

Programming
Pearls

Second Edition

This page intentionally left blank

Programming
Pearls

Second Edition

JON BENTLEY

Bell Labs, Lucent Technologies
Murray Hill, New Jersey

ACM Press
New York, New York

AAddison-Wesley

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trade-
mark claim, the designations have been printed in initial caps or all caps.

The author and publishers have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is as-
sumed for incidental or consequential damages in connection with or arising out of the use of the infor-
mation or programs contained herein.

This book is published as part of ACM Press Books—a collaboration between the Association for Com-
puting (ACM) and Addison-Wesley. ACM is the oldest and largest educational and scientific society in
the information technology field. Through its high-quality publications and services, ACM is a major
force in advancing the skills and knowledge of IT professionals throughout the world. For further infor-
mation about ACM, contact:

ACM Member Services ACM European Service Center
1515 Broadway, 17th Floor 108 Cowley Road
New York, NY 10036-5701 Oxford OX4IJF
Phone: 1-212-626-0500 United Kingdom
Fax: 1-212-944-1318 Phone: 144-1865-382338
E-mail: ACMHELP@ACM.org Fax: 144-1865-381338

E-mail: acm.europe@acm.org
URL: http://www.acm.org

The publisher offers discounts on this book when ordered in quantity for special sales. For more infor-
mation, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com.

Visit Addison-Wesley on the Web: www.awprofessional.com

Copyright © 2000 by Lucent Technologies. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form,
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior con-
sent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

This book was typeset in Times Roman and Lucida Sans Typewriter by the author.

Text printed on recycled and acid-free paper.

ISBN 0-201-65788-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

Twenty-Fifth printing, January 2015

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
ISBN 0-201-65788-0

Twenty- printing, 201F Jifth anuary 5

http://www.acm.org
http://www.awprofessional.com

PREFACE

Computer programming has many faces. Fred Brooks paints the big picture in
The Mythical Man Month] his essays underscore the crucial role of management in
large software projects. At a finer grain, Steve McConnell teaches good programming
style in Code Complete. The topics in those books are the key to good software and
the hallmark of the professional programmer. Unfortunately, though, the workman-
like application of those sound engineering principles isn't always thrilling — until
the software is completed on time and works without surprise.

About the Book

The columns in this book are about a more glamorous aspect of the profession:
programming pearls whose origins lie beyond solid engineering, in the realm of
insight and creativity. Just as natural pearls grow from grains of sand that have
irritated oysters, these programming pearls have grown from real problems that have
irritated real programmers. The programs are fun, and they teach important program-
ming techniques and fundamental design principles.

Most of these essays originally appeared in my "Programming Pearls" column in
Communications of the Association for Computing Machinery. They were collected,
revised and published as the first edition of this book in 1986. Twelve of the thirteen
pieces in the first edition have been edited substantially for this edition, and three new
columns have been added.

The only background the book assumes is programming experience in a high-level
language. Advanced techniques (such as templates in C++) show up now and then,
but the reader unfamiliar with such topics will be able to skip to the next section with
impunity.

Although each column may be read by itself, there is a logical grouping to the
complete set. Columns 1 through 5 form Part I of the book. They review program-
ming fundamentals: problem definition, algorithms, data structures and program veri-
fication and testing. Part II is built around the theme of efficiency, which is some-
times important in itself and is always a fine springboard into interesting program-
ming problems. Part III applies those techniques to several substantial problems in
sorting, searching and strings.

VI PROGRAMMING PEARLS

One hint about reading the essays: don't go too fast. Read them carefully, one per
sitting. Try the problems as they are posed — some of them look easy until you've
butted your head against them for an hour or two. Afterwards, work hard on the prob-
lems at the end of each column: most of what you learn from this book will come out
the end of your pencil as you scribble down your solutions. If possible, discuss your
ideas with friends and colleagues before peeking at the hints and solutions in the back
of the book. The further reading at the end of each chapter isn't intended as a schol-
arly reference list; I've recommended some good books that are an important part of
my personal library.

This book is written for programmers. I hope that the problems, hints, solutions,
and further reading make it useful for individuals. The book has been used in classes
including Algorithms, Program Verification and Software Engineering. The catalog
of algorithms in Appendix 1 is a reference for practicing programmers, and also
shows how the book can be integrated into classes on algorithms and data structures.

The Code

The pseudocode programs in the first edition of the book were all implemented,
but I was the only person to see the real code. For this edition, I have rewritten all the
old programs and written about the same amount of new code. The programs are
available at

www. prog ramrrri ngpearl s. com

The code includes much of the scaffolding for testing, debugging and timing the func-
tions. The site also contains other relevant material. Because so much software is
now available online, a new theme in this edition is how to evaluate and use software
components.

The programs use a terse coding style: short variable names, few blank lines, and
little or no error checking. This is inappropriate in large software projects, but it is
useful to convey the key ideas of algorithms. Solution 5.1 gives more background on
this style.

The text includes a few real C and C++ programs, but most functions are
expressed in a pseudocode that takes less space and avoids inelegant syntax. The
notation for i = [0, n) iterates / from 0 through n-l. In these for loops, left and
right parentheses denote open ranges (which do not include the end values), and left
and right square brackets denote closed ranges (which do include the end values).
The phrase function(i, j) still calls a function with parameters i and7, and array [/, j]
still accesses an array element.

This edition reports the run times of many programs on "my computer", a
400MHz Pentium II with 128 megabytes of RAM running Windows NT 4.0. I timed
the programs on several other machines, and the book reports the few substantial dif-
ferences that I observed. All experiments used the highest available level of compiler
optimization. I encourage you to time the programs on your machine; I bet that you'll
find similar ratios of run times.

www. prog ramrrri ngpearl s. com

PREFACE Vll

To Readers of the First Edition

I hope that your first response as you thumb through this edition of the book is,
"This sure looks familiar." A few minutes later, I hope that you'll observe, "I've
never seen that before."

This version has the same focus as the first edition, but is set in a larger context.
Computing has grown substantially in important areas such as databases, networking
and user interfaces. Most programmers should be familiar users of such technologies.
At the center of each of those areas, though, is a hard core of programming problems.
Those programs remain the theme of this book. This edition of the book is a slightly
larger fish in a much larger pond.

One section from old Column 4 on implementing binary search grew into new
Column 5 on testing, debugging and timing. Old Column 11 grew and split into new
Columns 12 (on the original problem) and 13 (on set representations). Old Column
13 described a spelling checker that ran in a 64-kilobyte address space; it has been
deleted, but its heart lives on in Section 13.8. New Column 15 is about string prob-
lems. Many sections have been inserted into the old columns, and other sections were
deleted along the way. With new problems, new solutions, and four new appendices,
this edition of the book is 25 percent longer.

Many of the old case studies in this edition are unchanged, for their historical
interest. A few old stories have been recast in modern terms.

Acknowledgments for the First Edition

I am grateful for much support from many people. The idea for a
Communications of the ACM column was originally conceived by Peter Denning and
Stuart Lynn. Peter worked diligently within ACM to make the column possible and
recruited me for the job. ACM Headquarters staff, particularly Roz Steier and Nancy
Adriance, have been very supportive as these columns were published in their original
form. I am especially indebted to the ACM for encouraging publication of the
columns in their present form, and to the many CACM readers who made this
expanded version necessary and possible by their comments on the original columns.

Al Aho, Peter Denning, Mike Garey, David Johnson, Brian Kernighan, John Lin-
derman, Doug Mcllroy and Don Stanat have all read each column with great care,
often under extreme time pressure. I am also grateful for the particularly helpful com-
ments of Henry Baird, Bill Cleveland, David Gries, Eric Grosse, Lynn Jelinski, Steve
Johnson, Bob Melville, Bob Martin, Arno Penzias, Marilyn Roper, Chris Van Wyk,
Vic Vyssotsky and Pamela Zave. Al Aho, Andrew Hume, Brian Kernighan, Ravi
Sethi, Laura Skinger and Bjarne Stroustrup provided invaluable help in bookmaking,
and West Point cadets in EF 485 field tested the penultimate draft of the manuscript.
Thanks, all.

Vlll PROGRAMMING PEARLS

Acknowledgments for the Second Edition

Dan Bentley, Russ Cox, Brian Kernighan, Mark Kernighan, John Linderman,
Steve McConnell, Doug Mcllroy, Rob Pike, Howard Trickey and Chris Van Wyk
have all read this edition with great care. I am also grateful for the particularly helpful
comments of Paul Abrahams, Glenda Childress, Eric Grosse, Ann Martin, Peter Mcll-
roy, Peter Memishian, Sundar Narasimhan, Lisa Ricker, Dennis Ritchie, Ravi Sethi,
Carol Smith, Tom Szymanski and Kentaro Toyama. I thank Peter Gordon and his
colleagues at Addison-Wesley for their help in preparing this edition.

Murray Hill, New Jersey J. B.
December, 1985
August, 1999

CONTENTS

Parti: PRELIMINARIES 1

Column 1: Cracking the Oyster 3
A Friendly Conversation • Precise Problem Statement • Program Design •
Implementation Sketch . Principles • Problems • Further Reading

Column 2: Aha! Algorithms 11
Three Problems • Ubiquitous Binary Search . The Power of Primitives •
Getting It Together: Sorting • Principles . Problems • Further Reading •
Implementing an Anagram Program

Column 3: Data Structures Programs 21
A Survey Program • Form-Letter Programming . An Array of Examples •
Structuring Data • Powerful Tools for Specialized Data • Principles • Prob-
lems • Further Reading

Column 4: Writing Correct Programs 33
The Challenge of Binary Search • Writing the Program • Understanding the
Program . Principles • The Roles of Program Verification • Problems •
Further Reading

Column 5: A Small Matter of Programming 45
From Pseudocode to C • A Test Harness • The Art of Assertion . Auto-
mated Testing . Timing . The Complete Program • Principles • Problems
. Further Reading • Debugging

Part II: PERFORMANCE 59

Column 6: Perspective on Performance 61
A Case Study . Design Levels • Principles • Problems • Further Reading

Column 7: The Back of the Envelope 67
Basic Skills • Performance Estimates • Safety Factors • Little's Law •
Principles • Problems • Further Reading • Quick Calculations in Everyday
Life

ix

PROGRAMMING PEARLS

Column 8: Algorithm Design Techniques 77
The Problem and a Simple Algorithm • Two Quadratic Algorithms • A
Divide-and-Conquer Algorithm • A Scanning Algorithm • What Does It
Matter? • Principles . Problems . Further Reading

Column 9: Code Tuning 87
A Typical Story • A First Aid Sampler • Major Surgery — Binary Search .
Principles • Problems • Further Reading

Column 10: Squeezing Space 99
The Key — Simplicity . An Illustrative Problem . Techniques for Data
Space • Techniques for Code Space • Principles . Problems • Further
Reading • A Big Squeeze

Part III: THE PRODUCT 113

Column 11: Sorting 115
Insertion Sort • A Simple Quicksort • Better Quicksorts • Principles •
Problems • Further Reading

Column 12: A Sample Problem 125
The Problem • One Solution • The Design Space • Principles . Problems
• Further Reading

Column 13: Searching 133
The Interface • Linear Structures • Binary Search Trees • Structures for
Integers • Principles • Problems • Further Reading . A Real Searching
Problem

Column 14: Heaps 147
The Data Structure . Two Critical Functions • Priority Queues . A Sorting
Algorithm • Principles • Problems • Further Reading

Column 15: Strings of Pearls 161
Words • Phrases • Generating Text • Principles • Problems . Further
Reading

Epilog to the First Edition 175

Epilog to the Second Edition 177

Appendix 1: A Catalog of Algorithms 179

Appendix 2: An Estimation Quiz 183

Appendix 3: Cost Models for Time and Space 185

CONTENTS XI

Appendix 4: Rules for Code Tuning 191

Appendix 5: C++ Classes for Searching 197

Hints for Selected Problems 201

Solutions to Selected Problems 205

Index 233

This page intentionally left blank

PARTI PRELIMINARIES

These five columns review the basics of programming. Column 1 is the history of
a single problem. A combination of careful problem definition and straightforward
programming techniques led to an elegant solution. The column illustrates the central
theme of this book: thinking hard about a real case study can be fun and can also lead
to practical benefits.

Column 2 examines three problems, with an emphasis on how algorithmic insights
can yield simple and effective code. Column 3 surveys the crucial role that the struc-
ture of data can play in software design.

Column 4 introduces program verification as a tool for writing correct code. Veri-
fication techniques are used extensively as we derive subtle (and fast) functions in
Columns 9, 11 and 14. Column 5 shows how we implement those abstract programs
in real code: we use scaffolding to probe a function, to bombard it with test cases, and
to measure its performance.

This page intentionally left blank

COLUMN 1: CRACKING THE OYSTER

The programmer's question was simple: "How do I sort a disk file?" Before I
tell you how I made my first mistake, let me give you a chance to do better than I did.
What would you have said?

1.1 A Friendly Conversation

My mistake was to answer his question. I gave him a thumbnail sketch of how to
implement a Merge Sort on disk. My suggestion that he dig into an algorithms text
met with less than enthusiasm — he was more concerned about solving the problem
than furthering his education. I then told him about a disk sorting program in a popu-
lar programming book. The program consisted of about two hundred lines of code in
a dozen functions; I estimated that implementing and testing the code would have
taken the programmer at most a week.

I thought that I had solved his problem, but his hesitation led me back to the right
track. The conversation then went something like this, with my questions in italics.

Why do you want to write your own sort at all? Why not use a sort provided by
your system?
I need the sort in the middle of a large system, and for obscure technical reasons, I
can't use the system file-sorting program.
What exactly are you sorting? How many records are in the file? What is the
format of each record?
The file contains at most ten million records; each record is a seven-digit integer.
Wait a minute. If the file is that small, why bother going to disk at all? Why not
just sort it in main memory?

Although the machine has many megabytes of main memory, this function is part
of a big system. I expect that I'll have only about a megabyte free at that point.
Is there anything else you can tell me about the records?
Each one is a seven-digit positive integer with no other associated data, and no
integer can appear more than once.
The context makes the problem clearer. In the United States, telephone numbers

consist of a three-digit "area code" followed by seven additional digits. Telephone

3

4 PROGRAMMING PEARLS COLUMN 1

calls to numbers with the "toll-free" area code of 800 (the only such code at the time)
were not charged. A real database of toll-free telephone numbers includes a great deal
of information: the toll-free telephone number, the real number to which calls are
routed (sometimes several numbers, with rules on which calls go where when), the
name and address of the subscriber, and so on.

The programmer was building a small corner of a system for processing such a
database, and the integers to be sorted were toll-free telephone numbers. The input
file was a list of numbers (with all other information removed), and it was an error to
include the same number twice. The desired output was a file of the numbers, sorted
in increasing numeric order. The context also defines the performance requirements.
During a long session with the system, the user requested a sorted file roughly once an
hour and could do nothing until the sort was completed. The sort therefore couldn't
take more than a few minutes, while ten seconds was a more desirable run time.

1.2 Precise Problem Statement

To the programmer these requirements added up to, ' 'How do I sort a disk file?''
Before we attack the problem, let's arrange what we know in a less biased and more
useful form.
Input: A file containing at most n positive integers, each less than n, where

n = 107. It is a fatal error if any integer occurs twice in the input. No
other data is associated with the integer.

Output: A sorted list in increasing order of the input integers.
Constraints: At most (roughly) a megabyte of storage is available in main memory;

ample disk storage is available. The run time can be at most several
minutes; a run time of ten seconds need not be decreased.

Think for a minute about this problem specification. How would you advise the pro-
grammer now?

1.3 Program Design

The obvious program uses a general disk-based Merge Sort as a starting point but
trims it to exploit the fact that we are sorting integers. That reduces the two hundred
lines of code by a few dozen lines, and also makes it run faster. It might still take a
few days to get the code up and running.

A second solution makes even more use of the particular nature of this sorting
problem. If we store each number in seven bytes, then we can store about 143,000
numbers in the available megabyte. If we represent each number as a 32-bit integer,
though, then we can store 250,000 numbers in the megabyte. We will therefore use a
program that makes 40 passes over the input file. On the first pass it reads into mem-
ory any integer between 0 and 249,999, sorts the (at most) 250,000 integers and writes
them to the output file. The second pass sorts the integers from 250,000 to 499,999,
and so on to the 40f/I pass, which sorts 9,750,000 to 9,999,999. A Quicksort would be
quite efficient for the main-memory sorts, and it requires only twenty lines of code (as

COLUMN 1 CRACKING THE OYSTER

we'll see in Column 11). The entire program could therefore be implemented in a
page or two of code. It also has the desirable property that we no longer have to
worry about using intermediate disk files; unfortunately, for that benefit we pay the
price of reading the entire input file 40 times.

A Merge Sort program reads the file once from the input, sorts it with the aid of
work files that are read and written many times, and then writes it once.

n

1

iany|

Merge
Sort

1
Output

File

The 40-pass algorithm reads the input file many times and writes the output just once,
using no intermediate files.

40 Multipass
Sort

1 "-
Output

_ File

We would prefer the following scheme, which combines the advantages of the previ-
ous two. It reads the input just once, and uses no intermediate files.

1 Wonder
Sort

1 ^
Output

. File

We can do this only if we represent all the integers in the input file in the available
megabyte of main memory. Thus the problem boils down to whether we can repre-
sent at most ten million distinct integers in about eight million available bits. Think
about an appropriate representation.

1.4 Implementation Sketch

Viewed in this light, the bitmap or bit vector representation of a set screams out to
be used. We can represent a toy set of nonnegative integers less than 20 by a string of
20 bits. For instance, we can store the set {1, 2, 3, 5, 8, 13} in this string:

0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

The bits representing numbers in the set are 1, and all other bits are 0.
In the real problem, the seven decimal digits of each integer denote a number less

than ten million. We'll represent the file by a string of ten million bits in which the
ith bit is on if and only if the integer / is in the file. (The programmer found two mil-
lion spare bits; Problem 5 investigates what happens when a megabyte is a firm limit.)
This representation uses three attributes of this problem not usually found in sorting

Work

Files

Input

6 PROGRAMMING PEARLS COLUMN 1

problems: the input is from a relatively small range, it contains no duplicates, and no
data is associated with each record beyond the single integer.

Given the bitmap data structure to represent the set of integers in the file, the pro-
gram can be written in three natural phases. The first phase initializes the set to empty
by turning off all bits. The second phase builds the set by reading each integer in the
file and turning on the appropriate bit. The third phase produces the sorted output file
by inspecting each bit and writing out the appropriate integer if the bit is one. If n is
the number of bits in the vector (in this case 10,000,000), the program can be
expressed in pseudocode as:

/* phase 1: Initialize set to empty */
for i = [0, n)

bit[i] = 0
/* phase 2: insert present elements into the set */

for each i in the input file
bit[i] = 1

/* phase 3: write sorted output */
for i = [0, n)

if bit[i] == 1
write i on the output file

(Recall from the preface that the notation for i = [0, n) iterates / from 0 to n - 1.)
This sketch was sufficient for the programmer to solve his problem. Some of the

implementation details he faced are described in Problems 2, 5 and 7.

1.5 Principles

The programmer told me about his problem in a phone call; it took us about fifteen
minutes to get to the real problem and find the bitmap solution. It took him a couple
of hours to implement the program in a few dozen lines of code, which was far supe-
rior to the hundreds of lines of code and the week of programming time that we had
feared at the start of the phone call. And the program was lightning fast: while a
Merge Sort on disk might have taken many minutes, this program took little more
than the time to read the input and to write the output — about ten seconds. Solution
3 contains timing details on several programs for the task.

Those facts contain the first lesson from this case study: careful analysis of a small
problem can sometimes yield tremendous practical benefits. In this case a few min-
utes of careful study led to an order of magnitude reduction in code length, program-
mer time and run time. General Chuck Yeager (the first person to fly faster than
sound) praised an airplane's engine system with the words "simple, few parts, easy to
maintain, very strong"; this program shares those attributes. The program's special-
ized structure, however, would be hard to modify if certain dimensions of the
specifications were changed. In addition to the advertising for clever programming,
this case illustrates the following general principles.

The Right Problem. Defining the problem was about ninety percent of this battle

COLUMN 1 CRACKING THE OYSTER

— I'm glad that the programmer didn't settle for the first program I described. Prob-
lems 10, 11 and 12 have elegant solutions once you pose the right problem; think hard
about them before looking at the hints and solutions.

The Bitmap Data Structure. This data structure represents a dense set over a finite
domain when each element occurs at most once and no other data is associated with
the element. Even if these conditions aren't satisfied (when there are multiple ele-
ments or extra data, for instance), a key from a finite domain can be used as an index
into a table with more complicated entries; see Problems 6 and 8.

Multiple-Pass Algorithms. These algorithms make several passes over their input
data, accomplishing a little more each time. We saw a 40-pass algorithm in Section
1.3; Problem 5 encourages you to develop a two-pass algorithm.

A Time-Space Tradeoff and One That Isn't. Programming folklore and theory
abound with time-space tradeoffs: by using more time, a program can run in less
space. The two-pass algorithm in Solution 5, for instance, doubles a program's run
time to halve its space. It has been my experience more frequently, though, that
reducing a program's space requirements also reduces its run time.t The space-
efficient structure of bitmaps dramatically reduced the run time of sorting. There
were two reasons that the reduction in space led to a reduction in time: less data to
process means less time to process it, and keeping data in main memory rather than on
disk avoids the overhead of disk accesses. Of course, the mutual improvement was
possible only because the original design was far from optimal.

A Simple Design. Antoine de Saint-Exupery, the French writer and aircraft
designer, said that, "A designer knows he has arrived at perfection not when there is
no longer anything to add, but when there is no longer anything to take away." More
programmers should judge their work by this criterion. Simple programs are usually
more reliable, secure, robust and efficient than their complex cousins, and easier to
build and to maintain.

Stages of Program Design. This case illustrates the design process that is
described in detail in Section 12.4.

1.6 Problems

Hints for and solutions to selected problems can be found in sections at the back
of the book.
1. If memory were not scarce, how would you implement a sort in a language with

libraries for representing and sorting sets?

t Tradeoffs are common to all engineering disciplines; automobile designers, for instance, might trade re-
duced mileage for faster acceleration by adding heavy components. Mutual improvements are preferred,
though. A review of a small car I once drove observed that "the weight saving on the car's basic structure
translates into further weight reductions in the various chassis components — and even the elimination of
the need for some, such as power steering".

8 PROGRAMMING PEARLS COLUMN 1

2. How would you implement bit vectors using bitwise logical operations (such as
and, or and shift)?

3. Run-time efficiency was an important part of the design goal, and the resulting
program was efficient enough. Implement the bitmap sort on your system and
measure its run time; how does it compare to the system sort and to the sorts in
Problem 1? Assume that n is 10,000,000, and that the input file contains
1,000,000 integers.

4. If you take Problem 3 seriously, you will face the problem of generating k integers
less than n without duplicates. The simplest approach uses the first k positive inte-
gers. This extreme data set won't alter the run time of the bitmap method by
much, but it might skew the run time of a system sort. How could you generate a
file of k unique random integers between 0 and n -1 in random order? Strive for a
short program that is also efficient.

5. The programmer said that he had about a megabyte of free storage, but the code
we sketched uses 1.25 megabytes. He was able to scrounge the extra space with-
out much trouble. If the megabyte had been a hard and fast boundary, what would
you have recommended? What is the run time of your algorithm?

6. What would you recommend to the programmer if, instead of saying that each
integer could appear at most once, he told you that each integer could appear at
most ten times? How would your solution change as a function of the amount of
available storage?

7. [R. Weil] The program as sketched has several flaws. The first is that it assumes
that no integer appears twice in the input. What happens if one does show up
more than once? How could the program be modified to call an error function in
that case? What happens when an input integer is less than zero or greater than or
equal to nl What if an input is not numeric? What should a program do under
those circumstances? What other sanity checks could the program incorporate?
Describe small data sets that test the program, including its proper handling of
these and other ill-behaved cases.

8. When the programmer faced the problem, all toll-free phone numbers in the
United States had the 800 area code. Toll-free codes now include 800, 877 and
888, and the list is growing. How would you sort all of the toll-free numbers
using only a megabyte? How can you store a set of toll-free numbers to allow
very rapid lookup to determine whether a given toll-free number is available or
already taken?

9. One problem with trading more space to use less time is that initializing the space
can itself take a great deal of time. Show how to circumvent this problem by
designing a technique to initialize an entry of a vector to zero the first time it is
accessed. Your scheme should use constant time for initialization and for each
vector access, and use extra space proportional to the size of the vector. Because
this method reduces initialization time by using even more space, it should be con-
sidered only when space is cheap, time is dear and the vector is sparse.

COLUMN 1 CRACKING THE OYSTER

10. Before the days of low-cost overnight deliveries, a store allowed customers to
order items over the telephone, which they picked up a few days later. The store's
database used the customer's telephone number as the primary key for retrieval
(customers know their phone numbers and the keys are close to unique). How
would you organize the store's database to allow orders to be inserted and
retrieved efficiently?

11. In the early 1980's Lockheed engineers transmitted daily a dozen drawings from a
Computer Aided Design (CAD) system in their Sunnyvale, California, plant to a
test station in Santa Cruz. Although the facilities were just 25 miles apart, an
automobile courier service took over an hour (due to traffic jams and mountain
roads) and cost a hundred dollars per day. Propose alternative data transmission
schemes and estimate their cost.

12. Pioneers of human space flight soon realized the need for writing implements that
work well in the extreme environment of space. A popular urban legend asserts
that the United States National Aeronautics and Space Administration (NASA)
solved the problem with a million dollars of research to develop a special pen.
According to the legend, how did the Soviets solve the same problem?

1.7 Further Reading

This little exercise has only skimmed the fascinating topic of specifying a pro-
gram. For a deep insight into this crucial activity, see Michael Jackson's Software
Requirements & Specifications, published by Addison-Wesley in 1995. The tough
topics in the book are presented as a delightful collection of independent but reinforc-
ing little essays.

In the case study described in this column, the programmer's main problem was
not so much technical as psychological: he couldn't make progress because he was
trying to solve the wrong problem. We finally solved his problem by breaking
through his conceptual block and solving an easier problem. Conceptual
Blockbusting by James L. Adams (the third edition was published by Perseus in 1986)
studies this kind of leap and is generally a pleasant prod towards more creative think-
ing. Although it was not written with programmers in mind, many of its lessons are
particularly appropriate for programming problems. Adams defines conceptual blocks
as ' 'mental walls that block the problem-solver from correctly perceiving a problem
or conceiving its solution''; Problems 10, 11 and 12 encourage you to bust some.

This page intentionally left blank

COLUMN 2 AHA! ALGORITHMS

The study of algorithms offers much to the practicing programmer. A course on
the subject equips students with functions for important tasks and techniques for
attacking new problems. We'll see in later columns how advanced algorithmic tools
sometimes have a substantial influence on software systems, both in reduced develop-
ment time and in faster execution speed.

As crucial as those sophisticated ideas are, algorithms have a more important
effect at a more common level of programming. In his book Aha! Insight (from
which I stole my title), Martin Gardner describes the contribution I have in mind: "A
problem that seems difficult may have a simple, unexpected solution." Unlike the
advanced methods, the aha! insights of algorithms don't come only after extensive
study; they're available to any programmer willing to think seriously before, during
and after coding.

2.1 Three Problems

Enough generalities. This column is built around three little problems; try them
before you read on.

A. Given a sequential file that contains at most four billion 32-bit integers in random
order, find a 32-bit integer that isn't in the file (and there must be at least one
missing — why?). How would you solve this problem with ample quantities of
main memory? How would you solve it if you could use several external
"scratch" files but only a few hundred bytes of main memory?

B. Rotate a one-dimensional vector of n elements left by / positions. For instance,
with n=8 and /=3, the vector abcdefgh is rotated to defghabc. Simple code uses an
n-element intermediate vector to do the job in n steps. Can you rotate the vector
in time proportional to n using only a few dozen extra bytes of storage?

C. Given a dictionary of English words, find all sets of anagrams. For instance,
"pots", "stop" and "tops" are all anagrams of one another because each can be
formed by permuting the letters of the others.

11

12 PROGRAMMING PEARLS COLUMN 2

2.2 Ubiquitous Binary Search

I'm thinking of an integer between 1 and 100; you guess it. Fifty? Too low.
Seventy-five? Too high. And so the game goes, until you guess my number. If my
integer is originally between 1 and n, then you can guess it in Iog2 n guesses. If n is a
thousand, ten guesses will do, and if n is a million, you'll need at most twenty.

This example illustrates a technique that solves a multitude of programming prob-
lems: binary search. We initially know that an object is within a given range, and a
probe operation tells us whether the object is below, at, or above a given position.
Binary search locates the object by repeatedly probing the middle of the current range.
If the probe doesn't find the object, then we halve the current range and continue. We
stop when we find what we're looking for or when the range becomes empty.

The most common application of binary search in programming is to search for an
element in a sorted array. When looking for the entry 50, the algorithm makes the fol-
lowing probes.

26 26 31 31 32 38 38 41 43 46 50 53 58 59 79 97

3 4 I2

A binary search program is notoriously hard to get right; we'll study the code in detail
in Column 4.

Sequential search uses about n/2 comparisons on the average to search a table of n
elements, while binary search never uses more than about Iog2 n comparisons. That
can make a big difference in system performance; this anecdote from a
Communications of the ACM case study describing 'The TWA Reservation System"
is typical.

We had one program that was doing a linear search through a very large
piece of memory almost 100 times a second. As the network grew, the
average CPU time per message was up 0.3 milliseconds, which is a huge
jump for us. We traced the problem to the linear search, changed the
application program to use a binary search, and the problem went away.

I've seen that same story in many systems. Programmers start with the simple data
structure of sequential search, which is often fast enough. If it becomes too slow,
sorting the table and using a binary search can usually remove the bottleneck.

But the story of binary search doesn't end with rapidly searching sorted arrays.
Roy Weil applied the technique in cleaning an input file of about a thousand lines that
contained a single bad line. Unfortunately, the bad line wasn't known by sight; it
could be identified only by running a (starting) portion of the file through a program
and seeing a wildly erroneous answer, which took several minutes. His predecessors
at debugging had tried to spot it by running a few lines at a time through the program,

COLUMN 2 AHA! ALGORITHMS 13

and they had been making progress towards a solution at a snail's pace. How did
Weil find the culprit in just ten runs of the program?

With this warmup, we can tackle Problem A. The input is on a sequential file
(think of a tape or disk — although a disk may be randomly accessed, it is usually
much faster to read a file from beginning to end). The file contains at most four bil-
lion 32-bit integers in random order, and we are to find one 32-bit integer not present.
(There must be at least one missing, because there are 232 or 4,294,967,296 such inte-
gers.) With ample main memory, we could use the bitmap technique from Column 1
and dedicate 536,870,912 8-bit bytes to a bitmap representing the integers seen so far.
The problem, however, also asks how we can find the missing integer if we have only
a few hundred bytes of main memory and several spare sequential files. To set this up
as a binary search we have to define a range, a representation for the elements within
the range, and a probing method to determine which half of a range holds the missing
integer. How can we do this?

We'll use as the range a sequence of integers known to contain at least one miss-
ing element, and we'll represent the range by a file containing all the integers in it.
The insight is that we can probe a range by counting the elements above and below its
midpoint: either the upper or the lower range has at most half the elements in the total
range. Because the total range has a missing element, the smaller half must also have
a missing element. These are most of the ingredients of a binary search algorithm for
the problem; try putting them together yourself before you peek at the solutions to see
how Ed Reingold did it.

These uses of binary search just scratch the surface of its applications in program-
ming. A root finder uses binary search to solve a single-variable equation by succes-
sively halving an interval; numerical analysts call this the bisection method. When
the selection algorithm in Solution 11.9 partitions around a random element and then
calls itself recursively on all elements on one side of that element, it is using a ' 'ran-
domized' ' binary search. Other uses of binary search include tree data structures and
program debugging (when a program dies a silent death, where do you probe the
source text to home in on the guilty statement?). In each of these examples, thinking
of the program as a few embellishments on top of the basic binary search algorithm
can give the programmer that all-powerful aha!

2.3 The Power of Primitives

Binary search is a solution that looks for problems; we'll now study a problem
that has several solutions. Problem B is to rotate the n-element vector x left by / posi-
tions in time proportional to n and with just a few dozen bytes of extra space. This
problem arises in applications in various guises. Some programming languages pro-
vide rotation as a primitive operation on vectors. More importantly, rotation corre-
sponds to swapping adjacent blocks of memory of unequal size: whenever you drag-
and-drop a block of text elsewhere in a file, you ask the program to swap two blocks
of memory. The time and space constraints are important in many applications.

14 PROGRAMMING PEARLS COLUMN 2

One might try to solve the problem by copying the first / elements of x to a tempo-
rary array, moving the remaining n - i elements left i places, and then copying the first
/ from the temporary array back to the last positions in x. However, the / extra loca-
tions used by this scheme make it too space-expensive. For a different approach, we
could define a function to rotate x left one position (in time proportional to ri) and call
it / times, but that would be too time-expensive.

To solve the problem within the resource bounds will apparently require a more
complicated program. One successful approach is a delicate juggling act: move ;t[0]
to the temporary t, then move x[i] t o x [Q] , x [2 i] to x [i] , and so on (taking all indices
into x modulo ri), until we come back to taking an element from Jt[0], at which point
we instead take the element from t and stop the process. When / is 3 and n is 12, that
phase moves the elements in this order.

If that process didn't move all the elements, then we start over at Jc[l], and continue
until we move all the elements. Problem 3 challenges you to reduce this idea to code;
be careful.

A different algorithm results from a different view of the problem: rotating the
vector x is really just swapping the two segments of the vector ab to be the vector ba,
where a represents the first i elements of x. Suppose a is shorter than b. Divide b into
bi and br so that br is the same length as a. Swap a and br to transform abtbr into
brbia. The sequence a is in its final place, so we can focus on swapping the two
parts of b. Since this new problem has the same form as the original, we can solve it
recursively. This algorithm can lead to an elegant program (Solution 3 describes an
iterative solution due to Gries and Mills), but it requires delicate code and some
thought to see that it is efficient enough.

The problem looks hard until you finally have the aha! insight: let's view the
problem as transforming the array ab into the array ba, but let's also assume that we
have a function that reverses the elements in a specified portion of the array. Starting
with ab, we reverse a to get arb, reverse b to get arbr, and then reverse the whole
thing to get (arbr)r', which is exactly ba. This results in the following code for rota-
tion; the comments show the results when abcdefgh is rotated left three elements.

reverse(0, 1-1) /* cbadefgh */
reverse(i, n-1) /* cbahgfed */
reverse(0, n-1) /* defghabc */

Doug Mcllroy gave this hand-waving example of rotating a ten-element array up five
positions; start with your palms towards you, left over right.

COLUMN 2 AHA! ALGORITHMS 15

Flip Left Hand Flip Right Hand Flip Both

The reversal code is time- and space-efficient, and is so short and simple that it's
pretty hard to get wrong. Brian Kernighan and P. J. Plauger used precisely this code
in their 1981 Software Tools in Pascal to move lines within a text editor. Kernighan
reports that it ran correctly the first time it was executed, while their previous code for
a similar task based on linked lists contained several bugs. This code is used in sev-
eral text processing systems, including the text editor with which I originally typed
this column. Ken Thompson wrote the editor and the reversal code in 1971, and
claims that it was part of the folklore even then.

2.4 Getting It Together: Sorting

Let's turn now to Problem C. Given a dictionary of English words (one word per
input line in lower case letters), we must find all anagram classes. There are several
good reasons for studying this problem. The first is technical: the solution is a nice
combination of getting the right viewpoint and then using the right tools. The second
reason is more compelling: wouldn't you hate to be the only person at a party who
didn't know that "deposit", "dopiest", "posited" and "topside" are anagrams?
And if those aren't enough, Problem 6 describes a similar problem in a real system.

Many approaches to this problem are surprisingly ineffective and complicated.
Any method that considers all permutations of letters for a word is doomed to failure.
The word "cholecystoduodenostomy" (an anagram in my dictionary of "duodenoc-
holecystostomy") has 22! permutations, and a few multiplications showed that
22! ~ 1.124x 1021. Even assuming the blazing speed of one picosecond per permuta-
tion, this will take 1.1 x 109 seconds. The rule of thumb that "TI seconds is a nanocen-
tury" (see Section 7.1) tells us that l . lxlO 9 seconds is a few decades. And any
method that compares all pairs of words is doomed to at least an overnight run on my
machine — there are about 230,000 words in the dictionary I used, and even a simple
anagram comparison takes at least a microsecond, so the total time is roughly

230,000 words x 230,000 comparisons/word x 1 microsecond/comparison

= 52,900xl06 microseconds = 52,900 seconds ~ 14.7 hours

Can you find a way to avoid both the above pitfalls?
The aha! insight is to sign each word in the dictionary so that words in the same

anagram class have the same signature, and then bring together words with equal sig-
natures. This reduces the original anagram problem to two subproblems: selecting a

16 PROGRAMMING PEARLS COLUMN 2

signature and collecting words with the same signature. Think about these problems
before reading further.

For the first problem we'll use a signature based on sortingt: order the letters
within the word alphabetically. The signature of "deposit" is "deiopst", which is
also the signature of "dopiest" and any other word in that class. To solve the second
problem, we'll sort the words in the order of their signatures. The best description I
have heard of this algorithm is Tom Cargill's hand waving: sort this way (with a hori-
zontal wave of the hand) then that way (a vertical wave). Section 2.8 describes an
implementation of this algorithm.

2.5 Principles

Sorting. The most obvious use of sorting is to produce sorted output, either as part
of the system specification or as preparation for another program (perhaps one that
uses binary search). But in the anagram problem, the ordering was not of interest; we
sorted to bring together equal elements (in this case signatures). Those signatures are
yet another application of sorting: ordering the letters within a word provides a
canonical form for the words within an anagram class. By placing extra keys on each
record and sorting by those keys, a sort function can be used as a workhorse for
rearranging data on disk files. We'll return to the subject of sorting several times in
Part III.

Binary Search. The algorithm for looking up an element in a sorted table is
remarkably efficient and can be used in main memory or on disk; its only drawback is
that the entire table must be known and sorted in advance. The strategy underlying
this simple algorithm is used in many other applications.

Signatures. When an equivalence relation defines classes, it is helpful to define a
signature such that every item in a class has the same signature and no other item
does. Sorting the letters within a word yields one signature for an anagram class;
other signatures are given by sorting and then representing duplicates by a count (so
the signature of "mississippi" might be "i4mlp2s4", or "i4mp2s4" if 1's are
deleted) or by keeping a 26-integer array telling how many times each letter occurs.
Other applications of signatures include the Federal Bureau of Investigation's method
for indexing fingerprints and the Soundex heuristic for identifying names that sound
alike but are spelled differently.

NAME
Smith
Smythe
Schultz
Shultz

SOUNDEX SIGNATURE
s530
s530
s243
s432

Knuth describes the Soundex method in Chapter 6 of his Sorting and Searching.

t This anagram algorithm has been independently discovered by many people, dating at least as far back as
themid-1960's.

COLUMN 2 AHA! ALGORITHMS 17

Problem Definition. Column 1 showed that determining what the user really
wants to do is an essential part of programming. The theme of this column is the next
step in problem definition: what primitives will we use to solve the problem? In each
case the aha! insight defined a new basic operation to make the problem trivial.

A Problem Solver's Perspective. Good programmers are a little bit lazy: they sit
back and wait for an insight rather than rushing forward with their first idea. That
must, of course, be balanced with the initiative to code at the proper time. The real
skill, though, is knowing the proper time. That judgment comes only with the experi-
ence of solving problems and reflecting on their solutions.

2.6 Problems
1. Consider the problem of finding all the anagrams of a given input word. How

would you solve this problem given only the word and the dictionary? What if
you could spend some time and space to process the dictionary before answering
any queries?

2. Given a sequential file containing 4,300,000,000 32-bit integers, how can you find
one that appears at least twice?

3. We skimmed two vector rotation algorithms that require subtle code; implement
each as a program. How does the greatest common divisor of / and n appear in
each program?

4. Several readers pointed out that while all three rotation algorithms require time
proportional to n, the juggling algorithm is apparently twice as fast as the reversal
algorithm: it stores and retrieves each element of the array just once, while the
reversal algorithm does so twice. Experiment with the functions to compare their
speeds on real machines; be especially sensitive to issues surrounding the locality
of memory references.

5. Vector rotation functions change the vector ab to ba\ how would you transform
the vector abc to cbal (This models the problem of swapping nonadjacent blocks
of memory.)

6. In the late 1970's, Bell Labs deployed a "user-operated directory assistance" pro-
gram that allowed employees to look up a number in a company telephone direc-
tory using a standard push-button telephone.

1

4

CHI

7

PRS

*•

2

ABC

5

JKL

8

TUV

0

OPER

3

DBF

6

MNO

9

WXY

#

18 PROGRAMMING PEARLS COLUMN 2

To find the number of the designer of the system, Mike Lesk, one pressed
"LESK*M*" (that is, "5375*6*") and the system spoke his number. Such ser-
vices are now ubiquitous. One problem that arises in such systems is that different
names may have the same push-button encoding; when this happens in Lesk's sys-
tem, it asks the user for more information. Given a large file of names, such as a
standard metropolitan telephone directory, how would you locate these "false
matches"? (When Lesk did this experiment on such telephone directories, he
found that the incidence of false matches was just 0.2 percent.) How would you
implement the function that is given a push-button encoding of a name and returns
the set of possible matching names?

7. In the early 1960's, Vic Vyssotsky worked with a programmer who had to trans-
pose a 4000-by-4000 matrix stored on magnetic tape (each record had the same
format in several dozen bytes). The original program his colleague suggested
would have taken fifty hours to run; how did Vyssotsky reduce the run time to half
an hour?

8. [J. Ullman] Given a set of n real numbers, a real number t, and an integer £, how
quickly can you determine whether there exists a fc-element subset of the set that
sums to at most tl

9. Sequential search and binary search represent a tradeoff between search time and
preprocessing time. How many binary searches need be performed in an n-
element table to buy back the preprocessing time required to sort the table?

10. On the day a new researcher reported to work for Thomas Edison, Edison asked
him to compute the volume of an empty light bulb shell. After several hours with
calipers and calculus, the fresh hire returned with the answer of 150 cubic cen-
timeters. In a few seconds, Edison computed and responded "closer to 155" —
how did he do it?

2.7 Further Reading

Section 8.8 describes several good books on algorithms.

2.8 Implementing an Anagram Program [Sidebar]^

I organized my anagram program as a three-stage "pipeline" in which the output
file of one program is fed as the input file to the next. The first program signs the
words, the second sorts the signed file, and the third squashes the words in an ana-
gram class onto one line. Here's the process on a six-word dictionary.

t Sidebars in magazine columns are offset from the text, often in a bar at the side of the page. While they
aren't an essential part of the column, they provide perspective on the material. In this book they appear as
the last section in a column, marked as a "sidebar".

COLUMN 2 AHA! ALGORITHMS 19

pans
pots
optF -^» si

snap
stop
tops

anps pans
opst pots
opt opt

gn -^ r r — =3* so
anps snap
opst stop
opst tops

anps pans
anps snap

opt opt
rt -ŝ \ \ -^ squ

opst pots
opst stop
opst tops

pans snap
ash -^ opt

The output contains three anagram classes.
The following C sign program assumes that no word contains more than one hun-

dred letters and that the input file contains only lower-case letters and newline charac-
ters. (I therefore preprocessed the dictionary with a one-line command to change
upper-case characters to lower case.)

int charcomp(char *x, char *y) { return *x - *y; }

#define WORDMAX 100
int main(void)
{ char word[WORDMAX], sig[WORDMAX];

while (scanf("%s", word) != EOF) {
strcpy(sig, word);
qsort(sig, strlen(sig), sizeof(char), charcomp);
printf("%s %s\n", sig, word);

return 0;

The while loop reads one string at a time into word until it comes to the end of the
file. The strcpy function copies the input word to the word sig, whose characters are
then sorted by calling the C Standard Library qsort (the parameters are the array to be
sorted, its length, the number of bytes per sort item, and the name of the function to
compare two items, in this case, characters within the word). Finally, the printf state-
ment prints the signature followed by the word itself and a newline.

The system sort program brings together all words with the same signature; the
squash program prints them on a single line.

int main(void)
{ char word[WORDMAX], sig[WORDMAX], oldsig[WORDMAX];

int linenum = 0;
strcpy(oldsig, "");
while (scanf("%s %s", sig, word) != EOF) {

if (strcmp(oldsig, sig) != 0 && linenum > 0)
printf("\n");

strcpy(oldsig, sig);
linenum++;
printf("%s ", word);

printf("\n");
return 0;

}

20 PROGRAMMING PEARLS COLUMN 2

The bulk of the work is performed by the second printf statement; for each input line,
it writes out the second field followed by a space. The if statement catches the
changes between signatures: if sig changes from oldsig (its previous value), then a
newline is printed (as long as this record isn't the first in the file). The last printf
writes a final newline character.

After testing those simple parts on small input files, I constructed the anagram list
by typing

sign dictionary | sort | squash >gramlist

That command feeds the file dictionary to the program sign, pipes sign's output into
sort, pipes sorfs output into squash, and writes squash's output in the file gramlist.
The program ran in 18 seconds: 4 in sign, 11 in sort and 3 in squash.

I ran the program on a dictionary that contains 230,000 words; it does not, how-
ever, include many -s and -ed endings. The following were among the more interest-
ing anagram classes.

subessential suitableness
canter creant Cretan nectar recant tanrec trance
caret carte cater crate creat creta react recta trace
destain instead sainted satined
adroitly dilatory idolatry
least setal slate stale steal stela tales
reins resin rinse risen serin siren
consti tuti onali sm mi sconsti tuti onal

COLUMNS DATA STRUCTURES PROGRAMS

Most programmers have seen them, and most good programmers realize they've
written at least one. They are huge, messy, ugly programs that should have been
short, clean, beautiful programs. I've seen several programs that boil down to code
like this

if (k ==
if (k ==

1) C001++
2) C002++

if (k == 500) C500++

Although the programs actually accomplished slightly more complicated tasks, it isn't
misleading to view them as counting how many times each integer between 1 and 500
was found in a file. Each program contained over 1000 lines of code. Most program-
mers today instantly realize that they could accomplish the task with a program just a
tiny fraction of the size by using a different data structure — a 500-element array to
replace the 500 individual variables.

Hence the title of this column: a proper view of data does indeed structure pro-
grams. This column describes a variety of programs that were made smaller (and bet-
ter) by restructuring their internal data.

3.1 A Survey Program

The next program we'll study summarized about twenty thousand questionnaires
filled out by students at a particular college. Part of the output looked like this:

Total

African American 1289
Mexican American
Native American
Spanish Surname
Asian American
Caucasian
Other

US Perm Temp Male Female
Citi Visa Visa

684 593
448 219
132 64
224 179
247 270
3367 6836
129 92

1289
675
198
411
519

16272
225

1239
577
182
223
312

15663
123

17
80
5

152
152
355
78

2
11
3
20
41
33
19

Totals 19589 18319 839 129 11231 8253

21

22 PROGRAMMING PEARLS COLUMN 3

For each ethnic group, the number of males plus the number of females is a little
less than the total because some people didn't answer some questions. The real out-
put was more complicated. I've shown all seven rows plus the total row, but only the
six columns that represent the totals and two other categories, citizenship status and
sex. In the real problem there were twenty-five columns that represented eight cate-
gories and three similar pages of output: one apiece for two separate campuses, and
one for the sum of the two. There were also a few other closely related tables to be
printed, such as the number of students that declined to answer each question. Each
questionnaire was represented by a record in which entry 0 contained the ethnic group
encoded as an integer between 0 and 7 (for the seven categories and "refused"), entry
1 contained the campus (an integer between 0 and 2), entry 2 contained citizenship
status, and so on through entry 8.

The programmer coded the program from the systems analyst's high-level design;
after working on it for two months and producing a thousand lines of code, he esti-
mated that he was half done. I understood his predicament after I saw the design: the
program was built around 350 distinct variables — 25 columns times 7 rows times 2
pages. After variable declarations, the program consisted of a rat's nest of logic that
decided which variables to increment as each input record was read. Think for a
minute about how you would write the program.

The crucial decision is that the numbers should be stored as an array. The next
decision is harder: should the array be laid out according to its output structure (along
the three dimensions of campus, ethnic group and the twenty-five columns) or its
input structure (along the four dimensions of campus, ethnic group, category and
value within category)? Ignoring the campus dimension, the approaches can be
viewed as

Both approaches work; the three-dimensional (left) view in my program resulted in a
little more work when the data was read and a little less work when it was written.
The program took 150 lines of code: 80 to build tables, 30 to produce the output I
described, and 40 to produce other tables.

The count program and the survey program were two needlessly big programs;
both contained numerous variables that were replaced by a single array. Reducing the
length of the code by an order of magnitude led to correct programs that were devel-
oped quickly and could be easily tested and maintained. And although it didn't matter

COLUMN 3 DATA STRUCTURES PROGRAMS 23

much in either application, both small programs were more efficient in run time and
space than the big programs.

Why do programmers write big programs when small ones will do? One reason is
that they lack the important laziness mentioned in Section 2.5; they rush ahead to
code their first idea. But in both cases I've described, there was a deeper problem: the
programmers thought about their problems in languages in which arrays are typically
used as fixed tables that are initialized at the beginning of a program and never
altered. In his book described in Section 1.7, James Adams would say that the pro-
grammers had "conceptual blocks" against using a dynamic array of counters.

There are many other reasons that programmers make these mistakes. When I
prepared to write this column I found a similar example in my own code for the sur-
vey program. The main input loop had forty lines of code in eight five-statement
blocks, the first two of which could be expressed as

ethnicgroup = entry[0]
campus = entry[l]
if entry[2] == refused

declined[ethnicgroup, 2]++
else

j = 1 + entry[2]
count[campus, ethnicgroup, j]++

if entry[3] == refused
declined[ethnicgroup, 3]++

else
j = 4 + entry[3]
count[campus, ethnicgroup, j]++

I could have replaced forty of those lines with six, after initializing the array offset to
contain 0,0, 1,4, 6, ...

for i = [2, 8]
if entry[i] == refused

declined[ethnicgroup, i]++
else

j = offset[i] + entry[i]
count[campus, ethnicgroup, j]++

I had been so satisfied to get one order-of-magnitude reduction in code length that I
missed another one staring me in the face.

3.2 Form-Letter Programming

You've just typed your name and password to log in to the web site of your
favorite store. The next page you see looks something like

24 PROGRAMMING PEARLS COLUMN 3

Welcome back, Jane!
We hope that you and all the members
of the Public family are constantly
reminding your neighbors there
on Maple Street to shop with us.
As usual, we will ship your order to

Ms. Jane Q. Public
600 Maple Street
Your Town, Iowa 12345

As a programmer, you realize that behind the scenes a computer looked up your user
name in a database and retrieved fields like

Public|Jane|Q|Ms.16001Maple Street!Your Town|Iowa 112345

But how exactly did the program construct that customized web page from your
database record? The hasty programmer may be tempted to write a program that
begins something like

read lastname, firstname, init, title, streetnum,
streetname, town, state, zip

print "Welcome back,", firstname, "!"
print "We hope that you and all the members"
print "of the", lastname, "family are constantly"
print "reminding your neighbors there"
print "on", streetname, "to shop with us."
print "As usual, we will ship your order to"
print " ", title, firstname, init ".", lastname
print " ", streetnum, streetname
print " ", town ",", state, zip

Such a program is tempting but tedious.
A more elegant approach involves writing a form letter generator that relies on a

form letter schema like

Welcome back, $1!
We hope that you and all the members
of the $0 family are constantly
reminding your neighbors there
on $5 to shop with us.
As usual, we will ship your order to

$3 $1 $2. $0
$4 $5
$6, $7 $8

The notation $i refers to the ith field in the record, so $0 is the last name, and so on.
The schema is interpreted by the following pseudocode, which assumes that a literal $
character is written in the input schema as $$.

COLUMN 3 DATA STRUCTURES PROGRAMS 25

read fields from database
loop from start to end of schema

c = next character in schema
if c != '$'

printchar c
else

c = next character in schema
case c of

'$': printchar '$'
'0' - '9 ' : printstring field[c]
default: error("bad schema")

The schema is represented in the program as one long array of characters in which
text lines are ended by newline characters. (Perl and other scripting languages make
this even easier; we can use variables like $lastname.)

Writing the generator and the schema will probably be easier than writing the
obvious program. Separating the data from the control will pay off handsomely: if the
letter is redesigned then the schema can be manipulated with a text editor, and the sec-
ond specialized page will be simple indeed to prepare.

The concept of a report schema could have greatly simplified a 5300-line Cobol
program I once maintained. The program's input was a description of a family's
financial status; its output was a booklet summarizing the status and recommending
future policy. Some numbers: 120 input fields; 400 output lines on 18 pages; 300
lines of code to clean the input data, 800 lines for computation, and 4200 lines to
write the output. I estimate that the 4200 lines of output code could have been
replaced by an interpreter of at most a few dozen lines of code and a schema of 400
lines; the computational code would have remain unchanged. Originally writing the
program in that form would have resulted in Cobol code that was at most one-third
the size and much easier to maintain.

3.3 An Array of Examples

Menus. I wanted the user of my Visual Basic program to be able to choose one of
several possibilities by clicking a menu item. I browsed through an excellent collec-
tion of sample programs, and found one that allowed the user to select one of eight
options. When I inspected the code behind the menu, item 0 looked like this:

sub menuitemO_click()
menuitemO.checked = 1
menuiteml.checked = 0
menuitem2.checked = 0
menuitemS.checked = 0
menuitem4.checked = 0
menuitemS.checked = 0
menuitemG.checked = 0
menuitern?.checked = 0

Item 1 was almost the same, with the following changes:

26 PROGRAMMING PEARLS COLUMN 3

sub menuiteml_clickO
menuitemO.checked = 0
menuiteml.checked = 1

And so on for items 2 through 7. Altogether, the selection menu items used about 100
lines of code.

I've written code like that myself. I started off with two items on the menu, and
the code was reasonable. As I added the third, fourth and later items, I was so excited
about the functionality behind the code that I didn't stop to clean up the mess.

