer found two mil-
lion spare bits; Problem S investigates what happens when a megabyte is a firm limit.)
This representation uses three attributes of this problem not usually found in sorting
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problems: the input is from a relatively small range, it contains no duplicates, and no
data is associated with each record beyond the single integer.

Given the bitmap data structure to represent the set of integers in the file, the pro-
gram can be written in three natural phases. The first phase initializes the set to empty
by turning off all bits. The second phase builds the set by reading each integer in the
file and turning on the appropriate bit. The third phase produces the sorted output file
by inspecting each bit and writing out the appropriate integer if the bit is one. If n is
the number of bits in the vector (in this case 10,000,000), the program can be
expressed in pseudocode as:

/* phase 1: initialize set to empty =/
for i = [0, n)
bit[i] =0
/+ phase 2: insert present elements into the set «/
for each i in the input file
bit[i] =1
/* phase 3: write sorted output =/
for i = [0, n)
if bit[i] ==
write i on the output file

(Recall from the preface that the notation for i = [0, n) iterates i from O ton—1.)
This sketch was sufficient for the programmer to solve his problem. Some of the
implementation details he faced are described in Problems 2, 5 and 7.

1.5 Principles

The programmer told me about his problem in a phone call; it took us about fifteen
minutes to get to the real problem and find the bitmap solution. It took him a couple
of hours to implement the program in a few dozen lines of code, which was far supe-
rior to the hundreds of lines of code and the week of programming time that we had
feared at the start of the phone call. And the program was lightning fast: while a
Merge Sort on disk might have taken many minutes, this program took little more
than the time to read the input and to write the output — about ten seconds. Solution
3 contains timing details on several programs for the task.

Those facts contain the first lesson from this case study: careful analysis of a small
problem can sometimes yield tremendous practical benefits. In this case a few min-
utes of careful study led to an order of magnitude reduction in code length, program-
mer time and run time. General Chuck Yeager (the first person to fly faster than
sound) praised an airplane’s engine system with the words ‘‘simple, few parts, easy to
maintain, very strong’’; this program shares those attributes. The program’s special-
ized structure, however, would be hard to modify if certain dimensions of the
specifications were changed. In addition to the advertising for clever programming,
this case illustrates the following general principles.

The Right Problem. Defining the problem was about ninety percent of this battle
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— I’'m glad that the programmer didn’t settle for the first program I described. Prob-
lems 10, 11 and 12 have elegant solutions once you pose the right problem; think hard
about them before looking at the hints and solutions.

The Birmap Data Structure. This data structure represents a dense set over a finite
domain when each element occurs at most once and no other data is associated with
the element. Even if these conditions aren’t satisfied (when there are multiple ele-
ments or extra data, for instance), a key from a finite domain can be used as an index
into a table with more complicated entries; see Problems 6 and 8.

Multiple-Pass Algorithms. These algorithms make several passes over their input
data, accomplishing a little more each time. We saw a 40-pass algorithm in Section
1.3; Problem 5 encourages you to develop a two-pass algorithm.

A Time-Space Tradeoff and One That Isn’t. Programming folklore and theory
abound with time-space tradeoffs: by using more time, a program can run in less
space. The two-pass algorithm in Solution 5, for instance, doubles a program’s run
time to halve its space. It has been my experience more frequently, though, that
reducing a program’s space requirements also reduces its run time.t The space-
efficient structure of bitmaps dramatically reduced the run time of sorting. There
were two reasons that the reduction in space led to a reduction in time: less data to
process means less time to process it, and keeping data in main memory rather than on
disk avoids the overhead of disk accesses. Of course, the mutual improvement was
possible only because the original design was far from optimal.

A Simple Design. Antoine de Saint-Exupéry, the French writer and aircraft
designer, said that, ‘‘A designer knows he has arrived at perfection not when there is
no longer anything to add, but when there is no longer anything to take away.”” More
programmers should judge their work by this criterion. Simple programs are usually
more reliable, secure, robust and efficient than their complex cousins, and easier to
build and to maintain.

Stages of Program Design. This case illustrates the design process that is
described in detail in Section 12.4.

1.6 Problems
Hints for and solutions to selected problems can be found in sections at the back
of the book.

1. If memory were not scarce, how would you implement a sort in a language with
libraries for representing and sorting sets?