With a little perspective, we can move most of that code into the single function
uncheckall that sets each checked field to 0. The first function then becomes:

sub menuitemCLclickO
uncheckall
menuitemO.checked = 1

But we are still left with seven other similar functions.
Fortunately, Visual Basic supports arrays of menu items, so we can replace the

eight similar functions with one:

sub menuitem_click(int choice)
for i = [0, numchoices)

menuitem[i].checked = 0
menuitern[choice].checked = 1

Gathering repeated code into a common function reduced 100 lines of code to 25, and
judicious use of arrays dropped that to 4 lines. The next selection is much simpler to
add, and potentially buggy code is now crystal clear. This approach solved my prob-
lem in just a few lines of code.

Error Messages. Dirty systems have hundreds of error messages scattered
throughout the code, mixed in with other output statements; clean systems have them
accessed through a single function. Consider the difficulty of performing the follow-
ing requests under the "dirty" and "clean" organizations: produce a list of all possi-
ble error messages, change each "serious" error message to sound an alarm, and
translate the error messages into French or German.

Date Functions. Given a year and day of the year, return the month and day of the
month; for instance, the 61st day of 2004 is the I s t day of the 3rd month. In their
Elements of Programming Style, Kernighan and Plauger present a fifty-five line pro-
gram for this task taken straight from someone else's programming text. They then
give a five-line program for the task, using an array of twenty-six integers. Problem 4
introduces the representation issues that abound in date functions.

Word Analysis. Many computing problems arise in the analysis of English words.
We'll see in Section 13.8 how spelling checkers use "suffix stripping" to condense
their dictionaries: they store the single word "laugh" without storing all its various
endings ("-ing", "-s", "-ed", etc.). Linguists have developed a substantial body of

COLUMN 3 DATA STRUCTURES PROGRAMS 27

rules for such tasks. Doug Mcllroy knew that code was the wrong vessel for such
rules when he built the first real-time text-to-speech synthesizer in 1973; he instead
wrote it using 1000 lines of code and a 400-line table. When someone modified the
program without adding to the tables, that resulted in 2500 extra lines of code to do
twenty percent more work. Mcllroy asserts that he could probably do the expanded
task now using fewer than 1000 lines by adding even more tables. To try your own
hand on a similar set of rules, see Problem 5.

3.4 Structuring Data

What is well-structured data? The standards have risen steadily over time. In the
early years, structured data meant well-chosen variable names. Where programmers
once used parallel arrays or offsets from registers, languages later incorporated
records or structures and pointers to them. We learned to replace code for manipulat-
ing data with functions with names like insert or search', that helped us to change rep-
resentations without damaging the rest of the program. David Parnas extended that
approach to observe that the data a system is to process gives deep insight into a good
module structure.

4'Object-Oriented Programming" took the next step. Programmers learned to
identify the fundamental objects in their design, publish to the world an abstraction
and the essential operations on it, and hide the implementation details from view.
Languages like Smalltalk and C++ allowed us to encapsulate those objects in classes;
we'll study this approach in detail as we investigate set abstractions and implementa-
tions in Column 13.

3.5 Powerful Tools for Specialized Data

In the bad old days, programmers built each application from scratch. Modern
tools allow programmers (and others) to build applications with minimal effort. The
little list of tools in this section is indicative, not exhaustive. Each tool exploits one
view of data to solve a particular but common problem. Languages such as Visual
Basic, Tel and various shells provide the "glue" for joining these objects.

Hypertext. In the early 1990's, when web sites were numbered in the thousands, I
was entranced by the reference books that were just coming out on CD-ROMs. The
collection of data was stunning: encyclopedias, dictionaries, almanacs, telephone
directories, classical literature, textbooks, system reference manuals, and more, all in
the palm of my hand. The user interfaces for the various data sets were, unfortu-
nately, equally stunning: every program had its own quirks. Today, I have access to
all that data (and more) on CDs and the web, and the interface is usually the web
browser of my choice. That makes life better for user and implementer alike.

Name-Value Pairs. A bibliographic database might have entries like this:

28 PROGRAMMING PEARLS COLUMN 3

%title The C++ Programming Language, Third Edition
%author Bjarne Stroustrup
%pub~lisher Addison-Wesley
%city Reading, Massachusetts
%year 1997

Visual Basic takes this approach to describe controls in an interface. A text box in the
upper-left corner of a form can be described with the following properties (names)
and settings (values):

Height
Left
Multiline
Name
Top
Visible
Width

495
0
False
txtSample
0
True
215

(The complete text box contains three dozen pairs.) To widen the text box, for exam-
ple, I might drag the right edge with the mouse, or enter a larger integer to replace
215, or use the run-time assignment

txtSample.Width = 400

The programmer may choose the most convenient way to manipulate this simple but
powerful structure.

Spreadsheets. Keeping track of our organization's budget looked difficult to me.
Out of habit, I would have built a large program for the job, with a clunky user inter-
face. The next programmer took a broader view, and implemented the program as a
spreadsheet, supplemented by a few functions in Visual Basic. The interface was
totally natural for the accounting people who were the main users. (If I had to write
the college survey program today, the fact that it is an array of numbers would
encourage me to try to put it into a spreadsheet.)

Databases. Many years ago, after scribbling details about his first dozen jumps in
a paper log book, a programmer decided that he wanted to automate his skydiving
records. A few years earlier, that would have involved laying out a complex record
format, and then building by hand (or by a "Report Program Generator") programs to
enter, update and retrieve the data. At the time, he and I were both awe-struck by his
use of a new-fangled commercial database package for the job: he was able to define
new screens for database operations in minutes rather than days.

Domain-Specific Languages. Graphical user interfaces (GUIs) have fortunately
replaced many old, clunky textual languages. But special-purpose languages are still
useful in certain applications. I despise having to use a mouse to poke at a faux calcu-
lator on the screen when I really want to type straightforward mathematics like

COLUMN 3 DATA STRUCTURES PROGRAMS 29

n = 1000000
47 * n * log(n)/log(2)

Rather than specifying a query with baroque combinations of text boxes and operator
buttons, I prefer to write in a language like

(design or architecture) and not building

Windows that were formerly specified by hundreds of lines of executable code are
now described in dozens of lines of Hypertext Markup Language (HTML). Lan-
guages may be out of vogue for general user input, but they are still potent devices in
some applications.

3.6 Principles

While the stories in this column span several decades and a dozen languages, the
moral of each is the same: don't write a big program when a little one will do. Most
of the structures exemplify what Polya calls the Inventor's Paradox in his How to
Solve It: "the more general problem may be easier to solve". In programming this
means that it may be harder to solve a 23-case problem directly than to write a general
program to handle the n-case version, and then apply it to the case that n - 23.

This column has concentrated on just one contribution that data structures can
make to software: reducing big programs to small programs. Data structure design
can have many other positive impacts, including time and space reduction and
increased portability and maintainability. Fred Brooks's comment in Chapter 9 of his
Mythical Man Month is stated for space reduction, but it is good advice for program-
mers who desire the other attributes as well:

The programmer at wit's end for lack of space can often do best by disen-
tangling himself from his code, rearing back, and contemplating his data.
Representation is the essence of programming.

Here are a few principles for you to ponder as you rear back.
Rework repeated code into arrays. A long stretch of similar code is often best
expressed by the simplest of data structures, the array.
Encapsulate complex structures. When you need a sophisticated data structure,
define it in abstract terms, and express those operations as a class.
Use advanced tools when possible. Hypertext, name-value pairs, spreadsheets,
databases, languages and the like are powerful tools within their specialized prob-
lem domains.
Let the data structure the program. The theme of this column is that data can
structure a program by replacing complicated code with an appropriate data struc-
ture. Although the particulars change, the theme remains: before writing code,
good programmers thoroughly understand the input, the output and the intermedi-
ate data structures around which their programs are built.

30 PROGRAMMING PEARLS COLUMN 3

3.7 Problems

1. As the second edition of this book goes to press, individual income in the United
States is taxed at five different rates, the maximum of which is around forty per-
cent. The situation was formerly more complicated, and more expensive. A pro-
gramming text gave the following twenty-five if statements as a reasonable
approach for calculating the 1978 United States Federal Income Tax. The rate
sequence .14, .15, .16, .17, .18, ... exhibits jumps larger than .01 later in the
sequence. Any comments?

if income <= 2200
tax = 0

else if income <= 2700
tax = .14 * (income - 2200)

else if income <= 3200
tax = 70 + .15 * (income - 2700)

else if income <= 3700
tax = 145 + .16 * (income - 3200)

else if income <= 4200
tax = 225 + .17 * (income - 3700)

else
tax = 53090 + . 70 * (income - 102200)

2. A kth -order linear recurrence with constant coefficients defines a series as

an = clan_l + c2an_2 + ••• + ckan_k + ck+i,

where c\, ..., ck + \ are real numbers. Write a program that with input k, a\, ...,
ak, c i , ..., C f c + i , and m produces the output al through am. How difficult is that
program compared to a program that evaluates one particular fifth-order recur-
rence, but does so without using arrays?

3. Write a "banner" function that is given a capital letter as input and produces as
output an array of characters that graphically depicts that letter.

4. Write functions for the following date problems: given two dates, compute the
number of days between them; given a date, return its day of the week; given a
month and year, produce a calendar for the month as an array of characters.

5. This problem deals with a small part of the problem of hyphenating English
words. The following list of rules describes some legal hyphenations of words
that end in the letter "c" :

et-ic al-is-tic s-tic p-tic -lyt-ic ot-ic an-tic n-tic c-tic at-ic h-nic n-ic m-ic 1-lic b-lic -clic
1-ic h-ic f-ic d-ic -bic a-ic -mac i-ac

The rules must be applied in the above order; thus the hyphenations "eth-nic"
(which is caught by the rule "h-nic") and "clinic" (which fails that test and falls
through to "n-ic"). How would you represent such rules in a function that is
given a word and must return suffix hyphenations?

COLUMN 3 DATA STRUCTURES PROGRAMS 31

6. Build a "form-letter generator" that can prepare a customized document for each
record in a database (this is often referred to as a "mail-merge" feature). Design
small schemas and input files to test the correctness of your program.

7. Typical dictionaries allow one to look up the definition of a word, and Problem
2.1 describes a dictionary that allows one to look up the anagrams of a word.
Design dictionaries for looking up the proper spelling of a word and for looking
up the rhymes of a word. Discuss dictionaries for looking up an integer sequence
(such as 1, 1, 2, 3, 5, 8, 13, 21, ...), a chemical structure, or the metrical structure
of a song.

8. [S. C. Johnson] Seven-segment devices provide an inexpensive display of the ten
decimal digits:

D E 3 H 5 E 1 B R
The seven segments are usually numbered as

2

3 4
1

o 6

Write a program that displays a 16-bit positive integer in five seven-segment dig-
its. The output is an array of five bytes; bit / of byte j is one if and only if the ith

segment of digit j should be on.

3.8 Further Reading

Data may structure programs, but only wise programmers structure large software
systems. Steve McConnell's Code Complete was published by Microsoft Press in
1993. The subtitle accurately describes this 860-page volume: A Practical Handbook
of Software Construction. It provides a fast track to wisdom for programmers.

Chapters 8 through 12 on "Data" are most relevant to this column. McConnell
moves from basics such as declaring data and choosing data names to advanced topics
including table-driven programs and abstract data types. His Chapters 4 through 7 on
"Design" elaborate on the theme of this column.

The knowledge required to build a software project spans a wide range, from
tasteful construction of small functions to managing big software projects. Especially
when combined with his Rapid Development (Microsoft Press, 1996) and Software
Project Survival Guide (Microsoft Press, 1998), McConnell's work covers the two
extremes, and most of the territory in between. His books are fun to read, but you
never forget that he is speaking from hard-won personal experience.

This page intentionally left blank

COLUMN 4 WRITING CORRECT PROGRAMS

In the late 1960's people were talking about the promise of programs that verify
the correctness of other programs. Unfortunately, in the intervening decades, with
precious few exceptions, there is still little more than talk about automated verifica-
tion systems. In spite of unrealized expectations, though, research on program verifi-
cation has given us something far more valuable than a black box that gobbles pro-
grams and flashes "good" or "bad" — we now have a fundamental understanding of
computer programming.

The purpose of this column is to show how that fundamental understanding can
help real programmers write correct programs. One reader characterized the approach
that most programmers grow up with as "write your code, throw it over the wall, and
have Quality Assurance or Testing deal with the bugs." This column describes an
alternative. Before we get to the subject itself, we must keep it in perspective. Cod-
ing skill is just one small part of writing correct programs. The majority of the task is
the subject of the three previous columns: problem definition, algorithm design, and
data structure selection. If you perform those tasks well, writing correct code is usu-
ally easy.

4.1 The Challenge of Binary Search

Even with the best of designs, every now and then a programmer has to write sub-
tle code. This column is about one problem that requires particularly careful code:
binary search. After reviewing the problem and sketching an algorithm, we'll use ver-
ification principles as we write the program.

We first met this problem in Section 2.2; we are to determine whether the sorted
array x[Q..n -1] contains the target element r.f Precisely, we know that n>0 and that

t See Problem and Solution 5.1 if you need help in criticizing these short variable names, the form of the bi-
nary search function definition, error handling and other issues of style that are critical to the success of
large software projects.

33

34 PROGRAMMING PEARLS COLUMN 4

jc[0] < x [l] < x[2] < ... < x[n -1]; when n = 0 the array is empty. The types of t
and the elements of x are the same; the pseudocode should work equally well for inte-
gers, floats or strings. The answer is stored in the integer p (for position): when p is
- 1 the target / is not in x[0..n - 1], otherwise 0<p<n - I and t = x [p] .

Binary search solves the problem by keeping track of the range within the array
that holds t (if t is anywhere in the array). Initially, the range is the entire array. The
range is shrunk by comparing its middle element to t and discarding half the range.
The process continues until t is discovered in the array or until the range in which it
must lie is known to be empty. In a table of n elements, binary search uses roughly
log 2 n comparisons.

Most programmers think that with the above description in hand, writing the code
is easy. They're wrong. The only way you'll believe this is by putting down this col-
umn right now and writing the code yourself. Try it.

I've assigned this problem in courses for professional programmers. The students
had a couple of hours to convert the description above into a program in the language
of their choice; a high-level pseudocode was fine. At the end of the specified time,
almost all the programmers reported that they had correct code for the task. We
would then take thirty minutes to examine their code, which the programmers did
with test cases. In several classes and with over a hundred programmers, the results
varied little: ninety percent of the programmers found bugs in their programs (and I
wasn't always convinced of the correctness of the code in which no bugs were found).

I was amazed: given ample time, only about ten percent of professional program-
mers were able to get this small program right. But they aren't the only ones to find
this task difficult: in the history in Section 6.2.1 of his Sorting and Searching, Knuth
points out that while the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

4.2 Writing the Program

The key idea of binary search is that we always know that if t is anywhere in
jt[0..fi-l], then it must be in a certain range of x. We'll use the shorthand
mustbe(range) to mean that if t is anywhere in the array, then it must be in range.
We can use this notation to convert the above description of binary search into a pro-
gram sketch.

initialize range to O..n-l
loop

{ invariant: mustbe(range) }
if range is empty,

break and report that t is not in the array
compute m, the middle of the range
use m as a probe to shrink the range

if t is found during the shrinking process,
break and report its position

COLUMN 4 WRITING CORRECT PROGRAMS 35

The crucial part of this program is the loop invariant, which is enclosed in curly
braces. This assertion about the program state is called an invariant because it is true
at the beginning and end of each iteration of the loop; it formalizes the intuitive notion
we had above.

We'll now refine the program, making sure that all actions respect the invariant.
The first issue we must face is the representation of range: we'll use two indices / and
u (for "lower" and "upper") to represent the range /..«. (A binary search function in
Section 9.3 represents a range by its beginning position and its length.) The logical
function mustbe(l, u} says that if t is anywhere in the array, it must be in the (closed)
range x [l . . u] .

Our next job is the initialization; what values should / and u have so that
mustbe(l, w) is true? The obvious choice is 0 and n-l: mustbe(Q, n-l) says that if
t is anywhere in x, then it is in x[Q..n -1], which is precisely what we know at the
beginning of the program. Initialization therefore consists of the assignments 1 = 0
and u = n-l.

The next tasks are to check for an empty range and to compute the new midpoint,
m. The range L.u is empty if / > w, in which case we store the special value - 1 in p
and terminate the loop, which gives

if 1 > u
p = -1; break

The break statement terminates the enclosing loop. This statement computes m, the
midpoint of the range:

m = (1 + u) / 2

The "/" operator implements integer division: 6/2 is 3, as is 7/2. Our expanded pro-
gram is now

1 = 0; u = n-l
loop

{ -invariant: mustbeO, u) }
if 1 > u

p = -1; break
m = (1 + u) / 2
use m as a probe to shrink the range l..u

if t is found during the shrinking process,
break and note its position

Refining the last three lines in the loop body will involve comparing t and x[m]
and taking appropriate action to maintain the invariant. Thus the code will have the
general form

36 PROGRAMMING PEARLS COLUMN 4

case
x[m] < t: action a
x[m] == t: action b
x[m] > t: action c

For action b, we know that t is in position m, so we set p to m and break the loop.
Because the other two cases are symmetric, we'll focus on the first and trust that the
last will follow by symmetry (this is part of the reason we'll verify the code precisely
in the next section).

If jc[m]<r, then we know that jc[0]<jc[l]<...<jc[m]<r, so t can't be anywhere in
x[Q..m]. Combining this with the knowledge that t is not outside x [l . . u] , we know
that if it is anywhere, then it must be in x[m + l..u], which we write as
mustbe(m + l, u). We then reestablish the invariant mustbe(l, u) by setting / to
m + 1. Putting these cases into the previous code sketch gives the final function.

1 = 0; u = n-1
loop

{ mustbe(l, u) }
if 1 > u

p = -1; break
m = (1 + u) / 2
case

x[m] < t: 1 = m+1
x[m] == t: p = m; break
x[m] > t: u = m-1

It's a short program: a dozen lines of code and one invariant assertion. The basic
techniques of program verification — stating the invariant precisely and keeping an
eye towards maintaining the invariant as we wrote each line of code — helped us
greatly as we converted the algorithm sketch into pseudocode. This process gives us
some confidence in the program, but we are by no means certain of its correctness.
Spend a few minutes determining whether the code behaves as specified before read-
ing further.

4.3 Understanding the Program

When I face a subtle programming problem, I try to derive code at about the level
of detail we just saw. I then use verification methods to increase my confidence that it
is correct. We'll use verification at this level in Columns 9, 11 and 14.

COLUMN 4 WRITING CORRECT PROGRAMS 37

In this section we'll study a verification argument for the binary search code at a
picky level of detail — in practice I'd do a much less formal analysis. The version of
the program on the next page is (far too) heavily annotated with assertions that for-
malize the intuitive notions that we used as we originally wrote the code.

While the development of the code was top-down (starting with the general idea
and refining it to individual lines of code), this analysis of correctness will be
bottom-up: we'll start with the individual lines of code and see how they work
together to solve the problem.

Warning
Boring material ahead.

Skip to Section 4.4
when drowsiness strikes.

We'll start with lines 1 through 3. The assertion in line 1 that mustbe(Q, n - 1) is
true by the definition of mustbe: if Ms anywhere in the array, then it must be in
x[0..n-l]. The assignments in line 2 of / = 0 and u = n-l therefore give the
assertion in line 3: mustbe (I, u).

We come now to the hard part: the loop in lines 4 through 27. Our argument for
its correctness has three parts, each of which is closely related to the loop invariant:

Initialization, The invariant is true when the loop is executed for the first time.

Preservation. If the invariant holds at the beginning of an iteration and the loop
body is executed, then the invariant will remain true after the loop body finishes
execution.

Termination. The loop will terminate and the desired result will hold (in this case,
the desired result is that p has the correct value). Showing this will use the facts
established by the invariant.

For initialization we note that the assertion in line 3 is the same as that in line 5. To
establish the other two properties, we'll reason from line 5 through to line 27. When
we discuss lines 9 and 21 (the break statements) we will establish termination proper-
ties, and if we make it all the way to line 27, we will have established preservation,
because it is the same as line 5.

3 8 PROGRAMMING PEARLS COLUMN 4

1. { mustbe(0, n-1) }
2. 1 = 0; u = n-1
3. { mustbeO , u) }
4. loop
5. { mustbeO , u) }
6. if 1 > u
7. { 1 > u && mustbeO , u) }
8. { t is not in the array }
9. p = -1; break

10. { mustbeO, u) && 1 <= u }
11. m = O + u) / 2
12. { mustbeO, u) && 1 <= m <= u }
13. case
14. x[m] < t:
15. { mustbeO, u) && cantbe(0, m) }
16. { mustbe(m+l, u) }
17. 1 = m+1
18. { mustbeO , u) }
19. x[m] == t:
20. { x[m] == t }
21. p = m; break
22. x[m] > t:
23. { mustbeO, u) && cantbe(m, n) }
24. { mustbeO, m-1) }
25. u = m-1
26. { mustbeO , u) }
27. { mustbeO, u) }

A successful test in line 6 yields the assertion of line 7: if t is anywhere in the
array then it must be between positions / and u, and / > u. Those facts imply line 8: t
is not in the array. We thus correctly terminate the loop in line 9 after setting p to - 1.

If the test in line 6 fails, we come to line 10. The invariant still holds (we've done
nothing to change it), and because the test failed we know that l<u. Line 11 sets m to
the average of / and u, truncated down to the nearest integer. Because the average is
always between the two values and truncating can't move it below /, we have the
assertion of line 12.

The analysis of the case statement in lines 13 through 27 considers each of its
three possible choices. The easiest choice to analyze is the second alternative, in line
19. Because of the assertion in line 20, we are correct in setting ptom and terminat-
ing the loop. This is the second of two places where the loop is terminated, and both
end it correctly, so we have established the termination correctness of the loop.

We come next to the two symmetric branches of the case statement; because we
concentrated on the first branch as we developed the code, we'll turn our attention
now to lines 22 through 26. Consider the assertion in line 23. The first clause is the
invariant, which the loop has not altered. The second clause is true because
t < x[m] <x[m + l] < ... <x[n-l], so we know that t can't be anywhere in the
array above position m-1; this is expressed with the shorthand cantbe(m, n-1).

COLUMN 4 WRITING CORRECT PROGRAMS 39

Logic tells us that if t must be between / and u and can't be at or above ra, then it must
be between / and m - 1 (if it is anywhere in jt); hence line 24. Execution of line 25
with line 24 true leaves line 26 true — that is the definition of assignment. This
choice of the case statement therefore re-establishes the invariant in line 27.

The argument for lines 14 through 18 has exactly the same form, so we've ana-
lyzed all three choices of the case statement. One correctly terminates the loop, and
the other two maintain the invariant.

This analysis of the code shows that if the loop terminates, then it does so with the
correct value in p. It may still, however, have an infinite loop; indeed, that was the
most common error in the programs written by the professional programmers.

Our halting proof uses a different aspect of the range /.. u. That range is initially a
certain finite size (ri), and lines 6 through 9 ensure that the loop terminates when the
range contains less than one element. To prove termination we therefore have to
show that the range shrinks during each iteration of the loop. Line 12 tells us that m is
always within the current range. Both looping branches of the case statement (lines
14 and 22) exclude the value at position m from the current range and thereby
decrease its size by at least one. The program must therefore halt.

With this background, I feel pretty confident that we are able to move ahead with
this function. The next column covers precisely this topic: implementing the function
in C, then testing it to ensure that it is correct and efficient.

4.4 Principles

This exercise displays many strengths of program verification: the problem is
important and requires careful code, the development of the program is guided by
verification ideas, and the analysis of correctness employs general tools. The primary
weakness of this exercise is its level of detail; in practice I would work at a less for-
mal level. Fortunately, the details illustrate a number of general principles, including
the following.

Assertions. The relations among input, program variables, and output describe the
"state" of a program; assertions allow a programmer to enunciate those relations pre-
cisely. Their roles throughout a program's life are discussed in the next section.

Sequential Control Structures. The simplest structure to control a program is of
the form "do this statement then that statement". We understand such structures by
placing assertions between them and analyzing each step of the program's progress
individually.

Selection Control Structures. These structures include if and case statements of
various forms; during execution, one of many choices is selected. We show the cor-
rectness of such a structure by considering each of the several choices individually.
The fact that a certain choice is selected allows us to make an assertion in the proof; if
we execute the statement following if i >j, for instance, then we can assert that / >j
and use that fact to derive the next relevant assertion.

40 PROGRAMMING PEARLS COLUMN 4

Iteration Control Structures. To prove the correctness of a loop we must establish
three properties:

Initialization

Preservation [^)' { Invariant}

Termination

We first argue that the loop invariant is established by initialization, and then show
that each iteration preserves its truth. These two steps show by mathematical induc-
tion that the invariant is true before and after each iteration of the loop. The third step
is to argue that whenever execution of the loop terminates, the desired result is true.
Together these establish that if the loop ever halts, then it does so correctly; we must
prove that it does terminate by other means (the halting proof of binary search used a
typical argument).

Functions. To verify a function, we first state its purpose by two assertions. Its
precondition is the state that must be true before it is called, and its postcondition is
what the function will guarantee on termination. Thus we might specify a C binary
search function as follows:

int bsearch(int t, int x[], int n)
/* precondition: x[0] <= x[l] <= ... <= x[n-l]

postcondition:
result == -1 => t not present in x
0 <= result < n => x[result] == t

*/

These conditions are more a contract than a statement of fact: they say that if the func-
tion is called with the preconditions satisfied, then execution of the function will
establish its postcondition. After I prove once that the body of the function has this
property, I can use the stated relations between the pre- and postconditions without
ever again considering the implementation. This approach to software development is
often called "programming by contract".

4.5 The Roles of Program Verification

When one programmer tries to convince another that a piece of code is correct, the
primary tool is usually the test case: execute the program by hand on one input.
That's a powerful tool: it's good for detecting bugs, easy to use, and well understood.
It is clear, however, that programmers have a deeper understanding of programs — if
they didn't, they could never write them in the first place. One of the major benefits
of program verification is that it gives programmers a language in which they can
express that understanding.

Later in this book, especially in Columns 9, 11 and 14, we'll use verification tech-
niques as we develop subtle programs. We'll use the language of verification to

COLUMN 4 WRITING CORRECT PROGRAMS 41

explain every line of code as it is written; it is particularly helpful to sketch an invari-
ant for each loop. The important explanations end up in the program text as asser-
tions; deciding which assertions to include in real software is an art that comes only
with practice.

The language of verification is used often after the code is first written, starting
during code walk-throughs. During testing, violations of the assert statements point
the way toT^ugs, and examining the form of a violation shows how to remove one bug
without introducing another. When you debug, fix both the code and the false asser-
tion: understand the code at all times, and resist those foul urges to "just change it
until it works". The next column illustrates several roles that assertions can play dur-
ing testing and debugging. Assertions are crucial during maintenance of a program;
when you pick up code that you've never seen before, and no one else has looked at
for years, assertions about the program state can give invaluable insight.

These techniques are only a small part of writing correct programs; keeping the
code simple is usually the key to correctness. On the other hand, several professional
programmers familiar with these techniques have related to me an experience that is
too common in my own programming: when they construct a program, the "hard"
parts work the first time, while the bugs are in the "easy" parts. When they came to a
hard part, they hunkered down and successfully used powerful formal techniques. In
the easy parts, though, they returned to their old ways of programming, with the old
results. I wouldn't have believed this phenomenon until it happened to me; such
embarrassments are good motivation to use the techniques frequently.

4.6 Problems
1. As laborious as our proof of binary search was, it is still unfinished by some stan-

dards. How would you prove that the program is free of run-time errors (such as
division by zero, word overflow, variables out of declared range, or array indices
out of bounds)? If you have a background in discrete mathematics, can you for-
malize the proof in a logical system?

2. If the original binary search was too easy for you, try the variant that returns in p
the position of the first occurrence of t in the array x (if there are multiple occur-
rences of r, the original algorithm returns an arbitrary one). Your code should
make a logarithmic number of comparisons of array elements; it is possible to do
the job in Iog2 n such comparisons.

3. Write and verify a recursive binary search program. Which parts of the code and
proof stay the same as in the iterative version, and which parts change?

4. Add fictitious "timing variables" to your binary search program to count the
number of comparisons it makes, and use program verification techniques to prove
that its run time is indeed logarithmic.

5. Prove that this program terminates when its input x is a positive integer.

42 PROGRAMMING PEARLS COLUMN 4

while x != 1 do
if even(x)

x = x/2
else

x = 3*x+l

6. [C. Scholten] David Gries calls this the "Coffee Can Problem" in his Science of
Programming. You are initially given a coffee can that contains some black beans
and some white beans and a large pile of "extra" black beans. You then repeat
the following process until there is a single bean left in the can.

Randomly select two beans from the can. If they are the same color, throw
them both out and insert an extra black bean. If they are different colors,
return the white bean to the can and throw out the black.

Prove that the process terminates. What can you say about the color of the final
remaining bean as a function of the numbers of black and white beans originally in
the can?

7. A colleague faced the following problem in a program to draw lines on a bit-
mapped display. An array of n pairs of reals (« / , & /) defined the n lines
yi=aiX + bj. The lines were ordered in the x-interval [0,1] in the sense that
yt<yi + i f°r aU values of / between 0 and n — 2 and all values of x in [0,1]:

Less formally, the lines don't touch in the vertical slab. Given a point (x,y),
where 0<jc<l, he wanted to determine the two lines that bracket the point. How
could he solve the problem quickly?

8. Binary search is fundamentally faster than sequential search: to search an n-
element table, it makes roughly Iog2 n comparisons while sequential search makes
roughly n/2. While it is often fast enough, in a few cases binary search must be
made faster yet. Although you can't reduce the logarithmic number of compar-
isons made by the algorithm, can you rewrite the binary search code to be faster?
For definiteness, assume that you are to search a sorted table of n = 1000 integers.

9. As exercises in program verification, precisely specify the input/output behavior
of each of the following program fragments and show that the code meets its
specification. The first program implements the vector addition a = b + c.

i = 0
while i < n

i = i+1

COLUMN 4 WRITING CORRECT PROGRAMS 43

(This code and the next two fragments expand the "for i - [0, n)" loop to a
while loop with an increment at the end.) The next fragment computes the maxi-
mum value in the array x.

max = x[0]
1 = 1
while i < n do

if x[i] > max
max = x[i]

i = i+1

This sequential search program returns the position of the first occurrence of t in
the array x[Q..n-l].

i = 0
while i < n && x[i] != t

i = i+1
if i >= n

P = -1
else

P = i

This program computes the nth power of x in time proportional to the logarithm of
n. This recursive program is straightforward to code and to verify; the iterative
version is subtle, and is left as an additional problem.

function exp(x, n)
pre n >= 0
post result = xAn

if n = 0
return 1

else if even(n)
return square(exp(x, n/2))

else
return x*exp(x, n-1)

10. Introduce errors into the binary search function and see whether (and how) they
are caught by attempting to verify the buggy code.

11. Write and prove the correctness of a recursive binary search function in C or C++
with this declaration:

int binarysearch(DataType x[] , int n)

Use this function alone; do not call any other recursive functions.

4.7 Further Reading

The Science of Programming by David Gries is an excellent introduction to the
field of program verification. It was published in paperback by Springer-Verlag in
1987. It starts with a tutorial on logic, goes on to a formal view of program
verification and development, and finally discusses programming in common

44 PROGRAMMING PEARLS COLUMN 4

languages. In this column I've tried to sketch the potential benefits of program
verification; the only way that most programmers will be able to use verification
effectively is to study a book like Ones's.

COLUMNS: A SMALL MATTER OF PROGRAMMING

So far, you've done everything right. You dug deep to define the right problem.
You balanced the true requirements with a careful selection of algorithms and data
structures. You used the techniques of program verification to write elegant pseu-
docode that you're pretty sure is correct. How do you incorporate the resulting gem
into your big system? All that's left is, well, a small matter of programming.

Programmers are optimists, and they are tempted to take the easy path: code up
the function, slip it into the system, and fervently hope that it runs. Sometimes that
works. But the other 999 times out of 1000, it leads to disaster: one has to grope
around in the huge system to manipulate the little function.

Wise programmers instead build scaffolding to give them easy access to the func-
tion. This column is devoted to implementing the binary search described in pseu-
docode in the last column as a trustworthy C function. (The code would be very simi-
lar in C++ or Java, and the approach works for most other languages.) Once we have
the code, we'll probe it with scaffolding, then move on to test it more thoroughly and
conduct experiments on its running time. For a tiny function, our path is long. The
result, though, is a program we can trust.

5.1 From Pseudocode to C

We'll assume that the array x and the target item t are both of type DataType,
which is defined by a C typedef statement like

typedef int DataType;

The defined type might be long integer, floating point, or whatever. The array is
implemented by two global variables:

int n;
DataType x[MAXN];

(Although this is poor style for most C programs, it reflects the way that we access
data within a C++ class; global variables can also result in smaller scaffolding.) Our
goal is this C function:

45

46 PROGRAMMING PEARLS COLUMN 5

int binarysearch(DataType t)
/* precondition: x[0] <= x[l] <= ... <= x[n-l]

postcondition:
result == -1 => t not present in x
0 <= result < n => x[result] == t

*/

Most of the pseudocode statements in Section 4.2 translate line-by-line into C (and
most other languages, for that matter). Where the pseudocode stores a value in the
answer variable /?, the C program will return the value. Replacing the pseudocode
loop with the C infinite loop/<9r (;;) yields this code:

for (;;) {
if (1 > u)

return -1;
. . . rest of loop . . .

}

We can transform that to a while loop by reversing the test:

while (1 <= u) {
. . . rest of loop . . .

}
return -1;

The final program is then:

int binarysearch(DataType t)
/* return (any) position if t in sorted x[0..n-l] or

-1 if t is not present */
{ int 1 , u, m;

1 = 0;
u = n-1;
while (1 <= u) {

m = (1 + u) / 2;
if (x[m] < t)

1 = m+1;
else if (x[m] == t)

return m;
else /* x[m] > t */

u = m-1;
}
return -1;

5.2 A Test Harness

The first step in exercising the function is, of course, to walk through a few test
cases by hand. Tiny cases (zero-, one- and two-element arrays) often suffice to smoke
out bugs. On larger arrays such tests become tedious, so the next step is to build a
driver to call the function. Five lines of C scaffolding can do the job:

COLUMN 5 A SMALL MATTER OF PROGRAMMING 47

while (scanf("%d %d", &n, &t) != EOF) {
for (i = 0 ; i < n; 1++)

x[i] = 10*i;
printf(" %d\n", binarysearch(t));

}

We can start with a C program of about two dozen lines: the binary search function
and the above code in the main function. We should expect to grow the program as
we add additional scaffolding.

When I type the input line "2 0", the program generates the two-element array
with ;t[0] = 0 and x[1] = 10, then reports (on the next, indented, line) that the result of
searching for 0 was that it was in location 0:

2 0
0

2 10
1

2 -5
-I

2 5
-1

2 15
-1

The typed input is always in italics. The next pair of lines shows that 10 is correctly
found in location 1. The final six lines describe three correct unsuccessful searches.
The program thus correctly handles all possible searches in an array of two distinct
elements. As the program passed similar tests on inputs of other sizes, I grew more
and more confident of its correctness and more and more bored with this laborious
hand testing. The next section describes scaffolding to automate this job.

Not all testing proceeds this smoothly. Here is a binary search proposed by sev-
eral professional programmers:

int badsearch(DataType t)
{ int 1, u, m;

1 = 0;
u = n-1;
while (1 <= u) {

m = (1 + u) / 2;
/* printfC" %d %d %d\nn, 1, m, u); */

if (x[m] < t)
1 = m;

else if (x[m] > t)
u = m;

else
return m;

}
return -1;

48 PROGRAMMING PEARLS COLUMN 5

(We'll return shortly to the commented-out/?rmr/statement.) Can you spot any prob-
lems in the code?

The program passed the first two little tests. It found 20 in position 2 of a 5-
element array, and found 30 in position 3:

5 20
2

5 30
3

5 40

When I searched for 40, though, the program went into an infinite loop. Why?
To solve the puzzle, I inserted the print/ statement that appears as a comment

above. (It is outdented to the left margin to show that it is scaffolding.) It displays
the sequence of values of /, m and u for each search:

5 20
0 2 4
2
5 30
0 2 4
2 3 4
3
5 40
0 2 4
2 3 4
3 3 4
3 3 4
3 3 4

The first search finds 20 on the first probe, and the second search finds 30 on the sec-
ond probe. The third search is fine for the first two probes, but on the third probe goes
into an infinite loop. We could have discovered that bug as we tried (in vain) to prove
the termination of the loop.

When I have to debug a little algorithm deep inside a big program, I sometimes
use debugging tools like single-stepping through the huge program. When I work on
an algorithm using scaffolding like this, though, print statements are usually faster to
implement and more effective than sophisticated debuggers.

5.3 The Art of Assertion

Assertions played several key roles as we developed the binary search in Column
4: they guided the development of the code, and they allowed us to reason about its
correctness. We'll now insert them into the code to ensure that the run-time behavior
matches our understanding.

COLUMN 5 A SMALL MATTER OF PROGRAMMING 49

We'll use an assert to state that we believe a logical expression to be true. The
statement assert (n > 0) will do nothing if n is zero or greater, but will raise an error of
some sort if n is negative (perhaps invoking a debugger). Before reporting that binary
search has found its target, we might make this assertion:

else if (x[m] == t) {
assert(x[m] == t);
return m;

} else

This weak assertion merely repeats the condition in the if statement. We might want
to strengthen it to assert that the return value is in the input range:

assert(0 <= m && m < n && x[m] == t);

When the loop terminates without finding the target value, we know that / and u
have crossed, and we therefore know that the element is not in the array. We might be
tempted to assert that we have found a pair of adjacent elements that bracket it:

assert(x[u] < t && x[u+l] > t);
return -1;

The logic is that if we see 1 and 3 adjacent in the sorted table, then we know with cer-
tainty that 2 is not present. This assertion will sometimes fail, though, even for a cor-
rect program; why?

When n is zero, the variable u is initialized to -1, so the indexing will access an
element outside the array. To make the assertion useful, we must therefore weaken it
by testing for the edges:

assertCCu < 0 || x[u] < t) && (u+1 >= n || x[u+l] > t));

This statement will indeed find some bugs in faulty searches.
We proved that the search always halts by showing that the range decreases in

each iteration. We can check that property during execution with a little extra compu-
tation and an assertion. We initialize size to n +1, then insert the following code after
the/or statement:

oldsize = size;
size = u - 1 + 1;
assert(size < oldsize);

I would be embarrassed to admit in public how many times I've tried in vain to
debug a "broken" binary search, only to find that the array to be searched was not
sorted. Once we define this function

50 PROGRAMMING PEARLS COLUMN 5

int sortedQ
{ int i;

for (i = 0; i < n-1; i++)
If Cx[i] > x[i+l])

return 0;
return 1;

we can assert(sorted()). We should be careful, though, to make this pricey test only
once before all searches. Including the test in the main loop could result in a binary
search that runs in time proportional to n log n.

Assertions are helpful as we test the function in its scaffolding, and as we move
from component test through system test. Some projects define assert with a prepro-
cessor so the assertions can be compiled away and thereby incur no run-time over-
head. On the other hand, Tony Hoare once observed that a programmer who uses
assertions while testing and turns them off during production is like a sailor who
wears a life vest while drilling on shore and takes it off at sea.

Chapter 2 of Steve Maguire's Writing Solid Code (Microsoft Press, 1993) is
devoted to the use of assertions in industrial-strength software. He describes in detail
several war stories of the use of assertions in Microsoft's products and libraries.

5.4 Automated Testing

You've played with the program enough to be pretty sure it is correct, and you're
bored feeding it cases by hand. The next step is to build scaffolding to attack it by
machine. The main loop of the test function runs n from the smallest possible value
(zero) to the largest reasonable value:

for n = [0, maxn]
print "n=", n
/* test value n */

The print statement reports the progress of the test. Some programmers hate it: it pro-
duces clutter but no substantial information. Others find solace in watching the pro-
gress of the test, and it can be useful to know what tests were passed when you see the
first bug.

The first part of the testing loop examines the case in which all elements are dis-
tinct (it also puts a spare at the top of the array to ensure that the search does not
locate it).

COLUMN 5 A SMALL MATTER OF PROGRAMMING 51

/* test distinct elements (plus one at the end) */
for i = [0, n]

x[i] = 10*i
for i = [0, n)

assert(s(10*i) == i)
assert(s(10*i - 5) == -1)

assert(s(10*n - 5) == -1)
assert(s(10*n) == -1)

To make it easy to test various functions, we define the function to be tested:

#define s binarysearch

The assertions test every possible position for successful and unsuccessful searches,
and the case that an element is in the array but outside the search bounds.

The next part of the testing loop probes an array of equal elements:

/* test equal elements */
for i = [0, n)

x[i] = 10
if n == 0

assert(s(10) == -1)
else

assert(0 <= s(10) && s(10) < n)
assert(s(5) == -1)
assert(s(15) == -1)

This searches for the element that is there, and for a lesser and greater element.
These tests poke around most of the program. Testing n from zero to 100 covers

the empty array, common sizes for bugs (zero, one and two), several powers of two,
and many numbers one away from a power of two. The tests would have been dread-
fully boring (and therefore error prone) by hand, but they used an insignificant amount
of computer time. With maxn set to 1000, the tests require only a few seconds of run
time on my computer.

5.5 Timing

The extensive testing supports our belief that the search is correct. How can we
similarly bolster our belief that it does the job using about Iog2 n comparisons? Here
is the main loop of the timing scaffolding:

52 PROGRAMMING PEARLS COLUMN 5

while read(algnum, n, numtests)
for i = [0, n)

x[i] = i
starttime = clock()
for testnum = [0, numtests)

for i = [0, n)
switch (algnum)

case 1: assert(binarysearchl(i) == i)
case 2: assert(binarysearch2(i) == i)

clicks = clockQ - starttime
print algnum, n, numtests, clicks,

clicks/(le9 * CLOCKS_PER_SEC * n * numtests)

This code computes the average run time of a successful binary search in an array of n
distinct elements. It first initializes the array, then performs a search for each element
of the array a total of numtests times. The switch statement selects the algorithm to be
tested (scaffolding should always be prepared to test several variants). The print
statement reports the three input values and two output values: the raw number of
clicks (it is always crucial to inspect those numbers), and a value easier to interpret (in
this case, the average cost of a search in nanoseconds, given by the conversion factor
Ie9 in the print statement).

Here is an interactive session with the program on a 400MHz Pentium II, with
typed input, as usual, in italics:

1 1000 10000
I 1000 10000 3445 344.5
1 10000 1000
1 10000 1000 4436 443.6
1 100000 100
1 100000 100 5658 565.8
1 1000000 10
I 1000000 10 6619 661.9

The first line tests algorithm 1 (the binary search we've studied so far) on an array of
size 1000, and performs the tests 10000 times. It takes 3445 clock ticks (reported on
this system in milliseconds), which translates to an average cost of 344.5 nanoseconds
per search. Each of the three subsequent trials increases n by a factor of 10, and
decreases the number of tests by the same factor. The run time for a search seems to
be roughly 50 + 301og2 n nanoseconds.

I next wrote a three-line program to generate input for the timing scaffolding. The
output is plotted in the graph, which shows that the average search cost indeed grows
as log n. Problem 7 observes a potential timing bug in this scaffolding; be sure to
study that before you put too much faith in such numbers.

COLUMN 5 A SMALL MATTER OF PROGRAMMING 53

700 —

600 —

Nanoseconds 500 —
Per

Search 400 —

300 —

200 —

T T
100 1000 10000 100000 1000000

Array Size

5.6 The Complete Program

I believe that the C implementation of binary search is correct. Why? I carefully
derived the pseudocode in a convenient language, then used analytic techniques to
verify its correctness. I translated it into C line-by-line, and fed the program inputs
and watched the output. I sprinkled assertions through the code to ensure that my the-
oretical analysis matched the behavior in practice. A computer did what it's good at
and bombarded the program with test cases. Finally, simple experiments showed that
its run time was as low as theory predicted.

With this background, I'd feel comfortable using the code to search a sorted array
in a big program. I'd be pretty surprised if a logic bug showed up in this C code. I
wouldn't be shocked to find many other kinds of bugs, though. Did the caller remem-
ber to sort the table? Is - 1 the desired return value when the search item isn't in the
table? If the target item occurs many times in the table, this code returns an arbitrary
index; did the user really want the first or the last? And so on and so on.

Can you trust this code? You could take my word for it. (If you are inclined in
this direction, I currently own a very nice bridge that you might be interested in pur-
chasing.) Alternatively, you can get a copy of the program from this book's web site.
It includes all of the functions we've seen so far, and several variants of binary search
that we'll study in Column 9. Its main function looks like:

int main (void)
{ /* probelQ; */

/* test(25); */
timed riverQ ;
return 0;

By commenting out all but one call, you can play with particular inputs, deluge it with
test cases, or run timing experiments.

54 PROGRAMMING PEARLS COLUMN 5

5.7 Principles

This column has thrown a lot of effort at a little problem. The problem may be
small, but it's not easy. Recall from Section 4.1 that while the first binary search was
published in 1946, the first binary search that works correctly for all values of n did
not appear until 1962. If early programmers had taken the approach in this column, it
might not have taken them 16 years to derive a correct binary search.

Scaffolding. The best kind of scaffolding is usually that which is easiest to build.
For some tasks, the easiest scaffolding consists of a graphical user interface imple-
mented in a language like Visual Basic or Java or Tel. In each of those languages,
I've whipped up little programs in half an hour with point-and-click control and fancy
visual output. For many algorithmic tasks, though, I find it easier to ignore those
powerful tools in favor of the simpler (and more portable) command-line techniques
that we've seen in this column.

Coding. I find it easiest to sketch a hard function in a convenient high-level pseu-
docode, then translate it into the implementation language.

Testing. One can test a component much more easily and thoroughly in scaffold-
ing than in a large system.

Debugging. Debugging is hard when a program is isolated in its scaffolding, and
much harder yet when it is embedded in its real environment. Section 5.10 tells tales
of debugging large systems.

Timing. If run time doesn't matter, linear search is much simpler than binary
search; many programmers can get it right on the first try. Because run time is impor-
tant enough for us to introduce the additional complexity of binary search, we should
conduct experiments to ensure that its performance is what we expect.

5.8 Problems
1. Comment on the programming style used in this column, and in this book, in gen-

eral. Address issues such as the variable names, the form and specification of the
binary search function, the code layout and so forth.

2. Translate the pseudocode description of binary search into languages other than C,
and build scaffolding to test and debug your implementation. How do the lan-
guage and system help and hinder?

3. Introduce errors into the binary search function. How are your errors caught by
the tests? How does the scaffolding help you chase down the bugs? (This exer-
cise is best carried out as a two-player game, in which the attacker introduces bugs
that the defender must then track.)

4. Repeat Problem 3, but this time, leave the binary search code correct and intro-
duce errors into the functions that call it (such as forgetting to sort the array).

5. [R. S. Cox] A common bug applies binary search to an unsorted array. Com-
pletely checking whether the array is sorted before each search has the exorbitant

COLUMN 5 A SMALL MATTER OF PROGRAMMING 55

cost of n - 1 extra comparisons. How can you add partial checking to the function
at significantly less cost?

6. Implement a graphical user interface for studying binary search. Is the bang (in
increased debugging effectiveness) worth the buck (in development time)?

7. The timing scaffolding in Section 5.5 has a potential timing bug: by searching for
each element in order, we get particularly beneficial caching behavior. If we know
that the searches in the potential application will exhibit similar locality, this is an
accurate framework (but binary search is probably not the right tool for that job).
If we expect the searches to probe the array randomly, though, then we should
probably initialize and shuffle a permutation vector

for i = [0, n)
p[1] = i

scramble(p, n)

and then perform the searches in a random order

assert(binarysearchl(p[i]) == p[i])

Measure the two versions to see if there is any difference in observed run times.
8. Scaffolding is underused and rarely described in public. Inspect any scaffolding

you can find; desperation may drive you to this book's web site. Build scaffolding
to test a complex function that you have written.

9. Download the search, c scaffolding program from this book's web site, and experi-
ment to find the run time of binary search on your machine. What tools will you
use to generate the input and to store and to analyze the output?

5.9 Further Reading

Kernighan and Pike's Practice of Programming was published by Addison-
Wesley in 1999. They devote fifty pages to debugging (Chapter 5) and testing (Chap-
ter 6). They cover important topics such as non-reproducible bugs and regression
testing that are beyond the scope of this little column.

The nine chapters of their book will be interesting and fun for every practicing
programmer. In addition to the two chapters mentioned above, other chapter titles
include programming style, algorithms and data structures, design and implementa-
tion, interfaces, performance, portability and notation. Their book gives valuable
insight into the craft and style of two journeymen programmers.

Section 3.8 of this book describes Steve McConnell's Code Complete. Chapter 25
of that book describes "Unit Testing" and Chapter 26 describes "Debugging".

5.10 Debugging [Sidebar]

Every programmer knows that debugging is hard. Great debuggers, though, can
make the job look simple. Distraught programmers describe a bug that they've been
chasing for hours, the master asks a few questions, and minutes later the programmers
are staring at the faulty code. The expert debugger never forgets that there has to be a

56 PROGRAMMING PEARLS COLUMN 5

logical explanation, no matter how mysterious the system's behavior may seem when
first observed.

That attitude is illustrated in an anecdote from IBM's Yorktown Heights Research
Center. A programmer had recently installed a new workstation. All was fine when
he was sitting down, but he couldn't log in to the system when he was standing up.
That behavior was one hundred percent repeatable: he could always log in when sit-
ting and never when standing.

Most of us just sit back and marvel at such a story. How could that workstation
know whether the poor guy was sitting or standing? Good debuggers, though, know
that there has to be a reason. Electrical theories are the easiest to hypothesize. Was
there a loose wire under the carpet, or problems with static electricity? But electrical
problems are rarely one-hundred-percent consistent. An alert colleague finally asked
the right question: how did the programmer log in when he was sitting and when he
was standing? Hold your hands out and try it yourself.

The problem was in the keyboard: the tops of two keys were switched. When the
programmer was seated he was a touch typist and the problem went unnoticed, but
when he stood he was led astray by hunting and pecking. With this hint and a conve-
nient screwdriver, the expert debugger swapped the two wandering keytops and all
was well.

A banking system built in Chicago had worked correctly for many months, but
unexpectedly quit the first time it was used on international data. Programmers spent
days scouring the code, but they couldn't find any stray command that would quit the
program. When they observed the behavior more closely, they found that the pro-
gram quit as they entered data for the country of Ecuador. Closer inspection showed
that when the user typed the name of the capital city (Quito), the program interpreted
that as a request to quit the run!

Bob Martin once watched a system "work once twice". It handled the first trans-
action correctly, then exhibited a minor flaw in all later transactions. When the sys-
tem was rebooted, it once again correctly processed the first transaction, and failed on
all subsequent transactions. When Martin characterized the behavior as having
"worked once twice", the developers immediately knew to look for a variable that
was initialized correctly when the program was loaded, but was not reset properly
after the first transaction.

In all cases the right questions guided wise programmers to nasty bugs in short
order: ' 'What do you do differently sitting and standing? May I watch you logging in
each way?" "Precisely what did you type before the program quit?" "Did the pro-
gram ever work correctly before it started failing? How many times?"

Rick Lemons said that the best lesson he ever had in debugging was watching a
magic show. The magician did a half-dozen impossible tricks, and Lemons found
himself tempted to believe them. He then reminded himself that the impossible isn't
possible, and probed each stunt to resolve its apparent inconsistency. He started with
what he knew to be bedrock truth — the laws of physics — and worked from there to
find a simple explanation for each trick. This attitude makes Lemons one of the best
debuggers I've ever seen.

COLUMN 5 A SMALL MATTER OF PROGRAMMING 57

The best book I've seen on debugging is The Medical Detectives by Berton
Roueche, published by Penguin in 1991. The heroes in the book debug complex sys-
tems, ranging from mildly sick people to very sick towns. The problem-solving meth-
ods they use are directly applicable to debugging computer systems. These true sto-
ries are as spellbinding as any fiction.

This page intentionally left blank

PART ii PERFORMANCE

A simple, powerful program that delights its users and does not vex its builders —
that is the programmer's ultimate goal and the emphasis of the five previous columns.

We'll turn our attention now to one specific aspect of delightful programs: effi-
ciency. Inefficient programs sadden their users with long waits and missed opportuni-
ties. These columns therefore describe several paths to performance.

Column 6 surveys the approaches and how they interact. The three subsequent
columns discuss three methods for improving run time, in the order in which they are
usually applied:

Column 7 shows how "back-of-the-envelope" calculations used early in the
design process can ensure that the basic system structure is efficient enough.
Column 8 is about algorithm design techniques that sometimes dramatically
reduce the run time of a module.
Column 9 discusses code tuning, which is usually done late in the implementation
of a system.

To wrap up Part II, Column 10 turns to another important aspect of performance:
space efficiency.

There are three good reasons for studying efficiency. The first is its intrinsic
importance in many applications. I'm willing to bet that every reader of this book has
at some time stared in frustration at a monitor, wishing fervently that the program
were faster. A software manager I know estimates that half her development budget
goes to performance improvement. Many programs have stringent time requirements,
including real-time programs, huge database systems and interactive software.

The second reason for studying performance is educational. Apart from practical
benefits, efficiency is a fine training ground. These columns cover ideas ranging from
the theory of algorithms to common-sense techniques like "back-of-the-envelope"
calculations. The major theme is fluidity of thinking; Column 6, especially, encour-
ages us to look at a problem from many different viewpoints.

Similar lessons come from many other topics. These columns might have been
built around user interfaces, system robustness or security. Efficiency has the

59

60 PROGRAMMING PEARLS PART II

advantage that it can be measured: we can all agree that one program is 2.5 times fas-
ter than another, while discussions on user interfaces, for instance, often get bogged
down in personal tastes.

The most important reason for studying performance is described best in the
immortal words of the 1986 film Top Gun: "I feel the need ... the need for speed!"

COLUMN 6: PERSPECTIVE ON PERFORMANCE

The next three columns describe three different approaches to run-time efficiency.
In this column we'll see how those parts fit together into a whole: each technique is
applied at one of several design levels at which computer systems are built. We'll
first study one particular program, and then turn to a more systematic view of the lev-
els at which systems are designed.

6.1 A Case Study

Andrew Appel describes "An efficient program for many-body simulations" in
the January 1985 SIAM Journal on Scientific and Statistical Computing 6, 1, pp. 85-
103. By working on the program at several levels, he reduced its run time from a year
to a day.

The program solved the classical "rc-body problem" of computing interactions in
a gravitational field. It simulated the motions of n objects in three-dimensional space,
given their masses, initial positions and velocities; think of the objects as planets,
stars or galaxies. In two dimensions, the input might look like

Appel's paper describes two astrophysical problems in which n - 10,000; by studying
simulation runs, physicists could test how well a theory matches astronomical obser-
vations. (For more details on the problem and later solutions based on Appel's
approach, see Pfalzner and Gibbon's Many-Body Tree Methods in Physics, published
by Cambridge University Press in 1996.)

61

62 PROGRAMMING PEARLS COLUMN 6

The obvious simulation program divides time into small "steps" and computes
the progress of each object at each step. Because it computes the attraction of each
object to every other, the cost per time step is proportional to n2. Appel estimated
that 1,000 time steps of such an algorithm with n = 10,000 would require roughly one
year on his computer.

Appel's final program solved the problem in less than a day (for a speedup factor
of 400). Many physicists have since used his techniques. The following brief survey
of his program will ignore many important details that can be found in his paper; the
important message is that a huge speedup was achieved by working at several differ-
ent levels.

Algorithms and Data Structures. Appel's first priority was to find an efficient
algorithm. He was able to reduce the O(n2) cost per time step to O(n log rc)t by
representing the physical objects as leaves in a binary tree; higher nodes represent
clusters of objects. The force operating on a particular object can be approximated by
the force exerted by the large clusters; Appel showed that this approximation does not
bias the simulation. The tree has roughly log n levels, and the resulting O(n log n)
algorithm is similar in spirit to the divide-and-conquer algorithm in Section 8.3. This
change reduced the run time of the program by a factor of 12.

Algorithm Tuning. The simple algorithm always uses small time steps to handle
the rare case that two particles come close to one another. The tree data structure
allows such pairs to be recognized and handled by a special function. That doubles
the time step size and thereby halves the run time of the program.

Data Structure Reorganization. The tree that represents the initial set of objects is
quite poor at representing later sets. Reconfiguring the data structure at each time
step costs a little time, but reduces the number of local calculations and thereby halves
the total run time.

Code Tuning. Due to additional numerical accuracy provided by the tree, 64-bit
double-precision floating point numbers could be replaced by 32-bit single-precision
numbers; that change halved the run time. Profiling the program showed that 98 per-
cent of the run time was spent in one function; rewriting that code in assembly lan-
guage increased its speed by a factor of 2.5.

Hardware. After all the above changes, the program still required two days of
time on a departmental machine that cost a quarter of a million dollars, and several
runs of the program were desired. Appel therefore moved the program to a slightly
more expensive machine equipped with a floating point accelerator, which halved its
run time again.

t The "big-oh" notation O(n2} can be thought of as "proportional to rc2"; both 15n2 + lOOrc and n2/2- 10
are O(n2}. More formally, f(ri) = O(g(n)) means that/O)<cg(n) for some constant c and sufficiently
large values of n. A formal definition of the notation can be found in textbooks on algorithm design or dis-
crete mathematics, and Section 8.5 illustrates the relevance of the notation to program design.

COLUMN 6 PERSPECTIVE ON PERFORMANCE 63

The changes described above multiply together for a total speedup factor of 400;
Appel's final program ran a 10,000-body simulation in about one day. The speedups
were not free, though. The simple algorithm may be expressed in a few dozen lines of
code, while the fast program required 1200 lines. The design and implementation of
the fast program required several months of Appel's time. The speedups are summa-
rized in the following table.

DESIGN LEVEL

Algorithms and Data Structures

Algorithm Tuning
Data Structure Reorganization

System-Independent Code Tuning

System-Dependent Code Tuning

Hardware

Total

SPEEDUP
FACTOR

12

2
2

2

2.5

2

400

MODIFICATION

A binary tree reduces O(n2}
time to O(n log n)
Use larger time steps
Produce clusters well-suited
to the tree algorithm
Replace double-precision
floating point with
single precision
Recode the critical function
in assembly language
Use a floating point accelerator

This table illustrates several kinds of dependence among speedups. The primary
speedup is the tree data structure, which opened the door for the next three changes.
The last two speedups, changing to assembly code and using the floating point accel-
erator, were in this case independent of the tree. The tree structure would have had
less of an impact on the supercomputers of the time (with pipelined architectures well
suited to the simple algorithm); algorithmic speedups are not necessarily independent
of hardware.

6.2 Design Levels

A computer system is designed at many levels, ranging from its high-level soft-
ware structure down to the transistors in its hardware. The following survey is an
intuitive guide to design levels; please don't expect a formal taxonomy.!

Problem Definition. The battle for a fast system can be won or lost in specifying
the problem it is to solve. On the day I wrote this paragraph, a vendor told me that he
couldn't deliver supplies because a purchase order had been lost somewhere between

11 learned the theme of this column from Raj Reddy and Allen Newell's paper "Multiplicative speedup of
systems" (in Perspectives on Computer Science, edited by A. K. Jones and published in 1977 by Academic
Press). Their paper describes speedups at various design levels, and is especially rich in speedups due to
hardware and system software.

64 PROGRAMMING PEARLS COLUMN 6

my organization and my company's purchasing department. Purchasing was
swamped with similar orders; fifty people in my organization alone had placed indi-
vidual orders. A friendly chat between my management and purchasing resulted in
consolidating those fifty orders into one large order. In addition to easing administra-
tive work for both organizations, this change also sped up one small piece of a com-
puter system by a factor of fifty. A good systems analyst keeps an eye out for such
savings, both before and after systems are deployed.

Sometimes good specifications give users a little less than what they thought was
needed. In Column 1 we saw how incorporating a few important facts about the input
to a sorting program decreased both its run time and its code length by an order of
magnitude. Problem specification can have a subtle interaction with efficiency; for
example, good error recovery may make a compiler slightly slower, but it usually
decreases its overall time by reducing the number of compilations.

System Structure. The decomposition of a large system into modules is probably
the single most important factor in determining its performance. After sketching the
overall system, the designer should do a simple "back-of-the-envelope" estimate to
make sure that its performance is in the right ballpark; such calculations are the sub-
ject of Column 7. Because efficiency is much easier to build into a new system than
to retrofit into an existing system, performance analysis is crucial during system
design.

Algorithms and Data Structures. The keys to a fast module are usually the struc-
tures that represent its data and the algorithms that operate on the data. The largest
single improvement in Appel's program came from replacing an O(n2) algorithm
with an O(n log n) algorithm; Columns 2 and 8 describe similar speedups.

Code Tuning. Appel achieved a speedup factor of five by making small changes
to code; Column 9 is devoted to that topic.

System Software. Sometimes it is easier to change the software on which a system
is built than the system itself. Is a new database system faster for the queries that
arise in this system? Would a different operating system be better suited to the real-
time constraints of this task? Are all possible compiler optimizations enabled?

Hardware. Faster hardware can increase performance. General-purpose comput-
ers are usually fast enough; speedups are available through faster clock speeds on the
same processor or multiprocessors. Sound cards, video accelerators and other cards
offload work from the central processor onto small, fast, special-purpose processors;
game designers are notorious for using those devices for clever speedups. Special-
purpose digital signal processors (DSPs), for example, enable inexpensive toys and
household appliances to talk. Appel's solution of adding a floating point accelerator
to the existing machine was somewhere between the two extremes.

COLUMN 6 PERSPECTIVE ON PERFORMANCE 65

6.3 Principles

Because an ounce of prevention is worth a pound of cure, we should keep in mind
an observation Gordon Bell made when he was designing computers for the Digital
Equipment Corporation.

The cheapest, fastest and most reliable components of a computer system
are those that aren 't there.

Those missing components are also the most accurate (they never make mistakes), the
most secure (they can't be broken into), and the easiest to design, document, test and
maintain. The importance of a simple design can't be overemphasized.

But when performance problems can't be sidestepped, thinking about design lev-
els can help focus a programmer's effort.

If you need a little speedup, work at the best level Most programmers have their
own knee-jerk response to efficiency: "change algorithms" or "tune the queueing
discipline" spring quickly to some lips. Before you decide to work at any given
level, consider all possible levels and choose the one that delivers the most
speedup for the least effort.
If you need a big speedup, work at many levels. Enormous speedups like Appel's
are achieved only by attacking a problem on several different fronts, and they usu-
ally take a great deal of effort. When changes on one level are independent of
changes on other levels (as they often, but not always, are), the various speedups
multiply.

Columns 7, 8 and 9 discuss speedups at three different design levels; keep perspective
as you consider the individual speedups.

6.4 Problems
1. Assume that computers are now 1000 times faster than when Appel did his experi-

ments. Using the same total computing time (about a day), how will the problem
size n increase for the O(n2) and O(n log n) algorithms?

2. Discuss speedups at various design levels for some of the following problems: fac-
toring 500-digit integers, Fourier analysis, simulating VLSI circuits, and searching
a large text file for a given string. Discuss the dependencies of the proposed
speedups.

3. Appel found that changing from double-precision arithmetic to single-precision
arithmetic doubled the speed of his program. Choose an appropriate test and mea-
sure that speedup on your system.

4. This column concentrates on run-time efficiency. Other common measures of per-
formance include fault-tolerance, reliability, security, cost, cost/performance ratio,
accuracy, and robustness to user error. Discuss how each of these problems can
be attacked at several design levels.

66 PROGRAMMING PEARLS COLUMN 6

5. Discuss the costs of employing state-of-the-art technologies at the various design
levels. Include all relevant measures of cost, including development time (calen-
dar and personnel), maintainability and dollar cost.

6. An old and popular saying claims that' 'efficiency is secondary to correctness — a
program's speed is immaterial if its answers are wrong". True or false?

7. Discuss how problems in everyday life, such as injuries suffered in automobile
accidents, can be addressed at different levels.

6.5 Further Reading

Butler Lampson's "Hints for Computer System Design" appeared in IEEE
Software 7, 1, January 1984. Many of the hints deal with performance; his paper is
particularly strong at integrated hardware-software system design. As this book goes
to press, a copy of the paper is available at www.research.microsoft.com/~lampson/.

http://www.research.microsoft.com/~lampson/

COLUMN 7 THE BACK OF THE ENVELOPE

It was in the middle of a fascinating conversation on software engineering that
Bob Martin asked me, "How much water flows out of the Mississippi River in a
day?" Because I had found his comments up to that point deeply insightful, I politely
stifled my true response and said, "Pardon me?" When he asked again I realized that
I had no choice but to humor the poor fellow, who had obviously cracked under the
pressures of running a large software shop.

My response went something like this. I figured that near its mouth the river was
about a mile wide and maybe twenty feet deep (or about one two-hundred-and-fiftieth
of a mile). I guessed that the rate of flow was five miles an hour, or a hundred and
twenty miles per day. Multiplying

1 mile x 1/250 mile x 120 miles/day = 1/2 mile3/day

showed that the river discharged about half a cubic mile of water per day, to within an
order of magnitude. But so what?

At that point Martin picked up from his desk a proposal for the communication
system that his organization was building for the Summer Olympic games, and went
through a similar sequence of calculations. He estimated one key parameter as we
spoke by measuring the time required to send himself a one-character piece of mail.
The rest of his numbers were straight from the proposal and therefore quite precise.
His calculations were just as simple as those about the Mississippi River and much
more revealing. They showed that, under generous assumptions, the proposed system
could work only if there were at least a hundred and twenty seconds in each minute.
He had sent the design back to the drawing board the previous day. (The conversation
took place about a year before the event, and the final system was used during the
Olympics without a hitch.)

That was Bob Martin's wonderful (if eccentric) way of introducing the engineer-
ing technique of "back-of-the-envelope" calculations. The idea is standard fare in
engineering schools and is bread and butter for most practicing engineers. Unfortu-
nately, it is too often neglected in computing.

67

68 PROGRAMMING PEARLS COLUMN 7

7.1 Basic Skills

These reminders can be helpful in making back-of-the-envelope calculations.

Two Answers Are Better Than One. When I asked Peter Weinberger how much
water flows out of the Mississippi per day, he responded, "As much as flows in." He
then estimated that the Mississippi basin was about 1000 by 1000 miles, and that the
annual runoff from rainfall there was about one foot (or one five-thousandth of a
mile). That gives

1000 miles x 1000 miles x 1/5000 mile/year = 200 miles3/year

200 miles3/year/400 days/year = 1/2 mileVday

or a little more than half a cubic mile per day. It's important to double check all cal-
culations, and especially so for quick ones.

As a cheating triple check, an almanac reported that the river's discharge is
640,000 cubic feet per second. Working from that gives

640,000 ft3/sec x 3600 secs/hr = 2.3xl09 ft3/hr

2.3xl09 ft3/hr x 24 hrs/day = 6xl010 ftVday

6xl010 ft3/day / (5000 ft/mile)3 = 6xl010 ftVday / (125xl09 ftVmile3)

~ 60/125 mileVday

~ 1/2 mileVday

The proximity of the two estimates to one another, and especially to the almanac's
answer, is a fine example of sheer dumb luck.

Quick Checks. Polya devotes three pages of his How to Solve It to 'Test by
Dimension", which he describes as a "well-known, quick and efficient means to
check geometrical or physical formulas". The first rule is that the dimensions in a
sum must be the same, which is in turn the dimension of the sum — you can add feet
together to get feet, but you can't add seconds to pounds. The second rule is that the
dimension of a product is the product of the dimensions. The examples above obey
both rules; multiplying

(miles + miles) x miles x miles/day = miles3/day

has the right form, apart from any constants.
A simple table can help you keep track of dimensions in complicated expressions

like those above. To perform Weinberger's calculation, we first write down the three
original factors.

1000 miles 1000 miles 1 mile
5000 year

COLUMN 7 THE BACK OF THE ENVELOPE 69

Next we simplify the expression by cancelling terms, which shows that the output is
200 miles3/year.

200 mile3

year

Now we multiply by the identity (well, almost) that there are 400 days per year.

200 mile3 year
year 400 days

Cancellation yields the (by now familiar) answer of half a cubic mile per day.

miie3 \
days 2

These tabular calculations help you keep track of dimensions.
Dimension tests check the form of equations. Check your multiplications and

divisions with an old trick from slide rule days: independently compute the leading
digit and the exponent. One can make several quick checks for addition.

3142
2718

+1123
983

3142
2718

+1123
6982

3142
2718

+1123
6973

The first sum has too few digits and the second sum errs in the least significant digit.
The technique of "casting out nines" reveals the error in the third example: the digits
in the summands sum to 8 modulo 9, while those in the answer sum to 7 modulo 9. In
a correct addition, the sums of the digits are equal after "casting out" groups of digits
that sum to nine.

Above all, don't forget common sense: be suspicious of any calculations that show
that the Mississippi River discharges 100 gallons of water per day.

Rules of Thumb. I first learned the "Rule of 72" in a course on accounting.
Assume that you invest a sum of money for y years at an interest rate of r percent per
year. The financial version of the rule says that if rxy = 72, then your money will
roughly double. The approximation is quite accurate: investing $1000 at 6 percent
interest for 12 years gives $2012, and $1000 at 8 percent for 9 years gives $1999.

The Rule of 72 is handy for estimating the growth of any exponential process. If a
bacterial colony in a dish grows at the rate of three percent per hour, then it doubles in
size every day. And doubling brings programmers back to familiar rules of thumb:
because 210 = 1024, ten doublings is about a thousand, twenty doublings is about a
million, and thirty doublings is about a billion.

Suppose that an exponential program takes ten seconds to solve a problem of size
n =40, and that increasing n by one increases the run time by 12 percent (we probably

70 PROGRAMMING PEARLS COLUMN 7

learned this by plotting its growth on a logarithmic scale). The Rule of 72 tells us that
the run time doubles when n increases by 6, or goes up by a factor of about 1000
when n increases by 60. When rc = 100, the program should therefore take about
10,000 seconds, or a few hours. But what happens when n increases to 160, and the
time rises to 107 seconds? How much time is that?

You might find it hard to memorize that there are 3.155x107 seconds in a year.
On the other hand, it is hard to forget Tom Duffs handy rule of thumb that, to within
half a percent,

n seconds is a nanocentury.

Because the exponential program takes 107 seconds, we should be prepared to wait
about four months.

Practice. As with many activities, your estimation skills can only be improved
with practice. Try the problems at the end of this column, and the estimation quiz in
Appendix 2 (a similar quiz once gave me a much-needed dose of humility about my
estimation prowess). Section 7.8 describes quick calculations in everyday life. Most
workplaces provide ample opportunities for back-of-the-envelope estimates. How
many foam "packing peanuts" came in that box? How much time do people at your
facility spend waiting in line every day, for morning coffee, lunch, photocopiers and
the like? How much does that cost the company in (loaded) salary? And the next
time you're really bored at the lunch table, ask your colleagues how much water flows
out of the Mississippi River each day.

7.2 Performance Estimates

Let's turn now to a quick calculation in computing. Nodes in your data structure
(it might be a linked list or a hash table) hold an integer and a pointer to a node:

struct node { int i; struct node *p; };

Back-of-the-envelope quiz: will two million such nodes fit in the main memory of
your 128-megabyte computer?

Looking at my system performance monitor shows that my 128-megabyte
machine typically has about 85 megabytes free. (I've verified that by running the vec-
tor rotation code from Column 2 to see when the disk starts thrashing.) But how
much memory will a node take? In the old days of 16-bit machines, a pointer and an
integer would take four bytes. As I write this edition of the book, 32-bit integers and
pointers are most common, so I would expect the answer to be eight bytes. Every
now and then I compile in 64-bit mode, so it might take sixteen bytes. We can find
out the answer for any particular system with a single line of C:

printf("sizeof(struct node)=%d\n", sizeof(struct node));

My system represented each record in eight bytes, as I expected. The 16 megabytes
should fit comfortably into the 85 megabytes of free memory.

So when I used two million of those eight-byte records, why did my 128-
megabyte machine start thrashing like crazy? The key is that I allocated them

COLUMN 7 THE BACK OF THE ENVELOPE 71

dynamically, using the C malloc function (similar to the C++ new operator). I had
assumed that the eight-byte records might have another 8 bytes of overhead; I
expected the nodes to take a total of about 32 megabytes. In fact, each node had 40
bytes of overhead to consume a total of 48 bytes per record. The two million records
therefore used a total of 96 megabytes. (On other systems and compilers, though, the
records had just 8 bytes of overhead each.)

Appendix 3 describes a program that explores the memory cost of several com-
mon structures. The first lines it produces are made with the sizeof operator:

sizeof(char)=l sizeof(short)=2 sizeof(int)=4
sizeof(float)=4 sizeof(struct *)=4 sizeof(long)=4
sizeof(double)=8

I expected precisely those values from my 32-bit compiler. Further experiments mea-
sured the differences between successive pointers returned by the storage allocator;
this is a plausible guess at record size. (One should always verify such rough guesses
with other tools.) I now understand that, with this space-hogging allocator, records
between 1 and 12 bytes will consume 48 bytes of memory, records between 13 and 28
bytes will consume 64 bytes, and so forth. We will return to this space model in
Columns 10 and 13.

Let's try one more quick computing quiz. You know that the run time of your
numerical algorithm is dominated by its n3 square root operations, and n = 1000 in
this application. About how long will your program take to compute the one billion
square roots?

To find the answer on my system, I started with this little C program:

#1 include <math.h>
int main(void)
{ int i, n = 1000000;

float fa;
for (i = 0 ; i < n; i++)

fa = sqrt(lO.O);
return 0;

}

I ran the program with a command to report how much time it takes. (I check such
times with an old digital watch that I keep next to my computer; it has a broken band
but a working stopwatch.) I found that the program took about 0.2 seconds to com-
pute one million square roots, 2 seconds to compute ten million, and 20 seconds to
compute 100 million. I would guess that it will take about 200 seconds to compute a
billion square roots.

But will a square root in a real program take 200 nanoseconds? It might be much
slower: perhaps the square root function cached the most recent argument as a starting
value. Calling such a function repeatedly with the same argument might give it an
unrealistic advantage. Then again, in practice the function might be much faster: I
compiled the program with optimization disabled (optimization removed the main
loop, so it always ran in zero time). Appendix 3 describes how to expand this tiny

72 PROGRAMMING PEARLS COLUMN 7

program to produce a one-page description of the time costs of primitive C operations
for a given system.

How fast is networking? To find out, I type ping machine-name. It takes a few
milliseconds to ping a machine in the same building, so that represents the startup
time. On a good day, I can ping a machine on the other coast of the United States in
about 70 milliseconds (traversing the 5000 miles of the round-trip voyage at the speed
of light accounts for about 27 of those milliseconds); on a bad day, I get timed out
after waiting 1000 milliseconds. Measuring the time to copy a large file shows that a
ten-megabit Ethernet moves about a megabyte a second (that is, it achieves about 80
percent of its potential bandwidth). Similarly, a hundred-megabit Ethernet with the
wind at its back moves ten megabytes a second.

Little experiments can put key parameters at your fingertips. Database designers
should know the times for reading and writing records, and for joins of various forms.
Graphics programmers should know the cost of key screen operations. The short time
required to do such little experiments today will be more than paid in the time you
save by making wise decisions tomorrow.

7.3 Safety Factors

The output of any calculation is only as good as its input. With good data, simple
calculations can yield accurate answers that are sometimes quite useful. Don Knuth
once wrote a disk sorting package, only to find that it took twice the time predicted by
his calculations. Diligent checking uncovered the flaw: due to a software bug, the
system's one-year-old disks had run at only half their advertised speed for their entire
lives. When the bug was fixed, Knuth's sorting package behaved as predicted and
every other disk-bound program also ran faster.

Often, though, sloppy input is enough to get into the right ballpark. (The estima-
tion quiz in Appendix 2 may help you to judge the quality of your guesses.) If you
guess about twenty percent here and fifty percent there and still find that a design is a
hundred times above or below specification, additional accuracy isn't needed. But
before placing too much confidence in a twenty percent margin of error, consider Vic
Vyssotsky's advice from a talk he has given on several occasions.

"Most of you", says Vyssotsky, "probably recall pictures of 'Galloping Gertie',
the Tacoma Narrows Bridge which tore itself apart in a windstorm in 1940. Well,
suspension bridges had been ripping themselves apart that way for eighty years or so
before Galloping Gertie. It's an aerodynamic lift phenomenon, and to do a proper
engineering calculation of the forces, which involve drastic nonlinearities, you have to
use the mathematics and concepts of Kolmogorov to model the eddy spectrum.
Nobody really knew how to do this correctly in detail until the 1950's or thereabouts.
So, why hasn't the Brooklyn Bridge torn itself apart, like Galloping Gertie?

"It's because John Roebling had sense enough to know what he didn't know. His
notes and letters on the design of the Brooklyn Bridge still exist, and they are a fasci-
nating example of a good engineer recognizing the limits of his knowledge. He knew
about aerodynamic lift on suspension bridges; he had watched it. And he knew he

COLUMN? THE BACK OF THE ENVELOPE 73

didn't know enough to model it. So he designed the stiffness of the truss on the
Brooklyn Bridge roadway to be six times what a normal calculation based on known
static and dynamic loads would have called for. And, he specified a network of diag-
onal stays running down to the roadway, to stiffen the entire bridge structure. Go
look at those sometime; they're almost unique.

"When Roebling was asked whether his proposed bridge wouldn't collapse like
so many others, he said, 'No, because I designed it six times as strong as it needs to
be, to prevent that from happening.'

"Roebling was a good engineer, and he built a good bridge, by employing a huge
safety factor to compensate for his ignorance. Do we do that? I submit to you that in
calculating performance of our real-time software systems we ought to derate them by
a factor of two, or four, or six, to compensate for our ignorance. In making
reliability/availability commitments, we ought to stay back from the objectives we
think we can meet by a factor of ten, to compensate for our ignorance. In estimating
size and cost and schedule, we should be conservative by a factor of two or four to
compensate for our ignorance. We should design the way John Roebling did, and not
the way his contemporaries did — so far as I know, none of the suspension bridges
built by Roebling's contemporaries in the United States still stands, and a quarter of
all the bridges of any type built in the U.S. in the 1870's collapsed within ten years of
their construction.

"Are we engineers, like John Roebling? I wonder."

7.4 Little's Law

Most back-of-the-envelope calculations use obvious rules: total cost is unit cost
times number of units. Sometimes, though, one needs a more subtle insight. Bruce
Weide wrote the following note about a surprisingly versatile rule.

"The 'operational analysis' introduced by Denning and Buzen (see Computing
Surveys 10, 3, November 1978, 225-261) is much more general than queueing net-
work models of computer systems. Their exposition is excellent, but because of the
article's limited focus, they didn't explore the generality of Little's Law. The proof
methods have nothing to do with queues or with computer systems. Imagine any sys-
tem in which things enter and leave. Little's Law states that The average number of
things in the system is the product of the average rate at which things leave the system
and the average time each one spends in the system.' (And if there is a gross 'flow
balance' of things entering and leaving, the exit rate is also the entry rate.)

"I teach this technique of performance analysis in my computer architecture
classes at Ohio State University. But I try to emphasize that the result is a general law
of systems theory, and can be applied to many other kinds of systems. For instance, if
you're in line waiting to get into a popular nightspot, you might figure out how long
you'll have to wait by standing there for a while and trying to estimate the rate at
which people are entering. With Little's Law, though, you could reason, This place
holds about 60 people, and the average Joe will be in there about 3 hours, so we're
entering at the rate of about 20 people an hour. The line has 20 people in it, so that

74 PROGRAMMING PEARLS COLUMN 7

means we'll wait about an hour. Let's go home and read Programming Pearls
instead.' You get the picture.''

Peter Denning succinctly phrases this rule as 'The average number of objects in a
queue is the product of the entry rate and the average holding time." He applies it to
his wine cellar: "I have 150 cases of wine in my basement and I consume (and pur-
chase) 25 cases per year. How long do I hold each case? Little's Law tells me to
divide 150 cases by 25 cases/year, which gives 6 years."

He then turns to more serious applications. "The response-time formula for a
multi-user system can be proved using Little's Law and flow balance. Assume n
users of average think time z are connected to an arbitrary system with response time
r. Each user cycles between thinking and waiting-for-response, so the total number of
jobs in the meta-system (consisting of users and the computer system) is fixed at n. If
you cut the path from the system's output to the users, you see a meta-system with
average load n, average response time z + r, and throughput x (measured in jobs per
time unit). Little's Law says n =xx(z + r), and solving for r gives r = n/x - z."

7.5 Principles

When you use back-of-the-envelope calculations, be sure to recall Einstein's
famous advice.

Everything should be made as simple as possible, but no simpler.

We know that simple calculations aren't too simple by including safety factors to
compensate for our mistakes in estimating parameters and our ignorance of the prob-
lem at hand.

7.6 Problems

The quiz in Appendix 2 contains additional problems.
1. While Bell Labs is about a thousand miles from the mighty Mississippi, we are

only a couple of miles from the usually peaceful Passaic River. After a particu-
larly heavy week of rains, the June 10, 1992, edition of the Star-Ledger quoted an
engineer as saying that "the river was traveling about 200 miles per hour, about
five times faster than average''. Any comments?

2. At what distances can a courier on a bicycle with removable media be a more
rapid carrier of information than a high-speed data line?

3. How long would it take you to fill a floppy disk by typing?
4. Suppose the world is slowed down by a factor of a million. How long does it take

for your computer to execute an instruction? Your disk to rotate once? Your disk
arm to seek across the disk? You to type your name?

5. Prove why "casting out nines" correctly tests addition. How can you further test
the Rule of 72? What can you prove about it?

6. A United Nations estimate put the 1998 world population at 5.9 billion and the

COLUMN 7 THE BACK OF THE ENVELOPE 75

annual growth rate at 1.33 percent. Were this rate to continue, what would the
population be in 2050?

7. Appendix 3 describes programs to produce models of the time and space costs of
your system. After reading about the models, write down your guesses for the
costs on your system. Retrieve the programs from the book's web site, run them
on your system, and compare those estimates to your guesses.

8. Use quick calculations to estimate the run time of designs sketched in this book.
a. Evaluate programs and designs for their time and space requirements.
b. Big-oh arithmetic can be viewed as a formalization of quick calculations — it

captures the growth rate but ignores constant factors. Use the big-oh run times
of the algorithms in Columns 6, 8, 11, 12, 13, 14 and 15 to estimate the run
time of their implementation as programs. Compare your estimates to the
experiments reported in the columns.

9. Suppose that a system makes 100 disk accesses to process a transaction (although
some systems need fewer, some systems require several hundred disk accesses per
transaction). How many transactions per hour per disk can the system handle?

10. Estimate your city's death rate, measured in percent of population per year.
11. [P. J. Denning] Sketch a proof of Little's Law.
12. You read in a newspaper article that a United States quarter-dollar coin has "an

average life of 30 years''. How can you check that claim?

7.7 Further Reading

My all-time favorite book on common sense in mathematics is Darrell Huff's
1954 classic How To Lie With Statistics', it was reissued by Norton in 1993. The
examples are now quaint (some of those rich folks make a whopping twenty-five
thousand dollars per year!), but the principles are timeless. John Allen Paulos's
Innumeracy: Mathematical Illiteracy and Its Consequences is a 1990 approach to
similar problems (published by Farrar, Straus and Giroux).

Physicists are well aware of this topic. After this column appeared in
Communications of the ACM, Jan Wolitzky wrote

I've often heard "back-of-the-envelope" calculations referred to as
"Fermi approximations", after the physicist. The story is that Enrico
Fermi, Robert Oppenheimer, and the other Manhattan Project brass were
behind a low blast wall awaiting the detonation of the first nuclear device
from a few thousand yards away. Fermi was tearing up sheets of paper
into little pieces, which he tossed into the air when he saw the flash.
After the shock wave passed, he paced off the distance travelled by the
paper shreds, performed a quick "back-of-the-envelope" calculation, and
arrived at a figure for the explosive yield of the bomb, which was
confirmed much later by expensive monitoring equipment.

76 PROGRAMMING PEARLS COLUMN 7

A number of relevant web pages can be found by searching for strings like "back of
the envelope" and "Fermi problems".

7.8 Quick Calculations in Everyday Life [Sidebar]

The publication of this column in Communications of the ACM provoked many
interesting letters. One reader told of hearing an advertisement state that a salesper-
son had driven a new car 100,000 miles in one year, and then asking his son to exam-
ine the validity of the claim. Here's one quick answer: there are 2000 working hours
per year (50 weeks times 40 hours per week), and a salesperson might average 50
miles per hour; that ignores time spent actually selling, but it does multiply to the
claim. The statement is therefore at the outer limits of believability.

Everyday life presents us with many opportunities to hone our skills at quick cal-
culations. For instance, how much money have you spent in the past year eating in
restaurants? I was once horrified to hear a New Yorker quickly compute that he and
his wife spend more money each month on taxicabs than they spend on rent. And for
California readers (who may not know what a taxicab is), how long does it take to fill
a swimming pool with a garden hose?

Several readers commented that quick calculations are appropriately taught at an
early age. Roger Pinkham wrote

I am a teacher and have tried for years to teach "back-of-the-envelope"
calculations to anyone who would listen. I have been marvelously unsuc-
cessful. It seems to require a doubting-Thomas turn of mind.
My father beat it into me. I come from the coast of Maine, and as a small
child I was privy to a conversation between my father and his friend
Homer Potter. Homer maintained that two ladies from Connecticut were
pulling 200 pounds of lobsters a day. My father said, "Let's see. If you
pull a pot every fifteen minutes, and say you get three legal per pot, that's
12 an hour or about 100 per day. I don't believe it!"

"Well it is true!" swore Homer. "You never believe anything!"

Father wouldn't believe it, and that was that. Two weeks later Homer
said, "You know those two ladies, Fred? They were only pulling 20
pounds a day."

Gracious to a fault, father grunted, "Now that I believe."

Several other readers discussed teaching this attitude to children, from the view-
points of both parent and child. Popular questions for children were of the form
"How long would it take you to walk to Washington, D.C.?" and "How many
leaves did we rake this year?" Administered properly, such questions seem to
encourage a life-long inquisitiveness in children, at the cost of bugging the heck out
of the poor kids at the time.

COLUMNS ALGORITHM DESIGN TECHNIQUES

Column 2 describes the everyday effect of algorithm design on programmers:
algorithmic insights can make a program simpler. In this column we'll see a less fre-
quent but more dramatic contribution of the field: sophisticated algorithms sometimes
give extreme performance improvements.

This column studies four different algorithms for one small problem, with an
emphasis on the techniques used to design them. Some of the algorithms are a little
complicated, but with justification. While the first program we'll study takes fifteen
days to solve a problem of size 100,000, the final program solves the same problem in
five milliseconds.

8.1 The Problem and a Simple Algorithm

The problem arose in one-dimensional pattern recognition; we'll see its history
later. The input is a vector x of n floating-point numbers; the output is the maximum
sum found in any contiguous subvector of the input. For instance, if the input vector
contains these ten elements

31 -41 59 26 -53 58 97 -93 -23 84

t t
2 6

then the program returns the sum of jc[2..6], or 187. The problem is easy when all the
numbers are positive; the maximum subvector is the entire input vector. The rub
comes when some of the numbers are negative: should we include a negative number
in hopes that positive numbers on either side will compensate for it? To complete the
problem definition, we'll say that when all inputs are negative the maximum-sum sub-
vector is the empty vector, which has sum zero.

The obvious program for this task iterates over all pairs of integers i and j satisfy-
ing 0</<y <n; for each pair it computes the sum of x[i.j] and checks whether that
sum is greater than the maximum sum so far. The pseudocode for Algorithm 1 is

77

78 PROGRAMMING PEARLS COLUMN 8

maxsofar = 0
for 1 = [0, n)

for j = [i, n)
sum = 0
for k = [i, j]

sum += x[k]
/* sum Is sum of x[i..j] */
maxsofar = max(maxsofar, sum)

This code is short, straightforward and easy to understand. Unfortunately, it is also
slow. On my computer, for instance, the program takes about 22 minutes if n is
10,000 and fifteen days if n is 100,000; we'll see the timing details in Section 8.5.

Those times are anecdotal; we get a different kind of feeling for the algorithm's
efficiency using the big-oh notation described in Section 6.1. The outermost loop is
executed exactly n times, and the middle loop is executed at most n times in each exe-
cution of the outer loop. Multiplying those two factors of n shows that the code in the
middle loop is executed O(n2) times. The innermost loop within the middle loop is
never executed more than n times, so its cost is O(n). Multiplying the cost per inner
loop times its number of executions shows that the cost of the entire program is pro-
portional to n cubed. We'll therefore refer to this as a cubic algorithm.

This example illustrates the technique of big-oh analysis and many of its strengths
and weaknesses. Its primary weakness is that we still don't really know the amount of
time the program will take for any particular input; we just know that the number of
steps is O(n3). That weakness is often compensated for by two strong points of the
method. Big-oh analyses are usually easy to perform (as above), and the asymptotic
run time is often sufficient for a back-of-the-envelope calculation to decide whether a
program is sufficient for a given application.

The next several sections use asymptotic run time as the only measure of program
efficiency. If that makes you uncomfortable, peek ahead to Section 8.5, which shows
that such analyses are extremely informative for this problem. Before you read fur-
ther, though, take a minute to try to find a faster algorithm.

8.2 Two Quadratic Algorithms

Most programmers have the same response to Algorithm 1: "There's an obvious
way to make it a lot faster." There are two obvious ways, however, and if one is
obvious to a given programmer then the other often isn't. Both algorithms are qua-
dratic — they take O(n2} steps on an input of size n — and both achieve their run
time by computing the sum of x[i..j] in a constant number of steps rather than in the
j- i + 1 additions of Algorithm 1. But the two quadratic algorithms use very different
methods to compute the sum in constant time.

The first quadratic algorithm computes the sum quickly by noticing that the sum
of x[i..j] is intimately related to the sum previously computed (that of x[i..j—l]).
Exploiting that relationship leads to Algorithm 2.

COLUMN 8 ALGORITHM DESIGN TECHNIQUES 79

maxsofar = 0
for i = [0, n)

sum = 0
for j = [i, n)

sum += x[j]
/* sum is sum of x[i.. j] */
maxsofar = max(maxsofar, sum)

The statements inside the first loop are executed n times, and those inside the second
loop are executed at most n times on each execution of the outer loop, so the total run
time is O(n2).

An alternative quadratic algorithm computes the sum in the inner loop by access-
ing a data structure built before the outer loop is ever executed. The ith element of
cumarr contains the cumulative sum of the values in ;c[0../], so the sum of the values
in x[i.j] can be found by computing cumarr[j]-cumarr[i-I]. This results in the
following code for Algorithm 2b.

cumarr[-l] = 0
for i = [0, n)

cumarr[i] = cumarr[i-l] + x[i]
maxsofar = 0
for i = [0, n)

for j = [i, n)
sum = cumarr[j] - cumarr[i-1]
/* sum is sum of x[i..j] */
maxsofar = max(maxsofar, sum)

(Problem 5 addresses how we might access cumarr[-\].) This code takes O(n2)
time; the analysis is exactly the same as that of Algorithm 2.

The algorithms we've seen so far inspect all possible pairs of starting and ending
values of subvectors and evaluate the sum of the numbers in that subvector. Because
there are O(n2) subvectors, any algorithm that inspects all those values must take at
least quadratic time. Can you think of a way to sidestep this problem and achieve an
algorithm that runs in less time?

8.3 A Divide-and-Conquer Algorithm

Our first subquadratic algorithm is complicated; if you get bogged down in its
details, you won't lose much by skipping to the next section. It is based on the fol-
lowing divide-and-conquer recipe:

To solve a problem of size n, recursively solve two subproblems of size
approximately n/2, and combine their solutions to yield a solution to the
complete problem.

In this case the original problem deals with a vector of size n, so the most natural way
to divide it into subproblems is to create two subvectors of approximately equal size,
which we'll call a and b.

80 PROGRAMMING PEARLS COLUMN 8

a b

We then recursively find the maximum- sum sub vectors in a and b, which we'll call
ma

ma mb

It is tempting to think that we have now solved the problem because the
maximum-sum subvector of the entire vector must be either maormb. That is almost
right. In fact, the maximum is either entirely in a, entirely in b, or it crosses the bor-
der between a and b\ we'll call that mc for the maximum crossing the border.

mc

Thus our divide-and-conquer algorithm will compute ma and mb recursively, com-
pute mc by some other means, and then return the maximum of the three.

That description is almost enough to write code. All we have left to describe is
how we'll handle small vectors and how we'll compute mc. The former is easy: the
maximum of a one-element vector is the only value in the vector (or zero if that num-
ber is negative), and the maximum of a zero-element vector was defined to be zero.
To compute mc we observe that its left side is the largest subvector starting at the
boundary and reaching into a, and similarly for its right side in b. Putting these facts
together leads to the following code for Algorithm 3:

float maxsumSO , u)
if (1 > u) /* zero elements */

return 0
if (l == u) A one element */

return max(0, x[l])

m = (1 + u) / 2
A find max crossing to left */
Imax = sum = 0
for (i = m; i >= 1; i--)

sum += x[i]
Imax = max(Imax, sum)

A find max crossing to right */
rmax = sum = 0
for i = (m, u]

sum += x[i]
rmax = max(rmax, sum)

return max(lmax+rmax, maxsum3(l , m) , maxsum3(m+l, u))

Algorithm 3 is originally invoked by the call

COLUMN 8 ALGORITHM DESIGN TECHNIQUES 81

answer = maxsum3(0, n-1)

The code is subtle and easy to get wrong, but it solves the problem in O(n log n)
time. We can prove that fact in several ways. An informal argument observes that
the algorithm does O(n) work on each of 0(log n) levels of recursion. The argument
can be made more precise by the use of recurrence relations. If T(n) denotes the time
to solve a problem of size n, then T(1) = O(1) and

T(n) = 2T(n/2) + O(n).

Problem 15 shows that this recurrence has the solution T(n) - O(n log n).

8.4 A Scanning Algorithm

We'll now use the simplest kind of algorithm that operates on arrays: it starts at
the left end (element ;c[0]) and scans through to the right end (element jc[n-l]),
keeping track of the maximum-sum subvector seen so far. The maximum is initially
zero. Suppose that we've solved the problem for jt[0../- 1]; how can we extend that
to include *[/]? We use reasoning similar to that of the divide-and-conquer algo-
rithm: the maximum-sum subarray in the first / elements is either in the first i - 1 ele-
ments (which we'll store in maxsofar), or it ends in position i (which we'll store in
maxendinghere).

maxsofar maxendinghere

Recomputing maxendinghere from scratch using code like that in Algorithm 3 yields
yet another quadratic algorithm. We can get around this by using the technique that
led to Algorithm 2: instead of computing the maximum subvector ending in position i
from scratch, we'll use the maximum subvector that ends in position / - I . This
results in Algorithm 4.

maxsofar = 0
maxendinghere = 0
for 1 = [0, n)

/* Invariant: maxendinghere and maxsofar
are accurate for x[0..i-l] */

maxendinghere = max(maxendinghere + x[i], 0)
maxsofar = max(maxsofar, maxendinghere)

The key to understanding this program is the variable maxendinghere. Before the
first assignment statement in the loop, maxendinghere contains the value of the maxi-
mum subvector ending in position / -1; the assignment statement modifies it to con-
tain the value of the maximum subvector ending in position /. The statement
increases it by the value jc[/] so long as doing so keeps it positive; when it goes nega-
tive, it is reset to zero (because the maximum subvector ending at i is now the empty
vector). Although the code is subtle, it is short and fast: its run time is O(n), so we'll
refer to it as a linear algorithm.

82 PROGRAMMING PEARLS COLUMN I

8.5 What Does It Matter?

So far we've played fast and loose with big-ohs; it's time to come clean and study
the run times of the programs. I implemented the four primary algorithms in C on a
400MHz Pentium II, timed them, and extrapolated the observed run times to produce
the following table. (The run time of Algorithm 2b was typically within ten percent
of Algorithm 2, so it is not included.)

ALGORITHM
Run time in
nanoseconds

Time to
solve a
problem
of size

Max size
problem
solved in
one

103

104

105

106

107

sec
min
hr

day
If n multiplies by 10,
time multiplies by

If time multiplies by
10, n multiplies by

1

1.3rc3

1.3 sees
22 mins
15 days
41 yrs

41 millennia

920
3600

14,000
41,000

1000

2.15

2

lOrc2

10 msecs
1 sec

1.7 min
2.8 hrs
1.7wks

10,000
77,000

6.0xl05

2.9xl06

100

3.16

3

47 n log 2 n

A msecs
6 msecs

78 msecs
.94 sees
11 sees

l .OxlO6

4.9xl07

2.4xl09

5.0xl010

10+

10-

4

48rc

.05 msecs
.5 msecs
5 msecs

48 msecs
.48 sees

2.1xl07

1.3xl09

7.6xl010

l .SxlO1 2

10

10

This table makes a number of points. The most important is that proper algorithm
design can make a big difference in run time; that point is underscored by the middle
rows. The last two rows show how increases in problem size are related to increases
in run time.

Another important point is that when we're comparing cubic, quadratic and linear
algorithms with one another, the constant factors of the programs don't matter much.
(The discussion of the O(n\) algorithm in Section 2.4 shows that constant factors
matter even less in functions that grow faster than polynomially.) To underscore this
point, I conducted an experiment to make the constant factors of two algorithms differ
by as much as possible. To achieve a huge constant factor I implemented Algorithm 4
on a Radio Shack TRS-80 Model III (a 1980 personal computer with a Z-80 processor
running at 2.03MHz). To slow that poor old beast even further, I used an interpreted
Basic that is an order or two of magnitude slower than compiled code. For the other
end of the spectrum, I implemented Algorithm 1 on an Alpha 21164 running at
533MHz. I got the disparity I wanted: the run time of the cubic algorithm was mea-
sured as 0.58n3 nanoseconds, while the run time of the linear algorithm was 19.5n
milliseconds, or 19,500,000^ nanoseconds (that is, it processes about 50 elements per
second). This table shows how those expressions translate to times for various prob-
lem sizes.

COLUMN 8 ALGORITHM DESIGN TECHNIQUES 83

n

10
100

1000
10,000
100,000

1,000,000

ALPHA 21 164 A,
c,

CUBIC ALGORITHM
0.6 microsecs
0.6 millisecs

0.6 sees
10 mins
7 days
19yrs

TRS-80,
BASIC,

LINEAR ALGORITHM
200 millisecs

2.0 sees
20 sees

3.2 mins
32 mins
5.4 hrs

The difference in constant factors of thirty-three million allowed the cubic algorithm
to start off faster, but the linear algorithm was bound to catch up. The break-even
point for the two algorithms is around 5,800, where each takes just under two minutes
of run time.

Run Time
in

Nanoseconds

— century

— month

hour

— second

— millisecond

— microsecond

— nanosecond

Run Time in
Common

Units

1 I
10° 10' 102 103 104 105

Problem Size (n)

106

8.6 Principles

The history of the problem sheds light on the algorithm design techniques. The
problem arose in a pattern-matching problem faced by Ulf Grenander at Brown Uni-
versity; the original problem was in the two-dimensional form described in Problem
13. In that version, the maximum-sum subarray was the maximum likelihood estima-
tor of a certain kind of pattern in a digitized picture. Because the two-dimensional
problem required too much time to solve, Grenander simplified it to one dimension to
gain insight into its structure.

Grenander observed that the cubic time of Algorithm 1 was prohibitively slow,
and derived Algorithm 2. In 1977 he described the problem to Michael Shamos, who
overnight designed Algorithm 3. When Shamos showed me the problem shortly
thereafter, we thought that it was probably the best possible; researchers had just
shown that several similar problems require time proportional to n log n. A few days
later Shamos described the problem and its history at a Carnegie Mellon seminar
attended by statistician Jay Kadane, who sketched Algorithm 4 within a minute.

84 PROGRAMMING PEARLS COLUMN 8

Fortunately, we know that there is no faster algorithm: any correct algorithm must
take O(n) time (see Problem 6).

Even though the one-dimensional problem is completely solved, Grenander's orig-
inal two-dimensional problem remains open two decades after it was posed, as the
second edition of this book goes to press. Because of the computational expense of
all known algorithms, Grenander had to abandon that approach to his pattern-
matching problem. Readers who feel that the linear-time algorithm for the one-
dimensional problem is "obvious" are therefore urged to find an "obvious" algo-
rithm for Problem 13!

The algorithms in this story illustrate important algorithm design techniques.
Save state to avoid recomputation. This simple form of dynamic programming
was used in Algorithms 2 and 4. By using space to store results, we avoid using
time to recompute them.
Preprocess information into data structures. The cumarr structure in Algorithm
2b allows the sum of a subvector to be quickly computed.
Divide-and-conquer algorithms. Algorithm 3 uses a simple form of divide-and-
conquer; textbooks on algorithm design describe more advanced forms.
Scanning algorithms. Problems on arrays can often be solved by asking ' 'how can
I extend a solution for ;t[0../ - 1] to a solution for jc[0../]?" Algorithm 4 stores
both the old answer and some auxiliary data to compute the new answer.
Cumulatives. Algorithm 2b uses a cumulative table in which the ith element con-
tains the sum of the first / values of ;c; such tables are common when dealing with
ranges. Business analysts, for instance, find the sales from March to October by
subtracting the February year-to-date sales from the October year-to-date sales.
Lower bounds. Algorithm designers sleep peacefully only when they know their
algorithms are the best possible; for this assurance, they must prove a matching
lower bound. The linear lower bound for this problem is the subject of Problem 6;
more complex lower bounds can be quite difficult.

8.7 Problems
1. Algorithms 3 and 4 use subtle code that is easy to get wrong. Use the program

verification techniques of Column 4 to argue the correctness of the code; specify
the loop invariants carefully.

2. Time the four algorithms on your machine to build a table like that in Section 8.5.
3. Our analysis of the four algorithms was done only at the big-oh level of detail.

Analyze the number of max functions used by each algorithm as exactly as possi-
ble; does this exercise give any insight into the running times of the programs?
How much space does each algorithm require?

4. If the elements in the input array are random real numbers chosen uniformly from
[- 1, 1], what is the expected value of the maximum subvector?

5. For simplicity, Algorithm 2b accessed cumarr[-\}. How would you deal with
that issue in C?

COLUMN 8 ALGORITHM DESIGN TECHNIQUES 85

6. Prove that any correct algorithm for computing maximum subvectors must inspect
all n inputs. (Algorithms for some problems may correctly ignore some inputs;
consider Saxe's algorithm in Solution 2.2 and Boyer and Moore's substring
searching algorithm.)

7. When I first implemented the algorithms, my scaffolding always compared the
answer produced by the various algorithms to that produced by Algorithm 4. I
was distraught to see the scaffolding report errors in Algorithms 2b and 3, but
when I looked closely at the numerical answers, I found that although not identi-
cal, they were very close. What was going on?

8. Modify Algorithm 3 (the divide-and-conquer algorithm) to run in linear worst-
case time.

9. We defined the maximum sub vector of an array of negative numbers to be zero,
the sum of the empty subvector. Suppose that we had instead defined the maxi-
mum subvector to be the value of the largest element; how would you change the
various programs?

10. Suppose that we wished to find the subvector with the sum closest to zero rather
than that with maximum sum. What is the most efficient algorithm you can
design for this task? What algorithm design techniques are applicable? What if
we wished to find the subvector with the sum closest to a given real number ft

11. A turnpike consists of n - 1 stretches of road between n toll stations; each stretch
has an associated cost of travel. It is trivial to tell the cost of going between any
two stations in O(n) time using only an array of the costs or in constant time using
a table with O(n2) entries. Describe a data structure that requires O(n) space but
allows the cost of any route to be computed in constant time.

12. After the array x[0..n - 1] is initialized so that every element is zero, n of the fol-
lowing operations are performed

for i = [1, u]
x[i] += v

where /, u and v are parameters of each operation (/ and u are integers satisfying
0<l<u<n, and v is a real number). After the n operations, the values of
x[Q..n - 1] are reported in order. The method just sketched requires O(n2) time.
Can you find a faster algorithm?

13. In the maximum subarray problem we are given an nxn array of reals, and we
must find the maximum sum contained in any rectangular subarray. What is the
complexity of this problem?

14. Given integers m and n and the real vector x [n] , find the integer / (0</ <n -m)
such that the sum x[i] +...+*[/ +m] is nearest zero.

15. What is the solution of the recurrence T(n) = 2T(n/2) + en when r(l) = 0 and
n is a power of two? Prove your result by mathematical induction. What if

86 PROGRAMMING PEARLS COLUMN 8

8.8 Further Reading

Only extensive study and practice can put algorithm design techniques at your
fingertips; most programmers will get this only from a course or textbook on algo-
rithms. Data Structures and Algorithms by Aho, Hopcroft and Ullman (published by
Addison-Wesley in 1983) is an excellent undergraduate text. Chapter 10 on "Algo-
rithm Design Techniques" is especially relevant to this column.

Gormen, Leiserson and Rivest's Introduction to Algorithms was published by MIT
Press in 1990. This thousand-page volume provides a thorough overview of the field.
Parts I, II and III cover foundations, sorting and searching. Part IV on "Advanced
Design and Analysis Techniques" is particularly relevant to the theme of this column.
Parts V, VI and VII survey advanced data structures, graph algorithms and other
selected topics.

Those books and seven others were collected onto a CD-ROM as Dr. Dobb's
Essential Books on Algorithms and Data Structures. The CD was published in 1999
by Miller Freeman, Inc. It is an invaluable reference work for any programmer inter-
ested in algorithms and data structures. As this book goes to press, the complete elec-
tronic set could be ordered from the Dr. Dobb's web site at www.ddj.com for about
the price of one physical book.

http://www.ddj.com

COLUMN 9 CODE TUNING

Some programmers pay too much attention to efficiency; by worrying too soon
about little "optimizations" they create ruthlessly clever programs that are insidi-
ously difficult to maintain. Others pay too little attention; they end up with beauti-
fully structured programs that are utterly inefficient and therefore useless. Good pro-
grammers keep efficiency in context: it is just one of many problems in software, but
it is sometimes very important.

Previous columns have discussed high-level approaches to efficiency: problem
definition, system structure, algorithm design and data structure selection. This col-
umn is about a low-level approach. "Code tuning" locates the expensive parts of an
existing program and then makes little changes to improve its speed. It's not always
the right approach to follow and it's rarely glamorous, but it can sometimes make a
big difference in a program's performance.

9.1 A Typical Story

Chris Van Wyk and I chatted about code tuning early one afternoon; he then wan-
dered off to improve a C program. A few hours later, he had halved the run time of a
three-thousand line graphics program.

Although the run time for typical images was much shorter, the program took ten
minutes to process some complicated pictures. Van Wyk's first step was to profile
the program to find how much time was spent in each function (a profile of a similar,
but smaller, program is shown on the next page). Running the program on ten typical
test pictures showed that it spent almost seventy percent of its time in the memory
allocation function malloc.

Van Wyk's next step was to study the memory allocator. Because his program
accessed malloc through a single function that provided error checking, he was able to
modify that function without examining the source code of malloc. He inserted a few
lines of accounting code, which showed that the most popular kind of record was allo-
cated thirty times more frequently than the runner-up. If you knew that the majority
of the program's time was spent looking through storage for a single type of record,
how would you modify it to make it faster?

87

PROGRAMMING PEARLS COLUMN 9

Van Wyk solved his problem by applying the principle of caching: data that is
accessed most often should be the cheapest to access. He modified his program by
caching free records of the most common type in a linked list. He could then handle
the common request by a quick access to that list rather than by invoking the general
storage allocator; this reduced the total run time of his program to 45 percent of what
it had been previously (so the storage allocator now took 30 percent of the total time).
An additional benefit was that the reduced fragmentation of the modified allocator
made more efficient use of main memory than the original allocator. Solution 2
shows an alternative implementation of this ancient technique; we'll use a similar
approach several times in Column 13.

This story illustrates the art of code tuning at its best. By spending a few hours
measuring and adding about twenty lines to a 3000-line program, Van Wyk doubled
its speed without altering the users' view of the program or increasing the difficulty of
maintenance. He used general tools to achieve the speedup: profiling identified the
"hot spot" of his program and caching reduced the time spent there.