+ Tradeoffs are common to all engineering disciplines; automobile designers, for instance, might trade re-
duced mileage for faster acceleration by adding heavy components. Mutual improvements are preferred,
though. A review of a small car I once drove observed that ‘‘the weight saving on the car’s basic structure
translates into further weight reductions in the various chassis components — and even the elimination of
the need for some, such as power steering’’.
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How would you implement bit vectors using bitwise logical operations (such as
and, or and shift)?

Run-time efficiency was an important part of the design goal, and the resulting
program was efficient enough. Implement the bitmap sort on your system and
measure its run time; how does it compare to the system sort and to the sorts in
Problem 1? Assume that n is 10,000,000, and that the input file contains
1,000,000 integers.

If you take Problem 3 seriously, you will face the problem of generating k integers
less than # without duplicates. The simplest approach uses the first k positive inte-
gers. This extreme data set won’t alter the run time of the bitmap method by
much, but it might skew the run time of a system sort. How could you generate a
file of k unique random integers between 0 and n — 1 in random order? Strive for a
short program that is also efficient.

The programmer said that he had about a megabyte of free storage, but the code
we sketched uses 1.25 megabytes. He was able to scrounge the extra space with-
out much trouble. If the megabyte had been a hard and fast boundary, what would
you have recommended? What is the run time of your algorithm?

What would you recommend to the programmer if, instead of saying that each
integer could appear at most once, he told you that each integer could appear at
most ten times? How would your solution change as a function of the amount of
available storage?

[R. Weil] The program as sketched has several flaws. The first is that it assumes
that no integer appears twice in the input. What happens if one does show up
more than once? How could the program be modified to call an error function in
that case? What happens when an input integer is less than zero or greater than or
equal to n? What if an input is not numeric? What should a program do under
those circumstances? What other sanity checks could the program incorporate?
Describe small data sets that test the program, including its proper handling of
these and other ill-behaved cases.

. When the programmer faced the problem, all toll-free phone numbers in the
United States had the 800 area code. Toll-free codes now include 800, 877 and
888, and the list is growing. How would you sort all of the toll-free numbers
using only a megabyte? How can you store a set of toll-free numbers to allow
very rapid lookup to determine whether a given toll-free number is available or
already taken?

One problem with trading more space to use less time is that initializing the space
can itself take a great deal of time. Show how to circumvent this problem by
designing a technique to initialize an entry of a vector to zero the first time it is
accessed. Your scheme should use constant time for initialization and for each
vector access, and use extra space proportional to the size of the vector. Because
this method reduces initialization time by using even more space, it should be con-
sidered only when space is cheap, time is dear and the vector is sparse.
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10. Before the days of low-cost overnight deliveries, a store allowed customers to
order items over the telephone, which they picked up a few days later. The store’s
database used the customer’s telephone number as the primary key for retrieval
(customers know their phone numbers and the keys are close to unique). How
would you organize the store’s database to allow orders to be inserted and
retrieved efficiently?

11. In the early 1980’s Lockheed engineers transmitted daily a dozen drawings from a
Computer Aided Design (CAD) system in their Sunnyvale, California, plant to a
test station in Santa Cruz. Although the facilities were just 25 miles apart, an
automobile courier service took over an hour (due to traffic jams and mountain
roads) and cost a hundred dollars per day. Propose alternative data transmission
schemes and estimate their cost.

12. Pioneers of human space flight soon realized the need for writing implements that
work well in the extreme environment of space. A popular urban legend asserts
that the United States National Aeronautics and Space Administration (NASA)
solved the problem with a million dollars of research to develop a special pen.
According to the legend, how did the Soviets solve the same problem?

1.7 Further Reading

This little exercise has only skimmed the fascinating topic of specifying a pro-
gram. For a deep insight into this crucial activity, see Michael Jackson’s Software
Requirements & Specifications, published by Addison-Wesley in 1995. The tough
topics in the book are presented as a delightful collection of independent but reinforc-
ing little essays.

In the case study described in this column, the programmer’s main problem was
not so much technical as psychological: he couldn’t make progress because he was
trying to solve the wrong problem. We finally solved his problem by breaking
through his conceptual block and solving an easier problem. Conceptual
Blockbusting by James L. Adams (the third edition was published by Perseus in 1986)
studies this kind of leap and is generally a pleasant prod towards more creative think-
ing. Although it was not written with programmers in mind, many of its lessons are
particularly appropriate for programming problems. Adams defines conceptual blocks
as ‘‘mental walls that block the problem-solver from correctly perceiving a problem
or conceiving its solution’’; Problems 10, 11 and 12 encourage you to bust some.
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corumn 2. AHA! ALGORITHMS

The study of algorithms offers much to the practicing programmer. A course on
the subject equips students with functions for important tasks and techniques for
attacking new problems. We’ll see in later columns how advanced algorithmic tools
sometimes have a substantial influence on software systems, both in reduced develop-
ment time and in faster execution speed.

As crucial as those sophisticated ideas are, algorithms have a more important
effect at a more common level of programming. In his book Aha! Insight (from
which I stole my title), Martin Gardner describes the contribution I have in mind: ‘A
problem that seems difficult may have a simple, unexpected solution.”” Unlike the
advanced methods, the aha! insights of algorithms don’t come only after extensive
study; they’re available to any programmer willing to think seriously before, during
and after coding.

2.1 Three Problems

Enough generalities. This column is built around three little problems; try them
before you read on.

A. Given a sequential file that contains at most four billion 32-bit integers in random
order, find a 32-bit integer that isn’t in the file (and there must be at least one
missing — why?). How would you solve this problem with ample quantities of
main memory? How would you solve it if you could use several external
““scratch’’ files but only a few hundred bytes of main memory?

B. Rotate a one-dimensional vector of n elements left by i positions. For instance,
with n=8 and i=3, the vector abcdefgh is rotated to defghabc. Simple code uses an
n-element intermediate vector to do the job in » steps. Can you rotate the vector
in time proportional to n using only a few dozen extra bytes of storage?

C. Given a dictionary of English words, find all sets of anagrams. For instance,
“‘pots”’, “‘stop’” and ‘‘tops’’ are all anagrams of one another because each can be
formed by permuting the letters of the others.

11
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2.2 Ubiquitous Binary Search

I’m thinking of an integer between 1 and 100; you guess it. Fifty? Too low.
Seventy-five? Too high. And so the game goes, until you guess my number. If my
integer is originally between 1 and n, then you can guess it in log, » guesses. If nis a
thousand, ten guesses will do, and if » is a million, you’ll need at most twenty.

This example illustrates a technique that solves a multitude of programming prob-
lems: binary search. We initially know that an object is within a given range, and a
probe operation tells us whether the object is below, at, or above a given position.
Binary search locates the object by repeatedly probing the middle of the current range.
If the probe doesn’t find the object, then we halve the current range and continue. We
stop when we find what we’re looking for or when the range becomes empty.

The most common application of binary search in programming is to search for an
element in a sorted array. When looking for the entry 50, the algorithm makes the fol-
lowing probes.

|26,26|31|31‘32|38|38‘41|43‘46|50|53158‘59l79|97l

3 4

A binary search program is notoriously hard to get right; we’ll study the code in detail
in Column 4.

Sequential search uses about n/2 comparisons on the average to search a table of n
elements, while binary search never uses more than about log, # comparisons. That
can make a big difference in system performance; this anecdote from a
Communications of the ACM case study describing ‘‘The TWA Reservation System’’
is typical.

We had one program that was doing a linear search through a very large
piece of memory almost 100 times a second. As the network grew, the
average CPU time per message was up 0.3 milliseconds, which is a huge
jump for us. We traced the problem to the linear search, changed the
application program to use a binary search, and the problem went away.

I’ve seen that same story in many systems. Programmers start with the simple data
structure of sequential search, which is often fast enough. If it becomes too slow,
sorting the table and using a binary search can usually remove the bottleneck.

But the story of binary search doesn’t end with rapidly searching sorted arrays.
Roy Weil applied the technique in cleaning an input file of about a thousand lines that
contained a single bad line. Unfortunately, the bad line wasn’t known by sight; it
could be identified only by running a (starting) portion of the file through a program
and seeing a wildly erroneous answer, which took several minutes. His predecessors
at debugging had tried to spot it by running a few lines at a time through the program,
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and they had been making progress towards a solution at a snail’s pace. How did
Weil find the culprit in just ten runs of the program?