This profile of a typical little C program is similar, in both form and content, to
Van Wyk's profile:

Func
Time %

1413
474
285
174
157
143
27

.406

.441

.298

.205

.135

.285

.854

52
17
10
6
5
5
1

.8

.7

.7

.5

.9

.4

.0

Func+Child
Ti me %

1413.
2109.
1635.
2675.
157.
143.
91.

406
506
065
624
135
285
493

52
78
61
100

5
5
3

.8

.8

.1

.0

.9

.4

.4

Hit
Count

200002
200180
250614

1
1

200180
1

Function

malice
insert
rinsert
main
report
big rand
initbins

On this run, the majority of the time went to malloc. Problem 2 encourages you to
reduce the run time of this program by caching nodes.

9.2 A First Aid Sampler

We'll turn now from a large program to several small functions. Each describes a
problem that I've seen in various contexts. The problems consumed most of the run
time in their applications, and the solutions use general principles.

Problem One — Integer Remainders. Section 2.3 sketches three algorithms for
rotating a vector. Solution 2.3 implements a "juggling" algorithm with this opera-
tion in the inner loop:

k = (j + rotdist) % n;

The cost model in Appendix 3 shows that the C remainder operator % can be very
expensive: while most arithmetic operations take about ten nanoseconds, the % opera-
tor takes close to 100 nanoseconds. We might be able to reduce the time of the pro-
gram by implementing the operation with this code:

COLUMN 9 CODE TUNING 89

k = j + rotdist;
if (k >= n)

k -= n;

This replaces the expensive % operator with a comparison and (rarely) a subtraction.
But will that make any difference in the complete function?

My first experiment ran the program with the rotation distance rotdist set to 1, and
the run time dropped from 119n nanoseconds to 57n nanoseconds. The program was
almost twice as fast, and the 62 nanoseconds observed in the speedup was close to
what was predicted by the cost model.

My next experiment set rotdist to 10, and I was shocked to see that the run time of
both methods was identical at 206n nanoseconds. Experiments like the graph in Solu-
tion 2.4 soon led me to conjecture the cause: At rotdist = 1, the algorithm accessed
memory sequentially, and the remainder operator dominated the time. When rot-
dist = 10, though, the code accessed every tenth word of memory, and fetching RAM
into caches became dominant.

In the old days, programmers learned that it was futile to try to speed up the com-
putations in programs that spend their time doing input and output. On modern archi-
tectures, it is equally futile to try to reduce computation time when so many of the
cycles are spent accessing memory.

Problem Two — Functions, Macros and Inline Code. Throughout Column 8, we
had to compute the maximum of two values. In Section 8.4, for instance, we used
code like this:

maxendinghere = max(maxendinghere, 0);
maxsofar = max(maxsofar, maxendinghere);

The max function returns the maximum of its two arguments:

float max(float a, float b)
{ return a > b ? a : b; }

The run time of this program is about 89n nanoseconds.
Old C programmers might have the knee-jerk reaction to replace this particular

function with a macro:

^define max(a, b) ((a) > (b) ? (a) : (b))

This is certainly uglier and more error-prone. With many optimizing compilers, it
will make no difference at all (such compilers write small functions in line). On my
system, however, this change reduced the run time of Algorithm 4 from 89 n nanosec-
onds to 47 n nanoseconds, for a speedup factor of almost two.

My delight with this speedup evaporated when I measured the effect of changing
Algorithm 3 in Section 8.3 to use a macro: for n = 10,000, its run time increased from
ten milliseconds to a hundred seconds, for a slowdown factor of 10,000. The macro
appeared to have increased the run time of Algorithm 3 from its previous O(n log n)
to something closer to O(n2). I soon discovered that the call-by-name semantics of
macros caused Algorithm 3 to call itself recursively more than twice, and therefore

90 PROGRAMMING PEARLS COLUMN 9

increased its asymptotic running time. Problem 4 gives a more extreme example of
such a slowdown.

While C programmers have to fret about tradeoffs between performance and cor-
rectness, C++ programmers enjoy the best of both worlds. C++ allows one to request
that a function be compiled inline, which combines the clean semantics of functions
with the low overhead of macros.

Out of curiosity, I avoided both macros and functions, and wrote out the computa-
tion in if statements:

if (maxendinghere < 0)
maxendinghere = 0;

if (maxsofar < maxendinghere)
maxsofar = maxendinghere;

The run time was essentially unchanged.
Problem Three — Sequential Search. We'll turn now to sequentially searching a

(potentially unsorted) table:

int ssearchl(t)
for i = [0, n)

if X[i] == t
return i

return -1

This succinct code takes 4.06rc nanoseconds, on the average, to look up an element
that is in the array x. Because it looks at only half the elements in the array in a typi-
cal successful search, it spends about 8.1 nanoseconds at each table element.

The loop is svelte, but a tiny bit of fat may be trimmed. The inner loop has two
tests: the first tests whether / is at the end of the array, and the second tests whether
jc[/] is the desired element. We can replace the first test with the second by placing a
sentinel value at the end of the array:

int ssearch2(t)
hold = x[n]
x[n] = t
for (i = 0; ; i++)

if x[i] == t
break

x[n] = hold
if i == n

return -1
else

return i

This drops the run time to 3.87ft nanoseconds, for a speedup of about five percent.
This code assumes that the array has been allocated so that x[n] may be temporarily
overwritten. It is careful to save x[n] and to restore it after the search; that is unnec-
essary in most applications, and will be deleted from the next version.

COLUMN 9 CODE TUNING 91

The innermost loop now contains just an increment, an array access, and a test. Is
there any way to reduce that further? Our final sequential search unrolls the loop
eight times to remove the increment; further unrolling did not make it faster.

int ssearch3(t)
x[n] = t
for (i = 0;

if (x[i

else

i += 8)
] == t)

if (x[i+l] == t) {
if Cx[i+2] == t) {
if Cx[i+3] == t) {
if (x[i+4] == t) {
if (x[i+5] == t) {
if (x[i+6] == t) {
if (x[i+7] == t) {

i == n
return -1

return i

{
{ i
{ i
{ i
{ i
{ i
{ i
{ i

+=
+=
+=
+=
+=
+=
+=

i;
2;
3;
4;
5;
6;
7;

break
break
break
break
break
break
break
break

This drops the time to 1.70n nanoseconds, for a reduction of about 56 percent. On
old machines, reducing the overhead might have given a speedup of ten or twenty per-
cent. On modern machines, though, loop unrolling can help to avoid pipeline stalls,
to reduce branches, and to increase instruction-level parallelism.

Problem Four — Computing Spherical Distances. The final problem is typical of
applications that deal with geographic or geometric data. The first part of the input is
a set S of five thousand points on the surface of a globe; each point is represented by
its latitude and longitude. After those points are stored in a data structure of our
choice, the program reads the second part of the input: a sequence of twenty thousand
points, each represented by latitude and longitude. For every point in that sequence,
the program must tell which point in S is closest to it, where distance is measured as
the angle between the rays from the center of the globe to the two points.

Margaret Wright encountered a similar problem at Stanford University in the early
1980's as she computed maps to summarize data on the global distribution of certain
genetic traits. Her straightforward solution represented the set S by an array of lati-
tude and longitude values. The nearest neighbor to each point in the sequence was
found by calculating its distance to every point in S using a complicated trigonometric
formula involving ten sine and cosine functions. While the program was simple to
code and produced fine maps for small data sets, each large map required several
hours of mainframe time, which was well beyond the project's budget.

Because I had previously worked on geometric problems, Wright asked me to try
my hand at this one. After spending much of a weekend on it, I developed several
fancy algorithms and data structures for solving it. Fortunately (in retrospect), each
would have required many hundreds of lines of code, so I didn't try to code any of
them. When I described the data structures to Andrew Appel, he had a key insight:
Rather than approach the problem at the level of data structures, why not use the

92 PROGRAMMING PEARLS COLUMN 9

simple data structure of keeping the points in an array, but tune the code to reduce the
cost of computing the distances between points? How would you exploit this idea?

The cost can be greatly reduced by changing the representation of points: rather
than using latitudes and longitudes, we'll represent a point's location on the surface of
the globe by its x, y and z coordinates. Thus the data structure is an array that holds
each point's latitude and longitude (which may be needed for other operations) as
well as its three Cartesian coordinates. As each point in the sequence is processed, a
few trigonometric functions translate its latitude and longitude into x, y and z coordi-
nates, and we then compute its distance to every point in S. Its distance to a point in S
is computed as the sum of the squares of the differences in the three dimensions,
which is usually much cheaper than computing one trigonometric function, let alone
ten. (The cost model of run times in Appendix 3 gives details for one system.) This
method computes the correct answer because the angle between two points increases
monotonically with the square of their Euclidean distance.

Although this approach does require additional storage, it yields substantial
benefits: when Wright incorporated the change into her program, the run time for
complicated maps was reduced from several hours to half a minute. In this case, code
tuning solved the problem with a couple of dozen lines of code, while algorithmic and
data structure changes would have required many hundreds of lines.

9.3 Major Surgery — Binary Search

We'll turn now to one of the most extreme examples I know of code tuning. The
details are from Problem 4.8: we are to perform a binary search in a table of one thou-
sand integers. As we go through the process, keep in mind that tuning is usually not
needed in binary search — the algorithm is so efficient that code tuning is often
superfluous. In Column 4, we therefore ignored microscopic efficiency and concen-
trated on achieving a simple, correct and maintainable program. Sometimes, though,
the tuned search can make a big difference in a system.

We'll develop the fast binary search in a sequence of four programs. They are
subtle, but there is good reason to follow them closely: the final program is usually
two or three times faster than the binary search of Section 4.2. Before reading on, can
you spot any obvious waste in that code?

1 = 0; u = n-1
loop

/* invariant: if t is present, it is in x[l..u] */
if 1 > u

p = -1; break
m = (1 + u) / 2
case

x[m] < t: 1 = m+1
x[m] == t: p = m; break
x[m] > t: u = m-1

COLUMN 9 CODE TUNING 93

Our development of the fast binary search will start with the modified problem of
locating the first occurrence of the integer t in the integer array x[Q..n - I]; the above
code might return any one of multiple occurrences of t (we need just such a search in
Section 15.3). The main loop of the program is similar to the one above; we'll keep
indices / and u into the array that bracket the position of t, but we'll use the invariant
relation that x [l] < t < x [u] and / < u . We'll assume that n>0, that jt[- 1]<t and that
x[n]>t (but the program will never access the two fictitious elements). The binary
search code is now

1 = -1; u = n
while 1+1 != u

/* invariant: x[l] < t && x[u] >= t && 1 < u */
m = (1 + u) / 2
if x[m] < t

1 = m
else

u = m
/* assert 1+1 = u && x[l] < t && x[u] >= t */
p = u
if p >= n | | x[p] != t

P = -1

The first line initializes the invariant. As the loop is repeated, the invariant is main-
tained by the if statement; it's easy to check that both branches maintain the invariant.
Upon termination we know that if t is anywhere in the array, then its first occurrence
is in position u\ that fact is stated more formally in the assert comment. The final two
statements set p to the index of the first occurrence of tin x if it is present, and to - 1
if it is not present.

While this binary search solves a more difficult problem than the previous pro-
gram, it is potentially more efficient: it makes only one comparison of t to an element
of x in each iteration of the loop. The previous program sometimes had to test two
such outcomes.

The next version of the program is the first to exploit the fact that we know that n
is 1000. It uses a different representation of a range: instead of representing /.. u by its
lower and upper values, we'll represent it by its lower value / and an increment / such
that l + i=u. The code will ensure that / is at all times a power of two; this property is
easy to keep once we have it, but it is hard to get originally (because the array is of
size n = 1000). The program is therefore preceded by an assignment and //"statement
to ensure that the range being searched is initially of size 512, the largest power of
two less than 1000. Thus / and / + i together represent either - 1..511 or 488.. 1000.
Translating the previous binary search program to this new representation of a range
yields this code:

94 PROGRAMMING PEARLS COLUMN 9

i = 512
1 = -1
if x[511] < t

1 = 1000 - 512
while i != 1

/* invariant: x[l] < t && x[l+i] >= t && i = 2Aj */
nexti = i / 2
if x[l+nexti] < t

1 = 1 + nexti
i = nexti

else
i = nexti

/* assert i == 1 && x[l] < t && x[l+i] >= t */
p = 1+1
if p > 1000 | | x[p] != t

P = -1

The correctness proof of this program has exactly the same flow as the proof of the
previous program. This code is usually slower than its predecessor, but it opens the
door for future speedups.

The next program is a simplification of the above, incorporating some optimiza-
tions that a smart compiler might perform. The first if statement is simplified, the
variable nexti is removed, and the assignments to nexti are removed from the inner if
statement.

i = 512
1 = -1
if x[511] < t

1 = 1000 - 512
while i != 1

/* invariant: x[l] < t && x[l+i] >= t && i = 2Aj */
i = i / 2
if x[l+i] < t

l = l + i
/* assert i == 1 && x[l] < t && x[l+i] >= t */
p = 1+1
if p > 1000 | | x[p] != t

P = -1

Although the correctness argument for the code still has the same structure, we can
now understand its operation on a more intuitive level. When the first test fails and /
stays zero, the program computes the bits of p in order, most significant bit first.

The final version of the code is not for the faint of heart. It removes the overhead
of loop control and the division of / by two by unrolling the entire loop. Because /
assumes only ten distinct values in this program, we can write them all down in the
code, and thereby avoid computing them over and over again at run time.

COLUMN 9 CODE TUNING 95

1 = -1

if (x[511] < t) 1 = 1000 - 512
/* assert x[l] < t && x[l+512] >= t */

if (x[l+256] < t) 1 += 256
/* assert x[l] < t && x[l+256] >= t */

if (x[l+128] < t) 1 += 128
if (x[l+64] < t) 1 += 64
if (x[l+32] < t) 1 += 32
if (x[l+16] < t) 1 += 16
if (x[l+8] < t) 1 += 8
if (x[l+4] < t) 1 += 4
if (x[l+2] < t) 1 += 2

/* assert x[l] < t && x[l+2] >= t */
if (x[l+l] < t) 1 += 1

/* assert x[l] < t && x[l+l] >= t */
p = 1+1
if p > 1000 | | x[p] != t

P = -1

We can understand this code by inserting the complete string of assertions like those
surrounding the test of x[l + 256]. Once you do the two-case analysis to see how that
if statement behaves, all the other //"statements fall into line.

I've compared the clean binary search of Section 4.2 with this fine-tuned binary
search on a variety of systems. The first edition of this book reported the run times
across four machines, five programming languages, and several levels of optimiza-
tions; the speedups ranged from a 38 percent reduction to a factor of five (an 80 per-
cent reduction). When I measured it on my current machine, I was shocked and
delighted to see a reduction in search time for n = 1000 from 350 nanoseconds to 125
nanoseconds per search (a reduction of 64 percent).

The speedup seemed too good to be true, and it was. Close inspection showed that
my timing scaffolding was searching for each array element in order: first ;c[0], then
;c[1], and so forth. This gave binary search particularly favorable memory access pat-
terns and wonderful branch prediction. I therefore changed the scaffolding to search
for the elements in random order. The clean binary search took 418 nanoseconds,
while the loop-unrolled version took 266 nanoseconds, for a speedup of 36 percent.

This derivation is an idealized account of code tuning at its most extreme. We
replaced the obvious binary search program (which doesn't appear to have much fat
on it) with a super-lean version that is substantially faster. (This function has been
known in the computing underground since the early 1960's. I learned it from Guy
Steele in the early 1980's; he learned it at MIT, where it had been known since the
late 1960's. Vic Vyssotsky used this code at Bell Labs in 1961; each if statement in
the pseudocode was implemented in three IBM 7090 instructions.)

The program verification tools of Column 4 played a crucial role in the task.
Because we used them, we can believe that the final program is correct; when I first
saw the final code presented with neither derivation nor verification, I looked upon it
as magic.

96 PROGRAMMING PEARLS COLUMN 9

9.4 Principles

The most important principle about code tuning is that it should be done rarely.
That sweeping generalization is explained by the following points.

The Role of Efficiency. Many other properties of software are as important as
efficiency, if not more so. Don Knuth has observed that premature optimization is the
root of much programming evil; it can compromise the correctness, functionality and
maintainability of programs. Save concern for efficiency for when it matters.

Measurement Tools. When efficiency is important, the first step is to profile the
system to find out where it spends its time. Profiling a program usually shows that
most of the time is going to a few hot spots and that the rest of the code is rarely exe-
cuted (in Section 6.1, for instance, a single function accounted for 98 percent of the
run time). Profiling points to the critical areas; for the other parts we follow the wise
maxim of, "If it ain't broke, don't fix it." A cost model for run times like that in
Appendix 3 can help a programmer to understand why certain operations and func-
tions are expensive.

Design Levels. We saw in Column 6 that efficiency problems can be attacked in
many ways. Before tuning code, we should make sure that other approaches don't
provide a more effective solution.

When Speedups Are Slowdowns. Replacing the % remainder operator with an if
statement sometimes gave a factor-of-two speedup and other times made no differ-
ence in run time. Converting a function to a macro sped up one function by a factor
of two, and slowed down another by ten thousand. After making an "improvement",
it is critical to measure its effect on representative input. Because of these stories and
dozens more like them, we must be careful to heed Jurg Nievergelt's warning to code
tuners: people who play with bits should expect to get bitten.

The discussion above considers whether and when to tune code; once we decide to
do so, that still leaves the question of how. Appendix 4 contains a list of general rules
for code tuning. All the examples we've seen can be explained in terms of those prin-
ciples; I'll do that now with the names of the rules in italics.

Van Wyk's Graphics Program. The general strategy of Van Wyk's solution was
to Exploit Common Cases', his particular exploitation involved Caching a list of
the most common kind of record.
Problem One — Integer Remainders. The solution Exploited an Algebraic
Identity to replace an expensive remainder operation with a cheap comparison.
Problem Two — Functions, Macros and Inline Code. Collapsing a Procedure
Hierarchy by replacing a function with a macro gave a speedup of almost a factor
of two, but writing the code inline made no further difference.
Problem Three — Sequential Search. Using a sentinel to Combine Tests gave a
speedup of about five percent. Loop Unrolling gave an additional speedup of
about 56 percent.
Problem Four — Computing Spherical Distances. Storing Cartesian coordinates
along with latitudes and longitudes is an example of Data Structure

COLUMN 9 CODE TUNING 97

Augmentation', using the cheaper Euclidean distance rather than the angular dis-
tance Exploits an Algebraic Identity.
Binary Search. Combining Tests reduced the number of array comparisons per
inner loop from two to one, Exploiting an Algebraic Identity changed representa-
tions from a lower and upper bound to a lower bound and an increment, and Loop
Unrolling expanded the program to remove all loop overhead.
So far we've tuned code to reduce CPU time. One can tune code for other pur-

poses, such as reducing paging or increasing a cache hit ratio. Perhaps the most com-
mon use of code tuning beyond reducing run time is to reduce the space required by a
program; the next column is devoted to the topic.

9.5 Problems
1. Profile one of your own programs, and then try to use the approach described in

this column to reduce the run time of its hot spots.
2. This book's web site contains the C program profiled in the introduction; it imple-

ments a small subset of a C++ program that we'll see in Column 13. Try profiling
it on your system. Unless you have a particularly efficient malloc function, it will
probably spend most of its time in malloc. Try to reduce that time by implement-
ing a node cache like Van Wyk's.

3. What special properties of the ' 'juggling" rotation algorithm allowed us to replace
the % remainder operator with an if statement, and not a more costly "while state-
ment? Experiment to determine when it is worth replacing a % remainder operator
with a while statement.

4. When n is a positive integer at most the size of the array, this recursive C function
returns the maximum value in the array x[0..n - 1]:

float arrmax(int n)
{ if (n == 1)

return x[0] ;
else

return max(x[n-l], arrmax(n-l)) ;

When max is a function, it finds the maximum element of a vector with n = 10,000
elements in a few milliseconds. When max is the C macro

#define max(a, b) ((a) > (b) ? (a) : (b))

this algorithm takes 6 seconds to find the maximum of n =21 elements and 12 sec-
onds to find the maximum of ft =28 elements. Give an input that tickles this
dreadful behavior, and analyze the run time mathematically.

5. How do the various binary search algorithms behave if they are (against
specification) applied to unsorted arrays?

98 PROGRAMMING PEARLS COLUMN 9

6. C and C++ libraries provide character classification functions such as isdigit, isup-
per and islower to determine the types of characters. How would you implement
those functions?

7. Given a very long sequence (say, billions or trillions) of bytes, how would you
efficiently count the total number of one bits? (That is, how many bits are turned
on in the entire sequence?)

8. How can sentinels be used in a program to find the maximum element in an array?
9. Because sequential search is simpler than binary search, it is usually more efficient

for small tables. On the other hand, the logarithmic number of comparisons made
by binary search implies that it will be faster than the linear time of sequential
search for large tables. The break-even point is a function of how much each pro-
gram is tuned. How low and how high can you make that break-even point?
What is it on your machine when both programs are equally tuned?

10. D. B. Lomet observes that hashing may solve the 1000-integer search problem
more efficiently than the tuned binary search. Implement a fast hashing program
and compare it to the tuned binary search; how do they compare in terms of speed
and space?

11. In the early 1960's, Vic Berecz found that most of the time in a simulation pro-
gram at Sikorsky Aircraft was devoted to computing trigonometric functions.
Further investigation showed that the functions were computed only at integral
multiples of five degrees. How did he reduce the run time?

12. One sometimes tunes programs by thinking about mathematics rather than code.
To evaluate the polynomial

y = anx + an_\x~ + • • •

the following code uses 2n multiplications. Give a faster function.

V = a[0]
xi = 1
for i = [1, n]

xi = x * xi
y = y + a[i]*xi

9.6 Further Reading

Section 3.8 describes Steve McConnell's Code Complete. Chapter 28 of his book
describes ' 'Code-Tuning Strategy"; it gives an overview of performance in general,
and describes the approach of code-tuning in detail. Chapter 29 is an excellent collec-
tion of rules for code tuning.

Appendix 4 of this book presents a related collection of code-tuning rules,
together with descriptions of how they have been applied in this book.

COLUMN 10 SQUEEZING SPACE

If you're like several people I know, your first thought on reading the title of this
column is, "How quaint!" In the bad old days of computing, so the story goes, pro-
grammers were constrained by small machines, but those days are long gone. The
new philosophy is, "A gigabyte here, a gigabyte there, pretty soon you're talking
about real memory." And there is truth in that view — many programmers use big
machines and rarely have to worry about squeezing space from their programs.

But every now and then, thinking hard about compact programs can be profitable.
Sometimes the thought gives new insight that makes the program simpler. Reducing
space often has desirable side-effects on run time: smaller programs are faster to load
and fit more easily into a cache, and less data to manipulate usually means less time to
manipulate it. The time required to transmit data across a network is usually directly
proportional to the size of the data. Even with cheap memories, space can be critical.
Tiny machines (such as those found in toys and household appliances) still have tiny
memories. When huge machines are used to solve huge problems, we must still be
careful with memory.

Keeping perspective on its importance, let's survey a few important techniques for
reducing space.

10.1 The Key — Simplicity

Simplicity can yield functionality, robustness, speed and space. Dennis Ritchie
and Ken Thompson originally developed the Unix operating system on a machine
with 8192 18-bit words. In their paper about the system, they remark that "there have
always been fairly severe size constraints on the system and its software. Given the
partially antagonistic desires for reasonable efficiency and expressive power, the size
constraint has encouraged not only economy but a certain elegance of design."

Fred Brooks observed the power of simplification when he wrote a payroll pro-
gram for a national company in the mid 1950's. The bottleneck of the program was
the representation of the Kentucky state income tax. The tax was specified in the law
by a two-dimensional table with income as one dimension, and number of exemptions
as the other. Storing the table explicitly required thousands of words of memory,
more than the capacity of the machine.

99

100 PROGRAMMING PEARLS COLUMN 10

The first approach Brooks tried was to fit a mathematical function through the tax
table, but it was so jagged that no simple function would come close. Knowing that it
was made by legislators with no predisposition to crazy mathematical functions,
Brooks consulted the minutes of the Kentucky legislature to see what arguments had
led to the bizarre table. He found that the Kentucky tax was a simple function of the
income that remained after federal tax was deducted. His program therefore calcu-
lated federal tax from existing tables, and then used the remaining income and a table
of just a few dozen words of memory to find the Kentucky tax.

By studying the context in which the problem arose, Brooks was able to replace
the original problem to be solved with a simpler problem. While the original problem
appeared to require thousands of words of data space, the modified problem was
solved with a negligible amount of memory.

Simplicity can also reduce code space. Column 3 describes several large pro-
grams that were replaced by small programs with more appropriate data structures. In
those cases, a simpler view of the program reduced the source code from thousands to
hundreds of lines and probably also shrank the size of the object code by an order of
magnitude.

10.2 An Illustrative Problem

In the early 1980's, I consulted on a system that stored neighborhoods in a geo-
graphical database. Each of the two thousand neighborhoods had a number in the
range 0.. 1999, and was depicted on a map as a point. The system allowed the user to
access any one of the points by touching an input pad. The program converted the
physical location selected to a pair of integers with x and y both in the range 0.. 199 —
the board was roughly four feet square and the program used quarter-inch resolution.
It then used that (x, y) pair to tell which, if any, of the two thousand points the user
had chosen. Because no two points could be in the same (x , y) location, the program-
mer responsible for the module represented the map by a 200x200 array of point
identifiers (an integer in the range 0..1999, or -1 if no point was at that location).
The bottom left corner of that array might look like this, where empty squares repre-
sent cells that do not hold a point.

538

17

98

965

1171

162

COLUMN 10 SQUEEZING SPACE 101

In the corresponding map, point 17 is in location (0, 2), point 538 is in (0, 5), and
the four other visible locations in the first column are empty.

The array was easy to implement and gave rapid access time. The programmer
had the choice of implementing each integer in 16 or 32 bits. Had he chosen 32-bit
integers, the 200x200 = 40,000 elements would have consumed 160 kilobytes. He
therefore chose the shorter representation, and the array used 80 kilobytes, or one-
sixth of the half-megabyte memory. Early in the life of the system that was no prob-
lem. As the system grew, though, it started to run out of space. The programmer
asked me how we might reduce the storage devoted to this structure. How would you
advise the programmer?

This is a classic opportunity for using a sparse data structure. This example is old,
but I've seen the same story recently in representing a 10,000x10,000 matrix with a
million active entries on a hundred-megabyte computer.

An obvious representation of sparse matrices uses an array to represent all
columns, and linked lists to represent the active elements in a given column. This pic-
ture has been rotated 90 degrees clockwise for a prettier layout:

pointnum
colhead row '• next

17 — H 5 538 —J sJ 126 1053

1 98 — ^138 15

This picture shows three points in the first column: point 17 is in (0, 2), point 538 is in
(0, 5), and point 1053 is in (0,126). Two points are in column 2, and none are in col-
umn 3. We search for the point (/ , y) with this code:

for (p = col head[i]; p != NULL; p = p->next)
if p->row == j

return p->pointnum
return -1

Looking up an array element visits at most 200 nodes in the worst case, but only
about ten nodes on the average.

This structure uses an array of 200 pointers and also 2000 records, each with an
integer and two pointers. The model of space costs in Appendix 3 tells us that the
pointers will occupy 800 bytes. If we allocate the records as a 2000-element array,
they will occupy 12 bytes each, for a total of 24,800 bytes. (If we were to use the
default malloc described in that appendix, though, each record would consume 48
bytes, and the overall structure would in fact increase from the original 80 kilobytes to
96.8 kilobytes.)

The programmer had to implement the structure in a version of Fortran that did
not support pointers and structures. We therefore used an array of 201 elements to
represent the columns, and two parallel arrays of 2000 elements to represent the
points. Here are those three arrays, with the integer indices in the bottom array also

102 PROGRAMMING PEARLS COLUMN 10

depicted as arrows. (The 1-indexed Fortran arrays have been changed to use 0-
indexing for consistency with the other arrays in this book.)

pomtnum

row

17

firstincol 0

0

538 1053

126

98 15

138

1800

11

1998 2000

199 200

The points in column / are represented in the row and pointnum arrays between
locations firstincol[i} and firstincol[i + \}-\\ even though there are only 200
columns, firstincol[200] is defined to make this condition hold. To determine what
point is stored in position (/ , j) we use this pseudocode:

for k = [firstincol[i], firstincol[i+1])
if row[k] == j

return pointnum[k]
return -1

This version uses two 2000-element arrays and one 201-element array. The pro-
grammer implemented exactly this structure, using 16-bit integers for a total of 8402
bytes. It is a little slower than using the complete matrix (about ten node visits on the
average). Even so, the program had no trouble keeping up with the user. Because of
the good module structure of the system, this approach was incorporated in a few
hours by changing a few functions. We observed no degradation in run time and
gained 70 sorely needed kilobytes.

Had the structure still been a space hog, we could have reduced its space even fur-
ther. Because the elements of the row array are all less than 200, they can each be
stored in a single-byte unsigned char, this reduces the space to 6400 bytes. We could
even remove the row array altogether, if the row is already stored with the point itself:

for k = [firstincol [i], firstincol[i+1])
if point[pointnumfk]].row == j

return pointnum[k]
return -1

This reduces the space to 4400 bytes.
In the real system, rapid lookup time was critical both for user interaction and

because other functions looked up points through the same interface. If run time had
not been important and if the points had row and col fields, then we could have
achieved the ultimate space reduction to zero bytes by sequentially searching through
the array of points. Even if the points did not have those fields, the space for the
structure could be reduced to 4000 bytes by "key indexing": we scan through an

COLUMN 10 SQUEEZING SPACE 103

array in which the ith element contains two one-byte fields that give the row and col
values of point /.

This problem illustrates several general points about data structures. The problem
is classic: sparse array representation (a sparse array is one in which most entries have
the same value, usually zero). The solution is conceptually simple and easy to imple-
ment. We used a number of space-saving measures along the way. We need no
lastincol array to go with firstincol, we instead use the fact that the last point in this
column is immediately before the first point in the next column. This is a trivial
example of recomputing rather than storing. Similarly, there is no col array to go with
row; because we only access row through the firstincol array, we always know the
current column. Although row started with 32 bits, we reduced its representation to
16 and finally 8 bits. We started with records, but eventually went to arrays to
squeeze out a few kilobytes here and there.

10.3 Techniques for Data Space

Although simplification is usually the easiest way to solve a problem, some hard
problems just won't yield to it. In this section we'll study techniques that reduce the
space required to store the data accessed by a program; in the next section we'll con-
sider reducing the memory used to store the program during execution.

Don't Store, Recompute. The space required to store a given object can be dra-
matically reduced if we don't store it but rather recompute it whenever it is needed.
This is exactly the idea behind doing away with the matrix of points, and performing
a sequential search each time from scratch. A table of the prime numbers might be
replaced by a function for testing primality. This method trades more run time for
less space, and it is applicable only if the objects to be "stored" can be recomputed
from their description.

Such "generator programs" are often used in executing several programs on iden-
tical random inputs, for such purposes as performance comparisons or regression tests
of correctness. Depending on the application, the random object might be a file of
randomly generated lines of text or a graph with randomly generated edges. Rather
than storing the entire object, we store just its generator program and the random seed
that defines the particular object. By taking a little more time to access them, huge
objects can be represented in a few bytes.

Users of PC software may face such a choice when they install software from a
CD-ROM or DVD-ROM. A "typical" installation might store hundreds of mega-
bytes of data on the system's hard drive, where it can be read quickly. A "minimal"
installation, on the other hand, will keep those files on the slower device, but will not
use the disk space. Such an installation conserves magnetic disk space by using more
time to read the data each time the program is invoked.

For many programs that run across networks, the most pressing concern about
data size is the time it will take to transmit it. We can sometimes decrease the amount
of data transmitted by caching it locally, following the dual advice of "Store, don't
retransmit."

104 PROGRAMMING PEARLS COLUMN 10

Sparse Data Structures. Section 10.2 introduced these structures. In Section 3.1
we saved space by storing a "ragged" three-dimensional table in a two-dimensional
array. If we use a key to be stored as an index into a table, then we need not store the
key itself; rather, we store only its relevant attributes, such as a count of how many
times it has been seen. Applications of this key indexing technique are described in
the catalog of algorithms in Appendix 1. In the sparse matrix example above, key
indexing through \hzfirstincol array allowed us to do without a col array.

Storing pointers to shared large objects (such as long text strings) removes the cost
of storing many copies of the same object, although one has to be careful when modi-
fying a shared object that all its owners desire the modification. This technique is
used in my desk almanac to provide calendars for the years 1821 through 2080; rather
than listing 260 distinct calendars it gives fourteen canonical calendars (seven days of
the week for January 1 times leap year or non-leap year) and a table giving a calendar
number for each of the 260 years.

Some telephone systems conserve communication bandwidth by viewing voice
conversations as a sparse structure. When the volume in one direction falls below a
critical level, silence is transmitted using a succinct representation, and the bandwidth
thus saved is used to transmit other conversations.

Data Compression. Insights from information theory reduce space by encoding
objects compactly. In the sparse matrix example, for instance, we compressed the
representation of a row number from 32 to 16 to 8 bits. In the early days of personal
computers, I built a program that spent much of its time reading and writing long
strings of decimal digits. I changed it to encode the two decimal digits a and b in one
byte (instead of the obvious two) by the integer c = IQxa+b. The information was
decoded by the two statements

a = c / 10
b = c % 10

This simple scheme reduced the input/output time by half, and also squeezed a file of
numeric data onto one floppy disk instead of two. Such encodings can reduce the
space required by individual records, but the small records might take more time to
encode and decode (see Problem 6).

Information theory can also compress a stream of records being transmitted over a
channel such as a disk file or a network. Sound can be recorded at CD-quality by
recording two channels (stereo) at 16-bit accuracy at 44,100 samples per second. One
second of sound requires 176,400 bytes using this representation. The MP3 standard
compresses typical sound files (especially music) to a small fraction of that size.
Problem 10.10 asks you to measure the effectiveness of several common formats for
representing text, images, sounds and the like. Some programmers build special-
purpose compression algorithms for their software; Section 13.8 sketches how a file
of 75,000 English words was squeezed into 52 kilobytes.

Allocation Policies. Sometimes how much space you use isn't as important as
how you use it. Suppose, for instance, that your program uses three different types of
records, jc, y and z, all of the same size. In some languages your first impulse might be

COLUMN 10 SQUEEZING SPACE 105

to declare, say, 10,000 objects of each of the three types. But what if you used 10,001
#'s and no y's or z's? The program could run out of space after using 10,001 records,
even though 20,000 others were completely unused. Dynamic allocation of records
avoids such obvious waste by allocating records as they are needed.

Dynamic allocation says that we shouldn't ask for something until we need it; the
policy of variable-length records says that when we do ask for something, we should
ask for only as much as we need. In the old punched-card days of eighty-column
records it was common for more than half the bytes on a disk to be trailing blanks.
Variable-length files denote the end of lines by a newline character and thereby dou-
ble the storage capacity of such disks. I once tripled the speed of an input/output-
bound program by using records of variable length: the maximum record length was
250, but only about 80 bytes were used on the average.

Garbage collection recycles discarded storage so that the old bits are as good as
new. The Heapsort algorithm in Section 14.4 overlays two logical data structures
used at separate times in the same physical storage locations.

In another approach to sharing storage, Brian Kernighan wrote a traveling sales-
man program in the early 1970's in which the lion's share of the space was devoted to
two 150x150 matrices. The two matrices, which I'll call a and b to protect their
anonymity, represented distances between points. Kernighan therefore knew that they
had zero diagonals (a[i,i] = 0) and that they were symmetric (a[i, j] = a [j , /]).
He therefore let the two triangular matrices share space in one square matrix, c, one
corner of which looked like

0

41,0]

42,0]

43,0]

£[0,1]

0

42,1]

43,1]

^[0,2]

£[1,2]

0

43,2]

£[0,3]

£[1,3]

£[2,3]

0

Kernighan could then refer to a[ij] by the code

c[max(i, j) , mind ' , j)]

and similarly for b, but with the min and max swapped. This representation has been
used in various programs since the dawn of time. The technique made Kernighan's
program somewhat more difficult to write and slightly slower, but the reduction from
two 22,500-word matrices to just one was significant on a 30,000-word machine.
And if the matrices were 30,000x30,000, the same change would have the same
effect today on a gigabyte machine.

On modern computing systems, it may be critical to use cache-sensitive memory
layouts. Although I had studied this theory for many years, I gained a visceral appre-
ciation the first time I used some multi-disk CD software. National telephone

106 PROGRAMMING PEARLS COLUMN 10

directories and national maps were a delight to use; I had to replace CDs only rarely,
when my browsing moved from one part of the country to another. When I used my
first two-disk encyclopedia, though, I found myself swapping CDs so often that I went
back to the prior year's version on one CD; the memory layout was not sensitive to
my access pattern. Solution 2.4 graphs the performance of three algorithms with very
different memory access patterns. We'll see in Section 13.2 an application in which
even though arrays touch more data than linked lists, they are faster because their
sequential memory accesses interact efficiently with the system's cache.

10.4 Techniques for Code Space

Sometimes the space bottleneck is not in the data but rather in the size of the pro-
gram itself. In the bad old days, I saw graphics programs with pages of code like

for i = [17, 43] set(i, 68)
for i = [18, 42] set(1, 69)
for j = [81, 91] set(30, j)
for j = [82, 92] set(31, j)

where set(i, j) turns on the picture element at screen position (/, j). Appropriate
functions, say hor and vert for drawing horizontal and vertical lines, would allow that
code to be replaced by

hor(17, 43, 68)
hor(18, 42, 69)
vert(81, 91, 30)
vert(82, 92, 31)

This code could in turn be replaced by an interpreter that read commands from an
array like

h 17 43 68
h 18 42 69
v 81 91 30
v 82 92 31

If that still took too much space, each of the lines could be represented in a 32-bit
word by allocating two bits for the command (h, v, or two others) and ten bits for each
of the three numbers, which are integers in the range 0.. 1023. (The translation would,
of course, be done by a program.) This hypothetical case illustrates several general
techniques for reducing code space.

Function Definition. Replacing a common pattern in the code by a function
simplified the above program and thereby reduced its space requirements and
increased its clarity. This is a trivial instance of "bottom-up" design. Although one
can't ignore the many merits of "top-down" methods, the homogeneous world view
given by good primitive objects, components and functions can make a system easier
to maintain and simultaneously reduce space.

Microsoft removed seldom-used functions to shrink its full Windows system
down to the more compact Windows CE to run in the smaller memories found in

COLUMN 10 SQUEEZING SPACE 107

''mobile computing platforms". The smaller User Interface (UI) runs nicely on little
machines with cramped screens ranging from embedded systems to handheld comput-
ers; the familiar interface is a great benefit to users. The smaller Application Pro-
grammer Interface (API) makes the system familiar to Windows API programmers
(and tantalizingly close, if not already compatible, for many programs).

Interpreters. In the graphics program we replaced a long line of program text with
a four-byte command to an interpreter. Section 3.2 describes an interpreter for form-
letter programming; although its main purpose is to make a program simpler to build
and to maintain, it incidentally reduces the program's space.

In their Practice of Programming (described in Section 5.9 of this book), Ker-
nighan and Pike devote Section 9.4 to "Interpreters, Compilers and Virtual
Machines". Their examples support their conclusion: "Virtual machines are a lovely
old idea, recently made fashionable again by Java and the Java Virtual Machine
(JVM); they give an easy way to produce portable, efficient representations of pro-
grams written in a high-level language."

Translation to Machine Language. One aspect of space reduction over which
most programmers have relatively little control is the translation from the source lan-
guage into the machine language. Some minor compiler changes reduced the code
space of early versions of the Unix system by as much as five percent. As a last
resort, a programmer might consider coding key parts of a large system into assembly
language by hand. This expensive, error-prone process usually yields only small divi-
dends; nevertheless, it is used often in some memory-critical systems such as digital
signal processors.

The Apple Macintosh was an amazing machine when it was introduced in 1984.
The little computer (128 kilobytes of RAM) had a startling user interface and a pow-
erful collection of software. The design team anticipated shipping millions of copies,
and could afford only a 64 kilobyte Read-Only Memory. The team put an incredible
amount of system functionality into the tiny ROM by careful function definition
(involving generalizing operators, merging functions and deleting features) and hand
coding the entire ROM in assembly language. They estimated that their extremely
tuned code, with careful register allocation and choice of instructions, is half the size
of equivalent code compiled from a high-level language (although compilers have
improved a great deal since then). The tight assembly code was also very fast.

10.5 Principles

The Cost of Space. What happens if a program uses ten percent more memory?
On some systems such an increase will have no cost: previously wasted bits are now
put to good use. On very small systems the program might not work at all: it runs out
of memory. If the data is being transported across a network, it will probably take ten
percent longer to arrive. On some caching and paging systems the run time might
increase dramatically because the data that was previously close to the CPU now
thrashes to Level-2 cache, RAM or disk (see Section 13.2 and Solution 2.4). Know
the cost of space before you set out to reduce that cost.

108 PROGRAMMING PEARLS COLUMN 10

The ' 'Hot Spots" of Space. Section 9.4 described how the run time of programs is
usually clustered in hot spots: a few percent of the code frequently accounts for most
of the run time. The opposite is true in the memory required by code: whether an
instruction is executed a billion times or not at all, it requires the same space to store
(except when large portions of code are never swapped into main memory or small
caches). Data can indeed have hot spots: a few common types of records frequently
account for most of the storage. In the sparse matrix example, for instance, a single
data structure accounted for fifteen percent of the storage on a half-megabyte
machine. Replacing it with a structure one-tenth the size had a substantial impact on
the system; reducing a one-kilobyte structure by a factor of a hundred would have had
negligible impact.

Measuring Space. Most systems provide performance monitors that allow a pro-
grammer to observe the memory used by a running program. Appendix 3 describes a
model of the cost of space in C++; it is particularly helpful when used in conjunction
with a performance monitor. Special-purpose tools are sometimes helpful. When a
program started growing uncomfortably large, Doug Mcllroy merged the linker out-
put with the source file to show how many bytes each line consumed (some macros
expanded to hundreds of lines of code); that allowed him to trim down the object
code. I once found a memory leak in a program by watching a movie (an "algorithm
animation") of the blocks of memory returned by the storage allocator.

Tradeoffs. Sometimes a programmer must trade away performance, functionality
or maintainability to gain memory; such engineering decisions should be made only
after all alternatives are studied. Several examples in this column showed how reduc-
ing space may have a positive impact on the other dimensions. In Section 1.4, a bit-
map data structure allowed a set of records to be stored in internal memory rather than
on disk and thereby reduced the run time from minutes to seconds and the code from
hundreds to dozens of lines. This happened only because the original solution was far
from optimal, but we programmers who are not yet perfect often find our code in
exactly that state. We should always look for techniques that improve all aspects of
our solutions before we trade away any desirable properties.

Work with the Environment. The programming environment can have a substan-
tial impact on the space efficiency of a program. Important issues include the repre-
sentations used by a compiler and run-time system, memory allocation policies, and
paging policies. Space cost models like that in Appendix 3 can help you to ensure
that you aren't working against your system.

Use the Right Tool for the Job. We've seen four techniques that reduce data space
(Recomputing, Sparse Structures, Information Theory and Allocation Policies), three
techniques that reduce code space (Function Definition, Interpreters and Translation)
and one overriding principle (Simplicity). When memory is critical, be sure to con-
sider all your options.

COLUMN 10 SQUEEZING SPACE 109

10.6 Problems
1. In the late 1970's Stu Feldman built a Fortran 77 compiler that barely fit in a 64-

kilobyte code space. To save space he had packed some integers in critical
records into four-bit fields. When he removed the packing and stored the fields in
eight bits, he found that although the data space increased by a few hundred bytes,
the overall size of the program went down by several thousand bytes. Why?

2. How would you write a program to build the sparse-matrix data structure
described in Section 10.2? Can you find other simple but space-efficient data
structures for the task?

3. How much total disk space does your system have? How much is currently avail-
able? How much RAM? How much RAM is typically available? Can you mea-
sure the sizes of the various caches on your system?

4. Study data in non-computer applications such as almanacs and other reference
books for examples of squeezing space.

5. In the early days of programming, Fred Brooks faced yet another problem of rep-
resenting a large table on a small computer (beyond that in Section 10.1). He
couldn't store the entire table in an array because there was room for only a few
bits for each table entry (actually, there was one decimal digit available for each
entry — I said that it was in the early days!). His second approach was to use
numerical analysis to fit a function through the table. That resulted in a function
that was quite close to the true table (no entry was more than a couple of units off
the true entry) and required an unnoticeably small amount of memory, but legal
constraints meant that the approximation wasn't good enough. How could Brooks
get the required accuracy in the limited space?

6. The discussion of Data Compression in Section 10.3 mentioned decoding
lOxa +b with / and % operations. Discuss the time and space tradeoffs involved
in replacing those operations by logical operations or table lookups.

7. In a common type of profiler, the value of the program counter is sampled on a
regular basis; see, for instance, Section 9.1. Design a data structure for storing
those values that is efficient in time and space and also provides useful output.

8. Obvious data representations allocate eight bytes for a date (MMDDYYYY), nine
bytes for a social security number (DDD-DD-DDDD), and 25 bytes for a name
(14 for last, 10 for first, and 1 for middle initial). If space is critical, how far can
you reduce those requirements?

9. Compress an online dictionary of English to be as small as possible. When count-
ing space, measure both the data file and the program that interprets the data.

10. Raw sound files (such as .wav) can be compressed to .mp3 files; raw image files
(such as .bmp) can be compressed to .gifor Jpg files; raw motion picture files
(such as MVI) can be compressed to .mpg files. Experiment with these file formats
to estimate their compression effectiveness. How effective are these special-
purpose compression formats when compared to general-purpose schemes (such
as gzip)l

110 PROGRAMMING PEARLS COLUMN 10

11. A reader observes, "With modern programs, it's often not the code that you write,
but the code that you use that's large." Study your programs to see how large
they are after linking. How can you reduce that space?

10.7 Further Reading

The 20th Anniversary Edition of Fred Brooks's Mythical Man Month was pub-
lished by Addison-Wesley in 1995. It reprints the delightful essays of the original
book, and also adds several new essays, including his influential "No Silver Bullet—
Essence and Accident in Software Engineering". Chapter 9 of the book is entitled
"Ten pounds in a five-pound sack"; it concentrates on managerial control of space in
large projects. He raises such important issues as size budgets, function specification,
and trading space for function or time.

Many of the books cited in Section 8.8 describe the science and technology under-
lying space-efficient algorithms and data structures.

10.8 A Big Squeeze [Sidebar]

In the early 1980's, Ken Thompson built a two-phase program that solves chess
endgames for given configurations such as a King and two Bishops matched against a
King and a Knight. (This program is distinct from the former world-computer-
champion Belle chess machine developed by Thompson and Joe Condon.) The
learning phase of the program computed the distance to checkmate for all possible
chessboards (over the given set of four or five pieces) by working backwards from all
possible checkmates; computer scientists will recognize this technique as dynamic
programming, while chess experts know it as retrograde analysis. The resulting data-
base made the program omniscient with respect to the given pieces, so in the game-
playing phase it played perfect endgames. The game it played was described by chess
experts with phrases like "complex, fluid, lengthy and difficult" and "excruciating
slowness and mystery", and it upset established chess dogma.

Explicitly storing all possible chessboards was prohibitively expensive in space.
Thompson therefore used an encoding of the chessboard as a key to index a disk file
of board information; each record in the file contained 12 bits, including the distance
to checkmate from that position. Because there are 64 squares on a chessboard, the
positions of five fixed pieces can be encoded by five integers in the range 0..63 that
give the location of each piece. The resulting key of 30 bits implied a table of 230 or
about 1.07 billion 12-bit records in the database, which exceeded the capacity of the
disk available at the time.

Thompson's key insight was that chessboards that are mirror images around any
of the dotted lines in the following figure have the same value and need not be dupli-
cated in the database.

COLUMN 10 SQUEEZING SPACE 111

.4'

10

His program therefore assumed that the White King was in one of the ten numbered
squares; an arbitrary chessboard can be put into this form by a sequence of at most
three reflections. This normalization reduced the disk file to 10x644 or 10x224 12-bit
records. Thompson further observed that because the Black King cannot be adjacent
to the White King, there are only 454 legal board positions for the two Kings in which
the White King is in one of the ten squares marked above. Exploiting that fact, his
database shrunk to 454x643 or about 121 million 12-bit records, which fit comfort-
ably on a single (dedicated) disk.

Even though Thompson knew there would be just one copy of his program, he had
to squeeze the file onto one disk. Thompson exploited symmetry in data structures to
reduce disk space by a factor of eight, which was critical for the success of his entire
system. Squeezing space also reduced its run time: decreasing the number of posi-
tions examined in the endgame program reduced the time of its learning phase from
many months to a few weeks.

This page intentionally left blank

PARTIII THE PRODUCT

Now comes the fun. Parts I and II laid a foundation; the next five columns use
that material to build interesting programs. The problems are important in them-
selves, and they provide focal points where the techniques of previous columns con-
verge in real applications.

Column 11 describes several general-purpose sorting algorithms. Column 12
describes a particular problem from a real application (generating a random sample of
integers), and shows how it can be attacked in a variety of ways. One approach is to
view it as a problem in set representation, which is the subject of Column 13. Col-
umn 14 introduces the heap data structure, and shows how it yields efficient algo-
rithms for sorting and for priority queues. Column 15 tackles several problems that
involve searching for words or phrases in very long text strings.

113

This page intentionally left blank

COLUMN 11: SORTING

How should you sort a sequence of records into order? The answer is usually
easy: Use a library sort function. We took this approach in Solution 1.1 and twice in
the anagram program in Section 2.8. Unfortunately, this plan doesn't always work.
Existing sorts may be cumbersome to employ or too slow to solve a particular prob-
lem (as we saw in Section 1.1). In such cases, a programmer has no choice but to
write a sort function.

11.1 Insertion Sort

Insertion Sort is the method most card players use to sort their cards. They keep
the cards dealt so far in sorted order, and as each new card arrives they insert it into its
proper relative position. To sort the array x[n] into increasing order, start with the
first element as the sorted subarray jc[0..0] and then insert the elements *[1], ...,
x[n - 1], as in this pseudocode.

for i = [1, n)
/* invariant: x[0..i-l] is sorted */
/* goal: sift x[i] down to its

proper place in x[0..i] */

The following four lines show the progress of the algorithm on a four-element array.
The "|" represents the variable /; elements to its left are sorted, while elements to its
right are in their original order.

3|1 4 2
1 3|4 2
1 3 4|2
1 2 3 4|

The sifting is accomplished by a right-to-left loop that uses the variable j to keep
track of the element being sifted. The loop swaps the element with its predecessor in
the array as long as there is a predecessor (that is, 7>0) and the element hasn't
reached its final position (that is, it is out of order with its predecessor). Thus the
entire sort is isortl:

115

116 PROGRAMMING PEARLS COLUMN 11

for i = [1, n)
for (J = i; j > 0 && x[j-l] > x[j] ; j —)

swapCj-1, j)

For those rare times when I need to write my own sort, that's the first function I try;
it's just three straightforward lines.

Programmers inclined to tuning code might be uncomfortable with the swap func-
tion call in the inner loop. We can perhaps speed up the code by writing the function
body inline, though many optimizing compilers will do this for us. We replace the
function with this code, which uses the variable t to exchange x[j] and x [j - l] .

t = x[j] ; x[j] = x[j-l]; x[j-l] = t

On my machine, isort2 takes about one third the time of isortl.
This change opens the door for another speedup. Because the variable t is

assigned the same value over and over (the value originally in jc[/]), we can move the
assignments to and from t out of the loop, and change the comparison to yield isortl:

for i = [1, n)
t = x[i]
for (j = i ; j > 0 && x[j-l] > t; j--)

x[j] = t

This code shifts elements right by one position so long as t is less than the array value,
and finally moves t into its correct position. This five-line function is a little more
subtle than its predecessors, but on my system it runs about fifteen percent faster than
the isort2 function.

On random data as well as in the worst case, the run time of Insertion Sort is pro-
portional to n2. Here are the run times of the three programs when their inputs are n
random integers:

PROGRAM
Insertion Sort 1
Insertion Sort 2
Insertion Sort 3

LINES OF C
3
5
5

NANOSECONDS
11. 9n2

3.8rc2

3.2n2

The third sort takes a few milliseconds to sort n = 1000 integers, a third of a second to
sort n — 10,000 integers, and almost an hour to sort a million integers. We'll soon see
code to sort a million integers in under a second. If the input array is already almost
sorted, though, Insertion Sort is much faster because each element sifts down just a
short distance. An algorithm in Section 11.3 exploits exactly this property.

11.2 A Simple Quicksort

This algorithm was described by C. A. R. Hoare in his classic paper "Quicksort"
in the Computer Journal 5, 1, April 1962, pp. 10-15. It uses the divide-and-conquer
approach of Section 8.3: to sort an array we divide it into two smaller pieces and sort
those recursively. For instance, to sort the eight-element array

COLUMN 11 SORTING 117

55 41 59 26 53 58 97 93

t t
0 7

we partition it around the first element (55) so that all elements less than 55 are to the
left of it, while all greater elements are to its right

41 26 53 55 59 58 97 93

t
<55 3 >55

If we then recursively sort the subarray from 0 to 2 and the subarray from 4 to 7, inde-
pendently, the entire array is sorted.

The average run time of this algorithm is much less than the O(n2) time of Inser-
tion Sort, because a partitioning operation goes a long way towards sorting the
sequence. After a typical partitioning of n elements, about half the elements are
above the partition value and half the elements are below it. In a similar amount of
run time, the sift operation of Insertion Sort manages to get just one more element
into the right place.

We now have a sketch of a recursive function. We represent the active portion of
the array by the two indices / and u, for the lower and upper limits. The recursion
stops when we come to an array with fewer than two elements. The code is

void qsort(l, u)
if 1 >= u then

/* at most one element, do nothing */
return

/* goal: partition array around a particular value,
which is eventually placed in its correct position p

*/
qsortd , p-1)
qsort(p+l, u)

To partition the array around the value t we'll start with a simple scheme that I
learned from Nico Lomuto. We will see a faster program for this job in the next sec-
tiont, but this function is so easy to understand that it's hard to get wrong, and it is by
no means slow. Given the value t, we are to rearrange x[a..b] and compute the index
m (for "middle") such that all elements less than t are to one side of m, while all
other elements are on the other side. We'll accomplish the job with a simple for loop
that scans the array from left to right, using the variables / and m to maintain the

t Most presentations of Quicksort use the two-sided partitioning in the next section. Although the basic
idea of that code is simple, I have always found the details tricky — I once spent the better part of two days
chasing down a bug hiding in a short partitioning loop. A reader of a draft of this column complained that
the standard method is in fact simpler than Lomuto's, and sketched some code to make his point; I stopped
looking after I found two bugs.

118 PROGRAMMING PEARLS COLUMN 11

following invariant in array x.

>t

T T T

When the code inspects the ith element it must consider two cases. If x[i] >t then all
is fine; the invariant is still true. On the other hand, when ;c[/] <t, we can regain the
invariant by incrementing m (which will index the new location of the small element),
and then swapping x[i] and *[ra]. The complete partitioning code is

m = a-1
for i = [a, b]

if x[i] < t
swap(++m, i)

In Quicksort we'll partition the array x[L.u] around the value t=x[l]\a will there-
fore be / + 1 and b will be u. Thus the invariant of the partitioning loop is depicted as

t <t >t 7

When the loop terminates we have

>t

We then swap;t[/] with x[m] to givet

<t t >t

We can now recursively call the function twice with the parameters (/, ra-1) and
(ra + 1, u).

The final code is our first complete Quicksort, qsortl. To sort the array x [n] , we
call the function qsort 1(0, n - 1).

t It is tempting to ignore this step and to recur with parameters (/, m) and (m +1, M); unfortunately, this
gives an infinite loop when t is the strictly greatest element in the subarray. I would have caught the bug
had I tried to verify termination, but the reader can probably guess how I really discovered it. Miriam Jacob
gave an elegant proof of incorrectness: since ;c[/] is never moved, the sort can only work if the minimum el-
ement in the array starts in *[0].

COLUMN 11 SORTING 119

void qsortl(l, u)
if (1 >= u)

return
m = 1
for i = [1+1, u]

/* invariant: x[l+l..m] < x[l] &&
x[m+l..i-1] >= x[l] */

if Cx[i] < x[l])
swap(++m, i)

swap(l, m)
/* x[l..m-l] < x[m] <= x[m+l..u] */
qsortld , m-1)
qsortl(m+l, u)

Problem 2 describes Bob Sedge wick's modification to this partitioning code, which
results in the slightly faster qsort2.

Most of the proof of correctness of this program was given in its derivation (which
is, of course, its proper place). The proof proceeds by induction: the outer //"statement
correctly handles empty and single-element arrays, and the partitioning code correctly
sets up larger arrays for the recursive calls. The program can't make an infinite
sequence of recursive calls because the element x[m] is excluded at each invocation;
this is exactly the same argument that we used in Section 4.3 to show that binary
search terminates.

This Quicksort runs in O(n log n) time and <9(log n) stack space on the average,
for an input array that is a random permutation of distinct elements. The mathemati-
cal arguments are similar to those in Section 8.3. Most algorithms texts analyze
Quicksort's run time, and also prove the lower bound that any comparison-based sort
must use O(n log n) comparisons; Quicksort is therefore close to optimal.

The qsort \ function is the simplest Quicksort I know, and it illustrates many
important attributes of the algorithm. The first is that it is indeed quick: on my sys-
tem, this function sorts a million random integers in just over a second, about twice as
fast as the finely-tuned C library qsort. (That function has an expensive general-
purpose interface.) This sort may be appropriate for a few well-behaved applications,
but it has another property of many Quicksorts: it can degrade to quadratic time on
some common inputs. The next section studies more robust Quicksorts.

11.3 Better Quicksorts

The qsort 1 function quickly sorts an array of random integers, but how does it
perform on nonrandom inputs? As we saw in Section 2.4, programmers often sort to
bring together equal elements. We should therefore consider an extreme case: an
array of n identical elements. Insertion sort performs very well on this input: each
element is sifted down zero positions, so the total run time is O(n). The qsortl func-
tion, on the other hand, blows this case badly. Each of n - 1 partitioning passes uses
O(n) time to peel off a single element, so the total run time is O(n2). The run time
for n = 1,000,000 jumps from a second to two hours.

120 PROGRAMMING PEARLS COLUMN 11

We can avoid this problem with careful two-sided partitioning code, using this
loop invariant:

<t ? >t

T T f f
I i j u

The indices i and j are initialized to the two extremes of the array to be partitioned.
The main loop has two inner loops. The first inner loop moves / up over small ele-
ments and stops on a large element; the second inner loop moves j down over large
elements and stops on a small element. The main loop then tests the indices for cross-
ing and swaps the two values.

But how does the code respond to equal elements? The first temptation is to scan
right over them to avoid doing excess work, but this leads to quadratic behavior when
all inputs are equal. We will instead stop each scan on equal elements, and swap
them. Although this approach performs more swaps than necessary, it transforms the
worst case of all equal elements into a best case that requires almost exactly n log 2 n
comparisons. This code implements that partitioning:

void qsort3(l, u)
if 1 >= u

return
t = x[l]; i = 1; j = u+1
loop

do i++ while i <= u && x[i] < t
do j-- while x[j] > t
if "i > j

break
swap(i, j)

swapd , j)
qsort3(l, j-1)
qsort3(j+l, u)

In addition to taming the degenerate case of all equal elements, this code also per-
forms fewer swaps on the average than qsortl.

The Quicksorts that we have seen so far always partition around the first element
in the array. This is fine for random inputs, but it can require excessive time and
space for some common inputs. If the array is already sorted in increasing order, for
instance, it will partition around the smallest element, then the second smallest, and so
on through the entire array in order, in O(n2) time. We do far better to choose a par-
titioning element at random; we accomplish this by swapping x[l] with a random
entry in x[l..u]:

swap(l, randintO, u));

If you don't have the randint function handy, Problem 12.1 investigates how you
might make your own. But whatever code you use, be careful that randint returns a
value in the range [/, u} — a value out of range is an insidious bug. Combining the

COLUMN 11 SORTING 121

random partition element and the two-way partitioning code, the expected run time of
the Quicksort is now proportional to n log n, for any input array of n elements. The
random performance bound is a result of calling the random number generator, rather
than an assumption about the distribution of inputs.

Our Quicksorts spend a great deal of time sorting very small subarrays. It would
be faster to sort those using a simple method like Insertion Sort rather than firing up
all the machinery of Quicksort. Bob Sedgewick developed a particularly clever
implementation of this idea. When Quicksort is called on a small subarray (that is,
when / and u are near), we do nothing. We implement this by changing the first if
statement in the function to

if u-1 > cutoff
return

where cutoff is a small integer. When the program finishes, the array will not be
sorted, but it will be grouped into small clumps of randomly ordered values such that
the elements in one clump are less than elements in any clump to its right. We must
clean up within the clumps by another sort method. Because the array is almost
sorted, Insertion Sort is just right for the job. We sort the entire array by the code

qsort4(0, n-1)
isortSQ

Problem 3 investigates the best choice for cutoff.
As a final piece of code tuning, we may expand the code for the swap function in

the inner loop (because the other two calls to swap aren't in the inner loop, writing
them in line would have a negligible impact on the speed). Here is our final Quick-
sort, qsort4:

void qsort4(l, u)
if u - 1 < cutoff

return
swap(l, randint(l, u))
t = x[l]; i = 1; j = u+1
loop

do i++; while i <= u && x[i] < t
do j--; while x[j] > t
if i > j

break
temp = x[i]; x[i] = x[j] ; x[j] = temp

swapd, j)
qsort4(l, j-1)
qsort4(j+l, u)

Problems 4 and 11 mention further ways of improving Quicksort's performance.
The versions of Quicksort are summarized in this table. The right column gives

the average run time in nanoseconds to sort n random integers; many of the functions
can degrade to quadratic behavior on some inputs.

122 PROGRAMMING PEARLS COLUMN 11

PROGRAM
C Library qsort
Quicksort 1
Quicksort 2
Quicksort 3
Quicksort 4
C++ Library sort

LINES OF CODE
3
9
9
14

15+5
1

NANOSECONDS
137rc Iog2 n
60ft log 2 n
56n log 2 n
44ft log 2 ft
36ft log 2 ft
30ft Iog2 ft

The qsort4 function uses 15 lines of C, and also the 5 lines of isort3. For a million
random integers, the run times range from 0.6 seconds for the C++ sort to 2.7 seconds
for the C qsort. In Column 14, we'll see an algorithm that is guaranteed to sort n inte-
gers in O(n log n) time, even in the worst case.

11.4 Principles

This exercise teaches several important lessons about both sorting in particular
and programming in general.

The C library qsort is easy and relatively fast; it is slower than the hand-made
Quicksorts only because its general and flexible interface uses a function call for each
comparison. The C++ library sort has the simplest interface: we sort the array x with
the call sort(x, x + n); it also has a particularly efficient implementation. If a system
sort can meet your needs, don't even consider writing your own code.

Insertion Sort is simple to code and may be fast enough for small sorting jobs.
Sorting 10,000 integers with isort3 requires just a third of a second on my system.

For large n, the O(n log n) run time of Quicksort is crucial. The algorithm
design techniques of Column 8 gave us the basic idea for the divide-and-conquer
algorithm, and the program verification techniques of Column 4 helped us implement
the idea in succinct and efficient code.

Even though the big speedups are achieved by changing algorithms, the code tun-
ing techniques of Column 9 speed up Insertion Sort by a factor of 4 and Quicksort by
a factor of 2.

11.5 Problems

1. Like any other powerful tool, sorting is often used when it shouldn't be and not
used when it should be. Explain how sorting could be overused or underused
when calculating the following statistics of an array of n floating point numbers:
minimum, maximum, mean, median and mode.

2. [R. Sedgewick] Speed up Lomuto's partitioning scheme by using x[l] as a sen-
tinel. Show how this scheme allows you to remove the swap after the loop.

3. How could you experiment to find the best value of cutoff on a particular system?

4. Although Quicksort uses only O(log n) stack space on the average, it can use lin-
ear space in the worst case. Explain why, then modify the program to use only
logarithmic space in the worst case.

COLUMN 11 SORTING 123

5. [M. D. Mcllroy] Show how to use Lomuto's partitioning scheme to sort varying-
length bit strings in time proportional to the sum of their lengths.

6. Use the techniques of this column to implement other sorting algorithms. Selec-
tion sort first places the smallest value in jt[0], then the smallest remaining value
in *[!], and so forth. Shell sort (or "diminishing increment sort") is like Inser-
tion Sort, but moves elements down h positions rather than just one position. The
value of h starts large, and shrinks.

7. Implementations of the sorting programs in this column can be found on this
book's web site. Time them on your system and summarize them in a table like
that in Section 11.3.

8. Sketch a one-page guide to show a user of your system how to select a sort. Make
sure that your method considers the importance of run time, space, programmer
time (development and maintenance), generality (what if I want to sort character
strings that represent Roman numerals?), stability (items with equal keys should
retain their relative order), special properties of the input data, etc. As an extreme
test of your method, try feeding it the sorting problem described in Column 1.

9. Write a program for finding the kth-smallest element in the array x[0..n-l] in
O(n) expected time. Your algorithm may permute the elements of x.

10. Gather and display empirical data on the run time of a Quicksort program.
11. Write a ' 'fat pivot'' partitioning function with the postcondition

<t = t >t

How would you incorporate the function into a Quicksort program?
12. Study sorting methods used in non-computer applications (such as mail rooms and

change sorters).
13. The Quicksort programs in this column choose a partitioning element at random.

Study better choices, such as the median element of a sample from the array.
14. The Quicksorts in this column represented a subarray with two integer indices;

this is necessary in a language like Java, which does not have pointers into arrays.
In C or C++, though, it is possible to sort an array of integers using a function like

void qsort(int x[] , int n)

for the original call and for all recursive calls. Modify the algorithms in this col-
umn to use this interface.

11.6 Further Reading

Since the first edition was published by Addison-Wesley in 1973, Don Knuth's
Art of Computer Programming, Volume 3: Sorting and Searching has been the
definitive reference on the topic. He describes all important algorithms in detail, ana-
lyzes their run times mathematically, and implements them in assembly code. The
exercises and references describe many important variations of the primary

124 PROGRAMMING PEARLS COLUMN 11

algorithms. Knuth updated and revised the book for a second edition in 1998. The
MIX assembly language that he uses shows its age, but the principles revealed in the
code are timeless.

Bob Sedgewick gives a more modern treatment of sorting and searching in the
monumental third edition of his Algorithms. Parts 1 through 4 cover Fundamentals,
Data Structures, Sorting and Searching. Algorithms in C was published by Addison-
Wesley in 1997, Algorithms in C++ (with C++ consulting by Chris Van Wyk)
appeared in 1998, and Algorithms in Java (with Java consulting by Tim Lindholm)
appeared in 1999. He emphasizes the implementation of useful algorithms (in the lan-
guage of your choice), and intuitively explains their performance.

These two books are the primary references for this column on sorting, for Col-
umn 13 on searching, and for Column 14 on heaps.

COLUMN 12 A SAMPLE PROBLEM

Small computer programs are often educational and entertaining. This column
tells the story of a tiny program that, in addition to those qualities, proved useful to a
company.

12.1 The Problem

It was the early 1980's, and the company had just purchased their first personal
computers. After I got their primary system up and running, I encouraged people to
keep an eye open for tasks around the office that could be done by a program. The
firm's business was public opinion polling, and an alert employee suggested automat-
ing the task of drawing a random sample from a printed list of precincts. Because
doing the job by hand required a boring hour with a table of random numbers, she
proposed the following program.

The input consists of a list of precinct names and an integer m. The out-
put is a list of m of the precincts chosen at random. There are usually a
few hundred precinct names (each a string of at most a dozen characters),
and m is typically between 20 and 40.

That's the user's idea for a program. Do you have any suggestions about the problem
definition before we dive into coding?

My primary response was that it was a great idea; the task was ripe for automa-
tion. I then pointed out that typing several hundred names, while perhaps easier than
dealing with long columns of random numbers, was still a tedious and error-prone
task. In general, it's foolish to prepare a lot of input when the program is going to
ignore the bulk of it anyway. I therefore suggested an alternative program.

The input consists of two integers m and n, with m < n. The output is a
sorted list of m random integers in the range O..n -1 in which no integer
occurs more than once.t For probability buffs, we desire a sorted

t The real program produced m integers in the range \..n\ I have changed to a zero-based range in this col-
umn for consistency with the other ranges in the book, and so that we can use the programs to produce ran-
dom samples of C arrays. Programmers may count from zero, but pollsters start at one.

125

126 PROGRAMMING PEARLS COLUMN 12

selection without replacement in which each selection occurs with equal
probability.

When m = 20 and n = 200, the program might produce a 20-element sequence that
starts 4, 15, 17, The user then draws a sample of size 20 from 200 precincts by
counting through the list and marking the 4th, 15th, and IIth names, and so on. (The
output is required to be sorted because the hardcopy list isn't numbered.)

That specification met with the enthusiastic approval of its potential users. After
the program was implemented, the task that previously required an hour could be
accomplished in a few minutes.

Now look at the problem from the other side: how would you implement the pro-
gram? Assume that you have a function bigrand() that returns a large random integer
(much larger than m and ri), and a function randint(i, j) that returns a random integer
chosen uniformly in the range i..j. Problem 1 looks inside the implementation of
such functions.

12.2 One Solution

As soon as we settled on the problem to be solved, I ran to my nearest copy of
Knuth's Seminumerical Algorithms (having copies of Knuth's three volumes both at
home and at work has been well worth the investment). Because I had studied the
book carefully a decade earlier, I vaguely recalled that it contained several algorithms
for problems like this. After spending a few minutes considering several possible
designs that we'll study shortly, I realized that Algorithm S in Knuth's Section 3.4.2
was the ideal solution to my problem.

The algorithm considers the integers 0, 1, 2, ..., n - 1 in order, and selects each one
by an appropriate random test. By visiting the integers in order, we guarantee that the
output will be sorted.

To understand the selection criterion, let's consider the example that m = 2 and
n =5. We should select the first integer 0 with probability 2/5; a program implements
that by a statement like

if (bigrandQ % 5) < 2

Unfortunately, we can't select 1 with the same probability: doing so might or might
not give us a total of 2 out of the 5 integers. We will therefore bias the decision and
select 1 with probability 1/4 if 0 was chosen but with probability 2/4 if 0 was not
chosen. In general, to select s numbers out of r remaining, we'll select the next num-
ber with probability s/r. Here is the pseudocode:

select = m
remaining = n
for i = [0, n)

if (bigrandQ % remaining) < select
print i
select--

remaining--

COLUMN 12 A SAMPLE PROBLEM 127

As long as m<n, the program selects exactly m integers: it can't select more because
when select goes to zero no integer is selected, and it can't select fewer because when
select/remaining goes to one an integer is always selected. The for statement ensures
that the integers are printed in sorted order. The above description should help you
believe that each subset is equally likely to be picked; Knuth gives a probabilistic
proof of that fact.

Knuth' s second volume made the program easy to write. Even including titles,
input, output, range checking and the like, the final program required only thirteen
lines of Basic. It was finished half an hour after the problem was defined, and was
used for years without problems. Here is an implementation in C++:

void genknuth(int m, int n)
{ for (int i = 0; i < n; i++)

/* select m of remaining n-i */
if ((bigrandQ % (n-i)) < m) {

cout « i « "\n";
m-- ;

The program used only a few dozen bytes of memory, and was lightning fast for the
company's problems. This code can be slow, however, when n is very large. Using
this algorithm to generate a few random 32-bit positive integers (that is, n =232), for
instance, requires about twelve minutes on my computer. Back-of-the-envelope quiz:
how long would it take to generate one random 48- or 64-bit integer with this code?

12.3 The Design Space

One part of a programmer's job is solving today's problem. Another, and perhaps
more important, part of the job is to prepare for solving tomorrow's problems. Some-
times that preparation involves taking classes or studying books like Knuth' s. More
often, though, programmers learn by the mental exercise of asking how we might
have solved a problem differently. Let's do that now by exploring the space of possi-
ble designs for the sampling problem.

When I talked about the problem to a seminar at West Point, I asked for a better
approach than the original problem statement (typing all 200 names to the program).
One student suggested photocopying the precinct list, cutting the copy with a paper
sheer, shaking the slips in a paper bag, and then pulling out the required number of
slips. That cadet showed the "conceptual blockbusting" that is the subject of
Adams's book cited in Section l.T.f

From now on we'll confine our search to a program to write m sorted integers at

t Page 57 of that book sketches Arthur Koestler's views on three kinds of creativity. Ah! insights are his
name for originality, and aha! insights are acts of discovery. He would call this cadet's solution a haha!
insight: the low-tech answer to a high-tech question is an act of comic inspiration (as in Solutions 1.10, 1.11
and 1.12).

128 PROGRAMMING PEARLS COLUMN 12

random from O..n -1. We'll start by evaluating Program 1. The algorithmic idea is
straightforward, the code is short, it uses just a few words of space, and the run time is
fine for this application. The run time is proportional to n, though, which might be
prohibitive for some applications. It's worth a few minutes to study other ways of
solving the problem. Sketch as many high-level designs as you can before reading
on; don't worry about implementation details yet.

One solution inserts random integers into an initially empty set until there are
enough. In pseudocode, it can be sketched as

initialize set S to empty
size = 0
while size < m do

t = bigrandQ % n
if t is not in S

insert t into S
size++

print the elements of S in sorted order

The algorithm is not biased towards any particular element; its output is random. We
are still left with the problem of implementing the set 5; think about an appropriate
data structure.

In the old days, I would have worried about the relative merits of sorted linked
lists, binary search trees, and all the other usual data structure suspects. Today,
though, I can exploit the work put into the C++ Standard Template Library and call a
set a set:

void gensets(int m, int n)
{ set<int> S;

while (S.sizeQ < m)
S.insert(bigrandC) % n);

set<i nt>::iterator i;
for (i = S.beginQ; i != S.endQ; ++i)

cout « *i « "\n";
}

I was delighted that the real code is the same length as the pseudocode. This program
generates and prints a million sorted, distinct 31-bit random integers in about 20 sec-
onds on my machine. Since it takes about 12.5 seconds just to generate and to print a
million unsorted integers without worrying about duplicates, the set operations con-
sume just 7.5 seconds.

The C++ STL specification guarantees that each insertion will run in O(log m)
time, and iterating through the set will take O(m) time, so the complete program will
take O(m log m) time (when m is small compared to n). The data structure is, how-
ever, expensive in terms of space: my 128-megabyte machine starts thrashing around
m = 1,700,000. The next column considers possible implementations of the set.

Another way to generate a sorted subset of random integers is to shuffle an n-
element array that contains the numbers O..n -1, and then sort the first m for the out-
put. Knuth's Algorithm P in Section 3.4.2 shuffles the array x[0..n - 1].

COLUMN 12 A SAMPLE PROBLEM 129

for i = [0, n)
swap(i, ranchnt(i, n-1))

Ashley Shepherd and Alex Woronow observed that in this problem we need shuffle
only the first m elements of the array, which gives this C++ program:

void genshuf(int m, int n)
{ Int i, j;

int *x = new int[n];
for (i = 0 ; i < n; i++)

x[i] = i;
for (i = 0 ; i < m; i++) {

j = ranchnt(i, n-1) ;
int t = x[i]; x[i] = x [j] ; x[j] = t;

}
sort(x, x+m);
for (i = 0 ; i < m; i++)

cout « x[i] « "\n";
}

The algorithm uses n words of memory and O(n +m log m) time, but the technique
of Problem 1.9 reduces the time to O(m log m). We can view this algorithm as an
alternative to Program 2 in which we represent the set of selected elements in
;c[0..z-1] and the set of unselected elements inx[i..n-l]. By explicitly represent-
ing the unselected elements we avoid testing whether the new element was previously
chosen. Unfortunately, because this method uses O(n) time and memory, it is usually
dominated by the algorithm from Knuth.

The functions we have seen so far offer several different solutions to the problem,
but they by no means cover the design space. Suppose, for instance, that n is a mil-
lion and mis n- 10. We might generate a sorted random sample of 10 elements, and
then report the integers that aren't there. Next, suppose that n is ten million and m is
231. We could generate eleven million integers, sort them, scan through to remove
duplicates, and then generate a ten-million-element sorted sample of that. Solution 9
describes a particularly clever algorithm based on searching due to Bob Floyd.

12.4 Principles

This column illustrates several important steps in the programming process.
Although the following discussion presents the stages in one natural order, the design
process is more active: we hop from one activity to another, usually iterating through
each many times before arriving at an acceptable solution.

Understand the Perceived Problem. Talk with the user about the context in which
the problem arises. Problem statements often include ideas about solutions; like all
early ideas, they should be considered but not to the exclusion of others.

Specify an Abstract Problem. A clean, crisp problem statement helps us first to
solve this problem and then to see how this solution can be applied to other problems.

130 PROGRAMMING PEARLS COLUMN 12

Explore the Design Space. Too many programmers jump too quickly to "the"
solution to their problem; they think for a minute and code for a day rather than think-
ing for an hour and coding for an hour. Using informal high-level languages helps us
to describe designs: pseudocode represents control flow and abstract data types repre-
sent the crucial data structures. Knowledge of the literature is invaluable at this stage
of the design process.

Implement One Solution. On lucky days our exploration of the design space
shows that one program is far superior to the rest; at other times we have to prototype
the top few to choose the best. We should strive to implement the chosen design in
straightforward code, using the most powerful operations available.!

Retrospect. Poly a's delightful How to Solve It can help any programmer become a
better problem solver. On page 15 he observes that "There remains always some-
thing to do; with sufficient study and penetration, we could improve any solution, and,
in any case, we can always improve our understanding of the solution." His hints are
particularly helpful for looking back at programming problems.

12.5 Problems
1. The C library rand() function typically returns about fifteen random bits. Use that

function to implement a function bigrand() to return at least 30 random bits, and a
function randint(l, u) to return a random integer in the range [/, u].

2. Section 12.1 specified that all ra-element subsets be chosen with equal probability,
which is a stronger requirement than choosing each integer with probability m/n.
Describe an algorithm that chooses each element equiprobably, but chooses some
subsets with greater probability than others.

3. Show that when m<n/2, the expected number of member tests made by the set-
based algorithm before finding a number not in the set is less than 2.

4. Counting the member tests in the set-based program leads to many interesting
problems in combinatorics and probability theory. How many member tests does
the program make on the average as a function of m and nl How many does it
make when m=n! When is it likely to make more than m tests?

5. This column described several algorithms for one problem; all are available at this
book's web site. Measure their performance on your system, and describe when
each is appropriate as a function of constraints on run time, space, etc.

6. [Class Exercise] I assigned the problem of generating sorted subsets twice in an

t Problem 6 describes a class exercise that I graded on programming style. Most students turned in one-
page solutions and received mediocre grades. Two students who had spent the previous summer on a large
software development project turned in beautifully documented five-page programs, broken into a dozen
functions, each with an elaborate heading. They received failing grades. The best programs worked in five
lines of code, and the inflation factor of sixty was too much for a passing grade. When the pair complained
that they were employing standard software engineering tools, I should have quoted Pamela Zave: "The
purpose of software engineering is to control complexity, not to create it." A few more minutes spent look-
ing for a simple program might have spared them hours documenting their complex program.

COLUMN 12 A SAMPLE PROBLEM 131

undergraduate course on algorithms. Before the unit on sorting and searching, stu-
dents had to write a program for w = 20 and n =400; the primary grading criterion
was a short, clean program — run time was not an issue. After the unit on sorting
and searching they had to solve the problem again with m= 5,000,000 and
n = 1,000,000,000, and the grade was based primarily on run time.

7. [V. A. Vyssotsky] Algorithms for generating combinatorial objects are often
profitably expressed as recursive functions. Knuth's algorithm can be written as

void randselect(m, n)
pre 0 <= m <= n
post m distinct integers from O..n-l are

printed in decreasing order
if m > 0

if (bigrandQ % n) < m
print n-1
randselect(m-l, n-1)

else
randselect(m, n-1)

This program prints the random integers in decreasing order; how could you make
them appear in increasing order? Argue the correctness of the resulting program.
How could you use the basic recursive structure of this program to generate all m-
element subsets of 0.. n - 1 ?

8. How would you generate a random selection of m integers from O..n - 1 with the
constraint that the final output must appear in random order? How would you
generate a sorted list if duplicate integers were allowed in the list? What if both
duplicates and random order were desired?

9. [R. W. Floyd] When m is near n, the set-based algorithm generates many random
numbers that are discarded because they are already present in the set. Can you
find an algorithm that uses only m random numbers, even in the worst case?

10. How could you select one of n objects at random, where you see the objects
sequentially but you don't know the value of n beforehand? For concreteness,
how would you read a text file, and select and print one random line, when you
don't know the number of lines in advance?

11. [M. I. Shamos] A promotional game consists of a card containing 16 spots, which
hide a random permutation of the integers 1.. 16. The player rubs the dots off the
card to expose the hidden integers. If the integer 3 is ever exposed then the card
loses; if 1 and 2 (in either order) are both revealed then the card wins. Describe
the steps you would take to compute the probability that randomly choosing a
sequence of spots wins the game; assume that you may use at most one hour of
CPU time.

12. My first version of one of the programs in this column had a nasty bug that caused
the program to die when m=Q. For other values of m, it produced output that
looked random but wasn't. How would you test a program that produces a sample
to ensure that its output is indeed random?

132 PROGRAMMING PEARLS COLUMN 12

12.6 Further Reading

Volume 2 of Don Knuth's Art of Computer Programming is Seminumerical
Algorithms. The third edition was published by Addison-Wesley in 1998. Chapter 3
(the first half of the book) is about random numbers, and Chapter 4 (the second half)
is about arithmetic. Section 3.4.2 on "Random Sampling and Shuffling" is espe-
cially relevant to this column. If you need to build a random number generator or
functions that perform advanced arithmetic, then you need this book.

COLUMN 13: SEARCHING

Searching problems come in many varieties. A compiler looks up a variable name
to find its type and address. A spelling checker looks up a word in a dictionary to
ensure that it is spelled correctly. A directory program looks up a subscriber name to
find a telephone number. An Internet domain name server looks up a name to find an
IP address. These applications, and thousands like them, all need to search a set of
data to find the information associated with a particular item.

This column studies in detail one searching problem: how do we store a set of
integers, with no other associated data? Though tiny, this problem raises many of the
key issues that arise in implementing any data structure. We'll start with the precise
definition of the task, and use that to investigate the most common set representations.

13.1 The Interface

We'll continue with the problem of the last column: generating a sorted sequence
of m random integers in the range [0, maxval), chosen without duplicates. Our job is
to implement this pseudocode:

initialize set S to empty
size = 0
while size < m do

t = bigrand() % maxval
if t is not in S

insert t into S
size++

print the elements of S in sorted order

We'll call our data structure an IntSet, for set of integers. We'll define the inter-
face to be a C++ class with these public members:

class IntSetlmp {
public:

IntSetlmpO'nt maxelements, int maxval);
void insert(int t);
int sizeQ;
void report(int *v);

133

134 PROGRAMMING PEARLS COLUMN 13

The constructor IntSetlmp initializes the set to be empty. The function has two argu-
ments describing the maximum number of elements in the set and (one greater than)
the maximum size of any element; a particular implementation may ignore one or
both of those parameters. The insert function adds a new integer to the set, if it is not
already present. The size function tells the current number of elements, and report
writes the elements (in sorted order) into the vector v.

This little interface is clearly for instructional use only. It lacks many components
critical for an industrial- strength class, such as error handling and a destructor. An
expert C++ programmer would probably use an abstract class with virtual functions to
specify this interface, and then write each implementation as a derived class. We will
instead take the simpler (and sometimes more efficient) approach of using names such
as IntSetArr for the array implementation, IntSetList for the list implementation, and
so forth. We'll use the name IntSetlmp to represent an arbitrary implementation.

This C++ code uses such a data structure in this function to generate a sorted set of
random integers:

void gensets(int m, int maxval)
{ int *v = new int[m];

IntSetlmp S(m, maxval);
while (S.sizeQ < m)

S.insert(bigrandC) % maxval);
S. report (v) ;
for (int i = 0; i < m; i++)

cout « v[i] « "\n";

Because the insert function does not put duplicate elements into the set, we need not
test whether the element is in the set before we insert it.

The easiest implementation of an IntSet uses the powerful and general set template
from the C++ Standard Template Library:

class IntSetSTL {
private:

set<int> S;
public:

IntSetSTL(int maxelements, int maxval) { }
int sizeQ { return S.sizeQ; }
void insert(int t) { S.insert(t); }
void report(int *v)
{ int j = 0;

set<int>: : iterator i;
for (i = S.beginQ; i != S.endQ; ++i)

The constructor ignores its two arguments. Our IntSet, size and insert functions corre-
spond exactly to their STL counterparts. The report function uses the standard

COLUMN 13 SEARCHING 135

iterator to write the elements of the set into the array, in sorted order. This general-
purpose structure is good but not perfect: we'll soon see implementations that are a
factor of five more efficient for this particular task in both time and space.

13.2 Linear Structures

We'll build our first set implementation with the simplest structure: an array of
integers. Our class keeps the current number of elements in the integer n, and the
integers themselves in the vector x:

private:
int n, *x;

(The complete implementation of all classes can be found in Appendix 5.) This pseu-
docode version of the C++ constructor allocates the array (with one extra element for
a sentinel) and sets n to zero:

IntSetArrayCmaxelements, maxval)
x = new int[l + maxelements]
n = 0
x[0] = maxval

Because we have to report the elements in sorted order, we'll store them that way at
all times. (Unsorted arrays are superior in some other applications.) We'll also keep
the sentinel element maxval at the end of the sorted elements; maxval is larger than
any element in the set. This replaces the test for running off the end of the list with a
test for finding a greater element (which we already need). That will make our inser-
tion code simpler, and will incidentally make it faster:

void insert (t)
for (i = 0 ; x[i] < t;

if X[i] == t
return

for (j = n; j >= i ; j--)

x[i] = t

The first loop scans over array elements that are less than the insertion value t. If the
new element is equal to t, then it is already in the set so we return immediately.
Otherwise, we slide the greater elements (including the sentinel) up by one, insert t
into the resulting hole, and increment n. This takes O(n) time.

The size function is identical in all of our implementations:

int sizeQ
return n

The report function copies all of the elements (except the sentinel) to the output array
in O(n) time:

136 PROGRAMMING PEARLS COLUMN 13

void report (v)
for i = [0, n)

Arrays are an excellent structure for sets when the size is known in advance.
Because our arrays are sorted, we could use binary search to build a member function
that runs in O(logn) time. We'll see details on the run times of arrays at the end of
this section.

If the size of a set is not known in advance, linked lists are a prime candidate for
set representation; lists also remove the cost of sliding over elements in an insertion.

head:

Our class IntSetList will use this private data:

private:
int n;
struct node {

int val ;
node *next;
node (int v, node *p) { val = v; next = p; }

};
node *head, ^sentinel;

Each node in a linked list has an integer value and a pointer to the next node in the
list. The node constructor assigns its two parameters to the two fields.

For the same reasons that we used sorted arrays, we'll keep our linked lists in
sorted order. Just as in arrays, our lists will use a sentinel node with a value larger
than any real value. The constructor builds such a node and sets head to point to it.

IntSetList (maxelements, maxval)
sentinel = head = new node (maxval , 0)
n = 0

The report function walks the list, putting the sorted elements into the output vector:

void report (int *v)
j = 0
for (p = head; p != sentinel; p = p->next)

v[j++] = p->val

To insert an item into a sorted linked list we walk along the list until we either find
the element (and immediately return), or find a greater value, and insert it at that
point. Unfortunately, the variety of cases usually leads to complicated code; see Solu-
tion 4. The simplest code I know for the task is a recursive function that is originally
called as

void insert(t)
head = rinsert(head, t)

COLUMN 13 SEARCHING 137

The recursive part is clean:

node *rinsert(p, t)
if p->val < t

p->next = rinsert(p->next, t)
else if p->val > t

p = new node(t, p)
n++

return p

When a programming problem is hidden under a pile of special cases, recursion often
leads to code as straightforward as this.

When we use either structure to generate m random integers, each of the m
searches runs in time proportional to m, on the average. Each structure will therefore
take total time proportional to m2 . I suspected that the list version would be slightly
faster than the array version: it uses extra space (for the pointers) to avoid moving
over the upper values in the array. Here are the run times with n held fixed at
1,000,000 and m varying from 10,000 to 40,000:

STRUCTURE

Arrays
Simple Lists
Lists (Remove Recursion)
Lists (Group Allocation)

SET SIZE (m)
10,000 20,000 40,000

0.6 2.6 11.1
5.7 31.2 170.0
1.8 12.6 73.8
1.2 5.7 25.4

The run time of arrays grew quadratically, just as I expected, with very reasonable
constants. My first implementation of lists, though, started out an order of magnitude
slower than arrays, and grew faster than n2. Something was wrong.

My first response was to blame the recursion. In addition to the overhead of the
recursive call, the recursion depth of the rinsert function is the position in which the
element is found, which is O(n). And after recurring all the way down the list, the
code assigns the original value back into almost every pointer. When I changed the
recursive function to the iterative version described in Solution 4, the run time
dropped by a factor of almost three.

My next response was to change the storage allocation to use the technique in
Problem 5: rather than allocating a new node for every insertion, the constructor allo-
cates a single block of m nodes, and insert passes them out as they are needed. This
was an improvement in two distinct ways:

The cost model for run time in Appendix 3 shows that storage allocation is about
two orders of magnitude more time-consuming than most simple operations. We
have replaced m of those expensive operations with just one.
The cost model for space in Appendix 3 suggests that if we allocate nodes as a
block, each node consumes just eight bytes (four for the integer and four for the
pointer); 40,000 nodes consume 320 kilobytes and fit comfortably in my
machine's Level-2 cache. If we allocate the nodes individually, however, then

138 PROGRAMMING PEARLS COLUMN 13

each consumes 48 bytes, and collectively their 1.92 megabytes overflows the
Level-2 cache.

On a different system with a more efficient allocator, removing recursion gave a fac-
tor of five speedup, while changing to a single allocation gave just ten percent. Like
most code-tuning techniques, caching and recursion removal sometimes yield great
benefit, and other times have no effect.

The array insertion algorithm searches down the sequence to find the place to
insert the target value, then pushes over the greater values. The list insertion algo-
rithm does the first part, but not the second. So if lists do half the work, why do they
take twice the time? Part of the reason is that they take twice as much memory: large
lists must read 8-byte nodes into a cache to access the 4-byte integer. Another part of
the reason is that arrays access data with perfect predictability, while access patterns
for lists bounce all around memory.

13.3 Binary Search Trees

We'll turn now from linear structures to structures that support fast search and
insertion. This picture shows a binary search tree after inserting the integers 31, 41,
59 and 26, in that order:

root:

The IntSetBST class defines nodes and a root:

private:
int n, *v, vn;
struct node {

i nt val;
node *left, *right;
node(int i) { val = i; left = right = 0; }

};
node *root;

We initialize the tree by setting the root to be empty, and perform the other actions by
calling recursive functions.

IntSetBST(int maxelements, int maxval) { root =0; n = 0; }
void insert(int t) { root = rinsert(root, t); }
void report(int *x) { v = x; vn = 0; traverse(root); }

The insertion function walks down the tree until either the value is found (and the
search terminates), or the search falls out of the tree (and the node is inserted):

COLUMN 13 SEARCHING 139

node *rinsert(p, t)
if p == 0

p = new node(t)
n++

else if t < p->val
p->left = rinsert(p->left, t)

else if t > p->val
p->right = rinsert(p->right, t)

// do nothing if p->val == t
return p

Because the elements in our application are inserted in a random order, we will not
worry about sophisticated balancing schemes. (Problem 1 shows that other algo-
rithms on random sets can lead to highly unbalanced trees.)

The inorder traversalf first processes the left subtree, then reports the node itself,
and then processes the right subtree:

void traverse(p)
if p == 0

return
traverse(p->left)
v[vn++] = p->val
traverse(p->right)

It uses the variable vn to index the next available element in the vector v.
This table gives the run time for the STL set structure that we saw in Section 13.1

(as it is implemented on my system), for binary search trees and for several structures
that we'll see in the next section. The maximum integer size is held fixed at n = 108,
and m goes as high as possible until the system runs out of RAM and starts thrashing
to disk.

STRUCTURE

STL
BST
BST*
Bins
Bins*
BitVec

SET SIZE (m)
1,000,000

Sees Mbytes
9.38 72
7.30 56
3.71 16
2.36 60
1.02 16
3.72 16

5,000,000
Sees Mbytes

25.26 80

5.55 80
5.70 32

10,000,000
Sees Mbytes

8.36 52

These times do not include the time required to print the output, which is slightly

t My first version of this program led to a bizarre bug: the compiler reported an internal inconsistency and
died. I turned off optimization, the "bug" went away, and I blamed the compiler writers. I later realized
that the problem was that when I quickly wrote the traversal code, I forgot to include the //"test for p being
null. The optimizer tried to convert the tail recursion into a loop, and died when it could not find a test to
terminate the loop.

140 PROGRAMMING PEARLS COLUMN 13

greater than the time of the STL implementation. Our simple binary search trees
avoid the complex balancing scheme used by the STL (the STL specification guaran-
tees good worst-case performance), and is therefore slightly faster and uses less space.
The STL started thrashing at about m = 1,600,000, while our first BST thrashes at
about m = 1,900,000. The row marked "BST*" describes a binary search tree incor-
porating several optimizations. The most important is that it allocates the nodes all at
once (as in Problem 5). That greatly reduces the tree's space requirements, which
reduces the run time by about a third. The code also converts recursion to iteration
(as in Problem 4) and uses the sentinel node described in Problem 7, for an additional
speedup of about 25 percent.

13.4 Structures for Integers

We'll turn now to two final structures that exploit the fact that our sets represent
integers. Bit vectors are an old friend from Column 1. Here are their private data and
functions:

enum { BITSPERWORD = 32, SHIFT = 5, MASK = OxlF };
int n, hi, *x;
void set(int i) { x[i»SHIFT] |= (l«(i & MASK)); }
void clr(int i) { x[i»SHIFT] &= ~(l«(i & MASK)); }
int test(int i) { return x[i»SHIFT] & (l«(i & MASK)); }

The constructor allocates the arrays and turns off all bits:

IntSetBitVec(maxelements, maxval)
hi = maxval
x = new int[l + hi/BITSPERWORD]
for i = [0, hi)

clr(i)
n = 0

Problem 8 suggests how we might speed this up by operating on a word of data at a
time. Similar speedups apply to the report function:

void report(v)
j = 0
for i = [0, hi)

if test(i)
v[j++] = i

Finally, the insert function turns on the bit and increments n, but only if the bit was
previously off:

void insert(t)
if test(t)

return
set(t)
n++

The table in the previous section shows that if the maximum value n is small enough

COLUMN 13 SEARCHING 141

so the bit vector fits in main memory, then the structure is remarkably efficient (and
Problem 8 shows how to make it even more so). Unfortunately, if n is 232, a bit vec-
tor requires half a gigabyte of main memory.

Our final data structure combines the strengths of lists and bit vectors. It places
the integers into a sequence of ''buckets" or "bins". If we have four integers in the
range 0..99, we place them into four bins. Bin 0 contains integers in the range 0..24,
bin 1 represents 25..49, bin 2 represents 50..74, and bin 3 represents 75..99:

41
I 26 I 31 I 59 I I

The m bins can be viewed as a kind of hashing. The integers in each bin are repre-
sented by a sorted linked list. Because the integers are uniformly distributed, each
linked list has expected length one.

The structure has this private data:

private:
int n, bins, maxval;
struct node {

int val;
node *next;
node(int v, node *p) { val = v; next = p; }

};
node **bin, *sentinel;

The constructor allocates the array of bins and a sentinel element with a large value,
and initializes each bin to point to the sentinel:

IntSetBi ns(maxelements, pmaxval)
bins = maxelements
maxval = pmaxval
bin = new node*[bins]
sentinel = new node(maxval, 0)
for i = [0, bins)

bin[i] = sentinel
n = 0

The insert function needs to place the integer t into its proper bin. The obvious
mapping of t* bins/maxval can lead to numerical overflow (and some nasty debug-
ging, as I can state from bitter personal experience). We will instead use the safer
mapping in this code:

void insert(t)
i = t / (1 + maxval/bins)
bin[i] = rinsert(bin[i], t)

The rinsert is the same as for linked lists. Similarly, the report function is essentially
the linked list code applied to every bin, in order:

142 PROGRAMMING PEARLS COLUMN 13

void report (v)
j = 0
for i = [0, bins)

for (node *p = bin[i]; p != sentinel; p = p->next)
= p->val

The table in the last section shows that bins are fast. The row marked "Bins*"
describes the run time of bins that are modified to allocate all nodes during initializa-
tion (as in Problem 5); the modified structures use about one quarter the space and
half the time of the original. Removing recursion dropped the run time by an addi-
tional ten percent.

13.5 Principles

We've skimmed five important data structures for representing sets. The average
performance of those structures, when m is small compared to n, is described in this
table (b denotes the number of bits per word):

SET
REPRESENTATION

Sorted Array
Sorted List
Binary Tree
Bins
Bit Vector

O(TIME PER OPERATION)
Init insert report

I m m
1 m m
1 log m m
m l m
n I n

TOTAL SPACE IN
TIME WORDS

O(m2) m
O(m2) 2m

O(m log m) 3m
O(m) 3m
O(n) n/b

This table barely scratches the surface of set representations for problems like this;
Solution 10 mentions other possibilities. Section 15.1 describes data structures for
searching sets of words.

Although we've concentrated on data structures for set representations, we've
learned several principles that apply to many programming tasks.

The Role of Libraries. The C++ Standard Template Library provided a general-
purpose solution that was easy to implement and should prove simple to maintain and
to extend. When you face a problem with data structures, your first inclination should
be to search for a general tool that solves the problem. In this case, though, special-
purpose code could exploit properties of the particular problem to be much faster.

The Importance of Space. In Section 13.2 we saw that finely tuned linked lists do
half the work of arrays but take twice the time. Why? Arrays use half as much mem-
ory per element, and access memory sequentially. In Section 13.3 we saw that using
custom memory allocation for binary search trees reduced space by a factor of three
and time by a factor of two. Time increased substantially as we overflowed memory
at magic boundaries (on my machine) at a half-megabyte (the Level-2 cache size) and
near 80 megabytes (the amount of free RAM).

Code Tuning Techniques. The most substantial improvement we saw was replac-
ing general-purpose memory allocation with a single allocation of a large block. This
eliminated many expensive calls, and also used space more efficiently. Rewriting a

COLUMN 13 SEARCHING 143

recursive function to be iterative sped up linked lists by a whopping factor of three,
but gave only a ten percent speedup for bins. Sentinels gave clean, simple code for
most structures, and incidentally decreased the run time.

13.6 Problems
1. Solution 12.9 describes Bob Floyd's algorithm for generating a sorted set of ran-

dom integers. Can you implement his algorithm using the IntSets in this section?
How do these structures perform on the nonrandom distributions generated by
Floyd's algorithm?

2. How would you change the toy IntSet interface to make it more robust?
3. Augment the set classes with a find function that tells whether a given element is

in the set. Can you implement that function to be more efficient than insert!
4. Rewrite the recursive insertion functions for lists, bins and binary search trees to

use iteration, and measure the difference in run times.
5. Section 9.1 and Solution 9.2 describe how Chris Van Wyk avoided many calls to a

storage allocator by keeping a collection of available nodes in his own structure.
Show how that same idea applies to IntSets implemented by lists, bins and binary
search trees.

6. What can you learn by timing this fragment on the various implementations of
IntSetl

IntSetlmp S(m, n);
for (int i = 0; i < m; i++)

S.insert(i);

7. Our arrays, linked lists and bins all employ sentinels. Show how to apply the
same technique to binary search trees.

8. Show how to speed up the initialization and reporting operations on bit vectors by
using parallelism to operate on many bits at a time. Is it most efficient to operate
on a char, short, int, long or some other unit?

9. Show how to speed up bins by replacing the expensive division operator with a
cheaper logical shift.

10. What other data structures might be used to represent sets of integers in contexts
similar to generating random numbers?

11. Build the fastest possible complete function to generate a sorted array of random
integers without duplicates. (You need not feel constrained to use any prescribed
interface for set representation.)

13.7 Further Reading

The excellent algorithms texts by Knuth and Sedgewick are described in Section
11.6. Searching is the topic of Chapter 6 (the second half) of Knuth's Sorting and
Searching, and is Part 4 (the final quarter) of Sedgewick's Algorithms.

144 PROGRAMMING PEARLS COLUMN 13

13.8 A Real Searching Problem [Sidebar]

The toy structures in the body of this column have laid the groundwork for us to
study an industrial-strength data structure. This sidebar surveys the remarkable struc-
ture that Doug Mcllroy used to represent a dictionary in the spell program that he
wrote in 1978. When I wrote the original columns in this book in the 1980's, I spell-
checked them all with Mcllroy's program. I used spell once again for this edition,
and found that it is still a useful tool. Details of Mcllroy's program can be found in
his paper "Development of a spelling list" in IEEE Transactions on Communications
COM-30, 1 (January 1982, pp. 91-99). My dictionary defines a pearl as something
"very choice or precious"; this program qualifies.

The first problem Mcllroy faced was assembling the word list. He started by
intersecting an unabridged dictionary (for validity) with the million-word Brown Uni-
versity corpus (for currency). That was a reasonable beginning, but there was much
work left to do.

Mcllroy's approach is illustrated in his quest for proper nouns, which are omitted
from most dictionaries. First came people: the 1000 most common last names in a
large telephone directory, a list of boys' and girls' names, famous names (like Dijk-
stra and Nixon), and mythological names from an index to Bulfinch. After observing
"misspellings" like Xerox and Texaco, he added companies on the Fortune 500 list.
Publishing companies are rampant in bibliographies, so they're in. Next came geog-
raphy: the nations and their capitals, the states and theirs, the hundred largest cities in
the United States and in the world, and don't forget oceans, planets and stars.

He also added common names of animals and plants, and terms from chemistry,
anatomy and (for local consumption) computing. But he was careful not to add too
much: he kept out valid words that tend to be real-life misspellings (like the geologi-
cal term cwm) and included only one of several alternative spellings (hence traveling
but not travelling).

Mcllroy's trick was to examine spell's output from real runs; for some time, spell
automatically mailed a copy of the output to him (tradeoffs between privacy and
efficacy were viewed differently in bygone days). When he spotted a problem, he
would apply the broadest possible solution. The result is a fine list of 75,000 words: it
includes most of the words I use in my documents, yet still finds my spelling errors.

The program uses affix analysis to peel prefixes and suffixes off words; that is
both necessary and convenient. It's necessary because there is no such thing as a
word list for English; a spelling checker must either guess at the derivation of words
like misrepresented or report as errors a lot of valid English words. Affix analysis has
the convenient side effect of reducing the size of the dictionary.

The goal of affix analysis is to reduce misrepresented down to sent, stripping off
mis-, re-, pre-, and -ed. (Even though represent doesn't mean "to present again" and
present doesn't mean "sent beforehand", spell uses coincidences to reduce dictionary
size.) The program's tables contain 40 prefix rules and 30 suffix rules. A "stop list"
of 1300 exceptions halts good but incorrect guesses like reducing entend (a mis-
spelling of intend) to en- + tend. This analysis reduces the 75,000 word list to 30,000

COLUMN 13 SEARCHING 145

words. Mcllroy's program loops on each word, stripping affixes and looking up the
result until it either finds a match or no affixes remain (and the word is declared to be
an error).

Back-of-the-envelope analysis showed the importance of keeping the dictionary in
main memory. This was particularly hard for Mcllroy, who originally wrote the pro-
gram on a PDP-11 that had a 64-kilobyte address space. The abstract of his paper
summarizes his space squeezing: "Stripping prefixes and suffixes reduces the list
below one third of its original size, hashing discards 60 percent of the bits that remain,
and data compression halves it once again." Thus a list of 75,000 English words (and
roughly as many inflected forms) was represented in 26,000 16-bit computer words.

Mcllroy used hashing to represent 30,000 English words in 27 bits each (we'll see
soon why 27 is a good choice). We'll study a progression of schemes illustrated on
the toy word list

a list of five words

The first hashing method uses an ^-element hash table roughly the size of the list and
a hash function that maps a string into an integer in the range [0, n). (We'll see a
hash function for strings in Section 15.1.) The ith entry of the table points to a linked
list that contains all strings that hash to /. If null lists are represented by empty cells
and the hash function yields h(a) = 2, h(list)=l, etc., then a five-element table might
look like

of list a words
I

five

To look up the word w we perform a sequential search in the list pointed to by the
h(w)th cell.

The next scheme uses a much larger table. Choosing n = 23 makes it likely that
most hash cells contain just one element. In this example, h(a) = 13 and h(list) = 5.

list words a of five

The spell program uses n=227 (roughly 134 million), and all but a few of the non-
empty lists contain just a single element.

The next step is daring: instead of a linked list of words, Mcllroy stores just a sin-
gle bit in each table entry. This reduces space dramatically, but introduces errors.
This picture uses the same hash function as the previous example, and represents zero
bits by empty cells.

146 PROGRAMMING PEARLS COLUMN 13

To look up word w, the program accesses the h(w)th bit in the table. If that bit is
zero, then the program correctly reports that word w is not in the table. If the bit is
one, then the program assumes that w is in the table. Sometimes a bad word happens
to hash to a valid bit, but the probability of such an error is just 30,000/227, or
roughly 1/4,000. On the average, therefore, one out of every 4000 bad words will
sneak by as valid. Mcllroy observed that typical rough drafts rarely contain more
than 20 errors, so this defect hampers at most one run out of every hundred — that's
why he chose 27.

Representing the hash table by a string of n = 227 bits would consume over sixteen
million bytes. The program therefore represents just the one bits; in the above exam-
ple, it stores these hash values:

5 10 13 18 22

The word w is declared to be in the table if h(w) is present. The obvious representa-
tion of those values uses 30,000 27-bit words, but Mcllroy's machine had only 32,000
16-bit words in its address space. He therefore sorted the list and used a variable-
length code to represent the differences between successive hash values. Assuming a
fictitious starting value of zero, the above list is compressed to

5 5 3 5 4

Mcllroy's spell represents the differences in an average of 13.6 bits each. That left a
few hundred extra words to point at useful starting points in the compressed list and
thereby speed up the sequential search. The result is a 64-kilobyte dictionary that has
fast access time and rarely makes mistakes.

We've already considered two aspects of spell's performance: it produced useful
output and it fit in a 64-kilobyte address space. It was also fast. Even on the ancient
machines on which it was first built, it was able to spell-check a ten-page paper in half
a minute, and a book the size of this one in about ten minutes (which seemed blaz-
ingly fast at the time). The spelling of a single word could be checked in a few sec-
onds, because the small dictionary could be quickly read from disk.

COLUMN 14: HEAPS

This column is about "heaps", a data structure that we'll use to solve two impor-
tant problems.

Sorting. Heapsort never takes more than O(n log n) time to sort an n-element
array, and uses just a few words of extra space.
Priority Queues. Heaps maintain a set of elements under the operations of insert-
ing new elements and extracting the smallest element in the set; each operation
requires 0(log n) time.

For both problems, heaps are simple to code and computationally efficient.
This column has a bottom-up organization: we start at the details and work up to

the big picture. The next two sections describe the heap data structure and two func-
tions to operate on it. The two subsequent sections use those tools to solve the prob-
lems mentioned above.

14.1 The Data Structure

A heap is a data structure for representing a collection of items.! Our examples
will represent numbers, but the elements in a heap may be of any ordered type.
Here's a heap of twelve integers:

12

20 15
/ \ / \
29 23 17 22
/ \ / \ /
35 40 26 51 19

This binary tree is a heap by virtue of two properties. We'll call the first property
order: the value at any node is less than or equal to the values of the node's children.
This implies that the least element of the set is at the root of the tree (12 in the

t In other computing contexts, the word "heap" refers to a large segment of memory from which variable-
size nodes are allocated; we will ignore that interpretation in this column.