With this warmup, we can tackle Problem A. The input is on a sequential file
(think of a tape or disk — although a disk may be randomly accessed, it is usually
much faster to read a file from beginning to end). The file contains at most four bil-
lion 32-bit integers in random order, and we are to find one 32-bit integer not present.
(There must be at least one missing, because there are 232 or 4,294,967,296 such inte-
gers.) With ample main memory, we could use the bitmap technique from Column 1
and dedicate 536,870,912 8-bit bytes to a bitmap representing the integers seen so far.
The problem, however, also asks how we can find the missing integer if we have only
a few hundred bytes of main memory and several spare sequential files. To set this up
as a binary search we have to define a range, a representation for the elements within
the range, and a probing method to determine which half of a range holds the missing
integer. How can we do this?

We’ll use as the range a sequence of integers known to contain at least one miss-
ing element, and we’ll represent the range by a file containing all the integers in it.
The insight is that we can probe a range by counting the elements above and below its
midpoint: either the upper or the lower range has at most half the elements in the total
range. Because the total range has a missing element, the smaller half must also have
a missing element. These are most of the ingredients of a binary search algorithm for
the problem; try putting them together yourself before you peek at the solutions to see
how Ed Reingold did it.

These uses of binary search just scratch the surface of its applications in program-
ming. A root finder uses binary search to solve a single-variable equation by succes-
sively halving an interval; numerical analysts call this the bisection method. When
the selection algorithm in Solution 11.9 partitions around a random element and then
calls itself recursively on all elements on one side of that element, it is using a ‘‘ran-
domized’’ binary search. Other uses of binary search include tree data structures and
program debugging (when a program dies a silent death, where do you probe the
source text to home in on the guilty statement?). In each of these examples, thinking
of the program as a few embellishments on top of the basic binary search algorithm
can give the programmer that all-powerful aha!

2.3 The Power of Primitives

Binary search is a solution that looks for problems; we’ll now study a problem
that has several solutions. Problem B is to rotate the n-element vector x left by i posi-
tions in time proportional to n and with just a few dozen bytes of extra space. This
problem arises in applications in various guises. Some programming languages pro-
vide rotation as a primitive operation on vectors. More importantly, rotation corre-
sponds to swapping adjacent blocks of memory of unequal size: whenever you drag-
and-drop a block of text elsewhere in a file, you ask the program to swap two blocks
of memory. The time and space constraints are important in many applications.
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One might try to solve the problem by copying the first i elements of x to a tempo-
rary array, moving the remaining » —i elements left i/ places, and then copying the first
i from the temporary array back to the last positions in x. However, the i extra loca-
tions used by this scheme make it too space-expensive. For a different approach, we
could define a function to rotate x left one position (in time proportional to #) and call
it i times, but that would be too time-expensive.

To solve the problem within the resource bounds will apparently require a more
complicated program. One successful approach is a delicate juggling act: move x[0]
to the temporary ¢, then move x[i] to x[0], x[2i] to x[i], and so on (taking all indices
into x modulo r), until we come back to taking an element from x[0], at which point
we instead take the element from ¢ and stop the process. When i is 3 and n is 12, that
phase moves the elements in this order.

If that process didn’t move all the elements, then we start over at x[1], and continue
until we move all the elements. Problem 3 challenges you to reduce this idea to code;
be careful.

A different algorithm results from a different view of the problem: rotating the
vector x is really just swapping the two segments of the vector ab to be the vector ba,
where a represents the first i elements of x. Suppose a is shorter than b. Divide & into
b, and b, so that b, is the same length as a. Swap a and b, to transform ab,;b, into
b.b;a. The sequence a is in its final place, so we can focus on swapping the two
parts of b. Since this new problem has the same form as the original, we can solve it
recursively. This algorithm can lead to an elegant program (Solution 3 describes an
iterative solution due to Gries and Mills), but it requires delicate code and some
thought to see that it is efficient enough.

The problem looks hard until you finally have the aha! insight: let’s view the
problem as transforming the array ab into the array ba, but let’s also assume that we
have a function that reverses the elements in a specified portion of the array. Starting
with ab, we reverse a to get a’b, reverse b to get a’b’, and then reverse the whole
thing to get (a"b™)", which is exactly ba. This results in the following code for rota-
tion; the comments show the results when abcdefgh is rotated left three elements.

reverse(0, i-1) /+ cbadefgh =/
reverse(i, n-1) /* cbahgfed =/
reverse(0, n-1) /% defghabc =/

Doug Mcllroy gave this hand-waving example of rotating a ten-element array up five
positions; start with your palms towards you, left over right.
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7 8 7 $ 40 ! 2
1 1 5

Flip Left Hand Flip Right Hand Flip Both

The reversal code is time- and space-efficient, and is so short and simple that it’s
pretty hard to get wrong. Brian Kemighan and P. J. Plauger used precisely this code
in their 1981 Software Tools in Pascal to move lines within a text editor. Kernighan
reports that it ran correctly the first time it was executed, while their previous code for
a similar task based on linked lists contained several bugs. This code is used in sev-
eral text processing systems, including the text editor with which I originally typed
this column. Ken Thompson wrote the editor and the reversal code in 1971, and
claims that it was part of the folklore even then.

2.4 Getting It Together: Sorting

Let’s turn now to Problem C. Given a dictionary of English words (one word per
input line in lower case letters), we must find all anagram classes. There are several
good reasons for studying this problem. The first is technical: the solution is a nice
combination of getting the right viewpoint and then using the right tools. The second
reason is more compelling: wouldn’t you hate to be the only person at a party who
didn’t know that ‘‘deposit’’, ‘‘dopiest’’, ‘‘posited’’ and ‘‘topside’’ are anagrams?
And if those aren’t enough, Problem 6 describes a similar problem in a real system.

Many approaches to this problem are surprisingly ineffective and complicated.
Any method that considers all permutations of letters for a word is doomed to failure.
The word ‘‘cholecystoduodenostomy’’ (an anagram in my dictionary of ‘‘duodenoc-
holecystostomy’’) has 22! permutations, and a few multiplications showed that
22! = 1.124x10?!. Even assuming the blazing speed of one picosecond per permuta-
tion, this will take 1.1x10° seconds. The rule of thumb that ‘1t seconds is a nanocen-
tury”’ (see Section 7.1) tells us that 1.1x10° seconds is a few decades. And any
method that compares all pairs of words is doomed to at least an overnight run on my
machine — there are about 230,000 words in the dictionary I used, and even a simple
anagram comparison takes at least a microsecond, so the total time is roughly

230,000 words x 230,000 comparisons/word X 1 microsecond/comparison

= 52,900%10° microseconds = 52,900 seconds = 14.7 hours

Can you find a way to avoid both the above pitfalls?

The aha! insight is to sign each word in the dictionary so that words in the same
anagram class have the same signature, and then bring together words with equal sig-
natures. This reduces the original anagram problem to two subproblems: selecting a
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signature and collecting words with the same signature. Think about these problems
before reading further.

For the first problem we’ll use a signature based on sortingt: order the letters
within the word alphabetically. The signature of ‘‘deposit’” is ‘‘deiopst’’, which is
also the signature of ‘‘dopiest’” and any other word in that class. To solve the second
problem, we’ll sort the words in the order of their signatures. The best description I
have heard of this algorithm is Tom Cargill’s hand waving: sort this way (with a hori-
zontal wave of the hand) then that way (a vertical wave). Section 2.8 describes an
implementation of this algorithm.

2.5 Principles

Sorting. The most obvious use of sorting is to produce sorted output, either as part
of the system specification or as preparation for another program (perhaps one that
uses binary search). But in the anagram problem, the ordering was not of interest; we
sorted to bring together equal elements (in this case signatures). Those signatures are
yet another application of sorting: ordering the letters within a word provides a
canonical form for the words within an anagram class. By placing extra keys on each
record and sorting by those keys, a sort function can be used as a workhorse for
rearranging data on disk files. We’ll return to the subject of sorting several times in
Part I11.

Binary Search. The algorithm for looking up an element in a sorted table is
remarkably efficient and can be used in main memory or on disk; its only drawback is
that the entire table must be known and sorted in advance. The strategy underlying
this simple algorithm is used in many other applications.

Signatures. When an equivalence relation defines classes, it is helpful to define a
signature such that every item in a class bas the same signature and no other item
does. Sorting the letters within a word yields one signature for an anagram class;
other signatures are given by sorting and then representing duplicates by a count (so
the signature of ‘‘mississippi’” might be ‘‘i4mlp2s4”’, or ‘‘i4mp2s4’” if 1’s are
deleted) or by keeping a 26-integer array telling how many times each letter occurs.
Other applications of signatures include the Federal Bureau of Investigation’s method
for indexing fingerprints and the Soundex heuristic for identifying names that sound
alike but are spelled differently.