147

148 PROGRAMMING PEARLS COLUMN 14

example), but it doesn't say anything about the relative order of left and right chil-
dren. The second heap property is shape', the idea is captured by the picture

In words, a binary tree with the shape property has its terminal nodes on at most two
levels, with those on the bottom level as far left as possible. There are no "holes" in
the tree; if it contains n nodes, no node is at a distance more than Iog2 n from the root.
We'll soon see how the two properties together are restrictive enough to allow us to
find the minimum element in a set, but lax enough so that we can efficiently reorga-
nize the structure after inserting or deleting an element.

Let's turn now from the abstract properties of heaps to their implementation. The
most common representation of binary trees employs records and pointers. We'll use
an implementation that is suitable only for binary trees with the shape property, but is
quite effective for that special case. A 12-element tree with shape is represented in
the 12-element array x[I . . 12] as

x[2] x[3]

x[4] x[5] x(6]
/ \ / \ /

jc[8] jc[9] Jt[10] jc[ll] jc[12]

Notice that heaps use a one-based array; the easiest approach in C is to declare
x[n + 1] and waste element *[0]. In this implicit representation of a binary tree, the
root is in x[I], its two children are in x[2] and ;c[3], and so on. The typical functions
on the tree are defined as follows.

root = 1
value (i) = x[i]
leftchild(i) = 2*1
rightchild(i) = 2*1+1
parent(l) = 1 / 2
null(1) = (1 < 1) or (1 > n)

An n-element implicit tree necessarily has the shape property: it makes no provision
for missing elements.

This picture shows a 12-element heap and its implementation as an implicit tree in
a 12-element array.

COLUMN 14 HEAPS 149

20 15 .
\ X \ 12 20 15 29 23 17 22 35 40 26 51 19

29 23 17 22 1 12
/ \ / \ /

35 40 26 51 19

Because the shape property is guaranteed by the representation, from now on the
name heap will mean that the value in any node is greater than or equal to the value in
its parent. Phrased precisely, the array x[I ..n] has the heap property if

Recall that the 'V" integer division operator rounds down, so 4/2 and 5/2 are both 2.
In the next section we will want to talk about the subarray x [L . u } having the heap
property (it already has a variant of the shape property); we may mathematically
define heap (I, u) as

14.2 Two Critical Functions

In this section we will study two functions for fixing an array whose heap property
has been broken at one end or the other. Both functions are efficient: they require
roughly log n steps to re-organize a heap of n elements. In the bottom-up spirit of
this column, we will define the functions here and then use them in the next sections.

Placing an arbitrary element in x[n] when ;c[1 ..n - 1] is a heap will probably not
yield heap(\, /i); re-establishing the property is the job of function siftup. Its name
describes its strategy: it sifts the new element up the tree as far as it should go, swap-
ping it with its parent along the way. (This section will use the typical heap definition
of which way is up: the root of the heap is ;c[1] at the top of the tree, and therefore
x[n] is at the bottom of the array.) The process is illustrated in the following pictures,
which (left to right) show the new element 13 being sifted up the heap until it is at its
proper position as the right child of the root.

12 12

20 15 20 15

29 23 17 22 29 23 (13) 22 29 23 15
/ \ / \ / \ / \ / \ r\ / \ / \ / \
35 40 26 51 19(13) 35 40 26 51 19 17 35 40 26 51 19 17

150 PROGRAMMING PEARLS COLUMN 14

The process continues until the circled node is greater than or equal to its parent (as in
this case) or it is at the root of the tree. If the process starts with heap(1, n - 1) true,
it leaves heap(1, n) true.

With that intuitive background, let's write the code. The sifting process calls for a
loop, so we start with the loop invariant. In the picture above, the heap property holds
everywhere in the tree except between the circled node and its parent. If we let / be
the index of the circled node, then we can use the invariant

loop
/* Invariant: heap(l, n) except perhaps

between 1 and its parent */

Because we originally have heap(1, n - 1), we may initialize the loop by the assign-
ment / = n.

The loop must check whether we have finished yet (either by the circled node
being at the top of the heap or greater than or equal to its parent) and, if not, make
progress towards termination. The invariant says that the heap property holds every-
where except perhaps between / and its parent. If the test / == 1 is true, then / has no
parent and the heap property thus holds everywhere; the loop may therefore terminate.
When / does have a parent, we let p be the parent's index by assigning p = i/2. If
x[p] <x[i] then the heap property holds everywhere, and the loop may terminate.

If, on the other hand, / is out of order with its parent, then we swap x[i] and x[p].
This step is illustrated in the following picture, in which the keys are single letters and
node i is circled.

BEFORE: s \^ AFTER:
a and b are (a\ c All nodes
out of order /\ are in order / \

d e d e

After the swap, all five elements are in the proper order: b < d and b <e because b was
originally higher in the heapt, a <b because the test ;t[/?]<*[/] failed, and a <c by
combining a<b and b<c. This gives the heap property everywhere in the array
except possibly between p and its parent; we therefore regain the invariant by assign-
ing / = p.

The pieces are assembled in this siftup code, which runs in time proportional to
log n because the heap has that many levels.

t This important property is unstated in the loop invariant. Don Knuth observes that to be precise, the in-
variant should be strengthened to "heap(1, n) holds if i has no parent; otherwise it would hold if x [i] were
replaced by x [p] , where p is the parent of /". Similar precision should also be used in the siftdown loop that
we will study shortly.

COLUMN 14 HEAPS 151

void siftup(n)
pre n > 0 && heap(l, n-1)
post heap(l, n)

i = n
loop

/* invariant: heap(l, n) except perhaps
between i and its parent */

if i == 1
break

p = i / 2
if x[p] <= x[i]

break
swap(p, i)
i = p

As in Column 4, the ' 'pre'' and ' 'post'' lines characterize the function: if the precon-
dition is true before the function is called then the postcondition will be true after the
function returns.

We'll turn now from siftup to siftdown. Assigning a new value to jc[l] when
;t[l..n] is a heap leaves heap(2, n)', function siftdown makes heap(\, n) true. It
does so by sifting ;c[1] down the array until either it has no children or it is less than
or equal to the children it does have. These pictures show 18 being sifted down the
heap until it is finally less than its single child, 19.

35 40 26 51 19 35 40 26 51 19 35 40 26 51 19

When an element is sifted up, it always goes towards the root. Sifting down is more
complicated: an out-of-order element is swapped with its lesser child.

The pictures illustrate the invariant of the siftdown loop: the heap property holds
everywhere except, possibly, between the circled node and its children.

loop
/* invariant: heap(l, n) except perhaps between

i and its (0, 1 or 2) children */

The loop is similar to siftup's. We first check whether / has any children, and termi-
nate the loop if it has none. Now comes the subtle part: if i does have children, then
we set the variable c to index the lesser child of /. Finally, we either terminate the
loop if A;[/]<*[c], or progress towards the bottom by swapping x[i] and x[c] and
assigning / = c.

152 PROGRAMMING PEARLS COLUMN 14

void siftdown(n)
pre heap(2, n) && n >= 0
post heap(l, n)

i = 1
loop

/* invariant: heap(l, n) except perhaps between
i and its (0, 1 or 2) children */

c = 2*i
if c > n

break
/* c is the left child of i */
if c+1 <= n

/* c+1 is the right child of i */
if x[c+l] < x[c]

C++
/* c is the lesser child of i */
if x[i] <= x[c]

break
swap(c, i)
i = c

A case analysis like that done for siftup shows that the swap operation leaves the heap
property true everywhere except possibly between c and its children. Like siftup, this
function takes time proportional to log n, because it does a fixed amount of work at
each level of the heap.

14.3 Priority Queues

Every data structure has two sides. Looking from the outside, its specification
tells what it does — a queue maintains a sequence of elements under the operations of
insert and extract. On the inside, its implementation tells how it does it — a queue
might use an array or a linked list. We'll start our study of priority queues by specify-
ing their abstract properties, and then turn to implementations.

A priority queue manipulates an initially empty sett of elements, which we will
call S. The insert function inserts a new element into the set; we can define that more
precisely in terms of its pre- and postconditions.

void insert(t)
pre |S| < maxsize
post current S = original S u {t}

Function extractmin deletes the smallest element in the set and returns that value in its
single parameter t.

t Because the set can contain multiple copies of the same element, we might be more precise to call it a
"multiset" or a "bag". The union operator is defined so that {2, 3} u {2} = {2, 2, 3}.

COLUMN 14 HEAPS 153

int extractminQ
pre |S | > 0
post original S = current S u {result}

&& result = min(original S)

This function could, of course, be modified to yield the maximum element, or any
extreme element under a total ordering.

We can specify a C++ class for the job with a template that specifies the type T of
elements in the queue:

tempiate<class T>
class priqueue {
public:

priqueue(int maxsize);
void insert(T t);
T extractminQ;

// init set S to empty
// add t to S
// return smallest in S

Priority queues are useful in many applications. An operating system may use
such a structure to represent a set of tasks; they are inserted in an arbitrary order, and
the next task to be executed is extracted:

priqueue<Task> queue;

In discrete event simulation, the elements are times of events; the simulation loop
extracts the next event and possibly adds more events to the queue:

priqueue<Event> eventqueue;

In both applications the basic priority queue must be augmented with additional infor-
mation beyond the elements in the set; we will ignore that "implementation detail" in
our discussion, but C++ classes usually handle it gracefully.

Sequential structures such as arrays or linked lists are obvious candidates for
implementing priority queues. If the sequence is sorted it is easy to extract the mini-
mum but hard to insert a new element; the situation is reversed for unsorted struc-
tures. This table shows the performance of the structures on an n-element set.

DATA STRUCTURE

Sorted Sequence
Heaps
Unsorted Sequence

RUN TIMES

1 insert

0(n)
0(log n)

0(1)

1 extractmin

0(1)
O(log n)

0(n)

n of each

0(n2)
O(n log n)

0(n2)

Even though binary search can find the position of a new element in O(log n) time,
moving the old elements to make way for the new may require O(n) steps. If you've
forgotten the difference between O(n2) and O(n log n) algorithms, review Section
8.5: when n is one million, the run times of those programs are three hours and one
second.

154 PROGRAMMING PEARLS COLUMN 14

The heap implementation of priority queues provides a middle ground between the
two sequential extremes. It represents an ^-element set in the array Jt[l..rc] with the
heap property, where x is declared in C or C++ as x[maxsize + 1] (we will not use
*[0]). We initialize the set to be empty by the assignment n = 0. To insert a new
element we increment n and place the new element in x[n]. That gives the situation
that siftup was designed to fix: heap(1 , n — 1). The insertion code is therefore

void insert(t)
if n >= maxsize

/* report error */

x[n] = t
/* heap(l, n-1) */
siftup(n)
/* heap(l, n) */

Function extractmin finds the minimum element in the set, deletes it, and restruc-
tures the array to have the heap property. Because the array is a heap, the minimum
element is in x[I]. The n — \ elements remaining in the set are now in jt[2..n], which
has the heap property. We regain heap (I , n) in two steps. We first move x[n] to
x [l] and decrement n\ the elements of the set are now in jc[l..n], and heap(2, n) is
true. The second step calls siftdown. The code is straightforward.

int extractmin ()
if n < 1

/* report error */
t = x[l]
x[l] = x[n—]
/* heap(2, n) */
siftdown(n)
/* heapCl, n) */
return t

Both insert and extractmin require O(log n) time when applied to heaps that contain
n elements.

Here is a complete C++ implementation of priority queues:

tempi ate<cl ass T>
class priqueue {
private:

int n, maxsize;
T *x;
void swap (int i, int j)
{ T t = x[i]; x[i] = x[j] ; x[j] = t; }

COLUMN 14 HEAPS 155

public:
priqueueO'nt m)
{ maxsize = m;

x = new T[maxsize+l] ;
n = 0;

}
void insert (T t)
{ i nt i , p ;

x[++n] = t;
for (i = n; i > 1 && x[p=i/2] > x[i]; i = p)

swap(p, i);
}
T extractminO
{ i nt i , c ;

T t = x[l];

for (i = 1; (c = 2*i) <= n; i = c) {
if (c+1 <= n && x[c+l] < x[c])

C++;
if (x[i] <= x[c])

break;
swap(c, -i);

}
return t;

This toy interface includes no error checking or destructor, but expresses the guts of
the algorithm succinctly. While our pseudocode used a lengthy coding style, this
dense code is at the other extreme.

14.4 A Sorting Algorithm

Priority queues provide a simple algorithm for sorting a vector: first insert each
element in turn into the priority queue, then remove them in order. It is straightfor-
ward to code in C++ using the priqueue class:

tempi ate<cl ass T>
void pqsort(T v[] , int n)
{ priqueue<T> pq(n);

i nt i ;
for (i = 0 ; i < n; i++)

pq.insert(v[i]) ;
for (i = 0; i < n; i++)

v[i] = pq. extractminO ;

15 6 PROGRAMMING PEARLS COLUMN 14

The n insert and extractmin operations have a worst-case cost of O(n log n), which is
superior to the O(n2) worst-case time of the Quicksorts we built in Column 11.
Unfortunately, the array jc[0..rc] used for heaps requires n + \ additional words of
main memory.

We turn now to the Heapsort, which improves this approach. It uses less code, it
uses less space because it doesn't require the auxiliary array, and it uses less time.
For purposes of this algorithm we will assume that siftup and siftdown have been
modified to operate on heaps in which the largest element is at the top; that is easy to
accomplish by swapping "<" and ">" signs.

The simple algorithm uses two arrays, one for the priority queue and one for the
elements to be sorted. Heapsort saves space by using just one. The single implemen-
tation array x represents two abstract structures: a heap at the left end and at the right
end the sequence of elements, originally in arbitrary order and finally sorted. This
picture shows the evolution of the array jc; the array is drawn horizontally, while time
marches down the vertical axis.

StepO

Step n

Step 2n - 1

The Heapsort algorithm is a two-stage process: the first n steps build the array into a
heap, and the next n steps extract the elements in decreasing order and build the final
sorted sequence, right to left.

The first stage builds the heap. Its invariant can be drawn as

heap

This code establishes heap(1, n), by sifting elements to move up front in the array.

for i = [2, n]
/* Invariant: heap(l, i-1) */
siftup(i)
/* heap(l, i) */

The second stage uses the heap to build the sorted sequence. Its invariant can be
drawn as

heap, < sorted, >

The loop body maintains the invariant in two operations. Because x [l] is the largest

heheap

heap
sorted

COLUMN 14 HEAPS 157

among the first i elements, swapping it with x[i] extends the sorted sequence by one
element. That swap compromises the heap property, which we regain by sifting down
the new top element. The code for the second stage is

for (i = n; 1 >= 2; i--)
/* heapd, i) && sorted(i+l, n) && x[l..i] <= x[i+l..n] */
swap(l, i)
/* heap(2, 1-1) && sorted(i, n) && x[l..i-l] <= x[i..n] */
siftdown(i-l)
/* heap(l, i-1) && sorted(i, n) && x[l..i-l] <= x[i..n] */

With the functions we've already built, the complete Heapsort algorithm requires
just five lines of code.

for i = [2, n]
siftup(i)

for (1 = n; i >= 2; i--)
swap(l, i)
siftdown(i-l)

Because the algorithm uses n - 1 siftup and siftdown operations, each of cost at most
O(log «), it runs in O(n log n) time, even in the worst case.

Solutions 2 and 3 describe several ways to speed up (and also simplify) the Heap-
sort algorithm. Although Heapsort guarantees worst-case O(n log n) performance,
for typical input data, the fastest Heapsort is usually slower than the simple Quicksort
in Section 11.2.

14.5 Principles

Efficiency. The shape property guarantees that all nodes in a heap are within
log 2 n levels of the root; functions siftup and siftdown have efficient run times pre-
cisely because the trees are balanced. Heapsort avoids using extra space by overlay-
ing two abstract structures (a heap and a sequence) in one implementation array.

Correctness. To write code for a loop we first state its invariant precisely; the
loop then makes progress towards termination while preserving its invariant. The
shape and order properties represent a different kind of invariant: they are invariant
properties of the heap data structure. A function that operates on a heap may assume
that the properties are true when it starts to work on the structure, and it must in turn
make sure that they remain true when it finishes.

Abstraction. Good engineers distinguish between what a component does (the
abstraction seen by the user) and how it does it (the implementation inside the black
box). This column packages black boxes in two different ways: procedural abstrac-
tion and abstract data types.

Procedural Abstraction. You can use a sort function to sort an array without
knowing its implementation: you view the sort as a single operation. Functions siftup
and siftdown provide a similar level of abstraction: as we built priority queues and
Heapsort, we didn't care how the functions worked, but we knew what they did

158 PROGRAMMING PEARLS COLUMN 14

(fixing an array with the heap property broken at one end or the other). Good engi-
neering allowed us to define these black-box components once, and then use them to
assemble two different kinds of tools.

Abstract Data Types. What a data type does is given by its methods and their
specifications; how it does it is up to the implementation. We may employ the C++
priqueue class of this column or the C++ IntSet classes of the last column using only
their specification to reason about their correctness. Their implementations may, of
course, have an impact on the program's performance.

14.6 Problems
1. Implement heap-based priority queues to run as quickly as possible; at what values

of n are they faster than sequential structures?
2. Modify siftdown to have the following specification.

void siftdown(l, u)
pre heapO+1, u)
post heap(l, u)

What is the run time of the code? Show how it can be used to construct an n-
element heap in O(n) time and thereby a faster Heapsort that also uses less code.

3. Implement Heapsort to run as quickly as possible. How does it compare to the
sorting algorithms tabulated in Section 11.3?

4. How might the heap implementation of priority queues be used to solve the fol-
lowing problems? How do your answers change when the inputs are sorted?
a. Construct a Huffman code (such codes are discussed in most books on infor-

mation theory and many books on data structures).
b. Compute the sum of a large set of floating point numbers.
c. Find the million largest of a billion numbers stored on a file.
d. Merge many small sorted files into one large sorted file (this problem arises in

implementing a disk-based merge sort program like that in Section 1.3).
5. The bin packing problem calls for assigning a set of n weights (each between zero

and one) to a minimal number of unit-capacity bins. The first-fit heuristic for this
problem considers the weights in the sequence in which they are presented, and
places each weight into the first bin in which it fits, scanning the bins in increasing
order. In his MIT thesis, David Johnson observed that a heap-like structure can
implement this heuristic in O(n log n) time. Show how.

6. A common implementation of sequential files on disk has each block point to its
successor, which may be any block on the disk. This method requires a constant
amount of time to write a block (as the file is originally written), to read the first
block in the file, and to read the ith block, once you have read the /- I s t block.
Reading the ith block from scratch therefore requires time proportional to /. When
Ed McCreight was designing a disk controller at Xerox Palo Alto Research Cen-
ter, he observed that by adding just one additional pointer per node, you can keep

COLUMN 14 HEAPS 159

all the other properties, but allow the ith block to be read in time proportional to
log /. How would you implement that insight? Explain what the algorithm for
reading the ith block has in common with the code in Problem 4.9 for raising a
number to the ith power in time proportional to log /.

7. On some computers the most expensive part of a binary search program is the
division by 2 to find the center of the current range. Show how to replace that
division with a multiplication by two, assuming that the array to be searched has
been constructed properly. Give algorithms for building and searching such a
table.

8. What are appropriate implementations for a priority queue that represents integers
in the range [0, fc), when the average size of the queue is much larger than kl

9. Prove that the simultaneous logarithmic run times of insert and extractmin in the
heap implementation of priority queues are within a constant factor of optimal.

10. The basic idea of heaps is familiar to sports fans. Suppose that Brian beat Al and
Lynn beat Peter in the semifinals, and that Lynn triumphed over Brian in the
championship match. Those results are usually drawn as

Lynn
I 1

Lynn Brian

Peter Lynn Brian Al

Such "tournament trees" are common in tennis tournaments and in post-season
playoffs in football, baseball and basketball. Assuming that the results of matches
are consistent (an assumption often invalid in athletics), what is the probability
that the second-best player is in the championship match? Give an algorithm for
"seeding" the players according to their pre-tournament rankings.

11. How are heaps, priority queues and Heapsort implemented in the C++ Standard
Template Library?

14.7 Further Reading

The excellent algorithms texts by Knuth and Sedgewick are described in Section
11.6. Heaps and Heapsort are described in Section 5.2.3 of Knuth's Sorting and
Searching. Priority queues and Heapsort are described in Chapter 9 of Sedgewick's
Algorithms.

This page intentionally left blank

COLUMN is: STRINGS OF PEARLS

We are surrounded by strings. Strings of bits make integers and floating-point
numbers. Strings of digits make telephone numbers, and strings of characters make
words. Long strings of characters make web pages, and longer strings yet make
books. Extremely long strings represented by the letters A, C, G and T are in geneti-
cists' databases and deep inside the cells of many readers of this book.

Programs perform a dazzling variety of operations on such strings. They sort
them, count them, search them, and analyze them to discern patterns. This column
introduces those topics by examining a few classic problems on strings.

15.1 Words

Our first problem is to produce a list of the words contained in a document. (Feed
such a program a few hundred books, and you have a fine start at a word list for a dic-
tionary.) But what exactly is a word? We'll use the trivial definition of a sequence of
characters surrounded by white space, but this means that web pages will contain
many "words" like "<html>", "<body>" and " ". Problem 1 asks how you
might avoid such problems.

Our first C++ program uses the sets and strings of the Standard Template Library,
in a slight modification of the program in Solution 1.1:

int main(void)
{ set<string> S;

setxstring>::iterator j;
string t;
while (cin » t)

S.insert(t);
for (j = S.beginQ; j != S.endQ; ++j)

cout « *j « "\n";
return 0;

}

The while loop reads the input and inserts each word into the set S (by the STL
specification, duplicates are ignored). The for loop then iterates through the set, and
writes the words in sorted order. This program is elegant and fairly efficient (more on
that topic soon).

161

162 PROGRAMMING PEARLS COLUMN 15

Our next problem is to count the number of times each word occurs in the docu-
ment. Here are the 21 most common words in the King James Bible, sorted in
decreasing numeric order and aligned in three columns to save space:

the 62053 shall 9756 they 6890
and 38546 he 9506 be 6672
of 34375 unto 8929 is 6595
to 13352 I 8699 with 5949
And 12734 his 8352 not 5840
that 12428 a 7940 all 5238
in 12154 for 7139 thou 4629

Almost eight percent of the 789,616 words in the text were the word "the" (as
opposed to 16 percent of the words in this sentence). By our definition of word,
"and" and "And" have two separate counts.

These counts were produced by the following C++ program, which uses the Stan-
dard Template Library map to associate an integer count with each string:

int main (void)
{ map<string, int> M;

map<string, int>: : iterator j;
string t;
while (cin » t)

for (j = M.beginQ; j != M.endQ; ++j)
cout « j->first « " " « j->second « "\n";

return 0;
}

The while statement inserts each word t into the map M and increments the associated
counter (which is initialized to zero at initialization). The for statement iterates
through the words in sorted order and prints each word (first) and its count (second).

This C++ code is straightforward, succinct and surprisingly fast. On my machine,
it takes 7.6 seconds to process the Bible. About 2.4 seconds go to reading, 4.9 sec-
onds to the insertions, and 0.3 seconds to writing the ouput.

We can reduce the processing time by building our own hash table, using nodes
that contain a pointer to a word, a count of how often the word has been seen, and a
pointer to the next node in the table. Here is the hash table after inserting the strings
"in", "the" and "in", in the unlikely event that both strings hash to 1:

COLUMN 15 STRINGS OF PEARLS 163

We'll implement the hash table with this C structure:

typedef struct node *nodeptr;
typedef struct node {

char *word;
int count;
nodeptr next;

} node;

Even by our loose definition of "word", the Bible has only 29,131 distinct words.
We'll follow the old lore of using a prime number near that for our hash table size,
and the popular multiplier of 31:

^define NHASH 29989
^define MULT 31
nodeptr bin[NHASH];

Our hash function maps a string to a positive integer less than NHASH:

unsigned int hash(char *p)
unsigned int h = 0
for (; *p; p++)

h = MULT * h + *p
return h % NHASH

Using unsigned integers ensures that h remains positive.
The main function initializes every bin to NULL, reads the word and increments

the count of each, then iterates through the hash table to write the (unsorted) words
and counts:

int main(void)
for i = [0, NHASH)

bin[i] = NULL
while scanfC'fcs", buf) != EOF

incword(buf)
for i = [0, NHASH)

for (p = bin[i]; p != NULL; p = p->next)
print p->word, p->count

return 0

The work is done by incword, which increments the count associated with the input
word (and initializes it if it is not already there):

164 PROGRAMMING PEARLS COLUMN 15

void incword(char *s)
h = hash(s)
for (p = bin[h]; p != NULL; p = p->next)

if strcmp(s, p->word) == 0
(p->count)++
return

p = malloc(sizeof(hashnode))
p->count = 1
p->word = malloc(strlen(s)+l)
strcpy(p->word, s)
p->next = bin[h]
bin[h] = p

The/6>r loop looks at every node with the same hash value. If the word is found, its
count is incremented and the function returns. If the word is not found, the function
makes a new node, allocates space and copies the string (experienced C programmers
would use strdup for the task), and inserts the node at the front of the list.

This C program takes about 2.4 seconds to read its input (the same as the C++ ver-
sion), but only 0.5 seconds for the insertions (down from 4.9) and only 0.06 seconds
to write the output (down from 0.3). The complete run time is 3.0 seconds (down
from 7.6), and the processing time is 0.55 seconds (down from 5.2). Our custom-
made hash table (in 30 lines of C) is an order of magnitude faster than the maps from
the C++ Standard Template Library.

This little exercise illustrates the two main ways to represent sets of words. Bal-
anced search trees operate on strings as indivisible objects; these structures are used in
most implementations of the STL's sets and maps. They always keep the elements in
sorted order, so they can efficiently perform operations such as finding a predecessor
or reporting the elements in order. Hashing, on the other hand, peeks inside the char-
acters to compute a hash function, and then scatters keys across a big table. It is very
fast on the average, but it does not offer the worst-case performance guarantees of bal-
anced trees, or support other operations involving order.

15.2 Phrases

Words are the basic component of documents, and many important problems can
be solved by searching for words. Sometimes, however, I search long strings (my
documents, or help files, or web pages, or even the entire web) for phrases, such as
"substring searching" or "implicit data structures".

How would you search through a large body of text to find "a phrase of several
words"? If you had never seen the body of text before, you would have no choice but
to start at the beginning and scan through the whole input; most algorithms texts
describe many approaches to this "substring searching problem".

Suppose, though, that you had a chance to preprocess the body of text before per-
forming searches. You could make a hash table (or search tree) to index every dis-
tinct word of the document, and store a list of every occurrence of each word. Such
an "inverted index" allows a program to look up a given word quickly. One can look

COLUMN 15 STRINGS OF PEARLS 165

up phrases by intersecting the lists of the words they contain, but this is subtle to
implement and potentially slow. (Some web search engines do, however, take exactly
this approach.)

We'll turn now to a powerful data structure and apply it to a small problem: given
an input file of text, find the longest duplicated substring of characters in it. For
instance, the longest repeated string in "Ask not what your country can do for you,
but what you can do for your country" is " can do for you", with " your country" a
close second place. How would you write a program to solve this problem?

This problem is reminiscent of the anagram problem that we saw in Section 2.4.
If the input string is stored in c[Q..n - 1], then we could start by comparing every pair
of substrings using pseudocode like this

maxlen = -1
for i = [0, n)

for j = (i, n)
if (this!en = comlen(&c[i], &c[j])) > maxlen

maxlen = thislen
maxi = i
maxj = j

The comlen function returns the length that its two parameter strings have in common,
starting with their first characters:

int comlen(char *p, char *q)
i = 0
while *p && (*p++ == *q++)

i++
return i

Because this algorithm looks at all pairs of substrings, it takes time proportional to n2 ,
at least. We might be able to speed it up by using a hash table to search for words in
the phrases, but we'll instead take an entirely new approach.

Our program will process at most MAXN characters, which it stores in the array c:

^define MAXN 5000000
char c[MAXN], *a[MAXN];

We'll use a simple data structure known as a "suffix array"; the structure has been
used at least since the 1970's, though the term was introduced in the 1990's. The
structure is an array a of pointers to characters. As we read the input, we initialize a
so that each element points to the corresponding character in the input string:

while (ch = getcharQ) != EOF
a[n] = &c[n]
c[n++] = ch

c[n] = 0

The final element of c contains a null character, which terminates all strings.
The element a[0] points to the entire string; the next element points to the suffix

166 PROGRAMMING PEARLS COLUMN 15

of the array beginning with the second character, and so on. On the input string
"banana", the array will represent these suffixes:

a[0]: banana
a[l]: anana
a[2]: nana
a[3]: ana
a[4]: na
a[5]: a

The pointers in the array a together point to every suffix in the string, hence the name
"suffix array".

If a long string occurs twice in the array c, it appears in two different suffixes. We
will therefore sort the array to bring together equal suffixes (just as sorting brought
together anagrams in Section 2.4). The "banana" array sorts to

a[0]: a
a[l]: ana
a[2]: anana
a[3]: banana
a[4]: na
a[5]: nana

We can then scan through this array comparing adjacent elements to find the longest
repeated string, which in this case is "ana".

We'll sort the suffix array with the qsort function:

qsort(a, n, sizeof(char *), pstrcmp)

The pstrcmp comparison function adds one level of indirection to the library strcmp
function. This scan through the array uses the comlen function to count the number of
letters that two adjacent words have in common:

for 1 = [0, n)
if comlen(a[i], a[i+l]) > maxlen

maxlen = comlen(a[i], a[i+l])
maxi = i

printf("%.*s\n", maxlen, a[maxi])

The print/statement uses the "*" precision to print maxlen characters of the string.
I ran the resulting program to find the longest repeated string in the 807,503 char-

acters in Samuel Butler's translation of Homer's Iliad. The program took 4.8 seconds
to locate this string:

whose sake so many of the Achaeans have died at Troy, far from their homes? Go
about at once among the host, and speak fairly to them, man by man, that they
draw not their ships into the sea.

The text first occurs when Juno suggests it to Minerva as an argument that might keep
the Greeks (Achaeans) from departing from Troy; it occurs shortly thereafter when
Minerva repeats the argument verbatim to Ulysses. On this and other typical text files
of n characters, the algorithm runs in O(n log n) time, due to sorting.

COLUMN 15 STRINGS OF PEARLS 167

Suffix arrays represent every substring in n characters of input text using the text
itself and n additional pointers. Problem 6 investigates how suffix arrays can be used
to solve the substring searching problem. We'll turn now to a more subtle application
of suffix arrays.

15.3 Generating Text

How can you generate random text? A classic approach is to let loose that poor
monkey on his aging typewriter. If the beast is equally likely to hit any lower case
letter or the space bar, the output might look like this:

uzlpcbizdmddk njsdzyyvfgxbgjjgbtsak rqvpgnsbyputvqqdtmgltz ynqotqigexjumq-
phujcfwn 11 jiexpyqzgsdllgcoluphl sefsrvqqytjakmav bfusvirsjl wprwqt

This is pretty unconvincing English text.
If you count the letters in word games (like Scrabble™ or Boggle™), you will

notice that there are different numbers of the various letters. There are many more
A's, for instance, than there are Z's. A monkey could produce more convincing text
by counting the letters in a document — if A occurs 300 times in the text while B
occurs just 100 times, then the monkey should be 3 times more likely to type an A
than a B. This takes us a small step closer to English:

saade ve mw he n entt da k eethetocusosselalwo gx fgrsnoh,tvettaf aetnlbilo fc Ihd
okleutsndyeoshtbogo eet ib nheaoopefni ngent
Most events occur in context. Suppose that we wanted to generate randomly a

year's worth of Fahrenheit temperature data. A series of 365 random integers
between 0 and 100 wouldn't fool the average observer. We could be more convincing
by making today's temperature a (random) function of yesterday's temperature: if it is
85° today, it is unlikely to be 15° tomorrow.

The same is true of English words: if this letter is a Q, then the next letter is quite
likely to be a U. A generator can make more interesting text by making each letter a
random function of its predecessor. We could, therefore, read a sample text and count
how many times every letter follows an A, how many times they follow a B, and so
on for each letter of the alphabet. When we write the random text, we produce the
next letter as a random function of the current letter. The "order-1" text was made
by exactly this scheme:

Order-1:11 amy, vin. id wht omanly heay atuss n macon aresethe hired boutwhe t,
tl, ad torurest t plur I wit hengamind tarer-plarody thishand.
Order-2: Ther I the heingoind of-pleat, blur it dwere wing waske hat trooss. Yout
lar on wassing, an sit." "Yould," "I that vide was nots ther.
Order-3:1 has them the saw the secorrow. And wintails on my my ent, thinks, fore
voyager lanated the been elsed helder was of him a very free bottlemarkable,
Order-4: His heard." "Exactly he very glad trouble, and by Hopkins! That it on of
the who difficentralia. He rushed likely?" "Blood night that.
We can extend this idea to longer sequences of letters. The order-2 text was made

by generating each letter as a function of the two letters preceding it (a letter pair is

168 PROGRAMMING PEARLS COLUMN 15

often called a digram). The digram TH, for instance, is often followed in English by
the vowels A, E, I, O, U and Y, less frequently by R and W, and rarely by other let-
ters. The order-3 text is built by choosing the next letter as a function of the three pre-
vious letters (a trigram). By the time we get to the order-4 text, most words are
English, and you might not be surprised to learn that it was generated from a Sherlock
Holmes story ("The Adventure of Abbey Grange"). A classically educated reader of
a draft of this column commented that this sequence of fragments reminded him of the
evolution from Old English to Victorian English.

Readers with a mathematical background might recognize this process as a Mar-
kov chain. One state represents each &-gram, and the odds of going from one to
another don't change, so this is a "finite-state Markov chain with stationary transition
probabilities".

We can also generate random text at the word level. The dumbest approach is to
spew forth the words in a dictionary at random. A slightly better approach reads a
document, counts each word, and then selects the next word to be printed with the
appropriate probability. (The programs in Section 15.1 use tools appropriate for such
tasks.) We can get more interesting text, though, by using Markov chains that take
into account a few preceding words as they generate the next word. Here is some ran-
dom text produced after reading a draft of the first 14 columns of this book:

Order-1: The table shows how many contexts; it uses two or equal to the sparse
matrices were not chosen. In Section 13.1, for a more efficient that "the more
time was published by calling recursive structure translates to build scaffolding to
try to know of selected and testing and more robust and a binary search).
Order-2: The program is guided by verification ideas, and the second errs in the
STL implementation (which guarantees good worst-case performance), and is
especially rich in speedups due to Gordon Bell. Everything should be to use a
macro: for n = 10,000, its run time; that point Martin picked up from his desk
Order-3: A Quicksort would be quite efficient for the main-memory sorts, and it
requires only a few distinct values in this particular problem, we can write them
all down in the program, and they were making progress towards a solution at a
snail'space.

The order-1 text is almost readable aloud, while the order-3 text consists of very long
phrases from the original input, with random transitions between them. For purposes
of parody, order-2 text is usually juiciest.

I first saw letter-level and word-level order-/: approximations to English text in
Shannon's 1948 classic Mathematical Theory of Communication. Shannon writes,

COLUMN 15 STRINGS OF PEARLS 169

'To construct [order-1 letter-level text] for example, one opens a book at random and
selects a letter at random on the page. This letter is recorded. The book is then
opened to another page and one reads until this letter is encountered. The succeeding
letter is then recorded. Turning to another page this second letter is searched for and
the succeeding letter recorded, etc. A similar process was used for [order-1 and
order-2 letter-level text, and order-0 and order-1 word-level text]. It would be inter-
esting if further approximations could be constructed, but the labor involved becomes
enormous at the next stage."

A program can automate this laborious task. Our C program to generate order-/:
Markov chains will store at most five megabytes of text in the array inputchars:

int k = 2;
char 1nputchars[5000000];
char *word[1000000];
int nword = 0;

We could implement Shannon's algorithm directly by scanning through the complete
input text to generate each word (though this might be slow on large texts). We will
instead employ the array word as a kind of suffix array pointing to the characters,
except that it starts only on word boundaries (a common modification). The variable
nword holds the number of words. We read the file with this code:

word[0] = inputchars
while scanf("%s", word[nword]) != EOF

word[nword+l] = word[nword] + strlen(word[nword]) + 1
nword++

Each word is appended to inputchars (no other storage allocation is needed), and is
terminated by the null character supplied by scanf.

After we read the input, we will sort the word array to bring together all pointers
that point to the same sequence of k words. This function does the comparisons:

int wordncmp(char *p, char* q)
n = k
for (; *p == *q; p++, q++)

if (*p == 0 && --n == 0)
return 0

return *p - *q

It scans through the two strings while the characters are equal. At every null charac-
ter, it decrements the counter n and returns equal after seeing k identical words. When
it finds unequal characters, it returns the difference.

170 PROGRAMMING PEARLS COLUMN 15

After reading the input, we append k null characters (so the comparison function
doesn't run off the end), print the first k words in the document (to start the random
output), and call the sort:

for i = [0, k)
word[nword][i] = 0

for i = [0, k)
print word[i]

qsort(word, nword, sizeof(word[0]), sortcmp)

The sortcmp function, as usual, adds a level of indirection to its pointers.
Our space-efficient structure now contains a great deal of information about the k-

grams in the text. If k is 1 and the input text is ' 'of the people, by the people, for the
people", the word array might look like this:

word[0]: by the
word[l]: for the
word[2]: of the
word[3]: people
word[4]: people, for
word[5]: people, by
word[6]: the people,
word[7]: the people
word[8]: the people,

For clarity, this picture shows only the first k + 1 words pointed to by each element of
word, even though more words usually follow. If we seek a word to follow the phrase
"the", we look it up in the suffix array to discover three choices: "people," twice
and "people" once.

We may now generate nonsense text with this pseudocode sketch:

phrase = first phrase in input array
loop

perform a binary search for phrase in word[0..nword-1]
for all phrases equal in the first k words

select one at random, pointed to by p
phrase = word following p
if k-th word of phrase is length 0

break
print k-th word of phrase

We initialize the loop by setting phrase to the first characters in the input (recall that
those words were already printed on the output file). The binary search uses the code
in Section 9.3 to locate the first occurrence of phrase (it is crucial to find the very first
occurrence; the binary search of Section 9.3 does just this). The next loop scans
through all equal phrases, and uses Solution 12.10 to select one of them at random. If
the k-th word of that phrase is of length zero, the current phrase is the last in the docu-
ment, so we break the loop.

The complete pseudocode implements those ideas, and also puts an upper bound
on the number of words it will generate:

COLUMN 15 STRINGS OF PEARLS 171

phrase = inputchars
for (words!eft = 10000; words!eft > 0; words!eft--)

! = -1
u = nword
whi!e !+l != u

m = (! + u) / 2
if wordncmp(word[m], phrase) < 0

! = m
e!se

u = m
for (i = 0 ; wordncmp(phrase, word[u+i]) == 0;

if randO % O'+D == 0
p = word[u+i]

phrase = skip(p, 1)
if str!en(skip(phrase, k-1)) == 0

break
print skip(phrase, k-1)

Chapter 3 of Kernighan and Pike's Practice of Programming (described in Section
5.9) is devoted to the general topic of ''Design and Implementation". They build
their chapter around the problem of word-level Markov-text generation because "it is
typical of many programs: some data comes in, some data goes out, and the process-
ing depends on a little ingenuity." They give some interesting history of the problem,
and implement programs for the task in C, Java, C++, Awk and Perl.

The program in this section compares favorably with their C program for the task.
This code is about half the length of theirs; representing a phrase by a pointer to k
consecutive words is space-efficient and easy to implement. For inputs of size near a
megabyte, the two programs are of roughly comparable speed. Because Kernighan
and Pike use a slightly larger structure and make extensive use of the inefficient mal-
loc, the program in this column uses an order of magnitude less memory on my sys-
tem. If we incorporate the speedup of Solution 14 and replace the binary search and
sorting by a hash table, the program in this section becomes about a factor of two fas-
ter (and increases memory use by about 50%).

15.4 Principles

String Problems. How does your compiler look up a variable name in its symbol
table? How does your help system quickly search that whole CD-ROM as you type in
each character of your query string? How does a web search engine look up a phrase?
These real problems use some of the techniques that we've glimpsed in the toy prob-
lems of this column.

Data Structures for Strings. We've seen several of the most important data struc-
tures used for representing strings.

Hashing. This structure is fast on the average and simple to implement.
Balanced Trees. These structures guarantee good performance even on perverse

172 PROGRAMMING PEARLS COLUMN 15

inputs, and are nicely packaged in most implementations of the C++ Standard
Template Library's sets and maps.
Suffix Arrays. Initialize an array of pointers to every character (or every word) in
your text, sort them, and you have a suffix array. You can then scan through it to
find near strings or use binary search to look up words or phrases.

Section 13.8 uses several additional structures to represent the words in a dictionary.

Libraries or Custom-Made Components? The sets, maps and strings of the C++
STL were very convenient to use, but their general and powerful interface meant that
they were not as efficient as a special-purpose hash function. Other library compo-
nents were very efficient: hashing used strcmp and suffix arrays used qsort. I peeked
at the library implementations of bsearch and strcmp to build the binary search and
the wordncmp functions in the Markov program.

15.5 Problems
1. Throughout this column we have used the simple definition that words are sepa-

rated by white space. Many real documents, such as those in HTML or RTF, con-
tain formatting commands. How could you deal with such commands? Are there
any other tasks that you might need to perform?

2. On a machine with ample main memory, how could you use the C++ STL sets or
maps to solve the searching problem in Section 13.8? How much memory does it
consume compared to Mcllroy's structure?

3. How much speedup can you achieve by incorporating the special-purpose malloc
of Solution 9.2 into the hashing program of Section 15.1?

4. When a hash table is large and the hash function scatters the data well, almost
every list in the table has only a few elements. If either of these conditions is vio-
lated, though, the time spent searching down the list can be substantial. When a
new string is not found in the hash table in Section 15.1, it is placed at the front of
the list. To simulate hashing trouble, set NHASH to 1 and experiment with this
and other list strategies, such as appending to the end of the list, or moving the
most recently found element to the front of the list.

5. When we looked at the output of the word frequency programs in Section 15.1, it
was most interesting to print the words in decreasing frequency. How would you
modify the C and C++ programs to accomplish this task? How would you print
only the M most common words, where M is a constant such as 10 or 1000?

6. Given a new input string, how would you search a suffix array to find the longest
match in the stored text? How would you build a GUI interface for this task?

7. Our program for finding duplicated strings was very fast for "typical" inputs, but
it can be very slow (greater than quadratic) for some inputs. Time the program on
such an input. Do such inputs ever arise in practice?

8. How would you modify the program for finding duplicated strings to find the
longest string that occurs more than M times?

9. Given two input texts, find the longest string that occurs in both.

COLUMN 15 STRINGS OF PEARLS 173

10. Show how to reduce the number of pointers in the duplication program by point-
ing only to suffixes that start on word boundaries. What effect does this have on
the output produced by the program?

11. Implement a program to generate letter-level Markov text.

12. How would you use the tools and techniques of Section 15.1 to generate (order-0
or non-Markov) random text?

13. The program for generating word-level Markov text is at this book's web site.
Try it on some of your documents.

14. How could you use hashing to speed up the Markov program?

15. Shannon's quote in Section 15.3 describes the algorithm he used to construct Mar-
kov text; implement that algorithm in a program. It gives a good approximation to
the Markov frequencies, but not the exact form; explain why not. Implement a
program that scans the entire string from scratch to generate each word (and
thereby uses the true frequencies).

16. How would you use the techniques of this column to assemble a word list for a
dictionary (the problem that Doug Mcllroy faced in Section 13.8)? How would
you build a spelling checker without using a dictionary? How would you build a
grammar checker without using rules of grammar?

17. Investigate how techniques related to /c-gram analysis are used in applications
such as speech recognition and data compression.

15.6 Further Reading

Many of the texts cited in Section 8.8 contain material on efficient algorithms and
data structures for representing and processing strings.

This page intentionally left blank

EPILOG TO THE FIRST EDITION

An interview with the author seemed, at the time, to be the best conclusion for the
first edition of this book. It still describes the book, so here it is, once again.

Q: Thanks for agreeing to do this interview.
A: No problem — my time is your time.

Q: Seeing how these columns already appeared in Communications of the ACM, why
did you bother to collect them into a book?
A: There are several little reasons: I've fixed dozens of errors, made hundreds of little
improvements, and added several new sections. There are fifty percent more prob-
lems, solutions and pictures in the book. Also, it's more convenient to have the
columns in one book rather than a dozen magazines. The big reason, though, is that
the themes running through the columns are easier to see when they are collected
together; the whole is greater than the sum of the parts.

Q: What are those themes?
A: The most important is that thinking hard about programming can be both useful
and fun. There's more to the job than systematic program development from formal
requirements documents. If this book helps just one disillusioned programmer to fall
back in love with his or her work, it will have served its purpose.

Q: That's a pretty fluffy answer. Are there technical threads tying the columns
together?
A: Performance is the topic of Part II, and a theme that runs through all columns. Pro-
gram verification is used extensively in several columns. Appendix 1 catalogs the
algorithms in the book.

Q: It seems that most columns emphasize the design process. Can you summarize
your advice on that topic?
A: I'm glad you asked. I just happened to prepare a list before this interview. Here
are ten suggestions for programmers.

175

176 PROGRAMMING PEARLS

Work on the right problem.
Explore the design space of solutions.
Look at the data.
Use the back of the envelope.
Exploit symmetry.
Design with components.
Build prototypes.
Make tradeoffs when you have to.
Keep it simple.
Strive for elegance.

The points were originally discussed in the context of programming, but they apply to
any engineering endeavor.

Q: That raises a point that has bothered me: it's easy to simplify the little programs in
this book, but do the techniques scale up to real software?
A: I have three answers: yes, no and maybe. Yes they scale up; Section 3.4 [in the
first edition], for instance, describes a huge software project that was simplified down
to "just" 80 staff-years. An equally trite answer is no: if you simplify properly, you
avoid building jumbo systems and the techniques don't need to scale up. Although
there is merit in both views, the truth lies somewhere in between, and that's where the
maybe comes in. Some software has to be big, and the themes of this book are some-
times applicable to such systems. The Unix system is a fine example of a powerful
whole built out of simple and elegant parts.

Q: There you go talking about another Bell Labs system. Aren't these columns a little
too parochial?
A: Maybe a little. I've stuck to material that I've seen used in practice, and that biases
the book towards my environment. Phrased more positively, much of the material in
these columns was contributed by my colleagues, and they deserve the credit (or
blame). I've learned a lot from many researchers and developers within Bell Labs.
There's a fine corporate atmosphere that encourages interaction between research and
development. So a lot of what you call parochialism is just my enthusiasm for my
employer.

Q: Let's come back down to earth. What pieces are missing from this book?
A: I had hoped to include a large system composed of many programs, but I couldn't
describe any interesting systems in the ten or so pages of a typical column. At a more
general level, I'd like to do future columns on the themes of ''computer science for
programmers" (like program verification in Column 4 and algorithm design in Col-
umn 8) and the "engineering techniques of computing" (like the back-of-the-
envelope calculations in Column 7).

Q: If you're so into "science" and "engineering", how come the columns are so
light on theorems and tables and so heavy on stories?
A: Watch it — people who interview themselves shouldn't criticize writing styles.

EPILOG TO THE SECOND EDITION

Some traditions are continued for their inherent quality. Others persist anyway.

Q: Welcome back; it's been a long time.
A: Fourteen years.

Q: Let's start where we did before. Why a new edition of the book?
A: I like the book, a lot. It was fun to write, and the readers have been very kind over
the years. The principles in the book have stood the test of time, but many examples
in the first edition were woefully out of date. Modern readers can't relate to a
4 'huge'' computer that has a half-megabyte of main memory.

Q: So what did you change in this edition?
A: Pretty much what I said I changed in the preface. Don't you guys prepare before
these interviews?

Q: Oops — sorry. I see that you talk there about how the code for this book is avail-
able at the web site.
A: Writing that code was the most fun that I had in working on this edition. I imple-
mented most of the programs in the first edition, but mine were the only eyes to see
the real code. For this edition I wrote about 2500 lines of C and C++, to be shown to
the whole world.

Q: You call that code ready for public view? I've read some of it; what dreadful
style! Microscopic variable names, weird function definitions, global variables that
should be parameters, and the list goes on. Aren't you embarrassed to let real soft-
ware engineers see the code?
A: The style I used can indeed prove fatal in large software projects. This book, how-
ever, is not a large software project. It's not even a large book. Solution 5.1
describes the terse coding style and why I chose it. Had I wanted to write a
thousand-page book, I would have adopted a lengthier coding style.

Q: Speaking of long code, your sort, cpp program measures the C Standard Library
qsort, the C++ Standard Template Library sort, and several hand-made Quicksorts.
Can't you make up your mind? Should a programmer use library functions or build
code from scratch?

177

178 PROGRAMMING PEARLS

A: Tom Duff gave the best answer to that question: ''Whenever possible, steal code."
Libraries are great; use them whenever they do the job. Start with your system
library, then search other libraries for appropriate functions. In any engineering activ-
ity, though, not all artifacts can be all things to all customers. When the library func-
tions don't measure up, you may have to build your own. I hope that the pseudocode
fragments in the book (and the real code on the web site) will prove a useful starting
point for programmers who have to write their own functions. I think that the scaf-
folding and the experimental approach of this book will help those programmers to
evaluate a variety of algorithms and choose the best one for their application.

Q: Apart from the public code and updating some stories, what is really new in this
edition?
A: I've tried to confront code tuning in the presence of caches and instruction-level
parallelism. At a larger level, the three new columns reflect three major changes that
pervade this edition: Column 5 describes real code and scaffolding, Column 13 gives
details on data structures, and Column 15 derives advanced algorithms. Most of the
ideas in the book have appeared in print before, but the cost model for space in
Appendix 3 and the Markov-text algorithm in Section 15.3 are presented here for the
first time. The new Markov-text algorithm compares quite favorably to the classic
algorithm described by Kernighan and Pike.

Q: There you go with more Bell Labs people. The last time we talked, you were
enthusiastic about the place, but you had only been there a few years. Lots has
changed at the Labs in the last 14 years; what do you now think about the place and
the changes?
A: When I wrote the first columns in the book, Bell Labs was part of the Bell System.
When the first edition was published, we were part of AT&T; now we are part of
Lucent Technologies. The companies, the telecommunications industry, and the field
of computing have all changed dramatically in that period. Bell Labs has kept up
with those changes, and has often led the way. I came to the Labs because I enjoy
balancing the theoretical and the applied, because I want to build products and write
books. The pendulum has swung back and forth during my years at the Labs, but my
management has always encouraged a wide range of activities.
A reviewer of the first edition of this book wrote "Bentley's everyday working envi-
ronment is a programming nirvana. He is a Member of Technical Staff at Bell Labs
in Murray Hill, New Jersey, has immediate access to cutting-edge hardware and soft-
ware technology, and stands in line at the cafeteria with some of the most brilliant
software developers in the world." Bell Labs is still that kind of place.

Q: Nirvana every single day of the week?
A: Nirvana many days, and pretty darn nice the others.

APPENDIX i A CATALOG OF ALGORITHMS

This book covers much of the material in a college algorithms course, but from a
different perspective — the emphasis is more on applications and coding than on
mathematical analysis. This appendix relates the material to a more typical outline.

Sorting

Problem Definition. The output sequence is an ordered permutation of the input
sequence. When the input is a file, the output is usually a distinct file; when the input
is an array, the output is usually the same array.

Applications. This list only hints at the diversity of sorting applications.

• Output Requirements. Some users desire sorted output; see Section 1.1 and con-
sider your telephone directory and monthly checking account statement. Func-
tions such as binary search require sorted inputs.

. Collect Equal Items. Programmers use sorting to collect together the equal items
in a sequence: the anagram program in Sections 2.4 and 2.8 collects words in the
same anagram class. The suffix arrays in Sections 15.2 and 15.3 collect equal text
phrases. See also Problems 2.6, 8.10 and 15.8.

• Other Applications. The anagram program in Sections 2.4 and 2.8 uses sorting as
a canonical order for the letters in a word, and thereby as a signature of an ana-
gram class. Problem 2.7 sorts to rearrange data on a tape.
General-Purpose Functions. The following algorithms sort an arbitrary ^-element

sequence.

. Insertion Sort. The program in Section 11.1 has O(n2) run time in the worst case
and for random inputs. The run times of several variants are described in a table
in that section. In Section 11.3 Insertion Sort is used to sort an almost-sorted array
in O(n) time. It is the only stable sort in this book: output elements with equal
keys are in the same relative order as in the input.

• Quicksort. The simple Quicksort in Section 11.2 runs in O(n log n) expected
time on an array of n distinct elements. It is recursive and uses logarithmic stack
space on the average. In the worst case, it requires O(n2) time and O(n) stack
space. It runs in O(n2) time on an array of equal elements; the improved version

179

180 PROGRAMMING PEARLS APPENDIX 1

in Section 11.3 has O(n log n) average run time for any array. The table in Sec-
tion 11.3 presents empirical data on the run time of several implementations of
Quicksort. The C Standard Library qsort is usually implemented with this algo-
rithm; it is used in Sections 2.8, 15.2 and 15.3 and Solution 1.1. The C++ Stan-
dard Library sort often uses the algorithm; it is timed in Section 11.3.

• Heapsort. The Heapsort in Section 14.4 runs in O(n log n) time on any n-
element array; it is not recursive and uses only constant extra space. Solutions
14.1 and 14.2 describe faster Heapsorts.

• Other Sorting Algorithms. The Merge Sort algorithm sketched in Section 1.3 is
effective for sorting files; a merging algorithm is sketched in Problem 14.4.d.
Solution 11.6 gives pseudocode for Selection Sort and Shell Sort.

The run times of several sorting algorithms are described in Solution 1.3.

Special-Purpose Functions. These functions lead to short and efficient programs
for certain inputs.

• Radix Sort. Mcllroy's bit-string sort in Problem 11.5 can be generalized to sort
strings over larger alphabets (bytes, for instance).

• Bitmap Sort. The bitmap sort in Section 1.4 uses the fact that the integers to be
sorted are from a small range, contain no duplicates, and have no additional data.
Implementation details and extensions are described in Solutions 1.2, 1.3, 1.5 and
1.6.

• Other Sorts. The multiple-pass sort in Section 1.3 reads the input many times to
trade time for space. Columns 12 and 13 produce sorted sets of random integers.