NAME SOUNDEX SIGNATURE
Smith $530
Smythe $530
Schultz s243
Shultz s432

Knuth describes the Soundex method in Chapter 6 of his Sorting and Searching.

+ This anagram algorithm has been independently discovered by many people, dating at least as far back as
the mid-1960’s.
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Problem Definition. Column 1 showed that determining what the user really
wants to do is an essential part of programming. The theme of this column is the next
step in problem definition: what primitives will we use to solve the problem? In each
case the aha! insight defined a new basic operation to make the problem trivial.

A Problem Solver’s Perspective. Good programmers are a little bit lazy: they sit
back and wait for an insight rather than rushing forward with their first idea. That
must, of course, be balanced with the initiative to code at the proper time. The real
skill, though, is knowing the proper time. That judgment comes only with the experi-
ence of solving problems and reflecting on their solutions.

2.6 Problems

1. Consider the problem of finding all the anagrams of a given input word. How
would you solve this problem given only the word and the dictionary? What if
you could spend some time and space to process the dictionary before answering
any queries?

2. Given a sequential file containing 4,300,000,000 32-bit integers, how can you find
one that appears at least twice?

3. We skimmed two vector rotation algorithms that require subtle code; implement
each as a program. How does the greatest common divisor of i and »n appear in
each program?

4. Several readers pointed out that while all three rotation algorithms require time
proportional to n, the juggling algorithm is apparently twice as fast as the reversal
algorithm: it stores and retrieves each element of the array just once, while the
reversal algorithm does so twice. Experiment with the functions to compare their
speeds on real machines; be especially sensitive to issues surrounding the locality
of memory references.

5. Vector rotation functions change the vector ab to ba; how would you transform
the vector abc to cba? (This models the problem of swapping nonadjacent blocks
of memory.)

6. In the late 1970’s, Bell Labs deployed a ‘‘user-operated directory assistance’’ pro-
gram that allowed employees to look up a number in a company telephone direc-
tory using a standard push-button telephone.

2 3
! ABC DEF
4 5 6

GHI JKL MNO

PRS TUv WXY

OPER
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To find the number of the designer of the system, Mike Lesk, one pressed
“LESK*M*”’ (that is, ‘“5375*6*’") and the system spoke his number. Such ser-
vices are now ubiquitous. One problem that arises in such systems is that different
names may have the same push-button encoding; when this happens in Lesk’s sys-
tem, it asks the user for more information. Given a large file of names, such as a
standard metropolitan telephone directory, how would you locate these *‘false
matches’’? (When Lesk did this experiment on such telephone directories, he
found that the incidence of false matches was just 0.2 percent.) How would you
implement the function that is given a push-button encoding of a name and returns
the set of possible matching names?

In the early 1960’s, Vic Vyssotsky worked with a programmer who had to trans-
pose a 4000-by-4000 matrix stored on magnetic tape (each record had the same
format in several dozen bytes). The original program his colleague suggested
would have taken fifty hours to run; how did Vyssotsky reduce the run time to half
an hour?

[J. Ullman] Given a set of n real numbers, a real number #, and an integer k, how
quickly can you determine whether there exists a k-element subset of the set that
sums to at most ¢?

Sequential search and binary search represent a tradeoff between search time and
preprocessing time. How many binary searches need be performed in an n-
element table to buy back the preprocessing time required to sort the table?

On the day a new researcher reported to work for Thomas Edison, Edison asked
him to compute the volume of an empty light bulb shell. After several hours with
calipers and calculus, the fresh hire returned with the answer of 150 cubic cen-
timeters. In a few seconds, Edison computed and responded ‘‘closer to 155" —
how did he do it?

2.7 Further Reading

Section 8.8 describes several good books on algorithms.

2.8 Implementing an Anagram Program /[Sidebar]{

I organized my anagram program as a three-stage ‘‘pipeline’’ in which the output

file of one program is fed as the input file to the next. The first program signs the
words, the second sorts the signed file, and the third squashes the words in an ana-
gram class onto one line. Here’s the process on a six-word dictionary.

t Sidebars in magazine columns are offset from the text, often in a bar at the side of the page. While they
aren’t an essential part of the column, they provide perspective on the material. In this book they appear as
the last section in a column, marked as a ‘‘sidebar’’.
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pans anps pans anps pans

ots opst pots anps snaj
P pstp P P pans snap
opt . opt opt opt opt

sign = sort = squash |—= opt
snap anps snap opst pots
pots stop tops

stop opst stop opst stop
tops opst tops opst tops

The output contains three anagram classes.