Searching

Problem Definition. A search function determines whether its input is a member
of a given set, and possibly retrieves associated information.

Applications. Lesk's telephone directory in Problem 2.6 searches to convert an
(encoded) name to a telephone number. Thompson's endgame program in Section
10.8 searches a set of chess boards to compute an optimal move. Mcllroy's spelling
checker in Section 13.8 searches a dictionary to determine whether a word is spelled
correctly. Additional applications are described along with the functions.

General-Purpose Functions. The following algorithms search an arbitrary n-
element set.

• Sequential Search. Simple and tuned versions of sequential search in an array are
given in Section 9.2. Sequential searches in an array and linked list are given in
Section 13.2. The algorithm is used in hyphenating words (Problem 3.5), smooth-
ing geographic data (Section 9.2), representing a sparse matrix (Section 10.2),
generating random sets (Section 13.2), storing a compressed dictionary (Section
13.8), bin packing (Problem 14.5), and finding all equal text phrases (Section
15.3). The introduction to Column 3 and Problem 3.1 describe two foolish imple-
mentations of sequential search.

APPENDIX 1 A CATALOG OF ALGORITHMS 181

. Binary Search. The algorithm to search a sorted array in approximately Iog2 n
comparisons is described in Section 2.2, and code is developed in Section 4.2.
Section 9.3 extends the code to find the first occurrence of many equal items and
tunes its performance. Applications include searching for records in a reservation
system (Section 2.2), erroneous input lines (Section 2.2), anagrams of an input
word (Problem 2.1), telephone numbers (Problem 2.6), the position of a point
among line segments (Problem 4.7), the index of an entry in a sparse array (Solu-
tion 10.2), a random integer (Problem 13.3), and phrases of words (Sections 15.2
and 15.3). Problems 2.9 and 9.9 discuss the tradeoffs between binary and sequen-
tial search.

• Hashing. Problem 1.10 hashes telephone numbers, Problem 9.10 hashes a set of
integers, Section 13.4 uses bins to hash a set of integers, and Section 13.8 hashes
the words in a dictionary. Section 15.1 hashes to count the words in a document.

. Binary Search Trees. Section 13.3 uses (nonbalanced) binary search trees to rep-
resent a set of random integers. Balanced trees typically implement the set tem-
plate in the C++ Standard Template Library, which we used in Sections 13.1 and
15.1 and Solution 1.1.
Special-Purpose Functions. These functions lead to short and efficient programs

for certain inputs.

• Key Indexing. Some keys can be used as an index into an array of values. The
bins and bit vectors in Section 13.4 both use integer keys as indices. Keys used as
indices include telephone numbers (Section 1.4), characters (Solution 9.6), argu-
ments to trigonometric functions (Problem 9.11), indices of sparse arrays (Section
10.2), program counter values (Problem 10.7), chess boards (Section 10.8), ran-
dom integers (Section 13.4), hash values of a string (Section 13.8), and integer
values in priority queues (Problem 14.8). Problem 10.5 reduces space with key
indexing and a numerical function.

. Other Methods. Section 8.1 describes how search time was reduced by keeping
common elements in a cache. Section 10.1 describes how searching a tax table
became simple once the context was understood.

Other Set Algorithms

These problems deal with a collection of n elements that may possibly contain
duplicates.

Priority Queues. A priority queue maintains a set of elements under the opera-
tions of inserting arbitrary elements and deleting the minimum element. Section 14.3
describes two sequential structues for the task, and gives a C++ class that efficiently
implements priority queues using heaps. Applications are described in Problems
14.4, 14.5 and 14.8.

Selection. Problem 2.8 describes a problem in which we must select the kth-
smallest element in the set. Solution 11.9 describes an efficient algorithm for the
task; alternative algorithms are mentioned in Problems 2.8, 11.1 and 14.4.c.

182 PROGRAMMING PEARLS APPENDIX 1

Algorithms on Strings

Sections 2.4 and 2.8 compute the anagram sets in a dictionary. Solution 9.6
describes several ways to classify characters. Section 15.1 lists the distinct words in a
file and also counts the words in a file, first using C++ Standard Template Library
components and then with a custom-built hash table. Section 15.2 uses suffix arrays
to find the longest repeated substring in a text file, and Section 15.3 uses a variant of
suffix arrays to generate random text from a Markov model.

Vector and Matrix Algorithms

Algorithms for swapping subsequences of a vector are discussed in Section 2.3
and Problems 2.3 and 2.4; Solution 2.3 contains code for the algorithms. Problem 2.5
describes an algorithm for swapping nonadjacent subsequences in a vector. Problem
2.7 uses sorting to transpose a matrix represented on tape. Programs for computing
the maximum of a vector are described in Problems 4.9, 9.4 and 9.8. Vector and
matrix algorithms that share space are described in Sections 10.3 and 14.4. Sparse
vectors and matrices are discussed in Sections 3.1, 10.2 and 13.8; Problem 1.9
describes a scheme for initializing sparse vectors that is used in Section 11.3. Column
8 describes five algorithms for computing the maximum-sum subsequence in a vector,
and several of the problems in Column 8 deal with vectors and matrices.

Random Objects

Functions for generating pseudorandom integers are used throughout the book;
they are implemented in Solution 12.1. Section 12.3 describes an algorithm for
"shuffling" the elements of an array. Sections 12.1 through 12.3 describe several
algorithms for selecting random subsets of a set (see also Problems 12.7 and 12.9);
Problem 1.4 gives an application of the algorithm. Solution 12.10 gives an algorithm
for randomly selecting one of an unknown number of objects.

Numerical Algorithms

Solution 2.3 presents the additive Euclidean algorithm for computing the greatest
common divisor of two integers. Problem 3.7 sketches an algorithm for evaluating
linear recurrences with constant coefficients. Problem 4.9 gives code for an efficient
algorithm to raise a number to a positive integer power. Problem 9.11 computes
trigonometric functions by table lookup. Solution 9.12 describes Horner's method of
evaluating a polynomial. Summing a large set of floating point numbers is described
in Problems 11.1 and 14.4.b.

APPENDIX 2 AN ESTIMATION QUIZ

The back-of-the-envelope calculations in Column 7 all start with basic quantities.
Those numbers can sometimes be found in a problem specification (such as a require-
ments document), but other times they must be estimated.

This little quiz is designed to help you evaluate your proficiency as a number
guesser. For each question, fill in upper and lower bounds that, in your opinion, give
you a ninety percent chance of including the true value; try not to make your ranges
too narrow or too wide. I estimate that it should take you between five and ten min-
utes. Please make a good faith effort (and in consideration of the next reader, perhaps
a photocopy of this page).

[,] January 1, 2000, population of the United States in millions.

[,] The year of Napoleon's birth.

[,] Length of the Mississippi-Missouri river in miles.

[,] Maximum takeoff weight in pounds of a Boeing 747 airliner.

[,] Seconds for a radio signal to travel from the earth to the moon.

[,] Latitude of London.

[,] Minutes for a space shuttle to orbit the earth.

[,] Length in feet between the towers of the Golden Gate Bridge.

[,] Number of signers of the Declaration of Independence.

[,] Number of bones in the adult human body.

When you finish this quiz, please turn to the next page for answers and interpretation.

Please answer the questions before you turn the page.

183

184 PROGRAMMING PEARLS APPENDIX 2

If you have not yet filled in all the guesses yourself, please go back and do so.
Here are the answers, from an almanac or similar source.

January 1, 2000, population of the United States is 272.5 million.
Napoleon was born in 1769.
The Mississippi-Missouri river is 3,710 miles long.
Maximum takeoff weight of a B747-400 airliner is 875,000 pounds.
A radio signal travels from the earth to the moon in 1.29 seconds.
Latitude of London is about 51.5 degrees.
A space shuttle orbits the earth in about 91 minutes.
4200 feet between the towers of the Golden Gate Bridge.
56 signers of the Declaration of Independence.
206 bones in the adult human body.

Please count how many of your ranges included the correct answer. Because you
used a 90-percent confidence interval, you should have gotten about nine of the ten
answers correct.

If you had all ten answers correct, then you may be an excellent estimator. Then
again, your ranges may be way too big. You can probably guess which.

If you had six or fewer answers correct, then you are probably as embarrassed as I
was when I first took a similar estimation quiz. A little practice couldn't hurt your
estimation skills.

If you had seven or eight answers correct, then you are a pretty good guesser. In
the future, remember to broaden your 90-percent ranges just a bit.

If you had exactly nine answers correct, then you may be an excellent guesser.
Or, you may have given infinite ranges for the first nine questions, and zero for the
last question. If so, shame on you.

APPENDIX 3: COST MODELS FOR TIME AND SPACE

Section 7.2 describes two little programs for estimating the time and space con-
sumed by various primitive operations. This appendix shows how those can grow
into useful programs for generating one-page time and space estimates. The complete
source code for both programs can be found at this book's web site.

The program spacemod. cpp produces a model of the space consumed by various
constructs in C++. The first part of the program uses a sequence of statements like

cout « "sizeof(char)=" « sizeof(char);
cout « " sizeof(short)=" « sizeof(short);

to give precise measurements of primitive objects:

s1zeof(char)=l s1zeof(short)=2 s1zeof(1nt)=4
s1zeof(float)=4 sizeof(struct *)=4 sizeof(long)=4
s1zeof(double)=8

The program also defines a dozen structures, using the simple naming convention
illustrated in these examples:

struct structc { char c
struct structlc { int 1
struct structlp { Int 1

char c; };
structlp *p; };

struct structdc { double d; char c; };
struct structc!2 { char c[12]; };

The program uses a macro to report the sizeof the structure, and then to estimate the
number of bytes that new allocates in a report like this:

structc 1 48 48 48 48 48 48 48 48 48 48
structlc 8 48 48 48 48 48 48 48 48 48 48
structlp 8 48 48 48 48 48 48 48 48 48 48
structdc 16 64 64 64 64 64 64 64 64 64 64
structcd 16 64 64 64 64 64 64 64 64 64 64
structcdc 24 -3744 4096 64 64 64 64 64 64 64 64
struct!ii 12 48 48 48 48 48 48 48 48 48 48

185

186 PROGRAMMING PEARLS APPENDIX 3

The first number is given by sizeof, and the next ten numbers report the differences
between successive pointers returned by new. This output is typical: most of the num-
bers are quite consistent, but the allocator skips around every now and then.

This macro makes one line of the report:

^define MEASURE(T, text) { \
cout « text « "\t"; \
cout « sizeof(T) « "\t"; \
int lastp = 0 ; \
for (int i = 0; i < 11; i++) { \

T *p = new T; \
int thisp = (int) p; \
if (lastp != 0) \

cout « " " « thisp - lastp; \
lastp = thisp; \

} \
cout « M\n"; \

The macro is called with the structure name followed by the same name in quotes, so
it can be printed:

MEASURE(structc, "structc") ;

(My first draft used a C++ template parameterized by structure type, but measure-
ments were led wildly astray by artifacts of the C++ implementation.)

This table summarizes the output of the program on my machine:

STRUCTURE
int
structc
structic
structip
structdc
structcd
structcdc
structiii
structiic
structc 1 2
structc 1 3
structc2&
structc 29

sizeof
4
1
8
8

16
16
24
12
12
12
13
28
29

new SIZE
48
48
48
48
64
64
64
48
48
48
64
64
80

The left column of numbers helps us to estimate the sizeof structures. We start by
summing the sizeof the types; that explains the 8 bytes for structip. We must also
account for the alignment; although its components sum to 10 bytes (two chars and a
double), structcdc consumes 24 bytes.

The right column gives us insight into the space overhead of the new operator. It
appears that any structure with a sizeof 12 bytes or less will consume 48 bytes.

APPENDIX 3 COST MODELS FOR TIME AND SPACE 187

Structures with 13 through 28 bytes consume 64 bytes. In general, the allocated block
size will be a multiple of 16, with 36 to 47 bytes of overhead. This is surprisingly
expensive; other systems that I use consume just 8 bytes of overhead to represent an
8-byte record.

Section 7.2 also describes a little program for estimating the cost of one particular
C operation. We can generalize that to the timemod. c program that produces a one-
page cost model for a set of C operations. (Brian Kernighan, Chris Van Wyk and I
built a predecessor of this program in 1991.) The main function of that program con-
sists of a sequence of a T (for title) lines followed by M lines to measure the cost of
operations:

T("Integer Arithmetic11);

M(k = i + j);
M(k = i - j);

Those lines (and a few more like them) produce this output:

Integer Arithmetic
{} 250
k-
k
k
k
k
k
k
k

h+
=
=
=
=
=
=
=

i
i
i
i
i
i
i

+ J
- j
* j
/ j
% j
& j
1 j

471
491
440
491
2414
2423
491
440

(n=5000)
261 250
460
491
441
490
2433
2414
491
441

471
500
441
491
2424
2423
480
441

250
461
491
440
491
2423
2414
491
440

251
460
491
441
490
2414
2423
491
441

10
19
20
18
20
97
97
20
18

The first column gives the operation that is executed inside the loop

for i = [1, n]
for j = [1, n]

op

The next five columns show the raw time in clock clicks (milliseconds on this system)
for five executions of that loop (these times are all consistent; inconsistent numbers
help to identify suspicious runs). The final column gives the average cost in nanosec-
onds per operation. The first row of the table says that it takes about ten nanoseconds
to execute a loop that contains the null operation. The next row says that increment-
ing the variable k consumes about 9 additional nanoseconds. All of the arithmetic and
logical operations have about the same cost, with the exception of the division and
remainder operators, which are an order-of-magnitude more expensive.

This approach gives rough estimates for my machine, and they must not be over-
interpreted. I conducted all experiments with optimization disabled. When I enabled
that option, the optimizer removed the timing loops and all times were zero.

The work is done by the M macro, which can be sketched in pseudocode as:

18 8 PROGRAMMING PEARLS APPENDIX 3

tfdefine M(op)
print op as a string
timesum = 0
for trial = [0, trials)

start = clockQ
for i = [1, n]

f i = i
for j = [1, n]

op
t = clockQ-start
print t
timesum += t

print Ie9*timesum / (n*n * trials * CLOCKS_PER_SEC)

The complete code for this cost model can be found at this book's web site.
We'll now survey the output of the program on my particular system. Because the

clock clicks are all consistent, we will omit them and report only the average time in
nanoseconds.

Floating Point Arithmetic (n=5000)
f j = j ; 18
fj=j; fk = fi + fj 26
fj=j; fk = fi - fj 27
f j=j; fk = fi * fj 24
fj=j; fk = fi / fj 78

Array Operations (n=5000)
k = i + j 17
k = x[i] + j 18
k = i + x[j] 24
k = x[i] + x[j] 27

The floating point operations originally assign the integer j to the floating-point// (in
about 8 nanoseconds); the outer loop assigns / to the floating-point/z. The floating
operations themselves cost about as much as their integer counterparts, and the array
operations are equally inexpensive.

The next tests give us insight into control flow in general and some sorting opera-
tions in particular:

Comparisons (n=5000)
if (i < j) k++ 20
if (x[i] < x[j]) k++ 25

Array Comparisons and Swaps (n=5000)
k = (x[i]<x[k]) ? -1:1 34
k = intcmp(x+i, x+j) 52
swapmac(i, j) 41
swapfunc(i, j) 65

The function versions of comparing and swapping each cost about 20 nanoseconds
more than their inline counterparts. Section 9.2 compares the cost of computing the
maximum of two values with functions, macros and inline code:

APPENDIX 3 COST MODELS FOR TIME AND SPACE 189

Max Function, Macro and Inline (n=5000)
k = (i > j) ? i : j 26
k = maxmac(i, j) 26
k = maxfunc(i, j) 54

The rand function is relatively inexpensive (though recall that the bigrand func-
tion makes two calls to rand), square root is an order of magnitude greater than basic
arithmetic operations (though only twice the cost of a division), simple trigonometric
operations cost twice that, and advanced trigonometric operations run into microsec-
onds.

Math Functions (n=1000)
k = randQ 40
fk = j+fi 20
fk = sqrtCj+fi) 188
fk = sin(j+fi) 344
fk = sinh(j+fi) 2229
fk = asin(j+fi) 973
fk = cos(j+fi) 353
fk = tan(j+fi) 465

Because those are so pricey, we shrunk the value of n. Memory allocation is more
expensive yet, and merits an even smaller n:

Memory Allocation (n=500)
free(malloc(16)) 2484
free(mal1oc(100)) 3044
free(malloc(2000)) 4959

This page intentionally left blank

APPENDIX 4: RULES FOR CODE TUNING

My 1982 book Writing Efficient Programs was built around 27 rules for code tun-
ing. That book is now out of print, so the rules are repeated here (with only a few
small changes), together with examples of how they are used in this book.

Space-For-Time Rules

Data Structure Augmentation. The time required for common operations on data can
often be reduced by augmenting the structure with extra information or by changing
the information within the structure so that it can be accessed more easily.

In Section 9.2, Wright wanted to find nearest neighbors (by angle) among a set of
points on the surface of the globe represented by latitude and longitude, which
involved expensive trigonometric operations. Appel augmented her data structure
with the x, y and z coordinates, which allowed her to use Euclidean distances with
much less compute time.

Store Precomputed Results. The cost of recomputing an expensive function can be
reduced by computing the function only once and storing the results. Subsequent
requests for the function are then handled by table lookup rather than by computing
the function.

The cumulative arrays in Section 8.2 and Solution 8.11 replace a sequence of
additions with two table lookups and a subtraction.
Solution 9.7 speeds up a program to count bits by looking up a byte or a word at a
time.
Solution 10.6 replaces shifting and logical operations with a table lookup.

Caching. Data that is accessed most often should be the cheapest to access.
Section 9.1 describes how Van Wyk cached the most common size of node to
avoid expensive calls to the system storage allocator. Solution 9.2 gives the
details on one kind of node cache.
Column 13 caches nodes for lists, bins and binary search trees.
Caching can backfire and increase the run time of a program if locality is not pre-
sent in the underlying data.

191

192 PROGRAMMING PEARLS APPENDIX 4

Lazy Evaluation. The strategy of never evaluating an item until it is needed avoids
evaluations of unnecessary items.

Time-For-Space Rules

Packing. Dense storage representations can decrease storage costs by increasing the
time required to store and retrieve data.

The sparse array representations in Section 10.2 greatly reduce storage costs by
slightly increasing the time to access the structures.
Mcllroy's dictionary for a spelling checker in Section 13.8 squeezes 75,000
English words into 52 kilobytes.
Kernighan's arrays in Section 10.3 and the Heapsort in Section 14.4 both use
overlaying to reduce data space by storing data items that are never simultane-
ously active in the same memory space.
Although packing sometimes trades time for space, the smaller representations are
often also faster to process.

Interpreters. The space required to represent a program can often be decreased by the
use of interpreters in which common sequences of operations are represented
compactly.

Section 3.2 uses an interpreter for "form-letter programming" and Section 10.4
uses an interpreter for a simple graphics program.

Loop Rules

Code Motion Out of Loops. Instead of performing a certain computation in each
iteration of a loop, it is better to perform it only once, outside the loop.

Section 11.1 moves an assignment to the variable t out of the main loop of isort2.

Combining Tests. An efficient inner loop should contain as few tests as possible, and
preferably only one. The programmer should therefore try to simulate some of the
exit conditions of the loop by other exit conditions.

Sentinels are a common application of this rule: we place a sentinel at the bound-
ary of a data structure to reduce the cost of testing whether our search has
exhausted the structure. Section 9.2 uses a sentinel in sequentially searching an
array. Column 13 uses sentinels to yield clean (and incidentally efficient) code for
arrays, linked lists, bins and binary search trees. Solution 14.1 places a sentinel at
one end of aheap.

Loop Unrolling. Unrolling a loop can remove the cost of modifying loop indices, and
also help to avoid pipeline stalls, to reduce branches, and to increase instruction-level
parallelism.

Unrolling a sequential search in Section 9.2 reduces its run time by about 50

APPENDIX 4 RULES FOR CODE TUNING 193

percent, and unrolling a binary search in Section 9.3 reduces its run time by
between 35 and 65 percent.

Transfer-Driven Loop Unrolling. If a large cost of an inner loop is devoted to trivial
assignments, then those assignments can often be removed by repeating the code and
changing the use of variables. Specifically, to remove the assignment / = y, the
subsequent code must treaty as though it were /.

Unconditional Branch Removal. A fast loop should contain no unconditional
branches. An unconditional branch at the end of a loop can be removed by
' 'rotating'' the loop to have a conditional branch at the bottom.

This operation is usually done by optimizing compilers.

Loop Fusion. If two nearby loops operate on the same set of elements, then combine
their operational parts and use only one set of loop control operations.

Logic Rules

Exploit Algebraic Identities. If the evaluation of a logical expression is costly, replace
it by an algebraically equivalent expression that is cheaper to evaluate.

Short-Circuiting Monotone Functions. If we wish to test whether some monotone
nondecreasing function of several variables is over a certain threshold, then we need
not evaluate any of the variables once the threshold has been reached.

A more sophisticated application of this rule exits from a loop as soon as the pur-
pose of the loop has been accomplished. The search loops in Columns 10, 13 and
15 all terminate once they find the desired element.

Reordering Tests. Logical tests should be arranged such that inexpensive and often
successful tests precede expensive and rarely successful tests.

Solution 9.6 sketches a series of tests that might be reordered.

Precompute Logical Functions. A logical function over a small finite domain can be
replaced by a lookup in a table that represents the domain.

Solution 9.6 describes how the Standard C library character classification func-
tions can be implemented by table lookup.

Boolean Variable Elimination. We can remove boolean variables from a program by
replacing the assignment to a boolean variable v by an if-else statement in which one
branch represents the case that v is true and the other represents the case that v is false.

Procedure Rules

Collapsing Function Hierarchies. The run times of the elements of a set of functions
that (nonrecursively) call themselves can often be reduced by rewriting functions in
line and binding the passed variables.

194 PROGRAMMING PEARLS APPENDIX 4

Replacing the max function in Section 9.2 with a macro gives a speedup of almost
a factor of two.
Writing the swap function inline in Section 11.1 gave a speedup of a factor of
almost 3; writing the swap inline in Section 11.3 gave less of a speedup.

Exploit Common Cases. Functions should be organized to handle all cases correctly
and common cases efficiently.

In Section 9.1, Van Wyk's storage allocator handled all node sizes correctly, but
handled the most common node size particularly efficiently.
In Section 6.1, Appel treated the expensive case of near objects with a special-
purpose small time step, which allowed the rest of his program to use a more effi-
cient large time step.

Coroutines. A multiple-pass algorithm can often be turned into a single-pass
algorithm by use of coroutines.

The anagram program in Section 2.8 uses a pipeline, which can be implemented as
a set of coroutines.

Transformations on Recursive Functions. The run time of recursive functions can
often be reduced by applying the following transformations:

Rewrite recursion to iteration, as in the lists and binary search trees in Column 13.
Convert the recursion to iteration by using an explicit program stack. (If a func-
tion contains only one recursive call to itself, then it is not necessary to store the
return address on the stack.)
If the final action of a function is to call itself recursively, replace that call by a
branch to its first statement; this is usually known as removing tail recursion. The
code in Solution 11.9 is a candidate for this transformation. That branch can often
be transformed into a loop. Compilers often perform this optimization.
It is often more efficient to solve small subproblems by use of an auxiliary proce-
dure, rather than by recurring down to problems of size zero or one. The qsort4
function in Section 11.3 uses a value of cutoff near 50.

Parallelism. A program should be structured to exploit as much of the parallelism as
possible in the underlying hardware.

Expression Rules

Compile-Time Initialization. As many variables as possible should be initialized
before program execution.

Exploit Algebraic Identities. If the evaluation of an expression is costly, replace it by
an algebraically equivalent expression that is cheaper to evaluate.

In Section 9.2, Appel replaced expensive trigonometric operations with multipli-
cations and additions, and also used monotonicity to remove an expensive square
root operation.

APPENDIX 4 RULES FOR CODE TUNING 195

Section 9.2 replaces an expensive C remainder operator % in an inner loop with a
cheaper //"statement.
We can often multiply or divide by powers of two by shifting left or right. Solu-
tion 13.9 replaces an arbitrary division used by bins with a shift. Solution 10.6
replaces a division by 10 with a shift by 4.
In Section 6.1, Appel exploited additional numeric accuracy in a data structure to
replace 64-bit floating point numbers with faster 32-bit numbers.
Strength reduction on a loop that iterates through the elements of an array replaces
a multiplication by an addition. Many compilers perform this optimization. This
technique generalizes to a large class of incremental algorithms.

Common Subexpression Elimination. If the same expression is evaluated twice with
none of its variables altered between evaluations, then the second evaluation can be
avoided by storing the result of the first and using that in place of the second.

Modern compilers are usually good at eliminating common subexpressions that do
not contain function calls.

Pairing Computation. If two similar expressions are frequently evaluated together,
then we should make a new procedure that evaluates them as a pair.

In Section 13.1, our first pseudocode always uses member and insert functions in
concert; the C++ code replaces those two functions with an insert that does noth-
ing if its argument is already in the set.

Exploit Word Parallelism. Use the full data-path width of the underlying computer
architecture to evaluate expensive expressions.

Problem 13.8 shows how bit vectors can operate on many bits at once by operat-
ing on chars or ints.
Solution 9.7 counts bits in parallel.

This page intentionally left blank

APPENDIX 5 C++ CLASSES FOR SEARCHING

The following is a complete listing of the C++ integer set representation classes
discussed in Column 13. The complete code can be found at this book's web site.

class IntSetSTL {
private:

set<int> S;
public:

IntSetSTL(int maxelms, int maxval) { }
int sizeQ { return S.sizeQ; }
void insert(int t) { S.insert(t);}
void report(int *v)
{ int j = 0;

set<int>::iterator i;
for (i = S.beginQ; i != S.endQ; ++i)

v[j++] = *i;
}

};

class IntSetArray {
private:

int n, *x;
public:

IntSetArray(int maxelms, int maxval)
{ x = new int[l + maxelms];

n = 0;
x[0] = maxval;

}
int sizeQ { return n; }
void insert(int t)
{ for (int i = 0 ; x[i] < t; i++)

if (x[i] == t)
return;

for (int j = n; j >= i; j--)
x[j+l] = x[j] ;

x[i] = t;

197

198 PROGRAMMING PEARLS APPENDIX 5

void report(int *v)
{ for (int i = 0 ; i < n; i++)

vCi] = x[i];
}

};

class IntSetList {
private:

int n;
struct node {

int val ;
node *next;
node(int v, node *p) { val = v; next = p; }

};
node *head, *sentinel;
node *rinsert(node *p, int t)
{ if (p->val < t) {

p->next = rinsert(p->next, t) ;
} else if (p->val > t) {

p = new node(t, p) ;

return p;
}

public:
IntSetList (int maxelms, int maxval)
{ sentinel = head = new node (maxval , 0);

n = 0;
}
int sizeQ { return n; }
void insert(int t) { head = rinsert(head, t) ; }
void report(int *v)
{ int j = 0;

for (node *p = head; p != sentinel; p = p->next)
v[j++] = p->val ;

class IntSetBST {
private:

int n, *v, vn;
struct node {

int val;
node *left, *right;
node(int v) { val = v; left = right = 0; }

};
node *root;

APPENDIX 5 C++CLASSES FOR SEARCHING 199

node *rinsert(node *p, int t)
{ if (P == 0) {

p = new node(t) ;
n++;

} else if (t < p->val) {
p->left = rinsert(p->left, t) ;

} else if (t > p->val) {
p->n'ght = rinsert(p->right, t) ;

} // do nothing if p->val == t
return p;

}
void traverse(node *p)
{ if (P == 0)

return;
traverse(p->left) ;
v[vn++] = p->val ;
traverse(p->right) ;

}
public:

IntSetBST(int maxelms, int maxval) { root = 0 ; n = 0; }
int sizeQ { return n; }
void insert (int t) { root = r insert (root, t) ; }
void report(int *x) { v = x; vn = 0; traverse(root) ; }

class IntSetBitVec {
private:

enum { BITSPERWORD = 32, SHIFT = 5, MASK = OxlF };
int n, hi , *x;
void set(int i) { x[i»SHIFT] |= (l«(i & MASK)); }
void clrCint i) { x[i»SHIFT] &= ~(l«(i & MASK)); }
int test(int i) { return x[i»SHIFT] & (l«(i & MASK)); }

public:
IntSetBitVec (int maxelms, int maxval)
{ hi = maxval ;

x = new int[l + hi /BITSPERWORD] ;
for (int i = 0 ; i < hi ; i++)

clr(i);
n = 0;

}
int size() { return n; }
void insert (int t)
{ if (test(t))

return;
set(t);

void report(int *v)
{ int j = 0;

for (int i = 0 ; i < hi; i++)
if (test(i))

v[j++] = i ;
}

};

200 PROGRAMMING PEARLS APPENDIX 5

class IntSetBins {
private:

int n, bins, maxval ;
struct node {

i nt val ;
node *next;
node(int v, node *p) { val = v; next = p; }

};
node **bin, ^sentinel;
node *rinsert(node *p, int t)
{ if (p->val < t) {

p->next = rinsert(p->next, t) ;
} else if (p->val > t) {

p = new node(t, p) ;

return p;
}

public:
IntSetBins(int maxelms, int pmaxval)
{ bins = maxelms;

maxval = pmaxval;
bin = new node*[bins];
sentinel = new node(maxval, 0);
for (int i = 0 ; i < bins; i++)

bin[i] = sentinel;
n = 0;

}
int sizeQ { return n; }
void insert(int t)
{ int i = t / (1 + maxval/bins);

bin[i] = rinsert(bin[i], t) ;
}
void report(int *v)
{ int j = 0;

for (int i = 0 ; i < bins; i++)
for (node *p = bin[i]; p != sentinel; p = p->next)

v[j++] = p->val;
}

};

HINTS FOR SELECTED PROBLEMS

Column 1
4. Read Column 12.
5. Consider a two-pass algorithm.
6. 8, 9. Try key indexing.
10. Consider hashing, and don't limit yourself to a computerized system.
11. This problem is for the birds.
12. How do you write without using a pen?

Column 2
1. Think about sorting, binary search and signatures.
2. Strive for an algorithm that runs in linear time.

5. Exploit the identity cba = (arbrcr)r.
7. Vyssotsky used a system utility and two one-shot programs that he wrote just for

this job to rearrange data on tapes.
8. Consider the k smallest elements in the set.
9. The cost of s sequential searches is proportional to sn\ the total cost of s binary

searches is the cost of the searches plus the time required to sort the table. Before
you put too much faith in the constant factors of the various algorithms, see Prob-
lem 9.9.

10. How did Archimedes determine that the king's crown wasn't pure gold?

Column 3
2. Use one array to represent the coefficients of the recurrence and another to repre-

sent the k previous values. The program consists of a loop within a loop.
4. Only one function need be written from scratch; the other two can call that one.

201

202 PROGRAMMING PEARLS

Column 4

2. Work from a precise invariant. Consider adding two dummy elements to the array
to help you initialize your invariant: x[-l] = -<x> and x[n] = oo.

5. If you solve this problem, run to the nearest mathematics department and ask for a
Ph.D.

6. Look for an invariant preserved by the process, and relate the initial condition of
the can to its terminal condition.

7. Read Section 2.2 again.

9. Try the following loop invariants, which are true immediately before the test in the
while statement. For vector addition,

/</i && V ,<_,-<,. a[j] = b[j] + c[j]

and for sequential search,

i<n && V,< ; < z x[j] * t

11. See Solution 11.14 for a recursive function that passes a pointer to an array.

Column 5
3. Search for terms like 4'mutation testing".

5. What can you accomplish in O(log n) or O(1) extra comparisons?
6. This book's web site contains a Java program with a GUI for studying sorting

algorithms.
9. The tab-separated output format of the scaffolding is designed to be compatible

with most spreadsheets. I usually store a series of related experiments on a single
page of a spreadsheet, together with graphs of their performance and comments
about why I did the experiments and what I learned from each.

Column 6

1. Peek ahead to Section 8.5.

3. Modify the cost model for run times described in Appendix 3 to measure the cost
of double-precision operations.

7. Automobile accidents are avoided by measures such as driver training, strict
enforcement of speed limits, a minimum drinking age, stiff penalties for drunk
driving and a good system of public transportation. If accidents do occur, injuries
to passengers can be reduced by the design of the passenger compartment, wearing
seat belts (perhaps as mandated by law) and air bags. And if injuries are suffered,
their effect can be reduced by paramedics at the scene, rapid evacuation in heli-
copter ambulances, trauma centers and corrective surgery.

HINTS FOR SELECTED PROBLEMS 203

Column 7
5. I first played with the function (l+jt/100)72/*, then used a spreadsheet to plot

(l+.72/jc)*. To prove properties about the Rule of 72, recall that
lim^^ (\+c/n)n - ec, that the natural logarithm of 2 is approximately .693,
and that the asymptote is not always the optimal approximation line.

8. Consider especially the designs and programs in Problems 2.7, 8.10, 8.12, 8.13,
9.4, 10.10, 11.6, 12.7, 12.9, 12.11, 13.3, 13.6, 13.11, 15.4, 15.5, 15.7, 15.9 and
15.15 and in Sections 1.3, 2.2, 2.4, 2.8, 10.2, 12.3, 13.2, 13.3, 13.8, 14.3, 14.4,
15.1, 15.2 and 15.3.

Column 8
4. Plot the cumulative sum as a random walk.
7. Floating point addition is not necessarily commutative.
8. In addition to computing the maximum sum in the region, return information

about the maximum vectors ending at each side of the array.
10, 11, 12. Use a cumulative array.
13. The obvious algorithm has O(n4) run time; strive for a cubic algorithm.

Column 9
3. The addition increased k by at most n -1, so we know that k is less than 2n.
9. To make binary search competitive with sequential search even at small values of

n, make the comparison operation very expensive (see, for instance, Problem 4.7).

Column 10
1. What code did the compiler generate for accessing packed fields?
5. Mix and match functions and tables.
7. Reduce the data by considering certain ranges of memory to be equivalent. Those

ranges might be either fixed-length blocks (say, 64 bytes) or function boundaries.

Column 11
2. Let the loop index i move from high to low, so that it approaches the known value

tin x[l].
4. When you have two subproblems to solve, which should you solve right away and

which should you leave on the stack to return to later — larger or smaller?
9. Modify Quicksort so that it recurs only on the subrange that contains k.

204 PROGRAMMING PEARLS

Column 12
4. Go to a statistician and use the phrases "Coupon Collector's Problem" and

4'Birthday Paradox".
11. The problem said you could use the computer; it didn't say you had to.

Column 13
2. Error checking should test to ensure that an integer to be inserted is in the proper

range and that the data structure is not yet full. A destructor should return any
allocated storage.

3. Use a binary search to test whether an element is in a sorted array.

Column 14
2. Aim for a Heapsort with this structure.

StepO

Steprc

Step 2n -1

3. See Problem 2, and also consider moving code out of loops.
6. Heaps have implicit pointers from node / to node 2/; try the same in disk files.
7. Binary search in ;c[0..6] uses an implicit tree whose root is in ;c[3]. How might

the implicit trees of Section 14.1 be used instead?
9. Use the O(n log n) lower bound on sorting. If both insert and extractmin run in

less than O(log n) time, then you could sort in less than O(n log n) time; show
how to use the operations to sort that quickly.

Column 15
15. Suppose that we are generating order-1 Markov text from a million-word docu-

ment that contains the words ;c, y and z only in the single phrase "jt y x z". Half
the time x should be followed by a y, the other half it should be followed by a z.
What odds does Shannon's algorithm give?

16. How could you use counts of A:-grams of letters or words?
17. Some commercial speech recognizers are based on trigram statistics.

heap
heap

sorted

SOLUTIONS TO SELECTED PROBLEMS

Solutions for Column 1

1. This C program uses the Standard Library qsort to sort a file of integers.

int intcomp(int *x, int *y)
{ return *x - *y; }

Int a[1000000];
int main (void)
{ int i , n=0;

while (scanf(M%d", &a[n]) ! = EOF)

qsort(a, n, sizeof(int) , intcomp);
for (i = 0 ; i < n; i++)

printf("%d\n", a[i]);
return 0;

}

This C++ program uses the set container from the Standard Template Library for
the same job.

int main (void)
{ set<int> S;

int i ;
set<int>: : iterate r j;
while (cin » i)

S.insert(i) ;
for (j = S.beginQ; j != S.endQ; ++j)

cout « *j « "\n";
return 0;

}

Solution 3 sketches the performance of both programs.
2. These functions use the constants to set, clear and test the value of a bit:

205

206 PROGRAMMING PEARLS

#define BITSPERWORD 32
tfdefine SHIFT 5
#define MASK OxlF
tfdefine N 10000000
int a[l + N/BITSPERWORD] ;

void set (int i) { a[i»SHIFT] |= (l«(i & MASK)); }
void clr(int i) { a[i»SHIFT] &= ~(l«(i & MASK)); }
int test(int i){ return a[i»SHIFT] & (l«(i & MASK)); }

3. This C code implements the sorting algorithm, using the functions defined in
Solution 2.

int main (void)
{ i nt i ;

for (i = 0 ; i < N; i++)
clr(i);

while (scanfC'Xd", &i) != EOF)
set(i);

for (i = 0 ; i < N; i++)
if (test(i))

printf("%d\nM, i);
return 0;

I used the program in Solution 4 to generate a file of one million distinct positive
integers, each less than ten million. This table reports the cost of sorting them
with the system command-line sort, the C++ and C programs in Solution 1, and
the bitmap code:

Total Sees
Compute Sees
Megabytes

SYSTEM SORT
89
79

.8

C++/STL
38
28
70

C/qsort
12.6
2.4
4

C/bitmaps
10.7

.5
1.25

The first line reports the total time, and the second line subtracts out the 10.2 sec-
onds of input/output required to read and write the files. Even though the general
C++ program uses 50 times the memory and CPU time of the specialized C pro-
gram, it requires just half the code and is much easier to extend to other problems.

4. See Column 12, especially Problem 12.8. This code assumes that randint(l, u)
returns a random integer in /.. u.

for i = [0, n)
x[i] = i

for i = [0, k)
swap(i, randint(i, n-1))
print x[i]

The swap function exchanges the two elements in x. The randint function is dis-
cussed in detail in Section 12.1.

SOLUTIONS TO SELECTED PROBLEMS 207

5. Representing all ten million numbers with a bitmap requires that many bits, or
1.25 million bytes. Employing the fact that no phone numbers begin with the dig-
its zero or one reduces the memory to exactly one million bytes. Alternatively, a
two-pass algorithm first sorts the integers 0 through 4,999,999 using
5,000,000/8 = 625,000 words of storage, then sorts 5,000,000 through 9,999,999
in a second pass. A fc-pass algorithm sorts at most n nonrepeated positive integers
less than n in time kn and space n/k.

6. If each integer appears at most ten times, then we can count its occurrences in a
four-bit half-byte (or nybble). Using the solution to Problem 5, we can sort the
complete file in a single pass with 10,000,000/2 bytes, or in k passes with
10,000,000/2^ bytes.

9. The effect of initializing the vector data[Q..n - 1] can be accomplished with a sig-
nature contained in two additional ^-element vectors, from and to, and an integer
top. If the element data[i] has been initialized, then from[i]<top and
to[from[i]] = i. Thus from is a simple signature, and to and top together make
sure that from is not accidentally signed by the random contents of memory.
Blank entries of data are uninitialized in this picture:

data:

to: 1 5 3

f
top

The variable top is initially zero; the array element / is first accessed by the code

from[i] = top
to[top] = i
data[i] = 0
top++

This problem and solution are from Exercise 2.12 of Aho, Hopcroft and Ullman's
Design and Analysis of Computer Algorithms, published by Addison-Wesley in
1974. It combines key indexing and a wily signature scheme. It can be used for
matrices as well as vectors.

10. The store placed the paper order forms in a 10x10 array of bins, using the last two
digits of the customer's phone number as the hash index. When the customer tele-
phoned an order, it was placed in the proper bin. When the customer arrived to
retrieve the merchandise, the salesperson sequentially searched through the orders
in the appropriate bin — this is classical "open hashing with collision resolution
by sequential search". The last two digits of the phone number are quite close to

h

random and therefore an excellent hash function, while the first two digits would
be a horrible hash function — why? Some municipalities use a similar scheme to
record deeds in sets of record books.

11. The computers at the two facilities were linked by microwave, but printing the
drawings at the test base would have required a printer that was very expensive at
the time. The team therefore drew the pictures at the main plant, photographed
them, and sent 35mm film to the test station by carrier pigeon, where it was
enlarged and printed photographically. The pigeon's 45-minute flight took half
the time of the car, and cost only a few dollars per day. During the 16 months of
the project the pigeons transmitted several hundred rolls of film, and only two
were lost (hawks inhabit the area; no classified data was carried). Because of the
low price of modern printers, a current solution to the problem would probably use
the microwave link.

12. According to the urban legend, the Soviets solved their problem with a pencil, of
course. For background on the true story, see www.spacepen.com. The Fisher
Space Pen company was founded in 1948, and its writing instruments have been
used by the Russian Space Agency, underwater explorers, and Himalayan climb-
ing expeditions.

Solutions for Column 2

A. It is helpful to view this binary search in terms of the 32 bits that represent each
integer. In the first pass of the algorithm we read the (at most) four billion input
integers and write those with a leading zero bit to one sequential file and those
with a leading one bit to another file.

One of those two files contains at most two billion integers, so we next use that
file as the current input and repeat the probe process, but this time on the second
bit. If the original input file contains n elements, the first pass will read n integers,
the second pass at most n/2, the third pass at most rc/4, and so on, so the total run-
ning time is proportional to n. The missing integer could be found by sorting the
file and then scanning, but that would require time proportional to n log n. This
problem was given as an exam by Ed Reingold at the University of Illinois.

cyrent One
Zero

one

http://www.spacepen.com

SOLUTIONS TO SELECTED PROBLEMS 209

B. See Section 2.3.

C. See Section 2.4.

1. To find all anagrams of a given word we first compute its signature. If no prepro-
cessing is allowed then we have to read the entire dictionary sequentially, compute
the signature of each word, and compare the two signatures. With preprocessing,
we could perform a binary search in a precomputed structure containing (signa-
ture, word) pairs sorted by signature. Musser and Saini implement several ana-
gram programs in Chapters 12 through 15 of their STL Tutorial and Reference
Guide, published by Addison-Wesley in 1996.

2. Binary search finds an element that occurs at least twice by recursively searching
the subinterval that contains more than half of the integers. My original solution
did not guarantee that the number of integers is halved in each iteration, so the
worst-case run time of its Iog2 n passes was proportional to n log n. Jim Saxe
reduced that to linear time by observing that the search can avoid carrying too
many duplicates. When his search knows that a duplicate must be in a current
range of m integers, it will only store m +1 integers on its current work tape; if
more integers would have gone on the tape, his program discards them. Although
his method frequently ignores input variables, its strategy is conservative enough
to ensure that it finds at least one duplicate.

3. This "juggling" code rotates x[n] left by rotdist.

for i = [0, gcd(rotdist, n))
/* move i-th values of blocks */
t = x[i]
j = i
loop

k = j + rotdist
if k >= n

k -= n
if k = i

break
x[j] = x[k]
j = k

x[j] = t

The greatest common divisor of rotdist and n is the number of cycles to be per-
muted (in terms of modern algebra, it is the number of cosets in the permutation
group induced by the rotation).

210 PROGRAMMING PEARLS

The next program is from Section 18.1 of Gries's Science of Programming', it
assumes that the function swap (a, b, m) exchanges x[a..a+m-l] with

if rotdist == 0 | | rotdist
return

i = p = rotdist
j = n - p
while i != j

/* invariant:

*/
if i

x[0
x[p-i
x[p
x[p+j

> J

. .

. .
p-i
p-1

]
]

in
=

.. P+j-1] =
n-1

swap (p-i ,

else
i -=J

swap(p-i,

swap(p-i
j -=
, P,

i
i)

]

P,

in

3)

P+J-i,

final
a (to
b (to
f i nal

i)

position
be
be

swapped with
swapped with

b)
a)

position

Loop invariants are described in Column 4.
The code is isomorphic to this (slow but correct) additive Euclidean algorithm for
computing the greatest common divisor of / and y, which assumes that neither
input is zero.

int gcd(int i , int j)
while i != j

if i > j
i -= J

else
j -= i

return i

Gries and Mills study all three rotation algorithms in "Swapping Sections", Cor-
nell University Computer Science Technical Report 81-452.

4. I ran all three algorithms on a 400MHz Pentium II, with n fixed at 1,000,000 and
the rotation distance varying from 1 to 50. This graph plots the average time of 50
runs at each data set:

SOLUTIONS TO SELECTED PROBLEMS 211

200-

6.

7.

150-

Nanoseconds
Per 100-

Element

50 —

Juggling

Reversal

Block Swap

I I I I
10 20 30 40

Rotation Distance

50

The reversal code has a consistent run time of about 58 nanoseconds per element,
except that the time jumps to about 66 for rotation distances of 4, 12, 20 and all
later integers congruent to 4 modulo 8. (This is probably an interaction with a
cache size of 32 bytes.) The block swap algorithm starts off as the most expensive
algorithm (probably due to a function call for swapping single-element blocks),
but its good caching behavior makes it the fastest for rotation distances greater
than 2. The juggling algorithm starts as the cheapest, but its poor caching behav-
ior (accessing a single element from each 32-byte cache line) drives its time to
near 200 nanoseconds at a rotation distance of 8. Its time hovers around 190
nanoseconds, and drops down sporadically (at a rotation distance of 1000, its time
drops to 105 nanoseconds, then pops right back up to 190). In the mid 1980's, this
same code tickled paging behavior with the rotation distance set to the page size.
The signature of a name is its push-button encoding, so the signature of
"LESK*M*" is "5375*6*". To find the false matches in a directory, we sign
each name with its push-button encoding, sort by signature (and by name within
equal signatures), and then sequentially read the sorted file to report any equal sig-
natures with distinct names. To retrieve a name given its push-button encoding
we use a structure that contains the signatures and the other data. While we could
sort that structure and then look up a push-button encoding by binary search, in a
real system we would probably use hashing or a database system.
To transpose the row-major matrix, Vyssotsky prepended the column and row to
each record, called the system tape sort to sort by column then row, and then
removed the column and row numbers with a third program.

212 PROGRAMMING PEARLS

8. The aha! insight for this problem is that some /:-element subset sums to at most t
if and only if the subset consisting of the k smallest elements does. That subset
can be found in time proportional to n log n by sorting the original set, or in time
proportional to n by using a selection algorithm (see Solution 11.9). When Ull-
man assigned this as a class exercise, students designed algorithms with both run-
ning times mentioned above, as well as O(n log k), O(nk), O(n2), and O(nk).
Can you find natural algorithms to go with those running times?

10. Edison filled the shell with water and emptied it into a graduated cylinder. (As the
hint may have reminded you, Archimedes also used water to compute volumes; in
his day, aha! insights were celebrated by shouting eureka!)

Solutions for Column 3

1. Each entry in a tax table contains three values: the lower bound for this bracket,
the base tax, and the rate at which income over the lower bound is taxed. Includ-
ing a final sentinel entry in the table with an "infinite" lower bound will make the
sequential search easier to write and incidentally faster (see Section 9.2); one
could also use a binary search. These techniques apply to any piecewise-linear
functions.

3. This block letter "I"

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

XXX
XXX
XXX
XXX
XXX
XXX

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

might be encoded as

3 lines 9 X
6 lines 3 blank 3 X 3 blank
3 lines 9 X

or more compactly as

3 9 X
6 3 b 3 X 3 b
3 9 X

4. To find the number of days between two dates, compute the number of each day in
its respective year, subtract the earlier from the later (perhaps borrowing from the
year), and then add 365 times the difference in years plus one for each leap year.

SOLUTIONS TO SELECTED PROBLEMS 213

To find the day of the week for a given day, compute the number of days between
the given day and a known Sunday, and then use modular arithmetic to convert
that to a day of the week. To prepare a calendar for a month in a given year, we
need to know how many days there are in the month (take care to handle February
correctly) and the day of the week on which the Ist falls. Dershowitz and Rein-
gold wrote an entire book on Calendrical Calculations (published by Cambridge
University Press in 1997).

5. Because the comparisons take place from the right to the left of the word, it will
probably pay to store the words in reverse (right-to-left) order. Possible represen-
tations of a sequence of suffixes include a two-dimensional array of characters
(which is usually wasteful), a single array of characters with the suffixes separated
by a terminator character, and such a character array augmented with an array of
pointers, one to each word.

6. Aho, Kernighan and Weinberger give a nine-line program for generating form let-
ters on page 101 of their Awk Programming Language (published by Addison-
Wesleyin 1988).

Solutions for Column 4

1. To show that overflow does not occur we add the conditions 0<l<n and - 1 <u < n
to the invariant; we can then bound l + u. The same conditions can be used to
show that elements outside the array bounds are never accessed. We can formally
define mustbe(l, u) as x[l-l]<t and x[u + l] > t if we define the fictitious
boundary elements x[- 1] and x[n] as in Section 9.3.

2. See Section 9.3.
5. For an introduction to this celebrated open problem of mathematics, see B.

Hayes's "On the ups and downs of hailstone numbers" in the Computer Recre-
ations column in the January 1984 Scientific American. For a more technical dis-
cussion, see "The 3jt+l problem and its generalizations" by J. C. Lagarias, in the
January 1985 American Mathematical Monthly. As this book goes to press,
Lagarias has a 30-page bibliography with about a hundred references to the prob-
lem at www. research.att.com/~jcl/3x+1.html.

6. The process terminates because each step decreases the number of beans in the can
by one. It always removes either zero or two white beans from the coffee can, so
it leaves invariant the parity (oddness or evenness) of the number of white beans.
Thus the last remaining bean is white if and only if the can originally held an odd
number of white beans.

7. Because the line segments that form the rungs of the ladder are in increasing y-
order, the two that bracket a given point can be found by binary search. The basic
comparison in the search tells whether the point is below, on, or above a given line
segment; how would you code that function?

8. See Section 9.3.

www. research.att.com/~jcl/3x+1.html

214 PROGRAMMING PEARLS

Solutions for Column 5

1. When I write large programs, I use long names (ten or twenty characters) for my
global variables. This column uses short variable names such as Jt, n and t. In
most software projects, the shortest plausible names might be more like elem,
nelems and target. I find the short names convenient for building scaffolding and
essential for mathematical proofs like that in Section 4.3. Similar rules apply to
mathematics: the unfamiliar may want to hear that "the square of the hypotenuse
of a right triangle is equal to the sum of the squares of the two adjacent sides", but
people working on the problem usually say "a2 + b2 = c2".
I've tried to stick close to Kernighan and Ritchie's C coding style, but I put the
first line of code with the opening curly brace of a function and delete other blank
lines to save space (a substantial percentage, for the little functions in this book).
The binary search in Section 5.1 returns an integer that is -1 if the value is not
present, and points to the value if it is present. Steve McConnell suggested that
the search should properly return two values: a boolean telling whether it is pre-
sent, and an index that is used only if the boolean is true:

boolean BinarySearch(DataType TargetValue, int *TargetIndex)
/* precondition: Element[0] <= Element[l] <=

... <= Element[NumElements-l]
postcondition:

result == false =>
TargetValue not in Element[0..NumElements-1]

result == true =>
Element[*TargetIndex] == TargetValue

*/

Listing 18.3 on page 402 of McConnell's Code Complete is a Pascal Insertion Sort
that occupies one (large) page; the code and comments are together 41 lines. That
style is appropriate for large software projects. Section 11.1 of this book presents
the same algorithm in just five lines of code.
Few of the programs have error checking. Some functions read data from files
into arrays of size MAX, and scanf calls can easily overflow their buffers. Array
arguments that should be parameters are instead global variables.
Throughout this book, I've used shortcuts that are appropriate for textbooks and
scaffolding, but not for large software projects. As Kernighan and Pike observe in
Section 1.1 of their Practice of Programming, "clarity is often achieved through
brevity". Even so, most of my code avoids the incredibly dense style illustrated
in the C++ code in Section 14.3.

7. For ft = 1000, searching through the array in sorted order required 351 nanosec-
onds per search, while searching it in random order raised the average cost to 418
nanoseconds (about a twenty percent slowdown). For n = 106, the experiment
overflows even the L2 cache and the slowdown is a factor of 2.7. For the highly-
tuned binary search in Section 8.3, though, the ordered searches zipped right

SOLUTIONS TO SELECTED PROBLEMS 215

through an n = 1000-element table in 125 nanoseconds each, while the random
searches required 266 nanoseconds, a slowdown of over a factor of two.

Solutions for Column 6

4. Want your system to be reliable? Start by building reliability in from the initial
design; it is impossible to paste on later. Design your data structures so that infor-
mation can be recovered if portions of a structure are compromised. Inspect code
in reviews and walkthroughs, and test it extensively. Run your software on top of
a reliable operating system, and on a redundant hardware system using error-
correcting memory. Have in place a plan to recover quickly when your system
does fail (and it certainly will fail). Log every failure carefully so that you can
learn from each one.

6. "Make it work first before you make it work fast" is usually good advice. How-
ever, it took Bill Wulf only a few minutes to convince me that the old truism isn't
quite as true as I once thought. He used the case of a document production system
that took several hours to prepare a book. Wulf s clincher went like this: "That
program, like any other large system, today has ten known, but minor, bugs. Next
month, it will have ten different known bugs. If you could choose between
removing the ten current bugs or making the program run ten times faster, which
would you pick?''

Solutions for Column 7

These solutions include guesses at constants that may be off by a factor of two
from their correct values as this book goes to press, but not much further.
1. The Passaic River does not flow at 200 miles per hour, even when falling 80 feet

over the beautiful Great Falls in Paterson, New Jersey. I suspect that the engineer
really told the reporter that the engorged river was flowing at 200 miles per day,
five times faster than its typical 40 miles per day, which is just under a leisurely 2
miles per hour.

2. An old removable disk holds 100 megabytes. An ISDN line transmits 112 kilobits
per second, or about 50 megabytes per hour. This gives a cyclist with a disk in his
pocket about two hours to pedal, or a 15-mile radius of superiority. For a more
interesting race, put a hundred DVDs in the cyclist's backpack, and his bandwidth
goes up by a factor of 17,000; upgrade the line to ATM at 155 megabits per sec-
ond, for a factor of 1400 increase. This gives the cyclist another factor of 12, or
one day to pedal. (The day after I wrote this paragraph, I walked into a
colleague's office to see 200 5-gigabyte write-once media platters in a pile on his
desk. In 1999, a terabyte of unwritten media was a stunning sight.)

3. A floppy disk contains 1.44 megabytes. Flat out, my typing is about fifty words
(or 300 bytes) per minute. I can therefore fill a floppy in 4800 minutes, or 80
hours. (The input text for this book is only half a megabyte, but it took me sub-
stantially longer than three days to type it.)

216 PROGRAMMING PEARLS

4. I was hoping for answers along the lines of a ten-nanosecond instruction takes a
hundredth of a second, an 11 millisecond disk rotation (at 5400 rpm) takes 3
hours, a 20 msec seek takes 6 hours, and the two seconds to type my name takes
about a month. A clever reader wrote, "How long does it take? Exactly the same
time as before, if the clock slows down, too."

5. For the rate between 5 and 10 percent, the Rule-of-72 estimate is accurate to
within one percent.

6. Since 72/1.33 is approximately 54, we would expect the population to double by
2052 (the UN estimates happily call for the rate to drop substantially).

9. Ignoring slowdown due to queueing, 20 milliseconds (of seek time) per disk oper-
ation gives 2 seconds per transaction or 1800 transactions per hour.

10. One could estimate the local death rate by counting death notices in a newspaper
and estimating the population of the area they represent. An easier approach uses
Little's Law and an estimate of life expectancy; if the life expectancy is 70 years,
for instance, then 1/70 or 1.4% of the population dies each year.

11. Peter Denning's proof of Little's Law has two parts. "First, define \=A/T, the
arrival rate, where A is the number of arrivals during an observation period of
length T. Define X = C/T, the output rate, where C is the number of completions
during T. Let n(t) denote the number in the system at time t in [0,7]. Let W be
the area under n(t\ in units of 'item-seconds', representing the total aggregated
waiting time over all items in the system during the observation period. The mean
response time per item completed is defined as R = W/C, in units of (item-
seconds)/(item). The mean number in the system is the average height of n(t) and
is L = W/T, in units of (item-seconds)/(second). It is now obvious that L=RX.
This formulation is in terms of the output rate only. There is no requirement for
'flow balance', i.e., that flow in equal flow out (in symbols, k=X). If you add that
assumption, the formula becomes L = XxR, which is the form encountered in
queueing and system theory."

12. When I read that a quarter has "an average life of 30 years", that number seemed
high to me; I didn't recall seeing that many old quarters. I therefore dug into my
pocket, and found a dozen quarters. Here are their ages in years:

3 4 5 7 9 9 12 17 17 19 20 34

The average age is 13 years, which is perfectly consistent with a quarter having an
average life of about twice that (over this rather uniform distribution of ages).
Had I come up with a dozen quarters all less than five years old, I might have dug
further into the topic. This time, though, I guessed that the paper had got it right.
The same article reported that "there will be a minimum of 750 million New Jer-
sey quarters made" and also that a new state quarter would be issued every 10
weeks. That multiplies to about four billion quarters per year, or a dozen new
quarters for each resident of the United States. A life of 30 years per quarter
means that each person has 360 quarters out there. That is too many for pockets

SOLUTIONS TO SELECTED PROBLEMS 217

alone, but it is plausible if we include piles of change at home and in cars, and a
lot in cash registers, vending machines and banks.

Solutions for Column 8

I. David Gries systematically derives and verifies Algorithm 4 in "A Note on the
Standard Strategy for Developing Loop Invariants and Loops" in Science of
Computer Programming 2, pp. 207-214.

3. Algorithm 1 uses roughly n3/6 calls to function max, Algorithm 2 uses roughly
n2/2 calls, and Algorithm 4 uses roughly 2n calls. Algorithm 2b uses linear extra
space for the cumulative array and Algorithm 3 uses logarithmic extra space for
the stack; the other algorithms use only constant extra space. Algorithm 4 is
online: it computes its answer in a single pass over the input, which is particularly
useful for processing files on disk.

5. If cumarr is declared as

float *cumarr;

then assigning

cumarr = realarray+1

will mean that cumarr[-\] refers to realarray[Q].
9. Replace the assignment maxsofar = 0 with maxsofar = — oo. If the use of - oo both-

ers you, maxsofar =;c[0] does just as well; why?
10. Initialize the cumulative array cum so that cum[i]=x[Q]+ ... +*[/]. The sub vec-

tor x [/.. u] sums to zero if cum [/-!] = cum [u]. The sub vector with the sum clos-
est to zero is therefore found by locating the two closest elements in cum, which
can be done in O(n log n) time by sorting the array. That running time is within
a constant factor of optimal because any algorithm for solving it can be used to
solve the "Element Uniqueness" problem of determining whether an array con-
tains duplicated elements (Dobkin and Lipton showed that the problem requires
that much time in the worst case on a decision-tree model of computation).

I1. The total cost between stations i and j on a linear turnpike is cum [j] - cum [i - 1],
where cum is a cumulative array, as above.

12. This solution uses yet another cumulative array. The loop

for i = [1, u]
x[i] += v

is simulated by the assignments

cum[u] += v
cum[l-l] -= v

which symbolically add v to x[Q..u] and then subtract it from x[Q..l- 1]. After
all such sums have been taken, we compute the array x by

218 PROGRAMMING PEARLS

for (i = n-1; i >= 0; 1--)
x[i+l] + cum[i]

This reduces the worst-case time for n sums from O(n2) to O(n). This problem
arose in gathering statistics on Appel's n-body program described in Section 6.1.
Incorporating this solution reduced the run time of the statistics function from four
hours to twenty minutes; that speedup would have been inconsequential when the
program took a year, but was important when it took just a day.

13. The maximum-sum subarray of an mxn array can be found in O(m2n) time by
using the technique of Algorithm 2 in the dimension of length m and the technique
of Algorithm 4 in the dimension of length n. The nxn problem can therefore be
solved in O(n3) time, which was the best result for two decades. Tamaki and
Tokuyama published a slightly faster algorithm in the 1998 Symposium on
Discrete Algorithms (pp. 446-452) that runs in <9(rc3[(log log rc)/(log rc)]1/2)
time. They also give an O(n2 log n) approximation algorithm for finding a sub-
array with sum at least half the maximum, and describe applications to database
mining. The best lower bound remains proportional to n2.

Solutions for Column 9

2. These variables help to implement a variant of Van Wyk's scheme. The method
uses nodesleft to keep track of the number of nodes of size NODESIZE pointed to
by freenode. When that well runs dry, it allocates another group of size NODE-
GROUP.

tfdefine NODESIZE 8
tfdefine NODEGROUP 1000
int nodesleft = 0;
char *freenode;

Calls to malloc are replaced by calls to this private version:

void *pmalloc(1nt size)
{ void *p;

if (size != NODESIZE)
return malloc(size) ;

if (nodesleft == 0) {
freenode = malloc(NODEGROUP*NODESIZE) ;
nodesleft = NODEGROUP;

}
nodesleft--;
p = (void *) freenode;
freenode += NODESIZE;
return p;

SOLUTIONS TO SELECTED PROBLEMS 219

If the request isn't for the special size, this function immediately calls the system
malloc. When nodesleft drops to zero, it allocates another group. With the same
input that was profiled in Section 9.1, the total time dropped from 2.67 to 1.55 sec-
onds, and the time spent in malloc dropped from 1.41 to .31 seconds (or 19.7% of
the new run time).
If the program also frees nodes, then a new variable points to a singly-linked list
of free nodes. When a node is freed, it is put on the front of that list. When the
list is empty, the algorithm allocates a group of nodes, and links them together on
the list.

4. An array of decreasing values forces the algorithm to use roughly 2n operations.
5. If the binary search algorithms report that they found the search value t, then it is

indeed in the table. When applied to unsorted tables, though, the algorithms may
sometimes report that t is not present when it is in fact present. In such cases the
algorithms locate a pair of adjacent elements that would establish that t is not in
the table were it sorted.

6. One might test whether a character is a digit, for instance, with a test such as

if c >= '0' && c <= '9'

To test whether a character is alphanumeric would require a complex sequence of
comparisons; if performance matters, one should put the test most likely to suc-
ceed first. It is usually simpler and faster to use a 256-element table:

#define isupper(c) (uppertable[c])

Most systems store several bits in each element of a table, then extract them with a
logical and:

^define isupper(c) (bigtable[c] & UPPER)
#define isalnum(c) (bigtable[c] & (DIGIT|LOWER]UPPER))

C and C++ programmers might enjoy inspecting the file ctype.h to see how their
system solves this problem.

7. The first approach is to count the number of one bits in each input unit (perhaps an
8-bit character or perhaps a 32-bit integer), and sum them. To find the number of
one bits in a 16-bit integer, one could look at each bit in order, or iterate through
the bits that are on (with a statement like b &= (b-1)), or perform a lookup in a
table of, for instance, 216 = 65,536 elements. What effect will the cache size
have on your choice of unit?
The second approach is to count the number of each input unit in the input, and
then at the end take the sum of that number multiplied by the number of one bits
in that unit.

8. R. G. Dromey wrote this code to compute the maximum element of x[Q..n -1],
using x[n] as a sentinel:

220 PROGRAMMING PEARLS

i = 0
while i < n

max = x[i]
x[n] = max
i++
while x[i] < max

i++

11. Replacing the function evaluations by several 72-element tables decreased the run
time of the program on an IBM 7090 from half an hour to a minute. Because the
evaluation of helicopter rotor blades required about three hundred runs of the pro-
gram, those few hundred extra words of memory reduced a week of CPU time to
several hours.

12. Horner's method evaluates the polynomial by

y = a[n]
for (i = n-1; i >= 0; i--)

y = x*y + a[i]

It uses n multiplications, and is usually twice as fast as the previous code.

Solutions for Column 10

1. Every high-level language instruction that accessed one of the packed fields com-
piled into many machine instructions; accessing an unpacked field required fewer
instructions. By unpacking the records, Feldman slightly increased data space but
greatly reduced code space and run time.

2. Several readers suggested storing (;c, y, pointnum) triples sorted by y within x\
binary search can then be used to look up a given O, y) pair. The data structure
described in the text is easiest to build if the input has been sorted by x values (and
within x by y, as above). The structure could be searched more quickly by per-
forming a binary search in the row array between values firstincol[i} and
firstincol[i + !]-!. Note that those y values appear in increasing order and that
the binary search must correctly handle the case of searching an empty subarray.

4. Almanacs store tables of distances between cities as triangular arrays, which
reduces their space by a factor of two. Mathematical tables sometimes store only
the least significant digits of functions, and give the most significant digits just
once, say, for each row of values. Television schedules save space by only stating
when shows start (as opposed to listing all shows that are on at any given thirty-
minute interval).

5. Brooks combined two representations for the table. The function got to within a
few units of the true answer, and the single decimal digit stored in the array gave
the difference. After reading this problem and solution, two reviewers of this edi-
tion commented that they had recently solved problems by supplementing an
approximate function with a difference table.

SOLUTIONS TO SELECTED PROBLEMS 221

6. The original file required 300 kilobytes of disk memory. Compressing two digits
into one byte reduced that to 150 kilobytes but increased the time to read the file.
(This was in the days when a ''single-sided, double-density" 5.25-inch floppy
disk held 184 kilobytes.) Replacing the expensive / and % operations with a table
lookup cost 200 bytes of primary memory but reduced the read time almost to its
original cost. Thus 200 bytes of primary memory bought 150 kilobytes of disk.
Several readers suggested using the encoding c = (a«4)\b; the values can be
decoded by the statements a = c»4 and b = c & QxF. John Linderman
observes that ' 'not only are shifting and masking commonly faster than multiply-
ing and dividing, but common utilities like a hex dump could display the encoded
data in a readable form''.

Solutions for Column 11

1. Sorting to find the minimum or maximum of n floating point numbers is usually
overkill. Solution 9 shows how the median can be found more quickly without
sorting, but sorting might be easier on some systems. Sorting works well for
finding the mode, but hashing can be faster. While the obvious code for finding
the mean takes time proportional to n, an approach that first sorts might be able to
accomplish the job with greater numerical accuracy; see Problem 14.4.b.

2. Bob Sedgewick observed that Lomuto's partitioning scheme can be modified to
work from right to left by using the following invariant:

The partitioning code is then

m = u+1
for (i = u; i >= 1; i++)

if x[i] >= t
swap(--m, i)

Upon termination we know that x[m] = t, so we can recur with parameters
(/, m-1) and (ra + 1, u)\ no additional swap is needed. Sedge wick also used
x[l] as a sentinel to remove one test from the inner loop:

m = i = u+1
do

while x[--i] < t
»

swap(--m, i)
while i != 1

3. To determine the best choice for cutoff, I ran the program at all values of cutoff
from 1 to 100, with n fixed at 1,000,000. This graph plots the results.

222 PROGRAMMING PEARLS

0.9-

Run Time
in

Seconds 0.8 —

0.7-

\

50

cutoff value

100

A good value of cutoff was 50; values between 30 and 70 give savings to within a
few percent of that.

4. See the references cited in Section 11.6.
5. Mcllroy's program runs in time proportional to the amount of data to be sorted,

which is optimal in the worst case. It assumes that each record in x[0..n - 1] has
an integer length and a pointer to the array bit[0.. length - 1].

void bsort(l, u, depth)
if 1 >= u

return
for i = [1, u]

if x[i].length < depth
swap(i, 1++)

m = 1
for i = [1, u]

if x[i].bit[depth] == 0
swap(i, m++)

bsort(l, m-1, depth+1)
bsort(m, u, depth+1)

The function is originally called by bsort(Q, n-l, 1). Beware that this program
assigns values to parameters and to variables defining for loops. The linear run-
ning time depends strongly on the fact that the swap operation moves pointers to
the bit strings and not the bit strings themselves.

6. This code implements Selection Sort:

void selsortQ
for i = [0, n-1)

for j = [i, n)
if x[j] < x[i]

swap(i, j)

SOLUTIONS TO SELECTED PROBLEMS 223

This code implements Shell Sort:

void shellsortQ
for (h = 1; h < n; h = 3*h + 1)

»
loop

h /= 3
if (h < 1)

break
for i = [h, n)

for (j = i; j >= h; j -= h)
if Cx[j-h] < x[j])

break
swap(j-h, j)

9. This selection algorithm is due to C. A. R. Hoare; the code is a slight modification
to qsort4.

void selectl(l, u, k)
pre 1 <= k <= u
post x[l..k-l] <= x[k] <= x[k+l..u]

if 1 >= u
return

swapO, randintO, u))
t = x[l]; i = 1; j = u+1
loop

do i++; while i <= u && x[i] < t
do j--; while x[j] > t
if i > j

break
temp = x[i]; x[i] = x[j] ; x[j] = temp

swapd , j)
if j < k

selectl(j+l, u, k)
else if j > k

selectld, j-1, k)

Because the recursion is the last action of the function, it could be transformed
into a while loop. In Problem 5.2.2-32 of Sorting and Searching, Knuth shows
that the program uses an average of 3.4n comparisons to find the median of n ele-
ments; the probabilistic argument is similar in spirit to the worst-case argument in
Solution 2.A.

14. This version of Quicksort uses pointers to arrays. Because it uses just the two
parameters x and n, I find it even simpler than qsortl, so long as the reader under-
stands that the notation x +j+1 denotes the array starting at position x [j + l] .

224 PROGRAMMING PEARLS

void qsort5(int x[] , int n)
{ int i, j;

if (n <= 1)
return;

for (i =1, j = 0 ; i < n; i++)
if (x[i] < x[0])

swap(++j, i, x);
swap(0, j, x);
qsort5(x, j);
qsort5(x+j+l, n-j-1);

}

Because it uses pointers into arrays, this function can be implemented in C or
C++, but not in Java. We must now also pass the array name (that is, a pointer to
the array) to the swap function.

Solutions for Column 12

1. These functions return a large (usually 30-bit) random number and a random num-
ber in the specified input range, respectively:

int bigrandQ
{ return RAND_MAX*rand() + randQ; }

int randint(int 1, int u)
{ return "1 + bigrandQ % (u-1+1); }

2. To select m integers from the range O..n — 1, choose the number / at random in the
range, and then report the numbers /, / + 1, ..., / +ra - 1, possibly wrapping around
to 0. This method chooses each integer with probability m/n, but is strongly
biased towards certain subsets.

3. When fewer than n/2 integers have been selected so far, the probability that a ran-
domly chosen integer is unselected is greater than 1/2. That the average number
of draws to get an unselected integer is less than 2 follows from the logic that one
must toss a coin twice, on the average, to get heads.

4. Let's view the set S as a collection of n initially empty urns. Each call to randint
selects an urn into which we throw a ball; if it was previously occupied, the mem-
ber test is true. The number of balls required to ensure that each urn contains at
least one ball is known to statisticians as the "Coupon Collector's Problem" (how
many baseball cards must I collect to make sure I have all nl); the answer is
roughly n In n. The algorithm makes m tests when all the balls go into different
urns; determining when there are likely to be two balls in one urn is the "Birthday
Paradox" (in any group of 23 or more people, two are likely to share a birthday).
In general, two balls are likely to share one of n urns if there are <9(Vn) balls.

7. To print the values in increasing order one can place the print statement after the
recursive call, or print n + 1 - / rather than /.

8. To print distinct integers in random order, print each one as it is first generated;

SOLUTIONS TO SELECTED PROBLEMS 225

also see Solution 1.4. To print duplicate integers in sorted order, remove the test
of whether the integer is already in the set. To print duplicate integers in random
order, use the trivial program

for i = [0, m)
print bigrand() % n

9. When Bob Floyd studied the set-based algorithm, he was unsettled by the fact that
it discards some of the random numbers that it generates. He therefore derived an
alternative set-based algorithm, implemented here in C++:

void genfloyd(int m, int n)
{ set<int> S;

set<int>::iterator i;
for (int j = n-m; j < n; j++) {

int t = bigrandQ % (j+1);
if (S.find(t) == S.endQ)

S.insert(t); // t not in S
else

S.insert(j); // t in S
}
for (i = S.beginQ; i != S.endQ; ++i)

cout « *i « "\nM;
}

Solution 13.1 implements the same algorithm using a different set interface.
Floyd's algorithm originally appeared in Programming Pearls in the August 1986
Communications of the ACM, and was reprinted as Column 13 of my 1988 More
Programming Pearls', those references contain a simple proof of its correctness.

10. We always select the first line, we select the second line with probability one half,
the third line with probability one third, and so on. At the end of the process, each
line has the same probability of being chosen (1/n, where n is the total number of
lines in the file):

i = 0
while more input lines

with probability 1.0/++i
choice = this input line

print choice

11.1 gave this problem, exactly as stated, on a take-home examination in a course on
"Applied Algorithm Design". Students who described methods that could com-
pute the answer in just a few minutes of CPU time received zero points. The
response "I'd talk to my statistics professor" was worth half credit, and a perfect
answer went like this:

The numbers 4.. 16 have no impact on the game, so they can be ignored. The
card wins if 1 and 2 are chosen (in either order) before 3. This happens when
3 is chosen last, which occurs one time out of three. The probability that a ran-
dom sequence wins is therefore precisely 1/3.

226 PROGRAMMING PEARLS

Don't be misled by problem statements; you don't have to use the CPU time just
because it's available!

12. Section 5.9 describes Kernighan and Pike's Practice of Programming. Section
6.8 of their book describes how they tested a probabilistic program (we'll see a
different program for the same task in Section 15.3).

Solutions for Column 13

1. Floyd's algorithm in Solution 12.9 can be implemented using the IntSet class in
this fashion:

void genfloyd(1nt m, int maxval)
{ 1nt *v = new i nt[m];

IntSetSTL S(m, maxval);
for (int j = maxval-m; j < maxval; j++) {

int t = bigrandQ % (j+1) ;
int oldsize = S.sizeQ;
S.insert(t);
if (S.sizeQ == oldsize) // t already in S

S.insert(j);
}
S.report(v);
for (int i = 0; i < m; i++)

cout « v[i] « "\n";
}

When m and maxval are equal, the elements are inserted in increasing order, which
is precisely the worst case for binary search trees.

4. This iterative insertion algorithm for linked lists is longer than the corresponding
recursive algorithm because it duplicates the case analysis for inserting a node
after the head and later in the list:

void insert(t)
if head->val == t

return
if head->val > t

head = new node(t, head)
n++
return

for (p = head; p->next->val < t; p = p->next)
j

if p->next->val == t
return

p->next = new node(t, p->next)

SOLUTIONS TO SELECTED PROBLEMS 227

This simpler code removes that duplication by using a pointer to a pointer:

void insert(t)
for (p = &head; (*p)->val < t; p = &((*p)->next))

»
if (*p)->val == t

return
*p = new node(t, *p)
n++

It is just as fast as the previous version. This code works for bins with minor
changes, and Solution 7 uses this approach for binary search trees.

5. To replace many allocations with a single one, we need a pointer to the next avail-
able node:

node *freenode;

We allocate all we will ever need when the class is constructed:

freenode = new node[maxelms]

We peel them off as needed in the insertion function:

if (p == 0)
p = freenode++
p->val = t
p->left = p->right = 0
n++

else if ...

The same technique applies to bins; Solution 7 uses it for binary search trees.
6. Inserting nodes in increasing order measures the search costs of arrays and lists,

and introduces very little insertion overhead. That sequence will provoke worst-
case behavior for bins and binary search trees.

7. The pointers that were null in the previous version will now all point to the sen-
tinel node. It is initialized in the constructor:

root = sentinel = new node

The insertion code first puts the target value t into the sentinel node, then uses a
pointer to a pointer (as described in Solution 4) to run down the tree until it finds t.
At that time it uses the technique of Solution 5 to insert a new node.

228 PROGRAMMING PEARLS

void insert(t)
sentinel->val = t
p = &root
while (*p)->val != t

if t < (*p)->val
p = &((*p)->left)

else
p = &((*p)->right)

if *p == sentinel
*p = freenode++
(*p)->val = t
(*p)->left = (*p)->right = sentinel
n++

The variable node is declared and initialized as

node **p = &root;

9. To replace division with shifting, we initialize the variables with pseudocode like
this:

goal = n/m
binshift = 1
for (i = 2; i < goal; i *= 2)

binshift++
nbins = 1 + (n » binshift)

The insertion function starts at this node:

p = &(bin[t » b insh i f t])

10. One can mix and match a variety of data structures for representing random sets.
Because we have a very good (statistical) idea of how many items each bin will
contain, for instance, we might use the insights of Section 13.2 and represent the
items in most bins by a small array (we could then spill excess items to a linked
list when the bin becomes too full). Don Knuth described an "ordered hash
table" for this problem in the May 1986 "Programming Pearls" in
Communications of the ACM to illustrate his Web system for documenting Pascal
programs. That paper is reprinted as Chapter 5 of his 1992 book Literate
Programming.

Solutions for Column 14
1. The siftdown function can be made faster by moving the swap assignments to and

from the temporary variable out of its loop. The siftup function can be made faster
by moving code out of loops and by placing a sentinel element in ^[0] to remove
the test*/ /==! .

2. The modified siftdown is a slight modification of the version in the text. The
assignment / = 1 is replaced with / = /, and comparisons to n are replaced with

SOLUTIONS TO SELECTED PROBLEMS 229

comparisons to u. The resulting function's run time is O(log u - log /). This
code builds a heap in O(n) time

for (i = n-1; i >= 1; i--)
/* invariant: maxheap(i+l, n) */
siftdown(i, n)
/* maxheapCi, n) */

Because maxheap(l,n) is true for all integers l>n/2, the bound n-l in the for
loop can be changed to n/2.

3. Using the functions in Solutions 1 and 2, the Heapsort is

for (i = n/2; i >= 1; i--)
siftdownl(i, n)

for (i = n; i >= 2; i--)
swap(l, i)
siftdownl(l, i-1)

Its running time remains O(n log n), but with a smaller constant than in the origi-
nal Heapsort. The sort program at this book's web site implements several ver-
sions of Heapsort.

4. Heaps replace an O(n) process by a O(log n) process in all the problems.

a. The iterative step in building a Huffman code selects the two smallest nodes in
the set and merges them into a new node; this is implemented by two extract-
mins followed by an insert. If the input frequencies are presented in sorted
order, then the Huffman code can be computed in linear time; the details are
left as an exercise.

b. A simple algorithm to sum floating point numbers might lose accuracy by
adding very small numbers to large numbers. A superior algorithm always
adds the two smallest numbers in the set, and is isomorphic to the algorithm
for Huffman codes mentioned above.

c. A million-element heap (minimum at top) represents the million largest num-
bers seen so far.

d. A heap can be used to merge sorted files by representing the next element in
each file; the iterative step selects the smallest element from the heap and
inserts its successor into the heap. The next element to be output from n files
can be chosen in O (log n) time.

5. A heap-like structure is placed over the sequence of bins; each node in the heap
tells the amount of space left in the least full bin among its descendants. When
deciding where to place a new weight, the search goes left if it can (i.e., the least
full bin to the left has enough space to hold it) and right if it must; that requires
time proportional to the heap's depth of <9(log n). After the weight is inserted,
the path is traversed up to fix the weights in the heap.

6. The common implementation of a sequential file on disk has block / point to block
/ +1. McCreight observed that if node / also points to node 2z, then an arbitrary

230 PROGRAMMING PEARLS

node n can be found in at most <9(log n) accesses. The following recursive func-
tion prints the access path.

void path(n)
pre n >= 0
post path to n is printed

if n == 0
print "start at 0"

else if even(n)
path(n/2)
print "double to ", n

else
path(n-l)
print "increment to ", n

Notice that it is isomorphic to the program for computing xn in O(log n) steps
given in Problem 4.9.

7. The modified binary search begins with / = 1, and at each iteration sets / to either
2i or 2/ + 1. The element ;c[l] contains the median element, x[2] contains the
first quartile, x[3] the third quartile, and so on. S. R. Mahaney and J. I. Munro
found an algorithm to put an rc-element sorted array into "Heapsearch" order in
O(n) time and 0(1) extra space. As a precursor to their method, consider copy-
ing a sorted array a of size 2k -I into a "Heapsearch" array b: the elements in
odd positions of a go, in order, into the last half of the positions of b, positions
congruent to 2 modulo 4 go into b's second quarter, and so on.

11. The C++ Standard Template Library supports heaps with operations such as
make_heap, push_heap, popjieap and sort_heap. One can combine those opera-
tions to make a Heapsort as simply as

make_heap(a, a+n);
sort_heap(a, a+n);

The STL also provides a priority_queue adaptor.

Solutions for Column 15

1. Many document systems provide a way to strip out all formatting commands and
see a raw text representation of the input. When I played with the string duplica-
tion program of Section 15.2 on long texts, I found that it was very sensitive to
how the text was formatted. The program took 36 seconds to process the
4,460,056 characters in the King James Bible, and the longest repeated string was
269 characters in length. When I normalized the input text by removing the verse
number from each line, so long strings could cross verse boundaries, the longest
String increased to 563 characters, which the program found in about the same
amount of run time.

3. Because this program performs many searches for each insertion, very little of its
time is going to memory allocation. Incorporating the special-purpose memory

SOLUTIONS TO SELECTED PROBLEMS 231

allocator reduced the processing time by about 0.06 seconds, for a ten-percent
speedup in that phase, but only a two-percent speedup for the entire program.

5. We could add another map to the C++ program to associate a sequence of words
with each count. In the C program we might sort an array by count, then iterate
through it (because some words tend to have large counts, that array will be-much
smaller than the input file). For typical documents, we might use key indexing
and keep an array of linked lists for counts in the range (say) 1..1000.

7. Textbooks on algorithms warn about inputs like "aaaaaaaa", repeated thousands
of times. I found it easier to time the program on a file of newlines. The program
took 2.09 seconds to process 5000 newlines, 8.90 seconds on 10,000 newlines,
and 37.90 seconds on 20,000 newlines. This growth appears to be slightly faster
than quadratic, perhaps proportional to roughly n Iog2 n comparisons, each at an
average cost proportional to n. A more realistic bad case can be constructed by
appending two copies of a large input file.

8. The subarray a[i..i +M] represents M+ 1 strings. Because the array is sorted, we
can quickly determine how many characters those M + 1 strings have in common
by calling comlen on the first and last strings:

coml en (a [i], a [i +M])

Code at this book's web site implements this algorithm.
9. Read the first string into the array c, note where it ends, terminate it with a null

character, then read in the second string and terminate it. Sort as before. When
scanning through the array, use an ' 'exclusive or'' to ensure that precisely one of
the strings starts before the transition point.

14. This function hashes a sequence of k words terminated by null characters:

unsigned int hash(char *)
unsigned int h = 0
int n
for (n = k; n > 0; p++)

h = MULT * h + *p
if (*p == 0)

n--
return h % NHASH

A program at this book's web site uses this hash function to replace binary search
in the Markov text generation algorithm, which reduces the O(n log n) time to
O(n}, on the average. The program uses a list representation for elements in the
hash table to add only nwords additional 32-bit integers, where nwords is the
number of words in the input.

This page intentionally left blank

INDEX

To look up algorithms, see also Appendix 1 (A Catalog of Algorithms). To look
up code-tuning techniques, see also Appendix 4 (Rules for Code Tuning).

72, Rule of 69, 74, 203, 216

Abrahams, P, W. viii
abstract data types 27, 29, 130, 133-142,

152-155, 158
Adams, J. L. 9, 127
Adriance, N. vii
affix analysis 30, 144, 213
Aho, A. V. vii, 8, 86, 159, 178, 207, 213
airplanes 6, 98, 183-184
algorithm design vi, 11-20, 62, 64, 77-86,

91, 115-122, 127-129, 131, 149-157
algorithms, divide-and-conquer 62, 79-81,

84-85, 116
algorithms, multiple-pass 4-5, 7, 207
algorithms, numerical 182
algorithms, randomizing 13, 120
algorithms, scanning 81, 84
algorithms, selection 18, 123, 181, 212, 223
algorithms, string 15-16, 18-20, 98, 123,

144-146, 161-173, 182, 219, 230-231
algorithms, vector 182
allocation, dynamic 105
allocation, storage 87, 137
anagrams 11, 15-20, 209
analysis, affix 30, 144, 213
analysis, big-oh 62, 78
analysis, retrograde 110
Appel,A.W. 61-65, 91
Apple Macintosh 107
Archimedes 201, 212
arrays 12, 22-23, 25-27, 29, 33-55, 77-86,

91, 100-103, 105, 115-125, 135-138,
142-143, 148, 153, 197, 201-202

arrays, cumulative 79, 84, 203, 217
arrays, sparse 8, 100-103
arrays, suffix 165-173
assembly code 62, 95, 107
assertions 37-41, 48-50
automobiles 7, 9, 66, 85, 202
Awk 171, 213

back of the envelope 9, 15, 25, 62, 64,
67-76, 78, 127, 145, 176, 183-184

background data 3, 15, 18, 25, 87, 125,
144, 176

bags, paper 127
Baird, H. S. vii
Basic 127
Basic, Visual 25, 27-28, 54
Bell, C. G. 65
Bentley, D. T. viii
Bentley, J. C. 125
Berecz, V. 98
Bible, King James 162, 230
big-oh analysis 62, 78
binary search 12-13, 16, 18, 33-55, 92-95,

97-98, 170-172, 181, 201, 203-204,
208-209, 213-214, 219, 230

binary search trees 13, 138-140, 164, 171,
181, 198

binary trees 62, 147
binary trees, implicit 148
bins 88, 141-143, 200, 229
Birthday Paradox 204, 224
Bitmap Sort 5-8, 140-141, 180, 205-207
bitmaps 5-8, 13, 140-141, 145, 199, 207

233

234 PROGRAMMING PEARLS

blocks, conceptual 3, 9, 21-26, 92
Boolean Variable Elimination 193
boring stuff 37-39
bounds, lower 84-85, 204, 217
Boyer, R. S. 85
Bridge, Brooklyn 72
Bridge, Golden Gate 183-184
Bridge, Tacoma Narrows 72
Brooklyn Bridge 72
Brooks, F. P., Jr. v, 29, 99-100, 109-110,

220
bugs, performance 72, 89, 91, 119
Butler, S. 166
Buzen, J. P. 73

C 19, 45-55, 87-95, 97, 121, 123-125,
171-172, 177, 206, 224, 231

C++ 27, 45, 90, 121, 123-124, 127,
133-143, 158, 171-172, 177, 185,
197-200, 206, 214, 224, 231

C Standard Library 19, 122, 177, 205, 219
C++ Standard Template Library 121-122,

128, 134, 142, 159, 161-162, 164, 172,
177, 197, 205-206, 219, 230

cache-sensitive code 17, 89, 105, 107, 109,
137,139, 142, 211, 214

Caching 191
calculators 28
canonical forms 16
Cargill, T. A. 16
casting out nines 69, 74
character classification 98, 219
chess 110-111
children 76
Childress, G. L. viii
classification, character 98, 219
Cleveland, W. S. vii
Cobol 25
code, cache-sensitive 17, 89, 105, 107, 109,

137, 139, 142, 211, 214
Code Motion Out of Loops 192
code tuning 62, 64-65, 87-98, 116,

120-122, 142
codes, Huffman 158, 229
coding style 33, 45, 54-55, 130-131, 155,

177, 214
Coffee Can Problem 42
Collapsing Function Hierarchies 193
collection, garbage 105
Combining Tests 192

common divisors, greatest 17, 209-210
Common Subexpression Elimination 195
Compile-Time Initialization 194
compression, data 104, 109
conceptual blocks 3, 9, 21-26, 92
Condon, J. H. 110
contract, programming by 40
Gormen, T. H. 86
Coroutines 194
correctness proofs see program verification
cost models 70-72, 75, 89, 92, 107-108,

185-189
Coughran, W. M. 178
counts, word 162-164
Coupon Collector's Problem 204, 224
Cox, R. S. viii, 28, 54
cumulative arrays 79, 84, 203, 217

data, background 3, 15, 18, 25, 87, 125,
144, 176

data compression 104, 109
data structures see arrays, bitmaps,

dictionaries, hashing, heaps, linked lists,
matrices, priority queues, search, sparse
arrays, trees, vectors

data structures, sparse 100-104
data transmission 9, 74, 99, 103-104, 215
datatypes, abstract 27, 29, 130, 133-142,

152-155, 158
databases 4, 9, 24, 28-29, 64, 72, 110, 161
date functions 26, 30, 109, 212
de Saint-Exupery, A. 7
debugging 12-13, 15, 41, 47-50, 54-57,

72, 87, 117-118, 131, 139
Denning, P. J. vii, 73-75, 216
Dershowitz, N. 213
design, algorithm vi, 11-20, 62, 64, 77-86,

91, 115-122, 127-129, 131, 149-157
design levels 59, 61-66, 92, 96, 122
design process 7, 17, 31, 64-65, 67, 72, 83,

100, 106, 129, 144, 175
design space 4-5, 108, 123, 127-130, 145,

176
dictionaries 11, 15, 18-20, 26, 31, 109,

144-146, 161-164, 209
difficentralia 167
Dijkstra, E. W. 144
dimension tests 68
displays, seven-segment 31
divide-and-conquer algorithms 62, 79-81,

84-85, 116

INDEX 235

divisors, greatest common 17, 209-210
Dobkin, D. 217
domain-specific languages 28-29
Dromey, R. G. 219
Duff, T. 70, 178
Duncan, R. 178
duplicated substring, longest 165-166, 231
dynamic allocation 105

Ecuador 56
Edison, T. A. 18, 212
Einstein, A. 74
elegance 6-7, 9, 14-15, 20, 24-25, 65, 68,

81, 92, 99-100, 118, 127, 145, 157,
161, 169, 176, 216, 225

engineering techniques see back of the
envelope, background data, debugging,
design, elegance, problem definition,
prototypes, specifications, testing,
tradeoffs

English 11, 15, 18-20, 26, 30, 109,
144-146, 161-173

equivalence relations 16
experiments 8, 17, 51-53, 82, 89, 95-96,

98, 116, 119, 121, 137, 162, 164,
185-189, 206, 210, 214, 221, 230

Exploit Algebraic Identities 193-194
Exploit Common Cases 194
exponentiation 43

factors, safety 72-73
Feldman, S. I. 109, 220
Fermi, E. 75
Fermi problems 75
Fibonacci numbers 1-3, 5, 8, 13, 21, 34,

55, 89, 144
fingerprints 16
Floyd, R. W. 129, 143, 225-226
form letters 23-25, 31
forms, canonical 16
Fortran 102
Fraser, A. G. 178
functions, date 26, 30, 109, 212
functions, trigonometric 91

Galloping Gertie 72
garbage collection 105
Gardner, M. 11
Garey, M. R. vii
genetic traits 91

Gibbon, P. 61
Golden Gate Bridge 183-184
Gordon, P. viii
graphical user interfaces 28, 55, 106, 202
greatest common divisors 17, 209-210
Grenander, U. 83
Gries, D. vii, 14, 42-43, 210, 217
Grosse, E. H. vii-viii

hand waving 14, 16
harness, test 46
hashing 98, 145, 162-164, 171, 181, 201,

207, 221
Hayes, B. 213
heaps 147-159, 228-230
Heapsort 155-159, 180, 204, 229
Hoare,C. A. R. 50, 116, 223
Holmes, S. 168
Homer 166
Hopcroft, J. E. 8, 86, 207
HTML 28
Huff, D. 75
Huffman codes 158,229
Huffman, D. A. 158, 229
Hume, A. G. vii
hypertext 27, 29
hyphenation 30

Iliad 166
implicit binary trees 148
infinite loops 48
initialization, vector 8, 207
Insertion Sort 115-116, 121, 179, 214
integer remainders 88
interfaces, graphical user 28, 55, 106, 202
interpreters 24, 106-107, 192
invariants 34-42, 148-157
Inventor's Paradox 29

Jackson, M. A. 9
Jacob, M. 118
Java 45, 54, 123-124, 171, 202, 224
Jelinski, L. W. vii, 159
Johnson, D. S. vii, 158
Johnson, S. C. vii, 31
Jones, A. K. 63
Juno 166

Kadane, J. B. 83
Kentucky legislature 100

236 PROGRAMMING PEARLS

Kernighan, B. W. vii-viii, 3, 15, 26, 55, 76,
105, 107, 159, 171, 178, 187, 213-214,
226

Kernighan, M. D. viii
key-indexing search 7, 102, 104, 181, 201,

207
King James Bible 162, 230
Knuth, D. E. 3, 16, 34, 72, 96, 123,

126-129, 131-132, 150, 159, 228
Koestler, A. 127
Kolmogorov, A. M. 72

Lagarias, J. C. 213
Lampson, B. W. 66
languages, domain-specific 28-29
languages, programming see Awk, Basic,

C, C++, Cobol, Fortran, Pascal,
Smalltalk, Tel, Visual Basic

laziness 17, 23
Lazy Evaluation 192
legislature, Kentucky 100
Lehman, A. S. 76
Lehman, N. V. 76
Leiserson, C. E. 86
Lemons, E. W. 28, 56
Lesk, M. E. 18
letters, form 23-25, 31
levels, design 59, 61-66, 92, 96, 122
Library, C Standard 19, 122, 177, 205, 219
Library, C++ Standard Template 121-122,

128, 134, 142, 159, 161-162, 164, 172,
177, 197, 205-206, 219, 230

light bulbs 18
Linderman, J. P. vii-viii, 221
Lindholm, T. 124
linked lists 15, 88, 101, 136-138, 142-143,

145, 198, 226
Lipton, R. J. 217
lists, linked 15, 88, 101, 136-138,

142-143, 145, 198, 226
Little, J. C. R. 73
Little's Law 73-74, 216
lobsters 76
Lomet, D. B. 98
Lomuto, N. 117, 122, 221
longest duplicated substring 165-166, 231
look at the data see background data
Loop Fusion 193
loop unrolling 91, 94, 192
loops, infinite 48

lower bounds 84-85, 204, 217
Lynn, S. vii

Macintosh, Apple 107
macros 89, 188
Maguire, S. 50
Mahaney, S. R. 230
maintainability 6-7, 22, 29, 65-66, 87-88,

92, 94, 96, 102, 107, 142
malloc 70, 87, 97, 101, 189, 218-219, 227
managers 59
maps 91, 100
Markov chain 168
Markov text 167-173, 204, 231
Martin, A. R. viii
Martin, R. L. vii, 56, 59, 67
matrices 18, 85, 100-105, 182
maximum subsequence problem 77-86
McConnell, S. v, viii, 31, 55, 98, 214, 216
McCreight, E. M. 158, 229
Mcllroy, M. D. vii-viii, 14, 26, 42, 108,

123, 144-146, 172, 222
Mcllroy, P. M. viii
Melville, R. C. vii
Memishian, P. viii, 110
Merge Sort 5-6, 180
Mills, H. D. 14, 210
Minerva 166
Mississippi River 67-70, 74
models, cost 70-72, 75, 89, 92, 107-108,

185-189
monitors see profilers
monkeys 167
Moore, J S. 85
multiple-pass algorithms 4-5, 7, 207
Munro, J. I. 230
Musser, D. R. 209

name- value pairs 27, 29
Narasimhan, S. viii
n-body problem 61-63
need for speed 60
needlessly big programs 3, 21-31, 106, 130
new operator 70, 135-143, 155, 185-186,

227
Newell, A. 63
Nievergelt, J. 96
nightspots, popular 73
Nixon, R. M. 144
numbers, prime 103

INDEX 237

numbers, random 120, 125-126, 130, 189,
224

numerical algorithms 182

Olympic games 67
Oppenheimer, R. 75
optimization, premature 96
overlaying 105, 156

Packing 192
Pairing Computation 195
pairs, name-value 27, 29
paper bags 127
Paradox, Inventor's 29
Parallelism 194
Parnas, D. L. 27
partitioning functions 116-123, 221
Pascal 214
Passaic River 74, 215
Paulos, J. A. 75
pencils 208
Penzias, A. A. vii
performance bugs 72, 89, 91, 119
performance requirements 4, 14, 67, 91
Perl 25, 171
permutations 15
Pfalzner, S. 61
phrases 164-173
pigeons 208
Pike, R. viii, 55, 107, 171, 178, 214, 226
ping 72
Pinkham, R. 76
pipelines 18-20
Plauger, P. J. 3, 15, 26
pointer to a pointer 227
Polya, G. 29, 68, 130
popular nightspots 73
portability 29
postconditions 40
Potter, H. 76
Precompute Logical Functions 193
preconditions 40
premature optimization 96
prime numbers 103
priority queues 152-155, 159, 181, 230
Problem, Coffee Can 42
problem definition 3, 6, 17, 29, 63, 83,

99-100, 125, 127, 129, 144-145, 176
problem, maximum subsequence 77-86
problem, n-body 61-63

problem, substring searching 164
process, design 7, 17, 31, 64-65, 67, 72,

83, 100, 106, 129, 144, 175
profilers 62, 87-88, 96-97, 108-109
program verification vi, 33-44, 84, 92-95,

117-120, 147-157
programmer time 3, 6, 63, 66, 87-88, 92,

102, 105, 116, 130, 142
programming by contract 40
programming languages see Awk, Basic, C,

C++, Cobol, Fortran, Pascal, Smalltalk,
Tel, Visual Basic

programs, needlessly big 3, 21-31, 106,
130

programs, reliable 7, 65, 73, 215
programs, robust 7-8, 50, 65, 99, 120, 143
programs, secure 7, 50, 65
programs, subtle 14, 34, 81, 94, 116, 120,

127, 144-146
prototypes 6, 17-18, 46-55, 127, 130, 176
pseudocode 34, 45
Public, J. Q. 23

qsort 19, 121-122, 166, 170, 172, 177,
205-206

queues 73
queues, priority 152-155, 159, 181, 230
quick tests 68
Quicksort 4, 116-123, 156, 179, 203, 223
Quito 56

Radix Sort 180, 222
random numbers 120, 125-126, 130, 189,

224
random samples 125
random sets 8, 103, 125-143, 182, 206,

224-228
randomizing algorithms 13, 120
records, variable-length 105
recurrence relations 30, 81, 85
Reddy,D.R. 63
Reingold, E. M. 13, 208, 213
relations, equivalence 16
reliable programs 7, 65, 73, 215
remainders, integer 88
Reordering Tests 193
Report Program Generator 28
requirements, performance 4, 14, 67, 91
retrograde analysis 110
reversal, vector 14

238 PROGRAMMING PEARLS

Ricker, M. E. viii
Ritchie, D. M. viii, 99, 214
Rivest, R. L. 86
robust programs 7-8, 50, 65, 99, 120, 143
Roebling, J. A. 72-73
roots, square 71, 92, 189
Roper, M. J. vii
rotation, vector 11, 13-15, 17, 209-211
Roueche, B. 57
Rule of 72 69, 74, 203, 216
rules of thumb 15, 65, 69-70, 74, 96, 125,

130, 176, 178, 214
run time 6, 8, 12, 17-18, 51-55, 59, 62,

70-72, 82, 87-98, 116, 119, 121, 128,
137, 162, 164, 187-189, 206, 210, 214,
221, 230

safety factors 72-73
Saini, A. 209
samples, random 125
Saxe, J. B. 85, 209
scaffolding 45-55, 85, 95
scanning algorithms 81, 84
Scholten, C. 42
Schryer, N. L. 178
search, binary 12-13, 16, 18, 33-55,

92-95, 97-98, 170-172, 181, 201,
203-204, 208-209, 213-214, 219, 230

search, key-indexing 7, 102, 104, 181, 201,
207

search, sequential 12, 18, 43, 90-91, 96,
98, 102, 145-146, 153, 180, 201

search trees, binary 13, 138-140, 164, 171,
181, 198

searching problem, substring 164
secure programs 7, 50, 65
Sedgewick, R. 121-122, 124, 159, 221
selection algorithms 18, 123, 181, 212, 223
Selection Sort 123, 180, 222
sentinels 90, 98, 135-137, 141, 143, 227
sequential search 12, 18, 43, 90-91, 96, 98,

102,145-146,153, 180, 201
Sethi, R. vii-viii, 178
sets, random 8, 103, 125-143, 182, 206,

224-228
seven-segment displays 31
Shamos,M. I. 83, 131
Shannon, C. E. 168, 204
Shell, D. L. 123, 223
Shell Sort 123, 180, 223

Shepherd, A. 129
Short-Circuiting Monotone Functions 193
signatures 15-16
simulations 62, 98, 153
site, web vi
Skinger, L. vii
Smalltalk 27
Smith, C. M. viii
software engineering see engineering

techniques
Sort, Bitmap 5-8, 140-141, 180, 205-207
sort functions, system 3, 7, 19, 72, 115,

121,211
Sort, Heap see Heapsort
Sort, Insertion 115-116, 121, 179, 214
Sort, Merge 5-6, 180
Sort, Quick see Quicksort
Sort, Radix 180, 222
Sort, Selection 123, 180, 222
Sort, Shell 123, 180, 223
Soundex 16
space see squeezing space
space, design 4-5, 108, 123, 127-130, 145,

176
sparse arrays 8, 100-103
sparse data structures 100- 104
specifications 4, 33, 64, 125-126, 133-135,

150-153
speed, need for 60
spots, popular night 73
spreadsheets 28-29
square roots 71, 92, 189
squeezing space 3, 5, 8, 11, 14, 22, 70,

99-111, 128, 144-146, 156
Stanat, D. F. vii
Standard Library, C 19, 122, 177, 205, 219
Steele, G. L., Jr. 95
Steier, R. vii
storage allocation 87, 137
Store Precomputed Results 191
string algorithms 15-16, 18-20, 98, 123,

144-146, 161-173, 182, 219, 230-231
Stroustrup, B. vii
structures, sparse data 100-104
stuff, boring 37-39
substring, longest duplicated 165-166, 231
substring searching problem 164
subtle humor 21
subtle programs 14, 34, 81, 94, 116, 120,

127, 144-146

INDEX 239

suffix arrays 165-173
surveys 21, 125
symmetry 14, 26, 36, 38, 80, 93, 103, 105,

110-111, 117, 120, 123, 138-139, 153,
156, 176-177, 201

system sort functions 3, 7, 19, 72, 115, 121,
211

Szymanski, T. G. viii

table lookup see search
tables, tax 30, 99-100, 212
Tacoma Narrows Bridge 72
tax tables 30, 99-100, 212
Tel 27, 54
telephones 3-4, 8, 17, 104-105, 144, 207,

211
termination 37, 39-40, 49-50, 118-119,

202, 213
test harness 46
testing 8, 20, 22, 33, 41, 46-54, 65, 72, 87,

103
tests, quick 68
text, Markov 167-173, 204, 231
Thompson, K. L. 15, 99, 110-111
time, programmer 3, 6, 63, 66, 87-88, 92,

102, 105, 116, 130, 142
time, run 6, 8, 12, 17-18, 51-55, 59, 62,

70-72, 82, 87-98, 116, 119, 121, 128,
137, 162, 164, 187-189, 206, 210, 214,
221, 230

Toyama, K. viii
tradeoffs 7-8, 103, 105, 108, 153, 176, 221
Transfer-Driven Loop Unrolling 193
Transformations on Recursive Functions

194
transmission, data 9, 74, 99, 103-104, 215
trees 13, 62
trees, binary 62, 147
trees, binary search 13, 138-140, 164, 171,

181, 198
trees, implicit binary 148
Trickey, H. viii
trigonometric functions 91
turnpikes 85

Ullman, J. D. 8, 18, 86, 207
Ulysses 166
Unconditional Branch Removal 193
Unix system 99, 107, 176
unrolling, loop 91, 94, 192

user interfaces, graphical 28, 55, 106, 202

Van Wyk, C. J. vii-viii, 87-88, 96-97, 124,
143, 187, 218

variable-length records 105
vector algorithms 182
vector initialization 8, 207
vector reversal 14
vector rotation 11, 13-15, 17, 209-211
vectors see arrays
verification, program vi, 33-44, 84, 92-95,

117-120, 147-157
Visual Basic 25, 27-28, 54
voice synthesizer 26
Vyssotsky, V. A. vii, 18, 72-73, 95, 131,

178, 201

waving, hand 14, 16
web site vi
Weide,B.W. 73
Weil, R. R. 8, 12
Weinberger, P. J. 68, 159, 213
West Point vii, 127
wine cellars 74
Wolitzky, J. I. 75
word counts 162-164
words 15, 18-20, 161-164
Woronow, A. 129
Wright, M. H. 91
Wulf, W. A. 215

Yeager, C. 6

Zave, P. vii, 130

This page intentionally left blank

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

http://www.informIT.com
http://www.informit.com/newsletters
http://www.informit.com/podcasts
http://www.informit.com/articles
http://www.safari.informit.com
http://www.informit.com/blogs
http://www.informit.com/learn
http://www.informit.com/socialconnect
http://www.informIT.com

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books
from the top technology publishers, including Addison-Wesley
Professional, Cisco Press, O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical
books, Safari’s extensive collection of video tutorials lets you learn
from the leading video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be
among the fi rst to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise,
focused content created to get you up-to-speed quickly on new
and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

http://www.informit.com/safaritrial

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

http://www.informit.com/register
http://www.informit.com/register
http://www.informIT.com

	Cover
	Title Page
	Copyright Page
	Preface
	About the Book
	Acknowledgments for the First Edition
	Contents
	Part I: PRELIMINARIES
	Column 1: Cracking the Oyster
	A Friendly Conversation
	Precise Problem Statement
	Program Design
	Implementation Sketch
	Principles
	Problems
	Further Reading

	Column 2: Aha! Algorithms
	Three Problems
	Ubiquitous Binary Search
	The Power of Primitives
	Getting It Together: Sorting
	Principles
	Problems
	Further Reading
	Implementing an Anagram Program

	Column 3: Data Structures Programs
	A Survey Program
	Form-Letter Programming
	An Array of Examples
	Structuring Data
	Powerful Tools for Specialized Data
	Principles
	Problems
	Further Reading

	Column 4: Writing Correct Programs
	The Challenge of Binary Search
	Writing the Program
	Understanding the Program
	Principles
	The Roles of Program Verification
	Problems
	Further Reading

	Column 5: A Small Matter of Programming
	From Pseudocode to C
	A Test Harness
	The Art of Assertion
	Automated Testing
	Timing
	The Complete Program
	Principles
	Problems
	Further Reading
	Debugging

	Part II: PERFORMANCE
	Column 6: Perspective on Performance
	A Case Study
	Design Levels
	Principles
	Problems
	Further Reading

	Column 7: The Back of the Envelope
	Basic Skills
	Performance Estimates
	Safety Factors
	Little's Law
	Principles
	Problems
	Further Reading
	Quick Calculations in Everyday Life

	Column 8: Algorithm Design Techniques
	The Problem and a Simple Algorithm
	Two Quadratic Algorithms
	A Divide-and-Conquer Algorithm
	A Scanning Algorithm
	What Does It Matter?
	Principles
	Problems
	Further Reading

	Column 9: Code Tuning
	A Typical Story
	A First Aid Sampler
	Major Surgery — Binary Search
	Principles
	Problems
	Further Reading

	Column 10: Squeezing Space
	The Key — Simplicity
	An Illustrative Problem
	Techniques for Data Space
	Techniques for Code Space
	Principles
	Problems
	Further Reading
	A Big Squeeze

	Part III: THE PRODUCT
	Column 11: Sorting
	Insertion Sort
	A Simple Quicksort
	Better Quicksorts
	Principles
	Problems
	Further Reading

	Column 12: A Sample Problem
	The Problem
	One Solution
	The Design Space
	Principles
	Problems
	Further Reading

	Column 13: Searching
	The Interface
	Linear Structures
	Binary Search Trees
	Structures for Integers
	Principles
	Problems
	Further Reading
	A Real Searching Problem

	Column 14: Heaps
	The Data Structure
	Two Critical Functions
	Priority Queues
	A Sorting Algorithm
	Principles
	Problems
	Further Reading

	Column 15: Strings of Pearls
	Words
	Phrases
	Generating Text
	Principles
	Problems
	Further Reading

	Epilog to the First Edition
	Epilog to the Second Edition
	Appendix 1: A Catalog of Algorithms
	Appendix 2: An Estimation Quiz
	Appendix 3: Cost Models for Time and Space
	Appendix 4: Rules for Code Tuning
	Appendix 5: C++ Classes for Searching
	Hints for Selected Problems
	Solutions to Selected Problems
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