The following C sign program assumes that no word contains more than one hun-
dred letters and that the input file contains only lower-case letters and newline charac-
ters. (I therefore preprocessed the dictionary with a one-line command to change
upper-case characters to lower case.)

int charcomp(char »x, char =y) { return =x - =y; }

#define WORDMAX 100
int main(void)
{ char word[WORDMAX], sig[WORDMAX];
while (scanf("%s", word) != EOF) {
strcpy(sig, word);
gsort(sig, strlen(sig), sizeof(char), charcomp);
printf("%s %s\n", sig, word);
}
return 0;

}

The while loop reads one string at a time into word until it comes to the end of the
file. The strcpy function copies the input word to the word sig, whose characters are
then sorted by calling the C Standard Library gsort (the parameters are the array to be
sorted, its length, the number of bytes per sort item, and the name of the function to
compare two items, in this case, characters within the word). Finally, the printf state-
ment prints the signature followed by the word itself and a newline.

The system sort program brings together all words with the same signature; the
squash program prints them on a single line.

int main(void)
{ char word[WORDMAX], sig[WORDMAX], oldsig[WORDMAX];
int Tinenum = 0;
strcpy(oldsig, "");
while (scanf("%s %s", sig, word) != EOF) {
if (strcmp(oldsig, sig) != 0 & linenum > 0)
printf("\n");
strcpy(oldsig, sig);
Tinenum++;
printf("%s ", word);
}
printf("\n");
return 0;
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The bulk of the work is performed by the second printf statement; for each input line,
it writes out the second field followed by a space. The if statement catches the
changes between signatures: if sig changes from oldsig (its previous value), then a
newline is printed (as long as this record isn’t the first in the file). The last pringf
writes a final newline character.

After testing those simple parts on small input files, I constructed the anagram list

by typing
sign <dictionary | sort | squash >gramlist

That command feeds the file dictionary to the program sign, pipes sign’s output into
sort, pipes sort’s output into squash, and writes squash’s output in the file gramlist.
The program ran in 18 seconds: 4 in sign, 11 in sort and 3 in squash.

I ran the program on a dictionary that contains 230,000 words; it does not, how-
ever, include many -s and -ed endings. The following were among the more interest-
ing anagram classes.

subessential suitableness

canter creant cretan nectar recant tanrec trance
caret carte cater crate creat creta react recta trace
destain instead sainted satined

adroitly dilatory idolatry

least setal slate stale steal stela tales

reins resin rinse risen serin siren
constitutionalism misconstitutional
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Most programmers have seen them, and most good programmers realize they’ve
written at least one. They are huge, messy, ugly programs that should have been
short, clean, beautiful programs. I’ve seen several programs that boil down to code
like this

if (k == 1) c001l++
if (k== 2) c002++

if (k == 500) c500++

Although the programs actually accomplished slightly more complicated tasks, it isn’t
misleading to view them as counting how many times each integer between 1 and 500
was found in a file. Each program contained over 1000 lines of code. Most program-
mers today instantly realize that they could accomplish the task with a program just a
tiny fraction of the size by using a different data structure — a 500-element array to
replace the 500 individual variables.

Hence the title of this column: a proper view of data does indeed structure pro-
grams. This column describes a variety of programs that were made smaller (and bet-
ter) by restructuring their internal data.

3.1 A Survey Program

The next program we’ll study summarized about twenty thousand questionnaires
filled out by students at a particular college. Part of the output looked like this:

Total US Perm Temp Male Female
Citi Visa Visa

African American 1289 1239 17 2 684 593
Mexican American 675 577 80 11 448 219
Native American 198 182 5 3 132 64
Spanish Surname 411 223 152 20 224 179
Asian American 519 312 152 41 247 270
Caucasian 16272 15663 355 33 9367 6836
Other 225 123 78 19 129 92

Totals 19589 18319 839 129 11231 8253

21
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For each ethnic group, the number of males plus the number of females is a little
less than the total because some people didn’t answer some questions. The real out-
put was more complicated. I've shown all seven rows plus the total row, but only the
six columns that represent the totals and two other categories, citizenship status and
sex. In the real problem there were twenty-five columns that represented eight cate-
gories and three similar pages of output: one apiece for two separate campuses, and
one for the sum of the two. There were also a few other closely related tables to be
printed, such as the number of students that declined to answer each question. Each
questionnaire was represented by a record in which entry 0 contained the ethnic group
encoded as an integer between 0 and 7 (for the seven categories and ‘‘refused’’), entry
1 contained the campus (an integer between 0 and 2), entry 2 contained citizenship
status, and so on through entry 8.

The programmer coded the program from the systems analyst’s high-level design;
after working on it for two months and producing a thousand lines of code, he esti-
mated that he was half done. I understood his predicament after I saw the design: the
program was built around 350 distinct variables — 25 columns times 7 rows times 2
pages. After variable declarations, the program consisted of a rat’s nest of logic that
decided which variables to increment as each input record was read. Think for a
minute about how you would write the program.

The crucial decision is that the numbers should be stored as an array. The next
decision is harder: should the array be laid out according to its output structure (along
the three dimensions of campus, ethnic group and the twenty-five columns) or its
input structure (along the four dimensions of campus, ethnic group, category and
value within category)? Ignoring the campus dimension, the approaches can be
viewed as

[ )
ber-r-p-r-

[
r-r =]
[ |
Forer-f-+-]
[ '
rek-} -+
[ |
R .
[
P S SR N

O S R -
' ]

Both approaches work; the three-dimensional (left) view in my program resulted in a
little more work when the data was read and a little less work when it was written.
The program took 150 lines of code: 80 to build tables, 30 to produce the output I
described, and 40 to produce other tables.

The count program and the survey program were two needlessly big programs;
both contained numerous variables that were replaced by a single array. Reducing the
length of the code by an order of magnitude led to correct programs that were devel-
oped quickly and could be easily tested and maintained. And although it didn’t matter
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much in either application, both small programs were more efficient in run time and
space than the big programs.

Why do programmers write big programs when small ones will do? One reason is
that they lack the important laziness mentioned in Section 2.5; they rush ahead to
code their first idea. But in both cases I’ve described, there was a deeper problem: the
programmers thought about their problems in languages in which arrays are typically
used as fixed tables that are initialized at the beginning of a program and never
altered. In his book described in Section 1.7, James Adams would say that the pro-
grammers had ‘‘conceptual blocks’’ against using a dynamic array of counters.

There are many other reasons that programmers make these mistakes. When 1
prepared to write this column I found a similar example in my own code for the sur-
vey program. The main input loop had forty lines of code in eight five-statement
blocks, the first two of which could be expressed as

ethnicgroup = entry[0]
campus = entry[1]
if entry[2] == refused
declined[ethnicgroup, 2]++
else
j =1+ entry[2]
count[campus, ethnicgroup, jl++
if entry[3] == refused
declined[ethnicgroup, 3]++
else
j =4 + entry[3]
count[campus, ethnicgroup, j]l++

I could have replaced forty of those lines with six, after initializing the array offset to
contain 0,0, 1, 4,6, ...

for i = [2, 8]
if entry[i] == refused
declined[ethnicgroup, il++
else
j = offset[i] + entry[i]
count[campus, ethnicgroup, jl++

I had been so satisfied to get one order-of-magnitude reduction in code length that I
missed another one staring me in the face.

3.2 Form-Letter Programming

You’ve just typed your name and password to log in to the web site of your
favorite store. The next page you see looks something like
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Welcome back, Jane!
We hope that you and all the members
of the Public family are constantly
reminding your neighbors there
on Maple Street to shop with us.
As usual, we will ship your order to
Ms. Jane Q. Public
600 Maple Street
Your Town, Iowa 12345

As a programmet, you realize that behind the scenes a computer looked up your user
name in a database and retrieved fields like

Public|Jane|QiMs. |600|Maple Street|Your Town|Iowall2345

But how exactly did the program construct that customized web page from your
database record? The hasty programmer may be tempted to write a program that
begins something like

read lastname, firstname, init, title, streetnum,
streetname, town, state, zip

print "Welcome back,", firstname, "!"

print "We hope that you and all the members"

print "of the", lastname, "family are constantly"

print "“reminding your neighbors there"

print "on", streetname, "to shop with us."

print "As usual, we will ship your order to"

print " ", title, firstnam